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Research Summary 

Tuberculosis (TB) remains a public health challenge. In 2013, TB was estimated to have 

caused 9 million incident cases of which 1.1 million were coinfected with HIV and 1.5 

million deaths worldwide. For the effective control of TB, the use of simplified diagnostic 

tools for case detection diagnosis of drug resistant TB and understanding the effects of 

comorbidities such as HIV on the prevalence of TB is paramount. Ghana, housing six of the 

seven phylogenetic lineages of Mycobacterium tuberculosis complex (MTBC) with high 

TB/HIV prevalence provides a unique opportunity to study and better understand the 

dynamics of TB. 

In the context of TB control, we studied the level of drug resistance using phenotypic drug 

susceptibility testing (DST) and correlated the DST results with patient treatment outcome 

(Chapter 3). We found a low rate of multidrug-resistant (MDR)-TB rate (1.9%), high 

isoniazid (INH) mono resistance (15%) and the dependence of treatment outcome on the 

susceptibility to rifampicin (RIF). For the rapid diagnosis of MDR cases, we further evaluated 

the accuracy of a molecular base diagnostic tool (Genotype MTBDRplus) and compared it 

with the gold standard phenotypic DST method (Chapter4). We found 100% correlation for 

detection of both MDR and RIF mono resistance and 83% for INH mono resistance. The 

remaining 17% INH resistance detected by standard phenotypic DST but not Genotype 

MTBDRplus are likely due to molecular mechanisms whose targets are not interrogated by 

Genotype MTBDRplus. The high overall sensitivity and the relative short turn- around time 

of Genotype MTBDRplus makes it a valuable addition to diagnostic algorithm in Ghana.  

 

The control of TB also depends on understanding the patterns and dynamics of TB 

transmission to reduce source of infection. Existing tools for studying transmission such as 

MIRU-15 used for routine molecular epidemiological studies have been shown to exhibit 

varying discriminatory power among the different human-associated MTBC lineages. We 
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established a robust and cost-effective PCR based reduced but lineage-specific set of MIRU-

VNTR loci with high discrimination power in the main MTBC circulating in Ghana (Chapter 

5). This assay will help identify risk factors that enhance transmission and patient groups at 

increased risk of developing TB. In addition, this assay can be used to differentiate between 

exogenous re-infection from true relapse cases. 

SNP- based genotyping and spoligotyping established that M. africanum (MAF) still causes  

20% of all TB cases in Ghana (Chapter 6 and 7). Reasons for the restriction of MAF to West 

Africa have eluded researchers for many years. Using retrospective isolates, we provide for 

the first time plausible reason why MAF is restricted to parts of West Africa. We showed a 

significant association between MAF and the Ewe ethnic group. This association was 

confirmed using prospective isolates and supports possible host pathogen coevolution inn TB. 

In addition, we observed a strong association between MAF2 and HIV co-infection 

supporting the notion that MAF might have a lower virulence compared to other MTBC in 

humans. 
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Introduction 

1.1.  History and global burden of tuberculosis  

1.1.1. Historical facts on tuberculosis 

Tuberculosis (TB) is a disease of antiquity and the probability of eradicating it has been 

humankind’s dream throughout history. Although relatively little is known about its 

frequency before the 19th century, its incidence in Europe and North-America is known 

to have peaked between the middle of the 18th century to the end of the 19th century. 

Over the years, the different cultures of the world gave the illness different names: 

phthisis (Greek), consumptione (Latin), yaksma (India), and chaky oncay (Incan), each 

making reference to the "drying" or "consuming" effect of the illness (Daniel, 2006). In 

the 19th century, the high mortality rate among young and middle-aged adults and the 

glossy dying look of the infected caused many to refer to the disease as the "romantic 

disease” (Hippocrates, Of the Epidemics; Herzog, 1998). 

It is presumed that the genus Mycobacterium originated more than 200 million years ago 

in East Africa, concurrently with early hominids and may have co-evolved with their host 

much longer than anticipated (Daniel, 2006; Cave, 1939). Initially, Mycobacterium 

tuberculosis was thought to have accompanied the Out of Africa migrations of modern 

humans (Homo sapiens) 60,000–40,000 years ago, spreading by land and sea to the rest 

of the world (Hershberg et al., 2008; Gutierrez et al., 2005). However, results of a 

recent genome study in 2014 suggested that TB is significantly younger. Using genome 

of the bacteria from remains of 1,000-year-old human skeletons in southern Peru, 

scientists found that TB was less than 6,000 years old and theorized that seals may have 

been the mode of transmission from Africa to South America (Bos et al., 2014).  
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Understanding the disease and identification of the causative agent of TB took many 

years. By the end of the 19th century, several major breakthroughs by various scientists 

gave hope that a cause and cure might be found. One of the most important physicians 

frequently remembered today for his major breakthrough in understanding the disease 

was Rene Laennec -inventor of stethoscope in 1819 (Daniel, 2000; Daniel, 2005). His 

clear description of the pathogenesis of TB using terms still relevant today paved the way 

for modern understanding of TB. 

In Laennec’s era, the disease extended rapidly across Europe in relation with 

industrialization. During that period, urbanization was galloping, and poverty, poor 

hygienic conditions and overcrowding became the order of the day - an environment 

conducive for the disease to thrive. Between 1851 and 1910, the death rate due to TB 

soared occurring mostly in the youth; in England and Wales alone, four million aged 20 

to 24 died from tuberculosis (Bynum, 2012), giving the disease the name ʽthe robber of 

youthʼ (Segen, 1992).  

 

Surrounded by so many deaths from one disease, medical practitioners and scientist 

sought to understand its aetiology. The history of TB was changed dramatically on March 

24, 1882, with the famous Hermann Heinrich Robert Koch presentation, Die Aetiologie 

der Tuberkulose, to the Berlin Physiological Society where Dr. Koch demonstrated the 

infectious aetiology of the disease and presented Mycobacterium tuberculosis as the 

causative agent (Daniel, 2005); March 24th is recognized as the world TB day.  
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With the identification of TB as an infectious disease and the recognition of the illness, a 

new era of visualizing the disease as a public health problem began. The introduction of 

different anti tuberculosis agents beginning with the isolation of the first bacterial agent 

effective against TB; streptomycin first isolated from Streptomyces griseus in 1944 by 

Albert Schatz, Elizabeth Bugie and Selman Waksman (Daniel, 2006), followed in the 

1950s and 60s by isoniazid and rifampicin came with the hope of a lesser grip of TB on 

humankind. However, TB never completely let go, and today, remains one of the leading 

infectious disease killers around the world. 

 

1.1.2. The global burden of tuberculosis today 

TB is one disease that can be found on all the continents of the world. It is the leading 

cause of adult mortality caused by a single infectious disease worldwide. In 2013, an 

estimated 9 million incident cases of TB and approximately 1.5million (including 360 

000 deaths among HIV-positive people) deaths due to TB occurred worldwide (Global 

TB report, 2014). With roughly 2 billion latently infected people (one third of the 

world’s population) providing a large reservoir for active transmission of TB that will last 

for decades, more stringent efforts are needed in many parts of the world to control the 

disease, especially Africa (Barry et al., 2009).  

Figure 1 depicts the global TB incidence rate in 2013. 

 

As a poverty driven disease, the global distribution of TB cases is skewed heavily toward 

low-income and emerging economies. The highest prevalence of cases are in Asia, where 

together China, India, Bangladesh collectively make up over 56% of the global burden 
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(Mathema et al., 2006). Africa, and more specifically sub-Saharan Africa alone, 

accounts for one quarter of the world’s TB cases, with highest rates of cases and deaths 

relative to population (280 incident cases per 100 000, i.e. more than double the global 

average of 126) (Global TB report, 2014).  

 

For the African continent, the rapid growth in TB cases began in the early 1980s and can 

been attributed to many factors, most importantly the upsurge in Human 

Immunodeficiency Virus (HIV) infections, emergence of strains resistant to anti-TB 

drugs and irregular supplies of drugs (Harries et al., 1997).  

 

 

Figure 1: Global estimated TB incidence rates in 2013 (Global TB Report, 2014). 

Currently, HIV is the most powerful known risk factor influencing M. tuberculosis 

infection and progression to active disease. In 2013, of the 1.1 million people co-infected 

with TB and HIV worldwide, 80% were concentrated in Africa; making Africa the 
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hardest hit continent of the two epidemics in the world (Figure 2) (Global TB report, 

2014).  

In terms of disease progression, not only does HIV increase the risk of reactivating latent 

TB, it also increases the risk of rapid TB progression. The incidence of active TB in HIV-

infected patients with latent TB infection is about 10% per year compared to 10% per 

lifetime for an HIV-uninfected individual (Selwyn et al., 1989) creating a large pool of 

TB positive patients capable of spreading the disease (Thye et al., 2012).  

  

Figure 2: Estimated HIV prevalence in new TB cases in 2013 (Global TB Report, 2014).  

 

In most African countries, TB is often the first manifestation of HIV infection, and it is 

the leading cause of death among HIV-infected patients (Cain, 2009; Linguissi et al., 

2014). Approximately 78% of the 360,000 deaths attributed to TB and HIV worldwide in 

2013 occurred in Africa (Global TB report, 2014). Studies have shown that this high 

case-fatality rate is likely due to a combination of the many factors, most importantly the 
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delay in diagnosis due to the lack of routine HIV testing in TB clinics. Until recently, in 

most African countries, HIV screening in TB clinics was not considered an integral part 

of the routine diagnosis despite the fact that it is the most important risk factor for TB 

(Corbett et al., 2006).  

Perhaps the most alarming aspect of the present TB epidemic in the world is the rise in 

multi-drug resistance (MDR)-TB cases. Globally, in 2013, 3.5% of new cases and 20.5% 

of previously treated cases (Figure 3) were diagnosed as MDR-TB, with the highest 

numbers of cases in Eastern Europe and Central Asia - 50% of all reported cases (Global 

TB report, 2014). This figure amounts to 480,000 new cases of MDR-TB with an 

estimated 210,000 deaths. However, these figures could be a misrepresentation of the 

actual numbers as most TB burden countries, especially in Africa, lack the technical and 

financial resources to perform routine drug susceptibility testing (DST) on all patients.  

 

 

Figure 3: Estimated percentage of new TB cases with MDR-TB in 2013 (Global TB 

report, 2014). 
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1.1.3. Tuberculosis in Ghana 

Similar to its neighbouring countries, TB is still a major public health issue in Ghana. 

With a population of 26 million and a TB incidence rate of 71/100,000 population per 

year, Ghana is ranked the 19th most TB-burdened country in Africa by WHO (Ghana 

health service, 2007). 

Historically, TB treatment in Ghana began before independence, as early as 1954 with 

the establishment of societies and help groups. However, attempts at treating TB were 

sporadic and uncoordinated; targeting selected few citizens and even though the first 

formalised institution offering TB services was opened in 1959, (Koch, 1960; Amo-

Adjei and Awasuabo-Asare, 2013), access to TB services was not free, disenfranchising 

most TB patients. TB services became accessible and free to all patients following 

adaptation of the Directly Observed Treatment Short Course (DOTS) strategy in 1994 

(National tuberculosis annual report, 2008). Currently, 700 treatment centers and 1000 

sub-treatment centers offer DOTS treatment in Ghana, and these are complemented by 

many private health facilities (personal communication, Dr Frank Bonsu, Programme 

Manager, National Tuberculosis Programme, Ghana).  

 

Ghana, over the last two decades has recorded some successes in the control of TB; TB 

cases notification rose from 7,425 in 1996 to 15,207 in 2012; annual death rate 

(deaths/100,000 population/year) declined from 51/100,000 in 1990 to 4.4/100,000 in 

2013, and treatment success rate rose from 44% in 1997 to 87% exceeding the global 

target of 85% (National Tuberculosis Programme, 2012). Figure 4 gives an overview 

of the treatment success rate recorded over a 13-year period in Ghana. 
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Despite this concessive effort, Ghana still records very low TB detection rates; 31%, i.e. 

way below the African and Global targets of 50% and 70%, respectively (personal 

communication, Dr Frank Bonsu, programme manager, NTP, Ghana). This means 

that 69% of all TB cases in Ghana go undetected and therefore remain untreated (Global 

TB report, 2014).  

 

Figure 4: Treatment sucess rate in Ghana over a thirten year period (Chart courtesy of 

National Tuberculosis control program, Ghana). 

In Ghana, TB most often goes hand in hand with death, and is a disease surrounded by 

many myths and misconceptions in most societies (Lawn, 2000; Global TB report, 

2003). For instance, among Akans in Ghana, it is believed that TB is an ancestral 

punishment for lack of care provided to family members who have died from TB, hence 

the name ʽNsamanwaʼ (ghost cough). Likewise in the Volta Region of Ghana, TB is 
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known as ʽYomokpeʼ (grave yard), suggesting death was unavoidable once infected 

(Lawn et al., 1999). Among other biological factors, these names and the associated 

stigma prevent the patients from adhering to national diagnosis and treatment protocols 

and could account for the low detection rate recorded over the years (National 

tuberculosis annual report, 2006).  

One of the major risk factors for TB in Ghana, similar to other endemic countries, is HIV 

co-infection. Although HIV sero-prevalence in the general population is relatively low 

(1.3%-National AIDs and STI programme report, 2013), the influence of HIV on TB 

has seen an increase from 14% in 1989 to almost a quarter (24%) of all TB cases in 

Ghana in 2011 being HIV co-infected (Global TB Report, 2014). Despite the 

implementation of routine HIV screening in all TB clinics, Ghana still records high 

TB/HIV deaths; the proportion of TB deaths attributable to HIV increased from 3.2% in 

1987-88 at the beginning of the epidemic to 5.1% in 1997-98 and is currently pegged at 

7%, second only to malaria with 13% (Ansa et al., 2014). Hospital records show that 

approximately 25-30% of all TB patients are co infected with HIV and that as many as 

50% of patients with chronic cough could be HIV-positive (Personal communication: 

Dr Audrey Folson, Head Chest Clinic).  
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1.2. The causative agent of TB 

 

Figure 5: Rod-like structure of mycobacterium species (www.bioquel.com). 

TB is caused by a group of closely related gram-positive bacteria, aerobic, non-motile 

bacilli, together referred to as the Mycobacterium tuberculosis complex (MTBC) (Figure 

5) (Comas et al., 2011, Smith et al., 2006; Brosch et al., 2002; Gagneux et al., 2008; 

Garnier et al., 2003; Frota et al., 2004; Cousins et al., 2003). Taxonomically, they 

belong to the phylum actinobacteria, in the order actinomycetales, suborder 

corynebacteriaceae and the genus mycobacterium (Bergey’s Manual of Systematic 

Bacteriology, 2005).  

The genus is divided into two broad taxonomic groups based on the growth rates of 

individual species. Those that produce colonies within seven days such as 

Mycobacterium smegmatis, are general termed fast growers or opportunistic / non-

pathogenic bacteria whist the remaining group  which takes more than a week for slow 

growers to form colonies includes slow-growing species such as the well-known 

pathogens Mycobacterium tuberculosis, Mycobacterium bovis and Mycobacterium leprae 
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(ethiological agents of human tuberculosis (TB), bovine tuberculosis (BTB) and leprosy 

respectively) ( Forrellad et al., 2013).  

The distinguishing characteristic of all Mycobacterium species is the cell wall, thicker 

than in other bacteria and essential for surviving and growing intracellularly (Bhamidi, 

2009). Over 60% of the mycobacterial cell wall consists of lipids (mycolic acids, cord 

factor and wax-D) covalently linked to arabinogalactan and attached to peptidoglycan. 

Additionally, cell wall and mycomembrane contain various free lipids, such as phenolic 

glycolipids, phthiocerol dimycocerosates, dimycolyltrehalose or cord factor, sulpholipids 

and phosphatidylinositol mannosides that are intercalated with the mycolic acids 

(Abdallah et al., 2007). The high concentration of lipids in the cell wall is beneficial to 

the bacteria. It is linked to the impermeability to normal stains and dyes used for common 

bacteria identification, increasing resistance to some very potent antibiotics, killing by 

acidic and alkaline compounds and attack by lysozymes (Biberstein and Hirsch, 1999). 

The intrinsic biosynthetic pathways of cell wall components potentially make them 

targets for new drugs for treating TB. 

 

Figure 6: Schematic representation of the MTBC cell wall (Kaiser, 2008).  
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Although the organism apparently does not produce any toxins, has no classical virulence 

factors such as recently acquired pathogenicity islands; it possesses a huge repertoire of 

structural and physiological properties that aids in its survival within its host, including 

ability to detoxify oxygen radicals.  

MTBC comprises M. tuberculosis sensu stricto (MTB), Mycobacterium africanum, 

Mycobacterium microti, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium 

mungi, Mycobacterium suricattae, Mycobacterium orygis and Mycobacterium pinnipedii. 

Even though these species appear genetically monomorphic with a high level of DNA 

sequence similarity (>99.95%), with exception of M. canettii, they have varying host 

ranges: Mycobacterium tuberculosis sensu stricto (MTB) and Mycobacterium africanum 

(MAF) are the main causative agents of TB in humans. Mycobacterium microti affects 

voles, (Wells 1937; Wells, 1946; Wayne et al., 1986; Frota et al., 2004), M. caprae a 

pathogen of goats and sheep (Aranaz et al., 1999). M. mungi: Mangoose pathogen, M. 

orygis pathogen of antelope (van Ingen et al., 2012), M. pinnipedii a pathogen of seals 

and sea lions (Cousins et al., 2003). Mycobacterium bovis displays the broadest spectrum 

of host affecting humans and animals (Garnier et al., 2003). However, although 

Mycobacterium bovis occasionally isolated from human, causing less than 1% of all 

human TB cases, it lacks the ability to maintain an infection cycle in human population or 

transmit in a sustainable way. This could be due to three mutations in the two-component 

regulation system PhoP/PhoR (phoPR) previously shown to be important regulator of 

virulence factors including several important lipids and proteins (ESAT-6). These 

mutations reduce the expression of the PhoP regulon leading to decreased ability to 

transmit between humans (Berg and Smith, 2014; Smith et al., 2006).  
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M. canettii often considered a member of MTBC, is the most phenotypically distinct 

member of the complex. M. canettii and the other so-called “smooth tuberculosis bacilli 

(STBs)” are characterized by smooth glossy white colony due to the presence of 

lipooligosaccharides in the cell wall (Gutierrez et al., 2005). The STBs show clear 

evidence of on-going horizontal gene exchange (Gutierrez et al., 2005), but with no 

record of human-human transmission (van Soolingen et al., 1997; Koeck et al., 2010; 

Fabre et al., 2010). These places the STBs among the population of mycobacteria 

proposed as the originators of MTBC (Gutierrez et al., 2005). 
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1.3. Mycobacterium africanum 

Mycobacterium africanum (MAF), first identified in 1968 in Senegal was initially 

described biochemically as an intermediary between MTB and M. bovis (Castets et al., 

1968). Like MTB, MAF strains were found to be sensitive to pyrazinamide; like M. 

bovis, they tended to be a weak producer of niacin, microaerophilic, and unable to reduce 

nitrate to nitrite (Pattyn et al., 1970). Furthermore, similar to M. bovis they are unable to 

use glycerol as a sole carbon source due to the lack of functional pyruvate kinase 

(glutamic acid is substituted by aspartic acid in the PykA gene that codes for pyruvate 

kinase (Keating et al., 2005).  

Initial biochemical features subdivided MAF into two separate groups, the East-African 

and West-African sub-species (David et al., 1978). However, based on recent studies 

using regions of difference (RD) and comparative genomics (Brosch et al., 2002; 

Mostowy et al., 2004) to discriminate members of the MTBC, we now know that MAF 

West African sub-species consists of two phylogenetically distinct lineages: MAF West 

African 1 found in the eastern part of West-Africa, West-Africa genotype II found in the 

western part with few countries like Ghana and Cote d’Ivoire harboring both genetic 

variants (de Jong et al., 2010, Addo et al., 2007, Yeboah-Manu et al., 2011). The 

former East-African MAF variant has been reclassified as MTB “Uganda” genotype; it 

shows the TbD1 deletion, a characteristic marker for a subset of MTBC lineages often 

referred to as evolutionarily “modern” (Brosch et al., 2002; Niemann, 2004).  

Although MAF is unique to West Africa, its prevalence varies by country. Using 

molecular genotyping results, the prevalence of MAF1 increases from West to East and 
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appears highest in Benin (39%) and Ghana (21%), while that of MAF2 increases from 

East to West, highest in Guinea Bissau with 51% of smear-positive TB caused by MAF2 

(de Jong et al., 2010).  

 

 

Figure 7: MAF prevalence in Western African countries (de Jong et al., 2010) 

 

Using traditional genotyping tools used for routine molecular epidemiological 

investigation such as spoligotype analysis, we know that MAF1 and 2 exhibit different 

genetic signatures; strains lacking spacers 8 through 12 and 37 through 39 are identified 

as MAF1 and those with spacers 7 through 9 and 39 as MAF2 (de Jong et al., 2009). 

However, these characteristics are not always diagnostic of MAF (de Jong et al., 2010). 

For example, there are some MAF strains that lack in addition to the MAF1 or MAF2-

specific spacers 33–36 specific to MTB. For such strains, additional molecular tests are 

required for classification.  
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In recent time, a more robust nomenclature based on the presence or absence of particular 

genomic regions of difference has been developed to circumvent some of the ambiguities 

of spoligotyping. We know that both variants (MAF1 and MAF2) share one common 

deletion: RD9 deletion in addition to separate lineage- specific deletions: MAF1 has 

RD711deleted and RD702 intact (Brosch et al., 2002; Mostowy et al., 2004); while 

MAF2 has RD702 deleted and RD711 intact (Gagneux et al., 2006). The only limitation 

to the usage of these molecular markers is the need for elaborate infrastructure, and the 

inability of the current commercial speciation tests currently being used in endemic 

countries to distinguish between MAF1 and MAF2 (e.g., GenoType MTBC, Hain 

Lifescience, Germany). 

Even though MAF is unique to West Africa, sporadically cases have been identified in 

areas outside the West African Region including Germany (Meissner et al., 1969; 

Jungbluth et al., 1978; Schroder et al., 1982), England (Grange et al., 1989), France 

(Frottier et al., 1990) and Spain (Perez-de Pedro et al., 1990). However, in all cases the 

TB patients carrying MAF were recent immigrants from West Africa. The only confirmed 

outbreak of MAF outside of West Africa occurred in France, where isolates from the first 

outbreak of multi-drug-resistant (MDR) TB, diagnosed during the period 1989 to 1992, 

were identified as MAF1 with the index case originating from Brazil, although no MAF1 

or MAF2 isolates have been identified in Brazil to date (Viana-Niero et al., 2001). Taken 

together, these observations suggest that MAF may have co-evolved with human 

populations specific to West Africa.  
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Although MAF is a human TB pathogen, many questions have been raised about the 

possibility of MAF2 as an ecotype of animal strains. These questions were based on the 

closeness of MAF2 to animal lineages on the phylogenetic tree of MTBC (de Jong et al., 

2010; Figure 8). However an animal reservoir for MAF infection has yet to be identified, 

even though occasionally, MAF has been isolated from animals: cattle in Nigeria 

(Cadmus et al., 2006; Cadmus et al., 2010), monkeys with active TB in West Africa 

(Thorel, 1980). Close interactions between humans and animals exist in West Africa, and 

an animal reservoir for MAF infection remains a possibility.  
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Figure 8: The position of MAF in the global phylogeny of MTBC (de Jong et al., 2010) 
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1.4 Pathogenesis of TB 

TB is an obligatory aerobic pathogen with a penchant for areas rich in oxygen supply 

(Raja, 2004). For this reason, the classical TB bacillus is always found in well aerated 

upper lobes of the lungs. For an infection to occur, one has to inhale airborne droplet 

containing live tubercle bacilli generated from a person with active disease, however to 

be able to transmit the bacteria needs to cause active disease (Gagneux, 2012). The 

establishment of an infection is based on several factors: the droplet nuclei must be small 

enough in size (1 to 2 mm or less) to avoid exclusion from the lower respiratory tract by 

the physical barriers of the nasopharynx and upper respiratory tract, high bacteria load in 

the droplets, poor degree of ventilation and the longer duration of exposure between 

infected and uninfected persons. After inhalation, the bacterium travels down the 

bronchial tree into the lungs where they are engulfed by alveolar macrophages of the 

lungs (Kang et al., 2011). Upon entry into the human lung, the bacilli undergo a series of 

encounters with different host defense mechanisms and different outcomes. Hence the 

survival of bacilli in the lungs depends on its ability to resist elimination by the host 

immune system (van Crevel et al., 2002). 

From the lungs, the bacilli can spread to the lymph nodes via lymphatic system. The 

initial immune response against the presence of the bacteria in the lung is very complex 

but also quite efficient; in fact only 5-10% of these infections will lead to progressive 

disease for reasons unknown (Kang et al., 2011). TB ‘infection’ means the baccili are in 

the body but are kept under control by the host immune system. However, in the event 

where the initial immune response is not effective in clearing the invading pathogen, 

additional immune cells such as dendritic cells and lymphocytes are recruited from 
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neighbouring blood vessels to the focal site of infection where they engulf the invading 

pathogen (Ernst, 2012). The attraction of host immune cells to the site of infection 

initiates the formation of granuloma also known as the giant wall which serves as a 

barrier for preventing the spread of bacteria to neighbouring cells (Russell et al., 2010). 

The granuloma makes-up changes as it matures: initially made up of disorganized cell but 

becomes more organized with macrophages in the centre and lymphocytes at the 

periphery (Ulrichs et al., 2006).  

This organization reflects the complex and successful interaction between the innate and 

cell mediated immune cells following infection. In other words, elimination of MTBC 

infection mainly depends on the success of the interaction between infected macrophages, 

B and T lymphocytes. Initially thought to play no role in immune defense against MTBC, 

B cells and antibodies are now believed to contribute to an enhanced immune response 

against MTBC and together with T-cells modulate various immunological components in 

the infected host (Achkar et al., 2014). However, despite the strong immune defense put 

up by the host, some bacilli which have evolved effective strategies to evade the immune 

response escape killing and enter a state of dormancy, and persist in a low replicating 

phase by avoiding elimination by the immune system. This asymptomatic stage otherwise 

known as the 'containment' phase is a hallmark of latent TB. Infected individuals at this 

stage are not infectious as they cannot spread the infection to other people. The dormant 

bacilli remain in the granuloma for decades mediated by the complex interplay between 

cell mediated and inflammatory cells. Nonetheless, in the event where this balance is 

tilted in favour of the bacilli such as in the event of systemic immune suppression as 

occurs in HIV co-infection, active disease develops and the center of the granuloma 
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undergoes necrosis and eventually becomes caseous. Live baccili are released into the 

alveoli and the patient becomes infectious. Viable, infectious bacilli spew into the 

airways resulting in productive cough spreading the infectious bacteria into the air 

(Russell et al., 2009). The final outcome of infection with MTB largely depends on the 

balance between (i) outgrowth or killing of MTB and (ii) the extent of tissue necrosis, 

fibrosis, and regeneration. 

For a pathogen like MTB, the series of immune responses triggered by exposure to the 

bacilli clearly defines the course of infection: be it total elimination, or containment or 

the inability to control the bacilli. Thus the clinical course of infection and its 

consequences depends largely on the interplay between host and several bacterial factors.  

 

 

Figure 9: Pathogenesis of M. tuberculosis and granuloma formation (Russell et al., 2010) 
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1.5. Diagnosis and treatment of tuberculosis 

1.5.1. Diagnosis 

Primarily, TB is diagnosed by direct bacteriological identification of MTBC bacteria in a 

clinical specimen taken from a suspected TB patient. Pulmonary TB, the most common 

form of TB is diagnosed from sputum collected from a patient with an abnormal chest x-

ray while for the more aggressive less common form, extra-pulmonary TB, a biopsy or 

fine needle aspirates from the infection site such as enlarged lymph nodes is collected and 

examined using histology or the microscopy. At present, methods with proven clinical 

utility for the diagnosis of active TB include microscopy, commercial kits to detect 

molecular markers, and culture. 

 

Direct Smear Microscopy 

 

Figure 10: Ziehl Neelsen stained smear of M. tuberculosis from decontaminated sputum 

observed under oil immersion (x1000) (http://en.wikipedia.org) 

 

This procedure is the most widely and routinely used diagnostic tool for active 

pulmonary TB in most developing countries. Smear examination by light microscopy 

after Ziehl Neelsen staining relies on the retention of the red carbol fuschion dye after 
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alcohol-acid decolourisation (European Centre for Disease Prevention and Control, 

2011; _TB_control.pdf; Forrellad et al., 2013). 

Sputum smear microscopy is fast and relatively cheap. Unfortunately, its low sensitivity 

(~50% in average; requires a concentration of 104 bacilli per millilitre for positive smear 

test) combined with its intrinsic reliance on sputum production limits its use in some 

vulnerable groups such as children and HIV-positive patients who often produce little 

sputum with low bacillary load (Shingadia and Novelli, 2003; Getahun et al., 2007).  

A faster procedure based on fluorescent dyes with shorter reporting time such as 

auramine-rhodamine staining procedure is gradually replacing basic fuchsin Ziehl 

Neelsen staining procedures as an alternative staining procedure. These procedures are 

10% more sensitive than light microscopy and are less time consuming, however they 

come with a high cost of fluorescent microscopes (World Health Organization, 2011).  

Notwithstanding these drawbacks, sputum smear microscopy is good for its rapidity and 

does not require sophisticated equipment, making it suitable for endemic regions in 

Africa where resources are scarce. 

 

Chest radiology 

Chest X-ray is often used as a complementary tool to smear microscopy in diagnosing 

TB. Generally, abnormalities seen in the upper lungs (infiltration or cavities) on chest 

radiographs are often suggestive of but not necessarily definite for TB. Chest X-ray is 

often used to rule-out the possibility of pulmonary TB in a person with positive reaction 

to the tuberculin skin test and no symptoms of the disease (Kumar et al., 2007).  
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In vitro culturing of Mycobacterium tuberculosis 

 

Figure 11: Macroscopic mycobacterial culture on Lowenstein Jensen media (TB 

reference lab, Noguchi Memorial Institute for Medical Research, Legon)  

 

Isolation of the causative agent provides definite evidence of the disease and is 

considered the gold standard for diagnosing TB. In addition, it offers the opportunity for 

obtaining bacterial isolates that can be used for in-depth studies. Although this technique 

is highly sensitive and needs only a few viable baccili to initiate growth (Allen et al., 

1992), the slow growth rate of MTBC (3-4 weeks) and the requirement of specific 

decontamination solution in addition to a costly biosafety level 3 laboratory prevent its 

usage as a first hand rapid test for the diagnosis of active TB (Palomino et al., 1998).  

 

Alternative diagnostic tools for the identification of MTBC  

Several molecular diagnostic tests based on DNA amplification of specific markers have 

been developed as complementary tools to conventional microbiological diagnosis of TB. 

Most of these assays have the added advantage of simultaneously diagnosing TB and 

detecting drug resistance. Two of such assays; Xpert MTB/RIF (Kurbatova et al., 2012) 
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and line probe assays from HAIN life science are currently in use in many endemic 

countries. Xpert MTB/RIF based on real-time polymerase chain reaction PCR 

amplification of rpoB gene detects resistance to rifampicin directly from sputum, 

regardless of the smear status in less than 2 hours. Furthermore, this method requires no 

additional reagents since all reagents are in-built, minimizing the cost. The line probe 

assay GenoType MTBDRplus on the other hand detects resistance to both isoniazid and 

rifampicin from pulmonary patient specimen in less than 2 hours (Miotto et al., 2008; 

Barnard et al., 2008; Bazira et al., 2010). 

 

Apart from molecular assays, there are several immunological based assays currently in 

use for diagnosing latent TB. One of the major tuberculin skin tests used around the 

world, largely replacing multiple-puncture tests such as the Tine test is the Mantoux test 

(Mendel, 1908). This assay is based on the measurement of delayed hypersensitive 

reaction, following intradermal injection of tuberculin. Regardless of its simplicity and 

usefulness, the Mantoux test is limited by poor specificity especially among Bacille 

Calmette-Guerin (BCG)–vaccinated individuals and high levels of cross-reactivity with 

atypical mycobacteria. 

 

In recent times, commercial antigen specific assays measuring Interferon-γ (interferon-

gamma) release from T lymphocytes by enzyme linked immunoassay (Quantiferon Gold 

in Tube (Cellestis, Australia) and enzyme linked immune spot (T-spot TB (Oxford, 

Immunotec, UK) have been developed as alternative to the Mantoux test (Ferrara et al., 

2006). Both tests are are based on the ability of MTBC antigens for early secretory 
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antigen target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) to stimulate host 

production of interferon-gamma. Because these antigens are not present in non-

tuberculous mycobacteria or in any of the BCG vaccine variants (Al-Hajoj SA, 2009), 

these tests are specific for MTBC infection (Pai et al., 2004). Unfortunately, these tests 

cannot distinguish active MTB infections from latent TB (Rangaka et al., 2011). 

Additional, these methods require the need for sophisticated instruments and training 

which limits their implementation in developing countries. 

 

Table 1 gives a summary of the recommended TB diagnostic tool 

Table 1: TB diagnostic tools approved by WHO (Dorman, 2010) 
 

Method Intended use Main strengths Main weakness 

Sputum smear Microscopy 
for acid fast bacilli 

Rapid , point of care test for TB 
case detection 

Minimal 
infrastructure 

Low sensitivity 

In vivo solid culture TB case detection Good sensitivity Slow growth time 

Culture in liquid media TB case detection and as a 
prerequisite for drug –
susceptibility testing 

High sensitivity High contamination rate 

Chest radiology TB case detection (pulmonary 
TB) 

Indicative of TB Low specificity, low 
sensitivity, trained interpreter 
needed 

Tuberculin skin test 
(Mantoux) 

Detection of M. tuberculosis 
infection 

Practical  Sensitivity decreases with 
immunocompromise, cross 
reaction with BCG vaccine 

Interferon - release assay Detection of M. tuberculosis 
infection 

Highly specific for 
M.tuberculosis 

Requires moderate training 
and equipment 

Line probe assays TB case detection and drug 
susceptibility testing 

Short reporting time Potential for cross 
contamination, requires 
extensive training 
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1.5.2. Treatment  

 

Figure 12: Drugs for TB management (www.indiamart.com) 

In the absence of drug resistance, TB has successfully been treated with effective 

chemotherapy since the discovery of streptomycin (STR) and p-aminosalicylic acid 

(PAS) in the 1940s, followed in the 1950s and 60s with the discovery of isoniazid (INH), 

ethambutol (EMB) and rifampicin (RIF: also known as rifaldazine and rifampin in the 

United States) (Nguyen and Thompson, 2006). The cell wall components of MTBC and 

key cellular functions are the major targets for most of the antibacterial therapeutics 

developed.  

Table 2 lists the current first and second line drugs available for TB treatment.  

 

Unlike most other bacterial diseases where single drug regimen is used for treatment, TB 

has been treated for over fifty years using combination therapy for several reasons: 1) 

reducing the chances of acquiring drug resistance 2) the combined modes of action of the 

drugs aid in effectively clearing the bacteria: rifampicin inhibits RNA synthesis and has a 

sterilizing effect (McClure and Cech, 1978). Pyrazinamide (PZA) although weakly 

bactericidal, is very effective against bacteria located in acidic environments found inside 

macrophages, or in areas of acute inflammation (Zhang et al., 2003). EMB inhibits the 

polymerization step of arabinogalactan synthesis (Mikusova et al., 1995). INH is a pro-

http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAYQjB0&url=http%3A%2F%2Fwww.indiamart.com%2Fsetushreeenterprises%2Fpharmaceutical-formulations.html&ei=1mE9VI79AqLW7QbukoDQAQ&psig=AFQjCNHSQsv5imY3V3EjmPCETt8YuiQsPw&ust=1413395272468831
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drug and bactericidal against replicating bacteria by inhibiting mycolic acid synthesis 

(Zhang et al., 1992), para-aminosalicylic acid inhibits folic acid (Rengarajan et al., 

2004), fluoroquinolones act on DNA replication (Drlica et al., 2008) whiles Ethionamide 

(ETD) also a prodrug, inhibits fatty acid synthesis required for mycolic acid synthesis 

(Banerjee et al., 1994). 

 

The standard treatment for new TB patients (defined as patients with no prior anti-TB 

treatment or with previous anti-TB treatment for less than 1 month) consists of two 

months intensive phase with daily INH/RIF/PZA/EMB, followed by a 4 months 

continuous phase of daily INH/RIF. INH/RIF are the most important drugs for TB 

treatment: INH is responsible for the initial killing of about 95% organisms during the 

first days of treatment, complemented by RIF and PZA during the remaining intensive 

phase, whilst for the continuation phase RIF is the main active drug against persisters 

from the intensive phase (World Health Organization, 1994).  

 

Previously treated patient are globally 5 times more likely to present with TB caused by 

multidrug-resistant (MDR) strains, and therefore, should be treated according to drug 

susceptibility test (DST) results. However, in the absence of DST results, patients are 

normally placed on a 8 months drug regimen comprising two months of 

INH/RIF/PZA/EMB (intensive phase), one month of INH/RIF/PZA/EMB (intensive 

phase) and five months of INH/RIF/EMB (continuation phase).  

For drug resistant bacteria (MDR-TB) treatment, three groups of drugs are mainly used, 

including injectable aminoglycosides: STR, kanamycin (KAN), amikacin (AMK) which 
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inhibit protein synthesis, group 2 drugs (fluoroquinolones): ofloxacin, levofloxacin or 

moxifloxacin which target the DNA gyrase involved in DNA replication, and finally 

group 3 drugs (oral bacteriostatic drugs): ETD, cycloserine which targets cell wall 

biosynthesis. If any first-line drug is likely to be still effective, it should be included in 

the regimen, as first-line drugs are more potent and have less adverse effects than second-

line drugs. The treatment regimen for MDR cases consist of at least four effective drugs: 

one injectable drug (group 1, preferentially AMK or KAN, since STR resistance among 

MDR‐TB is frequent), one fluoroquinolone (group 2), and one group 3 drug. 

All together, these drugs work against different targets in order to effectively clear the 

bacteria. Total duration of therapy for treatment of drug-resistant TB is at least 18 

months.  
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Table 2: Anti-TB drugs and their mechanism of action (Muller et al., 2013) 

 

 

Drug (year of discovery Year of 

discovery 

Effect on bacterial cell Mechanism of action Targets 

First line drugs 

Streptomycin 1944 Bactericidal  Inhibition of protein synthesis Ribosomal S12 protein 

and 16SrRNA 

Isoniazid 1952 bacteriocidal against 

replicating tubercle 

bacilli 

Inhibition of cell wall mycolic acid synthesis and 

other multiple effects on DNA, Lipids, 

carbohydrates and NAD metabolism 

Multiple targets 

including acyl carrier 

protein reductase 

(InhA) 

Pyrazinamide  1952 Bacteriostatic/ 

bacteriocidal against 

slow replicating bacilli 

in acidic lesions 

Disruption of membrane transport and energy 

depletion 

Membrane energy 

metabolism 

Ethambutol  1961 Bacteriostatic Inhibition of polymerization of cell wall 

arabinogalactan  

Arabinosyl transferase 

Rifampicin 1966 A semi derivative of 

Rifamycin. Bacteriocidal 

activity against tubercle 

bacilli 

Inhibition of RNA synthesis  RNA polymerase β 

subunit 

Second line drugs 

ρ-aminosalicylic acid 

(PAS) 

1946 Bacteriostatic Inhibition of folic acid and iron metabolism 

synthesis 

 

Cycloserine  1952 Bacteriostatic Blocks enzyme of cell wall biosynthesis  D-alanine racemase 

Ethionamide  1956 Bacteriostatic Inhibition of mycolic acid  synthesis Acyl carrier protein 

synthesis (InhA) 

Kanamycin  1957 Bacteriocidal Inhibition of protein synthesis 16S rRNA 

 

Capreomycin 1960 Bacteriocidal Inhibition of protein synthesis 30s ribosomal subunit 

Quinolones  1963 Bacteriocidal Inhibition of DNA synthesis DNA gyrase 
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1.6. Drug resistance 

Clinically, drug resistance in TB is defined as the increased capacity of the bacteria to 

tolerate high doses of specific antibiotics at any given time compared with drug-

susceptible bacilli.  

Drug resistance in MTBC is classified into two groups based on the way the resistance 

emerges: primary resistance and acquired resistance. Primary resistance is defined for 

patient infected with already drug-resistant strains. In contrast, acquired resistance is 

defined as the development of drug resistance in a patient during the course of treatment. 

Primary resistance in particular poses the biggest challenge to control because less than 

20% of the estimated drug resistant cases in the world are believed to be properly 

diagnosed, largely due to the lack of appropriate laboratory infrastructure in low-income 

endemic areas (Muller et al., 2013).  

Unlike other bacteria, drug resistance in MTBC is conferred by specific chromosomal 

mutations and promoted either through environmental/extrinsic effect or bacterial factors. 

These factors can either be a results of delay in diagnosis, inadequate or interrupted drug 

supply, patient non-adherence to treatment (Perlman et al., 2005; Muller et al., 2013) or 

through ‘persisters’ (bacterial cells that phenotypically tolerate high levels of drug 

concentration, prolongs the average lifetime of bacteria exposed to drugs).  

 

Regardless of the path of emergence, drug resistant TB is more difficult to cure. The two 

most important forms of drug resistance are MDR-TB and XDR-TB. MDR-TB is defined 

for resistance to at least RIF and INH, the two most potent anti-TB drugs. XDR-TB is 

defined when MDR-TB cases are additionally resistant to at least one injectable drug 

(AMK, KAN or CAP) and one fluoroquinolone. As mentioned earlier, MDR-TB cases 
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are treated using more expensive and generally more toxic second line drugs. XDR 

emerges when control of MDR is adequate. WHO estimates that on the average 9% of all 

MDR cases are XDR (Global TB report, 2014). This means that for an effective control 

of drug-resistant TB, prompt identification and initiation of adequate treatment is crucial 

to prevent the further development or spread of resistance. 

In an ideal situation, all patients should be tested for drug resistance before initiation of 

treatment so that the most appropriate drugs to treat the patient can be determined. This is 

not the case in most endemic regions where elaborate infrastructure and expertise are 

needed to perform DST and interpret result. Phenotypic DST is the current gold standard 

for the detection of drug resistance and is based on the “proportion method” which 

consists of monitoring mycobacterial growth on media containing the relevant drug at a 

critical concentration. The proportion method which hitherto was the method of choice in 

most low-income countries is gradually being replaced by Mycobacteria Growth 

Indicator Tube (MGIT) which has an added advantage of being fully automated. It 

detects mycobacterial growth and drug resistance reducing the delay for reporting results 

(Abe et al., 2001; Ardito et al., 2001).  

An alternative to phenotypic DST is the use of molecular markers for the identification of 

chromosomal mutations (Ramaswamy 1998; Sandgren et al., 2009). These techniques 

are designed based on earlier DNA sequencing analyses and target specific genes where 

mutations of interest occur. Most importantly, they have the added advantage of being 

fast and sensitive enough and work directly on sputum positive samples, circumventing 

the need for growing of the bacilli. In 2009, the WHO approved the use of molecular 

line-probe assays for the detection of drug resistance in MTBC (World Health 
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Organization, 2009). Of these, the best known are Xpert MTB/RIF and GenoType 

MTBDRplus for first line drugs and GenoType MTBDRsl for second line drugs (Hain 

Lifescience, Germany). Xpert MTB/RIF is a fully automated system based on real time 

amplification of specific regions of the rpoB gene for the detection of drug resistant 

strains. On the other hand, GenoType MTBDRplus in addition to detecting resistance to 

RIF also detects resistance to INH. GenoType MTBDRsl provides a comprehensive 

report on second line drugs used for treating TB resistant to first line drugs. It identifies 

mutations in the gyrA gene (coding for DNA gyrase) for fluoroquinolones resistance, 

mutations in 16S rRNA gene (rrs) for detection of resistance to aminoglycosides/cyclic 

peptides and mutations in the embB gene for resistance to ethambutol, (which, together 

with the genes embA and embC, codes for arabinosyl transferase).  

Table 3 list genes harboring mutations associated with resistance to anti-TB drugs. 
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Table 3: Anti-TB drugs and their mechanism of drug resistance ( Muller et al., 2012) 

Drugs Genetic region involved in resistance 

formation 

Natural function of gene Role in resistance formation when mutated 

 

First Line drugs 

Isoniazid ahpC  Alkyl hyperperoxide reductase  Compensatory mutations 

fabG  3-Oxoacyl-thioester reductases  Unknown 

fadE24  Involved in fatty acid b-oxidation n Unknown 

inhA  Enoyl reductase  Alteration of drug target 

inhA promoter  Regulation of expression of InhA  Overexpression of drug target 

iniA  Efflux pump associated  Altered efflux pump activity 

katG  Catalase/peroxidase  Elimination of pro-drug conversion 

Rifampicin rpoA  α-Subunit of RNA polymerase  Compensatory mutations 

rpoB  β-Subunit of RNA polymerase  Alteration of drug target 

rpoC  β-Subunit of RNA polymerase  Compensatory mutations 

Pyrazinamide pncA Nicotinamidase Elimination of pro-drug conversion 

Streptomycin gidB  7-Methylguanosine methyltransferase  Alteration of drug target 

rpsL  S12 ribosomal protein  Alteration of drug target 

rrsb  16S rRNA  Alteration of drug target 

Ethambutol embA  Arabinosyl transferase  Alteration of drug target 

embB  Arabinosyl transferase  Alteration of drug target 

embC  Arabinosyl transferase Alteration of drug target 

embR  Regulator of embCAB operon expression  Overexpression of drug target 

iniA  Efflux pump associated  Altered efflux pump activity 

rmlD  dTDP-4-dehydrorhamnose reductase  Unknown 

Second line drugs 

Fluoroquilones gyrAb  DNA gyrase  Alteration of drug target 

 gyrBb  DNA gyrase  Alteration of drug target 

Injectables 

(Kanamycin/amikacin) 

rrsb t 16S rRNA  Alteration of drug target 

 rrs  16S rRNA  Compensatory mutations 

Capreomycin/viomycin  tlyA  rRNA methyltransferase  Alteration of drug target 

 rrsb t 16S rRNA  Alteration of drug target 

Ethionamide  inhA  Enoyl reductase  Alteration of drug target 

 inhA promoter  Regulation of expression of inhA  Overexpression of drug target 

Para-amino salicylic 

acid  

thyA  Thymidylate synthase A  Elimination of pro-drug conversion 

PA-824 and OPC-67683  Rv3547  Hypothetical 16.4 kDa  Alteration of drug target 

TMC207  atpE  ATP synthase  Alteration of drug target 
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1.7.  The nature of genetic diversity in Mycobacterium tuberculosis complex 

Similar to other monomorphic bacterial pathogens such as M. leprae and Bacillus anthracis, 

MTBC exhibits low DNA sequence diversity compared to other bacteria (Achtman 2008). On the 

average, monomorphic bacteria harbour a single nucleotide difference every 2-28kb (Achtman 

2008). Because of this limited DNA sequence variation and lack of horizontal gene transfer in 

MTBC (Brosch et al., 2000; Supply et al., 2003; Ozcaglar et al., 2011) unlike other bacteria like 

Helicobacter pylori (Wirth et al., 2004; Falush et al., 2003), it was assumed that strain diversity 

among individual members of MTBC had no clinical consequence (Sreevatsan et al., 1997 

Comas and Gagneux, 2009).  

For a long time it was assumed that strain diversity within individual members of MTBC played 

no role in terms of progression from infection to disease and propensity to develop drug 

resistance. This dogma was strengthened by earlier studies that were conducted using limited and 

often biased strain collections (Comas and Gagneux, 2009). Understanding the diversity of 

bacterial pathogens is important, both for epidemiological and biological reasons. As mentioned 

above, because of the low DNA sequence among MTBC, studying the impact of genetic diversity 

is very challenging. Standard sequence-based methods such as multilocus sequence typing 

(MLST) normally used for most bacteria were not applicable because of the low resolution power 

(Kent and Kubica, 1985; Coscolla and Gagneux, 2010). Nonetheless, with the advancement in 

molecular analyses and accessibility of more MTBC isolates from diverse geographical regions, 

we now know that genetic diversity within MTBC, especially the human MTBC has been 

underestimated.  

 

Genetic diversity in MTBC is now known to be driven mainly by large sequence deletions in the 

region of difference (RD), single nucleotide polymorphisms (SNPs) and repetitive elements and 

insertion sequences (Huard et al., 2006). Of the above mentioned genetic elements, deletions play 

a major role. The availability of the genomes of different members of the MTBC has allowed us 
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to compare different genomes. Comparing different genomes, Behr and colleagues identified 

eleven genomic regions (encompassing 91 open reading frames) deleted from BCG vaccines 

relative to the virulent MTBC H37Rv reference strain (Behr et al., 1999). These regions 

contained important proteins which either regulated virulence or aided in immune escape. For 

example RD1 contains genes that belong to the ESAT6 gene cluster encoding a type 7 secretion 

system (Abdullah et al., 2007; Tekaia et al., 1999). ESAT6 has been shown to act as potent 

stimulator of the immune system and is an extracellular antigen recognized throughout infection 

(Elhay et al., 1998; Horwitz et aI., 1995; Rosenkrands et al., 1998). As this 10-kb region is 

absent from all BCG strains tested so far, but present in virulent M. bovis MTB and MAF, the loss 

of RD1 could be associated with the attenuation of BCG.  

 

Lineage 2, a member of ʽmodernʼ lineages of MTBC, is normally associated with hypo 

inflammatory and hyper virulent phenotype. This attribute is linked to the presence of an intact 

pks15/1 gene that, by contrast, contains a 7-bp deletion absent in Lineage 4 also belonging to the 

same group. The presence of an intact pks15/1 gene which encodes a polyketide synthase is 

associated with the production of an immunosuppressive phenolic glycolipid (PGL) (Constant et 

al., 2002). The presence of intact pks15/1 probably partially accounts for the high transmissibility 

and propensity to develop multiple resistances nature of Lineage 2 in contrast to other lineages.  

Apart from deletions, other genomic elements contribute to the genetic diversity among MTBC. 

For example, repetitive elements in the Direct Repeat (DR) region and the insertion sequence 

IS6110 (Kivi et al., 2002) have been exploited to distinguish MTBC strains during molecular 

epidemiological studies (Kamerbeek et al., 1997).  

Although the explanation of genetic diversity of global MTBC using molecular biological tools 

answers some pertinent questions, an important question is how these translates into phenotypic 

diversity in terms virulence, immunogenicity and drug resistance among the infecting pathogen in 

clinical settings (Portevin et al., 2011, Brites and Gagneux, 2012).  
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1.8 Genotyping techniques for identification of MTBC 

Genotyping of MTBC offers several advantages in the context of understanding diversity among 

MTBC. In particular, it allows for identification of risk factors for infection and disease, 

distinguishes between new infection and reactivated cases, and identifies predominant strain 

genotypes.  

Since early 1990s, several genotyping tools have been proposed to study genetic diversity among 

MTBC. Based on the question under investigation, the tool selected should be polymorphic 

enough to distinguish among unrelated strains yet still stable enough to allow for identification of 

closely related strains. 

The classical genotyping methods to understand genetic diversity among MTBC includes 

insertion elements (IS) restriction fragment length polymorphism (IS6110-RLFP), spoligotyping, 

and Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats (MIRU-

VNTR). With the cost of high throughput DNA sequencing decreasing, whole-genome 

sequencing is gradually becoming the ideal tool to infer molecular epidemiology and phylogenetic 

aspects. 

Below is an overview of different methods used in studying the diversity of MTBC.  

 

IS6110-RFLP 

The first genotyping method developed in the early 1990s by van Embden et al.,1993 to be used 

for strain classification was restriction fragment length polymorphism (RFLP) based on IS6110 

insertion sequence (IS6110-RLFP). Differences in copy number and locations within the genome 

make this technique highly specific for MTBC. The technique involves the digestion of genomic 

DNA with PvuII restriction enzyme that cleaves the IS6110 sequence only once, creating several 

DNA fragments that are separated through gel electrophoresis. Initially, considered as the gold 

standard, this method has been replaced by MIRU-VNTR and spoligotyping for various reasons: 

1) it is labour intensive, requires high quality DNA, and sophisticated and expensive computer 
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software to analyse: 2) it requires experienced personnel of high technical expertise to interpret 

the results, and 3) it is not discriminatory enough for strains with 6 or less IS6110 copy numbers 

like e.g. M. bovis. Nonetheless, it paved the way for an in-depth understanding of diversity among 

MTBC before the development of the more recent methods.  

 

Spoligotyping 

Developed in 1997 by Kamerbeek et al., 1997 and based on polymorphisms in the Clustered 

Regularly Interspaced Short Palindromic Repeats (CRISPRs) region of MTBC is the most 

frequently used PCR-based approach for studying the phylogeography of MTBC in high 

incidence areas where infection and disease patterns are heterogeneous. Spoligotyping takes 

advantage of the Direct Repeat (DR) region composed of identical 36 base pair repeats 

interspersed by 94 unique “spacers” of 35-41 base pairs in length. Although the order of these 

spacers is conserved, the presence or absence of selected 43 spacers allows for discrimination 

among MTBC strains. The protocol entails immobilisation of amplified illuminescent PCR 

products on nitrocellulose membrane. The resulting pattern of presence or absence of spacer 

revealed by chemiluminescence can be compared with the database- SITVITWEB (formerly 

SpolDB4) for identification. (Demay et al., 2012; Weniger et al., 2010).  

Spoligotyping is simple, cost-effective and high-throughput with accurate and reproducible results 

within 2 days. Its direct application in clinical samples without the need for prior culture and easy 

interpretation and computerized (binary (present/absent) data format makes it ideal for molecular 

epidemiological studies.  

However, it is less discriminatory than IS6110 RFLP analysis (it targets only a single genetic 

locus, covering less than 0.1% of the M. tuberculosis complex genome), less informative in 

regions with predominant or endemic strains (W-Beijing in China, Southeast Asia and Russia) and 

is of limited use for evolutionary studies. Furthermore, it is unable to detect contaminated isolates 

or multi-strain infections.  
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To overcome some of these limitations, two newer and improved formats of the spoligotyping 

method have been proposed. The first benefits from the Luminex technology: high-throughput 

analysis, allows 96 isolates to be assayed simultaneously, as opposed to 45 isolates in the standard 

spoligotyping approach. The method is based on immobilization of synthetic spacer 

oligonucleotide probes on microspheres by means of covalent coupling and the resulting products 

detected via fluorochromes. The Luminex platform (Cowan et al., 2004; Zhang et al., 2009) 

eliminates the membrane hybridisation step and the subjective manual data interpretation and 

provides greater robustness and reproducibility. The second more recent alternative is the new 

multiplexed primer extension-based spoligotyping assay using automated matrix-assisted laser 

desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) (Honisch et al., 2010). 

Spoligotyping by MALDI-TOF MS improves the classical reverse line blot hybridization assay 

with respect to reproducibility, throughput, process flow, ease of use, and data analysis. However, 

both new innovative, technologically refined spoligotyping assay formats require advanced and 

expensive equipment and thus may not be applicable in resource-constrained settings. 

 

MIRU-VNTR 

The third most widely used method is Mycobacterial Interspersed Repetitive Units (MIRU-

VNTR) typing. Currently, it has become the most reliable and efficient genotyping system for TB 

transmission studies and is the new gold standard replacing IS6110-RFLP. Developed in 2001 by 

Supply et al, this technique is based on tandem repeat elements dispersed in intergenic regions of 

the MTBC genomes and copy number diversity. Within the MTBCs more than 40 different 

MIRU/VNTR loci have been identified and at least 24 of them are considered as polymorphic. 

Protocols based on PCR amplification of different proposed formats: 12, 15 or 24 loci using 

primers positioned in flanking DNA sequences have been used to study the transmission dynamics 

of MTBC. In general, the discriminatory power of MIRU-VNTR analysis increases with the 

number of loci evaluated. The variability of the number of tandem repeats from strain to strain per 
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locus serves as tool for differentiating among MTBC. The number of repeats (allele) is calculated 

after amplicon sizing by gel electrophoresis and the numerical results is matched to an online 

database for comparison and identification (Allix-Béguec et al., 2008; Weniger et al., 2010). 

MIRU-VNTR typing has been used successfully to trace on-going chains of TB transmission, 

differentiate relapse from re-infection cases and detect laboratory cross-contamination (Cox et al., 

2008). 

Despite its usefulness in TB transmission studies, it is labour-intensive due to a high number of 

individual PCRs required and less informative in areas with restricted MTBC lineages (Comas, 

2009). To achieve the highest discriminatory power and to make the method more effective in 

areas with restricted lineages, in recent years, several minimal sets of loci designed to provide 

maximum discriminatory power and minimize genotyping costs have been developed for 

geographically restricted MTBC lineages (Murase et al., 2008; Shamputa et al., 2010, Dong et 

al., 2012). 

 

Large Sequence Polymorphisms 

While discriminatory methods such as spoligotyping and MIRU-VNTR are useful in strain 

classification and identification, they often show ambiguities. This is because both assays are 

based on repetitive elements that are prone to convergent evolution thus relying only on these 

methods for strain classification can be misleading (Comas et al., 2009). Large sequence 

polymorphisms (LSPs) on the other hand serve as more phylogenetically robust and stable 

molecular markers for strain identification; they are unique irreversible events and less prone to 

distortion by selective pressure than other genetic markers. In addition, because these markers are 

unique and irreversible due to the lack of horizontal gene exchange in MTBC, they are less prone 

to convergent evolution and thus can be used for robust phylogenetic classification (Gagneux and 

Small, 2007). Supporting this, Comas et al showed that phylogenies based on LSP compared to 

those by DNA sequences were highly congruent (Comas et al., 2009).  
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Most importantly, LSPs also known as regions of differences (RDs) (Huard et al., 2006) have 

been used to define several discrete strain lineages within the human adapted members of MTBC 

specific for different human populations and geographical regions and unravel the evolutionary 

scenario of ecotypes of MTBC (Brosch et al., 2002; Gagneux et al., 2006:Figure 13)  

 

Figure 13: The global phylogeny of Mycobacterium tuberculosis complex (MTBC) (Gagneux et 

al., 2006) 

 

Single Nucleotide Polymorphisms 

Large deletions discussed above reflect unidirectional events and are therefore not prone to 

homoplasy. However, they do not allow the calculation of genetic distances and also cannot 

completely resolve all deep-rooting branches of the MTBC phylogeny (Comas et al., 2009). With 

the availability of large-scale DNA sequencing technologies, large numbers of SNPs have been 
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discovered in MTBC and have been used in understanding the biology of MTBC as a pathogen 

with very restricted genetic diversity (Achtman, 2008). Because of the absence of recombination 

and lateral gene transfer, SNPs are ideal phylogenetic and epidemiological markers. In addition 

SNP-based are also unlikely to converge, as can be the case with spoligotype or MIRU markers 

(Holmes et al., 1995; Schork et al., 2000). This was illustrated in a recent report by Fenner et al., 

showing that strains sharing the same pattern as identified by spoligotype e.g. classical “Beijing” 

spoligotyping pattern can in fact belong to different lineages, as identified by specific SNPs and 

genomic deletion (Fenner et al., 2011). Furthermore selectively neutral SNPs have been shown to 

accumulate at a uniform rate and thus can be used to measure divergence (i.e., they can act as 

molecular clocks). Therefore SNPs serve as the most appropriate genotyping tool for MTBC.  

 

 

Whole genome sequencing (WGS) as a typing method 

Although SNPs are still used, with exponentially decreased in cost, WGS is increasing becoming 

the preferred technique for TB research. WGS determines the complete DNA sequence of an 

organism's genome at a single time and can provide several answers at a single time, making it the 

ideal tool for studying the pathogen. Several studies have applied large-scale WGS to different 

Table 4: List of Lineage, SNP, Primer and Probe for major Lineage typing (Stucki et al., 2012) 
 

MTBC Lineage   
SNP_Name  

 
Primer  

 
Primer Sequence  

 
Probe  

 
Probe_seq  

 
1 

 
Rv3221c_0085n 

 
RV3221c_F 

 
TGTCAACGAAGGCGATCAGA 

 
H37Rv_probe 

 
6FAM-ACAAGGGCGACGTC 

   
RV3221c_R 

 
GACCGTTCCGGCAGCTT 

 
Mutant_probe 

 
VIC-ACAAGGGCGACATC 

2  
Rv2952_0526n 

 
Rv2952_F 

 
CCTTCGATGTTGTGCTCAATGT 

 
H37Rv_probe 

 
6FAM-CCCAGGAGGGTAC 

   
Rv2952_R 

 
CATGCGGCGATCTCATTGT 

 
Mutant_probe 

 
VIC-CCCAGGAAGGTACT 

3  
Rv3804c_0012 

 
Rv3804c_F 

 
GCATGGATGCGTTGAGATGA 

 
H37Rv_probe 

 
6VIC-AAGAATGCAGCTTGTCGA 

   
Rv3804c_R 

 
 
CGAGTCGACGCGACATACC 

 
Mutant_probe 

 
6FAM-AAGAATGCAGCTTGTTGA 

4  
katG463 

 
katG463_F 

 
CCGAGATTGCCAGCCTTAAG 

 
H37Rv_probe 

 
6FAM-CAGATCCGGGCATC 

   
katG463_R 

 
GAAACTAGCTGTGAGACAGTCAATCC 

 
Mutant_probe 

 
VIC-CCAGATCCTGGCATC 

5  
Rv1377185GC 

  
TCCAGCAGGTGACCATCGT 

 
H37Rv_probe 

 
VIC-CGTGGACCTCATG- 

    
GGCCTGTGACCCGTTCAAC 

 
Mutant_probe 

 
6FAM-CGTGGACCTGATGCMGB 

6  
Rv378404GA 

  
CGGCCGACAGCGAGAA 

 
H37Rv_probe 

 
6FAM-CTGCAAATCCCGCAGTA 

    
CCATCACGACCGAATGCTT 

 
Mutant_probe 

 
VIC-CTGCAAATCCCACAGT 
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aspects of TB research; to study chains of transmission (Schurch et al., 2010), disease outbreaks 

(Bryrant et al., 2013) and also to infer phylogeny (Comas et al., 2013). Furthermore,  WGS have 

been used to identify drug-resistance associated mutations; Comas et al., 2011, Casali et al., 2012 

and Casali et al, 2014 found mutations compensating for the fitness defect associated with 

rifampicin resistance while Köser et al., 2013 used WGS to rapidly identify drug resistance 

mutations of an XDR-TB patient. These studies demonstrate the potential for future routine 

applications of WGS in research and molecular epidemiology. However, the use of WGS for 

large-scale applications especially in endemic areas is limited by it cost and the need specialized 

expertise for analyses  

 

Figure 14: Whole-genome phylogeny of 220 strains of Mycobacterium tuberculosis complex 

(MTBC) (Comas et al., 2013) 
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1.9.  Consequences of genetic diversity within MTBC 

The impact of strain variation for human disease has been well established for a number of 

bacterial pathogens such as Escherichia coli, Neisseria menigitidis, Haemophylus influenzae, 

Bordetella and Streptococcus species (Coscolla and Gagneux, 2010). In these bacterial species, 

some strains are more likely to cause invasive disease than others because such virulent 

phenotypes possess distinct virulent markers such as genes associated with the production of 

toxins. However, no such canonical virulence factors have been identified in MTBC. 

Nevertheless, there is now mounting evidence supporting the notion that strain genetic diversity in 

MTBC has relevant phenotypic consequences (Gagneux and Small, 2007; Nicol et al., 2008; 

Kato-Maeda et al., 2001; Coscolla and Gagneux 2010). 

 

For example, initial studies carried out from the beginning of the last century using animal models 

gave a clear idea on the difference in virulence between MTBC strains. In one such experiment in 

guinea pigs comparing MTBC strains isolated from TB patients in south India to that isolated 

from United Kingdom, the former were shown to be of low virulence compared to the later 

(Mitchison et al., 1960; Naganathan et al., 1986). Similarly, early animal studies comparing M. 

africanum from Senegal to MTB showed that MAF was less virulent (Castets and & Sarrat, 

1969). In another study conducted in Gambia, it was shown that while both MTB and MAF 

transmit equally, MAF seems to have a longer latency period compared to MTB (de Jong et al., 

2008). The same group further showed that MAF seems to be less virulent than MTB, as it tends 

to affect more HIV confected patients, and individuals infected with MAF were less likely to 

respond to ESAT 6 (de Jong et al., 2005; de Jong et al., 2006). Based on the phylogenetic tree of 

MTBC, we know that MAF strains and Lineage 1 strains from South India belong to ‘ancient’ 

MTBC strain lineages. Hence, it is possible that the low virulence phenotype exhibited by these 

two phenotypically distinct strains is a general characteristic of ‘ancient’ MTBC strains. In 

contrast, experiments using HN878, a strain that caused disease outbreaks in Los Angeles and 
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Houston, showed a different picture. HN878 belongs to the ‘modern’ Lineage 2 which includes 

the Beijing family of MTBC. Lineage 2/Beijing family has been associated with hyper virulence, 

epidemic spread, extra pulmonary TB and an increased likelihood of developing drug resistance 

due to the production of phenolic glycolipid (PGL) (Reed et al., 2007; Kato-Maeda et al., 2010; 

Borrell and Gagneux, 2009). PGL confers the ability to inhibit the release of key inflammatory 

effector such as TNF-α, IL-1β, IL-12, and IFN-γ, and an elevated production of macrophage 

deactivating cytokines such as IL-11 and IL-13 molecules by cells of the host innate immune 

response. Ultimately, this inhibition predisposes this family to various clinical outcomes as seen in 

mice (Reed et al., 2004; Manca et al., 1999; Manca et al., 2001) and rabbits (Tsenova et al., 

2005). The lack of laboratory strains H37Rv and Erdman to produce PGL, has been found to be 

due to genomic deletion of 7-base-pairs in the polyketide synthase gene pks1-15, which gives rise 

to a frame shift mutation in the DNA coding sequence and a non-functional Pks15/1 gene product. 

 

Apart from differences in virulence in animal models of infection, studies in Vietnam have shown 

that lung cavitations were found in higher proportion in TB patients infected with Lineage 4 (i.e. 

the Euro-American lineage) (Thwaites et al., 2008) and that Lineage 4 was also less likely to 

cause TB meningitis (Caws et al., 2008). The same study showed that the shorter duration of 

illness among TB meningitis patients was related to infection by Lineage 2 (East Asian/Beijing 

lineages) (Thwaites et al., 2008). However, a study in Netherlands where TB cases and controls 

were stratified by age, previous episode of TB and ethnicity, showed that the bacterial genotypes 

were not associated with chest radiological presentation (Borgdorff et al., 2004). These differing 

findings on links between bacterial genotypes and disease phenotypes could also be due to factors 

like sample size, stage of disease, geographical differences, and patient ethnicity. On the other 

hand, disease outcomes could also be due to different treatment strategies, immunization, patient 

characteristics such as HIV, diabetes, ethnicity and age (Dye and Williams, 2010). A prospective 

study from South Africa showed an association of late sputum smear conversion among TB 
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patients who smoked and who were infected with W-Beijing genotype (Visser et al., 2012). If the 

MTBC genotype affects the formation of lung cavities, then the degree of lung cavitation will 

have an effect on the grading of the sputum smear. Patients with larger lung cavitations tend to be 

positive for maximum smear grade due to a higher bacterial load. Hence, severity of disease could 

also be correlated with MTBC lineages.  

Furthermore, there is evidence indicating that different strains show different adaptation to anti-

TB drug pressure which translates into varying mutations which confer different levels of 

resistance. A study by Gagneux et al showed that drug resistance mutations are often associated 

with competitive fitness cost and the degree of fitness is influenced by the genetic background of 

the strain (Gagneux et al., 2006). Among the six main human MTBC lineages, Lineage 2, which 

includes Beijing strains, has been repeatedly associated with drug resistance (Borrell and 

Gagneux, 2009). While it is well believed that the fitness demonstrated by the high 

transmissibility could be due to epistatic effects (the phenomenon where the phenotypic effect of 

one mutation differs depending on the presence of another mutation) (Borrell and Gagneux, 

2009), the main reasons accounting for this are not well understood. Finally, distinct lineages of 

MTBC have preferred drug resistance conferring mutations. In a recent study across different 

strain lineages, drug resistance conferring mutations especially mutations conferring resistance for 

INH were associated with different MTBC lineages, indicating possible epistatic interactions 

between drug resistance mutations and other mutations linked to different lineages (Gagneux et 

al., 2006; Borrell and Gagneux; 2009). For example, While MTB has been associated with of 

katG 315 mutations, MAF West-African I strains had more mutations in the inhA promotor region 

(Homolka et al., 2010; Fenner et al., 2012).  
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Chapter 2: Rationale, Goals and Objectives 

2.1. Rationale 

For many years, molecular epidemiologic studies of TB have been applied in developed countries 

for the control of TB. These studies have focused largely on utilising molecular techniques in 

conjunction with classical epidemiology study mechanism of drug resistance and to address short- 

and long-term epidemiologic questions such as estimates of recent-versus-reactive disease, the 

extent of exogenous re-infection, identify patient groups most at risk, and circulating MTBC 

strains (Mathema et al., 2006;Crampin et al., 2006). Similar work from developing countries is 

limited despite the endemicity of TB. For most endemic countries including Ghana, control of TB is 

hampered in part by lack of knowledge about the prevalence and transmission of the disease, and 

on the other part on the over reliance on old control strategies based on case detection by 

microscopy and the use of DOTs. Exploring the genetic diversity of MTBC strains in Ghana is 

relevant as it not only provide answers on the level of drug resistances in the country, it also 

provides the evolutionary linkage between strains circulating in Ghana to the neighbouring countries 

and globally. 

Like other West-African countries, Ghana houses six of the seven human-associated MTBC 

lineages with up to 20% of TB caused by the highly neglected pathogen MAF (MTBC Lineages 5 

and 6) (Addo et al,, 2009; Yeboah-Manu et al., 2011). Although, little is known about these 

organisms, one of the striking features of MAF is that it only occurs in West African with uneven 

distribution; Lineage 6 occurs in the western part of West Africa, Lineage 5 towards the eastern 

part, with few countries like Ghana harboring both lineages. Based on already published evidence, 

we know that this pathogen differs from M. tuberculosis sensu stricto in many features, including 

host pathogen interaction and adaptation to anti-TB drugs, which are relevant to TB control. 

However, what we do not know is why this pathogen is restricted to West Africa (de Jong et al., 

2010). One possibility could be that MAF is associated with human genetic diversity in West 

Africa. Indeed it has been hypothesized that MTBC has co-evolved with modern humans for 
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thousands of years (Comas et al., 2013). Most research works on MAF has centered on Lineage 

6, but little is known on the characteristics of Lineage 5. Ghana provides a unique opportunity to 

study the biology of both Lineages.  

 

2.2 Objectives 

The objectives and outline of this PhD research were:  

 

Objective 1: To define the drug susceptibility pattern of MTBC isolates from Ghana. (Chapter 3)  

Outline: we determined in vitro drug susceptibilities of MTBC isolates circulating in Ghana and 

correlated this with the clinical response of patients. 

 

Objective 2: To establish a rapid and simple molecular diagnostic tool for detecting drug resistant 

(DR) TB rapid in Ghana (Chapter 4). 

Outline: We established and confirmed the accuracy of a rapid diagnostic tool for the detection of 

drug resistant MTBC strains in Ghana. This served as a valuable addition to the conventional TB 

diagnostic approaches in Ghana. 

 

Objective 3: To evaluate customized lineage-specific sets of MIRU-VNTR loci for genotyping 

MTBC isolates in Ghana (Chapter 5). 

Outline: We expanded our focus to micro-epidemiological studies. We aimed at defining a 

minimal set of MIRU-VNTR loci especially for Ghana where 20% of TB cases are caused MAF. 

We defined a minimal set of high discriminatory and cost effective MIRU 8 loci format which can 

be used for characterizing MTBC strains from Ghana.  

 

Objective 4: To study MTBC diversity, including drug resistance, as a function of HIV co-

infection and other epidemiological variables (Chapters 6 and 7). 
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Outline: In Chapter 6, with background information on the prevalence of MAF in Ghana, we 

sought for associations that could explain the possible geographic restrictions of MAF to West 

Africa. For Chapter 7, we expanded our focus on MAF Lineages 5 and 6 and confirmed their 

respective association with patient ethnicity and HIV co-infection.  
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Abstract 

Background: The worldwide emergence of drug resistant forms of the Mycobacterium 

tuberculosis complex, the causative agents of tuberculosis (TB) has the potential to make this 

important human infectious disease which is generally treatable, virtually incurable. Our aim 

therefore was to determine the in vitro drug susceptibilities of M. tuberculosis complex isolates 

and to correlate this with the clinical response of patients from whom the isolates were obtained.  

 

Methodology: Sputum samples obtained from smear positive cases were cultivated on 

Lowenstein Jensen (LJ) medium. The susceptibilities to isoniazid (INH), rifampicin (RIF), 

streptomycin (STR) and ethambutol (EMB) were determined by the indirect proportion method, 

following isolate identification. Drug susceptibility of the isolates was then correlated with the 

individual clinical outcomes. 

 

Results: One hundred and twenty one M. tuberculosis complex isolates were analyzed in this 

study. One hundred and nine (90.08%) and 12 (9.92%) were from new and previously treated 

cases respectively. Thirty-eight (31.40%), 18 (14.88%), 8 (6.61%) and 4 (3.31%) were resistant to 

STR, INH, RIF and EMB respectively. Forty seven (38.84%) of the tested isolates was resistant to 

at least one drug. Thirty one (25.62%) of the isolates were mono-resistant to one of the drugs; 24 

(19.83%), 3 (2.48%), 3 (2.48%) and 1 (0.82%) to STR, RIF, INH and EMB respectively. Poly-

resistance to STR/RIF, STR/INH and EMB/INH was observed in 2 (1.65%), 10 (8.26%) and 1 

(0.82%) isolates respectively. Three (2.48%) of the isolates were multi-drug resistant (MDR) and 

of these, 2 were resistant (1.65%) to all the tested drugs and one was resistant to RIF and INH. 

Correlating the drug susceptibility with the clinical outcome of 79 cases including 2 Multidrug 

resistant TB (MDRs) isolates, we found that among our study population, the clinical outcome 

depended on whether the isolate was sensitive or resistant to RIF (p<0.0005). 
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Conclusion: A high level of primary drug resistance was observed, particularly to STR and INH, 

among the M. tuberculosis complex isolates in our study population and that treatment outcome 

depends mainly on the susceptibility of RIF. 
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Background 

Tuberculosis (TB) continues to be a major public health problem in the world. It is estimated that 

one person dies every 15 seconds of TB and the World Health Organization (WHO) indicates that 

more than 9 million cases occurs annually with a mortality of 2 million (Word Health 

Organization, 2008). The directly observed treatment short course (DOTS) strategy, which allows 

patients to take their daily drugs under observation, thereby improving treatment compliance, is 

known to be increasing the number of people being cured of TB(Rodger et al., 2002). A major 

challenge to this strategy in TB control globally is the incidence of strains of the Mycobacterium 

tuberculosis complex, the causative agent of TB, that are resistant to the first line drugs, especially 

rifampicin (RIF) and isoniazid (INH) (Ormerod, 2005). Individuals infected by such strains are 

not able to be cured by the DOTS treatment strategy and also make case management more 

complicated and expensive. There are an estimated 460,000 multidrug-resistant TB (MDR-TB) 

cases each year and approximately 25,000 of these cases are expected to have extensively drug-

resistant TB (XDR-TB). MDR TB requires 18–24 months of treatment with expensive second line 

drugs, some of which are injectable agents. The cure rate is much lower than for drug susceptible 

TB, only around 60% (Ormerod, 2005, World Health Organization, 2006, World Health 

Organization, 2010).  

A crucial strategy for reducing the spread of MDR-TB is rapid detection of drug resistance 

followed by prompt and effective therapy (Ormerod, 2005, World Health Organization, 2006, 

World Health Organization, 2010). The conventional laboratory diagnosis of drug resistant TB 

requires a viable, pure culture of M. tuberculosis complex organisms, followed by further 

cultivation on drug containing solid medium. The slow growing nature of the species of the M. 

tuberculosis complex makes conventional drug susceptibility testing a very slow and demanding 

process. The time between primary isolation and final drug susceptibility testing (DST) result is 

usually weeks and can be more than two months (Canetti et al., 1969, Kim, 2005, Piersimoni et 

al., 2006). Recent advances in the molecular detection of mutations that are associated with 
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resistance to certain drugs and can be performed using DNA extracts prepared directly from 

sputum specimens can often provide results on the same day (Miotto et al., 2009). However this 

is not possible in countries with limited resources, where TB diagnosis relies mainly on sputum 

smear microscopy. Thus routine surveillance of the kind and level of resistance is very important. 

This will help in planning treatment regimens (Piersimoni et al., 2006). 

 

Ghana has an annual TB incidence rate of 203/100,000 population, and ~50,000 new TB cases 

occur every year (Word Health Organization, 2008). Current TB control measures in Ghana 

(like in most other developing countries) are primarily based on sputum smear microscopy, which 

has the ability to detect less than 50% of all TB cases (Muvunyi et al., 2010). Hence the real TB 

burden in Ghana is likely to be substantially higher than the official WHO estimates. Importantly, 

because of the lack of appropriate laboratory infrastructure, DST is not routinely performed in 

Ghana, and the extent of drug-resistant TB is not entirely known. The two main objectives of this 

study were 1) to determine the in vitro drug susceptibilities of isolates obtained from TB patients a 

2) to determine whether the clinical responses correlate with the in-vitro drug susceptibilities of 

cases, especially MDRs. 
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Methods 

Specimen and Data Collection 

This was a cross-sectional analytical study in which all consecutive individuals, diagnosed with 

smear-positive pulmonary TB were enrolled between October 2007 and July 2009. A total of 121 

isolates from 121 TB cases attending three different health facilities in four different districts were 

included in this study. The National Tuberculosis programme was responsible for selecting the 

districts. One district has a refugee population of over 20,000. The other two districts were 

selected based on the capacity of the laboratory technicians to provide the specimens required and 

good track record of TB data documentation. 

Using a designed questionnaire, data on clinical characteristics, previous illness due to TB, 

previous therapy received, family history of TB and standard demographic data including age, 

sex, and residential address were obtained from each participant. Two previously analysed smear-

positive sputum samples from each participant were then kept at the diagnostic centre/laboratory 

after addition of an equal volume of 1% cethylpyridium chloride (CPC): 2% sodium chloride 

decontaminant. All collected samples were stored, tightly capped, in an enclosed container and 

transported to the Noguchi Memorial Institute for Medical Research (NMIMR) for in-depth 

analysis within one week of collection. Approval for this study was obtained from the Institutional 

Review board of the NMIMR. 

 

Isolation of Mycobacterium species. 

All collected sputum samples were inoculated into 4 Lowenstein-Jensen (LJ) slants: 2 containing 

glycerol and the other 2 containing pyruvate. The inoculated slants were incubated at 37°C and 

the culture tubes were observed for mycobacterial growth. All mycobacterial isolates was 

identified using biochemical methods such as susceptibility to p-nitro benzoic acid (PNB) and to 

thiophene carboxylic acid hydrazide (TCH), pyrazinamidase activity (PZA), nitrate reduction, 
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niacin production; and detection of IS6110 and RD9 by PCR analysis (Asiimwe et al., 2008, 

Yeboah-Manu et al., 2001). 

 

Anti-TB Drug Susceptibility Testing  

The susceptibilities of all identified M. tuberculosis complex isolates to INH (0.2µg/ml), RIF (40 

µg/ml), streptomycin (STR) (4 µg/ml), and ethambutol (EMB) (2µg/ml) were determined by the 

indirect proportion method on LJ slants, as described previously (Canetti et al., 1969). 

Briefly, 1 -2 McFarland bacterial suspensions were prepared in 5-ml screw-cap tubes containing 

glass beads (diameter, 3.0 mm) in sterile distilled water. The suspensions were homogenized on a 

vortex mixer for 1 min and left to stand for at least 15 min to allow aerosol created during 

vortexing to settle. Serial 10-fold dilutions up to 1/104 were prepared with sterile distilled water. 

1/102 dilutions were then used to inoculate drug containing media in duplicate while both the 

1/102 and 1/104 were used to inoculate drug-free controls respectively. The tubes were incubated 

overnight at 37°C in a slanted position with loosened caps to allow the cells to settle on the 

medium and residual liquid to evaporate. After overnight incubation, the screw caps were 

tightened and the tubes were further incubated at the same temperature in an upright position. The 

initial reading of the tubes was performed on day 28 of incubation, while the final reading was 

done after 40 days of incubation. Drug resistance was expressed as the proportion of colonies that 

grow on drug containing medium to drug-free medium and the critical proportion for resistance 

was 1% and intermediate resistance is between 1-10% for all drugs (Canetti et al., 1969). 

 

Definitions 

Multidrug resistance (MDR) was defined as resistance to at least INH and RIF.  

Other cases were categorized as follows: Drug sensitive–susceptibility to all of the drugs tested, 

monoresistance–resistance to only 1 drug; polyresistance–resistance to two drugs excluding the 
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INH: RIF combination and panresistance- resistance to all four tested drugs (World Health 

Organization, 2010).  

 

Assessment to Treatment Outcome 

Cases were followed during treatment and the final outcome, as recorded by the treating facility, 

was compared with the drug susceptibilities of the cultured isolate in our laboratory. 

 

Cases were defined as previously  

A new patient was defined as a TB patient who either had no prior anti-TB treatment or was 

treated with anti-TB drugs for less than 1 month (Manissero et al., 2010). 

A defaulter was defined as a patient who interrupted his treatment for more than 2 months after 

having received anti-TB treatment for at least 1 month  

A relapse was considered an individual who became smear positive again after having been 

treated for TB and declared cured after the completion of treatment 

A treatment failure case was considered a patient who began treatment for smear-positive TB 

but who remained smear positive or became smear positive again 5 months or later during the 

course of treatment 

Treatment was completed if the patient was converted to smear negative at month 5, completed 

treatment but did not produce sputum on completion to be declared cured. 

A case was considered cured if the patient completed treatment and maintained smear negativity 

on smear microscopy examination after treatment. 

 

Data Analysis 

All collected records were entered into a Microsoft Access database and exported to Excel for 

analysis. Data were expressed in means ± SD and ranges. The proportions of resistance to 

individual drugs and to different drug combinations were tabulated. Also, resistant cases were 
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differentiated as primary (being treated for TB for the first time) or acquired (previously treated). 

Student’s independent samples t tests for numeric variables and chi square test for categorical 

variables. All significant levels were based on a p value less than 0.05. 
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Results 

Patients Characteristics 

The majority of patients were male, 82 (67.77%) and 39 (32.23%) were female. The age range 

was 8-88 years, arithmetic mean 37.25, modal class is 26 and median age of 36. The median age 

among female subjects was 30 (SD 8.3) with a range of 18- 60 years while that of the males was 

34 (SD 8.6) with a range of 18–62 years. Among them were 10 (10.26%) refugees who live in the 

refugee camp at Budumbura. Patients sought healthcare after one month to 5 years of productive 

cough, with mean diagnostic delay of 6 months. All the cases were pulmonary sputum smear 

positive and confirmed by culture; and of these 109 (90.08%) were recorded as new cases with no 

history of previous treatment, while 12 (9.92%) had received previous treatment for TB. 

 

Resistance Profile 

121 isolates comprising of 99 M. tuberculosis and 22 M. africanum West African genotype were 

analysed in this study. The resistant profile of tested isolates is depictured in Table 5. Of the 121 

isolates, 71 (58.68%) were susceptible to STR, 12 (9.92%) were intermediately resistant and 38 

(31.40%) were resistant. One hundred and two (84.30%) of the isolates, 1 (0.82%) and 18 

(14.88%) were susceptible, intermediate resistant and resistant to INH respectively. From the 

results of the 121 isolates, 113(93.39%), and 8 (6.61%) showed susceptibility and resistance 

respectively to RIF. One hundred and seventeen isolates (96.69%) were susceptible and 4 (3.31%) 

were resistant to EMB.  

Thirty one (25.62%) of the isolates were mono-resistant to either one of the drugs; 24 (19.83%), 3 

(2.48%), 3 (2.48%) and 1 (0.82%) to STR, RIF, INH and EMB respectively. Poly-resistance to 

STR/RIF, STR/INH and EMB/INH was observed in 2 (1.65%), 10 (8.26%) and 1 (0.82%) isolates 

respectively. Three (2.48%) of the isolates were MDR and of these, 2 (1.65%) were pan-resistant 
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and one was resistant to RIF and INH. Thus in all 47 (38.84%) of the tested isolates was resistant 

to at least one drug. 

Twelve isolates were obtained from previously treated cases; 6 (50%) were susceptible to all 

drugs; 1 each (8.33%) intermediate resistant and mono-resistant to RIF respectively, 2 (16.67%) 

were poly-resistant to STR/INH and the remaining 2 (16.67%) of the isolates were pan-resistant. 

 

Table 5: The susceptibility patterns of tested isolates to first-line anti-TB 

drugs from Ghana 

Anti-TB 

drug 

Number of isolates 

tested 

Susceptible n 

(%) 

 

Intermediate 

Resistant 

Resistant 

STR 121 71(58.68%) 12 (9.92%) 38 (31.40%) 

INH 121 102 (84.30%) 1(0.82%) 18 (14.88%) 

RIF 121 113(93.39%) 0 8 (6.61%) 

EMB 121 117(96.69%) 0 4 (3.31%) 

STR/INH 121   10 (8.26%) 

STR/RIF 121   2 (1.65%) 

INH/EMB 121   1(0.82%) 

MDR 121   3 (2.48%) 

            n=number of isolates 

 

Drug susceptibility and Outcome of Patients' Treatment 

All patients involved in this study were treated with the standardized 6-month short course 

therapy regimen with INH and RIF as the main drugs. We were able to follow 79 (65.23%) of the 

cases during treatment and of these, 41 (51.90%) were cured, 23 (29.11%) completed treatment, 7 

(8.86%) defaulted, 4 (5.06%) died, 2 failed (2.53%) and 2 (2.53%) relapsed.  
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Table 6: The distribution of drug resistance phenotypes between 

males and females observed among study participants. 

Resistance Female n (%)   Male n (%)  

 

P VALUE 

STR 9(23.08%) 15(18.29%) 0.3065 

INH 1(2.56%) 2(2.44%) 0.9447 

RIF 2(5.13%) 1(1.21%) 0.1085 

ETH 1(2.56%) 0(0%) 0.1422 

STR/INH 4(10.26%) 6(7.32%) 0.3798 

STR/RIF 1(2.56%) 1(1.21%) 0.4422 

INH/ETH 1(2.56%) 0(0%) 0.1422 

MDR 2(5.13%) 1(1.21%) 0.1085 

TOTAL 21(53.84%) 26(31.70%) 0.0001 

 

Completed Cases: The M. tuberculosis complex isolates from 15 (65.22%) of the completed 

cases were susceptible to all drugs; 16 and 20 of them were susceptible to STR and INH; none of 

them were resistant to RIF and EMB respectively. Five (21.74%) and 1 (4.35%) were mono-

resistant to STR and INH respectively and 2 (8.7%) were poly-resistant to STR and INH.  

Cured Cases: The isolates from 16 (39.04%) of the 41 cured cases were susceptible to all drugs; 

21 (51.22%), 33 (80.49%), 38 (92.68%) and 39 (95.12%) of them were susceptible to STR, INH, 

RIF and ETH respectively. Fourteen (34.15%) were resistant or intermediately mono resistant to 

STR; 2 (4.88%) mono resistant to INH; 2 (4.88%) mono-resistant to RIF; 1 (2.44%) mono 

resistant to EMB; and 5 (12.19%) poly-resistant to STR and INH. 

Defaulted Cases: Five (71.43%) of the defaulted cases were susceptible to all tested drugs; 1 

(14.28%) each mono-resistant to STR and poly-resistant to STR and INH respectively. 
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Dead Cases: There were 4 dead cases, 2 (50%) of them were pan-resistant and the remaining 2 

(50%) were susceptible to all tested drugs  

Failed Cases: One (50%) of the two cases was mono-resistant to RIF and the other was mono 

resistant to STR.  

Relapsed: One was poly-resistant to STR and INH. 

 

X2 analysis shows that the sensitivity levels of STR (X2 = 3.3600; P = 0.3394) and INH (X2 = 

3.4915; P = 0.3219) have no influence on treatment outcome. On the other hand, the sensitivity 

levels to RIF (X2 = 17.7553; P = 0.0005) and EMB (X2 = 13.0074; P = 0.0046) have significant 

associations with treatment outcome (table 7). 

 

 

 

 

 

 

Table 7: The drug susceptibility of the various tested drugs was correlated to the treatment outcomes and the findings 

underscore the importance of rifampicin in TB treatment. 

Drugs  Cured  Completed Defaulted relapsed Failed/died Total (%) P. value 

STR Sensitive 21 16 6 3 46 (59.0) 0.3394 

Resistance 19 7 2 4 32 (41.0) 

INH Sensitive 33 20 7 4 64 (82.1) 0.3219 

Resistance 7 3 1 3 14 (17.9) 

RIF Sensitive 38 23 8 4 73 (93.6) 0.0005 

Resistance 2 0 0 3 5 (6.4) 

EB Sensitive 39 23 8 5  75 ((96.2) 0.0046 

Resistance 1 0 0 2 3 (3.8) 
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Discussion 

The two main objectives of this study were 1) to determine the in vitro-drug susceptibilities of 

isolates obtained from TB patients and 2) to determine whether the clinical responses correlate 

with the drug susceptibilities of the isolates from those cases, especially the MDRs. The results of 

in vitro antibiotic susceptibility testing can predict the clinical response to treatment and guide the 

selection of antibiotics (Small, 2000). However, the relationship between DST result and clinical 

outcome is not always straightforward and depends on other parameters such as host factors 

including immune status, age and co-morbidity. It is well known that in severe bacterial 

infections, treatment failure can occur when the infecting organism has displayed in-vitro 

susceptibility to the used antibiotics (Kim et al, 2005, Small, 2000, Bottger 2001). In a study on 

retreatment cases, it was found that cavitary disease per se, irrespective of drug-resistance status 

of the M. tuberculosis isolate, was associated with poor treatment outcomes (Kritski et al, 1997). 

On the other hand certain individuals are able to clear infections with resistance phenotypes; this 

may be due to the interaction of many factors, among which acquired immunity is presumably 

important (Bottger 2001). The correlation between DST result and clinical outcome of antibiotic 

treatment of several mycobacterial illnesses have been documented in some countries (Kritski et 

al, 1997, Yew et el, 2000), however to the authors knowledge, this is the first study conducted in 

Ghana. Analysis confirmed that resistance to RIF and EMB as well as MDR is predictive of poor 

response to treatment and this draws attention to the need for a prompt response. Therefore the 

importance of DST of isolates from patients that do not convert to sputum negative by the third 

month using rapid methods like the MTBDR-plus (Miotto et al, 2009) is very crucial. 

Interestingly, we did not find INH resistance as important in determining the outcome of treatment 

in our study populations. At least two molecular mechanisms are known to be involved in INH 

resistance in Mycobacterium spp. The commonest of these are associated with mutations in the 

katG gene which encodes the catalase peroxidase, needed for activation of INH and mutations in 

the promoter region of the inhAgene encoding, NADH-dependent enoyl acyl carrier protein 
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reductase, the primary target for this drug. While mutations in the KatG gene lead to high levels of 

INH resistance, mutations in inhA promoter generally result in low level resistance (Somoskovi et 

al., 2001). We hypothesised that most of the observed resistance in INH were of low-level 

resistance and therefore the drug might still be active in vivo, especially given that treatment was 

by combinational therapy.  

 

Findings from this study indicated that about 31%, 15%, 7% and 3% of tested isolates were 

resistant to STR, INH, RIF and EMB respectively. Mono-resistance and poly-resistance were 

observed in about a quarter and a tenth of the isolates tested respectively. The primary MDR-TB 

rate among the study population was 0.9%, among those previously treated cases was 16.67 and 

the combined was 2.5%, which is higher than the national average of 1.9% (World Health 

Organization, 2008) as recorded, but comparable to a recent report of 2.2% (Owusu-Dabo et al., 

2006). Re-treated patients yielded more drug-resistant M. tuberculosis, including MDR 

(P < 0.001), than new cases. The level of resistance as observed in our study is intermediate 

between the two reports on drug resistant TB in Ghana, while that reported in 1989 (van der 

Werf et al., 1989) is on the high side, that published in 2006 (Owusu-Dabo et al., 2006) has some 

comparable figures and some lower than what we are reporting. These differences could be the 

result of regional variations and the commitment of regional TB programs. The isolates used in 

this study were from cases residing in four main health facilities including health facilities that 

report stigmatization by both communities and health officials (Dodor et al., 2009). The need for 

more education and training on DOTs programs in the regions involved in this study is very 

essential. Nevertheless, the consensus of the three studies is the high rate of resistance observed to 

STR and INH, thus making Ghana among countries in Africa with a high rate of resistance 

(Owusu-Dabo et al., 2006). These findings should serve as a clarion call to action by 

governments and health officials to deal with the high prevalence of drug-resistant tuberculosis. In 

addition the national TB program needs to look at abuse of drugs used for TB in treating other 
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infectious diseases. There is also the need to improve treatment compliance and early reporting. 

The mean duration of seeking healthcare and the high bacterial load as observed in the patients 

(data not shown) involved in the study suggests a probable high rate of transmission of resistant 

strains in the community. We are in the process of looking at the transmission of resistant 

genotypes in the community. 

 

More males reported with TB than females from all the health facilities studies; all together 67% 

of the participants are males and this compares very well with other reports. The reasons why 

more men report with TB cannot be explained and this needs further investigation; is it due to 

health seeking behaviour and that women do not have time or they do not have the final decision 

when to seek help or males engage in more risk activities? We are of the opinion that the first 

reason may be true as shown in table 2, more females reported with difficult to treat TB than 

males (p0.0001).  

 

Conclusion 

We found a high rate of drug resistance among the isolates we analyzed and that treatment 

outcome depends primarily on the susceptibility of the M. tuberculosis isolate to RIF. This 

confirms the central role of RIF in TB treatment. A conscious effort must therefore be made by 

the health system to restrict its use in the community. We also found that even though less females 

report with TB, more females had drug resistant TB compared to males (p0.0001). 
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Abstract 

Background: Rapid but simple diagnostic tool for detecting drug resistant (DR) tuberculosis (TB) 

has been acknowledged as important for effective management and control of DR-TB. Our 

objective was to establish a molecular line-probe assay (GenoType® MTBDRplus) for detecting 

DR-TB in Ghana.  

 

Method: We first screened 113 Mycobacterium tuberculosis isolates by both standard phenotypic 

indirect proportion method and MTBDRplus. For isolates found resistant either by phenotypic 

DST and/or MTBDRplus, the rpoB, and katG genes as well as the promoter regions of oxyR-ahpC 

and inhA were sequenced to identify mutations. We then analyzed an additional 412 isolates by 

MTBDRplus only.  

 

Results: Interpretable MTBDRplus results were obtained for all 525 isolates (100%). Overall, 

forty-three (8.2%) and 8 (1.5%) isolates were resistant to isoniazid (INH) and rifampicin (RIF), 

respectively, and 8 (1.5%) were multidrug-resistant. Among these resistant isolates, mutations in 

codon 450 of rpoB and codon 315 of katG conferring resistance to RIF and INH, respectively, 

dominated. We found two RIF resistant isolates with S450L substitution each harboring an 

additional mutation at S388L and Q409R, respectively. Using the phenotypic testing as gold 

standard, the GenoType® MTBDRplus assays showed a sensitivity/specificity for the detection of 

RIF and INH resistance and MDR of 100%/100%, 83.3%/100% and 100%/100%, respectively. 

 

Conclusion: The high sensitivity makes GenoType® MTBDRplus applicable and valuable 

addition to the conventional TB diagnostic algorithm in Ghana.  
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Introduction 

Tuberculosis (TB) continues to be a major public health problem globally, with an annual 

incidence of 9 million new cases, killing more than 1.5 million people annually, most of which 

occurs in low resource countries (Global TB report, 2014)..One of the main challenges in TB 

control is the emergence and spread of drug resistance (DR) (Ormerod, 2005; WHO, 2010) Even 

though TB is a treatable disease, if DR is not controlled, it may eventually result in TB becoming 

untreatable. Multidrug resistance (MDR) is defined as resistance to at least isoniazid (INH) and 

rifampicin (RIF) (WHO, 2010). According to 2014 WHO Global Tuberculosis Control Report, 

there were about nine million TB cases and among these, close to 480,000 were MDR cases 

(Global TB report, 2014). In 2005, the global Technical and Advisory Group on TB approved a 

new Stop TB Strategy and indicated in addition to many other things, for effective control of TB, 

DR-TB must be well managed (WHO, 2005). 

 

Drug resistance arises due to improper use of antibiotics in chemotherapy such as inadequate 

treatment regimens, and failure to ensure that patients complete the whole course of treatment 

(Banerjee et al., 2008). When a patient is infected with a drug-susceptible strain of 

Mycobacterium tuberculosis complex (MTBC), poor adherence to treatment will lead to a drug 

resistant form of the disease; this type of drug resistance is termed acquired drug-resistance. 

Individuals who develop active disease with a drug-resistant MTBC strain can transmit this form 

of TB to other individuals, if not detected early and treated appropriately. New TB patients 

initially infected with a drug-resistant form are termed primary resistant cases (Blower and 

Supervie, 2007). To reduce the emergence and subsequent spread of drug-resistant TB, there is 

the need for early diagnosis so as to put patients on appropriate drugs as soon as possible (Blower 

and Supervie, 2007; Drobniewski et al., 2006).  

The conventional methods for drug susceptibility testing (DST) are labour intensive, involving 

sequential procedures for isolation of mycobacteria from clinical specimen in liquid or solid 
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media, identification of MTBC, and in vitro testing of susceptibility to anti-TB drugs. At the same 

time, MTBC is a slow growing organism taking several weeks for macroscopic growth and 

requiring biosafety level 3 containment. Thus standardized and optimised MTBC culture and DST 

procedures require well equipped and safe laboratories, as well as trained personnel operating 

under quality assured protocols. Because of these factors, it takes several weeks to months for 

laboratory results to become available, and during this time, patients may be prescribed 

inadequate treatment, thus fuelling the development and/or spread of drug resistance. Moreover, 

mycobacterial culture and DST capabilities are severely limited in resource-poor countries.  

Resistance to anti-TB drugs is caused by chromosomal mutations in genes encoding drug targets, 

in regulatory regions of the target gene and in drug-activating genes. Several molecular diagnostic 

methods have been developed recently for rapid identification of MDR-TB, some of which are 

also suitable for resource-poor countries (Banerjee et al., 2008;  

 Drobniewski et al., 2006; GenoType MTBDRplus, 2007; Marinus et al., 2008). In this study, 

we established the line probe assay (LPA) known as MTBDRplus in Ghana, and compared the 

results to the standard phenotypic DST using the indirect proportion method (Canetti et al., 

1969). 
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Materials and Methods 

Mycobacterial Isolates  

Isolates used in this study were cultivated in a previous study that aimed to genotype isolates from 

Ghana for phylogenetic and molecular epidemiological analysis (Yeboah-Manu et al., 2012). The 

procedures used for sample collection, diagnosis and treatment of TB was as routinely employed 

by the National Tuberculosis Programme (NTP); however the protocol was reviewed by the 

institutional review board of the Noguchi Memorial Institute for Medical Research (NMIMR), 

with federal-wide assurance number FWA00001824. The isolates which were previously stored at 

-80 °C were sub-cultured on Lowenstein-Jensen media slants, incubated at 37 °C until confluent 

growth was observed. After harvest, the pellet was heat inactivated at 95 °C in nuclease free water 

for 60 min and allowed to cool under room temperature. The heat-inactivated cells in 1.5 mL 

microfuge tubes were centrifuged at 14,000 rpm to pellet cells for DNA extraction. 

 

Isolation of Genomic DNA 

After harvest, the pellet was heat inactivated at 95 °C in nuclease free water for 60 min and 

allowed to cool under room temperature. The heat-inactivated cells in 1.5 mL microfuge tubes 

were centrifuged at 14,000 rpm to pellet cells for DNA extraction. Genomic DNA was extracted 

according to the protocol outlined by van Soolingen et al., 1993 (van Soolingen et al., 1993). 

Briefly, the mycobacterial cell wall was disrupted by adding lysozyme (50 μL lysozyme of 10 

mg/mL) vortexed and incubated overnight, followed by addition of 75 μL of 10% SDS, 10 μL 

proteinase K (20 mg/mL), vortexed softly and incubated 15 min at 65 °C. After, we added 100 μL 

of 5M NaCl followed by 100 μL CTAB/NaCl which was pre-warmed at 65 °C. After vortexing, 

the extracted DNA was purified by chloroform/ isoamyl alcohol extraction. The DNA contained 

in the upper phase was precipitated with isopropanol and washed with ethanol. The dried DNA 

was then re-suspended in 100 mL of water. 
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Anti-TB Drug Susceptibility Testing  

Phenotypic Drug Susceptibility Testing: The indirect proportion method with LJ slants using 

critical concentrations of INH (Sigma, I3377) (0.2 μg/mL) and RIF (Sigma, R3501) (40 μg/mL) 

was used to screen 113 isolates. Drug resistance was expressed as the proportion of colonies that 

grew on drug containing medium to drug-free medium and the critical proportion for resistance 

was 1% (Canetti et al., 1969). 

 

Molecular Drug Susceptibility Testing by Line Probe Assay: Clinical MTBC isolates were 

screened for their susceptibility to INH and RIF using the Genotype MTBDRplus (Hain 

lifescience), according to the manufacturer’s protocol (GenoType MTBDRplus, 2007). Drug 

resistance was expressed as the absence of wild-type band, presence of mutation band or both. 

 

Mutation Analysis of Drug Targets: The isolates diagnosed as drug-resistant either by phenotypic 

or LPA were used for targeted DNA sequence analyses. Four resistance genes, rpoB (RIF), katG 

and promoter regions of inhA and oxyR-ahpC (INH), were amplified by PCR for direct DNA 

sequencing. The PCR reaction in all instances contained 3 µL of 10X buffer, 1.8 µL of 15 mM 

MgCl2, 3 µL of Q solution, 0.6 µL of 10 mM dNTP mix, 1.8 µL of each primer, 0.2 µL of Hot-

start Taq polymerase from Qiagen, 14.8 µL of nuclease-free water and 3 µL of template DNA. 

Cycling conditions were: initial denaturation at 95 °C for 5 min and 35 cycles of denaturation at 

96 °C for 1 min, annealing at primer-specific Tm (Table 8) for 1 min, extension at 68 °C for 1 min 

and final extension at 72 °C for 10 minutes and the obtained amplicons were sequenced by 

outsourcing. 
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Table 8: The primers used for the DNA sequencing assay 

Gene Primer 

Name 

Primer sequence (5’-3’) Amplicon size Tm 

inhApro Ko3 GGCACGTACACGTCTTTATGTA 478 bp 65 ºC 

Ko4 GGTGCTCTTCTACCGCCGTGAA 

katG Ko11 CCAGCGGCCCAAGGTATC 850 bp 66 ºC 

Ko12 GCTGTGGCCGGTCAAGAAGAAGT 

rpoB Ko1 GTAGTCCACGCCGTAAACGG 601 bp 65 ºC 

Ko2 ACGTCCATGTAGTCCACCTCAG 

oxyR-ahpC Ko56 ACCACTGCTTTGCCGCCACC 236 bp 70 ºC 

Ko57 CCGATGAGAGCGGTGAGCTG 

 

Data Analysis: Data obtained from the various tests were double entered and validated to remove 

duplicates and data entry inconsistencies. The DNA sequence reads were screened for possible 

mutations by comparing the gene sequences with corresponding sequences from H37Rv genome 

downloaded from the Tuberculist database using the Staden software (Staden et al., 1998). DNA 

sequencing was repeated for all isolates with un-reported mutation(s) for verification. The result 

of the phenotypic DST assay was used as the gold standard to calculate the sensitivity and 

specificity for detecting INH and RIF resistance by LPA. 
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Results  

Phenotypic Susceptibility test, GenoType® MTBDRplus and Mutations in Drug Resistance Genes 

We determined resistance profiles of 113 isolates phenotypically using the indirect proportion 

method. These 113 isolates form a subset of the total 525 isolates used in this study. Comparative 

analysis demonstrated good overall agreement between the LPA and phenotypic DST results. Ten 

out of the 12 (83.3%) phenotypically INH mono-resistant isolates were also found resistant by 

MTBDRplus assay (Table 9). From the DNA sequencing analyses, all the 10 INH mono-resistant 

isolates identified by MTBDRplus showed katG substitution S315T. The remaining 2 isolates 

phenotypically resistant to INH had no mutation in any of the target genes we sequenced. Both 

RIF mono resistant and both MDR isolates, diagnosed resistant by phenotypic DST were 

confirmed by MTBDRplus. DNA sequencing showed that both RIF mono-resistant isolates(Table 

9) had H445Y rpoB amino acid substitution whereas one MDR isolate had katG S315T with rpoB 

S450L and the other katG S315T with rpoB D435V (Table 9).  
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Table 9: Correlation between phenotypic DST, MTBDRplus assay and target sequencing analyses 

 

 

 

                          INH                                 RIF 

   

Isolate Phenotype MTBDRplus Mutation Phenotype MTBDRplus Mutation 

TBNM008 R R KatG S315T S S - 

TBNM016 R R KatG S315T S S - 

TBNM022 R R KatG S315T S S - 

TBNM059 R R KatG S315T S S - 

TBNM072 S S - R R rpoB H445Y 

TBNM078 R R KatG S315T R R rpoB S450L 

TBNM082 R R KatG S315T S S - 

TBNM086 S S - R R rpoB H445Y 

TBNM114 R R KatG S315T S S - 

TBNM117 R R KatG S315T S S - 

TBNM139 

 

R S - S S - 

TBNM147 R R KatG S315T R R rpoB D435V 

TBNM148 R R KatG S315T S S - 

TBNM155 

 

R S - S S - 

TBNM169 R R KatG S315T S S - 

TBNM171 R R KatG S315T S S - 

 

 

Drug Susceptibility Testing with GenoType® MTBDRplus  

Overall, 525 isolates were analysed by GenoType® MTBDRplus in this study. These came from a 

retrospective collection and have all been confirmed using IS6110-PCR and LSP as members of 

the MTBC (Yeboah-Manu et al., 2011).  As summarised in Table 10, MTBDRplus identified 

43/525 (8.2%), 8/525 (1.5%) and 8/525 (1.5%) of the isolates as INH-mono-resistant, RIF mono-

resistant and MDR, respectively, and 59 (11.2%) harboured at least one drug resistance mutation. 

Among the INH-mono resistant strains, 37/43 (86.0%) had mutation(s) within the katG target 

only; and of these, 23/37 (62.2%) and 1/37 (2.7%) had katG Mt1 and katG Mt2 mutation bands, 

respectively. Nine out of the 37 (24.3%) isolates had both presence of katG Mt1 band and absence 

of a wild type band, while 2 (5.4%) had both katG Mt2 band present and absence of a wild type 

band. Four out of the 43 INH resistant isolates (9.3%) had mutation(s) within the inhA promoter 
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region alone; of these, 3/4 (75%) had both inhA Mt1 band present and absence of inhA WT1 band. 

The remaining 1 isolate had inhA Mt3A present and WT2 band absent. The remaining 2 of the 43 

(4.7%) INH resistant isolates had both KatG Mt1 and inhA Mt1 bands (Table 10). 

Four of the 8 (50.0%) RIF mono-resistant isolates were identified by the presence of mutation 

bands only; 2 had rpoB Mt3, 1 each had rpoB Mt2B and both rpoB Mt2A and rpoB Mt2B bands 

respectively. Of the 4 (50.0%) remaining RIF resistant isolates, 2 had rpoB Mt3 band present as 

well as absence of rpoB WT8 band, while the other 2, had rpoB Mt2A band and absence of rpoB 

WT7 band (Table 3). The mutations associated with the MDRs are also indicated in Table 10. 

 

Table 10: Summary of MTBDRplus Assay Results of 525 MTBC Isolates 

 

Resistance Isolates Locus WT Band MT Band WT and MT bands 

INH Only 43 (8.2%) katG (37) 2 Mt1 (23) 

Mt2 (1) 

WT / Mt1 (9) 

WT / Mt2 (2) 

inhApro (4) - - WT1 / Mt1 (3) 

WT2 / Mt3A (1) 

Both (2) - katG Mt1/ inhApro Mt1 (2)    - 

RIF Only 8 (1.5%) RRDR (8) - Mt2A / 2B (1) 

Mt2B (1) 

Mt3 (2) 

WT7 / Mt2A (2) 

WT8 / Mt3 (2) 

MDR 8 (1.5%) rpoB / katG.(6) 

rpoB/ katG /inhApro  (2) 

- katG Mt1 / rpoB Mt1 (1) 

rpoB Mt2A / katG Mt1 (1) 

rpoB Mt3 / katG Mt1 (2) 

katG Mt1/ inhApro Mt3A / rpoB 

Mt2A (1) 

katG WT / rpoB Mt3 (1) 

rpoB WT7 / katG WT /inhApro 

WT/ rpoB Mt2A/katG Mt1/inhApro 

Mt3A (1) 

rpoB WT7/katG WT/rpoB Mt2A/ 

katG Mt1 (1) 

ANY 59 (11.2%) - - -  

NB: INH Only: - Isolates that had mutation (s) in the inhApro region and or in the katG gene without any mutation in the rpoB 

gene. RIF Only: - Isolates with mutation(s) in the rpoB gene without any in the inhApro or the katG gene. MDR: - Isolates with 

mutations in rpoB gene and inhApro and/or katG gene. ANY: - Total number of isolates with at least one mutation. RRDR: - 

Rifampicin Resistance Determining Region of the rpoB gene. WT:-Wild-type band absent. MT: - Mutation band present 

 

Frequency of Mutations in Isoniazid and Rifampicin Resistance Associated Targets  

Based on the GenoType® MTBDRplus results, out of the 51 INH resistant isolates, 16 (31.4%) 

had mutations in the promoter region of inhA (Table 11; Figure 1). Moreover, 42/51 (82.4%) 
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isolates had the S315T katG mutation which is generally the most prominent INH resistance 

associated mutation found in clinical isolates (Homolka et al., 2010). In addition to the above 

mentioned non-synonymous SNPs; we found several synonymous mutations (Table 11; Figure 1). 

All the 16 RIF resistant isolates had at least one mutation within the resistance determining region 

(RRDR) of the rpoB gene (Table 11; Figure 1). Five  isolates (31.25%) each had the SNPs 

C1349T and C1333T translated as S450L and H445Y, respectively; 2 isolates with C1333G 

translated as H445D, 1 isolate each with SNP A1334G and A1304T translated as H445R and 

D435V, respectively, and lastly, 1 isolate each with double SNPs C1163T/C1349T and 

A1226G/C1349T, respectively, translated as S388L/S450L and Q409R/S450L (Table 11).  

NB: The reference gene (rpoB) used here is the MTBC (H37Rv) and not the E.coli variant. 

 

 

 

 

 

Table 11: Mutations identified from the DNA sequencing of INH and RIF resistance associated loci 

Gene (Number of Isolates 

Screened) 

Mutation Effect of Mutation Number of isolates  

with specific SNP 

inhApro (51) -8T/C - 2 (3.9%) 

-15C/T - 4 (7.8%) 

-47G/C - 5 (9.8%) 

-102G/C - 5 (9.8%) 

katG (51) G944C & C723G S315T & P241P 1 (1.9%) 

G944C S315T 39 (76.5%) 

G944A, A949G & C723G S315N, I317V & P241P 1 (1.9%) 

G(C)944(5)C(T) S315T 1 (1.9%) 

G944C & C1132T S315T & L378L  1 (1.9%) 

rpoB (16) C1163T & C1349T S388L* & S450L 1 (6.3%) 

A1226G & C1349T Q409R@ & S450L 1 (6.3%) 

C1349T S450L 5 (31.3%) 

C1333T H445Y 5 (31.3%) 

C1333G H445D 2 (12.5%) 

A1334G H445R 1 (6.3%) 

A1304T D435V 1 (6.3%) 
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Discussion 

We analysed 525 MTBC isolates from patients with pulmonary TB for drug resistance by the 

genotype MTBDRplus assay and identified RIF mono-resistance in 8 (1.5%), INH mono-

resistance in 43 (8.2%) and MDR in 8 (1.5%) of the isolates. In all, 59 (11.2%) isolates showed 

any form of resistance. The proportion of INH resistance as measured by the MTBDRplus was 

found to be significantly higher than that for RIF among our clinical isolates from Ghana (p 

<0.001); this supports our earlier findings using the proportion method (Yeboah-Manu et al., 

2011). The observed proportion of MDR is similar as reported by Homolka et al. between 2001 

and 2004 (Homolka et al., 2010), and comparable to the 1.9% reported by the National Control 

Programme in 2013 (Global TB report, 2014). These findings indicate that the MDR rate in 

Ghana is low and has been stable for about a decade. 

 

It has been shown that association of RIF resistance with mutations within the RRDR varies from 

78% to 100% in different countries (Telenti et al., 1993; Hillemann et al., 2005). Among the 

isolates that we worked on, all phenotypically RIF resistant strains were also detected by the 

MTBDRplus. Thus, we sequenced the RRDR of all isolates that had some form of RIF resistance 

and found that all the 16 RIF resistant isolates had at least one non synonymous mutation within 

the RRDR. The role of the new mutation Q409R we detected from the sequencing cannot at the 

moment be inferred from the available findings. Overall, our results strongly support the use of 

diagnostics that target mutations within the RRDR of the MTBC as a rapid laboratory DST to 

support patients care in Ghana. 

Contrary to RIF resistance, MTBC acquires isoniazid (INH) resistance through mutations in 

multiple genes such as those involved in mycolic acid biosynthesis and cellular response to 

oxidative stress (Zyang and Yew, 2009; Ozturk et al., 2005; Costa et al., 2009). Similar to other 

settings, 43/51 (84.3%) of INH resistant isolates had mutations within katG with 42 isolates 

having the katG mutation S315T and the remaining isolate harbouring S315N,one novel amino 
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acid substitution I317V and an additional synonymous mutation 723C/G. Two out of the 42 katG 

S315T mutant isolates in addition had the additional silent mutations at nucleotide position 723 

(C/G) and 1132 (C/T), respectively. In total, 16/51 (31.4%) of the INH resistant isolates were 

found to have mutations within the inhA promoter region; 10/16 (62.5%) of the inhApro mutant 

isolates also had the S315T katG mutation. Four and two out of the six inhApro mutant isolates 

without the S315T katG mutation respectively were -15C/T and -102G/A. These findings compare 

with other reports as it is known that mutations in katG are responsible for 50% to 95% of INH 

resistant strains and inhA promoter mutations in 10-30% of strains (Poudel et al., 2012; 

Ramaswami and Musser, 1998; Slayden and Barry, 2000). The role of the new mutations 

identified in this work were not studied further here but are worth pursuing. Within the isolates 

that were analysed, we did not find mutations within the promoter region of the oxyR-ahpC 

contrary to an earlier work done on some Ghanaian MTBC isolates (Homolka et al., 2010). 

In summary, we found a good correlation between phenotypic RIF resistance and mutation within 

resistant conferring targets, making rapid diagnostic test (MTBDRplus line-probe assay) that 

explore these mutations a good tool for detection of RIF mono-resistant and MDR cases in Ghana. 

Nevertheless, misdiagnosis of approximately 16% of INH mono resistant isolates as susceptible 

by MTBDRplus line-probe assay requires further consideration. 
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Abstract 

Background: Different combinations of variable number of tandem repeat (VNTR) loci have been 

proposed for genotyping Mycobacterium tuberculosis complex (MTBC). Existing VNTR schemes 

show different discriminatory capacity among the six human MTBC lineages. Here, we evaluated the 

discriminatory power of a “customized MIRU12” loci format proposed previously by Comas et al. 

based on the standard 24 loci defined by Supply et al. for VNTR-typing of MTBC in Ghana.  

 

Method: One hundred and fifty-eight MTBC isolates classified into Lineage 4 and Lineage 5 were 

used to compare a customized lineage-specific panel of 12 MIRU-VNTR loci (“customized MIRU-

12”) to the standard MIRU-15 genotyping scheme. The resolution power of each typing method was 

determined based on the Hunter-Gaston- Discriminatory Index (HGDI). A minimal set of customized 

MIRU-VNTR loci for typing Lineages 4 (Euro-American) and 5 (M. africanum West African 1) 

strains from Ghana was defined based on the cumulative HGDI. 

 

Results and Conclusion: Among the 106 Lineage 4 strains, the customized MIRU-12 identified a 

total of 104 distinct genotypes consisting of 2 clusters of 2 isolates each (clustering rate: 1.8%), and 

102 unique strains while standard MIRU-15 yielded a total of 105 different genotypes, including 1 

cluster of 2 isolates (clustering rate: 0.9%) and 104 singletons. Among, 52 Lineage 5 isolates, 

customized MIRU-12 genotyping defined 51 patterns with 1 cluster of 2 isolates (clustering rate: 

0.9%) and 50 unique strains whereas MIRU-15 classified all 52 strains as unique. Cumulative HGDI 

values for customized MIRU-12 for Lineages 4 and 5 were 0.98 respectively whilst that of standard 

MIRU-15 was 0.99. A union of loci from the customised MIRU-12 and standard MIRU-15 revealed 

a set of customized eight highly discriminatory loci: 4052, 2163B, 40, 4165, 2165, 10 ,16 and 26  

with a cumulative HGDI of 0.99 for genotyping Lineage 4 and 5 strains from Ghana 
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Introduction 

Tuberculosis (TB) is a major public health problem worldwide, causing 8.8 million new cases and 

more than 1.4 million deaths each year (Global Tuberculosis report, 2013). The main strategy for 

controlling TB, especially in low resourced countries, is case detection and treatment using the 

directly observed treatment short course (DOTS) strategy (Guidelines for the Clinical Management 

of TB, HIV co-Infection in Ghana, 2007). The conventional indicators used for assessing TB 

control programmes focuses on the proportion of patients with new sputum smear positive pulmonary 

disease that are cured by the end of treatment or whose sputum microscopy becomes negative after 

the first 2 months of treatment (Ghana Heath service report, 2011). Such indicators ignore equally 

important aspects of TB control such as the duration of infectivity, the frequency of reactivation, and 

the risk of progression among the infected contacts, or the risk of transmission. Thus the control of 

TB also depends on understanding the patterns and dynamics of transmission which is useful for the 

implementation of public health measures to reduce sources of infection (Mathema et al., 2006; 

Kato-Maeda et al., 2000). 

 

A number of molecular markers are available for differentiating members of the Mycobacterium 

tuberculosis complex (MTBC) for conventional epidemiological investigations of TB outbreaks and 

to assess risk factors associated with recent transmissions (Kan et al., 2008; Kim et al., 2001). 

Mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) typing, 

have overcome most of the shortcomings of IS6110 RFLP (van Embden et al., 1993; Cowan et al., 

2002; Mokrousov et al., 2004), and have now replaced this older technique as the new gold standard 

for molecular epidemiological investigation of TB. MIRU-VNTR typing which uses genomic 

diversity at different VNTR loci can have a cumulative resolution comparable to that of IS6110 

RFLP analysis depending on the combination of loci analysed (Savine et al., 2002; Sun et al., 2004; 

Blackwood et al., 2004; Yong-Jiang et al., 2004; Allix et al., 2006; Barlow et al., 2001). 
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Several combinations of MIRU- VNTR loci have been published with initial methods relying on only 

a few loci, which turned out to have low discriminatory power among MTBC isolates (Shamputa et 

al., 2010; Murase et al., 2008; Dong et al., 2012; Zhou et al., 2011). Subsequently, a standard 

MIRU-12 loci set with discriminatory power close to IS6110-RFLP was proposed for molecular 

epidemiological studies in TB (Supply et al., 2001; Scott et al., 2005; Cowan et al., 2005). More 

recently, this initial MIRU-12 set was replaced by the standard MIRU-15 set, and currently, standard 

MIRU- 24 loci set (Supply et al., 2006) has been proposed for optimal discrimination of closely 

related strains. The standard MIRU15 set which includes six of the previous MIRU- 12 with nine 

additional loci has been recommended as the standard for routine molecular epidemiology of TB, 

including outbreak investigations and population-based transmission studies. MIRU-24 set comprises 

the same 15 loci plus an additional nine provide additional information aimed at phylogenetic and 

population genetic aspects of MTBC. 

 

The usage of the standard MIRU-15 and MIRU-24 has helped to gain insight into the transmission 

dynamics of MTBC. However, the initial selection of these loci was to some extent biased towards 

strains belonging to Lineage 4 (Euro-American lineage) (Supply et al., 2001). The inability of the 

proposed loci led to new customized sets for Lineage 2 strains that include the clinically relevant 

Beijing family of strains (Shamputa et al., 2010). However, the human-associated MTBC includes 6 

additional lineages (Gagneux et al., 2006; Coscolla et al., 2013; Reed et al., 2009; Comas et al., 

2013; Firdessa et al., 2013), which show a strong phylogeographic structure (Gagneux et al., 2006; 

Homolka et al., 2010; Gagneux et al., 2007). As observed for Lineage 2 strains, this might suggest 

that the usage of high discriminatory MIRU-VNTR loci  may be sub-optimal in areas such as Ghana 

where about 20% of all TB cases are caused by Lineages 5 and 6 of MTBC (also known as M. 

africanum West Africa 1 and 2) (Yeboah-Manu et al., 2011; Addo et al., 2007).  

Comas et al. (Comas et al., 2009) using 108 global MTBC strains [30] showed that the majority of 

the loci included in standard MIRU-24 had a variable discriminatory power across the different 
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MTBC lineages. Moreover, the MIRU-VNTR loci that exhibited the highest discrimination index 

within one lineage were not necessarily the ones with the highest discriminatory power in other 

lineages. Based on the allelic diversity of individual MIRU-VNTR locus, Comas et al. (Comas et al., 

2009) suggested different combinations of MIRU-VNTR loci that offered high resolution for the 

different MTBC lineages. These combinations offered two main advantages over the existing one; it 

maximized allelic diversity for a given MTBC lineage and allowed for cost effective analyses 

(Comas et al., 2009). 

Here we evaluated this concept in the Ghanaian setting and compared the standard MIRU-15 to two 

lineage-specific 12-loci sets (here referred to as “customized MIRU-12”), one for Lineage 4 and one 

for Lineage 5, which are the most frequent MTBC lineages in Ghana (Yeboah-Manu et al., 2011; 

Addo et al., 2007; Goyal et al., 1999). 
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Materials and methods 

Ethics Statement 

Ethical clearance for this study was obtained from the IRB of the Noguchi Memorial Institute for 

Medical Research, which has a Federal wide Assurance number FWA00001824. The procedure 

for sampling in this study was basically the same as those outlined by the National Tuberculosis 

Programme for the routine management of TB in Ghana. Informed consent both written (in the 

case of literate participants) and oral (for illiterates) was sought from all participants before their 

inclusion in the study. Consent was sought from their parents or guardians on behalf of children 

below sixteen years. As per the guidelines of the institutional review board of the Noguchi 

Memorial Institute for Medical Research, the objectives and benefits of the study were explained 

to all participants and they were assured of the confidentiality of all information collected from 

during the study. 

 

Isolate selection and lineage classification 

A total of 178 MTBC isolates consecutively selected from a pool of retrospective samples were 

included in the study. Specimens included in this study were collected consecutively over a period 

of 17 months (from October 2007 to March 2009) from sputum AFB-positive pulmonary TB 

cases attending four main government health centres covering three different regions: Central, 

Greater Accra and Western regions of Ghana respectively before commencement of anti-TB drug. 

DNA was extracted as described previously (Abadia et al., 2011). MTBC was confirmed by 

IS6110 PCR (Yeboah-Manu et al., 2001). The isolates were then classified into lineages by 

analyses of various regions of difference (RDs) as previously described (Brosch et al., 2002). 

Specifically, all isolates were first screened for RD9. RD9-deleted strains were screened for RD4. 

Isolates identified as RD9 deleted and RD4 undeleted were further sub-typed for Lineage 5 and 6 

(M. africanum West Africa I and II) using RD711 and RD702 flanking primers, respectively. 
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TaqMan real time PCR was performed according to standard procedures using probes designed by 

Stucki et al for the confirmation of Lineages (Stucki et al., 2012) Although Lineage 6 strains (M. 

africanum West Africa II) are present in Ghana (Yeboah-Manu et al., 2011; Addo et al., 2007; 

Goyal et al., 1999), they were removed from further analysis due to limited number (6 isolates) 

identified. 

 

MIRU-VNTR Analysis 

Two sets of PCRs were performed for each isolate. The first set was performed using the 12 lineage-

specific MIRU-VNTR loci proposed by Comas et al. (Comas et al., 2009) while the second set 

consisted of the standard MIRU-15 as described by Supply et al. (Supply et al., 2001) (Table 1). 

Each PCR mixture contained 10X PCR buffer, 1.5 mM MgCl2, 200 M concentrations of 

deoxyribonuclueotide triphosphate, 5 M concentration of each primer, 1 l of HotstarTaq DNA 

polymerase enzyme, 5 l Q solution and 10 ng of DNA template in a total volume of 25 l. Negative 

(sterile water) and positive controls (H37Rv) were added to each PCR reaction to validate the assay. 

Locus amplification was carried out under the following conditions: initial denaturation at 95 oC for 

15 minutes, and then 40 cycles of 95 oC for 1 minute, 59 oC for1 minute and 72 oC for 3 minutes, 

followed by a final extension at 72 oC for 7 minutes. Gel electrophoresis was done in 2% agarose for 

5 hours at 80 constant Voltage. The amplicons were sized using a 100bp marker and the obtained size 

compared with allelic table as published by Supply et al. (Comas et al., 2001).  
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Table 12: List of MIRU-VNTRs used for the assay 

LOCUS ALIAS L5 L4 L5 L6 

424 Mtub04 X X X X 

577 ETRC X X X  

580 MIRU04 X   X 

802 MIRU40 X X X X 

960 MIRU10 X X X X 

1644 MIRU16 X   X 

1955 Mtub21 X X X X 

2163b QUB11b X X X X 

2165 ETRA X X X X 

2401 Mtub30 X X   

2461 ETRB    X 

2531 MIRU23  X X  

2996 MIRU26 X   X 

3007 MIRU27   X  

3192 MIRU31 X  X X 

3690 Mtub39 X X   

4052 QUB26 X X X X 

4156 QUB4156 X X X  

 

SNP typing 

TaqMan real time PCR was performed as published by Stucki et al. (Stucki et al., 2012). Briefly, in 

a 200 l sterile PCR tube, 2 l of DNA was added to a 5 µl sterile water containing 0.21 M each 

reverse and forward primers for the targeted regions, 0.83 M each probe A for ancestral allele and 

probe B for mutant allele (each labelled with different dyes); and 5 l Taqman Universal MasterMix 

II (Applied Biosystem). The reaction was performed in Applied Biosystems 7300 real time PCR 

system under the following conditions: 60 oC for 30 seconds, 95 oC 10 minutes, 95 oC 15 seconds and 

60 oC 1 minute for 40 cycles; 60 oC for 30 seconds. The fluorescence intensity in the dyes (VIC and 

FAM) channels were measured at the end of each cycle. 

 

Data analysis 

The number of repeats for each locus was determined based on the allelic table by Supply et al. 

(Supply et al., 2001) and clustering analysis was done using the online tool at http://www.MIRU-

VNTRplus.org. MIRU-VNTR clusters were defined as isolates sharing identical patterns. The 

http://www.miru-vntrplus.org/
http://www.miru-vntrplus.org/
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clustering rate was defined as (nc - c)/n, where nc is the total number of clustered cases, c is the 

number of clusters, and n is the total number of cases in the sample (Kremer et al., 2005) 

 The Hunter-Gaston Discriminatory Index (HGDI) was used to calculate the discriminatory power of 

each locus as well as that of each method (Hunter and Gaston, 1988).  

 

Determination of a minimal set of MIRU-VNTR loci 

Stepwise analysis was performed to identify a set of loci needed to achieve maximum discrimination. 

Firstly, we combined loci from the customised sets and standard MIRU-15 for each lineage under 

investigation. Twelve loci were shared between the customised Lineage 4 set and standard MIRU-15, 

addition of the remaining 4 non-shared loci from standard MIRU-15 gave a total of 16 loci for 

analysis. For Lineage 5, addition of 6 non-shared loci to the 9 shared loci gave a total of 17 loci. 

Subsequently, we calculated individual locus HGDI. The results obtained were arranged in a 

descending order. Starting with the highest HGDI, cumulative HGDI was then calculated by 

successively adding one locus after the other. Finally, the clustering rate was calculated in a similar 

manner by successively adding one locus after the other. The result (cumulative HGDI and 

percentage clustering) obtained for each lineage was plotted on a graph and the cut-off point for 

selection of the minimal set of loci was set at where graph plateaued meaning further addition of loci 

resulted in the same cumulative HGDI. The customized minimal loci-set was then extracted from the 

graph. 
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Results  

MTBC isolates and lineage determination 

All 178 isolates included in this study were classified into Lineage 4 (N=126) or Lineage 5 (N=52) 

based on the RD and SNP typing analysis (Brosch et al., 2002; Stucki et al., 2012). Discordant 

samples were excluded from the study. A full set of MIRU allelic data was obtained for 158/178 

(88.8%), comprising 106 Lineage 4 and 52 Lineage 5 isolates, respectively. The remaining 20 of the 

178 (11.2%) isolates were excluded from the analysis for various reasons. 90% (18/20) of excluded 

isolates had no PCR amplicon at one or several loci whilst the remaining 10% (2/20) had double 

alleles at one or more MIRU-VNTR loci, indicative of the possible presence of two independent 

strains (Yesilkaya et al., 2006). 

 

Evaluation of customized MIRU-12 for Lineage 4 

One hundred and four distinct patterns comprising 102 singleton and 2 clusters (2 isolate per cluster) 

was obtained using customized MIRU-12 (clustering rate: 1.8%).  Discriminatory power was 

calculated separately for each locus and classified into highly (HGDI ≥0.6), moderately (0.3 to 0.6), 

and poorly (<0.3) discriminatory based on the HGDI scores as previously reported (Cowan et al., 

2005). Based on this definition, the discriminatory power of 10 loci (MIRU-VNTR loci 10, 40, 

2163b, 2165, 3690, 4052, 4165 2401, 0424, and 0577) was higher than 0.6, supporting their 

designation as highly discriminatory loci with the remaining 2 MIRU/VNTR loci (VNTR 1955, and 

23) being "moderately discriminatory"(DI: 0.3–0.59) (Table 13). Using the same set of isolates, 

standard MIRU-15 identified 105 distinct patterns with only one cluster of two isolates (clustering 

rate: 0.9%). Ten loci (66.6%; MIRU-VNTR loci 4052, 2163b, 40, 2165, 10, 4165, 3690, 2401, 26 

and 0424) were highly discriminatory, 4 (26.6%) (VNTR 1955, 0577 and 23) moderately 

discriminatory and the remaining 1 (MIRU 4: 6.7%) poorly discriminated among the isolates. 
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Evaluation of customized MIRU-12 for Lineage 5 

Among 52 isolates analyzed, we obtained 51 unique patterns with 1 cluster comprising 2 isolates and 

a clustering rate of 0.9%. Five MIRU-VNTR loci (2163B, 4156, 4052, 40, 27) were highly 

discriminatory and the remaining 7 (23, 0577, 2165, 10, 0424, 31, 1955) being moderately 

discriminatory (Table 14). Standard MIRU-15 on the other hand identified 52 unique patterns. Six of 

the 15 loci (VNTR 2163B, 4156, 4052, 26, 16 and 40) had HGDI above 0.6 with the remaining nine 

MIRU-VNTR loci (0424, 10, 1955, 0577, 4, 2401, 3690, 2165 and 31) showing moderate 

discrimination (HGDI: 0.3–0.59).  

 

 

 

 

 

 

Table 13: Cumulative HGI and clustering rate for Lineage 4 successive addition of individual   

MIRU-VNTR Loci. (N=106). 

Locus  VNTR  

Locus 

VNTR  

alias 

No. of  

Clusters 

No. of  

clustered  

isolates 

No. of isolates  

in individual  

cluster 

Clustering  

Rate (%) 

Individual  

HGI 

Cumulative  

HGI 

1 QUB26 VNTR 4052 9 96 2-34 84.9 0.829 0.829 

2 QUB11b VNTR  

2163B 

23 88 2-9 61.3 0.804 0.966 

3 MIRU 40 VNTR802 20 53 2-8 31.1 0.752 0.988 

4 ETRA VNTR 2165 13 28 2-4 14.2 0.722 0.996 

5 MIRU 10 VNTR960 8 19 2-4 10.4 0.714 0.997 

6 QUB4156 VNTR 4156 4 11 2-4 6.6 0.689 0.999 

7 Mtu39 VNTR 3690 3 6 2 2.8 0.66 0.999 

8 Mtub30 VNTR 2401 3 6 2 2.8 0.64 0.999 

9 2996 MIRU 26 2 4 2 1.8 0.628 0.999 

10 Mtub04 VNTR 0424 2 4 2 1.8 0.623 0.999 

11 ETRC VNTR 0577 2 4 2 1.8 0.612 0.999 

12 Mtub21 VNTR 1955 2 4 2 1.8 0.579 0.999 

13 2531 VNTR 23 2 4 2 1.8 0.555 0.999 

14 1644 MIRU 16 2 4 2 1.8 0.452 0.999 

15 3192 MIRU 31 1 2 2 0.9 0.37 0.999 

16 580 MIRU 4 1 2 2 0.9 0.092 0.999 
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Table 14: Cumulative HGI and clustering rate for Lineage 5 with successive addition of individual  

MIRU-VNTR Loci.  N=52 

Locus VNTR  

Locus 

VNTR  

alias 

No.  

of  

Clusters 

No. of  

Clustered 

 isolates 

No. of  

isolates in  

individual  

cluster 

Clustering  

Rate (%) 

Individual  

HGI 

Cumulative  

HGI 

         

1 VNTR 2163B QUB11B 6 52 2-13 88.5 0.797 0.798 

2 VNTR 4156 QUB4156 12 45 2-9 63.5 0.731 0.935 

3 802 MIRU 40 2 4 2 40.4 0.7 0.971 

4 2996 MIRU 26 7 16 2-3 17.3 0.7 0.992 

5 VNTR 4052 QUB26 10 31 2-5 5.8 0.69 0.997 

6 1644 MIRU 16 3 6 2 3.8 0.689 0.998 

7 3007 MIRU 27 2 4 2 3.8 0.6 0.998 

8 2531 MIRU 23 2 4 2 3.8 0.58 0.998 

9 VNTR 0424 Mtub04 2 4 2 3.8 0.572 0.998 

10 960 MIRU 10 2 4 2 3.8 0.526 0.998 

11 VNTR 1955 Mtub21 2 4 2 3.8 0.489 0.998 

12 VNTR 0577 ETRC 2 4 2 3.8 0.487 0.998 

13 VNTR 2401 Mtub30 1 2 2 1.9 0.473 0.998 

14 580 MIRU 4 2 4 2 3.8 0.472 0.999 

15 VNTR 3690 Mtub39 0 0 0 0 0.428 0.999 

16 VNTR 2165 ETRA 0 0 0 0 0.387 0.999 

17 3192 MIRU 31 0 0 0 0 0.352 0.999 

 

Determination of a minimal set of MIRU-VNTR loci for genotyping main MTBC lineages from Ghana 

Customized MIRU-12 for Lineage 4 shared 11 loci with standard MIRU-15 whilst 9 loci were shared 

between customized MIRU-12 for Lineage 5 and standard MIRU-15. A union of both sets of typing 

schemes gave a total of 16 and 17 loci for Lineage 4 and 5, respectively. For Lineage 4, we identified 

six top most discriminatory loci (4052, 2163B, 40, 2165, 10 and 4165) with a cumulative HGDI of 

0.99 (Table 13; Figure 1 a). Similarly, for Lineage 5, six loci: 2163B, 4165, 40, 26, 4052 and 16 (Table 

14) with a cumulative HGDI of 0.99 were identified. Further addition of loci gave no significant 

change in cumulative HGDI as shown in Figure 1b. Note that 4 loci (4052, 2163B, 4162 and 40) were 
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among the 6 most discriminatory in both lineage-specific sets. Hence, based on this, we propose the 

usage of a new set of customised typing system comprising 8 loci showing the highest discriminatory 

power for genotyping strains from the two most common lineages circulating in Ghana. 
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Discussion and Conclusion 

Different combinations of MIRU and other VNTR loci have been proposed to complement the 

standard MIRU-15 scheme to achieve higher discrimination. Results accumulated from such 

studies clearly revealed that due to the strong phylogeographic structure exhibited by MTBC, the 

most relevant MIRU-VNTR typing schemes will likely differ depending on the specific 

geographical setting. For example, Shamputa et al. (Shamputa et al., 2010) successfully 

identified a reduced set of 8 loci from standard MIRU-24, which could be used to discriminate 

isolates from the Republic of Korea. Similarly, Musare et al. (Musare et al., 2008)  Dong et al. 

(Dong et al., 2012) and Zhou et al. (Zhou et al., 2011)successfully defined a minimal set of 12 

loci for genotyping Beijing strains which made up more than 90% of the isolates investigated 

from Asia. Most of the studies have been focused on Lineage 2 including the clinically important 

Beijing family based on its association with drug resistance (Borrell and Gagneux, 2009). 

However, no study has been carried out in most resource-limited settings like Ghana, where M. 

africanum is an important pathogen (Yeboah-Manu et al., 2011; Addo et al., 2007; Goyal et al., 

1999). If customized lineage-specific sets of MIRU-VNTR loci could be implemented in such 

settings, this will have an impact in terms of reducing work load and saving resources. In the 

present study, we evaluated such an approach for genotyping MTBC strains from Ghana, 

(Yeboah-Manu et al., 2011; Addo et al., 2007) and compared our results with the current gold 

standard typing method; standard MIRU 15 as proposed by Supply et al. (Supply et al., 2001)]. 

 

Although standard MIRU-15 showed higher discrimination in its ability to accurately identify clusters 

among these two lineages in our study when compared to customised lineage-specific MIRU-12 

proposed previously (Comas et al., 2009), we found that not all the 15 loci were as informative for 

typing MTBC strains in Ghana. Even with the customized MIRU-12, based on our data, not all 12 loci 

were needed to achieve maximum discrimination (Figure 1 and 2). Specifically, our analysis showed 
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that 10 of a total of 16 loci tested for Lineage 4 strains added no or only limited additional information 

in terms of discriminatory power. Similarly, 11 of a total of 17 loci screened for Lineage 5 strains 

showed limited discriminatory power. We thus explored the possibility of a minimal set of loci HGDI 

selected by combining the standard MIRU-15 and the customized MIRU-12 data set. Based on 

individual and cumulative HGDIs, and clustering rate, we defined the six top discriminatory loci for 

Lineage 4 (4052, 2163B, 40, 2165, 10 and 4165) (Figure 1 and 2) and similarly for Lineage 5 (2163B, 

4165, 40, 26, 4052 and 16) (Figure 3 and 4) with 4 loci shared among the two sets (4052, 2163B, 40 

and 4165). A combination of loci from Lineage 4 and 5 gave a unique customized set of 8 loci with 

HGDIs similar to that of standard MIRU-15. 
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Figure 14: Individual and cumulative HGI of all MIRU-VNTR locus 

analysed _Lineage 4. The pink bars are the cumulative HGI values 

while blue bars are for the individual locus values 
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Figure 15: Individual and cumulative HGI of all MIRU-VNTR locus 

analysed _Lineage 5. The pink bars are the cumulative HGI values 

while blue bars are for the individual locus values 

 

Figure 16: Clustering rate for lineages 4 calculated using after successive 

addition of analysed loci  

 



96 

 

 

 clustering rate after sucessive addition of locus for all tested Loci for 

Lineage 5

0

10

20

30

40

50

60

70

80

90

100

V
N
TR

 2
163

B

V
N
TR

 4
156

M
IR

U
 4

0

M
IR

U
 2

6

V
N
TR

 4
052

M
IR

U
 1

6

M
IR

U
 2

7

M
IR

U
 2

3

V
N
TR

 0
424

M
IR

U
 1

0

V
N
TR

 1
955

V
N
TR

 0
577

V
N
TR

 2
401

M
IR

U
 4

V
N
TR

 3
690

V
N
TR

 2
165

M
IR

U
 3

1

 

We now plan to apply these minimal MIRU-VNTR set for molecular epidemiological 

investigation of MTBC transmission in population based study in Ghana. We anticipate that this 

approach will save a significant amount of time. In addition we perform cost analysis on the 

different VNTR schemes analysed in this study. Cost was calculated based on the direct cost of 

reagents, materials and equipment. We compared the cost of genotyping using standard MIRU-15 

and our proposed customized set of MIRU-8. With a unit cost of $11.24, the cost of performing  

standard MIRU-15 on one sample was $168.60, with the total material costs of analyses using our 

proposed customized MIRU-8 set for one sample being $89.2. Hence, by screening for only the 

relevant loci, we not only maximize discriminatory power but also minimize genotyping costs.  

 

Currently, human-associated MTBC is known to comprise a total of seven main phylogenetic lineages 

(Coscolla et al., 2013; Comas et al., 2013; Firdessa et al., 2013). We propose that additional lineage-

specific sets of MIRU-VNTR could be identified for molecular epidemiological investigation of TB 

transmission in resource-limited settings. Moreover, each MTBC lineage consists of a number of sub-

lineages, some of which also show strong geographical associations (Gagneux et al., 2006; Gagneux, 

2012; Reed et al, 2009). For example, the “Uganda” sub-lineage of Lineage 4 causes up to 60% of TB 

Figure 17: Clustering rate for lineages 5 calculated using after successive 

addition of analysed loci  
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in Kampala, Uganda (Wampande et al, 2013), suggesting that a similar customized Lineage 4 set for 

Uganda could be developed, which possibly would include other loci considering that most of Lineage 

4 in Ghana consists of the “Cameroon” sub-lineage (Niobe-Eyangoh et al., 2003; Assam et al., 2011; 

Assam et al., 2013). 

This study set out to define a set of loci for genotyping MTBC strains from Ghana. We acknowledge 

the high prevalence of M. africanum strains in Ghana, however, this prevalence is driven by Lineage 5 

(M. africanum West Africa I) with limited number of Lineage 6 (M. africanum West Africa II). We 

acknowledge the fact that this makes our proposed customized MIRU-8 country-specific, and thus 

suggest that countries within West African where the high prevalence of M. africanum is driven by 

Lineage 6 (M. africanum West Africa II) could equally determine the minimal set of loci which gives 

the highest discrimination. Nevertheless, the strength of our study is the ability to genotype an 

unknown strain in Ghana with the proposed customized MIRU-8 loci in the most cost-efficient way. 

 

In conclusion, this study identified a reduced set which can be applied for strain differentiation of the 

main MTBC lineages from Ghana.  
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Abstract 

Mycobacterium africanum is a member of the Mycobacterium tuberculosis complex (MTBC) and 

an important cause of human tuberculosis in West Africa rarely observed elsewhere. Here we 

genotyped 613 MTBC clinical isolates from Ghana and searched for associations between the 

different phylogenetic lineages of MTBC and patient variables. We found that 17.1% (105/613) of 

the MTBC isolates belonged to M. africanum, with the remaining belonging to M. tuberculosis 

sensu stricto. No M. bovis was identified in this sample. M. africanum was significantly more 

common in tuberculosis patients belonging to the Ewe ethnic group (adjusted odds ratio: 3.02; 

95% confidence interval: 1.67-5.47, p<0.001). Stratifying our analysis by the two phylogenetic 

lineages of M. africanum (i.e. MTBC Lineages 5 and 6) revealed that this association was mainly 

driven by Lineage 5 (also known as M. africanum West Africa 1). Our findings suggest 

interactions between the genetic diversity of MTBC and human diversity, and offer a possible 

explanation for the geographical restriction of M. africanum to parts of West Africa. 
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Authors Summary 

Tuberculosis remains one of the main global public health problems. Human tuberculosis is 

caused by bacteria known as the Mycobacterium tuberculosis complex (MTBC). The MTBC 

includes a variant called Mycobacterium africanum, which causes up to half of all tuberculosis 

cases in West Africa. For reasons unknown, M. africanum does not occur in other parts of the 

world. To explore the possible reasons for this geographic restriction of M. africanum, we 

analysed a large collection of bacterial strains isolated from tuberculosis patients in Ghana. We 

genetically characterized these bacterial isolates and collected relevant socio-demographic and 

epidemiological data. We found tuberculosis patients infected with M. africanum were more 

likely to belong to the Ewe ethnic group compared to patients carrying other MTBC bacteria. The 

Ewes are indigenous inhabitants of coastal regions in West Africa that have previously been 

shown to harbour a high prevalence of M. africanum. Our findings support the hypothesis that 

different variants of MTBC have adapted to different human populations, and offer a possible 

explanation for the geographical restriction of M. africanum to West Africa.  
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Introduction 

Tuberculosis (TB) remains the leading cause of adult death by a single infectious disease world-

wide (Global TB report, 2013). Despite the high mortality caused by TB, only 5% to 10% of 

infected immunocompetent individuals progress from initial infection to active disease (Global 

TB report, 2013). In 2012, an estimated 8.6 million new cases and 1.3 million deaths due to TB 

occurred; with 30% of the global burden of TB occurring in Africa, an indication of the strong 

association with HIV/AIDS (Global TB report, 2013). 

TB is caused by a group of closely related bacteria referred to as the Mycobacterium tuberculosis 

complex (MTBC). MTBC comprises M. tuberculosis sensu stricto and M. africanum which are 

the main agents of TB in humans, and several variants adapted to various domestic and wild 

mammal species, including M. bovis, M. caprae, M. microti and M. pinnipedii (Brosch et al., 

2002). MTBC relevant to human disease has been classified into seven main phylogenetic 

lineages (Firedessa et al., 2013;Gagneux and Small, 2007): Lineages 1 to 4 together with 

Lineage 7 are collectively known as M. tuberculosis sensu stricto, whereas Lineage 5 and 6 are 

also known as M. africanum West Africa I and II, respectively (de Jong et al., 2010). 

Because MTBC harbours limited genetic diversity compared to other bacteria (Achtman, 2008), 

for a long time the assumption was that host and environmental factors were the only relevant 

determinants driving the course of TB infection. However, recent studies have challenged this 

dogma. Indeed, experimental infection models have shown that MTBC strains differ in virulence 

and immunogenicity (Coscolla and Gagneux, 2010), and epidemiological studies have 

demonstrated that in addition to host and environmental factors, strain diversity contributes to the 

variable outcome of TB infection and disease in clinical settings (Nicol et al., 2008) 

The MTBC lineages adapted to humans exhibit a strong phylogeographic population structure 

(Gagneux and Small, 2007). This together with the finding that the MTBC most likely originated 

in Africa and accompanied human migrations over millennia (Comas et al., 2013) has led to the 
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proposal that the different lineages of human-associated MTBC might have locally adapted to 

different human populations (Gagneux, 2012). Support for this notion comes from the 

observation that in metropolitan settings, MTBC lineages tend to transmit preferentially among 

sympatric (as opposed to allopatric) host populations (Gagneux et al., 2006), and that this 

sympatric host-pathogen association is perturbed by HIV co-infection (Fenner et al., 2013). 

Previous work showed that in Ghana, human TB is caused by six out of the seven MTBC 

lineages, with 20% of all cases attributed to Lineages 5 and 6 (Yeboah-Manu et al., 2011) (i.e. M. 

africanum West-Africa I and West-Africa II, respectively). M. africanum is highly restricted to 

West-Africa for reasons unknown (de Jong et al., 2010; Gagneux, 2012). One possibility could 

be that M. africanum has adapted to particular human populations in that region of the world. To 

address this possibility, we performed a retrospective molecular epidemiological study of MTBC 

in Southern Ghana. We combined bacterial genotyping with detailed demographic and 

epidemiological patient data and sought for associations between host factors and the main MTBC 

lineages prevailing in Ghana. 
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Methods 

Ethics statement 

All study protocols including oral and written consent format used for this study were approved 

by the Institutional Review Board (IRB) of the Noguchi Memorial Institute for Medical Research, 

Legon-Ghana (NMIMR; Federal wide Assurance number FWA00001824) and from the 

Ethikkommission Beider Basel (EKBB) in Basel, Switzerland. The standard procedure for 

sampling as outlined by the National Tuberculosis Program (NTP) for the routine management of 

TB in Ghana was used in the study. Written (in the case of literate participants) or oral (for 

illiterates) informed consent was sought from all participants before inclusion in the study. For 

minors (below sixteen years of age) consent was sought from their parents/guardians before 

enrolment into the study. In the case of minors between sixteen and eighteen years, in addition to 

parental consent, assent was sought from them before enrolment into the study. As per the 

guidelines of the IRB of NMIMR, information confidentiality was strictly adhered to. In addition, 

objectives and benefits of the study were explained to all participants. 

Study setting and patients characteristics 

The study was conducted from July 2007 to August 2011. All patients were diagnosed as sputum 

AFB-positive pulmonary TB cases by microscopy. The patients were recruited before treatment 

initiation from five main health facilities; Korle-Bu Teaching Hospital in the Greater Accra 

region, Agona Swedru Government Municipal Hospital, Winneba Government Hospital, St 

Gregory Catholic Clinic from the Central Region and Effia-Nkwanta Regional Hospital from 

Western Region of Ghana. Information on age, sex, nationality, ethnicity, employment status, 

previous history of TB, crowding, substance abuse and duration of symptoms were obtained from 

the patients with a structured questionnaire. Patients with missing information or culture-negative 

status were excluded from analysis. Ethnicity was classified in line with Ghana demographic data 

2010 (Ghana demographic and Health survey, 2010) 
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Isolation of mycobacterial species and genotyping  

Sputum samples obtained were decontaminated using 5% oxalic acid (Yeboah-Manu et al., 

2004) and inoculated on two pairs of Lowenstein Jensen (LJ) slants; one supplemented with 0.4% 

sodium pyruvate to enhance the isolation of M. africanum and M. bovis, and the other with 

glycerol for the growth of M. tuberculosis sensu stricto. The cultures were incubated at 37°C and 

were read weekly for growth for a maximal duration of 16 weeks. MTBC strains were identified 

by detection of insertion sequence IS6110 as previously described (Yeboah-Manu et al., 

2001)Classification into the main phylogenetic lineages of MTBC was achieved by large 

sequence polymorphism typing identifying regions of difference (RD) (Brosch et al., 2002) in a 

stepwise manner. Firstly, all isolates were screened for RD9. RD9-undeleted strains were further 

sub-typed for the “Cameroon” strain family (known to be most dominant Lineage 4 sub-lineage in 

Ghana) by screening for deletion of RD726 (Gagneux et al., 2006). Isolates identified as RD9-

deleted were subsequently sub-typed for Lineage 5 and 6 using RD711 and RD702 flanking 

primers, respectively. All lineages identified were confirmed by TaqMan real time PCR (TaqMan, 

Applied Bio systems, USA) using probes targeting lineage-specific SNPs as reported (Stucki et 

al., 2012) 

Spoligotyping 

All MTBC isolates were typed by spoligotyping (Kamerbeek et al., 1997). This was performed 

according to the manufacturer’s instructions, using commercially available kits (Isogen 

Bioscience BV Maarssen, The Netherlands). Spoligotyping patterns were defined according to 

SITVITWEB database (Demay et al., 2012) (http://www.pasteur-guadeloupe.fr:8081/ SITVIT_ONLINE). 

SITVITWEB assigned shared types numbers were used whenever a spoligotyping pattern was 

found in the database while families and subfamilies were assigned based on the MIRU-

VNTRplus database (http: //www. miru-vntrplus.org) (Weniger et al., 2010). Shared types were 

http://www.pasteur-guadeloupe.fr:8081/
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defined as patterns common to at least two or more isolates. All patterns that could not be 

assigned were considered orphan spoligotypes. 

 

Data entry, management and analysis 

Information from the structured questionnaire was double entered using Microsoft© Access and 

validated to remove duplicates and data entry inconsistencies. Multivariable logistic regression 

models were used to compare patient characteristics associated with M. africanum compared to M. 

tuberculosis sensu stricto. All statistical analyses were performed in STATA 10.1 (Stata Corp., 

College Station, TX, USA).  
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Results 

Tuberculosis patients and their characteristics 

A total of 622 TB patients were included in this study. Age of patients ranged from 8 to 77 years 

with a median age of 35 years (Table 1). Overall, 208/622 (33.4 %) were females with median age 

of 33 years; the remaining 414 (66.6%) were males with a median age of 36. Twenty-nine out of 

the 622 patients (4.6%) were children (age<16 years). Most patients originated from Greater 

Accra Region (325 cases, 52.3%), followed by 268 cases (43.1%) from Central Region with the 

remaining twenty-nine patients (4.6%) from Western Region of Ghana. Out of the 622 patients, 

596 (95.8%) were Ghanaians, 21 (3.3%) were Liberians, 2 Togolese (0.3%) and 1 (0.2%) each of 

Nigerian, Ivorian and Gambian origin, respectively. Most of the patients were of Akan ethnicity 

(N=427, 68.7%), followed by Ga (N=104, 16.7%), Ewe (N=71, 11.4%) with the remaining 

ethnicities accounting for 3.2 % (N=20). In terms of education, 436 patients (70.1%) were 

illiterates, 44 (7.1%) primary education 132 (21.2%) had up to secondary education, and the 

remaining 10 (1.6%) tertiary education. More than half of the study population (N=324, 52%) 

consumed alcohol on a regular basis, while only 44 (7%) smoked. 
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Prevalence of MTBC Lineages and Sub-Lineages  

MTBC isolates were obtained from all 622 TB patients. Upon genotyping, 9 of these (1.4%) 

produced ambiguous results, and were thus excluded from further analysis. Hence a total of 613 

 

Table 15: Characteristics of patients included in the study 
 

 

Variable 

 
N=622 

 

% 

 

Sex 

  

                Male 414 66.6 

               Female 208 33.4 

Age   

                 Yrs 08-25 124 20.0 

                 Yrs 26-40 282 45.3 

                 Yrs 41-77 216 34.7 

Residency   

               Rural 117 18.8 

               Urban 505 81.2 

Region   

      Greater Accra 325 52.3 

      Central 268 43.1 

      Western 29 4.6 

Ethnicity   

                  Akan 427 68.7 

                  Ewe 71 11.4 

                  Ga 104 16.7 

                  Other 20 3.2 

Religion   

          Christian 564 90.7 

          Muslim 37 5.9 

          Pagan 21 3.4 

Level of Education   

No education 436 70.1 

Primary school 44 7.1 

Secondary  132 21.2 

Tertiary 10 1.6 

Alcohol intake   

          Yes 324 52.1 

        No 298 47.9 

Smoking Status   

Smokers 44 7.1 

Non smokers 578 92.9 

Crowding(1-4 pers) 195 31.4 

                  (5 pers)   427 68.6 

Occupation   

Farmer 45 7.2 

Others 577 92.8 
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isolates were used for further analysis. Based on LSP and SNP typing, we identified six out of the 

seven human-associated MTBC lineages in our study sample. The most dominant lineages were 

Lineage 4 with 483 cases (78.8%), Lineage 5 (N=86, 14.0%) and Lineage 6 (N=19, 3.1%). Eleven 

isolates (1.8%) belonged to Lineage 1, 10 to Lineage 2 (includes Beijing; 1.6%), and the 

remaining 4 isolates to Lineage 3 (0.7%). Among the 483 Lineage 4 isolates, 313/483 (65.0%) 

belonged to the sub-lineage of Lineage 4 known as the ‘Cameroon family’. No M. bovis was 

identified in our sample. 

All isolates were further sub-typed using spoligotyping (Table S 2). We detected a total of 117 

spoligotypes, 485/613 isolates (79%) had previously defined shared type number (SIT). The 

remaining 128 isolates could not be defined by the SITVIT database and thus were defined as 

‘orphan’. In addition to Cameroon sub-lineage, seven additional sub-lineages isolates were 

identified among Lineage 4 based on spoligotyping; Ghana (N=75, 15.5%), Haarlem (N=37, 

7.7%), Uganda I (N=15, 3.1%), Uganda II (N=7, 1.4%), LAM (N=5, 1.0%), S (N=4 (0.8%), and 

X (N=2, 0.4%).  

Association between MTBC Lineages and Patient Characteristics 

Table 3 illustrates the association of socio demographic and behavioural factors with the main 

MTBC lineages present in our study sample. Using multivariable logistic regression model 

analysis, we found that individuals of Ewe ethnicity  were significantly more likely to present 

with TB caused by M. africanum as opposed to M. tuberculosis sensu stricto irrespective of their 

place of residence (adjusted odds ratio (adjOR) =3.02; 95% confidence interval (CI): 1.67-5.47, 

P<0.001) (Table 16; Figure S1). This association was independent from other risk factors. 

Moreover, we found TB caused by M. africanum to be associated with smoking (adjOR=2.02; 

95% CI: 0.95-4.27) when compared to M. tuberculosis sensu stricto. However, this association 

was only borderline statistically significant (P=0.07). No significant associations between MTBC 

lineages and other patient variables were found. Because M. africanum comprises two 
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phylogenetic distinct lineages (i.e. MTBC Lineages 5 and 6), we performed a stratified analysis by 

lineage. Using multivariate logistic regression model analysis, we observed a significant 

association between Ewe ethnicity and Lineage 5 (adjOR) =2.79; 95% CI: 1.47-5.29, P<0.001) 

(Table 17). This association was independent from other risk factors (Table 5). Interestingly, 

based on univariate analysis, we also saw an association between Ewe ethnicity and Lineage 6 

(adjOR=4.03; 95% CI: 1.33-10.85); however, because of the limited number of Lineage 6 isolates 

(n=18) multivariate analyses could not be performed to confirm the independence of this 

association. 
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Table 16: Risk factors for TB caused by M. africanum compared to M. tuberculosis sensu stricto 

 

Risk factor %(n) Mafr %(n) MTBss OR (95%CI) adjOR (95%CI)a 

 (n = 102) (n = 511)   

     

Sex (male)  

68% (69) 

 

66% (338) 

 

0.93 (0.59-1.47) 

 

Age category     

   yr 08-25 17% (17) 21% (105) ref  

   yr 26-40 53% (54) 44% (223) 1.50 (0.83-2.70)  

   yr 41-77 30% (31) 36% (183) 1.05 (0.55-1.98)  

Rural residency 20% (20) 18% (93) 1.10 (0.64-1.88)  

Region     

   Accra 55% (56) 52% (267) ref ref 

   Central 42% (43) 43% (218) 0.94 (0.61-1.45) 0.97 (0.60-1.56) 

   Western 3% (3) 5% (26) 0.55 (0.16-1.88) 0.44 (0.12-1.63) 

Ethnicity     

   Akan 58% (59) 71% (359) ref ref 

   Ewe 23% (23) 9% (48) 2.91 (1.65-5.14)* 3.02 (1.67-5.47)* 

   Ga 15% (15) 17% (89) 1.03 (0.56-1.89) 0.97 (0.51-1.83) 

   other 5% (5) 3% (15) 2.03 (0.71-5.79) 2.35 (0.77-7.13) 

Religion     

   Christian 92% (94) 90% (462) ref  

   Muslim 7% (7) 6% (29) 1.18 (0.50-2.79)  

 

Pagan 

 

1% (1) 

 

4% (20) 

 

0.25 (0.03-1.85) 

 

 

Educational level 

    

 

No education 

 

74% (75) 

 

70% (356) 

 

ref 

 

 

 Primary school 

                   

                  6% (6) 

         

         7% (38) 

 

0.75 (0.30-1.83) 

 

 

Secondary  

 

21% (21) 

 

23% (117) 

 

0.85 (0.50-1.44) 

 

 

Alcohol  

 

57% (58) 

 

52% (263) 

 

1.23 (0.81-1.90) 

 

 

Smoking  

 

            11% (11) 

          

          6% (32) 

 

1.81 (0.88-3.72) 

 

2.02 (0.95-4.27)† 

 

Crowding (>5 pers)b 

 

63% (64) 

 

70% (359) 

 

0.71 (0.45-1.10) 

 

 

Occupation farmerc 

 

9% (9) 

 

7% (35) 

 

1.32 (0.61-2.83) 

 

aAll variables with an OR above 1.5 or below 2/3 were included in the multivariable model, *P<0.001, †P=0.07, 
Mafr=Mycobacterium africanum, MTBss=Mycobacterium tuberculosis sensu stricto b5 or more persons per room vs 1 to 4 
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 Risk factor for TB caused by Lineage 5 compared to M. tuberculosis sensu stricto 

Risk factor %(n) Lineage 5 (n = 84) %(n) MTBss (n = 511 OR (95%CI) adjOR (95%CI)a 

     

Sex (male) 59% (58) 66% (338) 1.41 (0.69-1.88)  

Age category      

   yr 08-25 18% (15) 21% (105) ref  

   yr 26-40 51% (43) 43% (223) 1.35 (0.72-2.54)  

   yr 41-77 31% (26) 36% (183) 0.99 (0.5-1.96)  

Rural residency 19% (16) 18% (93) 1.06 (0.59-1.91)  

Region      

   Accra 54% (45) 52% (267) ref  

   Central 42% (36) 43% (218) 0.98 (0.61-1.57)  

   Western 4% (3) 5% (26) 0.68 (0.2-2.36)  

Ethnicity      

   Akan 61% (51) 70% (359) ref ref 

   Ewe 20% (17) 9% (48) 2.49 (1.33-4.66)** 2.79 (1.47-5.29) ** 

   Ga 14% (12) 17% (89) 0.95 (0.49-1.86) 0.85 (0.43-1.69) 

   other 5% (4) 3% (15) 1.88 (0.6-5.88) 1.64 (0.53-5.34) 

Religion      

   Christian 93% (78) 90% (462) ref  

   Muslim 6% (5) 6% (29) 1.02 (0.38-2.72)  

   Pagan 1% (1) 4% (20) 0.29 (0.04-2.24)  

Educational level      

   No education 70% (59) 70% (356) ref  

   Primary school 7% (6) 7% (38) 0.95 (0.39-2.35)  

   Secondary + 23% (19) 23% (117) 0.98 (0.56-1.71)  

Alcohol 62% (52) 52% (263) 1.53 (0.95-2.45)Ɨ 1.62 (0.99-2.68)Ɨ 

Smoking  11% (9) 6% (32) 1.8 (0.82-3.91) 1.54 (0.68-3.50) 

Crowding (>5 pers)c 63% (53) 70% (359) 0.72 (0.44-1.16)  

Occupation farmer 11% (9) 7% (35) 0.61 (0.28-1.32) 0.64 (0.29-1.45) 
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Discussion 

Our retrospective molecular epidemiological investigation of MTBC clinical isolates from 

Southern Ghana revealed that i) the Cameroon sub-lineage of Lineage 4 is the dominant cause 

of human TB in this region, ii) 17.1% of human TB is caused by M. africanum, iii) TB 

patients infected with M. africanum were more likely to smoke, and iv) to belong to the Ewe 

ethnic group.  

Our finding that the Cameroon sub-lineage causes 65% of human TB in Ghana confirms our 

previous report from Ghana (Yeboah-Manu et al., 2011), and is in agreement with findings 

from neighbouring countries. In particular, the Cameroon sublineage was previously found to 

cause 40% of human TB in Cameroon (Niobe-Eyangoh et al., 2003), 45% in Nigeria 

(Lawson et al., 2012) and 33% in Chad (Diguimbaye et al., 2006). The reasons for the 

success of this sub-lineage in this sub-region of Africa are unclear but could be due to a 

founder effect or particularly high fitness in the corresponding patient populations. Similarly, 

other successful sub-lineages of Lineage 4 have been observed in other regions of Africa, 

including Uganda (Wampande et al., 2013) and Zimbabwe (Easterbrook et al., 2004). 

We found that in Ghana, M. africanum still accounts for 17.0% of all human TB, which is 

similar to the prevalence we reported several years ago (Yeboah-Manu et al., 2011). This is 

in contrast to a study in Cameroon (Niobe-Eyangoh et al., 2003) that indicated a sharp 

decrease in TB caused by M. africanum during the last decades. A potential explanation for 

the decline of M. africanum in some West African countries includes possible out-competition 

by M. tuberculosis, as M. africanum has been associated with reduced virulence in animal 

models (Castets et al., 1969; Bold et al.,2012); and a longer latency and a slower rate of 

progression to active disease in humans (de Jong et al., 2008). Of note, our finding that 

smoking was associated with infection by M. africanum as opposed to M. tuberculosis sensu 

stricto is consistent with the notion that M. africanum might be less virulent in 

immunocompetent hosts (Coscolla and Gagneux, 2010). This notion is also supported by a 
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previous study in the Gambia reporting a significant association between M. africanum West 

Africa II and HIV co-infection (de Jong et al., 2005). However, no such association was 

found between M. africanum West Africa I and II in Ghana (Meyer et al., 2008). Because 

information on HIV status was not available for the present study, we could not explore this 

question here. Taken together, there is a need for further investigation to ascertain why M. 

africanum is declining in some regions of West Africa, but not in Ghana, and whether this 

phenomenon can be attributed to differences in virulence and/or other factors. 

One reason for why the prevalence of M. africanum might be more stable in Ghana than in 

some other countries is that this bacterial lineage might be particularly well adapted to (some) 

human populations in Ghana. Our finding that M. africanum was independently associated 

with Ewe ethnicity supports this possibility. Moreover, this association was largely driven by 

Lineage 5, and not the result of a single outbreak as the spoligotyping patterns among M. 

africanum isolates from Ewe patients were diverse (Table 18).  

From available data, we know that M. africanum, in particular Lineage 5 is prevalent in 

countries around the Gulf of Guinea (Yeboah-Manu et al., 2011, Gehre et al., 2013), and 

particularly frequent in Benin and Ghana (Affolabi et al., 2009;Yeboah-Manu et al., 2011), 

two countries with large Ewe populations (The Ewe people, 2014). The Ewe speaking ethnic 

group traditionally forms part of the Gbe language family which includes the Fons of Benin, 

the Aja of Togo and the Phla-phera of western Nigeria (Anyidoho, 2003) Although the Ewe, 

Fons, Aja and phla-phera are different dialects of the same Gbe language family, members of 

theses individual groups are interrelated (The Ewe people, 2014). Together they constitute 

the indigenous inhabitants of coastal West Africa.  

Associations between particular MTBC lineages and human ethnicities have been observed 

before. For example, in San Francisco, Lineage 1, 2 and 4 were strongly associated with 

Filipino, Chinese, and “white” ethnicities, respectively (Gagneux et al., 2011) More recently, 

Hui ethnicity was found to be associated with the Beijing family of MTBC in China (Pang et 



114 

 

al., 2012). While social “cohesion” is likely to restrict intermingling between individuals 

belonging to different ethnic groups and thus transmission of MTBC between these groups, 

biological factors could also play a role in the association between different MTBC genotypes 

and human populations. Self-defined ethnicity has been shown to be a reliable proxy for 

human ancestry (Rosenberg et al., 2002) and human genetic diversity has been linked to an 

increased or reduced susceptibility to TB (Abel et al., 2014). Importantly, recent studies 

indicate that human genetic susceptibility to TB is further influenced by the MTBC genotype 

(Gagneux, 2012). In particular, studies have reported human genetic polymorphisms that 

influence the susceptibility to TB caused by M. africanum but not M. tuberculosis sensu 

stricto or vice versa (Intemann et al., 2009). For example, a study performed in Ghana 

reported a human polymorphism in 5-lipoxygenase (ALOX5) associated with increased TB 

risk (Herb et al., 2008). Stratification by MTBC lineage revealed that this association was 

mainly driven by M. africanum indicating that this human polymorphism increases the risk of 

TB in a MTBC lineage-specific matter. ALOX5 is involved in the synthesis of leukotrienes 

and lipoxins, which are important mediators of the inflammatory response (Herb et al., 2008). 

Conversely, a human polymorphism reported recently in the Mannose Binding Lectin (MBL) 

was associated with protection against TB caused by M. africanum but not M. tuberculosis 

sensu stricto (Thye et al., 2011). Moreover, this latter study also found that M. africanum 

bound human recombinant MBL more efficiently, perhaps leading to an improved uptake of 

M. africanum by macrophages and selection of deficient MBL variants among human 

populations exposed to M. africanum (Thye et al., 2011). 

Our study has several limitations. First, data on HIV co-infection was not available. This 

might have influenced our results on the patient characteristics associated with M. africanum. 

Secondly, this study was not population-based as patients were recruited only at three 

government hospitals. Hence, some degree of selection bias cannot be excluded.  
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In conclusion, our study provides novel insights into the interaction between environmental, 

host and pathogen variability in human TB. In particular, the observed association between M. 

africanum and Ewe patient ethnicity suggests a possible explanation for the geographical 

restriction of M. africanum to parts of West Africa. Our findings also highlight the need to 

consider this variability in the development of new tools and strategies to control TB. 

 

Acknowledgments 

We express our gratitude to all laboratory staff and study participants of the various health 

facilities for their time and cooperation during the study period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 

 

Chapter 7: Mycobacterium africanum is associated with HIV and Ethnicity in Ghana  

 

Adwoa Asante-Poku1, 3, 5, Isaac Darko Otchere1, Stephen Osei-Wusu1, Esther Sarpong1, 

Haruna Giyru1, Akosua Baidoo2, Audrey Forson2, Frank Bonsu2, Jan Hattendorf 4,5, Kwadwo 

Ansah Koram1, Sebastien Gagneux3,5, Dorothy Yeboah-Manu1 

 

5. Bacteriology Department, Noguchi Memorial institute For Medical Research, University 

of Ghana. 

6. Chest Department, Korle-Bu Teaching Hospital, Korle-bu, Accra Ghana 

7. Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public 

Health Institute, Basel, Switzerland.  

8. Department of Epidemiology and Public Health, Swiss Tropical and Public Health 

Institute, Basel, Switzerland 

9. University of Basel, Basel, Switzerland. 

 

 

 

 

 

 

 

 

This manuscript will be submitted to the Lancet Infectious Diseases  

 

 

 



117 

 

Abstract 

Background: Emerging evidence suggests that apart from the old selective pressure acting on 

TB, new pressures are changing the dynamics of TB. Here, we analysed 1211 MTBC isolates 

from TB patients in Ghana and searched for association between the different phylogenetic 

lineages of MTBC and patient variables. 

 

Method: MTBC isolates were identified by PCR amplification of IS6110, and genotyped by 

large sequence polymorphism analysis, TaqMan-based SNP-typing and spoligotyping. 

Associations between the different phylogenetic lineages of MTBC and epidemiological 

variables were assessed using univariate and multivariate logistic regression.  

 

Results: Eight hundred and eighty-three isolates (71.9%) belonged to Lineage 4 (Euro-

American), 152 (12.6.0%) to Lineage 5 (M. africanum West Africa I) and 112 (9.2%) to 

Lineage 6 (M. africanum West Africa II). Fifteen isolates (1.2%) belonged to Lineage 1 

(includes EAI), 42 (3.5%) to Lineage 2 (includes ‘Beijing’), 12 (1%) to Lineage 3 (includes 

CAS) with the remaining 7 (0.6%) isolates identified as M. bovis. With respect to socio-

demographic and behavioral characteristics, stratifying by lineage, we found M. africanum 

West Africa I significantly more common in the Ewe patient ethnic group (adjusted odds ratio 

(aOR): 3.02; 95% confidence interval (CI): 1.5-4.7, p<0.001) and M. africanum West Africa 

II more likely to be found among HIV positive TB patients (adjusted odds ratio (adjOR) =2.4; 

95% confidence interval (CI): 1.4-3.9) P<0.000). We found no significant association 

between MTBC lineage and patient age, gender, prior BCG vaccination, or bacterial burden 

estimated by the degree of sputum smear positivity. 
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Introduction 

Tuberculosis (TB) still remains one of the main global public health problems, particularly in 

resource limited settings (Global TB report, 2014). The global TB epidemic is further 

exacerbated by a strong synergy with HIV/AIDS, which is particularly a big challenge in sub-

Saharan Africa. The Word Health Organization (WHO) estimates that in 2013, of the 1.1 

million TB cases co-infected with HIV, 80% occurred in Africa, making Africa the hardest hit 

of the two epidemics (Global TB report, 2014).  

Human TB is caused mainly by 2 species (Mycobacterium africanum (MAF) and 

Mycobacterium tuberculosis) of the group of bacteria known as the Mycobacterium 

tuberculosis complex (MTBC) consisting of nine different species (Brosch et al., 2002; 

Gagneux and Small, 2007; Niemann et al., 2000). Genetic strain typing has subdivided the 

human TB species into seven major lineages which epidemiologically co-associate with 

distinct geographical regions (Firdessa et al., 2013). Genetically MAF is closely related to 

MTB, but can be differentiated from MTB by deletion in genomic region 9 in MAF genome 

and the presence of Tb1 genomic element by spoligotyping the absence of spacers 8, 9 and 39 

(de Jong et al., 2010;Streicher et al., 2007;de Jong et al., 2010). Using both whole genome 

analysis, Lineage 6 was found to be closer to the animal adapted species including M. bovis 

while Lineage 5 is closer to the four lineages of Mycobacterium tuberculosis (MTB) 

(Hershberg et al., 2008). Phenotypically MAF either does not or weakly produce niacin, 

weakly to negative nitrate reductase, dysgonic colonial morphology or prefers microaerophilic 

growing conditions (Castets et al., 1968). 

 

Of particular interest to West Africa is MAF subdivided into 2 lineages (Lineage 5 and 6), 

which can cause up to half of all tuberculosis cases in West Africa (de Jong et al., 2010). 

Reasons why MAF has not established itself outside of the West Africa region still remains 

unknown even though earlier paleopathological investigation using spoligotype analysis of 
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human remains from Egypt's Middle Kingdom (c. 2000–1600 B.C.) identified MAF2 

alongside M. tuberculosis (Nerlish et al., 2009; Zink et al., 2003). The strong 

phylogeography of MAF suggest possible adaptation to distinct human population(s) in West-

Africa (Herb et al., 2008). Indeed, a study performed in Ghana found a variant of 5-

lipoxygenase (ALOX5) gene to be associated with protection against the globally distributed 

Euro-American MTB lineage but not against MAF; perhaps this polymorphism provides a 

selective advantage for MAF in West African populations (Herb et al., 2008). 

 

Using a limited retrospective collection of MTBC isolates from South western Ghana, we 

recently observed an association between MAF and the Ewe ethnic group found only in areas 

with high prevalence of Lineage 5. Here, we followed-up on this observation with a larger 

population-based prospective study involving cases from both the southern and northern part 

of Ghana. Our findings confirm the establishment of MAF as an important cause of TB in 

Ghana, and validate the strong association between Lineage 5 with the Ewe ethnic population. 

Moreover, we found MAF/Lineage 6 associated with HIV co-infection, supporting previous 

findings from the Gambia. 
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Methods 

In the context of a prospective TB study in the Ghana, consecutive sputum smear-positive TB 

cases were enrolled after informed consent. The standard procedure for sputum sample 

collection as outlined by the National Tuberculosis Program (NTP) for routine diagnosis of 

TB in Ghana was used in this study. The study and its protocols were approved by the internal 

review board of the Noguchi Memorial Institute for Medical Research (NMIMR) and Basel. 

Participants provided written consent unless the participant was illiterate; in which case 

witnessed oral consent was used. In accordance with ethical review board regulation in Ghana 

consent was sought from guardians of children below the age of 18 before enrolment into the 

study and in some cases child assent was also sought. Eligible patients were smear-positive, 

pulmonary tuberculosis cases presenting to health centers before initiation of treatment or less 

than 4 weeks of treatment. All eligible TB patients were encouraged to undergo HIV tests 

before initiation of anti TB drugs according to national guidelines. All patients and staff 

involved with the study were blinded to the final data obtained. 

The sputum samples were re-examined for the presence of AFBs at NMIMR and cultured on 

solid agar, after which DNA was extracted and used for genotyping analysis. Briefly, we took 

a 10 μL loop from a Lowenstein-Jensen medium slope and, after heat killing, extracted DNA 

first by digestion with lysozyme and proteinase K, solubilized by detergents sodium dodecyl 

sulphate and cetrimonium bromide, followed by chloroform isopropanol extraction (van 

Soolingen et al., 1993).  

Classifications into main lineages within MTBC were by TaqMan real time PCR (TaqMan, 

Applied Bio systems, USA) using probes targeting lineage-specific SNPs as reported by 

Stucki et al.(Stucki et al., 2012) Spoligotyping was performed to define the sub-lineages and 

strain families within each of the main lineages circulating in Ghana (Kamerbeek et al., 

1997). Spoligotyping patterns were defined according to SITVITWEB database (Demay et 

al., 2012) (http://www.pasteur-guadeloupe.fr:8081/SITVIT_ONLINE). SITVITWEB 
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assigned shared types numbers were used whenever a spoligotyping pattern was found in the 

database while families and subfamilies were assigned based on the MIRU-VNTRplus 

database (http: //www. miru-vntrplus.org) (Weniger et al., 2010). Shared types were defined 

as patterns common to at least two or more isolates. Data collected from enrolled patients, 

including age, sex, immunosuppressive co-morbidity with HIV, place of work, ethnicity, 

status of smoking, level of education, status of smoking , income, presence of BCG scar were 

also recoded.  

 

Data entry, management and analysis 

Information from the structured questionnaire was double entered using Microsoft© Access 

and validated to remove duplicates and data entry inconsistencies. Spoligotype patterns were 

entered in a binary format. A series of univariate and multivariable logistic regression models 

were fitted to assess the relationship between MTBC lineage(s) (primary independent 

variable) and host variables.  
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Results 

Study population 

During the study period July 2012 to February 2014, a total of 1230 smear-positive TB cases 

were identified and 1211 (98.5%) included in the study. Age of patients ranged from 3 to 91 

years with a median age of 39 years (Table 19). Overall, 373/1211 (31%) were females with 

median age of 33 years; the remaining 838 (69%) were males with a median age of 36. 

Twenty-eight out of the 1211 patients (2.3%) were children (age<16 years). Most of the 

patients (N=1112; 91.8%) originated from the southern part of Ghana with the remaining 99 

(8.2%) from northern Ghana. Out of the 1211 patients, 1160 (95.8%) were Ghanaians and the 

remaining 51 (4.2%) were other West African nationals. Most of the patients were of Akan 

ethnicity (N=604, 49.9%), followed by Ga (N=280, 23.1%), Ewe (N=184, 15.2%) with the 

remaining ethnicities accounting for 11.8 % (N=143). In terms of education, 346 patients 

(28.6%) had no formal education, 134 (11.1%) primary education, 632 (52.1%) had up to 

secondary education, and the remaining 99 (8.2%) tertiary education. About half of the study 

population (N=591, 48.8%) were unskilled labourers, 314 skilled (26%) with the remaining 

306 (25.2%) unemployed. Most of the study population had high bacteria burden as measured 

by sputum smear microscopy; 3+ (N=534, 44.1%), followed by 2+ (N=295, 24.4%), 1+ 

(N=266, 22%) and scanty (N=115, 9.5%) 
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Table 19: General Characteristics of patients included in the study 
 

Variable N(1211) (%) 

  n(% n(% 

Sex (male) 838 69.0 

female 373 31.0 

Age category   

             yr 08-25 227 18.7 

             yr 26-40 496 41.0 

             yr 41-77 488 40.3 

Residency   

            North 99 8.2 

            South 1112 91.8 

Occupation   

           unskilled 591 48.8 

             Skilled 314 26.0 

        Unemployed 306 25.2 

Nationality   

       Ghanaian 1160 95.8 

       West Africans 51 4.2 

Income(GHC)   

                 None 449 37.1 

                 100 184 15.2 

                 100-500 505 41.7 

                 >500 73 6.0 

Smear positivity   

         Scanty 1-9 115 9.5 

                +1 266 22.0 

                +2 295 24.4 

                 +3 534 44.1 

Ethnicity   

                   Akan 604 49.9 

                   Ewe 184 15.2 

                  Ga 280 23.1 

                 other 143 11.8 

HIV status   

               Positive 160 13.2 

Education   

        No Education 346 28.6 

        Primary  134 11.1 

       Secondary 632 52.6 

       Tertiary 99 8.2 

Presence of BCG Scar   

               yes 505 41.7 

Smoking status   

             yes 248 20.5 

 

Prevalence of MTBC Lineages and Sub-Lineages  

Of 1230 study cases, 1224 (99.5%) had TB DNA available for genotyping, of which 1211 

(98%) gave interpretable spoligotype results. Ten isolates repeatedly failed to amplify and 3 

isolates had results suggestive of mixed infection. SNP typing identified 152 isolates (12.6%) 

as MAF West-African type 1 (MAF1; Lineage 5), 112 isolates (9.2%) as MAF West-African 

type 2 (MAF2; Lineage 6), 871 (71.9%) isolates as the Euro American lineage (Lineage 4), 15 
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isolates (1.2%) as lineage 1, 42 isolates (3.5%) as Lineage 2, 12 isolates (1%) as Lineage 3 

and 7 (0.6%) as M. bovis. All isolates were further sub-typed using spoligotyping. 

Among the 871 Lineage 4 isolates, 503/871 (58%) belonged to ‘Cameroon family’, the most 

dominant sub family of Lineage 4 with the most prevalent spoligotype 61 accounting for 349 

isolates. Seventy –three percent of strains isolated from West African nationals (N=41) 

belonged to the ‘Cameroon family’ defined by spoligotyping pattern 61. 

In addition to Cameroon sub-lineage, seven additional sub-lineages isolates were identified 

among Lineage 4 based on spoligotyping; Ghana (N=198, 22.7%), Haarlem (N=83, 9.5%), 

Uganda I (N=27, 3.0%), Uganda II (N=2, 0.2%), LAM (N=26, 2.9%), S (N=2 (0.2%), New_1 

(N=1, 0.1%) and H37RV_like (N=1,0.1%). 

Spoligotyping of the 264 MAF isolates revealed 92 distinct spoligotypes patterns. Fifty-two 

unique patterns (singletons) were observed with the remaining 40 patterns grouped into 

clusters of 2-26 isolates respectively. Within the 940 MTBss isolates, we had 101 patterns, 

consisting of 90 distinct patterns and with the remaining 11isolates identified as singletons. 

We compared the 193 spoligotypes found in this study with those contained in an 

international spoligotype database, 130 of our spoligotypes were already described in SITVIT 

database. The other 63 spoligotypes were novel. Of the 63 novel spoligotypes, 52 clustered 

already clustered and 13 were unique.  

 

Association between MTBC lineages and Patient Characteristics 

Using univariate analysis comparing the host variables sex, age, BMI, maximum smear grade, 

and presence of a BCG scar and the different MTBC lineages, no significant differences were 

identified (Table 20). Since the number of isolates belonging to the Lineages 1-3 were small, 

we combined all the M. tuberculosis sensu stricto lineages, therefore, for the remainder of the 

analysis we compared Lineage 5 (n=152) and Lineage 6 (n=112) with the all the other MTBC 
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lineages (n=940, Lineage 1-4). Based on logistic regression model after adjusting for age and 

gender, Lineage 5 was significantly found more common in patients of Ewe ethnicity 

(adjusted odds ratio (adjOR) =3.0; 95% confidence interval (CI): 1.5-4.7) compared to other 

ethnic groups. 

All 1211 patients consented to HIV testing and among them, 160 (13.2%) were HIV sero-

positive. After adjusting for age and gender, TB patient infected with Lineage 6 were 

significantly more likely to be co-infected with HIV(adjusted odds ratio (adjOR) =2.4; 95% 

confidence interval (CI): 1.4-3.9)P<0.001 (Table 21). No other significant lineage association 

was found with other patient variables, including age, sex, the presence of a BCG scar, or the 

degree of smear positivity. 
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Table 20: Distribution of patient variables across the six MTBC lineages in Ghana 
 

Risk factor Lineage 
1 (n=15) 

Lineage 2 
(n=42) 

Lineage 
3 (n=12) 

Lineage 4 
(n=871) 

Lineage 5 
(n=152) 

Lineage 6 
(n=112) 

M. bovis(n=7) 

  n(% ) n(% n(% n(% n(% n(% n(% 

Sex (male) 12(80) 28(66.7) 7(58.3) 615(70.6) 96(63.2) 73(65.2) 7(100) 

female 3(20) 14(33.3) 5(41.7) 256(29.4) 56(36.8) 39(34.8) 0 

Age category        

             yr 08-25 2(13.3) 8(19.1) 2(16.7) 169(19.4) 28(18) 17(15.2) 1(14.3) 

             yr 26-40 6(40) 19(45.2) 4(33.3) 354(40.6) 62(41) 49(43.8) 2(28.6) 

             yr 41-77 7(46.7) 15(35.7) 6(50) 348(40) 62(41) 46(41) 4(57.1) 

Residency        

            North 0 3(7.1) 0 79(9) 8(5.3) 8(7.1) 1(14.3) 

            South 15(100%) 39(92.9) 12(100%) 792(91) 144(94.7) 104(92.2) 6(85.7) 

Occupation        

           Skilled 3(20) 10(23.8) 3(25) 237(27.2) 35(23) 24(21.4) 2(28.6) 

          Unskilled 12(80) 32(76.2) 9(75) 634(72.8) 117(77) 88(78.6) 5(71.4) 

      others        

Income(GHC)        

                 None 5(33.3) 18(42.9) 3(25.0) 412(47.3) 65(42.7) 43(38.4 3(42.8) 

                 100 3(20.0) 7(16.7) 1(8.3) 125(14.5) 32(21.1 16(14.3) 0 

               100-500 6(40.0) 14(33.3) 6(50.0) 282(32.3) 51(33.5 45(40.2) 1(14.4) 

               >500 1(6.7) 3(7.1) 2(16.7) 52(5.9) 4(2.6) 8(7.1) 3(42.8) 

Smear positivity        

         Scanty 1-9 2(13.3) 5(11.9) 0 80(9.2) 2(1.3) 0  

                +1 3(20.0) 9(21.4) 3(25.0) 199(22.8) 34(22.6) 18(16.1)  

                +2 4(26.7) 9(21.4) 4(33.3) 213(24.6) 37(24.3) 28(25)  

                 +3 6(40.0) 19(45.2) 5(41.7) 352(40.4) 79(52.0) 66(58.9) 7(100%) 

Ethnicity        

Akan 10(66.7) 18(42.8) 6(50) 448(51.4) 39(25.7) 78(69.7) 5(71.4) 

Ewe 1(6.7) 4(9.5) 1(8.3) 110(12.6) 58(38.2) 10(8.9) 0 

               Ga 4(26.7) 15(35.7) 5(41.7) 197(22.6) 47(30.9) 11(9.8) 1(14.3) 

Others 0 5(11.9) 0 116(13.3) 8(5.3) 13(11.6) 1(14.3) 

HIV status        

              Positive 2(28.6) 1(7.7) 3(42.9.0) 96(18.5) 28(29.5) 29(34.9) 1(25.0) 

Education        

No Education 5(33.3) 15(35.7) 4(33.3) 231(26.5) 50(32.9) 40(35.7) 1(14.3) 

       Primary 1(6.7) 5(11.9) 6(50) 91(10.4) 21(13.8) 15(13.4) 0 

      Secondary 9(60.0) 18(42.9) 1(8.3) 477(54.8) 70(46.1) 47(42.0) 5(71.4) 

      Tertiary 0 4(9.5) 1(8.3) 72(8.3) 11(7.2) 10(8.9) 1(14.3) 

Crowding        

10 per house 2(13.3) 9(21.4) 6(50.0) 238(27.3) 44(28.9) 33(29.5) 2(28.6) 

>10 per house 13(86.7) 33(78.6) 6(50.0) 633(72.6) 108(71.1) 79(70.5) 5(71.4) 

BCG Scar        

               yes 9(60.0) 17(40.5) 4(33.3) 361(41.4) 64(42.1) 46(41.1) 4(57.1) 

               no 6(40.0) 25(59.5) 8(66.7) 510(58.6) 88(57.9) 66(58.9) 3(42.9) 

Smoking status        

yes 4(26.7) 7(16.7) 2(16.7) 179(20.6) 25(16.4) 28(25.0) 2(28.6) 

no 11(73.3) 35(83.3) 10(83.3) 692(79.4) 127(83.6) 84(75.0) 5(71.4) 
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Table 21:Distribution of patient variables across the three main MTBC  lineages in Ghana 

 
Risk factor Lineage 5 

(n=152) 
Lineage 6 
(n=112) 

MTBss (n=940) OR (95%CI) adjOR (95%CI)a 

  n(% n(% n(%   

Sex (male) 96(63.2%) 73(65.2%) 662(70.6%) 1.3 (0.97-1.98)  

female 56(36.8%) 39(34.8%) 278(29.4%)   

Age category      

             yr 08-25 28(18%) 17(15.2%) 181(19.4%) 1.42 (0.82-2.64)  

             yr 26-40 62(41%) 49(43.8%) 383(40.6%) 0.96 (0.4-1.96)  

             yr 41-77 62(41%) 46(41%) 376(40%) 1.06 (0.59-1.91)  

Residency      

            North 8(5.3%) 8(7.1%) 82(9%) 0.58(0.27-1.22)  

            South 144(94.7%) 104(92.2%) 858(91%) ref  
Occupation      
           Skilled 35(23%) 24(21.4%) 171(27.2%) 0.9(0.81-1.0)  
          Unskilled 117(77%) 88(78.6%) 769(72.8%) ref  
Income(GHC)      
                 None 65(42.7%) 43(38.4%) 260(47.3%) 0.8(0.62-0.98)  
                 100 32(21.1%) 16(14.3%) 136(14.5%) 0.91(0.76-1.0)  
               100-500 51(33.5%) 45(40.2%) 408(32.3%) ref  
               >500 4(2.6%) 8(7.1%) 58(5.9%) 1.3(0.97-1.98)  
Smear positivity      
         Scanty 1-9 2(1.3%)  80(9.2%) 0.6(0.45-0.72)  
                +1 34(22.6%) 18(16.1%) 199(22.8%) 0.78(0.65-1.8)  
                +2 37(24.3%) 28(25%) 213(24.6%) 0.98(0.42-1.84)  
                 +3 79(52.0%) 66(58.9%) 352(40.4%) ref  
Ethnicity      

                   Akan 39(25.7%) 78(69.7%) 482(51.4%) ref  

                   Ewe 58(38.2%) 10(8.9%) 116(12.6%) 3.0(1.5-4.7) 2.79 (1.47-5.29)* 

                  Ga 47(30.9%) 11(9.8%) 221(22.6%)  0.85 (0.43-1.69) 

                 other 8(5.3%) 13(11.6%) 118(13.3%)  1.64 (0.53-5.34) 

HIV status      

               Positive 28(29.5%) 29(34.9%) 96(18.5%) 2.4(1.4-3.9 2.2(1.32-3.7) 

Education      

     No Education 50(32.9%) 40(35.7%) 231(26.5%) 0.83(0.75-1.0)  

     Primary  21(13.8%) 15(13.4%) 91(10.4%) 0.72(0.65-1.11)  

     Secondary 70(46.1%) 47(42.0%) 477(54.8%) 0.96(0.83-1.3)  

    Tertiary 11(7.2%) 10(8.9%) 72(8.3%)   

Presence of BCG 
Scar 

     

               yes 64(42.1%) 46(41.1%) 430(41.4%) 1.1(0.69-1.7)  

Smoking status      

              yes 25(16.4%) 28(25.0%) 248(20.6%) 0.6(0.7-1.8)  
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Discussion 

In this study, we observed a strong association between MAF and HIV; stratifying by Lineage 

we found this association to be driven by MAF2. HIV infection is known to impair cellular 

immunity thereby increasing the risk of reactivation of latent TB thus making TB the most 

common co-infection in subjects infected with HIV (Pawlowski et al., 2012). Furthermore 

HIV infection has emerged as by far the most important of all the predisposing factors for TB: 

in persons co-infected with the tubercle bacillus and HIV, the overall annual risk of 

developing active tuberculosis is 20 times the risk of immunocompetent individuals 

(Pawlowski et al., 2012). Our finding and that of a previous study conducted in the Gambia 

that showed an association between HIV and MAF/Lineage 6 (de Jong et al., 2005); suggest 

that this lineage may not be as virulent as MTB in immunocompetent individuals.  

 

Early animal models and macrophage infection assays indicated differences in virulence of 

tubercle bacilli isolated from different geographical regions (de jong et al., 2005; Castets et 

al., 1979). Early animal studies comparing MAF from Senegal to MTB showed that MAF 

was less virulent (Bold et al., 2012; Korsak et al., 1979). Similarly, de Jong et al found that 

the rate of progression to active disease in TB exposed household contacts is longer for those 

infected with MAF2 compared to MTB (de Jong et al., 2008; Smith, 2003). The MTBC have 

evolved multiple mechanisms to interfere with the host immune system, allowing the state of 

latency (Portevin et al., 2011). Many of these mechanisms are mediated through specific 

components of the mycobacterial cell wall; different components of this cell wall, as well as 

other mycobacterial molecules modulate various aspects of the innate and the adaptive 

immune response (Portevin et al., 2011). These mechanisms include interfering with 

phagocytosis and phagosome-lysosome fusion, the production of anti-inflammatory cytokines 

such as IL-10, and interfere with the IFN-γ signaling (Portevin et al., 2011). MTBC has also 

the capacity to inhibit cytokine production, antigen presentation, and MHC II expression in 
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antigen presenting. To test whether MAF and MTB elicit different host innate immune 

responses, it was found by the group in the Gambia that host-pathogen interaction after 

infection depends on the infecting MTBC lineage using infected human monocyte-derived 

macrophages. Hours of infection, MAF elicited in average a statistically significantly higher 

pro-inflammatory response as measured by IL-12, TNF, and IL-6 when compared to 

representatives of MTB lineages (de jong et al., 2005).  

 

A previous paper from Ghana did not detect any association between MAF and HIV co-

infection (Meyer et al., 2008). The prevalence of MAF is reported to be going down in some 

West-African countries whereas in Ghana, the prevalence of MAF overall has been stable 

over the last 10 years around 20%. Yet, the present distribution inferred from this study 

indicates that the proportion of MAF1 among all MAF is going down while that of MAF2 is 

increasing. In our current analysis we found the proportion of MAF2 among all MAF (42%)   

to be significantly higher (odds ratio (3.52; 95% confidence interval (CI): 2-6.1) P<0.001 

18% compared to the 18%  reported in our earlier studies of total MAF isolates (Yeboah-

Manu et al., 2011). This difference could account for the discrepancies between the previous 

study by Yeboah-Manu et al and our study. We speculate from our study that increasing 

prevalence of TB/HIV in Ghana may drive the increase in prevalence of MAF2, even though 

the overall prevalence of MAF has not changed over the last 10 years.  

Additionally, de jong et al reported an association between MAF and patient of old age 

consistent with the long latency period associated with this lineage (de Jong et al., 2010). 

Longer latency in MAF might be an adaptation to low host densities, whereas a reduced 

latency period (i.e. increased “virulence”) in MTB infections might be an adaptation reflective 

of the crowded conditions leading to higher high rates of TB in urban areas. However, we did 

not find any differences between the two species with regard to age.  
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In our previous study (Chapter 6), we demonstrated a plausible reason for the restriction of 

MAF to West Africa. Our analysis revealed that patients infected by MAF1 as opposed to 

MTB were more likely to belong to the Ewe ethnic group. This association was independent 

of other variables and was not due to a single outbreak as the Ewe isolates differed in their 

spoligotypes. In the present study, we were able to replicate this finding with an independent 

and much larger dataset. Although social cohesion interlace with less intermingling could 

account for the geographical restrictiveness of MAF, biological factors could equally account.  

In our previous study, the samples were collected mainly from the central, western and 

Greater-Accra regions of Ghana. The present study which is population based collected 

samples from the Greater Accra and Northern regions of Ghana. 

Given the current efforts in the development of new TB vaccine, strain and host diversity 

should be considered when evaluating new vaccine candidates especially in areas where MAF 

is prevalent. 
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Chapter 8: General Discussion and Conclusion 

 

8.1. General Discussion 

TB remains a major public health challenge globally, despite recognized centuries ago. The 

recent upsurge of cases is partly due to the interaction between TB and HIV, delays in 

diagnosis that perpetuate transmission in the community and the emergence of drug resistant 

strains of MTBC. To overcome these challenges, the STOP-TB strategy was developed by the 

World Health Organization (WHO) with the aim to dramatically reduce the global burden of 

TB by 2050 by ensuring that all TB patients benefit from universal access to high-quality 

diagnosis and patient-centered treatment. To eliminate TB as a public health problem by 

2050, STOP-TB was tasked to identify and intensify research into areas of importance which 

might provide answers needed for the elimination. These areas include: 1) development and 

evaluation of simplified diagnostic tools, 2) development of new drugs, 3) understanding drug 

resistant TB in the context of TB control, and 4) the effects of commodities such as HIV on 

the prevalence of TB.  

The present PhD work contributed to the STOP TB research agenda by: 1) analyzing the level 

of drug resistant in Ghana and implication on treatment outcome 2) established for the first 

time a rapid molecular tool for diagnosing drug resistant TB in Ghana 3) established 

molecular methods in an endemic country and analyzed the phylogenetic diversity of MTBC 

isolates in-country and 4) analyzed patient variables associated with MTBC diversity.  

 

8.1.1 Drug resistance in the context of TB control in Ghana. 

 

One of the goals of STOP-TB is to drastically reduce the burden of TB. However, this goal is 

undermined by the development of drug resistance which threatens to make TB untreatable. 

In low-resource TB-endemic countries including Ghana, current control strategies rely mainly 

on case detection by microscopy and treatment by the DOTS strategy, monitoring of 
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treatment complemented with microbiological support at 2 months and 5 months of drug 

treatment. While microscopy is good as it is simple and cheap and therefore applicable at 

peripheral centers of low-resource countries, it is not very sensitive. More importantly, it has a 

major limitation of not being able to detect the resistance status of the infecting pathogen. 

Thus, in such countries including Ghana, policies guiding re-treatment regimens rely solely 

on periodic drug resistance surveys. 

One of the main contributions of the present PhD work was to analyze the level of drug 

resistance in Ghana and for the first time correlating clinical response to in vitro drug 

susceptibility. We found a high rate of drug resistance among the isolates analyzed and for the 

first time in Ghana reported that indeed good clinical treatment outcome depends primarily on 

the susceptibility of the M. tuberculosis isolate to RIF (Chapter 3). RIF and related rifamycins 

are the most important drugs used for the treatment of TB (American Thoracic 

Society/Centers for Disease Control and Prevention/Infectious Diseases Society of 

America, 2003). Rifamycins interfere with bacterial DNA-dependent RNA polymerase and 

are potent bactericidal agents (Kohanski et al., 2010; Chairsson, 2003). In addition, RIF and 

its analogues actively kill multiplying extracellular and intracellular mycobacteria 

(Chairsson, 2003), and hence is an important drug for successful sputum smear-conversion at 

2 months of drug treatment. The addition of RIF to treatment regimens for TB reduced the 

duration of therapy needed for active disease from 12 to 6 months. Because of their potencies 

and sterilizing activities, rifamycins are the cornerstone of modern therapy for active TB 

(Chaisson, 2003) and are extremely effective in the treatment of mycobacterial diseases 

(Bishai and Chaisson, 1997).  

For effective case management and control of drug resistance, the National TB Program of 

Ghana is currently rolling out the one of WHO rapid diagnostic tools (WRD); Xpect 

MTB/RIF at regional centers for treatment support of risk groups which include previously 
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treated cases, TB patients with previous contact with a DR case, and smear-positive persistent 

cases.  

Our finding also confirms the need for restricted use of RIF to guard against incidence of DR. 

Currently RIF is also important for the treatment of leprosy and Buruli ulcer (BU) (Dega et 

al., 2000; Dega et al., 2002). BU is the third most common mycobacterial disease in the 

world and second after TB in Ghana (Amofah et al., 2002). Similar to other African BU 

endemic countries, treatment of BU usually relies on clinical judgment without 

microbiological confirmation. This is due to the reported low sensitivity of microscopy; 

extremely slow growth of M. ulcerans and the high infrastructural and expertise demand of 

PCR. This inevitably has reduced microbiological confirmation to a quality control tool for 

clinical diagnosis of BU. Although, the general perception is that diagnosis based on clinical 

judgment alone can be adequate, incidents of misdiagnosis have been reported. BU cases have 

been missed initially and, on the other hand, presumed BU lesions proved to be due to other 

conditions including cutaneous TB caused by MTBC (Bratschi et al., 2012). If this approach 

of BU treatment is not checked, the development of RIF resistance will be inevitable, 

threatening TB treatment. There is urgent need for collaborative efforts between the TB and 

BU programs in Ghana to curb the misuse of RIF in the communities.  

Using Genotype MTBDRplus (Chapter 4), this study confirmed high INH resistance in 

Ghana. In previous reported studies and that from this thesis (Chapter 3) using phenotypic 

methods, Ghana has been shown to be among the countries in Africa with a comparably high 

rate of resistance of INH (van der Werf et al., 1989; Owusu-Dabo, 2006). An effective TB 

treatment is based on at least threefold objective; 1) to reduce bacilli load rapidly 2) prevent 

emergence of drug resistance 3) prevent relapse. Objectives 1 and 2 are achieved by the multi-

therapy while that of objective 3 is through the extension of treatment in the continuous 

phase. In patients with INH resistance, the continuous phase regimen of combined INH and 

RIF becomes RIF mono-therapy, risking the incidence of RIF resistance. This effect is more 
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worrying in HIV co-infected cases. RIF has an effect on the activity of the CYP3A4 enzyme 

(oxidizes small foreign organic molecules such as toxins or drugs, so that they can be 

removed from the body) (Yamashita et al., 2103) and potentially reducing the concentration 

of RIF and lowering blood levels of other drugs that utilize this pathway of metabolism, 

including many antiretroviral medications (Burman et al, 1999). These interactions mean that 

RIF cannot be maximally used by most HIV-infected people taking antiretroviral therapy 

leaving INH as the main sterilizing drug. The high INH resistance of more than 10%, 

probably, calls for a third drug such as ethambutol to be added in the continuous phase for 

countries like Ghana to guard against  relapse and drug resistance. Although Ghana is yet to 

introduce INH preventive therapy (IPT) for TB/HIV patients, considering the high level of 

INH resistance in Ghana, this idea may not be prudent.  

 

8.1.2 Phylogeography of MTBC and implications for TB Control in Ghana 

 

Human adapted MTBC lineages are known to exhibit a strong phylogeographic population 

structure (Gagneux and Small, 2007). One main achievement of this study was to confirm 

the importance of Lineage 5 and 6 in Ghana; spanning over 8 years, these pathogens still 

accounts for approximately 20% of pulmonary TB cases (Chapter 5 and 6) despite reported 

decline in some West African countries. Although the prevalence of MAF overall was 

consistent over the years, we observed a gradual decline in the prevalence of Lineage 5 and 

whilst there was an increase in Lineage 6 cases. A study conducted in the Gambia by de Jong 

et al showed a strong association between Lineage 6 and HIV (de Jong et al., 2005). This 

same group in a further population based study showed that while MTB infected cases and 

MAF cases equally transmit infection among close contacts, progression to active disease was 

much slower in contacts of MAF infected individuals. (de Jong et al., 2008). Probably one 

can speculate that the high HIV-TB co-infection is one possible factor driving the up-surge of 

Linage 6 causing TB among the Ghanaian population.  
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Possibly, one reason for the stability of  MAF in Ghana in contrast to other west African 

countries might be adaptation of this bacterial lineage to (some) human populations. Indeed 

associations between different MTBC lineages and human ethnicities have been observed 

before; in San Francisco, Lineage 1, 2 and 4 were strongly associated with Filipino, Chinese, 

and “white” ethnicities, respectively (Gagneux et al., 2006) and in more recently, Lineage 2 

with Hui ethnicity in China (Pang et al., 2012). Our reproducible findings of an association 

between Lineage 5 and Ewe patient ethnicity together with those discussed above are 

consistent with host-specific adaptation of MTBC lineage and provide plausible reasons for 

the establishment of MAF in West Africa. This provides the bases for in-depth host genetic 

factors given that that host polymorphism associated with protection against Euro-American 

M. tuberculosis and not MAF have been identified in Ghana. Whether the Ewe population in 

Ghana harbors this polymorphism that makes them more susceptible to TB caused by MAF 

especially Lineage 5 is unknown. Results from such studies will help inform the development 

of effective control strategies. 

 

Five of the seven main human-adapted MTBC lineages belong to MTB sensu stricto and 

among these various sub-lineages and clades exist (Gagneux et al, 2006). Within the MTB 

sub-groups, sub-lineages and clades seems to be well adapted within certain populations. This 

observation informed a study that looked at the evolutionally history of the pathogen by 

analyzing the whole genomes of 259 MTBC strains compared with that of human genomes 

from the same geographic regions and concluded that based on the long standing association 

between MTBC and its human host, distinct MTBC genotypes/clades might have adapted to 

different human population, perhaps as a consequence of long co- evolutionary process 

between MTBC and its host (Comas et al., 2013). For example more than 60% of TB in 

Uganda is caused by one particular sub strain-Uganda genotype and this genotype is mainly 

found in Uganda and neighboring countries, and rarely found elsewhere (Wampande et al., 
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2013). Similarly the Beijing family of Lineage 2 associated with Asia causes more than 90% 

of all TB cases in that region (Parwati et al., 2010)  

In the context of the PhD work, we confirmed the importance of a one particular sub-lineage 

of Lineage 4 known  as the Cameroon (CAM) genotype as an important cause of TB in Ghana 

causing about 60% of all TB cases (Yeboah-Manu et al., 2011; Asante-Poku et al, 2014 

unpublished data) This genotype first described in Cameroon as having a typical 

spoligotype, SIT61 signature (spacers 23–25 and 33–36 missing) and representing 34% of the 

MTBC isolates in 2003 in Cameroon (Niobe-Eyangoh et al., 2003; Koko et al., 2013)  has 

been identified as dominant in other West-African states. The CAM genotype belongs to the 

principal genetic group 2 (i.e. modern strains) and lacks the TbD1 region (Niobe-Eyangoh et 

al., 2004). Following its initial identification, several CAM spoligotype variants (SIT403, 

SIT852, SIT808, and SIT852) have been reported in different West-African and some central 

African states (Niobe-Eyangoh et al., 2004). Whether these different variants exhibit 

different levels of virulence is still unknown. The virulence of this lineage has been 

established by various reports and as an important predisposing factor for occurrence of DR-

TB has been published (Koro et al., 2013; Assam et al., 2013; Lawson et al., 2012). In our 

work (Chapter 3), we found a strong association between the occurrence of STR and any form 

of resistance was significantly higher compared to the MAF1 lineage (Yeboah-Manu et al., 

2011). Probably the virulence and transmissibility of this sub-lineage may have accounted for 

the observed decline of the MAF1 in some West-African states, which was previously 

identified as an importance cause of TB, accounting for about 50% of TB. While in 1971 

Huet et al. showed that 56% of human TB cases in Cameroon were caused by MAF (Huet et 

al., 1971), in 2003 Niobe-Eyangoh et al. reported a rate of 9% and more recent data indicated 

an even lower prevalence of MAF1 in that country (Sarah Niobe-Eyangoh, personal 

communication). In addition, most studies in endemic setting in including Ghana and Nigeria 

using number of molecular genotyping analyses using spoligotyping and MIRU/VNTR, found 
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that MTB isolates were more likely than the M. africanum isolates to be part of a 

spoligotyping cluster, implicating the high transmissibility or being involved in cases of 

recent TB transmission. This phenomenon suggests an emergence of this MTBC sub- family 

in the countries of West Africa. This observation calls for a critical effort for case detection, 

diagnosis to reduce transmission of TB in Ghana. The Ghanaian National TB Program with 

support of the Global Fund and the WHO just finished a National TB prevalence survey and 

preliminary results indicate a high prevalence of TB (3 times the WHO estimated figure; 

personal communication with NTP Ghana). This is worrying and could consequences for the 

control of TB in Ghana bearing in mind that Cameroon has a high virulence nature and is 

important factor for occurrence of DR-TB. This calls for more education of the communities 

and rigorous case finding activities to reduce transmission. 

 

Geographic confinement and socio-economic factors could also account for the predominance 

of the Cameroon family within this sub-region of Africa. Data on the genetic diversity of 

MTBC in sub-Saharan Africa suggested that this family is found mainly within countries in 

Central and West African (Koro et al., 2013) where substantial amount of intermingling 

occurs due to the free passage of goods and services. Hence, cross-border transmissibility 

could accounts for its high prevalence across West Africa. Active case detection and 

treatment especially at the country’s borders will probably slow down the transmission of this 

very successful lineage. 

 

In addition to the Cameroon genotype, this study showed for the first time that more than 3% 

of strains in Ghana belong to Lineage 2 which includes the Beijing stains. The Beijing 

genotype, normally found in Asia is one of the most successful clades in the present 

worldwide TB epidemic and is often associated with drug resistance. With an increasing 
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influx of Chinese migrants to Ghana, it would not be surprising to find a higher prevalence of 

the Beijing strains in the near future. The control program should actively screen for active 

cases especially in areas where these migrates are located to prevent spread of drug resistance 

associated with Beijing strains in Ghana.  

 

8.1.3 TB/HIV Comorbidity and its impact on control strategies in Ghana 

HIV and TB co-infection is acknowledged globally and each infection alters the natural 

course of the other infection. HIV co-infection increases the risk of both primary and 

reactivation of TB by 20-fold (Selwyn et al., 1989), whilst the development of active TB 

increases viral load and decreases cytokines that could suppress HIV growth (Goletti et al., 

1996; Toosi, 2003). Thus M. tuberculosis and HIV act in synergy, hastening the decline of 

important immune functions and leading to subsequent death if untreated, making HIV the 

single most important risk factor for progression to active TB with high mortality rate. 

Although the  mechanisms behind the breakdown of the immune defense of the co-infected 

individual are not well known, , we do know that HIV impairs CD4 T cell mediated immunity 

which is essential for control of M. tuberculosis infection (Pawlowski et al., 2012) 

 

Within the frame work of this study, 13% of sputum smear positive patients analyzed were 

HIV positive in a country where the general population HIV sero-prevalence is below 2%, 

confirming the synergy between TB and HIV. The prevalence reported in this study is far 

lower than the estimated 24% reported by the NTP in 2013.This is likely because this study 

focused mainly on sputum smear positive TB patients while that of the NTP included sputum 

negative- and extrapulmonary TB patients. HIV patients usually present with sputum negative 

smear and extrapulmonary TB due to the reduced immune status requiring low bacterial load 

to stimulate progression of infection to disease state in contrast to low sensitivity of 

microscopy which requires a minimum  bacilli load of 5,000/ml (Shingadia et al., 2003; 
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Getahun et al., 2007). Current case detection and bacteriological monitoring of treatment 

policy in Ghana, similar to other endemic low-resourced countries relies on sputum smear 

microscopy, meaning many TB/HIV cases go undetected. In response, the WHO has provided 

several key guidance for national TB control programs such as the use of light-emitting diode 

(LED) microscopes to improve the sensitivity and turnaround time of sputum smear 

microscopy (World Health Organization, 2011). Furthermore, to improve the accuracy of 

TB detection and drug susceptibility testing through the use of liquid culture and molecular 

line probe assays (LPAs) such as Xpect MTB/RIF (Kurbatova et al., 2012; Barnard et al., 

2008). The Ghana NTP with the aid of developing partners has implemented some of these 

recommended tools at selected regional and tertiary facilities to help evaluate alternative 

algorithms for case confirmation. Progress in the implementation of these initiatives will be 

dependent on key partnerships with the international laboratory community and ensuring that 

quality assurance procedures are followed by the country's national laboratory network. 

 

One reason for the high prevalence of TB/HIV in Ghana could be due to the reported 

association between HIV and Lineage 6. MAF has been associated with reduced virulence 

even in early animal models (Castets, 1969; Bold et al., 2012), a longer latency and a slower 

rate of progression to active disease in humans. All these characteristics are consistent with an 

opportunistic pathogen. Indeed, MAF exhibits some characteristics of opportunistic pathogens 

in that they become pathogenic following an immune alteration of their host e.g. prior 

infection, immunodeficiency, and ageing. For example studying 19 HIV-positive and 228 

HIV-negative patients TB patients from The Gambia, de Jong and co-workers reported an 

association between MAF and HIV, ageing and with severe malnourishment (de jong et al., 

2005). These data considered MAF to have properties of an opportunistic pathogen. In 

contrast, Meyer et al reported no differences in the rates of HIV co-infection in Ghana 

between MAF and MTB infections. 
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Within the framework of this PhD work, Lineage 6 infected patients were more likely to be 

HIV positive than other MTBC lineages (Chapter 7). This confirms earlier reports by de Jong 

et al (de Jong et al., 2005). If indeed this association is not by chance, then one will expect to 

be MTB out-competed by MAF where rates of HIV are low, as was likely to be the case in 

Cameroon in the 1970s and 1980s, while increasing HIV prevalence would be associated with 

an increase in lower virulence strains such as MAF. In Ghana, over the last couple of year the 

rate of TB-HIV co infection has risen from 14% to 24% in 2014, a phenomenon which is 

consistent with confirms the above hypothesis.  

 

On the other hand, TB/HIV co-infection is associated with disseminated TB which in turn is 

associated with lower transmission. One could assume that because of their immune-

suppression and impaired CD4 T cell mediated immunity which is essential for control of M. 

tuberculosis infection, HIV-infected patients will be more likely to get infected by any 

genotype including geographically restricted genotypes compared to HIV negative patients. In 

this case ʽʽAny MTBC genotype can make irrespective of their virulence (Fenner et al., 

2013; Brites and Gagneux, 2012). This assumption is supported by an observation from a 

study in San Francisco (Gagneux et al., 2006) where HIV positive individuals had a higher 

likelihood of being infected with allopatric MTBC lineages than HIV negative patients. This 

is further supported by the assumption that HIV infected patients harbor the same or more 

MTBC genotypes than HIV negative, thus it is possible that in HIV negative individuals, the 

less virulent strains may not easily transmit in the presence of a more virulent genotype. 

Considering the fact that Lineage 4 is the most dominant lineage in both Gambia and Ghana, 

based on our assumption above, in the presence of Lineage 4 in immunocompetent individual, 

Lineage 6 will have a lower progression to disease. This is the opposite in 

immunocompromised individual where Lineage 6 is expected to have equal opportunity to 

progress to disease as Lineage 4 hence its higher prevalence in HIV infected individual.  
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8.1.4 Micro-epidemiological studies and TB control in Ghana 

The conventional indicators for assessing performance of the national program in Ghana 

similar to all TB endemic countries depend on a number of factors. This includes the total 

number of TB cases detected, treated and either cured, completed, failed, relapsed and died. 

While these indicators are useful, they ignore important information such as transmission 

within the community. The use of molecular biology tools together with conventional 

epidemiology termed molecular epidemiology/micro-epidemiology has been acknowledged 

globally as an additional tool for effective TB control. As well as enabling researchers to 

identify circulating strains and highlight particularly virulent strains, molecular 

epidemiological techniques have been used successfully to detect recent transmission, identify 

populations at risk for TB and environmental risk factors.  

One of the major contributions of the present PhD studies to the control of TB in Ghana was 

to establish a robust PCR based reduced set of MIRU-VNTR loci for strain differentiation in a 

TB endemic country (Chapter 5). This assay is specific to the main lineages found in Ghana 

(Chapter 5) and especially useful for a country like Ghana where  20% of all TB cases are 

caused by M.africanum (Yeboah-Manu et al., 2011) (Chapter 6 and 7). 

In addition, cost analysis performed on this assay found it to be more cost effective than the 

traditional genotyping schemes used for TB transmission studies. For a low resourced country 

like Ghana, this assay is beneficial as it not only defines the main lineages circulating, 

combined with classical epidemiological methods, it also identify groups most at risk and risk 

factors for transmission, differentiate relapse from re-infection cases and detect laboratory 

cross-contamination. In a country like Ghana where TB control is mainly based on case 

detection and treatment, and largely ignoring potential hot spots for TB transmission, this 

assay can provide important information for the development of country-specific TB control 

action plan. We are now using these minimal MIRU-VNTR set for molecular epidemiological 

investigation of MTBC transmission in population based study in Ghana However, although 
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this method has been adopted by the NTP to trace on going transmission, this assay is limited 

by the need for elaborate equipment like the PCR machine.  

Since 1999, the Bacteriology Department of the Noguchi Memorial Institute for Medical 

Research (NMIMR) has assumed the role of the National TB Reference Laboratory in Ghana 

and has been actively involved in national control activities. Some of the activities that have 

been carried out include, conducting quality assurance, development of diagnostic manuals 

for peripheral and regional laboratories, drug susceptibility and case prevalence surveys. 

Findings from these activities have been used to improve control program activities, 

especially in the areas of case detection and treatment. An important question that the 

reference laboratory needs to help the program to address is: what are the risk factors that 

enhance transmission and what are the patient groups that are at increased risk of developing 

TB. The establishment of these genotyping methods at the reference laboratory will facilitate 

the identification of local characteristics that enhance TB transmission, and will be able to 

direct the control program to use its limited resources to establish measures that will limit the 

transmission of TB in high-risk populations. In addition, TB cases that do not clinically 

respond to treatment are classified as failures/relapse; these genotyping methods will be 

useful to differentiate between exogenous re-infection from true relapse cases. 
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8.1.5 Conclusions 

This PhD work was conducted partly in Ghana a country where ~ 20% of TB is caused by 

MAF. Several research stays at the Swiss Tropical and Public Health Institute in Basel helped 

with confirmation of results obtained and facilitated technology transfer to the laboratories of 

the Noguchi Memorial Research Institute in Ghana. The most important scientific 

achievements were:  

1. We determined the level of drug resistance in Ghana and for the first time confirmed 

the importance of RIF in the management of TB in Ghana. 

2. We evaluated the sensitivity of the WHO recommended commercial rapid DNA-based 

drug susceptibility testing kits -Genotype MTBDR-plus for the identification of MDR 

strains in Ghana and confirmed its correlation with phenotypic DST. This provided the 

platform for the usage of Genotype MTBDR-plus in all regional hospitals as a means 

of controlling the spread of MDR strains in Ghana.  

3. DNA fingerprinting of MTBC isolates from Ghana by SNP genotyping, spoligotyping 

and large sequence analysis provided for the first time, information on different 

genotypes within an endemic country of Africa. Two of the most dominant genotypes- 

Lineage 5 and 6 confirms the establishment of MAF in Ghana.  

4. We provided for the first time a plausible explanation for why MAF/Lineage 5 might 

be restricted to West Africa and also confirmed the possible opportunistic nature of 

TB caused by Lineage 6. 

5. Analysis of samples collected from pulmonary TB patients revealed a low prevalence 

of M. bovis, confirming that infection by M. bovis is not a public health (as opposed to 

economic) problem in Ghana. 

6.  We defined a cost effective genotyping assay for TB transmission studies. 

Complemented with classical epidemiological studies, this assay identifies clusters 

and gives clear indication of on-going TB transmission in Ghana and also identifies 
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groups most at risk of infection. Screening of Ghanaian MTBC isolates with this 

method provides useful information for the control program. 

 

8.1.6 Future outlook 

This PhD established the Cameroon sublineage as the most dominant MTBC genotype in 

Ghana. The Cameroon family is one of the most successful sublineages of Lineage 4, 

exclusive to West Africa. Based on the “Out-of-and-back to Africa” scenario of MTBC 

evolution (Hershberg et al., 2008), it is likely that the Cameroon sublineage established itself 

before the reintroduction of the other sublineages. This suggests it has a selective advantage 

over other sublineages. However, unlike the globally distributed Beijing sublineage, where 

detailed epidemiological and animal model studies have established its association with drug 

resistance (Mokrousov et al., 2006), hyper-virulence (Chen et al., 2012) and higher 

clustering rate (Hanekom et al., 2007), not much work has been done on the Cameroon 

sublineage.  

In order to understand and control the spread of the Cameroon sublineage, a detailed 

population based study using our proposed reduced cost effective MIRU-VNTR assay and 

spoligotyping is essential. These tool combined with epidemiological data can provide an 

overhead view including local risk factors contributing to spread of the pathogen. Results 

from this study will inform us on the clustering ability of this pathogen. Clustering is a proxy 

for on-going transmission and several studies have shown the propensity of this pathogen to 

form clusters indicating enhanced transmission. 

Secondly, a series of experimental studies, including e.g. animal models, experimental 

evolution studies comparing the rate of progression to disease caused by the Cameroon 

sublineage, M. tuberculosis clinical isolates; CDC1551, a highly immunogenic strain 

(Tsenova et al., 2005), and HN878; member of the W/Beijing family of strains known for 

high virulence (Bishai et al., 1999) can be performed to establish the virulence of the 
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Cameroon sublineage. The outcome of such studies could inform us on the virulence nature of 

this sublineage. While some members of the modern MTBC especially the Beijing sublineage 

lineage have been shown to exhibit lower early inflammatory response including cytokine 

induction (Sarkar et al., 2012) this has not been established for the Cameroon sublineage. 

This phenotypic property might aid the pathogen to escape early detection by the immune 

system and promote more rapid progression to disease. Immunological studies could take 

advantage of the Cameroon sublineage to study its ability induce production of inflammatory 

cytokines in e.g. human monocyte-derived macrophages.   

 

 Within the frame work of this PhD project, we established the importance of MAF in Ghana 

and also showed an intriguing interaction between host- and pathogen genotype; i.e. 

MAF/Lineage 5 was associated with Ewe patient ethnicity. This is the first time an association 

between MAF and an ethnic group found only in West Africa has been observed. To explore 

this association further, we need to conduct an in-depth host genetic study and look for 

candidate genes/signatures that make this ethnic group susceptible to TB caused by MAF. 

Most new TB drugs and vaccines being developed are based on the most globally distributed 

lineage: Lineage 4 and might not be effective in West Africa where MAF is prevalent. Host 

genetic studies will help identify deficiencies in important cytokines such as IFN- which 

might make such groups of populations more susceptible to TB by MAF. Building on earlier 

studies which showed host polymorphism that offers protective immunity against infection by 

other lineages (Intemann et al., 2009; Thye et al., 2011; Herb et al., 2008), an added 

advantage will be to study the different metabolites produced from the different metabolic 

pathways of MAF. The expression of the different levels of these metabolites at different time 

points during infection can inform targets for development of new TB drugs and vaccines. 

M. africanum is made up of two distinct lineages: Lineage 5 and 6 (de Jong et al., 2010; 

Yeboah-Manu et al., 2010) However, most research works have concentrated on Lineage 6 
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showing its attenuated virulence and its association with immunocompromised (i.e. HIV co-

infected) patients (de Jong et al., 2005). However, very little is known about the phenotypic 

characteristics of Lineage 5. With both lineages occurring in substantial numbers in Ghana, 

comparative genomic analysis can be done to look for candidate genes/signatures that help us 

understand biological differences between the two lineages. Some reports indicate that intra-

species genetic diversity between the M. africanum and MTB is reflected in pathogenesis and 

epidemiology (Coscolla and Gagneux, 2010). Perhaps the same could be true for the two M. 

africanum lineages. This is of importance as it will affect the choice of drug targets, vaccine 

antigens and development of diagnostic tools. RNA-Seq, a recently developed approach to 

study transcriptomic profiles (Wang et al., 2009) can be use to compare gene expression 

differences between the two M. africanum lineages (Rose et al., 2013).  

Several studies have shown that that the proportion of M. africanum causing TB varies by 

region (Diop et al., 1976; Goyal et al., 1999; Addo et al., 2006). Indeed it was speculated 

that due to the low virulence of M. africanum, its prevalence will be high in rural areas with 

minimal number of people as opposed to MTB. Perhaps the same can be true for the two 

lineages. Phylogenetically Lineage 6 is closer to the animal strains than Lineage 5 (de Jong et 

al., 2010), and may have the tendency to be abundant in areas with more animal activities. A 

more detailed spatial and population-based study over a longer period of time could inform us 

on the prevalence of the Lineage 5 and 6 in different parts of Ghana. 

 

In most African countries, diabetes is an increasing public health problem due to changing 

lifestyles. Studies have shown that countries with increasing diabetes prevalence also see a 

significant increase in TB. Ghana has seen an increase in diabetes prevalence from 5% to over 

10 % in the last 10 years (personal communication; Prof Amoah). Similar to HIV, diabetes 

also compromises the host immune system by effecting macrophage and lymphocyte 

function, essential for the control of TB. Nothing is known with respect to the impact of 
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diabetes on the transmission dynamics and population genomics of MTBC. These prevailing 

new conditions for TB could account for the increase in prevalence of low virulence 

genotypes like Lineage 6 as observed in Ghana. To confirm this notion, an in-depth 

population study to search for association between diabetes and MAF can be done in Ghana. 

This would give better insight into our understanding of the difference in virulence, if any, 

between Lineage 5 and 6.  
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Appendix to Chapter 6 (M. africanum is associated with ethnicity in Ghana) 

Table 2: Genotyping profiles of 613 M. tuberculosis complex isolates from Ghana 

Species SNP  RD9 RD726 RD711 RD702 Spoligotyping profile  Sub-lineagea SIT No  % 

MTBss L1 Undel Undel ND ND 
 

EAI 340 8 1.3 

MTBss L1 Undel Undel ND ND 
 

EAI  1 0.2 

MTBss L1 Undel Undel ND ND 
 

EAI 342 1 0.2 

MTBss L1 Undel Undel ND ND 
 

EAI 236 1 0.2 

MTBss L2 Undel Undel ND ND 
 

Beijing 1 10 1.6 

MTBss L3 Undel Undel ND ND 
 

DEHLI/CAS  2 0.3 

MTBss L3 Undel Undel ND ND 
 

DEHLI/CAS  1 0.2 

MTBss L3 Undel Undel ND ND 
 

DEHLI/CAS 1092 1 0.2 

MTBss L4 Undel Del ND ND 
 

Cameroon 61 226 36.8 

MTBss L4 Undel Del ND ND 
 

Cameroon 772 20 3.2 

MTBss L4 Undel Del ND ND 
 

Cameroon 115 7 1.1 

MTBss L4 Undel Del ND ND 
 

Cameroon 838 3 0.4 

MTBss L4 Undel Del ND ND 
 

Cameroon  26 4.2 

MTBss L4 Undel Del ND ND 
 

Cameroon  1 0.2 

MTBss L4 Undel Del ND ND 
 

Cameroon  1 0.2 

MTBss L4 Undel Del ND ND 
 

Cameroon  2 0.3 

MTBss L4 Undel Del ND ND 
 

Cameroon 1141 1 0.2 

MTBss L4 Undel Del ND ND 
 

Cameroon 403 1 0.2 

MTBss L4 Undel Del ND ND 
 

Cameroon  2 0.3 

MTBss L4 Undel Del ND ND 
 

Cameroon  2 0.3 

MTBss L4 Undel Del ND ND 
 

Cameroon  3 0.4 

MTBss L4 Undel Del ND ND 
 

Cameroon  2 0.3 

MTBss L4 Undel Del ND ND 
 

Cameroon  1 0.2 

MTBss L4 Undel Del ND ND 
 

Cameroon  1 0.2 
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Species SNP  RD9 RD726 RD711 RD702 Spoligotyping profile Sub-lineagea SIT No  % 

MTBss L4 Undel Del ND ND 
 

Cameroon  1 0.2 

MTBss L4 Undel Del ND ND 
 

Cameroon  2 0.3 

MTBss L4 Undel Del ND ND 
 

Cameroon  3 0.4 

MTBss L4 Undel Del ND ND 
 

Cameroon  1 0.2 

MTBss L4 Undel Del ND ND 
 

Cameroon  2 0.3 

MTBss L4 Undel Del ND ND 
 

Cameroon  3 0.4 

MTBss L4 Undel Del ND ND 
 

Cameroon  1 0.2 

MTBss L4 Undel Del ND ND 
 

Cameroon  1 0.2 

MTBss L4 Undel Undel ND ND 
 

Ghana 53 26 4.2 

MTBss L4 Undel Undel ND ND 
 

Ghana 65 4 0.7 

MTBss L4 Undel Undel ND ND 
 

Ghana 504 7 1.1 

MTBss L4 Undel Undel ND ND 
 

Ghana 118 12 1.9 

MTBss L4 Undel Undel ND ND 
 

Ghana 804 1 0.2 

MTBss L4 Undel Undel ND ND 
 

Ghana 462 4 0.7 

MTBss L4 Undel Undel ND ND 
 

Ghana 44 1 0.2 

MTBss L4 Undel Undel ND ND 
 

Ghana 86 12 1.9 

MTBss L4 Undel Undel ND ND 
 

Ghana 167 1 0.2 

MTBss L4 Undel Undel ND ND 
 

Ghana 373 1 0.2 

MTBss L4 Undel Undel ND ND 
 

Ghana 393 1 0.2 

MTBss L4 Undel Undel ND ND 
 

Ghana 272 1 0.2 

MTBss L4 Undel Undel ND ND 
 

Ghana  4 0.7 

MTBss L4 Undel Undel ND ND 
 

Harlem 1652 4 0.7 

MTBss L4 Undel Undel ND ND 
 

Harlem 1498 6 0.9 

MTBss L4 Undel Undel ND ND 
 

Harlem 50 15 2.4 

MTBss L4 Undel Undel ND ND 
 

Harlem 45 2 0.3 



181 

 

 

Species SNP  RD9 RD726 RD711 RD702 Spoligotyping profile  Sub-lineage  SIT No  % 

MTBss L4 Undel Undel ND ND 
 

Harlem 655 3 0.4 

MTBss L4 Undel Undel ND ND 
 

Harlem 47 2 0.3 

MTBss L4 Undel Undel ND ND 
 

Harlem 62 2 0.3 

MTBss L4 Undel Undel ND ND 
 

Harlem  2 0.3 

MTBss L4 Undel Undel ND ND 
 

Harlem  1 0.2 

MTBss L4 Undel Undel ND ND 
 

LAM 306 1 0.2 

MTBss L4 Undel Undel ND ND 
 

LAM  1 0.2 

MTBss L4 Undel Undel ND ND 
 

LAM 42 2 0.3 

MTBss L4 Undel Undel ND ND 
 

LAM 33 1 0.2 

MTBss L4 Undel Undel ND ND 
 

 70 7 1.1 

MTBss L4 Undel Undel ND ND 
 

Uganda I  2 0.3 

MTBss L4 Undel Undel ND ND 
 

Uganda I 52 4 0.7 

MTBss L4 Undel Undel ND ND 
 

Uganda I 244 1 0.2 

MTBss L4 Undel Undel ND ND 
 

Uganda I 848 3 0.4 

MTBss L4 Undel Undel ND ND 
 

Uganda I  2 0.2 

MTBss L4 Undel Undel ND ND 
 

Uganda I 78 1 0.2 

MTBss L4 Undel Undel ND ND 
 

Uganda I  1 0.2 

MTBss L4 Undel Undel ND ND 
 

Uganda I 125 1 0.2 

MTBss L4 Undel Undel ND ND 
 

Uganda II 51 2 0.3 

MTBss L4 Undel Undel ND ND 
 

Uganda II  2 0.3 

MTBss L4 Undel Undel ND ND 
 

Uganda II  3 0.4 

MTBss L4 Undel Undel ND ND 
 

S 1223 2 0.3 

MTBss L4 Undel Undel ND ND 
 

S 1211 2 0.3 

MTBss L4 Undel Undel ND ND 
 

X 119 2 0.3 

MTBss L4 Undel Undel ND ND 
 

 200 7 1.1 

MTBss L4 Undel Undel ND ND 
 

  2 0.3 
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Species 
 

SNP  RD9 RD726 RD711 RD702 Spoligotyping profile  Sub-
lineage 

SIT No  % 

MTBss L4 Undel Undel ND ND    2 0.3 

MTBss L4 Undel Undel ND ND    1 0.2 

MTBss L4 Undel Undel ND ND    1 0.2 

MTBss L4 Undel Undel ND ND    4 0.7 

MTBss L4 Undel Undel ND ND    1 0.2 

Mafric  L5 Del ND del Undel  WA I 331 17 2.8 

Mafric  L5 Del ND del Undel  WA I  1 0.2 

Mafric  L5 Del ND del Undel  WA I  1 0.2 

Mafric  L5 Del ND del Undel  WA I  1 0.2 

Mafric  L5 Del ND del Undel  WA I 319 16 2.6 

Mafric  L5 Del ND del Undel  WA I 438 9 1.5 

Mafric  L5 Del ND del Undel  WA I 860 1 0.2 

Mafric  L5 Del ND del Undel  WA I 1592 2 0.3 

Mafric  L5 Del ND del Undel  WA I  1 0.2 

Mafric  L5 Del ND del Undel  WA I  1 0.2 

Mafric  L5 Del ND del Undel  WA I  1 0.2 

Mafric  L5 Del ND del Undel  WA I  3 0.4 

Mafric  L5 Del ND del Undel  WA I  1 0.2 

Mafric  L5 Del ND del Undel  WA I 330 7 1.1 

Mafric  L5 Del ND del Undel  WA I  1 0.2 

Mafric  L5 Del ND del Undel  WA I   1 0.2 

Mafric  L5 Del ND del Undel  WA I  1 0.2 

Mafric L5 Del ND del Undel  WA I  1 0.2 
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Species SNP  RD9 RD726 RD711 RD702 Spoligotyping profile  Sub-
lineage 

SIT No  % 

           

Mafric L5 Del ND del Undel  WA I  1 0.2 

Mafric L5 Del ND del Undel  WA I  9 1.5 

Mafric L5 Del ND del Undel  WA I  3 0.4 

Mafric L5 Del ND del Undel  WA I  1 0.2 

Mafric L5 Del ND del Undel  WA I  1 0.2 

Mafric L5 Del ND del Undel  WA I  1 0.2 

Mafric L5 Del ND del Undel  WA I  1 0.2 

Mafric L5 Del ND del Undel  WA I  1 0.2 

Mafric L5 Del ND del Undel  WA I  1 0.2 

Mafric L5 Del ND del Undel  WA I  1 0.2 

Mafric L6 Del ND Undel del  WA II  2 0.3 

Mafric L6 Del ND Undel del  WA II 324 3 0.4 

Mafric L6 Del ND Undel del  WA II  2 0.3 

Mafric L6 Del ND Undel del  WA II 181 5 0.8 

Mafric L6 Del ND Undel del  WA II 318 3 0.4 

Mafric  
L6 
 

Del ND Undel del  WA II 186
7 

1 0.2 

Mafric L6 Del ND Undel del  WA II 326 1 0.2 

Mafric L6 Del ND Undel del  WA II  1 0.2 

Mafric L6 Del ND Undel del  WA II  1 0.2 

           

aSublineage as defined by the MIRU-VNTRplus database, ND=Not done 
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Appendix to Chapter 7 (Mycobacterium africanum is associated with HIV and Ethnicity in Ghana) 
Table 4: Genotyping profile of 1211 MTBC isolates from Ghana 
Specie SNP Spoligotyping profile Sub 

lineage 

SIT No % 

MTBss L1 
 

EAI 236 1 0.08 

MTBss L1 
 

EAI 340 3 0.24 

MTBss L1 
 

EAI 342 7 0.60 

MTBss L1 
 

EAI 380 1 0.08 

MTBss L1 
 

EAI Orphan 1 0.08 

MTBss L1 
 

EAI  2 0.16 

MTBss L2 
 

Beijing 1 36 3.00 

MTBss L2 
 

Beijing 1184 3 0.24 

MTBss L2 
 

Beijing 941 1 0.08 

MTBss L2 
 

Beijing  2 0.17 

MTBss L3 
 

Dehli_CAS 25 1 0.08 

MTBss L3 
 

Dehli_CAS 129 1 0.08 

MTBss L3 
 

Dehli_CAS 702 1 0.08 

MTBss L3 
 

Dehli_CAS 1199 2 0.17 

MTBss L3 
 

Dehli_CAS  2 0.17 

MTBss L3 
 

Dehli_CAS  3 0.24 

MTBss L3 
 

Dehli_CAS Orphan 1 0.08 

MTBss L3 
 

Dehli_CAS Orphan 1 0.08 

MTBss L4 
 

Cameroon 57 5 0.41 

MTBss L4 
 

Cameroon 61 349 29.0 

MTBss L4 
 

Cameroon 114 1 0.08 

MTBss L4 
 

Cameroon 403 2 0.17 

MTBss L4 
 

Cameroon 772 39 3.22 

MTBss L4 
 

Cameroon 838 12 1.00 

MTBss L4 
 

Cameroon 1141 8 0.67 

MTBss L4 
 

Cameroon 1580 1 0.08 

MTBss L4 
 

Cameroon  10 0.82 

MTBss L4 
 

Cameroon  15 1.25 

MTBss L4 
 

Cameroon  5 0.41 

MTBss L4 
 

Cameroon  15 1.25 

MTBss L4 
 

Cameroon  7 0.60 

MTBss L4 
 

Cameroon  15 1.25 

MTBss L4 
 

Cameroon  7 0.60 

MTBss L4 
 

Cameroon  4 0.33 

MTBss L4 
 

Ghana 37 1 0.08 

MTBss L4 
 

Ghana 44 1 0.08 

MTBss L4 
 

Ghana 53 138 11.40 

MTBss L4 
 

Ghana 54 3 0.24 

MTBss L4 
 

Ghana 58 1 0.08 
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Specie 

 

SNP 

 

Spoligotyping profile 

 

Sub lineage 

 

 

SIT 

 

No 

 

% 

MTBss L4 
 

Ghana 278 1 0.08 

MTBss L4 

 

Ghana 373 1 0.08 

MTBss L4 
 

Ghana 462 3 0.24 

MTBss L4 
 

Ghana 504 25 2.10 

MTBss L4 
 

Ghana 804 1 0.08 

MTBss L4 
 

Ghana 926 1 0.08 

MTBss L4 
 

Ghana 1105 1 0.08 

MTBss L4 
 

Ghana 1196 2 0.17 

MTBss L4 
 

Ghana 1227 2 0.17 

MTBss L4 
 

Ghana 1547 1 0.08 

MTBss L4 
 

Ghana  4 0.33 

MTBss L4 
 

Ghana  3 0.24 

MTBss L4 
 

Ghana orphan 1 0.08 

MTBss L4 
 

H37Rv orphan 1 0.08 

MTBss L4 
 

Haarlem 36 1 0.08 

MTBss L4 
 

Haarlem 45 3 0.24 

MTBss L4 
 

Haarlem 47 1 0.08 

MTBss L4 
 

Haarlem 50 26 2.14 

MTBss L4 
 

Haarlem 62 1 0.08 

MTBss L4 
 

Haarlem 124 1 0.08 

MTBss L4 
 

Haarlem 144 2 0.17 

MTBss L4 
 

Haarlem 316 8 0.67 

MTBss L4 
 

Haarlem 655 11 0.90 

MTBss L4 
 

Haarlem 775 3 0.24 

MTBss L4 
 

Haarlem 1159 1 0.08 

MTBss L4 
 

Haarlem 1498 11 0.90 

MTBss L4 
 

Haarlem  4 0.33 

MTBss L4 
 

Haarlem  3 0.24 

MTBss L4 
 

Haarlem  3 0.24 

MTBss L4 
 

Haarlem  3 0.24 

MTBss L4 
 

LAM 20 1 0.08 

MTBss L4 
 

LAM 42 13 1.10 

MTBss L4 
 

LAM 535 2 0.17 

MTBss L4 
 

LAM 765 1 0.08 

MTBss L4 
 

LAM  2 0.17 

MTBss L4 
 

LAM orphan 1 0.08 

MTBss L4 
 

LAM  2 0.17 

MTBss L4 
 

LAM  2 0.17 

MTBss L4 
 

NEW orphan 1 0.08 

MTBss L4 
 

S  2 0.17 

MTBss L4 
 

Uganda I 49 2 0.17 

MTBss L4 
 

Uganda I 52 2 0.17 
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Specie SNP Spoligotyping profile Sub lineage 

 

SIT No % 

MTBss L4 
 

Uganda I 78 1 0.08 

MTBss L4 
 

Uganda I 848 1 0.08 

MTBss L4 
 

Uganda I 524 1 0.08 

MTBss L4 
 

Uganda I 712 1 0.08 

MTBss L4 
 

Uganda I 1056 1 0.08 

MTBss L4 
 

Uganda I  10 0.82 

MTBss L4 
 

Uganda I  3 0.24 

MTBss L4 
 

Uganda I  4 0.33 

MTBss L4 
 

Uganda II 237 2 0.17 

MTBss L4 
 

Uganda II 92 11 0.90 

MTBss L4 
 

Uganda II 200 5 0.41 

MTBss L4 
 

Uganda II 1178 4 0.33 

MTBss L4 
 

Uganda II  5 0.41 

MTBss L4 
 

Uganda II orphan 1 0.08 

MTBss L4 
 

Uganda II  6 0.50 

MTBss L4 
 

Uganda II  2 0.17 

MTBss L4 
 

Uganda II  4 0.33 

MTBss L4 
 

Uganda II orphan 1 0.08 

MTBss L4 
 

Uganda II  3 0.24 

MTBss L4 
 

Uganda II orphan 1 0.08 

Mafric L5 
 

West Africa I 319 26 2.14 

Mafric L5 
 

West Africa I 320 3 0.24 

Mafric L5 
 

West Africa I 330 4 0.33 

Mafric L5 
 

West Africa I 331 26 2.14 

Mafric L5 
 

West Africa I 438 5 0.41 

Mafric L5 
 

West Africa I 1592 2 0.17 

Mafric L5 
 

West Africa I  15 1.24 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I  3 0.24 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I  2 0.17 

Mafric L5 
 

West Africa I  2 0.17 

Mafric L5 
 

West Africa I orphan 1 0.08 
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Specie SNP Spoligotyping profile Sub lineage 

 

SIT No % 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I  2 0.17 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I  3 0.24 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I  2 0.17 

Mafric L5 
 

West Africa I  2 0.17 

Mafric L5 
 

West Africa I  2 0.17 

Mafric L5 
 

West Africa I  2 0.17 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I  5 0.41 

Mafric L5 
 

West Africa I  2 0.17 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I  2 0.17 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I  2 0.17 
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Specie SNP Spoligotyping profile Sub lineage 

 

SIT No % 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I  2 0.17 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I  4 0.33 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L5 
 

West Africa I orphan 1 0.08 

Mafric L6 
 

West Africa II 181 23 1.90 

Mafric L6 
 

West Africa II 326 24 2.00 

Mafric L6 
 

West Africa II 1200 1 0.08 

Mafric L6 
 

West Africa II 1867 1 0.08 

Mafric L6 
 

West Africa II  4 0.33 

Mafric L6 
 

West Africa II  4 0.33 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II  19 1.57 

Mafric L6 
 

West Africa II  3 0.24 

Mafric L6 
 

West Africa II  3 0.24 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II  3 0.24 

Mafric L6 
 

West Africa II  3 0.24 
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Specie 

 

 

SNP 

 

 

Spoligotyping profile 

 

 

Sub lineage 

 

 

 

SIT 

 

 

No 

 

 

% 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II  5 0.41 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II  4 0.33 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II orphan 1 0.08 

Mafric L6 
 

West Africa II orphan 1 0.08 

M. bovis  
 

BOVIS 1_BCG 482 1 0.08 

M. bovis  
 

BOVIS 1 1037 2 0.17 

M. bovis  
 

BOVIS orphan 1 0.08 

M. bovis  
 

BOVIS orphan 1 0.08 

M. bovis  
 

BOVIS orphan 1 0.08 

M. bovis  
 

BOVIS orphan 1 0.08 
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