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Abstract

Neutrinos play a central role in modern physics and astrophysics. Their extremely weak
interaction rate with baryons and other leptons makes their detection on the Earth dif-
ficult and challenging. At the same time, it implies that the emission and the absorption
of neutrinos are the dominant radiative processes in hot and dense astrophysical envi-
ronment (such as core-collapse supernovae and the merger of binary compact objects),
where photons are completely trapped and diffuse out on much longer timescales. The
implementation of neutrino-transport schemes in hydrodynamics simulations is a subtle
problem, especially in multi-dimensions, where an accurate solution of the transport
equations can be, computationally speaking, extremely expensive.

In this work, we have developed a new approximate neutrino-radiation treatment,
the Advanced Spectral Leakage (ASL) scheme; after having tested and calibrated it, we
have shown a variety of applications, both in the context of core-collapse supernovae
and of binary neutron star mergers.

The ASL scheme was derived from previous grey leakage schemes, and it retains the
conceptual and the computational simplicity that characterize leakage schemes. Differ-
ent from its predecessors, the new treatment is spectral (i.e. it retains information on the
particle energy), and it includes the modeling of a neutrino trapped component in opti-
cally thick conditions and of neutrino absorption terms in optically thin conditions. The
scheme has been tested against detailed neutrino-transport in the context of spherically
symmetric models of collapsing stellar cores. We have shown that it is able to capture,
with reasonable accuracy, the main expected features during the collapse phase, at core
bounce and in the first hundreds of millisecond after bounce, both for the fundamental
hydrodynamics and neutrino quantities.

The optical depth is a central quantity in leakages schemes. We have also developed a
new algorithm to compute the optical depth in multi-dimensional domains, without any
symmetry constraint. We called it Multidimensional Optical Depth Algorithm (MODA).

The major application of the ASL scheme in this work has been the study of the
development of a neutrino-driven wind from the hot and dense disc resulting from the
merger of two neutron star. This process has been studied for the first time in 3D
Cartesian simulations, performed with the FISH code. The intense (1053 erg/s) neutrino
emission coming from the (probably, unstable) hyper massive neutron star and from the
disc itself is partially re-absorbed by low density (< 1010g/cm3), neutron-rich (Ye < 0.1)
matter inside disc. This energy deposition drives a baryonic wind, mainly perpendicular
to the disc plane, on a timescale of ∼ 50 ms. Neutrino-matter interactions in the wind
modify significantly the electron fraction of matter: the resulting distribution shows a
broad range of Ye, from 0.2 to 0.4, with larger values along the polar directions than
along the equatorial one. At ∼ 100 ms after the merger, the amount of ejecta is of
the order of 2% the initial mass of the disc, thus it represents a significant channel for
mass ejection from binary neutron star mergers. The broad range in Ye represents an
interesting signature in the context of r-process nucleosynthesis.

Furthermore, we have shown other applications of the ASL scheme. First, we have
implemented it in the MHD version of the FISH code to study the electron fraction in
jets resulting from magneto-rotationally driven supernovae. In the case of strong and
fast jet formation (∼ 30 ms after core bounce), the electron fraction in the ejecta is low
enough (Ye < 0.3) to produce robust r-process nucleosynthesis.



Second, we have implemented the ASL scheme inside the SPH code SPHYNCS, to per-
form core-collapse simulations. The results we have obtained are compatible with what
we have obtained with grid codes. This model shows that the scheme is of easy imple-
mentation also in Lagrangian, multidimensional SPH codes.
Finally, we have designed a new prescription to explode artificially spherically symmet-
ric core-collapse models, using the IDSA scheme for electron neutrinos and the ASL
scheme for µ and τ neutrinos. The extra energy deposition required to trigger the ex-
plosion is obtained by the parametrized absorption of heavy flavour neutrinos inside the
gain region. The model has shown promising results and it is well suited to study the ex-
plosive nucleosynthesis for broad stellar progenitor samples, including detailed neutrino
treatment.
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Introduction

The major topic of my PhD thesis was the study of neutrino emission from astrophysical
systems. In many astrophysical scenarios, neutrinos do not play an important role or,
if they do, their very small interaction cross sections allow to model them simply as
a cooling source, assuming that all produced neutrinos are emitted from the system
and leave it without further interactions. In the next chapter, I will introduce two very
relevant astrophysical situations where the previous argument is not true and where
neutrinos have to be modeled as a radiation field, strongly coupled with the surrounding
fluid and its dynamics: Core Collapse Supernovae and Neutron star Mergers. These
systems represent interesting scenarios, due to the large variability of scales, physical
phenomena and interactions which characterize them. They both are among the most
energetic and violent events in the Universe, releasing on timescales smaller than one
second, an amount of energy comparable to the rest mass energy of ∼ 0.1 Solar masses
(hereafter M�); and most of it in form of neutrinos. They both involve Neutron stars,
which represent one of the most extreme conditions under which large amount of matter
can be found nowadays in the Universe. A correct and complete model of these systems
requires the inclusion of all fundamental interactions, as we presently know them: the
strong force and the electromagnetic interaction for the equation of state of matter at
high density and temperature; the dynamics of macroscopic intense magnetic fields,
which can affect the motion and the properties of the plasma; the weak interaction to
model neutrinos and electrons, as well as the fundamental ratio between protons and
neutrons. And, finally, the gravitational interaction, which is the true engine driving the
events towards their inescapable fate. Curiously, Core Collapse Supernovae and Neutron
star Mergers represent two (possible) extremes in the life of a Neutron star. However,
as it happens often in Nature, even the catastrophic death of a celestial body can be
the origin of new ones. Even more, the conditions in which matter is ejected from those
systems allow the synthesis of new elements and their dispersion in the interstellar
medium. These elements are the necessary ingredients to form, for example, planets
and, ultimately, life.

Due to the large complexity of the problem, numerical simulations have been exten-
sively developed during the last decades to model neutrino radiation hydrodynamics.
The first steps in this direction were modelled using simple grey (i.e., non-spectral)
leakage schemes, whose aim was to estimate the emission rates (both for particles and
energy) from each point of the system (see, for example, [33]). Then, more demand-
ing schemes were developed, and in particular the Multi Group Flux Limited Diffusion
(MGFLD) [80], which tackles the radiative transport problem by solving the relevant
transport equation in the two relevant limiting cases, i.e. the diffusive limit and the free
streaming limit. This scheme allowed the treatment of neutrino interactions with a high
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degree of accuracy (see, for example, [12] and [99]). During the 90s’, due to the increase
in computational power, two different paths were explored: on one side, the solution of
the full Boltzmann equation became possible in spherically symmetric systems (see. for
example, [99] and [86]), well designed for CCSN models. On the other side, the model-
ing multidimensional systems (like, for example, the merger of compact objects) became
feasible with a significant resolution, and there neutrinos were taken into account again
with grey leakage schemes, which benefited from the knowledge that emerged from more
accurate one dimensional transport problems (see, for example, [143, 137]). Up to now,
these grey schemes have been implemented and extensively applied in Core Collapse
Supernova models (see, for example, [114, 115]) and in Neutron star Merger simulations
(see, for example, [139]). Even more, the last years have seen the development of differ-
ent techniques to obtain detailed neutrino treatment also in two and three dimensions.
These were obtained using, for example, ray-by-ray schemes (where a one-dimensional
problem is solved along different rays covering the whole solid angle, see for example
[16, 13]) or Sn schemes (see, for example, [116]). Their major drawback is that, when
moving from one dimensional problems to multidimensions, the computational cost of
the calculation increases dramatically. This latter aspect conflicts with the large vari-
ability of possible initial conditions, provided by progenitor masses, metallicity, rotation
and magnetic fields in the CCSN case, and by NS masses, spins and orbital parameters
in the NS merger scenario. Overall, large uncertainties still characterize essential input
physics, like the nuclear equation of state, the neutrino physics and the modeling of
strong gravitational fields. The ELEPHANT code (see, for example, [174]), developed by
Matthias Liebendörfer and Stuart C. Whitehouse at the University of Basel, represents
already a significant improvement in this direction, because it guarantees an accurate
spectral treatment of neutrino transport, coupled with high resolution hydrodynamics,
at a much lower computational cost in three dimensional core collapse supernova simu-
lations [83].
The main objective of this thesis is to develop and test a new leakage scheme, which
tends to keep a relatively low computational cost, avoiding the solution of the expensive
diffusion equation. The price of this simplification is a reduced accuracy; but, compared
with other previous leakage schemes, we wanted 1) to improve significantly its reliability
and completeness; and 2) to design a scheme which can be easily exported in different
dimensions and in different codes. In this sense, this scheme allows us to efficiently
explore wide parameter space for several astrophysical scenarios where neutrinos play
a role, and provide useful information to perform detailed studies with more accurate
neutrino transport schemes.
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The following thesis is essentially oriented towards the exposition of the new scheme,
its validation and its very first applications.

In Chapter 1, we briefly present the astrophysical scenarios that motivated our work
and where the new scheme will be applied. Together with the physical description and
explanation of the knowledge we presently have, we will summarize the major aspects
of the numerical investigations that have been performed up to now.

Chapter 2 is devoted to explain in detail the new scheme (ASL), starting from the ex-
position of its parent scheme, its applications and its extension to the new algorithm.
In the second part of the chapter, the scheme is tuned and validated via direct compar-
ison with solutions of the Boltzmann equation in spherically symmetric Core Collapse
Supernova.

In the new scheme (as well as in previous leakage schemes), a special role is reserved
to neutrino optical depth. In Chapter 3, we present a new algorithm (MODA) to cal-
culate the optical depth in multidimensional hydrodynamical simulations, without any
assumption about the symmetry of the system.

In Chapter 4 we will present the status of the implementation of the ASL scheme in
three dimensional simulations modeling the aftermath of Neutron star Mergers with the
grid code FISH, as it is at the moment. This project benefits also of the collaboration of
Prof. Stephan Rosswog (University of Stockholm).

Finally, in Chapter 5 other applications of the new scheme are explained. They are 1)
the implementation of the ASL scheme in models of magnetically-driven Core Collapse
Supernovae, performed with the grid code FISH. 2) The implementation of the scheme
in Core Collapse models performed with the SPH code SPHYNX. 3) The development of
a new way to trigger artificially explosions in spherically symmetric supernova models;
this new method uses the deposition of a fraction of the luminosities associated with mu
and tau neutrinos, treated with the ASL scheme.
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Chapter 1

Astrophysical background and
motivations

Neutrinos play a central role in contemporary physics. Already their theoretical predic-
tion by Wolfgang Pauli in 1930 offered an enlightening example of how modern physics
proceeds and how powerful the simple axioms (that we call conservation laws) are.
The neutrino was postulated as an electrically neutral particle, produced, but not de-
tected, during a beta decay reaction. The reason for such an extreme hypothesis was
that, studing the decay of radioactive nuclei, the energy spectrum of the emitted elec-
tron was not the one expected from the kinematics of a two body decay problem. For
example, for a two body decay such as

(A,Z)→ (A,Z + 1) + e−, (1.1)

assuming energy and linear momentum conservation, the electron energy in the center
of mass frame should be

Ee− =

(
M2

(A,Z) −M2
(A,Z+1) +m2

e−

2M(A,Z)

)
c2. (1.2)

Instead Ee− showed a continuum spectrum, ranging from 0 to Ee− , as shown in Figure
1.2. Such an unexpected behavior could have been explained with two opposite hypoth-
esis: the first one (suggested, among the others, by Niels Bohr) assumes the possibility
for microphysical reactions to violate conservation principles (which, then, have only
a statistical meaning); the second one assumes the presence of an undetected particle,
which could take away the electron’s missing energy . In this case, the detected energy
spectrum could have been easily referred to a reaction of this kind:

(A,Z)→ (A,Z + 1) + e− +X (1.3)

where X is the unknown particle. Due to charge conservation, the new particle should
have been neutral and Pauli proposed the name neutron. This idea was accepted with
skepticism and, when James Chadwick in 1932 discovered a new particle, neutral and
(roughly) as massive as the proton, he ”stole” the name and he called it neutron. But
in the following year, Enrico Fermi formulated his theory of the beta decay, which
incorporates Pauli’s particle and proved so brilliantly successful that Pauli’s idea was
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1. Astrophysical background and motivations

Figure 1.1: Energy spectrum of the electrons emitted in the beta decay of Radium,
from [148].

taken more and more seriously. Fermi re-named the still mysterious particle neutrino,
ν. The fact that the electron energy in the β decay was (experimentally speaking)
equal to the maximum kinematically allowed energy suggested that the new particle was
extremely light, at most with no rest mass, like the photon. As all the other particles,
it admits an antiparticle, which is called antineutrino, ν̄. Actually, with the modern
convention, the particle X in reaction 1.3 is an electron antineutrino. Other decays,
studied during the 1940s’, seemed also to point to the mysterious Pauli particles. Among
the others, the decay of the muon was compatible with the emission of two neutral, very
light (even massless) particles.
The first detection of the new particle happened only several years later, in 1956, when
Clyde Cowan, Frederick Reines and collaborators detected antineutrinos coming from
an intense source (a nuclear reactor) and absorbed by a proton:

ν̄ + p→ n+ e+. (1.4)

An interesting question at that time was if neutrinos are the same as antineutrinos.
From the experimental result of Cowan and Reines, it was clear that the cross reaction

ν + n→ p+ e− (1.5)

should happen. If neutrino and antineutrino were the same particle, an analogous reac-
tion with antineutrino should occur:

ν̄ + n→ p+ e−. (1.6)

But Davies found experimentally that this reaction does not occur, so neutrino and
antineutrino are distincted particles.
In the next years (1962), a detailed study of the muon decay established that one of
the particles emitted in that decay was not a neutrino nor an antineutrino, of the type
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already observed. The puzzle was solved introducing different families of leptons: the
electron and the positron, associated with electron neutrino and antineutrino, νe and
ν̄e; and the muon µ±, associated with the muon neutrino and antineutrino, νµ and
ν̄µ. Finally, after the discovery of the heaviest lepton τ± in 1975, missing energy and
momentum in its decay led to the conclusion of the existence of a third neutrino family,
ντ and ν̄τ . This indirect evidence was found in 2000, at Fermi Lab; due to it, tau neutrinos
were the last detected particles in the context of the Standard Model (SM) theory of
elementary particles.

According to the SM, neutrinos are massless fermions, with 1/2 spin, which can
interact with quarks (and, consequently, baryons and mesons) and leptons via weak
interaction. From a fundamental point of view, the weak interaction is described as a
gauge theory, mediated by massive, spin 1 bosons; these bosons are the so called W± and
Z particles. Due to their large masses (80.385 GeV for the charged W± and 91.1876 GeV
for the neutral Z), the weak interaction has a very short interaction range at energies
far below the bosons mass, and a small coupling constant. Typical neutrino cross section
are of the order of

σ0 ≡
4

π

(
~
mec

)−4(
GF

mec2

)2

= 1.76× 10−44 cm2. (1.7)

For instance, nuclear cross sections are typically measured in barn (10−24cm2); this sim-
ple comparison gives an idea of the weakness of the interaction and a measure of the
elusiveness of those particles.
The clean picture representing neutrinos in the framework of the SM has been recently
shaken by very interesting experimental results and theoretical ideas. The amount of
neutrinos emitted from the Sun and detected on the Earth has always been affected by
a systematic discrepancy between the predicted and the measured values: the detected
flux is roughly one third of the one expected from detailed models of the Sun, which
seem to describe our star very well. A possible solution for this problem is the possibility
for neutrinos to oscillate from one flavor to another: the conversion of electron neutri-
nos in other flavor could explain the missing flux. The mathematical description of this
oscillation mechanism was first suggested by Bruno Pontecorvo in 1957 and assumes
that neutrinos have a mass (even if very small). The basic idea behind this mechanism
is that the interaction eigenstates describing neutrinos emitted in weak processes, are
not equal to the mass eigenstates, which are three and are the proper basis to describe
the time evolution (i.e., the propagation) of the particle. Thus, a neutrino emitted as an
electron neutrino νe (and the same holds for all types of neutrinos) is a superposition of
the three possible mass eigenstates, and it has a certain probability to be detected as a
νe or νµ or ντ during its propagation. These probability are oscillating functions; that is
the reason why this phenomenon is call neutrino oscillations.
Nowadays neutrinos oscillations have been observed in several experiments and from
different sources (mainly, solar neutrinos, atmospheric neutrinos and reactor - acceler-
ator neutrinos); their combined results (will) allow to determine the free parameters in
the model, and, hopefully, the values of the neutrino masses (actually, neutrino oscilla-
tions depend on the mass squared splitting). Apart from vacuum oscillation, neutrinos
can oscillate between different flavours also when they travel in a medium, due to the
Mikheyev-Smirnov-Wolfenstein effect; more recently, it has been postulated also the
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1. Astrophysical background and motivations

possibility for neutrinos, when they form a trapped Fermi gas (like the one which forms
in the core of exploding stars, as we will see later) to undergo collective neutrino oscil-
lations.
In this work, we will consider neutrinos as they are in the SM (massless and without
oscillations). The study of the impact of oscillations in astrophysical contexts is under
fast development; nevertheless, we assume that this impact is small on the scale we
are going to consider. A full treatment, which includes also oscillations, is necessary to
predict neutrino observables.

Detection of neutrinos on Earth is very challenging, mainly due to their incredible
low cross section. Being very rare events, the dimensions of the detectors, as well as
their screeing properties and sensitivity, have highly improved in the last years. Now,
all over the world, we are potentially able to detect every day a few neutrinos coming
from nuclear reactors, from particle collisions in the atmosphere or from the space. But
where do space neutrinos come from?

There are several places in the Universe where neutrinos are produced and emitted,
typically in huge amounts. Actually, the whole Universe is filled by cosmological neu-
trinos, relic of a much hotter epoch. According to the Big Bang theory describing the
evolution of our Universe, the Universe expanded from a very hot and dense primordial
state. At a time around 10−2s after the beginning of the expansion, the temperature
was around ∼ 1011K, corresponding to kBT ∼ 8.6 MeV in energy units. All the particles
(and their antiparticles) whose masses are lower or almost equal to this thermal energy
are continuously produced and annihilated. At this stage, the cosmological plasma is
composed of nucleons, photons, electrons, positrons and all kind of neutrinos. The lep-
tons are kept in thermal equilibrium by neutral current (i.e., mediated by the neutral Z
boson) pair production reactions

e+ + e− ↔ ν + ν̄, (1.8)

active for all neutrino flavours. The interactions that keep baryons in equilibrium with
leptons are the charged current (i.e., mediated by the charged W± bosons) weak inter-
actions

p+ e− ↔ n+ νe n+ e+ ↔ p+ ν̄e n↔ p+ e− + ν̄e. (1.9)

At a given temperature, the mass difference between neutron and protons sets their
relative abundances, favoring more and more the conversion of neutrons into protons.
When the plasma temperature drops to around and below 1 MeV, photons are no more
energetic enough to produce electron-positron pairs, and electrons are no more energetic
enough to overcome easily the mass difference between neutrons and protons. As a
consequence, thermal neutrinos are no more produced and the pre-existing ones decouple
from the plasma, now transparent for them. These neutrinos should be still present in
the Universe in form of a very cold gas, permeating everything, very similar to the
cosmic microwave background, but emitted much earlier.
Another place where neutrinos are copiously produced and emitted is the center of the
Sun (and of stars, in general). The energy generation inside the Sun is due to hydrostatic
hydrogen burning. This nuclear burning proceeds via the proton-proton chain and the
Carbon-Nitrogen cycle. In both cases, the net reaction is

4p→ 4He+ 2e+ + 2νe (1.10)
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1.1. Core collapse supernovae

Hydrogen burning necessarily involves the emission of neutrinos: they arise when weak
interactions convert a proton into a neutron. Due to the very low weak cross sections,
the produced neutrinos do not interact intensively with the plasma, and they can leave
the star at the speed of light. Under these conditions, the Sun is said to be transparent
to neutrinos, and the neutrinos stream out freely from it. Considering the luminosity
necessary to sustain steadily the Sun from Hydrogen burning, it is possible to estimate
the amount of reactions in the center, and, consequently, the amount of emitted neu-
trinos. On the Earth, the expected flux is quite high, ∼ 6.5 1010particles/cm2/s. On
average, their energy is ∼ 0.42 MeV.
The emission of neutrinos from stars is not only related to nuclear reactions. In very
massive stars, in advanced burning stages, the central temperature and density rise (for
example, during silicon burning, Tc ∼ 0.4MeV and ρc ∼ 3 1010g/cm3). In those condi-
tions, neutrinos are increasingly produced by pair production (1.8). Still, the density
and temperature are not high enough to trap them; so, the star is transparent and they
can leave the star freely (like in the case of the Sun). Under this conditions, neutrinos
represent the most effective cooling source of the star; the energy emitted in neutrinos is
by far larger then the one emitted in photons. Keeping in mind that the rate of produc-
tion of nuclear energy in stars is directly governed by the rate of energy loss, it is easy to
understand why the late burning phases of massive star proceed faster and faster, due
to neutrino cooling (for example, the Silicon burning phase in a 25M� star lasts ∼ 1day
).

In this work, we are interested in two very appealing astrophysical scenarios, where
the production and the emission of neutrinos play a major role, for the energetics, for
the dynamics and for the chemical composition of the system. They are core collapse
supernovae and the merger of neutron stars in binary systems. Differently from the
neutrino emitted from the Sun and from more massive star in burning phases, here the
thermodynamical conditions of matter are so extreme that neutrinos of all flavours are
not only produced, but they can be trapped and diffuse out of the system on the longer
diffusion timescale. Moreover, they are energetic enough to be partially re-absorbed in
the outer, more dilute regions. Due to the huge neutrino luminosities, this neutrino
heating can have important implication for the dynamics and for the composition of the
plasma. In the case of core collapse supernovae, a (at least, qualitative) confirmation
that we do understand the basic aspects of the process and the role of neutrinos in it
came from the very first neutrino detection from a Galactic source, which was the very
famous SN1987a supernova, in the Large Magellanic Cloud.
In the next pages, we are going to introduce and to present the main physical aspects
of these two scenarios. For core collapse supernovae, we refer to some complete and
detailed reviews, like [7, 178, 67, 60], and references therein; for the mergers of compact
objects and their connection with Gamma ray burst, we refer, for example, to [137, 34,
30, 152, 139] and references therein.

1.1 Core collapse supernovae

After millions of years of (almost hydrostatic) stellar evolution, during which a massive
star has burnt its core of hydrogen into heavier and heavier elements, the iron core (which
represents the final stage of nuclear burning) collapses in a few hundreds of milliseconds,
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1. Astrophysical background and motivations

and, eventually, produces the explosion of the progenitor star. Only massive stars are
expected to undergo all the stellar burning stages and, finally, to present favorable
conditions to trigger a gravitational collapse. According to our present understanding,
this depends mainly on the mass of the star at the beginning of its life, and secondary
on its metallicity and on the fact that the star belongs or not to a multiple star system
(which is, in most of the cases, a binary system). Differently from the other class of
supernovae (type Ia SNe, which should consist in the thermonuclear explosion of a
compact white dwarf), core collapse supernovae are typically expected to leave a compact
object behind them, in addition to the remnant produced by the ejection of the outer
layers of the star. According to the original mass and metallicity of the progenitor, and
to the details of the explosion itself, the relic object can be a neutron star or a stellar-
mass black hole. For example, at zero metallicity, stars with an initial mass between
∼ 8M� and ∼ 100M� undergo gravitational core collapse of their core, followed by a
supernova explosion and the ejection of their hydrogen-rich envelop and, partially, of
their helium-rich shell. The less massive ones (for initial masses lower than ∼ 25M�)
are expected to form a neutron star; on the other hand, for initial masses in the range
between ∼ 25M� and ∼ 40M�, the fallback material of the explosion accretes on the
neutron star, causing it to reach its maximum stable mass and inducing its further
collapse to a black hole. For stars in the mass range between ∼ 40M� and ∼ 100M�, a
stellar black hole forms directly from the iron core collapse. The defining characteristic
of very massive stars (which means with an initial mass of more then ∼ 100M�) is their
electron-positron instability after carbon burning, which gives rise to the so called pair
instability supernovae. For solar metallicity this picture becomes more complicated, due
to larger uncertainties on the stellar evolution and on the explosion mechanism. Stars
with an initial mass between ∼ 8M� and ∼ 25M� are, again, expected to form a neutron
star; stellar black holes should form from more massive stars (again, up to ∼ 100M�).
Nevertheless, according to the mass-loss rate in Wolf-Rayet stars, there could be a
window (centered around ∼ 50M�) where the mass loss is so effective in depleting mass
from the progenitor star, that a neutron star could still form. As it has been recently
shown (see, for example, [168] and [167]), the impact of three dimensional effects in
supernova explosions, as well as the differences in stellar evolution induced by binary
system dynamics, can introduce large uncertainties and new features in this picture.
Even more, stellar magnetic fields and rotation are expected to play an important role
in the fate of massive stars, but a systematic and robust study of their effects is still
missing.

1.1.1 Massive star evolution and progenitor structure

The life of a star is governed, during all its history, by its self-gravity. It is due to gravity
that a portion of an interstellar cloud (mainly formed by cold molecular hydrogen)
contracts and forms a protostar, in a process whose details are still mostly unknown. The
amount of gravitational energy released by the contracting system is used to dissociate
the hydrogen molecules into atoms and, then, to ionize the atoms. When the gas has
been significantly ionized, the protostar has still a radius several hundreds of time larger
the the solar radius, and an internal temperature of 30, 000 K. Due to the increase of
photon opacity, any subsequent release of gravitational energy can be also converted to
and stored as internal energy. The subsequent increase in pressure slows the contraction
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down and settles an almost hydrostatic equilibrium inside the protostar. On a longer
timescale of 107 − 108yr, the system still contracts and heats, converting half of the
released gravitational energy into internal energy (the other half is radiated away at
the surface of the protostar). The contraction stops when the temperature and the
density at the centre increase until the conditions are suitable for thermonuclear fusion
of hydrogen. The energy released by nuclear fusion lessens the need for the release of
gravitational energy, and the protostar ceases to contract. From this point on, the star
enters the hydrostatic burning phase: nuclear species of increasing atomic and mass
number are fused at larger and larger temperature, the ashes of a burning step being
often the fuel of the next one. At the end of this phase, an initially massive star (i.e.
a star which can undergo all the possible nuclear fusions) consists of concentric shells
with different nuclear composition. Each shell is characterized by its most abundant
element; proceeding from the outer to the inner part, there are the hydrogen, helium,
carbon, neon, oxygen and silicon shells. Silicon burns in the center, producing a core
of iron group elements (with mass number around 56). In particular, following silicon
burning, the composition consists of the most tightly bound iron-group nuclei compatible
with the actual thermodynamical condition (density, temperature and electron fraction).
Iron-group nuclei are the final stage of nuclear hydrostatic fusion, because any further
nuclear fusion reaction does not release energy (it rather depletes internal energy, storing
it into nuclear binding energy). When the silicon has been depleted and its abundance
has become small enough, all nuclear and electromagnetic reactions are in equilibrium
with their inverse reactions, and all abundances can be expressed by a nuclear Saha
equation as a function of the local thermodynamical properties of the stellar plasma.
Then, the plasma can be considered in Nuclear Statistical Equilibrium (NSE). At the
interface between the silicon shell and the iron core, the silicon is continuously burnt
and the mass of the core increases. At this stage, the density inside the core can reach
5 · 109g/cm3 and the temperature exceeds 0.5 MeV. Due to electron captures on nuclei,
the electron fraction Ye reduces from 0.5 to 0.48 at the core edge, and up to 0.42 in the
core center. After helium burning, neutrino emission from thermal processes and from
electron captures is the most effective source of cooling for the star interior. During
silicon burning, it is so effective (due, for example, to the strong temperature dependence
of processes like electron-positron annihilation) that the entropy of the iron core is kept
relatively low (from 0.4 kB/baryon in the center up to 1 kB/baryon at the core edge).
In these extreme thermodynamical conditions, the typical Fermi energy of electrons is
larger than their rest mass energy and electrons form a relativistic degenerate gas, which
provides the largest contribution to pressure,

P ∼ Pe ∝ (Yeρ)4/3 (1.11)

A self-gravitating system sustained by a degenerate relativistic electron gas has a maxi-
mum mass, above which there is no solution for the hydrostatic equilibrium (i.e. no sta-
ble configurations; see, for example, [150]). This maximum mass is called Chandrasekhar
mass. Traditionally, for a full degenerate relativistic gas, it is equal to:

MCh,T=0 = 1.44

(
Ye
0.5

)2

M� (1.12)
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Keeping into account the first order correction for the finite temperature (entropy), the
effective Chandrasekhar mass can be expressed as:

MCh ≈MCh,T=0 ·

(
1 +

(
se
πYe

)2
)

(1.13)

where se is the electron entropy per baryon in units of the Boltzmann constant kB.
For typical values of entropy and electron fraction, a 15M� main sequence star has a
Chandrasekhar mass of about 1.34M�.

1.1.2 The collapse

A degenerate iron core with a mass exceeding its own Chandrasekhar mass will be
gravitationally unstable and collapse. Pre-supernova models develop already during the
silicon burning phase an infalling velocity profile, due to the continuous release of neu-
trinos, releasing gravitational binding energy out of the core. The collapse is, then,
accelerated by two instabilities. The first is the significant increase of electron capture
on iron-group nuclei,

56Fe + e− → 56Mn + νe (1.14)

mainly due to the increase of density, which translates into an increase of the Fermi
energy of the electron gas (see, for example, [150]):

µe = 11.1 MeV

(
ρYe

1010 g/cm3

)
. (1.15)

Together with an obvious depressurization effect, electron capture changes the nuclear
composition toward neutron rich nuclei: when Ye decreases below 0.41, the mean mass
number of heavy nuclei increases well above 70. The second instability (dominant in
hotter, more massive stars) is photodisintegration: at higher temperature and densities,
nuclear statistical equilibrium favors a large abundance of free α nuclei,

γ + 56Fe→ 13α + 4n (1.16)

with a negative Q-value of Q = −124.4 MeV. The corresponding increase in ion entropy
is compensated by a decrease in electron entropy (the collapse, apart from the variation
of entropy due to neutrino emission, can be considered adiabatic), which in turn reduces
the Chandrasekhar mass and helps the collapse. The collapse proceeds faster and faster,
on the free fall timescale:

tdyn ∼ tfreefall ∼
√

1

Gρ̄
∼ 102ms (1.17)

where ρ̄ is the average density of the core, increasing mainly the central density. Neutri-
nos produced with increasing degeneracy energy can escape freely, up to the point where
a density of a few times 1012g/cm3 is reached. Above this density, neutrinos (now with a
typical energy of a few MeV or even larger), interact more and more often with infalling
matter. As a result, they cannot escape from the core on the shortest free streaming
timescale tfs, but they diffuse out on the longer diffusion timescale tdiff . In particular,
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1.1. Core collapse supernovae

Figure 1.2: Schematic and pictorial representation of the evolutionary stages, from
core collapse to the onset of the explosion and the development of a neutrino-driven
wind, during the neutrino cooling phase of the protoneutron star. This Figure was
taken from [60].
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above 1012g/cm3, the diffusion timescale becomes larger than the dynamical timescale
and neutrinos can be considered trapped inside the collapsing core. The result of the
neutrino trapping is the formation of an electron neutrino gas inside the star; as density
and temperature increase, neutrino reaction rates increase as well, and thermal and weak
equilibrium are established. The formation of an antineutrino gas is initially suppressed
by the large electron neutrino chemical potential (which, at equilibrium, translates into a
large, negative chemical potential for electron antineutrinos). The main reactions which
provide weak and thermal equilibrium are the electron and positron capture on nuclei
and nucleons

(A,Z) + e− → (A,Z − 1) + νe (1.18)

p+ e− → n+ νe (1.19)

n+ e+ → p+ ν̄e. (1.20)

Neutrino scattering on nuclei and nucleons are major sources of opacity,

(A,Z) + ν → (A,Z) + ν (1.21)

N + ν → N + ν, (1.22)

where (A,Z) is a nucleus of mass number A and atomic number Z, while N = p, n.
These processes can be considered as elastic processes in a first approximation. Neutrino-
electron scattering is another relevant reaction,

ν + e− → ν + e− (1.23)

which has been shown to improve the speed of the thermal equilibrium establishment,
leading to softer neutrino spectra and increasing the neutrino luminosity (as low en-
ergy neutrino are expected to interact less and diffuse faster out of the core, [99]).
Other thermal or very degenerate processes, like neutrino pair production and neutrino
bremsstrahlung, become relevant at the end of the collapse and in the after bounce phase,
because they require much higher temperature and densities. After neutrino trapping,
neutrinos cannot escape from the core; as a consequence, the lepton number and the total
entropy stay constant. Nevertheless, weak equilibrium at the proper thermodynamical
conditions sets the ratio between electrons and neutrinos. If before trapping the central
electron abundance is around Ye ∼ 0.39 and the neutrino abundance is negligible, when
the collapse has proceeded and the central density is around 1014g/cm3, one forth of the
electrons has been converted into neutrinos, so that Ye ∼ 0.31 and Yνe ∼ 0.08. In the
main while, the collapse of the inner part of the core proceeded homologously [48] and,
because of that, this part of the star is referred as the homologous core. Here, the infall
fluid speed is proportional to the radius (vr ∝ r) and below the sound speed. Outside
the homologous core, the collapse is supersonic and follows a free fall profile, vr ∝ 1/r.
The two parts of the core have approximately the same mass. Due to the proceeding
collapse, the central density becomes supernuclear, reaching a few times nuclear satura-
tion density (ρ0 ≈ 2×1014g/cm3). As a consequence of the short range repulsive nuclear
interaction, the fluid becomes harder to compress and the homologous core start to de-
celerate and bounces. Sonic waves reach the sonic point, at the edge of the homologous
core, but they cannot proceed further. Then, a shock wave is launched from that point
(within an enclosed mass of ∼ 0.7M�), toward the outer part of the core.
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1.1. Core collapse supernovae

1.1.3 The prompt shock

The shock wave forms at the edge of the homologous core and it starts to travel inside the
supersonically infalling iron core. A shock wave is a dissipative, irreversible process in a
fluid. Unshocked matter passing through the shock front increases its entropy. Assuming
that the shock is weak (p1 . p2, in opposition to strong shocks, where p1 � p2, where
p1 is the pressure of the unshocked matter and p2 of the shocked one), the variation of
entropy per baryon can be estimated by

∆s ≈ γ (γ + 1)

12

(
vr
cs

)3

, (1.24)

where γ is the adiabatic exponent of the equation of state (roughly 4/3 at the shock
formation, since this is the exponent associated with a relativistic gas of degenerate
fermions). Starting from a relatively low value of the entropy (s ≈ 1 kB/baryon) for the
unshocked part, it rises between 6 and 12 kB/baryon below the shock. This increase in
entropy corresponds to a large increase in temperature too, passing from ∼ 2 MeV to
∼ 20−15 MeV. At those values of entropy (s > 3kB), heavy nuclei are photodissociated
into nucleons. The dissociation of an iron nucleus into neutrons and protons costs the
shock wave 8.8 MeV per nucleon. Considering an outer iron core of 0.7M�, the shock
has not enough energy to travel through the whole core.
The sudden increase in temperature and the change in matter composition have a large
impact on neutrino reactions and behavior. Large abundances of free protons increase
highly the electron capture rate on proton. High temperatures provide a large den-
sity of positrons, which can be captured by very abundant neutrons or can annihilate
with electrons into neutrino pairs. As a consequence, neutrinos of all flavours (even if
with different rates and on different timescale) are copiously produced and, eventually,
re-absorbed by the fluid, forming fermion gases in equilibrium with matter. All these
reactions, together with the equally increased scattering off free nucleons, provide a very
high neutrino opacity inside the shock wave: initially, all the neutrinos inside the shock
can be considered trapped and they move together with the wave. But few milliseconds
after bounce (3− 5ms), the shock has traveled enough in the core to reach the relevant
neutrinosphere (i.e. the surface corresponding to the last scattering or interacting sur-
face), corresponding to a density of a few times 1011g/cm3 and a radius of about ≈ 70km.
At this point, the neutrinos produced in the core, advected with the fluid and diffusing
out from the core are no more trapped and can be released. This produces the so called
neutrino burst, which can be seen as a sudden increase in neutrino luminosity, up to
a few times 1053erg/s, and which lasts for a few ms. The formation of neutrino gases
inside the core, together with the neutrino burst and the increase in neutrino luminosity,
happen again at the expense of the shock wave energy. The copious electron capture on
protons leads to a further neutronization of the shocked matter, whose electron fraction
decreases down to ∼ 0.1. The combined action of iron dissociation and neutrino emis-
sion weaken the shock wave so much that it finally stalls between 100 and 200 km, and
converts into an accretion shock (a shock wave with both shocked and unshocked down
streaming flows).
The shock forms at a radius corresponding (in good approximation) to the mass of the
homologous core; this means that this amount of relatively cold matter (i.e. low entropy
nuclear matter) will stay cold and unshocked, with an initial electron fraction of about
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0.3 and with copious neutrinos diffusing out on long timescales (roughly, of the order of
1-10 seconds for the relevant neutrino energies). This relic is called proto-neutron star.
When the shock wave converts into an accreting front, matter falls and piles up on the
central object with a very high accretion rate (up to ∼ 2M�/s, depending very much
on the progenitor mass and model), rapidly increasing its mass until the explosion sets
in. Depending on the progenitor mass, the accretion rate and the explosion timescale
change, leading to different remnant masses. As already point out above, star with a
progenitor mass less than 25 M� are expected to form a neutron star; for larger masses,
the mass of the proto-neutron star probably exceeds the maximum allowed neutron star
mass, triggering the collapse to a stellar black hole.

1.1.4 Explosion mechanism(s)

Delayed neutrino-driven explosion

The fact that the shock wave stalls few tens of milliseconds after core bounce, converting
into a standing accretion shock deep inside the star core, is usually referred as the failure
of the prompt shock explosion. The problem of how and when the standing shock gains
enough energy to convert itself into an outward moving wave, producing a supernova
explosion and, ultimately, the destruction of the progenitor star, can be presently de-
fined as the central, long standing problem in core collapse supernova theory.
Several different possible mechanisms have been explored, both theoretically and nu-
merically. One of the first ideas is the so called neutrino-driven explosion. Colgate and
White [24] were first to suggest that high energy neutrinos coming from the hot proto-
neutron star can be absorbed by the shocked material above the neutrinospheres. These
neutrinos carry most of the gravitational energy released by the collapse and deposit a
fraction of it just behind the shock front. The reactions which are mainly responsible
for the absorption of both νe and ν̄e are the charge current reactions on free nucleons:

νe + n→ e− + p ν̄e + p→ e+ + n. (1.25)

This neutrino heating increases the internal energy and the pressure of the fluid behind
the shock, which starts to expand, pushing the shock forward. The persistent neutrino
flux can potentially sustain this mechanism and, eventually, leads to an explosion. The
very low values of the neutrino cross sections require both high neutrino fluxes (of the
order of 1052 erg/sec) and relatively long timescales (of the order of a few 100 ms): an
absorption efficiency of 10−20% for both νe and ν̄e is expected to be necessary to trigger
an explosion. The final success of the neutrino-driven mechanism turns out to be cru-
cially dependent on the balance between the neutrino cooling and the neutrino heating.
Cooling rates depend very sensitively on the matter temperature (Q− ∝ T 6), while the
heating rates outside the neutrinosphere decreases with increasing radius Q+ ∝ R−2. As
the decrease of temperature in the relevant region can be roughly described by a power
law of the radius (approximately, T ∝ R−1.2), it turns out that the cooling process is
dominant just above the neutrinosphere (corresponding also to the surface of the pro-
toneutron star), while the heating process just below the shock. The radius where the
cooling and the heating curve cross is called gain radius. As it can be easily foreseen,
only if the heating is strong enough an explosion can be triggered. Two related factors
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which influence the success of the neutrino-driven mechanism are the value of the neu-
trino luminosity and the hardness of their spectra. The neutrino heating has a positive
feedback, because a strong heating on an infalling fluid element decelerates it, increasing
the time spent above the gain radius, and, finally, the probability more absorption.
Since its introduction during the 60’s, the neutrino-driven explosion has been tested
in spherically symmetric computational models of increasing complexity and accuracy.
Several remarkable improvements have been performed in the hydrodynamical schemes,
in the neutrino transport and physics, in the treatment of gravity and in the description
of matter at the very high density and temperature which characterize core collapse
supernova. All state-of-the-art spherically symmetric simulations of core collapse super-
nova with detailed neutrino transport, performed in Newtonian gravity, as well as in
approximated or full General Relativity, using appropriate hadronic equations of state,
confirm the presence of an important heating effect, due to the hot neutrino emission
from the proto-neutron star, between the gain and the shock radius (see, for example
[164, 86, 154], and references therein). Nevertheless, no delayed explosions could be ob-
tained for progenitor heavier than 10M�. The failure of the delayed neutrino-driven
mechanism in spherically symmetric models can have several different explanations and
can potentially open a series of questions, for example concerning our understanding
of the behavior of matter under extreme conditions, as well as our knowledge of the
challenging neutrino interactions. However the spherical symmetry can be a potential
limiting factor. In fact, this assumption prevents the developing of multi-dimensional
hydrodynamical effects (like instabilities and convection), as well the inclusion of intrin-
sically multidimensional physics inputs (like magnetic field). The importance of these
ingredients was known since the beginning (see, for example, [106, 8]), but the lower com-
putational power limited strongly the possibility of a deep and extensive investigation
until the 90’s. The first steps toward accurate multi-dimension core collapse supernova
simulations was performed developing axisymmetric hydrodynamics code, with an ap-
proximated gray transport scheme for neutrinos. The first simulations (see, for example,
[61, 100]) showed the developing of violent convection in the gain region, due to the
negative entropy gradient behind the accretion shock; this was generated by the strong
deposition of heat just above the gain radius, larger compared to the energy deposition
at the outer shock front. The effect of this convection is to increase the efficiency of
the heating mechanism, because it increases the time spent by a fluid element in the
gain region, and because the convective motion overturns the shocked material, refilling
continuously the gain region with relatively cold matter. Those simulations resulted in
promising explosions; however, more recent axisymmetric simulations with more accu-
rate, energy dependent neutrino transport did not reproduce these results for all stellar
progenitors (see, for example, [16, 28, 116, 92, 107]). While simulations based on pro-
genitor model with an initial mass of 11.2M� seem to explode (even if with a rather
weak explosion energy), simulations with heavier progenitors failed. However, consider-
ing important aspects like the explosion timescale and the explosion energy, the results
of different groups have not converged yet. Together with expected convective instabili-
ties, axisymmetric simulations showed a new kind of potentially important instabilities;
this was a generic instability of the accretion shock to non-radial deformation, which
has been called Standing Accretion Shock Instability (SASI, see [38, 10]). Expanding
the non-radial component of the motion in spherical harmonics, it appeared that SASI
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was linked with the growth rates of the l = 1, 2 modes. The instability results in a
pulsational oscillation (i.e. contraction and expansion) of the shock front in the polar
directions. Similarly to the convective instabilities, the main effect is the increase of the
time spent by a fluid element in the gain region; differently, the phase difference in the
oscillation between the two poles (i.e. while a pole expands the other contracts) seeds an
intrinsically asymmetric heating enhancement, which can potentially results in a strong
degree of asymmetry in the explosion. The growth of SASI and the details of its strongly
non-linear mechanism are still under investigation and are matter of debate.
In the last few years, an increasing effort has been devoted to develop three dimen-
sional simulations, with different degrees of neutrino treatment. Considering that a full
three-dimensional Boltzmann treatment of the neutrino distribution functions (at the
level of detailed spherically symmetric simulations) is nowadays impossible both for the
expected CPU-time demands and for the huge memory required in such a simulation
(even for the largest supercomputers), several approximate treatments have been devel-
oped [44, 112, 108, 50, 70]. In this respect, the Isotropic Diffusion Source Approximation
(IDSA) has been developed and tested by Matthias Liebendoerfer and the Basel group
[88] in spherically symmetric simulations; later, it has been extended to three dimen-
sional Cartesian simulations in the ELEPHANT code [174, 175]. Other interesting methods
are currently under development (see, for example, [1]).

Currently, several groups are investigating the first results coming from their very
large three dimensional simulations. Even though there is not yet a publication with
a large sample of three dimensional, self-consistent delayed neutrino-driven exploding
models, it seems that the heating mechanism benefits from the larger variety of hydro-
dynamical instabilities and their coupling with neutrino transport. The actual degree of
neutrino heating enhancement, as well as the impact on the neutrino critical luminosity,
passing from axisymmetric to three dimensional simulations is still matter of debate
[112, 50].
Recent simulations, both performed in axisymmetry and in three dimensions, with a
tuned neutrino luminosity imposed at the surface of the proto-neutron star, showed
that random perturbations (artificially included in a spherically symmetric profile, ob-
tained by a detailed spherically symmetric simulation, a few milliseconds after bounce
develop) grow and can develop strong asymmetric explosions. These instabilities and the
resulting dynamics of the fluid can potentially explain the recoil velocity of the proto-
neutron star, as well as its spinning velocity; moreover, the asymmetry at the onset of
the explosion causes strong instabilities also during the shock expansion in the outer
shell of the massive star. These instabilities are potentially relevant for the subsequent
nucleosynthesis in the ejecta.

Other possible explosion mechanisms

Three dimensional hydrodynamics simulations with sophisticated spectral neutrino trans-
port are definitely necessary to understand if neutrino-heating mechanism is responsible
for the explosion of stars more massive than 15M�. Nevertheless it is also not excluded
that other mechanisms can trigger the explosion or contribute to it, together with neu-
trino absorption. One of the first alternative scenarios which was invoked in the context
of core collapse supernova is the so called magnetically-driven explosion mechanism (see,
for example, [106, 19]); it assumes that the core rotates fast and differentially, and that
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an initially high poloidal stellar magnetic field can be highly amplified by compression
and by local instabilities (for example, magneto-rotational instabilities, MRI) during or a
few milliseconds after the collapse. Under these special conditions, free rotational energy
in the nascent proto-neutron star can be extracted and converted into magnetic energy,
rising from the winding of the poloidal filed into a strong toroidal component; the result-
ing magnetic pressure can push and lift strongly the matter along the rotational axis,
forming a fast expanding jet inside the shock. Recent progenitor models which tried,
for the first time, to mimic the impact and the evolution of rotation and magnetic field
in massive star [52], seem to disfavor this scenario: the contemporary presence of high
magnetic field and high rotational rates should have a brake effect which is very effective
in transporting angular momentum out of the stellar core; moreover, the magnetic field
evolution seems to favor a larger toroidal component in the final iron core. However,
stars with very large mass and very low metallicity (i.e. primordial stars) are expected
to transport their angular momentum much less effective, thus leaving a faster rotating
iron core [177]. And, overall, the uncertainties in these progenitor models are still quite
large. So, the exploration of this mechanism looks still interesting, even if, probably, it
cannot be assumed to be the standard explosion mechanism, for all progenitor masses
and all possible metallicities, but maybe an alternative explosion scenario for peculiar
progenitors. The hypothesis of an infrequent explosion mechanism in primordial stars
could be also compatible with the abundances of r-process elements in the early Uni-
verse, assuming that these jets are very promising sites for r-process nucleosynthesis
[176].

The presence and the evolution of magnetic fields in massive (collapsing) stars is
not the only alternative explosion scenario. Several uncertainties characterize also the
behavior of matter at very high densities and temperatures. The effect on stellar core
collapse of a phase transition between hadronic and quark matter at densities a few
times above nuclear density and finite temperature has been recently investigated in
spherically symmetric models [145, 36]. For some of the obtained equations of state, the
phase transition inside the proton-neutron star generates a second strong shock, some
hundreds of milliseconds after the first bounce, which is able to explode the star. The
recent discovery of a almost 2M� neutron star [27] has seriously challenged the possibility
of this phase transition at relatively low baryon density, reducing the possible parameter
space, but without ruling it out completely [74].

19



1. Astrophysical background and motivations

1.2 Binary neutron star mergers

1.2.1 General description of the GRB scenario

Gamma-ray bursts (GRBs hereafter) are intrinsically powerful flashes of collimated high
energy radiation, whose isotropized values is typically ∼ 1051 erg (see, for example, [41]).
They happen in various types of galaxies and they are isotropically distributed at cos-
mological distances [93]. Since they were accidentally discovered in 1967 by the Vela
satellites [65], they have obstinately resisted against a definitive theoretical understand-
ing of the mechanism that triggers such enormous energy release. Their discovery has
nourished a furious research activity which gave birth to a large number of theoretical
models trying to explain the broad diversity in the behavior of GRBs, none of them
being fully conclusive. Nevertheless a general consensus exists on some basic facts:

• A neutron star or a black hole is the main responsible of the explosion.
Even though the radiation energy observed in GRBs already characterizes them
among the most energetic events in the Universe, the amount of energy globally
released by each of them is probably even larger: neutrinos, gravitational waves,
ejected matter and magnetic field can, in principle, store or release a meaningful
fraction of the initially available energy, which can rise up to a few times 1053erg.
Catastrophic events associated with the collision between stellar compact objects
(black holes and neutron stars) or the death of a massive star (which, in the end,
leads to the formation of a black hole or a neutron star) seem to be the best
candidates to explain the huge amount of energy which characterizes GRBs.

• GRBs are divided into two categories: short and long. Short ones have
typical durations of ∼ 0.3 s, while long ones last about ∼ 30 s. Approximately
25% of all observed GRBs belong to the first group.

• There are strong correlations between duration, spectra and redshift
distribution. Short GRBs have a spectrum that is harder (i.e. with a larger frac-
tion of high-energy photons) than long ones [69]. They are mainly detected at
lower redshift (zshort . 2), while long ones have a more uniform redshift distribu-
tion and are among the most distant events observed in the Universe (zlong . 10)
[40, 47]. These correlations suggest the existence of two different central engines,
each one associated to each category of GRBs.

Independently from the actual central engine, the GRBs emission has two phases:
the erratic gamma ray prompt phase and the smoother afterglow phase. According to
the most accepted model for the electromagnetic emission, these phases are powered
by a so-called fireball [93], which originates due to the injection of a large amount of
energy (> 1049 erg) in a small, relatively baryon-free volume (of the order of several
Schwarzschild radii of size). The resulting fireball consists in an optically thick plasma
that accelerates to ultra-relativistic speeds (Γ > 100) under its own pressure. This flow
of electron-positron pairs, photons and baryons cools by adiabatic expansion until it
becomes optically thin at large distances from the source (& 1013 cm). At this point, the
prompt electromagnetic emission is produced by the dissipation of part of the energy
in highly relativistic electrons, which in turn interact with the magnetic field or the
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radiation field via internal shocks in the flow, emitting the detected gamma rays. The
afterglow is generated later, when the remaining flow energy is transmitted to the ambi-
ent medium at larger radii (∼ 1016−1018 cm) and decelerates producing electromagnetic
emission. This scenario poses a serious constraint to any central engine model: in order
to obtain a high relativistic motion, the mass of the baryonic ejecta has to be small
enough, compared to the injected energy (for a typical GRB, smaller than ∼ 10−6 M�).
Therefore the study of how a system can inject a high amount of energy in a small
volume, without polluting it with baryonic matter, is one of most important issues to
understand the GRB scenario.

Any central engine model has to fulfill a list of constrains, which come directly from
GRB observations:

• the engine must provide the large energy reservoir, which is necessary to account
for the observed photon luminosity, as well as to explain its own dynamics; more
precisely, it has to explain how a fraction of the available energy is deposited in a
relatively baryon free region, in order to produce a highly relativistic outflow;

• the engine model and its dynamics must explain both the duration of the burst
and the small scale variability of the observed lightcurves;

• the compact objects associated with the engine, and the related events triggering
the burst, have to be compatible with the types of observed host galaxies and with
the GRB redshift distributions;

• the model has to provide an intrinsic variability, which could be correlated with
the huge diversity in GRB observations.

Considering all these constrains and the few basic facts about which there is a broad
consensus, the most promising basic ingredient needed to launch a GRB event should
be a rapidly accreting compact object (a solar mass black hole or a neutron star, even-
tually highly magnetized), surrounded by a massive disk of accreting matter. Two main
astrophysical scenarios are compatible with this recipe: 1.- A rapidly rotating, massive
Wolf-Rayet star that has lost its hydrogen envelope and has a massive 10 M� helium
core, which afterwards collapses, forming finally a black hole surrounded by a thick disk
of accreting matter. Or 2.- A binary system of two neutron stars (or a neutron star and
a black hole) that merge, due to the loss of angular momentum via gravitational wave
emission, forming, in the end, a black hole and a massive accretion disk.

Since the observation of an unambiguous re-brightening of the optical light curve
of GRB 030329 in 2003 by BEPPOSAX, it is generally accepted that at least some of
the long GRBs are related to certain supernovae events, and therefore to massive young
stars. This was also supported by the fact that long GRBs only occur in galaxies with
an active star formation. On the other hand, the observation of the first afterglow of
short GRBs in 2005 by the SWIFT satellite [11] showed that these can also occur in
host galaxies without star formation, pointing to an old progenitor population. Hence,
long GRBs are mainly supposed to be generated by the collapse of a massive star, or
collapsar model, while short GRBs are produced by the merger of compact objects,
namely the compact binaries model [117].
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1.2.2 Double neutron star mergers

Double neutron star binary system formation

Since their first direct detection, in 1967 by Anthony Hewish and his student Jocelyn
Bell who discovered the first pulsar, the number of observed neutron star has largely
increased, and it will certainly do so in the future. They appear in a large variety of
situations: they can be isolated or in binary systems, they can have an intrinsic pulsating
emission (typically, in the radio band, but not only) or they can have intense X-ray
emission, due to the accretion of matter from a standard companion star. Among all
these cases, a binary system formed of two neutron stars is certainly a system of high
scientific interest. Double neutron star systems are rare, because the original binary
system has to survive two supernova explosions. There are several evolutionary path
which can explain the existence of such systems. In the standard scenario, they originate
from a close binary system of two massive stars, with initial masses between ∼ 8M� and
∼ 25M�. The most massive star (the primary) will evolve faster than the other. During
the red giant phase, it will probably expand and fill its Roche-lobe, transferring mass
to the companion. Once the iron core of the primary has reached the Chandrasekhar
limit, the core will collapse, the star will explode, and a hot neutron star will be formed.
The kick imparted to the neutron star and the (probably related) asymmetric ejection
of matter can destroy the binary system. If the system survives, it likely has a very
high eccentricity. If the secondary star is still in its main sequence, it can transfer
mass to the neutron star and, eventually, be observed as a (high mass) x-ray binary
system. When the secondary evolves and, after its main sequence phase, expands, the
compact companion can be engulfed in a common envelope phase. This phase is very
critical for the binary system. Dynamical friction of the compact object over the dilute
envelope can lead to accretion over it and to a rapid shrink of the orbit. The angular
momentum and the energy released by the binary decay is carried away by the envelope,
which evaporates, leaving behind the naked core of the secondary (which is called He-
star). If the accretion on the neutron star is too intense, it may collapse into a black
hole, changing the nature of the primary compact object (whatever is the fate of the
secondary). In another extreme case, if the orbital decay is too effective, the neutron
star can fall on the He-star before the latter can undergoes any core collapse explosion.
Assuming that none of the previous cases happens, the neutron star descending from
the primary orbits in a very close orbit around a He-star, which explodes as a CCSN and
forms a second neutron star. If the binary system survives also the second explosion,
a binary system of neutron star has formed. A possible way to avoid problems arising
from the motion of a neutron star in a dilute envelope is to assume that the two initial
masses are almost equal. Under these conditions, the secondary star expands before the
primary explodes; the common envelope phase is characterized by the motion of two
He-cores in a dilute gas, and it ends with a close binary system of two He-cores. If the
binary system survives the two (close in time) explosions, a binary neutron star system
has formed.
Today, the number of observed double neutron star binary systems in our Galaxy is
around 10 (see, for example,[73] for the situation up to 2007). The first one was observed
already in 1973, and it is the famous Hulse-Taylor binary pulsar PSR 1913+16. This
system is truly considered as a wonderful laboratory to test gravitational physics in the
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strong field limit. Actually, several different effects have been observed, and the most
famous is the inspiral of the components, one towards the other. This effect is in excellent
agreement with the prediction from General Relativity [172]. Another remarkable aspect
of this binary system is that the mass of the two neutron star can be measured with
an accuracy of ∼ 0.014%: Mpuls,PRS1913+16 = 1.4414± 0.0002M� and Mpuls,PRS1913+16 =
1.3867± 0.0002M� [173].

Inspiral and coalescence

Nowadays, the most important supports to the existence of coalescing neutron star
binaries are the observed decrease of the orbital period of the Hulse-Taylor binary pulsar
PSR 1913+16 [56, 159]. If the orbital period Torb continuously decreases, together with
the orbital distance (measured by the semi-major axis of the orbit, a), the two neutron
stars will finally collide. According to General Relativity, this change in the orbital
parameter is due to the emission of gravitational waves, which extract orbital angular
momentum and energy out of the system. Losing angular momentum and energy, the
orbit shrinks and the velocity increases. As a consequence, the gravitational emission
becomes more intense and increases its frequency. It is easy to understand that such a
process will have a positive feedback, reducing faster and faster the orbital period. This
phase is called the inspiral phase and it proceeds slowly, due to the weak emission of
gravitational radiation at initial separation distances. Actually, the initial phase is the
bottleneck of the whole process. From the decay rate of the major semi-axis,
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where M is the total mass of the system, µ the reduced mass, and e the eccentricity,
and assuming initially Keplerian motion, it is possible to fit the inspiral timescale:
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For PRS1913+16, tinsp ∼ 3× 108 yr from now. From equation (1.27), it is clear that ec-
centricity plays a relevant role: systems with high eccentricity can inspiral much faster,
compared with circular binaries. Nevertheless, this tendency is partially contrasted by
the fact that, together with the reduction of the orbital period, the emission of gravita-
tional waves reduces also the eccentricity and tends to circularize the orbit (for a fixed
a, a circular orbit is the one which minimizes the angular momentum). But the fact that
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implies that the circularization is more effective in the last (shorter) phase of the inspiral
motion. Thus, a large eccentricity can potentially reduce the inspiral timescale.
After the inspiral phase, the two neutron stars form a close binary system of compact
objects: in the last seconds before coalescence, their relative distance reduces from ∼
100km up to a few radii (which are expected to be ∼ 10km), and the orbital period goes
from 0.1s to ∼ 1ms. Finally, when the relative separation is only a few times their radii,
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the merger process starts. The mutual tidal interaction deforms the objects, which touch
each other in a few milliseconds. After their contact, most of the mass falls in the center,
while two tails of matter (which become spiral arms due to the fast orbital motion) form
and spread away, removing the excess angular momentum. In the end, a very massive
(with a baryon mass of ∼ 2.7M�) and hot (T ∼ 10MeV) neutron star-like object has
formed in the center, surrounded by a thick torus of dense and hot matter (it has a
mass of ∼ 0.1M�, but cooler and less dense, compared with the central object). The
fast rotating supermassive neutron star (SMNS hereafter) is initially supported against
gravity by differential rotation. Due to viscosity and angular momentum redistribution,
it will collapse soon into a stellar black hole, with an expected gravitational mass of
∼ 2.5M�; but the timescales and the details of this process are still matter of debate
(see, for example, [128]). Matter in the disk orbits very fast, almost in Keplerian motion.
Nevertheless, the disk is far from a steady configuration, being characterized also by
strong turbulent motions and fast accretion onto the central object. The sudden rise in
temperature, as well as the high densities, trigger a copious neutrino production and
emission, for all neutrino favors. In the SMNS, Fermi gas of neutrinos of all flavors
are expected to form relatively fast after the coalescence. Similarly to the after bounce
phase of core collapse supernova, neutrinos are expected to diffuse out from the very
opaque regions, and to stream from the less dense outer part. This emission is the most
efficient way for the system to release energy, both the internal energy of the SMNS
and the gravitational energy converted into internal by the accretion process. Electron
antineutrino luminosity is expected to be the largest one, because the neutron rich
matter is expected to favor positron absorption on neutrons, Equation 1.20, over electron
absorption on protons, Equation 1.19. Thermal processes (like neutrino bremsstrahlung
or neutrino pair production) are also expected to be relevant for the all flavor production,
an in particular for νµ,τ and ν̄µ,τ .
In this scenario, the energy reservoir is mainly due to the gravitational energy released
passing from a binary system of orbiting NSs (mass ∼ 1.4M�, radius ∼ 10 km) to an
single SMNS (mass ∼ 2.7M�, radius ∼ 20 km), and it can be estimated to be a few
times 1053erg. Then, assuming that the emission will last for ∼ 1s (as a typical diffusion
timescale from the SMNS), we can already foresee that the total neutrino luminosity is
expected to be similar to the CCSN case (∼ 1053erg/s). The major source of opacity
for neutrinos is expected to be elastic scattering on nucleons, Eq. (1.22). As we have
already said, due to the high density in the SMNS and in the inner regions of the disk,
neutrinos will not simply escape freely, but they will diffuse out on longer timescales.
The relevant neutrino surfaces (which are the equivalent of the neutrinospheres in the
CCSN case) forms in different locations, according to the flavor. The most interactive
νe’s and ν̄e’s will have last production and last scattering surfaces in the inner part of
the accretion disk, but far from the SMNS surface; for νµ,τ ’s and ν̄µ,τ ’s, these surfaces
are expected to be much closer to the central SMNS (almost inside it). These differences
have a large impact on the places where neutrinos are finally expected to be emitted
and, consequently, on their spectrum: νµ,τ and ν̄µ,τ are expected to be harder, coming
from the hot SMNS, while νe and ν̄e should be softer, coming from the inner part of
the disk. Similarly to what happens at the material behind the shock wave in the core
collapse supernova context, along their paths, there will be a non-negligible probability
(in particular, for high energy neutrinos) of being re-absorbed by the nucleons in the disk.
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Few neutrino absorptions can cause a baryon to be ejected from the disk in the external
space: this is the so-called neutrino-driven wind. Because of the stronger centrifugal
force, the regions along the rotational axis (polar regions) are expected to have a lower
baryonic pollution. On the other hand, these are the regions where neutrinos coming
from the disk are expected to deposit more energy by neutrino-antineutrino annihilation,
[137] and [29]. This strong energy deposition in a relatively baryon-free region can be
a promising mechanism for the formation of the relativistic jet required by short GRBs
production. Together with neutrinos, magnetic field is expected to play a major role
during the collapse and in its aftermath. As it has been shown in detailed numerical
simulations [121], during the merger of a binary system of magnetized neutron stars,
magnetic fields inside the SMNS are strongly and quickly amplified, up to ∼ 1015− 1016

Gauss, on a timescale of ∼ 1ms. Moreover, more recent full general relativistic MHD
simulations [129] have revealed that, on longer timescale (∼ 30ms) the magnetic field
can reorganize it-self, creating a strong (∼ 1015 Gauss) poloidal field along the rotational
axis of the newly formed black hole. The interaction between the spinning black hole
and the magnetic field can, in principle, power a relativistic jet via the Blandford-Znajek
mechanism.

Even though both the neutrino and the magnetic field mechanism look promising for
the formation of a relativistic jet, the details of each of them are still poorly known. In
particular, it is not clear if the two mechanisms can act together or one dominates over
the other. But, in both cases, the degree of baryonic pollution above the poles of the
SMNS/BH represents a severe and crucial constraint, which requires a detailed analysis.

Gravitational waves, neutrinos, baryonic wind and electromagnetic radiations are not
the only possible outcomes and observables of a double neutron star merger. The highly
neutronized material is a suitable environment to produce heavy nuclei, as a result of
rapid neutron captures; this scenario makes neutron star mergers a promising candidate
site for r-process elements nucleosynthesis [42, 4, 49]. Three possible stages can lead to
a yield of escaping heavy nuclei within the coalescence process: 1.- The merger phase,
where a long tail of mass can be ejected during the decompression of the stars; 2.- The
accretion phase, when a small amount of mass is lost from the outer part of the disk;
and 3.- The baryonic neutrino-driven wind itself. Even more, the r-process represents a
non-negligible energy contribution to the thermal evolution of the accreting mass onto
the SMNS, which may explain the extended emission of X-rays that follows the prompt
burst in some short GRBs [94].

The problem of the coalescence of two neutron stars (and, more in general, the
problem of the coalescence of compact objects) is a complex problem, in which several
different interactions have to be considered at the same time. Altogether, they set the
physical scales for the relevant dynamical, thermodynamical and chemical quantities.
These scales usually span many orders of magnitude. Although this scenario is concep-
tually very different from the CCSN case, the main ingredients and the relevant scales
are very similar. Thus, as for the stellar collapse and explosion, numerical simulations
are a powerful tool to model and to investigate quantitatively the merger of two neutron
stars and their aftermath. The history of numerical simulations of double neutron star
merger is long and rich. Differently from CCSN simulations, the intrinsic non-sphericity
of the problem has prevented the possibility to simulate it in spherically symmetry.
Due to the larger computational power requested by axisymmetric simulations or full
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three dimensional models, and to the fact that the existence and the evolution of binary
neutron star systems have been investigated only after the 70’s, the first simulations
were performed only in the late 80’s. The list of ingredients which should be necessary
to be included in a full satisfactory model includes (magneto)hydrodynamics, General
Relativity, detailed microphysics and neutrino transport. Unfortunately, nowadays a
simulation which includes all these aspects in a satisfactory way is far behind our actual
computational capabilities. Then, several different approximated approaches have been
adopted. The first merger simulations were performed with three dimensional Newto-
nian codes, without taking into account neutrino emission or General Relativity (for
example: [109, 136] and references therein). Ruffert et al, [143, 144] included neutrino
emission, using a grid code; a similar approach was employed also by [137] in SPH codes.
The impact of magnetic fields in Newtonian models was included for the first time in
SPH simulations by [121] and [140].
The main goals of these simulations were to study, with increasing degree of accuracy
and reliability, 1) the dynamics of all the phases of the merger (from the final moments
of the inspiral motion, up to the dynamics in the accretion disk); 2) the properties of
the central SMNS, as well as the properties of the fast ejected matter; 3) the signal from
the gravitational wave emitted during the coalescence; 4) the neutrino luminosity and
spectrum during the merger and in the aftermath of it.
Recently, axisymmetric simulations of the neutrino emission and of the neutrino-driven
baryonic wind in the aftermath of neutron star mergers were performed, using a detailed
spectral neutrino treatment [29]. The main outcome of this study was that neutrino ab-
sorption can lead to the formation of a baryonic neutrino driven-wind. This wind can
pollute the regions above the disk and, partially, also the polar regions, while the energy
deposition due to neutrino annihilation is not enough to power a relativistic jet from
the poles. This study assumed always the presence of the SMNS (i.e., a long timescale
for the SMNS to collapse to a BH). This was probably a very important and relevant
hypothesis, because most of the neutrino emission and a good fraction of the baryonic
pollution in the polar funnels came from the surface of the SMNS.
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Chapter 2

ASL, an advanced spectral leakage
treatment for neutrinos in
astrophysical simulations

2.1 General concepts

The idea behind a leakage scheme for treating neutrino emission from an astrophysical
object is simple: the scheme has to provide a computationally inexpensive, but physi-
cally robust and motivated estimation of the amount of neutrinos emitted, and, together
with it, the energy released by them. This quantity has to be calculated in any point
of the system. Leakage schemes have a long history in computational astrophysical,
especially the ones regarding neutrino emission from core collapsing supernovae, from
forming black holes or from neutron star mergers.
In the context of radiation hydrodynamics, the requirement of a low computational
cost is often not compatible with the exact solution of the equations governing the
system: the diffusion equation and, even more, the Boltzmann equation require large
computational effort, increasing dramatically with the dimensions of the problem: then,
if state-of-the-art spherically symmetric simulations of core collapse supernovae can be
performed solving the full Boltzmann equation, axisymmetric and, even more, three di-
mensional simulations have to find a compromise between accuracy and performances.
In this respect, many different approximations have been developed, starting from Multi
Group Flux Limited Diffusion (MGFLD), application of multiple one-dimensional Boltz-
mann transports in many rays, SN method and, in the last years, the Isotropic Diffusion
Source Approximation (IDSA), developed in Basel [88], in the context of one and three
dimensional models of CCSNe.
A leakage scheme can be considered as an effective scheme. The reason is that, strictly
speaking, it is not based on the solution a fundamental set of equations, but it assumes
to know qualitatively their solutions in different part of the domain, and it tries to
mimic them accordingly. In this respect, the scheme has to be dynamic and to follow
consistently the evolution of the fluid. Then, even if the solutions are supposed to be
known, the detection of the conditions where they can be applied is on the most chal-
lenging part of the scheme. If this aspect is what makes these schemes very efficient
from a computational point of view, it is also their biggest limit: a leakage scheme, to
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be accurate, requires a calibration solution, where its free parameters can be set and the
overall agreement can be checked. Its reliability far from the calibration solution can be,
in principle, questioned.
A leakage scheme can be defined as a top-bottom way to treat radiation: from the
knowledge of the global behavior of neutrinos, it is possible to define a minimal scheme,
including only the most relevant reactions and a few physical processes. Once the very
basic scheme works, it is possible to add, in a progressive and controlled way, other
reactions and other details, which should increase the agreement with the calibration
solution. The robustness of the scheme is in its capacity to include new physics, with-
out changing its previous, basic structure. On the other hand, the reduced amount of
ingredients and their inclusion in an effective way make the evolution of the system
sometimes sensitive to the details of the implementation.
Another good point of these schemes is that their general picture is usually independent
of the number of spatial dimensions. Thus, even if they are often developed in one di-
mension, they can be adapted and exported to multi-dimensions with a relatively low
effort. Moreover, their basic concepts are usually not dependent on specific aspects or
details of the hydrodynamical code. So, the scheme can be passed from one code to a
different one again with a reduced amount of modifications, and without changing the
major aspects.
Despite its computational simplicity, such a scheme that provides accurate enough so-
lutions, spanning different hydrodynamical regimes and long evolution periods, is not
trivial to develop and to calibrate.
All these properties make the choice of developing an accurate leakage scheme an in-
teresting and fruitful one: due to its relatively low computational cost, it can be used
for large parameter space exploration; due to its adaptivity, it can be implemented in
very elaborate hydrodynamical codes in multi-dimensions, or in codes where a standard
treatment for neutrino transport is still not available.

Modern leakage schemes have a central quantity, on which almost all the others
depend: the optical depth. The optical depth τ (which will be discussed in more detail
in the next Chapter) is defined as the path integral of the inverse mean free path:

τγ =

∫
γ

1

λ
ds (2.1)

calculated on a suitable path γ. From a physical point of view, it is a measure of the
global opacity of a certain radiation (photons or neutrinos), where “global” means that
it is measured in relation with the whole system, and not just on the local properties
of matter. It counts the number of interactions that a radiation particle experiences,
before leaving the system. Let’s assume to consider a neutrino emitted in one point of
the system, of which we know everywhere the optical depth τ . We distinguish between
three cases:

• τ � 1; in this case, the radiation particle is in a diffusive regime, because it
can not stream out freely, but it has to diffuse, interacting several times with
matter, before reaching more transparent areas. In the case where the diffusive
timescale is even larger than the typical dynamical timescale, the radiation can be
considered trapped. Due to the kind of interactions that provide neutrino opacity,
the radiation can be in thermal equilibrium or not with the matter: in case of
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production processes (like the production of an electron neutrino due to electron
capture on a proton) or scattering with particles with (total) energy similar to
the energy of the neutrino, the interaction is very effective in exchanging energy
between the radiation and the fluid, and neutrinos are in thermal equilibrium; if
the interaction is not able to exchange energy in an efficient way (like in the case of
scattering on very massive particles), the radiation field is practically thermically
decoupled from matter. Due to the very low cross section of neutrino interactions,
a plasma needs extreme conditions of densities and temperature to be able to trap
neutrinos.

• τ ∼ 1; this is the most complicated regime, known as semi-transparent regime,
where neutrinos just make a few interactions, before leaving. A detailed balance
between the local radiation density, the rate of production and a rate of diffusion
is here needed.

• τ . 1; this is called free streaming regime. In this case, radiation particles that are
produced just stream out freely, almost with no interaction with matter.

From the local properties of matter, it is possible to calculate the rates at which
neutrinos are emitted (and also absorbed); we call these rates production (absorption)
rates, Rprod,ν (Rab,ν), and we assume to express them in units of [particles/g/s]. In
the diffusive regime, we have that, due to the high temperature and high density, the
production rates are extremely high, as well as their inverse absorption reactions. If the
interactions with matter limit the possibilities for neutrinos to stream away, they will
stay within the fluid elements, forming a Fermi gas in thermal equilibrium with matter.
If the rates are high enough (and this has to happen in order to have a diffusive neutrino
gas in thermal equilibrium), they almost cancel each other. The net difference is just
the necessary rate to form the gas and, eventually, replace neutrinos leaving the fluid
element. Due to temperature and density (both matter and electron density) gradients
inside the plasma, the rates are not the same everywhere, but vary locally. The random
motions of radiation particles, together with these slightly different rates, create a net
flux of neutrinos from the more to the less opaque regions. This rate is called diffusion
rate, Rdiff,ν , expressed, for example, in [particles/g/s]. If tdiff is the diffusion timescale,
the rate and the timescale are related by

Rdiff,ν ≈ ρ
nν
tdiff

(2.2)

where nν is the volume density of neutrinos and ρ the density of matter.
On the other hand, in the opposite extreme case of free streaming neutrinos, the reaction
rates are not high enough to provide equilibrium between emission and absorption,
as well as to limit the effective speed of neutrinos. In these conditions, the emitted
neutrinos do not interact locally with matter, do not form a gas, but they leave the fluid
element keeping their properties untouched (for example, maintaining their production
energy spectrum). In this regime, the definition of a diffusion rate could be inconsistent.
However, it is possible to extend the previous definition, estimating the diffusion rate
that a neutrino gas should have if it were trapped and in equilibrium with matter
at the typical thermodynamical conditions characterizing the free streaming regime.
Considering the fact that the diffusive timescale tends to the smaller free streaming one
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in a transparent medium, and that the production rate is usually not high enough to
contrast neutrino emission in forming a local gas, the (potential) diffusive rates is here
expected to be larger than the production one.
Thus, we can summarize these two situations in the table 2.1.

τ Expected regime Rprod, Rab Rdiff

and rate

diffusive: very high, to provide much lower than
τ � 1 Rdiff opacity and a Fermi the production

gas of ν rate
free streaming: relatively low (potentially)

τ < 1 Rprod production, and higher than
lower absorption the production

Table 2.1: Summary of the main rates properties in the optically thick and optically
thin regimes.

The intermediate situation (the semitransparent regime, where τ ∼ 1) does not fall in
any of the previous cases. The modeling of that regime is very challenging, and probably
only a detailed solution of the Boltzmann equation can describe the subtle behavior of
the neutrino distribution functions in that regions, where production, absorption and
diffusion really compete. Every leakage scheme has to provide a smooth, conservative
interpolation in that regime, without pretending to describe what really happens there;
but just contenting of not overestimating the emission of neutrinos from that area.

Traditionally, leakage schemes have been associated with the treatment of the main
aspects of neutrino cooling processes. The inclusion of heating terms, both for the dif-
fusive and the free streaming regime, has posed always great problems. We mention,
mainly, two of them: the first one is the non-local aspect of the heating process: neutrino
re-absorption usually happens in a place far from the production place. The modeling
of non-local phenomena usually limits the computational efficiency of a scheme. The
second one is the fact that the process of absorption in relatively cold regions is very
sensitive to the energy of the neutrino emitted by the hot and dense cooling regions.
Being based on the local properties of matter, the energy of the emitted neutrinos are
not affected by the important thermalization processes which usually happens during
diffusion. This lack translates into too hard neutrino spectra, which enhance artificially
(i.e., overestimating) the absorption rates.

The new treatment we have developed would like to be a synthesis of all the aspects
we have briefly mentioned: a computationally and conceptually inexpensive scheme,
which includes all the relevant neutrino physics and processes, and which can be adapted
to different codes, different dimensions, different geometries and even different astrophys-
ical scenarios. It differs from most of the previous leakage schemes because it retains
information, not only about the neutrino flavor, but also about the neutrino energy (i.e.,
it is a spectral scheme, where neutrinos with different energies are treated separately).
Moreover, we tried also to include a simplified, but physically motivated, model of the
diffusion and thermalization process, in order to take into account also a heating term.
In the next section, we will describe the grey scheme, which has been our staring point.
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Then, we will describe the new spectral, advance scheme we have developed, and we
will calibrate/validate it against detailed spherically symmetric core collapse supernova
simulation, performed solving the Boltzmann equation for neutrino transport.

2.2 Our starting point: a previous leakage scheme

The starting point of the new treatment is a grey leakage scheme, currently used by
Stephan Rosswog in his SPH simulations. This scheme has been developed by Stephan
Rosswog and Matthias Liebendörfer, and its description can be found in the appendix
of [137]. This appendix is here summarized and reported, in the spirit of introducing
some relevant concepts for the new scheme.
We mention also that this scheme is similar to another leakage scheme, which was
developed also in the context of neutron star merger, and whose description can be
found in the appendix of [143]. Nevertheless, some important differences are present.

The goal of the scheme is to provide effective neutrino cooling rates, both for energy
and for particles emission. The effective emission rates are obtained as smooth interpo-
lations between diffusion and local production rates. If we denote for a given neutrino
species νi the number emission rates by Reff,νi per volume and energy emission rates per
volume by Qeff,νi , the prescription for the effective rates reads

Reff,νi = Rprod,νi

(
1 +

Rprod,νi

Rdiff,νi

)−1

(2.3)

Qeff,νi = Qprodνi

(
1 +

Qprod,νi

Qdiff,νi

)−1

. (2.4)

The quantities labeled by “prod” denote the locally produced rates of number and en-
ergy, while the label “diff” refers to the diffusion rates. In the transparent regime, where
the diffusion timescale tdiff,νi is short, and therefore Rdiff,νi � Rprod,νi and Qdiff,νi �
Qprod,νi , all the locally produced neutrinos stream out freely. In the very opaque regime,
where tdiff,νi is large, the neutrinos leak out on the diffusion timescale. Therefore both
limits are treated correctly, the regime in between these limits is handled via interpola-
tion.
In the following, we will present the way in which the different rates are calculated.

2.2.1 Free Emission Rates

In the following expressions, the electron mass and the nucleon mass difference, Q =
mn −mp = 1.2935 MeV have been neglected, in all the cross sections [166]. Moreover,
neutrinos are assumed to be in thermal equilibrium with matter; thus, the neutrino
temperature is identical to the local matter temperature; where it is needed, neutrinos
are assumed to follow a Fermi-Dirac distribution. The chemical potentials of the νµ,τ
are generally assumed to vanish, while for νe and ν̄e weak equilibrium values apply

µνe = −µν̄e = µ̄e − µ̂−Q, (2.5)

wherever they occur in the sequel. Here µ̄e is the electron chemical potential (with rest
mass) and µ̂ is the difference in the neutron and proton chemical potentials (without
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rest mass). Degeneracy parameters µi/T are denoted by ηi, (temperatures are always in
units of energies).
With these approximations and ignoring momentum transfer to the nucleon, the electron
capture rate per volume reads

REC = β ηpnT
5F4(ηe), , (2.6)

with

β =
π

h3c2

1 + 3α2

(mec2)2
σ0. (2.7)

Here h is Planck’s constant and c the speed of light, α ≈ 1.25, me is the electron mass,
σ0 ≈ 1.76 · 10−44cm2. Fn is a Fermi integral given by

Fn(z) =

∫ ∞
0

xndx

ex−z + 1
. (2.8)

The factor ηpn given by

ηpn =
nn − np

exp(µ̂/T )− 1
, (2.9)

takes into account the nucleon final state blocking and reduces in the non-degenerate
limit to the proton number density np, nn refers to the neutron number density. Following
the analogous procedure, one finds for the energy emission rate

QEC = β ηpnT
6F5(ηe), (2.10)

and for the mean energy of the emitted neutrinos

〈Eνe〉EC =
QEC

REC

= T
F5(ηe)

F4(ηe)
. (2.11)

The corresponding rates for positron captures read

RPC = β ηnpT
5F4(−ηe), (2.12)

QPC = β ηnpT
6F5(−ηe), (2.13)

〈Eν̄e〉PC = T
F5(−ηe)
F4(−ηe)

, (2.14)

where ηnp is obtained from ηpn by interchanging the neutron and proton properties.
The “thermal” processes are taken into account via fit formula. For the energy emission
from the pair process, the prescription of [57] can be easily used. The number emission
rate is obtained by dividing by the mean energy per neutrino pair, given by [25]:

〈Eνiν̄i〉pair = T

(
F4(ηe)

F3(ηe)
+
F4(−ηe)
F3(−ηe)

)
. (2.15)

The total production rate is obtained just summing up all the rates of the relevant
reactions:

Rprod,νe = REC +
1

2
Rpair (2.16)

Rprod,ν̄e = RPC +
1

2
Rpair (2.17)

Rprod,νµ,τ =
1

2
Rpair (2.18)

32



2.2. Our starting point: a previous leakage scheme

2.2.2 Diffusive Emission Rates

The dominant sources of opacity are

(i) neutrino nucleon scattering:

νi + {n, p} → νi + {n, p} (2.19)

with σνi,nuc = 1
4
σ0

(
Eνi
mec2

)2

(ii) coherent neutrino nucleus scattering:

νi + A→ νi + A (2.20)

with σνi,A = 1
16
σ0

(
Eνi
mec2

)2

A2(1− Z/A)2.

Here A and Z are the nucleon and proton number of the average nucleus provided
by the nuclear equation of state. Due to the A2-dependence of the cross section this
process will dominate as soon as a substantial fraction of heavy nuclei is present.

Electron type neutrinos additionally undergo

(iii) neutrino absorption:

νe + n→ p+ e− (2.21)

ν̄e + p→ n+ e+ (2.22)

with σνe,n = 1+3α2

4
σ0

(
Eν
mec2

)2

〈1− fe−〉,

and σν̄e,p = 1+3α2

4
σ0

(
Eν̄
mec2

)2

〈1− fe+〉,

where
〈1− fe−〉 ≈ (exp(ηe − F5(ηνe)/F4(ηνe)) + 1)−1

and
〈1− fe+〉 ≈ (exp(−ηe − F5(ην̄e)/F4(ην̄e)) + 1))−1

are good approximations for the Pauli blocking factors.
Once the cross sections have been calculated, the local mean free path is given by

λνi(E) =

(∑
r

nrσr(E)

)−1

≡ (E2ζνi)
−1, (2.23)

where the nr denote the target number densities, the index r runs over the reactions
given above with cross-sections σr and E is the neutrino energy. The dependence of the
cross-sections on the squared neutrino energies has been separated out in the definition
of ζνi . The optical depth, τ , along a specified path is then given as

τνi(E) =

∫ x2

x1

dx

λνi(E)
. (2.24)

33



2. ASL, an advanced spectral leakage treatment for neutrinos in astrophysical

simulations

In this original scheme, the optical depths are evaluated in axisymmetry, using a local
ray-by-ray approach, i.e. along three directions from each grid point: in Z-direction
(τ 1
νi

), i.e. parallel to the rotational axis, along the outgoing diagonal (τ 2
νi

) and along the
ingoing diagonal (τ 3

νi
). The finally used optical depth, (τνi), is the minimum of the three,

τνi = min(τ 1
νi
, τ 2
νi
, τ 3
νi

). Note that the quantity χ is independent of the neutrino energy
and the (energy dependent) optical depth is given by

τνi(E) = E2mind(χ
d
j,νi

) ≡ E2χj,νi . (2.25)

The diffusion rate depends on the optical depth τνi . We base our estimates on a very
simple, one-dimensional diffusion model. Along one propagation direction, we assume
equal probabilities for forward and backward scattering and impose strict flux conser-
vation in a stationary state situation. This leads to the following relationship between
the neutrino density J(E) and the neutrino number flux H(E),

Hνi(E)

cJνi(E)
=

1

2τνi(E) + 1
. (2.26)

This relationship was tested against a complete numerical solution of the diffusion equa-
tion (e.g., in a supernova environment where all relevant opacities are included) and an
agreement to about a factor of two was found. If the thermodynamical conditions and
the neutrino densities along the propagation direction are set, relation (2.26) defines a
local neutrino number flux Hνi(E) which in general no longer obeys flux conservation
in a stationary state situation. Assuming that we still have a stationary state situation
and that the fluxes are locally well represented, we can use the balance of fluxes across
a infinitesimally thin layer perpendicular to the propagation direction to obtain an es-
timate of the rate Rνi of neutrinos produced in this layer. Denoting the propagation
direction with x, we express the rate in terms of the prevailing neutrino density and a
diffusion time scale tdiff,νi,x with

Rdiff,νi(E) =
∂Hνi(E)

∂x
=

Jνi(E)

tdiffνi(E)
. (2.27)

The substitution of eq. (2.26) for Hνi leads to spatial derivatives of the neutrino density
Jνi(E) and the optical depth τνi . As the latter is given by the negative inverse mean free
path, −1/λνi(E), eq. (2.27) can be solved for the diffusion time scale according to

tdiff,νi(E) =
2τνi(E) + 1

c

(
∂ ln Jνi(E)

∂x
+

2

(2τνi(E) + 1)λνi(E)

)−1

. (2.28)

This estimate can be re-written with a distance parameter, ∆x(E), to obtain

tdiff,νi(E) =
∆xνi(E)

c
(2τνi(E) + 1) , (2.29)

∆xνi(E) =

(
∂ ln Jνi(E)

∂x
+

2

(2τνi(E) + 1)λνi(E)

)−1

. (2.30)

In our scheme ∆x defines the effective width of a layer drained by the diffusive flux,
i.e. provides the conversion between a net emitted neutrino flux (number/s/cmˆ2) and
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a production rate (number/s/cmˆ3). The spatial derivative of the neutrino density in
eq. (2.30) is quite inconvenient, one would prefer a diffusion timescale that does not
depend on neutrino densities. Hence, this term has been neglected. In physical terms
this means that neutrino sources keep the neutrino density close to constant over a
spatial interval where the mean free path changes significantly. The expression for the
distance parameter, however, greatly simplifies to

∆xνi(E) =

(
τνi(E) +

1

2

)
λνi . (2.31)

If we go back and use τνi ∼ 1 for the “last interaction region” to simplify eq. (2.26)
further by the approximation

Hνi(E)

cJνi(E)
=

1

3τνi(E)
,

we obtain

tdiff,νi(E) = 3
∆xνi(E)

c
τνi(E) (2.32)

by the same analysis used to derive eq. (2.29). However, the distance parameter is then
given by

∆xνi(E) = τνi(E)λνi(E). (2.33)

The equations (2.32) and (2.33) have been chosen as final expressions because the linear
dependence in τνi allows the extraction of the energy dependence as in eq. (2.25).

Approximating the neutrino distribution function in the high-density regime with a
thermal equilibrium distribution, the application of the diffusion timescale leads to an
estimation of the diffusion rates

Rdiff,νi =

∫ ∞
0

ñνi(E)

tdiff,νi(E)
dE =

4πcgνi
(hc)3

ζνi
3χ2

νi

TF0(ηνi) (2.34)

Qdiff,νi =

∫ ∞
0

Eñνi(E)

tdiff,νi(E)
dE =

4πcgνi
(hc)3

ζνi
3χ2

νi

T 2F1(ηνi) (2.35)

with

〈Ediff,νi〉 =
Qdiff,νi

Rdiff,νi

= T
F1(ηνi)

F0(ηνi)
. (2.36)

Here ñνi(E) is related to the number density by nνi =
∫∞

0
ñνi(E)dE. The statistical

weights gνi are 1 for νe and ν̄e and 4 for νx. After the second equals sign in eqs. (2.34)
and (2.35) we have inserted the explicit estimate (2.32) for the diffusion time scale and
(2.33) for the distance parameter.

2.2.3 Application: a grey leakage scheme for νµ,τ and ν̄µ,τ neu-
trinos

The leakage scheme which was presented in the previous section, has been implemented
for the νµ,τ neutrinos and their antiparticles ν̄µ,τ , in the context of core collapsing super-
novae. The goal was the implementation of a local cooling term, which could take into
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account the important release of energy, due these neutrinos species, in three dimen-
sional CCSN simulations, performed with the ELEPHANT supernova model. This model
is built from different codes: the outer stellar layers are evolved in spherical symmetry
by the implicit general relativistic hydrodynamics code AGILE [87] . The innermost
part of the simulation, extending to about 500 km radius, is covered by an equidis-
tant three-dimensional Cartesian mesh. The state vector in this inner 3D computational
domain is evolved by our code FISH [63], which solves the MHD equations. FISH im-
plements a Riemann-solver-free central method, where the magnetic field is guaranteed
to be solenoidal by a dimensionally split constrained transport method. The algorithm
is second order accurate in both, space and time. A newly developed general method
for the treatment of the gravitationally induced source terms near steady states reduces
the dissipation of the advection scheme in the PNS to a minimum. A more extended
description of this code will be provide in Chapter 4. FISH includes a spherical ap-
proximation to the solution of the Poisson equation for self-gravity. Full 3D solution
algorithms are currently being implemented. For all variants, general relativistic effects
are approximated by an effective potential [89], that takes the dominant monopole term
into account. Spectral neutrino transport for the electron flavor neutrinos is treated by
the IDSA [88]. The IDSA features 3D advection, diffusion and compressional heating
of trapped neutrinos, and it retains the spectral information of outstreaming neutrinos.
The advection of the trapped neutrinos is evolved together with the hydrodynamics,
while the diffusion of neutrinos and the evolution of the magnetic field is operator split.
The outstreaming neutrinos provide a spherically symmetric background flux from which
neutrinos are absorbed in the semi-transparent and optically thin regime. A consistent
solution between the split diffusion and outstreaming/absorption updates is found by it-
erations within each time step. In the spirit of investigating the delayed neutrino-driven
explosion mechanism, the emission and the absorption of electron neutrinos and antineu-
trinos have to be modeled with great care. On the other hand, νµ,τ and ν̄µ,τ interact
only via neutral current reactions with matter in CCSNe. Then, their role is mainly to
cool the protoneutron star, without interacting further with the accreting layers, once
they have been emitted from the neutrino surface. This is the reason why we decided to
implement a leakage scheme to model them.

The scheme estimates the energy released by each fluid elements, interpolating the
production and the diffusion rates, according to Eq.(2.4). Because of the neutral current
reactions, the lepton number is assumed to be always 0 (i.e., the amount of emitted
neutrinos and antineutrinos always balance). For these reason, we just focus on the
energy rates, and we neglect the number rates. The reaction which is considered as the
main source of neutrinos is the pair production:

e+ + e− → νµ,τ + ν̄µ,τ

The associated production rates are calculated using the interpolating formulae provided
by [57], which give directly the production rate, once the thermodynamical conditions
are specified:

(ρ, T, Ye)→ Rprod

where ρ is the matter density, T the temperature and Ye is the electron fraction. Other
processes are relevant for the production of those neutrinos in the centre of CCSNe,
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mainly the neutrino bremsstrahlung and the pair production from electron neutrino-
antineutrino annihilation,

N +N → N +N + νµ,τ + ν̄µ,τ

νe + ν̄e → νµ,τ + ν̄µ,τ

It has been shown that these processes have even larger rates, compared with electron-
positron annihilation, [15] and [162]. But these processes are dominant deep inside the
neutrinosphere. There, we do not need to model the production rates correctly: they just
need to be higher than the diffusive rates. Outside the neutrinosphere, in the transparent
region, electron-positron annihilation is the most relevant source of neutrinos. This is
why we included only that reaction. To model the diffusive process, we need the most
relevant opacity sources. Neglecting any distinction between thermalization and elastic
scattering processes, we include the scattering on nucleons and on nuclei, as the major
opacity source. The diffusion timescale is calculated according to the prescription 2.32,
but we write it in this form:

tdiff,νi(E) = αdiff
∆xνi(E)

c
τνi(E) (2.37)

keeping αdiff as a free parameter (αdiff ∼ 1), whose value has to be defined by comparison
with detailed simulations. From the diffusion timescale, the diffusion rates are calculated
according to 2.35, where

nνµ,τ (E) =
4π

(hc)3

1

1 + exp (E/T )
E2

(the chemical potential is assumed to be 0 for νµ,τ and ν̄µ,τ ).
As a first step, the scheme was implemented in the spherically symmetric CCSN

model AGILE-BOLZTRAN [87]. BOLZTRAN is a multiflavor spectral neutrino transport code,
which solves the Boltzmann equation for νe, ν̄e, νµ,τ and ν̄µ,τ , assuming spherically sym-
metric hydrodynamics. BOLZTRAN solves the transport equation using finite differences,
on a grid with is centered in the zones evolved (at the edges) by the AGILE code
[98, 85, 87, 84, 81]. The energy spectrum is usually discretized with 20 energy bins,
which cover the interval 3MeV ≤ Eν ≤ 300 MeV; the local neutrino direction is dis-
cretized by Nθ propagation angles θ, which are the angles between the possible neutrino
momenta and the local radial direction. Typical values for Nθ go from 2, in the case of
test runs, to 4 or 6 in the case of production runs. We added the grey leakage scheme,
as an alternative to the BOLZTRAN treatment for νµ,τ and ν̄µ,τ , while we kept the νe and
ν̄e BOLZTRAN treatment untouched. The scheme calculated the effective energy rates for
a single neutrino species; the result is, then, multiplied by four (because of the four
species); then it is added to the energy variation due to νe and ν̄e, and passed to the
hydrodynamical code.
We performed simulations using Lattimer-Swesty equation of state, with nuclear com-
pressibility K = 180MeV; as initial profile, we took a 15M� progenitor model from
Woosley and Weaver (1995). We performed two simulations with the full AGILE-BOLZTRAN
code: the first one with all neutrino species included and with all the implemented re-
actions (in particular, neutrino pair production, neutrino bremsstrahlung and neutrino
electron scattering for νµ,τ and ν̄µ,τ ). The second one, only with νe and ν̄e, without any
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treatment for the heavy flavor neutrinos.
The first simulation was assumed to be our calibration model. The second one is a useful
comparison model, to see when and how much νµ,τ and ν̄µ,τ neutrinos affect the evolution
of the model. Then, we re-started the first simulation just after bounce, and we per-
formed several different runs with AGILE-BOLZTRAN for the electron flavor neutrinos, and
the leakage scheme to take into account heavy flavor neutrino emission. We varied the
αdiff parameter, to find the closest agreement. We report here some snapshots, taken at
different time after bounce. To compare different models, we decided to compare directly
the different radial profiles of four relevant hydrodynamical quantities: the fluid radial
velocity, the matter density, the fluid entropy and the electron fraction. We plot on the
same graphs four different models: the two full AGILE-BOLZTRAN calculations, and two
models with the leakage scheme for νµ,τ and ν̄µ,τ , one with αdiff = 3 and the other with
αdiff = 6. We consider four different times after bounce, representing different moments
and conditions in the system evolution: tpb = 50 ms, which is still close to bounce and
which is for sure located at the end of the prompt shock expansion phase; tpb = 100 ms,
which is at the beginning of the νe and ν̄e heating phase;tpb = 250 ms, which is located
at the end of the νe and ν̄e heating phase; and, finally, tpb = 500 ms, which represents
the late cooling phase.

Figure 2.1: Comparison between our reference case (full AGILE-BOLZTRAN run, blue
lines), a test case without νµ,τ and ν̄µ,τ (red lines), and two runs with the leakage
scheme for heavy flavor neutrinos presented in the text, with two different parameters
diffusion parameter, αdiff = 6 (black lines) and αdiff = 3 (cyan lines), at tpb = 50 ms.
The plotted quantities in the panels are radial profiles of the radial velocity (top left),
of the baryon density (top right), of the entropy (bottom left) and of the electron
fraction (bottom right).
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Up to tpb = 50 ms the impact of νµ,τ and ν̄µ,τ cooling is still sub-dominant: the
neutrino gas of heavy flavor neutrinos has already formed due to the high temperatures
reached in the shock, but their luminosity is still smaller compared with the one of
νe and ν̄e. This is visible in the small distance in the shock position between the two
reference simulations in Fig. 2.1. In the next 50 ms, neutrino cooling due to νµ,τ and ν̄µ,τ
becomes more and more relevant, so that the model without them has a shock position
which is displaced by more than 30km from the reference run Fig. 2.2. Differences
between the two leakage runs arise: the αdiff = 3 case looks more pessimistic, because
it leads to higher luminosities. Due to the higher cooling rate, the protoneutron star
shrinks more rapidly, with larger entropy (and larger temperature). At tpb = 250 ms,
all the differences previously introduced, have increased dramatically, highlighting the
importance of having a good estimation for νµ,τ and ν̄µ,τ cooling, Fig. 2.3. Finally, we
use the profiles at tpb = 500 ms to test that the good agreement we have found for the
αdiff = 6 case, is not a transient feature, but it is preserved also on long timescales and
in late cooling phases, Fig. 2.4.

Figure 2.2: Same as figure 2.1, but at tpb = 100ms.

Overall, we can say that both the models with the leakage treatment show a good
qualitative agreement; especially the one with αdiff = 6 is also quantitatively very close
to the reference model. The larger discrepancies arise around tpb ∼ 250ms, but they
reduce later. Different attempts to include more physical processes and details have
been made, but without increasing the agreement. In particular, an attempt to include
neutrino bremsstrahlung in the non-degenerate limits was performed (using formulas
taken from [124]), but the run looked too pessimistic on long timescales. Nevertheless,
the assumption of thermal equilibrium inside the neutrinosphere implicitly assumes the
presence of many possible equilibrium reactions (like the bremsstrahlung emission or
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Figure 2.3: Same as figure 2.1, but at tpb = 250ms.

Figure 2.4: Same as figure 2.1, but at tpb = 500ms.

the neutrino-electron scattering), even without modeling explicitly the reaction rates.
After this encouraging test, the leakage treatment of the emission of νµ,τ and ν̄µ,τ
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was included as a module in the ELEPHANT supernova model by Matthias Liebendörfer
and Stuart Whitehouse, and also in the spherically symmetric publicly available code
AGILE-IDSA, at http://www.physik.unibas.ch/∼liebend/download/index.html .

2.3 The new ASL treatment

The successful implementation of a minimal leakage scheme to treat the emission of
νµ,τ and ν̄µ,τ in core collapse supernova models, motivated us to develop a more gen-
eral neutrino treatment. We named this new scheme Advanced Spectral Leakage (ASL)
treatment. The goals of the new scheme were mainly 1) to include all neutrino flavors in
a consistent way; 2) to be suitable for large multidimensional simulations, in very general
symmetry configurations; 3) to show a reasonable agreement with reference models, if
applied to radiation transport problems of which accurate numerical solutions are avail-
able. Concerning the point 3), we decided to use spherically symmetric core collapse
supernova models, obtained with the code AGILE-BOLZTRAN, as calibration models.

The first attempt in this direction was simply made by implementing the scheme pre-
sented in section (2.2) for all the three neutrino species (νe, ν̄e and νµ,τ ). The treatment
for νµ,τ and ν̄µ,τ was kept the same as the one presented in 2.2.3. The implementation
for the electron flavor was done using rates taken from [166] for the electron caption
of protons and for the positron capture on neutrons, as reported in Sec.(2.2.1). For the
opacity, we considered the inverse reactions (capture on neutrons and on protons, respec-
tively) and the scattering on nucleons and nuclei; for their numerical values, we followed
the prescription reported in 2.2.2. The new treatment was implemented in AGILE, com-
pletely parallel to BOLZTRAN. It shared with BOLZTRAN the interface with AGILE and the
passed quantities were the variations of internal energy, ė, and electron fraction, Ẏe, due
to neutrinos.
The scheme was tested in the core collapse supernovae scenario. We took a configuration
identical to the one used to test the νµ,τ and ν̄µ,τ leakage scheme: a 15M� progenitor
model with Solar metallicity, from Woosley and Weaver (1995), and we used Lattimer-
Swesty EOS. The collapse proceeded up to bounce, but the physical properties of the
system were different from what we expected from the reference model. In particular,
the electron fraction in the center was quite large ( Ye(R = 0) ≈ 0.37) and it didn’t
decrease any more after neutrino trapping (ρ & 1012g/cm3). We analyzed the results
and we found these possible sources of discrepancy:

• the leakage scheme presented in the previous section estimates, with the calculation
of the effective rates Reff , the amount of neutrinos that leave the fluid element;
they are assumed to be instantly emitted to infinity. But the scheme does not take
into account the possibility that, in the very opaque area, electrons and positrons
are converted into neutrinos, due to weak interactions, without leaving the system
instantly, but forming a gas of neutrinos. Actually, the scheme, as it is, evolves the
total lepton number, Yl, which is conserved after neutrino trapping, but not the
electron and the neutrino numbers individually, Ye, Yνe , Yν̄e and Yνµ,τ .

• the scheme is a grey scheme, i.e. it performs energy integrations of the rates to
find an average behavior. While this approximation can be good for an almost
steady, emitting source of neutrinos (like a protoneutron star in the late post
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bounce phase), its validity can be challenged in more dynamical phases (like the
collapse or the early post bounce phase, with the propagation of the shock wave in
the iron core): in these phases, the local properties of matter change rapidly and
detailed information about the neutrinos and their energy are required to model,
for example, which neutrinos are emitted and which are trapped. For example, in
Fig. 2.5, we plot the total optical depth for νe (left panel) and νµ,τ (right panel), for
different values of the neutrino energy, calculated along radial rays of our reference
core collapse model, at bounce. There are several notable aspects in those figures.
The main ones are the broad range of optical depths that occur inside the domain
(more than 10 orders of magnitude); and the large gap in τ that, at the same
radius, distinguishes between low energy and high energy neutrinos. The latter
difference depends on the quadratic energy dependence of neutrino cross section
(in particular, at relatively low energies).

Figure 2.5: Radial profiles of the νe (left panel) and νµ,τ (right panel) optical depth, at
bounce, calculated along radial paths, from opacities obtained in our CCSN reference
model (see the text for details). We choose different values for the neutrino energy,
ranging between 3 MeV and 90 MeV. The position of the shock wave at R ∼ 12 km is
clearly visible.

These considerations motivated us to extend the previous grey scheme to a new
spectral treatment, in which, if necessary, the trapped components of the neutrinos and
their temporal evolutions are also modeled.

Recently, a new approximated neutrino transport scheme was developed by Matthias
Liebendörfer in Basel (the Isotropic Diffusion Source Approximation, IDSA, [88]). This
transport scheme was implemented in the general relativistic, spherically symmetric
hydrodynamics code AGILE, and tested against AGILE-BOLZTRAN models of CCSNe. We
followed a very similar approach: we decided to implement the scheme in AGILE, using
an interface between the hydrodynamics and the neutrino treatment which is almost
identical to the one of IDSA. Then, we tested our results against AGILE-BOLZTRAN

solutions of the same problem. Even more, AGILE-IDSA has been a continous source of
inspiration and comparison, as well as a source of useful subroutines for the calculation
of some of the neutrino rates.
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The goal of this approach is also to provide a tool in which it is possible to switch
between different neutrino treatments, and different levels of accuracy (for example,
from a more accurate AGILE-IDSA νe,ν̄e-ALS νµ,τ , ν̄µ,τ to a less accurate AGILE-ASL νe,
ν̄e).

2.3.1 The coupling with the hydrodynamics and the role of the
Equation of State

In the following, we will consider a hydrodynamical system at time t, which is evolving
in time with a step dt. The system is described by its density ρ(x, t), temperature T (x, t)
and electron fraction Ye(x, t), and by its velocity field v(x, t). To be more general, we
will consider a three dimensional problem; if not explicitly stated, no symmetries are
assumed. To keep the equations as simple as possible, we assume Newtonian gravity
and, if not explicitly mentioned, we will consider a fix time t (so, all the temporal de-
pendences are drop out).
The neutrinos present in the system can be fully described by their distribution func-
tions, f(x,p). Depending on the local opacity of matter and on the local interaction
rates, the behavior of these neutrinos moves between two extreme cases: they can be con-
sidered as trapped particles, when they interact locally with the fluid and on timescales
shorter than any other dynamical or diffusive timescale; in this limit, they can be col-
lectively thought of as a neutrino gas, which is almost in thermodynamical equilibrium
with the fluid. On the other hand, when matter is locally transparent to them and,
once they are produced, they can just stream away, at the speed of light, they can be
considered as free streaming particles. When they are present, trapped neutrinos can
be described isolating their contribution to the total distribution functions: this contri-
bution is called f t(x,p). We assume that the trapped component of f has no explicit
angular dependence in the momentum space, so that its dependences become f t(x, E).
Integration over the neutrino phase space gives information about the particle and the
energy fractions (Yν and zν , respectively) of the neutrino gas, which is embedded in the
fluid and, actually, behaves like a fluid component:

Y t(x) =
4π

(hc)3

mb

ρ(x)

∫
f t(x, E)E2dE (2.38)

Zt(x) =
4π

(hc)3

mb

ρ(x)

∫
f t(x, E)E E2dE (2.39)

The dynamics of a system with matter and trapped neutrinos is given by the conservation
laws of hydrodynamics:

∂

∂t
U +∇ · F = g (2.40)
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where U is the vector of primitive variables, F the vector of fluxes and g is the source
term. A possible set of primitive variables and of the related fluxed are:

U =



ρ
ρv

ρ(e+ 1
2
v2)

ρYe

ρY t
ν,ν̄(

ρZt
ν,ν̄

)3/4

 F =



vρ
vρv + Ip

vρ
(
e+ 1

2
v2 + p

ρ

)
vρYe

vρY t
ν,ν̄

vρZt
ν,ν̄


. (2.41)

where e is the specific internal energy, p the fluid pressure and v is the modulus of
the fluid velocity. The momentum equation and the energy equation have source terms
which are related to the gravitational field, φ:

ggrav =


0

−ρ∇φ
−ρv · ∇φ

0
0
0

 (2.42)

which can be obtained from the Poisson equation:

∇2φ = 4πGρ. (2.43)

Also the interaction between neutrinos and matter provides contributions to the source
term. These terms are related to the energy and particles emission in form of neutrinos,
to the conversion between neutrinos and electron/positrons, and to the pressure provided
by the neutrino gas in its trapped component:

gν =



0
ρv̇
ρė

ρẎe

ρẎ t
ν,ν̄(

ρŻt
ν,ν̄

)3/4


. (2.44)

The goal of the ASL scheme is the estimation of the neutrino source term, gν from the
actual values of the thermodynamical state U of the system.
The hydrodynamics equations (2.40) need a closure relation to be solved; this relation
is provided by the Equation of State (EOS). More explicitly, the EOS can be seen as
a known function, whose arguments are a set of three independent thermodynamical
parameters, which specifies univocally the thermodynamical state of the system; they
can be, for example, density, temperature and electron fraction:

(ρ T Ye)EOS in. (2.45)

The EOS provides the specific internal energy of matter e [erg/g], and the pressure
p [erg/cm3], which are directly needed for the hydrodynamics equations; but also several
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other quantities can be obtained from the EOS and some of them will be important for
the neutrino treatment: the abundances of all considered particle species (protons Yp,
neutrons Yn, alpha particles Yα and heavy nuclei Yh), the electron chemical potential
µe[MeV], the difference between the proton and neutron chemical potential µ̂[MeV] and
the entropy per baryon sb [kB/baryon]. So, we indicate the EOS output as

(e p Yp Yn Yα Yh µe µ̂ sb)EOS out. (2.46)

Summarizing the interplay between the hydrodynamics and the neutrino treatment, we
can conclude that the quantities which are needed as input are:(

ρ(x) Ye(x) T (x) Y t
ν (x) Zt

ν(x)
)

leaklage in
(2.47)

where

• ρ[g/cm3] is the matter local density;

• Ye[particels/baryon] is the local electron abundance;

• T [MeV] is the local matter temperature;

• Y t
ν [particles/baryon] is the local trapped neutrino fraction;

• Zt
ν [MeV/baryon] is the energy per baryon stored in the local trapped neutrinos.

And the quantities which are determined by the neutrino treatment and which are given
back to the hydrodynamics are:(

ė(x, t) Ẏe(x, t) v̇(x, t) Ẏ t
ν (x, t) Żt

ν(x, t)
)

leakage out
. (2.48)

More explicitly,

• ė [erg/g/s] is the rate of variation of internal energy, due to neutrino emission,
absorption and diffusion;

• Ẏe [particles/g/s] is the rate of variation of electron fraction due to neutrino pro-
cesses;

• v̇ [cm/s2] is the stress given by the trapped neutrinos and by the outgoing neutrino
flux;

• Ẏ t
ν [particles/baryon/s] is the variation of the trapped neutrino fraction;

• Żt
ν [MeV/baryon/s] is the variation of the energy per baryon stored in the trapped

neutrinos.
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2.3.2 Overview of the scheme

In this section, we present an overview on the neutrino treatment contained. A more
detailed description of some part of it will be done in the next paragraphs.
The scheme is designed for νe, ν̄e and νµ,τ and ν̄µ,τ . µ and τ neutrinos, as well as
their antiparticles, are treated in the same way. So, for compactness, we will refer to
them simply as νµ,τ . For each neutrino species, we perform a spectral treatment, i.e. we
distinguish between particles of different energies and we express all the main quantities
as a function of the particle energy.
The initial hydrodynamical state is characterized by the set of quantities (2.47):(

ρ(x) Ye(x) T (x) Y t
νe,ν̄e,νµ,τ (x) Zt

ν,ν̄,νµ,τ (x)
)

leaklage in
, (2.49)

Starting from this set, it is possible to compute two new quantities which will be, finally,
the ones affected by the net loss of neutrinos, according to the leakage prescription: the
total electron lepton number Yl[particles/baryon],

Yl(x, t) = Ye(x) + Yνe(x)− Yν̄e(x) (2.50)

and the total specific internal energy, u[erg/g]

u(x, t) = e(x, t) +
1

mb

(Zνe(x) + Zν̄e(x) + 4Zνµ,τ (x)). (2.51)

We notice that the contributions to Yl given by νµ,τ and ν̄µ,τ cancel in our approach.
The interaction between matter and neutrinos is provided by both neutral and

charged weak interaction processes. Among all the possible processes, we focus on a
reduced set of reactions, choosing the ones which are expected to be dominant. For
each production/absorption reaction, we need to compute the spectral emissivity and
absorptivity,

jν(E,x) [particle/s] χν,ab(E,x) [particle/s] (2.52)

as they are defined in the Boltzmann equation. For the scattering reaction, we compute
a scattering absorptivity,

χν,sc [particle/s], (2.53)

which is not related to any physical absorption, but it is linked to the scattering mean
free path, λν,sc = c/χν,sc. The total emissivity and the total absorptivity are computed
as the sum over all considered processes of each single emissivity. While the emissivity
provides the local rates of neutrino production, the absorptivity and the scattering rates
are the sources of the local neutrino opacity. The opacity can be expressed by the total
neutrino mean free path,

λν =
c∑

r

χab,ν,r +
∑
s

χsc,ν,s

(2.54)

where the indices r (s) run over all the considered absorption (scattering) reactions,
and λν represents the average distance between two consecutive neutrino interactions.
Its inverse, 1/λν , is the necessary quantity to compute the optical depth, according to
Eq.(2.1). The search for a suitable neutrino path in a more general context, will be the
topic of next chapter. In the following, we assume that, assuming some ad hoc paths or
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applying some more general algorithm, the local optical depth can be calculated from
the inverse mean free paths:

λν(E,x)→ τν(E,x) (2.55)

When the neutrino trapping conditions are fulfilled, we reconstruct the trapped compo-
nent of the distribution functions, f t, from the values of Y t

ν and Zt
ν ,

Yνi(x, t) −→ f tνi(x, t, E) for νi = νe, ν̄e, νµ,τ . (2.56)

To this end, we assume that the distribution functions tend to the equilibrium values,
represented by the Fermi-Dirac distribution functions of a neutrino gas in thermal and
weak equilibrium with matter

(fνi)eq =
1

e(E/T−ηνi ) + 1
for νi = νe, ν̄e, νµ,τ (2.57)

where ηνi is the neutrino degeneracy parameter. The degeneracy parameter used in these
expressions is always 0 for νµ,τ . For νe and ν̄e, it is not always the standard equilibrium
degeneracy parameter; in particular, we correct its expression so that ην = (ην)eq when
(anti-)neutrinos are in equilibrium with matter (i.e. when τν � 1), and ην ≈ 0 in the
transparent regime (i.e., when τν ∼ 0).
As Y t

ν and Zt
ν are advected, f t changes accordingly; but this is not the only possible way

to evolve the distributions functions: the local conversion of electron and positrons into
νe and ν̄e, the conversion of fluid energy into neutrino pairs (and the opposite absorption
processes), together with diffusion process, allow an “internal degree of freedom” for the
trapped components of the neutrino distribution functions:

f t(x, t+ dt, E) = f t(x, t, E) + ḟ t(x, t, E) dt (2.58)

where ḟ t is the distribution function rate due to neutrino production and diffusion. Once
the new, time evolved distributions functions are known, the evolved neutrino fractions
Y t
ν (x, t + dt) and Zt

ν(x, t + dt) can be calculated according to Eq.(2.38) and Eq.(2.39),
and the related rates are:

Ẏ t
ν (x, t) =

Y t
ν (x, t+ dt)− Y t

ν (x, t)

dt
(2.59)

and

Żt
ν(x, t) =

Zt
ν(x, t+ dt)− Zt

ν(x, t)

dt
. (2.60)

Neutrinos do not appear only as trapped fluid components; they can diffuse out of the
system, or just stream freely at the speed of light, according to their local mean free
path and optical depth. This is actually the main aspect to catch for a leakage scheme;
in our treatment, we calculate the emission rates directly from the emissivity

j(E,x)→ rν,em(E,x). (2.61)

where the specific rates rν,em(E,x) are linked with the total rate Rν,em(x) by

Rν,em(x) =
4π

(hc)3

∫
rν,em(E,x)E2 dE. (2.62)
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From the optical depth and the mean free path, we calculate the diffusion timescale ac-
cording to 2.37, and the specific diffusion rates according to a definition derived directly
from 2.34: (

f t(E,x), λ(E,x), τ(E,x)
)
→ rν,diff(E,x) (2.63)

where

Rν,diff(x) =
4π

(hc)3

∫
rν,diff(E,x)E2 dE (2.64)

Finally, the effected rates are obtained by a smooth interpolation between the spectral
production rates and the spectral diffusion rates, directly derived from 2.3:

(rν,prod(E,x), rν,diff(E,x))→ rν,eff(E,x). (2.65)

Differently from the previous grey scheme, the particles and the energy rates are not
independent, because a specific energy rate can be immediately calculated as

qν(E,x) = E rν(E,x). (2.66)

In the end, the local energy and particle rates emitted in form of neutrinos, from each
point of the system, are determined:

Qν,eff(x) [erg/g/s] Rν,eff(x) [particles/g/s] (2.67)

Neutrinos are mainly emitted from the region close to the semitransparent area.
Outside the last interaction surface (which is usually called neutrinosphere in CCSNe
models; we will call it, more generally, neutrino surface), huge neutrino fluxes are ex-
pected. This very high neutrino luminosity goes through layers of matter with decreasing
density and temperature (i.e., less and less opaque). However, due to the large incoming
flux, there is a non-negligible probability for νe and ν̄e to be re-absorbed there. In this
new scheme, we included an estimation of the local absorption rates, hν(x). Also for
these rates, the spectral rates are the calculated, so that the total rate is obtained as

Hν(x) =
4π

(hc)3

∫ +∞

0

hν(E,x)E2 dE (2.68)

Gν(x) =
4π

(hc)3

∫ +∞

0

E hν(E,x)E2 dE (2.69)

A simple approach to the heating term calculation would be to use directly, as spectral
luminosities, the ones obtained from the cooling part of the scheme (i.e, the ones obtained
by the integration of rν,eff). A direct test showed that this solution overestimates the
heating effect. This is due to a too hard neutrino spectrum in the spectral neutrino
luminosity. This is somehow expected from the scheme: the locally emitted neutrinos
retain information about the thermal properties of matter where their are produced or
diffused. But the spectrum of the neutrinos emitted at the last scattering surface will be
different, and it will be affected by the thermalization processes which occur during the
diffusion (at least, where thermalization reactions occur). We do not model the diffusion
with accuracy, so we can not model the thermalization either. However, we can mimic
its effect on the outgoing neutrino spectrum. This is done in a very simple way, reducing
the high energy tail of the energy luminosity, using an exponential cut based on the
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optical depth. Using this prescription, we define a new “spectrum-corrected” effective
rate,

(rν,eff(E,x), τν(E,x))→ r̃ν,eff(E,x) (2.70)

Condition 2.70 is not enough to define the new rates; we have to fix another constraint.
Two different approaches have been explored:

• we assume that the neutrino number luminosity is the same, before and after the
correction. Then, the redefinition of the effective rates leads to a lower energy
luminosity;

• we assume that the neutrino luminosity has to be conserved, before and after the
correction. In this case, after the redefinition of the effective rates, the neutrino
number luminosity would be higher.

In both cases, the definition of the r̃ν,eff introduces an ambiguity in the scheme. Which
are the rates that have to be used for the cooling contribution in the opaque area? The
thermalization process is a transport process which does not happen where neutrinos
are at first released, but during their path towards the optically thin region. Thus, we
decided to keep the original rν,eff rates for the cooling term. From the r̃ν,eff rates, it is
possible to calculate the neutrino luminosities outside the neutrino surfaces and use it as
input flux for the absorption rates. This calculation requires to model the emission from
the last interaction surface, and the conversion from particle flux to particle density:

(r̃ν,eff , . . . )→ (Lν , ρν) (2.71)

We do not provide a general recipe to calculate the neutrino luminosity and the density;
it will be specified case by case, because it can depend very much on the geometry and
on the symmetry of the system.
In the end, once the local neutrino density has been computed, the absorption rates hν
are obtained combing it with the local absorptivity:

(ρν , χν,ab)→ hν (2.72)

The net balance between the effective rates and the absorption rates is the net
amount of particles and energy released from the fluid out of the system: these quantities
are the variation rates of the total lepton number and of the total specific energy, defined
in equations (2.50) and (2.51):

Ẏl(x) = − 1

mb

((Rνe,eff(x)−Rν̄e,eff(x))− (Hνe(x)−Hν̄e(x))) (2.73)

and

u̇(x) = −
((
Qνe,eff(x) +Qν̄e,eff(x) + 4Qνµ,τ ,eff(x)

)
− (2.74)(

Gνe(x) +Gν̄e(x) + 4Gνµ,τ (x)
))
. (2.75)

At this point, the leakage scheme can be finally applied. Once we know the final values
of the lepton number and of the total specific energy,

Yl(x, t+ dt) ≈ Yl(x, t) + Ẏl(x, t) dt (2.76)
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and

u(x, t+ dt) = u(x, t) + u̇(x, t) dt , (2.77)

we can invert equations (2.50) and (2.51) to get the final values of the electron fraction
Ye(x, t + dt) and of the fluid internal energy e(x, t + dt). Thanks to these results, two
more output quantities can be calculated: first, the rate of variation of the electron
fraction,

Ẏe(x, t) =
(Ye(x, t+ dt)− Ye(x, t))

dt
(2.78)

and, second, the rate of variation of the internal energy of matter,

ė(x, t) =
(e(x, t+ dt)− e(x, t))

dt
. (2.79)

Finally, the neutrinos provide a source of stress for the fluid. When neutrinos are
trapped (optically thick regime), the stress is determined by the gradient of the pressure
of the neutrino gas, (

dv

dt

)
τ�1

(r, t) = −1

ρ
(∇Pν)r (2.80)

The neutrino pressure is simply evaluated based on the energy content of the neutrino
gas,

Pν(x) =
1

3

ρ(x)

mb

(Zt
νe(x) + Zt

ν̄e(x) + 4Zt
νµ,τ (x)) (2.81)

and this contribution is always considered. In the optically thin regime, neutrino stress
is related to the neutrino number luminosity, Ln,ν . In spherically symmetric core collapse
simulation, this term has been implemented, according the prescription given in [81],
but only during the collapse phase, while it is neglected after bounce.

2.3.3 Reactions and rates

• for electron neutrino and antineutrino absorption and emission, we include charged
current reactions on nucleons and on nuclei:

e− + p ↔ n+ νe (2.82)

e− + (A,Z) ↔ (A,Z − 1) + νe (2.83)

e+ + n ↔ p+ ν̄e (2.84)

Following [12], we calculate the associated emissivity j [particles/s]:

jνi(x, E) for νi = νe, ν̄e (2.85)

and absorptivity χab [particles/s],

χab,νi(x, E) for νi = νe, ν̄e (2.86)

for both νe and ν̄e. We took the publicaly available subroutines from the spherically
symmetric AGILE-IDSA CCSN model.
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• We consider also the production of all kind of neutrinos from pair processes, like
pair production from electron-positron annihilation, and neutrino bremsstrahlung
from nucleons,

e− + e+ ↔ ν + ν̄ (2.87)

N +N ↔ N +N + ν + ν̄ (2.88)

(2.89)

Following [12], [98] and [51], we calculate the associated emissivity

jνi,PAIR(x, E) [particles/s] for νi = νe, ν̄e, νµ,τ (2.90)

and absorptivity,

χab,νi,PAIR(x, E) for νi = νe, ν̄e, νµ,τ . (2.91)

Remembering that we are considering pair processes, the collision integral in the
Bolztmann equation looks like:

ḟν(kν)
∣∣∣
coll

= C
∫

d3kν̄
(2π)3 [(1− fν(kν)(1− fν̄(kν̄))S(Eν + Eν̄ ,kν + kν̄) (2.92)

+fν(kν)fν̄(kν̄)S(−(Eν + Eν̄),−(kν + kν̄))] (2.93)

where the spatial dependence has been omitted and S represent the scattering
kernel, with C a related constant. We calculate the emissivity taking the first term
in the integral, integrating over the whole phase space of the second neutrino
and averaging over the angular part of the phase space of the first one (ν), and
neglecting Pauli blocking factors:

jν,PAIR(x, E) =
C

4π

∫
Ων̄

dΩν

∫
d3kν̄
(2π)3

S(Eν + Eν̄ ,kν + kν̄) (2.94)

For the absorptivity, we do the same for the second integral, assuming Fermi-Dirac
distribution functions and zero chemical potentials for fν̄ ,

χab,ν,PAIR(x, E) =
C

4π

∫
Ων̄

dΩν

∫
d3kν̄
(2π)3

fν̄(kν̄)S(−(Eν + Eν̄),−(kν + kν̄)). (2.95)

The calculation during runtime of the integrals 2.94 and 2.95 would be by far the
most expensive part of the computation. Then, we decide to tabulate all these
rates and to interpolate them during the program execution.

• For the neutrino scattering reactions, we consider scattering off nucleons and off
nuclei, which are due to both charged current and neutral current processes:

n/p+ ν → n/p+ ν (2.96)

(A,Z) + ν → (A,Z) + ν (2.97)

Also for these reactions, it is possible to compute the associated scattering rates
χsc [1/s], using expressions derived from [12]:

χsc,νi(x, E) for νi = νe, ν̄e, νµ,τ (2.98)

To compute them, we took the publicly available subroutines from the spherically
symmetric AGILE-IDSA CCSN model.
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2.3.4 Opacities

The total mean free path λtot [cm] can, then, be calculated from the previously estimated
rates:

λtot,νi(E,x) =
c

χab,νi + χsc,νi

for νi = νe, ν̄e, νµ,τ (2.99)

Besides the total mean free path, we can also define an effective mean free path for
absorption (and, eventually, scattering processes which are very effective in exchanging
energy between radiation and fluid) [150], λeff [cm]:

λeff,νi(E,x) =
c√

χab,νi(χab,νi + χsc,νi)
for νi = νe, ν̄e, νµ,τ (2.100)

The mean free path can be directly used to compute the neutrino optical depth, τν(E,x).
In the case of spherically symmetric models, τν(E,R) can be simply calculated on along
radial paths:

τ(E,R) =

∫ +∞

R

1

λν(E, r)
dr. (2.101)

Otherwise, suitable paths have to be defined.
The presence of two different mean free paths gives two different optical depths, a
total optical depth, τtot,ν(E,x), and an effective absorption optical depth, τeff,ν(E,x).
The different meaning of these two quantities becomes more clear when the concept of
neutrino surface is considered. In general, the neutrino surface can be defined as the
surface where the optical depth becomes 2/3; in spherical symmetry, this corresponds
to a radius Rν , so that:

τ(E,Rν) =

∫ +∞

Rν

1

λν(E, r)
dr =

2

3
(2.102)

Rν (the one related to the total optical depth) can be thought of as the radius where
neutrinos interact with matter for the last time (whatever kind of interaction is con-
cerned), before streaming out of the system. On the other hand, the Rν,eff (the one
related to the effective optical depth) is the radius where neutrinos are absorbed and
emitted for the last time, during their diffusion out of the star; this does not imply
that neutrinos can not further be scattered by matter. The scattering of neutrinos on
nuclei or nucleons is, in first approximation, an elastic scattering, which does not change
significantly the energy of the interacting neutrino; on the other hand, absorption and
emission are among the most effective process for neutrino thermalization. This intrinsic
difference has an impact on the energy of the neutrino coming out of the spheres: ν’s
and ν̄’s passing through the effective neutrinosphere will be in thermal equilibrium with
the local matter; after that, neutrinos could, in principle, continue to diffuse out, via
scattering processes; in this case, they will leave the neutrinosphere without being in
thermal equilibrium with matter, but keeping memory of the matter temperature at the
last absorption/emission radius. Keeping in mind this physical difference between the
two optical depths, we will use τtot,ν whenever the total diffusion effect is considered;
otherwise, where thermodynamical properties and energy spectra of the neutrinos will
come into play, we will refer to τeff,ν .
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2.3.5 Timescales and neutrino fractions’ evolution

Information about neutrino abundances are provided, at the beginning of each time
step, by the neutrino fractions, Yν and Zν . The storage of the energy-dependent dis-
tribution functions would be too memory consuming, in particular in multidimensional
simulations. Then, we designed a very simple procedure to reconstruct the distribution
function from the neutrino fraction. We assume that the actual distribution function
value is proportional to the Fermi-Dirac equilibrium one, multiplied by an exponential
cut, which ensures the fact that the considered neutrinos (of a specific kind νi and with
a certain energy E) are actually trapped:

f tνi(E,x) ∝ (fνi(E,x))eq

(
1− exp

(
−τνi(E,x)

βrec

))
(2.103)

The proportionality constant is fixed by Eq.(2.38); the constant βrec is fixed from di-
rect comparison with the calibration model. Once the distribution functions have been
computed, they have to be temporally evolved during the timestep dt. This evolution
is based on some important timescales, associated with the neutrino production, ab-
sorption and diffusion. The production timescale, tprod [s], can be simply viewed as the
timescale needed to produce enough neutrinos to reach the equilibrium configuration
(assuming that the diffusion timescale is much longer, in order to allow equilibrium
setting); clearly, it depends on how large is their production rates:

tνi,prod(x, t, E) =
1

jνi(x, t, E)
for νi = νe, ν̄e, νµ,τ (2.104)

Similarly, the absorption rate suggests an absorption timescale, tab [s], defined as

tνi,ab(x, t, E) =
1

(f tνi)eq(x, t, E)χab,νi(x, t, E)
for νi = νe, ν̄e, νµ,τ (2.105)

which estimates the typical timescale after that a neutrino can be absorbed by matter.
Finally, the diffusion timescale is the timescale which characterizes the diffusion of neu-
trinos from the optically thick to the optically thin regions. In the new scheme, we keep
the definition already used for the previous grey scheme, Eq.(2.37). The update of f t is
performed in two step; the first one considers the production of neutrinos: if we consider
a particular position in space x, and a particular value for the neutrino energy E,

f tνi,1(t+ dt) ≈ f tνi(t) + ḟ tνi,prod(t) dt for νi = νe, ν̄e, νµ,τ (2.106)

with

ḟ tνi,prod =
((f tνi)eq − f tνi)

max((f tνi)eq tνi,prod, dt)
exp

(
−tνi,prod

tνi,diff

)
(2.107)

where all the quantities are evaluated at time t. The first part ensures that, whenever the
production timescale is small enough compared with the timestep dt, the distribution
function reaches the equilibrium value. The second term is a sort of switch between
the diffusive and the trapped regime: as long as tνi,prod is large compared with tνi,prod,
equilibrium cannot set it, just because diffusion prevent it (i.e. the second term goes to
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0); in the opposite limit, equilibrium can set in, because the term goes to 1. The second
step is similar to the first one and considers the diffusion of the neutrinos:

f tνi,2(t+ dt) = f tνi,1(t+ dt) + ḟ tνi,diff(t) dt for νi = νe, ν̄e, νµ,τ (2.108)

with

ḟ tνi,diff = −
(f tνi,1)(t+ dt)

max(tνi,diff , dt)
exp

(
− tνi,diff

tνi,prod

)
(2.109)

Again, the first part provides the expected behavior of the distribution functions when
the diffusion timescale is smaller then the timestep, while the exponential term distin-
guishes between the production-dominated and the diffusion-dominated regime. Finally,
f tνi,2 is considered as the updated value of the distribution function, f tνi(t+ dt).

2.3.6 Rates and interpolation

The production specific rates can be defined simply as the properly normalized neutrino
emissivity,

rνi,prod(E,x) =
jνi,em(E,x)

ρ(x)
for νi = νe, ν̄e. (2.110)

On the other hand, the diffusion rate is derived directly from Eq.(2.34):

rνi,diff(E,x) =
1

ρ(x)

(f tνi)eq(E,x)

tνi,diff(E,x)

for νi = νe, ν̄e. (2.111)

The interpolation between the two rates is done, for each different neutrino species, at
each point x and for each energy, according to the prescription directly derived from
2.3:

rνi,eff(E,x) =
rνi,prod(E,x) · rνi,diff(E,x)

rνi,prod(E,x) + rνi,diff(E,x)
for νi = νe, ν̄e, νµ,τ . (2.112)

For each single spectral component, the meaning of the interpolation is assumed to be
the same as it was for the integrated rates:

• in the transparent regime, neutrinos are expected to stream out freely from the
sysyem. This limit is reproduced correctly if emission rates are relatively low,
compared with diffusion rates;

• in the opaque regime, neutrinos diffuse out of the star, because they interact with
matter. The diffusive limit is correctly taken if the production rates are much
higher than the diffusion rates.

While the second condition seems to be more easily fulfilled (because, in our case high
opacity regions typically corresponds also to high production regions), the first one is
not. The problem is that the equilibrium distribution functions at low temperature and
high energy are also very small. So, it is unclear which of the two rates dominates. Then,
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we solved the problem just modifying the previous expression, in order to enforce the
use of rν,prod at low optical depth:

rνi,eff(E,x) =
rνi,prod(E,x) · rνi,diff(E,x)

rνi,prod(E,x) + rνi,diff(E,x)

(
1− exp

(
−τνi(E,x)

αint

))
+ rνi,prod(E,x) exp

(
−τνi(E,x)

αint

)
for νi = νe, ν̄e, νµ,τ (2.113)

with αint & 3.
Once the interpolation has been done, the specific rates can be properly integrated over
the energy to give the total emission rates

Rνi,eff(x) =
4π

(hc)3

∫
rνi,eff(E,x)E2 dE for νi = νe, ν̄e, νµ,τ , (2.114)

and

Qνi,eff(x) =
4π

(hc)3

∫
E rνi,eff(E,x)E2 dE for νi = νe, ν̄e, νµ,τ . (2.115)

2.3.7 The heating term: spherically symmetric case

In this section, we describe how we implemented the calculation of the heating terms,
h(E,R), in the context of spherically symmetric CCSN models.

The rates obtained as rν,eff(E,R) do not correspond to the rates measured outside
the neutrinospheres, because during the diffusion from the opaque region the mean neu-
trino energy usually decreases, due to the interaction with matter at lower temperature
(compared with the hotter matter at the emission point). We take this effect into account
in a very simple, effective way, defining new “corrected” rates, based on the original one
and on the effective optical depth, τν,eff . We assume that the new rates can be obtained
from the original ones with an exponential cut,

r̃eff(R,E) = βcut(R) reff(E,R) exp

(
−τeff(R,E)

αcut

)
. (2.116)

The local constant βcut is set by imposing the conservation of the number of emitted
neutrinos: ∫ ∞

0

reff(R,E)E2 dE =

∫ ∞
0

r̃eff(R,E)E2 dE; (2.117)

or the total emitted energy:∫ ∞
0

reff(R,E)E3 dE =

∫ ∞
0

r̃eff(R,E)E3 dE. (2.118)

αcut is a positive constant, the value of which is set by comparing the resulting spectrum
with expected values from a reference solution. We introduce the local spectral quantity
∆eff(R,E), to quantify the energy difference introduced by the corrected rates:

∆eff(R,E) ≡ r̃eff(R,E)− reff(R,E). (2.119)
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If the effect of the cut Eq.(2.116) is to soften the spectrum, we expect that, inside the
neutrinosphere, for large value of E, ∆eff(E,R) < 0; while for small E, ∆eff(E,R) > 0.
This variation is intended as a down scattering in energy of neutrinos or as an absorption
of energetic neutrinos and the re-emission of low energy ones; in any case, we do not
model this process in detail, and this has to be intended as an effective explanation.

Once the radial effective rates r̃eff(E,R) have been calculated, the spectral number
luminosity, dLN,ν/dE , and the spectral luminosity, dLν/dE , outside the neutrinosphere
can be calculated as:

dLN,ν
dE

(E,R) =
4πE2

(hc)3

∫ R

0

4πr2ρ(r)r̃eff(E, r)dr, R > Rν(E), (2.120)

dLν
dE

(E,R) =
4πE3

(hc)3

∫ R

0

4πr2ρ(r)r̃eff(E, r)dr, R > Rν(E). (2.121)

This spectral luminosity becomes the necessary ingredient to calculate the heating rate
outside the neutrinosphere. Roughly speaking, the absorption rate is proportional to the
local neutrino density (provided by the flux of the free streaming particles) and to the
local absorptivity:

Hνi ∝ ρνiχνi,ab νi = νe, ν̄e (2.122)

Considering the spectral approach and the use of the spectral specific rates, we get

hνi(E,R) =
(hc)3

4πE2

1

ρ(R)

dρν
dE

(E,R)χνi,ab(E,R) νi = νe, ν̄e (2.123)

For this heating term, we neglect the absorptivity due to νµ,τ : its contribution can be
safely considered negligible. The conversion between the neutrino flux and the neutrino
density is one of the major problems in modeling heating from a radiating source. It
involves a quantity called (spectral) flux factor µνi(E,R), which can be understood as
the ratio between the neutrino flux and the neutrino energy density times c. Assuming
to have spherical symmetry, the neutrino distribution function depends locally on the
neutrino energy, E, on the radius, R, and on the cosine of local propagation angle (with
respect to the radial direction) θ, µ = cos θ: fνi(E,R, µ). The flux factor is the average
propagation angle:

µνi(E,R) ≡
∫ +1

−1
µfν(E,R, µ) dµ∫ +1

−1
fν(E,R, µ) dµ

(2.124)

Usually, far from the neutrinosphere, the distribution functions are expected to peak in
the forward direction, which leads to µνi(R � Rνi) ∼ 1. Close to the neutrinosphere,
radiation is emitted in an almost isotropic way above the plane tangential to the neutri-
nosphere, and µνi(R ∼ Rνi) ∼ 1/2. A useful approximation to this factor can be found
in [88], based on a suggestion of S. Bruenn:

µνi(E,R) ≈ 1

2

1 +

√
1−

(
Rνi(E)

max(R,Rνi(E))

)2
 . (2.125)

Then, the spectral neutrino density can be calculated as

dρνi
dE

(E,R) =
1

4πR2c µνi(E,R)

dLN,νi
dE

(E,R) (2.126)
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In order to have a smooth transition from inside and outside the neutrinosphere, the
calculation of the luminosities is performed also inside it. Then, the calculation of the
heating term, according to 2.123, is completed by an exponential term:

hνi,out(E,R) =
(hc)3

4πE2

1

ρ(R)

dρν
dE

(E,R)χνi,ab(E,R) exp(−αheat τ(E,R)) νi = νe, ν̄e

(2.127)
with αheat ∼ 2.

2.4 Tests and validation: results from 1D core col-

lapse simulations

To test and to refine the new scheme, we follow the same strategy we used for the grey
νµ,τ leakage scheme: we set up a spherically symmetric, general relativistic model, and
we run it with both AGILE-BOLZTRAN and with AGILE-ASL. Results obtained with the
AGILE-BOLZTRAN model are considered as the calibration solution for the AGILE-ASL
model. This means that results from the two simulations are systematically compared,
in order to develop the ALS scheme and fix its free parameters.
We choose a 15M� progenitor model from Woosley and Weaver (1995); we use the
Lattimer-Swesty nuclear equation of state, with nuclear compressibility K = 180MeV.

2.4.1 First test: electron flavor and minimal reaction set

We start with the electron flavor, taking into account only νe and ν̄e in the model. In
both models, we include a first minimal set of relevant reactions concerning νe and ν̄e,
as reported in table 2.2. The implementation of the ASL scheme in spherical symmetry

Reactions Currents Main Role Reference

e− + p→ n+ νe CC P, T, O [12]
e+ + n→ p+ ν̄e CC P, T, O [12]
e− + (A,Z)→ νe + (A,Z − 1) CC P, T, O [12]
N + νe/ν̄e → N + νe/ν̄e NC O [12]
(A,Z) + νe/ν̄e → (A,Z) + νe/ν̄e NC O [12]

Table 2.2: Table with the relevant νe and ν̄e reactions included in models to test the
ASL scheme for the electron flavor. In the reactions column, N represents nucleons.
In the current column, NC stands for neutral current, while CC for charged current
reactions. In the Main Role column, P stands for production, T for thermalization
and O for opacity.

follows closely the description provided in section 2.3. The discretization of the neutrino
energy is provided by 20 energy bins, spanning the range 3 MeV ≤ E ≤ 300 MeV, with
an increasing gap spacing (according to an algorithm suggested by S. Bruenn). We tested
the definition of the effective rates using both the possible prescriptions: in run I, we use
the conservation of the number luminosity, Eq.(2.117), while in run II the conservation
of the energy luminosity, Eq.(2.117). In table 2.3 we report the values of all the free
parameters necessary to set the ASL treatment.
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Name of the parameter Run I Run II

αdiff 3.00 3.00
βrec 2.00 2.00
αint 3.00 3.00
ανe,cut 15.0 15.0
αν̄e,cut 15.0 15.0
αheat 1.00 1.00
βcut Lν,N Lν

Table 2.3: Table with the values of all the free parameters of the ASL scheme, used
in the first test case.

Collapse phase

We begin with the collapse phase. In Figures 2.6, 2.7, 2.8 and 2.9, we draw the evolution
of the last 10 ms of the collapse, before core bounce. We plot, as a function of the
enclosed mass, the radial profiles of velocity, density, entropy and electron fraction. At

Figure 2.6: Comparison between the radial profiles of the velocity (upper left), baryon
density (upper right), entropy (lower left) and electron fraction (lower right), at t ≈
10 ms before bounce, for three different models: an AGILE-BOLZTRAN run (cyan line)
and two different ASL runs (blue and red lines). The difference between the two ASL
runs consists in a different normalization of the emitted neutrino luminosity outside
the neutrinosphere. Being in the collapse phase, this difference does not play any
significant role.

ten milliseconds from bounce, the core has started deleptonizing and its central part
is collapsing homologously. The ASL models are very close to the reference simulation;
small differences come mainly from a slightly different output time. The two ASL runs
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are indistinguishable. We will see that this will be a common feature during all the
collapse, because the difference among them is associated with the heating process,
which is completely negligible during collapse. At 5 ms before bounce, the central density

Figure 2.7: The same as 2.6, but at t = 5 ms before bounce.

has reached ∼ 1012g/cm3 and neutrino trapping sets in. The lepton number decreases
no more; any further decrease in Ye is due to the conversion of electrons into electron
neutrinos. Also at this time, the ASL models show a very close agreement with the
reference solution. Very close to bounce, the first differences rise. The electron fraction
in the center has reached the same value (Ye ≈ 0.32), but the profiles in the innermost
part are slightly different, also in the entropy profiles. Actually, the difference is due to
a small increase in entropy in the reference solution, which is not present in the ASL
model. Finally, at bounce the different models show again a very good agreement among
them. Also the point at which the shock forms is very close, at an enclosed mass of about
0.65M�. The differences we have noticed in the previous snapshot are still there (and
even amplified) in front of the shock, but they have been erased inside it, because of
the sudden increase in entropy and reaction rates, which favor the fast achievement of
equilibrium conditions. This consideration is in favor of the idea that the difference seen
before (and now present in front of the shock) comes from a non-equilibrium feature,
probably linked with the interaction between free streaming neutrinos and matter. 1

In Figure 2.10 we compare the νe fraction, Yνe , for three different times, t = 5, 1, 0 ms,
before bounce. Solid lines correspond to the Run I, while dashed lines with our reference
solution obtained by the AGILE-BOLZTRAN model. The comparison shows that the ASL
treatment is able to reproduce quite well the growth and the shape of the neutrino
trapped component; the right part of the graph, which is present in the AGILE-BOLZTRAN

1Actually, once the feature after bounce has been reproduced by the ASL scheme, imposing a strong
thermalization of the emitted νe and ν̄e, and allowing these low energy particles to be (partially)
re-absorbed, deep in the core.
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Figure 2.8: The same as 2.6, but at t = 1 ms before bounce.

Figure 2.9: The same as 2.6, but at bounce.

results, but not in the Run I, corresponds to the free streaming component, which has
not been included in the ASL treatment. We notice that the difference between the two
models here is opposite to the one seen in the electron fraction: for example, the excess
of electrons in the ASL model at t = 1 ms before bounce corresponds to a lower electron
neutrino fraction. This suggests that the differences in Ye before the shock formation
can be induced by a slightly delayed neutrino gas growth.
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Figure 2.10: Comparison between the ASL Run I (solid lines) and the
AGILE-BOLZTRAN solution (AB, dashed lines), of the νe fraction, at three different
times before bounce. The ASL Run I lines represent only the trapped component,
without the free streaming one. Good agreement can be seen in the shape and in the
temporal evolution of the trapped neutrino gas in the stellar core.

After bounce phase

A good agreement between the ASL model and the reference AGILE-BOLZTRAN solution
is the necessary point to start with, for the comparison of the after bounce phase.
In Figures 2.11-2.14 we show the comparison between the reference AGILE-BOLZTRAN

solution and the two ASL model runs, during the first 350 ms after core bounce, from
the expansion of the prompt-shock, to the shock stalling and, finally, to the cooling
phase.

In Figure 2.11, we show the profiles (still as function of the enclosed mass) in the
very early shock expansion phase, corresponding to the first 5 ms, during which neu-
trino burst happens. Overall, the agreement between the reference solution and the
ASL model persists; the two different normalization choices (Run I and Run II) are
still very similar. In the region around 1M� we can see some differences, especially in
the entropy and in the Ye profiles. These differences are probably due to the transport
of the large neutrino flux, which will be soon emitted as neutrino burst: a fraction of
this radiation can be absorbed just in front of the shock, resulting in a local peak in
the electron fraction. Later, the passage of the shock wave erases this feature. However,
even this effect is slightly different in the two models.
Comparison between the radial profiles, in the innermost radial portion, at 10 and 50

ms after bounce are shown in Figure 2.12. There, we can finally see that the two different
version of the ASL models start to differ, even if they present very similar behaviors.
After the prompt shock expansion, the shock wave stalls and converts into an accreting
shock front, clearly visible from the velocity profile. In this first phase, the ASL model
seems to be a bit more pessimistic, probably due to a large deleptonization inside the
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Figure 2.11: Comparison between the radial profiles of the velocity (upper left),
baryon density (upper right), entropy (lower left) and electron fraction (lower right),
at t ≈ 1 ms (solid lines) and at t ≈ 5 ms (dashed lines) after bounce, for three different
models: an AGILE-BOLZTRAN run (cyan line) and two different ASL runs (blue and red
lines).

Figure 2.12: Same as Figure 2.11, but at t ≈ 10 ms (solid lines) and at t ≈ 50 ms
(dashed lines) after bounce, for three different models: an AGILE-BOLZTRAN run (cyan
line) and two different ASL runs (blue and red lines).

shock. The lower value of the of electron fraction translates in a more visible valley in
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the entropy profile, which is not present in the reference solution.
Around 50ms after bounce the stalling shock wave starts to feel the heating effect of

Figure 2.13: Same as Figure 2.11, but at t ≈ 100 ms (solid lines) and at t ≈ 150 ms
(dashed lines) after bounce, for three different models: an AGILE-BOLZTRAN run (cyan
line) and two different ASL runs (blue and red lines).

neutrinos emitted at the neutrinosphere and reabsorbed below the shock front. As a
result, the shock expands again, up to ∼ 250 km from the center at 150 ms. All the
three models show a similar behavior and a similar expansion. Apart from the variable
discrepancy in the shock position, small differences persist or arise, mainly in the Ye pro-
file. Remarkably, the entropy profiles of the ASL models present the typical shape and
slope change, which characterize the heating phase. Finally, due to the not enough ef-
fective heating effect, the shock stops expanding and start to contract and cool, because
of the pre-existing neutrino emission, as we can see in Figures 2.14. Also in this phase,
our approximated treatment reproduces qualitatively, and partially quantitatively, the
reference solution. Run I seems to be closer to the AGILE-BOLZTRAN model, not only in
the shock position, but also in the Ye profile. We notice that all the plotted quantities
show a good agreement in the innermost 30 km, corresponding to the newly born pro-
toneutron star. This means that the diffusion rates from this region are well calibrated
with the reference solution.
Similarly to what we have done for the collapse phase, we compare the radial profiles

of the trapped component of the electron neutrinos and antineutrinos with the (total)
neutrino fraction obtained by the AGILE-BOLZTRAN model, in three snapshots taken from
the first 50 ms after bounce, Figure 2.15. Compared to the (relatively) cold collapsing
phase, the hot expanding phase seems to be more difficult to model, probably because of
the presence of more relevant transport phenomena. Nevertheless, the qualitative shape
and temporal evolution of the trapped components are reproduced. Moreover, the differ-
ences we have seen in the Ye profiles translate in a different electron chemical potential
and, finally, in a different equilibrium chemical potential for νe (and, consequently, for
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Figure 2.14: Same as Figure 2.11, but at t ≈ 250 ms (solid lines) and at t ≈ 350 ms
(dashed lines) after bounce, for three different models: an AGILE-BOLZTRAN run (cyan
line) and two different ASL runs (blue and red lines).

Figure 2.15: Comparison between the radial profiles of the electron neutrino (left)
and electron antineutrino (right) fraction, at three different times after bounce, of the
AGILE-BOLZTRAN (AB) solution and the ASL model (Run I).

ν̄e ), which has a direct impact on the equilibrium distribution functions and, by them,
on the neutrino fractions.

Luminosity

The amount of energy released by neutrinos during the collapse and the post bounce
phase can be directly measured by the neutrino luminosity. In Figure 2.16 we compare
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Figure 2.16: Comparison between the temporal evolution of the electron neu-
trino (red lines) and electron antineutrino (blue lines) luminosities obtained by the
AGILE-BOLZTRAN model (dashed lines) and the ASL models (solid lines). On the left
panel, Run I is considered; on the right panel, Run II.

the luminosities obtained by the reference AGILE-BOLZTRAN solution and the two ALS
models. As expected from the very similar profiles obtained during the simulated time,
also the luminosities show a similar behavior: we recognize the increase in νe luminosity
during the collapse, followed by the decrease due to neutrino trapping. After bounce,
neutrino burst occurs and the νe luminosity reaches its peak, before settling to a slowly
decreasing luminosity during the accreting and cooling phase, where the energy emitted
in form of neutrino is the gravitational energy lost by matter falling on the compact cen-
tral object (the protoneutron star). The ν̄e luminosity rises after bounce, on a timescale
of a few tens of milliseconds, when the temperature in the shocked material is high
enough to reduce the ν̄e suppression, due to their large negative chemical potential.
After ∼ 100 ms, the two luminosities are almost equal and they stay very close during
the accretion phase. In both cases (Run I and II), the ASL model is able to reproduce
the qualitative behavior of the two luminosities, and also their asymptotic value for
tpb & 0.1s.
However, some important differences can be pointed out:

• the rise of the ν̄e luminosity is faster in the reference solution;

• the luminosity peaks at neutrino trapping and at neutrino burst are different: as
we can see from a deep inspection of the luminosity profile in the bounce region,
Figure 2.17, in the AGILE-BOLZTRAN model, neutrino trapping is more effective in
reducing the luminosity at the end of the collapse, while the burst has a much
larger peak luminosity (almost a factor of 2);

• the shape and the timescales of the neutrino trapping and neutrino burst are
different. In the ASL model, the trapping and the burst appear earlier, and the
burst peak is wider (i.e less sharp).

The different value of the luminosity at neutrino trapping indicates that the diffusion
rates are too high there. Nevertheless, the value 3 for the parameter αdiff is good in the
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Figure 2.17: Details of the temporal evolution of the electron neutrino luminosity
around bounce. On the left panel, red lines correspond to the AGILE-BOLZTRAN model;
blue and green lines respectively to Run I and Run II. On the right panel, red lines
correspond to the AGILE-BOLZTRAN model; blue lines to the Run I and green lines to
Run II with the modified diffusion rate constant (see the text for details). respectively
to Run I and Run II.

after bounce phase. Then, we decided to modify it to distinguish between before and
after bounce, and we use the fraction of heavy nuclei (Xh) to do it:

αdiff = 3→ αdiff = 3 + 3 ·Xh, (2.128)

so that before bounce we obtain a value close to the one obtained in the grey scheme
for νµ,τ , and after bounce a value which gives a good deleptonization rate for the pro-
toneutron star. We perform a run (Run III) with this new diffusion coefficient and we
check the differences with the previous Run I model. The profiles at bounce are actually
identical to the previous one. They are different just after bounce (in the first 10−20 ms
after bounce), showing a better agreement with the reference solution, as it can be seen
in Figure 2.18. Later they become again identical to the previous Run I model. The
better results translate also in an improvement on the luminosity curves. In the right
panel of Figure 2.17 we plot νe luminosity at bounce for the reference solution, for Run I
and for Run III, and shifted in time by δt = +1.75ms, so that the minima at bounce co-
incide. With the new diffusive parameter, the first maximum has significantly improved.
The meaning of the time shift we have introduced can be understood remembering that
BOLZTRAN is a transport scheme, while the ASL is an effective treatment: in the former,
neutrinos travel from the production site to a distant place, where the luminosity is
measured, and the travel and the amount of time needed for it is consistently taken into
account. In the ASL treatment, neutrinos are assumed to leave the system when they
simply leave the fluid cell where they have been produced. Obviously, the time needed
to travel is not taken into account. If neutrino production happens in a (almost) trans-
parent area (like when the shock breaks through the neutrinosphere and neutrino burst
occurs), the position of the corresponding peak is simply shifted by the free stream-
ing timescale to reach the surface where luminosity is measured. But, when neutrinos
are diffusing, the complicated diffusion motion can not be described by a simple time
shift, but probably by a superposition of different shifts, occurring for different neutrino
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Figure 2.18: Comparison between the radial profiles of the velocity (upper left),
baryon density (upper right), entropy (lower left) and electron fraction (lower right),
at t ≈ 10 ms after bounce, for three different models: an AGILE-BOLZTRAN run (cyan
line), the Run I and the Run III models (Run III is defined as Run I model, with αdiff

modified according to Eq.(2.128)).

energies. Then, in the AGILE-BOLZTRAN model we expect most of the neutrinos to be
produced deep in the optical thick region, to diffuse in the expanding shock wave and,
finally, to be released mainly at neutrino burst, when they all enter the optically thin
regime. On the other hand, in the ASL scheme, they are assumed to leave the system as
soon as they cool locally the fluid. This should explain why the peak at neutrino burst
is lower and wider in the ASL scheme, and the peak at neutrino trapping is again wider,
but higher. As a counter-proof of this argument, we calculate the integrals below the
luminosity curves (i.e. the total emitted energy) for all the four models, :

∆E =

∫ t2+δt

t1+δt

Lνe dt. (2.129)

first in an interval close to bounce (t1 = −0.02 ms and t2 = 0.015 ms); results are
reported in Table 2.4. It is clear that all ASL runs have a total emitted energy close
to bounce quite consistent with the reference model one, with a maximum discrepancy
of 17% in model Run II, and a very close result (discrepancy on only 3%) with the
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Model Flavor δt [ms] t1 [ms] t2 [ms] ∆E[1051erg] ε∆E

AB νe 0.0 - 20 15 3.0357 0
Run I νe 1.75 - 20 15 3.2920 0.0844
Run II νe 1.75 - 20 15 3.4963 0.152
Run III νe 1.75 - 20 15 2.9495 -0.028

AB νe 0.0 - 100 350 17.756 0
Run I νe 1.75 - 100 350 18.488 0.0412
Run II νe 1.75 - 100 350 18.078 0.0181
Run III νe 1.75 - 100 350 18.190 0.0244

AB ν̄e 0.0 - 100 350 13.735 0
Run I ν̄e 1.75 - 100 350 12.225 -0.110
Run II ν̄e 1.75 - 100 350 11.494 -0.163
Run III ν̄e 1.75 - 100 350 12.317 -0.103

Table 2.4: Table with the time integral of the total luminosity. We explore different
models and different time intervals: close to bounce for Lνe ; over the whole simulation
for both Lνe and Lν̄e . In the last column, we report the discrepancy of each model x,
with respect to the AGILE-BOLZTRAN model, ε∆E,x = (∆Ex −∆EAB)/∆EAB

model Run III, with the modified αdiff . In the same table, we report also the integral of
the luminosity over the whole simulation period, for both νe and ν̄e. Results are better
for νe than for ν̄e. Overall, the model Run III expresses the better agreement with the
reference model.

Mean energies

In Figure 2.19, we plot the temporal evolution of the mean energy measured far from the
shock (around 400 km) for the Run III model presented in the previous section. For the
ASL scheme, we draw both the original values obtained by the scheme (i.e. the values
directly obtained by the spectral effective rates, r̃eff ,) and the values obtained by the
corrected effective rates, r̃eff , with the exponential cut, as expressed by equation 2.70,
assuming to keep the number of emitted neutrinos constant. It is clear that the original
spectral rates are too hard outside the neutrinosphere, while the cut ones are much more
consistent in that area, crucial for the heating process.

2.4.2 Second test: electron flavor and extended reaction set

As second test, we perform simulations very similar to the first test, but we include
more reactions regarding the electron flavor neutrinos. In particular, the pair production
due to electron-positron annihilation and the neutrino bremsstrahlung due to strong
interaction between nucleons. To summarize, in both models (AGILE-BOLZTRAN and
AGILE-ASL), we include the reactions reported in table 2.5. The included pair reactions
are interpolated from tables previously calculated, in order to save time during the
execution. Results from the AGILE-BOLZTRAN simulation of this second test are very
close to the one we have obtained in the first test: this is a confirmation of the fact
that the new pair reactions play a sub-dominant role for this flavor, compared to the
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Figure 2.19: Temporal evolution of the electron neutrino (left panel) and electron
antineutrino (right panel) mean energies. Red lines corresponds to the results obtained
with the AGILE-BOLZTRAN model; blue lines are the results obtained in Run III, without
applying the cut at the spectrum; green lines are the results obtained with the Run
III model, and taking into account the spectrum cut (with αcut = 15).

Reactions Currents Main Role Reference

e− + p→ n+ νe CC P, T, O [12]
e+ + n→ p+ ν̄e CC P, T, O [12]
e− + (A,Z)→ νe + (A,Z − 1) CC P, T, O [12]
e+ + e− → νe + ν̄e NC & NC P, T [12], [102]
N +N → N +N + νe + ν̄e NC P, T [51]
N + νe/ν̄e → N + νe/ν̄e NC O [12]
(A,Z) + νe/ν̄e → (A,Z) + νe/ν̄e NC O [12]

Table 2.5: Table with the relevant νe and ν̄e reactions included in models to test the
ASL scheme for the electron flavor. In the reactions column, N represents nucleons.
In the current column, NC stands for neutral current, while CC for charged current
reactions. In the Main Role column, P stands for production, T for thermalization
and O for opacity.

essential reactions we have already explored. In Table 2.6, we summarize the parameter
we have used for the ASL models. We choose two different models, changing the values
of the αcut parameter: in Run IV, νe and ν̄e have different parameters, and the cut
for antineutrinos is more pronounced than the one for neutrinos; in Run V, we choose
the same parameter, but larger compared with first tests. Compared to the previous
cases, we choose different values for the αcut parameter, in order to have a slightly
harder spectrum. In Figure 2.20 - 2.22 we can see comparisons between the reference
model and the two ASL tested models, at different times between bounce and ∼ 300 ms
after bounce. Direct comparison between the AGILE-BOLZTRAN results here and in the
first test shows that the inclusion of the new reactions has not a relevant impact on
the general dynamics. The heating mechanism is slightly enhanced and the shock is
a bit more extended around 150 km. The agreement between the ASL model and the
reference solution is still quite good, even if the problems we found before can be seen
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Name of the parameter ASL Run IV ASL Run V

αdiff 3.00 + 3.00Xh 3.00 + 3.00Xh

βrec 2.00 2.00
αint 3.00 3.00
ανe,cut 25.0 20.0
αν̄e,cut 15.0 20.0
αheat 1.00 1.00
βcut Lν,N Lν,N

Table 2.6: Table with the values of all the free parameters of the ASL scheme, used
in the second test case.

Figure 2.20: Comparison between the velocity (upper left), baryon density (upper
right), entropy (lower left) and electron fraction (lower right), at t ≈ 0 ms (solid
lines) and at t ≈ 5 ms (dashed lines) after bounce, for three different models: an
AGILE-BOLZTRAN run (magenta line) and two different ASL runs (blue and red lines).
The profiles are expressed as function of the enclosed mass.

also here, and the difference on the shock position is, on average, slightly increased.
We also notice that the variation induced by the different choice of the αcut parameter
(in the explored range) are minimal and smaller than the differences with the reference
solution. In Figures 2.23 and 2.24, we compared, similarly to what we have done in the
first test, the luminosities and the mean neutrino energies produced by the ASL scheme
and the reference ones, for both νe and ν̄e. As in the previous case, they all show a
good agreement with the expected behavior and also with the actual values, with errors
similar to the ones we have already discussed in the previous paragraph.
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Figure 2.21: Same as Figure 2.20, but at t ≈ 50 ms (solid lines) and at t ≈ 120 ms
(dashed lines) after bounce, for three different models: an AGILE-BOLZTRAN run (ma-
genta line) and two different ASL runs (blue and red lines). Here the profiles are
represented as function of the radius.

Figure 2.22: Same as Figure 2.20, but at t ≈ 200 ms (solid lines) and at t ≈ 300 ms
(dashed lines) after bounce, for three different models: an AGILE-BOLZTRAN run (ma-
genta line) and two different ASL runs (blue and red lines). Here the profiles are
represented as function of the radius.
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Figure 2.23: Comparison between the temporal evolution of the electron neu-
trino (red lines) and electron antineutrino (blue lines) luminosities obtained by the
AGILE-BOLZTRAN model (dashed lines) and the ASL models (solid lines). On the left
panel, Run IV is considered; on the right panel, Run V.

Figure 2.24: Temporal evolution of the electron neutrino (left panel) and electron
antineutrino (right panel) mean energies. Red lines corresponds to the results obtained
with the AGILE-BOLZTRAN model; blue lines are the results obtained in Run IV, green
lines are the results obtained with the Run V model. For the latter two models, we
are taking into account the spectrum cut.

2.4.3 Third test: µ and τ flavors

For the third test, we consider the model V of the previous test and we add νµ,τ and
ν̄µ,τ to it. We compare the results obtained with an AGILE-BOLZTRAN simulation, setting
similar input neutrino physics. In Table 2.7 we summarize the reaction used in the new
simulations. Similarly to the previous case, in this one pair reactions are interpolated
from a table. In Table 2.8, we summarize the parameters we have used for the ASL
model, regarding all flavors:

In Figures (2.25) - (2.27) we show the comparison between the ASL model and the
AGILE-BOLZTRAN reference solution. Unfortunately, the reference model could run only
up to∼ 200 ms before it stopped running, due to numerical problems in the protoneutron
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Reactions Currents Main Role Reference

e− + p→ n+ νe CC P, T, O [12]
e+ + n→ p+ ν̄e CC P, T, O [12]
e− + (A,Z)→ νe + (A,Z − 1) CC P, T, O [12]
e+ + e− → ν + ν̄ NC & NC P, T [12], [102]
N +N → N +N + ν + ν̄ NC P, T [21]
N + ν → N + ν NC O [12]
(A,Z) + ν → (A,Z) + ν NC O [12]

Table 2.7: Table with the relevant νe, ν̄e, νµ,τ and ν̄µ,τ reactions included in models
to test the ASL scheme for µ and τ flavors. In the reactions column, N represents
nucleons. In the current column, NC stands for neutral current, while CC for charged
current reactions. In the Main Role column, P stands for production, T for thermaliza-
tion and O for opacity. ν stays for a generic neutrino kind, and ν̄ for its antiparticles.

Name of the parameter ASL Run VI

ανe,ν̄ediff 3.00 + 3.00Xh

ανµ,τ ,diff 6.00
βrec 2.00
αint 3.00
ανe,cut 25.0
αν̄e,cut 15.0
ανµ,τ ,cut 15.0
αheat 1.00
βcut Lν,N

Table 2.8: Table with the values of all the free parameters of the ASL scheme, used
in the second test case.

star. Then, we can compare the ASL model only up to 200ms; nevertheless, when we
developed the grey scheme for νµ,τ , we already saw that important effects from the new
cooling sources can be seen already a few tens of milliseconds after bounce. So, this
problem should not affect dramatically our analysis. From these figures we can say
that, also in this case, there is a good qualitative agreement between the model and the
reference solution. Comparing the new profiles with the old one, we can also say that
we catch the essential aspect introduced by νµ,τ cooling, limiting the expansion of the
shock wave. Also from a quantitative point of view, many aspects can be considered
satisfactory. For example, the mean energies of νµ,τ , at ∼ 100 ms after bounce and
at a large radius, should be ∼ 22.7 MeV, according to the AGILE-BOLZTRAN reference
solution. The value that we obtained in the ASL model, considering the spectral cut,
is ∼ 21.2 MeV, very close to what we expect. However, a more detailed inspection of
the new results shows that more differences arose in this last test (see, for example, the
differences in the electron fraction profiles at late times). We think that these differences
could derive from the less extended expansion of the shock wave, and from the different
thermodynamical conditions in which the shocked material can be found here, compared
with the previous tests. A more detailed analysis and an attempt to fix this discrepancies
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Figure 2.25: Comparison between the velocity (upper left), baryon density (upper
right), entropy (lower left) and electron fraction (lower right), at t ≈ 0 ms (solid
lines) and at t ≈ 5 ms (dashed lines) after bounce, for two different models: an
AGILE-BOLZTRAN run (blue line) and an ASL runs (red lines). The profiles are ex-
pressed as function of the enclosed mass.

Figure 2.26: The same as 2.25, but at t = 10 ms (solid lines) and t = 50 ms (dashed
lines) after core bounce. Here the profiles are expressed as function of radius.
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Figure 2.27: The same as 2.25, but at t = 100 ms (solid lines) and t = 200 ms (dashed
lines) after core bounce. Here the profiles are expressed as function of radius.

will be the next step in the further development of the ASL scheme.
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Chapter 3

MODA, multi-dimensional optical
depth algorithm

The neutrino optical depth is one of the crucial ingredient of the ASL scheme: it de-
fines the limit between different optical regimes and it enters directly the calculation of
the diffusion rates. The major difficult to compute it, in particular in multidimensional
simulations, resides in its intrinsically non-local nature: counting the average amount of
interactions that a radiation particles experiences from it production site to the limits
of the domain, it requires the knowledge of the geometry and of the local properties
of matter-radiation interaction in the whole computational domain, at the same time.
Symmetries have provided powerful arguments to suggest radiation paths along which
the optical depth can be calculated. For example, in a spherically symmetric cases, radial
paths are the most natural choice, compatible with the symmetry of the system. For
other symmetries (like axial symmetry) or for systems that do not present any evident
or even approximated invariance, there are no natural and univoque path choices. The
calculation of the optical depth in these cases has been traditionally done choosing a
set of (usually straight) paths, along which the optical depth path integral can be easily
computed. If more than one path could be associated with the same point in the domain,
then the actual optical depth is usually the minimal among the different possibilities.
For example, in systems with an almost spherically symmetry (like CCSN in multi-
dimensions), multidimensional radiation transport problems can be treated using the
ray-by-ray approximation: the multidimensional problem is approximated by a set of
(eventually coupled) one-dimensional problems, each of which models a sector of the
solid angle. In other cases, when rays from the center do not describe typical radiation
paths (like in accretion disk), each point of the domain has it own set of straight paths.
We call this approach as local ray-by-ray.

In this following, we discuss a new algorithm to calculate optical depths in two or in
three spatial dimensions. Unlike most commonly used algorithms, we do not make any a
priori assumptions about symmetries in the system or the radiation direction. Instead,
we calculate both, a path out of a given matter distribution and the corresponding
optical depth, without such restrictive assumptions.
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3.1 Definitions and main hypotheses

The optical depth along a path γ from A to B is defined as

τA→B [γ] =

∫
γ:A→B

ds

λ
, (3.1)

where λ is the local mean free path and ds an infinitesimal displacement along the
radiation direction. Obviously, λ is a function of position, and the optical depth depends
on the exact path between A and B. Eq. (3.1) also contains the physical interpretation
of τ : being related to the inverse of the mean free path, it counts the average number
of interactions between radiation and matter along the path γ.
In many approximative radiation treatments, the required information is the number of
radiation-matter interactions from a given position out to the edge of the computational
domain, from which the radiation can escape freely. If we denote by xe any point of the
edge from which a given radiation parcel can leave the domain, the optical depth at a
point x inside the computational domain, calculated along γ : x→ xe, is given by

τx→xe [γ] =

∫
γ:x→xe

ds

λ
. (3.2)

Even though each radiation particle travels and interacts in its own way and along
its own path, we are interested in an average behavior, that characterizes how opaque
or transparent the matter is to radiation. If we consider that each interaction causes
the radiation to be absorbed (and, eventually, emitted again) or scattered, changing
its original direction, we can say that the path which minimizes τ corresponds to the
most likely way for the radiation to leave the system. Following this prescription, more
emphasis is usually devoted to the path that minimizes the optical depth,

τ(x) = min
{γ|γ:x→xe}

∫
γ

ds

λ
. (3.3)

With the exception of very few cases, where the strong degree of symmetry of the
system simplifies the calculation, the detection of the path which minimizes the optical
depth is not obvious and computationally too expensive to be calculated. For this rea-
son, we have searched for a different prescription that can be applied to more general
cases, where no evident symmetries are present, and that can be related to the physical
behavior of the radiation traveling inside an opaque medium; but still using the mini-
mization of the path integral as a guide line. This prescription is presented in the next
section.

Before proceeding, we indicate a few hypotheses concerning the computational do-
main and the behavior of the mean free path λ in it. 1) Each point in our matter dis-
tribution is –apart from its physical properties– also characterized by a local, numerical
resolution length that we denote by h. 2) Once the density and the other thermodynam-
ical quantities are known, the local mean free path λ can be calculated. 3) We assume
that λ is a smooth function of the spatial variables, and, of course, is large in transparent
and small in opaque regions. 4) We assume that the most opaque areas are located well
inside the domain, far from the edge. Then, the mean free path decreases (globally) and
it has its minima at the edge of the computational domain, from where the radiation
can escape on sufficiently long timescales.
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3.2 The algorithm

In what follows, we present our prescription for selecting the path that enters into
Eq. (3.2). The local opacity value of a medium is determined by both, scattering off
other particles and absorption, and it is quantified by the local mean free path λ. From
a microscopic point of view1, the production occurs isotropically, i.e., radiation can be
emitted in any direction; on the macroscopic scale, the properties of matter influence the
behavior of radiation, and break the symmetry of the emission: if a radiation particle
is emitted towards a region of decreasing mean free path, it will likely interact again
with matter, changing its original propagation direction; on the contrary, if it is emitted
towards a direction of increasing mean free path, it will probably move away freely from
the production site. This simple consideration suggests that, even if radiation is emitted
locally in an isotropic way, it moves macroscopically preferentially towards regions of
larger mean free path. For convenience, we introduce σ as inverse of the mean free path

σ(x) =
1

λ(x)
. (3.4)

Under the hypotheses presented in the previous section, σ has its largest values well
inside the computational domain, and reaches its absolute minimum at the edge of the
domain. Note that we do not assume σ to decrease monotonically, it is allowed to have
local maxima and minima. One could calculate the local gradient of σ and proceed in
the direction of its minimum, but this does not necessarily correspond to the direction
that globally minimizes the optical depth. To avoid getting “trapped” in local minima,
we proceed in the following way. First, we define a sphere with radius R, comparable to
the local resolution length R ∼ h, around a given point x. On this sphere, we search for
a point z that satisfies

σ(z) < fdecσ(x), (3.5)

where fdec < 1. If found, R is stored as the local decreasing length , ldec(x) = R. If no
such point can be found, we increase the radius of the sphere (for example, by taking
increasing integer multiples of h) and repeat the search until we find an acceptable
decreasing lenghtscale.

Typical values of fdec that we have tested (see section 4 for more details) lie in the
interval 0.1 − 0.5. Larger values, closer to unity, can be less effective on avoiding local
extremes, while smaller values require more computational effort, and are prone to push
the decreasing lengthscale search too early at the edge of the computational domain,
introducing boundary conditions effects. In any case, we recommend a preventive study
of σ(x) and its typical spatial and temporal variations, in order to choose a meaningful
values of fdec.

Once we know the lengthscale at which σ has certainly decreased down to the chosen
limit σdec(x), we also obtain the direction towards the minimum of σ(x), vmin(x). Nev-
ertheless, using vmin(x) systematically for the calculation of τ(x), can lead to abrupt
and unrealistic discontinuities in the optical depth, that are basically the outcome of the
interplay between the local resolution and the geometrical complexity of the simulated

1With macro-/microscopic we mean large/small in comparison to the local mean free path λ.
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system. To avoid this, it is better to devise a smoothed definition of the path direction.
To that end, we consider again the sphere centered on x, with radius R = ldec(x). We de-
note the corresponding spherical surface by Sdec. For points y on this surface, we define
unit vectors êy = (y − x)/|y − x|, which –when properly weighted– yield an “average”
direction where sigma becomes minimal on Sdec

vdec(x) =

(∫
Sdec

êy
σ(y)

ds

)
/

∣∣∣∣∫
Sdec

êy
σ(y)

ds

∣∣∣∣ . (3.6)

This average favors the directions where σ is minimum on the spherical surface, but
it also takes globally into account the behavior of σ at the scale of ldec(x), smooth-
ing the evolution of the direction in case of sharp, local variations. In order to avoid a
compensation effect due to the average calculation (for example, when a system has a
strong symmetry with respect to a plane, on the plane itself the average calculation can
partially cancel the contributions from two symmetric points of minimum), we calculate
the cosine between vdec(x) and vmin(x). If the two directions are too different (the co-
sine exceeds, for example, 0.9), we reject vdec(x), calculated with Eq. (3.6), and we use
vdec(x) = vmin(x) instead.

Once vdec(x) is known, we proceed by one resolution lenghtscale h in its direction
and denote the corresponding end point by x′. It is noteworthy that although the search
for the integration direction vdec(x) is made by “looking ahead” to whatever distance
is necessary in order to find an acceptable σ, the integration itself is done in as small
increments as possible. Therefore, x′ will always be the closest point to x in the direction
vdec(x).

Starting from a point x, this procedure is repeated until the edge of the computational
domain is reached: x(0) = x, x(1) = x′, x(2), x(3), . . . , x

(n)
e . Along this path, the optical

depth τ(x) is calculated as

τ(x) =

∫
γ:x→xe

ds

λ
=
∑
i=1,n

(∫
γ(i):x(i−1)→x(i)

ds

λ

)
. (3.7)

3.3 Tests performed

MODA has been implemented and tested in both, grid-based and SPH codes. We present
results from the grid-based version in the following sections; The description, tests and
results of the SPH implementation can be found on the master thesis of Emanuel Gafton
(Master student at Jacobs University, Bremen; private communication).

A grid-based version of MODA has been implemented on 2D and 3D Cartesian
grids. A description of the implementation is reported in the Section 3.4. First, we
present illustrative results for some test cases where the mean free path is expressed
as an analytical function of the Cartesian coordinates; we compare the results obtained
with our algorithm with those of more conventional methods. The latter usually employ
a fixed path (or a set of possible fixed paths), eventually suggested by the symmetries of
the system. We compare also the computational performances of the different methods
for the 3D case and we discuss possible parallelization strategies. Finally, we show other
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illustrative results for neutrino radiation in a core-collapse supernova and a neutron star
merger contexts, where the neutrino mean free path is calculated from data taken from
multi-dimensional hydrodynamics simulations.

2D tests

Figure 3.1: Logarithm of the optical depth for the first spherically symmetric test
on a 2D Cartesian grid. The colored circumferences correspond to lines of constant
optical depth. Left: MODA. Center: Local ray-by-ray. Right: Global ray-by-ray.

Figure 3.2: Logarithm of the modulus of the difference between the calculated op-
tical depth and the analytical result given by Eq. (3.9). The three different panels
corresponds to the same three methods represented in Fig. 3.1.

We present here the results for two different tests, with an increasing level of complex-
ity. In all cases the computational domain is represented by an equally spaced Cartesian
grid of 600× 600 zones, where each zone has a unitary width. In each test, we compare
three different methods to compute the optical depth starting from the same theoretical
mean free path. 1) Our MODA algorithm. 2) A local ray-by-ray method: from each point
of the grid, we integrated the inverse mean free path along a set of predefined straight
paths (rays); then, the local optical depth is defined as the minimum value among those
integrals. In order to guarantee a good resolution, we use 16 rays. 3) A global ray-by-ray
method: we interpolate the mean free path from the Cartesian mesh on a spherical one;
then, we calculate the local optical depth in each point of the spherical grid by the
integration of the inverse mean free path along the radial path; finally, τ is interpolated
back on the Cartesian mesh. As the resolution of this method depends on the resolution
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of the spherical grid, we keep the same (constant) resolution of the Cartesian grid in the
radial direction, while we divide the planar angle into 32 bins for the angular coordinate.

In the first test, we define a monotonically decreasing spherically symmetric inverse
mean free path

σ(x1, x2) = σ0 exp

(
−
√
x2

1 + x2
2

d0

)
, (3.8)

with σ0 = 5 and d0 = 30; here, x1 and x2 represent the coordinates with respect to the
center of the computational domain. According to the symmetry of the system, the path
which minimizes the optical depth is always radial. Then, assuming spherical boundary
condition at Rout = 249, τ(R ≥ Rout) = τboundary = 10−2, the optical depth can be
calculated analytically in each point of the domain,

τ(x1, x2) = d0σ0

(
exp

(
−
√
x2

1 + x2
2

d0

)
− exp

(
−Rout

d0

))
+ τboundary. (3.9)

In Fig. 3.1, we present the calculated optical depth resulting from the three algo-
rithms. The fact that the lines of constant τ are almost perfect circumferences shows
that all three algorithms reproduce accurately the original spherical symmetry of the
input data. While this result is obvious for the global ray-by-ray method (third panel),
where the spherical symmetry is directly encoded in the algorithm, it is less obvious
for the other two, especially for MODA, where no symmetry and no predefined path is
assumed. In Fig. (3.2) we compare the results of all three methods with the analytic
solution given by Eq. (3.9); to do that, we calculate the quantity

εnumeric(x1, x2) = log

∣∣∣∣τnumeric(x1, x2)− τanalytic(x1, x2)

τanalytic(x1, x2)

∣∣∣∣, (3.10)

and we plot it in the first quadrant of the computational domain. All the three methods
look consistent with the analytic solution, but with some interesting differences. The first
two methods show a similar pattern that is caused by the Cartesian grid and by the step
(our method) or by the direction (local ray-by-ray method) discretization: the results
are better when the paths on the Cartesian grid have the very precise radial direction.
Otherwise, when a path differs from the radial direction, the error increases, but being
typically only a few percents, always below ∼ 10%. In this test, MODA looks slightly
less accurate than the local ray-by-ray, in particular closer to the external boundary
radius, where the more complicated boundary treatment can introduce a larger error.
However, when we compare it with the third method, we see an homogeneous error
which is related to the double interpolation between the Cartesian and the spherical
grids.

In the second test, we keep the same grid configuration, but we relax the spherical
symmetry of the input data defining a different analytic inverse mean free path as a
superposition of two off-centered, elliptical Gaussian distributions

σ(x1, x2) =
∑
n=1,2

σn exp

(
−

((
x1 − x̃1,n

s1,n

)2

+

(
x2 − x̃2,n

s2,n

)2
))

, (3.11)
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Figure 3.3: Logarithm of the optical depth for the first spherically symmetric test
on a 2D Cartesian grid. The colored contours correspond to lines of constant optical
depth. Left: MODA. Center: Local ray-by-ray. Right: Global ray-by-ray.

Figure 3.4: Logarithm of the modulus of the relative difference between the optical
depth calculated using the local ray-by-ray method (taken as a reference) and the
other two methods. Left: MODA. Right: Global ray-by-ray.

with σ1 = 60, σ2 = 40, s1,1 = s2,1 = 14
√

14, s1,2 = 20
√

10, s2,2 = 10
√

10, x̃1,1 = x̃2,1 = 40
and x̃1,2 = x̃2,2 = −40 ; here, x1 and x2 represent the Cartesian coordinates with respect
to the center of the computational domain. For the boundary conditions, we assume
again constant spherical boundary conditions at radius Rout = 249, τ(R ≥ Rout) =
τboundary = 10−2.

We present in Fig. 3.3, for the new inverse mean free path, the calculated optical
depth resulting from all three algorithms. In this case, there is no simple analytic so-
lution for the optical depth, hence we decide to use the local ray-by-ray method as
the referential case, and we compare the results of the other two methods with it. In
particular, we use this referential optical depth in the expression for ε, Eq. (3.10), after
the substitution τanalytic → τlocal ray−by−ray. The lack of a clear spherical symmetry in the
input data introduces large discrepancies in the global ray-by-ray method, as it can be
seen from the shape of the constant optical depth lines in Fig. (3.3) or, more explicitly,
in the right panel of Fig. (3.4). MODA also shows some differences with the referential
model, but the agreement is considerably better than the global ray-by-ray method (as
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it can be seen from the left panel of Fig. (3.3)), and the relative difference is typically
orders of magnitude lower (left panel of Fig. (3.4)).

3D tests

Figure 3.5: Logarithm of the optical depth for the asymmetric test on a 3D Cartesian
grid. Left: MODA. Right: local ray-by-ray. Upper (lower) row shows a xy plane (yz
plane) centered slice of the 3D domain. The colored contours correspond to lines of
constant optical depth.

MODA can be easily extended to 3D. In the following, we present the results of a
completely 3D asymmetric case, where we compare the optical depths obtained with the
new algorithm and the ones obtained with a classical local ray-by-ray.

We consider a Cartesian grid of 400 x 400 x 400 cells, with unitary width. In order to
guarantee a high directional resolution in the path construction, we consider 98 possible
directions from each cell, corresponding to the first and second cubes concentric with
the cell itself. In order to have a comparable resolution in the local ray-by-ray method,
we calculate the optical depth using the same 98 possible directions/paths from each
cell.
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Figure 3.6: Logarithm of the modulus of the relative difference between the optical
depth calculated using the local ray-by-ray method (taken as a reference) and MODA.
Left: xy plane. Right: yz plane.

We define an analytical inverse mean free path as a superposition of two ellipsoidal,
off-centered Gaussian distributions

σ(x1, x2, x3) =
∑
n=1,2

σn exp

(
−

((
x1 − x̃1,n

s1,n

)2

+

(
x2 − x̃2,n

s2,n

)2

+

(
x3 − x̃3,n

s3,n

)2
))

,

(3.12)
with σ1 = 120, σ2 = 80, s1,1 = 35, s2,1 = 30, s3,1 = 25, s1,2 = 45, s2,2 = 15,s3,2 = 30,
x̃1,1 = x̃2,1 = x̃3,1 = 40 and x̃1,2 = x̃2,2 = x̃3,2 = −40. For the boundary conditions,
we assume again constant spherical boundary conditions at radius Rout = 249, τ(R ≥
Rout) = τboundary = 10−2.

In Fig. (3.5) we plot the logarithm of the optical depth for our method (left panel)
and for the ray-by-ray (right panel). We choose the x1x2 plane, x3 = 0, (upper panel)
and the x2x3 plane, x1 = 0, (lower panel) to show two slices of the 3D domain. As in the
previous 2D tests, also in this 3D test the results obtained with the two different methods
are qualitatively consistent and show a remarkable agreement and similar resolution. In
Fig. (3.6), we plot the logarithm of the relative difference between the two methods,
calculated according to Eq. (3.10) and taking the ray-by-ray method as a reference.
From this more quantitative analysis, we can see that, on average, the difference is below
10%. In some areas, the discrepancy rises up to ∼ 30%, in particular at the intersection
between the two Gaussian distributions, where the trend of σ deviates mostly from a
monotonic distribution and the search for an optimal radiation path is less obvious.
Nevertheless, two important points have to be taken into account. First, the optical
depth is a magnitude with a wide range of values (five orders of magnitude in our
calculations), therefore a high error in a limited amount of zones in does not imply
a noticeable effect on the overall calculation of τ , as can be seen in Fig. (3.5). The
agreement is good because the number of zones with high deviation from the referential
value is low and not dominant. Second, we obtain a precise result at a considerably lower
computational cost.
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Performance analysis and parallelization issues

In this paragraph, we compare the performances of both methods in multi-dimensional
applications and we discuss the impact that parallelization has on them. We decided to
focus on 3D simulations, where the computational effort is higher and, consequently, the
impact of the optical depth calculation is larger. In principle, both methods require the
knowledge of the local mean free path over the whole computational domain to calculate
the optical depth in each point. Then, the most natural parallelization strategy is the
OpenMP parallelization, which has been applied to both codes.
In the first test, we vary the size of the computational domain N = N1/3×N1/3×N1/3,
and we consider two cases, one without using any parallelization and one using the
OpenMP parallelization with Nthreads = 8. In order to keep the input data constant, but
avoiding resolution or boundary conditions problems, we choose a simple spherically
symmetric inverse mean free path

σ(x1, x2, x3) = σ0 exp

(
−x

2
1 + x2

2 + x2
3

s2

)
, (3.13)

with σ0 = 30 and s = 50. Taking into account the increasing computational time,
we consider a version of both methods with a lower direction resolution: instead of 98
possible directions available from each cell, we consider 26 possible directions (i.e. the
smallest cube around each cell). We repeat the calculations for different dimensions of
the domain, spanning from N1/3 = 200 to N1/3 = 400 in the first (not parallelized)
case, and up to N1/3 = 600 in the second (parallelized) case, for both methods. In these
tests we have implemented squared boundary conditions (see Section 3.4 for details). In
Fig. 3.7, left panel, we plot the computational time as a function of the number of cells
N . In both cases, we clearly see that MODA is always faster than the ray-by-ray for each
explored size, and the performance difference increases for larger domains. In particular,
fitting the four curves as a function of N , we find that MODA scales with log t [s] ∼ logN
while the ray-by-ray scales as log t [s] ∼ logN3/2. As expected, the parallelized versions
are significantly faster than the serial ones. In the second test, we want to study more
systematically the efficiency of the parallelization approach. In order to do this, we fix
the dimensions of the computational domain to N1/3 = 400 and we vary the number of
OpenMP threads from 1 to 48. In Fig. 3.7, central panel, we plot the computational time,
normalized to the serial case (Nthreads = 1), as a function of the number of OpenMP
threads for the two methods. Both methods show a reduction of the computational time
due to the OpenMP parallelization; but the efficiency of the parallelization and its trend
appear quite different: MODA has larger benefits from the parallelization compared with
the ray-by-ray. Moreover, the speed-up of MODA increases up to the maximum number
we have tested (48 threads), while in the ray-by-ray saturates around 16 threads and
the parallelization becomes even inefficient for a larger number of CPUs involved.

Astrophysical examples

In the following we present results for more realistic cases; in particular, we consider
the calculation of the neutrino optical depth in relevant multi-dimensional astrophys-
ical contexts, like core-collapse supernova and double neutron star mergers. In these
scenarios, matter density and matter temperature become so large that a large amount
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Figure 3.7: Performance comparisons between MODA (red lines) and the ray-by-
ray algorithm (green lines). Left: computational time as a function of the effective
number of cells, N3, in a serial code and in an OMP parallelized version with 8
threads. Right: computational time (normalized to the serial case) as a function of the
number of OpenMP threads (Nthreads) used in the parallelization of the codes. In all
cases, the dimension of the computational domain is fixed to N = 400.

of neutrinos (with energy of the order ∼ 1 − 100 MeV) is produced. In such extreme
conditions, neutrinos interact with matter, so that the neutrino local mean free path can
become smaller than other typical lengthscales. Therefore, these systems are a suitable
scenario for the calculation of a multi-dimensional neutrino optical depth.

In order to test our algorithm, we consider thermodynamical conditions extracted
from 3D simulations and, based on them, we calculate the local mean free path for
electron neutrinos with a typical energy of 54 MeV. Then, we use these data as input
for the neutrino optical depth calculation.

In the first test, we take a 2D Cartesian slice of data (density, temperature and
electron fraction), from a 3D core collapse supernova simulation performed with the
ELEPHANT code [175], with a spatial resolution of 2 km. Considering that the sys-
tem is, in first approximation, spherically symmetric, we calculate the electron neutrino
optical depth using MODA (2D version) and the global ray-by-ray method (2D ver-
sion, with 64 rays). Both results are shown in Fig. 3.8. We find similar results with
both methods: inside a radius of about 60 km (that includes the proto-neutron star
and the inner part of the shocked material), the optical depth contours are spherically
symmetric, as expected. Above that radius, matter is convective and multi-dimensional
effects come into play. The contour lines start to show multi-dimensional features, which
are related to inhomogeneities in density, temperature and electron fraction. The main
difference between both methods is the spatial resolution of the results. While the ray-
by-ray approach decreases its resolution moving outwards, the new algorithm maintains
a constant resolution. As a result, the outer optical depth contours are smoother that
those found by the global ray-by-ray method.

As a 3D test case we take the matter distribution (density, temperature and electron
fraction) from the remnant of a double neutron star merger simulation [121], performed
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Figure 3.8: Logarithm of the optical depth for electron neutrinos of 54 MeV of energy,
for a 2D Cartesian slice, obtained from a full 3D core-collapse supernova simulation,
in the post-bounce phase. Left: MODA. Right: global ray-by-ray, using 64 different
radial rays. The contours correspond to lines of constant optical depth. The cyan line
refers to the so called neutrinosphere (τ = 2/3).

with the SPH code MAGMA [140]. We map the particles onto a 3D Cartesian, equidis-
tant grid (spatial resolution of 2 km) and calculate the neutrino mean free path for
electron neutrinos with 54 MeV of energy. Then, we use MODA to calculate the neu-
trino optical depth, τ . The results of this calculation are shown in Fig. 3.9 (left panel),
where we compare them with the optical depth calculated with a local ray-by-ray method
(right panel). As it can be seen from Fig. 3.9, the two methods show good agreement.
Again, fine-structure differences appear, due to the fact that our method is based on a
purely local exploration of the suitable radiation path, that does not invoke any special
global symmetry or predefined direction. In this sense, our 3D method provides an opti-
cal depth calculation which is more general and automatically adapts to the geometry of
the matter distribution. The local ray-by-ray method is, also in this case, prohibitively
expensive from the computational point of view, and the resolution shown in this test
is never achieved with this method in actual hydrodynamical calculations.

3.4 Details of the implementation for the grid code

The implementation of the new method to compute the radiation optical depth in arbi-
trary, multi-dimensional configurations, follows closely the description of the algorithm
we gave in Sect. 3.2. In this section, we discuss in more details some more technical
aspects of the implementation for an equally-spaced Cartesian grid code.

As the method requires at each point the exploration of the neighboring areas to
find ldec(x), we need to set a boundary layer, of thickness Nboundary, at the edge of
the computational domain. This layer has to be large enough to allow the search
for ldec(x), but it should be not too large, because otherwise it would reduce the ac-
tual computational size. For example, in our tests, when we defined squared bound-
ary conditions, we set Nboundary = 20, for an original computational dimension which
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Figure 3.9: Logarithm of the optical depth for electron neutrinos of 54 MeV of
energy, for the aftermath of a double neutron star merger simulation. Left: slice of the
3D calculation performed with MODA. Right: results of the 2D calculation, obtained
along a set of selected paths (see the main text for more details). The colored lines
correspond to lines of constant optical depth. The cyan line refers to the so called
neutrinosphere (τ = 2/3).

ranges from 200 to 600, and we define the actual computational domain in the range
Nboundary ≤ xi ≤ N1/3 −Nboundary, for each Cartesian coordinate. When we used spher-
ically boundary conditions, we defined a boundary radius inside our Cartesian domain
(for example, Rboundary = 249 for a linear dimension N1/3 = 600), using the portion
outside it as a boundary layer. In the boundary layer, the optical depth has to be
analytically defined as a normal boundary conditions.

The search of ldec(x) is performed sampling the inverse mean free path, σ, at a cer-
tain distance from x. In the 2D case, we consider 8 points separated by an angle π/4; in
the 3D case, we use solutions of the Thompson problem (reference) with 64 (32) points
in the high (low) resolution case. To calculate the direction according to Eq. 3.6, we
replace the integral average by a discrete average at a distance ldec(x) from x: in the 2D
case, we used 16 points, separated by an angle π/8, while in the 3D case we used again
the 64 (or 32 in the lower resolved case) points, solution of the Thompson problem, and
later we mapped the calculated vector on 98 (26) possible directions, defined on the
Cartesian grid by the cube of side 5 (3), built around the considered cell.
Starting from any point of the domain, the radiation path is built following the local
radiation direction, and it stops when it reaches the boundary layer. There, the cor-
responding boundary value of the optical depth is summed to the result of the path
integral.
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Chapter 4

3D simulations of the aftermath of
neutron star mergers

A binary neutron star merger (hereafter, BNS merger) forms initially a central, hyper-
massive neutron star (HMNS) surrounded by a thick accretion torus. During the merger
process a small fraction of the total mass becomes ejected via gravitational torques and
hydrodynamic processes (“dynamic ejecta”). The decompression of this initially cold
and extremely neutron-rich nuclear matter had long been suspected to provide favor-
able conditions for the formation of heavy elements through the rapid neutron capture
process (the “r-process”) [75, 76, 72, 157, 32, 96, 26]. While initially only considered as
an “exotic” or second-best model behind core-collapse supernovae, there is nowadays a
large literature that –based on hydrodynamical and nucleosynthetic calculations– consis-
tently finds that the dynamic ejecta of a neutron star merger is an extremely promising
site for the formation of the heaviest elements with A > 130 [see, e.g., 138, 42, 130, 66].
Core-collapse supernovae, on the contrary, seem seriously challenged in generating the
conditions that are needed to produce elements with A > 90 [2, 132, 37]. A possible
exception, though, may be magnetically driven explosions of rapidly rotating stars [176].
Such explosions, however, require a combination of rather extreme properties of the pre-
explosion star and are therefore likely rare.
There are at least two more channels, apart from the dynamic ejecta, by which a compact
binary merger releases matter into space, and both of them are potentially interesting
for nucleosynthesis and –if enough long-lived radioactive material is produced– they may
also power additional electromagnetic transients. The first channel is the post-merger
accretion disc. As it evolves viscously, expands and cools, the initially completely dis-
sociated matter recombines into alpha-particles and –together with viscous heating–
releases enough energy to unbind an amount of material that is comparable to the dy-
namic ejecta [95, 6, 78].
The second additional channel is related to neutrino-driven winds, the basic mechanisms
of which are sketched in Fig.(4.1). This wind is, in several respects, similar to the one
that emerges from proto-neutron stars. In particular, in both cases a similar amount
of gravitational binding energy is released over a comparable (neutrino diffusion) time
scale, which results in a luminosity of Lν ∼ ∆Egrav/τdiff ∼ 1053 erg/s and neutrinos with
energies ∼ 10− 15 MeV. Under these conditions, energy deposition due to neutrino ab-
sorption is likely to unbind a fraction of the merger remnant. In contrast to proto-neutron
stars, however, the starting point is extremely neutron-rich nuclear matter, rather than
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Figure 4.1: Left: sketch of the neutrino-driven wind from the remnant of a BNS
merger. The hot hypermassive neutron star (HMNS) and the accretion disc emit neu-
trinos, preferentially along the polar direction and at intermediate latitudes. A fraction
of the neutrinos is absorbed by the disc and can lift matter out of its gravitational
potential. On the viscous time scale, matter is also ejected along the equatorial di-
rection. Right: sketch of the isotropized ν luminosity we are using for our analytical
estimates (see the main text for details).

a deleptonizing stellar core. At remnant temperatures of several MeV electron anti-
neutrinos therefore dominate over electron neutrinos, contrary to the proto-neutron star
case. Based on scaling relations from the proto-neutron star context [31, 123], early
investigations discussed neutrino-driven winds from merger remnants either in an order-
of-magnitude sense or via parametrized models [144, 137, 90, 155, 156, 95, 170, 22]. To
date, only one neutrino-hydrodynamics calculation for merger remnants has been pub-
lished [29]. This study was performed in two dimensions with the code VULCAN/2D
and drew its initial conditions from 3D SPH calculations with similar input physics,
but without modelling the heating due to neutrinos [121]. These calculations confirmed
indeed that a neutrino-driven wind develops (with Ṁ ∼ 10−3M�/s), blown out into
the funnel along the binary rotation axis that was previously thought to be practically
baryon-free. By baryon-loading the suspected launch path, this wind could potentially
threaten the emergence of the ultra-relativistic outflow that is needed for a short GRB.
[29] therefore concluded that the launch of a sGRB was unlikely to happen in the pres-
ence of the HMNS, but could possibly occur after the collapse to a black hole.
The aim of this study is to explore further neutrino-driven winds from compact binary
mergers remnants. We focus here on the phase where a HMNS is present in the cen-
tre and we assume that it does not collapse during the time frame of our simulation,
as in [29]. Given the various stabilizing mechanism such as thermal support, possibly
magnetic fields and in particular the strong differential rotation of the HMNS together
with a lower limit on the maximum mass in excess of 2.0M� [27], we consider this as
a very plausible assumption. We are mainly interested to see how robust the previous
2D results are with respect to a transition to three spatial dimensions. The questions
about the understanding of the heavy element nucleosynthesis that occurs in compact bi-
nary mergers, the prediction of observable electromagnetic counterparts for the different
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outflows, and the emergence of sGRBs and of are main drivers behind this work.

4.1 Analytical estimates

The properties of the remnant of a BNS merger can vary significantly, depending on the
binary parameters (mass, mass ratio, eccentricity, spins etc.) and on the nuclear equa-
tion of state (hereafter, EoS). For our estimates and scaling relations, we use numerical
values that characterize our initial model, see Sec.(4.2.3) for more details.
We consider a central HMNS of mass Mns ≈ 2.5M�, radius Rns ≈ 25 km and tempera-
ture kBTns ≈ 15 MeV. Inside of it, neutrinos are assumed to be in thermal equilibrium
with matter. Under these conditions the typical neutrino energy can be estimated as
Eν,ns ∼ (F3(0)/F2(0)) kBTns ≈ 3.15 kBTns ≈ 50 MeV, where Fn(0) is the Fermi integral
of order n, evaluated for a vanishing degeneracy parameter. The central object is sur-
rounded by a geometrically thick disc of mass Mdisc ≈ 0.2M�, radius Rdisc ≈ 100 km
and height Hdisc ≈ 33 km. The aspect ratio of the disc is then H/R ≈ 1/3. We assume
a neutrino energy in the disc of Eν,disc ∼ 15 MeV, comparable with the mean energy of
the ultimately emitted neutrinos.
Representative density values in the HMNS and in the disc are ρns ∼ 1014g cm−3 and
ρdisc ∼ 5 · 1011g cm−3, respectively.
The dynamical time scale tdyn of the torus is set by the orbital Keplerian motion around
the HMNS,

tdyn ∼
2π

ΩK

≈ 0.011 s

(
Mns

2.5M�

)−1/2(
Rdisc

100 km

)3/2

, (4.1)

where ΩK is the Keplerian angular velocity.
On a longer time scale, tdyn, viscosity drives radial motion. Assuming it can be described
by an α-parameter model [149], we estimate the lifetime of the accretion disc tdisc as

tdisc ∼ α−1

(
H

R

)−2

Ω−1
K ≈ 0.3 s

( α

0.05

)−1
(
H/R

1/3

)−2

(
Mns

2.5M�

)−1/2(
Rdisc

100 km

)3/2

. (4.2)

The accretion rate on the HMNS Ṁ is then of order

Ṁ ∼ Mdisc

tdisc

≈ 0.64
M�

s

(
Mdisc

0.2M�

)( α

0.05

)
(
H/R

1/3

)2(
Mns

2.5M�

)1/2(
Rdisc

100 km

)−3/2

. (4.3)

Neutrinos are the major cooling agent of the remnant. Neutrino scattering off nucle-
ons is one of the major sources of opacity for all neutrino species1 and the corresponding
mean free path can be estimated as

λNν ≈ 7.44 · 103 cm

(
ρ

1014 g/cm3

)−1(
Eν

10 MeV

)−2

, (4.4)

1In the case of νe’s, the opacity related with absorption by neutrons is even larger. Nevertheless, it
is still comparable to the scattering off nucleons.
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where ρ is the matter density and Eν is the typical neutrino energy. The large variation
in density between the HMNS and the disc suggests to treat these two regions separately.
For the central compact object, the cooling time scale tcool,ns is governed by neutrino
diffusion (see, for example, [137]). If τν,ns is the neutrino optical depth inside the HMNS,
then

tcool,ns ∼ 3
τν,ns Rns

c
. (4.5)

If we assume τν,ns ∼ Rns/λNν ,

tcool,ns ∼ 1.88 s

(
Rns

25 km

)2(
ρns

1014g/cm3

)(
kBTns

15 MeV

)2

. (4.6)

The neutrino luminosity coming from the HMNS is powered by an internal energy
reservoir ∆Ens. We estimate it as the difference between the internal energy of a hot
and of a cold HMNS. For the first one, we consider typical profiles of a HMNS obtained
from a BNS merger simulation. For the second one, we set T = 0 everywhere inside
it. Under these assumptions, ∆Ens ≈ 0.30Eint,HMNS ≈ 3.4 · 1052erg, and the associated
HMNS neutrino luminosity (integrated over all neutrino species) is approximately

Lν,ns ∼
∆Ens

tdiff,ns

≈ 1.86 · 1052 erg/s

(
∆Ens

3.5 · 1052erg

)
(

Rns

25 km

)−2(
ρns

1014g/cm3

)−1(
kBTns

15 MeV

)−2

. (4.7)

The disc diffusion time scale can be estimated using Eq.(4.5):

tcool,disc ∼ 1.68 ms

(
Hdisc

33 km

)2(
ρdisc

5 · 1011g/cm3

)(
Eν,disc

15 MeV

)2

. (4.8)

Due to this fast cooling time scale, a persistent neutrino luminosity from the disc requires
a constant supply of internal energy. In an accretion disc, this is provided by the accretion
mechanism: while matter falls into deeper Keplerian orbits, the released gravitational
energy is partially (∼ 50%) converted into internal energy. If Rdisc ∼ 100 km denotes
the typical initial distance inside the disc, and the radius of the HMNS is assumed to be
the final one, then ∆Egrav ∼ (GMnsMdisc/Rns), where we have used R−1

ns � R−1
disc. The

neutrino luminosity for the accretion process is approximately

Lν,disc ∼ 0.5
∆Egrav

tdisc

≈ 8.35 · 1052 erg/s

(
Mns

2.5M�

)3/2 ( α

0.05

)
(
Mdisc

0.2M�

)(
H/R

1/3

)2(
Rdisc

100 km

)−3/2(
Rns

25 km

)−1

. (4.9)

Note that during the disc accretion phase Lν,disc is larger than Lν,ns. Together, the
HMNS and the disk release neutrinos at a luminosity of ∼ 1053 erg/s, consistent with
the simple estimate from the introduction.
Due to the density (opacity) structure of the disc, the neutrino emission is expected
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to be anisotropic, with a larger luminosity in the polar directions (θ = 0 and θ = π),
compared to the one along the equator (θ = π/2), see also [142, 29]. For a simple model
of this effect, we assume that the disc creates an axisymmetric shadow area across the
equator, while the emission is uniform outside this area. The amplitude of the shadow is
2 θdisc, where tan θdisc = (H/R). Then, we define an isotropised axisymmetric luminosity
Lν,iso(θ) as (see the right sketch in Fig.(4.1)):

Lν,iso(θ) =

{
ξ Lν for |θ − π/2| > θdisc

0 for |θ − π/2| ≤ θdisc.
(4.10)

The value of ξ is set by the normalization of Lν,iso over the whole solid angle Ω,∫
Ω
Lν,iso dΩ = Lν :

ξ =
1

1− sin θdisc

. (4.11)

For (H/R) ≈ 1/3, one finds θdisc ≈ π/10 and ξ ≈ 1.5.
After having determined approximate expressions for the neutrino luminosities, we

are ready to estimate the relevant time scale for the formation of the ν-driven wind.
We define the wind time scale twind as the time necessary for the matter to absorb
enough energy to overcome the gravitational well generated by the HMNS. This energy
deposition happens inside the disc and it is due to the re-absorption of neutrinos emitted
at their last interaction surface. Thus,

twind ∼ egrav/ėheat, (4.12)

where egrav ≈ GMns/R is the specific gravitational energy, and ėheat is the specific heating
rate provided by neutrino absorption at a radial distance R from the centre:

ėheat ∼ k
Lνe,iso(|θ − π/2| > θdisc)

4π R2
. (4.13)

In the equation above we have assumed that Lνe ≈ Lν̄e ∼ (Lν,ns + Lν,disc) /3. If k ≈
5.65 · 10−20 cm2 g−1 MeV−2E2

ν is the typical absorptivity on nucleons [12], the heating
rate can be re-expressed as

ėheat ∼ 4.6 · 1020erg g−1 s−1

(
R

100 km

)−2

(
Lνe

3 · 1052 erg/s

)(
ξ

1.5

)(
Eν,disc

15 MeV

)2

. (4.14)

Finally, the wind time scale, Eq.(4.12), becomes

twind ∼ 0.07 s

(
Mns

2.5M�

)(
R

100 km

)
(

Lνe
3 · 1052 erg/s

)−1(
ξ

1.5

)−1(
Eν,disc

15 MeV

)−2

. (4.15)

Since twind < tdisc, neutrino heating can drive a wind within the lifetime of the disc.
Moreover, since the disc provides a substantial fraction of the total neutrino luminosity,
a wind can form also in the absence of the HMNS.

Of course, the neutrino emission processes are much more complicated than what
can be captured by these simple estimates. Nevertheless, they provide a reasonable first
guidance for the qualitative understanding of the remnant evolution.
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4. 3D simulations of the aftermath of neutron star mergers

4.2 Numerical model for the remnant evolution

4.2.1 Hydrodynamics

We perform our simulations with the FISH code [62]. FISH is a parallel grid code that
solves the equations of ideal, Newtonian hydrodynamics (HD) 2:

∂ρ

∂t
+∇ · (ρv) = 0 (4.16)

∂ρv

∂t
+∇ · (ρv ⊗ v) +∇p = −ρ∇φ+ ρ

(
dv

dt

)
ν

(4.17)

∂E

∂t
+∇ · [(E + p) v] = −ρv∇φ+ ρ

(
de

dt

)
ν

(4.18)

∂ρYe
∂t

+∇ · (ρYev) = ρ

(
dYe
dt

)
ν

(4.19)

Here ρ is the mass density, v the velocity, E = ρe + ρv2/2 the total energy density
(i.e., the sum of internal and kinetic energy density), e the specific internal energy, p the
matter pressure and Ye the electron fraction. The code solves the HD equations with
a second-order accurate finite volume scheme on a uniform Cartesian grid. The source
terms on the right hand side stem from gravity and from neutrino-matter interaction. We
notice that the viscosity of our code is of numerical nature, while no physical viscosity is
explicitly included. The neutrino source terms will be discussed in detail in Sec.(4.2.2).
The gravitational potential φ obeys the Poisson equation

∇2φ = 4πGρ, (4.20)

where G is the gravitational constant. The merger of two neutron stars with equal masses
is expected to form a highly axisymmetric remnant. We exploit this approximate invari-
ance by solving the Poisson equation in cylindrical symmetry. This approximation results
in a high gain in computational efficiency, given the elliptic (and hence global) nature
of Eq.(4.20). To this end, we conservatively average the three-dimensional density dis-
tribution onto an axisymmetric grid, having the HMNS rotational axis as the symmetry
axis. The Poisson equation is then solved with a fast multigrid algorithm [120], and the
resulting potential is interpolated back on the three-dimensional grid.

The HD equations are closed by an EoS relating the internal energy to the pressure.
In our model, we use the TM1 EoS description of nuclear matter supplemented with
electron-positron and photon contributions, in tabulated form [165, 53]. This description
is equivalent to one provided by the Shen et al. EoS [151] in the high density part.

4.2.2 Neutrino treatment

To model neutrino radiation, we emply the ASL scheme presented in this work.
The neutrino energy is discretized in 12 geometrically increasing energy bins, chosen in

2FISH can actually solve the equations of ideal magnetohydrodynamics. However, we have not in-
cluded magnetic fields in our current setup.
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4.2. Numerical model for the remnant evolution

Reaction Roles Ref.
e− + p↔ n+ νe O,T,P a
e+ + n↔ p+ ν̄e O,T,P a
e− + (A,Z)↔ νe + (A,Z − 1) T,P a
N + ν ↔ N + ν O a
(A,Z) + ν ↔ (A,Z) + ν O a
e+ + e− ↔ ν + ν̄ T,P a,b
N +N ↔ N +N + ν + ν̄ T,P c

Table 4.1: List of the neutrino reactions included in the simulation (left column;
ν ≡ νe, ν̄e, νµ,τ ), of their major effects (central column; O stands for opacity, P for
neutrino production, T for neutrino thermalization), and of the references for the
implementation (right column): “a” corresponds to [12], “b” to [102], and “c” to [51].

the range 2 MeV ≤ Eν ≤ 200 MeV. The ASL scheme includes the reactions listed in
Tab.(4.1). They correspond to the reactions that we expect to be more relevant in hot
and dense matter. Due to the geometry of the emission, neutrino pair annihilation is
also supposed to be important in optically thin conditions (see, for example, [58, 18]. For
the application to the BNS merger scenario, see [29] and references therein). Therefore,
our numbers concerning the mass loss Ṁ need to be considered as lower limits on the
true value. The inclusion of this process in our model will be performed in a future step.

As a consequence of the distinction between emission and absorption processes, and
between different neutrino species, the source terms in Eq.(4.17)-(4.19) can be split into
different contributions. For the electron fraction,(

dYe
dt

)
ν

= −mb

[(
R0
νe −R

0
ν̄e

)
+
(
H0
νe −H

0
ν̄e

)]
, (4.21)

where R0
ν and H0

ν denote the specific particle emission and absorption rates for a neutrino
type ν respectively, and mb is the baryon mass (with mbc

2 = 939.021 MeV). For the
specific internal energy of the fluid,(

de

dt

)
ν

= −
(
R1
νe +R1

ν̄e + 4R1
νµ,τ

)
+H1

νe +H1
ν̄e , (4.22)

where R1
ν and H1

ν indicate the specific energy emission and absorption rates, respectively.
The factor 4 in front of R1

νµ,τ accounts for the four different species modelled collectively
as νµ,τ . And, finally, for the fluid velocity,(

dv

dt

)
ν

=

(
dv

dt

)
νe

+

(
dv

dt

)
ν̄e

. (4.23)

is the acceleration provided by the momentum transferred by the absorption of νe’s and
ν̄e’s in the optically thin region. Since the trapped neutrino component is not dynami-
cally modelled, we neglect the related neutrino stress in optically thick conditions. As a
consequence, νµ,τ ’s do not contribute to the acceleration term.
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4. 3D simulations of the aftermath of neutron star mergers

For each neutrino ν species, the luminosity (Lν) and number luminosity (LN,ν) are
calculated as:

Lν =

∫
V

ρ
(
R1
ν −H1

ν

)
dV (4.24)

and

LN,ν =

∫
V

ρ
(
R0
ν −H0

ν

)
dV. (4.25)

where V is the volume of the domain. The explicit distinction between the emission and
the absorption contributions, as well as their dependence on the spatial position, allows
the introduction of two supplementary luminosities:
1) The cooling luminosities, Lν,cool and LN,ν,cool, obtained by neglecting the heating rates
H1
ν and H0

ν in eq.(4.24) and Eq.(4.25), respectively.
2) The HMNS luminosities, Lν,HMNS and LN,ν,HMNS, obtained by restricting the volume
integral in Eq.(4.24) and Eq.(4.25) to VHMNS, the volume of the central object. Due to
the continous transition between the HMNS and the disc, the definition of VHMNS is
somewhat arbitrary. We decide to include also the innermost part of the disc, delimited
by a density contour of 5 × 1011g cm−3. This corresponds to the characteristic density
close to the innermost stable orbit for a torus accreting on stellar black holes. It is also
comparable with the surface density of a cooling proto-neutron star. For each luminosity
we associate a neutrino mean energy, defined as 〈Eν〉 ≡ Lν/LN,ν .
Since the scheme is spectral, all the terms on the right hand side of Eq.(4.21), Eq.(4.22)
and Eq.(4.23) are energy-integrated values of spectral emission (rν), absorption (hν) and
stress (aν) rates:

Rn
ν =

∫ +∞

0

rν E
n+2 dE, (4.26)

Hn
ν =

∫ +∞

0

hν E
n+2 dE, (4.27)(

dv

dt

)
ν

=

∫ +∞

0

aν E
2 dE. (4.28)

The calculation of rν , hν and aν is the ultimate purpose of the ASL scheme.
The neutrino optical depths τν ’s play a central role in our scheme. We distinguish

between the scattering (τν,sc) and the energy (τν,en) spectral optical depth. The first one
is obtained by summing all the relevant neutrino processes:

dτν,sc = ρ (ksc + kab) ds (4.29)

where kab and ksc are the neutrino opacities for absorption and scattering, respectively.
For the second, more emphasis is put on those inelastic processes, that are effective in
keeping neutrinos in thermal equilibrium with matter. In this case, we have

dτν,en = ρ
√
kab (ksc + kab) ds, (4.30)

where we have considered absorption processes as inelastic, and scattering processes as
elastic3. The values of the two τν ’s at each point are calculated using a local ray-by-
ray method. It consists of integrating Eq.(4.29) and Eq.(4.30) along several predefined

3This is not true in general. However, it applies to the set of reactions we have chosen for our model.
See Tab.(4.1).
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4.2. Numerical model for the remnant evolution

Figure 4.2: Schematic plot of the seven directions (paths) used to compute the optical
depth at each point of the cylindrical domain.

paths and taking the minimum values among them. These paths are straight oriented
segments, connecting the considered point with the edge of the computational domain.
Due to the intrinsically global character of these integrations, we decided to exploit also
here the expected symmetry of the remnant, and to calculate τν in axial symmetry. The
seven different paths we explore in the (Rcyl − z) plane are shown in Fig.(4.2). The
optical depths vary largely and they decrease, following the density profile, proceeding
from the HMNS to the edge of the remnant. To characterize this behaviour, we define
the unit vector

n̂τ ≡ −∇τν,sc/ |∇τν,sc| , (4.31)

computed at each point of the domain from finite differences on the grid. This vector
will be crucial later to model the diffusion and the final emission of the neutrinos.
The surfaces where τν equals 2/3 are defined as neutrino surfaces. The neutrino sur-
faces obtained from τν,sc can be understood as the last scattering surfaces ; the ones
derived from τν,en correspond to the surfaces where neutrinos decouple thermally from
matter, and they are often called energy surfaces [see, for example, 125]. According to
the value of τν,sc, we distinguish between three disjoint volumes: 1) Vthin, for the opti-
cally thin region (τν,sc � 2/3); 2) Vsurf , for the neutrino surface region4 (τν,sc ∼ 2/3);
3) Vthick, for the optically thick region (τν,sc � 2/3). Obviously, V = Vthick ∪ Vsurf ∪ Vthin.

After having introduced τν , we can now explain in which way the neutrino rates are

4In principle, the neutrino surfaces should have no volume. However, due to the discretization on
the (axisymmetric) grid we adopted to calculate τ , every neutrino surface is replaced by a shell of width
∼ ∆x. This thin layer is formed by the cells x inside which τ is expected to become equal to 2/3.
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Quantity Definition Related quantities
jem emissivity rν,prod

kab absorption opacity λν , τν , hν , aν
ksc scattering opacity λν , τν
λν mean free path rν,diff

τν optical depth n̂τ , n̂path, rν,diff , rν,ult,
hν , aν

n̂τ opposite τ gradient n̂path, nν , sν
n̂path diffusion direction rν,ult

rν,prod production rate rν
rν,diff diffusion rate rν
rν emission rates rν,ult, (dYe/dt)ν , (de/dt)ν
rν,ult ultimate emission rates nν , sν
nν particle density hν
sν momentum density aν
hν absorption rate (dYe/dt)ν , (de/dt)ν
aν stress (dv/dt)ν

Table 4.2: List of the most important spectral quantities appearing in the ASL
scheme (left column) and their definition (central column). In the right column, we
list the relevant quantities (spectral quantities and source terms) that depend directly
on each table entry. See the text for more details.

calculated within the ASL scheme. In Tab.(4.2) we have summarized the most important
quantities, their definitions and relations in the context of the ASL scheme.
The spectral emission rates rν are calculated as smooth interpolation between diffusion
(rν,diff) and production (rν,prod) spectral rates: the first ones are the relevant rates in the
optically thick regime, the latter in the optically transparent region.
We compute rν,prod and rν,diff as

rν,prod =
4π

(hc)3

jem

ρ
, (4.32)

rν,diff =
4π

(hc)3

fFD
ν

ρ tν,diff

. (4.33)

jem is the neutrino spectral emissivity, while fFD
ν is the Fermi-Dirac distribution function

for a neutrino gas in thermal and weak equilibrium with matter. tν,diff is the local
diffusion time scale, calculated as

tν,diff = αdiff

τ 2
ν,sc λν,sc

c
(4.34)

where λν,sc = (ρ (kν,ab + kν,sc))
−1 is the scattering mean free path. αdiff is a constant set

to 3. The interpolation formula for rν is provided by half of the harmonic mean between
the production and diffusion rates.
We compute the spectral heating rate as the properly normalized product of the absorp-
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4.2. Numerical model for the remnant evolution

Figure 4.3: Schematic representation of the procedure to calculate the ultimate emis-
sion rates at the neutrino surface and in the optically thin region, rν,ult, from the
emission rates, rν . The thin black arrows represent the inverse of the gradient of τsc

(n̂τ ), while the thick red arrow is n̂path. xA refers to a point inside the neutrino surface
(opaque region), while xB is a point inside the disc, but in the optically thin zone, for
which n̂tau = n̂path. See the text for more details.

tion opacity kν,ab and of the spectral neutrino density nν :

hν = c kν,ab nν Fe,ν H. (4.35)

H ≡ exp(−τν,sc) is an exponential cut off that ensures the application of the heating
term only outside the neutrino surface, and Fe,ν is the Pauli blocking factor for electrons
or positrons in the final state. nν is defined so that the energy-integrated particle density
Nν is given by:

Nν =

∫ +∞

0

nν E
2 dE. (4.36)

The stress term is calculated similarly to the neutrino heating rate:

aν = c kν,ab sν Fe,ν H, (4.37)

where sν is the spectral density of linear momentum associated with the streaming neu-
trinos, while H and Fe,ν are defined as in Eq.(4.35).

The quantities nν and sν are computed using a multidimensional ray-tracing algo-
rithm. This algorithm assumes that neutrinos (possibly, after having diffused from the
optically thick region) are ultimately emitted isotropically at the neutrino surface and in
the optically transparent region. If we define lν(x

′, n̂) as the specific rate per unit solid
angle of the radiation emitted from a point x′ ∈ (Vsurf ∪ Vthin), in the direction n̂, then

nν(x) =

∫
Vsurf ∪Vthin

ρ
lν (x′, n̂(x,x′))

c |x′ − x|2
d3x′ (4.38)

and

sν(x) =

∫
Vsurf ∪Vthin

ρ
lν (x′, n̂(x,x′))

c |x′ − x|2
E

c
n̂(x,x′) d3x′. (4.39)
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where n̂(x,x′) = (x′ − x)/(|x′ − x|). The isotropic character of the emission allows us
to introduce the angle-integrated ultimate emission rates rν,ult as:

lν(n̂) =

{
rν,ult/ (2π) if n̂ · n̂τ ≥ 0

0 otherwise.
(4.40)

rν,ult and rν can differ locally, but they have to provide the same cooling (spectral)
luminosity: ∫

V

ρ rν dV =

∫
V

ρ rν,ult dV. (4.41)

Since rν,ult represents the ultimate emission rate, after the diffusion process has drained
neutrinos from the opaque region to the neutrino surface, rν,ult = 0 inside Vthick. On the
other hand, inside Vthin diffusion does not take place and rν,ult = rν . In light of this,
Eq.(4.41) becomes ∫

Vthick ∪Vsurf

ρ rν d3x =

∫
Vsurf

ρ rν,ult d3x. (4.42)

Eq.(4.42) has a clear physical interpretation: inside Vsurf , rν,ult is obtained 1) from the
emission rate, rν , at the neutrino surface and 2) from the re-mapping of the emission
rates obtained in the opaque region onto the neutrino surface, as a consequence of the
diffusion process. A careful answer to this re-mapping problem would rely on the solution
of the diffusion equation in the optically thick regime and of the Boltzmann equation
in the semi-transparent region. The ASL algorithm calculates the amount of neutrinos
diffusing from a certain volume element. But it does not provide information about
the angular dependence of their flux, neither about the point of the neutrino surface
where they are ultimately emitted. Thus, a phenomenological model is required. When
the properties of the system under investigation change on a time scale larger than (or
comparable to) the relevant diffusion time scale (see Sec.(4.1)), the neutrino fluxes can
be considered as quasi-stationary. Under these conditions, the statistical interpretation
of the optical depth, as the average number of interactions experienced by a neutrino
before escaping, suggests to consider n̂τ as the local preferential direction for neutrino
fluxes. While in the (semi-)transparent regime, this unitary vector provides already the
final emission direction, in the diffusion regime we have to take into account the spatial
variation of n̂τ . To this end, at each point x in Vthick, we associate a point xsurf(x) in
Vsurf and a related preferential direction

n̂path (x) =
xsurf(x)− x

|xsurf(x)− x|
, (4.43)

according to the following prescription: the points x and xsurf are connected by a non-
straight path γ that has n̂τ as local gradient: γ(s) : [0, 1] → [x,xsurf ], x ∈ Vthick,
xsurf ∈ Vsurf , and dγ/ds = nτ . This procedure is sketched in Fig.(4.3).
Once n̂path has been calculated everywhere inside Vthick, we can re-distribute the neutri-
nos coming from the optically thick region on the neutrino surface. This is done assum-
ing that neutrinos coming from a point x are emitted preferentially from points of the
neutrino surface located around xsurf(x). More specifically, from points x′ for which 1)
x′ ∈ Vsurf ; and 2) µ(x,x′) ≡ n̂(x,x′) · n̂path(x) > 0, where n̂(x,x′) ≡ (x′ − x) / |x′ − x|.
If n̂ and n̂path are close to the parallel condition (i.e. µ ≈ 1) we expect more neutrinos
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4.2. Numerical model for the remnant evolution

Figure 4.4: Vertical slices of the three dimensional domain (corresponding to the
y = 0 plane), recorded at the beginning of the simulation. In the left panel, we color
coded the logarithm of the matter density (in g/cm3, left side) and the projected
fluid velocity (in units of c, on the right side); the arrows indicate the direction of the
projected velocity in the plane). On the right panel, we represent the electron fraction
(left side) and the logarithm of the matter temperature (in unit of MeV, right side).

than in the case of perpendicular directions (i.e. µ ≈ 0 ). We smoothly model this effect
assuming a µ2 dependence.
The global character of this re-mapping procedure represents a severe computational
limitation for our large, three dimensional, MPI-parallelized Cartesian simulation. In
order to make the calculation feasible, we take again advantage of the expected high
degree of axial symmetry of remnant (especially in the innermost part of it, where the
diffusion takes place and most of the neutrino are emitted), and we compute rν,ult in
axisymmetry.

4.2.3 Initial Conditions

The current study is based on previous, 3D hydrodynamic studies of the merger of two
non-spinning 1.4M� neutron stars. This simulation was performed with a 3D Smoothed
Particle Hydrodynamics (SPH) code, the implementation details of which can be found
in the literature [136, 137, 134, 141]. The neutron star matter is modeled with the Shen
et al. EoS [151]. During the merger process the debris can cool via neutrino emission,
and electron/positron captures can change the electron fraction. These processes are
included via the opacity-dependent, multi-flavor leakage scheme of [137]. Note, however,
that no heating via neutrino absorption is included. Their effect are the main topic of
this study.
As the starting point of our neutrino-radiation hydrodynamics study, we consider the
matter distribution of the 3D SPH simulation with 106 particles, at 15 ms after the
first contact (corresponding to 18 ms after the simulation start). Not accounting for
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the neutrino absorption during this short time, should only have a small effect, since,
according to the estimates from Sec. (4.1), the remnant hardly had time to change.
We map the 3D SPH matter distributions of density, temperature, electron fraction and
fluid velocity on the Cartesian, equally spaced grid of FISH, with a resolution of 1 km.
The initial extension of the grid is (800km× 800km× 640km). During the simulation, we
increase the domain in all directions to follow the wind expansion, keeping the HMNS al-
ways in the centre. At the end, the computational box is (2240km× 2240km× 3360km)
wide.
The initial data cover a density range of 108g cm−3 − 3.5 × 1014g cm−3. Surrounding
the remnant, we place an inert atmosphere, characterized by the following stationary
properties: ρatm = 5 · 103 g/cm3, Tatm = 0.1 MeV, Ye,atm = 0.01 and vatm = 0. The
neutrino source terms are set to 0 in this atmosphere. With this treatment, we minimize
the influence of the atmosphere on the disc and on the wind dynamics.

Even though in our model we try to stay as close as possible to the choices adopted
in the SPH simulation, initial transients appear at the start of the simulation. One of the
causes is the difference in the spatial resolutions between the two models. The resolution
we are adopting in FISH is significantly lower than the one provided by the initial SPH
model inside the HMNS, ∼ 0.125 km, (which is necessary to model consistently the
central object), while it is comparable or better inside the disc. Due to this lack of
resolution, we decide to treat the HMNS as a stationary rotating object. To implement
this, we perform axisymmetric averages of all the hydrodynamical quantities at the
beginning of the simulation. At the end of each hydrodynamical time step, we re-map
these profiles in cells contained inside an ellipsoid, with ax = ay = 30 km and az = 23 km,
and for which ρ > 2 · 1011g/cm3. For the velocity vector, we consider only the azimuthal
component, since 1) the HMNS is rotating fast around its polar axis (with a period
P ≈ 1.4 ms) and 2) the non-azimuthal motion inside it is characterized by much smaller
velocities (for example, |vR| ∼ 10−3 |vφ|, where vR and vφ are the radial and the azimuthal
velocity components). Concerning the density and the rotational velocity profiles, our
treatment is consistent with the results obtained by [29] (Fig. 4), who showed that
∼ 100 ms after the neutron star have collided those quantities have changed only slightly
inside the HMNS. We expect the electron fraction and the temperature also to stay
close to their initial values, since the most relevant neutrino surfaces for νe and ν̄e are
placed outside the stationary region and the diffusion time scale is much longer than
the simulated time (see, for example, Sec.(4.1)).

To give the opportunity to the system to adjust to a more stable configuration on the
new grid, we consider the first 10 ms of the simulation as a “relaxation phase”. During
this phase, we evolve the system considering only neutrino emission. Its duration is
chosen so that the initial transients arrive at the disc edge, and the profiles inside
the disc reach new quasi-stationary conditions. The “relaxed” conditions are visible in
Fig.(4.4). They are considered as the new initial conditions and we evolved them for
∼ 90 ms, including the effect of neutrino absorption. In the following, the time t will be
measured with respect to this second re-start. During the relaxation phase, we notice an
increase of the electron fraction, from 0.05 up to 0.1-0.35, for a tiny amount of matter
(. 10−5M�) in the low density region (ρ . 109g/cm3) situated above the innermost,
densest part of the disc (Rcyl . 50 km, |z| & 20 km). Here, the presence of neutron-rich,
hot matter in optically thin conditions favours the emission of ν̄e, via positron absorption
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Figure 4.5: Logarithm of the matter density (color coded, in g cm−3) and isocontours
of the gravitational energy (white lines, in MeV baryon−1), on a vertical slice of the
three dimensional domain, at t = 0.

on neutrons. A similar increase of Ye is also visible in the original SPH simulations, for
times longer than 15 ms after the first collision.
In Fig.(4.5) we show isocontours of the absolute value of gravitational specific energy,
drawn against the colour-coded matter density, at the beginning of our simulation. The
gravitational energy provides an estimate of the energy that neutrinos have to deposit
to unbound matter, at different locations inside the disc (see Sec.(4.1)).

4.3 Simulation results

4.3.1 Disc evolution and matter accretion

After the highly dynamical merger phase the remnant is still dynamically evolving and
not yet in a perfectly stationary state.
In Fig.(4.6), we show the radial component of the fluid velocity on the y = 0 plane, at
41 ms after the beginning of the simulation. The central part of the disc, corresponding
to a density coutour of ∼ 5 · 109 g cm−3, is slowly being accreted onto the HMNS (vR ∼
a few 10−3c), while the outer edge is gradually expanding along the equatorial direction.
The velocity profile shows interesting asymmetries and deviations from an axisymmetric
behaviour. The surface of the HMNS and the innermost part of the disc are characterized
by steep gradients of density and temperature, and they behave like a pressure wall for
the infalling matter. Outgoing sound waves are then produced and move outwards inside
the disc, transporting energy, linear and angular momentum. At a cylindrical radius
of Rcyl . 80 km, they induce small scale perturbations in the velocity field, visible
as bubbles of slightly positive radial velocity. These perturbations dissolve at larger
radii, releasing their momentum and energy inside the disc, and favouring its equatorial
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Figure 4.6: Vertical slice of the inner part of the three dimensional domain (y = 0
plane), taken at 41 ms after the beginning of the simulations. Color coded is the radial
component of the fluid velocity. The two coloured hemispheres in the centre represent
the stationary central object for which vr ≈ 0 (the two actual colors are very small
numbers).

expansion.

The temporal evolution of the accretion rate Ṁ , computed as the net flux of matter
crossing a cylindrical surface of radius Rcyl = 35 km and axis corresponding to the rota-
tional axis of the disc, is plotted in Fig.(4.7). This accretion rate is compatible with the
estimate performed in Sec.(4.1) using an α-viscosity disc model. A direct comparison
with Eq.(4.3) suggests an effective parameter α ≈ 0.05 for our disc. We stress again that
no physical viscosity is included in our model: the accretion is driven by unbalanced
pressure gradients, neutrino cooling (see Sec.(4.3.2)) and dissipation of numerical ori-
gin. However, the previous estimate is useful to compare our disc with purely Keplerian
discs, in which a physical α-viscosity has been included (usually, with 0.01 . α . 0.1).
Our value of α ≈ 0.05 is close to what is usually assumed for such disks (∼ 0.1). Higher
viscosities would enhance the neutrino emission and probably the mass loss.

On a timescale of a few tens of milliseconds, the profiles inside the disc change, as
consequence of the accretion process and of the outer edge expansion. These effects are
visible in the upper row of Fig.(4.8), where radial profiles of temperature and density
are drawn, at different times and heights inside the disc. We notice, in particular, that
the density decreases in the internal part of the disc (50 km . Rcyl . 200 km), as result
of the accretion. In the same region, the balance between the increase of internal energy
and the efficient cooling provided by neutrino emission keeps the temperature almost
stationary. At larger radial distances (Rcyl & 200 km), the initial accretion of a cold, thin
layer of matter (visible in the t = 2 ms profiles) is followed by the continous expansion
of the outer margin of the hot internal disc.
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Figure 4.7: Temporal evolution of the accretion rate on the HMNS, Ṁ , calculated
as the net flux of matter crossing a cylindrical surface of radius Rcyl = 35 km and axis
corresponding to the rotational axis of the disc.

Figure 4.8: Radial (upper row) and vertical (lower row) profiles of the axisymmetric
density (solid lines) and temperature (dashed lines) inside the disc, recorded at differ-
ent times during the simulation (t ≈ 2 ms (black-thick lines), t ≈ 45 ms (blue-normal
lines), t ≈ 80 ms (red-thin lines)). The different columns correspond to different values
of the section coordinates: from left to right, z = 0 km, 20 km, 40 km for the radial
profiles; Rcyl = 35 km, 70 km, 140 km for the vertical ones.
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4. 3D simulations of the aftermath of neutron star mergers

Figure 4.9: Location of the neutrino surfaces for νe (left column), ν̄e (central
column) and νµ,τ (right column), for the scattering optical depth (upper row)
and for the energy optical depth (bottom row), 40 ms after the beginning of the
simulation. Color coded is the logarithm of cylindrically averaged matter density,
ρ [g/cm3]. The different lines correspond to the neutrino surfaces for different val-
ues of the neutrino energy: from the innermost line to the outermost one, Eν =
4.62 MeV, 10.63MeV, 16.22MeV, 24.65MeV, 56.96MeV.

4.3.2 Neutrino emission

In Fig.(4.9), we show the neutrino surfaces obtained by the calculation of the spec-
tral neutrino optical depths, together with the matter density distribution (axisym-
metric, color coded). Different lines correspond to different energy bins. In the up-
per panels, we represent the scattering neutrino surfaces, while in the lower panels
the energy ones. Their shapes follow closely the matter density distribution, due to
the explicit dependence appearing in Eq.(4.29) and Eq.(4.30). The last scattering sur-
faces for the energies that are expected to be more relevant for the neutrino emission
(10 MeV . Eν . 25 MeV, corresponding to the expected range for the mean energies,
as we will discuss below) extend far outside in the disc, compared with the radius of the
central object. νe’s have the largest opacities, due to the extremely neutron rich envi-
ronment that favours processes like neutrino absorption on neutrons. Since the former
reaction is also very efficient in thermalizing neutrinos, the scattering and the energy
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Figure 4.10: Time evolution of the net (solid) and cooling (dashed) luminosities ob-
tained by the ASL scheme for νe (black-thick), ν̄e (blue-normal) and νµ,τ (red-thin)
neutrino species. The difference between the cooling and the net luminosities is rep-
resented by the re-absorbed luminosity. The contributions to the cooling luminosities
coming from the HMNS, defined as the volume characterized by ρ > 5 · 1011g cm−3, is
also plotted (dot-dashed lines). Note that for νµ,τ , the net and the cooling luminosities
coincide, and they are almost equal to the HMNS contribution.

neutrino surfaces are almost identical for νe’s. In the case of ν̄e’s, the relatively low
density of free protons determines the reduction of the scattering and, even more, of the
energy optical depth. For νµ,τ ’s, neutrino bremsstrahlung and e+−e− annihilation freeze
out at relatively high densities and temperatures (ρ ∼ 1013 g/cm3 and kBT ∼ 8 MeV),
reducing further the energy neutrino surfaces, while elastic scattering on nucleons still
provides a scattering opacity comparable to the one of ν̄e’s.

The energy- and volume-integrated luminosities obtained during the simulation are
presented in Fig.(4.10). The cooling luminosities for νe’s and ν̄e’s (dashed lines) decrease
weakly and almost linearly with time. This behaviour reflects the continuous supply of
hot accreting matter. The faster decrease of Ṁ (cf. Fig.(4.7)) would imply a similar
decrease in the luminosities, if the neutrino radiative efficiency of the disc were con-
stant. However, the latter increases with time due to the decrease of density and the
constancy of temperature characterizing the innermost part of the disc (see Sec.(4.3.1)).
Also the luminosity for the νµ,τ species is almost constant. This is a consequence of the
stationarity of the central object, since most of the νµ,τ ’s come from there. However,
this result is compatible with the long cooling time scale of the HMNS, Eq.(4.6). We
specify here that the plotted lines for νµ,τ correspond to one single species. Thus, the
total luminosity coming from heavy flavour neutrinos is four times the plotted one, see
also Eq.(4.22).
In the case of νe’s and ν̄e’s, the luminosity provided by VHMNS (defined in Sec.(4.2.2) and
represented by dot-dashed lines in Fig.(4.10)) and the luminosity of the accreting disc
are comparable. This result is compatible with what is observed in core collapse super-
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4. 3D simulations of the aftermath of neutron star mergers

Figure 4.11: Energy-integrated (axisymmetric) neutrino density of the free-streaming
neutrinos, Nν , for νe (left panel) and ν̄e (right panel), calculated outside the innermost
neutrino surface (corresponding to Eν = 3 MeV), at t ≈ 40 ms after the beginning of
the simulation.

nova simulations [see, for example, Fig. 6 of 86], a few tens of milliseconds after bounce:
assuming a density cut of 5× 1011g cm−3 for the proto-neutron star, its contribution is
roughly half of the total emitted luminosity, for both νe and ν̄e. Instead, if we further
restrict VHMNS only to the central ellipsoid (see Sec.(4.2.3) for more details), we notice
that the related luminosity reduces to . 10 × 1051erg s−1 for all neutrino species. This
is consistent with our preliminary estimate, Eq.(4.7).
The inclusion of neutrino absorption processes in the optically thin region reduces the
cooling luminosities to the net luminosities (solid lines in Fig.(4.10)). For νe’s, the neu-
tron rich environment reduces the number luminosity by ∼ 37%, while for ν̄e’s this
fraction drops to ∼ 14%.

The values of the neutrino mean energies are practically stationary during the sim-
ulation: from the net luminosities at t ≈ 40ms, 〈Eνe〉 ≈ 10.6 MeV, 〈Eν̄e〉 ≈ 15.3 MeV
and 〈Eνµ,τ 〉 ≈ 17.3 MeV. The mean neutrino energies show the expected hierarchy,
〈Eνe〉 < 〈Eν̄e〉 < 〈Eνµ,τ 〉, reflecting the different locations of the thermal decoupling
surfaces. While the values obtained for νe’s and ν̄e’s are consistent with previous cal-
culations, 〈Eνµ,τ 〉 is smaller than expected. This is due to the lack of resolution at the
HMNS surface, where most of the energy neutrino surfaces for νµ,τ are located. This
discrepancy has no dynamical effects for us, since most of νµ,τ come from the stationary
central object.

The ray-tracing algorithm, see Sec.(4.2.2), allows us to compute 1) the neutrino
densities outside the neutrino surfaces; 2) the angular distribution of the isotropised
neutrino cooling luminosities and mean neutrino energies, as seen by a far observer.
In Fig.(4.11), we represent the energy-integrated axisymmetric neutrino densities Nν ,
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Figure 4.12: Angular dependence of the isotropised neutrino cooling luminosities
(solid line) and of the neutrino mean energies (dashed lines), as a function of the
colatitude. The black-thick lines correspond to νe, while the blue-thin lines to ν̄e. As
a representative time, we consider t ≈ 40ms after the beginning of the simulation.

Eq.(4.38), for νe (left) and ν̄e (right). These densities reach their maximum in the funnel
above the HMNS, due to the geometry of the emission and to the short distance from
the most emitting regions. At distances much larger than the dimension of the neutrino
surfaces, Nν shows the expected R−2 dependence.
The disc geometry introduces a clear anisotropy in the neutrino emission, visible in
Fig.(4.12). Due to the larger opacity along the equatorial direction, the isotropic lumi-
nosity along the poles is ∼ 3 − 3.5 more intense than the one along the equator. The
different temperatures at which neutrinos decouple from matter at different polar angles
determine the angular dependence of the mean energies.

4.3.3 Neutrino-driven wind

The evolution of the disc and the formation of a neutrino-driven wind depend crucially
on the competition between neutrino emission and absorption. In Fig.(4.13), we show
axisymmetric averages of the net specific energy rate (left), of the net electron fraction
rate (centre), and of the acceleration due to neutrino absorption(right), at t = 40 ms.
Inside the most relevant neutrino surfaces and a few kilometers outside them, neutrino
cooling dominates. Above this region, neutrino heating is always dominant. The largest
neutrino heating rate happens in the funnel, where the neutrino densities are also larger.
However, these regions are characterized by matter with low density (ρ . 107g cm−3) and
small specific angular momentum. Thus, this energy deposition has a minor dynamical
impact on this rapidly accreting matter. On the other hand, at larger radii (80 km .
Rcyl . 120 km) net neutrino heating affects denser matter (ρ . 1010g cm−3), rotating
inside the disc around the HMNS. This combination provides an efficient net energy
deposition.
Neutrino diffusion from the optically thick region determines small variations around the
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4. 3D simulations of the aftermath of neutron star mergers

Figure 4.13: Energy- and species-integrated axisymmetric ν net rates for energy (left
panel, in units of 1020 erg/g/s) and Ye (central panel, in units of 1/baryon/s), and
of the fluid velocity variation provided by neutrino absorption in the optically thin
regions (right panel, in units of c/s). As a representative time, we consider t ≈ 40 ms
after the beginning of the simulation. The complex structure of the net Ye rate in the
funnel, above the HMNS poles, originates from the variety of conditions of Ye, ρ and
v at that specific moment.

initial weak equilibrium value in the electron fraction. On the contrary, in optically thin
conditions, the initial very low electron fraction favours reactions like the absorption of
e+ and νe on free neutrons. Both processes lead to a positive and large (dYe/dt)ν , in
association with efficient energy deposition.
Due to the geometry of the emission and to the shadow effect provided by the disc, the
direction of the acceleration provided by neutrino absorption is approximately radial,
but its intensity is much larger in the funnel, where the energy deposition is also more
intense.

As a consequence of the continous neutrino energy and momentum deposition, the
outer layers of the disc start to expand a few milliseconds after the beginning of the
simulation, and they reach an almost stable configuration in a few tens of milliseconds.
Around t ∼ 10 ms, also the neutrino-driven wind starts to develop from the expanding
disc. Wind matter moves initially almost vertically (i.e., with velocities parallel to the
rotational axis of the disc), decreasing its density and temperature during the expan-
sion. We show the corresponding vertical profiles inside the disc in the bottom panels of
Fig.(4.8), at different times and for three cylindrical radii. Both the disc and the wind
expansions are visible in the rise of the density and temperature profiles, expecially at
cylindrical radii of 70 km or 140 km.
Among the energy and the momentum contributions, the former is the most important
one for the formation of the wind. To prove this, we repeat our simulation in two cases,
starting from the same intial configuration and relaxation procedure. In a first case, we
set the heating rate hν appearing in Eq.(4.27) and Eq.(4.28) to 0. Under this assump-
tion, we observe neither the disc expansion nor the wind formation. In a second test, we
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Figure 4.14: Vertical slices of the three dimensional domain (corresponding to the
y = 0 plane), recorded 20 ms after the beginning of the simulation. In the left panel, we
represent the logarithm of the matter density (in g/cm3, left side) and the projected
fluid velocity (in units of c, on the right side); the arrows indicate the direction of the
projected velocity in the plane). On the right panel, we represent the electron fraction
(left side) and the matter entropy (in unit of kB/baryon, right side).

include the effect of neutrino absorption only in the energy and Ye equations, but not
in the momentum equation. In this case, the wind still develops and its properties are
qualitatively very similar to our reference simulation.

In Fig. 4.14, 4.15 and 4.16 we present three different times of the wind expansion,
t = 20, 40, 85 ms. To characterize them, we have chosen vertical slices of the three di-
mensional domain, for the density and the projected velocity (left picture), and for the
electron fraction and the matter entropy (right picture).
The development of the wind is clearly associated with the progressive increase of the
electron fraction. The resulting Ye distribution is not uniform, due to the competition
between the wind expansion time scale (Eq.(4.12)) and the time scale for weak equi-
librium to establish. The latter can be estimated as tweak ∼ Ye,eq/ (dYe/dt)ν . Using the
values of the neutrino luminosities, mean energies and net rates for the wind region, we
expect Ye,eq ≈ 0.42 [see, for example, eq. (77) of 123] and 0.042 s . tweak . 0.090 s. If
we keep in mind that the absorption of neutrinos becomes less efficient as the distance
from the neutrino surfaces increases, we understand the presence of both radial and
vertical gradients for Ye inside the wind: the early expanding matter has not enough
time to reach Ye,eq, especially if it is initially located at large distances from the rele-
vant neutrino surfaces (Rcyl & 100 km). On the other hand, matter expanding from the
innermost part of the disc and moving in the funnel (within a polar angle of . 40o), as
well as matter that orbits several times around the HMNS before being accelerated in
the wind, increases its Ye close to the equilibrim value, but on a longer time scale.
Also the matter entropy in the wind rises due to neutrino absorption. Typical initial val-
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4. 3D simulations of the aftermath of neutron star mergers

Figure 4.15: Same as in Fig.(4.14), but at ≈ 40 ms after the beginning of the simu-
lation.

Figure 4.16: Same as in Fig.(4.14), but at ≈ 85 ms after the beginning of the simu-
lation.
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ues in the disc are s ∼ 5−10 kB baryon−1, while later we observe s ∼ 15−20 kB baryon−1.
The entropy is usually larger where the absorption is more intense and Ye has increased
more. However, differently from Ye, its spatial distribution is more uniform. Once the
distance from the HMNS and the disc has increased above ∼ 400 km, neutrino absorp-
tion becomes negligible and the entropy and the electron fraction are simply advected
inside the wind.
The radial velocity in the wind increases from a few times 10−2 c, just above the disc,
to a typical asymptotic expansion velocity of 0.08 − 0.09c. This acceleration is caused
by the continous pressure gradient provided by newly expanding layers of matter.

To characterize the matter properties, we plot in Fig.(4.17) occurrence diagrams for
couples of quantities, namely ρ− Ye (top row), ρ− s (central row) and Ye − s (bottom
row), at three different times (t = 0, 40, 85 ms). Colour coded is a measure of the amount
of matter experiencing specific thermodynamical conditions inside the whole system, at
a certain time 5.
We notice that most of the matter is extremely dense (ρ > 1011 g cm−3), neutron rich
(Ye < 0.1) and, despite the large temperatures (T > 1 MeV), at relatively low entropy
(s < 7 kB baryon−1). This matter correspond to the HMNS and to the innermost part of
the disc, where matter conditions change only on the long neutrino diffusion timescale,
Eq.(4.6), or on the disc lifetime, Eq.(4.2). In the low density part of the diagrams
(ρ < 1011 g cm−3), the expansion of the disc and the development of the wind can be
traced.

In Fig.(4.18) (a-d), we represent the mass fractions of the nuclear species provided
by the nuclear EoS inside the disc and the wind, at 40 ms after the beginning of the
simulation. Close to the equatorial plane (|z| < 100 km), the composition is dominated
by free neutrons. In the wind, the increase of the electron fraction corresponds to the
conversion of neutrons into protons due to νe absorption. In the early expansion phase,
the relatively high temperature (T � 0.6 MeV) favours the presence of free protons.
When the decrease of temperature allows the formation of nuclei, protons cluster into
α particles and, later, into neutron-rich nuclei. Then, the composition in the wind, at
large distances from the disc, is distributed between free neutrons (0.4 . Xn . 0.6) and
heavy nuclei (0.6 & Xh & 0.4, respectively). The heavy nuclei component is described in
the EoS by a representative average nucleus, assuming Nuclear Statistical Equilibrium
(NSE) everywhere. In Fig.(4.18) (e-f), we have represented the values of its mass and
charge number. The most representative nucleus in the wind corresponds often to 78Ni.
The black line defines the surface across which the freeze-out from NSE is expected
to occur (T = 0.5 MeV). Outside it the actual composition will differ from the NSE
prediction.

4.3.4 Ejecta

Matter in the wind can gain enough energy from the neutrino absorption and from
the subsequent disc dynamics to become unbound. The amount of ejected matter is
calculated as volume integral of the density and fulfills three criteria: 1) has positive
radial velocity; 2) has positive specific total energy; 3) lies inside one of the two cones of

5A formal definition of the plotted quantity can be found in Sec. 2 of [5]. However, in this work we
don’t calculate the time average.
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Figure 4.17: Occurrence diagrams for (ρ, Ye) (top panel), (ρ, s) (middle panels) and
(Ye, s) (bottom panels), for the thermodynamical properties of matter in the whole
system, at t ≈ 0 ms (left column), t ≈ 40 ms (central column) and t ≈ 85 ms (right
column) after the beginning of the simulation. Colour coded is a measure of the amount
of matter experiencing specific thermodynamical conditions inside the whole system.
Occurrence smaller than 10−7M� have been omitted from the plot.
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Figure 4.18: Nuclear composition provided by the EoS (assuming everywhere NSE)
in the disc and in the wind, at t ≈ 40 ms. On the top row, free proton (left), free
neutron (centre) and α particles (right) mass fractions. On the bottom row, heavy
nuclei mass fraction (left), and mass number (centre) and atomic number (right) of
the representative heavy nucleus. The black line represents the T = 0.5 MeV surface.
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Figure 4.19: Distributions in the ν-driven wind ejecta binned by different physi-
cal properties. The different columns refer to density (ρ, left), electron fraction (Ye,
central-left), entropy per baryon (s, central-right) and radial velocity (vr, right). The
top (bottom) panels refer to high (low) latitudes.

opening angle 60◦, vertex in the centre of the HMNS and axes coincident with the disc
rotation axes. The latter geometrical constrain excludes possible contributions coming
from equatorial ejecta, which have not been followed properly during their expansion.
The profile of Ye at the end of the simulation (see, for example, Fig.(4.16)) suggests to
further distinguish between two zones inside each cone, one at high (H: 0◦ ≤ θ < 40◦)
and one at low (L: 40◦ ≤ θ < 60◦) latitudes.
The specific total internal energy is calculated as:

etot = eint + egrav + ekin. (4.44)

egrav is the Newtonian gravitational potential, and ekin is the specific kinetic energy. The
specific internal energy eint takes into account the nuclear recombination energy and, to
compute it, we use the composition provided by the EoS. For the nuclear binding energy
of the representative heavy nucleus, we use the semi-empirical nuclear mass formula [see,
for example, the fitting to experimental nuclei masses reported by 133]: in the wind, for
〈A〉 ≈ 78 and 〈Z〉 ≈ 28, the nuclear binding energy is ∼ 8.1 MeV baryon−1.

At the end of the simulation, Mej(t = 91 ms) ≈ 2.12 × 10−3M�, corresponding
to ∼ 1.2% of the initial disc mass (Mdisc ≈ 0.17M�). This mass is distributed between
Mej,H(t = 91 ms) ≈ 1.3×10−3M� at high latitudes and Mej,L(t = 91 ms) ≈ 0.8×10−3M�
at low latitudes. In Fig.(4.19), we represent the mass distributions of density, electron
fraction, entropy and radial velocity, for the ejecta at the end of our simulation. At high
latitude, the larger νe absorption enhanches the electron fraction and the entropy more
than at lower latitudes. The corresponding mass distributions are broader, with peaks
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at Ye ∼ 0.31− 0.35 and s ∼ 15− 20kB/baryon. At lower latitudes, the electron fraction
presents a relatively uniform distribution between 0.23 and 0.31, while the entropy has
a very narrow peak around 14-15 kB/baryon. The larger energy and momentum depo-
sitions produce a faster expansion of the wind close to the poles. This effect is visible
in the larger average value and in the broader distribution of the radial velocity that
characterizes the high latitude ejecta.
To quantify the uncertainties in the determination of the ejecta mass, we repeat the
previous calculation assuming an error of 0.5 MeV in the estimate of the nuclear recom-
bination energy. For Mej,H this translates in an uncertainty of ≈ 7%, while in the case of
Mej,L the potential error is much larger (∼ 50%). This is a consequence of the different
ejecta properties. At high latitudes, most of the free neutrons have been incorporated
into heavy nuclei, releasing the corresponding binding energy. Moreover, the large radial
velocities (vr ∼ 0.08− 0.09 c) provides most of the energy needed to overcome the grav-
itational potential. At lower latitudes, the more abundant free neutrons and the lower
radial velocities (vr ∼ 0.06−0.07 c) translate into a smaller ejecta amount, with a larger
dependence on the nuclear recombination energy.
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Chapter 5

Other applications of the ASL
treatment

In this chapter we want to present some other results, which have been obtained using
the ASL treatment for neutrinos, in different astrophysical contexts and simulations.
The goal of this section is not only to show interesting results, but, at the same time,
to prove that the scheme we have developed is plastic enough to be included into one-
or multi-dimensional simulations, in grid, as well as in SPH code, always keeping most
of its original features untouched. The applications that we want to show are:

• a three dimensional Newtonian CCSN model, with strong rotation and high mag-
netic field, which develops quickly after bounce a jet-like explosion. The magneto-
hydrodynamics evolution is provided by the grid code FISH. The ASL treatment
takes into account the important deleptonization process during the collapse, and
the mean neutrino cooling features during the post-bounce phase, due to νe and ν̄e.
Being a early version of the treatment, it slightly differ from the one presented in
Chapter 2; and it does not include any neutrino thermalization or heating features.
As electron neutrino and electron antineutrino absorption plays a major role in
the definition of the electron fraction of ejected matter, this effect has been esti-
mated in a post-processing way; the resulting trajectories have been post-processed
by a nuclear network, to asses the abundances of heavy elements (in particular,
r-process elements). This project is part of a close collaboration between Roger
Käppeli, Christian Winteler and my-self, at the University of Basel. The results
have been well documented also in their PhD thesis and in [176].

• A three-dimensional Newtonian CCSN model, with no rotation and no magnetic
field, which undergoes core collapse, bounce and then shock stalling. In this case,
the hydrodynamics evolution is provided by the SPH code SPHYNX. As in the
previous case, the ASL treatment takes into account the important deleptonization
process during the collapse, and the mean neutrino cooling features during the
post-bounce phase. The used version is the one presented in Chapter 2; but, at the
moment, it does not include the neutrino thermalization and the heating process.
This project is done in close collaboration with Ruben Cabezon, at the University
of Basel.

• Spherically symmetric CCSN models, evolved by the relativistic hydrodynamics
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code AGILE. The transport of electron neutrinos and antineutrinos is provided by
the Isotropic Diffusion Source Approximation (IDSA); the ASL treatment provides
a spectral treatment for the emission of νµ,τ and ν̄µ,τ . The model proposes a new
way to induce the explosion of the star in spherical symmetry, which uses the µ
and τ spectral neutrino luminosity. This combination of codes, together with a new
consistent treatment of the EOS at low densities and the inclusion of a simplified
treatment to follow the nuclear burning out of NSE, allows 1) to follow the long
term evolution of the newly born neutron star in a relatively inexpensive way;
2) to test the impact of the nucleon potential inside the NSE treatment for the
ejected matter, for different EOS. This work is currently under development, in
collaboration with Matthias Hempel and Kevin Ebinger at the University of Basel,
and with Carla Fröhlich and Jordi Casanova Bustamante at North Carolina State
University.

5.1 3D MHD core collapse supernova simulations

with FISH & ASL

5.1.1 Background and motivation

As it has been pointed out in Chapter 1, CCSN mechanism, explaining how massive
stars end in a central collapse, producing a neutron star (or a black hole) and explosive
ejection of the outer layers of the star, is still debated. Neutrino emission from the hot
collapsed core plays a major role in this scenario; the re-absoprtion of a fraction of this
huge luminosity by the shocked matter in the gain region (a region located just below
the shock radius and well above the neutrinosphere) has been proposed as a possible ex-
plosion mechanism (delayed neutrino-driven explosion). Recent multi-D hydrodynamic
approaches, including improved spectral neutrino transport, seems to confirm the valid-
ity of this mechanism, at least for some tested progenitor models and standard hadronic
EOS [e.g. 107, 79, 82, 20].
The equation of state (EOS) caused explosion scenario has found some recent revival,
based on the quark-hadron phase transition at super-nuclear densities [145]. Neverthe-
less, the viability of this mechanism depends on specific choices of EOS properties in a
very narrow parameter range.
Another interesting option is the magneto-rotationally driven mechanism, related to stel-
lar rotation and magnetic fields; this topic has been discussed for more than 30 years,
but required three-dimensional (3D) modeling and had, therefore, only been addressed
with limited success in the early days. The major outcome was that high rotation rates
and (possibly unrealistically high) magnetic fields were required to launch explosions.
The central question concerning it, is whether such magnetic fields can be attained dur-
ing collapse with rotation and on which timescale after collapse [77, 91, 9, 106, and
references therein]. This topic has recently been re-addressed by [103], [158] and [17].
We tackled this problem using our 3D magneto-hydrodynamics grid code FISH [63], the
same one which has been used to study the aftermath of double neutron star mergers.

The magneto-rotationally driven explosion are, for sure, intrinsically interesting, first
of all as a possible (maybe, not very frequent) explosion mechanism for CCSNe. But there
is another reason of interest: the search for the site of a (full) r-process early in galactic
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evolution. The initially postulated neutrino wind in regular (neutrino-driven) supernovae
[54, 97, 35] (a) did not result in having sufficiently high entropies [163, 169, 2], and (b)
in addition, the innermost ejecta turned out to be proton-rich instead of neutron-rich
[122, 43], a situation which has now also been shown in long-term simulations [37, 55].
Electron-capture supernovae, which explode without a long phase of accretion onto the
proto-neutron star (PNS), apparently provide more favorable conditions [171]. However,
also the proton to nucleon ratios obtained under such conditions do not support a
strong r-process, which successfully reproduces the platinum peak of r-elements around
A = 195. A similar result was recently obtained for core-collapse supernova (CCSN)
explosions triggered by a quark-hadron phase transition during the early post-bounce
phase when investigating their detailed nucleosynthesis [110]. Both types of events might
support a weak but not a full r-process.

Neutron star mergers have been shown to be powerful sources of r-process matter,
in fact ejecting a factor of 100 to 1000 more r-process material than required on average
from CCSNe, if those would have to explain solar r-process element abundances. This
would actually support the large scatter of Eu/Fe found in very metal-poor stars. The
only problem is that it might be hard to explain the early appearance of r-process matter
for metallicity at and below [Fe/H] = −3 [4]. Some recent studies, which include the fact
that our Galaxy is possibly the result from smaller merging subsystems (with different
star formation rates) have been expected to show a way out of this dilemma. If this
cannot be solved, we need another strong r-process source already at low metallicities,
and possibly jets from rotating core collapses with strong magnetic fields could be the
solution [23, 111, 46].

5.1.2 3D MHD-CCSN model

The calculation was performed with the computational setup similar to previous investi-
gations, which have been documented in [86, 147]. The initially innermost (600 km)3 of
the massive star are covered by a 3D Cartesian domain uniformly discretized with a res-
olution of 1 km. The resulting cube of 6003 cells is embedded in a spherically symmetric
domain, encompassing the iron core and parts of the silicon shell. The magnetic fluid
is evolved with the FISH code [63], solving the ideal MHD equations, as explained in
Chapter 4. The spherically symmetric domain is evolved with the AGILE code [87], and
it provides boundary condition values for the infalling matter, at the interface with the
three dimensional domain. The gravitational potential is approximated by an effective
axisymmetric mass distribution that includes general relativistic monopole corrections
[89]. We use the Lattimer-Swesty EOS [71], with nuclear compressibility 180 MeV. We
have included a Lagrangian component in the form of tracer particles, which are pas-
sively advected with the flow. They record the thermodynamic conditions of a particular
fluid element and serve as input to the post-processing nucleosynthesis calculations.

The transport of the electron neutrinos and antineutrinos is approximated by the
ASL treatment. The neutrino energy is discretized with 12 geometrically increasing
energy groups, spanning the range 2MeV ≤ Eν ≤ 200 MeV. The scheme has been im-
plemented in three dimensions, combining a purely local approach with a ray-by-ray
axisymmetric one. The reason for such a combination is that the treatment requires, as
fundamental quantity, the neutrino optical depth, τν . Its values depend on the distri-
bution of matter in the full domain; but this detailed information is very difficult and
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expensive to access for a MPI parallelized, three-dimensional domain. Considering that
the star has an intrinsically quasi-spherical symmetry, broken in a quasi-axisymmetric
one by the rotation and the magnetic field, we decided for an axisymmetric ray-by-ray
approximation. The latter is realized on a uniform polar grid: we set a constant resolu-
tion of 1 km for the radial spacing, and we introduced 30 angular rays, covering the whole
[0, π] polar angle extension. Along each ray, the axisymmetric values of the basic code
quantities (i.e., matter density, internal energy, electron density, velocity components,
trapped neutrino densities and energy) are interpolated. Starting from these values, it is
possible to apply the ASL treatment along each ray. The calculation will provide, among
other things, the value of the neutrino stress, and of the optical depth, integrated along
the ray itself. These two central ray-by-ray quantities can be, finally, re-mapped locally
on the three dimensional domain. Having all the local quantities (i.e., matter density,
internal energy, electron density, velocity components, trapped neutrino densities and
energy) and the interpolated optical depths and neutrino stress, it is possible to apply
the ASL locally, to calculate the effective neutrino rates, and, consequently, the local
variations of the internal energy, electron fraction, trapped neutrino fraction and energy,
and fluid velocity.
All fundamental νe and ν̄e reactions have been included:

Reactions Currents Main Role Reference

e− + p→ n+ νe CC P, T, O [12]
e+ + n→ p+ ν̄e CC P, T, O [12]
e− + (A,Z)→ νe + (A,Z − 1) CC P, T, O [12]
N + ν → N + ν NC O [12]
(A,Z) + ν → (A,Z) + ν NC O [12]

Table 5.1: Table with the relevant reactions included in the MHD CCSN model. In
the reactions column, N represents nucleons; ν and ν̄ both electron neutrinos and
anti-neutrinos. In the current column, NC stands for neutral current, while CC for
charged current reactions. In the Main Role column, P stands for production, T for
thermalization and O for opacity.

Inside the neutrinosphere, weak equilibrium is assumed and trapped neutrinos are
modeled accordingly; outside of it, no explicit absorption is considered. Thus we can
only follow neutrino emission and the associated neutronization of matter. However, the
up to now microphysically most complete two-dimensional axisymmetric study of MHD-
CCSN with multi-group flux-limited diffusion neutrino transport performed by [19] has
shown, that neutrino heating contributes only 10% − 25% to the explosion energy and
is therefore subdominant. This justifies at first our pragmatic approach.
νµ,τ and ν̄µ,τ were not included in this simulation. This is due to the fact that the
implemented ASL version (differently from the last one) contained only the electron
flavor neutrinos. Due to the quick development of the jet, the importance of the addi-
tional cooling provided by νµ,τ and ν̄µ,τ can be considered negligible for our purposes.
Nevertheless, a future inclusion is already planned.

We employed the pre-collapse 15M� model of [52]. Although the model provides
profiles for rotation and magnetic fields, we use an analytic prescription for their dis-
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tributions, in order to verify good conditions for the developing of the jet. The initial
rotation law was assumed to be shellular with Ω(r) = Ω0R

2
0/(r

2 + R2
0), Ω0 = π s−1 and

R0 = 1000 km corresponding to an initial ratio of rotational energy to gravitational
binding energy Trot/|W | = 7.63×10−3. For the magnetic field we have assumed a homo-
geneous distribution of a purely poloidal field throughout the computational domain of
strength 5× 1012 G corresponding to an initial ratio of magnetic energy to gravitational
binding energy Tmag/|W | = 2.63× 10−8.

Figure 5.1: 3D entropy contours spanning the coordinates planes with magnetic
field lines (white lines) of the MHD-CCSN simulation ∼ 31 ms after bounce. The 3D
domain size is 700× 700× 1400 km (Courtesy of R. Käppeli).

The computed model then undergoes gravitational collapse and experiences core-
bounce due to the stiffening of the EOS above nuclear saturation density. Conservation
of angular momentum in combination with the collapse leads to a massive spin-up
of the core, reaching Trot/|W | = 6.81 × 10−2 at bounce, and significant rotationally
induced deformations. During the collapse the magnetic field is amplified by magnetic
flux conservation reaching a central strength of ∼ 5×1015 G and Tmag/|W | = 3.02×10−4

at bounce. After bounce, differential rotation winds up the poloidal field very quickly into
a very strong toroidal field increasing the magnetic energy/pressure at the expense of
rotational energy. Consequently, strongly magnetized regions appear near the rotational
axis with an associated magnetic pressure quickly reaching and exceeding that of the
local gas pressure. The Lorentz force then becomes dynamically important and matter
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near the rotational axis is lifted from the PNS and drives a bipolar outflow, i.e., jets
are launched. The jets rapidly propagate along the rotational axis and quickly reach the
boundary of the initial 3D domain. In order to follow the jet propagation further, we
have continuously extended the 3D domain to a final size of 700 × 700 × 1400 km at
∼ 31 ms after bounce. Figure 5.1 displays a snapshot at the final time.

The quickly expanding bipolar jets transport energy and neutron rich material out-
ward against the gravitational attraction of the PNS. We have estimated the ejected
mass Mej = 6.72 × 10−3M� and explosion energy Eexp = 8.45 × 1049 erg by summing
over the fluid cells that are gravitationally unbound. We defined a fluid cell as unbound
if its total specific energy (internal+kinetic+magnetic+potential) is positive and if the
radial velocity is pointing outward. These are admittedly crude lower bound estimates
and these numbers were still growing at the end of the simulation.

5.1.3 Electron fraction and neutrino quantities

The collapse proceeds as a standard core collapse. Electron neutrino luminosity rises, as
the central density and temperature increase, up to neutrino trapping (when the central
density reaches ∼ 1011 g/cm3), just a few milliseconds before core bounce. Due to elec-
tron capture on protons and nuclei, the electron fraction in the core decreases, leading to
the characteristic Ye radial profile at bounce, with a central value of Ye(R = 0) ≈ 0.325.
Once the (almost spherical) shock wave has formed at the surface of the protoneutron
star, it travels through the iron core, photodissociating and neutronizing matter. When
the shock reaches the average neutrinosphere, a strong neutrino burst happens and the
characteristic peak in νe luminosity appears. A few milliseconds after bounce, due to
the large amount of energy dissipated, the shock stalls around ∼ 120km. Already at this

Figure 5.2: Vertical slices of the entropy (left panel) and of the electron fraction
(right panel), 10 millisecond after bounce. The shock position can be recognized in
the entropy panel, as well as the growth of instabilities and effects due to rotation and
magnetic field. On the electron fraction picture, the neutronization inside the shock
is visible, as well as the effect of multi-dimensional instability on it (Courtesy of R.
Käppeli).

time, instabilities due to the strong rotation and to the intense magnetic fields introduce
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some multi-dimensional effects. They can be seen, for example, in Figure 5.2. The shock
position is easily recognized in the entropy graph (left panel); the strong rotation has
already broken the spherical symmetry of the shock (which looks slightly oblated), and
inside it instabilities and convection appear and grow. In the electron fraction plot (right
panel), we can see the effect of the shock on the neutronization degree of matter, as well
as the effect on it of multi-dimensional instabilities.
On longer timescale, the amplification and the winding of the magnetic field lines pro-

Figure 5.3: Same as in Figure 5.2, but 33 millisecond after bounce. The explosion
has been launched by the formation of two strong magnetically driven jets. Matter in
the jets keeps a relatively low entropy and electron fraction, provided by the initial
shock expansion. Multi-dimensional effect are visible both on large and small scales
(Courtesy of R. Käppeli).

duce two strong polar jets, which form inside the shock and break through it. In Figure
5.3, we present a vertical slice (x = 0) of the three dimensional data at t ≈ 33ms, when
the polar jets have formed and the explosion has been launched. Both in the entropy
and in the Ye profile, multi-dimensional effects due to the jet formation and expansion,
as well as instabilities can be seen. Remarkably, the electron fraction of the matter ex-
panding at the top of the jets has a very low, Ye ∼ 0.17, and a relatively low entropy
s ∼ 12kB/baryon, which are very similar to the values obtained inside the shock by its
first expansion. This is linked with the fact that the jets forms deep inside the shocked
region, and matter expansion happens very fast (i.e, on very short timescales). We note
also that all the scales (the spatial ones and the color coded ones) differ in the two plots.
In Figure 5.4, we plot the isotropized neutrino number luminosity (left panel) and the

luminosity (right panel), for both electron neutrinos (solid lines) and electron antineu-
trinos (dashed lines), as a function of time. We choose three different rays (the magenta
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Figure 5.4: Temporal evolution of the νe (solid lines) and ν̄e (dashed lines) isotropized
neutrino number luminosity (left panel) and luminosity (right panel), along three
representative rays. The magenta lines correspond to θ = 0 (i.e. along the pole), the
black lines to θ = π/2 (i.e. along the equator), while the green one is the middle ray,
θ = π/4 (Courtesy of R. Käppeli).

lines are along the polar direction,θi = 0; the black lines along the equatorial direction,
θi = π/2, and the green lines in between, θ = π/4), and we normalized them, in order
to compare them (because different solid angles correspond to different rays):

Lnorm(θi −∆θ/2 < θ < θi + ∆θ/2) =
L(θi −∆θ/2 < θ < θi + ∆θ/2)

cos (θi −∆θ/2)− cos (θi + ∆θ/2)
. (5.1)

Overall, the three luminosity profiles look qualitatively similar, and consistent with what
we expect from a typical CCSN model. We notice that the collapse proceeds in an almost
symmetric way, because the different curves before bounce are very similar. Then, the
luminosity decreases, due to neutrino trapping, and explodes in the neutrino burst a few
milliseconds after it. The νe luminosity, integrated over the whole solid angle, shows a
peak of Lνe,peak ∼ 5 · 1053erg/s. A more detailed analysis reveals interesting differences
between the different rays. For example, the shift in the neutrino burst moment, which
happens earlier along the poles than along the equator. This is probably linked with the
oblated density profile, due to the fast rotation of the core, which induces an oblated
shape also in the shock position, in the neutrinospheres and, consequently, in the moment
in which the shock breaks through them. The luminosity is also more intense in the
equatorial region, up to the onset on the explosion. This is related with a much higher
accretion rate along the equatorial direction, while along the poles matter accretion is
partially halted by the faster rotation and by the formation of the jets. This hypothesis is
confirmed by Figure 5.5, where it is possible to see how matter is preferentially accreted
along the equator, due to the expanding jets. Matter passing polarity through the shock
is redistributed at lower latitudines. The final decrease in luminosity (more pronounced
in the equatorial plane) is due to the sudden decrease in the accretion rate, which
happens when the explosion sets in and the shock expands in all directions. This is
visible in Figure 5.6.
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Figure 5.5: Vertical slices of the modulus and projected direction of the velocity
(left panel), and of the radial velocity (right panel), 10 millisecond after bounce. It is
possible to see the forming jets along the polar directions, and the consequent pattern
in velocity, which trigger a larger accretion along the equatorial plane (Courtesy of R.
Käppeli).

Figure 5.6: Vertical slices of the modulus and projected direction of the velocity
(left panel), and of the radial velocity (right panel), 33 millisecond after bounce. After
the formation and the expansion of the jets, the whole shock wave starts to expand,
reducing the accretion on the protoneutron star. We can still notice streams of matter
flowing inside, especially from intermediate latitudes. (Courtesy of R. Käppeli)
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5.1.4 Nucleosynthesis

The nucleosynthesis calculations are performed with a new extended reaction network
(Winteler, PhD thesis 2011) which represents an advanced (numerically and physically)
update of the BasNet network (see, e.g., [160]). We use the reaction rates of [127, for
the FRDM mass model]. We use the same weak interaction rates (electron/positron
captures and β-decays) as in [3]. Additionally, we include neutron capture and neutron
induced fission rates following [119] and β-delayed fission probabilities as described in
[118].

Figure 5.7: Time evolution of Ye from a single tracer in green (red) for the original
data (with neutrino absorption estimate). The blue dashed line represents Ye evolved
by the network. Vertical dotted (dashed) lines correspond to the time when ν̄e (νe)
neutrinosphere is crossed; the dot-dashed vertical line when T = 10 GK (Courtesy of
C. Winteler).

The tracer particles obtained from the simulation provide density, temperature, and
electron fraction for the nuclear network, as well as position and velocity, from the be-
ginning to the end of the simulation (t = tf ). After tf , thermodynamic variables are
evolved following the prescription in [46]. [111] have shown that the details of the ex-
pansion only have a minor impact on the final abundances. For the post-processing we
only consider gravitationally unbound tracer particles (see Section 5.1.2). In order to ob-
tain mass integrated abundances we distribute the total ejected mass equally among all
ejected tracers. It could be shown that this yields very similar results to post-processing
calculations based on the conditions in the unbound cells at the final time (Winteler,
PhD thesis 2011).

Equation (5.2) is applied as long as T10 > 1; below this temperature, an extended
version of the network, including also neutrino reactions, is used. These weak reactions
need the neutrino fluxes and the mean energies as input. Inside the simulation, these
data are provided by the leakage scheme; in the tracer extrapolation, they are assumed
to be constant and equal to the final values from the simulations.

The electron fraction is a key input for the nucleosynthesis and strongly depends on
details of the challenging neutrino transport. In particular, neutrino absorption outside
the neutrinosphere is crucial to determine the exact value of Ye at the onset of the
nucleosynthesis. Nevertheless, it is not yet included in the hydrodynamical simulations
(where it is expected to have a minor impact on the dynamics), as pointed out in Section
5.1.2. Therefore, we present two different nucleosynthesis calculations: 1) Ye is taken from
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the original tracer particles and no neutrino interactions are included in the network,
2) the effects of the neutrino absorption on Ye are estimated and neutrino reactions are
included also in the network. In this second approach, we post-process the data from the
tracers and we use the neutrino information obtained with the leakage scheme (Section
5.1.2).

The spectral neutrino luminosities (both for the energy and particle) are obtained as
the radial integral of the local emission rates along the radial ray in which the tracer is lo-
cated. Considering that the scheme does not take into account the thermalization process
occurring to high energy neutrinos coming from the deepest part of the star, we reduce
the local emission rates by an exponential factor of the optical depth, exp(−τ/β), where
β is a free parameter which has been set to 25 after comparing the output of spherically
symmetric simulations with detailed Boltzmann transport and with our leakage scheme.
In this approximation, we use integrated neutrino luminosities and we update only the
electron fraction (i.e. neglecting the effect of neutrino energy deposition on the matter
temperature) outside the neutrinosphere. The ratio between the energy- and particle-
luminosities provides a good estimation of the mean neutrino energy, which is typically
higher for anti-neutrinos (〈Eν̄,e〉 ∼ 10MeV) than for neutrinos (〈Eν̄e〉 ∼ 8MeV). The
different opacities and mean energies lead to a larger neutrinosphere for νe (∼ 70km)
than for ν̄e (∼ 60km). The electron fraction of the tracer is evolved considering neutrino
emission and absorption on nucleons. If λn,e+ (λp,e−) is the rate of ν̄e (νe) emission from
neutrons (protons) and λn,νe (λp,ν̄e)) the rate of νe (ν̄e) absorption on neutrons (protons),
Ye changes according to (see e.g. [59]):

Ẏe = Ynλn,e+ − Ypλp,e− + Ynλn,νe − Ypλp,ν̄e ≈
9.12 · 10−3 T 5

10 ((1− Ye)F4(−ηe)− YeF4(ηe)) +

2.31 r−2
7

(
(1− Ye)

〈Eνe〉Lνe,52

〈µνe〉
− Ye

〈Eν̄e〉Lν̄e,52

〈µν̄e〉

)
(5.2)

where T10 is the temperature in units of 1010K, Fk the Fermi integral of order k, ηe
the electron degeneracy parameter, r7 the tracer radius in unity of 107cm, 〈Eν〉 the
mean energy in MeV,〈µν〉 the neutrino flux factor [163, 59]. Lνe,52 (Lν̄e,52), defined as
the (anti-)neutrino luminosity in units of 1052erg/s, are set to zero inside the neutri-
nospheres; outside, they smoothly increase to their full values on a lenghtscale of ∼ 10
km.
In both approaches, the network calculations start when the temperature decreases to
1010 K. In the second one, equation (5.2) is applied as long as T10 > 1; below this
temperature, neutrino capture cross sections on nucleons/nuclei are included also in the
network [43]. These reactions require neutrino fluxes and mean neutrino energies. In the
simulation, these quantities are provided by the leakage scheme; in the tracer extrapo-
lation, they are assumed to be constant and equal to the values at t = tf . Therefore,
the decrease in the reaction rates is then solely given by their R(t)−2 dependence.

The evolution of Ye is presented in Figure 5.7 for the original simulation data and for
the estimate of neutrino absorption. In the latter, high energy ν̄e captures on protons
decrease Ye outside the ν̄e-neutrinosphere. However, beyond the νe-neutrinosphere, νe
absorption on neutrons dominates and Ye increases. The fast expansion and the relatively
low neutrino mean energy limit the effect of the absorption. This trend is confirmed also
by the network for T . 10 GK.
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Figure 5.8: Ejecta masses vs. Ye for the original simulation without neutrino captures
(green) and including a simplified prescription for neutrino heating (red). The width
of a Ye bin is chosen to be ∆Ye = 0.01 (Courtesy of C. Winteler).

Figure 5.9: Integrated mass fractions for nucleosynthesis calculations with (red)and
without (green) neutrino heating. Black dots represent solar r-process element abun-
dances [153] scaled to fit the red line at A = 130 (Courtesy of C. Winteler).

Figure 5.8 shows the ejected mass as a function of Ye for the original simulation data
and for the case including neutrino absorption. These corrections shift the peak distribu-
tion from ∼ 0.15 to ∼ 0.17 and broaden it toward higher Ye. In both approaches, at the
onset of the nucleosynthesis, the density is still relatively high, ρ ≈ 109gcm−3, and the
electron fraction rather low, Ye ≈ 0.15−−0.3. This leads to an initial nuclear statistical
equilibrium composition rich in neutrons and neutron-rich nuclei. Such conditions are
closer to neutron star mergers than to the high entropy wind, which is characterized by
an alpha-rich freeze-out with few nuclei close to stability and small amount of neutrons.

Mass integrated abundances are presented in Figure 5.9 for the two treatments of the
electron fraction and compared to solar r-process abundances (e.g., [153]). Nuclei around
the second (A = 130) and third (A = 195) r-process peaks, as well as the Pb region, can
be synthesized in the jets. Note that the improvements in the electron fraction calculation
result only in minor variations of the abundances. Moreover, the position of the peaks
nicely agrees with solar system abundances. However, the agreement is not equally good
for all mass numbers as the nuclei between peaks are slightly under-produced. Note also
that the large trough in the mass range 140−−160 is mainly due to the strong N = 82
shell-closure of the FRDM mass model. Similar deficiencies were discussed by [111] and
can be cured by using a different mass model. Nuclei in the region below the second
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peak are produced mainly by charged-particle reactions which occur only in the tracer
particles with relatively high electron fraction. This also explains the lower abundances
in the range A = 80− 100 for the case of Ye without neutrino absorption (Figure 5.9).
This calculation reaches lower Ye which leads to higher neutron densities and a more
abundant third peak and Pb region.

5.1.5 Discussion and Outlook

Magneto-rotationally driven supernovae suffer one main critique point: the simultaneous
presence of fast rotation and strong magnetic fields in the progenitor before collapse.
Recent progenitor models computed by [52] suggest that these special conditions are not
reached in common evolutionary paths of massive stars. However, the low-metallicity
models of [169] indicate that for a fraction, perhaps 1%, of all massive stars, favorable
conditions can appear under special circumstances. This rarity of progenitors with these
special initial conditions can also be put into accordance with the observed scatter
of r-process element abundances at low metallicity, combined with the high r-process
production of ∼ 6 × 10−3M� per event. This indicates that these elements have been
produced in relatively scarce but efficient events [153]. Therefore, the rare progenitor
configurations used here could naturally provide a strong r-process site in agreement
with observations of the early galaxy chemical evolution.

Currently, the aim to perform long-term global 3D simulations of CCSNe, including
possibly a sophisticated radiative transfer of neutrinos, and the aim to simulate the local
flow instabilities, leading to magnetic field amplification, seem to be mutually exclusive
[113]. Given this difficulty, we followed here the common approach in the literature by
taking sufficiently strong initial magnetic fields. By doing so, it is hypothesized that
there is a physical process that can sufficiently quickly amplify the magnetic field to
dynamic importance by extracting the free rotational energy in differential rotation. This
motivates our choice of the high initial poloidal field strength, which by flux compression
and rotational winding leads to magnetic fields whose magnitude roughly agree with
those expected from the magnetorotational instability at saturation [113].

There are additional shortcomings in the treatment presented here. This includes
that thermodynamic properties of tracer particles are only extrapolated beyond the
end of the MHD calculation and the nucleosynthesis results were not yet tested with
several nuclear mass models. But the main outcome of this investigation is that full 3D
calculations can support the emergence of bipolar jets and that these are not artifacts
of up to now axisymmetric approaches [111, 46]. Such explosions, resulting from the
individual evolution of massive stars rather than complicated binary histories of neutron
star mergers, could explain strong r-process features during early galactic evolution as
observed in many low metallicity stars. The r-process production is very efficient, a factor
of 100 more than expected on average from supernovae, if they would be responsible
for solar r-process abundances. The question remains: whether magnetars — with the
magnetic fields required for this outcome — result from about 1% of all core collapses
or are rarer events. Apparently present knowledge permits this option [68].

The magnetorotationally driven supernova simulation presented here provides a sce-
nario for a strong r-process site seemingly consistent with observations of the early
chemical evolution of our Galaxy.
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5.2 3D core collapse supernova simulations

with SPHYNX & ASL

The numerical implementation of fluid dynamics has been typically treated within a
grid, where the physical magnitudes are evaluated through the flux balance between
adjacent cells, and their derivatives calculated using finite difference methods. The FISH

code, which has been used in this work to study the aftermath of neutron star mergers
and magneto-rotationally driven supernovae is actually a Cartesian grid code.
Nevertheless, many astrophysical scenarios have physical magnitudes ranging within
several orders of magnitude, which demands a high adaptive behavior of the codes.
Moreover, they usually develop highly-deformed asymmetric geometries that can pose a
problem for Eulerian methods, adaptive or not, due to the numerical diffusion induced
by the advective term. Such difficulty can be overcome using a grid that evolves with the
fluid, i.e. a Lagrangian description where the advective term disappears. In this respect,
an interesting choice when having distorted geometries is to switch from grids and use a
particle (purely Lagrangian) method, where the mesh is replaced by a set of interpolation
points that follow the fluid. The Smoothed Particle Hydrodynamics technique (widely
known as SPH) belongs to this last group.

In this section, we will present the first results of simulations of core collapsing stel-
lar core, performed with an SPH code, denominated SPHYNX and developed by Ruben
Cabezon. For extensive reviews on the SPH technique we refer to [104] and, more re-
cently, to [105] and [135]. The hydrodynamical evolution is coupled with a three dimen-
sional neutrino treatment, based on the ASL scheme. It includes all the cooling part, but
not the heating one, very similarly to what has been presented in the MHD simulation of
the previous section. From the hydrodynamical scheme, we know that from the position
of the SPH particles we can compute the local density and internal energy:

(ρi, ui)SPH (5.3)

We add to each particle also information about the chemical composition, introducing
the electron fraction, Ye:

(ρi, ui, Ye,i)SPH (5.4)

Assuming a NSE equation of state (which is here Lattimer-Swesty EOS), from the
new set of SPH quantities, we can derive the nuclear composition provided by the
EOS itself (neutrons, protons, alpha particles and a representative nucleus). In order to
model neutrinos according to the ASL treatment, we add to the each particle also the
neutrino abundances and the related neutrino energy, representing the neutrino trapped
component, for each of the relevant neutrino species (k = νe, ν̄e, νµ,τ ). In this way, the
full set of SPH quantities becomes

(ρi, ui, Ye,i, Yνk,i, Zνk,i)SPH+ASL (5.5)

The goal of the treatment is to calculate the neutrino source terms, which then enter
the hydrodynamics equations, and to evolve the abundances associated to each particle.
From the neutrino treatment, the quantities that we calculate are:(

Ẏe,i, u̇i, Ẏνk,i, Żνk,i

)
leak out

(5.6)
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with SPHYNX & ASL

The internal energy variation for the fluid is considered as a source term in the energy
equation. The electron fraction of each particle (and similarly the neutrino abundances
and neutrino energies) is evolved explicitly, according to

Ye,i(t+ dt) ≈ Ye,i(t) + Ẏe,i(t)dt (5.7)

The energy density provided by the neutrino radiation field (ρZν) gives an extra contri-
bution to the fluid pressure:

Ptot = Pgas +
1

3

ρ

mb

∑
k

Zνk (5.8)

Because of this, in the momentum and energy equations we use the total pressure Ptot,
instead of the only gas pressure Pgas. This inclusion should take into account the neutrino
stress, which was explicitly calculated in the general ASL presentation.

Most of the quantities which are needed to compute these source terms are local, so
the implementation in the SPH structure was straightforward and required no modifi-
cation in the algorithm. The only non-local quantity which was implemented was the
spectral optical depth: τν,cl(x, E) and τν,eff(x, E). To compute it in a simple way, we
used the expected quasi-spherical symmetry of a collapsing stellar core: we defined a
one dimensional radial grid, and on this grid we calculated the spherical averages of the
neutrino spectral mean free paths (which was computed locally, at each SPH particle),
directly from the SPH data. Then, we integrated 1/λ(R,E) radially, from the external
edge up to each radial position, according to (2.99), to obtain the radial optical depth.
Finally, the spherically symmetric optical depth was mapped back on the three dimen-
sional SPH particles, interpolating with respect to the distance from the center of mass.
To discretized the energy spectrum, we used 20 energy bins in the range 3 MeV ≤ E ≤
300 MeV, as we did in the spherically symmetric CCSN models. All the reactions listed
in chapter 2 have been included.

5.2.1 Results

As a first test for the SPHYNX code with the ASL neutrino treatment, we set up a CCSN
SPH simulation with 500,000 particles, using Newtonian gravity. We take a 15M� spher-
ically symmetric progenitor model from [52] that we map into a three dimensional quasi-
random Sobolev distribution of equal mass particles. This are the initial conditions of
the SPH simulation. We simulate ∼ 1.65M� of mass, corresponding to the whole iron
core and to a fraction of the silicon shell, up to 2, 000 km in radius, and we run the sim-
ulation including all neutrino flavors (νe, ν̄e and νµ,τ ). Qualitatively, the dynamics of the
collapse and of the early postbounce phase are the ones expected. The collapse proceed
increasingly fast, raising the central density and temperature, and deleptonizing matter
through electron captures on protons and nuclei. The produced neutrinos are initially
emitted almost freely. After neutrino trapping, the core deleptonization stops and a gas
of νe forms. The electron fraction decreases further and reaches Ye ∼ 0.32. When the
central density becomes ∼ 4 ·1014g/cm3, the core bounces and a shock wave forms at the
surface of the newly born protoneutron star. The shocks moves out, traveling through
the iron core, photodisintegrating matter and further deleptonizing it. We studied the
expansion of the shock wave up to ∼ 100 ms after bounce, when the shock has reached
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a distance of ∼ 160km.
In Figure 5.10, we can see the radial profiles of density (left column), electron fraction

Figure 5.10: Radial profiles of density (left panels), electron fraction (central panels)
and entropy, obtained directly from the SPH CCSN model fo a 15M� progenitor
model. Each red point correspond to a SPH particles. Four different simulation times
are presented ranging from bounce up to tpb ≈ 95 ms (Courtesy of R. Cabezon).

(central column) and entropy (right column), at four different times: in the first row, we
visualize results at bounce; in the second row, ten milliseconds after; then at fifty (third
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row) and one hundred milliseconds (forth row). Each point in the panels represents one
of the SPH particles. From the profiles at bounce, we can see that the collapse keeps a
good spherical symmetry, as expected. We notice the position of the shock wave from
the entropy spike and from the corresponding starting deleptonization in the Ye profile.
As the shock proceeds, multidimensional effects and inhomogeneities start to appear and
to grow, especially inside the shocked material. This effect can be seen from the spread
particles in the Ye and entropy profiles. At the shock position, we notice that there is a
strong increase in the entropy of a small amount of particles increase their entropy. We
are currently investigating this aspect, and we think that it is linked with the form of
the artificial viscosity, that it is not able to prevent certain particles to “surf” behind
the shock front. As a consequence, they suffer of an extended period of shock heating.
The corresponding increase in temperature induces larger neutrino emission rates and,
consequently, lower electron fractions. However, even if we neglect these features, we
can clearly see how perturbations and instabilities grow and affect the dynamics of mat-
ter inside the shock wave. Even the shape and the propagation of the shock break the
spherical symmetry. This effect can be seen, for example, in the density radial profile, at
the end of the simulation: the dispersion in density, corresponding to the shock position,
has an extended range, that spans more than 50km.
The shape and the evolution of multidimensional instabilities can be better seen in

Figure 5.11. In this figure, we project all the particles included in a thin layer of 20 km
around the equatorial plane (z = 0), on a xy plane, of 200 km side. The physical quanti-
ties, which are color coded, are the temperature (left upper quadrant), the logarithm of
the density (right upper quadrant), the electron fraction (left lower quadrant) and the
entropy (right lower quadrant). For the first plot (upper left panel), we choose t ≈ 1.58ms
after bounce, instead of exactly bounce, to visualize the very beginning of hydrodynam-
ical instabilities. In the second plot, we can see turbulences inside the protoneutron star
and at the shock front (which is still visible): matter infalling radially reduces its free fall
speed and form non-radial and non-symmetric flows towards the central compact object.
In the lower two panels, all the represented particles are inside the shock; we can see
large convective modes and flows of particles coming from the shock front and accreting
on the protoneutron star. In Figure 5.12 we can see the temporal evolution of the total
neutrino luminosities, directly calculated during the simulation with the ASL scheme.
The obtained results agree with our expectations. We can distinguish all the relevant
expected features: the luminosity rise during the collapse, the effect of neutrino trapping
just before bounce; the neutrino burst a few milliseconds after bounce, where Lνe peaks
at ∼ 6.5 · 1053erg/s, and the decrease to an almost stationary value (∼ 0.9 · 1053erg/s)
during the accretion phase. Regarding electron antineutrinos, Lν̄e rises, as expected, af-
ter bounce, and, on a short timescale (∼ 0.02s), it reaches an almost stationary value,
similar to the one of νe luminosity. After bounce νµ,τ luminosity increases as well. Even
if it rises slightly before the electron antineutrino one, it keeps a lower value during
the accretion phase. This is due to the fact that electron flavor neutrino luminosities
come mainly from charged current reactions on the shock accreting matter (mostly free
protons and neutrons), while νµ,τ are produced by neutral weak current processes, con-
verting thermal energy in neutrino pairs of all kinds. Other features which look already
interesting and which deserve a deeper investigation in the future, are the oscillation in
the luminosities: they appear in all three curves and they may be related with oscilla-
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Figure 5.11: In this figure, we plot a projection on the xy plane of the SPH particles
included in a thin layer of 20 km across the z = 0 plane. Four relevant quantities
(starting from the upper left quadrant and proceeding in the clockwise direction,
temperature, density, entropy and electron fraction) are color coded. We choose the
same moments we used for the figure 5.10, with the exception of the first one, which
was take not exactly at bounce, but 1.58 ms after it. Several multidimensional effects
(like convection and matter streams) can be seen already after bounce, inside the
shock, before growing and expanding on larger scales (Courtesy of R. Cabezon).

tions of the protoneutron star and/or with variations in the accretion rate induce by
multi-dimensional effects.

A full comparison with a corresponding AGILE-BOLZTRAN calculation has not been
done yet. Nevertheless, from a broad comparison with a similar model, we notice a
good quantitative agreement, even if the deleptonization inside the shock wave is more
effective here, enhancing slightly the luminosities.

5.2.2 Discussion and outlook

With respect to grids codes, SPH hydrodynamical schemes present an adaptive reso-
lution, which follows directly (i.e., by construction) the matter density profile. In our
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Figure 5.12: Temporal evolution of the neutrino luminosities, obtained from the SPH
CCSN model with the ASL neutrino treatment, for all the three modeled neutrino
species: νe (red line), ν̄e (green line) and νµ,τ (blue line) (Courtesy of R. Cabezon).

Figure 5.13: Smoothing length h from the core collapse SPH model, as a function of
the radial position from the center. The red points correspond to the data taken from
the SPH simulation with 500k particles. The blue points are the expected ones for a
simulation with 5 millions particles; they are scaled from the red ones, according to
h5M = h500k/101/3 (Courtesy of R. Cabezon).

models, this behavior can be seen in Figure 5.13, where we plot the smoothing length
obtained from one simulation (the one with 500k particles, red points) as a function
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of the radial coordinate, and the expected smoothing length from a model with 10
times more particles (5M particles, blue points), obtained from the previous ones as
h5M = h500k/101/3. It is clear that most of the resolution is focused on the forming
PNS, while the outer part of the system have a fast decreasing resolution. This simple
consideration is one of the major arguments against the usage of SPH codes to explore
CCSN models: if the shock looses rapidly resolution when it proceeds from the inner
to the outer part of the domain, it is difficult to model with accuracy the physics of
the shock and of its expansion. Assuming a fix density profile, a significant increase in
resolution at large radii needs a very large increase in the number of particles, due to
the fact that most of the particles will always sit in the forming PNS. Nevertheless, SPH
has been widely used in CCSN models (see, for example, [45] and references therein).
On the other hand, the same argument guarantees that the central object is the better
resolved part of the simulation. Thus, this model seems to be naturally well suited to
study the formation and the very early evolution of the PNS. For example, such an
extreme resolution allows to study in details the oscillations of the newly born NS and
their impact on the neutrino luminosities. Moreover, it could allow the investigation of
convection inside the PNS in three dimensions, with very high spatial resolution (see, for
example, [64, 100, 101, 14]) and with respect to the EOS used [131]. The conservation
of linear momentum, angular momentum and energy, which is guarateed by SPH codes
is another very strong point, which favors the inclusion of rotation and (eventually)
magnetic field in the models, to study their impact on the neutrino emission and on
the properties and dynamics of the PNS. Finally, the dynamics and the interaction of
the PNS with the shock accreting matter in three dimensions could be studied, to find
connections with the generation of NS spins and kicks.

5.3 Spherically symmetric supernova explosion with

PUSH

Self-consistent models of spherically symmetric core collapse supernova, with detailed
neutrino transport and General Relativity do not produce explosions (see, for example,
[86]). However, spherically symmetric models of exploding stars are, at the moment, the
easiest and almost the only possible way to study the expansion of the shock wave in
the outer layer of the star, for a large sample of initial models (varying, for example,
metallicity and mass of the progenitor star). The major goals of these simulations are 1)
the extraction of important information about the thermodynamical properties of the
expanding matter, after the passage of the shock wave. They are necessary to calculate
the explosive nucleosynthesis and the composition of the ejected material (see, for ex-
ample, [126, 43, 2]); 2) the study of the connection between the progenitor stars and the
supernova remnants (BH or NS; see for recent examples [114, 167]).
Historically speaking, the explosion of the star has been artificially caused in different
ways:

1. by thermonuclear bombs; this method consists in injecting a certain amount of
internal energy, at a chosen position and at a certain time after bounce, increasing
locally the matter temperature. If the injection is large enough, the added pressure
is able to push matter away and, finally, trigger an explosion (see, for example,
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[161]);

2. by piston models, in which a piston is placed at a chosen position in the star model
(pre or post bounce) and moved, according to a certain velocity prescription. This
prescription mimics first the free fall of the mass element, and later the explosive
expansion of the formed Supernova shock (e.g. [179, 180]);

3. by modifications of the neutrino absorption rates, which are usually increased by
a factor in the range 5− 8 (e.g.[43, 37]);

4. imposing a boundary condition in the innermost part of the simulation, which
consists in the removal of the PNS and in the imposition of an analytical prescrip-
tion for the neutrino luminosity. Allowing neutrinos to be re-absorbed behind the
shock, specific choices of neutrino luminosities and spectra at the inner boundary
can trigger an explosion (e.g. [146, 2, 167]).

In the following, we will present a new method, called PUSH, which avoids some of
the drawbacks of the methods that have been used up to know. In particular, it allows
the possibility for a fraction of the neutrino luminosity emitted as νµ, ν̄µ, ντ and ν̄τ , to be
re-absorbed by the fluid, behind the shock. This extra-deposition of energy can trigger
an explosion. Physically, we do not expect νµ,τ neutrinos to be re-absorbed (at least,
considering only standard neutrino processes). Their luminosity is just considered as an
energy resevoir, which can locally increase the energy gained by the fluid, absorbing νe
and ν̄e neutrinos. Differently from other methods, the intensity of the used luminosity
(Lνµ,τ ) is directly obtained from the dynamics of the system and, in particular, of the
hot PNS.
Comparing in more details with the previous methods,

1. there are no external injections of energy;

2. there is no super-imposed motion of specific mass elements;

3. there are no alterations of the reactions rates regarding νe and ν̄e, which are crucial
to obtain a correct Ye;

4. there is no need of internal boundary conditions and controlled neutrino luminosi-
ties at this boundary.

Nevertheless, we stress that this method is as artificial as the other, because it triggers
an explosion adding an element which should not be included in the simulation.

5.3.1 Description of the model

We set up a spherically symmetric core collapse supernova model, using the code AGILE-IDSA
[88]. This code has already been introduced in Chapter 2: AGILE is an adaptive mesh,
general relavitistic, spherically symmetric hydrodynamical code. IDSA is an approxi-
mated spectral transport scheme for νe and ν̄e. The publicly available version of this
code includes the possibility to take into account the cooling provided by νµ,τ , using the
grey leakage scheme described in Chapter 2. We modified this version, including also
the ASL treatment to model νµ,τ . This modification was done mainly to retain spectral
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information about the luminosity of these neutrinos, which is an essential ingredient for
PUSH.
In table 5.2 and 5.3 we report the neutrino reactions which have been included and the
values of the free parameteres of the ASL treatment we are typically using.

Reactions Currents Main Role ν treatment Reference

e− + p→ n+ νe CC P, T, O IDSA [12]
e+ + n→ p+ ν̄e CC P, T, O IDSA [12]
e− + (A,Z)→ νe + (A,Z − 1) CC P, T, O IDSA [12]
N + ν → N + ν NC O IDSA & ASL [12]
(A,Z) + ν → (A,Z) + ν NC O IDSA & ASL [12]
e+ + e− → νµ,τ + νµ,τ NC & NC P, T ASL [12],[102]
N +N → N +N + νµ,τ + ν̄µ,τ NC P, T ASL [51]

Table 5.2: Table with the relevant neutrino reactions included in the models of
AGILE-IDSA with ASL for the νµ,τ and with PUSH to trigger an explosion. In the
reactions column, N represents nucleons. In the current column, NC stands for neutral
current, while CC for charged current reactions. In the Main Role column, P stands
for production, T for thermalization and O for opacity.

Considering that the goal of this model is not only to trigger the explosion, but
also to follow the evolution of the shock far from the core, we extended the standard
treatment of the EOS and of the connected chemical composition of matter:

• we used a new set of EOS tables for matter in NSE [53]; a consistent extension
for the non-NSE conditions have been included. The transition between the two
regimes is done by a linear combination of the thermodynamical properties in
a tiny temperature interval, between T1 = 0.44 MeV and T2 = 0.48 MeV. For
temperatures above T2, NSE is assumed; for temperature below T2, non-NSE is
considered. The upper limit T2 can be increased in order to fulfill the important
termodynamical constraint ∂E/∂T > 0. This part of the work has been done by
Matthias Hempel, at the University of Basel.

• We model the abundances of 25 different nuclear species, in the non-NSE regime
and they are advected with the fluid. In the transition from non-NSE to NSE,
the nuclear equilibrium takes care of their modification; in the opposite transition
(which is relevant in case of mass elements ejected by an explosion), NSE com-
positions are mapped consistently into the 25 considered species. This part of the

Name of the parameter Values

αdiff 6.00
βrec 2.00
αint 5.00

ανµ,τ ,cut 20.0
βcut Lν,N

Table 5.3: Table with the values of all the free parameters of the νµ,τ ASL scheme
used in the models.

142



5.3. Spherically symmetric supernova explosion with PUSH

work has been done by Matthias Hempel and Kevin Ebinger, at the University of
Basel.

• We include a simplified treatment for the evolution of the abundances of a selected
set of nuclear species out of NSE, due to nuclear burning processes. This treatment
is based on the direct estimation of the burnign timescales from nuclear reaction
rates [39], and it has been documented in Kevin Ebinger’s Master thesis.

The idea behind PUSH was first suggested by Matthias Liebendörfer and Carla
Fröhlich in 2007. Then, it was further developed by Kevin Ebinger in 2011-2012 in the
AGILE-BOLZTRAN code (Master Thesis). We developed it further and we implemented it
in AGILE-IDSA with ASL for νµ,τ .
As it was already anticipated, the main idea behind PUSH is to allow a part of the νµ,τ
luminosity to be re-absorbed by matter. This is performed introducing a local heating
term Q+

PUSH(R) [erg/g/s], calculated as

Q+
PUSH(t, R) =

(∫ +∞

0

q+
PUSH(R,E) dE

)
G(t) (5.9)

q+
PUSH(R,E) ≡ kPUSH

4mb

σ0

(
E

mec2

)2(dLN,νµ,τ
dE

(R,E)

)
1

4πR2
· F(R,E). (5.10)

In equation (5.10) σ0 is the typical neutrino cross section 1.7, the usual neutrino energy
dependence (∝ E2) has been included, and dLN,νµ,τ/dE is the spectral νµ,τ number
luminosity. The product (dLN,νµ,τ/dE)/(4πR2) is just the particle number flux. kPUSH is
a free parameter which has to be set and which establiches the relative strenght of PUSH.
An higher parameter correspond to a higher extra-energy deposition rate. The function
F(R,E) is a term which has to be designed in order to apply PUSH just where we
want it to be applied. To do this, we consider the following guidelines: according to the
neutrino-driven explosion paradigm, deposition of energy by neutrino absorption above
the neutrinosphere and behind the shock front can revive it. Multidimensional effects,
like convection and large scales instabilities, can enhance the heating rates, ultimately
favouring the explosion which is missing in spherically symmetric models. Then, we
decide to apply PUSH in the neutrino transparent region, where the heating rate from
νe and ν̄e is expected to dominate over cooling rate, (i.e., where ėνe,ν̄e > 0 and for
τ(R,E) > 2/3), and where convection can occur (e.g., where ds/dR < 0). A possible
expression for F(R,E) is, for example,

F(R,E) =

{
0 if ds/dR > 0 or ėνe,ν̄e < 0 ,

exp (−τνe(R,E)) otherwise.
(5.11)

We decided to apply PUSH only after bounce (before bounce it is expected to do noth-
ing), and, once an explosion has been detected, we switch it off smoothly, using a time
dependent exponential cut:

G(t) =

{
exp

(
− t−texpl

tcut

)
tbounce < t < texp

0 otherwise
(5.12)

where texpl is the simulated time at which the explosion is launched, tbounce the time of
bounce and tcut is a cut timescale. The explosion is detected where the velocity radial
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profile becomes somewhere positive, after the shock wave has turned into an accretion
shock front.

5.3.2 Results

In the following, we will show results from some test runs we performed. We set up
a simulation taking a 15M� star progenitor, with Solar metallicity from [52]. We take
an extended domain, that includes Msim = 3.5M� and initially extends radially up to
10, 000km. We choose the EOS denominated by TM1 [53] (which is the closest one to
the relativistic Shen EOS). We compare two different simulations, the first one with a
kPUSH = 1.2 and a second one with kPUSH = 1.4. Apart from the standard output of the
code, we designed a tracer tool to analize the data in the comoving frame of single mass
elements. This tracer interpolates linearly all the relevant quantities expressed on the
adaptive grid (and, in some cases where the magnitude can change significantly from
zone to zone, like the density, their logarithms) on a certain set of fixed mass shells. We
calculate also the mass integrated total energy at each possible enclosed mass in the
simulation domain, according to the expression (8) and (9) of [37]:

Etot(t,M) =

∫ Mtot

M

Especific(t,m) dm =

∫ Mtot

M

(
Γe+

2

Γ + 1

(
v2

2
−G m

r(m)

))
dm,

(5.13)
where m is the enclosed mass, r(m) is the corresponding radial position, e the specific
internal energy, v the fluid radial velocity, and the Γ function is defined as

Γ(t,m) =

√
1− 2Gm

c2 r
+
(v
c

)2

. (5.14)

If we consider t� texpl, once we have detected the innermost mass shell which is ejected
mexpl,in, the explosion energy of the supernova and the number of baryons inside the
PNS can be determined as:

Eexpl = Etot(t� texpl,mexpl,in) , (5.15)

NPNS = mexpl,in/mb. (5.16)

In the computation of the total energy we take into account also the total energy of
the outer part (i.e., the progenitor outer shells, which have not been included in the
simulation). We consider it as a static boundary condition,

Etot(t,M) =

∫ Msim

M

Especific(t,m) dm+

∫ Mtot

Msim

Especific(t = 0,m) dm. (5.17)

For example, in our cases, if we split the total energy into internal, kinetic and potential
energy,

Eint(t = 0,Msim) = 1.140 · 1050erg , (5.18)

Ekin(t = 0,Msim) = 3.707 · 1044erg , (5.19)

Egrav(t = 0,Msim) = −1.942 · 1050erg ; (5.20)
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so that
Etot(t = 0,Msim) = −0.803 · 1050erg. (5.21)

The tests we have performed differ by the PUSH constant kPUSH, which has been set
to 1.0 (model A), 1.2 (model B) and 1.4 (model C). In all models, we set tcut = 0.200s.
They all explode, but at different time and with different properties. In table 5.4 we
report some relevant properties regarding the explosion and the remnant PNS, for each
of the three analyzed models. As expected, the model that explodes earlier (0.128 s post

Name kPUSH texpl [s] Eexp [1051erg] NPNS [1057] MPNS [M�]

A 1.0 0.478 0.350 (1.119 s) 2.067 1.575
B 1.2 0.201 0.740 (1.743 s) 1.904 1.462
C 1.4 0.128 0.986 (0.977 s) 1.836 1.414

Table 5.4: Table with a summary for the properties of the three exploding models.
First column: the PUSH factor kPUSH. Second column, the explosion time, defined as
the time after bounce at which the stalling accretion shock turns into an expanding
ejecting shock (i.e., when vr > 0 in the shock). Third column, the explosion energy,
defined as (5.15); in brackets, we report the time after texpl at which the explosion
energy as well as the other following quantities) have been estimated. Forth column,
the number of bayons inside the PNS. Fifth column, the expected NS gravitational
mass (calculated for the TM1 EOS, at T = 0).

bounce) and with a larger explosion energy (almost 1051 erg) is model C, followed by
model B (0.201 s and 0.7 · 1051 erg ) and model A (0.478 s and 0.35 · 1051 erg ). The
explosion time is defined as the time after bounce when, after having turned into an
accretion shock front, the shock wave expands and matter inside it has a positive radial
velocity. In all three cases, the explosion is caused by the deposition of energy just
below the shock radius: the difference is that in case B the deposition is more gradual
and distributed than in case C. As a consequence, the shock starts to expand radially
before developing positive velocities and the entropy increases more sensibly everywhere
above the neutrinosphere. These two effects are much more evident in case A, where the
shock expands from ∼ 150 km up to ∼ 500 km in ∼ 0.4 s, very slowly at the beginning,
and accelerating after due to the reduced ram pressure of the accreting matter (as
density decreases, going radially). In Figure 5.14 we compare the cumulative amount
of energy deposited by PUSH in the fluid (left) and the corresponding deposition rates
(right), between the three different tests. As expected, at the beginning model C shows
a sistematically higher deposition rate, which is able to trigger soon the explosion. The
amount of energy that is deposited is, then, relavitely low and comparable with the
final explosion energy. On the other hand, in case A, PUSH has to supply much more
energy, definitely larger than the final explosion energy, on a much longer time, with a
constantly, but slowly decreasing rate. This energy is only partially used to explode the
star. Most of it heats matter below the shock, and is partially re-radiated in form of
neutrinos.
The different radial configurations at t = texpl can be seen in Figure 5.15, where the

velocity, density, entropy and electron fraction profiles are compared. We can notice how
the different explosion time affects the structure of the core, below the radius where the
explosion develops. The model A had more time to cool and to accrete matter; thus,
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Figure 5.14: Comparison of the cumulative energy deposited by PUSH during the
simulations between the different runs (left panels), and of its derivative (deposition
energy rate, right panel), expressed as a function of time after bounce, when PUSH is
active.

Figure 5.15: Comparison of the radial profiles of velocity (upper left panels), density
(upper right panel), entropy (lower left) and electron fraction (lower right panels) for
the three different models, at t = texpl.

the remnant is more compact and more massive at the explosion time. Neutrino spectra
are harder and the luminosities higher; then, νe and ν̄e absorptions had already a visible
effect in increasing the electron fraction in the expanding shock above 0.5 . In Figures
5.16 - 5.18 we report the temporal evolution of the radial profiles at different times
(0.2, 0.5 and 0.7 seconds), after the explosion. Overall, the three cases show a similar
evolution. However, it is quite clear that case A presents more differences, compared
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Figure 5.16: Same as Fig 5.15, but at t = 0.2 sec after the explosion.

Figure 5.17: Same as Fig 5.15, but at t = 0.5 sec after the explosion.

with cases B and C: it usually presents a higher entropy and a larger Ye, results of the
longer heating phase, and a faster decreasing radial velocity. Model B and C are very
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Figure 5.18: Same as Fig 5.15, but at t = 0.7 sec after the explosion.

similar; the difference in their explosion energy is, in any case, visible in the velocity
and in the entropy profiles at late times, where those of C are systematically higher
than those of B. We notice, in the Ye profiles, that the electron fraction reaches the
table limit (Ye = 0.6). An increase in the electron fraction above 0.55 is expected also
from detailed spherically symmetric models ([37, 55]), but less than what we obtain. We
think that this larger effect can be linked with harder neutrino spectra, which we found,
probably due to the absence of the neutrino-electron scattering process, which is very
efficient at thermalizing neutrinos just below the neutrinosphere, and/or to an excess
of cooling, due to the ASL scheme. Both aspects are currently under investigation. In
Figure 5.19 we report the temporal evolution of the neutrino luminosities (left panel)
and mean energies (right panel), for all the three species and for all the three runs. Up
to 0.1 s after bounce, the three models do not show meaningful differences. The situation
changes when the explosion sets in: due to the sudden decrease in the accretion rate on
the PNS, all luminosities decrease (more drastically for νe and ν̄e), and set to a (almost)
common value, that represents the initial cooling rate of the PNS. The decrease in
luminosities happens before for the C model, and later for the other two runs. Due to
the longer accretion phase and PUSH action, the spectra of run C are harder; this has
a direct link with the higher Ye observed in the radial profiles. Finally, in Figure 5.20
we plot the radial position of selected mass shells as a function of time (after bounce),
for run B. This results have been obtained using the tracer tool; similarly, the temporal
evolutions of all interesting quantities can be obtained, as well. The mass corresponding
to the PNS is represented by the lines which undergo collapse and sit steadily inside a
radius of ∼ 18 km. Intermediate mass shells (1.60M� . m . 1.61M�) experience the
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5.3. Spherically symmetric supernova explosion with PUSH

Figure 5.19: Temporal evolution of the neutrino luminosities (left panel) and mean
energies (right panel), for all the three species (νe solid lines, ν̄e dashed lines, νµ,τ
dotted lines) and for all the three runs (A green, B red, C blue).

Figure 5.20: Temporal evolution of the radial position of selected mass shells, in
the case of run B. Different colors refer to different resolutions. The first red line
(in the bottom part of the picture) represents an enclosed baryon mass of 0.5M�;
then each red line a mass shell incremented by 0.1M�, up to 1.3M�. The green lines
start at 1.425M� and finish at 1.500M�, with increments of 0.025M�. The blue lines
start at 1.510M� and finish at 1.590M�, with increments of 0.01M�. The region
corresponding to the surface of the PNS is the better resolved one in the picture: the
magenta lines start at 1.595M� and finish at 1.606M�, with increments of 0.001M�.
Then, the blue lines start at 1.610M� and finish at 1.660M�, with increments of
0.01M�. The green lines start at 1.685M� and finish at 1.785M�, with increments
of 0.025M�. Finally, the external red lines start at 1.82M� and finish at 1.85M�,
with increments of 0.1M�
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5. Other applications of the ASL treatment

collapse inside the accreting shock front, before being quickly expelled by the expanding
shock. The outer part m & 1.61M� are pushed outwards by the explosion, once they
are reached by the shock, during their infalling motion. Very interestingly, neutrino-
driven wind from the PNS surface cen be recognized. The termodynamical conditions
inside the wind (mainly, electron fraction and entropy) are currently being investigated,
to compare it with other existing models and to figure out the kind of nucleosynthesis
expected in the ejecta (M. Hempel, private communication).
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Chapter 6

Summary and Conclusions

The study of merging compact objects and collapsing stars is a fascinating topic in
modern astrophysics. It involves all fundamental interactions and it requires large and
complex numerical simulations, which can push even modern supercomputers to their
limits, both in memory and computational power requirements. Differently from many
other situations, neutrinos of all flavors play a central and crucial role in the dynamics
and in the observables which characterize those systems. The requirement of producing
multidimensional (magneto-)hydrodynamical models with detailed radiative transfer is
challenging numerical astrophysicists since decades. Solutions of the Boltzmann trans-
port equation is nowadays available in spherically symmetric models of core collapse
supernovae; but its extension to less symmetric models seems at the moment difficult,
due to computational limitation, more than conceptual problems. As a consequence, sev-
eral different approximate neutrino transport schemes have been developed and coupled
with different hydrodynamical codes. Today, accurate neutrino treatments are getting
available also for three dimensional simulations. However, their computational cost is
still relatively high. The parameter space of the modeled objects (neutron stars or mas-
sive star at the end of their life) is extremely wide; this large variability in the initial
conditions and geometries (and partially in the still uncertain input physics) requires
the development of less detailed, but also less demanding, approximate neutrino treat-
ments. This type of schemes should not be used to answer fundamental questions where
details of the neutrino transport are the essential ingredients to be modeled (like the
ultimate proof of the viability of the delayed neutrino-driven explosion mechanism in
Core Collapse Supernovae). Nevertheless they can be widely used

• for a less computationally demanding and broader parameter space exploration;
in this respect, these approximated models can probably already distinguish be-
tween different general behaviors and trends, comparing different sections of the
parameter space;

• for astrophysical systems where, due to more complicated geometry configurations,
a detailed neutrino transport is still not available in three dimensions;

• for models where neutrinos are expected to play an important role, but where
details of the transport become secondary;

• for new types of models (for example, those using new hydrodynamical schemes or
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6. Summary and Conclusions

those solving full general relativistic equations), where a slim neutrino treatment
is preferable.

In this respect, the major focus of my PhD at the University of Basel, in the Nuclear
Astrophysics group of Prof. Thielemann and under the supervision of Dr. Matthias
Liebendörfer, was the development, testing and implementation in several contexts of a
new approximated, but computationally inexpensive scheme. This scheme belongs to the
group of the so called leakage schemes, which have been developed and exploited since
1970s’. Usually, these treatments are based on formulations of the transport problem
where the integration over the neutrino energy has already been performed (typically,
assuming some well motivated hypothesis about their spectrum). As a consequence, they
are called grey leakage schemes. Their outcome is, in most of the cases, an estimation
of the rates at which neutrinos are locally released out of the system (both particles
and energy rates). Then, the main focus of the treatment is often the cooling aspects
connected with the production and the diffusion of radiation. One of the peculiar points
of these schemes is their effective character: this means that the scheme is not really
based on the solution of transport or diffusion equations, but it tries to mimic the effect
of the expected solutions, according to the knowledge of some crucial quantities, like the
local reaction rates, the local mean free paths or the neutrino optical depths.
One of the major goals of the project was to improve this type of schemes, increas-
ing their accuracy and their physical completeness. This objective was achieved mainly
passing from a grey to a spectral treatment (with respect to the neutrino energy), and
including the evolution of the neutrino fractions and energy according to simple prescrip-
tions, based on estimated relevant timescales. Another related aim was the inclusion of
a physically motivated neutrino heating contribution. The major difficulties regarding
this point are linked with 1) the non-local aspects of any heating process involving a
localized radiating source; and 2) the necessity of having reliable spectral information
about the radiation emitted from the source. Both these requirements are very challeng-
ing without a real transport scheme.
In Chapter 2, we showed the present version of the scheme, with a detailed description
of the ingredients that have been included. In the second part of the chapter, several
tests, with increasing input physics included, are discussed. The role of these tests is,
not only to compare passively the obtained results with other, more accurate solutions,
but also to provide a guide in the development of the scheme and the necessary determi-
nation of some important free parameters. In this sense, the scheme is effective: it needs
a reference solution to be shaped on. Of course, one of the most challenging parts is to
define a set of parameters and ingredients that are well suited for different situations (for
example, for a whole core collapse supernova model, ranging from the collapse phase,
up to the cooling of the PNS). The final result of this work is an Advanced Spectral
Leakage (ASL) treatment, suited for all neutrino flavors (the actual modeled flavors are
νe, ν̄e and νµ,τ ) and tested against detailed Boltzmann neutrino transport, in spherically
symmetric Core Collapse Supernova simulations.
Considering the importance of the optical depth in the ASL treatment and its non-local
character, we designed also a geometry-free algorithm to calculate the optical depth in
multidimensional simulations with no special symmetry. This algorithm (MODA) has
been described in Chapter 3 and some positive tests (both based on analytical initial
data and on data obtained from actual astrophysical simulations) have been shown. The
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implemented version has been OpenMP parallelized, and the related performances are
discussed.
Parallel to the definition and to the refinement of the ASL scheme, we started to imple-
ment the treatment in different multidimensional astrophysical simulations. The models
differ both for the physical contexts and for the coupled hydrodynamical codes. They
have been reported in Chapter 4 and 5.
A first application has been done in the context of magneto-rotationally driven core
collapse supernovae: assuming that the core of the progenitor star has an initial high
rotation rate and a large enough polar magnetic field, the free rotational energy can
be converted in magnetic energy. As a consequence, the related magnetic pressure lifts
matter in polar jets, which expand fast and ultimately disrupt the star. In this scenario,
neutrinos are expected to play a sub-dominant role concerning the dynamics of the ex-
plosion, but they still are essential to model the composition of the ejecta. We included
the cooling features of the ASL scheme in three dimensional, Cartesian magnetohydro-
dynamical simulations. We performed a hybrid implementation of the scheme: most of
the necessary quantities are calculated locally on the three dimensional grid; while the
optical depth is calculated along linear path, with a ray-by-ray approach and assuming
axisymmetry. First results of these simulations, obtained in collaboration with Roger
Käppeli and Christian Winteler at the University of Basel, show (for some initial config-
uration) the formation of a jet explosion. Due to the extreme neutron richness of matter
in the jets, the nucleosynthesis calculations, based on the obtained trajectories, make
this scenario as one of the most promising site for the production of r-process elements,
especially in the Early Universe.

A second scenario where the ASL treatment is being applied is the aftermath of
neutron star merger. When two neutron stars in a binary system merge, after an inspi-
raling phase due to the emission of gravitational waves, a hyper massive neutron star is
formed in the center, surrounded by a torus of dense accreting matter. The HMNS will
collapse to a black hole, on a timescale which is still quite debated. Before this happens,
a strong neutrino emission is supplied by the SMNS and by the inner part of the disc. We
modeled the disk dynamics, the neutrino emission and their mutual interaction. Such a
system is expected to have potential observables (for example, r-process nucleosynthesis,
neutrino and gravitational wave signatures), as well as a strong connection with short
GRBs.
To model the wind, we have performed for the first time 3D Newtonian hydrodynamics
simulations, covering an interval of ≈ 100 ms after the merger, and a radial distance
of & 1500 km from the HMNS, with high spatial resolution inside the wind. Neutrino
radiation has been treated by a computationally efficient, multi-flavour Advanced Spec-
tral Leakage scheme, which includes consistent neutrino absorption rates in optically
thin conditions. Our initial configuration is obtained from the direct re-mapping of the
matter distribution of a 3D SPH simulation of the merger of two non-spinning 1.4M�
neutron stars [141, and references therein], at ≈ 15 ms after the first contact. The
consistent dimensionality and the high compatibility between the two models does not
required any global average nor any ad hoc assumption for the matter profiles inside the
disc. Our 3D results show a good qualitative agreement with the 2D results obtained
by [29] for a similar initial configuration, especially for the neutrino emission and the
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6. Summary and Conclusions

wind dynamics. Meaningful quantitative differences are still present, probably related
with the different accretion history inside the disc. Our major findings are:

1. the wind provides a substantial contribution to the total mass lost in a BNS
merger. At the end of our simulation (≈ 100 ms after the merger), we compute
2.12 × 10−3M� of neutron-rich (0.2 . Ye . 0.4) ejected matter, corresponding
to 1.2% of the initial mass of the disc. We distinguish between a high-latitude
(50◦ − 90◦) and a low-latitude (30◦ − 50◦) component of the ejecta. The former is
subject to a more intense neutrino irradiation and is characterized by larger Ye,
entropies and expansion velocities. We estimate that, on the longer disc lifetime,
the ejected mass can increase to 3.49− 4.87× 10−3M�, where the smaller (larger)
value refers to a quick (late) HMNS collapse after the end of our simulation.

2. The tendency of Ye to increase with time above 0.3, especially at high latitudes,
suggests a relevant contribution to the nucleosynthesis of the weak r-process ele-
ments from the wind, in the range of atomic masses from the first to the second
peak.

3. A significant fraction of the neutrino luminosity is provided by the accretion pro-
cess inside the disc. This fraction is expected to power a (less intense) baryonic
wind also if the HMNS collapses to a BH before the disc consumption. According
to our calculations, the collapse time scale has a minor impact on the possible
observables (electromagnetic counterparts and nucleosynthesis yields), at least if
the collapse happens after the wind has formed and weak equilibrium had time to
establish inside it.

More recently, the ASL has been applied to two other different models. In the first
one, the cooling part of the scheme has been implemented in a three dimensional SPH
code by Rubén Cabézon, to model core collapse supernova. The very first tests are
able to reproduce qualitatively and also partially quantitatively the expected results for
collapse, bounce and post bounce phases, including an adeguate deleptonization and
neutrino luminositis. Further developments are still necessary; but, taking into account
the natural good conservation properties of SPH, and its high resolution in the high
density regions, this scheme will provide a new tool to investigate relevant aspects of
this astrophysical scenario with an approach complementary to grid codes. In particular,
it can be a powerful tool for studing, for example, convection and kicks of PNS from a
multidimensional, highly resolved point of view.
In the second recent application, done in collaboration with Matthias Hempel and Kevin
Ebinger at the University of Basel, the ASL treatment for νµ,τ has been included in the
publicly available spherically symmetric grid code AGILE-IDSA to model Core Collapse
Supernovae. The code has been modified in order to include 1) a new Equation of State
treatment for the part of the domain which is not in Nuclear Statistical Equilibrium, 2)
as well as a simplified treatment for the evolution of the chemical composition of this
part; 3) a new way to trigger an explosion depositing a fraction of the luminosities car-
ried away by νµ,τ (PUSH). This scheme has just two additional free parameters, which
can be tuned to obtain the expected values for the explosion timescale, the explosion
energy and the mass of the remnant for some specific cases. The relatively low compu-
tational cost of each run ensures the possibility of large progenitor space exploration
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(both in masses and metallicities), in particular for studying the effect of more detailed
nuclear physics and neutrino interactions inputs.

Overall, the development of the new ASL neutrino treatment has reached a satis-
factory level of accuracy and completeness. Coupled with a sophisticated algorithm to
model optical depth in multidimensions (like the MODA algorithm), it can be used as a
powerful tool to investigate neutrino emission and absorption in astrophysical scenarios
with no defined symmetry. It has also shown a remarkable suppleness, which allows it
to be implemented to model different astrophysical situations, with different hydrody-
namical codes and different geometries.
However, much work has still to be done to improve further the treatment and to lead
the multiple applications we have exposed to a satisfactory level, before being used for
extensive and interesting scientific investigations.

From a personal point of view, the field of nuclear astrophysics and, in particular, the
topics Core Collapse Supernovae and Neutron star Mergers have represented challenging
and very stimulating subjects for my studies. They require very broad physical and
computational abilities, together with patience and perseverance. This is particularly
true when elusive neutrinos are involved.
The group in Basel has represented, personally and scientifically speaking, an ideal
and stimulating working environment. Possibilities to develop internal collaborations,
to access available resources and to visit other groups and start external collaborations
have been always permitted and, even more, recommended.
My hope for the future is to continue on the path I have started, contributing to this
fascinating field and, if possible, transmitting these feelings and knowledge to other
persons.
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