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Wenn die Wissenschaft ihren Kreis durchlaufen hat, so gelangt sie natürlicher 

Weise zu dem Punkte eines bescheidenen Misstrauens, und sagt, unwillig über 

sich selbst: Wie viele Dinge gibt es doch, die ich nicht einsehe. 

Immanuel Kant 
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Downlink Communication from mobile phone base stations to mobile 
phone handsets. 

Handover The mobile phone informs the cellular network about changes 
in its location area during an active call. 

Location area 
update 

The mobile phone in stand-by mode informs the cellular 
network about changes in its location area. 

Odds Ratio (OR) Measure of association between an exposure and an outcome. 

Uplink Communication from mobile phone handsets to mobile phone 
base stations. 

TETRAPOL Professional radio communication standard for emergency 
units. 
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Summary 

Introduction and objectives 

There was a substantial development and persistent introduction of new 

telecommunication devices in the past two decades. Mobile communication is 

nowadays ubiquitous reaching a number of mobile-cellular subscriptions of around 

6.8 billion in 2013 – almost as many as the entire population worldwide. This 

widespread use of mobile telecommunication required an expansion of the network 

to meet the new technological requirements and end-user demands. In the 

meantime, a shift could be observed from text messaging and calls towards mobile 

internet access through mobile devices which will continue to grow strongly. All these 

developments led to a substantial change of the radiofrequency electromagnetic field 

(RF-EMF) exposure situation and to concerns about potential adverse health effects 

in the population. Countries thus started to introduce precautionary exposure limits in 

order to decrease the exposure of the population. However, there is no study so far 

scrutinizing what consequences such precautionary limits have on outdoor exposure 

levels. The Research Agenda of the World Health Organization (WHO) classified 

EMF research as a high research priority. Measurement devices allowing to quantify 

personal RF-EMF exposure became available only some years ago. Accordingly, 

several studies have been conducted using personal measurement devices 

(exposimeters). However, such measurements had typically been conducted through 

recruited study participants being allowed to use their own mobile phone during 

measurements. This can limit data interpretation if one is interested to differentiate 

between the exposure from the own mobile phone and from the exposure of other 

people’s mobile phone. Still, little is known about the exposure situation in our 

everyday life and how RF-EMF exposure changed over time. Exposure assessment 

has become challenging, due to the high spatial and temporal variability of RF-EMFs, 

questioning how reproducible personal exposure measurements are. 

 

Objectives 

In the framework of this dissertation, methodological and issue-specific questions 

have been examined. From a methodological point of view, we aimed to investigate 

the effect of the own mobile phone on personal measurements. As our 
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measurements based on a repetitive data collection procedure at defined time 

frames and with predetermined measurement sequences, we studied the 

reproducibility of personal RF-EMF measurements over time using an exposimeter. 

Furthermore, we aimed to inspect how the mobile station network affects exposure 

situations in outdoor areas.  

Issue-specific research questions focussed on the characterization of RF-EMF 

exposure levels in typical everyday environments and how exposure changed over 

time. 

 

Methods 

Measurements were conducted during different time periods between 3 weeks and 1 

year in several environments and across several European cities, i.e. Basel 

(Switzerland), Amsterdam (the Netherlands), Ghent and Brussels (Belgium). We 

used an exposimeter of the type EME Spy 120 for quantifying RF-EMF exposure on 

different frequency bands ranging from FM (Frequency Modulation, 88 MHz) to 

WLAN (Wireless Local Area Network, 2.5 GHz), including all telecommunication 

signals: GSM 900 (Global System for Mobile Communications), GSM 1800 and 

UMTS (Universal Mobile Telecommunications System) in up- (UL, communication 

from mobile phone to base station) and downlink (DL, communication from base 

station to mobile phone) traffic. We included different typical everyday environments 

in outdoor areas, public transports, and indoor settings.  

 

Results 

Primarily, results on methodological questions showed that the own mobile phone in 

stand-by mode reached exposure levels up to a factor of 100 compared to a mobile 

phone being turned off. These results were more pronounced during car rides 

whether during rides in public transports, as the background exposure, especially in 

trains, was relatively high. Analysis of variance (ANOVA) indicated that despite the 

high spatial variability which was best explained by the type of area (30%) in urban 

cities and the type of city (50%), mobile phone base station exposure in outdoor 

urban areas was highly reproducible. Typical mobile phone base station exposure 

levels in outdoor urban areas (all types of outdoor urban areas combined) across 

different European cities ranged between 0.22 V/m in Basel and 0.43 V/m in 

Amsterdam. Peak exposure levels reached values of up to 0.82 V/m (Amsterdam) for 
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the 95th percentile and the highest percentage of exposure (99th percentile) showed 

values which were between 0.81 V/m (Basel) and 1.20 V/m (Brussels).  

Analyses relating to issue-specific questions showed consistently during all 

measurements that highest total average RF-EMF levels occurred in trains with 

exposure levels between 0.83 V/m (Ghent) and 1.06 V/m (Brussels) and in downtown 

areas: 0.32 V/m (Ghent) to 0.58 V/m (Brussels). The total RF-EMF exposure 

increased by 20% in Ghent, by 38% in Brussels and by 57% in Basel during the 

study period of one year between April 2011 and March 2012 in all outdoor areas in 

combination. 

 

Discussion and Outlook 

Characterizing RF-EMF exposure with personal exposimeters has shown to be 

feasible for quantifying exposure levels and to investigate temporal trends. They 

allow collecting large amounts of data with little effort and enable including a large 

variety of different environments. In addition, our study demonstrated that 

measurements were highly reproducible for mobile phone base station exposure in 

outdoor urban areas which is a strength when planning exposure assessment studies 

based on repeated measurements. However, when taking measurements it is 

recommended to turn off the own mobile phone, as our results showed a 

considerable impact of the own mobile phone on personal measurements. The 

contribution to total RF-EMF exposure was predominantly influenced by 

telecommunication technologies, i.e. mobile phones and mobile phone base stations, 

representing the most important sources of exposure in outdoor areas, public 

transports and indoor settings. All exposure levels were far below the frequency-

dependent reference levels (41–61 V/m) proposed by the International Commission 

on Non-Ionizing Radiation Protection (ICNIRP) as well as below national imposed 

precautionary limits implemented in the different countries (on average ten times 

lower than ICNIRP levels). Furthermore, our study did not find any indications that 

lowering the regulatory limits result in higher mobile phone base station exposure 

levels so far; nevertheless, further studies including more cities with different 

regulatory limits are needed. A monitoring of the exposure to RF-EMFs is important 

nowadays, especially with the introduction and expansion of new technologies and 

the increased usage of mobile telecommunication. Monitoring studies should help to 

clarify how RF-EMF exposure levels change over time and allow identifying areas 
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with critical exposure values. These studies may contribute to a better understanding 

of potential adverse health effects. Global research efforts are highly needed to 

translate findings in public policies.  In the light of current uncertainties regarding 

potential adverse health effects due to long-term low-dose exposure levels, 

minimizing exposure might be reasonable and requested.  
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Zusammenfassung 

Einführung 

Seit zwei Jahrzehnten ist ein bedeutsamer Anstieg bei der Entwicklung und 

Einführung neuer mobiler Telekommunikationsmittel zu verzeichnen. Die 

Mobiltelefonie ist heutzutage allgegenwärtig, was sich auch an der Anzahl 

abgeschlossener Mobiltelefon-Verträge weltweit zeigt, die mit 6.8 Milliarden beinahe 

ebenso hoch liegt wie die Weltbevölkerung. Die weit verbreitete Mobiltelefon-

Nutzung erfordert eine laufende Anpassung des Netzwerks, um die technologischen 

Anforderungen neuer Gerät zu erfüllen. Inzwischen konnte eine Verlagerung von 

ursprünglichen Funktionen, wie Text-Nachrichten und Telefonie, hin zu drahtlosem 

Internetzugang durch Mobiletelefone festgestellt werden; dabei wird erwartet, dass 

dieser Trend weiter stark zunimmt. Insgesamt bedeuten diese technologischen 

Fortschritte eine grundlegende Veränderung hinsichtlich der Exposition durch 

hochfrequente elektromagnetische Felder (HF-EMF) und führen folglich zu erhöhter 

Besorgnis in der Bevölkerung über mögliche gesundheitsschädigende Effekte. 

Einzelne Länder implementierten deshalb Grenzwerte, um die Exposition vorsorglich 

zu reduzieren. Bis anhin existieren jedoch keine Studien, die den tatsächlichen 

Einfluss solcher Vorsorge-Grenzwerte auf die Exposition in Outdoor-Bereichen 

untersuchen. Die Forschungsagenda der Weltgesundheitsorganisation (WHO) 

klassifizierte das Monitoring von HF-EMF als einen dringlich zu untersuchenden 

Forschungsschwerpunkt. Messgeräte, welche es erlauben, die persönliche HF-EMF 

Belastung zu quantifizieren, existieren erst seit einigen Jahren. Es wurden bis dato 

diverse Studien mit persönlichen Messgeräten (Exposimeter) durchgeführt, bei 

denen es den dafür rekrutierten Studienteilnehmer jedoch meistens erlaubt war, das 

eigene Mobiltelefon zu verwenden. Dies kann die Interpretation der Daten 

beeinträchtigen, wenn die Expositionsquellen differenziert untersucht und die 

Exposition des eigenen Mobiltelefons und die Hintergrundbelastung anderer 

Mobiltelefone unterschieden werden sollen. 

Bis anhin ist wenig bekannt über die Expositions-Situation im Alltag und wie sich HF-

EMF über die Zeit hinweg ändern. Expositions-Abschätzungsstudien sind ausserdem 

anspruchsvoller geworden aufgrund der hohen räumlichen und zeitlichen Variabilität 
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von HF-EMF, was die Frage nach der Reproduzierbarkeit von persönlichen 

Messungen aufwirft. 

 

Ziele 

Die vorliegende Dissertation behandelt methodologische und inhaltliche 

Fragestellungen. Aus methodologischer Perspektive wurde der Einfluss des eigenen 

Mobiltelefons auf persönliche Messungen untersucht. Da unsere Messungen auf 

repetierenden Datenerhebungen basieren, gemäss vordefinierten Zeiten und 

festgelegten Messabfolgen, wurde weiter die Reproduzierbarkeit von persönlichen 

HF-EMF Messungen mit einem Exposimeter geprüft. Ferner wurde erforscht, wie 

sich das Mobilfunkbasisstation-Netzwerk auf die Exposition der Bevölkerung 

auswirkt. Inhaltliche Fragestellungen fokussierten auf die Charakterisierung und 

Quantifizierung der HF-EMF Belastung in typischen Umgebungen im Alltag und wie 

sich die Exposition über die Zeit änderte. 

 

Methoden 

Messungen wurden in Zeitfenstern von 3 Wochen bis zu einem Jahr in 

verschiedenen Umgebungen und diversen europäischen Städten (Basel (Schweiz), 

Amsterdam (Niederlanden), Ghent und Brüssel (Belgien))durchgeführt. Wir 

verwendeten ein tragbares Exposimeter für die Messungen, welches es erlaubt, die 

relevanten Frequenzen zwischen Radio FM (Frequenzmodulation, 88 MHz) bis 

WLAN (Wireless Local Area Network, 2.5 GHz) zu quantifizieren, mitsamt aller 

Telekommunikations-Frequenzen: GSM 900 (Global System for Mobile 

Communications), GSM 1800 und UMTS (Universal Mobile Telecommunications 

System). Die Telekommunikationsfrequenzen wurden sowohl im Uplink- 

(Kommunikation vom Mobiltelefon zu der Mobilfunkbasisstation) als auch im 

Downlink-Bereich (Kommunikation von der Mobilfunkbasisstation zum Mobiltelefon) 

erfasst. Wir berücksichtigten unterschiedliche typische alltägliche Umgebungen, 

einschliesslich Outdoor-Bereiche, öffentliche Verkehrsmittel und Innenräume. 

 

Resultate 

Bezüglich der methodologischen Fragestellungen wurde gezeigt, dass das eigene 

Mobiltelefon im Ruhemodus (stand-by) verglichen mit einem ausgeschalteten 

Mobiltelefon erhöhte Expositionswerte bis zu einem Faktor von 100 verursachte. Die 



Zusammenfassung 

xiv 
 

Resultate waren deutlicher während Autofahrten als während Fahrten mit 

öffentlichen Verkehrsmitteln, da die Hintergrundbelastung relativ hoch war, 

insbesondere in Zügen. Die Untersuchung der Reproduzierbarkeit von persönlichen 

Messungen mit einem Exposimeter demonstrierte, dass die Expositionswerte von 

Mobilfunkbasisstationen in Outdoor-Bereichen hochgradig reproduzierbar waren. Die 

Varianzanalyse (ANOVA: Analysis of Variance) zeigte, dass die Art des Gebiets 

(30%) und die Stadt (50%) den grössten Teil der Datenvariabilität erklärten. Typische 

Expositionswerte durch die Strahlung von Mobilfunkbasisstationen in Outdoor-

Bereichen und verschiedenen europäischen Städte lagen zwischen 0.22 V/m  in 

Basel und 0.43 V/m in Amsterdam. Spitzenwerte erreichten Belastungen von 0.82 

V/m (Amsterdam) für das 95. Perzentil und bewegten sich zwischen 0.81 V/m (Basel) 

und 1.20 V/m (Brüssel) für das 99. Perzentil. Bei allen Messungen waren die 

höchsten Gesamtbelastungen konsistent in Zügen nachzuweisen mit 

Expositionswerten zwischen 0.83 V/m (Ghent) und 1.06 V/m (Brüssel), wie auch im 

Stadtzentrum: 0.32 V/m (Ghent) bis 0.58 V/m (Brüssel). Die Studienresultate 

suggerieren eine Zunahme der Gesamtbelastung durch HF-EMF in allen Gebieten 

kombiniert um 20% in Ghent, 38% in Brüssel und um 57% in Basel während eines 

Jahres zwischen April 2011 und März 2012.  

 

Schlussfolgerungen und Ausblick 

Exposimeter ermöglichen die Erfassung der Exposition in unterschiedlichen 

typischen Umgebungen und zeitlichen Verläufen. Solche Geräte erlauben die 

Erhebung einer beträchtlichen Anzahl an Messdaten mit relativ wenig Aufwand und 

gestatten es, eine Vielzahl von typischen Umgebungen einzuschliessen, wie 

öffentliche Verkehrsmittel und Innenräume. 

Darüber hinaus zeigte unsere Studie, dass die Messungen der Exposition von 

Mobilfunkbasisstationen in hohem Masse reproduzierbar sind. Dies ist von 

besonderer Bedeutung, wenn Expositions-Abschätzungsstudien geplant sind, die auf 

repetitiven Messungen basieren.  

Bei persönlichen Messungen ist es empfehlenswert, das eigene Mobiltelefon 

auszuschalten, da unsere Ergebnisse zeigten, dass dieses einen erheblichen 

Einfluss auf die persönlichen Messdaten hat. Den grössten Einfluss auf die gesamte 

Expositionsbelastung durch HF-EMF haben Telekommunikationstechnologien, 

insbesondere Mobiltelefone und Mobilfunkbasisstationen, welche die wichtigsten 
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Quellen der Exposition in Outdoor-Bereichen, öffentlichen Verkehrsmitteln und 

Innenräumen darstellen. Alle Expositionswerte lagen deutlich unter den 

Referenzwerten (41-61 V/m), welche von der Internationalen Kommission für den 

Schutz vor nichtionisierender Strahlung (ICNIRP: International Commission on Non-

Ionizing Radiation Protection) empfohlen werden, sowie unter den nationalen 

gesetzlich implementierten Vorsorge-Grenzwerten der verschiedenen Länder (diese 

liegen durchschnittlich zehnmal tiefer als die ICNIRP-Referenzwerte). Darüber hinaus 

gab es in unserer Studie keinen Hinweis darauf, dass die Senkung der gesetzlichen 

Grenzwerte zu unabsichtlich höheren Expositionswerten durch die Strahlung von 

Mobilfunkbasisstationen führt. Eine Überwachung der Exposition der HF-EMF 

Belastung ist heutzutage wichtig, da laufend neue Technologien und neue Geräte mit 

unterschiedlichen Expositionscharakteristiken eingeführt werden. Monitoring-Studien 

sollen Ansätze liefern für die Untersuchung der zeitlichen Dynamik von HF-EMF und 

erlauben es, Gebiete mit kritischen Expositionswerten zu identifizieren. Solche 

Studien tragen zum besseren Verständnis von potenziell gesundheitsschädigenden 

Effekten bei. Forschung im EMF Bereich ist dringend erforderlich, auch hinsichtlich 

der Implementierung öffentlicher Massnahmen. In Anbetracht der derzeitigen 

Unsicherheiten, insbesondere für die Langzeitwirkung von EMF im Niedrigdosis-

Bereich, ist eine Minimierung der Exposition angemessen.  
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Samenvatting 

Inleiding en doelstellingen 

De laatste twee decennia worden gekenmerkt door de introductie en sterke groei van 

nieuwe telecommunicatietechnologie. Vandaag is mobiele telefonie 

alomtegenwoordig; In 2013 zijn er circa 6.8 miljard mobiele abonnementen, bijna net 

zoveel als de gehele wereldbevolking. Om aan de vereisten van dit wijdverbreide 

gebruik van mobiele telefonie te voldoen dringt een uitbreiding van de huidige 

draadloze netwerken zich op. Tezelfdertijd is er een verschuiving van het gebruik van 

mobiele apparaten voor tekstberichten (sms) en gesprekken naar het maken van 

internetconnecties via mobiele apparaten. De komende jaren zal deze trend zal zich 

doorzetten. Al deze ontwikkelingen hebben geleid tot een substantiële wijziging van 

de radiofrequente elektromagnetische velden (RF-EMV) en zorgen voor bezorgdheid 

bij de bevolking over mogelijke nadelige gevolgen voor de gezondheid. Sommige 

landen voerden daarom, als voorzorgsmaatregel, strengere blootstellingslimieten in 

om de blootstelling van de bevolking te verminderen. Er is echter geen studie die de 

consequenties van een dergelijke voorzorgsmaatregel op de blootstellingsniveaus 

buitenshuis onderzoekt. Meetapparatuur om de persoonlijke RF–EMV blootstelling 

op te meten is slechts sinds enkele jaren beschikbaar. Deze persoonlijke 

meetapparatuur (exposimeters) wordt al in verschillende studies gebruikt om 

metingen uit te voeren. Meestal mochten de deelnemers in deze studies hun eigen 

mobilofoon gebruiken. Dit bemoeilijkt de interpretatie van de meetgegevens omdat 

geen onderscheid gemaakt kan worden tussen de blootstelling van de eigen 

mobilofoon en van de blootstelling van de mobilofoon van anderen. Tot nog toe is er 

weinig bekend over de blootstelling aan RF-EMV in ons dagelijks leven en hoe deze 

verandert in de tijd. Blootstellingsbeoordeling is zeer uitdagend vanwege de grote 

spatiale en temporele variabiliteit van RF-EMV, daarom vragen onderzoekers zich 

ook af hoe reproduceerbaar persoonlijke blootstellingsmetingen zijn. 

 

Doelstellingen 

Dit proefschrift onderzoekt zowel methodische als probleemspecifieke 

onderzoeksvragen. Vanuit methodologisch oogpunt, proberen we om het effect van 

de eigen mobiele telefoon op persoonlijke metingen te onderzoeken. Al onze 



Samenvatting 

xvii 
 

metingen zijn gebaseerd op een herhaalde sequentie van datacollectie op vaste 

tijdstippen. Met een vooraf vastgelegde meetprocedure onderzoeken we de 

reproduceerbaarheid van persoonlijke RF-EMV metingen met behulp van 

exposimeters in de tijd. Verder onderzoeken we hoe het mobiele netwerk de 

blootstellingssituatie buitenshuis beïnvloedt. De probleemspecifieke 

onderzoeksvragen zijn gericht op het karakteriseren van RF–EMV 

blootstellingsniveaus in typische alledaagse omgevingen en hoe de blootstelling 

verandert in de tijd. 

 

Methodes 

De RF-EMV metingen worden uitgevoerd gedurende verschillende tijdsperioden 

gaande van 3 weken tot 1 jaar in verschillende omgevingen en in Europese steden: 

Basel (Zwitserland), Amsterdam (Nederland), Gent en Brussel (België). We 

gebruiken persoonlijke meetapparatuur (exposimeter) voor het kwantificeren van de 

RF-EMV blootstelling voor alle relevante frequentiebanden variërend van FM 

(frequentie gemoduleerde radio, 88 MHz) tot en met WLAN (Wireless Local Area 

Network, 2.5 GHz), met inbegrip van alle signalen voor telecommunicatie: GSM 900 

(Global System for Mobile Communications), GSM 1800 en UMTS (Universal Mobile 

Telecommunications System) voor zowel uplink (UL, communicatie de gebruiker naar 

het basisstation) als downlink (DL, communicatie van het basisstation naar de 

gebruiker) verkeer. We onderzoeken verschillende typische alledaagse omgevingen 

waaronder: openbare plaatsen buitenshuis, openbaar vervoer en binnenshuis. 

 

Resultaten 

De resultaten van het methodologisch onderzoek tonen ten eerste aan dat de eigen 

mobilofoon in stand-by toestand blootstellingsniveaus bereikt tot een factor 100 

hoger dan een mobilofoon die uitgeschakeld is. Deze resultaten zijn 

onmiskenbaartijdens autoritten of ritten met het openbaar vervoer (vooral treinritten). 

Een analyse van de reproduceerbaarheid van persoonlijke metingen met 

exposimeters, waarbij “analysis of variance” (ANOVA) gebruikt werd, toont aan dat 

de bepaling van de blootstelling door basisstations buitenshuis zeer reproduceerbaar 

is, ondanks de grote spatiale variatie. Deze wordt het best verklaard door het type 

gebied (30%) in stedelijke omgeving en de aard van de beschouwde stad (50%). 

Buitenshuis varieert de typische basisstationblootstelling in verschillende Europese 
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steden tussen 0.22 V/m in Basel en 0.43 V/m in Amsterdam. De maximale 

opgemeten 95ste percentiel van de blootstellingsniveaus bedraagt 0.82 V/m 

(Amsterdam). De 99ste percentiel komt overeen met waarden die liggen tussen 

0.81 V/m (Basel) en 1.20 V/m (Brussel). De Analyses van de probleemspecifieke 

onderzoeksvraag tonen aan dat consequent de hoogste totale RF-EMV niveaus 

optreden in treinen, met blootstellingsniveaus tussen 0.83 V/m (Gent) en 1.06 V/m 

(Brussel), en in de binnenstad, 0.32 V/m (Gent) en 0.58 V/m (Brussel). De totale RF-

EMV blootstelling in all buitenomgevingen samen steeg met 20% in Gent, 38% in 

Brussel en 57% in Basel gedurende de studieperiode van 1 jaar tusen april 2011 en 

maart 2012. 

 

Discussie en toekomst 

In het kader van het karakteriseren van blootstelling aan RF-EMV, blijkt het haalbaar 

om met persoonlijke exposimeters de blootstelling te kwantificeren en temporele 

trends te onderzoeken. Exposimeters laten toe om grote hoeveelheden gegevens te 

verzamelen met beperkte inspanningen en bieden de mogelijkheid om een grote 

hoeveelheid verschillende omgevingen te onderzoeken. Bovendien toont studie aan 

dat de metingen zeer reproduceerbaar zijn voor de basisstationblootstelling in 

stedelijke gebieden buitenshuis. Dit pleit voor het plannen van 

blootstellingbeoordelingsstudies op basis van herhaalde metingen. Gedurende de 

metingen is het aanbevolen om de eigen mobilofoon uit te schakelen aangezien onze 

resultaten een aanzienlijke impact vertonen van de eigen mobilofoon op persoonlijke 

metingen. De totale RF-EMV blootstelling wordt voornamelijk bepaald door de 

opgemeten telecommunicatie-technologieën, i.e., mobilofoons en basisstations voor 

mobiele telefonie. Buitenshuis, in het openbaar vervoer en binnenshuis  zijn deze de 

belangrijkste bronnen van blootstelling. Alle blootstellingsniveaus liggen ver onder de 

frequentie-afhankelijke referentieniveaus (41-61 V/m) van de internationale 

commissie voor niet-ioniserende stralingsbescherming (ICNIRP), alsook onder de 

nationale voorzorgslimieten van de verschillende landen (die gemiddeld tien keer 

lager zijn dan de ICNIRP referentieniveaus). Verder levert ons onderzoek geen 

aanwijzingen dat het verlagen van de blootstellingslimieten resulteert in hogere 

basisstation blootstellingsniveaus, studies met meer steden met verschillende 

limieten zijn echter nodig in de toekomst. Controle en metingen van de blootstelling 

aan RF-EMV is belangrijk, vooral met de introductie van nieuwe technologieën en de 
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toename van de mobiele telefonie. Controlerende studies moeten verduidelijken hoe 

de RF-EMV blootstelling verandert in de tijd en laten toe om gebieden met hogere 

blootstellingswaarden identificeren. Deze studies kunnen bijdragen tot een beter 

inzicht in mogelijke nadelige gevolgen voor de gezondheid. Wereldwijde 

onderzoeksinspanningen zijn zeker nodig om de bevindingen naar het openbaar 

beleid te vertalen. In het licht van de huidige onzekerheden omtrent schadelijke 

effecten voor de gezondheid als gevolg van een langdurige lage blootstellingsdosis, 

zou het minimaliseren van de blootstelling acceptabel kunnen zijn. 
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1 Introduction and background 

This thesis describes recently conducted research in the field of environmental 

epidemiology dealing with radiofrequency electromagnetic field (RF-EMF) exposure 

in everyday environments across different European cities. 

1.1 What are radiofrequency electromagnetic fields (RF-EMF)? 

The electromagnetic spectrum is subdivided into ionizing and non-ionizing radiation. 

These types of radiation are differentiated by their physical and natural effects. 

Ionizing radiation is caused when electrons are released from an atomic structure 

and thus induces damage to the desoxyribonucleic acid (DNA), whereas non-ionizing 

radiation causes vibration of molecules (Levy et al., 2006). Electromagnetic fields 

(EMFs) are part of the non-ionizing radiation of the electromagnetic spectrum (Figure 

1) and can be subdivided into low-frequency (LF; up to 10 MHz) and radio-frequency 

(RF; 10 MHz-300 GHz) EMFs. One of the main characteristics to classify EMFs is the 

frequency (unit: Hz), where 1 Hz corresponds to 1 oscillation per second, and the 

corresponding wave length (Figure 1). 

 

Figure 1: The electromagnetic spectrum. 
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EMFs arise because of the interaction between electric and magnetic fields as 

illustrated in Figure 2 (Tipler and Mosca, 2004). 

 

 

Figure 2: Propagation of a wave with electric and magnetic field vibrations. (Source: 

http://www2.astro.psu.edu/users/cpalma/astro10/class5.html, accessed on 4.11.2013) 

The strength of EMFs can be measured using the electric field strength (E), whereby 

the unit is expressed in Volt per meter (V/m), or using the power flux density (S), 

measured in Watt per square meter (W/m2). These two units can be converted into 

the other using the formula in Equation 1. The free space impedance, Z0, is a 

physical constant describing the property of wave propagation through the air and is  

approximately 377 Ω (Levy et al., 2006). There is a quadratic relationship between 

the two measurement scales, E and S, as given in Equation 1. 

 

� = 	�� × ��        and        � = 	

�� 

Equation 1: Formulas for calculating the electric field strength (E) and the power flux density (S). 

Basically, there are two sources of EMFs, i) natural sources such as the static field of 

the earth and ii) human-made sources, for example the emission of RF-EMFs from 

mobile phone base stations and broadcast transmitters. A measure of dose for RF 

energy is the specific absorption rate (SAR), which is defined as the power (W) which 

is absorbed per 1 kg tissue (Moulder et al., 2005). EMFs are specifically used in the 

field of information technology; typical sources and applications as well as 

characteristics of RF-EMFs are presented in the following sub-chapter. 
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1.2 Characteristics of radiofrequency electromagnetic fields 

Radio-frequency electromagnetic fields are used in telecommunication technologies 

to transfer wireless information over long distances between a transmitter (e.g. 

mobile phone base stations and broadcast transmitters) and a receiver (e.g. mobile 

phone handsets, televisions and radios). Depending on the direction of the signal, a 

distinction will be made between downlink and uplink exposure, where downlink 

exposure represents the communication from a mobile phone base station to a 

mobile phone handset and uplink exposure vice versa. The most relevant 

frequencies are listed in Table 1 and range between Radio FM (frequency 

modulation, 88 MHz) to WLAN (Wireless Local Area Network, 2.5 GHz) signals, 

including all uplink and downlink telecommunication frequencies, i.e. GSM (Global 

System for Mobile Communications) and UMTS (Universal Mobile 

Telecommunications System). 

Source Frequency range (MHz) Description 

FM 88 – 108  
Frequency Modulation 

Radio broadcast 

TV3 174 – 223  
Television broadcast 

TV4&5 470 – 830  

TETRAPOL 380 – 400  

Professional radio 

communication standard for 

emergency units. 

GSM 900 uplink  880 – 915  

Global System for Mobile 

Communications 

GSM 900 downlink  825 – 960  

GSM 1800 uplink  1710 – 1785  

GSM 1800 downlink  1805 – 1880  

DECT 1880 – 1900  
Digital Enhanced Cordless 

Telecommunications 

UMTS uplink  1920 – 1980  Universal Mobile 

Telecommunications 

System 
UMTS downlink  2110 – 2170  

WLAN 2400 – 2500  
Wireless Local Area 

Network 

Table 1: Most relevant RF-EMF frequency signals and their characteristics. 
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Adapted from Schüz and Mann (2000) 

In everyday life, exposure sources to RF-EMFs can be basically classified into near-

field and far-field sources. Near-field sources, such as mobile phone handsets and 

cordless phones operate near the body and can cause up to 100 times higher 

exposure values than far-field sources (Figure 3).  The maximal energetic local 

absorption in the head is approximately 1’000 to 100’000 times higher during calls 

when compared to far-field sources (Lauer et al., 2013). With increasing distance to a 

source, the power flux density decreases ideally inversely proportional to the square 

of the distance: 1/r2. Far-field sources are defined as “radiation from a source located 

at a distance of more than one wavelength” (Röösli et al., 2010a). Representative 

sources are mobile phone base stations and broadcast transmitters, but mobile 

phones of nearby persons also account for far-field sources in this context. Far-field 

sources cause markedly lower exposure levels than near-field sources, however the 

whole body is continuously exposed and the duration of exposure can be strikingly 

longer (Frei et al., 2009a; Röösli et al., 2010b). Exposure levels from wireless internet 

(WLAN) sources can be regarded as near- and far-field exposure, depending on 

position and distance to the human body.  

 

 

 

 

 

Figure 3: Near-field and far-field sources, illustrating differences of output power levels. 
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Exposure from mobile phone base stations causes lower RF-EMF levels but is 

constant over time. In contrast, exposure from mobile phone handsets radiate with up 

to 100 times higher levels, people, however, are exposed only during short times, 

e.g. while calling. Exposure patterns are complex, and several factors, such as 

distance and radiation intensity, influence the exposure situation. People are 

ubiquitously and constantly exposed to non-ionizing radiation for extended periods of 

time. Consequently, guidelines for limiting exposure to RF-EMFs have been 

elaborated following systematic reviews of the scientific literature in this area of 

research.  

1.3 Draw the line – Regulatory RF-EMF exposure limits 

The International Commission on Non-Ionizing Radiation Protection (ICNIRP), a 

publicly funded body of independent scientific experts, proposed and published 

guidelines for limiting RF-EMF exposure everywhere where people reside (ICNIRP, 

1998). ICNIRP reference levels are frequency-dependent and are 41 V/m for 900 

MHz, 58 V/m for 1800 MHz and 61 V/m for 2100 MHz (Table 2). The stated reference 

levels rely on epidemiological and experimental studies investigating adverse health 

effects caused by RF-EMFs. Indications based on experimental studies suggest that 

EMFs producing a whole-body SAR between 1 and 4 W/kg result in an increase in 

temperature of less than 1°C. SAR values exceeding 4 W/kg from more intense fields 

can cause irreversible effects, compromising thermoregulatory processes and lead to 

injurious tissue heating (ICNIRP, 1998). The EMF project of the World Health 

Organization (WHO) established a database with worldwide standards 

(http://www.who.int/docstore/peh-emf/EMFStandards/who-0102/Worldmap5.htm, 

accessed on 4.11.2013). There is a large disparity among countries regarding their 

regulatory limits implemented in their laws. A crucial question arises when talking 

about safety of unknown risks: how safe is safe enough (Fischhoff et al., 1978)?  

Several countries adopted ICNIRP reference levels, as for example the Netherlands, 

whereas other countries like Switzerland and Belgium additionally introduced 

frequency-dependent precautionary exposure limits (Table 2). One important reason 

for applying precautionary limits was explained by the WHO (Wiedemann et al., 

2013): 

“To address public health concerns that a potential or perceived but 

unproven health problem is taken into account…” (WHO 2003, p. 3) 
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In Switzerland, the ordinance related to protection from non-ionizing radiation1 

(ONIR) has the purpose to protect people against potential adverse health effects or 

nuisances caused by non-ionizing radiation (ONIR, 1999). The ONIR limits apply to 

the radiation from one single base station and are only relevant for sensitive areas 

where persons spend most of their time, such as residences, schools, kindergartens, 

hospitals, nursing homes, workplaces, and playgrounds. In Belgium, even more 

stringent limits are imposed than in Switzerland. In Ghent, exposure limits of the 

Flemish region (Resolution2 of the Flemish Region of Nov. 2010) regulate a 

frequency-dependent cumulative exposure of 21 V/m for 900 MHz frequency, 

whereas in indoor places and children’s playgrounds limits of 3 V/m at 900 MHz, 4.2 

at 1800 MHz and 4.5 V/m at 2100 MHz are valid per base station. These 

precautionary limits are estimated following equation 2 for the frequency range 

between 400 MHz and 2 GHz. 

� = 0.1 ∗ �� 

Equation 2: Formula for calculation of frequency-dependent precautionary limits per base station. 
With f as the frequency in Hz and E as the electric field strength in V/m. 

For the frequency range between 2 GHz to 10 GHz a limit of 4.5 V/m is imposed. In 

Brussels, the most stringent limits are in the Brussels Capital Region (Ordinance3 of 

the Brussels Capital Region of 14 March 2007) and are implemented and valid at all 

public places for cumulative exposure. For frequencies between 400 MHz and 2 

GHz, limits are calculated using the formula in equation 3. 

� = �
��,���    and    � = � �

��,���	 ∗ 377 

Equation 3: Regulatory frequency-dependent limits for cumulative exposure for frequencies between 
400 MHz and 2000 MHz. With f as the frequency in Hz, S (power flux density) with the unit W/m2 and 
E (electric field strength) with the unit V/m. 

For frequencies between 2 GHz and 300 GHz, exposure values may not exceed 4.3 

V/m (corresponds to 0.05 W/m2 on power flux density level). The limits in Brussels 

                                            
1
 Ordinance of 23 December 1999 relating to Protection from Non-Ionizing Radiation (ONIR), SR  

  814.710. 
2 Resolution of the Flemish Government of 23 January 2010. 
3 Resolution of the Brussels Capital Region of 14 March 2007 and active from March 2009. 
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Capital Region will be adapted to enable the introduction of 4G (Long-term Evolution, 

LTE) in Brussels. 

Frequency 
ICNIRP 
reference 
levels 

The 
Netherlands 

Precautionary limits for places with 
sensitive use and places of residence 

Switzerland 
Ghent 
(Belgium) 

Brussels 
(Belgium) 

GSM 900 42 V/m 42 V/m 4 V/m 3 V/m 2.9 V/m 

GSM 1800 58 V/m 58 V/m 6 V/m 4.2 V/m 4.1 V/m 

UMTS 61 V/m 61 V/m 6 V/m 4.5 V/m 4.3 V/m 

Table 2: Overview of the different limits adopted in Switzerland, Belgium and the Netherlands 
(Source: Federal Office for the Environment (FOEN), Resolution of the Flemish Government2 and 
Resolution of the Brussels Capital Region3). 

1.4 Wireless mobile telecommunication – past and present 

Since the introduction of mobile telecommunication in Europe, the US and Japan in 

the second half of the 20th century, there has been an extensive, sustained 

development and dispersal of mobile phone handsets (Dunnewijk and Hultén, 2007). 

 

“I’m ringing you just to see if my call sounds good at your end.”  

(Martin Cooper, Motorola employee; statement after the first mobile call in 

New York, 3rd April 1973) 

 

According to the latest published data of the International Telecommunication Union 

(ITU, 2013, source: http://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx, 

accessed on 4.11.2013), it is estimated that there are approximately 6.8 billion 

mobile phone subscriptions worldwide (ITU, 2013, data of 2013), accounting for 1.6 

billion mobile phone subscriptions in the developed world and 5.2 billion 

subscriptions in the developing world. In 2012 mobile data traffic grew by around 

70% (CISCO, 2013). By the end of 2012, 10.5 million mobile phone subscriptions 

were registered in Switzerland (Figure 4). In developing countries, represented by 

Tanzania in Figure 4, there has been a strong increase since 2005.  
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Figure 4: Development of mobile-cellular telephone subscriptions from 2010 to 2012 (ITU, 2013) in 
Switzerland, Belgium, the Netherlands and Tanzania. 

A feature introduced by second generation mobile phones (2G, GSM) is the adaptive 

power control (APC): starting with maximal output power and down-regulate the 

output power over time, after the establishment of a connection (Lönn et al., 2004). In 

contrast, third generation mobile phones (3G, UMTS) use an enhanced APC with 

100 to 1’000 times lower average output power radiation resulting in 1% of the 

maximum (Gati et al., 2009; Kelsh et al., 2011; Persson et al., 2011; Wiart et al., 

2000). In addition, quad-band phones (3G), so-called smartphones, allow accessing 

mobile internet through a variety of web-based applications, such as mobile 

television, push notifications for e-mails, breaking news and much more. 

To meet the requirements of new mobile phone handsets, especially smartphones, 

new technologies and frequencies had to be implemented over the last few years. 

After the second and the third radio standard, the fourth technology (4G) known as 

Long-term Evolution (LTE) is gradually employed in several cities. LTE has a 3 to 4 

times higher spectrum efficiency as UMTS/HSPA (High Speed Packet Access) 

(BAKOM, 2013). LTE is allocated on 800 MHz, 1800 MHz (in France and Belgium) 

and 2.6 GHz frequencies. With LTE, it is possible to reach and even surpass data 

rates of 100 Mbit/s with maximal data rates of up to 326 Mbit/s on the downlink and 

86 Mbit/s on the uplink (BAKOM, 2013).  
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1.5 Potential health implications 

Discussions on health effects of RF-EMFs are filled with controversy. In May 2011, 

the International Agency for Research on Cancer (IARC) classified RF-EMF as 

possibly carcinogenic to humans, representing category 2B (Baan et al., 2011).  

The most exposed part of the body to RF-EMFs is the head during the use of mobile 

phones. Thus, it is assumed that potential adverse health effects in terms of 

carcinogenicity would manifest most likely tumours in the region of the head. Of 

primary concern are different types of tumours of the brain (glioma and meningioma), 

acoustic nerve (schwannoma, also known as acoustic neuroma) and parotid gland 

(Baan et al., 2011; IARC, 2010). Various studies have been conducted in order to 

address the research question whether the use of mobile phone is associated with 

potential adverse health effects. One of the largest studies was the INTERPHONE 

study, coordinated by the WHO. It is an interview-based case-control study, including 

2708 glioma and 2409 meningioma cases and matched controls across 13 countries 

using a common protocol (INTERPHONE study group, 2010). 

Overall, there was no observed increased risk associated with mobile phone use for 

the different types of tumours. There were some indications of a statistically 

significant increased risk of glioma (Odds ratio (OR4) = 1.40, 95% Confidence interval 

(CI) = 1.03 to 1.89) at the highest exposure levels for the 10th decile of the cumulative 

call duration (≥1640 hours), but not for meningioma (OR = 1.15, 95% CI = 0.81 to 

1.62). However, the increased risk is likely attributed to selection bias and recall 

errors inhibiting a causal interpretation.  

It has been hypothesized that children are a more vulnerable group than adults and 

are at higher risk as children start to use their mobile phone earlier in life and 

consequently have a higher cumulative lifetime exposure during (Böhler and Schüz, 

2004). In children, brain tumours are the second most common type of tumours after 

leukaemia (Michel et al., 2007). The CEFALO multicenter case-control study 

investigated whether mobile phone use is associated with brain tumour risk in 

children and adolescents. The study compiles data from Denmark, Sweden, Norway 

and Switzerland, including all children and adolescents between 7 and 19 years. 

They found no increased risk of brain tumours for areas of the brain absorbing the 

highest amount of energy. Regular mobile phone users are not more likely to be 

                                            
4 Odds ratio: Measure of association between an exposure and an outcome (Szumilas, 2010). 
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diagnosed with brain tumours compared to non-users (OR = 1.36, 95% CI = 0.92 to 

2.02). Children who started to use their mobile phone five years ago prior to the study 

were not at increased risk compared with non-regular users (OR = 1.26, 95% CI = 

0.70 to 2.28). The authors concluded that there is no causal association with respect 

to an absence of an exposure-response relationship in terms of mobile phone use or 

localization of the brain tumour (Aydin et al., 2011). 

A systematic review of the scientific literature exploring a potential association 

between mobile phone use and risk of brain tumours was conducted (Repacholi et 

al., 2012). Meta-analysis of epidemiological studies showed no statistical evidence 

for an increased risk for adult brain cancer or other head tumours being associated 

with mobile phone use. The same was found for in vivo oncogenicity, tumour 

promotion and genotoxicity studies analyzing damage to brain cells or incidence of 

brain or other types of tumours of the head (Repacholi et al., 2012).  

The majority of studies scrutinizing the association between mobile phone use and 

brain tumours do not support a causal relationship (Ahlbom et al., 2009; Aydin et al., 

2011; Frei et al., 2011; INTERPHONE study group, 2010; Repacholi et al., 2012). 

Due to the fact that mobile phone use increased drastically in recent years, potential 

risks of brain tumours should have been appeared in an increased incidence of new 

cases. This has not been observed so far in different countries (de Vocht et al., 2011; 

Inskip et al., 2010). Methodological limitations such as selection bias and 

retrospective questionnaire data analysis complicate interpretation and could partially 

explain some of the potential increases in risk found in some studies. 

Apart from brain tumours, commonly described health effects are self-reported non-

specific symptoms of perceived EMF defined as electromagnetic hypersensitivity or 

idiopathic environmental intolerance (Rubin et al., 2010). Such symptoms include 

headache, sleep disorders and/or impaired concentration (Hug and Röösli, 2012). 

There is high evidence that low levels of EMFs cannot be perceived; this has been 

tested in different experimental studies under double-blind and randomized 

conditions (Hug and Röösli, 2013; Röösli et al., 2010a). Potential effects of RF-EMFs 

emitted by GSM mobile phones (2G) on subjective symptoms, well-being and 

physiological parameters, showed little evidence for acute effects (Augner et al., 

2012). Various studies concluded that there is no association between RF-EMFs and 

non-specific symptoms, and there are no indications of persons being able to 

perceive or feeling sensitive to EMFs (Hug and Röösli, 2012; Kundi and Hutter, 2009; 



1 Introduction and background 

11 
 

Röösli et al., 2010a; Röösli and Hug, 2011; Rubin et al., 2005; Rubin et al., 2010). 

Nevertheless, there are signs of nocebo effects. Nocebo effects are the inverse of 

placebo effects and are adverse events caused by negative expectations which have 

been examined in several studies (Augner et al., 2012; Röösli, 2008; Rubin et al., 

2010). Markedly more, and stronger, symptoms appeared when patients knew to be 

exposed.  

Impairments of subjective sleep quality was investigated in several studies (Hinrichs 

et al., 2005; Regel et al., 2007; Huber et al., 2002; Mohler et al., 2010). These 

studies showed overall no association between RF-EMF exposure and objective 

sleep measures (Mohler et al., 2010). Small differences for frequency bands were 

observed in the EEG (electroencephalography) (Mohler et al., 2010).  

The current landscape of research indicates that, in the short-term (<10 years), there 

is no association between mobile phone use and an increase in health effects. 

Nevertheless, there are uncertainties for long-term and heavy use (>10-15 years). 

The COSMOS study (cohort study of mobile phone use and health, 

http://www.ukcosmos.org/, accessed on 7.11.2013) is one of the largest research 

studies worldwide aiming to carry out long-term health monitoring among a large 

group of study participants (Schüz et al., 2011). 

Experimental studies analyze only acute effects, and long-term risks have to be 

investigated through epidemiological studies. In this context, exposure assessment is 

one of the major challenges, since measurement devices became available only a 

few years ago. In view of that, a better understanding of exposure assessment 

methods and characterization of exposure levels may help to clarify open research 

questions. 

1.6 Overview of different exposure assessment methods 

In general, near-field sources, such as mobile and cordless phones, and far-field 

sources, like mobile phone base stations and broadcast transmitters, can be 

differentiated as described in Chapter 1.2. Mobile phones of persons in proximity can 

also be considered as a far-field source, as exposure to RF-EMFs drastically 

decreases with increasing distance. Different measurement procedures have been 

developed to assess RF-EMF exposure. The most common methods are  
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• Broadband probes which allow performing a fast scanning of the environment 

without specifying the exact source (Figure 5, left).  

• Spectrum analyzers are very accurate measurement devices able to 

differentiate between different sources as well as between different operators. 

Measurements are taken on a fixed position (in-situ; as illustrated in Figure 5 

(middle)). In the illustrated example, the spectrum analyzer was placed in a 

car connected to a laptop. The probe was placed in free space and fixed on a 

pillar at 1.5 m height).  

• Exposimeters are very useful and feasible portable measurement devices 

enabling personal measurements. They allow differentiating between different 

sources, including all relevant telecommunication signals (Chapter 3.2).  

A comparison in terms of strengths and limitations will be presented in Chapter 9.3 of 

the Discussion. 

 

 

 

 

 

 

Figure 5: Different measurement devices for assessing RF-EMF exposure. Broadband probe (left), 
spectrum analyzer (middle) and exposimeter (right). 
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2 State of research and objectives of the thesis 

2.1 Research gaps 

Mobile telephony is nowadays ubiquitous and revolutionary new wireless 

telecommunication devices have been introduced. With the innovation of new mobile 

phones, the purpose of such smartphones is focused, apart from calls and texting, 

more and more on web-based applications, such as mobile television (streaming), e-

mail access with push notifications and alerts for breaking news and a large variety of 

other applications. New technologies are altering radiofrequency electromagnetic 

field (RF-EMF) exposure patterns. New telecommunication standards had to be 

implemented in order to meet the requirements of new mobile phones and to ensure 

a widespread coverage. Currently, the upcoming fourth technology standard (LTE) is 

gradually being introduced in cities across different countries worldwide. Thus, the 

telecommunication network had to be expanded over time (Neubauer et al., 2007), 

as previously described in Chapter 1.4,  to satisfy on the one hand the increasing 

usage of mobile phones, and, on the other hand, to fulfil requirements of new mobile 

phones able to transfer high data rates for web-based applications. To date, it is 

unknown how the mobile phone base station network impacts the exposure of the 

population. The introduction and development of new wireless telecommunication 

technologies in the last two decades led to a fundamental change of the exposure 

situation of the population (Frei et al., 2010; Neubauer et al., 2007; Röösli et al., 

2010b) regarding far-field and near-field RF-EMF sources. Characterization of spatial 

and temporal distribution of RF-EMFs in typical everyday environments, such as 

different outdoor areas, public transports or indoor settings, is scarce so far. The 

Research Agenda of the WHO considered monitoring studies to quantify RF-EMF 

exposure as a high research priority need (WHO, 2010).  

Measurement devices became available only some years ago. There are several 

strategies and methodologies to monitor RF-EMF exposure as described in Chapter 

1.6. One approach is the use of personal exposimeters, which has been applied for 

all our measurements. The applicability of exposimeters is highly recommended to 

characterize RF-EMF exposure and they have been widely used in various studies 
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(Bolte and Eikelboom, 2012; Bolte et al., 2011; Breckenkamp et al., 2008; Frei et al., 

2010; Frei et al., 2009a; Joseph et al., 2008; Knafl et al., 2008; Neubauer et al., 

2007; Thuróczy et al., 2008; Viel et al., 2009). Exposimeters allow the collection of a 

considerable volume of data in different environments, are of small size, and easy to 

use. Advantages and disadvantages of different exposure assessment methods are 

described in Chapter 9.3. In most studies, exposure measurements were conducted 

by recruited study participants, whereas it was partly allowed to use the personal 

mobile or cordless phone during measurements which might limit the interpretation of 

data if being interested to differentiate between the exposure of the own mobile 

phone and other people’s mobile phone. Furthermore, it may happen, that study 

participants place the exposimeter at positions where high RF-EMFs are expected, 

causing unreliable exposure data.  A proposed study protocol for the conduct of 

personal RF-EMF measurement studies was described by Röösli et al. (2010b). To 

date, reliable exposure assessment methods are lacking. In epidemiological studies, 

only crude methods have been used so far, such as self-reporting of mobile phone 

use (Röösli et al., 2010b). One of the major problems of previous studies aiming to 

compare RF-EMF exposure between countries was the use of different exposure 

assessment methods and different data analysis procedures, whereby observed 

differences might have been influenced by methodological differences (Joseph et al., 

2010a; Röösli et al., 2010b).  

2.2 Objectives 

 

Figure 6: Overview of the different objectives addressed in this thesis. 
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Objective 1: The effect of the own mobile phone on personal RF-EMF 

measurements. 

Several epidemiological studies analyzed the mobile phone use of study participants, 

the most common exposure surrogate in epidemiological RF-EMF research, with 

personal exposimeters. However, personal measurements are affected by the 

owner’s mobile phone when measurements are conducted by study participants 

using their personal mobile phone.  This can limit the interpretation of data if one is 

interested in differentiating between different exposure sources. In addition, with the 

introduction of smartphones, mobile phone handsets do not only radiate during calls 

or when texting, but also when being in stand-by mode because of updates and 

notifications of certain applications. This is especially relevant when the person is 

moving. A specific area is subdivided into different cells (location areas) which are 

served by one or a cluster of mobile phone base stations (Figure 7).  

 

 

  Path through different location areas 

  Location area update 

Figure 7: Overview of the location areas served by one or a cluster of mobile phone base stations 
(Source: adapted from http://casestudy-itgs.wikispaces.com/Terminology+-
+Cell+Phone+Mobile+Phone, accessed on 14.11.2013). 

When changing the location area, the mobile phone handset sends a signal to the 

mobile phone base station of the respective area providing information on its position 

with the purpose of maintaining constant connectivity (Lin et al., 2002). These 

activities are called ‘location area updates’. In contrast, ‘handovers’ occur when 



2 State of research and objectives of the thesis 

16 
 

changing the location area during a call. So far, it is still unclear how location area 

updates affect personal RF-EMF exposure and thus contribute to total RF-EMF 

exposure while moving.  

We performed two different studies: (1) in different modes of public transportation 

including trains, buses, and trams and (2) in a car while driving in rural areas, on 

highways and in cities. 

Exposure from a mobile phone handset (uplink) was measured during commuting 

using a randomized cross-over study with three different scenarios: disabled mobile 

phone (reference), an activated dual-band mobile phone of the second generation 

and a quad-band phone of the third generation. Presentation of the results are 

described in Article 1 (Chapter 4). 

 

Objective 2: Reproducibility of personal RF-EMF measurements. 

A reliable approach to measure RF-EMF exposure is the use of personal 

exposimeters, which has been described in several studies  (Bolte and Eikelboom, 

2012; Frei et al., 2009a; Joseph et al., 2010a; Thuróczy G. et al., 2008; Viel et al., 

2009). A prerequisite to conduct personal measurements is the criteria of 

reproducibility of measurements over time. Measurements collected in the framework 

of this thesis are based on a measurement protocol assessing personal exposure 

measurements on the same days at the same times (except for objective 2) and in 

the same microenvironments over the study periods (Chapter 3). In this context we 

evaluated the reproducibility of personal exposure measurements in different outdoor 

urban areas of two European cities, i.e. Basel (Switzerland) and Amsterdam (the 

Netherlands). We considered central and non-central residential areas, downtown 

and business areas. Measurements were performed during three months every 

second week on two consecutive days at different times of the day using personal 

exposimeters. Results are discussed in Article 2 (Chapter 5). 

 

Objective 3: Influence of the mobile phone base station network on the 

exposure situation of the population. 

Concerns of the general public about potential adverse health effects caused by RF-

EMFs led authorities to introduce precautionary exposure limits which are lower than 

the limits proposed by ICNIRP (Chapter 1.3). These vary considerably between 
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countries and even at regional levels, as for example in Belgium. Based on the fact 

that along with newer wireless mobile technologies, the mobile phone base station 

network had and still has to be expanded, it is so far unknown whether lower 

regulatory limits affect the exposure of the population. The situation is complex, as 

lowering standard limits is expected to decrease the exposure of the population 

because antennas of mobile phone base stations radiate with lower output powers. 

Lower output powers of antennas, in turn, may be compensated on the one hand 

with a denser mobile phone base station network and on the other hand with lower 

mast height and stronger tilt. Consequently, this might increase the RF-EMF 

exposure of the population. So far, an evaluation examining the impact of such limits 

on the exposure of the general public is lacking. 

In the framework of this thesis we pooled two different monitoring studies. Study 1 

was conducted in Basel (Switzerland), Ghent and Brussels (Belgium) measuring RF-

EMF exposure for one year on a monthly basis; study 2 was carried out in Basel (in 

the same areas as study one but considering different paths) and Amsterdam (the 

Netherlands) taking measurements every second week for three months. In all cities 

we included outdoor urban central and non-central residential and downtown areas. 

Results are illustrated in Article 3 (Chapter 6). 

 

Objective 4: Characterization of RF-EMF exposure in everyday environments. 

The introduction and development of new wireless telecommunication devices led to 

a substantial change of the exposure situation of the population. Exposure 

characterization with personal measurement devices (exposimeters) has only been 

possible for some years and thus, only limited data are available. Our study aimed to 

characterize RF-EMF exposure levels in typical everyday environments including 

outdoor areas, public transportations and indoor settings across different European 

cities, i.e. Basel, Ghent, Brussels and Amsterdam (in Amsterdam only outdoor areas 

were considered). Measurements were conducted using a personal exposimeter in 

during several periods between three months and one year. The results are 

presented in the Articles 3 and 4 (Chapters 6 and 7). 
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Objective 5: Temporal variation of RF-EMF exposure. 

The ongoing change of the exposure in the course of the last 20 years due to the use 

of new technology standards leads to the question of how exposure has changed 

over time. Information about the development of RF-EMFs over time is very limited 

so far. Several studies investigated temporal variations of RF-EMFs on a short-term 

basis during one day or one week to several weeks. However, long-term variability of 

RF-EMFs on a yearly basis has never been examined so far. We conducted personal 

measurements in 3 European cities (Basel, Ghent and Brussels) over a period of one 

year based on a common measurement protocol. We considered typical everyday 

environments such as outdoor areas, public transports and indoor settings to 

investigate temporal trends of RF-EMFs. The results are given in Article 4 (Chapter 

7). 
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3 Methods 

3.1 Overview of the different data collection periods 

Data collection has been performed during different periods across different 

European cities in Basel (Switzerland), Ghent and Brussels (Belgium) as well as in 

Amsterdam (the 

Netherlands). Figure 

8 gives an overview 

about the detailed 

data collection 

periods in the 

respective city with 

the corresponding 

measurement days 

per month for each 

conducted study. 

 

 

 

 

 

 

 

 

Figure 8: Overview of the 

measurement periods 

across the different 

European countries. 

 

 

‘X’ Indicates the number of 

measurements within a 

month. 
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3.2 Personal measurement devices 

We used a personal measurement device (exposimeter), specifically the EME Spy 

120, to collect data (Figure 9, left). The EME Spy 140 was merely used for data 

collection in Amsterdam during three months (Figure 9, right). 

 

 

 

Figure 9: Personal exposimeters of the type EME Spy 120 (left) and EME Spy 140 (right). 

Such personal exposimeters are suitable to collect data in everyday environments, 

since they allow the collection of a substantial number of data points. Due to their 

comparable small size of around 19 cm height, they are well portable. The devices 

EME Spy 120 and 140 are capable to quantify RF-EMF exposure from 12 and 14 

different sources separately, respectively, ranging from FM (88 MHz) to WLAN (2.5 

GHz), including all telecommunication frequencies: GSM 900 (Global System for 

Mobile Communications), GSM 1800 and UMTS (Universal Mobile 

Telecommunication System) in up- (UL, communication from mobile phone to base 

station) and downlink (DL, communication from base station to mobile phone) traffic 

(Table 1, Chapter 1.2). The lower detection limits are 0.05 V/m for the EME Spy 120 

and 0.005 V/m for the EME Spy 140, and the upper detection limit is 5 V/m for both 

devices. The measurement interval was always set up to 4 seconds in order to allow 

collecting as many data points as possible. In order to check consistency of 

measurements over time, all devices were calibrated in September 2010, April 2011, 

and December 2011 at the Swiss Federal Institute of Technology (ETH) in the 

laboratory of electromagnetic fields and microwave electronics. 

3.3 Statistical analyses 

To take into account that a large proportion of data were below the lower sensitivity 

levels of the device (EME Spy 120: 0.05 V/m; EME Spy 140: 0.005 V/m), we 
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calculated daily arithmetic means per frequency band and per environment using the 

robust regression on order statistics (ROS) (Röösli et al., 2008; Helsel, 2005). If less 

than three measurements were above the detection limit, the arithmetic mean value 

was set to 0.01 V/m (corresponds to 0.000265 mW/m2 on the power flux density 

scale). All calculations were conducted using power flux density values (i.e. power 

flux per environment) in W/m2 and then back-transformed to electric field strengths 

values in V/m. Overall we considered three groups of combined frequencies:  

a) Total RF-EMF exposure: sum of all frequency bands combined, excluding 

DECT (Digital Enhanced Cordless Telephone). DECT had to be excluded due 

to cross-talk5 effects with nearby bands, i.e. GSM 1800 downlink signals. 

b) Downlink exposure (mobile phone base station exposure): sum of mean 

power densities of all downlink frequencies: GSM 900 (925-960 MHz), GSM 

1800 (1805-1880 MHz) and UMTS (2110-2170 MHz). 

c) Uplink exposure (mobile phone handset exposure): sum of mean power 

densities of all uplink frequencies: GSM 900 (880-915 MHz), GSM 1800 

(1710-1785 MHz) and UMTS (1920-1980 MHz). 

3.4 Measurement protocol 

We used a common data collection protocol in each city. Measurements were 

conducted during different time periods and collected by the 

same research assistant (except in Amsterdam) each time, 

by walking along the same routes using the same time 

schedules at each time instance. The measurements were 

assigned to the respective microenvironment using a 

software-based application developed by the Swiss Federal 

Institute of Technology (ETH) as shown in Figure 10.  

 

                                            
5
 Cross-talk defines the presence of a signal in a nearby frequency band due to the small frequency separation between some 

service bands (Lauer et al., 2012). 

Figure 10: Software-based questionnaire for Android 

smartphones. In this mode the APP allows the documentation of 

a fixed predetermined daily routine in a time-activity diary. 
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This application can simply record start and end time during an activity by setting a 

marker and recording the time in the respective microenvironment. The mobile phone 

of the person taking the measurements was switched off and the mobile phone used 

as time activity diary was in flight mode preventing an influence on measurements. 

The smartphone saves questionnaire entries with a timestamp. Recorded data can 

further be downloaded and finally been linked with the data of the exposimeter by the 

time variable for data analysis. 
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ORIGINAL ARTICLE

Impact of one’s own mobile phone in stand-by mode on personal

radiofrequency electromagnetic field exposure
Damiano Urbinello1,2 and Martin Röösli1,2

When moving around, mobile phones in stand-by mode periodically send data about their positions. The aim of this paper is

to evaluate how personal radiofrequency electromagnetic field (RF-EMF) measurements are affected by such location updates.

Exposure from a mobile phone handset (uplink) was measured during commuting by using a randomized cross-over study

with three different scenarios: disabled mobile phone (reference), an activated dual-band phone and a quad-band phone.

In the reference scenario, uplink exposure was highest during train rides (1.19mW/m2) and lowest during car rides in rural areas

(0.001mW/m2). In public transports, the impact of one’s own mobile phone on personal RF-EMF measurements was not observable

because of high background uplink radiation from other people’s mobile phone. In a car, uplink exposure with an activated

phone was orders of magnitude higher compared with the reference scenario. This study demonstrates that personal RF-EMF

exposure is affected by one’s own mobile phone in stand-by mode because of its regular location update. Further dosimetric studies

should quantify the contribution of location updates to the total RF-EMF exposure in order to clarify whether the duration of mobile

phone use, the most common exposure surrogate in the epidemiological RF-EMF research, is actually an adequate exposure proxy.

Journal of Exposure Science and Environmental Epidemiology (2013) 23, 545–548; doi:10.1038/jes.2012.97; published online 24 October 2012

Keywords: radiofrequency electromagnetic fields (RF-EMF); personal exposure meters (PEM); location update; mobile phone;

stand-by

INTRODUCTION

The applicability of personal exposure meters (PEM) has success-
fully been demonstrated in several epidemiological studies to
characterize personal exposure to environmental radiofrequency
electromagnetic field (RF-EMF) such as mobile phone base
stations or broadcast transmitters.1–6 It is acknowledged, how-
ever, that personal measurements are affected by one’s own
mobile phone use (uplink emissions), which is a severe limitation
for the interpretation if one is interested in differentiating
between exposure from one’s own mobile phone and other
people’s mobile phone. Such a differentiation is important, as
exposure of the body depends heavily on the distance to the
source, which is different for one’s own mobile phone compared
with other people’s mobile phone.
Mobile phones are emitting RF-EMF not only when being used

for calls and texting, but also in the stand-by mode owing to its
location updates; that is, changing from one cluster of base
stations to the next.7 As a network is divided into cells (location
areas), covered by a group of base stations, a mobile phone
informs the cellular network about changes in its location area,
based on different location area codes. Such location updates are
necessary to maintain constant connectivity with the network.
In particular, when moving in a car or train, a mobile device
periodically sends information about its position while changing
location. However, little is known so far on the extent of such
location updates in real-life situations.
Most personal exposure assessment studies have focussed on

environmental EMF, and thus exposure from one’s own mobile

phone (uplink) is not of interest, and different strategies have
been used to deal with that problem:8 (1) noting wireless calls in
a diary and excluding the corresponding PEM measurements
from the data analysis9 or (2) hiring people for taking mea-
surements and forcing them to shut down their own mobile
phones.8 The latter approach is the best solution from a scientific
point of view, but is unlikely to be acceptable for volunteers of a
population survey.1

With the diary approach,9 higher mean mobile phone uplink
exposure levels for study participants owning a mobile phone
compared with participants not owning a mobile phone (0.0417 vs
0.0189mW/m2, respectively) had been observed.9 This difference
may be explained by forgotten or imprecise diary entries, by
difference in the behaviour between the two groups in terms of
spending time close to other mobile phone users or owing to
location update procedures of one’s own mobile phone in stand-
by mode.
To systematically evaluate the impact of one’s own mobile

phone in stand-by mode on PEM measurements, two measure-
ment studies were conducted: a public transport study and a car
study. As we hypothesized that the impact of one’s own mobile
phone is increasing with increasing movement velocity, we
included measurements from different types of settings: in trains,
buses and cars, while moving and staying at train and bus stations.
We also considered the frequency bands, Global System for
Mobile Communications (GSM) and Universal Mobile Telecommu-
nications System (UMTS) separately, as well as the distance
between the mobile phone and the PEM.
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METHODS

Study Design

We used a three-way randomized cross-over study design with three
scenarios: (i) a disabled mobile phone (reference); (ii) a dual-band mobile
phone (Nokia 2600) working on two frequency ranges: GSM900 (880�
915MHz) and GSM1800 (1710–1785MHz); and a quad-band smart phone
(Blackberry bold 8800 and an iPhone 4) capable of transmitting and
receiving on four frequency ranges: GSM900, GSM1800, CDMA (Code
Division Multiple Access, 850–1910MHz) and UMTS (1920–1980MHz).
An overview of the study design is shown in Figure 1. During the

nonreference scenarios, the mobile phones were in stand-by mode
without own use. Measurements were taken close to the mobile phone
(proximal), with a distance of B10� 15 cm between the PEM and mobile
phone (for both studies), and distal from the source (exact location, see
Figure 2), with a distance of B50 cm for the public transport study and
B70–80 cm for the car study. During data collection in the framework of
the public transport study, the device distant to the source was carried in
a waist pack in front of the body (Figure 2) in order to maintain a distance
of B50 cm from the emitting device.
The public transport study was carried out in four different settings: bus

stop, train station, bus ride and train ride. Data collection took place during
3 weeks (from 25 January 2010 to 23 March 2010) in the morning and in
the evening during regular commuting hours, always at the same time of
the day and on the same travel routes. The scenarios were rotated each
day to obtain for each scenario one morning and one evening
measurement for each workday. The scenarios were rotated each day to
obtain for each scenario one measurement for each workday. During
the measurements, a prespecified activity diary was filled in to
unequivocally attribute each measurement to the correct setting or area.
The car study consisted of five car rides, which were conducted on five

different days between 13 November 2010 and 4 January 2011 on the
same routes. In each ride, a distance of B280 km had been covered. Rural,
urban and highway areas were defined when leaving or entering the city

or a highway, respectively, by-passing the road sign. By using GPS (Global
Positioning System) recordings, measurements of each ride were classified
as rural, urban or highway measurements.
All measurements of both studies had been collected by the same

trained collaborator.

Personal Measurements

We used two PEMs of the type EME Spy 120 (SATIMO, Cour-
taboeuf, France, http://www.satimo.fr/), which were placed proximal and
distal to the mobile phone. This portable device is capable of measuring
12 different frequency bands of RF-EMF, ranging from 88MHz (frequency
modulation) to 2500MHz (W-LAN). Uplink and downlink mobile phone
bands are measured separately. The measured frequency ranges for the
uplink bands are 880–915MHz (GSM900), 1710–1785MHz (GSM1800) and
1920–1980MHz (UMTS), which fits to the emission spectrum of the used
mobile phones. Note that CDMA is not in use in the study country.
The measurement interval was set to 4 s in order to collect a large

amount of data points.

Statistical Analysis

To take into account the measurements below the detection limit,
arithmetic mean values, and other summary statistical measures were
calculated using the robust regression on order statistics method10 for
each setting on each day separately. If less than three measurements were
above the detection limit for a given setting and frequency band, the
arithmetic mean value was set to 0.000265mW/m2.

RESULTS

A total of 109,668 measurements had been collected (64,551
measurements from the public transport study and 45,117 from
the car study). The power flux density of the total uplink measu-
rements of the three uplink bands combined (GSM900, GSM1800
and UMTS) was highly variable. For the reference scenario, highest
uplink values were found during train rides (1.19mW/m2), whereas
lowest values occurred during car rides in rural areas (0.0012mW/m2)
(Figure 3a). Uplink levels during the reference scenario (mobile
phone turned off) were higher in the public transport study than
in the car study, and total uplink exposure mainly originates from
GSM900 and GSM1800 frequency bands, although the contri-
bution of UMTS is negligible (o0.001mW/m2, except for train
rides: 0.0013mW/m2) (Figure 3a and 3b). Even during the quad-
band scenario, the GSM bands were higher than the UMTS bands
in all settings.

Public Transport Study

Total power flux density of all the measured frequency bands (88–
2500MHz) for all settings combined for the PEM placed proximal
to the mobile phone was 0.65mW/m2 in the reference scenario,
0.43mW/m2 in the dual-band scenario and 0.73mW/m2 in the
quad-band scenario. The average proportions of uplink mea-
surements in all four transportation modes combined were
81.6% (reference), 72.6% (dual-band) and 55.3% (quad-band),
respectively.
For all settings and scenarios combined, the percentage of

nondetects for the device in vicinity to the source was 60.8%
(67.7% for the distant device) for GSM900 and GSM1800
combined and 98.2% for UMTS.
During the scenarios with activated phones, GSM uplink

(combination of GSM900 and GSM1800) measurements in public
transports were not consistently higher compared with the
reference scenario (Figure 3a and 3c), as would have been
expected on the basis of our hypothesis. During train rides, where
most of the location updates are expected to occur, measurement
levels were actually lower with the activated phones. In contrast,
UMTS uplink levels were always higher in the scenario with an
activated quad-band phone compared with the two other
scenarios without own UMTS emissions (Figure 3b). Except during

Figure 1. Overview of the study design consisting of the two
sub-studies: public transport study (a) and the car study (b).

Figure 2. Overview of the placement of the mobile phone and the
measurement devices in the public transport study (a) and the car
study (b).
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train rides, this difference was smaller for the distal measurement
device (Figure 3d). The data distribution for each scenario and
frequency band is presented as Supplementary Figure 1a–d.

Car Study

Total power flux density of all measured frequency bands in all
areas for the PEM placed proximal to the mobile phone was
0.12mW/m2 in the reference scenario, 0.35mW/m2 in the dual-
band scenario and 1.62mW/m2 in the quad-band scenario. The
proportions of uplink bands were 4.9%, 62% and 81.9%, respectively.
For all settings and scenarios combined, the percentage of
nondetects for the device in vicinity to the source was 88.4%
(93.4% for the distant device) for GSM900 and GSM1800 com-
bined and 99.2% for UMTS.
During the scenarios with activated phones GSM uplink

measurements were considerably higher compared with the
reference scenario (Figure 3a–d). For instance, in rural areas, GSM
uplink of the proximal device was 0.0014mW/m2 for the reference
scenario, 0.395mW/m2 for the dual-band scenario and 2.923mW/m2

for the quad-band scenario (Figure 3a). The proximal and distal
devices showed similar values for GSM frequency bands.
With regard to UMTS uplink, levels were increased for the quad-

band scenario compared with the two other scenarios (Figure 3b).
This increase was more pronounced for the proximal device than
for the distal device. For the distal device, it was even negligible
for the urban areas (Figure 3d). The data distribution for each
scenario and frequency band is presented as Supplementary
Figure 1a–d.

DISCUSSION

Our study demonstrates that PEM measurements are affected by
one’s own mobile phone in stand-by mode. The effect was more
pronounced in the car study than in the public transport study.
This pattern is not surprising because measurements in one’s own
car are hardly affected by other people’s mobile phone. During
commuting in public transports, however, other people’s mobile

phones are influencing the uplink measurements considerably.
Thus, GSM levels in the reference scenario during bus and train
rides were about 100 times higher than those during car rides. As
a consequence of this high background exposure in trains, due to
the use of other people’s mobile phone in a closed area intensified
by the Faraday cage effect, the relative contribution of the
location update from one’s own mobile phone is small and the
contribution of the own mobile phone is masked in our mea-
surements.
This measurement study provided additional insights. First,

UMTS uplink exposure is considerably lower than GSM uplink
exposure. For UMTS, the impact of the own quad-band mobile
phone (smart phones) was observable in almost all scenarios.
However, the absolute contribution of UMTS signals to total uplink
exposure (GSM900, GSM1800 and UMTS signals combined) was
very small (0.2% for the public transport study and 5.4% for the car
study). Second, for location updates, quad-band phones seem to
use both the GSM and the UMTS frequency bands. We measured
higher GSM than UMTS levels and found an indication that GSM
location update of quad-band phones is more pronounced than
GSM location update of dual-band phones. This suggests that
quad-band phones execute more location updates than dual-
band phones. Possibly, quad-band mobile phones need more
frequent location updates because of new applications (apps)
including push notifications. Push notifications, which require
W-LAN or cellular connection, are a way for applications (news-
paper, e-mail, messages and others) to provide alerts
and information. Third, even for the distal PEM of the car
study, we found considerable impact from one’s own mobile
phone. This implies that one’s own mobile phone in a car is a
relevant exposure source to the passenger(s) even if not carried
on the body.
Our study implies that PEM uplink measurements are affected

by one’s own mobile phone in stand-by mode. This was best
visible in the car study, where measurements were barely affected
by other people’s mobile phone. In public transports or when
being stationary (in bus stop and train station), the relative impact
of one’s own phone was small compared with the other sources,

Figure 3. Arithmetic mean uplink power flux density levels (mW/m2) in the public transport study and the car study subdivided in the GSM
900/1800 and UMTS frequency bands for the devices proximal (a, b) and distal (c, d) to the source (mobile phone).
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and thus less clearly visible. Nevertheless, an impact on the
measurement has to be expected, especially when moving. We
also found some indications that RF-EMF contributions in stand-by
mode will become more relevant in the future because of
the increasing use of smart phones that need regular location
updates. To the best of our knowledge, no study has yet investi-
gated the exposure from location updates in real-life situations.
The study offers amendatory information about exposure

provoked by other people. In this context, we observed higher
RF-EMF exposure in settings in which a lot of people are present,
as especially was perceived in public transports, particularly in
trains, and in urban environments augmenting exposure levels.
This was clearly shown by higher exposure levels for the reference
scenario in which only background exposure levels were
quantified.
Our results reflect a snapshot in time based on one type of

mobile phone for each scenario and two mobile phone operators.
Thus, it cannot be generalized to other countries or to the future,
as the extent of location update is determined by various factors
such as the type of phone and the implemented technology of the
mobile phone network operators.11 Thus, there is an urgent need
to evaluate more thoroughly how personal RF-EMF exposure is
affected by one’s own phone in stand-by mode. A better knowl-
edge of the relevance of this exposure source in comparison with
RF-EMF exposure when talking on a phone helps clarify whether
the duration of mobile phone use, the most common exposure
surrogate in epidemiological RF-EMF research, is actually an
adequate exposure proxy. In particular, when interested in whole-
body exposure, new exposure assessment approaches have to
be considered by taking into account the emission behaviour of
mobile phones in stand-by mode. Whole-body exposure is of
interest, for instance, in studies on leukaemia12 or on the foetus
during pregnancy.13,14

Our measurement study has some relevance for people who
want to minimize their personal exposure. The study indicates that
own uplink exposure during car driving can be considerably
reduced (about a fraction of 100) when turning off one’s own
mobile phone in order to prevent it from location updates.
Recently, the use of UMTS phones has been recommended as a
precautionary measure, because UMTS calls are carried out with
lower amount of radiation emissions.15 Before this precautionary
measure can be firmly given to the public, it has to be ensured
that lower exposure during calls is not compensated with higher
emissions in stand-by mode.
In summary, this study demonstrates the complexity of the

RF-EMF emission pattern of mobile phones in stand-by mode.
So far, this exposure source has been neglected in the RF-EMF
research. More thorough studies are needed to quantify this

contribution to the total personal exposure. Such knowledge is
needed for the interpretation of previous RF-EMF research and for
the design of future high-quality epidemiological research.
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1 Röösli M, Frei P, Bolte J, Neubauer G, Cardis E, Feychting M et al. Conduct of a

personal radiofrequency electromagnetic field measurement study: proposed

study protocol. Environ Health 2010; 9(1): 23.

2 Viel JF, Cardis E, Moissonnier M, de Seze R, Hours M. Radiofrequency exposure in

the French general population: band, time, location and activity variability.

Environ Int 2009; 35(8): 1150–1154.

3 Bolte JF, van der Zande G, Kamer J. Calibration and uncertainties in personal

exposure measurements of radiofrequency electromagnetic fields. Bioelec-

tromagnetics 2011; 32(8): 652–653.
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10 Röösli M, Frei P, Mohler E, Braun-Fahrländer C, Bürgi A, Fröhlich J et al.
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548

Journal of Exposure Science and Environmental Epidemiology (2013), 545 – 548 & 2013 Nature America, Inc.

http://www.nature.com/jes
http://www.nature.com/jes


4 The effect of the own mobile phone on personal RF-EMF measurements 

28 

 

 

SUPPLEMENTARY MATERIAL 

FIGURE 1. 

 

 

 



4 The effect of the own mobile phone on personal RF-EMF measurements 

29 

 

 

 

 

 

 

 

 

 

 

 

 



5 Reproducibility of personal RF-EMF measurements 

30 
 

5 Reproducibility of personal RF-EMF 

measurements 

 

Article 2: Use of portable exposure meters for comparing mobile phone base 

station radiation in different types of areas in the cities of Basel and Amsterdam 

 

Damiano Urbinello1,2, Anke Huss3, Johan Beekhuizen3, Roel Vermeulen3 and Martin 

Röösli1,2 

 

 

1  Swiss Tropical and Public Health Institute 

2  University of Basel, Switzerland 

3 Institute for Risk Assessment Sciences, Utrecht University, The Netherlands 

  

 

 

 

 

 

 

 

 

 

 

 

 

Published in the Journal Science of the Total Environment 468-469:1028-1033 

(2014). doi: 10.1016/j.scitotenv.2013.09.012 



Use of portable exposure meters for comparing mobile phone base
station radiation in different types of areas in the cities of Basel
and Amsterdam

Damiano Urbinello a,b, Anke Huss c, Johan Beekhuizen c, Roel Vermeulen c, Martin Röösli a,b,⁎
a Swiss Tropical and Public Health Institute, Department of Epidemiology and Public Health, Socinstrasse 57, Basel, CH-4002, Switzerland
b University of Basel, Petersplatz 1, Basel, CH-4003, Switzerland
c Institute for Risk Assessment Sciences, Department of Environmental Epidemiology, Utrecht University, Yalelaan 2, Utrecht NL-3508 TD, the Netherlands

H I G H L I G H T S

• High reproducibility of mobile phone base station exposure levels

• Portable devices are suitable for monitoring trends in the everyday environment.

• Base station radiation exposure is the dominant exposure source outdoors.

• High spatial and low temporal variability of mobile phone base station exposure

• Exposure levels of total RF-EMF exposure were highest in downtown and business areas.
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Variability

Background: Radiofrequency electromagnetic fields (RF-EMF) are highly variable and differ considerably within

as well as between areas. Exposure assessment studies characterizing spatial and temporal variation are limited

so far. Our objectivewas to evaluate sources of data variability and the repeatability of dailymeasurements using

portable exposure meters (PEMs).

Methods: Data were collected at 12 days between November 2010 and January 2011 with PEMs in four different

types of urban areas in the cities of Basel (BSL) and Amsterdam (AMS).

Results: Exposure from mobile phone base stations ranged from 0.30 to 0.53 V/m in downtown and business

areas and in residential areas from 0.09 to 0.41 V/m. Analysis of variance (ANOVA) demonstrated that measure-

ments from various days were highly reproducible (measurement duration of approximately 30 min) with

only 0.6% of the variance of all measurements from mobile phone base station radiation being explained

by the measurement day and only 0.2% by the measurement time (morning, noon, afternoon), whereas type

of area (30%) and city (50%) explained most of the data variability.

Conclusions: We conclude that mobile monitoring of exposure from mobile phone base station radiation with

PEMs is useful due to the high repeatability ofmobile phone base station exposure levels, despite the high spatial

variation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The substantial increase and development of new telecommunica-

tion technologies in the last two decades resulted in a fundamental

change of radiofrequency electromagnetic fields (RF-EMF) exposure

patterns in the everyday environment (Frei et al., 2009b; Neubauer

et al., 2007; Röösli et al., 2010). The Research Agenda of the World

Health Organization (WHO) considered the quantification of personal

RF-EMF exposure and identification of the determinants of exposure

in the general population as a high priority research need (World

Health Organization, 2010). However, exposure quantification is com-

plex due to the high variability of RF-EMF levels in the environment

(Bornkessel et al., 2007; Frei et al., 2009a; Joseph et al., 2008; Röösli

et al., 2010).

There are different strategies andmethodologies to monitor RF-EMF

exposure. In general, two types of measurement procedures have

been developed, fixed-location and mobile monitoring. Fixed-location
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measurements with a spectrum analyzer are very accurate for deter-

mination of exposure at a specific point in time and space. However,

this type of exposure assessmentmethod is time and resource intensive

in terms of equipment, costs and trained personnel (Bornkessel et al.,

2010; Joseph et al., 2009). As a consequence, collecting data representing

typical exposure levels over time in awide geographic area is challenging

if not impossible (Bornkessel et al., 2010). In contrast, portable exposure

meters (PEMs) allow collecting numerous measurements with relative

little effort at different locations (Röösli et al., 2010). Such devices

have been successfully applied in a few previous studies (Bolte and

Eikelboom, 2012; Frei et al., 2009b; Joseph et al., 2010; Thuróczy et al.,

2008; Usher, 2010; Viel et al., 2009).

Due to high spatial variation of RF-EMF around base stations

(Bornkessel et al., 2007), exposure varies considerably within as well

as between areas, resulting in complex exposure patterns and it is large-

ly unknown how reproducible personal measurements are in a given

area. Such information is, however, urgently needed when planning

exposure monitoring in order to determine adequate sampling rates

and possibly repeatedmeasurements to obtain data that are representa-

tive of the true exposure.

In our analysis, we studied the spatial and temporal variability

in RF-EMF exposure levels in different types of areas with concur-

rently conducted personal measurements in the cities of Basel and

Amsterdam. We used repeated measurements in both cities to examine

how repeatable measurements with PEMs are according to type of

area, and to evaluate the suitability of PEM measurements for monitor-

ing purposes.

2. Materials and methods

2.1. Study design

Data collection took place at the same dates and the same times

of the day in Basel and Amsterdam between November 10th, 2010 and

January 27th, 2011.Measurements in each areawere taken every second

week at two consecutive days on Wednesdays and Thursdays, respec-

tively. On each measurement day, the timing of the area measurement

sequence was shifted. This rotation scheme ensured having measure-

ments in the morning, during noontime and in the afternoon for each

area.

We selected typical areas in both cities, yet different types of urban

areas (Table 1): business, downtown and residential areas. A measure-

ment path of about 2 km length (Table 1) was chosen (online Figs. 1

and 2) per area. We included a downtown area with a busy pedestrian

zone. The business area contains business venues with large building

complexes. The central residential areas are located in zones with

higher buildings (4 to 5 floors) and more traffic as well as more people

on the sidewalks. Typical non-central residential areas in Basel are locat-

ed outside the city center in quiet residential zones with building

heights of about 2 to 3 floors and relatively large proportions of green

space. In Amsterdam, one of the two non-central residential areas is

situated partly in a quiet area (Sloterplas), whereas the second area is

considered as a high-rise residential area with higher buildings (6 to 7

floors).

2.2. Measurements

For data collection in the city of Basel, we used a PEM of the type

EME Spy 120 (SATIMO, Courtaboeuf, France, http://www.satimo.fr/)

and in Amsterdam, a PEM of the type EME Spy 140. The portable device

EME Spy 120 is capable of measuring 12 different frequency bands

of RF-EMF, ranging from FM (Frequency Modulation, 88–108 MHz)

to W-LAN (Wireless Local Area Network, 2400–2500 MHz). Its lower

and upper sensitivity range is 0.0067 and 66.3 mW/m2 (electric field

strength between 0.05 and 5 V/m) respectively. The exposimeter EME

Spy 140 measures 14 frequency bands of RF-EMF, ranging from FM to

W-LAN 5G (5150–5850 MHz). This device has a higher sensitivity

range at the lower detection limit of 0.000067 to 66.3 mW/m2 (electri-

cal field strength between 0.005 and 5 V/m). The interval between two

measurements was set to 4 s, which corresponds to a distance of about

4.4 m, assuming a walking speed of approximately 4 km/h. Before Sep-

tember 2010 and after April 2011, accuracy checks of the devices were

performed at the Swiss Federal Institute of Technology in Zurich (ETH).

The results of the tests showed that accuracy of thedevices did not change

during the whole data collection period. However, we found indications

that cross-talk occurred between DECT (Digital Enhanced Cordless Tele-

communications) and GSM1800 (Global System for Mobile Communica-

tions) downlink signals for both, the EME Spy 120 as well as the EME Spy

140. Thus, we did not consider DECTwhen calculating total RF-EMF expo-

sure levels.

For the measurements in Basel, the exposimeter was placed in a

pushchair cart with a distance of about 1 m to the assistant performing

the measurements and at around 1 m height above ground. The

same was applied in Amsterdam, except that a bicycle cart was used

and the assistant was walking beside, pushing the bicycle, ensuring

about same walking speed in both cities. In both cities, the mobile

phone of the assistant taking the measurements was turned off during

measurements.

Table 1

Overview of the selected areas.

Denotation Basel: area name/measurement path length/

density of base stations*

Amsterdam: area name/measurement path length/

density of base stations*

Area characteristics

Non-central

residential area 1

Im Langen Loh 2.3 km

N10 base stations

Sloterplas

2.2 km

b5 base stations

Building height: 2 to 3 floors

Near a quiet area and along a busy street (only

Amsterdam)

Non-central

residential area 2

Byfangweg

2 km

N10 base stations

Plesmanlaan

1.9 km

5–10 base stations

Building height: 3 to 4 floors and quiet area (Basel)

High-rise residential area with buildings up to 6–7

floors (Amsterdam)

Central residential

area

Gundeldingen

2.3 km

N10 base stations

Albert Cuypstraat

1.7 km

N10 base stations

Building height: 4 to 5 floors

Shops

Residential

Lot of activity in terms of pedestrian

Downtown Barfüsserplatz/Marktplatz

2.1 km

N10 base stations

Leidseplein

2 km

N10 base stations

Meeting point

Pedestrian area with strolling people

Traffic and many trams

Business area Messeplatz

2.2 km

N 10 base stations

Zuidas

2 km

N 10 base stations

Conference venue/business place

Large building complex

Base station density in three categories: b5 base stations; 5–10 base stations; N10 base stations. Within a buffer of 500 m along the measurement path.
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2.3. Statistical analysis and data management

Arithmeticmean values for each frequency band in each area at each

day were separately calculated using the robust regression on order

statistics (ROS) method (Röösli et al., 2008), since a large proportion

of PEM measurements were censored (below the lower detection

limit of the PEM). In order to have comparable results for Amsterdam

and Basel, due to the use of two types of PEMs with different lower

detection limits (EME Spy 120: 0.05 V/m; EME Spy 140: 0.005 V/m),

we also censored Amsterdamdata at 0.05 V/m to calculatemean values

using ROS. In addition, the proportion of measurements above the

thresholds of 0.5 and 1 V/m was determined to compare the distribu-

tion of peak exposure levels. All calculations were conducted using

power flux density values and then back-transformed to electric field

strengths (V/m), except for analysis of variance (ANOVA) calculations.

We focused on mobile phone base station downlink exposure,

i.e. the sum of GSM900 (925–960 MHz), GSM1800 (1805–1880 MHz)

and UMTS (Universal Mobile Telecommunications System, 2110–

2170 MHz), as well as mobile phone uplink (handset) exposure: i.e. the

sum of GSM900 (880–915 MHz), GSM1800 (1710–1785 MHz) and

UMTS (1920–1980 MHz). In this paper, total exposure is defined as

the sum of all mobile phone uplink and downlink frequency bands as

well as FM (88–108 MHz), TV3 (Television, 174–223 MHz), TETRAPOL

(professional radio communication standard, 380–400 MHz), TV4/5

(470–830 MHz) and W-LAN (2400–2500 MHz). To evaluate sources of

data variability, ANOVA calculations were conducted based on daily

means of power flux density levels for all frequencies combined (total),

as well as separately for downlink and uplink signals. For the ANOVA, ex-

planatory variablesweremeasurement day, time of the day (3 categories:

09:15–11:59; 12:00–12:59 and 13:00–16:50), type of area (central and

non-central residential, downtown and business areas) and city (Basel

vs. Amsterdam).

Summary statistics were calculated using R version 2.11.1. ANOVA

was calculated using STATA version 10.1 (StataCorp, College Station,

TX, USA) based on a balanced data set of arithmetic mean values.

Some technical failures occurred during data collection period

(Amsterdam: failure of the device on the second measurement day

(11th November 2011); missing GPS data for the 1st and 2nd measure-

ment day (10th and 11thNovember 2010); Basel: uplink valueswere ex-

cluded for the 11th November (non-central residential area 2 and

business area) and 23rd December 2010 (central residential and down-

town area) and thus for calculation of total RF-EMF exposure, uplink

values for these days were excluded).

3. Results

3.1. Comparison of mean RF-EMF exposure levels between areas

In total, 20,063 downlink and 18,700 uplink measurements were

collected in all Basel areas and 28,183 uplink and downlink measure-

ments in Amsterdam areas. Area-specific averages of exposure from

all frequency bands combined (total RF-EMF) ranged from 0.09 V/m

(non-central residential area in Basel) to 0.63 V/m (business area

in Amsterdam) (Table 2). The highest total RF-EMF exposure levels

occurred in the downtown and business areas (Table 2). Whereas the

lowest values were observed in non-central residential areas.

Similarly, exposure to mobile phone base stations (all downlink fre-

quencies combined: sum of GSM900, GSM1800 and UMTS)was highest

in the downtown and business areas and lowest in non-central residen-

tial areas (Table 3). In all areas, the GSM900 and GSM1800 bands were

the main contributors to total downlink exposure.

Regarding peak values, a similar pattern was found as for average

exposure values, with more peak values above 0.5 V/m or 1 V/m in

the downtown and business area for total (all frequency bands com-

bined) and downlink exposure levels (Table 3). Overall, measurements

above 1 V/m were rare in all three downlink bands in all areas.

Exposure from mobile phone handsets (uplink) was considerably

lower than downlink values in all areas. Peak values were rare and

in Basel for all areas combined, the proportion of uplink measurements

above 0.5 V/m was 0.05% for GSM900 and 0.12% for GSM1800.

For Amsterdam, the respective proportions were 0.11% and 0.14%. In

Table 2

Overview of average exposure as well as the percentage of values above the threshold of

0.5 V/m and 1 V/m, respectively, for all frequency bands combined.

Exposure from all

frequency bands combineda
Arithmetic

mean values

Percentage of

values over

threshold

[V/m] 0.5 V/m 1 V/m

n Total Total Total

All areas BSL 20,063 0.26 4.92% 0.57%

AMS 28,183 0.47 30.97% 2.64%

Non-central residential area 1 BSL 4302 0.09 0.05% 0.02%

AMS 6110 0.43 19.26% 3.22%

Non-central residential area 2 BSL 3625 0.27 6.68% 1.74%

AMS 5575 0.35 10.80% 0.27%

Central residential area BSL 4608 0.19 2.13% 0.13%

AMS 4817 0.35 12.21% 1.41%

Downtown BSL 3866 0.32 7.89% 0.83%

AMS 6030 0.55 43.20% 3.98%

Business area BSL 3662 0.32 9.31% 0.33%

AMS 5651 0.63 66.45% 3.96%

a Sum of all mobile phone uplink and downlink frequency bands, FM, TV3, TETRAPOL,

TV4/5 and W-LAN.

Table 3

Overview of average exposure as well as the percentage of values above the threshold of 0.5 V/m and 1 V/m, respectively for mobile phone downlink frequency signals.

Mobile phone base station exposure Arithmetic mean values [V/m] Percentage of values over threshold

0.5 V/m 1 V/m

n GSM 900 GSM 1800 UMTS Total DLa GSM 900 GSM 1800 UMTS GSM 900 GSM 1800 UMTS

All areas BSL 20,063 0.13 0.19 0.08 0.24 4.61% 2.45% 0.07% 0.40% 0.36% None

AMS 28,183 0.27 0.30 0.14 0.43 5.66% 10.18% 0.38% 0.37% 0.77% 0.11%

Non-central residential area 1 BSL 4302 0.02b 0.05 0.07 0.09 None None None None None None

AMS 6110 0.23 0.34 0.03b 0.41 4.06% 10.74% None 0.15% 2.16% None

Non-centralresidential area 2 BSL 3625 0.05 0.26 0.04b 0.26 0.06% 5.68% None None 1.49% None

AMS 5575 0.28 0.10 0.16 0.34 5.88% None 0.34% 0.13% None 0.02%

Central residential area BSL 4608 0.09 0.12 0.09 0.18 0.74% 0.33% None 0.04% None None

AMS 4817 0.18 0.24 0.12 0.33 3.11% 4.19% 0.15% 0.42% None 0.02%

Downtown BSL 3866 0.16 0.24 0.10 0.30 1.27% 2.61% None 0.21% 0.36% None

AMS 6030 0.33 0.38 0.17 0.53 8.57% 17.73% 0.48% 1.01% 1.06% 0.02%

Business area BSL 3662 0.21 0.18 0.10 0.30 3.60% 1.12% 0.19% 0.22% None None

AMS 5651 0.29 0.37 0.16 0.49 5.77% 16.69% 0.90% 0.12% 0.39% None

a Downlink (exposure from mobile phone base stations).
b Below the sensitivity level of the exposimeter. Results are tenuous.
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the UMTS band, no uplink measurements above 0.05 V/m occurred

in Basel or in Amsterdam.

3.2. Analysis of data variability between areas

Exposure levels within areas had high spatial variability, Fig. 1

demonstrates, however, that exposure levels were similar on various

measurement days and times of the day at the same location on the

measurement path. Thus, repeated measurements showed a high

reproducibility for mobile phone base station exposure (all downlink

frequencies combined):

Fig. 2 shows that average downlink exposure levels per area

remained fairly constant during the measurement period between

November 2010 and January 2011. This is confirmed by variance analy-

ses (Table 4). Day of measurement as well as time of the day explained

only a very small proportion of the mobile phone base station data

variance (0.6% and 0.2%). Most of the observed data variance is

explained by city (50%) and area (30%). Similar results were found

for total RF-EMF exposure. For mobile phone handset exposure, day of

measurement (3.5%) and time of the day (1.5%) explained somewhat

more data variability.

4. Discussion

This study analyzed the sources of data variability and quantified RF-

EMF exposure levels in four different types of urban environments

of two European cities based on repeated measurements with portable

exposimeters following a standardized measurement protocol. We

found that total (all frequency bands combined) mean exposure levels

and exposure from mobile phone base stations were higher in down-

town and business areas compared to residential areas. Exposure was

highly spatially variable and varied considerably between the areas.

Fig. 1. Repeatability of mobile phone base station measurements (downlink) of one EME Spy 140 PEM for each area in Amsterdam: the graphs show the moving average of the electric

field strengths along the whole measurement paths on 10 measurement days (no data for the 1st and 2nd measurement day, 10th and 11th November 2010). Moving averages were

taken over 11 successive measurements, corresponding to a measurement interval of 44 s.
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However, temporal variabilitywas low andwe found good repeatability

of measurements in the same area when conducting themeasurements

at different dates and different times of the day.

4.1. Comparison of exposure levels with other studies

RF-EMF exposure levels in our studywere in accordancewith studies

of Joseph et al. (2008), who found downlink levels from GSM900 and

GSM1800 in Gent and Brussels of up to 0.52 V/m in outdoor areas

as well as with Frei et al. (2009a,b) with an average of total exposure of

0.28 V/m performed in Basel outdoors. The contribution of mobile

phone base station signals to total RF-EMF exposure was about 89%

in Basel and 81% in Amsterdam, whereas uplink exposure was low

(Basel: 6% and Amsterdam: 4%). However, outdoor measurements

of uplink exposure depend on time, weather conditions and place.

An additional explanation might be that uplink exposure levels were

somewhat underestimated since whenwalkingwith a bicycle or a push-

chair cart, people keep in generalmore distance to a person aswithout. A

small increase in distance will considerably reduce the amount of uplink

exposure. During rush hour, lunch hour aswell as in placeswhere people

cumulate, such as at sidewalks of pubs, in shopping areas and the city

center, exposure from mobile phone handsets was found to be higher

compared to other areas (e.g. residential areas). Other studies have also

reported mobile phone base station radiation exposure to be the domi-

nant exposure source when being outdoors: Frei et al. (2009b) observed

that in a Swiss population samplewith personalmeasurements collected

between 2007 and 2008,mobile phone base station signals accounted for

about 52.6% of outdoor exposure levels. The proportion may be some-

what lower compared to our study, because in population survey studies,

participants do not have to turn off their own mobile phone as in our

study. A European comparison of personal RF-EMF exposure in urban

areas is in line with our findings that exposure from mobile phone base

stations in outdoor urban environments was important and dominating,

particularly in measurement series performed in Belgium (around 90%)

and in the Netherlands (approximately 80%) (Joseph et al., 2010). In

these two countries, also the own mobile phone was switched off

when collecting the measurements.

Within the mobile phone base station bands, UMTS exposure was

considerably lower than GSM900 and GSM1800 exposure (Basel: 12%;

Amsterdam: 10%). These results are in line with a study of Bornkessel

et al. (2007) in Germany showing that for 85% of all measurement

points, exposure in both GSM bands was higher than UMTS exposure.

In a Swiss study conducted in public transports and cars, results

suggested that UMTS uplink exposure was considerably lower than

GSM uplink exposure (Urbinello and Röösli, 2013).

Regarding base station densities in both cities, GSM base stations are

in the majority (online Figs. 1 and 2). However, with mobile

phones using web-based applications, especially since the introduction

of smartphones, UMTS (3rd Generation) as well as newer technologies

have increased over the last years andwill likely becomemore important

in the future.

4.2. Interpretation

One important finding of our study is the high repeatability of

mobile phone base station exposure measurements on the same

Fig. 2. Average mobile phone base station exposure (downlink) per measurement day according to type of area (no data for the 2nd measurement day in Amsterdam).

Table 4

Analysis of variance of dailymean exposure levels expressed as powerfluxdensity for total

RF-EMF, downlink and uplink frequency bands.

Source d.f. Explained variancea F p

Total

Measurement day 11 0.30 0.15 0.10

Time of the dayb 2 0.18 0.51 0.60

City 1 44.84 247.92 b0.001

Area 4 32.93 45.52 b0.001

Whole model 18 83.54 25.66 b0.001

Downlink

Measurement day 11 0.59 0.33 0.98

Time of the dayb 2 0.20 0.61 0.55

City 1 47.37 292.5 b0.001

Area 4 31.31 48.34 b0.001

Whole model 18 85.26 29.25 b0.001

Uplink

Measurement day 11 3.62 0.9 0.54

Time of the dayb 2 1.51 2.06 0.13

City 1 39.41 107.63 b0.001

Area 4 15.88 10.84 b0.001

Whole model 18 67.41 10.23 b0.001

a Percentage of total variance.
b 3 categories: 09:15–11:59; 12:00–12:59 and 13:00–16:50.
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route, although spatial variability of RF-EMF is high. We found high

repeatability for area averages based on a measurement duration of

approximately 30 min which corresponds to 450 data points. High re-

peatability was also observed for measurements at a given location

on the path when relying on moving averages of 11 data points. Our

ANOVA indicates that time of the day and date have little impact on re-

cordings. Since we only measured during daytime at two work-days

(Wednesday and Thursday), between November and January, we

cannot exclude that differences between work-days, weekends, holi-

days and seasons, as well as between daytime and evening measure-

ments could be larger. In a personal RF-EMF measurement study

conducted by Bolte and Eikelboom (2012) total mean exposure during

evening (0.382 mW/m2) was about twice the exposure than during

daytime (0.183 mW/m2) and about four times the exposure during

night (0.095 mW/m2). But at least partly, this difference is likely to be

explained by different types of activities of the participants at different

time of the day. We have not conducted measurements during the

weekend and thus were not able to estimate data variability between

work-days and weekend. However, Frei et al. (2009b) and Viel et al.

(2011) found similar exposure values for weekend and work-days

suggesting that this factor is not very relevant. Interestingly, high re-

peatability of measurements on the same route could also be confirmed

when expanding the study period to 10 months (Beekhuizen et al.,

2013). We also found little indications that repeatability depends on

the data variability or the proportion of measurements above certain

thresholds, since the pattern of the repeatedmeasurements was similar

in all four types of areas.

4.3. Strengths and limitations

To our knowledge, this is thefirst study that used a standardizedmea-

surement protocol with concurrently conducted data repeated measure-

ment series from different types of urban areas to systematically evaluate

repeatability of personal RF-EMFmeasurements. A further strength of the

study was that PEMs were placed distant to the body in order to avoid

shielding of themeasurements by the own body, which has been demon-

strated to result in an underestimation of the exposure (Iskra et al., 2010).

Since, during measurements, the own mobile phone was turned off, our

uplink values can be attributed to other peoples' mobile phone, which

was not the case in previous personal exposure studies based on volun-

teers (Frei et al., 2009b; Viel et al., 2009), which is a limitation for source

attribution (Urbinello and Röösli, 2013).

Our study also has limitations; the PEMs used in both cities were not

of the same type and differed in their lower detection limit. However,

we censored the Dutch data at the same detection limit as the Swiss

data (0.05 V/m) to obtain comparable results and we excluded the

two additional frequency bands for calculations of total RF-EMF expo-

sure (i.e. WiMax (Worldwide Interoperability for Microwave Access):

3400 to 3800 MHz and W-LAN 5G: 5150 to 5850 MHz) measured by

the EME Spy 140 used for data collection in Amsterdam. We also

checked whether the summary statistics of the Dutch data differed

depending on censoring at the detection limit of the EME Spy 120

or EME Spy 140 device, but found that not to be the case (data not

shown). Uncertainty of the measurement accuracy of such portable de-

vices has been investigated before (Bolte et al., 2011; Bornkessel et al.,

2010; Lauer et al., 2012).

Ideally, one would be able to choose measurement paths that are

representative of the exposure a population would have in the respec-

tive area, but it is unclear how this could be achieved. The selection of

the areas and measurement paths through the different areas of the

city determines to a large extent our RF-EMF measurement levels. The

extent of this impact is difficult to quantify and thus the observed higher

exposure levels in Amsterdam have to be interpreted with caution in

terms of the general exposure situation in both cities.More comprehen-

sive data collection is needed to compare exposure situation across

cities and countries.

4.4. Conclusions

Our study indicates that RF-EMF measurements with PEMs allow

collecting large amount of data in a short time period, resulting in robust

data to characterize mean exposure levels in an urban area based on

measurements collected within 30 min. Our repeated measurement

series show little temporal variation in exposure levels, minimizing

the need for many repeated measurements. Thus, exposure surveys

using PEMsmay be suitable tomonitor RF-EMF exposure in the everyday

environment.

Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.scitotenv.2013.09.012.
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ONLINE FIGURES 

FIGURE 1. Base station density and measurement paths in the different areas of 

the city of Basel. 
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FIGURE 2. Base station density and measurement paths in the different areas of 

the city of Amsterdam. 
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Background: Concerns of the general public about potential adverse health effects caused by radio-frequency

electromagnetic fields (RF-EMFs) led authorities to introduce precautionary exposure limits, which vary consid-

erably between regions. It may be speculated that precautionary limits affect the base station network in amanner

that mean population exposure unintentionally increases.

Aims: The objectives of this multicentre study were to compare mean exposure levels in outdoor areas across four

different European cities and to compare with regulatory RF-EMF exposure levels in the corresponding areas.

Methods:We performed measurements in the cities of Amsterdam (the Netherlands, regulatory limits for mobile

phone base station frequency bands: 41–61 V/m), Basel (Switzerland, 4–6 V/m), Ghent (Belgium, 3–4.5 V/m)

and Brussels (Belgium, 2.9–4.3 V/m) using a portable measurement device. Measurements were conducted in

three different types of outdoor areas (central and non-central residential areas and downtown), between 2011

and 2012 at 12 different days. On each day, measurements were taken every 4 s for approximately 15 to 30 min

per area. Measurements per urban environment were repeated 12 times during 1 year.

Results: Arithmetic mean values for mobile phone base station exposure ranged between 0.22 V/m (Basel) and

0.41 V/m (Amsterdam) in all outdoor areas combined. The 95th percentile for total RF-EMF exposure varied be-

tween 0.46 V/m (Basel) and 0.82 V/m (Amsterdam) and the 99th percentile between 0.81 V/m (Basel) and

1.20 V/m (Brussels).

Conclusions: All exposure levels were far below international reference levels proposed by ICNIRP (International

Commission on Non-Ionizing Radiation Protection). Our study did not find indications that lowering the regulatory

limit results in higher mobile phone base station exposure levels.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The introduction and development of wireless telecommunication

technologies have led to a substantial increase in radio-frequency elec-

tromagnetic field (RF-EMF) exposure in the last two decades (Frei et al.,

2009; Joseph et al., 2010; Röösli et al., 2010a), resulting in a fundamen-

tal change of population-based exposure patterns to RF-EMFs.

This growth and ubiquitous use of wireless technology in society

have raised public concerns regarding potential adverse health effects

from RF-EMF exposure (Blettner et al., 2008; Schreier et al., 2006).

This has pressured some countries (e.g., Switzerland and Belgium) to

lower the precautionary regulatory exposure limits, whereas other

countries (e.g., the Netherlands) retained exposure limits as proposed

by the International Commission on Non-Ionizing Radiation Protection

(ICNIRP).

Intuitively, lowering standard limits is expected to decrease expo-

sure of the population by lowering the output powers of antennas.

However, lower regulatory limits could affect the base station network

configuration in a way that more base stations might be required to

compensate lower output powers of antennas. Although a denser net-

work may reduce maximum exposure levels, total average exposure

Environment International 68 (2014) 49–54

⁎ Corresponding author at: Swiss Tropical and Public Health Institute, Department of

Epidemiology and Public Health, University of Basel, Socinstrasse 57, Basel, CH-4002,

Switzerland. Tel.: +41 61 284 83 83; fax: +41 61 284 85 01.

E-mail address: martin.roosli@unibas.ch (M. Röösli).

http://dx.doi.org/10.1016/j.envint.2014.03.007

0160-4120/© 2014 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Environment International

j ourna l homepage: www.e lsev ie r .com/ locate /env int

http://crossmark.crossref.org/dialog/?doi=10.1016/j.envint.2014.03.007&domain=pdf
http://dx.doi.org/10.1016/j.envint.2014.03.007
mailto:martin.roosli@unibas.ch
http://dx.doi.org/10.1016/j.envint.2014.03.007
http://www.sciencedirect.com/science/journal/01604120


of the population may increase because of a higher network density.

Furthermore, in a denser network mast height may be lowered and/or

tilt of the antennas may be increased, producing higher RF-EMF expo-

sure levels at the surface where people are. Thus, precautionary limits

might affect exposure even in a counter-intuitive way and result in an

increased mean exposure in the everyday environment where people

spend their time. A denser network is also expected to affect the output

power of mobile phones: the phones' output power is optimized,

i.e., reduced, while an optimal connection can bemaintained. However,

if handovers (i.e. changing the communicating base station during an

active call while moving) occur (Lin et al., 2002; Urbinello and Röösli,

2013), the output power of GSM (Global System for Mobile Communi-

cation) mobile phones returns to the maximum (Erdreich et al., 2007;

Gati et al., 2009) since they radiate with full power during connection

establishment and down-regulate as soon as connection has been

established. UMTS (Universal Mobile Telecommunication System)

phones, in contrast, have an adaptive regulation and thus radiate with

lower power. The denser the network, the more handovers or location

area updates have to be expected. A recent European study with soft-

ware modified mobile phones found that the average output power

was approximately 50% of the maximal value, and that output power

varied up to a factor 2 to 3 between countries and network operators

(Vrijheid et al., 2009).

So far, an evaluation of the impact of standard limits on the

population's exposure has not been evaluated since comparable

measurement data from countries with different standard limits were

lacking. Such a comparison needs a substantial amount of data from dif-

ferent areas that are collected with the same methodology. Different

studies have been conducted comparing RF-EMF exposure levels with

measurement devices (exposimeter) in different microenvironments

and countries (Bolte and Eikelboom, 2012; Frei et al., 2009; Joseph

et al., 2008, 2010; Thuróczy et al., 2008; Viel et al., 2009). However, in

these studies methods differed between cities concerning recruitment

process of volunteers performing measurements, data analysis and/or

data collection procedures: e.g. in some studies, participants carried an

exposimeter during their activities and were allowed to use their own

mobile phone, which influences RF-EMF exposure even if the mobile

phone is in stand-bymode (Urbinello and Röösli, 2013); while in others

they were not allowed to do so.

The objectives of this multicentre study were to compare RF-EMF

mean exposure levels in different outdoor urban environments and to

evaluate the impact of regulatory limits on RF-EMF outdoor exposure

levels across European cities in terms of 95th and 99th percentiles.

2. Methods

Data collection took place in several European cities, namely Basel

(Switzerland), Ghent and Brussels (Belgium), and Amsterdam (the

Netherlands). All measurements are based on a commonmeasurement

protocol.

2.1. Definition of urban environments and data collection

Measurements were conducted in different outdoor urban envi-

ronments for typically 15 to 30 min per area. The type of area was

matched across countries in order to enable a direct comparison.

We included central residential areas, located in zones with higher

buildings (4 to 5 floors) and considerable road traffic as well as

numerous people on the sidewalks. Non-central residential areas

are situated outside the city centre in quiet residential zones with

building heights of 2 to 3 floors and relatively large proportions of

green space compared to central residential and downtown areas.

Downtown areas represent the city centre with a busy pedestrian

zone.

We performed two separate personal measurement studies. In

study 1, repeated measurements were done in Basel (denoted as

Basel 1), Ghent and Brussels on either Wednesday or Thursday be-

tween April 2011 and March 2012. Data were collected in the first

week of each month in Basel, and preferably in the third week of

each month in Ghent and Brussels. Measurements were shifted by

1 week in case measurements could not be performed in the first

and third week, respectively. The exposimeter was carried on the

rear of the body in a bag.

In study 2, repeated measurements on the same days were carried

out in Basel (denoted as Basel 2) and Amsterdam every second week

on Wednesday and Thursday between 10th November 2010 and 27th

January 2011 (Fig. 1) (Urbinello et al., 2014). In Basel, the exposimeter

was placed in a pushchair cart and in Amsterdam in a bike cart. In this

way, measurements were taken with a distance of around 1 m away

from the body and at a height of 1 m above ground. In study 2, the

paths in Basel differed from the paths in study 1, but the areas were

the same.

Table 1

National and local directives of regulatory RF-EMF exposure limits for the four cities.

Frequency Basela Ghentb Brusselsc Amsterdamd

900 MHz 4 V/m 3 V/m 2.9 V/m 41 V/m

1800 MHz 6 V/m 4.2 V/m 4.1 V/m 58 V/m

2100 MHz 6 V/m 4.5 V/m 4.3 V/m 61 V/m

a Regulatory exposure limit per base station for sensitive areas: living rooms, school

rooms, kindergarten, hospitals, nursing homes, places of employment, children's and

school playgrounds.
b Regulatory exposure limit per antenna: valid for indoor places and children's

playgrounds. These regulatory limits are estimated by calculating 0:1 �
ffiffiffi

f
p

(with f as the

frequency in Hz) for the frequency range between 400 MHz and 2 GHz and 4.48 V/m for

2 GHz to 10 GHz. There is also a limit for cumulative exposure of 21 V/m (at 900 MHz,

frequency dependent).
c Regulatory exposure limit for cumulative RF-EMF exposure: valid at all public availabil-

ity places (exceptions for various technologies).
d Regulatory exposure limit for cumulative RF-EMF exposure.

Fig. 1.Overview of data collection periods in all study cities.+Data collection: 2 days per week/eachmonth/during 12months. Measurements included 3 outdoor areas: central and non-

central residential areas and downtown. ⁎Data collection: 2 days per week/each 2 weeks/during 3 months. Measurements included 3 outdoor areas: central and non-central residential

areas and downtown.
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All measurements were conducted by the same study assistant in all

cities except in Amsterdam. The mobile phone of the person taking the

measurements was turned off while measuring and all measurements

were carried out during daytime. Fig. 1 summarizes the study procedure

in the different cities.

2.2. Study instruments

RF-EMFmeasurements in Basel, Ghent and Brusselswere performed

using the EME Spy 120 (ES 120) from SATIMO (SATIMO, Courtaboeuf,

France, http://www.satimo.fr/), enabling to quantify personal exposure

at 12 separate frequency bands. Frequency bands for the ES 120 range

from FM radio (frequency modulation; 88–108 MHz) to W-LAN (wire-

less local area network; 2.4–2.5 GHz). In Amsterdam, the EME Spy 140

(ES 140) was used. The measurement interval was set to 4 s in order to

collect a large number of data points.

A GPS (Global Positioning System) logger (GPS Sport 245 from

Holux) was used to log locations at 10 second intervals in Basel, Ghent

and Brussels, and a Garmin Oregon 550 (Garmin Inc., Olathe, KS, USA)

in Amsterdam. The Swiss Federal Institute of Technology (ETH Zurich)

developed a smart phone based application to log the time in all

urban environments by registering start and ending of measurements

in a specific microenvironment enabling the linkage of measurements

to the specific area.

All devices were calibrated in September 2010, April 2011, and

December 2011.

2.3. Statistical analyses

The lower detection limit of the ES 120 is 0.0067 mW/m2 and

0.000067 mW/m2 for the ES 140 (corresponding to electric field

strengths of 0.05 V/m and 0.005 V/m, respectively). In order to have

comparable results for Amsterdam, data were censored at 0.05 V/m

and arithmetic mean values, with 95% confidence interval (CI), for

each area and frequency per measurement day were calculated using

the robust regression on order statistics (ROS) algorithm (Röösli et al.,

2008). If less than three measurements were above the detection limit

for a given area and frequency band, the arithmetic mean value was

set to 0.000265 mW/m2 (0.01 V/m). All calculations were conducted

using power flux density values (i.e. power flux per area, denoted as

power densities) in W/m2 and then back-transformed to electric field

strengths (V/m). For the analyses we considered three relevant

frequency groups: i) total RF-EMF exposure: sum of mean power densi-

ties of all frequency bands without DECT (Digital Enhanced Cordless

Telecommunications). We excluded DECT since it is not a relevant

source in outdoor areas and calibration showed cross-talk with nearby

bands; ii) mobile phone base station exposure: sum of mean power

densities of all downlink frequencies (GSM900 (925–960 MHz),

GSM1800 (1805–1880 MHz) and UMTS (2110–2170 MHz)); and iii)

mobile phone handset exposure: sumofmeanpower densities of all up-

link frequencies (GSM900 (880–915 MHz), GSM1800 (1710–1785

MHz) and UMTS (1920–1980 MHz)).

The data distributions including the occurrence of high exposure

values in the four cities were evaluated with the cumulative density

function (CDF).

2.4. Regulatory limits

In the Netherlands, regulatory levels are adopted from the ICNIRP

guidelines (ICNIRP, 1998) (Table 1). The ICNIRP regulatory limits are

frequency-dependent; 41 V/m for 900 MHz, 58 V/m for 1800 MHz and

61 V/m for 2100 MHz.

In Switzerland, the ICNIRP guidelines are also implemented. In addi-

tion, frequency-dependent precautionary exposure limits have been set

(ONIR, 1999). The ONIR (Ordinance relating to Protection from Non-

Ionizing Radiation) limits apply to the emission from one single base

station and are only relevant for sensitive areas where persons spend

most of their time, such as residences, schools, kindergartens, hospitals,

nursing homes, workplaces, children's and school playgrounds. The

ONIR precautionary limits of electric field strengths are 10 times lower

than the ICNIRP guidelines (Table 1). In Ghent, precautionary regulatory

exposure limits of the Flemish region (Ordinance of the Flemish Region

of Nov., 2010) are valid for exposure per base station and apply to

indoor places and children's playgrounds: 3 V/m at 900 MHz, 4.2 at

1800 MHz and 4.5 V/m at 2100 MHz (Table 1). These precautionary

regulatory limits are estimated by calculating 0:1 �
ffiffiffi

f
p

(with f as

the frequency in Hz) for the frequency range between 400 MHz

and 2 GHz and 4.5 V/m for N2 GHz to 10 GHz. In Brussels, limits of

the Brussels Capital Region (Ordinance of the Brussels Capital

Region of 14 March, 2007) are valid at all public places in total (i.e.

cumulative exposure1); precautionary regulatory limits for

1 InGhent, Flanders there is also a limit for cumulative exposure of 21V/m (at 900MHz,

frequency dependent).

Table 2

Summary statistics of all frequencybands combined,mobile phone base station (downlink) and handset radiation (uplink) for each city and outdoor area, orderedby increasing regulatory

limit. Values are displayed as electric field strength (V/m).

All outdoor areas combined Central residential area Non-central residential area Downtown

Arithmetic mean (95% CI) Arithmetic mean (95% CI) Arithmetic mean (95% CI) Arithmetic mean (95% CI)

Total

Brussels 0.41 (0.36, 0.46) 0.39 (0.13, 0.53) 0.24 (0.20, 0.27) 0.58 (0.49, 0.65)

Ghent 0.32 (0.29, 0.34) 0.42 (0.39, 0.46) 0.17 (0.15, 0.18) 0.32 (0.29, 0.35)

Basel 1 0.33 (0.28, 0.37) 0.16 (0.14, 0.18) 0.21 (0.17, 0.25) 0.49 (0.42, 0.54)

Basel 2 0.25 (0.24, 0.26) 0.26 (0.05, 0.37) 0.21 (0.19, 0.22) 0.34 (0.30, 0.38)

Amsterdam 0.44 (0.43, 0.45) 0.37 (0.35, 0.40) 0.40 (0.38, 0.42) 0.57 (0.55, 0.59)

Total downlink

Brussels 0.35 (0.29, 0.39) 0.22 (0.17, 0.25) 0.23 (0.19, 0.26) 0.51 (0.41, 0.59)

Ghent 0.27 (0.25, 0.29) 0.36 (0.33, 0.39) 0.15 (0.14, 0.16) 0.27 (0.25, 0.29)

Basel 1 0.31 (0.27, 0.35) 0.14 (0.12, 0.16) 0.20 (0.16, 0.24) 0.47 (0.40, 0.53)

Basel 2 0.22 (0.21, 0.23) 0.18 (0.16, 0.19) 0.20 (0.19, 0.21) 0.30 (0.30, 0.31)

Amsterdam 0.41 (0.40, 0.43) 0.31 (0.28, 0.33) 0.36 (0.34, 0.38) 0.51 (0.49, 0.52)

Total uplink

Brussels 0.17 (0.05, 0.24) 0.27 (0, 0.45) 0.04 (0.02, 0.05) 0.20 (0.16, 0.23)

Ghent 0.06 (0.04, 0.08) 0.04 (0.03, 0.04) 0.03 (0.02, 0.03) 0.11 (0.06, 0.14)

Basel 1 0.06 (0.05, 0.07) 0.05 (0.04, 0.06) 0.02 (0.02, 0.03) 0.09 (0.07, 0.10)

Basel 2 0.06 (0.05, 0.06) 0.18 (0, 0.32) 0.07 (0.00, 0.11) 0.14 (0.00, 0.22)

Amsterdam 0.09 (0.08, 0.10) 0.16 (0.14, 0.18) 0.12 (0.11, 0.12) 0.17 (0.16, 0.18)
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frequencies between 400 MHz and 2 GHz are calculated using the

formula f/40,000 (W/m2) (with f as the frequency in Hz; corre-

sponds to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f =40;000 W=m2½ � � 377ð Þ
p

on electric field strength).

For frequencies between 2 GHz and 300 GHz, exposure values

may not exceed 4.3 V/m (corresponds to 0.05 W/m2 on power

flux density level) (Table 1). According to the adopted limits in

the different countries, regulatory exposure limits are most strict

in Brussels and least stringent in Amsterdam (Table 1).

3. Results

3.1. General results and cross-comparison between countries

In study 1, a total of 8304 data points per frequency band were

collected for Basel 1, 8909 for Ghent and 8165 for Brussels during

1 year for all outdoor areas combined. In study 2, we collected

16,401 and 22,532 measurements per frequency band in Basel and

Amsterdam, respectively, over a period of 3 months for all areas

combined.

Average total RF-EMF exposure over the whole study period and

all outdoor areas combined varied between 0.25 V/m (Basel 2) and

0.44 V/m (Amsterdam). Exposure values tended to be higher in the

downtown areas ranging from0.32V/m (Ghent) to 0.58 V/m (Brussels),

whereas exposure levels in residential areas (non-central and central

residential) were somewhat lower (0.16 V/m (Basel 2) to 0.42 V/m

(Ghent)). Total RF-EMF exposure in outdoor areas wasmainly driven

by mobile phone base station radiation exposure causing levels be-

tween 0.22 V/m (Basel 2) and 0.41 V/m (Amsterdam) for all areas

combined, whereby influence of mobile phone handsets was mar-

ginal: 0.06 V/m (Basel 1, Basel 2, and Ghent) to 0.17 V/m (Brussels)

(Table 2).

3.2. Data distribution of high exposure levels and investigation of the impact

of regulatory limits on RF-EMF exposure

In order to explore the distribution of high exposure levels, Fig. 2 and

Table 3 show the 95th and 99th percentiles. In central residential areas,

the 95th percentile rangedbetween0.27V/m(99thpercentile: 0.45V/m)

in Basel 1 and 0.73 V/m in Ghent (99th percentile: 1.37 V/m), in non-

central residential areas between 0.29 V/m (0.61 V/m) in Ghent

and 0.73 V/m (1.13 V/m) in Amsterdam. Highest exposure levels oc-

curred in the downtown areas ranging between 0.52 V/m (Basel 2)

and 0.94 V/m (Amsterdam) for the 95th percentile and between

0.87 V/m (Ghent and Basel 2) and 2.08 V/m (Brussels) for the 99th

percentile (Table 3 and Fig. 2c).

Fig. 3 shows mobile phone base station exposure as a function of the

corresponding regulatory limit for arithmetic mean levels averaged over

the entire studyperiod. In the central residential area ofGhent (0.36V/m)

and downtown areas of Brussels (0.51 V/m) and Basel 2 (0.47 V/m)

exposure levels were of similar magnitude as in Amsterdam (central

residential area: 0.31 V/m; downtown: 0.51 V/m) despite the lower

regulatory limits in Ghent, Brussels and Basel.

4. Discussion

This paper analysed RF-EMF exposure in different outdoor areas and

evaluated whether lower regulatory limits have an impact on ambient

exposure across several European cities. In contrast to our speculation,

our study did not find indications that lowering regulatory limits results

in higher mobile phone base station exposure levels. Exposure levels

were highly spatially variable and varied considerably between dif-

ferent areas within as well as between cities. For example, within

city mobile phone base station exposure in Basel varied between

0.14 V/m (central residential area) and 0.47 V/m (downtown). Also,

between cities substantial differences were observed for the same

type of areas. In central residential areas mean exposure ranged from

0.14 V/m (Basel 1) to 0.36 V/m (Ghent), in non-central residential

areas from 0.15 V/m (Ghent) to 0.36 V/m (Amsterdam) and in down-

town areas from 0.27 V/m (Ghent) to 0.51 V/m (Brussels and

Amsterdam).

Fig. 2. Cumulative density function (CDF) plots of the total downlink electric field strength

(V/m) for central residential (a), non-central residential (b) and downtown (c) areas.
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4.1. Strengths and limitations

This is the first study investigating the impact of different regulatory

limits on RF-EMF exposure in different outdoor environments using a

common data collection procedure across four European cities. Previous

international studies extracted data from multiple studies using differ-

ent data collection or analysis procedures (Joseph et al., 2010), limiting

a direct comparison between countries.

A further strength of our study was that the own mobile phone was

turned off during measurements, enabling the association of mobile

phone handset exposure to be attributable to other peoples’ mobile

phone which was not the case in previous studies (Frei et al., 2009;

Viel et al., 2009).

Our study has also limitations; due to practical reasons we could

not measure at the same time and apply the exact same procedures

in all 4 cities. For instance, the exposimeter used for measurements

in Amsterdam was not of the same type (ES 140) and differed in

the lower detection limit from the exposimeter used in Belgium

and Switzerland. However, we censored this data at the same detec-

tion limit as the data collected with the ES 120 (i.e. 0.05 V/m) to ob-

tain comparable results and we excluded the two additional

frequency bands (i.e. WiMax and W-LAN 5G) as well as DECT,

which was excluded from all data due to cross-talk interferences

(Lauer et al., 2012).

A further limitation is the inclusion of only four cities with three

areas per city into the study. Thus, random data variability may play a

role and additional data from more cities would allow drawing firmer

conclusions.

Since we took all measurements on two working days (Wednesday

and Thursday) and during daytime, we did not capture differences in

exposure between working days and weekends, or between daytime

and evening. However, we suspect that even though there could be

differences in exposure levels at different times of the day; these are

probably similar across the different cities. Furthermore, temporal vari-

ability has been found to be low across days of the week (Beekhuizen

et al., 2013).

4.2. Interpretation

All RF-EMF exposure levels were far below ICNIRP reference levels.

So far, no health effects could consistently be demonstrated below this

level (Röösli et al., 2010b). Nevertheless, there is some uncertainty

about long term health effects at low exposure levels and minimizing

exposure to RF-EMFs has been recommended (Berg-Beckhoff et al.,

2009; Blettner et al., 2008; Neubauer et al., 2007; WHO, 2010) and

many countries have thus introduced precautionary limits. Whether

such measures are effective to reduce population exposure has not

been evaluated so far. The consequences of precautionary limits on

the exposure situation are difficult to predict because more stringent

regulations affect the base station network configuration. It seems plau-

sible that high exposure values are reduced by precautionary limits but

mean exposure may even be increased due to the higher network den-

sity with more microcells installed close to where the population

spends its time. Our study, however, did not find any indications for

this. Conversely, across all areas mean exposure levels were highest in

Amsterdam which might indicate that precautionary levels indeed re-

duce population's mobile phone base station exposure. However, in

area specific comparisons, levels in Amsterdam were similar to other

cities except for the non-central residential area. The most relevant ex-

posure effect if more base stations are installed might be the exposure

reduction from the ownmobile phone due to an optimized power con-

trol. However, our study did not find any indications that uplink expo-

sure levels from mobile phones were related to the level of the

Table 3

Overview of total RF-EMF exposure values for the 95th and 99th percentile in outdoor

areas. Values are displayed as electric field strength (V/m).

All areas

combined

Central

residential area

Non-central

residential area

Downtown

95 percentile

Basel 1 0.66 0.27 0.48 0.89

Ghent 0.53 0.73 0.29 0.54

Brussels 0.66 0.50 0.44 0.92

Basel 2 0.46 0.36 0.34 0.52

Amsterdam 0.82 0.66 0.73 0.94

99 percentile

Basel 1 1.08 0.45 0.83 1.40

Ghent 1.03 1.37 0.61 0.87

Brussels 1.20 0.78 0.92 2.08

Basel 2 0.81 0.55 0.92 0.87

Amsterdam 1.14 1.01 1.13 1.27

Fig. 3. Scatter plots indicatingmobile phone base station exposure levelswith correspond-

ing 95% confidence intervals across all cities in relation to regulatory limits for central res-

idential (a), non-central residential (b) and downtown (c) areas.
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regulatory limits, although in order to accurately assess personal expo-

sure, other techniques would be needed to evaluate whether the base

station network configuration affects the output power of the phones.

Interestingly, also high exposure levels (95th and 99th percentiles)

were not related to the level of the regulatory limits as one would pri-

marily expect. The 99th percentile was highest in Brussels, where

most stringent regulatory limits were implemented. It has to be empha-

sized that our analysis is based on four cities only and alternative expla-

nations should be considered. We tried to match characteristics of the

selected areas across the cities. Nevertheless, the fact that exposure

tended to be higher in Amsterdammay reflect the impact of population

density, building characteristics or the choice of the measurement path

in an area.

One could argue that the level of RF-EMF exposure in the population

is not relevant as long as the reference levels, where health effects have

been established, are not exceeded. However, in terms of long term

health effects some uncertainty exists and thus minimizing exposure

may reduce this uncertainty. For compliance with the regulatory limits

most critical places are on the top floor of buildings, close and in direct

line of sight of mobile phone base stations. As we measured only on

street level, we cannot exclude that higher exposure levels can occur

at such sites in cities with higher regulatory limits. If of concern, such

high exposures could be reduced by limiting the output power of base

stations.

4.3. Conclusion

Our study suggests that the introduction of precautionary limits

does not unintentionally increase the mean RF-EMF exposure of the

population.
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a b s t r a c t

Background: The rapid development and increased use of wireless telecommunication technologies led

to a substantial change of radio-frequency electromagnetic field (RF-EMF) exposure in the general

population but little is known about temporal trends of RF-EMF in our everyday environment.

Objectives: The objective of our study is to evaluate temporal trends of RF-EMF exposure levels in

different microenvironments of three European cities using a common measurement protocol.

Methods: We performed measurements in the cities of Basel (Switzerland), Ghent and Brussels (Belgium)

during one year, between April 2011 and March 2012. RF-EMF exposure in 11 different frequency bands

ranging from FM (Frequency Modulation, 88 MHz) to WLAN (Wireless Local Area Network, 2.5 GHz) was

quantified with portable measurement devices (exposimeters) in various microenvironments: outdoor

areas (residential areas, downtown and suburb), public transports (train, bus and tram or metro rides)

and indoor places (airport, railway station and shopping centers). Measurements were collected every 4 s

during 10–50 min per environment and measurement day. Linear temporal trends were analyzed by

mixed linear regression models.

Results: Highest total RF-EMF exposure levels occurred in public transports (all public transports

combined) with arithmetic mean values of 0.84 V/m in Brussels, 0.72 V/m in Ghent, and 0.59 V/m in

Basel. In all outdoor areas combined, mean exposure levels were 0.41 V/m in Brussels, 0.31 V/m in Ghent

and 0.26 V/m in Basel.

Within one year, total RF-EMF exposure levels in all outdoor areas in combination increased by 57.1%

(po0.001) in Basel by 20.1% in Ghent (p¼0.053) and by 38.2% (p¼0.012) in Brussels. Exposure increase

was most consistently observed in outdoor areas due to emissions from mobile phone base stations.

In public transports RF-EMF levels tended also to increase but mostly without statistical significance.

Discussion: An increase of RF-EMF exposure levels has been observed between April 2011 and March

2012 in various microenvironments of three European cities. Nevertheless, exposure levels were still far

below regulatory limits of each country. A continuous monitoring is needed to identify high exposure

areas and to anticipate critical development of RF-EMF exposure at public places.

& 2014 Elsevier Inc. All rights reserved.

1. Introduction

The introduction and development of new wireless telecom-

munication technologies led to a substantial change of radio-

frequency electromagnetic field (RF-EMF) exposure patterns.

To meet technological requirements and advantages of newly

launched wireless devices, the telecommunication network has

to be expanded and optimized. The use of new mobile technolo-

gies has increased and is still further augmenting, whereas

transmission of data through the mobile internet became more

efficient resulting in lower RF-EMF emissions per transmitted byte

of data. At this point, it is unclear what the net effect on exposure

level is and whether exposure is increasing in everyday environ-

ments over time.

In the last few years, several measurement studies have been

conducted characterizing RF-EMF exposure levels in different micro-

environments and comparing exposure in different cities using

personal exposimeters (Berg-Beckhoff et al., 2009; Bolte and

Eikelboom, 2012; Frei et al., 2009; Joseph et al., 2010, 2008;

Thuróczy et al., 2008; Viel et al., 2009). These studies found that RF-

EMF levels in the everyday environment are far below the regulatory

limits. Several studies examined short-term temporal variability of

RF-EMF exposure during one day (Mahfouz et al., 2011, 2013;
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Manassas et al., 2012; Miclaus et al., 2013) or up to one week

(Joseph and Verloock, 2010; Joseph et al., 2009; Vermeeren et al.,

2013) addressing variation between daytime and nighttime or

during weekdays and weekends (Joseph et al., 2009). However,

studies evaluating temporal trends over longer time periods as one

year are lacking so far. Frei et al. (2009) stated that introduction of

mobile phone technology has resulted in a 10-fold increase of

RF-EMFs at outdoor areas compared to the time period before

when broadcast transmitting was the most relevant source (Frei

et al., 2010; Mohler et al., 2012).

To be reliable, such a temporal trend analysis needs a sub-

stantial amount of data from different environments that are

collected with the same methodology (Joseph et al., 2010).

Repeated measurements with portable measurement devices in

various microenvironments allow to efficiently collect a high

number of measurements per microenvironment (Röösli et al.,

2010).

The aim of this microenvironmental measurement study was to

characterize RF-EMF exposure levels in typical everyday environ-

ments and to investigate temporal trends in outdoor areas, public

transports, and indoor settings of three different European cities.

2. Methods

Data collection took place in Basel (Switzerland), Ghent and Brussels (Belgium)

between April 2011 and March 2012. All measurements are based on a common

measurement protocol adopted in each city in order to enable direct comparisons.

2.1. Definition of microenvironments and measurement procedures in different cities

We included characteristic everyday environments in outdoor areas, where

measurements occurred exclusively outside buildings in free space, public trans-

ports (train, bus, tram and metro) and indoor settings (2 different shopping centers

per city, main railway station of each city and the airports of Basel and Brussels) in

our study areas (Table 1). Measurements in outdoor areas include central- and non-

central residential areas, downtown areas and suburban areas. Areas were matched

across cities according to several criteria: central residential areas were located in

zones with higher buildings (4–5 floors) and more traffic as well as more people on

sidewalks. Non-central residential areas are, in contrast, situated outside the city

center in quiet residential zones with building heights up to 3 floors and relatively

large parts of green space compared to central residential and downtown areas.

Downtown areas represent the city center with busy pedestrian zones. Data was

further collected in public transports such as express trains (train rides included

measurements between Aarau and Basel (Switzerland), Ghent and Brussels

(Belgium)), buses (bus rides in each city between the suburban area and the inner

city), trams (various tram rides within the city) and metro (only within the city of

Brussels, as there are no trams). Indoor settings included Basel's and Brussels'

airports, railway stations in Basel (Basel main station), Ghent (Ghent-Sint-Pieters

main station) and Brussels (Central station – Gare Centrale) and shopping centers

(two major shopping malls per city).

Measurements were conducted once every month during one year. Data were

collected by the same research assistant each time, by walking along the same

routes using the same time schedules each month.

In Basel, data were collected in the first week of each month on Wednesdays

and Thursdays in the morning between 7:30 and 11:40. In Ghent and Brussels,

measurements were conducted in the third week of each month, on Wednesdays in

Ghent (including measurements at Brussel's airport), between 8:45 and 16:45 and

on Thursdays in Brussels, between 8:40 and 17:40 (Table 1). Measurements were

shifted by one week in case data collection could not be performed in the first and

third week. The exposimeter was carried on the rear of the body in a bag. The

exposimeter was fixed in a bag and placed vertically. During measurements in

public transports, the bag was placed either in front of the study assistant or next to

him on a free seat when seating (typically in trains, buses and metros) or on the

rear of the body if the assistant had to stand (usually in trams). In the latter case, an

attempt was made to have no persons in close vicinity. Measurement duration in

the same microenvironment was always the same and ranged between 10 and

60 min for different environments (Table 1). For this duration of measurements

within a microenvironment we have previously observed to produce reproducible

and reliable results in the sense that average exposures within a type of micro-

environment approach a stable mean value (Beekhuizen et al., 2013; Urbinello

et al., 2014). The mobile phone was turned off during data collection. All measurements

occurred during daytime.

2.2. Study instruments

We performed our measurements using an exposimeter of the type EME Spy

120 from SATIMO (SATIMO, Courtaboeuf, France, http://www.satimo.fr/), capable to

quantify personal RF-EMF exposure on 12 different frequency bands: Frequency

Modulation (FM, 88–108 MHz); Television (TV, 174–223 MHz and 470–830 MHz);

Terrestrial Trunked Radio (TETRA, 380–400 MHz); Global System for Mobile

Communications at 900 MHz downlink (i.e. communication from base station to

mobile phone, 925–960 MHz) and uplink (i.e. communication from mobile phone

to base station, 880–915 MHz), GSM at 1800 MHz (GSM1800) downlink (1805–

1880 MHz) and uplink (1710–1785 MHz); Digital Enhanced Cordless Telecommu-

nications (DECT, 1880–1900 MHz); Universal Mobile Telecommunications System

(UMTS) downlink (2110–2170 MHz) and uplink (1920–1980 MHz) and Wireless

Local Area Networks (WLAN, 2400–2500 MHz). The exposimeter has a lower

detection limit of 0.0067 mW/m2 (corresponding to 0.05 V/m of electric field

strength) and an upper detection limit of 66.3 mW/m2 (5 V/m). The measurement

interval was configured to 4 s in order to collect a maximal number of data points,

generating robust datasets. An application on a smartphone was developed by the

Swiss Federal Institute of Technology (ETH Zurich) which allowed recording the

time by clicking on start and stop when beginning and finishing the measurements

in a microenvironment, respectively. The smartphone was in flight mode while

taking the measurements preventing exposure contribution from the own mobile

handset. The device was calibrated on October 2010, April 2011, and December

2011 at the ETH Zurich showing temporal fairly stable calibration factors. However,

although GSM1800 downlink and UMTS uplink were correctly detected by the

exposimeter, we observed that the presence of these bands affected the DECT

measurements (cross-talk). Since the presence of DECT fields is negligible in

outdoor areas and public transports (no cordless phones) we omitted this

frequency range. DECT is also expected to be of minor importance in the indoor

settings we included, i.e. shopping centers, airport and train station. Thus, our

results are still comparable with those of other studies that have DECT included in

such microenvironments. On the other hand, the calibration revealed that DECT

signals were also taken up in the UMTS uplink frequency band. However, since little

DECT was present in our study area, this did not result in a bias.

2.3. Statistical analyses

To take into account that a large proportion of data points were below the

lower detection limit of the exposimeter, arithmetic mean values have been

calculated for each measurement day per frequency and per microenvironment

with the robust regression on order statistics (ROS) algorithm using the statistical

software R Version 3.0.1 (www.r-project.org) (Röösli et al., 2008). A full description

of the analysis method can be found in Helsel (2005). All calculations were made

on power flux density levels (mW/cm2) and then back-transformed to electric field

strength (V/m). Annual mean values per microenvironment were obtained by

averaging these daily mean values. For the analyses we considered three relevant

frequency groups: i) total RF-EMF exposure: sum of mean power flux densities of

all frequency bands apart from DECT (Digital Enhanced Cordless Telecommunica-

tions). We excluded DECT, since calibration showed cross-talk with nearby bands,

i.e. GSM1800; ii) mobile phone base station exposure: sum of mean power flux

densities of all downlink frequencies (GSM900 (925–960 MHz), GSM1800 (1805–

1880 MHz) and UMTS (2110–2170 MHz)); and iii) mobile phone handset exposure:

sum of mean power flux densities of all uplink frequencies (GSM900 (880–

915 MHz), GSM1800 (1710–1785 MHz) and UMTS (1920–1980 MHz)).

Temporal trends were examined using linear regression models. Month as

integer was introduced as linear term in the models. To achieve normally

distributed residuals, all calculations were done on the log-transformed power

flux density scale and model coefficients were back-transformed thus reflecting

annual changes of the geometric mean value on the electric field scale (V/m). Trend

analyses of combined microenvironments (all outdoor areas and all public trans-

ports combined) were based on multilevel mixed-effects models with type of

microenvironment as cluster variable. Trend analyses of single microenvironments

were conducted using log-linear regressions. Analyses were conducted with STATA

version 12.1 (StataCorp, College Station, TX, USA).

3. Results

3.1. Characterization of RF-EMF exposure levels in different

environments

Table 2 summarizes RF-EMF exposure levels for the different

environments (outdoor areas, public transports and indoor set-

tings) across all three cities.

Highest total RF-EMF exposure levels occurred in all public

transports combined. In trains exposure levels ranged between

D. Urbinello et al. / Environmental Research 134 (2014) 134–142 135



0.83 V/m (Ghent) and 1.06 V/m (Brussels) and were considerably

higher compared to those of other environments (Table 2a).

Mobile phone handsets were the main exposure source in trains

(Table 2c, Online Fig. 1b), whereas in other public transports, such

as buses and trams or metros, mobile phone base stations had also

a considerable impact on the exposure situation (Table 2b).

RF-EMF exposure is highly spatially variable (Table 2a and b)

across different outdoor areas within one city. Highest total RF-

EMF exposure occurred in downtown areas (Basel: 0.49 V/m,

Brussels: 0.58 V/m) and in one central residential area (Ghent:

0.42 V/m). In contrast, lowest values were observed in central

(Basel: 0.16 V/m) and non-central residential areas (Ghent:

0.17 V/m; Brussels: 0.24 V/m). In outdoor areas, highest contribu-

tion to total RF-EMF exposure originates from mobile phone base

stations (Table 2b), whereas mobile phone handset exposure is

negligible in outdoor areas of Basel and Ghent (o0.11 V/m), but

seems to play a more important role in several areas of Brussels

(Table 2c).

Exposure situation at the airport was highest compared to that

of other indoor settings. Total RF-EMF exposure was highest at the

railway station (0.57 V/m, Brussels) and at the airport: 0.53 V/m

(Brussels) and 0.54 V/m (Basel) (Table 2a). In indoor settings, both,

mobile phone base stations and handsets contributed a fair

amount to total RF-EMF exposure (Table 2b and c).

3.2. Temporal trends

We observed a considerable change in RF-EMF exposure situa-

tion during the period between April 2011 and March 2012 across

all cities.

Fig. 1a and b suggests a consistent increase of RF-EMF exposure

in urban outdoor areas considering total RF-EMF and mobile

phone base station exposure, which is the most relevant source

in outdoor areas. Trend analysis using multilevel mixed effects

linear models supports the graphical facts (Fig. 1b) with highly

statistically significant increases in geometric mean of mobile

phone base station exposure for all outdoor areas combined in

Basel (64.0%, po0.001), Ghent (23.6%, p¼0.021) and Brussels

(68.3%, po0.001) (Table 2b). Area-specific yearly changes were

also more pronounced in the Basel outdoor areas than in the

corresponding areas of Ghent. In Brussels, area specific trends

were heterogeneous ranging from a 26.4% increase (p¼0.377) in

the downtown area to a 120.2% (p¼0.002) increase in the central

residential area (Table 2b). Temporal increase of mobile phone

Table 1

Overview including the average number of data points per measurement day and microenvironment with the planned time schedule per environment and the

corresponding measurement day where data collection occurred in each city.

Average number of

data points per day

and per microenvironment

Path

length

Estimated

duration

Time ranges Measurement day

Outdoor areas

Central residential area Basel 272 1.6 km 16 min 10:05–10:20 Wednesday

Ghent 255 1.5 km 15 min 08:45–09:00 Wednesday

Brussels 186 1.1 km 12 min 13:15–13:30 Thursday

Non-central residential area Basel 173 1.2 km 12 min 09:20–09:35 Wednesday

Ghent 270 1.8 km 18 min 09:40–09:55 Wednesday

Brussels 271 1.7 km 17 min 10:45–11:00 Thursday

Downtown Basel 248 1.5 km 15 min 10:25–10:40 Wednesday

Ghent 217 1.3 km 13 min 12:00–12:15 Wednesday

Brussels 224 1.1 km 12 min 13:40–13:50/14:10–14:20 Thursday

Suburb Basel 266 1.6 km 16 min 08:40–08:55 Thursday

Ghent 169 1.0 km 11 min 10:40–10:50 Wednesday

Brussels 195 1.2 km 12 min 12:05–12:20 Thursday

Public transports

Train Basel 528 07:36–08:15 Wednesday

Ghent 1628 13:15–14:08/14:48–15:42 Wednesday

Brussels 1095 09:03–09:36/16:00–16:36 Thursday

Bus Basel 1085 11:35–11:40 (Wed)/09:06–09:45

(Thu)/10:45–10:55 (Thu)

Wednesday/

Thursday

Ghent 597 10:15–10:40/11:15–11:40 Wednesday

Brussels 290 10:35–10:40/12:35–12:50 Thursday

Tram Basel 281 08.33–08.36/08:55–09:00/09:05–09:14/11:10–

11:15/

12:30–12:40

Wednesday

Ghent 195 09:25–09:35/09:55–10:00 Wednesday

Metro Brussels 1246 09:55–10:20/11:20–11:45/11:50–12:00/13:00–

13:05/

14:50–15:05/15:25–15:35/15:40–15:45

Thursday

Indoor settings

Airport (Basel and Brussels) Basel 295 10:15–10:40 Thursday

Ghent – – –

Brussels 419 14:25–14:45 Wednesday

Railway station Basel 361 08:15–08:30/10:20–10:25 Wednesday/

Thursday

Ghent 403 12:45–13:15 Wednesday

Brussels 255 08:50–09:00/09:36–09:45/15:50–16:00 Thursday

Shopping centers Basel 506 10:45–11:00 (shopping mall I)/11:15–11:30

(shopping mall II)

Wednesday

Ghent 433 11:40–12:00 (shopping mall I)/12:15–12:30

(shopping mall II)

Wednesday

Brussels 372 14:00–14:10 (shopping mall I)/14:20–14:35

(shopping mall II)

Thursday

D. Urbinello et al. / Environmental Research 134 (2014) 134–142136



Table 2

Arithmetic mean values and yearly percentage change of total RF-EMF (a), mobile phone base station (b) and mobile phone handset (c) exposure with corresponding 95% confidence intervals (CI). Arithmetic mean values are

reported as electric field strengths (V/m).

Arithmetic means with 95% CI Temporal changea (%) with 95% CI

Basel Ghent Brussels Basel p Ghent p Brussels p

a) Total RF-EMF exposure

Outdoor

All areas combined 0.26 (0.23, 0.29) 0.31 (0.28, 0.34) 0.41 (0.36, 0.46) 57.1 (32.4, 86.5) o0.001 20.1 (�0.3, 44.6) 0.053 38.2 (7.3, 77.9) 0.012

Central residential area 0.16 (0.14, 0.18) 0.42 (0.39, 0.46) 0.39 (0.13, 0.53) 63.7 (13.7, 135.5) 0.013 25.3 (�11.8, 78.0) 0.183 �8.7 (�63.4, 128.0) 0.830

Non-central residential area 0.21 (0.17, 0.25) 0.17 (0.15, 0.18) 0.24 (0.20, 0.27) 87.2 (12.5, 211.6) 0.021 36.7 (�0.9, 88.5) 0.055 103.8 (53.0, 171.4) o0.001

Downtown 0.49 (0.42, 0.54) 0.32 (0.29, 0.35) 0.58 (0.49, 0.65) 56.5 (16.1, 110.9) 0.007 27.4 (�6.9, 74.2) 0.116 25.2 (�17.1, 89.1) 0.253

Suburb 0.17 (0.14, 0.18) 0.26 (0.18, 0.33) 0.39 (0.32, 0.45) 27.1 (�13.4, 86.7) 0.194 �4.6 (�50.2, 82.7) 0.874 56.5 (1.4, 141.6) 0.044

Public transports

All public transports combined 0.59 (0.38, 0.74) 0.72 (0.61, 0.81) 0.84 (0.72, 0.96) 17.7 (�12.7, 58.7) 0.285 38.0 (�15.5, 125.3) 0.198 46.9 (�1.2, 118.5) 0.057

Train 0.97 (0.46, 1.29) 0.83 (0.71, 0.94) 1.06 (0.88, 1.21) �35.0 (�81.4, 127.3) 0.461 37.6 (�37.0, 200.3) 0.384 39.1 (�17.0, 132.9) 0.185

Tram/metrob 0.32 (0.24, 0.39) 0.50 (0.36, 0.61) 0.70 (0.53, 0.83) 30.3 (�20.6, 113.9) 0.286 19.3 (�45.6, 161.6) 0.651 108.0 (9.3, 295.9) 0.030

Bus 0.35 (0.26, 0.42) 0.36 (0.23, 0.46) 0.37 (0.30, 0.44) 29.5 (�14.8, 96.9) 0.218 114.3 (3.2, 344.9) 0.042 40.2 (�452, 258.6) 0.453

Indoor

Airport 0.54 (0.44, 0.62) – 0.53 (0.45, 0.60) 64.3 (5.3, 156.3) 0.032 – – 14.5 (�33.6 97.6) 0.592

Train station 0.34 (0.26, 0.40) 0.32 (0.23, 0.39) 0.57 (0.35, 0.72) 96.9 (�1.3, 292.7) 0.054 �1.0 (�55.7, 120.9) 0.978 65.4 (�22.2, 251.9) 0.168

Shopping centers 0.22 (0.18, 0.26) 0.32 (0.25, 0.37) 0.37 (0.30, 0.43) 100.7 (25.8, 220.3) 0.005 19.3 (�41.8, 144.8) 0.615 48.5 (�6.4, 135.7) 0.089

b) Mobile phone base station exposure

Outdoor

All areas combined 0.24 (0.21, 0.27) 0.27 (0.24, 0.29) 0.35 (0.29, 0.39) 64.0 (37.5, 95.6) o0.001 23.6 (3.3, 47.8) 0.021 68.3 (37.4, 106.3) o0.001

Central residential area 0.14 (0.12, 0.16) 0.36 (0.33, 0.39) 0.22 (0.17, 0.25) 69.4 (11.6, 157.1) 0.018 33.7 (�5.0, 88.2) 0.088 120.2 (44.3, 236.1) 0.002

Non-central residential area 0.20 (0.16, 0.24) 0.15 (0.14, 0.16) 0.23 (0.19, 0.26) 96.5 (14.0, 238.6) 0.02 25.6 (�7.1, 69.9) 0.124 98.4 (39.3, 182.8) 0.002

Downtown 0.47 (0.40, 0.53) 0.27 (0.25, 0.29) 0.51 (0.41, 0.59) 58.4 (16.3, 115.8) 0.008 40.2 (12.8, 74.3) 0.006 26.4 (�28.1, 122.5) 0.377

Suburb 0.13 (0.12, 0.15) 0.25 (0.15, 0.31) 0.35 (0.30, 0.39) 37.2 (�1.0, 90.0) 0.056 �1.0 (�49.0, 92.2) 0.973 45.4 (�8.7, 131.5) 0.104

Public transports

All public transports combined 0.19 (0.16, 0.21) 0.11 (0.10, 0.12) 0.15 (0.13, 0.17) 86.6 (51.1, 130.3) o0.001 21.1 (�27.6, 102.3) 0.466 73.4 (29.4, 132.5) o0.001

Train 0.09 (0.07, 0.11) 0.07 (0.05, 0.08) 0.06 (0.05, 0.07) 193.7 (�3.8, 796.2) 0.057 27.6 (�38.0, 162.4) 0.470 128.6 (20.3, 334.2) 0.014

Tram/metrob 0.23 (0.18, 0.28) 0.27 (0.19, 0.33) 0.16 (0.14, 0.19) 52.7 (�2.5, 139.1) 0.064 27.7 (�55.5, 266.9) 0.641 49.5 (�37.7, 151.1) 0.073

Bus 0.21 (0.17, 0.24) 0.15 (0.14, 0.16) 0.20 (0.16, 0.24) 96.0 (52.2, 152.4) o0.001 �2.1 (�24.3, 26.5) 0.856 86.0 (4.1, 232.2) 0.038

Indoor

Airport 0.51 (0.41, 0.59) – 0.50 (0.41, 0.57) 83.8 (15.0, 193.9) 0.016 – – 25.0 (�37.7, 151.1) 0.491

Train station 0.22 (0.17, 0.25) 0.25 (0.13, 0.33) 0.49 (0.21, 0.66) 103.6 (33.7, 210.0) 0.004 �11.8 (�68.3, 145.3) 0.790 29.4 (�43.3, 195.1) 0.503

Shopping centers 0.12 (0.11, 0.14) 0.17 (0.15, 0.19) 0.25 (0.17, 0.31) 66.9 (20.1, 132.0) 0.004 35.8 (�39.9, 207.0) 0.445 206.3 (�8.5, 924.7) 0.068

c) Mobile phone handset exposure

Outdoor

All areas combined 0.06 (0.05, 0.07) 0.06 (0.04, 0.08) 0.17 (0.05, 0.24) 52.6 (11.3, 109.2) 0.009 25.6 (�14.1, 83.9) 0.240 19.8 (�28.6, 100.8) 0.494

Central residential area 0.05 (0.04, 0.06) 0.04 (0.03, 0.04) 0.27 (0.00, 0.45) 132.5 (53.9, 251.2) 0.001 113.4 (11.2, 309.6) 0.027 �63.0 (�93.5, 111.0) 0.232

Non-central residential area 0.02 (0.02, 0.03) 0.03 (0.02, 0.03) 0.04 (0.02, 0.05) 54.6 (�16.3, 185.7) 0.145 25.9 (�39.1, 160.4) 0.496 140.0 (32.5, 334.5) 0.008

Downtown 0.09 (0.07, 0.10) 0.11 (0.06, 0.14) 0.20 (0.16, 0.23) 45.4 (�15.3, 149.6) 0.154 40.6 (�49.2, 288.8) 0.473 �6.0 (�57.5, 108.1) 0.866

Suburb 0.06 (0.02, 0.08) 0.07 (0.00, 0.10) 0.15 (0.00, 0.22) 3.9 (�66.2, 219.3) 0.942 �34.0 (�75.2, 75.7) 0.367 146.3 (�2.1, 519.5) 0.054
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handset exposure reached statistical significance at only a few

outdoor areas (central residential areas of Basel and Ghent as well

as non-central residential area in Brussels) (Table 2c).

In public transports, RF-EMF exposure is highly variable as

shown in Fig. 2a–c. Mobile phone handset exposure is the most

relevant source in public transports, especially in trains. Total

RF-EMFs tended to increase in most public transport settings but

did not reach statistically significance for all public transports

combined in any of the cities (Table 2a). Statistically significant

trends for mobile phone handset exposure were only observed in

metros in Brussels (117.3%, p¼0.028) (Table 2c).

In indoor settings, total RF-EMF exposure increased signifi-

cantly at the airport (64.3%, p¼0.032) and shopping centers

(100.7%, p¼0.005) in Basel (Table 2a) but not at corresponding

areas in Ghent and Brussels. Interestingly, across all indoor areas in

all cities, mobile phone base station exposure showed a stronger

temporal increase than mobile phone handset exposure (Table 2b

and c). At the airport of Brussels even a significant decrease of

handset exposure was observed (Table 2c).

4. Discussion

Our study offers a comparison and time trend analysis of RF-

EMF exposure levels collected during one year in typical everyday

microenvironments (outdoor areas, public transports and indoor

settings) across three European cities. For outdoor areas we found

a significant temporal increase of RF-EMF exposure levels. In

public transports exposure levels were higher than in outdoor

areas and showed a larger day to day variation and temporal

increase did not reach statistical significance.

4.1. Interpretation

Overall, our study gives strong indications that, especially mobile

phone base station exposure at outdoor areas increased over the

study period between April 2011 and March 2012. At outdoor areas

temporal increase was higher in Basel's area compared to that in

Belgium. This may be due to the difference in increased coverage and

capacity demands. A further explanation might be that the introduc-

tion of precautionary limits in Belgium, which came in effect in 2009

in Brussels (Ordinance of the Brussels Capital Region of 14 March

2007) and in 2011 in Ghent (Ordinance of the Flemish Region of Nov.

2010) and thus was still in the adaption process during the

measurement period, could have slowed down the exposure

increase, whereas precautionary limits in Switzerland were estab-

lished since 2001 (ONIR, 1999).

Interestingly, highest exposure levels occurred consistently in

trains across all cities with distinct contribution from mobile

phone handsets. This has several reasons: the inner space of a

train can be considered as a Faraday cage, reflecting emitted

radiation by mobile phones. In addition, the density of people

using their mobile phones is usually higher in trains than in other

environments. Nowadays, mobile phones are not only used for

messaging and calls anymore but rather also for using a large

variety of web-based applications (apps), such as news alerts,

e-mails, mobile television and many other apps, increasing the use

of mobile phone handsets during train rides resulting in higher

uplink exposure levels. Moreover, location updates or handovers

are executed when moving around in order to maintain constant

connectivity to the mobile phone base station of the respective

area when the device is in stand-by mode or during a call,

respectively (Urbinello and Röösli, 2013). These aspects are also

relevant for the exposure situation in buses, trams and metros but

in these environments we have mainly measured outside the
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commuting rush hours (Table 1) with a lower passenger density

compared to trains.

The impact of the communication infrastructure on the expo-

sure situation can be exemplarily highlighted by comparing

measurements in trams and metros. Total mobile phone handset

exposure was considerably higher in metros vs. trams (0.67 V/m

vs. 0.21 and 0.41 in trams in Basel and Ghent), whereas mobile

phone base station exposure was lower in metros than in trams

(0.16 V/m vs. 0.23 and 0.27 V/m). Metros are running underground

and in underground stations micro- and pico-cells are installed.

Furthermore, the coverage in metros may be poor, so that the

mobile devices have to emit with stronger signals.

We have hypothesized that increase of exposure levels would

be most pronounced in public transports, because of the strong

increase in internet use with mobile phones after the introduction

of smart phones. However, this was not the case. Over all public

transports combined, temporal trends did not reach statistical

significance in all three cities. Lack of significance is partly

explained by the higher data variability from handset exposure,

which has resulted in larger confidence intervals. The lower

increase on the relative scale is probably the consequence of

higher exposure levels in public transports. Thus, the increase on

the absolute scale is actually higher for many public transports

compared to outdoor areas. For instance the observed (significant)

63.7% increase in geometric mean in the central residential area of

Basel corresponds to an increase of 0.16 V/m whereas the (non-

significant) 39% increase in trains in Brussels corresponds to

1.01 V/m. A further issue which may appear contradictory is the

increase of exposure from mobile phone base stations and a

decrease of exposure from mobile phone handsets at the airport

since there is an interaction between up- and downlink exposure.

However, this interaction is complex and it has been demonstrated

that the higher are the exposure levels from the base station, the

lower is the output power of mobile phones (Yuanyuan et al.,

2014; Aerts et al., 2013). Further, one has to be aware that RF-EMF

exposure decreases rapidly with increasing distance and thus,

walking through a waiting hall at the airport will not capture

uplink exposure from all emitting mobile devices in the

considered area.

It is difficult to predict how RF-EMF exposure will further

change over time. Assuming a linear trend of increase in RF-EMF

exposure, it might be reasonable to argue that exposure will

exceed regulatory limits somewhere in the future. However, along

with the increase of new telecommunication devices, technologies

became also more efficient in reducing emission characteristics of

mobile phones. Our results suggest that the increase in number

Fig. 1. Monthly average RF-EMF exposure levels for all outdoor areas combined between April 2011 and March 2012 for total RF-EMF (a), mobile phone base station (b) and

mobile phone handset exposure (c).
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and amount of mobile phone users has not been compensated

with more efficient technologies and the net effect is an increase

in exposure levels for most microenvironments. Also the output

power of mobile phones is affected by the technology. For example

second generation mobile phones (2G, GSM) use a power control,

radiating with full intensity during connection establishment and

down-regulate as soon as a call has been established (Lönn et al.,

2004). Smartphones of the third generation (3G, UMTS) in con-

trast, have a so-called enhanced adaptive power control which

optimizes radiation according to the quality of connectivity to the

mobile phone base station, resulting in considerable lower average

output power (Gati et al., 2009; Persson et al., 2011; Wiart et al.,

2000), which may also affect overall RF-EMF exposure.

4.2. Comparison of RF-EMF exposure levels with the literature

In previous studies, RF-EMF measurements had primarily been

collected through volunteers, who filled in an activity diary and

carried a measurement device during their typical daily activities.

Since the volunteers were usually not asked to restrict their

mobile phone use during the study (Frei et al., 2009), this affected

personal measurements during a call (if not omitted from the data

analysis) but also in stand-by mode because of organizational

communication (Urbinello and Röösli, 2013), which could not be

identified in the measurement file. If diary data were not entirely

accurate in volunteer studies measurements might be assigned to

the wrong microenvironment in such studies. Nevertheless, we

found similar results in outdoor urban environments as in a

previous study conducted by Joseph et al. (2010), which reported

total RF-EMF exposure levels of 0.28 V/m for Switzerland (our

study – Basel: 0.26 V/m) and 0.37 V/m for Belgium (our study –

Ghent: 0.31 V/m, Brussels: 0.41 V/m). Exposure in trains were

higher in our study (0.97 V/m in Basel, 0.83 V/m in Ghent and

1.06 V/m in Brussels) compared to the previous study: 0.63 V/m

(Switzerland) and 0.59 V/m (Belgium).

In a recent study conducted by Bolte and Eikelboom (2012) in

The Netherlands with 98 volunteers carrying a personal measure-

ment device during their typical daily activities, similar total RF-

EMF exposure values were reported for shopping centers (NL:

0.29 V/m vs. Basel: 0.22 V/m, Ghent: 0.32 V/m, Brussels: 0.37 V/m),

outdoor areas (0.30 V/m compared to 0.26 V/m, 0.31 V/m and

0.41 V/m), railway stations (0.35 V/m vs. 0.34 V/m, 0.32 V/m and

0.57 V/m) and buses (0.29 V/m vs. 0.35 V/m, 0.36 V/m and 0.37

V/m). However, total RF-EMF exposure in trains was considerably

Fig. 2. Monthly average RF-EMF exposure levels for all public transports combined between April 2011 and March 2012 for total RF-EMF (a), mobile phone base station

(b) and mobile phone handset exposure (c).
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lower in The Netherlands than in the present study (0.37 V/m vs.

0.97 V/m, 0.83 V/m and 1.06 V/m). In trams and metros, exposure

levels were similar in The Netherlands (0.34 V/m) and in Basel

(0.32 V/m) but higher in Ghent (0.50 V/m) and Brussels (0.70 V/m).

Note that all these previous studies included also DECT (Digital

Enhanced Cordless Telecommunication) frequency when calculat-

ing total RF-EMF exposure, which is, not the case in our study.

However, DECT cordless phone exposure is not expected to be

relevant for RF-EMF exposure in outdoor and train environments,

but rather more in environments like in households or in offices

where people spend most of their time.

4.3. Comparison of temporal trends with the literature

The number of studies examining temporal trends based on

personal measurements on a larger time scale up to one year is

very limited. A study performed in Lower Austria examined spot

measurements with a spectrum analyzer during daytime in bed-

rooms in 2006 and a follow-up investigation in 130 identical

homes was performed in 2009 (Tomitsch and Dechant, 2012). The

authors concluded from their results, that median RF-EMF expo-

sure in bedrooms increased from 41.35 mW/m2 (0.12 V/m) to

59.56 mW/m2 (0.15 V/m). Median exposure from mobile phone

base stations has increased by a factor 2 during these three years

(from 7.68 to 15.12 mW/m2). This study differed from our research

in terms of microenvironments, as we did not measure in house-

holds, and the equipment (spectrum analyzer vs. exposimeter).

In contrast a large survey of mobile phone base station measure-

ments from the US, UK, Spain, Greece and Ireland did not indicate

an increase in mobile phone downlink exposure between the years

2000 and 2009 (Rowley and Joyner 2012). The European narrow-

band measurements originated from monitoring sites close to

mobile phone base stations on ground-base, whereas the US

broadband measurements included many rooftops and other

locations around base stations. The dataset of this publication is

impressive but it is unclear whether temporal trends are affected

by the underlying heterogeneous dataset, whereas our study used

the exact same procedure over the entire study period. Monitoring

systems have been implemented in various cities in Europe, such

as in Greece (Gotsis et al., 2008), Italy (Troisi et al., 2008) and

Portugal (Oliveira et al., 2007). However, no analyses of time

trends are available from these measurement networks. In Basel,

prior to this study, measurements have been already collected

every month between May 2010 and 2011 in the very same

microenvironments (Röösli et al., 2014). Time trend analyses for

the entire 2-year period yielded annual increases ranging from

14% for downtown area up to 32% in central residential areas.

4.4. Strengths and limitations

A strength of the study is the use of a common measurement

protocol in all three cities of Basel, Ghent, and Brussels. In previous

studies, comparison of results between countries was limited due

to different study designs: i.e. different applied methodologies,

such as recruitment strategies of study participants, different data

collection procedures and different methods of data analysis

(Joseph et al., 2010). In the present study, the same study assistant

collected measurements in all cities and performed all analyses

ensuring accurate assignment measurements to microenviron-

ment which might not be the case in the volunteer study. The

mobile phone was switched off during data collection avoiding

influences from the own mobile phone to personal measurements

which could result in an overestimation of personal exposure, as it

impacts personal measurements which were shown by Urbinello

and Röösli (2013). In addition, the study design applying repetitive

measurements on a monthly basis, at the same days and times,

enabled to draw conclusions about temporal variations, for the

first time during an entire year.

Our study also has limitations; since we just considered two

working days and performed measurements during daytime, we

have not taken into account temporal exposure trends during

night or weekends. However, difference in exposure has been

found to be low between different days of the week (Beekhuizen

et al., 2013; Joseph and Verloock, 2010; Joseph et al., 2009).

Exposure from mobile phone base stations seems to be slightly

higher during weekdays than weekend (Joseph et al., 2009,

Mahfouz et al., 2013) and electric field strength was found to be

about 10–30% higher during daytime than during nighttime

(Manassas et al., 2012, Mahfouz et al., 2011), indicating some

overestimation of the average exposure situation.

Measurement duration in some of the microenvironments was

relatively low (e.g. non-central residential area). This is not expected

to bias the trend analysis, because this measurement protocol has

been shown to provide reproducible values (Beekhuizen et al., 2013).

However, the reported values may not be fully representative for the

whole corresponding measurement area. The higher the spatial

variability the less the representative values may be obtained with

a short measurement duration. Thus, uplink exposure in all areas and

downlink exposure in non-central residential areas with a low

transmitter density are mostly affected. In order to address the

representativity of our findings on a larger geographic scale we

suggest applying our measurement protocol for at least 20 min or

longer in additional microenvironments.

On the other hand, the exposimeter was carried close to the body

in a bag, thus shielding of the human body is expected to have

influenced our results to some extent, as shielding of the body is

expected to lead to underestimation of personal RF-EMF exposure

(Bolte et al., 2011; Iskra et al., 2010; Neubauer et al., 2010; Thielens

et al., 2013). Resulting extent of underestimation depends on the

frequency band. For the GSM900 downlink band correction factors

between 1.1 and 1.3 and for UMTS downlink and W-LAN correction

factors of 1.1–1.6 have been suggested (Bolte et al., 2011; Neubauer et

al., 2010). Bolte et al. (2011) did a comprehensive uncertainty analysis

for personal EME SPY 121 measurements addressing in addition to

body shielding calibration and elevation arrival angle. To take all of

these uncertainties in count, they propose frequency band specific

correction factors between 1.1 and 1.6. Thus, the level of exposure

may be somewhat underestimated; however, this bias is unlikely to

have affected temporal trend analysis. We have only measured a

limited number of microenvironments and thus, the generalizability

of the observed trends in these microenvironments for all other

environments from the same type in Belgium and Switzerland is

somewhat uncertain. In terms of population exposure it would be

interesting to extend this study to the work place and homes, where

people spend most of their time. However, such a study would be

very costly.

5. Conclusions

Our study offers for the first time a diligent comparison of

temporal trends during a year between countries as it based on a

common measurement protocol applied in all cities. We could

consistently demonstrate that all exposure levels were far below

reference levels proposed by ICNIRP (International Commission on

Non-Ionizing Radiation Protection). Exposure levels were of the

same order of magnitude in all cities. Consistently in all cities,

exposure was highest in public transports (train) and lowest in

residential areas (central and non-central residential areas). We

found substantial increase of exposure levels for most microenvir-

onments. It is crucial to further monitor the exposure situation in

D. Urbinello et al. / Environmental Research 134 (2014) 134–142 141



different environments in order to examine if and how exposure

changes over time and to anticipate critical areas.
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ONLINE FIGURES 

FIGURE 1. Paths along the different outdoor areas in the various cities.
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8 Summary of the main findings 

In the subsequent Chapter, the main results of the different aims stated in the 

Chapter 2.2 are presented accordingly. Specific results can be found in the 

respective articles Chapters 4 to 7). 

 

Objective 1: The effect of the own mobile phone on personal RF-EMF 

measurements. 

The effect of location area updates when being in transit in public transports (public 

transports study) and during car rides (car study) was analyzed for different 

scenarios: (i) mobile phone turned off (reference), (ii) dual-band mobile phone 

(second generation) and a (iii) quad-band mobile phone (third generation) being in 

stand-by mode. Highest uplink (i.e. communication from the mobile phone to the 

mobile phone base station) exposure occurred in trains, reaching levels up to 0.67 

V/m with lowest levels during car rides (0.02 V/m). Total uplink exposure (sum of 

GSM 900, GSM 1800 and UMTS uplink) originated mainly from the GSM frequency 

bands. 

Public transports study: Total RF-EMF exposure for both public transports combined 

(train and bus), was 0.50 V/m for the reference scenario (mobile phone turned off), 

0.40 V/m when having a dual-band mobile phone (second generation) in stand-by 

mode and 0.52 V/m for a quad-band mobile phone (third generation). The average 

proportion of uplink measurements in all transportation modes combined was up to 

81.6% (reference scenario). GSM uplink measurements with an activated phone in 

public transports were of the same order of magnitude as the reference scenario. 

With a UMTS mobile phone, UMTS uplink levels were always higher compared to the 

scenarios with a GSM mobile phone and in the reference state. 

Car study: Total RF-EMF exposure in all areas combined (rural, highway and urban) 

was 0.21 V/m for the reference scenario, 0.36 V/m for a GSM mobile phone and 0.78 

V/m for a UMTS mobile phone in stand-by mode. Uplink measurements contributed 

up to 81.9% to total RF-EMF exposure. With activated mobile phones, 

measurements of the GSM uplink bands were substantially higher compared with the 
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reference scenario. UMTS uplink levels increased for the scenario with a mobile 

phone of the third generation. 

 

Objective 2: Reproducibility of personal RF-EMF measurements. 

Reproducibility of mobile phone base station exposure measurements was 

investigated in Basel (Switzerland) and Amsterdam (the Netherlands) in different 

outdoor areas. Average mobile phone base station (downlink) exposure was highest 

in the downtown areas of both countries: 0.30 V/m in Basel and 0.53 V/m in 

Amsterdam. The lowest exposure was observed in residential areas: 0.09 V/m and 

0.33 V/m. In all areas, the exposure was consistently higher in Amsterdam than in 

Basel. The contribution to total RF-EMF exposure consisted mainly by mobile phone 

base station radiation, especially from GSM frequency bands. Exposure from mobile 

phone handsets was considerably lower in outdoor areas. Exposure remained fairly 

constant during the measurement period of three months, but showed high 

fluctuations during daytime. Exposure levels showed a high spatial variability within 

outdoor urban areas. Nevertheless, day-to-day exposure was similar at different 

times of the day on the same location and measurement path, demonstrating a high 

reproducibility for mobile phone base station exposure. Analysis of variance 

(ANOVA) confirmed that sources of data variability were best explained by type of 

city (50%) and type of area (30%). 

 

Objective 3: Influence of the mobile phone base station network on the 

exposure situation of the population. 

To analyze the influence of precautionary limits on outdoor RF-EMF exposure levels 

and to characterize RF-EMF exposure in different outdoor areas, measurements 

were performed in Basel (Switzerland), Amsterdam (the Netherlands), Ghent and 

Brussels (Belgium). The average total RF-EMF exposure in all outdoor urban areas 

combined ranged between 0.25 V/m in Basel and 0.44 V/m in Brussels. Highest 

exposure levels were found in the downtown areas of the different cities: 0.32 V/m in 

Ghent, 0.34 and 0.49 V/m in Basel (based on two measurement paths in the 

downtown area of Basel), 0.57 V/m in Amsterdam and 0.58 V/m in Brussels. In 

contrast, lowest exposure levels occurred in non-central and central residential 
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areas, varying between 0.16 V/m (Basel) and 0.42 V/m (Ghent). The most influential 

source in outdoor areas is attributed to mobile phone base stations (for all outdoor 

areas combined: 0.22 V/m (Basel) to 0.41 V/m (Amsterdam)). Exposure from mobile 

phone handsets was small, reaching exposure values of 0.06 V/m (Basel and Ghent) 

to 0.17 V/m (Brussels).  

In terms of peak exposure levels for total RF-EMF exposure, values in central 

residential areas ranged between 0.27 V/m (99th percentile: 0.45 V/m) in Basel and 

0.73 V/m in Ghent (99th percentile: 1.37 V/m), and in non-central residential areas the 

range was between 0.29 V/m (0.61 V/m) in Ghent and 0.73 V/m (1.13 V/m) in 

Amsterdam. Highest peak exposure levels occurred in the downtown area with levels 

of 0.52 V/m (Basel 2) and 0.94 V/m (Amsterdam) for the 95th percentile and between 

0.87 V/m (Ghent and Basel 2) and 2.08 V/m (Brussels) for the 99th percentile. 

Mobile phone base station exposure as a function of the corresponding regulatory 

limit for arithmetic means averaged over the entire study period showed that 

exposure levels in the central residential area of Ghent (0.36 V/m) and in the 

downtown area of Brussels (0.51 V/m) and Basel (0.47 V/m), with more stringent 

regulatory limits, were of similar magnitude as in Amsterdam (central residential area: 

0.31 V/m; downtown: 0.51 V/m), which has the least stringent regulatory limits. 

 

Objective 4: Characterization of RF-EMF exposure in everyday environments. 

RF-EMF exposure levels were characterized in outdoor areas, public transports and 

indoor settings across several European cities. For all outdoor areas combined, 

average total RF-EMF exposure ranged between 0.25 V/m (Basel) and 0.44 V/m 

(Amsterdam). Highest exposure occurred in the downtown areas: 0.32 V/m (Ghent) 

to 0.58 V/m (Brussels). Whereas lowest levels occurred in residential areas (central 

and non-central residential areas) varying between 0.16 V/m (Basel) and 0.24 V/m 

(Brussels). Mobile phone base station exposure was the major source in outdoor 

areas causing mean RF-EMF levels between 0.22 V/m (Basel) and 0.41 V/m 

(Amsterdam) on the basis of all outdoor areas combined.  

In all public transports combined, total RF-EMF exposure ranged between 0.59 V/m 

(Basel) and 0.84 V/m (Brussels), where highest exposure was measured in trains, 

reaching average levels up to 1.06 V/m (Brussels). Mobile phone handset exposure 
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was the most relevant source in trains, contributing over 98% to total average RF-

EMF exposure. 

In indoor settings, typical average total RF-EMF exposure levels ranged between 

0.22 V/m in shopping centers (Basel) and 0.57 V/m at the railway station (Brussels). 

Typical sources in indoor locations are primarily induced by mobile phone base 

stations (range: 0.12 V/m - 0.51 V/m) and mobile phone handsets (range: 0.15 V/m - 

0.26 V/m) signals.  

 

Objective 5: Temporal variation of RF-EMF exposure. 

We investigated temporal variability of RF-EMF exposure in three European cities in 

outdoor areas, public transports and indoor settings. We observed a considerable 

change of the exposure situation during the period of one year between April 2011 

and March 2012 across all cities. 

Descriptive analysis suggested an increase of RF-EMF exposure in urban outdoor 

areas considering total RF-EMFs and mobile phone base station exposure which is 

the predominant source in outdoor areas. Trend analysis using multilevel mixed 

effects linear models indicated a highly statistically significant increase of mobile 

phone base station exposure for all outdoor areas combined in Basel (64.0%, 

p<0.001), Ghent (23.6%, p=0.021) and Brussels (68.3%, p<0.001). Area-specific 

yearly changes were most pronounced in Basel (range: 37.2% (p=0.056) in the 

suburban to 96.5% (p=0.02) in the non-central residential area) and Brussels (26.4% 

(p=0.377) in the downtown area to 120.2% (p=0.002) in the central residential area). 

In Ghent, annual changes of 40.2% (p=0.006) were observed in the downtown area. 

A considerable increase of 98.4% (p=0.002) and 120.2% (p=0.002) were observed in 

the non-central and central residential area of Brussels.  

In public transports RF-EMF exposure was highly variable. Mobile phone handset 

exposure was the most relevant source in public transports, especially in trains. 

Significant increases of 117.3% (p=0.028) in annual exposure change in public 

transports were only detected in metros in Brussels. In Basel and Brussels, 

statistically significant yearly changes of mobile phone base station radiation 

(downlink) in all types of public transports have been found, increasing by 96% 

(p<0.001) in buses in Basel and by 128.6% (p=0.014) in trains and 86% (p=0.038) in 

buses in the city of Brussels. Surprisingly, exposure to mobile phone handsets in 



8 Summary of the main findings 

66 
 

trains even seemed to decrease in Basel (44.7%, p=0.381), however without 

statistical evidence. In indoor settings, more variable RF-EMF exposure trends exist, 

with statistically significant increases for total RF-EMF exposure of 64.3% (p=0.032) 

at the airport, and 100.7% (p=0.005) in shopping centers in Basel; a similar 

phenomenon could be observed in Brussels, however, with lack of statistical 

evidence. Results indicate that mobile phone base station exposure consistently 

increased in all cities. Notably, a very large increase in mobile phone handset (uplink) 

radiation was observed at Brussels’ railway station (359.2%, p=0.004), whereas at 

the airport, uplink radiation decreased by 47.3% (p=0.002). 
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9 Discussion 

The discussion is structured according to the different objectives stated in Chapter 

2.2. Specific findings are discussed in detail in the Articles 1 to 4 in the Chapters 4 to 

7. In the Discussion, general aspects are presented focusing first on methodological 

aspects and expanding further to issue-specific aspects. The topics are put in context 

with the scientific literature and implications for future research are provided.  

9.1 Methodological issues – draw the bow 

Objective one addressed the question about the effect of the own mobile phone on 

personal RF-EMF measurements. We found that personal RF-EMF measurements 

are affected by one’s own mobile phone in stand-by mode. This is especially the 

case when driving around in a car compared to being in transit with public transports 

where results demonstrated a high background exposure influenced by other 

people’s mobile phone. 

The introduction and development of new wireless telecommunication technologies 

and the substantial increase of environmental exposure to radiofrequency 

electromagnetic fields (RF-EMFs) in the last two decades has led to concerns in the 

general population about potential adverse health effects caused by RF-EMFs 

(Blettner et al., 2009; Neubauer et al., 2007; Röösli et al., 2010a; Röösli et al., 2010b;  

Schreier et al., 2006; Schröttner and Leitgeb, 2008). The World Health Organization 

(WHO) has identified the exposure assessment of RF-EMF levels for established and 

new RF technologies as well as the quantification of personal exposure from a range 

of RF sources and identification of determinants as a high research priority need 

(WHO, 2010). 

RF-EMF exposure measurements are imperative for exposure assessments, 

including studies investigating potential adverse health effects of RF-EMFs.  

The research conducted in the framework of this dissertation gives new insights in 

methodological approaches by taking into account several issues regarding personal 

mobile phone use, reproducibility of personal exposure measurements and the 

impact of the mobile phone base station network on population exposure to better 

understand and characterize RF-EMF exposure among the general population. We 

performed several monitoring studies in different everyday environments and across 
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several European cities using personal exposimeters. A complete overview of the 

different measurement periods in the different cities and environments is illustrated in 

Figure 8 in the Methods section (Chapter 3.1).  

9.2 The effect of the own mobile phone on personal RF-EMF 

measurements 

Objective one addressed the question about the effect of one’s own mobile phone on 

personal RF-EMF measurements. We found that personal RF-EMF measurements 

are affected by one’s own mobile phone in stand-by mode. This is especially the 

case when travelling in a car compared to being in transit with public transports 

where results demonstrated a high background exposure influenced by other 

people’s mobile phone. 

Epidemiological studies using personal exposimeters have been recommended for 

RF-EMF exposure assessment (Ahlbom et al., 2008; Neubauer et al., 2007) and 

successfully applied in various recent studies (Bolte and Eikelboom, 2012; Frei et al., 

2010; Joseph et al., 2010a; Röösli et al., 2010b; Thomas et al., 2008; Thuróczy et al., 

2008; Viel et al., 2009). However, personal RF-EMF exposure in such studies was 

measured by recruited study participants who were allowed to use their own mobile 

phone (Frei et al., 2009a). When study participants carried around an exposimeter, 

their mobile phone was usually switched on, most of the time in stand-by mode. It is 

well-known that the own mobile phone affects personal measurements and this 

exposure source was neglected in previous studies. When looking at different 

exposure sources separately, neglecting the exposure of the own mobile phone can 

be a severe limitation, as the impact of the own mobile phone on uplink (i.e. 

communication from the mobile phone to the mobile phone base station) 

measurements can be considerable. A study conducted by Frei et al. (2009a) 

showed that mean RF-EMF uplink exposure levels of persons with a mobile phone 

during measurements were 0.13 V/m compared to 0.08 V/m for study participants 

without a mobile phone. We found that one’s own mobile phone in stand-by mode 

has a substantial impact on personal RF-EMF exposure measurements in the three 

uplink frequency bands GSM 900 (Global System for Mobile Communications), GSM 

1800, and UMTS (Universal Mobile Telecommunications System).  
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Along with the increase of new mobile devices, mobile phones became more 

sophisticated and efficient in reducing output power levels. As described in Chapter 

1.4, dual-band mobile phones of the second generation (2G, GSM) radiate with full 

intensity during connection establishment of calls and down-regulate output power 

levels after connection has been established (Lönn et al., 2004). Newer mobile 

phones (smartphones), in contrast, use an enhanced adaptive power control (APC), 

adjusting output power according to the signal strength and connection quality (Gati 

et al., 2009; Kelsh et al., 2011; Persson et al., 2011; Wiart et al., 2000). So far, the 

impact of mobile phones in stand-by mode (without active calls) on personal 

measurements has not been investigated. We performed a study consisting of 

measurements conducted in public transports (train, tram, and bus) and during car 

rides in rural areas, on highways and in cities in Switzerland. Mobile phones have to 

communicate with the nearest mobile phone base station to provide information 

about the geographic position in order to maintain connectivity; this leads to constant 

uplink RF-EMF exposure when moving. Basically, it has to be differentiated between 

location area updates and handovers: (i) location area updates occur when traveling, 

and the mobile phone has to inform the cellular network about its position when 

changing the location area (Akyildiz et al., 1996; Lin et al., 2002); (ii) handovers, in 

contrast, take place when a mobile subscriber crosses the borders of a location area 

with an active call in progress, where an available channel must be assigned to the 

mobile phone in the destination cell to avoid termination of a call (Del Re et al., 

1995). The performance of mobility management which allows tracking the location 

of mobile phones has a larger effect when being in transit, as being stationary with 

the mobile phone in stand-by mode. When travelling, subscribers repeatedly change 

the location area, which is covered by one or a group of mobile phone base stations, 

over time. The effect of location area updates on personal RF-EMF exposure 

measurements was investigated in our study (Article 1, Chapter 4). Our findings 

demonstrated that when travelling, location updates have a considerable impact on 

personal RF-EMF exposure. On the one hand the effect is triggered by regular 

location updates when changing the location area and on the other hand – which can 

be regarded as an additive effect – push notifications and updating of web-based 

applications trigger this effect. A recent study conducted by Mild et al. (2012) in 

Sweden investigated the effect of location updates of dual-band mobile phones (2G) 

in stand-by mode. They concluded that periodic location updates occurred once 
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every two to five hours and that between these updates the mobile phone can be 

compared to a passive radio receiver without radiation (Mild et al., 2012). It has to be 

considered, however, that smartphones operating on four RF bands with web-based 

applications execute more updates and have distinct radiation characteristics when 

compared to mobile phones of the second generation (GSM) and thus communicate 

with higher periodicity with the nearest mobile phone base station. An important 

finding was that the personal uplink exposure during car rides can be reduced 

considerably, by orders of magnitude, by turning off the mobile phone and thus 

preventing location area updates. In this context it is of minor importance where the 

mobile phone in the car is placed. Our results showed that, even in a distant position 

to the source (e.g. back seat in the car), exposure is of the same order of magnitude 

as when the mobile phone is in closer proximity. When driving in rural areas, uplink 

exposure can be higher, because the network density is lower than in cities and the 

distance to the nearest mobile phone base station is generally larger. This in turn 

might result in higher output power levels. In urban areas, the exposure from the own 

mobile phone was slightly lower, but the influence of other people’s mobile phone 

walking on sidewalks had some influence in recorded uplink exposure levels, 

especially when waiting on traffic lights. In contrast, during tram, bus, and especially 

during train rides, background exposure from other people’s mobile phone was 

substantial, while the relative contribution of the personal mobile phone was small. 

We found that the own mobile phone operates to a greater extent on the GSM 

network than on UMTS frequency. This can be partly explained with the quantity and 

density of mobile phone base station networks, GSM and/or UMTS, in a specific 

area. 

The impact of one’s own mobile phone on personal measurements leads to the 

question of whether call duration is an adequate exposure proxy, which has been 

considered as the most common exposure surrogate in RF-EMF research. As a 

consequence, future exposure assessment studies should not only take into account 

the call duration, but also exposure from mobile phones in stand-by mode when 

defining cumulative exposure as outcome. With the introduction of new mobile 

devices and with the dispersal of tablets, new RF-EMF emission characteristics occur 

and have to be taken into consideration. This might be of importance for studies with 

children and adolescents, as they start to use mobile devices early in life (Böhler and 
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Schüz, 2004; Söderqvist et al., 2007) and consequently cumulative lifetime exposure 

might increase. 

9.3 Reproducibility of personal RF-EMF measurements 

When planning exposure assessment studies based on personal measurements, a 

crucial question is how reproducible such measurements with personal exposimeters 

are. The second objective of this dissertation aimed to investigate how reproducible 

RF-EMF exposure measurements are and what potential sources may influence data 

variability. Therefore, we performed a monitoring study in different urban outdoor 

areas based on concurrently conducted measurements in two European cities, 

namely Basel (Switzerland) and Amsterdam (the Netherlands) to investigate this 

problem. Prior to addressing the question about the reproducibility of personal 

exposimeter measurements, advantages and disadvantages of different exposure 

assessment methods will be discussed (confer also Chapter 1.6). 

 

Comparison of different exposure assessment methods 

In Chapter 1.6, the most common exposure assessment methods are presented 

(Figure 5). In the current Chapter, different measurement devices are discussed 

based on the results, declaring strengths and limitations.  

Broadband probes are mainly used to identify maxima and allow a fast-scanning of 

the environment, but are not suitable for identifying exposure of specific sources due 

to technical restrictions. We performed some measurements in Ghent and Brussels 

using broadband probes at pre-defined locations to identify average exposure prior to 

measure accurately with a spectrum analyzer.  

Narrowband measurements using spectrum analyzers and broadband probes have 

been described in several studies (Joseph et al., 2010b; Joseph et al., 2012; Joseph 

et al., 2006; Schmid et al., 2007; Siran and Seyhan, 2009; Tomitsch et al., 2010; 

Verloock et al., 2010) and are used for fixed-site monitoring. They allow very 

accurate measurements also differentiating between different providers with a 

measurement uncertainty of ± 3 dB (CENELEC, 2008; Joseph et al., 2012). However, 

they require technical skills from trained personnel and are cost- as well as resource-

intensive (Bornkessel et al., 2010; Joseph et al., 2009). Moreover, the spectrum 

analyzer settings have a huge impact on measurement results (Joseph et al., 2012; 
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Verloock et al., 2010). Standard procedures for in-situ measurements of 

electromagnetic field strength are described in Joseph et al. (2009) and CENELEC 

(2008). Comparison between measurements with an exposimeter of the type EME 

Spy 140 and a spectrum analyzer data was performed at three different time 

instances (between September 2011 and May 2012) in Ghent and Belgium (data not 

shown in this thesis). The spectrum analyzer was placed on a fixed site in free space 

and the exposimeter on the ground. The ratio between the spectrum analyzer (SA) 

and exposimeter (Exp) (ESA/EExp) varied between 1.12 and 4.32 considering the 3 

time instances, indicating poor agreement between the two devices. 

Mobile monitoring with portable exposimeters is a suitable approach when targeting 

to get a general impression of the RF-EMF exposure and to differentiate between 

sources. The usefulness of personal exposimeters along with research 

recommendations including their limitations have been discussed in several studies 

(Ahlbom et al., 2008; Mann et al., 2005; Neubauer et al., 2007; Radon et al., 2006; 

Röösli et al., 2010b). The advantage of exposimeters is that they allow collecting a 

large amount of data in various environments with relatively little effort (Röösli et al., 

2010b). Their manageable size of around 19 cm allows the subject to carry them 

around, for example in a bag. Two examples of commercially available exposimeters 

are the EME Spy 120 and its successor EME Spy 140 (SATIMO, Courtaboeuf, 

France, http://www.satimo.fr/) which measure isotropic (in all directions) and are able 

to quantify exposure in 12 and 14 different frequency bands, respectively. The 

position of the exposimeter is an influential factor when collecting data. When 

carrying the exposimeter on the body, shielding effects, due to interactions of the 

human body with RF-EMFs, may lead to underestimation of the exposure (Iskra et 

al., 2010; Neubauer et al., 2008). Shielding of the body can have variable effects on 

measured exposure if wearing the exposimeter close to the body (Bolte et al., 2011; 

Knafl et al., 2008; Neubauer et al., 2008). Studies performed by Iskra and colleagues 

showed through models that exposure can be underestimated up to 6.5 dB (Iskra et 

al., 2010; Iskra et al., 2011). In a study by Bolte et al. (2011), they found that 

exposimeters tend to underestimate the true exposure according to tests in a 

gigahertz transverse electromagnetic cell and by controlled measurements at an 

open area test site wearing one or two exposimeters. Blas et al. (2007) showed that 

uncertainty can even reach 30 dB for single point measurements due to reflection of 

EMFs of the body (Blas et al, 2007). We compared how mean mobile phone base 
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station exposure values differed between measurements taken with an exposimeter 

placed near the body in a bag and distant to the body in a pushchair cart (1 m 

distance to the body and around 1 m height above ground) in outdoor areas. Ratio of 

the power flux density (S) averaged over the entire study period (Sdistant/Sproximal) 

varied between 0.24 and 1.05 in outdoor areas. It happened that the exposimeter in 

the bag (proximal) measured even higher values as the exposimeter placed distant 

from the body. Nevertheless, further studies should be performed to further 

investigate this issue. The effect of the main beam direction of the antenna, building 

characteristics in the area-specific environments, position and orientation of the 

exposimeter and environmental conditions (water, snow) are important factors 

influencing measurements. Exposimeters are not very accurate when measuring RF-

EMF exposure from near-field sources since measured exposure strongly depends 

on the distance to the source. In consideration of all factors influencing exposure, the 

best method would be to keep the exposimeter distant from the body preventing body 

shielding effects. Nevertheless, we found that if carrying the exposimeter in a bag, 

measurements are reliable and consistent allowing characterizing far-field exposure 

levels in different environments.  

Optimal conditions to measure RF-EMF exposure hardly exist, and a certain level of 

uncertainty has to be taken into account. Nevertheless, the measurements have to 

be easy to manage when data collection is intended to carried out repeatedly over a 

long time. Exposimeters are also suitable for personal exposure assessments 

through study participants. Exposimeters are recommended when the purpose of the 

study is to get a general impression of the RF-EMF exposure situation and its 

distribution among various sources in different environments. If performing repeated 

measurements, one main aspect is how reproducible such exposimeter 

measurements are. This will be discussed in the following section. 

 

How consistent are personal measurements in terms of reproducibility and 

what are influencing factors? 

As suggested by a study of Bornkessel et al. (2007) determining the general public 

exposure around GSM and UMTS base stations, it is not recommended to measure 

only at one fixed position as this is not representative for the mean or maximum 

exposure. Concurrently conducted measurements in Basel and Amsterdam had been 

performed using personal exposimeters to address the question of reproducibility. 
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We measured exposure dynamically by walking along pre-defined measurement 

paths in different outdoor urban areas (Article 2, Chapter 5) with a bicycle trailer 

(Amsterdam) and a pushchair cart (Basel) placing the exposimeter distant from the 

body.  

We found RF-EMF exposure to be spatially highly variable, differing considerably in 

urban outdoor areas. This was consistently observed for all measurements 

conducted in the framework of this thesis (Article 2 to 4, Chapters 5 to 7). For 

example, comparing mobile phone base station exposure in two areas of the city of 

Basel, a central residential (denoted as Area 3 in Figure 11) and downtown area 

(denoted as Area 4), mean exposure values were 0.12 V/m and 0.30 V/m, 

respectively, despite their proximity to one another (Figure 11). The same spatial 

variability has been found in Amsterdam, Ghent and Brussels (Chapters 6 and 7). An 

important determinant influencing spatial RF-EMF variability is the density of mobile 

phone base stations in the different outdoor urban areas. It clearly comes across that 

exposure levels in the downtown area are higher due to a denser cellular network 

where, in addition to mobile phone base stations, micro-, pico- and femto-cells are 

installed. The spatial distribution of RF-EMF exposure patterns will be further 

elaborated in Chapter 9.6.  

 
Figure 11: Measurement paths and mobile phone base station density of GSM and UMTS towers. 

Mobile network (GSM) 
Mobile network (UMTS) 
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Despite the high spatial and temporal RF-EMF variability from mobile phone base 

stations (Frei et al., 2009b), it turned out that mobile phone base station (downlink) 

exposure measured with personal exposimeters was highly reproducible when 

performing repeated measurements along the same measurement paths at different 

times of the day (morning, noon, afternoon). Measurements were conducted during 

three months (November 2010 to January 2011). However, the repeatability of 

mobile phone base station exposure on the same route could also be confirmed 

when expanding the study period to ten months (Beekhuizen et al., 2013). We found 

that the high spatial variability in our study in different outdoor areas was best 

described by type of area (30%) and type of city (50%), according to analysis of 

variance (ANOVA) models (Chapter 5). A study of Frei et al. (2009a) examining 

exposure levels in a sample of volunteers living in Switzerland found that weekly 

exposure measurements were reproducible when they repeated measurements in a 

sub-sample (32 participants) of the study population consisting of 166 volunteers.  

The choice of the measurement path is a crucial point when planning an exposure 

assessment study and characterizing outdoor RF-EMF exposure levels as it largely 

influences measurements. It would be recommendable to include different 

measurement routes in the same study area, depending on the size and mobile 

phone base station density of the area, to better describe RF-EMF exposure 

variability and situation. Interestingly, average mobile phone base station exposure 

remained fairly constant during the study period of three months when measuring 

along the same path at different times, despite the daily fluctuation of RF-EMFs. 

Variability over longer time periods (over three months) is discussed in Chapter 9.7.  

The issue of reproducibility of personal RF-EMF measurements is of crucial 

importance, in order to have reliable measurements enabling a consistent 

comparison over time. If comparing exposure levels between cities, it is fundamental 

to determine areas based on matching criteria like building height, proximity to main 

roads and traffic, pedestrian zones, and green space in order to equalize as much as 

possible. For the downtown area we have chosen a typical meeting point in the city 

center, central residential areas are characterized in terms of pedestrian activity and 

higher building heights up to 4 to 5 floors compared to lower building heights in non-

central residential areas (2 to 3 floors) in quiet areas with green space. A further 

possibility is to define or categorize areas according to the population density per 

square kilometer. 
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9.4 Influence of the mobile phone base station network on the 

exposure situation of the population 

 

The precautionary principle 

With the ongoing development and enduring introduction of new telecommunication 

technologies (Webb, 2007), concerns regarding potential adverse health effects are 

prevalent in the population, and there is an uncertainty about long-term health effects 

of continuous low exposure levels. Polls have shown that persons are more 

concerned about potential adverse health effects from fixed site transmitters, i.e. 

mobile phone base stations, than from sources that they use personally, such as 

mobile devices (Schreier et al., 2006). The International Commission on Non-Ionizing 

Radiation protection (ICNIRP) recommended frequency-specific reference levels (see 

Chapter 1.3) which are 42 V/m for GSM 900, 58 V/m for GSM 1800 and 61 V/m for 

UMTS. Below these ICNIRP reference levels, no health effects could consistently be 

demonstrated (ICNIRP, 1998; Röösli et al., 2010a). Following concerns in the 

general population, several countries adopted a precautionary principle lowering their 

standard limits at so-called sensitive places where people spend most of their time 

(see Chapter 1.3). We addressed the question if and how regulatory exposure limits 

affect the RF-EMF exposure situation in outdoor urban areas (objective 3). 

Therefore, we performed measurements in different residential (central and non-

central) and downtown areas across the cities of Basel, Ghent and Brussels, where 

precautionary limits are imposed, and Amsterdam, where ICNIRP levels are valid 

(Article 3). Table 3 gives an overview on the different frequency-dependent 

regulatory limits imposed in the different cities. 

Our results demonstrate that all RF-EMF exposure levels were far below the ICNIRP 

reference levels. Minimizing exposure to RF-EMFs was recommended (Berg-

Beckhoff et al., 2009; Blettner et al., 2008; Neubauer et al., 2007; WHO, 2010) and, 

accordingly, precautionary limits were adopted by several countries at national and 

even at regional level, as in Belgium (different limits for Ghent and Brussels, Table 

3).  
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Table 3: Overview of the regional directives for different cities. 

1Regulatory exposure limit per base station for sensitive areas: living rooms, school rooms, kindergarten, hospitals, nursing 

homes, places of employment, children’s and school playgrounds. 
2Regulatory exposure limit per antenna: valid for indoor places and children’s playgrounds. 

 These regulatory limits are estimated by calculating 0.1 ∗ �� (with f as the frequency in Hz) for the frequency range between 

400 MHz and 2 GHz and 4.48 V/m for 2 GHz to 10 GHz. 

 GHz. There is also a limit for cumulative exposure of 21 V/m (at 900 MHz, frequency dependent). 
3Regulatory exposure limit for cumulative RF-EMF exposure: valid at all public availability places (exceptions for various 

technologies). 
4Regulatory exposure limit for cumulative RF-EMF exposure. 

 

The effect of precautionary limits on the exposure situation of the population is 

difficult to analyze, as it is influenced by many different factors such as comparability 

of areas included in the study, exposure assessment methodology and many more. 

The initial hypothesis was that lowering regulatory limits may affect in turn the 

configuration of the mobile phone network, since when lowering the output power of 

mobile phone base stations to decrease exposure, more base stations are required 

to compensate the reduction. This could potentially result in higher RF-EMF 

exposure. We did not find indications that lowering regulatory exposure limits 

resulted in increased mobile phone base station exposure levels. Area-specific 

comparisons showed similar mobile phone base station exposure levels between 

Amsterdam and other cities. Interestingly, peak exposure levels (95th and 99th 

percentile) sustain the fact that they are not related to the level of the regulatory limit.  

Comparing exposure levels across different cities or countries, as was done in the 

framework of this thesis (Chapters 5 to 7), requests a certain degree of comparability 

in order to have reliable results which can be cross-compared between countries or 

cities (Joseph et al., 2010a). In all studies where we characterized outdoor urban 

exposure we matched areas as accurately as possible based on several criteria, 

previously described in Chapter 9.3. In addition, we developed a common 

measurement protocol using uniform data collection and data analyses procedures. 

This was done for concurrently conducted measurements in Basel and Amsterdam 

as well as for a multi-center study in Basel, Ghent and Brussels. As described in the 

Frequency Basel1 Ghent2 Brussels3 Amsterdam4 

900 MHz 4 V/m 3 V/m 2.9 V/m 41 V/m 

1800 MHz 6 V/m 4.2 V/m 4.1 V/m 58 V/m 

2100 MHz 6 V/m 4.5 V/m 4.3 V/m 61 V/m 
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previous Chapter, the measurement path is a crucial issue when planning an 

exposure assessment study with the aim to characterize outdoor urban RF-EMF 

exposure levels. The path determines, to a large extent, measured RF-EMF 

exposure which may be responsible for unintentionally higher values. Thus, line-of-

sight (LOS) and non-line-of-sight (NLOS) conditions should be taken into account, 

which will be further explained in Chapter 9.6. There are indications that in LOS 

conditions, the field strengths are generally higher than in NLOS conditions (Kühn, 

2009). Mobile phone base station density is also an influential factor to be 

considered. In a denser network, tilts and mast height may be lower whereas in rural 

or non-central residential areas, exposure levels may increase since the mobile 

phone has to radiate with higher output power to communicate with the mobile phone 

base station; this was further issued in Article 1 (Chapter 4).  

Three cities have adopted precautionary limits which are approximately 10 times 

lower than ICNIRP reference levels and in one city, ICNIRP levels are imposed 

without precautionary limits. It would be important to consider different cities with 

different limits between the clusters of Brussels, Ghent, Basel and, on the other end, 

Amsterdam, in future studies.  

Reference values are related to maximal values at hotspots over time. Exposimeter 

measurements rather represent average exposure values. Consequently, mean 

values calculated based on data collected with a personal exposimeter do not 

demonstrate that reference values are met at each point in time and space. RF-EMF 

patterns are very heterogeneous, both in outdoor areas and indoor locations 

(Bornkessel et al., 2007).  

 

Implications 

The precautionary principle is controversially discussed resulting in political 

implications including several initiatives at local, regional, and national levels with the 

aim to inhibit the mobile phone base stations sprawl. One could argue that the level 

of RF-EMF exposure in the population is not relevant as long as the reference levels 

are not exceeded. Furthermore, social aspects regarding concerns of the population 

act as a strong influence on the implementation of the precautionary principle. 

According to a study by Vecchia (2007), undermining credibility of science-based 

guidelines by social considerations, such as public anxiety, should be avoided. 

Leitgeb (2008) concluded that implementation of the precautionary principle should 
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not be triggered by uncertainty and not be misinterpreted as a definite risk. A recently 

published study by Wiedemann et al. (2013) examined the effects of precautionary 

information on risk perception, focusing on mobile telephony. Interestingly, they 

concluded that informing people about precautionary measures does not result in 

decreased public concerns (Wiedemann et al., 2013). However, in the light of current 

uncertainties it may be justified to minimize exposure as much as possible. Our study 

provides at least some evidence that the introduction of precautionary limits does not 

unintentionally increase the mean RF-EMF exposure of the population. Any risk 

should be reduced if this is easily and economically achievable (Leitgeb, 2008). 

Therefore, it is of great importance to study temporal changes of RF-EMFs, 

especially as new technology standards are being introduced – such as UMTS 

(Universal Mobile Telecommunication System) – or are in the phase of 

implementation, such as LTE (Long-term Evolution) in order to evaluate and adapt 

current policies regarding RF-EMFs. The pronounced spatial and temporal variability 

of RF-EMFs illuminates the difficulty in predicting long-term developments of RF-

EMFs. 

9.5 Issue-specific perspectives 

Understanding the spatial and temporal variation of RF-EMF exposure patterns, 

elucidates the complex dynamic of radiofrequency electromagnetic fields (RF-EMFs) 

in our everyday environment and, thus, gives a better understanding on how to plan 

future epidemiological studies in RF-EMF research. After the description of 

methodological challenges, the following two Chapters aim to characterize RF-EMF 

exposure in different typical environments and to investigate the temporal variability 

of RF-EMF exposure.  

9.6 Characterization of RF-EMF exposure levels in everyday 

environments 

 

Spatial distribution 

Very little is known about RF-EMF exposure in everyday life as personal 

exposimeters became available only a few years ago (Joseph et al., 2010a). In 

addition, the continuous introduction of new mobile technologies alters the exposure 
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situation. Objective four of this thesis addressed the characterization of RF-EMF 

exposure levels from various sources in typical everyday environments, such as 

various outdoor areas, different public transportations, and several indoor settings. 

Exposure levels measured in Basel were placed in an international context with three 

European cities: Amsterdam (only outdoor measurements), Ghent and Brussels. The 

cross-comparison of RF-EMF exposure levels across countries was limited in 

previous studies due to differences in methodology regarding the data collection 

procedure or the data analysis (Joseph et al., 2010a). This was the first study to 

assess RF-EMF exposure in typical everyday environments using a unique study 

design in all cities with a common data collection procedure protocol and uniform 

data analysis. 

 

Characterizing RF-EMF sources in everyday environments 

The main contribution to the total RF-EMF exposure was predominantly influenced 

by telecommunication technologies from mobile phone handsets (uplink) and mobile 

phone base stations (downlink) contributing between 77.1% and 99% to total RF-

EMF exposure, depending on environment (outdoor area, public transports or indoor 

setting). The radiation in outdoor areas was mainly influenced by mobile phone base 

stations. We found relative contributions of 87.4% (Basel), 87.5% (Ghent) and 61.9% 

(Brussels) of downlink exposure on total RF-EMF exposure. In public transports, the 

dominant source was uplink exposure, contributing 87.5% (Basel), 96.1% (Ghent) 

and 95.8% (Brussels) to total RF-EMF exposure. In indoor settings, both, uplink and 

downlink exposure were the main sources contributing between 14.6% (Basel) and 

23.9% (Brussels) for uplink exposure and between 64.5% (Brussels) and 79.0% 

(Basel), respectively. An international study comparing RF-EMF exposure in different 

urban areas across Europe (Belgium, Switzerland, Slovenia, Hungary, and the 

Netherlands) by Joseph et al. (2010a) found similar results. In their study, exposure 

in transportation vehicles ranged between 92.5% and 96.6% in trains. In outdoor 

urban areas, contribution from downlink sources accounted for over 80% in Belgium, 

around 40% in Switzerland and 70% in the Netherlands, whereas in Slovenia it 

contributed only to approximately 20%. We conclude that telecommunication 

technologies are the most influential sources of the total RF-EMF exposure arising 

mainly from mobile phone base stations and mobile phone handsets.  
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The exposure distribution of spatial RF-EMFs is complex, because of a large variety 

of sources with different radiation characteristics contributing differently to everyday 

RF-EMF exposure. Mobile phone base stations produce very variable exposure 

patterns (Bornkessel et al., 2007) as has been indicated in the previous Chapters of 

the Discussion. It has been shown that the distance to the mobile phone base station 

is not the only influencing factor, but orientation to the main lobe and the sight 

conditions have a greater impact on RF-EMF exposure (Bornkessel et al., 2007). 

Regarding the sight, it can be differentiated between line-of-sight (LOS) which is a 

propagation of electromagnetic waves without obstacles between transmitter and 

receiver and non-line-of-sight (NLOS) which represents a class of propagation where 

a multipath propagation leads to interference by obstacles between transmitter and 

receiver and, thus, only scattered waves arrive at the terminal (Ferrara et al., 2007). 

Our findings are in line with previously conducted epidemiological studies, 

demonstrating that RF-EMF exposure levels vary considerably in different outdoor 

locations within one urban area as presented and described in the studies of 

Bornkessel et al. (2007), Frei et al. (2009a), Frei et al. (2010), Frei et al. (2009b). 

Figure 12 exemplifies the variation of the exposure within an area: the simulation 

illustrates the electric field strength distribution from radiation of two mobile phone 

base stations with nine antennas on the top of a building along a street in a 

residential area in the city of Brussels, taking into account spatial features: 

information about the position, the form, and the height of the buildings in the target 

area. 
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For mobile phone base station exposure, many factors are influencing exposure 

patterns: building characteristics, tilts of the antennas, mast heights, type of 

environment (rural, central), the whole topology of an environment, such as density of 

buildings, height and geometry of buildings, the density of mobile phone base 

stations in an area and if they are in LOS or NLOS condition to the measurement 

device, and climatic effects, such as rain or snow, may also influence EMFs. All these 

factors strikingly complicate measurement accuracy.  

 

RF-EMF exposure levels in everyday environments 

Detailed results are presented in Articles 3 and 4 (Chapters 6 and 7). Our results 

showed that highest exposure levels in outdoor urban areas occurred consistently in 

the downtown areas of each city, with typical total RF-EMF (all frequencies combined 

except DECT) exposure values ranging from 0.32 V/m in Ghent to 0.58 V/m in 

Brussels. In other areas such as urban residential areas, exposure levels were 

between 0.16 V/m (Basel) and 0.42 V/m (Ghent). The most important sources in 

outdoor areas are mobile phone base stations. The spatial variation can partly be 

explained by the mobile phone base station density in the respective areas, with a 

higher base station density in downtown areas, including also micro- and pico-cells, 

as in residential areas (Chapter 9.3, Figure 11). However, with a denser mobile 

phone base station network, the output power of mobile phone base stations might 

be lower and, thus, average exposure levels might even increase; though this did not 

Figure 12: Propagation 

model of the electric 

field strength for a 

selected street in line-

of-sight with a mobile 

phone base station in a 

residential area of 

Brussels (calculated 

using WinProp Software 

Package v12, AWE 

Communications, 

Gaertringen, Germany). 
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occur according to our results presented in Article 3 (Chapter 6). In public transports, 

highest total RF-EMF values have been measured in trains with average levels 

between 0.83 V/m in Ghent and 1.06 V/m in Brussels, reaching peak exposure levels 

in terms of the 99th percentile of up to 3 V/m (Brussels). The high RF-EMF exposure 

levels in trains have several implications: the inner space of a train can be 

considered as Faraday cage, reflecting emitted radiation by mobile phones. 

Additionally, the number of people using their mobile phones’ is usually higher in 

trains than in other environments. The main source of total mean RF-EMF exposure 

in public transports, especially in trains, is mobile phone handset radiation. We 

observed a widespread use of mobile phones during train rides. Nowadays, mobile 

phones are not only used for messaging and calls but they are rather offering a large 

variety of web-based applications (apps) such as newspapers, e-mail programs, 

mobile television, radio, and many others.  This leads to an increased use of mobile 

phone devices during train rides resulting in higher uplink exposure levels. Moreover, 

location updates or handovers are executed when moving around in order to 

maintain constant connectivity to the mobile phone base station of the respective 

location area when the device is in stand-by mode or during a call (Chapter 4 and 

9.2). Both mobile phone handsets as well as mobile phone base stations are 

important sources in indoor settings such as shopping centers, airports, and railway 

stations. Typical total average RF-EMF exposure levels in indoor settings ranged 

between 0.22 V/m (shopping centers in Basel) and 0.57 V/m (railway station in 

Brussels). We did not perform studies in residential homes where DECT has been 

found to be the most important contributor accounting for over 50% of exposure in 

Swiss urban homes (Joseph et al., 2010a). Interestingly, exposure levels in outdoor 

areas, public transports, and indoor settings were of the same order of magnitude 

across all cities (Basel, Ghent and Brussels) with same exposure patterns regarding 

total RF-EMF and mobile phone base station exposure.  

Several studies were performed in different countries assessing RF-EMF exposure 

levels (Bolte and Eikelboom, 2012; Frei et al., 2009a; Joseph et al., 2010a; Viel et al., 

2009). A comparison between the different findings of several studies is illustrated in 

Figure 13. A study conducted by Frei et al. (2009a) in the framework of the Qualifex 

(Health related quality of life) study found similar total RF-EMF exposure values of 

0.28 V/m in outdoor areas (our study: 0.26 V/m), 0.29 V/m in shopping centers (0.22 

V/m), 0.66 V/m in trains (0.97 V/m) and 0.53 V/m at the airport (0.54 V/m). We found 
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also similar results in outdoor urban environments as in a previous international 

comparison study conducted by Joseph et al. (2010a). Exposure in trains was lower 

compared to our study. There are some differences between the studies of Joseph et 

al. (2010a) and Frei et al. (2009a) compared to our study. Firstly, they included also 

DECT frequency when calculating total RF-EMF exposure and secondly, data 

collection was (partly) performed through recruited study participants who were partly 

allowed to use their mobile phone during measurements which may have resulted in 

higher uplink exposure levels. However, results were in the same order of magnitude 

considering outdoor areas but higher in trains. This can be explained on the one 

hand with the increasing use of mobile phones nowadays and on the other hand with 

the resulting increased number of location updates and/or handovers while travelling 

in trains. In a recent study by Bolte and Eikelboom (2012), personal RF-EMFs 24h-

measurements of study participants in the Netherlands have been conducted 

examining exposure levels and variability for everyday activities. Total RF EMF levels 

in the Netherlands (including DECT) were in the same order of magnitude in 

shopping centers, outdoor areas, at the railway station and in buses. In contrast, total 

mean RF-EMF exposure in trains was considerably lower in the Netherlands than in 

Switzerland. In trams and metros, results were comparable in the Netherlands and in 

Basel but higher in Ghent and Brussels. Figure 13 gives an overview of the different 

average total RF-EMF exposure levels in the different environments between the 

different studies. Cross-compared, exposure levels and patterns were fairly similar 

across the different studies and countries. 
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Figure 13: Comparison of the different average total RF-EMF exposure levels in different 
environments across several European countries by study. 

 

Near-field and far-field sources 

Near-field sources such as mobile phone handsets or cordless phones produce 

locally higher exposure values than far-field sources like broadcast transmitters and 

mobile phone base stations. The energy from a mobile phone near the head is 

around 1’000 to 100’000 times higher compared to exposure from a far-field source 

(Lauer et al., 2013). However, exposure from near-field sources, for example during 

a call, is typically of short duration where the head is the most exposed part of the 

body. Exposure from far-field sources is, in contrast, continuous where the whole 

body is exposed. Furthermore, exposure decreases drastically with increasing 

distance to a source (confer Chapter 1.2). Doubling the distance will result in around 

half of the exposure. In order to examine the cumulative exposure from far-field 

sources compared to near-field sources, the Qualifex study was conducted between 

April 2007 and February 2008 where 166 study participants carried around an 

exposimeter (Frei et al., 2009a). Exposure from far-field sources was on average 

0.21 V/m. Based on our measurements, conducted in Basel, exposure from far-field 

sources was somewhat higher, ranging between 0.31 V/m in outdoor areas and 
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0.41 V/m in indoor settings. However, we considered also mobile phone handsets as 

a far-field source, since the mobile phone of the person performing measurements 

was turned off which may partially explain our higher exposure levels. In addition, we 

observed an increase in RF-EMF exposure levels in different everyday environments 

which is further elaborated in Chapter 9.7. In addition, the mobile phone use of 1,300 

study participants was investigated in the framework of the Qualifex study. The 

average call duration per week of study participants was 62 minutes. Based on 

dosimetric models, the absorbed energy caused by dual-band (2G) and quad-band 

mobile phones (3G, smartphones) was calculated for specific organs and the whole 

body. As described in Chapter 1.2, technologies differ in their output power levels. 

GSM mobile phones have higher transmission powers by a factor of 100 to 1’000, 

while smartphones adapt their output power levels according to the network quality 

and signal strength (Gati et al., 2009; Kelsh et al., 2011; Persson et al., 2011; Wiart 

et al., 2000). This becomes relevant when moving around, as we found that the 

impact of one’s own mobile phone is considerable even when the mobile phone is in 

stand-by mode (Chapter 4). This is particularly important for smartphones due to 

more frequent communications with the mobile phone base station because of 

applications requiring regular updates (e.g. push notifications of e-mails, breaking 

news and other web-based applications). Table 4 compares the energy absorbed for 

second and third generation mobile phones and for far-field sources which highlights 

the 200-fold difference of the energy absorbed by the brain between GSM and UMTS 

mobile phones. 

 

Organ 

Second 

generation 

phone user 

Third 

generation 

phone user 

Far-field 

sources 

Proportion of 

far-field 

source for 2G  

usage 

Proportion of 

far-field 

source for 3G 

usage 

Whole body 111 mJ/kg 0.7 mJ/kg 35 mJ/kg 20.2% 55.8% 

Brain (grey 

substance) 
1002 mJ/kg 5 mJ/kg 42 mJ/kg 3.4% 17.2% 

Table 4: Comparison of the cumulative exposure dose (absorbed energy) during 24 hours for near-
field and far-field sources at average far-field exposure (Lauer et al., 2013). 
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9.7 Temporal variability 

RF-EMFs are not only highly variable in space but also in time. Objective five 

investigated how RF-EMFs varied over time. Examining temporal variability of RF-

EMF exposure, we observed an increase in various microenvironments over the 

study period between April 2011 and March 2012 based on multilevel mixed-effects 

linear models which were calculated on power flux density levels and then back-

transformed to electric field strength. Especially mobile phone base station exposure 

in outdoor areas increased. Increases were more pronounced in Basel than in 

Belgian cities which might be explained by a different coverage and capacity 

demands. Furthermore, a slowed introduction of UMTS technology in Belgium could 

have contributed to a delayed 3G coverage. The introduction of precautionary limits 

in Brussels (Ordinance of the Brussels Capital Region of 14 March 2007) in 2009 and 

in Ghent (Ordinance of the Flemish Region of November 2010) in 2011 could have 

slowed down the exposure increase, where precautionary limits in Switzerland are 

imposed since 2001 (ONIR, 1999). Our results give indication that the increase in 

number and amount of mobile phone users has not been compensated with more 

efficient technologies. As described in Chapter 1.4, second generation mobile 

phones radiate with full intensity during connection establishment and down-regulate 

when connected (Lönn et al., 2004). Third generation smartphones, in contrast, use 

an enhanced adaptive power control which optimizes output power according to the 

quality of connectivity to the network, resulting in substantially lower average output 

power levels (Gati et al., 2009; Persson et al., 2011; Wiart et al., 2000), which may 

also impact RF-EMF exposure. Our initial hypothesis was that increase of exposure 

levels would be highest in public transports, due to a strong increase of mobile phone 

usage, the Faraday cage effect and because density of people using their mobile 

phones’ is higher than in other environments. However, temporal trends did not reach 

statistical significance in all three cities, even if – interestingly – highest exposure 

levels occurred consistently in trains. Lack of statistical significance resulted in the 

higher data variability from mobile phone handset exposure, and thus causing larger 

confidence intervals.  

The increase on the absolute scale is higher for many public transports compared to 

outdoor areas; e.g.: 
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An observed significant increase of 63.7% in geometric mean in the central 

residential area of Basel corresponds to an increase of 0.16 V/m. In contrast, a non-

significant increase of 39% in trains in Brussels results in an increase of 1.01 V/m. 

To date, studies investigating temporal trends based on personal measurements on 

a larger time scale up to several months or years are limited.  

Monitoring systems have been implemented in different European cities, such as 

Greece (Gotsis et al., 2008), Italy (Troisi et al., 2008) and Portugal (Oliveira et al., 

2007). However, no time trends analyses are available from these networks. A large 

survey of mobile phone base station measurements from the US, UK, Spain, Greece 

and Ireland showed no increase in downlink exposure between 2000 and 2009 

(Rowley and Joyner, 2012). The European narrowband measurements differed from 

the US broadband measurements, since European data originated from ground-base 

and US data from roof-top measurements. In this context, it is not clear whether 

temporal trends are affected by this heterogeneity of data. An Austrian study from 

Tomitsch and Dechant (2012) examined spot measurements with a spectrum 

analyzer in bedrooms in 2006 and a follow-up was conducted in 130 identical homes 

in 2009. Median RF-EMF exposure in bedrooms increased from 41.35 µW/m2 (0.12 

V/m) to 59.56 µW/m2 (0.15 V/m) and a two-fold increase in RF-EMF downlink 

exposure was observed, from 7.68 (0.05 V/m) to 15.12 µW/m2 (0.08 V/m). 

Nevertheless, this study differed in terms of equipment (we used exposimeter) and 

microenvironments (we did not measure in households) to our study. Frei et al. 

(2009a) stated that introduction of mobile phone technology has resulted in a 10-fold 

increase of RF-EMF at outdoor areas compared to the time period before when 

broadcast transmitting was the most relevant source. 

Different studies analyzed temporal variability during shorter time periods, as during  

24 hours (Bolte and Eikelboom, 2012; Mahfouz et al., 2011; Mahfouz et al., 2013; 

Manassas et al., 2012; Miclaus et al., 2013), or during several days (Joseph and 

Verloock, 2010; Joseph et al., 2009; Vermeeren et al., 2013), up to several weeks 

(Beekhuizen et al., 2013). Studies investigating RF-EMF exposure variability during 

24 hours concluded that traffic fluctuations cause considerably variable fields of GSM 

and UMTS exposure over one day, whereas variability was lower during night than 

during daytime (Joseph and Verloock, 2010; Mahfouz et al., 2011; Manassas et al., 

2012). Bolte and Eikelboom (2012) analyzed exposure of 98 volunteers in or around 

Amsterdam investigating differences between daytime, evening and night-time. 
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During daytime exposure was about the same, but during night it was about half, and 

in the evening it was about twice as high. Joseph and Verloock (2010) characterized 

temporal variations during one week, accounting for 7.5 dB variations regarding GSM 

and UMTS signals. Signals of TRX (transceiver channels, i.e. GSM traffic channels) 

varied substantially reaching ratios up to 41.5 dB. Manassas et al. (2012) described 

diurnal variations of EMFs due to broadcast transmitters and mobile phone base 

stations. Results indicated median variations of 20.2% and 33.8% for broadcast and 

telecommunication signals. Vermeeren et al. (2013) investigated spatial and temporal 

RF-EMF exposure in 55 different indoor microenvironments, such as schools, 

crèches, homes, and offices in Belgium and Greece with spectral equipment and with 

personal exposimeters during one week. They found variations to be of the same 

order of magnitude as results presented by Manassas et al. (2012), reaching on 

average for total exposures up to 40% in crèches (Belgium) and 58% in homes 

(Greece). Frei et al. (2009a) and Viel et al. (2009) examined differences in RF-EMF 

exposure levels between work-days and weekends, finding similar exposure values 

and thus showing no larger differences across days of the week. We cannot exclude, 

based on our results, that there might be deviances between work-days and 

weekends as well as differences between daytime and night-time. Our 

measurements had been conducted exclusively during daytime at work-days, mainly 

on Wednesdays and Thursdays. Expanding the time period to several weeks, as 

presented in Article 2 (Chapter 5), we found that average mobile phone base station 

exposure in different outdoor areas remained fairly constant during three months and 

daily variability was large (Beekhuizen et al., 2013). To the best of my knowledge 

investigation of long-term RF-EMF exposure variability during several months has 

never been assessed so far and our study was the first addressing this issue 

(Chapter 7).  

Prediction of RF-EMF exposure is challenging because of its large spatial and 

temporal variability and due to small and large-scale variations as a result of power 

control of mobile phone base stations. The mobile telecommunication system 

responds dynamically. The simple assumption: the more mobile phone base stations 

or mobile phone handsets, the higher the exposure levels, is not applicable. The 

installed transmission power of mobile phone base stations in an area is of limited 

representativeness for the exposure of the population. The distance to the mobile 

phone base stations, or microcells in downtown areas, is also a decisive criterion, as 
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well as the distance to the main lobe (Bornkessel et al., 2007). In addition, quality of 

connectivity and density of mobile phone base stations have an effect on the power 

control of mobile phone handsets and mobile phone base stations. In general, one 

can say that the better the connectivity, the lower the output power for the 

communication. The introduction of precautionary limits may decelerate increases of 

RF-EMF exposure levels. However, as previously described in Chapter 9.4, our 

results did not sustain the hypothesis that precautionary limits may decrease peak 

exposure levels. But they neither do unintentionally increase average mobile phone 

base station exposure. It is desirable to minimize the total RF-EMF exposure of the 

population as much as possible since long-term effects of low-dose exposure are 

fraught of uncertainty. This applies to both the exposure to mobile phone base 

stations as well as mobile phone handsets. Currently, with the introduction of new 

technology standards such as LTE (Long-term Evolution), monitoring of the exposure 

is of great importance, as the mobile phone base station network becomes denser, 

and, according to the data of the International Telecommunication Union (ITU), the 

numbers of mobile-cellular subscribers is steadily increasing. In this context, the 

issue arises that assuming a linear trend in RF-EMF exposure, exposure will exceed 

precautionary limits somewhere in the future. However, along with the increase of 

new telecommunication devices, technologies became also more efficient in reducing 

output power levels and with a denser mobile phone base station network, output 

power of antennas may be reduced. Based on our findings, the relative increase in 

exposure levels results in a small absolute increase of electric field strength so far. 

9.8 Strengths and limitations 

 

Strengths 

This thesis offers for the first time a standardized comparison of RF-EMF exposure 

levels with a common study design across several European cities. Measurements 

were performed based on a common measurement procedure in various 

environments (outdoor, public transports and indoor) at pre-defined times and 

measurement days of the week. To ensure comparability across cities, data analysis 

was conducted by the same person applying the same analysis procedures for all 

datasets. Previous attempts to compare results based on extracted data from 
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different studies where different data collection or analysis methods had been applied 

(Joseph et al., 2010a).   

Personal RF-EMF measurements were conducted personally, having the mobile 

phone turned off during measurements allowing reliable source allocation and 

attributing uplink exposure to mobile phone exposure to people around. 

Measurements during calls with mobile phones or DECT phones strongly depend on 

the distance between the device and the exposimeter (Frei et al., 2009a). Since 

exposimeters cannot realistically reflect exposure from near-field sources close to the 

body (Inyang et al., 2008), we considered the exclusion of the personal mobile phone 

as a strength for source allocation. 

In some cases, more than 80% of data were censored and results are tenuous 

(Helsel, 2005). To account for the large proportion of measurement points under the 

lower detection limit of the device (censored values or nondetects), as often 

occurred, we applied the robust regression on order (ROS) algorithm to get more 

reliable results (Röösli et al., 2008). If less than three measurements were above the 

detection limit for a given area and frequency band, the arithmetic mean value was 

set to a virtual detection limit of 0.000265 mW/m2 (0.01 V/m). Summary statistics 

calculated with robust ROS are more reliable as when using the naïve approach by 

simply calculating average levels, since they are more resistant to non-normality 

errors.  

 

Limitations 

The effect of body shielding can lead to a notable underestimation of RF-EMF 

exposure. In the majority of our measurements, only one exposimeter was carried 

around in a bag on the rear of the body.  

In one city (Amsterdam) the exposimeter was not of the same type (EME Spy 140) 

and had different detection limits (EME Spy 120: 0.05 V/m vs. EME Spy 140: 0.001-

0.005 V/m, depending on the frequency) and is able to measure on more frequencies 

(EME Spy 140 quantifies additionally WiMax (Worldwide Interoperability for 

Microwave Access): 3400 to 3800 MHz and W-LAN 5G: 5150 to 5850 MHz). To 

obtain comparable results, we censored the Amsterdam data at the same detection 

limit as the data collected with the EME Spy 120 at 0.05 V/m and excluded the two 

additional frequency bands (WiMax and WiFi 5G). Furthermore, we checked if 
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summary statistics differed depending on the censoring of the data on EME Spy 140 

or EME Spy 120 level but found no differences. 

As discussed in Chapter 1.5, measurement paths determine, to a large extent, 

exposure levels. Thus, data has to be interpreted with caution in terms of the general 

exposure in the different cities. To get a better impression of the exposure situation of 

an area, different paths within an area should be defined and measured. 

When examining the impact of regulatory limits on mobile phone base station 

exposure in outdoor areas, results have to be interpreted carefully, since only four 

cities were included; with three cities having implemented precautionary limits and 

one city having adopted the ICNIRP levels (Table 3, Chapter 9.4). 

Our measurements were performed only during working days: Wednesdays and 

Thursdays. There might be differences between working days and weekends as well 

as between daytime and night-time. Differences have been found to be low at 

different days of the week according to different published studies discussed in 

Chapter 9.7. 

A further effect we observed is out-of-band response of the EME Spy 120. In order to 

check measurement consistency, calibrations of the EME Spy 120 exposimeter were 

performed at the Laboratory for Electromagnetic Fields and Microwave Electronics of 

the Swiss Federal Institute of Technology (ETH). Calibration factors showed out-of-

band response indicating that DECT measurements were affected by the presence of 

GSM 1800 downlink and UMTS uplink exposure. However, DECT is not a relevant 

source in outdoor areas or public transports and may play only a role in indoor 

settings, such as train stations or airports.  

9.9 Public Health relevance 

Monitoring the RF-EMF exposure situation of the general public is imperative and 

also stated as high research priority in the Research Agenda of the World Health 

Organization (WHO, 2010). There has been a resilient increase in mobile 

telecommunication technologies with a durable introduction of new devices in the last 

twenty years. The number of mobile phone subscriptions in Switzerland registered 

1’133 customers in 1978 and increased to 10’082’636 by the end of 2011 (OFCOM, 

2011). With this development, the mobile phone base station network had to be and 

is still being expanded resulting in a higher density of the network along with new 
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technology standards. Mobile telecommunication is pervasive worldwide nowadays, 

not only in developed but also in developing countries where, as shown in Figure 4, a 

strong increase in mobile telephony has been observed. Thus, even if there is a 

small risk, this would have severe public health consequences due to widespread 

use of mobile telecommunication services. 

Especially with the introduction of newly developed mobile devices such as 

smartphones and tablets, the exposure profile from near-field sources has markedly 

changed, as these devices are also capable of running web-based functions and 

applications. This might lead to higher exposure levels from the mobile phone 

handset due to the more frequent communication with the nearest mobile phone 

base station. New exposure proxies should be considered to approximate the 

influence of the own mobile phone when performing web-based updates and/or for 

locating updates when moving around. The difference between dual-band (2G) and 

quad-band (3G) mobile phones has been drawn up in the Chapter 1.4 showing that 

output power regulation of smartphones is different from dual-band mobile phones. 

The exposure contribution of a mobile device in stand-by mode or when connected to 

the internet needs further clarification as this is now more relevant with mobile 

devices using web-based applications. 

Accordingly, exposure of the general public considerably changed over the last two 

decades (Frei et al., 2009a; Neubauer et al., 2007; Röösli et al., 2010b). There are 

still knowledge gaps in EMF research, and the question of potential health 

implications continually leads to political debates. The research on biological and 

health effects of non-ionizing radiation is a tedious issue where quick and easy 

answers do not exist, as the subject is too complex. People are still concerned about 

potential adverse health effects (Frei et al., 2009a; Röösli et al., 2010a; Schreier et 

al., 2006; Wiedemann et al., 2013) of EMF due to uncertainty and lack of 

understanding about involved biological mechanisms. It has consistently been 

observed in all studies conducted in the framework of this thesis as well as in 

previously conducted studies that RF-EMF exposure is far below the ICNIRP 

(International Commission on Non-Ionizing Radiation Protection) reference levels 

(Frei et al., 2009a; Joseph et al., 2010a) where no health consequences have been 

proved unambiguously. Regarding non-thermal effects caused by RF-EMF, there are 

still many open questions and knowledge is thin (Hug and Röösli, 2013). Long-term 

observations are lacking, and it is not possible to draw any conclusions about 
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potential long-term risks. Subsequently, minimizing exposure is recommended (Hug 

and Röösli, 2013). We could demonstrate to a certain extent that lowering regulatory 

limits does not unintentionally lead to an increased exposure situation as one might 

think. For example, lowering the output power of mobile phone base stations has to 

be compensated with lower masts or with the introduction of more base stations or 

microcells. Nevertheless, in the shadow of knowledge, further long-term studies 

evaluating the impact of regulatory limits on exposure situation of the general public 

are urgently needed. 

Our study gives some indications for persons who want to minimize their personal 

exposure. Uplink exposure from the own mobile phone can considerably be reduced 

by up to a factor of 100 by turning off the mobile phone while driving in a car. In 

public transports, it is difficult to reduce personal exposure as it has been found that 

background exposure arising from other people’s mobile phone is very high, 

especially in trains, whereby the relative contribution of the own mobile phone to the 

personal exposure is minor. Further recommendations provided by governmental 

agencies, such as the WHO or federal offices, suggest the use of headsets when 

calling, minimizing call duration, or to use alternatives like text messages. 

Furthermore, they advise to turn off WLAN if not needed. Exposure from mobile 

phones in stand-by mode can be reduced by omitting the configuration of regular 

updates for push notifications as e-mails or other web-based functions. Furthermore, 

when buying a mobile phone, one can consider devices with low SAR (Specific 

Absorption Rate, see Chapter 1.1) values. If possible, calls should be made when the 

signal strength is good, minimizing output power of the mobile phone. Finally, 

keeping distance to mobile devices or WLAN routers helps to minimize personal RF-

EMF exposure. 

9.10 Outlook 

The path to unlimited communication is paved. A world without mobile telephony is 

inconceivable nowadays. The more it is important to monitor the exposure of the 

population as also stated in the Research Agenda of the World Health Organization 

(WHO). Studies exploring RF-EMF exposure levels and temporal trends are needed 

to better understand the dynamics of EMF. 
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We observed a transitional phase in terms of an increase and expansion of wireless 

mobile technology. Public transports are going to implement free WLAN and to equip 

trains with repeaters (to strengthen the outgoing signal of mobile phone handsets). In 

an advertisement from the Swiss Federal Railways (SBB) in November 2013, they 

currently plan to offer free WLAN in the 100 largest railway stations within the next 

two years (www.sbb.ch/wifi, accessed on 17.11.2013). In addition, some larger cities 

in Switzerland are in progress of offering free public WLAN. In the framework of this 

dissertation, the emphasis was put on telecommunication technologies examining 

RF-EMF exposure mainly from mobile phones and mobile phone base stations as 

these are the most relevant sources in everyday environments. Reasoning that 

wireless internet is a source of growing importance, future exposure assessment 

studies should also consider frequencies for mobile internet such as WiMax 

(Worldwide Interoperability for Microwave Access). In view of the further development 

regarding exposure to WLAN and WiMax sources, it might be of consideration to 

implement also precautionary limits, additionally to GSM and UMTS frequencies, for 

WLAN and WiMax to minimize RF-EMF exposure. However, this aspect needs 

further clarification.     

In order to meet the requirements of current, but especially future, mobile 

telecommunication, the mobile phone base station network has to be expanded and 

new technology standards have to be implemented. Currently, the fourth generation 

of technology standard, namely LTE (Long-term Evolution), is gradually introduced in 

different cities worldwide. It allows data transfers over 100 Mbit/s. Additionally, 

telecommunication providers have introduced new subscription structures, allowing 

free calls and text messages as well as mobile internet, irrespective of the type of 

subscription. This opens barriers to an increased use of mobile telephony, expecting 

a shift from lower fixed line telephony to increased mobile cellular telephone usage, 

as could already been observed according to data provided by the International 

Telecommunication Union (ITU, http://www.itu.int/en/ITU-

D/Statistics/Pages/stat/default.aspx, accessed on 10.11.2013).  

Overall, all these advances in mobile telecommunication technologies will result in 

new exposure sources and will substantially alter RF-EMF exposure patterns in the 

population. Research conducted in the framework of this dissertation allows making 

statements about the current exposure landscape of the general public. However, we 

could observe that EMFs are highly dynamic exhibiting a high spatial and temporal 
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variability. We could demonstrate that a monitoring of RF-EMFs with personal 

exposimeters is very feasible for characterizing exposure levels in everyday 

environments and investigating temporal variations. In contrast, exposimeters are not 

appropriate for measuring near-field sources, as conclusions on the dose cannot be 

drawn from measured values. Identification of areas with critical exposure levels is 

possible. In such areas, however, data should be confirmed with spectrum analyzer 

measurements, as these devices are very accurate, allow for maxima identification, 

and are able to distinguish even between different operators. Characterization of RF-

EMF sources in indoor settings, others than train stations or airports, like homes, 

spectrum analyzer measurements would be of advantage. Characterization of large-

scale RF-EMF exposure does not allow drawing conclusions on the exposure 

situation of the population but allows estimating exposure over large regions as well 

as on country-level. However, only fixed-site transmitters and building characteristics 

can be considered and consequently does not reflect real life exposure situation. 

Studies assessing temporal trends in different environments and across various cities 

should use a study design based on a common data collection protocol with 

repetitive measurements. In addition, different measurement paths should be defined 

for characterization of the exposure situation in an areas in order to capture as much 

of the spatial variability as possible.  

The fast-changing technological developments are accompanied by new challenges. 

Thus, new measurement devices are needed to asses new frequencies; a systematic 

monitoring with newly developed exposimeters, as the new Expom developed by the 

ETH Zurich, allows quantifying additional frequencies, such as LTE (up- and 

downlink sources combined). At Ghent University, a shirt was developed with 

integrated antennas to measure different signals, including LTE. 

Monitoring studies investigating RF-EMF exposure are imperative. This approach 

permits evaluation of previously taken actions and suggests new preventive 

measures. So far it has not yet been systematically assessed which sources 

contribute more to the personal exposure to RF-EMF, near-field or far-field sources. 

Large measurement studies comparing RF-EMF exposure among different countries 

should be object of further research. In this context, a common study design in all 

countries is highly recommended, as it enables a more reliable and detailed 

comparison. Such exposure assessment studies could be performed with personal 

exposimeters able to quantify also sources from newer technology standards (LTE) 
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and should signally monitor temporal development of RF-EMFs. Besides exposure 

monitoring, biological mechanisms which are affected should be further studied. Most 

importantly, studies on effects of low-dose exposure to RF-EMF should be planned 

on a long-term basis and conducted using personal exposimeters which are also able 

to measure LTE. Furthermore, when investigating a potential association between 

mobile phone use and adverse health effects, adjacent to studies focussing on brain 

tumours, behavioural aspects should be considered, especially in children and 

adolescents, as their lifetime cumulative dose increases, due to their longer-term use 

of mobile devices. Such a study has been initiated in the framework of the HERMES 

project (Health Effects Related to Mobile Phone Use in Adolescents). 

From a methodological point of view, there are still open questions about the spatial 

and temporal radiation patterns of mobile phones, especially focussing on newer 

smartphones working on four and five frequency bands, respectively. UMTS mobile 

phones have been recommended due to their adaptive power control, regulating their 

output power during call establishment. It has to be further investigated, however, if 

this reduced amount of radiation is not compensated by emissions in stand-by mode. 

To date, no major public health risks have emerged and could be proven by EMF 

research, but, in the light of current uncertainties regarding potential adverse health 

effects, minimizing exposure might be reasonable and requested.  

 

The way forward… 

A global research effort is highly needed to clarify health risks and translating findings 

into public policies to protect human health. 
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