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We describe a family of rational affine surfaces S with huge groups of automorphisms in

the following sense: the normal subgroup Aut(S)alg of Aut(S) generated by all algebraic

subgroups of Aut(S) is not generated by any countable family of such subgroups, and the

quotient Aut(S)/Aut(S)alg cointains a free group over an uncountable set of generators.

1 Introduction

The automorphism group of an algebraic curve defined over a field k is always an alge-

braic group of dimension at most 3, the biggest possible group being Aut(P1
k)= PGL(2,k).

The situation is very different starting from dimension 2 even for complete or projective

surfaces S: of course some groups such as Aut(P2
k)= PGL(3,k) are still algebraic groups

but in general Aut(S) only exists as a group scheme locally of finite type over k [10]

and it may fail, for instance, to be an algebraic group in the usual sense because it has

(countably) infinitely many connected components. This happens, for example, for the

automorphism group of the blow-up S9→ P
2 of the base-points of a general pencil of

two cubics, which contains a finite index group isomorphic to Z
8, acting on the pencil

by translations. Note, however, that the existence of Aut(S) as a group scheme implies

at least that S has a largest connected algebraic group of automorphisms: the identity

component of Aut(S) equipped with its reduced structure.
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The picture tends to be much more complicated for noncomplete surfaces, in par-

ticular, affine ones. For instance, the group Aut(A2
k) of the affine plane A

2
k = Spec(k[x, y])

contains algebraic groups of any dimension and hence is very far from being algebraic.

In fact, the subgroups

Tn= {(x, y) �→ (x, y+ P (x)), P ∈ k[x],deg P ≤n} �G
n+1
a,k

of unipotent triangular automorphisms of degree at most n form an increasing family

of connected subgroups of automorphism of A
2
k in the sense of [12] so that Aut(A2

k) does

not admit of any largest connected algebraic group of automorphisms. It is interest-

ing to observe, however, that as a consequence of Jung’s Theorem [8], Aut(A2
k) is gener-

ated by a countable family of connected algebraic subgroups, namely GL(2,k) and the

above triangular subgroups Tn, n≥ 1. A similar phenomenon turns out to hold for other

classical families of rational affine surfaces with large groups of automorphisms: for

instance, for the smooth affine quadric in A
3 with equation xy− z2 + 1= 0 and more

generally for all normal affine surfaces defined by an equation of the from xy− P (z)=
0, where P (z) is a nonconstant polynomial, whose automorphism groups have been

described explicitly first by Makar-Limanov [9] by purely algebraic methods and more

recently by the authors [1] in terms of the birational geometry of suitable projective

models.

All examples above share the common property that the normal subgroup

Aut(S)Alg ⊂Aut(S) generated by all algebraic subgroups of Aut(S) is in fact generated by

a countable family of such subgroups and that the quotient Aut(S)/Aut(S)Alg is count-

able. So one may wonder whether such a property holds in general for quasi-projective

surfaces. It turns out that there exist normal affine surfaces which have a much bigger

group of automorphisms and the purpose of this article is to describe explicitly one

family of such surfaces. Our main result can be summarized as follows:

Theorem 1.1. Let k be an uncountable field and let P , Q ∈ k[w] be polynomials having at

least 2 distinct roots in the algebraic closure k̄ ok k and such that P (0) 
= 0. Then for the

affine surface S in A
4 = Spec(k[x, y,u, v]) defined by the system of equations

yu= xP (x),

vx=uQ(u),

yv = P (x)Q(u),
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the following hold:

(1) The normal subgroup Aut(S)Alg ⊂Aut(S) is not generated by a countable

union of algebraic groups.

(2) The quotient Aut(S)/Aut(S)Alg contains a free group over an uncountable set

of generators. �

Note that the surfaces described in Theorem 1.1 can be chosen to be either sin-

gular or smooth, depending on the multiplicity of the roots of P and Q.

The result is obtained from a systematic use of the methods developed in [1] for

the study of affine surfaces admitting of many A
1-fibrations. By virtue of pioneering

work of Gizatullin [7], the latter essentially coincide with surfaces admitting of normal

projective completions X for which the boundary divisor is a so-called zigzag, that is,

a chain B of smooth proper rational curves supported in the smooth locus of X. These

have been extensively studied by Gizatullin and Danilov [2, 3, 7] during the seventies and

more recently by the authors [1] (see also [6], in which such surfaces are called Gizatullin

surfaces).

An important invariant of a zigzag is the sequence of self-intersections of its

components, called its type, which in our context can be chosen to be of the form

(0,−1,−a1, . . . ,−ar), where the ai ≥ 2 are a possibly empty sequence of integers. In

this setting, the simplest possible zigzag has type (0,−1) and the corresponding affine

surface is the affine plane A
2 viewed as the complement in the Hirzebruch surface

ρ1 : F1→ P
1 of the union of a fiber of ρ1, with self-intersection 0, and the exceptional

section of ρ1 with self-intersection −1. The next family in terms of the number of

irreducible components in the boundary zigzag B consists of types (0,−1,−a1), a1 ≥ 2.

These correspond to the normal hypersurfaces of A
3 defined by equations of the form

xy− P (z)= 0 with deg(P )= a1, which were studied in detail in [1].

The present article is in fact devoted to the study of the next family, that is,

affine surfaces corresponding to zigzags of types (0,−1,−a1,a2), where a1,a2 ≥ 2. The

surfaces displayed in Theorem 1.1 provide explicit realizations of general members of

this family as subvarieties of A
4, but we describe more generally isomorphism classes

and automorphism groups of all surfaces in the family.

From this point of view, Theorem 1.1 above says that a relatively minor increase

of the complexity of the boundary zigzag has very important consequences on the geom-

etry and the automorphism group of the inner affine surface. The next cases, that is

zigzags of type (0,−1,−a1, . . . ,−ar) with r ≥ 3, could be studied in exactly the same way

as we do here; the amount of work needed would just be bigger.
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The article is organized as follows: in the first section, we review the main tech-

niques introduced in [1] to study normal affine surfaces completable by a zigzag in terms

of the birational geometry of suitable projective models of them, called standard pairs.

We also characterize the nature of algebraic subgroups of their automorphism groups

in this framework (Proposition 2.7). The next two sections are devoted to the study

of isomorphism classes of surfaces associated to zigzags of type (0,−1,−a1,−a2) and

the description of isomorphisms between these in terms of elementary birational links

between the corresponding standard pairs. In the last section, we apply these interme-

diate results to obtain a theorem describing the structure of their automorphism groups

and of their A
1-fibrations. Theorem 1.1 is then a direct consequence of this precise

description.

2 Recollection on Standard Pairs and their Birational Geometry

2.1 Standard pairs and associated rational fibrations

Recall that a zigzag on a normal projective surface X is a connected SNC-divisor B sup-

ported in the smooth locus of X, with irreducible components isomorphic to the projec-

tive line over k and whose dual graph is a chain. In what follows, we always assume that

the irreducible components Bi, i = 0, . . . , r of B are ordered in such a way that

Bi · Bj =
⎧⎨
⎩

1 if |i − j| = 1,

0 if |i − j|> 1,

and we write B = B0�B1�· · ·�Br for such an ordered zigzag. The sequence of integers

((B0)
2, . . . , (Br)

2) is then called the type of B.

Definition 2.1. A standard pair (These were called 1-standard in [1].) is a pair (X, B)

consisting of a normal rational projective surface X and an ordered zigzag B that can be

written as B = F �C �E , where F and C are smooth irreducible rational curves with self-

intersections F 2 = 0 and C 2 =−1, and where E = E1�· · ·�Er is a (possibly empty) chain

of irreducible rational curves with self-intersections (Ei)
2 ≤−2 for every i = 1, . . . , r. The

type of the pair (X, B) is the type (0,−1,−a1, . . . ,−ar) of its ordered zigzag B. �

2.1.1

The underlying projective surface of a standard pair (X, B = F �C �E) comes equipped

with a rational fibration π̄ = π̄|F | : X→ P
1 defined by the complete linear system |F |. The
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latter restricts on the quasi-projective surface S= X \ B to a faithfully flat morphism

π : S→A
1 with generic fiber isomorphic to the affine line over the function field of A

1,

called an A
1-fibration. (It follows in particular from this description that these quasi-

projective surfaces have negative logarithmic Kodaira dimension.) We use the notations

(X, B, π̄) and (X \ B, π̄ |X\B) (or simply, (X \ B, π) when we consider the corresponding

surfaces as equipped with these respective fibrations).

When B is the support of an ample divisor, S is an affine surface and π : S→A
1

has a unique degenerate fiber π−1(π̄(E)) consisting of a nonempty disjoint union of

affine lines, possibly defined over finite algebraic extensions of k, when equipped with

its reduced scheme structure (see, e.g., [11, 1.4]). Furthermore, if any, the singularities of

S are all supported on the degenerate fiber of π and admit of a minimal resolution whose

exceptional set consists of a chain of rational curves possibly defined over a finite alge-

braic extension of k. In particular, if k is algebraically closed of characteristic 0, then

S has at worst Hirzebruch–Jung cyclic quotient singularities. Furthermore, according

to [1, Lemma 1.0.7], the minimal resolution of singularities μ : (Y, B)→ (X, B) of the pair

(X, B) can be obtained from the first Hirzebruch surface ρ : F1 = P(OP1 ⊕OP1(1))→ P
1

by a uniquely determined sequence of blow-ups η : Y→ F
1 restricting to isomorphisms

outside the degenerate fibers of π̄ ◦ μ in such a way that we have a commutative

diagram

Yμ

������������������

π̄◦μ
��

η

������������������

X

π̄ ������������������ F1

ρ������������������

P
1.

2.2 Birational maps of standard pairs

A birational map φ : (X, B) ��� (X′, B ′) between standard pairs is a birational map X ���
X′ which restricts to an isomorphism X \ B

∼→ X′ \ B ′. It is an isomorphism of pairs

if it is moreover an isomorphism from X to X′. The birational maps between stan-

dard pairs play a central role in the study of the automorphism groups of A
1-fibered

affine surfaces as in Section 2.1.1. The main result of [1] asserts the existence of a

decomposition of every such birational map into a finite sequence of “basic” bira-

tional maps of standard pairs called fibered modifications and reversions which
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can be defined, respectively, as follows:

Definition 2.2 ([1, Definition 2.2.1 and Lemma 2.2.3]). A fibered modification is a strictly

birational map (birational and not biregular) of standard pairs

φ : (X, B = F �C �E) ��� (X′, B ′ = F ′�C ′�E ′),

which induces an isomorphism of A
1-fibered quasi-projective surfaces

S= X \ B

π̄ |S ��

∼

φ

�� S′ = X′ \ B ′

π̄ ′|S′��

A
1

∼
��

A
1

where π̄ |S and π̄ ′ |′S denote the restrictions of the rational pencils defined by the complete

linear systems |F | and |F ′| on X and X′, respectively. Equivalently, with the notation of

Section 2.1.1, the birational map (μ′)−1 ◦ φ ◦ μ : Y ��� Y′ induced by φ is the lift via η and

η′ of a nonaffine (i.e., of degree ≥ 1) isomorphism of A
1-fibered affine surfaces

A
2 = F1 \ (η(F ) ∪ η(C ))

ρ|
A2 ��

∼
�� A

2 = F1 \ (η′(F ′) ∪ η′(C ′))
ρ|

A2��

A
1

∼
��

A
1

which maps the base-points of η−1 onto those of η′−1. �

Definition 2.3 ([1, Section 2.3]). A reversion is a special kind of a birational map of

standard pairs uniquely determined, up to isomorphisms of pairs, by the choice of a

k-rational point p∈ F \ C and obtained by the following construction.

Starting from a pair (X, B = F �C �E) of type (0,−1,−a1, . . . ,−ar), the contrac-

tion of the (−1)-curve C followed by the blow-up of p∈ F \ C yields a birational map

θ0 : (X, B) ��� (X0, B0) to a pair with a zigzag of type (−1,0,−a1 + 1, . . . ,−ar). Preserving

the fibration given by the (0)-curve, one can then construct a unique birational map ϕ1 :

(X0, B0) ��� (X′1, B ′1), where B ′1 is a zigzag of type (−a1 + 1,0,−1,−a2, . . . ,−ar). The blow-

down of the (−1)-curve followed by the blow-up of the point of intersection of the (0)-

curve with the curve immediately after it yields a birational map θ1 : (X′1, B ′1) ��� (X1, B1),
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where B1 is a zigzag of type (−a1,−1,0,−a2 + 1, . . . ,−ar). Repeating this procedure even-

tually yields birational maps θ0, ϕ1, θ1, . . . , ϕr, θr described by the following figure.

�

Remark 2.4. In [1, Definition 2.3.1], reversions were defined in terms of their minimal

resolution as birational maps and then given in [1, Section 2.3.5] in terms of elementary

links as above, inspired by the construction of [5].

Note that working with pairs of the form (0,0,−a1, . . . ,−ar) as in [5] has the

advantage of giving reversions having one step less as here (see [5, Section 2.11]), but

has the disadvantage that it is not possible to distinguish reversions and fibered modi-

fications by looking at their proper base-points. See [1, Section 2.3.4, Section 2.3.5] for a

complete comparative description. �

The reversion of (X, B) with center at p is then the strictly birational map of

standard pairs

φ = θrϕr . . . θ1ϕ0θ0 : (X, B) ��� (Xr, Br)= (X′, B ′).

Note that the above construction is symmetric so that the inverse φ−1 : (X′, B ′) ��� (X, B)

of φ is again a reversion, with center at its unique proper base point (here proper means

not infinitely near) p′ = φ(E) ∈ F ′ \ C ′.

With these definitions, the decomposition results established in [1,

Theorem 3.0.2 and Lemma 3.2.4] can be summarized as follows:

Proposition 2.5. For a birational map of standard pairs φ : (X, B) ��� (X′, B ′), the follow-

ing hold

1. The map φ is either an isomorphism of pairs or it can be decomposed into a

finite sequence

φ = φn ◦ · · · ◦ φ1 : (X, B)= (X0, B0)
φ1��� (X1, B1)

φ2��� · · · φn��� (Xn, Bn)= (X′, B ′),

where each φi is either a fibered modification or a reversion. The integer n is

called length of the decomposition.

2. If φ is not an isomorphism, then a decomposition as above of minimal

length is unique up to isomorphisms of the intermediate pairs occurring
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in the decomposition. Furthermore, a decomposition of minimal length is

characterized by the property that it is reduced, which means that for every

i = 1, . . . ,n− 1 the induced birational map φi+1φi : (Xi−1, Bi−1) ��� (Xi+1, Bi+1)

is neither a reversion, nor a fibered modification, nor an automorphism.

3. A composition φi+1φi : (Xi−1, Bi−1) ��� (Xi+1, Bi+1) as above is not reduced if

and only if one of the following holds:

(a) φi and φi+1 are both fibered modifications;

(b) φi and φi+1 are both reversions, and φi+1 and (φi)
−1 have the same

proper base-point;

(c) φi and φi+1 are both reversions, φi+1 and (φi)
−1 do not have the

same proper base-point but each irreducible component of Bi−1

(equivalently Bi+1) has self-intersection ≥−2;

In case (a), φi+1φi is either a fibered modification (length 1) or an automor-

phism of pairs (length 0). In case (b), φi+1φi is an automorphism of pairs

(length 0), and in case (c), it is a reversion (length 1). �

Proposition 2.5 allows one to define the length of a birational map (X, B) ��� (X′, B ′),

which is the number of fibered modifications and reversions occurring in a minimal

decomposition of the map (by convention an isomorphism of pairs has length 0).

Note that starting from a pair (X, B) of type (0,−1,−a1, . . . ,−ar), the pairs that

appear in the sequence are either of the same type or of type (0,−1,−ar, . . . ,−a1). In

particular, the property of having an irreducible curve of self-intersection ≤−3 in the

boundary depends only on the surface X\B.

2.3 Graphs of A
1-fibrations and associated graphs of groups

The existence of the above decomposition of birational maps between standard pairs

into sequences of fibered modifications and reversions enables to associate to every nor-

mal affine surface S completable by a standard pair an oriented graph that encodes

equivalence classes of A
1-fibrations on S and links between these. This graph FS is

defined as follows (see [1, Definition 4.0.5]).

Definition 2.6. Given a normal affine surface S completable by a standard pair, we let

FS be the oriented graph with the following vertices and edges:

(a) A vertex of FS is an equivalence class of standard pairs (X, B) such that

X \ B ∼= S, where two standard pairs (X1, B1, π1), (X2, B2, π2) define the same
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vertex if and only if the A
1-fibered surfaces (X1 \ B1, π1) and (X2 \ B2, π2) are

isomorphic.

(b) An arrow of FS is an equivalence class of reversions. If φ : (X, B) ��� (X′, B ′)

is a reversion, then the class [φ] of φ is an arrow starting from the class

[(X, B)] of (X, B) and ending at the class [(X′, B ′)] of (X′, B ′). Two reversions

φ1 : (X1, B1) ��� (X′1, B ′1) and φ2 : (X2, B2) ��� (X′2, B ′2) define the same arrow if

and only if there exist isomorphisms θ : (X1, B1)→ (X2, B2) and θ ′ : (X′1, B ′1)→
(X′2, B ′2), such that φ2 ◦ θ = θ ′ ◦ φ1. �

2.3.1

By definition, a vertex of FS represents an equivalence class of A
1-fibrations on S, where

two A
1-fibrations π : S→A

1 and π ′ : S→A
1 are said to be equivalent if there exist auto-

morphisms Ψ and ψ of S and A
1, respectively, such that π ′ ◦ Ψ =ψ ◦ π . By virtue of [1,

Proposition 4.0.7], the graph FS is connected. Furthermore, if there exists a standard

pair (X, B = F �C �E) completing S for which B has an irreducible component of self-

intersection ≤−3, then there exists a natural exact sequence

0→ H→Aut(S)→Π1(FS)→ 0,

where H is the normal subgroup of the automorphism group Aut(S) generated by all

automorphisms of A
1-fibrations on S and where Π1(FS) is the fundamental group of FS.

This implies in particular that Aut(S) is generated by automorphisms of A
1-fibrations if

and only if FS is a tree. In contrast, in the case where all irreducible components of B

have self-intersection ≥ 2, the information carried by the graph FS is not longer really

relevant, due to the fact that the composition of two reversions can be again a reversion.

Alternative methods to handle this specific case exist, see, for example, [4].

In both cases (if B contains curves of self-intersection ≤−3 or not) we will show

(Proposition 2.7) that for any algebraic subgroup G of Aut(S), the image in Π1(FS) is

finite, which implies in particular that if Π1(FS) is not countable, then Aut(S) cannot be

generated by a countable set of algebraic subgroups.

2.3.2

Recall that a graph of groups in the sense of [13, 4.4] consists of an oriented graph G
together with a choice consisting of a group Gv for every vertex v of G, a group Ga for

every arrow a in G and an injective homomorphism ρa : Ga→Gt(a), where t(a) denotes the
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target of the oriented arrow a, and for every arrow a admitting of an inverse arrow ā an

anti-isomorphism of groups ¯: Ga→Gā such that ¯̄x= x for any x∈Ga.

It was observed in [1] that under mild hypothesis on a normal affine sur-

face S completable by a standard pair (X, B) (for instance, whenever the type

(0,−1,−a1, . . . ,−ar) of B does not satisfy (a1, . . . ,ar)= (ar, . . . ,a1), but also in most of

the cases where this is satisfied, see Section 4.0.10 in [1] for a complete discussion), the

following choices determine a structure of a graph of groups on FS:

(a) for any vertex v of FS, we let Gv =Aut(Xv \ Bv, πv) for a fixed standard pair

(Xv, Bv, πv) in the class v;

(b) for any arrow a of FS, we let Ga= {(φ, φ′) ∈Aut(Xa, Ba)× Aut(X′a, B ′a) | ra ◦ φ =
φ′ ◦ ra} for a fixed reversion ra : (Xa, Ba, πa)

ra��� (X′a, B ′a, π ′a) in the class of a,

and we let ρa : Ga→Gt(a), (φ, φ′) �→μa ◦ φ′ ◦ (μa)
−1 for a fixed isomorphism μ

between (X′a, B ′a, π ′a) and the fixed standard pair on the target vertex t(a) of a.

We further require that the chosen reversion rā for the inverse ā of the arrow a is equal

to (ra)
−1 and that the structural anti-isomorphism ¯: Ga→Gā is the map (φ, φ′) �→ (φ′, φ).

When such a structure exists on FS, we established in [1, Theorem 4.0.11] that

the automorphism group Aut(S) of S is isomorphic to the fundamental group of FS as

a graph of groups. This means that after choosing a base vertex v in FS, Aut(S) can be

identified with the set of paths gnangn−1 · · ·a2g2a1g1, where ai is an arrow from vi to vi+1,

gi ∈Gvi and v1 = vn= v modulo the relations ρa(h) · a= a · ρā(h̄) and aā= 1 for any arrow

a and any h∈Ga.

Note that a graph of groups was already defined and used in the work of Danilov

and Gizatullin [2]. Our graph, which can be thought of as a “contraction” of their graph,

has a simpler structure (for instance, their graphs are usually infinite, even in the cases

where ours are finite). See [1] for a more detailed comparison between these different

graphs.

2.4 Actions of algebraic groups on standard pairs

Here we derive from the decomposition results some additional informations about alge-

braic subgroups of automorphism groups of affine surfaces S completable by a standard

pair.

2.4.1

Let us first observe that the automorphism group Aut(S) of an affine surface S= X \ B

completable by a standard pair (X, B) contains many algebraic subgroups. For instance,
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it follows from Definition 2.2 (see also [1, Lemma 5.2.1 or Lemma 2.2.3]) that automor-

phisms of S preserving the A
1-fibration π = π̄ |S: S= X \ B→A

1 come as lifts of suitable

triangular automorphisms ψ of A
2 of the form (x, y) �→ (ax+ R(y), cy), where a, c∈ k∗ and

R(y) ∈ k[y]. It follows in particular that the subgroup Aut(X \ B, π) of Aut(X \ B) consist-

ing of automorphisms preserving the A
1-fibration π is a (countable) increasing union

of algebraic subgroups. Furthermore, the group Aut(X, B) of automorphisms of the pair

(X, B) is itself algebraic as B is the support of an ample divisor and coincides with the

subgroup of Aut(X \ B, π) consisting of lifts of affine automorphisms ψ as above.

The following proposition describes more generally the structure of all possible

algebraic subgroups of Aut(S).

Proposition 2.7. Let S be an affine normal surface completable by a standard pair, and

let G ⊂Aut(S) be an algebraic subgroup. Then there exists a standard pair (X, B) and

an isomorphism ψ : S
∼→ X \ B such that for the conjugate Gψ =ψGψ−1 ⊂Aut(X \ B) of G

the following alternative holds:

1. Gψ is a subgroup of Aut(X\B, π);
2. Gψ contains a reversion (X, B) ��� (X, B) and every other element of Gψ is

either a reversion from (X, B) to itself or an element of Aut(X, B). More pre-

cisely, one of the following holds:

(a) There exists a k-rational point p∈ B such that every reversion

in Gψ is centered at p, and every element in Gψ

0 =Gψ ∩ Aut(X, B)

fixes the point p. We then have an exact sequence 1→Gψ

0 →Gψ→
Z/2Z→ 0, and Gψ

0 is an algebraic group of dimension ≤ 2.

(b) Every irreducible component of B has self-intersection ≥−2 and

the contraction (X, B)→ (Y, D) of all irreducible components of

negative self-intersection in B conjugates Gψ whence G to a sub-

group of Aut(Y, D), where Y is a projective rational surface and

D ∼= P
1 is the support of an ample divisor. �

Proof. Up to fixing a standard pair such that X\B is isomorphic to S, we may assume

from the very beginning that S= X \ B. Let G ⊂Aut(S) be an algebraic group. According

to [14], there exists a projective surface Y which contains S as an open dense subset,

and such that G extends to a group of automorphisms of Y. The induced birational

map θ : X ��� Y has a finite number r of base-points (including infinitely near ones),

and its inverse has r′ base-points. It follows that every element g∈G considered as a
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birational self-map of X has at most r + r′ base-points (again including infinitely near

ones); indeed, each element is a composition of θ , an automorphism of Y, and θ−1. Recall

that the number nof fibered modifications and reversions occurring in a minimal decom-

position g= φn . . . φ1 (see Proposition 2.5) of an element g∈G is called the length of g. The

number of base-points of g is bigger or equal to its length (each map has base-points

and there is no simplification between the base-points), so length of elements of G is

bounded. Let m=m(G) be the maximal length.

(a) If m≤ 1 and no element of G is a reversion, then G ⊂Aut(X \ B, π) and we get

(1).

(b) Otherwise, if m≤ 1 and G contains a reversion, then m= 1 and all elements

of G are either reversions or automorphisms of (X, B) because the composi-

tion of a fibered modification and a reversion always has length 2. If there

exists a k-rational point p∈ B such that every reversion in G is centered at

p and every element in G0 =G ∩ Aut(X, B) fixes the point p, then the prod-

uct of any two reversions in G is an automorphism (Proposition 2.5 3(c)).

It follows that G/G0
∼=Z/2Z, which gives 2a). Otherwise, if G contains two

reversions φ, φ′ with distinct proper base-points, then since φ′φ−1 has length

at most 1 by hypothesis, it cannot be reduced. By Proposition 2.5 3(c), it fol-

lows that all components of B have self-intersection ≥−2. But in this case,

reversions simply correspond to contracting all components of B = F �C �E

of negative self-intersection to a point p on the proper transform D of F

and then blowing-up a new chain of the same type starting from a point

p′ ∈ D distinct from p. The conjugation by the corresponding contraction

(X, B)→ (Y, D) identifies G with a subgroup of Aut(Y, D), which gives 2(b).

To complete the proof, it remains to show that we can always reduce by an appro-

priate conjugation to the case m≤ 1. If m≥ 2, then we consider an element g∈G of

length m and we fix a reduced decomposition g= φm · · ·φ1. Writing φ1 : (X, B) ��� (X1, B1)

and arguing by induction on m, it is enough to show that the length of every element

in φ1Gφ−1
1 considered as a group of birational self-maps (X1, B1) ��� (X1, B1) is at most

m− 1. Given an element h∈G of length n≥ 0, we have the following possibilities:

(1) If n= 0, then h is an automorphism of (X, B). If it fixes the proper base-point

of φ1, then (φ1h)φ−1
1 is not reduced whence has length at most 1≤m− 1. Oth-

erwise, if the proper base-point of φ1 is not a fixed point of h, then since by

hypothesis ghg−1 = φm · · ·φ1hφ−1
1 · · ·φ−1

m has length ≤m, it cannot be reduced.
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It follows necessarily that (φ1h)φ−1
1 is not reduced, which implies in turn that

φ1 is a reversion and that every irreducible curve in B has self-intersection

≥−2 (using again case 3(c) of Proposition 2.5). In this case, (φ1h)φ−1
1 is a

nonreduced composition of two reversions, and has thus length at most

1≤m− 1.

(2) If h has length n≥ 1, then we consider a reduced decomposition h=
ψn · · ·ψ1 of h into fibered modifications and reversions. Since gh−1 =
φm · · ·φ1ψ

−1
1 · · ·ψ−1

n is not reduced, then so is ν = φ1ψ
−1
1 , which has thus

length ≤ 1. This implies that φ1 and ψ1 are both fibered modifications or both

reversions.

(a) If n= 1 and φ1 and h=ψ1 are both fibered modifications, then

φ1hφ−1
1 is a fibered modification or an automorphism of the pair

(X1, B1), and hence has length ≤ 1≤m− 1. Otherwise, if n= 1 and

φ1 and h=ψ1 are both reversions, then either ν is an isomorphism

of pairs, in which case φ1hφ−1
1 has length 1, or it is a reversion

and then all irreducibles curves of B and B ′ have self-intersection

≥−2. This implies that φ1hφ−1
1 is again a reversion or an automor-

phism, and hence has length ≤ 1.

(b) Finally, if n≥ 2, then the composition φ2νψ
−1
2 is not reduced. Let

us observe that this implies that ν is an isomorphism of pairs. If ν

is a fibered modification, so are φ1, ψ1, and hence φ2, ψ2 are rever-

sions because φ2φ1 and ψ2ψ1 is reduced. This contradicts the fact

that φ2νψ
−1
2 is not reduced. If ν is a reversion, then so are φ1, ψ1,

and all irreducibles curves of B and B ′ have self-intersection

≥−2. This implies, as before, that φ2, ψ2 are fibered modification

and contradicts the fact that φ2νψ
−1
2 is not reduced.

Replacing h with h−1, we conclude that φ1ψn is an isomorphism of pairs. This implies

that φ1hφ−1
1 has length at most n− 2≤m− 2 and completes the proof. �

Remark 2.8. Writing S= X \ B, Proposition 2.7 implies that the image of an algebraic

subgroup of Aut(S) under the morphism Aut(S)→Π1(FS) described in Section 2.3.1 is

very special: there is at most one nontrivial element in the image, which consists, if it

exists, of one path of the form ϕ−1σϕ, where ϕ is a path from [(X, B)] to another ver-

tex [(X′, B ′)] and σ a loop of length 1 based at the vertex [(X′, B ′)] representing a rever-

sion (X′, B ′) ��� (X′′, B ′′) between two isomorphic pairs (see Definition 2.3.1). This implies
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in turn that in most cases, in particular whenever the type (0,−1,−a1, . . . ,−ar) of B

does not satisfy (a1, . . . ,ar)= (ar, . . . ,a1), the image of an algebraic subgroup of Aut(S) in

Π1(FS) is trivial. In other words, if these conditions are satisfied, every algebraic sub-

group of Aut(S) is contained in the subgroup H generated by automorphisms preserving

an A
1-fibration (see Section 2.3.1). �

3 Affine Surfaces Completable by a Standard Pair of Type (0,−1,−a,−b)

In this section, we classify all models of standard pairs (X, B) of type (0,−1,−a,−b),

a,b≥ 2 for which X \ B is a normal affine surface.

3.1 Construction of standard pairs

Here we construct standard pairs of type (0,−1,−a,−b), a,b≥ 2, in terms of the base

points of the birational morphism η : Y→ F1 from their minimal resolution of singular-

ities as in Section 2.1.1.

3.1.1

In what follows, we consider F1 embedded into P
2 × P

1 as

F1 = {((x : y : z), (s : t))⊂ P
2 × P

1 | yt= zs};

the projection on the first factor yields the birational morphism τ : F1→ P
2, which is

the blow-up of (1 : 0 : 0) ∈ P
2 and the projection on the second factor yields the P

1-

bundle ρ : F1→ P
1, corresponding to the projection of P

2 from (1 : 0 : 0). We denote by

F, L ⊂ P
2 the lines with equations z= 0 and y= 0, respectively. We also call F, L ⊂ F1

their proper transforms on F1, and denote by C ⊂ F1 the exceptional curve τ−1((1 : 0 :

0))= (1 : 0 : 0)× P
1. The affine line L \ C ⊂ F1 and its image L \ (1 : 0 : 0)⊂ P

2 will be called

L0. The morphism A
2 = Spec(k[x, y])→ P

2 × P
1, (x, y)→ ((x : y : 1), (y : 1)) induces an open

embedding of A
2 into F1 as the complement of F ∪ C for which L0 coincides with the

line y= 0. With this notation each of the points blown-up by η belongs, as proper or

infinitely near point, to the affine line L0 and is defined over k̄ but not necessarily over

k; however, the set of all points blown-up by η is defined over k.

3.1.2

Given polynomials P , Q ∈ k[w] of degrees a− 1 and b− 1, respectively, we define a bira-

tional morphism ηP ,Q : Y→ F1 that blows-up a+ b− 1 points that belong, as proper or
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infinitely near points, to L \ C . The morphism ηP ,Q is equal to ηwP ◦ εP ,Q, where ηwP and

εP ,Q are birational morphisms that blow-up, respectively, a and b− 1 points, defined as

follows:

1. The map ηwP : W→ F1 is a birational morphism associated to wP (w) that

blows-up a points as follows. Let α0 = 0, α1, . . . , αl be the distinct roots of

wP (w) with respective multiplicities r0 + 1> 0 and ri > 0, i = 1, . . . , l. Then

ηwP is obtained by first blowing each of the points (αi,0) ∈ (L \ C )(k̄) and

then ri − 1 other points in their respective infinitesimal neighborhoods, each

one belonging to the proper transform of L. We denote by Ai the last excep-

tional divisor produced by this sequence of blow-ups over each point (αi,0),

i = 0, . . . , l and by Ai the union of the ri − 1 other components in the inverse

image of (αi,0) of self-intersection (−2). The r0 blow-ups above (0,0) are

described locally by (u, v) �→ (x, y)= (u,ur0v); the curve {v= 0} corresponds

to the proper transform of L. The last step consists of the blow-up of

(u, v)= (0,0) with exceptional divisor E2.

2. The map εP ,Q : Y→W is the blow-up of b− 1 points as follows. If P (0) 
= 0,

then we let β1, . . . , βm be the distinct roots of Q in k̄. Otherwise, if P (0)= 0,

then we let β0 = 0 and we denote by β1, . . . , βm the nonzero distinct roots of

Q in k̄. In each case, we denote by sj the multiplicity of β j as a root of Q.

Then εP ,Q consists for every j = 0,1, . . . ,m of the blow-up of the point in

E2 \ L(k̄) corresponding to the direction u+ β jv= 0 followed by the blow-up

of sj − 1 other points in its infinitesimal neighborhood, each one belonging

to the proper transform of E2. For every j = 0, . . . ,m, we denote, respectively,

by Bj and B j the last exceptional divisor and the union of the sj − 1 other

components of self-intersection −2 of the exceptional locus of εP ,Q over the

corresponding point of E2.

We denote by E1 the proper transform of L on the smooth projective sur-

face Y obtained by the above procedure and we let E = E1�E2. Then the contraction

of every exceptional divisor of ηP ,Q not intersecting E yields a birational morphism

μP ,Q : Y→ X to a normal projective surface X for which the zigzag B = F �C �E1�E2 has

type (0,−1,−a,−b). The definition of ηwP and εP ,Q implies that when P (0)= 0 the direc-

tion of the line u= 0 is a special point in E2 ⊂W corresponding to the curve contracted

by ηwP which intersects E2. Furthermore, this point is blown-up by εP ,Q if and only if

Q(0)= 0.
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This leads to the following three possible cases below:

3.1.3 Case I P (0) 
= 0

The unique degenerate fiber F0 of the rational pencil π̄ : X→ P
1 defined by the proper

transform of F consists of the total transform (μP ,Q)∗(ηP ,Q)
∗L of L. The multiplicities of

the roots of P and Q in k̄ coincide with that of the corresponding irreducible components

of F0. Furthermore, each multiple root of P (respectively, of Q) yields a cyclic quotient

rational double point of X of order ri (respectively, sj) supported on the corresponding

irreducible component of F0.

3.1.4 Case II

P (0)= 0 and Q(0) 
= 0. In the unique degenerate fiber F0 = (μP ,Q)∗(ηP ,Q)
∗L of the induced

rational pencil π̄ : X→ P
1 the multiplicities of the roots of P in k̄ coincide with that of

the corresponding irreducible components Ai, i = 0, . . . , l, whereas each irreducible com-

ponent Bj, j = 1, . . . ,m corresponding to a root β j of Q has multiplicity (r0 + 1)sj in F0.

Similarly, as in case I, each multiple root of P (respectively, of Q) yields a cyclic quotient

rational double point of X supported on the corresponding irreducible component of F0.

3.1.5 Case III: P (0)= Q(0)= 0

In this model again, the multiplicity of the nonzero roots of P coincide with that of the

corresponding irreducible components of the degenerate fiber F0 = (μP ,Q)∗(ηP ,Q)
∗L of π̄ :

X→ P
1, each supporting a cyclic quotient rational double point of order ri. A component

Bj of F0 corresponding to a nonzero root of Q has multiplicity (r0 + 1)sj and supports a

cyclic quotient rational double point of order sj. Finally, the irreducible component B0 of

F0 corresponding to the common root 0 of P and Q has multiplicity (s0 + 1)(r0 + 1)− 1.

Furthermore, it supports a singular point of X whose minimal resolution is a zigzag

B0�E3�A0, where E3 is rational curve with self-intersection −3 and where B0 and A0 are

chains of s0 − 1 and r0 − 1 (−2)-curves, respectively.

Remark 3.1. Case III always leads to a singular surface X \ B while in case I and II,

the resulting affine surface X \ B is smooth if and only if the polynomials wP (w) and

Q(w) both have simple roots in k̄. The induced A
1-fibration π = π̄ |X\B : X \ B→A

1 has a

unique degenerate fiber π−1(0) consisting of m+ l + 1 components (recall that m+ 1 and

l are the number of distinct roots of the polynomials P and Q, respectively). If X \ B is
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smooth, then the latter is reduced in case I whereas in case II each root of Q gives rise

to an irreducible component of π−1(0) of multiplicity two. �

3.1.6

In each of the above three cases, it follows from the construction that the quasi-

projective surface S= X \ B does not contain any complete curve. Furthermore, one

checks for instance that the divisor D = 4abF + 3abC + 2bE1 + E2 has a positive inter-

section with its irreducible components hence positive self-intersection. Hence, B is the

support of an ample divisor by virtue of the Nakai–Moishezon criterion and so S is a

normal affine surface.

The contraction in the intermediate projective surface W of every exceptional

divisor of ηwP not intersecting E1 yields a birational morphism μwP : W→ X′ to a nor-

mal projective surface X′ for which the zigzag B ′ = F �C �E1 has type (0,−1,−a). The

morphisms ηwP : W→ F1 and εP ,Q : Y→ X descend, respectively, to birational morphisms

η′wP : X′ → F1 and ε′P ,Q : X→ X′ for which the following diagram is commutative:

With the choice of coordinates made in Section 3.1.1, the affine surface S′ = X′ \ B ′

embeds into A
3 = Spec(k[x, y,u]) as the subvariety defined by the equation yu= xP (x)

in such a way that the restriction of η′wP to it coincides with the projection prx,y |S′ : S′ →
A

2 ⊂ F1 (see, e.g., [1, Lemma 5.4.4]). One checks further that S= X \ B can be embed-

ded into A
4 = Spec(k[x, y,u, v]) as the subvariety S given by the following system of

equations:

yu= xP (x),

xv =uQ(u),

yv = P (x)Q(u),
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so that ε′P ,Q : X→ X′ restricts on S to the projection prx,y,u |S: S→ S′ ⊂A
3. In this descrip-

tion, the intersection with S of the irreducible components Ai and Bj of F0 coincide,

respectively, with the irreducible components {y= x− αi = 0}, i = 1, . . . , l, and {y= x=
u− β j}, j = 1, . . . ,m, of the degenerate fiber of the induced A

1-fibration π̄ |S= pry : S→A
1.

3.2 Isomorphism classes

Here we show that the construction of the previous subsection describes all possible

isomorphism types of normal affine A
1-fibered surfaces admitting of a completion by

a standard pair of type (0,−1,−a,−b). We characterize their isomorphism classes in

terms of the corresponding polynomials P and Q.

Proposition 3.2. Let (X, B = F �C �E1�E2, π̄) be a standard pair of type (0,−1,−a,−b),

a,b≥ 2, with a minimal resolution of singularities μ : (Y, B, π̄ ◦ μ)→ (X, B, π̄) and let

η : Y→ F1 be the birational morphism as in Section 3.1.1. If X \ B is affine, then the mor-

phisms η, μ are equal to that ηP ,Q, μP ,Q defined in Section 3.1.2, for some polynomials

P , Q ∈ k[w] of degree a− 1 and b− 1, respectively.

In particular, every normal affine surface completable by a zigzag of type

(0,−1,−a,−b) (a,b≥ 2) is isomorphic to one in A
4 = Spec(k[x, y,u, v]) defined by a system

of equations of the form

yu= xP (x),

vx=uQ(u),

yv = P (x)Q(u). �

Proof. Since η maps C to the (−1)-curve of F1, it follows that E1 is the strict transform

of L ⊂ F1. We may factor η as η1 ◦ η2, where η1 : Y′ → F1 is the minimal blow-up which

extracts E2 and η2 : Y→Y′ is another birational morphism. By definition η1 is the blow-

up of a sequence of points p1, . . . , pn such that for every i = 2, . . . ,n, pi is in the first

neighborhood of pi−1 and such that E2 is the exceptional divisor of the blow-up of pn.

The fact that E2 and E1 intersect each other implies that pn and hence each pi belong to

the strict transform of L0 = L \ C . Since S= X \ B is affine, it follows from [11, Lemma

1.4.2 p. 195] that every (−1)-curve in the degenerate fiber of π̄ ◦ μ intersects either E1 or

E2. This implies that there exist points α1, . . . , αl , β1, . . . , βk ∈Y′ where each αi belongs to

E1 \ (E2 ∪ C )∼=A
1
k̄

∗, each βi belongs to E2 \ E1
∼=A

1
k̄, and some multiplicities associated

to them, so that η2 is the blow-up of the points αi and βi and of infinitely near points
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belonging only to E1 and E2, respectively. Taking an appropriate parameterization for

the αi’s in E1 \ (C ∪ E2)∼=A
1
k̄

∗ and the βi’s in E2 \ E1
∼=A

1
k̄ yields the polynomials P and

Q, respectively. �

Notation 3.3. In the sequel, we will say that two polynomials P , Q ∈ k[w] are equiva-

lent, and write P ∼ Q, if there exist α, β ∈ k∗ such that Q(w)= αP (βw). This yields an

equivalence relation on the set of polynomials in one variable. �

Proposition 3.4. Let (X, B, π̄) and (X′, B ′, π̄ ′) be two standard pairs of type

(0,−1,−a,−b) obtained from pairs of polynomials (P , Q) and (P ′, Q′) via the construc-

tion of Section 3.1.2.

1. The pairs (X, B) and (X′, B ′) are isomorphic if and only if the A
1-fibered sur-

faces (X \ B, π̄ |X\B) and (X′ \ B ′, π̄ ′|X′\B ′) are isomorphic.

2. The pairs (X, B) and (X′, B ′) are isomorphic if and only if one of the following

holds:

(a) P (0)P ′(0) 
= 0 and P ′ ∼ P (in the sense of Notation 3.3), Q′(w)∼
Q(w + t) for some t∈ k.

(b) P (0)= P ′(0)= 0 and P ′ ∼ P , Q′ ∼ Q.

3. Letting r0 be the multiplicity of 0 in P , the automorphism group Aut(X, B) of

the pair (X, B) consists of lifts of automorphisms of A
2 ⊂ F1 of the form

{(x, y) �→ (ax+ by, cy)|P (aw)/P (w) ∈ k∗, Q((aw − b)/c)/Q(w) ∈ k∗} if r0 = 0,

{(x, y) �→ (ax+ by, cy)|P (aw)/P (w) ∈ k∗, Q(ar0+1/c · w)/Q(w) ∈ k∗} if r0 ≥ 1. �

Proof. Let μP ,Q : Y→ X and ηP ,Q : Y→ F1 be the morphisms defined in Section 3.1.2, and

the same with primes. By virtue of [1, Lemma 5.2.1 or Lemma 2.2.3], (X \ B, π̄ |X\B) and

(X′ \ B ′, π ′|X′\B ′) are isomorphic if and only if there exists an automorphism ψ of A
2 ⊂ F1

preserving the A
1-fibration pry and sending the base locus Z of η−1

P ,Q isomorphically onto

that Z ′ of η−1
P ′,Q′ while (X, B, π̄) and (X′, B ′, π̄ ′) are isomorphic if and only if there exists

an affine automorphism ψ of this type. An automorphism f preserving the fibration pry

and mapping Z isomorphically onto Z ′ must preserve the fiber L0 = pr−1
y (0) and fix the

point (0,0). Thus, f has the form f : (x, y) �→ (ax+ yR(y), cy), with a, c∈ k∗ and R∈ k[y].

Such an automorphism acts on L0 by x �→ ax. We identify points of E2 \ L with directions

u+ βv = 0 in the blow-up (u, v) �→ (u,ur0v) as in Section 3.1.2, where r0 ≥ 0 denotes the
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multiplicity of 0 as a root of P . We claim that f acts on E2 in the following way:

β �→ aβ − R(0)/c if r0 = 0,

β �→ ar0+1/c · β if r0 ≥ 1.

Indeed, if r0 = 0, then the action of f−1 on the tangent directions is given by u+ βv �→
au+ vR(0)+ βcv = a(u+ v(R(0)+ βc)/a) and so f maps β to (aβ − R(0))/c. Otherwise, if

r0 > 0, then the lift of f by (u, v) ��� (u,ur0v) takes the form

(u, v) �→ (au+ ur0vR(ur0v), cv/(a+ ur0−1vR(ur0v))r0).

In the local chart (û, v) �→ (ûv, v)= (u, v) of the blow-up of the origin (0,0), the latter lifts

further to the map

(û, v) �→
(
(aû+ (ûv)r0 R((ûv)r0v))(a+ (ûv)r0−1vR((ûv)r0v))r0

c
,

cv

(a+ (ûv)r0−1vR((ûv)r0v))r0

)
.

By construction the tangent direction u+ βv = 0 corresponds to the point (û, v)= (−β,0)
which is thus mapped to (−β · ar0+1/c,0) as claimed.

It follows from the above description that the affine automorphism ψ : (x, y) �→
(ax+ yR(0), cy) also maps Z isomorphically onto Z ′ and so, we obtain the equiva-

lence between isomorphism classes of standard pairs and isomorphism classes between

induced A
1-fibered surfaces. The second assertion then follows immediately from the

description of the action of ψ on L0 and E2.

Finally, as explained earlier, the group Aut(X, B) consists of lifts of automor-

phisms of F1 which preserve the set Z . Since they fix the origin (0,0), these automor-

phism can be written in the form (x, y) �→ (ax+ by, cy), where a, c∈ k∗, b∈ k. By virtue

of the above description, the induced action on the line L0 = pr−1
y (0) which supports

the points of Z corresponding to roots of P is given by x �→ ax, whereas the action on

the line E2 \ L which supports the points of Z corresponding to roots of Q is either

β �→ (aβ − b)/c, or β �→ ar0+1/c · β, depending on whether r0 is 0 or positive. This yields

the last assertion. �

Corollary 3.5. Let (X, B, π̄) and (X′, B ′, π̄ ′) be two standard pairs of type (0,−1,−a,−b)

obtained from pairs of polynomials (P , Q) and (P ′, Q′) via the construction of
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Section 3.1.2. If the pairs (X, B) and (X′, B ′) are isomorphic, then one of the following

holds:

1. both pairs are of type I, that is, P (0)P ′(0) 
= 0;

2. both pairs are of type II, that is, P (0)= P ′(0)= 0 and Q(0)Q′(0) 
= 0;

3. both pairs are of type III, that is, P (0)= P ′(0)= Q(0)= Q′(0)= 0. �

Proof. Follows directly from Proposition 3.4.
�

Remark 3.6. In general, in contrast with assertion (1) in Proposition 3.4, nonisomorphic

standard pairs (X, B, π̄) and (X′, B ′, π̄ ′) can give rise to isomorphic A
1-fibered quasi-

projective surfaces (X \ B, π |X\B) and (X′ \ B ′, π ′|X′\B ′). For instance, let (Xa, Ba, π̄a),a∈ k

be the family of smooth standard pairs obtained from F1 by the following sequences

of blow-ups ηa : Xa→ F1: we first blow-up the points (1,0) and (0,0) in A
2 ⊂ F1 with

respective exceptional divisors A1 and E2. Then we blow-up the point on E2 \ L corre-

sponding to the direction x= 0 with exceptional divisor E3. The last step is the blow-up

of a k-rational point a∈ E3 \ E2 �A
1
k, with exceptional divisor A2. We denote the corre-

sponding surface by Xa and we let Ba= F �C �E1�E2�E3, where E1 denotes the proper

transform of L.

We claim that the standard pairs (Xa, Ba) are pairwise nonisomorphic, while the

corresponding A
1-fibered surfaces (Xa \ Ba, π̄a |Xa\Ba), a∈ k are all isomorphic. Indeed,

recall that by virtue of [1, Lemma 5.2.1 or Lemma 2.2.3], the A
1-fibered surfaces (Xa \

Ba, π̄a |Xa\Ba) and (Xa′ \ Ba′ , π̄a′ |Xa′ \Ba′ ) are isomorphic if and only if the points blown-up

by ηa and ηa′ belong to a same orbit of the action of the group Jon⊂Aut(A2) of automor-

phisms of the form {(x, y) �→ (ax+ Q(y), cy) | Q ∈ k[y]}, while the standard pairs (Xa, Ba)

and (Xa′ , Ba′) are isomorphic if and only if the corresponding points belong to a same

orbit of the action of the subgroup Aff ∩ Jon consisting of maps where the polynomial

Q has degree ≤ 1. Now on the one hand, the same computation as in the proof of Propo-

sition 3.4 shows that an element of Jon mapping the points blown-up by ηa onto those

blown-up by ηa′ must have the form (x, y) �→ (x+ y2 R(y), cy) with c∈ k∗ and R(y) ∈ k[y].

This implies in particular that the standard pairs (Xa, Ba) are pairwise nonisomorphic.

On the other hand, since automorphisms of the form (x, y) �→ (x+ by2, cy), c∈ k∗ and b∈ k,

act transitively on the directions corresponding to points in E3 \ E2, it follows that the

A
1-fibered surfaces (Xa \ Ba, π̄a |Xa\Ba), a∈ k are all isomorphic, as desired.

Of course, the same procedure but involving the blow-up of more points leads

to similar families of isomorphic A
1-fibered surfaces arising from nonisomorphic

standard pairs. �
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4 Reversions Between Standard Pairs of Type (0,−1,−a,−b)

To classify the existing A
1-fibrations on the affine surfaces constructed in the previous

section, the next step consists of studying birational maps between the corresponding

standard pairs (X, B). In view of the description recalled in Section 2.2, this amounts

to describing all possible fibered modifications and reversions between these pairs.

Since Proposition 3.4 guarantees that there cannot exists fibered modifications between

two nonisomorphic pairs, it remains to characterize possible reversions between

these.

4.1 Preliminaries

Here we set up notations that will be used in the sequel to describe the geometry of the

different pairs that can obtained by reversing a given standard pair (X, B = F �C �E) of

type (0,−1,−a,−b).

4.1.1

For such pairs, the general description of reversions given in Definition 2.3 special-

izes to the following simpler form: Given a k-rational point p∈ F \ C , the contrac-

tion of C followed by the blow-up of p yields a birational map θ0 : (X, B) ��� (X0, B0)

to a pair with a zigzag of type (−b,−a+ 1,0,−1). Then we produce a birational map

ϕ1 : (X0, B0) ��� (X′1, B ′1), where B ′1 is of type (−b,−1,0,−a+ 1). The blow-down of the

(−1)-curve in B ′1 followed by the blow-up of the point of intersection of its (0)-curve

with the curve immediately after it yields a birational map θ1 : (X′1, B ′1) ��� (X1, B1), where

B1 is a zigzag of type (−b+ 1,0,−1,−a). Repeating this process yields birational maps

θ0, ϕ1, θ1, ϕ2, θ2 described by the following figure.

The reversion of (X, B) with center at p∈ F \ C is then the composition

φ = θ2ϕ2θ1ϕ1θ0 : (X, B) ��� (X′, B ′)= (X2, B2).
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4.1.2

By virtue of Proposition 3.2, we may assume that the initial pair (X, B) is obtained from

a pair of polynomial P , Q ∈ k[w] of respective degrees a− 1,b− 1≥ 1 by means of the

construction described in Section 3.1.2. We let

(X, B = F �C �E1�E2, π̄)
μP ,Q←− (Y, B, π̄μP ,Q)

ηP ,Q−→ (F1, F �C �L)

be the corresponding birational morphisms, where ηP ,Q = ηwP ◦ εP ,Q. The k-rational point

p∈ F \ C corresponds via τ : F1→ P
2 to a point (λ : 1 : 0) ∈ P

2 for some λ ∈ k. For every

root αi of P in k̄ we denote by Di ⊂Y the proper transform by (τ ◦ ηP ,Q)
−1 of the line x−

λy− αiz= 0, passing through (λ : 1 : 0) and τ(αi)= (αi : 0 : 1). Recall that if P (0) 
= 0, then

β1, . . . , βm denote the distinct roots of Q in k̄. With this notation, we have the following

description.

Lemma 4.1. The possible dual graphs for the divisor η−1
P ,Q(F �C �L) ∪⋃m

i=0 Di are the

following:

�

Proof. The structure of the dual graph of η−1
P ,Q(F �C �L) has already been discussed in

Section 3.1.2 (see Figures 1–3). It remains to consider the properties of the additional
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Fig. 1. The morphisms (Y, B)
εP ,Q→ (W, B)

ηwP→ (F1, F �C �L) when P (0) 
= 0. A block with label t con-

sists of a zigzag of t (−2)-curves.

Fig. 2. The morphisms (Y, B)
εP ,Q→ (W, B)

ηwP→ (F1, F �C �L) when P (0)= 0 and Q(0) 
= 0.

Fig. 3. The morphisms (Y, B)
εP ,Q→ (W, B)

ηwP→ (F1, F �C �L) when P (0)= Q(0)= 0.

curves Di, i = 0, . . . , l. By definition, Di is the proper transform of the line Li ⊂ P
2 of

equation x= λy+ αiz. Since the latter does not pass through the point (1 : 0 : 0) blown-

up by τ , its proper transform in F1 still has self-intersection 1. Moreover, since Di

passes through αi (corresponding to (αi : 0 : 1)) and not through any other α j, with j 
= i,

its proper transform by ηwP : W→ F1 has self-intersection 0 in W and it intersects

η−1
wP (F �C �L) transversally at a point of Ai if αi is a simple root of wP (w) and at a point

on the last component of Ai otherwise. The only case where a point belonging to the

proper transform of Li in W is blown-up by εP ,Q is when i = 0, P (0) 
= 0, and L0 corre-

sponds to a tangent direction x= β j y for a certain root of Q in k̄. In this case, D0 has

self-intersection −1 in Y and it intersects η−1
P ,Q(F �C �L) transversally at a point of Bj if
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β j is a simple root of Q and at a point on the last component of B j otherwise. This gives

all diagrams pictured above (recall that A0 = E2 if P (0) 
= 0). �

4.2 Classification of reversions

Recall that two standard pairs (X, B) and (X′, B ′) of respective types (0,−1,−a,−b)

and (0,−1,−a′,−b′) can be linked by a reversion only if a′ = b and b′ = a (see, e.g.,

Section 4.1.1). To decide which types of reversions can occur between the different mod-

els of standard pairs, we may thus consider the situation when (X, B) and (X′, B ′) are

obtained by means of the construction of Section 3.1.2 for pairs of polynomials (P , Q)

and (P ′, Q′) of degrees (a− 1,b− 1) and (b− 1,a− 1), respectively. We let

(X, B = F �C �E1�E2, π)
μP ,Q← (Y, B, π̄μP ,Q)

ηP ,Q→ (F1, F �C �L),

(X′, B ′ = F ′�C ′�E ′1�E ′2, π̄
′)
μP ′ ,Q′← (Y′, B ′, π̄ ′μP ′,Q′)

ηP ′ ,Q′→ (F1, F �C �L)

be as in Section 3.1.2. Given a reversion φ : (X, B) ��� (X′, B ′) centered at p∈ F \ C , with

φ−1 centered at p′ ∈ F ′ \ C ′, which correspond, respectively, to (λ : 1 : 0), (λ′ : 1 : 0) ∈ P
2, we

use the notation of Section 4.1.2 for α1, . . . , αl ∈ k̄, Ai, Bi,Ai,Bi, Di ⊂Y and the same nota-

tion with primes on Y′.

Lemma 4.2. With the notation above, let ψ = (μP ′,Q′)
−1φμP ,Q : Y ��� Y′ be the lift of φ .

Then one of the following three situations occurs:

(1) We have case Ia on both Y and Y′: P (0)P ′(0)Q(λ)Q′(λ′) 
= 0. We have l =m′,

m= l ′ and up to renumbering, ψ sends Bi, Bi, Ai, and Di to D′i, A′i, B′i, and

Bi, respectively. Moreover, ψ(D0)= D′0 and the situation is described by the

following diagram:

Furthermore, P ′(w)= cQ(dw + λ), and P (w)= eQ′( fw + λ′) for some

c,d, e, f ∈ k∗.
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(2) Up to an exchange of Y and Y′, we have case Ib on Y and case II on

Y′: P (0)Q(0)Q′(0) 
= 0, P ′(0)= Q(λ)= 0. Up to renumbering, λ= βm, ψ sends

Bm,Bm, and D0 onto D′0,A′0, and A′0, respectively, and sends the other Bi, Bi,

Ai and Di onto D′i, A′i, B′i, and Bi, respectively. The situation is described by

the following diagram:

Furthermore, P ′(x)= cQ(dx+ λ) for some c,d∈ k∗, and P ∼ Q′.

(3) We have case III on Y and Y′: P (0)= P ′(0)= Q(0)= Q′(0)= 0. Up to renumber-

ing ψ sends Bi, Bi, Ai, and Di onto D′i, A′i, B′i, and Bi, respectively. Moreover,

ψ sends A0 onto A′0. The situation is described by the following diagram:

Furthermore, P ′ ∼ Q, and P ∼ Q′. �

Proof. We decompose φ into φ = θ2ϕ2θ1ϕ1θ0 as in Section 4.1.1, and use this decomposi-

tion to see that E2 and E ′2 correspond, respectively, to the curves E ′p and Ep obtained by

blowing-up p′ and p.

According to Lemma 4.1, there are four possibilities for the situation on Y,

depending on P , Q, λ. We study the image of the curves D0, . . . , Dl , which intersect F

at the point p.

Let i ∈ {0, . . . , r} and assume that Di ⊂Y does not intersect the boundary E2 ∪
E1 ∪ C ∪ F at another point (which occurs in all cases, except for i = 0 in case Ia). In the

decomposition of φ, the curve Di is affected by the blow-up of p∈ Di and then is not



448 J. Blanc and A. Dubouloz

affected by all other maps. In consequence, the image φ(Di) of Di on Y′ is a curve that

intersects the boundary only at one point, being on E ′2, and which has self-intersection

φ(Di)
2 = (Di)

2 − 1. The curve φ(Di) is thus contained in the special fiber and corresponds,

therefore, to one of the B ′i if (Di)
2 = 0 and to A′0 in case II if (Di)

2 =−1. This shows that

we obtain case II if and only if we start from Ib. We can only go to III if we start from

III, because of the special singularity, and then we see that Ia goes to Ia.

The diagrams above follow from the discussion made on the image of the Di. It

remains to see the correspondence between P , Q, P ′, Q′, λ, λ′. The map φ induces an iso-

morphism between the blow-up Ep of p and the line E ′2 ⊂Y′. This isomorphism sends the

tangent direction of Di, which has equation x− λy= αiz, onto φ(Di) ∩ E2. It also sends

the direction of F , which is z= 0, onto E ′2 ∩ E ′1. We obtain, therefore, an isomorphism

P
1→ E ′2 that sends (0 : 1) onto E ′2 ∩ E ′1 and (1 : αi) onto E ′2 ∩ φ(Di) for each i. Studying

each of the three diagrams gives P ′ and Q′ in terms of Q and P .

In the first diagram (case Ia on both sides), E ′2 corresponds to the blow-up of

(0 : 0 : 1), and the intersection of B ′i with E ′2 corresponds to the tangent direction of x=
β ′i y (Section 3.1.2). The curve D′0 is the tangent direction of x= λ′y. We obtain an affine

automorphism of k which sends αi to β ′i for i = 1, . . . , l and which sends 0 onto λ′. This

means that P (x)= eQ′( fx+ λ′) for some e, f ∈ k∗. Doing the same in the other direction,

we obtain P ′(x)= cQ(dx+ λ) for c,d∈ k∗.

In the second diagram (case Ib on Y and II on Y′), the curve E ′2 is the blow-up

of the point (u, v)= (0,0) obtained after blowing-up (0 : 0 : 1) via (u, v) �→ (u,ur′0v), where

r′0 > 0 is the multiplicity of 0 in P ′(x) (see Section 3.1.2). The intersection of B ′i with

E ′2 corresponds to the direction of u= β ′iv, the point E ′1 ∩ E ′2 corresponds to v = 0, and

A′0 ∩ E ′2 to u= 0. We obtain an automorphism of k∗ that sends αi to β ′i for i = 1, . . . , l,

so P (x)= eQ′( fx) for some e, f ∈ k∗. To obtain P ′(x) from Q(x), we do the same com-

putation in the other direction: we have an isomorphism P
1→ E2 that sends (0 : 1) onto

E2 ∩ E1 and (1 : α′i) onto E2 ∩ φ−1(D′i) for each i. Recall that φ−1(D′0)= Bm and φ−1(D′i)= Bi

for i = 1, . . . ,m. The curve E2 corresponds to the blow-up of (0 : 0 : 1), the intersection

of Bi with E2 corresponds to the direction x= βi y, and Bm = φ−1(D′0) corresponds to

x= λy, which is x= βmy. We get an affine automorphism of k that sends α′i onto βi

for i = 1, . . . ,m− 1 and 0= α′0 onto βm = λ. This implies that P ′(x)= cQ(dx+ λ) for some

c,d∈ k∗.

The last diagram is when Y,Y′ are in case III, and is symmetrical. As in the

second diagram, the curve E ′2 is the blow-up of the point (u, v)= (0,0) obtained after

blowing-up (0 : 0 : 1) via (u, v) �→ (u,ur′0v), where r′0 > 0 is the multiplicity of 0 in P ′(x).

The intersection of B ′i with E ′2 corresponds to the direction of u= β ′iv, the point E ′1 ∩ E ′2
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corresponds to v= 0, and A′0 ∩ E ′2 to u= 0. We obtain an automorphism of k∗ that sends

αi onto β ′i for i = 1, . . . , l, so P ∼ Q′. And in the other direction, we get P ′ ∼ Q. �

To conclude this section, we give a complete characterization of when two rever-

sions are equivalent in the sense of Definition 2.6, which will be needed in the next

section to describe the graphs associated to the surfaces X \ B.

Proposition 4.3. Let (X, B = F �C �E1�E2) be a pair constructed from polynomials P , Q ∈
k[w]. For two reversions φi : (X, B) ��� (Xi, Bi), i = 1,2, the following are equivalent:

1. The pairs (X1, B1) and (X2, B2) are isomorphic.

2. The reversions φ1, φ2 are equivalent, that is, there exists θ ∈Aut(X, B) and an

isomorphism θ ′ : (X1, B1)→ (X2, B2), such that φ2 ◦ θ = θ ′ ◦ φ1.

Moreover, these equivalent properties are always satisfied if P (0)= 0. �

Proof. The implication (2)⇒ (1) is obvious. Conversely, we may suppose that φ1, φ2 are,

respectively, centered at points p1, p2 ∈ F \ C which we identify in turn with the points

(λ1 : 1 : 0), (λ2 : 1 : 0) ∈ P
2 (see Section 3.1.2). We denote by (P1, Q1) and (P2, Q2) the poly-

nomials associated to the pairs (X1, B1) and (X2, B2). Since the reversions are uniquely

determined by the choice of their proper base-point, assertion (2) is equivalent to the

existence of an automorphism θ ∈Aut(X, B) which sends p1 to p2. If P (0)= 0, then the

automorphism (x, y) �→ (x+ (λ2 − λ1)y, y) of A
2 lifts to an automorphism θ ∈Aut(X, B)

(Proposition 3.4) such that θ(p1)= p2. So it remains to consider the case when P (0) 
= 0

(case I). By Lemma 4.2 (assertions (1) and (2)), we have Pi(w)= ci Q(diw + λi), for some

ci,di ∈ k∗. Since (X1, B1) and (X2, B2) are isomorphic, we also have P1(w)= αP2(βw), for

some α, β ∈ k∗ (Proposition 3.4). This yields

c1 Q(d1w + λ1)= P1(w)= αP2(βw)= αc2 Q(d2βw + λ2),

which implies (replacing w by (w − λ1)/d1) that Q(d2β(w − λ1)/d1 + λ2)/Q(w)= αc2/c1 ∈
k∗. Letting c= d1

d2β
and b= λ1 − λ2c, we obtain that Q(w−b

c )/Q(w) ∈ k∗ and cλ2 = λ1 + b. The

first condition guarantees that the automorphism ν : (x, y) �→ (x+ by, cy) of A
2 lifts to an

automorphism of (X, B) (see Proposition 3.4), while the second equality says precisely

that the extension of ν to P
2 maps p1 = [λ1 : 1 : 0] onto p2 = [λ2 : 1 : 0]. �

Remark 4.4. Proposition 4.3 implies in particular that if (X, B) is of type (0,−1,−a,−b),

in the graph FS associated to S= X \ B as in Definition 2.6, two arrows corresponding to
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reversions are equal if and only if they have the same source and target. Consequently,

the graph FS does not contain any reduced cycle of length 2 and each of its vertices is

the base vertex of at most one cycle of length 1. �

Example 4.5. As explained in Section 3.1.6, given polynomials P , Q ∈ k[w] of degrees ≥ 1,

the surface S in A
4 = Spec(k[x, y,u, v]) defined by the system of equations

yu= xP (x),

vx=uQ(u),

yv = P (x)Q(u)

comes equipped with the A
1-fibration π = pry |S induced by the restriction of the rational

pencil π̄ on the standard pair (X, B = F �C �E, π̄) associated with the pair (P , Q) via the

construction of Section 3.1.2.

The automorphism (x, y,u, v) �→ (u, v, x, y) of A
4 induces an isomorphism σ of S

with the surface S′ ⊂A
4 defined by the system of equations

yu= xQ(x),

vx=uP (u),

yv = Q(x)P (u),

which comes equipped with the A
1-fibration π ′ = pry |S′ induced by the restriction of the

rational pencil π̄ ′ on the standard pair (X′, B ′ = F ′�C ′�E ′, π̄ ′) associated with the pair

(P ′, Q′)= (Q, P ) via the construction of Section 3.1.2.

With our choice of coordinates, the closures in X of general fibers of π ′ ◦ σ =
prv |S all intersect B at the point p∈ F with image τ(p)= [0 : 1 : 0] ∈ P

2, and one checks

that the birational map of standard pairs (X, B) ��� (X′, B ′) corresponding to σ is a rever-

sion centered at p.

Note that if P (0) 
= 0 and Q(0)= 0, then S equipped with π is of type I, while it is

of type II when equipped with σπ ′ = prv |S. �

5 Graphs of A
1-Fibrations and Associated Graphs of Groups

Here we apply the results of the previous section to characterize equivalence classes of

A
1-fibrations on normal affine surfaces admitting of a completion by a standard pair
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(X, B) of type (0,−1,−a,−b). We also give explicit description of automorphism groups

of some of these surfaces.

5.1 Notation

Given polynomials P , Q ∈ k[w], we denote by [P , Q] the isomorphism class of the stan-

dard pair (X, B, π̄) obtained by means of the construction of Section 3.1.2. By virtue

of Proposition 3.4, [P , Q]= [P ′, Q′] if and only if the corresponding A
1-fibered surfaces

(X \ B, π̄ |X\B) and (X′ \ B ′, π̄ ′ |X′\B ′) are isomorphic. Recall that by virtue of Proposi-

tion 3.4, this holds if and only if P ′(w)= αP (βw), Q′(w)= γQ(δw + t), where α, β, γ, δ ∈ k∗

and t∈ k being 0 if P (0)= 0.

We say that [P , Q] is equivalent to [P ′, Q′] if X \ B and X′ \ B ′ are isomorphic as

abstract affine surfaces. With this convention, the vertices of the graph of A
1-fibrations

FX\B of X \ B as defined in Section 2.6 are in one-to-one correspondence with pairs

[P ′, Q′] equivalent to [P , Q]. In what follows, we denote this graph simply by F[P ,Q].

Note that arrows of the graph F[P ,Q] correspond to equivalence classes of rever-

sions between pairs equivalent to [P , Q]. Given one such pair [P ′, Q′], represented by

a pair (X′, B ′ = F ′�C ′�E ′1�E ′2, π̄
′), the possible reversions starting from it are param-

eterized by the k-rational points of the line F ′ \ C ′. Moreover, if σ1, σ2 are two rever-

sions centered at points p1, p2 ∈ F ′ \ C ′, they are equivalent, or give the same arrow (see

Definition 2.6) if and only if there exists an automorphism of (X′, B ′) that sends p1 onto

p2. By Proposition 3.4, this always holds when P (0)= 0.

5.2 Affine surfaces of type III

As noted above normal affine surfaces corresponding to case III in the construction of

Section 3.1.2 are always singular and form a distinguished class stable under taking

reversions. Such a surface S in A
4 = Spec(k[x, y,u, v]) is defined by a system of equations

yu= xP (x),

vx=uQ(u),

yv = P (x)Q(u)

corresponding to a pair [P , Q] with P (0)= Q(0)= 0. The structure of the graph F[P ,Q] is

particularly simple: Indeed, Lemma 4.2 implies that [Q, P ] is the only pair equivalent to

[P , Q] and that they can be obtained from each other by performing a reversion. Since
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[P , Q]= [Q, P ] if and only if Q∼ P , the corresponding F[P ,Q] is thus

�� [P , Q] if Q∼ P and [P , Q] �� �� [Q, P ] if Q 
∼ P .

Denoting by Jy=Aut(S,pry) and Jv =Aut(S,prv) the groups of automorphisms of S which

preserve the A
1-fibrations pry : S→A

1 and prv : S→A
1, respectively, and by Diag(S)⊂

Aut(S) the subgroup consisting of restrictions to S of diagonal automorphisms of A
4

preserving S, we obtain the following description of automorphism groups of affine sur-

faces of type III:

Proposition 5.1. For an affine surface S in A
4 = Spec(k[x, y,u, v]) defined by the equa-

tions

yu= xP (x),

vx=uQ(u),

yv = P (x)Q(u),

where P , Q are nonconstant polynomials with P (0)= Q(0)= 0, the following holds:

1. Every A
1-fibration on S is equivalent either to pry : S→A

1 or to prv : S→A
1

and these two fibrations are equivalent to each other if and only if Q∼ P .

2. If Q∼ P , then [P , Q]= [P , P ] and, assuming further that Q= P , the group

Aut(S) is the amalgamated product A�Diag(S) Jy of Jy=Aut(S,pry) and the

subgroup Aof Aut(S) generated by Diag(S) and the involution σ : (x, y,u, v)→
(u, v, x, y).

3. If Q 
∼ P , then Jy ∩ Jv =Diag(S) and Aut(S) is the amalgamated product

Jy �Diag(S) Jv of Jy=Aut(S,pry) and Jv =Aut(S,prv). �

Proof. The first assertion is an immediate consequence of the description of FS =F[P ,Q].

As in Example 4.5, we consider S as X \ B where (X, B = F �C �E, π̄) is associated with

the pair (P , Q) via the construction of Section 3.1.2 in such a way that pry |S coin-

cides with π̄ |S. We denote by σ : (X, B) ��� (X′, B ′) the reversion corresponding to the

morphism (x, y,u, v) �→ (u, v, x, y), where (X′, B ′) is the standard pair associated with

the pair of polynomials (Q, P ). By virtue of Proposition 3.4, elements of Aut(X, B) are

lifts of automorphisms of A
2 of the form (x, y) �→ (ax+ by, cy) satisfying P (aw)/P (w) ∈

k∗, Q(ar0+1

c · w)/Q(w) ∈ k∗, where r0 ≥ 1 is the multiplicity of 0 as a root of P . The extension
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of such an automorphisms to P
2 fixes the center [1 : 0 : 0] of σ if and only if b= 0. If so, we

write λ= P (aw)/P (w)= ar0 and μ= Q(ar0+1

c · w)/Q(w)= Q(aλ
c w)/Q(w), and check that the

lift to S of the corresponding automorphism coincides with the restriction of the diago-

nal automorphism (x, y,u, v) �→ (ax, cy, aλ
c u, λμc v) of A

4. Furthermore, every diagonal auto-

morphism of A
4 which preserves S is necessarily of this form. This implies in particular

that the group Diag(S) coincides precisely with the subgroup of Aut(X, B) consisting of

lifts of automorphisms whose extensions to P
2 fix the point [1 : 0 : 0]. By Proposition 2.5,

every birational map f : (X, B) ��� (X, B) is either an element of Aut(X, B) (and in this

case belongs to Jy) or decomposes into a finite sequence of fibered modifications and

reversions. Since all reversions are equivalent to σ or σ−1, we can assume that f is a

product of σ , σ−1, and fibered modifications and automorphisms of the pairs (X, B) and

(X′, B ′).

(2) If Q∼ P , we can assume further that Q= P so that σ becomes in fact an

automorphism of S. This implies that Aut(S) is generated by Jy and σ , and hence by

Jy and A= 〈Diag(S), σ 〉. It remains to see that every element h= jmam · · · j2a2 j1a1 with

al ∈ A\ Jy, jl ∈ Jy \ A is nontrivial. By definition every jl ∈ Jy \ A is either a fibered modifi-

cation (X, B) ��� (X, B) or an automorphism that does not fix the center of the reversion

σ . On the other hand, every al ∈ A\ Jy is a reversion (X, B) ��� (X, B) which has the same

center as σ . It follows that h is either an element of A\ Jy or admits of a reduced decom-

position containing at least a reversion. So h is never trivial, as desired.

(3) If Q 
∼ P , then (X′, B ′) is not isomorphic to (X, B). In particular, every element

f : (X, B) ��� (X′, B ′) decomposes into

f = σ−1a′nσ · · · σ−1a′2σa2σ
−1a′1σa1,

where the ai and a′j are either fibered modifications or automorphisms of (X, B) and

(X′, B ′), respectively. In consequence, every ai is an element of Jy and every σ−1a′iσ is

an element of Jv, which shows that Aut(S) is generated by Jy and Jv. Furthermore, a∈
Jy is an element of Jv if and only if it is equal to σ−1bσ for a certain automorphism

or a fibered modification b of (X′, B ′). The equality a= σ−1bσ implies that a and b are

automorphisms of (X, B) and (X′, B ′) respectively, and that a (respectively, b) fixes the

center of σ (respectively, of σ−1). In particular, Jy ∩ Jv =Diag(S).

It remains to show that every element h= bmam · · · b2a2b1a1 with al ∈ Jy \ Jv, bl =
σ−1b′lσ ∈ Jv \ Jy is nontrivial. By virtue of the above description, each ai is either an auto-

morphism of (X, B) not fixing the center of σ or a fibered modification while each b′j is

either an automorphism of (X′, B ′) not fixing the center of σ−1 or a fibered modification



454 J. Blanc and A. Dubouloz

of (X′, B ′). This implies that h is either an element of Aut(X, B) not fixing the center of σ

or admits of a reduced decomposition containing at least a reversion. In any case, h is

not trivial, which achieves the proof. �

Example 5.2. Let S be the surface in A
4 = Spec(k[x, y,u, v]) defined by the equations

yu= x2(x− 1),

vx=u2(u− 1),

yv = x(x− 1)u(u− 1)

corresponding to the polynomials P (w)= Q(w)=w(w − 1). Since P (aw)/P (w) and Q(a2

c ·
w)/Q(w) belong to k∗ if and only if a= c= 1, it follows from the proof of the above propo-

sition that Diag(S)= {idS}. Furthermore, one checks that the group Jy=Aut(S,pry) con-

sist of lifts to S via the projection prx,y : S→A
2 = Spec(k[x, y]) of automorphisms of A

2

of the form (x, y) �→ (x+ y2 R(y), y), where R∈ k[y] is an arbitrary polynomial. So Jy is

isomorphic as a group to (k[y],+)�G
∞
a,k and we conclude that Aut(S) is isomorphic to

the free product Z2 �G
∞
a,k. �

Example 5.3. Let S be the surface in A
4 = Spec(k[x, y,u, v]) defined by the equations

yu= x2(x− 1),

vx=u(u− 1),

yv = x(x− 1)(u− 1)

corresponding to the polynomials P (w)=w(w − 1) and Q(w)=w − 1. Again, the choice

of P and Q guarantees that Diag(S)= {idS}. As in the previous example, the groups Jy=
Aut(S,pry) and Jv =Aut(S,prv) consist of lifts to S via the projections prx,y and pru,v,

respectively, of automorphisms of A
2 of the form (x, y) �→ (x+ y2 R1(y), y), where R1 ∈ k[y],

and (u, v) �→ (u+ vR2(v), v), where R2 ∈ k[v]. It follows that Aut(S) is isomorphic to the

free product G
∞
a,k �G

∞
a,k. �

5.3 Affine surfaces of types I and II

In contrast to surfaces of type III, Example 4.5 shows that in general affine surfaces cor-

responding to case I and II in the construction of Section 3.1.2 can be obtained from each
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other by performing reversions. Recall that these models correspond to pairs [P , Q] such

that either P (0) 
= 0 or P (0)= 0 but Q(0) 
= 0. The associated graph F[P ,Q] is quite compli-

cated, in particular infinite as soon as the field k is, as shown by the following result:

Proposition 5.4. Let P , Q be two polynomials of degree ≥ 1, and assume that P (0) 
= 0.

The set of pairs equivalent to [P , Q] is

{[P (w + a), Q(w + b)], [Q(w + b), P (w + a)]|a,b∈ k, (P (a), Q(b)) 
= (0,0)}.

The graph F[P ,Q] associated to [P , Q] has the following structure:

{[Q(w + λ), P (w + a)]}λ∈V(Q) �� �� [P (w + a), Q(w)] �� ��
��

		�������������



����
��

��
��

��
��

��
��

��
�

[Q(w + c), P (w)]
��



������������� ��

����
��

��
��

��
��

��
��

��
�

�� �� {[P (w + ξ), Q(w + c)]}ξ∈V(P )

.

.

.

�� ����

		������������� .
.
.

��



�������������

{[Q(w + λ), P (w + b)]}λ∈V(Q) �� �� [P (w + b), Q(w)] �� �� [Q(w + d), P (w)] �� �� {[P (w + ξ), Q(w + d)]}ξ∈V(P )

where P (a)P (b)Q(c)Q(d) 
= 0 and V(Q)= {λ ∈ k | Q(λ)= 0}, V(P )= {ξ ∈ k | P (ξ)= 0}. (The

arrows in the middle indicate that every [P (w + a), Q(w)] is linked with any [Q(w +
c), P (w)], for a, c∈ k, P (a)Q(c) 
= 0.) �

Proof. Follows from Lemma 4.2 and Propositions 3.4 and 4.3:

1. Starting from [P (w + a), Q(w)] with P (a) 
= 0, we perform a reversion at a

point λ (using the notation of Lemma 4.2).

If Q(λ) 
= 0, it follows from Lemma 4.2(1) that the pair obtained is

[Q(w + λ), P (w + a)] and that in this case the first polynomial does not vanish

at 0. It is one of the multiple arrows in the middle of our diagram.

If Q(λ)= 0, it follows from Lemma 4.2(2) that the pair obtained is

[Q(w + λ), P (w + a)] and that in this case the first polynomial vanishes at

w= 0. It is one of the multiple arrows in the middle of our diagram.

2. Starting from [P (w + a), Q(w)] with P (a)= 0 and Q(0) 
= 0 and perform-

ing any reversion, we only obtain [Q(w), P (w + a)], which is equivalent to

[Q(w), P (w + c)] for any c∈ k (this follows from Lemma 4.2, we can only go

from II to I, and this link is the inverse of the one described in Lemma 4.2(2)).

This yields the result. �
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Proposition 5.5. Let k be an uncountable field and let P , Q ∈ k[w] be polynomials

having at least 2 distinct roots in the algebraic closure k of k and such that P (0) 
=
0. Then for the affine surface S in A

4 = Spec(k[x, y,u, v]) defined by the system of

equations

yu= xP (x),

vx=uQ(u),

yv = P (x)Q(u),

the following holds:

1. S admits of uncountably many equivalence classes of A
1-fibrations.

2. The subgroup H ⊂Aut(S) generated by all automorphisms of A
1-fibrations is

not generated by a countable union of algebraic groups.

3. The subgroup Aut(S)alg ⊂Aut(S) generated by all algebraic subgroups of

Aut(S) is not generated by a countable union of algebraic groups.

4. The quotient of Aut(S) by its normal subgroup Aut(S)alg contains a free

group over an uncountable set of generators. Furthermore, the same holds

for Aut(S)/H �Π1(FS) since H ⊂Aut(S)alg. �

Proof. Because P has at least 2 roots over k̄, P (w + t)∼ P (w) ∈ k∗ for only finitely many

t∈ k, and the same holds for Q. Furthermore, the fact that the degree of P is at least 2

implies that for every standard pair (X, B) with X \ B � S, the boundary B contains at

least an irreducible component with self-intersection ≤−3.

Suppose that P ∼ Q. Choosing t∈ k general enough, we then have P (w + t) 
∼
P (w). We replace in this case Q(w) with P (w + t) (this does not change the isomorphism

class of the surface S, by Propositions 3.4 and 5.4), and obtain that Q 
∼ P , which corre-

sponds to [P (w), Q(w)] 
= [Q(w), P (w)]. Thus, we may, and shall, further assume P 
∼ Q.

We can now choose an uncountable set A⊆ k, containing 0, such that for every

distinct a1,a2 ∈ A, we have

P (w + a1) 
∼ P (w + a2), Q(w + a1) 
∼ Q(w + a2) and P (w + a1) 
∼ Q(w + a2).

By the choice of A and by Proposition 3.4(a) the isomorphism classes of the correspond-

ing standard pairs are distinct.
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For every a∈ A, we denote by (Xa, Ba) the standard pair obtained from the pair of

polynomials (P (w + a), Q(w)) and by (X′a, B ′a) the one obtained from the pair of polyno-

mials (Q(w + a), P (w)). By Proposition 5.4, each [(Xa, Ba)] and each [(X′a, B ′a)] is a vertex in

the graph FS =F[P ,Q]. The definition of A implies that the four pairs [(Xa, Ba)], [(Xb, Bb)],

[(X′a, B ′a)], and [(X′b, B ′b)] are pairwise distinct for distinct a,b∈ A. In particular, we obtain

uncountably many vertices, which is equivalent to (1) by Proposition 3.4.

Let (Gi)i∈N be a countable set of algebraic subgroups Gi ⊂Aut(S). For any i ∈N,

Proposition 2.7, gives a standard pair (X, B) (depending on i), and an isomorphism

ψ : S
∼→ X \ B such that the conjugation of Gi by ψ consists of birational maps (X, B) ���

(X, B) being fibered modifications, automorphisms, or reversions. Viewing any element

of Gi as a birational transformation of (X0, B0), we can factorize it into automorphisms

of pairs, fibered modifications and reversions (Proposition 2.5), and the existence of ψ

implies that the number of such factors is bounded; indeed, each element of Gi is equal

to ψ−1σψ for some σ of length ≤ 1. In consequence, there exists a countable set S of

equivalence classes of pairs (X, B) with X \ B = S, such that each element of each Gi can

be decomposed into a sequence of automorphisms of pairs, fibered modifications, and

reversions involving only pairs in S. There exists, thus, a∈ A such that [(X′a, B ′a)] /∈ S. We

choose a reversion μ : (X0, B0) ��� (X′a, B ′a), and a nontrivial algebraic group Ĝ of fibered

modifications (X′a, B ′a) ��� (X′a, B ′a). The group μ−1Ĝμ yields an algebraic subgroup of

Aut(S), which preserves an A
1-fibration and which is not contained in the group gen-

erated by the Gi. This yields (2) and (3).

By Proposition 5.4, for every a∈ A, there exist reversions τ : (X0, B0) ��� (X′0, B ′0),

σa : (X′0, B ′0) ��� (Xa, Ba), τa : (Xa, Ba) ��� (X′a, B ′a) and σ ′a : (X′a, B ′a) ��� (X0, B0), representing

the cycle

[P (w), Q(w)] �� [Q(w), P (w)]

��

[Q(w + a), P (w)]

��

[P (w + a), Q(w)]��

in FS =F[P ,Q]. For every a∈ A\{0}, the map σ ′aτaσaτ : (X0, B0) ��� (X0, B0) restricts to

an automorphism ζa of S= X0 \ B0. The decomposition σ ′aτaσaτ is reduced, because

[P (w), Q(w)] 
= [P (w + a), Q(w)] and [Q(w), P (w)] 
= [Q(w + a), P (w)] (recall that the com-

position of two reversions is of length 2 or is an isomorphism of pairs). We denote by

F ⊂Aut(S) the group generated by the ζa,a∈ A\{0}. In order to get (4), we will show that

F is a free group over the ζa and intersects Aut(S)alg trivially.
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1. First, we observe that for every a,b∈ A\{0}, a 
= b, the decomposition

ζaζb= σ ′aτaσaτσ
′
bτbσbτ

is reduced. Indeed, τσ ′b is reduced because otherwise it would be an isomor-

phism between (X′b, B ′b) and (X′0, B ′0), which is not possible because b 
= 0.

2. Similarly, the following decomposition

ζa(ζb)
−1 = σ ′aτaσa(σb)

−1(τb)
−1(σ ′b)

−1

is reduced, because otherwise σa(σb)
−1 would be an isomorphism between

(Xb, Bb) and (Xa, Ba).

3. Similarly, the following decomposition (ζa)
−1ζb= τ−1(σa)

−1(τa)
−1(σ ′a)

−1

σ ′bτbσbτ, is again reduced, for otherwise (σ ′a)
−1σ ′b would be an isomorphism

between (X′b, B ′b) and (X′a, B ′a).

These three observations imply that every element h= (ζar )
δr · · · (ζa1)

δ1 ∈ F \ {idS},
where a1, . . . ,ar ∈ A and δ1, . . . , δr ∈Z\{0} and ai 
= ai+1 for i = 1, . . . , r − 1, is nontrivial

because it admits of a reduced decomposition of positive length. This shows the freeness

of F . By construction, the image of h in Π1(FS) consists of a product of loops based at

[(X0, B0)] of length≥ 4. Since in contrast, the image inΠ1(FS) of every element in Aut(S)alg

can only contain loops of length 1 (see Remark 2.8), it follows that F ∩ Aut(S)alg is trivial,

which completes the proof. �
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