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Abstract

Abstract

The enteroinvasive bacterium Shigella flexneri triggers its uptake into epithelial cells by
injecting several effector proteins via its type three secretion system (TTSS) and interferes
with various host cell processes at later stages of infection. In this study, we systematically
addressed the impact of S. flexneri infection on the host signaling network by quantita-
tive phosphoproteomics. We were able to identify several hundreds of proteins undergoing
a change in their phosphorylation state during the first two hours of infection. Using
bioinformatic tools, we could demonstrate that many phosphoproteins are related to the
cytoskeleton, signal transduction, cell cycle, and transcription regulation. The tempo-
ral phosphorylation patterns were addressed by fuzzy c-means clustering, revealing six
temporally distinct phosphorylation profiles as well as kinases potentially responsible for
these phosphorylations. In particular, we found a cluster of ataxia telangiectasia mu-
tated (ATM) substrates, related to genotoxic stress, that became phosphorylated at a late
stage of infection. We identified mTOR as the most overrepresented signaling pathway
and could demonstrate that both, mTORC1 and mTORC2, become activated during S.
flexneri infection. To identify phosphoproteins commonly regulated during bacterial in-
fection, we compared our dataset to a published phosphoproteome of cells infected with
Salmonella typhimurium. This analysis revealed a large subset of co-regulated phospho-
proteins, indicating that both pathogens interfere with similar cellular signaling cascades.
Furthermore, we addressed the impact of the S. flexneri effector protein OspF on the host
phosphorylation network. OspF is known to inactivate the MAPKs p38 and ERK. The
phosphorylation of several hundred proteins was affected in an OspF-dependent manner,
demonstrating the massive impact a single bacterial effector can have on the host signaling
network.
In a second project we addressed the activation mechanism of AKT and mTOR during S.
flexneri infection by studying the effector IpgD. IpgD is a phosphoinositide 4-phosphatase
generating PI5P from PI(4,5)P2 leading to activation of AKT. We could demonstrate that
the effector protein IpgD is sufficient to induce mTOR activation by the use of a protein
delivery tool based on the TTSS of Yersinia enterocolitica. Interestingly, AKT activation
was independent of canonical PI3K activity shortly after IpgD translocation, whereas at
later timepoints AKT activation was PI3K-dependent. These data suggest two distinct
IpgD-dependent AKT activation mechanisms. Finally, we could show that the Inositol
polyphosphate multikinase IPMK contributes to AKT phosphorylation during infection.
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Chapter I: Introduction

1 Shigellosis

1.1 Discovery of a dysentery causing bacillus

In 1896, the first Shigella species was discovered by Kiyoshi Shiga [195]. In this last decade
of the 19th century, dysentery epidemics affecting tens of thousands of people occurred
frequently in Japan, accompanied by a high mortality rate of more than 20% [195]. Shiga
isolated and biochemically described a bacillus from stool. When sub-cultured and fed
to dogs, the bacillus caused diarrhea. By the use of an agglutination technique, he could
further show that the organism coalesced when exposed to serum of convalescent dysentery
patients [195]. Later on, he also described the production of toxic factors by the organism
and thus discovered the prominent Shiga toxin. The pathogen, initially termed Bacillus
dysenterie was renamed to Shigella in 1930, in honor of its discoverer Kiyoshi Shiga.

1.2 Shigellosis

Shigella is the causative agent of shigellosis, a disease also known as dysentery. Shigella
is an important cause for morbidity and mortality predominantly affecting children under
the age of 5 years in developing countries. In 1999, it has been estimated that approxi-
mately 165 million cases of shigellosis occur annually from which 1.1 million have a fatal
outcome [143]. However, more recent research implied a similar incidence of shigellosis but
the death estimate is 98% lower as previously reported [17]. The reduction in fatal outcome
in the absence of Shigella spp. specific interventions may be due to an overall improve-
ment in nutrition, rehydration therapy and better availability of antibiotics. However,
the emergence of multi-drug resistant Shigella and the continuous high incidence indicate
that shigellosis is still an unsolved global health problem [239]. Shigella are transmitted via
the feco-oral route mainly by consumption of contaminated water or food. It has been
shown that the pathogen is highly contagious as already 10-100 bacteria can cause the
disease [61]. This is a reason why Shigella can easily disseminate in settings characterized
by overcrowding, limited access to water, compromised personal hygiene and inadequate
sanitation [18]. Shigellosis is an acute intestinal infection, with symptoms ranging from
mild watery diarrhea to severe bacillary dysentery accompanied by abdominal cramps,
tenesmus, fever and stool containing blood and mucus. The disease is usually self-limiting
and treatment mainly consists of replacing fluids and salts lost by diarrhea, as well as
antibiotic treatment. Shigella strains have progressively become resistant to most of the
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1 Shigellosis

widely used and inexpensive antibiotics over the last decades, resulting in treatment fail-
ure [195]. Nalidixic acid is an example of a first-line drug, used against shigellosis, whose
wide application in many countries led to emergence of resistant strains [96]. In addition,
also resistance against ciprofloxacin, a highly effective alternative, is increasingly com-
mon [264]. The increasing prevalence of antibiotic resistance gives more pressure toward
the need for a vaccine. However, to date there is still no vaccine available although dif-
ferent strategies have been explored. These include live or attenuated strains of Shigella,
lipopolysaccharide (LPS) protein conjugates, mixtures of TTSS subunit components as
well as recombinant proteins [18].

1.3 Cellular pathogenesis of shigellosis

Shigella spp. are transmitted via the feco-oral route and are taken up upon ingestion
of contaminated water or food [250]. Shigella are highly contagious also due to their pro-
nounced acid resistance allowing them to pass the acidic environment of the stomach [92].
After Shigella passed the stomach and the small intestine it reaches the large intestine
where it overcomes the epithelial barrier and initiates the infection. On a cellular level the
infection is a multistep process, because Shigella is not able to directly infect polarized
epithelial cells from the apical side oriented towards the gut lumen [182]. Therefore Shigella
first has to cross the epithelium which is a physical barrier against infection of commensal
or pathogenic bacteria (Figure 1.2.1). Microfold cells (m-cells) are located on specific ar-
eas of the large intestine named peyers patches, and continuously transport particles and
microorganisms from the gut lumen to the underlying lymphoid tissue by a process termed
transcytosis [166]. M-cells therefore have an important role in the intestinal immunity by
presenting antigens from the gut lumen to resident dendritic or T-cells in the sub-mucosa.
Shigella takes advantage of this system and passes the epithelial barrier by transcytosis
through m-cells [240] [284]. However, more recent research also revealed filopodial capture of
Shigella by epithelial cells, allowing also apical infection [232].
Once released in the intra-epithelial pocket, Shigella becomes phagocytosed by residen-

tial macrophages. Shigella rapidly escapes the phagocytic vacuole and subsequently in-
duces pyroptosis of the macrophage by use of its type three secretion system (TTSS) [305] [306]
[253]. Macrophage cell death is leading to the release of the pro-inflammatory cytokines
IL-1β and IL-18. Both cytokines induce a massive inflammatory response which is a
hallmark of the disease [262]. IL-1β triggers a strong inflammatory response subsequently
leading to the recruitment of PMNs. IL-18 on the other hand attracts natural killer (NK)
cells and promotes the production of interferon γ (INF-γ), thus further enhancing the
inflammatory response [241] [246]. Once Shigella is released from the dying macrophage, it
has access to the basolateral side of the epithelium and can invade its replicative niche,
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Chapter I: Introduction

Figure 1.2.1 Schematic representation of cellular Shigella pathogenesis. Shigella crosses
the colonic epithelial layer by transcytosis through microfold cells (m-cells) and subsequently be-
comes phagocytosed by resident macrophages. Infected macrophages rapidly undergo pyroptosis,
thereby releasing interleukin 1β (IL-1β) and interleukin 18 (IL-18). Once Shigella is released from
the dying macrophage, it invades epithelial cells from the baso-lateral side through the induction of
macropinocytosis. Shigella rapidly lyses the vacuole and replicates within the host cell cytoplasm
and spreads to neighbouring cells by actin-based motility (ABM). Intracellular Shigella are de-
tected by pathogen recognition receptors and an innate immune response is initiated in cooperation
with uninfected neighboring cells, leading o the release of interleukin-8 (IL-8) and the attraction of
polymorphonuclear cells (PMN)s to the site of infection. In addition, PMNs transmigrate through
the epithelial layer and thereby facilitate further bacterial invasion. Ultimately, PMNs phagocytose
the invading pathogen and contribute to the clearance oft the infection. For more details, refer to
the manuscript. Adapted with modifications from Schroeder and Hilbi [250].
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1 Shigellosis

intestinal epithelial cells. Shigella promotes its invasion into the host cells by the use of
its TTSS. Several bacterial effector molecules are delivered into the host cell and induce
massive cytoskeletal rearrangements, leading to the engulfment of the bacteria and their
uptake by macropinocytosis [250]. Once inside the epithelial cell, Shigella lyses the vacuole
and is released into the cytoplasm where it can replicate [238].
In the cytoplasm, Shigella is recognized by the intracellular pattern recognition re-

ceptor Nod1 leading to the induction of a pro-inflammatory response resulting in the
release of IL-8, triggered through activation of NF-κB and the MAPK signaling path-
way [86] [209] [215]. Secreted IL-8 potentiates the host inflammatory response by attracting
further PMN cells [243]. Although it was assumed that infected cells recognizing intra-
cellular Shigella secrete IL-8, recent research from our laboratory revealed that indeed
uninfected bystander cells are responsible for the production of IL-8. Infected cells, un-
able to produce IL-8 due to the countermeasures of the bacteria, propagate danger signals
to neighboring cells in a gap junction-dependent manner, and therefore potentiate the
inflammatory response [128].

1.4 Determinants of Shigella virulence

Organisms from the genus Shigella belong to the phylum of Escherichia from the Enter-
obacteriacea family and are thus closely related to non-pathogenic E. coli [250]. Shigella
are small, uncapsulated and non-motile gram-negative, nosporulating, facultative anaer-
obic bacteria. Four different species of Shigella have been described based on serologi-
cal, biochemical or clinical phenotypes [288]: S. dysenteriae (serogroup A, consisting of 13
serotypes), S. flexneri (serogroup B, consisting of 15 serotypes), S. boydii (serogroup C,
consisting of 18 serotypes) and S. sonnei (serogroup D, consisting of one serotype). The
serotype classification is based on the O-antigen component of the LPS present on the
outer membrane of the cell wall. S. flexneri, S. sonnei and S. boydii have been associ-
ated with endemic disease, whereas S. dysenteriae, harboring the Shiga toxin, is the major
cause of epidemic outbreaks and the most severe form of dysentery, causing the majority of
fatal shigellosis cases [195] [143]. The prevalence of different serotypes varies geographically
and can also change during an outbreak. Because immune responses are predominantly
serotype specific, reinfections by Shigella bearing different O-antigens are possible [142].
Recently, comparative genomic studies revealed that Shigella spp. belong to the species
E. coli rather than forming a separate genus [250] [82] [231]. There is only about 1.5% se-
quence divergence between S. flexneri and E. coli K-12 which is marginal compared to
the divergence of 15% between Salmonella enterica and E. coli [250] [150].
During evolution, acquisition of genes through horizontal gene transfer, such as virulence

associated genes termed pathogenicity islands (PAI), as well as loss of genes through

5



Chapter I: Introduction

deletion or gene inactivation, shaped the specific genotypes of Shigella. The loss of gene
function is best exemplified by comparing E. coli K12 to Shigella where an average of 726
genes are missing and more than 200 pseudogenes are found per Shigella strain [292] [213].
The genetic information associated with virulence is encoded on the bacterial chromosome
and on a large virulence plasmid. The dynamics of these genetic rearrangements are
reflected by a high number of insertion sequences (IS) found on the chromosome and on
the virulence plasmid [33]. In addition to PAI found on the virulence plasmid, Shigella
pathogenicity islands (SHI) were identified on the chromosome. These include the SHI-1
encoded virulence factors immunoglobulin A-like cytotoxic protease SigA as well as the
enterotoxin ShET1 that were both found to induce intestinal fluid accumulation [250] [72].
SHI-O is a another important SHI, because it encodes for proteins modifying the structure
of the bacterial LPS O-antigens which are a major virulence factor and responsible for
the large variety of Shigella serotypes [192]. Furthermore, acquisition of the chromosomal
PAI Shigella resistance locus (SRL) mediates resistance against streptomycin, ampicillin,
chloramphenicol and tetracycline [276].
As already introduced, Shigella infection is a complex multistep process that requires

the action of a large repertoire of bacterial virulence factors. The essential parts of those
factors are encoded on the S. flexneri large virulence plasmid which was shown to be
essential for macrophage killing and invasion of epithelial cells [250] [244] [170]. Sequencing of
virulence plasmids from different Shigella strains revealed that these plasmids of approx-
imately 200 kb contain a mosaic of around 100 genes and a comparable number of IS [33].
The plasmid encodes the molecular machinery required for bacterial invasion and subse-
quent intracellular survival. The core of the plasmid contains the conserved 31kb entry
region, encoding genes for the assembly and function of the TTSS system needle complex
as well as corresponding early effectors, translocators and chaperones [250]. More precisely,
the entry region can be subdivided into different groups based on the function of the cor-
responding genes. TTSS effector molecules that manipulate host cell processes in favor of
the bacteria belong to the first group. Among them are the dominant immunogenic anti-
gens of S. flexneri, IpaA to IpaD. IpaB, IpaC and IpaD are translocator proteins that form
a pore in the eukaryotic cell allowing the translocation of further effector molecules [26].
In addition, some of them are necessary for macrophage killing and the induction of cy-
toskeleton rearrangements promoting the uptake of the bacteria. Another group contains
the two transcriptional activators VirB and MxiE that regulate TTSS related genes lo-
cated in the entry region as well as some chromosomal IpaH effector proteins [2] [250] [28].
Virulence gene expression is tightly controlled and not permanently active. The major
trigger for virulence gene expression are environmental changes upon uptake by the host.
These include changes in pH, osmolarity, iron concentration and most importantly a tem-
perature shift to 37°C [270] [250]. This shift is responsible for induction of the transcriptional
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activator VirF, which in turn activates the second virulence plasmid regulator VirB as well
as the actin nucleator protein IcsA (VirG) [2] [271] [250]. VirB promotes the expression of the
entry region genes and of some Osp effector molecules, scattered on the virulence plasmid,
equipping the bacteria with the TTSS and a first set of early effector molecules required
for host cell invasion [84]. The secretion of this early set of effectors in turn increases the
transcription of already induced proteins and an additional set of TTSS effectors. The
transcriptional activator MxiE controls the expression of this "second set" TTSS of effec-
tors. MxiE activity is blocked by an antiactivator complex built up by OspD1 and the
chaperone Spa15 [208]. When TTSS secretion is induced, the early effector OspD1 as well
as other substrates including IpaB and IpaC are translocated into the host cell and IpgC,
the cognate chaperone of IpaB and IpaC, becomes released. IpgC subsequently associates
with MxiE inducing the transcription of the second set of effectors which are then secreted
by intracellular bacteria to modulate post-invasion aspects of the infection [171]. The ac-
tivity of the TTSS was recently investigated during the course of infection. The TTSS is
activated upon bacterial entry, but down-regulated after 60 minutes when bacteria gain
access to the cytoplasm. It is proposed that contact with the plasma membrane is impor-
tant for TTSS activity and rupture of the membrane leads to inactivation of the TTSS.
The inactivation of the TTSS may allow the replenishment of the bacterial TTS substrate
store for subsequent infection of neighboring cells. This is in line with the observation
that the TTSS becomes reactivated during cell-to-cell spread [35].

1.5 The Mxi-Spa type three secretion system (TTSS)

More than half of the genes from the entry region encode proteins required for the secretion
of Ipa proteins as well as other effectors. These genes are named membrane expression
of ipa (mxi) and surface presentation of ipa (spa) antigens. Thus, the mxi-spa locus
encodes all components needed for the assembly and function of a TTSS that is required
to directly translocate bacterial effector proteins from the bacterial cytoplasm into the host
cell. A requirement for this is a molecular device allowing the one step shuttle of proteins
through totally three membranes: the bacterial inner- and outer membrane as well as the
host cell membrane [46]. More than 24 different bacterial species interacting with animal
or plant hosts harbor a TTSS, including Shigella spp., Salmonella spp., Yersinia spp.,
enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic Escherichia coli (EHEC),
or Pseudomonas spp [180]. Although the TTSS architecture varies between the different
species, it shares a conserved main structure, related to the flagellar TTSS [46]. Therby,
the TTSS can be distinguished from the type 4 secretion system found in many gram-
negative bacteria like Brucella spp., Legionella spp. or Bartonella spp., which also allows
translocation of effector molecules from the bacterial cytoplasm into the host cell but is
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Figure 1.5.1 Architecture of the S.
flexneri Mxi-Spa TTSS. Four main parts
build the S. flexneri TTSS. In the bacterial
cytoplasm is the C ring located which is com-
promised of proteins energizing and recogniz-
ing the transport of substrates, the release
of chaperones and substrate unfolding. The
basal body, consisting of seven rings, spans
the bacterial IM, the periplasm and the OM.
The needle protrudes from the basal body
and the bacterial surface. Host cell mem-
brane contact triggers the IpaD guided mem-
brane insertion of the IpaB-IpaC translocon
at the tip of the needle. From Schroeder and
Hilbi [250].

derived from bacterial DNA conjugation systems [55] [78].
The architecture of the TTSS is characterized by a syringe like device with a total length

between 77 and 92 nm, consisting of a seven ring basal body with a length of 32nm and
a protruding needle with a length of 45 to 60nm and a 2-3 nm wide channel, allowing
the transport of largely unfolded proteins [250] [4]. The S. flexneri Mxi-Spa TTSS is built
by more than 25 different proteins, all encoded in the entry region of the large virulence
plasmid [46] (Figure 1.5.1). The needle complex consisting of the C-ring, basal body and
needle is sufficient to secrete proteins into the extracellular space but the translocator
proteins IpaB, IpaC and IpaD are required on the tip of the TTSS needle for successful
translocation of effector proteins into the host cell [174] [282]. These translocator proteins
are stored in the cytoplasm and premature association of IpaB and IpaC is prevented by
binding to the chaperone IpgC, whereas IpaD has self-chaperoning activity [125]. Although
it is not entirely understood how the mechanism of secretion is controlled, it is assumed
that IpaD is localized on the tip of the needle and blocks secretion through interactions
with IpaB [67] [237]. Upon host cell contact, the TTSS becomes activated, presumably by
induction of conformational changes of IpaD leading to repositioning of IpaB and its sub-
sequent passage and membrane insertion together with IpaC forming the translocation
pore [26] [67] [282]. Once the translocation pore is formed, the needle is in an open conforma-
tional state and additional effector proteins can be translocated through the TTSS channel
into the host cell.
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1.6 Adherence to the host cell

The initial contact of Shigella and the epithelial host cell occurs on cholesterol rich mi-
crodomains of the plasma membrane, the lipid rafts [149]. Lipid rafts contain more choles-
terol and sphingolipids than the surrounding plasma membrane and are usually highly
enriched in saturated fatty acids, allowing close package. As a consequence of this, lipid
rafts are more ordered and less fluid than the surrounding membrane [256]. Many signaling
proteins are not randomly distributed over the whole cell membrane but are rather en-
riched in lipid rafts, like G proteins, growth factor receptors, src family kinases or protein
kinase C (PKC), creating an asymmetric distribution of these signaling clusters. There-
fore, lipid rafts function as signaling platform by bringing proteins spatially together and
facilitating their interaction [257].
Lipid rafts are attractive targets for different pathogens including bacteria, viruses and

parasites [227] [106] [90]. It has been shown, that already purified lipid rafts, devoid of proteins
but otherwise mimicking the lipid composition, are sufficient to trigger effector secretion
by the TTSS [279]. In addition, cholesterol was shown to be important for both, binding
and entry of Shigella and that the initial interaction occurs at lipid rafts. More precisely,
The TTSS translocator protein IpaB and its Salmonella homologue SipB are cholesterol
binding proteins and subsequent secretion of other effectors is dependent on cholesterol in
the plasma membrane [103].
Shigella further adheres to the target cell by binding the two host cell receptors CD44

and α5β1 integrin which can both be found in lipid rafts and accumulate at the site
of entry. Binding to CD44 occurs through IpaB whereas α5β1 integrin is bound by the
IpaBCD complex [285] [258]. Binding to either one of the receptors induces actin cytoskeleton
rearrangements and promotes Shigella invasion [285] [149]. Entry via lipid rafts may also be
important for the determination of the faith of the intracellular bacteria. It has been
demonstrated that uptake via lipid rafts protects some bacteria, including Mycobacterium
spp. from lysosomal degradation [75] [53]. These findings are in line with the observation that
cholesterol depletion in macrophages inhibits macrophage cell death and the activation of
caspase-1 upon Shigella infection [249].
Alternatively, it has been demonstrated, that prior to contact with the main cell body,

the bacteria are captured by pre-existing filopodial extensions [232]. Once Shigella is cap-
tured by these filopodia, they retract towards the cell body and promote bacterial-host
contact and subsequent engulfment. The filopdial capture was further shown to be depen-
dent on the TTSS in particular on the needle tip complex proteins IpaB and IpaD.
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Table 1.1 S. flexneri TTSS translocated effector proteins encoded on the large virulence plasmid

Effector Biochemical
activity

Host cell target(s) Virulence function and/or phenotype Reference

IpaA Vinculin acti-
vation

Vinculin, beta1-integrins,
Rho signaling

Efficient invasion, actin cytoskeleton
rearrangements, disassembly of cell-
matrix adherence

[57] [99]

[121] [272]

IpaB Membrane fu-
sion

Cholesterol, CD44,
caspase-1

Control of type three secretion,
translocon formation, phagosome
escape, macrophage apoptosis

[26] [39]

[106] [111]

[115] [172]

IpaC Actin polymer-
ization

Actin, β-catenin Translocon formation, filopodium for-
mation, phagosome escape, disruption
of EC tight junctions

[26] [103]

[173] [273]

IpaD Control of type three secretion, mem-
brane insertion of translocon

[67] [172]

[282]

IpaH7.8 Efficient phagosome escape [74]

IpaH9.8 E3 ubiquitin
ligase

Splicing factor U2AF,
MAPK kinase,
NEMO/IKKγ, ABIN-
1, NF-κB pathway

Host cell transcriptome modulation,
reduction of inflammation

[202] [230]

[11]

IpaH0722 E3 ubiquitin
ligase

TRAF2 Inhibition of NF-κB activation, damp-
ening of inflammatory response

[12]

IpaJ Cysteine pro-
tease

ARF1 Inhibition of Golgi cargo transport,
Golgi fragmentation

[34]

IcsB Atg5 Camouflage of IcsA for autophagic eva-
sion

[5] [199]

[200] [129]

IpgB1 RhoG mimicry ELMO protein Induction of Rac1-dependent mem-
brane ruffling , regulation of inflamma-
tion

[187] [100]

[201] [97]

IpgB2 RhoA mimicry RhoA ligands Induction of actin stress fiber-
dependent membrane ruffling

[187] [97]

[137]

IpgD Phosphoinositide
4-phosphatase

Phosphatidylinositol 4,5-
bisphosphate

Facilitation of entry, promotion of host
cell survival, prevents termination of
EGFR signaling, down-regulates in-
flammation by preventing ATP secre-
tion

[194] [193]

[212] [222]

[219]

OspB Retinoblastoma Protein,
GEF-H1, NF-κB pathway

Reduction of inflammation [304] [80]

OspC1 Nucleus and cytoplasm Induction of PMN migration [302]

OspC3 Caspase-4
binding, pre-
vents p19/p10
heterodimer-
ization

Caspase-4 Reduction of cell death, increased bac-
terial replication

[139]

OspD1 TTSS substrate, unknown function in
host cells, antiactivator of MxiE

[208]

OspE1/2 ILK, Focal contacts Maintenance of host cell morphology,
stabilization of focal adhesion

[175] [71]

[134]

OspF Phosphothreonine
lyase

MAPKs ERK and p38 Inhibition of histone phosphorylation
and NF-κB-dependent gene expres-
sion, reduction of PMN recruitment

[9] [156]

[302]

Table 1.1 – Continued on next page
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Table 1.1 – Continued from previous page
Effector Biochemical

activity
Host cell target(s) Virulence function and/or phenotype Reference

OspG Protein kinase,
ubiquitination
inhibitor

Ubiquitin-conjugating en-
zymes

Downregulation of NF-κB activation,
reduction of inflammation

[132]

OspZ NF-κB blockage of NF-κB subunit p65 nuclear
translocation, downregulation of IL-8
expression, reduces PMN transepithe-
lial migration

[303] [190]

VirA Cysteine pro-
tease

a-Tubulin Facilitation of entry and intracellu-
lar motility by degradation of micro-
tubules, Golgi fragmentation Calpain
activation, cell death

[294] [22]

[34]

1.7 Shigella entry

Shigella invasion into epithelial cells requires complex rearrangements of the membrane
and the actin cytoskeleton. These processes are orchestrated in time and space by a
multitude of bacterial and host factors. In particular, several bacterial TTSS effectors
are translocated into the host cell, activating tyrosine kinases and Rho GTPase signal-
ing [110] [29]. Thus, at the site of entry, Shigella induces massive rearrangements of the actin
cytoskeleton leading to the formation of cellular protrusions building a macropinocytic
pocket that encloses the bacteria [250]. Beside its function as a translocator protein, IpaC
induces the recruitment and activation of the tyrosine kinase Src leading to actin poly-
merization [181]. Src was initially discovered as a proto-oncogene in chicken, sharing high
similarity to the v-src gene of the sarcoma virus [260]. Src was the first tyrosine kinase
discovered and plays an important role in various cancers. The activity of Src is regu-
lated by phosphorylation of tyrosine 530 leading to rearrangement of SH domains and
subsequent activation or deactivation of the kinase function. Substrates of Src are tran-
scription factors, adaptor proteins or focal adhesion proteins [25]. Dehio and colleagues
revealed that cortactin becomes tyrosine phosphorylated upon Shigella infection and is
recruited to Shigella entry foci [56]. Furthermore, they could show that Src is responsible
for cortactin phosphorylation upon Shigella infection and is as well recruited to the entry
structure. Two other TTSS effectors, IpgB1 and IpgB2 belonging to the WXXXE effector
family that has been associated with mimicking Rho GTPase signaling, are also injected
by Shigella. In line with this, it was found that IpgB1 mimics active RhoG, a Rho GT-
Pase regulating actin dynamics, by ELMO binding and recruitment of DOCK180 which
is a GTP exchange factor (GEF) for Rac [100] [32]. In vitro assays demonstrated in addi-
tion, that IpgB1 acts a GEF for for Cdc42 and Rac [114]. IpgB2 was shown to mimic the
GTP-bound form of RhoA and expression of the effector in eukaryotic cells induced the
formation of actin stress fibers as well as membrane ruffling [187]. More recently, IpgB2 was
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shown to have GEF activity towards RhoA [137]. The effector protein VirA is a cysteine
protease that destabilizes the microtubule network subsequently leading to activation of
Rac1 [295]. As exemplified in section 2.4, the Shigella effector IpgD has been implicated in
invasion by loosening the connection between cortical actin and the membrane through
its phosphoinositide 4-phosphatase activity [193]. This facilitates the remodeling of actin
and thus affects membrane ruffling [193]. Although phenotypic changes towards the actin
cytoskeleton are observed, the contribution of IpgD to the invasiveness of Shigella seems
to be negligible [193]. Further, the translocated effector IpaA plays an important role in the
entry process by binding of Vinculin. Vinculin is a focal adhesion protein and is involved
in the anchoring of the actin cytoskeleton to integrin receptors. Three different Vinculin
binding sites on IpaA have been identified which act in different ways. One binding site
acts a mimicry of the focal adhesion protein talin and induces vinculin activation. The
second binding site stabilizes the IpaA interaction while the third binding site may allow
the formation of IpaA-vinculin scaffolds [206]. Through vinculin binding and activation,
IpaA induces actin plolymerization arrest which is needed for bacterial anchorage at the
site of entry [121,99].

1.8 Phagosome escape and autophagy evasion

Once Shigella has invaded the epithelial cell, it is captured in the phagosome. In con-
trast to Salmonella Typhimurium, which modifies the phagosome towards the creation of
a replication permissive vacuole, S. flexneri lyses the surrounding membranes within 15
minutes and escapes into the cytoplasm, which represents its main replicative niche [204].
Membrane lysis depends on the Mxi-Spa TTSS and the translocator proteins IpaB, IpaC
and IpaD [250]. The vacuolar membrane remnants associated proteins subsequently un-
dergo polyubiquitination and the autophagy markers LC3 and p62 become recruited and
are targeted to autophagy [62]. At the same time, ubiquitination of membrane associated
host proteins leads to the induction of a pro-inflammatory cascade. The E3 ubiquitin
ligase TNF receptor-associated factor 6 (TRAF6) itself becomes ubiquitinated at vacuolar
membranes and thus affects NF-κB signaling. S. flexneri developed a strategy to pre-
vent its autophagy (a process termed xenophagy [266]) by the use of the bacterial effector
IcsB [200]. IcsB interacts with IcsA (VirG), a protein mediating intra- and inter-cellular
movement of S. flexneri as elucidated in section 2.1 [14]. IcsB competitively binds to IcsA,
thus camouflaging IcsA from recognition by the autophagic protein ATG5 and enables the
bacteria to evade autophagic recognition [179] [200].
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2 Cellular processes affected by Shigella infection of epithe-
lial cells

As described in the previous section, Shigella makes us of its TTSS to induce cell death in
macrophages and for the subsequent invasion of epithelial cells. Shigella utilizes a set of
effector proteins that are directly translocated into the non-phagocytic host cell inducing
actin cytoskeleton rearrangements that are promoting the uptake of the bacteria. Besides
reaching the replicative niche, it is of equal importance to maintain the niche for a sufficient
amount of time allowing replication and consecutive spread into the environment. To
counteract the defense mechanisms of the host, Shigella evolved a second set of effector
molecules for post-invasion purposes. These effector molecules are secreted inside the host
cell and interfere with various cellular processes in favor of the bacteria. Shigella prevents
a loss of the replicative niche by interfering with the host cell cycle and decelerating the
renewal of the epithelium. In addition, Shigella developed several strategies to prevent or
at least delay host cell death. Finally, several effector molecules adjust signaling pathways
that induce a pro-inflammatory response to reduce the inflammation of the tissue to a
level that is beneficial for the preservation of Shigella infection. On overview of cellular
processes affected by S.flexneri effectors is depicted in the figures 2.3.1 and 3.6.1.

2.1 Intra- and intercellular movement by actin based motility as a major
virulence factor

After invasion of the epithelial host cell and lysis of the vacuole, Shigella is released into
its replicative niche, the cytoplasm. Shigella and other intracellular bacteria including
Listeria monocytogenes, Rickettsia spp., Mycobacterium marinum and Burkholderia pseu-
domallei as well as the vaccinia virus have developed sophisticated systems to hijack the
actin polymerization machinery of the host, allowing them to move intra or inter-cellularly
by a mechanism termed actin-based motility (ABM) [89] [93] [98] [118]. This mechanism allows
the pathogen to actively spread in the human tissue and is a major virulence factor.
Research in animal models of Shigella infection revealed that ABM and spread between

intestinal epithelial cells is crucial for disease [242]. The molecular mechanisms of Shigella
ABM have been studied extensively [118]. ABM by Shigella is induced by the bacterial
surface protein intracellular spread (IcsA), also known as VirG [23]. Interestingly, IcsA is
not related to the Listeria ABM inducing surface protein ActA and both proteins pro-
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mote actin polymerization through distinct mechanisms [118]. Shigella IcsA is localized
at one pole of the bacterium. Apyrase encoded by phoN2 and cleavage of IcsA by the
serine protease SopA are essential for IcsA unipolar distribution [58] [64] [247]. IcsA stimu-
lates actin polymerization using several host proteins including Wiskott-Aldrich syndrome
protein (N-WASP) and the Arp2/3 complex [263] [93]. The unipolar recruited host proteins
work as actin nucleators and catalyze a directed elongation of actin that propels Shigella
through the cytoplasm. The Arp2/3 complex stimulates polymerization from the side
of a pre-existing filament leading to a Y shaped branched actin structure. For efficient
actin polymerization the Arp2/3 complex has to become activated through nucleation-
promoting factors like N-WASP [118]. N-WASP itself has to become activated by the pro-
tein Toca-1, which in addition has been shown to be associated with intracellular bacteria
and necessary for ABM [155]. Other host proteins that were shown to be involved in ABM
are septins. Septins are components of the cytoskeleton and were shown to organize as a
ring in the bud neck of yeast and are assembled into non-polar filaments, thus regarded as
unconventional cytoskeletal components [179]. It has been demonstrated that intracellular
S. flexneri can either become compartmentalized in septin-cage like structures or form
actin comet tails. Septin cages serve to counteract ABM and thus restrict the dissemina-
tion of invasive pathogens [179]. However, there is also a role for septin cages in autophagy
as autophagy markers like p62 and LC3 are recruited to septin cages [179]. Thus, septins
play a dual role in the infection process, by inhibiting ABM and beeing involved in au-
tophagy.
While the described molecular mechanisms of intracellular motility have been exten-

sively studied, less is known about the subsequent steps of membrane protrusion formation
and engulfment, leading to dissemination of bacteria to adjacent cells. Although specific
bacterial factors important for the induction of Shigella containing protrusions have not
yet been identified, the TTSS is crucial for cell-cell spread [198]. Host factors promot-
ing Shigella protrusions include the motor protein myosin X which is important for the
elongation of protrusions. Furthermore, a switch from Arp2/3 to formin mediated actin
polymerization in protrusions has been reported [107]. The adherens junction molecule E-
cadherin was shown to be involved in the generation of protrusions and internalization
of the protrusion by the neighboring cell [245]. In addition to adherens junctions also gap
junction or tight junction proteins have been implicated in the intercellular dissemination
of Shigella. It is noteworthy that Shigella dissemination predominantly takes place at
contacts of tricellular tight junctions, areas in cell monolayers where three different cells
form contact with each other [81]. Subsequently, Shigella containing protrusions are en-
gulfed by neighboring cells via an endocytic pathway. The lysis of the surrounding double
membrane in cells newly infected by cell to cell spread, is dependent on the TTSS and the
translocator proteins IpaB, IpaC and IpaD [118]. Once Shigella is freed into the cytoplasm
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a new cycle of replication and dissemination to neighboring cells can start [250].

2.2 Shigella is interfering with the host cell cycle

There is a growing number of pathogenic bacteria identified that actively interfere with
the host cell cycle. The term cyclomodulin has been proposed to describe bacterial toxins
or effector proteins that manipulate the eukaryotic cell cycle [197]. Cyclomodulins inhibit-
ing cellular proliferation of the intestinal epithelium can be an important virulence factor,
because they prevent renewal of the epithelium and therefore alter the integrity of the ep-
ithelial layer which can facilitate extra-intestinal invasion or prolong bacterial colonization
by inhibition of cell shedding [197]. In 2007, it has been reported that S. flexneri interferes
with the cell cycle of epithelial cells via delivery of the effector IpaB [120]. A yeast-two
hybrid screen revealed interaction of IpaB with Mad2L2, an inhibitor of the anaphase pro-
moting complex (APC) [120]. The APC is a multi-subunit complex, harboring E3 ubiquitin
ligase activity, which targets substrates, like Cyclin A or Cyclin B1 for degradation by the
proteasome during mitosis, allowing mitotic progression. IpaB leads to unscheduled APC
activation and subsequent Cyclin B1 degradation leads to cell cycle arrest [73]. Cell cycle
progression by modulation of APC ubiquitin ligase activity was shown to slow down upon
delivery of IpaB by S. flexneri into host cells where it targets Mad2L2 [120]. In a rabbit ileal
loop infection model it has been shown that S. flexneri infection reduces the abundance of
epithelial progenitors in an IpaB-dependent manner. In addition, IpaB delivery increased
the colonization rate of the loops, compared to an IpaB mutant which still functions as a
TTSS translocator but has decreased binding activity towards Mad2L2. Rapid turnover
of epithelial cells limits bacterial colonization by shedding of infected cells. Therefore, this
represents a possible strategy to prolong the availability of S. flexneri replicative niche.
In addition, as a consequence of cell cycle inhibition, the integrity of the epithelial layer is
impaired. This might contribute to further infection of the intestinal epithelium because
bacteria can get access to the baso-lateral surface of the cells without the need to cross
the epithelial layer by transcytosis through m-cells.

2.3 Shigella maintains host cell adhesion

Besides preventing the renewal of the epithelium by interfering with the cell cycle, Shigella
also enhances host cell adhesion to colonize the intestinal epithelium. The TTSS effector
OspE binds to integrin-like kinase (ILK) leading to an increase in cell surface level of
β1-integrin and suppressed phosphorylation of focal adhesion kinase (FAK) and paxillin.
Thereby, OspE reduces adhesion turnover and suppresses the detachment of infected cells
from the basement membrane, important for the promotion of bacterial colonization [134].
Because OspE orthologues are found in other enteropathogens such as EPEC or Salmonella
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Figure 2.3.1 Shigella effectors modulate several cellular processes. Several effector pro-
teins are secreted by intracellular Shigella and interfere with host signaling cascades in order to
promote host cell survival, cell cycle arrest and increased cellular focal adhesion. For more details,
refer to the manuscript.

spp., maintenance of cell adhesion appears as a widespread strategy for bacteria that
interact with the intestinal epithelium [275].

2.4 Shigella is manipulating apoptotic and pro-survival signals

Programmed cell death is a tightly regulated process that can either be activated by
intrinsic factors through intracellular pathways involving the endoplasmatic reticulum
and mitochondria or in an extrinsic way involving extracellular stimuli. Both result in
a cleavage-dependent caspase activation and subsequently apoptotic symptoms like cell
shrinkage, chromatin condensation, membrane blebbing and formation of apoptotic bod-
ies. Many pathogens including Shigella have evolved tools to manipulate the survival
pathways of the host. Shigella has evolved active strategies to expand the lifespan of
its epithelial reproductive niche, mostly by preventing or at least delaying apoptotic and
necrotic cell death. Shigella is equipped with at least two distinct effectors that promote
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survival of the epithelial host cell, namely VirA and IpgD. Shigella infection of epithelial
cells induces a genotoxic response and subsequently activation of the apoptosis inducer p53
within the first two hours of infection [22]. However, the Shigella effector VirA, which was
already known to promote early cytoskeletal processes and to promote the uptake into ep-
ithelial cells, can also activate calpain proteases in a calcium-dependent manner. Calpains
degrade p53, a protein important in the DNA repair response and also for the induction
of apoptosis. While degradation of p53 delays apoptosis, the impairment of a DNA re-
pair response will ultimately lead to necrotic cell death of the host cells at later stages of
infection [22]. It has been demonstrated that Shigella can rescue cells from staurosporine
induced apoptosis but not if the transcriptional regulator mxiE is deleted [43]. Clark and
colleagues screened for all MxiE regulated effector proteins but could not identify a mutant
that lacked the ability to rescue cells from staurosporine induced apoptosis [69]. Therefore,
they looked for proteins associated with MxiE and were able to identify the TTSS chap-
erone Spa15 which also gets translocated into the host cell [70]. Upon deletion of spa15,
Shigella was no longer able to protect cells from staurosporine induced apoptosis. They
conclude that Spa15 contributes to intracellular survival of Shigella by preventing apop-
tosis of infected host cells, although the molecular mechanism is not known.
IpgD is another Shigella effector protein delivered into epithelial cells by the TTSS and was
shown to modulate the survival pathways of the host cell [212]. IpgD is a phosphoinositide 4-
phosphatase generating phosphatidylinositol 5-phosphate (PI5P) from phosphatidylinositol
4,5-bisphosphate (PI(4,5)P2). An overview of phosphatidylinositol signaling is shown in
figure 2.5.1. IpgD is rapidly secreted into the host cell already by extracellular bacte-
ria [193]. Because IpgD is early delivered during the infection process, it was assumed to
play a role in the entry process. Although the ∆ipgD mutant elicited entry structures
with a highly altered morphology, bacteria were still able to invade the host cells [193].
Later on, it has been demonstrated that PI5P is rapidly produced at the site of Shigella
entry and co-localizes with the kinase AKT phosphorylated on Ser473, which is crucial
for its activation. Subsequently, it has been shown that AKT phosphorylation on Ser473
is dependent on IpgD [212]. AKT is a serine/threonine specific protein kinase and plays a
major role in many physiological processes such as metabolism, apoptosis, survival, growth
and protein synthesis. AKT is one of the most frequently activated kinases in cancer [6].
Therefore it is of great interest, that Shigella has evolved a tool to actively activate this
kinase to prolong survival of the infected cell. Downstream of IpgD induced AKT signal-
ing phosphorylation of GSK3A, FKHR and p70S6K was observed although the detailed
functions of these proteins in the context of infection remain unclear [212]. Moreover, the
exact mechanism of IpgD-dependent AKT activation is yet unknown, although it has been
proposed that PI5P leads to the activation of tyrosine kinases and subsequently Class I
PI3Ks which produce phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) promoting
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AKT activation [212].
EGFR is a tyrosine kinase that has been assigned to play a role in the PI3K-AKT

activation pathway upon Shigella infection [222]. It was demonstrated that EGFR is re-
quired for PI5P-dependent AKT activation in S. flexneri infected epithelial cells or in cells
overexpressing IpgD. Cells treated with PI5P are enriched for EGFR in early endosomes
preventing its lysosomal degradation. Thus, IpgD is modulating the trafficking of the host
cell by impairing the maturation and transport of endosomes to lysosomes, which extends
the duration of survival signals by protecting EGFR from degradation [222].
Altogether, the research described in this section shows that Shigella developed multiple

strategies to circumvent or delay host cell death and subsequently the loss of its replicative
niche. These mechanisms can be viewed as a major virulence factor because they expand
the timespan in which the pathogen can replicate and disseminate either within the tissue
or to the environment.

2.5 The endocytic and secretory pathways are modulated by Shigella

Burnaevskiy and colleagues found that Shigella inhibits the cargo transport through the
Golgi apparatus and that the Golgi apparatus itself becomes fragmented upon Shigella
infection [34]. This effect was shown to be TTSS-dependent and a subsequent screen for
the responsible components revealed the effector proteins VirA and IpaJ to induce Golgi
fragmentation and to inhibit hormone trafficking through the secretory pathway. Deletion
of either VirA or IpaJ in a mouse model of mucosal infection strongly affected the repli-
cation of the bacteria compared to wild-type, showing the importance of these effectors
for in vivo virulence. It was demonstrated that IpaJ cleaves the N-myristoylated glycine
from ARF1 by its cysteine protease activity. In addition, IpaJ demyristoylated a large
portion of N-myristoylated proteins found in mammalian cells. The myristoyl group is
sequestered in GDP-inactive ARF1 and liberated for membrane binding upon GTP ex-
change. IpaJ can therefore distinguish the activation state of its substrate and only cleaves
GTP bound active ARF1, leading to the release of activated ARF1 from the Golgi upon
Shigella infection [34].

2.6 Metabolic adaptations to an intracellular lifestyle

The epithelial cell reflects the main replicative niche of Shigella. Understanding the bac-
terial replication process in the host cell is very important because intracellular growth
is key for virulence. It is noteworthy, that the pathogen faces different environments at
the different stages of infection until it reaches the cytoplasm of epithelial cells. There-
fore, Shigella has to be highly adaptive and regulate transcription and protein expression
according to current demands. It is not surprising that more than 900 genes are differ-
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Figure 2.5.1 The main enzymes involved in Biosynthesis and metabolism of phospho-
inositides. Left: Lipid kinases (orange) and lipid phosphatases (grey) mediate the conversion of
phosphatidylinositol (PI) to PI(3,4,5)P3 and the corresponding interstages that all have impor-
tant functions in phosphoinositol signaling. PI becomes phosphorylated by phosphatidylinositol
4-kinase (PI4K) to phosphatidylinositol 4-phosphate (PI4P) which itself gets further phosphory-
lated by phosphatidylinositol 5-kinase (PI5K) to PI(4,5)P2. phospholipase C (PLC) can produce
diacylglycerol (DAG) and Inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) from PI(4,5)P2. PI(4,5)P2
can be converted to PI(3,4,5)P3 by class I PI3K a process that can be reversed by the ac-
tion of the 3 lipid phosphatase phosphatase and tensin homolog (PTEN). PI(3,4,5)P3 can be
also be dephosphorylated by phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP) yield-
ing in phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) which can also be produced by class II
PI3K from PI4P. PI(3,4)P2 becomes degraded by inositol polyphosphate 4-phosphatase type
I (INPP4) to phosphatidylinositol 3-phosphate (PI3P) which can also be formed by phosphoryla-
tion of PI by class II and III PI3K (Vps34). PI3P can be converted to phosphatidylinositol 3,5-
bisphosphate (PI(3,5)P2) by the phosphatase PIKfyve. myotubularin (MTM) and myotubularin-
related protein (MTMR) are a family of lipid phosphatases that can dephosphorylate both, PI3P
and PI(3,5)P2 to PI and PI5P respectively. PI5P can also be generated from PI(4,5)P2 by the phos-
phatidylinositol 4,5-bisphosphate 4-phosphatase IpgD which is an effector secreted by S. flexneri.
PI5P can be converted to PI by PTEN-like phosphatase (PLIP) activity. Right: Structure of
PI(3,4,5)P3. PI(3,4,5)P3 consists of a polar inositol ring that is phosphorylated on position 3, 4
and 5 and coupled by a further phosphate group and a glycerol backbone to two non polar fatty
acid tails, usually stearic acid and arachidonic acid. adapted with modifications from Wymann and
Schultz [291].
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entially regulated when comparing Shigella growth in HeLa cells to growth in broth [163].
Interestingly, the key virulence genes as the ipa-mxi-spa locus and icsA were drastically
down-regulated during intracellular growth, indicating that these genes are not crucial for
growth once the bacteria are inside the cell. At the same time, bacteria have to compete
for iron, magnesium and phosphate indicated by up-regulation of the sitABCD iron trans-
port system, the magnesium transporter gene mgtA, and genes of the phoBR regulon that
includes phoA gene, encoding periplasmic phosphatase, and the pstS and phnC genes,
encoding ABC phosphate transporters. A recent study also aimed to find differences
between in vivo and in vitro gene expression [177]. Nine genes that are transcriptionally
altered during growth within epithelial cells and are specific to S. flexneri species were
found. Deletion of the transcriptional regulator intracellular growth regulator (icgR), de-
scribed in this study, had no effect on growth in vitro but resulted in increased intracellular
multiplication in HCT-8 cells. The TonB-dependent iron transport system was previously
shown to be important for Shigella dysenteriae intracellular growth. A tonB mutant was
invasive but had a reduced rate of multiplication. Interestingly this was also observed
in iron replete cells, indicating that TonB has additional roles to heme- and siderophore-
mediated iron acquisition in vivo [224]. Moreover, it has been demonstrated that mutants
unable to synthesize guanine, thymine or p-aminobenzoic acid are severely impaired in
intracellular multiplication [36]. Recent proteomic data suggest that intracellular Shigella
scavenges a wide range of carbon sources as many transport systems for a variety of sug-
ars and peptides are expressed [216]. In addition, these transport systems are robust and
redundant as single mutations in genes as fruA, manX, or dpp do not affect the ability of
the pathogen to grow intracellular [216]. Shigella seems to metabolize the carbon sources
through glycolysis and mixed-acid fermentation. Mutants unable to metabolize pyruvate
to formate and lactate did not grow well in the intracellular environment [216]. Although
there is increasing knowledge about bacterial factors that are adapted within the host cell
and participate in metabolism, little is known about host factors that contribute to or
restrict bacterial growth.
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3 Modulation of pro-inflammatory signaling cascades

3.1 Inflammation, a tightrope walk for both, Shigella and the host

Inflammation is a pivotal point of Shigella infection as it can be beneficial or detrimental
for both, the pathogen and the host. The consequence is a tug war between the host and
the pathogen for the adjustment of inflammation in favor of each side. Inflammation is
fundamental for the initiation of an immune response, leading to the clearance of infec-
tion. However, excessive inflammation can lead to severe tissue damage and even allow
further bacteria to gain access to the submucosa. This already implies the dependency of
the pathogen towards a beneficial amount of inflammation. A low level of inflammation
appears to be optimal for the pathogen because this would allow evasion of the immune
response. However, Shigella also relies on a certain amount of inflammation, leading to the
manifestation of the diarrheal symptom that promotes the spread of the pathogen. In this
section, strategies of Shigella to interfere with the host signaling towards an inflammatory
response will be described.

3.2 Pathogen sensing

The innate immune system senses invading microbial pathogens by receptors recogniz-
ing specific conserved bacterial patterns. These receptors, collectively referred as pattern
recognition receptors (PRRs) recognize specific pathogen-associated molecular patterns
(PAMPs) including LPS, lipoproteins and peptidoglycan (PGN) that are broadly ex-
pressed on pathogens but not found on host cells [265]. The most prominent PRR family are
the Toll-like receptors (TLRs), that recognize different PAMPs (also referred as microbe-
associated molecular patterns (MAMPs)) including lipids, lipoproteins, proteins, glycans
and nucleic acids [265]. TLRs are either expressed on the cell surface to sense extracellular
PAMPs or can be found on intracellular vesicles such as endosomes or lysosomes [265].
The gut is a special organ, regarding the huge number of comprised microbes building

the gut microbiota. To avoid constant inflammation triggered by the massive presence of
PAMPs, many TLRs are predominantly expressed on the baso-lateral side of the epithe-
lium [1]. Invading pathogens are sensed by soluble intracellular PRR including the RIG-I
like receptors (RLRs) and Nod-like receptors (NLRs) whose members Nod1 and Nod2
play an important role upon S. flexneri infection [48] [88]. NLRs typically consist of three
distinct domains, including a N-terminal caspase recruitment domain (CARD) important
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for protein interaction, a central nucleotide-binding NACHT domain and a C-terminal
leucine-rich repeat (LRR) domain which mediates PAMP sensing [48]. Nod1 recognizes
the PGN derived structural motif g-D-glutamyl-meso-diaminopimelic acid (iE-DAP) com-
monly found in the PGN structure of all gram-negative as well as in several gram-positive
bacteria [86] [37]. Nod2 recognizes muramyl dipeptide (MDP) a large compound of PGN
that is present in all gram-negative as well as gram-positive bacteria, making it a more
general sensor for bacteria [87]. Invading S. flexneri are sensed by a pool of membrane lo-
cated Nod1 proteins that become recruited to the site of bacterial entry and also remain at
the membrane fragments after rupture of the vacuole. In addition, peptidoglycan-derived
peptides released from multiplying bacteria in the cytoplasm are sensed by Nod1 and fur-
ther contribute to its activation. Peptidoglycan sensing induces the homodimerization of
Nod1, mediated by the nucleotide-binding NACHT domain, and subsequently the recruit-
ment and polyubiquitination of the kinase receptor-interacting serine/threonine-protein
kinase 2 (RIP2) by CARD-CARD interaction. RIP2 then activates TAK1, a member of
the MAP3K family. TAK1 forms a complex with TAB1, TAB2 and TAB3 that controls
the further activation of downstream pathways including NF-κB and MAPKs [225].

3.3 NF-κB and the MAPKs - two important signaling pathway in re-
sponse to bacterial infection

Several Shigella TTSS translocated effector proteins have been identified that target the
NF-κB pathway in order to prevent nuclear translocation and subsequent expression of
pro-inflammatory cytokines like IL-8. Another S. flexneri effector protein inactivates the
MAPK cascade and thus prevents chromatin remodeling, a prerequisiste for the expres-
sion of pro-inflammatory cytokines. Thus, the NF-κB and MAPK pathway are important
signaling pathways upon bacterial infection and key players in the induction of an innate
immune response. The transcription factor NF-κB was discovered in 1986 to bind selec-
tively to the kappa light chain enhancer DNA element in extracts of B-cell tumors, leading
to the abbreviation NF-κB [252]. The NF-κB transcription factor family regulates the ex-
pression of many genes that are involved in diverse biological processes like inflammatory
and immune responses, cell growth and development [186]. Five distinct members of this
transcription factor family have been identified and termed as p65 (RelA), RelB, c-Rel,
NF-κB1 and NF-κB2. NF-κB2 is synthesized as pro-forms (p105 and p100) and becomes
proteolytically processed to p50 and p52, respectively. In its inactive form, NF-κB is
sequestered in the cytoplasm by binding to its inhibitor inhibitor of NF-κB (IκB), that
masks the nuclear localization sequence (NLS) of NF-κB and prevents its nuclear translo-
cation and subsequent DNA binding. Activation of NF-κB occurs by release from IκB
or by cleavage of p100 and p105. This is achieved by proteasomal degradation of IκB or
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by partial degradation of the precursors. IκB becomes Lys-48 linked polyubiquitinated
which is catalyzed by SCFβ-TrCP type E3 ligase. A prerequisite for polyubiquitination is
the prior specific double phosphorylation of IκB. The phosphorylation is mediated by an
enzyme complex containing inhibitor of nuclear factor κ-B kinase (IKK)α and IKKβ and
the non-catalytic accessory protein NEMO. The IKK complex itself becomes activated by
upstream kinases, including NIK, MEKK1,2,3 and TAK1. In the canonical NF-κB path-
way, proinflammatory signals such as cytokines, PAMPs and danger-associated molecular
patterns (DAMPs) activate a signaling cascade that leads to the activation of IKK which
induces the release of NF-κB for nuclear translocation and activation of gene transcription
(Figure 3.6.1). In the specific case of bacterial invasion, their PAMPs and DAMPs are
detected by various PRRs, including TLRs and NLRs as well as some components of the
autophagic machinery, leading to the activation of the MAPK and NF-κB pathways [14].
The MAPK pathway coordinates diverse cellular functions such as gene expression,

cell cycle, metabolism, motility, differentiation, survival and apoptosis [146]. Six distinct
MAPK classes have been characterized in mammalians including extracellular-signal reg-
ulated kinase (ERK)1/2, ERK3/4, ERK5, ERK7/8, c-Jun N-terminal kinase (JNK) and
p38 [157]. For conceptual reasons, the focus of the brief MAPK signaling overview will be
restricted to the most extensively studied groups ERK1/2, JNK and p38, all becoming ac-
tivated upon S. flexneri infection by the Nod1, RIP2, MAP3K and MAP2K cascade. The
MAPK cascade is typically tripartite and begins with a serine/threonine kinases from the
MAP3K family which becomes activated by phosphorylation or by interaction with small
GTPases from the Ras/Rho family in response to extracellular stimuli. Activated MAP3K
phosphorylates MAP2Ks which are dual specificity kinases and thus phosphorylate their
substrates the MAPK on both, threonine and tyrosine [146]. Activated MAPKs subse-
quently phosphorylate and activate their substrates including transcription factors, other
kinases and histones. In particular, JNK and p38 regulate the activity of the transcription
factor AP-1. In parallel, p38 and ERK remodel the chromatin structure by phosphory-
lation of histone H3 via the kinases MSK1 and MSK2, making the DNA accesible for
transcription factors like AP-1 and NF-κB [205] [146]. The MAPK and NF-κB signaling
cascades collectively initiate an inflammatory response, leading to the transcription of
pro-inflammatory genes including the chemokine IL-8 which was shown to be more than
300-fold up-regulated during S. flexneri infection [209]. Pathogens have evolved strategies
to circumvent the secretion of pro-inflammatory cytokines, which will be discussed in the
following sections.
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3.4 Several Shigella effectors interfere with the NF-κB pathway

Among the effector molecules that have been shown to interfere with NF-κB signaling
is OspG which inhibits nuclear translocation of NF-κB by preventing degradation of the
phosphorylated form of inhibitor of NF-κB alpha (IκBα) [132]. It was found that OspG
binds the unbiquitinylated E2 UbcH5 which is a component of the SCFβ-TrCP complex that
promotes phospho-IκBα ubiquitination and its subsequent degradation by the proteasome.
As a consequence of this OspG down-regulates the transcription of NF-κB-dependent genes
and thus the pro-inflammatory response [132]. In addition, nuclear translocation of NF-κB
is also impaired by the effector OspZ, which is a homologue to the EPEC/EHEC NleE effec-
tor, although the molecular mechanism of this observation remains to be resolved [190]. Two
effectors of the IpaH family which are E3 ubiquitin ligases have also been demonstrated to
interfere with NF-kB signaling. These include the Shigella effector IpaH9.8 that was shown
to downregulate inflammation by binding to the mammalian splicing factor U2AF35, indi-
cating that IpaH9.8 can dampen the expression of pro-inflammatory cytokines at the post-
transcriptional level [202]. Moreover, IpaH9.8 interacts with NEMO/Inhibitor of nuclear
factor κ-B kinase subunit γ (IKKγ) and the ubiquitin binding adaptor protein ABIN-1
and promotes ABIN-1-dependent polyubiquitination of NEMO. Subsequently, polyubiqui-
tinated NEMO undergoes proteasome-dependent degradation, severely impairing NF-κB
activation [11].
In addition to the activation of NF-κB through Nod1-dependent recognition of pep-

tidoglycan moieties, NF-κB can also become activated by PKC signaling in response to
membrane damage through Shigella invasion of epithelial cells. In this pathway IpaH0722,
another member from the IpaH family, ubiquitinates TRAF2, a downstream molecule of
PKC and promotes its proteasomal degradation [12]. As a consequence, the downstream
signaling towards IKK, IκB/NF-κB is dampened during Shigella infection. Interestingly,
NF-κB activation through PKC signaling is also targeted by the effector and glutamine
deamidase OspI that impairs inflammatory signaling by targeting NF-κB activation via the
TRAF6 pathway [236]. OspI deamidates UBC13 and impairs its E2 ubiquitin ligase activity
which is required for TRAF6 polyubiquitination. As a consequence, nuclear translocation
of NF-kB is impaired. Surprisingly, there has also been an effector described that seems
to activate NF-κB signaling [80]. OspB was shown to activate NF-κB through GEF-H1
and Nod1 leading to Rho-associated protein kinase (ROCK)-dependent phosphorylation
of NF-κB. However, Zurawski and colleagues found OspB to reduce the pro-inflammatory
response by interacting with retinoblastoma protein [304].
The fact that S. flexneri has several effector proteins targeting NF-κB, clearly puts much

attention on this pathway in the context of bacterial induced inflammation. However, it is
not easy to explain why a pathogen evolved different effector molecules for the apparently
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same purpose. Although the different effectors tackle the NF-κB pathway at distinct
sites, the outcome is expected to be similar. Redundancy may serve as an explanation
however, by considering the fact that deletion of a single effector can strongly promote
inflammation as claimed in different studies, it is not very plausible. Otherwise, multiple
deletion mutants would have been required for the observation of an effect. A more
plausible explanation is the temporal factor. The distinct effectors may deploy their
activity at different time-points of infection and may thus all be important for a successful
inactivation of NF-κB signaling. More work is required to unravel the impact of these
effectors on the NF-κB pathway. Especially a systems biology approach would be suitable
to study the different effectors in context instead of an isolated view on single effectors as
already carried out.

3.5 OspF prevents MAPK activation via its phosphothreonine lyase ac-
tivity

As described in the previous paragraph, Shigella targets the NF-κB pathway and in-
hibits nuclear translocation of the transcription factor. This is not the only strategy the
pathogen employs to down-regulate the expression of pro-inflammatory genes in infected
cells. In addition, the MAPK pathway, which synergistically with the NF-κB pathway
induces the expression of pro-inflammatory genes, is also subverted by Shigella [250]. This
is achieved by OspF, a TTSS secreted effector protein, that inactivates the MAPKs p38
and ERK and thereby dampens host immunity [9]. The OspF family, includes OspF from
Shigella spp., SpvC from nontyphoid Salmonella spp. and HopAI1 from plant pathogen
Pseudomonas syringae [207]. MAPKs are activated by dual phosphorylation on a pT-X-
pY motif in the activation loop. Inactivation of MAPKs by OspF is mediated by its
phosphothreonine lyase activity that irreversibly removes the phosphate group from the
phosphothreonine in the MAPK activation loop, a process called β-elimination (Figure
3.5.1). More precisely, OspF converts phosphothreonine into β-methyldehydroalanine and
thereby irreversibly inactivates the MAPKs. Biochemical analysis has shown that OspF is
specific for dual phosphorylated MAPKs, with high activity towards phosphorylated p38,
moderate towards ERK, but almost no activity towards phosphorylated JNK [300]. Once
secreted into the epithelial host cell, OspF rapidly translocates to the nucleus where it
inactivates p38/ ERK and subsequently prevents the phosphorylation of histone H3 on
serine 10 [9]. Besides transcription factors like NF-κB, histone modifications play a major
role in the control of transcription. The N-terminus of the four core histones H2A, H2B,
H3 and H4 are accessible for post-translational modification (PTM), because they pro-
trude out of the nucleosome. Histone modifying PTM include amongst others acetylation,
phosphorylation and methylation. These modifications affect gene regulation by altering
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Figure 3.5.1 OspF has phosphothreo-
nine lyase activity. MAPK (blue) become
activated by dual phosphorylation on a Thr-
Xaa-Tyr motif of the activation loop through
an upstream MAPKK. The MAPK can be-
come inactivated by removal of the phos-
phorylation through a dual-specificity phos-
phatase (DUSP) (green). OspF (red) can irre-
versibly inactivate phosphorylated MAPK by
a beta-elimination reaction where phospho-
threonine becomes modified to dehydrobu-
tyrine which due to its lack of a hydroxyl
group cannot be re-phosphorylated. This
post-translational modification is termed
eliminylation, represented by (=). Mono-
phosphorylated MAPK is inactive Adapted
with modifications from Brennan and Barford
2009 [51].

the accessibility of transcription factors to chromatin [122]. Phosphorylation of histone H3
on serine 10 can be induced by the MAPKs signaling pathways. The phosphorylation
selectively occurs on the promotors of immediate early genes like FOS and on a subset
of NF-κB-dependent pro-inflammatory cytokine and chemokine genes as IL-8. Altough
its not yet entirely clear, it is most likely that downstream of the MAPKs, mitogen- and
stress-activated kinase (MSK) is the kinase responsible for Histone H3 phosphorylation
upon Shigella infection [9].
Altogehther, it has been demonstrated that OspF is an effector that dampens the inflam-

matory response by inhibiting the MAPK pathway and subsequently Histone H3 phospho-
rylation, preventing the transcription of NF-κB regulated pro-inflammatory genes, partic-
ularly IL-8 [9]. IL-8 attracts PMN cells through the lamina propria as well as through the
epithelial layer. This is in concordance with in vivo data showing that an ospF deletion
strain compared to wild type causes a much more severe inflammation including leukocyte
recruitment [9]. Recently, it was shown that OspF can also indirectly affect the activity of
proteins by interfering with a negative feedback loop [225]. In particular, p38 repression by
OspF leads to an interruption of the negative feedback towards TGF-beta activated ki-
nase 1 (TAK1) and subsequently potentiates the activity of the downstream MAPK JNK
and the transcription factor NF-κB [225]. Therefore it is tempting to speculate that OspF
may affect even more cellular targets downstream of the MAPK cascade and may have a
broader impact on the host cell signaling as described so far.
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3.6 IpgD also dampens inflammation

In 2013, in vivo work has assigned an additional function to IpgD and revealed its role
in immune evasion by down-regulating the inflammatory response [219]. Earlier, it has
been proposed that Shigella infection induces the opening of connexin 26 hemichannels,
allowing adenosine triphosphate (ATP) to be released from the cell. Although it has
been reported that this ATP release can increase bacterial invasion and spreading, the
pathophysiological meaning of this process remained unclear [274]. In the recent years, it
became evident that extracellular ATP plays a role in immunity and that it can modulate
inflammation in a concentration-dependent manner [30]. Puhar and colleagues [219] now
described that Shigella infection induces an early innate immune response caused by ATP
release through connexin hemichannels. They could show that PI5P produced by IpgD
can block Shigella induced ATP release by closing connexin hemichannels. This in vivo
data reveals that beyond controlling the survival state of an infected cell, IpgD plays also
a major role in the maintenance of the Shigella epithelial niche by down-regulating the
inflammatory response.

3.7 Mechanism of bystander cell activation

Recently, a study from our laboratory was published revealing a host strategy to circum-
vent the anti-inflammatory activity of Shigella effectors by amplification of IL-8 expression
during bacterial infection [128]. It was shown, that epithelial cells infected with Shigella
are not able to produce IL-8 due to the activity of different Shigella effectors, in particular
OspF. Surprisingly, uninfected neighboring bystander cells produced IL-8. In addition, nu-
clear NF-kB translocation as well as MAPK activation rapidly propagated from infected to
uninfected bystander cells, altogether resulting in the observed IL-8 production. Bystander
IL-8 production was also observed upon Salmonella Typhimurium and Listeria monocyto-
genes infection, indicating a general host defense mechanism. It was subsequently shown
that the bystander cells were alerted by infected cells through gap junction-dependent
cell-cell communication [128].
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Figure 3.6.1 Shigella modulates the host immune response. Several effector proteins (red)
are secreted by intracellular Shigella and interfere with the NF-κB and MAPK signaling cascades
in order to downregulate the inflammatory response. For more details, refer to the manuscript.
Adapted with modifications from Ashida et al. [14].
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4 Study of the host signaling network

4.1 Systems biology of S. flexneri infection

Infection of epithelial cells by S. flexneri has been well investigated by reductionist ap-
proaches resulting in important discoveries regarding specific molecular aspects of infec-
tion, as well as general concepts of infection biology and immunology [223] [13]. However, the
host-pathogen interaction is a multifarious process that is far more complex than it can be
comprehended by isolated observations of specific aspects of the infection. Systems biology
is following the assumption, that a comprehensive understanding of biological processes,
which are influenced by a multitude of factors, can be extracted from global network data.
This type of information can be obtained from different technology platforms which are
capable to sensitively and accurately acquire large scale data sets of a certain cellular state.
One possibility are perturbations of the biological system and the consequent measure-
ment of the impact on a cellular state as it can be achieved by RNA interference (RNAi)
screens. In addition, systems biological approaches often rely on different "omics" disci-
plines such as transcriptomics, metabolomics or proteomics. Transcriptomic data to study
the differential gene expression profiles upon perturbations or changed environments, can
be acquired by DNA microarray technologies. This technique has been applied to study
the gene expression pattern of epithelial cells infected with S. flexneri [209]. The expres-
sion of 12’000 genes was monitored, revealing the induction of a pro-inflammatory gene
expression pattern. Although, a biological dogma proposes a hierarchical information flow
from DNA to mRNA to proteins to metabolites, this flow can be influenced by the cell or
extrinsic factors at different stages. mRNA expression for instance, does not necessarily
correlate with protein expression, highlighting the importance of proteomic data as com-
plementation of transcriptomics [95]. Proteomics deals with the large-scale determination
of gene and cellular functions directly at the protein level [3]. The Shigella proteome has
been characterized in different states of growth or environmental conditions. However,
a broad host cell proteome upon Shigella infection is lacking [217] [299] [216]. Even though
information about a host cell proteome upon S. flexneri infection would be valuable, its
suitability to capture signaling events that occur early in the infection process would be
very limited. Rapid signaling events often occur through PTM of proteins which allow a
faster response than regulation at the protein level would. Thus, studying PTM modifica-
tions upon S. flexneri infection is an attractive strategy towards a global understanding
of the host-pathogen interaction.
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Figure 4.2.1 Diversity of PTM. PTM are modifi-
cations of target proteins after their translation. PTM
can be distinguished based on different criteria: The
modification of the chemical structure of the amino acid
side chain, the addition of chemical groups or complex
molecules to specific amino acids, the covalent linkage
of polypeptides, or the proteolytic cleavage of proteins.
For each class the reversibility of the modification as
well as examples are indicated. From Ribet and Cos-
sart 2010 [226].

4.2 Post-translational modifications

Proteins are large macromolecules consisting of specific sequences of amino acids. Al-
though the sequence determines the fold and consequently the function of a protein to a
high degree, modifications of amino acids and their side chains contribute essentially. The
ability of proteins to undergo modifications at the post-translational level dramatically
enhances the complexity of proteomes in several orders of magnitude more than the gene
code alone could. More than 300 different PTMs have been reported, already indicating
the complexity added to the proteome by modification of proteins [226]. The complexity
even becomes unbounded assuming that a single protein can undergo several different
modifications at different sites which in turn may affect the modification state of other
proteins.
PTMs can be classified based on the chemical nature and on the reversibility of the

modification. Most simply, the proteolytic cleavage of a protein is an irreversible PTM
modification. In addition, irreversible amino acid modifications include deamidation and
eliminylation, two chemical reactions which can become catalyzed by S. flexneri effectors.
Deamidation is a chemical reaction occuring on asparagine and glutamine in which the
amide group of the side chain becomes removed yielding an aspartic or glutamic acid,
respectively. Deamidation of Ubc13 by the S. flexneri effector OspI downregulates the
inflammatory response as described in section 3.4. Eliminylation was discovered based on
the delineated mechanism of the S. flexneri OspF and Salmonella SpvC phosphothreo-
nine lyases. These effectors employ a β-elimination reaction, where the phosphate from
phosphothreonine is removed and converted into dehydrobutyrine (section 3.5).
Other PTM are characterized either by the addition of polypeptides, complex molecules

or chemical groups. The most prominent example of a PTM that is based on addition of
polypeptides is ubiquitination. Lysine residues can become modified by the small protein
ubiquitin. Ubiquitination is a reversible PTM, associated with regulation of the half-life of
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proteins, as ubiquitinated proteins can rapidly undergo proteasomal degradation. Ubiq-
uitination can be different in the way that a substrate can become monoubiquitinated or
polyubiquitinated. Lys48 linked polyubiquitination is associated with proteasomal degra-
dation whereas Lys63 linked polyubiquitin chains can mediate signaling functions. Thus,
ubiquitination is a complex PTM and executes a variety of biological functions within a
cell [140]. It is not surprising that S. flexneri evolved TTSS effector molecules that interfere
with the host ubiquitination machinery like the E3 ubiquitin ligases IpaH9.8 and IpaH0722
that have been described in section 3.4.
Besides the addition of polypeptides also other complex molecules can be attached to

a protein and thus affect its function. These modifications are usually reversible and
prominent examples are AMPylation, ADP-ribosylation, glycosylation or isoprenylation.
AMPylation, also known as adenylation describes the reversible, covalent attachment of
an adenosinmonophosphate (AMP) to hydroxyl side chains of protein substrates. AMPy-
lation was shown to play an important role upon bacterial infection where T3SS or T4SS
translocated proteins harboring a filamentation induced by cAMP (Fic) domain, catalyze
the AMPylation of cellular targets. Prominent bacterial effector Fic proteins are the TTSS
effector VopS from Vibrio parahaemolyticus as well as the T4SS effector VbhT from Bar-
tonella Schoenbuchensis, both AMPylating RhoGTPases leading to the collapse of the
cytoskeleton [293] [65].
Besides the above mentioned PTM, there are also irreversible modifications of proteins

with complex molecules. An example of such a PTM is myristoylation where a myristoyl
group becomes covalently attached to the N-terminal glycine residue of target proteins,
typically promoting membrane binding [290]. As described in section 2.5, the S. flexneri
TTSS effector IpaJ cleaves the peptide bond of N-myristoylated glycine-2 and asparagine-3
of human ARF1 and thereby inhibits the host secretion machinery [34]. The most promi-
nent example for a reversible PTM characterized by the addition of chemical groups is
phosphorylation which will be elucidated in more detail in the next section.
Altogether, these examples illustrate that PTMs are involved in diverse cellular aspects

and thus targeted by many different bacterial effectors. Therefore, recently developed
proteomic approaches including ubiquitomics, acetylomics or phosphoproteomics will shed
new light on the signaling map of host-pathogen interactions [136,164,229].

4.3 Protein phosphorylation

One of the most important PTM with regard to signal transduction is phosphorylation.
Phosphorylation is a reversible modification and involved in nearly all aspects of cellu-
lar life. It was first discovered in the 1950’s that the metabolic enzyme phosphorylase
which converts glycogen to glucose-1-phosphate exists in either an active or an inactive
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state [144]. It was found that a protein kinase could catalyze the attachment of a phosphate
to phosphorylase and therefore renders it active [77]. For these discoveries, Edwin Krebs
and Edmond Fischer received the Nobel prize in 1992. In addition, it was shown that
phosphorylase kinase itself becomes activated by the protein kinase A (PKA) [105] leading
to the birth of the concept of protein phosphorylation as a key biochemical regulatory
mechanism. The transfer of the γ-phosphate group from a high energy donor molecule
to its substrate is mediated by enzymes named kinases or phosphotransferases. Donor
molecules are typically ATP or less frequently guanosine-5’-triphosphate (GTP). The γ-
phosphate of ATP or GTP is preferentially transferred to hydroxyl groups (OH) but also
to nucleophilic centers of other functional groups of acceptor molecules containing oxygen,
sulfur or nitrogen. This attachment process of a phosphorus containing group is termed
phosphorylation, where a phosphono- or short phospho (also named phosphoryl) group is
transferred to an acceptor molecule.
A hallmark of phosphorylation signaling is its rapid character. A cell can adapt to

various stimuli by modification of the total protein amount. Although degradation of
proteins by the proteasome is rather fast, synthesis of new proteins will clearly need more
time. As a cell has to rapidly respond to various stimuli this cannot solely be achieved by
adjusting relative protein amounts. Therefore fast signaling events are often mediated by
PTM of proteins whereby phosphorylation has a prominent role. It has been shown for
instance, that cells treated with epidermal growth factor (EGF) undergo phosphorylation
on more than 500 different proteins already within 5 minutes after treatment [203].

4.3.1 Chemical properties of amino acid phosphorylation

Biochemically, phosphorylation can be subdivided into different classes, based on the
acceptor amino acid that becomes modified. In eukaryotic cells, hydroxy-linked or O-
phosphorylation is by far the most extensively studied. In O-phosphorylation a phosphate
group becomes bound to one of the three amino acids serine, threonine or tyrosine con-
taining a hydroxyl-group within the side chain [60]. The frequency of phosphorylation is
not identical for all potential acceptor amino acids. In eukaryotic proteins, phosphoryla-
tion occurs mainly on serine (86%) followed by threonine (12%) and only a minor fraction
on tyrosines (2%) [203]. It is noteworthy to mention, that the general abundance of the
amino acid tyrosine is much lower than for serine and threonine. Although tyrosine phos-
phorylation seems to be underrepresented it appears to be very dynamic and crucial for
the building of extensive interaction networks with its binding partners, through specific
binding domains as src homology 2 (SH2) domain or 14-3-3 domains, to note just two
examples [161]. Nitrogen phosphorylation of histidine, arginine and lysine are formed by
a phosphoramidate linkage and are named N-phosphorylation [60]. Histidine phosphoryla-
tion for instance, has been found in all kingdoms of life and histidine kinases are prominent
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in plants and bacteria. In eukaryotic cells the relative contribution of N-linked phospho-
rylation to the total phospho-amino acids has been estimated to approximately 6% and is
exceeding the relative amount of tyrosine phosphorylation [104]. However, N-linked phos-
phorylation is highly acid-labile and therefore remained undiscovered for a long time. This
is also the reason why research progress on histidine phosphorylation is slow, although it
became obvious that histidine phosphorylation may play an important role in different
mammalian signaling pathways and has also been linked to several diseases [15]. Addition-
ally, the sulfur of cysteine can form a phosphate thioester or S-phosphate. Aspartate and
glutamate can form an acid anhydride (acyl phosphate). Yet, thio- and acyl phosphates
are extremely rare in eukaryotic cells [60].

4.3.2 Biochemical and structural consequences of protein phosphorylation

Phosphorylation can affect the structure and subsequently also the functionality of a pro-
tein. The phosphoryl group is predominantly dianionic at physiological pH and conse-
quently forms two negative charges. Such a double negative charge is not present in pro-
tein coding amino acids. The addition of a phosphoryl group can therefore have a major
impact on the net charge of the substrate and thus can affect the conformation of a pro-
tein [124]. On one hand, a conformational change of a protein can be due to repulsive force
from the phosphoryl towards other negative charges found in the protein. On the other
hand, the negative phosphoryl group can form ion pairs with positively charged amino acid
side chains such as harbored by arginine. Phosphoryl oxygens are therefore able to form
multiple hydrogen bonds forming strong interactions. At tight binding sites, phosphate
groups are known to frequently interact with the side chain of arginine residues which can
stabilize the conformational state of a protein. On sites with less tight phosphoryl-group
interactions, main-chain nitrogens at the beginning of an α-helix are involved in binding,
due to the positive charge of the helix dipole [161]. Furthermore other polar residues includ-
ing lysine, histidine, tyrosine, serine and threonine may also be able to form contacts to
phosphoryl groups. The sum of newly formed and broken hydrogens bonds determines the
conformational and structural consequences of protein phosphorylation. Thus, a protein
can undergo phosphorylation-dependent structural changes, which can affect the specific
function of the protein. By this, phosphorylation can activate enzyme activity through
allosteric conformational changes, as it is observed for many kinases that become activated
through phosphorylation by upstream kinases [161]. However, phosphorylation can also in-
hibit enzymatic activity, when the phosphate group acts a steric blocking agent preventing
conformational changes, or when phosphorylation impedes substrate recognition [116] [286].
Phosphorylation can also be an important mechanism to provide a recognition site for
other proteins. For example, proteins harboring a SH2 domain specifically interact with
proteins that are tyrosine phosphorylated. Another example is a regulatory domain found

33



Chapter I: Introduction

Figure 4.3.1 Phosphorylation affects the function of proteins. The addition of a neg-
ative charge by the attachment of a phosphoryl group to a protein can influence the function
of a protein in different ways: Phosphorylation can lead to allosteric regulation of an enzyme,
influence the recognizability by another protein, lead to steric blockage of an enzymatic active
site, promote protein-protein dissociation, promote order - disorder transition, activate enzymes
by phosphorylation of regulatory domains, and facilitate ion transport.

on 14-3-3 proteins that recognize phosphoserine or phosphothreonine. The Polo-like kinase
is targeted to its substrate by a similar mechanism, where a phosphoserine on the target
protein is recognized by the Polo-box domain of the Polo-like kinase [161]. Phosphoryla-
tion can thus promote conformational changes leading to protein association as well as
protein dissociation. In addition, order to disorder transition, as well as disorder to order
transition of proteins can be mediated by phosphorylation. An overview of the structural
consequences of protein phosphorylation is depicted in figure 4.3.1.

4.3.3 Kinases and phosphatases

By transferring the γ-phosphate group of ATP to specific amino acids in proteins, protein
kinases, collectively referred as kinome, act as key regulators of diverse cellular functions
and are involved in different diseases including cancer. Thus, kinases are attractive drug
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targets and many different inhibitors exist [161]. Kinases are one of the largest protein
families of genes, corresponding to 2% of the genome in eukaryotes [169]. There are more
than 500 different human protein kinases, grouped into different families, of which an
overview is provided in table 4.1 and table 4.2 [169]. All eukaryotic protein kinases (EPK)
are structurally related and harbor a catalytic domain consisting of approximately 200-300
residues which can further be divided into subdomains [101] [60]. A structural feature shared
by all EPK is the designated protein kinase fold. The catalytic domain of kinases consist of
two lobes where the typically small N-terminal lobe of β-sheets is responsible for binding
and orientation of ATP and the typically large C-terminal lobe consisting of α-helices is
required for substrate binding and initiation of the phosphoryl transfer. It is noteworthy,
that the residues directly involved in catalysis are always entirely conserved [60]. ATP binds
in the cleft between the two lobes, keeping the adenosine part in a hydrophobic pocket and
the phosphate backbone oriented outwards. The substrate will then bind along the cleft
and the transfer of the terminal γ-phosphate of ATP to the hydroxyl oxygen of serine,
threonine or tyrosine, is catalyzed by different conserved residues of the kinase catalytic
domain [277].
Although all classical kinases share a common fold domain, there is specificity of different

kinases towards their substrates. Substrate specificity is of great importance, as there are
approximately 700’000 potential phosphorylation sites within a cell and around 30% of all
proteins become at least once phosphorylated at some point in their existence [277]. There
are different strategies used to ensure substrate specificity, starting with the structure of
the catalytic cleft. Although sharing the same catalytic domain structures, the catalytic
cleft of the two main kinase groups, Ser/Thr and Tyr kinases is slightly different [277] [7].
Tyr kinases have a deeper catalytic cleft, allowing the larger Tyr residues to span the
distance between the peptide backbone and the γ-phosphate of ATP, whereas the smaller
side chains of Ser and Thr cannot [277]. However, the specificity mediated by the depth of
the cleft is not absolute as Ser/thr kinases sometimes can phosphorylate tyrosine residues,
whereas the converse is less common.
The next layer of specificity is imparted by specific substrate consensus sequences typ-

ically consisting of four amino acids on either side of the phosphorylated residue, sig-
nificantly contributing to the specificity of kinase-substrate recognition [277]. Consensus
sequences for many kinases have been experimentally elucidated and allow the prediction
of new potential kinase substrates based on their homology to known consensus motifs [154].
Nevertheless, the presence of a consensus sequence must not strictly be present to relate
to a certain kinase, as in vivo phosphorylation sites have been found to not match the
consensus [278].
A second layer of substrate specificity is given by the interaction between docking motifs

on the kinase and the substrate thereby increasing their affinity. These include specific
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binding sites on MAPK substrates as well as SH2 domains on non-receptor tyrosine ki-
nases. It is assumed that these docking motifs enhance specificity by increasing the local
concentration of the substrate around the kinase [277]. Besides kinase-substrate docking
domains also binding partners exist, that target the kinase to specific substrates. This
may allow a single kinase to interact with different substrates in different contexts. Fur-
thermore, kinases can be recruited to their substrates that have been primed by previous
phosphorylation via another kinase. And eventually, the subcellular localization of a kinase
is crucial for specificity, by spatially limiting the number of potential substrates.
While a lot is known about kinases less knowledge exits about phosphatases. There

are three different classes of phosphatases, consisting of Ser/Thr phosphatases (∼40), Tyr
phosphatases (∼100) and dual specific phosphatases (∼50). Although there are around
400 Ser/Thr protein kinases, only approximately 40 Ser/Thr phosphatases are described
which raises the question about their specificity. It is assumed that phosphatase specificity
is mainly achieved through the association of phosphatase catalytic domains with regu-
latory subunits that target the catalytic domain to substrates [214]. Tyrosine kinases and
phosphatases are approximately equal in number and it appears that Tyr phosphatases
also tend to be modular proteins consisting of catalytic and targeting domains including
SH2, as Tyr kinases [277].

4.4 Phosphoproteomics

Different methods can be used when assessing phosphorylation, based on the question be-
ing asked and the resources available. Kinase activity for instance, which is an important
parameter in signaling, can be estimated by an in vitro kinase assay, where a purified or im-
munoprecipitated kinase is incubated with an exogenous substrate in the presence of ATP.
Although this technique provides information about the enzymatic activity and kinetics
of a certain kinase towards a substrate, such an assay cannot reflect the signaling land-
scape of a kinase nor can it reveal the identity of previously unknown targets. In addition,
in vitro kinase activity does not necessarily reflect an in vivo situation with endogenous
protein levels and the presence of phosphatases and counteracting phosphorylation events.
Thus, direct detection of protein phosphorylation can provide further information about
the cellular response towards a certain stimuli. A classical method for detection of phos-
phorylation is radiolabeling. Whole cells become incubated with 32P-orthophosphate and
the corresponding protein extracts are subsequently separated by SDS page and exposed
to films [152] [277]. As more direct method, in 1981, the first documented phospho-specific
antibody was developed by immunizing rabbits with benzonyl phosphonate conjugated
to keyhole limpet hemocyanin (KLH). The antibody could broadly recognize tyrosine
phosphorylated proteins [234]. Ten years later, phospho-specific antibodies were developed
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Table 4.1 Conventional eukaryotic protein kinase classification
Conventional eukaryotic protein kinases
Group Definition Examples
AGC The name of the AGC kinases is derived from the member as follows: cyclic

nucleotide-dependent family (PKA/cAPK and PKG), the "PKC" family,
PKB/AKT/RAC-alpha PSTK, βARK, the ribosomal S6 kinase family, and
other close relatives. These kinases have a strong preference for phosphoryla-
tion of Ser/Thr residues that are located in a consensus sequence containing
the basic amino acids Lys and Arg [210].

AKT (PKB), PKC, PKG,
S6K, RSK, MSK, PDK1
and GRK

CamK The members of the CaMK group are Ser/Thr kinases taking their name
from Ca2+/calmodulin-regulated kinases and structurally related families in-
cluding CaMK and SNF1/AMP-activated PKs. Most of the members of this
group exhibit activation by the binding of Ca2+ or calmodulin to a small C-
terminal domain in close proximity to the catalytic core. These kinases tend
to be directed towards substrates containing basic residues.

CaMK, CaMK-like,
CDPK, MAPK-associated
PK, MLCK, TRIBBLES,
KIN1/SNF1/Nim1, and
AMPK, EF2K, PhK

GMGC This group is named after the member families (cyclin-dependent kinase
(CDK), mitogenactivated protein kinase (MAPK), glycogen synthase kinase
(GSK), CDC-like kinase (CLK)) group of protein kinases). The CMGC ki-
nases are an essential and typically large group of kinases found in all eukary-
otes [281]

Cdk1, MAPK,GSK-3,
CLK/CKL, CK2a, SRPK,
DYRK

CK1 The protein kinase CK1 (formerly called Casein Kinase 1) CK1 is a family
of monomeric serine/threonine (Ser/Thr)-selective protein kinases. CK1 is
evolutionary conserved in eukaryotes and regulates diverse cellular processes.
Including, Wnt signaling, membrane trafficking, cytoskeleton maintenance,
DNA replication, DNA damage response, RNA metabolism and parasitic in-
fections. [40]

CK1, Tau tubulin kinase

RGC The members of the small group of receptor guanylate cyclases (RGCs) are
similar in sequence to the metazoan Tyr kinases which are lacking in plants,
fungi, and protists. Their properties are distinct from other known EPKs; the
RGC kinase domain appear to be all but catalytically inactive. It is thought
that this group evolved late in the expansion of the EPK superfamily.

Photoreceptor membrane
guanylate cyclase

STE The STE group includes homologs of the S. cerevisiae sterile kinases sterile
7, sterile 11, and sterile 20. This group contains the MAPK cascade kinases,
in which a MAPK is phosphorylated and activated by a MAP2K, which itself
is activated by a MAP3K. The family of Raf-related MAP4K is structurally
distinct from the Ste20 family, and belongs to the TKL group. [130]

Ste7-like (MAP2K,
NIMA/NEK and
NEK-like), Ste11-like
(MAP3K, Cdc7), Ste20-
like (MAP4K)

TK The Tyr kinase (TK) group contains conventional phosphotyrosine kinases
(PTKs). The active members specifically phosphorylate tyrosine residues
of proteins, are distinct from DSKs which also phosphorylate Ser/Thr and
are scattered within other kinase groups. TKs are found in metazoans and
play important roles in intracellular signaling cascades. Two classes of PTKs
are present in cells: the transmembrane receptor PTKs and the cytoplasmic
PTKs. [21]

EGFR, Jak, VEGFR, Src,
LRR-TK, Abelson kinase
(c-Abl), LCK

TKL The Tyr kinase-like (TKL) group is the most diverse of all groups, is closely
related to TKs, and is integrated within important signaling pathways. How-
ever, TKLs are in fact serine/threonine protein kinases and present in meta-
zoans and plants but virtually absent from fungi. TKLs represent the largest
group of EPKs in land plants, where they often constitute up to 80% of the
kinome

LRR kinases, MLKs,
TGFBR1, Raf, IRAK,
RLK/PELLE family
(RTK-like, Pti1-like,
WAK-like)
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Table 4.2 Atypical eukaryotic protein kinase classification
Atypical eukaryotic protein kinases
Group Definition Examples
Alpha The Alpha group of kinases is a small and only recently discovered group of

atypical EPKs (APKs). In mammals, channel-kinases are members of Alpha
APKs. Alpha kinases contain both a fold similar to EPKs and key amino
acid residues known to be important for catalysis from EPKs

EEF2K, Dictyostelium
MHCK, two channel-
kinases, TRPMs ion
channel-kinases

PIKK The members of the small phosphatidyl inositol 3 kinase- related kinase
(PIKK) family are involved in signaling of DNA damage, apoptosis/ sur-
vival and cell growth. PIKK kinases have a high molecular weight and in
mammals. [49]

PIKK, ATM, ATR,
mTOR, DNA-PK, SMG-1

PDHK The pyruvate dehydrogenase kinases (PDHKs) are a small and ubiquitous
group of APKs; five members were identified in humans. PDHKs phosphory-
late a subunit of the pyruvate dehydrogenase multienzyme complex and thus
plays an important role in oxidative metabolism, i.e. in controlling glucose
and lipid oxidation

PDHK, PKAK1

RIO The RIO ("right open reading frame") group is named after the divergently
transcribed founding member which was one of the two adjacent genes. RIO
is a small group of essential eukaryotic APKs. They share the overall EPK
fold, however, distinct substrate-binding domains were not yet discovered and
the mode of ATP-binding also seems to be different from other kinases. Some
RIO kinases autophosphorylate [151]

Rio1-family and Rio2

Others This group contains several kinases and families that do not fit within any of
the other main kinase groups

Wee1, Myt1/Mik1, Caks,
CAKAK, Aurora, Mos,
CaMKK, NIMA/NEK,
TOUSLED, PPK1

by immunizing rabbits with synthetic phosphopeptides covering amino acid sequence of a
certain protein, sourrounding the phosphosite of interest [59]. The availability of phospho-
specific antibodies opened a new avenue in the phosphoproteomic field as it can be applied
to different immunoassay techniques as western blot, immunofluorescence, flow cytometry
or ELISA. As it will be exemplified in section 4.4.1 phosphoresidue-specific antibodies
can also be used for phosphopeptide enrichment prior to identification and quantitation
using mass spectrometry. Although phospho-specific antibodies are widely used in differ-
ent techniques, a caveat is still the availability as well as the specificity and sensitivity of
antibodies towards a certain phosphosite on a phosphoprotein of interest. For large-scale
studies aiming for the identification of phosphorylation events in response to a certain
stimuli the use of phospho-specific antibodies can be a limiting factor, as it couples the
identification of phosphosite to previous knowledge, preventing the identification of new
substrates.
As an alternative, an emerging approach for large scale phosphoproteomics is based

on the selective enrichment of phosphopeptides followed by liquid chromatography tan-
dem mass spectrometry (LC-MS/MS) for quantitation and identification. An overview
of LC-MS/MS based proteomics is provided in figure(4.4.2). This approach allowed for
example the identification of hundreds of phosphorylation events upon EGF stimulation of
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Figure 4.4.1 Increase in the application
of phosphoproteomics within the last
decade. The pubmed database was searched
for publications assigned with the keyword
"phosphoproteomic". The number of publi-
cations found was plotted against the year of
publication.

HeLa cells as described by Olsen et al. [203]. The development of quantitative phosphopro-
teomics not only allows the identification and cataloging of phosphorylation sites but also
provides valuable information about the stoichiometry of phosphorylation between differ-
ent cellular states and ultimate in health and disease. Quantitative phosphoproteomic
is a tool of interest for basic research but can also be used in translational biology and
diagnostics [160]. Thus, it is not surprising that the field of phosphoproteomics is emerging
as indicated in figure 4.4.1. According to the pubmed database the first publication with
the keyword "phosphoproteomics" has been published in the year 2001. Since 2011 there
are more than 100 articles annually published.
A typical phosphoproteomic workflow consists of several steps starting with cell har-

vesting and lysis. If desired the lysate can be fractionated to study different cellular
compartments individually. Proteins from the lysates are subsequently digested. Trypsin
is commonly used to digest protein extracts, often in combination with alternate enzymes
(e.g. Lys-C, Asp-N, Glu-C, chymotryppsin) for an improved sequence coverage and phos-
phosite mapping [289] [24]. Phosphopeptides are usually present in low proportion compared
to non-phosphorylated peptides and the number of phosphorylation sites can be very dy-
namic on a wide range of expressed proteins. Thus phosphopeptides have to become
enriched to enhance their relative abundance to a level detectable by mass spectrometry.
Common phosphopeptide enrichment methods will be explained in section 4.4.1. The
phosphopeptides can be further fractionated to reduce sample complexity as described in
section 4.4.2 followed by analysis with LC-MS/MS. A brief overview about quantification
strategies of phosphopeptides is provided in section 4.4.3.

4.4.1 Phosphopeptide enrichment methods

4.4.1.1 IMAC and MOAC

The most common materials for phosphopeptide enrichement are immobilized IMAC and
MOAC. IMAC was initially developed to affinity purify proteins based on the interac-
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Figure 4.4.2 Principle of tandem mass spectrometry. Mass-spectrometry has become the
method of choice for the analysis of complex protein samples and is thus also applied to phos-
phoproteomics. A mass spectrometer consist of an ion source, a mass analyzer that measures the
mass to charge ratio (m/z) of the ionized analytes and a detector that registers the number of
ions on each m/z value. In LC-MS/MS, peptides are usually separated by high-pressure liquid
chromatography (HPLC) and eluted into an electrospray ion source that generates small charged
droplets. A spectrum of the eluted protonated peptides at this time-point is generated by the mass
analyser (MS1). Selected peptides are then fragmented by collision with gas (CID) and an MS2
or MS/MS spectrum is obtained from the fragments. In addition to the peptide mass, the peak
pattern of the MS/MS spectra provides information about peptide sequence. These spectra are
scanned against comprehensive protein sequence databases by the use of different algorithms. By
the combination of such an obtained amino acid sequence together with the mass information, the
originated peptide can be identified [3].

tion of histidine and cysteine towards the IMAC resin. However the finding that metal
ions bind phosphorylated proteins or phosphoaminoacids opened a new avenue of applica-
tion [8]. Subsequently the technique was expanded to enrich for phosphopeptides derived
from proteolytic digested proteins [189]. IMAC is one of the most extensively used enrich-
ment methods and represented a big step towards sensitive and selective enrichment of
phosphopeptides [76] [191]. The method makes use of the affinity of negative charged phos-
phate groups towards metal ions like Fe3+ (iron) or Ga3+ (gallium) [83] (Figure 4.4.3 A).
These ions can become chelated on beads to facilitate the enrichment procedure. IMAC
has been successfully used in many large scale phosphoproteomic studies allowing detec-
tion of more than 10’000 phosphopeptides [148]. However this approach requires significant
amount of protein as starting material [269]. Another drawback of IMAC is its additional
affinity for carboxyl groups, resulting in co-purification of acidic peptides beside phospho-
peptides. Modifications of the pH and ionic strength of solvents can be used to control
the specificity of binding and elution [19]. An alternative to IMAC is MOAC which is
based on the affinity of phosphate groups for metal oxides (Figure 4.4.3 B). The most
frequently used metal oxide is titanium dioxide (TiO2). IMAC using Fe3+ or Ga2+ was
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shown to be less selective in the enrichment for phosphopeptides than MOAC using TiO2,
while IMAC allowed the identification of more multiple phosphorylated peptides [10] [153].
A further advantage of TiO2 chromatography over IMAC is that it is less sensitive to-
wards the presence of salt and detergents and it does not compete with nucleic acids
for binding with the material [158]. The advantages of applying MOAC seem to outweigh
IMAC but it is important to note that the two methods should rather be considered to
be complementary than competitive. Bodenmiller and colleagues demonstrated by com-
paring various methods of phosphopeptide enrichment, including IMAC and MOAC, that
the different methods yielded in different distinct datasets with an overlap of only around
30% [27]. This indicates that phosphoproteomic coverage can only be improved by using
different enrichment strategies in parallel, although such an approach would be expensive
and laborious.

4.4.1.2 Antibody based phosphopeptide enrichment

Antibody based affinity purification is based on selective enrichment for phosphorylated
residues of proteins or peptides that are recognized by the antibodies. Thus, it is in
the nature of the method that this approach is limited by the specificity of the available
antibodies. In use are antibodies that are supposed to recognize a specific phosphory-
lated residue like phospho-serine (pS), phospho-threonine (pT) or phospho-tyrosine (pY)
(Figure 4.4.3 C). The success of applying pS and pT antibodies for phosphoproteomics is
limited. In 2002 Gronbor and colleagues were only able to identify seven phosphoproteins
using a pS and pT antibody based enrichment method which is far from opening an avenue
as general approach to study the phosphoproteome [94]. The usage of pY antibody based
phosphoprotein or phosphopeptide enrichment is more frequently used and more success-
ful. This is also due to the fact that tyrosine phosphorylations is least abundant (1.8%)
compared to threonine (11.8%) and serine (86.4%) phosphorylation, as investigated in
HeLa cells stimulated with EGF [203]. Non residue specific enrichment methods like IMAC
or MOAC typically result in a low yield of tyrosine phosphorylated peptides compared to
serine and threonine which makes an approach that selectively enriches for pY very attrac-
tive. Due to the chemical properties of tyrosine which harbors an electron rich aromatic
ring, pY has more opportunities to form bonds with the antibody binding pocket than the
aliphatic side chains of pS and pT which results in a stronger and more specific binding [19].
Many studies made successfully use of this method for example Krüger and colleagues in-
vestigated in 2008 the tyrosine phosphoproteome of the insulin pathway by the use of
pY immunoprecipitation [145]. Another antibody based purification method represents the
usage of phosphomotif specific antibodies (Figure 4.4.3 D). The concept is based on the
fundamental observation, that different kinases phosphorylate their substrates on specific
conserved phosphorylation motifs [154]. Kosako and colleagues intended to identify novel
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Figure 4.4.3 Principles of commonly used phosphopeptide enrichment methods. A)
IMAC using Fe3+ B) MOAC using TiO2 C) phosphoresidue-specific antibodies D) phosphomotif-
specific antibodies (ERK)Adapted with modifications from Beltran et al. [19]

ERK substrates using ERK phospho-motif specific antibodies [141]. ERK is known to pref-
erentially phosphorylate its substrates on the consensus amino acid sequence (P)-X-S/T-P
where the first proline is optional, X represents any amino acid and the serine or threonine
becomes phosphorylated [91]. Antibodies raised against this sequence allow the purifica-
tion of potential ERK substrates. Out of 24 new candidate ERK targets, 13 were found
to be in vitro ERK substrates and follow-up experiments revealed Nup50 as a bona fide
ERK substrate [141]. Nowadays several phosphomotif specific antibodies are commercially
available as for example for substrates of AKT, PKA, PKC and ATM/ataxia telangiec-
tasia and Rad3 related protein (ATR). The latest for example, has already been used
in a phosphoproteomic study for identification of novel ATM/ATR substrates [183]. Thus
phospho-motif specific antibodies are a promising tool for the detection of novel kinase
substrates by phosphoproteomics, although it had to be kept in mind that the specificity
of a kinase to a consensus motif is not absolute.

4.4.2 Prefractionation methods

The complexity of a sample can limit the proteomic coverage, even considering the im-
provement in speed and sensitivity of tandem mass spectrometry as well as performance
of liquid chromataography. Therefore, it can be beneficial to reduce the complexity of
the sample by prefractionation, splitting the samples into several fractions, each with a
decreased complexity prior to mass spectrometry. This approach implies the use of a sig-
nificant amount of starting material, it increases the number of samples and consequently
the following working procedures as well as the time needed for measurements by mass
spectrometry [178]. A frequently applied method is strong cation exchange (SCX) where
tryptic digested peptides are separated with respect to their charge [63]. Alternatively,
isoelectric focusing (IEF) can be applied to separate peptides according to their isolectric
point (pI) [168]. A separation based on the molecular weight of the proteins can be achieved
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by SDS-PAGE and in-gel digestion. If a broad coverage of the proteome is of high impor-
tance, multiple prefractionation approaches must be taken into consideration [168].

4.4.3 Quantification strategies

Mass spectrometry does not only provide information about the identity of peptides but
also about the relative abundance among different biological samples. SILAC, iTRAQ and
label-free quantification are commonly used strategies for relative peptide quantification.
The principle of stable isotope labeling in cell culture (SILAC) relies on the introduction

of heavy stable isotopes as 2H, 13C, 15N or 18O to the proteins of a sample (Figure 4.4.4).
This is achieved by growing cell populations used for comparison in media containing light
and heavy isotopically labeled amino acids (typically Lysine and/or Arginine). After full
incorporation, the samples derived from differentially labeled cells can be distinguished
based on a mass shift of the peptide isotopes [66]. The differences of the MS1 signal in-
tensities among these peptide ion pairs can be measured in the mass spectrometer and
reflect relative protein abundances. A different approach is the isobaric in vitro label-
ing method using isobaric tags for relative and absolute quantitation (iTRAQ) (Figure
4.4.4). The initial used iTRAQ reagent allows parallel quantification of up to 4 samples,
whereas recently developed 8-plex iTRAQ reagent allows parallel comparison of up to
eight different samples. iTRAQ labeled identical peptides from different sample cannot be
distinguished on the MS1 precursor level. However, fragmentation of the labeled peptides
generates different reporter ions allowing quantification of the sample on MS/MS level [68].
Beside the use of common labeling techniques for quantitative proteomics, as exempli-
fied by SILAC and iTRAQ, there is an increasing application of label-free quantification
strategies [68]. As already implicated in the name, there is no requirement for protein or
peptide labeling (Figure 4.4.4). The method makes use of the high resolution power and
increase in mass accuracy of modern MS instrumentation. Label-free quantitative mass
spectrometry is based on the observation of a correlation between abundance of proteins
and the chromatographic peak area of a corresponding peptide as well as between the
number of spectra and the abundance of MS/MS spectra and the protein amount [188].
Based on these observations two different label-free techniques emerged for protein quan-
tification: area under the curve (AUC) measurement and spectral counting. AUC is based
on the integrated measurement of chromatographic peak areas that arise over time for
any given peptide at the MS1 level in LC-MS runs. The AUC measurement is linearly
proportional to the concentration of the measured peptide. Ionised peptides elute from the
reversed-phase column into the mass spectrometer and the ion intensities are subsequently
measured and together with the retention time information leading to an intensity peak
whose area correlates with peptide concentration. Subsequent MS/MS scans will then
confirm the identity of these peptides [188]. Spectral counting is based on the observation
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that more abundant peptides will produce more MS/MS spectra and is therefore propor-
tional to the corresponding protein amount [188]. Although labeling techniques are often
used for quantitative proteomics, for different reasons a label-free approach can be more
appropriate compared to conventional label techniques. First, it overcomes the limitation
of sample number than can be analyzed in a single experiment which is currently restricted
to 2 or 3 for SILAC and up to 8 for iTRAQ. Because there is no need for distinguish-
able labels, the sample number for a label-free approach is theoretically not restricted.
A further advantage of a label-free approach is its relative reasonable price compared to
more expensive labeling techniques. A disadvantage of label-free proteomics is the par-
allel workflow of the samples. SILAC samples can be mixed even prior to digestion, and
all subsequent working steps are thus applied similarly to all conditions, leading to very
low introduction of variation during the workflow. Because proteins are not labeled in
the label-free approach and samples can thus not be distinguished, all samples have to
be treated in parallel within the whole workflow. This may introduce more variation as
different samples may be treated slightly different. Nevertheless, it is generally accepted
that label-free quantification can accurately estimate protein abundance and can provide
larger dynamic range of quantification than labeling techniques [188]. It is therefore not
surprising that label-free proteomics is emerging and now the most published approach
for quantitative proteomics [68].

4.4.4 Phosphoproteomics in the field of infection biology

Host cell phosphorylation events upon infection with pathogens have been studied for
decades and many signaling cascades involving pathogen triggered phosphorylations have
been described. This was mainly achieved by targeted approaches incidentally leading
to the discovery of pathogen triggered phosphorylation events. However, also explo-
rative approaches with the direct goal for the systematic identification of host protein
phosphorylations were undertaken. The examples shown in this section, represent the
evolutionary improvement of methods applied as well as the diversity of host-pathogen
interactions studied by phosphoproteomics, including plants and mammalian cells as host
as well as bacteria, viruses and protozoa as pathogens. In 2001, Peck and colleagues con-
ducted an Arabidopsis "phosphoprotein proteome" in response to treatment with flagellin
22 peptide (flg22), mimicking pathogenic exposure [211]. Untreated or flg22 treated Ara-
bidopsis cells were incorporated with 32P- or 33P-ortho-phosphate and solubilized proteins
were visualized by 2D gel electrophoresis. Gel fragments were subsequently subjected to
nanoESI-MS-MS revealing the protein AtPhos43 to become phosphorylated after flaggelin
exposure. Although the 2D-gels provide an overview of spots representing proteins that
are differentially phosphorylated upon treatment, the lack of information about the iden-
tity of the proteins and phosphorylation sites is clearly preventing a thorough perception
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Figure 4.4.4 Three commonly used peptide quantification strategies. Adapted with mod-
ifications from Käll and Vitek 2011 [138]

of the phosphoproteome. An approach that allows the systematic identification of phos-
phorylations is the usage of phospho-specific antibody arrays. This approach was used
in 2003 to address host phosphorylations upon mycobacterial infection [109]. Several host
proteins were identified to become phosphorylated upon infection, as JNK or Glycogen
synthase kinase 3 alpha. Also the effect of Salmonella on host cell internalization has
been addressed by the use of protein arrays. Lysates after different time-points of infec-
tion with wild-type Salmonella Typhimurium as well as several mutants were subjected to
reverse-phase protein arrays mounted with phospho-specific antibodies [176].
First studies applying quantitative mass spectrometry based phosphoproteomics for the

detection of host phosphorylation events upon pathogenic infection were published in the
year 2009 and broad application of this technique is currently emerging indicated by a high
number of publications in the year 2013. The first large-scale phosphoproteomic approach
upon pathogenic infection was performed by Rogers and colleagues in 2011, leading to the
identification of almost 2’000 different phosphoproteins [229]. They compared uninfected
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cells and cells infected with Salmonella Typhimurium at different timepoints of infection
up to twenty minutes and identified the kinases AKT, PKC, and PIM to play a role in the
infection process. In addition, they investigated the role of the Salmonella Typhimurium
effector protein SopB and showed that this effector is responsible for almost half of the ob-
served phosphorylation events. In 2013, a complementary study was published, examining
the effect of Salmonella Pathogenicity island 2 secreted effectors on the host phosphopro-
teome [117]. In contrast to S. flexneri which harbors only the mxi-spa TTSS, Salmonella
enterica employs two distinct TTSS ecoded in Salmonella pathogenicity island 1 (SPI1)
and Salmonella pathogenicity island 2 (SPI2). Whereas the SPI1 secreted effector pro-
teins are required for bacterial internalization, SPI2 effectors play an important role at
later stages of infection, ensuring successful intracellular replication [85]. There are about
30 different effector proteins secreted by the SPI2 TTSS. However, the function for most
of them are still poorly understood [85]. Imami and colleagues addressed these open ques-
tions by measuring the global impact of SPI2 effectors on the host phosphoproteome of
RAW264.7 and HeLa cells. They revealed that SPI2 effectors interfere with several cel-
lular processes like trafficking, cytoskeletal regulations and immune signaling, which so
far have not been attributed to Salmonella infection. In addition, HSP27 was identified
as a new direct target of the SPI2 effector and kinase SteC that mediates actin manip-
ulations through HSP27 [117]. Beside bacterial pathogens, also viral infection has been
subject of phosphoproteomic studies. As an example serves a study from 2013 that inves-
tigated the phosphorylation response of CD4+ cells after infection with HIV-1. Already
one minute after CD4+ cell exposure to HIV-1, the phosphorylation state of 175 proteins
changed significantly. These comprised proteins from pathways already known to become
activated upon HIV-receptor binding but also previously unidentified host factors. To
examine whether the HIV responsive phosphorylations regulate the HIV infection levels,
a siRNA screen depleting 69 of these phosphoproteins in MAGI cells was performed. The
siRNA screen revealed that SRRM2 suppression increases HIV-dependent gene expression.
SRRM2 encodes the splicing factor SRm300 and through further mechanistic studies on
this factor it was suggested that HIV-1 manipulates alternative splicing to facilitate viral
replication and release [123]. This work demonstrates that coupling of phosphoproteomics
to perturbation assays like RNAi, can serve as powerful approach to unravel mechanistic
aspects of host-pathogen interactions and may allow the linkage of phosphoproteins to a
certain cellular phenotype.
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5 Aim of the thesis

Upon infection of host cells with S. flexneri a lot of signaling cascades become modified
in favor of the invasion process. Thus, the main objective of the presented work was to
investigate signaling events that take place during S. flexneri infection of epithelial cells.
Phosphorylation as one of the most widespread post-translational modifications with a
major role in signal transduction, was aimed to study in a systematic and comprehen-
sive way. To this end we employed an LC-MS/MS approach for the identification and
quantification of phosphopeptides generated from an in vitro model of infected HeLa cells.
To capture as many aspects of the host-pathogen interaction as possible, our purpose
was to cover several time intervals ranging from 15 to 120 minutes post-infection. Our
laboratory has previously shown that the effector protein OspF does not only repress
phosphorylation of the MAPKs p38 and ERK and some downstream targets, but is also
able to promote additional phosphorylation events by a negative feedback loop. We hy-
pothesized that OspF may have a broader impact on the phosphorylation network of the
cell than previously reported and therefore our goal was to conduct an OspF dependent
phosphoproteome analysis by comparing cells infected with wild type S. flexneri to cells
exposed to an ospF deletion mutant. In a second project our objective was to unravel the
activation mechanism of mTOR and AKT that were found to become activated during
S. flexneri infection. We used a novel Yersinia enterocolitica derived TTSS dependent
protein translocation tool to directly inject the S. flexneri effector protein IpgD into HeLa
cells and to study its impact on mTOR and subsequent AKT activation. By the use of
different kinase inhibitors we aimed to find or exclude kinases important for mTOR/AKT
activation.
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Chapter II

Systems-level overview of host protein
phosphorylation during Shigella flexneri
infection revealed by phosphoproteomics.
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1 Summary

The enteroinvasive bacterium Shigella flexneri injects several effector proteins to promote
its uptake and the subsequent manipulation of host signaling pathways in favor of the
bacteria. To systematically address the dynamics of signaling cascades triggered by bacte-
rial invasion, we studied host cell phosphorylation using liquid chromatography coupled to
tandem mass spectrometry (LC-MS/MS). We could identify several hundreds of proteins
becoming differentially phosphorylated during the first two hours of infection. the tem-
poral dynamics of phosphorylation was addressed by fuzzy c-means clustering, revealing
six distinct patterns of phosphorylations. We could approve that one cluster, related to
genotoxic stress, is mainly regulated by the kinase ATM. A search for activated signaling
pathways revealed mTOR as the most overrepresented pathway. Whe demonstrated that
during S. flexneri infection, mTORC1 and mTORC2 are required for the phosphorylation
of the substrates S6K and AKT, respectively. In addition, a comparison to a recently pub-
lished phosphoproteomic dataset of Salmonella typhimurium infection of epithelial cells
revealed a large cluster of co-regulated phosphoproteins. Eventually, the impact of the S.
flexneri effector OspF an the host signaling network was determined by the use of phos-
phoproteomics. OspF was shown to affect the phosphorylation state of several hundred
proteins, demonstrating the wide-reaching impact a single bacterial effector can have on
a host cell.
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2 Statement of contribution

I conducted most of the experiments mentioned in the paper. Including sample preparation
and phosphopeptide enrichment of the different phosphoroteomic experiments as well as
the additional experiments. I performed different bioinformatic analysis in collaboration
with Erik Ahrné. Christoph A. Kasper performed quantitative image analysis. Therese
Tschon, Isabel Sorg and Roland F. Dreier contributed to the infection assays and sample
preparation for several phosphoproteomic experiments. Alexander Schmidt performed
the LC-MS/MS measurements and quantifications together with Erik Ahrné. Biological
interpretation of the phosphoproteomic data as well as manuscript preparation was done
by Cécile Arrieumerlou and myself.

This chapter has been published as:
Schmutz C, Erik A, Kasper CA, Tschon T, Sorg I, Dreier RF, Schmidt A, Arrieumerlou C. Systems-
Level Overview of Host Protein Phosphorylation During Shigella flexneri Infection Revealed by Phos-
phoproteomics. Molecular & Cellular Proteomics, 12(10):2952-68, 2013.
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Systems-Level Overview of Host Protein
Phosphorylation During Shigella flexneri
Infection Revealed by Phosphoproteomics*□S

Christoph Schmutz‡, Erik Ahrné‡, Christoph A. Kasper‡, Therese Tschon‡,
Isabel Sorg‡, Roland F. Dreier‡, Alexander Schmidt‡, and Cécile Arrieumerlou‡§

The enteroinvasive bacterium Shigella flexneri invades
the intestinal epithelium of humans. During infection, sev-
eral injected effector proteins promote bacterial internal-
ization, and interfere with multiple host cell responses. To
obtain a systems-level overview of host signaling during
infection, we analyzed the global dynamics of protein
phosphorylation by liquid chromatography-tandem MS
and identified several hundred of proteins undergoing a
phosphorylation change during the first hours of infection.
Functional bioinformatic analysis revealed that they were
mostly related to the cytoskeleton, transcription, signal
transduction, and cell cycle. Fuzzy c-means clustering iden-
tified six temporal profiles of phosphorylation and a func-
tional module composed of ATM-phosphorylated proteins
related to genotoxic stress. Pathway enrichment analysis
defined mTOR as the most overrepresented pathway. We
showed that mTOR complex 1 and 2 were required for S6
kinase and AKT activation, respectively. Comparison with a
published phosphoproteome of Salmonella typhimurium-
infected cells revealed a large subset of coregulated phos-
phoproteins. Finally, we showed that S. flexneri effector
OspF affected the phosphorylation of several hundred
proteins, thereby demonstrating the wide-reaching im-
pact of a single bacterial effector on the host signaling
network. Molecular & Cellular Proteomics 12: 10.1074/
mcp.M113.029918, 2952–2968, 2013.

The enteroinvasive bacterium Shigella flexneri invades the
intestinal epithelium of humans, causing an acute mucosal
inflammation called shigellosis or bacillary dysentery that is
responsible for 1.1 million deaths annually (1). During the
infectious process, bacteria use a sophisticated delivery sys-
tem, the type III secretion apparatus, to inject multiple effector
proteins that subvert cellular and immune functions of macro-
phages and epithelial cells (2). First, S. flexneri crosses the
colonic epithelium by transcytosis via M cells (3, 4). Released
in the M cell pocket, it invades resident macrophages and

induces cell death (5, 6). Dying macrophages release bacteria
and several proinflammatory cytokines including IL-1� and
IL-18 that contribute to acute intestinal inflammation (7, 8). S.
flexneri is then able to invade epithelial cells via the basolateral
surface, and uses them as replication niche (9). Although infec-
tion of epithelial cells represents a key aspect of infection, there
is currently no comprehensive model that describes the molec-
ular processes occurring in the first hours of infection.

The entry of S. flexneri into epithelial cells is a multistep
process that requires the secretion of effector proteins into
the cytoplasm of target cells via type III secretion. Upon
contact between the tip complex of the type III apparatus and
host cell receptors, including �5�1-integrins and CD44, the
secreted proteins IpaB and IpaC insert into the plasma mem-
brane and form a pore into the host membrane through which
several effectors translocate (10–14). Among these, IpaA,
IpaB, IpaC, IpgB1, IpgB2, IpgD, and VirA act synergistically to
induce membrane ruffling and bacterial internalization (2). Lo-
cal remodeling of the cell surface depends on the interplay
between these effectors and small Rho GTPases, kinases,
and other regulators of the actin cytoskeleton and microtu-
bules (15, 16). Engulfed bacteria rapidly lyse the membrane of
their internalization vacuole and escape into the cytoplasm
where they multiply, and use actin based motility to spread from
cell-to-cell (17). Shigella-actin based motility is mediated by the
virulence factor IcsA/VirG (18, 19). This autotransporter, which
accumulates at one pole of the bacterium, recruits the host
protein N-WASP and forms together with vinculin and Arp2/3, a
complex that serves as actin polymerization nucleator (20).

Although, epithelial cells are not professional immune cells,
they can detect invasion and contribute to acute inflammation
by secreting several proinflammatory cytokines such as inter-
leukin-8 (IL-8) and tumor necrosis factor � (21). During S.
flexneri infection, peptidoglycan-derived muramyl peptides
are recognized via the receptor Nod1 (22). This recognition
leads to the activation of multiple signaling pathways includ-
ing NF-�B and MAP kinase (MAPK)1. Bacteria manipulate
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host signaling in infected cells by secreting effectors that
affect different signaling pathways. For instance, the effector
OspF, which functions as a phosphothreonine lyase, dephos-
phorylates MAPKs p38 and ERK in the nucleus of infected
cells (23, 24). It was proposed that this mechanism leads to
reduced histone H3 phosphorylation and selective repression
of gene transcription. Expression of the gene encoding for
IL-8, a potent chemoattractant for polymorphonuclear cells, is
specifically decreased in presence of OspF. A recent study
from our laboratory reported a mechanism of cell–cell com-
munication between infected and uninfected bystander cells
that restores IL-8 expression in infected cell monolayers, and
potentiates inflammation during infection (25).

S. flexneri infection of epithelial cells has been well investi-
gated by reductionist approaches that led to important find-
ings regarding specific molecular aspects of infection, and
general concepts of infection biology and immunology (26,
27). In addition, DNA microarrays were instrumental in the
systematic identification of genes regulated during infection
and the characterization of host cell responses (28, 29). How-
ever, these approaches were not well-suited to obtain a sys-
tems-level overview of early host signaling during infection.

Protein phosphorylation is the most widespread known
post-translational modification. It can either activate or inac-
tivate biological processes, and is commonly used to switch
enzyme activity “on” or “off.” Protein kinases and phospha-
tases are abundant in the human genome, giving rise to
countless phosphorylation and dephosphorylation events that
control the most diverse cellular pathways. Incidentally, the
importance of protein phosphorylation has been already de-
scribed for several aspects of S. flexneri infection, and few
kinases have been identified (30–33). Based on this, we rea-
soned that the complexity of host signaling during S. flexneri
infection may be addressed by a systematic and unbiased
analysis of protein phosphorylation. Here we describe a label-
free quantitative phosphoproteomics approach that reveals
the dynamics of host protein phosphorylation during infection.
Although this method can only capture a sub-portion of the
entire phosphoproteome, several hundred of proteins under-
going a change in phosphorylation during the first two hours
of infection were identified and functionally annotated. Bioin-
formatic tools were used to recognize six different temporal
profiles of phosphorylation, a functional module composed of
ATM-phosphorylated proteins related to genotoxic stress,
and the central role of mammalian target of rapamycin
(mTOR). By comparing our data to a recently published phos-

phoproteomics analysis of Salmonella typhimurium infection
(34), we identified a large set of coregulated phosphoproteins.
Finally, we showed that S. flexneri effector OspF alters the
phosphorylation of several hundred proteins, thereby demon-
strating its broad impact during infection.

MATERIALS AND METHODS

Reagents and Antibodies—PP242 was obtained from Chemdea,
Ridgewood, NJ (#CD0258), Rapamycin from LC Laboratories,
Woburn, MA (#R-5000), KU-60019 (#S1570), SB203580 (#S1076) and
PD98059 (#S1177) from Selleck Chemicals, Houston, TX. Antibodies
against MAPK p38 (#9212), phospho-MAPK p38 Thr180/Tyr182
(#4631), ERK (#9102), pospho-ERK (Thr202/Tyr204) (#4377), RIP2
(#4982), phospho-RIP2 Ser176 (#4364), CREB (#9197), phospho-
CREB Ser133 (#9198), phospho-AKT Ser473 (#4058), phospho-ATM
Ser1981 (#5883), phospho-S6 ribosomal protein Ser235/Ser236
(#4858), phospho-S6K Thr389 (#9205), Rictor (#2114), phospho-TBCD4
Ser588 (#8730), phospho-p90RSK Thr359/Ser363 (#9344), phospho-
MYPT1 Ser507 (#3040) were obtained from Cell Signaling Technology,
Danvers, MA. Antibodies against ATM (#05–513) and actin (#MAB1501)
were purchased from Millipore, Billerica, MA. The antibody against
vinculin was purchased from Sigma, St. Louis, MO (#V9131).

Cell Culture—HeLa CCL-2TM human epithelial cells were pur-
chased from ATCC, Manassas, VA and cultured in DMEM, supple-
mented with 10% FCS, antibiotics and L-glutamine. Inducible Rictor-
knockout (iRiKO) mouse embryonic fibroblasts (MEFs) and the
corresponding control cells were generously provided by Prof. M. Hall
(35). MEFs were cultured in DMEM, supplemented with 10% FCS,
antibiotics and L-glutamine. The knockout of Rictor was induced by
culturing the cells for 3 days in the presence of 1 �M Tamoxifen.

Bacterial Strains—The M90T S. flexneri and M90T S. flexneri �virG
strains were generously provided by Prof. P. Sansonetti (Institut Pas-
teur, Paris, France). The ospF deletion mutant (�ospF) was generated
by allelic exchange using a modification of the lambda red-mediated
gene deletion as previously described (36). S. flexneri M90T �virG
pCK100 (PuhpT::DsRed) was generated by transforming the non-motile
S. flexneri strain M90T �virG with the plasmid pCK100. pCK100 con-
tains the fluorescent marker DsRed under the control of the native
promoter of the S. flexneri gene uhpT, which is up-regulated in presence
of glucose-6-phosphate. Briefly, the 251bp promoter region upstream
of uhpT was amplified by PCR (Primers used: GAGAGAGAATGCAGT-
GCTCGATACCTGGCACT, GCTCTAGAGGGTTACTCCTGAAATGAAT-
ACCT) and ligated into the pMW211 plasmid using BsmI and XbaI.

Infection Assay—M90T S. flexneri strain was grown in tryptic soy
broth (TSB) to exponential growth phase at 37 °C and coated with
poly-L-lysine. 30 min before infection, complete growth medium was
replaced by DMEM supplemented with 10 mM Hepes and 2 mM L-glu-
tamine (assay medium). Assay medium (uninfected control) or bacteria
were added to 6-well plates at a multiplicity of infection of 40. Infection
was initiated by centrifugation of the plates for 5 min and their incuba-
tion at 37 °C for the indicated time periods. Extracellular bacteria were
killed by adding gentamycin (50 �g/ml) 30 min after infection.

Microscopy and Automated Image Analysis—Infection rates were
determined by using automated image analysis. Images were auto-
matically acquired with an ImageXpress Micro (Molecular devices,
Sunnyvale, USA). At each site, images were acquired at 360 nm, 480
nm, 594 nm and 640 nm to visualize Hoechst, FITC-phalloidin,
DsRed-expressing S. flexneri and Alexa 647-conjugated secondary
antibodies, respectively. Infection rates were determined by image
analysis using CellProfiler (37) and MATLAB (The MathWorks, Inc,
Natick, USA). The Hoechst staining was used as a mask to automat-
ically identify cell nuclei. The cellular area was defined by extension of
the nuclear mask. In parallel, the presence of bacteria within the area

alization and Integrated Discovery, DAVID; nuclear pore complex,
NPC; mTOR complex 1, mTORC1; mTOR complex 2, mTORC2;
regulatory-associated protein of mTOR, Raptor; mammalian LST8/G-
protein �-subunit like protein, mLST8/G�L; rapamycin-insensitive
companion of mTOR, Rictor; mammalian stress-activated protein
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of each cell was quantified. Performance of bacterial detection was
checked by visual inspection of several images prior to automated
processing. In control images (no infection), the algorithm generally
classified less than 1% of cells as infected (25).

SDS-PAGE and Immunoblotting—Uninfected control and infected
cells were washed twice in ice cold PBS, lysed in PhosphoSafeTM

extraction reagent (Millipore, Billerica, MA), incubated on ice for 10
min, and subsequently centrifuged at 4 °C for 20 min at 16�000g. BCA
Protein Assay kit (Pierce, Rockford, IL) was used to determine protein
concentration. 10–15 �g of protein was subjected to SDS-polyacryl-
amide gels and electroblotted onto nitrocellulose membranes. Immu-
noblotting was performed using primary antibodies diluted in phos-
phate buffered saline containing 0.1% tween and 5% bovine serum
albumin. HRP-conjugated secondary antibodies were purchased
from GE Healthcare, Chalfont St Giles, United Kingdom or Cell Sig-
naling Technology, Danvers, MA. The blots were developed with an
enhanced chemiluminescence method (Pierce, Rockford, IL).

Immunofluorescence—After fixation in 4% PFA for 10 min, cells
were permeabilized in 0.3–0.5% Triton X-100 for 10 min. Phospho-
AKT antibody was incubated overnight at 4 °C in PBS followed by a
secondary staining using Alexa 647-conjugated secondary antibody
(Invitrogen, Carlsbad, CA). Additionally, DNA and F-actin were stained
for 1 h at room temperature with Hoechst and FITC-phalloidin (Invit-
rogen, Carlsbad, CA), respectively.

Sample Preparation for Phosphoproteomics—For each condition,
two 6-well plates of HeLa CCL-2TM cells were grown to confluency.
Cells were infected as described above. At the indicated time-points,
the plates were put on ice and washed twice with ice-cold phosphate-
buffered saline (PBS). Samples were then collected in urea solution [8
M Urea (AppliChem, Darmstadt, Germany), 0.1 M Ammoniumbicar-
bonate (Sigma, St. Louis, MO), 0.1% RapiGest (Waters, Milford, MA),
1� PhosSTOP (Roche, Basel, Switzerland)]. The samples were briefly
vortexed, sonicated at 4 °C (Hielscher, Teltow, Germany), shaked for
5 min on a thermomixer (Eppendorf, Hamburg, Germany) and centri-
fuged for 20 min at 4 °C and 16�000g. Supernatants were collected
and stored at �80 °C for further processing. BCA Protein Assay
(Pierce, Rockford, IL) was used to measure protein concentration.

Phosphopeptide Enrichment—Disulfide bonds were reduced with
tris(2-carboxyethyl)phosphine at a final concentration of 10 mM at
37 °C for 1 h. Free thiols were alkylated with 20 mM iodoacetamide
(Sigma, St. Louis, MO) at room temperature for 30 min in the dark. The
excess of iodoacetamide was quenched with N-acetyl cysteine at a
final concentration of 25 mM for 10 min at room temperature. Lys-C
endopeptidase (Wako, Osaka, Japan) was added to a final enzyme/
protein ratio of 1:200 (w/w) and incubated for 4 h at 37 °C. The
solution was subsequently diluted with 0.1 M ammoniumbicarbonate
(Sigma, St. Louis, MO) to a final concentration below 2 M urea and
digested overnight at 37 °C with sequencing-grade modified trypsin
(Promega, Madison, WI) at a protein-to-enzyme ratio of 50:1. Pep-
tides were desalted on a C18 Sep-Pak cartridge (Waters, Milford, MA)
and dried under vacuum. Phosphopeptides were isolated from 2 mg of
total peptide mass with TiO2 as described previously (38). Briefly, dried
peptides were dissolved in an 80% acetonitrile (ACN)–2.5% trifluoro-
acetic acid (TFA) solution saturated with phthalic acid. Peptides were
added to the same amount of equilibrated TiO2 (5-�m bead size, GL
Sciences, Tokyo, Japan) in a blocked Mobicol spin column (MoBiTec,
Goettingen, Germany) that was incubated for 30 min with end-over-end
rotation. The column was washed twice with the saturated phthalic acid
solution, twice with 80% ACN and 0.1% TFA, and finally twice with
0.1% TFA. The peptides were eluted with a 0.3 M NH4OH solution. The
pH of the eluates was adjusted to be below 2.5 with 5% TFA solution
and 2 M HCl. Phosphopeptides were again desalted with microspin C18
cartridges (Harvard Apparatus, Holliston, MA).

LC-MS/MS Analysis—Chromatographic separation of peptides
was carried out using an EASY nano-LC system (Thermo Fisher
Scientific, Waltham, MA), equipped with a heated RP-HPLC column
(75 �m x 37 cm) packed in-house with 3 �m C18 resin (Reprosil-AQ
Pur, Dr. Maisch). Aliquots of 1 �g total phosphopeptide sample were
analyzed per LC-MS/MS run using a linear gradient ranging from 98%
solvent A (0.15% formic acid) and 2% solvent B (98% acetonitrile, 2%
water, 0.15% formic acid) to 30% solvent B over 90 min at a flow rate
of 200 nl/min. Mass spectrometry analysis was performed on a dual
pressure LTQ-Orbitrap mass spectrometer equipped with a nano-
electrospray ion source (Thermo Fisher Scientific, Waltham, MA).
Each MS1 scan (acquired in the Orbitrap) was followed by collision-
induced dissociation (CID, acquired in the LTQ) of the 10 most abun-
dant precursor ions with dynamic exclusion for 30 s with enabled
multistage activation. Total cycle time was �2 s. For MS1, 106 ions
were accumulated in the Orbitrap cell over a maximum time of 300 ms
and scanned at a resolution of 60,000 FWHM (at 400 m/z). MS2 scans
were acquired using the normal scan mode, a target setting of 104

ions, and accumulation time of 50 ms. Singly charged ions and ions
with unassigned charge state were excluded from triggering MS2
events. The normalized collision energy was set to 32%, and one
microscan was acquired for each spectrum.

Label-free Quantification and Database Searching—The acquired
raw-files were imported into the Progenesis software tool (Nonlinear
Dynamics, Version 4.0) for label-free quantification using the default
parameters. MS2 spectra were exported directly from Progenesis in
mgf format and searched using the MASCOT algorithm (Matrix Sci-
ence, Version 2.4) against a decoy database (39) containing normal
and reverse sequences of the predicted SwissProt entries of Homo
sapiens (www.ebi.ac.uk, release date 16/05/2012) and commonly
observed contaminants (in total 41,250 sequences) generated using
the SequenceReverser tool from the MaxQuant software (Version
1.0.13.13) . To identify proteins originating from S. flexneri, non phos-
phopeptide enriched samples were searched against the same data-
base above including predicted SwissProt entries of S. flexneri
(www.ebi.ac.uk, release date 16/05/2012, in total 49,610 sequences)
The precursor ion tolerance was set to 10 ppm and fragment ion
tolerance was set to 0.6 Da. The search criteria were set as follows:
full tryptic specificity was required (cleavage after lysine or arginine
residues unless followed by proline), 2 missed cleavages were al-
lowed, carbamidomethylation (C) was set as fixed modification and
phosphorylation (S,T,Y) or oxidation (M) as a variable modification for
TiO2 enriched or not enriched samples, respectively. Finally, the
database search results were exported as a xml-file and imported
back to the Progenesis software for MS1 feature assignment. For
phosphopeptide quantification, a csv-file containing the MS1 peak
abundances of all detected features was exported and for not en-
riched samples, a csv-file containing all protein measurements based
on the summed feature intensities of all identified peptides per protein
was created. Importantly, the Progenesis software was set that pro-
teins identified by similar sets of peptides are grouped together and
that only non-conflicting peptides with specific sequences for single
proteins in the database were employed for protein quantification.
Both files were further processed using the in-house developed
SafeQuant v1.0 R script (unpublished data, available at https://github.
com/eahrne/SafeQuant/). In brief, the software sets the identification
level False Discovery Rate to 1% (based on the number of decoy
protein sequence database hits) and normalizes the identified MS1
peak abundances (extracted ion chromatogram, XIC) across all sam-
ples, i.e. the summed XIC of all confidently identified peptide features
is scaled to be equal for all LC-MS runs. Next, all quantified phos-
phopeptides/proteins are assigned an abundance ratio for each time
point, based on the median XIC per time point. The statistical signif-
icance of each ratio is given by its q-value (false discovery rate
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adjusted p values), obtained by calculating modified t-statistic p
values (40) and adjusting for multiple testing (41). The final list of all
quantified phosphopeptides/proteins is presented in supplemental
Table S1 and S2. The location of the phosphorylated residues was
automatically assigned by MASCOT (score �10). All annotated spec-
tra can be found in supplemental information file 12 (annotated spec-
tra) and, together with the MS raw files and search parameters em-
ployed, have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner
repository (42) (data submitted).

RESULTS

Label-Free Quantitative Phosphoproteomics Reveals the
Massive Impact of S. flexneri Infection on Host Protein Phos-

phorylation—To analyze the impact of S. flexneri infection on
protein phosphorylation in epithelial cells, we used a phos-
phoproteomics strategy that combines phosphopeptide en-
richment and label-free quantification based on liquid chro-
matography coupled to tandem mass spectrometry (LC-MS/
MS) (Fig. 1A) (38, 43). In three independent experiments, HeLa
cells were left untreated or infected with S. flexneri for 15, 30,
60, and 120 min at a multiplicity of infection of 40 (Fig. 1A).
Cell lysis, enzymatic proteolysis, phosphopeptide enrichment
on titanium dioxide beads, identification and quantification of
individual phosphopeptides were performed as described in
Methods. A total of 3234 phosphopeptides corresponding to

FIG. 1. Phosphoproteomics analysis applied to S. flexneri infection. A, Diagram of the phosphoproteomics protocol applied to S. flexneri
infection of HeLa cells. B, Distribution of single, double, triple, and quadruple peptide phosphorylation based on 3234 detected phosphopeptides
(upper panel). Distribution of serine, threonine and tyrosine phosphorylation based on 3109 detected phospho-sites (lower panel). C, Dynamics of
phosphorylation changes after S. flexneri infection of HeLa cells. Data represent the number of phosphopeptides for which a significant increase
(in blue) or a decrease (in red) of phosphorylation was observed after S. flexneri infection compared with uninfected cells. A minimum twofold
change and a q-value �0.01 were used to select phosphopeptides for quantification. D, Dynamics of phosphorylation changes at the protein level
after S. flexneri infection of HeLa cells. Data represent the number of proteins for which an increase of phosphorylation (in blue), a decrease of
phosphorylation (in red) or both (in green) was observed after S. flexneri infection compared with uninfected cells. All proteins containing at least
one phosphopeptide with a minimum twofold change and a q-value �0.01 were considered for analysis.
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3109 phospho-sites and 1183 phosphorylated proteins were
identified (supplemental Table S1). Analysis of all detected
phosphopeptides revealed that the distribution of phosphor-
ylated peptides was strongly biased toward single and dual
phosphorylations (Fig. 1B, upper panel). As previously de-
scribed (44), the large majority of phosphorylation events were
found on serine and threonine residues (Fig. 1B, lower panel).
Correlation analysis based on squared Pearson correlation
coefficient R2 between the three biological replicates showed
robust reproducibility between independent experiments for
all infection conditions (supplemental Fig. S1A). This was
confirmed by data showing that the coefficients of variance
calculated for all infection conditions as described in Methods
varied between 18 and 29% (supplemental Fig. S1B), a range
of values expected for label-free quantification methods (45,
46). Significant changes in phosphorylation were defined by a
q-value (moderated t test adjusted for multiple testing) cutoff
of � 0.01 using the SafeQuant tool (47) and a minimum
twofold increase or decrease in peptide phosphorylation be-
tween infected and uninfected control cells (supplemental
Table S1). Based on these criteria, 14.3% of all detected
phosphopeptides showed a significant change in phosphor-
ylation after S. flexneri infection. A parallel LC-MS/MS anal-
ysis, performed before phosphopeptide enrichment (Fig. 1A),
showed no significant changes in protein amount after infec-
tion for significantly altered phosphopeptides (supplemental
Table S2), demonstrating that changes in phosphopeptide
detection reflected true changes in phosphorylation for at
least 56.9% of the identified phosphoproteins (supplemental
Fig. S1C). Phosphorylation events were visible at all time-
points with a peak at 30 min at which 177 phosphopeptides
corresponding to 137 phosphorylated proteins showed an
increase in phosphorylation compared with control cells (Figs.
1C and 1D). Decreased phosphorylation was also detected at
all time-points with a maximum of 200 peptides correspond-
ing to 140 proteins showing reduced phosphorylation 2 h
postinfection (Figs. 1C and 1D). For simplification, we defined
as phosphoproteome the subset of 334 proteins undergoing a
significant change of phosphorylation on at least one phos-
phopeptide after infection (supplemental Table S1). Phospho-
proteomics data showing an increase in phosphorylation of
TBCD4 at serine 588, RSK (KS6A1) at threonine 359 and
serine 363, and MYPT1 at serine 507 were confirmed by
Western blot using phospho-specific antibodies (supplemen-
tal Fig. S2). Previous data showing dual phosphorylation of
ERK at residues threonine 202 and tyrosine 204 after S.
flexneri infection (48) were confirmed by our phosphopro-
teomics data (supplemental Table S1). Taken together, these
results showed that S. flexneri has a massive impact on host
protein phosphorylation, and that label free quantitative phos-
phoproteomics is well suited to reproducibly identify and
quantify the phosphorylation changes occurring during infec-
tion of epithelial cells.

Phosphoproteomics Reveals New Cellular Functions Af-
fected by Infection—The biological functions of proteins from
the phosphoproteome of S. flexneri-infected cells were inves-
tigated by gene ontology analysis with the functional annota-
tion tool of the Database for Annotation, Visualization, and
Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/)
(49, 50). Results showed that proteins were involved in diverse
cellular functions (supplemental Table S3) with a specific en-
richment in proteins related to cytoskeleton, cell death and
small GTPases signaling (Fig. 2A and supplemental Table S3).
Gene ontology was completed by a manual functional anno-
tation based on literature (Fig. 2B, supplemental Table S4).
This analysis revealed that 40 proteins were implicated in the
organization and rearrangement of the actin cytoskeleton.
This included actin-binding proteins that regulate actin po-
lymerization (i.e. ARPC1, PALLD, CTTN), GTP exchange fac-
tors (i.e. ARHGEF7, DOCK9, ARHGEF16, and ARHGEF17),
GTPase activating proteins (i.e. ARHGAP29, IQGAP2) and
downstream effectors (i.e. BORG5) of the small GTPases
Cdc42, Rac and RhoA known to be involved in filopodia,
membrane ruffling and stress fiber formation, respectively (51,
52). The comparison with the phosphoproteome of cells in-
fected by a deletion virG mutant (�virG) that cannot perform
actin-based motility (19) suggested that proteins undergoing
similar phosphorylation changes after both types of infection
were important for the cortical actin rearrangements taking
place during bacterial internalization (supplemental Tables S1
and S5). In contrast, phosphoproteins found exclusively in the
wild-type data set may be either important for actin-based
motility or not detected in the LC-MS/MS experiment for
technical reasons (supplemental Table S5). In addition to pro-
teins regulating the actin cytoskeleton, proteins associated
with the network of microtubules (i.e. MAP1B, MAP7, ELM4)
and intermediate filaments (i.e. PLEC, SYNM) were found.
These results were expected as it is well documented that S.
flexneri induces a profound remodeling of actin and microtu-
bules for bacterial uptake and intra- and intercellular motility
(2). In line with data showing that S. flexneri interferes with
cell–cell adhesion (53), the phosphorylation of proteins in-
volved in the assembly of tight junctions in enterocytes (ZO-1
and ZO-2) and the regulation of adherens junctions (CTNA1,
CTND1) was altered in infected cells (supplemental Table S4).
With around 50 members, proteins implicated in signal trans-
duction were also highly represented in the phosphopro-
teome. They mainly correspond to receptors, adaptors, ki-
nases, and phosphatases involved in well-characterized
signaling pathways, including EGFR, MAPK, NF-�B, mTOR,
and PKA. In addition, 24 proteins related to endocytosis (i.e.
SH3GL1, DNMBP), exocytosis (i.e. STXB5), and vesicular traf-
ficking (i.e. BET1, Rab7A, WDR44) were also present in the
phosphoproteome (supplemental Table S4). In line with pre-
vious data showing that S. flexneri interferes with host cell
cycle (54), we found that infection affected the phosphoryla-
tion of regulators of mitotic progression that control spindle
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dynamics and chromosome separation (i.e. NEK9, BOD1L,
PDS5B). To note, the proteins SEPT7 and SEPT9 of the septin
family, known to be involved in cytokinesis (55) and more
recently, in the formation of septin cages around intracellular
bacteria (56, 57), were found phosphorylated after S. flexneri
infection (supplemental Table S4). In agreement with data
reporting that cell fate is controlled by opposite signals (58),
we found that the phosphorylation of both pro- and anti-
apoptotic proteins (i.e. PDCD4, BAG3, PAWR) was altered in

infected cells. For the first time, our data showed that the
phosphorylation of several proteins (Nup98, Nup50, Nu214,
and TPR) from the nuclear pore complex (NPC) was modified
after infection. NPCs are large multiprotein channels embed-
ded in the nuclear envelope that mediate the transport of
macromolecules including proteins and RNA between the
cytoplasm and the nucleus of eukaryotic cells. The phospho-
proteome was graphically illustrated by combining data from
the STRING database that assembles protein networks based

FIG. 2. Cellular processes affected by S. flexneri. A, Gene ontology analysis of proteins with altered phosphorylation after S. flexneri
infection performed with DAVID (GO term BP FAT, p � 0.05). All proteins (334) containing at least one phosphopeptide with a minimum twofold
change and a q-value �0.01 were considered for analysis. A subset composed of all detected phosphoproteins was used as background. Full
list of GO terms is shown in supplemental Table S3. B, Literature-based manual annotation of the phosphoproteome. Numbers in brackets
indicate the number of corresponding proteins. C, Graphical representation of the phosphoproteome using STRING (high confidence 0.7)
combined with manual functional annotation and the direction of phosphorylation changes. Square, triangle and circle representations
correspond to an increase, a decrease or an increase and a decrease in phosphopeptide abundance for a given phosphoprotein. Only proteins
with at least one connection in STRING are represented.
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on known and predicted protein–protein interactions (59), with
a functional description of proteins. Only proteins with at least
one connection in STRING were represented (Fig. 2C). Data
showed a complex network with several distinct functional
modules containing highly interconnected nodes. As ex-
pected, proteins involved in signal transduction were highly
connected with members from other groups, including cyto-
skeleton and cell adhesion.

To identify the phosphorylation motifs overrepresented in
the phosphoproteome, the Motif-X algorithm (60) was applied
to all up-regulated phosphopeptides. Six distinctive motif se-
quences, all phosphorylated on a serine, including the motifs
RXRXXS, RRXS, RXXS, SP, SQ, and SXE, were extracted
(supplemental Fig. S3). To predict the putative kinases of
these motifs, we compared them to those of all known sub-
strates of 107 kinase families (61). The first three motifs
showed striking similarities to substrates of the AGC kinases
AKT, PKG/PKA/PKC, RSK, and of CamKII (supplemental Fig.
S3). The proline directed SP motif can be phosphorylated by
MAPK, CDC2, and CDK whereas the SQ motif is known to be
a substrate of ATM/ATR or DNAPK. Finally, the motif SXE
remotely resembled a substrate motif of CK2. Although AKT
was absent from the phosphoproteome (supplemental Table
S1), we experimentally confirmed its activation and localiza-
tion at sites of S. flexneri entry (supplemental Figs. S4A and
S4B), as previously reported (62). The high connectivity of
AKT within the STRING graphical representation of the phos-
phoproteome network suggested that this kinase played a
central function during infection (supplemental Fig. S4C). In
particular, AKT was highly connected to proteins associated
with the actin cytoskeleton and apoptosis/survival regulation.
Phosphopeptides corresponding to active RSK and ERK were
found in the phosphoproteome (supplemental Table S1) sug-
gesting that these two kinases may be responsible for the
phosphorylation of RXXS and SP motifs during infection,
respectively.

Taken together, these results show that S. flexneri infection
alters the phosphorylation of a complex network of proteins that
are involved in several key aspects of epithelial cell biology.
They confirm the large impact of S. flexneri infection on the actin
cytoskeleton and transcription, and show that numerous pro-
teins related to cell cycle, microtubules, intracellular trafficking,
and the nuclear pore are also affected during infection.

Spatiotemporal Dynamics of Protein Phosphorylation Dur-
ing S. flexneri Infection—To capture the spatial dynamics of
phosphorylation during S. flexneri infection, we used the Uni-
Prot database (http://www.uniprot.org) to analyze the subcel-
lular localization of proteins with altered phosphorylation dur-
ing infection. With 86% coverage of the phosphoproteome,
results showed that phosphorylation changes mainly oc-
curred in proteins localized in the cytoplasm, at the plasma
membrane, in the nucleus, in cell junctions, at the Golgi ap-
paratus and the endoplasmic reticulum (supplemental Fig.
S5A and S5B). Weak differences were observed over time,

indicating for rapid and sustained signaling in different sub-
cellular compartments during infection. Early phosphorylation
changes after 15 min in the nucleus may result from a fast
nuclear translocation of host signaling proteins and/or from a
rapid translocation of bacterial effectors to the nucleus of
infected cells.

Analysis of the temporal dynamics of individual peptides
revealed a large heterogeneity in the patterns of phosphory-
lation changes after S. flexneri infection (supplemental Fig.
S5C). Analysis of all peptides taken individually by fuzzy c-
means clustering (63) revealed six main profiles (Fig. 3A,
supplemental Table S6). Clusters 1 and 2 corresponded to
fast and slow decrease in phosphorylation, respectively. Clus-
ters 3, 4, and 5 corresponded to peptides with fast increase in
phosphorylation followed by slow, intermediate and fast de-
crease, respectively. Cluster 6 grouped peptides showing late
phosphorylation with a maximum at 2 h. Computational anal-
ysis indicated that the functional categories were not equally
represented in all clusters (supplemental Table S6). For in-
stance, proteins associated with the cytoskeleton were over-
represented in clusters 1 and 2. In contrast, proteins involved
in the p53 pathway and DNA repair were in majority found in
cluster 6. In the same line, the most frequent phospho-motif
varied between clusters (Fig. 3A). A thorough analysis of
cluster 6 revealed that among its 23 members, 15 were phos-
phorylated on a SQ motif. As this motif is the consensus
sequence for the major sensor of DNA double-strand breaks
ATM (64, 65), we checked the activation profile of this kinase
after S. flexneri infection by monitoring its phosphorylation at
serine 1981. As shown in Figs. 3B and 3C, an increase of ATM
phosphorylation was observed at 30 min and phosphorylation
was maximal after two hours, suggesting that several cluster
6 proteins were targets of ATM. This hypothesis was validated
by showing that the phosphorylation of 11 proteins from this
cluster was sensitive to the ATM inhibitor KU-60019 (supple-
mental Figs. S6A and S6B, supplemental Table S7). More
generally, dynamics analysis of all peptides phosphorylated
on a SQ motif after infection revealed also an earlier profile of
phosphorylation (supplemental Fig. S6C), suggesting that an-
other kinase was implicated. In conclusion, analysis of the
dynamics of phosphorylation revealed several temporal pro-
files of phosphorylation associated with specific enriched
phospho-motifs and distinct functional descriptions. In par-
ticular, we identified one group of proteins showing maximal
phosphorylation on a SQ motif two hours post-infection. As
literature indicates that TP53B, PRKDC, UIMC1, and TR150
are linked to the p53 pathway or DNA repair (66–69), our
results suggest that part of group 6 proteins is involved in a
genotoxic stress response to infection. More broadly, these
results illustrate how phosphorylation dynamics and phos-
pho-motif enrichment data combined with functional annota-
tion can be used to identify and characterize the host path-
ways regulated during bacterial infection.
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mTORC1 and mTORC2 Control S6 Kinase and AKT Phos-
phorylation Respectively—The KEGG database was used to
identify the overrepresented pathways in the phosphopro-
teome of S. flexneri-infected cells (70, 71). With 7 KEGG-
annotated proteins, the mTOR signaling pathway was the
most overrepresented pathway (Fig. 4A, supplemental Table
S8). mTOR is a central serine/threonine protein kinase that
regulates cell growth and metabolism, autophagy, the actin
cytoskeleton, cell proliferation, cell survival, protein synthe-
sis, and transcription (72). It is found as part of two different
protein complexes. mTOR complex 1 (mTORC1) is com-
posed of mTOR, regulatory-associated protein of mTOR
(Raptor), mammalian LST8/G-protein �-subunit like protein
(mLST8/G�L) and the recently identified partners PRAS40 and
DEPTOR (73). This complex functions as a sensor for nutri-
ent, redox balance and energy, and controls protein synthe-
sis. mTOR complex 2 (mTORC2) is composed of mTOR,

rapamycin-insensitive companion of mTOR (Rictor), mLST8,
DEPTOR and mammalian stress-activated protein kinase in-
teracting protein 1 (mSIN1) (73). mTORC2 has been shown to
function as an important regulator of the actin cytoskeleton
(74). As indicated on the mTOR signaling map (Fig. 4B),
components of both mTOR complexes but also regulators
and effectors proteins of mTOR, showed altered phosphor-
ylation after S. flexneri infection (supplemental Table S1). In
order to test the implication of mTORC1 during infection, we
monitored the effect of rapamycin on the activation of ribo-
somal S6 kinase, a protein implicated in protein translation
known to be a substrate of mTORC1, and found in the
phosphoproteome (supplemental Table S1). An antibody
that recognizes S6 kinase phosphorylated at threonine 389
was used in an immunoblotting experiment. Although a
strong activation of S6 kinase was confirmed after infection,
a short treatment of rapamycin blocked this induction (Fig.

FIG. 3. Dynamics of phosphorylation changes after S. flexneri infection of epithelial cells. A, Dynamics of phosphorylation changes for
individual phosphopeptides analyzed by fuzzy c-means clustering using the MFuzz algorithm. All individual phosphopeptides showing a
significant change at least at one time point were considered. Fold phosphorylation changes (log Ratio values) obtained for all time-points were
normalized to have a standard deviation of 1 and a mean of 0 (z-score). For each cluster, the black line corresponds to an optimal membership
of 1. The most overrepresented phospho-motif extracted with the motif-X algorithm was shown for each cluster. B, Immunoblot of ATM
phosphorylation at Ser-1981 in HeLa cells infected for the indicated time periods by S. flexneri. Vinculin was used as a loading control. C,
Densitometric quantification of ATM phosphorylation at Ser-1981 using the gel analysis tool from Fiji (88) (results representative of 2
independent experiments).
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4C, upper panel). The phosphorylation of S6 ribosomal pro-
tein, the main substrate of S6 kinase, was also sensitive to
rapamycin (Fig. 4C, lower panel). In the same condition of
drug treatment, rapamycin had no effect on S. flexneri entry

into cells (Fig. 4D). Taken together, these results show that
mTORC1 is involved in the early activation of S6 kinase
following S. flexneri infection, and suggest that it may con-
trol protein translation.

FIG. 4. mTORC1 and mTORC2 control S6 kinase and AKT phosphorylation respectively. A, Analysis of the most overrepresented KEGG
signaling pathways of the phosphoproteome using DAVID. The dashed line indicates a negative log p value threshold of 2. B, Projection of
mTOR-related proteins identified by phosphoproteomics onto an mTOR signaling map. Proteins from the phosphoproteome of S. flexneri-
infected cells are surrounded by red borders. mLST8, mTOR, Deptor, SGK1, Rho/Rac were not detected in the phosphoproteomics study. PKC
alpha was detected but not significantly regulated. C, mTORC1 is required for S6 kinase and S6 ribosomal protein phosphorylation during S.
flexneri infection. HeLa cells were left untreated or pretreated with rapamycin or PP242 for 60 min prior to S. flexneri infection (15 min) and
analyzed by immunoblotting for the phosphorylation of S6 kinase at residue Thr-389 and of S6 ribosomal protein at Ser-235/236. Actin is used
as a loading control. D, The mTOR inhibitors rapamycin and PP242 do not affect S. flexneri entry. HeLa cells were pretreated either with
rapamycin or PP242 at indicated concentrations for one hour, and infected with S. flexneri �virG- pCK100 (PuhpT::Dsred) for 3 h. These bacteria,
only fluorescent when they are intracellular, form large microcolonies that are effectively detected by automated image analysis.
Quantification of the infection rate shows that inhibition of mTORC1 and mTORC2 fails to affect the entry process of S. flexneri into HeLa
cells. Results are expressed as the mean � S.D. corresponding to three different wells of a 96-well plate and are representative of two
independent experiments. E, S. flexneri infection-induced activation of AKT is mTORC2 dependent. HeLa cells were left untreated or
pretreated with rapamycin or PP242 for 60 min prior to S. flexneri infection (15 min) and analyzed by immunobloting for the phosphorylation
of AKT at Ser-473. Actin is used as a loading control. F, mTORC2 component Rictor is required for the phosphorylation of AKT during S.
flexneri infection. Control (Ctrl) and inducible-Rictor knockout (iRiKO) mouse embryonic fibroblasts were left untreated or infected with S.
flexneri for 15 min and analyzed for the expression of Rictor and the level of AKT phosphorylation at Ser-473 by immunoblotting. Inducible
Rictor-knockout was obtained by tamoxifen pretreatment. AKT is used as loading control. All results were representative of at least two
independent experiments.
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In addition to mTORC1, proteins from the mTORC2 path-
way were also found in the phosphoproteome (Fig. 4B, sup-
plemental Table S1). Although this complex is known to con-
trol the actin cytoskeleton, inhibition of mTORC2 had no
effect on bacterial invasion (Fig. 4D). As AKT was activated
during S. flexneri infection (supplemental Fig. S4A and S4B)
and is a known substrate of mTORC2, we tested whether
mTORC2 played a role in the activation of AKT during infec-
tion. Interestingly, AKT phosphorylation was blocked by
PP242, an inhibitor of both complexes, but unchanged after
rapamycin treatment (Fig. 4E), showing that mTORC2 alone
was implicated in the activation of AKT during infection. This
result was confirmed by showing that AKT phosphorylation
was abrogated in inducible Rictor-knockout mouse embry-
onic fibroblasts (35) treated by tamoxifen (Fig. 4F). In conclu-
sion, these data show that, mTORC1 controls the phosphor-
ylation of S6 kinase whereas mTORC2 is involved in the
activation of AKT. As these two kinases control translation
and host cell survival, respectively (62, 75, 76), our study
indicates that mTOR plays a critical role in the control of host
cell responses to S. flexneri infection.

S. flexneri and S. typhimurium Infections Trigger Common
Host Phosphorylation Changes—In order to better character-
ize the phosphoproteome of S. flexneri-infected cells, we
compared it to a recently published phosphoproteome data-
set generated from HeLa cells infected by Salmonella typhi-
murium (34). This bacterium is also an enteroinvasive patho-
gen that uses type III secretion to inject multiple effector
proteins that facilitate its internalization. However, in contrast
to S. flexneri, S. typhimurium remains enclosed in a vacuole
where it replicates. Although different quantitative phospho-
proteomics methods were employed, the comparison be-
tween the phosphoproteomes of cells infected by S. flexneri
or S. typhimurium showed an overlap of 62 phosphopeptides
corresponding to 57 phosphoproteins (Fig. 5A, supplemental
Table S9). Hierarchical clustering and correlation analysis per-
formed on shared phosphopeptides showed a strong corre-
lation of phosphorylation changes with 61 phosphopeptides
co-regulated after both infections (supplemental Fig. S7A and
S7B). As expected, proteins involved in the actin cytoskele-
ton, microtubules, cell-cell adhesion, cell cycle or gene regu-
lation were similarly regulated during infection by both patho-
gens (Fig. 5B). Taken together, these results identify new
common molecular processes triggered by S. flexneri and S.
typhimurium in infected epithelial cells, and provide the first
large-scale comparison of host signaling after infection by
different bacteria.

OspF has a Wide-Reaching Impact on Host Protein Phos-
phorylation—During infection, S. flexneri injects several type
III effectors that manipulate the signaling pathways controlling
the inflammatory response of infected cells. Several mecha-
nisms of action have been characterized based on the enzy-
matic activity, the structure or the intracellular binding part-
ners of these effectors. For instance, the effector OspF

attenuates IL-8 expression via its phosphothreonine lyase
activity that irreversibly dephosphorylates MAPKs p38 and
ERK on a T-X-Y motif, thereby preventing downstream his-
tone H3 phosphorylation (23). We experimentally confirmed
that p38 and ERK phosphorylation was restored when cells
were infected with a deletion mutant of OspF (�ospF) com-
pared with wild-type-infected cells (Fig. 6A). Interestingly, we
found that OspF interfered also with the phosphorylation of
the kinase RIP2 and the transcription factor CREB (Fig. 6A),
two proteins involved in the control of inflammation (77, 78),
suggesting that OspF had a more complex effect on host
signaling than expected. To evaluate its impact, the phospho-
proteome of HeLa cells infected by �ospF S. flexneri was
determined by LC-MS/MS. When we directly compared the
phosphorylation changes triggered by �ospF versus wild-type
infection (differential phosphoproteome) by hierarchical clus-
tering, we found 377 peptides with increased phosphorylation
and 86 with decreased phosphorylation (supplemental Table
S10 and Fig. 6B), showing that OspF had a massive net
negative impact on phosphorylation. As expected, phospho-
proteomics data confirmed that OspF strongly dephosphory-
lated ERK and p38 at residues T202/Y204 and T180/Y182,
respectively (supplemental Table S10). A systematic search
for the T-X-Y motif, known to be the consensus motif for the
OspF phosphothreonine lyase activity (79), identified GSK3A
as a potential new target. To test this hypothesis, we tested
whether a treatment with the ERK and p38 inhibitors,
PD98059 and SB203580 respectively, abolished all OspF-de-
pendent phosphorylation changes (supplemental Table S10).
With a q value �0.01 and a minimum twofold-ratio, none of
the phosphopeptides differentially regulated by OspF (supple-
mental Fig. S8A) remained significantly different from wild-
type infection after pretreatment with MAPK inhibitors (sup-
plemental Fig. S8B). In particular, PD98059 and SB203580
completely abolished GSK3A phosphorylation at T201 and
Y203 (supplemental Fig. S8B), indicating that this protein was
not a direct substrate of OspF. Taken together, these data
suggest that the OspF-sensitive phosphorylation changes
identified in this study result from the phosphothreonine lyase
activity of this effector toward ERK and p38.

A STRING network representation of the differential phos-
phoproteome showed a core network of 136 proteins con-
nected at least once (Fig. 6C). Some of these have direct or
indirect connections to ERK and p38. A systematic search for
the overrepresented phosphorylation motifs identified among
others the SP/TP motif shared by the MAPKs, Cdc2 and Cdks
as well as RXXS, which can be phosphorylated by RSK, a
kinase identified in the differential phosphoproteome (Fig. 6C,
supplemental Fig. S9).

It has been shown that OspF interferes with IL-8 expression
in S. flexneri-infected cells (23). To further characterize the
role of this effector during infection, we analyzed the biolog-
ical functions of the differential phosphoproteome (Figs. 6C
and 6D, supplemental Table S11). In line with an inhibition of
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gene expression (23), many proteins involved in transcription,
chromatin modification and RNA processing were affected by
OspF. Phosphorylation changes in several NPC proteins were
also observed. In addition, phosphoproteins related to various

biological functions including actin cytoskeleton, microtu-
bules, apoptosis and cell cycle were also affected by OspF
(Fig. 6D). Altogether, these results show that OspF has a
massive impact on host protein phosphorylation and illustrate

FIG. 5. S. flexneri and S. typhimurium infections trigger common host phosphorylation changes. A, Venn diagram showing the overlap
of phosphopeptides undergoing significant phosphorylation changes after S. flexneri infection (15 and 30 min) and S. typhimurium infection (10
and 20 min). For S. typhimurium infection, the phosphorylation events identified in different cellular compartments were compiled. B,
Phosphoproteins undergoing significant phosphorylation changes after both S. flexneri and S. typhimurium infections. Phosphoproteins were
grouped according to different biological functions. Arrows indicate whether there is an increase or decrease in phosphorylation.
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FIG. 6. OspF has a wide -reaching impact on host protein phosphorylation. A, OspF affects the phosphorylation of several signaling
proteins involved in inflammation signaling. Left panels: OspF blocks the activation of p38 and ERK during S. flexneri infection. HeLa cells were
left untreated or infected with either S. flexneri wild-type or �ospF for 30 min. The phosphorylation of p38 and ERK on residues T180/Y182 and
T202/Y204 respectively, was analyzed by immunoblotting using the indicated phospho-specific antibodies. Right panels: OspF affects the
phosphorylation of RIP2 and CREB on residue S176 and S133 respectively. Cells were left untreated or infected with S. flexneri wild-type or
�ospF for 30 min. The phosphorylation of RIP2 and CREB was analyzed by immunoblotting using the indicated phospho-specific antibodies.
Actin was used as loading control (results representative of two independent experiments). B, Hierarchical clustering analysis of relative peptide
intensities obtained from the three independent replicates of cells infected for 30 min with either S. flexneri wild-type or �ospF. Phospho-
peptides showing a significant change between �ospF and wild-type condition (2-fold change, q-value �0.01) were taken for the hierarchical
clustering. C, Graphical representation of the network of phosphoproteins affected by OspF (differential phosphoproteome). Phosphoproteins
differentially phosphorylated between wild-type and �ospF S. flexneri were subjected to STRING (high confidence 0.7). Only proteins with at
least one connection are represented. STRING data were combined to manual functional annotation. The known OspF targets p38 (MK14),
ERK1 (MK03), and ERK2 (MK01) are highlighted by an increased node size. D, Manual functional annotation of proteins from the differential
phosphoproteome. Numbers in brackets indicate the number of corresponding proteins.

Protein Phosphorylation During Bacterial Infection

Molecular & Cellular Proteomics 12.10 2963

Manuscript

63



that, by targeting the central hubs p38 and ERK, this effector
shuts down a large fraction of the cellular network.

DISCUSSION

For the first time, we used phosphoproteomics to address
the dynamics of protein phosphorylation during the first two
hours of S. flexneri infection in epithelial cells. Using a label-
free LC-MS/MS-based approach, we found more than three
hundred proteins undergoing a significant change in phos-
phorylation after infection. This corresponded to 28% of all
detected phosphoproteins, showing that infection by the en-
teroinvasive bacterium S. flexneri has a massive impact on
host protein phosphorylation. Although label-free LC-MS/MS
is not a comprehensive method, our study covered a large
portion of the phosphoprotein space and was well-suited to
reproducibly identify and quantify host phosphorylation
changes after bacterial infection.

Gene ontology analysis and manual functional annotation of
the phosphoproteome confirmed the importance of the actin
cytoskeleton and microtubules during infection. This result
was expected because the first two hours of infection cover
the entry mechanism of S. flexneri and actin based-motility,
two processes highly dependent on actin and microtubule
remodeling and controlled by protein phosphorylation (33,
80). The identification of around 50 new phosphoproteins
related to the cytoskeleton and the comparison between wild-
type and �virG infection open a new avenue to elucidate the
mechanisms of bacterial entry and actin-based motility, two
critical processes that contribute to successful colonization of
the intestinal epithelium in humans.

Further functional analysis of the phosphoproteome showed
that the phosphorylation of proteins related to cell cycle was
affected by infection. This result was consistent with a report by
Iwai et al. showing that the secreted effector IpaB causes cell-
cycle arrest of epithelial cells by targeting Mad2L2, an ana-
phase-promoting complex/cyclosome (APC/C) inhibitor (54).
The addition of Mad2L2 to the STRING network representa-
tion of the phosphoproteome shows that this protein inter-
connects with CDC23 and BUB1, component and substrate
of APC/C respectively, which are important for cell cycle
checkpoint enforcement. Interestingly, phosphoproteomics
revealed that S. flexneri infection alters the phosphorylation of
NPC proteins including Nup98, Nup50, Nu214 and TPR.
NPCs are composed of around 30 different nucleoporins di-
vided into scaffolding proteins that are important for nuclear
pore assembly and maintenance, and peripheral proteins that
function directly in nucleo-cytoplasmic transport. Noticeably,
all proteins affected by S. flexneri infection belong to this
second class. Follow up work is required to elucidate how
infection impacts nuclear transport, and if trafficking of im-
portant host proteins or mRNA is affected during infection.
Besides transport, recent studies indicate that peripheral
proteins of NPCs can also directly contribute to gene reg-
ulation by interacting with chromatin and coupling tran-

scription with mRNA export (81). It would be of particular
interest to investigate whether changes in NPC protein
phosphorylation can affect the expression of proinflamma-
tory genes by this mechanism.

To better understand the host phosphorylation dynamics of
S. flexneri infection and extract useful information regarding
the roles of functional modules during infection, we used
fuzzy c-means clustering to group all individual phosphopep-
tide based on the direction and the temporal profiles of phos-
phorylation changes after infection. Each cluster was then
analyzed for the most frequent phospho-motifs and functional
annotation of proteins. For clusters showing a fast (cluster 1)
or slow reduction (cluster2) of phosphorylation, the SP phos-
pho-motif was highly enriched. As this motif can be phosphor-
ylated by MAPKs, we hypothesize that, for some proteins, the
reduction of phosphorylation results from the phosphothreo-
nine lyase activity of OspF on p38 and ERK. Alternatively, a
reduction of SP phosphorylation can also be explained by the
inhibition of other kinases like CDC2 and CDK. In a nonexclu-
sive manner, the activation of phosphatases may also play a
role. Remarkably, proteins from cluster 1 were in majority
involved in the regulation of the actin cytoskeleton, microtu-
bules and cell adhesion. In contrast, proteins belonging to
cluster 2 were essentially related to transcription. Among the
other profiles of phosphorylation changes, cluster 6 showed
maximal phosphorylation two hours post-infection. For this
cluster, 14 proteins out of 21 were phosphorylated on an SQ
motif, a known substrate of ATM, ATR and DNAPK. By mon-
itoring the activation of ATM at different time-points of infec-
tion by immunoblotting, we observed a very similar kinetics of
activation, suggesting that ATM phosphorylated the SQ-con-
taining proteins of cluster 6. This hypothesis was confirmed
by showing that the ATM inhibitor KU60019 inhibited the
phosphorylation of most of them. As some of these proteins
were associated with the p53 pathway and DNA repair, we
propose that they compose a functional module related to
genotoxic stress. This assumption is supported by a recent
article reporting S. flexneri-induced genotoxic stress and ATM
activation (82).

Finally, in the clusters showing an increase in phosphory-
lation, the SP and RXXS phospho-motifs were overrepre-
sented. The latter can be phosphorylated by AGC kinases
such as AKT, PKA, PKC, S6 kinase and the members of the
RSK family. Whereas our phosphoproteomics data supported
the activation of S6 kinase and RSK during infection, phos-
phorylated AKT was not detected. By using an antibody that
recognizes the active form of AKT, we confirmed its activation
after S. flexneri infection and localization at entry foci. Al-
though it was reported that AKT activation requires an IpgD-
dependent production of phosphatidylinositol 5 monophos-
phate (62) and EGF receptor signaling (83), its exact
mechanism of activation remains unclear. Here we found that
AKT activation was sensitive to PP242 but not to rapamycin,
and was abolished in cells depleted of Rictor, showing clearly
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that AKT activation was dependent on mTORC2. The impli-
cation of mTORC2 was also supported by the phosphopro-
teomics data showing that both mSin1 and Rictor underwent
a change in phosphorylation during S. flexneri infection. Fur-
ther experiments are required to test how mTORC2 is acti-
vated during infection. Because AKT controls the survival of
infected cells (62, 76), our data indicated that mTORC2 was
involved in the regulation of cell fate during infection. Inter-
estingly, although mTORC2 can regulate the actin cytoskele-
ton (74), bacterial entry was not affected by the inhibition of
mTORC2. In addition, phosphoproteomics revealed a rapid
change in phosphorylation for the two mTORC1 components
Raptor and PRAS40, indicating that mTORC1 was implicated
in the early phase of infection. This finding was supported by
the observation that the phosphorylation of S6 kinase and S6
ribosomal protein observed 15 min post infection was sensi-
tive to rapamycin and PP242 treatment. Because these two
proteins are known to regulate protein translation, these re-
sults suggested that mTORC1 participates to the control of
host protein synthesis during S. flexneri infection. Interest-
ingly, a recent report by Tattoli et al. shows that S. flexneri
infection leads to amino acid starvation and to a subsequent
down-regulation of mTORC1 activity that induces autophagy
(84). The authors report that amino acid starvation is sensed
by GCN2 which becomes phosphorylated within the first hour
of infection. Altogether, these two studies support the roles of
both mTORC1 and mTORC2, and identify mTOR as a central
host player of S. flexneri infection.

Phosphoproteomics is a method that has been applied only
recently to the field of bacterial infection with a first study by
Rogers et al. investigating S. typhimurium infection of epithe-
lial cells (34). As S. flexneri and S. typhimurium are closely
related and both harbor a type III secretion system with sev-
eral homologue effectors, we compared the respective phos-
phoproteomes of infected HeLa cells. Although major differ-
ences in sample preparation and phosphoproteomics
methodology exist between the two studies (85), 61 coregu-
lated phosphopeptides were discovered. Considering that
phosphoproteomics techniques fail to capture all cellular
phosphoproteins, this number is mostly likely underesti-
mated. These results demonstrated that S. flexneri and S.
typhimurium induce various common host molecular pro-
cesses in infected cells. Among the shared phosphopeptides,
many belong to proteins related to the cytoskeleton and its
regulation. For instance, the protein palladin, strongly phos-
phorylated after S. flexneri and S. typhimurium infection, is
known to localize at sites of actin remodeling including ruffles
and lamellipodia. The protein IQGAP2 interacts with CDC42
and Rac1, two GTPases required for efficient bacterial entry
(86, 87). Taken together, these data constitute the first large-
scale comparison of host signaling after infection by different
pathogenic bacteria. By identifying the common phosphory-
lation events, this approach allows to define the host pathways
that are co-regulated by pathogens, and may facilitate the

identification of processes that could be targeted by broad-
spectrum drugs in the perspective of treatments against bac-
terial infections.

As previously described, S. flexneri secretes different effec-
tors that manipulate host signaling to finely tune the inflam-
matory response of infected cells. For instance, it was pro-
posed that OspF blocks the expression of IL-8 by altering the
phosphorylation of histone H3 and the access of transcription
factors to chromatin (23). Phosphoproteomics revealed that
OspF affects the phosphorylation of more than three hundred
proteins, showing that this effector has a wider impact than
anticipated. The MAPK inhibitors, PD98059 and SB203580,
abolished all OspF-dependent phosphorylation changes,
suggesting that they resulted from its phosphothreonine lyase
activity toward p38 and ERK. In line with an effect of OspF on
gene regulation, the phosphorylation of various proteins as-
sociated with transcription, chromatin modification and RNA
processing was strongly affected. However, the biological
functions and the number of proteins impacted by OspF
strongly suggested that a reduction of histone H3 phosphor-
ylation was not the only mechanism by which the effector
OspF affected IL-8 expression in infected cells. Further func-
tional analysis revealed that phosphoproteins associated with
the actin cytoskeleton, microtubules, cell cycle and intracel-
lular transport were also altered by OspF. Altogether, these
results illustrate how S. flexneri effectively alters a large frac-
tion of the host protein phosphorylation network via a single
effector. They also demonstrate that OspF can be used as a
molecular tool to discover new targets of MAPKs, and deci-
pher novel downstream regulatory mechanisms.

In summary, we used quantitative phosphoproteomics to
investigate host signaling during S. flexneri infection of epi-
thelial cells. We found several hundred of proteins undergoing
a significant change in phosphorylation during the first two
hours of infection. Dynamics studies combined with functional
annotation and phospho-motif enrichment demonstrated alter-
ations of proteins involved in different cellular functions, includ-
ing the cytoskeleton, cell cycle, transcription, and genotoxic
stress responses. In addition, we discovered an early signaling
function of mTOR during infection, and characterized the im-
pact of OspF on host protein phosphorylation. In conclusion,
these data provide the first systems-level overview of host sig-
naling during the first hours of a bacterial infection, and consti-
tute a valuable resource for generating testable hypotheses
related to host-pathogen interactions.
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Figure S1: Quality control of the phosphoproteomics data 

(A) Squared Pearson correlation coefficient R2 of integrated peptide feature intensities 

between different replicates (R1, R2 and R3) of each condition. The linear regression of 

the integrated peptide feature intensities of two conditions is indicated in red, whereas 

the dashed line corresponds to direct proportionality. (B) Boxplot showing the coefficient 

of variance (C.V. in %) of the replicates for each condition. The median C.V. is indicated 

by the line in the box, the mean C.V. is indicated at the top of each boxplot. (C) Venn 

diagram showing the overlap between identified phosphoproteins and proteins.  
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Figure S2 

 
Figure S2: Validation of phosphoproteomics data by western blotting 
 
TBCD4 becomes phosphorylated on S588, KS6A1 (RSK) on T359/ S363 and MYPT1 on 

S507 after S. flexneri infection. Cells were left untreated or infected for indicated time-

periods with S. flexneri. Actin is shown as loading control. For KS6A1 (RSK), the total 

protein amount is shown. Data is representative of two independent experiments. 
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Figure S3 

 

Figure S3: Overrepresented phosphorylation motifs upon S. flexneri infection 

The overrepresented phosphorylation motifs were extracted with the software tool Motif-

X. With a p-value < 0.0005 and a minimal occurrence of 15, six distinct motifs 

corresponding to phosphopeptides with increased phosphorylation were identified (left 

panel). Putative kinases responsible for the phosphorylation of the observed motifs and 
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their corresponding substrate sequences, are shown in the right panel [1]. Kinase 

substrate motifs were taken from RegPhos, a platform collecting experimentally verified 

kinase substrates from the databases PhosphoELM and SwissProt [2,3]. 
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Figure S4 
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Figure S4: Activation and roles of AKT during S. flexneri infection 

(A) AKT becomes phosphorylated at Ser473 upon S. flexneri infection. Cells were left 

untreated or infected for indicated time-points and collected for immunoblotting against 

phospho-Akt Ser473. Actin is shown as loading control. Data is representative of two 

independent experiments. (B) Phosphorylated AKT is recruited to sites of bacterial entry. 

HeLa cells were infected for 15 min with dsRed-expressing S. flexneri and stained for 

AKT phosphorylated at Ser473 and F-actin (phalloidin). Scale bars represent 40 µm. (C) 

Graphical representation of the network of the phosphoproteome including AKT1 using 

the STRING database (high confidence score 0.7) combined with manually annotated 

biological functions. Only proteins with at least one connection in STRING are 

represented. Several proteins connected to AKT are related to cell death and survival 

(white nodes). All proteins connected to AKT are highlighted with black rings. 
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Figure S5 
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Figure S5: Spatio-temporal dynamics of protein phosphorylation during S. flexneri 

infection 

(A) Subcellular localization of proteins with increased phosphorylation during S. flexneri 

infection using UniProt database [3]. (B) Subcellular localization of proteins with 

decreased phosphorylation during S. flexneri infection using UniProt database. (C) 

Analysis of the temporal dynamics of phosphorylation changes of individual 

phosphopeptides after S. flexneri infection. Peptides showing significant increase in 

phosphorylation are shown in red. Peptides showing significant decrease in 

phosphorylation are shown in blue.  
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Figure S6 
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Figure S6: ATM inhibition abolishes the phosphorylation of several cluster 6-

proteins  

(A) KU-60019 prevents ATM phosphorylation at S1981 (p-ATM S1981). HeLa cells were 

left untreated or pretreated with KU-60019 for 1h and infected with wild-type S. flexneri 

for 2 h. Phosphorylation of ATM at Serine 1981 was measured by immunoblotting using 

a phospho-specific antibody. Actin is shown as loading control. (B) Phosphoproteomics 

of HeLa cells pretreated with 4µM KU-60019 for 1 hour and infected with S. flexneri for 2 

hours. Data were compared to uninfected cells. Out of the 23 phosphopeptides of cluster 

6, 19 were again detected. Among these, 9 were at least 2-fold down-regulated by KU-

60019 with a q-value <0.01. In addition, 5 phosphopeptides were at least 1.5 fold down-

regulated by KU-60019 with a q-value <0.05 (marked with an asterisk). Finally, 5 

phosphopeptides were not considered to be KU-60019 sensitive according to these 

criteria. (C) Temporal dynamics of all peptides phosphorylated on a SQ motif. The 

phosphopeptides are grouped into two distinct clusters with an early and a late increase 

in phosphorylation.  
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Figure S7 
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Figure S7: Comparison between S. flexneri and S. typhimurium 

phosphoproteomics data 

(A) Hierarchical clustering of log10 abundance ratios, with respect to the uninfected 

samples, for the phosphopeptides that are common to the phosphoproteomes of S. 

flexneri and S. typhimurium infection. Protein phosphorylation was measured after 15 

and 30 minutes for S. flexneri infection and after 10 and 20 minutes for S. typhimurium 

infection [4]. Phosphopeptides that underwent a minimum two-fold phosphorylation 

change and had a q-value <0.01 for at least one time-point, were taken for comparison 

between the two pathogens. The results obtained for S. flexneri infected cells were 

compared to the three S. typhimurium datasets corresponding to the membrane (M), 

cytoplasmic (C) and nuclear (N) fractions. White bands correspond to situations where 

no SILAC measurements were available [4]. (B) Correlation analysis of phosphorylation 

changes (log10 abundance ratios, with respect to the uninfected samples) across 

infection conditions and pathogens. Phosphopeptides undergoing a significant change in 

phosphorylation after infection by both S. flexneri and S. typhimurium infections were 

considered. Values in the lower triangle of the correlation matrix correspond to the 

squared Pearson’s correlation coefficient (R2). The linear regression for the indicated 

comparisons is shown in red.  
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Figure S8 
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Figure S8: Phosphoproteomic comparison between wild-type infection and ∆ospF 

infection in the presence of p38 and ERK inhibitors. 

(A) Volcano plot representing significance (q-values) versus the ∆ospF/wild-type 

phosphorylation ratio on the y- and x-axes, respectively. Phosphopeptides showing a 

minimum 2-fold change in ∆ospF/wild-type phosphorylation ratio and a q-value <0.01 

were considered significantly regulated by OspF, and represented in yellow. (B) Volcano 

plot representing significance (q-values) versus the ∆ospF + MAPK inhibitors/wild-type 

phosphorylation ratio on the y- and x-axes, respectively. The phosphopeptides 

significantly regulated by OspF as defined in (A) are represented in yellow. The 

phosphopeptide corresponding to GSK3A phosphorylation on T201 and Y203 is shown 

in red.  
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Figure S9 

 

Figure S9: Overrepresented phosphorylation motifs of proteins from the 

differential phosphoproteome  

The overrepresented phosphorylation motifs of proteins differentially phosphorylated 

between wild-type and S. flexneri ∆ospF infection were identified by the software tool 

Motif-X [5]. Using a p-value cutoff of 10-6 and a minimal occurrence of 20 peptides, five 

distinct phosphorylation motifs were identified. Putative kinases responsible for the 

phosphorylation of the observed motifs and their corresponding substrate sequences are 

shown in the right panel.  
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SUPPLEMENTARY INFORMATION FILE LEGENDS 

Table S1: Quantification of all phosphopeptides detected by LC-MS/MS 

Relative quantification of all confidently identified phosphopeptides in HeLa cells after 

infection with wild-type S. flexneri for 15, 30, 60 and 120 minutes. Abundance Ratios 

(with respect to the uninfected control condition) and q-values, calculated using 

SafeQuant v1.0 as described in Supplemental Methods, and used for the entire study, 

are shown in green and blue, respectively. All raw data are shown in “Raw data” Excel 

sheet. Data corresponding to individual time-points were highlighted in separated 

sheets. An explanation of specific terms used in the “Raw Data” sheet is provided in the 

“Table Description” sheet. 

 

Table S2: Quantification of all proteins detected by LC-MS/MS 

Relative quantification of all confidently identified proteins in HeLa cells after infection 

with wild-type S. flexneri for 15, 30, 60 and 120 minutes and S. flexneri ∆ospF for 30 

min. Protein abundance is calculated as the summed MS1 peak abundances of its 

confidently identified constituting peptides. On this basis, protein abundance ratios (with 

respect to the uninfected control condition) and accompanying q-values are calculated 

using SafeQuant v1.0 as described in Supplemental Methods. An explanation of specific 

terms used in the “Raw Data” sheet is provided in the “Table Description” sheet. 

 

Table S3: Gene ontology analysis of the phosphoproteome of S. flexneri infection 

in HeLa cells 
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Sheet 1: Gene ontology terms of the proteins of the phosphoproteome. 

Sheet 2: Enrichment in gene ontology terms. All 334 proteins from the 

phosphoproteome were subjected to DAVID and the overrepresented GO Terms 

(GO_TERM_BP_FAT) with respect to all detected phosphoproteins, used as 

background, were extracted.  

 

Table S4: Manual functional annotation of the phosphoproteome 

All proteins from the phosphoproteome were manually annotated according to their 

published biological function. Only one function was assigned to a protein based on 

relative available literature. At the bottom of the page, a summary showing all 

annotations and their mode of classification can be found.  

 

Table S5: Quantification of all phosphopeptides detected by LC-MS/MS upon S. 

flexneri ∆virG infection 

Relative quantification of all confidently identified phosphopeptides in HeLa cells after 

infection with S. flexneri ∆virG for 15 and 60 minutes. Abundance Ratios (with respect to 

the uninfected control condition) and q-values calculated using SafeQuant v1.0 as 

described in Supplemental Methods, are shown in green and blue, respectively. An 

explanation of specific terms used in the sheet, is provided in the “Table Description” 

sheet. A comparison with wild-type infection is shown in “comparison with wt” sheet for 

the proteins related to actin.  

 

Table S6: Temporal dynamics of protein phosphorylation during S. flexneri 

infection 
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The temporal dynamics of phosphorylation was analyzed by fuzzy c-means clustering. 

The phosphopeptides from the six clusters (on separated sheets) are listed with their 

corresponding membership value and functional annotation. For each cluster, the most 

enriched phosphorylation motif was extracted using the motif-X algorithm. 

 

Table S7: Quantification of all phosphopeptides detected by LC-MS/MS upon S. 

flexneri infection and ATM inhibition by KU-60019 treatment 

Relative quantification of all confidently identified phosphopeptides in HeLa cells after 

infection with S. flexneri for 120 minutes either untreated or treated with 4µM KU-60019. 

Abundance Ratios (with respect to the uninfected control condition) and q-values, 

calculated using SafeQuant v1.0 as described in Supplemental Methods, are shown in 

green and blue, respectively, in sheet 1. Abundance Ratios (with respect to the S. 

flexneri infected cells for 120 minutes condition) and q-values, calculated using 

SafeQuant v1.0 as described in Supplemental Methods, are shown in green and blue, 

respectively, in sheet 2. An explanation of specific terms used in the sheet, is provided in 

the “Table Description” sheet. 

 

Table S8: KEGG pathways analysis of the phosphoproteome of S. flexneri 

infection  

All proteins from the phosphoproteome were subjected to DAVID and the enrichment of 

KEGG pathways with respect to the human genome background was extracted.  

 

Table S9: Comparison of the phosphoproteome of S. flexneri and S. typhimurium 

infected cells 
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The phosphoproteome of S. flexneri infection was compared to the phosphoproteome of 

S. typhimurium infection published by Rogers et al. [4]. The 15 and 30 min time-points 

from the S. flexneri dataset are compared to the 10 and 20 min time-points of the S. 

typhimurium dataset. Phosphopeptides, which are detected in both datasets to be 

regulated in a significant manner (2-fold change and q-value <0.01) in at least one 

condition, are shown.  

 

Table S10: OspF and MAPK inhibitor sensitive phosphoproteome 

Relative quantification of all confidently identified phosphopeptides in HeLa cells after 

infection with wild-type S. flexneri, S. flexneri ∆ospF and S. flexneri ∆ospF in the 

presence of 10 µM SB203580 and 50 µM PD98059. Abundance Ratios (with respect to 

the uninfected control condition) and q-values, calculated using SafeQuant v1.0 as 

described in Supplemental Methods, are shown in green and blue, respectively in 

sheet1. Abundance Ratios (with respect to the ∆ospF 30 minutes condition) and q-

values, calculated using SafeQuant v1.0 as described in Supplemental Methods, are 

shown in green and blue, respectively in sheet2. An explanation of specific terms used, 

is provided in the “Table Description” sheet 

 

Table S11: Manual annotation of the OspF-sensitive phosphoproteome 

All phosphopeptides that are at least two fold up- or down-regulated with a q-value 

<0.01 in cells infected with ∆ospF compared to wild-type infected cells, were manually 

annotated according to their biological function. At the bottom of the page, a summary of 

the annotation from the OspF sensitive phosphoproteome can be found. 
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File S12: All annotated spectra 

 

SUPPLEMENTARY MATERIALS AND METHODS 

 

Functional annotation 

DAVID [6] was used for functional annotation and Gene Ontology enrichment analysis. 

Enriched terms with a p-value below 0.05 were considered. Terms from the 

GOTERM_BP_FAT category were used to address overrepresented biological 

functions. KEGG pathway was used to address overrepresented pathways [7,8]. 

 

Motif analysis 

The software tool Motif-X [5] was used to extract overrepresented phosphorylation 

motifs. We took 13-amino acid sequences centered on the phosphorylation sites as 

defined in our dataset. The complete human International Protein Index database was 

used as background. Occurrence and p-value cutoffs are indicated in the corresponding 

figure legends. To compare the obtained motifs to substrate motifs from known kinases, 

the resource RegPhos (http://regphos.mbc.nctu.edu.tw/) was used. There, 

experimentally verified kinase substrates were collected from the databases 

Phospho.ELM and SwissProt. The substrates were related to 107 kinases families 

corresponding to more than 300 individual kinases [9] and represented using WebLogo 

[10]. 

 

Network analysis 
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For graphical representations, lists of proteins were submitted to the STRING (v. 9.0) 

database [11] using a filter for high confidence interactions (score >0.7). Interaction data 

were downloaded and processed with Cytoscape 2.8.2 [12]. Cytoscape was also used to 

combine the STRING interaction data to manual functional annotation. 

 

M Fuzz Clustering 

The phosphorylation profiles of phosphopeptides undergoing a significant change 

compared to uninfected cells (a minimum 2-fold change and a q-value < 0.01) at least at 

one time point were clustered using Fuzzy c-means clustering [13]. The clustering 

algorithm was provided with normalized log ratio abundance profiles for each 

phosphopeptide (each profile was scaled to have a mean of 0 and a standard deviation 

of 1, z-scoring). The number of clusters was set to 6, after evaluating the decrease in 

minimum centroid distance over a range of cluster numbers, as suggested by 

Schwämmle and Jensen, 2010 [14]. The fuzzification parameter m was set to 2.15 after 

evaluation of fuzzy clustering applied to randomized datasets of the same dimension 

and number of profiles as our data. Finally, each cluster was filtered to include only the 

phosphopeptides with a membership-value larger than 0.5.  

 

Comparison of S. flexneri and S. typhimurium phosphoproteomes 

The comparison between both phosphoproteomes was performed as follows. For both 

datasets, significant changes in phosphorylation were defined as a minimum two-fold 

increase or decrease compared to uninfected cells, and a q-value < 0.01 for S. flexneri 

infection and a p-value < 0.01 for S. typhimurium infection. Phosphorylation was 

measured after 15 and 30 minutes of S. flexneri infection and 10 and 20 minutes of S. 
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typhimurium infection. For the latter, phosphorylation changes in at least one fraction 

(membrane, cytoplasmic or nuclear) were considered. Based on these criteria, 62 

phosphopeptides showed a significant change in phosphorylation after infection by both 

pathogens (at least in one time-point and in one fraction for S. typhimurium infection). 

For instance, if a phosphopeptide was found significantly phosphorylated at 15 minutes 

after S. flexneri and at 20 minutes post S. typhimurium infection in the nuclear fraction, it 

was considered as overlapping. Hierarchical clustering was used to compare the 

direction of the phosphorylation changes for the 62 shared phosphopeptides. Due to the 

nature of the SILAC method employed in the S. typhimurium study, each peptide was 

not necessarily identified and quantified in all fractions and time-points. The missing 

values are indicated by white bands in the heat-map (Figure S7A).  
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5 Unpublished results related to the research article

This section contains additional unpublished results related to the research article "Systems-
Level Overview of Host Protein Phosphorylation During Shigella flexneri Infection Re-
vealed by Phosphoproteomics". These results were either excluded because of space lim-
itations or due to lacking contribution to the principal message of the research article.
However, these results still cover some important aspects related to the work and are
therefore presented and discussed in the current section.

5.1 Statement of contribution

I performed all of the experiments shown in this section except the following. C. Kasper
performed the siRNA screen and a comparison to the phosphoproteomic data. In addi-
tion, C. Kasper performed the automated image quantification for the nuclear transport
experiments. R. Dreier contributed the p-MYPT1 immunoblot and a phosphoproteomic
dataset covering the first 15 minutes of S. flexneri infection.

5.2 Results and discussion

5.2.1 Phosphoproteomics of S. flexneri infection upon mTOR inhibition

A KEGG pathway analysis of phosphoproteins revealed mTOR as the most overrepre-
sented pathway during S. flexneri infection [248]. We could further validate that the path-
way becomes activated during infection by monitoring activity of S6K and AKT, the
downstream targets of mammalian target of rapamycin complex 1 (mTORC1) and mam-
malian target of rapamycin complex 2 (mTORC2), respectively. Therefore, we aimed to
reveal potential roles of mTOR during infection. We applied phosphoproteomics to study
the impact of mTOR inhibition upon S. flexneri infection. Cells were pretreated with the
mTORC1 inhibitor rapamycin or with the mTORC1/2 inhibitor PP242 for an hour and
subsequently infected with S. flexneri for 30 minutes. The infected cells were harvested,
lysed, enzymatically digested and the derived peptides enriched for phosphopeptides using
TiO2 (Figure 5.2.1 A). The obtained phosphopeptides were subjected to mass spectrom-
etry as previously described [248]. Inhibition of mTORC1 by rapamycin upon S. flexneri
infection affected the phosphorylation on 13 different peptides compared to infection with-
out treatment (Figure 5.2.1 B). The down-regulation of phosphorylation on Ser235/236
of the mTORC1 substrate RS6 upon rapamycin treatment validated the approach. In
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addition, phosphorylation of EF2K, a kinase that was shown to be involved in insulin
signaling towards mTOR, was also sensitive to rapamycin [31]. Interestingly, more phos-
phopeptides were found to undergo an increase than a decrease in phosphorylation during
S. flexneri infection and rapamycin treatment. These include the Src substrate cortactin
as well as LARP1 that has recently been shown to associate with mTORC1 and being
required for protein synthesis [268]. Inhibition of both mTORC1 and mTORC2 by PP242
has as expected a higher impact on the phosphorylation network of the cell (Figure 5.2.1
C). We identified 33 phosphopeptides undergoing a significant change in phosphorylation
upon infection with S. flexneri and PP242 treatment compared to infection without treat-
ment. PP242 had a net negative impact on protein phosphorylation upon infection as
25 phosphopeptides were identified to be less phosphorylated compared to 8 phosphopep-
tides that showed an increase in phosphorylation upon PP242 treatment. The repression
of RS6 phosphorylation upon PP242 treatment validated the inhibitory effect towards
mTORC1 and the repression of phosphorylation of AKTS1, which is a substrate of AKT,
validates the inhibitory effect towards mTORC2. A decrease in phosphorylation was again
observed for EF2K and additionally for 4EBP1 and 4EBP2 two regulators of eIF4E a pro-
tein involved in regulation of translation [167]. Interestingly, LARP1 was found again to
undergo a change in phosphorylation. However, PP242 represses LARP1 phosphorylation
whereas rapamycin enhanced LARP1 phosphorylation. It has to be mentioned that differ-
ent phosphosites were regulated among the two treatments which indicates that LARP1
phosphorylation becomes regulated at multiple sites in mTOR dependency as also previ-
ously observed [112,296]. Overall, these data show that repression of mTOR signaling during
bacterial infection affects the phosphorylation of many different proteins that are mainly
related to regulation of translation. Although this data may provide new targets of mTOR
or indirect mTOR regulated proteins, a function of mTOR during bacterial infection could
not be revealed.

5.2.2 The nuclear translocation of Rev-GR-GFP is affected upon S. flexneri
infection

In the research article we showed that S. flexneri infection induces phosphorylation events
of several components of the nuclear pore complex (NPC) including Nup98, Nup50, Nu214
and TPR. Because phosphorylation of nucleoporins is proposed to cause disassembly of
NPCs during mitosis [141], we first examined whether these multiprotein structures remain
intact after S. flexneri infection (Figure 5.2.2 A and B). The subcellular localization of the
nuclear pore membrane protein Pom121 and the central transporter Nup62 was compared
in uninfected and infected cells by confocal microscopy. As these proteins are respectively
localized in the central part and the periphery of the nuclear pore, they are used to control
the integrity of NPCs [141]. Data showed that bacteria did not alter the localization of these
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Figure 5.2.1 (Continued on the following page.)
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Figure 5.2.1 Phosphoproteomics of S. flexneri infection upon mTOR inhibition. (A)
Schematic workflow of the experiment. HeLa cells were either left untreated or pretreated with
100nM rapamycin or 2µM PP242 for one hour and subsequently infected with S. flexneri at an
multiplicity of infection (MOI) of 40 for 30 minutes. Afterwards the standard phosphoproteomic
workflow was applied. (B) Volcano plot representing significance (q-values) versus the S. flexneri +
rapamycin/ S. flexneri phosphorylation ratio on the y- and x-axes, respectively. Phosphopeptides
showing a minimum 2-fold change in S. flexneri + rapamycin/ S. flexneri phosphorylation ratio and
a q-value <0.01 were considered significantly regulated by rapamycin, and represented in yellow.
(C) Volcano plot representing significance (q-values) versus the S. flexneri + PP242/ S. flexneri
phosphorylation ratio on the y- and x-axes, respectively. Phosphopeptides showing a minimum
2-fold change in S. flexneri + PP242/ S. flexneri phosphorylation ratio and a q-value <0.01 were
considered significantly regulated by PP242, and represented in yellow.

proteins, suggesting that NPCs remained intact during infection (Figure 5.2.2 A and B).
The impact of S. flexneri infection on nuclear import was then directly tested. We used a
common nucleo-cytoplasmic shuttling assay employing the human immunodeficiency virus
type 1 Rev protein fused to the glucocorticoid ligand binding domain and GFP (Rev-GR-
GFP) [162,220]. In control cells, Rev-GR-GFP is located in the cytoplasm (Figure 5.2.3 A,
upper panel). After treatment with dexamethasone, the fusion protein enters the nucleus
to localize to the nucleolus (Figure 5.2.3 A, lower panel). A moderate but significant
inhibition of nuclear import was observed in infected cells compared to control uninfected
cells (Figure 5.2.3 A and B). Altogether, these results showed that the phosphorylation
of several NPC proteins was altered during infection, and that nuclear import of proteins
was partially inhibited in infected cells.

5.2.3 OspF affects the phosphorylation of Nup50 but has no effect on the
nuclear translocation of Rev-GR-GFP

To validate the phosphorylation of the NPC we selected the protein Nup50, for which a
phospho-specific antibody was available and adressed its phosphorylation at serine 221 by
immunofluorescence. Whereas infection by the virulence plasmid-cured strain BS176 or
the TTSS ∆spa40 [254] had no effect, wild-type and ∆ospF bacteria induced a moderate
and strong increase of Nup50 phosphorylation, respectively (Figure 5.2.4 A). These obser-
vations are in concordance with the phosphoproteomic data. Nup50 was shown to be an
ERK substrate and Nup50 phosphorylation impaired the nuclear transport of importin-
β and transportin [141]. Thus, we wondered whether we would observe a difference in
dexamethasone-induced nuclear translocation of Rev-GR-GFP among wild-type infection
or infection with the ∆ospF mutant, for which we observed an increase in phosphoryla-
tion of several nuceloporins including Nup50. However a change in Nup50 phosphorylation
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Figure 5.2.2 NPCs remain intact during S. flexneri infection. (A) The localization of
Nup62 is not altered in infected cells. Analysis of Nup62 localization by immunofluorescence
microscopy. HeLa cells were left untreated or infected with DsRed-expressing wild-type S. flexneri
at an MOI of 10 for 60 minutes and stained for Nup62 and F-actin. Scale bars represent 20µm.
(B) POM121 distribution is not altered in infected cells. Distribution of POM121 was analyzed by
immunofluorescence microscopy. HeLa cells were left untreated or infected with DsRed-expressing
wild-type S. flexneri at an MOI of 10 for 60 minutes and stained for POM121. Scale bars represent
20µm.
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Figure 5.2.3 S. flexneri infection affects the nuclear translocation of of Rev-GR-GFP.
(A) Cells expressing Rev-GR-GFP were left untreated or infected with S. flexneri for 30 minutes.
Cells were then stimulated or not with 0.1µM dexamethasone for 40 minutes. (B) Nuclear translo-
cation of Rev-GR-GFP was quantified by automated image analysis. Results are expressed as the
mean ± SD of four wells. The data is representative for four independent experiments.

did not correlate with a general alteration in nuclear transport, as OspF failed to affect
dexamethasone-induced nuclear translocation of Rev-GR-GFP (Figure 5.2.4 B). Overall,
our data showed that although NPCs remained intact during infection, the nuclear translo-
cation of Rev-GR-GFP was reduced in cells infected by wild-type bacteria. However the
contribution of NPC protein phosphorylation to this phenomenon was not demonstrated.
Indeed, ∆ospF infection, which triggers massive phosphorylation of several NPC proteins,
affected nuclear transport in the same extent as wild-type infection. Additional work is re-
quired to elucidate how infection impacts nuclear transport, and if trafficking of important
host proteins or mRNA is affected during infection.

5.2.4 Selected proteins showing an effect in phosphoproteomics and a siRNA
screen on S. flexneri entry

In order to identify host factors important for the uptake of S. flexneri into HeLa cells,
a genome-wide siRNA screen was performed by C. Kasper in the frame of the InfectX
initiative. Hits from this screen were compared to phosphoproteomic data covering 2,
5, 10, 15, 30, 60 and 120 minutes of S. flexneri infection. The phosphoproteomic data
derives from all datasets published in Schmutz et al. as well as a dataset covering the first
15 minutes of infection (R. Dreier unpublished) [248]. Figure 5.2.5 A depicts proteins that
were identified in the siRNA screen to affect entry and in addition by phosphoproteomics
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Figure 5.2.4 S. flexneri induced Nup50 phosphorylation does not affect nuclear
translocation of of Rev-GR-GFP. (A) Immunofluorescence staining of p-Nup50 in infected
HeLa cells. Cells were left untreated or infected with wild-type, non-invasive BS176, ∆spa40 or
∆ospF S. flexneri strains. Scale bars represent 40 µm. (B) Nuclear translocation of Rev-GR-GFP
was quantified by automated image analysis. Cells expressing Rev-GR-GFP were left untreated
or infected with wild-type or S. flexneri ∆ospF for 30 minutes. Cells were then stimulated or not
with 0.1µM dexamethasone for 40 minutes. Results are expressed as the mean ± SD of four wells.
The data is representative for four independent experiments.

to undergo a change in phosphorylation upon infection. We could identify for example
the phosphoproteins IQGAP2 and Myosin IXB to negatively affect entry. IQGAP2 has
been shown to interact with activated CDC42 and Rac1 two important proteins during
S. flexneri infection [201]. Myosin IXB acts as a GTPase activating protein on Rho [102], a
protein that is targeted by the S. flexneri effector IpaA to promote remodeling of the actin
cytoskeleton [57]. Thus, these two proteins are promising candidates for further research on
the entry process. In addition, we revealed that the phosphoprotein MYPT1 is important
for the uptake of S. flexneri. MYPT1 was shown to interact and beeing a substrate
of ROCK [131], a protein becoming activated during S. flexneri infection [80]. Recently
it was demonstrated that MYPT1 regulated the surface density of α5β1 integrins, an
important receptor for binding of S. flexneri [126,285]. Thus, we addressed the role of
MYPT1 during the entry process in more detail by application of a commercially available
phospho-specific antibody. HeLa cells were either left untreated or infected for different
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time-points ranging from 2 to 60 minutes (Figure 5.2.5 B). Calyculin A was used as
positive control for the detection of MYPT1 phosphorylation. Immunoblotting with a
phospho-specific antibody against Ser507 of MYPT1 confirmed the induction of MYPT1
phosphorylation early during infection, as observed by phosphoproteomics (Figure 5.2.5
B). More precisely, MYPT1 phosphorylation was highest between 10 to 15 minutes post-
infection, temporally correlating with the entry process of S. flexneri. As we confirmed
the temporal phosphorylation pattern of MYPT1, we next aimed to resolve its spatial
localization during infection. HeLa cells were infected with S. flexneri for 15 minutes
followed by chemical fixation and staining for F-actin by phalloidin and p-MYPT1 on
Ser507 by a phospho-specific antibody. The immunofluorescence images showed a co-
localization of F-actin ruffles at the site of bacterial entry with phosphorylation of MYPT1
(Figure 5.2.5 C). These data show that MYPT1 phosphorylation does not only correlate
temporally but also spatially with the entry process. Overall, these data demonstrate that
the combination of a siRNA screen with phosphoproteomics can reveal host proteins that
are important for S. flexneri entry. In particular, we could confirm that MYPT1 plays
an important role in the uptake process of S. flexneri. However, more research would
be required to elucidate the interaction of MYPT1 with other host proteins as ROCK or
α5β1 integrin during infection and the underlying molecular mechanisms.

5.3 Additional material and methods

5.3.1 Phosphoproteomics

Sample preparation for phosphoproteomics, Phosphopeptide enrichment and LC-MS/MS
analysis were conducted as described in Schmutz et al. [248]

5.3.2 Immunofluorescence labeling of phospho-Nup50

Cells were fixed with 4% paraformaldehyde for 10 minutes at room temperature. After
being washed with PBS, cells were permeabilized for 10 minutes with 0.1% Triton X-100.
They were then incubated with p-Nup50 antibody diluted 1:200 in PBS containing 2%
goat serum for two hours at room temperature. After several PBS washes, cells were
incubated for one hour with a goat anti-rabbit secondary antibody diluted 1:500 in PBS
containing 2% goat serum.

5.3.3 Nuclear import assay

HeLa cells were seeded into a 96 well plate at day 1, and transfected at day 2 with a
Rev-GlucocorticoidReceptor-GFP construct [162] using FUGENE HD transfection reagent
(Promega). Cells were serum-starved for 2 hours and infected with S. flexneri for 30
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Figure 5.2.5 (Continued on the following page.)
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Figure 5.2.5 Selected proteins showing an effect in phosphoproteomics and a siRNA
screen of S. flexneri entry. (A) Selected hits from a siRNA screen on S. flexneri entry and
proteins that were found to undergo a significant change in phosphorylation over time are depicted.
The infection/ control phosphorylation ratio is plotted against the time of infection. Proteins whose
depletion increases the infection rate are shown in red, whereas proteins whose depletion decreases
the infection rate are shown in blue. MYPT1 which was selected for follow up experiments is
depicted in green. (B) HeLa cells were left untreated or infected with S. flexneri for 2, 5, 10, 15,
30 and 60 min or treated with calyculin A as positive control. The phosphorylation of MYPT1
on Ser507 was analyzed by immunoblotting. Actin was used to ensure equal protein loading. (C)
MYPT1 becomes phosphorylated on Ser507 at the S. flexneri entry site. HeLa cells were infected
with S. flexneri for 15 minutes, followed by paraformaldehyde fixation. Cells were analyzed by
immunofluorescence for phospho-MYPT1 Ser507, F-actin and dsRed expressing S. flexneri.

minutes at an MOI of 40. After 30 minutes, the medium was replaced by medium or
medium containing 0.1 µM dexamethasone (Sigma). Cells were then incubated for 40
minutes, fixed using 4% paraformaldehyde, permeabilized using 0.1% Triton-X100 and
stained with fluorescent phalloidin and Hoechst for 1 hour. Imaging and quantification
was performed according to the standard automated image analysis protocol. F-actin
staining was used to define cell contours. The translocation of Rev-GR-GFP protein was
measured by the nuclear/cytoplasmic GFP intensity ratio.

5.3.4 siRNA screen on S. flexneri entry

The technical procedure for the siRNA screen on S. flexneri entry has been described in
detail in the PhD thesis of C. Kasper [127].

103





Chapter III

Exploration of an IpgD dependent
mTOR and AKT activation mechanism

105



Chapter III: Exploration of an IpgD dependent mTOR and AKT activation mechanism

The Shigella flexneri effector IpgD induces mTOR signaling and
activates AKT in a PI3K independent manner involving IPMK

Christoph Schmutz, Simon Ittig, Marlise Amstutz and Cécile Arrieumerlou

Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland

Manuscript in preparation

106



1 Statement of contribution

1 Statement of contribution

Most of the experiments presented were performed by myself, unless differently stated.
Simon Ittig developed the Yersinia type three secretion system (TTSS) based protein
delivery tool including cloning of IpgD. Marlise Amstutz provided the IpgD C438S mutant
and conducted the corresponding experiments.

107



Chapter III: Exploration of an IpgD dependent mTOR and AKT activation mechanism

2 Abstract

The S. flexneri effector IpgD is a phosphoinositide 4-phosphatase and translocated into the
host cell where it generates phosphatidylinositol 5-phosphate (PI5P) ftom phosphatidyli-
nositol 4,5-bisphosphate (PI(4,5)P2)and activates AKT by a mechanism involving PI3K,
mTOR and tyrosine kinases. However, the activation mechanisms of the PI3K/AKT/mTOR
pathway during infection remains poorly understood. We aimed to unravel the role of PI3K
and mTOR during IpgD induced AKT activation and in addition, attempt to find new
kinases involved in this pathway. By the use of a Yersinia enterocolitica type three secre-
tion system (TTSS) based translocation assay, we were able to rapidly inject functionally
active IpgD into HeLa cells and revealed that IpgD does not only activate AKT, but is
also sufficient for mTOR activation. The additional application of chemical inhibitors tar-
geting the PI3K and mTOR pathway showed that early IpgD induced AKT activation is
mTORC2 but not PI3K-dependent. However, an IpgD induced pro-survival response was
found to be dependent on mTORC2 and PI3K signaling, which is in concordance with the
observation made at later time-points of IpgD delivery or S. flexneri infection, where also
AKT activation was found to be dependent on PI3K signaling. Thus, our data suggests
two temporally distinct mechanisms of mTORC2 and AKT activation. Contradictory to
previous findings, treatment with two different EGFR inhibitors showed that the kinase
is not required for S. flexneri induced AKT activation. However, we could demonstrate
that the kinase inositol polyphosphate multikinase (IPMK) is required for IpgD induced
AKT activation and is present at the entry site of S. flexneri where it co-localizes with
phosphorylated AKT.
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S. flexneri are bacterial pathogens and the causative agent of bacillary dysentery. S.
flexneri harbor a type three secretion system (TTSS) allowing the translocation of bac-
terial effector proteins into the epithelial host cell for the induction of its uptake and
interference with host signaling cascades that are essential for the maintenance of the
pathogens replicative niche. An important aspect of the infection process is the pre-
vention or delay of host cell apoptosis, allowing bacterial replication and dissemination
within the tissue. So far, two different TTSS effector proteins have been identified that
promote host cell survival, namely VirA and IpgD [22,193,212]. IpgD is a phosphoinositide
4-phosphatase generating phosphatidylinositol 5-phosphate (PI5P) from phosphatidyli-
nositol 4,5-bisphosphate (PI(4,5)P2) [193]. It has been demonstrated that PI5P is rapidly
produced at the S. flexneri entry site and co-localizes with phosphorylated AKT [212].
Furthermore, IpgD-dependent PI5P production was shown to be a requirement for AKT
phosphorylation upon S. flexneri infection [212]. AKT is one of the most frequently acti-
vated kinases in cancer and plays an important role in different cellular processes, includ-
ing metabolism, apoptosis, survival, growth and protein synthesis [79]. Canonically, AKT
becomes activated within the PI3K/AKT/mTOR cascade. More precisely, receptor tyro-
sine kinases, G-protein-coupled receptors and other stimuli were shown to activate PI3K
and induce the formation of phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) in
the plasma membrane. PI(3,4,5)P3 serves as membrane bound docking anchor for pro-
teins harboring a pleckstrin homology domain including AKT and its upstream activator
PDK1. In addition, mTORC2 was shown to have kinase activity towards AKT and pro-
moting phosphorylation on Ser 473 [108]. AKT activation is typically short-lived due to
the rapid hydrolysis of PI(3,4,5)P3 by different phosphoinositide phosphatases includ-
ing PTEN [119]. However upon S. flexneri infection AKT phosphorylation is sustained
which has been linked to the inhibition of PP2A phosphatases [221]. Still, the mechanisms
by which IpgD induces PI5P-dependent AKT activation are poorly understood. Ramel
and colleagues could demonstrate that EGFR is required for IpgD induced AKT activa-
tion [222]. More is known for the Salmonella IpgD homologue SopB. A screen for kinases
involved in SopB-dependent AKT activation revealed the contribution of several kinases,
including inositol polyphosphate multikinase (IPMK), although class 1 PI3K did not con-
tribute [233]. Despite the fact that IpgD and SopB were shown to have slightly different
substrate specificities [196,193], this finding is surprising and also questions the role of PI3K
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upon IpgD-dependent AKT activation. In addition, it has recently been demonstrated
that mTORC2 activity is also essential for AKT activation upon S. flexneri infection [248].
However, little is known about the activation mechanisms of mTORC2 although this is
of great importance due to its involvement in cancer by regulating AKT activity. By the
use of a new Yersinia enterocolitica type three secretion system (TTSS) based protein
delivery tool, we could demonstrate that IpgD is sufficient for the induction of mTOR sig-
naling. We could validate that IpgD-dependent AKT activation is dependent on mTOR
but interestingly not on canonical PI3K signaling. Treatment with the well characterized
PI3K inhibitors wortmannin and LY294002 did not abolish AKT phosphorylation on Ser
473 during early signaling within the first 15 minutes of IpgD delivery or S. flexneri in-
fection. However, at later time-points of IpgD presence, AKT activation was found to be
dependent on canonical PI3K signaling which fits the observation that an IpgD induced
pro-survival response was dependent on both, mTORC2 and PI3K signaling. Furthermore,
we demonstrated that IPMK is required for IpgD induced AKT activation and is present
at the site of bacterial entry where it co-localizes with phosphorylated AKT. Our studies
provide new insight in the IpgD-dependent activation mechanism of AKT and reveals that
mTOR becomes activated downstream of IpgD. Our data may therefore contribute to a
better understanding of mTOR activation.
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4.1 The S. flexneri effector IpgD activates the mTOR pathway

In line with a previous observation, we could show that S. flexneri induced AKT activation
is mammalian target of rapamycin complex 2 (mTORC2)-dependent [248]. HeLa cells were
either left untreated or pretreated with the mTOR inhibitor PP242 or the mammalian tar-
get of rapamycin complex 1 (mTORC1) inhibitor rapamycin for 1 hour prior to infection
with S. flexneri for 15 minutes. Rapid phosphorylation of AKT on Ser473 was observed
by immunoblotting. Furthermore, AKT phosphorylation was insensitive to pretreatment
with the mTORC1 inhibitor rapamycin, whereas PP242, an inhibitor of both mTORC1
and mTORC2, abolished S. flexneri induced AKT activation. These data strongly indi-
cates the requirement of mTORC2 in S. flexneri induced AKT activation, as previously
described [248] (Figure 4.0.1 A). To elucidate whether mTOR itself becomes phosphory-
lated, a time-course of S. flexneri infection covering the first 15 minutes of infection was
performed (Figure 4.0.1 B,C). Immunoblotting with phospho-specific mTOR antibodies
revealed a moderate but clearly observable increase in mTOR phosphorylation over time
on both, the autophosphorylation site Ser2481 and the S6K phosphorylation site Ser2448,
which have been associated with mTORC2 and mTORC1 activity, respectively [45]. These
data shows that mTORC2 is required for AKT activation during S. flexneri infection
and reveals that mTOR becomes rapidly activated. It is well established that AKT be-
comes activated during S. flexneri infection due to the activity of the TTSS effector IpgD.
However, the precise mechanism of IpgD-dependent AKT activation remains incompletely
understood. To study the activation mechanism of mTOR and AKT during S. flexneri
infection, we applied a Yersinia enterocolitica derived TTSS-dependent protein transloca-
tion tool. The tool allows the direct translocation of IpgD into target cells in a temporal
tightly controlled manner and without interference of other effectors (Figure 4.0.1 D).
Thus, a Yersinia enterocolitica strain mutated in all six effector genes (YopH, O, P, E, M
and T) as well as asd, leading to obligate requirement for diaminopimelic acid (DAP), was
fused to YopE containing a signal required for TTSS-dependent secretion and IpgD, yield-
ing in the ∆HOPEMT asd + YopEsignal - IpgD strain [147]. As control, the background
strain ∆HOPEMT asd + YopEsignal was used. To test these strains, HeLa cells were ei-
ther infected with ∆HOPEMT asd + YopEsignal - IpgD or ∆HOPEMT asd + YopEsignal

for 15 minutes and phosphorylation of AKT on Ser473 was visualized by immunoblot-
ting. The background strain was not capable to induce AKT phosphorylation, whereas
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Figure 4.0.1 (Continued on the following page.)
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Figure 4.0.1 S. flexneri activates the mTOR pathway. (A) S. flexneri activates AKT in a
mTOR-dependent manner. HeLa cells were pretreated for one hour with indicated concentrations
of PP242 or rapamycin and infected with S. flexneri at an MOI of 40 for 15 minutes. The
phosphorylation of AKT on Ser473 was analyzed by immunoblotting. Actin was used to ensure
equal protein loading. (B) HeLa cells were infected for 2, 5, 10 and 15 minutes with S. flexneri
at an MOI of 40 and analyzed by immunoblotting for the phosphorylation of mTOR on Ser2448.
Total mTOR was used as loading control. The lower diagram shows the increase in mTOR Ser
2448 phosphorylation normalized to the total mTOR protein amount over time. (C) HeLa cells
were infected for 2, 5, 10 and 15 minutes with S. flexneri at an MOI of 40 and analyzed by
immunoblotting for the phosphorylation of mTOR on Ser2481. Total mTOR was used as loading
control. The lower diagram shows the increase in mTOR Ser2481 phosphorylation normalized
to the total mTOR protein amount over time. (D) a Yersinia enterocolitica ∆HOPEMT asd +
YopEsignal - IpgD strain is used for the rapid and synchronized TTSS-dependent translocation of
IpgD into HeLa cells, without interference of additional effectors. (E) The phosphatidylinositol-4-
posphatase activity of IpgD is required for AKT activation. HeLa cells were infected for 15 minutes
with either ∆HOPEMT asd + YopEsignal or ∆HOPEMT asd + YopEsignal - IpgD or ∆HOPEMT
asd + YopEsignal - IpgD C438S for 15 minutes. Cell extracts were analyzed by immunoblotting for
the phosphorylation of AKT on Ser473. Actin was used to ensure equal protein loading. (F) IpgD
induces mTOR phosphorylation. HeLa cells were infected for 15 minutes with either ∆HOPEMT
asd + YopEsignal or ∆HOPEMT asd + YopEsignal - IpgD and phosphorylation of mTOR on Ser
2448 and Ser2481 was analyzed by immunoblotting. Actin was used as loading control (preliminary
data).

the IpgD translocating strain efficiently did (Figure 4.0.1 E). In addition, we aimed to
validate that the catalytic activity of IpgD is required for AKT activation. We mutated
the proposed catalytic domain of IpgD (C438S) which fully abolished AKT phosphoryla-
tion on Ser473 [193] (Figure 4.0.1 E). Therefore, the effect of IpgD towards activation of
AKT can be attributed to PI5P which is the product of the catalytic activity of IpgD .
Furthermore, our data shows that IpgD is sufficient to induce mTOR activation. By im-
munoblotting with antibodies recognizing phosphorylated mTOR, a moderate increase in
mTOR phosphorylation on both, Ser2481 and Ser2448 was observed upon infection with
∆HOPEMT asd + YopEsignal - IpgD compared to ∆HOPEMT asd + YopEsignal (Figure
4.0.1 F). These data indicate that the Yersinia tool can be applied to study the impact of
IpgD on mTOR and AKT activation.

4.2 IpgD induced AKT and mTOR activation is not PI3K-dependent

We aimed to elucidate the mechanism of IpgD-dependent AKT activation in more de-
tail. Thus, we wanted to reproduce the PI3K-dependency of IpgD induced AKT phos-
phorylation as it was previously observed [212] and contradictory to findings based on the
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Salmonella homologue SopB [233]. IpgD was translocated by the use of the Yersinia protein
delivery system into cells pretreated with the PI3K inhibitors wortmannin or LY294002
or the mTOR inhibitor PP242. AKT phosphorylation on Ser473 was monitored after 15
minutes of IpgD delivery by immunoblotting. As already shown, PP242 treatment almost
fully abolished AKT activation (Figure 4.2.1 A). To our surprise, neither wortmannin nor
LY294002 treatment could abolish AKT phosphorylation, implementing an AKT activa-
tion mechanism independent of canonical PI3K signaling. Insulin induced AKT phospho-
rylation was sensitive to wortmannin and LY294002 treatment confirming the efficacy of
the drug treatment. Using the same experimental context, we aimed to visualize mTOR
activity by monitoring the phosphorylation on Ser2481 and Ser2448 (Figure 4.2.1 B). IpgD
induced phosphorylation of mTOR on Ser2481 also appeared to be PI3K insensitive as
treatment with wortmannin or LY294002 did not affect the phosphorylation. Phosphory-
lation of mTOR on Ser2448 seems to be at least partially sensitive to LY294002. Next,
we aimed to prove whether AKT activation is also insensitive to PI3K inhibition upon S.
flexneri infection of HeLa cells. Using the same conditions of drug treatment, we found
that neither LY294002 nor wortmannin could abolish AKT phosphorylation on Ser473
whereas PP242 efficiently did (Figure 4.2.1 C). Overall, these data demonstrate that IpgD
induces AKT and mTOR activation but independent of canonical PI3K signaling.

4.3 IpgD induced pro-survival response is mTOR and PI3K-dependent

Although a pro survival-effect of IpgD has been proposed, we aimed to validate this find-
ing upon translocation of IpgD by the Yersinia TTSS protein delivery tool. This method
allowed us to study the effect of IpgD on host cell survival in a temporal tightly con-
trolled manner and additionally circumvented an adaption of the cell to the effector, as
one could expect using transient overexpression of IpgD. HeLa cells were either infected
with ∆HOPEMT asd + YopEsignal or ∆HOPEMT asd + YopEsignal - IpgD for one hour.
Bacteria were subsequently removed by washing and gentamycin application. In addi-
tion, cells were treated for further two hours with 0.5µM staurosporine for induction of
apoptosis. After chemical fixation, nuclei, actin cytoskeleton and cleaved-caspase 3 were
stained with Hoechst, fluorescein phalloidin and fluorescently labeled antibodies, respec-
tively (Figure 4.2.2 A). In staurosporine-treated cells infected with the ∆HOPEMT asd
+ YopEsignal, an apoptotic phenotype was observable, characterized by nuclei shrinkage,
cell shrinkage and detachment as well as caspase 3 cleavage. Translocation of IpgD atten-
uated these symptoms, indicating that IpgD is responsible for pro-survival signals. Next,
we were interested whether the pro-survival effect of IpgD is dependent on mTOR and
PI3K signaling. Thus, cells were pretreated with rapamycin to inhibit mTORC1, PP242 to
inhibit both mTORC1 and mTORC2 signaling as well as LY294002 for inhibition of PI3K
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Figure 4.2.1 The IpgD indcuced AKT activation is mTOR but not PI3K-dependent.
(A) HeLa cells were either left untreated or pretreated with wortmannin, LY294002 or PP242 for
1 hour. IpgD was translocated into the Hela cells by the Yersinia protein translocation system
for 15 minutes. As control for the inhibitory effect of the drugs, drug treated HeLa cells were
stimulated with 100nM Insulin for 15 minutes. Cell extracts were analyzed by immunoblotting
for the phosphorylation of AKT on Ser473. Actin was used as loading control. (B) mTOR phos-
phorylation is only partially sensitive to PI3K inhibition. In the same experimental conditions,
phosphorylation of mTOR was visualized by immunoblotting on Ser2481 and Ser2448. Actin was
used as loading control. (C) AKT activation upon S. flexneri infection is also PI3K independent.
HeLa cells were left untreated or pre-treated with wortmannin, LY294002 or PP242 for 1 hour and
subsequently infected with S. flexneri at an MOI of 40 for 15 minutes. Cell extracts were analyzed
by immunoblotting for the phosphorylation of AKT on Ser473. Actin was used to ensure equal
protein loading.
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Figure 4.2.2 (Continued on the following page.)
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Figure 4.2.2 IpgD protects cells from staurosporine induced apoptosis in dependence
of mTORC2 and PI3K signaling. (A) IpgD protects HeLa cells from staurosporine indcued
apoptosis. HeLa cells were infected with either ∆HOPEMT asd + YopEsignal or ∆HOPEMT asd
+ YopEsignal - IpgD for 1 hour allowing translocation of IpgD. Next, bacteria were removed and
cells were challenged with 0.5µM staurosporine for further 2 hours, followed by paraformaldehyde
fixation and staining of the nuclei, F-actin and cleaved caspase-3 for immunofluorescence. (B) The
pro-survival effect of IpgD is dependent on mTORC2 and PI3K signaling. HeLa cells were either
left untreated or pre-treated with rapamycin, PP242 or LY294002 for 1 hour. HeLa cells were
subsequently infected with ∆HOPEMT asd + YopEsignal - IpgD for 1 hour allowing translocation
of IpgD. Next, bacteria were removed and cells were left untreated or challenged with 0.5µM
staurosporine for further 2 hours, followed by paraformaldehyde fixation and staining of the nuclei,
F-actin and cleaved caspase-3 for immunofluorescence. Scale bars represent 50µm.

signaling. Again, IpgD was allowed to translocate into the cells for one hour, followed by
staurosporine treatment (Figure 4.2.2 B). Inhibition of mTORC1 using rapamycin did not
affect host cell survival upon staurosporine and IpgD treatment compared to cells that
have only been treated with staurosporine and IpgD. However, treatment with PP242,
known to inhibit both, mTORC1 and mTORC2 markedly attenuated the protective effect
of IpgD. Because mTORC1 inhibition alone did not affect survival, it is tempting to spec-
ulate that mTORC2 is important for the transduction of an IpgD-dependent pro-survival
response. As we have shown, that PI3K signaling is not required for IpgD-dependent
AKT activation, we expected that it would neither be important for an IpgD induced pro-
survival response. Surprisingly, pretreatment of cells with the PI3K inhibitor LY294002
attenuated the IpgD-dependent pro-survival response to a similar extend as PP242. Al-
though PI3K signaling is not necessary for IpgD induced AKT activation it appears to
play together with mTORC2 a role in an IpgD-dependent survival response.

4.4 PI3K is responsible for AKT activation at later time points

Against previous assumptions, we demonstrated that PI3K are not involved in early
IpgD induced AKT activation. Yet, the IpgD induced pro-survival response was PI3K-
dependent. As IpgD induces not only a fast but also sustained AKT phosphorylation,
we asked ourselves whether we observe differences in the AKT activation mechanism over
time. To address this question, HeLa cells were pretreated with LY294002 or PP242 for one
hour and subsequently infected with ∆HOPEMT asd + YopEsignal - IpgD or ∆HOPEMT
asd + YopEsignal for 30, 60 and 120 minutes (Figure 4.4.1 A). Immunoblotting revealed
that AKT phosphorylation on Ser473 was strongest after 30 minutes and got weaker over
time but was still observable after 120 minutes, confirming that IpgD induces sustained
AKT activation. The mTORC1/2 inhibitor PP242 abolished AKT phosphorylation at all
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time-points, validating that mTOR is crucial for AKT activation throughout the whole
time-course of infection. Further, our data showed that IpgD induced AKT phosphoryla-
tion on Ser473 was not affected by LY294002 treatment after 30 minutes of infection with
∆HOPEMT asd + YopEsignal - IpgD, but surprisingly LY294002 treatment reduced AKT
phosphorylation after 60 minutes and almost completely abolished AKT phosphorylation
after 2 hours of IpgD delivery.
This is in concordance with the observation that PI3K signaling is important for the

induction of a pro-survival response that was monitored 3 hours post-infection. To confirm
the significance of this observation, we repeated the experiment using S. flexneri infection
as model. Again, cells were left untreated or pretreated either with LY294002 or PP242
and subsequently infected with S. flexneri for different periods of time (Figure 4.4.1 B). S.
flexneri induced AKT activation is largely independent of PI3K signaling at 30 minutes
post-infection as treatment with LY294002 could not abolish AKT phosphorylation on
Ser473. However, after 60 and 120 minutes, LY294002 almost completely abolished AKT
phosphorylation. This observation based on S. flexneri infection is congruent with the
data obtained from IpgD translocation alone. Altogether, these data implies at least two
distinct mechanism of AKT activation. Namely, an early mechanism which is independent
from canonical PI3K signaling and a later one which relies on canonical PI3K signaling.

4.5 EGFR activity is not required for AKT activation

It was proposed that tyrosine kinases are also involved in AKT activation downstream
of PI5P signaling [212]. Ensuing, it was shown that EGFR is required for IpgD-dependent
AKT activation [222]. We aimed to validate that EGFR activity is required for AKT acti-
vation upon S. flexneri infection by immunoblotting for phosphorylated AKT and EGFR
(Figure 4.5.1). HeLa cells were pretreated with LY294002, PP242 or with the EGFR in-
hibitors neratinib or AG-1478. EGF stimulation was used to confirm the inhibitory effect
of the different drugs towards EGFR signaling. As expected, EGF stimulation induced
AKT phosphorylation on Ser473 as well as on Thr308, whereas PP242 or LY294002 treat-
ment fully abolished the observed AKT activation, confirming the requirement for mTOR
and PI3K signaling in EGF-dependent AKT activation. Treatment with neratinib or AG-
1478 prior to EGF stimulation also fully abolished EGF induced AKT phosphorylation
on Ser473 and Thr308 approving the inhibitory effect of the drugs. In addition, EGFR
activity was assessed by the use of an antibody recognizing EGFR autophosphorylation on
Tyr1068. Pretreatment with LY294002 and PP242 did not reduce EGFR phosphorylation
on Tyr1068 upon EGF stimulation as shown by immunoblotting. Interestingly, treatment
with PP242 even enhanced EGFR autophosphorylation, although the relevance of this
observation remains elusive. Treatment with neratinib or AG-1478 fully abolished EGF
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Figure 4.4.1 IpgD indcuced AKT activation is PI3K-dependent at later timepoints.
(A) HeLa cells were either left untreated or pretreated with wortmannin, LY294002 or PP242 for
1 hour. IpgD was translocated into the Hela cells by the Yersinia system for either 30, 60 or 120
minutes. After 30 minutes, cells were treated with gentamycin to kill the Yersinia. Cell extracts
were analyzed by immunoblotting for the phosphorylation of AKT on Ser473. Actin was used as
loading control. (B) AKT activation upon S. flexneri infection is also PI3K-dependent at later
timepoints of infection. HeLa cells were either left untreated or pre-treated with wortmannin,
LY294002 or PP242 for 1 hour and subsequently infected with S. flexneri at an MOI of 40 for 30,
60 or 120 minutes. After 30 minutes, cells were treated with gentamycin to kill extracellular S.
flexneri. Cell extracts were analyzed by immunoblotting for the phosphorylation of AKT on Ser
473. Actin was used as loading control.
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Figure 4.5.1 S. flexneri induced AKT activation is independent of EGFR signaling.
HeLa cells were either left untreated or pre-treated with, LY294002, PP242, neratinib or AG-1478
for 1 hour. HeLa cells were subsequently treated with EGF (50ng/ml) for 5 minutes or infected for
15, 30 or 90 minutes with S. flexneri at a MOI of 40. Cell extracts were analyzed by immunoblotting
for the phosphorylation of EGFR on Tyr1068 and phosphorylation of AKT on Ser473 and Thr308.
Actin was used as loading control.

induced EGFR autophosphorylation on Tyr1068, further indicating that the experimental
setup is suitable to study the effect of EGFR inhibition upon S. flexneri infection. In the
same conditions of drugs treatment, cells were infected with S. flexneri for 15, 30 or 90
minutes. S. flexneri infection induced EGFR autophosphorylation on Tyr1068 that was
sensitive to treatment with neratinib or AG1478. As previously observed, infection with
S. flexneri induced a fast and sustained phosphorylation of AKT on Ser473 and Thr308
that was sensitive to PP242 treatment and in a temporal distinct manner sensitive to
LY294002 treatment. However AKT phosphorylation on Ser473 and Thr308 was not af-
fected upon neratinib or AG1478 treatment, showing that EGFR activity is not required
for S. flexneri induced AKT activation. Therefore, other kinases than EGFR may be
involved in S. flexneri induced AKT activation.

4.6 IPMK is required for IpgD induced AKT activation and recruited
to the entry foci

Because class 1 PI3K that are targeted by LY294002 or wortmannin are not involved in the
early IpgD and thus PI5P-dependent AKT activation, other kinases with PI3K activity
must be involved. Recently, a siRNA screen revealed the inositol phosphokinase IPMK as
candidate for AKT activation downstream of the Salmonella IpgD homologue SopB [233].
In order to test whether IpgD induced AKT activation relies on IPMK, we monitored
AKT phosphorylation on Ser473 in IPMK deficient MEFs (Figure 4.5.2 A). To control the
ability of the IPMK deficient MEF cells (IPMK-/-) to induce AKT activation, cells were
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Figure 4.5.2 IPMK¸ is required for IpgD-dependent AKT activation. (A) Wild-type
(wt) and IPMK deficient mouse embryonic fibroblasts (MEF) cells (IPMK -/-) were either left
untreated or treated with 100nM insulin, 50ng/ml EGF or infected with S. flexneri at a MOI of
40, ∆HOPEMT asd + YopEsignal or ∆HOPEMT asd + YopEsignal - IpgD at a MOI of 100 for 15
minutes. Cell extracts were analyzed by immunoblotting for the phosphorylation of AKT on Ser
473. Actin was used to ensure equal protein loading. (B) IPMK co-localizes with phosphorylated
AKT at the S. flexneri entry site. HeLa cells were transfected with myc-tagged human-IPMK for
24 hours and subsequently infected with either wild-type S. flexneri or S. flexneri ∆ipgD for 15
minutes, followed by paraformaldehyde fixation. Cells were analyzed by immunofluorescence for
myc-tagged human-IPMK, phospho-AKT Ser 473, F-actin and dsRed expressing S. flexneri. Scale
bars represent 50µm.
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either treated with insulin or EGF and AKT phosphorylation was monitored on Ser473 by
immunoblotting. Upon stimulation with insulin, in both the wild-type and IPMK-/- MEF
cells strong AKT phosphorylation on Ser473 was observed. Upon stimulation with EGF,
AKT in wild-type MEF became phosphorylated whereas AKT in IPMK-/- MEF cells
only got weakly activated. These data indicated that AKT can become phosphorylated
in IPMK-/- MEFs but IPMK can interfere with AKT activation in a stimulus-dependent
way. Next, we investigated whether IpgD can induce AKT phosphorylation in IPMK-/-
cells. Cells were infected either with ∆HOPEMT asd + YopEsignal or ∆HOPEMT asd
+ YopEsignal - IpgD at a MOI of 100. As expected, infection with the background strain
did not induce AKT phosphorylation in either wild-type or in IPMK-/- MEF cells. How-
ever, translocation of IpgD into wild-type MEF cells induced AKT phosphorylation on
Ser473 within 15 minutes post-infection, showing that the Yersinia tool can also be used
to target MEF cells. Interestingly, the ability to activate AKT in an IpgD-dependent
manner is severely impaired in IPMK-/- cells, indicating that IPMK is essential for IpgD
induced AKT phosphorylation. Hereafter, we tested whether this observation can be con-
firmed upon S. flexneri infection. Wild-type and IPMK-/- MEF cells were infected with
S. flexneri at a MOI of 40 for 15 minutes and subsequently analyzed by immunoblot-
ting. As already observed upon IpgD translocation, S. flexneri infection induces AKT
phosphorylation in wild-type MEF cells. But again, the ability of S. flexneri to induce
AKT phosphorylation in IPMK-/- cells was reduced. These data indicate, that IPMK is
important for AKT activation upon IpgD delivery.
Since AKT is recruited to the entry foci we investigated whether IPMK was also localized

at this site. HeLa cells were transfected with myc tagged human-IPMK for 24 hours and
subsequently infected with S. flexneri for 15 minutes and fixed. Myc tagged human-IPMK
as well as AKT phosphorylated on Ser473 was visualized by immunofluorescence (Figure
4.5.2 B). As already published [212], AKT rapidly became phosphorylated at the site of
S. flexneri entry. In addition, we also found IPMK to be enriched at the entry foci. We
next raised the question whether the presence of IPMK on the entry site is dependent
on IpgD activity. Therefore, we compared cells transfected with human IPMK upon
infection with wild-type and ∆ipgD S. flexneri. The ipgD deficient S. flexneri mutant was
unable to induce AKT phosphorylation. However, IPMK was still observable at the site
of entry, suggesting that IpgD is not a requirement for its recruitment. Overall, these data
support the hypothesis that IPMK is necessary for IpgD induced AKT activation, while
the recruitment of IPMK to the entry site is not IpgD-dependent.
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5 Discussion

In the course of this study, we addressed an IpgD-dependent AKT and mTOR activa-
tion mechanism and aimed to identify novel components of this signaling pathway. Our
data revealed that IpgD is sufficient for mTOR activation and induces AKT phosphory-
lation on Ser473 by a mechanism including mTORC2 but not canonical PI3K signaling.
Furthermore, we demonstrated that EGFR is not involved in IpgD induced AKT acti-
vation, whereas IPMK is. It has previously been described, that S. flexneri infection
affects mTOR signaling but the published data so far are not consistent. It was proposed,
that S. flexneri infection causes amino acid starvation in the host cell, leading to down-
regulation of mTOR signaling after 2-6 hours of infection and the subsequent induction
of autophagy [267]. A recent phosphoproteomic publication from our laboratory demon-
strated that S. flexneri infection activates mTOR signaling within 15 minutes of infection
as indicated by phosphorylation of the downstream effectors AKT and S6K [248]. The dif-
ferences in the mTOR activation pattern between these two studies may mainly arise from
monitoring different timescales of infection and could therefore indicate temporal distinct
roles for mTOR during bacterial infection. The here presented study demonstrates addi-
tionally that IpgD was sufficient to activate mTOR. A catalytic inactive mutant of IpgD
failed to activate AKT, strongly suggesting that the catalytic activity which is required for
PI5P production is also essential for the IpgD-dependent effects we observe. This directly
implies that PI5P production can lead to the activation of mTOR, a relationship which
has to our knowledge so far not been recognized. Whether this is a direct effect or several
intermediate stages contribute to mTOR activation requires further investigations. We
next examined whether PI3Ks are important for IpgD-dependent AKT activation on a
short timescale. Canonically, activated receptors directly stimulate Class 1 PI3Ks that
convert PIP2 to PIP3 which binds to AKT at the plasma membrane, allowing PDK1 to
phosphorylate AKT on T308 and either mTORC2 or DNA-PK to phosphorylate AKT on
Ser473 leading to full AKT activity [108]. However, our data indicates that AKT can be-
come activated independently of PI3K activity. This is also true for IpgD-dependent AKT
phosphorylation on Thr308 which is not affected by wortmannin and at the best slightly
affected by LY294002 treatment, suggesting a widely PI3K independent AKT activation
mechanism (data not shown). These data is conflicting with previous publications, where
IpgD induced AKT activation was shown to be PI3K-dependent [212,222]. Data from the
Salmonella homologue SopB revealed that SopB-dependent AKT activation is indepen-
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dent of the PI3K inhibitor wortmannin although sensitivity towards LY294002 treatment
was osbserved [44]. Oppositely, a complete class 1 PI3K independent mechanism for SopB-
dependent AKT activation has recently been proposed by Roppenser and colleagues fitting
our IpgD-dependent observations [233]. In addition, we provide an explanation which can
partially resolve the contradictory aspect to previous findings on the PI3K dependency of
AKT activation. A time-course experiment of IpgD translocation by Yersinia into HeLa
cells revealed that PI3K is required for AKT activation at later time-points. In previous
studies, the IpgD induced AKT activation mechanism was mainly studied by transient
transfection leading to a prolonged presence of IpgD in the target cell which impedes an
observation of the early effect of IpgD [212]. This observation also provides an explanation
why the observed IpgD induced pro-survival effect is PI3K-dependent although its activity
is not required for initial AKT phosphorylation. Cell survival was monitored after 3h of
IpgD delivery which provides enough time for the induction of the PI3K-dependent AKT
pathway and points out that PI3K activity is indeed important for repression of apoptosis.
Our study also addressed a potential role of EGFR in IpgD induced AKT activation. It
was proposed by Pendaries et al. that tyrosine kinases are involved in IpgD induced AKT
activation [212]. Ramel et al. subsequently demonstrated that the tyrosine kinase EGFR is
essential for IpgD-dependent AKT activation [222]. However, our data suggest a mechanism
which is independent of EGFR signaling. Whether other tyrosine kinases are involved in
this signaling cascade is so far unknown. It was demonstrated that despite the lack of
requirement for class 1 PI3K, PI(3,4,5)P3 is still important for SopB-dependent AKT
activation, as co-expression of the phosphatase PTEN abolished SopB-dependent AKT
activation, indicating the involvement of other kinases in the production of this phos-
phatidylinositol [233]. A siRNa screen performed by Roppenser et al. revealed amongst
other, IPMK to be involved in Salmonella-dependent AKT activation [233]. IPMK is a
pleiotropic protein as it can have both, phosphate kinase and phosphatidylinositol kinase
catalytic activity [133]. Thus we tested whether IPMK is also essential for IpgD induced
AKT activation. Infection of IPMK deficient MEF cells revealed the requirement of IPMK
for IpgD induced AKT phosphorylation on Ser473. As we observed IPMK deficient MEF
cells not to be impaired in their ability to induce insulin stimulated AKT activation,
we conclude that the impairment towards IpgD-dependent AKT activation was specific.
Intriguingly, we found that IPMK is also necessary for EGF mediated AKT activation.
This is of special interest because the EGFR-PI3K-AKT pathway is deregulated in dif-
ferent cancers and the finding of the involvement of IPMK may contribute to a better
understanding of this pathway [41].
As it is known that AKT is becoming phosphorylated at the entry site of S. flexneri, we

addressed whether we also observe IPMK in this compartment. It has been described, that
IPMK is a nuclear protein. As previously described, we observe a predominant nuclear
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localization of human IPMK upon transient transfection into HeLa cells [287]. Nevertheless,
IPMK is also present in the cytosol and more pronounced at the site of bacterial entry. This
data gives further evidence that IPMK is involved in IpgD-dependent AKT activation.

125



Chapter III: Exploration of an IpgD dependent mTOR and AKT activation mechanism

6 Material and methods

6.1 Reagents and antibodies

PP242 was obtained from Chemdea, Ridgewood, NJ (#CD0258), Rapamycin from LC
Laboratories, Woburn, MA (#R-5000), LY294002 (#S1105), Wortmannin, Neratinib (#S2150),
Tyrphostin AG-1478 (#S2728) from Selleck Chemicals, Houston, TX,Wortmannin (#W1628)
and Staurosporine (#S-4400), were obtained from Sigma, St. Louis, MO. Antibod-
ies against phospho-AKT Ser473 (#4058), phospho-AKT Thr308 (#2965) phospho-S6K
Thr389 (#9205), phospho-mTOR Ser2448 (#5536), phospho-mTOR Ser2481 (#2974),
phospho-EGFR Tyr1068 (#3777) were obtained from Cell Signaling Technology, Danvers,
MA. Antibodies against actin (#MAB1501) were purchased from Millipore, Billerica, MA.

6.2 Cell culture

HeLa CCL-2TM human epithelial cells were purchased from ATCC, Manassas, VA and cul-
tured in DMEM, supplemented with 10% FCS, antibiotics and L-glutamine. The IPMK
deficient mouse embryonic fibroblasts (MEF)s and the corresponding control cells were
generously provided by Solomon H. Snyder [165]. MEFs were cultured in DMEM, supple-
mented with 10% FCS, antibiotics and L-glutamine.

6.3 Bacterial strains

The M90T S. flexneri was generously provided by Prof. P. Sansonetti (Institut Pasteur,
Paris, France). The IpgD deletion mutant ∆ipgD was generated by allelic exchange using
a modification of the λ red-mediated gene deletion as previously described [135]. All S.
flexneri strains were transformed with the pMW211 plasmid to express the DsRed protein
under control of a constitutive promoter. The pMW211 plasmid was a generous gift from
Dr. D. Bumann (Biozentrum, University of Basel, Switzerland). The ∆ipgD deletion
mutant was generated from the M90T strain by allelic exchange using a modification of
the λ red-mediated gene deletion procedure [52]. The genes for λ red recombination were
expressed from the pKM208 plasmid [184]. The ampicillin resistance cassette of the pKD13
plasmid was amplified using the following primers:
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Table 6.1 Primers for λ red-mediated gene deletion
Mutant Forward Reverse
∆ipgD CTGCAATCAATGCCCCATTTATGA

CTGAGGATAATTAAATGCACATAA
CTATTCCGGGGATCCGTCGACC

GCAAATAACATCTGCTAAATCTTC
CATATATTCCTCTTATACAAATGAC
GGTGTAGGCTGGAGCTGCTTC

After DpnI digestion, the PCR product was electroporated into M90T strain. Recombi-
nants were selected on TSB plates containing ampicillin. The Amp cassette was removed
by transformation of pCP20 and incubation at 30◦C on TSB plates containing 100 µg/ml
ampicillin. Single colonies were screened by PCR.
The ∆HOPEMT asd + YopEsignal - IpgDstrain was generated by cloning IpgD from S.

flexneri M90T genomic DNA into a bacterial expression vector as fusion to YopEsignal.
This construct was electroporated into the ∆HOPEMT asd effectorless Yersinia entero-
colitica strain. More details cannot be provided at this moment due to a pending patent
from Ittig et al. but will be available from Ittig et al. (manuscript in preparation).

6.4 S. flexneri infection assay

M90T S. flexneri strain was grown to exponential growth phase at 37◦C in tryptic soy
broth (TSB) and coated with poly-L-lysine. HeLa or MEF cells were serum starved for two
hours or overnight by replacing the complete growth medium with DMEM supplemented
with 10 mM Hepes and 2 mM L-glutamine (assay medium). Cells were infected at a
MOI of 40 by adding bacteria or assay medium only (uninfected control) to 96- or 6-
well plates. Infection was initiated and synchronized by centrifugation of the cell culture
plates for 2 minutes at 1750 rpm and subsequent incubation at 37◦C for the indicated
time periods. Extracellular bacteria were killed by adding gentamycin (50µg/ml) (Life
technology, Carlsbad, CA), 30 minutes after infection, in assays exceeding this timepoint.

6.5 Y. enterocolitica infection assay

Yersinia enterocolitica strains were grown overnight at room temperature in BHI supple-
mented with DAP , Nal and ampicillin. The next day, bacteria were diluted to an OD600

of 0.2 in fresh BHI including the supplements and grown for 2 hours at room temperature
followed by a 30 minute temperature shift to 37◦C in a water bath shaker. The bacteria
were collected by centrifugation (6000 rcf, 30 seconds) and washed once with DMEM sup-
plemented with 10 mM HEPES and 2 mM L-glutamine. Cells were infected at a MOI of
100 in DMEM supplemented with 10 mM HEPES and 2 mM L-glutamine. The infection
was initiated by centrifugation of the plates for 1 minute at 1750 rpm and subsequent
incubation at 37◦C for the indicated time-periods. Extracellular bacteria were killed by
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adding gentamycin (50µg/ml) (Life technology, Carlsbad, CA) 30 minutes after infection,
in assays exceeding this timepoint.

6.6 Drug treatments

Cells were treated with twice the indicated concentrations of the drugs and incubated for
one hour in assay medium at 37◦C. The final drug concentration was reached by adding
the same amount of bacteria or assay medium only to the cells.

6.7 SDS-PAGE and immunoblotting

Cells were washed twice in ice-cold PBS and lysed in PhosphoSafeTM extraction reagent
(Millipore, Billerica, MA), after an incubation on ice for 10 min. Lysates were centrifuged
at 4◦C for 25 min at 16000g and the supernatant was collected. To determine the pro-
tein concentration the BCA Protein Assay kit (Pierce, Rockford, IL) was used. 10-20 µg
of protein were loaded on SDS-polyacrylamide gels and electroblotted onto nitrocellulose
membranes. Primary antibodies were diluted in phosphate buffered saline containing 0.1%
tween and 5% bovine serum albumin and used for immunoblotting. HRP-conjugated sec-
ondary antibodies were purchased from GE Healthcare, Chalfont St Giles, United Kingdom
or Cell Signaling Technology, Danvers, MA. The blots were developed with an enhanced
chemiluminescence method (Pierce, Rockford, IL) using an ImageQuant LAS4000 digital
imaging system (GE Healthcare, Chalfont St Giles, United Kingdom).

6.8 Immunofluorescence

After fixation in 4% PFA for 10 min, cells were permeabilized in blocking buffer (0.3%
TritonTM X-100/ 5% goat serum) for 1 hour. Primary antibodies were incubated overnight
at 4◦C in antibody dilution buffer (1X PBS/1% BSA/0.3% TritonTM X-100) followed
by secondary antibody application using an Alexa 647-conjugated antibody (Invitrogen,
Carlsbad, CA) in antibody dilution buffer. In parallel, F-actin and DNA were stained for
1 h at room temperature using FITC-phalloidin (Invitrogen, Carlsbad, CA) and Hoechst,
respectively.

6.9 Automated microscopy

Images were acquired by automatic microscopy using an ImageXpress Micro (Molecular
devices, Sunnyvale, USA). Images were acquired for each site at 360 nm, 480 nm, 594
nm and 640 nm to visualize Hoechst, FITC-phalloidin, DsRed-expressing S. flexneri and
Alexa 647-conjugated secondary antibodies, respectively.
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6.10 Constructs

pcDNA3-based constructs of human IPMK with Myc-tag at N-terminus of IPMK were
generously provided by Prof. Hsien-yu Wang (State University of New York, New York,
USA).

6.11 Transient transfection

For transient transfection of DNA, HeLa CCL-2TM human epithelial cells were seeded into
96-well plates and grown for 24 hours in complete growth medium without antibiotics. 2µg
DNA were diluted in 100µl OptiMEM (Life technology, Carlsbad, CA), mixed with 8µl
FuGENE 6 transfection reagent (Promega, Madison, WI) and incubated for 10 minutes
at room temperature. Afterwards, 5µl of the FuGENE 6 ransfection reagent/ DNA mix
were added to the cells in 100µl complete growth medium without antibiotics. Cells were
incubated for further 24 hours.

6.12 Survival assay

For the survival assay, HeLa CCL-2TM human epithelial cells were seeded into 96-well
plates and grown to confluency for 24 hours in complete growth medium. Cells were
pretreated with the indicated drugs for one hour in assay medium, as already described.
Next, cells were infected either with ∆HOPEMT asd + YopEsignal or with ∆HOPEMT asd
+ YopEsignal - IpgD at a MOI of 100 and incubated for 1 hour. The medium containing
bacteria was removed and replaced with assay medium containing gentamycin (50µg/ml)
(Life technology, Carlsbad, CA), the corresponding drug at 1x concentration and 0.5µM
staurosporine for indicated conditions. Cells were incubated for further two hours at 37◦C
followed by fixation using 4% paraformaldehyde.
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1.1 Main findings

This work has made several contributions to the field. First, the data provides a valuable
resource for future research in infection biology. We could demonstrate that phosphopro-
teomics can provide testable hypothesis revealing for example the kinase ATM to play
an important role in the induction of genotoxic stress during infection or highlighting the
activity of mTOR and unraveling its importance for the induction of a pro-survival re-
sponse. In addition, the identification of the NPC as regulator of the nucleo-cytoplasmic
transport during S. flexneri infection serves as starting point for the decipherment of a
new process related to bacterial infection. Although no new direct targets of OspF were
found, the data shows the massive impact a single effector can have on the cellular net-
work. The obtained data may be useful in research beyond infection biology because it
allows to study the MAPK pathway in presence of a specific inibitor (OspF) in relation
to chemical MAPK inhibitors. Furthermore, work on the effector protein IpgD revealed a
mTOR dependent AKT activation mechanism which is largely independent of canonical
PI3K signaling.

1.2 Host-pathogen crosstalks: a predestinated field for the application
of phosphoproteomics

For a successful invasion many bacterial pathogens have developed sophisticated tools al-
lowing them to interfere with host communication and shape the output in favor of the
bacteria. The TTSS and its translocated effector proteins are an example of a virulence
factor that adapted the host "language". It manipulates signaling cascades of the host,
promoting the uptake of the pathogen into enterocytes and is important for the estab-
lishment of a successful replicative niche. Many of these signaling events are mediated by
phosphorylation cascades, thus the systematic study of this PTM is an attractive strat-
egy to reveal cross-talks during host-pathogen interactions. Using a phosphoproteomic
approach, we aimed to study signaling cascades of the host cell that become activated in
response to S. flexneri infection, covering different aspects of the infection by monitoring
phosphorylations at several timepoints post-infection. In addition, the cross-talk between
host and pathogen was exemplified by studying the effect of a single translocated bacterial
effector protein on the phosphorylation landscape of the host cell.

1.3 Bacterial infection affects many aspects of cellular life

Our phosphoproteomic approach revealed an astonishing high number of host phospho-
rylation events induced by S. flexneri infection. It is noteworthy to mention that a con-
servative threshold was used for the selection of significant regulated phosphopeptides.
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The threshold consisted of a q-value smaller than 1% and a difference in abundance com-
pared to control of at least two fold. However, in many phosphoproteomic publications
no cut-offs for abundance regulation are used and all phosphopeptides having a significant
q-value are considered for further evaluation [185]. Despite our conservative threshold, we
were able to find more than 300 proteins undergoing a change in phosphorylation upon
S. flexneri infection which corresponds to 28% of all detected phosphoproteins. Still, this
number is probably underestimated as we were able to confirm even the phosphorylation
of proteins by immunoblotting which we did not consider to be significantly regulated
(data not shown). By the use of a more relaxed but still widely accepted threshold of
a q-value smaller than 1% but no restriction on regulation cut-off, we identified almost
500 phosphoproteins. This emphasizes even more the dramatic impact a bacterial infec-
tion has on the signaling network of a cell. Remarkably, we found that already after 15
minutes of infection more than 150 proteins change their phosphorylation status. More
recent data from our laboratory revealed, that already two minutes post-infection, the
phosphorylation of host proteins is affected as illustrated by high AKT phosphorylation
at Ser473 and further phosphoproteomic data covering 2, 5, 10 and 15 minutes of infection
with S. flexneri. Interestingly, a non-virulent S. flexneri strain lacking the large virulene
plasmid was not able to induce phosphorylation events (R. Dreier unpublished data).
A widely used approach to capture the dynamics of time resolved phosphoproteomics

is to subject the quantitative data to unsupervised clustering. This approach allows the
partitioning of identified phosphosites to a few clusters. Although each phosphorylation
site has an unique dynamic profile, they can be grouped into more generally observed pro-
files corresponding to e.g. early responders or late responders. In the current study, the
phosphoproteomic data was subjected to fuzzy c-means clustering revealing six distinct
profiles of phosphorylation. The clusters comprise profiles related to an early or intermedi-
ate increase or decrease in phosphorylation as well as a more distinct profile characterized
by a late increase in phosphorylation. Distinct temporal profiles of phosphorylation may
correspond to the activity of certain kinases. Therefore, the coupling of temporal clus-
tering and kinase motif analysis represents a promising approach for predicting kinase
activity based on observed phosphorylation events. Using this approach, we were able to
predict and experimentally validate a cluster of late phosphorylation events as substrates
of the kinase ATM that becomes activated by DNA double strand breaks and regulates
the cellular response to genotoxic stress [255].
In addition, we could show by immunofluorescence that the ATM substrate histone

H2AX, a marker for DNA double-strand breaks [251], becomes phosphorylated after 2
hours of S. flexneri infection, giving further evidence for the genotoxic potential of S.
flexneri. An induction of the DNA damage cascade has been reported for different bac-
terial pathogens. These include E. coli harboring a genomic island called pks, encoding

133



Chapter IV: Discussion and outlook

for the production of a genotoxin [50]. An in vivo infection using a mouse model revealed
the formation of phosphorylated H2AX foci in enterocytes in a pks dependent manner.
Furthermore, low dose exposure of cultured mammalian cells to E. coli induced a tran-
sient DNA damage response leading to chromosome aberrations. Those cells showed an
increase in gene mutation frequency and anchorage-independent colony formation, a hall-
mark of cell transformation. The authors speculated that E. coli harboring the pks island
could contribute to the development of colorectal cancer [50]. Whether the genotoxic stress
induced upon S. flexneri infection can also lead to increased gene mutation frequency
and anchorage-independent colony formation or whether those cells eventually undergo
apoptotic or necrotic cell death, preventing such a transformation, may be an interesting
subject of further studies. In addition, it has been demonstrated that infection with a
high number of toxigenic bacteria induces an irreversible cell cycle arrest and eventually
apoptotic cell death, an observation which is presumably more related to the experimen-
tal condition applied in our study [50]. This observation also indicates a potential relation
between the genotoxic stress and the regulation of the host cell cycle, a cellular process
involving phosphoproteins, that we found to be enriched during S. flexneri infection.
Our research was done in HeLa cells to allow a direct comparison to data obtained

from an siRNA screen on S. flexneri entry (C. Kasper unpublished data). HeLa cells are
epithelial cells but do not correspond to the physiological tissue that becomes infected
by S. flexneri in vivo. Nevertheless, this cell line is often used in the field because it
can easily be transfected. As a future perspective, it could provide additional insight to
conduct a phosphoproteome in a cell line that is more related to the in vivo situation
as for example the colon cancer derived cell line Caco-2. It would also be feasible to
conduct a phosphoproteome from an animal model of bacterial infection, although major
challenges would have to be overcome. Going even a step further, the effect of bacterial
infection could be studied by phosphoproteomics of biopsies, derived from infected tissue
from patients [16]. The emerging application of phosphoproteomics towards the usage in
diagnosis by monitoring a subset of biomarkers derived from body fluids or tissue from
biopsy, demonstrates the possibility to obtain quantitative phosphoproteomic data directly
from patient derived cells [218].

1.4 Interference with the nucleo-cytoplasmic transport - A new working
point of bacteria?

Interestingly, we observed altered phosphorylation of Nup98, Nup50, Nu214 and TPR, all
belonging to the NPC which consists of about 30 different proteins that are important
for nuclear pore assembly and maintenance as well as directly involved in the nucleo-
cytoplasmic transport. This finding was surprising to us, as regulation of the NPC has
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so far not been linked to bacterial infection. However, there is extensive research about
the role of the NPC in the context of viral infections. Viruses affect the NPC for different
reasons. Some of which could serve as starting point to unravel the role of the NPC upon
bacterial infection. Some viruses alter the permeability of the NPC to deliver their viral
genome into the nucleus for replication. In addition, it can be beneficial for viruses to
block the nuclear transport of host proteins involved in the host antiviral response. Thus,
we speculated whether S. flexneri infection may also interfere with the nucleo-cytoplasmic
transport. This hypothesis was supported by the observation of Nup50 phosphorylation
on Ser221 which has been described as ERK substrate and leads to inhibition of the nu-
clear import of importin-beta and transportin [141]. In our phosphopoteome we observed
Nup50 phosphorylation in an OspF dependent manner, strongly suggesting that ERK
may regulate the phosphorylation upon infection. Thus, we had an ideal model system
to study the impact of infection on nuclear transport in dependency of a bacterial effec-
tor protein. We studied the impact on dexamethasone-induced nuclear transport of the
protein Rev-GR-GFP, which had previously been used to study nucleo-cytoplasmic trans-
port [162]. Although we observed a reduction of nuclear import upon wild-type S. flexneri
infection, there was no difference upon infection with the ∆ospF mutant observable, mak-
ing it unlikely that Nup50 phosphorylation regulates nuclear transport upon infection.
Although we are lacking a mechanistic explanation how NPC phosphorylation is linked to
the regulation of nuclear transport, the observation that nuclear transport is affected by
bacterial infection is new and represents an interesting starting point for further studies.
This is supported by the study of Rogers and colleagues that observed phosphorylation
of the nucleoporin Nup50 and Nup214 after Salmonella infection, making it tempting to
speculate that regulation of the NPC is a common feature upon bacterial infection [229].
Beside the regulation of nuclear transport, the NPC fulfills other functions which could

play a role upon bacterial infection. Proteins of the NPC can directly contribute to
gene regulation by interacting with chromatin [259] and could thus be important for the
expression of pro-inflammatory cytokines upon bacterial infection. Future research about
the role of the NPC during bacterial infection could reveal a new mechanism of gene
regulation. Finally, it would be of special interest whether the phosphorylation of the
NPCs and the impairment of the nucleo-cytoplasmic transport is directly triggered by
bacterial effectors.

1.5 A single bacterial effector can massively influence the cellular re-
sponse

Effector proteins are important molecular tools of bacteria to shape the response of the host
in their favor. The molecular mechanism by which OspF renders its target ERK and p38

135



Chapter IV: Discussion and outlook

inactive is well described [9] [156]. OspF dependent MAPK inhibition and the subsequent
inhibition of histone H3 phosphorylation impairs the accessibility of transcription factors to
the DNA and thus reduces the expression of pro-inflammatory cytokines. However, recent
research has shown that OspF can indirectly affect the activity of other proteins through
disruption of a negative feedback loop [225]. Our phosphoproteomic approach revealed that
OspF had a massive net negative impact on the phosphorylation network of the cell. OspF
affects the phosphorylation of more than 300 different proteins which is not surprising
when taking into consideration that the MAPKs play a pivotal role in cell signaling. The
ability of effector proteins to strongly shape host signaling was also demonstrated for
Salmonella where up to half of all observed phosphorylation events were dependent on
the effector SopB [229]. However, SopB had a net positive impact indicating that effectors
can either promote or suppress overall cellular phosphorylation. Our subsequent search
for potential direct targets of OspF did not reveal any new candidates, suggesting that
OspF shapes the phosphorylation network of the cell solely through inactivation of ERK
and p38. It would be of interest to study the effect of OspF by a complementary approach
where OspF is directly translocated into cells, that are stimulated with different MAPK
activating agents. Due to the high specificity of OspF towards the MAPKs, this approach
could also be of special interest for cancer related research. The OspF data we obtained
by phosphoproteomics, are questioning the canonical view of linear pathways that lead to
a cellular response and favor a model where the cellular response is due to the integration
of all those individual signaling events.

1.6 A comparison of pathogen derived phosphoproteomic datasets: What
can we learn?

To identify more general phosphorylation events that are induced upon bacterial infec-
tion, we compared our data to a phosphoproteomic dataset of Salmonella infection [229].
Although the overlap of the two phosphoproteomes was rather small, probably due to
technical reasons as discussed in the introduction, we were able to find more than 60
phosphopeptides that were considered to be significantly regulated in both datasets. In-
terestingly, all but one of the identified phosphosites found on these proteins were regulated
in the same direction by both Shigella andSalmonella. The two pathogens belong to the
family of Enterobacteriaceae and use a TTSS to promote the uptake into the epithelial cell
via a trigger mechanism. Moreover, many effector proteins of Shigella spp. and Salmonella
spp. are homologues and fulfill similar functions, as exemplified by the Salmonella effector
SopB which is a homologue to the S. flexneri effector IpgD.
The comparison derived data clearly indicates that both pathogens induce a similar host

response during the first half hour of infection. It is therefore not surprising that many
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phosphoproteins are linked to the actin cytoskeleton including IQGAP2 and Palladin.
MYPT1, which may be involved in the entry process of S. flexneri, as revealed by a
siRNA screen (C. Kasper, unpublished data), becomes phosphorylated upon infection of
both pathogens, making it a promising candidate for an important host protein upon
bacterial invasion. Because Rogers and colleagues have not examined later timepoints of
infection, we cannot compare signaling events that take place at these timepoints. It is
tempting to speculate that the phosphoproteome of the two pathogens would be more
divergent at later timepoints due to the different cellular compartment the two pathogens
occupy [250] [54]. Salmonella spp. remain enclosed within a vacuole which represents its
replicative niche, whereas S. flexneri lyses the vacuole and replicates in the cytoplasm
from where it can spread intra- and intercellularly by ABM, a process requiring many
host proteins. A direct phosphoproteomic comparison of these two pathogens during a
timecourse of infection would be valuable to answer this question.
Although these two datasets provide a set of co-regulated phosphoproteins that may

correspond to a general cellular response to bacterial infection, further bacterial infection
derived phosphoproteomes would contribute to the determination of important host factors
during infection. In 2013, a host cell phosphoproteome of Francisella novicida infection has
been published [185]. However, Francisella spp. replicate in macrophages which questions
a comparison to an infection of epithelial cells. Nevertheless, the increasing application of
phosphoproteomics in infection biology will presumably provide more data in near future
that can be directly compared to Shigella and Salmonella infection of epithelial cells.
Of special interest would be data allowing the direct comparison of pathogens pursuing
different strategies of infection, namely frontal and stealth attack. Although S. flexneri
developed many tools to evade the immune response it induces massive inflammation
leading to severe disease symptoms and cannot establish chronic infections in healthy
individuals. Thus, S. flexneri would rather represent a frontal attack pathogen. On the
other hand, Bartonella spp. serve as a model for a stealth pathogen which persist for
a long time in the host [20]. Although both pathogens occupy different cellular niches, a
direct comparison would still be interesting to determine the differences and similarities
between both infection models.

1.7 What can we learn by mapping of phosphoproteomic and siRNA
screen derived data?

Phosphoproteomic data can point towards signaling hot spots, characterized by many
phosphoproteins being related to a certain pathway or cellular process. This allows the
identification of pathways or cellular processes that have not yet been related to the stim-
uli or perturbation of interest, as exemplified in this study by the mTOR pathway or the
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nucleo-cytoplasmic transport. This renders phosphoproteomics a suitable technique for
the exploration of the signaling landscape shaped by a certain stimuli. Although the iden-
tification of proteins and the corresponding phosphosites by shotgun mass spectrometry
does not rely on a priori knowledge and is thus not biased, a priori knowledge is a pre-
requisite for the interpretation of the data. Information about the phosphorylation state
of a protein can only be inferred to a testable hypothesis if the protein function or the
modified residue is known. Although many phosphorylation sites have been discovered,
mainly by large-scale phosphoproteomic studies, an experimentally validated function for
most of them is lacking. This issue is less pronounced on the level of proteins where some
functional aspects for many proteins have been described. However, the linkage of an ob-
served protein phosphorylation to a certain phenotype can, without further data, only be
achieved by a "trial and error" approach. Therefore, the coupling of phosphoproteomics,
or "omics" techniques in general to perturbation assays like siRNA screens is a promising
approach to integrate a phenotypic observation into a signaling context, yet this approach
has its pitfalls. Only phosphoproteins that show a phenotype in an siRNA screen can be
considered for further evaluation, therefore phosphoproteins that may play an important
role in the context of interest but do not show an siRNA dependent phenotype due to bio-
logical redundancy or technical reasons are excluded. On the other hand, a relative small
number of phosphoproteins are obtained by a conventional phosphoproteomic study com-
pared to the number of genes being studied by a genome-wide siRNA screen. Therefore, it
is not too surprising that only few proteins were found to undergo an infection dependent
change in phosphorylation and at the same time to affect the entry of S. flexneri into the
host cell in a genome-wide siRNA screen. Nevertheless, the few that are obtained can be
considered as validated.
This comparison revealed the phosphoprotein MYPT1 as being important for the entry

of S. flexneri into HeLa cells as shown in the additional result section. Even more inter-
esting, the temporal phosphorylation pattern of MYPT1, which is highest between 10 and
15 minutes post-infection, matches the timing of the S. flexneri entry process which is also
assumed to take place within the first 15 minutes. Furthermore, immunofluorescence of
phosphorylated MYPT1 revealed a co-localization with F-actin ruffles at the site of bac-
terial entry. MYPT1 has been described as a substrate of ROCK, which itself is known
to play an important role in the entry process of S. flexneri. Thus, MYPT1 may be a
downstream effector of ROCK during infection and involved in bacterial internalization.
More work is required to elucidate the molecular mechanisms of this observation.
Beside this comparative integration of phosphoproteomic data and a perturbation assay,

also experimental coupling is a promising approach. This can for instance be done by
comparing signaling in wild-type to knockout cells by phosphoproteomics. In addition,
the protein of interest can also directly be studied by expressing or translocating it into a
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cellular system, which is best exemplified by an IpgD phosphoproteome (data not shown).
Here, the impact of a single delivered bacterial effector was studied, leading to the detection
of different AKT substrates. Thus, phosphoproteomic may serve as an ideal approach for
the exploration of potential molecular targets of an effector protein, especially if the effector
provokes a well observable phenotype.

1.8 mTOR - multiple roles for the central cellular player during bacterial
infection?

1.8.1 Regulation of translation

In the last two years it became evident that mTOR plays an important role upon bacterial
infection beyond its function as a master regulator of metabolism. Our work contributed to
this finding, as we recognized by phosphoproteomics that many components of the mTOR
signaling pathway undergo phosphorylation changes during bacterial infection. These in-
clude components of both, mTORC1 and mTORC2, as well as corresponding downstream
targets. This data was complemented by immunoblotting, showing in addition phospho-
rylation of mTOR itself on Ser2448 and Ser2481, strongly suggesting activation of mTOR
signaling. We could validate mTORC1 activation by monitoring phosphorylation of the
downstream kinase S6K as well as its substrate RS6, which were both sensitive to the
mTORC1 inhibitor rapamycin. This pathway is involved in the regulation of translation
and may affect the synthesis of pro-inflammatory cytokines upon S. flexneri infection.
We addressed this question by monitoring IL-8 production upon S. flexneri infection and
mTOR inhibition by rapamycin or PP242. Indeed, we could observe a reduction of IL-8
production upon rapamycin treatment and even more pronounced upon PP242 treatment,
suggesting that mTOR signaling is crucial for the translation of IL-8 (data not shown).
However, the significance of this finding remains unclear, as IL-8 synthesis is almost exclu-
sively observed in uninfected bystander cells as described by Kasper et al [128]. Thus, the
role of mTOR signaling should in addition be studied in bystander cells and it would be
crucial to test whether mTOR inhibition broadly affects protein translation upon infection
or shows specificity for the translation of some pro-inflammatory cytokines.

1.8.2 Regulation of autophagy

Tattoli and colleagues showed in 2012 that infection with Salmonella or Shigella induced
an amino acid starvation which leads to down-regulation of mTOR signaling, resulting in
the induction of autophagy [267]. This data seems to be conflicting with our observation of
increased mTOR signaling as indicated by S6K and RS6 phosphorylation. This conflict
can partially be explained by the fact that we monitored mTOR activity mainly within
the first hour of infection whereas Tattoli and colleagues observed a decrease in mTOR
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signaling after 2-5 hours post-infection. Yet, it remains contradictory that Tattoli and
colleagues do not observe an initial increase in mTOR activity one hour post-infection. In
addition, they measured a different activation pattern of mTORC2 as indicated by AKT
phosphorylation which is observed after 1 hour and is decreasing again after 4 hours. We
could reproducibly observe sustained AKT phosphorylation already within 15 minutes
after infection which is in concordance with previous observations [212] [222]. These data
may indicate, temporally distinct roles of mTOR during the infection process.

1.8.3 Regulation of survival via AKT

It has been shown that S. flexneri promotes a pro-survival response and can rescue cells
from staurosporine induced apoptosis [43], which has been assigned to the activity of the
S. flexneri effector IpgD that induces AKT activation and thus promotes host cell sur-
vival [212]. Our data revealed that the IpgD induced pro-survival response is indeed de-
pendent on AKT but also on mTORC2 signaling which is an upstream AKT activator.
These data allocates a further function for mTOR during bacterial infection which is the
prevention of apoptosis, through the activation of AKT.

1.9 IpgD as tool to decipher mTOR activation

Although it has been described that IpgD activates AKT via the production of PI5P, the
exact activation mechanism largely remains elusive. PI3K and tyrosine kinases, in particu-
lar EGFR, are crucial for AKT activation [212] [222]. In addition, we provided evidence that
mTORC2 is responsible for AKT activation during infection. mTORC2 signaling is of
medical importance because it is associated with cancer and diabetes [47]. Therefore, deci-
phering the upstream activation mechanisms is a pivotal task in the field. As demonstrated
by Zinzalla and colleagues, mTORC2 becomes associated with the ribosome upon insulin
stimulated PI3K signaling, suggesting that ribosomes activate mTORC2 directly [301]. Yet,
the exact molecular mechanisms of mTORC2 activation are still not entirely clear. We
could show that IpgD induced mTORC2 signaling which rapidly leads to AKT phospho-
rylation. Indeed, we could observe AKT phosphorylation already within two minutes of
infection (R. Dreier unpublished data). Thus, IpgD is a promising tool to study mTORC2
signaling because it rapidly induces AKT activation in a confined cellular compartment,
the entry foci. We further could demonstrate, that IpgD induced AKT activation is not
necessarily PI3K dependent, as treatment with both, wortmannin and LY294002, did not
abolish IpgD induced AKT activation at early timepoints, whereas mTOR inhibition ef-
ficiently does. This is conflicting with previous reports, where LY294002 was shown to
abolish S. flexneri induced AKT phosphorylation [212] [222]. However, a recent publica-
tion about the activation mechanism of the Salmonella homologue SopB has reported,
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that SopB dependent AKT activation is independent of LY294002 and wortmannin as
observed in our study upon IpgD delivery [233]. Still, it was demonstrated by overexpres-
sion of the phosphoinositide 3-phosphatase PTEN that AKT activation downstream of
SopB relies on PI(3,4,5)P3 and thus another kinase than the canonical PI3K must be
involved in formation of this messenger. An siRNA screen by Roppenser et al. revealed
multiple kinases contributing to SopB dependent AKT activation and indicated IPMK to
play a role in AKT activation [233]. We could demonstrate that IPMK is also important in
IpgD dependent AKT activation and further found that it becomes recruited to the site
of entry, where it co-localizes with phosphorylated AKT. We therefore propose a model
of mTORC2 and AKT activation which relies on the IpgD product PI5P but is indepen-
dent of canonical PI3K signaling at early time-points of infection. Currently, a kinase
inhibitor screen is ongoing, aiming to identify kinases important for the IpgD dependent
AKT activation.

1.10 The direct delivery of effector proteins by Yersinia enterocolitica
as tool to study their function

Our work has demonstrated the importance of temporal resolution when studying bacterial
effectors. We were able to identify a time-dependent effect of IpgD as we did not rely on
transient expression but on the temporally tightly controlled delivery of IpgD into the
target cell by the use of a Yersinia enterocolitica TTSS based protein delivery tool (SJ
Ittig, manuscript in preparation). The activity of bacterial effectors is often addressed
by transient expression of the protein or by comparison to a deletion mutant. Yet, the
temporal orchestration of the effectors may be of significance. Studying the activity of
an effector which is, due to the expression method, present for several hours in the target
cell may allow the cell to adapt to its presence by modifying certain signaling pathways
or changing the level of proteins that are involved in the process. The Yersinia system
allows the circumvention of this issue and therefore represents a valuable tool for studying
different bacterial effector proteins. Especially effector proteins that induce cell toxicity are
difficult to be addressed by transient transfection, but are predestinated for the analysis
with the Yersinia tool.

1.11 Future perspectives of "omics" technologies in infection biology

Our study demonstrated that phosphoproteomics can be applied in the field of infection
biology and generates a substantial amount of quantitative data which reveals new cellu-
lar processes related to infection and provides a resource for further research on different
aspects of the host-pathogen interaction. Although many phosphosites have been identi-
fied, several obstacles have to be overcome towards the identification of a complete and
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comprehensive phosphoproteome. A main obstacle is the bias of MS-based technologies
towards the detection of high abundant peptides [228]. This is of particular interest as
many signaling proteins fulfilling regulatory functions are of low abundance [228]. This is
also a reason why usually not all members of an activated signaling cascade are detected
by phosphoproteomics. A method to overcome this problem is the application of targeted
MS allowing also detection of low abundant peptides. However, this methods requires a
priori knowledge about the peptides of interest and the number of detectable peptides is
limited. Nevertheless, this is a promising approach when the phosphorylation of several
proteins of interest should be monitored simultaneously [159].
Due to the high number of phosphoproteomic studies being published in the last few

years, many phosphosites have been detected and brought into context with different
environmental conditions or stimuli. Yet, the knowledge about the precise molecular role of
distinct phosphosites and their impact on the functionality of the protein is lagging behind
and is thus becoming a major bottleneck. The functional characterization of phosphosites
is a substantial requirement for the interpretation of phosphoproteomic data and there is an
urgent need for the development of large-scale procedures for functional characterization of
phosphosites in order to fully exploit the potential of phosphoproteomics. The coupling of
phosphoproteomics to other techniques like siRNA screens, as already discussed, can help
to relate the detected phosphoproteins to a certain cellular phenotype and may facilitate
the functional characterization of single phosphosites.
A further challenge will be the expansion of "omics" technologies towards the detec-

tion and quantification of other PTM modifications and their cross-talks among each
other during bacterial infection. Ubiquitylation has already successfully been addressed
by mass spectrometry based technologies revealing more than tenthousand ubiquityla-
tion sites highlighting the broad impact of this PTM on the cellular network [283] [136]. As
described in the introduction, ubiquitylation plays an important role during S. flexneri
infection as exemplified by the activation cascade of NF-κB signaling. Even more inter-
esting, the S. flexneri effectors of the ipaH family have been described as E3 ubiquitin
ligases [230]. Therefore, the generation of an ubiquitin proteome upon bacterial infection
would be of great interest and may unravel new targets of bacterial E3 ubiquitin ligases.
Another PTM that has recently been addressed by a large-scale proteomic study is lysine

acetylation which was shown to be a widespread PTM [42] [164]. Lysine acetylation has
been demonstrated to play an important role in TLR4 signaling that regulates the innate
immune response induced by LPS [113]. Lysine acetylation of the NF-κB subunit p65 was
shown to be important for full transcriptional activity of NF-κB [38]. These findings render
the proteomic profiling of lysine acetylation a promising approach for the identification of
new signal transduction mechanism during bacterial infection.
The availability of proteomic datasets addressing different PTM derived from host cells
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infected with the same pathogen would not only allow to obtain a broad overview about
activated signaling cascaded but would also allow the identification of cross-talks between
the different PTMs [280].
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Acronyms

Acronyms

ABM actin-based motility

AMP adenosinmonophosphate

APC anaphase promoting complex

ATM ataxia telangiectasia mutated

ATP adenosine triphosphate

ATR ataxia telangiectasia and Rad3 related protein

AUC area under the curve

CARD caspase recruitment domain

DAG diacylglycerol

DAMP danger-associated molecular pattern

DAP diaminopimelic acid

DUSP dual-specificity phosphatase

EGF epidermal growth factor

EGFR epidermal growth factor receptor

EHEC enterohaemorrhagic Escherichia coli

EPEC enteropathogenic Escherichia coli

EPK eukaryotic protein kinases

ERK extracellular-signal regulated kinase

FAK focal adhesion kinase

Fic filamentation induced by cAMP

flg22 flagellin 22 peptide

GEF GTP exchange factor

GTP guanosine-5’-triphosphate

icgR intracellular growth regulator

IcsA intracellular spread

iE-DAP g-D-glutamyl-meso-diaminopimelic acid

IEF isoelectric focusing

IκB inhibitor of NF-κB

IκBα inhibitor of NF-κB alpha

IKK inhibitor of nuclear factor κ-B kinase

IKKγ Inhibitor of nuclear factor κ-B kinase subunit γ

IL-18 interleukin 18
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Acronyms

IL-1β interleukin 1β

IL-8 interleukin-8

ILK integrin-like kinase

IMAC metal affinity chromatography

INF-γ interferon γ

INPP4 inositol polyphosphate 4-phosphatase type I

Ins(1,4,5)P3 Inositol-1,4,5-trisphosphate

IPMK inositol polyphosphate multikinase

IS insertion sequences

iTRAQ isobaric tags for relative and absolute quantitation

JNK c-Jun N-terminal kinase

KLH keyhole limpet hemocyanin

LC-MS/MS liquid chromatography tandem mass spectrometry

LPS lipopolysaccharide

LRR leucine-rich repeat

MAMP microbe-associated molecular pattern

MAPK mitogen-activated protein kinase

m-cells microfold cells

MDP muramyl dipeptide

MEF mouse embryonic fibroblasts

MOAC metal oxide affinity chromatography

MOI multiplicity of infection

MSK mitogen- and stress-activated kinase

MTM myotubularin

MTMR myotubularin-related protein

mTOR mammalian target of rapamycin

mTORC1 mammalian target of rapamycin complex 1

mTORC2 mammalian target of rapamycin complex 2

NF-κB nuclear factor κB

NK natural killer

NLR Nod-like receptor

NLS nuclear localization sequence

NPC nuclear pore complex

N-WASP Wiskott-Aldrich syndrome protein

PAI pathogenicity islands

PAMP pathogen-associated molecular pattern

PGN peptidoglycan
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Acronyms

PI(3,4)P2 phosphatidylinositol 3,4-bisphosphate

PI(3,4,5)P3 phosphatidylinositol (3,4,5)-trisphosphate

PI(3,5)P2 phosphatidylinositol 3,5-bisphosphate

PI(4,5)P2 phosphatidylinositol 4,5-bisphosphate

pI isolectric point

PI phosphatidylinositol

PI3K phosphatidylinositol 3-kinase

PI3P phosphatidylinositol 3-phosphate

PI4K phosphatidylinositol 4-kinase

PI4P phosphatidylinositol 4-phosphate

PI5K phosphatidylinositol 5-kinase

PI5P phosphatidylinositol 5-phosphate

PKA protein kinase A

PKC protein kinase C

PLC phospholipase C

PLIP PTEN-like phosphatase

PMN polymorphonuclear cells

PRR pattern recognition receptor

pS phospho-serine

pT phospho-threonine

PTEN phosphatase and tensin homolog

PTM post-translational modification

pY phospho-tyrosine

RIP2 receptor-interacting serine/threonine-protein kinase 2

RLR RIG-I like receptor

ROCK Rho-associated protein kinase

SCX strong cation exchange

SH2 src homology 2

SHI Shigella pathogenicity islands

SHIP phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase

SILAC stable isotope labeling in cell culture

SPI1 Salmonella pathogenicity island 1

SPI2 Salmonella pathogenicity island 2

SRL Shigella resistance locus

TAK1 TGF-beta activated kinase 1

TiO2 titanium dioxide

TLR Toll-like receptor

TRAF6 TNF receptor-associated factor 6

TTSS type three secretion system
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