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Summary 

 

The increase of Plasmodium falciparum’s drug resistance and the resurgence of 

Mycobacterium ulcerans disease through environmental changes aggravate health 

problems caused by these pathogens.  

 

Buruli ulcer, caused by M. ulcerans, is after tuberculosis and leprosy the third most 

common mycobacterial human infection and the most poorly understood of these three 

diseases. It is characterized by chronic, necrotizing ulceration of subcutaneous tissues and 

the overlying skin. M. ulcerans is a slow-growing mycobacterium which multiplies extra-

cellularly in Buruli ulcer lesions. There is a broad antigenic overlap between mycobacterial 

species, which complicates the analysis of adaptive immune responses and hampers the 

development of specific sero-diagnostic tests for M. ulcerans in areas where BCG 

vaccination has been implemented and tuberculosis is endemic. In an effort to identify 

immunodominant antigens of M. ulcerans, we have generated panels of monoclonal 

antibodies from mice immunized with this pathogen. Cross-reactivity studies with other 

mycobacterial species performed by Western blot and immunofluorescence assays have 

identified immunodominant epitopes with a limited cross-species distribution (18kDa and 

the 34-37kDa proteins). In contrast, the majority of antigens were spread widely amongst 

different mycobacterial species. One set of non-crossreactive monoclonal antibodies 

recognized an 18kDa protein of M. ulcerans that is associated with the cell-wall fraction, 

and expressed in Buruli ulcer lesions. The target protein was identified by mass-

spectroscopy as the M. ulcerans orthologue of the M. leprae 18kDa small heat shock 

protein, which has no orthologues in the genomes of M. bovis and M. tuberculosis. Human 

anti-18kDa small heat shock protein antibodies were found in the serum of all Buruli ulcer 

patients tested, but not in sera from Europeans volunteers and only rarely in sera from 

Africans living in Buruli ulcer non-endemic regions. Reactivity of sera from a large 

proportion of people living in a Buruli ulcer endemic area and in contact with Buruli ulcer 

patients indicated that an 18kDa small heat shock protein-based serological test is suitable 

to detect exposure to M. ulcerans. 

Since M. ulcerans shows only very limited genetic diversity, standard multi-locus 

sequence typing of housekeeping genes is not a suitable tool for molecular epidemiological 
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analysis of Buruli ulcer. Among the monoclonal antibodies exhibiting broad inter-species 

cross-reactivity, one group recognized the M. ulcerans orthologue of mycobacterial 

laminin-binding protein. DNA sequence analysis demonstrated that the corresponding 

hupB gene from M. ulcerans isolates of diverse geographical origin exhibited considerable 

diversity based both on insertional/deletional polymorphism and on single base exchanges. 

Dominance of non-conservative exchanges was indicative of a diversifying selection 

pressure. Sequences analysis of a set of such variable genes may develop into a new tool 

for genetic fingerprinting of isolates. 

 

There is great need to identify new malaria vaccine and drug targets. Monoclonal 

antibodies were used to characterize a novel conserved protein of P. falciparum
 designated 

D13. Western blot analysis demonstrated that D13 is stage-specifically expressed during 

schizogony in asexual blood stages of the parasite. It has a functionally essential role in 

parasite biology, since anti-D13 monoclonal antibodies have parasite growth inhibitory 

activity. The D13 protein may represent a suitable target for a malaria vaccine design.  

 

Immunofluorescence analysis with monoclonal antibodies specific for glyceraldehydes-3-

phosphate dehydrogenase (pfGAPDH) and pfAldolase showed that pfGAPDH and 

pfAldolase colocalise in early stages of both liver and asexual blood stage parasite 

development. However, during schizogony, unlike pfAldolase, pfGAPDH was enriched in 

the apical region of the parasites. In addition, Western blot analyses demonstrate that 

pfGAPDH is in both the membrane-containing pellet and supernatant fractions. These 

results have provided evidence that pfGAPDH exerts non-glycolytic function(s) in P. 

falciparum; including possibly a role in vesicular transport and biogenesis of apical 

organelles. This data together with the limited amino acid sequence identity with human 

GAPDH suggest that the pfGAPDH could be a promising safe target for drug treatment. 
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Zusammenfassung 

Die Ausbreitung der Medikamentenresistenz bei Plasmodium falciparum und die mit 

Umweltveränderungen assoziierte zunehmende Ausbreitung der Mycobacterium ulcerans 

Infektion verschärft die durch diese beiden Pathogene hervorgerufenen 

Gesundheitsprobleme. 

 

Der von M. ulcerans hervorgerufene Buruli-Ulkus stellt nach Tuberkulose und Lepra, die  

dritthäufigste mykobakterielle Infektion des Menschen und die am wenigsten verstandene 

dieser drei Infektionskrankheit dar. Charakteristisch für die Erkrankung sind chronisch 

nekrotisierende Ulzerationen des subkutanen Gewebes und der darüber liegenden Haut. M. 

ulcerans ist ein langsam wachsendes Mykobakterium, das sich in Buruli Ulkus Läsionen 

extrazellulär vermehrt. Breite antigenische Kreuzreaktivität zwischen verschiedenen 

mykobakteriellen Spezies erschwert die Analyse der adaptiven Immunantworten und hat 

die Entwicklung spezifischer serodiagnostischer Nachweismethoden für M. ulcerans in 

Regionen, in denen mit BCG geimpft wird und Tuberkulose endemisch ist, bislang 

verhindert. Zur Identifizierung immundominanter Antigene von M. ulcerans haben wir 

Sätze von monoklonalen Antikörpern mit Mäusen hergestellt, die mit diesem Pathogen 

immunisiert worden waren. Auf Western blotting und Immunfluoreszenz-Anfärbung 

basierende Kreuzreaktivitäts-Studien mit anderen mycobakteriellen Spezies haben 

immundominante Epitope mit begrenzter inter-Spezies Verbreitung identifizieren. Der 

grösste Teil der Antigene hingegen war bei verschiedenen Mycobakterien weit verbreitet. 

Eine Gruppe von nicht-kreuzreaktiven monoklonalen Antikörpern erkannte ein 18KDa 

grosses M. ulcerans Protein, das mit der Zellwand assoziiert und in Buruli Ulkus Läsionen 

exprimiert war. Das Zielantigen konnte durch massenspektroskopische Analyse als M. 

ulcerans Ortholog des 18KDa small heat shock Proteins (shsp) von M. leprae identifiziert 

werden, welches keine Orthologe im Genom von M. tuberculosis und M. bovis hat. 

Humane anti-18KDa shsp Antikörper wurden im Serum aller untersuchten Buruli Ulkus 

Patienten, aber nicht im Serum von Europäern, und nur selten im Serum von Afrikanern 

gefunden, die nicht in einer Buruli Ulkus endemischen Region leben. Reaktivität eines 

grossen Teils der Seren von Menschen aus Buruli Ulkus endemischen Gebieten und von 

Kontaktpersonen von Patienten lässt vermuten, dass ein auf dem 18KDa shsp basierender 

serologischer Test geeignet ist, die M. ulcerans Exposition einer Population zu erfassen. 
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Da M. ulcerans nur eine sehr begrenzte genetische Diversität aufweist, ist die gängige 

Multi-Lokus-Sequenztypisierung keine geeignete Methode für mikroepidemiologische 

Analysen der M. ulcerans Infektion. Eine Gruppe der monoklonalen Antikörper, die eine 

breite inter-Spezies Kreuzreaktivität aufwies,  erkannte das M. ulcerans Ortholog des 

mykobakteriellen Laminin-bindenden Proteins. DNA-Sequenzanalysen zeigten, dass das 

korrespondierende hupB Gen von M. ulcerans Isolaten unterschiedlichen geographischen 

Ursprungs einen beträchtlichen Polymorphismus aufwiesen. Dieser basierte sowohl auf 

Punktmutationen als auch auf der Insertion und Deletion von Sequenzabschnitten. Eine 

Dominanz von nicht-konservativen Punktmutationen deutete auf Diversifizierung durch 

Selektion hin. Sequnzanalysen mit einem Satz solcher polymorpher Gene könnte sich zu 

einem neuen Ansatz zur Feindifferenzierung von M. ulcerans Isolaten entwickeln. 

 

Es besteht grosses Interesse, neue Zielstrukturen für Malaria-Medikamente und einen 

Malaria-Impfstoff zu identifizieren. Wir haben monoklonale Antikörper eingesetzt, um ein 

neues konserviertes Protein von P. falciparum zu charakterisieren. Western blot Analysen 

zeigten, dass das D13 genannte Protein während der Schizogonie Stadien-spezifisch 

exprimiert wird. Anti-D13 monoklonale Antikörper wiesen Wachstums-inhibierende 

Aktivität auf. Dies lässt vermuten, dass D13 eine essentielle biologische Funktion erfüllt 

und ein für die Impfstoffentwicklung geeignetes Antigen darstellen könnte. 

 

Immunfluoreszenzanalysen mit monoklonalen Antikörpern gegen die Glycerinaldehyd-3-

phosphat Dehydrogenase (pfGAPDH) und pfAldolase zeigten, dass beide Enzyme in 

frühen Entwicklungsphasen der asexuellen Blutstadien und der Leberstadien kolokalisiert 

sind. Hingegen war die pfGAPDH verglichen mit der pfAldolase während der Schizogonie 

in der apikalen Region des Parasiten angereichert. Weiterhin war pfGAPDH sowohl mit 

der löslichen als auch mit der Membran-Fraktion von aufgeschlossenen Parasiten 

assoziiert. Diese Ergebnisse weisen darauf hin, dass pfGAPDH nicht-glykolytische 

Zusatzfunktionen erfüllt, die möglicherweise mit dem vesikulärem Transport und der 

Biogenese der apikalen Organellen assoziiert sind. Zusammen mit der relativ geringen 

Sequenzidentität mit der humanen GAPDH weisen diese Ergebnisse darauf hin, dass 

pfGAPDH ein geeignetes Zielenzym für eine Medikamentenentwicklung sein könnte.     
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ABBREVIATIONS 
  
AFLP Amplified Fragment Length Polymorphism 

BCG Bacillus Calmette-Guèrin 

CFU Colony Forming Unit 

DRC Democratic Republic of Congo 

DTH Delayed Hypersensitivity 

ELISA Enzyme-linked Immunoabsorbent Assay 

ELISPOT Enzyme-Linked Immunospot Assay 

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase 

IFA Immunofluorescence Assay 

IFN-γ Gamma Interferon 

IgG, M Immunoglobulin G, M 

IL-4, 5,.. Interleukin-4, 5,… 

IS Insertion Sequences 
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LBP Laminin-Binding Protein 

MAbs Monoclonal Antibodies 

MLST Multilocus Sequence Typing 

mRNA Messenger Ribonucleic Acid 

PCR Polymerase Chain Reaction 
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PPD Purified Protein Derivative 

RFLP Restriction Fragment Length Polymorphism 

rRNA Ribosomal Ribonucleic Acid 

SDS-PAGE Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis 

sHSP Small Heat Shock Protein 

STI Swiss Tropical Institute 

TNF-α Tumor Necrosis Factor Alpha 

VNTR Variable Number Tandem Repeat 

WHO World Health Organization 

ZN Ziehl-Neelsen 
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Buruli ulcer, caused by the environmental pathogen Mycobacterium ulcerans, is disease of 

skin and soft tissue with the potential to leave scarring and deformities. The causative 

organism is from the bacterial family which causes tuberculosis and leprosy, and produces 

a dermonecrotic toxin. Most patients are children who live in rural sub-Saharan Africa; 

however, healthy people of all age, race and socio-economic class are susceptible. 

 

1.1 History and epidemiology 

 

Buruli ulcer is the third most important mycobacterial disease after tuberculosis and 

leprosy in humid tropical countries of West Africa1. The definitive description of M. 

ulcerans was published in 1948 by MacCallum et al. where they reported 6 cases of an 

unusual skin infection in Australia, caused by a mycobacterium that could only be cultured 

in Löwenstein-Jensen medium when the incubation temperature was set lower than for M. 

tuberculosis
2. Before, large skin ulcers almost certainly caused by M. ulcerans were 

previously described in Uganda in 1897 by Sir Albert Cook, and by Kleinschmidt in 

northeast Congo during the 1920s3, however these cases were not published in the medical 

literature.  

Prior to 1980, M. ulcerans infections were reported in several African countries: Congo, 

Uganda, Gabon, Nigeria, Cameroon and Ghana4. The term "Buruli ulcer" was chosen by 

the Uganda Buruli Group after they studied the clinic-pathological and epidemiological 

aspects of the disease extensively in a county called Buruli, near Lake Kyoga5. 

Since the 1980s, Buruli ulcer has emerged as a serious public health problem in an 

increasing number of countries. West Africa thus far appears to be the most affected area, 

especially Côte d'Ivoire, Benin6 and Ghana7. New foci were discovered recently in Togo8, 

Angola9 and Guinea4. In Ghana, the overall crude prevalence rate was 20.7 per 100,000 

persons in 1999, but rose to 150.8 per 100,000 in the most disease-endemic district7. In 

southern Benin, Buruli ulcer had a higher detection rate (21.5 per 100,000 per year) than 

leprosy (13.4 per 100,000) and tuberculosis (20.0 per 100,000)6. In Côte d’Ivoire, over 

15,000 cases were recorded between 1978 and 199910.  

In West Africa, about 70% of affected individuals are children under the age of 15 years, 

and between 20 to 25 percent of those with healed lesions are left with disabilities.  
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Several other countries outside Africa are also endemic such as rural areas of Papua New 

Guinea, Australia, Malaysia, French Guyana and Mexico.  French Guiana has the highest 

prevalence of Buruli ulcer cases among Latin American countries with 193 cases reported, 

whereas only 8 cases were registered in Peru, 8 in Mexico11, 1 in Bolivia and 1 in 

Suriname12.  

Since the first Australian cases reported in 1948, until the 1990s, one or two cases have 

occurred annually. In the 1990s, however, incidence of the disease increased suddenly with 

the development of new foci on Phillip Island and the Frankston/Langwarrin district south 

of suburban Melbourne. There are now 20–30 cases per annum, a 10-fold increase over the 

past 15 years12. Few cases have been reported in non-endemic areas in North America and 

Europe as a consequence of international travel10,13.The worldwide distribution of Buruli 

ulcer disease is shown in figure 1. 

 

 

Figure 1. Countries reporting Buruli ulcer (Source: Johnson et al., PLoS Med. 2005) 

 

1.2  Causative Organism 

 

M. ulcerans, together with the other mycobacteria, corynebacteria and nocordia form a 

monophyletic taxon within the family of actinomycetes13. The slowly growing M. ulcerans 

belongs to a group of mycobacteria that are potentially pathogenic for humans and animals. 

These are sometimes called “opportunistic mycobacteria” or “occasional pathogens” to 
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distinguish them from strict pathogens. Most species belonging to this group are 

widespread in the environment and may become pathogenic under specific 

circumstances14. 

The generation time of M. ulcerans in vitro is 20 hours, as is the case for the M. 

tuberculosis-complex organisms, and a positive culture requires an incubation time of 6 to 

8 weeks3. M. ulcerans is possibly the only pathogenic mycobacterium species that does not 

have a significant intracellular existence15. However, recent studies showed that M. 

ulcerans proceeds through an initial phase where bacilli are internalized by phagocytic 

cells, like most mycobacterial species. The transition to a second phase, where the bacteria 

are extracellular, occurs by action of mycolactone16. The best growing rates are achieved at 

low temperature (32ºC) on Lowenstein-Jensen medium. It grows best in microaerophilic 

conditions17. 

 

                                                                                                                                                                              

 
Figure 2. Acid fast bacilli (M. ulcerans) in a smear taken from an ulcer.  The bacteria can 
be clearly seen as red clumps on a blue background.  Oil immersion microscopy (1000x). 
 

 

1.2.1. M. ulcerans toxin 

 

The pathogenesis of M. ulcerans is closely associated with expression of a macrolide toxin, 

mycolactone. Mycolactone was identified by two-dimensional nuclear magnetic resonance 

spectral analysis as a polyketide-derived 12-membered ring macrolide (C44H70O9) (fig. 3). 

The mycolactone is a major component of acetone-soluble lipids (ASL) present in an 
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organic extract from an M. ulcerans sterile filtrate. The toxin was named mycolactone to 

reflect its mycobacterial source and chemical structure. 

Mycolactone isolated from M. ulcerans cultures has been shown to be immunosuppressive 

and cytotoxic in vitro, as addition of mycolactone to macrophages and fibroblast has 

effects on the cytoskeleton and leads to cell growth arrest in the G0/G1
 stage and 

apoptosis15. Injection of mycolactone into the dermis of guinea pigs is sufficient to induce 

ulcers18, and natural mycolactone deficient mutants failed to induce ulcers in these 

animals15. Mycolactones induce cell death by apoptosis, which may explain the absence of 

an inflammatory immune response despite extensive tissue damage18. 

Until now, no cell receptor has been found to explain the cascade of effects induced by 

mycolactones19. The lipid toxin mycolactone is synthesized by the giant polyketide 

synthases, which are encoded by three very large and homologous genes, harboured in the 

174-kb virulence plasmid pMUM00120.  

In contrast to the wild type M. ulcerans, mycolactone negative mutants fail to colonize the 

salivary glands of water insects, suggesting that these molecules may play a role in the 

ability of M. ulcerans to colonize reservoir species15,21. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.  Mycolactone is composed of a 12-membered ring to which two polyketide-
derived side chains (R1 and R2) are attached. (Source: George, et al.,, Science 1999). 
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1.3  Pathology and Clinical Presentation 

1.3.1 Clinical features 

 

A papule or a firm nodule indicates the first stage of the disease. A papule is defined as a 

painless, raised skin lesion surrounded by reddened skin (Fig. 4a). The nodule is 

characterized as an extended lesion from the skin into the subcutaneous tissue. It is usually 

painless as a papule but may be itchy while the surrounding skin may be discoloured 

compared to adjacent areas (Fig.4b). Occasionally, some patients develop extensive 

indurate lesions or plaques that are painless and present irregular edges (Fig.4c). In the 

second stage, ulceration takes place on the floor of the ulcer which displays a white cotton 

wool-like appearance in the necrotic slough (Fig.4d). Many acid-fast bacilli are present in 

the slough, and the necrosis can extend away from the site where M. ulcerans is placed. 

The ulcer is usually painless, unless there is a secondary bacterial infection. Complications 

include loss of organs such as the eye and breast, amputation of limbs and other permanent 

disabilities22,23. In advanced cases the bone may also become involved23.  

 

 

                                               

                                 

                    Papule (a)                                                         Nodule (b)                   
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Plaque (c)                                              Ulcerative form (d) 

                                                                                                                                                                                      
Figure 4. Clinical forms of Buruli ulcer. (Source: Portaels F. Johnson P, Meyers WM 
editors, 2001. World Health Organisation) 
 
 

1.3.2 Histopathology 

 

Progressive M. ulcerans infection causes characteristic tissue changes. The first stage of 

the disease (papule, nodule) presents coagulative necrosis of the lower dermis and 

subcutaneous fat. The organisms are present in clumps or in smaller microcolonies in the 

centre of the lesion. In these early lesions there is little cellular reaction despite the 

presence of large clumps of extracellular organisms and there is no evidence of an 

inflammatory response or the development of granulomas. The second stage of the disease 

(ulcerative form) produces granulomatous reactions with epithelioid macrophages, a 

variable numbers of giant cells of the Langhans type, and relatively few acid-fast 

organisms24. As the disease progresses, all elements of the skin are affected including 

nerves and blood vessels. Later, during the natural course of the disease, the 

immunosuppressive effect of the toxin is somehow overcome by the host, allowing then 

immunity to develop and healing to commence.  

This may account for the observation that patients with active lesions are often 

unresponsive to M. ulcerans-derived antigens (burulin) on skin testing25. Later, during the 

healing phase, characterized by the appearance of granulomas, there is conversion to a 

positive burulin test indicating that a specific cellular response develops. 
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1.4  Diagnosis 

 

In endemic areas, the clinical diagnosis of ulcerating lesions by experienced clinicians is 

straightforward. The painless ulcer with undermined edges and a necrotic slough can be 

recognised easily. Patients with Buruli ulcer have no clinically detectable lymphadenitis, 

no systemic symptoms such a fever or malaise suggesting a staphylococcal or streptococcal 

infection. Since early and healing lesions may be confused with other skin diseases 

endemic in tropical areas, probable cases defined clinically have to be confirmed. 

Commonly used diagnostic laboratory tests are: i) detection of mycobacteria by Ziehl-

Neelsen (ZN) staining, a technique which lacks sensitivity and specificity, ii) culture of M. 

ulcerans, which may take several months, iii) detection of characteristic histopathological 

changes in excised tissue, iv) detection of M. ulcerans DNA by polymerase chain reaction 

(PCR); PCR is a rapid, sensitive and specific diagnostic method but requires advanced 

technical expertise and is not always available in developing countries. A dry-reagent-

based PCR formulation using lyophilized, room-temperature-stable PCR reagents26, and a 

real-time PCR using the TaqMan system (IS2404 TaqMan) to quantify M. ulcerans DNA 

by monitoring the real-time amplification of IS2404 represent modifications of the 

conventional IS2404 PCR method27. Real-time PCR offers the possibility to measure the 

starting amount of target DNA in clinical specimens and other samples, thus providing a 

measure of mycobacterial burden as well28. 

Although molecular biological methods are quickly able to confirm the clinical diagnosis, 

high laboratory standards are needed to avoid the contamination risk and thus false positive 

results. While swabs can be taken to test the undefined edges of ulcerative lesions, it is 

much more problematic to take punch biopsies from pre-ulcerative lesions, since this 

technique promotes the spread of the mycobacterium. 

The World Health Organization (WHO) Global Buruli Ulcer Initiative has asked the 

research community to develop a simple and rapid diagnostic test which could be used to 

identify patients early during the course of the infection, so that the detection rate of 

patients with Buruli ulcer could be improved and preventive therapy and early treatment 

options could be fully implemented.  Humoral immunity has been studied for the diagnosis 

of the disease, since serum samples from infected individuals from different regions of 

Buruli ulcer endemicity have shown high titers of antibodies to M. ulcerans antigens. 
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Three M. ulcerans antigens of 70, 38/36 and 5 kDa of M. ulcerans culture filtrate have 

been commonly recognized by Buruli ulcer patient antibodies29,30. However, sera of 

household contacts and tuberculosis patients from endemic areas showed cross-reactivity 

to M. ulcerans antigens31. Recent studies showed that IgM antibody responses from Buruli 

ulcer patients recognized antigens from M. ulcerans culture filtrate. A total of 84.8% of the 

Buruli ulcer patients present IgM antibody responses, whereas only 4.5% of household 

contacts exhibited such responses32.  The publication of the genomic sequence of M. 

ulcerans will be soon available and could assist the development of a non-invasive 

serodiagnostic assay based on M. ulcerans-specific antigens. 

 

1.5  Treatment 

 

1.5.1 Surgery 

 

The standard treatment is limited to surgical excision, followed by skin grafting, but this 

intensive therapy and the required need for long-term care results in great economic impact 

on affected communities. The aim of the treatment is to halt the infection and repair 

existing damage. After the early excision of small pre-ulcerative lesions (papules and 

nodules) the skin can often be closed requiring no skin grafting. Necrotic ulcers are easily 

recognised and should be carefully removed, with excision extending into healthy tissue, to 

prevent persistent subcutaneous infection from residual bacilli10. Relapse after surgery may 

occur in 5%-47% of the cases33,34. Early excision can prevent development of the large and 

disfiguring ulcers often associated with persistent deformity after healing35. 

 

1.5.2 Drug treatment 

 

Treatment of M. ulcerans infections with antimycobacterial agents has generally been 

disappointing, especially in extensive ulcers. The only published controlled trials in 

humans suggest that both clofazamine36 and cotrimoxazole37 are ineffective and that 

rifampicin and dapsone combined have limited efficacy for ulcers38. Anecdotal reports of 

antibiotic administration have been discouraging, and it has been postulated that antibiotics 

fail to penetrate M. ulcerans lesions because of the extensive necrosis caused by 
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mycolactone. M. ulcerans has been shown in vitro to be susceptible to rifampicin, some 

amino glycosides, macrolides and quinolones39,40. M. ulcerans was susceptible to the same 

drugs in the mouse footpad model41, where the size of the mouse’s footpad lesions treated 

with rifampicin and amikacin together for 12 weeks decreased progressively,  reducing the 

mean CFU counts of M. ulcerans while no relapse occurred42. Recent studies suggest that a 

combination of anti-mycobacterial antibiotics that include rifampicin and either 

streptomycin or amikacin for 4 weeks are able to kill M. ulcerans in human lesions. In this 

study, no lesion became enlarged during antibiotic treatment and most became smaller43. 

Recent, successful results have encouraged the WHO to recommend the use of this 

combination for the treatment of small early M. ulcerans lesions.  The treatment (duration) 

and the doses of the antibiotics depend of the size of the lesion and other complications. 

For example, small early lesions should be treated after surgery with this combination for 4 

weeks, and ulcerative plaque or oedematous forms should be treated at least 4 weeks with 

antibiotics before and after surgery44.   

 

1.5.3 Heat treatment 

 

One study following eight patients showed that continuous local heating to 40° C for 4-6 

weeks promotes healing even without excision.  In addition, heat treatment may improve 

blood flow, antibiotic penetration and phagocytosis45. 

 

1.6  Transmission 

 

The exact mode of transmission of M. ulcerans is an enigma. Epidemiological studies 

demonstrated that M. ulcerans is strongly associated with swampy areas21,23,46-50. Changes 

in the environment, such as the construction of irrigation systems and dams, seem to play a 

role in the resurgence of the disease. In Nigeria, infections have emerged when a small 

stream was dammed to make an artificial lake51. In Phillip Island, Australia, a recent 

outbreak was associated with the formation of a swampy area and the outbreak stopped 

once the swamp’s drainage was improved52. 

M. ulcerans is thought to reach the human dermis through wounds or skin abrasions via 

contact with M. ulcerans-containing environmental reservoirs. In addition, M. ulcerans 
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was detected in aquatic insects obtained from endemic areas in Africa by Polymerase 

Chain Reaction (PCR)48, leading to the possibility that M. ulcerans may be transmitted by 

bites of the insect order Hemiptera (fig 5). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Semi-Aquatic Hemiptera positive for M. ulcerans by PCR. The top row is 
Macrocoris sp., 1.0 body length (Naucoridae), and the bottom row is Appassus sp., about 
2.5 cm body lengths (Belastomatidae).  Ventral view (A, C) and dorsal view (B, D) 
(Source: Johnson, et al., PLoS Med. 2005) 
 

In support of this hypothesis, M. ulcerans has been detected in the salivary glands of 

Naucoris sp., and a mouse tail exposed to this aquatic insect (Naucoridae) that had ingested 

a M. ulcerans-loaded prey, displayed cutaneous lesions from which M. ulcerans was 

isolated21. There is additional evidence that M. ulcerans DNA can be detected by PCR in 

other aquatic insect predators (Odonata and Coleoptera), as well as in aquatic snails, small 

fish and the biofilms of aquatic plants50.  

The possible mechanisms through which M. ulcerans infects water bugs that may act as 

hosts and vectors have been describe recently. Coelomic plasmatocytes could be the first 

cells of Naucoris cimicoide to be involved in the infection process, acting as shuttle cells 

that deliver M. ulcerans to the salivary glands. After ingestion of M. ulcerans-loaded food, 

the accessory salivary glands were shown to contain increasing numbers of bacilli, 

A

. 

D C 

B 
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indicating that these metabolically active tissues can be weakened/adopted as optimal 

niches for bacteria multiplication. This process is strictly dependent on mycolactone as 

mycolactone deficient bacilli were unavailable to establish long-term infectious niches. In 

addition, the bacilli can be rapidly detected within the cavity of raptorial legs. The setae of 

these appendages are covered by M. ulcerans-containing material resembling biofilms53. 

Other transmission pathways have been suggested in Australia: Aerosols arising from 

contaminated water may disseminate M. ulcerans and infect humans via the respiratory 

tract, or through contamination of skin lesions and minor abrasions52,54, however this has 

yet to be demonstrated. 

The discovery of the IS2406 and IS2606 sequences, used for epidemiological investigation 

of Buruli ulcer disease in M. liflandi
55, was a major finding that made the interpretation of 

environmental studies of M. ulcerans questionable. 

 

1.7  Prevention 

 

There is no specific vaccine against M. ulcerans, but Bacillus Calmette-Guèrin (BCG) 

vaccination has an incomplete but significantly protective effect against the most severe 

forms of Buruli ulcer56.  Mechanical protection of exposed areas of the body, such as 

wearing trousers, shirt-sleeves and shoes, may also protect individuals at risk57,58. 

Additional studies to identify modifiable risk factors for infection and disease are needed.  

 

1.8  Genome and bacterial population structure 

 

M. ulcerans is an emerging pathogen that seems to have evolved from M. marinum by the 

acquisition and concomitant loss of DNA, in a manner analogous to the emergence of M. 

tuberculosis, where species diversity is being driven mainly by the activity of mobile DNA 

elements. A hallmark is the acquisition of a virulence plasmid, which encodes a polyketide 

synthase responsible for the synthesis of mycolactone20,49. This plasmid has a common 

evolutionary origin in M. ulcerans isolates from diverse geographical locations around the 

world59. Several conventional and newly developed typing techniques have attempted to 

describe the population structure of M. ulcerans and to investigate its evolution. 
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Comparing the sequences of housekeeping genes by Multilocus Sequence Typing (MLST), 

6 genotypes were identified from 18 different M. ulcerans strains. The 6 genotypes were 

related to the 6 geographical areas of Suriname, Mexico, China/Japan, Africa and Australia 

(Victoria). Comparative analysis between M. marinum and M. ulcerans confirmed their 

relatedness, suggesting a recent divergence of M. ulcerans, by the acquisition and 

concomitant loss of DNA, such as the specific insertions sequences IS2404 and IS260660. 

Differentiation of phylogenetically related mycobacteria based on 16S-23S rRNA gene 

internal transcribed spacer sequences showed identical sequences for M. ulcerans and M. 

marinum
61, supporting the hypothesis that both species share common ancestors. 

Analysis of the 3’-terminal region of the 16S rRNA sequences of seventeen isolates of M. 

ulcerans from Africa, the Americas and Australia revealed three subgroups corresponding 

to the continent of origin62.  

The analysis of 12 M. ulcerans strains from Australia, Malaysia and Africa by Amplified 

Fragment Length Polymorphism (AFLP) could discriminate just two groups of isolates: the 

African group and the Australian (and Malaysian) group63. 

IS2404 Restriction Fragment Length Polymorphism (RFLP) subtyping divided M. ulcerans 

isolates into six groups related to six geographical regions, including Africa, Australia, 

Mexico, South America, Asia and Southeast Asia64. 

PCR amplification with primers based on IS2404 and GC-rich repeat sequence of 32 M. 

ulcerans isolates revealed 10 different patterns corresponding to the geographic origin of 

the isolates. All of the 16 isolates from six different African countries produced identical 

profile; two different genotypes were identified in East Asia (Japan and China), Australia 

(Victorian and Queensland) and in Papua New Guinea (PNG I and II genotypes), the 

Malaysian genotype, South America (French Guiana and Suriname with identical profile) 

and the Mexican genotype65. 

Eight different M. ulcerans genotypes were found by Variable Number Tandem Repeat 

(VNTR) typing, including Australia, Africa, Southeast Asia, Papua New Guinea, Asia, and 

Mexico. This technique made it also possible to differentiate between the South American 

strains (French Guiana and Suriname)66. 

M. ulcerans DNA harbours a circular plasmid (pMUM001) which comprises 81 protein-

coding sequences. The primary function of this plasmid is mycolactone toxin production20. 

The occurrence of inter-strain variability was also discovered at the plasmid level, which 
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was related to the mycolactone structure67 and to frequent genetic rearrangements that 

render the virulence plasmid particularly unstable59. 

The clonal population structure of M. ulcerans is reflected by the fact that all genetic 

fingerprinting methods applied so far for M. ulcerans have resolved only a limited number 

of geographical types, which is particularly insufficient to differentiate among isolates 

from the same area. This makes the methods unsuitable to perform micro-epidemiological 

studies, where the fingerprinting of the strains is aimed at revealing transmission pathways 

and environmental reservoirs. The expected publication of the entire M. ulcerans genome 

sequence in 2005 will provide an opportunity to discriminate M. ulcerans strains by 

differential genomic hybridisation using microarrays. 

 

1.9  Immune responses 

 

The immune mechanisms involved in protection against Buruli ulcer are largely unknown 

at present. Buruli ulcer disease follows an indolent course, with a lack of immflamatory 

cells in lesions and predominantly negative M. ulcerans and M. bovis purified protein 

derivative (PPD) skin tests22. Tuberculin or burulin skin tests switch positive over time25, 

and intralesional influx of leucocytes has been reported in late stages, suggesting a change 

in inflammatory response29,68. A cellular Th-1 immune response with high levels of gamma 

interferon (IFN-γ) is regarded as crucial for the host defence against mycobacteria69. In 

vitro immune analysis has confirmed the notion of a systematic T-cell anergy, as peripheral 

blood mononuclear cells from patients with active disease or whom had recovered from 

surgical excision of Buruli ulcer showed significantly reduced lymphoproliferation and 

IFN-γ production in response to stimulation with M. bovis BCG or M. ulcerans, and a Th-

2-type (interleukin-4 (IL-4), IL-5, and IL-10) cytokine mRNA pattern was present30,31, 

suggesting Th-2-mediated Th-1 down-regulation. In one case study, it has been shown that 

the development of ulcerative M. ulcerans disease is associated with a shift from the Th-1 

to Th-2 phenotype70.  

Other studies have shown that IL-10 may be a key cytokine that mediates local Th-

phenotype switching within nodules and ulcers. IL-10 can facilitate both Th-2 and Th-1 

down-regulation and is not exclusively produced by Th-2 cells71,72. Recently, Prévot et al., 

evaluated cytokine production by peripheral whole-blood mononuclear cells and detected 
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high IFN-γ but low IL-10 mRNA levels in nodular lesions, whereas high IL-10 but low 

IFN-γ mRNA levels were present in ulcerative lesions. Moreover, tumor necrosis factor 

alpha (TNF-α) as expressed in lesions from both patients groups, and levels of TNF-α 

expression were higher in nodular than in ulcerative lesions. TNF-α could be one of the 

additional factors involved in the pathology of Buruli disease, but its precise role in the 

development of the skin lesions remains to be elucidated73. In contrast, a study of cytokine 

responses of peripheral whole-blood mononuclear cells from patients with Buruli ulcer 

disease in Ghana showed Th-1 down-regulation in early Buruli ulcer and down-regulation 

reversed in later stages of the disease without association with IL-10 or IL-4 production74. 

Whether Buruli ulcer disease is associated with a shift in T-helper subset responses is still 

unclear.  

A mouse model has been used to analyse the primary immune response against M. 

ulcerans
13. Histopathological analysis of the lesions induced by M. ulcerans infections 

showed comparable necrosis and changes in vasculature and collagen degeneration as the 

ulcerative lesions in Buruli ulcer patients. Similar to most mycobacterial species, M. 

ulcerans infection proceeds through an initial phase, where bacilli are internalized by 

phagocytic cells. Transition to an extracellular phase is caused by mycolactone, which 

induces host cell death within days of infection in vitro. Several lines of evidence suggest 

that this transient intracellular step may contribute to the successful establishment of a 

chronic extracellular infection. First, the uptake of M. ulcerans by phagocytes may induce 

Th-1 host immune responses, ineffective for clearance of extracellular bacteria. Second, 

the suppression of TNF-α production together with stimulation of inflammatory 

chemokines by infected phagocytes may prevent the organization of granulomas able to 

control the infection16.  

Other evidence exists for the protective role of acquired cellular immunity: bacillus 

Calmette-Guèrin vaccination is protective in mice against low-dose inoculation and to 

some extent in man75. Finally, data from Benin suggest that there is a second peak of 

incidence in the elderly, which may correspond with declining immunity76. 

Although, cell-mediated immunity is considered to be the major component of the host 

response against M. ulcerans, antibodies may also have a protective role against the 

bacteria, as the pathogen is extracellular during active disease. Several studies have shown 

that serum samples of infected individuals from geographically distinct regions have high 



 CHAPTER 1. Introduction  16 

 

 

antibody titers to M. ulcerans antigens, and that antibody responses are not correlated with 

disease stage29-31. The nature of the bacterial antigens to region which these antibodies are 

directed is unknown, but the range of molecular weights, together with the smeared 

appearance of the antigens suggest that both protein and non-protein antigens are 

recognized77.  

In recent years, studies from several groups have challenged the traditional dogma that 

cell-mediated immunity is the major component of the host response against M. 

tuberculosis, and have demonstrated that monoclonal antibodies (mAbs) can modify 

various aspects of mycobacterial infection. The studies performed using mAbs against 

various mycobacterial epitopes suggest that certain antibodies present during infection can 

affect the course of the disease to benefit the host. One of the studies with mAbs showed 

that mAbs directed to arabinomannan and the carbohydrate portion of lipoarabinomannan 

induced protection78,79.  

The role of the antibodies in protection against Buruli ulcer disease has not been studied. 

Experimental infection of mice genetically inactivated in various compartments of the 

immune response (B lymphocytes, Th-cells, and cytolytic T lymphocytes, cytokines, and 

monokines) will help to understand how host immunity is acquired.  

There is no specific vaccine against M. ulcerans available, but M. bovis - BCG offers some 

protection, albeit short lived75.  BCG may also provide more enduring protection against 

the most severe forms of Buruli56. 

Current prospects for better vaccines include improved or repeated BCG vaccination, 

attenuation of an M. ulcerans isolate, and subunit vaccines aimed at immunodominant 

protein antigens or the toxin itself80. 
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10.1  Aim of the thesis 

 

10.1.1 Buruli ulcer 

 

In May 2004, the World Health Assembly adopted a resolution on Buruli ulcer that called 

for research in areas that provide direct benefit to Buruli ulcer patients: 

These include: 

1. Studies on the transmission of Buruli ulcer 

2. Development of methods for early diagnosis 

3. Vaccine development 

 

Within the framework of these priorities, the aim of this thesis was to identify, clone, 

recombinant express, purify and characterize immunodominant antigens of M. ulcerans 

using mAbs. This approach was based on the hypothesis that some of the immunodominant 

antigens might be suitable targets for serological tests, and micro-epidemiology studies 

based on polymorphism.  

 

10.1.2 Malaria 

 

The drive to identify novel vaccine candidates or drug targets has in part focussed on 

identifying genes coding for transmembrane or secreted proteins of Plasmodium 

falciparum
81,82

. Access to the sequence of the entire genome of P. falciparum has provided 

the opportunity to deduce the function of many of the predicted proteins through the 

identification of orthologue genes and motifs in other organisms81. However, a large 

proportion of the predicted genes have no detectable orthologues in other organism, 

reminding researchers that many aspects of parasite biology still have to be uncovered83.  

The elucidation of molecular mechanisms responsible for recognition and the subsequent 

invasion of erythrocytes by malaria parasites are of central importance towards the 

development of new intervention strategies. Novel proteins encoded by open reading 

frames designated D13 and glyceraldehyde-3-phosphate dehydrogenase (pfGAPDH) were 

identified functionally by an in vitro transcription-translation-translocation system. 
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 The aim of the project was to generate mAbs against the two recombinantly expressed 

proteins and to use them to describe the sub-cellular localisation, the stage-specific 

expression and the biological function, particularly the interaction with host cell.  
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Abstract 

Mycobacterium ulcerans is an emerging pathogen which has diverged from M. marinum 

by acquisition of a virulence plasmid bearing a cluster of genes necessary for the synthesis 

of the macrolide toxin mycolactone. This slow growing mycobacterium causes an 

infectious disease characterized by chronic, necrotizing ulceration of subcutaneous tissues 

and the overlying skin, commonly designated as Buruli ulcer. Standard genetic 

fingerprinting methods including multi-locus sequence typing have resolved only a limited 

number of geographical types of M. ulcerans. We reasoned that immunodominant proteins 

may be under selection pressure and exhibit more diversity than most other M. ulcerans 

proteins. Among immunodominant proteins recognized by monoclonal antibodies, one was 

identified by mass spectrometric analysis as the M. ulcerans homolog of the mycobacterial 

laminin-binding protein. DNA sequence analysis demonstrated that the corresponding 

hupB gene represents a relatively variable element within the highly conserved genetic 

background of M. ulcerans. Sequence typing based on a set of such variable genes may 

develop into a new tool for molecular epidemiological studies. Diversity was based both on 

insertional/deletional polymorphism and on single base exchanges. Dominance of non-

conservative exchanges was indicative for a diversifying selection pressure. We 

demonstrate that the M. ulcerans laminin-binding protein is associated with the cell wall 

fraction and expressed in Buruli ulcer lesions. The Laminin-binding protein is involved in 

the adherence of mycobacteria to target tissues and it remains to be elucidated whether the 

M. ulcerans homologue plays a role in host-pathogen interaction and/or persistence in an 

environmental habitat. 
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Introduction 

Buruli ulcer is a devastating human disease caused by Mycobacterium ulcerans and 

characterized by chronic, necrotizing ulceration of subcutaneous tissues and the overlying 

skin (1). It has been observed in more than 30 tropical and subtropical countries, but the 

main burden of disease falls on children living in sub-Saharan Africa (33). M. ulcerans is a 

slow-growing environmental mycobacterium, which can be cultured from infected human 

tissue on mycobacterial media at 30-32 ˚C. In Buruli ulcer lesions clumps of extracellular 

acid-fast organisms surrounded by areas of necrosis are found in particular in subcutaneous 

fat tissue (8). A diffusible toxic macrolide, mycolactone, plays a key role in the massive 

tissue destruction seen in Buruli ulcer (7). The toxin causes mammalian cells to undergo 

apoptosis and its action explains at least in part that in Buruli ulcer lesions inflammatory 

response are poor (8). Genetic analyses suggest the recent divergence of M. ulcerans from 

M. marinum (30), which is well known as fish pathogen and can cause limited 

granulomatous skin infections in humans. One of the hallmarks of the emergence of M. 

ulcerans as a more severe pathogen is the acquisition of a 174-kb plasmid bearing a cluster 

of genes necessary for the synthesis of mycolactone (29); (31).  

 

While it is well established that proximity to marshes and wetlands is a risk factor for 

contracting Buruli ulcer, the exact mode of transmission of M. ulcerans is incompletely 

understood (1). M. ulcerans DNA has been detected in aquatic organisms and biofilms 

(14); (19); (23); (28). Since many patients have had antecedent trauma at the site where the 

lesion later occurred (16), contamination of lesions by direct contact with environmental 

reservoirs, such as water or mud may play an important role. Since M. ulcerans has been 

detected in the salivary glands of carnivorous aquatic insects it has been hypothesized that 

it may be transmitted by water bug bites (11-13); (19). Currently no molecular 

fingerprinting method for M. ulcerans is available, that has a sufficiently high resolution 

for micro-epidemiological analyses. The apparent lack of genetic diversity of M. ulcerans 

within individual geographical regions (3); (4); (20); (28); (32); (30) is indicative for a 

clonal population structure. We reasoned that immunodominant proteins may be under 

selection pressure and exhibit more diversity than the housekeeping genes used for multi-

locus sequence typing (30). Here we demonstrate that the M. ulcerans homologue of the 

mycobacterial laminin binding protein (LBP) is highly immunogenic and shows 
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considerable diversity based both on insertional/deletional polymorphism and on point 

mutations. 
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Materials and Methods 

Mycobacterial lysates and subcellular fractions 

M. ulcerans isolates from diverse geographical origins used in this study are listed in Table 

1. Other mycobacterial species included in the analyses are M. abscessus (ATCC 19977), 

M. avium subsp. avium (MAC101), M. bohemicum (clinical isolate), M. bovis biovar. BCG 

(ATCC 35734), M. chelonae (DSM 43804), M. fortuitum (ATCC 49403), M. gordonae 

(Pasteur 14021.001), M. haemophilum (ATCC 29548), M. intracellulare (clinical isolate), 

M. kansasii (NCTC 10268), M. lentiflavum (clinical isolate), M. malmoense (NCTC 

11298), M. marinum (ATCC 927), M. scrofulaceum (Pasteur 14022.0031), M. simiae 

(clinical isolate), M. smegmatis (Pasteur 14133.0001), M. terrae (clinical isolate) and M. 

tuberculosis (Pasteur 14001.0001).  

For the preparation of lysates mycobacterial cells were heat-inactivated at 80°C for 1 hour 

and suspended in PBS (50mM sodium phosphate, 150mM sodium chloride, pH 7.4) 

containing 5% SDS and 1mM phenylmethyl-sulphonyl fluoride (PMFS), and 10 µg/ml 

each of leupeptin and trypsin inhibitor (Sigma, St. Louis, Mo). 200mg of cell suspension 

(wet weight) was subjected to a bead beater (Mikro-Dismembrator, Braun Biotech 

International) treatment with 400µl of 0.1mm zirconia beads (BioSpec Products) at 2300 

rpm for 15 minutes. Beads and unbroken cells were removed by centrifugation at 10000g 

for 10 min.  Protein content of the lysate was quantified using the BCA protein assay 

(Pierce). 

For the preparation of sub cellular fractions 400 mg of heat inactivated M. ulcerans cells 

were suspended in 3 ml of PBS containing 0.1% Tween 80 and a proteinase inhibitor 

cocktail described above. Cells were broken by three cycles of ultrasonic disruption 

(Branson sonifier 250) on ice for 10 min with 50% Duty cycle and 40% output using a 

microtip probe. Unbroken cells were removed by centrifugation at 3000g for 10 min. A 

cell wall fraction was prepared from the supernatant by centrifugation at 27000g for 1 hour 

and was washed twice with PBS. The supernatant was subjected to a 100000g 

centrifugation for 4h; a cytosol fraction was obtained from the supernatant and the 

membrane fraction from the pellet. The membrane fraction was washed with PBS and 

suspended in 0.01M ammonium bicarbonate and the supernatant was dialyzed against 

0.01M ammonium bicarbonate (2).  
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Western blots analysis 

Mycobacterial lysates and sub-cellular fractions (10µg of total protein/lane) were separated 

on 12% SDS PAGE gels under reducing conditions in Laemmli buffer (24). Proteins were 

transferred to nitrocellulose paper (BioRad) in Tris glycine buffer (25 mM Tris and 192 

mM Glycine pH 8.3). Filters were blocked in 5% skim milk in PBS with 0.1% Tween 20 

overnight. Sera or monoclonal antibodies diluted in blocking solution were incubated with 

membranes for two hours. Bound antibodies were detected using alkaline phosphatase 

conjugated goat anti-mouse IgG (Sigma Chemicals, St. Louis, Mo) as secondary antibodies 

and 5-bromo-4-chloro-3-indolylphosphate (BCIP)-nitro blue tetrazolium (BioRad) as 

substrate. 

 

Generation of monoclonal antibodies  

 Hybridoma cell lines were generated as described (25) from mice immunized 

intraperitoneally three times with 20µg of a lysate of the M. ulcerans strain 97-610  from 

Ghana formulated in the MPL +TDM adjuvant (Sigma Chemicals, St. Louis, Mo) and 

immune sera were analyzed by Western blotting with the same lysates. Three days before 

cell fusion, mice that recognized a broad range of mycobacterial proteins received an 

intravenous booster injection with 20µg of M. ulcerans lysate in PBS. Antibodies specific 

for M. ulcerans antigens were identified by ELISA using Immunolon 4 plates (Dynes 

Technologies Inc., Chantilly, Va.) coated with M. ulcerans lysate. From a panel of 

hybridomas generated (manuscript in preparation), two (designated DD2.2 and DD2.3) that 

secrete mAbs specific for a 27 kDa protein were identified by Western blotting.  

 

Partial purification and identification of the mAb DD2.2/3 reactive protein from M. 

tuberculosis  

A lysate of M. tuberculosis cells (strain QK 228) in 8M urea was fractionated by reverse-

phase HPLC using a C8 column (Nucleosil 300-5 C; Agilent Technologies). Fractions 

containing the mAb DD2.2/.3-reactive protein were identified by Western blot analysis. 

Proteins in the peak fraction were separated by 12% SDS-PAGE and a band of apparent 

molecular mass of 27 kDa was cut out and digested with trypsin as described (6). The 

protein was identified by matrix assisted laser desorption ionization-mass spectrometry 



           CHAPTER 2. Mycobacterium ulcerans Laminin-Binding Protein                    32 

 
 

 
following in-gel digestion in low-salt, non-volatile buffer and simplified peptide recovery 

as described (6).  

 

DNA extraction and sequence analysis of the M. ulcerans hupB gene 

For DNA extraction 100µl of a 100mg/ml lysozyme solution were added to a suspension 

of heat inactivated M. ulcerans cells in 500µl of extraction buffer (50mM tris-HCl, 25mM 

EDTA, 5% monosodium glutamate). After 2 hours of incubation at 37°C, 70µl proteinase 

K-10X buffer (100mM Tris-HCl, 50mM EDTA, 5% SDS, pH 7.8) and 10µl of a 20mg/ml 

proteinase K solution were added. After incubation at 45°C overnight, the samples were 

subjected to bead beater treatment with 300µl of 0.1mm zirconia beads (BioSpec Products) 

at 3000 rpm for 7 minutes. Beads and unbroken bacteria were removed by centrifugation 

and the supernatant was transferred to fresh tubes. An equal volume of phenol-chloroform 

(Fluka) was added and the DNA contained in the upper phase was precipitated and washed 

with ethanol.  

For sequences analysis two overlapping fragments of the hupB gene were amplified by 

PCR using the primer combinations 5’-CCATAAACGAGGACCGC-3’ and 5’-

TCTTTGCCGCAGCCTTCTTGG-3’ or 5’-GCCAAGAAGGTGACCAA-3’ and 5’-

TGCGGGCCTAACGCACGAATA-3’, respectively. Amplifications were performed with 

the following profile: 5 min 96°C; 30 x (1min 96°C, 1 min 63°C, 1 min 72°C), 7 min 72°C. 

Amplicons were purified using a PCR product purification kit (Qiagen) and sequenced 

using an ABI PRISM 310 genetic analyzer (Perkin-Elmer). All sequences were 

reconfirmed at least twice using independent PCR products. 

 

Nucleotide sequences 

The nucleotide sequences reported in this paper have been submitted to the GenBank with 

the accession numbers: AY954292 to AY954299, corresponding to the hupB alleles 1 to 8. 
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Results 

Identification of an immunodominant protein of M. ulcerans that shows size variation 

Sera from M. ulcerans immunized mice showed reactivity with a broad range of 

mycobacterial antigens in Western blot analysis. The bands stained by all mouse sera 

included a protein with an apparent molecular mass of 27 kDa (data not shown). Within a 

panel of mAbs generated from the spleen cells of a M. ulcerans immunized mouse, two 

mAbs (designated DD2.2 and DD2.3) were identified, which reacted with this 27 kDa 

protein. Both mAbs stained one additional band with an apparent molecular mass of 32 

kDa. Western blot analysis with a spectrum of M. ulcerans isolates of geographically 

diverse origins revealed size variation in the stained protein bands (Fig. 1).  

 

A mAb DD2.2/3-reactive homologue was found in whole cell lysates of all 20 

mycobacterial species tested (Fig. 2). Variation in the number and size of the stained bands 

may reflect differences in length of the coding gene sequences and/or in posttranslational 

modification. In indirect immunofluorescence assays all mycobacterial species tested were 

stained by mAbs DD2.2 and DD2.3 (data not shown).  

 

Identification of the M. tuberculosis homolog of the mAb DD2.2/3-reactive protein 

Since a completely annotated M. ulcerans genome was not available, we identified the 

mAb DD2.2/3-reactive homolog of M. tuberculosis instead of the M. ulcerans protein 

itself. A M. tuberculosis whole cell lysate was fractionated by reverse-phase 

chromatography on a C8 column. Fractions were analyzed by Western blotting, and a band 

of apparent molecular mass of 27KDa was cut out from a SDS-PAGE lane loaded with the 

peak fraction. The excised protein was digested with trypsin, and the total peptide mixture 

was extracted and analyzed by MALDI-TOF. Eight peptides sequences obtained 

(MNKAELIDVLTQK, QATAAVENVVDTIVR, GDSVTITGFGVFEQR, 

AVVSGAQRLPAEGPAVK, VKPTSVPAFRPGAQFK, AVHKGDSVTITGFGVFEQR, 

TGETVKVKPTSVPAFRPGAQFK,   and VKPTSVPAFRPGAQFKAVVSGAQR) 

allowed to identify the mAb DD2.2/3-reactive protein as laminin binding protein (LBP) 

encoded by the hupB gene. Reactivity of mAbs DD2.2 and DD2.3 with a GST-LBP fusion 

protein of M. tuberculosis (5) reconfirmed the identification (data not shown).  
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Localization and expression of M. ulcerans LBP  

The two mAb DD2.2/3-reactive bands were primarily present in M. ulcerans cell wall 

fractions (Fig. 3B), but undetectable in culture filtrate (Fig. 3A) and in a cytosol fraction 

(Fig. 3B). The M. ulcerans LBP is expressed in vivo, as it was detectable in a tissue lysate 

from the centre of an excised Buruli ulcer lesion (Fig. 3C). No staining was observed in 

lysates from the healthy margins of the excised tissue. 

 

Diversity of the hupB gene in M. ulcerans isolates 

The hupB gene of M. ulcerans was identified by homology search in the M. ulcerans 

genome project database (http: genopole.pasteur.fr/Mulc/BuruList.html). Primers located 

in the 3’ and 5’ untranslated regions flanking the hupB gene were used to analyze hupB 

gene diversity in M. ulcerans by PCR amplification and DNA sequence analysis.  

Significant diversity based both on insertional/deletional polymorphism and on point 

mutations was observed. In addition to three different types of deletions in the LBP repeat 

region, point mutations at altogether 15 positions were found (Table 1). Based on the 

sequence of their hupB genes the 24 M. ulcerans strains analyzed could be subdivided into 

eight groups (Table 1). While all nine African isolates (from six countries) analyzed had 

the same allele, three different alleles were found among the six Australian strains 

included. Allele 2 differed in one and allele 3 in three non-synonymous point mutations 

from the hupB gene sequence (allele 1) of the African isolates. Compared to allele 1, allele 

4 had a 27 base deletion in the repeat region of hupB. Of the two isolates from PNG, one 

had allele 1 and one allele 4. Allele 5 found in the two Mexican isolates analyzed differed 

from allele 1 in seven non-synonymous point mutations plus a 27 base deletion located at 

another position than that of allele 4. While the same deletion was also found in the 

isolates from China and Japan, the three isolates from Malaysia, French Guiana and 

Suriname shared another (54 bp) deletion. While allele 6 from Japan and China differed in 

six point mutations form allele 5 (Mexico), there was a difference in only one position 

between allele 7 (Malaysia) and allele 8 (French Guiana and Suriname). While all Asian 

and American isolates had a T509 and a C593, all African, Australian and PNG isolates had a 

C509 and a G593. 
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All three types of deletions were located in a region of LBP containing AKKA and 

ATKAP repeats (Fig. 4). Compared to allele 1, allele 4 was shortened by a nine amino acid 

(ATKAP-AKKA) block. In alleles 5 and 6 a variant block (ATKAR-AKKA) present in 

alleles 1 to 4 was missing. Alleles 7 and 8 shared an 18 amino acid deletion (AKKA-

ATKAR-AKKA-ATKAP). Twelve of the 15 single nucleotide polymorphisms found were 

non-synonymous. While all but one (C/G593) of these non-synonymous polymorphisms 

were located within the repeat encoding sequence stretches, two of the three synonymous 

polymorphisms (C/T102 and C/T117) were located outside the repeats. An alignment of 

deduced amino acid sequences of LBP from other mycobacterial species revealed that the 

N- terminal portion of the protein is highly conserved between species. Like the intra-

species diversity in M. ulcerans, the inter-species diversity is based both on 

deletional/insertional and on point mutational changes and is focused in the C-terminal 

portion of the protein (Fig. 4).  
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Discussion 

M. ulcerans is an emerging pathogen that seems to have evolved from M. marinum by 

acquiring a virulence plasmid encoding a polyketide synthase responsible for the synthesis 

of mycolactone (30, 31). This plasmid has a common evolutionary origin in M. ulcerans 

isolates from diverse geographical locations around the world (29). The clonal population 

structure of M. ulcerans  is reflected by the fact, that all genetic fingerprinting method 

applied so far for M. ulcerans have resolved only a limited number of geographical types 

(3, 4); (20); (28, 28, 30). To date, the highest resolution, nine distinct profiles related to 

geographical regions, was obtained by a PCR method that captures differences in regions 

between the high-copy-number insertion sequences IS2404 and IS2606 (28). Only six 

multi-locus sequence types were found among 18 M. ulcerans isolates of diverse 

geographical origin when seven unlinked gene loci were sequenced (30). In view of this 

extremely low genetic diversity, it is highly remarkable, that sequencing of the hupB gene 

of 24 M. ulcerans isolates has identified eight alleles. Interestingly, three different hupB 

alleles were found among the six Australian isolates analyzed here. Two of these alleles (2 

and 4) were found in isolates coming from the Victoria region, and allele 3 was found in a 

strain from the Queensland area. Of the two analyzed isolates from Papua New Guinea one 

had an allele 4 found in three isolates from the Victoria region, while the other one had 

allele 1, which was found in all African isolates, irrespective of the country of origin. Only 

a single base-exchange distinguished allele 8 found in isolates from Suriname and French 

Guiana from allele 7 found in a Malaysian isolate. Both alleles share a unique deletion (bp 

445-498) which may be indicative for import of the pathogen by Asian contract workers in 

the last century.  

 

The polymorphism of the highly immunogenic LBP may reflect inherent instability of the 

repetitive sequence stretch or diversifying selection pressure. In addition to three different 

types of deletion in the repeat region, point mutations at altogether 15 positions were 

found. Twelve of these 15 types of point mutation were non-synonymous, which indicates 

that this diversity does not represent accumulation of neutral mutations but is rather the 

result of some type of selection. The predicted size of LBPs is smaller than the observed 

size in SDS/PAGE, which may be related to the high content of lysine and arginine. The 

observed variation in protein size and the occurrence of a second protein band in many of 
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the mycobacterial lysates suggest posttranslational modification, such as methylation of the 

lysine-rich repeats (17).  

 

Consistent with our finding of an association of M. ulcerans LBP with the cell wall 

fraction, homologues of this protein in other mycobacterial species are localized on the 

mycobacterial surface (26), (15), (18). LBPs seem to play an important role in the 

adherence of pathogenic mycobacteria to their target tissues within the infected host. LBP 

of M. leprae binds to the peripheral nerve laminin-2 isoform and may be involved in the 

invasion of Schwann cells (26), (22). LBP of M. smegmatis has been shown to promote 

mycobacterial adherence to pneumocytes and macrophages (18). It remains to be 

elucidated, whether LBP of the extracellular pathogen M. ulcerans plays a role in host-

pathogen interaction, persistence in insect salivary glands and/or establishment of biofilms 

on plant surfaces (14). In M. smegmatis LBP is upregulated by cold-shock stress (27) and 

in the anaerobiosis-induced dormant state (9). In view of these findings it is interesting that 

the M. ulcerans LBP was detectable in lysates of Buruli ulcer lesions. Currently it is not 

clear whether M. ulcerans can enter into a dormant state and persist in this stage in the 

mammalian host. LBPs represent immunodominant antigens (21), (10) and their potential 

as vaccine components or target structures for immunodiagnostic tests should be evaluated 

further.   
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Allele M .ulcerans  strain Position of point mutation or deletion 

  P102 P117 P364 P384 P385 P387 P399 P411 P412 P414 P424 P426 Deletion P509 P593 P647 

1 ITM 97-680 Togo C C A C G T C T C C G C - C G C 

 ITM 96-657 Angola C C A C G T C T C C G C - C G C 

 ITM 97–104 Benin C C A C G T C T C C G C - C G C 

 ITM 97–111 Benin C C A C G T C T C C G C - C G C 

 ITM 5150 DRC C C A C G T C T C C G C - C G C 

 ITM 5151 DRC  C C A C G T C T C C G C - C G C 

 001441 Ghana C C A C G T C T C C G C - C G C 

 ITM 94-511 Ivory Coast C C A C G T C T C C G C - C G C 

 ITM 97-483 Ghana C C A C G T C T C C G C - C G C 

 ITM 94-1331 PNG C C A C G T C T C C G C - C G C 

2 ITM 9550 Australia C C G* C G T C T C C G C - C G C 

 ITM 8849 Australia C C G* C G T C T C C G C - C G C 

3 ITM 9540 Australia C C A T* C* C* C T C C G C - C G C 

4 ITM 94–339 Australia C C A C G T C T C C G C P427-453 C G C 

 ITM 5147 Australia C C A C G T C T C C G C P427-453 C G C 

 ITM 5142 Australia C C A C G T C T C C G C P427-453 C G C 

 ITM 9537 PNG C C A C G T C T C C G C P427-453 C G C 

5 ITM 5114 Mexico C C A C G T C C* G* T* C* T* P454-480 T* C* C 

 ITM 5143 Mexico C C A C G T C C* G* T* C* T* P454-480 T* C* C 

6 ITM 98-912 China C C A C G T T T C C G C P454-480 T* C* C 

 ITM 8756 Japan C C A C G T T T C C G C P454-480 T* C* C 

7 ITM 94-1328 Malaysia T T A C G T T T C C G C P445-498 T* C* C 

8 ITM 7922 French Guiana T T A C G T T T C C G C P445-498 T* C* T* 

 ITM 842 Suriname T T A C G T T T C C G C P445-498 T* C* T* 

 

Table 1. Sequence diversity of the hupB gene of M. ulcerans. Non-synonymous base exchanges are indicated by asterisks 
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Figure 1: Western blot analysis of lysates of M. ulcerans strains of diverse geographical 

origin with mAb DD2.2. 1) Democratic Republic of Congo (5151), 2) Democratic 

Republic of Congo  (5150),  3) Benin (ITM 97–111), 4) Benin (ITM 97–104), 5) Australia 

(ITM 9540), 6) Australia (ITM 8849), 7) Australia (ITM 9550), 8) Australia (ITM 94–

339), 9) Australia (5142), 10) Australia (ITM 5147), 11) Mexico (ITM 5114), 12) Mexico 

(5143), 13) Suriname (ITM 842), 14) French Guiana (ITM 7922), 15) China (980912), 16) 

Japan (ITM 8756), 17) Malaysia (941328), 18) Papua New Guinea (9357), 19) Papua New 

Guinea (ITM 94-1331), 20) Ghana (97-483), 21) Ghana* (001441), 22) Ivory Coast 

(940511), 23) Togo (ITM 97-680), 24) Angola (960657). 
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Figure 2. Western blot analysis of sub-cellular fractions and of M. ulcerans infected tissue 

with mAb DD2.2. A: 1) Culture medium, 2) M. ulcerans culture filtrate, 3) M. ulcerans 

lysate. B: 1) M. ulcerans lysate, 2) membrane fraction of M. ulcerans, 3) cytosol fraction 

of M. ulcerans, 4) cell wall fraction of M. ulcerans. C: 1) tissue lysate from the centre of a 

Buruli ulcer lesion 2) tissue lysate from the healthy margin of a Buruli ulcer lesion 3) 

lysate of in vitro cultivated M. ulcerans cells. 
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Figure 3. Western blot analysis of lysates of different mycobacterium species with mAb 

DD2.2. 1) M. abscessus, 2) M. avium ssp avium, 3) M. bohemicum, 4) M. chelonae,  5)  M. 

fortuitum, 6) M. gordonae, 7) M. haemophilum  8) M. intracellulare, 9) M. kansasii, 10) M. 

lentiflavum, 11) M. malmoense, 12) M. scrofulaceum, 13) M. simiae, 14) M.  Smegmatis, 

15) M. terrae, 16) M. xenopi, 17) M. ulcerans, 18). M. tuberculosis, 19) M. marinum, 20) 

M. bovis. 
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        1                                                                                                                    120 

                                                                                                                       AKKAATKAP 

Allele1 MNKAELIDVLTQKLGSDRRQATAAVENVVDTIVRAVHKGDSVTITGFGVFEQRRRAARVARNPRTGETVKVKPTSVPAFRPGAQFKAVVSGAQRLPAEGPAVKRGVMASAA.....K... 

Allele2 ....................................................................................................................K... 

Allele3 ....................................................................................................................K... 

Allele4 ....................................................................................................................K... 

Allele5 ....................................................................................................................K... 

Allele6 ....................................................................................................................K... 

Mm      ....................................................................................................................K... 

Allele7 ....................................................................................................................K... 

Allele8 ....................................................................................................................K... 

Mt      ..........................................................................................................G..-....V.K... 

Mb      ..........................................................................................................G..-....V.K... 

Mb*     ..........................................................................................................G..-....V.K... 

Ml      .........................................................................................A......L.........AT...K.A.IK... 

Ms      ...........T.M.T........................................................................I....K...D........T.GP-.....K... 

Ma      ..............NT................................................................................S.........VGG..K.T..K... 

Mass S. 

 

        121                                                                                                           233 

        AKKA-ATKAPAKKA-ATKAPAKKAATKAPAKKAATKAPAKKAATKAPAKKAATKAP                          ATKAPAKKA     ATKAPAKKA  

Allele1 ....-...TA....-......................R................VTKAPAKKV-TKATVKKTAAK-APVRKG.........AAKRP.........TSTRRGRK 

Allele2 .E..-...TA....-......................R................VT.......-...........-..................................... 

Allele3 ....-.........-......................R................VT.......-...........-..................................... 

Allele4 ....-...TA....-.....---------........R................VT.......-...........-..................................... 

Allele5 ....-...TA....-...TA...P.........---------.........V..VT.......-...........-.....A............................... 

Allele6 ....-...TA....-..................---------.........V..VT.......-...........-.....A............................... 

Mm      ....-...TA....-..................---------.........V..VT.......-...........-.....A............................... 

Allele7 ....-...TA....-..............------------------....V..VT.......-...........-.....A............................... 

Allele8 ....-...TA....-..............------------------....V..VT.......-...........-.....A.................V............. 

Mt      ....--...-....-......R---------....................V-..T.S.....-...-.....V.-.S...A........................-A..... 

Mb      ....--...-....-......R---------....................V-..T.S.....-...-.....V.-.S...A........................-A..... 

Mb*     ....--...-..-------------------....................V-..T.S.....-...-.....V.-.S...A.......................A-A..... 

Ml      V...L-----....-.........-------------------V......I-.T.V.V....A-T.V-...V...-.....AT.R.L.....V.----......V.AAK.... 

Ms      ....A.K.TAT.A.-.K............---------..................---...AA...PA..A...-AP----..........K.AA-----....P-AKK..R 

Ma      ....A.K.......A.K........V.-----------------....R.......---VR.AA...PA..V...K..AK.A..........S.AP.R..A...T.-A..... 

 

Figure 4. Comparison of the predicted amino acid sequence of LBP of Mycobacterium ulcerans isolates of diverse geographical origin. Identity with the reference 
sequence is indicated by a dot (.), deletions are indicated by dashes (-). AKKA repeats are shown in light grey boxes and ATKAP repeats in dark grey boxes. 
Mm: M. marinum [sequence obtained by blast search of data publicly available on M. marinum genome sequencing project web site 
(http://www.sanger.ac.uk/Projects/M_marinum/)]; Mt: M. tuberculosis (NC_000962); Mb: M. bovis (NP_856655); Mb*: M. bovis (Y18421); Ms: M. smegmatis 
(AF068138); Ma: M. avium (AE017238); Ml: M. leprae (AB022517). Continuous lines indicate the position of peptides identified by MALDI-TOF. 
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Abstract 

While it is well established that proximity to wetlands is a risk factor for contracting Buruli 

ulcer, it is not clear, which proportion of a population living in an endemic area is exposed 

to M. ulcerans. Immunological cross-reactivity among mycobacterial species complicates 

development of a specific serological test. Among immunodominant proteins recognized 

by a panel of anti-M. ulcerans monoclonal antibodies, the M. ulcerans homologue of the 

M. leprae 18 kDa small heat shock protein (shsp) was identified. Since this shsp has no 

homologues in M. bovis and M. tuberculosis, we evaluated its use as target antigen for a 

serological test. Anti-18 kDa shsp antibodies were frequently found in the serum of Buruli 

ulcer patients and healthy household contacts, but rarely in controls from non-endemic 

regions. Results indicate that only a small proportion of M. ulcerans infected individuals 

develop the clinical disease. 
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Introduction 

Buruli ulcer is a chronic necrotizing disease of skin and soft tissue caused by M. ulcerans. 

The disease starts as a subcutaneous nodule, papule or plaque that eventually ulcerates and 

progresses over months to years. After tuberculosis and leprosy, Buruli ulcer is the third 

most common mycobacterial infection in immunocompetent humans. The main burden of 

disease falls on children living in sub-Saharan Africa, but healthy people of all ages, races 

and socioeconomic class are susceptible as well (2).  

 

In Buruli ulcer lesions, clumps of extra-cellular acid-fast organisms surrounded by areas of 

necrosis are often found in subcutaneous fat tissue (19). M ulcerans produces a family of 

macrolide toxin molecules, the mycolactones, which are associated with tissue destruction 

and local immunosuppression (13). In cell culture experiments, mycolactones produce 

apoptosis and necrosis in many human cell types (8,14). The toxin appears to play a role in 

inhibiting the recruitment of inflammatory cells to the site of infection, which explains at 

least in part why inflammatory responses are poor in Buruli ulcer lesions (19). Down-

regulation of Th-1 responses may play a role in the progression of early Buruli ulcer 

disease (15-17,34), but may reverse in later stages (11). Intralesional influx of leukocytes 

and granulomatous responses in the dermis and panniculus has been reported in late stages 

of the disease (11,18). Spontaneous healing can occur and is often accompanied by a 

conversion of the Burulin (M. ulcerans sonicate) skin test from negative to positive.  

 

In spite of some degree of local and peripheral T cell anergy, Buruli ulcer patients seem to 

be able to raise a humoral immune response against M. ulcerans antigens (15), and the 

analysis of serological responses to culture filtrate antigens of M. ulcerans has suggested 

that serological tests may be useful in the diagnosis and surveillance of the disease (9,31). 

Broad antigenic cross-reactivity between mycobacterial species represents a major problem 

for the development of a serological test that is specific and sensitive enough to monitor 

immune responses against M. ulcerans in populations where exposure to M. tuberculosis 

and BCG vaccination is common. 

 

We reasoned that the identification, recombinant expression and immunological profiling 

of immunodominant proteins will provide target structures for analyzing protective 
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immune mechanisms and for the development of a serological test suitable for detecting M. 

ulcerans exposure and/or disease. Here, we describe serological responses against a highly 

immunogenic 18 kDa shsp of M. ulcerans, which has no homologue in M. bovis and M. 

tuberculosis. Serological analysis indicates that this protein represents a suitable target 

antigen for monitoring exposure to M. ulcerans. 
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Materials and Methods 

 

Mycobacterial isolates 

Mycobacterial species included in the study are M. abscessus (ATCC 19977), M. avium 

subsp. avium (MAC101), M. bohemicum (clinical isolate), M. bovis biovar. BCG (ATCC 

35734), M. chelonae (DSM 43804), M. fortuitum (ATCC 49403), M. gordonae (Pasteur 

14021.001), M. haemophilum (ATCC 29548), M. intracellulare (clinical isolate), M. 

kansasii (NCTC 10268), M. lentiflavum (clinical isolate), M. malmoense (NCTC 11298), 

M. marinum (ATCC 927), M. scrofulaceum (Pasteur 14022.0031), M. simiae (clinical 

isolate), M. smegmatis (Pasteur 14133.0001), M. terrae (clinical isolate), M. tuberculosis 

(Pasteur 14001.0001) and M. leprae (offered kindly by Dr. Brennan). M. ulcerans isolates 

of diverse geographical origin analyzed in this study are: Democratic Republic of Congo 

(5151), Angola (960657), Ghana (97-483), Australia (ITM 5147), Australia (ITM 9540), 

Mexico (ITM 5114), Australia (ITM 9550), Malaysia (941328), French Guiana (ITM 

7922), Japan (ITM 8756), and Australia (94-1324). The mycobacteria were cultured as 

described (37). 

 

Mycobacterial lysates and sub cellular fractions 

Mycobacterial cells were heat-inactivated at 80°C for 1 hour and suspended in PBS (50 

mM sodium phosphate, 150 mM sodium chloride, pH 7.4) containing 5% SDS and 1 mM 

phenylmethyl-sulphonyl fluoride (PMFS), and 10 µg/ml each of leupeptine and soybean 

trypsin inhibitor (Sigma, St. Louis, Mo). Two hundred mg of cell suspension was subjected 

to a bead beater (Mikro-Dismembrator, Braun Biotech International) treatment with 400 µl 

of 0.1 mm zirconia beads (Bio Spec Products) at 2300 rpm for 15 minutes. Beads and 

unbroken cells were removed by centrifugation at 10000 x g for 10 min. Protein content of 

the lysate was quantified using the BCA protein assay (Pierce). 

For the preparation of sub-cellular fractions, 400 mg of heat inactivated M. ulcerans cells 

were suspended in 3 ml of PBS containing 0.1% Tween 80 and the proteinase inhibitor 

cocktail described above. Cells were broken by three cycles of ultrasonic disruption 

(Branson sonifier 250) on ice for 10 min with 50% Duty cycle and 40% output using a 

microtip probe. Unbroken cells were removed by centrifugation at 3000 x g for 10 min. A 

cell-wall fraction was prepared from the supernatant by centrifugation at 27000 x g for 1 
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hour and was washed twice with PBS. The supernatant was subjected to a 100000 x g 

centrifugation for 4 h; a cytosol fraction was obtained from the supernatant and the 

membrane fraction from the pellet. The membrane fraction was washed with PBS and 

dialyzed against 0.01 M ammonium bicarbonate (3).  

 

Western blots analysis 

Mycobacterial lysates and sub-cellular fractions (10 µg of total protein/lane) were 

separated on 12% SDS PAGE gels under reducing conditions in Laemmli buffer. Proteins 

were transferred to nitrocellulose membranes (BioRad) in tris glycine buffer (25 mM Tris 

and 192 mM glycine pH 8.3). Filters were blocked with 5% skim-milk in PBS with 0.1% 

Tween 20 overnight. Mouse sera or monoclonal antibodies diluted in blocking solution 

were incubated with membranes for two hours. Bound antibodies were detected using 

alkaline phosphatase conjugated goat anti-mouse IgG (Sigma Chemicals) as secondary 

antibodies and 5-bromo-4-chloro-3-indolylphosphate (BCIP)-nitro blue tetrazolium 

(BioRad) as substrate. 

For the analysis of human sera, 1 µg of recombinant 18 kDa shsp of M. ulcerans was 

separated on 12% SDS PAGE preparative gels and transferred as described above. Human 

sera diluted 1:100 were incubated with the antigen strips for 1 h.  These were washed five 

times with either non-stringent (0.15 M PBS pH 7.2, 0.1% Tween 20) or stringent wash 

buffer (0.3 M PBS pH 7.2, 1% Tween 20). After incubation for 1 h with alkaline 

phosphatase–conjugated AffiniPure F(ab’)2 fragment Goat anti-human IgG (Jackson 

ImmunoResearch laboratories), 5-bromo-4-chloro-3-indolylphosphate (BCIP)-nitro blue 

tetrazolium (BioRad) was used as substrate.   

 

Generation of monoclonal antibodies  

Hybridoma cell lines were generated as described (32) from mice immunized intra-

peritoneally three times with 20 µg of a lysate of the M. ulcerans  strain 97-610 from 

Ghana formulated in the MPL +TDM adjuvant (Sigma Chemicals). Three days before cell 

fusion, mice received an intravenous booster injection with 20 µg of M. ulcerans lysate in 

PBS. Antibodies specific for M. ulcerans antigens were identified by ELISA using 

Immunolon 4 plates (Dynes Technologies Inc., Chantilly, Va.) coated with M. ulcerans 

lysate. From the panel of hybridomas generated, Western blotting analysis identified three 
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(designated DD2.5, DD2.6 and DD3.6), which secreted mAbs specific for an 18 kDa 

protein.  

 

Partial purification and identification of the mAb DD2.5/6/3.6 reactive protein  

300 mg of heat inactivate M. ulcerans cells (wet weight) were washed with 1% sodium 

sarcosylat, five times with PBS and dissolved in 20 ml 8 M urea. After centrifugation at 

20000 x g for 30 min the supernatant was applied onto a RP-8 HPLC column (Nucleosil 

300-5 C8). The column was washed with 0.1% trifluoroacetic acid in water and then eluted 

with a gradient of acetonitril. After separation on a 12% SDS-PAGE gel, a band with an 

apparent molecular weight of 18 kDa was excised and digested with trypsin as described 

(12). For nanoelectrospray ionization tandem mass spectrometry, the peptides obtained 

were desalted and concentrated on POROS R2 reverse phase material (Applied 

Biosystems, Foster City, CA). They were eluted with 60% acetonitrile in 5% formic acid 

directly into a nanoelectrospray capillary needle. Mass spectra were acquired on a QSTAR 

Pulsar i quadrupole TOF tandem mass spectrometer (Applied Biosystems/MDS-Sciex, 

Toronto, Canada) equipped with a nano electrospray ion source (Proxeon, Odense, 

Denmark) as described (42). Fragmentation by tandem MS yielded a stretch of amino acid 

sequence together with its location in the peptide (sequence tag). With this sequence tag 

information, appropriate protein databases were searched using MASCOT Search software 

(Matrix Science, London, UK). These searches were not successful because the 

corresponding protein from M. ulcerans was not in the database. Therefore, the amino acid 

sequences of the peptides were determined (de novo tandem MS sequencing) to perform 

database searches based on sequence homology using FastA software (Genetics computer 

group, Madison, WI). 

 

Sequence analysis of the M. ulcerans 18 kDa shsp encoding gene 

For sequence analysis, the 18 kDa shsp encoding gene was amplified by PCR using the 

primers 5’-CCATGGTGATGCGTACCGACCCG-3’ and 5’-

CTCGAGGGCTTCTATCACCTCAGG-3’. DNA was extracted as described ((37)) and 

amplifications were performed with the following profile: 5 min 96°C; 30 x (1 min 96°C, 1 

min 63°C, 1 min 72°C), 7 min 72°C. Amplicons were purified using a PCR product 

purification kit (Qiagen), and then sequenced using an ABI PRISM 310 genetic analyzer 
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(Perkin-Elmer). All sequences were reconfirmed at least twice using independent PCR 

products. 

 

Recombinant expression of the M. ulcerans 18 kDa shsp  

The M. ulcerans 18 kDa shsp was recombinantly expressed in Escherichia coli as his-

tagged fusion protein (M1V2M3---A149LEH6), comprising the entire open-reading frame of 

149 codons with one amino acid exchange (L2 to V2). Briefly, the 453-bp PCR product 

generated from genomic DNA of the Ghanaian M. ulcerans isolate ITM 97-483, using the 

primers described above, was digested with the restriction enzymes NcoI and XhoI and 

cloned into the pETBLUE2 vector employing its NcoI and XhoI sites. Competent E. coli 

Tuner cells (pLac) (Novagen) were transformed and expression of the fusion protein was 

induced by addition of 1 mM isopropyl thiogalactoside (IPTG) (Calbiochem) for 4 h at 

37°C. Cells were lysed on ice for 30 min with 8 M urea, 0.1 M NaH2PO4, 0.01 M Tris/HCl 

(pH 8.0). After centrifugation at 10000 x g, the protein was purified from the supernatant 

by nitrilotriacetic acid column (Qiagen) chromatography and subsequent reverse-phase 

HPLC, using a C8 column (Nucleosil 300-5 C; Agilent Technologies).   

 

Immunization of mice with M. ulcerans r18 kDa shsp 

Antiserum was obtained from mice immunized three times with 20 µg of M. ulcerans r18 

kDa shsp formulated in the MPL +TDM adjuvant (Sigma Chemicals, St. Louis, Mo).  

 

Human sera and tissue lysates 

Tissue specimens were taken from the IS2404 PCR positive center and the PCR negative 

margin of an excised Buruli ulcer lesion described by Rondini et al. ((37)). Samples of 

about 100 mg were heat inactivated at 80°C for 1 h, suspended in reducing Laemmli buffer 

(39) and subjected to bead beater treatment as describe above. Sera from BU patients and 

household contacts residing in the Buruli ulcer endemic Ga district of Ghana were 

collected after informed consent was obtained. Ethical approval for the study was obtained 

from the local ethical review board of the Noguchi Memorial Institute for Medical 

Research, Legon, Ghana.  
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Results 

Inter-species cross-reactivity patterns of mAbs raised against a whole cell lysate of M. 

ulcerans 

To identify immunodominant antigens of M. ulcerans, mice were immunized with a 

complete lysate of the Ghanaian M. ulcerans strain 97-610. In Western blot analysis, the 

generated antisera exhibited cross-reactivity with a broad range of M. bovis and M. 

tuberculosis antigens (data not shown). In order to identify M. ulcerans antigens not 

present in these two mycobacterial pathogens, B cell hybridomas were generated with 

spleen cells of the immunized mice. While some of the obtained mAbs showed cross-

reactivity with all 21 mycobacterial species tested, others were more selective (Fig.1). The 

highest selectivity was observed with three mAbs, designated DD2.5, 2.6 and 3.6, which 

stained a M. ulcerans protein with an apparent molecular mass of 18 kDa. Although 

generated from two different mice, all three mAbs shared the same limited inter-species 

cross-reactivity pattern, i.e. they only reacted with M. chelonae, where a protein with an 

apparent mass of 20 kDa was recognized. In indirect immunofluorescence assays only M. 

ulcerans was stained by mAbs DD2.5, DD2.6 and DD3.6 (data not shown), indicating that 

cross-reactivity with M. chelonae was too low in affinity to be detectable in this assay. The 

mAbs stained an 18 kDa band in all ten M. ulcerans isolates of different geographical 

origins tested (data not shown). 

 

Identification of the mAb DD2.5/2.6/3.6 reactive protein 

For the identification of the mAb DD2.5/2.6/3.6 reactive 18 kDa protein, a M. ulcerans 

whole-cell lysate was fractionated by reverse-phase HPLC. Fractions in which the immune 

reactive protein was enriched were identified by Western blot analysis, peak fractions were 

pooled, and the 18 kDa band cut-out from a SDS-PAGE gel loaded with the pooled 

material. The excised protein was analyzed by matrix-assisted laser desorption ionization-

mass spectrometry (Fig. 2). The three peptide sequences obtained matched to sequence 

stretches (Table 1) of a M. leprae protein (Swissprot:18kd_mycle) designed 18 kDa shsp 

(HSP 16.5) (5). A M. ulcerans homologue with 79 % protein identity (Fig. 3) and 85 % 

identity at the DNA sequence level was identified by homology search in the M. ulcerans 

genome project database (http: genopole.pasteur.fr/Mulc/BuruList.html). Codon analysis 

of the M. ulcerans gene predicted a functional open-reading frame of 149 amino acids and 
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a molecular mass of 16,556 Da. A gene bank Blast search identified homologues of 18 kDa 

shsp in M. intracellulare, M. avium, and M. leprae with protein sequence identity of 

79.5%, 71.5% and 78.8%, respectively, and extensive inter-species diversity focused on 

the carboxyl-terminus (Fig.3). In contrast, no homologues are present in the M. 

tuberculosis and M. bovis genomes.  

 

To confirm the identification of the 18 kDa shsp as target for mAbs DD2.5, DD2.6 and 

DD3.6, the complete coding sequence of the M. ulcerans homologue was expressed as 

carboxy-terminally hexa-histidine tagged fusion protein in E. coli. All three mAbs showed 

reactivity with the affinity-purified recombinant protein in Western blot analysis (data not 

shown). 

 

Inter-species immunological cross-reactivity of the 18 kDa shsp was analyzed further by 

Western blot analysis with mouse antisera raised against the recombinant M. ulcerans 18 

kDa shsp. Like the three mAbs DD2.5, DD2.6 and DD3.6, all six antisera tested exhibited 

cross-reactivity with M. chelonae (Fig. 4). In addition, antisera cross-reacted with an 18 

kDa M. leprae protein, which was only stained by mAbs DD2.5, DD2.6 and DD3.6 when 

they were used at very high (≥ 5 µg/ml) concentrations (data not shown). When a set of ten 

overlapping synthetic 20mer peptides spanning the entire sequence of the M. ulcerans 18 

kDa shsp was tested in ELISA, mAbs DD2.5, DD2.6 and DD3.6 showed no reactivity and 

only some of the antisera bound weakly to the C-terminal peptide.  

 

Sequence conservation, sub-cellular localization and expression of the M. ulcerans 18 

kDa shsp in Buruli ulcer lesions 

Only four single nucleotide polymorphisms were detected when the 18 kDa shsp encoding 

genes of ten M. ulcerans isolates of diverse geographical origin were compared by PCR 

amplification and DNA sequence analysis of PCR products (Fig. 3). Two single nucleotide 

polymorphisms, one non-synonymous (G/T424) and one synonymous (T/C374) distinguished 

the sequence of strain 7922 from French Guiana from that of the Ghanaian genome project 

reference strain Agy-99. Strain 8756 from Japan exhibited two synonymous single 

nucleotide polymorphisms (G/A278 and C/T395) with respect to the reference sequence. 
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Sequences from the other eight M. ulcerans strains analyzed were identical with the Agy-

99 reference sequence. 

The mAb DD2.5/6/3.6-reactive band was primarily found in M. ulcerans cell-wall 

fractions (Fig. 5A), but was undetectable in cytosol fractions (Fig. 5A) and in culture 

filtrate (not shown). The M. ulcerans 18 kDa shsp was detectable in human tissue lysates 

from the centre of excised Buruli ulcer lesions (Fig. 5B). No staining was observed in 

lysates from the healthy margins of the excised tissue (Fig. 5B).  

 

Reactivity of human sera with the recombinant 18 kDa shsp of M. ulcerans  

In Western blot analyses, the majority of sera from pre-ulcerative (Fig. 6A), early-

ulcerative (Fig. 6B) and late-ulcerative (Fig. 6C) Buruli ulcer patients showed reactivity 

with the recombinant 18 kDa protein of M. ulcerans. While 75% (24/32) of the patient sera 

were tested positive, 38% (9/24) of sera from household contacts also showed reactivity 

(Fig. 6D). Samples from Europeans (Fig 6F) and from the vast majority of Africans living 

in Buruli ulcer non-endemic regions (Fig. 6E) were negative.  
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Discussion 

Currently it is not clear, which proportion of a population living in an African Buruli ulcer 

focus area is exposed to M. ulcerans. In the case of M. tuberculosis, an infection remains 

latent in 90–95% of individuals and progressive disease development is only observed in a 

minority of infected individuals. Likewise a significant proportion of individuals infected 

by M. ulcerans may not develop the disease. Few data are available on co-infections of 

HIV and M. ulcerans and it is not entirely clear whether HIV infection is a risk factor for 

Buruli ulcer (1). Anecdotal evidence indicates that HIV infection affects the outcome of 

Buruli ulcer disease (21).  

 

For the assessment of the prevalence of exposure, a test is required that is negative for non-

exposed persons from non-endemic regions and positive for a significant proportion of 

exposed individuals in an endemic region. The test should discriminate between immune 

responses against M. ulcerans and other mycobacteria, in particular M. tuberculosis and M. 

bovis BCG. Serological studies performed with complex antigen preparations have 

suggested that serological tests may be useful in the diagnosis and surveillance of Buruli 

ulcer (9,16,31). In view of the presence of species cross-reactive antibodies in sera of 

Africans living in Buruli ulcer endemic regions, thoroughly selected recombinantly 

expressed target antigens are required. Our search for immunodominant proteins of M. 

ulcerans has identified the 18 kDa shsp as promising candidate for a serological test 

suitable to monitor the exposure of a population to M. ulcerans. While the 18 kDa shsp has 

no homologue in the genomes of M. bovis and M. tuberculosis, homologues have been 

described in M. leprae, M. intracellulare, and M. avium. Mouse sera raised against the 

recombinantly expressed M. ulcerans protein showed cross-reactivity with a 18 kDa 

protein of M. leprae and a 20 kDa protein of M. chelonae, but not with M. intracellulare, 

and M. avium lysates. The 18 kDa shsp of M. leprae has been evaluated as target antigen 

for serological and cellular diagnostic tests for leprosy (10,29,43). While the M. leprae 

protein seems to share epitopes with an unidentified M. tuberculosis antigen (30,36,41), 

our mAbs and  mouse sera specific for the M. ulcerans 18 kDa shsp did not cross-react 

with M. tuberculosis and M. bovis BCG lysates. Furthermore, sera from individuals living 

in Buruli ulcer non-endemic regions were largely negative. These results indicate, that 

immune responses against environmental mycobacteria, such M. chelonae, which is widely 
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distributed in the environment (4,22) and expresses a cross-reactive homologue of the 18 

kDa shsp, do not obscure results with the M. ulcerans 18 kDa shsp based serological test.  

 

Like its homologue in M. leprae (23), the 18 kDa shsp of M. ulcerans is associated with 

the cell-wall fraction. It has been postulated, that the 18 kDa shsp of M. leprae is relevant 

for the survival of the mycobacteria within macrophages (7). While M. ulcerans is largely 

an extracellular pathogen, it appears to be captured by phagocytes and transported to 

draining lymph nodes within host cells during the early stage of infection (6). The M. 

ulcerans 18 kDa shsp may play a role in this early intracellular stage of the infection and 

protect the mycobacteria in extreme environmental conditions by stabilizing the cell wall 

(25,26). 

 

While it is clear from many epidemiological studies, that proximity to wetlands is a risk 

factor for M. ulcerans infection, the exact mode of transmission is not clear (20). Recent 

field and laboratory studies have implicated aquatic insects in the transmission of the 

pathogen (25,33) and is has been demonstrated that mycolactone toxin-producing M. 

ulcerans isolates are able to invade the salivary glands of water insects (24). M. ulcerans 

DNA has also been detected by PCR in aquatic snails, fish, and the biofilm of aquatic 

plants (27,38,40), but the contributions of these elements of the environment in 

transmission has remained largely unknown. M. ulcerans may often reach the human 

dermis through minor wounds or skin abrasions via contact with M. ulcerans containing 

environmental reservoirs (28). Our analysis of sera from healthy household contacts 

indicates that exposure to M. ulcerans leads only in a minority of exposed individuals to 

clinical disease. Most of the others may only develop transient infection foci and even 

nodular lesions may resolve spontaneously (35). Immune responses in healthy household 

contacts have also been described in an Australian study (16), where a lower background 

staining than with African sera facilitated analysis with cellular extracts. Our preliminary 

analysis of sera from Africans living in Buruli ulcer endemic regions indicate that exposure 

is common in these environments also among non-household contacts. Future prospective 

analysis of cellular and humoral immune responses with recombinant M. ulcerans proteins 

in a population living in a highly endemic region of Africa should give better insight into 
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patterns of exposure. Such studies may also lead to the identification of surrogate markers 

of protection crucial for the development of a vaccine against M. ulcerans infection.  
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Peptide Mass [M+H]+ M. ulcerans sequence 

determined by MS/MS 

corresponding M. leprae 

18kDa shsp sequence 

M1: 1151.64 Da IAASYTEGVLK ILASYQEGVLK 

M2: 1177.66 Da FAQQVLGTSAR FAEQVLGTSAR 

M3:      1328.75 Da QLVLGENLDTAR QLVLGENLDTER 

 

 

Table 1  

Amino acid sequences of the M. ulcerans 18kDa protein-derived peptides determined by de 

novo tandem MS sequencing. Leu and Ile can not be discriminated by the technology 

applied and are therefore interchangeable. 
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Figure 1. Western blot analysis of lysates of different mycobacterial species with mAbs A) 

DD3.4 and B) DD3.7.  1) M. abscessus, 2) M. avium, 3) M. bohemicum, 4) M. fortuitum, 5) 

M. gordonae, 6) M. haemophilum, 7) M. intracellulare, 8) M. kansasii, 9) M. 

scrofulaceum, 10) M. malmoense, 11) M. lentiflavum, 12) M. simiae, 13) M. smegmatis, 

14) M. terrae, 15) M. xenopi, 16) M. chelonae , 17) M. leprae, 18) M. ulcerans, 19) M. 

tuberculosis, 20) M. marinum, 21) M. bovis, 22) recombinant M. ulcerans 18kDa shsp  
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Figure 2. Analysis of the in-gel digested band of apparent molecular weight of 18 kDa. (A) 

Survey mass spectrum of the tryptic in-gel digest. The arrows indicate the doubly-charged 

ion signals of the three peptides, which were de novo sequenced by tandem MS. (B) 

Tandem mass spectrum of the [M+2H]2+ precursor ion (m/z 576.32) of peptide M1 (mass 

determined = 1150.64 Da). The database search was performed with the singly-charged 

fragment ions labeled (y1) to (y10).  
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                           1                                                                                    80 

M. ulcerans Ghana Agy-99   MLMRTDPFRD LDRFAQQVLG TSARPAVMPM DAWREGDKFV VEFDLPGIDA DSLDIDIERN VVTVRAERPA VDPNREMLAS 

M. ulcerans French Guiana     ------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- 

M. leprae                  ---------E -----E---- ---------- ------EE-- --------K- ---------- ---------G ---D-----A 

M. avium                   ----S----E ---LTN---- -AT------- ------EH-- ---------- E--------- -L-------- L--S-----T 

M. intracellulare          ----S----E -----H---- -A-------- ----Q-EE-- ---------- ---------- ---------- L--------T 

   

 

                           81                                                                      149       

M. ulcerans                ERPRGVFSRQ LVLGENLDTA RIAASYTEGV LKLQIPVAEK AKPRKISITR GAGDKTISEN VAHPEVIEA 

M. ulcerans French Guiana  ---------- ---------- ---------- ---------- ---------- ---------- G-------- 

M. leprae                  -------N-- ---------E --L---Q--- ---S-----R -------VD- -NNGHQTINK T--.-I–D- 

M. avium                   ---------E ----D----D K-E---RD-- -S-H------ ------AVG- -EAPRAVT-T A..R--VN- 

M. intracellulare          ---------- ---------D K-Q---S--- -S-H------ ------AVG- -D-HHAVA-G A-QR---N- 

 

 

 

Figure 3. Comparison of the predicted amino acid sequence of 18kDa shsp of different mycobacterial species. Identity with the M. ulcerans 

reference sequence is indicated by dashes (-), deletions are indicated by a dot (.). Grey boxes indicate the position of peptides identified by 

ms-ms MALDI-TOF. GenBank accession numbers: M. leprae: AL583923, M. intracellulare: LI2240, M. avium: AE017238 
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Figure 4. Western blot analysis of lysates of different mycobacterial species with mouse 

anti-sera raised against the recombinant M. ulcerans 18 KDa shsp. Numbering of samples 

is the same as in Figure 1.  
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Figure 5. Western blot analysis of sub-cellular fractions and of M. ulcerans infected tissue 

with mAb DD3.6. A: 1) M. ulcerans lysate, 2) membrane fraction of M. ulcerans, 3) 

cytosol fraction of M. ulcerans, 4) cell wall fraction of M. ulcerans. B: 1) lysate of in vitro 

cultivated M. ulcerans cells 2) human tissue lysate from the healthy margin of a Buruli 

ulcer lesion 3) human tissue lysate from the centre of a Buruli ulcer lesion  
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Figure 6. Western blot analysis of human sera with the recombinant M. ulcerans 18KDa 

shsp using stringent washing conditions. Sera from Ghanaian patients with pre-ulcerative 

(A), early-ulcerative (B) and late-ulcerative (C) lesions and from their healthy household 

contacts (D), from Africans living in Buruli ulcer non-endemic regions (E) and from 

Europeans (F) were analyzed at a dilution of 1:100. G: mAb DD3.6 and negative control. 
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Abstract  

Buruli ulcer caused by Mycobacterium ulcerans is characterized by chronic, necrotizing 

ulceration of subcutaneous tissues and the overlying skin. M. ulcerans produces a family of 

macrolide toxin molecules, the mycolactones, which are associated with tissue destruction 

and local down-regulation of Th-1 responses. Since M. ulcerans multiplies extra-cellularly 

in Buruli ulcer lesions, antibody-mediated immune effector functions may be of great 

importance for immune protection. By generating panels of monoclonal antibodies from 

M. ulcerans antigen immunized mice we identified a range of immunodominant 

mycobacterial antigens. Some of these may have potential as vaccine candidate antigens or 

as target structures for serological or cellular diagnostic test systems. 
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Introduction 

Buruli ulcer caused by the slow growing environmental pathogen M. ulcerans is 

characterized by the development of chronic, necrotizing skin and soft tissue ulcers1.  The 

disease starts as a subcutaneous nodule or plaque that eventually ulcerates and progresses 

over weeks to months until surgical excision or spontaneous healing occurs. In endemic 

regions, BU is the most common mycobacterial disease after tuberculosis and leprosy 

among immunocompetent people. It has been observed in over 30 tropical and subtropical 

countries, but the main burden of disease falls on children living in sub-Saharan Africa2. 

Although it is well established that proximity to marshes and wetlands is a risk factor for 

contracting BU, the natural reservoir and the exact mode of transmission is unclear1.  

In BU lesion, clumps of extra-cellular acid-fast organisms surrounded by areas of necrosis 

are found primarily in subcutaneous fat tissue3. A diffusible toxic macrolide, mycolactone, 

plays a key role in the pathogenesis4. Since the toxin causes mammalian cells to undergo 

apoptosis, its action explains at least in part that inflammatory responses in BU lesions are 

poor3. Th-1 cell driven production of gamma interferon appear to be down-regulated in 

Buruli ulcer patients in the early stage of the disease5-7. This down-regulation may reverse 

in later stages8. M. ulcerans infection leads to the generation of antibodies against a variety 

of mycobacterial antigens5-7,9,10. Inter-species cross-reactivity of antibodies complicate the 

analysis of anti-M. ulcerans immune responses. All humans are exposed to environmental 

mycobacteria which frequently come into the contact with the skin and mucous 

membranes. In addition, in areas where M. ulcerans is endemic, the majority of children 

are vaccinated with BCG and exposed to M. tuberculosis. In the last 20 years, the isolation 

and characterization of antigens from complex mixtures such as parasites and bacteria, 

including M. leprae and M. tuberculosis, have been vastly facilitated by monoclonal 

antibodies technology11-14. In the present report we describe a panel of monoclonal 

antibodies generated from mice immunized with M. ulcerans cell lysates.  While our 

primary interest was to identify antigens suitable as target structures for M. ulcerans 

specific immunodiagnostic assays, some of the immunodominat antigens identified may 

also have potential as vaccine components or as target structures for genetic fingerprinting 

methods required for micro-epidemiological  studies.  
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Materials and Methods 

Mycobacterial lysates and sub cellular fractions 

M. ulcerans isolates of diverse geographical origin used in this study are: Suriname (ITM 

842), Democratic Republic of Congo (5150), Mexico (ITM 5114), Australia (ITM 5142), 

Mexico (ITM 5143), Australia (ITM 5147), Democratic Republic of Congo (5151), Japan 

(ITM 8756), Australia (ITM 9540), Ivory Coast (ITM 94-511), Papua New Guinea (ITM 

94-1331), Benin (ITM 97-104), Ghana (97-483), China (ITM 98-912), and Ghana 

(001441). All strains except for 001441 (isolated from an infected insect) were clinical 

isolates. Other mycobacterial species included in the analyses are M. abscessus (ATCC 

19977), M. avium subsp. avium (MAC101), M. bohemicum (clinical isolate), M. bovis 

biovar. BCG (ATCC 35734), M. chelonae (DSM 43804), M. fortuitum (ATCC 49403), M. 

gordonae (Pasteur 14021.001), M. haemophilum (ATCC 29548), M. intracellulare 

(clinical isolate), M. kansasii (NCTC 10268), M. lentiflavum (clinical isolate), M. 

malmoense (NCTC 11298), M. marinum (ATCC 927), M. scrofulaceum (Pasteur 

14022.0031), M. simiae (clinical isolate), M. smegmatis (Pasteur 14133.0001), M. terrae 

(clinical isolate), and M. tuberculosis (Pasteur 14001.0001).  

 

For the preparation of lysates, mycobacterial cells were heat-inactivated at 80°C for 1 hour 

and suspended in PBS (50mM sodium phosphate, 150mM sodium chloride, pH 7.4) 

containing 5% SDS and 1mM phenylmethyl-sulphonyl fluoride (PMFS), and 10 µg/ml 

each of leupeptine and trypsin inhibitor (Sigma, St. Louis, Mo). Two hundred mg of cell 

suspension was subjected to a bead beater (Mikro-Dismembrator, Braun Biotech 

International) treatment with 400µl of 0.1mm zirconia beads (Bio Spec Products) at 2300 

rpm for 15 minutes. Beads and unbroken cells were removed by centrifugation at 10000g 

for 10 min.  Protein content of the lysate was quantified using the BCA protein assay 

(Pierce). 

For the preparation of sub-cellular fractions, 400 mg of heat inactivated M. ulcerans cells 

were suspended in 3 ml of PBS containing 0.1% Tween 80 and the proteinase inhibitor 

cocktail described above. Cells were broken by three cycles of ultrasonic disruption 

(Branson sonifier 250) on ice for 10 min with 50% Duty cycle and 40% output using a 

microtip probe. Unbroken cells were removed by centrifugation at 3000g for 10 min. A 

cell wall fraction was prepared from the supernatant by centrifugation at 27000g for 1 hour 
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and was washed twice with PBS. The supernatant was subjected to a 100,000g 

centrifugation for 4h; a cytosol fraction was obtained from the supernatant and the 

membrane fraction from the pellet. The membrane fraction was washed with PBS and 

suspended in 0.01M ammonium bicarbonate and the supernatant was dialyzed against 

0.01M ammonium bicarbonate15.  

 

Immunization with M. ulcerans lysate and whole cells 

Groups of mice carrying immunoglobulin heavy chain γ2a and κ light chain replacement 

mutations16 were used for intraperitoneal immunization with M. ulcerans antigens. Group I 

was immunized with approximately 2 x 108 heat-inactivated M. ulcerans 97-610 cells 

emulsified in incomplete Freund’s adjuvant. Group II received 20 µg of a lysate of strain 

97-610 in incomplete Freund’s adjuvant. Group III was immunized with 20 µg of the 

lysate in MPL +TDM adjuvant (Sigma Chemicals, St. Louis, Mo). Humoral immune 

responses against M. ulcerans antigens were evaluated by ELISA and Western blot 

analyses. 

 

Generation of monoclonal antibodies  

 Hybridoma cell lines were generated as described17. Three days before cell fusion, mice 

received an intravenous booster injection with M. ulcerans lysate or capsular material in 

PBS. Hybridomas secreting antibodies specific for M. ulcerans lysate antigens were 

identified by ELISA using Immunolon 4 plates (Dynes Technologies Inc., Chantilly, Va.) 

coated with M. ulcerans lysate.  

 

Indirect immunofluorescence test  

Heat inactivated M. ulcerans cells were placed on a poly-L-Lysine-coated glass 

microscope slide (Erie-Scientific ES-242B-AD) and fixed by drying over night at room 

temperature. Slides were incubated for 30 min at room temperature with sera or mAbs 

diluted in 1% skim milk in water and washed five times with distilled water.  Bound 

antibodies were detected using FITC- or Cy3-conjugated goat anti-mouse IgG (Sigma 

Chemicals, St. Louis, Mo) as secondary antibodies. The DNA of M. ulcerans was label 

with Hoechst dye no. 33256 (bisBenzimidine, Sigma Chemicals, St. Louis, Mo). After 

washing with water slides were sealed with mounting medium [o-phenydiamine 
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dihydrochloride (Sigma, Chemicals. St. Louis, Mo), 0.1M tris and Glycerol (Sigma, 

Chemicals, St. Louis, Mo)].  

 

Western blot analysis 

Mycobacterial lysates and sub-cellular fractions (10µg of total protein/lane) were separated 

on 12% SDS PAGE gels under reducing conditions in Laemmli buffer18. Proteins were 

transferred to nitrocellulose paper (BioRad) in Tris glycine buffer (25 mM Tris and 192 

mM glycine pH 8.3). Filters were blocked overnight with PBS containing 5% skim milk 

and 0.1% Tween 20. Mouse sera or monoclonal antibodies diluted in blocking solution 

were incubated with membranes for two hours. Bound antibodies were detected using 

alkaline phosphatase conjugated goat anti-mouse IgG (Sigma Chemicals, St. Louis, Mo) as 

secondary antibodies and 5-bromo-4-chloro-3-indolylphosphate (BCIP)-nitro blue 

tetrazolium (BioRad) as substrate. 
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Results 

Dissection of the complex anti-M. ulcerans antibody responses of mice by generation 

of mAbs 

Complex antibody responses were observed in Western blotting analysis of sera from mice 

immunized with whole heat inactivated M. ulcerans cells or with lysates. Sera of mice 

immunized with whole heat inactivated mycobacterial cells (Fig. 1A) showed reactivity 

against a broad-range of antigens. The most prominent bands had an apparent molecular 

mass of about 250kDa and 71kDa and were also found in lysates of the three other 

mycobacterial species (M. tuberculosis, M. marinum and M. bovis) tested. Antibodies 

elicited by M. ulcerans lysate in combination with Freund’s (Fig. 1B) or MPL-KLP 

adjuvant (Fig. 1C) showed predominantly inter-species cross-reactivity with M. marinum. 

Reactivity with protein bands of apparent molecular masses between 36 and 32kDa 

dominated. Antigens recognized by antisera elicited with M .ulcerans lysate and MPL-

KLP included a 35kDa band present in all four mycobacterial species tested and an 18kDa 

band only found with M. ulcerans (Fig. 1C). Immunofluorescence analysis also 

demonstrated broad cross-reactivity of all sera with all four mycobacterial species tested 

(data not shown).  

 

Monoclonal antibodies were generated from mice immunized with a lysate of M. ulcerans 

strain 97-610 in incomplete Freund’s adjuvant and with the lysate in MPL +TDM 

adjuvant. Eighteen mAbs were selected for further analysis; their isotypes and binding 

pattern to a range of M. ulcerans proteins are summarized in table 1. Fifteen of the 

eighteen mAbs reacted against M. ulcerans antigens in Western blot analysis (Fig. 2).  

MAbs VC1.3 and DD2.4 were negative in Western blots, but strongly positive in 

immunofluorescence analysis. Fourteen of the 18 mAbs showed reactivity against M. 

ulcerans by immunofluorescence analyses. The mAbs DD2.7/3.1/2/4 were IFA negative, 

however, they bond to denature proteins by Western blot analyses. Different staining 

patterns were observed, including cellular and diffuse extra-cellular staining patterns (Fig 

3). 

Association of the mAb-reactive antigens with subcellular fractions of M. ulcerans was 

analyzed by Western blot analysis (Fig. 4). The 50kDa protein recognized by mAbs 

DD2.1/VC1.1/2, the 27-32 kDa laminin binding protein recognized by mAbs DD2.2/3 and 
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the 18kDa small heat shock protein (shsp) recognized by mAbs DD2.5/6/3.5/6 were 

primarily present in the cell wall fraction. Identification of the latter two proteins will be 

described elsewhere. Two other immunodominant antigens, the 71 kDa protein recognized 

by mAbs DD3.1/2/7 and the 34-37 kDa proteins recognized by mAbs DD3.3/4 were 

detected in more than one subcellular fraction. Staining of the 34-37 kDa protein was 

observed in extracts obtained with 1% SDS or 1% Sarcosyl, but not with other detergents 

or with 8M urea (data not shown). None of the immunodominant antigens were detectable 

in culture filtrate (data not shown).  

  

Inter-species cross- reactivity of anti- M. ulcerans mAbs and size variation in M. 

ulcerans isolates of diverse geographical origin 

Cross-reactivity of mAbs was analysed by Western blotting with lysates from 20 

mycobacterial species. Orthologues of the 71 kDa protein (Fig 5D), and the laminin-

binding protein (data not shown) were detectable in all 20 mycobacterium species tested. 

In contrast, mAb DD3.3/4 stained 34-37 kDa protein bands only in a subset (M. gordonae, 

M. kansasii, M. lentiflavum, M. ulcerans and M. marinum) of the additional mycobacterial 

species tested (Fig. 5C). MAbs DD2.1 and VC1.1/2 stained a 50 kDa protein in a broader 

spectrum of mycobacterial species (Fig. 5A and 5B, respectively). MAbs DD2.5/6/3.5/6 

stained an orthologue of the M. ulcerans 18kDa shsp only in M. chelonae (data not shown). 

Immunofluorescence analysis reconfirmed the cross-reactivity results, except for the 

18kDa protein reactive mAbs DD2.5/6/3.5/6 that recognized only M. ulcerans (data no 

shown). 

 

Western blot analysis with a spectrum of M. ulcerans isolates of geographically diverse 

origin revealed slight size variation in the stained 50kDa, 34-37kDa and 27-32kDa protein 

bands. The 50kDa protein (fig. 8D and 8E) was slightly larger in American than in African 

strains. In the case of the 34-37 kDa double bands, the bands were slightly smaller in 

isolates from China and Japan (Fig.8A-8C). No size variation was found in the 18kDa shsp 

and the 71kDa protein (data not shown). Variation in the number and size of the stained 

bands may reflect differences in length of the coding gene sequences and/or in 

posttranslational modification. 
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Discussion 

Analysis of immune responses to M. ulcerans may contribute to a more effective control of 

Buruli ulcer by identifying antigens suitable as targets for a specific diagnostic test or a 

vaccine. Studies of immunodominant antigens of M. tuberculosis and M. leprae have 

provided such candidate target structures including antigens belonging to the family of heat 

shock proteins11, secreted antigens [ESAT-619 Ag85B20, CFP-1021, MPT64 and MPB70], 

associated membrane proteins [heparin-binding hemagglutinin (hbha)22, 38kDa protein, 

30kDa and 16kDa13], and carbohydrates-glicolipids [arabinomannan23, 

lipoarabinomannan24]. While various techniques have been used for the identification of 

protective antigens and targets for diagnostic tests, most structures have been identified 

and characterized with mAbs11,25,26 or by characterization of T-cell responses in mouse 

models27.  

 

Since our knowledge of immune responses against M. ulcerans antigens is very limited, we 

have started to identify immunodominant antigens by generating a panel of mAbs from M. 

ulcerans immunized mice. The nature of the humoral immune response of mice to M. 

ulcerans antigens was strongly dependant on the immunisation procedure, facilitating the 

generation of mAbs against a broad range of antigens. We observed a broad inter-species 

cross-reactivity of most mAbs within the non-tuberculous and the tuberculous group. This 

antigenic overlap complicates the development of a M. ulcerans serodiagnostic test in 

endemic areas where BCG vaccination has been implemented and tuberculosis is also 

endemic. On the other hand, it may facilitate the development of a vaccine which can 

protect simultaneously against several mycobacterial diseases. In this context, it is of 

interest that BCG offers some protection against Buruli ulcer in general and in particular 

against the most severe forms of the disease28. The cell surface associated 

immunodominant antigens of M. ulcerans identified here (50kDa, 71kDa, 18kDa shsp, 

laminin binding protein) may have potential for subunit vaccine development.  In the case 

of tuberculosis, surface exposed and secreted antigens recognized by antibodies and IFN-γ 

secreting T-cells have been considered promising candidate antigens. The most extensively 

studied candidate antigens for a tuberculosis subunit vaccine include hsp6529, Ag8530,31, 

MPT5132, ESAT-633 and the hbha protein22. Subunit vaccine formulations incorporating 

recombinant proteins, synthetic peptides or DNA vaccines have conferred partial 



                            CHAPTER 4. M. ulcerans’ Immunodominant antigens                     80               

protection against tuberculosis in experimental animals. The most common approach is 

now to test more than one antigen in a single vaccine to ensure broad coverage of an 

immunogenetically heterogeneous population. In the case of the extracellularly multiplying 

pathogen M. ulcerans, antibodies may play a key role in immunoprotection and a 

combination of several surface exposed antigens may be suitable for vaccine development. 

Future passive immune protection experiments with the mAbs described in this study may 

help to identify antigens suitable for inclusion into a subunit vaccine. 
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MAb Isotype  ELISA* 
Western blot 

(kD)* 
IFA** 

VC1.3 IgG2b/ λ ++ - +++ 

VC1.1a IgG1/ λ ++ 50 + 

VC1.2 IgG1/ λ ++ 120, 50 + 

VC1.4 IgG2b/ λ ++ - +/- 

DD2.1a IgG2b/ λ +++ 50 ++ 

DD2.2 IgG2b/ λ +++ 27-32 + 

DD2.3 IgG2b/ λ ++ 27-32 + 

DD2.4a IgG3/ λ + - +/- 

DD2.5 IgG2b/ λ ++ 18 ++ 

DD2..6 IgG2b/ λ ++ 18 ++ 

DD2.7 IgM/ λ + 71 - 

DD3.1a IgG3/ λ +++ 71 - 

DD3.2a IgG3/ λ +++ 71 - 

DD3.3a IgG2b/ λ ++ 34, 37 ++ 

DD3.4a IgG2b/ λ ++ 34, 37 - 

DD3.5a IgG2b/ λ ++ 18 + 

DD3.6a IgG2b/ λ ++ 18 ++ 

DD3.7 IgG2b/ λ +++ 71 ++++ 

 

Table 1: Characterization of anti-M. ulcerans monoclonal antibodies. 

* Lysate of M. ulcerans 

**Immunofluorescence assay (heat inactivate M. ulcerans cells) 
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Figure 1: Reactivity of sera from mice immunized with M. ulcerans analyse by Western 

blotting with mycobacterial lysates (1: M. ulcerans, 2: M. tuberculosis, 3: M. marinum, 4: 

M. bovis) and by immunofluorescence staining of heat inactivated M. ulcerans cells. 

Representative results with individual sera are shown. Mice were immunized with A: heat 

inactivated M. ulcerans/incomplete Freund’s adjuvant (group I), B: M. ulcerans 

lysate/incomplete Freund’s adjuvant (group II), C: M. ulcerans lysate/MPL-KLP (group 

III). 
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Figure 2: Staining patterns obtained in Western blot analysis with M. ulcerans lysate using 

mAbs (1: VC1.1, 2: VC1.1a, 3: VC1.1c, 4: VC1.2, 5: DD2.1a, 6: DD2.2a, 7: DD2.3a, 8: 

DD3.3a, 9: DD3.4a, 10: DD2.5, 11: DD2.6, 12: DD3.5, 13: DD3.6, 14: DD3.2 15:  DD3.7, 

16: VC1.4, 17: DD2.4a, 18: VC1.3, 19: negative control). 
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Figure 3a: Immunofluorescence staining patterns obtained with heat-inactivated M. 

ulcerans cells and the mAbs indicated. DNA was stained with Hoechst dye no.33256 

reagent (blue). Second antibodies: anti-mouse IgG-FITC (Green), or anti-mouse IgG CY3 

(Red). 
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Figure 3b: Immunofluorescence staining patterns obtained with heat-inactivated M. 

ulcerans cells and the mAbs indicated. DNA was stained with Hoechst dye no.33256 

reagent (blue). Second antibodies: anti-mouse IgG-FITC (Green), or anti-mouse IgG CY3 

(Red). 
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Figure 4: Western blot analysis of mAbs with sub-cellular fractions (1: lysate, 2: cytosol 

fraction, 3: membrane fraction, 4: cell wall fraction. The mAbs analysed are: A: DD2.1, B: 

VC1.1, C: VC1.2, D: DD3.3, E: DD3.4, F: DD3.2, G: DD3.7, H: DD3.1, I: VC1.3. 
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Figure 5: Western blot analysis of inter-species cross-reactivities of mAbs (A: DD2.1, B: 

VC1.1, C: DD3.3, D: DD3.7) with mycobacterial lysates (1: M. abscessus, 2: M. avium ssp 

avium, 3: M. bohemicum, 4: M. chelonae,  5:  M. fortuitum, 6: M. gordonae, 7: M. 

haemophilum  8: M. intracellulare, 9: M. kansasii, 10: M. lentiflavum, 11: M. malmoense, 

12: M. scrofulaceum, 13: M. simiae, 14: M. smegmatis, 15: M. terrae, 16: M. xenopi, 17: 

M. ulcerans, 18: M. tuberculosis, 19: M. marinum, 20: M. bovis).  
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Figure 6: Western blot analysis of lysates of M. ulcerans strains of diverse geographical 

origin with mAbs DD3.3, DD3.4, DD3.2; DD2.1, VC1.1b. 1: Suriname (ITM 842), 2: 

Democratic Republic of Congo (5150), 3: Mexico (ITM 5114), 4: Australia (5142), 5: 

Mexico (5143), 6: Australia (ITM 5147), 7: Democratic Republic of Congo (5151), 8: 

Japan (ITM 8756), 9: Australia (ITM 9540), 10: Ivory Coast (940511), 11: Papua New 

Guinea (ITM 94-1331), 12: Benin (ITM 97–104), 13: Ghana (97-483),  14: China 

(980912), 15: Ghana (001441). 
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Abstract 

We have identified a novel conserved protein of Plasmodium falciparum, designated D13, 

that is stage-specifically expressed in asexual blood stages of the parasite. The predicted 

open reading frame (ORF) D13 contains 863 amino acids with a calculated molecular mass 

of 99.7 kDa and displays a repeat region composed of pentapeptide motives. Northern blot 

analysis with lysates of synchronized blood stage parasites showed that D13 is highly 

expressed at the mRNA level during schizogony. The first N'-terminal 138 amino acids of 

D13 were expressed in Escherichia coli and the purified protein was used to generate anti-

D13 monoclonal antibodies (MAbs). Using total lysates of blood stage parasites and 

Western blot analysis, these MAbs stained one single band of 100 kDa, corresponding to 

the predicted molecular mass of ORF D13. Western blot analysis demonstrated further that 

D13 is expressed during schizogony, declines rapidly in early ring stages and is 

undetectable in trophozoites. D13 protein is localized in individual merozoites in a distinct 

area, as demonstrated by indirect immunofluorescence analysis. After subcellular 

fractionation, D13 was confined to the pelleted fraction of the parasite lysate and its 

extraction by alkaline carbonate buffer treatment indicated that D13 is not a membrane-

integral protein. Inclusion of certain anti-D13 MAbs into in vitro cultures of blood stage 

parasites resulted in considerable reduction in parasite growth. The N'-terminal domain 

encompassing 158 amino acids is 94 and 95%, respectively, identical at the amino acid 

level between Plasmodium knowlesi, Plasmodium yoelii, and P. falciparum. In summary, 

we describe a novel stage-specifically expressed, highly conserved gene product of P. 

falciparum that is recognized by parasite growth inhibitory antibodies. 
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Introduction 

Malaria is a debilitating and frequently fatal disease of the tropics caused by parasites of 

the genus Plasmodium. Four different species cause human malaria, Plasmodium 

falciparum and Plasmodium
 
vivax accounting for the majority of the problem. The former 

causes widespread mortality, and the latter is most prevalent outside Africa. Annually 300 

million clinical malaria cases are reported, with over 1 million deaths in sub-Saharan 

Africa alone (23). Widespread and increasing drug and insecticide resistance has 

exacerbated the situation, undermining the effectiveness of malaria control methods that 

depend on chemotherapy and vector control, respectively (21). Novel means to fight the 

disease are urgently needed, and a vaccine is predicted to have the greatest impact in 

addition to being the most cost-effective control measure (11,20).  

Access to the sequence of the entire genome of P. falciparum
 has provided the opportunity 

to deduce the function of many of the predicted proteins through the identification of 

orthologue genes and motifs in other organism (11). However, as with annotation of the 

human genome, the annotation of the complete P. falciparum
 genome represents a major 

challenge. Almost two-thirds of the predicted genes of the published chromosomes 2 and 3 

had no detectable orthologues in other organisms, suggesting that many aspects of parasite 

biology has still to be discovered (9).  

P. falciparum has a complex life cycle involving transmission within and between 

vertebrate and invertebrate hosts by specialized cell-invasive stages, termed zoites. 

Sporozoites injected into a human host by the bite of an infective mosquito invade 

hepatocytes and, after schizogony, release thousands of merozoites capable of invading red 

blood cells (RBC). All of the clinical symptoms and pathogenic manifestations associated 

with mammalian malaria infections are caused by the asexual erythrocytic phase of the 

Plasmodium life cycle. After invasion of erythrocytes, merozoites develop into 

trophozoites, and multiply further within these cells, forming multinucleated blood stage 

schizonts. These infected RBC rupture, releasing newly formed merozoites into the 

circulation that can invade new erythrocytes. An intricate series of biological events and 

developmental processes must occur for this cyclical erythrocytic stage of the infection to 

continue in a vertebrate host. Thus, the elucidation of molecular mechanisms responsible 

for recognition and subsequent invasion of erythrocytes by the malaria parasite is of central 

importance towards the development of new intervention strategies.  
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In this study properties of a novel protein encoded by an open reading frame (ORF), 

designated D13, is described. The sequence of D13 is highly conserved in several P. 

falciparum isolates and orthologues of it are identified in the genome of Plasmodium
 

knowlesi and Plasmodium yoelii. The parasite growth inhibitory activity of anti-D13 

monoclonal antibodies (MAbs) is indicative for a functionally essential role of this protein 

in parasite biology. 
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Materials and Methods 

Identification of ORF D13 

A cDNA library was constructed from total RNA isolated from 
P. falciparum strain K1 

employing the SMART PCR cDNA Library Construction Kit (Clontech) as described (5). 

Briefly, 2 µg of total RNA was reverse transcribed using a modified oligo(dT) primer, and 

the SMART oligonucleotide was added to the reaction to serve as a short, extended 

template at the 5' end of the RNA for reverse transcription. To select for PCR products 

longer than 0.7 kb, PCR products were run on a 1% agarose gel, selectively excised, and 

purified. PCR products were ligated into pGem 5 T vector (Promega). DH125 cells (BRL-

Life Technologies) were transformed by electroporation with the P. falciparum cDNA 

library. Plasmid DNA of randomly picked clones was digested with enzymes 
NotI/NcoI, 

and the insert size was analyzed on 1% agarose gels. Clones carrying inserts of more than 1 

kb were chosen for further analysis. Linearized DNA was transcribed and translated in 

vitro as described (6) and positive cDNA clones were characterized further by sequencing 

employing an ABI 310 automatic sequencer (Perkin-Elmer).  

 

P. falciparum culture and Northern blot analysis 

P. falciparum strains K1 and FVO were cultured in RPMI 1640 medium (Life 

Technologies, Inc.) containing gentamicin (50 mg/liter) and 10% A+ human serum at a 

hematocrit of 5%, essentially as described previously (14). In some experiments, the 

cultures were synchronized by hemolysis of mature trophozoite stage-parasitized 

erythrocytes in a 5% (wt/vol) sorbitol solution with two sorbitol synchronization steps one 

cycle before harvesting. Synchronization was confirmed and the level of parasitemia 

estimated by standard microscopy. Aliquots of cells were taken every 6 h 

postsynchronization. Cells were washed and total RNA prepared using TRIzol reagent 

(Gibco-BRL) as described previously (25). Total RNA (25 µg) was separated on 0.8% 

agarose gel and transferred to Hybond-XL nylon membranes (Amersham Pharmacia 

Biotech) using a vacuum blotter (Appligene) as described elsewhere (25). Hybridization 

was performed in an UltraHyb device (Ambion) at 42°C with the [ -32P]dCTP-labeled D13 

probe (5'-terminal 422-bp PCR product) and the pfGAPDH probe (complete cDNA; 

AF03044) (5) generated by random priming using High Prime solution (Roche 

Biochemicals). High stringency washes were performed at 42°C. Membranes were 
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subjected to autoradiography using X-ray films. Loading of equal amounts of RNA on 

agarose gels was confirmed by comparison of the intensity of ethidium bromide stained 

bands of 18S and 28S RNA.  

Recombinant expression of N'-terminal fragment of D13 

The N'-terminal 139 amino acid residues were recombinant expressed in Escherichia coli 

using the pETBlue2 expression system (Novagen). Briefly, PCR product of D13 was 

generated from a cDNA library of P. falciparum strain K1 employing the following primer 

combination: 5'-CAACACCATGGTTTATGCCACACTTTTGAGTG-3' and 5'-

CGTTTGCTCGAGTGGCAACTTGTAAGTACCAGGG-3', containing NcoI and XhoI 

sites, respectively. The 422-bp amplicon was digested with the restriction enzymes and 

cloned into the pETBlue2 vector employing its NcoI and XhoI sites. Recombinant plasmids 

were sequenced to ensure that the D13 fragment was in the correct reading frame and to 

exclude PCR errors. Competent 
E. coli Tuner cells (pLys) (Novagen) were transformed 

with the recombinant plasmid and expression of the fusion protein was induced by the 

addition of 1 mM isopropyl thiogalactoside (IPTG) (Calbiochem) after the A600 reached 

0.6. The cells were induced at 37°C for 4 h and were harvested by centrifugation and lysed 

on ice for 30 min with 8 M urea, 0.1 M NaH2PO4, 0.01 M Tris/HCl (pH 8.0) and sonicated. 

After centrifugation at 10,000 x g, the supernatant was loaded onto an nitrilotriacetic acid 

column (Qiagen) and purified according to manufacturer's instructions. The hexahistidine-

tagged recombinant protein was recovered using elution buffer (8 M urea, 0.1 M NaH2PO4, 

0.01 M Tris-HCl [pH 4.5], 500 mM imidazole). Purified protein was analyzed by sodium 

dodecyl sulfate-15% polyacrylamide gel electrophoresis (SDS-15% PAGE), and the 

protein concentration was determined according to the method of Bradford using bovine 

serum albumin as the standard. The purified recombinant protein was identified as the 

expected D13 protein by matrix-assisted laser desorption ionization-time of flight mass 

spectrometry after tryptic digestion.  

 

Generation of hybridoma cell lines producing anti-D13 MAbs 

Hybridoma cell lines were generated from mice immunized essentially as described (18). A 

group of five mice was immunized subcutaneously three times with 50 µg recombinant 

D13 protein isolated under denaturing conditions and formulated in MPL+TDM adjuvant 

(Sigma Chemicals, St. Louis, Mo.). Three days before cell fusion, the mice received an 
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intravenous booster injection with 20 µg of recombinant D13 in phosphate-buffered saline 

(PBS). Cells were fused with PAI mouse myeloma cells as a fusion partner (19). Hybrids 

were selected in hypoxanthine-aminopterin-thymidine (HAT) medium, and cells secreting 

D13-specific immunoglobulin (IgG) were identified by enzyme-linked immunosorbent 

assay (ELISA) using Immunolon 4 plates (Dynex Technologies Inc., Chantilly, Va.) coated 

with D13 protein. Four hybridoma cell lines (named DD1.1, DD1.2, DD1.3, and DD1.4) 

specific for the D13 N'-terminal fragment could be established and characterized.  

 

Western blot analysis and fractionation of infected erythrocytes 

SDS-PAGE was performed essentially as described (5). Briefly, total cell lysates of 

asynchronous or synchronous cultures of 
P. falciparum (strain FVO) were run on 10% 

gels. For time course analyses, aliquots of synchronous cultures of malaria-infected 

erythrocytes were harvested at 6-h intervals and washed with PBS, pH 8.0. The cells were 

lysed in 10 ml of 0.15% saponin in H2O, and hemoglobin-depleted infected erythrocytes 

were collected by centrifugation. Aliquots of the samples were mixed with loading buffer 

and heated 5 min at 95°C before loading on the gels. As a molecular weight marker, 

SeeBluePlus (Invitrogen) was used. Separated proteins were transferred electrophoretically 

to nitrocellulose filter (Protean Nitrocellulose, BA 85; Schleicher & Schuell). Blots were 

blocked and then incubated with hybridoma supernatant for 1 h. After several washing 

steps, blots were incubated with goat anti-mouse IgG horseradish peroxidase conjugated Ig 

(Bio-Rad Laboratories, Hercules, Calif.) for 1 h. Blots were developed using the ECL 

system according to manufacturer's instructions.  

For subcellular fractionation experiments, late stage infected erythrocytes were enriched to 

95 to 99% using 60% Percoll gradient essentially as described previously (29). Cells were 

washed three times in Hanks buffered salt solution and lysed by three cycles of freeze-thaw 

in 10 volumes of double-distilled water containing protease inhibitors (100 µM 

phenylmethylsulfonyl fluoride, leupeptin [10 µg/ml], aprotinin [0.4 U/ml], 1 µM pepstatin, 

2 µM EDTA [pH 8.0]). A total membrane fraction was collected by ultracentrifugation at 

100,000 x g for 1 h at 4°C. For certain experiments, equivalent amounts of the sediments 

were treated with 100 mM Na2CO3, pH 11.3, or with distilled H2O containing protease 

inhibitors for 30 min on ice prior to further centrifugation for 1 h at 100,000 x 
g (6). 

Samples were solubilized in denaturing SDS sample buffer and equivalent amounts of each 
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sample were subjected to Western blot analysis. Western blot analysis was conducted with 

anti-D13 MAb DD1.1 and anti-merozoite surface protein 1 (anti-MSP-1) MAb 7/27. MAb 

7/27 recognizes the N'-terminal block 1 of MSP-1 (Helg et al., submitted for publication). 

The blots were developed using the ECL system.  

 

 

Immunofluorescence analysis of asexual blood stage parasites 

Immunofluorescence analysis of blood stage parasites was conducted essentially as 

described (5). Briefly, multitest immunofluorescence microscopy slides (Flow Labs, 

Switzerland) were pretreated with 0.01% (wt/vol) poly-L-lysine (Sigma) for 30 min at 

room temperature and washed. Erythrocytes from in vitro cultivated P. falciparum
 (strain 

FVO) were washed and mixed with 2 volumes of a solution containing 4% 

paraformaldehyde and 0.1% Triton X-100. Droplets of 30 µl of cell suspension were added 

to each well and incubated for 30 min at room temperature. Cells were blocked with 

blocking solution containing 100-mg/ml fatty acid-free bovine serum albumin in PBS. 

Cells were incubated with hybridoma supernatants for 1 h. After several washing steps, 

cells were incubated with secondary antibodies specific for mouse IgG conjugated with 

Cy3. The immunoreactivity was observed using a Leica TCS NT confocal microscope. 

Images were acquired with a 63x Plan-Apochromat oil immersion objective (NA 1.32). 

Pinhole settings were 1 airy unit for all images that were processed with Imaris (Bitplane, 

Switzerland) and Adobe Photoshop (Mountain View, Calif.).  

Sequence analysis of D13 derived from parasite strains. Genomic DNA was prepared 

from P. falciparum strains K1, IFA9, and MAD20 and used for PCR amplification of D13 

in order to gain insight into possible nucleotide sequence polymorphism. For sequence 

analysis, D13 was amplified in two overlapping fragments with the following primer 

combinations: forward (p17), 5'-

CAACAAAATGGTTTATGCCACACTTTTGAGTGAAG-3', and reverse (p19) 5'-

CAGGAATTCACATTTGAACAATTGGATTG-3'; forward (p29), 5'-

CCTACTCAAGAAATAGCATG-3', and reverse (p25), 5'-

GTATAGACATGTTTTGTTTCATATTATTATATAG-3'. Amplifications were performed 

with the following profile: 5 min 94°C; (25 x 20 s 94°C, 30 s 44°C, 2 min 68°C) 7 min 

72°C, soak at 4°C. Amplicons were purified using a PCR product purification kit (Roche 
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Molecular Biochemicals) according to manufacturer's protocol and cloned into the pGEM5 

T-vector (Promega, Catalys AG). After isolation of plasmids using the NucleoSpin kit 

(Macherey-Nagel AG), double-stranded plasmid DNA was sequenced and analyzed 

employing an ABI PRISM 310 genetic analyzer (Perkin-Elmer). All strains were amplified 

twice and several independent plasmids were sequenced on both strands using internal 

primers designed according to the D13 sequence available from the genome project.  

 

 

In vitro parasite growth inhibition assays 

In vitro growth inhibition assays with P. falciparum strain K1 were conducted essentially 

as described (16). Briefly, synchronous late trophozoites were diluted with fresh RBC to 

give a parasitemia of 0.5% and were mixed with purified MAbs at the indicated 

concentrations. Parasites were cultivated under an atmosphere of 4% CO2, 3% O2, and 93% 

N2 at 37°C. Final hematocrit in cultures was adjusted to 0.5%. Each culture was set up in 

sextuplicate in 96-well flat-bottom culture plates. After 96 h plates were centrifuged at 180 

x g for 5 min and culture supernatants were discarded. Pelleted erythrocytes were 

resuspended in 200 µl of PBS supplemented with hydroethidine fluorescent vital stain (15 

µg/ml; Polyscience Inc., Warrington, Pa.) and incubated at room temperature for 45 min. 

The erythrocytes were washed twice with PBS, resuspended in 400 µl of PBS, and 

analyzed in a FACScan flow cytometer (Becton-Dickinson, San Jose, Calif.) with 

CELLQuest program. The hydroethidine emission was detected in the FL2 channel by 

logarithmic amplification, and the erythrocytes were gated on the basis of their forward and 

sideward scatters. A total of 30,000 cells per sample were analyzed. Percent inhibition was 

calculated from the geometric mean parasitemias of sextuplicate test and control wells as 

100 x (control - test)/control. Statistical significance was calculated by a two-sided t test. 

Confidence intervals (P < 95%) were calculated by antilogging the confidence limits 

calculated on the log scale.  

 

Nucleotide sequence accession numbers 

The nucleotide sequences reported in this paper have been submitted to the GenBank with 

the accession numbers AF491296 to AF491298. 
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Results 

 

Identification and sequence analysis of ORF D13 of P. falciparum 

In order to identify novel secreted and transmembrane gene products of P. falciparum 

involved in host-parasite interactions, a P.
 
falciparum cDNA library was screened in an in 

vitro transcription-translation-translocation assay for genes encoding protein products that 

are translocated into microsomes and are therefore protected from proteinase K digestion 

(6). One of the plasmids, designated D13, gave rise to a 37-kDa protein product that 

resisted proteinase K digestion indicative for membrane association or translocation (data 

not shown). The 1.2-kb insert of this plasmid was sequenced and results compared with 

sequence data of the ongoing P. falciparum
 Genome Project available at PlasmoDB 

database [http://plasmodb.org]) (27). One predicted ORF (chr14_1.glm_722) that 

encompassed the partial sequence of plasmid D13 was identified. The complete predicted 

ORF D13 is 2,586 bp and codes for 862 amino acid residues, with a calculated molecular 

mass of 99.7 kDa and an pI of 5.30. The three gene prediction algorithms used by the 

genome project, Glimmer, Genefinder, and Path, predicted identically D13. Screening of 

the PlasmoDB database using the Blast program showed that D13 is present on 

chromosome 14 as a single-copy gene. The identification of the predicted initiation codon 

is supported by the nucleotide context of the ATG start codon, AAATGG, found in other 

genes of P. falciparum and the lack of alternative start codons anywhere in vicinity (4). 

D13 is intron-less and the putative protein is rich in asparagine (19.3%), lysine (9.5%), 

glutamic acid (7.7%), and aspartic acid (7.2%) (Fig. 1). D13 has no predicted N'-terminal 

signal sequence and other primary structural characteristics of an integral membrane 

protein are also lacking. Analysis of the predicted secondary structure of D13 with the 

Predictprotein program package (http://bioc.cubic.colombia.edu/predictprotein) identified 

several low-complexity, nonglobular regions separating two globular domains located each 

at the N'- and C'-terminal ends. Searching databases of sequenced genomes of eukaryotes 

and prokaryotes demonstrated no significant homology to functional domains of other 

characterized gene products and hence no functional classification can currently be 

assigned (17). 

D13 nucleotide sequences of P. falciparum strains K1, MAD20, and IFA9 (13) were 

compared with the 3D7 sequence available from the genome project. D13 was amplified by 
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PCR from genomic DNA of in vitro-grown blood stage parasites, cloned into pGem5T 

vector and sequenced as described previously (13). All sequences obtained were identical 

to the P. falciparum 3D7 sequence apart from one nonsynonymous base exchange at 

nucleotide position 1444 in P. falciparum K1. This exchange resulted in a conservative 

amino acid exchange of D to E and was reconfirmed by a second analysis using an 

independent PCR product. The nucleotide sequences were deposited in the GenBank with 

the accession numbers AF491296 to AF491298.  

Sequence comparison of D13 of P. falciparum using Blast program and the PlasmoDB 

database [http://plasmoDB.org]) revealed that full-length putative orthologues of D13 are 

present in the genome of P. knowlesi (chrPkn_008795-6-7284-4963) and P. yoelii 

(chrPyl_cpy805-2-1337-3844) (Fig. 1). When the D13 amino acid sequence of P. 

falciparum
 was compared using the Blast program to putative orthologues in P. knowlesi 

and P. yoelii, sequence identities were 38 and 41%, respectively. Alignment of the deduced 

amino acid sequences revealed that a repeat region with twelve consecutive repeats of the 

pentapeptide motif (K/R)(N/S)(D/E)N(I/M/T) is unique for D13 of P. falciparum and is 

absent in the orthologues sequences of the other Plasmodium spp. aligned. This repeat 

region constituted 8% of the molecule. In contrast to the low overall conservation of the 

D13 sequence, the N'-terminal domain encompassing the first 158 amino acid residues is 

highly conserved between the three Plasmodium spp. aligned displaying sequence 

identities of 94 and 95%, respectively, between P. knowlesi, P. yoelii, and P. falciparum 

(Fig. 1). Ten strictly conserved cysteine residues with the spacing H2N-19-C-7-C-6-C-11-

C-16-C-14-C-5-C-20-C-7-C-4 are present. Shorter stretches of conserved sequence motifs 

at the C'-terminal end of the D13 amino acid sequence were also found (Fig. 1).  

 

Stage-specific expression of ORF D13 mRNA in synchronized blood stage parasites 

In order to define the transcription pattern of D13, Northern blot analysis was performed 

using total RNA isolated from asexual blood stage parasites. After hybridization with a 

radiolabeled PCR product representing the 5'-terminal 422 bp of D13, one specific signal 

was detected in RNA from unsynchronized blood stage parasites (data not shown). The 

size of the transcript was about 7.5 kb by comparison with the RNA size marker, indicating 

the presence of extensive 5'- and 3'-untranslated regions. In parasites from synchronized 

cultures, this transcript was only detected in RNA of schizonts collected 48 h after 
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synchronization (Fig. 2A, panel I, lane 8). In order to verify the integrity of the RNA 

preparations isolated at different times after synchronization, the blot was rehybridized 

with a radiolabeled cDNA of pfGAPDH (5). The pfGAPDH-specific hybridization signal 

of 3.6 kb was observed in each lane confirming that the RNA was intact and comparable 

amounts of RNA were present for hybridization (Fig. 2A, panel I and II). 

 

Establishment of D13-specific MAbs and analysis of the expression of D13 protein in 

blood stage parasites 

After having established that D13 transcription is largely confined to the schizont stage, we 

wanted to analyze next whether, when and at what size D13 protein is expressed. The N'-

terminal 139 amino acids of D13 were expressed in E. coli as hexahistidine tagged fusion 

protein using the pETBlue2 expression system. Purification by nitrilotriacetic acid-affinity 

chromatography under denaturing conditions yielded a recombinant protein of the predicted 

molecular mass of 17 kDa in SDS-PAGE (data not shown). The purified recombinant 

protein was identified as the expected D13 protein by matrix-assisted laser desorption 

ionization-time of flight mass spectrometry. D13-specific MAbs were generated from mice 

carrying human heavy and light immunoglobulin chain replacement mutations (18). After 

repeated immunization with the recombinant fragment of D13 delivered with MPL+TDM 

as adjuvant, four anti-D13 MAbs were generated that reacted with the recombinant 17 kDa 

fragment in ELISA (Table 1). DD1.1 and DD1.2, but not DD1.3 and DD1.4, recognized in 

Western blot analysis of total lysates of unsynchronized blood stage parasites one distinct 

band of 100 kDa (Fig. 2B and data not shown). The size of the identified band 

corresponded to the predicted molecular weight of 99,7 kDa of ORF D13 

(chr14_1.glm_722). As a representative example, results obtained with MAb DD1.1 are 

shown in Fig. 2B, lane 9. 

In the light of the highly regulated transcription of the D13 gene, we investigated the 

presence of D13 protein during asexual blood stage development. Aliquots of the lysates 

from the identical synchronized cultures that had been used for Northern blot analysis were 

separated by SDS-PAGE and probed with MAb DD1.1. D13 protein was detectable in ring 

stage parasites (Fig. 2B, lanes 1 to 4), disappeared during the trophozoite stage (Fig. 2B, 

lanes 5 and 6), and reappeared in the schizont stage (Fig. 2B, lanes 7 and 8). In the late 

schizont stage at 48 h postsynchronization, the relative abundance was highest (Fig. 2B, 
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lane 8). Uninfected RBC yielded no detectable signal, confirming the specificity of MAbs 

DD1.1 for a parasite-encoded protein (Fig. 2B, lane 10). Results obtained with MAb 

DD1.2 were comparable to DD1.1, although considerably weaker signals were obtained 

(data not shown). Protein staining of SDS-PAGE demonstrated that comparable amounts of 

total cell lysates from synchronized blood stage parasites were present on nitrocellulose 

membranes (data not shown).  

 

Immunolocalization of D13 in asexual blood stages of P. falciparum 

All anti-D13 MAbs were tested for parasite binding using indirect immunofluorescence 

assay (IFA). DD1.1 bound strongest to the parasite in IFA, while DD1.2 and DD1.4 

yielded only weak signals at high antibody concentrations indicating that their affinity for 

the native D13 protein was considerably lower compared to DD1.1 (Table 1). Therefore, 

MAb DD1.1 was used for the characterization of the subcellular localization of D13 

protein by IFA and confocal microscopy. In column 1 of Fig. 3, typical results of the 

indirect IFA are depicted, while in column 2, phase contrast pictures of the corresponding 

parasites are shown. Specific staining of schizonts (first row), segmenters (second row) and 

released merozoites (third row) are presented. Interestingly, in the merozoite stage, D13 

protein seemed to be concentrated in a distinct area of the cell, while during schizont stages 

the protein was more evenly distributed in the parasite. 

 

Subcellular fractionation of P. falciparum infected erythrocytes 

In order to investigate whether D13 protein is associated with parasite membranes, cell 

fractionation experiments were performed and the distribution of D13 protein into sediment 

and supernatant fractions examined using the anti-D13 MAb DD1.1 for Western blot 

analysis. Infected erythrocytes were Percoll-purified to maximize parasite protein content, 

washed thoroughly and hypotonically lysed in water. A membrane-containing fraction was 

pelleted by ultracentrifugation and analyzed. In the sediment fraction derived from infected 

erythrocytes, a specific band corresponding to the D13 protein could be detected (Fig. 4A, 

lane 1). This band was considerably weaker in the supernatant fraction of infected 

erythrocytes (Fig. 4A, lane 2). To analyze the nature of the association of D13 with the 

pellet fraction, total membrane fractions were stripped of peripherally attached proteins by 

treatment at high pH with sodium carbonate. After centrifugation, D13 protein could be 
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detected in both the pellet and supernatant fractions, indicating that D13 is not a 

membrane-integral protein (Fig. 4A, lanes 3 and 4). In pellets incubated with water, D13 

protein remained in the sediment and was not detected in the supernatant fraction (Fig. 4A, 

lanes 5 and 6). Aliquots of the same samples were blotted onto nitrocellulose and probed 

with MAb specific for the abundant membrane-integral protein MSP-1. MSP-1 is 

synthesized as a large ( 195 kDa) precursor that is held by a glycosyl phosphatidyl inositol 

anchor on the parasite membrane. It undergoes posttranslational proteolytic processing to 

produce fragments of 83, 42, 38, and 28 to 30-kDa, which persist as a noncovalently linked 

complex on the surface of mature merozoites (12). The anti-MSP-1 antibody 7/27 is 

specific for block 1 of MSP-1 present on both the precursor molecule and the processed 83 

kDa fragment. As expected, MAb 7/27 detected a major band of 195 kDa in the sediment 

of untreated, alkaline carbonate and water treated pellets but not in the supernatants (Fig. 

4B). The smaller band of 83 kDa represent processing products of MSP-1 (Fig. 4B). 

These results indicated that D13 is pelleted with the membrane-fraction but it is not a 

membrane-integral protein.  

 

P. falciparum in vitro growth inhibition assays with anti-D13 MAbs 

After having established that MAb DD1.1, DD1.2, and DD1.4 but not DD1.3 bind to native 

D13 protein expressed in the invasive stage of the parasite blood stage cycle, we conducted 

in vitro growth inhibition assays for two cycles of merozoite invasion. At 500 µg/ml the 

anti-D13 MAb DD1.1 showed growth inhibitory effects in three independent experiments 

(47.6% average growth inhibition) conducted with two different batches of antibody 

preparations (Fig. 5). This inhibition was statistically significant as judged by a two-sided t 

test. At an antibody concentration of 250 µg/ml, the measured inhibition remained 

statistically significant, while at 100 µg/ml the effect was diminished by dilution. In 

contrast to the good binding MAb DD1.1, the IFA-negative anti-D13 MAb DD1.3 did not 

interfere with the growth of the parasite in vitro (Fig. 5).  
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Discussion 

Research conducted in recent years identified the importance of both antibody-dependent 

and cell-mediated mechanisms of immunity to the erythrocytic stage of P. falciparum (15). 

A protective role for antimalaria antibodies was shown by the pioneering studies of Cohen 

et al. (3), who showed that protective immunity could be transferred by using the IgG 

fraction of sera from immune West African adults. Administration of large doses of 

antimalaria antibodies to children with acute infection resulted in reduction of parasitemia 

and recovery from clinical illness (3). It was thought that these antibodies interacted with 

either late-stage schizonts or free merozoites (2). Further studies showed that antimalarial 

IgG from immune sera of West Africans protected against P. falciparum infection in East 

Africa (2). Additionally, transfer of purified, pooled hyperimmune IgG from African adults 

to Thai patients was found to reduce parasite level. These transfer experiments suggest that 

geographically diverse parasite strains may share antigens important in inducing protection 

(22). Hence, there is considerable interest in the molecular identification of parasite 

proteins as potential targets of vaccine-induced antibodies preventing invasion of 

erythrocytes.  

We are currently characterizing secretory and transmembrane gene products of P. 

falciparum stage-specifically expressed during schizogony. Expression screening of a P. 

falciparum cDNA library for in vitro-translated and -translocated products yielded the 

cDNA clone D13 encompassing the N'-terminal 1.2-kb fragment of a novel predicted ORF 

(chr14_1.glm_722). The expression of D13 mRNA turned out to be highly regulated and 

detectable by Northern blot analysis only in schizont development. Therefore, we decided 

to characterize D13 in more detail. D13 is a single-copy gene localized on chromosome 14 

according to the ongoing P. falciparum genome project and is predicted to code for a 99.7-

kDa protein. D13 contains a region of low-complexity constituted by 12 tandem repeats of 

a pentapeptide sequence motif that is followed by shorter homopolymer runs of asparagine 

residues. Many of the malaria antigens that have been characterized in P. falciparum 

contain tandem arrays of relatively short sequences. A number of characteristics allow 

distinctions to be drawn among such malaria antigens. One group is characterized by one 

centrally located block of tandem repeats that constitutes a significant proportion of the 

polypeptide chain. This group includes the S antigens, MSP-2 and the circumsporozoite 

protein (1). Other antigens contain a single set of repeats comprising a minor segment of 
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the polypeptide chain. This group includes the thrombospondin-related adhesive protein, 

the exported protein 1, and also D13, since the repeat region constitutes about 8% of the 

whole molecule (1). Other characteristics that distinguish between different repeat-

containing antigens are diversity of repeat sequences and variation in the number of 

tandemly repeated sequences. Sequence diversity can be observed both within blocks of 

repeats and between equivalent repeat segments in allelic gene products (1). In D13, there 

is variation between the 12 sequence repeats that are based mainly on single base pair 

exchanges (data not shown). Surprisingly, sequence polymorphism of the low-complexity 

region of D13 of P. falciparum in the laboratory isolates 3D7, K1, and MAD20 and the 

field isolate IFA9 was not detected although polymorphism of antigens of P. falciparum is 

usually particularly extensive in repeat regions of the molecules (1).  

In order to study whether and when D13 protein is expressed during asexual blood stages, 

the N'-terminal 138 amino acids were expressed in E. coli as hexahistidine-tagged protein, 

purified, and used to raise specific MAbs in mice. Immunogenicity of the recombinant 

protein was low but we were able to establish several anti-D13 MAbs. The anti-D13 MAbs 

DD1.1 and DD1.2 recognized a band of 100 kDa in lysates of blood stage parasites in 

Western blot analysis. This size of the band corresponded to the predicted molecular weight 

of D13. In IFA, the cross-reactivity of MAb DD1.1, DD1.2, and DD1.4 with the native 

parasite protein was established. Western blotting and IFA both showed that the abundance 

of D13 protein was highest in schizonts. It declined during ring stage while D13 was 

undetectable in trophozoites. D13 protein was detectable for about 30 h during the asexual 

blood stage cycle, while D13 specific mRNA was present only during the last 6 h of 

schizont development. Hence, the D13 protein was detectable four to five times longer than 

the D13-specific mRNA during one asexual developmental cycle.  

The strict regulation of D13 mRNA expression together with the highest expression of D13 

protein in schizonts suggested an involvement of the protein in the complex biological 

processes of merozoite development, rupture of mature schizonts, release of merozoites and 

invasion of fresh erythrocytes. Therefore, we used an in vitro parasite growth inhibition 

assay to test whether anti-D13 MAb influence the progression of the infective cycle. The 

results showed that incorporation of the strongest parasite binding anti-D13 MAb DD1.1 

inhibited parasite growth by an average of 47.6% in several independent experiments. The 

non-parasite-binding anti-D13 MAb DD1.3 had no effect on parasite growth. These results 
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indicate that the affinity and/or the epitope recognized by the anti-D13 MAbs might be 

important for the inhibitory function. Currently, it is not possible to assign exactly the 

subcellular localization of D13 by IFA using confocal microscopy. D13 is not obviously 

expressed on the surface of merozoites like the MSPs but might be rather concentrated on 

one distinct pole of the merozoite. The combined results of the in vitro parasite growth 

inhibition assays with the cell fractionation experiments indicate that D13 is during blood 

stage development accessible to antibodies in solution and becomes enriched in the 

pelleted fraction of malaria parasites. However, more detailed analyses, including immuno-

electron microscopy, are essential to determine the exact subcellular localization of D13 

protein.  

Currently, the correlation of in vitro growth inhibitory activities of antibodies with their 

potential protective capacity in vivo is incompletely understood. Active immunization 

studies in animal models are therefore essential to demonstrate unequivocally that the N'-

terminal domain of D13 might be a target of protective antibody responses in vivo.  

The fact that D13 is conserved in four parasite isolates may suggest that it is not under 

immune pressure, although sera from donors naturally exposed to malaria contain 

antibodies reacting with the recombinant N'-terminal domain of D13 in ELISA 

(unpublished observation). The high level of sequence conservation is in marked contrast 

to MSPs like MSP-1 and MSP-2 (7, 8, 10). In contrast, the rhoptry-associated protein 2 

displays very limited sequence diversity (24). It has been demonstrated that antibodies 

raised against rhoptry-associated protein 2-derived peptides reduce parasite growth in vitro, 

indicating that conserved proteins can be targeted by parasite inhibitory antibodies (26).  

Besides offering the possibility to improve the annotations of the P. falciparum genome 

through comparative analysis, animal models represent a potent source of information 

concerning protein function within the context of the infected host or vector (30). 

Alignment of the deduced amino acid sequences of putative D13 orthologues in P. 

falciparum, P. knowlesi, and P. yoelii showed that the N'-terminal domain is highly 

conserved, while the rest of the molecule displayed extensive sequence variation. The high 

degree of amino acid sequence conservation between rodent, monkey and human malaria 

species suggests a conserved biological role of the N'-terminal domain in malaria. The 

prominence of synonymous versus nonsynonymous base exchanges in this domain (data 

not shown) suggests that apart from differences in the codon usage in different Plasmodium 
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species (28) a negative selection pressure might be operating to preserve a distinct three-

dimensional structure. The conserved N'-terminal domain of D13 might bind to and 

interact tightly with other proteins to conduct its biological function(s). Functional 

investigations of the biological role(s) of D13 will probably further our understanding of 

molecular mechanism(s) mediating evasion, recognition, invasion and subsequent 

establishment of the parasites in host cells. 
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TABLE 1. Reactivities of anti-D13 MAbs used in this study 

Designation of 
anti-D13 MAb Isotype 

Reactivity in ELISA to 
D13 N'-terminal fragment 
(µg/ml)a 

Concn µg/ml) of anti-D13 
MAbs yielding a positive 
result in indirect IFAb 

 

DD1.1 IgG1/  0.08 0.15 

DD1.2 IgG1/  0.06 5 

DD1.3 IgG2b/  0.1 —c 

DD1.4 IgG2b/  0.04 5 
 
 

a Purified anti-D13 MAbs were serially diluted and tested for reactivity in ELISA with 

plates coated with recombinant D13 N'-terminal fragment at a concentration of 5 µg/ml. 

Given are the concentrations yielding half-maximal binding as measured by optical density 

at 405 nm. 

b Purified anti-D13 MAbs were serially diluted and used for indirect IFA of 

unsynchronized parasites fixed onto slides. Antibody binding was assessed by fluorescence 

microscopy on a Leitz Dialux 20 fluorescence microscope and documented with a Leica 

DC200 digital camera system. The lowest concentration of anti-D13 MAbs yielding a 

positive signal in indirect IFA is given. 

c MAb DD1.3 showed no binding in IFA. 
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Figure 1. Alignment of deduced amino acid sequences of D13 orthologues of P. 

falciparum, P. knowlesi, and P. yoelii. The alignment was done with ClustalW and 

prepared for display using BOXSHADE (http://bioweb.pasteur.fr). Gaps were inserted to 

give the best fit. (Sequences for Plasmodium spp. are available from the PlasmoDB 

database [http://www.plasmoDB.org].) 
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Figure 2. (A) Northern blot analysis of synchronized asexual blood stage of P. falciparum. 

Panel I shows total RNA (25 µg) from in vitro-grown synchronized P. falciparum blood 

stage parasites that was separated on agarose gels, blotted onto nylon membrane, and 

hybridized to an [ -32P]-dCTP-labeled probe corresponding to the 5'terminal 422-bp 

fragment of D13. Time points analyzed were 0 to 6 h, 6 to 12 h, 12 to 18 h, 18 to 24 h, 24 

to 30 h, 30 to 36 h, 36 to 42 h and 42 to 48 h (lanes 1 to 8) after synchronization. Panel II 

shows the blot rehybridized with an [ -32P]-dCTP-labeled probe of cDNA of pfGAPDH 

(5). (B) Western blot analysis of total lysates of blood stage parasites. Total lysates of 

infected RBC were separated by SDS-10% PAGE under reducing conditions and blotted 

onto a nitrocellulose membrane. Samples were taken at 6, 12, 18, 24, 30, 36, 42, and 48 h 

(lanes 1 to 8) after synchronization. Lysates of unsynchronized infected RBC (lane 9) and 

uninfected RBC (lane 10) were also loaded. The blot was incubated with anti-D13 MAb 

DD1.1 and developed using the ECL system. MAb DD1.1 recognized a single protein band 

of about 100 kDa in most lanes containing lysates of infected, but not in uninfected RBC. 
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Figure 3. Immunofluorescence analysis of schizonts, segmenter, and released merozoites 

of P. falciparum using anti-D13 MAb DD1.1 and confocal microscopy. In column I, 

staining with MAb DD1.1 is shown, while in column II the phase contrast of the 

corresponding parasites is presented. 
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Figure 4. Association of D13 with the sediment fraction of infected erythrocytes. Schizonts 

were enriched by Percoll-gradient centrifugation and hypotonically lysed by repeated 

cycles of freeze-thaw in water. The sediment (lane 1) and supernatant (lane 2) fractions 

were obtained by centrifugation. Aliquots of membrane fractions were further processed by 

incubation with alkaline carbonate (lanes 3 and 4) or water (lanes 5 and 6), respectively, 

and separated by ultracentrifugation in sediment lanes (lanes 3 and 5) and supernatant 

lanes (lanes 4 and 6) fractions, respectively. The samples were electrophoresed and probed 

with anti-D13 MAb DD1.1 (Fig. 4A) or anti-MSP-1 MAb 7/27 (Fig. 4B). 
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Figure 5. Parasite growth inhibitory activity of anti-D13 MAbs. The vertical bars indicate 

the 95% confidence intervals. The filled symbols represent results of three separate 

experiments conducted with MAb DD1.1, while results with the parasite nonbinding MAb 

DD1.3 are represented by the open symbol ( ). 
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Summary 

Spatial and temporal distribution of the glycolytic enzymes glyceraldehydes-3- phosphate 

dehydrogenase (pfGAPDH) and aldolase (pfAldolase) of Plasmodium falciparum were 

investigated using specific mAbs and indirect immunofluorescence analysis (IFA). Both 

glycolytic enzymes co-localized during ring and trophozoite stages of both liver and 

asexual blood stage parasites.  During schizogony, pfGAPDH became associated with the 

periphery of the parasites and eventually accumulated in the apical region of merozoites 

while pfAldolase showed no segregation. Sub-cellular fractionation experiments 

demonstrated that pfGAPDH was found in both the membrane-containing pellet and the 

supernatant fraction of parasite lysates. In contrast, pfAldolase was only found in the 

supernatant fraction. A quantitative binding assay showed that pfGAPDH could be 

recruited to HeLa cell microsomal membranes in response to mammalian GTPase Rab2 

indicating that Rab2-dependent recruitment of cytosolic components to membranes is 

conserved in evolution.  Two overlapping fragments of pfGAPDH (residues 1 - 192 and 

133 - 337) were evaluated in the microsomal binding assay. We found that the N'-terminal 

fragment competitively inhibited Rab2-stimulated pfGAPDH recruitment. Thus, the 

domain mediating the evolutionary conserved Rab2-dependent membrane-recruitment is 

located in the N’-terminus of GAPDH. These combined results suggest that pfGAPDH 

exerts non-glycolytic function(s) in P. falciparum, possibly including a role in vesicular 

transport and biogenesis of apical organelles. 

 

Key words: Plasmodium falciparum / glyceraldehyde-3-phosphate dehydrogenase / 

membrane association / non-glycolytic function / GTPase Rab2 /evolution    
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Introduction 

  

Malaria caused by the apicomplexan parasite Plasmodium falciparum is one of the most 

important parasitic diseases in man (World Health Organization, 2001) (Sachs and 

Malaney, 2002) Sporozoites injected into a human host by the bite of an infective mosquito 

invade hepatocytes and, after schizogony, release thousands of merozoites capable of 

invading red blood cells (RBC). Malaria pathogenesis is associated with this intracellular 

blood-stage of the parasite's life cycle involving repeated rounds of invasion, growth and 

schizogony in the erythrocyte. Trophozoite, schizont and merozoite stages develop during 

the liver stage that lasts ~ 5 - 7 days in man, while ring, trophozoite, schizont and 

merozoite stages are distinguished during asexual blood stage development that takes ~ 48 

h.  

 P. falciparum targets a distinct set of proteins to each of the apical secretory 

organelles (Preiser et al., 2000). These proteins enable merozoites to selectively adhere and 

invade host cells and, once within, to cause modifications of the host cell (Preiser et al., 

2000; Preiser et al., 2002). Rhoptries appear to be formed by fusion of vesicles derived 

from the Golgi cisternae (Bannister et al., 2000). The rhoptry associated protein 1 (RAP-1) 

has been localized exclusively to rhoptries (Clark et al., 1987) and can be used as a marker 

for the localization of the apical complex (Howard et al., 1998; Moreno et al., 2001). 

Recent results suggest that the parasite uses a "just in time" developmental strategy where 

compartments of the secretory pathway are strategically positioned when and where they 

are needed during organelle biogenesis (Kocken et al., 1998; Noe et al., 2000). However, 

there are still major unanswered questions related to the components involved in the 

secretory pathway of P. falciparum (Ward et al., 1997; Albano et al., 1999; Wiser et al., 

1999). 

 In mammalian cells and in yeast, a multitude of proteins have been shown to play a 

role in sub-cellular trafficking including the Rab protein family. The Rab proteins are 

GTPases that regulate vesicular traffic between specific compartments of the endocytic and 

exocytic pathways (Nuoffer and Balch, 1994). When these proteins are membrane 

associated, they promote recruitment of cytosolic components that function in vesicle 

formation, docking and fusion. For example, the activated form of Rab2 initiates in 

mammalian cells a cascade of events leading to the recruitment of soluble factors to pre-
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Golgi intermediates that ultimately leads to the release of retrograde-directed vesicles 

(Tisdale et al., 1992; Tisdale and Balch, 1996; Tisdale, 1999). Interestingly, one of the 

soluble factors recruited has been identified as glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH, EC 1.2.1.12) (Tisdale, 2001). GAPDH is commonly known as a key enzyme in 

glycolysis and catalyses the reversible oxidative phosphorylation of glyceraldehyde-3-

phosphate to 1,3 diphosphoglycerate in the presence of NAD+ and inorganic phosphate. 

There is substantial evidence suggesting that GAPDH might be involved in additional 

cellular activities unrelated to its role in glycolysis (Sirover, 1999). Multiple studies from 

different groups employing independent methods have demonstrated the participation of 

one or more GAPDH isoforms in membrane fusion and trafficking in biological systems 

(Lopez Vinals et al., 1987; Robbins et al., 1995; Volker and Knull, 1997; Han et al., 1998; 

Hessler et al., 1998; de Arcuri et al., 1999; Tisdale, 2001; Bressi et al., 2001; Glaser et al., 

2002). Guided by the crystal structures of Trypanosomatidae GAPDH’s in comparison 

with human GAPDH, an structure-based approach of designing competitive and selective 

inhibitors of Glycolysis was successfully followed (Verlinde et al., 2001).  

 In the current study we have established monoclonal antibodies (mAbs) specific for 

pfGAPDH and pfAldolase. Co-localization studies by indirect immunofluorescence 

analysis (IFA) and con-focal microscopy and sub-cellular fractionation experiments in 

combination with a quantitative microsomal recruitment assay provide evidence that 

pfGAPDH exerts non-glycolytic functions. 
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Results 

 

Generation and Characterization of Monoclonal Antibodies Specific for GAPDH and 

Aldolase of P. falciparum 

  

After having produced enzymatically active recombinant pfGAPDH (Daubenberger et al., 

2000), we wanted to investigate whether this enzyme is involved in additional non-

glycolytic functions. Therefore, mAbs specific for pfAldolase and pfGAPDH were 

established from mice immunized with the respective recombinant proteins (Döbeli et al., 

1990; Daubenberger et al., 2000). These mAbs were tested in Western blot analysis for 

their antigen specificity (Figure 1) using infected red blood cells (RBC) (lanes 1), 

uninfected RBC (lanes 2), recombinant pfAldolase, (lanes 3) and pfGAPDH (lanes 4). 

SDS-PAGE followed by Coomassie blue staining demonstrated the purity of the 

preparations of recombinant proteins (Figure 1 A). 

Out of a panel of anti-pfAldolase mAbs, two, designated P.41-2/3-7 and P.41-1/2-7, 

recognized in total lysates of infected but not uninfected RBC a band of 41 kDa, 

representing the predicted molecular weight of pfAldolase (Figure 1 B, lanes 1, 2). 

Additionally, the recombinant pfAldolase but not pfGAPDH was identified by P41-2/3-7 

(Figure 1 B, lanes 3, 4). Results obtained with the second anti-pfAldolase mAb P.41-1/2-7 

reactive in Western blot analysis were comparable (data not shown). The other anti-

pfAldolase mAbs were not reactive in Western blot analysis but precipitated from 

metabolically labeled blood stage parasites one major band of 41 kDa. All anti-pfAldolase 

mAbs stained infected RBC in IFA (data not shown). 

 

Two anti-pfGAPDH mAbs, designated 1.4 and 1.10, were isolated from mice immunized 

with recombinant pfGAPDH (Daubenberger et al., 2000). Western blot analysis showed 

that both mAbs recognized the recombinant pfGAPDH but not pfAldolase (Figure 1, C, D, 

lanes 3, 4). Also, in total lysates of infected RBC (Figure 1, C, D, lane 1) but not in 

uninfected RBC (Figure 1, C, D, lane 2) a protein of 36 kDa, the predicted molecular 

weight of pfGAPDH, was detected. Taken together, data presented in Figure 1 showed that 

we obtained mAbs specific for the glycolytic enzymes Aldolase and GAPDH of P. 

falciparum that are not cross-reactive with human erythrocyte proteins. In order to 
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delineate closer the epitope recognized by the anti-pfGAPDH mAbs, we produced two 

fragments of recombinant proteins in E. coli encompassing the first 192 N'-terminal or the 

C'-terminal 204 amino acids of pfGAPDH, respectively. Both fragments overlapped by a 

stretch of 59 amino acids. Separation by SDS-PAGE and staining with Coomassie blue 

showed that the affinity purified recombinant pfGAPDH-fragments were of the predicted 

molecular sizes of 24,2 kDa and 23,0 kDa, (Figure 2, lanes 2, 3). Immuno-detection with 

mAb 1.4 and mAb 1.10 (data not shown) demonstrated that both recognized the complete 

pfGAPDH (lane 1) and the N'-terminal fragment thereof (lane 3), whereas the C'-terminal 

fragment (lane 2) was not detected. Hence, the anti-pfGAPDH mAbs 1.4 and 1.10 

recognized an epitope located within the first 192 amino acid residues of pfGAPDH.  

 

Sub-Cellular Distribution of pfGAPDH and pfAldolase During Asexual Blood-Stage 

Parasite Development  

 

In order to assess whether the two glycolytic enzymes co-localize during P. falciparum 

asexual parasite development, indirect IFA and con-focal microscopy was performed. In 

columns I and II of Figure 3 A, results obtained with the anti-pfGAPDH and anti-

pfAldolase mAbs are shown in green and red, respectively. In column III, the super-

positioning of both images given in columns 1 and 2 and in column 4 the phase contrast of 

the parasites is depicted. Cultured parasites were synchronized and at 10 h (row 1), 20 h 

(row 2), 30 h (row 3) and 40 h (row 4) post synchronization aliquots of cells were removed 

and analyzed. The pictures obtained at time points 10 h and 20 h demonstrated that 

pfAldolase and pfGAPDH were co-localized in the early stages of parasite development 

since both, the green and the red signals were super-imposed resulting in orange signals. 

Cells harvested 40 h post synchronization displayed a different distribution pattern. The 

green signal of the anti-pfGAPDH staining was largely confined to the periphery of the 

schizont while the red signal of the anti-pfAldolase staining remained distributed equally 

throughout the schizont. In column III of row 4, the overlay of the images showed a 

distinct central region stained in red and a peripheral region stained in orange. Therefore, 

pfGAPDH seemed to be enriched in the periphery of the developing schizont relative to 

pfAldolase. At the time point of 30 h this segregation process has started already as 

indicated by the red signal in the center of the parasites (column III, row 3).  
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Since the spatial separation of pfGAPDH and pfAldolase could be observed in the late 

schizont stage, we wanted to see whether pfGAPDH was enriched in the sub-cellular 

region containing the apical complex of P. falciparum. Single merozoites after schizont 

rupture were analyzed similarly as described above. In row 1 of Figure 2 B, results of IFA 

and con-focal microscopy using anti-pfGAPDH (green) and anti-pfAldolase (red) mAbs 

are shown. The overlay in Figure 3 B, column III, row 1, shows that regions stained in 

green and red appeared indicating that pfGAPDH and pfAldolase were preferentially 

localized at opposite cell poles. Additionally, regions of overlapping fluorescence signals 

(orange) were present. In Figure 3 B, row 2, results obtained with anti-pfGAPDH (green) 

and anti-RAP-1 mAbs (red) demonstrated that pfGAPDH was preferentially co-localized 

with RAP-1 that is associated with the apical complex of the merozoites (Clark et al., 

1987).  

 

Immunolocalization Studies of pfGAPDH and pfAldolase in Liver Stage Parasites  

   

In order to analyze whether the spatial and temporal changes in the sub-cellular 

distribution of pfAldolase and pfGAPDH is comparable between liver and asexual blood-

stages of P. falciparum, human liver cells were infected with sporozoites isolated from 

salivary glands of infected Anopheles mosquitoes. The liver parenchymal cells were 

stained on days 2, 4 and 7 after infection with anti-pfGAPDH and anti-pfAldolase mAbs 

and analyzed by con-focal microscopy (Figure 4). In non-mature liver schizonts (days 2 

and 4), both glycolytic enzymes were co-localized in the cytosol (Figure 4, rows 1 and 2). 

In contrast, in maturing schizonts (day 7), pfGAPDH seemed to be localized at a higher 

concentration in the periphery of the schizont while pfAldolase remained evenly 

distributed (Figure 4, row 3). Hence, the enrichment of pfGAPDH in the periphery of the 

developing schizont in comparison to pfAldolase was comparable to the results obtained 

with asexual blood stage parasites. 

 

Sub-Cellular Fractionation of P. falciparum Infected Erythrocytes  

 

The combined results obtained by IFA and con-focal microscopy of liver and asexual 

blood stage parasites strongly indicated that pfGAPDH and pfAldolase are not distributed 
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equally during schizont and merozoite stages. In order to verify these observations, cell 

fractionation experiments of blood stage schizonts were performed and the distribution of 

pfGAPDH and pfAldolase in sediment and supernatant fractions examined. Schizonts of 

blood stage parasites of strains K1 and FVO were enriched up to 95 - 99% purity using 

Percoll gradient centrifugation as described (Wahlgren et al., 1983). Purified parasites 

were washed thoroughly, lysed by repeated cycles of freeze/thaw in water and the 

membrane and sediment fractions were separated by ultracentrifugation. Aliquots of these 

fractions were subjected to SDS-PAGE, blotted onto nitrocellulose and probed with anti-

pfGAPDH and anti-pfAldolase mAbs, respectively. One specific band corresponding to 

pfGAPDH could be detected in both the pellet (Figure 5 A, lanes 1 and 3) and supernatant 

fractions (Figure 5 A, lanes 2 and 4). In contrast, the anti-pfAldolase mAb detected 

exclusively in the supernatant fraction one single band (Figure 5 B). Similar results were 

obtained in three independent experiments and indicated that a substantial fraction of 

pfGAPDH was associated with the membrane-containing, pelleted sub-cellular fraction of 

the parasite obtained after ultracentrifugation, while pfAldolase resided in the supernatant 

fraction.  

 

Mammalian Rab2 Stimulates pfGAPDH Recruitment to HeLa Cell Derived 

Microsomal Membranes 

  

After having established that pfGAPDH was detectable in the membrane-containing sub-

cellular fraction, we wanted to investigate the functional basis of membrane recruitment of 

pfGAPDH.  Rab2 protein and a peptide representing the N’-terminal thirteen amino acids 

of Rab2 (Rab2 13-mer) have been reported previously to stimulate mammalian GAPDH 

binding to membranes (Tisdale, 2001). Using sequence data from the P. falciparum 

genome project (http://plasmodb.org), a potential Rab2 homologue (GenBank accession 

number AJ 308736) was identified. This pfRab2 homologue displayed an overall 75% 

identity at the amino acid level with human Rab2 and was highly conserved in the domain 

that stimulates Rab2 dependent recruitment of soluble factors (AYAYLFKYIIIGD of 

human Rab2 versus PYEYLFKYIIIGD of pfRab2). We performed a quantitative binding 

assay to measure pfGAPDH recruitment using microsomes prepared from whole cell 

homogenates of HeLa cells as described (Tisdale and Balch, 1996; Tisdale, 2001). Briefly, 
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salt-washed HeLa microsomes were pre-incubated with increasing concentrations of Rab2 

peptide or Rab2 protein supplemented with recombinant pfGAPDH for 10 min on ice. 

Cytosol and GTPγS were added and the membranes incubated for 15 min at 32 ºC. The 

membranes were collected by centrifugation and then analyzed by SDS-PAGE and 

Western blotting using anti-pfGAPDH mAb 1.4 to assess the level of membrane-bound 

pfGAPDH. As shown in Figure 6 A, Rab2 peptide and Rab2 protein promoted pfGAPDH 

membrane association in a dose-dependent manner. The amount of membrane bound 

pfGAPDH increased ~ 5-fold when incubated with 100 µΜ of Rab2 peptide. In order to 

confirm that mAb 1.4 does not cross-react with human or rat GAPDH also present in the 

assay, HeLa microsomes, rat liver cytosol and recombinant pfGAPDH were separated by 

SDS-PAGE, transferred to nitrocellulose and immuno-blotted. The results confirmed that 

mAb 1.4 lacks cross-reactivity with rat liver or human GAPDH (Figure 6 B) and indicated 

that Rab2 protein and Rab2 peptide stimulated pfGAPDH recruitment to membrane in a 

dose-dependent manner.  

 

The N'-Terminal Fragment of pfGAPDH Binds to Microsomal Membranes in 

Response to Rab2 

 

After establishing that pfGAPDH was recruited to microsomal membranes in response to 

Rab2 and Rab2 peptide, we investigated which domain of pfGAPDH was involved in this 

interaction. Salt-washed HeLa microsomes were pre-incubated with increasing 

concentrations of Rab2 peptide and Rab2 protein supplemented with recombinant 

pfGAPDH N'-terminal domain (residues 1 - 192) for 10 min on ice. Cytosol and GTPγS 

were then added, and the microsomes incubated. The membranes were collected by 

centrifugation, separated by SDS-PAGE and immuno-blotted. Results shown in Figure 7 A 

demonstrated that Rab2 and Rab2 peptide stimulated membrane recruitment of the N'-

terminal fragment in a dose-dependent manner. Next we wanted to learn whether the N'-

terminal fragment could effectively compete for membrane binding with the full-length 

recombinant pfGAPDH. Therefore, salt-washed microsomes were pre-incubated with Rab2 

peptide or Rab2 protein and supplemented with the indicated concentrations of N'-terminal 

fragment for 10 min on ice (Figure 7 B). Recombinant pfGAPDH at a constant 

concentration, cytosol and GTPγS were added and the membranes incubated as described 
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above. To terminate the reaction, membranes were collected by centrifugation and then 

analyzed as above. Results demonstrated that the N'-terminal fragment competed with 

recruitment of the full-length pfGAPDH (Figure 7 B). In contrast, the C'-terminal fragment 

of pfGAPDH (encompassing residues 133 - 337) did not interfere with the ability of Rab2 

or Rab2 peptide to recruit full-length recombinant pfGAPDH to membrane (Figure 7 C). In 

summary, these results indicated that the N’-terminal fragment of pfGAPDH contains the 

domain leading to Rab2 dependent recruitment to HeLa cell derived microsomal 

membranes.  



                    CHAPTER 6. P. falciparum’s GAPDH: Potential drug target                129       

 

 
 

Discussion 

 

In this report we provide evidence that GAPDH of P. falciparum is partially segregated in 

the late stages of parasite development from the cytosol, suggesting additional non-

glycolytic function(s) of this enzyme. First, using IFA and con-focal microscopy, we found 

that the two glycolytic enzymes pfGAPDH and pfAldolase co-localize in early stages of 

both liver and asexual blood-stage parasite development. However, during schizogony 

pfGAPDH was in comparison to pfAldolase enriched in the periphery of the developing 

parasites. Hence, pfGAPDH might be concentrated during schizogony in the same sub-

cellular region where vesicular-tubular clusters and the developing apical complex are 

observed (Bannister et al., 2000). Second, sub-cellular fractionation experiments 

demonstrated that pfGAPDH was in contrast to pfAldolase easily detected in both the 

membrane-containing pellet and the supernatant fractions. Third, a quantitative 

microsomal recruitment assay showed that pfGAPDH and the N’-terminal domain thereof 

were recruited to HeLa cell derived microsomes in a Rab2 dependent manner.  

 These results are consistent with other reports showing that GAPDH exerts non-

glycolytic functions in mammalian cells (Sirover, 1999). Protein transport in the early 

secretory pathway of mammalian cells requires Rab2 (Tisdale et al., 1992; Tisdale and 

Balch, 1996; Tisdale and Jackson, 1998; Tisdale, 1999). This protein immuno-localizes to 

pre-Golgi intermediates and mediates the recruitment of soluble factors including GAPDH 

to these structures (Tisdale, 2001). The amino terminus of Rab2 (residues 1 - 13) is 

essential for Rab2 activity. Deletion of these residues result in loss of function, whereas the 

Rab2 peptide mimics the downstream enlistment of accessory proteins similar to the intact 

Rab2 protein (Tisdale and Balch, 1996; Tisdale and Jackson, 1998). In the light of the sub-

cellular fractionation experiments and the evolutionary conservation of the functional 

domain of pfRab2, we investigated whether recombinant pfGAPDH could be recruited to 

HeLa cell microsomes after incubation with mammalian Rab2. Our results suggested that 

the Rab2 mediated recruitment of GAPDH to membrane is also operating in P. falciparum. 

Results with fragments of pfGAPDH demonstrated further that the N'-terminal fragment of 

pfGAPDH encompass the domain interacting with Rab2 leading to membrane recruitment.  

Several independent groups reported that GAPDH is involved in membrane fusion 

and trafficking (Lopez Vinals et al., 1987; Han et al., 1998; Hessler et al., 1998; de Arcuri 
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et al., 1999; Bressi et al., 2001; Glaser et al., 2002) and in the modulation of the 

cytoskeleton by promoting actin polymerization and microtubule bundling (Kumagai and 

Sakai, 1983; Reiss et al., 1996; Tisdale, 2002). These observations lead to the hypothesis 

that mammalian GAPDH is recruited to tubulin associated vesicles in a Rab- and GTP-

dependent manner. Subsequently, phosphorylation results in a conformational change of 

GAPDH altering its interactions with tubulin and facilitating membrane fusion by de-

inhibition of GAPDH. After membrane fusion, GAPDH is released from the vesicles in an 

ATP- dependent manner followed by de-phosphorylation of GAPDH (Glaser et al., 2002). 

Our data indicate that the proposed mechanism of GAPDH involvement in the secretory 

system of mammalian cells might be conserved in apicomplexan organisms. This is 

particularly interesting since the phylum apicomplexa is most closely related to the ciliates 

and dinoflagellates, branching off from the eukaryotic lineage prior to the divergence of 

animals, fungi and plants (Roos et al., 1999).  

What could be the possible non-glycolytic role of pfGAPDH during parasite 

development? It is tempting to speculate that the distribution of pfGAPDH in schizont and 

merozoite stages in the sub-cellular region close to the apical complex implicates that 

pfGAPDH could be involved in the fusion of vesicles during biogenesis of the organelles 

of the apical complex. Alternatively, pfGAPDH might participate in the interaction 

between vesicular or intracellular compartment(s) with the cytoskeleton mediating the 

positioning of the apical complex during its biogenesis.  

In malaria parasites, no energy reserves are stored and almost all metabolized 

glucose passes through the anaerobic Embden-Meyerhoff-Parnas pathway resulting in a 

100-fold increase in glucose consumption of infected RBC versus uninfected cells (Roth, 

Jr. et al., 1988). The obligate dependence on glycolysis for ATP production combined with 

the possible involvement of pfGAPDH in other biological functions renders this conserved, 

single copy gene product a particularly attractive target for malaria drug development. 

PfGAPDH has only limited (63.5%) amino acid sequence identity with human erythrocytic 

GAPDH. Certain sequence features at the active site (an insertion at position 206 and an 

amino acid exchange at position 198) are unique for the parasite enzyme and suggest that 

selective inhibitors of pfGAPDH could be developed (Daubenberger et al., 2000). This is 

supported by the successful development of anti-trypanosomatid parasite drugs like 
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adenosine analogues as potent and selective GAPDH inhibitors following a structure based 

drug design approach (Bressi et al., 2001; Verlinde et al., 2001). 
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Materials and Methods 

 

Expression and Purification of Recombinant pfGAPDH and N'- and C'-Terminal 

Fragments Thereof 

 

The complete cDNA of pfGAPDH was amplified from a cDNA library of P. falciparum 

strain K1 by PCR using primers 5'-

GATGATCGCCCATATGGCAGTAACAAAACTTGGAATTAATGG-3' and 5'-

GCCGTACACATTACTAACAACTAACTCGAGTAAACATG-3' containing NdeI and 

XhoI sites as described (Daubenberger et al., 2000). For the amplification of the N- and C'-

terminal fragments of pfGAPDH the following primer combinations were used: 5'-

GATGATCGCCCATATGGCAGTAACAAAACTTGGAATTAATGG-3' and 5'-

TTGTTGATGGTCCATAACTCGAGGGTAAGGACTGGAGAGC-3'; 5'-

CCCCAATTTATCATATGGGTATTAACCACCACC-3' and 5'-

GCCGTACACATTACTAACAACTAACTCGAGTAAACATG-3', respectively. The 

amplicons were digested with NdeI and XhoI, gel purified and then cloned in frame into the 

bacterial expression vector pET28a+ (Novagen). Competent E. coli BL21 (DE3) cells 

(Novagen) were transformed with the recombinant pET28a+ plasmids and expression of 

the His6-tagged fusion protein was induced by the addition of 1 mM isopropyl 

thiogalactoside (IPTG) (Calbiochem) at 0.6 OD600.  E. coli cells expressing recombinant 

protein were collected by centrifugation and resuspended in lysis buffer (50 mM NaH2P04, 

300 mM NaCl, 10 mM imidazole) with 1 mg/ml lysozyme (Appligene Oncor) for 30 min. 

on ice and sonicated. After centrifugation at 10 000 g the supernatant was loaded onto a 

Ni2+-NTA agarose column (Qiagen) and purified according to the manufacturer’s 

instructions. The recombinant protein was recovered using elution buffer (50 mM 

NaH2P04, pH 8.0, 300 mM NaCl, 500 mM imidazole). After analysis by SDS-PAGE and 

Western blotting, purified proteins were pooled, dialyzed against a buffer containing 25 

mM Tris / 500 mM (NH4)2SO4 / 0,1 mM NAD+ / 2 mM TCEP / 2 mM DTT and stored at 4 

ºC. The recombinant proteins differed from the predicted natural parasite protein by the 

additional N'-terminal amino acid sequence MGSSHHHHHHSSGLVPRGSH. 
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Generation of Hybridoma Cell Lines Producing anti-pfGAPDH and anti-pfAldolase 

Antibodies  

 

Mice were immunized with recombinantly expressed pfGAPDH (Daubenberger et al., 

2000) or pfAldolase (Döbeli et al., 1990) and hybridoma cell lines were generated 

essentially as described (Pluschke et al., 1998). The hybridoma cell lines secreting anti-

pfAldolase mAb were generated from Balb/c mice and contained a κ light and γ1 heavy 

chains. In contrast, hybridoma cell lines producing anti-pfGAPDH antibodies were 

generated from mice carrying immunoglobulin heavy chain γ2a and light chain κ 

replacement mutations (Pluschke et al., 1998). Fusion with these mice yielded either 

mouse λ light chain or human κ light chain containing mAbs. These mAbs are ideally 

suited for double staining immunofluorescence analyses in conjunction with mouse κ chain 

carrying mAbs obtained from un-mutated mouse strains. Accordingly, the anti-pfGAPDH 

mAbs 1.4 and 1.10 express IgG2a:λ and the anti-pfAldolase mAbs P.41-1/2-7 and P.41-

2/3-7 carry IgG1: κ chains, respectively. MAbs were purified from hybridoma supernatant 

by affinity chromatography using HighTrap™ Protein A following the manufacturer's 

instructions (Amersham Pharmacia Biotech). The anti-RAP-1 mAb 5-2 (IgG1:κ) has been 

described previously (Moreno et al., 2001). 

 

Cultivation and Sub-Cellular Fractionation of P. falciparum Blood Stage Parasites 

and Western Blot Analysis 

 

P. falciparum strain 3D7 parasites were cultured and synchronized using standard methods 

(Matile and Pink, 1990) with two sorbitol synchronization steps one cycle before 

harvesting. Synchronization was confirmed and the level of parasitemia estimated by 

standard microscopy. SDS-PAGE was performed essentially as described (Daubenberger 

et al., 2000). Briefly, total cell lysates of cultures of P. falciparum were harvested and 

washed with phosphate-buffered saline, pH 8,0. The cells were lysed in 10 ml of 0.15% 

saponin in SSC (150 mM, NaCl, 15 mM sodium citrate) and haemoglobin-depleted iRBC 

were collected by centrifugation at 2000 g for 20 min and separated on 12% SDS-PAGE, 

and then transferred electrophoretically to nitrocellulose membrane (Protean 

Nitrocellulose, BA 85, Schleicher & Schuell). Blots were incubated with blocking buffer 
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(0.1% Tween / 5% skimmed milk powder in PBS) and then incubated with purified anti-

GAPDH mAbs 1.4, mAb 1.10 and anti-pfAldolase mAb P.41-2/3-7 for 1 h. After several 

washing steps, blots were incubated with appropriately diluted goat anti-mouse IgG 

alkaline phosphatase conjugated antibodies and developed using BCIP (5-bromo-chloro-3-

indolylphosphate, Biorad) and NBT (nitrobluetetrazolium, Biorad) (Figure 1). 

Alternatively, blots were incubated with appropriately diluted goat anti-mouse peroxidase 

conjugated antibodies (Sigma) developed using ECL system following manufacturer’s 

instructions (Figure 2). 

For sub-cellular fractionation experiments, late stage infected erythrocytes were enriched 

to 95 - 99% using 60% Percoll gradient as described (Wahlgren et al., 1983). Cells were 

washed three times in phosphate-buffered saline and lysed by three cycles of freeze/thaw 

in 10 volumes of double-distilled water. Total pellet and supernatant fractions were 

collected by ultracentrifugation at 100 000 g for 1 h at 4°C. Samples were harvested and 

solubilized in denaturing SDS sample buffer and equivalent amounts of each sample were 

subjected to Western blot analysis. Western blot analysis was conducted with anti-

pfGAPDH mAb 1.4 and anti-pfAldolase mAb P.41-2/3-7. The blots were developed using 

the ECL system. 

 

Indirect Immunofluorescence Analysis of Asexual Blood-Stage Parasites 

 

IFA of blood-stage parasites was conducted essentially as described (Daubenberger et al., 

2000). P. falciparum cultures were synchronized twice and aliquots of cells were removed 

for staining every 10 h. Multi-test immunofluorescence microscopy slides (Flow Labs, 

Switzerland) were pre-treated with 0.01% (w/v) poly L-lysine (Sigma) for 30 min at room 

temperature and washed.  Infected RBC were washed and mixed with two volumes of a 

solution containing 4% paraformaldehyde and 0.1% Triton X-100. Droplets of 30 µl cell 

suspension were added to each well and incubated for 30 min at room temperature. Cells 

were blocked with 100 mg/ml fatty acid-free BSA in PBS. Cells were incubated with an 

appropriate dilution of anti-GAPDH mAb 1.4 and anti-pfAldolase mAb P.41-2/3-7 and 

after several washing steps, cells were incubated with secondary antibodies specific for 

mouse κ or λ immunglobulin light chains conjugated with TXRD and FITC, respectively 

(Southern Biotechnology Associates). The immuno-reactivity was observed using a Leica 
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TCS NT con-focal microscope. Images were acquired with a 63x Plan-Apochromat oil 

immersion objective (NA 1.32). Pinhole settings were 1 airy unit for all images that were 

processed with Imaris (Bitplane, Switzerland) and Adobe Illustrator and Adobe Photoshop 

(Mountainview, USA).  

 

Immunofluorescence Analysis of Liver Stage Parasites 

 

Primary cultures of human hepatocytes were prepared from liver segments taken from 

adult patients during partial hepatectomy. Hepatocytes were isolated using the two-step 

enzymatic perfusion technique with minor modifications (Guguen-Guillouzo et al., 1982). 

Briefly, the hepatic cells were successively perfused with HEPES buffer and 0.05% 

collagenase D (Roche), dissociated, and viable cells were isolated on a 36% Percoll 

gradient. Cells were seeded at density of 1.4 x 105 per cm2 in eight-chamber permanox 

Lab-Tek culture slides (Nalge Nunc International) coated with rat tail collagen I (Beckton-

Dickinson) and incubated at 37°C in 4% CO2 atmosphere. Hepatocytes were cultivated in 

Williams medium E (Life Technologies) supplemented with 10% fetal calf serum (Life 

Technologies), 2 mM L-glutamine (Life Technologies), 1 mM sodium pyruvate (Bio-

Whittaker), 10 mg l-1 insulin (Sigma), 200 U ml-1 penicillin and 200 µg ml-1 streptomycin 

(Life Technologies). After complete adherence of the cells, culture medium was replaced 

by fresh medium supplemented with 10-7 M dexamethasone (Sigma). P. falciparum NF54 

strain sporozoites obtained by aseptic dissection of infected Anopheles stephensi salivary 

glands were co-cultured with hepatocytes essentially as described (Ponnudurai et al., 

1982). After the indicated time periods cultures were washed, fixed in cold methanol and 

the liver schizonts were labeled with mAb as described for the blood-stage parasites. 

Samples were analyzed by con-focal microscopy. 

 

Quantitative Microsomal-Binding Reaction  

 

HeLa cells were washed three times with ice-cold PBS.  The cells were scraped off the 

dish with a rubber policeman into 10 mM Hepes (pH 7.2) and 250 mM mannitol, then 

broken with 15 passes of a 27 gauge syringe.  The broken cells were pelleted at 500 g for 

10 min at 4°C, and the supernatant removed and re-centrifuged at 20,000 g for 20 min at 
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4°C.  The pellet containing ER, pre-Golgi, and Golgi membranes was washed with 1 M 

KCl in 10 mM Hepes, (pH 7.2) for 15 min on ice to remove peripherally associated 

proteins, then centrifuged at 20,000 g for 20 min at 4ºC.  The membranes were 

resuspended in 10 mM Hepes (pH 7.2) and 250 mM mannitol and employed in the binding 

reaction (Tisdale, 2001). Membranes (30 µg of total protein) were added to a reaction 

mixture that contained 27.5 mM Hepes (pH 7.2), 2.75 mM MgOAc, 65 mM KOAc, 5 mM 

EGTA, 1.8 mM CaCl2, 1 mM ATP, 5 mM creatine phosphate, and 0.2 U of rabbit muscle 

creatine kinase.  Recombinant Rab2, Rab2 (13-mer), recombinant pfGAPDH, and N'-

terminal and C'-terminal pfGAPDH domains were added at the concentrations indicated 

under “Results” and the reaction mix incubated on ice for 10 min.  Rat liver cytosol (50 

µg) and 2.0 µM GTPγS were then added, and the reactions shifted to 32 °C and incubated 

for 15 min.  The binding reaction was terminated by transferring the samples to ice and 

then centrifuged at 20,000 g for 10 min at 4 °C.  The pellet was resuspended in sample 

buffer, separated by SDS-PAGE and transferred to nitrocellulose in 25 mM Tris, pH 8.3, 

192 mM glycine, 20% methanol.  The blot was blocked in TBS which contained 5% non-

fat dry milk and 0.5% Tween-20, incubated with a mAb 1.4 made to pfGAPDH, washed, 

further incubated with a horseradish peroxidase (HRP)-conjugated anti-mouse antibody, 

developed with enhanced chemiluminescence (ECL) (Amersham, Arlington Heights, IL), 

and then quantified by densitometry. 
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Figure 1 Specificity of anti-pfGAPDH and anti-pfAldolase monoclonal antibodies 

 

The specific reactivity of the antibodies was analyzed with total lysates of infected (lane 

1), and uninfected RBC (lane 2), purified recombinant pfAldolase (lane 3) and 

recombinant pfGAPDH (lane 4).   

(A) Proteins were separated by SDS-PAGE and stained with Coomassie blue. The 

molecular weight in kDa is given on the left. (B) Western blot analysis with anti-

pfAldolase mAb P.41-2/3-7. MAb P41-2/3-7 recognized a single band of ~ 41 kDa in 

iRBC (lane 1) and the recombinant pfAldolase protein (lane 3). In contrast, no band was 

detected in lysates of uninfected RBC and recombinant pfGAPDH, respectively (lanes 2, 

4). Data obtained with anti-pfAldolase mAb P.41-1/2-7 were identical (data not shown). 

(C) and (D) Western blot analysis with anti-pfGAPDH mAbs 1.4 (C) and 1.10 (D). Both 

mAbs recognized a single band of ~ 36 kDa in iRBC (lane 1) and the slightly larger 

hexahistidine-tagged recombinant pfGAPDH protein (lane 4). In contrast, no band was 

detected in uninfected RBC (lane 2) and no cross-reactivity was observed with the 

recombinant pfAldolase protein (lane 3).  
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Figure 2  Recombinant expression of a C'-terminal and a N'-terminal fragments of 

pfGAPDH. 

(A) Complete recombinant pfGAPDH (lane 1), a C'-terminal fragment (lane 2) and a N'-

terminal fragment (lane 3) was fractionated by SDS-PAGE and stained with Coomassie 

blue. The molecular weight of the proteins representing the complete pfGAPDH and the 

fragments thereof were 36 kDa, 24,2 kDa and 23,0 kDa as predicted. The molecular weight 

in kDa is given on the left. (B) Western blot analysis using anti-pfGAPDH mAb 1.4. This 

mAb recognized the complete pfGAPDH and its N'-terminal fragment (lanes 1, 3), but not 

the C'-terminal fragment (lane 2).  
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Figure3 Temporal and spatial changes in sub-cellular distribution of pfAldolase and         

pfGAPDH during asexual blood-stage development. 

(A) IFA of synchronized blood-stage parasites using anti-pfGAPDH and anti-pfAldolase 

mAbs. Cells were removed from culture at 10 h (row 1), 20 h (row 2), 30 h (row 3) and 40 

h (row 4) after synchronization and stained with anti-pfGAPDH and anti-pfAldolase mAbs 

followed by incubation with FITC-labeled or Texas red-labeled secondary antibodies 

specific for λ or κ mouse immunglobulin light chains, respectively. The images are: 

column I, anti-pfGAPDH (green); column II, anti-pfAldolase (red), column III, merged 

images derived from columns I and II; column IV, phase contrast images of the parasites.  
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(B) IFA of merozoites stained with mAb specific for pfGAPDH, pfAldolase and RAP-1.  

Row 1 demonstrates merozoites stained with anti-pfGAPDH mAb (green, column I), anti-

pfAldolase mAb (red, column II) and the overlay of both images (column III).  

Row 2 shows merozoites stained with anti-pfGAPDH mAb (green, column I) and anti-

RAP-1 mAb 5-2 (red, column II) and the overlay of both images (column III). 
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Figure 4 Spatial and temporal distribution of pfAldolase and pfGAPDH during liver stage 

development.  

Human hepatocytes were infected with sporozoites of P. falciparum and incubated for 2 

(row 1), 4 (row 2) or 7 (row 3) days in vitro. Cells were stained with mAbs as described in 

Figure 3 A. In column I, staining with anti-pfGAPDH mAb (green), in column II with anti-

pfAldolase mAb (red) and in column III the super-positioning of both images is depicted.  
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Figure 5 Association of pfGAPDH but not pfAldolase with the sediment fraction of blood 

stage parasite lysates. 

Schizonts of P. falciparum strains K1 and FVO were enriched by Percoll-gradient 

centrifugation and hypotonically lysed by repeated cycles of freeze/thaw in water. The 

sediment fractions of K1 (lane 1) and FVO (lane 3) and the corresponding supernatant 

fractions of K1 (lane 2) and FVO (lane 4) were obtained by ultracentrifugation. Aliquots of 

the samples were separated by SDS-PAGE, transferred to nitrocellulose membrane and 

probed with anti-pfGAPDH mAb 1.4 (Figure 5 A) or anti-pfAldolase mAb P.41-2/3-7 

(Figure 5 B). 
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Figure 6 Rab2 (13-mer) and Rab2 protein stimulate pfGAPDH recruitment to HeLa    

microsomes.  

(A) Rab2 peptide and Rab2 protein promote pfGAPDH membrane association in a 

dose-dependent manner. Salt-washed HeLa microsomes were pre-incubated with 

increasing concentrations of Rab2 (13-mer) or Rab2 protein supplemented with 10 ng 

recombinant pfGAPDH for 10 min on ice.  Cytosol and GTPγS were then added and the 

membranes incubated. Membranes were collected, separated on SDS-PAGE and 

transferred to nitrocellulose. The blot was probed with anti-pfGAPDH mAb 1.4. The 

amount of recruited pfGAPDH was quantified by densitometry and the results are the 

mean + S.D. of three independent experiments performed in duplicate.  

(B) The anti-pfGAPDH mAb 1.4 does not cross-react with human or rat GAPDH. 

HeLa cell microsomes (a), rat liver cytosol (b), and recombinant pfGAPDH (c) were 

separated by SDS-PAGE, transferred to nitrocellulose membrane and the blot probed with 

anti-pfGAPDH mAb 1.4.  
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Figure 7 The N'-terminal pfGAPDH fragment binds to HeLa microsomes and blocks Rab2 

dependent recruitment of pfGAPDH.  

(A) Rab2 and Rab2 peptide promote recruitment of N'-terminal pfGAPDH fragment to 

HeLa cell membrane. Salt-washed HeLa microsomes were pre-incubated with increasing 

concentrations of Rab2 peptide and Rab2 protein supplemented with 10 ng of the 

recombinant N'-terminal pfGAPDH fragment (residues 1 - 192).  Cytosol and GTPγS were 

then added and the membranes incubated for 15 min. To terminate binding, the membranes 

were centrifuged, and the membrane pellet separated by SDS-PAGE and transferred to 

nitrocellulose.  The blot was probed with anti-pfGAPDH mAb 1.4. The amount of 

recruited N'-terminal pfGAPDH fragment was quantified by densitometry and the results 
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represent the results represent the mean ± S.D. of three independent experiments 

performed in duplicate. 

(B) The N’-terminal pfGAPDH fragment competes with full-length pfGAPDH for 

membrane-association in response to Rab2. 

Salt-washed HeLa microsomes were pre-incubated with Rab2 peptide or Rab2 protein, 10 

ng recombinant pfGAPDH and increasing concentrations of the N'-terminal pfGAPDH 

fragment for 10 min. Cytosol and GTPγS were added and membranes incubated for 15 

min, then analyzed as above. The amount of membrane-associated pfGAPDH was detected 

by mAb 1.4.  

 

(C)  The C'-terminal pfGAPDH fragment does not interfere with Rab2-stimulated 

membrane recruitment of pfGAPDH. Same protocol as described in (B) was applied using 

the C'-terminal pfGAPDH fragment. The amount of membrane-associated pfGAPDH was 

detected with mAb 1.4.  
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7. Discussion 

 

7. 1 Monoclonal antibodies: important tool in biomedical research and applications 

 

Antibodies are host proteins that represent one of the principal effectors of the adaptive 

immune system. They are produced in response to molecules or organisms which they 

eliminate and/or neutralize. The ability of antibodies to bind to the antigen with a high 

degree of affinity and specificity has led to their use in research, diagnostics and in the 

treatment of diverse diseases.  

Most antigens are highly complex, and present various epitopes recognized by a large 

number of lymphocyte receptors. Activate B lymphocytes differentiate into antibody 

secreting plasma cell clones, and the resulting antibody response is usually polyclonal. In 

contrast, monoclonal antibodies (mAbs) are produced by a single B lymphocyte clone. 

These were first recognized in sera of patients with multiple myeloma in which clonal 

expansion of malignant plasma cells produced high levels of an identical antibody resulting 

in a monoclonal gammopathy. In 1975, Köhler and Milstein devised a technique for 

generating mAbs in vitro
1.  

The decision whether to use polyclonal antibodies or mAbs as laboratory reagent depends 

on a number of factors, the most important of which is its intended use. Polyclonal 

antibodies can be generated much more rapidly at less expense and technical skill that is 

required to produce mAbs. However, with mAbs it is possible to target unknown 

molecules, undetectable with polyclonal antibodies.  Moreover, mAbs are homogeneous 

and available in a limitless supply, and their monospecificity is useful in evaluating 

changes in molecular conformation, protein-protein interactions and phosporylation states, 

as well as in identifying single members of protein families. Also, mAbs are acquiring 

more and more importance as therapeutic agents. There are more than twelve mAbs 

licensed for therapeutic use, including two that are labelled with radionuclides to deliver 

tumoricidal radiation (Ibritumomab-tiuxetan-90Y, and Tositumomab-131I, anti-lymphoma). 

The other commercial mAbs are used in the treatment of asthma, autoimmune diseases, 

cancer, respiratory syncytial virus, and preventing organ rejection2.  

More than one hundred thousand scientific papers are available on mAbs, clearly showing 

that these antibodies (as a reagent) have contributed directly or indirectly to many 
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scientific discoveries. In research, they are employed for analysis, purification, enrichment, 

and to mediate or modulate physiological responses. Basic techniques such as 

immunoblots, enzyme-linked immunosorbent assay (ELISA), enzyme-linked immunospot 

assay (ELISPOT), immunofluorescence analysis (IFA) and immunoprecipitation are 

examples in which mAbs are used to establish whether an antigen or related molecule is 

present in a biological samples (i.e., body fluid, cell suspension or tissue lysate) (Chapter 

2-6). Combinations of these analytic techniques and mAbs has been successfully used in 

diagnosis of diseases such as hematological malignancies3,4, also in the monitoring of the 

disease5, and the detection of many cancers6.  MAbs are also tools to identify and purify 

target antigens for serodiagnosis and vaccine candidates7-10 (Chapter 4). They have been 

used, at the same time, as fundamental tools for both functional (neutralize activity and 

activate signaling) and molecular biology studies of target proteins.  

Within the framework of the present thesis, mAbs were generated to study M. ulcerans and 

P. falciparum antigens, allowing the identification and characterization of protein targets 

as candidates for serological tests, molecular fingerprinting and/or vaccine design. 

 

7.2  Buruli ulcer  

 

In contrast with the existing knowledge on tuberculosis and leprosy, and despite that 

research on M. ulcerans has intensified in the last years, many aspects of Buruli ulcer are 

still incompletely understood. The identification and characterization of immunodominant 

antigens of M. ulcerans may contribute to our knowledge in its transmission, micro-

epidemiology, and immune protection. 

 

7.2.1. Immune protection and vaccine design 

 

It is thought that antibodies play no significant role in protection against intra-cellular 

mycobacterial infections such as tuberculosis and leprosy. Therefore humoral responses 

have drawn little attention in the field of vaccine design against these diseases. 

Traditionally, most of our knowledge on antibody responses during mycobacterial 

infections has been derived from serodiagnostic studies.   
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The advances in recombinant DNA technology have facilitated the identification of several 

major antigens of M. tuberculosis and M. leprae. Young et al. reported the first 

breakthrough in this field by using a lambda gt11 phage expression system for efficient 

expression of mycobacterial DNA as fusion proteins in E. coli. They screened the 

mycobacterial libraries with antibody probes and succeeded in identifying several 

recombinant mycobacterial antigens11. Testing these antigens with T-cell lines and clones 

showed that human T-cell recognized most of them as well9,12-20. Several studies suggest 

that a number of these M. tuberculosis immunodominant antigens have potential as 

candidate antigens for a new vaccine against tuberculosis21.  The most extensively studied 

antigens used in developing a new vaccine against tuberculosis are Heparin-Binding 

Hemagglutinin8, hsp65, Ag8522, ESAT-623, MPT64 and 38-kDa antigen. Recombinant 

antigens, synthetic peptides, recombinant live vaccines and recombinant plasmids for DNA 

vaccines have all been tried out to protect against tuberculosis in experimental animals.  

Unlike other mycobacteria, M. ulcerans remains extracellular throughout the infection24 

and stimulates antibody responses25-29, therefore the potential of antibodies in controlling 

the infection is higher. An important question about the pathogenesis of the disease 

concerns T-cell down-regulation. Buruli ulcer is characterized by a down-regulation of Th-

1 responses, potentially associated with the cytopathic activity of mycolactone26-28,30. 

Spontaneous healing is frequently observed in late stages of M. ulcerans diseases. It is 

currently not clear, how the host eventually overcomes immune suppressed and develops a 

protective immune response? The explanation could be that the mycobacterium is 

neutralized by an antibody response that develops slowly over the course of the disease. 

However, antibody responses against mycolactone have not been observed in Buruli ulcer 

patients. Future studies in humoral response against recombinant immunodominant 

antigens identified in the present work may help to understand the role of antibodies in the 

control of the disease. Passive immune protection experiments in a mouse model with the 

mAbs generated in this thesis may help to give insight into the potential role of antibody 

responses against mycobacteria. If antibodies play a major role, it may in the end be easier 

to develop a vaccine against M. ulcerans disease than against leprosy or tuberculosis. 
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7.2.2. Identification of polymorphic immunodominant proteins and molecular 

fingerprinting of M. ulcerans  isolates 

 

The antigenic overlap among mycobacterial species has limited the studies of antibody 

responses against mycobacterial pathogens, of the immunopathogenesis of mycobacterial 

diseases, and the development of serological tests (diagnosis, mycobacteria exposure and 

evaluation of new vaccine). All humans are exposed to water- and air-borne environmental 

mycobacteria, which frequently come into contact with the skin and mucous membranes 

(digestive and respiratory epithelia). In addition, many children, particularly in developing 

countries, are inoculated with live BCG vaccine and frequently exposed to M. tuberculosis.  

Antigen overlap is also revealed for M. ulcerans, since most immunodominant antigens 

characterized in this thesis by mAbs contained epitopes present in many mycobacterial 

species (chapter 4), resulting in serological cross-reactivity.  The use of these antigens in 

serological tests for M. ulcerans exposure of disease has limitations in endemic areas 

where BCG vaccination has been implemented and tuberculosis is also endemic.  

However, cross-reactive antigens could be used as polymorphic genetic markers, and also 

as vaccine candidates. M. tuberculosis immunodominant antigens such as hsp65 showed 

more divergence between mycobacterial species than the 16S rRNA gene did31. Other 

polymorphic loci of M. tuberculosis included a phospholipase C, a membrane lipoprotein, 

members of an adenylate cyclase gene family, and members of the PE/PPE gene family, 

some of which have been implicated in virulence or the host immune response. Several 

gene families, including the PE/PPE gene family, also had significantly higher synonymous 

and non-synonymous substitution frequencies compared to the genome as a whole. A 

number of these polymorphisms appear to have occurred multiple times as independent 

events, suggesting that these changes could be under selective pressure32.  

The studies of M. ulcerans diversity performed with different typing techniques have all 

revealed a clonal population structure within specific geographical regions33-38 and a low 

level of genetic variation, as also observed in M. tuberculosis. Nevertheless, sequence 

analysis of immunodominant antigens may reveal genetic diversification. In this thesis, 

gene sequencing of only one immunodominant antigen (Laminin-Binding protein) allowed 

the description of eight different alleles, four of them were found in Australian isolates.  
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7.2.3. Identification of target antigens for serological analysis 

The clinical diagnosis of M. ulcerans can be confirmed by Ziehl-Neelsen (ZN) staining, 

the culture of M. ulcerans, the detection of characteristic histopathological changes in 

excised tissue or the detection of M. ulcerans DNA by PCR. Since the vast majority of 

mycobacterial diseases (tuberculosis, leprosy and Buruli ulcer) occur in developing 

countries with limited resources, rapid and inexpensive diagnostic tests would help limit 

the spread of the disease in the community.  

Assays based on the detection of immunological responses to M. ulcerans are attractive 

alternatives to current methods. In particular for pre-ulcerative disease where the collection 

of punch biopsies may enhance the spreading of the pathogen, a test requiring only a 

peripheral blood would be highly preferable. One of the aims of the present thesis was to 

identify M. ulcerans specific antigens as targets for a serodiagnostic markers or T-cell 

stimulation based assay. Unfortunately, the most immunodominant antigens characterized 

contained epitopes present in other mycobacteria. In contrast, M. ulcerans 18 kDa shsp, 

which has no homologue in M. tuberculosis and M. bovis, turned out to be a suitable 

marker for exposure to M. ulcerans (chapter 3). The publication of the fully annotated M. 

ulcerans genome will open new possibilities to identify specific immunodominant antigens 

for serodiagnostic tests or T-cell based tests differentiating the M. ulcerans exposure and 

disease. 

 

In the case of M. tuberculosis, the availability of the genome sequence has accelerated 

identification of antigens for serodiagnosis of tuberculosis, and a number of new antigens 

are being tested in various combinations to produce cocktails with high sensitivity and 

specificity. In tuberculosis, assays based on the serological immunodominant antigen 38-

kDa antigen22 alone or in combination with other proteins have achieved a high sensitivity 

(~80%)39,40.  T-cell based assays using ESAT-6 and CFP10 are already used for diagnosis 

of active tuberculosis by the detection of interferon (IFN)-γ production by ESAT-6/CFP10-

specific CD4 T cells. Released IFN-γ can be measured by assessment of the supernatant of 

the stimulated cells41 or by using the enzyme-linked immunospot (ELISPOT) method42. 
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The development of PCR-based assays to detect M. ulcerans has provided a tool to study 

its epidemiology and its mode of transmission43. Nevertheless, the epidemiology of M. 

ulcerans is only incompletely understood and the irregular distribution of cases and 

considerable underreporting make it hard to draw an overall picture of the prevalence of 

Buruli ulcer disease. In tuberculosis, exposure has been measured through use of a delayed 

hypersensitivity (DTH) skin-test reaction using a purified protein derivate (PPD). 

However, the highly cross-reactive nature of the PPD confounds the interpretation of skin-

test positive for individuals who either have a history of vaccination with M. bovis BCG or 

who live in areas with a high environmental load of non-tuberculous bacteria44. A Buruli 

test is not suitable to measure exposure to M. ulcerans, because early Buruli ulcer patients 

are predominantly negative45, and the first stage of the disease is characterized by a down-

regulation of Th-1 responses26-28,30. The detection of M. ulcerans exposure could be based 

on antibody responses, since household contacts and Buruli ulcer patients produce 

antibody responses against M. ulcerans antigens26-28. One of the main contributions of this 

thesis was the identification of a specific immunodominant protein (18 kDa protein; 

chapter 3), which could be used as a serological exposure target in Buruli ulcer endemic 

regions.  Previous studies on tuberculosis suggest that for the development of a serological 

test, a cocktail of specific antigens is required to increase the sensitivity of the test. 

Serological studies using multiple purified protein antigens have shown that the antibody 

response during tuberculosis is directed against many mycobacterial antigens. Moreover, 

the antigen recognition is highly heterogeneous -no two single antigens or common set of 

antigens respond alike46. The identification and characterization of other M. ulcerans 

specific immunodominant antigens may help to increase the sensitivity of the M. ulcerans 

exposure test further.  

7.2.4. Antigen detection in environmental samples 

While it is clear from many epidemiological studies that the proximity to swamps and 

wetlands is a risk factor for M. ulcerans infection, the exact mode of transmission remains 

unknown47. Farming activities close to rivers in endemic areas, wading and swimming in 

rivers while not wearing protective clothing may represent risk factors48,49. The 

predominance of Buruli ulcer lesions on the extremities and, in males, on the trunk 

involves passive exposure of exposed body parts, such as by bites of insect vectors. Since 
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M. ulcerans has been detected in the salivary glands of carnivorous aquatic insects, it has 

been hypothesized that it may be transmitted by water bug bites50-52. M. ulcerans DNA has 

also been detected in aquatic organisms and biofilms of aquatic plants37,52-54, but the 

contribution of these environmental elements in transmission remains largely unknown. 

The discovery of IS2404 and IS2606 sequences in M. liflandii
55 complicates the 

interpretation of past environmental studies. Immunoassays based on the sensitive 

detection of M. ulcerans specific antigens may in the future complement PCR-based 

analyses. In this thesis, it is shown that M. ulcerans antigens can be detected in Buruli 

ulcer lesions by western-blotting (chapters 2 and 3). Future studies using magnetic beads 

coated with mAbs against specific M. ulcerans immunodominant antigens may help to 

selectively recover and concentrate M. ulcerans from environmental samples to discover 

their ecological niche. 
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7.3. Malaria  

 

Malaria, together with HIV and tuberculosis, is one of the major causes of disease in 

tropical countries. The accurate estimation of how many people die from malaria per year 

is difficult to achieve. Most estimates suggest that malaria directly causes about 300-660 

million clinical cases and between one million deaths per year56. Malaria has become a 

priority for the international health community and is now the focus of several new 

initiatives. The emergence and/or resurgence of malaria in many parts of the world have 

resulted from the spread of the parasite’s drug-resistant to various drugs, which has to 

rising malaria-associated mortality, especially in Africa57.  An antimalarial vaccine has 

long been a public health priority but, despite extensive research, there is still no effective 

vaccine available58. Several studies have indicated that malaria vaccines may be feasible. 

First, immunization with irradiated sporozoites protects or partially protects rodents59, 

monkeys60 and humans61,62 from being infected by sporozoites.  Second, people infected 

repeatedly by malaria develop “natural acquired non-sterile immunity”63. Passive transfer 

experiments showed that immunoglobulins of such semi-immune individuals can protect 

against clinical disease64.   

 

7.3.1. Characterization of potentially novel vaccine candidate by mAbs 

Plasmodia are complex organisms. Each infection launches thousands of antigens against 

the human immune system, which differ with each stage of the parasite’s life cycle. The 

main difficulty in finding a successful vaccine is i) due to the fact that P. falciparum can 

adapt to the human immune system and misdirect or suppress it65, and ii) our poor 

understanding of the natural immune response to malaria. Conserved epitopes of the 

leading vaccine candidates are often not particularly immunogenic66. While many other 

implicated epitopes are highly polymorphic (vary between strains) or change with time 

within strains67.  

Vaccine candidates targeting the erythrocytic stages of the parasite have been the most 

intensively studied68. Antibody mediated neutralisation of the merozoites, preventing their 

entry into erythrocytes69, or clearance of infected erythrocytes expressing merozoites 

surface antigens, represent potential mechanisms of immune protection70. Recent, access to 
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the sequence of the entire genome of P. falciparum

 has provided opportunity to deduce the 

function of the predicted proteins through the identification of orthologue genes and motifs 

in other organisms71. The drive to identify novel vaccine candidates has in part focussed on 

identifying genes coding for transmembrane or secreted proteins of P. falciparum
71,72. 

Furthermore, these antigens should be accessible to the immune system, inducing 

protective immune responses in animal models. They should either lack antigenic diversity 

or have at least limited diversity, this allowing to focus the immunoresponse on conserved 

functional domains73. Monoclonal antibodies represent an important tool to analyse new 

candidate vaccine antigens (localization, purification, enrichment and functional activity).  

In the framework of these strategies for malaria subunit vaccine design, using together 

computational models, expression tools and mAbs, the characterization of a novel antigen 

designated D13 was accomplished.  As shown by Western blot analysis with anti-D13 

mAbs (chapter 5), D13 is stage-specific, expressed during schizogony and is localized on 

one distinct pole of individual merozoites. The D13 N’-terminal region is a highly 

conserved gene product, which seems to have a functionally essential role in parasite 

biology, since anti-D13 mAbs have shown parasite growth inhibitory activity.  In 

particular, the highly conserved N-terminal domain may represent a suitable target for 

malaria vaccine design.  

 

 

7.3.2. Characterization of potentially drug target by mAbs 

Spreading of resistance to chloroquine in the early 1960's has had a dramatic impact on 

malaria treatment worldwide, making the development of new antimalarial drugs 

necessary. The identification and characterization of novel protein targets for drug 

development has been a very active area of research in the past 30 years that crosses many 

disciplinary boundaries such as biochemistry and molecular biology of malaria parasites, 

focusing on specific parasite molecules, which are key to the parasite’s life-cycle or the 

induction of its pathogenesis. In the case of the asexual blood stage, the parasite resides in 

erythrocytes: There are multiple membranes that must be traversed to access most 

intraparasitic targets, including the host cell-membrane, the parasitophorous vacuolar 

membrane, the parasite plasma membrane, and in some cases, a further organelle 

membrane.  Therefore, the parasite trafficking function and specificity offers huge 
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potential for the future of parasite chemotherapy. In this thesis, using the anti-pfGAPDH 

mAbs by immunofluorescence and confocal microscopic analyses, we demonstrated that 

GAPDH is segregated in the late stages of parasite development from the cytosol, enriched 

in the apical region of merozoites. Furthermore, Western blot analyses showed that 

pfGAPDH is in both the membrane-containing pellet and the supernatant fraction of 

parasite lysate. In addition, a quantitative microsomal recruitment assay confirmed that 

pfGAPDH and the N’-terminal domain thereof were recruited to HeLa cell-derived 

microsomes in a Rab2-dependent manner. These data together suggest that pfGAPDH 

exerts non-glycolytic function(s) in P. falciparum, including possibly a role in vesicular 

transport and biogenesis of apical organelles (chapter 6). The obligate dependence of P. 

falciparum on glycolysis for ATP production combined with the possible involvement of 

pfGAPDH in other biological functions makes it an attractive target for antimalarial drug 

development. This is supported by the development of anti-trypanosomatid parasite drugs. 

The trypanosomatid glycolysis is compartmentalized, and many of its enzymes display 

unique structural and kinetic features. Structure- and catalytic mechanism-based 

approaches have been applied to design compounds which inhibit the glycolytic enzymes 

like adenosine and GAPDH74,75. The limited amino acid sequence identity with human 

GAPDH, and the unicity of sequence features at the active site of pfGAPDH, suggests that 

potent and selective inhibitors could affect only the growth of P. falciparum without 

affecting the corresponding proteins of the human host. Screening of a large library of 

compounds for pfGAPDH inhibitory activity in a high-through put screen has recently 

identified several structures with potential as lead compounds for a drug development 

process (unpublished results). 
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7.4.  Concluding  Remarks 

 

This PhD thesis identifies and characterizes immunodominant antigens of M. ulcerans and 

characterizes of two P. falciparum proteins. These antigens were characterised by mAbs, 

which were generated from mice immunized with either M. ulcerans antigens or P. 

falciparum recombinant proteins. We can conclude: 

1. The study of M. ulcerans antigens contributed: i) to the development of a serological test 

which may allow the assessment of exposure to M. ulcerans in endemic areas and ii) the 

identification of a polymorphic marker for strain typing.  

2. Characterisation of the D13 protein and GAPDH of P. falciparum revealed their 

potential as vaccine and drug targets, respectively.  

3. Besides the availability of parasite genome sequences and the development of new 

bioinformatics models, mAbs will continue to provide scientists with a powerful and 

important research tool. Working together, both technologies could improve and speed-up 

the advance in the development of serological tests (diagnosis, exposure test) and/or the 

identification of a potential vaccine candidates and potential drug targets, needed in 

developing countries. 
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