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Abstract

Our work is motivated by the problem of automatic face recognition, a difficult
task, still missing a general solution. Its complexity lies in the wide range of
variations presents in the input data, due to different lightings, background
scenes and head positions. Moreover, the face appearance is affected by internal
sources of variations: on a long temporal scale aging and weight gain, and on a
short scale the action of the facial muscles. An effective recognition algorithm
should be insensitive to all these sources of variations.

During the last decade, good results to the recognition problem have been
obtained using 3D Morphable Models (3DMMs). Their use allowed to separate
the data variations due to the identity from the ones due to external sources like
the lighting conditions. However, other internal sources were not considered.
Our goal is to include expressions as an additional source of internal variation
in 3DMMs, enabling us to recognize faces not only under different illuminations
and pose conditions, but also with different expressions.

In general, the construction of a 3DMM requires a corpus of training data;
for our task we need a training set including examples of both identity and ex-
pression variations. Unfortunately, their acquisition alone is not sufficient, since
they have to be previously registered with a reference 3D head model. The reg-
istration of 3D scans of expressions is a difficult problem, which could not be
solved with the registration algorithm previously used. The main contribution
of our work is a new registration algorithm which can cope with arbitrary ex-
pressions in the 3D data. Our algorithm is also capable of registering data with
missing values, an important property since virtually no 3D acquisition devices
is immune to holes and artifacts in the output.

Given the training set of registered 3D examples, we construct a 3DMM
where identity and expression variations are represented with two separate lin-
ear Gaussian models. The two models are then linearly combined, yielding an
expression-identity 3DMM which we apply to the problem of 3D face recogni-
tion. Although this modeling approach does not take into account the interde-
pendency between expressions and identity, the recognition performance is not
negatively affected.
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Chapter 1

Introduction

It is well known to computer scientists that a number of problems, which can
be easily solved by humans, are extremely difficult to solve for a computer. Face
recognition is such a problem, one for which a general solution is still missing.
Apparently, the task of an automatic recognition algorithm is easy. Given two
sets of face data, typically images, the gallery and the probe, the algorithm has to
match each image in the probe to the image in the gallery which represents the
same face, thereby recognizing the individuals in the two images as the same.
Unfortunately, automatic recognition is more complex than it may appear at
first sight. The main reason for its complexity is that, in a real scenario, the im-
ages in the probe have been acquired under different conditions than the ones
in the gallery: the lighting can be different, as well as the background scene
and the head position with respect to the camera. Moreover, the appearance
of the face is affected not only by these external sources of variations, but also
and especially by what we might call internal sources of variations. In fact, the
human face is subject to continuous and dramatic changes, both on a long tem-
poral scale, due to aging or weight gain, and on a short scale, due to the action
of the facial muscles. An effective recognition algorithm should be insensitive
to all these sources of variations.

During the last decade, good results to the recognition problem have been
obtained by using generative models, and in particular 3D Morphable Models
(3DMMs). Such models can generate synthetic 3D faces with different identi-
ties, which can then be rendered to images under different lighting conditions
and head poses. In particular, the model and rendering parameters can be opti-
mized so that the generated image approximates a given one; this allows us to
represent any image in terms of the model parameters, which depend only on
the face identity. Performing the recognition on these parameters rather than on
the images themselves provides good identification results over a broad range
of illumination and pose variations. However, other sources of variations might
still affect the face appearance, in particular expressions (by which we denote
all the non-rigid deformations caused by the contraction and relaxation of the
facial muscles, either due to emotion or to speech). Our goal is to bring 3DMMs
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2 CHAPTER 1. INTRODUCTION

one step further, allowing them to model both identity and expression as sepa-
rate sources of variations. This will enables us to recognize faces not only under
different illumination and pose conditions, but also with different expressions.

In general, the construction of a 3DMM requires a corpus of training data:
a set of 3D scans of human faces, which are used to learn the space of possible
shapes and textures of the human face. In order to model identity and expres-
sion variations with a 3DMM, the training set has to include examples of both.
However, acquiring 3D scans of facial expressions is not enough, since before
the examples can be used for building the 3DMM, they have to be registered with
a reference 3D head model. The term registration denotes the task of transform-
ing the reference 3D model in such a way that it approximates well a novel 3D
scan, under the constraint that the features of the reference are kept fixed in
the parameterization domain. This essentially means that a vertex, which in the
reference represents a specific feature of the human face (e.g. the inner corner
of the right eye), has to represent the same feature after the transformation. As
it turns out, registering 3D scans of facial expressions is quite difficult, and the
registration algorithm previously used did not provide useful results. The main
contribution of our work is a new registration algorithm, described in chapter
4, which can cope with arbitrary expressions in the 3D data. A further advan-
tage of the new registration algorithm is the possibility of registering data with
missing values. During registration, the eventual missing parts of the 3D scan
are reconstructed via a combined statistical-variational approach which ensures
accurate reconstructions. This is an important property, since virtually no 3D
acquisition devices is immune to holes and artifacts in the output. Our recon-
struction method can also be applied independently from the registration, as
shown in chapter 3.

The construction of a 3DMM incorporating both identity and expression as
separate sources of variations raises the additional problem of how to combine
them. Ideally, the model should be able to represent the inherent dependency
between expressions and identities, and a natural choice would have been to use
a bilinear model. However, our face recognition experiments showed no prac-
tical advantage in using such a model, rather a performance drop. Considering
also the restrictions imposed to the training set composition, we decided to dis-
card bilinear models and to employ a linear model. In such a model, the two
sources of variations are represented with two linear Gaussian models, which
are then linearly combined. Although this simpler model does not take into ac-
count the interdependency between expressions and identity, this does not seem
to have an impact on face recognition applications. The theoretical foundations
of the model we use, as well as its learning procedure and the inference rules,
are presented in chapter 2.

As mentioned above, face recognition is typically performed on images, and
in principle the combined identity-expression 3DMM can also be used for image
data, provided that an image fitting algorithm is able to handle it. However, in
our work we experimented only with the recognition from 3D data, for which
we obtained a very good identification performance. In fact, 3D face recognition
has got more and more attention in recent years, since it is naturally indepen-
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dent from illumination conditions and head pose. With respect to image data,
although we did not carry out recognition experiments, we show how the new
model can be used for image normalization tasks: given the image of a face with
arbitrary pose, lighting and expression, we can synthesize a new image of the
same face with standard pose and lighting, and neutral expression. The results
of our experiments, both for 3D data and images, are reported in chapter 5.

1.1 Related Work

As explained in the previous section, our approach is based on a 3D generative
model of the face data, encompassing both identity and expression. It is impor-
tant to note that these two sources of variations have to be modeled separately
in order to obtain a face recognition system that is insensitive to expressions. As
far as the 3DMMs are concerned, this separate modeling has never been tried.
The original model ([BV99, BV03]) did not include expressions, and the 3DMM
of expressions presented in [BBPV03] was neither combined with the identity
variations nor applied to face recognition. However, the work of [CCET99]
explored the possibility of incorporating expressions, as well as pose and illumi-
nation, as separate sources of linear variations in the context of an active appear-
ance model (AAM, [CET98, ECT98]). A close relative of the 3DMM, the AAM
is a generative model of face images, which, in its original form, did not sepa-
rate between different sources of variations. In fact, at the classification stage a
Linear Discriminant Analysis (LDA) was used to improve the recognition perfor-
mance by isolating the variations due to the identity. With the explicit modeling
of expressions as a separate source of variation, recognition can be performed
by fitting the model to the probe and gallery data, and then comparing only the
identity parameters of the model. From this respect then, our work follows an
approach similar to [CCET99], with the important difference however that we
apply it in the context of a 3DMM.

Recently there have also been many attempts to incorporate the different
sources of variations in a generative framework via multilinear models, rather
than superimposing them in a single linear model, but the applications to face
recognition are relatively few. In [TF00], for instance, a bilinear model of
face images has been applied to combine pose and identity variations; expres-
sions variations, together with identity, pose and illumination, are considered
in [VT02], although the authors do not treat the application of such a model
for face recognition. Similarly, [CDB02] uses a bilinear model spanning identity
and expressions to separate the two informations in video sequences, but again
no recognition application is presented. To the best of our knowledge, there has
been so far no attempt of applying 3D generative models to expression-invariant
face recognition. However, some works have already presented explored the
possibility of building such models. Both [WHL+04] and [VBPP05], for in-
stance, use multilinear models to track expressions in dynamic sequences of 3D
data, and transfer them to other individuals. The idea of applying a multilinear
model to the task of face recognition is certainly appealing, but its conversion
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to practice seems to proceed slowly. One of the reasons might be that a mul-
tilinear model requires a much larger training set in order to achieve the same
generalization power of a linear model.

To conclude our overview of the available methods for expression-insensitive
face recognition, we should also mention that generative models are only one
possible approach. A whole class of methods works by extracting and com-
paring certain features from the face images or 3D scans, without relying on
such models. These methods relies on the assumption that the chosen fea-
tures are invariant, for each individual, under changes of illumination, pose,
expressions, or any other variation present in the data. However, few of them
address the problem of facial expressions in 3D face recognition. One notable
exception is [BBK05], where they extract from the 3D scans what is called the
canonical form of the 3D surface. As shown in the paper, the canonical form
is invariant under isometric transformations, that is transformations that keep
the geodesic distance constant. If expressions are isometric transformations, an
ideal expression-insensitive recognition method is offered by surface matching
of the canonized 3D surfaces. Other recognition methods for 3D data are com-
pared in [CBF05], together with a novel one which uses as features three local
regions (nose tip, nose bridge and eyes sockets), automatically detected in the
probe and registered via ICP with the same regions in the gallery. Clearly, such
methods are restricted to the type of data they are designed for; this is an im-
portant difference with respect to recognition based on 3DMMs, which can be
applied to both images and 3D data, and would be therefore particularly well
suited for multimodal recognition.

1.2 Definitions and Notation

We conclude this chapter by introducing some of the basic notions required
in the rest of the work. In order to avoid confusion, we also summarized the
notation used in the table 1.1.

Most of our work deals with 3D objects, more specifically triangular meshes,
which can be defined by a structure (M,S). The topology of the mesh is stored
in the graph M = (V,E, F ), defined by the vertices V , the edges E, and the
faces (in this case only triangles) F (see figure 1.1). In general, however, we do
not use the graph M but only the neighboring information, that is the indices
of the vertices which share an edge with a given vertex. We denote by Ni the
set of indices of the neighbors of vertex i.

The shape of the mesh is stored in S, which holds the 3D positions of the
vertices. In practice, if the mesh has n vertices with positions (xi, yi, zi)i=1...n,
S will be an n× 3 matrix stacking their coordinates:

S =

 x1 y1 z1
...

xn yn zn


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a,A, γ Scalars are denoted by letters with normal typeface.
a,γ Vectors are denoted by lowercase letters with bold typeface.
ai Element i of the vector a.
aT Transpose of the column-vector a. If a is n-dimensional, aT has

dimensions 1× n.
‖a‖ L2-norm of the vector a.
A,Γ Matrices and tensors are denoted by bold uppercase letters.
Aij Element (i, j) of the matrix A.
|A| Determinant of the matrix A.
tr A Trace of the matrix A.
AT Transpose of the matrix A.
vec(A) Vectorization of the matrix A. If A is m× n, vec(A) is mn× 1.

Table 1.1: A summary of the mathematical notation used in our work.

V = {1, 2, 3, 4}

E =
{

(1, 2), (1, 3), (1, 4)
(2, 3), (2, 4), (3, 4)

}

F =
{

(1, 2, 3), (1, 2, 4)
(1, 3, 4), (2, 3, 4))

}
(M,S)

Figure 1.1: The topology of a 3D mesh, in this example a tetrahedron, is defined
by a graphM = (V,E, F ). On the right the sets of vertices V , of edges E and
of triangles F are explicitly written.

Sometimes we will also use a vectorial representation of S, obtained by con-
catenating its rows, and we will denote it by s:

s = (x1, y1, z1, . . . , xn, yn, zn)T
.

The transformation from S to s is represented by the vec(·) operator, so that we
can also write:

s = vec(S).

If the 3D mesh is textured, as it is in our case, then it also has to include the
texture informations, which we denote by T . The structure of T will depend on
the type of texturing: if the mesh is vertex colored, T will be an n × 3 matrix
just like S; if the mesh is texture mapped T will be an image andM will also
store the texture coordinates for each corner of the triangles.

The 3D faces synthesized by a 3DMM are assumed to be the result of a
stochastic process, governed by random variables with a multivariate Gaussian
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distribution. It is therefore useful to recall that a multivariate Gaussian distribu-
tion of an n-dimensional random variable x, which we denote by N (x;µ,Σ), is
parameterized by its mean µ and covariance matrix Σ, and is defined as

p(x) = N (x;µ,Σ)

= (2π)−n/2|Σ|−1/2 exp
{
−1

2
(x− µ)T Σ−1(x− µ)

}
We conclude by recalling some derivation rules for vector and matrix func-

tions which we will use especially in chapters 2 and 3; for a more complete
treatment, you can refer to [MN02]. Two basic rules are:

∂Ax

∂x
= A and

∂xT Ax

∂x
= xT (A + AT )

In particular, setting A = I in the second we derive

∂‖x‖2

∂x
= 2xT .

The chain rule holds also for functions of vectors and matrices:

∂f(g(x))
∂x

=
∂f

∂g

∂g

∂x
,

and therefore

∂‖a + B · x‖2

∂x
= 2(a + B · x)T ∂a + B · x

∂x

= 2(a + B · x)T B

Finally, the derivative of the trace of a matrix is given by:

∂tr XT AX

∂X
= (A + AT )X.



Chapter 2

3D Morphable Models

In order to model the variations of three-dimensional scans of human faces, it
is necessary to represent the scans as vectors in a space. Since in practice 3D
scans are 3D meshes, a natural representation as vectors is offered by stack-
ing together the attributes (position and color) of all vertices. However, such
a representation has a relatively high dimensionality (typically ∼ 105): a low-
dimensional, equivalent representation would be advantageous both computa-
tionally and qualitatively. This equivalent representation can be achieved by
a generative model, which we can imagine as a function f from a subspace
F ⊆ Rm (the parameter space) to the space of all possible 3D objects, such
that:

• for any choice of parameters x ∈ F , f(x) yields a 3D object belonging to
the class of human faces;

• for any human face with arbitrary identity and expression, there exists a
x ∈ F such that f(x) approximates it well;

• a probabilistic model for f is defined, and in particular the posterior prob-
ability p(x|y).

The first two conditions require that the image f(F) of the parameter space
covers exactly the space of all possible 3D faces, and not more. The third condi-
tion plays a key role when we need to find the actual point x in the parameter
space corresponding to a given face, as it is the case for instance when applying
the model to tasks of image analysis. Since f is in general not invertible, x is
found by using the probabilistic model to infer it from the data – that is looking
for the most likely values of the parameters given the face.

Let us assume for the moment that any 3D object has always n vertices
(you can for instance imagine to subdivide or decimate an appropriate set of
triangles/vertices). Then, the space of all possible 3D shapes will be Rn×3,
and all possible human faces will lie in a (relatively small) subspace of Rn×3.
In general, a model for this subspace can be learned from a set of examples of

7
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human faces (a so-called training set), but without any assumptions on the form
of the subspace this can be a challenging task, due to the high dimensionality
of the data w.r.t. the number of examples (typically n ∼ 104).

The method we will describe is based on the 3D Morphable Model, presented
in [BV99] for modeling human faces with varying identity. Such models are
based on the key observation that given two 3D faces, if they are previously
registered, their linear interpolation (also known as morph) will still describe a
human face. That is, if S1 and S2 are the shapes of such two examples after
registration, then their interpolation

S(a) = (1− a) · S1 + a · S2 with a, b ∈ [0, 1] (2.1)

will belong to the subspace of human faces (see figure 2.1 for an example of
shape and texture interpolations). The equation (2.1) can be generalized to the
case of m examples:

S =
∑

ai · Si with
∑

ai = 1, ai ∈ [0, 1],

and it is reasonable to assume that the registered examples lie on a subspace
which is, at least approximately, linear.

In the following sections we will extend the previous concept of 3D Mor-
phable Models in two directions: on the one hand, we will apply it for modeling
both identity and expressions, and on the other hand we will present a scheme
to deal with missing values in the face data. Note that for the rest of the chapter
we will assume that the examples have been previously registered; the registra-
tion process is explained in detail in chapter 4.

2.1 Linear Gaussian Models

Let us consider the shapes of the registered 3D faces. For the rest of this chapter
we will use for the 3D shape not the matrix representation S, but rather its
vectorial representation in R3n, obtained by flattening the matrix through the
vec(·) operator:

s = vec(S) = (x1, y1, z1, . . . , xn, yn, zn)T

This change of representation is needed in order to express in matrix form the
assumption that the space of the face shapes can be approximated by a linear
subspace of R3n. A linear subspace of R3n is defined by a vector s̄ ∈ R3n and
a matrix C ∈ R3n×k with k < 3n. Just like a line in R3 is defined by a point
and a direction, s̄ is a point lying on the subspace, while the columns of C are
the directions spanned by the subspace. A generic shape vector s can then be
written as

s = s̄ + C ·α + ε. (2.2)

That is, any shape vector s is decomposed into a point lying on the linear sub-
space and a residual displacement. The point on the subspace is specified by
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Figure 2.1: Interpolation between two examples. The originals are on the top-
left and bottom-right corner; in the horizontal direction the shape is interpo-
lated, while the texture is interpolated in the vertical direction.
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Figure 2.2: Learning a linear model of 3D human faces. The original data, on
the left, cannot be linearly combined. By registering them, they are mapped to
a subspace of R3n which can be approximated by the linear subspace s̄ + C ·α
(represented as a dashed line). The approximation error ε is modeled as a
Gaussian noise.

the vector α ∈ Rk, while the residual is defined by ε ∈ R3n, which is in practice
the error made by the linear approximation (see figure 2.2).

A statistical model can be derived if we assign to the latent variables α and ε
a probability distribution. By assuming for both α and ε a Gaussian distribution
with zero mean and diagonal covariance:

p(α) = N (0, I) = (2π)−k/2 exp
{
−1

2
‖α‖2

}
, (2.3)

p(ε) = N (0, σ2I) = (2πσ2)−3n/2 exp
{
− 1

2σ2
‖ε‖2

}
.

we will obtain what is known as a linear Gaussian model. With this model, it
can be shown that the shape vector s will also have a Gaussian distribution,
centered on s̄ and with covariance M = CCT + σ2I, that is:

p(s) = N (s̄,M),

The conditional probability of s given α can be also explicitly computed, and is
again a Gaussian distribution:

p(s|α) = N (s̄ + C ·α, σ2I). (2.4)

Note that if σ2 were zero, p(s|α) would degenerate to a singularity, which is
what one would expect in absence of noise.

The values of the model parameters s̄, C and σ2 are not known from the
start, and they have to be learned from a training set of exemplar shapes s1,
. . . , sm. The idea is that the training set constitutes a finite sample drawn from
the distribution p(s), and if the sample is representative enough a good estimate
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of the model parameters can be obtained by maximizing the likelihood data.
Denoting by s̄ the sample mean

s̄ =
1
m

m∑
i=1

si,

and by Σ the sample covariance of the training set

Σ =
1
m

m∑
i=1

(si − s̄)(si − s̄)T ,

the log-likelihood can be written as

L =
m∑

i=1

log p(si)

= −m
2
{
3n log(2π) + log |M |+ tr(M−1Σ)

}
As shown in [TB99] (to which we refer for details), the maximization of L has
a close solution, intimately related to the Principal Component Analysis (PCA).
The optimal estimates of C and σ2 can be computed from the Singular Value
Decomposition (SVD) of the centered data matrix

A = (s1 − s̄, . . . , sm − s̄) ∈ R3n×m,

which results in
A = U ·W · V T ,

where U = (u1, . . . ,um−1) is a column-orthogonal matrix (UT U = I), W
is a diagonal matrix, and V is orthogonal (V V T = V T V = I). It is also
easy to verify that U and Λ = W 2/m hold respectively the eigenvectors and
eigenvalues of the sample covariance matrix Σ, since:

ΣU =
1
m

AAT U

=
1
m

UW 2UT U

=
1
m

W 2U

Denoting by wi the diagonal elements of W , the optimal estimates of C and σ2

are given by

σ2 =
1

m(3n− k)

m−1∑
i=k+1

w2
i

C = (u1

√
w2

1

m
− σ2, . . . ,uk

√
w2

k

m
− σ2) ∈ R3n×k

= Uk ·
(
Λk − σ2I

)1/2
, (2.5)
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where k is the number of principal directions which are retained (for k = m− 1
the noise estimate is null and we obtain a standard PCA model). To summarize,
the model is built by

1. computing the eigenvectors ui and eigenvalues wi of the sample covari-
ance matrix via SVD of the data matrix A;

2. fixing the number k of eigenvectors/eigenvalues which we want to retain
in the model;

3. defining the noise variance σ2 as the sum of the discarded eigenvalues;

4. defining the generative matrix C as in equation (2.5), using the retained
pairs of eigenvectors and eigenvalues.

The difference from this model and the one obtained from PCA lies in the
last two steps. Discarding some of the higher components ui, their contributions
to the total sample variance accumulates in the model noise and scales down
the variance of the retained components. Therefore, although the directions of
the retained components are the same as in the PCA model, their magnitude is
typically smaller, which accounts for the fact that some of the sample variance
in those directions is due to the (isotropic) noise (see figure 2.3).

2.1.1 Combined Model

The model of the previous section is appropriate when there is a single type of
variations in the data, for instance only the identity or the expression. However,
if both type of variations were present in the data, a unique linear model would
not allow us to discriminate variations due to expression from the ones due to
identity. Since this capability is essential to perform tasks such as expression-
independent recognition, we cannot use the linear model of the previous section
as is. In order to manage this bi-modal face variations, we assume a generic face
vector to be a sum of an identity vector and an expression vector:

s = sid + sxp,

where sid represents the face with neutral expression while sxp holds the ver-
tices displacements due to the expression. Assigning to each of them a separate
linear Gaussian model, a generic face is modeled as a linear superposition of
two linear Gaussian models:

s = s̄id + Cid ·αid + s̄xp + Cxp ·αxp + ε,

with the usual Gaussian prior for the latent variables αid, αxp and ε. Clearly,
once the model parameters are fixed, this is nearly equivalent to the model of
equation (2.2):

s = s̄id + s̄xp︸ ︷︷ ︸ +
(

Cid Cxp

)︸ ︷︷ ︸ ·
(

αid

αxp

)
︸ ︷︷ ︸ + ε

s̄ C α

(2.6)
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Figure 2.3: Comparison of PCA and PPCA estimations with a toy example. (a)
Data points generated with a one-dimensional normal distribution, the red line
marks the region within one sigma from the mean. (b) PCA performed on the
data points to which Gaussian noise has been added, the black ellipsoid marks
the region within one sigma from the sample mean. Even discarding the second
principal component, the PCA overestimates the variance along the first axis.
(c) PPCA scales down the variance along the first axis and results in a more
precise estimate.
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with the only difference that now the matrix C is not column-orthogonal any-
more.

In order to learn the distinct model parameters for the identity and expres-
sions components we use two training sets. A first set of examples with neutral
expression (that is with all facial muscles relaxed) and varying identity is used
to estimate the identity parameters s̄id and Cid, as outlined in the previous sec-
tion. A second set of expressions examples from a smaller set of persons is used
to estimate the expression parameters s̄xp and Cxp, by first removing from the
examples the corresponding neutral expression and then applying the method
of the previous section. Assume the expressions examples are acquired from
p different persons. Then, for the subset of expressions acquired from the i-th
person, we have her neutral expression ni and mi examples si

j , from which we
build a matrix

Bi = (si
1 − ni, . . . , si

mi
− ni) ∈ R3n×mi .

All the person-specific matrices Bi are then put together into a matrix

B = (B1 . . .Bp) ∈ R3x×
P

mi ,

which is then recentered, obtaining a matrix A which can be used as input of
the same learning algorithm used for the identity-only data.

As explained in the previous section the estimate of the noise variance σ2

depends on the number of eigenvectors of the sample covariance which are
retained in the model. Due to the fact that, in the case of an identity-expression
combined model, the model components are learned separately, we could have
in principle two different estimates of σ2. To avoid this, we let the number of
expression components kxp depend on the σ2 estimated from the selection of kid

identity components. Once σ2 is fixed, kxp can be chosen so that the estimate
of the noise variance obtained by the discarded expression components is as
closest as possible to σ2.

2.1.2 Inference

As emphasized in the introduction, there are applications of the model for which
given a novel face vector s a corresponding parameters vector x has to be found.
Since C is in general non-square and therefore non-invertible, x is found not by
analytical inversion of equation (2.2), but rather by statistical inference, that is
minimizing the log-inverse of the posterior probability of the model coefficients

− log p(α|s) = − log
p(s|α) · p(α)

p(s)
= − log p(s|α)− log p(α) + log p(s)

If the shape vectors are independent and identically distributed (iid) the last
term is constant, and plugging in the above equation the probabilities (2.4) and
(2.3), the log-inverse is

− log p(α|s) =
‖s− s̄−C ·α‖2

2σ2
+
‖α‖2

2
+ const.
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Its global minimum is obtained by setting to zero its derivative w.r.t. the model
coefficients α:

− ∂

∂α
log p(α|s) = − 1

σ2
CT · (s− s̄−C ·α) + α = 0

⇒
(
CT C + σ2I

)
·α = CT · (s− s̄)

If the left-hand matrix of the above equation is non-singular, then the optimal
coefficients can be recovered as

α =
(
CT C + σ2I

)−1

·CT · (s− s̄) , (2.7)

and the optimal reconstruction of the vector s is

s̃ = s̄ + C ·
(
CT C + σ2I

)−1

·CT · (s− s̄) .

If the matrix C were defined as in equation (2.5), the solution of (2.7) is
simple to find, since

CT C + σ2I =
(
Λk − σ2I

)1/2
UT

k Uk

(
Λk − σ2I

)1/2
+ σ2I

= Λk − σ2I + σ2I

= Λk

In this particular case, the expression for the reconstruction s̃ can be further
simplified to

s̃ = s̄ + Uk ·
(
I − σ2Λ−1

k

)
·UT

k · (s− s̄) . (2.8)

From the above equation it is then clear that the optimal reconstruction, in
statistical terms, is an orthogonal projection only if the noise is zero. Other-
wise, the projection along a principal direction ui is scaled down by a factor
1− (m− 1)σ2/w2

i (see figure 2.4).
In the case of the combined model, however, we have

CT C + σ2I =
(

Λid CT
idCxp

CT
xpCid Λxp

)
.

Since the two matrices Cid and Cxp are not orthogonal, the above matrix is in
general not diagonal, and we cannot simplify the reconstruction as in equation
(2.8). However, we can decompose C by SVD (note that the matrices U and
W are not the same resulting from the SVD of the data matrix A):

C = UWV T ,

which results in the following equation for the optimal reconstruction

s̃ = s̄ + U ·W 2
(
W 2 + σ2I

)−1 ·UT · (s− s̄) .
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yy

xx

Figure 2.4: Example of PPCA reconstruction. The solid point is reconstructed
with different values of noise. When the noise is null, the reconstruction is per-
fect, since the model has two components, as many as the dimensions of the
data. Increasing the noise, the reconstruction moves more and more towards
the mean. When the noise variance is equal to the variance of the smallest com-
ponent, the reconstruction collapses on the axis of the largest component. At
this point the smallest component cannot be included in the model any more,
and the model reduces to one component. Increasing the noise again, the re-
construction will eventually coincide with the mean.
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2.2 Missing Data

The estimation of the model parameters as described in the previous section
relies on the fact that the centered data matrix A is complete, that is all its
values are known. In our context however, it often occurs that the examples si

have missing values, and a different method is needed.

As shown in [BVB03], it is possible to build a 3D Morphable Model from
incomplete data by applying an Expectation-Maximization (EM) algorithm (see
[DLR77]) for the estimation of the linear Gaussian model (see [Row97] and
[TB99]). The EM algorithm estimates the model parameters iteratively, by com-
puting at each iteration:

• the expected values of the latent variables α, given the current parameters
s̄, C and σ2 (Expectation- or E-step);

• the most likely model parameters given the previously estimated values of
the latent variables (Maximization- or M-step).

In case of complete data, the algorithm converges to the close solution given in
the previous section, so that the two methods are equivalent. However, the al-
gorithm can be applied also to the case of incomplete data, using a generalized
E-step which estimates both the latent variables and a complete reconstruction
of the observed variables si. Although statistically sensible, this approach has
the disadvantage of yielding principal components which might present discon-
tinuities at the boundaries between areas present in the examples and areas of
missing values. We use therefore a different strategy.

In our approach, the reconstruction of the missing values is done before the
estimation of the model parameters, during the registration. Therefore, the
registered examples in the training set are always complete, and can be used to
build a complete data matrix A. The model parameters are then estimated from
A with the close form solution presented in the previous sections. The advan-
tage of this approach is twofold: first, the model learning is done in one step
rather than iteratively as with the EM-algorithm; second, the reconstructions
are continuous and have a lower generalization error than the purely statistical
estimate used in the EM-algorithm.

It can however happen that some of the vertices have no or few observed
values in the examples, so that one might decide to exclude them from the esti-
mation of the model. In this case, a reduced model (s̄,C?, σ2) can be built from
A?, a matrix obtained from the data matrix A by removing the rows corre-
sponding to the vertices we want to exclude from the model estimation. In such
a case it is still useful to have a full-dimensional generative matrix C, which
can be derived from the reduced generative matrix C? estimated from A?. Ob-
serving that C? can be expressed in terms of the reduced data matrix A? (with
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A? = U?W ?V ?T ):

C? = U? ·
(

1
m

W ?2 − σ2I

)1/2

= A?V ?W ?−1 ·
(

1
m

W ?2 − σ2I

)1/2

= A?V ? ·
(

1
m

I − σ2W ?−2

)1/2

we can define the full-dimensional matrix C as a linear combination of the
examples in A:

C = AV ? ·
(

1
m

I − σ2W ?−2

)1/2

,

with the coefficients of the combination given by the SVD on A?.



Chapter 3

Surface Reconstruction

As discussed in section 2.1.2, it may occur that the the examples in the training
set used to build a morphable model have missing values. This poses a problem,
since the learning algorithm assumes that the training examples are complete.
Although it is possible to use an iterative learning algorithm which builds the
model from incomplete data by estimating the statistically optimal positions
of the missing vertices, this approach does not ensure that the reconstructed
examples are continuous. We adopt therefore a different approach, performing
the reconstruction of the missing values during the registration, so that the
training examples are in fact complete, and the standard learning algorithm
can be applied.

We describe here the reconstruction method independently from its use in
the registration algorithm, which will be treated in the next chapter. After a
summary of the related works, we describe the statistical reconstruction method
applied to registered 3D faces, already presented in [BMVS04]. This approach
uses the same inference rule exploited in the iterative learning algorithm men-
tioned above, and presents the same discontinuity problems. Our method com-
bines the statistical reconstruction with a variational approach, presented in
[PGB03] for image editing. As we will show, the result of the statistical re-
construction can be incorporated as a sort of guidance for the solution of the
variational problem, which will approximate the gradient of the former while
at the same time ensuring the continuity at the boundaries of the reconstructed
area. Moreover, a comparison of our method’s results with the ones of the
statistical reconstruction shows that our method performs better, in terms of
generalization error, than the statistical method.

3.1 Related Work

A wide range of methods for surface reconstruction are based on a variational
approach. With this type of approach, a certain functional is defined over the
whole domain of the surface, both where the surface is known and where it is

19



20 CHAPTER 3. SURFACE RECONSTRUCTION

missing. The reconstruction is defined as the surface minimizing the functional
under a set of boundary constraints, therefore yielding a variational problem.
The variational problem is then transformed to a partial differential equation
(PDE), which is discretized over a polygonal mesh and solved as a sparse (typ-
ically non-symmetric) linear system. Typical choices for the functional of the
surface are the membrane and the thin-plate energy, as in [Lie03], which are
coupled to, respectively, C0 and C1-continuity. Other, more exotic choices of the
functional can be found in the literature, as the Willmore energy in [CDD+04],
which also ensure C1-continuity at the boundaries. Note that the discretization
of the PDE requires the topology of the polygonal mesh to be defined also in
the missing areas, which is not the case if they correspond to actual holes in
the data; it might be therefore necessary to preliminarily identify and triangu-
late the holes. However, this is not necessary if the surface has been registered
against a template surface as in our method or in [SK02].

The problem of the missing topology can also be avoided by defining the
surface implicitly rather than explicitly, as a level set of a function defined in
R3. Although the invalid regions have still to be identified, no triangulation
is needed, since the reconstruction of the surface yields both its shape and its
topology. In [DMGL02] the surface is implicitly defined using a clamped signed
distance function, and a binary-valued function discriminates the valid regions
from the invalid ones. The reconstruction is obtained by a diffusion of both
functions in the invalid regions. A more sophisticate approach uses anisotropic
diffusion ([VCBS03], an extension to surfaces of the image inpainting method
presented in [BSCB00]). Also using implicit functions is the method of [ZOF01],
which minimizes the L1-norm, measured on the implicit surface, of a distance
function from the valid data. The method is in fact intended for surface recon-
struction, but hole filling descends as a side effect.

Independently from the functional used and the type of surface represen-
tation (implicit or explicit), all the methods discussed so far share a common
problem. The energy they minimize is not necessarily related to the reconstruc-
tion error in the invalid region, and in fact, the solution depends only on a small
region surrounding the hole, if not simply on its boundary. Since all other infor-
mation about the surface is discarded, it is difficult for such a method to obtain
convincing results if the invalid surface has a complex structure. Sharf et al.
([SACO04]) propose a method that uses the valid surface to predict the struc-
ture of the invalid region: using an implicit representation for the surface, the
invalid voxels are filled in a multi-resolution approach with examples extracted
from the available surface. The choice depends on the context of the voxel, de-
fined by its valid neighboring voxels. However interesting, this method can still
fail to reconstruct a surface patch whose features are not present elsewhere in
the known surface.
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3.2 Statistical Reconstruction

We begin now by describing the statistical reconstruction method, which has
been already presented in [BMVS04]. As customary, we denote by S ∈ Rn×3 the
matrix holding the vertices positions of an example, and by s = vec(S) ∈ R3n

its vector representation. Let us assume now that only p vertices of the example
mesh are known, and that we want to reconstruct the positions of the remaining
vertices as accurately as possible. The positions of the known vertices are held
by the shape vector

s? = vec(P · S),

where P ∈ Rp×n is a matrix which selects the rows of S corresponding to the
known vertices1. Since the mesh has been registered, the selection matrix P
is known. The reconstruction problem consists of finding an estimate s̃ of the
complete shape which, given the incomplete shape s? and the selection matrix
P , is as close as possible to the true s.

If we assume the shape vector s has been generated by a linear Gaussian
model as in chapter 2, the optimal reconstruction can be obtained by finding the
model coefficients α which maximize the posterior probability p(α|s?). They
can be computed in closed form in essentially the same way shown in section
2.1.2 for complete data, by setting to zero the derivative of − log p(α|s?) with
respect to α:

− ∂

∂α
logP (α|s?) =

∂

∂α

{
‖s? − P · (s̄ + C ·α) ‖2

2σ2
+
‖α‖2

2
+ const.

}
= − 1

σ2
CT P T · (s? − P · s̄− PC ·α) + α = 0

⇒ α =
(
CT P T PC + σ2I

)−1

·CT P T · (s? − P · s̄) (3.1)

Letting Q = PC and s̄? = P · s̄, we can rewrite the above equation in exactly
the same form as equation (2.7):

α =
(
QT Q + σ2I

)−1

·QT · (s? − s̄?) .

Since Q is not orthogonal, the equation is solved as in section 2.1.2 by using
SVD. The matrix Q is decomposed as

Q = UWV T

and then substituted in equation (3.1), obtaining

α = V ·W
(
W 2 + σ2I

)−1 ·UT · (s? − s̄?) .

The optimal model coefficients can therefore be found in exactly the same way
shown in 2.1.2, provided that the SVD is applied to Q rather than to C. Once

1P is a matrix whose elements are either zero or one; for each row and each column only one
element is different from zero.
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the optimal model coefficients have been found, the shape can be reconstructed
as s̃ = s̄ + Cα. We should stress again the fact that this is not an orthogonal
projection, that is it will not minimize the reconstruction error of the examples
used for training the data. However, as we will show in the results, such a
projection does yield a lower generalization error (the expected reconstruction
error over the whole data distribution).

Although statistically well-founded, this solution presents a problem due to
the fact that the reconstructed shape s̃ lies in the principal subspace spanned by
the columns of C. Therefore in general the reconstruction error ‖S? − P · S̃‖2
will not be zero (see figure 3.1(c)). Since our goal is to reconstruct only the
missing values, we could of course combine S̃ and S?, using the former for
defining the positions of the missing vertices and the latter for the known ones:

S̃
′
=
(
I − P T P

)
S̃ + P T PS?.

Unfortunately, this raises another problem, already mentioned in chapter 2: be-
cause of the residual reconstruction error, the resulting surface might present
discontinuities at the boundaries between known and missing vertices (see fig-
ure 3.1(d)). In the following sections we will discuss a different reconstruction
method which overcomes this problem.

3.3 Laplace Reconstruction

It is not surprising to discover that the statistical reconstruction cannot ensure
continuity, since it uses a model based only on the covariance of the vertices,
while no information on the neighborhood of a vertex is used. We derive now
a method which uses this information by considering instead of the vertices
the continuous 2D surface f : S ⊂ R2 → R3 on which they lie, where we
denote by S the two-dimensional parameterization domain. We will first use
this continuous setting to motivate our method, and then show how it is applied
to a discrete mesh.

Like S, the surface f is not completely defined. Let us denote by Ω ⊂ S
the subset of the parameterization domain where the surface is undefined, and
by ∂Ω = S − Ω its complement. Given the known surface f? : ∂Ω → R3,
equivalent to S? in the discrete setting, we define the reconstruction problem
as the one of finding a surface f which satisfies the constraint f |∂Ω = f? and
minimizes a given cost function. In theory, it would be desirable to minimize
the generalization error, but in practice we will choose a simpler cost function,
and be satisfied with showing that the results yield a lower generalization error
than the statistical reconstruction.

Let us begin with the following variational problem:

f = min
f

∫∫
Ω

‖∇f‖2 with f |∂Ω = f?, (3.2)

where we minimize in Ω the membrane energy of the surface. Note that, without
the constraints, the optimal solution will have in each point a gradient equal to
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(a) (b)

(c) (d)

Figure 3.1: Statistical reconstruction of missing vertices. Given the registered
head in (a), we removed its nose (b) and reconstructed it via the statistical
method described in section 3.2. The reconstruction of the whole head is shown
in image (c), while in image (d) we show the combination of the known vertices
from (b) and the reconstruction of the missing ones from (c). The discontinu-
ities at the boundary are evident.
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zero, that is it will be a plane; the constraints in fact forces this planar surface
to stretch such that it fits f? at the boundaries between Ω and ∂Ω. The problem
above can be shown to be equivalent to its corresponding Euler-Lagrange equa-
tion, which in this case is a Laplace PDE with Dirichelet boundary conditions:

∆f |Ω = 0 with f |∂Ω = f? (3.3)

where ∆ = ∇ · ∇ = ∂2
x + ∂2

y is the Laplace operator.
Since in practice we do not work with the continuous surface f , but rather

with a 3D mesh approximating it, we have to define a discrete approximation
of equation (3.3). To this aim, we use what is known in Computer Graphics as
the umbrella operator ([KCVS98]), which approximates the Laplace operator at
each vertex pi of the 3D mesh as:

∆f ∼ U(pi) =
1
|Ni|

∑
j∈Ni

(
pj − pi

)
where Ni are the indices of the neighbors of pi and |Ni| is their number. We
define now a sparse n× n matrix K, with values different from zero only if they
correspond to an edge of the mesh. In this case, if {i, j} is an edge of the mesh,
we set Kij = 1/|Ni|. It is easy to verify that with K defined in this way, we can
approximate the action of the Laplace operator on the whole surface as

U(S) = (K − I) · S.

If we denote by Λ a diagonal n × n matrix, with Λii = 0 if the i-th vertex is
missing and Λii � 1 otherwise, we can write the discrete approximation of
equation (3.3) as

(K − I) · S + Λ · (S − S?) = 0. (3.4)

The above equation defines a sparse linear system, which can be efficiently
solved with standard algorithms (in our implementation we used the UMFPACK
library, [Dav04]).

The reconstruction obtained by solving the system (3.4) is still not satis-
factory, as shown in the left image of figure 3.2, since the missing surface is
obtained only minimizing the membrane energy. In the next section, we ex-
plain how to improve the solution (and obtain the reconstruction in right image
of figure 3.2) by incorporating the result of the statistical reconstruction into a
variational problem similar to (3.2).

3.4 Poisson Reconstruction

As we already remarked, the variational problem of equation (3.2) looks for a
solution which in Ω is as close as possible to a plane, since it minimizes ‖∇f‖2.
As a result, we saw in figure 3.2 that the shape of the nose is not correctly
reconstructed. Let us now assume that we have a better guess for the gradient
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Figure 3.2: Variational reconstructions of missing vertices. On the left, the
Laplacian reconstruction cannot recover the shape of the nose. The Poisson re-
construction on the right, however, yields a good approximation of the original,
while at the same time ensuring continuity at the boundaries.

of f , given by a guidance field g defined on Ω. We can then modify equation
(3.2) as follows

f = min
f

∫∫
Ω

‖∇f − g‖2 with f |∂Ω = f?,

in order to obtain a solution which minimizes the difference between its gra-
dient and g, while at the same time satisfying the boundary constraints. The
Euler-Lagrange equation of the variational problem above is similar to equation
(3.3), and is a Poisson PDE with Dirichelet boundary conditions:

∆f |Ω = ∇ · g with f |∂Ω = f? (3.5)

where∇·g = ∂xgx +∂ygy is the divergence of the guidance field. A further sim-
plification occur if the guidance field is itself obtained as gradient of a surface
f̃ defined on S, that is g = ∇f̃ . In this case the PDE of (3.5) becomes

∆f |Ω = ∇ · ∇f̃ = ∆f̃ ,

and if we let d = f − f̃ , the continuous problem becomes

∆d|Ω = 0 with d|∂Ω = f? − f̃ .

Denoting by S̃ the discrete equivalent of f̃ , and setting D = S− S̃, the discrete
approximation is

(K − I) ·D + Λ ·
(
D + S̃ − S?

)
= 0. (3.6)

Equation (3.6) is interesting because a good approximation S̃ of the un-
known surface can be obtained from the statistical reconstruction of section
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3.2. In practice, what we do by plugging the statistical reconstruction in equa-
tion (3.6), is to estimate its residuals; the residuals can then be added to S̃,
yielding a surface (see the right image of figure 3.2) without discontinuities
and, as proved in the next section, smaller generalization error.

3.4.1 Laplace Operator

We conclude the description of the reconstruction method with the discussion of
an alternative discrete approximation of the Laplace operator. In section 3.3 we
defined the approximation at a vertex of a 3D mesh with the umbrella operator

∆f ∼ U(pi) =
1
|Ni|

∑
j∈Ni

(
pj − pi

)
.

However, a more general discrete approximation can be defined ([Tau95]) as

∆f ∼
∑
j∈Ni

wij

(
pj − pi

)
(3.7)

where the coefficients wij are positive numbers which sum up to one for a given
i. The matrix K can be defined exactly as shown for the umbrella operator, by
setting Kij = wij for each edge {i, j}.

A general way of choosing the coefficients is by means of a set of positive
scalars φij = φji defined on the edges of the mesh:

wij =
φij∑

k∈N〉
φik

.

The simplest choice is to set φij = 1, by which the generalized definition (3.7)
reduces to the umbrella operator. Another common choice is to set

φij = ‖pi − pj‖−1,

so that close neighbors are weighted more than distant ones in the approxima-
tion. Yet another possibility is to set φij to the inverse of the variance, over
the set of training examples, of the length of the edge {i, j}. In the following
section we will compare the results obtained with such a choice w.r.t. the use of
the umbrella operator.

3.5 Results

As we have seen, the Poisson reconstruction is continuous by construction. In
order to ensure that the method does have a generalization error at least com-
parable with the statistical reconstruction, we tested it on a set of 200 registered
heads. We designed the experiment to be similar to a cross-validation test: we
iteratively split the set of examples in a training set and a test set, removed the
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Figure 3.3: Histograms of the reconstruction errors for different methods.
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noses of the heads in the test set, and reconstructed them using the model built
with the (complete) examples in the training set.

We ran the experiment on four different reconstruction methods:

• the statistical reconstruction of section 3.2;

• the Poisson reconstruction of section 3.4, with the discrete Laplace opera-
tor defined using the variance of the edges lengths;

• the Poisson reconstruction using the umbrella operator;

• the Poisson reconstruction using the mean shape rather than the statistical
reconstruction as guidance.

The results are summarized in the histograms of figure 3.3. First, we can con-
clude that the the Poisson reconstruction method yields a lower generalization
error than the statistical reconstruction, both in terms of vertices positions and
in terms of normals directions. Second, the results show that using the statisti-
cal reconstruction as guiding surface does contribute significantly to the result.
Finally, the Laplacian operator defined in 3.4.1 does improve the results, but
only marginally.

In figure 3.4 we show the worst and best results, in term of vertex position
error and normal direction error, and although the latter are of course nearly
indistinguishable from the originals, the former show clear differences. The
different performance is probably related to the different likelihoods of the test
data with respects to the distribution estimated from the training sets. Clearly,
if a test head deviates significantly from the distribution estimated from the
training data, its reconstruction will be worse than for a more normal head. It
should however be noted how the reconstructed noses, even in the worse cases,
fits perfectly in the rest of the face.
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Figure 3.4: Reconstruction results with maximum/minimum errors. On the
left column the originals, on the right the reconstructions. The first two rows
show the results with maximum error on the vertices position (first row) and
the normals directions (second row). The last two rows shows the results with
minimum error on the vertices position (third row) and the normals directions
(fourth row).
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Chapter 4

Registration

In this chapter we present the algorithm we use registering 3D scans of hu-
man faces with arbitrary identity and expression. Our algorithm presents the
following novel characteristics:

• A unified processing of faces with arbitrary identity and expressions.

• A statistically consistent reconstruction of the missing data.

• Robustness with respect to errors in the correspondence.

Unified Processing. Some very efficient methods for registering 3D scans
of human faces have already been published, e.g. [BV99] and [ZSCS04], as well
as for registering scans of full bodies ([ACP03]). However, the registration of
data with varying identities and of data with varying expressions are typically
treated separately. The method of [ZSCS04], for instance, is applied to dynamic
sequences of expressions scans acquired from a single subject. On the other
hand, the registration algorithm of [BV99] has been originally applied to scans
with varying identity; a modified version of it ([BBPV03]) has been later used to
register scans with varying expressions only. Our algorithm can be applied to 3D
face scans with arbitrary identity and expressions, which makes it suitable for
the applications where no such prior knowledge is available (e.g. recognition).

Reconstruction of Missing Data. The input data of the registration algo-
rithm are typically incomplete, in two senses: first, it is quite normal that they
present holes in the surface, and second, they might not cover completely the
area represented by the reference model. In previous methods this problem is
either not considered or it is addressed from a purely geometric point of view. In
the first case, the data are pre-processed in order to fill the holes, and eventually
the reference model is chosen in such a way as to be sure that it represents only
the area present in the input data. In the second case, the registered surface
in the missing areas is recovered by imposing on it some geometric constraint
(e.g. smoothness). In both cases the recovered surface is not necessarily the
most likely reconstruction of the original, missing one, and this is a clear draw-
back if the results of the registration have to be used to build statistical models

31
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of human faces. In our registration algorithm the reconstruction of the missing
areas takes into account not only its geometric properties but also its likelihood
w.r.t. the available data.

Robustness. A further novelty of our algorithm is related to the estima-
tion of the correspondence. This term, which we will often encounter in the rest
of the chapter, refers to the correspondence established between vertices of the
reference and points on the novel surface. Such a relation is necessary to ensure
that the features of the reference match the features of the registration result,
and its estimation is central for the whole registration process. In previous
methods, the relative importance in the registration process of the correspon-
dence – for instance with respect to the smoothness of the registration result –
is globally fixed. As a result, in areas where the quality of the correspondence is
locally good, its relative weight might be too low, and consequently important
information might be discarded; or the converse might occur where the corre-
spondence quality is locally bad but its globally fixed weight too high, therefore
introducing errors in the registration results. By setting the relative importance
of the correspondence locally, depending on an assessment of its quality, our
algorithm retains as much correspondence information as possible, while at the
same time being robust with respect to errors in its estimation.

After a brief review of the related work in this area, we will give an overview
of the whole registration process. This is followed by a detailed description of
the two main tasks involved: the estimation of the correspondence between the
reference and the novel input, and the computation of the registration result
as the solution of an optimization problem. The chapter is closed by a section
reporting the registration results.

4.1 Related Work

We begin our review with the algorithm proposed by [SL94], used for register-
ing arbitrary 3D surfaces. The authors modeled the surface deformation with an
extension to 3D of the B-splines, and framed the registration problem as one of
finding the optimal deformation parameters minimizing an energy made up of
two terms. A first term took into account the distance between the transformed
point of the novel mesh (in this paper is the novel mesh that is deformed to
match the reference) from the reference surface. A second term accounted for
the probability of the parameters of the transformation, in order to regularize
the deformation.

This approach to the registration problem as the minimization of an energy
including a regularization term is quite common. The use of the regularization
term provides the natural advantage of handling missing data and inconsisten-
cies in the correspondence. We will now briefly describe some of the papers
using this approach for the registration of 3D face scans.

In [MGR00], the authors use a similar scheme to adapt a coarse refer-
ence head to novel 3D scans. In this case the transformation is modeled via
a displaced subdivision, but the energy minimized is essentially the same as in
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[SL94], including a distance term and a regularization term, plus a term de-
pending on the positions of manually placed landmarks. Naturally the exact
forms the energy terms are different from the one of [SL94], and in particular
the regularization term is designed to favor planar surfaces.

A more recent example is the work of [ACP03], where the registration is
applied to 3D scans of full human bodies with fixed pose. In this case the
transformation is modeled as a set of affine transformations of the reference
vertices, and the energy is again made up of a distance term, a regularization
term, and a term depending on manually placed landmarks. In this case, how-
ever a correspondence is explicitly estimated using an iterative closest point
(ICP) algorithm which is embedded in the optimization scheme. The methods
of [SP04, VBPP05] follow a similar scheme.

Another algorithm applied to 3D scans of full bodies has been presented in
[ASP+05], where the authors take a quite different approach by framing the
registration problem in a probabilistic context. The correspondence is formally
defined as a discrete assignment of each point of the novel mesh to a point in the
reference with a probability given by the joint probability of all the vertex cor-
respondences. On their turn, the probability of a single vertex correspondence
depends on two factors. First, the probability of a vertex to correspondence to
another is related to how well their signatures (an encoding of the features of
the surface patch around the vertices) match. Second, the probability is con-
ditioned on the correspondences of the neighboring vertices; this penalizes the
correspondences that map neighboring vertices to vertices which are far away
in terms of geodesic distance. Finally, a given correspondence defines a non-
rigid deformation which also has a certain probability, defined in such a way as
to penalize the stretch and twist induced by the transformation on the edges of
the model. Although the algorithm has been applied to full body scans, the fact
that it could register data with different poses hints to the possibility of applying
it to face expressions data.

The first method dealing explicitly with the problem of registering a large
database of 3D scans of human faces has been [BV99], which takes an approach
different from the energy minimization adopted by the papers mentioned above.
In this case the correspondence was explicitly estimated, and the deformed ref-
erence was defined by resampling the novel mesh at the corresponding points.
Here the core problem was the correspondence estimation, and it was solved
by exploiting a 2D representation of the 3D data which allowed to estimate
the correspondence using a modified optical flow algorithm. Compared to the
methods previously mentioned, registering a novel mesh by resampling it at the
corresponding points has the disadvantages of relying completely on the corre-
spondence and of being unable to cope with missing data. On the other hand,
the explicit estimation of a dense correspondence provides a better matching of
the face features.

Another type of approach to the registration problem is based on the idea
of using an initial sparse correspondence, typically manually defined, to set up
a mapping between the parameterizations of the reference and of the novel
mesh. A good example is the work of [PSS01], which has been applied to
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different types of 3D models, faces included. This method works by first defining
a common set of feature points on a set of novel meshes. The feature points
define the topology of a common base mesh, and the algorithm maps each edge
of it to a path of edges in the novel meshes. In this way each face of the base
mesh is mapped to a patch on the novel meshes, and this establishes a natural
correspondence among all the novel meshes: two points correspond it they lie
in the same patch and have the same barycentric coordinates. The registration
is then only a matter of refining the base mesh to the desired resolution and
then resampling the novel meshes at the corresponding points.

In [KHYS02] a reference mesh for human heads is transformed using thin-
plate splines to register novel 3D face scans (without expressions). The method
is initialized with a sparse correspondence, then it iteratively deforms the ref-
erence with a transformation learned by the sparse correspondence and refines
automatically the sparse correspondence, until convergence. The refinement
of the correspondence is obtained by subdividing the mesh defined by the cur-
rent landmarks and projecting the new vertices onto the novel mesh. These
projections define a set of new landmarks, whose barycentric coordinates and
displacements w.r.t. the surface can be used to add corresponding landmarks
to the reference. Refining in this way the sparse correspondence, a more pre-
cise deformation of the reference can be computed. What the two methods
have in common is the fact that the correspondence is not explicitly estimated,
rather implicitly derived from the correspondence between the parameteriza-
tions which are manually defined at the beginning.

The methods to register expression data usually adopt approaches similar
to the ones outlined above. In [BBPV03] the method of [BV99] is adapted
to the case of expressions by using a semi-automatic bootstrapping procedure
(see following section), where the reference is deformed before correspondence
estimation to better fit the novel mesh. Although the deformation is learned by
previously registered examples, the amount of deformation is defined by the
user. The method of [ZSCS04] is applied to time sequences of 3D scans and
uses therefore time-coherence information. However, the registration of the
first frame of the sequences, where no such information is used, is related to
our problem. As in other methods previously outlined, the authors adopt an
energy minimization approach, with the energy made up of a data term and a
smoothness term, and no explicit estimation of the correspondence.

A possibly interesting work is also [BOP98], where a morphable model of
lips is built from a sequence of exemplar 3D points sets. The training data
are sparse, obtained by tracking and reconstructing a set of markers across a
sequence of images acquired with a multiple camera system, and a vertex-to-
vertex correspondence is manually set. However, since the correspondence is
not available for all model vertices, they also incur in the problem of missing
information. In their work the problem is solved by finding the minimum-strain
solution.
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4.2 Method Overview

The registration problem has been defined in the introduction as the one of
deforming a reference 3D mesh so that it approximates well a novel 3D mesh
while at the same time matching its features. The reference 3D mesh and the
novel 3D mesh are denoted as R0 and N , respectively. Recalling that a 3D
mesh is defined by a structure (M,S,T ) (see section 1.2), we can write the
reference as R0 = (M,S0,T 0), and a deformation of the reference will be any
transformation of its shape and texture which leaves the topology untouched.
Since we do not impose any constraint on the form of the deformations, we can
think of them as displacements ∆S and ∆T applied to the shape and texture.
The deformed reference will be therefore (M,S0 + ∆S,T 0 + ∆T ).

We restate the goal of the registration as the one of finding the optimal
transformation

R0 → R(∆S,∆T ) = (M,S0 + ∆S,T 0 + ∆T ),

which satisfies the requirements mentioned at the beginning, that is:

• the deformed reference R(∆S,∆T ) approximates well the novel mesh
N ;

• features in R(∆S,∆T ) corresponds to features in R0.

The registration process (see also the diagram of figure 4.1) is split into
three distinct steps: first, the morphable model defined in chapter 2 is used to
find an approximation of the novel mesh N ; then, the approximation is used
to estimate the correspondence between the reference R0 and the novel mesh
N ; finally, the optimal deformations ∆S and ∆T are computed minimizing an
energy which depends on the correspondence information and the approxima-
tion. Although the first two steps are performed once for both shape and texture
registration, the third step differs; we will describe first the procedure for the
shape registration and postpone the description of the texture registration to a
later section (4.6).

Approximation. In order to obtain a more accurate estimation of the corre-
spondence we employ a strategy known as bootstrapping (see [VJP97]). It is
based on the idea of exploiting previous registration results to build a statistical
model of the data, which can then be used to find a first approximation of the
optimal deformations ∆S and ∆T for the current input N . If the shape and
texture of the data are modeled with the linear Gaussian models introduced in
chapter 2, that is as

S(α) = S0 +
k∑

i=1

αiSi and T (β) = T 0 +
k∑

i=1

βiT i. (4.1)

a Newton descent method can be used (as described in section 4.3) to find the
coefficients of the model such that S(α) and T (β) optimally fit the shape and
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Figure 4.1: Flow diagram of the registration method. (1) The morphable model
is fitted to the novel mesh (b), yielding the approximation (c). (2) Both the
approximation and the input are projected to 2D and a correspondence is esti-
mated via optical flow. Using the correspondence, the input is resampled yield-
ing the incomplete surface (d). (3) The registration result (e) is obtained by
minimizing an energy which depends on the resampling of the input. Each re-
sult of the registration increases the set of examples used to build the morphable
model.



4.2. METHOD OVERVIEW 37

texture of N . An example of such an approximation is shown in figure 4.1(c)
(the novel mesh is shown in figure 4.1(b) and the reference in figure 4.1(a)).

Correspondence Estimation. Both the novel mesh N and the approxima-
tion are projected to a 2D representation, and a correspondence between them
is estimated as shown in [BV99]. The correspondence between the two 2D pro-
jections defines in fact also a correspondence between the reference and the
novel input. By resampling the latter at the points corresponding to the vertices
of the reference we could in principle register the input, as done in [BV99].
However, as shown in figure 4.1(d), the registration result might be in general
incomplete. Moreover, as we mentioned in the introduction, any error in the
correspondence would be transferred to the registration result.

Energy minimization. For these reasons, the estimated correspondence is not
used to directly resample the novel surface, but rather to define an energy,
whose minimization yield the optimal deformation of the reference. As most
of the other methods which frames the registration as an energy minimization
problem, we define a cost function with a data and a smoothness term:

E = Ed(N ,∆S) + Es(∆S) (4.2)

The data term Ed measures the distance between the vertices of the deformed
reference R(∆S) and their corresponding points on N , and the smoothness
term Es penalizes deformations ∆S for which neighboring vertices have dif-
ferent displacements. The smoothing induced by the second term, however, is
adaptive, in the sense that its relative weight in the equation changes locally
depending on the expected stiffness of the edges and the estimated accuracy
of the correspondence (see section 4.5.2 for details). As stressed in the intro-
duction, setting the relative importance of the smoothing term on a per-vertex
basis improves the robustness of the registration without loosing too much of
the input’s details. Minimizing the energy of equation 4.2 (which corresponds
to solving a sparse linear system) and registering the texture (see section 4.6),
we obtain the result shown in figure 4.1(e).

4.2.1 Pre-processing

Initially the shape of the novel mesh N is defined in terms of the measure units
and coordinate system of the particular acquisition device used. In order to
make it consistent with the measure units and coordinates system of the refer-
ence, a global scaling is performed followed by a coarse alignment to the refer-
ence. The alignment is achieved by finding the optimal rigid transformation, in
a least square sense, which maps a few (less than 10), manually-placed land-
marks of the novel mesh N to the corresponding points in the reference mesh
R0. The algorithm used (presented in [Ume91]) is described in the appendix
A.1.
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Figure 4.2: Projection of a 3D mesh to a 2D domain. On the left, the 3D mesh.
The middle image is the projection of the texture, while the right image is a
grey-coded representation of the range values. The range values are enough to
recover the geometry, since the image coordinates provide the angle φ and the
height y. The black areas in both images are the void pixels.

After the alignment, a 2D representation of the novel mesh N is computed.
For each vertex of N after the alignment, its position w = (wx, wy, wz) is trans-
formed into cylindrical coordinates:

φ = arctan
wx

wz
+ π

y = wy

ρ = (w2
x + w2

z)1/2

The cylindrical coordinates (φ, y) are used to define a point (u, v) in a domain
[0,W ]× [0,H] ⊂ R2 by means of the following transformation:

(u, v) =
(
W

2π
φ,
H

2
− ky

)
where the factor k influences the vertical resolution of the 2D domain. In this
way each vertex of N is mapped to a 2D position (u, v) and each triangle of N
is mapped onto a triangle on the domain [0,W ]× [0,H]. The 2D domain results
partitioned in the area covered by the triangles of N , and the uncovered areas,
also called void region since it does not correspond to a surface.

Each non-void pixel of the 2D domain corresponds then to a point on the
surface ofN . Since in general this point will not coincide with a vertex, its shape
and color are defined by a linear interpolation of their values at the vertices of
the triangle containing it. The 2D representation (an example is shown in figure
4.2) is obtained by storing for each non-void pixel all the information needed
to represent its corresponding point of N . This consists of 4 scalars: the three
texture colors plus the value of ρ, since φ and y are computed from the position
(u, v) of the point.

In the following, we denote by I the 4×W ×H structure holding the shape
and color information of N mapped to the 2D domain. The structure I is es-
sentially a four-layered image; by Iuv we denote the 4D vector corresponding
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to the position (u, v) in the 2D domain, and to denote the i-th value of this
4D vector we use the notation Iuv,i. Let us also define a norm on this type of
structures as

‖Iuv‖w =

(∑
i

wiI
2
uv,i

)1/2

, (4.3)

where the weights wi take into account the fact that we are combining hetero-
geneous quantities.

Unfortunately, the data as they are obtained from the projection to 2D could
still need an additional processing step, due to the fact that they will typically
include structures which could disturb the registration, e.g. clothes or hairs. In
the case of scans with open mouth, it is especially problematic all information
of the mouth interior, which is not explicitly modeled by our reference. All these
structures have to be removed at this stage.

An additional remark about the texture is needed. By representing with I
the texture of N one is bound to the resolution of the former. Since increasing
its resolution has a big impact on the computational load of the whole regis-
tration, it would not be a good idea to use high resolution when faced with
high-resolution textures. A better solution is to keep the texture images, and
make an additional projection to the 2D domain of the texture coordinates of
N . As I will show in a later section, in this way one can reduce to the minimum
the loss in texture detail.

4.3 Approximation

Two types of transformations are applied to the refence in order to fit the input.
We already introduced the first type in the overview of the method: it is the
deformation induced by the morphable model, whose shape and texture are pa-
rameterized by the k-dimensional vectors α and β (equations (4.1)), where k is
the number of principal components retained in the model. These linear defor-
mations of the shape and textures are followed by a geometric transformation
of the shape, parameterized by the vector ρ, and a similar transformation in the
color space for the texture, parameterized by the vector γ.

The shape S(α) is transformed by the combination of an anisotropic scaling
with a rigid transformation, defined by a rotation matrix R(ρ) and a translation
vector t(ρ). The scaling is parameterized by two scalars, say ρ1 and ρ2, and is
defined by a matrix U(ρ) of the form

U(ρ) =

 ρ1 0 0
0 ρ2 0
0 0 ρ1+ρ2

2

 .

The z-axis scaling factor is set to the average of the other two factors because of
the relative small range of depth values in a typical acquisition, which does not
allow for a precise estimation of the optimal scaling factor. Given the geometric
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transformations defined above, the final shape S′ is defined as

S′(α,ρ) = S(α) ·R(ρ)T ·U(ρ) + t(ρ)T . (4.4)

Note that, since S(α) is a N × 3 matrix, it must be right-multiplied with the
geometric transformation matrices, and that (with an abuse of notation) the
addition of the row-vector tT denotes its addition to each of the N rows of the
result of the matrix multiplications.

The texture T (β) is subject to a similar transformation in the color space,
parameterized by the vector γ:

T ′(β,γ) = T (β) ·M(γ)T ·U(γ) + a(γ)T .

The translation is replaced by what is called a color offset, defined by the vector
a(γ); instead of the rotation we have a transformation controlling the color
contrast, defined by the (non-orthogonal) matrix M(γ):

M(γ) = γ1

 1 0 0
0 1 0
0 0 1

+ (1− γ1)

 0.3 0.59 0.11
0.3 0.59 0.11
0.3 0.59 0.11

 ;

and finally we denote by U(γ) a diagonal matrix which scales the values of the
color channels – the color gains.

If we denote the model parameters by θ = (α,β,ρ,γ), the goal of the fitting
is to find an optimal θ? such that the result of the transformations above, that
is the 3D mesh (M,S′,T ′), best approximates the input N . The optimal ap-
proximation is found by maximization of the posterior probability of the model
parameters given the input N . This is equivalent to the minimization of its
log-inverse:

− logP (θ|N ) = − log
P (N|θ)P (θ)

P (N )
= − logP (N|θ)− logP (θ) + const.

= Ed(θ) + Ep(θ) + const.

where we denoted by Ed(θ) the term of the log-inverse depending on the ap-
proximation error, and by Ep(θ) the term depending on the likelihood of the
model coefficients.

In practice, it is convenient to define the data term Ed in terms of the 2D
projections of the approximation and of the input rather than in terms of the 3D
meshes. Recalling that I is the 2D projection of N , we will therefore define the
approximation error as

Ed(θ) = P (I|θ);
since the relation between N and I is deterministic, we can safely assume that
this is equivalent to P (N|θ). Denoting by Ĩ the 2D projection of the approxima-
tion, the approximation error is defined as a sum over all the non-void pixels:

Ed(θ) =
1
σ2

I

∑
u,v

‖Iuv − Ĩuv‖2w.
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The squared norm ‖ · ‖2w is the weighted sum described by equation (4.3), and
the noise variance σ2

I has been derived from the noise variance of the model σ2.
As we have seen in chapter 2, the prior probabilities of the model parame-

ters α and β are Gaussian distributions with mean zero. Assuming a Gaussian
distribution also for the geometric and color transformations, the term Ep can
be written as:

Ep(α,β,ρ,γ) =
∑

i

α2
i

σ2
S,i

+
∑

i

β2
i

σ2
T,i

+
∑

i

(ρi − µR,i)2

σ2
R,i

+
∑

i

(γi − µC,i)2

σ2
C,i

where the coefficients σ•,i and µ•,i denote the standard deviations and the even-
tual non-zero means of the i-th element of the different parameters vectors. The
coefficients σS,i and σT,i can be derived from the construction of the linear mod-
els for the shape and texture, but the coefficients σR,i and σC,i have to be chosen
empirically.

Although this is not explicitly motivated by the maximization of the posterior
probability of the model parameters, if some landmarks have been previously
defined it is advisable to add a term El(θ) to the cost function, which depends
on the error on the landmarks positions. This additional energy is defined in
terms of the distances in 3D (that is, before the mapping to the 2D domain)
between the landmarks positions in the input and in the approximation. De-
noting by L the set of indices of the landmarks in the reference, and by li their
corresponding positions in the input, the energy is simply the sum of squared
distances:

El(θ) =
∑
i∈L
‖s′i(α,ρ)− li‖2,

where s′i is the vector of elements of S′ corresponding to the i-th vertex.
The minimum of the cost function is achieved employing a stochastic quasi-

Newton descent. The algorithm is stochastic in the sense that we are not evalu-
ating the approximation term and its derivatives for all the vertices, but only on
a random sample of them (the other two terms of the cost function, however,
are not affected by this). That is, at each iteration a subset of the vertices of the
model is randomly sampled, and the approximation error is estimated by

Ed =
∑

(u,v)∈I

‖Iuv − Ĩuv‖2,

where we denoted by I the set of the coordinates in the 2D domain of the
sampled vertices. In order for the stochastic estimation of Ed to be unbiased,
we have to sample the vertices with a probability proportional to the projected
area of the adjoining triangles.

Given I, the first derivatives of the cost function with respect to the param-
eters α, β, ρ and γ are computed and the update is computed as in a standard
Newton descent algorithm, which we describe in appendix A.2. Note that for
the computation of the updates a diagonal approximation of the Hessian matrix
of the cost function is also needed. This is not computed on I at each iteration,
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but it is rather estimated on a larger sample of vertices every few thousands
iterations. At the same time when the Hessian is estimated, also the visibili-
ties of the vertices are checked: since it can occur that in the mapping to 2D
some of the vertices are occluded, these have not to be taken into account when
estimating the Hessian or choosing the sample I.

4.4 Correspondence Estimation

The result of the approximation implicitly defines a correspondence between
the model and the input N . Each vertex of the model is projected to a point in
the 2D domain depending on the shape coefficients α and the transformation
parameters ρ and is therefore in correspondence with the point on the surface
of N which has the same position in the 2D domain. However, in general the
output Ĩ is not a perfect approximation of I (because N might not be in the
linear span of the model), and therefore the implied correspondence is only an
approximation.

As previously anticipated, in order to estimate the correspondence we apply
to the input I and its approximation Ĩ an algorithm similar to the one used in
[BV99], that is a modified version of the optical flow algorithm. The advantage
of using the approximation in place of a fixed reference, as it was done in the
original paper, lies in the assumptions on which the optical flow algorithm relies.
As it will be clear in short, the algorithm tries to establish a correspondence
between pixels in two images under the assumption of constant intensity, that
is assuming that corresponding pixels have the same intensity in both views.
In many applications, and ours is one of them, this is not true, and in fact
different methods have been developed to relax the assumption; computing the
approximation of I is a way to further reduce the problem.

The output of the optical flow algorithm will be a flow field defined over the
2D domain:

∆ : [0,W ]× [0,H]→ R2

which will be combined with the correspondence implicitly defined by the ap-
proximation. In practice, if the i-th vertex of the approximation is projected to
the point pi = (ui, vi) of the 2D domain, then by combining this position with
the result of the optical flow we obtain as refined corresponding point:

p′i = (ui + ∆u(ui, vi), vi + ∆v(ui, vi))

This array of 2D positions is used to sample the input I (and also the 2D
mapping of the texture coordinates), so that for each vertex in the model we
obtain an estimation of its corresponding position and color in the input N . As
explained in section 4.5.2, these estimated values are used to solve the registra-
tion problem of equation 4.2. In the next two sections we are going to describe
briefly the fundamentals of the optical flow algorithm and in more details the
modifications we implemented for applying the method to 3D data.
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Basic Optical Flow Algorithm

The optical flow algorithm was originally designed and is still used in Computer
Vision for the task of computing the motion field (or flow field) between con-
secutive frames of a sequence. We will first consider the continuous case of a
temporal sequence of images, denoted by I(u, v, t), in which the same physical
point has the same intensity at different instants in time (see [HS81]). Given
the assumption of constant intensity, if we denote by (u(t), v(t)) the trajectory
of a point in the image domain, the following equation must hold:

I(u(t), v(t), t) = I(u(t0), v(t0), t0)

By derivation with respect to the time, and keeping in mind that the right hand
term is constant in time, one obtains the following partial differential equation
(called the optical flow constraint equation):

dI

dt
=
∂I

∂u

du

dt
+
∂I

∂v

dv

dt
+
∂I

∂t
= 0 (4.5)

The terms du/dt and dv/dt are the components of the velocity of the phys-
ical point along its trajectory in the image domain. One can rewrite the above
notation in vectorial form by denoting the velocity as v:

v · ∇I = −∂I
∂t
. (4.6)

This latter form puts in evidence the fact that the equation is underconstrained,
since the component of the velocity field v perpendicular to the gradient ∇I is
arbitrary. Different approaches are available to deal with this problem, known
as aperture problem: a smoothness term can be introduced in the optical flow
equation, or the image function I(u, v) can be developed in a series of higher
order terms. Another approach is to introduce a spatial coherency assumption,
that is to assume that in the neighborhood of a pixel the velocity field will be
constant (see [LK81]). With this assumption, rather than solving the equation
(4.6) one minimizes for each pixel the following energy

E =
∑

u,v∈R

(
v(u, v) · ∇I|(u,v) +

∂I

∂t
|(u,v)

)2

, (4.7)

where R is a neighborhood of the pixel. Deriving the above energy w.r.t. the
velocity v one obtains the following linear system:

W · v = b,

where the matrix W and the vector b are defined as

W =
( ∑

R(∂uI)2
∑

R ∂uI · ∂vI∑
R ∂uI · ∂vI

∑
R(∂vI)2

)
b =

( ∑
R ∂uI · ∂tI∑
R ∂vI · ∂tI

)
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The equation (4.6) holds instantaneously at any given moment t, but when
confronting the actual case of computing the motion field between two frames,
we have to consider the integral over the interval of time. That is, given two
frames I1 = I|t=t0 and I2 = I|t=t0+∆t, one has to solve the equation∫ t0+∆t

t0

v · ∇I = −
∫ t0+∆t

t0

∂I

∂t
.

By developing I in a first-order Taylor series around the point t0 + ∆t/2, one
obtains the following equation:

s · 1
2

[∇I1 +∇I2] = −∆t
∂I

∂t

∣∣∣∣
t0+∆t/2

≈ I1 − I2, (4.8)

where s is the spatial motion of a point from one frame to the other. From the
equation above we can derive an optimization problem similar to the one of
equation (4.7):

E =
∑

u,v∈R

(
s(u, v) · ∇I1 +∇I2

2

∣∣∣∣
(u,v)

+ I2(u, v)− I1(u, v)

)2

,

where the gradients of the images are defined by the following finite differences:

∂uIi → 1
2

[Ii(u+ 1, v)− Ii(u− 1, v)] ,

∂vIi → 1
2

[Ii(u, v + 1)− Ii(u, v − 1)] .

The first order approximation of the time derivative of the image function
I at the time t0 + ∆t/2 used in equation 4.8 is of course valid only insofar the
time interval ∆t is small with respect to the changes in the image. In general
however, it can occur that the differences between the two frames have a larger
scale than what this approximation can accommodate for. In order to overcome
the problem, we adopt a coarse-to-fine approach (see [BAHH92]), in which the
optical flow is iteratively computed at different resolutions. One starts by com-
puting the optical flow on a low resolution version of the inputs (the coarse
level), then the solution is expanded to the next higher resolution level and
used to pre-warp one of the images before computing the flow again. This steps
are repeated until one reaches the topmost, original resolution. We will describe
the procedure in more detail in the next section.

Application to 3D Data

The algorithm for computing the optical flow on 3D data is a modification of the
algorithm described in the previous section. Its pseudocode is shown at page
45.
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Algorithm 1: Optical flow algorithm for 3D data. See section 4.4 for a
detailed description of the single lines.

Input: projections I and Ĩ
Output: flow field ∆
begin1

J , J̃ ← init features of I, Ĩ;2

J i, J̃
i

with i = lmax . . . 0← init pyramids of J , J̃ ;3

∆lmax ← 0;4

for l← lmax to 0 do5

if l < lmax then6

ψ ← expand ∆l+1;7

else8

ψ ← 09

K ← warp J̃
l

with ψ;10

ϕ← flow from K to J l;11

∆l ← smooth ϕ ◦ ψ;12

∆← ∆0;13

end14

Initially (line 2), the features of the input are computed. These are two 6-
valued images made up of the normals and texture values. That is, for the input
I (and similarly for Ĩ) we define

J(u, v) =
(

n(u, v)
c(u, v)

)
,

where n(u, v) is the vector field of normals, and c(u, v) the vector field of texture
colors. In order to compute the normals for the 2D projections, recall that given
a 3D surface defined parametrically as s(u, v) = (x(u, v), y(u, v), z(u, v)) the
unit normal vector is defined at each point as

n =
a× b√

‖a‖2‖b‖2 − ‖a · b‖2
(4.9)

with a =
∂s

∂u
and b =

∂s

∂v

The vector field n(u, v) is therefore computed by projecting the Cartesian co-
ordinates of the 3D surface to 2D, computing (by finite differences) their first
derivatives with respect to the two axis of the 2D domain, and finally applying
the equation (4.9).

Given the features images J and J̃ , we compute the Laplacian pyramids
(see [BA83]) up to a certain depth lmax (line 3). First, a Gaussian pyramid
with lmax resolution levels is built, where the i-th level is obtained by Gaussian
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smoothing of the (i − 1)-level and nearest-neighbor resampling to half its size.
After the Gaussian pyramid has been built, the i-th level of the Laplacian pyra-
mid is obtained from it computing the difference between the i-th level and an
expansion of the (i + 1)-th level to the double of its size. See figure 4.4 for
an example of the Laplacian and related pyramids. Note that when building
the Laplacian pyramids, the normals will lose their geometric meaning; this is
not a problem, since the normals are used as surface features and not for their
geometric properties.

After the initialization steps, the coarse-to-fine loop is entered. At each itera-
tion the flow field computed at the previous iteration is expanded to the current
resolution (lines 6-9), and the resulting flow field ψ is used to pre-warp the
reference of the current level, J̃

l
(line 10). Then, a flow field ϕ is computed

from the result of the warp, K, to the input J l (line 11). The computation of
the flow field is performed by minimizing an energy with essentially the same
form of equation (4.7), but since the images are vector-valued the addenda of
the sum are squared norms:

E =
∑

u,v∈R

∥∥∥∥v(u, v) · ∇J |(u,v) +
∂J

∂t
|(u,v)

∥∥∥∥2

.

The linear system to be solved is defined therefore by scalar products, denoted
by 〈·, ·〉, between the partial derivatives:

W =
( ∑

R ‖∂uJ‖2
∑

R〈∂uJ , ∂vJ〉∑
R〈∂uJ , ∂vJ〉

∑
R ‖∂vJ‖2

)
b =

( ∑
R〈∂uJ , ∂tJ〉∑
R〈∂vJ , ∂tJ〉

)
The scalar product has to take into account the inhomogeneity of the elements
of J , and it is therefore defined as

〈∂aJ , ∂bJ〉 = wn(∂an · ∂bn) + wc(∂ac · ∂bc)

where a, b are any of u, v, t, and the coefficients wn, wc compensate for the
different measure units.

Finally, the flow fields ϕ (resulting from the solution of the optical flow
equation) and ψ (the expansion of the flow field of the previous resolution
level) are concatenated and smoothed (line 12). A smoothing of the solution to
the optical flow equation proves necessary because of the high sensibility of the
optical flow solution to noise in areas where there the contrast in the features is
low. This effect can be easily understood by looking at the optical flow equation
in one dimension, where the solution is given by:

vu = − ∂tJ(u, t)
∂uJ(u, t)

It is clear from this one-dimensional example that the smaller the values of ∂uJ
(that is the less contrast), the stronger the effect of the noise in it. Details of the
smoothing step are given in the appendix A.3.
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Gaussian expansion Laplacian

Figure 4.3: Building the Laplacian pyramid of a texture image. On the leftmost
column, the Gaussian pyramid at different resolutions (all images in this figure
have been scaled up to full resolution), from the highest (that is the original)
512×512 on the top row down to the lowest 64×64 on the bottom row. Each of
the Gaussian images at a resolution lower than the original are then expanded to
the next higher resolution (middle column). Subtracting these expanded images
from the Gaussian images we obtain the Laplacian pyramid, on the rightmost
column.
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We conclude this section with a technical remark about a kind of numerical
computation used at many steps of the algorithm: the convolution of an image
with a given kernel, in order to compute its derivatives or its Laplacian pyramid.
One should be aware that in the case of 3D data we have pixels in the inputs
J and J̃ which do not describe a surface point (void pixels), and which should
not be taken into account during such type of computation. In the case of
derivatives, for instance, one can substitute the central difference kernel with
a forward or backward difference kernel if the pixel is on a boundary between
a void and a non-void region. Then, if in J1 the pixel (u, v) is non-void but
(u− 1, v) is void, one can use the forward difference:

∂uJ →
1
4

[J1(u+ 1, v)− J1(u, v) + J2(u+ 1, v)− J2(u− 1, v)] .

By applying similar modifications to all kernels, one can obtain reliable results
also at the boundaries between void and non-void regions.

4.5 Registration

The estimation of the correspondence between Ĩ and I allows us to estimate
for the vertices of the model the corresponding positions on the novel input N .
In the method of [BV99] this information was directly used as output of the
registration algorithm, where the registered shape and texture were sampled
from N at the given positions. This approach has two disadvantages:

• in general, some vertex of the model might have no corresponding point
in N and therefore the direct use of the sampled values is impossible;

• any error in the estimated correspondence can freely propagate to the
registered shape and texture.

By framing the registration problem as a minimization of the energy of equation
(4.2) we can address both issues.

4.5.1 Compensation of Rigid Motion

As described in the section about the pre-processing, the novel data are aligned
with the reference. This alignment however is coarse and estimated only from
the positions of a small set of landmarks (< 10), so that a residual rigid motion
from the reference to the input will still be present. It is important to compen-
sate for as much of this residual as possible, in order to exclude spurious rigid
transformations from the morphable model built with the registration results.

An accurate estimation of the residual rigid motion can be extracted from
the results of the approximation and of the correspondence estimation. The
result of the 3D fitting provides a first approximation of the residual in the
from of the estimated rotation R(ρ) and translation t(ρ). This approximation
can be refined by extracting from the estimated flow field ∆ its eventual rigid
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Figure 4.4: Notation used for defining the energy minimized during registra-
tion. The positions of the vertices in the approximation are denoted by ai, the
corresponding sampled positions on the input by wi, and the unknown vertices
positions in the solution by vi. The displacements from the approximation to
the solution are denoted by di.

components R(∆) (rotation) and t(∆) (translation). They can be estimated
by applying the same alignment algorithm used in the pre-processing, but this
time using as inputs the positions of the vertices in the approximation and their
corresponding points on N . Given the transformations above, the residual rigid
motion is estimated as a transformation

v → R(∆) · [R(ρ) · v + t(ρ)] + t(∆)

In the rest of the chapter we will denote by ai the position of the i-th vertex
in the approximation without the rigid transformations (note that we are not
compensating for the scaling factors), that is (see equation (4.4)):

ai = si(α) ·U(ρ).

Each vertex ai of the approximation corresponds to a point pi of the novel input
N , whose position wi after alignment with the reference is obtained as

wi = RT (ρ) ·
[
RT (∆) · (pi − t(∆))− t(ρ)

]
.

4.5.2 Energy Minimization

As anticipated in the overview of the method, the positions of the vertices in
the registered output are obtained minimizing an energy depending on two
terms, as in equation (4.2). The first component of the energy is a data term,
depending on the distance between the solutions vi and the sampled vertices
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positions wi. Since the positions wi are defined only for the vertices with a
correspondence to the input N , the data term is defined only for the subset C of
such vertices:

Ed(N ,∆S) =
∑
i∈C
‖vi −wi‖2

The second component of the energy is a regularization term, depending on the
smoothness of the deformations applied to the reference. We define it in terms
of the displacements with respect to the approximation di = vi − ai (see figure
4.4):

Es(∆S) =
∑

i

∑
j∈Ni

wij‖dj − di‖2,

where the coefficients wij weights the relative importance of each edge to the
smoothness energy of a vertex.

When combined together, the adaptive smoothing is achieved by weighting
each term of Ed with a coefficient λi:

E =
1
2

∑
i∈C

λi‖vi −wi‖2 +
1
2

∑
i

∑
j∈Ni

wij‖dj − di‖2 (4.10)

Assuming for the moment that the coefficients λi and wij are known, the energy
of the above equation can be minimized by solving a sparse linear system. Let
us rewrite the equation in matrix form. In the following V denotes the N × 3
matrix holding the row vectors vi, A the one holding the ai, and similarly for
W and D. Defining the diagonal N ×N matrix

Λ =
1
2

 λ1 0
. . .

0 λN

 with λi = 0 ∀i /∈ C,

we can write the first energy term as the trace of a matrix:

1
2

∑
i∈C

λi‖vi −wi‖2 = tr
[
(V −W )T ·Λ · (V −W )

]
= tr

[
(A + D −W )T ·Λ · (A + D −W )

]
The second term of the energy can be written in matrix form by using the same
sparse N×N matrix K defined in chapter 3 for the reconstruction problem. Re-
call that if {i, j} is an edge of the mesh then Kij = wij , and Kij = 0 otherwise.
With the matrix K so defined, the second term of the energy can be written as

1
2

∑
i

∑
j∈Ωi

wij‖dj − di‖2 = tr
[
DT · (I −K) ·D

]
.

The energy of equation (4.10) can be rewritten in matrix form as

E = tr
[
(A + D −W )T ·Λ · (A + D −W ) + DT · (I −K) ·D

]
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and derived with respect to D in order to find the condition for the global
minimum:

∂E

∂D
= 2Λ · (A + D −W ) + (2I −K −KT ) ·D = 0

The above equation can be rewritten as

(Λ + I − (K + KT )/2) ·D = −Λ · (A−W )

which is a more general form of the sparse linear system derived in chapter 3 for
the reconstruction problem. It is more general because the diagonal elements
of the matrix Λ can be set to different values for different vertices, in order to
smooth adaptively the result.

Choice of the Coefficients

Deriving the linear system from the energy (4.10) makes even more sensible the
choice mentioned in section 3.4.1 of setting the coefficients wij to

wij =
σ−2

ij∑
Ni
σ−2

ij

,

where the σij are the standard deviations of the edges lengths over a set of
examples. For each vertex the smoothness term would become∑

j∈Ni

wij‖dj − di‖2 ∝
∑
j∈Ni

‖dj − di‖2

σ2
ij

,

so that the influence of each edge on the vertex energy would be weighted by
its deformations in the available examples. Such a choice can be physically
motivated by the assumption that not all edges have the same stiffness: some
edges will be more elastic than others, and an estimate of their elasticity can be
obtained observing how they deform in the examples already available.

We conclude giving a criteria to set the values of the coefficients λi, which,
as already observed, weight the relative importance of the data term with re-
spect to the smoothness term. If a vertex has no correspondence (i /∈ C), we set
λi = λmin, with λmin � 1. For the vertices with correspondence it would be
a sensible choice to set λi to high values where the estimated correspondence
is correct and to a lower value where it is wrong. Since the quality of the cor-
respondence cannot be directly evaluated, we propose to measure it indirectly
through another quantity. To this aim we define a measure of the smoothness
of the displacement field wi − ai as

si =
∑
Ni

‖(wj − aj)− (wi − ai)‖2

‖aj − ai‖2
.

Note that the displacements wi − ai are different from the displacements di:
the latter are in fact the solutions of the sparse linear system, while the former
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are the displacements directly defined by the correspondence. For i ∈ C, the
set the coefficients λi to three different values depending on the values of si:
if si is lower than a certain threshold, we set λi to a large value, so that the
data term is dominant; if si is higher than a certain threshold, we set λi to
λmin, so that the smoothness term is dominant; if si is in between, we set λi to
an intermediate value. Of course more fine-grained choices of λi are possible,
but in the experiments we made this choice, although simple, proved to be
sufficiently flexible.

4.6 Texture Processing

The process described in the previous section concerns only the registration of
the shape of N . For registering the texture we follow a different procedure, due
to the different nature of the data.

With current 3D acquisition technologies, one can often obtain a high resolu-
tion texture of the scanned surface. In order to loose as less texture information
as possible during the registration process, at the pre-processing stage (see sec-
tion 4.2.1) we mapped the texture coordinates to the 2D domain just as the
shape information. The 2D projections of the texture coordinates can be sam-
pled exactly as the mapping of the shape, so that we can associate a texture
coordinate to every vertex for which a correspondence to the novel surface is
defined. The sampled texture coordinates refers to the original texture image,
so that part of the registration result can be textured with the original images,
without any loss of information (see figure 4.5).

However, only part of the result can be textured in this way, since in general
the texture information will be incomplete like the shape information. More-
over, a consistent texturing of all the registration results is needed for gener-
ating new textures via linear combinations. Therefore two additional steps are
required: first the original texture is warped to a fixed texture map, and then
the missing texture is reconstructed with a diffusion algorithm.

Texture Warping.

The warping of the original texture is performed by considering the triangles of
the model for which all the vertices have a correspondence to the novel surface.
Each of these triangles is mapped by its vertices texture coordinates, denoted
by pi = (ui, vi)i∈{0,1,2}, to a triangle in the model texture map; and since all
its vertices have a correspondence to N , the points pi will correspond to three
points p′i in the original image.

To register the texture we have to find, for each pixel p of the output T con-
tained in the triangle defined by the pi, a corresponding position, with subpixel
resolution, in the original image T ′. For each p in the triangle defined by pi, we
can compute its barycentric coordinates (b1, b2), which by definition will satisfy
the following equation:

p = p0 + b1p1 + b2p2.
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Figure 4.5: The registration result can be partially textured with the original
image, as in this case where the two original texture image (top row) can be
mapped on the surface of the registered shape (bottom row). The texturing
however will be partial, since not all regions are present in the original images
(black areas in the bottom images).
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If we assume that the point p′ ∈ T ′ corresponding to p has the same barycentric
coordinates (b1, b2) with respect to the points p′i, the registered texture is defined
as:

T (p) = T ′(p′0 + b1p
′
1 + b2p

′
2)

Texture Reconstruction.

The warping of the original image defines only a part of the model texture; the
rest of it has to be reconstructed.

To this aim we use a method based on a push-pull ([GGSC96]) algorithm
presented in [DCOY03]. The algorithm reconstructs the missing areas of an
image by iteratively downsampling it to a given scale (the push step) and then
upsampling it back to the original scale (pull step), while keeping constant the
known area. Repeating these two steps until convergence effectively achieves a
diffusion of the known color values through the missing regions. By repeating
the process with different and increasing bottom-scale resolutions, one obtains
a fast and smooth approximation of the missing areas only based on the known
pixel colors.

Differently than in the original setting, in our case the areas to reconstruct
are not completely without information, since we have the approximation T̃
previously obtained via the 3D fitting (section 4.3). It makes then sense to
apply the above algorithm to the residual image T − T̃ , and then add the result
to T̃ , because in this way any structure in the approximating texture is retained.

Texture Coordinates Reconstruction.

A final issue is that some of the missing information in the warped texture
might not be missing in the original texture image. This might occur if there
are holes in the surface of N , as it is the case for the eyes in figure 4.6. In
this case the surface of the eyes has not been acquired, however we have its
texture information and we would be interested in using it rather than having
to approximate it by the method described above.

We apply the push-pull method described above to the 2D projections of
the texture coordinates, in order to reconstruct their values in the areas we are
interested. By reconstructing the texture coordinates before the warping, we
can use the original texture information also for areas where the surface could
not be reconstructed.

4.7 Results

In order to demonstrate the performance of our algorithm, we applied it to
three different sets of 3D human scans: a set of 200 scans with varying identity
used in [BV99]; a set of 68 scans of various expressions from 2 individuals, a
subset of which has been used in [BBPV03]; and a new set of 217 scans from
31 individuals, 7 scans per subject (for each subject we took a scan without
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Figure 4.6: Reconstruction of texture coordinates for the eyes. In the top image
we show the texture resulting from the push-pull algorithm in the eyes region.
A much better result can be obtained by applying the push-pull algorithm to
the texture coordinates data, and then using the reconstructed coordinates to
sample the original texture images (middle). The bottom image shows the res-
olution improvement when doubling the size of the registered texture.
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expression and six with the basic emotional expressions). The first two sets,
which we denote by D1 and D2, have been acquired with a Cyberware scanner,
while the last set, D3, has been acquired with a phase shift system.

We initialized the morphable model using as training examples two hand-
designed 3D models of a reference human head, with closed and open mouth.
The head model is complete, apart from the teeth which are not modeled, and
the mouth interior is coarsely modeled as a box. We registered the data sets
D1, D2 and D3 one after the other, and we did not explicitly use any knowledge
on the type of data during the registration. The first two datasets, however,
have also been used to expand the initial morphable model, and at that stage
information on the dataset class has been used. Figure 4.7 shows different
examples of the training data and the results of their registration; in figure 4.8
we also show examples of heads randomly generated by the model built with
the registration results from D1 and D2.

A quantitative evaluation of the registration results is not trivial, since we
have no ground truth with which to compare them. However, one can com-
pare the registration results of different algorithms, both by directly measuring
certain properties of the results (e.g. smoothness of the surface) and of the
morphable models built with them (e.g. by cross-validation); and by indirectly
looking at the performance of the morphable models in specific applications
(e.g. image fitting). In the following section we discuss such a comparison be-
tween the registration results ofD1 and the previous results obtained in [BV99].
The same was not possible for the results fromD2 andD3, and we will therefore
evaluate them indirectly in the context of an application, in chapter 5.1.

4.7.1 Identity Model

The evaluation of the registration results of the data set D1 is split in three
parts: (1) direct evaluation of the registered data taken singularly; (2) direct
evaluation of the results as a whole, by looking at certain measures of the mor-
phable model built from them; (3) indirect evaluation of the results as a whole,
by looking at the morphable model performance in a typical application, the
image fitting.

Evaluation of the Registered Heads.

In the introduction to the chapter we claimed that our algorithm offers an im-
proved robustness to errors in the correspondence estimation, thanks to the
smoothness term in the minimized energy. We first verify this claim by look-
ing at the smoothness of the displacement field between the registered results
and their average shape. Although this is not exactly the quantity minimized
during registration, where we minimize the smoothness of the displacements
w.r.t. to the approximation rather than the average, we reasonably expect our
algorithm to show an improvement of this measure. This expectation is in fact
confirmed, both for single scans which had registration problems with the pre-
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Figure 4.7: Training data and registration results. The two top rows are exam-
ples from D1, the middle two from D2, and the bottom two from D3. For each
pair of rows, the first shows the originals and the second the registered results.
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Figure 4.8: Examples of heads randomly generated by the model built from D1

and D2.

Figure 4.9: Comparison of the mean displacement field smoothness. The images
are a color-coded rendering (red is lower, green higher smoothness) of the mean
per-vertex smoothness values. On the left the result from the registration of
[BV99], and on the the right from our algorithm. The averages over all vertices
are respectively 0.204 and 0.138, with standard deviations of 0.182 and 0.086.
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Figure 4.10: Comparison of the displacement field smoothness for two exam-
ples. In the top row are the registered results, in the middle row their carica-
tures to evidence the problems in the correspondence, and in the bottom row a
color-coded rendering (red is lower, green higher smoothness) of the per-vertex
smoothness values. The results on the left are from [BV99], the ones on the
right from our algorithm.
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Figure 4.11: Distributions of the caricature bounds for the results of registration
on the set D1 (values clipped to [−30, 30]). In the top histogram the results of
our algorithm, in the bottom histogram for the algorithm of [BV99]. Both lower
and upper bounds are in the same histogram, on the negative and the positive
quadrant, respectively. In comparison with the other algorithm, ours shows a
distribution of the caricature bounds which is flatter in the middle and more
skewed towards the tails, indicating a larger interpolation range.
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Figure 4.12: Average distance of the vertices from the original surface. The
distance is computed only for the vertices with values for all examples; on the
right is the scale. Most of the vertices are close to the surface, with a distance
well within the limit of 1.0 mm. The black areas correspond to vertices which
are missing in at least one example.

vious method, as shown in figure 4.10, and on average over all the registration
results, as shown in figure 4.9.

The smoothness of the displacement field however is not the only measure
available for comparison of the registration results. A second measure is what
we call caricature bounds. When we interpolate between a registered head and
the average, either in one direction – away from the average, that is we are
extrapolating or making a caricature of the registered head – or in the other –
towards the average and eventually beyond, to obtain what is called an anti-
face – a point could be reached where a given triangle will flip, that is the angle
between its normals in the interpolation and in the original head will become
greater than 90 degrees. This point is a limit to the interpolation: going further
will produce artifacts in the mesh. For each results of the registration, we can
compute the upper and lower interpolation bounds for each triangle; clearly,
a bigger range of interpolation will signal a more regular result. Also in this
respect the new algorithm shows an improvement with respect to the one of
[BV99], as shown in figure 4.11

Proving that the new results are smoother or more regular does not neces-
sarily prove that they are a better representation of the original novel meshes
which were registered. In particular, the smoothing term in the minimized en-
ergy implies the risk of smoothing so much the result, that at the end it does not
approximate well the input. We can check if this is the case by considering the
distances of the vertices of the registered results from the surfaces of the inputs.
We do this by projecting the vertices of each result to cylindrical coordinates
and then looking at the radial difference with respect to the points which have
the same 2D position the inputs. The results, summarized in figure 4.12, shows
that the smoothing really affects the distance from the original surface only in
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Figure 4.13: Cross-validation results for both models.

small areas, while in the rest of the face the vertices are well within 1.0 mm
from the surface. In principle, we could further improve this result including in
the energy we minimize a term depending on the distance from the surface, or
even a hard constraint forcing the vertices to stay on the surface. However, this
would considerably increase the complexity of the optimization.

Evaluation of the Morphable Model.

In the previous section we proved how the new algorithm shows a significant
improvement in the quality of the results. This improvement should in turn
have a positive effect on the quality of the morphable model built with the reg-
istration results. Comparing such two models is a typical problem of statistical
learning, known as model selection (see [HTF01], chapter 7).

We will consider here the cross-validation method, which aims at estimat-
ing the generalization error of the model. This is the expected error made by
the model in reconstructing new data not in the training set. The estimation is
obtained by splitting the set of the examples in N subsets (and one then talks
about N -fold cross-validation), and then iteratively computing the average re-
construction error over the i-th subset for a model built with the other subsets.
In other words, at each iteration the i-th subset is used as test set, and the other
subsets as training sets. The mean reconstruction error over all subsets is the
estimate of the generalization error. We performed a 10-fold cross-validation on



4.7. RESULTS 63

Gallery\Probe Frontal Side Profile
M1: 99.9 M1: 98.4 M1: 75.6

Frontal M2: 99.0 M2: 96.7 M2: 72.8
M1: 96.4 M1: 99.3 M1: 83.7

Side M2: 96.9 M2: 98.9 M2: 81.4
M1: 76.3 M1: 86.0 M1: 89.4

Profile M2: 79.0 M2: 84.9 M2: 91.3

Table 4.1: Comparison of the image identification results. Gallery and probe
images are split into different groups, depending on their pose (see text for a
detailed explanation of the experiment). For each pair of gallery and probe
groups we list the identification results for the models built with the results
of the previous algorithm (M1) and of our new algorithm (M2). The better
results are in bold. M1 is slightly better, with an average performance of 89.4%,
compared with an average 89.0% for M2.

the two models, and the results, summarized in figure 4.13, show that the new
model has a better generalization performance than the old one.

Performance of the Morphable Model.

We conclude the results section with an analysis of the performance in a typical
application of 3D morphable models. We will consider a face identification ex-
periment run on a database of 3D faces, obtained as reconstructions from a set
of images with different poses and lighting conditions; we used the reconstruc-
tion method presented in [RV05]. As usual in identification tests, the set of 3D
reconstructions is split into a gallery and a probe set, and the identification task
consist in assigning very face in the probe set to a face in the gallery set. A com-
parison of the results obtained for the two models built with the results from
our algorithm and the one of [BV99] (in table 4.1) shows that the performance
of the model built with the new results is slightly worse (89.0% vs. 89.4%). The
reason for this seems to be however that the topology of the reference mesh we
used does not support well the use of edge features by the reconstruction algo-
rithm. In fact, additional experiments run without using the edge informations
yielded exactly the same performance for both models, 80.2%.
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Chapter 5

Applications

The algorithm described in the previous chapter has been developed in order to
be able to register 3D scans of human faces, irrespective of their expression. In
the last section of the previous chapter we have already provided an evaluation
of the registration results, and in this chapter we are going to show how they
can be applied to the face recognition problem. As well as considering this
application, we will also discuss an example of application of the combined
identity-expression 3DMM to images.

5.1 3D Face Recognition

As already discussed, the input of a 3D recognition problem are two datasets
of 3D scans. The gallery set contains one example for each person to be rec-
ognized. The probe set contains other examples of the persons in the gallery,
acquired in different conditions. In our case, the examples in the gallery have
been acquired with neutral expression, while the examples in the probe have
been acquired with the six basic emotional expressions. Given the gallery and
the probe sets, the recognition task consists of assigning each example of the
probe to the correct person in the gallery.

In order to test the performance of our recognition method, we used the
database denoted in section 4.7 as D3. It is a collection of 217 3D scans, taken
from 31 different persons. For each person, we acquired seven scans: a neutral
expression, plus the six basic expressions (fear, anger, sadness, joy, surprise
and disgust). All the scans have been preprocessed and registered as described
in the previous chapter, using the combined expression-identity 3DMM built
with the datasets D1 and D2 of section 4.7. The first is a database of 200
different individuals with neutral expression, while the second a database of
68 expressions from 2 different individuals. We stress again the fact that all the
data were processed in the same way, in particular we did not use the registered
neutral expressions to register the remaining data of the same person.

The set of registered 3D scans from D3 was then split into a gallery, made
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up of the neutral expressions, and a probe set including all other scans. Note
that the gallery could have also been built by choosing randomly an example
for each person, but we deem more realistic to assume that the gallery is made
up of neutral scans. The recognition could be already performed at this stage,
by simply applying a nearest neighbor criterion to the shape vectors (and even-
tually also the textures) of the registered examples. That is, given a probe shape
vector s and the gallery shape vectors si, we assign s to the gallery example for
which the L2-norm ‖s− si‖ is minimized. With this approach, which is already
using the combined expression-identity 3DMM for the registration, we obtain a
recognition rate of 85.5%.

The clear problem of such an approach is that the expressions can alter
significantly the shape of the face, easily resulting in wrong classifications. Ide-
ally, we should compensate for all the deformations induced to the faces by the
expressions. This can be achieved by inferring the optimal identity and expres-
sion model coefficients for each of the registered scans, as described in section
2.1.1. In this way we are effectively projecting the shape vectors to two separate
spaces, one coding the identity (built with the dataset D1) and the other the ex-
pression information (built with the dataset D2). Once these two components
have been separated, we can perform the recognition using only the identity
coefficients.

Recall that with a morphable model combining expression and identity, we
assume that the shape vector is generated as in equation (2.6):

s = s̄ +
(

Cid Cxp

)
·
(

αid

αxp

)
+ ε,

where the identity and expression components are stored into the matrices Cid

and Cxp, respectively. As explained in section 2.1.2, given a novel s we can es-
timate the most likely values for the identity coefficients αid and the expression
coefficients αxp from the equation(

αid

αxp

)
= W

(
W 2 + σ2I

)−1 ·UT · (s− s̄) ,

where the matrices U and W derive from the SVD of the matrix C = (Cid Cxp),
and the noise variance σ2 depends on the number of components retained in
the identity model. Using the above equation we assign the probes to the ex-
amples in the gallery by comparing their identity coefficients αid; discarding
the coefficients αxp compensates, at least in part, for the deformations induced
by the expressions. Given the coefficients αid of a probe and the coefficients
αi

id of the gallery examples, the identification can be done by comparing them
with an L2-norm ‖αid −αj

id‖2. However, it has been shown in [BV03] that it is
more effective to use the cosine of the angle between the vectors as a distance
measure:

cos =
αid ·αj

id

‖αid‖‖αj
id‖
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Vectors Used kid kxp σ (mm) Norm Id. Rate
Shape Vectors - - - L2 85.5%
ID Coefficients 199 0 0.0 L2 90.3%

angle 91.4%
175 0 5.24E-2 L2 94.1%

angle 94.1%
ID-XP Coefficients 199 67 0.0 L2 97.8%

angle 98.9%
150 46 8.87E-2 L2 98.9%

angle 99.5%

Table 5.1: Summary of the identification results. For each result, we specify:
the type of feature vectors, the number of identity and expression shape com-
ponents used by the model and the corresponding noise standard deviation, and
finally the norm used to compare the probe vectors with the gallery vectors.

Vectors Used kid kxp σ (mm) < L2 > < angle >
ID Coefficients 199 0 0.0 0.123 0.899

175 0 5.24E-2 0.122 0.877
ID-XP Coefficients 199 67 0.0 0.081 0.804

150 46 8.87E-2 0.087 0.761

Table 5.2: Average distances between the projections of probe and gallery scans
on the identity space, on the two rightmost columns. Both distances decreases
when using a combined identity-expression model.

In our experiments however we did not observe a significant difference: the
identification rate using the L2-norm is 98.8%, while using the angles is 99.5%.

We already mentioned that the noise variance σ2 is determined once the
number of components retained in the identity model is fixed. Retaining a
smaller number of component in the model has the effect of increasing the es-
timate of the noise variance, and consequently of regularizing the projection. A
higher value of the noise variance has the effect of eliminating disturbances in
the data which might affect negatively the identification results; on the other
hand, the higher its value, the closer the coefficients αid gets to zero, and the
more difficult it gets to discriminate correctly between different identities. It is
therefore important to choose a number of identity components which trades
off between these two effects, but unfortunately there is no absolute criterion
we can use. Moreover, the optimal choice will typically depend on the particu-
lar problem we want to solve. In order to find the optimal number of identity
components to use, we repeated the identification experiments with increas-
ing number of identity components, from 10 to 199 (all the components). As
shown in figure 5.1, the best identification rate is obtained with 150 compo-
nents; however, even a more parsimonious choice of 50 components does not
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seem to worsen significantly the identification rate, which only slightly drops to
98.4% (-1.1% compared with the result of using 150 components).

A similar behavior of the identification rate is obtained projecting the shape
vectors on the identity space only (figure 5.2). In this case we use only the
identity components, that is we are not trying to separate the expression from
the identity information. Nevertheless, we obtain a best identification rate of
94.1%, with 175 components. Also in this case, the identification performance
obtained with 50 components or more stays in a relatively tight range approx-
imately between 90% and 94%; using the angular distance does not seem to
provide a significant advantage. The identification results are summarized in
table 5.1. Note that an improvements of the identification rate is coupled with
a decrease of the average L2 and angular distances of a probe vector from its
corresponding gallery example (see table 5.2). This is especially evident for the
L2 distance, where the use of the combined model drops the average distance
of one third.

Comparison with Bilinear Models As mentioned in the introduction, the
combined modeling of identity and expressions could have also been achieved
via bilinear models. In theory, a bilinear model has the advantage, compared
with the linear model we used, of modeling the dependency of expressions on
the identity. It is however not clear if this theoretical advantage can yield an
improvement of the identification performance. In order to find this out, we
ran additional identification experiments employing a bilinear model for the
expressions. That is, we modeled the shape vectors as:

s = s̄ + Cid ·αid + Cxp ×2 αT
id ×3 αT

xp,

where the last term models the expression displacements. In this case the ex-
pression model is coded into a 3-mode tensor, Cxp, with dimensions 3n× kid ×
kxp. The second mode of the tensor encodes the dependency of the expression
displacements from the identity, and the mode-2 product Cxp ×2 αT

id results in
a matrix with dimensions 3n × kid. Conversely, the third mode encodes the
dependency of the displacements from the type of expression, and the mode-3
product Cxp×2 αT

xp results in a matrix with dimensions 3n× kxp. Applying both
mode products results in a 3n-dimensional displacement vector which can be
added to the identity s̄ + Cid · αid. For a more extensive treatment of bilinear
models, we refer to [TF00, VBPP05].

The use of a bilinear model puts additional constraints on the training set.
In order to estimate Cxp, we need for each individual in the training set the
same expression examples. Although the dataset D2 does not satisfy this re-
quirement, the dataset D3 does. Since D3 has to be used also as probe set, we
adopted a leave-one-out approach, where at each iteration the expressions of
one individual were removed from D3 and used as probes, while the expression
model was trained with the remaining examples. The identity model, however,
has been still built fromD1, and we retained 150 identity components. Perform-
ing the identification experiments with this approach both for the bilinear and
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Figure 5.1: Results of the identification experiments, using the combined
expression-identity morphable model, with different number of identity com-
ponents. With increasing number of components, the estimated standard vari-
ation of the noise also increases (black solid line, scale on the left). The best
identification rate (scale on the right) is obtained using the angular distance
between the coefficients vectors, and with 150 identity components. However,
when using more than 50 components the identification rate stays essentially
constant, varying in a range between 97.8% and 99.5%. Using the L2-norm
rather than the angular distance does not seem to have a significant impact on
the results.
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Figure 5.2: Results of the identification experiments, using the identity-only
morphable model, with different number of identity components. The best
identification rate is obtained in this case with 175 identity components, but
as for the results obtained with the combined model, the identification rate
stays essentially constant when using more than 50 components.
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Originals Projections

Figure 5.3: Examples of expressions-free reconstructions. On the leftmost col-
umn are five registered faces of the same individual. Their shapes are projected
to the model space and reconstructed. On the second column are the recon-
structions from an identity-only model, while the last two columns are from a
combined expression-identity model (they differ in the number of idetity com-
ponents used, 199 and 100 respectively). Note that we did not apply the original
textures to better appreciate the differences in shape.
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the linear models, showed that the former is slightly inferior to the latter, with
a 97.9% identification rate vs. 99.5% (the same rate obtained using D2 for the
training). The lower identification rate and the additional computation load of
the bilinear model, especially for inferring the model coefficients from a shape
vector, justify our preference for a linear model.

5.2 Applications to Images

In [BV03] it has been shown how an identity-only 3DMM can be used, with
excellent results, for image face recognition; and in principle, the combined
expression-identity 3DMM we used in the previous section could also be applied
to this problem. However, for image applications an image fitting algorithm
is required, an algorithm which uses the 3DMM to recover the 3D shape and
texture of a face from a single image. Although fitting an expression-only 3DMM
to image data has already been tried ([BBPV03]), fitting a combined expression-
identity 3DMM has not been tested yet.

Therefore, as a first step towards the application of our model to image face
recognition, we experimented with the algorithm of [RV05], fitting images of
expressions with our new 3DMM. Although we did not carry on extensive exper-
iments, we were able to test our model on the task of image normalization: the
process of synthesizing a new image, with a predefined pose and illumination,
from the input one. The synthesized image is obtained by fitting a 3DMM to the
input image, and then by rendering it back in the same image with the prede-
fined pose and rendering parameters. As shown in [BGPV05], the preliminary
normalization of the images can significantly improve the performance of a face
recognition algorithm. In figure 5.4 we report some of the results we obtained.

Naturally, these results are no proof that the model can fit any expression,
and we do not present them as such. In particular, the method has been tested
on a too small number of images in order to assess its reliability. However, we
think they might anticipate what can be done in the future. In the conclusions
we will return on the issue of image fitting, in particular to try to understand
what are the model’s limits and how they can be removed.
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Figure 5.4: Original images on the first row. Fittings on the second row, same
fittings normalized on the third. Fittings with extracted texture on the fourth
row, normalized on the fifth.
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Chapter 6

Conclusion

The construction of a 3DMM for modeling identity and expressions requires a
registration algorithm capable to cope with the extreme deformations involved
in facial expressions. As already mentioned, the algorithm used in [BV99]
yielded excellent results for 3D scans of faces with a neutral expressions, but
was not able to register the expressions data. Other algorithms are capable
of registering expression data, but they typically work for one individual at a
time, since they rely on the knowledge of the individual face with neutral ex-
pression. In chapter 4 we described a novel algorithm, aimed at registering
expression data with arbitrary identity. The new algorithm uses a slightly mod-
ified version of the algorithm from [BV99], based on optical flow, in order to
estimate the correspondence between a reference 3D head model and the face
examples. The correspondence information allows us to sample the surface of
the examples, yielding for each vertex of the model shape and texture values.
If the correspondence was perfect and all the model vertices had a correspon-
dence to the examples, we could directly use the sampled values as the ones
of the registered results. However, these assumptions are typically not met,
and therefore the sampled values are fed to an optimization problem, whose
solution is the registered version of the example. Moreover the registration is
performed in a bootstrapping scheme, in order to exploit, at each new iteration,
the prior knowledge accumulated in the 3DMM built with the examples already
registered.

As shown in section 4.7, the novel algorithm allows us to register expressions
data and can also cope with missing data in the input. And as well as widening
the range of data which can be processed, the new algorithm offers a control
on the regularity of the registered results, thanks to the adaptive smoothing
performed in the last step of the registration. In fact, the last step is a gen-
eralized version of the surface reconstruction method we described in chapter
3. By combining a variational approach with a statistical one, our method en-
sures continuity at the boundary of the reconstructed areas, while reducing the
reconstruction error. From this respect, our registration algorithm differs from
others which also allow to process data with missing values, since they typically
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employ only a variational criterion for the reconstruction.
The capabilities of the new algorithm offered us the possibility of building

a 3DMM combining both identity and expression variations, and in chapter 5
we considered two of its possible applications. The main application we dealt
with is 3D face recognition, which we tested on a database of more than 200 3D
scans, acquired from 31 individuals. By registering the data, and using a simple
nearest-neighbor criterion, we were already able to achieve an identification
rate of 85.5%. Projecting the data to the combined identity-expression model,
however, we achieved nearly perfect identification results. These identification
results might be further improved using the texture information, which we did
not use in our experiments. We also showed that the use of a bilinear model
for the expression variations does not improve the results; however, this might
be due the size of the training set. It is possible that enlarging the training
set, especially increasing the number of expressions per individual, would raise
the identification performance. Comparisons with the performances of other
methods must take into account the differences in the probe and gallery set.
In [CBF05], for instance, the authors can claim an identification rate of 91.9%;
although their rate is lower than ours, one should consider that it has been
obtained on nearly 4000 probes!

In the second application, we showed how the model can be used to the
normalize images of faces with expressions, synthesizing new images where the
expression had been removed and replaced with a neutral expression. This is
an interesting application, since preliminary normalization of the images can
greatly improve the performance of face recognition algorithms.

6.1 Outlook

The generalization capabilities of a 3DMM mainly depend on the size of the
training set used to build it, and it is therefore desirable to collect and register a
large number of examples. As a consequence, it is important that a registration
algorithm reduces as much as possible the amount of manual interaction re-
quired from the user. As we have seen, the registration algorithm we presented
is not completely automatic; the raw 3D scans obtained from an acquisition de-
vice require some preprocessing which currently depends on user interaction.
In particular, two tasks are left to the user: the selection of few landmarks
on the 3D scans, and the selection of the areas not pertaining the model and
which should be removed (e.g. hairs, clothes, teeth). An useful improvement of
the algorithm would be the automatization of such tasks. Both problems have
been already addressed in the literature, in particular the automatic detection
of the landmarks. We refer the reader in particular to the method presented in
[BBK05], which addresses both problems, and is based on the selection of an
area within a certain geodesic distance from the tip of the nose.

Apart from the drawback of the user interaction required in the preprocess-
ing step, the registration algorithm provides very good results, and enabled us
to build a 3DMM which performs well in a face recognition task, even if the
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probes presents extreme expressions. Although fitting the model to 3D scans
usually provides good results without using any landmark, the experience we
had fitting the model to images evidenced problems in accurately fitting the
lips contour without landmarks. The use of landmarks, however, is not always
desirable; in particular, for video tracking it is clearly not possible to manually
place landmarks through the whole video. One possible approach might be to
place the landmarks in the first frame, and use a dedicated algorithm to track
them through the whole video.

We conclude by considering the possible application of the model to the
task of 3D face animation, the automatic generation of dynamic sequences of
3D models simulating human emotions or speech. For such a task additional
problems come into play.

• First of all, in order to make the animation method usable, it would be
necessary to have a high-level parameterization of the expression space.
We mean by this a set of parameters which produce a single and well-
identifiable effect on the face, for instance the raising of an eyebrow, or
raising of one mouth’s corner. This type of parameterization is currently
not provided by the model.

• Facial expressions inherently depend on the face identity, and it would in-
crease a model’s realism to capture this dependency. Probably, in order to
study it, it would be necessary to collect a database of 3D scans acquired
from professionals who can activate single facial muscles. Then, the vari-
ability of these simple actions across many identities could be modeled
(e.g. with bilinear models), and complex expressions might be built in
top of them.

• Currently we model expressions only through deformations of the shape.
If the shape deformations would perfectly reproduce the real ones, and
if our rendering model was perfect, the results would also be perfect.
However, since the shape deformations normally approximates the real
ones, and since the rendering model is simpler than the real physical phe-
nomenon, some effects are not reproduced. We think in particular to the
darkening of areas where the skin folds. This should be modeled in the
texture, maybe following the approach of [LSZ01].
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Appendix A

Technical Details

A.1 Coarse Alignment

Denoting by LS and LR the two N × 3 matrices holding the positions of the
N landmarks in the novel and reference meshes, we first compute the mean
positions of the two groups of landmarks:

l̄• =
1
N

1T
N ·L•

where • is either S or R, and 1N is an N × 1 vector of ones.
Defining a matrix

A = (LR − l̄R)T · (LS − l̄S),

which can be decomposed by Singular Value Decomposition (SVD) as A =
UWV T , the rotation is estimated as

R = USV T

where S is a diagonal 3× 3 matrix defined as

S =

 1 0 0
0 1 0
0 0 sign|A|


The translation is defined as

t = l̄R −R · l̄S

A.2 Newton Descent Algorithm

In this section we describe the Newton descent algorithm for a cost function of
the form

E(c) = Ed(c) + ηp

∑
i

(ci − ĉi)2

σ2
i

,
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with c = (c1, . . . , cn). The application of the algorithm to the full form of the
cost function used in section 4.3 is straightforward.

In order to find the optimal values hi for the parameters ci, one can set to
zero the derivatives of the cost function with respect to them:

∂E

∂ci

∣∣∣∣
hi

=
∂Ed

∂ci

∣∣∣∣
hi

+
2ηp

σ2
i

(hi − ĉi) = 0. (A.1)

Of course, since there is no easy analytical representation of Ed, the equation
cannot be solved in closed form and the optimal solution is found by iterative
update of the coefficients ci.

In our specific case, the update rule is found by approximating Ed with the
quadratic form

Ed =
∑

ai(ci − gi)2,

with parameters ai and gi unknown. From this approximation follows that the
first derivative is

∂Ed

∂ci
= 2ai(ci − gi),

and its value at hi can be expressed in terms of its value for the current estimate
of the coefficient as

∂Ed

∂ci

∣∣∣∣
hi

=
∂Ed

∂ci

∣∣∣∣
ci

+ 2ai(hi − ci).

In this latter equation, both the derivative at the point ci and the parameters ai

(which depends on the diagonal elements of the Hessian matrix of Ed) can be
numerically estimated by finite differences.

Given the above approximation, we can rewrite equation A.1 as

∂Ed

∂ci

∣∣∣∣
ci

+ 2ai(hi − ci) +
2ηp

σ2
i

(hi − ĉi) = 0

so that the optimum hi is defined by

hi =

(
−1

2
∂Ed

∂ci

∣∣∣∣
ci

+ aici +
ηp

σ2
i

ĉi

)
·
(
ai +

ηp

σ2
i

)−1

Naturally, since this is only an estimate of the optimum, we only update the
coefficient in its direction, that is:

ci → ci + λ(hi − ci),

with the factor 0 < λ ≤ 1 equal for all coefficients.
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A.3 Mechanical Smoothing of the Flow Field

As detailed in section 4.4, at each iteration of the optical flow algorithm for 3D
data a smoothing of the flow field is needed.

The smoothing is performed as in [Bla00] by modeling a mechanical mass-
spring system, where each mass corresponds to a pixel of the input data and
the springs connect the masses corresponding to neighboring pixel. Denoting
by v0(u, v) the initial flow field and by v(u, v) the result of the smoothing, the
mass corresponding to a pixel (u, v) has a position (u, v) + v(u, v) and a certain
potential depending on its distance from the initial position (u, v) + v0(u, v).
The total energy of the system is then given by the sum of the mass potential
and the spring potential:

E = Es + Em,

and the result v is obtained finding the system configuration at the equilibrium,
via a conjugate gradient descent algorithm.

The energy of the springs is easily defined as

Es =
1
2

∑
‖v(u+ 1, v)− v(u, v)‖2 +

1
2

∑
‖v(u, v + 1)− v(u, v)‖2.

The mass potential, however, should be defined such as it strongly penalizes
differences between v and v0 only where the contrast in the data is high, while
being null in areas of low contrast. More specifically, given the energy mini-
mized to obtain the initial flow field v0 at a given point:

E =
∑

u,v∈R

∥∥∥∥∥v(u, v) · ∇J |(u,v) +
∂J

∂t

∣∣∣∣
(u,v)

∥∥∥∥∥
2

,

we can compute how much it would increase by modifying the flow field at that
point with an additive term (du, dv). One can show that such a change would
produce an increase equal to

dE = λ1(a1 · (du, dv))2 + λ2(a2 · (du, dv))2,

where we denote by λi and ai (with λ1 > λ2) the eigenvalues and eigenvectors
of the matrix W

W =
( ∑

R ‖∂uJ‖2
∑

R〈∂uJ , ∂vJ〉∑
R〈∂uJ , ∂vJ〉

∑
R ‖∂vJ‖2

)
.

The idea is now to set the potential to zero at the points where dE is low, since
these are the low-contrast points where the flow field can be freely smoothed,
and to set it to a high value were dE is large, since these are the high contrast
points where the flow field should be kept relatively fixed. In practice, given a
threshold value s, we identify three cases: (1) if λ1 ≤ s, the effect of an error
on the flow would be negligible (low contrast areas); (2) where λ1 > s > λ2
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only errors along the direction of a1 are significant; (3) if λ2 ≥ s all errors are
significant (high contrast areas). Accordingly, we define the potential as

Ea(u, v) =

 0 if λ1 ≤ s
t · (a1 · (v − v0))2 if λ1 > s > λ2

t · ‖v − v0‖2 if λ2 ≥ s
,

where t is a constant chosen empirically.
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Software

The algorithms described in this thesis have been implemented into a Python
(http://www.python.org) package, for the Linux operating system. The pack-
age includes a set of library modules offering data structures and basic functions
for the developer, and a set of tools and applications for the user.

B.1 Installation

The package is stored into the software repository of the Basel University’s Com-
puter Science Department, and is available only internally. The following Sub-
version (http://subversion.tigris.org) command extracts – checks out in
Subversion’s terminology – the package to the directory $PKGROOT:

> svn co https://svn.cs.unibas.ch/repos/gravis/people/basso/\
python/trunk $PKGROOT

After extraction, the directory $PKGROOT will contain the library modules, plus
the following subdirectories:

• apps: tools and applications.

• doc: package documentation.

• src: C/C++ sources of the extension modules (more on this subject
later).

• test: test modules.

B.1.1 Dependencies

As well as the Python programming language and Subversion, standard compo-
nents of an up-to-date Linux distribution, our software requires the following
libraries:
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• numarray: a Python package used for numerical computations, e.g. lin-
ear algebra. If you do not install it manually, you should verify that the
automatic installation checks for a BLAS/LAPACK implementation (see
next item) and links against it if present. Downloadable from http:
//www.stsci.edu/resources/software hardware/numarray.

• BLAS/LAPACK: a linear algebra C library available in different imple-
mentations. It is not strictly required, but if present numarray can be
linked against it resulting in an improved speed for linear algebra oper-
ations. I suggest using the ATLAS implementation, downloadable from
http://math-atlas.sourceforge.net/.

• UMFPACK: a C library for solving unsymmetric sparse linear systems.
This is required for surface reconstruction, and therefore for 3D registra-
tion. At http://www.cise.ufl.edu/research/sparse/umfpack/.

• PIL (Python Imaging Library): a package used for imaging, but my soft-
ware uses it only for handling I/O to different file formats. Downloadable
from http://www.pythonware.com/products/pil/.

• wxPython: bindings to the wxWidgets C++ library, a cross-platform UI
framework. It is not strictly necessary, but some useful tools are based
on it. A manual installation can be very time-consuming: it is preferable
to install a binary package if available. Downloadable from http://www.
wxpython.org/.

• libVB, libNR: the old C/C++ libraries used by our group, and still re-
quired for rendering 3D meshes. They can be extracted from the group’s
software repository.

B.1.2 Setup

After having installed the required libraries, we can set up our Python package.
It is not a pure package, with all the modules written in Python: for speed rea-
sons, some of them are so-called extensions modules, written in C/C++ and
needing compilation. The compilation is performed with the following com-
mand (assuming you are in $PKGROOT):

> python setup.py build_ext --inplace

The command first checks if some libraries are present, and depending on this
selects the extensions which should be compiled (the umfpack module, for in-
stance, is not compiled if the UMFPACK library is not found). There are some
environment variables which influences the compilation process:

• CXX,CC: defines the compiler to be used (by default is gcc).

• CPATH: specifies a list of directories to be searched for include files by the
compiler.

http://www.stsci.edu/resources/software_hardware/numarray
http://www.stsci.edu/resources/software_hardware/numarray
http://math-atlas.sourceforge.net/
http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.pythonware.com/products/pil/
http://www.wxpython.org/
http://www.wxpython.org/
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• LIBRARY PATH: specifies a list of directories to be searched for libraries by
the compiler.

The last two variables are used when some of the required libraries has been
installed in non-standard locations. After compilation, the setup is completed
by adding to the PYTHONPATH environment variable the absolute path of the
$PKGROOT directory.

To test that everything is working correctly, you can run the tests present in
the test subdirectory:

> python $PKGROOT/test/test_all.py

preferably from an other directory than $PKGROOT, to be sure that $PYTHONPATH
has been correctly set. If the library has been correctly set up, you should obtain
an output similar to

> python $PKGROOT/test/test_all.py
...
------------------------------------------------------------
Ran 3 tests in 2.828s

OK

Otherwise, you will be reported on which test failed.

B.2 Library Overview

The following is a list of the most important modules in the package, along
with a brief description of their main functionalities. We split them in three
groups: the first two includes modules related to, respectively, 3D data and
3D morphable models. The last group includes modules with a more general
application scope.

Handling and processing of 3D data.

• Obj: parsing of Alias/Wavefront OBJ/MTL files. The main functions are
read mesh(filename) and write mesh(filename, mesh), which do ex-
actly what their names suggest.

• Mesh: implements a 3D mesh structure with the Mesh class. This relies on
the class Topology, storing the list of faces and texture coordinates, and
the class BoundingBox.

• cyber: handling/creation of Cyberware data, through the class Cyber.
The function frommesh(mesh) converts a Mesh to a Cyber via cylindrical
projection.
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• render: interface to software rendering implemented in libVB, via the
function render(scene, params). The function’s second argument is an
object of class Params, storing all the necessary rendering parameters. The
module also provides a parser for .rdb files, in order to load the rendering
parameters from the result of an image fitting (obtained via mouflon).

• poisson: implementation of Poisson surface reconstruction (see 3.4).

Building and usage of 3D Morphable Models.

• registration: subroutines for the 3D registration algorithm. This mod-
ule provides the low-level functions used by the front-end application
apps/linear.py.

• Flow: computation of optical flow between Cyber objects, via the func-
tion fromcybers(). The flow data are read/written with the functions
readFFlow and writeFFlow.

• sgdfit: implementation of the 3D fitting via Stochastic Gradient Descent,
used by the registration module, and by the apps/fit3d.py applica-
tion.

• Heads: handling of 3D data in HEAD format, via the Head and the Mask
objects.

Miscellaneous.

• la: linear algebra functions not provided by the numarray library. Partic-
ularly important are the Sparse class, which implements a sparse matrix
used for surface reconstruction, and the load and save functions.

• trans3d: estimation of optimal 3D transformations (rigid, affine, similar-
ity) via the get trans function.

• image: image processing functions not provided by the numarray or the
PIL library. In particular, the functions laplacian creates the Laplacian
pyramid of a (multi-channel) image. Other functionalities are: conversion
between numarray and PIL format, I/O to Fimage format, color correction
(via gain, offset and contrast parameters).

• Statistic: implementation of Principal Component Analysis (PCA), EM-
PCA and PPCA, as well as I/O routines.

B.3 Documentation

The code of the library modules is documented. This documentation might be
used in two ways.
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First, it can be extracted using Doxygen (http://www.doxygen.org). A con-
figuration file, called Doxyfile, is already available in the software root direc-
tory, and issuing (from the $PKGROOT directory) the following command

> doxygen

will create in the doc/doxy subdirectory an extensive HTML documentation of
the code.

A second way is inherent to Python. In Python every function and class
can be documented using so-called docstrings, documentation text placed im-
mediately after the object declaration (in Python everything is an object). The
docstrings are a member of the object: they can be accessed from the code and,
more importantly, from an interactive Python shell. Since the use of an interac-
tive shell is common for Python development, this results in an handy way of
accessing documentation.

B.4 Applications

As well as the library modules, our Python package includes a set of applications
and small tools, located in the apps subdir.

B.4.1 Preprocessing

In order to ease the preprocessing of the input data (described in section 4.2.1),
we developed the program apps/preprocess.py. With it, the user can prepro-
cess a set of input 3D scans in three steps:

1. Landmarks placement. After being called, the program displays the tex-
tures of the scans, one after the other. For each texture, the user has to
place 5 landmarks by left-clicking with the mouse: exterior corners of left
and right eyes, tip of the nose, left and right corners of the mouth.

• if you placed some of the landmarks in the wrong place, press ’u’ to
remove them and begin again.

• after having placed the landmarks, press ’ENTER’ to store the positions
and step to the next texture.

• press ’l’ to load the landmarks from a previously saved file and skip
to the next scan.

2. Alignment to the reference. Once the landmarks have been placed for
all textures, the program will proceed to compute for each scan the op-
timal alignment to the reference. No user interaction is required at this
stage.

3. Data cleaning. Upon completion of the alignment step, the program
switches to cleaning mode. The user is presented with the textures of

http://www.doxygen.org
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the scan’s cylindrical projections, with the void areas marked in red. By
moving the mouse cursor with the left button pressed, the user can remove
parts of the data (which will then be shown in red). By moving the mouse
cursor with the right button pressed, the user can mark void parts where
the texture coordinates should be recovered during registration (shown in
green). It is advisable to mark in green only small areas, like holes at the
eyes.

• pressing ’a’/’s’ increases/decreases the radius of the circle.

• as in step (1), you can press ’ENTER’ to accept the modifications and
’u’ to undo them.

• pressing ’SPACE’ any modification will be discarded.

• pressing ’f’ chooses floodfill mode which is useful for marking inpaint
regions, the cursor will then change to a cross.

• pressing ’p’ chooses pencil mode, the cursor will change back to a
circle.

• pressing ’g’ sets each red inner pixel to green

B.4.2 Registration

The full registration process of chapter 4 is carried one by a single program,
apps/linear.py. Its basic usage is simple:

> python linear.py [options] <list of input files>

where the input files must be in Cyberware format.
There are three groups of options: the initialization, the processing and the

output options.

Initialization options. The options in this group are needed to specify some
files needed by the registration process.

• --sgdplan specifies the plan file for the 3D SGD fitting. No default values
is set for this file, and if none is specified, than the fitting is not performed.

• --mean specifies the OBJ file where the mean is stored. If no value is given,
than the program looks for the a meanxp.obj file in the current directory.

• --mouth specifies a text file with the list of vertices belonging to the
mouth. The default is set to ./mouth.fp.

• --laplacian specifies a binary file where the Laplacian matrix (used in
the surface reconstruction) has been stored (with misc.dump). The de-
fault is set to ./K.dmp.
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Processing options. The options in this group influences how the registra-
tion is done. The most important is --double, which enables the processing of
the two textures images as obtained from the ABW scanner.

Other options are for fine-tuning:

• --fsmlow sets the lower threshold for the displacement smoothness, de-
noted as s in section 4.5.2. Decreasing its value will increase the size of the
areas affected by the smoothing. Increasing it will achieve the contrary.

• --wsmooth sets the intermediate value of λ, see again section 4.5.2. De-
creasing it will increase smoothness of the areas affected.

• --norm cos is used to exclude from the registration the areas of the input
cyber where the projection direction is nearly parallel to the surface. Its
default value is zero, meaning this functionality is not used. When differ-
ent from zero, the program exclude the vertices for which the cosine of
the angle between their normal and the projection direction is smaller.

The two remaining options are sometimes useful for testing:

• --no-textr disables the texture registration.

• --no-rec disables the surface reconstruction.

Output options. The options in this group determine what is stored and how.

• -o sets the output directory, by default the current one.

• --no-head disables saving the output also in HEAD format (only OBJ is
used).

• --test enables the rendering of caricatures and antifaces at the end of
each registration. The reference OBJ must be provided as argument of the
option.

• --tsize sets the size of the registered texture. By default it is 512, and
this is usually enough. It could however occur that one needs a higher
resolution for a more realistic result.

• --debug enables the storing of some intermediate result, in the ./debug
subdirectory.

B.4.3 3D Fitting

During the registration, the input 3D scan is approximated with a 3DMM. This
process of 3D fitting can be also performed independently from the registration,
using the apps/fit3d.py program:

> python fit3d.py -p <planfile> [other options] <input cybers>
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The planfile is a configuration file, used also by the linear.py program
(where is specified by the --sgdplan option). It is divided in three sections:
Global, Fullface and Segment.

[Global]
# section with global options
# ...

[Fullface]
# section with options for fitting the whole face
# ...

[Segment]
# section with options for fitting subsets of the face
# ...

In the global section the options are specified with a

keyword = value

format, where value can also include an environment variable. If value spec-
ifies a relative path, it is assumed to be relative to the position of the plan file.
The global section can be as simple as

[Global]
mesh = mean.obj # OBJ file with mean head
model_id = ID # prefix of the identity PCA model
...

In the other two sections, only one keyword is used, step, and its value is made
up of different lines, each line specifying an optimization step. The line has the
format

iter sample shape textr sigma shape_l textr_l rigid_l [color_l]

• the iter parameter specifies how many iterations should be done at that
step, while the sample parameter specifies how many vertices should be
sampled at each iteration; typical values are 6000 and 40, respectively.

• the shape and textr parameters specify the number of shape and texture
components should be used at that step.

• the sigma parameter can be used to set the relative weight of the prior
probability in the cost function; however, if set to 0, the weight is defined
based on the number of shape and texture component used at that step.

• the last four parameters, shape l textr l rigid l and color l, specifies
the update length; if set to -1, their value is defined by shape l.

As an example, the following block defines two steps, in which the rigid coeffi-
cients are not fit anymore.

steps = 6000 40 99 99 0.0 0.001 -1 0.
6000 40 99 99 0.0 0.0005 -1 0.
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B.4.4 Model Building

After registration, the construction of a 3DMM requires to perform a PCA over
the registered examples. To this aim, two programs are used, pca-heads.py
and pca-xp.py, for identity and expression data respectively.

The PCA over the identity data is performed issuing the command

> python pca-head.py -o <PCA file prefix> -m <output mean> \
--topo <reference OBJ> <HEAD files>

The program takes as input a set of registered examples in HEAD format, and
the reference OBJ (--topo option). After storing the data matrix in <PCA file
prefix>.data, the PCA is computed, and the result is stored in the file <PCA
file prefix>.pca. The mean is stored in an OBJ file (option -m).

The PCA over the expression is performed in a similar way, with the com-
mand

> python pca-xp.py -o <PCA file prefix> -m <output mean> \
--xp <config file>

In this case the input data are specified in a configuration file, passed with
the option --xp. The configuration file is needed because the expressions data
are grouped according to the identity of the subject, and a different neutral
expression has to be subtracted from them. For example, the configuration

[A]
neutral = output_id/A_neutral
xps = output/A

[B]
neutral = output_id/B_neutral
xps = output/B

specifies two expression data sets, for persons A and B. The neutral expressions
are loaded from the directory output id; all the HEAD files in the directories
output/A and output/B are assumed to be expression examples of person A
and B, respectively.
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