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Abstract

In this thesis, we investigate several ways how the structure of a high energy parti-
cle physics model constituting a grand unification theory (GUT) in supersymmetry
(SUSY) can be inferred from multiple types of information obtained at low energy.

First, we calculate the values and 1σ ranges of the running quark and lepton Yukawa
couplings as well as of the quark mixing parameters at various energy scales to provide
useful input for flavour model building in GUTs and other scenarios while including
tan β enhanced SUSY threshold corrections in a simple way.

Next, we analyse the naturalness of the Minimal Supersymmetric Standard Model
(MSSM) in the light of the discovery of the Higgs boson at the Large Hadron Collider
(LHC). In particular, we find that among possible departures from the constrained
MSSM (cMSSM) non-universal gaugino masses represent the most promising way to
find parameter regions with a fine-tuning of only O (10) even for a Higgs mass of about
126 GeV, compared to O (100) for the cMSSM. In this context, we also discuss the
preference for certain GUT-scale Yukawa coupling ratios over others based on fine-
tuning.

Following that, we study how also the recent determination of the leptonic mixing
angle θPMNS

13 can be accommodated in a simple scenario for GUT models of flavour via
charged lepton corrections. This leads us to four conditions that can easily be imple-
mented. In addition, the interplay of the value of θPMNS

13 with future determinations of
the Dirac CP phase δPMNS is discussed using lepton mixing sum rules.

Finally, we study how the double missing partner mechanism as a solution to
the doublet-triplet splitting problem can be incorporated into SU(5) GUT models
of flavour to comply with the bounds on proton decay. In this context, we argue that
the introduction of two adjoints of SU(5) is a compelling idea and calculate its con-
straints on the GUT scale and dimension five proton decay suppression scale at two
loops. We close with general comments on the calculation of the proton lifetime in the
considered scenario for flavour models.

Multiple appendices are included detailing non-obvious aspects of the calculation
and other kinds of valuable information for GUT model building.
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Introduction

The Standard Model of elementary particle physics (SM) [1, 2] is one of the most
accurately tested models in physics and successfully describes the electroweak and
strong interactions of all observed particles to a remarkable precision. Nevertheless,
there remain unresolved issues like the hierarchy problem, the non-unification of gauge
couplings, the unexplained structure of fermion masses and mixing or the inclusion
of neutrino masses. All these issues point to the conclusion that the SM is not the
fundamental theory of particle physics, but has to be extended in some aspects by new
physics.

One popular extension of the SM is the concept of low energy supersymmetry
(SUSY). It stabilises the electroweak scale [3] against quantum corrections and modifies
the renormalisation group running of the gauge couplings in such a way that they
almost exactly unify at a high energy scale [4]. This makes the idea of grand unified
theories (GUTs) viable.

Once the gauge couplings are unified, additional relations between the previously
unrelated Yukawa couplings of the SM fermions are possible. However, exactly which
relations are realised and how they can be incorporated into more extensive models of
flavour is far from obvious. One possible approach – the one taken in this thesis – is
to try to infer as much information as possible about the high-scale structure of GUT
models (of flavour) from multiple sources at lower energies.

To this end, this thesis is organised as follows: part I gives an overview of the
basics needed for part II and establishes some conventions, with chapter 1 briefly
discussing the SM, chapter 2 introducing fundamental concepts for neutrino masses
and mixing, chapter 3 discussing SUSY, the formulation of supersymmetric theories,
SUSY breaking and the minimal supersymmetric standard model (MSSM). Lastly, in
chapter 4 we give a quick overview over grand unification. Part II shows different
examples of information on high-scale structures one can obtain from low energy data.
In chapter 5, we derive the quantities relevant for SM flavour physics and flavour
models at multiple scales, extending it to the MSSM and going as high as the GUT
scale ∼ 1016 GeV. Chapter 6 shows how the growing weakness of SUSY as a solution to
the hierarchy problem can be alleviated by going beyond the trodden paths of universal
high-scale boundary conditions for SUSY breaking such as the constrained MSSM, how
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the Large Hadron Collider (LHC) so far influences this discussion beyond not finding
any new particles predicted by SUSY and what consequences non-universalities can
have on GUT-scale Yukawa coupling ratios. In chapter 7, we show how the more
recent observation of the reactor neutrino mixing angle makes it possible to constrain
the flavour structure of GUTs and other unified models, leading to a set of four simple
conditions for reproducing the experimental values. Finally, in chapter 8, we investigate
how the non-observation of proton decay can be accommodated in GUT models using
the so-called double missing partner mechanism. In part III, we summarise the findings
and conclude.

This thesis is based on the publications [5], [6, 7], [8, 9] and [10], and presents a
partially updated view on their findings.



PART I

Basics and Notation





CHAPTER 1

The Standard Model

The Standard Model (SM) [1, 2] is the quantum field theory that describes the funda-
mental interactions of elementary particle physics. It does so to a remarkable precision
and has so far been very successful in describing and explaining the measurements
done at particle colliders and other types of experiments.

In this section, we will discuss its details as far as they concern the findings in this
thesis and will also give a short overview of its shortcomings of aesthetic and technical
nature.

1.1 Gauge Symmetries and Field Content

The SM is formulated as a renormalisable chiral gauge theory [11] with the contin-
uous gauge symmetry group GSM = SU(3)C × SU(2)L × U(1)Y . The SU(3) factor
is responsible for quantum chromodynamics (QCD) [2], which is the theory of strong
interactions between quarks and gluons, while the SU(2) × U(1) factor describes the
electroweak theory (the Glashow-Weinberg-Salam model [1]), which is responsible for
weak decays and electromagnetism.

The interactions between matter fermions and gauge bosons enter the Lagrangian
density by replacing ordinary space-time derivatives with their gauge-covariant equiv-
alents,

∂µ → Dµ = ∂µ + i gs TaG
a
µ + i g τiW

i
µ + i g′ Y Bµ , (1.1)

where Ga, W i and B are the gauge vector boson fields and gs, g, g′ are the gauge
couplings, corresponding to the three respective factors of GSM. The matrices Ta, τi
and Y are the generators of the respective gauge group factor. Their particular form
depends on what representation they act on, e.g. Ta = λa/2 for SU(3)C-triplets or
τi = σi/2 for SU(2)L-doublets with the Gell-Mann matrices λa and the Pauli matrices
σi.
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SU(3)C SU(2)L U(1)Y spin

Q =

(
u
d

)
=

(
uL
dL

)
3 2 1

6
1
2

uc = u∗R 3̄ 1 −2
3

1
2

dc = d∗R 3̄ 1 1
3

1
2

L =

(
ν
e

)
=

(
νL
eL

)
1 2 −1

2
1
2

ec = e∗R 1 1 1 1
2

H =

(
H0

H−

)
1 2 −1

2
0

Table 1.1: Irreducible representations of the SM fermion and scalar fields, includ-
ing definitions of left-handed Weyl spinors in terms of chirality components of Dirac
spinors. There are three copies of all shown fermion fields grouped together as ‘gen-
erations’ or ‘families’.

As the SM is a chiral theory, the left- and right-handed components of fermion fields
transform differently under the gauge symmetry, as described by the field representa-
tions given in tab. 1.1. As alluded therein, instead of Dirac spinors, one can also work
purely with left-handed two-component Weyl spinors by converting the right-handed
component fields to left-handed spinors via conjugation and implicit multiplication
with the two-dimensional Levi-Civita tensor ε = −iσ2 to take care of the pseudo-
reality of the two dimensional SU(2) irreducible representation1. For more details,
see [12]. For convenience, we will make use of this scheme.

1.2 The Standard Model Lagrangian Density

In addition to the gauge invariant kinetic terms for the SM fermion and scalar fields,
the Lagrangian density contains the following parts:

The self-interactions and kinetic terms of the vector bosons are contained in

Lgauge = −1

2
trGµνG

µν − 1

2
trWµνW

µν − 1

4
BµνB

µν , (1.2)

where the field strength tensors follow the definition, e.g.

Ga
µν = ∂µG

a
ν − ∂µGa

ν + gsf
abcGb

µG
c
ν , (1.3)

1The same ε-tensor is also implied for products of two doublets of SU(2)L.
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with Gµν = TaG
a
µν , the gluon fields Ga

µ and the SU(3) structure constants fabc. Anal-
ogous relations also apply to the vector boson fields W i

µ and Bµ.
The potential for the electroweak doublet scalar H is given by

VH = µ2H†H +
λ

4
(H†H)2 with µ2 < 0, λ > 0 . (1.4)

Since, for µ2 < 0, the minimum of the potential lies at H 6= 0, the electroweak doublet
develops a vacuum expectation value (VEV) of the form

〈H〉 =
1√
2

(
v = 2

√
−µ2
λ

0

)
, (1.5)

which breaks the electroweak SU(2)L×U(1)Y part of GSM down to the electromagnetic
gauge symmetry U(1)em. Thereby, three of the four electroweak gauge bosons, the W
bosons W± and the Z boson Z0, and the radial component2 of the electroweak doublet
H around the VEV, the Higgs boson h0, develop masses of the form

MW =
1

2
g v , MZ =

1

2
g v (cos θW )−1 , (1.6a)

m2
h =

1

2
λ v2 , Mγ = 0 , (1.6b)

whereas the photon γ stays massless. Here, the angle θW is the weak mixing angle
given by

sin θW =
g′2√
g′2 + g2

. (1.7)

This mechanism for the generation of gauge boson masses, which constitutes spon-
taneous electroweak symmetry breaking (EWSB), is called the Englert-Brout-Higgs-
Guralnik-Hagen-Kibble mechanism [13]. Experimental measurements of the Fermi
constant GF = g2/(8M2

W ) determine the VEV to v ' 246 GeV.
In addition to its gauge and self-interactions, the electroweak doublet scalar also

has Yukawa interactions with the fermion fields, as encoded in the Lagrangian density
part given by

LYukawa = −(Yd)ij QiH dcj − (Ye)ij LiH ecj + (Yu)ij Qi H̃ ucj + h.c. , (1.8)

where H̃ = εH∗ denotes the charge conjugate of the electroweak doublet H.

2The other would-be Goldstone boson components of H are ‘eaten up’ by the gauge bosons.
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1.3 Fermion Masses and Mixing

After EWSB, the terms in eq. (1.8) become – in addition to Yukawa interactions with
the physical Higgs boson field h0 – mass terms for the fermion fields with mass matrices
given by

Mu =
v√
2
Yu , Md =

v√
2
Yd , Me =

v√
2
Ye . (1.9)

Since these mass matrices are not generically diagonal in generation space, one has to
rotate the fermion fields to the mass eigenbasis using unitary matrices as in

ψf → Vf ψf , ψfc → Vfc ψfc , (1.10)

where the matrices Vf and Vfc satisfy, e.g.

V T
u Yu Vuc = diagonal and positive. (1.11)

However, as Vu and Vd are not required to be the same, they will in general not cancel
out in the weak isospin changing vertex of W± vector bosons to fermions. This means
that the mentioned vertices will transform under eq. (1.10) as

g u†i diW
+ + h.c. → g u†i (V †uVd)ij djW

+ + h.c. . (1.12)

The unitary matrix VCKM = V †uVd is called the Cabibbo-Kobayashi-Masukawa (CKM)
mixing matrix [14] and parametrises the mixing between the three generations in each
interaction vertex of fermions with a W± boson.

Since VCKM is a unitary 3 × 3 matrix, it generally has nine degrees of freedom –
three mixing angles and six phases. However, using the fact that Vuc and Vdc are not
physical, one can remove five phases and is left with only four parameters, leading to
the standard parametrisation [15] of VCKM given by

VCKM =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 , (1.13)

with δ = δCKM, cij = cos θCKM
ij and sij = sin θCKM

ij . The angle θCKM
12 is also called the

Cabibbo angle θC .
Note that, as far as the SM goes, there is no mixing matrix analogous to VCKM for

leptons as there is only one Yukawa matrix involving lepton fields, namely Ye, and thus
only one left-handed lepton mixing matrix Ve is used. This changes if we introduce
right-handed neutrino fields νci along with their Yukawa interaction terms LiH̃ν

c
j into

the SM, as we will see in the next chapter.
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1.4 Open Questions

Despite its success, the SM has a couple of shortcomings that are frequently cited
as motivation to study physics beyond it. In this thesis, the following ones will be
relevant:

Neutrino Masses and Mixing In the present formulation of the SM, neutrinos are
massless also after EWSB. However, experimental data tells us that clearly at least
two of the neutrinos have very small but nevertheless non-zero masses [16]. Thus a
viable extension of the SM must be able to incorporate a way to have non-zero neutrino
masses and preferably explain why they are so small.

Hierarchy Problem As is general for quantum field theories including scalar par-
ticles, the scalar boson of the SM receives quantum corrections to its mass that make
it as heavy as the largest scale of physics coupling to it (assuming O(1) couplings).
If this scale of new physics is too high, e.g. the Planck scale ∼ 1019 GeV, the Higgs
boson mass can only be lowered back to its measured value at the electroweak scale by
tuning all contributions to some degree – 1 part in 1034 in the case of the Planck scale.
This is usually regarded as unnatural and is frequently made unnecessary or severely
improved in models going beyond the SM.

Flavour Puzzle The SM is incredibly simple as long as all fermion masses are taken
to vanish, since it then only has the three gauge couplings, the electroweak VEV and
the Higgs boson mass as free parameters3. However, as soon as one introduces Yukawa
interactions to generate the fermion masses, we must introduce several new parameters,
namely the nine fermion masses, the three plus one CKM mixing parameters and
possibly even more leptonic mixing parameters and neutrino masses. It would therefore
be very desirable to not only find some connection between the gauge couplings, but
also to find some general structure in the SM flavour quantities.

3There is one additional parameter, the QCD angle θ from a term ∝ θGG̃ in L, with the gluon
field strength tensor G and its dual G̃. Its experimentally required smallness is, however, a whole
different puzzle in itself, which we will not address in this thesis.
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CHAPTER 2

Neutrino Masses and Mixing

Neutrinos are special within the SM as they are the only fundamental fermions that
are completely uncharged under symmetries respected by the vacuum. This restricts
their interactions with other particles through gauge interactions, as they can only
interact through the heavy vector bosons W± and Z0 and the Higgs boson h0, which
makes them hard to detect but otherwise not very interesting.

Fortunately, it was realised in the 1960s by Pontecorvo [17] and by Maki, Nakagawa
and Saki [18], that if lepton family numbers are not conserved – analogous to, for ex-
ample, strangeness violation in the quark sector – and neutrinos have non-zero masses
contrary to the SM, this can lead to observable neutrino flavour oscillations. Analo-
gous to quark mixing, this can be parametrised with the unitary Maki-Nakagawa-Saki
(MNS) matrix,

VMNS =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 , (2.1)

with δ = δMNS, cij = cos θMNS
ij and sij = sin θMNS

ij . Depending on the parameters,
electron neutrinos will then oscillate into muon neutrinos during their flight from the
sun to the earth, for example. Indeed, it was found around the same time experimen-
tally [19] that the measured solar (electron) neutrino fluxes fell short of the predictions
by the standard solar model.

Nowadays, there are several experiments studying not only solar neutrinos [20],
but also atmospheric ones [21] and even reactor neutrinos [22], and provide valuable
information on the most straight-forward branch of flavour physics beyond the SM.
Due to the fact that even the most recent global fits, e.g. [16], do not make definite
statements on all quantities, it is possible to make easily falsifiable predictions for their
values within models of flavour. Of particular importance in this respect are the only
rather recently measured reactor angle θMNS

13 , the still to be determined sign of the
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neutrino mass square difference ∆m2
31 = m2

3 − m2
1 and the only vaguely determined

Dirac CP phase δMNS.
In the following, we will give a brief overview how to incorporate neutrino masses

into the SM.

2.1 Dirac Masses

The way to generate neutrino masses that most resembles the pre-existing structure of
the SM is to simply add the missing right-handed neutrino fields νc to the spectrum.
After EWSB, neutrinos obtain masses from the new Yukawa interactions added to the
SM terms of eq. (1.8),

LYukawa ⊃ (Yν)ij Li H̃ νcj + h.c. , (2.2)

which make it clear that the fields νci must be full gauge singlets, if this term re-
spects the SM gauge symmetry group GSM. Using the same convention for unitary
transformations to the mass eigenbases as before, the MNS matrix is then given by
VMNS = V †e Vν .

However, one aesthetical drawback of this mechanism becomes apparent when one
determines the Yukawa couplings necessary to reproduce the neutrino masses consistent
with current bounds, namely mν < 2 eV from β decay experiments [23]. Assuming no
large cancellations in the β decay mass, this implies a neutrino Yukawa coupling of
at most about 10−12. Compared to an electron Yukawa coupling of about 10−6, this
seems unusually small.

2.2 Majorana Masses

An alternative way to generate neutrino masses works via the non-renormalisable Wein-
berg operator [24],

L ⊃ 1

4
κij(LiH̃)(LjH̃) + h.c.

EWSB−−−→ −1

2
(mν)ij νiνj + h.c. , (2.3)

where κ and mν = −κv2/4 are complex symmetric 3× 3 matrices and now also total
lepton number is broken explicitly. Due to the structure of the mν term, neutrinos are
then Majorana particles, i.e. they do not have separate right-handed components or
anti-particles, but those are given directly by the conjugate of the left-handed ones.
One consequence of this is that two phases in the leptonic mixing cannot be absorbed
and the unitary mixing matrix is thus given by the Pontecorvo-Maki-Nakagawa-Saki
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(PMNS) matrix VPMNS = V †e Vν , parametrised as

VPMNS =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

Pφ , (2.4)

with δ = δPMNS and

Pφ =

e−
i
2
ϕPMNS
1

e−
i
2
ϕPMNS
2

1

 , (2.5)

as well as the previous definition of sij and cij. Due to their origin, the phases ϕ1 and
ϕ2 are called Majorana phases. Note, however, that they are not observable in neutrino
oscillation experiments. The unitary matrix Vν is determined from the condition that
V T
ν κVν is diagonal and positive. Assuming κ ∼ M−1, this structure can explain the

smallness of neutrino masses with a hierarchy between the electroweak scale and the
supposedly high scale M .

However, since the Weinberg operator is not renormalisable, one has to worry about
physics beyond the scale M . Fortunately, there is an elegant and simple solution [25]
called the seesaw mechanism (strictly speaking type I): if we introduce right-handed
neutrino fields as total gauge singlet fields as before and drop conservation of total
lepton number, they can have Majorana mass terms themselves,

L ⊃ −1

2
(Mνc)ijν

c
i ν

c
j + h.c. , (2.6)

even before EWSB. Thus these masses are not directly constrained in their magnitude
and we can assume that they are so large that the new fields can be integrated out
for calculations around the electroweak scale. This generates a contribution to the
Weinberg operator of the form

κ = 2YνM
−1
νc Y

T
ν , (2.7)

where Yν is the neutrino Yukawa couping matrix as in eq. (2.2). Alternatively, the
type II seesaw mechanism uses a scalar SU(2)L triplet field to generate the Weinberg
operator [26], while type III uses a SU(2)L triplet fermion field [27]. A general feature is
that this directly connects the mass scale M associated with the Weinberg operator to
the mass of the new heavy fields. So, for example, a Yukawa coupling of O(1) together
with a light neutrino mass of mν ∼ 1 eV leads to a right-handed neutrino mass of
about 1013 GeV, which – as we will see later – is not too far from other supposed high
scales in so called grand unified theories, see chap. 4.
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CHAPTER 3

Supersymmetry

3.1 The Hierarchy Problem

As mentioned in chap. 1, in the SM the Higgs boson mass parameter has to be tuned
in order to obtain a hierarchy between the electroweak scale O(100 GeV) and much
higher new-physics scales. To be explicit, with a Yukawa interaction term of the form
L ⊃ −λf Hf̄f for the scalar boson to a Dirac fermion f , the following correction arises

f

f̄

H H†

= −|λf |
2

8π2
Λ2

UV +O
(
m2
f log

(
ΛUV

mf

))
, (3.1)

where a simple regularisation1 with a momentum cut-off ΛUV was performed. If this
cut-off is of the order of the Planck scale MPl ∼ 1019 GeV, this makes tuning of the
order of 1 part in 1034 necessary to cancel the quantum correction and arrive back
at an electroweak scale of O(100 GeV). One possible solution to make this tuning
unnecessary is motivated by the observation that introducing a complex scalar S with
the interaction L ⊃ +λS |H|2 |S|2 leads to an additional correction of the form

H H†

S

= +
λS

16π2
Λ2

UV +O
(
m2
S log

(
ΛUV

mS

))
, (3.2)

1In other regularisation schemes, such as MS, the cut-off dependence is replaced with a dependence
on the mass of a heavy particle in the loop, e.g. when it is integrated out. The problematic instability
of the hierarchy remains.
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As we can see, if we introduce two scalars per Dirac fermion – or one per two-component
Weyl spinor – together with the relation λS = |λf |2, both quadratic cut-off dependen-
cies cancel each other, leaving only a manageable logarithmic dependence. Thus the
hierarchy between scales is stable.

Fortunately, this relation between couplings does not have to be tuned or assumed
ad-hoc, but can result from the so-called supersymmetry (SUSY) that (roughly speak-
ing) turns bosons into fermions and vice versa,

Q |fermion〉 = |boson〉 , Q |boson〉 = |fermion〉 . (3.3)

In the following, we will present a very quick overview over the ramifications of su-
persymmetry and how to quickly write down a manifestly supersymmetric theory. For
more details, see e.g. [28]. To be explicit, this thesis uses N = 1 global supersymmetry,
meaning there is only one such operator Q and SUSY transformations are taken to be
independent of space-time.

3.2 Supersymmetric Theories

As sketched in eq. (3.3), supersymmetry connects fermions and bosons. More ex-
plicitly, every Weyl fermion ψ, every complex scalar φ and every vector boson Vµ
is partnered with a field of complementary statistics each. We will call partners of
fermions ‘sfermions’, e.g. ‘stop’ or ‘squark’. Partners of bosons are suffixed with an
‘-ino’, e.g. ‘Higgsino’ or ‘gaugino’. In both cases, the new fields are labelled with a
tilde on top, while the full supermultiplet containing both will be denoted with a hat
on top. In cases, where the distinction between original field and supermultiplet is not
necessary or obvious, the hat will be dropped.

Finally, this means that fields in the original theory become components in so-called
supermultiplets that contain all fields that are connected by SUSY

ψ → ψ̂ = (ψ̃, ψ, F ) , (3.4a)

φ→ φ̂ = (φ, φ̃, F ) , (3.4b)

Vµ → V̂ = (λ, Vµ, D, . . . ) , (3.4c)

where λ, φ̃ and ψ are two-component Weyl spinors, φ, ψ̃ and F are complex scalars
and D is a real scalar. The introduction of the auxiliary fields F and D is necessary
to balance the number of fermionic and bosonic components and make supersymmetry
also survive against quantum corrections. The dots stand for additional degrees of
freedom that are related to the supersymmetric generalisation of gauge symmetries.
They can all be set to zero in the Wess-Zumino gauge [29], which we will assume
to be the case in the rest of this thesis. Both eqs. (3.4a) and (3.4b) give a ‘chiral’
supermultiplet, while eq. (3.4c) gives a ‘real’ supermultiplet.
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Note that this embedding of component fields into a supermultiplet can also be
done more rigorously using superspace and superfields, see e.g. [28]. However, for
the sake of simplicity, we will only review the resulting rules for the building of a
supersymmetric theory. We remind the reader again that all considered fermion fields
are assumed to be left-chiral two-component Weyl spinors. Additionally, we will use
the term ‘superfield’ synonymously with ‘supermultiplet’.

Using chiral and real supermultiplets, a supersymmetric theory is most easily built
using the three pre-potentials:

Superpotential W = W (φ): A holomorphic function of all chiral supermultiplets.

Kähler potential K = K(φ, φ∗): A real function of all chiral supermultiplets.

Gauge kinetic function fab = fab(φ): Another holomorphic function of the chiral
supermultiplets.

All three can be formulated as functions of superfields or alternatively of the scalar
components of each supermultiplet. Both cases follow the same rules for commutation
of fields. The superpotential and Kähler potential must be singlets under all imposed
symmetries, while the gauge kinetic function must transform as the symmetric product
of two adjoints of the imposed gauge symmetry, symbolised by the two indices a and
b. The superpotential has mass dimension 3, the Kähler potential has mass dimension
2 and the gauge kinetic function is dimensionless.

Based on these pre-potentials, the part of the Lagrangian density resulting from K
is given by

LK =
∂2K

∂φ∗i∂φj

[
(∂µφi)

∗(∂µφj) + iψ∗i σ̄
µ∂µψj + F ∗i Fj

]
(3.5a)

− ∂3K

∂φi∂φj∂φ∗l

[
ψiψjF

∗
l − ψ∗l σ̄µψj∂µφi

]
(3.5b)

+
1

4

∂4K

∂φi∂φj∂φ∗l ∂φ
∗
m

(ψiψj)(ψ
∗
l ψ
∗
m) (3.5c)

+ h.c. , (3.5d)

where φi, ψi, Fi are the scalar, fermionic and auxiliary component of the i’th supermul-
tiplet respectively and K is treated as a function of only the scalar component fields.
As can be seen, fully holomorphic plus anti-holomorphic parts of K ⊃ f(φ) + h.c. do
not enter the Lagrangian density. In superfield formalism, it can easily be shown that
they only result into total derivative terms that do not change the action.

Similar to K, the superpotential W generates terms in the Lagrangian density of
the form

LW = −1

2

∂2W

∂φi∂φj
ψiψj +

∂W

∂φi
Fi + h.c. , (3.6)
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while the gauge kinetic function generates the terms

Lf =− Refab
16π

[
F a
µνF

b
µν − i4λa†σ̄µDµλ

b + 2DaDb
]
− Imfab

16π
F a
µνF̃

b
µν

− 1

16π

∂fab
∂φi

Fiλ
aλb + h.c. + . . . ,

(3.7)

where F a
µν is the field strength tensor of the a’th gauge vector boson field, F̃ a

µν is its
dual and λa is the corresponding gaugino. In both cases, the pre-potentials are again
interpreted as function of the scalar supermultiplet component fields. Neglecting non-
renormalisable operators for the moment, we can summarise this to the following: the
Kähler potential is responsible for kinetic terms of chiral supermultiplets (and gauge
interactions, though not shown here), the superpotential generates fermion masses and
Yukawa couplings, and the gauge kinetic function yields the kinetic terms for gauge
fields and influences the gauge couplings2.

In the following, it is convenient to define the Kähler metric,

Ki∗j =
∂2K

∂φ∗i∂φj
, (3.8)

and its inverse Kji∗ , i.e. Kij∗Kj∗l = δil.
As the Lagrangian density does not depend on derivatives of the auxiliary fields Fi,

we can integrate them out by substituting them using their equations of motion,

Fi = Kij∗
(
−∂W

∗

∂φ∗j
+

∂3K

∂φl∂φm∂φ∗j
ψlψm +

1

16π

∂f ∗ab
∂φ∗j

λa† λb†
)
. (3.9)

With this substitution, we obtain the F -term scalar potential,

VF =
∂W

∂φi
Kij∗ ∂W

∗

∂φ∗j
, (3.10)

and field-dependent fermion ‘masses’,

Mij =
∂2W

∂φi∂φj
+ 2

∂3K

∂φl∂φm∂φ
†
j

Kj∗m ∂W

∂φm
. (3.11)

Since the kinetic terms contained in eq. (3.5a) are not canonical, we have to nor-
malise them with a transformation matrix P ,

φi → Pij φj , (3.12a)

ψi → Pij ψj , (3.12b)

2At the renormalisable level, one sets fab =

(
4π

g2
a

+ i
θa
2π

)
δab in the gauge boson field normalisation

where ga is set to one in the covariant derivative.
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with
P †i∗j∗Kj∗lPlk = δi∗k . (3.13)

This procedure is called canonical normalisation and is general to every situation where
kinetic terms are not in their canonical form.

If we only consider renormalisable interactions the situation simplifies in the fol-
lowing way:

• As the Kähler potential has mass dimension two, the Kähler metric is just a field-
independent numerical matrix that can be transformed away using eq. (3.12).
This leads to the trivial Kähler potential,

K =
∑
i

φ∗iφi , (3.14)

and automatically canonical kinetic terms. Often, this Kähler potential is im-
plicitly assumed and not stated.

• The superpotential takes the form

W = Liφi +
1

2
mijφiφj +

1

6
yijkφiφjφk , (3.15)

where Li 6= 0 is only allowed for total singlet fields φi.

In this case eq. (3.10) and (3.11) simplify to

VF =
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 , (3.16)

and
Mij = mij + yijkφk . (3.17)

Thus, the parameters of the superpotential directly correspond to fermion masses and
Yukawa couplings.

For completeness, note that also the gauge interactions are extended in a super-
symmetric theory, with additional Yukawa-type couplings to the gauginos λa,

L ⊃ −
√

2ga

(
φ∗i (T

a)ijψj

)
λa + h.c. , (3.18)

and the additional D-term scalar potential,

VD =
1

2

∑
a

(
ga
∑
i

φ†i (T
a)ijφj

)2

, (3.19)

where T a is the generator corresponding to the a’th gauge boson and ga is its gauge
coupling. However, we will make only little use of these interactions in this thesis. For
more details, see e.g. [28].
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3.2.1 The Minimal Supersymmetric Standard Model

It is now straight forward to write down the minimal supersymmetric version of the
SM, the MSSM [30]. The only direct complication is that one cannot use the charge
conjugate H̃ of the SM Higgs doublet to generate the up-type quark masses, since
Yukawa couplings are generated by the holomorphic superpotential. Instead, we replace
the original electroweak doublet field H with a pair of charge conjugate doublet fields
Hu and Hd, leading to the field content stated in tab. 3.1. Note that this also means
that the spectrum of scalar particles coming from Hd, Hu contains two neutral CP-even
ones (the lighter one is usually SM-like), one neutral CP-odd pseudoscalar boson A0

and a pair of charged scalar bosons H±.
Let us repeat that, in the following, superpartners of SM fermions are denoted by a

tilde above their symbol and an ‘s-’ prefixed to their name. The fermionic partners of
Hd and Hu are suffixed with ‘-ino’ and also receive a tilde on their symbol. Supermulti-
plets generally use the same symbol as the corresponding SM field, except when stated
explicitly. The superpotential is to be understood as function of the supermultiplets.

Both Hu and Hd acquire non-zero VEVs and we define

tan β =
vu
vd

with v2 ' v2
u + v2

d = (246 GeV)2 , (3.20)

and 〈H0
f 〉 = vf/

√
2. Thus, the superpotential of the MSSM is given by

WMSSM = (Yd)ijQiHdd
c
j + (Ye)ijLiHde

c
j − (Yu)ijQiHuu

c
j + µHuHd , (3.21)

with the tree-level relation to the SM Yukawa matrices of eq. (1.8) given by

Y SM
u = Y MSSM

u sin β , Y SM
d = Y MSSM

d cos β , Y SM
e = Y MSSM

e cos β . (3.22)

Requiring both the bottom and the top Yukawa coupling to be perturbative sufficiently
above the electroweak scale, one roughly finds the constraint [28]

1 . tan β . 60 . (3.23)

However, as will be important later, the matching conditions particularly for Yd and
Ye can receive one-loop corrections that are enhanced by a factor tan β [31, 32, 33, 34]
– interpretable as a coupling to the other larger Higgs VEV – and can thus be of
significant size.

One further point is that WMSSM is not the most general superpotential consistent
with the SM symmetries. The following terms are also allowed

∆W = µiHuLi +
1

2
λijkLiLje

c
k + λ′ijkQid

c
iLk +

1

2
λ′′ijku

c
iu
c
jd
c
k . (3.24)

However, as these terms mediate (so far unobserved) proton decay very efficiently [35],
leading to bounds such as |λi22λ

′′
112| . O(10−21), these terms are commonly assumed
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SU(3)C SU(2)L U(1)Y PM
Q 3 2 1

6
−1

uc 3̄ 1 −2
3

−1

dc 3̄ 1 1
3

−1

L 1 2 −1
2

−1

ec 1 1 1 −1

Hd 1 2 −1
2

1

Hu 1 2 1
2

1

Table 3.1: Irreducible representations of the chiral supermultiplets of the MSSM.
Generation indices are implicit.

to be absent. This is achieved by enforcing another global Z2 symmetry called R-
parity [36] under which the SM fields are even while all the superpartners are odd or
equivalently

PR = (−1)3(B−L)+2s , (3.25)

with the baryon number B, the lepton number L and the particle spin s. As long
as angular moment is conserved, PR conservation is equivalent to the conservation of
matter parity [37],

PM = (−1)3(B−L) , (3.26)

which is also included in tab. 3.1.

Seesaw type I in the MSSM When incorporating the seesaw type I mechanism
into the MSSM, one proceeds analogously to the SM. Additional particles called right-
handed neutrinos νc, total singlets under gauge symmetries and odd under PM , are
added together with their superpotential terms,

Wν = −(Yν)ij LiHuν
c
j +

1

2
(Mνc)ij ν

c
i ν

c
j . (3.27)

Below the scale of the right-handed neutrino masses, they are integrated out to obtain
the supersymmetric equivalent of the Weinberg operator of eq. (2.3)

W ⊃ 1

4
κij (LiHu)(LjHu) , (3.28)

exactly mirroring the form of the usual Weinberg operator.
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3.3 Breaking of Supersymmetry and SU(2)L×U(1)Y

Supersymmetry respected by the vacuum would imply that the scalar mass matrices are
given by M †M with M from eq. (3.11) or (3.17), leading to the same mass eigenvalues
as for the fermions. However, we have not yet observed any scalar elementary particles
beyond the Higgs boson [15], not even to speak of a scalar electron at 511 keV. Thus
supersymmetry has to be broken in the vacuum ground state.

In this context, the term ‘soft SUSY breaking’ appears. This means that SUSY
is broken only by mass differences between scalars and fermions, while the relation
between interaction couplings, necessary to ensure the cancellation in sec. 3.1, is still
left unperturbed [38].

Attempts to directly break supersymmetry leads to the condition that at least one
of the auxiliary fields F or D must acquire a non-zero VEV. Achieving this with the
spectrum of the MSSM and WMSSM given by eq. (3.21) does unfortunately not work
satisfactorily, for details see e.g. [28]. Thus, one usually assumes that SUSY is broken
in an unknown ‘hidden sector’ and is simply transmitted to the visible sector by some
mechanism of choice. We then parametrise the general soft SUSY breaking of a general
supersymmetric gauge theory as

−Lsoft =
1

2
Maλ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi + (m̃2)ijφ

†
iφj + h.c. , (3.29)

where λa are gaugino fields, φi are scalar components of superfields and the linear
couplings ti are only non-zero for singlets φi under all imposed symmetries. In the
MSSM, the soft breaking terms thus take the form

−Lsoft =
1

2
(M1B̃B̃ +M2 W̃W̃ +M3 g̃g̃ + h.c.) (3.30a)

+ (m2
Q̃

)ij Q̃i Q̃
∗
j + (m2

L̃
)ij L̃i L̃

∗
j (3.30b)

+ (m2
ũc)ij ũ

c∗
i ũ

c
j + (m2

d̃c
)ij d̃

c∗
i d̃

c
j + (m2

ẽc)ij ẽ
c∗
i ẽ

c
j (3.30c)

+ (Ad)ij Q̃iHd d̃
c
j + (Ae)ij L̃iHd ẽ

c
j − (Au)ij Q̃iHu ũ

c
j + h.c. (3.30d)

+m2
Hu|Hu|2 +m2

Hd
|Hd|2 + (BµHuHd + h.c.) , (3.30e)

The average scale of superpartner masses resulting from this is commonly denoted as
the SUSY scale MSUSY. All of these terms potentially lead to additional flavour (FV)
and CP (CPV) violation effects. To parametrise this properly, the relevant matrices
are first rotated to the so-called Super CKM (SCKM) basis, see e.g. [39], where the
Yukawa matrices for the fermions are diagonal and positive. Additional FV or CPV
effects – like contributions to BR(b → sγ), BR(Bs → µ+µ−) or BR(Bu → τντ ) – are
then generated by surviving phases and non-diagonal matrix elements. In total, the
soft breaking sector gives rise to 105 new and independent parameters [40] this way.



3.3 Breaking of Supersymmetry and SU(2)L × U(1)Y 23

Another important aspect of the MSSM is the fact that without the terms in
eq. (3.30), the Higgs mechanism for electroweak symmetry breaking does not work as
the Higgs self-interaction λ comes exclusively from gauge couplings and the SM mass
square parameter µ2 cannot be negative. Fortunately, including soft breaking terms
even makes EWSB more natural in that it happens ‘radiatively’. This means that
the renormalisation group running of the soft term m2

Hu
makes it turn negative at the

electroweak scale if done from a sufficiently high scale. Thus m2
Hu

plays a role similar
to the parameter µ2 in the SM and has usually a mass scale similar to the soft breaking
terms. In summary, this leads to electroweak symmetry breaking of the (tree-level)
form [28, 39]

sin 2β =
2Bµ

m2
Hu

+m2
Hd

+ 2|µ|2 , (3.31a)

M2
Z

2
= −|µ|2 +

m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
, (3.31b)

meaning that one can trade the parameters Bµ, |µ| for tan β, MZ . Note that eq. (3.31b)
only determines the modulus of the superpotential parameter µ, leaving its phase as a
free parameter. However, usually µ is assumed to be real and this reduces to only an
ambiguity in its sign.

3.3.1 Supersymmetry Breaking Schemes

In the following, we will give a brief overview over several SUSY breaking mediation
schemes and structures that are used to bring the staggering amount of 105 new pa-
rameters under control.

Gravity-mediated SUSY breaking In this scenario, the breaking of SUSY is me-
diated by Planck-scale suppressed operators and supersymmetric gravity effects [41] to
the visible sector. Assuming gauge coupling unification, as detailed in the next chapter,
and SUSY breaking by the appearance of a non-zero F -term in Planck-scale suppressed
operators with the visible sector, this leads to the minimal supergravity (mSUGRA)
scenario or to the constrained MSSM (cMSSM) [42]. Then the soft breaking terms at
a renormalisation scale µ ≈MPl are given by

M1 = M2 = M3 = M1/2 , (3.32a)

Au = A0Yu , Ad = A0Yd , Ae = A0Ye , (3.32b)

m2
Q̃

= m2
L̃

= m2
ũc = m2

d̃c
= m2

ẽc = m2
0 1 , (3.32c)

Bµ = B0 µ , (3.32d)

where µ is the mass parameter in WMSSM.
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In the context of supergravity, m0 = m3/2 is also the gravitino mass and we have
the additional relation

B0 = A0 −m0 . (3.33)

Thus, in mSUGRA, tan β is actually fixed in terms of the soft breaking parameters due
to eq. (3.31), while it is considered a free parameter in the cMSSM. Note that it is a
common approximation to implement these boundary conditions at the renormalisation
scale µ = MGUT and not at the Planck scale MPl.

Gauge-mediated SUSY breaking Here, the breaking of SUSY is transmitted to
the visible sector via the ordinary gauge interactions coupling to a new set of parti-
cles [43]. These generate the soft breaking terms of the MSSM via one- and two-loop
level Feynman diagrams. We only state this mediation mechanism for completeness
and will not make use of it in this thesis.

Anomaly-mediated SUSY breaking In this scheme, SUSY is broken on a sepa-
rate brane (in a theory with extra dimensions) and then mediated to the visible sector
via the superconformal anomaly [44]. The soft breaking terms are then parametrised
at the renormalisation scale µ ≈MPl (or µ = MGUT)

Ma =
βga
ga

m3/2 , (3.34a)

Af = −βyf m3/2 , (3.34b)

m2
f̃

= −1

4

(
βga

∂γ

∂ga
+ βy

∂γ

∂y

)
m2

3/2 +m2
0 , (3.34c)

where y collectively denotes all Yukawa couplings, βx is the renormalisation group
equation for the quantity x and γ is the anomalous dimension matrix for the chiral
superfields as a function of the gauge couplings and superpotential parameters. The
introduction of m0 analogous to mSUGRA is necessary, because slepton masses are
tachyonic otherwise. In the MSSM, this leads to gaugino mass ratios of the form
M1 : M2 : M3 = 33/5 : 1 : −3 at the scale of gauge couplings unification.

Phenomenological MSSM Another complementary approach for soft SUSY break-
ing is the so-called phenomenological MSSM (pMSSM) [45]. It is defined directly at the
low energy scale and parametrises the superpartner spectrum almost directly via their
masses. This means that there is no renormalisation group (RG) evolution involved.
In addition to tan β, it has the following parameters:

• m2
Hu

, m2
Hd

: the Higgs soft mass parameters.

• M1, M2, M3: the bino, wino and gluino mass parameters.
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• mQ̃1
, mũc1

, md̃c1
, mL̃1

, mẽc1
: the first and second generation sfermion soft mass

parameters.

• mQ̃3
, mũc3

, md̃c3
, mL̃3

, mẽc3
: the third generation sfermion soft mass parameters.

• Au, Ad, Ae: the first and second generation trilinear couplings.

• At, Ab, Aτ : the third generation trilinear couplings.

Here the trilinear couplings follow the alternative convention where the trilinear ma-
trices are given by (Au)ij = diag(Auyu, Auyc, Atyt) in the basis where Yu is diagonal,
i.e. for the pMSSM trilinear parameters the Yukawa coupling is assumed to be factored
out. Often the parameters m2

Hu
, m2

Hd
are also traded for the parameters µ and the

mass of the pseudoscalar Higgs boson MA0 , which have a more clear interpretation.



26 3. Supersymmetry



CHAPTER 4

Grand Unification

4.1 Motivation

Similar to the idea of electroweak unification, one can also try to find structure in all
of the three gauge interactions of the SM. Surely, the most appealing possibility in
this regard would be that at a high scale the three gauge groups unify into a single
one or at least into fewer group factors. In the case of one simple group, one speaks of
a grand unified theory (GUT). A theory with more than one group factor is called a
unified theory. A GUT would lead to equality of the three gauge couplings at a high
scale denoted as MGUT. Below this scale, similar to EWSB, the larger gauge symmetry
group is then broken down to the SM gauge group giving rise to the low scale observed
gauge couplings through quantum effects, i.e. renormalisation group running.

However, before one can analyse the equality of gauge couplings, the right normal-
isation for the U(1) charges must be found. Looking at the generators for the SM
symmetry groups Ta for SU(3), τi for SU(2)L and Y for U(1)Y , one finds

tr(TaTa) = 2 , (4.1a)

tr(τiτi) = 2 , (4.1b)

tr(Y 2) =
10

3
, (4.1c)

where there is no summation over a or i and the trace runs over one full genera-
tion of SM fermions. Due to the relation trR(TATB) = I(R)δAB for the irreducible
representation R of a simple Lie group with the Dynkin index I(R), the three right-
hand sides must all be equal if the group factors are to be unified to one simple Lie
group and each generation can be evenly divided into a number of irreducible GUT
representations without remainder. This leads to the so-called GUT normalisation of
hypercharge,

Ỹ =
√

3
5
Y , g1 =

√
5
3
g′ . (4.2)
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Figure 4.1: Running of all three gauge couplings of the SM (left) and MSSM (right)
at the two loop level. Line thickness corresponds to the 1σ range. The structure
constants α1 = g2

1/4π, α2 and α3 are red, green and blue respectively. The threshold
between MSSM and SM was set to 1 TeV for the right plot.

Analogously, we define g2 = g and g3 = gs. Grand unification would thus imply

g1 = g2 = g3 , (4.3)

at a high renormalisation scale MGUT.
Within this normalisation and identification, we can now analyse whether eq. (4.3)

is satisfied at some scale when taking into account renormalisation group running. As
shown in fig. 4.1, in the SM the three gauge couplings come close to each other at
a scale of about µ = 1014 GeV, but do not meet within their uncertainty. On the
other hand, in the MSSM with a SUSY scale of about 1 TeV, the gauge couplings
meet to a good accuracy at about µ ≈ 1016 GeV, however not exactly within their
uncertainty requiring some small finite threshold corrections. We will come back to the
subject of gauge coupling unification later in chap. 8, where a more in-depth analysis
is performed.

Thus, GUTs are usually considered most natural and motivated as a high-scale
extension of the MSSM. In the following, we will give a quick overview over how such
extensions work. All considerations are to be taken in the context of the MSSM.

4.2 Embedding of the Standard Model

While the relation in eq. (4.3) is already a very good start, it does not determine how
the various SM gauge group representations are embedded into the larger unified gauge
group. For analysing representations, we will use the notation (r1, r2)q for r1 under
SU(3)C , r2 under SU(2)L and q under U(1) with an additional global normalisation
change compared to U(1)Y to obtain integer charges for all representations. Then, the
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chiral fields of the MSSM transform as

Q ∼ (3,2)−1 , L ∼ (1,2)3 ,

uc ∼ (3̄,1)4 , dc ∼ (3̄,1)−2 , ec ∼ (1,1)−6 ,

Hd ∼ (1,2)3 , Hu ∼ (1,2)−3 ,

(4.4)

which means that the U(1) differs from U(1)Y by a factor of −6. Likewise, the SM
gauge bosons transform as

G ∼ (8,1)0 , W ∼ (1,3)0 , B ∼ (1,1)0 . (4.5)

4.2.1 Embedding into SU(5)

The smallest possible group for grand unification of the SM gauge group is the simple
Lie group SU(5) [46]. It embeds the three gauge boson representations into the adjoint
representation,

24 = (8,1)0 + (1,3)0 + (1,1)0 + (3,2)−5 + (3̄,2)5 , (4.6)

where the last two representations form an additional pair of vector-like leptoquark
vector boson fields that acquire a mass MV ∼ MGUT from spontaneous symmetry
breaking to the SM gauge group. In total, a 24-plet can be most easily represented
by a hermitian traceless 5× 5 matrix. The breaking of SU(5) to the SM gauge group
can be achieved by a VEV of an additional Higgs field in this 24 representation in the
direction of hypercharge.

Each generation of matter superfields of the MSSM is embedded into the two rep-
resentations 5̄ and 10 as in

5̄ = (1,2)3 + (3̄,1)−2 = L+ dc ,

10 = (1,1)−6 + (3̄,1)4 + (3,2)−1 = ec + uc +Q ,
(4.7)

which can be modelled as a 5-dimensional vector Fα and an antisymmetric 5×5 tensor
Tαβ respectively.

The doublet fields Hu, Hd can either be embedded into a pair of 5, 5̄ or alter-
natively also into 45 or 45 respectively. For details on the branching of 45 into SM
representations, see e.g. [47].

As shown above, beyond eq. (4.3), one major feature of GUTs is the embedding of
multiple SM matter field representations into one GUT representation. This naturally
leads to GUT-scale relations between previously unrelated Yukawa couplings. At the
renormalisable level, the two choices for the SU(5) representation of Hd lead to two
distinct and predictive ratios between charged lepton and down-type quark Yukawa
couplings,

W ⊃ λ FiTjH5̄ → Nλ (Lie
c
j +Qjd

c
i)Hd , (4.8a)

W ⊃ λ FiTjH45 → Nλ (−3Lie
c
j +Qjd

c
i)Hd , (4.8b)
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where N is some normalisation factor and i, j are generation indices. As can be
seen, the matrix Ye will be connected to the transposed matrix Y T

d by a factor that
is not a free parameter, in this case 1 or −3, and purely originates from the ratio of
two group theoretical Clebsch-Gordan coefficients. Hence, we will call such factors
Clebsch-Gordan (CG) factors. The first CG factor of above is often used for the third
family where it leads b-τ unification yb = yτ . The latter can be used for the muon to
strange Yukawa coupling ratio, where it can lead to the so-called Georgi-Jarlskog mass
relations [48], mµ ≈ 3ms, me ≈ md/3 (at the GUT scale).

Beyond the renormalisable level, one can also introduce powers of GUT breaking
VEVs of Higgs superfield in the 24 representation. This leads to index structures
(before contracting to an SU(5) singlet) of, e.g.

FαTβγ(H24)εδ(H5̄)ρ , (4.9)

where now all upper indices have to be contracted with lower ones to obtain an SU(5)
invariant term for the superpotential. One way to fix this otherwise undetermined
structure of index contractions is to generate such a non-renormalisable operator using
heavy vector-like messenger fields, as shown in [49], see also [50]. As the structure of
the VEV of H24 is fixed by the breaking of SU(5) to the SM gauge group, once an
index contraction is fixed, the resulting ratio between Yukawa couplings is also fixed
to a value that can again be interpreted as ratio of two Clebsch-Gordan coefficients
and is thus also included in our denotation of CG factors. One interesting example is
given by [49]

W ⊃ 1

Λ
(FiH24)5̄ (TjH5̄)5 → N

〈H24〉
Λ

(
−3

2
Lie

c
j +Qjd

c
i

)
Hd , (4.10)

where the index below the brackets specifies the representation of the index contraction
of the fields inside, which coincides with the representation of the messenger field. Using
this approach, ratios between (Ye)ij and (Yd)ji can be fixed to the values1: −1

2
, 1, ±3

2
,

−3, 9
2
, 6, 9.

At the renormalisable level and without involving 24-plets, the up-type quark
Yukawa matrix originates from operators of the form

W ⊃ TiTjH5 , (4.11)

which simply leads to the relation Yu = Y T
u , or alternatively Yu = −Y T

u in the case of
Hu transforming as a 45 representation.

For a more exhaustive list of possible ratios and more details, see app. D, ref. [49]
or also [51].

1This list also includes the alternate representation for the GUT breaking Higgs field, 75, and the
electroweak doublet Higgs field, 45.
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4.2.2 Embedding into SO(10) and Pati-Salam

About as old as the idea of SU(5) grand unification is the one of grand unification
to SO(10) [52]. Here the three matter field generations are each unified into a single
spinorial representation 16 of SO(10),

16 = (1,2)3 + (3̄,1)−2 + (1,1)−6 + (3̄,1)4 + (3,2)−1 + (1,1)0

= L+ dc + ec + uc +Q+ νc ,
(4.12)

where merely symmetry requirements already force us to introduce three generations
of right-handed neutrinos νc. Likewise, the two electroweak doublets Hd and Hu are
most easily embedded into a 10 of SO(10),

10 = (1,2)3 + (1,2)−3 + (3̄,1)−2 + (3,1)2

= Hd +Hu + . . . ,
(4.13)

where the dots stand for additional colour triplet fields, analogous to the embedding
of Hd, Hu into fiveplets in SU(5). Note that we will not state the branching rules for
adjoints or other GUT breaking Higgs choices for SO(10) as the breaking to the SM
can be quite complicated and goes beyond the scope of this thesis.

At the renormalisable level, the MSSM Yukawa couplings stem from operators of
the form

W ⊃ λij(Φ16)i(Φ16)jΦ10

→ N λij (Qiu
c
jHu + Qid

c
jHd + Lie

c
jHd + (i↔ j) + . . . ) ,

(4.14)

with generation indices i, j and the dots stand for additional couplings involving right-
handed neutrinos. As can be seen, this leads to the relation Yu = Yd = Ye as well as
symmetry for all three Yukawa matrices.

Of particular interest is also a subgroup of SO(10) that only leads to partial unifi-
cation of SU(3)C and U(1)Y , but incorporates some left-right symmetry missing from
the SM: the Pati-Salam (PS) symmetry group SU(4) × SU(2)L × SU(2)R [53]. The
PS representations are embedded into SO(10) as in

16 = (4,2,1) + (4̄,1,2) , 10 = (1,2,2) + (6,1,1) , (4.15)

where (r1, r2, r3) denotes the three representations corresponding to the PS group fac-
tors. The PS field representations, in turn, branch into the SM representations follow-
ing

(4,2,1) = (3,2)−1 + (1,2)3 = Q+ L , (4.16a)

(4̄,1,2) = (3̄,1)−2 + (3̄,1)4 + (1,1)−6 + (1,1)0 = dc + uc + ec + νc , (4.16b)

(1,2,2) = (1,2)3 + (1,2)−3 = Hd +Hu , (4.16c)
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where we again see the existence of three right-handed neutrino fields νc implied by
the PS symmetry. Yukawa matrices are then generated by terms of the form

W ⊃ λij (Φ421)i(Φ4̄12)jΦ122

→ Nλij (Qiu
c
jHu +Qid

c
jHd + Lie

c
jHd + . . . ) ,

(4.17)

with generation indices i, j and the indices of Φ signifying PS group representations.
As in the case of SO(10), this yields the relation Yu = Yd = Ye. However, the matrices
are not required to be symmetric anymore, although such symmetry can come as
a consequence of embedding PS into SO(10). Analogously to the case of SU(5), the
above relation, valid at the renormalisable level, can be modified using a VEV breaking
PS to the SM gauge group and fixing index contractions with the use of messenger
fields. In particular for this thesis, the most interesting CG factors between (Ye)ij and
(Yd)ij are given by: 3

4
, 1, 2, −3, 9. For more details, see [49, 54].

4.3 Soft Supersymmetry Breaking in GUTs

Since, in unified theories, multiple MSSM superfield representations are put together
in a smaller set of irreducible representation of the unified gauge group, this naturally
also has some consequences for the soft breaking terms, given in their most general
form in eq. (3.30). In particular, if we do not assume a very restrictive SUSY breaking
scheme such as the cMSSM, the restrictions from certain symmetries can still provide
breaking schemes that are not as arbitrary as the parametrisation of the pMSSM. In
the following, we will give a very brief review over the structures obtained this way, as
will become important later in chap. 6.

4.3.1 Soft Scalar Masses

We divide the effects that unified symmetries have on the scalar soft masses m2
f̃

into

two categories: the ones caused by the unified symmetry itself and those caused by
symmetry breaking patterns.

The first category is rather trivial. Namely, if two or more MSSM fields φi are part
of one single unified irreducible representations Φ, the unified symmetry imposes the
condition that their soft SUSY breaking scalar masses are equal,

m2
φ̃1

= m2
φ̃2

= · · · = m2
Φ̃
, (4.18)

at the scale of unified symmetry break-down.
Another possibility, as discussed in [55], is that the larger unified symmetry group

contains a U(1) factor as subgroup, which is broken both by a regular scalar component
VEV and by a VEV in the D component of some field. The latter constitutes direct
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SUSY breaking which is mediated to the visible sector via the D-term potential, leading
to contributions to their soft scalar masses proportional to their U(1) charge,

∆m2
φ̃i

= q(φi)D , (4.19)

where q(φi) is the charge of the field φi under the broken U(1) symmetry and D is the
SUSY breaking D component VEV. Assuming unification at most to the exceptional
Lie group E6, which contains two U(1) factors in addition to hypercharge U(1)Y , this
yields a basis of three linearly independent D-term contributions DS, DX and DY ,
with charges defined in [55], that have the form

∆m2
Q̃

=
1

6
DY −

1

3
DX −

1

3
DS ,

∆m2
L̃

= −1

2
DY +DX −

2

3
DS ,

∆m2
ũc = −2

3
DY −

1

3
DX −

1

3
DS ,

∆m2
d̃c

=
1

3
DY +DX −

2

3
DS ,

∆m2
ẽc = DY −

1

3
DX −

1

3
DS ,

∆m2
Hu =

1

2
DY +

2

3
DX +

2

3
DS ,

∆m2
Hd

= −1

2
DY −

2

3
DX +DS ,

(4.20)

with Di being of the order M2
SUSY, i.e. of the size of usual soft SUSY breaking terms.

In the absence of effects that leave the unified symmetry in tact and give universal
contributions, this results in ratios between the soft term fixed by the symmetry group
structure. For more information, we refer the reader to [55].

4.3.2 Gaugino Masses

The case of gaugino masses proceeds quite similar to the one of soft scalar masses. In
the case of purely symmetry based situations, the MSSM gaugino masses are required
to be equal,

M1 = M2 = M3 , (4.21)

at the scale of GUT symmetry break-down, or some subset of these equations in the
case of non-grand unification.

Symmetry breaking effects for gaugino masses, on the other hand, can enter via
GUT non-singlet fields that develop SUSY breaking VEVs in their F component and
appear in the gauge kinetic function. This way, as can be seen from eq. (3.7), they can
generate possibly non-universal gaugino mass terms [56]. Since the VEVs of such F-
terms are determined by the structure of symmetry break-down, these gaugino masses
exhibit fixed ratios between the different MSSM gaugino mass parameters. For exam-
ple, following the F-term VEV of a GUT Higgs field H in the 200 representation of
SU(5), we obtain gaugino mass ratios of

M1 : M2 : M3 = 10 : 2 : 1 , (4.22)
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assuming the field H appears to linear order in fab ⊃ H. For more information and a
review over possible ratios generated this way, we refer the reader to [56].

Another possibility is provided in string theories via contributions to fab related to
anomalies and string threshold corrections [57]. In this thesis, we will only consider a
simplified model based on orbifold compactification, called the O-II model. It generates
gaugino mass ratios of the form

M1 : M2 : M3 =

(
−δGS +

33

5

)
: (−δGS + 1) : (−δGS − 3) , (4.23)

with a negative integer constant δGS as required by an anomaly cancellation condition.
This is effectively a combination of universal gaugino masses and the ratios found in
anomaly mediation, see sec. 3.3.1. For more details, see [57].

4.4 Proton-Decay and Doublet-Triplet Splitting

Unfortunately, GUTs also have a problem where they possibly clash with experimental
results: they break baryon and lepton number explicitly since they incorporate baryons
and leptons into joined representations under the gauge symmetry. This in turn leads
to the instability of the proton which has not been observed yet [15] (even if matter
parity is conserved as assumed here). In the following, we give a very brief review over
what contributions to the proton decay width can be expected. We will restrict our
discussion to the unification to SU(5) – unification to SO(10) encompasses the same
contributions and more as it contains SU(5) as a subgroup.

Mediation via Vector Bosons From eq. (4.6), we know that the adjoint repre-
sentation of SU(5) contains a vector-like pair of leptoquark superfields with mass
MV ∼MGUT. As gauge bosons, they have interactions where they couple at the same
time to quarks and leptons contained in the same GUT multiplet. Thus, when they
are integrated out, they give rise to dimension six operators in the Kähler potential of
the form

K ⊃ g2
5

M2
V

(
Q†Q†ucec +Q†L†dcuc

)
+ h.c. , (4.24)

where we suppressed generation indices and g5 is the SU(5) gauge coupling. They give
rise to proton decay via diagrams of the form shown in fig. 4.2. The naively expected
structure of vector boson couplings involving σµ can be reconciled with eq. (3.5) via
the identity (σµ)aḃ(σµ)cḋ = 2εacεḃḋ as is relevant for two component spinors. Using a
naive estimate for proton decay width,

Γp ≈ α2
5

m5
p

M4
V

, (4.25)
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Figure 4.2: Schematic diagram of proton decay via a four fermion dimension six
operator (dark grey dot) originating from the terms in eq. (4.24) (but not exclusive
to supersymmetry).

with the unified structure constant α5 ≈ g2
5/4π and the proton mass mp, together with

the experimental constraint τ(p→ π0e+) > 1.6 · 1033 years, we find a lower bound on
the mass of the leptoquark vector boson MV of

MV & 3 · 1015 GeV , (4.26)

where we used α5 = 1/25 as motivated by fig. 4.1 and also chap. 5, see also [58]. Since
the GUT scale is about 1016 GeV, GUT models usually have no problem with this
bound.

Mediation via Higgs Triplets Another additional superfield that couples to quarks
and leptons is given by colour triplet partners T and T̄ of the Higgs doublet Hu,d as
implied by their SM decomposition in eq. (4.7).2 These colour triplets couple to the
MSSM multiplets via Yukawa interactions of the form

W ⊃ −1

2
YqqQQT + YqlQLT̄ + Yue u

cecT − Yud ucdcT̄ +mT T T̄ , (4.27)

where we again suppressed generation indices for simplicity. These Yukawa coupling
matrices Yqq, Yql, Yue and Yud are automatically implied by the SU(5) Yukawa couplings
of eqs. (4.8) and (4.11) when taking into account T and T̄ . As gauge coupling unifica-
tion assumes only the MSSM spectrum up to the GUT scale, these colour triplets must
be quite heavy and split from the doublets, leading to the “doublet-triplet splitting
problem”. When they are subsequently integrated out, they generate dimension five

2Note that this assumes the embedding Hu, Hd → 5, 5̄. In the case of 45 dimensional representa-
tions, the following also applies and is even exacerbated by the additional SM multiplets contained in
the representation 45.
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Figure 4.3: Example diagram of superpartner dressing for dimension five operators
(dark grey dot) originating to arrive at dimension six operators for use in fig. 4.2. For
more details, see [58].

and six operators that lead to proton decay and are schematically given by

W ⊃ 1

mT

[
1

2
YqqYqlQQQL+ YueYud u

cecucdc
]
, (4.28a)

K ⊃ Y ∗qqYue

m2
T

Q†Q†ucec +
Y ∗qlYud

m2
T

Q†L†dcuc + h.c. , (4.28b)

again with generation indices suppressed. Similar to the case of leptoquark vector
bosons, we can again make a naive estimate of the lower bound on the triplet mass due
to the dimension six operator: since Yql and Yud are related to Yd by GUT relations,
we substitute α5 in eq. (4.25) with the square of the GUT-scale Yukawa coupling
yd ≈ 0.5 · 10−5/ cos β as taken from chap. 5. For tan β = 30, this yields a equally naive
bound of

mT & 2 · 1012 GeV . (4.29)

For the dimension five operators, the situation is not as straight forward as they do
not directly lead to proton decay. Only when the superpartners of the SM fields are
integrated out at their mass scale MSUSY, ‘dressing’ of the dimension five operators with
loops of superpartners (see fig. 4.3 for an example) leads to dimension six proton decay
operators similar to the four fermion interactions resulting from the other dimension six
operators. However, this dressing only results in a suppression mass scale of mT ·MSUSY

instead of m2
T . Subsequently, the lower bound for the colour triplet mass (appearing

in the dimension five operators) was found to be [59]

mT & 1017 GeV , (4.30)

for which MSUSY . 1 TeV was considered. Thus, the doublet-triplet problem (DTS)
is one important shortcoming of GUTs, as (naively) the colour triplets must not only
be split from the Higgs doublets but also partially from the GUT scale itself.
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CHAPTER 5

Running Flavour Parameters

5.1 Motivation

For finding the structure of a theory that implements grand unification and tries to
explain the structure of the fermion masses and mixing parameters, one important
ingredient is the determination of the Yukawa couplings and other quantities at the
relevant renormalisation scales. This is done using renormalisation group (RG) running
with intermediate thresholds between different effective theories where appropriate.
GUT models of flavour can then be compared with experimental data at the scale
where the model is defined or alternatively at a single energy scale without the need
to explicitly replicate experimentally determined quantities from more accessible ones.
Both of these approaches have been recognised as useful [60].

Concerning experimental data, over the last years, while precision has increased in
the lepton mixing sector with the measurement of the mixing angle θPMNS

13 [22] and
subsequent improvement in global fits [16], also in the quark sector, the precision for
light quark masses has improved significantly, as reported by the Flavour Averaging
Group (FLAG) [61] and as stated in the more recent update of the Particle Data Group
(PDG) review [15]. Combined, both sectors have now become powerful constraints on
models for fermion masses and mixing.

Therefore, it is worth to revisit what consequences these advancements in precision
have on the values and allowed ranges of the running quark and charged lepton flavour
parameters at various energy scales. After a calculation of this strictly in the SM up
to a few TeV, we match the SM to the MSSM and take into account tan β enhanced
threshold corrections [31, 32, 33, 34] and run all flavour parameters up to the GUT
scale MGUT = 2 · 1016 GeV. For this, the threshold corrections are parametrised in a
simple way, so that they can easily be included in GUT model building considerations.

This chapter is therefore organised as follows. After describing the numerical input
and procedure in sec. 5.2, our parametrisation for the inclusion of SUSY threshold
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corrections is shown in sec. 5.3. In sec. 5.4 and 5.5, we present our results for the
flavour parameters at the renormalisation scales µ = MZ , 1 TeV, 3 TeV and 10 TeV
and at MGUT, respectively.

5.2 Numerical Analysis

Using the same notation as in [62], with Mf denoting pole masses and mf (µ) the
running MS masses, the low energy input values used in our analysis are as follows:

For the light quark masses (at µ = 2 GeV, with nf = 2 + 1 active flavours), we use
the values from the PDG review of 2014 [15],

ms

mud

= 27.5± 1 , md = 4.8+0.5
−0.3 MeV , ms = 95± 5 MeV , (5.1)

where mud = (mu +md)/2. Furthermore, also from [15], we use

mc(mc) = 1.275± 0.025 GeV (nf = 4) , (5.2a)

mb(mb) = 4.18± 0.03 GeV (nf = 5) , (5.2b)

Mt = 173.21± 1.22 GeV (pole mass) , (5.2c)

αs(MZ) = 0.1185± 0.0006 (with nf = 5) , (5.2d)

Me = 0.510998928± 0.000000011 MeV , (5.2e)

Mµ = 105.6583715± 0.0000035 MeV , (5.2f)

Mτ = 1776.82± 0.16 MeV , (5.2g)

1/α(MZ) = 127.940± 0.014 , (5.2h)

ŝ2
θW

= 0.231258± 0.000089 . (5.2i)

For the quark mixing parameters, we use the values as determined by the UTFit
collaboration [63] as of summer 2014:

sin θ12 = 0.2255± 0.0005 , sin θ23 = 0.0417± 0.0006 , (5.3a)

sin θ13 = 0.00363± 0.00012 , δ = 1.211± 0.059 . (5.3b)

The Higgs self-coupling is extracted from its mass mh = 125.7± 0.4 GeV [15].
The input values for the QCD parameters (quark masses and αs) are evolved to

MZ = 91.1876 GeV [15] using the Mathematica package RunDec [62], as described
in app. A. The running lepton masses at MZ in the low energy theory of QED are
computed from their pole masses as in [64]. All fermion masses are then matched from
QCD × QED to the standard model, taking into account electroweak and Higgs boson
contributions to the running masses as described in app. B. Subsequently, the running
fermion masses are converted to Yukawa couplings according to mf = yfv/

√
2 with
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the Higgs VEV v = 246.220 GeV as obtained from GF , while αs, α and sin θW are
used to calculate the gauge couplings gi (in GUT normalisation, see sec. 4.1).

The parameters at MZ are passed to a modified version of the Mathematica package
REAP [65], which performs the running to the desired higher scales. The modifications
compared to the standard version of REAP include two loop SM and MSSM RG equa-
tions [66, 67] for all quantities, automatic conversion of MS to DR quantities [68] at the
SM-MSSM threshold as well as the handling of tan β enhanced threshold corrections
as described in the next section.

Note that all quantities are calculated in the context of the SM or MSSM, i.e. with
vanishing neutrino masses. Due to the fact that the Weinberg operator does not enter
the running of Yukawa couplings in the MSSM with Majorana neutrino masses, it is
straight-forward to generalise our results also to models with seesaw mechanism at
high energies. Only above the seesaw scale, where neutrino Yukawa couplings appear
in the effective theory, this approach is merely an approximation. We will come back
to this sec. 5.5.

5.3 Inclusion of the SUSY Threshold Corrections

Most commonly, to obtain parameters at high energies in a supersymmetric theory,
the SM has to be matched to the MSSM at some scale. A common approximation,
which we will also use in this study, is to do this at one single threshold scale MSUSY,
where all superpartners and fields beyond the SM are integrated out simultaneously.
In particular for moderate or large tan β, radiative threshold corrections to Yukawa
couplings [31, 32, 33, 34] can be large since some of the contributing diagrams are
enhanced by a factor tan β. Due to this enhancement, they can even exceed the one-
loop running contribution and all relevant uncertainties. It is therefore mandatory
to include them for the analysis of the running quark and charged lepton Yukawa
couplings in SUSY models.

These tan β enhanced corrections are most conveniently described in the basis where
the up-type quark Yukawa matrix Yu is diagonal. Then one can write the matching
conditions for the quark Yukawa couplings as

Y SM
u ' Y MSSM

u sin β , (5.4a)

Y SM
d ' (1 + ∆d + ∆u)Y

MSSM
d cos β , (5.4b)

with the matrices (16π2)∆∗d = VCKMΓdV
†

CKM tan β and (16π2)∆∗u = Γu tan β defined
in terms of the matrices Γd and Γu as defined in [32]. Contributions without tan β
enhancement have been dropped from eq. (5.4) as they amount to corrections at less
than percent-level. In the following, we neglect them since we will not claim better
accuracy for the relevant GUT-scale Yukawa couplings. The correction matrix Γd
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corresponds to the contribution from gluinos, while Γu gives the contribution coming
from charginos and up-type squarks – in particular it contains the correction involving
the trilinear soft breaking matrix Au. Note that the formulae given in [32] do not
include correction due to neutralinos, i.e. the bino and one wino, which we do include
in the following discussion.

Neglecting effects from inter-generation mixing in ∆d and ∆u and extending the
concept to charged leptons, the matching conditions can be simplified to

Y SM
u ' Y MSSM

u sin β , (5.5a)

Y SM
d ' (1 + diag(ηq, ηq, η

′
q + ηA))Y MSSM

d cos β , (5.5b)

Y SM
e ' (1 + diag(η`, η`, η

′
`))Y

MSSM
e cos β . (5.5c)

Additionally, we approximate that the first two generations of down-type quarks and
charged leptons each receive the same threshold corrections, which is a good approxi-
mation as long as there is no significant mass difference between first and second gen-
eration squarks and sleptons respectively, which is a common feature of many SUSY
scenarios.

Six parameters appear in eqs. (5.5): ηq and η′q are dominated by the gluino contribu-
tion but also include the corrections from loops with winos and binos. The parameters
η` and η′` only parametrise corrections from electroweak gauginos and are thus often
smaller than ηq and η′q. The parameter ηA originates from chargino-stop loops and
depends mainly on the trilinear soft SUSY breaking term Au. Assuming the trilinear
soft breaking matrix Au to be hierarchical (like the quark and charged lepton Yukawa
matrices), the correction only enters for the third generation. An analogous correction
does not appear for the charged leptons due to the absence of right-handed neutrinos.
As the η’s all contain a factor of tan β, they are often also written as ηi = εi tan β.
They can be calculated explicitly once a SUSY scenario is specified. For formulae
for the one-loop results in the electroweak-unbroken phase, we refer the reader to
e.g. [31, 32, 33].

From eqs. (5.5) one can see that the Yukawa matrices only depend on four combi-
nations of the six parameters, which means two can be absorbed. First, the parameter
η′` can be absorbed in a re-definition of β → β̄, such that

cos β̄ := (1 + η′`) cos β , (5.6)

or equivalently (to a good approximation) tan β̄ := (1 + η′`)
−1 tan β. Introducing fur-

thermore the parameters η̄b, η̄q and η̄` as

η̄b := η′q + ηA − η′` , (5.7a)

η̄q := ηq − η′` , (5.7b)

η̄` := η` − η′` , (5.7c)
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we can rewrite the matching conditions of eqs. (5.5) as

Y SM
u ' Y MSSM

u sin β̄ , (5.8a)

Y SM
d ' (1 + diag(η̄q, η̄q, η̄b))Y

MSSM
d cos β̄ , (5.8b)

Y SM
e ' (1 + diag(η̄`, η̄`, 1))Y MSSM

e cos β̄ . (5.8c)

In the following, we consider moderate or large tan β, i.e. tan β ≥ 5, where we can
approximate sin β ' sin β̄. As mentioned above, the lepton correction parameters η`,
η′` are typically smaller than ηq, η

′
q and are therefore often neglected. In our parametri-

sation neglecting η`, η
′
` would simplify eqs. (5.8) with β̄ = β. However, since the effects

of η` and η′` can be relevant (cf. e.g. [33]), we prefer to include them in the analysis.
In tab. 5.2, we give the values of the running SM parameters, converted to the DR

scheme as used in the analysis above MSUSY. They can be used to calculate the MSSM
Yukawa matrices Yu, Yd and Ye at MSUSY, with threshold corrections included, from
eqs. (5.8). Explicitly, in the basis where Yu and Ye are diagonal, we obtain the Yukawa
matrices from tab. 5.2 as

Y SM
u = diag(ySM

u , ySM
c , ySM

t ) , (5.9a)

Y SM
d = V T

CKM(θq,SM
12 , θq,SM

23 , θq,SM
13 , δq,SM) diag(ySM

d , ySM
s , ySM

b ) , (5.9b)

Y SM
e = diag(ySM

e , ySM
µ , ySM

τ ) , (5.9c)

in the parametrisation of chap. 1, i.e. conjugated compared to PDG parametrisation
for Yukawa matrices [15]. Using these expressions for the SM Yukawa matrices, the
MSSM Yukawa matrices at MSUSY are then given as

Y MSSM
u ' Y SM

u

1

sin β̄
, (5.10a)

Y MSSM
d ' diag

(
1

1 + η̄q
,

1

1 + η̄q
,

1

1 + η̄b

)
Y SM
d

1

cos β̄
, (5.10b)

Y MSSM
e ' diag

(
1

1 + η̄`
,

1

1 + η̄`
, 1

)
Y SM
e

1

cos β̄
. (5.10c)

Finally, we emphasise that the parameters η̄q and η̄` only correct the Yukawa couplings
of the first two generations of down-type quarks and charged leptons, whereas η̄b affects
the third generation. This has the following advantage: since η̄q and η̄` only induce
corrections to Yukawa couplings which are comparatively small, their effect can be
neglected in the β-functions when calculating the RG evolution of the parameters. To
a good approximation, the RG evolution thus only depends on η̄b and tan β̄. This will
be useful to simplify the discussion of the effects of the SUSY threshold corrections on
the running parameters at MGUT in sec. 5.5.
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5.4 Results at Low Scales

The results at renormalisation scales µ = MZ , 1 TeV, 3 TeV and 10 TeV, as calculated
within the SM in the MS scheme, are given in tab. 5.1. All quantities converted to the
DR scheme can be found in tab. 5.2. The stated uncertainties were obtained from a
Monte Carlo analysis based on the uncertainties of the input parameters as stated in
sec. 5.2. They are given as (marginalised) highest posterior density (HPD) intervals
(corresponding to the 1σ uncertainties). For more information on the used statistical
relations, see app. C.

5.5 Results at the GUT Scale

To determine the running parameters at the GUT scale MGUT = 2 · 1016 GeV, we
perform the matching between the SM and the MSSM at the scale MSUSY, as described
in sec. 5.3. From eqs. (5.8), in leading order in small mixing approximation, one can
explicitly obtain the relations between the eigenvalues (or rather singular values) of
the SM and MSSM Yukawa matrices as

ySM
u,c,t ' yMSSM

u,c,t sin β̄ , (5.11a)

ySM
d,s ' (1 + η̄q) y

MSSM
d,s cos β̄ , (5.11b)

ySM
b ' (1 + η̄b) y

MSSM
b cos β̄ , (5.11c)

ySM
e,µ ' (1 + η̄`) y

MSSM
e,µ cos β̄ , (5.11d)

ySM
τ ' yMSSM

τ cos β̄ . (5.11e)

The relation between the SM and MSSM mixing parameters of the CKM matrix is
given by (again in leading order in a small mixing approximation)

θq,SM
i3 ' 1 + η̄q

1 + η̄b
θq,MSSM
i3 , (5.12a)

θq,SM
12 ' θq,MSSM

12 , (5.12b)

δq,SM ' δq,MSSM . (5.12c)

In addition to not being affected by threshold corrections (for the given parametri-
sation) to a very good approximation, θq,SM

12 and δq,SM are also stable under the RG
evolution. Having calculated the other MSSM quantities, their running between MSUSY

and MGUT indeed depends to a good approximation only on η̄b and tan β̄, as already
mentioned in sec. 5.3. This allows to present their GUT-scale values as only two-
dimensional plots of functions of η̄b and tan β̄ only (for a fixed MSUSY). Since the left
hand sides of eqs. (5.11) and (5.12) do not depend on any threshold correction param-
eters, the η̄b and tan β̄ dependence of the quantities on the right side at the GUT scale
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is given purely by the non-commuting of RG evolution and application of the matching
conditions and is therefore not as strong.

The resulting GUT-scale quantities for MSUSY = 1 TeV are shown in figs. 5.1–5.6,
and the relative 1σ uncertainties for the GUT-scale parameters are given in tab. 5.3.
For the third generation Yukawa couplings, the uncertainties depend on η̄b and tan β̄,
and are given in fig. 5.4. The relative uncertainties for the other parameters are
practically independent of η̄b and tan β̄ for most of the parameter space. Only in the
parameter regions in the GUT-scale figures very close to the grey area, where one of
the third generation Yukawa couplings becomes non-perturbatively large, i.e. larger
than

√
4π, also these uncertainties can increase accordingly.

In addition, we also show the values of the GUT-scale ratios yt/yb and yτ/yb as
functions of tan β̄ and η̄b in fig. 5.7. As one can see both the ratios yτ/yb = 1 and
the alternative ratio yτ/yb = 3/2 [49] are accessible for reasonable SUSY threshold
correction and tan β̄ values. The SO(10) relation yt = yb = yτ would imply η̄b =
−0.159, tan β̄ = 49.8. It is interesting to note that the GUT-scale Yukawa coupling
ratios yµ/ys and ye/yd do not depend on tan β̄ and η̄b to a good approximation. This
happens because the factor cos β̄ from the matching conditions cancels out and η̄b
affects the RG evolution of both the numerator and denominator quantities in the
same way, i.e. via the trace terms in the RG equations. The ratios at MGUT (assuming
MSUSY = 1 TeV) are then given by

(1 + η̄`)yµ
(1 + η̄q)ys

≈ 4.38+0.22
−0.25 ,

(1 + η̄`)ye
(1 + η̄q)yd

≈ 0.41+0.02
−0.04 . (5.13)

One can also derive the following relation at MGUT,

yµ
ys

yd
ye
≈ 10.7+1.3

−0.8 , (5.14)

where the dependence on all threshold correction parameters and even on MSUSY drops
out to an excellent approximation1.

Effect of Neutrino Yukawa Couplings As mentioned earlier, due to the use of
the SM and MSSM only, the shown results are only valid for vanishing neutrino masses.
However, in the case of Majorana neutrino masses generated by the Weinberg operator
of eq. (2.3) or its SUSY equivalent, the RG equations for all dimensionless quantities
remain unchanged. When the Weinberg operator is generated by a seesaw mechanism2,
at the high scale of right-handed neutrino Majorana masses MN the theory has to be
matched with one that also contains neutrino Yukawa coupling matrices Yν in its RG

1Note that, of course, this is not the case if first and second generation threshold corrections are
not approximately equal.

2To be specific, we assume a seesaw type I mechanism hereafter.
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equations. If we estimate their relative effect on the RG running from the scale MN

to MGUT as

δν ≈
1

16π2
||Yν ||2 ln

(
MN

MGUT

)
, (5.15)

with the Euclidean norm of the neutrino Yukawa matrix ||Yν ||, and the heaviest light
neutrino mass by

mν =
v2
u

2

||Yν ||2
MN

, (5.16)

we arrive at the relation

δν ≈ 0.0041
mν

2 eV

MN

1012 GeV

(
1 +

1

tan2 β

)(
1 + 0.1 ln

MN

1012 GeV

)
. (5.17)

Thus, assuming tan β & 5 and light neutrino masses saturating the limit of 2 eV
given by [15], demanding δν < 0.5%, i.e. an effect on the charged lepton Yukawa
couplings below the allotted relative uncertainty, requires right-handed neutrino masses
of the order MN . 1012 GeV, or in other words Yν . O(0.1), following eq. (5.16).
Since the other flavour quantities have larger uncertainties or are affected less directly
than the charged lepton Yukawa couplings, they provide no further constraints on the
applicability of our results.

Dependence on the SUSY Scale Of course, the GUT-scale quantities also depend
on the SUSY scale MSUSY. To quantify this, we performed the same analysis also for
MSUSY = 3 TeV and 10 TeV. Generally speaking, we find deviations from the values in
the figures at the few percent-level, which additionally also depend on the parameters
tan β̄ and η̄b, while the relative uncertainties as given in tab. 5.3 do not change signifi-
cantly. It is unfortunately not possible to simplify the data and eliminate one of those
two parameters by a change of parametrisation due to the fact that different quantities
depend differently on yMSSM

b and yMSSM
τ , thereby picking up independent combinations

of tan β̄ and η̄b.
Thus, the only possibility to show an accurate picture of the deviation is to replicate

all figures for the other SUSY scales, which we will do not do in this thesis for the sake
of briefness. Nevertheless, one can find some trends in the change of the GUT-scale
quantities from MSUSY from 1 TeV to 10 TeV:

• CKM mixing angles θ13 and θ23 generally increase by about 3 to 5% in most parts
of the shown parameter space, but also up to 10% in parts where one Yukawa
coupling is large, i.e. near the non-perturbativity (NP) region.

• The top Yukawa coupling decreases by about 2 to 5%, with up to ∼ 10% near
the NP region.
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• All other Yukawa couplings tend to increase by varying amounts, but can nev-
ertheless also decrease near the NP region, although the parameter space where
this happens is quite small (in the parametrisation shown in the figures). The
effect for the first two generations of down type quarks, up type quarks and
charged leptons is equal to a good approximation, respectively.

For further details, we refer the reader to the full data set available online at

http://particlesandcosmology.unibas.ch/files/maurerv/RunningParameters-thesis.tar.gz ,

which should be used when actual numbers rather than trends are necessary.
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SM Quantity µ = MZ = 1 TeV = 3 TeV = 10 TeV

ySM
u / 10−6 6.9 +1.5

−2.4 6.0 +1.3
−2.1 5.6 +1.2

−2.0 5.3 +1.2
−1.9

ySM
d / 10−5 1.577 +0.168

−0.096 1.362 +0.144
−0.084 1.289 +0.136

−0.080 1.220 +0.129
−0.075

ySM
s / 10−4 3.12 +0.16

−0.17 2.70 +0.14
−0.15 2.55 +0.13

−0.14 2.42 ±0.13

ySM
c / 10−3 3.59 +0.10

−0.11 3.098 +0.091
−0.095 2.928 +0.085

−0.092 2.770 +0.080
−0.087

ySM
b / 10−2 1.643 ±0.015 1.390 ±0.013 1.305 +0.012

−0.013 1.226 ±0.012

ySM
t 0.9833 +0.0073

−0.0076 0.8656 +0.0076
−0.0074 0.8248 ±0.0075 0.7864 ±0.0075

θq,SM
12 0.22746 ±0.00051 0.22746 ±0.00051 0.22746 ±0.00051 0.22747 ±0.00051

θq,SM
23 / 10−2 4.171 ±0.060 4.258 +0.062

−0.060 4.291 +0.060
−0.063 4.325 ±0.062

θq,SM
13 / 10−3 3.63 ±0.12 3.71 ±0.12 3.73 ±0.12 3.76 ±0.12

δq,SM 1.211 ±0.059 1.211 ±0.059 1.211 ±0.059 1.211 ±0.059

ySM
e / 10−6 2.795169 ±0.000016 2.8479 +0.0018

−0.0019 2.8640 +0.0027
−0.0026 2.8773 +0.0035

−0.0034

ySM
µ / 10−4 5.900762 +0.000020

−0.000019 6.0121 +0.0038
−0.0040 6.0461 +0.0056

−0.0055 6.0742 ±0.0073

ySM
τ / 10−2 1.003101 +0.000092

−0.000089 1.02204 +0.00065
−0.00069 1.02781 +0.00098

−0.00092 1.0326 ±0.0012

g3 1.2148 +0.0031
−0.0030 1.0563 ±0.0020 1.0020 ±0.0017 0.9513 ±0.0014

g2 0.65171 ±0.00013 0.63923 ±0.00012 0.63371 ±0.00012 0.62781 ±0.00012

g1 0.461462 +0.000038
−0.000036 0.467812 +0.000039

−0.000037 0.470806 +0.000040
−0.000038 0.474150 ±0.000040

Table 5.1: Values of the running SM quantities in the MS scheme at multiple renor-
malisation scales µ together their marginalised highest posterior density (HPD) inter-
vals (corresponding to the 1σ uncertainties). The gauge coupling g1 is given in GUT
normalisation, i.e. g2

1 = 5/3 g′2. The uncertainties are calculated with a Monte Carlo
analysis from the uncertainties for the input parameters as given in sec. 5.2.
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SM Quantity µ = 1 TeV = 3 TeV = 10 TeV

ySM
u / 10−6 5.9 +1.3

−2.1 5.6 +1.2
−2.0 5.3 +1.2

−1.9

ySM
d / 10−5 1.351 +0.143

−0.083 1.279 +0.135
−0.079 1.212 +0.129

−0.075

ySM
s / 10−4 2.67 +0.14

−0.15 2.53 +0.13
−0.14 2.40 +0.12

−0.13

ySM
c / 10−3 3.072 +0.090

−0.094 2.907 +0.084
−0.091 2.752 +0.080

−0.087

ySM
b / 10−2 1.379 ±0.013 1.296 +0.012

−0.013 1.218 ±0.012

ySM
t 0.8584 +0.0075

−0.0073 0.8187 +0.0075
−0.0074 0.7812 +0.0074

−0.0075

θq,SM
12 0.22746 ±0.00051 0.22746 ±0.00051 0.22747 ±0.00051

θq,SM
23 / 10−2 4.258 +0.062

−0.060 4.291 +0.060
−0.063 4.325 ±0.062

θq,SM
13 / 10−3 3.71 ±0.12 3.73 ±0.12 3.76 ±0.12

δq,SM 1.211 ±0.059 1.211 ±0.059 1.211 ±0.059

ySM
e / 10−6 2.8498 +0.0018

−0.0019 2.8658 +0.0027
−0.0026 2.8791 +0.0035

−0.0034

ySM
µ / 10−4 6.0161 +0.0038

−0.0040 6.0500 +0.0056
−0.0055 6.0779 ±0.0073

ySM
τ / 10−2 1.02271 +0.00065

−0.00069 1.02847 +0.00098
−0.00092 1.0332 ±0.0012

g3 1.0601 ±0.0020 1.0052 ±0.0017 0.9540 ±0.0015

g2 0.63978 ±0.00012 0.63425 ±0.00012 0.62833 ±0.00012

g1 0.467812 +0.000039
−0.000037 0.470806 +0.000040

−0.000038 0.474150 ±0.000040

Table 5.2: Values of the running SM quantities at renormalisation scales µ = 1 TeV,
3 TeV and 10 TeV, converted to the DR scheme for use in an analysis above MSUSY,
together their marginalised highest posterior density (HPD) intervals (corresponding
to the 1σ uncertainties). The gauge coupling g1 is given in GUT normalisation g2

1 =
5/3 g′2. The values can be used when applying the matching rules of eqs. (5.10)
which include the tanβ-enhanced SUSY threshold corrections. When calculating the
uncertainties for the Yukawa couplings of the charged leptons, we recommend to use
a relative uncertainty of 0.5% instead of the smaller statistical error given above, in
order to account for theoretical uncertainties, e.g. from the non-tanβ-enhanced SUSY
threshold corrections.
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Figure 5.1: Results for the running Yukawa couplings yMSSM
t , yMSSM

c and yMSSM
u

at MGUT in the DR scheme, multiplied by sin β̄ (assuming MSUSY = 1 TeV). As
discussed in sec. 5.3, the GUT-scale quantities can be given to a good approximation
as functions of the two parameters tan β̄ and η̄b only. They are defined in eqs. (5.6) and
(5.7), respectively. If the threshold effects for the charged leptons are neglected, tan β̄
simply reduces to the usual tanβ. In the dark grey regions of the plots, at least one
of the Yukawa couplings becomes non-perturbative before or at MGUT. The relative
uncertainties for the parameters are summarised in tab. 5.3. The dependence of the
relative uncertainties for the third generation Yukawa couplings on tan β̄ and η̄b is
shown in fig. 5.4. For the other parameters the relative uncertainties are independent
of tan β̄ and η̄b to a very good approximation.
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Figure 5.2: Results for the running Yukawa couplings yMSSM
b , yMSSM

s and yMSSM
d at

MGUT in the DR scheme (assuming MSUSY = 1 TeV), multiplied by the respective
threshold correction factor and cos β̄, cf. eqs. (5.11b) and (5.11c). As discussed in
sec. 5.3, the GUT-scale quantities can be given to a good approximation as functions
of the two parameters tan β̄ and η̄b only. They are defined in eqs. (5.6) and (5.7),
respectively. If the threshold effects for the charged leptons are neglected, tan β̄ simply
reduces to the usual tanβ. In the dark grey regions of the plots, at least one of the
Yukawa couplings becomes non-perturbative before or at MGUT. For further details,
see the caption of fig. 5.1.
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Figure 5.3: Results for the running Yukawa couplings yMSSM
τ , yMSSM

µ and yMSSM
e at

MGUT in the DR scheme (assuming MSUSY = 1 TeV), multiplied by the respective
threshold correction factor and cos β̄, cf. eqs. (5.11d) and (5.11e). As discussed in
sec. 5.3, the GUT-scale quantities can be given to a good approximation as functions
of the two parameters tan β̄ and η̄b only. They are defined in eqs. (5.6) and (5.7),
respectively. If the threshold effects for the charged leptons are neglected, tan β̄ simply
reduces to the usual tanβ. In the dark grey regions of the plots, at least one of the
Yukawa couplings becomes non-perturbative before or at MGUT. For further details,
see the caption of fig. 5.1.
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Figure 5.4: Relative uncertainties for the GUT-scale values of the running third
generation Yukawa couplings yMSSM

t , yMSSM
b and yMSSM

τ (assuming MSUSY = 1 TeV).
Analogous to the GUT-scale Yukawa couplings themselves, their uncertainties can also
be given as functions of only tan β̄ and η̄b to a good approximation. The parameters
β̄ and η̄b are defined in eqs. (5.6) and (5.7), respectively. If the threshold effects for
the charged leptons are neglected, tan β̄ simply reduces to the usual tanβ. In the
dark grey regions of the plots, at least one of the Yukawa couplings becomes non-
perturbative before or at MGUT. For further details, see the caption of fig. 5.1. The
relative errors for the other parameters are summarised in tab. 5.3.
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Figure 5.5: Results for the CKM mixing angles θq,MSSM
13 and θq,MSSM

13 at MGUT in
the DR scheme (assuming MSUSY = 1 TeV), multiplied by the respective threshold
correction factor, cf. eq. (5.12a). The results of the mixing angles at the GUT scale
can be obtained by multiplying the values in the plots by [(1 + η̄q)/(1 + η̄b)]

−1. As
discussed in sec. 5.3, the GUT-scale quantities can be given as functions of only tan β̄
and η̄b to a good approximation. The parameters β̄ and η̄b are defined in eqs. (5.6)
and (5.7), respectively. If the threshold effects for the charged leptons are neglected,
tan β̄ simply reduces to the usual tanβ. In the dark grey regions of the plots, at least
one of the Yukawa couplings becomes non-perturbative before or at MGUT.
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Figure 5.6: Results for the gauge couplings g1, g2 and g3 at MGUT = 2 ·1016 GeV in
the DR scheme (assuming MSUSY = 1 TeV), in GUT normalisation, i.e. g2

1 = 5/3 g′2.
As discussed in sec. 5.3, the GUT-scale quantities can be given as functions of only
tan β̄ and η̄b to a good approximation. The parameters β̄ and η̄b are defined in
eqs. (5.6) and (5.7), respectively. If the threshold effects for the charged leptons are
neglected, tan β̄ simply reduces to the usual tanβ. In the dark grey regions of the
plots, at least one of the Yukawa couplings becomes non-perturbative before or at
MGUT.
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MSSM Quantity zi Relative Uncertainty σ(zi)/zi at MGUT

yMSSM
u 29%

yMSSM
d 8.5%

yMSSM
s 5.3%

yMSSM
c 3.3%

yMSSM
b see fig. 5.4

yMSSM
t see fig. 5.4

θq,MSSM
12 0.22%

θq,MSSM
23 1.5%

θq,MSSM
13 3.3%

δq,MSSM 4.9%

yMSSM
e 0.6%

yMSSM
µ 0.6%

yMSSM
τ see fig. 5.4

g3 0.09%

g2 0.025%

g1 0.020%

Table 5.3: Relative uncertainties σ(zi)/zi for the running GUT-scale parameters zi,
assuming MSUSY = 1 TeV. For the third generation Yukawa couplings the relative
uncertainties depend on tan β̄ and η̄b as shown in fig. 5.4. As explained in the caption
of tab. 5.2, we have used 0.5% relative uncertainty for the charged lepton Yukawa
couplings at MSUSY. This is enlarged to 0.6% uncertainty at MGUT, as shown here,
due to RG effects and the uncertainties for the other parameters.
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Figure 5.7: Values of the GUT-scale Yukawa coupling ratios yMSSM
t /yMSSM

b and
yMSSM
τ /yMSSM

b as functions of tan β̄ and η̄b for MSUSY = 1 TeV. The parameters β̄
and η̄b are defined in eqs. (5.6) and (5.7), respectively. If the threshold effects for
the charged leptons are neglected, tan β̄ simply reduces to the usual tanβ. In the
dark grey regions of the plots, at least one of the Yukawa couplings becomes non-
perturbative before or at MGUT.
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CHAPTER 6

Hints from Electroweak Fine-tuning

6.1 Motivation

For quite some time, the LHC experiments ATLAS and CMS only found negative
results in their search for new particles, e.g. in direct searches for superpartners [69],
based on ∼ 5 fb−1 of data. Fortunately, they did find a new resonance, mainly based on
excesses of events in the γγ and ZZ∗ channels. Soon after the report of this discovery,
found to be consistent with a SM Higgs boson with a mass of mh = 125.7±0.4 GeV [15],
it was realised that such a mass was compatible with low-energy SUSY, specifically
the MSSM, provided quite heavy top squarks (with masses & O (1) TeV) and/or large
left-right stop mixing (see for instance [70]) are present.

At first glance, the negative results of direct SUSY searches and the comparatively
heavy Higgs boson mass are thus consistent with each other. However, since a major
motivation for the postulation of SUSY is the solution of the hierarchy problem –
naively requiring superpartner masses of the electroweak symmetry breaking scale – it
suggests itself to ask whether the MSSM can accomplish this task in a still satisfyingly
natural way.

Regarding high-scale (i.e. GUT-scale) SUSY breaking scenarios, it turns out that
in the cMSSM a significant amount of fine-tuning (at least & O(100)) is unavoidable
to explain a Higgs mass of mh ≈ 126 GeV for stabilising the electroweak scale. We
thus want to investigate this issue of naturalness in the context of models where one
or more of the soft breaking parameter universality assumptions of the cMSSM are
relaxed.

To find promising and simple GUT-scale SUSY breaking schemes that deviate from
the cMSSM, we adopt the following strategy: we start by considering a generic setup
with 17 independent parameters, resembling the phenomenological MSSM (pMSSM)
(see sec. 3.3.1), but defined at the GUT scale, in order to identify the parameters
that are most significant for the fine-tuning of the electroweak scale. This allows
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to find rigid relations among the parameters where fine-tuning is decreased. After
discussing multiple possibilities, we mainly focus on non-universal relations among
gaugino masses, whose possible impact on fine-tuning has also been studied before the
LHC results by [71, 72, 73].1

In this context, we will then study the interplay between fine-tuning, model pre-
dictions for the Higgs boson mass and the GUT-scale ratios of gaugino masses as well
as third family Yukawa couplings. In our numerical analysis, we include various ex-
perimental constraints, e.g. from BR(b → sγ), BR(Bs → µ+µ−) and BR(Bu → τντ ).
We do not impose strict constraints from requiring that the (g − 2)µ deviation from
the SM is reconciled using SUSY particles.

The rest of this chapter is organised as follows: in the next section we present a
semi-analytical way to study the dependence of the electroweak scale on the parameters
of the GUT-scale boundary conditions as inspired by the pMSSM. Thanks to this, we
can examine regions with low fine-tuning and identify non-universal gaugino masses as
most promising candidate. In sec. 6.3, we briefly revisit the dependence of GUT-scale
Yukawa coupling ratios on low energy SUSY threshold corrections and the dependence
of the latter on the SUSY spectrum. Subsequently in sec. 6.4, we present the results of
an extensive numerical analysis of fine-tuning in the MSSM scenario with non-universal
gaugino masses (at the GUT scale) and compare the results to various experimental
constraints, most importantly the discovery of the Higgs boson at around 126 GeV.

6.2 Fine-Tuning in the MSSM

Fine-tuning in the MSSM has been extensively studied in the literature, starting
with [77].2 In the following, we present a brief review of the problem in order to
introduce the concepts of our analysis and comment on the corrections beyond tree-
level that we have included [73, 79].

As shown in eq. (3.31b), in the MSSM, the Z-boson mass can be expressed in
terms of tan β, the supersymmetric mass parameter µ and the soft SUSY breaking
mass terms of Hu and Hd. For moderate and large tan β, the relation can be simplified
(to a good approximation) to

M2
Z

2
≈ −|µ|2 −m2

Hu +O(m2
Hu,d

/(tan β)2) . (6.1)

The right-hand side can be expressed in terms of fundamental parameters of the SUSY
breaking scheme by considering the renormalisation group evolution of µ and m2

Hu

from the GUT scale to the low energy scale. Since experimental constraints force the

1A discussion of the fine-tuning price of a 126 GeV Higgs after the first hints in December 2011
within several SUSY models has been also given in [74] (see also [75, 76]).

2For an extensive list of references, see e.g. [78, 74].
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soft SUSY breaking parameters to be somewhat larger than MZ , a certain amount
of tuning between µ and m2

Hu
is needed. In order to quantify this fine-tuning, the

following measure has been introduced [77]

∆a =

∣∣∣∣∂ logMZ

∂ log a

∣∣∣∣ =

∣∣∣∣ a

2M2
Z

∂M2
Z

∂a

∣∣∣∣ . (6.2)

The value of ∆a gives the dependence of MZ on variations of a given fundamental –
i.e. presumably GUT-scale – Lagrangian parameter a. The value of such a quantity has
an intuitive interpretation: for instance ∆a = 100 implies a necessary cancellation to 1
part in 100. This definition not only covers the obvious fine-tuning needed for µ needed
to fulfil eq. (6.1), but also the tuning needed for cases where cancellations between large
fundamental parameters result in a small m2

Hu
via competing RG evolution effects. The

global measure of fine-tuning for a given point in parameter space is then defined as
the maximum of all single parameter ∆a’s as in

∆ = max
a

∆a . (6.3)

Going through the single parameter contributions ∆a one by one, one first sees that
the fine-tuning in µ is special as its low energy value is determined by demanding the
experimentally measured value of MZ . Hence, neglecting RG effects for the moment,
∆µ can be approximately expressed in terms of m2

Hu
as

∆µ ≈
∣∣∣∣2m2

Hu

M2
Z

+ 1

∣∣∣∣ . (6.4)

Of course, in our numerical analysis later, the running of µ is included.
The discussion of the fine-tuning measures ∆a of other parameters is more involved

as they enter eq. (6.1) only via the RG evolution of m2
Hu

. It is, however, possible
to approximately express m2

Hu
as a polynomial in the high-energy parameters of the

theory, such that

∆a ≈
∣∣∣∣ aM2

Z

∂m2
Hu

∂a

∣∣∣∣ , (6.5)

for all parameters a 6≡ µ.
The coefficients of this polynomial depend strongly on the top Yukawa coupling

yt and the strong gauge coupling constant αs. Therefore it was argued in the litera-
ture that these two parameters should be included in the fine-tuning measure as well,
see, e.g. [80, 81]. However, since they are measured – in contrast to the parameters
introduced in the SM to MSSM transition – there are different approaches for includ-
ing them in the global fine-tuning measure ∆. In this study, we will follow previous
works [80, 81] and use the approach to weight them with their experimental uncertainty
σ, e.g. for yt,

∆yt =

∣∣∣∣ σyt2M2
Z

∂M2
Z

∂yt

∣∣∣∣ =

∣∣∣∣σytyt yt
2M2

Z

∂M2
Z

∂yt

∣∣∣∣ , (6.6)
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and similarly for the strong coupling constant. Note that we have to use the RG evolved
experimental error at the GUT scale, which is bigger than the lower energy one for the
top Yukawa coupling and smaller for the strong coupling constant. In our numerical
analysis later on, we used the mean values at low energies Mt = 172.9± 0.6± 0.9 GeV
(the top quark pole mass) [82] and αs(MZ) = 0.1184 ± 0.0007 [82] with the relative
uncertainties σrel

yt = 4% and σrel
αs = 0.2% at the GUT scale.

In the following, we present semi-analytical formulae for the dependence of the low-
scale m2

Hu
on the assumed fundamental soft SUSY breaking GUT-scale parameters,

which can be used to tell where one can expect a reduction in fine-tuning. Note
that, for the sake of simplicity and manageable equation size, we do not include the
parameters yt and αs in our semi-analytical discussion. Nevertheless, their effect will
be included in the numerical analysis as described above.

Going beyond tree level, one has to take into account loop effects [73, 79], which
modify the original eq. (6.1). The effect of this is two-fold. On the one hand, the
Higgs potential is obviously modified; on the other hand loop corrections also affect
the Higgs vacuum expectation value v. We will not go into a detailed discussion here,
but we notice that taking into account all the relevant corrections roughly reduces the
fine-tuning by a factor M2

Z/m
2
h, where mh is the light Higgs boson mass. Such an effect

is clearly sizeable in the parameter region of interest, where mh ∼ 126 GeV.
Before we come to the semi-analytical discussion, we would like to remark that a

fine-tuning measure should be taken with some caution. It is a matter of personal taste
how much fine-tuning one accepts as “natural” and also the used definition might differ
according to preference. Thus, we want to stress that the aim of this study is mainly
a comparison of different parameter regions. A relative difference in fine-tuning would
then render one region more attractive to us than another one.

6.2.1 Fine-Tuning with pMSSM Parameters

As mentioned above, we express m2
Hu

in terms of the GUT-scale parameters inspired
by the pMSSM low energy parametrisation, shown in sec. 3.3.1. In particular, we
consider the same parametrisation with one scalar soft mass for the first and second
generation and one for the third generation per sfermion type and take the gaugino
masses to be non-universal also at the GUT scale. Regarding the trilinear couplings,
we ignore the parameters for the first two generations and set them equal to the third
generation one. Instead of low-scale µ and the CP-odd Higgs mass mA0 , we use the
GUT-scale value of m2

Hu
and m2

Hd
as free parameters and denote them by m2

hu
and m2

hd
respectively the minimise the potential for confusion.

Due to the form of the RG equations of the soft breaking parameters (see e.g. [67]),
the dependence of the low energy scale m2

Hu
on the GUT-scale parameters can be
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written as

m2
Hu =

∑
i

aim
2
i +

1

2

∑
i,j

NibijNj , (6.7)

where the parameters m2
i are soft scalar masses and the parameters Ni ≡ (M1,M2,M3,

At, Ab, Aτ ) are the gaugino masses and trilinear couplings3, which we assume to be real.
The parameters ai are real and the matrix bij is a general symmetric (and real) 6× 6
matrix.

To make the deviation from the universality assumptions of the cMSSM more ob-
vious, we introduce the following dimensionless quantities:

ηα = Mα/M3 with α = 1, 2, 3 , ηi = Ai/M3 with i = t, b, τ , (6.8)

which, of course, implies η3 = 1. Thus we can write

Ni = M3 · (η1, η2, η3, ηt, ηb, ητ ) . (6.9)

The fine-tuning measure as introduced in eq. (6.3) can now be easily written down as

∆mi =

∣∣∣∣2ai m2
i

M2
Z

∣∣∣∣ , ∆m = max
i

∆mi , (6.10)

for the scalar masses, and for the other soft terms

∆Ni =

∣∣∣∣
∑

j NibijNj

M2
Z

∣∣∣∣ (no sum over i) , ∆N = max
i

∆Ni , (6.11)

and for µ

∆µ ≈
∣∣∣∣∣2
∑

i aim
2
i + 1

2

∑
i,j NibijNj

M2
Z

+ 1

∣∣∣∣∣ . (6.12)

Having this in mind, we turn to expressing m2
Hu

at the SUSY scale in the mentioned
parameters. For this, we use the best fit point found by the global cMSSM parameter
fit Fittino [83], corresponding to M3 = 1.016 TeV, mi = 0.504 TeV for every i, ηi =
Ni/M3 = (1, 1, 1,−2.825,−2.825,−2.825), tan β = 18 and µ positive. Using softSUSY

3.2.3 [84], we find the semi-analytical expansion

m2
Hu

∣∣
MSUSY

= 0.655m2
hu + 0.026m2

hd

− 0.048m2
Q̃1

+ 0.108m2
ũc1
− 0.049m2

d̃c1
+ 0.051m2

L̃1
− 0.051m2

ẽc1

− 0.342m2
Q̃3
− 0.267m2

ũc3
− 0.022m2

d̃c3
+ 0.025m2

L̃3
− 0.025m2

ẽc3

3To be explicit, the trilinear parameters Ax are defined such that, e.g., the trilinear matrix Au is
given by Au = AtYu at the GUT scale. They are thus a generalisation of the cMSSM parameter A0.
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+M2
3 (0.0030 η2

b − 0.1191η2
t + 0.0018 η2

τ )

+M2
3 (0.0008 ηbηt + 0.0006 ηb ητ + 0.0003 ηt ητ ) (6.13)

+M2
3 (0.2790 ηt + 0.0066 ηb + 0.0118 ητ )

+M2
3 η1 (0.0131 ηt + 0.0001 ηb + 0.0001 ητ )

+M2
3 η2 (0.0713 ηt − 0.0006 ηb − 0.0012 ητ )

−M2
3 (1.3460 + 0.0346 η1 − 0.0165 η2

1

+ 0.1392 η2 − 0.2256 η2
2 + 0.0052 η1 η2) ,

where η3 has already been replaced with 1. Already at first glance, it is easy to see that
the most significant contributions come from the stop and Higgs soft mass parameters
and from the gluino mass.

The coefficients ai of eq. (6.7) can be directly read off from eq. (6.13). In order to
show the terms involving the parameters ηi = Ni/M3 in a transparent way, we also
display the coefficients bij as a (symmetric) matrix:

bij =


0.033 −0.0052 −0.0346 0.0131 0.0001 0.0001

0.4512 −0.1392 0.0713 −0.0006 0.0012
−2.6920 0.2790 0.0066 0.0118

−0.2382 0.0008 0.0003
0.0060 0.0006

0.0036

 . (6.14)

Even though the coefficients ai and bij were numerically obtained in the vicinity of a
specific point in parameter space, we checked that they provide a reasonably accurate
estimate of m2

Hu
in wide regions of parameter space. The corresponding uncertainty

of the coefficients can be estimated as roughly of the order of 10− 20%. This is good
enough for the qualitative discussion we present on possible strategies to reduce the
fine-tuning in the following subsections. Nevertheless, the results we present in sec. 6.4
are based on a full numerical analysis, with the RG evolution and fine-tuning of all
parameters computed in each point of the parameter space separately.

6.2.2 Our Strategy

In order to find SUSY breaking schemes with reduced fine-tuning, we assume that the
underlying model of SUSY breaking predicts certain fixed relations between the SUSY
breaking parameters at a high energy scale (e.g. at the GUT scale). As a consequence,
cancellations among different terms in eq. (6.13) can occur naturally, which can lead
to a reduced fine-tuning. Such a behaviour is a well-known property of models with
universal scalar masses (like the cMSSM), for which the coefficients ai in eq. (6.13)
cancel almost completely.4

4This property is known as “focus point” [85, 86].
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As mentioned above, the coefficients ai and bij depend strongly on the top Yukawa
coupling and the strong coupling constant and thereby both enter the fine-tuning
measure. Following our discussion before, we weight the individual fine-tuning in these
quantities by their experimental uncertainty. It turns out that the fine-tuning in the
strong coupling constant is then very small and only the fine-tuning in yt plays a role.
Due to the rather involved dependence of the coefficients on these two parameters
we will only include their effects in the numerical results. For the semi-analytical
discussion here, we have fixed yt and αs, and checked that varying them within their
experimentally allowed ranges does not change the results qualitatively.

In the light of the Higgs discovery, the cMSSM unavoidably has a certain amount of
fine-tuning either from quite heavy squarks or from a large A-term (in maximal mixing
scenarios). In this study, we therefore consider the possibility that the underlying
theory predicts different, non-universal (but fixed) boundary conditions at the GUT
scale, namely non-universal scalar masses (NUSM) and non-universal gaugino masses
(NUGM). Although such relations may not hold exactly in realistic models, they may
guide towards more natural SUSY scenarios.

6.2.3 Fine-Tuning from the Scalar Sector Parameters

We will now discuss possible NUSM scenarios motivated by different unified theory
symmetry groups. First, let us point out that the assumption of sfermion soft mass
universality as in the cMSSM features a significant reduction of fine-tuning due to an
almost-complete cancellation between the largest contributions in eq. (6.13), i.e. be-
tween the term with m2

hu
and the terms with m2

Q̃3
and m2

ũc3
. From the point of view of

naturalness, a similar relation between m2
hu

and m2
Q̃3
,m2

ũc3
is therefore desirable.

Let us now consider non-universal fixed ratios for the soft scalar masses motivated
by unified theories: if we assume that the gauge couplings and the SM fields are
(partially) unified into a smaller set of couplings or irreducible representations as shown
in sec. 4.2, this automatically also means that certain soft breaking terms are related by
symmetry, i.e. they have a fixed ratio. The three candidates for the defining symmetry
groups we consider are SU(5) [46] and Pati–Salam [53], which can in turn both be
embedded in SO(10) [52]. For simplicity, we assume that possible higher order GUT
symmetry breaking corrections that induce further splittings within one irreducible
representation can be neglected in each case and that there is no splitting between the
soft terms of the first two generations as before.

• In the case of SU(5), eq. (6.13) reduces to

m2
Hu

∣∣
MSUSY

= −0.009m2
T̃1

+ 0.002m2
F̃1
− 0.634m2

T̃3
+ 0.003m2

F̃3

+ 0.655m2
hu + 0.026m2

hd

+ gaugino masses and trilinear terms ,

(6.15)
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where m2
T̃i

stands for the masses of the tenplets of SU(5), which contain the

coloured doublet, the up-type coloured singlet and charged lepton singlet fields
(m2

Q̃i
= m2

ũci
= m2

ẽci
= m2

T̃i
), and m2

F̃i
of the fiveplets of SU(5), which contain the

down-type coloured singlet and the lepton doublet fields (m2
d̃ci

= m2
L̃i

= m2
F̃i

).

We allow an arbitrary splitting of the Higgs fields from the other scalar mass
parameters and also between up and down Higgs themselves. One can clearly
see that the simplest option in order not to strongly increase the fine-tuning is to
impose a fixed relation where m2

T̃3
≈ m2

hu
, because otherwise one has to consider

the fine-tuning from each parameter separately and has to deal with the two
large coefficients, cf. eq. (6.3).

• Turning to the case of Pati–Salam, we find

m2
Hu

∣∣
MSUSY

= 0.003m2
l̃1

+ 0.008m2
r̃1
− 0.317m2

l̃3
− 0.314m2

r̃3
+ 0.681m2

h

+ gaugino masses and trilinear terms ,
(6.16)

where, in this case, l̃ denotes the left-handed doublet fields (m2
Q̃i

= m2
L̃i

= m2
l̃i
), r̃

denotes the right-handed doublet fields (m2
ũci

= m2
d̃ci

= m2
ẽci

= m2
r̃i

) and h denotes

the Higgs bi-doublet (m2
hu

= m2
hd

= m2
h). The conclusions are similar to the

SU(5) case. The simplest fixed relation one can impose in order not to increase
fine-tuning compared to the cMSSM is m2

l̃3
≈ m2

r̃3
≈ m2

h.

• Finally, let us discuss the situation in SO(10) GUTs. Here, our assumptions
allow for independent soft mass terms of the matter fields, m2

161
and m2

163
and

for the Higgs fields m2
hu

= m2
hd

= m2
10 , yielding

m2
Hu

∣∣
MSUSY

= −0.011m2
161
− 0.631m2

163
+ 0.681m2

10

+ gaugino masses, trilinear terms ,
(6.17)

which implies that again, a fixed relation beyond the ones from the GUT itself
would have to be imposed (e.g. between m2

10 and m2
163

) in order to not to strongly
increase fine-tuning.

• A further more advanced possibility is given by the possibility that the sfermion
soft mass terms are given predominantly by D-term potential contributions, see
sec. 4.3.1. Parametrising the three possible linearly independent D-term contri-
butions as DY , DX and DS as defined in [55], one finds

m2
Hu

∣∣
MSUSY

= 0.217DY + 0.634DX + 0.668DS

+ gaugino masses, trilinear terms .
(6.18)
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Demanding that all D-term contributions to the sfermion soft breaking terms
remain non-negative, there is a unique fixed relation between the Di that min-
imises the resulting coefficient in eq. (6.18): DX = −DS, DY = 0. This can be
achieved via the existence (and spontaneous breaking) of a U(1) symmetry with
charges q(Q) = q(uc) = q(ec) = 0 = q(Hu) and q(dc) = q(L) = 1 = −q(Hd)
up to normalisation. It might thus be compatible with SU(5) and would imply
vanishing sfermion soft mass terms for all component fields inside ten-plets (as
well as Hu) at the GUT scale. Unfortunately, this simply means that there is no
fine-tuning because the parameters with the largest coefficients are zero.

A few further comments are in order. First, one can see that the soft terms for
the first two families enter with small coefficients into m2

Hu
. This illustrates the well-

known fact that these soft masses can be significantly larger than the third family ones,
without paying a large price in fine-tuning. Furthermore, in the above discussion, we
have focused on fixed relations from GUT structures. As we have shown, with most
fixed relations alone one would increase fine-tuning compared to the cMSSM case.
From the above equations one can imagine additional fixed relations on top of these
structures which could come from a more fundamental theory and can in principle
reduce fine-tuning by leading to a cancellation in the contributions to m2

Hu
. However,

we will not investigate such cases in more detail here.
Another relevant point is that we have only discussed “direct” effects on the fine-

tuning, i.e. the effects on the fine-tuning measure around a given SUSY parameter
point. We note that there can also be “indirect” effects: namely when introducing a
non-universality allows to avoid certain constraints on the SUSY parameter space and
makes regions with lower fine-tuning accessible (e.g. a “compressed” spectrum helps
to evade constraints from direct SUSY searches at the LHC [87]).

Finally, let us note that small splittings in models where the soft parameters are
universal (cMSSM-like) at the leading order and get only corrected by small addi-
tional contributions (e.g. by higher dimensional operators in flavour models, see, for
instance, [88]) can have a certain degree of non-universality without increasing the
fine-tuning too much. However, large non-universalities (O(1)) again lead back to the
same situation as in the general case, as shown above.

In summary, the possibilities to reduce the fine-tuning with fixed relations between
sfermion soft mass parameters seem rather limited and mostly lead to the same relation:
sfermion mass universality as in the cMSSM. Otherwise, the fine-tuning increases
rather than decreases. We therefore consider this case complete and not study it in
more detail numerically.
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Figure 6.1: The two ellipses in the η1-η2 plane which minimise the fine-tuning in
the case on non-universal gaugino masses. The red ellipse corresponds to eq. (6.21a)
and the black one to eq. (6.21b).

6.2.4 Fine-Tuning from Gaugino Masses and Trilinears

Having discussed non-universalities in the scalar soft mass terms, we now turn to
gaugino masses and trilinear SUSY breaking couplings. Since they appear together in
the polynomial of eq. (6.13), they cannot be discussed separately. For simplicity, we
concentrate on the case where the trilinear couplings are universal ηt = ηb = ητ = ηA.
In principle, one can also try to reduce the fine-tuning by assuming fixed relations for
ηt, ηb, and ητ . This leads to a similar discussion as for gaugino masses except that the
required ratios will be quite large due to the smallness of the coefficients involving ηb
and ητ in eq. (6.13).

For the case of non-universality strictly in gaugino masses, the m2
Hu

polynomial
simplifies to

m2
Hu(MSUSY) = −M2

3 (1.3460 + 0.0346 η1 − 0.0165 η2
1

+ 0.1392 η2 − 0.2256 η2
2 + 0.0052 η1 η2)

+M2
3 ηA(0.2974 + 0.0132 η1 + 0.0718 η2)− 0.1125M2

3 η
2
A

+ scalar masses

≡ (f1(η1, η2) + f2(η1, η2) ηA + f3 η
2
A)M2

3 + . . . , (6.19)

where we have again used η3 = 1. The question is now under which conditions the
fine-tuning, as defined in eqs. (6.10) and (6.12), is minimised.
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Considering only the sector at hand, the overall fine-tuning is given by

∆ ≈
∣∣∣∣M2

3

M2
Z

∣∣∣∣max

{
|2 f3 η

2
A + f2(η1, η2) ηA|,

|2 f1(η1, η2) + f2(η1, η2) ηA|

}
. (6.20)

Setting these two contributions to zero yields two possible solutions:

Solution 1: f1(η1, η2) = 0, ηA = 0 , (6.21a)

Solution 2: f1(η1, η2) =
f2(η1, η2)2

4f3

, ηA = −f2(η1, η2)

2f3

. (6.21b)

With the parameters in eq. (6.19), the two solutions define two distinct ellipses in the
η1-η2 plane, as shown in fig. 6.1. Later, in our numerical analysis, we will see that this
is indeed a feature found in the parameter space.

Since the trilinear terms have a strong impact on the prediction of the Higgs boson
mass, it is important to discuss the behaviour of ηA in more detail. For the first
solution, the situation is trivial. The second solution can be re-written as

ηA = 1.3516 + 0.0593 η1 ± 0.7033
√

(1− 0.1138 η1)(1 + 0.1288 η1) ,

η2 = 0.0934 + 0.0021 η1 ± 2.2040
√

(1− 0.1138 η1)(1 + 0.1288 η1) ,
(6.22)

which implies that 0.52 < ηA < 2.24. Interestingly, this implies for example that in the
Fittino best fit point with ηA = −2.825, which we use as benchmark, the fine-tuning
cannot be made arbitrarily small by choosing appropriate η1 and η2. Nevertheless, the
fine-tuning can be reduced by a sizable factor: adjusting the gaugino mass ratios in
the benchmark point, we find a minimal fine-tuning in this sub-sector of

∆ = 1.93

∣∣∣∣M2
3

M2
Z

∣∣∣∣ for η1 = −4.60 and η2 = −2.64 , (6.23)

compared to ∆ = 3.65|M2
3/M

2
Z | for η1 = η2 = 1.

Having discussed the fine-tuning in M3 and ηA, we note that there are regions of
parameter space where the fine-tuning in µ is the dominant contribution to the over-all
∆. If we insert the solutions of eqs. (6.21a), (6.21b) into eq. (6.19), we see that in both
cases the contribution to m2

Hu
proportional to M3 vanishes completely (assuming ηA

fixed to the solution). Assuming there are no significant cancellations, this means that
|m2

Hu
| is decreased as well, which in turn also decreases ∆µ via eq. (6.4).

Regarding prior literature, we note that the first solution for the case ηA = 0 was
already found in [73] – albeit with a slightly different notation setting η2 = 1 instead of
η3 = 1. Consequently, hyperbolas were found instead of ellipses. The second solution,
however, was not discussed therein. Instead, in [71] a related case was studied where
also a fixed relation between the masses scales of gauginos and trilinear parameters
was assumed, while in our analysis ηA is a free parameter.
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6.3 Comments on SUSY Threshold Corrections

As shown in the previous chapter, the Yukawa coupling ratios at the GUT scale strongly
depend on the SUSY threshold correction at low scales. Notably for the third family,
phenomenologically interesting possibilities are, e.g., the standard bottom-tau Yukawa
unification yτ/yb = 1 or the alternative ratio yτ/yb = 3/2, see also [49]. Based on the
spectrum dependence of the SUSY threshold corrections, the GUT-scale Yukawa ratios
are thus interesting discriminators between GUT models and SUSY breaking schemes
respectively. Therefore, in this chapter, we also want to address the question whether
one GUT-scale Yukawa coupling relations might be preferred based on fine-tuning.

In the following, we discuss some details of the parameter dependence of the tan β
enhanced one-loop corrections to the Yukawa couplings of the down-type quarks and
the charged leptons [31, 32]. For example, for the bottom quark Yukawa coupling, we
can write

ySM
b = yMSSM

b (1 + εb tan β) cos β . (6.24)

The correction εb can be decomposed into [89, 33, 90]

εb ≈ εG + εB + εW + εy , (6.25)

where5

εG = −2αS
3π

µ

M3

H2(uQ̃3
, ud̃3) , (6.26a)

εB =
1

16π2

[
g′2

6

η1M3

µ

(
H2(vQ̃3

, x1) + 2H2(vd̃i , x1)
)

+
g′2

9

µ

η1M3

H2(wQ̃3
, wd̃3)

]
, (6.26b)

εW =
1

16π2

3g2

2

η2M3

µ
H2(vQ̃3

, x2) , (6.26c)

εy = − y2
t

16π2

ηtM3

µ
H2(vQ̃3

, vũc3) . (6.26d)

Here uf̃ = m2
f̃
/M2

3 , vf̃ = m2
f̃
/µ2, wf̃ = m2

f̃
/(η2

1M
2
3 ), xi = (η2

iM
2
3 )/µ2 for i = 1, 2 and

the loop function H2 is given by

H2(x, y) =
x lnx

(1− x)(x− y)
+

y ln y

(1− y)(y − x)
. (6.27)

In the cMSSM, it is possible to neglect εB and εW in a first approximation since they
are suppressed by the smaller gauge couplings. In NUGM scenarios, this is in general

5Here, all parameters ηi are to be understood as SUSY-scale values. These are, however, directly
proportional to the corresponding GUT-scale values to a good approximation (except for ηt).
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not true anymore because the suppression might be compensated by an enhancement
of the bino or wino mass parameter compared to the gluino one. This becomes quite
important if (and when) our expectation of η1 ∼ O(10) from fig. 6.1 also applies
numerically and can result in larger corrections than otherwise available.

Without some in-depth knowledge of the parameter space or simplifying assump-
tions, a quantitative statement is thus quite difficult. In general, one can expect signif-
icant corrections up to 50% for the GUT-scale Yukawa coupling ratios, see e.g. [33, 90].

6.4 Numerical Analysis

To improve our understanding obtained from the semi-analytical treatment, we turn to
our numerical analysis. To this end, we use a modified version of the spectrum calcu-
lator softSUSY [84] to calculate the SUSY spectra, GUT-scale Yukawa coupling ratios
and the fine-tuning. The modifications to softSUSY consist of including the already
mentioned one-loop corrections to fine-tuning and the SUSY threshold corrections for
the Yukawa couplings of all three fermion generations [31, 32, 89, 33, 90].

In a second step, we use the program SuperIso [91] in order to check experimental
constraints for the observables BR(b→ sγ), BR(Bs → µ+µ−) and BR(Bu → τντ ). The
experimental ranges that were considered are: BR(b→ sγ) = (355±24±9) ·10−6 [92],
BR(Bs → µ+µ−) < 4.5 · 10−9 at 95% CL [93] and BR(Bu → τντ ) = (1.41 ± 0.43) ·
10−4 [94].

Additionally, LEP bounds [82] on sparticle masses were applied and we discarded
points where the τ̃ is the lightest supersymmetric particle (LSP) and points leading
to colour and charge breaking (CCB) vacua6. To study the impact of the Higgs boson
discovery, we present results both with and without the Higgs mass constraint. Note
that including constraints from direct SUSY searches at the LHC is not as straightfor-
ward and we will therefore only show a comparison with simplified model searches for
illustrative purposes.

Concerning the 3.2σ level (g − 2)µ discrepancy from the Standard Model expecta-
tion [96], for this study, we consider it an experimental evidence that, while certainly
interesting, still requires a full experimental confirmation from next generation exper-
iments, such as those proposed at J-PARC [97] and at Fermilab [98]. For this reason,
we have not imposed strict constraints on the spectrum based on this discrepancy. In
fact, in the considered scenario, we find only very few and isolated points which satisfy
(g − 2)µ at 2σ and predict a Higgs boson mass in agreement with the recent results.
However, all of them correspond to a fine-tuning larger than O(100).

We have also not imposed constraints for the neutralino relic density nor from direct
and indirect dark matter searches. Such constraints can be evaded by non-standard

6We use the so called ‘traditional’ bound [95]: |(Au)33|2 < 3 y2
t [(m2

Q̃
)33 + (m2

ũc)33 + m2
Hu

+ |µ|2]

and similar formulae for Ad and Ae.
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Figure 6.2: Lowest fine-tuning in the (a) η1-η2, (b) m-M3, (c) ηA-M3 and (d) yt/yb-
yτ/yb planes consistent with the experimental bounds described in the text. For
explanations of the parameters, see main text. The Higgs mass constraint is not
included. The 1σ errors on the quark masses [82] are taken into account by scaling
data points into error ellipses in the last plot correspondingly.

cosmological histories or a different LSP like the gravitino or the axino. Nevertheless,
it is interesting to note that, in the region η2 . 0.5 η1, the lightest neutralino is
predominantly wino- or Higgsino-like, which implies that the canonically determined
relic density is strongly suppressed. For these parameter regions, one cannot explain
dark matter by thermal relic neutralinos, but at least there is no overproduction of
them.

6.4.1 Before LHC Higgs and SUSY Results

As discussed previously, we expect to find an ellipse shaped region in the η1-η2 plane
where fine-tuning is significantly lower than in the other parts of the parameter space,
especially compared to the cMSSM.
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Figure 6.3: Lowest fine-tuning in the cMSSM in the (a) m0-M3, (b) ηA-M3 and
(c) yt/yb-yτ/yb planes consistent with the experimental bounds described in the text.
For explanations of the parameters, see main text. The Higgs mass constraint is not
included. The 1σ errors on the quark masses [82] are taken into account by scaling
data points into error ellipses in the last plot correspondingly. In plot (a), we also
included the LHC exclusion limits [99, 100, 101] as solid, dashed and dotted lines
respectively for illustrative purposes – these were not applied as constraint anywhere.
Note the different scale for M3 and different point density for yt/yb due to different
values for tanβ compared to fig. 6.2.

To study this in detail, we performed a parameter scan over the following region
in NUGM parameter space: the soft scalar mass parameters were set to be universal
mi = m for every i and varied from 0 to 4.5 TeV, the GUT-scale gluino mass M3 from
0.15 to 2 TeV, and ηt = ηb = ητ = ηA from −20 to 20 for tan β = 2, 10, 15, 20, . . . , 60.7

For the ranges of the gaugino mass ratios, we scanned over −40 ≤ η1 ≤ 45 and
−10 ≤ η2 ≤ 10. Both signs for µ were allowed. In the scan, we have dropped all points

7Note that in the data for the cMSSM part of the scan, taken from [6], tanβ only takes the values
10, 15, 20, 30, 40, 50.
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with a fine-tuning larger than 200.
Fine-tuning was calculated for the parameters m, µ, A0 = ηAM3, M3, yt and αs.

Tuning in the ratios η1, η2 was neglected as they were assumed to be fixed by some
underlying model. In all plots where contours are shown instead of points only, outliers
that are very far away from their neighbours are still shown as isolated points instead
of being incorporated into the contour. In addition, unless stated otherwise, all plots
show values marginalised over parameters not shown.

As shown in fig. 6.2a, we indeed find an ellipse shaped region that allows for quite
low fine-tuning without being excluded by experimental bounds. While the semi-
analytical results shown in fig. 6.1 do not exactly reproduce the numerical results,
they still give a good qualitative understanding. Compared to the cMSSM with the
same experimental bounds, we find a fine-tuning ∆ lower than 3 instead of just below
10, see fig. 6.3. In the following, we will focus on this elliptical region of low fine-
tuning and consider only points in the η1-η2 plane where the minimal fine-tuning is
∆min < 10.8 The curve in fig. 6.2a, where the fine-tuning has its minimum in the η1-η2

plane, is approximately given by the ellipse( η1

15.0

)2

+
( η2

2.6

)2

= 1 . (6.28)

Next, we take a closer look at the dependence of fine-tuning on the other parame-
ters. In fig. 6.2b, we can clearly see that introducing non-universal gaugino masses can
significantly weaken the dependence of ∆min on the gaugino mass scale compared to
the cMSSM in fig. 6.3a. While the latter only allows for a minimal fine-tuning lower
than 20 for M3 < 400, the same now applies up to M3 ∼ 2.2 TeV. On the other hand,
the fine-tuning dependence on m (resp. m0 in the cMSSM) remains largely unchanged.

Furthermore from fig. 6.2c, we can roughly see the same behaviour for large ηA as
in fig. 6.3b, while for small ηA from −2 to 4 we find two peaks at ηA = 0 and ηA ∼ 2.
These are the values for ηA required for solution 1 and the upper end of the range
quoted for solution 2 of eqs. (6.21a), (6.21b) respectively.

Finally, for the GUT-scale Yukawa coupling ratios shown in fig. 6.2d and 6.3c, a
few comments are in order. First, we note that the semi-discrete nature of the plot
in the yt/yb direction is directly related to the discrete values over which we scanned
tan β. Next, we notice that, in contrast to our analysis in [6], the ratios in the cMSSM
found here are much more restricted – however, with the same conclusion that a b-τ
Yukawa coupling ratio of 3/2 is favoured by fine-tuning compared to 1. This difference
is made up entirely by the exclusion of colour and charge breaking vacua. On the
other hand, going to non-universal gaugino masses restores most of the freedom in
Yukawa coupling ratios (as expected from possible enhancements of εW and εB) and

8Depending on the other parameters, this restriction can cause the minimal fine-tuning in other
projections to increase but, interestingly, this does not significantly change the appearance of all
affected plots, indicating that being on the ellipse is indeed a necessary condition for small fine-tuning.
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as expected the fine-tuning price of all ratios is reduced greatly. Again comparing the
b-τ Yukawa coupling ratio of 3/2 with the case of b-τ Yukawa unification yields a slight
preference for 3/2 with a minimal fine-tuning of ∆ ∼ 5 vs. 9.

6.4.2 Results including LHC Higgs and SUSY Searches

In the light of the discovery of the Higgs boson at the LHC, it is interesting to analyse
the consequences of non-universal gaugino masses for naturalness of the (non-universal)
MSSM under this additional aspect. In fig. 6.4, we show the same plots as in fig. 6.2
with the additional experimental constraint from the CMS experiment, mh = 125.3±
0.6 GeV [102], on top of which we include a theoretical uncertainty of ±3 GeV [103]
for the Higgs mass calculation at each point in parameter space.

As one can see in fig. 6.4a, non-universal gaugino masses can accommodate this
additional constraint even with a fine-tuning lower than 20 – actually just above 10
and in a very small region of parameter space even slightly below 10. This happens,
e.g., around η2 ∼ 0, η1 ∼ 15 and to a lesser degree also around η1 ∼ 0, η2 ∼ 2.6 and
in the part of the ellipse in between. The reasons why these regions are favoured after
including the Higgs results can readily be deduced from the beta functions [67] of the
stop soft masses and the stop trilinear coupling (at the GUT scale):

16π2βm2
Q̃
⊃ −g2

GUTM
2
3

(
32

3
+ 6η2

2 +
2

15
η2

1

)
≡ −g2

GUT M
2
3 fQ(η1, η2) , (6.29a)

16π2βm2
ũc
⊃ −g2

GUTM
2
3

(
32

3
+

32

15
η2

1

)
≡ −g2

GUT M
2
3 fu(η1, η2) , (6.29b)

16π2βAt ⊃ −g2
GUTM3

(
32

3
+ 6η2 +

26

15
η1

)
≡ −g2

GUTM3 fA(η1, η2) . (6.29c)

The dependence of the functions fQ, fu and fA on η1 ≡ rη cosφ, η2 ≡ rη sinφ on the
approximative ellipse given by eq. (6.28) is shown in fig. 6.5. It can easily be seen that
the gaugino mass contribution to right-handed stop masses is greatly enhanced for the
angles φ = 0, π, i.e. η2 = 0, |η1| ∼ 15, while it does not significantly differ from the
cMSSM value elsewhere. The contribution to the left-handed stop mass, on the other
hand, receives a smaller but still sizable enhancement over the cMSSM value, but does
not vary as much along the ellipse. Furthermore for φ = 0, i.e. η1 ∼ 15 and η2 = 0,
the contribution to the running of At receives a sizeable enhancement, which is present
to a lesser degree also for φ = π/2, i.e. η1 = 0 and η2 ∼ 2.6. However, for angles in
the other quadrants, where at least one ηi is negative, the cancellation with the large
gluino mass running contribution precludes a similar enhancement in fA. In practice,
these three effects turn out to be effective only when they work in unison to obtain a
high enough Higgs mass without entailing increased fine-tuning.

The changes in fig. 6.4b are not very surprising: regions with low masses get cut
off. Also the changes in fig. 6.4c are not unexpected, the solution with ηA > 0 is
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disfavoured more than the solution with ηA ∼ 0, as the latter does not suffer from the
cancellation with the gluino mass contribution to the running of the top trilinear soft
term. Unsurprisingly, either large ηA or large M3 (hence large top trilinear coupling)
is needed to accommodate a consistently large Higgs mass.

Regarding the Yukawa coupling ratios shown in fig. 6.4d, we see that the minimal
fine-tuning required for a unified b-τ Yukawa coupling ratio suffers more from the
requirement of a consistent Higgs mass than the ratio of 3/2. Namely after applying
the constraint, the fine-tuning for yτ/yb = 3/2 can go down to ∆ = 30, while yτ = yb
requires at least a ∆ of 60. This is also nicely illustrated in fig. 6.6, where we have shown
the interplay between the Higgs mass, the GUT-scale yτ/yb ratio and the minimal
amount of fine-tuning ∆.

Another important aspect of LHC experiments are the searches for superpartner
particles. Since changes in the gaugino mass ratios η1 and η2 can significantly alter
the composition of the lightest neutralino9 as well as the mass splittings controlling
jet energies and missing ET from the cascade decays, the exclusion regions for the
cMSSM do not apply anymore. A full event and detector simulation would, however,
go beyond the scope of this study. Instead, we make use of exclusion bounds derived
in so-called simplified model searches [104, 69]. For simplicity, we simply juxtapose
the spectra found by the numerical scan with some representative bounds in several
simplified model types. While this is not a rigorous approach, it should serve as general
guidance how endangered by exclusion each point is.

The resulting situation is shown in fig. 6.7. Without the Higgs mass constraint, in
most plots, the region with ∆ < 3 is partially inside the excluded region, while even
∆ < 10 extends far beyond the bounds. Requiring a Higgs boson within 1σ of the
experimental measurement [102] (including 3 GeV theoretical uncertainty as explained
before) even excludes more than what direct SUSY searches exclude in some areas. It
is important to note that, even in this quite restrictive approach, all of the parameter
space with high mh and ∆ < 20 is safe from being excluded by the shown constraints.

Furthermore, it is also interesting to look at the correlation between the Higgs and
several sparticle masses, which is shown in fig. 6.8. Here, we can see that for low
fine-tuning relatively light neutralinos and charginos are expected. This is due to the
fact that µ is small in this region, so that Higgsinos are expected to be light. Also,
the gluinos and the lightest stop can be rather heavy in our scenario with low fine-
tuning (∆ < 20 for mg̃ & 1.5 TeV and mt̃1 & 1.0 TeV). The LHC still has not reached
this region of parameter space. Hence stating that all natural regions of the MSSM
parameter space are already ruled out seems to be premature.

9Actually, low fine-tuning generally also means quite low µ, so Higgsino-like lightest neutralinos
and charginos are quite likely.
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η1, η2 ∆min Origin

1, 1 118 cMSSM (Gaugino Unification)

10, 2 12 200 of SU(5) [56]
19
10

, 5
2

18 770 of SO(10)→ (1, 1) of SU(4)× SU(2)R [56]
77
5

, 1 36 770 of SO(10)→ (1, 0) of (SU(5)′ × U(1))flipped [56]

−1
5
, 3 46 210 of SO(10)→ (75, 0) of (SU(5)′ × U(1))flipped [56]

21
5

, 7
3

13 O-II with δGS = −6 [57, 73]
17
5

, 2 28 O-II with δGS = −7 [57, 73]
29
5

, 3 44 O-II with δGS = −5 [57, 73]

Table 6.1: Selected theoretically motivated ratios and the minimal possible fine-
tuning they allow after imposing the experimental constraint mh = 125.3± 0.6 GeV
[102] with a theoretical uncertainty of ±3 GeV [103] for the Higgs mass calculation.
Only ratios that can reduce the fine-tuning by at least 50% compared to the unified
(cMSSM) scenario are shown. For more details on the origin of these ratios, see
e.g. [56, 73, 57]. The results are illustrated graphically in fig. 6.9.

6.4.3 Favoured Non-Universal Gaugino Mass Ratios

As mentioned in sec. 4.3.2, fixed non-universal gaugino mass ratios may originate
from various high energy models, for instance from GUTs or orbifold scenarios (see,
e.g. [56, 73, 57] for discussions). In tab. 6.1 and fig. 6.9, we show examples of proposed
fixed ratios η1, η2 for which we find that the fine-tuning can be reduced by more than
50% compared to the cMSSM.

Interestingly, among the orbifold models O-II of [57, 73], from the full numerical
results including the constraints from the LHC Higgs results, we find that the option
(η1, η2) = (21

5
, 7

3
) based on δGS = −6 has the lowest possible fine-tuning with ∆min = 13.

In contrast, based on analytical estimates in [73] and before the Higgs results were
available, the preferred ratio was (η1, η2) = (29

5
, 3) with δGS = −5.10

The GUT ratios with the lowest fine tuning, with ∆min = 12, turns out to be
(η1, η2) = (10, 2). For the ratios found to be favoured in [73], we find significantly higher
fine-tuning, e.g.: ∆min = 82 for (η1, η2) = (−5, 3), ∆min = 141 for (η1, η2) = (−101

10
,−3

2
),

∆min = 143 for (η1, η2) = (1,−7
3
).

Finally, as discussed at the beginning of sec. 6.4, for η2 < 0.5 η1, the neutralino is
dominated by its wino (or Higgsino) component. This implies that the relic density

10The parameter δGS is a negative integer constant associated with Green-Schwarz anomaly cancel-
lation, cf. [57, 73]. The gaugino mass ratios are then ηi = −δGS+bi, with the beta function coefficients
bi = (33/5, 1,−3).
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is strongly suppressed and there is therefore no danger of overproducing thermal neu-
tralino dark matter. Among the ratios listed in tab. 6.1, this applies to (η1, η2) = (10, 2)
and (η1, η2) = (77

5
, 1). For the other ratios of tab. 6.1, η2 > 0.5 η1 holds and, at least

in principle, thermal neutralino dark matter could be possible, assuming a standard
thermal history of the universe. As already mentioned, we have not applied dark mat-
ter constraints in our analysis to not impose model-dependent choices on the thermal
history of the universe.
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Figure 6.4: Lowest fine-tuning in the (a) η1-η2, (b) m-M3, (c) ηA-M3 and (d) yt/yb-
yτ/yb planes consistent with the experimental bounds described in the text. For
explanations of the parameters, see main text. In contrast to fig. 6.2, we have included
the CMS experimental constraint mh = 125.3 ± 0.6 GeV [102] and a theoretical
uncertainty of ±3 GeV [103] for the Higgs mass calculation at each data point. The
1σ errors on the quark masses [82] are taken into account by scaling data points into
error ellipses in the last plot correspondingly.
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Figure 6.6: Lowest fine-tuning in the mh-yτ/yb plane consistent with experimental
bounds described in the text for non-universal gaugino masses (left) and universal
gaugino masses (right). The horizontal lines correspond to the 1σ error of 0.6 GeV
around 125.3 GeV as claimed by the CMS collaboration [102]. The 1σ errors on the
quark masses [82] are taken into account by scaling the data points into error ellipses
correspondingly. In addition, a theoretical uncertainty of 3 GeV [103] for the Higgs
mass calculation at each point in parameter space is included.
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Figure 6.7: Lowest fine-tuning in various planes used for simplified models. Only
points consistent with experimental bounds described in the text are shown. In
addition, for the plots on the second and fourth line, the points are subjected to the
experimental constraintmh = 125.3±0.6 GeV [102] assuming an additional theoretical
uncertainty of ±3 GeV [103] for the Higgs mass calculation. The corresponding
bounds due to LHC SUSY searches [69] are shown as thick dark red lines. Note that
the bounds should only be used for general guidance on how direct SUSY searches
at the LHC affect our results, as we did not perform a full detector simulation. For
more details, see the main text.
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Figure 6.8: Lowest fine-tuning shown for the Higgs mass vs. important sparticle
masses including the experimental constraint mh = 125.3 ± 0.6 GeV [102] and a
theoretical uncertainty of ±3 GeV [103] for the Higgs mass calculation at each point.
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Figure 6.9: Lowest fine-tuning in the η1-η2 plane consistent with the experimental
constraint mh = 125.3± 0.6 GeV [102] including a theoretical uncertainty of ±3 GeV
[103] for the Higgs mass calculation. Theoretically motivated ratios that reduce the
fine-tuning compared to the unified scenario by at least 50% and the analytical ex-
pectation are marked as follows: the gaugino unification, i.e. cMSSM, is marked as
empty diamond, circles correspond to ratios derived from GUT symmetry breaking
[56] and squares to ratios found in the so-called O-II model in [57, 73]. For more
details see tab. 6.1.
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CHAPTER 7

Large θPMNS
13 in Unified Theories

7.1 Motivation

The origin of the quark and lepton masses and mixing parameters and the structure
of their sizes is and has been one of the biggest mysteries in particle physics. As
seen in chap. 5, the quark mixing angles and Yukawa couplings are rather small and
hierarchical with

θCKM
13 ≈ 0.20◦ , θCKM

23 ≈ 2.4◦ , θCKM
12 ≡ θC = 13.02◦ , (7.1)

while the neutrino mixing angles [16] are rather large with

θPMNS
23 ≈ 45◦ , θPMNS

12 ≈ 35◦ . (7.2)

Soon it was realised that the smallness of mixing angles and Yukawa couplings can
be realised by associating them with a vacuum expectation value that spontaneously
breaks a so-called family symmetry and induces Yukawa couplings by appearing in
appropriate effective higher-dimensional operators [105], leading to relations of the
form y ∼ 〈H〉/M for some suppression scale M and symmetry breaking field H. On
the other hand, the large lepton mixing angles were found to be realised to good
precision within the framework of (discrete) family symmetries, leading exactly to
so-called tri-bimaximal mixing [106]

θPMNS
23 = 45◦ , θPMNS

12 = 35.3◦ , θPMNS
13 = 0 . (7.3)

This is, of course, a very discouraging prediction for experiments that are trying to
observe θPMNS

13 at a sensitivity of a few degrees.
One way to deviate from this without sacrificing predictivity is to use a structure

of the following form. The quark mixing is assumed to come only from the down-type
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quark sector. Thus setting the 1-1 element of the Yukawa matrix of the down and
strange subsector to 0 as in

Yd =

(
0 a
b c

)
, (7.4)

fixes all parameters as functions of yd, ys and θC (neglecting SUSY threshold corrections
and assuming no significant effects from third generation mixing). If we now impose
an SU(5) connection between Yd and Ye with a Clebsch-Gordan (CG) factor of −3 in
the 2-2 matrix entry of Ye, e.g. via Hd contained (partially) in a 45 representation, we
get

Y T
e =

(
0 a
b −3 c

)
. (7.5)

This leads to the “Georgi-Jarlskog” [48] mass relations

mµ = 3ms , me =
1

3
md , (7.6)

if we interpret theses masses to be GUT-scale Yukawa couplings times the electroweak
VEV. Additionally, the non-vanishing mixing θe12 ≈ θC/3 in the e-µ sector corrects a
tri-bimaximal neutrino sector so that

θPMNS
13 ≈ 1

3
√

2
θC ≈ 3◦ . (7.7)

For a time, this was an interesting if somewhat common prediction [107], which was
at least within the realm of possibility for detection at reactor neutrino experiments.

However, in 2011 and 2012 it became falsified when the third leptonic mixing angle
θPMNS

13 was measured by T2K, DoubleCHOOZ, DayaBay and RENO, see [22], such that
recent global fits [16] find

θPMNS
13 = 8.5◦ ± 0.2◦ . (7.8)

Additionally, judging from eq. (5.14), the Georgi-Jarlskog mass relations of eq. (7.6) are
now also in tension with experimental data or demand more involved SUSY threshold
corrections to be valid.

Thus, it is interesting to address the following questions:

• How can one get such a large reactor angle θPMNS
13 without sacrificing the predic-

tivity of the Georgi-Jarlskog setup?

• Can we generalise the Georgi-Jarlskog relation in a way that is consistent with
current flavour data for neutrino mixing and fermion masses?

• Can we still postdict θPMNS
13 as a simple function of other flavour quantities?
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• What are the possible values for θPMNS
13 in such a setup, in particular, is there a

maximum and what is it?

• What constraints does this impose on the structure of the flavour model?

This chapter will thus show a simple generalisation of the Georgi-Jarlskog mass re-
lations and what conditions it has to fulfil to reproduce all relevant data sufficiently
well. It is based on the publications [8] and [9] and represents an updated view on
their contents.

7.2 Non-GUT Conditions and Assumptions

First, we will formulate some general conditions and assumptions that characterise
the Georgi-Jarlskog scenario and incidentally find application in many flavour models.
Nonetheless, let it be noted that, while these conditions are satisfied very frequently,
they may not be the only way to realise a flavour model that reproduces all current
data with less parameters than fitted flavour quantities, although such models might
then not resemble the Georgi-Jarlskog scenario very much.

Motivated by the hierarchical structure of quark masses and mixing angles, we will
assume that the three Yukawa matrices Yu, Yd and Ye are also hierarchical in structure,
which in particular implies that the left-mixing angles (denoted as θuij, θ

d
ij and θeij) are

all comparatively small, i.e. of at most size comparable to the Cabibbo angle θC , as is
typical for GUT flavour models in the flavour basis. Let us revisit the relations among
the mixing parameters in these three sectors together with the mixing in the neutrino
sector (angles denoted by θνij). For this, it is useful to remind ourselves of the standard
parametrisation for unitary matrices using Euler angles and all complex phases

U = diag(eiδe , eiδµ , eiδτ ) · V · diag(e−iϕ1/2, e−iϕ2/2, 1) (7.9)

where

V =

 c12c13 s12c13 s13e−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13

s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13

 (7.10)

with cij and sij denoting cos θij and sin θij, respectively. The mixing matrices appearing
in charged currents in terms of the sub-sector mixing matrices are given by

VCKM = V †uVd , VPMNS = V †e Vν , (7.11)

Beginning with the quark sector and expanding to leading order in the small mixing
angles, we obtain the following relations between CKM angles and up- and down-type
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quark mixing [108]:

θCKM
12 e−iδCKM

12 = θd12e
−iδd12 − θu12e

−iδu12 , (7.12a)

θCKM
23 e−iδCKM

23 = θd23e
−iδd23 − θu23e

−iδu23 , (7.12b)

θCKM
13 e−iδCKM

13 = θd13e
−iδd13 − θu13e

−iδu13 − θu12e
−iδu12(θd23e

−iδd23 − θu23e
−iδu23) , (7.12c)

where the standard Dirac CP phase δCKM in VCKM can be identified as (cf. [109])

δCKM = δCKM
13 − δCKM

23 − δCKM
12 , (7.13)

and the phases δuij and δdij are associated with the rotation angles θuij and θdij in the up-
and down-type quark sectors, using the same notation as in [108]. As can be seen, this
alternative phase convention has advantages for the formulation of mixing sum rules
and is straightforward in its translation back to standard parametrisation.

Similar formulae are also valid in the lepton sector, where we obtain to leading order
in a small angle expansion treating θPMNS

13 as a small parameter [110] and assuming
that the 2-3 and 1-2 neutrino mixing angles are large:

sPMNS
12 e−iδPMNS

12 = sν12e−iδν12 + θe13c
ν
12s

ν
23ei(δν23−δe13) − θe12c

ν
23c

ν
12e−iδ

e
12 , (7.14a)

sPMNS
23 e−iδPMNS

23 = sν23e−iδν23 − θe23c
ν
23e−iδe23 , (7.14b)

θPMNS
13 e−iδ

PMNS
13 = θν13e−iδν13 − θe13c

ν
23e−iδe13 − θe12e−iδe12(sν23e−iδν23 − θe23e−iδe23) , (7.14c)

where the leptonic CP phases follow the relations

δPMNS
23 = −ϕ

PMNS
2

2
, δPMNS

13 = δPMNS− ϕPMNS
1

2
, δPMNS

12 =
1

2

(
ϕPMNS

2 − ϕPMNS
1

)
. (7.15)

The phases ϕPMNS
1 and ϕPMNS

2 are the Majorana phases and δPMNS is the Dirac CP
phase. The relations of eqs. (7.12) and (7.14) quickly lead us to two conditions.

Condition 1: As can be seen from eqs. (7.14), θPMNS
13 is comprised of contributions

from θν13, θe13 and θe12 (at leading order). Taking into account the assumed hierar-
chical structure of the quark mixing angles also replicated in θeij, the contribution
from θe13 is usually too small to generate θPMNS

13 of sufficient magnitude. On the
other hand, θν13 constitutes a so far unconstrained parameter, so it would a priori
not be beneficial for predictivity to use it as the source of θPMNS

13 . Thankfully, the
Cabibbo angle, i.e. the 1-2 CKM angle, is just of the same order of magnitude
as θPMNS

13 . Thus we formulate the first condition to be given by

θν13 ≈ 0 , θe13 ≈ 0 . (7.16)
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Then the first two summands on the right side of eq. (7.14c) drop out and we
obtain, at leading order in small angles and independently of any phases,

θPMNS
13 ≈ θe12s

ν
23 ≈

1√
2
θe12 . (7.17)

In the last step, we have for now inserted a maximal neutrino mixing angle, i.e. θν23 =
45◦, to keep the discussion simple. We will come back to the effect of this simplification
later.

A second important ingredient of the Georgi-Jarlskog mass relations is given by
the connection between the Yd and Ye matrices. We will stick to this, even though a
connection between Yu and Ye might also be possible. However, the stronger hierarchy
in the up-type quark masses makes it more difficult to obtain mixing angles of order
O(θC) in Yu. Keeping this in mind, we arrive at the second condition.

Condition 2: Using Yd as source of mixing in Ye via GUT relations, we require that

θd12 = θC (7.18)

to a good approximation. This may be a consequence of θu12 � θd12, which is a
typical feature of models with hierarchical Yukawa matrices where the stronger
hierarchy in the up-quark sector implies the smaller mixing angles as mentioned
above.

Alternatively, one can also require θd12 = O(θC), where, however, the right hand
side is to be understood as a predictive (i.e. practically fixed) value involving a
model-dependent fixed number. One example is given by the scenario where θu13,
θd13 ≈ 0. This leads to θd12 ≈ 12.0◦ ± 0.3◦ via the quark mixing sum rule,

θd12 ≈
∣∣∣θCKM

12 − θCKM
13

θCKM
23

e−iδCKM
∣∣∣ . (7.19)

For more details, see. [108].

7.3 Conditions on Flavour GUT Structures

To arrive at a predictive setup for θPMNS
13 , we want to use the same style of GUT

relations as in the Georgi-Jarlskog scenario. It is desirable to keep the number of
parameters as small as possible, which means that the connection between parameters
of Yd and Ye must be one-to-one. We formulate this as the following condition:

Condition 3: To obtain predictive GUT relations, we require that the elements of the
Yukawa matrices Ye and Yd are each dominantly generated by one single joint
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GUT operator. In this case, the matrix elements are closely linked by group
theoretical CG factors, as discussed in sec. 4.2.

Focusing explicitly on the 1-2 submatrix of the first two families, which is a good
approximation since we assume a hierarchical structure of Ye and Yd, and on
Pati-Salam (PS) or SU(5) theories, we can write

Yd =

(
d b
a c

)
⇒


In PS: Ye =

(
cd d cb b

ca a cc c

)
,

In SU(5): Ye =

(
cd d ca a

cb b cc c

)
.

(7.20)

Here, ca, cb, cc and cd are the CG factors which relate the elements in the Yukawa
matrices Yd and Ye. Note that, in SU(5) GUTs, Yd is related to Y T

e , whereas
in Pati-Salam unified theories Yd is related directly to Ye. As can be seen, this
generalises the Georgi-Jarlskog scenario to more than the single CG factor of
cc = −3 and (initially) more parameters.

Available CG factors in SU(5) GUTs are, e.g.,

ca, cb, cc, cd ∈
{
−1

2
, 1,±3

2
,−3,

9

2
, 6, 9

}
, (7.21)

and in Pati-Salam models, e.g.,

ca, cb, cc, cd ∈
{

3

4
, 1, 2,−3, 9

}
, (7.22)

see [49] and [54]. For details on their viability in supersymmetric scenarios, see e.g. [49].
For simplicity, we will restrict ourselves to these CG factors.

Note that this condition can be somewhat relaxed in some cases. For instance,
only the matrix elements that enter the determination of θe12 are inevitably subject to
this requirement, while other elements are somewhat less constrained. However, this
can still lead to undesired consequences when considering corrections beyond the small
angle approximation, where all matrix elements might enter significantly, see sec. 7.5.

Additionally, the case where two operators featuring the same CG factor contribute
to the same matrix element is also implicitly covered by this condition as it does
not change the predictivity of the one-to-one connection between Yd and Ye. Note,
however, that in this case other connections between Yukawa matrices, namely the
ones responsible for proton decay might indeed lose predictivity, cf. app. D and sec. 8.4.

From the above, it is clear that the CG factors play an important role. For a
successful model, a consistent set of CG factors, leading also to viable mass relations
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for the first two families, has to be found. As has been studied in [8, 111], multiple
combinations of phenomenologically viable CG factors exist which can lead to a large
θPMNS

13 compared to the Georgi-Jarlskog case. A viable prediction only follows from a
subset of these combinations of CG factors, as we will now discuss in the context of
SU(5) GUTs and Pati-Salam unified theories.

7.3.1 Predictive Setups for θPMNS
13 in Pati-Salam Theories

To obtain a condition for the structure of the CG factors, it is useful to note that
in both SU(5) GUTs as well as Pati-Salam models the mixing angle θd12 is given to
leading order in small angle approximation by

θd12 ≈
∣∣∣∣bc
∣∣∣∣ !≈ θC . (7.23)

On the other hand, the 1-2 mixing angle θe12 is (in Pati-Salam models) given by

θe12 ≈
∣∣∣∣cb bcc c

∣∣∣∣ ≈ ∣∣∣∣cbcc
∣∣∣∣ θC , (7.24)

where the previous equation has been inserted in the last step. Finally, using eq. (7.17)
we obtain

θPMNS
13 ≈ θe12√

2
≈
∣∣∣∣cbcc
∣∣∣∣ θC√2

= 9.2◦
∣∣∣∣cbcc
∣∣∣∣ . (7.25)

In the spirit of the original Georgi-Jarlskog setup, we will first consider the case where
the 1-1 entry of both Yd and Ye is set to d = 0. Then, to leading order in small angle
approximation, the quark-lepton Yukawa coupling ratios are given by

yµ
ys
≈ |cc| ,

ye
yd
≈
∣∣∣∣cacbcc

∣∣∣∣ . (7.26)

Note that these relations are assumed to be valid at a very high scale. Thus they
already include possible SUSY threshold corrections.

In the following, we will restrict ourselves to the case cc = −3, as even the two
other choices closest to the (uncorrected) GUT-scale µ-s ratio of eq. (5.13), cc = 2 or
9, would need SUSY threshold correction exceeding 40%. Unfortunately, this leads to
the same mass relation as the Georgi-Jarlskog scenario [48] and thus no improvement
in this respect.

Assuming that the combined effect of the SUSY threshold corrections to quark and
lepton Yukawa couplings are such that cc is consistent with the relation for yµ

ys
given in

eq. (5.13) within the 1σ uncertainty, we can derive the corresponding e-d mass ratio,
assuming that the corrections are the same for the first and second generation. From
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this, we calculate the allowed range for the product |cacb| requiring to also be in the
1σ uncertainty range for the first generation mass ratio. The resulting range is given
by

cc = −3 ⇒ |cacb| ∈ [0.72, 0.94] . (7.27)

This reduces the list of viable values for ca and cb, as given in [54], to ca = 3/4, cb = 1
or vice versa and hence the ratio | cb

cc
| to the discrete values∣∣∣∣cbcc
∣∣∣∣ ∈ {1

4
,
1

3

}
, (7.28)

As one can see, even the largest ratio only reproduces the same value for θPMNS
13 as the

original Georgi-Jarlskog scenario in eq. (7.7), as shown in tab. 7.1, and is thus not large
enough to be consistent with the global fit value of 8.5◦, even if one includes corrections
as discussed later. Thus we conclude that a Pati-Salam model with a texture zero in
the 1-1 element of Yd and Ye is not viable.

Fortunately, in the case of d 6= 0, eq. (7.25) still applies to leading order in small
angle approximation and we can formulate a final condition for the GUT structure:

Condition 4 (PS): In Pati-Salam unified models, the CG factors for the operators
generating the 2-2 element and the 1-2 element are required to be equal,

|cb| = |cc| . (7.29)

The predictivity of the model can then be saved by requiring the matrices Yd and Ye
to be symmetric, reducing the number of parameters to the same as in the d = 0 case.
One example of such a scenario is discussed in sec. 7.5.

Note that, independently, this condition was also formalised in [112], where, how-
ever, the following case of SU(5) GUTs was not treated.

7.3.2 Predictive Setups for θPMNS
13 in SU(5) GUTs

As before, we will first focus on the case with vanishing 1-1 matrix element d = 0.
Then, contrary to Pati-Salam the charged lepton mixing angle is given by

θe12 ≈
∣∣∣∣ca acc c

∣∣∣∣ . (7.30)

Putting this together with the still valid eq. (7.26) yields a new relation for the reactor
angle,

θPMNS
13 ≈ 1√

2

ye
yµ

∣∣∣∣cccb
∣∣∣∣ 1

θd12

≈ 0.85◦
∣∣∣∣cccb
∣∣∣∣ θCθd12

, (7.31)
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where it is interesting to note that the dependence on the quark mixing angle is now
inverted. Analogous to Pati-Salam case, only a subset of values for cc is consistent
with the requirement of threshold corrections below 40%, namely −3, 9

2
and 6. These

restrict the CG factors ca and cb like before to

cc = −3 ⇒ |cacb| ∈ [0.72, 0.94] , (7.32a)

cc = 9
2
⇒ |cacb| ∈ [1.6, 2.1] , (7.32b)

cc = 6 ⇒ |cacb| ∈ [2.9, 3.7] . (7.32c)

Unfortunately, the choice cc = 9
2

yields no combinations of ca and cb that fall into this
range, as the threshold correction to the µ-s ratio is too small to shift the e-d ratio
to any of the values available from CG factors, assuming universality of the threshold
corrections over the first two generations.1 The other combinations lead to ratios as
appearing in eq. (7.31) of

cc = −3 ⇒
∣∣ cc
cb

∣∣ ∈ {2, 6} , (7.33a)

cc = 9
2
⇒

∣∣ cc
cb

∣∣ ∈ {} , (7.33b)

cc = 6 ⇒
∣∣ cc
cb

∣∣ ∈ {1, 2, 6, 12} . (7.33c)

As we can see from the corresponding values in tab. 7.1, only the single combination
with |cc/cb| = 12 yields a sufficiently large θPMNS

13 that can possibly be made consistent
with experimental data. Interestingly, it is also the only combination that was found
in [111] that was additionally consistent with the value for the ratio of down and
strange quark masses of [113].

This leads us to the following (first) formulation of the final condition for the case
of SU(5) GUTs:

Condition 4a (SU(5)): In case of vanishing 1-1 matrix elements of Yd and Ye, d = 0,
the group theoretical CG factors linking both matrices must have the values

cc = ca = 6 , cb = −1

2
, (7.34)

assuming that no CG factors other than the ones of eq. (7.21), i.e. originating
from dimension five effective operators as discussed in [49], are available.

Alternatively and analogously to the Pati-Salam case, one can retain the same amount
of predictivity and allow non-zero 1-1 matrix elements and instead require symmetric
matrices. This leads to the following modified (and arguably simpler) condition:

1Also taking into account other CG factors such as the other ones shown in chap. D provides
some possibilities after all. However, the largest |cc/cb| available is still only 6 with ca = ±9/4,
cb = 3/4. Other cc choices are not affected qualitatively and new ones do not become available with
this extension.
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cc −3 in PS −3 in SU(5) 6 in SU(5)

θPMNS
13 2.3◦ 3.1◦ 1.7◦ 5.1◦ 0.8◦ 1.7◦ 5.1◦ 10.1◦

ca 1 3
4

−1
2

±3
2

−1
2

1 −3 6

cb
3
4

1 ±3
2

−1
2

6 −3 1 −1
2

Table 7.1: Predicted values for θPMNS
13 (in small angle approximation), which arise

with CG factors cc, ca, cb and (Yd)11 = (Ye)11 = 0, assuming θd12 = θC .

Condition 4b (SU(5)): If the Yukawa matrices Yd and Ye are symmetric, the CG
factors of the 1-2 and 2-2 matrix elements have to be the same,

|ca| ≡ |cb| = |cc| . (7.35)

This symmetry may, for example, be a consequence of the way that the flavour
structure arises out of the breaking of a (non-Abelian) family symmetry.

Note that unlike in the Pati-Salam case, here the symmetry is also desired for a con-
sistent value of θPMNS

13 due to the additional transposition in the connection between
Yd and Ye, whereas in the former case, symmetry is only needed for full predictivity of
all flavour variables and part of the corrections. For an example on what specific CG
factors can work in this case, see the discussion in sec. 7.5.

7.4 Scenario Overview

For clarity, let us again review the discussed scenario and conditions formulated above
in shorter form. To this end, the general conditions that characterise this scenario are
illustrated summarily in fig. 7.1. In more detail, they are given by:

Condition 1: The 1-3 mixings in mν and Ye shall be small, i.e. much smaller than
the Cabibbo angle θC ,

θν13 ≈ 0 , θe13 ≈ 0 . (7.36)

Condition 2: The 1-2 mixing in Yd shall be given by the Cabibbo angle to a good
approximation,

θd12 ≈ θC , (7.37)

which is, for example, automatically satisfied in models with θu12 � θd12.

Condition 3: The matrix elements of the first two generation subsector of Yd and Ye
have to be generated dominantly by one single GUT operator per element (or by
operators with the same group theoretical Clebsch-Gordan factors).
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Figure 7.1: Under conditions 1 to 4, a predictive and consistent relation for θPMNS
13

generalising the Georgi-Jarlskog scenario is obtained by linking the charged lepton
and quark sectors via GUTs.

Condition 4: Two of the CG factors shall be equal, i.e. |cb| = |cc| in Pati-Salam
models and |ca| = |cc| in SU(5) GUTs. In SU(5) GUTs, one additional constraint
has to be imposed on the structure of the mass matrices, such as a symmetry in
the 1-2 submatrix or zero 1-1 elements of Yd and Ye with ca = 6 and cb = −1/2.

As such, they provide a good starting point for GUT models of flavour that predict
(or postdict) a viable value for θPMNS

13 .

7.5 Corrections

While the discussion above is quite simple and intuitive, it is only a first order approx-
imation and there are some systematic and possibly significant corrections, as we will
discuss now.

Corrections due to small mixing approximation
In the formulae above, we neglected higher order terms in a small angle and mass
ratio approximation for the sake of simplicity. The error introduced by this is
dependent on the structure of the mass matrices and the CG factors, but can be
computed easily.

Consider, for example, the scenario of an SU(5) GUT with a texture zero in the
1-1 matrix element of Yd and Ye, together with CG factors cc = ca = 6, cb = −1

2
,

Yd =

(
0 b
a c

)
, Ye =

(
0 6 a
−1

2
b 6 c

)
. (7.38)

Performing an exact diagonalisation and fitting to the experimental values of
ye/yµ, ys/yd and θC (as given in tab. 5.2 with uncertainties as given in tab. 5.3)
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yields θe12 = 13.9◦ instead of the previous value θe12 = 13.02◦. Consequently,
instead of θPMNS

13 ≈ θC/
√

2 = 9.2◦, the more precise GUT-scale prediction is
given by

SU(5) with d = 0, cc = ca = 6, cb = 1
2

and θd12 = θC :

θPMNS
13 = 9.8◦ .

(7.39)

Alternatively, one can use the scenario of symmetric Yd and Ye together with
non-vanishing 1-1 element d. Performing an analogous fit yields a GUT-scale
prediction of

SU(5) with a ≡ b, d 6= 0, cd = −3
2

and cb = cc = −3:

θPMNS
13 = 8.8◦ .

(7.40)

Corrections from θd12 6= θC
In an explicit GUT flavour model, the condition θd12 = θC may not be fulfilled
exactly. Model independently, this constitutes a source of theoretical uncertainty.
Within a specific model, it will result in a different value for θe12 and consequently
in a modified prediction for θPMNS

13 . Thus different models with different θd12 might
be able to be distinguished with future more precise measurements of θPMNS

13 .

For example, consider the scenario where θu13, θd13 ≈ 0, which in turn leads to
θd12 ≈ 12.0◦ ± 0.3◦ via the quark mixing sum rule [108] instead of θd12 = θC .
Furthermore, let us assume a model with symmetric Yukawa matrices (it does not
matter whether Pati-Salam or SU(5)) and CG factors cd = 9 and cb = cc = −3,
leading to matrices of the form

Yd =

(
d b
b c

)
, Ye =

(
cd d cb b
cb b cc c

)
. (7.41)

Again using exact diagonalisation and fitting the experimental values, we obtain
the modified GUT-scale prediction assuming θν23 = 45◦

PS/SU(5) with θu13, θ
d
13 ≈ 0, a ≡ b, cd = 9 and cb = cc = −3 :

θPMNS
13 = 8.9◦ .

(7.42)

Note that this is only one example CG factor combination and others might lead
to a slightly better fitting θPMNS

13 .

Corrections due to deviations from θν23 = 45◦

Another simplification we have made is using the relation for θPMNS
13 in eqs. (7.14)

only to leading order and assuming θν23 = 45◦. Thankfully, both corrections can
be incorporated simultaneously and actually lead to a more accessible formula.
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Namely, careful consideration of eqs. (7.14) reveals that the next-to-leading order
contribution to θPMNS

13 turns sν23 exactly into the term representing sPMNS
23 , leading

to the modified relation
θPMNS

13 = θe12s
PMNS
23 , (7.43)

up to further corrections of O((θPMNS
13 )3). With the measured range for θPMNS

23 ,
this already introduces an uncertainty of about 5% as well as a dependence on
the neutrino mass hierarchy [16]. For instance in a normal mass hierarchy, the
predicted value for θPMNS

13 from eq. (7.43) is reduced from the value of 9.8◦ of
eq. (7.39) to 9.3◦ and to 8.3◦ in the case of eq. (7.40). An improved experimental
accuracy for θPMNS

23 and/or a determination of the mass hierarchy would thus be
important for more precise tests of such θPMNS

13 predictions.

Corrections due to Renormalisation Group Effects
Another important correction comes from RG evolution. For simplicity, we will
restrict ourselves to the case of a strongly hierarchical neutrino mass spectrum,
i.e. m1 = 0 in the case of a normal hierarchy (NH) and m3 = 0 in the case of an
inverted hierarchy (IH). The used RG equations will be those valid in the MSSM
extended with the Weinberg operator.

Taking into account the previous point, we will base our discussion on the relation

θPMNS
13 = θC s

PMNS
23 , (7.44)

which assumes that θe12 = θC and allows for application to general θPMNS
23 . Since,

for a GUT flavour model, this relation is defined at the GUT scale MGUT, to com-
pare experimental data with those predicted by the model the following strategy
is used:

The measured values of θC and θPMNS
23 are run up to MGUT to determine the value

θPMNS
13 |MGUT

. Then, the RG running of θPMNS
13 |MGUT

down to the electroweak scale
MEW is performed to obtain θPMNS

13 |MEW
, the parameter measurable in experi-

ments.

As discussed in chap. 5, the running of θC is very small and can be neglected in
the following.

Using the analytical results of [114], one can estimate the change in the 2-3
mixing angle induced by running, ∆sPMNS

23 ≡ sPMNS
23 |MEW

−sPMNS
23 |MGUT

, in leading
logarithmic approximation and in leading (zeroth) order in θPMNS

13 to:

NH: ∆sPMNS
23 ≈ (ySM

τ )2(1 + tan2 β)

16π2
ln

(
MGUT

MEW

)
(cPMNS

23 )2sPMNS
23 , (7.45a)

IH: ∆sPMNS
23 ≈− (ySM

τ )2(1 + tan2 β)

16π2
ln

(
MGUT

MEW

)
(cPMNS

23 )2sPMNS
23 . (7.45b)
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For the running of θPMNS
13 , we also have to include the terms of O(θPMNS

13 ), and
obtain for ∆θPMNS

13 ≡ θPMNS
13 |MEW

− θPMNS
13 |MGUT

in leading order in the small

parameters θPMNS
13 and

√
|∆m2

21/∆m
2
31| (with ∆m2

ij = m2
i−m2

j being the neutrino
mass square differences) [114]:

NH: ∆θPMNS
13 ≈ (ySM

τ )2(1 + tan2 β)

16π2
ln

(
MGUT

MEW

)(
(cPMNS

23 )2θPMNS
13

+ 2
m2

m3

cos(δPMNS − ϕPMNS
2 )cPMNS

12 sPMNS
12 cPMNS

23 sPMNS
23

)
, (7.46a)

IH: ∆θPMNS
13 ≈ −(ySM

τ )2(1 + tan2 β)

16π2
ln

(
MGUT

MEW

)
(cPMNS

23 )2θPMNS
13 . (7.46b)

Putting both corrections together and using the GUT-scale relation of eq. (7.44)
yields

θPMNS
13 |MEW

= θC s
PMNS
23 |MGUT

+ ∆θPMNS
13 (7.47)

= θC (sPMNS
23 |MEW

−∆sPMNS
23 ) + ∆θPMNS

13 . (7.48)

As one can see, for the IH case the terms ∆θPMNS
13 and θC ∆sPMNS

23 cancel each
other at leading order, while for NH only the term proportional to the neutrino
mass ratio m2

m3
remains. Plugging in the experimental values of the mixing pa-

rameters and ySM
τ ≈ 0.01, we obtain the following estimate for RG corrected

relation:

NH: θPMNS
13 |MEW

≈ θC s
PMNS
23 |MEW

+ 0.2◦ cos(δPMNS − ϕPMNS
2 )

(
tan β

50

)2

, (7.49a)

IH: θPMNS
13 |MEW

≈ θC s
PMNS
23 |MEW

. (7.49b)

The remaining (next to leading order) corrections in the IH case can be estimated

to about O(0.05◦)
(

tanβ
50

)2
.

In conclusion, it is a rather good approximation to use parameters measured
at low energies in eq. (7.44). Furthermore, for the IH case, the prediction is
remarkably insensitive to RG effects.

Note that the above does not include effects from neutrino Yukawa couplings,
which may enter above the mass thresholds of heavy right-handed neutrinos in
seesaw type I models. These effects are more model-dependent and can be esti-
mated using the analytical results of [65] or alternatively calculated numerically
using the Mathematica package REAP (introduced in [65]).
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For hierarchical neutrino Yukawa matrices, i.e. ones dominated by the 3-3 element
yν33, one can estimate the additional correction by replacing

(ySM
τ )2(1 + tan2 β) ln

(
MGUT

MEW

)
in the previous equations with

(yν33)2 ln

(
MGUT

MR3

)
,

where MR3 is the mass of the corresponding right-handed neutrino.

Corrections from canonical normalisation
Additional effects that can lead to deviations from θPMNS

13 = θC s
PMNS
23 are due

to the necessity of canonical normalisation of the kinetic terms. These effects
often appear when heavy messenger fields are integrated out to generate effective
operators that lead to Yukawa couplings, which inevitably also leads to effective
operators in the Kähler potential. When these corrections to kinetic terms are
dominated by third family effects, such that the Kähler metric for the lepton
doublet fields is given by

KL ≈ k0 diag(1, 1, 1 + ηCN) , (7.50)

they can be estimated, as has been discussed in [115, 116]. In this case, the
corrections from canonical normalisation can be parametrised by a single (yet
model-dependent) parameter ηCN, while k0 drops out as it is only an overall
rescaling. Similar to before, an estimate of this correction can then be obtained
from eqs. (7.45) and (7.46) via the replacement

(ySM
τ )2(1 + tan2 β) ln

(
MGUT

MEW

)
→ 8π2ηCN .

Analogous to case of RG corrections, the relation for θPMNS
13 is quite insensitive

to CN corrections in the IH case. The actual value of ηCN, on the other hand, is
highly model-dependent. In the NH case, the CN effects may therefore well be of
the order of the RG corrections (or even larger) in some specific models. On the
other hand, there are classes of models where the CN corrections are negligible,
cf. [115].

In summary, we conclude that the theoretical uncertainties for θPMNS
13 can amount

to up to about O(10%), which is larger than the current experimental uncertainty [16],
but still not excessively so. It may even be desirable to have such corrections to reduce
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tension between the theoretical and experimental values. The discussed scenario is thus
interesting and well motivated, but in order to make a final verdict a careful model-
by-model analysis including all corrections has to be performed. For two such models
that realise all mentioned conditions and are in good agreement with experiment,
see [117, 118].

7.6 The Mixing Sum Rule and Underlying Mixing

Patterns

In the light of the determination of θPMNS
13 , it is also interesting to discuss the following.

When θν13, θe13 � θC (Condition 1), the mixing angle θν12 is related to θPMNS
13 and θPMNS

12

by the lepton mixing sum rule2 [110, 119, 120]

θPMNS
12 − θPMNS

13 cos(δPMNS) ≈ θν12 . (7.51)

Thus, the size of θPMNS
13 has interesting consequences:

• Assuming tri-bimaximal mixing in the neutrino sector [106], i.e. sin(θν12) = 1/
√

3,
the sum rule becomes

θPMNS
12 − 8.5◦ cos(δPMNS) ≈ arcsin

(
1√
3

)
. (7.52)

This can only be consistent if δPMNS ≈ ±90◦.3

• Another possibility would be bi-maximal neutrino mixing [123], i.e. θν12 = 45◦.
Then the sum rule reads

θPMNS
12 − 8.5◦ cos(δPMNS) ≈ 45◦ , (7.53)

which is similar to the common form of the ‘quark-lepton complementarity’ re-
lation θPMNS

12 + θC ≈ 45◦ [124, 125, 126]. In contrast to before, the relation above
requires δPMNS ≈ 180◦ to agree reasonably well with the present experimental
data.

We emphasise that neither tri-bimaximal nor bi-maximal neutrino mixing are required
for the specific scenario. As stated above, it only depends on the value of the PMNS
angle θPMNS

23 and the discussed conditions. In this sense, a future measurement of δPMNS

2The sum rule becomes θPMNS
12 − θPMNS

13 cot(θPMNS
23 ) cos(δPMNS) ≈ θν12 if θPMNS

23 deviates from
maximal mixing [110, 119, 120]. RG corrections to the sum rule have been discussed in [121].

3Such specific phases may emerge from flavour models with Z2 or Z4 shaping symmetries that can
also explain a right-angled CKM unitarity triangle (with α ≈ 90◦), as discussed in [122].
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Figure 7.2: The value of θν12 as reconstructed using the lepton mixing sum rule
of eq. (7.51) (under the condition θν13, θe13 � θC). The shaded region denotes the
1σ uncertainty obtained from the uncertainties of θPMNS

12 , θPMNS
13 and θPMNS

23 , also
including deviations of θPMNS

23 from 45◦. Blue (red) corresponds to global fit values
for normal (inverted) hierarchy.

can be viewed as “reconstructing” the underlying neutrino mixing value θν12, as shown in
fig. 7.2. Thus, using the mixing sum rule of eq. (7.51), a precise measurement of θPMNS

12 ,
θPMNS

13 and δPMNS may hint at a specific neutrino mixing pattern. The measurement of
large θPMNS

13 provides a valuable input in this context.
Incidentally, it may be interesting to note that, while models with tri-bimaximal

neutrino mixing seem to be associated with a normal neutrino mass hierarchy, see
e.g. [117], models with bi-maximal mixing or similar rather tend to emerge in the
context of models with inverse neutrino mass hierarchy, e.g. [118].
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CHAPTER 8

Proton Decay and the Double Missing
Partner Mechanism

8.1 Motivation

Regarding proton decay, most existing GUT models fall into two broad categories. On
one hand, there are those that focus on the flavour sector and obtain viable mass and
mixing relations while neglecting proton decay. On the other hand, there are those
that manage to naturally suppress proton decay by solving the doublet-triplet splitting
problem of GUTs, but have problems with the flavour sector. For example, they predict
the unrealistic quark-lepton Yukawa relation Ye = Y T

d (e.g. [127]), which may only be
viable in the presence of extensive uncontrolled higher order corrections (e.g. [128])
rendering the model non-predictive, or the experimentally disfavoured Georgi-Jarlskog
relations yµ = 3ys and ye = 1

3
yd [48] (as e.g. in [129]). Alternatively, they rely on linear

combinations of GUT Yukawa operators (e.g. [130]), which again implies the loss of
predictivity. Also many flavour models assume certain Abelian ‘shaping’ symmetries
for their fields valid at high scales, but do not include in their discussion what form the
GUT Higgs potential should take and what consequences this entails. It is therefore
worthwhile to study how the aspects of viable flavour structure and proton decay can
be combined into a predictive and more complete setup than what was previously done.

Therefore, in the following, we intend to study one proposed solution to the doublet-
triplet splitting problem (in four space-time dimensions) called the “missing partner
mechanism” (MPM) [131, 132] and its improved version, the “double missing partner
mechanism” (DMPM) [133] (as is used in most of the articles cited above) in the context
of supersymmetric SU(5) GUT models of flavour. In this context, we are again guided
by the approach of [49] and later publications (e.g. [8, 111] and [9, 134, 117, 118])
involving higher-dimensional operators which contain a GUT breaking Higgs field and
lead to Clebsch-Gordan (CG) factors appearing as Yukawa coupling ratios, as is also
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discussed in chap. 7.
This chapter is organised into three parts: first in sec. 8.2, we discuss the features

of the MPM and DMPM as solution to the doublet-triplet splitting problem (DTS)
in the context of both dimension five and six proton decay operators generated by
the Higgs colour triplets. Here we ultimately arrive at the conclusion that for the
considered structure of Yukawa coupling relations more than one GUT Higgs field in
the adjoint representation 24 of SU(5) is necessary. Consequently in sec. 8.3, we study
the implications of this together with gauge coupling unification in the context of the
DMPM for the proton decay operator suppression scales and the GUT scale. Finally
in sec. 8.4, we discuss further features of the assumed structure for predictions of the
proton decay width, for which particularly app. D can be helpful material for GUT
model building.

8.2 Single and Double Missing Partner Mechanism

for Flavour Models

In the following, we review the missing partner mechanism and double missing partner
mechanism such that it can be used with GUT Higgs fields in the adjoint representation
24 of SU(5). This makes it possible to integrate it into scenarios where discrete CG
ratios are used for relations between Yukawa couplings, e.g. the scenario shown in
chap. 7.

Throughout this section, for illustrative purposes, we consider that the bounds on
proton decay rate require the effective mass of the colour triplets to be of at least
Mdim=5

T ≈ 1017 GeV [59], while the effective mass suppressing dimension six proton
decay mediated by the colour triplets is required to be Mdim=6

T & 1012 GeV, see sec. 4.4
and [58].

8.2.1 The Missing Partner Mechanism

The basic idea of the missing partner mechanism (MPM) is the introduction of a pair
of superfields Z50 and Z̄50 in 50 and 50 representations of SU(5) based on the fact
that the decomposition of a 50 under the SM gauge group contains the same SU(3)
triplet as in the 5, but not an SU(2) doublet. Thus, using the 50-plets to generate an
effective mass term for the colour triplets in the 5 fields keeps the electroweak doublets
massless, while the colour triplets acquire masses of the order of the GUT scale. The
superpotential for the MPM is given by1

WMPM = H̄5H75Z50 + Z̄50H75H5 +M50Z50Z̄50 , (8.1)

1For simplicity we omit most order one coefficients in the superpotentials, except where they are
relevant to the discussion.
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where H75 is a superfield transforming in the 75 representation of SU(5), which con-
tains a SM singlet. When H75 acquires a vacuum expectation value in that direction,
SU(5) is broken to the SM gauge group. With the triplet mass contribution from 〈H75〉
denoted as V , the mass matrices of the Higgs doublet and triplet fields in H5, H̄5 and
Z50, Z̄50 are given by

mD = 0 , mT =

(
0 V
V M50

)
, (8.2)

where the first row and column refers to the triplet and anti-triplet contained in the
5-dimensional representations. Let us assume that the colour triplet Yukawa couplings
for dimension five proton decay are obtained from terms of the form

WYuk = TiFjH̄5 + TiTjH5 , (8.3)

where the families of the MSSM matter superfields are embedded in the standard way
in Ti and Fj, transforming as 10 and 5̄ of SU(5), respectively. To calculate the effective
dimension five proton decay operators all Higgs triplets from 5- and 50-dimensional
representations have to be integrated out, but considering WYuk as above only the
triplets in the 5-dimensional representations dominantly couple to matter. Denoting
the triplet mass eigenvalues as M̃1 and M̃2, and the corresponding mass eigenstates as
T̃1 and T̃2, the triplets that couple to matter are then given by the combinations

T (5) =
∑
i

U∗1iT̃i , T̄ (5) =
∑
i

V1i
¯̃Ti , (8.4)

where U and V are unitary matrices such that U †mTV = diag(M̃1, M̃2) ≡ mdiag
T .

Integrating out all triplet mass eigenstates T̃i and ¯̃Ti generates a contribution to the
dimension five operators for proton decay proportional to the inverse of the “effective
triplet mass”

(Mdim=5
T )−1 := V1i

(
mdiag
T

)−1

ij
U∗1j = V1i

(
mdiag
T

)−1

ij
U †j1 = (m−1

T )11 . (8.5)

Also inserting the equations of motion in the Kähler potential of the colour triplets,

KT = T (5)T (5)† + T̄ (5)T̄ (5)† + T (50)T (50)† + T̄ (50)T̄ (50)† , (8.6)

yields contributions to the dimension six proton decay operators proportional to(
Mdim=6

T̄

)−2
:= V1i

(
mdiag
T

)−1

ij
U †jkUkm

(
mdiag
T

)−1

ml
V †l1 =

(
m−1
T m†−1

T

)
11
, (8.7)

for the Q†L†dcuc operator and proportional to (Mdim=6
T )−2 = (m†−1

T m−1
T )11 for the

Q†Q†ucec operator as given in eq. (4.28b). With the mass matrix mT given in eq. (8.2),
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the effective triplet mass is thus2

Mdim=5
T =

(
m−1
T

)−1

11
= − V 2

M50

, (8.8)

while the suppression scales of the dimension six operators are given by

(
Mdim=6

T̄

)2
=
(
Mdim=6

T

)2
=
(
m−1
T m†−1

T

)−1

11
=

|V |4

|M50|2 + |V |2
. (8.9)

With a GUT scale of V ≈ 1016 GeV and M50 below the Planck scale, the dimension
six proton decay is suppressed sufficiently with values of Mdim=6

T between 1013 and
1016 GeV. Since the doublets obtain no mass terms, the splitting of doublet mass and
effective triplet mass is successful. However, requiring Mdim=5

T & 1017 GeV one obtains
an upper bound for M50 . 1015 GeV. Having the large representations 50 and 50 enter
the renormalisation group (RG) running of the gauge couplings at this scale leads to
the break down of perturbativity just above the GUT scale. Thus, the MPM solves
the DTS problem, but trades it for SU(5) becoming non-perturbative much below the
Planck scale MPl.

8.2.2 The Double Missing Partner Mechanism

This trade-off is avoided in the double missing partner mechanism (DMPM), which
owes its name to the doubling of the number of Higgs fields in 5, 5̄, 50 and 50
representations [133]. The original fields H5 and H̄5 are still the only ones that couple
to the matter fields Fi and Ti, whereas their new siblings H ′5 and H̄ ′5 do not. The
superpotential for the DMPM is given by

WDMPM = H̄5H75Z50 + Z̄50H75H
′
5 + H̄ ′5H75Z

′
50 + Z̄ ′50H75H5

+M50Z50Z̄50 +M ′
50Z

′
50Z̄

′
50

+ µ′H ′5H̄
′
5 .

(8.10)

The mass matrices of the doublet and triplet components of the Higgs fields H5, H ′5,
Z50, Z ′50 and their corresponding barred fields, after H75 gets a VEV V , are given by

mD =

(
0 0
0 µ′

)
, mT =


0 0 0 V
0 µ′ V 0
V 0 M50 0
0 V 0 M ′

50

 . (8.11)

2Whenever we quote numbers for Mdim=5
T , Mdim=6

T̄
and Mdim=6

T in the text, we will always refer
to their absolute values.
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While the Higgs doublets coupling to matter remain massless, the second pair of Higgs
doublets contained in H ′5 and H̄ ′5 has mass µ′. The improvement of the DMPM com-
pared to the MPM can be seen in the effective triplet mass Mdim=5

T

Mdim=5
T =

(
m−1
T

)−1

11
= − V 4

µ′M50M ′
50

. (8.12)

The same effective triplet mass of Mdim=5
T ≈ 1017 GeV can now be reached with masses

M50 ≈ M ′
50 ≈ 1018 GeV, provided the heavier doublet pair has a (relatively) small

mass µ′ ≈ 1011 GeV. With the large representations of SU(5) having high masses, the
perturbativity of the model can be preserved up to (almost) the Planck scale. Finally,
the dimension six proton decay operators are suppressed by(

Mdim=6
T̄

)2
=
(
m−1
T m†−1

T

)−1

11

=
|V |8

|V |6 + |M50|2 (|V |4 + |M ′
50µ
′|2 + |V µ′|2)

≈ (1014 GeV)2 , (8.13a)

(
Mdim=6

T

)2
=
(
m†−1
T m−1

T

)−1

11

=
|V |8

|V |6 + |M ′
50|2 (|V |4 + |M50µ′|2 + |V µ′|2)

≈ (1014 GeV)2 , (8.13b)

without tension with the bounds on proton decay.

8.2.3 Dealing with Planck-Scale Suppressed Operators

Considering the inherently non-renormalisable structure of supergravity (the extension
of global SUSY to a local symmetry which automatically includes gravitational inter-
actions) [41], it is reasonable to assume that all higher dimensional operators allowed
by the imposed symmetries are present and suppressed by some power of the Planck-
scale if they are not already generated via some other means. In that case, the naive
implementations of the MPM and DMPM run into the following problem.

The superpotentials given in eq. (8.1) and eq. (8.10) include direct mass terms
for the 50-dimensional fields. As a consequence, one cannot use symmetries to forbid
non-renormalisable Planck-scale suppressed operators such as

W ⊃ 1

MPl

H5H
2
75H̄5 (8.14)

for the MPM and

W ⊃ 1

MPl

H5H
2
75H̄

′
5 +

1

MPl

H ′5H
2
75H̄5 (8.15)
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H̄5

H75

H5

H75

Z50 Z̄50

〈S〉

Figure 8.1: MPM diagram with an external S field generating the mass term for
the 50-dimensional messengers after acquiring a VEV.

for the DMPM. These Planck-scale suppressed higher dimensional operators do not
involve the 50-dimensional messengers and therefore generate dangerously large contri-
butions to the masses of the doublets contained in the 5-dimensional representations,
effectively spoiling the doublet-triplet splitting mechanism.

Given the above philosophy, we must forbid these operators through a symmetry,
which we call a shaping symmetry. The MPM and the DMPM can then be restored by
adding a singlet field S, responsible for giving mass to the 50-dimensional superfields
through couplings of the form SZ50Z̄50, SZ ′50Z̄

′
50 and a VEV 〈S〉 6= 0, as seen in the

diagram in fig. 8.1 (note that S is not acting as an external field but generating the mass
term). The non-trivial charge of S under a shaping symmetry forbids the dangerous
Planck-suppressed operators.

It is interesting to note that this strategy of generating masses for the messenger
fields through an additional singlet field also stabilises the predictions for the Yukawa
coupling ratios in models using CG factors by forbidding unwanted index contractions
that would appear with Planck-scale suppression, cf. the example models given in [10].

8.2.4 The Double Missing Partner Mechanism with an Ad-
joint of SU(5)

As was seen in chap. 7, Clebsch-Gordan factors originating from couplings to a GUT
breaking Higgs field H24 in the adjoint representation 24 of SU(5) can be particularly
useful for GUT model building. It is thus well motivated to replace the GUT Higgs
field H75 needed in the DMPM with the effective combination H2

24/Λ, see also [127].
This can be achieved at the renormalisable level by integrating out heavy messenger
fields in the 45 and 45 representations of SU(5) [130].

To replace the H75 in the MPM, we thus have to introduce a set of messenger fields
X45, X̄45, Y45 and Ȳ45. For the DMPM, we also need to add a second set X ′45, X̄ ′45,
Y ′45 and Ȳ ′45. In fig. 8.2 we show the supergraphs generating the non-diagonal entries
of the triplet mass matrix in the DMPM with an adjoint H24.
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H̄5

H24

X45 X̄45

〈S〉 〈S〉 〈S〉
H ′

5

H24

H24H24

Z50 Z̄50 Y45 Ȳ45

H̄ ′
5

H24

X ′
45 X̄ ′

45

〈S〉 〈S〉 〈S〉
H5

H24

H24H24

Z ′
50 Z̄ ′

50 Y ′
45 Ȳ ′

45

Figure 8.2: Supergraphs generating the non-diagonal entries of the triplet mass
matrix as in eq. (8.18).

Related to the discussion in sec. 8.2.3, we avoid direct mass terms in order to forbid
dangerous Planck-suppressed operators that would generate universal mass contribu-
tions for Higgs doublets and triplets. Instead, the messenger pairs X45X̄45, Y45Ȳ45,
Z50Z̄50 and their corresponding primed versions obtain masses from the VEV of a
singlet field S, charged under an additional shaping symmetry.

The renormalisable superpotential is then given by:

WDMPM24 = H̄5H24X45 + X̄45H24Z50 + Z̄50H24Y45 + Ȳ45H24H
′
5

+ H̄ ′5H24X
′
45 + X̄ ′45H24Z

′
50 + Z̄ ′50H24Y

′
45 + Ȳ ′45H24H5

+ SX45X̄45 + SY45Ȳ45 + SZ50Z̄50 + SX ′45X̄
′
45 + SY ′45Ȳ

′
45 + SZ ′50Z̄

′
50

+ µ′H ′5H̄
′
5 ,

(8.16)

where we carefully checked that, with this messenger field content, no dangerous
Planck-suppressed operators appear that spoil the mechanism.

After H24 and S obtain their VEVs and after integrating out the 45-dimensional
messenger fields, we find the following mass matrices for the Higgs doublets and triplets

mD =

(
0 0
0 µ′

)
, mT =


0 0 0 − V 2

〈S〉
0 µ′ − V 2

〈S〉 0

− V 2

〈S〉 0 〈S〉 0

0 − V 2

〈S〉 0 〈S〉

 , (8.17)
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which is, of course, highly reminiscent of eq. (8.11). Here V is defined by 〈H24〉 ≡
V diag(1, 1, 1,−3

2
,−3

2
). Integrating out the heavy 50-dimensional fields in a next step,

the mass matrices become

mD =

(
0 0
0 µ′

)
, mT =

(
0 − V 4

〈S〉3

− V 4

〈S〉3 µ′

)
. (8.18)

Thus, the doublets in the pair H5H̄5 stay massless, while the doublet pair in H ′5H̄
′
5

is heavy. Using only H5 and H̄5 for the Yukawa couplings of the SM fermions, the
effective triplet component mass relevant for dimension five proton decay is given by

Mdim=5
T =

(
m−1
T

)−1

11
= − V 8

〈S〉6µ′ , (8.19)

while the effective masses suppressing dimension six proton decay mediated by colour
triplets are given by (

Mdim=6
T̄

)2
=
(
Mdim=6

T

)2 ≈ |V |
8

|〈S〉|6
, (8.20)

where we approximated using |〈S〉| � |V | and |〈S〉3µ′| � |V |4. Hence, the requirement
of Mdim=6

T & 1012 GeV can only be obtained with 〈S〉 ≈ 1018 GeV if the GUT-scale
value is larger than V & 1016 GeV. In this case one needs µ′ ≈ 107 GeV to obtain an
effective triplet mass Mdim=5

T ≈ 1017 GeV for dimension five proton decay operators.
Therefore, if the GUT-scale is high enough, the effective triplet mass can be large
enough to stabilise the proton and the large SU(5) representations used in the DMPM
can be heavy enough to keep the theory perturbative up to the Planck scale.

When H24 is uncharged under additional symmetries, having µ′ several orders of
magnitude smaller than V requires µ′ to arise from the spontaneous breakdown of
a shaping symmetry, to avoid the term 〈H24〉H ′5H̄ ′5, which would give rise to a too
large contribution to µ′ and consequently a too small effective triplet mass. Note that
the effective triplet masses entering the dimension five proton decay operators can
be expressed in terms of the mass eigenstates of doublet and triplet components as
Mdim=5

T = −M̃1M̃2/µ
′. The effective triplet mass of dimension six proton decay is then

excellently approximated by Mdim=6
T = Mdim=6

T̄
≈
√
Mdim=5

T µ′.
Finally, one may wonder if some of the heavy messengers are redundant and could

be merged with others, so that the number of fields in the spectrum would be reduced
while preserving the structure of the mechanism. However, if either X45 ≡ Y45 or
X ′45 ≡ Y ′45, it can be seen from fig. 8.2 that supergraphs without the Z50Z̄50 mass
insertion would be allowed, spoiling the splitting of doublets and triplets and generating
large non-diagonal entries in the doublet mass matrix mD. On the other hand, if either
X45 ≡ X ′45, Y45 ≡ Y ′45 or Z50 ≡ Z ′50, the DMPM is reduced to the MPM, reintroducing
the issue of perturbativity. Finally, an identification of X45 ≡ Y ′45 would allow diagrams
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bypassing the 50-dimensional fields, generating unwanted mass term for both doublet
and triplet components of H5, H̄5, and thus a too large µ-term. In conclusion, we see
no way to shrink the messenger spectrum of this variant of the DMPM.

8.2.5 Introducing a Second Adjoint Field

As we have seen above, the DMPM with an adjoint GUT breaking Higgs H24 instead
of a 75 solves the DTS problem while providing the necessary building block for the
desirable CG factors for flavour model building. In the following, we will argue why it
is compelling to introduce a second adjoint Higgs field:

• In the minimal SUSY SU(5) model [37], the single GUT breaking 24 contains an
SU(2)L triplet component and an SU(3)C octet component with equal masses.
Demanding gauge coupling unification, the mass of the Higgs colour triplets is
required to be about 1015 GeV [135], ruling out this model due to proton decay.
Non-renormalisable operators in the GUT breaking superpotential, as in

W ⊃M trH2
24 +

1

Λ

(
trH2

24

)2
+

1

Λ′
trH4

24 , (8.21)

can split the 24 component masses, allowing for a higher effective triplet mass,
see [136] and also sec. 8.3. An additional 24 can be used to realise this non-
renormalisable superpotential in a renormalisable way.

• It turns out that the introduction of an additional 24 is not just a UV-completion
of the non-renormalisable superpotential of [136]. When both adjoints have ap-
proximately the same mass and therefore the second 24 is not integrated out,
the additional colour octet and electroweak triplet in the spectrum lead to more
freedom for the GUT scale and effective triplet mass. In the following section,
we thus discuss all feasible renormalisable superpotentials with two adjoints and
their impact on MGUT and Mdim=5

T in a gauge coupling unification analysis.

• A renormalisable superpotential for one 24 requires it to be uncharged under
shaping symmetries to acquire a VEV. However, a shaping symmetry charge is
vital in the type of flavour models considered here and in chap. 7 to enforce
texture zeros and avoid unwanted admixtures of additional CG factors involving
less insertions of H24. With a second 24, the adjoint fields can acquire non-
vanishing VEVs also when charged under such shaping symmetries.

The features of renormalisable superpotentials for two adjoints are discussed in detail
in the next section.



112 8. Proton Decay and the Double Missing Partner Mechanism

8.3 Gauge Coupling Unification and the Effective

Triplet Mass

In GUT extensions of the SM, it is common to have additional fields somewhere below
the GUT scale that modify the RG running of the gauge couplings up to the GUT
scale. This is also the case in the class of models we want to investigate here. It
ts therefore necessary to re-evaluate the unification of gauge couplings within our
extended spectrum.

8.3.1 Gauge Coupling Unification with the Additional Fields

To study the gauge coupling unification, we start with the modified equality condition
at one-loop level,

1

αu
=

1

αi
− 1

2π

(
b

(SM)
i log

MSUSY

MZ

+ b
(MSSM)
i log

MGUT

MSUSY

+
∑
f

b
(f)
i log

MGUT

Mf

)
, (8.22)

where i = 1, 2, 3 labels the SM gauge interactions and f labels the additional su-
perfields (compared to the MSSM), with masses Mf and one-loop beta coefficients

b
(f)
i . For the full SM spectrum, the one-loop beta-function coefficients are b

(SM)
i =

(41/10,−19/6,−7), while for the full MSSM spectrum we have b
(MSSM)
i = (33/5, 1,−3).

We define the SUSY scale MSUSY here as the scale where we make the transition from
the SM beta coefficients to the MSSM ones, so all superpartners enter the theory at
the same scale. The αi appearing in eq. (8.22) are those at low energies αi ≡ αi(MZ),
while αu is the unified gauge coupling at the GUT scale αu ≡ αi(MGUT). The GUT
scale MGUT is defined here as the scale where the last SU(5) multiplet is completed,
in other words the scale where all three one-loop beta coefficients for the SM gauge
couplings become equal.

In the following, we assume that the heaviest incomplete SU(5) multiplets to enter
the RG equations are the leptoquark vector bosons such that the GUT scale corre-
sponds to their mass MGUT = MV . While other cases can certainly arise, we focus on
this one as it is quite common in our setup to have heavy leptoquark vector bosons.
We verified that in this case the effective colour triplet mass can be made very heavy
as well.

Coming to the differences in field content between MSSM and DMPM, we see
that the latter introduces one additional pair of SU(2)-doublets, D(5) and D̄(5), and

two additional pairs of SU(3)-triplets, T
(5)
i and T̄

(5)
i , i = 1, 2. They enter the beta-

functions with the coefficients b
(5,D)
i = (3/5, 1, 0) for the Dirac pair of doublets and

b
(5,T )
i = (2/5, 0, 1) per Dirac pair of triplet and anti-triplet.
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Furthermore, we have two SU(5) breaking GUT Higgs fields H24 and H ′24 in the ad-
joint representation. They each contain one SM-singlet component, one SU(2)-triplet,

T (24) with b
(24,T )
i = (0, 2, 0), an SU(3)-octet, O(24) with b

(24,O)
i = (0, 0, 3) and a lepto-

quark superfield pair, L(24) with b
(24,L)
i = (5, 3, 2). Since one leptoquark superfield pair

is eaten up during the spontaneous breaking of SU(5), we are left with two triplets
with masses M

T
(24)
1

and M
T

(24)
2

, two octets with masses M
O

(24)
1

and M
O

(24)
2

and one

leptoquark superfield pair with mass ML(24) . For convenience, we define the geomet-
ric means of the masses M2

T (5) = M
T

(5)
1
M

T
(5)
2

for the colour triplets and analogously

M2
T (24) = M

T
(24)
1

M
T

(24)
2

, M2
O(24) = M

O
(24)
1
M

O
(24)
2

for the components of H24 and H ′24.

Having this at hand, we can solve eq. (8.22) for MD(5) , MT (5) and MGUT, to obtain
the relations3

logMD(5) =
15π

4α1

− 17π

4α2

− 3π

2α3

+
59

3
logMZ (8.23a)

+
2π

αu
+

3

2
logML(24) − 17

2
logMT (24) − 9

2
logMO(24) − 43

6
logMSUSY ,

logMT (5) =
35π

24α1

− 7π

8α2

− 19π

12α3

+
119

12
logMZ (8.23b)

+
π

αu
+

3

4
logML(24) − 7

4
logMT (24) − 19

4
logMO(24) − 19

6
logMSUSY ,

logMGUT =
5π

12α1

− π

4α2

− π

6α3

+
11

6
logMZ (8.23c)

+
1

2
logML(24) − 1

2
logMT (24) − 1

2
logMO(24) − 1

3
logMSUSY .

For the study of proton decay, it is more convenient to instead solve eq. (8.22) for the
GUT-scale gauge coupling αu and the effective triplet mass Mdim=5

T = M2
T (5)/MD(5) ,

which gives the suppression of the dimension five proton decay operators (cf. the dis-
cussion in sec. 8.2.4). Then we get the relations

π

αu
= − 43π

24α1

+
15π

8α2

+
11π

12α3

− 197

20
logMZ +

3

5
logMDT (8.24a)

− 3

4
logML(24) +

15

4
logMT (24) +

11

4
logMO(24) +

7

2
logMSUSY ,

logMdim=5
T = − 5π

6α1

+
5π

2α2

− 5π

3α3

+
1

6
logMZ (8.24b)

+ 5 logMT (24) − 5 logMO(24) +
5

6
logMSUSY ,

3In the following, “log” of a mass is to be understood as the natural logarithm of the mass divided
by one common mass scale, e.g. logm ≡ log(m/GeV).
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logMGUT =
5π

12α1

− π

4α2

− π

6α3

+
11

6
logMZ (8.24c)

+
1

2
logML(24) − 1

2
logMT (24) − 1

2
logMO(24) − 1

3
logMSUSY ,

where we have introduced the mass M3
DT = M2

D(5)MT (5) . As one can see only αu
depends on MDT , which one can explain using the fact that doublets and colour triplets
together form a complete representation of SU(5). Thus, following eq. (8.22), one can
see that a simultaneous rescaling MD(5) → q2MD(5) and MT (5) → qMT (5) leaves the
GUT scale invariant and only shifts αu, while Mdim=5

T ∝ q0 remains unchanged and
MDT ∝ q parametrises this rescaling. Further interdependencies between αu, M

dim=5
T

and MGUT are then implicit via their shared dependence on the other masses.
Thus, gauge coupling unification implies that the effective triplet mass follows the

relation

Mdim=5
T = exp

(
5

6
π

(
3

α2

− 2

α3

− 1

α1

))
M

1/6
Z M

5
6

SUSY

(
MT (24)

MO(24)

)5

= 2.5+0.6
−0.8 · 1017 GeV

(
MSUSY

1 TeV

) 5
6
(
MT (24)

MO(24)

)5

, (8.25)

while the GUT scale is given by

MGUT = 1.37+0.05
−0.05 · 1016 GeV

(
MSUSY

1 TeV

)− 1
3
(

ML(24)

1016 GeV

) 1
2
(
MT (24)MO(24)

(1016 GeV)2

)− 1
2

. (8.26)

For completeness, the unified gauge coupling is given by

1

αu
= 24.58± 0.06 +

7

2π
ln
MSUSY

1 TeV
+

3

5π
ln

MDT

1014 GeV

− 3

4π
ln

ML(24)

1016 GeV
+

15

4π
ln

MT (24)

1016 GeV
+

11

4π
ln

MO(24)

1016 GeV
.

(8.27)

For these numbers, we have used the experimental values and uncertainties for the
gauge couplings as given in tab. 5.2. Note that for all three quantities the full un-
certainty is dominated by the experimental error of g3. In the following, we will not
quote any uncertainties of these masses anymore since the relative uncertainty changes
only negligibly for the different superpotentials and when switching over to two-loop
running. The reference scale 1014 GeV is chosen due to the fact that MDT = 1014 GeV
and MT (5) = 1016 GeV implies Mdim=5

T = 1019 GeV.
Since the relation for the effective triplet mass Mdim=5

T receives significant two-loop
contributions (cf. for instance [135]), we have also performed a numerical two-loop
analysis using the following procedure with the Mathematica package REAP as modified
for chap. 5. We start with SM values for the gauge and Yukawa couplings at MZ as
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given in tab. 5.2, run up to a scale of 1 TeV with the full two-loop SM RG equations
and match the SM to the MSSM (including the MS to DR scheme conversion). From
there we run and match using full two-loop MSSM RG equations while step-by-step
including all additional multiplets at their mass scale via their one-loop gauge coupling
threshold corrections4 as well as contributions to the one- and two-loop gauge coupling
RG equations, see app. E. The Yukawa couplings of the Higgs colour triplets are well
approximated by using the Yukawa couplings of the corresponding doublets. We do
not take into account any other Yukawa couplings. We verified that this approximation
affects the numerical results at below percent level.

8.3.2 Superpotentials with Two Adjoints of SU(5)

In the following, we systematically study all renormalisable superpotentials with two
adjoints that can break SU(5) to the SM gauge group. We find only four possibilities
with non-vanishing VEVs and masses, classified based on their symmetry. These are:

(a) W = M24 trH2
24 +M ′

24trH ′224 + κ′ trH24H
′2
24 + λ trH3

24,
Z2 symmetry where H24 is uncharged and H ′24 charged.

(b) W = M̃24 trH24H
′
24 + λ trH3

24 + λ′ trH ′324,
Z3 symmetry, where H24 has charge 2 and H ′24 charge 1.

(c) W = M̃24 trH24H
′
24 + λ trH3

24 + κ′ trH24H
′2
24,

ZR4 symmetry where H24 has a charge of 2 (with qθ = 1) and H ′24 is uncharged.

(d) The trivial case with both fields only charged under SU(5) and all (non-linear)
terms allowed. We will not consider this case any further.

Since there are two adjoint Higgs fields, it is convenient to define a quantity tan βV
similar to tan β of the MSSM, so that

〈H24〉 = V1 eiφ1 diag(1, 1, 1,−3/2,−3/2) , (8.28)

〈H ′24〉 = V2 eiφ2 diag(1, 1, 1,−3/2,−3/2) , (8.29)

with V1, V2 > 0 and tan βV = V1/V2.

Superpotential (a)

We will begin our discussion with superpotential (a) which turns out to be the most
complicated case since it has the most parameters. As it contains two mass parameters,
we introduce a second angle βM and mean mass M > 0 such that M24 = Meiα1 sin βM

4When one integrates out particles at a threshold scale equal to their mass, these threshold cor-
rections vanish, as can be seen in [137].
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and M ′
24 = Meiα2 cos βM . The vacuum expectation values in terms of superpotential

parameters are given by

V1eiφ1 =
4M ′

24

κ′
and V 2

2 e2iφ2 = 4M ′
24

2M24κ
′ − 3M ′

24λ

κ′3
, (8.30)

which can as well be expressed as 3λ/κ′ = 2ei(α1−α2) tan βM − e−2i(φ1−φ2) cot2 βV . For
the geometric means of the masses of the additional fields inside the adjoints, we find

M2
T (24) = 5M2 cos βM

√
(2 cos βM − 3 sin βM tan2 βV )2 + ∆ , (8.31a)

M2
O(24) = 5M2 cos βM

√
(3 cos βM − 2 sin βM tan2 βV )2 + ∆ , (8.31b)

M2
L(24) =

1

4
M2 cos2 βM

sin4 βV
, (8.31c)

with ∆ = 12 sin(2βM) cot2(βV ) sin2 φ̄ and φ̄ = (α1 − α2)/2 + φ1 − φ2. Note that not
only the geometric mean masses, but also the mass eigenvalues themselves only depend
on this phase combination φ̄ and are invariant under φ̄→ φ̄+ π.

The effective triplet mass as of eq. (8.25) is heaviest if the phase φ̄ is 0, π or 2π,
since then the ratio MT (24)/MO(24) is not bounded from above (or below), which allows
for the maximal range for Mdim=5

T . Thus, in the following, we choose φ̄ and thus ∆ to
vanish.

The resulting plots for Mdim=5
T and for MGUT are shown in fig. 8.3 for MSUSY =

1 TeV, M = 1015 GeV, MD(5) = 1000 TeV and φ̄ = 0, including also a comparison
between one- and two-loop results. Note that gauge coupling unification depends only
weakly on MD(5) . The dimension six masses Mdim=6

T̄
and Mdim=6

T are still given by√
Mdim=5

T MD(5) to a good approximation.

Superpotential (b) and (c)

These two superpotentials have only one massive parameter M̃24 = Meiα and hence
the analytic results become much less cumbersome. The vacuum solutions are given
by

V1eiφ1 =
2

3

Meiα

3
√
λ2λ′

and V2eiφ2 =
2

3

Meiα

3
√
λλ′2

, (8.32)

up to a Z3 symmetry transformation for superpotential (b) and

V1eiφ1 =
1√
3

Meiα

√
λκ′

and V2eiφ2 =
Meiα

κ′
, (8.33)

up to a minus sign in V1 for superpotential (c). In other words, the couplings fulfil the
relation λ′/λ = e3i(φ2−φ1) tan3 βV for superpotential (b) and κ′/λ = 3e2i(φ1−φ2) tan2 βV
for superpotential (c).
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Figure 8.3: The effective colour triplet mass Mdim=5
T (left) and GUT scale MGUT

(right) in GeV at one-loop (upper) and two-loop (lower) order as resulting from
superpotential (a) for MSUSY = 1 TeV, M = 1015 GeV, MD(5) = 1000 TeV and
φ̄ = 0. Note the different colour coding of left and right. For illustration, the white
strips denote areas with light MT (24) or MO(24) (< 1013 GeV). Such relatively low
values for these components can arise either from cancellation between terms, or
from a generic suppression due to small parameters, cf. eqs. (8.31).
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For the geometric means of the masses of the colour triplets, octets and the mass
of the left-over leptoquark superfield in H24 and H ′24, we find

M2
T (24) =

35

4
M2 , M2

O(24) =
15

4
M2 and M2

L(24) =
1

sin2(2βV )
M2 , (8.34)

for superpotential (b) and

M2
T (24) =

5

4
M2 , M2

O(24) =
5

4
M2 and M2

L(24) =
1

4 sin2(2βV )
M2 , (8.35)

for superpotential (c). Note that in both cases also all mass eigenvalues turn out to
be phase-independent. Therefore, applying eq. (8.25), i.e. unification of the gauge
couplings at one-loop, implies

Mdim=5, 1-loop
T = 2.5 · 1017 GeV

(
MSUSY

1 TeV

) 5
6

·
{(

7
3

) 5
2 ≈ 8.3 (b)

1 (c)
, (8.36)

and

M1-loop
GUT =

1.37 · 1016 GeV√
| sin 2βV |

(
MSUSY

1 TeV

)− 1
3
(

M

1015 GeV

)− 1
2

·
{√

8√
21
≈ 1.3 (b)

2 (c)
. (8.37)

Assuming the same parameters, we find an almost ten times heavier effective triplet
mass in superpotential (b) than in (c).

At two-loop, we find the following approximate behaviour for the masses

Mdim=5, 2-loop
T =

(
MSUSY

1 TeV

)0.74

·

5.2 · 1016 GeV
(

M
1015 GeV

)−0.15
(b)

6.8 · 1015 GeV
(

M
1015 GeV

)−0.18
(c)

, (8.38)

and

M2-loop
GUT = | sin 2βV |−0.48

(
MSUSY

1 TeV

)−0.4

·

2.89 · 1016 GeV
(

M
1015 GeV

)−0.61
(b)

4.78 · 1016 GeV
(

M
1015 GeV

)−0.63
(c)

. (8.39)

The dependence on other parameters is negligible. Based on this, having Mdim=5
T &

1017 GeV requires MSUSY & 2.3 TeV and 35 TeV for superpotential (b) and (c) re-
spectively. Again, MD(5) = 1000 TeV has been fixed and the values of Mdim=6, 1-loop

T

and Mdim=6, 2-loop
T can be approximated by the square root of the product of MD(5) and

Mdim=5, 1-loop
T or Mdim=5, 2-loop

T respectively.
Note that there is a claim [138] that the MSSM with an additional unbroken R-

symmetry cannot be obtained from the spontaneous breaking of a four-dimensional
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(SUSY) GUT. Note that this is not in conflict with our superpotentials, because the
R-symmetry is either absent (a, b, d) or spontaneously broken at the GUT scale (c).
Superpotential (c) is particularly interesting for model building purposes because R-
symmetries are very popular in flavour models with non-Abelian family symmetries
(and spontaneous CP violation). For more details, see also app. D in [10].

8.4 Proton Decay in Models with Fixed Ratios

Even with the knowledge of the mass scale appearing in the dimension five and six
proton decay operators, we unfortunately still do not have enough information to fully
determine whether a GUT model of flavour is excluded by a too short proton lifetime.
Namely, considering the dimension five and six proton decay operators as mediated by
colour triplets,

Wp→? =
1

Mdim=5
T

[
1

2
(Yqq)ij(Yql)mnQiQj Qm Ln + (Yue)ij(Yud)mn u

c
i e

c
j u

c
m d

c
n

]
, (8.40a)

Kp→? =− 1(
Mdim=6

T

)2

1

2
(Yqq)

∗
ij(Yue)mnQ

†
i Q
†
j u

c
m e

c
n

− 1(
Mdim=6

T̄

)2 (Yql)
∗
ij(Yud)mnQ

†
i L
†
j u

c
m d

c
n + h.c. , (8.40b)

we see that two ingredients are still missing. First the dimension five proton decay
operator has to be dressed with a closed loop of superpartners introducing a dependence
on the SUSY breaking scheme. Second, a priori a flavour model usually only takes into
account the MSSM Yukawa matrices Yu, Yd, Ye neglecting the fact that the colour
triplets have their own Yukawa coupling matrices Yqq, Yue, Yql, Yud, which are the ones
appearing in proton decay.

Let us focus on the latter point first. Consider e.g. the example models (a) and (b)
shown in [10] with superpotentials generating Yd and Ye of the schematical form

W(a) =
1

Λ3

(H ′24F3)5̄(H̄5T3)5 +
1

Λ2

(H ′24T2)10(H̄5F2)10

+
1

Λ2
1

(H ′24F1)45(T1H24H̄5)45 , (8.41a)

W(b) =
1

Λ3

(H ′24F3)5̄(H̄5T3)5 +
1

Λ22

(H ′24T2)10(H̄5F2)10

+
1

Λ21

(H24T2)10(H̄5F1)10 +
1

Λ12

(H24F2)45(T1H24H̄5)45 , (8.41b)

where indices under parentheses specify index contraction to a specific SU(5) represen-
tation and Λi are some generic suppression scales associated with messengers leading
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to the respective index contractions (for more details see [10] and app. D). The fields
H24 and H ′24 are GUT Higgs fields in the adjoint representation 24 as appearing in the
superpotentials (a) and (b) in sec. 8.3.2 in model (a) and (b) respectively. The up-type
Yukawa matrix entries are assumed to originate from usual SU(5) symmetric Yukawa
coupling terms not involving powers of 24 similar to the ones in eq. (4.11). Resulting
from these superpotentials, we find MSSM Yukawa matrices for (a) given by

Yd = diag (yd, ys, yb) , Ye = diag

(
−1

2
yd, 6ys,−

3

2
yb

)
, (8.42)

and for (b)

Yd =

 0 yd,12 0
yd,21 ys 0

0 0 yb

 , Y T
e =

 0 −1
2
yd,12 0

6yd,21 6ys 0
0 0 −3

2
yb

 , (8.43)

where the last is also reminiscent of the scenario discussed in chap. 7. One additional
virtue of the Yukawa coupling ratios introduced this way is that similar fixed ratios
also apply between the usual matrices Yd, Ye and the couplings to the colour triplets
Yqq, Yue, Yql, Yud. For these example structures, we thus find for (a)

Yql = diag

(
yd, ys,−

3

2
yb

)
, Yud = diag

(
2

3
yd,−4ys, yb

)
, (8.44)

and for (b)

Yql =

 0 yd,12 0
yd,21 ys 0

0 0 −3
2
yb

 , Yud =

 0 2
3
yd,12 0

−4yd,21 −4ys 0
0 0 yb

 , (8.45)

while the other matrices follow the minimal SU(5) relation Yqq = Yue = Yu. For an
extensive list of ratios between all involved Yukawa couplings in such schemes with
powers of fields in the 24 representation and a description on how they were obtained,
see app. D. The approach using discrete CG factors thus not only leads to desirable
predictions for the SUSY spectrum via the SUSY threshold corrections, but also to
predictions for proton decay with fewer free parameters than e.g. just assuming that
unspecified higher order operators fix the relation Yd = Y T

e of minimal SU(5), see for
instance [136, 139, 140]. This advantage was also mentioned in [141, 140] for GUT
textures instead of more complete models like in [10].

Note, however, there is one caveat to this. In the DMPM as discussed here, there
are additional colour triplets that can also generate the same type of operators as
in eq. (8.40), but possibly with less suppression (thus dominating over the operators
discussed here) or with different ratios. It has to be checked that the symmetries
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beyond SU(5), assumed to obtain the right flavour structure, successfully protect the
model against these contributions (as was done in [10]).

Concerning the first missing ingredient – the SUSY spectrum needed to dress the
dimension five operator – we will not go into much detail for this study. It is, however,
interesting to note the following: as was pointed by [142], the proton decay amplitude
contribution of the second operator of Wp→? – the so called RRRR operator – is
enhanced by a factor tan2 β (for large tan β), which poses a challenge for models with
large tan β. This affects the example structures at hand the following way.

Looking at the SUSY threshold correction dependence of yτ/yb shown in fig. 5.7, we
see that the ratio yτ/yb = 3/2 needs η̄b ≈ 0.11, while yτ/yb = 1 needs η̄b ≈ −0.20. We
remind ourselves that η̄b ≈ ε̄b tan β where ε̄b is some function of the SUSY spectrum
and to a first approximation independent of tan β. Assuming a similar SUSY spectrum
and explaining the sign via a simple sign flip of µ, η̄b ≈ −0.20 would thus naively need
an about twice as high tan β as η̄b ≈ 0.11 would need. In conclusion, yτ/yb = 3/2
corresponds to a factor of four suppression compared to yτ/yb = 1, leading to less
tension with proton decay.
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PART III

Summary and Conclusions





Summary and Conclusions

After establishing basics and fundamental notation in the first part of this thesis, we
presented values and uncertainties for the running quark and lepton Yukawa couplings
as well as quark mixing parameters calculated at various renormalisation or energy
scales, intended as useful input for high-scale model building. The results calculated
for the renormalisation scales µ = MZ , 1 TeV, 3 TeV and 10 TeV, as calculated within
the SM in the MS scheme, can be found in tab. 5.1. The corresponding values in
the DR scheme are given in tab. 5.2. Both tables can be used as convenient input
for parameter fits performed after having done the RG evolution of the high-scale
quantities of the respective model to the appropriate scale.

Furthermore, numerical values for the corresponding flavour quantities at the GUT
scale MGUT are given in figs. 5.1, 5.2, 5.3, 5.5 and 5.6. Here, the tan β enhanced
one-loop SUSY threshold corrections are handled using a parametrisation convenient
for building models of the structure of high-scale Yukawa couplings – namely, only
via two significant parameters η̄b and tan β̄, as defined in eqs. (5.6) and (5.7), which
influence all parameters, and only a few other parameters that easily factor out of the
RG evolution. In addition to the central values for each quantity, we also calculated
their relative uncertainties at the GUT scale, as given in fig. 5.4 and tab. 5.3. While
all plots shown in this thesis are obtained for MSUSY = 1 TeV, we also provide the
corresponding data for MSUSY = 3 TeV and 10 TeV online under

http://particlesandcosmology.unibas.ch/files/maurerv/RunningParameters-thesis.tar.gz ,

as data tables, which also include the 1 TeV data. These allow to reproduce the
GUT-scale quantities as numerical functions via simple interpolation for use in model
analyses. With these results, we expect parameter fits of GUT-scale models to the
experimental data to be greatly simplified and accelerated.

Next, we addressed the question of naturalness of the MSSM in the light of the
Higgs discovery and mass measurement at the LHC. For this, we focused on models
exhibiting non-universal high-scale boundary conditions of the soft SUSY breaking
parameters and contrasted them with the cMSSM. Our basic assumption was that the
non-universalities are a consequence of an underlying mechanism giving rise to fixed
relations between SUSY breaking parameters which can itself be a consequence of
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SUSY breaking or GUT dynamics. To identify candidates for such relations that can
reduce the fine-tuning of the electroweak scale, we implemented a general high-energy
parametrisation inspired by the pMSSM and obtained a semi-analytical formula for
understanding fine-tuning to guide our further analysis. Based on this semi-analytical
treatment, we discussed prospects of non-universal scalar and gaugino masses, coming
to the conclusion – as already noticed, e.g., in [71, 72, 73] – that the latter case seems
more promising. Therefore, we performed a numerical study looking into the fine-
tuning ∆ in the case of non-universal gaugino masses in more detail.

We found that models with non-universal gaugino masses can account for a Higgs
mass in the range 125.3±0.6±3 GeV (including the uncertainty related to the numerical
calculation) with a fine-tuning of only ∆min ∼ O(10), compared to the cMSSM, which
requires ∆min & O(100). Hence, the MSSM with non-universal gaugino masses is
still a comparatively natural scenario. In more detail, the values of η1 = M1/M3 and
η2 = M2/M3 giving a low fine-tuning before and after applying a constraint on the
Higgs mass are shown in fig. 6.2 and 6.4. Interestingly, some of the ratios discussed
in the literature as candidates for such fixed ratios lie in the low fine-tuning region or
are close to it, while others that were promising before are disfavoured by including
the Higgs mass constraint. Including it, we found that particularly favoured ratios are
now given by, e.g., (η1, η2) = (10, 2), which may originate from SU(5) GUTs, and
(η1, η2) = (21

5
, 7

3
), which may be consequence of orbifold scenarios of type O-II with

δGS = −6.
Assuming non-universal gaugino masses at the GUT scale, we proceeded to analyse

the fine-tuning price of different values of the GUT-scale Yukawa coupling ratio yτ/yb,
representing an important cornerstone for the discrimination of GUT models. There,
we found that, for mh ≈ 125 GeV, b-τ Yukawa unification corresponds to ∆ & 60,
while the alternative ratio yτ/yb = 3/2 can be realised at the price of only ∆ & 30.

Analysing the SUSY spectrum favoured by naturalness and the Higgs mass con-
straint, we found that for the least tuned data points with fine-tuning ∆ less than 20
the lightest neutralino is expected to be lighter than about 400 GeV and the lighter
stop can be as heavy as 3.5 TeV. On the other hand, the gluino mass is actually
required to be above 1.5 TeV. Comparing the predicted spectra with the LHC ex-
clusions derived in a set of simplified models, we concluded that the regions of lowest
fine-tuning are at present only poorly constrained by direct SUSY searches.

In summary, while a universal high-scale boundary condition such as the cMSSM
is certainly challenged from the point of view of fine-tuning by the Higgs discovery at
mh ≈ 125 GeV, more general variants of the MSSM like the examples studied here can
still provide relatively natural solutions to the hierarchy problem and will probably
require several more years of data taking before they are fully tested at the LHC.

In chap. 7, motivated by current global fits [16] yielding a large leptonic mixing
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angle of
θPMNS

13 = 8.5◦ ± 0.2◦ , (8.46)

we discussed how this value can easily emerge in theories that unify the forces of the
Standard Model. In particular, we investigated how the Georgi-Jarlskog scenario with
a Clebsch-Gordan factor of −3 in the connection of the 2-2 matrix elements of Yd, Ye
can be generalised with a predictive relation for the value of θPMNS

13 .
The key towards realising this is to find a tight connection between the charged

lepton Yukawa matrix and the down-type quark Yukawa matrix in the subsector of the
first two generations. This can then lead to the link

θe12 ≈ θC , (8.47)

between quark and lepton mixing. This, in turn, corrects the neutrino mixing matrix
in such a way that the reactor mixing angle is generated following the relation

θPMNS
13 ≈ 1√

2
θe12 . (8.48)

The general conditions that characterise this scenario are the following:

• Vanishing 1-3 mixing in the neutrino and charged lepton sector

• A predictive setup in the quark sector leading to θd12 ≈ θC to a good approxima-
tion

• A GUT sector (or similar) linking the down type quark Yukawa matrix Yd and the
charged lepton Yukawa matrix Ye in a definite way using discrete Clebsch-Gordan
factors

• Simple equality conditions for two of the Clebsch-Gordan factors. For SU(5)
GUTs an additional constraint – such as symmetry of Yd and Ye or a vanishing
1-1 entry – is necessary.

An important reason for the last condition is given by the relation between θe12 and
other flavour quantities of the form

θe12 ≈


∣∣∣∣cbcc
∣∣∣∣ θd12 in PS

me

mµ

∣∣∣∣cccb
∣∣∣∣ 1

θd12

in SU(5)

, (8.49)

together with the requirement to reproduce the quark-lepton mass ratios consistently
and the condition on θd12. Specifically, it turns out that, for certain cases, only one com-
bination of Clebsch-Gordan factors is consistent with all requirements. Additionally
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we found that, in SU(5) GUTs under our general assumptions, the current magnitude
measured for θPMNS

13 is actually the upper limit of what you can get if a texture 0 in
the 1-1 element of Yd and Ye is assumed.

Subsequently, we have discussed several types of corrections scenarios satisfying
these four conditions receive, ranging from inaccuracy due to the approximations made,
actual dependence on θPMNS

23 , renormalisation group effects to canonical normalisation.
In conclusion, the corrections amount to about O(10%), i.e. about a factor of three
larger than current experimental uncertainty. However, most of these effects can be
kept under control in an explicit model, as was shown in simple examples.

In a more model-independent way, we have also discussed how different underlying
neutrino mixing schemes can be discriminated using the large value of θPMNS

13 and the
lepton mixing sum rule,

θPMNS
12 − θPMNS

13 cos(δPMNS) ≈ θν12 . (8.50)

This allows to “reconstruct” the value of θν12 from a future measurement of δPMNS,
assuming θν13, θ

e
13 � θC , i.e. condition 1.

Finally in chap. 8, we discussed how the double missing partner mechanism solution
to the doublet-triplet splitting problem in four-dimensional supersymmetric SU(5)
grand unified theories can be combined with predictive models using Clebsch-Gordan
(CG) factors for the quark-lepton Yukawa coupling ratios at the GUT scale.

Towards this goal, we argued that a second SU(5) breaking Higgs field in the adjoint
representation 24 is very advantageous. Consequently, we studied all possible renor-
malisable superpotentials with two adjoint Higgs fields systematically, and calculated
the corresponding constraints on the GUT scale and effective triplet mass in a two-loop
gauge coupling unification analysis. We found that the effective colour triplet masses,
which enter dimension five and six proton decay, can easily be raised enough to avoid
problems with proton decay (more than feasible with standard non-renormalisable
Higgs potentials with only one adjoint GUT Higgs field). We concluded the chapter by
stressing the advantage of having ratios fixed by group theoretical structure between
not only Higgs doublet but also colour triplet Yukawa couplings and other advantages
of the used approach.

In summary, we demonstrated via multiple avenues how the structure of a grand
unified theory (of flavour and in general) can be inferred from low energy observables:
most directly via flavour observables themselves, but also via other means such as
fine-tuning of the electroweak scale, new input from neutrino physics and the non-
observation of proton decay. As such, we expect this thesis together with its appendices
to be valuable to the scientific community for future research on GUT model building.
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PART IV

Appendix





APPENDIX A

Quark Masses at the Z Mass Scale

In the following, we show in more detail how the quark masses at the renormalisation
scale µ = MZ are calculated using the Mathematica package RunDec [62]. For more
information on the parameters of each function, see therein. As mentioned in chap. 5,
we use the notation, where pole masses are denoted as upper case Mq and running

masses in QCD with nf active flavours are denoted as m
(nf )
q (µ). As such, we take as

input parameters: m
(3)
u,d,s(2 GeV), m

(4)
c (mc), m

(5)
b (mb), Mt, α

(5)
s (MZ). The following

algorithm takes care of the QCD calculation in an iterative way. In practice, however,
after the second iteration the accuracy is good enough and this part of the calculation
concludes.

As the first step, we run αs from MZ to the running bottom mass with nf = 5 and
4 loop accuracy – the latter applies to every step in the calculation.

α(5)
s (m

(5)
b (mb)) = AlphasExact[α(5)

s (MZ), MZ , m
(5)
b (mb), 5, 4];

Using this value for αs, we can determine the bottom quark pole mass. It depends
weakly on the lighter quark masses of which the only (mildly) significant one is the
charm quark mass. Due to the structure of RunDec, we need the running charm quark
mass at m

(5)
b (mb), which we do not have during the first iteration, hence the iterative

structure.

Mb = mMS2mOS[

m
(5)
b (mb),

If[mc =!= None, {mc}, {}],
α(5)
s (m

(5)
b (mb)),

m
(5)
b (mb), 5, 4

];
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With the bottom pole mass at hand, we can run αs from MZ to 2 GeV and m
(4)
c (mc),

while taking into account the bottom threshold at its pole mass.

α(4)
s (2 GeV) = AlH2AlL[α(5)

s (MZ), MZ , {{5, Mb, Mb}}, 2 GeV, 4];

α(4)
s (m(4)

c (mc)) = AlH2AlL[α(5)
s (MZ), MZ , {{5, Mb, Mb}}, m(4)

c (mc), 4];

Next, we run up again in nf = 4 to the bottom quark mass scale.

α(4)
s (m

(5)
b (mb)) = AlphasExact[α(4)

s (2 GeV), 2 GeV, m
(5)
b (mb), 4, 4];

Based on this value for αs, we obtain the charm quark mass at the bottom quark mass
scale for nf = 4 and subsequently de-decouple the bottom quark to obtain the value
for nf = 5. Note that the latter is what is passed as mc to the next iteration.

m(4)
c (m

(5)
b (mb)) = mMS2mMS[m(4)

c (mc), α
(4)
s (m(4)

c (mc)), α
(4)
S (m

(5)
b (mb)), 4, 4];

m(5)
c (m

(5)
b (mb)) = DecMqUpOS[m(4)

c (m
(5)
b (mb)), α

(4)
S (m

(5)
b (mb)), Mb, Mb, 4, 4];

Going back to the values at the scale m
(4)
c (mc), we run the charm quark mass to 2 GeV

for nf = 4.

m(4)
c (2 GeV) = mMS2mMS[m(4)

c (mc), α
(4)
s (m(4)

c (mc)), α
(4)
s (2 GeV), 4, 4];

Using this value, we determine the charm quark pole mass. Since m
(4)
c (mc) is below

2 GeV, we expect this way of calculating it to be more accurate as αs runs to smaller
values with increasing scale.

Mc = mMS2mOS[m(4)
c (2 GeV), {}, α(4)

s (2 GeV), 2 GeV, 4, 4];

Next, we determine the value of αs relevant for the three light quarks by decoupling
the charm quark at 2 GeV from the nf = 4 theory.

α(3)
s (2 GeV) = DecAsDownMS[α(4)

s (2 GeV), m(4)
c (2 GeV), 2 GeV, 3, 4];

Using this, we calculate the three light quark masses for nf = 4 at the scale 2 GeV by
de-decoupling the charm quark.

m(4)
u (2 GeV) = DecMqUpMS[m(3)

u (2 GeV), α(3)
s (2 GeV), m(4)

c (2 GeV), 2 GeV, 3, 4];

m
(4)
d (2 GeV) = DecMqUpMS[m

(3)
d (2 GeV), α(3)

s (2 GeV), m(4)
c (2 GeV), 2 GeV, 3, 4];

m(4)
s (2 GeV) = DecMqUpMS[m(3)

s (2 GeV), α(3)
s (2 GeV), m(4)

c (2 GeV), 2 GeV, 3, 4];
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Turning our attention back to higher scales, we determine the running top mass in
the nf = 5 theory based on the lighter quark masses of charm and bottom (neglecting
even lighter ones).

m
(5)
t (MZ) = mOS2mMS[Mt, {Mc, Mb}, α(5)

s (MZ), MZ , 5, 4];

Using this running top mass, we determine the nf = 6 value for αs by de-decoupling
the top quark at the scale MZ .

α(6)
s (MZ) = DecAsUpMS[α(5)

s (MZ), m
(5)
t (MZ), MZ , 5, 4];

Finally, we determine the running top quark mass at the scale MZ from its on-shell
mass.

m
(6)
t (MZ) = mOS2mMS[Mt, {Mc, Mb}, α(6)

s (MZ), MZ , 6, 4];

Of the other quark masses, the up, down, strange and charm quark running masses
(denoted collectively as mq) are then determined from their nf = 4 values at 2 GeV
by running them to MZ , taking into account the nf = 5 threshold at Mb and the top
threshold to nf = 6 just before MZ (the result does not significantly change when
moving this threshold closer to MZ).

m(6)
q (MZ) = mL2mH[

m(4)
q (2 GeV), α(4)

s (2 GeV), 2 GeV,

{{5, Mb, Mb}, {6, Mt, 0.99MZ}}, MZ , 4

];

Lastly, the bottom quark mass is determined the same way, but, of course, without
the bottom threshold.

m
(6)
b (MZ) = mL2mH[

m
(5)
b (mb), α

(5)
s (m

(5)
b (mb)), m

(5)
b (mb),

{{6, Mt, 0.99MZ}}, MZ , 4

];



136 A. Quark Masses at the Z Mass Scale



APPENDIX B

Electroweak Corrections to Running
Fermion Masses

When the SM is matched to the low-energy theory of SU(3)C × U(1)em, in principle,
one has to take into account contributions to the running Dirac fermion masses from
the electroweak gauge bosons W± and Z0 as well as the Higgs boson h0 and associated
Goldstone bosons (depending on the gauge). The relevant one-particle irreducible one-
loop diagrams, shown in fig. B.1, lead to corrections to the Lagrangian density of the
form

∆L = ∆KL
f ψf i /pPL ψf + ∆KR

f ψf i /pPR ψf −∆mf ψfψf , (B.1)

where MS divergences are already assumed to be subtracted. After canonical normal-
isation, this results in the relation between low-energy running masses mlow

f and SM
running masses mSM

f ,

mSM
f = mlow

f

(
1− ∆mf

mf

+ 1
2

(
∆KL

f + ∆KR
f

))
≡ mlow

f

(
1 +

δmf

mf

)
, (B.2)

where the specific choice which mf to use in the brackets only amounts to a higher
order effect. Determination of the corrections for up-type quarks ui, down-type quarks
di and charged leptons ei using FeynArts [143] and FormCalc [144] yields the formulae

δmui

mui

=
α

288π c2
W s2

W M2
W

[
M2

W (−9 + 8 s2
W (−3 + 4 s2

W ))

− [18 c2
W m2

ui
+ 32M2

W s2
W (−3 + 4 s2

W )]B0(m2
ui
,m2

ui
,M2

Z)

− [18 c2
W m2

ui
+ 2M2

W (9 + 8 s2
W (−3 + 4 s2

W ))]B1(m2
ui
,m2

ui
,M2

Z)

− 18 c2
W

3∑
k=1

∣∣V CKM
ik

∣∣2 (M2
W + 2m2

dk
B0(m2

ui
,m2

dk
,M2

W )

+ (m2
dk

+m2
ui

+ 2M2
W )B1(m2

ui
,m2

dk
,M2

W )
)
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+ 18 c2
W m2

ui

(
B0(m2

ui
,m2

ui
,m2

h0)−B1(m2
ui
,m2

ui
,m2

h0)
) ]

,

δmdi

mdi

=
α

288 π c2
W s2

W M2
W

[
M2

W (−9 + 4 s2
W (−3 + 2 s2

W ))

− [18 c2
W m2

di
+ 16M2

W s2
W (−3 + 2 s2

W )]B0(m2
di
,m2

di
,M2

Z)

− [18 c2
W m2

di
+ 2M2

W (9 + 4 s2
W (−3 + 2 s2

W ))]B1(m2
di
,m2

di
,M2

Z)

− 18 c2
W

3∑
k=1

∣∣V CKM
ki

∣∣2 (M2
W + 2m2

uk
B0(m2

di
,m2

uk
,M2

W )

+ (m2
di

+m2
uk

+ 2M2
W )B1(m2

di
,m2

uk
,M2

W )
)

+ 18 c2
W m2

di

(
B0(m2

di
,m2

di
,m2

h0)−B1(m2
di
,m2

di
,m2

h0)
) ]

,

δmei

mei

=
α

32 π c2
W s2

W M2
W

[
M2

W (−3− 2 s2
W (1− 4 s2

W ))

− [2 c2
W m2

ei
+ 16M2

W s2
W (−1 + 2s2

W )]B0(m2
ei
,m2

ei
,M2

Z)

− [2 c2
W m2

ei
+ 2M2

W (1− 4 s2
W (1− 2 s2

W ))]B1(m2
ei
,m2

ei
,M2

Z ]

− 2 c2
W (m2

ei
+ 2M2

W )B1(m2
ei
, 0,M2

W )

+ 2 c2
W m2

ei

(
B0(m2

ei
,m2

ei
,m2

h0)−B1(m2
ei
,m2

ei
,m2

h0)
) ]

,

with sW = sin θW , cW = cos θW and the one loop Passarino-Veltman functions B0 and
B1 [145]. With the MS divergence term already subtracted, they are given by

B0(p2,m2
0,m

2
1) = −

1∫
0

log

[−x(1− x)p2 + xm2
1 + (1− x)m2

0

µ2

]
dx ,

B1(p2,m2
0,m

2
1) =

1∫
0

x log

[−x(1− x)p2 + xm2
1 + (1− x)m2

0

µ2

]
dx .

The calculation was done in Feynman gauge ξ = 1 and in the main text the threshold
renormalisation scale µ = MZ was used. In the case of top quarks, this correction
develops an imaginary part which is interpreted as contribution to the decay width due
to the process t→ Wb and is thus dropped for the calculation of the mass correction.

Note that these relative corrections are O(10−3) for bottom and top quark and
O(10−4) for all other fermions. Thus, they are only statistically relevant for charged
lepton masses.
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f f

h0, G0, G±

f, f, f ′

f f

Z0,W±

f, f ′

Figure B.1: Feynman diagrams involving scalar and vector boson particles con-
tributing to the self-energy of the SM fermions. Electroweak doublet Goldstone bosons
are denoted as G0 and G±. For uncharged bosons, the relevant internal fermion f is
the same as the external one. For charged bosons, the internal fermion f ′ is the one
with opposite weak isospin, i.e. f ′ = νi for f = ei or f ′ = dk for f = ui.
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APPENDIX C

Useful Statistical Relations

In the following, we give a brief definition of the concepts and algorithms used in the
statistical analysis of chap. 5.

Let us start with the definition of highest posterior density (HPD) intervals. As
stated in [15], the HPD interval [a; b] of a random variable x to a given confidence level
P is defined by

b∫
a

p(x) dx = P and p(x) < p(y) ∀x ∈ [a; b], y /∈ [a; b] , (C.1)

where p(x) is the probability distribution function (p.d.f.) of x. For random samples (of
uni-modal distributions), it is more convenient to use the equivalent definition where
[a; b] is the smallest interval in which a fraction P of all sample elements are contained.

Since some experimental data has non-symmetrical uncertainties, it is also impor-
tant to treat this case properly. Thus, we use a slightly more involved random sample
drawing algorithm as follows. Recall that given a random variable x with p.d.f p(x)
and a cumulative distribution function

F (x) =

x∫
−∞

p(y) dy , (C.2)

and a random variable t that is uniformly distributed on the interval [0; 1], we can
replicate samples of x by drawing a number t0 from t and obtaining the corresponding
x value of

x0 = F−1(t0) , (C.3)

which is well defined assuming positivity of p(x) and subsequent strict monotony and
invertibility of F (x). This is referred to as inversion sampling. Thus, using the error
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function erf(x) defined by

erf(x) =
2√
π

x∫
0

e−t
2

dt , (C.4)

we model a measurement of the form µ+b
−a with a function F−1 as in eq. (C.3) of the

form

F−1(t) =


µ+
√

2 a · erf−1

[(
t− a

a+ b

)
a+ b

a

]
for t <

a

a+ b

µ+
√

2 b · erf−1

[(
t− a

a+ b

)
a+ b

b

]
for t ≥ a

a+ b

. (C.5)

The obtained random variable x has three desirable properties: it has a continuous
p.d.f. p(x) especially at the measured value µ, where it has its maximum, and fulfils
the property

µ+n b∫
µ−na

p(x) dx =

+n∫
−n

N (x) dx , (C.6)

where N is the p.d.f. for a standard normal distribution with mean value µ = 0 and
standard deviation σ = 1. In particular, p(x) is positive for all x, meaning that all
real values are realised. As can be checked quite easily, in the limit a → b ≡ σ the
function F−1 of eq. (C.5) converges continuously to the one of a normal distribution
with mean value µ and standard deviation σ. Note that only in this limit the relation∫
x<µ

p(x) dx =
∫
x>µ

p(x) dx is true.
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Yukawa Coupling Ratios in SU(5)

D.1 Explicit Tensor Decomposition in SU(N)

In the following, we specify the algorithm for SU(N) tensor decomposition with which
the results in sec. D.2 were derived. Note that it is a very explicit and possibly time
consuming algorithm which has not been optimised and can contain extraneous steps.
In practice, it makes little difference as long as the dimension of the relevant tensors is
small enough, since the results only have to be calculated once and can then be reused,
similar to branching rules of SU(N) representations to subalgebra representations.

Let the SU(N) algebra be given by the generators Ta as hermitian N×N matrices.
We take the first N(N−1) generators to be the non-diagonal ones (analogous to SU(2))
paired up as

(Ta(m,n))
i
j =

1

2
(δinδjm + δimδjn) , (D.1a)

(Ta(m,n)+1)ij =
i

2
(δinδjm − δimδjn) , (D.1b)

where m = 1, . . . , N and n = m + 1, . . . , N (and a(m,n) = (2N − m)(m − 1) +
2(n −m) − 1, such that a(1, 2) = 1, a(1, 3) = 3, . . . , a(2, 3) = 2(N − 1) + 1, a(2, 4) =
2(N −1)+3, . . . )1. The N −1 traceless diagonal generators are not directly important
for this algorithm. The N(N − 1) ladder operators T+

a and T−a are then given by

T±a = Ta ± iTa+1 , (D.2)

for which it is easy to show that they have the generalised form and properties of
ladder operators of SU(2).

Now, let Ri1i2...in be a general tensor of SU(N). Since each index corresponds to a
fundamental representation N of SU(N), the action of a generator Ta on the tensor R

1However, iterating over m (outer) and n (inner) will ensure this ordering automatically.
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is given by

(TaR)j1j2...jn =

(
(Ta)

j1
i1

∏
k 6=1

δjkik + (Ta)
j2
i2

∏
k 6=2

δjkik + · · ·+ (Ta)
jn
in

∏
k 6=n

δjnin

)
Ri1i2...in ,

(D.3)
meaning that all indices transform separately2. If R is completely general, this is the
transformation rule of the reducible representation R = Nn, where N is the funda-
mental representation of SU(N). What we are interested in at first is the unitary
transformation Ô that relates this tensor R with its reduction into irreducible repre-
sentations Ri, with R = R1 +R2 + . . . such that the irreducible components RRi,k are
given by

RRi,k = ÔRi,k;j1j2...jn R
j1j2...jn , (D.4)

where k runs from 1 to dim Ri for each i and summation over jn is implied. Assuming
that SU(N) is subsequently broken into a semi-simple subgroup G, the irreducible
representations Ri each branch off into several irreducible representations of the factors
of G labelled as (r1, r2, . . . , rm), where m is the number of simple Lie group factors of
G. Decomposing the SU(N) tensor R also into these representations of G leads to an
analogous definition of an orthogonal matrix O with the property

R(r1,r2,...,rm),k = O(r1,r2,...,rm),k;j1j2...jn R
j1j2...jn , (D.5)

where k runs from 1 to dim (r1, r2, . . . , rm) as before. Going further, we make a change
of basis by collapsing multi-indices into single indices, such that eq. (D.5) reads

R̃µ = Õµj R̃
j , (D.6)

where both µ and j run from 1 to dim R = Nn. Since this is just a numbering of the
multi-index values of before, it is trivially an isomorphism on both sides of Õ or O.
For the following, it is not important how exactly this numbering proceeds as long as
one keeps track of it and uses it consistently. Also note that it is in these simplified
bases where Õ can be directly understood as a unitary matrix with Õ†Õ = ÕÕ† = 1.
In the same sense, eq. (D.3) now defines a hermitian Nn ×Nn matrix T̃a for each a.

The determination of the matrix Õ (or rather its rows) for a given tensor Ri1i2...in

now proceeds via the following algorithm:

(1) We start with the full group SU(N) and determine all ladder operators T±a in
the fundamental representation. The set of rows of Õ is initialised as empty3

2Note that this equation and the following discussion can also be extended to encompass ‘conju-
gated’ indices corresponding to the N representation by replacing (Ta)ji with −(TTa )ji for such indices.
Otherwise, it is not relevant for the presented algorithm.

3Actually, since we use the full group in the first iteration, it will rather determine
˜̂
O. The

decomposition into subgroup representations will proceed with step (8).
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(2) The ladder operators are converted to their analogues T̃±a in the reducible tensor
representation R.

(3) We take a unit vector v from the kernel of the first T̃+
a .

(4) We apply each ladder up operator T̃+
a to v repeatedly yielding a new v until

T̃+
a v = 0, one a after the other going over all a twice. At this point, the direction

of v corresponds to a superposition of directions that are highest-weight-like of
the considered group and ones that are total singlets.

(5) We split total singlet components off by going through all ladder operators T̃±a ,
for each a we do the following: if T̃+

a T̃
−
a v 6= 0, replace v with T̃+

a T̃
−
a v and go to

the next a, otherwise replace v with T̃−a T̃
+
a v if it is not zero and proceed to the

next a. This makes sure that at least one of the two combinations is applied if v
is a combination of |j,±j〉 and |0, 0〉 of this SU(2) subalgebra. Having done this,
v points into a direction associated with only a single irreducible representation
of the group.

(6) We decompose the full representation space associated with the vector v by ap-
plying all ladder operators T̃±a to v and again to all vectors resulting from this
and so on until further applications of T̃±a yield only vectors that are linearly
dependent on the set of vectors V̂ = {vi} we already have. The vector set V̂
is then orthonormalised using the Gram-Schmidt process and added as rows to
Õ. Alternatively, one can project out components of already encountered direc-
tions after each application of a ladder operator and thus also obtain a set of
orthonormal vectors V̂ .

(7) Repeat steps (4) to (6) with v now being a vector perpendicular to all rows of
Õ found up to now. When the number of found rows is equal to the dimension
of R, we have found the full orthogonal square matrix Õ that decomposes the
component space of R into sub-blocks that are not mixed by the generators
of the current group – namely the subspaces corresponding to the irreducible
representations Ri in the tensor product Nn.

(8) To actually arrive at the decomposition matrix Õ into subgroup representations,
we further decompose the subspaces of Ri via a change of basis using Õ and
applying steps (3) to (7) with the ladder operators that are contained in the
unbroken subgroup, e.g. the ones commuting with predetermined direction in
the adjoint representation such as hypercharge for breaking SU(5) to the SM.
The full Õ is then given by the product of both sub-transformation matrices.

Note that via this procedure one usually only learns the dimension of the representa-
tions under the subgroup directly, e.g. it is then not immediately obvious whether a 6
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dimensional representation of the SM is a (6,1)y or a (3,2)y′ of (SU(3)C , SU(2)L)U(1)Y .
It is thus necessary to break the symmetry group down to QCD alone to extract the
QCD representation, while the hypercharge can be extracted by applying the corre-
sponding diagonal generator obtained via eq. (D.3). Information on the difference
between for example 3 and 3 can only be obtained via other means entirely.

We also stress that, while we do not prove the correctness of this algorithm, we
have checked that it produces correct results for all tensor structures encountered in
the next section. For this, we checked that the resulting transformation matrix have
square form, are unitary (actually orthogonal in all cases) and that they correctly
reduce all SU(N) generators into the representation blocks as quoted in the literature,
see e.g. [47].

D.2 Yukawa Coupling Ratios for Higgs Doublets

and Triplets

The full explicit form of the MSSM superpotential shall be given by4

W = εαβ

(
(Ye)

ijHα
d L

β
i Ēj + (Yd)

ijHα
dQ

βa
i D̄

a
j + (Yu)

ijHβ
uQ

αa
i Ū

a
j + µHα

uH
β
d

)
, (D.7)

where i,j are generation indices, εαβ the Levi-Civita tensor (ε12 = 1), α, β are SU(2)
indices and a, b and c are SU(3) indices. For clarity, we switched to the notation Ū , D̄,
Ē for the right-handed up quark, down quark and charged lepton superfields instead
of uc, dc, ec respectively, in order to minimise the amount of indices in the next few
formulae. Adding a pair of colour triplets T and T̄ to the MSSM, we get the additional
terms

WT = εαβ

(
−1

2
(Yqq)ijεabcT

aQαb
i Q

βc
j + (Yql)ijT̄

aQαa
i L

β
j

)
+ (Yue)ijT

aŪa
i Ēj − (Yud)ijεabcT̄

aŪ b
i D̄

c
j +MTT

aT̄ a ,

(D.8)

where εabc is the three indices Levi-Civita tensor (with ε123 = 1).
When extending the SM gauge group to SU(5), we embed the MSSM superfields

in a 5-plet H5, 5̄-plets H̄5 and Fi, and 10-plets Ti as in

H5 =
(
T r T g T b H+

u H0
u

)T
, (D.9a)

H̄5 =
(
T̄ r T̄ g T̄ b H−d −H0

d

)
, (D.9b)

Fi =
(
D̄r
i D̄g

i D̄b
i Ei −νi

)
, (D.9c)

4This definition coincides with the definition of [146].
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and

Ti =
1√
2


0 −Ū b

i Ū g
i −U r

i −Dr
i

Ū b
i 0 −Ū r

i −U g
i −Dg

i

−Ū g
i Ū r

i 0 −U b
i −Db

i

U r
i U g

i U b
i 0 −Ēi

Dr
i Dg

i Db
i Ēi 0

 , (D.9d)

where r, g, b are the SU(3) colours and U , D and ν, E denote the components of
SU(2)-doublets Q and L.5 In this embedding, the hypercharge operator is given by
Y ∝ diag(3, 3, 3,−2,−2). We can write down the renormalisable superpotential terms

W = (YTF )ijT abi (Fj)a(H̄5)b +
1

2
(YTT )ijεabcdeT abi T cdj He

5 + µ5H
a
5 (H̄5)a , (D.10)

where now a, b, c, d, e are SU(5)-indices and εabcde is the respective Levi-Civita tensor.
From the embedding of the MSSM fields, one obtains the minimal SU(5) GUT-scale
relations

µ = MT = µ5 , (D.11a)

Yd = Y T
e = Yql = Yud =

1√
2
YTF , (D.11b)

Yu = Y T
u = Yqq = Yue = 2YTT . (D.11c)

In order to fix undesirable relation Yd = Y T
e , one approach is to add a 45-dimensional

Higgs representation which generates a relative factor of −3 between the Yukawa cou-
plings of the charged leptons and down-type quarks [48]. Here, we implement the
extended approach where the ratios between Yukawa couplings are fixed by the CG
coefficients of higher-dimensional operators where in addition an adjoint Higgs repre-
sentation 24 of SU(5) is added [49, 51]. In addition, we also present the relative CG
coefficents to the triplets. Namely, while in [49, 51] only Yd, Ye and Yu were discussed,
here we will also discuss in detail the implications of this approach for Yql, Yud, Yqq,
Yue. The list of the resulting ratios for dimension 4 and 5 operators with Higgs fields
in a 5- and 45-dimensional representation can be found in tabs. D.1 and D.2, where
the labels for the representations is defined by fig. D.1. The corresponding results for
dimension six operators are given in tabs. D.3–D.6.

There are a few comments in order. First, note that several topologies involving
a 45-dimensional messenger field exhibit a free parameter, due to the fact that the
tensor product 45× 24 contains two 45-dimensional representations. Hence, there are
two operators possibly giving two different ratios so that a continuous line of ratios is

5Likewise Hd =
(
H0
d H−

d

)T
and Hu =

(
H+
u H0

u

)T
.
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A
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D

E

R̄2R2R1R̄1

Figure D.1: Supergraphs generating Yukawa couplings upon integrating out mes-
sengers fields in representation R,R̄, etc.

possible depending on the coefficients of the two operators. For these cases, we write
x in the tables.

We also want to mention that, unlike at the renormalisable level, the up-type
quark Yukawa and related matrices do not have to be symmetric or antisymmetric.
Consider, for example, the operator (H24T1)10(H5T2)10. Due to flavour symmetries
and messenger content the operator (H24T2)10(H5T1)10 could be forbidden. In that
case, we find (Yu)12/(Yu)21 = −4. Hence we have adopted the following notation for
the ratios in the tables for the Yukawa couplings related to Yu

(Yu)ij : (Yu)ji : (Yqq)ij : (Yue)ij : (Yue)ji = a : b : c : d : e , (D.12)

which reduces for the diagonal entries of the Yukawa matrices to

(Yu)ii : (Yqq)ii : (Yue)ii = (a+ b) : c : (d+ e) . (D.13)

The ratios related to Yd do not have this extra complication since none of them could
be expected to be symmetric or anti-symmetric in the first place.

If the considered model contains Higgs fields both in 5- and 45-dimensional rep-
resentations6, there are two Higgs doublet pairs in the spectrum and care should be
taken that unification is still possible. One solution is mixing both and making one
linear combination heavy while one stays at the electroweak scale. The simplest term
generating such a mixing is

W ⊃ H24H5H̄45 ∝ HuH
45
d −

2√
3
T T̄ 45 + . . . , (D.14)

where the dots stand for terms involving additional MSSM multiplets in H̄45. Since
a 45 contains more potentially dangerous MSSM multiplets, it is natural to have
the heavy linear combination be predominantly in the 45. Then it is possible to

6One could also imagine using 45-dimensional Higgs fields exclusively. However, this severely
exacerbates the doublet-triplet splitting problem as now one has to split the doublets from even more
component fields that can generate proton decay operators.
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AB C D R (Yd)ij : (Ye)ji : (Yql)ij : (Yud)ij

Fj Ti H̄5 — 1 : 1 : 1 : 1

H24 Ti Fj H̄5 10 1 : 6 : 1 : −4

H24 Ti Fj H̄5 15 1 : 0 : −1 : 0

H24 H̄5 Fj Ti 5̄ 1 : 1 : −2
3

: −2
3

H24 H̄5 Fj Ti 45 1 : −3 : −2 : 2

H24Fj Ti H̄5 5̄ 1 : −3
2

: −3
2

: 1

H24Fj Ti H̄5 45 1 : 3
2

: −1
2

: −1

Fj Ti H̄45 — 1 : −3 :
√

3 : −
√

3

H24 Ti Fj H̄45 10 1 : −18 :
√

3 : 4
√

3

H24 Ti Fj H̄45 40 1 : 0 : −
√

3
2

: −
√

3
2

H24 Ti Fj H̄45 175 1 : 36
23

: −19
√

3
23

: −16
√

3
23

H24 H̄45 Fj Ti 5̄ 1 : 1 : − 2√
3

: − 2√
3

H24 H̄45 Fj Ti 45 1 : −3 : x : −x
H24Fj Ti H̄45 5̄ 1 : 9

2
: −3

√
3

2
: −
√

3

H24Fj Ti H̄45 45 1 : −1
2

: −
√

3
2

: − 1√
3

H24Fj Ti H̄45 70 1 : 9
4

: −3
√

3
4

: −
√

3

Table D.1: YTF -like CG ratios for the dimension 4 operator and effective dimen-
sion five operators W ⊃ (AB)R(CD)R̄ (involving 5- and 45-dimensional Higgs fields)
corresponding to the left diagram in fig. D.1. Note that one combination has a free
parameter x due to the ambiguity of the index contraction. See main text for more
details.

treat H̄45 like a messenger field7 and the renormalisable operator FT H̄45 turns into
the non-renormalisable operator (FT )45(H24H̄5)45, cf. tab. D.1. If the approximation
M45 � 〈H24〉 does not hold, one has to take into account the full mass matrix for the
Higgs doublets including the term in eq. (D.14).

7For reasons of anomaly cancellation, a 45 must be paired with a 45.
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AB C D R (Yu)ij : (Yu)ji : (Yqq)ij : (Yue)ij : (Yue)ji

TiTjH5 — 1 : 1 : 1 : 1 : 1

H24H5 TiTj 5 1 : 1 : −2
3

: −2
3

: −2
3

H24H5 TiTj 45 1 : −1 : 0 : −2 : 2

H24Ti TjH5 10 1 : −4 : 1 : −4 : 6

H24Ti TjH5 40 1 : 1
2

: −1
2

: −1 : 0

TiTjH45 — 1 : −1 : 0 :
√

3 : −
√

3

H24Ti TjH45 10 1 : 4 : 0 : −4
√

3 : −6
√

3

H24Ti TjH45 15 1 : 0 : −
√

3
2

: 0 : 0

H24Ti TjH45 40 1 : −7
2

: 3
√

3
2

: −
√

3 : 0

H24Ti TjH45 175 1 : 16
19

: −21
√

3
38

: −16
√

3
19

: −12
√

3
19

H24H45 TiTj 5 1 : 1 : − 2√
3

: − 2√
3

: − 2√
3

H24H45 TiTj 45 1 : −1 : 0 : x : −x
H24H45 TiTj 50 0 : 0 : 1 : −2 : −2

Table D.2: YTT -like CG ratios for the dimension 4 operator and effective dimen-
sion five operators W ⊃ (AB)R(CD)R̄ (involving 5- and 45-dimensional Higgs fields)
corresponding to the left diagram in fig. D.1. Note that one combination has a free
parameter x due to the ambiguity of the index contraction. See main text for more
details.
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AB C DE R1, R2 (Yd)ij : (Ye)ji : (Yql)ij : (Yud)ij

Ti H̄5 Fj H24H24 5, 1 1 : 1 : 1 : 1

Ti H̄5 Fj H24H24 5, 24 1 : −3
2

: −3
2

: 1

Ti H̄5 Fj H24H24 45, 24 1 : 3
2

: −1
2

: −1

Ti H̄5 Fj H24H24 45, 75 1 : −3 : 1 : −1

H24 H̄5 H24 Fj Ti 5̄, 5 1 : 1 : 4
9

: 4
9

H24 H̄5 H24 Fj Ti 5̄, 45 1 : −3 : 4
3

: −4
3

H24 H̄5 H24 Fj Ti 45, 5 1 : 1 : 4
3

: 4
3

H24 H̄5 H24 Fj Ti 45, 45 1 : −3 : x : −x
H24 H̄5 H24 Fj Ti 70, 5 1 : 1 : 8

9
: 8

9

H24 H̄5 H24 Fj Ti 70, 45 1 : −3 : 8
3

: −8
3

Fj Ti H̄5 H24H24 5, 1 1 : 1 : 1 : 1

Fj Ti H̄5 H24H24 5, 24 1 : 1 : −2
3

: −2
3

Fj Ti H̄5 H24H24 45, 24 1 : −3 : −2 : 2

Fj Ti H̄5 H24H24 45, 75 1 : −3 : 1 : −1

H24 H̄5 Ti H24Fj 5̄, 5̄ 1 : −3
2

: 1 : −2
3

H24 H̄5 Ti H24Fj 5̄, 45 1 : 3
2

: 1
3

: 2
3

H24 H̄5 Ti H24Fj 45, 5̄ 1 : 9
2

: 3 : 2

H24 H̄5 Ti H24Fj 45, 45 1 : −1
2

: 1 : 2
3

H24 H̄5 Ti H24Fj 45, 70 1 : 9
4

: 3
2

: 2

H24 H̄5 Ti H24Fj 70, 45 1 : 3
2

: 2
3

: 4
3

H24 H̄5 Ti H24Fj 70, 70 1 : 3
4

: 1 : 2
3

Fj H̄5 H24 H24 Ti 10, 10 1 : 36 : 1 : 16

Fj H̄5 H24 H24 Ti 10, 15 1 : 0 : 1 : 0

Fj H̄5 H24 H24 Ti 10, 40 1 : 0 : 1 : 1

Fj H̄5 H24 H24 Ti 10, 175 1 : 72
61

: 1 : 64
61

Fj H̄5 H24 H24 Ti 15, 10 1 : 0 : −1 : 0

Fj H̄5 H24 H24 Ti 15, 15 1 : 0 : −1 : 0

Fj H̄5 H24 H24 Ti 15, 175 1 : 0 : −1 : 0

Table D.3: YTF -like CG ratios for the effective dimension six operators W ⊃
(AB)R1C(DE)R2 corresponding to the right diagram in fig. D.1. Note one combi-
nation has a free parameter x. See main text for more details.
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AB C DE R1, R2 (Yd)ij : (Ye)ji : (Yql)ij : (Yud)ij

H24Fj H24 Ti H̄5 5̄, 5 1 : 9
4

: 9
4

: 1

H24Fj H24 Ti H̄5 5̄, 45 1 : −9
4

: 3
4

: −1

H24Fj H24 Ti H̄5 45, 5 1 : 3
4

: 3
4

: 1

H24Fj H24 Ti H̄5 45, 45 1 : x : −x
3

: −1

H24Fj H24 Ti H̄5 70, 5 1 : 9
8

: 9
8

: 1

H24Fj H24 Ti H̄5 70, 45 1 : −9
8

: 3
8

: −1

H24Fj H̄5 H24 Ti 5̄, 10 1 : −9 : −3
2

: −4

H24Fj H̄5 H24 Ti 5̄, 15 1 : 0 : 3
2

: 0

H24Fj H̄5 H24 Ti 45, 10 1 : 9 : −1
2

: 4

H24Fj H̄5 H24 Ti 45, 40 1 : 0 : 1 : 1

H24Fj H̄5 H24 Ti 45, 175 1 : 18
19

: 23
38

: 16
19

H24Fj H̄5 H24 Ti 70, 15 1 : 0 : 3
4

: 0

H24Fj H̄5 H24 Ti 70, 175 1 : 9
7

: 33
28

: 8
7

H24 H̄5 Fj H24 Ti 5̄, 10 1 : 6 : −2
3

: 8
3

H24 H̄5 Fj H24 Ti 5̄, 15 1 : 0 : 2
3

: 0

H24 H̄5 Fj H24 Ti 45, 10 1 : −18 : −2 : −8

H24 H̄5 Fj H24 Ti 45, 40 1 : 0 : 1 : 1

H24 H̄5 Fj H24 Ti 45, 175 1 : 36
23

: 38
23

: 32
23

H24 H̄5 Fj H24 Ti 70, 15 1 : 0 : 4
3

: 0

H24 H̄5 Fj H24 Ti 70, 175 1 : 12
11

: 28
33

: 32
33

Fj H̄5 Ti H24H24 10, 1 1 : 1 : 1 : 1

Fj H̄5 Ti H24H24 10, 24 1 : 6 : 1 : −4

Fj H̄5 Ti H24H24 10, 75 1 : −3 : 1 : −1

Fj H̄5 Ti H24H24 15, 24 1 : 0 : −1 : 0

Table D.4: Continuation of table D.3: YTF -like CG ratios for the effective dimension
six operators W ⊃ (AB)R1C(DE)R2 corresponding to the right diagram in fig. D.1.
Note another combination with a free parameter x. See main text for more details.
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AB C DE R1, R2 (Yu)ij : (Yu)ji : (Yqq)ij : (Yue)ij : (Yue)ji

H24Ti H5 H24Tj 10, 10 1 : 1 : −1
4

: 6 : 6

H24Ti H5 H24Tj 10, 40 1 : −8 : −1 : 0 : −12

H24Ti H5 H24Tj 15, 40 1 : 0 : 1 : 0 : 0

H24Ti H5 H24Tj 40, 10 1 : −1
8

: 1
8

: 3
2

: 0

H24Ti H5 H24Tj 40, 15 0 : 1 : 1 : 0 : 0

H24Ti H5 H24Tj 40, 175 1 : 23
32

: 19
32

: 3
4

: 0

H24Ti H5 H24Tj 175, 40 1 : 32
23

: 19
23

: 0 : 24
23

H24Ti H5 H24Tj 175, 175 1 : 1 : 41
40

: 6
5

: 6
5

TiTj H5 H24H24 5̄, 1 1 : 1 : 1 : 1 : 1

TiTj H5 H24H24 5̄, 24 1 : 1 : −2
3

: −2
3

: −2
3

TiTj H5 H24H24 45, 24 1 : −1 : 0 : −2 : 2

TiTj H5 H24H24 45, 75 1 : −1 : 0 : 1 : −1

TiTj H5 H24H24 50, 75 0 : 0 : 1 : −2 : −2

TiH5 Tj H24H24 10, 1 1 : 1 : 1 : 1 : 1

TiH5 Tj H24H24 10, 24 1 : −1
4

: −1
4

: −3
2

: 1

TiH5 Tj H24H24 10, 75 1 : −1 : −1 : 3 : 1

TiH5 Tj H24H24 40, 24 1 : 2 : −1 : 0 : −2

TiH5 Tj H24H24 40, 75 1 : −1 : 1
2

: 0 : −2

Table D.5: YTT -like CG ratios for the effective dimension six operators W ⊃
(AB)R1C(DE)R2 corresponding to the right diagram in fig. D.1.
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AB C DE R1, R2 (Yu)ij : (Yu)ji : (Yqq)ij : (Yue)ij : (Yue)ji

H24Ti Tj H24H5 10, 5 1 : −4 : −2
3

: 8
3

: −4

H24Ti Tj H24H5 10, 45 1 : 4 : 0 : 8 : 12

H24Ti Tj H24H5 15, 45 1 : 0 : 1 : 0 : 0

H24Ti Tj H24H5 40, 5 1 : 1
2

: 1
3

: 2
3

: 0

H24Ti Tj H24H5 40, 45 1 : −7
2

: −3 : 2 : 0

H24Ti Tj H24H5 40, 70 1 : 1
2

: 2
3

: 4
3

: 0

H24Ti Tj H24H5 175, 45 1 : 16
19

: 21
19

: 32
19

: 24
19

H24Ti Tj H24H5 175, 70 1 : 8
7

: 20
21

: 16
21

: 8
7

TiTj H24 H24H5 5̄, 5 1 : 1 : 4
9

: 4
9

: 4
9

TiTj H24 H24H5 5̄, 45 1 : 1 : 4
3

: 4
3

: 4
3

TiTj H24 H24H5 5̄, 70 1 : 1 : 8
9

: 8
9

: 8
9

TiTj H24 H24H5 45, 5 1 : −1 : 0 : 4
3

: −4
3

TiTj H24 H24H5 45, 45 1 : −1 : 0 : x : −x
TiTj H24 H24H5 45, 70 1 : −1 : 0 : 8

3
: −8

3

TiTj H24 H24H5 50, 45 0 : 0 : 1 : −2 : −2

H24Ti H24 TjH5 10, 10 1 : 16 : 1 : 16 : 36

H24Ti H24 TjH5 10, 40 1 : −2 : −1
2

: 4 : 0

H24Ti H24 TjH5 15, 10 1 : 0 : 1 : 0 : 0

H24Ti H24 TjH5 40, 10 1 : 1 : 1 : 1 : 0

H24Ti H24 TjH5 40, 40 1 : x : −1
2

: −2x : 0

H24Ti H24 TjH5 175, 10 1 : 64
61

: 1 : 64
61

: 72
61

H24Ti H24 TjH5 175, 40 1 : 4 : −1
2

: −8 : 0

Table D.6: Continuation of table D.5: YTT -like CG ratios for the effective dimension
six operators W ⊃ (AB)R1C(DE)R2 corresponding to the right diagram in fig. D.1.
Note two combinations have a free parameter x.See main text for more details.



APPENDIX E

Two-loop Beta Functions of Extensions to
the MSSM

In a general renormalisable supersymmetric theory, the renormalisation group equa-
tions for gauge couplings ga at two-loop are given by [147]

µ
d

dµ
ga =

g3
a

16π2
ba +

g3
a

(16π2)2

(∑
b

Babg
2
b −

∑
f

Cf
a tr(Y †f Yf )

)
, (E.1)

in the DR renormalisation scheme, where µ is the renormalisation scale and f runs
over all Yukawa coupling matrices. In the MSSM, the beta function coefficients are
given by (in GUT normalisation for g1)

ba =


33
5

1

−3

 , Bab =


199
25

27
5

88
5

9
5

25 24
11
5

9 14

 , (E.2)

and

Cu,d,e
a =


26
5

14
5

18
5

6 6 2

4 4 0

 . (E.3)

where the first column of C corresponds for u, the second to d and the third to e.
Additional colour triplet and electroweak doublet pairs, i.e. particle plus distinct an-
tiparticle, such as those contained in 5, 5̄ representations, contribute (per pair) at
one-loop with

b(5,T )
a =


2
5

0

1

 , b(5,D)
a =


3
5

1

0

 , (E.4)
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and at two-loop with

B
(5,T )
ab =


8
75

0 32
15

0 0 0
4
15

0 34
3

 , B
(5,D)
ab =


9
25

9
5

0
3
5

7 0

0 0 0

 . (E.5)

The SU(2) triplets, SU(3) octets and leptoquark superfields1 from an adjoint 24 of
SU(5) contribute (per chiral superfield) at one-loop with

b(24,T )
a =

0

2

0

 , b(24,O)
a =

0

0

3

 , b(24,L)
a =


5
2
3
2

1

 , (E.6)

and at two-loop with

B
(24,T )
ab =

0 0 0

0 24 0

0 0 0

 , B
(24,O)
ab =

0 0 0

0 0 0

0 0 54

 , B
(24,L)
ab =


25
6

15
2

40
3

5
2

21
2

8
5
3

3 34
3

 . (E.7)

Additional Yukawa couplings between SM fermion superfields and the Higgs colour
(anti-)triplet contribute with

Cqq,ue,ql,ud
a =


6
5

28
5

14
5

24
5

6 0 6 0

6 2 4 6

 . (E.8)

In our numerical analysis we have assumed that Yqq = Yue = Yu and Yql = Yud = Yd
(as motivated by minimal SU(5)). We have checked that this approximation changes
our results only negligibly.

1Note that leptoquark superfields can only appear in Dirac pairs due to their charges.
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