
Spline- and Tensor-Based Signal
Reconstruction:

from Structure Analysis
to High-Performance Algorithms
to Multiplatform Implementations

and Medical Applications

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Oleksii Morozov

aus Kharkiv, Ukraine

Basel, 2015
Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel

edoc.unibas.ch

Dieses Werk ist unter dem Vertrag „Creative Commons Namensnennung-Keine
kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz“ (CC BY-NC-ND 3.0 CH) lizenziert.

Die vollständige Lizenz kann unter
creativecommons.org/licenses/by-nc-nd/3.0/ch/

eingesehen werden.

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät

auf Antrag von

Prof. Dr. Thomas Vetter, Universität Basel, Fakultätsverantwortlicher
Prof. Dr. Jürg Gutknecht, ETH Zürich, Korreferent
Prof. Dr. Michael Unser, EPF Lausanne, Korreferent

Basel, den 24.06.2014

Prof. Dr. Jörg Schibler, Dekan

This work was carried out at the Computational Medicine research group of the
University Hospital of Basel under the supervision of Prof. Dr. Patrick Hunziker.

2

Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz
(CC BY-NC-ND 3.0 CH)

Sie dürfen: Teilen — den Inhalt kopieren, verbreiten und zugänglich machen

Unter den folgenden Bedingungen:

Namensnennung — Sie müssen den Namen des Autors/Rechteinhabers
in der von ihm festgelegten Weise nennen.

Keine kommerzielle Nutzung — Sie dürfen diesen Inhalt nicht für
kommerzielle Zwecke nutzen.

Keine Bearbeitung erlaubt — Sie dürfen diesen Inhalt nicht bearbeiten,
abwandeln oder in anderer Weise verändern.

Wobei gilt:

 Verzichtserklärung — Jede der vorgenannten Bedingungen kann aufgehoben werden,
sofern Sie die ausdrückliche Einwilligung des Rechteinhabers dazu erhalten.

 Public Domain (gemeinfreie oder nicht-schützbare Inhalte) — Soweit das Werk, der
Inhalt oder irgendein Teil davon zur Public Domain der jeweiligen Rechtsordnung gehört,
wird dieser Status von der Lizenz in keiner Weise berührt.

 Sonstige Rechte — Die Lizenz hat keinerlei Einfluss auf die folgenden Rechte:

o Die Rechte, die jedermann wegen der Schranken des Urheberrechts oder aufgrund
gesetzlicher Erlaubnisse zustehen (in einigen Ländern als grundsätzliche Doktrin
des fair use bekannt);

o Die Persönlichkeitsrechte des Urhebers;

o Rechte anderer Personen, entweder am Lizenzgegenstand selber oder bezüglich
seiner Verwendung, zum Beispiel für Werbung oder Privatsphärenschutz.

 Hinweis — Bei jeder Nutzung oder Verbreitung müssen Sie anderen alle
Lizenzbedingungen mitteilen, die für diesen Inhalt gelten. Am einfachsten ist es, an
entsprechender Stelle einen Link auf diese Seite einzubinden.

Quelle: http://creativecommons.org/licenses/by-nc-nd/3.0/ch/ Datum: 12.11.2013

Abstract

The problem of signal reconstruction is of fundamental practical value for many ap-
plications associated with the field of signal and image processing. This work considers
a particular setting where the problem is formulated using a spline-based variational
approach. We mainly concentrate on the following four problem-related aspects: 1).
analysis of the problem structure, 2). structure-driven derivation of high-performance
solving algorithms, 3). high-performance algorithm implementations and 4). translation
of these results to medical applications.

The second chapter of this work presents a tensor-based abstraction for formulation
and efficient solving of problems arising in the field of multidimensional data processing.
In contrast to traditional matrix abstraction the proposed approach allows to formulate
tensor structured problems in an explicitly multidimensional way with preservation of the
underlying structure of computations that, in turn, facilitates the derivation of highly
efficient solving algorithms. In addition to being a very helpful tool for our specific
problem, the proposed tensor framework with its differentiating features is well suitable
for implementing a tensor programming language that offers self-optimized computations
of tensor expressions by semantic analysis of their terms.

The third chapter presents a practical example how the proposed tensor abstraction
can be used for solving a problem of tensor B-spline-based variational reconstruction
of large multidimensional images from irregularly sampled data. Based on our tensor
framework we performed a detailed analysis of the problem formulation and derived
highly efficient iterative solving algorithm, which offers high computational performance
when implemented on computing platforms such as multi-core and GPGPU. We success-
fully applied the proposed approach to a real-life medical problem of ultrasound image
reconstruction from a very large set of four-dimensional (3-D+time) non-uniform mea-
surements.

The fourth chapter presents an alternative approach to the problem of variational
signal reconstruction that is based on inverse recursive filtering. We revisited a B-spline-
based formulation of this problem via a detailed analysis of the problem structure moving
from the uniform towards non-uniform sampling settings. As a result we derived highly
efficient algorithms for computing smoothing splines of any degree with an optimal choice
of regularization parameter. We extended the presented approach to higher dimensions
and showed how a rich variety of non-separable multidimensional smoothing spline oper-
ators and the corresponding solutions can be computed with high efficiency. We success-
fully applied the proposed inverse recursive filtering approach to the problem of medical
Optical Coherence Tomography.

We conclude our work by presenting a high-level approach to software/hardware co-
design of high-performance streaming data processing systems on FPGA. This approach
allows to develop hybrid application specific system designs by combining the flexibility of
multi-processor-based systems and high-performance of dedicated hardware components.
A high-level programming model that is at the center of the approach along with an

1

integrated development environment implemented based on its principles allow software
and signal processing engineers who are not FPGA experts to design high-performance
hardware architectures in a short time. We show some examples of how the developed
framework can be efficiently used for implementation of our tensor- and spline-based
algorithms.

2

Acknowledgments

First of all I would like to express my immense gratitude to Prof. Patrick Hunziker
for giving me the opportunity to conduct my PhD work at his Computational Medicine
research group, for his support, for his constructive criticism, for the excellent discussions
we had, for his patience – all that helped me a lot in achieving the pursued goals and
finally to complete my PhD.

Many thanks to Prof. Thomas Vetter for being my faculty representative and for his
helpful support, comments and advices. I thank very much Prof. Jürg Gutknecht and
Prof. Michael Unser for their work as referees, for estimation of my research and for very
interesting discussions during my PhD examination. I also thank Prof. Volker Roth who
kindly agreed to chair my PhD defense.

I thank the Computer System Institute of ETH Zürich led by Prof. Jürg Gutknecht,
especially Dr. Felix Friedrich and Dr. Liu Ling for a very fruitful collaborative work on
FPGA-based embedded system design, the results of which flowed to the fifth chapter of
my thesis.

I thank Prof. Stephan Marsch and all collaborators of the Intensive Care Clinic of
the University Hospital of Basel for the support and the stimulating environment.

I thank my mother, my father and my brother for their love and trust in me. A million
thanks go to my wife Elena for her love, moral support and patience.

3

Contents

1 Introduction 9
1.1 Spline-based variational signal reconstruction 9
1.2 Main contributions of the thesis . 9

2 Tensor abstractions for structure analysis of multidimensional problems 11
2.1 Tensors . 12

2.1.1 Tensor notation . 12
2.2 Tensor operations . 13

2.2.1 Outer product . 13
2.2.2 Contraction . 13
2.2.3 Generalized tensor product . 13
2.2.4 Addition, subtraction and multiplication by a scalar 15
2.2.5 Identity transformation - Kronecker delta 15
2.2.6 Inner product . 16
2.2.7 Tensor transposition . 17
2.2.8 Tensor equations and tensor inverse 17

2.3 Differentiation in respect to tensor components 18
2.3.1 Differentiation of tensor bilinear forms 18

2.4 Automatic tensor expression analysis for
high-performance implementations . 19

2.5 Application of the framework to large real-world problems 19
2.6 Discussion . 19
2.A Dual vectors spaces, contravariant and covariant mechanisms of transfor-

mation . 21
2.B Generalized definition of a tensor . 22

3 A tensor-based computational approach to large-scale iterative multi-
dimensional signal reconstruction 23
3.1 Introduction to the problem of multidimensional non-uniform signal recon-

struction . 23
3.2 Formulation of the problem . 25
3.3 Tensor structure of the problem . 26
3.4 Iterative solution . 27

5

3.4.1 Krylov methods and Conjugate Gradient (CG) iteration 28
3.4.2 Multiscale initialization of the iterative solver 29

3.5 Evaluation of the solving algorithm . 31
3.5.1 Evaluation in 3-D . 32
3.5.2 Evaluation in 4-D . 33

3.6 Application to medical imaging . 36
3.7 Discussion . 37
3.A Tensor Conjugate Gradient Solver . 38
3.B Visualization of 3-D images reconstructed during the evaluation of the

proposed solving algorithm . 39

4 Inverse spline filtering approach to signal reconstruction 44
4.1 1-D uniform smoothing spline filters . 44

4.1.1 Inverse smoothing spline filter . 45
4.1.2 Regularization and the choice of the tradeoff factor 48
4.1.3 Regularization with multiple derivatives 53
4.1.4 Up-sampling by an integer factor 60
4.1.5 Resampling by a rational factor 64

4.2 1-D non-uniform smoothing spline filters 64
4.2.1 Solving algorithms . 65
4.2.2 Square-root free decomposition algorithm 67
4.2.3 Software implementation and performance evaluation 67

4.3 Application to medical Optical Coherence Tomography (OCT) 68
4.4 Uniform smoothing spline filters in higher dimensions 70

4.4.1 2-D case . 71
4.4.2 The case of higher dimensions . 74

4.5 Non-uniform smoothing spline filters in higher dimensions 75
4.6 Discussion . 75

5 High-level FPGA-based system design for high-performance signal re-
construction 83
5.1 FPGA computing technology . 83

5.1.1 Conventional FPGA development approaches 84
5.2 ActiveCells: a high-level hardware/software co-design on FPGA 85

5.2.1 Multi-processor streaming system design 85
5.2.2 A hybrid system design . 87
5.2.3 ActiveCells programming model 87
5.2.4 Communication protocol . 90
5.2.5 ActiveCells hardware components: Engines 91
5.2.6 ActiveCells target device specification 94
5.2.7 Model-based system design . 95
5.2.8 ActiveCells design flow . 96
5.2.9 FPGA Systems on Chip (SoC) . 97

6

5.2.10 Multi-FPGA system design . 98
5.3 High-performance computational kernel for multidimensional reconstruc-

tion on FPGA . 99
5.4 B-spline-based non-uniform signal reconstruction on FPGA 100
5.A Non-blocking send in ActiveCells . 101
5.B ActiveCells hardware component specification 101
5.C ActiveCells target device specification . 102
5.D ActiveCells implementation of a computational kernel used in B-spline

based multidimensional signal reconstruction 102
5.5 Discussion . 107

6 Summary 110

7

Notation

Z Set of integer numbers

N Set of natural numbers

A,B, . . . Vector spaces denoted by upper-case italic Latin symbols

R Euclidean space

Rd d-dimensional Euclidean space

A1 × · · · ×Ap A space of p-th order tensors (a tensor product space)

Rd1×···×dp ≡ Rd1 × · · · × Rdp A space of p-th order Euclidean tensors

(a Euclidean tensor product space)

a, b, . . . , α, β, . . . Scalars; denoted by lower-case italic Latin or Greek symbols,

e.g. a ∈ R, d ∈ N

a,b, . . . Vectors are denoted by lower-case bold Latin symbols,

e.g. a ∈ Rd

A,B, . . . Matrices are denoted by upper-case bold Latin symbols,

e.g. A ∈ Rd1×d2

A,B, . . . Tensors are denoted by upper-case symbols with calligraphic font,

e.g. A ∈ R

8

Chapter 1

Introduction

1.1 Spline-based variational signal reconstruction
This work considers a particular setting of the generic problem of variational signal re-
construction that is based on the classical regularized least-squares formulation and aims
at minimizing the following cost function:

J(s) =
K∑
k=1

|s(tk)− fk|2 +Rλ (s) (1.1)

where s(t), t ∈ Rd is a continuous signal to reconstruct, {tk, fk} is a set of noisy signal
observations, Rλ is some regularization operator that provides a controllable (via param-
eters λ) mechanism for penalization of undesired solutions. A computational solution of
this problem usually requires a discretization of the unknown function s(t). In this sense
B-splines offer many advantages in comparison with classical bases used for function ap-
proximation such as polynomials [1], band-limited functions [2, 3], radial-basis functions
[4]. Due to their locality, convolutional, multiresolution and tensor properties, B-splines
allow to implement continuous signal processing in a discrete way with high efficiency
[5, 6, 7]. In this work we study particular benefits of B-splines applied to the problem
formulation (1.1). We mainly concentrate on the analysis of the highly organized struc-
ture of the problem formulation induced by B-spline discretization and use the obtained
analysis results for generation of highly efficient solving algorithms with their translation
to practical applications in medical imaging.

1.2 Main contributions of the thesis
In this work we introduced a series of important novelties and extensions to the fields of
multidimensional data processing, variational signal reconstruction, spline-based signal
processing and FPGA-based embedded signal processing system design with translation
of the achieved results to medical applications:

9

• We developed a high-level tensor framework for structural analysis of multidimen-
sional problems. In contrast to traditional matrix abstraction the proposed ap-
proach allows natural, dimensionality-preserving formulations of tensor structured
problems that facilitates derivation of computationally efficient solving algorithms.

• We successfully applied our tensor framework to the solution of a large multidimen-
sional variational signal reconstruction problem. Analysis of the multidimensional
structure of the considered problem using our framework led to derivation of a highly
efficient solving algorithm that permits to overcome the "curse of dimensionality"
and allows to reconstruct images in higher dimensions (3 and higher) from very
large sets of non-uniformly spaced measurements. The proposed algorithm can be
efficiently parallelized and can be executed with high efficiency on multiple existing
computing platforms. The developed algorithm was successfully applied to a real-
life medical imaging problem: reconstruction of 4D (3D+time) medical ultrasound
images from a very large set of irregularly sampled data.

• We revisited the problem of spline-based variational signal reconstruction using
the approach of inverse recursive filtering. As a result we derived highly efficient
recursive filtering algorithms for computing approximating splines of an arbitrary
order that are statistically optimal in the sense of minimization of a cross validation-
based cost function. We introduced a new family of approximating spline filters with
improved noise discrimination characteristics. These filters are determined based
on an extension of the classical smoothing spline regularization approach.

We extended the results obtained for uniform approximating splines to the case
of non-uniform spline reconstruction. This extension led to derivation of highly
efficient algorithms for computing inverse spline filtering operators and the corre-
sponding spline solutions. Finally, we extended the proposed approach to the case
of multidimensional signal reconstruction. The achieved results are not limited to
only B-spline based signal representation but can be used for any shift-invariant
bases. The developed solving algorithms were successfully applied to a medical
imaging problem of Optical Coherence Tomography (OCT) and showed significant
outperformance compared with conventional techniques used in the field.

• We introduced a high-level framework for design of high-performance streaming sig-
nal processing systems on FPGA. The proposed approach allows to build complete
industrial quality FPGA hardware/software systems in a short time and is easily
comprehensible to software and signal processing engineers who are not experts in
the field of FPGA design. The proposed approach combines the flexibility of multi-
processor systems and high performance of dedicated application specific circuits.
These features make the approach well suitable for solving the signal reconstruction
problem considered in this work. We presented some examples how the developed
framework can be efficiently used for implementation of our tensor- and spline-based
algorithms.

10

Chapter 2

Tensor abstractions for structure
analysis of multidimensional problems

Computational problems with tensor structure, which involve large amounts of multi-
dimensional data, arise in many fields of science and engineering [4, 8, 9, 10, 11, 12].
The standard way of dealing with such problems is not intrinsically multidimensional,
and assumes reduction of problem formulation to the classical matrix formalism, which
is built on two-dimensional (matrix) and one-dimensional (vector) data structures. This
is achieved by a reordering of multidimensional terms from the original problem formu-
lation, into matrices and vectors. The derived matrix formulation is then treated using
well-known techniques and algorithms of matrix algebra. Finally the solution is reconsti-
tuted into its natural multidimensional form.

While this approach reduces a multidimensional problem to the well-known standard
form of matrix algebra, it introduces certain limitations. The resulting formulation is
no longer explicitly multidimensional, - a fact that may create difficulty in identifying
and understanding important properties inherent to the particular problem [13]. Vector-
ization of multidimensional objects may lead to loss of spatial data coherence [14, 15],
which can adversely affect the performance of solving algorithms. In many cases, the
derived problem formulation does not have a straightforward, intuitive connection with
the process of generating efficient solving algorithms.

Currently, a growing interest in objects with more then two dimensions – tensors,
has become evident in the scientific community. Introduced in Tensor Analysis and
Multilinear Algebra, tensors gained the attention of practitioners of diverse fields (see the
excellent review by Kolda [12]). However, translating tensor mathematics to a convenient
computational framework raises many issues [16]; including, convenient notation, ease of
algorithm implementation, performance.

We proposed a comprehensive framework [17] for solving tensor structured problems
that allows natural formulation of multidimensional problems using multidimensional
data structure directly. The proposed framework is based on a generalization of the
concepts of matrix algebra to multiple dimensions; it incorporates and unifies existing
approaches from multidimensional signal processing [18, 19, 20, 21], recent developments

11

in the field of tensor analysis [22], and multilinear algebra [23, 24, 25, 26, 12, 27, 16].

2.1 Tensors
Tensors are elements of a mathematical abstraction invented in XIX century by Italian
mathematicians Ricci-Curbastro and Levi-Civita. The proposed theory later developed
into Tensor Analysis and Multilinear Algebra and was successfully applied in physics
such as in continuum mechanics [22] and in the theory of relativity [28]. According to
the tensor theory a tensor is an abstract multidimensional entity that can be represented
by a multidimensional array of its components that are defined in respect to a chosen
basis and transform accordingly to a change of the basis. More formally a tensor can be
defined as an element of a tensor product space that is constructed based on the outer
product of a number of vector spaces (see 2.B).

2.1.1 Tensor notation

The tensor notation used in our framework is based on the original notation from Tensor
Analysis with some modifications that we introduced for the sake of making the abstrac-
tion more convenient and practical for applications in the field of multidimensional data
and signal processing.

As an example consider a scalar field defined on a discrete finite three-dimensional
grid with extents [NX , NY , NZ]. To each direction of the grid we assign a vector space
with the corresponding dimensionality: X ⊆ RNX , Y ⊆ RNY , Z ⊆ RNZ . In this case
the scalar field can be represented as a tensor that belongs to the corresponding tensor
product space X×Y ×Z ⊆ RNX×NY ×NZ . The components of this tensor we designate as a
multidimensional array with multiple indices T xyz with direct connection of an index and
its correspondent vector space (e.g. x ↔ X). The number of indices in the designation
determines the order of the tensor, thus the tensor T has the order of 3.

In general, tensors indices can be either covariant (subscripts, e.g. Txyz) or contravari-
ant (superscripts), depending on the way the tensor components transform in respect to
a change of basis (see 2.A). This property of a tensor index is called variance. Tensors
can contain indices of different variance (e.g. T xyz), such tensors are called mixed.

To distinguish multiple coordinate systems defined in the same vector space we use
subindices or accents such as ′, ,̃ ,̂ ˙ etc. For example, a linear map that defines a transfor-
mation from a basis e1 to a basis e2 in the same vector space X can be designated as Ax1x2
or Ax̂x. Note, that in principle, the same tensor Ax1x2 can be considered as an element of
the tensor product space X1 ×X2, where X1 and X2 are distinct vector spaces. But the
two cases will be well distinguishable based on the definitions used in a specific problem
context.

12

2.2 Tensor operations

2.2.1 Outer product

Consider three tensors Axy,Bzt , Cu. The outer product of these tensors is expressed as

Dxyztu = Axy · Bzt · Cu (2.1)

Thus, the outer product leads to expansion of the tensor order.

2.2.2 Contraction

For two tensors Ax and Bxyz the contraction is an operation that leads to reduction of
tensor order and is expressed as

Cyz = Ax · Bxyz (2.2)

Here for designation of the contraction, we use the Einstein convention [28] which assumes
implicit summation over a pair of indices with equal designation but different variance.
Without the use of this convention the expression (2.2) would have a less compact form
which in case of multiple contractions can become very cumbersome:

Cyz =
∑
x

AxBxyz (2.3)

2.2.3 Generalized tensor product

Consider a transformation Ax1y1z1xy : X × Y 7→ X × Y × Z × Z applied to a tensor Bxyz.
The application of the transformation can be expressed as follows:

Ax1y1z1xy · Bxyz = Cx1y1zz1 (2.4)

The expression (2.4) combines the outer product and simultaneous contraction over in-
dices x, y. Now assume the tensor A can be decomposed as the outer product of three
tensors:

Ax1y1z1xy = Ex1x · Fy1y · Gz1 (2.5)

In this case the expression (2.4) will become

Ex1x · Fy1y · Gz1 · Bxyz = Cx1y1zz1 (2.6)

Concept of ordered spaces, commutativity of tensor product

In conventional tensor formalism (and likewise in matrix formalism), the result of ex-
pression (2.6) depends on the order of multiplicands - it is not commutative. This is due
to the fact that non-contracted indices are concatenated according to the order of their
appearance in the expression that is used to assure a unique result of the tensor product.
With operations on mixed tensors, it can be rather difficult to track the overall order of

13

array indices in the results. Thus in some tensor literature a special notation is used,
where a unique index order is defined by use of the "dot" symbol (e.g. Ax1y1z1. . . xy). But
this brings an undesirable side-effect in significantly decreasing the readability of ten-
sor expressions. In contrast, separable data handling operations, like filtering in signal
processing, lead to the same result independently of the order in which separable trans-
formations are applied (note, that if taking a closer look at the expression (2.6) one can
recognize that the tensors E and F actually represent such separable transformations).
To avoid this formal, but practically important mismatch, and to add more flexibility
to handling of tensor expressions, we introduce the following constraint: in analogy to
physical space, which is ordered (right hand rule), we require vector spaces used for con-
struction of the tensor product space and their corresponding coordinate systems to have
a unique predefined order. This constraint 1 leads to a fundamental new property of the
framework, compared to conventional approaches for matrix and tensors: the tensor
product becomes commutative, in addition to being associative. Formally this means
that indices of the resulted tensor have unique positions determined by a predefined order
of vector spaces. Thus complex tensor products can be evaluated in arbitrary order but
lead to the same result. For example, for the ordered vector space sequence X, Y, Z we
can rewrite the expression (2.6) in many ways:

Ex1x · Fy1z · Gz1 · Bxyz = (2.7)
Fy1z · Ex1x · Gz1 · Bxyz =

Gz1 · Ex1x · Fy1z · Bxyz =

Gz1 · Fy1z · Ex1x · Bxyz = Cx1y1zz1

The commutativity of the tensor multiplication, achieved hereby, considerably increases
the ease of handling tensor expressions. One of the important practical values of this
property consists in simplification of semantic analysis of tensor expressions performed
for the purpose of reduction of computational and storage requirements. For example,
the expression Az1tz · By1y · Cx1x · D

xyz
t , (X ⊆ RNX , Y ⊆ RNY , Z ⊆ RNZ , T ⊆ RNT , NX <

NY < NZ < NT , NXNY > NT) in our framework can be computed by reordering
Cx1x ·

(
By1y · (Az1tz · D

xyz
t)
)
. This gives the best computational performance with minimal

memory requirements for storing intermediate results.

Extension of the tensor notation

According to Einstein notation it is not permitted to have more than one index with
same designation and variance. However, we observed that by allowing this, with subject
to some consistency rules, we can achieve an important extension of the notation. As an
example, consider the following expression

Aix · Biy = Hi
xy (2.8)

1Note that this constraint does not limit the expressiveness of tensors, as the order of vector spaces
can be changed if necessary

14

This operation is a tensor analogue of the Khatri-Rao product [29] which is a matching
elementwise (over i) Kronecker product of two sets of vectors. Note that two formally
equivalent indices are merged into a single one, without dependency on outer product or
contraction applied to other indices. But the constraint is, that indices can be contracted
only once after all possible merges resulting in a single pair of superscript and subscript.
Here is an example which represents the most general form of the tensor product,
combining outer product, contraction and elementwise product

Aix · Dxi · Biy · Piz · Wi =
(
Aix · Biy

)
· (Dxi · Piz · Wi) = Hi

xy · N x
iz = Ryz (2.9)

Notice how neatly the proposed notation unifies different types of products which exist
separately in Matrix Algebra (Matrix product, Kronecker product, Khatri-Rao product).

2.2.4 Addition, subtraction and multiplication by a scalar

Linearity of tensor product spaces implies definition of the following elementwise tensor
operations such as tensor addition, subtraction and multiplication by a scalar:

Ax1y1z1xyz + Bx1y1z1xyz = Cx1y1z1xyz (2.10)
Ax1y1z1xyz − Bx1y1z1xyz = Dx1y1z1xyz (2.11)
λ · Ax1y1z1xyz = Ex1y1z1xyz (2.12)

With the introduced constraint of ordered vector spaces all properties of these operations
such as associativity and commutativity remain unchanged.

2.2.5 Identity transformation - Kronecker delta

Kronecker delta defined by (2.41) is a second order tensor which is equivalent to the iden-
tity transformation. Mixed version of the tensor applied to components of a contravariant
or covariant first order tensor (vector) does not introduce changes:

δx1x · T x = T x1 ≡ T x (2.13)
δx1x · Ux1 = Ux ≡ Ux1 (2.14)

where indices x and x1 correspond to identical coordinate systems. Covariant or con-
travariant versions of the Kronecker delta change the variance of tensor indices, but do
not change the values of tensor components

δx1x · T x = Tx1 ≡ Tx (2.15)
δx1x · Ux1 = Ux ≡ Ux1 (2.16)

In the same way Kronecker delta can be applied along some dimension of a higher order
tensor

δx1x · T xyz ≡ δy1y · T xyz · δz1z · T xyz ≡ T xyz (2.17)

15

The tensor product of Kronecker deltas for different vector spaces forms the multidimen-
sional identity transformation

δx1y1z1xyz = δx1x · δy1y · δz1z (2.18)
δx1y1z1xyz · T xyz = T x1y1z1 ≡ T xyz (2.19)

Note, that in the case of Euclidean spaces (most considered case in the context of
multidimensional signal processing) the Kronecker delta is equivalent to the so called
metric tensor [22] that defines the measure of the distance in a space and generalizes the
notion of the inner product. In a general setting when covariant or contravariant versions
of the metric tensor are applied to a tensor they lead to a change of the tensor components
and they lower or raise, correspondingly, the tensor indices. In Euclidean spaces such
transformations do not imply any change of the tensor components and change the index
variance only as exemplified by (2.15) and(2.16)). This means that for Euclidean tensor
spaces there is practically no difference between covariant and contravariant indices and,
without considering a concrete context, indices of an individual tensor can be freely
changed from subscripts to superscripts and vice versa. However, when we consider a
concrete context with a tensor expression involving multiple tensors the choice of index
variance is influenced by the consistency of tensor operations. For example, the product
of two Euclidean tensors A ∈ X × Y × Z and B ∈ X × Z ×W

Cyw = Axyz · Bzwx (2.20)

which assumes contraction over indices x and z can be written in multiple ways while all
of them give the equivalent resulting tensor C:

Cyw = Azxy · Bxzw ≡ Axyz · Bzxw ≡ Axzy · Bxzw (2.21)
Cyw = Ayxz · Bxzw ≡ Axyz · Bzxw ≡ Ayzx · Bxzw (2.22)
Cwy = Axyz · Bzwx ≡ Axyz · Bxzw ≡ Axzy · Bwxz (2.23)

2.2.6 Inner product

The inner product of two third order Euclidean tensors Axyz and Bxyz using the general-
ized tensor product can be expressed as

〈A,B〉 = Axyz · Bxyz · Ixyz (2.24)

where Ixyz is a tensor with all components equal to one. Using the properties of Kronecker
delta it is straightforward to verify that

Ixyz = δxx1yy1zz1 · δx1y1z1xyz (2.25)
〈A,B〉 = Axyz · Bxyz · δxx1yy1zz1 · δx1y1z1xyz = Ax1y1z1 · Bx1y1z1 (2.26)

In a similar way the inner product is computed for higher order tensors.

16

Using the definition of the inner product the squared Frobenuis norm of a tensor C of
an arbitrary order is defined as

‖C‖2F = 〈C, C〉 (2.27)

Note, that in general case of non-Euclidean spaces the inner product computation requires
the use of the metric tensor [22], which in the considered case of Euclidean spaces is
equivalent to Kronecker delta.

2.2.7 Tensor transposition

In classical settings transposition of a tensor is defined by changing positions of tensor
indices. But in our framework the order of indices is unique according to a predefined
order of vector spaces. Thus patterns like ATA from matrix normal equations correspond
to the tensor product with change of variance by the metric tensor that in Euclidean
spaces is equivalent to Kronecker delta. As an example let us find the equivalent tensor
form of ATA from the context of computing the squared Frobenius norm of a tensor
T x = Axy · By:

‖T ‖2F = T x · T x · Ix =
(
Axy · Axy1 · Ix

)
· By · By1 =(

Axy · Axy1 · δxx1 · δ
x1
x

)
· By · By1 =

(
Ax1y · Ax1y1

)
· By · By1 (2.28)

where the term Axy · Axy1 · Ix ≡ Ax1y · A
x1
y1

is the exact equivalent of ATA when the tensor
A is represented as a standard matrix. Note, that the coordinate system y1, which is
identical to y, was introduced to allow two independent contractions Axy ·By and Axy1 ·B

y1

producing the same result T x. This was necessary to make the computation of the
Frobenius norm consistent.

2.2.8 Tensor equations and tensor inverse

Expression Ax1y1z1xyz · Uxyz = Bx1y1z1 represents a relation between a multidimensional
input Uxyz and a multidimensional output Bx1y1z1 . This relation is determined by the
transformation Ax1y1z1xyz . When the input is unknown, the expression describes an inverse
problem. In cases where a unique solution exists, the existence of a tensor inverse is
implied – a transformation which maps A to the identity tensor

Ãx2y2z2x1y1z1
· Ax1y1z1xyz · Uxyz = δx2y2z2xyz · Uxyz = Ux2y2z2 = Ãx2y2z2x1y1z1

· Bx1y1z1 (2.29)

Note that equation 2.29 can be represented in an equivalent matrix form, with a proper
reshaping of tensor terms. However, the explicit use of tensors in a problem formulation
can improve the visibility of the problem structure and as a consequence can facilitate the
development of highly-efficient algorithms. We show that in Chapter 3, where we employ
the proposed tensor framework for solving a large inverse problem of multidimensional
image reconstruction.

17

2.3 Differentiation in respect to tensor components
When dealing with an optimization problem, differentiation in respect to the optimiza-
tion parameter may be required. Consider an example of differentiating a tensor valued
function of the form f(U) = Ax1y1z1xyz ·Uxyz in respect to components of the tensor U . Let us
assume that indices (x, y, z) and (x1, y1, z1) correspond to two distinct coordinate systems
in Euclidean vector spaces X, Y, Z. Now we define another coordinate system (x2, y2, z2)
and differentiate f(U) in respect to the components of the tensor U represented in that
coordinate system:

∂

∂U
f(U) =

∂

∂Ux2y2z2
(
Ax1y1z1xyz · Uxyz

)
= Ax1y1z1xyz ·

(
∂Uxyz

∂Ux2y2z2

)
(2.30)

Using tensor transformation properties we can write
∂Uxyz

∂Ux2y2z2
= Sxyzx2y2z2

= (SX)xx2 · (SY)yy2 · (SZ)zz2 (2.31)

where tensors SX ,SY ,SZ represent the transformations from the coordinate system (x2, y2, z2)
to (x, y, z). For simplicity reasons let us assume that the coordinate systems are related
by identity transformations:

∂Uxyz

∂Ux2y2z2
= δxyzx2y2z2

= δxx2 · δ
y
y2
· δzz2 (2.32)

And now using the properties of Kronecker delta we get:
∂

∂U
f(U) = Ax1y1z1xyz · δxyzx2y2z2

= Ax1y1z1x2y2z2
(2.33)

2.3.1 Differentiation of tensor bilinear forms

With the same settings described above let us consider differentiation of the following
tensor bilinear form A : (X × Y × Z)× (X × Y × Z) 7→ R:

f(U) = Ax1y1z1xyz · Uxyz · Ux1y1z1 (2.34)

According to the product rule the derivative can be computed as follows:
∂

∂U
f(U) =

∂

∂Ux2y2z2
Ax1y1z1xyz · Uxyz · Ux1y1z1 =(

Ax1y1z1xyz · Ux1y1z1
)
· δxyzx2y2z2

+
(
Ax1y1z1xyz · Uxyz

)
· δx1x2y1y2z1z2 (2.35)

From (2.35) we see that the derivative of the bilinear form (2.34) can be computed by two
separate contractions in respect to coordinate systems (x, y, z) and (x1, y1, z1) followed
by formal transformation of indices and summation of the index-matched results. In case
of the symmetry of the tensor A i.e. when

Ax1y1z1xyz · Bxyz · Cx1y1z1 = Ax1y1z1xyz · Bx1y1z1 · Cxyz (2.36)

the derivative of f(U) will become
∂

∂U
f(U) = 2

(
Ax1y1z1xyz · Ux1y1z1

)
· δxyzx2y2z2

= 2
(
Ax1y1z1xyz · Uxyz

)
· δx1x2y1y2z1z2 (2.37)

18

2.4 Automatic tensor expression analysis for
high-performance implementations

Because the high level tensor formulation contains the complete tensorial structure in-
formation of a complex mathematical problem, automatic expression analysis can be
performed, resulting in automated software optimization and code generation. We have
experimentally verified this aspect in our tensor software library and have found that such
automatic analysis is capable of optimizing code, with regard to computational and mem-
ory requirements, in both a problem-specific and hardware-specific manner. This result
profits strongly from the commutativity of all tensor operations – the significant dif-
ferentiating feature over standard matrix formulations which are non-commutative with
respect to matrix multiplication. Some aspects of such automated code generation have
also been discussed in [10]. This particular topic is a promising area for future research.

2.5 Application of the framework to large real-world
problems

Our framework was successfully applied to solve a large real-world computational problem
– a spline-based variational reconstruction [30] of multidimensional signals from incom-
plete and spatially scattered measurements. The problem was originally formulated in
terms of matrix algebra. In dimensions higher than two, the matrices involved in the
computations become extremely large, essentially prohibiting computation of the prob-
lem on current standard hardware. For example, for a moderate size of a four-dimensional
reconstruction grid 128× 128× 128× 16 one would have to deal with a matrix which is
represented by 7’514’144’528 nonzero elements (in compressed block-band diagonal stor-
age, 30 GBytes in single precision). Using our framework, we reformulated the problem
in terms of tensors. The resulting tensor formulation helped to analyze the mathematical
structure of the problem and to derive its decomposition in the form of a 1-rank tensor de-
composition known as Canonical Decomposition (CANDECOMP) [26, 12, 27, 16]. More
details about the proposed tensor formulation and solving algorithm will be provided in
Chapter 3.

2.6 Discussion
We introduced a framework for structural analysis of multidimensional problems. The
proposed approach leads to a natural, dimensionality-preserving formulation of tensor
structured problems and facilitates the induction of computationally efficient solving al-
gorithms. The chosen formalism based on Einstein notation together with introduced
commutativity of the tensor product, makes the framework well suited for implementing
a tensor programming language, offering self-optimized computations of tensor expres-
sions by semantic analysis of their terms while avoiding explicit use of tensor indexing in

19

the actual implementations of solving programs. This was verified by implementing our
own tensor library built on the principles of the proposed framework.

The properties presented above distinguish our framework from the one used in the
field of tensor decompositions [23, 24, 25, 26, 12, 27, 16], but do not limit its use for
solving problems studied in that field.

Our ongoing research shows that the proposed framework is very useful for solving
problems of signal processing in higher dimensions, which have inherent tensor structure.

20

2.A Dual vectors spaces, contravariant and covariant
mechanisms of transformation

Let V be a real vector space with finite number of dimensions NV . We designate by V ∗
the unique vector space of same dimensionality that is dual in respect to V . Any element
t∗ ∈ V ∗ is a linear map V → R

〈t∗, t〉 ≡ t∗(t) ∈ R (2.38)

For a given base ev of V transformations to a new base êv1 and vice versa are defined
by

êv1 =

NV∑
v=1

Pvv1 · ev, ev2 =

NV∑
v1=1

Sv1v2 · êv1 (2.39)

where Pvv1 and Sv1v2 are direct and indirect base transformations respectively. A vector
from V given by

∑NV
v=1 T v · ev according to (2.39) in a new coordinate system is repre-

sented by components

T̂ v1 =

NV∑
v=1

Sv1v · T v (2.40)

Components of such vectors which transform indirectly in respect to transformation
of the base are called contravariant.

For the base ev of V and dual base ev1 of V ∗ the following equation is satisfied

〈ev1 , ev〉 ≡ δv1v =

{
1, if v1 = v
0, if v1 6= v

(2.41)

where δv1v is Kronecker delta. Thus the dual base ev1 transforms according to

êv2 =

NV∑
v1=1

Sv2v1 · e
v1 , ev3 =

NV∑
v2=1

Pv3v2 · ê
v2 (2.42)

In contrast to contravariant vector components, components of vectors from dual
space V ∗ transform in the same way as the base of V

Tv2 =

NV∑
v1=1

Pv1v2 · Tv1 (2.43)

Components of such vectors are called covariant.

21

2.B Generalized definition of a tensor
Definition 2.B.1. Let an ordered set of real vector spaces U1, . . . , UP , V1, . . . , VQ with fi-
nite dimensions I1, . . . , IP , J1, . . . , JQ and their dual vector space U∗1 , . . . , U∗P , V ∗1 , . . . , V ∗Q
be given. By identifying (U∗i)∗ with Ui we define every vector ui ∈ Ui to be a linear map
U∗i → R given by

ui(u
∗
i) ≡ 〈u∗i ,ui〉 ∈ R (2.44)

for arbitrary u∗i ∈ U∗i , where 〈, 〉 denotes the inner product. With (P + Q) vectors
u1 ∈ U1, . . . ,uP ∈ UP , v∗1 ∈ V ∗1 , . . . ,v∗Q ∈ V ∗Q let the element denoted T = u1 × · · · ×
uP × v∗1 × · · · × v∗Q be a (P + Q)-linear map from U1 × · · · × UP × V ∗1 × · · · × V ∗Q to R
defined by

u1 × · · · × uP × v∗1 × · · · × v∗Q (a∗1, . . . , a
∗
P ,b1, . . . ,bQ) =

〈a∗1,u1〉 · · · 〈a∗P ,uP 〉〈v∗1,b1〉 · · · 〈v∗Q,bQ〉
(2.45)

where a∗i , bj are arbitrary vectors in U∗i and Vj respectively. The element T is termed
a (P+Q)-th order decomposed tensor, P -times contravariant and Q-times covariant. The
space generated by all linear combinations of decomposed tensors is termed the tensor
product space. Any arbitrary tensor can be represented as a weighted sum of decomposed
tensors [26, 27, 16, 31]. This definition is compatible with, and extends [24, 9].

22

Chapter 3

A tensor-based computational
approach to large-scale iterative
multidimensional signal reconstruction

In this chapter we show a practical example how the previously proposed tensor frame-
work can be used for solving a large multidimensional problem of image reconstruction
and how the analysis of this problem using the proposed tensor approach leads to deriva-
tion of highly efficient solving algorithms.

3.1 Introduction to the problem of multidimensional
non-uniform signal reconstruction

The problem of data reconstruction from irregularly sampled measurements is frequently
encountered in the context of biomedical imaging. For instance, the use of acquisition
schemes with non-uniform, non-Cartesian spatial sampling requires a reformatting of
data samples to an evenly-spaced Cartesian grid, for further analysis on a computer (e.g.,
ultrasound scanline-conversion). Such images are sampled sequentially along a series of
scan-lines, which are non-uniformly distributed in space and in addition, do not coincide in
time, further complicating the reconstruction. Similar problems of non-uniform sampling
in space and/or time typically occur in many macroscopic (CT, MRI, SPECT) as well as
in microscopic imaging (confocal microscopy, raster microscopy). Motion of the imaged
object and time-dependent changes of image intensity also contribute to the complexity
of the reconstruction problem.

Non-uniform sampling can introduce an oversampling at some locations relative to
the Cartesian target grid, making an optimal smoothing method in these oversampled
areas desirable, whereas in other locations of the same image, severe undersampling may
occur, requiring robust interpolation. In conventional approaches, this combination of
smoothing, interpolation, and time-sequential acquisition – even of a single image – are
typically handled separately, facilitating implementation, but introducing multiple error

23

sources.
The generic signal reconstruction/non-uniform interpolation problem consists of find-

ing a continuous representation of a d-dimensional signal from arbitrarily-sampled, noisy
point measurements. In the absence of any constraints on the distribution of the sampled
data, the problem is ill-posed and does not have a unique solution. A natural approach
for resolving this ambiguity is to introduce some prior constraints on the solution and to
formulate the reconstruction as a variational problem. The cost function to be minimized
is typically chosen to be the sum of two components: (1) a data term, which quantifies
the fitting error between the model and the measurements, and, (2) a continuous-domain
regularization functional, which introduces a penalty for non-smooth, and thus, improb-
able solutions. When the latter functional is quadratic, the variational problem can be
solved analytically and the optimal solution is represented as a linear combination of ra-
dial basis functions (RBFs) [32, 33]. If one further imposes that the reconstruction should
be independent upon any particular choice of coordinate system/spatial units, our choice
of solutions narrows down to the class of thin-plate splines [34, 32], which are popular
in applications, especially in the context of landmark-based image registration where
the number of data points is small [35]. While thin-plate splines have many attractive
mathematical properties, they are notoriously hard to deploy for large-scale interpolation
problems. The main difficulty is that the underlying system matrix is dense and poorly
conditioned, especially as the number of samples increases. Moreover, the evaluation of
the reconstructed function at a single location is computationally expensive with a com-
plexity that is proportional to the number of data points. During recent years, various
solutions have been proposed to overcome these limitations [36, 37, 38, 39]. However, for
cases of millions of data samples, the RBF approach still poses significant difficulties. To
our knowledge, current RBF-based algorithms can handle up to 5’000’000 samples in 2-D
and up to 250’000 samples in 3-D, running on conventional hardware [40]. There exist
other approaches to the problem, which are either at risk to give unsatisfactory solutions
or have limited computability similarly to the RBF [41, 42, 43].

The work of Arigovindan et al. [44, 4] presents a computationally-efficient alternative
to the RBF with much better numerical behaviour. There, the use of the tensor product of
1-D B-splines as a basis for approximating the analytical solution of the optimal method
was proposed. The main advantages of this approach are: the linear system arising from
the formulation is well-conditioned; the system matrix is sparse and enjoys multiresolution
properties that are exploited to derive an efficient Multigrid solver with a complexity
mainly dependent upon the size of the reconstruction grid; the cost of resampling is
minimal with a complexity O

(
(n+ 1)d

)
per evaluated sample, where n is the degree of

the applied B-spline function (for most frequent case of cubic B-spline n = 3), d is the
number of dimensions of the reconstruction grid. The approach is extremely favorable
for 2-D problems [4], but is still facing a computational bottleneck as the number of
dimensions increases ("curse of dimensionality"). The intrinsic limitation is that the
computational and storage requirements of the method, which are directly tied to the
reconstruction grid, increase exponentially with the number of dimensions.

The authors of [45, 46] adopted the approach in [4] and presented an algorithm based

24

on subdivision of the target grid into overlapping blocks. Sub-problems corresponding to
each block were independently solved using the Multigrid solver. The proposed algorithm
was successfully applied to the reconstruction of relatively large 3-D datasets. Note that
in cases when a significant smoothing is imposed, the proposed block-wise solution is
at risk of introducing discontinuities between neighboring blocks. In analogy to [4], the
computational and storage requirements of the algorithm are still dependent linearly on
the target grid size and exponentially on the number of dimensions, making it impractical
for large-scale problems with dimensions greater than 3.

To overcome the computational bottleneck described above and to be able to recon-
struct large, arbitrarily-sampled, multidimensional datasets, we propose to revisit the
B-spline-based variational approach. In particular, we employ our tensor-based formal-
ism introduced in Chapter 2 that reveals the intrinsic structure of the underlying system
of equations, and which suggests some efficient factorization along the dimensions of the
data. We then design an efficient, multilinear solver that is capable of performing the
reconstruction of such data with millions of data points in any number of dimensions
using standard desktop PCs in reasonable time. This makes our approach more advanta-
geous than the original approach proposed in [4] and its adoption [46]. We evaluate the
proposed algorithm on 3-D and 4-D datasets while providing some performance metrics
to document its computational advantages. Finally, we present a practical example of
reconstruction of a large 4-D medical ultrasound dataset from irregularly sampled noisy
measurements.

3.2 Formulation of the problem
Our task is to reconstruct an unknown, continuously-defined signal s(t), t ∈ Rd given a
set {fk = s(tk)+nk}Kk=1 of K noisy sample values at irregularly-spaced sampling locations
tk. We will do so by fitting a function, which is represented as a linear combination of
basis functions, to the data according to some regularized least-squares criterion. We
choose to represent our signal in a B-spline basis which combines a number of advan-
tages: continuous representation, finite support, good approximation properties, and fast
computation, as described in [5].

In contrast to the common way of RBF-based scattered data interpolation where the
centers of the basis functions ϕ(‖t − tk‖) coincide with the sampling locations tk, the
proposed uniform B-spline reconstruction is based on representing the unknown solution
as a weighted sum of B-spline basis functions located at the nodes of a uniform grid,
covering the domain of definition of the signal. Thus, a continuous representation of the
solution in d dimensions is given by the following expansion

s(t1, . . . , td) =
∑

(i1,··· ,id)∈Zd
ci1,··· ,id β

n(
t1
a
− i1) · · · βn(

td
a
− id) (3.1)

where a is the step size of the grid which controls the quality of the discretization; βn(t)
is the B-spline of degree n.

25

The cost function to be minimized combines a usual least-squares data fitting term
with a continuous-domain regularization functional ‖s‖2Dp that penalizes non-smooth so-
lutions; i.e.,

ξ(s, f) =
K∑
k=1

|s(tk)− fk|2 + λ‖s‖2Dp (3.2)

where λ is a tradeoff parameter chosen for a compromise between the quality of data fit
and a non-oscillating behavior of the solution; ‖s‖Dp is Duchon’s semi-norm of order p
which has the important property of being scale- and rotation-invariant [34, 32]. The
general d-dimensional form of this regularization functional is

‖s‖2Dp =
∑

p1+···+pd=p

p!

p1! · · · pd!

∫
Rd

(
∂ps(t)

∂tp11 · · · ∂t
pd
d

)2

dt1 · · · dtd. (3.3)

It involves the sum of Np =
(
p+d−1
d−1

)
distinct quadratic terms corresponding to all partial

derivatives of order p. We recall that the global, unconstrained minimization of (3.2)
together with (3.3) defines the classical thin-plate spline solution [34, 32]. The main
difference here is that we are searching for a solution of the form (3.1) which results in a
discretized version of the problem in a uniform B-spline basis. The problem therefore boils
down to finding the B-spline coefficients ci1,··· ,id that minimize (3.2) and therefore uniquely
specify the continuous-domain reconstruction s(t). Note that the discrepancy with the
theoretical thin-plate spline solution can be made arbitrarily small via the adjustment
of the step size a – indeed, the discretization error is guaranteed to decay like O(an+1)
where n is the degree of the B-spline basis in (3.1) with the constraint that n ≥ p.

3.3 Tensor structure of the problem
We will now reformulate the approximation problem making extensive use of our tensor
abstraction presented in Chapter 2. The latter allows a convenient and natural descrip-
tion of multi-linear algebra problems and offers advantages over alternative notations
[17]. For the sake of simplicity, we focus on the case d = 3, keeping in mind that the
reasoning and formulaes are readily transposable to any number of dimensions. To each
direction of the reconstruction grid with extents [NX , NY , NZ], we assign a vector space
with corresponding dimensionality X ⊆ RNX , Y ⊆ RNY , Z ⊆ RNZ . In conjunction to this
ordered space sequence, we define the measurement vector space F ⊆ RK . The weighting
coefficients in the expansion (3.1) are represented as a tensor in X×Y ×Z ⊆ RNX×NY ×NZ

with components Cxyz. The evaluation of (3.1) at the location of the k-th measurement
can be represented as a component of a vector in F

Sk = BkxyzCxyz = (Ekx · Gky · Hk
z) · Cxyz (3.4)

with the convention that Sk = s(tk) and Cxyz represent the B-spline coefficients ci1,··· ,id in
(3.1). The remaining tensors Ekx ,Gky ,Hk

z , which are the factors of Bkxyz, are obtained from

26

the respective evaluation of the B-spline functions βn(t1k
a
−x), βn(t2k

a
− y), βn(t3k

a
− z), at

the sampling locations tk. Note that these vectors are sparse due to the finite support of
the B-spline basis with at most n+ 1 non-zero values.

The first quadratic term in (3.2) is then expressed as

‖S − F‖2 = (Sk −Fk) ·
(
Sk −Fk

)
=

SkSk − 2SkFk + FkFk =

(Cx1y1z1B
x1y1z1
k)

(
BkxyzCxyz

)
− 2CxyzBxyzk F

k + FkFk (3.5)

where Fk is the k-th entry of the measurement vector F .
It can be shown that the regularization functional in terms of the B-spline expansion

coefficients reduces to a quadratic form which has a convolutional structure [4]. In our
tensor notation, it is represented by

Cx1y1z1 · T x1y1z1xyz · Cxyz =

λIj · Cx1y1z1 · Px1jx · Q
y1
jy · R

z1
jz · Cxyz (3.6)

where Ij ∈ J ⊆ RNp is a vector with all components equal to one. In 3-D with p = 2,
Np = 6. The set of tensors Px1jx ,Q

y1
jy,R

z1
jz represent Np d-tuples of discrete separable

convolution transforms along corresponding directions of the reconstruction grid [4].
Similarly to the case of matrices and vectors, we may compute the derivatives of the

cost function with respect to the components of the B-spline tensor Cxyz [17]. After
setting these derivatives to zero, we end up with the following linear system of equations(

Bx1y1z1k Bkxyz + T x1y1z1xyz

)
· Cxyz = Bx1y1z1k · Fk (3.7)

with the further tensor factorization

Bx1y1z1k Bkxyz = (Ex1k · G
y1
k · H

z1
k) ·

(
Ekx · Gky · Hk

z

)
. (3.8)

Note that the latter expression, which corresponds to the least-squares part of the cost
function, involves a sum of outer products of first-order tensors. This type of decompo-
sition is known in the field of multilinear algebra as CANonical DECOMPosition (CAN-
DECOMP) [26, 12].

3.4 Iterative solution
At that point, we could, in principle, rely on the computational strategy proposed in [4],
adapting it to the present tensor formalism for d ≥ 2. Specifically, we might solve (3.7)
by applying a Tensor Multigrid solver [17] which exploits the inherent multiresolution
properties of the B-spline basis for the specification of appropriate restriction and prolon-
gation operators [5, 4]. This allows to compute the solution with nearly linear complexity
with respect to the number of grid nodes.

27

However, the approach proposed in [4] as well as the approach presented in [46] re-
quires explicit computation of matrix coefficients. This may create a problem due to the
fact that despite the extreme sparsity of the system tensor, the number of non-zero coeffi-
cients in higher dimensions can be so large as to exceed the storage capacities of ordinary
desktop computers. For example, in four dimensions with a moderate reconstruction grid
size of 128× 128× 128× 16 (33’554’432 unknown B-spline coefficients), the total number
of non-zero entries is 69’080’710’400 which is about 257 GByte in single precision format.
By taking advantage of symmetries, the storage requirement for the system matrix can
be reduced to about 30 GByte, in the best case, while requiring ∼ 287 GByte memory
transfers, which still remains demanding.

For this reason we propose an alternative approach, based on computational tensor
algebra as described in [17]. The idea is to fully exploit the tensor structure of equations
(3.7) and (3.8). This approach overcomes the storage problem by efficiently recomputing
the required tensor components on the fly.

3.4.1 Krylov methods and Conjugate Gradient (CG) iteration

Specifically, we propose to solve (3.7) by using a Tensor Krylov Solver (Appendix 3.A),
which is based on the iterative computation of the tensor product(

Bx1y1z1k Bkxyz + T x1y1z1xyz

)
· Cxyz (3.9)

where Cxyz is the current estimate of the B-spline coefficients with index (x, y, z). The
crucial point in our implementation is to compute the above tensor product, which actu-
ally represents the gradient of criterion (3.2) with respect to C, as efficiently as possible.
First, we observe that the “regularization term" T x1y1z1xyz · Cxyz is completely specified by a
set of (Np × d) 1-D FIR filters, with impulse responses of length h = 2n+ 1 (typ., h = 7
for cubic splines). The cost of the regularization filtering in the time-domain is therefore
(Np × d)P (2h− 1), taking advantage of separability, where P is the total number of the
grid nodes (for 3-D: P = NXNYNZ). Note that, depending on the degree of the used
B-spline basis, the number of filters and the size of the grid, it can be more efficient
to implement the regularization filtering in the frequency domain using the Fast Fourier
Transform (FFT). In 3-D and 4-D with the use of cubic B-splines the time-domain fil-
tering offers a higher performance than FFT-based filtering, which is exploited in the
current work.

To evaluate the second, “least-squares" part Bx1y1z1k Bkxyz · Cxyz, we make use of (3.8)
and rewrite the tensor product as(

Ex1k · E
k
x

)
·
(
Gy1k · G

k
y

)
·
(
Hz1
k · H

k
z

)
· Cxyz (3.10)

For each k, a non-zero block of products
(
Ex1k · Ekx

)
,
(
Gy1k · Gky

)
,
(
Hz1
k · Hk

z

)
represents a

separable transformation applied to the corresponding dimension of a small hypercube in
C. The width of the d-dimensional hypercube is n+1 and its bounds are dependent upon
the spatial location of the given data sample. Thus, for computing (3.10), we successively

28

loop through the K available samples, loading the corresponding k-th hypercube from C,
applying to it the set of d one-dimensional separable transforms, and finally incrementing
the respective hypercube in the resulting tensor.

Thanks to the decomposability of (3.10), we can avoid storing the system coefficients
altogether. The components of tensor factors Ekx ,Gky ,Hk

z in the decomposition can be
recomputed in each iteration at a moderate cost. For a cubic B-spline model this cost is
about 10dK per iteration.

The advantages of the proposed, matrix-free computational scheme are the following:
first, its complexity in terms of both memory transfers and arithmetic computations is
linearly dependent upon the number of measurements (K), while the penalty incurred by
the increase of the number of dimensions remains manageable (a factor (n+ 1)d instead
of
∏d

i=1Ni(n+ 1) in the sparse matrix-based approach [4], where Ni are the extents of
the grid); second, the processing of dense multidimensional sub-blocks provides good data
locality that fits well the requirements of current hardware with cache-based architecture;
third, computations can be efficiently parallelized by distributing signal measurements
between multiple computational units.

Fig. 3.1 compares the efficiency of our method to that of an explicit implementation
using sparse matrix multiplication. The quantities of interest are the memory transfers
and number of operations required for the evaluation of the gradient (3.9). Note that
in dimensions higher than three, the benefit of the tensor method is significant even
for a quite large amount of signal measurements; this is due to the weaker exponential
dependency on the number of dimensions. This property of the proposed method can
allow efficient reconstruction of large 3-D/3-D+time and higher dimensional data (e.g.
multidimensional spectral data, physical tensor fields) encountered in recent developments
in sensing technologies.

3.4.2 Multiscale initialization of the iterative solver

We did observe some degradation of the speed of convergence of the Krylov iterator when
significant amounts of smoothing are required, even though the underlying linear system
remains well conditioned. A typical example is shown in Fig. 3.2, which presents a result
of the reconstruction of a 3-D CT data from 20% of samples with highest Laplacian
values. The tradeoff factor in this experiment is 0.0034. In this particular case, we used
the Tensor Conjugate Gradient iterator (TCG) (see Appendix 3.A), which was run for
20 iterations, until the relative residual norm reached 1.7× 10−3. Fig. 3.2(b) documents
the convergence rate. In this case, the solver failed to compensate for the missing data in
the regions with the lowest spatial variance, which is manifested by the presence of black
spots in the reconstructed image. To overcome these difficulties, we propose to initialize
the solver by providing it low frequency components of the solution. To this end, we
employ a simple multiscale-based initialization. First, we obtain an approximation of the
solution on the coarsest scale. Then, we interpolate the approximation to the next finer
scale by means of the two scale relation filtering [5]. By successive transfer from coarse
to the fine, we finally obtain the signal approximation that is used as initial condition

29

Fig. 3.1: Relative requirements of decomposed tensor vs. sparse matrix computation of
the product (3.9) in single precision for memory transfers (a) and arithmetic computations
(b). Reference numbers in GByte and GFLOP correspond to the sparse matrix case and
do not depend on the number of data samples. Reconstruction grid has 64 nodes in all
dimensions. Note that the higher the number of dimensions, the more advantageous is
the use of the tensor product decomposition

for the fine-scale solver. Note that, in contrast to [4], our multiscale approach does not
require explicit computation and storing of the system coefficients. Instead, we use on
the fly downsampling of the sparse factors in the decompositions (3.8) and (3.6), which
allows us to avoid extra storage by an additional relatively small computational cost.
Our practical experience showed that the presented initialization scheme is very effective.
Fig. 3.3 presents a result of the multiscale-based initialized iteration for the same data set
presented above. In this case, we used 3 coarser scales for initialization: 2 iterations on
the third scale, 2 iterations on the second scale and 5 iterations on the first scale. Using
this initial solution, the TCG solver was run for 6 iteration until the relative residual

30

Fig. 3.2: Reconstruction of a 3-D data set from 20% of samples with highest Laplacian by
applying non-preconditioned TCG iterator: (a) a 2-D slice taken from the reconstructed
image (RMSE(%)=3.63%), (b) convergence history of the solver. Note the presence of
black spots in the reconstructed image which are located in the regions with lowest spatial
variance

norm reached 1.9 × 10−3 value. The resulting solution has a root mean square error
RMSE = 100 · ‖I0−Ir‖‖I0‖ = 0.88%, where I0 is the original image, Ir is the reconstructed
image. Visually, the result of reconstruction is nearly indistinguishable from the original
data.

Note that the presented multiscale initialization scheme can be used as a precon-
ditioner for the TCG iterator. However, our practical experiments showed that this
algorithm even used alone already offers good quality solutions.

3.5 Evaluation of the solving algorithm
The proposed tensor-based algorithm was implemented in MathOberon, a programming
language offering multidimensional abstractions for readable, compact and efficient par-
allel implementations [47]. The code was tested on a PC with Intel(R) Core(TM) 2 Quad
Q9400 2.67 GHz CPU equipped with 2 GByte of DDR2 800 MHz memory.

31

Fig. 3.3: Reconstruction of a 3-D data set from 20% of samples with highest Laplacian
by applying TCG iterator with multiscale-based initialization: (a) original image, (b)
reconstructed image (RMSE=0.88%)

3.5.1 Evaluation in 3-D

We evaluated the quality of reconstruction and computational performance of the pro-
posed algorithm implementation on standard uniform 3-D datasets which are available
at http://www.volvis.org. The data were sampled by taking 20% of samples with the
highest values of the Laplacian, similarly to the protocol in [46]. Table 3.1 summarizes
the results of the evaluation.

In these experiments, in addition toRMSE, we used two error measuresRMSE1(%) =

100 · ‖I0−Ir‖√
N ·max(I0)

and RMSE2(%) = 100
max(‖g0‖) ·

√∑N
i=1 ‖gi−g0i‖

2

N
where N is the total number

of samples, g0 is the gradient field computed from the original data, g is the gradient field
computed from the reconstructed data, g0i and gi are the values of the corresponding
fields evaluated at the i-th point of the grid. All error measures are computed using
all the original uniform data samples. RMSE1 is used to compare our results with
those presented in [46] (values in brackets); to our knowledge, this latter algorithm is
the most efficient published approach for reconstructing irregular scalar data in 3-D. We
used the proposed multiscale initialization scheme with 8 TCG iterations on each coarser
scale, which was sufficient to get a good initialization for the finest scale iteration. For all
datasets in the tests, the minimal dimension extent for coarser scales was 16 nodes, which
resulted in 3 to 4 scales. On the finest scale the TCG solver was run for 10 iterations.
A further increase of the number of iterations did not lead to significant improvement
of the error values. As the regularizer functional we used Duchon’s semi-norm of order
p = 2. The values of the regularization tradeoff λ were chosen by minimizing a 3-fold
cross validation cost individually for each dataset. Fig. 3.4 displays the behavior of the
cross validation cost in an interval around the optimum for the Tooth dataset. In the
performed experiments the optimum of the cross validation cost for all datasets in the
tests was rather close to the optimum of the true error. For finding the location of the
optimum, we used the golden section search technique; 6 to 15 evaluations of the cost
function were sufficient to identify the minimum.

Fig. 3.5 presents a comparison of the behaviour of RMSE and the gradient-based error

32

Fig. 3.4: 3-fold cross validation cost and RMSE evaluated for the Tooth dataset sampled
using 20% of highest Laplacian samples.

measure RMSE2 with the change of the tradeoff parameter λ for the Tooth dataset. In
this particular case, the optimum locations of these functions almost coincide.

Additionally, we performed tests using a regularizer of the form

R(s) =

λ

∫
Rd

(
∂2s(t)

∂t21

)2

+

(
∂2s(t)

∂t22

)2

+

(
∂2s(t)

∂t23

)2

dt1dt2dt3 (3.11)

which is Duchon’s semi-norm of order p = 2 without mixed derivative terms. In contrast
to the results reported in [46], our experiments showed that the reconstruction error using
(3.11) was larger or in the best case comparable to the error obtained with full Duchon’s
semi-norm. Fig. 3.6 presents a comparison of the reconstruction error for full Duchon’s
semi-norm versus the error for regularizer (3.11) both evaluated for the Tooth dataset.

The results of our 3-D evaluation indicate that our implementation is at least as good
or better in terms of reconstruction quality as the block-wise Multigrid-based implemen-
tation from [45] when using a single CPU core and a comparable time budget to do a fair
comparison. The execution speed of our implementation was increased by 2 with the use
of 2 cores. A further increase of the number of cores did not yield an additional perfor-
mance improvement; this was due to the low speed of the memory bus on our hardware.
With the use of a faster memory/bus architecture, a better scalability and thus higher
performance is probably achievable with the same CPU.

3.5.2 Evaluation in 4-D

One of the main advantages of our algorithm over existing approaches is the possibility
of efficient reconstruction of large datasets in dimensions higher than three even when

33

Fig. 3.5: Evaluation of RMSE and the gradient-based error measure RMSE2 for the
Tooth dataset sampled using 20% of highest Laplacian samples.

Table 3.1: Results of the validation of the proposed algorithm on standard 3-D datasets
sampled using 20% of highest Laplacian samples.

Dataset Grid λ RMSE RMSE1 RMSE2 Time
% % % min

Engine 256× 256× 128 3.10 · 10−3 2.75 0.58 (0.94) 1.40 1.12 (1.28)
Tooth 256× 256× 160 6.25 · 10−3 1.24 0.29 (0.18) 1.54 1.31 (1.88)
CT-Chest 384× 384× 240 1.78 · 10−3 1.41 0.32 (0.60) 1.09 4.38 (5.08)
Carp 256× 256× 512 4.13 · 10−4 1.96 0.30 (0.25) 0.34 4.81 (5.73)

Fig. 3.6: Evaluation of RMSE for full Duchon’s semi-norm and the regularizer (3.11)
used for the reconstruction of the Tooth dataset.

34

Fig. 3.7: Example of reconstruction of a 4-D MRI dataset from 30% of randomly selected
samples. Presented images represent a maximum intensity projection at a single time
point. (a) original data, (b) reconstructed data (RMSE=8.12% , RMSE1=1.29%).

the computational resources are limited. We tested our algorithm implementation on a
4-D (space-time) MRI dataset kindly provided by the authors of [48]. We performed an
evaluation with sampling the original data by taking 30% of random samples which for
the grid size 184 × 140 × 30 × 23 corresponds to more than 5 million data points. In
this experiment, we used tensor B-spline basis functions in (3.1) together with Duchon’s
semi-norm of order p = 2 and d = 4 as regularization functional. The tradeoff value was
chosen in the same way as in 3-D tests by optimizing a 3-fold cross validation cost and was
set to 6.31 · 10−4. We used the proposed multiscale initialization scheme with 4 coarser
scales and 8 TCG iterations on each scale. The fine-scale TCG iterator was run for 20
iterations. The reconstruction time with two CPU cores was about 5.2 minutes. Fig. 3.7
presents a 3-D visualization of a single time frame from the obtained 4-D reconstruction.
Fig. 3.8 shows RMSE computed at each time point of the data. Space-time visualization
with a comparison of the obtained reconstruction with the original data is available at
http://www.computational.ch/downloads/mrirec4d.avi.

35

Fig. 3.8: RMSE computed at each time point of the reconstructed 4-D MRI data.

Fig. 3.9: Distribution of the azimuth versus cardiac cycle for a data set acquired by a
fast continuously rotating ultrasound transducer

3.6 Application to medical imaging
We applied the proposed algorithm to a concrete imaging problem: the reconstruction of
4-D (space-time) ultrasound data acquired using a fast continuously-rotating ultrasound
transducer [49, 50]. The transducer, which is based on a conventional linear array with
harmonic capabilities, samples 3-D volume, while continuously rotating at the high speed
of 8 rotations per second, which allows temporal resolution of about 16 volumes per
second [49]. A cone-shaped volume is scanned over several seconds. Since there is no
synchronization between the heart rate and the continuous rotation, the acquired data is
irregularly distributed over cardiac phase and angle, as schematically shown in Fig. 3.9.
Note that in this case when the data is sampled irregularly in both space and time, the
ability of the reconstruction method to account for the data coherence in all dimensions
is an important prerequisite for achieving good quality reconstructions. Such ability
of the proposed method distinguishes it from the conventional way of frame-by-frame
reconstruction.

36

Fig. 3.10: 3-D visualization of a single time frame from the reconstruction of a 4-D
arbitrarily sampled data acquired by a fast continuously rotating ultrasound transducer.

Our algorithm implementation was applied to a dataset kindly provided by the authors
of [50]. This particular dataset represents the motion of the left ventricle of the heart.
It consisted of more than 12 million ultrasound samples. The chosen reconstruction
grid size is 128 × 128 × 128 × 16, with 16 nodes over the time axis corresponding to
one cardiac cycle. The spacing of the reconstruction grid was chosen according to the
sampling characteristics of the used 2-D rotating transducer. In this case, the spatial
grid 128× 128× 128 corresponds to a pixel size of about 1 mm, which is a typical axial
resolution in conventional cardiac ultrasound imaging. As 4-D regularization functional,
we used Duchon’s semi-norm of order p = 2. The tradeoff value was chosen by optimizing
a 3-fold cross validation cost and was set to 6.14 · 10−2. For multiscale initialization,
we used 4 coarser scales with 8 TCG iterations on each. On the finest scale, the TCG
solver was stopped at the 30-th iteration at a relative residual norm 5.4 × 10−3. With
the use of 2 CPU cores, the total reconstruction time was about 15 minutes. Fig. 3.10
shows a 3-D visualization of a single time frame taken from the obtained reconstruction.
The reconstructed data was visually assessed by experienced doctors and approved to be
of a good quality. Space-time visualization of the reconstructed left ventricle dataset is
available at http://www.computational.ch/downloads/echorec4d.avi.

3.7 Discussion
We presented a tensor-based approach for the efficient reconstruction of high-dimensional
images from large sets of arbitrarily-sampled measurements [30]. We proposed a tensor
algebra framework to analyze the structure of the B-spline reconstruction problem which
led to the identification of a series of 1-D factorizations of the system tensor. We then used
this representation to develop an iterative solver that is computationally and memory effi-
cient. The critical step of our algorithm is the computation of a tensor product (update of
the solution), which, due to the inherent, sparse CANDECOMP structure of the problem,
can be evaluated with a complexity that is proportional to the number of measurements

37

with a dependence on the number of physical dimensions that is significantly less than
previously published solutions (reduction of the impact of the "curse of dimensional-
ity"). The proposed algorithm can be efficiently parallelized and implemented, exploiting
all currently available computing technologies such as Single Instruction Multiple Data
(SIMD), Multi Core, Clusters of PCs and General Purpose GPU (GPGPU). In particular,
we have built an efficient Multi-Core implementation of the proposed algorithm.

We first tested our approach on standard 3-D images using a nonuniformly subsam-
pled portion of the data as input. We found it to be competitive with the best available
Multigrid-based method [46] in the sense of providing a better or comparable reconstruc-
tion quality for a given computational budget. The proposed algorithm uses much less
memory and allows computation of relatively large problems with the use of only 2 GB
of memory available on our hardware. The implementation is parallel and can benefit
from the use of multiple CPU cores. We also showed that the algorithm could handle
more demanding tasks, such as the reconstruction of 4-D (space-time) dynamic MRI,
and provide satisfactory results. In particular, we successfully applied it to a concrete
large-scale imaging problem: the reconstruction of a 4-D (space-time) ultrasound signal
from a large set of noisy arbitrarily sampled data acquired by a fast continuously rotating
ultrasound transducer. Our ongoing work is directed towards further acceleration of the
method by the use of the FPGA computing technology.

3.A Tensor Conjugate Gradient Solver
Krylov subspace solvers are among the most effective techniques for solving large lin-
ear systems of equations [51]. They operate iteratively by evaluating the residual of the
system and then performing an update of the solution along an appropriate search di-
rection. In our case, the problem reduces to solving the multi-linear system of equations
(3.7) whose generic form is Ax1y1z1xyz · Cxyz = Bx1y1z1 . Since the corresponding system ten-
sor is positive-definite, we apply a tensor variant of the Conjugate Gradient method – a
special instance of a Krylov subspace solver – whose pseudo code is provided below.

Rxyz = Bxyz −Axyzx1y1z1
· Cx1y1z1 (initial residual)

Pxyz = Rxyz (initial search directions)
ρ = RxyzRxyz

38

Repeat loop until convergence

Qxyz = Axyzx1y1z1
· Px1y1z1 (tensor computation)

α =
ρ

(QxyzPxyz)
Cxyz = Cxyz + α · Pxyz (solution update)
Rxyz = Rxyz − α · Qxyz (residual update)
ρ1 = RxyzRxyz

Pxyz = Rxyz +

(
ρ1
ρ

)
· Pxyz (direction update)

ρ = ρ1

End of loop

Note that the computational cost of the majority of steps above is small; that, is linear
in the number of unknowns (simple loop/summation over the tensor indexing variable
xyz). The only step of the algorithm that is computer-intensive for large scale problems
is the tensor computation that yields Qxyz. This is the part that is specific to our
implementation and that is achieved according to the strategy outlined in Section 3.4.

3.B Visualization of 3-D images reconstructed during
the evaluation of the proposed solving algorithm

39

(a)

(b)

Fig. 3.11: The Engine dataset. (a) original data, (b) reconstructed data

40

(a)

(b)

Fig. 3.12: The Tooth dataset. (a) original data, (b) reconstructed data

41

(a)

(b)

Fig. 3.13: The Carp dataset. (a) original data, (b) reconstructed data

42

Fig. 3.14: Visualization of the reconstruction of the Blunt-Fin dataset defined on a highly
anisotropic curvilinear grid. The reconstruction grid has size 186x72x50, regularization
tradeoff is 0.1, RMSE1 = 0.945%

43

Chapter 4

Inverse spline filtering approach to
signal reconstruction

In the previous chapter we presented a highly efficient iterative algorithm for solving
very large multidimensional signal reconstruction problems. In this chapter we consider
an alternative approach that is based on a direct computation of the spline solution via
a process of inverse recursive filtering. We perform a detailed analysis of the problem by
moving successively from one-dimensional uniform sampling settings towards computa-
tion of non-uniform one-dimensional and multidimensional spline solutions.

4.1 1-D uniform smoothing spline filters
We start with consideration of the one-dimensional formulation of the variational re-
construction problem. This formulation requires reconstruction of a continuous signal
s(t), t ∈ R from a set of K uniformly sampled noisy measurements {fk = s(tk) + nk, tk =
t0 + kh}Kk=1, where h is the step of the uniform sampling grid. An approach to this
problem was proposed by Schoenberg [52] and Reinsch [53] and is based on solving a reg-
ularized version of the interpolation problem that aims at optimization of the following
cost function:

J(s) =
K∑
k=1

|s(tk)− fk|2 + λ

∫
R

(
dps(t)

dtp

)2

dt (4.1)

Schoenberg [52] proved that the minimizer of the cost (4.1) is a spline of order 2p − 1
with knots at the sampling locations tk. This spline solution is known in the literature
as the smoothing or approximating spline. The classical way of computing this spline
solution is based on matrix algebra and assumes solving of a linear system of equations
with the system matrix having a banded Toeplitz structure [53, 54, 1]. Unser et al. [6, 7]
proposed an elegant and very efficient filtering-based approach to the solution of this
problem that is based on a B-spline discretization of the cost function (4.1) and does not
require handling of matrices. According to this approach the signal s(t) is represented

44

using a normalized centered B-spline basis of degree n:

s(t) =
∑
i∈Z

c(i)βn(t/h− i) (4.2)

In practice, the infinite-long expansion (4.2) is reduced to a finite number of N coefficients
with subject to a predefined boundary extension. For example, for the mirror boundary
extension presented in [5] we have N = K.

It was shown that coefficients c(i), which uniquely represent the function s(t), can be
computed according to the following equation represented in z-transform domain [6]:

C(z) = S2p−1
λ F (z) =

1

B2p−1
1 (z) + λ (−z + 2− z−1)p

F (z) (4.3)

Where C(z) and F (z) represent the unknown discrete set of B-spline coefficients and the
measurements fk respectively, B2p−1

1 (z) is the indirect B-spline filter of degree 2p − 1.
The authors [6, 7] considered the cases of B-spline degree up to 3 that can be still treated
analytically by operating with the poles of the IIR filter S2p−1

λ . In the case of 1-st degree
B-spline the transfer function S2p−1

λ has two reciprocal real poles and, therefore, the
solution can be computed in the same way as in the case of interpolation: using forward
and reverse filtering with a simple 1-st order IIR filter. In case of higher B-spline degrees
the solution requires a more complicated treatment because the poles of the inverse filter
are generally complex and S2p−1

λ cannot be decomposed into a product of simple 1-st
order real IIR filters.

4.1.1 Inverse smoothing spline filter

According to the fundamental theorem of algebra every polynomial can be uniquely
factored to a product of first order terms. In the case of the smoothing spline the
denominator A(z) = B2p−1

1 (z) + λ (−z + 2− z−1)p of the transfer function S2p−1
λ rep-

resents a symmetric FIR filter of order 2p that has zeroes which occur in reciprocal
pairs {zj, z−1j }, |zj| ≤ 1, j = 1 . . . p [7]. Moreover, due to the fact that the polynomial
A(z) is even and positive definite, its complex roots occur in conjugate pairs [55, 56].
So if there is a reciprocal pair {zl, z−1l } that is complex, then there is a correspond-
ing reciprocal pair {z∗l ,

(
z−1l
)∗}. The aforementioned properties make the polynomial

A(z) = a(q)z−q + a(q − 1)z−q+1 + . . . + a(0) + . . . + a(q − 1)zq−1 + a(q)zq, q = p + 1
uniquely factorizable as:

A(z) = L(z)L(z−1) (4.4)

where L(z) = l(0) − l(1)z−1 − l(2)z−2 − . . . − l(q)z−q is the transfer function of a real
minimum-phase FIR filter that has a stable inverse L−1(z) = 1

L(z)
. The decomposition

(4.4) can be computed in multiple ways. Our interest here is to compute it as efficiently as
possible using a simple algorithm that does not involve handling of matrices and complex
numbers, which would be the case of direct computation of the roots using the eigenvalue
decomposition of the companion matrix of the polynomial A(z). Bauer [57] proposed an

45

iterative method for computing the decomposition (4.4) that is based on Cholesky fac-
torization applied to a semi-infinite symmetric positive definite matrix constructed from
the coefficients of the polynomial A(z). Bauer showed that the proposed decomposition
method is convergent and self-correcting against round-off error [55]. Based on Bauer’s
approach we can decompose the filter A(z) using the following recurrence:

l̂(0)u =

√√√√a(0)−
p∑
j=1

l̂(j)2u (4.5)

l̂(v)u+v =

(
a(v)−

p−v∑
j=1

l̂(j)ul̂(v + j)u+j

)
1

l̂(0)u
, v = 1 . . . p, u = 0 . . .

The recurrent sequence l̂(v)u converges to l(v) in infinite number of iterations limi→∞l̂(v)i =
l(v). However, a desired accuracy (limited by the machine precision) can be achieved in a
finite number of iterations N . On Fig. 4.1 we show experimentally computed dependen-
cies of the number of iterations N required for achieving a relative l1 approximation error
el1 ≤ 1.0 × 10−12 on the value of the regularization parameter λ for various derivative
orders p with approximation error defined as

el1 =

∑q
k=0 |a(k)− â(k)|

a(0)
(4.6)

where coefficients âk are computed from the factorization results by polynomial multipli-
cation (convolution) L(z)L(z−1). From Fig. 4.1 we see that in case of small values of λ,
where the impact of the regularization term R(z) = λ (−z + 2− z−1)p is less significant
than of B2p−1

1 (z), the algorithm can converge in 10-30 iterations. For large values of λ the
filter A(z) resembles the behavior of the regularization filter R(z), which has zeroes that
are close to the unit circle, and the number of iterations required to achieve the specified
accuracy becomes larger.

An alternative way for computing the factorization (4.4) is based on the Wilson-Burg
algorithm [56, 58]. The algorithm employs a Newton-Raphson iterative optimization
scheme and therefore is expected to have quadratic convergence rate. However, our
numerical experiments showed that when applied to factorization of the spline filter A(z)
the Wilson-Burg algorithm does not perform better than iteration (4.5) and in most cases
requires significantly bigger number of iterations for achieving a comparable accuracy. It
becomes especially slowly convergent in case of large values of λ.

An important characteristic of the transfer function L(z) is that its coefficients l(v)
exhibit a smooth dependence on the value of the regularization parameter λ. In Fig. 4.2
we present an example how the values of l(v) change over λ for the case of p = 4. The
dependencies are plotted in the logarithmic scale. Because of presence of negative val-
ues we modified the original coefficient sequences by shifting and mirroring around the
horizontal axis in a way that the minimal absolute value of the modified sequence l̃(v) is
same as of l(v). The smooth, logarithmic scale dependencies of l̃(v)

(
λ
)
can be approxi-

mated with high accuracy using uniform B-splines with a limited number of coefficients.

46

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

10
4

10
5

λ

N

u
m

b
e
r

o
f

it
e
ra

ti
o
n

s
 r

e
q
u

ir
e

d
 t
o
 a

c
h

ie
v
e
 t

h
e
 s

p
e
c
if
ie

d
 a

c
c
u
ra

c
y
 1

.0
E

−
1
2

p=1

p=2

p=3

p=4

Fig. 4.1: Dependency of the number of iterations required for convergence of the recur-
rence (4.5) to the specified accuracy of 10−12 on the value of the regularization parameter
λ for multiple choices of the derivative order p

Fig. 4.3 shows that for achieving the approximation error of el1 ≤ 1.0 × 10−5 we need
only 70 coefficients using a cubic B-spline discretization. Our numerical experiments with
derivative orders p up to 10 showed that the above accuracy of approximation can be
achieved with same 70 coefficients (which tells that the smoothness of l(v)

(
λ
)
does not

change significantly with increase of p). From the practical point of view this observation
implies that for a chosen derivative order p ≤ 10 we need only 70(p + 1) elements of
memory storage plus a few operations for evaluation of the B-spline discretized function
(4 multiplications and 3 additions excluding the evaluation of cubic B-spline) to compute
the inverse smoothing spline filter for a continuous range of the regularization parame-
ter λ. This is especially important for embedded signal processing systems such as the
ones based on FPGAs, where the compactness and simplicity of computations is of great
importance.

Once we computed the decomposition (4.4) the B-spline coefficients c(i) can be de-

47

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

λ

l̃(
v
)(

λ
)

l̃0

l̃1

l̃2

l̃3

Fig. 4.2: Dependency of the coefficients of the inverse smoothing spline filter on the value
of regularization parameter λ for derivative order p = 4

termined using the following causal and non-causal recursions:

c̃(i) =
1

l(0)

(
f(i)−

p∑
v=1

l(v)c̃(i− v)

)
, i = 0 . . . K − 1 (4.7)

c(i) =
1

l(0)

(
c̃(i)−

p∑
v=1

l(v)c(i+ v)

)
, i = K − 1 . . . 0 (4.8)

This filtering algorithm requires the computation of (4p + 2)K operations. Its convolu-
tional structure makes it especially efficient for implementations on FPGA, where every
operation can be performed in parallel.

4.1.2 Regularization and the choice of the tradeoff factor

The regularization parameter λ provides a mechanism for achieving a compromise be-
tween the quality of fit to the measurements {tk, fk} and the smoothness of the resulting
spline approximation. In general, the optimal choice of the value of λ depends on the
characteristics of both signal to reconstruct and the noise contained in this signal. In
some (fortunate) cases when the signal and the noise are quite well separated in the

48

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

λ

R
e

la
ti
v
e
 a

p
p
ro

x
im

a
ti
o
n

 e
rr

o
r

Fig. 4.3: Relative l1 error of approximation of the inverse smoothing spline filter using
uniform cubic B-spline discretization with only 70 coefficients

frequency domain the choice of the value of λ can rely on the same strategy as in conven-
tional filtering with a low-pass filter: assure the signal frequency components are within
the pass-band of the filter and achieve maximally possible attenuation of the noise in
the stop-band. This choice can be accomplished based on the numerically computed de-
pendencies presented on Fig. 4.4,4.5 ,4.6,4.7, which characterize the inverse smoothing
spline filter in terms of dependency of its cut-off frequency (frequency at -3 dB amplitude
level), rectangularity factor (the ratio of the cut-off frequency to the frequency at -20 dB
level) and maximal attenuation within the stop-band. The presented dependencies were
computed based on the transfer function of the inverse smoothing spline filter S2p−1

λ (z)
convolved with the indirect B-spline filter B2p−1

1 (z). From the figures one can see, that
with increase of the derivative order p the smoothing spline filter approaches the ideal
low-pass filter. The case described above has a practical relevance, with an exemplary
application in processing of bio-medical signals such as ECG, where the uniform smooth-
ing spline can be used for efficient implementation of template matching algorithms, see
[59] for an example.

Unfortunately in most cases the spectrum of the signal does overlap with the spectrum
of the noise. In these cases the best we can do is to find a value of λ that provides a
balance condition when the noise is maximally suppressed while the signal is preserved
as much as possible.

49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−70

−60

−50

−40

−30

−20

−10

0

10

Normalized frequency, × π rad/sample

M
a

g
n

it
u
d

e
,

d
B

p=1

p=2

p=3

p=4

Fig. 4.4: Amplitude frequency response of the smoothing spline filter with cut-off fre-
quency of Fc = 0.3 π rad/sample for multiple choices of the derivative order p

Generalized Cross-validation

Wahba et al. [60, 32] proposed to choose the value of the regularization parameter by
optimizing the Generalized Cross-Validation (GCV) cost function that is based on a
weighted version of the Residual Sum of Squares (RSS):

GCV (λ) = RSS
K

(K − tr (Sλ))
2 (4.9)

RSS =
K∑
k=1

(s(tk)− fk)2 (4.10)

Sλ is a linear operator that corresponds to the filter H(z) = B2p−1
1 (z)S2p−1

λ (z), which
transforms the sample values fk to s(tk). The term df = tr (Sλ) is called the effective
degrees of freedom of the smoothing spline and can be interpreted as the equivalent
number of the spline parameters (coefficients). In the considered case of the uniform
smoothing spline df = Kh(0), where h(0) is the coefficient of the impulse response of the
filter H(z) corresponding to the zero time lag. The dependency of h0 on the value of λ is
presented in Fig. 4.8. From the figure we see that with increase of λ the effective degrees
of freedom decreases that confirms the fact that the corresponding smooth solution can

50

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

λ

C
u

t−
o

ff
 f
re

q
u

e
n

c
y
, ×

 π
 r

a
d

ia
n

/s
a
m

p
le

p=1

p=2

p=3

p=4

Fig. 4.5: Dependency of the cut-off frequency (-3 dB level) of the inverse smoothing spline
filter on the value of the regularization parameter λ for multiple choices of the derivative
order p

be equivalently approximated by a lower number of coefficients. Therefore, the GCV
minimization represents an additional compromise model that aims at maximizing the
data fit with minimally possible effective degrees of freedom. GCV is one of the best
currently available methods for automatic choice of the value of the smoothing spline
regularization parameter [61]. Note, that the GCV minimization model was derived
under the assumption of the additive noise with Gaussian distribution N(0, σ2).

Using the ideas described in 4.1.1 we can compute the value of λ that optimizes the
cost (4.9) with high efficiency and without using any matrix. The zero lag coefficient
h0 can be computed numerically by passing the Kronecker delta pulse through the filter
H(z): forward (4.7) and backward (4.8) recursive filtering, followed by filtering with
symmetric FIR filter B2p−1

1 (z). Similarly to the case of a B-spline-based discretization of
the inverse filter it is sufficient to use 70 cubic B-spline coefficients to approximate h0(λ)
with relative l1 error not higher than 1.0 × 10−5. In Fig. 4.9 we present an example of
the reconstruction of a signal generated by sampling of the function s0(t) = sin(80t3), t ∈
[0, 1] with number of samples K = 1000. The signal was contaminated by Gaussian
noise with standard deviation σ = 0.1, which corresponds to the SNR of 16.6 dB. The
derivative order for the regularization functional was p = 2. The value of λ corresponding

51

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

R
e
c
ta

n
g

u
la

ri
ty

 f
a
c
to

r

p=1

p=2

p=3

p=4

Fig. 4.6: Dependency of the rectangularity factor (the ratio of the cut-off frequency to
the frequency corresponding to -20 dB level) of the inverse smoothing spline filter on the
value of the regularization parameter λ for multiple choices of the derivative order p

to the minimum of the Mean Square Error MSE = 1
K̃

∑K̃
k=1

(
s(t̃k)− s0(t̃k)

)2
, t̃k = t0 +

kh/20 estimated on a grid 20 times denser than the sampling grid tk was λMSE ≈ 31.
The minimum of the GCV cost was at λGCV ≈ 23. The relative Root Mean Square Error

RMSE = 100

√∑K̃
k=1 (s(t̃k)−s0(t̃k))

2∑K̃
k=1 s0(t̃k)

2
for the smoothing spline corresponding to the minimum

of MSE was RMSEλMSE
= 5.8% (SNR ≈ 24.8dB), and for the GCV -based solution

RMSEλGCV = 5.8% (SNR ≈ 24.7dB). The minimization of GCV cost function was
performed using Matlab’s fminbnd function that implements a minimal search algorithm
based on Brent’s method. Similarly to [62] instead of λ we used an intermediate variable
σ ∈ [0, 1] defined as:

λ =
4σ4

1− σ2
(4.11)

Fig. 4.10 shows how the behavior of the GCV cost function differs from the MSE for
this particular example. From our numerical experiments with various values of σ and K
we observed that the GCV solution was in a quite good correspondence to the one that
minimizes MSE. As for the influence of the derivative order p in the regularization term
we observed decrease of RMSE with increase of p. This is confirmed by the numerical
results presented in Fig. 4.11 that shows the dependencies of RMSEλMSE

and RMSEλGCV

52

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

−250

−200

−150

−100

−50

0

λ

p=1

p=2

p=3

p=4

Fig. 4.7: Dependency of maximal attenuation of the inverse smoothing spline filter on
the value of the regularization parameter λ for multiple choices of the derivative order p

on the value of p. These results were obtained with the same settings as the experiment
described above. Every point on the plots represents the average over an ensemble of
30 realizations of the noise. The extents of the error bars are equal to doubled standard
deviation of the measurements corresponding to a point. The fact that the quality of
signal reconstruction improves with the increase of the derivative order p can be explained
by steeper signal/noise discrimination characteristics of higher orders smoothing spline
filters and their higher attenuation in the upper frequency range.

4.1.3 Regularization with multiple derivatives

In the formulation (4.1) of the smoothing spline approximation the regularization is based
on penalization of the L2 norm of p-th order derivative of the signal s(t) and the space
where the solution is sought for is restricted to splines of order n = 2p − 1. In this
case we basically have two degrees of freedom that determine the spline solution: p and λ
where the first parameter influences the quality of discrimination between signal and noise
(steepness of the amplitude frequency response and noise attenuation level), while the
second parameter controls the position of the discrimination border (cut-off frequency).
When, for the purpose of improving signal/noise discrimination characteristics, we in-
crease the derivative order p by one, this forces us to increase the complexity of the

53

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

h
(0

)(

λ
)

p=1

p=2

p=3

p=4

Fig. 4.8: Dependency of the zero time lag coefficient value of the filter H(z) =
B2p−1

1 (z)S2p−1
λ (z) on the value of the regularization parameter λ for multiple choices

of the derivative order p

solution by almost doubling the order of the spline. This leads us to the question, is it
possible by some (preferably linear) means to stay in the space of lower order splines,
while still having the possibility to control the quality of signal/noise discrimination?

Let us consider an extended form of the one-dimensional smoothing spline cost func-
tion:

J(s) =
K∑
k=1

|s(tk)− fk|2 +

p∑
j=0

λj

∫
R

(
djs(t)

dtj

)2

dt, p ≤ n (4.12)

where the unknown signal s(t) belongs to the space spanned by B-splines of a chosen
degree n. In this case we have to solve the following equation represented in z-domain:

C(z) = S̃nλ (z)F (z) =
Bn

1 (z)

Bn
1 (z)Bn

1 (z) +
∑p

j=0 λjRj(z)
F (z) (4.13)

where regularization filters Rj(z) have impulse responses with the following structure:

rj(l) =

∫
t∈R

dj

dtj
βn (t)

dj

dtj
βn (t− l) dt = (−1)j

d2jβ2n+1

dt2j
(l) , l = −n . . . n (4.14)

54

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

a)

t

fk

sGC V(t k)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

b)

t

sGC V(t) − s 0(t)

sM S E(t) − s 0(t)

Fig. 4.9: An example of reconstruction of a signal contaminated by Gaussian noise with
standard deviation of 0.1. a) Noisy signal measurements and the result of reconstruction
corresponding to the minimal value of the GCV cost; b) reconstruction error computed
based on GCV and MSE optimized smoothing spline solutions

Alternatively, these filters can be computed according to the following equation in z-
domain:

Rj(z) = B2n−2j+1
1 (z)∆j(z) (4.15)

∆j(z) = (−z−1 + 2− z1)j (4.16)

Equations (4.14) and (4.15) can be verified based on the properties of integrals and
derivatives of B-spline functions [5, 6].

The solution of the considered problem can be found based on the inverse of the FIR
filter in the denominator of (4.13):

a(l) = (bn1 ∗ bn1)(l) + λj

p∑
j=0

rj(l), l = −n . . . n (4.17)

where bn1 is the impulse response of a filter obtained by sampling a B-spline of degree n
[6].

To reduce the complexity of the space, where we search for the solution, we constrain
the filter a(l) to be positive definite, which is also the case for the classical smoothing

55

10
1

10
2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

λ

MSE (λ)

GC V (λ)

Fig. 4.10: Numerically computed dependencies of the MSE and GCV cost on the value
of regularization parameter λ

spline solution with a single derivative norm. Note, that this does not necessarily mean
that the weights λj have to be positive. Under the proposed constraint the inverse filter
can be computed using the recurrence (4.5) with p = n.

Fig. 4.12 presents an experimental result we obtained by numerical optimization of
the following weighted least squares-based cost function:

J(λ) =
M∑
k=0

wk

(
|Bn

1 (jωk)S̃
n
λ (jωk)| − ΠFc(jωk)

)2
(4.18)

where Fc is the specified value of the cut-off frequency of the smoothing spline filter in
π rad/sample, ΠFc(jωk) is a real unit pulse with width Fc (in other words amplitude
frequency response of an ideal low-pass filter with cut-off frequency Fc), wk are real pos-
itive weights. For this particular example we set the weights wk to 100 for the frequency
range [0, Fc] and to 1 for (Fc, 1.0] to achieve higher quality of approximation within the
pass-band. The number of samples M was 4096. The optimization was performed using
Nelder-Mead simplex algorithm, which does not require to compute derivative of the cost
function. The fact that the recurrence (4.5) breaks down in case if the filter to decompose
is not positive definite was used for penalization of undesired solution candidates: every
time when the argument of the square root in (4.5) is negative the value of the cost func-

56

0.5 1 1.5 2 2.5 3 3.5 4 4.5
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

p

R
M

S
E
,
%

RM S E λ M S E

RM S E λ GC V

Fig. 4.11: Numerically computed dependencies of RMSE for smoothing spline solutions
corresponding the the minimum of MSE and the GCV cost

tion was assigned to 1/eps. The optimization algorithm was able to converge from initial
point λj = 0 in a few hundred of iterations. From Fig. 4.12 one can see that in terms
of the steepness and rectangularity of the amplitude frequency response, the smoothing
spline S̃3

λ performs even better than 5-th order (corresponds to p = 3) spline computed
using the standard smoothing spline formulation. Fig. 4.13 explains the reason for the
use of weights wk: the amplitude frequency response of the spline S̃3

λ has ripples, similarly
as in the case of Chebyshev filters of type I. The ripples can be suppressed by increasing
the weights corresponding to the pass-band. It is clear that the quality of suppression of
the ripples comes at the cost of decreasing the level of attenuation within the stop-band.
The filters presented in Fig. 4.13 have some DC amplification. This is explained by the
presence of the squared norm of the signal

∫
R s(t)

2dt in the regularization term of (4.12).
This can be avoided by removing the term from the formulation at the expense of some
decrease in steepness of the amplitude frequency response. The fact that the numerically
computed dependencies of λj on the value of the cut-off frequency (see Fig. 4.14) have a
smooth behavior supports the notion that we either reach the global optimum or at least
a well-defined local minimum.

To check the performance of the derived family of smoothing spline filters we made
an experiment which is similar to the one described in section 4.1.2. For this experiment
we used 10000 samples of a signal s0(t) = sin(800t3), t ∈ [0, 1] contaminated by a filtered

57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized frequency, × π rad/sample

M
a

g
n

it
u
d

e
,

d
B

S 5

λ
, F c = 0 .1

S̃ 3

λ
, F c = 0 .1

S 5

λ
, F c = 0 .2

S̃ 3

λ
, F c = 0 .2

S 5

λ
, F c = 0 .3

S̃ 3

λ
, F c = 0 .3

Fig. 4.12: Comparison of the amplitude frequency response of the solution S̃3
λ of the

formulation (4.13) and the standard smoothing spline of order 5 (p = 3) evaluated for
multiple values of the cut-off frequency

version of Gaussian noise with standard deviation of 0.3. The noise was filtered by a high-
pass Butterworth filter with cut-off frequency of 0.2 πrad/sample to simulate a situation
when the amplitude of the noise increases with frequency. The bandwidth of the signal
was about 0.07 πrad/sample that fits the frequency range where the smoothing spline
filter S̃3

λ can be controlled. The result of this particular experiment, which is visualized
in Fig. 4.15,4.16, showed that the spline S̃3

λ outperforms its conventional counterpart
S3
λ in quality of signal reconstruction. RMSE corresponding to the minimum of MSE

computed based on the true solution was 3.33% and 5.38% for S̃3
λ and S3

λ respectively.
RMSE values for GCV -optimized solutions were 4.6% for S̃3

λ versus 7.15% for the con-
ventional cubic smoothing spline. Our other experiments showed that, in terms of the
reconstruction error, the spline S̃3

λ performs even better than, the 5-th order spline S5
λ.

To be able to compute the smoothing spline S3
λ with high efficiency we used a B-spline

approximation of the dependencies λj(Fc). In this case GCV and MSE cost functions
were optimized in respect to the value of Fc.

58

0 0.05 0.1 0.15 0.2 0.25 0.3

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Normalized frequency, × π rad/sample

M
a

g
n

it
u
d

e
,

d
B

S 5

λ
, F c = 0 .1

S̃ 3

λ
, F c = 0 .1

S 5

λ
, F c = 0 .2

S̃ 3

λ
, F c = 0 .2

S 5

λ
, F c = 0 .3

S̃ 3

λ
, F c = 0 .3

Fig. 4.13: Ripples of the amplitude frequency response in the pass-band for the solution
S̃3
λ of the formulation (4.13)

0 0.1 0.2 0.3 0.4

−10
−1.78

−10
−1.77

−10
−1.76

F c

λ
0

0 0.1 0.2 0.3 0.4
10

−1

10
0

10
1

10
2

F c

λ
1

0 0.1 0.2 0.3 0.4
−10

5

−10
4

−10
3

−10
2

−10
1

−10
0

−10
−1

F c

λ
2

0 0.1 0.2 0.3 0.4
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

F c

λ
3

Fig. 4.14: Numerically computed dependencies of regularization parameters λj on the
value of the cut-off frequency for the extended smoothing spline filter S̃3

λ

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−40

−20

0

20

40

60

ω , π r a d /samp le

d
B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

t

fk

sM S E(t k)

|N (j ω) |

|SM S E(j ω) |

|S 0(j ω) |

sGC V(t) − s 0(t)

sM S E(t) − s 0(t)

a)

b)

c)

Fig. 4.15: An example of reconstruction of a signal contaminated by Gaussian noise
with standard deviation 0.3 using an extended smoothing spline filter S̃λ a) Noisy signal
measurements and the result of the reconstruction corresponding to the minimal value
of the MSE cost; b) Amplitude spectrums of the noise, the original signal s0(t) and the
signal contaminated by noise c) reconstruction error computed based on GCV andMSE
optimized smoothing spline solutions

4.1.4 Up-sampling by an integer factor

So far we considered the case when the nodes of the sampling grid coincide with the nodes
of the target reconstruction grid. Let us now look how the same variational formulation
(4.1) can be used for regularized up-sampling of the measurements {tk, fk} by an integer
factor of m. In this case the reconstruction grid step size is m times smaller that the
sampling interval: tk = t0 + kmh. Using the notation presented in [6] we can rewrite the
cost function (4.1) as follows:

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−40

−20

0

20

40

60

ω

d
B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

t

|S S 3
λ

(j ω) |

|S S̃ 3
λ

(j ω) |

|S 0(j ω) |

sS 3
λ

(t) − s 0(t)

s S̃ 3
λ

(t) − s 0(t)

a)

b)

Fig. 4.16: Visualization of the comparison of conventional smoothing spline solution
sS3

λ
(t) and a spline solution sS̃3

λ
(t) computed based on an extended spline filter S̃3

λ. a)
Amplitude spectrums of sS3

λ
(t), sS̃3

λ
(t) and the original signal s0(t) b) The reconstruction

error corresponding to the two spline solutions

J(s) = 〈f(k)− [bn1 ∗ c(i)]↓m, f(k)− [bn1 ∗ c(i)]↓m〉+ λ〈r ∗ c(i), c(i)〉 =

〈f, f〉 − 2〈f, [bn1 ∗ c]↓m〉+ 〈[bn1 ∗ c]↓m, [bn1 ∗ c]↓m〉+ 〈r ∗ c, c〉 (4.19)

Where r is the impulse response of the regularization filter that is not necessarily of
the standard form as in (4.1). By differentiating in respect to the unknown B-spline
coefficients c and by setting the computed derivative to zero we get the following equation:

bn1 ∗ [[bn1 ∗ c]↓m]↑m + r ∗ c = bn1 ∗ [f]↑m (4.20)

In z-domain the equation (4.20) can be represented as follows:

Bn
1 (z)

(
1

m

m−1∑
k=0

Bn
1 (wkz)C(wkz)

)
+R(z)C(z) = Bn

1 (z)F (zm) (4.21)

where wk = e−j2πk/m. The sum 1
m

∑m−1
k=0 B

n
1 (wkz)C(wkz) in (4.21) corresponds to [[bn1 ∗

c]↓m]↑m. This operation is equivalent to replacing of every m-th sample of the convolution

61

result bn1 ∗ c by zero. By rearranging the terms and using the properties of z-transform
the solution can be expressed as follows:

C(z) =
Bn

1 (z)

Gi(z) +R(z)
F (zm) (4.22)

Gi(z) =
1

m

m−1∑
k=0

Gki(z) (4.23)

In order to understand the structure of the filter with transfer function Gi(z) let us
analyze the application of this filter to a signal with z-transform X(z):

Y (z) =
1

m

m−1∑
k=0

Gki(z)X(z) =
1

m

m−1∑
k=0

Bn
1 (z)Bn

1 (wkz)X(wkz) =
1

m

m−1∑
k=0

B̂k(z)X̂k(z) (4.24)

b̂k(l) =

bn/2c∑
l1=−bn/2c

bn1 (l1)b
n
1 (l + l1)w

−l+l1
k (4.25)

X̂k(z) =
∞∑

i=−∞

x̂k(i)z
i =

∞∑
i=−∞

(
x(i)w−ik

)
zi (4.26)

The product Yk(z) = B̂k(z)X̂k(z) can be expressed in time (spatial) domain as:

yk(i) =

2bn/2c∑
l=−2bn/2c

b̂k(l)x(i+ l)w−i+lk =

2bn/2c∑
l=−2bn/2c

(
b̂(l)w−i+lk

)
x(i+ l) =

2bn/2c∑
l=−2bn/2c

gki(l)x(i+ l) = gki ∗ x(i) (4.27)

Using (4.25) the sequence gki(l) can be expressed as:

gki(l) =

bn/2c∑
l1=−bn/2c

bn1 (l1)b
n
1 (l + l1)w

−l+l1
k w−i+lk = (4.28)

bn/2c∑
l1=−bn/2c

(
bn1 (l1)w

−i+l1
k

)
bn1 (l + l1) = b̃ki ∗ bn1 (l)

b̃ki(l) = bn1 (l)w−i+lk (4.29)

After summation over k we get:

g̃i(l) =
m−1∑
k=0

gki(l) =
m−1∑
k=0

b̃ki ∗ bn1 (l) = bn1 ∗

((m−1∑
k=0

w−i+lk

)
bn1 (l)

)
= bn1 ∗

(
vi(l)b

n
1 (l)
)
(4.30)

i = 0 . . .m− 1, l = −2bn/2c . . . 2bn/2c

62

Table 4.1: Values of the sequence vi(l) from (4.30) for cubic spline b31 with various choices
of up-sampling factor m

i m = 2 m = 3 m = 4 m = 5
0 [0,1,0] [0,1,0] [0,1,0] [0,1,0]
1 [1,0,1] [0,0,1] [0,0,1] [0,0,1]
2 [1,0,0] [0,0,0] [0,0,0]
3 [1,0,0] [0,0,0]
4 [1,0,0]

a0 3 ↓ 3 ↑

a1 3 ↓ 3 ↑

a2 3 ↓ 3 ↑

y(i)

x(i)

z−1

z−1

(a)

Fig. 4.17: Block diagram explaining the structure of the filter with transfer function
Ai(z) = Gi(z) +R(z) from equation (4.23) for the case of m = 3

The sequence vi(l) =
∑m−1

k=0 w
−i+l
k is real due to the fact that the filter g̃i(l) is real.

This means that the sums of imaginary parts of the weights w−i+lk will vanish. The values
of vi(l) obey a very simple structure that is presented in Table 4.1 for multiple values of
m.

From the equation (4.30) it follows that the filter with transfer function Gi(z) has
impulse response that changes with every i − th input sample (that is why we use i in
designation of Gi(z) and g̃i). Due to periodicity of the weights wk = e−j2πk/m the impulse
response will also change periodically with the period of m. Thus, the linear system
Ai(z) = Gi(z) +R(z) in the denominator of (4.23) is represented by m filters ai = g̃i + r
and has a polyphase structure. A block-diagram explaining the structure of this filter for
m = 3 is presented in Fig. 4.17.

We found that it is possible to decompose the filter Ai(z) as a convolution of a causal
and a non-causal filter with same polyphase structure. This decomposition can be com-

63

puted using the following modification of the recursion (4.5):

l̂(0)u =

√√√√au mod m(0)−
n∑
j=1

l̂(j)2u (4.31)

l̂(v)u+v =

(
au mod m(v)−

n−m∑
j=1

l̂(j)il̂(v + j)u+v

)
1

l̂(0)u
, (4.32)

v = 1 . . . n, u = 0 . . .

After mU iterations of the recursion (4.31) the resulting polyphase decomposition filters
are determined as li = l̂U(m−1)+i. The quality of approximation can be estimated by
filtering the Kronecker delta pulse by filters li forwards and backwards and by comparing
the result with impulse response of the filter ai. The process of such filtering is described
by the following equations:

c̃(i) =
1

li mod m(0)

(
f(i)−

n∑
v=1

li mod m(v)

)
c̃(i− v), i = 0 . . . K − 1 (4.33)

c(i) =
1

li mod m(0)

(
c̃(i)−

n∑
v=1

li mod m(v)

)
c(i+ v), i = K − 1 . . . 0 (4.34)

4.1.5 Resampling by a rational factor

Now we consider the case when the sampling and reconstruction grid step sizes are related
by a rational factor hs

h
= m

q
,m ∈ N, q ∈ N. Using the same approach to the analysis of the

problem structure as presented above one can show that the smoothing spline filtering
operator for this case has the same polyphase structure with m filters g̃i. We found that
these filters can be computed using the following equation:

g̃i(l) =

p∑
k=−p

βn
(
km+ i

q

)
βn
(
km+ i

q
+ l

)
, l = −p . . . p (4.35)

The recursion (4.31) and the filtering algorithm described by (4.33,4.34) can be applied
exactly in the same way to compute the inverse filter decomposition and to obtain the
corresponding spline solution. Since the inverse smoothing spline filter has a polyphase
structure the degrees of freedom df = tr (Sλ) is proportional to the sum of zero-time lag
values of m impulse responses. This facilitates efficient computation of GCV -optimized
spline solutions.

4.2 1-D non-uniform smoothing spline filters
In the previous sections we performed a detailed analysis of the uniform smoothing spline
formulation. We found that the inverse spline filters can be efficiently computed using

64

Cholesky-based recursion (4.5). The corresponding spline solutions are determined by a
simple and efficient recursive filtering procedure. In a more general setting of resampling
by a rational factor m

q
we showed that the inverse filters have a polyphase structure and

are defined by a set of m filters that can be also efficiently applied using the recursive
polyphase filtering algorithm (4.33,4.34).

4.2.1 Solving algorithms

We found that in the most general case of non-uniform sampling when the signal mea-
surements fk are located in an arbitrary way the situation is not very much different.
The spline solution can be found using the following equation in z-domain:

C(z) =
1

Gi(z) +R(z)

(
B̃k(z)F (z)

)
(4.36)

Similarly to the previously analyzed cases of signal resampling the filter with transfer
function Gi(z) has a polyphase structure, with the only difference that the number of
filters in the set is equal to the number of B-spline coefficients N . The filter in the
denominator can be decomposed using the same recursion (4.5) with p = n, but in
contrast to the cases considered above we have to store the impulse responses l̂u for every
iteration number v = 0 . . . N − 1. The polyphase filter with transfer function Gi(z) can
be computed using the following equation:

g̃i(l) =
∑
k

βn(i− tk)βn(i− tk + l),∀k : |tk − i| ≤ n− 1, l = −n . . . n (4.37)

After factorization of the filter with transfer function Ai(z) = Gi(z) + R(z) using the
recursion (4.5) the computation of the spline solution can be performed using the following
efficient recursive filtering algorithm:

c̃(i) =
1

l̂i(0)

(
f̃(i)−

p∑
v=1

l̂i(v)c̃(i− v)

)
, i = 0 . . . N − 1 (4.38)

c(i) =
1

l̂i(0)

(
c̃(i)−

p∑
v=1

l̂i+v(v)c(i+ v)

)
, i = N − 1 . . . 0 (4.39)

As we see from (4.39), the non-causal polyphase filter is different from its causal coun-
terpart. However, due to the overall symmetry of the operator Ai(z) the two filters have
a simple relation. The discrete signal f̃(i) that is passed to the causal filtering part
(4.38) of the solving algorithm corresponds to the right hand side term B̃k(z)F (z) of
equation (4.36). The filter with transfer function B̃k(z) also has a polyphase structure.
The impulse response of this filter changes with every k-th sample of the non-uniform
sequence of measurements fk. In fact, the operator B̃k(z) performs a transformation from
the non-uniform sampling grid to the uniform reconstruction grid and therefore, acts as

65

for k = 0 to K − 1 do
for l = 0 to n do

f̃(ek + l)← f̃(ek + l) + fkb̃k(l)
end for

end for

Fig. 4.18: An algorithm for computing discrete sequence f̃k corresponding to the right
hand side B̃k(z)F (z) of the equation (4.36)

a variable rate conversion filter. This operation can be performed efficiently using an
algorithm presented in Fig. 4.18, where a set of FIR filters b̃k and a discrete sequence ek
are defined as follows:

ek =

{
b tk
h

+ 0.5c − n
2

if n is even
b tk
h
c − n−1

2
if n is odd (4.40)

b̃k(l) = βn
(
tk
h
− ek − l

)
, l = 0 . . . n (4.41)

For the sake of example in Listing 4.1 we provide an implementation of this algorithm
in the MathOberon language [63]. The proposed right hand side computation algorithm
is based on scaling and increment operations applied to vectors of size n + 1. This
can be done efficiently using the "AXPY" BLAS level-1 routine [64]. Moreover, in the
case of cubic B-splines the size of processed vectors is 4, which is the typical size of
Single Instruction Multiple Data (SIMD) engines in current computing systems such as
multi-core CPU and GPGPU. This, in turn, allows to implement the right hand side
computation algorithm with high efficiency.
procedure ComputeRhs(

const f: array [K] of real; (∗ samples f(k) ∗)
const tbk: array [K,n+1] of real; (∗ filters b̃k(l) ∗)
const ek: array [K] of integer; (∗ sequence ek(i) ∗)
var tf : array [N] of real (∗ right hand side f̃(i) ∗)
)

var i , k: integer;
begin

tf [..] := 0;
for k := 0 to K−1 do

i := ek[k];
tf [i .. i+n] := tf[i .. i+n] + f[k] ∗ tbk[k ,..];

end;
end ComputeRhs;

Listing 4.1: A MathOberon implementation of the algorithm for computing discrete
sequence f̃k corresponding to the right hand side B̃k(z)F (z) of the equation (4.36)

Depending on an application one can use various strategies for optimizing the com-
putation and the handling of the presented non-uniform smoothing splines operators.
When a spline operator is repeatedly used to compute multiple solutions, it makes sense
to precompute the filters l̂i and store them in memory for future reuse. This requires
to store (n + 1)N floating point values. In this particular case the filters ai = g̃i + r

66

can be computed online based on the equations (4.37,4.14,4.15) without explicit storage.
However, when the regularization term is manipulated by changing the regularization pa-
rameter(s), it is more beneficial to store the filters ai with the same memory requirement
of (n+ 1)N elements.

Note, that the presented solving algorithms are formally equivalent to the process
of solving a linear system of equations with a sparse symmetric positive definite matrix
corresponding to the operator A(z) using Cholesky decomposition. However, practically
our algorithms do not require handling of any sparse matrices and due to the explicit
use of the specific problem structure allow to achieve higher performance than highly
optimized sparse matrix packages.

4.2.2 Square-root free decomposition algorithm

On some computing platforms the complexity of the square root operation in the recursion
(4.5) may limit maximal achievable performance. This is the case of embedded systems
where the square root is either emulated using software or requires many processor cycles
for its evaluation. In such cases the recursion (4.5) can be modified in a way that avoids
the use of the square root. This feature comes at the cost of an additional n2+n

2
number

of multiplications. The modified recursion is described by the following equations:

l̂(0)u = a(0)−
q∑
j=1

l̂(0)u−j l̂(j)
2
u (4.42)

l̂(v)u+v =

(
a(v)−

q−v∑
j=1

l̂(0)u−j l̂(j)ul̂(v + j)u+m

)
1

l̂(0)u
, v = 1 . . . q, u = 0 . . .

where q = p for the case of conventional smoothing splines and q = n corresponds to
the cases of resampling and non-uniform smoothing splines. The filtering algorithm is
modified accordingly. For non-uniform smoothing splines it can be represented as follows:

c̃(i) = f̃(i)−
n∑
v=1

l̂i(v)c̃(i− v), i = 0 . . . N − 1 (4.43)

c(i) =
1

l̂i(0)
c̃(i)−

n∑
v=1

l̂i+v(v)c(i+ v), i = N − 1 . . . 0 (4.44)

4.2.3 Software implementation and performance evaluation

We implemented the proposed algorithms for non-uniform spline reconstruction in Math-
Oberon. We evaluated the computational performance of our implementation on a PC
platform equipped with an Intel i7-3770 3.4 GHz Quad-Core processor and dual chan-
nel DDR3 800 MHz memory. The results of the evaluation for the solving process that
includes the computation of the right hand side and inverse filtering are presented in
Fig. 4.19 and Fig. 4.20. These processes were optimized with the use of SIMD operations

67

1000 2000 3000 4000 5000 6000 7000 8000

150

200

250

300

350

K

P
e
rf

o
rm

a
n
c
e

,
M

S
a

m
p

le
s
/s

1 2 3 4 5 6 7 8

x 10
5

100

120

140

160

180

200

220

K

P
e

rf
o
rm

a
n

c
e
,

M
S

a
m

p
le

s
/s

N =1000

N =100000

Fig. 4.19: Evaluated performance in MSamples/s for our MathOberon implementation of
the non-uniform spline solving operator for multiple values of number of samples K and
two choices of the reconstruction grid size: N = 1000 and N = 100000

supported by the processor. Our non-optimized Cholesky-based inverse filter decomposi-
tion algorithm implementation is about an order of magnitude faster in terms of execu-
tion time than Matlab’s chol function implemented based on CHOLMOD – one of the
best available sparse Cholesky algorithm implementations [65, 66]. The high-performance
achieved with our algorithms allows efficient application of non-uniform smoothing splines
in practical signal processing applications.

4.3 Application to medical Optical Coherence Tomog-
raphy (OCT)

Optical Coherence Tomography (OCT) is a modern technology that allows to perform
high-resolution, cross-sectional tomographic images of the internal microstructure in
materials and biologic systems by measuring backscattered or backreflected light. Its
technical advantages over other existing imaging modalities in combination with non-
invasiveness allowed a successful application of this technology in the fields of medicine
and biomedical research [67, 68, 69].

Fourier domain OCT (FD-OCT) is one of the most popular and efficient techniques
used for implementing modern medical OCT systems. In this technique the signal ac-
quired at a regular wavelength grid is reconstructed using the Fast Fourier Transform
(FFT). The application of FFT requires to transform (remap) the wavelength-equidistant
measurements to a uniform grid in wavenumbers k = 2π

λ
, so called k-space. The quality

of this transformation has a significant influence on the quality of overall tomographic

68

1000 2000 3000 4000 5000 6000 7000 8000
4

6

8

10

12

14

16

K

P
e
rf

o
rm

a
n
c
e

,
G

F
L

O
P

/s

1 2 3 4 5 6 7 8

x 10
5

4

6

8

10

12

14

K

P
e

rf
o
rm

a
n
c
e

,
G

F
L

O
P

/s

N =1000

N =100000

Fig. 4.20: Evaluated performance in GFLOP/s for our MathOberon implementation of
the non-uniform spline solving operator for multiple values of number of samples K and
two choices of the reconstruction grid size: N = 1000 and N = 100000. For computing
the numbers in GFLOP we used the fact that the right hand side computation and
inverse filtering algorithms require 2K(n + 1) and 2N(2n + 1) floating point operations
respectively

reconstruction. The standard existing approaches to this problem include spline-based
interpolation and non-uniform fast Fourier transform (NUFFT) [70, 71, 72]. Besides the
quality of grid transformation, another key requirement is the ability to perform this pro-
cess with high performance. This is critical for real-time reconstruction of OCT images
implemented in industrial OCT scanners.

We found that our approach for non-uniform spline-based signal reconstruction can be
efficiently applied to solve the described problem. Based on the theory of FD-OCT [73] we
created a mathematical model of an FD-OCT imaging system depicted in Fig. 4.21. The
model is able to generate synthetic images based on a provided reflectivity function. In
this way we facilitated the evaluation of the performance of our algorithm in comparison
with other existing techniques.

The evaluation was performed on two synthetic datasets: a dataset with a diagonal
line pattern and a dataset generated based on a real high-quality OCT image of retina.
For both datasets the generated scan-lines had 2048 equidistant samples within the wave-
length range of [0.850, 0.950]µm. Before application of the Fourier-based reconstruction
method the generated data was processed by three grid transformation algorithms: cubic
spline interpolation, one of the best existing NUFFT algorithms [71] and our non-uniform
spline approximation algorithm introduced in Section 4.2.

From the evaluation results that are visualized in Fig. 4.22,4.23,4.24,4.25 one can see
that our algorithm offers higher quality of reconstruction in comparison with the conven-

69

Fig. 4.21: A typical frequency domain OCT imaging setup based on Michelson interfer-
ometer

tional spline interpolation and NUFFT. Moreover, our solving algorithm implemented in
Matlab was about 6 times faster than Matlab’s interp1 function used for cubic spline
interpolation and about 8 times faster than the used NUFFT algorithm.

4.4 Uniform smoothing spline filters in higher dimen-
sions

In higher dimensions the cost function of the one-dimensional smoothing spline (4.1) can
be represented in the following general form:

J(s) =
∑
k

|s(tk)− fk|2 +

∫
R
‖Dλs(t)‖2dt (4.45)

where tk ∈ Rd × RK1 × . . . × RKd , fk ∈ RK1 × . . . × RKd , Dλ is some differential
operator, as for example, a Duchon seminorm of order p:∫

R
‖Dλs(t)‖2dt = λ

∑
p1+···+pd=p

p!

p1! · · · pd!

∫
Rd

(
∂ps(t)

∂tp11 · · · ∂t
pd
d

)2

dt. (4.46)

or a modified version of the Laplacian regularization operator:∫
R
‖Dλs(t)‖2dt =

d∑
m=1

λm

∫
Rd

(
∂2s(t)

∂2tm

)2

dt (4.47)

The unknown signal s(t), t ∈ Rd is represented using a tensor product of B-splines:

s(t) =
∑

i1∈Z,i2∈Z

c(i1, i2)β
n1(t1/h1 − i1)βn2(t2/h2 − i2) (4.48)

70

Usually the degrees of B-spline functions in the product are chosen to be equal: n1 = n2.
Unser et all. showed in [6] that for some particular cases of the differential operator

Dλ the uniform smoothing spline solution can be determined by successive application of
the one-dimensional inverse smoothing spline operator along the dimensions of the array
of signal measurements. For example, in 2-D case this corresponds to the following form
of the regularization term:∫

R
‖Dλs(t)‖2dt = λ1

∫
R2

(
∂ps(t)

∂tp1

)2

dt+ λ2

∫
R2

(
∂ps(t)

∂tp2

)2

dt+ (4.49)

λ1λ2

∫
R2

(
∂ps(t)

∂t
p/2
1 ∂t

p/2
2

)2

dt

where λ1 and λ2 are regularization parameters for first and second dimension respec-
tively. Using one-dimensional inverse filtering algorithms presented above, such separable
smoothing splines can be computed with high efficiency. Moreover, due to separability
the effective degrees of freedom df = tr (Sλ) is determined by the product of degrees
of freedom for one-dimensional smoothing spline operators corresponding to each data
dimension. This facilitates fast computation of GCV -optimized approximating spline so-
lutions. Fig. 4.26 presents an example of a 3-D cubic (p = 2) GCV -optimized smoothing
spline fitted to a medical CT dataset contaminated by Gaussian noise with standard de-
viation of 30 (SNR ≈ 7.7dB). In this example the smoothing parameter λ was the same
for all dimensions. GCV -optimized value of λ was ∼ 1.0, the corresponding RMSE was
∼ 7.53 % (SNR ≈ 22.46 dB).

4.4.1 2-D case

Let us consider the case of computing 2-D smoothing spline of degree n:

C(z1, z2) =
Bn1,n2(z1, z2)

Bn1,n2(z1, z2)Bn1,n2(z1, z2) +Rλ(z1, z2)
F (z1, z2) (4.50)

where Bn1,n2(z1, z2) = Bn1(z1)B
n2(z2), Rλ(z1, z2) is a non-separable regularization filter

corresponding to the functional
∫
R ‖Dλs(t)‖2dt. The difficulty in this case is that the

transfer function of the filter in the denominator A(z1, z2) = Bn1,n2(z1, z2)B
n1,n2(z1, z2) +

Rλ(z1, z2) in its general form cannot be decomposed to a product of first-order terms
as in the case of one dimension. Therefore, the inverse spline filter is not separable. It
turned out there exists an alternative non-separable but very efficient way to compute
the inverse smoothing spline filter. Let us consider the following form of a decomposition
of the filter A(z1, z2):

A(z1, z2) = L(z1, z2)L(z−11 , z−12) (4.51)
L(z1, z2) = L0(z1) + L1(z1)z

−1
2 + . . .+ Ln2(z1)z

−n2
2 (4.52)

where the one-dimensional transfer functions Lj(z1) have the following form:

Lj(z1) = lj(0) + lj(1)z−11 + . . .+ lj(n1)z
−n1
1 , j = 0 . . . n2 (4.53)

71

If we take a closer look at the equations (4.51,4.52) we can recognize the minimum-
phase decomposition from (4.4). The only difference is that instead of scalar coefficients
we now have one-dimensional filters with transfer functions Lj(z1). To compute this
decomposition we can use a modified version of Cholesky recursion that in z-domain can
be represented as follows:

L̂0,(i)(z1) = Fact1

(
A0(z1)−

n2∑
j=1

L̂j,(i)(z1)L̂j,(i)(z
−1
1)

)
(4.54)

L̂v,i+v(z1) =

(
Av(z1)−

n2−v∑
j=1

L̂j,(i)(z1)L̂v+j,(i+v)(z
−1
1)

)
1

L̂0,(i)(z1)
,

v = 1 . . . n2

where Fact1 () is an operator that performs factorization of a symmetric one-dimensional
FIR filter, transfer functions Av(z1) are defined by the following equations:

A(z1, z2) = An2(z1)z
−n2
2 + . . .+ A0(z1) + . . .+ An2(z1)z

n2
2 (4.55)

Av(z1) = av(n1)z
−n1
1 + . . .+ av(0) + . . .+ av(n1)z

n1
1 , v = 0 . . . n2 (4.56)

In the same way as for (4.5) the sequence L̂v,(i)(z1) converges to Lv(z1) with a specified
accuracy in a finite number of iterations, which was verified experimentally.

When the decomposition (4.51) is determined, the corresponding smoothing spline
solution can be efficiently computed based on the following recursive filtering algorithm:

c̃(i1, i2) = l−10 (i1) ∗

(
f(i1, i2)−

n2∑
v=1

lv(i1) ∗ c̃(i1, i2 − v)

)
, i2 = 0 . . . K2 − 1 (4.57)

c(i1, i2) = l
′−1
0 (i1) ∗

(
c̃(i1, i2)−

n2∑
v=1

l
′

v(i1) ∗ c(i1, i2 + v)

)
, i2 = K2 − 1 . . . 0 (4.58)

where lv are filters corresponding to Lv(z1), ′ symbol is used to denote the adjoint of a
discrete signal that is equivalent to signal reversal [6]. As we can see, the presented algo-
rithm is based on two parallel recursive filtering processes: one is based on column-wise
(over i1) filtering using a set of one-dimensional filters lv, while the other recurs along the
rows (over i2) of the filtered signal. Overall, the convolutional structure of both decom-
position and inverse filtering algorithms allows to implement non-separable 2-D smothing
splines with high-efficiency. If implemented using convolution in time (spatial) domain
the filtering algorithm requires the computational complexity of about 4

∑n2

v=0 qvN1N2

operations. Where qm is the number of samples for every filter lv in the inverse spline
operator decomposition. In general qm are infinite due to the fact that filters lv are IIR
filters, which is clearly seen from the recursion (4.54). In practice the effective length
of these filters can be relatively small – from few samples to hundreds of samples. This
depends on the effective length (radius) of the impulse response corresponding to the
regularization operator Rλ(z1, z2) controlled by smoothing parameters λ: the bigger the

72

values of λ, the bigger the values of qm. With relatively large qv one-dimensional convo-
lutions in (4.54,4.57,4.58) can be computed with higher efficiency using one-dimensional
fast Fourier transform (FFT). In this case the complexity of the inverse filtering process
will be about 2(n2 + 1) (2Clog2(N1) + 1)N1N2, where for FFTW software library [74] C
is 2.5. In case if the inverse smoothing spline filter does not have large effective length
it is possible to compute the solution using its 2-D Fourier image. In this case an FFT-
based computation will require about 2 (Clog2(N1)N2 + Clog2(N2)N1)+N1N2 operations.
Memory requirements for storing a non-separable smoothing spline operator for filtering
in time (spatial) domain is

∑n2

v=0 qv elements, for one-dimensional FFT-based filtering is
(n2 + 1)N1 elements and for two-dimensional FFT-based filtering is N1N2 elements.

Note, that with the presented approach we get access to a rich variety of approximating
spline solutions, which can be constructed based on various differential forms appearing
in PDE equations from physical and mathematical problems. Separable multidimensional
filters do not offer this. As an example, Fig. 4.27 shows amplitude frequency responses of
two 2-D cubic smoothing spline operators: one corresponds to a separable solution, while
the other is based on the Duchon seminorm of order p = 2 and was computed via the
recursion (4.54) and by filtering the Kronecker delta pulse using the (4.57), (4.58). From
the figure we see that the two splines are very different in terms of the characteristics of
their corresponding inverse filters. In contrast to its separable counterpart the Duchon-
based spline has a high level of isotropy of attenuation in the frequency domain. Usually,
a new quality comes at an expense of decreasing the level of other qualities. It is clear that
even with its efficient convolutional structure the filtering algorithm (4.57,4.58) cannot
compete with the separable approach in terms of performance.

An interesting property of both decomposition (4.54) and filtering algorithm (4.57,
4.58) is that they can be performed in two different ways. Instead of searching a decom-
position of A(z1, z2) using (4.52), we could consider another form of the filter L(z1, z2):

L(z1, z2) = L0(z2) + L1(z2)z
−1
1 + . . .+ Ln1(z2)z

−n1
1 (4.59)

Basically we can switch the direction for performing the decomposition and inverse fil-
tering without changing the resulting spline solution. What does it imply? Fig. 4.28
presents an example of a non-separable smoothing spline operator that is constructed
based on the tensor product of B-splines with different degrees n1 = 2, n2 = 3. In this
case the tensor filter with transfer function A(z1, z2) looses it symmetry. This means
that if we use the decomposition with factors of the form (4.52) we will get n2 + 1 = 4
filters lv, in case if we have one-dimensional filtering along the second dimension we will
get n1 + 1 = 3 filters l̃v. The impulse responses of the filters corresponding to these
two cases are shown in Fig. 4.28. It turns out that filters lv and l̃v have approximately
the same effective length. This makes decomposition and filtering with one-dimensional
computations along the second dimension more efficient. Another example when the di-
rection of inverse filtering can matter assumes the use of FFT. As we explained above the
complexity of FFT-based filtering is 2(n2 + 1) (2Clog2(N1) + 1)N1N2. Now assume that
(2Clog2(N1) + 1)N1 >> (2Clog2(N2) + 1)N2. In this case it is clear that filtering along
the second dimension requires less computations and is therefore more advantageous.

73

4.4.2 The case of higher dimensions

After we understood the mechanics of the presented non-separable smoothing spline ap-
proach in two dimensions, its extension to higher dimensions is straightforward. For the
case of an arbitrary number of dimensions d we can use the following recursion:

L̂k0,(i)(zk) = Factk

(
Ak0(zk)−

nk∑
j=1

L̂kj,(i)(zk)L̂
k
j,(i)(z

−1
k)

)
(4.60)

L̂kv,i+v(zk) =

(
Akv(zk)−

nk−v∑
j=1

L̂j,(i)(zk)L̂v+j,(i+v)(z
−1
k)

)
1

L̂0,(i)(zk)
,

v = 1 . . . nk

where A(zk) ≡ A(z1, . . . , zk), Factk () is a factorization operator applied to a k-
dimensional symmetric tensor filter. The recursion starts at k = d− 1 and is propagated
to lower dimensions until it reaches k = 1. In a similar way we can rewrite the inverse
filtering algorithm:

c̃k(ik) =
(
lk0(ik−1)

)−1 ∗(fk(ik−1)− nk∑
m=1

lkm(ik−1) ∗ c̃k(ik−1, ik −m)

)
, (4.61)

ik = 0 . . . Kk − 1

ck(ik) =
(
l
′k
0 (ik−1)

)−1
∗

(
c̃k(ik)−

nk∑
m=1

(lkm)
′
(ik−1) ∗ ck+(ik−1, ik +m)

)
, (4.62)

ik = Kk − 1 . . . 0

where ck(ik) ≡ ck(i1, . . . , ik) is a k-dimensional slice of the solution at the k-th level of
the recursion, lkm(ik−1) are (k−1)-dimensional filters. At k = 2 filtering will be performed
according to 2-D algorithm (4.57,4.58).

To simplify the estimation of computational and memory requirements of the inverse
multidimensional filtering algorithm, let us assume that n1 = n2 = · · · = nd = n and that
at every d − 1 level of the filtering recursion filters lkm(ik−1) have q number of elements.
Therefore, the overall number of one-dimensional filters in the hierarchical decomposition
of the filter A(zd) will be equal to (n + 1)d−1qd−2 each having q coefficients. Therefore,
when computed based on time (spatial) domain 1-D filtering the algorithm will require
about 4 ((n+ 1)q)d−1

∏d
k=1Kk. The total number of coefficients to store is ((n+ 1)q)d−1.

Similarly to the described case of 2-D filtering, the use of FFT can potentially decrease
the computational complexity at the cost of increased memory requirements.

74

4.5 Non-uniform smoothing spline filters in higher di-
mensions

The proposed recursive filtering approach can be extended to the most general case of
non-uniform spline reconstruction in multiple dimensions. In this case the decomposi-
tion and solving algorithms will have exactly same structure as presented in equations
(4.60,4.61,4.62). One major difference is that the one-dimensional filters at the lowest
level of the hierarchical structure of the inverse filter will have the form of non-uniform 1-D
inverse filters. This implies a significant increase in computational and memory require-
ments for determining the decomposition and the corresponding spline solution. Within
our current research we are investigating strategies for implementing such reconstruction
algorithms as efficient as possible.

4.6 Discussion
We revisited the problem of spline-based variational signal reconstruction using the ap-
proach of inverse recursive filtering. As a result we derived highly efficient recursive
filtering algorithms for computing approximating spline solutions of an arbitrary order
that are statistically optimal in the sense of minimization of a cross validation-based
cost function. We introduced a new family of approximating spline filters with improved
noise discrimination characteristics. These filters are determined based on an extension
of the classical smoothing spline regularization approach. We extended the results ob-
tained for uniform approximating splines to the case of non-uniform spline reconstruction.
This extension led to the derivation of highly efficient algorithms for computing inverse
spline filtering operators and the corresponding spline solutions. Finally, we extended the
proposed approach to the case of multidimensional signal reconstruction. The achieved
results are not limited to only B-spline based signal representation but can be used for
any shift-invariant bases. The developed solving algorithms were successfully applied
to a medical imaging problem of Optical Coherence Tomography (OCT) and showed
significant outperformance compared with conventional techniques used in the field.

75

o
ri
g
in

a
l

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

(a
)

in
te

rp
o
la

ti
n
g
 s

p
lin

e

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

(b
)

N
U

F
F

T

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

(c
)

a
p
p
ro

x
im

a
ti
n
g
 s

p
lin

e

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

(d
)

F
ig
.4

.2
2:

V
is
ua

liz
at
io
n
of

th
e
re
co
ns
tr
uc
ti
on

of
a
sy
nt
he
ti
c
O
C
T
da

ta
w
it
h
a
di
ag

on
al

lin
e
pa

tt
er
n.

(a
)
th
e
tr
ue

so
lu
ti
on

,(
b)

in
te
rp
ol
at
in
g
sp
lin

e-
ba

se
d
re
co
ns
tr
uc
ti
on

,
(c
)
N
U
F
F
T
-b
as
ed

re
co
ns
tr
uc
ti
on

,
(d
)
re
co
ns
tr
uc
ti
on

ba
se
d
on

ou
r
no

n-
un

ifo
rm

sp
lin

e
al
go

ri
th
m

(λ
=

0.
00

01
76

).

76

a
b
s
o
lu

te
 e

rr
o
r

fo
r

in
te

rp
o
la

ti
n
g
 s

p
lin

e
,
R

M
S

E
=

2
3
.1

8
0
6
2
9
%

(d

is
p
la

y
 g

a
in

=
4
.0

0
0
0
0
0
)

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

(a
)

a
b
s
o
lu

te
 e

rr
o
r

fo
r

N
U

F
F

T
,
R

M
S

E
=

1
9
.4

6
0
8
9
2
%

(d

is
p
la

y
 g

a
in

=
4
.0

0
0
0
0
0
)

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

(b
)

a
b
s
o
lu

te
 e

rr
o
r

fo
r

a
p
p
ro

x
im

a
ti
n
g
 s

p
lin

e
,
R

M
S

E
=

7
.5

0
3
6
8
5
%

(d

is
p
la

y
 g

a
in

=
4
.0

0
0
0
0
0
)

(c
)

F
ig
.4

.2
3:

V
is
ua

liz
at
io
n
of

th
e
re
co
ns
tr
uc
ti
on

er
ro
r
fo
r
a
sy
nt
he
ti
c
O
C
T
da

ta
w
it
h
a
di
ag

on
al

lin
e
pa

tt
er
n.

(a
)
re
co
ns
tr
uc

ti
on

er
ro
r
fo
r
th
e
in
te
rp
ol
at
in
g
sp
lin

e-
ba

se
d
so
lu
ti
on

,(
b)

re
co
ns
tr
uc
ti
on

er
ro
r
fo
r
th
e
N
U
F
F
T
-b
as
ed

so
lu
ti
on

,(
c)

re
co
ns
tr
uc
ti
on

er
ro
r
fo
r
th
e
so
lu
ti
on

ba
se
d
on

ou
r
no

n-
un

ifo
rm

sp
lin

e
al
go

ri
th
m

(λ
=

0.
00

01
76

).
In

al
lc

as
es

th
e
er
ro
r
w
as

am
pl
ifi
ed

by
4

re
la
ti
ve

to
th
e
ga

in
us
ed

fo
r
vi
su
al
iz
at
io
n
of

th
e
re
co
ns
tr
uc
ti
on

re
su
lt
s
on

F
ig
.4

.2
2

77

o
ri
g

in
a

l

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

(a
)

in
te

rp
o

la
ti
n

g
 s

p
lin

e

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

(b
)

N
U

F
F

T

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

(c
)

a
p

p
ro

x
im

a
ti
n

g
 s

p
lin

e

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

(d
)

F
ig
.4

.2
4:

V
is
ua

liz
at
io
n
of

th
e
re
co
ns
tr
uc
ti
on

of
a
sy
nt
he
ti
c
O
C
T

da
ta

ge
ne
ra
te
d
ba

se
d
on

a
hi
gh

-q
ua

lit
y
im

ag
e
of

re
ti
na

.
(a
)
th
e
tr
ue

so
lu
ti
on

,
(b
)
in
te
rp
ol
at
in
g
sp
lin

e-
ba

se
d
re
co
ns
tr
uc
ti
on

,
(c
)
N
U
F
F
T
-b
as
ed

re
co
ns
tr
uc
ti
on

,
(d
)
re
co
ns
tr
uc
ti
on

ba
se
d
on

ou
r
no

n-
un

ifo
rm

sp
lin

e
al
go

ri
th
m

(λ
=

0.
00

01
76

)

78

a
b

s
o

lu
te

 e
rr

o
r

fo
r

in
te

rp
o

la
ti
n

g
 s

p
lin

e
,

R
M

S
E

=
1

1
.4

4
0

7
5

3
%

(d

is
p

la
y
 g

a
in

=
4

.0
0

0
0

0
0

)

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

(a
)

a
b

s
o

lu
te

 e
rr

o
r

fo
r

N
U

F
F

T
,

R
M

S
E

=
8

.1
8

3
1

8
9

%

(d
is

p
la

y
 g

a
in

=
4

.0
0

0
0

0
0

)

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

(b
)

a
b

s
o

lu
te

 e
rr

o
r

fo
r

a
p

p
ro

x
im

a
ti
n

g
 s

p
lin

e
,

R
M

S
E

=
2

.4
3

9
9

0
6

%

(d
is

p
la

y
 g

a
in

=
4

.0
0

0
0

0
0

)

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0

5
5

0

6
0

0

6
5

0

7
0

0

7
5

0

8
0

0

8
5

0

9
0

0

9
5

0

1
0

0
0

(c
)

F
ig
.
4.
25
:
V
is
ua

liz
at
io
n
of

th
e
re
co
ns
tr
uc
ti
on

er
ro
r
fo
r
a
sy
nt
he

ti
c
O
C
T

da
ta

ge
ne
ra
te
d
ba

se
d
on

a
hi
gh

-q
ua

lit
y
im

ag
e
of

re
ti
na

.
(a
)
re
co
ns
tr
uc
ti
on

er
ro
r
fo
r
th
e
in
te
rp
ol
at
in
g
sp
lin

e-
ba

se
d
so
lu
ti
on

,
(b
)
re
co
ns
tr
uc
ti
on

er
ro
r
fo
r
th
e
N
U
F
F
T
-b
as
ed

so
lu
ti
on

,
(c
)
re
co
ns
tr
uc
ti
on

er
ro
r
fo
r
th
e
so
lu
ti
on

ba
se
d
on

ou
r
no

n-
un

ifo
rm

sp
lin

e
al
go

ri
th
m

(λ
=

0.
00

01
76

).
In

al
l
ca
se
s

th
e
er
ro
r
w
as

am
pl
ifi
ed

by
4
re
la
ti
ve

to
th
e
ga

in
us
ed

fo
r
vi
su
al
iz
at
io
n
of

th
e
re
co
ns
tr
uc
ti
on

re
su
lt
s
in

F
ig
.4

.2
4

79

(a) (b) (c)

(d) (e) (f)

Fig. 4.26: An example of reconstruction of a medical CT dataset contaminated by Gaus-
sian noise with a standard deviation of 30 (SNR ≈ 7.7dB) using a separable cubic
smoothing spline. (a) a 3-D visualization of the original dataset, (b) a 3-D visualiza-
tion of the dataset contaminated by noise, (c) a 3-D-visualization of the GCV -optimized
smoothing spline solution (SNR ≈ 22.46 dB), (d) a 2-D slice of the original dataset, (e)
a 2-D slice of the dataset contaminated by noise (f) a 2-D slice of the smoothing spline
solution

80

−1

−0.5

0

0.5

−1
−0.5

0
0.5

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

ω
2
, π rad/sample

ω
1
, π rad/sample

d
B

(a)

−1

−0.5

0

0.5

−1

−0.5

0

0.5

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

ω
2
, π rad/sample

ω
1
, π rad/sample

d
B

(b)

Fig. 4.27: (a) A comparison of the amplitude frequency responses of separable and non-
separable cubic (n1 = n2 = 3) smoothing spline operators (a) separable smoothing spline
with λ = 5 for both dimensions, (b) non-separable smoothing spline based on Duchon
regularizer of order p = 2 with λ = 0.5

81

1 2 3 4 5 6 7

0

0.5

1

1.5

5 10 15

−0.4

−0.3

−0.2

−0.1

0

5 10 15

−0.05

0

0.05

5 10 15

0

0.005

0.01

0.015

0.02

0.025

l0

l̃0

l1

l̃1

l2

l̃2

l3

Fig. 4.28: An example of multi-direction decomposition of a non-separable smoothing
spline operator constructed based on the tensor product of quadratic and cubic B-splines
(n1 = 2, n2 = 3) and second order Duchon seminorm. One-dimensional filters lv, v =
0 . . . n2 and l̃v, v = 0 . . . n1 were computed by decomposing the tensor filter A(z1, z2)
along the second and the first dimension respectively.

82

Chapter 5

High-level FPGA-based system design
for high-performance signal
reconstruction

In the previous chapters we showed how a detailed analysis of the structure of a spline-
based variational formulation of the signal reconstruction problem led to the derivation of
highly efficient algorithms. Our practical computational experiments confirmed that the
derived algorithms can offer outstanding performance when implemented on the current
computing platforms such as multi-core CPU and DSP. The key for achieving that is the
highly structured nature of the involved computations, which are due to locality of the
used spline bases, their convolution, multiresolution and tensor properties. In this chapter
we describe our practical experience with yet another computing technology that allows
to create high-performance embedded computing platforms based on the properties of
splines and tensors.

5.1 FPGA computing technology
Field Programmable Gate Array (FPGA) are integrated circuits that are based on a large
array of programmable logic components connected by configurable interconnects. One
of the key features that distinguishes FPGA from other standard computing technolo-
gies is that such circuits can be programmed to any desired application or functionality
requirements be it a general purpose processor or any custom digital design. In many
cases FPGA become a preferable choice for industries due to the fact that they combine
the specific advantages of Application Specific Integrated Circuits (ASIC) and processor-
based systems. Similarly to ASIC, FPGA offer a hardware-timed speed and reliability but
do not require large upfront expenses that is the typical prerequisite for a high-volume
production of ASIC devices. FPGA programmable logic has the same flexibility as a
software running on a processor-based system but is not limited to the particular archi-
tecture and the available number of cores. In contrast to CPU, FPGA are fully parallel
devices where the granularity of parallelism can be achieved at an arbitrary level by as-

83

Table 5.1: Advantages and disadvantages of FPGA in comparison with other computing
technologies

Advantages Disadvantages
Performance
due to full hardware parallelism FPGA offer
more computing power in terms of operations
per cycle than CPU and DSP; they are espe-
cially powerful for data streaming applications

Performance
FPGA do not offer the highest possible per-
formance for complex processing algorithms;
FPGA provide lower operating frequency than
ASIC

Fast time to market
FPGA offers flexibility and rapid prototyping
capabilities. It is possible to test an idea with-
out manufacturing. FPGA development tools
have a great impact on development produc-
tivity.

Cost
FPGA do not require large upfront expenses
for design and production in contrast to ASIC

Cost
FPGA are more expensive than ASIC in case
of a high volume production

Power consumption
FPGA offer higher power efficiency in terms
of performance/Watt than CPU and GPU

Power consumption
currently FPGA consume more power than
ASIC

Reliability
true parallel "hard" execution of a task with-
out resource sharing and scheduling, absence
of OS minimizes reliability concerns in FPGA-
based systems

Maintenance
FPGA can be reprogrammed at any time
by improving and adding functionalities to a
product

signing a concrete out of many operations to a separate part of FPGA without resource
sharing. Of course, FPGA is not an ideal technology for all scenarios and along with its
advantages has also disadvantages. Table 5.1 lists the advantages and disadvantages of
FPGA technology compared to other existing computing platforms.

5.1.1 Conventional FPGA development approaches

Initially FPGA were used only by hardware engineers who understood in details what is
inside of FPGA and how it works. Today, due to a progress in the direction of high-level
FPGA development, the situation has improved but not such that the technology be-
comes easily accessible to software engineers who are not specialized in the field of digital
circuit design. A conventional model for FPGA development assumes the use of low-level
programming tools that are supported by Hardware Description Languages (HDL) such

84

as VHDL (based on the Ada programming language) and Verilog (a C dialect). These
two low level languages, are still the de facto standards used for development of FPGA
systems in many industrial fields such as in Communications, System Control, Medical
Signal and Image processing systems. Due to the low level nature of HDL languages it
can be difficult to use them for implementing complete complex systems. As a side effect
this leads to long development cycles and difficulties in maintainability of development
projects.

In our joint effort together with Computer System Institute of ETH Zuerich and
HighDim GmbH we developed an alternative high-level approach to efficient design of
computing systems on FPGA. This approach is mainly targeted towards application spe-
cific design of stream-based data processing systems, which is in perfect fit with our needs
for signal processing applications. A special feature of the proposed approach is that it
allows to design hybrid architectures in a software/hardware co-design manner: a code
written by a software engineer is used for generation of both software and hardware parts
of the system that are to be deployed and executed on FPGA. This can be achieved
with ActiveCells - a high-level programming model and an integrated development en-
vironment for hybrid software/hardware co-design of application-specific streaming data
processing systems on FPGA, which is described in the next sections.

5.2 ActiveCells: a high-level hardware/software co-design
on FPGA

5.2.1 Multi-processor streaming system design

The work on ActiveCells originated from the joint project "Supercomputer in the pocket"
of ETH Zuerich and University Hospital of Basel funded by Microsoft Innovation Cluster
for Embedded Software (ICES). The project targeted an application from the field of
medical signal processing. The achieved results of this development were described in
[75, 76]. Basically at that stage the work was based on the concept of software/hardware
co-design applied to design of application specific multi-processor streaming systems on
FPGA. According to this concept an application is developed as a high-level program
written in Oberon programming language. The program describes multiple processes that
run a certain activity and communicate with each other using communication channels.
In a top-level module the developer can describe the architecture by instantiating the
processes, specifying their capabilities such as the size of instruction/data memory, IO
peripherals and finally by creating the corresponding interconnects. At the compilation
stage the system is translated to FPGA hardware by mapping processes to individual
soft-core processors, Tiny Register Machines (TRM) - a minimalistic CPU based on the
design of Prof. Niklaus Wirth [77]. The inter-process communication channels is mapped
to First Input First Output (FIFO) buffers. An example of an architecture that was built
on the base of the described principles is shown in Fig.5.1.

The developed concept showed its usefulness for development of embedded medical

85

(a)

Core1

Core2

Core9

Core10 Core11 Core12

FIFO1

FIFO8

FIFO9

FIFO16

FIFO17 FIFO18

FIFO19

FIFO20

FIFO33

FIFO34

UART

controller
CF

controller

LCD

controller

Virtex-5LX50T FPGA

Xilinx ML505 board

RS232

CF

LCD

ECG

Sensor

·

·

·

·

·

·

(b)

Fig. 5.1: An example of multi-processor ECG processing architecture. (a) a block-diagram
of the desired application (b) a block-diagram of the resulted computing architecture
implemented on FPGA

systems such as the ones that perform ECG or EEG real-time analysis. However, when
applied to medical imaging, it faced a natural problem of all processor-based systems.
The sequential way of processing within a general purpose processor, the overhead in
data communication and the relatively low speed of the processors achievable on FPGA
(a TRM can run at a frequency of not more than 125 MHz on a Virtex-5 platform
from Xilinx) made the approach practically unusable in terms of achievable computing
performance even for simple image processing algorithms. An attempt to solve this
problem was made by extending the capabilities of processor cores using the standard
concept of Single Instruction Multiple Data (SIMD) parallelism: a vector version of the
TRM was implemented [76]. An example of a simple motion detection architecture that
implements a motion detection functionality, which was implemented on the base of
multiple vector processors is presented in Fig.5.2. While vectorization of data processing
helped to increase the speed, it was way far from being high-performance: the maximal
frame rate of the motion detection architecture in Fig.5.2 was at about 18 frames per
second at the image resolution 576 x 768 pixels. In addition, the increased complexity of
the designed vector processor design led to a significant increase of the FPGA resource
usage and decrease of the maximal achievable clock frequency. Another problem of the
approach, at that initial development stage, was a difficulty in extending the capabilities
of the processor components with various types of features e.g. an SPI communication

86

TRMIO
TRMDMA

UART

controller

DDR

controller

Virtex-5LX50T FPGA

Xilinx ML505 board

RS232

DDR

PC

VTRM1

CF
CF

controller
VTRM4

FIFO1

FIFO2

FIFO7

FIFO8

FIFO9

FIFO10

FIFO15

FIFO16

FIFO17

Fig. 5.2: A block diagram for a motion detection architecture built on the base of multiple
vector processors

interface or a convolution engine. Such capabilities were treated in a traditional way as
peripherals that belong to the processor (similarly to the controllers on the ARM-based
platforms). In this case when the developer wanted to integrate some new peripherals
he had to recompile the compiler, a requirement that is unacceptable in real industrial
development settings.

5.2.2 A hybrid system design

The problem of the multi-processor approach described above was due to the fact that it
did not fully exploit the parallelism offered by FPGA. Using a processor with its inherent
sequentiality and the associated overhead, it is very difficult to beat the performance
of a simple component dedicated to a specific task. A natural solution to overcome
the experienced problem is based on a hybrid design approach that combines general
purpose processors with their flexibility and reprogrammability and specialized hardware
components, which can perform a specific, very structured and parallel task with highest
possible performance. The proposed approach was implemented in ActiveCells.

5.2.3 ActiveCells programming model

The ActiveCells programming model was developed by Felix Friedrich at ETH Zuerich
[78] as an extension of the Oberon programming language. The main construct that is
used for implementing an ActiveCells architecture is a cell – a processing element that
performs some specific activity. Cells in an architecture can communicate with each other
by means of buffered channels and can form a network – a cellnet. Listing 5.1 shows
a simple example of an architecture that implements filtering of a data stream using a
3-tap symmetric FIR filter. As we see from the example that a cell is defined as a type.
The body of a cell defines its activity. In this case a cell works indefinitely in time, which
explains the use of an infinite loop.

87

Cell communication ports

A cell can have multiple input and output ports which are used for communication with
other cells in a cellnet. For example an output port filterCfg of the cell instance
ctl is connected to the corresponding input of the cell instance filter and is used for
runtime configuration of the filter coefficients. The cells communicate by sending and
receiving data to/from their ports. Send and receive operations can have a blocking
or non-blocking behavior. For example, the code serInp ? cmd; corresponds to a
blocking receive operation: in this case the cell activity is blocked until a data item
becomes available from the port serInp and is received to the variable cmd. A non-
blocking receive is abstracted using operator ??. If data is available on a specified port,
the operator receives the data to a specified memory location and returns a boolean status
true. In case of data absence the operator returns false and does not lead to blocking of
the cell’s activity. In the presented example the non-blocking receive mechanism is used
for runtime reconfiguration of the filter cell. In a similar way the language defines blocking
send (operator !) and non-blocking send (operator !!) operations (Appendix 5.A explains
the need for this operation).
cellnet SimpleCellnet;
import Engines, Filters;

type

Controller = cell{Arch="TRM"}(serInp: port in; filterCfg: port out);
var cmd: integer; h: array [2] of real;
begin

loop
serInp ? cmd; (∗ blocking receive ∗)
h := Filters .GetFilter(cmd);
filterCfg ! h; (∗ blocking send ∗)

end
end Controller;

SymFirFilter3 = cell(cfg, x: port in; y: port out)
var h: array [2] of real; x0, x1, x2: real; i : integer;
begin

h[0] := 4/6; h[1] := 1/6;
loop

if (cfg ?? h[i]) then i := (i+1) mod 2; end; (∗ non−blocking receive ∗)
if (x ?? x0) then y ! h[1]∗(x0 + x2) + h[0]∗x1; x2 := x1; x1 := x0; end;

end
end SymFirFilter3;

const
DefaultBaudrate = 115200;

var
ctl : Controller ;
uartRx{Baudrate=DefaultBaudrate}: Engines.UartRx;
filter : SymFirFilter3;
ioStream{Standard="SingleEnded"}: Engines.SerialIoPort;

begin
new(ctl); new(uartRx); new(filter); new(ioStream);
connect(uartRx.output,ctl.serInp,256);
connect(ctl.filterCfg , filter . cfg);
connect(ioStream.output,filter.x); connect(filter.y,ioStream.input);

88

end SimpleCellnet.

Listing 5.1: A simple ActiveCells architecture that implements filtering of a stream of
signal samples with a symmetric 3-tap FIR filter

Instantiation of cell architectures

Cells in an ActiveCells architecture are instantiated and connected with each other in
the body of a cellnet. This is done by the use of the operators new and connect as ex-
emplified by the SimpleCellnet architecture. The connect statement provides the mean
for connecting the corresponding output and input cell ports using buffered channels
(FIFO). The developer has the ability to define the depth of a channel (the length of the
corresponding FIFO) using the third argument of connect. For example, the code con-
nect(uartRx.output,ctl.serInp,256); will lead to instantiation of a buffered channel
with depth of 256 elements that connects the output port uartRx.output with the input
port ctl.serInp.

Cell parametrization

The functionality and capability of cells in ActiveCells can be controlled by means of so
called capability parameters. These parameters are static in the sense that their values
have an effect only at the time of instantiation of a cell. There are three ways to specify
these parameters in an ActiveCells code: 1). in a cell type definition, e.g. as in the case
of definition of the cell type Controller, where the parameter Arch specifies the type of
the instruction set architecture that will be used for implementing the cell in FPGA
hardware; 2). in variable definition (var) section, e.g. uartRx{Baudrate=115200}:
Engines.UartRx;, where the parameter Baudrate determines the baudrate of a UART
receiver component; 3). at the time of cell instantiation, e.g. new(uartRx{Baudrate=115200});.

Cell hierarchies

ActiveCells allows to create hierarchies based on already defined cell types. Listing 5.2
provides an example how a multi-channel FIR filter can be created as a hierarchical
structure from a number of instances of cell type SymFirFilter3 defined in the code
from Listing 5.1. The ports of the new cell type MultiChannelFilter are delegated
to the ports of the internal components using the language construct delegate. The
cell type MultiChannelFilter can now be used for creating another level of hierarchy
together with other existing cell and cellnet types. In this way ActiveCells provides the
possibility to design architectures of arbitrary complexity.
const

NumChans = 4;
type

MultiChannelFilter = cellnet(cfg: port in; x: array NumChans of port in; y: array NumChans of port out);
var

k: longint ;
filters : array NumChans of SymFirFilter3;

begin

89

for k := 0 to len(filters)−1 do
new(filters [k]);
delegate(cfg, filters [k]. cfg);
delegate(x[k], filters [k]. x);
delegate(y[k], filters [k]. y);

end;
end MultiChannelFilter;

Listing 5.2: An example of creating cell hierarchies in ActiveCells

5.2.4 Communication protocol

As in any computing network the communication between cells in an ActiveCells archi-
tecture requires a protocol. It is desirable that such a protocol is generic enough to allow
a unified plugability of the components and at the same time provides high data through-
put, which is especially critical for signal and image processing systems. In consideration
of these two important aspects we decided to choose the AXI4-Stream industrial stan-
dard [79] as a protocol for inter-cell communication. AXI4-Stream was designed by ARM
for high-speed streaming-based systems. It is a subset of a more general AMBA AXI4
memory-mapped protocol. To guarantee a consistent data transfer from a master (a
component that initiates the transfer) to a slave (a component that accepts the data)
AXI4-Stream defines a minimal set of three signals: TVALID signal that is asserted by
the master to indicate data availability, TREADY signal that is controlled by the slave
to inform the master about readiness to accept data and TDATA – the actual data signal
driven by the master. At the hardware level an AXI4-Stream data transaction is assumed
to be accomplished when at the current clock cycle both TVALID and TREADY are
asserted by the master and the slave correspondingly. The timing diagram in Fig. 5.3
exemplifies the way how the protocol works by four possible situations:

• time points A: no transfer takes place because there is no data available from the
master and the slave is not ready

• time points B: the slave is ready to accept new data but there is no data available
from the master (Master Waitstate)

• time points C: there is data available from the master but the slave is not ready;
the master has to hold the current data until a transaction takes place

• other time points: transactions take place and the data is changed by the master
at every clock cycle

AXI4-Stream also provides a mechanism for routing (multiplexing) within a com-
puting network. A minimal routing functionality can be implemented using the signal
TDEST. On both the master and the slave sides this signal has output direction. The
master uses this signal to select the slave to whom the the data and its availability are
directed. Similarly, for the slave this signal provides the possibility to select a master
from which the data is to be read.

90

Fig. 5.3: A timing diagram explaining the data transactions in AXI-4 stream communi-
cation protocol

The protocol defines other optional signals that can be used for implementing various
functionalities e.g. merging of data streams, their up-sizing, down-sizing etc. In gen-
eral, the protocol provides a high level of flexibility and can satisfy the needs of many
applications. In addition to that, a fundamental advantage of AXI4-Stream protocol is
that the data transfers can take place at every cycle with minimal overhead in terms
of the resources used for implementing the protocol in FPGA hardware. All other op-
tional features of the protocol come at the resource usage cost rather than at the cost of
performance loss.

We used the AXI4-Stream standard for implementing inter-cell communication at the
hardware library level of ActiveCells. Cell output and input ports were implemented in
FPGA as master and slave AXI4-Stream ports correspondingly. As a basic set of signals
we used TDATA, TVALID and TREADY described above. The routing functionality
provided by TDEST signal is mainly supported by processor components. Other signals
defined by the protocol are implemented with optional support.

Adoption of the AXI4-Stream protocol into the ActiveCells framework was a big as-
set. The protocol greatly facilitated the automatic FPGA hardware generation based on
high-level source code and it allowed us to unify the way how hardware components are
implemented and integrated into ActiveCells hardware libraries (as will be explained be-
low). At the same time its efficiency and minimal redundancy permitted the development
of high-performance streaming data processing systems.

5.2.5 ActiveCells hardware components: Engines

If we compile the example architecture from Listing 5.1 using the ActiveCells compiler, the
instance filter of cell type SymFirFilter3 will be implemented in FPGA hardware as
a separate processor. This processor will execute the binary machine code corresponding
to the high-level code within the body of the cell type. In case if the data stream at
the input port filter.x comes at a high speed (e.g. at the clock frequency of the
processor) the component will not be able to provide the required performance due to
sequentiality of code execution and the memory access overhead. Thus, we meet exactly
the same problem of the multiprocessor approach described above. Now, assume that in
a hardware library available to the ActiveCells compiler there is a dedicated hardware

91

component (Engine) with name SymFirFilter3. In this case the developer can request
from the compiler to replace the processor by that specialized hardware component.
This can be done using a built-in parameter Engine. For example, in the particular
case of SymFirFilter3 cell type it is sufficient to specify this parameter at instantiation
time: new(filter{Engine});. The just described mechanism allows to create hybrid
software/hardware architectures by combining the flexibility of processor-based systems
and high performance of dedicated hardware components.

Engines in ActiveCells hardware libraries are implemented based on HDL languages.
This can be done either manually by an experienced hardware engineer or using au-
tomated tools (e.g. CORE Generator from Xilinx). The interface of the corresponding
HDL code has to obey the communication protocol described above. For example, a hard-
ware component corresponding to the cell type SymFirFilter3 could have an interface
in Verilog HDL as shown in Listing 5.3.
module SymFirFilter3
(

input aclk,
input aresetn,

input [31:0] cfg_tdata,
input cfg_tvalid,
output cfg_tready,

input [31:0] x_tdata,
input x_tvalid,
output x_tready,

output [31:0] y_tdata,
output y_tvalid,
input y_tready

);

Listing 5.3: Interface example of an ActiveCells hardware component implemented in
Verilog HDL

Provided that HDL source code of a hardware component is already available, the
component can be conveniently integrated into ActiveCells hardware library. The only
requirement is a description of this component in a generic specification file. An exam-
ple of such a representation is presented in Appendix 5.B. A specification provides the
compiler with all necessary information for automatic hardware generation. Namely:

• software/hardware port mapping : information about the correspondence of ports in
the hardware implementation to the logical ports of a respective cell. For exam-
ple, in the SymFirFilter3 component the logical port x has in correspondence an
AXI4Stream port with same name and respective attributes. This information is
used for automatic connectivity of the hardware components during the hardware
generation stage.

• supported FPGA platforms : a sufficiently general naming scheme allows to inform
the compiler about the supported target devices for a component. This parameter
allows the compiler to choose a suitable implementation among possibly multiple
implementations of the same component.

92

• source code dependencies : a list of all files required for the process of hardware
implementation.

• component parameters : provision of the correspondence of cell capability param-
eters with their default values to the respective HDL parameters of the hardware
component. In order to provide the necessary flexibility, this feature in the compiler
is supported by code interpretation.

Even processor cores are described in the same manner and, therefore, also treated as
hardware components. With this unified component-based approach ActiveCells hard-
ware libraries can be conveniently and flexibly enriched by new types of processing units.

Once the steps above have been carried out the component becomes automatically
available to the ActiveCells toolchain. At this point the work of a hardware engineer who
implements the hardware component is finished and a software engineer can take over
the work on implementing the required architecture using high level tools without further
involvement of the hardware engineer.

However, in order to achieve high performance it is not necessary to implement hard-
ware HDL components for every performance critical task. Sometime it suffices to rely
on a limited number of generic building blocks – high-performance hardware components
that are used for generation of components with higher complexity. This is made possible
by the cell hierarchies as described on page 89.

Listing 5.4 presents an example how the SymFirFilter3 component can be imple-
mented at a high level using generic primitives available in the ActiveCells hardware
library. A conventional block-diagram representation of the FIR filter implemented by
the high-level component SymFirFilter3 and its corresponding block-diagram gener-
ated directly from the code using ActiveCells toolchain are shown in Fig.5.4. Note, that
high-level components implemented in this way by a software engineer can provide the
performance comparable to that of hardware components implemented by an experienced
hardware engineer directly in HDL code.
type

SymFirFilter3 = cellnet(cfg: port in; x: port in; y: port out);
var

cfgInterleave : Engines.StreamReshaper1x2;
mul: array 2 of Engines.MulFlt32;
add: array 2 of Engines.AddFlt32;
delay, h: array 2 of Engines.StreamRegister;
k: integer;

begin
for k := 0 to 1 do

new(delay[k]{Preloaded=true,PreloadValue=0});
new(mul[k]);
new(add[k]);
new(h[k]{Preloaded=true,PersistentOutput=1});

end;

(∗ interleave coefficients configuration stream ∗)
new(cfgInterleave{InitN=2});
delegate(cfg,cfgInterleave .input);
connect(cfgInterleave.output[0],h [0]. input ,0);
connect(cfgInterleave.output[1],h [1]. input ,0);

93

(∗ delay chain: x2 := x1; x1 := x0; ∗)
delegate(x,delay[0].input);
connect(delay[0].output,delay[1].input ,0);

(∗ u := h[1]∗(x0 + x2) ∗)
connect(h[1].output,mul[0].input [0],0);
delegate(x,add[0].input [0]);
connect(delay[1].output,add[0].input [1],0);
connect(add[0].output,mul[0].input [1],0);

(∗ v := h[0]∗x1 ∗)
connect(h[0].output,mul[1].input [0],0);
connect(delay[0].output,mul[1].input [1],0);

(∗ y := u + v ∗)
connect(mul[0].output,add[1].input [0],0);
connect(mul[1].output,add[1].input [1],0);

delegate(y,add[1].output);
end SymFirFilter3;

Listing 5.4: SymFirFilter3 component from Listing 5.1 hierarchically constructed from
generic building blocks

A multi-channel version of the filter component from Listing 5.4 demonstrates the
high performance capability of FPGA in an impressive way: we deployed a total amount
of 26 channels of the symmetric 3-tap FIR filter on a low-end Xilinx Zynq XC7Z020-1
FPGA device. The maximal achieved clock rate was 143 MHz. Therefore, the maximal
performance provided by this architecture in terms of floating point operations per second
(FLOPS) is 26 channel * 4 operations * 143×106 ≈ 14.87 GFLOPS. This approximately
corresponds to performance of a high-end Intel i7 Quad-core processor with clock fre-
quency of ≈ 3 GHz. Taking into account that for the same workload the Intel processor
requires a power budget of at minimum an order of magnitude higher than the used
FPGA device, we clearly see the advantage of using FPGA. This example also shows the
benefits of high-level component-based ActiveCells design.

5.2.6 ActiveCells target device specification

At the time of compilation of an ActiveCells architecture it is required to provide a
specification of a concrete target device where the architecture will be deployed. This
assumes the provision of the following information to the compiler:

• FPGA part specification: all part-related information including part name, package
type, speed grade etc.

• system signals specification: system clock and system reset signals together with
their respective parameters and pins specification; possibly other clock signals pro-
vided by the target device.

• terminal port specification: an ActiveCells hardware architecture normally exposes
some of its signals to the outside world via FPGA device pins. This exposition is

94

z−1 z−1

h[0]

h[1]

y(i)x(i)

(a)

(b)

Fig. 5.4: (a) a conventional FIR-filter block-diagram representing functionality imple-
mented by the SymFirFilter3 component from Listing 5.4. (b) a block-diagram au-
tomatically generated using the ActiveCells toolchain from the high-level code of this
component.

done via so called terminal ports that are defined in hardware component specifica-
tions. In this sense the task of the target specification is to provide the correspon-
dence between the terminal port signals and the respective FPGA pins, including
the direction of the signals, IO standards etc.

Similarly to hardware component specifications target devices are also specified using a
generic specification and therefore can be flexibly integrated into the ActiveCells hardware
libraries. An example of a target device based on Xilinx Spartan-6 FPGA is presented
in Appendix 5.C.

5.2.7 Model-based system design

In this paragraph we shortly comment on ActiveCells as a tool for model-based system
design.

95

The conventional approach to the design of digital systems assumes a separation in the
development process that is usually manifested by division of the development team into
a software and a hardware group, which work on respective software and hardware parts
of the system. While being somehow related to the strategy "divide and conquer" this
approach can introduce serious difficulties especially in the case of designing complex
systems. The mentioned separation can make the understanding of the whole system
more difficult, it can increase the complexity of verification, testing, documentation and
maintaining of the system design. This in turn introduces a risk to make the development
longer and to adversely impact the time-to-market for the corresponding product.

In contrast to the traditional approach model-based design [80] is built on the prin-
ciple of unification of the development processes. In this approach a model of the whole
system is the key. It plays a role of an executable specification that is continuously re-
fined throughout the development process. Significant advantages of model-based design
include the fact that it facilitates rapid design and it moves the verification process all
the way to the beginning of the design cycle. This helps to detect system specification
related errors, design errors, and implementation errors early.

In the context of embedded system design the model-based approach is supported by
the following means:

• common design environment used by all members of the development team

• ability to test and verify the whole system and its functionalities via system model
simulation

• automatic generation of software and hardware releases of the system

• unified way of documenting the system

The proposed concept of ActiveCells system development is actually in line with the
model-based approach. It does offer a unified design environment for hardware/software
co-design with consideration of a system as a whole entity. It does allow automatic
generation of the software and hardware parts of the system for deployment on a target.
Just recently we introduced (thanks to Dmytro Shulga at University Hospital of Basel)
a possibility to test and verify the correctness of a designed ActiveCells architecture
by software-supported simulation of the corresponding system model. The ActiveCells
systems documentation process is facilitated by the tools developed by Felix Friedrich at
ETH Zuerich that allow to document the projects directly in the code.

5.2.8 ActiveCells design flow

After description of the concepts and generic mechanisms used by ActiveCells we would
like to conclude with a general description of the design flow in ActiveCells. At the origin
of a design is a source code developed by a software engineer. This source code is first
processed by the compiler frontend that basically generates a high-level syntax tree, which
describes the architecture. After this the design flow can have three possible directions

96

(see the diagram presented on Fig. 5.5). The developer can first test the functionality
of the developed architecture using modeling facilities implemented in ActiveCells (green
boxes of the diagram). When, via an iterative process of trial-error-modification steps
the design reaches the state of being correct and fully verified at the model level, the
developer can initiate the process of hardware generation (the "red" path of the design
flow diagram). In this case the respective part of the ActiveCells toolchain processes
the previously generated syntax tree of the architecture and based on the available hard-
ware libraries generates an HDL description of the hardware. After that the produced
hardware description is used for implementation of real hardware. The duration of the
implementation process mainly depends on the complexity of the developed architecture
and on the performance of the PC and can span from minutes to hours. A successful
completion of the process results in a binary code that describes the hardware configura-
tion of the architecture on FPGA. In case if the architecture contains processing cores the
"blue" path of the design flow diagram is activated. An intermediate code corresponding
to the software part of the ActiveCells code is generated. The intermediate code is then
processed by the respective backend (depending on ISA, e.g. TRM, VTRM, ARM etc.)
that generates processor-specific binary instruction and data code. This code is then
used for patching the corresponding parts of the FPGA binary code. At this point the
architecture can be deployed to the target. This is a relatively quick process that usually
takes from few seconds to a dozen of seconds depending on the size of FPGA binary code
and on the speed of FPGA configuration interface.

When the developer needs to modify the software-related part of the architecture,
the deployment of the modified design does not require the "red" path of the design
flow diagram. In this case the already generated FPGA binary code can be reused.
This dramatically shortens the development time in ActiveCells and therefore implies a
substantially decreased time-to-market for a product under development.

The developer has the ability to document the ActiveCells design directly in the code
comments using a special markup language. By request of the developer the compiler
frontend will automatically generate an HTML (or possibly another format depending
on availability of documentation plugins) document based on the documentation code
extracted from the sources ("yellow" path of the design flow diagram).

5.2.9 FPGA Systems on Chip (SoC)

FPGA vendors now offer a new type of devices that integrate an ARM multi-core pro-
cessing system, with its respective peripherals and memory interfaces, together with
conventional FPGA logic tightly connected with the ARM processor via high-bandwidth
interfaces. This approach provides multiple benefits in terms of increased overall sys-
tem performance, increased level of integration, reduced cost and significantly reduced
power consumption. To take the advantage of this new technology for implementing
high performance signal and image processing systems we integrated into ActiveCells a
family of SoCs Zynq-7000 from Xilinx. This integration was facilitated by our flexible
component-based representation of processing systems. The Zynq ARM processor is sup-

97

Compiler
frontend

Runtime
libraries

Hardware
libraries

Model
libraries

Model
generation

Intermediate
code generation

Hardware
Description
generation

Compiler
backend

Hardware
implementation

Model
simulation

FPGA
binaries

Deployment

ActiveCells
source code

Documentation
generation

Compiler
frontend

Fig. 5.5: A diagram describing the design flow in ActiveCells

ported in ActiveCells hardware library in the same way as our custom TRM processor.
The communication of the processor with other components implemented directly in the
FPGA logic is performed using the same AXI4-Stream protocol. For that we had to
implement a lightweight converter of the more generic and more complex AXI4 memory
mapped interface [81] to AXI4-Stream, which is in fact a subset of the AXI4 standard.
The software-related part of ActiveCells development on Zynq devices is supported by
the ARM backend of the compiler, Minos operating system [82] and an ARM port of
AOS operating system [83].

5.2.10 Multi-FPGA system design

The problems of multidimensional medical signal processing with their large computa-
tional requirements might profit from a coarser grained parallelism offered by multi-FPGA
architectures. Due to genericity of the used communication interface ActiveCells in its
current state can be already used for designing multi-FPGA systems. An example for
that is in Listing 5.1, which was presented during the introduction of the ActiveCells pro-

98

gramming model. There the cell instance filter receives signal data from the output of
an instance ioStream of type SerialIoPort and sends filtered data to the corresponding
input of the same cell. SerialIoPort is implemented as a hardware component that
provides serial connectivity between the FPGA where the SimpleCellnet architecture is
deployed and any external device, e.g. another FPGA. Currently such development as-
sumes a manual distribution of the task performed by an architecture among the available
FPGA devices. Within our ongoing research projects we are working on an extension of
the ActiveCells programming model that would allow more flexible development of multi-
FPGA architectures with automated resource and task distribution.

5.3 High-performance computational kernel for multi-
dimensional reconstruction on FPGA

In Chapter 3 we proposed a highly efficient iterative tensor decomposition-based algo-
rithm for solving the problem of large multidimensional image reconstruction. At the
core of this algorithm is fast computation of the gradient of the underlying cost function.
The most computationally challenging part of this computation corresponds to the least-
squares term of the cost function. Previously we showed that in 3-D it can be computed
based on the following tensor decomposition:

Vx1y1z1 = Ux1y1z1 + (Ex1 · Ex) · (Gy1 · Gy) · (Hz1 · Hz) · Cxyz (5.1)

where E ,G,H ∈ Rn+1, C,U ,V ∈ Rn+1 × Rn+1 × Rn+1, n is degree of B-spline used for
representation of the signal to reconstruct. Let us consider how we could implement this
computational kernel of FPGA using ActiveCells.

First we rearrange the terms in equation (5.1) using the properties of commutativity
and associativity of the tensor product:

Vx1y1z1 = Ux1y1z1 +
(
Ex ·

(
Gy · (Hz · Cxyz)

))
·
(

(Ex1 · Gy1) · Hz1
)

(5.2)

where the term Ex·
(
Gy ·(Hz · Cxyz)

)
assumes a successive contraction along the dimensions

of tensor C and results in a scalar, while the term (Ex1 · Gy1) ·Hz1 is a pure tensor product.
In MathOberon language [63] the tensor expression (5.2) can be implemented as shown
in Listing 5.5. The proposed computation algorithm requires in total 2n3 + 8n2 + 12n+ 6
multiplications and 2n3 + 6n2 + 6n + 1 additions. It can be verified that this algorithm
offers the minimal possible amount of operations for computing the expression (5.2).
procedure TensorKernel(

const c, u: array [n+1,n+1,n+1] of real;
e, g, h: array [n+1] of real;
var v: array [n+1,n+1,n+1] of real
);

var
cxy: array [n+1,n+1] of real;
w: real;

begin

99

(∗ perform successive contraction ∗)
for x := 0 to n do

cxy[x ,..] := c[x ,..,..] ∗ h;
end;
w := (cxy ∗ g) +∗ e;

(∗ tensor product ∗)
v := u + ((w∗e) ∗∗ g) ∗∗ h;

end TensorKernel;

Listing 5.5: An example of a MathOberon-based implementation of the tensor computa-
tion described by equation (5.2)

The proposed algorithm was implemented in ActiveCells on Xilinx Kintex-7 chip
XC7K325T-1FFG676. The developed code together with some block-diagrams automat-
ically generated from it are presented in Appendix 5.D. The implemented design requires
about 60% of logic resources available on the particular FPGA device. The maximal
achievable speed of the designed architecture for cubic B-spline is 121 MHz. This corre-
sponds to the performance of about 36 GFLOPs.

5.4 B-spline-based non-uniform signal reconstruction
on FPGA

In Chapter 4 we presented an algorithm for the reconstruction of one-dimensional signals
from arbitrarily sampled measurements. We showed that the algorithm offers an excellent
computational performance when implemented on a multi-core CPU-based platform. We
implemented the proposed algorithm using ActiveCells and successfully used it for a real
life industrial application – medical OCT imaging.

On a low-end Xilinx Zynq XC7Z020-1 FPGA device we could deploy a design with
4 channels of the implemented component running at the clock frequency of 77 MHz.
The block size of processed data was 2048 samples. The achieved clock rate corresponds
to about 308 MSamples/s – approximately the maximal speed we achieved with our
multi-core CPU-based implementation presented in Chapter 4. Taking into account a
significantly lower power consumption of the particular configurable target device, we
see the advantage of using the FPGA technology. The fact that such a spline-based
component can be developed and tested using ActiveCells within a few days – significantly
amplifies this advantage.

100

5.A Non-blocking send in ActiveCells
The need for blocking send operation can be explained using an example code from
Listing 5.6. In this example
type
Cell = cell(dataInp: port in; dataOut: port out)
var

rawData: char; (∗ raw data received from dataInp ∗)
buf: array [256] of char; (∗ buffer with processed data sent to dataOut ∗)
inpPos, outPos: integer; (∗ buffer in/out pointers ∗)

loop
(∗ receive raw data, process it , and fill in processed data buffer ∗)
if (dataInp ?? rawData) then

buf[inpPos] := ProcessData(rawData);
inpPos := (inpPos+1) mod len(buf);

end;
(∗ send data to a slow communication interface (e.g. UART) ∗)
if (dataOut !! buf[outPos]) then outPos := (outPos+1) mod len(buf); end;
DoOtherTimeCriticalTasks;

end

Listing 5.6: An example code explaining the need for non-blocking send functionality in
ActiveCells

5.B ActiveCells hardware component specification

<component type="HdlComponent" name="SymFirFilter3" hdlModuleName="SymFirFilter3" isa="none">

<supported>
<element type="StringValue" value="XC7∗"/>

</supported>

<ports>
<element type="ClockHdlPort" name="aclk" mapped="systemClock" direction="in" width="1">
</element>

<element type="HdlPort" name="aresetn" mapped="systemReset" direction="in" width="1"
signalPolarity="false"/>

<element type="AXI4StreamPort" name="cfg" direction="in" width="32">
<tdata name="cfg_tdata" mapped="tdata" direction="in" width="32"/>
<tvalid name="cfg_tvalid" mapped ="tvalid" direction="in" width="1"/>
<tready name="cfg_tready" mapped ="tready" direction="out" width="1" />

</element>

<element type="AXI4StreamPort" name="x" direction="in" width="32">
<tdata name="x_tdata" mapped="tdata" direction="in" width="32"/>
<tvalid name="x_tvalid" mapped ="tvalid" direction="in" width="1"/>
<tready name="x_tready" mapped ="tready" direction="out" width="1" />

</element>

<element type="AXI4StreamPort" name="y" direction="out" width="32">
<tdata name="y_tdata" mapped="tdata" direction="out" width="32"/>
<tvalid name="y_tvalid" mapped ="tvalid" direction="out" width="1"/>
<tready name="y_tready" mapped ="tready" direction="in" width="1" />

</element>
</ports>

<parameters>

101

<element type="HdlParameter" name="h0">
<value type="RealValue" value="?{instance.capabilityParameters[’h0’].real:4/6}?"/>

</element>
<element type="HdlParameter" name="h1">

<value type="RealValue" value="?{instance.capabilityParameters[’h1’].real:1/6}?"/>
</element>

</parameters>

<dependencies>
<element type="HdlDependency" fileName="SymFirFilter3.v"/>

</dependencies>

</component>

Listing 5.7: An example of ActiveCells hardware component specification

5.C ActiveCells target device specification

<device type="TargetDevice" name="AVSP6LX75T">
<pldPart type="PldPart" vendor="Xilinx" family="Spartan6" device="XC6SLX75T"

package="FGG676" speedGrade="−3"/>
<systemClock type="DerivedClock" name="systemClock" mulRatio="6" divRatio="12">

<inputClock type="ExternalClock" name="systemClockSrc" frequency="100000000" dutyCycle="50">
<inputPort type="TerminalHdlPort" name="systemClockSrc" direction="in" width="1">

<pins>
<element name="systemClockSrc" loc="T3"/>

</pins>
</inputPort>

</inputClock>
</systemClock>
<systemReset type="TerminalHdlPort" name="systemResetSrc" signalPolarity="TRUE"

direction="in" width="1">
<pins>

<element name="systemResetSrc" loc="AA23" ioStandard="LVCMOS25" pullUp="FALSE"
pullDown="FALSE"/>

</pins>
</systemReset>
<terminalPorts>

<element type="TerminalHdlPort" name="UartTxd0" direction="out" width="1">
<pins>

<element name="UartTxd0" loc="N20" ioStandard="LVCMOS25" pullUp="FALSE"
pullDown="FALSE"/>

</pins>
</element>
<element type="TerminalHdlPort" name="UartRxd0" direction="in" width="1">

<pins>
<element name="UartRxd0" loc="N19" ioStandard="LVCMOS25" pullUp="FALSE"

pullDown="FALSE"/>
</pins>

</element>
</terminalPorts>

</device>

Listing 5.8: An example of ActiveCells target device specification

5.D ActiveCells implementation of a computational ker-
nel used in B-spline based multidimensional signal
reconstruction

102

cellnet NusiFpga;

import
Engines;

const
n = 1; (∗ B−spline degree ∗)
Dim1d = n + 1;

type
MulType = Engines.MulFlt32;
AddType = Engines.AddFlt32;

(∗ Tensor product of two 1−D tensors ∗)
TensorProduct2d = cellnet(

x: array Dim1d of port in;
y: array Dim1d of port in;
xy: array Dim1d of array Dim1d of port out
);

var
mul: array Dim1d of array Dim1d of MulType;
i , j : longint ;

begin
for i := 0 to len(mul,0)−1 do

for j := 0 to len(mul,1)−1 do
new(mul[i,j]);
delegate(x[i],mul[i , j]. input [0]);
delegate(y[j],mul[i , j]. input [1]);
delegate(xy[i,j], mul[i , j]. output);

end;
end;

end TensorProduct2d;

(∗ Tensor product of three 1−D tensors ∗)
TensorProduct3d = cellnet(

x: array Dim1d of port in;
y: array Dim1d of port in;
z: array Dim1d of port in;
xyz: array Dim1d of array Dim1d of array Dim1d of port out
);

var
tprod2d: TensorProduct2d;
mul: array Dim1d of array Dim1d of array Dim1d of MulType;
i , j , k: longint ;

begin
new(tprod2d);
for i := 0 to len(x,0)−1 do delegate(x[i],tprod2d.x[i]); end;
for i := 0 to len(y,0)−1 do delegate(y[i],tprod2d.y[i]); end;

for i := 0 to len(mul,0)−1 do
for j := 0 to len(mul,0)−1 do

for k := 0 to len(mul,0)−1 do
new(mul[i,j,k]);
connect(tprod2d.xy[i,j],mul[i , j ,k]. input [0],0);
delegate(z[k],mul[i , j ,k]. input [1]);
delegate(xyz[i,j ,k],mul[i , j ,k]. output);

end;
end;

end;
end TensorProduct3d;

(∗ Summation of elements of a 1−D tensor ∗)
Sum1d = cellnet(x: array Dim1d of port in; y: port out);
var

add: array Dim1d−1 of AddType;

103

i : longint ;
begin

for i := 0 to len(add,0)−1 do
new(add[i]);
delegate(x[i+1],add[i]. input [1]);

end;
delegate(x[0],add[0].input [0]);
for i := 0 to len(add,0)−2 do

connect(add[i].output,add[i+1].input [0],0);
end;
delegate(y,add[len(add,0)−1].output);

end Sum1d;

Contract3d1d = cellnet(
x: array Dim1d of array Dim1d of array Dim1d of port in;
y: array Dim1d of port in;
z: array Dim1d of array Dim1d of port out
);

var
mul: array Dim1d of array Dim1d of array Dim1d of MulType;
i , j , k: longint ;
sum1d: array Dim1d of array Dim1d of Sum1d;

begin

for i := 0 to len(mul,0)−1 do
for j := 0 to len(mul,1)−1 do

for k := 0 to len(mul,2)−1 do
new(mul[i,j,k]);
delegate(x[i,j ,k],mul[i , j ,k]. input [0]);
delegate(y[k],mul[i, j ,k]. input [1]);

end;
end;

end;

for i := 0 to len(sum1d,0)−1 do
for j := 0 to len(sum1d,1)−1 do

new(sum1d[i,j]);
for k := 0 to len(mul,2)−1 do

connect(mul[i,j,k].output,sum1d[i,j]. x[k],0);
end;
delegate(z[i, j], sum1d[i,j]. y);

end;
end;

end Contract3d1d;

Contract2d1d = cellnet(
x: array Dim1d of array Dim1d of port in;
y: array Dim1d of port in;
z: array Dim1d of port out
);

var
mul: array Dim1d of array Dim1d of MulType;
i , j , k: longint ;
yy: array Dim1d of Engines.Fifo;
sum1d: array Dim1d of Sum1d;

begin

for i := 0 to len(yy,0)−1 do
new(yy[i]{Length=0}); delegate(y[i],yy[i].input);

end;

for i := 0 to len(mul,0)−1 do
for j := 0 to len(mul,1)−1 do

new(mul[i,j]);
delegate(x[i,j], mul[i , j]. input [0]);

104

connect(yy[j].output,mul[i,j]. input [1],0);
end;

end;

for i := 0 to len(sum1d,0)−1 do
new(sum1d[i]);
for j := 0 to len(mul,1)−1 do

connect(mul[i,j].output,sum1d[i].x[j],0);
end;
delegate(z[i], sum1d[i].y);

end;

end Contract2d1d;

InnerProd1d = cellnet(
x: array Dim1d of port in;
y: array Dim1d of port in;
z: port out
);

var
i : longint ;
mul: array Dim1d of MulType;
sum1d: Sum1d;

begin
new(sum1d);
for i := 0 to len(mul,0)−1 do

new(mul[i]);
delegate(x[i],mul[i]. input [0]);
delegate(y[i],mul[i]. input [1]);
connect(mul[i].output,sum1d.x[i],0);

end;

delegate(z,sum1d.y);
end InnerProd1d;

(∗ Contraction of a 3−D tensor with three 1−D tensors ∗)
NusiLsContract3d = cellnet(

x: array Dim1d of array Dim1d of array Dim1d of port in;
u, v, w: array Dim1d of port in;
s : port out
);

var
contract3d1d: Contract3d1d;
contract2d1d: Contract2d1d;
innerProd1d: InnerProd1d;
i , j , k: longint ;

begin
new(contract3d1d);
new(contract2d1d);
new(innerProd1d);

for k := 0 to len(w,0)−1 do delegate(w[k],contract3d1d.y[k]); end;
for k := 0 to len(v,0)−1 do delegate(v[k],contract2d1d.y[k]); end;
for k := 0 to len(u,0)−1 do delegate(u[k],innerProd1d.y[k]); end;

for i := 0 to len(x,0)−1 do
for j := 0 to len(x,1)−1 do

for k := 0 to len(x,2)−1 do
delegate(x[i,j ,k], contract3d1d.x[i , j ,k]);

end;
connect(contract3d1d.z[i,j], contract2d1d.x[i , j],0);

end;
connect(contract2d1d.z[i],innerProd1d.x[i],0);

end;

105

delegate(s,innerProd1d.z);
end NusiLsContract3d;

(∗ Full tensor computational kernel used for computing LS part of the gradient
in tensor B−spline−based signal reconstruction algorithm

∗)
NusiLsKernel3d = cellnet(

x: array Dim1d of array Dim1d of array Dim1d of port in;
u, v, w: array Dim1d of port in;
y0: array Dim1d of array Dim1d of array Dim1d of port in;
y: array Dim1d of array Dim1d of array Dim1d of port out
);

var
i , j , k: longint ;
nusiLsContract3d: NusiLsContract3d;
tensorProduct3d: TensorProduct3d;
mul: array Dim1d of MulType;
add: array Dim1d of array Dim1d of array Dim1d of AddType;

begin
new(nusiLsContract3d);
new(tensorProduct3d);

for k := 0 to len(u,0)−1 do
delegate(u[k],nusiLsContract3d.u[k]);
delegate(v[k],nusiLsContract3d.v[k]);
delegate(w[k],nusiLsContract3d.w[k]);

end;

for i := 0 to len(x,0)−1 do
for j := 0 to len(x,1)−1 do

for k := 0 to len(x,2)−1 do
delegate(x[i,j ,k], nusiLsContract3d.x[i, j ,k]);

end;
end;

end;

(∗ scale one of the vectors with the contraction result ∗)
for k := 0 to len(u,0)−1 do

new(mul[k]);
connect(nusiLsContract3d.s,mul[k].input[0],0);
delegate(u[k],mul[k].input [1]);

end;

(∗ compute the tensor product ∗)
for k := 0 to len(u,0)−1 do connect(mul[k].output,tensorProduct3d.x[k],0); end;
for k := 0 to len(v,0)−1 do delegate(v[k],tensorProduct3d.y[k]); end;
for k := 0 to len(w,0)−1 do delegate(w[k],tensorProduct3d.z[k]); end;

(∗ increment ∗)
for i := 0 to len(y,0)−1 do

for j := 0 to len(y,1)−1 do
for k := 0 to len(y,2)−1 do

new(add[i,j,k]);
delegate(y0[i,j ,k], add[i , j ,k]. input [0]);
connect(tensorProduct3d.xyz[i,j,k],add[i , j ,k]. input [1],0);
delegate(y[i,j ,k], add[i , j ,k]. output);

end
end

end;
end NusiLsKernel3d;

end NusiFpga.

106

Fig. 5.6: A block diagram of Contract3d1d cellnet that corresponds to the product Hz ·
Cxyz from the equation (5.2) for B-spline degree n = 1

5.5 Discussion
We introduced a high-level framework for the design of high-performance streaming signal
processing systems on FPGA. The proposed approach allows to build complete industrial
quality FPGA hardware/software systems in a short time and is easily comprehensible to
software and signal processing engineers who are not experts in the field of FPGA design.
The proposed approach combines the flexibility of multi-processor systems and high per-
formance of dedicated application specific circuits. These features make it particularly
well suitable for solving the signal reconstruction problem considered in this work. We
showed how the developed framework can be efficiently used for implementation of our
tensor- and spline-based algorithms.

107

Fig. 5.7: A block diagram of TensorProduct3d cellnet that implements tensor product of
three one-dimensional tensors

108

F
ig
.5

.8
:
A

bl
oc
k
di
ag

ra
m

of
th
e
w
ho

le
co
m
pu

ta
ti
on

al
ke
rn
el

im
pl
em

en
ti
ng

th
e
eq
ua

ti
on

(5
.2
)

109

Chapter 6

Summary

In this work we performed a detailed structural analysis of the computational problem
of spline-based variational signal reconstruction. In the first part of the work we intro-
duced a tensor-based abstraction that allowed us to formulate the considered problem
in multiple dimensions with preservation of the underlying multidimensional computa-
tional structure. This differentiating feature of the proposed abstraction facilitated the
development of a computationally efficient iterative algorithm for the reconstruction of
large multidimensional images from arbitrarily sampled data. The derived algorithm
was successfully applied to a real-life medical imaging problem: reconstruction of 4-D
(3-D+time) echocardiographic signal from a very large set of non-uniform measurements.

Then we considered another approach to the signal reconstruction problem that is
based on a non-iterative computation of variational spline solutions via inverse recur-
sive filtering. As a result we derived highly-efficient algorithms for computing the inverse
smoothing spline filters and the corresponding solutions for an arbitrary spline order with
the possibility to optimize the solution using a statistical optimality measure that is based
on generalized cross-validation. We introduced an extension of the classical smoothing
spline regularization that allows to compute smoothing spline filters with improved noise
discrimination characteristics. We extended our results obtained for uniform smoothing
splines and derived high performance algorithms for one-dimensional non-uniform signal
reconstruction. We successfully applied the proposed algorithms to the problem of medi-
cal Optical Coherence Tomography. Finally, we introduced an extension of the proposed
algorithms to the case of multidimensional signal reconstruction. We did not study the
proposed multidimensional extension in full detail and left this problem for consideration
in our future research.

In the last part of this work we introduced a high-level approach to design of high-
performance data processing systems on FPGA. The proposed approach combines the
flexibility of multi-processor systems and the high performance of dedicated application
specific circuits. It is easily comprehensible to software and signal processing engineers
who are not FPGA experts and, therefore, opens the door to innovative high-level embed-
ded system designs. We showed that the presented framework is particularly well-suitable
for solving the signal reconstruction problem considered in this work.

110

Bibliography

[1] C. De Boor, A practical guide to splines. New York: Springer, 1978.

[2] A. Aldroubi and K. Gröchenig, “Nonuniform sampling and reconstruction in
shift-invariant spaces,” SIAM Rev., vol. 43, no. 4, pp. 585–620, Apr. 2001. [Online].
Available: http://dx.doi.org/10.1137/S0036144501386986

[3] M. Unser and T. Blu, “Generalized smoothing splines and the optimal discretization
of the Wiener filter,” IEEE Transactions on Signal Processing, vol. 53, no. 6, pp.
2146–2159, June 2005.

[4] M. Arigovindan, M. Suehling, P. Hunziker, and M. Unser, “Variational Image Recon-
struction from Arbitrarily Spaced Samples: A Fast Multiresolution Spline Solution,”
IEEE Transactions on Image Processing, vol. 14, no. 4, pp. 450–460, 2005.

[5] M. Unser, “Splines: A perfect fit for signal and image processing,” IEEE Signal Pro-
cessing Magazine, vol. 16, no. 6, pp. 22–38, November 1999, iEEE Signal Processing
Society’s 2000 magazine award.

[6] M. Unser, A. Aldroubi, and M. Eden, “B-Spline signal processing: Part I—Theory,”
IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821–833, February
1993, IEEE Signal Processing Society’s 1995 best paper award. [Online]. Available:
http://bigwww.epfl.ch/publications/unser9301.html

[7] ——, “B-Spline signal processing: Part II—Efficient design and applications,” IEEE
Transactions on Signal Processing, vol. 41, no. 2, pp. 834–848, February 1993.
[Online]. Available: http://bigwww.epfl.ch/publications/unser9302.html

[8] L. Elden, “Multi-linear mappings, SVD, HOSVD, and the numerical solution of ill-
conditioned tensor least squares problems,” in Workshop on Tensor Decompositions
and Applications TDA05, 2005.

[9] V. Pereyra and G. Scherer, “Efficient Computer Manipulation of Tensor Products
with Applications to Multidimensional Approximation,” Mathematics of Computa-
tion, vol. 27, no. 123, pp. 595–605, 1973.

[10] G. Baumgartner, E. Auer, D. E. Bernholdt, A. Bibireata, D. Cociorva, X. Gao,
S. Krishnan, R. J. Harrison, C. chung Lam, Q. Lu, and M. Nooijen, “Synthesis of

111

http://dx.doi.org/10.1137/S0036144501386986
http://bigwww.epfl.ch/publications/unser9301.html
http://bigwww.epfl.ch/publications/unser9302.html

High-Performance Parallel Programs for a Class of Ab Initio Quantum Chemistry
Models,” in Proceedings of the IEEE, 2005, pp. 276–292.

[11] R. E. Lynch, J. R. Rice, and D. H. Thomas, “Tensor product analysis of partial
difference equations,” Bull. Amer. Math. Soc., vol. 70, 3, pp. 378–384, 1964.

[12] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,” SIAM
Review, vol. 51, no. 3, September 2009.

[13] D. Muti and S. Bourennane, “Multidimensional signal processing using lower-rank
tensor approximation,” Acoustics, Speech, and Signal Processing, 2003. Proceedings.
(ICASSP ’03). 2003 IEEE International Conference on, vol. 3, pp. III–457–60 vol.3,
April 2003.

[14] P. Comon, “Tensor decompositions, state of the art and applications,” IMA Confer-
ence Mathematics in Signal Processing, Warwick, UK, 2000.

[15] W. Hongcheng and N. Ahuja, “Compact representation of multidimensional data
using tensor rank-one decomposition,” Pattern Recognition, 2004. ICPR 2004. Pro-
ceedings of the 17th International Conference on, vol. 1, pp. 44–47 Vol.1, Aug. 2004.

[16] C. M. Martin. (2004) Tensor Decompositions Workshop Discussion Notes.

[17] O. Morozov and P. Hunziker, “Solving tensor structured problems with computa-
tional tensor algebra,” CoRR, vol. abs/1001.5460, 2010.

[18] R. E. Blahut, Fast Algorithms for Digital Signal Processing. Addison-Wesley, Jan-
uary 1985.

[19] B. Guoan and Z. Yonghong, Transforms and fast algorithms for signal analysis and
representations. Boston : Birkhauser, 2004.

[20] A. Aldroubi and M. Unser, Wavelets in Medicine and Biology. Boca Raton FL,
USA: CRC Press, 1996, 616 p.

[21] L. Zeng, C. Jansen, S. Marsch, M. Unser, and P. Hunziker, “Four-dimensional wavelet
compression of arbitrarily sized echocardiographic data,” IEEE Transactions on
Medical Imaging, vol. 21, no. 9, pp. 1179–1187, September 2002.

[22] J. H. Heinbockel, Introduction to tensor calculus and continuum mechanics. Trafford
Publishing, Norfolk, Virginia, 2001.

[23] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psychome-
trika, vol. 31, pp. 279–311, 1966.

[24] D. Leibovici and R. Sabatier, “A Singular Value Decomposition of a k-Way Array
for a Principal Component Analysis of Multiway Data, PTA-k,” Linear Algebra and
its Applications, vol. 269, pp. 307–329, 1998.

112

[25] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A Multilinear Singular Value
Decomposition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp. 1253–1278, 2000.

[26] R. A. Harshman, “Foundations of the PARAFAC procedure: Model and conditions
for an ÂńexplanatoryÂż multi-mode factor analysis,” UCLA Working Papers in pho-
netics, vol. 16, pp. pp. 1–84, 1970.

[27] E. Acar and B. Yener, “Unsupervised Multiway Data analysis: A Literature Survey,”
IEEE Trans. on Knowl. and Data Eng., vol. 21, no. 1, pp. 6–20, 2009.

[28] A. Einstein, “The Foundation of the General Theory of Relativity,” in The Collected
Papers of Albert Einstein. Princeton University Press, 1997, vol. 6, pp. 146—200.

[29] R. Smilde, A. Bro and P. Geladi, Multi-Way Analysis: Applications in the Chemical
Sciences. Wiley, West Sussex, England, 2004.

[30] O. V. Morozov, M. Unser, and P. R. Hunziker, “Reconstruction of large, irregu-
larly sampled multidimensional images. a tensor-based approach,” IEEE Trans. Med.
Imaging, vol. 30, no. 2, pp. 366–374, 2011.

[31] L. D. Lathauwer and B. D. Moor, “From Matrix to Tensor : Multilinear Algebra
and Signal Processing,” Mathematics in Signal Processing IV, McWhirter J., ed.,
pp. 1–15, 1998, selected papers presented at 4th IMA Int. Conf. on Mathematics in
Signal Processing.

[32] G. Wahba, Spline models for observational data. Society for Industrial and Applied
Mathematics, 1990.

[33] M. D. Buhmann, Radial basis functions : theory and implementations. Cambridge
University Press, 2003.

[34] J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, ser.
Lecture Notes in Mathematics. Springer Berlin / Heidelberg, 1977, vol. 571.

[35] F. L. Bookstein, “Principal warps: thin-plate splines and the decomposition of de-
formations,” vol. 11, no. 6, pp. 567–585, Jun. 1989.

[36] R. K. Beatson, J. B. Cherrie, and D. L. Ragozin, “Fast evaluation of radial basis
functions: Methods for four-dimensional polyharmonic splines,” SIAM Journal on
Mathematical Analysis, vol. 32, no. 6, pp. 1272–1310, 2001.

[37] D. Achlioptas, F. Mcsherry, and B. Schoelkopf, “Sampling Techniques for Kernel
Methods,” pp. 335–342, 2001.

[38] H. Zhang and M. Genton. (2008) Compactly supported Radial Basis Function Ker-
nels. CiteSeerX.

113

[39] E. Larsson and B. Fornberg, “Theoretical and computational aspects of multivariate
interpolation with increasingly flat radial basis functions,” Comput. Math. Appl,
vol. 49, pp. 103–130, 2003.

[40] R. K. Beatson, W. A. Light, and S. Billings, “Fast solution of the radial basis function
interpolation equations: Domain decomposition methods,” SIAM J. Sci. Comput.,
vol. 22, no. 5, pp. 1717–1740, 2000.

[41] M. Bertram, J. C. Barnes, B. Hamann, K. I. Joy, H. Pottmann, and D. Wushour,
“Piecewise optimal triangulation for the approximation of scattered data in the
plane,” Comput. Aided Geom. Des., vol. 17, no. 8, pp. 767–787, 2000.

[42] Y. Jang, R. P. Botchen, A. Lauser, D. S. Ebert, K. P. Gaither, and T. Ertl, “En-
hancing the interactive visualization of procedurally encoded multifield data with
ellipsoidal basis functions.” Comput. Graph. Forum, vol. 25, no. 3, pp. 587–596,
2006.

[43] D. Juba and A. Varshney, “Modelling and rendering large volume data with gaussian
radial basis functions,” Tech. Rep., University of Maryland, 2007.

[44] M. Arigovindan, M. Sühling, P. Hunziker, and M. Unser, “Multigrid image recon-
struction from arbitrarily spaced samples,” in Proceedings of the 2002 IEEE Inter-
national Conference on Image Processing (ICIP’02), vol. III, Rochester NY, USA,
September 22-25, 2002, pp. 381–384.

[45] E. Vucini, T. Moeller, and M. E. Groeller, “Efficient reconstruction from non-uniform
point sets,” The Visual Computer, 2008.

[46] E. Vuçini, T. Möller, and M. E. Gröller, “On visualization and reconstruction from
non-uniform point sets using b-splines,” Computer Graphics Forum, vol. 28, no. 3,
pp. 1007–1014, Jun. 2009, 2nd Best Paper Award.

[47] F. Friedrich and J. Gutknecht, “Array-Structured Object Types for Mathematical
Programming,” Lecture Notes in Computer Science, vol. 4228, pp. pp. 195–210, 2006.

[48] M. Siebenthal, G. Szekely, U. Gamper, P. Boesiger, A. Lomax, and P. Cattin, “4D
MR imaging of respiratory organ motion and its variability,” Physics in Medicine
and Biology, vol. 52, pp. 1547–64, 2007.

[49] K. Djoa and N. de Jong, “A fast rotating scanning unit for real-time three-
dimensional echo data acquisition,” Ultrasound Med Biol, vol. 26(5), pp. pp. 863–9,
2000.

[50] M. Voormolen and B. Krenning, “A New Transducer for 3d Harmonic imaging,”
Proceedings of the IEEE Ultrasonics Symposium, pp. pp. 1261–1264, 2002.

[51] Y. Saad and H. A. van der Vorst, “Iterative solution of linear systems in the 20th
century,” J. Comput. Appl. Math., vol. 123, no. 1-2, pp. 1–33, 2000.

114

[52] I. J. Schoenberg, “Spline functions and the problem of graduation,” Proc. Nat. Acad.
Sci., vol. 52, pp. 947–950, 1964.

[53] C. REINSCH, “Smoothing by spline functions.” Numerische Mathematik, vol. 10,
pp. 177–183, 1967. [Online]. Available: http://eudml.org/doc/131782

[54] M. F. Hutchinson and F. R. de Hoog, “Smoothing noisy data with spline functions,”
Journal of Numerical Mathematics, vol. 47, no. 1, pp. 99–106, Aug. 1985.

[55] F. MacWilliams, “An iterative method for the direct hurwitz-factorization of a poly-
nomial,” Circuit Theory, IRE Transactions on, vol. 5, no. 4, pp. 347 – 352, 1958.

[56] G. Wilson, “Factorization of the covariance generating function of a pure moving
average process,” SIAM Journal on Numerical Analysis, vol. 6, no. 1, pp. 1–7, 1969.
[Online]. Available: http://epubs.siam.org/doi/abs/10.1137/0706001

[57] F. L. Bauer, “Ein direktes Iterationsverfahren zur Hurwitz-Zerlegung eines Poly-
noms,” Arch. Elek. Übertr., vol. 9, pp. 285–290, 1955.

[58] S. Fomel, P. Sava, J. Rickett, and J. F. Claerbout, “The wilson-burg method
of spectral factorization with application to helical filtering,” Geophysical
Prospecting, vol. 51, no. 5, pp. 409–420, 2003. [Online]. Available: http:
//dx.doi.org/10.1046/j.1365-2478.2003.00382.x

[59] K. Sidek, F. Sufi, I. Khalil, and D. Al-Shammary, “An efficient method of biomet-
ric matching using interpolated ecg data,” in Biomedical Engineering and Sciences
(IECBES), 2010 IEEE EMBS Conference on, Nov 2010, pp. 330–335.

[60] P. Craven and G. Wahba, “Smoothing noisy data with spline functions,”
Numerische Mathematik, vol. 31, no. 4, pp. 377–403, 1978. [Online]. Available:
http://dx.doi.org/10.1007/BF01404567

[61] R. E. O. Dursun Aydin, Memmedaga Memmedli, “Smoothing parameter selection
for nonparametric regression using smoothing spline,” EUROPEAN JOURNAL OF
PURE AND APPLIED MATHEMATICS, vol. 6, pp. 222–238, 2013.

[62] H. L. Weinert, Fast Compact Algorithms and Software for Spline Smoothing,
ser. Springer Briefs in Computer Science. Springer, 2013. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4614-5496-0

[63] F. Friedrich, J. Gutknecht, O. Morozov, and P. Hunziker, “Mathematical program-
ming language extension for mathematical programming language extension for mul-
tilinear algebra,” Proc. Kolloqium über Programmiersprachen und Grundlagen der
Programmierung, 2007.

[64] J. Dongarra, “Basic Linear Algebra Subprograms Technical Forum Standard,” In-
ternational Journal of High Performance Applications and Supercomputing, vol. 16,
no. 1, pp. 1–111, 2002.

115

http://eudml.org/doc/131782
http://epubs.siam.org/doi/abs/10.1137/0706001
http://dx.doi.org/10.1046/j.1365-2478.2003.00382.x
http://dx.doi.org/10.1046/j.1365-2478.2003.00382.x
http://dx.doi.org/10.1007/BF01404567
http://dx.doi.org/10.1007/978-1-4614-5496-0

[65] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, “Algorithm 887:
CHOLMOD, supernodal sparse Cholesky factorization and update/downdate,”
ACM Transactions on Mathematical Software, vol. 35, no. 3, pp. 22:1–22:14, Oct.
2008. [Online]. Available: http://doi.acm.org/10.1145/1391989.1391995

[66] N. I. M. Gould, J. A. Scott, and Y. Hu, “A numerical evaluation of sparse
direct solvers for the solution of large sparse symmetric linear systems of
equations,” ACM Trans. Math. Softw., vol. 33, no. 2, Jun. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1236463.1236465

[67] J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical
coherence tomography: An emerging technology for biomedical imaging and
optical biopsy,” Neoplasia, vol. 2, no. 1–2, pp. 9 – 25, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1476558600800172

[68] A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart,
“Optical coherence tomography: a review of clinical development from bench to
bedside,” Journal of Biomedical Optics, vol. 12, no. 5, pp. 051 403–051 403–21, 2007.
[Online]. Available: http://dx.doi.org/10.1117/1.2793736

[69] H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon,
“Intracoronary optical coherence tomography: A comprehensive review: Clinical
and research applications,” JACC: Cardiovascular Interventions, vol. 2, no. 11,
pp. 1035 – 1046, 2009. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1936879809005925

[70] S. Vergnole, D. Lévesque, and G. Lamouche, “Experimental validation of an
optimized signal processing method to handle non-linearity in swept-source optical
coherence tomography,” vol. 18, no. 10, pp. 10 446–10 461+, 2010. [Online].
Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-18-10-10446

[71] J. A. Fessler and B. P. Sutton, “Nonuniform fast fourier transforms using min-max
interpolation.” IEEE Transactions on Signal Processing, vol. 51, no. 2, pp. 560–574,
2003. [Online]. Available: http://dblp.uni-trier.de/db/journals/tsp/tsp51.html#
FesslerS03

[72] T. S. Chan KK, “Selection of convolution kernel in non-uniform fast fourier transform
for fourier domain optical coherence tomography,” Opt Express, 2011.

[73] J. Izatt and M. Choma, “Theory of optical coherence tomography,” in
Optical Coherence Tomography, ser. Biological and Medical Physics, Biomedical
Engineering, W. Drexler and J. Fujimoto, Eds. Springer Berlin Heidelberg, 2008,
pp. 47–72. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-77550-8_2

[74] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Pro-
ceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005, special issue on “Program
Generation, Optimization, and Platform Adaptation”.

116

http://doi.acm.org/10.1145/1391989.1391995
http://doi.acm.org/10.1145/1236463.1236465
http://www.sciencedirect.com/science/article/pii/S1476558600800172
http://dx.doi.org/10.1117/1.2793736
http://www.sciencedirect.com/science/article/pii/S1936879809005925
http://www.sciencedirect.com/science/article/pii/S1936879809005925
http://www.opticsexpress.org/abstract.cfm?URI=oe-18-10-10446
http://dblp.uni-trier.de/db/journals/tsp/tsp51.html#FesslerS03
http://dblp.uni-trier.de/db/journals/tsp/tsp51.html#FesslerS03
http://dx.doi.org/10.1007/978-3-540-77550-8_2

[75] L. Liu and O. Morozov, “A process-oriented streaming system design paradigm
for fpgas.” in ReConFig, V. K. Prasanna, J. Becker, and R. Cumplido,
Eds. IEEE Computer Society, 2010, pp. 370–375. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/reconfig/reconfig2010.html#LiuM10

[76] L. Liu, O. Morozov, Y. Han, J. Gutknecht, and P. R. Hunziker, “Automatic soc design
flow on many-core processors: a software hardware co-design approach for fpgas.”
in FPGA, J. Wawrzynek and K. Compton, Eds. ACM, 2011, pp. 37–40. [Online].
Available: http://dblp.uni-trier.de/db/conf/fpga/fpga2011.html#LiuMHGH11

[77] N. Wirth, “The tiny register machine (trm),” 2009. [Online]. Available:
http://e-collection.library.ethz.ch/eserv/eth:4969/eth-4969-01.pdf

[78] F. Friedrich, L. Liu, and J. Gutknecht, “Active cells: A computing model for
rapid construction of on-chip multi-core systems.” in ACIS-ICIS, H. Miao, R. Y.
Lee, H. Zeng, and J. Baik, Eds. IEEE, 2012, pp. 463–469. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ACISicis/ACISicis2012.html#FriedrichLG12

[79] ARM, “Amba 4 axi4-stream protocol, specification version 1.0,” 2010.

[80] S. Sharma and W. Chen, “Using model-based design to accelerate fpga development
for automotive applications,” SAE Int. J. Passeng. Cars - Electron. Electr. Syst.,
pp. 150–158, 2009.

[81] ARM, “Arm amba axi protocol v2.0 specification.”

[82] T. Kaegi-Trachsel and J. Gutknecht, “Minos - the design and implementation
of an embedded real-time operating system with a perspective of fault
tolerance.” in IMCSIT. IEEE, 2008, pp. 649–656. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/imcsit/imcsit2008.html#Kaegi-TrachselG08

[83] P. Muller, “The active object system design and multiprocessor implementation,”
Ph.D. dissertation, ETHZ, 2002. [Online]. Available: http://e-collection.library.
ethz.ch/eserv/eth:26082/eth-26082-02.pdf

117

http://dblp.uni-trier.de/db/conf/reconfig/reconfig2010.html#LiuM10
http://dblp.uni-trier.de/db/conf/reconfig/reconfig2010.html#LiuM10
http://dblp.uni-trier.de/db/conf/fpga/fpga2011.html#LiuMHGH11
http://e-collection.library.ethz.ch/eserv/eth:4969/eth-4969-01.pdf
http://dblp.uni-trier.de/db/conf/ACISicis/ACISicis2012.html#FriedrichLG12
http://dblp.uni-trier.de/db/conf/imcsit/imcsit2008.html#Kaegi-TrachselG08
http://dblp.uni-trier.de/db/conf/imcsit/imcsit2008.html#Kaegi-TrachselG08
http://e-collection.library.ethz.ch/eserv/eth:26082/eth-26082-02.pdf
http://e-collection.library.ethz.ch/eserv/eth:26082/eth-26082-02.pdf

	Contents
	Introduction
	Spline-based variational signal reconstruction
	Main contributions of the thesis

	Tensor abstractions for structure analysis of multidimensional problems
	Tensors
	Tensor notation

	Tensor operations
	Outer product
	Contraction
	Generalized tensor product
	Addition, subtraction and multiplication by a scalar
	Identity transformation - Kronecker delta
	Inner product
	Tensor transposition
	Tensor equations and tensor inverse

	Differentiation in respect to tensor components
	Differentiation of tensor bilinear forms

	Automatic tensor expression analysis for high-performance implementations
	Application of the framework to large real-world problems
	Discussion
	Dual vectors spaces, contravariant and covariant mechanisms of transformation
	Generalized definition of a tensor

	A tensor-based computational approach to large-scale iterative multidimensional signal reconstruction
	Introduction to the problem of multidimensional non-uniform signal reconstruction
	Formulation of the problem
	Tensor structure of the problem
	Iterative solution
	Krylov methods and Conjugate Gradient (CG) iteration
	Multiscale initialization of the iterative solver

	Evaluation of the solving algorithm
	Evaluation in 3-D
	Evaluation in 4-D

	Application to medical imaging
	Discussion
	Tensor Conjugate Gradient Solver
	Visualization of 3-D images reconstructed during the evaluation of the proposed solving algorithm

	Inverse spline filtering approach to signal reconstruction
	1-D uniform smoothing spline filters
	Inverse smoothing spline filter
	Regularization and the choice of the tradeoff factor
	Regularization with multiple derivatives
	Up-sampling by an integer factor
	Resampling by a rational factor

	1-D non-uniform smoothing spline filters
	Solving algorithms
	Square-root free decomposition algorithm
	Software implementation and performance evaluation

	Application to medical Optical Coherence Tomography (OCT)
	Uniform smoothing spline filters in higher dimensions
	2-D case
	The case of higher dimensions

	Non-uniform smoothing spline filters in higher dimensions
	Discussion

	High-level FPGA-based system design for high-performance signal reconstruction
	FPGA computing technology
	Conventional FPGA development approaches

	ActiveCells: a high-level hardware/software co-design on FPGA
	Multi-processor streaming system design
	A hybrid system design
	ActiveCells programming model
	Communication protocol
	ActiveCells hardware components: Engines
	ActiveCells target device specification
	Model-based system design
	ActiveCells design flow
	FPGA Systems on Chip (SoC)
	Multi-FPGA system design

	High-performance computational kernel for multidimensional reconstruction on FPGA
	B-spline-based non-uniform signal reconstruction on FPGA
	Non-blocking send in ActiveCells
	ActiveCells hardware component specification
	ActiveCells target device specification
	ActiveCells implementation of a computational kernel used in B-spline based multidimensional signal reconstruction
	Discussion

	Summary

