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Zielke, Hugo Ribeiro, Tobias Meng, and Jelena Klinovaja, who shared their

scientific expertise with me and with whom I had many fruitful discussions as

well as pleasant conversations.

Moreover, I would like to acknlowledge the remaining group members in

Basel for being great colleagues. My thanks go to Samuel Aldana, Ehud Ami-

tai, Daniel Becker, Bernd Braunecker, Christoph Bruder, Stefano Chesi, Car-

los Egues, Gerson Ferreira, Suhas Gangadharaiah, Silas Hoffmann, Kevin van

Hoogdalem, Adrian Hutter, Viktoriia Kornich, Axel Lode, Kouki Nakata, Si-

mon Nigg, Andreas Nunnenkamp, Christoph Orth, Fabio Pedrocchi, Diego
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Summary

In the last decades much scientific effort was spent on manufacturing and un-

derstanding the properties of smaller and smaller condensed matter systems.

This eventually resulted in the reliable production of semiconductor quantum

dots and nanowires, systems that are reduced to sizes of several (tens of)

nanometers in all three or at least two dimensions. The confinement in such

nanoscale systems is so strong that quantum effects play a crucial role. Fur-

thermore, the exact energy level or band structure of these systems depends

heavily on the material composition, the precise confinement geometry, the

intrinsic strain distribution, the spin-orbit interaction, as well as the presence

of intrinsic and externally applied electric and magnetic fields.

The feasibility of loading only a single charge carrier onto a quantum dot

led to the proposal of the spin qubit, as a possible smallest building block

of a semiconductor-based quantum computer. In a spin qubit the quantum

information is stored in a superposition of Zeeman-split spin-up and spin-down

states. Most crucial for its successful implementation is the reliable control and

the proper understanding of the carrier spin dynamics. Solving this task has

been a highly active research field ever since, both on the experimental and

theoretical side. Most of the research conducted so far focused on electrons

in the lowest conduction band states. However, at some point it was realized

that holes in the states close to the valence band edge may sometimes offer

a more advantageous behavior regarding qubit control and coherence. This

is due to the p-type symmetry of the associated Bloch states which results

in a strong spin-orbit interaction on the atomic level and in an anisotropic

hyperfine interaction that is much weaker than the hyperfine interaction of

electrons.

Semiconductor nanowires can serve both as hosts for quantum dots and

as one-dimensional channels. Nanowire quantum dots are defined by putting

additional closely spaced gates on the nanowire that allow for an electrically

vii
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tunable longitudinal confinement. Otherwise, a one-dimensional electron or

hole gas forms inside the nanowire. Additionally, it has been proposed that

nanowires with strong spin-orbit interaction can be employed as hosts for Ma-

jorana fermions. This is of special interest because their non-abelian braiding

statistics make Majorana fermions good candidates for topological qubits.

In the first part of this thesis, we focus mostly on holes and hole spins

confined to self-assembled quantum dots and quantum dots defined in Ge/Si

core/shell nanowires. We calculate the hole spin relaxation and decoherence

times in these quantum dots due to hole-spin phonon interactions and hole-

spin nuclear-spin interactions that are mediated by the spin-orbit interaction

and the hyperfine interaction, respectively. Subsequently, we show how these

times are affected by specific system parameters such as intrinsic and extrinsic

strain, the confinement strength as well as the magnitude and direction of

applied electric and magnetic fields. Furthermore, we determine the effective

Zeeman splitting by investigating the anisotropy and tunability of the effective

g factor of electrons and holes in the lowest energy levels in these systems.

In addition, we investigate the effect of non-collinear terms in the hole-spin

nuclear-spin hyperfine interaction which reduce the degree of nuclear spin

polarization that can be obtained by optical pumping. Also, we propose an

experimental setup that allows to detect and quantify this effect.

In the second part of this work we survey holes in Ge/Si core/shell nanowi-

res by employing an effective one-dimensional microscopic model that includes

a strong and electrically tunable Rashba-type spin-orbit interaction. Using a

Luttinger liquid description, we show that a screened Coulomb interaction

strongly influences the nanowire properties. The strength of the interactions

is explicitly quantified by calculating the scaling exponents of correlation func-

tions and by examining the effect of the interactions on a partial gap opened

by a small magnetic field. Finally, we consider the nanowires as hosts for Majo-

rana fermions. This is possible when the nanowire is placed in close proximity

to an s-wave superconductor and put into a helical regime by applying electric

fields. Furthermore, a magnetic field is needed to open a gap in the spectrum.

In this setup, we calculate the field dependence of the localization lengths of

the associated Majorana fermion wave functions. In short nanowires the Ma-

jorana fermions hybridize and form a subgap fermion whose energy oscillates

as a function of the applied fields. The oscillation period allows to measure

the strength of the spin-orbit interaction and the g factor anisotropy of the

nanowire.
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1

Introduction

In this Chapter, we present the ideas behind the questions raised and answered

in this thesis. Chapter 1.1 introduces the solid state systems considered in

this work, semiconductor quantum dots and nanowires. We point out the

peculiarities that occur when holes instead of electrons are used and describe

different intrinsic and extrinsic effects that influence the structure of the energy

levels and bands. As a specific application, we introduce quantum dots as hosts

for spin qubits in Chapter 1.2 and indicate system-specific challenges regarding

spin coherence times. Chapter 1.3 describes necessary considerations when

studying one-dimensional nanowire systems and gives a short introduction

to Majorana fermions in nanowires. Mathematical tools that were frequently

used in this work are introduced in Chapter 1.4, and, in Chapter 1.5, we give

an outline of this thesis.

1.1 Solid state systems on the nanoscale

During the last decades, the exploration of the huge variety of existing solid

state systems on the nanoscale has developed into a wide and highly active

research field. The considered nanostructures are usually made of III-V (Ga,

In, As, Sb), II-VI (Cd, Se), or group-IV (C, Si, Ge) semiconductor materials.

In this thesis, we focus on self-assembled quantum dots (QDs) and core/shell

nanowires (NWs). The latter can be used either as one-dimensional systems

or to implement nanowire quantum dots (NW QDs) by introducing additional

longitudinal confinement using electrical gates.

Self-assembled QDs are usually grown in the Stranski-Krastanow mode by

epitaxial deposition of a several monolayers thick film of the QD material on

substrate wafers [1, 2]. The lattice mismatch between the substrate and the

deposited material results in a thin wetting layer that is topped with isolated

islands, the QDs. Typical self-assembled QDs are several tens of nanometers

1



2 Kapitel 1.

wide and a few nanometers high. A popular method for NW growth is the

vapor-liquid-solid method [1, 3–5], which allows to produce large numbers of

NWs under identical conditions. In this method, metal particles deposited

to the substrate serve as catalysts that react with the substrate material as

well as with the surrounding gas phase. Eventually, a crystalline NW starts

to grow from the substrate, and its properties can be modified by tuning the

growth temperature and the saturation of the gas phase. Furthermore, it is

possible to grow several shells around the NW in successive steps. This process

results in so-called core/(multi)shell NWs. Typical NW diameters are on the

scale of several tens of nanometers, while the NW length can reach several

micrometers.

It is possible to trap both types of charge carriers, electrons and holes, in

QDs and NWs. However, due to the different symmetries of the Bloch states

close to the valence band edge in bulk semiconductors, it is possible to observe

striking differences when comparing hole physics with electron physics. These

differences manifest themselves, for example, in the interaction strength of

the charge carriers with the environment and related phenomena. The Bloch

states of the lowest conduction band are of s-type (l = 0) symmetry contrasted

by the p-type (l = 1) symmetry of the Bloch states of the hole bands close to

the valence band edge [1, 6]. Including spin (s = 1/2) the latter gives rise to a

total angular momentum with eigenvalues j = l+ s = 3/2 and j = l− s = 1/2

for the hole states. Furthermore, the p-type symmetry of the hole Bloch states

results in a strong spin-orbit interaction on the atomic level. This leads to a

splitting between the j = 3/2 and j = 1/2 bands in the bulk semiconductor.

For the j = 3/2 bands one distinguishes between the heavy hole (jz = ±3/2)

and the light hole (jz = ±1/2) band. They are strongly coupled and remain

degenerate at the center of the Brillouin zone Γ (k = 0). Because of this,

the heavy and light hole states are usually described jointly by the Luttinger

Hamiltonian, which includes all coupling terms between the states [6, 7]. While

band parameters such as the effective mass and the g factor are isotropic for

the lowest conduction band, they are highly anisotropic for the hole bands

close to the valence band edge. In Fig. 1.1 a sketch of the approximate band

structure in bulk semiconductors around Γ is shown.

Energy levels and bands in QDs and NWs

The band structure of bulk semiconductors is well researched, both in theory

and experiment [1, 8]. However, the energy levels or bands of semiconductor
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Abbildung 1.1: Sketch of the band structure of a bulk semiconductor around Γ at the valence
band edge. The lowest conduction band (CB, s symmetric), the heavy hole band (HH, p
symmetric), the light hole band (LH, p symmetric) and the split-off band (SO, p symmetric)
are shown. Each band is two-fold spin degenerate.

QDs or NWs, respectively, deviate strongly from the level structure of the bulk

material due to the reduced dimensionality and other band mixing effects. As

described in detail below, the material composition, the precise confinement

geometry, the intrinsic strain distribution, the spin-orbit interaction, as well

as the presence of intrinsic and externally applied electric and magnetic fields

may affect the level and band structure and related observables such as the

conductivity and the optical response. Therefore, even the mere characteriza-

tion of the physical properties of QDs and NWs is an active field.

Material composition. The Stranski-Krastanow growth mode that is

commonly employed to obtain self-assembled QDs results in a gradient of the

material composition inside the QD, changing from the substrate material to

the deposited material along the growth axis of the QD [9, 10]. This effect is

not significant for NWs, since the material composition is only determined by

the growth material coming from the gas phase. However, the knowledge of

the exact material buildup in the NWs is equally important, especially when

separate core and shell materials are used.

Confinement. Due to the confinement of charge carriers to very small
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systems, quantum effects become important and the confinement potential

eventually determines the level splitting. Generally speaking, a stronger con-

finement leads to a stronger energy splitting. This can already be inferred

from simple, analytically solvable confinement models such as the potential

well or the harmonic oscillator. The equidistant level spacing observed in self-

assembled QDs validates the usage of harmonic potentials when modeling the

QD confinement [11]. Additional anisotropies of the confinement such as in

flat, pyramidal or dome-like QDs, as well as in NWs further influence the ener-

gy splitting. The longitudinal confinement in NW QDs is produced by electric

gates that allow for modifications of the confinement potential.

Static strain. During the QD growth in the Stranski-Krastanow mode the

atoms deposited on the wetting layer eventually form small islands because of

the lattice mismatch of the substrate and the deposited material. This results

in QDs that show a rich strain profile [12, 13]. In addition to the intrinsic strain

profile, strain can be applied to QDs by external means [14, 15], allowing for

a (dynamic) alteration of the strain profile. In core/(multi)shell NWs, the

presence of a shell induces compressive or tensile strain into the core due to

the lattice mismatch of the core and shell material. This results in a strong

dependence of the strain profile on the shell thickness [16, 17]. Since it is

very complicated to obtain analytical models for the spatially varying strain

distribution in QDs and NWs, one usually resorts to numerical models.

Spin-orbit interaction. The spin-orbit interaction is an effect which can

be described using the Dirac equation and that can be understood intuitive-

ly when considering an electron moving in an electric field: in the electron’s

rest frame the latter is seen as an effective magnetic field that couples to the

electron spin. Thus a moving electron experiences a spin rotation. In semicon-

ductor crystals one finds different manifestations of the spin-orbit interaction.

One is the spin-orbit interaction on the atomic level where the Bloch states

couple. The others are the Rashba spin-orbit interaction originating in the

structure inversion asymmetry as it is, for example, present in the asymmetric

potential of a quantum well [18, 19], and the Dresselhaus spin-orbit interaction

from the bulk inversion asymmetry as it exists in zincblende crystals [20]. In

both cases, the inversion asymmetry causes internal electric fields that cou-

ple to the spin of the charge carriers. A detailed introduction into spin-orbit

interaction in semiconductors can be found in Ref. [6]. In semiconductor nano-

structures, the spin-orbit interaction leads to a mixing of the orbital and spin

degrees of freedom [21] and, in the case of NWs, to helical states caused by

the lifted spin degeneracy [22, 23]. The strength of the spin-orbit interaction
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has been measured for QDs and NW QDs [24, 25]. However, even though mea-

surement schemes for the spin-orbit interaction in NWs have been presented

[26], their interpretation is not yet considered conclusive [27]. In addition to

the known spin-orbit terms, a Rashba-type spin-orbit interaction caused by

the direct dipolar coupling to the external electric field was predicted in Ge/Si

core/shell NWs [23].

Electric fields. Applying external electric fields alters the intrinsic fields

produced by the structure inversion asymmetry present in the system, thus

the Rashba spin-orbit interaction can be tuned. Furthermore, the influence of

the electric fields on the confinement potentials shifts the position of the wave

functions of the confined charge carriers inside the nanostructure.

Magnetic fields. External magnetic fields couple to charge carriers via

the orbital motion through a vector potential and to the carrier spin via the

Zeeman effect. The latter lifts the spin degeneracy and induces a gap in the

spectrum. The Zeeman splitting is characterized by the effective g factor which

in QDs and NWs deviates strongly from the value of a free electron. The ef-

fective g factor depends on the band under consideration and the direction

of the magnetic field, thus it can be anisotropic. In QDs and NWs made of

materials with non-zero nuclear spins an additional intrinsic magnetic field,

the Overhauser field, is present. In thermal equilibrium its net value is very

small, around 10−3 Tesla. This changes if the nuclear spins are polarized, here

the net value of the Overhauser field can reach a few Tesla [28].

Considering this list of internal and external mechanisms that influence the

exact level or band structure in QDs and NWs, it is obvious that a thorough

analysis is very complex. However, it is possible to cast subsets of interacting

bands or levels into analytical or numerical models that capture the essential

characteristics and provide the basis for further investigations.

1.2 Spin qubits in quantum dots

One of the most intriguing ideas regarding QD applications is to use them

as hosts for the smallest building block of quantum computers, the qubit. It

was proposed in 1998 that one of the most natural qubit implementations

are two Zeeman-split states of an electron spin confined to a QD [29]. Here,

the quantum information is stored in a superposition of the spin-up and spin-

down states that is commonly represented as a point on the Bloch sphere, see

Fig. 1.2. The time evolution of the qubit state then corresponds to a trajecto-
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Abbildung 1.2: Bloch sphere representation of a qubit state |ψ〉, being a superposition of
|⇑〉 and |⇓〉. Single qubit operations correspond to rotations around the axes of the Bloch
sphere.

ry on the sphere’s surface. The authors envisioned that single qubit rotations

could be achieved by applying oscillating magnetic fields and that two-qubit

gates could be implemented by employing the tunability of the exchange in-

teraction (the latter is only possible for gate-defined QDs). Later on, several

criteria that have to be met for the successful implementation of a qubit were

formulated [30]: a scalable system with well defined qubits is needed, the qubit

initialization and readout must be achievable with sufficiently high fidelity, the

implementation of a universal set of quantum gates must be possible, and the

qubit coherence times must be much longer than the qubit gate operation

times.

Electron and hole spin qubit initialization, manipulation and readout are

already performed as standard processes in laboratories all around the world

[31–43]. The implementation of a universal set of quantum gates requires sin-

gle qubit rotations and entangling two-qubit gates [29, 44]. The latter are

especially challenging for self-assembled QDs since the employed optical ap-

proaches need resonant photons from the involved QDs, a circumstance that is

not naturally given but can be achieved by means of strain-tuning or electric

and magnetic fields [45]. However, the most limiting factors in semiconductor-

based qubits are the short spin coherence times T1 and T2. Here, T1 denotes

the spin relaxation time, thus the time in which a spin relaxes from the up-

to the down-spin state. T2 is the spin decoherence time and denotes the time

in which a superposition of the two spin states decays into one of them.
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Single qubit manipulation

The initial proposal of a spin qubit suggested that single-qubit rotations

around one of the qubit axes could be performed by applying oscillating ma-

gnetic fields [29]. This electron spin resonance method drives Rabi oscillations

between the two qubit levels by means of a magnetic field that oscillates per-

pendicular to the field that causes the Zeeman splitting, with the oscillation

frequency in resonance with the Zeeman energy [45]. The suggested scheme

was successfully implemented in 2006 [46]. However, it proves to be much easier

to control locally oscillating electric fields than to control locally oscillating

magnetic fields. Therefore different schemes to induce the qubit rotations have

been developed that aim to reproduce the oscillating magnetic field needed to

drive the Rabi oscillations while involving only static magnetic fields.

In the method presented in Ref. [47], the charge carrier performs electric-

field-induced oscillations in a static magnetic field gradient that is produced by

a nearby micromagnet. Another method, which was first introduced for spins

in two-dimensional heterostructures [48], displaces the electron wave function

to regions with different material composition and thus different g factors while

a static magnetic field is applied. The application of this scheme was proposed

in Refs. [49, 50] and successfully applied in Ref. [51]. An all-electrical scheme

to obtain qubit control is the electric-dipole-induced spin rotation [52, 53].

Here, the presence of a strong spin-orbit interaction in the system causes the

carrier spin to see an oscillating magnetic field that enables the spin rotation.

Qubit coherence

To facilitate the implementation of standard quantum error correction sche-

mes [45, 54] the spin lifetimes, T1 and T2, must by far exceed the timescales

related to the qubit gate operations. This is because, depending on the specific

error correction scheme, the application of roughly 102 − 104 gate operations

must be possible before the system decoheres. The interactions of the carri-

er spin with its environment influence the spin lifetimes heavily. This poses

one of the fundamental problems regarding the successful implementation of

semiconductor spin qubits. The main decay channels are the coupling of the

spin to the phonon bath mediated by the spin-orbit interaction, causing spin

relaxation, and the coupling of the spin to the nuclear spin bath via the hy-

perfine interaction, causing spin decoherence [21, 28, 45, 55]. Both coupling

mechanisms are described in detail below.

Spin relaxation. Phonons in semiconductors cause electric field fluctua-
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tions by displacing the atoms in the crystal lattice from their equilibrium

position. By means of these fluctuations, the phonons couple to charge car-

riers either via the deformation potential or via the piezoelectric interaction

[56–58], where the latter exists only in polar semiconductors with more than a

single atomic species in the unit cell. However, phonons cannot couple direct-

ly to the carrier spin. This changes when spin-orbit interaction is present in

the system. Here, the eigenstates of the system are mixed in terms of orbital

states and spin states, enabling the phonons to couple to the effective spin

[21, 59]. By treating the spin-orbit interaction as a perturbation, an effecti-

ve coupling Hamiltonian for the spin qubit can be derived. Here, the charge

carrier-phonon interaction manifests itself as a fluctuating magnetic field that

causes spin relaxation [59]. When comparing the relaxation rates for electron

spins and hole spins in QDs, one finds that the rates for hole spins are either

comparable or much smaller than the electron spin relaxation rates [60].

Spin decoherence. A typical QD consists of roughly 104 − 106 atoms

with slowly fluctuating nuclear spins. The wave function of a charge carrier

confined to the QD is spread over all nuclei. The charge carrier interacts with

each one via the hyperfine interaction whose terms are derived from the Di-

rac equation. One obtains three coupling terms [61, 62]: the isotropic Fermi

contact interaction, the dipole-dipole type anisotropic hyperfine interaction,

and the coupling of the orbital angular momentum to the nuclear spin. The

Fermi contact interaction is of great importance for the s-symmetric orbitals

of electrons in the lowest conduction band, resulting in an isotropic hyperfine

interaction term [63]. In contrast to this, the anisotropic hyperfine interaction

and the coupling of the orbital angular momentum to the nuclear spins are of

importance for the p-symmetric orbitals of holes [64]. This results in a hole

hyperfine interaction of predominantly Ising form and reduces its strength to

10% of the electron hyperfine interaction strength [64–66]. Common routines

to reduce or control the effects of the nuclear spin bath on the electron or

hole spin are nuclear spin polarization and nuclear state narrowing [45, 67].

Dynamical nuclear spin polarization employs electron or hole spin-nuclearspin

flip-flop processes induced by optical [68], electrical [69–71] or magnetic means

[72, 73], but the maximal nuclear spin polarizations obtained so far were on-

ly 50-70%. This is far from sufficient since the degree of polarization must

approach 100% for a significant reduction of the spin decoherence times [67].

Nuclear state narrowing [67, 71, 73–77] reduces the intrinsic nuclear spin dis-

tribution by indirect measurement and is a byproduct of several dynamical

nuclear polarization schemes [45]. A completely different approach to control
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the nuclear spin bath is to avoid hyperfine interaction at all by using mate-

rials with zero nuclear spin, for example the zero spin isotopes of group-IV

materials such as C, Ge or Si, and growing the nanostructures in a purified

fashion [78].

1.3 Nanowires as one-dimensional systems

Even though NWs are fully three-dimensional systems, they can be described

as quasi one-dimensional channels with associated one-dimensional physical

properties at low energies. Suitable one-dimensional models with microscopic

parameters are obtained by integrating out the transverse degrees of freedom

of initially three-dimensional models [23]. Due to the reduced dimensionality,

interacting particles can no longer be described by Fermi liquid theory. Ins-

tead, Luttinger liquid theory has to be employed to characterize low-energy

excitations in the NWs.

In 2010, it was realized that NWs could serve as hosts for Majorana fer-

mions. They are of special interest due to their possible applications in topo-

logical quantum computation and non-local quantum information storage.

Luttinger liquid theory

Fermi liquid theory successfully describes the low-energy excitations of

(Coulomb-) interacting fermions in two- and three-dimensional systems

[58, 79]. Here, the interacting particles are represented in terms of non- or

weakly interacting quasiparticles with effective parameters. However, when

considering interacting electrons in a one-dimensional system the Fermi li-

quid theory fails [80, 81]. Intuitively, this can be understood when considering

Fig. 1.3 (a), where interacting fermionic particles in a one-dimensional sys-

tem are displayed. If a particle gets excited, as indicated by the red arrow, it

starts to move and unavoidably bumps into the neighboring particles, hereby

transferring momentum and energy. This happens throughout the system until

the excitation energy is distributed among all particles. Thus, the low-energy

degrees of freedom in a one-dimensional system are not single-particle excita-

tions but (bosonic) density waves. In spinful systems, one additionally finds

a spin-charge separation, meaning that spin density waves and charge densi-

ty waves can exist independently of each other. Besides, the Mermin-Wagner

theorem [82, 83] allows to conclude that there exists no true long-range order

in one-dimensional systems. To describe the low-energy excitations adequate-
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Abbildung 1.3: (a) Fermionic particles in a one-dimensional system. Exciting a single particle
(red arrow) leads to unavoidable collisions and thus momentum and energy transfer between
the particles. (b) Linearized spectrum (red) of the fermions around the Fermi points with
possible low-energy excitations of a particle. The dotted line shows the initial parabolic
spectrum.

ly, the Luttinger liquid theory is used. An elaborate introduction can be found

in Ref. [81].

A crucial ingredient for making common one-dimensional problems solva-

ble is the bosonization technique [81, 84], which allows to represent fermionic

fields in terms of bosonic fields that describe the bosonic density waves. When

considering only low-energy excitations, one can approximate the kinetic ener-

gy of the fermions by a linearized dispersion relation around the Fermi points,

see Fig. 1.3 (b). After linearization of the kinetic energy one can show that

the kinetic part of the Hamiltonian as well as many of the interactions can be

expressed in terms that are quadratic in the bosonic operators, thus they can

be readily diagonalized.

The experimentally accessible properties of one-dimensional systems are

correlation functions. They decay as non-universal power laws with increasing

distance, thus indicating that true long-range order is suppressed. The scaling

exponents reveal details about the strength of the interactions.
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Majorana fermions

Majorana fermions were introduced by E. Majorana in 1937 [85] as solutions

of the Dirac equation in a modified basis. These solutions are real fields, thus

the associated particles must be their own antiparticles. Since then, scientists

have tried to design experimental platforms where Majorana fermions could

be observed in condensed matter systems. In 2010, an experimental setup was

proposed involving semiconductor NWs with a sizable spin-orbit interaction.

Key ingredients is one of said NWs coupled to a s-wave superconductor and a

magnetic field that opens a gap in the spectrum [86–89]. The setup has been

predicted to allow for Majorana fermion bound states to form at the ends

of the NW. Subsequently, efforts to realize the proposed model have been

made in several experiments [90–94]. However, the observed signatures do not

unambiguously point to the existence of Majorana fermions but could also be

caused by other effects.

The tremendous amount of interest in finding Majorana fermions in rather

small condensed matter systems is not only motivated by finding proof of

their mere existence. Because Majorana fermions are non-abelian anyons [95]

their braiding statistics makes them good candidates for topological quantum

computation [96, 97]. Additionally, Majorana fermions can be used to store

quantum information non-locally, thus immune to local perturbations that

cause decoherence. A logical Majorana-based qubit consists of four Majorana

fermions [97, 98] and might be implemented in NW networks [99].
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1.4 Frequently used mathematical tools

Here we present mathematical tools that are frequently used in this thesis, the

k·pmethod and the Schrieffer-Wolff transformation. The k·pmethod is an ap-

proximation scheme to calculate the electronic band structure of semiconduc-

tors. The Schrieffer-Wolff transformation is a quasi-degenerate perturbation

theory that is employed to approximately block-diagonalize Hamiltonians.

k · p method

The k · p method is an approximation technique that allows to calculate the

electronic band structure of semiconductors for small wave vectors k around

an expansion point k0 for which the system is exactly solvable, for example

around Γ [1, 6]. In the derivation of the k ·p method one uses the Schrödinger

equation with the Pauli spin-orbit interaction and the lattice periodic crystal

potential that acts on the Bloch functions,

[
p2

2m0
+ V0(r)− ~

4m2
0c

2
σ · p× (∇V0(r))

]
eik·runk(r) = En(k)eik·runk(r).

(1.1)

Here, p is the momentum operator, m0 is free electron mass, V0(r) is the lattice

periodic potential, ~ is the reduced Planck constant, c is the speed of light, and

σ = (σx, σy, σz) is the vector of the Pauli spin matrices. The Bloch functions

eik·runk(r), with band index n, consist of a plane wave part eik·r and a lattice

periodic part unk(r). The momentum operator acts on the plane wave part of

the Bloch functions and a Schrödinger equation for the unk is obtained. For a

fixed wavevector k0 the associated {unk0} form a complete orthonormal basis,

and one can express the unk for arbitrary k as expansions in terms of this basis.

By taking matrix elements of the Schrödinger equation for an arbitrary k in

terms of the orthonormal basis, one obtains a infinite-dimensional matrix that

takes into account couplings between all existing bands of the semiconductor.

One is usually interested in a finite-dimensional subset of bands, thus the

subspace of interest is truncated from the coupling to remote bands by a

Schrieffer-Wolff transformation. Due to this transformation higher order terms

in k appear in the resulting Hamiltonian and effective band parameters have

to be taken into account. The finite-dimensional Hamiltonians obtained by

the k · p method can be examined and supported by the theory of invariants

[6]. Here, arguments from group theory are employed to decide which terms

must persist in the Hamiltonian and which terms must vanish. This is based
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on the fact that the Hamiltonian must remain invariant when applying certain

symmetry operations.

Most relevant for band structure calculations close to the valence band

edge are the Kane Hamiltonian [100], which includes the lowest conduction

band, the heavy- and light-hole bands, and the split-off band and the Luttinger

Hamiltonian [7], which includes only the heavy- and light-hole bands.

Schrieffer-Wolff transformation

The Schrieffer-Wolff transformation [6, 101] is a method of quasi-degenerate

perturbation theory which is used to approximately block-diagonalize time-

independent Hamiltonians. This results in the effective decoupling of two for-

merly weakly interacting subspaces of the Hamiltonian up to a desired order.

In general, the procedure can be seen as a rotation of a Hamiltonian H by a

unitary operator eS ,

H → H̃ = eSHe−S , (1.2)

with S being an anti-Hermitian operator (S† = −S) and where H̃ is of block-

diagonal form. One aims to approximate eS such that the decoupling is per-

formed to the desired order. To this, the Hamiltonian H is subdivided into

H = H0 + H ′d + H ′od, where H0 is the leading order term with known ei-

genstates and eigenenergies. H ′d and H ′od are perturbing terms, where H ′d is

diagonal and H ′od is off-diagonal with respect to the two subspaces being de-

coupled. The unitary operator is expanded in a series, eS ≈ 1+S+S2/2+ . . .,

and for the anti-Hermitian operator S the ansatz S = S1 + S2 + S3 + . . . is

employed, where the subscript of the Si, i = 1, 2, 3, . . ., denotes the order of Si

in the matrix elements coupling the two subspaces divided by the associated

energy splitting. Reinserting the expansion of eS and the ansatz for S into the

definition of H̃ allows to determine the components of the Si by eliminating

the block-off-diagonal terms of the same order in H̃. Approximating S to first

order, one finds that S1 is given by [S1, H0] = H ′od. To second order, the block

diagonal Hamiltonian is then given by

H̃ ≈ H0 +H ′d − [S1, H
′
od] +

1

2
[S1, [S1, H0]]. (1.3)

Explicit expressions for higher order terms of the Si and H̃ are given in Ref. [6].
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1.5 Outline

The first chapters of this thesis deal with topics related to spin qubits in

QDs. In Chapter 2, we investigate the effect of strain on the decoherence rate

of hole spins in QDs induced by the hyperfine coupling to the surrounding

nuclear spins. This is followed by Chapter 3, where we consider the tunability

and anisotropy of the g factor in Ge/Si core/shell NW QDs and calculate the

spin-orbit interaction mediated hole-spin phonon relaxation rates. In Chapter

4, we show that the non-collinear heavy-hole hyperfine interaction influences

the nuclear spin dynamics, and, in Chapter 5, we consider the anisotropy of

the electron g factor in self-assembled pyramidal InAs QDs.

In the two final chapters of this work we study NWs as one-dimensional

systems. We investigate and quantify the hole-hole interactions in Ge/Si co-

re/shell NWs by means of Luttinger liquid theory in Chapter 6. In Chapter

7, the tunability of Majorana fermion wave function localization lengths in

Ge/Si core/shell NWs is investigated.

Supplementary information for Chapters 2 to 7 can be found in the Ap-

pendices A to F.
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Zero-dimensional systems:

Quantum dots
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2

Effect of strain on hyperfine-induced

hole-spin decoherence in quantum dots

Adapted from:

F. Maier and D. Loss,

‘Effect of strain on hyperfine-induced hole-spin decoherence in quantum dots’,

Phys. Rev. B 85, 195323 (2012).

We theoretically consider the effect of strain on the spin dynamics of a sin-

gle heavy hole (HH) confined to a self-assembled quantum dot and interac-

ting with the surrounding nuclei via hyperfine interaction. Confinement and

strain hybridize the HH states, which show an exponential decay for a narro-

wed nuclear spin bath. For different strain configurations within the dot, the

dependence of the spin decoherence time T2 on external parameters is shif-

ted and the non-monotonic dependence of the peak is altered. Application of

external strain yields considerable shifts in the dependence of T2 on external

parameters. We find that external strain affects mostly the effective hyper-

fine coupling strength of the conduction band (CB), indicating that the CB

admixture of the hybridized HH states plays a crucial role in the sensitivity

of T2 on strain.

17
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2.1 Introduction

During the last years, heavy-hole (HH) spins have attracted much interest in

the field of spintronics and spin-based quantum computing. This is becau-

se, compared to the timescales set by the electron spin, very long hole spin

relaxation times T1 ≈ 1ms have been predicted [60, 102] and confirmed experi-

mentally [33, 37]. Furthermore, ensemble hole spin coherence times T ∗2 > 100ns

have been measured [103]. Alongside, the essential ingredients for processing

quantum information successfully, hole spin initialization [37, 38] and coherent

control of single hole spins [41–43], have been shown in quantum dots. Addi-

tionally, methods applicable to overcome decoherence, e.g., by preparing the

nuclear spin bath in a narrowed state [67, 71, 73–77], have been introduced.

The prolonged timescales regarding decoherence are attributed to the Ising-

like hyperfine coupling of holes [64] due to the p-wave symmetry of the Bloch

states in the valence band (VB). Recently, the hyperfine interaction strength

of holes was predicted to be approximately 10% of the interaction strength of

electrons [64]. This was confirmed in experiments carried out in self-assembled

InAs quantum dots [65, 66]. The associated hole spin decoherence time T2 was

shown to depend on external parameters in a non-monotonic fashion [104]. Due

to lattice mismatch, the strain profiles of InAs/GaAs dots show a compression

in the lateral plane and a stretching in the vertical direction [13]. The associa-

ted strain fields are of considerable strength and may strongly affect the band

hybridization in the dot and hence the spin decoherence. For the light hole

(LH) and HH band, the effect of confinement and anisotropic lateral strain on

band mixing and on the interaction with a Gaussian nuclear field distribution

via dipole-dipole hyperfine interaction has been considered in Refs. [105, 106].

In the present chapter, we examine the effect of realistic strain distributions on

the spin decoherence time T2 of a single HH spin confined to a self-assembled

InAs quantum dot interacting with a narrowed nuclear spin bath via hyperfi-

ne interaction. We follow the procedure outlined in Ref. [104] with emphasis

on the new features coming from strain. The emerging band hybridization is

strain dependent and shows considerable admixtures of the lowest conduction

band (CB), and the LH and the split-off (SO) band of the VB. An effective

hyperfine Hamiltonian is derived from the hybridized states being, for realistic

strain configurations, predominantly of Ising form with small hole-nuclear-spin

flip-flop terms which cause exponential spin decoherence. We study the effect

of various internal strain configurations and of applied external strain on the

decoherence rate 1/T2 and its dependence on external parameters. Applying
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external strain up to the breaking limit of the sample affects the effective hy-

perfine coupling of the CB admixture much more than the coupling of the LH

admixture. In contrast to this, the changes in the Ising like HH coupling are

negligible. This indicates the significance of the CB admixture regarding the

changes of 1/T2 due to strain.

The outline of this chapter is as follows. In Sec. 2.2 we introduce the 8×8

k ·p Hamiltonian describing states confined with a strained quantum dot and

calculate the hybridized eigenstates of the HH subsystem. We find an effective

Hamiltonian which describes the hyperfine interaction of the hybridized HH

spin states with the surrounding nuclei in Sec. 2.3. In Sec. 2.4 we derive the

dynamics of the transverse HH pseudospin states and examine the effect of

strain on the decoherence time T2 and on the hyperfine coupling constants. A

summary can be found in Sec. 2.5. Technical details are deferred to App. A.

2.2 Heavy-hole states in strained quantum dots

We use the 8×8 k ·p Kane Hamiltonian HK which describes the states of bulk

zincblende semiconductors in the lowest CB and in the HH, the LH, and the

SO band of the VB [6, 100]. We assume a flat, cylindric dot geometry which

is taken into account by choosing harmonic confinement Vconf with lateral

and vertical confinement lengths L and a, respectively, satisfying L � a.

For detailed expressions of HK and Vconf see Appendix A.1. Strain is added

perturbatively to the system by employing an 8×8 strain Hamiltonian Hε

[6, 107] of the form

Hε =




S11 S1 S2 S3

S†1 S22 S4 S5

S†2 S†4 S33 S6

S†3 S†5 S†6 S44


 , (2.1)

where the relevant block matrix elements are

S1 =

(
E∗ 0

0 −E

)
, S22 =

(
F +G 0

0 F −G

)
,

S4 =

(
I J∗

J I∗

)
, S5 = 1√

2

(
−I −2J∗

2J I∗

)
.

(2.2)

The entries read E =
√

2P [kxεxx − ikyεyy], F = Dd Trε− 1/3Du(εxx + εyy −
2εzz), G = 3/2C4[kz(εxx − εyy)], I =

√
3/2C4[kx(εyy − εzz) + iky(εxx − εzz)],
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and J = 1/
√

3Du(εxx − εyy). Here, P is the matrix element of the inter-

band momentum as defined in Ref. [6], and εii, i = x, y, z, are the diagonal

components of the strain tensor. Dd and Du denote deformation potentials and

the constant C4 is defined in Ref. [107]. For simplicity, we restrict ourselves to

a diagonal strain tensor ε since, due to symmetry, the shear strain components

are only of appreciable size at the dot interfaces and negligible everywhere else.

This assumption is valid because, due to their small effective mass, holes are

strongly confined to the center of quantum dots [13]. In the vicinity of the

Γ-point, the basis states in the single bands of the unperturbed Hamiltonian

are given by

|Ψ±j,n〉 = φnj (r)|u±j (r),±j〉, (2.3)

where j = CB, HH, LH, SO is the band index and ± distinguishes between

the two states of each band which are degenerate in the bulk system. The

basis functions of HK consist of s- and p-symmetric Bloch states |u±j (r)〉 in

the CB and VB, respectively, and spin states |±j〉. The envelopes are given

by the three-dimensional eigenfunctions of the harmonic confinement poten-

tial Vconf, φ
n
j (r), with n = (nx, ny, nz) being a vector of the according quan-

tum numbers. Motivated by the large energy splittings in quantum dots we

choose nx, ny, nz ∈ {0, 1}. We approximately block-diagonalize the complete

Hamiltonian H = HK + Vconf + Hε in the HH subspace by a Schrieffer-Wolff

transformation H̃ = e−AHeA. The eigenstates of the diagonal HH subsystem

are determined by

|Ψhyb〉 = |Ψ̃〉 '
(
1−A(1)

)
|Ψ〉, (2.4)

where A(1) is the anti-Hermitian, block off-diagonal matrix describing the

Schrieffer-Wolff transformation to first order. Explicitly, the hybridized eigen-

states of the effective 2×2 HH Hamiltonian read

|Ψτ
hyb(ε)〉 = N

∑

j,n,τ ′

λτ
′,τ
j,n (ε)|Ψτ ′

j,n〉, (2.5)

τ, τ ′ = ±, with λτ
′,τ
j,n (ε) = 〈Ψτ ′

j,n|H|Ψτ
HH,0〉/(Ej,n − EHH,0) being overlap

matrix elements, where H and Ej,n introduce the strain dependence. Ej,n

is the eigenenergy of the state |Ψτ ′
j,n〉 and N ensures proper normalizati-

on. In the zero strain case we find for |Ψτ
hyb(0)〉 the leading coefficients

|λτ,τCB,(0,1,0)(0)| = |λτ,τCB,(1,0,0)(0)| ' 0.11, |λτ,τLH,(0,1,1)(0)| = |λτ,τLH,(1,0,1)(0)| '
0.097, and |λτ,τSO,(0,1,1)(0)| = |λτ,τSO,(1,0,1)(0)| ' 0.031. For all configurations,

λτ,τHH,0(ε) = 1. The system parameters used in the calculations are listed in

Table 2.1.
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Eg 0.418 eV [6] Dd 1.0eV [108]
m′ 0.026 m0 Du 2.7 eV [6]
P 9.197 eVÅ[6] D′u 3.18 eV [6]
γ1 20.0 [108] C4 11.3 eVÅ [109]
γ2 8.5 [108] C ′5 18.4 eVÅ [109]
γ3 9.2 [108]
α 0.666 aInAs 6.058 Å[6]

Tabelle 2.1: Values of InAs parameters we use as input for the 8×8 Hamiltonian HK +Vconf +
Hε.

2.3 Effective hyperfine Hamiltonian of the

heavy-hole spin

The hybridized HH states couple to the kth nucleus by the Fermi contact

interaction hk1, being non-negligible due to the s-symmetric CB admixtu-

res, the anisotropic hyperfine interaction hk2, and the coupling of the orbi-

tal angular momentum (OAM) to the nuclear spins hk3 (see Refs. [62, 64]).

We derive an effective, strain-dependent hyperfine Hamiltonian in the HH

subspace by taking matrix elements over a single Wigner-Seitz (WS) cell:

Hτ,τ ′

eff (ε) =
∑

k〈Ψτ
hyb(ε)|∑3

i=1 h
k
i |Ψτ ′

hyb(ε)〉WS, τ, τ ′ = ±. For the numerical

evaluation of the matrix elements we model the WS cell as a sphere of ra-

dius one half of the In-In atom distance, centered in the middle of the In-

As bond. The basis functions of HK, |u±j (r),±j〉, are written as products

of OAM eigenstates and spin states [6]. We approximate the eigenstates of

OAM, S, P z, and P±, as linear combinations of atomic eigenfunctions [110],

u±j (r) = αψ5lm
In (r + d/2) ±

√
1− α2ψ4lm

As (r − d/2), where α is the electron

distribution between the two atoms and ψnlm(r) = Rnl(r)Y
m
l (ϑ, ϕ) are hy-

drogenic eigenfunctions with quantum numbers n, l, and m. The radial part

of the wave function depends on the effective central charge Zeff of the nuclei

where we use values for free atoms [111, 112]. r ± d/2 denotes the position

of the hole with respect to the nuclei located at ±d/2 in the WS cell, where

d = aInAs(1, 1, 1)/4 is the InAs bonding vector defined by the lattice con-

stant aInAs. The bonding and anti-bonding character of the VB and CB are

expressed by the + and − signs, respectively, and
∫

WS d3r|u±j (r),±j |2 = 2

enforces normalization [63]. The error of this method is small and has been

estimated in Ref. [64]. For strain distributions in the vicinity of the realistic

strain configuration of a cylindric InAs quantum dot, i.e., εxx = εyy = −0.06

and εzz = 0.06 (see Ref. [13]), we find an effective hyperfine Hamiltonian of
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the form

Heff = (bz + hz)Sz +
1

2
(h+S− + h−S+). (2.6)

Here, the term proportional to bz = ghµBB accounts for the Zeeman splitting

due to a magnetic field B along the growth direction, with gh ' 2 being the

HH g factor and µB the Bohr magneton. The components of the Overhauser

field read hz,± =
∑

k A
z,±
k (ε)Iz,±k , where Az,±(ε) =

∑
i νiA

z,±
i (ε) denote the

corresponding strain dependent hyperfine coupling constants weighted by the

nuclear abundance νi of each atomic species i. S is the pseudospin 1/2 operator

of the hybridized HH states and Ik is the nuclear spin operator of the kth

nucleus. We find for the effective hyperfine coupling

Azk(ε) ' v0Az(ε)
∣∣φ0HH(rk)

∣∣2 , (2.7)

A±k (ε) '
∑

j,j′,n,n′

v0A±,j,j′(ε)φ
n
j (rk)

∗φn
′
j′ (rk), (2.8)

where v0 is the volume occupied by a single nucleus. Az(ε) and A±,j,j′(ε)

are the hyperfine coupling strengths and are given by Aj,j′(ε) · Ik =∑
κ,κ′(λ

κ,τ
j,n(ε))∗λκ

′,τ ′

j′,n′(ε)〈uκj (r), κj |
∑3

i=1 h
k
i |uκ

′
j′ (r), κ′j′〉, where κ, κ′ = ± and

Ik is the nuclear spin operator. In Eq. (2.8), we neglect contributions where

A±,j,j′(ε) is more than one order of magnitude smaller than the leading term.

We find |Az(ε)| � max|A±,j,j′(ε)|; thus Heff is predominantly of Ising form

with additional small pair-flip processes between nuclear and hole spin.

2.4 Effect of strain on the heavy-hole spin

dynamics

For a Hamiltonian of the form of Heff, the time evolution of the S+(t) com-

ponent and hence the decoherence of the HH pseudospin state is described

by the Nakajima-Zwanzig master equation [67]. We obtain an algebraic form

in the rotating frame with frequency ωn by performing a Laplace transform,

f(s) =
∫∞

0 f(t)e−stdt, Re[s] > 0, yielding

S+(s+ iωn) =
〈S+〉0

s+ Σ(s+ iωn)
. (2.9)

Here 〈S+〉0 = TrS+ρ with density operator ρ and Σ(s) is the Laplace-

transformed memory kernel which describes the dynamics of S+ and is de-

rived in Refs. [67, 113]. The Zeeman splitting ωn is determined by the ei-

genvalue equation ωn|n〉 = (bz + hz)|n〉 = (ghµBB + pAz(ε)I)|n〉, where p
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(|p| ≤ 1) is the polarization of the nuclear spins in the positive z directi-

on, and |n〉 is a narrowed nuclear spin state [67]. The exact Eq. (2.9) can

only be solved perturbatively by expanding Σ(s) in powers of the flip-flop

processes V = (h+S− + h−S+)/2. This is possible since the energy scale

of V is much smaller than the one associated with the Ising term ∼ hz in

Eq. (2.6). Following Ref. [113], we expand Σ(s) up to fourth order in V ,

Σ(s) = Σ(2)(s) + Σ(4)(s) + O(V 6), where the Zeeman splitting between the

HH and nuclear spins forbids processes of odd order. Σ(2)(s) and Σ(4)(s) are

given explicitly in Eqs. (A.4) and (A.5) in Appendix A.2. Σ(2)(s) is pure-

ly real and hence leads to no decay in Eq. (2.9) but to a frequency shift

∆ω = −Re
[
Σ(2)(s+ iωn)

]
. This reflects the fact that energy conservation

forbids the real flip of the electron spin, and only virtual flips are possible.

The imaginary part of Σ(4)(s) yields a decay, resulting in the decoherence rate

1/T2 given by the relation 1/T2 = −Im
[
Σ(4)(iωn + i∆ω − 0+)

]
, where 0+ is a

positive infinitesimal. Σ(2)(s) and Σ(4)(s) are evaluated in the continuum limit

(see Appendix). We simplify the calculations by averaging over the vertical

dependence of the coupling constants Az,±k (ε), which is possible since a� L.

The frequency shift ∆ω can be calculated directly, whereas the lengthy cal-

culation of the decoherence rate 1/T2 can be found in Appendix A.2. After

calculating analogously to Ref. [104] we find 1

1

T2
= π

c+c−
4ω2

n

|A±|4
|Az|

∫ 1

η
dxx[lnx]2(x− η)[ln(x− η)]2,

(2.10)

where c± = I(I + 1) − 〈〈m(m ± 1)〉〉 with nuclear spin I and m = −I, . . . , I.

The brackets 〈〈. . .〉〉 denote averaging over all eigenvalues m of Izk . η(ε) =

∆ω/|Az| ∝ 1/ωn and 1/T2 can be evaluated numerically for any η < 1. It is

evident that the Ising-like form of the Hamiltonian (2.6), which corresponds

to |Az| � |A±|, prolongs T2. The effect of non-zero strain configurations on

the hyperfine decoherence rate is clearly visible when comparing with the zero

strain case. In Fig. 2.1 we display the decoherence rate 1/T2 as a function

of the Zeeman energy ωn = ghµBB + pAz(ε)I for an unstrained dot and

different internal strain configurations. The general shape of the decoherence

rate remains unchanged for the different strain distributions, but the rate is

shifted along the ωn axis, the width of the peak is altered, and a lowering

of the rate’s maximum for asymmetric lateral strain is induced. The lower

1Here, we have corrected an error in the previous calculation [104]. As a consequence of
this, the dip in Fig. 1 of Ref. [104] turns out to be an artifact.
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Abbildung 2.1: The decoherence rate 1/T2 for different internal strain configurations as a
function of the Zeeman energy ωn. (a) For most configurations the maximum is shifted to
the left with respect to the unstrained case except if Tr ε & ξ. (b) Large ωn, i.e., magnetic
fields B or polarizations p, cause a power-law decay of 1/T2. The legend in the lower panel
is valid for both plots and denotes the strain configurations.

bound of the rates on the ωn axis is determined by η = 1. The decoherence

rate is shifted to the left with respect to the zero-strain curve for Tr ε < ξ

and shifted to the right if Tr ε & ξ, respectively, where ξ is a small negative

number of O(10−3). The latter relation corresponds to a dominant vertical

strain tensor component. When the rate is shifted to the left, the peak becomes

more pronounced; hence the sensitivity of 1/T2 to changes in the external

parameters is increased. The associated hybridized wave functions show a

gradual lowering of the admixtures of all leading components with respect

to the zero-strain case. A broadening of the peak occurs when the curve is
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Abbildung 2.2: Shift of the peak of the decoherence rate located at ωn,max when external
strain ε‖ up to the breaking limit is applied. In both panels the change is roughly linear. For
the asymmetric lateral strain configuration (b) the relative change of ωn,max is considerably
larger than for the symmetric configuration (a). The legends display the internal strain
configurations of the dots, ε0

xx and ε0
yy, at ε‖ = 0. For all configurations we keep εzz = 0.06

constant.

shifted to the right. Here, the CB admixture of the hybridized wave function

is increased while the other admixtures are lowered again. For the chosen dot

geometry, L = 10nm and a = 2nm, the minimal coherence time at the peak

of the curves is T2 ' 7µs. For large magnetic fields B or polarizations p, the

curves decay following a power law as evident in Fig. 2.1b). As a general result,

we state that regardless the strain configuration, the decoherence rate 1/T2

can be decreased over orders of magnitude by relatively small changes of the

external parameters.

The strain fields in a quantum dot can be modified by applying additional

strain, e.g., by the technique demonstrated in Ref. [14]. Here, a GaAs sample

containing InAs quantum dots is tightly glued on top of a piezoelectric stack,

its stretching direction aligned with the 〈110〉 crystal axis, and a voltage is

applied. So far, additional strain of about ε‖ ' 0.003 (see Ref. [15]) has been

reached whereas the breaking point of GaAs corresponds to a strain of ε‖ ≈
0.012 (see Ref. [114]). We examine the peak of the decoherence rate located

at ωn,max which is determined by the implicit, strain-dependent equation
∫ 1

η
dxx[lnx]2 ln(x− η)

[(
3

2
η − x

)
ln(x− η) + η

]
= 0. (2.11)

Additional strain alters ωn,max significantly, as displayed in Fig. 2.2, and hence

inflicts measurable changes on the decoherence rate. The relative shift of the
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Abbildung 2.3: The largest contributions to the hyperfine coupling as a function of applied
external strain ε‖. The relative change of the CB coupling (a) is much larger than the change
of the LH coupling (b). In the legend the internal strain configurations of the dots, ε0

xx and
ε0
yy, at ε‖ = 0 are displayed. Again we keep εzz = 0.06 constant for all configurations.

peak for the asymmetric lateral strain configuration is about 37%, thus lar-

ger than for the symmetric configuration where the shift is 22%. The strain-

induced change of the decoherence rate is directly connected to variances in the

magnitude of the coupling strengths Az(ε) and A±,j,j′(ε). In Fig. 2.3 we dis-

play the dependence of the absolute values of the dominant coupling strengths

on applied strain ε‖. We find that the relative change of A±,CB, ranging up to

21.5%, is the largest of all whereas the relative change of A±,LH is only about

2%. The Ising-like coupling Az (not on display) changes less than 1% and thus

is negligible. From this we deduce that the strain-induced changes of the deco-

herence rate can be attributed mainly to the difference in the CB admixture

of the hybridized HH states. Hence the usually neglected contribution of the

CB to the hole spin dephasing is of significance.

2.5 Summary

In conclusion, we investigated the dynamics of hybridized HH spin states con-

fined to self-assembled and hence strained semiconductor quantum dots. By

taking into account hyperfine interaction between these states and the sur-

rounding nuclei an effective, strain-dependent Hamiltonian was found, which

is, for realistic strain configurations, predominantly of Ising form. The time

evolution of its S+ component was derived for a narrowed nuclear spin state,



2.5. 27

and we have shown that the internal strain fields of self-assembled quantum

dots affect the decoherence rate 1/T2 significantly. For all strain configura-

tions, 1/T2 was found to be tunable over orders of magnitude by adjusting

external parameters. Different strain fields were shown to cause a shift of

the dependence of 1/T2 on external parameters ωn and to change the non-

monotonicity of the peak. Additional application of external strain inflicted

measurable changes upon 1/T2 which could mostly be attributed to large al-

terations in the effective hyperfine coupling of the CB admixture. This finding

indicated the importance of the CB admixture of the hybridized HH states

regarding the sensitivity of 1/T2 on strain.
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Tunable g factor and phonon-mediated hole

spin relaxation in Ge/Si nanowire

quantum dots
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F. Maier, C. Klöffel and D. Loss,

‘Tunable g factor and phonon-mediated hole spin relaxation in Ge/Si nanowire

quantum dots’,

Phys. Rev. B 87, 161305(R) (2013).

We theoretically consider g factor and spin lifetimes of holes in a longitudinal

Ge/Si core/shell nanowire quantum dot that is exposed to external magnetic

and electric fields. For the ground states, we find a large anisotropy of the

g factor which is highly tunable by applying electric fields. This tunability

depends strongly on the direction of the electric field with respect to the

magnetic field. We calculate the single-phonon hole spin relaxation times

T1 for zero and small electric fields and propose an optimal setup in which

very large T1 of the order of tens of milliseconds can be reached. Increasing

the relative shell thickness or the longitudinal confinement length further

prolongs T1. In the absence of electric fields, the dephasing vanishes and the

decoherence time T2 is determined by T2 = 2T1.

29
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Semiconducting nanowires (NWs) allow to create nanoscale systems defi-

ned precisely regarding composition, geometry, and electronic properties and

hence are subject to great experimental efforts. Furthermore, they offer new

ways for implementing spin-based quantum computation [29]. Both III-V com-

pounds and group-IV materials are considered and operated in the conduc-

tion band (CB, electrons) [24, 115–121] and in the valence band (VB, ho-

les) [122–134] regime. A particularly favored material is InAs, where single-

electron quantum dots (QDs) [24] and electrically controlled spin rotations

[117, 118, 120] have been implemented. Recently, qubits have also been imple-

mented in InSb NW QDs [119, 121, 134], a system for which extremely large

electron g factors have been found [116, 119]. However, the strong hyperfine

interaction in InAs and InSb is considered the dominant source for the short

coherence times observed [117, 121]. The latter may therefore be substanti-

ally prolonged in group-IV NWs that can be grown nuclear-spin-free. In this

context, Ge and Si have emerged as promising materials for nanoscale sys-

tems such as lateral QDs [135–138], self-assembled QDs [139–141], cylindrical

core/shell NWs [122–132], and ultrathin, triangular NWs [133].

For applications in spintronics and quantum information processing, it

can be advantageous to consider holes instead of electrons. Due to the p-wave

symmetry of the Bloch states, holes experience a strong spin-orbit interaction

(SOI) on the atomic level leading to an effective spin J = 3/2 behavior. Hence

spin and momentum are coupled strongly which allows efficient control of the

hole spin by electrical means. Furthermore, hole spin lifetimes are prolonged

in the presence of confinement [33, 60, 64, 102–104].

In Ge/Si core/shell NWs, the large VB offset leads to an accumulation of

holes in the core [123, 142]. They form a one-dimensional (1D) hole gas with

an unusually large, tunable Rashba-type SOI, referred to as direct Rashba

SOI (DRSOI) [23]. This DRSOI makes Ge/Si core/shell NWs attractive can-

didates for quantum information processing via electric-dipole induced spin

resonance, [52] and we mention that signatures of a tunable Rashba SOI were

already deduced from magnetotransport experiments [129]. Experiments on

gate defined QDs in this system revealed an anisotropy and confinement de-

pendence of the g factor [127, 128]. Recently, singlet-triplet relaxation times

in the range of several hundred microseconds were measured [132].

In this chapter, we consider holes forming qubits in the energetically lo-

west states of longitudinal QDs in Ge/Si core/shell NWs. We find the effec-

tive g factor geff of this subsystem which turns out to be strongly anisotro-

pic and tunable by choosing the direction and magnitude of applied electric
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fields. For small electric fields, we perturbatively derive an effective subspace

Hamiltonian and the according hole-spin-phonon coupling and calculate the

hole-spin relaxation rate T−1
1 . At small Zeeman splittings ~ω we observe a

ω7/2-proportionality of T−1
1 which contrasts the ω5 behavior found for elec-

trons in QDs [21, 59, 143–146]. The magnitude of T−1
1 depends strongly on

the direction of the magnetic field with respect to the wire. For zero electric

field, aligning the magnetic field perpendicular to the wire results in very long

T1 of the order of tens of milliseconds. Directing the magnetic field along the

wire results in a much shorter T1. For both configurations, the dephasing is

zero, hence the decoherence time is given by T2 = 2T1. Applying small electric

fields can enhance the relaxation rate by several orders of magnitude. This

effect depends strongly on the direction of the electric field with respect to

the magnetic field. Long T1 in the presence of electric fields are obtained when

electric and magnetic fields are perpendicular to each other and perpendicular

to the wire. Moreover, we find that T1 can be prolonged further by increasing

the relative shell thickness and the longitudinal QD confinement. Thus, we

predict an optimal field geometry for spin qubits in Ge/Si NWs that can be

tested experimentally.

Low-energetic hole states in a cylindrical Ge/Si core/shell NW are well

described by an effective 1D Hamiltonian [23]

Hw = H0 +H ′ (3.1)

that can be split into a leading order term H0 and a perturbation H ′,

H0 = HLKd
+Hstrain +HB,Z , (3.2)

H ′ = HLKod
+HR +HDR +HB,orb. (3.3)

Using the notation introduced in Ref. [23] and defining the z axis as the NW

axis (see Fig. 3.1), the diagonal terms of the Luttinger-Kohn (LK) Hamiltonian

and the strain-induced energy splitting read

HLKd
+Hstrain = A+(kz, γ) +A−(kz, γ)τz. (3.4)

Here, τi and σi are the Pauli matrices for band index ({g, e}) and spin block

({+,−}) of the basis states g±(x, y) and e±(x, y) that provide the transverse

motion. In Eq. (3.4), we defined A±(kz, γ) ≡ ~2k2
z(m

−1
g ±m−1

e )/4 ± ∆/2, with

mg ' m0/(γ1 + 2γs) and me = m0/(γ1 + γs) as the effective masses along z.

Here, γ1 and γs are the Luttinger parameters in spherical approximation and

m0 denotes the bare electron mass. For Ge, γ1 = 13.35 and γs = 5.11 [147].
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∆ ≡ ∆LK + ∆strain(γ) is the level splitting between the g± and e± states,

γ ≡ (Rs − R)/R is the relative shell thickness, and R (Rs) is the core (shell)

radius. The Zeeman coupling HB,Z with splitting ~ωB,Z in the lowest-energy

subspace (g band) is determined by the magnetic field B = (Bx, 0, Bz) ≡
|B|(sin θ, 0, cos θ) (Fig. 3.1), where we set By = 0 due to cylindrical symmetry.

The main contributions to H ′ are

HLKod
= Ckzτyσx, (3.5)

HDR = eU(Exτxσz − Eyτy), (3.6)

where HLKod
features the off-diagonal couplings with coupling constant C =

7.26~2/(m0R) provided by the LK Hamiltonian as a consequence of the strong

atomic level SOI. HDR is the DRSOI that results from direct, dipolar coupling

to an electric field E = (Ex, Ey, 0), where U = 0.15R. We note that ~kz =

−i~∂z in Eqs. (3.4) and (3.5) is the momentum operator along the wire. In

the absence of longitudinal confinement the wave functions along z are of

type eikzz with kz as the wave number. HR is the conventional Rashba SOI,

and, although fully taken into account in the present analysis, turns out to

be negligible for the typical parameters and electric fields considered here.

Finally, HB,orb denotes the orbital coupling to the magnetic field. Details on

all elements of H0 and H ′ are provided in Ref. [23] and in Eqs. (B.1)-(B.7) in

Appendix B.1.

We proceed with the derivation of an effective 1D Hamiltonian Hh-ph for

the coupling between low-energetic holes and acoustic phonons. There are

three different types of acoustic phonon modes in cylindric NWs: torsional,

dilatational, and flexural [57]. We find four different modes λ with dispersion

relation ωλ(q), where q is the phonon wave number along the wire and the

exact form of ωλ depends strongly on the shell thickness. For the torsional and

dilatational mode (λ = T, L) ωλ depends linearly on q, whereas for the two fle-

xural modes (λ = F±1) this dependence is quadratic. The detailed derivation

will be published elsewhere; in this chapter we directly apply the displace-

ment field u(r, t) =
∑

λ,q [uλ(q, r, t)bq,λ(t) + H.c.] obtained for a finite shell

following Refs. [56, 57, 148]. Here, bq,λ(t) = e−iωλ(q)tbq,λ is the time-dependent

phonon annihilation operator. To derive Hh-ph, we insert the associated strain

tensor components εij(r, t) in the Bir-Pikus Hamiltonian [149],

HBP = b

[∑

i

εiiJ
2
i + 2 (εxy{Jx, Jy}+ c.p.)

]
, (3.7)
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Abbildung 3.1: Sketch of a Ge/Si core/shell NW aligned with the z axis of the coordinate
system. Electric gates (blue) induce confinement along the z axis and define a QD. The
electric field E lies perpendicular to the wire in the xy plane and the magnetic field B lies
in the xz plane.

where we omitted the global shift in energy and used the spherical appro-

ximation. The Ji, i = x, y, z, are the effective spin-3/2 operators of the VB

electrons and the anti-commutator is defined as {A,B} = (AB +BA)/2. For

Ge, the deformation potential b takes the value b ' −2.5 eV [149]. We finally

obtain

Hh-ph =
∑

λ

Hλ = HT +HL +HF+1 +HF−1 (3.8)

by integrating out the transverse part of the matrix elements, i.e., by pro-

jecting the Hamiltonian onto the subspace spanned by g± and e±. The com-

ponents of Hh-ph are given explicitly in Eqs. (B.8)-(B.11) in Appendix B.2.

Longitudinal confinement is realized by electric gating (see Fig. 3.1), which

is modeled by adding a harmonic confinement potential in the z direction,

Hqd = Hw + Vc(z), (3.9)

where Vc(z) = 1
2αcz

2. Hqd describes the QD well if the longitudinal confine-

ment length is much larger than R. The basis states of Hqd are products of type

g±ψ
g
m and e±ψ

e
m, where the ψ

g/e
m (z) are eigenfunctions of the harmonic oscilla-

tor ~2k2
z/(2mg/e)+Vc(z) andm ∈ {0, 1, . . .} is the harmonic oscillator quantum

number. The confinement energies ~ωg/e relate to αc via αc = mg/eω
2
g/e and

the harmonic oscillator confinement lengths read zg/e =
√

~/(mg/eωg/e).

From Hqd we extract the effective g factor geff of the lowest-energy sub-

system by performing an exact, numerical diagonalization which gives the
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Abbildung 3.2: Effective g factor geff as a function of the angle θ defined by B =
|B|(sin θ, 0, cos θ) for E‖x̂ (a) and E‖ŷ (b). We vary |E| from 0 to 10 V/µm. For |E| = 0, we
find geff(0) ≈ 0.14 and geff(π/2) ≈ 5.7. It is clearly visible that geff is affected much stronger
by changes in |E| for E‖x̂ than for E‖ŷ. Even though the curves in (a) seem to overlap for
|E| ≥ 6 V/µm, geff(π/2) still decreases for growing fields and geff remains anisotropic. We
choose R = 10 nm and Rs = 13 nm for the NW and a QD confinement length of zg ≈ 80 nm.

Zeeman splitting ∆EZ,num (defined as positive) and

geff =
∆EZ,num

µB|B|
, (3.10)

where µB denotes the Bohr magneton. In Fig. 3.2, we plot geff as a function

of the angle θ, for both E‖x̂ and E‖ŷ. In both cases, geff is highly anisotropic

and tunable over a wide range of values by adjusting the magnitude of E. The

tunability is caused by two mechanisms which occur in the system for large

|E|. The admixture of the e± states to the effective lowest-energy subsystem

increases while the spin-orbit length lSOI decreases. For very small lSOI (lSOI �
zg), the hole spin flips many times while moving through the QD and the

resulting geff starts to average out. The tunability is much stronger for E‖x̂
than for E‖ŷ. Note that geff is also tunable by varying Vc(z). We find good

agreement with the results given in Ref. [132], where gexp ≈ 1.02 was measured

for B aligned with the NW with an accuracy of ∼ 30◦. We note, however,

that clearly different results for g can be expected in QDs with very large

occupation number, i.e., when the hole-spin qubits are formed in an excited

band.

In the following, we are interested in the dynamics of the lowest-lying,

Zeeman split states which we decouple perturbatively from the higher-energy
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states. This is done by two consecutive Schrieffer-Wolff transformations (SW-

Ts) to account for the two different energy scales ∆ and ~ωg. The general form

of the SWT is H̃ = e−SHeS , where to lowest order S ≈ S1. We first remove

the coupling between the g± and e± states in the effective 1D picture using

Sg1 . The hole-phonon coupling then transforms according to Hh-ph−[Sg1 , Hh-ph]

and we refer to its projection on g± as Hg
h-ph. In the second step, we add har-

monic confinement as introduced above and decouple the two lowest, Zeeman

split states |0〉 ≡ {|⇑〉, |⇓〉} by another SWT using S
|0〉
1 . A necessary condi-

tion for this approach is that the energy splittings obey ∆ � ~ωg � ~ωB,Z ,

and the magnitude of E is restricted by 2C|E|eU/(zg∆) � ~ωg. The latter

condition is fulfilled for |E| � 1 V/µm. We obtain an effective Zeeman term

HZ,eff = µBBeff · σ with Zeeman splitting ∆EZ,eff = 2µB|Beff|, where σ is a

vector of Pauli matrices. The effective hole spin phonon coupling is obtained

by taking

Hs-ph = Hg
h-ph − [S

|0〉
1 , Hg

h-ph], (3.11)

where Hg
h-ph is now written in the basis given by the confinement. Projecting

Hs-ph on |0〉 results in an effective coupling Hs-ph,eff = µBδB · σ with the

fluctuating magnetic field δB(t) =
∑

λ,q [aλ(q)bq,λ(t) + H.c.]. The effective

subspace Hamiltonian then reads

Heff = HZ,eff +Hs-ph,eff = µB (Beff + δB(t)) · σ. (3.12)

The spin relaxation rate in the Born-Markov approximation is given by the

Bloch-Redfield approach [59, 150, 151]

1

T1
= ninj

[
δij(δpq − npnq)J+

pq(ω)− (δip − ninp)J+
pj(ω)

−δijεkpqnkI−pq(ω) + εipqnpI
−
qj(ω)

]
, (3.13)

where summation over repeated indices is assumed, n = Beff/|Beff| is the

unit vector in direction of the effective magnetic field, and ~ω = ~ωZ,eff =

∆EZ,eff is the energy splitting of the considered states. Here, J+
ij (ω) =

Re[Jij(ω) + Jij(−ω)] and I−ij (ω) = Im[Jij(ω) − Jij(−ω)], with Jij(ω) =

(µB/~)2
∫∞

0 dte−iωt〈δBi(0)δBj(t)〉 denoting the spectral function.

In Fig. 3.3, we display T−1
1 for |E| = 0 and two different directions of B

with respect to the wire,B‖ẑ andB‖x̂. In this case, the spin-phonon coupling

Hs-ph,eff depends only on the coupling terms of HB,orb. For low ωZ,eff, i.e., the

long wavelength regime (qzg � 1), both curves are proportional to ω
7/2
Z,eff. This

behavior is valid for low temperatures (~ωZ,eff � kBT ) and will be replaced
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by T−1
1 ∝ ω

5/2
Z,effT for ~ωZ,eff � kBT . The ω

7/2
Z,eff scaling contrasts the ω5

Z,eff

behavior of electrons in QDs [21, 59, 143–146]. For B‖ẑ, only the F±1 modes

contribute significantly to T−1
1 . When directing B‖x̂, the F±1 contributions

dominate for low ωZ,eff and, for the chosen QD geometry, are replaced by a

dominating T contribution at |B| ≈ 150 mT (Fig. 3.3, dashed). This results

in a double peak whose relative height can be modified by changing zg or

R and Rs. Most remarkably, for B‖x̂, T−1
1 is several orders of magnitude

smaller than for B‖ẑ. For the chosen QD geometry, T−1
1 reaches maximal

values T−1
1,max(B‖x̂) ≈ 60 s−1 and T−1

1,max(B‖ẑ) ≈ 11 ms−1. These rates are,

depending on the direction of B, comparable to or much smaller than for

electrons in InAs NW QDs [143].

Considering non-zero electric fields, we plot T−1
1 for E‖x̂ again for B‖ẑ

and B‖x̂ (Fig. 3.4). We add the corresponding curves for |E| = 0 (Fig. 3.4,

dashed) to allow for comparison. For both orientations of B, T−1
1 is enhanced

significantly for larger ωZ,eff. This is due to phonons of the L mode coupling

|⇑〉 and |⇓〉 via a combination of HLKod
and HDR which dominates HR. Due to

cylindrical symmetry, applying E‖ŷ for B‖ẑ results in the same effect as des-

cribed for E‖x̂. Remarkably, in stark contrast to E‖B‖x̂, only minor changes

with respect to the curve at |E| = 0 (Fig. 3.4, dotted) are observed when E‖ŷ
and B‖x̂ (Fig. 3.4, dashed). In the latter case, the dominant contributions of

Hs-ph,eff are already present in Hs-ph,eff for |E| = 0.
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Abbildung 3.4: Relaxation rates T−1
1 for E‖x̂ with |E| = 0.1 V/µm for B‖x̂ (red, solid)

and B‖ẑ (blue, solid). For comparison we plot T−1
1 at |E| = 0 (dotted). We find maximal

values T−1
1,max(B‖ẑ) ≈ 3.2 µs−1, T−1

1,max(B‖x̂) ≈ 5.8 µs−1. Rotating the electric field so that
E‖ŷ yields the same curve for B‖ẑ. Remarkably, for B‖x̂ almost no difference between
the curves at E‖ŷ (dashed) and |E| = 0 (dotted) is observed. We use the NW and QD
parameters given below Fig. 3.2.

In both cases, |E| = 0 and |E| 6= 0, increasing the relative shell thickness γ

shifts the T−1
1 curves to slightly larger ωZ,eff and lowers the peak height, e.g.,

increasing γ from 0.3 to 0.7 reduces T−1
1 by a factor ' 3. However, decreasing

(increasing) R and Rs while keeping γ constant has no substantial effect on

T−1
1 aside from slight shifts to the right (left) on the ωZ,eff axis. Additionally,

enhancing the confinement length zg lowers T−1
1,max since the short wavelength

regime is reached for smaller ωZ,eff. This effect is quite large, for instance

raising zg from 60 to 100 nm tunes T−1
1,max by factors between 10 and 100.

From this analysis we conclude that there exist optimal configurations of B

and E in order to obtain long T1 in this type of NW QD. B should be applied

perpendicular to the NW and the optional E should lie perpendicular to both

B and the NW. For vanishing B, as pointed out in Ref. [132], two-phonon

processes [102] might become relevant.

In the Bloch-Redfield framework, the decoherence time is given by T−1
2 =

(2T1)−1 + T−1
ϕ , where Tϕ denotes the dephasing time [59, 151]. For |E| = 0,

we find T2 = 2T1 because the corresponding spectral function is super-ohmic

and gives T−1
ϕ = 0. For |E| 6= 0 the SOI results in a non-zero dephasing term

T−1
ϕ 6= 0 and hence T2 < 2T1.

In conclusion, we have examined effective Zeeman splitting and hole spin

dynamics for holes in the lowest VB of a Ge/Si core/shell NW QD. We re-
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ported a highly anisotropic effective g factor which is strongly tunable by ap-

plying electric fields. We calculated relaxation rates and found configurations

of electric and magnetic fields which correspond to very long spin relaxation

times. Furthermore we pointed out that the relative shell thickness and the

QD confinement length influence the spin relaxation time.
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Nuclear spin diffusion mediated by heavy

hole hyperfine non-collinear interactions

Adapted from:
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‘Nuclear spin diffusion mediated by heavy hole hyperfine

non-collinear interactions’,
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We show that the effective hyperfine interaction for heavy-hole states (or

any particle described with a p-like Bloch function) can induce non-trivial

dynamics of nuclear spins. Experimental evidences can be found, e.g., in

self-assembled quatum dots by measuring the saturation of nuclear spin po-

larization with different orientations of an external magnetic field.
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We are currently in the midst of an effort to develop nanostructures that

can be used to host qubits. Among the possible architectures [99, 152–154],

the progress made with spin-based qubits confined in semiconductor struc-

tures [29] has been the most impressive [45]. In only a decade, it became

possible to efficiently initialize [155], manipulate [35, 36, 46, 55, 156–158],

and measure the state of a single spin confined in both electrically defined

and self-assembled quantum dots. All of these remarkable achievements are,

however, mitigated by poor coherence times on the order of tens of nanose-

conds [35, 46, 55, 156]. In quantum dots made out of III-V materials, nuclear

spin fluctuations are the main source of decoherence via the hyperfine inter-

action [46, 55, 63, 67, 159–162]. Nevertheless, dynamical decoupling schemes

have improved the situation and revealed longer dephasing times [40, 163–165].

Like the electron spin, hole states interact with nuclear spins via the hy-

perfine interaction. The first theories suggested an effective Ising-like type of

interaction with a strength on the order of 10% of the one of the electron

and with opposite sign [64, 106], which seemed to be experimentally con-

firmed [65, 66]. However, subsequent experiments seem to contradict these

findings. Some results indicate a feedback mechanism between heavy holes

and nuclear spins [162, 166]. Theories based on p-symmetric Bloch functions

predict that flip-flop terms similar to those of the electronic hyperfine Ha-

miltonian are very weak [64, 106]. It was, then, proposed that non-collinear

hyperfine interactions could account for the joint dynamics [167, 168]. An al-

ternative explanation would be that hole states have to be described by both

p- and d-type Bloch functions [169]. This leads to a stronger flip-flop mecha-

nism and the sign of the Ising-like interaction to be opposite for cations and

anions.

In spite of all, it remains unclear if a more involved interaction than the

Ising-like exists between heavy holes confined in a nanostructure and the sur-

rounding nuclear spins. This unknown is a hindrance to our understanding of

the joint dynamics and to future developments relying on nuclear spins for

quantum computing [157, 158, 170–173].

In this chapter, we show that the hyperfine interaction for heavy-hole

states, described with p-symmetric Bloch functions, induces nuclear spin pre-

cession via the non-collinear interaction. This prevents from polarizing nuclear

spins by transferring the angular momentum of a well-defined electron spin

state. Signatures of this dynamics can be observed in self-assembled quantum

dots by pumping nuclear spins optically [68] and measuring the saturation va-

lue of nuclear spin polarization. Under the right conditions, the non-collinear
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Abbildung 4.1: Level scheme of the excitonic states in a neutral quantum dot showing op-
tically driven transitions with Rabi frequency Ω under the absorption of σ+ polarized light
(magenta). The nuclear states are described with the total angular momentum j and ma-
gnetization m. Hyperfine mediated transitions via the electron are shown in orange and
in purple for the hole spin. The excited states relax via spontaneous emission with rates
Γ↓⇑sp ≈ Γ↑⇓sp � Γ↑⇑sp ≈ Γ↓⇓sp . Figure provided by Hugo Ribeiro.

interaction can be cancelled and a simultaneous increase in nuclear spin pola-

rization can be detected.

Opposite to earlier theories [167, 168], we treat the non-collinear interac-

tion coherently and show that it influences the nuclear spin dynamics even

when the laser frequency is on resonance with the optically allowed electronic

transition. Our results not only provide an explanation for the experimentally

observed low degrees of nuclear spin polarization, but they also offer an alter-

native interpretation to the results found in Ref. [169] since the orientation of

nuclear spins cannot be assumed to be solely defined by the electron spin flip.

The effective Hamiltonian (see App. C.3),

H = H ′0 +H ′L +Hnuc
Z +He

HF,z +Hh
HF,z +Hh

HF,nc, (4.1)

describes the system’s coherent dynamics under optical excitation and in the

presence of an external magnetic field oriented along the growth axis of the

quantum dot (Faraday geometry). The HamiltonianH ′0 describes the evolution
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of the exciton states,

H ′0 =
~∆

2
(− |0〉 〈0|+ |↓⇑〉 〈↓⇑|) +

(
~∆

2
+ E↑⇓↓⇑

)
|↑⇓〉 〈↑⇓|

+

(
~∆

2
+ E↑⇑↓⇑

)
|↑⇑〉 〈↑⇑|+

(
~∆

2
+ E↓⇓↓⇑

)
|↓⇓〉 〈↓⇓| ,

(4.2)

where ∆ is the laser detuning and we use the notation ↑, ↓ to denote the

electron’s spin states and ⇑,⇓ the effective heavy-hole states. We have

E↑⇓↓⇑ = −
√
δ2

1 + g2
−µ

2
BB

2,

E↑⇑↓⇑ = −δ0 +
1

2

(√
δ2

2 + g2
+µ

2
BB

2 −
√
δ2

1 + g2
−µ

2
BB

2

)
,

E↓⇓↓⇑ = −δ0 −
1

2

(√
δ2

2 + g2
+µ

2
BB

2 +
√
δ2

1 + g2
−µ

2
BB

2

)
,

(4.3)

with Eij = Ei − Ej and we have defined g+ = ge + 3gh and g− = ge −
3gh with ge (gh) the electron (heavy hole) Landé g factor, and µB is the

Bohr magneton. The coefficients δ0, δ1, and δ2 describe, respectively, the fine

structure splitting between bright and dark excitons, among bright, and among

dark excitons [174]. Since we are considering σ+ circularly polarized light

and working in a Faraday geometry, the evolution of |↑⇓〉 is trivial. We can

therefore reduce the complexity of the problem by omitting this state. The

laser Hamiltonian reads

H ′L = ~Ω (|0〉 〈↓⇑|+ |↓⇑〉 〈0|) . (4.4)

where Ω is the Rabi frequency. The electronic hyperfine Hamiltonian within

the homogeneous coupling approximation is given by

He
HF = He

HF,z +He
HF,⊥ = Ae

(
SzIz +

1

2
(S+I− + S−I+)

)
. (4.5)

Here, Sz and Iz =
∑

k I
k
z are, respectively, the electron spin and total nuclear

spin operators in z direction, where the sum run over all nuclear spins k.

We have also introduced the ladder operators, S± = Sx ± iSy and I± =∑
k I

k
x ± iIky = Ix ± iIy. We denote the average hyperfine coupling constant

as Ae, the longitudinal part of Eq. (4.5) by He
HF,z, and the transverse one by

He
HF,⊥. The effective hyperfine Hamiltonian for heavy holes can be written as

(see App. C.2)

Hh
HF = Hh

HF,z +Hh
HF,⊥1 +Hh

HF,⊥2 +Hh
HF,nc

= Ah
zS

h
z Iz +Ah

⊥1S
h
+I− +Ah∗

⊥1S
h
−I+ +Ah

⊥2S
h
+I+

+Ah∗
⊥2S

h
−I− +Ah

ncS
h
z I+ +Ah∗

ncS
h
z I−, (4.6)
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where Sh
i (i = z,±) are pseudospin operators for the effective heavy-hole states

(see App. C.2). We use a similar notation to the one introduced in Eq. (4.5)

and further denote the non-collinear term by Hh
HF,nc. The nuclear Zeeman

Hamiltonian is given by

HZ
n = gnµnBIz, (4.7)

with gn the nuclear Landé g factor and µn the nuclear Bohr magneton. Finally,

we emphasize that Hamiltonian (4.1) is valid when the laser frequency is close

to resonance with the transition |0〉 ↔ |↓⇑〉 [c.f. Fig. 4.1].

Here, we follow the procedure of Refs. [175, 176] and describe the contribu-

tion of the transverse (flip-flop) terms of Eqs. (4.5) and (4.6) on the dynamics

as a dissipative process. The evolution of the system is then described by the

Lindblad master equation [177], ρ̇ = − i
~ [H, ρ]+

∑d2−1
j=1 ([Ljρ, L

†
j ]+[Lj , ρL

†
j ])/2,

with d the dimension of the Hilbert space. Since we only consider dissipative

processes within the electronic subspace, we get by with less Lindblad opera-

tors. We take into account spontaneous emission from the bright exciton |↓⇑〉
and from both (quasi) dark excitons to the ground state [169]. These are de-

scribed by L1 =

√
Γ↓⇑sp |0〉 〈↓⇑|, L2 =

√
Γ↑⇑sp |0〉 〈↑⇑|, and L3 =

√
Γ↓⇓sp |0〉 〈↓⇓|,

where Γjsp, j =↓⇑, ↑⇑, ↓⇓, is the spontaneous decay rate. The nuclear spin

state is characterized by its total angular momentum j and its projection

along the magnetic field given by m [c.f. Fig. 4.1]. The Lindblad operators

L4 =

√
Γ↓⇑e |0, j,m− 1〉 〈↓⇑, j,m| and L5 =

√
Γ↓⇑h |0, j,m+ 1〉 〈↓⇑, j,m| des-

cribe electron and hole flip-flop processes, respectively. The rates Γ↓⇑e and Γ↓⇑h
are calculated with the same method as in Ref. [176], we find

Γ↓⇑e '
Γ↑⇑sp
4

∣∣∣∣∣
Ae
√
j(j + 1)−m(m− 1)

−E↑⇑↓⇑ −Ae(m− 1
2) + 3

2A
h
z + gnµnB

∣∣∣∣∣

2

, (4.8)

where we have neglected the contribution coming fromHh
HF,⊥2 since

∣∣∣Ah
⊥,2

∣∣∣ /Ae �
1 and

Γ↓⇑h =
Γ↓⇓sp
4

∣∣∣∣∣
Ah
⊥,1
√
j(j + 1)−m(m+ 1)

−E↓⇓↓⇑ + 1
2A

e + 3Ah
z(m+ 1

2)− gnµnB

∣∣∣∣∣

2

. (4.9)

We assume nuclear spins to be initially in a thermal state. This is a reaso-

nable assumption even for experiments performed at low temperatures, where

the thermal energy is larger than the nuclear Zeeman energy, kBT � Enuc
Z ,

with kB the Boltzmann’s constant. Thus, at t = 0, the nuclear spins are ass-

umed to be in a fully mixed state. Further assuming spin-1/2 for the nuclei,
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we have ρnuc =
∑

j,m p(j)p(m|j) |j,m〉 〈j,m| [176],

ρnuc =

N/2∑

j=jmin

j∑

m=−j

(2j + 1)N !(
N
2 + j + 1

)
!
(
N
2 − j

)
!2N
|j,m〉 〈j,m| , (4.10)

with N the number of nuclear spins and jmin = 0 for even N and jmin = 1/2

for odd N . The initial electronic state is given by the quantum dot vacuum,

i.e., ρe = |0〉 〈0|. Thus, we have ρ(t = 0) = ρe ⊗ ρnuc.

In Fig. 4.2(a), we present the degree of nuclear spin polarization P =

Tr [ρnuc(tp)Iz] /Pmax as a function of pumping time tp and spontaneous de-

cay rate of the dark states Γd
sp, where Pmax = N/2. Since the ratio of the

dark states energy is nearly one, E↑⇑/E↓⇓ ≈ 1 (see App. C.3), we have

Γ↑⇑sp ' Γ↓⇓sp = Γd
sp. The calculations were performed with δ0 = 5.6213 · 1011 Hz,

δ1 = δ2 = 5.3174 · 1010 Hz, B = 8 T, ge = −0.35, gh = 0.63, gnµn =

3.3 · 10−8 eV/T, ∆ = 0 Hz, Ω = 2.03 · 1010 Hz, Ae = 108 Hz, Ah
z = −107 Hz,∣∣Ah

⊥1

∣∣ = 3 · 105 Hz, Ah
nc = 3 · 105 Hz, Γ↓⇑sp = 2 · 109 Hz, and N = 30. We have

cancelled out the imaginary part of Hh
HF,nc by performing a suitable rotation

of angle θ, U = exp[iθIz]. The saturation of the nuclear polarization depends

strongly on the lifetime of the dark excitons. To demonstrate clearly this be-

havior, we present traces taken for different values of Γd
sp [Fig. 4.2(b)] and

for tp = 30 s [Fig. 4.2(c)], for which P has reached saturation. Both of these

traces show that P saturates at smaller values for slower Γd
sp. To identify the

interaction responsible of this behavior, we compare P as function of tp for

Γd = 107 s−1 between an Ising-like (Hh
HF,z) and other forms of the effective

heavy hole hyperfine Hamiltonian. In Fig. 4.2(d), we compare P obtained with

Hh
HF,z (gray) to the effective Hamiltonian given by Eq. (4.6) (red). The dif-

ferent values of P at saturation indicate that the relatively small corrections

to the Ising-like hyperfine Hamiltonian influence the dynamics. For Hh
HF,z, P

saturates due to formation of a nuclear spin dark state [176]. To tell apart the

contribution of Hh
HF,⊥1 and Hh

HF,nc, we plot P obtained with Hh
HF,z (gray) and

Hh
HF,z + Hh

HF,⊥1 (orange) in Fig. 4.2(e), which show that heavy hole flip-flop

processes are irrelevant for the nuclear spin dynamics. In the presence of a lar-

ge magnetic field and due to the smallness of
∣∣∣Ah
⊥,1

∣∣∣, the heavy hole forbidden

relaxation rate Γ↓⇑h is too slow compared to the electronic forbidden relaxation

rate Γ↓⇑e and to spontaneous emission Γ↓⇑sp to have an impact on the nuclear

spin polarization. In Fig. 4.2(f), we show P calculated with Hh
HF,z (gray) and

Hh
HF,z +Hh

HF,nc (blue). P is hindered by the non-collinear interaction because

it induces precession of the nuclear spins. In essence, it is similar to a spin-1/2

prepared in a given direction and evolving in a perpendicular B field. If the
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evolution time is shorter than the period, then the polarization along the in-

itial direction is always smaller than at time t = 0. Consider the system to be

in the electronic dark state |↑⇑〉 and for simplicity that only the nuclear states

|j,−j〉 are populated after an electron spin flip. The evolution of the nucle-

ar spins is then approximatively given by Unuc ≈ exp[−i
∫ 1/Γd

sp

0 dtHh
HF,nc/~]

and ρnuc(1/Γ
d
sp) =

∑
j,m,m′ p(j)cm(1/Γd

sp)c∗m′(1/Γ
d
sp) |j,m〉 〈j,m′|. For an evo-

lution time shorter than the precession period, 1/Γd
sp < 1/Ah

nc, we have

Tr[ρnuc(0)Iz]/Pmax > Tr[ρnuc(1/Γ
d
sp)Iz]/Pmax because nuclear states with a

magnetization m > −j are effectively repopulated (|cm(1/Γsp)|2 > 0). This

simple picture qualitatively agrees with our results, where a lower value of P

at saturation indicates that most of the nuclear spin states are still populated

[cf. Figs. 4.2(a), (b), and (c)]. The steady state corresponds to the nuclear

state whose precession lowers P by the same amount it was increased after

receiving angular momentum from the electron spin. The mechanism depic-

ted above relies on having nuclear spins oriented along a different direction

than the one defined by the effective magnetic field associated with Hh
HF,nc,

which is provided by the optical pumping mechanism. Finally, we emphasize

that the oscillator strength for dark excitons is a hundred to a thousand ti-

mes smaller than the oscillator strength of bright excitons [169], which implies

Γ↓⇑sp /Γd
sp ≈ 100−1000. Our findings suggest that there could be an alternative

interpretation of recent experimental results about the sign of the Ising-like

interaction [169]. The unexpected shift of the Overhauser field could simply

originate from the induced dynamics, which lowers P , when measuring the

spectral position of the dark excitons.

In the following, we propose an experiment to detect and simultaneously

cancel the effect of the non-collinear interaction. A short hand notation for

Eq. (4.6) is Hh
HF = S ·Ah ·I, with Ah the heavy-hole hyperfine tensor. The idea

is to align the external magnetic field, by rotating it, along the principal axis

defined by Ah. In this geometry, the non-collinear interaction vanishes and the

precession of nuclear spins stops. By rotating B, the nuclear Zeeman Hamil-

tonian becomes HZ
n = gnµnB cos(ϕ)Iz + gnµnB sin(ϕ)(I+ + I−)/2, with ϕ the

rotation angle. In our coordinate system the magnetic field has to be rotated

around the y-axis, i.e., ϕ is the angle between the z-axis and B. In addition to

the change B → B cos(ϕ) ≡ Bz in Eqs. (4.1), (4.8), and (4.9) as well as the dis-

cussed modification of the nuclear Zeeman Hamiltonian, we also need to take

into account that misalignment of B leads to mixing of bright and dark exci-

tons via Hbd = geµBB sin(ϕ)(S+ + S−)/4 + gxxh µBB sin(ϕ)(Sh
+ + Sh

−)/4, with

gxxh ' gh/10 [178, 179] the heavy hole Landé g factor along the x-axis. We also
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add to the dissipative part of the Lindblad equation spontaneous relaxation

from |↑⇓〉 to the ground state with rate Γ↑⇓sp and two non-conserving nucle-

ar spin relaxation mechanisms. These are described by L6 =

√
Γ↑⇓sp |0〉 〈↑⇓|,

L7 =

√
Γ↑⇓e |0, j,m+ 1〉 〈↑⇓, j,m|, and L8 =

√
Γ↑⇓h |0, j,m− 1〉 〈↑⇓, j,m| with

Γ↑⇓e '
Γ↓⇓sp
4

∣∣∣∣∣
Ae
√
j(j + 1)−m(m+ 1)

−E↓⇓↑⇓ +Ae(m+ 1
2) + 3

2A
h
z − gnµnBz

∣∣∣∣∣

2

, (4.11)

and

Γ↑⇓h =
Γ↑⇑sp
4

∣∣∣∣∣
Ah
⊥1

√
j(j + 1)−m(m− 1)

−E↑⇑↑⇓ + 1
2A

e + 3
2A

h
z(m− 1

2) + gnµnBz

∣∣∣∣∣

2

. (4.12)

In Fig. 4.3(a), we plot the nuclear spin polarization P as a function of tp

and ϕ. We use the same set of parameters as before and Γd
sp = 107 s−1. As

for the dark exciton, we have E↓⇑/E↑⇓ ≈ 1 which allows us to write Γ↑⇓sp '
Γ↓⇑sp = Γb

sp. The results show that nuclear spin precession is fully suppressed at

ϕ ' −0.014 rad, for which we retrieve the saturation limit set by the nuclear

spin dark state. In Fig. 4.3(b), we show a trace taken for tp = 30 s.

In conclusion, we have shown that the effective heavy-hole non-collinear

hyperfine interaction creates a feedback mechanism between heavy holes and

nuclear spins and how to experimentally detect the latter. Our results can

be extended to self-assembled dots which are embedded in a Schottky diode

and operated in the cotunnelling regime. It was experimentally demonstra-

ted that even in the presence of cotunnelling the lifetime of dark excitons

is approximately 30 times longer than the radiative lifetime of bright exci-

tons [180]. As our results suggest, this timescale is sufficiently long to allow

experimental observation of the discussed dynamics. Finally, we expect the

described effects to be stronger when considering an inhomogeneous hyperfine

Hamiltonian since the statistical weight of the states contributing the most to

P are not suppressed [176]. Moreover, when trying to cancel the heavy hole

non-collinear interaction, a series of maximums, one for each nuclear species,

should be observed as a function of the rotation angles.
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Abbildung 4.3: (a) Nuclear spin polarization P as a function of tp and ϕ (angle between the
external magnetic field B and the z-axis) for Γd

sp = 2·107 s−1. (b) Trace taken along tp = 30 s.
The effect of the non-collinear interaction can be cancelled by orienting the magnetic field
opposite to the effective Overhauser field defined by the hyperfine non-collinear Hamiltonian.
Figure provided by Hugo Ribeiro.
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5

Anisotropic g factor in InAs self-assembled

quantum dots

Adapted from:

R. Zielke, F. Maier and D. Loss,

‘Anisotropic g factor in InAs self-assembled quantum dots’,

Phys. Rev. B 89, 115438 (2014).

We investigate the wave functions, spectrum, and g-factor anisotropy of low-

energy electrons confined to self-assembled, pyramidal InAs quantum dots

(QDs) subject to external magnetic and electric fields. We present the con-

struction of trial wave functions for a pyramidal geometry with hard-wall

confinement. We explicitly find the ground and first excited states and show

the associated probability distributions and energies. Subsequently, we use

these wave functions and 8-band k · p theory to derive a Hamiltonian de-

scribing the QD states close to the valence band edge. Using a perturbati-

ve approach, we find an effective conduction band Hamiltonian describing

low-energy electronic states in the QD. From this, we further extract the

magnetic field dependent eigenenergies and associated g factors. We examine

the g factors regarding anisotropy and behavior under small electric fields.

In particular, we find strong anisotropies, with the specific shape depending

strongly on the considered QD level. Our results are in good agreement with

recent measurements [181] and support the possibility to control a spin qubit

by means of g-tensor modulation.
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5.1 Introduction

Electron spins confined to semiconductor quantum dots (QDs) are excellent

candidates for the physical realization of qubits, the elementary units of quan-

tum computation [29]. The qubit state can be initialized and manipulated by

means of externally applied electric and magnetic fields. Thus knowledge about

the qubit’s response to these fields is crucial for the successful operation of

qubits. This response depends strongly on the type of QD considered, e.g.,

lateral gate defined QDs, nanowire QDs, and self-assembled QDs [28, 45]. The

most prominent type of QDs for self-assembled QDs are InAs QDs grown on a

GaAs surface or in a GaAs matrix. These QDs can be grown in various shapes

such as pyramids [12, 182, 183], truncated pyramids [184], and flat disks [185]

and hence are highly strained due to the lattice constant mismatch of sub-

strate and QD materials. In self-assembled InAs QDs, spin states have been

prepared with more than 99% fidelity [31] and complete quantum control by

optical means has been shown [36, 40]. However, full qubit control by means

of external fields and small system sizes are the most important goals in solid

state based quantum computation, allowing for the construction of integrated

circuits [28, 45]. Regarding these requirements, g-tensor modulation is a po-

werful mechanism that allows control of the qubit [49–51] but is sensitive to

the shape of the QD hosting the qubit [28]. Hence the qubit behavior under

the influence of geometry, external fields, etc., is still subject to ongoing scien-

tific effort [120, 186, 187]. A crucial ingredient for modeling the qubit behavior

is the knowledge of the particle distribution within the QD, i.e., the envelope

wave function which is mainly determined by the shape of the QD. For simple

structures such as spheres, flat cylinders, and cubes, the wave functions in

QDs can be described analytically, e.g., by employing hard-wall or harmonic

confinement potentials [188]. For more complicated shapes usually numerical

models are employed [12, 189–192]. Recently, there have been efforts to find

analytical wave functions for pyramids with different types of boundary con-

ditions [193, 194]. However, the set of wave functions introduced so far has

been observed to be incomplete, lacking for example the ground state wave

function. Both analytical and numerical methods are employed to further ex-

plore QD characteristics such as strain [12, 195], spectra [12], and g factors

[196, 197]. Explicit values depend on the material properties. Building QDs

in materials with very large, isotropic bulk g factors, i.e., InAs (g = −14.9),

is favorable due to an improved opportunity of g-factor modification. Measu-

rements emphasize the decrease of the g factor when considering electrons in
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InAs QDs. Numerical calculations [192, 196, 197] and measurements [198, 199]

show that the g factor can go down to very small values and depends strongly

on the dot size. Furthermore, recent measurements show a significant anisotro-

py [181, 200] of the g factor which turned out to be tunable by electrical means

[181, 201]. This behavior of g can be attributed to material- and confinement-

induced couplings between the conduction band (CB) and the valence band

(VB) which result in totally mixed low-energy states.

The outline of this chapter is as follows. In Sec. 5.2, we present an 8-band

k · p Hamiltonian describing the low-energy QD states which accounts for

strain and external electric and magnetic fields. Additionally, we introduce

a set of trial wave functions satisfying the hard-wall boundary conditions of

a pyramidal QD. Furthermore, we derive an effective Hamiltonian describing

CB states in the QD. In Sec. 5.3, we present the results of our calculations, in

particular the g-factor anisotropy of CB QD levels. These results are discus-

sed and compared to recent measurements in Secs. 5.4 and 5.5, respectively.

Finally, in Sec. 5.6, we conclude.

Abbildung 5.1: Sketch of the QD geometry and the coordinate system used in this work with
x, y, and z axes pointing along the growth directions [100], [010], and [001], respectively.
The externally applied fields under consideration are B = (Bx, By, Bz) and E = (Ex, 0, 0).
Figure provided by Robert Zielke.

5.2 Model

In this section, we introduce the Hamiltonian and wave functions used in this

chapter. Furthermore we outline the performed calculations and give the main

results in a general manner.
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Hamiltonian

Low-energy states in bulk III-V semiconductors are well described by an 8-

band k · p model [6], which includes the CB and the VB consisting of heavy-

(HH) and light-hole (LH) bands, and split-off (SO) bands. The associated

Hamiltonian Hk·p is given in terms of two-fold degenerate basis states |j,±〉,
j = CB,HH,LH,SO, which are linear combinations of products of angular

momentum eigenfunctions and real spin states [6]. We model a pyramidal QD

by taking into account a three-dimensional hard-wall confinement potential Vc

defining a square pyramid of height a and base length 2a as sketched in Fig. 5.1.

We introduce strain by adding the strain Hamiltonian Hstrain [6]. An analytical

description of the strain distribution within an InAs pyramid enclosed in a

GaAs matrix can be modeled by exploiting the analogy to electrostatic theory

[195]. We include the effect of an externally applied magnetic field B =∇×A
defined by the vector potential A (∇ ·A = 0) by adding two terms. The first

term is the magnetic interaction term HZ [6]. To derive the second term, HB,

we replace k→ k+eA/~ in Hk·p and Hstrain in a semiclassical manner, where

e is the positive elementary charge and ~ the Planck constant. We drop all

contributions independent of B and obtain a Hamiltonian which accounts for

orbital effects of B. An external electric field E is included by adding the

electric potential HE = e E · r, with r = (x, y, z). The full system is then

described by the Hamiltonian

H = Hk·p +Hstrain +HZ +HB +HE + Vc. (5.1)

Note that literature values for k · p parameters are usually given for 4-band

models. In an 8-band model, the parameters have to be modified accordingly

[6].

Hard-wall wave function

As a first step, we consider Vc of a pyramidal QD analytically and require

a vanishing particle density at the boundaries. We construct a trial wave

function satisfying these boundary conditions as follows.

The Schrödinger equation of a particle confined in a square with sides of

length a with vanishing boundary conditions on the borders, has the well-

known solution ψ�mn(x, y) with eigenenergies E�mn. The wave function of a

particle confined in an isosceles triangle obtained by cutting the square along

the diagonal, ψ4(x, y), is then constructed by linear combinations of dege-

nerate solutions ψ�mn(x, y) while requiring a vanishing wave function at the
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diagonal of the square [202]. We span the full three-dimensional (3D) volume

of the pyramid and the corresponding wave functions with the product of two

such triangles and the associated ψ4. This consideration suggests then the fol-

lowing ansatz for the hard-wall wave functions inside the pyramidal geometry

of the form

ψm(r) = c
∏

ξ=x,y

[
sin
(
αξ ξ

+
)

sin
(
αz ξ

−)

− (−1)mξ+mz sin
(
αz ξ

+
)

sin
(
αξ ξ

−) ],
(5.2)

with r = (x, y, z), c = csc(πz)/Nm, αi = miπ/a, mi = 1, 2, 3, . . . , mx 6= mz,

my 6= mz, m = (mx,my,mz), ξ
± = ξ ± (z − a)/2, and Nm such that the

integral over the pyramid volume
∫
d3r |ψm(r)|2 ≡ 1. We define energies of

ψm(r) by taking

~2

2m0
〈ψm(r)| (−i∇)2 |ψm(r)〉 = Em, (5.3)

where m0 denotes the bare electron mass. For notational simplicity we use

ψm ≡ ψmxmymz and Em ≡ Emxmymz . Exact analytical solutions of the

Schrödinger equation have been derived using specular reflections of plain

waves at the boundaries of the geometry [193]. However, the obtained set of

solutions is incomplete, consisting solely of excited states and especially lacking

the ground state. We stress that our ansatz ψm is not an eigenstate of the

Schrödinger equation. However, the energies Em we find are lower than the ei-

genenergies of the Schrödinger equation derived in Ref. [193]; see Secs. 5.3 and

5.4. In addition, the wave function for the lowest energy state, ψ221, exhibits

the expected nodeless shape for the ground state. A more detailed justificati-

on of ψm(r) is given in Appendix D.1. In the following calculations, we apply

these trial envelope wave functions for both CB and VB states. In general,

electron and hole envelope wave functions differ [12, 191]; however, this choice

is justified since we find that even this overly simplified picture yields already

good results.

Zeeman splitting of the CB states in the QD

A strong confinement of the electron and hole wave functions to the QD, as

assumed by taking Vc into account, corresponds to a splitting of the basis

states into localized states which can be described as products of the former

basis states and the confinement-induced envelope functions,

Ψj,±
m (r) = ψm(r) |j,±〉 . (5.4)
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We note that a non-trivial set of basis states requires max{mj} ≥ 3. We rewrite

H in a basis formed by the Ψj,±
m by taking the according matrix elements and

find a new Hamiltonian Hd describing the QD states. We split Hd into three

parts,

Hd = Hd
d +Hbd

d +Hbod
d , (5.5)

where Hd
d denotes the diagonal elements of Hd, H

bd
d denotes the block-diagonal

parts of Hd between the CB and VB, and Hbod
d the associated block-off-

diagonal elements. The external electric and magnetic fields are treated as

a perturbation to the system. Hence diagonal terms of Hd stemming from

taking matrix elements of HZ , HB, and HE are included in Hbd
d . Since we

are interested in describing electrons confined to CB states of the QD, we

decouple the CB states from the VB states by a unitary transformation, the

Schrieffer-Wolff transformation (SWT) H̃d = e−SHde
S , where S is an anti-

unitary operator (S† = −S) [6]. We approximate the SWT to third order

in a small parameter λ determined by the ratio of the CB-VB coupling and

the CB-VB energy gap. To this end, we express S as S = S1 + S2 + S3,

where O(Si) = λi. Here, the operators Si are defined by [Hd
d , S1] = −Hbod

d ,

[Hd
d , S2] = −[Hbd

d , S1], [Hd
d , S3] = −[Hbd

d , S2] − 1/3[[Hbod
d , S1], S1] [6]. Since λ

is small, we can expand eS up to third order in λ using the decomposition

of S. Assuming that O(Hd
d ) = λ0, O(Hbd

d ) = O(Hbod
d ) = λ1, we perform the

SWT where we keep terms up to third order in λ in the final Hamiltonian H̃d.

In a last step, we project H̃d on the CB and find an effective CB Hamiltonian,

H̃CB
d . In H̃CB

d , the single QD levels are strongly coupled, and thus cannot be

treated perturbatively anymore. Instead, we diagonalize H̃CB
d exactly and eva-

luate the eigenenergies E±n , where the indices denote the nth QD level from

the VB edge with effective spin ±. We find the g factor of the nth spin-split

QD level by taking

gn =
E+
n − E−n
µB|B|

, (5.6)

with Bohr magneton µB. Since the exact values of the energies E±n depend on

the magnitude and direction of the external fields E and B, gn = gn(E,B).

H̃CB
d contains higher order terms in B; thus we find

gn = gn,0 + gn,2|B|2, (5.7)

which is consistent with the general behavior expected of H̃d under time re-

versal. However, with |gn,2| � |gn,0|, the quadratic dependence of gn on |B|
is barely measurable in experiments.
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Abbildung 5.2: Probability distributions of the smallest nontrivial set of trial wave functions
ψm(r), i.e., max(mi) = 3, satisfying the hard-wall boundary conditions for the geometry
given in Fig. 5.1. We show contour plots of |ψm(r)|2 = 0.1 inside the pyramidal geometry
assumed for the QD; see Fig. 5.1. Note the degenerate pairs: ψ321 and ψ231, ψ312 and ψ132,
ψ213 and ψ123. Figure provided by Robert Zielke.

5.3 Results

In this section, we present the results of the calculations outlined in Sec. 5.2.

All calculations were performed for a pyramidal QD of height a = 50 nm. We

consider basis states that fulfill max{mi} ≤ 3, which results in a splitting of

each band |j,+〉 (|j,−〉) into nine QD levels. The system parameters used for

the Hamiltonians are listed in Table D.1 in Appendix D.2, where the notation

directly corresponds to the notation used in Ref. [6].

Probability distribution of the wave function

We show contour plots of the probability distribution |ψm(r)|2 of the wave

function found in Eq. (5.2), see Fig. 5.2. We present the lowest-energy states

forming the smallest nontrivial set of wave functions. The ground state ψ221

with associated ground state energy E221 = 0.53 meV exhibits s-wave charac-

ter; i.e., we find a single density cloud roughly fitting the pyramidal shape. For

excited states, nodes appear in the center of the pyramid and along the axes of

the coordinate system. We observe p-wave character for the states ψ321, ψ231,
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Abbildung 5.3: Left: Spectrum of the lowest six QD levels En of H̃CB
d as a function of the

magnetic field B = (0, 0, Bz), where we increase |B| = 0 T to 1 T. We assume E = 0. Right:
Enlarged plots of the B-dependent splitting of the single QD levels. For most QD levels,
except for n = 5, we observe a nonlinear dependence of E±n on B. Figure provided by Robert
Zielke.

ψ312, and ψ132; see Fig. 5.2. The wave functions ψmimjmk and ψmjmimk with

mi 6= mj are degenerate and we find that the associated particle densities

are of the same form, only with nodes oriented along different axes, i.e., x

and y. Further restrictions arising from the pyramid geometry, such as corre-

lations between the coordinates, result in symmetries regarding the quantum

numbers, ψmimimj = ψmjmjmi .

Spectra of the CB states in the QD

In Fig. 5.3, we plot the energy spectrum of the low-energy CB states given by

H̃CB
d and examine the behavior of the QD levels as functions of B = (0, 0, Bz).
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Abbildung 5.4: Ground state g factor |g1| as a function of the magnetic field direction for
|B| = 1 T shown in (a) 3D plot, and cuts along the planes (b) xy, and (c) (x − y)z with
electric field E = (Ex, 0, 0). Figure provided by Robert Zielke.

For |B| = 0, we find six degenerate QD levels En which split into pairs while

increasing B from 0 to 1 T, where we assume that E = 0. Confinement and

strain push the QD levels far apart from each other; hence the B-induced spin

splitting cannot be observed in the full plot, Fig. 5.3 on the left. To circumvent

this, we produce magnified plots showing the B dependence of the single QD

levels n, Fig. 5.3 on the right. We note that the splitting of the CB levels,

En+1 −En, is on the order of 100 meV which contrasts the Zeeman splitting,

E+
n −E−n , which is on the order of 1 meV or below. For most QD levels E±n , we

observe a clearly nonlinear dependence on B, indicating a diamagnetic shift

of the QD levels [203]. This dependence is not independent of the direction of

B, resulting in an anisotropy associated with the g factor; see Sec. 5.3.

g factor of the CB states in the QD

We discover strong anisotropies for the g factors of electrons confined to low-

energy CB states of pyramidal shaped InAs QDs. The g factors of the first six

QD levels from the VB edge, gn with n = 1, . . . , 6, are shown as 3D plots and
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Abbildung 5.5: |g2| and |g3| as functions of the magnetic field direction for |B| = 1 T shown
in 3D plots for (a) n = 2, (b) n = 3, and cuts along the xz plane for (c) n = 2 and (d) n = 3
with electric field E = (Ex, 0, 0). Figure provided by Robert Zielke.

cuts along specific planes in Figs. 5.4 to 5.8 in ascending order. We calculate

the gn for magnetic fields of strength |B| = 1 T. We further apply electric fields

of strengths |E| = 0 V/m and |E| = 106 V/m along the x axis. In response to

an electric field along the x axis the anisotropy axis slightly tilts away from

the z axis. To reduce calculation effort, we interpolate between data points,

however, we have checked consistency in several cases with non-interpolated

plots.

We find anisotropies of various shapes and directions depending on the

QD level under consideration. We observe the emerging of three main axes of

anisotropy, x+y, x−y, and z, pointing along crystallographic directions [110],

[11̄0], and [001], respectively. QD levels n = 1, 4, 6 (n = 2, 3) reveal g-factor

maxima along the x+y (z) axes, whereas small g-factor values tend to appear

along (in) the x − y axis (xy plane). Along the x − y axis we observe that a

special situation arises for n = 1; here g approaches a very small value close to

but still larger than zero. However, this drop depends strongly on the dot size;

see Sec. 5.4. Interestingly, g5 barely exhibits any anisotropy with maximum
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Abbildung 5.6: |g4| as a function of the magnetic field direction for |B| = 1 T shown in (a)
3D plot, and cuts along the planes (b) xy, and (c) (x− y)z with electric field E = (Ex, 0, 0).
Figure provided by Robert Zielke.

Abbildung 5.7: |g5| as a function of the magnetic field direction shown for |B| = 1 T in
cuts along the planes (a) xy, and (b) xz with electric field E = (Ex, 0, 0). Here we omit the
3D plot since the g factor shows a spherical distribution, where such a plot does not yield
further insight. Figure provided by Robert Zielke.

values at the x + y axis and minimum values at the x − y axis; see Fig. 5.7.

This is in contrast to g6, where we note a considerable increase of the g-factor

values and again a significant anisotropy. Note the change of the color scale
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Abbildung 5.8: |g6| as a function of the magnetic field direction for |B| = 1 T shown in (a)
3D plot, and cuts along the planes (b) xy and (c) (x+ y)z with electric field E = (Ex, 0, 0).
Note that the color scale changed because |g6| reaches larger values than the |gn| of the QD
levels with n < 6. Figure provided by Robert Zielke.

in Fig. 5.8. In general, we observe a dependence of the absolute values of the

gn on the QD size; see Sec. 5.4.

5.4 Discussion

In this section, we comment on the probability distributions of pyramidal

QDs calculated in Sec. 5.3. Furthermore, we discuss the B dependence of

both spectrum and g factor of the CB states in the QD presented in Secs. 5.3

and 5.3, respectively.

Probability distribution of the wave function

The wave functions of the lowest states exhibit the structure of cuboidal wave

functions adapted to the pyramidal shape of the enclosing QD. We definitely

observe the ground state as well as excited states. This is consistent with the

method used for the construction of the wave functions. Note that the wave
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functions ψm(r) are not exact eigenfunctions of the Schrödinger equation. Ho-

wever, the boundary conditions are satisfied and the corresponding energies,

see Eq. (5.3), are smaller than the energies of known analytical solutions of

the Schrödinger equation provided that the correct boundary conditions are

taken into account [193]. Due to the method of construction, we find that the

wave functions do not vanish at the diagonal planes (x+ y)z and (x− y)z, re-

spectively, as was observed in Ref. [193]. Furthermore, the authors of the work

presented in Ref. [193] explicitly state that the obtained set of wave functions

is incomplete; solutions with a finite density at the center of the pyramid are

not contained. In particular, a distinct ground state is missing. From this we

conclude that our set of wave functions is more suitable to describe low-energy

states in pyramidal QDs. Numerical calculations of QD wave functions usually

include piezoelectric potentials and specific material properties directly from

the beginning, which complicates a direct comparison [12, 191]. However, com-

pared to numerical calculations without strain as performed in Ref. [12], where

the wave functions extend into a wetting layer, and Ref. [191], where no in-

termixing with a wetting layer is observed, we report similar shapes of the

probability distributions with our analytical ansatz. Even though we apply

this simplistic model, we recover the effects recently observed in experiments

to a very good degree [181]; see Sec. 5.4.

Spectra of the CB states in the QD

After diagonalizing H̃CB
d , we find states in the CB of the QD which are dege-

nerate for |B| = 0 and split into pairs by an increasing magnetic field. These

energy levels exhibit a quadratic dependence on B. We note that the direction

of the magnetic field is important to the exact behavior of the splitting of the

QD levels. Due to the highly admixed nature of the final eigenstates of H̃CB
d ,

which consist of CB and VB states of the basis introduced for Hd in Eq. (5.5),

we find ourselves unable to comment on the exact shape of the nth eigenfunc-

tion. For illustrative plots of the electron wave function in considerably (one

order of magnitude) smaller QDs from numerical and experimental studies,

we refer the interested reader to Refs. [191] and [204].

g factor of the CB states in the QD

The reported anisotropy in our system stems from several effects. The first

effect is the mixing of CB and VB states caused by the confinement potential

and intrinsic material parameters of the QD. This mixing is further influenced
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by the second effect, a change of gaps between the bands |j,±〉 due to strain.

The intrinsic strain fields in the QD impose additional constraints on the

system yielding a reduction of the symmetry of the level splitting with respect

to the direction of B. Furthermore, the strain fields reduce the symmetry

class of the pyramid along the z axis from C4 to C2 [12]. This reduction of

the symmetry class agrees well with the observed anisotropy of the gn in our

work. Additionally, effects due to the orbital coupling of B may have an effect

on g. For |B| = 1 T, we find that the magnetic length lB =
√
~/e|B| ∼

25 nm is much smaller than the dot size characterized by a = 50 nm; hence

Landau levels form. However, we took this into account by including HB into

our Hamiltonian; see Eq. (5.1). Compared to experimental results [181], we

observe very small g factors, mainly gn < 2. However, small g-factor values,

in particular a zero crossing of g due to the transition from the bulk value

gbulk ≈ −14.9 to the free electron value gfree = +2, have also been reported

for circular and elliptical InAs QDs [196, 197]. This transition is characterized

as a function of the band gap between the CB and VB in the QD. In fact, we

find a comparable magnitude of the g-factor values considering the band gap

present in our system. In general, decreasing the QD size leads to a decrease of

the CB-VB admixture and the g-factor values ultimately yield the free electron

value, gfree = +2. On the other hand, when increasing the QD size the g-factor

values will finally approach the bulk value, gbulk ≈ −14.9. Considering these

two limits and assuming that the g factor is a continuous quantity, zero values

of g will be observed eventually [196, 197].

5.5 Comparison to experiment

In this section, we compare our results to recent experimental observations

of the three-dimensional g-factor anisotropy in self-assembled InAs QDs by

Takahashi et al.; see Ref. [181]. The anisotropy of the QD g factor is usually

extracted by transport measurements for different magnetic field directions

[181, 200]. The basic setup of these experiments consists of a QD which is

tunnel coupled to two leads. An additional back-gate creates an electric field

parallel to the growth direction. The back-gate voltage is used to select the QD

level participating in the transport by changing the chemical potential of the

QD. Furthermore, the tunneling rates depend on the different g factors of QD

and leads [205]. We first point out that the QD considered in Ref. [181] is rather

a half pyramid due to the applied gates. Thus, deviations of the absolute value

of g compared to our findings are not unexpected. Such deviations increase
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even further due to different dot sizes. However, we find good qualitative

agreement when accounting for the different confinement geometries in the

following way. One can perform a coordinate transformation in order to align

the axes of the upright pyramid considered above and the half-pyramid of

Ref. [181]. Indeed, a rotation of 135◦ around the y axis aligns the symmetry

axes of both systems in first approximation. We observe now that the g-factor

anisotropies of the QD levels n = 2, 3 (Fig. 5.5) agree well with regions I and

II of the charge stability diagram reported by Takahashi et al. in Ref. [181].

In region III they also find a state with a spherical distribution of the g

factor similar to our calculation for QD level n = 5. Furthermore, they report

measurements of a symmetrically covered upright pyramid as well. In this case

the axes and shapes of the anisotropy are directly comparable to our results.

The associated g-factor anisotropy agrees well with our findings for QD levels

n = 2, 3. In general, due to confinement and strain, the QD size and shape

have a strong influence on characteristic quantities such as spectrum and g

factor, both absolute value and anisotropy. However, we find good qualitative

agreement between our model calculation and the measurements. This is not

surprising since both consider square-based pyramids which conserve the main

anisotropy axes independent of the QD size. Finally, we point out that our

model further predicts different shapes of the g-factor anisotropy depending

on the QD levels – in particular, shapes not yet observed in experiments, such

as the ones described for the QD levels n = 1, 4, 6.

5.6 Conclusion

In conclusion, we have found trial wave functions satisfying hard-wall boun-

dary conditions for a pyramidal QD geometry. We calculated the associated

particle density distributions of the low-energy states and found a ground-

state-like, s symmetric state of lowest energy, as well as excited states with

nodes along the coordinate axes of the system and at the center of the QD.

We argued that these wave functions provide a good basis for analytical cal-

culations of QD states. Furthermore, we have presented 8-band calculations

to derive the spectrum of low-energy CB states in the QD. The magnetic field

induced splitting of the QD levels shows a nonlinear dependence on the ma-

gnetic field and strong anisotropies depending on the direction of the field.

Starting from this, we have calculated the g factor of low-energy electrons in

self-assembled InAs QDs subject to externally applied electric and magnetic

fields. We calculated the g factor for all possible spatial orientations of the
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magnetic field and found distinct anisotropies. In particular, we showed that

the anisotropies include configurations where the g factor drops down to va-

lues close to zero. Furthermore, we observed that the shape of the anisotropies

depends on the QD level n and that the maximal values of gn increase with

n. Finally, we showed that our results are in good qualitative agreement with

recent measurements. From these findings we conclude that the direction of

magnetic fields applied to QDs can be used to control the splitting of qubit

states efficiently and hence should prove useful for the manipulation of qubits

in such QDs.
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Strongly interacting holes in

Ge/Si nanowires

Adapted from:

F. Maier, T. Meng and D. Loss,

‘Strongly interacting holes in Ge/Si nanowires’,

Phys. Rev. B 90, 155437 (2014).

We consider holes confined to Ge/Si core/shell nanowires subject to strong

Rashba spin-orbit interaction and screened Coulomb interaction. Such wires

can, for instance, serve as host systems for Majorana bound states. Starting

from a microscopic model, we find that the Coulomb interaction strongly in-

fluences the properties of experimentally realistic wires. To show this, a Lut-

tinger liquid description is derived based on a renormalization group analysis.

This description in turn allows to calculate the scaling exponents of various

correlation functions as a function of the microscopic system parameters. It

furthermore permits to investigate the effect of Coulomb interaction on a

small magnetic field, which opens a strongly anisotropic partial gap.

69
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6.1 Introduction

In the past decades, semiconductor nanowires (NWs) have proven to be a

versatile platform for the engineering of nanoscale systems, both as intrin-

sically one-dimensional (1D) channels, and as hosts for NW quantum dots

(QDs). So far, NWs have predominantly been grown using III-V compounds,

which can be operated both in the electron regime [24, 115–121], and the

hole regime [134]. Recently, a new class of NWs, made of a cylindrical Ge

core and a Si shell [122–128, 130–132], and ultrathin triangular Ge NWs on

a Si substrate [133], have emerged as promising alternatives to III-V NWs.

The core/shell NWs can be grown with core diameters of 5 − 100 nm, and

shell thicknesses of 1 − 10 nm. Inside the core, a 1D hole gas accumulates

[123, 142], and the p-wave symmetry of the hole Bloch states results in an un-

usually large and tunable Rashba-type spin-orbit interaction (SOI) [23]. Ap-

plying a magnetic field allows one to access a helical regime [23] susceptible

to the formation of Majorana zero-energy bound states (MBS) when the NW

is proximity coupled to an s-wave superconductor [206]. Finally, when grown

nuclear spin free, these systems have significantly reduced hyperfine induced

decoherence effects. Experimentally, high mobilities [124, 131], long mean free

paths [123], proximity-induced superconductivity [125], and signatures of the

tunable Rashba SOI [129] have been identified. Longitudinal confinement has

been demonstrated to create tunable single and double QDs [126], with aniso-

tropic and confinement dependent g factors [127, 128], short SOI lengths [207],

as well as long singlet-triplet relaxation times [132] and hole spin coherence

times [208]. Holes confined to such QDs have furthermore been predicted to

exhibit strongly anisotropic, tunable g factors and long spin phonon relaxation

times [209], and have been proposed as a platform for quantum information

processing [210].

In this chapter, the effects of hole-hole interactions, and their Luttinger

liquid description in Ge/Si core/shell NWs are, to the best of our knowledge,

addressed and quantified for the first time based on a concrete microscopic

model. We focus on the single subband regime most relevant for the emer-

gence of MBS. After explicitly evaluating the interaction matrix elements for

a realistic geometry, we derive the Luttinger liquid description of the NW,

and calculate the interaction dependent scaling exponents of various correla-

tion functions for our microscopic model. The scaling exponents show a weak

dependence on the magnitude of an applied electric field, which tunes the

SOI strength. This is contrasted by a strong dependence on the NW para-
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meters. The exponents differ substantially from their non-interacting value,

thus revealing rather strong interaction effects. As an example for experimen-

tal implications of Luttinger liquid physics beyond the scaling of correlation

functions, we finally analyze the renormalization of the partial gap around zero

momentum resulting from an applied magnetic field. This partial gap precise-

ly corresponds to the helical regime susceptible to the formation of MBS in a

superconducting hybrid device [206]. We find that hole-hole interactions lead

to a sizable enhancement of the gap (thus implying more stable MBS in an

interacting system), which is furthermore strongly anisotropic.

The outline of this chapter is as follows. In Sec. 6.2 we introduce the effec-

tive 1D Hamiltonians describing holes in Ge/Si NWs interacting via Coulomb

repulsion and distill an effective lowest-energy Hamiltonian. We bosonize the

latter in Sec. 6.3 and, in Sec. 6.4, analyze the exponents of the correlati-

on functions regarding the dependence on the applied electric field and NW

parameters. In Sec. 6.5, we examine the partial gap opened by an external

magnetic field and its dependence on the electric field and the direction of the

magnetic field. For technical details we refer to App. E.

6.2 Model

1D hole Hamiltonian

As a first step, we derive an effective theory for the single subband regime of

a Ge/Si core/shell NW in the presence of Coulomb interactions. Our starting

point is a more complex model [23] for a NW with core (shell) radius R (Rs)

aligned with the z axis of the coordinate system, and exposed to an electric

field perpendicular to the NW axis, E = E⊥(cosϕE , sinϕE , 0). A possibly

applied magnetic field will be added in a later step. The non-interacting part of

this setup is well described by an effective quasi-1D Hamiltonian H0 =
∫

dzH0

with

H0 = Ψ†(z) [HLK + Hstrain + HR + HDR − µ] Ψ(z) , (6.1)

where µ denotes the chemical potential, and with H0 being written in the

basis {Ψg+(z),Ψg−(z),Ψe+(z),Ψe−(z)}. The indices g±, e± comprise the band

(g, e) and pseudospin (+,−) labels, and the annihilation operators are given

by Ψi(z) =
∑

kz
eikzzci,kz , with ci,kz being the annihilation operator of a hole

state i with momentum kz along the NW. The Luttinger-Kohn and strain

Hamiltonian densities read HLK+Hstrain = A+(kz)+A−(kz)τz+Ckzτyσx, with
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τi and σi being the Pauli matrices acting in the band and pseudo-spin space,

respectively. Here, A±(kz, η) ≡ ~2k2
z(m

−1
g ± m−1

e )/4 ± ∆/2, with Planck’s

constant ~, and with effective masses mg ' m0/(γ1 +2γs) and me = m0/(γ1 +

γs). The bare electron mass is denoted by m0, and γ1 and γs are the Luttinger

parameters in spherical approximation. For Ge, γ1 = 13.35 and γs = 5.11 [147].

The level splitting between the g± and e± states is ∆ ≡ ∆LK + ∆strain(η)

with relative shell thickness η ≡ (Rs − R)/R, confinement induced ∆LK =

0.73~2/(m0R
2) and the strain dependent splitting ∆strain(η) ' 0 − 30 meV.

The off-diagonal coupling with coupling constant C = 7.26~2/(m0R) is a

direct consequence of the strong atomic level SOI. The direct Rashba SOI,

HDR = eUE⊥(τxσz cosϕE − τy sinϕE), where U = 0.15R, results from direct,

dipolar coupling of E to the charge of the hole. The conventional Rashba

SOI reads HR = αRE⊥[S(τxσz cosϕE − τy sinϕE) +B+(kz) +B−(kz)τz], with

B±(kz) ≡ kzT (σx sinϕE + σy cosϕE)/2∓ 3kz(σx sinϕE − σy cosϕE)/8, where

T = 0.98, S = 0.36/R, and αR = −0.4 nm2e with elementary charge e.

Note that eU/(αRS) ' −1.1R2nm−2, hence HDR dominates HR by one to

two orders of magnitude for R = 5 − 10 nm. Diagonalizing the full (4 × 4)

matrix Hamiltonian H0 yields the eigenenergies Eg′+ , Eg′− , Ee′+ and Ee′− . The

associated annihilation operators are Ψg′+
(z), Ψg′−

(z), Ψe′+
(z), and Ψe′−

(z),

which are linear combinations of the original annihilation operators introduced

below Eq. (6.1). The coefficients of the linear combinations depend strongly

on the NW parameters R and ∆, and both magnitude and direction of E. In

the following, we assume the chemical potential to be placed below the bottom

of the upper bands e′±, and therefore focus on the low-energy Hamiltonian in

the subspace spanned by {Ψg′+
(z),Ψg′−

(z)}.

Coulomb interaction

Next, we generalize this Hamiltonian to the interacting case. For our concrete

microscopic model, we assume the holes to interact via Coulomb repulsion,

and take the latter to be screened by mirror charges in the nearby gates. The

associated potential for a hole located at r interacting with a hole located at

r′ in the presence of a mirror charge at rmc is given by

V (r, r′, rmc) =
e2

4πε0εr

[
1

|r − r′| −
1

|r − rmc|

]
, (6.2)
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Abbildung 6.1: Sketch of the low-energy dispersions Eg′+ and Eg′− as functions of the mo-

mentum kz along the NW for a finite field E⊥. The Fermi velocities vFi and vFo for the
inner and outer modes differ in the general case, i.e., vFi 6= vFo .

with vacuum permittivity ε0, and relative permittivity εr. For Ge, εr ≈ 16

[211]. In the initial (4× 4) basis, the interaction Hamiltonian thus reads

Hc =
1

2

∑

ijkl

∫∫
dzdz′Ψ†i (z)Ψ

†
j(z
′)

×
[∫

dqV ijkl
1D (q)eiq[z−z

′]

]
Ψk(z

′)Ψl(z), (6.3)

with i, j, k, l = g±, e±, and q being the wavevector along the NW. The in-

teraction matrix elements V ijkl
1D (q) of Hc are obtained by integrating out the

transverse part of V (r, r′, rmc) using the three-dimensional wave functions of

holes in Ge/Si NWs derived in Ref. [23]. A more detailed sketch of this calcu-

lation is given in Appendix E.1. Finally, we project the full (4× 4) interaction

Hamiltonian Hc onto the diagonalized low energy subspace E′g± , thus arriving

at the interacting effective model for the single subband regime of a Ge/Si

core/shell NW.

6.3 Bosonization

The low energy excitations of this interacting 1D system are given by col-

lective bosonic density waves rather than individual fermionic quasiparticles

[81]. To distill the related Luttinger liquid Hamiltonian, we linearize the non-

interacting part of the spectrum, depicted in Fig. 6.1, around the Fermi points.

In this process, we only retain low energy excitations by introducing a momen-

tum cutoff ~/α relative to the Fermi points, where α denotes the short distance
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cutoff length. Because of the SOI, the pseudospin bands g′+ and g′− are split in

momentum space. We decompose the operators Ψg′±
(z) into right (Rj) and left

(Lj) moving modes associated with the low energy excitations close to the in-

ner (j = i) and outer (j = o) Fermi points, Ψg′+
(z) ' Ri(z)eikFiz+Lo(z)e−ikFoz

and Ψg′−
(z) ' Ro(z)eikFoz+Li(z)e

−ikFiz, where the inner and outer Fermi wa-

ve numbers are kFi,o . The slopes of the spectrum at these points define the

Fermi velocities vFi and vFo . These differ because the admixing of the higher

energy bands e± renders the bands g′± non-parabolic. Since we are eventually

interested in the renormalization of the partial gap opened by a small ma-

gnetic field, we furthermore choose the chemical potential to be pinned to the

crossing point of Eg′+ and Eg′− . We emphasize, however, that our model is valid

for arbitrary values of µ, with the exception of µ being close to the bottom of

the band, where the non-linearity of the spectrum becomes important for the

low-energy excitations.

While the projection of the non-interacting Hamiltonian H0 on the low-

energy modes Ri,o and Li,o simply reads H0 ≈
∫

dz
∑

s=i,o vFs(R
†
s∂zRs −

L†s∂zLs), the interaction Hamiltonian Hc demands a more careful treatment.

We project Hc on the low-energy modes Ri,o and Li,o, thereby dropping ra-

pidly oscillating terms, and classify the remaining V ijkl
1D (q) according to the

standard g-ology [81]. This translates V ijkl
1D (q) to the interaction matrix ele-

ments gnf with indices n = 1, 2, 4, and f = i, o, io, which couple only inner (i),

only outer (o), or inner and outer (io) modes. Note that we observe several

matrix elements corresponding to g1 processes coupling the inner and outer

modes, we label them g1ioj , j = 1, 2, 3, 4, in order of appearance. With these

definitions, the projection of Hc reads Hc =
∫

dz (H1 + H2 + H4), with

H2 =g2i ρRiρLi + g2o ρLoρRo + g2io (ρLiρRo + ρLoρRi) , (6.4)

H4 =
g4i

2

(
ρ2
Ri + ρ2

Li

)
+
g4o

2

(
ρ2
Ro + ρ2

Lo

)
(6.5)

+ g4io (ρRiρRo + ρLiρLo) ,

H1 =2gI(R
†
iL
†
iLoRo + h.c.) (6.6)

− g1io1 (ρRiρLo + ρRoρLi)− g1io2 (ρLoρLi + ρRoρRi) .

where gI = (g1io3−g1io4)/2, and with ρrj = r†jrj (r = R,L). Note that we have

dropped the terms proportional to g1i and g1o because their matrix elements

vanish, while we obtain g2f = g4f , g1io1 = g1io4 , and g1io2 = −g1io3 .

We thus find that as usual [81], the Coulomb repulsion gives rise to

several terms proportional to squares of the fermionic densities ρrj , plus

the term proportional to gI . We bosonize these interaction terms by ex-
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pressing the fermionic single-particle operators as rs = Ur,s(
√

2πα)−1 ×
e−i/2[(1+s)(rφi−θi)+(1−s)(rφo−θo)], where r = R,L ≡ +1,−1 labels the chirali-

ty, and s = i, o ≡ +1,−1 denotes the inner/outer-pseudospin, while Ur,s are

Klein factors (unessential for our discussion). The bosonic fields φs relate to the

integrated density of s = i, o particles, while the canonically conjugate fields

θs are proportional to their current. In terms of the bosonic fields, the Hamil-

tonian takes the form H =
∫

dz (Ψ†φHφΨφ + Ψ†θHθΨθ)/2π+
∫

dz gI cos[2(θo−
θi)]/(πα)2, where Ψφ = (∂zφo, ∂zφi)

T , Ψθ = (∂zθo, ∂zθi)
T , and

Hφ =

(
vFo +

g4o+g2o
2π

g4io
+g2io

−g1io1
−g1io2

2π
g4io

+g2io
−g1io1

−g1io2
2π vFi +

g4i
+g2i
2π

)
, (6.7a)

Hθ =

(
vFo +

g4o−g2o
2π

g4io
−g2io

+g1io1
−g1io2

2π
g4io
−g2io

+g1io1
−g1io2

2π vFi +
g4i
−g2i
2π

)
. (6.7b)

The quadratic sector of the Hamiltonian can be diagonalized by a canonical

transformation, resulting in effective low-energy degrees of freedom with ve-

locities up and um (see Appendix E.2), while the sine-Gordon term ∼ gI is

analyzed using a standard perturbative renormalization group (RG) approach

[81]. Because we choose to fix the chemical potential at the crossing point of

Eg′+ and Eg′− , our calculation is restricted to sufficiently large electric fields

E⊥ such that gI can be treated as a perturbation (2gI/(up + um) � 1). For

smaller E⊥ one of the velocities, um, vanishes, and the dimensionless gI beco-

mes non-perturbatively large. With this restriction in mind, we find that gI is

an RG irrelevant perturbation in the regime described by our calculation.

6.4 Exponents of the correlation functions

After integrating the RG flow of gI to weak coupling, we evaluate various

correlation functions 〈O†j(r)Oj(0)〉 for the charge and spin density waves

(j = CDW, SDW), and the singlet and triplet superconducting fluctuations

(j = SS,TS) [81] (see Appendix E.2), where the spin is the pseudospin distin-

guishing the bands g±
′ (as detailed in Appendix E.2, the correlation functions

for SDWx,y, SS, and TSz comprise two terms with slightly different exponents).

The scaling exponents of these correlation functions are depicted in Fig. 6.2

as functions of the applied field E⊥ for one concrete set of NW parameters,

and exhibit only a weak dependence on E⊥ (the same is found for other NW

parameters). In Fig. 6.3, we furthermore plot the scaling exponents for twelve

concrete sets of system parameters at a fixed field E⊥. In general, our micros-

copic model predicts that the exponents of the correlation functions show a
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Abbildung 6.2: The exponents of the correlation functions as functions of E⊥ for R = 10 nm
and ∆ = 8 meV in the regime where gI can be treated as perturbation. We fix ϕE = 3π/2
and rmc = (0, |rmc|, 0) with |rmc| = 100 nm.

strong dependence on the microscopic NW parameters R and ∆, determined

by the core and shell radii. The scaling exponents differ substantially from 2,

their non-interacting value, thus indicating strong interaction effects in Ge/Si

core/shell NWs. Exponents differing the most from 2 are found for the NW

parameter set with the smallest R, indicating that thin NWs show the stron-

gest interactions. We note that when the field E⊥ is tuned to sufficiently small

values such that the system is pushed outside the perturbative regime, the bo-

sonic RG calculation exhibits a Wentzel-Bardeen singularity [212–215]. As a

crosscheck for the absence of singularities in the regime well-described by our

calculation, we have performed a fermionic one-loop RG analysis [216, 217],

which reproduces the non-singular behavior of the scaling exponents in the

perturbative regime. In the E⊥-range where also the fermionic calculation is

not valid, the presence or absence of a singularity in the one-loop calculation

depends strongly on the chosen NW parameters. For more details, we refer

the reader to Appendix E.3.

6.5 Renormalization of the partial gap

As a final example for interaction effects in Ge/Si core/shell NWs, we now

turn to the rescaling of the gap opened by a small magnetic field B =

(B⊥ cosϕE , B⊥ sinϕE , Bz). This gap, giving rise to the helical regime suscepti-

ble to the formation of MBS, is known to be enlarged by Coulomb interaction
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Abbildung 6.3: The exponents of the correlation functions as functions of ∆ for four different
core radii, R = 4 nm (red), R = 5 nm (blue), R = 7.5 nm (green), and R = 10 nm (magen-
ta), where E⊥ = 8 V/µm at fixed ϕE = 3π/2 and rmc = (0, |rmc|, 0) with |rmc| = 100 nm.
For a fixed R and increasing ∆, all exponents besides the ones for the CDW/SDWz and the
TSx/TSy become increasingly different from their non-interacting value, 2. The dotted lines
are guide to the eyes.

in an electronic Rashba NW [218, 219]. To analyze this effect in our concrete

microscopic model with hole-hole interactions, we first introduce the magne-

tic field Hamiltonian density HB = HB,Z + HB,orb in the original fermionic

(4 × 4) basis of H0 with HB,Z = [C+ + C−τz]σz + [D+ + D−τz]σx cosϕE −
[D−+D+τz]σy sinϕE and HB,orb = Fzτxσy +F⊥[τy cosϕE + τxσz sinϕE ]. He-

re, C± = µBBz(F ± G)/2, D± = µBB⊥(K ± M)/2, Fz = µBBzDkz and

F⊥ = µBB⊥Lkz with F = 1.56, G = −0.06, K = 2.89, M = 2.56, D = 2.38R

and L = 8.04R [23]. We focus on a magnetic field B in the plane defined by E

and the NW axis since a field perpendicular to this plane does not give rise to

the helical regime relevant for MBS, but rather to a spin-polarized state. To

bring this field to its bosonized form, we first transform HB according to the

unitary transformation that diagonalizes the fermionic (4 × 4) Hamiltonian,

and then project it to the lower bands. This yields a Hamiltonian density of

the form H′B = µB [gzBzσx + g⊥B⊥σy], with effective g factors gz and g⊥, and

where σx,y,z acts on the pseudospin distinguishing g′±. We finally bosonize H′B,

and obtain

H′B =
1

πα
∆Z(ϑB) cos[2φi − ϕB], (6.8)

with ∆Z(ϑB) = µB(g2
zB

2 cos2 ϑB + g2
⊥B

2 sin2 ϑB)1/2, B⊥ = B sinϑB, Bz =

B cosϑB, and tanϕB = gzBz/(g⊥B⊥). This sine-Gordon term obeys the RG
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Abbildung 6.4: The bare and rescaled helical gaps ∆Z and ∆∗Z for B = 0.1 T (a) as functions
of E⊥ for ϑB = π/2 and (b) as functions of ϑB for E⊥ = 8 V/µm. We use the NW parameters
R = 7.5 nm and ∆ = 13 meV and fix ϕE = 3π/2 and rmc = (0, |rmc|, 0) with |rmc| =
100 nm.

equation d∆Z/dl = (2 − gB)∆Z(l), where the interaction dependent scaling

dimension gB follows from the diagonalized Hamiltonian. Due to the pre-

sence of Coulomb repulsion, we find that gB is always smaller than its non-

interacting value g0 = 1, such that the gap is enhanced by hole-hole inter-

actions. We can thus conclude that hole-hole interactions would stabilize a

MBS in the presence of proximity-induced superconductivity, similar to pro-

ximitized Rashba NWs for electrons [220, 221]. The RG flow is integrated

until the running ∆Z(l) grows to the value ∆Z(l)/(~vFi/α) ∼ 1 [81], signa-

ling the opening of the helical gap. In physical units, this gap has the size

∆∗Z = ∆0
Z (~vFi/(2∆0

Zα))(1−gB)/(2−gB) [219]. In Fig. 6.4 a), we plot both ∆Z

and ∆∗Z as functions of E⊥ for B⊥ = 0.1 T and Bz = 0 T, with α = 5.65 Å

being the lattice constant of Ge [6]. We find that ∆∗Z depends much stronger

on E⊥ than ∆Z . This can be attributed to the large changes in vFi for decre-

asing E⊥. In Fig. 6.4 b), we finally display ∆Z and ∆∗Z for fixed B and E⊥

as functions of ϑB, i.e., the direction of B with respect to the NW, and find

that both ∆Z and ∆∗Z are strongly anisotropic.

6.6 Conclusions

In this chapter, we have addressed and quantified the effects of hole-hole inter-

actions and their Luttinger liquid description in Ge/Si core/shell NWs, where
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we focused on the single subband regime most relevant for the emergence of

MBS. We derived the Luttinger liquid description of the NW, and calculated

the interaction dependent scaling exponents of various correlation functions.

We showed a weak dependence of the scaling exponents on the magnitude

of an applied electric field and a strong dependence on the NW parameters.

Furthermore, the exponents revealed strong interaction effects since they dif-

fer substantially from their non-interacting value with thin NWs showing the

strongest deviations. To show the experimental relevance of our results, we

analyzed the renormalization of the partial gap around zero momentum re-

sulting from an applied magnetic field which is considerably enhanced by the

hole-hole interactions. Additionally, we found that the gap is strongly aniso-

tropic. Regarding the emergence of MBS in the helical regime of superconduc-

ting hybrid device, the enhancement of the gap implies more stable MBS in

an interacting system.

In conclusion, hole-hole interactions show sizable effects in Ge/Si core/shell

NWs and may lead to the stabilization of emerging MBS by enhancing the

partial gap.
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Majorana fermions in Ge/Si hole nanowires

Adapted from:

F. Maier, J. Klinovaja and D. Loss,

‘Majorana fermions in Ge/Si hole nanowires’,

Phys. Rev. B 90, 195421 (2014).

We consider Ge/Si core/shell nanowires with hole states coupled to an s-wave

superconductor in the presence of electric and magnetic fields. We employ

a microscopic model that takes into account material-specific details of the

band structure such as strong and electrically tunable Rashba-type spin-orbit

interaction and g factor anisotropy for the holes. In addition, the proximity-

induced superconductivity Hamiltonian is derived starting from a microscopic

model. In the topological phase, the nanowires host Majorana fermions with

localization lengths that depend strongly on both the magnetic and electric

fields. We identify the optimal regime in terms of the directions and magni-

tudes of the fields in which the Majorana fermions are the most localized at

the nanowire ends. In short nanowires, the Majorana fermions hybridize and

form a subgap fermion whose energy is split away from zero and oscillates

as a function of the applied fields. The period of these oscillations could be

used to measure the dependence of the spin-orbit interaction on the applied

electric field and the g factor anisotropy.

81
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7.1 Introduction

Quasiparticles with non-Abelian statistics are considered as auspicious candi-

dates for topological quantum computing [97]. Among these, Majorana fermi-

ons (MFs), particles that are their own anti-particles, received a large amount

of attention during the last years [98, 206]. MFs are predicted to occur in

different systems such as fractional quantum Hall systems [95, 97], topologi-

cal insulators [222–228], nanowires with strong Rashba [86–89] or synthetic

[229, 230] spin-orbit interaction (SOI), p-wave superconductors [231], RKKY

systems [232–234], and graphene-like systems [235–239]. Recent experiments

on MFs [90–94, 240] were performed in Rashba nanowires (NWs) since this

type of setup is relatively easy to realize. The majority of these experiments

use InSb or InAs NWs because they are presumed to have strong SOI and

large g factors, which are necessary prerequisites for the emergence of Majo-

rana bound states in such wires [86, 87]. However, the direct measurement of

the SOI strength in one-dimensional NWs is a challenging task [27] and has

not yet been performed in the materials mentioned above. In this chapter we

focus on a promising alternative, Ge/Si core/shell NWs carrying holes in the

Ge core, in which an exceptionally strong electric-field-highly-tunable Rashba

SOI is expected [23] and in which the first signatures of a strong SOI were

identified experimentally [129].

Ge/Si core/shell NWs, cylindrical NWs with a Ge core and Si shell, attrac-

ted a lot of attention recently [122–126, 130–132]. These NWs can be grown

with high precision, i.e., with core diameters between 5 − 100 nm and shell

thicknesses between 1−10 nm. Due to the large valence band offset between Ge

and Si, a one-dimensional (1D) hole gas forms in the core of the NW [123, 142].

The p-type symmetry of the hole Bloch states gives rise to a total angular mo-

mentum J = 3/2, which results in an unusually large, and electrically tunable

Rashba-type SOI [23]. Furthermore, the holes show high mobilities [124, 131],

long mean free paths [123], and Coulomb interaction strongly influences their

properties [241]. Longitudinal confinement in these NWs results in tunable

single and double QDs [126] with anisotropic and confinement-dependent g

factors [127, 128], in long relaxation [132] and coherence times [208] as well

as in short SOI lengths [207]. Moreover, strongly anisotropic tunable g factors

and long spin phonon relaxation times [209] were predicted as well as the usa-

bility for quantum information processing based on hole spin qubits [210]. Note

that strongly anisotropic and electrically tunable g factors were also observed

in SiGe nanocrystals [242, 243]. Most importantly for our work, externally ap-
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plied strong magnetic fields allow one to access a helical regime [23], which in

combination with the experimentally demonstrated proximity-induced s-wave

superconductivity [125] makes Ge/Si core/shell NWs promising candidates to

generate MFs.

In the present chapter, we explore the properties of MFs in Ge/Si core/shell

NWs starting from a microscopic model [23] that captures the specific NW

characteristics such as g factor anisotropy and the dependence of the induced

Rashba SOI on the direction and magnitude of the electric field. We extend

this microscopic model to account on the same level for a proximity-induced

superconductivity, which couples hole states with opposite orbital and angular

momentum. We especially focus on the tunability of the SOI that allows us

to access the regimes of strong and weak SOI independently of the applied

magnetic field and analyze the localization lengths of the MF wave functions

in the NW regarding their dependence on magnitude and direction of the

applied electric and magnetic fields. The shortest localization lengths can be

expected when the fields are tuned to intermediate magnitudes. Due to the g

factor anisotropy we predict the shortest localization lengths for the magnetic

field pointing perpendicular to the NW axis. In a NW of finite length, the MFs

localized at two NW ends overlap [244] and hybridize into an ordinary fermion

which is, generally, at non-zero energy. This energy demonstrates an oscillatory

behavior [245, 246] as function of the applied electric and magnetic fields that

might be used to determine the coupling constants to the electromagnetic

field. Finally, we mention in passing that while we focus here on Ge/Si core-

shell nanowires, we expect our analysis also to apply (at least qualitatively)

to similar structures such as Ge hat-shape-nanowires grown on Si [133].

The outline of the chapter is as follows. In Sec. 7.2, we introduce the effec-

tive microscopic 1D model and derive the proximity-induced superconducting

coupling of NW hole states. In Sec. 7.3, we determine the localization lengths

of MFs for a semi-infinite NW in both the strong and the weak SOI regime and

identify field configurations for which the shortest localization lengths can be

expected. Lastly, we focus on the energies of hybridized MFs in finite NWs in

Sec. 7.4. We present our conclusions in Sec. 7.5. Technical details are deferred

to App. F.

7.2 Nanowire Hamiltonian for holes

In this section, we describe the geometry of the system and describe the di-

rections of the applied fields for which MFs can be expected. We introduce
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Abbildung 7.1: Sketch of a Ge/Si core/shell NW (cylinder) placed on top of an s-wave
superconductor (SC) to induce proximity pairing of the holes in the NW core. The NW axis
is chosen to point along the z axis. The applied electric field E = (Ex, 0, 0) is parallel to
the x axis, while the applied magnetic field B = (Bx, 0, Bz) ≡ B(cos θ, 0, sin θ) is in the xz
plane.

the microscopic model [23] describing holes confined to the core of Ge/Si co-

re/shell NWs and derive an effective lowest-energy subband Hamiltonian and

the associated spectrum. Next, we employ a superconductivity pairing Hamil-

tonian introduced for holes close to the valence band edge in bulk material

[89] and derive the corresponding 1D Hamiltonian within the framework of

the microscopic model and project this on the subspace of the lowest-energy

subband Hamiltonian.

Setup

Throughout this chapter, we consider holes confined to the core of a Ge/Si

core/shell NW with core (shell) radius R (Rs) that is positioned on top of an

s-wave superconductor as sketched in Fig. 7.1. The NW axis is assumed to

point along the z axis. We restrict ourselves to field configurations in which

the electric field E = (Ex, 0, 0) points perpendicular to the NW axis and is

parallel to the surface of the superconductor and in which the magnetic field

B = (Bx, 0, Bz) ≡ B(cos θ, 0, sin θ) is confined to the plane spanned by E and

the NW axis. In this case, the SOI vector, generated by the applied electric

field E, points along the y axis and is always perpendicular to B. As shown

before [86, 87], such a configuration is optimal for generating MFs in NWs.

We note that we focus here on the case where the SOI (and the electric field

E) is uniform along the NW. For the effects of a non-uniform SOI we refer to

Ref. [247].
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Microscopic Hamiltonian

The two hole bands closest to the valence band edge in a Ge/Si core/shell NW

are described by an effective 4× 4 Hamiltonian [23]

H =
∑

ij

∫
dzΨ†i (z)(Hij + µδij)Ψj(z), (7.1)

with Hamiltonian density

H = HLK + Hstrain + HDR + HR + HB,Z + HB,orb, (7.2)

given in the basis {Ψg+(z),Ψg−(z),Ψe+(z),Ψe−(z)}. Here, µ is a tunable che-

mical potential, and δij is the Kronecker delta. The fermionic annihilation ope-

rators Ψi(z) =
∑

kz
eikzzci,kz can be rewritten in momentum space in terms of

ci,kz , which are the fermionic annihilation operators of a hole state i ∈ {g±, e±}
with momentum kz along the NW. The index g, e refers to the ground and

excited bands, and the index ± refers to the pseudospin.

The Luttinger-Kohn and strain Hamiltonian densities are given by

HLK + Hstrain = A+(kz) +A−(kz)τz + Ckzτyσx, (7.3)

where τi and σi denote the Pauli matrices for band (g, e) and pseudospin

index (+,−), respectively. Here, A±(kz, η) ≡ ~2k2
z(m

−1
g ± m−1

e )/4 ± ∆/2,

with Planck’s constant ~ and effective masses mg ' m0/(γ1 + 2γs) and

me = m0/(γ1 + γs) with m0 denoting the bare electron mass and γ1 and

γs representing the Luttinger parameters in spherical approximation. For Ge,

γ1 = 13.35 and γs = 5.11 [147]. The level splitting is ∆ ≡ ∆LK + ∆strain(η)

with confinement induced ∆LK = 0.73~2/(m0R
2) and the strain dependent

splitting ∆strain(η) ' 0 − 30 meV, where the latter depends on the relative

shell thickness η ≡ (Rs−R)/R. The off-diagonal terms, being proportional to

the coupling constant C = 7.26~2/(m0R), result directly from the strong SOI

at the atomic level. The direct Rashba SOI,

HDR = eUExτxσz, U = 0.15R, (7.4)

originates from the direct dipolar coupling of the hole charge to the applied

electric field Ex. The conventional Rashba SOI reads

HR = αREx[Sτxσz +B+(kz) +B−(kz)τz], (7.5)

with B±(kz) ≡ kzT/2σy ± 3/8kzσy, where T = 0.98, S = 0.36/R, and αR =

−0.4 nm2e with elementary charge e. The parameters S and U of the direct
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and conventional SOI, respectively, are related by eU/(αRS) ' −1.1R2nm−2,

hence HDR dominates HR by one to two orders of magnitude for R = 5−10 nm

[23].

Finally, we include the effect of an applied magnetic fieldB = (Bx, 0, Bz) =

B(cos θ, 0, sin θ) by introducing the Hamiltonian densities

HB,Z = [C+ + C−τz]σz + [D+ +D−τz] σx, (7.6)

HB,orb = Fzτxσy + Fxτy. (7.7)

Here, C± = µBBz/2(F ± G), D± = µBBx/2(K ±M), Fz = µBBzDkz and

Fx = µBBxLBkz with F = 1.56, G = −0.06, K = 2.89, M = 2.56, D = 2.38R

and LB = 8.04R [23].

Low-energy 2× 2 Hamiltonian

In this subsection, we derive an effective lowest-energy subband Hamiltonian

for the holes by effectively decoupling the g± and e± bands introduced abo-

ve in Sec. 7.2. To achieve this, we perform a Schrieffer-Wolff transformation

[6, 248] (SWT) which block-diagonalizes the Hamiltonian and subsequent-

ly allows one to truncate the lowest-energy subspace. In general, a SWT is

given by a transformation of the form H → H̃ = e−SHeS , where S is an

anti-Hermitian operator (S† = −S). However, we utilize the SWT in a per-

turbative manner and begin by subdividing the Hamiltonian density H into a

leading order term H0 = A+(0) +A−(0)τz and a perturbation H′ = H−H0.

This choice is justified since the strain induced splitting of the g± and e±

subspaces is by far the largest energy scale present in the system. The pertur-

bing term is further divided into a diagonal (Hd) and off-diagonal part (Hod)

with respect to the two considered subspaces g± and e±, H′ = Hd + Hod.

Next, we construct the operator S such that the SWT rotates Hod into an

approximately block-diagonal form. We also expand eS ≈ 1 + S + S2/2 and

then approximate S to lowest order by S ≈ S1, where S1 is determined by

[S1,H0] = Hod. As a result, the approximate block-diagonal Hamiltonian den-

sity H̃ ≈ H0 + Hd − [S1,Hod] + [S1, [S1,H0]]/2 is exact to second order in

(Hod)ij/∆ � 1, where (Hod)ij denotes the matrix elements coupling the g±

and e± subspaces. This corresponds to conditions restricting the magnitudes

of the applied fields: Ckz/∆ � 1, eUEx/∆ � 1, µBBxLkz/∆ � 1, and

µBBzDkz/∆ � 1. After truncating, the effective lowest-energy Hamiltonian
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is given by H̃g′ =
∑

i,j=g′±

∫
dzΨi(H̃g′)ijΨj , with density

H̃g′ =

(
~2

2meff
k2
z − µ+ µBBzgz µBBxgx − iExkzαeff

µBBxgx + iExkzαeff
~2

2meff
k2
z − µ− µBBzgz

)
(7.8)

in the associated low-energy basis {Ψg′+
,Ψg′−

}. The new annihilation operators

are linear combinations of the original operators introduced below Eq. (7.2),

where the associated admixing coefficients depend strongly on the NW para-

meters R and ∆ and on the magnitude and direction of E and B.

In Eq. (7.8), we identify an effective kinetic term ∝ m−1
eff , an effective SOI

term ∝ αeff, and two terms ∝ gx, gz describing the effective coupling to the

magnetic field,

αeff =Tα+
2

∆
C(eU + Sα),

~2

2meff
≈ ~2

2mg
− C2

∆
, (7.9)

gx =K − 2

∆
LBCk

2
z , gz = G− 2

∆
DCk2

z . (7.10)

We note that meff has an additional weak dependence on B which is neglected

here. Furthermore, we see that the effective g factors gi = gi0 +gi2k
2
z (i = x, z)

differ strongly in magnitude, which leads to anisotropy, and, in addition, they

depend on the momentum kz.

The Hamiltonian H̃g′ describes the lowest-energy subbands g′±, where all

coupling terms to the higher bands are taken into account by introducing

effective g factors and SOI coupling. We note that the Hamiltonian density

H̃g′ resembles closely the Hamiltonian densities introduced in other works

[86, 87, 249] to describe electrons in Rashba SOI NWs in the presence of a

magnetic field. However, the dependence on the direction and strength of E

and B is much more involved in the case of Ge/Si core/shell NWs.

The spectrum of H̃g′ is given by

Eu,d(kz) =
~2k2

z

2meff
±
√
E2
xα

2
effk

2
z + ∆2

Z , (7.11)

where ∆2
Z = µ2

B(B2
xg

2
x + B2

zg
2
z) and the index u (d) marks the upper (lower)

energy band. The Fermi wavevector kF is found from the condition Ed(kz) = 0

and is given by

kF = ±
√

2k̃2
so +

√
4k̃4

so + k̃4
Z , (7.12)
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Abbildung 7.2: The lowest-energy spectra Eu(kz) (red) and Ed(kz) (blue) as functions of the
momentum kz (a) in the strong SOI regime and (b) in the weak SOI regime. The respective
magnitudes of the applied fields are given as insets. The magnetic field B is chosen along
the x axis (like the E field). The used NW parameters are R = 7.5 nm and ∆ = 23 meV.

with components

k̃2
so =

E2
xα

2
eff − 4C/∆

[
B2
zDG+B2

xKLB
]
µ2
B

~4/m2
eff − 16(C/∆)2

[
B2
zD

2 +B2
xL

2
B

]
µ2
B

, (7.13)

k̃4
Z =

4
[
B2
zG

2 +B2
xK

2
]
µ2
B

~4/m2
eff − 16(C/∆)2

[
B2
zD

2 +B2
xL

2
B

]
µ2
B

. (7.14)

To obtain this result, we have taken into account the full kz dependence of

the g factors, hence we cannot use the effective parameters gx and gz as they

themselves depend on kz [see Eq. (7.10)]. Using the definitions above, we intro-

duce the SOI energy ∆̃so = Exαeffk̃so/2. This allows us to distinguish between

the strong SOI regime (kF /k̃so ≈ 2), where the SOI energy dominates over

the Zeeman energy, and the weak SOI regime (kF /k̃Z ≈ 1), where the Zeeman

energy dominates over the SOI energy. In Fig. 7.2, we plot the bands Eu,d(kz)

for two sets of finite electric and magnetic fields: one in the strong [Fig. 7.2 (a)]

and one in the weak [Fig. 7.2 (b)] SOI regime. We compared numerically the

exact spectrum with the approximate one for the configurations considered in

Fig. 7.2 and found good agreement.

Superconductivity: pairing Hamiltonian

In this section, we derive an effective Hamiltonian describing the proximity

induced superconductivity in the lowest subband g′. The proximity-induced
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superconducting pairing gap ∆exp
sc ≈ 235 µeV was observed experimentally in

Ge/Si core/shell NWs [124]. Pairing Hamiltonians describing superconducti-

vity for hole states in semiconductors were also discussed before in several

theoretical works [89, 250, 251]. Here, we start from a pairing Hamiltonian al-

lowing for coupling between bulk hole states with opposite orbital and angular

momentum [89],

HSC =

∫
d3r

[
∆3/2Ψ†3/2Ψ†−3/2 + ∆1/2Ψ†1/2Ψ†−1/2 + H.c.

]
, (7.15)

where the fermionic operators Ψmj annihilate bulk hole states with angular

momentum j = 3/2 and mj = ±3/2,±1/2 and which are coupled by the

respective superconducting pairing potentials ∆3/2 and ∆1/2. We assume that

∆3/2 is real but employ ∆1/2 = |∆1/2|eiϕsc to account for a possible complex

superconducting phase. We use HSC to derive an effective paring Hamiltonian

within the framework of the microscopic model (see Sec. 7.2) by modifying

the procedure outlined in Ref. [23]. By extending the basis of the microscopic

model given below Eq. (7.2) accordingly, we derive an effective 1D particle-

hole basis.1 Furthermore, we use the explicit three-dimensional wave functions

of the hole states in the NW [23] and calculate the matrix elements of the

effective 1D superconducting Hamiltonian by integrating out the transverse

part. Finally, we transform the resulting Hamiltonian by the SWT introduced

in Sec. 7.2 and truncate the lowest-energy particle-hole subspace with Nambu

space representation Ψph = (Ψg′+
,Ψg′−

,Ψ†
g′+
,Ψ†

g′−
). In this representation, the

effective lowest-energy subband superconducting pairing Hamiltonian is given

by H̃SC = 1
2

∫
Ψ†phH̃SCΨph with

H̃SC =




0 0 0 i∆sc

0 0 −i∆sc 0

0 i∆∗sc 0 0

−i∆∗sc 0 0 0


 , (7.16)

where i∆sc = 0.01∆3/2−0.5|∆1/2|eiϕsc . We combine H̃SC with H̃g′ , where the

latter is extended to the particle-hole subspace Ψph, and obtain an effective

Bogoliubov-de-Gennes Hamiltonian (explicitly given in Appendix F.1). The

1To avoid confusion between various holes, please note that the hole mentioned here
actually denotes the conjugate hole.
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spectrum of this Hamiltonian is given by

E2 =

(
~2k2

z

2meff

)2

+ E2
xk

2
zα

2
eff + ∆2

Z + |∆sc|2

± 2

√(
~2k2

z

2meff

)2 (
E2
xk

2
zα

2
eff + ∆2

Z

)
+ |∆sc|2∆2

Z . (7.17)

At kz = 0, we find that Eq. (7.17) reduces to E2 = (|∆sc| ± ∆Z)2, and the

topological gap is given by

∆− = |∆sc| −∆Z . (7.18)

The system is in the non-topological phase for ∆− > 0 and in the topological

phase for ∆− < 0 [86, 87, 249].

7.3 Tunability of the Majorana fermion

localization length

Next, we focus on the MF wave functions and associated localization lengths

assuming that the two MFs are well-localized at the ends of a Ge/Si core/shell

NW and do not overlap with each other. To obtain independent solutions for

the MF wave functions at both ends, we simplify the calculations by assuming

a semi-infinite NW originating, let’s say, at z = 0. For topological computatio-

nal schemes, one generally strives for small localization lengths and, thus, well

localized MFs. We analyze the tunability of the localization lengths as functi-

ons of magnitude and direction of the applied fields E and B and determine

the regime in which the localization lengths are the shortest.

Strong SOI

First, we focus on the strong SOI regime, where ∆so � ∆Z with ∆so =

αeffExkso/2 and kso = meffαeffEx/~2. Here, the Fermi wave number is given

by ksF = 2kso, and the associated Fermi velocity is vsF = αeffEx/~. In this

regime, the main effect of the applied magnetic field is the opening of a gap

at kz = 0, thus we are allowed to drop the kz dependence of the g factors

[see Eqs. (7.10)] and to use the following approximation for the Zeeman split-

ting ∆Z ≈ ∆0
Ze

iϑ0
B = µB(Bxgx0 + iBzgz0). To derive the MF wave functions

[249], we first linearize the spectrum around the Fermi points kz = 0 (interior

branch of the spectrum) and kz = ±ksF (exterior branch of the spectrum)

and express the fermionic operators in terms of slowly varying left- and right
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movers L± and R± where the indices ± label the two pseudospin directions

for a quantization axis pointing along the SOI induced by the electric field Ex.

As a result, the Hamiltonian splits into two independent parts. The exterior

branch is described by

He = i~vsF η0νz∂z +
1

2
[i∆sc(ηx + iηy)νy + H.c.] , (7.19)

which is written in the basis (L+, R−, L
†
+, R

†
−). Here, the Pauli matrices ηi

(νi), i = 0, x, y, z, act in particle-hole (left- and right-mover) subspace. The

interior branch is described by

Hi =− i~vsF η0νz∂z +
1

2
[i∆sc(ηx + iηy)νy + H.c.]

−∆0
Z(cosϑ0

Bη0νy + sinϑ0
Bηzνx), (7.20)

which is given in the basis (R+, L−, R
†
+, L

†
−). As shown before, a localized zero

energy state, MF, exists in the topological phase ∆0
Z > |∆sc|. The associated

MF wave function is a sum of two contributions [249], Φ̂s(z) = Φ̂e
s(z) + Φ̂i

s(z),

originating from the exterior and interior branches (for an explicit expression

see App. F.2), which are of the form

Φ̂e
s(z) ∝ e−z/ξ

e
s , Φ̂i

s(z) ∝ e−z/ξ
i
s , (7.21)

with the localization lengths given by

ξes =
αeff|Ex|
|∆sc|

, ξis =
αeff|Ex|
|∆−|

. (7.22)

Both ξes and ξis depend linearly on the magnitude of the applied electric field

Ex, thus weaker fields result in smaller localization lengths. Furthermore, ξis
shows an implicit dependence on the magnitude and direction of B in the

denominator via ∆− = |∆sc| − ∆0
Z . The localization length diverges when

∆0
Z approaches |∆sc|, which happens when the topological gap closes and the

system becomes gapless. In Fig. 7.3, we plot ξes and ξis as functions of the

angle θ enclosed by B and the x axis (see Fig. 7.1). We see that as soon as

B has a non-zero component parallel to the NW, ξis increases until it diverges

at the point where the topological gap closes and the system goes into the

topologically trivial phase. This effect roots in the strong anisotropy of the

g factor in ∆0
Z which leads to a quick closing of the topological gap as soon

as θ deviates from zero. Furthermore, increasing the magnitude of B while

still being in the strong SOI regime, such that |∆−| > |∆sc|, i.e., ∆0
Z ≥ 2|∆sc|,

results in ξis < ξes for a certain range of θ. Thus, in this regime, the localization

length of the MF wave functions, ξ = max{ξis, ξes}, is independent of the

magnetic field.
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Abbildung 7.3: Localization lengths ξes and ξis as functions of the angle θ defined by B =
B(cos θ, 0, sin θ), for Ex = 4 V/µm and for different magnitudes of B. As soon as θ deviates
from 0, ξis increases until its value diverges when the topological gap closes. Furthermore,
increasing B above a threshold value given by |∆−| = |∆sc|, i.e., ∆0

Z ≥ 2|∆sc|, results
in ξis < ξes for a certain range of θ. Since ξes is independent of B, its value appears as a
constant in the plot. We use the NW parameters R = 7.5 nm and ∆ = 23 meV and assume
a superconductivity pairing potential of ∆sc = 200 µeV.

Weak SOI

Next, we focus on the weak SOI regime in which ∆so � ∆Z . We find that

∆Z ∼ ∆0
Z is still a good approximation for magnetic fields up to B ∼ 5T. This

allows us to simplify Eq. (7.12). As a result, the Fermi wave number is given by

kwF ≈
√

2meff∆0
Z/~, and the associated Fermi velocity reads vwF =

√
2∆0

Z/meff.

By treating the SOI as a weak perturbation, we find the eigenstates of the

particle Hamiltonian around the Fermi points kwF and linearize the particle-

hole Hamiltonian in the basis constructed of these states. We find

H(e) = −i~vwF η0νz∂z +
1

2

[
∆̄∗scie

−iϑ0
B (ηx + iηy)νy + H.c.

]
, (7.23)

which is represented in the basis (R,L,R†, L†), with R (L) being the right-

mover (left-mover) in the weak SOI regime. As already found in Ref. [249],

the effective coupling due to superconductivity is suppressed by a factor

kso/k
w
F � 1, resulting in an effective superconducting coupling term |∆̄sc| =

2|∆sc|kso/kwF . This can be understood from the fact that without the SOI,

the pseudospins of the states at the Fermi points are perfectly aligned and

only the weakly perturbing SOI term tilts them into a slightly non-parallel

configuration that enables a superconducting pairing. The localized MF wave

function is again a sum of two contributions, Φ̂w(z) = Φ̂
(e)
w (z) + Φ̂

(i)
w (z) (for
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Abbildung 7.4: Localization lengths ξ
(e)
w and ξ

(i)
w as functions of the angle θ defined by

B = B(cos θ, 0, sin θ), for different magnitudes of Ex and B. Here we use the combinations
Ex = 1 V/µm and B = 2 T (blue), Ex = 2 V/µm and B = 1.5 T (red). As soon as θ

deviates from 0, ξ
(i)
w increases until its value diverges when the topological gap closes. In

contrast to ξes (see Fig. 7.3), ξ
(e)
w now shows a dependence on θ. Here, we use the same values

for the NW parameters and superconducting pairing parameter as in Fig. 7.3.

an explicit expression see App. F.2), which are of the form

Φ̂(e)
w (z) ∝ e−z/ξ

(e)
w , Φ̂(i)

w (z) ∝ e−z/ξ
(i)
w , (7.24)

with localization lengths given by

ξ(e)
w =

√
2∆0

Z

meff

~
|∆̄sc|

=
∆0
Z

|∆sc|
~2

meffαeff|Ex|
,

ξ(i)
w =

αeff|Ex|
|∆−|

. (7.25)

We see that the localization lengths depend quite differently on the strength

of the SOI determined by Ex, ξ
(e)
w ∝ 1/|Ex| and ξ

(i)
w ∝ |Ex|. Furthermore, in

contrast to the strong SOI regime, both localization lengths depend on the

magnitude and direction of B. In Fig. 7.4, we plot ξ
(e)
w and ξ

(i)
w as functions of

the angle θ enclosed by B and the x axis, for various combinations of Ex and

B. We observe that the dependence of ξ
(e)
w on θ is much weaker than the θ

dependence of ξ
(i)
w , e.g., ξ

(e)
w does not diverge when the topological gap closes.

Furthermore, depending on the relative magnitude of the fields, we can find

both, ξ
(e)
w > ξ

(i)
w and ξ

(e)
w < ξ

(i)
w .
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Abbildung 7.5: Logarithm (color coded) of the dominating localization length, ξ =

max{ξes , ξis} and ξ
(e)
w , in the strong and weak SOI regime, respectively, as functions of the

applied fields Ex and B. For simplicity we restrict ourselves to B = (Bx, 0, 0). The diagonal
gray area approximately denotes the transitional regime between regions of strong and weak
SOI. Here, we use the same values for the NW parameters and superconducting pairing
parameter as in Fig. 7.3.

Optimal experimental regime

As shown above, the magnitude and direction of the applied fields determine

the localization lengths of the MF wave functions, see Figs. 7.3 and 7.4. In

experiments, it is crucial to tune the applied fields such that obtained MFs

are well separated and the localization lengths are as short as possible. To

identify the optimal field regime, we display the logarithm of the maximal

localization length for the given magnitudes of the applied fields in Fig. 7.5.

In the weak SOI regime, we furthermore have to take into account that the part

of the wave function decaying with the localization length ξ
(i)
s is additionally

suppressed by a factor kso/k
w
F � 1 and thus can be neglected. To simplify

the analysis, we fix the direction of the magnetic field to be perpendicular

to the NW, B = (Bx, 0, 0). Here, we are motivated by the fact that this

configuration corresponds to the shortest localization lengths in the strong

SOI regime. The range of Bx is chosen such that we remain in the topological

regime throughout. We see that when applying large Ex while keeping Bx

small or when applying large Bx while keeping Ex small, the localization

lengths are not the shortest possible. Hence it is most favorable to choose an

intermediate regime in which both fields take rather moderate values and the

Zeeman energy and the SOI energy are comparable with each other.
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7.4 Finite nanowires: hybridized Majorana

fermions

So far we have focused on a semi-infinite NW that, when being brought into

the topological phase, hosts a zero-energy MF at the end. However, in any

realistic system, the NWs are of finite length L and host two MFs: one MF at

each end. These MFs could overlap and hybridize if their localization lengths

are comparable with the NW length. This results in the emergence of an ordi-

nary fermion which, in general, possesses a non-zero energy [245, 246]. In this

section, we examine the dependence of this fermionic energy on the magnitude

of the applied fields in the strong and weak SOI regime. We assume that the

NW stretches from z = 0 to z = L and search for hybridized wave functions

that satisfy vanishing boundary conditions at both ends of the NW. We no-

te that we focus here on the direct overlap between two MF wave functions

and neglect a possible hybridization mediated by bulk superconducting states

[252].

Strong SOI

In this section, we explore the energy of hybridized MFs in the strong SOI

regime. First, we solve the Schrödinger equations Heφe = Esnφ
e and Hiφi =

Esnφ
i for arbitrary Esn > 0 (for the Hamiltonian densities see Sec. 7.3). Since

the NW is of finite length, both the decaying and growing eigenfunctions are

normalizable and may contribute to the final hybridized wave function. We

obtain a set of eight eigenfunctions φej and φij , j = 1, . . . , 4, where the φej show

an oscillatory behavior proportional to e±ik
s
F z. We search for a non-trivial

linear combination of these eigenfunctions, Φs
hyb(z) =

∑
j(a

e
jφ
e
j + aijφ

i
j), that

satisfies the boundary conditions Φs
hyb(z = 0) = Φs

hyb(z = L) = 0. In the

considered regime, Esn is given by a quite involved implicit equation which we

omit displaying here.

We provide numerical results for several specific sets of applied fields and

plot Esn as a function of Ex in Fig. 7.6. For all field configurations, we observe

an oscillatory behavior of Esn with increasing amplitude as Ex increases. In

addition, depending on the magnitude of the applied magnetic field, the curves

may show a non-zero offset that increases with Ex. This feature is the most

pronounced for small magnetic fields close to the point where the topological

gap closes.

These results can be explained easily when remembering the zero energy
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Abbildung 7.6: The fermion energy Esn in the strong SOI regime as a function of the electric
field Ex for different magnitudes of the applied magnetic field B = (Bx, 0, 0), see the insets.
We consider three different ratios of the localization lengths ξes/ξ

i
s. If the contribution of

the interior branches is dominant, ξis > ξes , E
s
n shows an increasing offset from zero with

weak superimposed oscillations on top of it. If the contribution of the exterior branches
is dominant, ξes > ξis, E

s
n shows an increasing offset from zero with strong superimposed

oscillations on the top of it such that Esn periodically returns to zero. Here, we assume a
superconducting pairing potential ∆sc = 200 µeV and use the NW parameters R = 7.5 nm,
∆ = 23 meV and L = 0.7 µm.

MF wave function which is a linear combination of oscillating (exterior branch,

ξes) and non-oscillating (interior branch, ξis) wave functions (see Sec. 7.3). This

result remains valid for very small energies Esn, thus the lengthscales governing

the growth and decay of the eigenstates φe,ij are comparable to ξes and ξis. If the

localization length is set by the non-oscillating interior branch part, ξes/ξ
i
s � 1
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(see the insets in Fig. 7.6), Esn monotonically splits away from zero with supe-

rimposed weak oscillations. On the contrary, if the localization length is set by

the strongly oscillating exterior branch part, ξes/ξ
i
s ≥ 1, Esn oscillates strongly

and even goes back to zero. Thus, depending on the ratio of the localization

lengths ξes and ξis which can be tuned by changing the magnitude or the di-

rection of the applied magnetic field with respect to the NW (see Fig. 7.3),

the offset of Esn can be tuned. The period of the superimposed oscillations

is independent of the magnitude of Bx since the φej cause oscillations with a

period δEx = ~2π/(meffαeffL). Using the latter relation, the strength of the

SOI can be determined from the oscillation period.

Weak SOI

In the weak SOI regime, we apply the same procedure as described in Sec. 7.4.

Here, we employ the Hamiltonian H(e) given in Eq. (7.23) and solve the

Schrödinger equation H(e)φ(e) = Ewn φ
(e) for an arbitrary Ewn > 0. The

four eigenstates φ
(e)
j , j = 1, . . . , 4, are combined into a non-trivial linear

combination, Φw
hyb(z) =

∑
j b

(e)
j φ

(e)
j , that satisfies the boundary conditions

Φw
hyb(z = 0) = Φw

hyb(z = L) = 0. This leads to an implicit condition for Ewn ,

[√
∆̄2
sc − E2

n

∆̄sc

]2

=

2 sinh2

[
L
√

∆̄2
sc−E2

n

vwF ~

]

cosh

[
2L
√

∆̄2
sc−E2

n

vwF ~

]
− cos(2kwFL)

. (7.26)

This implicit equation can be transformed to an explicit relation for Ewn by

assuming that Ewn � ∆̄sc,

Ewn ≈ ∆̄sc| sin(kwFL)|e−L/ξ
(e)
w , (7.27)

which shows an oscillatory behavior of Ewn as a function of kwF , where the latter

is a function of B. In Fig. 7.7, we plot Ewn as a function of B = (Bx, 0, 0) for

a weak electric field Ex where we obtained Ewn once by solving Eq. (7.26)

numerically and once by using the explicit relation given in Eq. (7.27). Both

results agree well, especially for small Bx. We see that Ewn oscillates and the

energy of the fermion composed of two overlapping MFs periodically comes

back to zero [245, 246]. The periodicity of the oscillation is given by

δ∆0
Z ≈

π~
L

√
2∆0

Z

meff
, (7.28)
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Abbildung 7.7: The oscillating energy Ewn as a function of B = (Bx, 0, 0). We display both the
results from solving the implicit Eq. (7.26) numerically (red) and the simplified solution given
in Eq. (7.27) (blue) and find good agreement. We assume a weak electric field Ex = 0.5 V/µm
and a proximity induced superconducting pairing potential ∆sc = 200 µeV. We use the NW
parameters R = 7.5 nm, ∆ = 23 meV and L = 2 µm.

and depends on the g factor and hence on the direction of the magnetic field. As

a result, the change in the period as a function of the magnetic field direction

could be used to measure the g factor anisotropy.

Changing the strength of the applied electric field Ex does not affect the

period of the oscillation, however, examining Eq. (7.27) in more detail shows

that a stronger field Ex yields a smaller amplitude of the splitting.

7.5 Conclusion

In this chapter, we utilized a concrete microscopic model to study MFs confi-

ned to Ge/Si core/shell NWs. To this end, we derived an effective 1D lowest

subband hole Hamiltonian, which also includes the superconducting pairing

and takes into account specifics of Ge/Si core/shell NWs such as the g factor

anisotropy and the electric field dependence of the induced Rashba SOI. We

have determined the MF localization lengths in the strong and in the weak

SOI regime and examined their dependence on the direction of the magnetic

field with respect to the NW. In general, we found that intermediate magni-

tudes of electric and magnetic fields lead to the shortest localization lengths

of the MF wave functions. Additionally, we examined finite NWs, where two

MFs localized at the NW ends overlap and form an ordinary fermion. This

hybridization results in a fermion whose energy oscillates as a function of the
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electric field (magnetic field) in the strong (weak) SOI regime. The possibility

to control the overlap of MFs by tuning only electric fields could be used to

perform topologically non-protected operations on Majorana fermion that are

necessary to realize universal quantum computation [206].

From our results we conclude that Ge/Si core/shell NWs are a promising

system regarding the emergence of MFs due to the high control over the SOI

strength. In addition, we note that these NWs are also excellent candida-

tes for parafermion setups which require even stronger SOI and substantial

electron-electron interactions [253–255]. In addition, the lowest energy sub-

band Hamiltonian derived in this chapter can provide the basis for further

investigation of arrays of Ge/Si NWs. Such arrays could also be used to stu-

dy quantum Hall effect [256–260], topological superconductor [261, 262], and

quantum spin Hall effect [263] in the anisotropic limit.
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A

Supplementary information for Chapter 2:

‘Effect of strain on hyperfine-induced

hole-spin decoherence in quantum dots’

A.1 Hamiltonian - Explicit form

In Chapter 2, we use the 8×8 Kane Hamiltonian as given in Ref. [6], Appendix

C, and a harmonic confinement potential. For completeness, we display here

the general structure and relevant parts. The Kane Hamiltonian is given by

HK =




K11 K1 K2 K3

K†1 K22 K4 K5

K†2 K†4 K33 K6

K†3 K†5 K†6 K44


 , (A.1)

of which the blocks

K22 =

(
A 0

0 A

)
, K4 =

√
3

(
2C D

D∗ −2C∗

)
,

K†1 =

(
−B 0

0 B∗

)
, K5 =

√
6

(
−C −D
D∗ −C∗

)
,

(A.2)

are relevant for the calculations. The single entries are denoted by A =

−~2/(2m0)[(γ1 + γ2)(k2
x + k2

y) + (γ1 − 2γ2)k2
z ], B = 1/

√
2P (kx − iky), C =

~2/(2m0)γ3kz(kx − iky), and D = ~2/(2m0)[γ2(k2
x − k2

y) − 2iγ3kxky], with ~
being Planck’s constant, m0 being the bare electron mass and γi, i = 1, 2, 3,

denoting the Luttinger parameters. In HK, terms proportional to Ck, B7v and

B±8v were omitted due to their smallness [64, 104]. The harmonic confinement

potential

Vconf,j(r) =

(
mj,⊥ω

2
j,⊥

2
z2 +

mj,‖ω
2
j,‖

2
(x2 + y2)

)
12×2 (A.3)
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is defined by the confinement lengths L and a via ωj,⊥ = ~/(mj,⊥a
2) and ωj,‖ =

~/(mj,‖L
2). The effective masses in the single bands are given by mCB,⊥/‖ =

m′, mHH/LH,⊥ = m0/(γ1 ∓ 2γ2),mHH/LH,‖ = m0/(γ1 ± γ2) and mSO,⊥/‖ =

m0/γ1. 12×2 denotes the 2×2 unit matrix. Table 2.1 in the main text lists the

material parameters of InAs we use in the calculations as input for the 8×8

Hamiltonian HK + Vconf +Hε.

A.2 Continuum limit of the memory kernel

For the second and fourth order in a homonuclear system rotating with ωn we

find [113]

Σ(2)(s+ iωn) '− c+ + c−
4ωn

∑

k

|A±k |2, (A.4)

Σ(4)(s+ iωn) '− ic+c−
4ω2

n

∑

k1,k2

|A±k1
|2|A±k2

|2
s+ i(Azk1

−Azk2
)

(A.5)

where we dropped the strain dependence of A±,zk = A±,zk (ε) for readability. In

both equations, c± = I(I + 1) − 〈〈m(m ± 1)〉〉, where I is the nuclear spin,

m = −I, . . . , I and the brackets 〈〈. . .〉〉 indicate averaging over all eigenvalues

m of Izk . By taking the continuum limit v0
∑

k =
∫

d3r we replace the sums by

integrals. The strain-dependent frequency shift ∆ω = −Re
[
Σ(2)(s+ iωn)

]
∼

10−18eV2/ωn can be evaluated for Eqs. (2.7) and (2.8) in a straightforward

fashion. A recalculation of the result of Ref. [104] gives exact shape of 1/T2

after some transformations of its original form. Starting from

Σ(4)(s+ iωn) ' −ic+c−
4ω2

n

∑

k1,k2

|A±k1
|2|A±k2

|2
s+ i(Azk1

−Azk2
)
, (A.6)

we first simplify by inserting the z averaged coupling, justified by L � a

and then performing the two-dimensional continuum limit. In the resulting

two-dimensional equation we shift to polar coordinates xj = rj cosϕj and

yj = rj sinϕj . After the angular integration we rescale the radial variables

by replacing rj = rjjL. In the resulting integral we substitute e−r
2
11 = x,

r4
11 = (lnx)2, e−r

2
22 = y and r4

22 = (ln y)2 and take only the leading term:

Σ(4)(s+ iωn) '− ic+c−|A±|4
4ω2

nAz

∫ 1

0

∫ 1

0
dxdy

× (lnx)2(ln y)2xy

s/Az + i(x− y)
, (A.7)
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where Az = Az(ε) and A± denotes the sum of all A±,j,j′(ε) contributing to the

leading term. To calculate the decoherence rate, we have to take into account

that 1/T2 = −Im [Σ(iωn + i∆ω − 0+)] and hence consider

Σ(4)(iωn + i∆ω − 0+) '− ic+c−|A±|4
4ω2

nAz

∫ 1

0

∫ 1

0
dxdy

× (lnx)2(ln y)2xy

(i∆ω − 0+)/Az + i(x− y)
. (A.8)

Since we are only interested in the imaginary part of the equation, we use the

relation

lim
χ→0

1

ζ ± iχ = P 1

ζ
∓ iπδ(ζ), (A.9)

where χ, ζ are real numbers and P indicates that in any following integration

of the above expression the principle value of the integral has to be taken. We

find

Im [ Σ(4)(iωn + i∆ω − 0+)
]
'− c+c−|A±|4

4ω2
nAz

∫ 1

0

∫ 1

0
dxdy(lnx)2x

× (ln y)2y(−π)δ(x− y + ∆ω/Az),

(A.10)

from which follows

1

T2
=− Im

[
Σ(4)(iωn + i∆ω − 0+)

]
(A.11)

= π
c+c−
4ω2

n

|A±|4
|Az|

∫ 1

0

∫ 1

0
dxdyxy

× (lnx)2(ln y)2δ(x− y −∆ω/|Az|) (A.12)

= π
c+c−
4ω2

n

|A±|4
|Az|

∫ 1

0
dx [lnx]2 [ln(x− η)]2

× x(x− η)Θ(x− η)Θ(1− x− η), (A.13)

where we use Az = −|Az| and replace η = ∆ω/|Az| in the final step. We arrive

at the following expression for the decoherence time

1

T2
= π

c+c−
4ω2

n

|A±|4
|Az|

∫ 1

η
dxx[lnx]2(x− η)[ln(x− η)]2, (A.14)

which can be evaluated numerically for any η < 1.
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Supplementary information for Chapter 3:

‘Tunable g factor and phonon-mediated hole

spin relaxation in Ge/Si nanowire

quantum dots’

B.1 Effective 1D Hamiltonian

Here we display the effective 1D Hamiltonians used in Eqs. (3.2) and (3.3) of

the main text. An extended derivation of these terms can be found in Ref. [23].

We use the basis {g+, g−, e+, e−}, where the exact form of the states g±(x, y)

and e±(x, y) is given in Ref. [23]. The diagonal elements of the Luttinger-Kohn

(LK) Hamiltonian and the strain induced splitting is combined in

HLKd
+Hstrain =




~2k2
z

2mg
0 0 0

0 ~2k2
z

2mg
0 0

0 0 ~2k2
z

2me
+ ∆ 0

0 0 0 ~2k2
z

2me
+ ∆



, (B.1)

where ~kz is the momentum operator along the wire and mg ' m0/(γ1 + 2γs)

and me = m0/(γ1 + γs) are the effective masses along z. Here, γ1 and γs are

the Luttinger parameters in spherical approximation and m0 denotes the bare

electron mass. ∆ ≡ ∆LK + ∆strain(γ) denotes the level splitting between g±

and e±, γ ≡ (Rs − R)/R is the relative shell thickness, and R (Rs) is the

core (shell) radius. ∆LK = 0.73~2/(m0R
2) and the strain dependent energy

splitting can take values ∆strain(γ) ' 0 − 30 meV. The magnetic field B =

107



108 Anhang B.

(Bx, 0, Bz) ≡ |B|(sin θ, 0, cos θ) interacts via the Zeeman coupling

HB,Z = µB




BzG BxK 0 0

BxK −BzG 0 0

0 0 BzF BxM

0 0 BxM −BzF


 , (B.2)

where we set By = 0 due to cylindrical symmetry. Here, µB is the Bohr

magneton and the parameters take the numerical values G = −0.06, K = 2.89,

M = 2.56 and F = 1.56. From the LK Hamiltonian additional off-diagonal

coupling terms arise and we find

HLKod
=




0 0 0 −iCkz
0 0 −iCkz 0

0 iCkz 0 0

iCkz 0 0 0


 , (B.3)

with coupling constant C = 7.26~2/(m0R). To describe interactions with the

electric field E = (Ex, Ey, 0) = |E|(cosϕel, sinϕel, 0), we introduce the short-

hand notation Ẽ = |E|eiϕel . The effective conventional Rashba SOI interaction

reads

HR = α




0 −iẼkzT ẼS 0

iẼ∗kzT 0 0 −Ẽ∗S
Ẽ∗S 0 0 −3

4 iẼ
∗kz

0 −ẼS 3
4 iẼkz 0


 (B.4)

with T = 0.98 and S = 0.36/R and α = −0.4 nm2e. Although fully taken

into account, HR turns out to be negligible for the typical parameters and

electric fields considered here (see Eq. (B.6)). The direct, dipolar coupling to

E is given by

HDR = eU




0 0 Ẽ 0

0 0 0 −Ẽ∗
Ẽ∗ 0 0 0

0 −Ẽ 0 0


 , (B.5)

where the parameter U = 0.15R scales linearly in R. We note that the para-

meters S and U of HR and HDR are related by

eU

αS
' −1.1

R2

nm2
, (B.6)

hence HDR dominates HR by one to two orders of magnitude for radii between

R = 5 − 10 nm. Lastly, the interaction of the magnetic field via the orbital
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motion is given by

HB,orb = iµB




0 0 −BxLkz −BzDkz
0 0 BzDkz −BxLkz

BxLkz −BzDkz 0 0

BzDkz BxLkz 0 0




(B.7)

with L = 8.04R and D = 2.38R.

B.2 Effective 1D phonon Hamiltonian

Starting from the spherical Bir-Pikus Hamiltonian (see Eq. (3.7) of the main

text), we derive an effective hole phonon coupling Hamiltonian for each phonon

mode λ. This is done by integrating out the transverse components of the

matrix elements of the states g±(x, y) and e±(x, y). To improve readability,

we introduce an effective phonon annihilation operator b̃λ = eiqzbq,λ(t) =

eiqze−iωλ(q)tbq,λ.

The transversal phonon mode T couples as

HT =
∑

q

a1




0 0 0 b̃T − b̃†T
0 0 −b̃T + b̃†T 0

0 b̃T − b̃†T 0 0

−b̃T + b̃†T 0 0 0


 ,

(B.8)

and the dilatational mode L gives

HL =
∑

q




a2(b̃L + b̃†L) 0 0 ia3(b̃L − b̃†L)

0 a2(b̃L + b̃†L) ia3(b̃L − b̃†L) 0

0 ia3(b̃L − b̃†L) a4(b̃L + b̃†L) 0

ia3(b̃L − b̃†L) 0 0 a4(b̃L + b̃†L)


 .

(B.9)

For the two flexural modes F±1, we find

HF+1 =
∑

q

ia5




0 0 b̃†F+1
0

0 0 0 b̃F+1

−b̃F+1 0 0 0

0 −b̃†F+1
0 0


 (B.10)
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and

HF−1 =
∑

q

ia5




0 0 −b̃F−1 0

0 0 0 −b̃†F−1

b̃†F−1
0 0 0

0 b̃F−1 0 0


 . (B.11)

Here, the ai, i = 1, 2, 3, 4, 5, are real, q-dependent prefactors. The complete

effective hole phonon coupling Hh-ph is then given by

Hh-ph =
∑

λ

Hλ = HT +HL +HF+1 +HF−1 . (B.12)



C

Supplementary information for Chapter 4:

‘Nuclear spin diffusion mediated by heavy

hole hyperfine non-collinear interactions’

C.1 Effective heavy hole states in a self-assembled

quantum dots

In this section, we introduce the 4 × 4 k · p Hamiltonians describing valence

band states in zincblende semiconductors confined to strained quantum dots

with applied external magnetic field. Furthermore, we calculate the hybridized

lowest-energy eigenstates of the heavy-hole subsystem which are subject to

light-hole mixing [64, 104, 264].

The Hamiltonians [6] are written in terms of the spin-3/2 matrices Ji,

i = x, y, z, which are given in a basis of angular momentum eigenstates

|J,M〉. Here, the heavy hole band corresponds to M = ±3/2 and the light

hole band to M = ±1/2. We choose the basis of the bulk Hamiltonians

to be {|u3/2〉 , |u1/2〉 , |u−1/2〉 , |u−3/2〉}, where the |uM 〉 are products of P -

symmetric orbital angular momentum eigenstates (|P±〉 , |Pz〉) and spin states

(|↑〉 , |↓〉) [6]: |u±3/2〉 = ∓1/
√

2 |P±〉 |↑, ↓〉 and |u±1/2〉 = 1/
√

6(|2Pz, P−〉 |↑〉 ∓
|P+, 2Pz〉 |↓〉).

In the bulk semiconductor, the heavy and light hole states are given by

the Luttinger-Kohn Hamiltonian

Hk = − ~2

2m0

(
γ1k

2 − 2γ2

(
(J2
x − 1/3J2)k2

x + c.p.
))

+
~2

2m0
4γ3 ({Jx, Jy}{kx, ky}+ c.p.)

+
2√
3
Ck
(
{Jx, J2

y − J2
z }kx + c.p.

)
,

(C.1)

111
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where we have defined {A,B} = (AB + BA)/2, c.p. denotes cyclic permuta-

tion, ~ki = −i~∂i, i = x, y, z, is the momentum operator, k2 = k2
x + k2

y + k2
z

and J2 = J2
x + J2

y + J2
z . The Luttinger parameters are given by γl, l = 1, 2, 3

and Ck is a consequence of the spin-orbit interaction with higher bands. We

denote the diagonal part of Hk by Hk,0.

We include strain by taking into account

Hε = Dd Trε+ 2/3Du

(
(J2
x − 1/3J2)εxx + c.p.

)

+ (C4(εyy − εzz)Jxkx + c.p.) , (C.2)

where we have only considered diagonal elements of the strain tensor ε, εii,

i = x, y, z. Dd and Du denote vector potentials and the constant C4 is defined

in Ref. [107]. We refer to the diagonal, ki-independent part of Hε as Hε,0.

A magnetic field, B = ∇ × A = (0, 0, Bz), pointing along the growth

direction of the quantum dot, is included by adding two more terms to the

Hamiltonian [265, 266]. The first term is found by replacing k → k + eA in

Hk + Hε in a semi-classical manner. This yields the implicit magnetic field

dependence given by the vector potential A. We keep only terms linear in A

and define

Hmc = eA · v, (C.3)

where v = ∂(Hk + Hε)/∂k is the velocity operator. We note that proper

operator ordering is still enforced. The second term is the magnetic interaction

term

HB = −2µB
(
κJzBz + qJ3

zBz
)
, (C.4)

where κ is the isotropic and q the anisotropic part of the hole g factor.

We model a flat, cylindric quantum dot by choosing a three-dimensional

harmonic confinement potential,

Vc =




Vc,HH 0 0 0

0 Vc,LH 0 0

0 0 Vc,LH 0

0 0 0 Vc,HH


 , (C.5)

with

Vc,b(r) = −1

2
mb,⊥ω

2
b,⊥z

2 − 1

2
mb,‖ω

2
b,‖(x

2 + y2), (C.6)

where b = HH,LH detones heavy and light hole. We assume the origin of

the coordinate system to be loaced at the center of the quantum dot. The

confinement energies ωb,‖ = ~/(mb,‖L
2
b) and ωb,⊥ = ~/(mb,⊥a

2
b) are defined
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by the confinement lengths Lb and ab (Lb � ab). The corresponding effecti-

ve masses in the single bands are given by mHH/LH,⊥ = m0/(γ1 ∓ 2γ2) and

mHH/LH,‖ = m0/(γ1 ± γ2).

The quantum dot states are then described by

Hqd = Hk +Hε +Hmc +HB + Vc, (C.7)

and the used parameter values can be found in Table C.1. A realistic strain

configuration for cylindric InAs quantum dots can be found in Ref. [13]. We

divide Hqd into a leading order term Hqd,0 = Hk,0 +Hε,0 +Vc and a perturba-

tion Hqd,1, where Hk,0 and Hε,0 denote the diagonal terms of Hk and Hε. We

directly map the Hamiltonian Hk,0 + Vc onto a three dimensional anisotropic

harmonic oscillator whose eigenenergies Eb in band b are given by

Eb = −~ωb,⊥
(
nz +

1

2

)
− ~ωb,‖(nx + ny + 1). (C.8)

The associated eigenfunctions are the usual three dimensional harmonic os-

cillator eigenfunctions [see, e.g., Ref. [267]] φb,ns(r), where n = (nx, ny, nz)

is a vector of the associated quantum numbers. We choose the basis states of

Hqd,0 to be products of type

|Ψnmj 〉 = φnsb (r) |umj 〉 . (C.9)

We are interested in the two lowest-energy states in the heavy hole band,

|Ψns03/2 〉 and |Ψns0−3/2〉 (n0 = (0, 0, 0)). We decouple these states from the

higher energy states of Hqd by a Schrieffer-Wolff transformation [101],

H̃qd = e−SHqdeS . We perform the transformation up to second order in

(Hqd,1)ij/∆E � 1, where (Hqd,1)ij denotes the matrix elements coupling

|Ψns03/2 〉 and |Ψns0−3/2〉 to the higher energy states and ∆E is the energy splitting

between the associated subspaces. The approximate lowest energy eigenstates

are given by

|Ψ̃ns0±3/2〉 = N±3/2,ns0

∑

M,ns
cM,ns |ΨnsM 〉 , (C.10)

where N±3/2,ns0 denotes the normalization. The coefficients cM,ns depend on

quantum dot parameters, such as confinement, strain, dot material, and on

the external magnetic field.

C.2 Effective hyperfine interactions of heavy holes

In this section, we calculate the coupling between the effective lowest-energy

states |Ψ̃ns03/2 〉 and |Ψ̃ns0−3/2〉 via the hyperfine interaction in InAs (GaAs) quan-

tum dots. We follow the procedure outlined in Refs. [64, 104].
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GaAs InAs GaAs InAs
γ1 6.85 20.40 Ck [eVÅ] -0.0034 -0.0112
γ2 2.10 8.30 Dd [eV] -1.16 [108] -1.0 [108]
γ3 2.90 9.10 Du [eV] 3.0 2.7
κ 1.1 [268] 7.68 [268] C4 [eVÅ] 6.8 [269] 7.0 [269]
q 0.01 [270] 0.04 [147] a [Å] 5.65 6.05

Tabelle C.1: List of the used material parameters. All parameters were taken from Ref. [6]
if not stated otherwise.

The hyperfine interaction Hamiltonians for an electron located at r in the

field of a nucleus at rk consists of three terms, the Fermi contact hyperfine

interaction (Hc
HF), the anysotropic hyperfine interaction (Ha

HF) and the coup-

ling of the orbital angular momentum to the nuclear spin (HL
HF). The three

terms read (~ = 1) [62]

Hc
HF =

µ0

4π

8π

3
γSγjkS · Ikδ(rk), (C.11)

Ha
HF =

µ0

4π
γSγjk

3(nk · S)(nk · Ik)− S · Ik
r3
k(1 + d/rk)

, (C.12)

HL
HF =

µ0

4π
γSγjk

Lk · Ik
r3
k(1 + d/rk)

. (C.13)

Here γS = 2µB and γjk = gjkµN with the Bohr (nuclear) magneton µB (µN )

and gjk is the nuclear g factor of isotopic species jk. We have defined the

relative coordinate of the electron with respect to the kth nucleus by rk =

r−rk, its relative direction by nk = rk/rk, and d ' Z×1.5×10−15 m, and Z is

the charge of the nucleus. The spin and orbital angular-momentum operators

are denoted by S and Lk = rk × p.

The Bloch states are written in terms of orbital angular momentum and

spin states as introduced in Sec. C.1. We approximate the orbital angular

momentum eigenstates as linear combinations of atomic eigenfunctions [110]

uj(r) = αψnlmIn,Ga(r + d/2) +
√

1− α2ψ4lm
As (r − d/2). Here, α is the electron

distribution between the two atoms and ψnlm(r) = Rnl(r)Y
m
l (ϑ, ϕ) are hydro-

genic eigenfunctions with quantum numbers n, l, and m. The radial part of the

wave function depends on the effective central charge Zeff of the nuclei where

we use values for free atoms [111, 112]. The position of the hole with respect

to a nuclei located in the Wigner-Seitz cell at ±d/2 is denoted r±d/2, where

d = aIn(Ga)As(1, 1, 1)/4 is the In(Ga)-As bonding vector defined by the re-

spective lattice constant aIn(Ga)As. The bonding character of the valence band

is expressed by the + sign, and
∫

WS d3r|umj (r)|2 = 2 enforces normalizati-
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on [63]. Here, the subscript WS indicates that the integral is evaluated over

the Wigner-Seitz cell. For the numerical evaluation of the integral we consider

a Wigner-Seitz cell as a sphere of radius one half of the As-As atom distance,

centered in the middle of the bond connecting In(Ga) with As.

To calculate the hyperfine interaction of different basis states with all

nuclear spins, we have to evaluate
∑

k 〈ΨnsM (r)|Hc
HF +Ha

HF +HL
HF |Ψns

′
M ′ (r)〉.

We note that the envelopes φnsb (r) vary slowly across a single Wigner-Seitz

cell, whereas the dominant part of the hyperfine interaction is given within

a single Wigner-Seitz cell and the long-ranged part of the hyperfine inter-

actions spreading across the boundaries of the Wigner-Seitz cell leads only

to minor corrections [64]. Hence we can write the hyperfine interaction as∑
k(φ
ns
b (rk))

∗φns
′

b′ (rk) 〈ukM |Hc
HF +Ha

HF +HL
HF |ukm′j 〉WS

. We numerically eva-

luate the matrix elements 〈ukM |Hc
HF + Ha

HF + HL
HF |ukM ′〉WS and write them

in matrix form using the basis {|uk3/2〉 , |uk1/2〉 , |uk−1/2〉 , |uk−3/2〉}. By averaging

our results over the nuclear abundance νi of each atomic species i, we find

HHF ≈ Ahhf




−Iz −0.52I− 0 0

−0.52I+ −0.46Iz −0.65I− 0

0 −0.65I+ 0.46Iz −0.52I−

0 0 −0.52I+ Iz


 (C.14)

where Ahhf ∼ 1.58 µeV(1.21 µeV) is the InAs (GaAs) hyperfine coupling con-

stant. Using HHF we can derive an effecive hyperfine Hamiltonian for the

lowest-energy states |Ψ̃ns0±3/2〉, We find for an InAs quantum dot subject to

Bz = 5T with εxx = εyy = −εzz = −0.06, LLH = 1.5LHH, and aLH = 1.5aHH

Hh
HF = Ah

zS
h
z Iz +Ah

⊥,1S
h
+I− +Ah∗

⊥,1S
h
−I+

+Ah
⊥,2S

h
+I+ +Ah∗

⊥,2S
h
−I− +Ah

ncS
h
z I+

+Ah∗
ncS

h
z I− +Ah

ncsS+Iz +Ah∗
ncsS−Iz,

(C.15)

with Ah
z ' −7.89 · 10−7 eV, Ah

⊥,1 ' −4.13 · 10−10i, Ah
⊥,2 ' −6.38 · 10−10,

Ah
ncs ' −5.03 · 10−10(1 + i), and Ah

nc ' −1.58 · 10−9(1− i).

C.3 Effective Hamiltonian for optical nuclear spin

pumping via bright excitons

The Hamiltonian describing the dynamics of the system is given by

H(t) = H0 +HL(t) +Hnuc
Z +He

HF +Hh
HF. (C.16)



116 Anhang C.

The Hamiltonian H0 describes the free evolution of the exciton states, HL(t)

is the time-dependent laser Hamiltonian, Hnuc
Z describes the nuclear Zeeman

interaction, and He
HF and Hh

HF are the hyperfine Hamiltonians for electrons

and holes. We have

H0 = E↓⇑ |↓⇑〉 〈↓⇑|+ E↑⇓ |↑⇓〉 〈↑⇓|+ E↑⇑ |↑⇑〉 〈↑⇑|+ E↓⇓ |↓⇓〉 〈↓⇓| , (C.17)

where

E↓⇑ = EX + γ2B
2 +

δ0

2
+

1

2

√
δ2

1 + (ge − 3gh)2µ2
BB

2

E↑⇓ = EX + γ2B
2 +

δ0

2
− 1

2

√
δ2

1 + (ge − 3gh)2µ2
BB

2

E↑⇑ = EX + γ2B
2 − δ0

2
+

1

2

√
δ2

2 + (ge + 3gh)2µ2
BB

2

E↓⇓ = EX + γ2B
2 − δ0

2
− 1

2

√
δ2

2 + (ge + 3gh)2µ2
BB

2.

(C.18)

Here, EX is the energy required to excite an exciton (band-gap energy), γ2B
2
z

is the diamagnetic shift [271], with γ2 the diamagnetic constant and B the

z-component of the external magnetic field, µB is the Bohr magneton, and ge

(gh) is the electron (hole) Landé g factor. The fine structure of excitons [174]

results in an energy splitting δ0 between bright and dark exciton subspaces,

δ1 between bright excitons, and δ2 between dark excitons.

The nuclear Zeeman Hamiltonian is given by

HZ
n = gnµnBIz, (C.19)

with gn the nuclear Landé g factor and µn the nuclear Bohr magneton. The

time-dependent laser Hamiltonian can be written as

HL(t) = ~Ω
(
eiωLt |0〉 〈↓⇑|+ e−iωLt |↓⇑〉 〈0|

)
, (C.20)

where Ω and ωL are respectively the Rabi and laser frequencies. The electro-

nic hyperfine Hamiltonian within the homogeneous coupling approximation is

given by,

He
HF = Ae

(
SzIz +

1

2
(S+I− + S−I+)

)
. (C.21)

The average hyperfine coupling strength is denoted by Ae. Sz and Iz describe

respectively the z-component of the electron spin and total nuclear spin. We

have also introduced electronic and nuclear spin ladder operators, S± = Sx ±
iSy and I± = Ix ± iIy. The effective hyperfine Hamiltonian for heavy holes
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can be written,

Hh
HF = Ah

zS
h
z Iz +Ah

⊥,1S
h
+I− +Ah∗

⊥,1S
h
−I+ +Ah

⊥,2S
h
+I+

+Ah∗
⊥,2S

h
−I− +Ah

ncS
h
z I+ +Ah∗

ncS
h
z I−, (C.22)

where Sh
i (i = z,±) are pseudospin operators for the heavy hole states.

To get rid of the explicit time-dependence in HL, we perform a similarity

transformation H → eiξt(H − ξ)e−iξt, with ξ = E↓⇑ + ~∆ and ∆ is the la-

ser detuning. This transformation leaves both hyperfine and nuclear Zeeman

Hamiltonians unchanged, whereas H0 becomes

H0 → H ′0 =
~∆

2
(− |0〉 〈0|+ |↓⇑〉 〈↓⇑|) +

(
~∆

2
+ E↑⇓↓⇑

)
|↑⇓〉 〈↑⇓|

+

(
~∆

2
+ E↑⇑↓⇑

)
|↑⇑〉 〈↑⇑|+

(
~∆

2
+ E↓⇓↓⇑

)
|↓⇓〉 〈↓⇓| , (C.23)

with Eij = Ei−Ej . For the laser Hamiltonian, after performing the similarity

transformation, we also make the rotating wave approximation and neglect

fast counter-oscillating terms, we find (HL → H ′L),

HL(t)→ H ′L = ~Ω (|0〉 〈↓⇑|+ |↓⇑〉 〈0|) . (C.24)

The total Hamiltonian in the rotating frame and within the rotating wave

approximation is thus given by

H ′ = H ′0 +H ′L +HZ
n +He

HF +Hh
HF. (C.25)

We further eliminate the flip-flop terms of Hamiltonians Eqs. (C.21) and

(C.22) by applying a Schrieffer-Wolf transformation [101, 248] to H ′,

H ′ → H̃ = eSH ′e−S =
∞∑

j=0

[S,H ′](j)

j!
, (C.26)

where we have defined the recursive relation

[
S,H ′

](0)
= H ′,

[
S,H ′

](1)
=
[
S,H ′

]
,

[
S,H ′

](j)
=
[
S,
[
S,H ′

](j−1)
]
.

(C.27)
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We perform the transformation with

S =
1

2

[
Ae

E↑⇑↓⇑
I− |↑⇑〉 〈↓⇑|+

Ae

E↑⇓↓⇓
I− |↑⇓〉 〈↓⇓|+

Ae

E↓⇓↑⇓
I+ |↓⇓〉 〈↑⇓|

+
Ae

E↓⇑↑⇑
I+ |↓⇑〉 〈↑⇑|+

Ah
⊥,1

E↓⇑↓⇓
I− |↓⇑〉 〈↓⇓|+

Ah
⊥,1

E↑⇑↑⇓
I− |↑⇑〉 〈↑⇓|

+
Ah∗
⊥,1

E↑⇓↑⇑
I+ |↑⇓〉 〈↑⇑|+

Ah∗
⊥,1

E↓⇓↓⇑
I+ |↓⇓〉 〈↓⇑|+

Ah
⊥,2

E↓⇑↓⇓
I+ |↓⇑〉 〈↓⇓|

+
Ah
⊥,2

E↑⇑↑⇓
I+ |↑⇑〉 〈↑⇓|+

Ah∗
⊥,2

E↑⇓↑⇑
I− |↑⇓〉 〈↑⇑|+

Ah∗
⊥,2

E↓⇓↓⇑
I− |↓⇓〉 〈↓⇑|

]
, (C.28)

and obtain by keeping only terms that are first order in Ae or Ah
i the

following Hamiltonian,

H̃ = H ′0 +H ′L +Hnuc
Z +AeSzIz +Ah

zS
h
z Iz +Ah

ncS
h
z (I+ + I−)

+
~Ω

2

Ae

E↑⇑↓⇑
(I+ |0〉 〈↑⇑|+ I− |↑⇑〉 〈0|)

+
~Ω

2E↓⇓↓⇑

(
Ah
⊥,1I− |0〉 〈↓⇓|+Ah∗

⊥,1I+ |↓⇓〉 〈0|
)

+
~Ω

2E↓⇓↓⇑

(
Ah
⊥,2I+ |0〉 〈↓⇓|+Ah∗

⊥,2I− |↓⇓〉 〈0|
)
. (C.29)

The three last terms in Eq. (C.29) describe hyperfine assisted spin-forbidden

optical transitions. These terms are only relevant when the laser detuning is

close to resonance either with |↑⇑〉 or |↓⇓〉 [176]. Thus, for ∆ close to zero the

coherent dynamics of excitons and nuclear spins can be described by

H = H ′0 +H ′L +Hnuc
Z +AeSzIz +Ah

zS
h
z Iz +Ah

ncS
h
z (I+ + I−) . (C.30)



D

Supplementary information for Chapter 5:

‘Anisotropic g factor in InAs self-assembled

quantum dots’

D.1 Trial wave functions

The Schrödinger equation of a particle confined to a square with sides of length

a,

− ~2

2m0

(
d2

dx2
+

d2

dy2

)
ψ�(x, y) = E� ψ�(x, y), (D.1)

with boundary conditions ψ�(x, y) = 0 for x = 0, y = 0, x = a or y = a, has

the well-known solution:

ψ�mn(x, y) =
2

a
sin
(mπ
a
x
)

sin
(nπ
a
y
)
, (D.2)

E�mn =
~2π2

2m0a2

(
m2 + n2

)
. (D.3)

The wave function of a particle confined in an isosceles triangle obtained by

cutting the square along the diagonal, ψ4(x, y), is constructed by symme-

tric and asymmetric linear combination of degenerate solutions to the square

problem, ψ�mn and ψ�nm [202], and we find

ψ4smn = 1√
2

(
ψ�mn + ψ�nm

)
, (D.4)

ψ4amn = 1√
2

(
ψ�mn − ψ�nm

)
, (D.5)

where ψ4smn (ψ4amn) vanishes at x + y = a for m + n odd (even). The general

wave function takes the form

ψ4mn =
1√
2

(
ψ�mn + (−1)m+n+1ψ�nm

)
, (D.6)
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x̃

0
ã

ỹ
ã

z̃ã

Abbildung D.1: We span the pyramid volume by multiplying two upright isosceles triangles
(red and blue). Note that r̃ and ã correspond to r and a in the main text, respectively.
Figure provided by Robert Zielke.

with m,n = 1, 2, 3, . . . and m 6= n to prevent the construction of a vanishing

wave function ψ4mm = 0. We apply a coordinate transformation characterized

by x = −[x̃ + (ỹ − ã)]/2
√

2 and y = [x̃ − (ỹ − ã)]/2
√

2 in order to bring the

triangle into upright position, i.e., the apex of the triangle is centered above

the base, and find

ψ4mn(x̃, ỹ) = −ψ4mn
(
x̃+(ỹ−ã)

2
√

2
, x̃−(ỹ−ã)

2
√

2

)
, (D.7)

with m,n = 1, 2, 3, . . . , m 6= n, and ã = a/
√

2.

Starting from the solution to the two-dimensional Schrödinger equation,

we construct an ansatz or trial wave function that is not an eigenfunction

of the three-dimensional (3D) Schrödinger equation but nonetheless fulfills

the boundary conditions of the pyramid and expected symmetries. We span

the 3D volume of the pyramid with the product of two upright triangles, see

Fig. D.1, and find the wave function

ψm(r̃) = c ψ4mxmz(x̃, z̃) ψ
4
mymz(ỹ, z̃)

= c
∏

ξ=x̃,ỹ

[
sin
(
αξ ξ

+
)

sin
(
αz ξ

−)

− (−1)mξ+mz sin
(
αz ξ

+
)

sin
(
αξ ξ

−) ],

(D.8)

with r̃ = (x̃, ỹ, z̃), c = csc(πz̃)/Nm, αi = miπ/ã, mi = 1, 2, 3, . . . , mx 6= mz,

my 6= mz, m = (mx,my,mz), ξ
± = ξ ± (z̃ − ã)/2, and Nm such that the
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integral over the pyramid volume yields
∫
d3r̃ |ψm(r̃)|2 ≡ 1. Note that we

have added the term csc(πz̃) in order to restore the asymptotes at the apex

and the base to the correct power law behavior in z that were altered by taking

the product ψ4mxmzψ
4
mymz . This factor is essential for obtaining s- and p-wave

like states. The energies of state ψm are given by

Em =
~2

2m0
〈ψm(r̃)| (−i∇)2 |ψm(r̃)〉 . (D.9)

For notational simplicity we use ψm ≡ ψmxmymz . We note that the states

ψmxmxmz and ψmzmzmx coincide by construction and that ψmxmymz and

ψmymxmz are degenerate.

As mentioned above, ψm is not an eigenfunction of the 3D Schrödinger

equation. However, the boundary conditions are fulfilled. In addition, the

energies Em are smaller than the eigenenergies of known analytical soluti-

ons provided that the correct boundary conditions at the base of the pyramid

are taken into account [193]. Furthermore, the set of eigenfunctions reported

in Ref. [193] is incomplete and in particular lacks the ground state and states

with a non-vanishing particle density (of s-wave type) at the center of the

pyramid. In contrast, our trial wave functions form a complete set including

states with s- and p-wave character. Despite the fact that ψm is not an eigen-

function, we conclude that our trial wave functions provide a good starting

point for analytical investigations of pyramidal quantum dots.

D.2 Material parameters

We choose the notation for the parameters exactly as given in Ref. [6]. See

Table D.1.
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Eg [eV] 0.418 q 0.39
∆0 [eV] 0.380 C1 [eV] -5.08 [6, 108]
P [eVÅ] 9.197 Dd [eV] 1. [6, 108]
Ck [eVÅ] -0.0112 Du [eV] 2.7
m∗ [m0] 0.0229 D′u [eV] 3.18
g∗ -14.9 C2 [eV] 1.8 [108, 272]
γ1 20.40 D′ -2.1

γ2 8.30 C4 [eVÅ] 11.3 [109, 269]
γ3 9.10 C5 [eVÅ] 103.3 [109, 269]
B+

8v [eVÅ2] -3.393 C ′5 [eVÅ] 76.9 [107]
B−8v [eVÅ2] -0.09511 aInAs [nm] 6.0583
B7v [eVÅ2] -3.178 aGaAs [nm] 5.65325
κ 7.60 νInAs 0.35 [275]

Tabelle D.1: Material parameters used in this chapter. If not stated otherwise, the parameters
were taken from Ref. [6].

1Due to lack of experimentally validated InAs parameters, we use InSb values which are
assumed to be close to InAs values [273, 274].
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Supplementary information for Chapter 6:

‘Strongly interacting holes in

Ge/Si nanowires’

E.1 Calculation of the screened Coulomb matrix

elements

To calculate the effective 1D, momentum dependent interaction matrix ele-

ments V ijkl
1D (q) introduced in Eq. (6.3) of the main text, we use the transverse

part of the real space wave functions of holes confined to the Ge core of the

NW [23], φg±(r⊥) = g±(r, ϕ) and φe±(r⊥) = e±(r, ϕ), where r⊥ denotes the

transverse part of r. Due to the hard wall confinement assumed for the deriva-

tion of φg±(r⊥) and φe±(r⊥), the wave functions are proportional to functions

of the type Jn(r), where Jn denotes the nth Bessel function of the first kind.

The interaction matrix elements are given by integrals of form

V ijkl
1D (q) =

∫∫

NW⊥

dr⊥dr′⊥φ
†
i (r⊥)φ†j(r

′
⊥)V (r, r′, rmc)φk(r

′
⊥)φl(r⊥), (E.1)

with i, j, k, l = g±, e± and dr⊥ = rdrdϕ (dr′⊥ = r′dr′dϕ′). Here, NW⊥ in-

dicates integration over the NW cross section. To perform the integration,

we follow the procedure outlined in Ref. [276]. We rewrite the summands of

V (r, r′, rmc) in terms of discrete Fourier transformations along the NW with

wavevector q = (0, 0, q), which brings the position dependent part of the Cou-

lomb potential to the form

1

|r − r′| =
1√

(z − z′)2 + a2
=
∑

q

2K0(aq)eiq(z−z
′), (E.2)

with a2 = r2 + r′2 − 2rr′ cos (ϕ− ϕ′), and where Km(x) denotes the modi-

fied Bessel function of second kind. A similar term is obtained for position

123
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dependent part of the screened potential, 1/|r − rmc|. Equation (E.2) can be

simplified further by applying Graf’s addition theorem for Bessel functions

[277],

K0(aq) =
∞∑

m=−∞
eim(ϕ−ϕ′)Km(qr>)Im(qr<), (E.3)

where r, r′ = r>, r< with r> ≥ r<, while Im(x) denotes the modified Bes-

sel function of the first kind. We insert the results of Eqs. (E.2) and (E.3)

into Eq. (E.1), and integrate out the angular part,
∫∫

dϕdϕ′. The remaining

non-zero contributions of the sum in Eq. (E.3) are the terms corresponding

to m = 0,±1. However, this result depends strongly on the exact form of

the angular dependence of φg±(r⊥) and φe±(r⊥). The last step, the radial

integration
∫∫
rr′drdr′ cannot be performed directly in an analytical manner.

To circumvent this, we replace the Bessel functions in Eq. (E.3), and in the

wave functions by Taylor expansions around r, r′ = 0 up to appropriate order.

This allows us to evaluate the radial integrals analytically. We have checked

numerically that our analytical expressions reproduce the exact result very

well.

E.2 Operators and correlation functions in the i, o

basis, and transformation to the diagonal basis

For the evaluation of correlation functions, it is helpful to change to a basis

in which the matrices Hφ and Hθ, given in the main text in Eqs. (6.7a) and

(6.7b), are diagonal. This can be achieved by the basis change (φi, φo)
T =

Wφ(φp, φm)T and (θi, θo)
T = Wθ(θp, θm)T , where Wφ and Wθ are matrices

with (so far unspecified) real entries wφ,kl and wθ,kl, and where we have in-

troduced the new fields φr and θr, with r = p,m. For this transformation to

be canonical, we demand that the new fields obey the commutation relations

[φr(z),∇θr′(z′)] = i πδz,z′δr,r′ and [φr(z), θr′(z
′)] = i π/2 sgn(z−z′)δr,r′ , which

fixes 4 of the 8 parameters in Wφ and Wθ.

The Hamiltonian densities are transformed as H̃φ = (Wφ)THφWφ and

H̃θ = (Wθ)
THθWθ. The requirement that the transformation diagonalizes the

Hamiltonian densities fixes two more parameters inWφ andWθ. The remaining

two parameters are finally chosen such that

H̃φ = H̃θ =
1

2π

(
up 0

0 um

)
, (E.4)
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with velocities up and um.

This diagonal basis is particularly convenient if one is interested in eva-

luating correlation functions of the charge and spin degrees of freedom, where

charge and spin are defined in analogy to a Rashba NW (the band E′g+
, i.e.,

the modes Lo and Ri, are thus interpreted as left and right moving modes with

spin up, while the band E′g− , i.e., Li and Ro, are identified with left and right

moving spin down modes). The operators describing the integrated charge (ρ)

and spin (σ) densities (φi) and currents (θi) are given by

φσ = − 1√
2

(θi − θo), θσ = − 1√
2

(φi − φo), (E.5)

φρ =
1√
2

(φi + φo), θρ =
1√
2

(θi + θo). (E.6)

Using these relations, the operators for the charge density wave (CDW), spin

density wave (SDW), singlet superconductivity (SS), and triplet superconduc-

tivity (TS) read

OCDW(r) =
1

πα
e−ikFozei(φi(r)+φo(r)) cos[θi(r)− θo(r)], (E.7)

OxSDW(r) =
1

πα
e−ikFozei(φi(r)+φo(r)) cos[φi(r)− φo(r) + kFoz], (E.8)

OySDW(r) =
1

πα
e−ikFozei(φi(r)+φo(r)) sin[φi(r)− φo(r) + kFoz], (E.9)

OzSDW(r) =
i

πα
e−ikFozei(φi(r)+φo(r)) sin[θo(r)− θi(r)], (E.10)

OSS(r) =
1

πα
e−i(θi(r)+θo(r)) cos[θi(r)− θo(r)], (E.11)

OxTS(r) =
1

πα
e−i(θi(r)+θo(r)) cos[φi(r)− φo(r) + kFoz], (E.12)

OyTS(r) =
1

πα
e−i(θi(r)+θo(r)) sin[φi(r)− φo(r) + kFoz], (E.13)

OzTS(r) =
i

πα
e−i(θi(r)+θo(r)) sin[θo(r)− θi(r)] . (E.14)

A detailed discussion of these operators can be found in Ref. [81]. In the
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diagonal basis, the associated correlation functions are given by

〈O†CDW(r)OCDW(0)〉 = 〈Oz,†SDW(r)OzSDW(0)〉

=
1

(πα)2
eikF z(α/r)1/2(u2

a++u2
b++w2

a−+w2
b−), (E.15)

〈Ox,†SDW(r)OxSDW(0)〉 = 〈Oy,†SDW(r)OySDW(0)〉

=
1

4(πα)2

[
e2ikF z(α/r)1/2[(ua+−ua−)2+(ub+−ub−)2]

+(α/r)1/2[(ua++ua−)2+(ub++ub−)2]
]

= 〈Oy,†SDW(r)OySDW(0)〉(2kF ) + 〈Oy,†SDW(r)OySDW(0)〉(0),

(E.16)

〈O†SS(r)OSS(0)〉 = 〈Oz,†TS(r)OzTS(0)〉

=
1

4(πα)2

[
(α/r)1/2[(wa++wa−)2+(wb++wb−)2]

+(α/r)1/2[(wa+−wa−)2+(wb+−wb−)2]
]

= 〈Oz,†TS(r)OzTS(0)〉(+) + 〈Oz,†TS(r)OzTS(0)〉(−), (E.17)

〈Ox,†TS(r)OxTS(0) = 〈Oy,†TS(r)OyTS(0)〉

=
1

(πα)2
(α/r)1/2(u2

a−+u2
b−+w2

a++w2
b+), (E.18)

with ua,± = wφ,21 ± wφ,11, ub,± = wφ,22 ± wφ,21, wa,± = wθ,21 ± wθ,11, wb,± =

wθ,22 ± wθ,12. Note that the correlation functions for SDWx,y, SS, and TSz

each contain two terms with (slightly) different exponents.

E.3 Divergences outside the perturbative regime

and comparison to a fermionic RG approach

As discussed in the main text, the use of a perturbative RG approach for

the coupling gI restricts our analysis to a regime in which the associated di-

mensionless coupling satisfies 2gI/(up + um) � 1. In this regime, gI is found

to be RG irrelevant. When leaving the perturbative regime, we find that the

scaling exponents diverge at a finite field E⊥ (solid lines in Fig. E.1). These

divergences can be traced back to the fact that the off-diagonal matrix ele-
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ments in the Hamiltonian given in Eq. (6.7) are so large that the velocity um

of the diagonalized Hamiltonian vanishes. The system thus seems to exhibit

a Wentzel-Bardeen singularity [212–215]. This apparent divergence, however,

occurs outside the perturbative regime, and is thus beyond the range of vali-

dity of our calculation (we note that during the RG flow, the quadratic sector

of the theory is renormalized by corrections of the order O(g2
I ), see Ref. [81]).

As an independent cross-check for the absence of singularities in the re-

gime described by our calculation, we compare the scaling exponents of the

correlation functions discussed in the main text to the analogous exponents

obtained when the system is bosonized only after an initial fermionic one-loop

RG treatment, which in particular already describes the flow of gI to weak

coupling. To this end, we start from the fermionic Hamiltonian with the in-

teractions given in Eqs. (6.4) - (6.6), and perform a fermionic one-loop RG

analysis following Refs. [216] and [217]. This yields the one-loop RG equations

dḡ2

dl
= −ḡI(l)2,

dḡI
dl

= −ḡI(l)ḡ2(l), (E.19)

where we have introduced the definitions πḡ2 = g2o/(2vFo) + g2i/(2vFi) −
2(g2io − g1io1)/(vFo + vFi) and πḡI = gI

√
2(1 + γ)/(vFo + vFi), with γ =

(vFo + vFi)
2/(4vFovFi). Integrating these RG equations yields the fixed point

values ḡ∗I = 0 and ḡ∗2 = (ḡ2
2(0) − ḡ2

I (0))1/2 [81], from which we find g∗2o , g
∗
2i

and g∗2io − g∗1io . We plug these renormalized interactions back into the fermio-

nic Hamiltonian. The bosonization of this renormalized Hamiltonian in turn

yields a purely quadratic bosonic theory, which finally allows to calculate the

exponents of the various correlation functions just as discussed in the main

text.

In the perturbative regime, we find that the qualitative behavior of the

scaling exponents is identical for both approaches. Outside the perturbative

regime, this is not true. There, the presence or absence of a divergence of the

scaling exponents calculated using the fermionic one-loop approach depends on

the NW parameters, while the bosonic approach seems to generically exhibit

a singularity.

Most importantly, however, we find that - if present - the divergences al-

ways appear outside the range of validity of our calculation. This finding is

illustrated in Fig. E.1, where we plot the exponents obtained in the bosonic

sine-Gordon approach (solid lines), and the exponents obtained when boso-

nizing after the fermionic one-loop RG treatment (dashed lines). The black

vertical lines denote the limits of the perturbative regime, i.e., the black solid
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line indicates where
gI

1
2(up + um)

≈ 1 , (E.20)

while the black dashed line depicts where

ḡ2 =
g2o

2πvFo
+

g2i

2πvFi
− 2(g2io − g1io1)

π(vFo + vFi)
≈ 1 . (E.21)
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Abbildung E.1: The exponents of the correlation functions for two different sets of NW
parameters R and ∆ as functions of E⊥, where ϕE = 3π/2 and rmc = (0, |rmc|, 0) with
|rmc| = 100 nm. We show the exponents obtained by two different RG approaches, a bosonic
sine-Gordon RG approach (solid lines), and a fermionic one-Loop RG calculation (dashed
lines). The black vertical lines denote where the perturbative regime ends for either of the two
RG approaches. In contrast to the bosonic approach, where the scaling exponents always
diverge, the presence of a divergence of the scaling exponents for the fermionic approach
depends on the NW parameters.
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Supplementary information for Chapter 7:

‘Majorana fermions in Ge/Si hole nanowires’

F.1 Particle-hole coupling Hamiltonian

In this section, we display the effective Bogoliubov-de-Gennes Hamiltonian

for holes in the lowest-energy subband. To allow for a direct comparison with

previous results [249], we rotate the lowest-energy basis Ψph [introduced above

Eq.(7.16)] such that the spin quantization axis lies parallel to the applied elec-

tric field Ex and the new particle-hole basis reads Ψ̃ph = (Ψ+,Ψ−,Ψ
†
+,Ψ

†
−),

where the ± denotes the pseudospin of the SOI split subband. The Hamilto-

nian is given by H̃ph = 1
2

∫
Ψ̃†phH̃phΨ̃ph with Hamiltonian density

H̃ph =



~2k2z
2meff

− µ+ α̃kz i∆Ze
iϑB 0 ∆sc

−i∆Ze
−iϑB ~2k2z

2meff
− µ− α̃kz −∆sc 0

0 −∆∗
sc − ~2k2z

2meff
+ µ+ α̃kz i∆Ze

−iϑB

∆∗
sc 0 −i∆Ze

iϑB − ~2k2z
2meff

+ µ− α̃kz



.

(F.1)

Here, we used the abbreviations α̃ = Exαeff and ∆Ze
iϑB = µB(Bxgx + iBzgz).

A similar Hamiltonian was used in Ref. [249] to derive MF wave functions in

NWs with proximity-induced superconductivity. Note that our model addi-

tionally includes a complex superconducting pairing potential and a Zeeman

term reflecting the anisotropy of the g factor of the NW.

F.2 Wave functions

Here we display the explicit form of the MF wave functions in both the strong

and weak SOI regime.
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Strong SOI

In the strong SOI regime, the MF wave function introduced above Eq. (7.21)

in Sec. 7.3 is given by

Φ̂s(z) =e−iπ/4e−z/ξ
e
s




ieiϑ
0
B/2eik

s
F z

−ie−iϑ0
B/2e−ik

s
F z

e−iϑ
0
B/2e−ik

s
F z

−eiϑ0
B/2eik

s
F z


+ e−iπ/4e−z/ξ

i
s




−ieiϑ0
B/2

ie−iϑ
0
B/2

−e−iϑ0
B/2

eiϑ
0
B/2


 ,

(F.2)

where Φ̂s(z) is written in the basis Ψ̃ph (see Appendix F.1).

Weak SOI

In the weak SOI regime, the MF wave function introduced above Eq. (7.24)

in Sec. 7.3 is given by

Φ̂w(z) = 2e−z/ξ
(i)
w
kso
kwF

e−iπ/4




−ieiϑ0
B/2

ie−iϑ
0
B/2

−e−iϑ0
B/2

eiϑ
0
B/2




+
e−z/ξ

(e)
w

√
2




eiϑ
0
B/2

[(
1− kso

kwF

)(
1− iksokwF

)
eik

w
F z −

(
1 + kso

kwF

)(
1 + iksokwF

)
e−ik

w
F z
]

e−iϑ
0
B/2

[(
1 + kso

kwF

)(
i+ kso

kwF

)
eik

w
F z −

(
1− kso

kwF

)(
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)
e−ik

w
F z
]
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0
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[(
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)(
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e−ik

w
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(
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kwF

)(
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eik

w
F z
]

eiϑ
0
B/2

[(
1 + kso

kwF

)(
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e−ik

w
F z −

(
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)(
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eik

w
F z
]



,

(F.3)

where Φ̂w(z) is written in the basis Ψ̃ph (see Appendix F.1). For very weak

SOI (kso/k
w
F � 1) the MF wave function simplifies to

Φ̂w(z) ≈
√

2 sin(kwF z)e
−z/ξ(e)

w




ieiϑ
0
B/2

−e−iϑ0
B/2

−ie−iϑ0
B/2

−eiϑ0
B/2


 . (F.4)
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