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Introduction 

1. INTRODUCTION 
 

1.1 Intracellular compartments and trafficking pathways  
 
Eukaryotic cells contain membrane-bound intracellular compartments that carry out 

specialized functions, with communication between these compartments achieved via 

vesicular transport. Vesicular transport of proteins and lipids occurs via two major 

pathways: the exocytic pathway that carries material from the cytoplasm to the cell 

surface and the endocytic pathway that internalizes material from the environment 

into the cell (Figure 1). These two pathways are highly connected with disruption of 

one of the pathways commonly leading to a dysfunction of the other pathway (1, 2).  

 

 
Figure 1 Intracellular trafficking pathway. Compartments of various intracellular pathways are depicted, 

covering the endocytic pathway, Golgi to ER transport as well as ER to Golgi transport.  COPII (blue), 

COPI (red) and clathrin (orange) are indicated at their locations, with COPII labeling ER exit sites. 

Golgi is composed of cis-, medial- and trans-cisternae while only the rough ER that is associated with 

ribosomes is shown in this scheme. Picture is taken from (3) and adapted.  
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Introduction 

1.1.1 Endoplasmic reticulum (ER) and Golgi apparatus  
 
 

 
Figure 2 Scheme shows a cell with different ER subcompartments (ER sheets, ER tubules, ER exit site 

– not highlighted) and interaction with other compartments of the cell. Tubular ER is shaped by the 

reticulon (RTN) while sheet-like ER is shaped by polyribosomes (PR), and Sec61 translocon complex. 

The peripheral ER is connected to the mitochondria via mitofusin (MFN) proteins, with the Golgi 

through VAP proteins that interact with lipid transfer binding proteins (LTBP), and plasma membrane 

possibly through Osh proteins. The nucleus is represented in blue, with the inner membrane (INM) and 

outer membrane ONM) of the nuclear envelope (NE) being linked by the LINC complex. Picture is 

taken from (4) and adapted.  

 

The ER is a continuous membrane system that is comprised of the nuclear envelope as 

well as a peripheral network of tubules and sheets (5) (Figure 2). Its main function 

includes protein-synthesis, protein folding and modification, and the quality control of 

proteins before being exported to other compartments. The ER is equally involved in 

lipid synthesis, regulation of Ca2+ homeostasis and secretion (6). The ER can be 

classified into smooth ER (SER) and rough ER (RER). The sheet-like RER is 

associated with ribosomes that synthesize secretory and membrane proteins, while the 

SER is devoid of ribosomes and has a more tubular structure. The ER is closely 

associated with mitochondria, Golgi, endosomes, lysosomes, peroxisomes, and 

plasma membrane to allow transfer of proteins, lipids, and intracellular signals 

(Figure 2). Interaction of the ER with the cytoskeleton plays a key role in its dynamics 

and distribution (7).  
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The Golgi apparatus serves as a platform connecting anterograde and retrograde 

trafficking (8). Most proteins that are synthesized in the ER are transported to the 

Golgi. The latter is a major site of glycosylation for many proteins and lipids, and also 

of carbohydrate synthesis (9). It also serves as a platform for binding of various 

signaling and sorting proteins (10). The Golgi is separated into cis-, medial- and 

trans-cisternae with the cis-side directly communicating with the ER while the trans-

Golgi network (TGN) performs final steps of protein sorting before delivery to their 

final destination (11) (Figure 1). 

1.1.2 Exocytic pathway  
 

The exocytic or secretory pathway is involved in anterograde transport of cargo from 

the ER to the Golgi and finally to the plasma membrane (PM) (Figure 1). Cargoes of 

this pathway include soluble proteins to be secreted to the extracellular environment 

as well as membrane protein and lipid components of the PM. Proteins enter the ER 

during their translation via the pore of the Sec61 translocon (12). This transfer is 

mediated by the presence of signal sequences on the nascent protein and the signal 

recognition particle, a complex mediating the link between newly synthesized peptide 

and the translocon in the ER membrane. ER resident proteins bear a retention signal 

that defines their permanent localization in the ER, while proteins that leave the ER 

upon proper folding and assembly exit via regions called ER exit sites (ERES) (13) 

(Figure 1).  

 

 
Figure 3 COPII coat assembly. Sec12 converts Sar1-GDP to Sar1-GTP. Sar1-GTP together with 

Sec23-Sec24 forms the pre-budding complex, with Sec24 involved in cargo recognition and Sec23 
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binding to Sar1-GTP. Sec13-Sec31 complex then polymerize as the outer layer of the COP complex, 

leading to membrane deformation and eventually vesicle budding. Picture is taken from (3). 

 

At ERES, COPII-coated vesicles are formed and mediate protein export (14). The 

COPII coat is composed of the small GTPase Sar1 and the protein subcomplexes 

Sec23-Sec24 and Sec13-Sec31. The formation of the COPII coat at ERES is believed 

to be initiated by Sec16 that localizes to ERES and forms a scaffold that recruits 

COPII subunits (15). Sec12 converts cytosolic Sar1-GDP to membrane bound Sar1-

GTP. Sar1-GTP together with Sec23-Sec24 form the pre-budding complex, with 

Sec23 making direct contact with Sar1-GTP while Sec24 is involved in cargo 

recognition. Sec13-Sec31 subunits then polymerize as the outer layer of the COPII 

complex, leading to the deformation of the ER membrane needed to drive transport 

vesicle formation (16) (Figure 3). 

 

 
Figure 4 Budding and fusion. 1) Initiation of coat assembly involves recruitment of coat components 

(blue) by binding to membrane-associated GTPase (red) e.g. Sar1. Cargo proteins and SNAREs gather 

at the assembling coat. 2) Budding of the vesicle occurs upon assembly of the coat, in which coat 

proteins cause membrane curvature, leading to deformation of the membrane. 3) Scission occurs by 

direct action of the coat or accessory proteins. 4) Uncoating of the coat due to e.g. inactivation of small 

GTPase. Cytosolic coat proteins are recycled for additional rounds of vesicle budding. 5) Tethering 

occurs when uncoated vesicle moves to the acceptor compartment and is tethered by GTP-bound Rab 

protein and a tethering factor. 6) Docking via assembly of v- and t-SNAREs. 7) Fusion events are 

promoted by SNARE complex, allowing cargo to be transferred to the acceptor compartment and 

SNAREs to be recycled. Picture is taken from (3). 
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Vesicles are then transported across to the cis-Golgi via the region between the ER 

and Golgi, the ER-Golgi intermediate compartment (ERGIC) (17, 18) (Figure 1). 

Hydrolysis by Sar1 destabilizes the COPII-vesicle coat, allowing fusion between 

vesicle and target membrane (19). Tethering factors, for example p115 and GM130, 

are recruited and tether vesicles to the acceptor membrane (20-22) while SNARE 

proteins, for example syntaxin-6 and Sec22B, mediate the membrane fusion of 

vesicles and target membrane (21, 23) (Figure 4). Early studies also suggest a role of 

Rab2 in anterograde transport, as an inactive form of Rab2 has a negative effect on 

transport of vesicles from the ER to the Golgi (24). To balance the anterograde 

transport of secretory cargo, organelle homeostasis requires retrieval of material. This 

recycling of membrane and protein components is accomplished via the retrograde 

trafficking pathway. 

1.1.3 Endocytic pathway  
 

 
Figure 5 Mechanisms of uptake in the cell. Picture shows phagocytosis that involves taking up of large 

particles, fluid uptake via macropinocytosis, clathrin-dependent endocytosis through the formation of 

clathrin-coated pits and various clathrin-independent (CI) pathways. Phagocytosis and 

macropinocytosis are both triggered by actin-mediated remodeling of the PM. CI pathways include 

caveolin-dependent endocytosis as well as clathrin- and caveolin- independent pathways. Some 

pathways traffic through intermediate compartments e.g. caveosome or glycosyl phosphatidylinositol-

anchored protein enriched early endosomal compartments (GEEC) before arriving at the early 

endosomal compartment. Dynamin is required in clathrin- and caveolin-dependent endocytosis as well 

as in certain clathrin- and caveolin- independent pathways. Picture is taken from (25).  
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1.1.3.1 Mechanisms of uptake  
 

Cells are in constant contact with their environment and extracellular materials are 

taken up via different endocytic routes including phagocytosis, macropinocytosis, 

clathrin-dependent endocytosis and various clathrin-independent endocytic pathways 

(Figure 5). Actin cytoskeleton remodeling and regulation are important for the 

function of all these endocytic processes (25). Phagocytosis involves internalization 

of large particulate material and is initiated by binding of the particle to a cell surface 

receptor. This leads to reorganization of the PM and associated cytoskeletal elements 

and finally culminates in particle engulfment. Macropinocytosis is a non-selective 

mode of endocytosis that engulfs fluids and all associated solutes surrounding the 

cells. Remodeling of the cortical actin cytoskeleton during macropinocytosis causes 

membrane spreading and ruffling and involves Ras, Rac, Cdc42, and Rho. 

Clathrin-coated pits are common entry points for cell surface receptors that bind 

ligands to be internalized, a process therefore also termed receptor-mediated 

endocytosis. Receptors, e.g. low-density lipoprotein receptor (LDLR), epidermal 

growth factor receptor (EGFR), transforming growth factor receptor (TGFBR), 

insulin receptor, and their respective ligands are internalized via this route (26-28). 

For the establishment of a clathrin-coated structure, Arf-GTP recruits specific 

phosphoinositides (PI) that favor the binding of clathrin adaptors to the membrane 

(29). Adaptor proteins also bind to cargo proteins by recognizing sorting signals 

found in their cytosolic domains (30, 31). Clathrin adaptors, for instance 

heterotetrameric AP2 complex (α-adaptin, β2-adaptin, μ2-chain, σ2-chain), form 

complexes onto which the clathrin coat is subsequently assembled.  Clathrin and the 

respective adaptor complex polymerize into cage-like structures and scission of the 

vesicle depends on accessory factors such as dynamins (31). Uncoating of the vesicle 

with the help of cytosolic chaperones Hsc70 and auxilin (32) then allows fusion of the 

vesicle with its target membrane. 

One of the most prominent clathrin-independent (CI) endocytic pathways is caveolae / 

caveolin-mediated endocytosis that relies on dynamin and involves membrane 

fractions enriched in sphingolipids, cholesterol, signaling proteins, and glycosyl 

phosphatidylinositol-anchored proteins (GPI-APs) (33, 34). Nevertheless, there is also 

a plethora of clathrin and caveolae-independent endocytic mechanisms that are not 

well characterized. Since there are no adaptors reported for recruiting cargoes in CI 
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endocytosis, cargoes are selected based on specific internalization signals with an 

example being ubiquitylation (35).  

1.1.3.2 Endosomal maturation  
 
Upon reaching the early endosome (EE), housekeeping receptors and certain proteins 

are recycled back to the PM, directly from EE via a Rab4-dependent mechanism or 

indirectly via recycling endosomes in a Rab11-dependent manner (36) (Figure 1).  For 

proteins traveling from EE to the TGN, the retromer complex mediates sorting of 

endosomal cargo destined for the TGN (37). This pathway will be discussed in more 

detail in the introduction section to Results Part 3.5 in this thesis. Proteins destined for 

degradation travel from the EE to the late endosomes (LE) (Figure 1). Vacuolar-

ATPase (v-ATPase), a multi-subunit proton pump acidifies EE and LE and the switch 

from early to late endosomes is driven by conversion from Rab5 to Rab7 (38, 39). 

Prior to degradation, proteins that need to be downregulated are sorted into luminal 

invaginations of the EE that pinch off as cargo-containing intraluminal vesicles 

(ILVs). EEs with ILVs form free multivesicular bodies (MVBs), eventually fusing 

with LE (Figure 1). This is mediated by ESCRT complex (ESCRT 0, I, II and III) that 

recruits the receptor to be downregulated into ILVs (40, 41). Upon reaching the LE 

stage, fusion with lysosomes forms endo-lysosomes that mature into lysosomes (42).  

1.1.4 Golgi to ER trafficking  
 
At the cis-Golgi, COPI mediates retrograde transport from Golgi to ERGIC and then 

to the ER (Figure 1). COPI vesicle formation begins by recruitment of GBF1, the 

Arf1 guanine nucleotide exchange factor (GEF). This process requires the presence of 

phosphatidylinositol-4-phosphate (PI4P) (43-45). Localization of GBF1 determines 

the location of small GTPase Arf1 activation. Upon activation of Arf1, it is recruited 

to the Golgi where it initiates binding of the heptameric coat complex, the coatomer. 

The tetrameric complex of β-COP, γ-COP, δ-COP, and ζ-COP constitutes the inner 

core of the coat, while the trimeric complex of α-COP, β’-COP, and ε-COP forms the 

outer layer of the coat and imposes membrane deformation (46, 47). Coatomer 

subunits α-COP, β’-COP, γ-COP and δ-COP recognize sorting motifs in the cytosolic 

domain of membrane cargoes and mediate incorporation of these cargoes into COPI 

vesicles (48) (Figure 6). Finally, ArfGAP 2/3 stimulate GTP hydrolysis by Arf1 (49-

51), allowing release of Arf from the complex and subsequent coat dissociation. Rab1 
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GTPase is involved in the retrograde transport of COPI vesicles from Golgi to the ER, 

with tethering complex syntaxin 18 and SNARE proteins allowing subsequent fusion 

with the target membrane to occur (52, 53).  

 

 
Figure 6 Heptameric COPI complex and action. ARF is activated by GEF after which it mediates 

recruitment of COPI coat. Cargo sorting motif is recognized by COPI coat that incorporate these 

cargoes into the vesicle. Picture is taken from (16). 

 

The GAPDH interacts with Rab2 and has also been shown to be required for 

retrograde transport from Golgi to ER, with Rab2 modulating protein transport by 

recruiting GAPDH that is able to form an active complex with PKCι /λ and COPI, 

localizes to vesicular and tubular clusters (VTC) between the ER and the Golgi (54). 

There is also the COPI-independent pathway that transports proteins from Golgi to the 

ER via a Rab6A-dependent pathway (55) or a Rab6-COPI independent (56) pathway, 

mainly utilized by toxins and functioning in parallel to the classical COPI retrograde 

pathway. 

1.1.5 Trafficking pathways and pathogenesis 
 

Pathogens invade host cells to escape the host immune’s response and to take 

advantage of the nutrient sources available in the cell. Endocytic pathways are 

exploited to reach the cell interior where interaction with different compartments of 

the cell occurs. This promotes the subsequent arrival at their final destination. The 
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interaction of pathogens with the host’s intracellular pathway at different stages will 

be introduced briefly in this section.  

Bacterial pathogens secrete toxins into the host cells to subvert the functions of the 

host. A few prominent examples include Shigella dysenteriae and enterohemorrhagic 

Escherichia coli that secrete Shiga toxin, and Vibrio cholera that secretes cholera 

toxin. These toxins contain two subunits A and B, with B subunit binding to specific 

glycolipids of the host cell (57) and A subunit disrupting protein synthesis via binding 

to the ribosome. Due to its toxicitiy, B subunit only of these toxins is commonly used 

in the field of biological research. Shiga toxin subunit B (StxB) is internalized by 

clathrin-dependent and CI endocytosis (58-60) and cholera toxin subunit B (CtxB) via 

a caveolae-independent route (61). Upon internalization, toxins are transported along 

the retrograde pathway via a Rab6A-dependent pathway (55). Escape of Stx from the 

early endocytic pathway to enter the retrograde pathway depends on clathrin (59), its 

adaptor epsinR (62) and the retromer complex (63). Upon binding of Stx to its 

receptor Gb3, the delta isoform of the protein kinase C (PKC δ) gets activated. This 

goes along with rapid phosphorylation of the clathrin heavy chain (CHC) that is 

regulated by spleen tyrosine kinase (Syk). These processes are important for transport 

of Stx from early endosomes to the Golgi (64, 65). The plant toxin ricin also enters 

the cell via clathrin-dependent and -independent pathways (66) and is retrogradely 

transported to the ER. However, transport of ricin to the ER is highly inefficient with 

only 5% of toxin arriving at the ER while the rest is recycled back to the cell surface 

or degraded in the lysosomes (67). Only a subset of host components is shared 

between the ricin and Shiga toxin for their transport to the ER (68). 

Several bacterial pathogens such as Mycobacteria tuberculosis and Brucella enter the 

cell via phagocytosis in an unspecific uptake process together with extracellular fluid. 

Since only a subset of cells is able to perform phagocytosis, bacteria have also 

developed strategies to actively induce uptake into non-phagocytic cells. This 

generally occurs either via the trigger or the zipper mechanism (69). The trigger 

mechanism is used by Salmonella enterica, Shigella flexneri, and Pseudomonas 

aeruginosa. Bacteria bind to specialized lipid membrane microdomains that are 

enriched in cholesterol and sphingolipids, activating their type III secretion system 

that leads to translocation of effectors into the host cytosol (70-72)(Figure 7). These 

factors manipulate the host signaling and cytoskeleton organization in a way to 

facilitate and promote bacterial uptake. The zipper mechanism that is used by Listeria 
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monocytogenes and Yersinia pseudotuberculosis instead engages specific receptors of 

the target cell, leading to moderate actin remodeling and less dramatic alteration of 

the host cell surface. In the case of Listeria infection, these surface molecules are E 

cadherin and Met (73, 74) (Figure 7). 

 

 
Figure 7 Mechanisms of bacterial invasion. Representation of trigger mechanism and zipper 

mechanisms that are used by Shigella, Listeria, and Yersinia respectively during invasion of host cells. 

Picture taken from (69) and adapted. 

 

Clathrin, dynamin, and several other components of the endocytic machinery have 

been shown to colocalize with the bacterial entry site and are essential for invasion of 

Listeria monocytogenes (75). While clathrin is crucial for internalization of ‘zippering’ 

bacteria, it is not required for entry of ‘triggering’ bacteria (76). There are also 

pathogens that cannot be unambiguously assigned to one or the other uptake 

mechanism. In the case of Bartonella henselae for instance, the bacterium requires 

interactions with integrin β1 and activation of this receptor (77) – a characteristic of 

the zipper mechanism. However, B. henselae also translocates effectors that lead to 

bacterial aggregation, their engulfment and internalization by a unique actin-

surrounded structure termed ‘invasome’ (78).  
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1.2 Brucella-host interactions 
 

1.2.1 The genus Brucella  
 

Brucella is a gram negative, facultative intracellular pathogen that belongs to the 

alpha-2 subdivision of Proteobacteria that includes other intracellular pathogens such 

as Agrobacterium tumefaciens, Rickettsia, and Bartonella species. It is a zoonotic 

pathogen that infects humans as incidental host. 11 species of Brucella have been 

described thus far (79, 80) (Table 1) with a wide range of reservoir hosts, of which 6 

were shown to be pathogenic to humans. These include Brucella melitensis that 

infects goats, sheep, and camels as natural hosts, Brucella suis that infects pigs and 

Brucella abortus that causes bovine brucellosis. These three species are responsible 

for most of the reported infections in humans. Brucella canis (dogs), Brucella ovis 

(sheep and rams) and Brucella neotomae (desert wood rats) are of lower pathogenicity 

to humans (81).  

 

 
Table 1 Brucella species with their host preference and zoonotic potential. Table is taken from (81). 

 

Brucella causes animal and human brucellosis, being the most important zoonotic 

bacterial pathogen with about 500,000 new human cases annually worldwide (82). 

Brucella is transmitted to humans via aerosols, direct contact with infected animals, or 

ingestion of contaminated food products while human-to-human transmission has not 

been reported. In animals, brucellosis leads to sterility, abortion or the birth of weak 

offspring due to the infection of the reproductive organs (81). In humans, Brucella 
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causes a febrile disease with relatively unspecific symptoms such as undulant fever 

and body aches (Malta fever). Without treatment, this can lead to a chronic infection 

of persistent bacteremia, endocarditis, or meningitis. There is currently no vaccine 

available for humans and treatment includes a combination of different antibiotics for 

a long period of time (83). Hence, Brucella causes significant economic losses and is 

a global health problem in endemic areas.  

 

1.2.2 Brucella and different hosts cell types 
 

In the animal or human hosts, Brucella enters mainly through the mucosa, wounds or 

the digestive tract. From the stomach, Brucella enters via Peyer’s patches and M cell 

could be a route for bacteria to dissemination from the mucosal surface (84, 85). Upon 

entering the bloodstream and regional lymph nodes, Brucella is then able to spread 

systemically throughout the host via interaction with macrophages, dendritic cells 

(DCs), or neutrophils (86-91). Macrophages are the predominant cell type that is 

infected in both natural and human hosts. The ability to persist in this phagocytic cell 

enables Brucella to cause a chronic and long lasting infection. Brucella that can 

persist inside host cells is able to replicate intracellularly. This leads to large bacterial 

titers in infected organs such as the liver and spleen. It has also been shown that 

alveolar macrophages are a replicative niche and important for initial containment of 

bacteria in the lungs. Artificial reduction of alveolar macrophages results in an 

increase in infected pulmonary DCs and massive recruitment of TNF-alpha and 

inducible nitric oxide synthase (iNOS) producing DCs (92). 

In addition to phagocytic cells, Brucella is able to infect various non-phagocytic cells. 

In pregnant ruminants, Brucella replicates within the rough endoplasmic reticulum 

(ER) of trophoblastic epithelial cells (88).  Colonization of the reproductive organs 

causes abortion in these pregnant animals. Brucella also infects the mammary glands, 

endocardium, brain, joints, bones, and persistently colonizes the reticuloendothelial 

system (81).  

In vitro studies of Brucella host-pathogen interaction are mostly performed with 

cultured murine, bovine, or human cells, including epithelial cell lines, macrophage 

cell lines, and trophoblastic cell lines.  In macrophages, 90% of internalized Brucella 

is degraded soon after phagocytosis while a few bacteria manage to escape 
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intracellular killing and proliferate. Even though activated macrophages are more 

efficient in killing Brucella (93-95), virulent wild type Brucella is still able to 

replicate at later time points in this system (96). To validate studies in vitro, there are 

also mouse experimental model of brucellosis available. 

1.2.3 Brucella intracellular trafficking 

 

 
 
Figure 8 Brucella entry and intracellular trafficking in the host. MVB : multivesicular bodies, VTC : 

vesicular tubular clusters. Green box represents bacterial factors involved. Picture is taken from (86). 
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1.2.3.1 Adhesion and entry  
 
In both macrophages and epithelial cells, adhesion of Brucella is mediated by 

interaction of surface protein 41 (SP41) with sialic acid residues present on eukaryotic 

receptors (97) (Figure 8). Brucella is also able to bind to fibronectin and vironectin 

(98). While the receptor for vironectin remains unknown, the large monomeric 

autotransporter BmaC was shown to promote binding to extracellular fibronectin in 

non-phagocytic cells (99). Additional bacterial factors involved in adhesion and 

internalization include the efp gene (100) and a pathogenicity island that harbors a 

bacterial immunoglobulin-like protein (101). 

In non-phagocytic cells, Brucella enters the host via receptor-mediated phagocytosis 

(102, 103) through unknown receptors, a process that requires F-actin recruitment, 

activity of Rac and Rho, and direct activation of Cdc42 (104) (Figure 8). In 

trophoblast giant cells, entry depends on the surface protein Hsc70 and ezrin that 

interacts with Hsc70, tethering actin filaments to the PM (105).  

In macrophages, studies have been done with both opsonized and non-opsonized 

Brucella. The uptake of non-opsonized Brucella requires lipid rafts (106-108). 

Bacteria are internalized due to membrane ruffling at the cell surface for a few 

minutes, a process that is dependent on phosphoinositide-3-kinase (PI3K) activity 

(109). Glycophosphatidylinositol (GPI) anchored proteins, GM1 ganglioside, and 

cholesterol are then selectively incorporated into the macropinosomes (106). Three 

macrophage receptors are implicated in Brucella uptake: class A scavenger receptor 

(SR-A) which interacts with LPS (110), Toll-like receptor 4 (TLR4), and potentially 

the cellular prion protein (PrPC) which interacts with Hsp60 of Brucella abortus (105, 

109, 111) (Figure 8). The role of PrPC receptor on Brucella infection is still 

controversial as a separate study failed to show its involvement in entry in 

macrophages (112).  

For opsonized Brucella, uptake is independent of lipid rafts (108) and depends on Fc 

receptors for IgG. Even though entry is strongly enhanced, opsonized Brucella is 

unable to replicate as efficiently as non-opsonized Brucella as they replicate in a 

vacuole that lacks ER markers (113). Therefore, different uptake mechanisms result in 

different trafficking routes or intracellular fates in macrophages.   
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1.2.3.2 Trafficking along the endocytic pathway and VirB type IV secretion system 

(T4SS) 

Upon internalization into phagocytic or non-phagocytic cells, Brucella containing 

vacuoles (BCVs) traffic along the endocytic pathway, interacting transiently with 

early endosomes containing Rab5, early endosomal antigen (EEA1), and transferrin 

receptor (TfR) (113-115) at 10 minutes post infection. Early BCVs are also positive 

for flotillin-1, a component of lipid raft (Figure 8). Cyclic beta-1,2-glucan present in 

the periplasm of Brucella modulates the organization of lipid rafts and is important 

for maturation of BCVs (116) (Figure 8). Afterwards, BCVs interact with the late 

endosomal markers Rab7, Rab7’s effector Rab-interacting lysosomal protein (RILP), 

and Lamp1 (117)(Figure 8), and transiently with the autophagosomal marker 

monodansylcadaverin (115). Interaction with late endosomal markers is important 

since Brucella fails to replicate in an ER-like compartment in cells expressing 

dominant negative Rab7 (117).  

 

 
Figure 9 BCV and ER markers. D) confocal image of dendritic cells infected for 24 h with GFP-

expressing Brucella, and labeled with MHC II (blue) and KDEL (red) antibodies. E) cytochemistry for 

glucose 6 phosphatase detection F) immunogold labeling with anti-calnexin antibody. Figure and figure 

legends are taken from (118) 
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Early acidification of BCVs is crucial for the expression of the VirB type IV secretion 

system (T4SS) (119, 120). It is believed that secretion of still unknown effectors 

during early trafficking is important for Brucella to avoid fusion with lysosomes since 

Brucella virB mutants are degraded in lysosomes. Brucella that manages to divert 

from the endocytic pathway interacts with the secretory pathway and finally replicates 

in an endoplasmic reticulum (ER) derived replicative niche (Figure 9) (114) (Figure 

8). During the first hours of infection, most BCVs are only Lamp1 positive while at 2-

8 hours post infection (hpi), BCVs start to acquire ER markers such as calnexin in 

addition to Lamp1. BCVs then gradually lose Lamp1 and at 24 hpi most BCVs are 

negative for Lamp1 but retained the ER marker (114). Despite the acidification of the 

BCV and interaction with late endosomes, Brucella avoids cathepsin D, suggesting 

that they do not fuse with lysosomes (114, 121). 

1.2.3.3 Survival in the replicative niche and egression 
 
Several factors have been shown to be important for Brucella interaction and survival 

within its replicative niche. The small GTPase Sar1 regulates budding of transport 

vesicles from ER exit sites (ERES) to be transported to the Golgi. Inhibition of Sar1 

activity results in disruption of ERES and blocks intracellular replication of Brucella 

by preventing its interaction with the ER (122). Therefore, Brucella initiates contact 

with the ER at ERES via interaction with Sar1 and the COPII complex (Figure 8). The 

VirB T4SS has also been shown to be important for sustained interaction of Brucella 

with the ER (114).  

The small GTPase Rab2, a protein that is required for maturation of the ER-Golgi 

intermediate compartment (ERGIC) has been found through proteomics studies to be 

present on the BCV membrane. Inhibition of Rab2 prevents the fusion of BCVs with 

ER-derived vesicles and BCVs retain Lamp1 (123). The GADPH / COPI / PKC / 

Rab2 complex forms vesicular tubular clusters (VTCs) that control vesicular 

trafficking from Golgi to ER in the ERGIC (Figure 8). All members of this complex 

are required for intracellular replication of Brucella (123), suggesting that BCVs 

interact with VTCs and may intercept with the retrograde trafficking pathway. The 

Brucella effector RicA has been shown to interact with Rab2-GDP via a yeast two-

hybrid screen (Figure 8). However, the role of this interaction has to be further studied 

(124). Taken together, components of both retrograde as well as anterograde vesicular 

trafficking were found to be involved in intracellular trafficking of Brucella.  
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Once Brucella reaches its replicative niche, it replicates extensively without 

disrupting host cell integrity. Apoptosis is inhibited in infected cells via down-

regulation of gene expression in mitochondria that is normally responsible for 

apoptosis induction (125), and up-regulation of BCL2, a member of the anti-apoptotic 

pathway (126). Inositol-requiring enzyme (IRE1-alpha), a kinase that regulates host 

cell unfolded protein response is also crucial for Brucella replication in insect or 

mammalian cells (127) (Figure 8). However, its precise role in this process is 

unknown. 

Spreading of bacteria from an infected cell to neighboring cells has not been 

investigated in detail, with the exception of a recent study that showed the 

involvement of autophagy initiation proteins. Autophagy initiation proteins ULK1, 

Beclin 1, ATG14L, and PI3K activity are required for conversion of the BCV to a 

compartment with autophagic features (aBCV). This conversion is independent of 

autophagy elongation proteins ATG5, ATG16L1, ATG4B, ATG7, and LC3B. aBCV 

then completes the intracellular life cycle of Brucella  by facilitating its egress from 

the host, leading to cell-to-cell spreading (128).   

1.3 Systems biology  
 

Systems biology is an interdisciplinary biology-based approach that focuses on 

complex interactions within biological systems, using a more holistic approach 

compared to traditional reductionism strategies to study the properties of for example, 

a cell, tissue or organism as a system (129). In systems biology, the study of complex 

biological systems involves integration of various experimental and computational 

methods. With the advancement of technology and robotics, different ways of 

systematically perturbing the biological system (e.g. genetically or chemically) or 

acquiring biological information (e.g. transcriptomics, proteomics, metabolomics) 

could be performed in a high-throughput manner. Quantitative measurements in the 

large biological datasets are efficiently evaluated using high computing power. Such 

comprehensive data allows development of mechanistic, mathematical and 

computational models, further generating hypotheses for experimental validation. Due 

to the complex interplay between different components in a biological system, 

systems biology studies are much more informative than the reductionist approach, 
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yielding results that cannot be predicted when studying the individual components on 

their own (130).  

1.3.1 RNA interference (RNAi)  
 

RNAi is a natural RNA-dependent gene silencing process in which RNA molecules 

bind and destroy their complementary mRNAs, thereby inhibiting gene expression. 

This phenomenon was first described using the model organism Caenorhabditis 

elegans in 1998 where they found that introducing double stranded RNAs (dsRNAs) 

led to tenfold more effective silencing than the sense or anti-sense alone (131). 

Subsequently, RNAi was described as a potent anti-viral defense in plants (132) and 

later on this mechanism of gene silencing was also shown in organisms for example 

trypanosomes (133), flies (134), and vertebrates (135).  

 

1.3.1.1 RNAi mechanism 
 
RNAi pathway is normally initiated by an enzyme Dicer (136) that binds and cleaves 

long double stranded RNA molecules into short double stranded RNA fragments of 

around 20 nucleotides in length (137), with a 2-nucleotide overhang at the 3’-end. 

These shorter fragments are then separated into single stranded RNAs (ssRNAs), the 

so-called passenger and guide strands. The passenger strand is degraded while the 

guide strand gets incorporated into the RNA-induced silencing complex (RISC) (138). 

The incorporated guide strand base pairs with its complementary mRNA molecule 

and recruits RISC to the target mRNA. The cleavage of the target mRNA is then 

induced by Argonaute, the catalytic component of the RISC complex (138, 139). This 

process causes destruction of the mRNA, prevents protein production and is thus a 

gene silencing mechanism at a translational level (Figure 10).  
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Figure 10 RNAi mechanism. shRNA is transduced into the host via viral vectors, after which it 

integrates with the host DNA. Expression in the nucleus allows shRNA to be processed by Drosha and 

exported by exportin-5 to the cytoplasm. There, it associates with Dicer and the loop sequence is 

removed, giving a product that is the same as siRNA introduced through transfection. Afterwards, it 

associates with the RISC complex and one of the RNA strands is removed. Next, it targets 

complementary RNA sequence, resulting in RNA degradation and gene silencing. Picture is taken from 

(140). 

1.3.1.2 Small interfering RNA (siRNA), enzymatically generated siRNAs 

(esiRNA), short hairpin RNA (shRNA) and microRNA (miRNA) 

In mammalian cells, there are several types of RNA molecules that are involved in 

RNAi: siRNA/esiRNA, shRNA, and microRNA. In vivo, mRNA transcripts can be 

regulated by basepairing with endogenous miRNA or siRNAs. Artifically, a similar 

effect could be produced with the addition of different exogenous small RNA species 

for example siRNA, esiRNA and shRNA. miRNA targets multiple mRNA of the host 

due to its ability to recognize target mRNA with only the 6-8 nucleotides (the seed 

region) at the 5’ end of the miRNA(141).  

siRNA is formed from shRNA or long dsRNA molecules by the Dicer enzyme 

(Figure 10). It is a short dsRNA molecule (21 bp in length) and can be introduced 

 
22 



Introduction 

directly into the RISC complex as described above. esiRNA instead are  produced in 

vitro from long dsRNA which are digested into short dsRNAs by Dicer or RNase III. 

This produces a mixture of short RNA molecules targeting a gene of interest (142). 

Both types of RNA molecules are short-lived in target cells and hence relatively high 

doses in the nanomolar range are required. Generally, these molecules are delivered 

into the host cell by lipid-based transfection and are therefore not suitable for difficult 

to transfect cell lines e.g. primary cells or macrophages.  

Alternative to transfection-based delivery, shRNA can be introduced into the host via 

viral or bacterial vectors (Figure 10). In the context of this work, only delivery via the 

lentiviral vector will be discussed. Lentiviruses containing a DNA construct that 

encodes for the shRNA are used to transduce the host, after which the DNA gets 

delivered into the nucleus and integrates in transcriptionally active sites within the 

host genome. Afterwards, shRNA is transcribed, resulting in pre-shRNA that is 

exported from the nucleus by Exportin 5 (143). Cytoplasmic pre-shRNA is then 

processed by Dicer to form siRNA molecules that are loaded into the RISC complex 

and follow the RNAi pathway as described above for siRNA-mediated gene silencing 

(Figure 10). Compared to siRNA, lentiviral delivery of shRNA and integration into 

the host allows lower dosage and stable, long lasting gene silencing. Transduction 

also allows introduction of the shRNA into a variety of cell types, including those that 

are not amenable to siRNA transfections (144, 145). 

1.3.1.3 RNAi as a tool – pros and cons  
 
In the field of biological research, RNAi is a very widely used tool to study the 

function of certain genes by reducing their expression. The RNAi technique is 

nowadays developed to a degree that can be used in in vivo model organisms (146), 

with major applications still being in cell culture setups (147). In cell cultures, 

exogenous or synthetic RNA is introduced as short RNA molecules (137) since longer 

dsRNA molecules are identified as foreign and induce mammalian interferon response 

(147-150). With the availability of genome-wide siRNA libraries targeting the mouse 

and human genomes, comprehensive studies of gene function can be performed. 

RNAi screens have been established in many systems e.g. Caenorhabditis elegans, 

Drosophila cultured cells and mammalian cell lines (151-153). Introducing RNAi into 

an inducible system also allows study of the gene of interest in a time-resolved 

manner. 
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RNAi is a popular tool for loss-of function experiments due to its ease of use, 

efficiency, and relatively affordable cost compared to the knockout technology that 

only works for selected organisms and requires years for characterization of the 

mutant. It is also more advantageous than overexpression of dominant negative 

mutants that normally does not reflect the true endogenous function of the protein of 

interest and is difficult to be studied in a high-throughput manner. Due to its 

promising potential in treatment of viral infections, cancers and neurodegenerative 

diseases (154) and its ability to be delivered systemically in liposomal formulation 

into non-human primates (155), RNAi is a potential new class of drugs. 

Despite all its benefits, RNAi technology has its limitations.  Major concerns with 

RNAi include incomplete loss of function of the gene that could lead to a phenotype 

different from a knockout condition. Also, the non specific base-pairing of RNA 

oligos with mRNA molecules of a similar but not identical sequence may lead to 

undesired off-target effects (156, 157). Therefore, knockdowns are often done with 

many siRNAs to corroborate the observed phenotype and minimize the risk of 

following an off-target phenotype. In this respect, it has been shown that pooling of 

siRNAs is beneficial in rendering greater phenotypic penetrance compared to 

individual oligos (158, 159). In some cases, siRNA could also activate the interferon 

system of the cell (150), potentially affecting gene expression in a much broader scale. 

shRNA expression has also been reported to interfere with the endogenous microRNA 

pathways and causes non-specific fatality in mice (160). Therefore, with the current 

limitiations of RNAi, such experiments always require validation with RNAi- 

independent methods and different methods are available to identify off target effects 

of this technology (157, 161). Titration experiments to obtain the minimal amount of 

siRNA needed for maximum efficiency is also useful to obtain the least off-target 

effects from this technology. 

1.3.2 Genome-wide RNAi screening to study systems-level host 

pathogen interaction 
 

1.3.2.1 RNAi screening for host factors important for viral and bacterial 

pathogens 

RNAi-based genome-wide screens have been performed extensively to study bacterial 

or viral pathogen interactions with the host (162-177). These screens have uncovered 
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host-signaling pathways that are hijacked by the pathogens during different stages of 

their intracellular cycle e.g. invasion (165), modulation of phagosomal maturation 

(166), phagosomal escape or release to the cytosol (162, 170, 172), and replication 

(162, 166, 170, 171, 173, 175). Many screens are done and compared between 

different pathogens (163, 164, 167-169) to distingush general pathways from 

pathogen-specific pathways. In light of the increasing problem of antibiotic resistance 

developed by bacterial pathogens due to inappropriate usage of antibiotics, the 

understanding of host signaling pathways hijacked by pathogens becomes essential in 

revealing host factors that could be targeted as an alternative to the antibiotic regime.  

However, there is a common problem in the RNAi field studying host-pathogen 

interactions that there is very little overlap between the genes that are identified from 

each screen (178-181). One example is the four RNAi screens (174-177) that all 

sought to identify cellular genes important for HIV-1 infection or replication. 

Comparison of these four screens showed genes that are significantly similar in their 

effect on the HIV-1 infection process, even though not more than 3-6% of genes are 

shared between two screens and only three genes are identified in all three screens 

(179). Such low overlap is largely due to variable experimental procedures followed 

in different studies, including the difference in the choice of cell type and siRNA 

library, as well as the viral strain used. Furthermore, another factor includes the length 

of siRNA treatment and the exposure time of cells to the virus. The latter determines 

whether only the early or entire infectious cycle is covered by the assay (178, 179). 

Different analysis and hit selection procedures are also a source of variation between 

screens (178, 179). Analyses showed a much greater overlap when whole cellular 

processes and protein complexes that are populated by the identified host factors are 

compared between screens (179). Therefore, it is useful to perform functional analysis 

of RNAi data (182, 183) than having a focused study of individual genes. Efforts to 

standardize RNAi experiments, improve reagents and analysis methodologies might 

also allow better comparability between screens of different origin (178, 179). 

1.3.2.2 High content microscopy and multiparametric analysis in RNAi screening  
 
With the availability of automated microscopes, imaging of RNAi screens in a high-

throughput manner became possible, which enables the acquisition of highly resolved 

spatial and temporal aspects of the investigated process (184, 185). Upon data 

acquisition, normalization steps to correct for experimental variations, e.g. plate-to-
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plate variations are executed before further analysis of the images. Using image 

processing tools e.g. CellProfiler, different objects in the pictures can be identified 

and segmented. Such objects are then used to extract different features e.g. bacterial 

colony size, cell shape, and actin texture (186). Various quantitative measurements 

could then be based on these features, allowing analysis on a cell population as well 

as single cell level. Computational methods that are available allow multidimensional 

data interpretation as well as supervised machine learning, automatically classifying 

different cellular and subcellular phenotypes (187-191).  
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2. AIM OF THESIS  
 
Started in July 2010, the aim of my thesis was to systematically identify host factors 

involved in Brucella entry, trafficking and replication and to perform follow-up 

studies on interesting pathways that are involved in Brucella infection. To this end, I 

performed a high-throughput, microscopy based genome-wide siRNA screen in HeLa 

cells. A few signaling pathways were selected for validation with siRNA-independent 

methods and to understand the molecular function during infection. Being a part of 

the InfectX consortium that consists of five bacterial pathogens and three viral 

pathogens performing the same genome-wide screens, the aim of the project was also 

to compare our results between pathogens and to identify shared or unique hits. 

Moreover, I developed tools consisting of stable cell lines expressing various 

fluorescently labeled cellular compartmental markers. The aim was to use these cell 

lines to understand the intracellular trafficking pathway of Brucella and to dissect the 

step that is affected upon knockdown of specific genes of interest. It was also aimed 

to use these cell lines to study Brucella trafficking with fluorescence microscopy, live 

cell imaging and electron microscopy studies.    
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3. RESULTS  
 

3.1 RESEARCH ARTICLE I  
 
 
Specific inhibition of diverse pathogens in human 

cells by synthetic microRNA-like oligonucleotides 

inferred from RNAi screens.  
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3.1.1 Summary  
 
 
High-throughput RNA interference (RNAi) screens are often used to study at a 

systems level host factors that are involved in a certain process. However, high levels 

of false positive in siRNA screens are often associated with sequence-dependent off-

target effects (1). This is mainly due to the ‘seed’ region of 21-nucleotide siRNA 

(nucleotide 2-8), which is sufficient to recognize its target, even though there is low 

complementarity in the rest of the sequence (2). The binding of the oligo to multiple 

transcripts results in perturbation of many genes simultaneously, similar to the effect 

of a microRNA. In this study, genome-wide siRNA screens from three pathogens 

(Brucella, Salmonella and Uukuniemi) as well as kinome screens from Brucella and 

Salmonella were used to study seed-mediated off-target effects. It was shown that 

majority of the siRNA phenotype is off-target dictated, with relatively less correlation 

to the on-target effect. Quantitative analysis allowed prediction of seeds that block or 

increase infection. The effect of these seeds could be confirmed with independent 

experiments using custom ordered sequences, with a mutation at the seed completely 

abolishing the phenotype. Furthermore, seed sequences with no matching on-target 

sequence were still able to reproduce the predicted phenotype. Therefore, this 

suggests that RNAi screens are off-target driven. All together, this study provides a 

possible way to predict seed reagents that have an effect on the phenotype of interest, 

allowing us to identify and address off-target effects that are present in RNAi screens. 
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3.2.1 Summary 
 

High-throughput RNAi screens are often performed in this era to knockdown host 

factors at a systems level, allowing the study of biological process of interest. 

However, not many of the siRNA screens published thus far were compared. Also, 

there is generally poor reproducibility between similar screens using siRNA libraries 

from different vendors, suggesting strong off-target effects in the RNAi screening 

field [1]. With this, a statistical model named Parallel Mixed Model (PMM) was 

developed that allows analysis of multiple RNAi screens, performed with a shared 

library. Eight different pathogen screens and four different commercially available 

libraries were used for the analysis. Finally, it was shown that PMM is able to 

improve the statistical power and hit identification compared to other methods. This 

suggests the advantage of having parallel screening. PMM allows incorporation of 

RNAi weights according to the quality of the siRNA. Furthermore, PMM also 

estimates a sharedness score, allowing identification of unique or common genes 

between the pathogens. All in all, PMM promises a statistical model for better 

analysis and comparision between high-throughput RNAi screens. 
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Abstract 
 
Brucella is an intracellular zoonotic pathogen that causes animal and human 

brucellosis worldwide. As natural hosts, Brucella infects various animal species 

including cows, goats, and pigs, causing abortion and birth of weak offspring. 

Humans are infected as incidental hosts, causing a febrile disease known as Malta 

fever that can develop into chronic infections with more severe symptoms such as 

endocarditis or meningitis. Therefore, brucellosis is a significant threat to the 

economy and general health in endemic areas. Brucella is able to invade phagocytic 

and non-phagocytic cells and replicates in an intracellular compartment known as the 

Brucella-containing vacuole (BCV). Following entry into a host cell, the BCV traffics 

along the endocytic pathway and despite interacting with endo-lysosomal 

compartments, degradation in these compartments are avoided. At later stages of 

infection when intracellular proliferation occurs, the BCV is found in close 

association with the endoplasmic reticulum (ER).  Despite many advances in the field, 

the molecular mechanisms on how Brucella enters cells, avoids lysosomal 

degradation, and finally establishes an intracellular niche remain largely unknown. To 

study Brucella entry and replication in human cells, we performed a genome-wide, 

high-throughput microscopy-based RNA interference (RNAi) screen in HeLa cells. 

This allowed us to unravel host signaling pathways involved in Brucella infection, 

which includes actin-remodeling pathway, transforming growth factor (TGF-β) or 

fibroblast growth factor (FGF) signaling, ER-Golgi bidirectional transport, and some 

components of the endocytic pathway. To dissect the stage of infection that is 

regulated by these signaling pathways, a high-throughput entry assay was developed 

to study early stages of Brucella infection. We showed that TGF-β and FGF signaling 

pathways are involved in Brucella entry into non-phagocytic cells. Furthermore, we 

identified a novel host factor, Vps35 that is a component of the retromer complex 

involved in endosome to Golgi transport, to be involved in a post-entry process during 

Brucella infection.  
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Introduction  
 
Brucella is a facultative intracellular zoonotic pathogen that infects humans as 

incidental host. Brucella causes animal and human brucellosis, with about 500,000 

new cases of human brucellosis annually worldwide (1). This places Brucella as the 

most important zoonotic bacterial pathogen with Brucella melitensis, Brucella 

abortus and Brucella suis being the most common species that have been reported to 

cause human infections (2). Transmission of Brucella occurs via direct contact with 

infected livestock, ingestion of contaminated food products, or aerosol inhalation. 

Direct human-to-human transmission has not been reported thus far. In animal 

brucellosis, the infection of reproductive organs causes abortion or the birth of weak 

offspring. Human brucellosis on the contrary is associated with a febrile disease 

commonly known as Malta fever. Without treatment, Brucella can cause a chronic 

infection in various organs and lead to more severe symptoms such as endocarditis or 

meningitis (2). There is currently no effective vaccination for humans and even a 

complex antibiotic treatment for a prolonged duration is not able to completely 

protect against relapses (3). Therefore, Brucella remains a significant threat to the 

economy as well as public health in endemic areas.  

Brucella infects phagocytic as well as non-phagocytic cells where bacteria replicate 

and persist inside the host. Bacteria adhere to the host cell surface via interaction with 

sialic acid residues that are present on eukaryotic receptors or bind to fibronectin and 

vironectin (4, 5). Internalization then requires actin remodeling via activity of Rac, 

Rho, and direct activation of Cdc42 (6). Upon internalization, Brucella is contained 

within a vacuole termed Brucella containing vacuole (BCV) that interacts with the 

early endosomal markers Rab5, early endosomal antigen (EEA1), transferrin receptor 

(TfR), as well as flotillin-1, a component of lipid rafts (7-10). Next, BCV interacts 

with the late endosomal markers Rab7, Rab7’s effector Rab interacting lysosomal 

protein (RILP), Lamp1, and transiently with autophagosomal markers (9, 11). 

Acidification of the BCV upon reaching a late endosomal compartment serves as a 

trigger for the expression of the VirB type IV secretion system (T4SS) (12, 13). The 

T4SS is believed to secrete yet unknown effectors that are essential for Brucella to 

avoid fusion with lysosomes, since VirB mutants are degraded in phagolysosomes (7, 

14). Brucella that manage to divert from the endocytic pathway are then able to 

interact with the ER at ER exit sites (ERES) via interaction with the small GTPase 
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Sar1 and the COPII complex (7, 15). In addition, the small GTPase Rab2 was found 

to interact with the Brucella effector RicA. Rab2 controls vesicular-trafficking from 

Golgi to ER in the ER-Golgi intermediate compartment (ERGIC) and is required for 

fusion of BCVs with ER-derived vesicles and intracellular replication of Brucella (16, 

17). This indicates that anterograde as well as retrograde trafficking components are 

required during infection. The VirB T4SS has also been shown to be important for a 

sustained interaction with the ER (7). Once in its replicative niche, Brucella requires 

the host factor inositol-requiring enzyme (IRE1-alpha) that regulates host cell 

unfolded protein response (18). To complete the infectious cycle, autophagy initiation 

proteins were recently shown to be vital for Brucella egression and cell-to-cell 

spreading (19). 

Despite various efforts to understand the interaction of Brucella with host cells, 

relatively few host factors are known and many open questions remain. It is still 

unclear whether Brucella exploits host cell receptors to invade non-phagocytic cells 

and the role of T4SS effectors or their interacting partners at various stages of the 

intracellular life cycle of Brucella remains an open question. It is known that Brucella 

diverts from the endocytic pathway to reach an ER-derived compartment. However, 

the details of this process are still unclear. Furthermore, host factors that are needed 

for the maintenance of the BCV in its replicative niche are still largely unexplored. To 

understand in a systems level the host factors that are involved in Brucella entry and 

replication, we performed a genome-wide RNA interference (RNAi) screen targeting 

the human genome in HeLa cells. This revealed novel host pathways involved in 

Brucella infection. Efforts were taken to separate the identified components into 

different stages of the Brucella intracellular life cycle, allowing us to unravel Vps35, 

a novel host factor which is a component of the retromer complex to be involved in a 

post-entry step of the infection cycle. 
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Results  
 

A high-throughput microscopy-based RNA interference (RNAi) assay for 

Brucella infection of human cells  

To identify host factors involved in Brucella infection, we established a high-

throughput microscopy-based RNAi assay in HeLa cells. In order to obtain optimal 

infection rates, infections were performed with an increasing multiplicity of infection 

(MOI) of GFP-expressing Brucella abortus 2308 and various time lengths of bacterial 

entry. As seen in Supplementary Figure 1, increasing the MOI as well as the time 

allowed for bacterial entry results in a corresponding increase in infection, with no 

saturation up to MOI 20000. For our screen, we used MOI 10000 of bacteria with 4 h 

of entry since this allows a sufficient infection rate (~2-10%) without reaching 

saturation of the system. The infection was allowed to continue for a total of 44 h. In 

unperturbed cells, this allows Brucella to traffic to an ER-derived compartment and 

intracellular replication leads to formation of a micro-colony (Figure 1B). The 

intracellular trafficking of bacteria under these conditions or with a lower MOI of 

1000 as shown in Supplementary Figure 2 was similar and consistent with previous 

studies (7). Brucella abortus ΔvirB9 mutant and Brucella abortus acquire Lamp1 

markers at 6 hpi. At 24 hpi, Brucella abortus ΔvirB9 mutant remains in Lamp1 

containing endo-lysosomal compartment while Brucella abortus is excluded from this 

compartment (Supplementary Figure 2i and 2ii).  

Figure 1A shows a summary of the experimental workflow used in our siRNA screens. 

Reverse siRNA transfection was performed for 72 h in HeLa cells after which cells 

were infected with GFP-expressing Brucella abortus 2308. After 4 h of infection, 

cells were washed with medium containing gentamicin to kill extracellular bacteria. 

Cells were fixed at 44 h post infection (hpi) and stained with DAPI and phalloidin-

547 for nuclei and F-actin, respectively. Automated fluorescence imaging was 

performed and images were subjected to shading correction to correct for non-

uniform illumination from the microscopes before image analysis was performed with 

CellProfiler (20). This allows objects such as the nucleus, perinucleus (8 pixels or 

5.16 μm wide zone surrounding the nucleus), or cell body to be identified (Figure 1A 

and B) and features for example pathogen intensity (GFP intensity) to be extracted 

from each object. Decision tree based infection scoring was then performed using the 

extracted features (Figure 1B), giving single cell infection scores that could be used to 
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determine a well-based infection rate. In short, if the mean GFP intensity of any of the 

defined objects of a cell (nucleus, perinucleus, or cell body) exceeds a given threshold, 

the cell is considered infected. The thresholds are set in a way that only cells that 

contain proliferating bacteria will be detected as infected. Finally, to account for 

plate-to-plate variations, plate normalization was performed using Z-scoring as 

described in the materials and methods section.  

 

Genome-wide siRNA screen for host factors involved in Brucella entry and 

replication in HeLa cells 

To study on a systems level the interaction of Brucella with human host factors, 

primary genome-wide screens were performed in HeLa cells. Three replicates of the 

Dharmacon ON-TARGETplus SMART pool library and one replicate of the Qiagen 

Human Whole Genome siRNA Set HP GenomeWide siRNA library, both targeting 

the human genome, were screened. The Dharmacon library contains a single pool of 

four siRNA sequences targeting each gene while the Qiagen library comprises four 

individual siRNAs for each target. 

To confirm the quality of our primary genome-wide screens, we compared the results 

from the independent replicates of the Dharmacon library as well as positive and 

negative controls present in all plates. As shown in Supplementary Figure 4i, we 

obtained good correlation (Pearson Correlation Coefficient R = 0.5-0.7) in both 

normalized infection index as well as normalized cell number between the 

independent replicates of our Dharmacon pooled library. Furthermore, positive 

controls from both Dharmacon and Qiagen libraries such as siRNAs targeting Rac1, 

Cdc42, and ATP6V1A that are known host factors for Brucella (6, 12) showed an 

expected reduction of infection (Supplementary Figure 3). Mock (transfection reagent 

only) and scrambled siRNA without specific host targets, both showed no effect on 

Brucella infection and cell number. The transfection controls Kif11 (Dharmacon) and 

AllStarsDeath (Qiagen) that are toxic to cells resulted in a strong reduction in cell 

number upon knockdown (Supplementary Figure 3). Altogether, this shows that with 

our experimental workflow we are able to obtain reproducible data between 

independent replicates and identify host factors that are involved in Brucella infection. 

To account for the well-known confounding off-target effects in siRNA screening, we 

performed statistical analysis of the primary screening data with the Redundant 

siRNA Analysis (RSA) algorithm (21). This analysis was performed separately on the 
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up and down hits of the screen. Details of the analysis can be found in the materials 

and methods section. RSA allows ranking of all siRNAs from different libraries 

targeting a given gene over all siRNAs in the screen. Genes targeted by different 

siRNAs that show a similar effect on Brucella infection are shifted towards a higher 

rank with a lower and more significant P-value while non-consistent effects from 

different siRNAs designed against the same target gene obtain a higher, less-

significant P-value. This reduces the number of false positives caused by strong off-

target effects of single siRNAs and favors genes with a reproducible effect from 

different siRNAs, indicating an on-target phenotype.  

Using datasets obtained from screening with Dharmacon and Qiagen libraries as input 

for RSA analysis, we were able to rank genes according to their P-values. Figure 1C 

summarizes the general workflow that was used for analyzing the screening data and 

selection of genes for further validation. Some of the genes that were in the top ranks 

of our RSA analysis were selected for validation with additional siRNAs. To further 

prioritize the genes that are present in the RSA list of the primary screen, we 

performed gene ontology (GO) enrichment studies using the DAVID functional 

annotation database (22). As seen in Figure 2A, genes that appear in our top 200 RSA 

ranks for reducing Brucella infection upon knockdown shows GO enrichment terms 

of retrograde vesicle mediated transport from Golgi to ER, regulator of cellular 

component size, enzyme linked receptor protein signaling pathway, intracellular 

protein transport, regulation of actin filament polymerization, and phosphorylation.  

Figure 2B shows enrichment terms for genes that are in the top 200 RSA ranks for 

increasing Brucella infection upon knockdown. It includes the terms RNA processing, 

cell cycle, microtubule-based process and cytoskeleton organization. Genes present in 

the enriched pathways were also included for validation even if there were no strong 

phenotype shown in the primary screens. This screen was performed in the framework 

of InfectX, a consortium that aims at identifying the human infectome of several viral 

and bacterial pathogens. Therefore, we also included genes in our secondary screens 

that were selected by other pathogen groups that performed the same genome-wide 

screens. This strategy ensures sufficient negative controls on each screening plate that 

is needed for plate normalization. 
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Genome-wide RNAi screen reveals novel pathways involved in Brucella abortus 

infection 

Secondary screens for all selected targets were performed with up to 3 siRNAs from 

the Ambion Silencer and Ambion Silencer Select unpooled libraries each as well as 

one esiRNA from the Sigma MISSION library. As shown in Supplementary Figure 

4ii, we were able to obtain high correlation between the independent replicates of the 

secondary screens. Finally, RSA analysis was performed separately for both up and 

down hits, with the combination of all data from primary and secondary screens 

(Supplementary Table 1 - attached CD). Figure 3 represents the high confidence 

STRING database (23) interaction between top ranking genes from the RSA analysis 

that reduce and increase Brucella infection upon knockdown. We were able to 

confirm components that are known to be crucial for Brucella infection, e.g. subunits 

of the v-ATPase complex, Rab7A, Rac1, and Cdc42 (6, 11, 12). Furthermore, 

multiple components of pathways involved in TGF-β or FGF signaling, actin 

remodeling, endosome to Golgi transport, endocytic route, ER-Golgi bidirectional 

transport, proteasomal degradation, and clathrin-mediated endocytosis were found in 

our top ranking gene lists suggesting a role of these signaling pathways in Brucella 

infection.  

 

Entry assay identifies Vps35, a component of the retromer complex, as a host 

factor involved in a post-entry process 

To dissect the process regulated by the identified genes during Brucella infection, we 

developed an assay to study early steps of infection in a high-throughput format. The 

entry assay is based on the infection of HeLa cells with Brucella abortus that express 

GFP under a tetracycline inducible system and dsRed from a constitutive promoter.  

Since induction of GFP expression was performed in parallel to gentamicin addition 

to the medium, only intracellular bacteria were able to express GFP while 

extracellular bacteria were killed by gentamicin in the medium. As shown in Figure 

4A, all Brucella expressed dsRed and only intracellular bacteria induced GFP 

expression. Bacteria were allowed to enter cells for 4 h, after which GFP expression 

was induced for another 4 h. This gave a sufficient signal above background to 

distinguish extracellular from intracellular bacteria using automated image analysis 

(data not shown). Image analysis was performed with a CellProfiler pipeline that 

detects the nucleus of cells (DAPI-stained) as well as single bacteria based on the 
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GFP signal. A voronoi cell body is calculated by extension of the nucleus by 25 pixels 

(16.125 μm) and decision tree based infection scoring separates infected from 

uninfected cells. An infected cell is defined by the presence of at least one bacterium 

of sufficient size and GFP intensity that overlaps with the voronoi cell body. 

As shown in Figure 4B, most of the genes tested showed a direct correlation in 

infection between the entry assay and endpoint assay (indicated by the line of linear 

regression). This was the case for components from the TGF-β signaling, endocytic 

pathway, Golgi to ER transport, or the actin-remodeling pathway, indicating their role 

during Brucella entry into HeLa cells. This suggests that the reduced infection that is 

seen with the endpoint assay upon knockdown of these components is likely due to a 

perturbed entry of Brucella into HeLa cells. The negative controls RLUC (Renilla 

luciferase), AllStars and scrambled siRNAs, all with no specific host targets did not 

show an effect upon knockdown in the entry assay. Interestingly, Vps35 showed no 

effect on Brucella entry upon knockdown even though there was a significant 

reduction in infection rate with the endpoint assay. This suggests that Vps35 that is a 

key component of the retromer complex is involved in a post-entry step during 

Brucella infection in HeLa cells.  

 

Discussion 
 
Studies that have been performed thus far to understand Brucella interaction with the 

host were mainly hypothesis driven, includes small-scale RNAi screens in Drosophila 

S2 cell, or proteomics studies to identify host components of the BCV (7, 11, 15, 16, 

18, 19). To identify at a systems level host factors involved in Brucella infection, we 

performed a genome-wide RNAi screen in HeLa cells. We identified novel host 

factors covering different signaling pathways, being able to separate some of our hits 

with an entry assay at early steps of infection. Furthermore, we found a component of 

the retromer complex to be involved in a post-entry process during Brucella infection. 

With the data from our primary screen, we could indeed identify enriched pathways 

of biological processes that were expected to be required for Brucella infection. These 

included the pathways involved in regulation of actin cytoskeleton or vesicular 

trafficking among others. We then validated a selected number of interesting 

candidate genes by seven additional independent siRNAs in a secondary screen. This 

validation strategy is based on a small study comprising the human kinases that was 
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performed within the InfectX consortium. In this study, it was shown that testing a 

sufficiently large number of different siRNA sequences for each gene is able to 

account for the differences in knockdown strength and specificity of individual 

siRNAs (24).  

On the final data, we performed RSA analysis for genes that reduce or increase 

Brucella infection using results from both primary and secondary screens. For genes 

that increase Brucella infection, datasets with less than 500 cells were removed before 

RSA analysis. Since the infection rate positively correlates with the MOI 

(Supplementary Figure 1), we would expect that knockdowns that negatively affect 

cell number would increase infection. Therefore, due to the higher possibility of false 

positives in our up hits caused by cell number effects from siRNA toxicity, we only 

considered the top 200 genes that increased Brucella infection. For genes that reduced 

Brucella infection the top 400 were taken for our final pathway analysis with the 

STRING database. As shown in Figure 3, many of our top ranked up and down hits 

interacts within the high confidence STRING database interaction network (23). The 

most prominent clusters include components of signaling pathways of actin- 

remodeling, TGF-β or FGF signaling, endosome to Golgi transport, endocytic 

pathway, ER-Golgi bidirectional transport, or clathrin coated pit components.  Some 

of the individual components of these signaling pathways are known to be important 

for Brucella infection. Rab7A is needed for trafficking to the replicative niche (11), 

subunits of the v-ATPase complex for acidification of the BCV which serves as a 

signal for the expression of T4SS (12, 13), Rac1 and Cdc42 are involved in 

internalization into non-phagocytic cells (6), COPB subunit of the COPI complex was 

implicated in Brucella replication (16), and Sec61 has been shown to localize to the 

BCV during replication (9). This confirms the ability of our screen to identify 

essential hits needed during various stages of the Brucella infection cycle in the host.  

Next, we performed an entry assay to separate our hits into functional stages during 

the intracellular life cycle of Brucella (Figure 4). Components from actin-remodeling 

(Rac1, Cdc42, CYFIP1, NCKAP1, ACTR3), TGF-β signaling (TGFBR1, TGFBR2, 

Smad4), endocytic pathway (Rab7A), and Golgi to ER transport (COPG) show 

decreased Brucella entry and subsequent decrease in the formation of an intracellular 

micro-colony upon knockdown. Interestingly, Vps35 was the only component tested 

that is not involved in Brucella entry. Vps35 is a component of the retromer complex 

that regulates endosome to Golgi transport (25). Furthermore, other components of 
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the retromer complex including Vps26a and to a lesser extent Vps29 also showed 

reduction of Brucella infection upon knockdown. Since it is still unclear how Brucella 

traffics from an endocytic compartment to its ER-derived replicative niche, the 

retromer complex could provide a possible route via transient interaction with the 

Golgi. Alternatively, the retromer complex could be involved in the establishment or 

maintenance of the replicative niche. USP6NL, a Rab GTPase-activating protein 

(GAP) that is involved in Shiga toxin transport from endosomes to the trans-Golgi 

network by regulating Rab43 (26) led to an increase in Brucella infection upon 

knockdown. It is thus tempting to speculate that the regulation of Shiga toxin 

transport by USP6NL might be needed by Brucella in a similar manner. Taken 

together, these findings are in line with the notion that endosome to Golgi transport is 

required during the intracellular lifecycle of Brucella infection. 

Studies with drug inhibitors have shown the importance of Rac1 and Cdc42 in 

Brucella infection (6) and the role of these factors was confirmed in our RNAi 

screens. In addition, we identified additional components of the actin-remodeling 

pathway that have not been described previously. As expected, knockdown of 

RACGAP1 that reduces levels of active Rac1 led to an increase in Brucella infection 

while ARHGEF9 that is an activator of Cdc42 decreased infection upon knockdown. 

Upstream or downstream components of Rac1 such as the WAVE complex 

(NCKAP1, CYFIP1, Abl1), the Arp2/3 complex (ArpC2, ArpC3, ACTR3, ACTR2), 

or kinases (PTK2B, CRK) that are involved in the formation of branched actin 

networks, lamellipodia and membrane ruffling are all shown to be required for 

Brucella entry into host cells. In addition, Cdc42 and its interacting partner TRIP10 or 

TNK2 that are involved in filopodia formation are also down hits in our screen. This 

further confirms the role of actin-remodeling networks regulated by Cdc42 or Rac1 

during Brucella infection with an extension of host factors in this signaling process 

being identified. 

We further identified anterograde as well as retrograde trafficking to be required for 

Brucella infection. Components of the COPI complex (COPG, COPB2, COPA, 

COPZ1, ARCN1 (COPD)) reduced Brucella infection upon knockdown. This is 

consistent with a previous study that found COPB depletion to reduce Brucella 

replication (16). In this same study, the authors reported that Brucella replication was 

affected by prolonged treatment with Brefeldin A that causes a redistribution of the 

Golgi to the ER, suggesting that Golgi to ER trafficking is important for Brucella 
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replication (16). However, studies carried out by other research groups showed that 

COPI-dependent transport is not required during Brucella infection (7, 15). In these 

studies, BCVs were shown in close vicinity of COPII components labeled with Sec31 

antibody but not with COPI components labeled with anti-β-COP antibody as seen 

with immunofluorescence studies. Also, dominant negative ARF1 that regulates Golgi 

to ER transport did not affect bacterial replication in HeLa cells, similar to their 

previous results with Brefeldin A treated cells. These controversies might be 

explained by the different experimental settings in these studies. In the case of siRNA 

treatment over a prolonged period, many intracellular trafficking routes including 

pathways outside the ER - Golgi network might be affected. This could explain the 

results of the entry assay that showed an involvement of COPG1 in bacterial entry. In 

support of this hypothesis, a functional COPI complex is required during Salmonella 

typhimurium invasion in maintaining cholesterol, sphingolipids, Rac1, and Cdc42 at 

the plasma membrane (27). It is conceivable that Brucella entry follows a similar 

route as described for Salmonella, requiring COP components for membrane ruffling 

(27) and should be investigated with further studies. We also identified components of 

the COPII complex (Sec24 and Sec13) to reduce Brucella infection upon depletion. 

This is consistent with previous studies showing the importance of the COPII 

complex and ERES for the interaction of Brucella with the ER and subsequent 

replication (15, 16). Taken together, these findings show the importance of an intact 

bidirectional vesicular trafficking between the ER and Golgi for successful Brucella 

infection. However, the exact molecular details of the individual components have to 

be confirmed and likely involve additional cellular components that regulate other 

pathways, including the composition of the plasma membrane. 

Members of the TGF-β and FGF signaling promote Brucella infection. TGF-β 

signaling components (TGFBR2, TGFBR1, TGFB1, TGFB2, Smad2) all led to a 

decrease in Brucella infection upon knockdown. The fact that both subunits of the 

heteromeric receptor complex, TGFBR1 and TGFBR2, showed an effect on Brucella 

infection upon individual knockdown validates the role of this receptor complex 

during infection. It has previously been reported that patients with brucellosis show 

higher levels of TGF-β1 in their sera that is correlated with depressed function of T 

cell responses (28). B cells were also shown to produce TGF-β at early stages of 

infection with Brucella in mice (29). Therefore, this suggests a role of Brucella during 

infection in terms of immunosuppression of the host. However, since our RNAi 
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screen was performed in HeLa cells, it could be that TGF-β signaling has another 

non-immunological role during host cell infection, specifically during early steps as 

suggested by the results of the entry assay. It has been reported that Trypanosoma 

cruzi requires active TGF-β signaling during its invasion of mammalian epithelial 

cells, with cells having a dysfunctional intracellular cascade being deficient in 

parasite invasion (30). Components of the FGF signaling pathway (FGFR1 and 

FGF10) were also shown to reduce Brucella infection upon knockdown. It has been 

reported that FGF2 enhances Chlamydia trachomatis binding and uptake into non-

phagocytic cells in a heparin sulfate proteoglycan dependent manner. The pathogen 

additionally stimulates production of FGF2 that enhances subsequent rounds of 

infection (31). Therefore, it would be interesting to investigate the roles of TGF-β or 

FGF signaling during Brucella invasion in HeLa in comparison to other cell types of 

interest such as trophoblastic cells or immune cells.  

Among the host factors that restrict Brucella infection, we identified components of 

clathrin-coated pits. Depletion of several factors (AP2S1, CLTC, AP2A1, CLTA, 

EPS15L1, EPN1) caused an increase in Brucella infection in our screen. Our data 

suggests that Brucella prefers to enter the host via a clathrin-independent pathway in 

HeLa cells. This is in contrast to a recent publication by Lee et al. that showed 

reduction in Brucella infection upon siRNA treatment against CLTC or with inhibitor 

experiments using clathrin inhibitor, chloropromazine (32). It remains unclear 

whether this controversy is due to differences in the experimental setup or the use of 

different bacterial strains. siRNA treatment experiments performed by Lee et al. 

focused on bacterial entry while our screen is an endpoint infection assay. The effect 

of clathrin component depletion towards bacterial entry into HeLa cells and its 

subsequent intracellular fate remains to be investigated in our studies. Validation with 

siRNA-independent approaches could also aid in addressing this controversy. 

In summary, we are able to identify novel signaling pathways involved in Brucella 

infection. Most of the hits identified are involved in Brucella entry, with one example 

being the TGF-β signaling pathway that is required for entry into HeLa cells. 

Additionally, we were also able to identify a novel host factor, Vps35 that is involved 

in a post-entry process, probably in Brucella trafficking to its replication niche. In this 

study, we found and presented host factors with known biological functions that 

clustered in well-described pathways. Nevertheless, many additional genes were 
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identified to play a role in Brucella infection, providing a valuable resource for future 

discoveries. 

 

Materials and methods 
 
Wet lab procedures  
Materials  

RNAimax (Invitrogen, 13778-150); Dulbecco Modified Eagle Medium (DMEM) 

(Sigma, D5796); HeLa (human cervical carcinoma epithelial cell line, ATCC, CCL-2); 

Fetal Calf Serum (FCS) (Gibco, 10270): heat inactivated at 56°C for 30 min before 

use; tryptic soy broth (TSB) (Fluka, 22092); kanamycin sulfate (Sigma-Aldrich, 

60615); gentamicin (Sigma, G1397); Triton-x-100, sigma-ultra (Sigma-Aldrich, 

T9284); DAPI (Roche, 10236276001); phalloidin-547 (Dyomics, 547PI-33); albumin 

from bovine serum (BSA) (Sigma, A9647); paraformaldehyde (Sigma, P6148); 

phosphate buffered saline (PBS) (Gibco, 20012). 

 

Cloning of pAC42.08 for entry assay 

pJC44 (11) was digested with EcoRI followed by generation of blunt ends with 

Klenov enzyme and subsequent digestion with SalI. TetR-GFP was amplified from 

pNF106 (unpublished) using primer prAC090 

(TTTTTGAATTCTGGCAATTCCGACGTCTAAGAAACC) and prAC092 

(TTTTTGTCGACTTTGTCCTACTCAGGAGAGCGTTC). Following digestion with 

SalI, the TetR-GFP product was ligated to the digested pJC44 vector. This generated a 

plasmid that constitutively expressed dsRed and a tetracycline-inducible GFP. The 

plasmid was then transferred into Brucella abortus 2308 by conjugation. 

 

siRNA reverse transfection 

Genome-wide screens were performed with Dharmacon ON-TARGETplus SMART 

pool and Qiagen Human Whole Genome siRNA Set HP GenomeWide (QU) siRNA 

libraries. For the validation screens Ambion Silencer, Ambion Silencer Select and 

Sigma MISSION esiRNA libraries were used. All experiments were conducted in a 

384 well plate format. All plates contained general siRNA controls for transfection 

efficiency and toxicity (e.g. Kif11) as well as positive controls (e.g. Cdc42, Rac1) that 

are known to have an effect on Brucella infection (6). In addition, negative controls 
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such as mock (transfection reagent only) and scrambled (non-targeting siRNA) were 

added to each plate.  

The following specifications apply to all siRNA screens except the QU siRNA library 

where specifications are given in brackets. 25 μl (QU: 15 ul) of RNAiMAX in 

DMEM without FCS (1:250 dilution) was added to each well containing 1.6 pmol 

siRNA (QU: 1 pmol) or 15 ng esiRNA. Screening plates were then incubated at room 

temperature (RT) for 1 h. Following incubation, 500 HeLa cells were added per well 

in a volume of 50 μl (QU: 30 ul) DMEM/16% FCS, resulting in a final concentration 

of 10% FCS. Plates were incubated at 37°C and 5% CO2 for 72 h prior to infection.  

 

Infection  

Brucella abortus 2308 pJC43 (aphT::GFP)(15) were grown in TSB medium 

containing 50 μg/ml kanamycin for 20 h at 37°C and shaking (100 rpm) to an OD of 

0.8- 1.1. 50 μl of DMEM/10% FCS containing bacteria was added per well to obtain a 

final MOI of 10000. Plates were then centrifuged at 400 g for 20 min at 4°C to 

synchronize bacterial entry. After 4 h incubation at 37°C and 5% CO2, extracellular 

bacteria were killed by exchanging the infection medium by 50 μl DMEM/10% FCS 

supplemented with 100 μg/ml gentamicin. After a total infection time of 44 h, cells 

were fixed with 3.7% PFA for 20 min at RT. 

For the entry assay, Brucella abortus 2308 pAC042.08 was used as described above. 

GFP expression was induced for 4 h by the addition of anhydrotetracycline (100 

ng/ml) during the gentamicin killing of extracellular bacteria as described above.  
 

Staining  

Cells were washed twice with PBS and permeabilized with 0.1% Triton-x-100 for 10 

min. After washing twice with PBS, 20 μl of staining solution that contains DAPI (1 

μg/ml) and DY-547-phalloidin (1.5 U/ml) in 0.5% BSA/PBS was added to cells. For 

the entry assay, cells were not stained with DY-547-phalloidin. Cells were then 

incubated with the staining solution for 30 min at RT, washed twice with PBS, 

followed by final addition of 50 μl PBS.  

For Lamp1 colocalization experiment, HeLa cells on coverslips were permeabilized 

with 0.1% Triton-x-100 for 10 min at RT, washed with PBS before incubated with 0.5% 

BSA/PBS for 30 min at RT. Afterwards, cells were labeled for Lamp1 using mouse 
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monoclonal anti-Lamp1 [H4A3] antibody (1:100) and secondary antibody Alexa 

Fluor 546 Goat Anti-mouse IgG (1:100). 

 

Imaging with high-throughput microscopy 

Microscopy was performed with Molecular Devices ImageXpress microscopes. 

MetaXpress plate acquisition wizard with no gain, 12 bit dynamic range, 9 sites per 

well in a 3x3 grid was used with no spacing and no overlap and laser-based focusing. 

DAPI channel was used for imaging nucleus, GFP for bacteria, and RFP for F-actin or 

dsRed of bacteria in the entry assay. Robotic plate handling was used to load and 

unload plates (Thermo Scientific). The objective was a 10X S Fluor with 0.45NA. 

The Site Autofocus was set to “All Sites” and the initial well for finding the sample 

was set to “First well acquired”. Z-Offset for Focus was selected manually and 

manual correction of the exposure time was applied to ensure a wide dynamic range 

with low overexposure. 

 

Image analysis 
Object detection 

Images were first scaled that pixel intensities of a full plate are in the 0 to 1 range. 

Images were then corrected for shading (flat field correction, vignetting correction) by 

applying a shading model to the image pixels. Shading-corrected images were stored 

in floating points to reduce the loss of information. Pathogen signal in the DAPI 

channel was removed to increase the quality of the nucleus segmentation. The 

pathogen signal was removed by subtracting a linear transformation of the GFP 

channel from the DAPI channel. After the pathogen signal reduction, DAPI images 

were stored in double precision to reduce loss of information. On the corrected 

images, object detection was performed using CellProfiler (20). Firstly, nucleus 

objects labeled “Nuclei“ were segmented in the DAPI channel using OTSU’s method 

(CellProfiler module IdentifyPrimAutomatic). Secondly, peri-nuclear ring object 

labeled “PeriNuclei” was constructed by extending the nucleus object by eight pixels 

and removing the nuclear area from the extended nuclear area (CellProfiler modules 

ExpandOrShrink and IdentifyTertiary). Thirdly, a cell body object labeled “Cells” 

was segmented in the Actin channel using the “Propagation” method around the 

nucleus object (CellProfiler module IdentifySecondaryInformed). Finally, a non-actin 
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based cell body object labeled “VoronoiCells” was constructed by extending the 

nucleus object by twenty-five pixels (CellProfiler module ExpandOrShrink). 

For the entry assay, the cell body was not stained with a fluorescent marker and only a 

voronoi cell body is used. Intracellular bacteria are detected using the GFP signal. 

 

Feature extraction 

On the segmented objects, measurements were performed using CellProfiler. On all 

segmented objects (Nuclei, PeriNuclei, Cells, VoronoiCells, Bacteria), shape 

measurements were extracted. Intensity and texture measurements were extracted 

with respect to all available channels (DAPI, Actin, Pathogen). All measurement 

result files of CellProfiler were stored in the openBIS database alongside the original 

images.  

 

Infection scoring  
Infection detection and measurement 

Infection detection was done on a binary level (infected vs. non infected) that allows 

the infection index to be defined. The infection index is the number of infected cells / 

total number of cells in the well.  

 

Decision Tree Infection Scoring (DTIS) 

We selected a number of image analysis single cell features that were most sensitive 

to the infection phenotype. The N features are evaluated in a decision tree, which is a 

complete binary tree with N levels and 2^N nodes. Each node is evaluated by 

applying a threshold to the corresponding feature. During traversal of the tree, if the 

feature exceeds the threshold, evaluation continues with the one child, and if the 

feature does not exceed the threshold, evaluation continues with the other child. 

Nodes of the lowest level connect to one of the two distinct end states “infected” and 

“uninfected”. The connection of the nodes to children and the choice of features are 

performed once by an expert and remain static for all plates. The choice of the 

decision tree thresholds is affected by plate-specific parameters like quality of the 

staining, cell vitality and microscope illumination, and must be adjusted on a plate-

by-plate basis. To quantify Brucella abortus infection for the endpoint assay, GFP 
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intensity was measured in the objects Nuclei, PeriNuclei, Cells and VoronoiCells 

using CellProfiler module MeasureObjectIntensity.  

 

Segmentation based infection scoring for entry assay 

Segmentation of pathogen objects in CellProfiler was used to detect pathogen 

colonies or single pathogens in the cell. This segmentation method was based on the 

OTSU method or wavelets. A cell is defined as “infected” if a pathogen object of at 

least 2 pixels and GFP intensity above the threshold overlaps with a voronoi cell body. 

 

Data normalization 
Z-Scoring 

Several approaches have been described in the literature to correct the differences 

from wet lab procedures for plate batches (33). Negative controls (mock and 

scrambled siRNAs) sometimes show non-typical phenotypes (such as relatively high 

cell number) and good positive controls were not available for all primary siRNA 

screens. Therefore, non-control based data normalization methods were chosen for 

primary and secondary screens. Z-Scoring was used to normalize variations between 

plates as: 

 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 =  
𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜−𝜇𝜇 

𝜎𝜎
 

Here, μ is the mean of all siRNA well readouts in the plate, σ is the standard deviation 

of all siRNA well readouts in the plate, xold is the raw well readout and xnew is the 

normalized well readout. The non-control based normalization assumes that all genes 

are randomly distributed among all plates and that there are relatively few positive 

phenotype genes in the whole screen. For the entry assay, data were normalized to 

mock wells since the assumptions for Z-Scoring do not apply for assays that mainly 

contain hit genes.  

 

Statistical analyses 
Redundant SiRNA Analysis (RSA) 

The Redundant SiRNA Analysis (RSA) ranks all siRNAs targeting a given gene over 

all siRNAs in the screens. It assigns the p-values for each gene based on a 

hypergeometric distribution that indicates whether the distribution of ranks of this 
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gene is shifted significantly towards low ranks (21). RSA was run using the R-

package ”RSA” release 1.3 (21) with parameters: l=-1.5 and u=1, where l refers to 

the threshold where a single siRNA readout is considered to be true positive at the 

low end and u refers to the threshold where a single siRNA readout is considered to 

be true positive at the high end. 
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Figure legends  
 

Figure 1. Experimental workflow of high-throughput microscopy-based RNAi 

screen. A) Diagram illustrates the general workflow of our RNAi screen including 

wetlab procedures followed by image acquition and analysis, infection scoring, and 

data normalization. B) Image on the left represents HeLa cells infected with GFP-

expressing Brucella abortus with scale bar 50 μm. Segmentation of the cell body 

(white) as well as the nucleus surrounded by a perinucleus (light green) is shown in 

the middle. On the right, a graphical illustration shows the Decision tree based 

infection scoring. Decision tree infection scoring is performed using features that are 

extracted from identified objects, e.g. GFP intensity (pathogen intensity) in nucleus 

(f1), perinucleus (f2) and cell body (f3). A cell is considered infected if either one of 

these features exceeds a threshold that is manually determined. C) Workflow of gene 

selection for validation by additional siRNAs and analysis of the full data set.  

 

Figure 2. Gene ontology (GO) enrichment terms of primary genome-wide RNAi 

screen using DAVID functional annotation database. GO terms that represent 

biological processes are shown. Bar graph shows –LogP values of enrichment terms 

for top 200 RSA lists of A) genes that reduced Brucella infection upon siRNA 

knockdown or B) genes that increased Brucella infection upon siRNA knockdown. 

RSA was performed using individual siRNAs from Qiagen unpooled library 

combined with the average of three replicates of the Dharmacon pooled library. GO 

terms that cover at least five components of our list and with a P value lower than 

0.05 are shown. A higher –LogP value indicates a higher significance for the GO term 

shown. 
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Figure 3. Genome-wide RNAi screen reveals pathways involved in Brucella 

infection. Diagram represents host factors that are involved in Brucella infection. 

RSA was performed by combination of primary and secondary screening data. 

Individual siRNAs from the Qiagen library and the averages of independent replicates 

of the Dharmacon, Ambion, and Sigma libraries were used as input. To identify 

targets that increase Brucella infection upon knockdown, siRNA experiments with 

numbers less than 500 cells were removed before RSA analysis. To illustrate the 

interaction network within our hit lists, RSA top 400 genes that reduced Brucella 

infection and RSA top 200 genes that increased Brucella infection were added to the 

STRING database. The edges between genes indicate high-confidence (>0.9) 

STRING database interactions and only genes that contain at least one interacting 

partner are shown. Genes that reduced Brucella infection upon knockdown are 

surrounded by a blue outline, while a red outline indicates genes that increased 

infection. Nodes are colored based on their functional pathways.  

 

Figure 4. Entry assay identifies the retromer complex component Vps35 as a host 

factor involved in post-entry process of Brucella infection. 

A) Images in the upper row represent HeLa cells infected with Brucella abortus 

expressing GFP under a tetracycline inducible system and dsRed under a constitutive 

promoter. Cells were infected for 4 h followed by induction of GFP in intracellular 

bacteria for 4 h. Nuclei are stained with DAPI (blue). Scale bar represents 50 μm. 

Lower row shows CellProfiler based object segmentation of the nuclei (in white) as 

well as GFP positive bacteria (in pink). A voronoi cell body is calculated by extension 

of the nucleus by 25 pixels (in white). Decision tree infection scoring is used to 

separate infected (1) from uninfected (2) cells. Cells are considered infected if at least 

one segmented bacterial object with sufficient size and GFP signal overlays with the 

voronoi cell body. B) Scatter plot shows infection rates of the entry assay versus the 

endpoint assay, normalized to the mock dataset. Each point corresponds to the 

average of three replicates using a single siRNA or esiRNA for the targets indicated. 

With the exception of Vps35 (red), a direct correlation between the infection rates of 

both assays was observed as indicated by the linear of regression (dotted line). 

 

Supplementary Figure 1. Infection rate increases in a MOI-dependent manner in 

HeLa cells. Bar graph represents infection index dependent on the MOI and the time 
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of infection prior to gentamicin treatment to kill extracellular bacteria. Data are 

normalized to dataset MOI 10000 and entry time of 4 h, the experimental condition 

used in our RNAi screens. Each dataset shows the mean ± STDEV of three 

independent experiments. 

 

Supplementary Figure 2. Brucella abortus ΔvirB9 mutant interacts with the 

endo-lysosomal compartment at 24 hpi, while most Brucella abortus avoids this 

compartment, with low or high MOI of bacteria. i) Images represent infection of 

HeLa cells with i) GFP-expressing Brucella abortus ΔvirB9 mutant or ii) GFP- 

expressing Brucella abortus at 6 hpi or 24 hpi, with MOI 1000 or MOI 10000. 

Samples were stained with Lamp1 antibody and images were taken with the 60x 

objective and FEI MORE with TIRF microscope. Image in stacks were deconvolved 

with HUVGENs remote manager and one represented slice around the middle of a 

stack is shown. Scale bar represents 10 μm. 

 

Supplementary Figure 3. Control plots for Brucella infection and siRNA 

transfection of genome-wide screens. A) Z-score normalized infection index of 

control siRNAs for Brucella infection used in the Dharmacon pooled (DP) and 

Qiagen unpooled (QU) genome-wide siRNA libraries. Whiskers and outliers of 

boxplot are calculated with the Tukey method. B) Cell number of siRNA transfection 

controls designed to kill transfected cells. Transfection with Kif11 or AllStarsDeath 

resulted in a median of 19 and 5 cells per well, respectively. Whiskers and outliers of 

boxplot are calculated with the Tukey method. C) Images represent HeLa cells 

infected with GFP-expressing Brucella abortus and stained with DAPI (blue). Scale 

bar represents 50 μm. 

 

Supplementary Figure 4. RNAi screen correlation plots. Graph shows i) Pearson 

correlation coefficient (R) of normalized infection index or normalized cell number 

between independent replicates of our primary screen with Dharmacon pooled library 

or ii) correlation of normalized infection index between independent replicates of 

individual siRNAs within the Ambion unpooled library. 
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Supplementary Table 1 (in attached CD). RSA list for genes that reduced (excel 

sheet 1) or increased (excel sheet 2) Brucella infection. Table shows list of genes 

that are ranked according to their LogP value. Score represents Z score normalized 

infection index from siRNA screens and count cells normalized represents Z score 

normalized cell number. Columns highlighted in yellow represent output from RSA 

analysis. Datasets from the primary screens (Dharmacon pooled and Qiagen unpooled 

libraries), secondary screens (Ambion and Sigma libraries) and kinome screens 

(Ambion library) were taken as input for RSA analysis, with independent replicates 

being averaged before analysis was performed. For some of the genes, only one 

replicate of the secondary screen is available as indicated in the column ‘experiment’. 

For genes that increase Brucella infection, score (Z score normalized Infection index) 

was inverted (e.g. 1 to -1) before RSA analysis was performed. 
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3.4 Unpublished results: Transforming-growth factor beta 

(TGF-β) signaling and Brucella infection 
 

Introduction  
TGF-β signaling regulates various processes including proliferation, apoptosis, 

migration in differentiated cells through the control of the cytoskeletal machinery (3, 

4), levels of cell adhesion protein receptors (5-8), endocytosis (9) as well as tumor 

suppression and progression (3). Being a powerful tumor suppressor, dysfunction of 

this pathway leads to a plethora of diseases such as cancer and tissue fibrosis (3). 

Therefore, tight regulation of this pathway at different levels is highly important (10).  

TGF-β signaling is initiated by binding of the ligand, TGF-β, to serine / threonine 

protein kinase type II TGF-β receptor (TGFBR2) on the cell membrane. There are 

three isoforms of TGF-β in mammals, TGF-β1, TGF-β2 and TGF-β3, and association 

to TGFBR2 can be direct or mediated via the type III TGF-β receptor (TGFBR3). 

This leads to the formation of a heteromeric complex between TGFBR2 and type I 

TGF-β receptor (TGFBR1), in which TGFBR2 phosphorylates and activates TGFBR1 

(11, 12). Activated TGFBR1 recruits and phosphorylates receptor-regulated Smad (R-

Smad) proteins, Smad2/3, which then form a heterocomplex with the common 

mediator-Smad (Co-Smad), Smad4. The Smad complexes are then translocated into 

the nucleus to regulate transcription of target genes (13) (Figure 1). Effects of TGF-β 

on transcription can be negative or positive depending on the targeted gene and 

cellular context. Transcription factors, histone readers or modifiers as well as 

chromatin remodelers that bind to activated Smad proteins determine which genes are 

targeted (3).  
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Figure 1 TGF-β signaling pathway. Picture taken from (14). Upon binding to ligand TGF-β, Tβ-RII 

(TGFBR2) forms complex with Tβ-RI (TGFBR1), phosphorylating Smad2 and Smad3. Interaction 

between Tβ-RII and Tβ-RI could also occur via Tβ-RIII (TGFBR3). Binding of phosphorylated 

Smad2/3 to Smad4 translocates them to the nucleus to activate gene transcription. Smad7 blocks 

Smad2/3 phosphorylation. 

 

TGFBRs are constitutively internalized in a clathrin-dependent or lipid raft-dependent 

manner. Clathrin-dependent endocytosis brings TGFBRs to EEA1 or Rab5-positive 

endosomes. In these compartments, ortholog of the Smad anchor for receptor 

activation (SARA) and endofin molecules promote TGF-β signaling (15). However, 

in lipid rafts, caveolin-1 interacts with TGFBR1 and promotes its degradation in a 

Smad7-dependent manner and thus downregulates the signaling pathway (16). To this 

end, the inhibitory Smads (I-Smads), such as Smad7, interact with activated TGFBRs 

and recruit E3 ligases Smurf1 and Smurf2 that induces ubiquitination and degradation 

of the receptors (17-19). Smad proteins are also targeted for proteasome-mediated 

degradation via E3 ligases (20). In addition, TGFBRs can be degraded via the 

lysosomal pathway (21, 22). Apart from degradation, signaling can also be 

downregulated by dephosphorylation of TGFBR1 via the protein phosphatase 1 (PP1) 

and protein phosphatase PP2A, serving as a negative feedback mechanism (23, 24) for 

this pathway.  
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As TGF-β signaling regulates a plethora of cellular signaling events such as gene 

transcription and immune response, it also plays a versatile role in the context of 

pathogenicity. Being an anti-inflammatory cytokine, it has been shown to promote 

survival of Trypanosoma cruzi in macrophages and Leishmania in mice (25, 26). In 

patients with chronic brucellosis, there was a correlation between increased TGF-β 

production and depressed function of T cell responses (27). B cells were found to 

produce TGF-β in murine brucellosis at early stages of infection, with B cell knockout 

mice being able to clear Brucella abortus very efficiently (28). Furthermore, TGF-β 

signaling is also reported to play a role apart from immune response during infections. 

Activation of TGFBRs was shown to be important for the entry and replication of 

Trypanosoma cruzi in mammalian cells (29, 30).  

During infection, an increase in active TGF-β levels is often observed. This includes 

infections with bacterial pathogens like Mycobacterium, Brucella or Chlamydia (27, 

31, 32), viral pathogens e.g. cytomegalovirus or hepatitis B virus (33, 34) and 

protozoans such as Trypanosoma cruzi or Leishmania (35, 36). Some pathogens were 

reported to activate TGF-β signaling by activation of latent TGF-β. For example, 

neuraminidase glycoprotein of Influenza A and B viruses that has been shown to 

directly activate latent TGF-β in vitro leads to the induction of host cells apoptosis 

(37). Furthermore, Trypanosoma cruzi and Leishmania have also been shown to 

activate latent TGF-β in vitro (38, 39).  

In our kinome and genome-wide siRNA sceens, TGF-β signaling components 

including surface receptors, ligands and downstream signaling components have been 

shown to be important for Brucella infection (Research Article II and Research 

Article III). Entry assay also identifies some of the TGF-β signaling components to be 

involved in Brucella entry in HeLa cells. Interestingly, TGF-β signaling pathway was 

also found to affect infection rates of most of the pathogens in the InfectX consortium 

(Research Article II), suggesting a general role that is widely used by different 

pathogens. In this results part, siRNA-independent experiments validated the 

importance of TGF-β signaling during Brucella infection in HeLa cells. We were able 

to show that active TGF-β signaling and the presence of kinase active receptors are 

important factors during Brucella infection in HeLa cells. 
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Results  
 
Knockdown of TGF-β signaling components reduces Brucella infection in HeLa 

cells 

From the kinome and genome-wide screens (Research Article II and Research Article 

III), it was shown that components of the TGF-β signaling pathway are involved in 

Brucella infection. Figure 1 shows datasets from all siRNA screens that were 

performed thus far. Knockdown of TGFBR1 or TGFBR2, but not TGFBR3 caused a 

strong reduction in Brucella infection, having a similar effect as our positive control 

Rac1, known to be important for Brucella infection (40). Knockdown of other 

components of the pathway including the downstream signaling molecules Smad2, 

Smad3, Smad4 or the upstream ligands TGFB1 and TGFB2 also decreased infection 

but had a milder effect compared to the receptors. Smad7 that inhibits TGF-β 

signaling pathway showed an increase in infection upon knockdown while mock 

(transfection reagent only) that was used as a negative control showed no effect on 

Brucella infection (Figure 1).  

 

Activation of TGF-β signaling by TGF-β1 increases Brucella abortus infection 

TGFBR2 is activated upon binding of its ligand, TGF-β1, which further triggers its 

downstream signaling components of the pathway (11, 12). To validate the role of 

TGF-β signaling in the context of Brucella infection, cells were pre-incubated with 

TGF-β1 containing medium prior to the infection assay. As shown in Figure 2, there 

was a mild but significant increase in the levels of Brucella infection upon pre-

incubation with TGF-β1 containing medium. A titration of the amount of TGF-β1 

added to the medium was performed, with only a slight increase in Brucella infection 

with increasing concentrations of TGF-β1. Infection reached saturation at 0.5ng/ml of 

TGF-β1, with further increase in concentration not resulting in a higher efficiency of 

Brucella infection in HeLa cells. Mv1Lu is a cell line that is sensitive to TGF-β 

stimulation and is widely used to study the TGF-β signaling pathway (41). Flow 

cytometry analysis was performed to investigate the levels of surface exposed 

TGFBR2 on HeLa cells compared to Mv1Lu. As shown, levels of surface TGFBR2 in 

HeLa cells (1.9%) were very low compared to Mv1Lu (79.9%) (Supplementary 

Figure 3A). Despite the difference in surface levels of TGFBR2, Brucella infection 
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rates were not significantly different between HeLa and Mv1Lu cells (Supplementary 

Figure 3B). Our results indicate that active TGF-β signaling is beneficial during 

Brucella infection in HeLa cells, with higher surface levels of TGFBR2 in Mv1Lu 

having similar infection rates as in HeLa cells. 

 

Overexpression of wild type or dominant negative TGFBR increases and reduces 

Brucella infection, respectively  

To further understand the role of the TGF-β signaling pathway receptors in Brucella 

infection, cells were transfected with wild type TGFBR1 or TGFBR2 cDNAs, 

(pCMV5-TGFBR1 or pCMV5B-TGFBR2) either individually or in combination of 

both receptors. Flow cytometry analysis indicated an increase in surface levels of 

TGFBR2 upon overexpression of the constructs in HeLa cells (Supplementary Figure 

4). Overexpression of the individual receptors TGFBR1 or TGFBR2 for 1.5 days 

before infection significantly increased Brucella infection in HeLa cells compared to 

non-transfected cells. Unexpectedly, co-expression of both receptors did not further 

increase infection rates compared to single receptor expression (Figure 3A).  

In a second step, overexpression studies were also performed with dominant negative 

mutants of TGFBR1 or TGFBR2. TGFBR2 K227R (pCMV5B-TGFBR2 K227R) and 

TGFBR1 K232R (pCMV5B-TGFBR1 K232R) have a single mutation that renders 

them to be kinase dead (42, 43). TGFBR2 Δcyt is also incapable of phosphorylating 

and activating TGFBR1 due to a stop codon that was introduced downstream of the 

transmembrane domain (44). To further the understanding of TGF-β signaling in 

Brucella pathogenicity, these mutants were expressed in HeLa cells prior to Brucella 

infection. There was a significant but mild decrease in Brucella infection observed 

upon individual overexpression of dominant negative TGFBR2 and dominant 

negative TGFBR1. Similar to co-overexpression of wild type forms of both receptors, 

overexpressing a combination of dominant negative TGFBR2 and TGFBR1 did not 

further decrease Brucella infection. Infection rates remained similar between HeLa 

cells expressing the individual receptors or the combination of both receptors (Figure 

3B). These results suggest the importance of having functional receptors in the TGF-β 

signaling pathway during Brucella infection, with an increase of kinase active 

receptor expression leading to an increased Brucella infection.  
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shRNA knockdown of TGFBR1, TGFBR2 or Rab7 reduces Brucella infection in 

HeLa cells  

To confirm the effect of TGFBR1 and TGFBR2 knockdown on Brucella infection in 

a physiologically relevant cell line for Brucella infection, we chose THP-1 cells for 

our studies. THP-1 is a human monocytic cell line derived from an acute monocytic 

leukemia patient and could be differentiated into a macrophage-like cell line via 

induction with phorbol myristate acetate (PMA). Brucella infects THP-1 macrophages 

very efficiently, with high levels of infection at a much lower multiplicity of infection 

(MOI) compared to HeLa cells (Supplementary Figure 2). Due to the low efficiency 

of siRNA transfection in macrophages, a shRNA knockdown system was developed. 

pLKO.3G is a replication-incompetent lentiviral vector which allows expression of 

shRNA sequences as well as GFP, allowing the monitoring of cells that harbour the 

shRNA sequence. pLKO.3G can be introduced  efficiently into HeLa cells and THP-1 

macrophages via lentiviral particles (Supplementary Figure 5), allowing stable 

expression of shRNA sequences of interest.  

shRNA sequences targeting TGFBR1, TGFBR2 or Rab7 were selected based on 

siRNA sequences that had a strong effect on Brucella infection in HeLa cells from our 

siRNA screens (Research Article II and Research Article III) or validated shRNA 

sequences that were available from Sigma’s website (Supplementary Table 1). As 

THP-1 is a human cell line, siRNA sequences from the siRNA screen that target the 

human genome could be used for shRNA design. Rab7 was included as it is a protein 

known to be important for Brucella trafficking to its replication niche in both HeLa 

cells and macrophages (45) and serve as a positive control for this assay.  

The assay was first developed in HeLa cells before using the THP-1 system to 

confirm the efficiency of shRNAs designed. To this end, western blots and 

immunofluorescence studies were performed. As seen in Supplementary Figure 1A, 

shRNA sequence 1 and 3 targeting Rab7 showed a significantly reduced Rab7 

staining compared to neighbouring cells which do not express the shRNA. shRNA 

sequence 2 expressing cells however did not show any reduction in Rab7 levels. 

TGFBR2 antibodies available in the lab were not suitable for immunofluorescence 

staining (data not shown). Reduction in Rab7, TGFBR1 or TGFBR2 levels were also 

confirmed by western blot analysis for Rab7 shRNA sequence 3 and a few of the 
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shRNA sequences of TGFBR1 (shRNA 1 and shRNA 1 sigma) and TGFBR2 

(shRNA 1 sigma) (Supplementary Figure 1B).  

Next, HeLa cells stably expressing shRNAs of interest were infected with DsRed-

expressing Brucella abortus. Consistent with the results seen with the 

immunofluorescence studies, cells expressing Rab7 shRNA sequence 1 and 3 showed 

a significant decrease in Brucella infection while shRNA sequence 2 had no effect on 

infection (Figure 4 and Supplementary Figure 1A). A significant reduction in Brucella 

infection was also seen in cells expressing TGFBR1 shRNAs as well as TGFBR2 

shRNAs. This confirms our genome-wide siRNA results that TGFBR1 and TGFBR2 

are indeed important for Brucella infection in HeLa cells (Figure 4).  

 

shRNA knockdown of Rab7 but not TGFBR1 reduces Brucella infection in THP-

1 macrophage-like cell line 

Using the shRNA sequences that showed an effect on Brucella infection in HeLa cells, 

shRNA knockdown was repeated in THP-1 macrophage-like cell line. Cells stably 

expressing Rab7 or TGFBR1 shRNAs were infected with DsRed-expressing Brucella 

abortus. TGFBR2 shRNA knockdown was not performed in this experiment. Rab7 

shRNA 1 and 3 showed a mild decrease in Brucella infection in THP-1 cells as 

compared to the effect seen in HeLa cells, while there was no effect on Brucella 

infection upon knockdown of TGFBR1 in THP-1 cells (Figure 4). This confirms the 

role of Rab7 in Brucella infection of macrophages, with TGFBR1 knockdown having 

no effect on infection in this cell line. 

 

Brucella abortus are not contained within Lamp1 or Rab7 compartments upon 

knockdown of TGFBR1 in HeLa cells 

Brucella interacts with the endocytic markers e.g. Rab7 and Lamp1 prior to its arrival 

at its replicative niche (45). Once arriving at its niche, Brucella is contained in an ER-

derived compartment that is devoid of endosomal or lysosomal markers (46). As 

shown in Research article III, TGFBR1 and TGFBR2 are important for Brucella entry 

in HeLa cells.  However, TGF-β signaling pathway could also be important in steps to 

reach their replicative niche post entry, e.g. the escape from the endo-lysosomal 

compartment. To understand this, cells depleted of TGFBR1 were infected with GFP-

expressing Brucella abortus for 24 h, fixed and stained for Lamp1 that marks the 
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endo-lysosomal compartment. At 24 hours post infection (hpi), Brucella containing 

vacuoles (BCVs) should be negative for markers of this system and have already 

arrived at their replicative niche  (7). As expected, cells treated with scrambled siRNA 

showed BCVs devoid of Lamp1 markers at 24 hpi. The same was seen with cells 

treated with TGFBR1 siRNAs, with most bacteria having no Lamp1 around their 

vacuole (Figure 5). TGFBR1 depleted HeLa cells were also stained for Rab7 at 24 hpi 

to check for its interaction with the late endosomal compartment. Again, at 24 hpi, 

most of the cells treated with scrambled siRNA and TGFBR1 siRNA did not acquire 

Rab7 marker around the BCV (Figure 6). This suggests that knockdown of TGFBR1 

did not affect Brucella escape from the endo-lysosomal compartment.  

 

Discussion and outlook  
 
TGF-β signaling is involved in the regulation of various cellular processes including 

cell proliferation, development, immune system modulation and cell differentiation 

(3). Nevertheless, TGF-β signaling has also been shown to be important for pathogens 

in the course of infection, in terms of host immunosuppression for survival in 

macrophages as well as entry into mammalian cells (25, 26, 29, 30). Here, we report 

the importance of TGF-β signaling in Brucella entry and infection in non-phagocytic 

HeLa cells.  

Knockdown of components of the TGF-β signaling pathway including receptors, R-

Smads, Co-Smad as well as their upstream ligands resulted in a decrease in Brucella 

infection in HeLa cells. TGFBR2 and TGFBR1 forms a heteromeric complex on the 

cell surface upon pathway activation, leading to downstream signaling. The fact that 

there was a similar effect upon knockdown of each of these receptors individually 

validates the importance of this receptor during Brucella infection. The importance of 

TGF-β signaling in Brucella infection was further confirmed by a mild dose-

dependent increase in infection upon pre-sensitization of HeLa cells with active TGF-

β1 ligand. This suggests that it is beneficial to have active TGF-β signaling pathway 

in the host cell prior to Brucella infection. However, the effect of TGF-β1 towards 

Brucella infection is much milder in HeLa cells compared to that reported for 

Trypanosoma cruzi infection of Mv1Lu cells (29). There was a 6 fold increase in 

infection upon pre-incubating Mv1Lu cells for 24 h with TGF-β1 (2ng/ml) before 
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infection with T. cruzi, while there was only a 1.5 fold increase with the same 

conditions in HeLa cells with B. abortus. Furthermore, there was no further increase 

in Brucella infection with higher doses of TGF-β1 (up to 10ng/ml, data not shown). 

This could be due to the difference in sensitivity towards TGF-β1 stimulation between 

Mv1Lu (TGF-β-sensitive cell line) (41) and HeLa cancer cell line. Since TGF-β1 is a 

tumour suppressor, it is known that cancer cells reduce TGF-β signaling via reduced 

TGFBR expression, with a more abundant cytosolic compared to membrane pool of 

receptors (47, 48). This is consistent with our studies that HeLa cells express much 

less surface TGFBR2 compared to Mv1Lu (Supplementary Figure 3). Therefore, 

adding more TGF-β1 to HeLa cells probably does not increase Brucella infection due 

to the limited number of surface TGFBR or limited downstream signaling that is 

available in this cancerous cell line. It could also be that TGF-β signaling has a more 

prominent role during T.cruzi infection than Brucella abortus infection of mammalian 

host cells, leading to a more significant increase of T.cruzi infection upon TGF-β1 

addition. Furthermore, we did not observe a higher infection rate in Mv1Lu as 

compared to HeLa cells (Supplementary Figure 4a) even though Mv1Lu has much 

higher levels of surface TGFBR2. It is possible that the system needs an additional 

activator, e.g. TGF-β. Additionally, these results might also suggest that Brucella 

does not attach to or enter host cells by TGFBR itself in Mv1Lu but rather requires 

the signaling events from this pathway. The role of TGFBR or TGF-β signaling in 

Mv1Lu during Brucella infection has also still to be confirmed.  

Another line of evidence to support the role of TGF-β1 signaling during Brucella 

infection, specifically the role of the TGFBRs, was observed when overexpression of 

TGFBR1 or TGFBR2 significantly increased Brucella infection and kinase dead 

dominant negative TGFBR mutants reduced Brucella infection. This emphasizes the 

importance of TGFBR kinase activity during Brucella infection. Again, only a mild 

increase in infection was observed (1.5 fold) upon overexpression of TGFBRs, 

suggesting other limiting factors of the system (e.g. limited amount of ligand) that 

prevent further increase in Brucella infection. Co-expression of both TGFBR1 and 

TGFBR2 did not seem to increase infection rates. Since there was no fluorescent 

labeling for TGFBR expression in mammalian cells, estimation of the efficiency of 

double transfection in the cells remains challenging.  Possibly, double transfection 

was not as efficient as single transfection, thus masking expected additive effects.  
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Therefore, it would be interesting to assay infection rates on cells co-expressing both 

receptors in the presence of TGF-β signaling agonist, TGF-β1. In order to gain deeper 

insights into the effect of TGF-β1 agonist stimulation or overexpression of the 

receptors on the activation of TGF-β1 signaling, we could perform experiments with 

HeLa cells or Mv1Lu cells stably transfected with a plasminogen activator inhibitor-1 

(PAI-1) construct. This plasmid contains a truncated PAI-1 promoter fused to the 

firefly luciferase reporter gene that leads to increased luciferase activity upon TGF-β 

stimulation (49) as a read-out for increase of TGF-β signaling.  

shRNA knockdown of TGFBR2 or TGFBR1 in HeLa cells reduced Brucella infection 

while no significant effect was detected in THP-1 macrophage-like cell line. As the 

effect that was seen with the positive control Rab7 shRNA knockdown is milder in 

THP-1 than HeLa cells, it is possible that the overall knockdown efficiency is lower 

in THP-1 and has to be confirmed with western blot studies. The efficiency of the 

shRNA system to knockdown proteins of interest in HeLa cells also suggests that it is 

possible to use siRNA sequences of interest for shRNA design, with varying 

knockdown efficiencies between different sequences. 

TGFBR2 and TGFBR1 were shown to be important for Brucella abortus entry into 

HeLa cells (Research Article III Figure 4). To test for other possible roles of these 

proteins downstream of entry, the interaction of BCVs with endo-lysosomal markers 

was investigated. Brucella did not acquire either Rab7 or Lamp1 markers at 24 hpi, 

suggesting it is still able to escape from the endocytic pathway to reach its replicative 

niche even under TGFBR1 depletion conditions. Therefore, TGF-β signaling benefits 

pathogenicity mostly on the level of Brucella entry. This is still to be confirmed using 

other markers such as early endosomal, ER or autophagosomal markers. The role of 

TGF-β signaling in the adhesion of Brucella on host cells also remains yet to be 

investigated.  

In summary, together with the results from Research Article III, we show that active 

TGF-β signaling and kinase active receptors are important for Brucella entry into 

HeLa cells. It would now be interesting to investigate the role of this signaling 

pathway in other cell lines and to pinpoint the exact mechanism that is regulated by 

this pathway during Brucella infection. 
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Materials & Methods  
 
Materials 
HeLa (human cervical carcinoma epithelial cell line, ATCC, CCL-2); Mv1Lu (mink 

lung epithelial cell line, ATCC, CCL-64); THP-1 (human monocytic leukemia cell 

line, ATCC, TIB-202); human embryonic kidney 293T (HEK-293T)(from Hwain 

Cornelis’s lab); Dulbecco Modified Eagle Medium (DMEM) (Sigma, D5796); 

Dulbecco Modified Eagle Medium Glutamax (DMEM Glutamax)(Gibco, 61965-026); 

minimum essential medium (MEM)(Sigma, M5650); RPMI-1640 medium (Sigma, 

R0883); Fetal Calf Serum (FCS)(Gibco, 10270): heat inactivated at 56°C for 30 min 

before use; Fetal Calf Serum (FCS)(Bioconcept, 2-01F30-I); tryptic soy broth 

(TSB)(Fluka, 22092); kanamycin sulfate (Sigma-Aldrich, 60615); ampicillin sodium 

salt (Applichem, A.8039.0025); gentamicin (Sigma, G1397); Triton-x-100, sigma-

ultra (Sigma-Aldrich, T9284); DAPI (Roche, 10236276001); phalloidin-547 

(Dyomics, 547PI-33); albumin from bovine serum (BSA)(Sigma, A9647); 

paraformaldehyde (Sigma, P6148); phosphate buffered saline (PBS)(Gibco, 20012); 

L-glutamine (Sigma-Aldrich, G7513); phorbol myristate acetate (PMA)(Sigma, 

P8139); PAC1 (New England Biolabs, R0547); EcoRI (New England Biolabs, 

R3101); BamHI (New England Biolabs, R3130); T4 DNA ligase (New England 

Biolabs, M0202); TGFβ-1 (R&D Systems, 240-13); Fugene HD (Promega, E2312); 

0.45μm membrane filter (Sarstedt, 83.1826); polybrene (Sigma, H9268); Hepes 

(Sigma, H3375); NaCl (Merck, 1.06404.1000); EDTA(Fluka Chemika, 03685); 

pepstatin (Applichem, A2205.0010); leupeptin (Applichem, A2183.0010); Pierce 

BCA protein assay kit (Thermoscientific 23225); nitrocellulose membrane (GE 

healthcare, RPN203D); ECL system (KPL, 54-69-00 and 54-70-00); mouse 

monoclonal anti-Lamp1 [H4A3] antibody (Abcam, ab25630); rabbit monoclonal anti-

Rab7 (D95F2) antibody (Cell Signaling, 9367); rabbit polyclonal anti-TGFBR1 

antibody (Abcam, ab31013); rabbit polyclonal anti-TGFBR2 antibody (milipore, 06-

227); monoclonal mouse anti-actin antibody, clone C4 (milipore, MAB1501); ECL 

mouse IgG, HRP-linked whole antibody (GE healthcare, NA931V); ECL rabbit IgG, 

HRP-linked whole antibody (GE healthcare, NA934V); Alexa Fluor 546 Goat Anti-

mouse IgG (Molecular probes, A-11030); Alexa Fluor 546 Goat Anti-rabbit IgG 

(Molecular probes, A-11010); propidium iodide (kind gift from Ton Rolink’s lab); 
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Alexa Fluor 633 Rabbit Anti-mouse IgG (Molecular probes, A-21063), Qiagen all 

stars negative control (SI03650318); TGFBR1 siRNA (Qiagen Hs_TGFBR1_7). 

 
Bacterial strains and cell lines  
The bacterial strains used in this study include GFP expressing Brucella abortus 2308 

that contains pJC43 with gfp-mut3 gene under a constitutively active kanamycin 

resistance gene aphA3 promoter (50) and DsRed expressing Brucella abortus 2308 

that contains pJC44 with DsRedm gene from pDsRedm (Clontech) under a 

constitutively active kanamycin resistance gene aphA3 promoter (45).  DH5α used for 

cloning experiments contains genotype φ80dlacZΔM15, recA1, endA1, gyrAB, thi-1, 

hsdR17 (rK-, mK+), supE44, relA1, deoR, Δ(lacZYA-argF) U169, phoA (N. Mantis, 

Institut Pasteur). 

HeLa cells were grown in DMEM (Sigma) supplemented with 10% FCS (Gibco), 

Mv1Lu cells with MEM supplemented with 10% FCS (Bioconcept), THP-1 cells with 

RPMI-1640 medium supplemented with 10% FCS (Gibco) and 10mM L-glutamine 

and HEK293T cells with DMEM Glutamax (Gibco) supplemented with 10% FCS 

(Bioconcept). Cells were incubated at 37°C with 5% CO2. THP-1 monocytes can be 

differentiated into a macrophage-like cell line with PMA at a final concentration of 

10-7 M and 48 h incubation at 37°C with 5% CO2 (51). 
 
Plasmids 
Plasmids pCMV5-TGFBR1 (addgene ID: 19161), pCMV5B-TGFBR2 (addgene ID: 

11766 (42)), pCMV5B-TGFBR1 K232R (addgene ID: 11763 (43)), pCMV5-

TGFBR2 Δcyt (addgene ID: 14051 (44)) and pCMV5B-TGFBR2 K227R (addgene 

ID: 11762 (42)), pLKO.3G (addgene ID: 14748), psPAX2 (addgene ID:  12260) and 

pMD2.G (addgene ID: 12259) were obtained from Addgene (www.addgene.org). 

pWay19 was a gift from the Molecular Motion laboratory, Montana State University, 

Bozeman, MT.  

A summary of the primers used in this study is listed in Table 1 in this results section. 

Primers were designed for the shRNA assay to be cloned into lentiviral vector 

pLKO.3G. For Rab7A shRNA 1 the primer pair prSL098 and prSL099 was used to 

produce pSL064, for Rab7 shRNA 2 prSL100 and prSL101 produced pSL065, for 

Rab7 shRNA 3 prSL102 and prSL103 produced pSL066, for TGFBR1 shRNA 1 

 
158 



       Results: TGF-β signaling and Brucella infection 

 
prSL104 and prSL105 produced pSL076, for TGFBR1 shRNA 1 Sigma prSL129 and 

prSL130 produced pSL078 or pSL080, for TGFBR2 shRNA 1 prSL106 and prSL107 

produced pSL067, for TGFBR2 shRNA 2 prSL108 and prSL109 produced pSL069, 

for TGFBR2 shRNA 3 prSL110 and prSL111 produced pSL068 and for TGFBR2 

shRNA 1 sigma prSL133  and prSL134 produced pSL079. shRNA primers were 

annealed at 950C for 4 min, incubated at 70 0C for 10 min, after which the now double 

stranded fragments were slowly cooled to room temperature (RT) over several hours. 

pLKO.3G was digested with Pac1 for 3 h at 370C, gel purified and digested again 

with EcoRI for 3 h at 370C. 7 kb fragment from the digestion was gel purified and 

used for ligation with annealed oligos, for 13 h at 16 0C using T4 DNA ligase. Ligated 

plasmids were transformed into DH5α and plated on ampicillin agar plates. Clones 

were sequenced with primer prSL112.  
 

Cell culture and Infection  
Brucella abortus strains were grown in TSB medium containing 50 μg/ml kanamycin 

for 24 h at 37°C and shaking (100 rpm) to an OD of 0.8- 1.1. Bacteria were added to 

cells with a final MOI of 10000 for HeLa cells or Mv1Lu and MOI 500 for THP-1 

macrophage like cell line. Plates were then centrifuged at 400 g for 20 min at 4°C to 

synchronize bacterial entry. After 4 h incubation at 37°C and 5% CO2, extracellular 

bacteria were killed by exchanging the infection medium with DMEM (Sigma)/10% 

FCS (Gibco) supplemented with 100 μg/ml gentamicin. After a total infection time of 

44 h, cells were fixed with 3.7% PFA for 20 min at RT. 

 

Automated image analysis and infection scoring  
Images were taken with Molecular Devices ImageXpress microscopes using the 

10X S Fluor objective, after which automated image analysis and decision tree 

infection scoring was performed as described in Research Article III. Binary level 

infection detection (infected vs. non-infected) allows infection index (Infected cell / 

total cell number) to be defined. 
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TGF-β assay  
HeLa cells (2800 cells / well) were seeded a day before infection in a 96 well format 

with DMEM (Sigma) 10% FCS (Gibco) containing TGFβ-1. Cells were then 

incubated in 37°C, 5% CO2 for another 24 h, after which infection was performed in 

absence of TGFβ-1 in the culture medium.  

 

Plasmid transfection  
HeLa cells were seeded a day before transfection in a 6 well plate with 250,000 

cells/well. Next morning, 0.9 μg of plasmid or 0.45 μg of each plasmid for double 

transfection (in 200 μl of DMEM without FCS) were mixed with 8 μl of Fugene HD 

(in 200 μl of DMEM without FCS) and incubated for 15 min at RT. HeLa cells were 

exchanged with 1.5 ml of fresh medium and DNA-Fugene complex was added to the 

cells. The next morning, cells were exchanged with fresh medium and in the evening 

splitted into a 96 well format (2800 cells/well) for infections on the following day.  

 

Lentiviral transduction  
3x106 HEK293T cells were grown in a 10 cm2 dish and incubated at 37°C, 5% CO2 

for at least 6-8 hours. 1.7 μg pLKO.3G, 1.25 μg psPAX2 packing plasmid and 420 ng 

pMD2.G envelope plasmid in 600 μl DMEM without FCS were then mixed with 

25 μl of Fugene HD in 600 μl DMEM without FCS and incubated for 15 min at room 

temperature. The DNA-Fugene complex was then added to the cells that were 

replaced with 5 ml of fresh medium. Cells were exchanged with fresh medium the 

following day. 2 days later, the supernatant of HEK293T that now contain viruses was 

collected and filtered through a 0.45 μm membrane filter. Viruses were then used 

directly for transduction of cells or stocked in tubes at -800C. Aliquots of virus 

containing supernatant (1 ml or 2 ml volumes) were added to cells in presence of 

fresh medium to a total volume of 3 ml, and polybrene having a final concentration of 

5 μg/ml. Cells were exchanged with fresh medium the next day and used for further 

experiments.  
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shRNA assay  
For HeLa cells, 70,000 cells were seeded in a 6 well plate one day before viral 

transduction. Around 100,000 cells of THP-1 monocytes were first transduced with 

viruses containing shRNA in a 6 well plate and exchanged with fresh medium the 

next day. In a 96 well format, 15,000-20,000 cells were differentiated 2 days before 

infection with PMA (final concentration of 10-7 M) in RPMI medium supplemented 

with 10% FCS (Gibco) and 10mM L-glutamine. Experiments were performed earliest 

after 3 days of incubation to allow sufficient time for shRNA expression. Cells were 

then infected with DsRed expressing Brucella abortus 2308 for around 44 h, fixed 

and stained with DAPI (final concentration 1μg/ml) for the nucleus. Images were 

acquired with Molecular Devices ImageXpress microscopes with the 10X S Fluor 

objective, after which automated image analysis and infection scoring was performed 

as described above. An additional feature during image analysis that was obtained in 

this assay is the GFP intensity of the cells that indicates shRNA expression. A 

threshold is set in Spotfire that allows separation of shRNA containing GFP-positive 

cells vs. GFP-negative cells. Infection indices were then compared only within the 

GFP-positive cell population, between the empty plasmid control that contains only 

GFP vs. shRNA expressing GFP-positive cells.  

 

siRNA transfection  
HeLa cells were transfected with siRNAs at a final concentration of 20 nM. 2 μl of 

20 μM siRNA stock and 2 μl of RNAimax were added to 200 μl of DMEM (Sigma) 

without FCS, mixed and incubated for 30 min at RT. Transfection mixture was then 

added to 1.8 ml of cells (6x10^4 cells/ml) in a well of a 6 well plate and incubated for 

around 48 h. Next, cells were trypsinized and 50,000 cells/well were seeded in a 24 

well plate with coverslip one day before infection.  

 

Immunofluorescent labeling 
HeLa cells on coverslips were permeabilized with 0.1% Triton-x-100 for 10 min at 

RT, washed with PBS before incubated with 0.5% BSA/PBS for 30 min at RT. 

Afterwards, cells were labeled for Lamp1 or Rab7 using mouse monoclonal anti-

Lamp1 [H4A3] antibody (1:100) or rabbit monoclonal anti-Rab7 (D95F2) antibody 
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(1:50) respectively and secondary antibody Alexa Fluor 546 Goat Anti-mouse IgG 

(1:100) or Alexa Fluor 546 Goat Anti-rabbit IgG (1:300). For the TGFβ-1 assay and 

overexpression studies, cells were permeabilized for 10 min with 0.1% Triton-x-100 

and stained with DAPI (final concentration 1μg/ml) for nuclei and phalloidin-547 

(1:250) for F-actin.  

 
Western blotting  
Cells were trypsinized from a 25cm2 culture flask, washed once with cold PBS and 

cell pellet used directly or kept at -80°C. 50 μl of ice cold lysis buffer (50 mM HEPES 

pH 7.5, 250 mM NaCl, 1 mM EDTA, 1 μM pepstatin, 1 μM leupeptin and 1% Triton-

x-100) was used to resuspend the cell pellet and suspension was incubated 30 min on 

ice. Cell lysate was pelleted at 13,000 rpm for 10 min at 4°C and supernatant was 

collected in a new eppendorf tube. Protein concentration was measured with the BCA 

kit and around 50 μg – 80 μg of protein was loaded in each well, separated by 10% 

SDS-PAGE and transferred onto a Hypond-C Extra nitrocellulose membrane. The 

membranes were blotted for Rab7 using rabbit monoclonal anti-Rab7 (D95F2) 

antibody (1:1000), TGFBR1 using rabbit polyclonal anti-TGFBR1 antibody (1:500), 

TGFBR2 using rabbit polyclonal anti-TGFBR2 antibody (1:500) and actin as loading 

control using monoclonal mouse anti-actin antibody, clone C4 (1:10000). Proteins 

were visualized using the ECL system (GE Healthcare) with ECL mouse IgG, HRP-

linked whole antibody (1:10000) or ECL rabbit IgG, HRP-linked whole antibody 

(1:2000). 

 
Cell surface staining and flow cytometry  
For cell surface staining of TGFBR2, cells were trypsinized and 1-2x106 cells were 

collected for each sample. Cells were washed once with FACS buffer (1% FCS 

(Bioconcept) in PBS) and incubated with rabbit polyclonal anti-TGFBR2 antibody 

(final concentration 20 μg / ml) for 1 h at 4°C, washed with FACS buffer and further 

incubated with Alexa Fluor 633 Rabbit Anti-mouse IgG (final concentration 20 μg / 

ml) for 1 h at 4°C. After washing cells with FACS buffer, samples were incubated 

with propidium iodide (PI) for few minutes to label dead cells before flow cytometry 

was performed. Flow cytometry was performed using the FACS Calibur (BD 
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Biosciences) and data were analyzed using the FlowJo software. Only cells that were 

negative for PI staining were used for analysis.  
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Table 1: Primers used in this study  
 
Name      Sequence  
 
prSL098  5’-AATTCTGCTGCGTTCTGGTATTTGACTCGAGTCAAATACC 

AGAACGCAGCAGTTTTTTTAT-3’ 

prSL099 5’-AAAAAAACTGCTGCGTTCTGGTATTTGACTCGAGTCAAAT 

ACCAGAACGCAGCAG-3’ 

prSL100 5’-AATTGAGGTGGAGCTGTACAACGAACTCGAGTTCGTTGTA 

CAGCTCCACCTCTTTTTTTAT-3’ 

prSL101  5’-AAAAAAAGAGGTGGAGCTGTACAACGAACTCGAGTTCGT 

TGTACAGCTCCACCTC-3’ 

prSL102 5’-AATTCACGTAGGCCTTCAACACAATCTCGAGATTGTGTTG 

AAGGCCTACGTGTTTTTTTAT-3’ 

prSL103  5’-AAAAAAACACGTAGGCCTTCAACACAATCTCGAGATTGT 

GTTGAAGGCCTACGTG-3’ 

prSL104 5’- AATTTGGGATTGTACTATACCAGTACTCGAGTACTGGTAT 

AGTACAATCCCATTTTTTTAT-3’ 

prSL105 5’- AAAAAAATGGGATTGTACTATACCAGTACTCGAGTACTG 

GTATAGTACAATCCCA-3’ 

prSL129 5’- AATTGATCATGATTACTGTCGATAACTCGAGTTATCGACA 

GTAATCATGATCTTTTTTTAT-3’ 

prSL130 5’- AAAAAAAGATCATGATTACTGTCGATAACTCGAGTTATC 

GACAGTAATCATGATC-3’ 

prSL106 5’- AATTTACCATGACTTTATTCTGGAACTCGAGTTCCAGAAT 

AAAGTCATGGTATTTTTTTAT-3’ 

prSL107 5’- AAAAAAATACCATGACTTTATTCTGGAACTCGAGTTCCA 

GAATAAAGTCATGGTA-3’ 

prSL108 5’- AATTATGGAGAAAGAATGACGAGAACTCGAGTTCTCGTC 

ATTCTTTCTCCATTTTTTTTAT-3’ 

prSL109 5’- AAAAAAAATGGAGAAAGAATGACGAGAACTCGAGTTCT 

CGTCATTCTTTCTCCAT-3’ 

prSL110 5’- AATTCTCCAATATCCTCGTGAAGAACTCGAGTTCTTCACG 

AGGATATTGGAGTTTTTTTAT-3’ 
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prSL111 5’-AAAAAAACTCCAATATCCTCGTGAAGAACTCGAGTTCTT 

CACGAGGATATTGGAG-3’ 

prSL112 5’- GACTATCATATGCTTACCGT-3’ 

prSL133 5’- AATTCTCTAGGCTTTATCGTGTTTACTCGAGTAAACACGA 

TAAAGCCTAGAGTTTTTTTAT-3’ 

prSL134 5’- AAAAAAACTCTAGGCTTTATCGTGTTTACTCGAGTAAACA 

CGATAAAGCCTAGAG-3’ 
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Figure legends 
 

Figure 1. Knockdown of TGF-β signaling components reduces Brucella infection 

in HeLa cells. Box plot represents Z-score normalized infection index (described in 

material and methods of Research Article III) of data points from kinome screen 

(Ambion library), primary genome-wide screens (Dharmacon and Qiagen library) and 

secondary screens (Ambion and Sigma library). Details of these libraries can be found 

in Research Article III. The median is represented at the middle of the box. Positive 

and negative controls Rac1 or scrambled siRNA are included for reference. Whiskers 

and outliers of boxplot are calculated with the Tukey method. 

 

Figure 2. Activation of TGF-β signaling by TGF-β1 increases Brucella infection. 

HeLa cells were pre-incubated for 24 h with DMEM containing TGF-β1 before 

infected with GFP-expressing Brucella abortus for 44 h. Plates were imaged with 

DAPI channel for nuclei, GFP channel for bacteria and RFP channel for cell body 

with F-actin. Automated image analysis with CellProfiler and decision tree infection 

scoring was performed with nucleus, perinucleus and cell body as objects. Data 

represents normalized infection in reference to cells that were not pre-incubated with 

TGF-β1, the mean ± STDEV of at least three independent experiments.  

 

Figure 3. Overexpression of wild type or dominant negative TGFBR increases 

and reduces Brucella abortus infection respectively. HeLa cells were transfected 

with A) wild type TGFBR (pCMV5-TGFBR1 or pCMV5B-TGFBR2) or B) 

dominant-negative TGFBR (pCMV5B-TGFBR1 K232R, pCMV5 TGFBR2 Δcyt, 

pCMV5B-TGFBR2 K227R) either individually or in combination of both TGFBR1 

and TGFBR2.  After 1.5 days of overexpression, cells were infected with GFP-

expressing Brucella abortus for around 44 h. Plates were imaged with DAPI channel 

for nuclei, GFP channel for bacteria and RFP channel for cell body with F-actin. 

Automated image analysis with CellProfiler and decision tree infection scoring was 

performed with nucleus, perinucleus and cell body as objects. Data represents 

normalized infection in reference to non- transfected cells, the mean ± STDEV at least 

four independent experiments. For B), dataset with overexpression of both receptors 

shows the mean of only two independent experiments.  
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Figure 4. shRNA knockdown in HeLa and THP-1 cells. HeLa cells were 

lentivirally transduced with pLKO.3G empty vector or pLKO.3G containing indicated 

shRNAs respectively. After 6 – 12 days, cells were infected with DsRed-expressing 

Brucella abortus and fixed after around 44 hours post infection (hpi). THP-1 

monocytes were lentivirally transduced with pLKO.3G empty vector or pLKO.3G 

containing shRNAs respectively. On day two, monocytes were differentiated by 

addition of PMA to the medium. On day four, cells were infected with DsRed- 

expressing Brucella abortus and were fixed after around 44 hpi. Plates were imaged 

with DAPI channel for nuclei, GFP channel for cells expressing shRNA, and RFP 

channel for bacteria. Automated image analysis with CellProfiler and decision tree 

infection scoring was performed with nucleus, perinucleus and voronoi cell as objects. 

GFP-positive cells were selected in SpotFire software for infection analysis. Data 

represents normalized infection in reference to the empty vector, the mean ± STDEV 

of at least three independent experiments. TGFBR2 shRNA 2 dataset has only two 

independent experiments.  

 

Figure 5. Brucella abortus are not contained within Lamp1 compartments upon 

knockdown of TGFBR1 in HeLa cells. Representative images of HeLa cells 

infected with GFP-expressing Brucella abortus for 24 h after 72 h of transfection with 

scrambled or TGFBR1 siRNA. Cells were immunostained for Lamp1 (red) and 

images were taken with the 60x objective and FEI MORE with TIRF microscope. 

Images in stacks were deconvolved with HUVGENs remote manager and one 

represented slice around the middle of a stack is shown.  Scale bars represent 10µm. 

 

Figure 6. Brucella abortus are not contained within Rab7 compartments upon 

knockdown of TGFBR1 in HeLa cells. Representative images of HeLa cells 

infected with GFP-expressing Brucella abortus for 24 h after 72 h of transfection with 

scrambled or TGFBR1 siRNA. Cells were immunostained for Rab7 (red) and images 

were taken with the 60x objective and FEI MORE with TIRF microscope. Images in 

stacks were deconvolved with HUVGENs remote manager and one represented slice 

around the middle of a stack is shown.  Scale bars represent 10µm. 
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Supplementary Figure 1. Validation of shRNA knockdown by western blot or 

immunofluorescence studies. A) Comparison of endogenous Rab7 staining of Rab7 

shRNA expressing cells (GFP positive) versus neighbouring non transduced cells. 

Rab7 shRNA or pLKO.3G empty vector transduced HeLa cells were stained with 

Rab7 rabbit antibody (1:50, Cell signaling) and imaged with the Andor confocal 

microscope. A representative slice around the middle of a stack is presented. At least 

three independent experiments were performed. Scale bar represents 10µm. B) 

Validation of shRNA knockdown by western blot with actin as loading control.  

 

Supplementary Figure 2. Brucella infection of THP-1 cell macrophage-like cell 

line. A) Image represents THP-1 macrophage infected by GFP-expressing Brucella 

abortus at around 44 hpi. Scale bar represents 10µm. B) Bar graph represents MOI 

titration curve of GFP-expressing Brucella abortus infection of THP-1 macrophages 

at around 44 hpi.  THP-1 monocytes were differentiated two days before infection 

with PMA. 

 

Supplementary Figure 3. HeLa cells expresses low levels of surface TGFBR2 

compared to Mv1Lu. A) HeLa cells and Mv1Lu were stained for surface TGFBR2, 

without cell permeabilization using 10 TGFBR2 antibody and 20 antibody Alexa 633. 

Cells were then subjected to flow cytometry analysis. B) Representative image of 

HeLa cells or Mv1Lu cells infected with GFP-expressing Brucella abortus. Image 

was taken with 10x objective using Molecular Devices ImageXpress microscope. 

Scale bar represents 50µm. 

 

Supplementary Figure 4. TGFBR2 overexpression increases the levels of surface 

TGFBR2 in HeLa cells. HeLa cells were transfected with cDNA encoding TGFBR2 

(pCMV5B-TGFBR2) and stained for surface TGFBR2, without cell permeabilization 

using 10 TGFBR2 antibody and 20 antibody Alexa 633. Cells were then subjected to 

flow cytometry analysis. pWay19 is a GFP alone-expressing plasmid that was co-

transfected with pCMV5B-TGFBR2 to monitor transfection efficiency. There was 

generally an increase in TGFBR surface expression with both 1 day and 2 days of 

cDNA overexpression, seen in GFP expressing and non- expressing cells. 
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Supplementary Figure 5. Efficiency of shRNA transduction in HeLa cells and 

THP-1 monocytes. HeLa cells and THP-1 monocytes transduced with shRNA were 

analyzed with flow cytometry to estimate the efficiency of transduction in these cells. 

shRNA expressing cells also express GFP, since GFP is encoded in the empty vector.  

 

Supplementary Table 1. Sequences that were used for shRNA design. Table 

shows sequences that were used for shRNA design, selected from different sources.  
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3.5 Unpublished results: The role of retromer complex in 

Brucella infection  
 

Introduction  
The retromer complex was first identified in yeast Saccharomyces cerevisiae (52, 53) 

and later in higher eukaryotes e.g. mammalian cells, being highly conserved from 

yeast to mammals. It is an essential component of the endosomal protein sorting 

machinery. Besides having a major role in transporting cargoes via the endosome-

Golgi route, it has also been reported to play a role in recycling of cargoes through 

Rab4-dependent endosome-plasma membrane pathway (52-54).  Well-studied 

cargoes of the retromer complex include cation independent mannose 6-phosphate 

receptor (CIMPR) (55), iron transporter (DMT1) (56), sortilin-related receptor 

(SorL1/ SorLA) that binds to amyloid precursor protein (57), Shiga toxin (58), etc. 

Retromer cargoes have been shown to traffic to the Golgi via different routes. 

Recycling endosomes are important intermediates of Shiga toxin retrograde transport 

while CIMPR travels from late endosomes to Golgi since late endosomal Rab9 

GTPase is required for its recycling (59-61). Syntaxin 10 is required for CIMPR 

recycling while STX16 and Rab6 GTPase are required for toxins transport to the 

Golgi (62, 63).  

In mammalian cells, the retromer complex is composed of two functional 

subcomplexes: a trimer Vps26-Vps29-Vps35 that is involved in cargo selection and is 

generally known as the cargo selective trimer (CST), and proteins from the sorting 

nexin (Snx) family (64). Vps35 is the core component of the trimer that has a direct 

role in cargo binding (65, 66), with Vps26 and Vps29 independently associating at 

either end. Vps26 has also been shown to directly bind retromer cargo SorL1 / SorLA 

(67). There are two paralogues of Vps26 in mammals: Vps26a and Vps26B (68). 

Recent evidence showed that endosome to Golgi retrieval of (CIMPR) requires 

Vps26a and not Vps26b, suggesting preferences of the paralogues for different cargo 

(69).  

There are two different types of SNX that associate with CST (Figure 1). SNX1 or 

SNX2 that dimerizes with SNX5 or SNX6 belong to the SNX-BAR subfamily due to 

their membrane curvature sensing BAR (Bin/amphiphysin/Rv) domain and 
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phosphatidylinositol 3-phosphate [PtdIns(3)P] or phosphatidylinositol 3,5-

bisphosphate [PtdIns(3,5)P2]  binding PX (phox homology) domain (70, 71). The 

SNX heterodimer is therefore able to induce and stabilize the formation of membrane 

tubules (72, 73). This complex of SNX-BAR and the CST is termed the SNX-BAR-

retromer (74). SNX3 has also been reported to associate with CST (75). However, 

SNX3 does not contain a BAR domain but has a PX domain that binds with high 

affinity to PtdIns(3)P (76). The complex of SNX3 and CST is termed the SNX3-

retromer (74) (Figure 1). Not all cargoes have been assigned to specific retromer 

complex and it could be that only one or both of these retromer complexes are needed 

for the trafficking of each cargo (75).  

(64)(64)64(64)(64) 
Figure 1. A model that shows differential cargo sorting between SNX3-retromer and SNX-BAR 

retromer pathways. Wntless and CIMPR are sorted by SNX3-retromer and SNX-BAR-retromer 

complexes respectively. Authors from this review (74) suggest that transport of these cargoes are not 
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exclusively only through these respective pathways but reflects the steady state that seems to be 

dependent on specific retromer complexes. Picture taken from (74) and adapted. 

 

Retromer complex can be recruited to the endosomal membrane via different ways. 

Rab7-GTP has been shown to be required for the recruitment of the CST (77, 78), 

with interference of Rab7 (late endosomal marker) function causing dissociation of 

CST but not SNX from the membranes. Perturbation of Rab5 (early endosomal 

marker) also causes dissociation of both SNX dimer and CST from membranes 

through inhibition of phosphoinositide 3- kinase (PI3K) pathway. Therefore, Rab5 

and Rab7 act together to regulate retromer recruitment to the endosome (78). SNX3 

also recruits CST to the endosome as silencing of SNX3 displaces CST from the 

membrane (75). In the SNX3-retromer complex, SNX3 associates with Vps35 and 

both SNX3 and Rab7 are required for recruitment of the CST(79). Therefore, this 

places the action of the retromer at a region where both SNX3 and Rab7 are present 

(at early to late endosome transition)(80). For the SNX-BAR retromer complex, 

SNX1 and SNX2 are important to recruit CST and knockdown of both displaces CST 

from the membrane(81). SNX-BAR-retromer also functions at endosomes undergoing 

early to late endosome transition by binding to Rab7-GTP (74). Rab7 is a GTPase that 

cycles between the GTP active form and GDP inactive form, with Rab GTPase 

activating proteins (RabGAPs) proteins that stimulate GTP hydrolysis inhibiting its 

activity. TBC1D5, a member of the Tre2-Bub2-Cdc16 (TBC) family of Rab GTPase 

activating proteins (GAPs) (77) has been shown to directly interact with the CST by 

binding directly to Vps29 (82), regulating assembly and turnover of the nucleation 

complex by fine-tuning the Rab7 GTPase cycle.  

The retromer plays an important role in different physiological processes e.g. cell 

polarity, iron transporter recycling, regulation of G protein-coupled receptor (GPCR) 

signaling etc (80). There are also many examples of the retromer or in more general 

the retrograde trafficking from endosomes to Golgi being hijacked or manipulated by 

pathogens during their infectious processes. Salmonella inhibits retrograde trafficking 

of CIMPR and lysosome function (83), Shiga toxin / cholera toxin uses the retrograde 

trafficking pathway to reach the Golgi and later the ER (84), Legionella effector RidL 

promotes intracellular replication by binding directly to Vps29 and PtdIns(3)P to 

inhibit retromer’s function (85) and human papillomavirus (HPV) has been shown to 
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form a stable complex with the retromer during cell entry, later requiring the retromer 

to reach a Golgi-like compartment (86). 

From our genome-wide siRNA screen (Research Article III), we showed that 

components of the retromer complex Vps35, Vps26a and to a lesser extent Vps29 had 

decreased Brucella infection upon knockdown. Furthermore, Vps35 did not show an 

effect in Brucella entry, suggesting that it is involved in a post-entry step. It is still 

unknown how Brucella traffics from an endosomal compartment to its ER-derived 

replicative niche. Components of the retrograde trafficking pathway have also not 

been implicated in Brucella trafficking to its replicative niche. Therefore, it would be 

interesting to investigate the role of the retromer complex in this context.  

 

Results  
 

Retromer complex and its interacting partner Rab7 are required for Brucella 

infection  

Figure 1 depicts datasets from genome-wide screens (primary and secondary screens) 

for components of the retromer complex and some other components in context of the 

retrograde trafficking from endosomes to Golgi. Rac1 and mock (transfection reagent 

only) controls from all screens performed thus far were also shown. As seen, 

knockdown of individual components of the cargo selective trimer (CST) of the 

retromer complex that are the Vps35, Vps26a, and to a lesser extent Vps29 led to 

decreased Brucella infection, while Vps26b showed a much milder effect compared 

to Vps26a. Mock had no strong effect on Brucella infection while Rac1 that is known 

to be important for Brucella entry in non-phagocytic cells showed reduced infection 

upon knockdown (40). Sorting nexin proteins (SNX) associate with the CST to form 

the retromer complex (64). As seen, there was a mild effect of SNX3 and SNX2 in 

reducing Brucella infection upon knockdown, SNX5 and SNX6 depletion did not 

show a strong effect on infection, while SNX1 seemed to increase Brucella infection 

upon knockdown. Rab7, one of the factors involved in recruiting the retromer 

complex to the endosomal membrane via interaction with Vps35 (77) also had a 

strong effect on Brucella infection upon knockdown. Depletion of TBC1D5, which is 

a Rab GAP protein for Rab7 did not show an effect on infection while USP6NL, a 

Rab GAP protein for Rab43 shown to be involved in Shiga toxin transport from 
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endosomes to Golgi (87) led to increased infection upon knockdown. These results 

suggest the importance of the retromer complex and its interacting partner Rab7 in 

Brucella infection.   

 

Vps35, component of the retromer complex has a role in Brucella infection  

To confirm the results from our siRNA screens, shRNA experiment was repeated and 

specificity of the knockdown was validated by complementation with cDNA 

encoding wild type Vps35. Figure 2A shows the constructs that were used in this 

experiment (88). This system allows co-expression of shRNA and the rescue cDNA, 

increasing the probability that efficient rescue occurs in the cell expressing the 

shRNA of interest. As shown in Figure 2B, shRNA against Vps35 reduced Brucella 

infection, validating the results from our RNAi screens. Expression of cDNA of wild 

type Vps35 is able to rescue this phenotype, with cells having similar infection levels 

as the empty vector. Rescue was also performed with cDNA of Vps35 mutant that 

lacks amino acids 237-252 (hVps35Δ6), the region where Vps35 associates with Rab7. 

It was shown that hVps35Δ6 localizes to the cytosol as compared to wild type Vps35 

that goes to punctate endosomes. hVps35Δ6 is also not able to transport CIMPR from 

the endosomes to the perinuclear region(88). Therefore, hVps35Δ6 mutant upon 

losing its interaction with Rab7 loses its localization to endosomes and its function in 

retrograde sorting (88). Due to the large error bars with the dataset from the rescue 

experiment with hVps35Δ6, the experiment will be repeated before any conclusive 

statement is made of the role of Vps35’s interaction with Rab7 on Brucella infection. 

Therefore, the ability of wild type Vps35 to rescue the phenotype of Vps35 

knockdown confirms the specificity of our knockdown expeirments and the role of 

this component in Brucella infection.  

 

Retrograde transport is required for Brucella infection  

To understand the general role of retrograde transport from endosomes to Golgi in 

Brucella infection, experiments were performed with Retro-2 inhibitor. Retro-2 has 

been shown to selectively block retrograde trafficking of toxin ricin, Shiga-like toxin, 

cholera toxin B subunit (CTxB) and human papillomaviruses from endosomes to 

trans-Golgi-network (TGN) (86, 89), without affecting retrograde cargoes, 

morphology of compartments or other trafficking steps. This compound has also been 
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shown to protect mice from lethal nasal exposure to ricin (89). Retro-2 was added to 

HeLa cells together with the addition of GFP-expressing Brucella abortus at 0 hour 

post infection (hpi) (Figure 3A) or at 4 hpi when cells were washed with gentamicin 

containing medium to kill extracellular bacteria (Figure 3B). The inhibitor was then 

kept throughout the experiment. As seen in both Figure 3A and 3B, preliminary data 

suggests that there was a dose-dependent decrease in Brucella infection upon 

increased doses of the inhibitor. This suggests a role of retrograde trafficking from 

endosomes to TGN in Brucella infection and since inhibition of infection is still seen 

when drug was added 4 hpi, this might suggest that this pathway is needed at a post-

entry step during Brucella infection.  

 

Brucella are contained within Lamp1 compartments upon Vps35 knockdown in 

HeLa cells 

As shown in Research Article III, Vps35 knockdown did not affect entry of Brucella 

into HeLa cells, suggesting a post-entry role of this component during infection. To 

understand this, cells depleted of Vps35 were fixed after 24 hpi with GFP-expressing 

Brucella abortus and stained for Lamp1 that marks the endo-lysosomal compartment.  

At 24 hpi, most of the BCVs are negative for markers of the endosomal-lysosomal 

system and have reached their replicative niche that is an ER-derived compartment 

(46). As expected, cells treated with scrambled siRNA showed BCVs devoid of 

Lamp1 markers at 24 hpi. For cells depleted of Vps35, GFP-expressing Brucella 

abortus were still found in Lamp1 positive compartments at 24 hpi, with some of the 

infected cells showing multiple bacteria in a vacuole. This preliminary result suggests 

that Brucella is unable to divert from the endosomal-lysosomal system upon 

knockdown of Vps35.   

 

Discussion and outlook  
 
The retromer complex plays an important role in different physiological processes, e.g. 

cell polarity, recycling of cargoes from endosomes to plasma membrane, having a 

major role in cargo transport from endosomes to Golgi (80). There are many 

examples of pathogens hijacking the retromer complex or in general the retrograde 

trafficking from endosomes to Golgi in benefit of their infectious process (83-86, 90). 
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Here, our data suggests a role of the retromer complex component, Vps35 during 

Brucella  infection, with preliminary results showing Brucella ending up in an endo-

lysosomal compartment upon depletion of Vps35. We also showed that retrograde 

trafficking from endosome to Golgi is needed during Brucella infection.  

Our results from siRNA screens showed the role of retromer complex and its 

associated components in Brucella infection. The consistent effect of reducing 

Brucella infection upon individual knockdown of Vps35, Vps26a and Vps29, which 

are components of the CST of retromer complex, confirms the role of the retromer 

complex during infection. It has been reported that Vps26a and Vps26b have 

preferences towards different cargoes (69). As we did not observe a similar reduction 

in Brucella infection upon depletion of Vps26b compared to Vps26a, it is possible 

that only Vps26a is needed during Brucella infection. SNX1, SNX2, SNX5 and 

SNX6 are components of the SNX-BAR-retromer complex (introduced in the 

introduction of this results part) while SNX3 is a component of the SNX3-retromer 

complex. SNX3 and SNX2 showed a mild decrease in infection upon knockdown 

while there is no strong effect with depletion of SNX5 or SNX6. SNX1 however 

increased infection upon depletion. The varying effects on Brucella infection of these 

proteins suggest there might be different roles among the SNX proteins. To confirm 

this, efficiency of siRNAs targeting these proteins should also be investigated with 

western blot studies. Combinatorial knockdown could be also done to check for 

redundancy between these SNX proteins. It would also be interesting to compare the 

roles of the SNX-BAR-retromer complex or SNX3-retromer complex during Brucella 

infection. USP6NL, Rab GAP protein for Rab43 that has been shown to be involved 

in Shiga toxin transport from endosomes to the TGN (87) increased infection upon 

knockdown. It could be that Brucella needs USP6NL in a similar manner as Shiga 

toxin transport and could be investigated in future. 

To confirm the specificity of Vps35 knockdown and its effect on Brucella infection, 

we performed shRNA knockdown against Vps35 and rescue with complementary 

cDNA in HeLa cells. Vps35 is the core component of the CST that has a direct role in 

cargo binding (65, 66). It is also the first component that associates with SNX3 on 

endosomal membranes, responsible for the recruitment of the CST to an area where 

both SNX3 and Rab7 are present, forming the SNX3-retromer complex (79, 80). 

Therefore, depletion of Vps35 would perturb the formation and function of the 
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retromer complex. We showed that shRNA knockdown of Vps35 is rescued upon 

complementation with wild type Vps35 containing a silent mutation in its sequence 

that renders it insensitive to shRNA knockdown. These results confirm the specificity 

of our knockdown and that the Vps35 subunit that is important during Brucella 

infection. To investigate the significance of Rab7-retromer complex interaction 

during Brucella infection, rescue was also performed with a mutant hVps35Δ6 that 

lost its interaction with Rab7. As Rab7 has been shown to be important to interact 

with Vps35 and its recruitment to the endosomes (77, 78), we would expect that this 

mutant is not able to rescue the effect of Vps35 shRNA knockdown. Other Vps35 

mutants that are unable to interact with Vps29 subunit of the retromer complex (91) 

could also be used in a similar experiment to further investigate the importance of 

retromer assembly in the context of Brucella infection. 

In addition, we have shown that Retro-2 inhibitor is able to reduce Brucella infection 

in a dose dependent manner. As this inhibitor is known to inhibit transport of ricin, 

Shiga-like toxin, CTxB and human papillomaviruses from early endosomes to the 

TGN (86, 89), its effects on Brucella infection indicates that the pathogen possibly 

utilizes similar components of the retrograde trafficking pathway or that it travels via 

a similar pathway during its course of infection. Addition of the inhibitor at 0 hpi or 4 

hpi showed a similar effect in reducing Brucella infection, suggesting that the 

retrograde trafficking pathway is most probably needed post internalization during 

Brucella infection. This is consistent with our results that Vps35 was not required for 

Brucella entry in HeLa cells (Research Article III).  

Furthermore, we showed that Vps35 knockdown caused Brucella to localize within a 

Lamp1 positive compartment at 24 hpi. This is unexpected since Brucella normally 

reaches the ER-derived replicative niche that is devoid of lysosomal markers at this 

time point (46). Therefore, this suggests that the retromer complex is important for 

Brucella trafficking to its replicative niche, with a dysfunction of this complex 

leading to Brucella ending up in an endo-lysosomal compartment. To analyze the 

properties this compartment, cells could be stained for cathepsin D that labels 

lysosomal enzymes. Interaction of Brucella with other known compartmental markers, 

e.g. for early endosomal markers, ER markers or autophagosomal markers should also 

be investigated upon depletion of Vps35. 
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In summary, we identified and confirmed a novel role of a component of the retromer 

complex, Vps35 during Brucella infection. Nevertheless, preliminary results showed 

that a functional retromer complex is crucial for Brucella escape of the endocytic 

pathway to reach its replicative niche since Brucella ends up in an endo-lysosomal 

compartment upon Vps35 depletion. Since it is still unclear how Brucella traffics 

from an endocytic compartment to an ER-derived replicative niche, future studies 

would focus on the role of the retromer complex or retrograde trafficking from 

endosome to Golgi in this context. 

 

Materials & Methods  
 
Materials  
HeLa (human cervical carcinoma epithelial cell line, ATCC, CCL-2); Dulbecco 

Modified Eagle Medium (DMEM) (Sigma, D5796); Fetal Calf Serum (FCS)(Gibco, 

10270): heat inactivated at 56°C for 30 min before use; tryptic soy broth (TSB)(Fluka, 

22092); kanamycin sulfate (Sigma-Aldrich, 60615); gentamicin (Sigma, G1397); 

Triton-x-100, sigma-ultra (Sigma-Aldrich, T9284); DAPI (Roche, 10236276001); 

phalloidin-547 (Dyomics, 547PI-33); albumin from bovine serum (BSA)(Sigma, 

A9647); paraformaldehyde (Sigma, P6148); phosphate buffered saline (PBS)(Gibco, 

20012); L-glutamine (Sigma-Aldrich, G7513); Fugene HD (Promega, E2312); mouse 

monoclonal anti-Lamp1 [H4A3] antibody (Abcam, ab25630); rabbit monoclonal anti-

Rab7 (D95F2) antibody (Cell Signaling, 9367); Qiagen all stars negative control 

(SI03650318); Vps35 siRNA (Qiagen Hs_Vps35_2); Retro-2 (Calbiochem, 554715).  

 

Plasmids 
pCMS3.H1p/HA.YFP,pCMS3.H1p.shVPS35,pCMS3.H1p.shVPS35/HA.YFP.VPS35, 

pCMS3.H1p.shVPS35/HA.YFP.VPS35-Rab7mut re-exp are kind gifts from Daniel D. 

Billadeau (88). 

 
Bacterial strains and cell lines  
The bacterial strains used in this study include GFP expressing Brucella abortus 2308 

that contains pJC43 with gfp-mut3 gene under a constitutively active kanamycin 

resistance gene aphA3 promoter (50) and DsRed expressing Brucella abortus 2308 
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that contains pJC44 with DsRedm gene from pDsRedm (Clontech) under a 

constitutively active kanamycin resistance gene aphA3 promoter (45).   

HeLa cells were grown in DMEM (Sigma) supplemented with 10% FCS (Gibco), 

Cells were incubated at 37°C with 5% CO2.  

 

Cell culture and Infection  
Brucella abortus were grown in TSB medium containing 50 μg/ml kanamycin for 24 

h at 37°C and shaking (100 rpm) to an OD of 0.8- 1.1. Bacteria were added to cells 

with a final multiplicity of infection (MOI) of 10000 for HeLa cells. Plates were then 

centrifuged at 400xg for 20 min at 4°C to synchronize bacterial entry. After 4 h 

incubation at 37°C and 5% CO2, extracellular bacteria were killed by exchanging the 

infection medium with DMEM (Sigma)/10% FCS (Gibco) supplemented with 100 

μg/ml gentamicin. After a total infection time of 44 h cells were fixed with 3.7% PFA 

for 20 min at room temperature (RT). 

 

Automated image analysis and Infection scoring  
Images were taken with Molecular Devices ImageXpress microscopes using the 10X 

S Fluor objective, after which automated image analysis and decision tree infection 

scoring was performed as described in Research Article III. Binary level infection 

detection (infected vs. non infected) allows infection index (Infected cell / total cell 

number) to be defined. 

 

Rescue experiment  
Plasmids from the suppression / rescue system include empty vector, shVPS35, 

shVPS35/WT rescue and shVPS35 /Δ6 rescue are kind gifts from Daniel Billadeau 

(88). HeLa cells were seeded a day before transfection in a 6 well plate with 125,000 

cells / well. The next day morning, 0.9 μg of plasmid (in 200 μl of DMEM without 

FCS) were mixed with 8 μl of Fugene HD (in 200 μl of DMEM without FCS) and 

incubated 15 min at RT. HeLa cells were exchanged with 1.5ml of fresh medium and 

DNA-fugene complex was added to the cells. The next day morning, cells were 

exchanged with fresh medium and 1 day later in the evening splitted into a 96 well 

format (2800 cells / well) for infection the next day.  
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Inhibitor experiment  
HeLa cells were seeded in 96 well plates (2800 cells/well) one day before infection. 

Retro-2 was added to cells together with GFP expressing Brucella abortus 2308 or 

during gentamicin wash at 4 hpi and cells were maintained at 37°C with 5% CO2. 

Retro-2 was kept throughout the experiment. 

 

Immunofluorescent labeling 
HeLa cells on coverslips were permeabilized with 0.1% Triton-x-100 for 10 min at 

RT, washed with PBS before incubated with 0.5% BSA/PBS for 30 min at RT. 

Afterwards, cells were labeled for Lamp1 using mouse monoclonal anti-Lamp1 

[H4A3] antibody (1:100) and secondary antibody Alexa Fluor 546 Goat Anti-mouse 

IgG (1:100). For some experiments, cells were permeabilized for 10 min with 0.1% 

Triton-x-100 and stained with DAPI (final concentration 1μg/ml) for nucleus and/or 

phalloidin-547 (1:250) for F-actin.  

 

Figure legends  

 
Figure 1. Retromer complex and associated components in Brucella infection. 

Box plot represents Z-score normalized infection scores of all available data points 

from all screens performed in Research Article II and Research Article III. Positive 

and negative controls Rac1or scrambled siRNA are included for reference. The 

median is being represented at the middle of the box. Whiskers and outliers of boxplot 

are calculated with the Tukey method. 

 

Figure 2. Vps35, component of the retromer complex has a specific role in 

Brucella infection. A) Diagram of shRNA suppression / rescue constructs taken from 

(88). B) HeLa cells were transfected with the shRNA/rescue constructs and expressed 

for 2.5 days before infection with GFP-expressing Brucella abortus for 44 h. 

Automated image analysis with CellProfiler and decision tree infection scoring was 

performed with nucleus, perinucleus and voronoi cell as objects (details is described 

in materials and methods of Research Article III). A cell is detected as infected if 
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pathogen intensity in any of these objects exceeds a certain threshold that is set 

manually. Data represents normalized infection in reference to empty vector, the 

mean ± STDEV of three independent experiments.  

 

Figure 3. Retrograde transport is required for Brucella infection. HeLa cells were 

incubated with Retro-2 A) during addition of bacteria to the cells (0 hpi) or B) at 4 hpi 

when cells were washed with gentamicin containing medium. The inhibitor was kept 

in the medium throughout the rest of the experiment. Cells were fixed around 44 hpi. 

Automated image analysis with CellProfiler and decision tree infection scoring was 

performed with nucleus, perinucleus and cell body as objects. A cell is detected as 

infection if pathogen intensity in any of these objects exceeds a certain threshold that 

is set manually. Data represents infection rates of two independent replicas for A and 

only one replica for B. Error bars of each bar graph represents mean ± STDEV of at 

least six technical replicates within the experiment. 

 

Figure 4. Brucella is contained within Lamp1 compartments at 24 hpi upon 

silencing of Vps35 in HeLa cells. Representative images of HeLa cells infected with 

GFP-expressing Brucella abortus for 24 h after 72 h of transfection with scrambled or 

Vps35 siRNA. Cells were then immunostained for Lamp1 (red) and images were 

taken with the 60x objective and FEI MORE with TIRF microscope. Image in stacks 

were deconvolved with HUVGENs remote manager and one represented slice around 

the middle of a stack is shown. Scale bars represent 10µm. 
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3.6 Additional tools developed – understanding Brucella 

intracellular lifestyle by fluorescent microscopy and / or 

electron microscopy  

 

Results 
HeLa cells stably expressing fluorescently labeled cellular compartments  

To further understand Brucella interaction with different compartments of the host 

cell, HeLa cells stably expressing fluorescent markers labeling the entire endocytic 

pathway, endoplasmic reticulum (ER) and ER-Golgi intermediate compartment 

(ERGIC) were generated. A general introduction can be found in the Section 1.1 of 

the components of these trafficking pathways. These include the markers for lipid 

rafts (caveolin-GFP), early endosomes (pmRFP1-Rab5, TfR-GFP), late endosomes 

and / or lysosomes (Rab7a-GFP, pmRFP1-Rab7, Igp120-mCherry, Lamp1 GFP, 

Lamp1-YFP), ER (RFP-RTN2, calnexin-GFP) and ERGIC (Rab2A-GFP, Rab2B-

GFP, GFP-ERGIC53). Multiple marker cell lines expressing e.g. pmRFP1-Rab7 and 

GFP-ERGIC53 were also successfully generated (Figure 1). Stable expression of the 

gene of interest was achieved via lentiviral transduction. This method has been 

introduced in Section 1.3.1.2 under the section of shRNA that is also delivered via the 

same method into the host cell. Stable expression of the gene of interest labeled with 

fluorescent markers is advantageous for live cell imaging and correlative light and 

electron microscopy (CLEM) studies.  

 

HeLa pmRFP1-Rab7: Brucella containing vacuole (BCV) interacts with Rab7 at 

early and late time points of the infection  

Rab7 is a late endosomal marker that has been shown to be required for Brucella 

infection (45, 92). BCVs interact with Rab7 at early time points of the infection (with 

a peak at around 6 hpi) and the marker is lost before arriving at its replicative niche 

(45). Additionally, it has also been reported that at late time points of infection (72 hpi) 

BCVs re-acquire Rab7 (92). The role of this interaction at late time points is unclear. 

Since autophagosomal like membranes were also found at later time point to surround 

20% of the BCVs (92), we would like to investigate whether Rab7 positive BCVs are 
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the ones that also possess autophagosomal features. BCVs with autophagosomal 

features at late time points are suggested to be responsible for egression of Brucella 

(92). 

To address this question, HeLa pmRFP1-Rab7 cells were used. HeLa pmRFP1-Rab7 

stable cell line was validated for its localization at late endosomes by staining for 

Lamp1 that also labels late endosomes. A perfect co-localization of Rab7-RFP and 

endogenous Lamp1 was seen suggesting a proper localization of this marker via this 

system (Figure 2iA).  At 6 hours post infection (hpi), Rab7 was acquired by some of 

the BCVs, with most of the BCVs not having this marker at 24 hpi. At 48 hpi and 72 

hpi, most of the BCVs do not contain Rab7. However, there are some BCVs that are 

surrounded by Rab7 (Figure 2iB).  

Using the example of a sample from 6 hpi, focused-ion beam-scanning electron 

microscope (FIB-SEM) was used to scan the area of interest in an infected cell 

(electron microscopy studies are all performed by Jaraslow Sedzicki, PhD student in 

Henning Stahlberg’s group). With the focused ion beam, sections of the cell could be 

obtained, after which images were scanned, finally giving the 3D volume of the cell 

(93). Electron micrographs of the area that is highlighted with a box in the image 

taken by fluorescent microscopy (Figure2iiCi) were taken in a stack with Helios 

Nanolab 650 dual beam microscope. As seen in Figure 2iiCi, there are six bacteria 

labeled 1-6, with bacteria 3 and 5 being negative for Rab7, while the other bacteria 1, 

2, 4, 6 are all surrounded by Rab7 positive membrane. 3D model of the bacteria at the 

region of interest was obtained from the EM images (Figure 2iiCii), which is similar 

to the 3D model obtained with the fluorescent image (data not shown). These models 

allow correlation of the electron micrographs with the fluorescent images. As seen in 

Figure 2iiCiii, Rab7 positive BCVs (bacteria 3 and 5) showed only a single membrane 

surrounding the entire volume of this BCV, similar to a neighboring BCV that is not 

surrounded by Rab7 (bacteria 1, 2, 4, 6) (Figure 2Ciii). Experiments with 24 hpi, 48 

hpi and 72 hpi are still ongoing and are not shown here. These preliminary results 

suggest that CLEM could be successfully performed and is definitely a good tool for 

future investigations of Rab7 and its role in different stages of Brucella infection. The 

CLEM method could also be extended to understand the intracellular lifestyle of 

Brucella under different experimental conditions. 
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HeLa Igp120 mCherry: Validation with wild type Brucella abortus or Brucella 

abortus ΔvirB9 mutant infection 

In literature, it is known that BCV is surrounded by Lamp1 markers at early time 

points (6 hpi) in both non phagocytic and phagocytic cells and gradually loses it with 

time, with most of the BCVs excluding the Lamp1 marker at 24 hpi (46). To ensure 

that HeLa Igp120 (another name for Lamp1) mCherry stable cell line behaves like 

endogenous Lamp1, cells were infected with GFP-expressing Brucella abortus or 

GFP expressing Brucella abortus ΔvirB9 and fixed at 6 hpi or 24 hpi (Figure 3). 

Brucella abortus ΔvirB9 mutant contains a deletion in the virB9 gene of the virB type 

IV secretion system (T4SS), leading to a dysfunctional secretion system. ΔvirB9 

mutant is unable to replicate in mammalian cells and has been shown to retain Lamp1 

at 24 hpi (46, 94). As expected, at 6 hpi GFP-expressing Brucella abortus and GFP 

expressing Brucella abortus ΔvirB9 were both surrounded by Lamp1. At 24 hpi, most 

of the GFP-expresing Brucella abortus were negative for the Lamp1 while all GFP- 

expressing Brucella abortus ΔvirB9 were in Lamp1 positive compartment (Figure 3). 

This is consistent with what has been shown for Brucella interaction with endogenous 

Lamp1, suggesting that HeLa Igp120-mCherry behaves similar to endogenous Lamp1 

during Brucella infection and could be used for further experiments.  

 

HeLa / THP-1 calnexin-GFP: Brucella is contained within calnexin positive 

vesicles at late time points of the infection 

As mentioned in the general introduction section 1.2, Brucella interacts and replicates 

within an ER-like compartment (46). Aerolysin toxin treatment experiments that 

vacuolated the ER caused individual BCVs to fuse into giant vacuoles covered with 

ribosomes, suggesting that BCVs display ER membrane properties (46, 95). However, 

till date, it is still unclear whether Brucella fuses and replicates within the ER or only 

within a sub-compartment of the ER since not all ER proteins were detected on the 

BCVs. For example, ER proteins that are commonly seen surrounding BCVs include 

calnexin (integral protein and ER chaperone), sec61β (ER translocon), calreticulin 

(ER chaperone that might also serve functions outside of the ER), protein disulfide-

isomerase (PDI) (enzyme ER resident protein) and KDEL (tag for ER proteins) (46, 

95, 96), while BiP (chaperone in the ER lumen) or ribophorin (glycoproteins only 
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present on the membrane of rough but not smooth ER) were reported to not be present 

on the BCVs (95).  

To understand the interaction of Brucella with the ER, first experiments were 

performed to investigate localization of BCV with ER marker calnexin at 44 hpi. This 

was performed with stable cell lines HeLa and THP-1 macrophage-like cell line 

stably expressing calnexin-GFP. THP-1 cell line is a human monocytic cell line that 

could be differentiated with phorbol myristate acetate (PMA) into macrophage like 

cells. To understand Brucella infection of macrophages thatare physiologically 

relevant cell line, we also performed experiments with THP-1 macrophages. As seen 

in Figure 4A, each BCV was surrounded by ER marker calnexin at 44 hpi in HeLa 

cels. Consistent with previous studies (97), BCVs were also surrounded by calnexin-

GFP in THP-1 suggesting that Brucella also replicates in an ER positive compartment 

in THP-1 (Figure 4B). THP-1 macrophage-like cell line stably expressing calnexin-

GFP and infected with Brucella was labeled with gold particles against GFP for EM 

studies (performed by former PhD student of Henning Stahlberg’s group - 

Christopher Bleck). As shown in Figure 4C, gold particles were surrounding the BCV 

membrane suggesting that BCV is surrounded by calnexin-GFP. Therefore, consistent 

with previous studies that show Brucella surrounded by calnexin positive structures 

(46, 96), calnexin-GFP stable cell lines shows colocalization with Brucella at 44 hpi, 

suggesting it as a promising tool to study Brucella interaction with the ER.  

 

HeLa RFP-reticulon 2 (RTN2): Brucella is surrounded by RTN2 positive 

membrane at late time points of the infection 

To further understand the interaction of Brucella with the ER, HeLa cells stably 

expressing another ER marker RFP-RTN2 was generated. Aas introduced in Section 

1.1, the ER is comprised of different subcompartments. RTN2 is a tubular ER-shaping 

protein that is largely restricted to tubular ER and excluded from the continuous 

sheets of the nuclear envelope and peripheral ER (98). HeLa RFP-RTN2 was infected 

with GFP-expressing Brucella abortus for 24 h or 48 h as seen in Figure 5A. At 24 h, 

most of the Brucella was not seen to interact with RTN2, while at 48 h it seems that 

RTN2 surrounds multiple bacteria in a bigger vacuole. This suggests an interaction of 

RTN2 with Brucella, but in a different manner as was seen with calnexin (Figure 4).  
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HeLa RFP-RTN2 was stained with anti-BAP31 or anti-CLIMP63 antibodies to 

compare its localization with endogenous ER proteins. CLIMP63 is an integral 

membrane protein that localizes to the reticular part of the ER and links the ER to 

microtubules (99, 100) while BAP31 is a component of the ER quality control 

compartment that moves between the peripheral ER and juxtanuclear ER or ER-

related compartment along the microtubule tracks (101). As seen in Figure 5B, RTN2 

showed a similar localization to BAP31 but not to CLIMP63, suggesting different 

localization patterns of these ER proteins. To compare interaction of GFP-expressing 

Brucella-abortus between these different ER markers, cells were stained with anti-

BAP31 or anti-CLIMP63 antibodies. At 24 hpi and 48 hpi, most of the GFP-

expressing Brucella abortus did not interact with BAP31 or CLIIMP63, with only a 

few seen having these ER markers surrounding the BCV (Figure 6 and Figure 7). This 

is different from what we have seen with calnexin and RFP-RTN2, where at 44 hpi, 

each bacterium was surrounded by calnexin (Figure 4) and for RTN2 at 48 hpi, 

multiple Brucellae were already seen in a bigger vacuole positive for RTN2 (Figure 

5). At 72 hpi, multiple Brucellae were seen to localize to BAP31 or CLIMP63 

positive vacuoles similar to that seen with RTN2 at 48 hpi (Figure 6 and 7).  

 

Discussion and Outlook 
 
To understand the interaction of Brucella with different intracellular compartments of 

the host cell, HeLa stable cell lines expressing markers for the compartments that are 

known to interact with Brucella were generated. These cell lines have been 

successfully used for live cell imaging studies by Houchaima Ben Tekaya (postdoc in 

our group) to understand the dynamics of Brucella interaction with the host and also 

for CLEM studies (in collaboration with Jarek Sedzicki, PhD student in Henning 

Stahlberg’s group). Experiments that were performed by myself with these stable cell 

lines include confirming the interaction of Brucella with Rab7 at early and late time 

points with CLEM studies, validation of stable cell line Igp120-mcherry with 

Brucella infection and understanding the interaction of Brucella with different ER 

markers calnexin-GFP, RFP-reticulon2 (RTN2), and endogenous CLIMP63 or 

BAP31.  
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HeLa cells stably expressing pmRFP1-Rab7 were used to understand the different 

roles of Rab7 interaction with the BCV at different time points. BCV’s association 

with Rab7 markers at early and late time points (Figure 2iB) was consistent with 

previous studies (45, 92). With CLEM studies using FIB-SEM in the electron 

microscopy part, we were able to show that at 6 hpi Rab7 positive BCVs have a 

similar membrane structure as Rab7 negative BCVs throughout the volume of a BCV, 

with a single membrane surrounding the bacteria (Figure 2iiCiii). This is expected 

since it has not been reported that Rab7 positive and Rab7 negative BCVs should be 

surrounded by a different membrane structure at this early time point of infection. 

Next, we would like to focus on the difference in the membrane surrounding Rab7 

positive and negative BCVs at later time points of infection: 48 hpi and 72 hpi. Since 

autophagosomal structures have been shown to be enriched at late time points of 

infection, at a similar time point where egression and Rab7 acquisition was seen (92), 

it could be that Rab7 positive BCVs are the ones that also possess autophagosomal 

structures, represented normally as multiple membrane structures. This will be 

investigated in the near future. Nevertheless, we could also repeat this experiment 

with HeLa Igp120-mcherry stable cell line since Lamp1 was also acquired again 

similar to Rab7 at late time points of Brucella infection (92). The ability to perform 

CLEM studies allows us to specifically correlate fluorescent images of interest with 

electron microscopy studies. Together with the stable cell lines available, we have 

powerful tools that would allow us to understand at an ultrastructural level how 

Brucella interacts with different compartments of the host. This could be extended to 

different experimental conditions for example siRNA knockdown or drug treatment.  

Experiments were also performed with GFP-expressing Brucella abortus and GFP-

expressing Brucella abortus ΔvirB9 to validate HeLa cells stably expressing Igp120-

mcherry. Localization of these Lamp1 markers at BCVs were consistent with 

published reports, with GFP-expressing Brucella abortus devoid of Lamp1 markers 

while GFP-expressing Brucella abortus ΔvirB9 (46). This suggests that the 

ectopically expressed Igp120-mcherry has a similar behavior as the endogenous 

Lamp1 and the cell line could be used for example to validate our screen, to identify 

genes that upon knockdown cause Brucella to stay in a endo-lysosomal compartment 

and unable to reach its replicative niche. 
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The nature of the replicative niche of Brucella is still not well understood. It is still 

unclear whether the BCV fuses with the ER or it acquires certain markers of the ER. 

If the latter is true, it is not clear why certain ER proteins are preferably acquired by 

the BCV than others. Calnexin is a protein that has been used commonly as a marker 

that localizes to the BCV (45, 46, 95, 96) while the interaction with other ER markers 

RTN2, CLIMP63 and BAP31 has not been investigated so far. The other ER markers, 

RTN2 and CLIMP63 are proteins that shape the ER tubules and ER sheets 

respectively (102). Therefore, we would expect that if Brucella is in the ER, we 

should be able to see these proteins surrounding the BCV. BCV showed a different 

colocalization pattern with RFP-RTN2 as compared to calnexin-GFP. At 48 hpi, 

Brucella was surrounded by RFP-RTN2. However, compared to calnexin that showed 

each bacterium surrounded by a calnexin-positive vacuole, multiple bacteria seemed 

to be in a big vacuole positive for RFP-RTN2. Comparison of localization of RTN2 

with CLIMP63 and BAP31 showed RTN2 localizing at a similar ER subcompartment 

as BAP31 but not CLIMP63. Since RTN2 is normally in ER tubules while CLIMP63 

is in ER sheets (102),  it is expected that they show a different localization in the ER. 

BAP31 is a protein that regulates protein export from the ER, having shown similar 

localization as RTN2 suggest that it is also at the tubular network of the ER. BAP31 

and CLIMP63 showed a similar localization as RTN2 at 72 hpi, with Brucella seen in 

a big vacuole surrounded by these markers. It would be interesting to see with CLEM 

studies whether there are indeed multiple bacteria in the same vacuole positive for 

RTN2, CLIMP63 or BAP31 at late time points of infection, possibly suggesting that 

fusion with the ER occurred at these time points. In summary, Brucella showed 

different interaction patterns with the different ER markers that were investigated here. 

 

Proteins that have been reported to interact with the BCV include ER translocon 

sec61β (95), ER chaperones calnexin, calreticulin, protein disulfide isomerase (PDI) 

(45, 46, 95, 96) and KDEL which is a tag that recycles between the Golgi and the ER 

to return ER resident proteins to the ER (96, 103). It is unclear why certain ER 

chaperones are interacting with the BCV while others, for example binding 

immunoglobulin protein (BiP), do not interact with Brucella (95). It could be that 

calnexin or sec61β being an integral protein of the ER are more easily accessible to 

the BCV than the lumenal BiP. This also might be the case for proteins such as 
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calreticulin (104) or KDEL that are able to exit the ER and might have higher 

possibilities to localize around the BCV.  Since all these proteins that have been 

shown to localize around the BCV are absent from the ER exit sites (ERES) but on 

the other hand it has been shown that BCV interacts also with the ERES (50), this 

suggests again that Brucella interacts with different subcompartments of the ER. 

Since there was reorganization of the ER seen at later time points with BAP31 or 

CLIMP63 (Figure 6 and 7), it could be that Brucella first acquires specific ER 

markers due to their proximity to the BCV at earlier time points and later fuses with 

the ER at later time points of infection. Further studies would be required to 

understand whether ER markers are partially or completely surrounding the BCV. It 

could be that at earlier time points, there is only a partial interaction with the ER 

while at later time points, the massive replication of bacteria leads to complete 

acquisition of ER membranes around the BCV. This could be investigated with 

CLEM studies with specific markers of interest. Also, it would be interesting to see if 

Brucella starts to fuse with the ER at later time points of infection, in that case, we 

would expect to see multiple bacteria in a big vacuolar compartment at late time 

points of infection.  

In summary, HeLa cells stably expressing fluorescent markers for various cellular 

compartments are useful tools that could be used for live cell imaging, CLEM as well 

high-throughput assays. Some of the stable cell lines are validated to be functional as 

endogenous proteins and localize to BCVs at expected time points. It would now be 

valuable to utilize these cell lines to understand and follow the effect of different 

experimental conditions on the intracellular trafficking pathway of Brucella. 

 

Materials and Methods  
 
Materials 
In-fusion HD cloning kit (Clontech, 639649), HeLa (human cervical carcinoma 

epithelial cell line, ATCC, CCL-2), THP-1 (human monocytic leukemia cell line, 

ATCC, TIB-202); human embryonic kidney 293T (HEK-293T)(from Hwain 

Cornelis’s lab); Dulbecco Modified Eagle Medium (DMEM) (Sigma, D5796); 

Dulbecco Modified Eagle Medium Glutamax (DMEM Glutamax)(Gibco, 61965-026); 

RPMI-1640 medium (Sigma, R0883); Fetal Calf Serum (FCS)(Gibco, 10270): heat 
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inactivated at 56°C for 30 min before use; Fetal Calf Serum (FCS)(Bioconcept, 2-

01F30-I); tryptic soy broth (TSB)(Fluka, 22092); kanamycin sulfate (Sigma-Aldrich, 

60615); ampicillin sodium salt (Applichem, A.8039.0025); gentamicin (Sigma, 

G1397); DAPI (Roche, 10236276001); paraformaldehyde (Sigma, P6148); phosphate 

buffered saline (PBS)(Gibco, 20012); L-glutamine (Sigma-Aldrich, G7513); phorbol 

myristate acetate (PMA)(Sigma, P8139); EcoRI (New England Biolabs, R3101); 

BamHI (New England Biolabs, R3130); polybrene (Sigma, H9268); Triton-x-100, 

sigma-ultra (Sigma-Aldrich, T9284); albumin from bovine serum (BSA)(Sigma, 

A9647); mouse monoclonal anti-Lamp1 [H4A3] antibody (Abcam, ab25630), anti-

CLIMP63 mouse monoclonal antibody (kind gift from Hauri lab) (105); anti-BAP31 

mouse monoclonal antibody (kind gift from Hauri lab)(106); Alexa Fluor 546 Goat 

Anti-mouse IgG (Molecular probes, A-11030); Alexa Fluor 488 Anti-mouse IgG 

(Molecular probes); Formaldehyde (Electron Microscopy Sciences (EMS), 15710); 

Glutaraldehyde (EMS, 16000); PIPES (Sigma, P8203); HEPES (AppliChem, A3724); 

EGTA (Fluka , 03779); MgCl2 hexahydrate (M9272); sodium cacodylate (SERVA, 

1554002); calcium chloride  anhydrous  (499609); potassium ferrocyanate (Sigma, 

P3289); osmium tetroxide (EMS, 19170); thiocarbohydrazide (Sigma, 88535); uranyl 

acetate (Fluka, 73943), coverslips for CLEM studies (LUCERNA-CHEM AG, 72265-

25) 

 

Walton’s lead aspartate solution preparation: 

10ml 0.03M L-Aspartic acid solution (Sigma, A9256) at 600C 

add 0.066g Lead nitrate (EMS, 17900), leave in 600C oven for 30 min (mix from time 

to time), filter through a 0.22um filter 

 

Durcupan resin preparation (purchased as 4 different components with commercial 

names): 

10g Part A (Fluka, 44611) 

10g Part B (Fluka, 44612) 

0.3g Part D (Fluka, 44614) 

mix everything 

add 16 drops of activator DMP-30 (EMS, 13600) 

mix again 
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embed samples and polymerize for 48h at 600C 

 
Bacterial strains and cell lines  
The bacterial strains used in this study include GFP expressing Brucella abortus 2308 

that contains pJC43 with gfp-mut3 gene under a constitutively active kanamycin 

resistance gene aphA3 promoter (50), DsRed expressing Brucella abortus 2308 that 

contains pJC44 with DsRedm gene from pDsRedm (Clontech) under a constitutively 

active kanamycin resistance gene aphA3 promoter (45) and GFP expressing Brucella 

abortus 2308 ΔvirB9 mutant that contains pJC43 (50). DH5α used for cloning 

experiments contains genotype φ80dlacZΔM15, recA1, endA1, gyrAB, thi-1, hsdR17 

(rK-, mK+), supE44, relA1, deoR, Δ(lacZYA-argF) U169, phoA (N. Mantis, Institut 

Pasteur). 

HeLa cells were grown in DMEM (Sigma) supplemented with 10% FCS (Gibco), 

THP-1 cells with RPMI-1640 medium supplemented with 10% FCS (Gibco) and 

10mM L-glutamine and HEK293T cells with DMEM Glutamax (Gibco) 

supplemented with 10% FCS (Bioconcept). Cells were incubated at 37°C with 5% 

CO2. THP-1 monocytes could be differentiated into a macrophage-like cell line with 

PMA at a final concentration of 10-7 M and 48 h incubation at 37°C with 5% CO2 

(51). 

 

Plasmids 
Different genes of interest fused to fluorescent markers were inserted into lentiviral 

vector pMDK124 (kind gift of Professor Oliver Pertz, unpublished). pMDK124 was 

digested with EcoRI and BamHI overnight at 37°C and gel purified. Polymerase 

chain reaction (PCR) was performed with gene-specific primers that contain 15bp 

extensions complementary to the vector digested ends and gel purified. Using the gel 

purified PCR products and digested pMDK124, In-Fusion recombination was 

performed with 200ng of vector and PCR product (amount depends on the size of the 

PCR product, <0.5kb: 10-50ng, 0.5kb to 10kb: 50-100ng) using In-Fusion enzyme 

mixture from In-Fusion HD cloning kit, incubated 15 min at 50°C and then 

transferred to ice.  5 μl of the reaction mixture was transformed into 100 μl of DH5α 

and plated on ampicillin containing LA plates.  
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PCR products were produced from different templates with primers that are listed in 

Table 1 of this results section, the PCR products were then recombined with 

pMDK124, giving the final lentiviral vectors containing genes fused to fluorescent 

markers. For pMDK124 expressing caveolin-1 GFP (pSL012), prSL061 and prSL062 

were used for PCR amplication with template caveolin-GFP in pEGFP-N1 (a kind gift 

from Professor Ari Helenius (107)) before recombination with pMDK124. For 

pMDK124 expressing pmRFP1-Rab5a (pSL055), prSL032 and prSL036 were used 

for PCR amplification with template pmRFP1-Rab5a in pEGFP-C3 (a kind gift from 

Professor Ari Helenius (108)). For pMDK124 expressing TfR-eGFP (pSL051), 

prSL001 and prSL002 were used for PCR amplification with template TfR-eGFP in 

pNF314 (a kind gift from Professor Gary Banker (109)). For pMDK124 expressing 

Rab7A-GFP (pSL054), prSL032 and prSL053 was used to amplify template Rab7A-

GFP (a kind gift from Dr. P. Boquet). For pMDK124 expressing pmRFP1-Rab7 

(pSL057), prSL032 and prSL033 were used for PCR amplication from template 

pmRFP1-Rab7 in pEGFP-C3 (a kind gift from Professor Ari Helenius (108)). For 

pMDK124 expressing Igp120 mcherry (pSL047), prSL003 and prSL004 were used to 

PCR amplify template Igp120 mcherry (a kind gift from Dr. G. Patterson). For 

pMDK124 expressing Lamp1-GFP (pSL056), prSL039 and prSL040 were used to 

PCR amplify template Lamp1-GFP (a kind gift from Dr. P. Boquet). For pMDK124 

expressing Lamp1-YFP (pSL058), prSL078 and prSL079 were used to PCR amplify 

Lamp1-YFP in pEYFP-N1 (addgene ID: 1816 (110)). For pMDK124 expressing 

RFP-RTN2 (pSL037), prSL072 and prSL073 were used to PCR amplify from 

template RFP-RTN2 (source is unknown). For pMDK124 expressing calnexin-GFP 

(pSL060), prSL086 and prSL087 were used to PCR amplify template calnexin-GFP 

in pEGFP-N1 (kind gift from Dr. G. Van der Goot). For pMDK124 expressing 

Rab2A-GFP (pSL052) or Rab2B-GFP (pSL053), prSL045 and prSL046 were used to 

PCR amplify template Rab2A-GFP (a kind gift from Professor Francis A. Barr (111)), 

while prSL045 and prSL050 were used to PCR amplify template Rab2B-GFP (a kind 

gift from Professor Francis A. Barr (111)). For pMDK124 expressing GFP-ERGIC53 

(pSL049), prSL021 and prSL022 were used to PCR amplify from template PRL-

EGFP-ERGIC53 (from Houchaima Ben Tekaya (112)). Helper plasmids pVSV, 

pMDL and pRev are kind gifts from Oliver Pertz’s group (unpublished).  
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Infection  
Brucella abortus were grown in TSB medium containing 50 μg/ml kanamycin for 24 

h at 37°C and shaking (100 rpm) to an OD of 0.8- 1.1. Bacteria were added to cells 

with a final multiplicity of infection (MOI) of 10000 for HeLa cells and MOI 1000 for 

THP-1 macrophage like cell line. Plates were then centrifuged at 400xg for 20 min at 

4°C to synchronize bacterial entry. After 4 h incubation at 37°C and 5% CO2, 

extracellular bacteria were killed by exchanging the infection medium with DMEM 

(Sigma)/10% FCS (Gibco) supplemented with 100μg/ml gentamicin. After a total 

infection time of 44 h cells were fixed with 3.7% PFA for 20 min at RT. 

 

Lentiviral transduction  
3x10^6 HEK293T cells were grown in a 10cm dish with DMEM supplemented with 

10% FCS and incubated at 37°C, 5% CO2 for at least 6-8 hours. 2.2 μg of lentiviral 

vector pMDK124 containing respective gene of interest, 0.75 μg of pVSV, 1.5 μg of 

pMDL, 0.5 μg of pREV in 600 μl DMEM without FCS were then mixed with 25μl of 

Fugene HD (Promega) in 600 μl DMEM without FCS and incubated for 15 min at 

room temperature. The DNA-fugene complex was then added to the cells that were 

replaced with 5ml of fresh medium. Cells were exchanged with fresh medium the 

following day. 2 days later, supernatant of HEK293T that now contain viruses was 

collected and filtered through a 0.45μm membrane filter. Viruses were then used 

directly for transduction of cells or stocked in tubes at -800C. Viral containing 

supernatant (1ml or 2ml volumes) were added to cells in presence of fresh medium to 

a total volume of 3ml, and polybrene with final concentration of 5μg/ml. Cells were 

exchanged with fresh medium the next day and could be used for further experiments.  

 

Immunofluorescent labeling 
HeLa cells on coverslips were permeabilized with 0.1% TritonX for 10 min at room 

temperature, washed with PBS before incubated with 0.5% bovine serum albumin (cat 

no) for 30 min at room temperature. Afterwards, cells were labeled for Lamp1, 

CLIMP63, BAP31 or Rab7 antibody. For electron microscopy experiments, cells 

were stained with DAPI (Roche, final concentration 1μg/ml) for DNA of bacteria or 

cell without permeabilization of the cell. 
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Correlative Light and Electron microscopy (CLEM) 
HeLa cells were grown and infected on gridded coverslips in a 6 well plate, fixed with 

4% formaldehyde and 0.1% glutaraldehyde in 1xPHEM buffer for a total of 110 mins. 

Next, samples were passed for electron microscopy studies. Specimens were fixed in 

PHEM buffer (4% formaldehyde, 0.2% glutaraldehyde, 80mM PIPES 25mM HEPES 

adjusted to pH 6.9, 10mM EGTA, 2mM MgCl2) for 30 min at room temperature. 

After several rinses in cold buffer (150mM sodium cacodylate pH 7.4, 2mM calcium 

chloride), the specimens were immersed in freshly prepared reduced osmium 

tetroxide buffer (3% potassium ferrocyanate, 150mM cacodylate, 4mM calcium 

chloride, 2% osmium tetroxide) for 1 h on ice. After several water rinses at room 

temperature, the samples were immersed in freshly prepared 0.01% 

thiocarbohydrazide solution for 20 minutes at room temperature. The samples were 

then washed several times with water and postfixed with 2% aqueous osmium 

tetroxide for 30 min at room temperature. After subsequent water rinses, the samples 

were placed in 1% aqueous uranyl acetate and stored overnight at 4°C. On the 

following day, the samples were immersed in freshly prepared Walton’s lead 

aspartate solution (30mM lead aspartate, adjusted to pH 5.5) for 30 min at 60°C. The 

coverslips was then washed with water, and dehydrated with ethanol, followed by 

embedding in Durcupan.  

The coverslips were removed from polymerized resin block using liquid nitrogen. 

Cells of interest found previously using fluorescent microcopy were traced back under 

a light microscope. The sample blocks were trimmed and attached to SEM stubs. FIB-

SEM data was obtained using a Helios Nanolab 650 dual beam microscope (FEI, 

Eindhoven, the Netherlands). 

The images were aligned using TrackEM2 (Fiji package). Further, IMOD was used to 

mark outlines of the bacteria in the stack images. The 3D model obtained in this way 

was used to map the volume with the same location depicted in the fluorescent image.  

 

Immunogold labeling and Electron microscopy 
Cells were fixed in 4% formaldehyde and 0.1% glutaraldehyde in 1x PHEM buffer 

for 90 min (113). Cryo-sectioning and immunolabelling were performed as described 
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elsewhere (114). In brief, ultrathin sections (50–70nm) from gelatin-embedded and 

frozen cell pellets were obtained using an FC7/UC7-ultramicrotome (Leica, Vienna, 

Austria). Immunogold labelling was carried out on thawed sections with anti-GFP 

(Rockland, 600-101-215) antibody and 10nm protein A-gold (UMC Utrecht 

University, Utrecht, Netherlands) (1:50). Sections were examined with a CM10 

Philips transmission electron microscope with an Olympus ‘Veleta’ 2kx2k side-

mounted TEM CCD camera. 
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Table 1: List of primers used in this study 

 
Name   Sequence 

prSL001 5’- CGACTCTAGAGGATCCGCCACCATGGATCAAGCTA 

GATCAG -3’ 

prSL002 5’- GATTGTCGACGAATTCTTACTTGTACAGCTCGTCCA 

TGC-3’ 

prSL003 5’- CGACTCTAGAGGATCCCGCCACCATGGCGGCCCC-3’ 

prSL004 5’- GATTGTCGACGAATTCTTACTTGTACAGCTCGTCCAT 

GCCG-3’ 

prSL021 5’- CGACTCTAGAGGATCCCCACCATGGACAGCAAAGG 

TTCG-3’ 

prSL022 5’- GATTGTCGACGAATTCTCAAAAGAATTTTTTGGCAGCTGC 

TTCT-3’ 

prSL032 5’- CGACTCTAGAGGATCCGCCACCATGGCCTCCTCC-3’ 

prSL033 5’- GATTGTCGACGAATTCTTAACAACTGCAGCTTTCTGC 

GGAGG-3’ 

prSL036 5’-GATTGTCGACGAATTCTTAGTTACTACAACACTGATTC 

CTGGTTGG-3’ 

prSL039 5’- CGACTCTAGAGGATCCGCCACCATGGCGGCCCCCGG 

CAGC-3’ 

prSL040 5’-GATTGTCGACGAATTCTTACTTGTACAGCTCGTCCATG 

CCGAGAGT-3’ 

prSL045 5’- CGACTCTAGAGGATCCGCCACCATGGTGAGCAAGGGCG 

AGGA-3’ 

prSL046 5’- GATTGTCGACGAATTCTCAACAGCAGCCGCCCCCAG-3’ 

prSL050 5’- GATTGTCGACGAATTCTCAGCAGCAGCCAGAGTTGG-3’ 

prSL053 5’- GATTGTCGACGAATTCTTAACAACTGCAGCTTTCTGC 

GGAG-3’ 

prSL061 5’-CGACTCTAGAGGATCCGCCACCATGTCTGGGGGCAAATA 

CGTAGA-3’ 

prSL062 5’-GATTGTCGACGAATTCTTACTTGTACAGCTCGTCCATGC-3’ 

 
212 



                                  Results: Additional tools developed 

 
prSL072 5’- CGACTCTAGAGGATCCGCCACCATGGACAACACCGAGG 

ACGT-3’ 

prSL073 5’- GATTGTCGACGAATTCTCATTCGGCTTGGCTTTGGAT-3’ 
 

prSL078 5’- CGACTCTAGAGGATCCGCCACCATGGCGGCCCCGGGCG 

CC-3’ 

prSL079 5’-GATTGTCGACGAATTCTTACTTGTACAGCTCGTCCATGCC 

GAGAGT-3’ 

prSL086 5’-CGACTCTAGAGGATCCGCCACCATGGAAGGGAAGTGGTT 

GCTGTGTATGTTA-3’ 

prLS087 5’- GATTGTCGACGAATTCTTACTTGTACAGCTCGTCCATGC 

CGAG-3’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure legends 
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Figure 1. Summary of HeLa cell lines stably – expressing fluorescently labeled 

cellular compartments. Representative images of HeLa stable cell lines that have 

been generated to express fluorescently labeled cellular compartments of interest. 

Stable cell lines were generated via transduction of lentiviruses containing DNA of 

interest fused to fluorescent markers. Images were taken with the Andor confocal 

microscope with 60x objective, a slice around the middle of a stack is represented. 

Scale bar represents 10 µm. 

 

Figure 2. BCV interacts with Rab7 at early and late time points of infection in 

HeLa cells. A) Validation of the localization of pmRFP1-Rab7 as compared to 

endogenous Lamp1 that also labels late endosomes. HeLa pmRFP1-Rab7 cells were 

fixed and stained with anti-Lamp1 antibody and secondary antibody conjugated with 

Alexa 488. Image was taken with Andor confocal microscope and figure represents a 

slice in the middle of a stack with scale bar 10 µm. B) HeLa cells stably expressing 

pmRFP1-Rab7 were infected with Brucella abortus (DAPI) and fixed at 6 hpi, 24 hpi 

48 hpi or 72 hpi. Fluorescent images were obtained with API DeltaVision Core 

Microscope and deconvolved with the DeltaVision software. Figure shows 

representative slice around the middle of a stack. Scale bar represents 10 µm. C) 

Electron micrograph studies of a Rab7-RFP positive BCV at 6 hpi. i) Fluorescent 

image was first taken with API DeltaVision Core Microscope and deconvolved with 

the DeltaVision software. ii) samples were processed for electron microscopy studies 

with Helios Nanolab 650 dual beam microscope microscope after which a volume of 

the section was obtained. IMOD was used to mark outlines of the bacteria in the stack 

images. The 3D model shown in the figure was used to map the volume with the same 

location depicted in the fluorescent image. Scale bar represents 800nm. Images is 

provided by Jaroslaw Sedzicki.iii) Electron micrographs representing slices from a 

stack, a figure is shown for every 30 slices of the entire volume. Bacteria are labeled 

in numbers 1-6 according to the numbering in the fluorescent image. Scale bar 

represents 800nm. Images are provided by Jaroslaw Sedzicki. 

 

Figure 3. Validation of HeLa Igp120-mCherry stable cell line with wild type 

Brucella abortus or Brucella abortus ΔvirB9 mutant. HeLa cells stably expressing 
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Igp120-mCherry were infected with GFP-expressing Brucella abortus or GFP-

expressing Brucella abortus ΔvirB9 and fixed at 6 hpi or 24 hpi. Confocal images 

were obtained with Andor confocal microscope. A representative slice from a stack is 

presented. Scale bar represents 10 µm. 

 

Figure 4. Brucella abortus is contained within calnexin positive vesicles in HeLa 

and THP-1 macrophage-like cell line at late time points of infection. A) HeLa or 

B) THP-1 macrophage-like cell line stably expressing calnexin-GFP were infected 

with DsRed-expressing Brucella abortus and fixed around 44 hpi. Fluorescent images 

were obtained with API DeltaVision Core Microscope and deconvolved with the 

DeltaVision software. A representative slice from around the middle of a stack is 

presented. Scale bar represents 10 µm. C) Electron micrograph of Brucella abortus 

infected THP-1 stably expressing calnexin-GFP at around 44 hpi. Immunogold 

labeling was performed with antibody against GFP. Images are provided by Dr. 

Christopher Bleck.  

 

Figure 5. Brucella abortus is surrounded by RTN2 positive membrane at late 

time points of infection. A) HeLa cells stably expressing RFP-RTN2 were infected 

with GFP-expressing Brucella abortus and fixed at 6 h or 24 hpi. B) RFP-RTN2 was 

stained with ER specific antibodies, anti-BAP31 or anti-CLIMP63. Confocal images 

were obtained with Andor confocal microscope. A representative slice from the 

middle of a stack is presented. Scale bar represents 10 µm.  

 

Figure 6. Brucella abortus is surrounded by BAP31 positive membrane at late 

time points of infection. HeLa cells were infected with GFP-expressing Brucella 

abortus and fixed at 24 hpi, 48 hpi or 72 hpi. Cells were stained with anti-BAP31 

antibody and secondary antibody Alexa Fluor 546 Goat Anti-mouse IgG. Confocal 

images were obtained with Andor confocal microscope. A representative slice the 

middle of a stack is presented. Scale bar represents 10 µm. 

 

Figure 7. Brucella abortus is surrounded by CLIMP63 positive membrane at late 

time points of infection. HeLa cells were infected with GFP-expressing Brucella 

abortus and fixed at 24 hpi, 48 hpi or 72 hpi. Cells were stained with anti-CLIMP63 
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antibody and secondary antibody Alexa Fluor 546 Goat Anti-mouse IgG. Confocal 

images were obtained with Andor confocal microscope. A representative slice from 

the middle of a stack is presented. Scale bar represents 10 µm. 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
216 



                                  Results: Additional tools developed 

 

 

 
217 



                                  Results: Additional tools developed 

 

 

 
218 



                                  Results: Additional tools developed 

 

 

 
219 



                                  Results: Additional tools developed 

 

 
 
 

 
220 



                                  Results: Additional tools developed 

 

 
 

 
221 



                                  Results: Additional tools developed 

 

 

 
222 



                                  Results: Additional tools developed 

 

 

 
223 



                                  Results: Additional tools developed 

 

 

 
 

 
224 



                                   

 
 

 

 

 

 

 

 

 

 

 

 

 

            

 GENERAL CONCLUSIONS  

    AND OUTLOOK 

 

 
 
 
 
 
 
 

 
225 



General conclusions and Outlook 

 
4. GENERAL CONCLUSIONS AND OUTLOOK  

4.1 Genome-wide siRNA screen reveals novel host signaling 

pathways involved in Brucella infection 
To identify host factors involved in Brucella infection, we established a high-

throughput, high-content microscopy based RNA interference (RNAi) assay for 

Brucella infection in HeLa cells. Pilot screens were performed with kinome-based 

libraries, with independent replicates in the kinome screens having reproducible 

results confirming the robustness of our assay. Also, with multiple individual siRNAs 

(up to 11) targeting each gene available in the kinome screen, we were able to show 

that screening with more independent siRNAs increased the quality of our data in 

terms of correlation coefficient between different siRNA libraries. A statistical model, 

Parallel Mixed Model (PMM), was also developed using the kinome-based screens 

which allows analysis of multiple large scale RNAi screens that are performed under 

similar experimental conditions (Research Article II) (115). This model allows 

comparison between kinome-based screens that were performed in parallel between 

different groups within the InfectX consortium using the same siRNA libraries and 

standardized experimental conditions but different pathogens, discovering unique as 

well as shared hits between these pathogens. 

With the established experimental workflow, genome-wide siRNA screens were 

performed with Dharmacon pooled and Qiagen unpooled siRNA libraries. Using 

datasets from the Qiagen unpooled library as well as kinome-based screens with 

Ambion and Dharmacon unpooled libraries, we identified off-target driven effects in 

siRNA screens due to the seed region of the siRNA oligo (nucleotides 2-8). This 

region could bind with partial complementarity to multiple mRNAs, in a way that is 

similar to endogenous microRNAs (116). Furthermore, we were able to design novel 

RNAs that block or increase infection of one or multiple pathogens, by having seed 

sequences that are known to affect pathogen infection but with no specific gene target. 

This allows potential drug design that does not cause toxicity to the host but has an 

effect on bacterial pathogenicity (116) (Research Article I). 

Due to the off-target effect prone siRNA screens, we performed statistical analysis of 

our primary screening dataset using the Redundant siRNA analysis (RSA) method 
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(117). This allowed us to rank genes according to the consistency of effects from 

multiple individual siRNAs.  Higher P values were given to genes that have a 

consistent effect on infection upon knockdown with multiple individual siRNA, 

suggesting an on-target effect. With the top ranking up and down hits from the 

primary screen, we were able to identify enrichment of expected pathways known to 

be involved in Brucella infection, suggesting that our workflow allows the finding of 

relevant pathways in Brucella infection. Next, for selected genes of interest, we 

performed secondary screens with more individual siRNAs to gain confidence on our 

datasets as recommended from the kinome-based screen results. Finally, we 

discovered novel host signaling pathways involved in Brucella infection (Research 

Article III).  

It would now be interesting to study the molecular details of these pathways in the 

context of Brucella infection. Genes of interest could be validated with siRNA-

independent approaches e.g. inhibitors or knockout experiments with the CRIPSR-

Cas9 system (118, 119). Rescue experiments by expressing complementary cDNA 

upon siRNA knockdown could also be done to validate the specificity of siRNA 

knockdown. To understand the Brucella trafficking steps that are affected upon 

knockdown of certain host factors, study of interaction with Lamp1 endo-lysosomal 

compartmental marker would allow us to identify genes that are involved in deviating 

Brucella from the endocytic pathway and for subsequent interaction and replication 

within its replicative niche. In addition to the siRNA screen that was performed 

together with Brucella infection, we also performed mock screens in which cells were 

only treated with siRNA without addition of bacteria. Cells from the mock screen 

were stained with TGN46 and ERGIC53 antibodies, to understand the effect of the 

siRNA treatment towards trafficking pathways from the plasma membrane to the 

Golgi as well as from the Golgi to the ER.  By combining the information from the 

mock screen, we would be able to understand the role of the endocyic or exocytic 

pathways in the context of Brucella infection. Finally, certain groups in the 

consortium are currently developing methods to correct for off-target effects within 

the siRNA screens. With that, we would like to compare our hit list before and after 

off-target correction, possibly identifying new pathways involved in Brucella 

infection.  
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4.2 Active TGF-β signaling increases Brucella entry in HeLa 

cells 
One of the signaling pathways that were chosen for follow up studies was the TGF-β 

signaling pathway since most of the components of this signaling pathway including 

ligands, surface receptors, and downstream signaling components showed reduction 

in Brucella infection upon depletion. Surface receptors TGFBR1 and TGFBR2 were 

strong hits that reduced infection of almost every pathogen in the InfectX consortium, 

with a stronger effect on Adenovirus, Brucella abortus, Shigella flexneri and 

Vacciniavirus and a milder effect on Bartonella henselae, Listeria monocytogenes, 

Rhinovirus and Salmonella typhimurium infection (Research Article II Figure 7). This 

suggests that there is probably a more general role of TGF-β signaling that is 

exploited by different pathogens for their interaction with the host.  

It has been reported that in mice infected with Brucella abortus, TGF-β were 

produced by B cells during early stages of the infection (28). Also, in patients with 

chronic brucellosis, there was a correlation between increased TGF-β production and 

depressed function of T cell responses (27). This suggests a role of TGF-β during 

Brucella infection in terms of immunosuppression of the host. For Trypanosoma cruzi, 

it has been reported that active TGF-β signaling is important for entry in mammalian 

cells (29, 30).  Since we observe a decrease in Brucella infection in HeLa cells that is 

an epithelial cell line, it is likely that TGF-β signaling has also a non-immunological 

role during Brucella infection. Our experiments confirmed that activation of TGF-β 

signaling pathway as well as overexpression of wild type TGFBRs increased Brucella 

infection in HeLa cells. Not only the expression of the receptors but also their kinase 

activity is important for Brucella infection. More specifically, we showed that TGF-β 

signaling pathway is probably mainly involved in the entry step during Brucella 

infection in HeLa cells (Results section 3.4).  

Next, we would like to identify the pathways that are regulated by TGF-β signaling 

for the benefit of infection by Brucella and possibly by other pathogens. It has been 

reported that TGF-β signaling is involved in the regulation of endocytosis (9) and 

actin remodeling via activation of Rho GTPases (120, 121). Possibly, Brucella and 

other pathogens utilize TGF-β signaling to modulate endocytosis and actin 

polymerization for their entry into the host cell. To study this, endocytosis could be 
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monitored with fluorescent latex beads or specific cargoes using the receptor-

mediated endocytic pathway in combination with TGFBR depletion to monitor the 

effect on endocytosis. Receptor-mediated endocytosis and lipid rafts are reported to 

be important for Brucella entry in non-phagocytic (122, 123) and phagocytic cells, 

respectively (124-126). It would be interesting to study the role of TGF-β signaling 

towards these entry routes. Changes in actin remodeling upon TGFBR depletion and 

its effect on Brucella entry could also be monitored at early time points of infection 

with cell lines stably expressing mcherry-Lifeact that allows time lapsed imaging of 

the actin cytosceleton. 

TGF-β1 exists as a latent form and upon activation by pathogens (37-39) or 

proteolytic digestion by host factors binds to TGF-β receptors on the cell surface, 

triggering associated downstream signaling and transcription of regulated genes. The 

ability of Brucella in activating TGF-β has not been studied so far. Therefore, it 

would also be interesting to investigate whether Brucella is also able to activate latent 

TGF-β directly as seen with other pathogens that exploit the TGF-β signaling pathway 

(38, 39). This could be done by incubating Brucella with latent TGF-β in a cell free 

system, detecting active TGF-β with ELISA (39) or comparing by western blot the 

levels of active versus latent TGF-β using specific antibodies (38). 

Furthermore, it would be interesting to investigate the role of TGF-β signaling in 

various cell types. Possibly, the extent of TGF-β signaling activity of a cell line 

determines the infectivity levels of Brucella. With that, different non-phagocytic cell 

lines could be tested for TGF-β signaling activity and Brucella infection levels in 

correlation to TGF-β signaling. Also, it would be interesting to confirm the role of 

TGF-β signaling in more relevant cell lines for Brucella infection e.g. the 

macrophages. We initiated our studies with THP-1 human monocytic cell line to take 

advantage of genome-wide siRNA sequences that are targeting the human genome 

and the results from the genome-wide siRNA screens. However, since THP-1 is a 

monocytic cell line that has to be differentiated to become macrophage-like, the 

properties may not be the same as they would be expected for primary cells or bona 

fide macrophage cell lines. Therefore, it would be useful to analyze the role of TGF-β 

signaling in relevant cell lines, e.g. bone marrow derived macrophages (BMDM) or 

mouse macrophage cell line RAW264.7.  
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In summary, we identified TGF-β signaling pathway to be involved in the entry step 

of Brucella infection of HeLa cells, with active TGF-β signaling and kinase active 

receptors being involved in Brucella infection in this cell line. 

 

4.3 Vps35, a retromer complex component is required for 

Brucella trafficking to its replicative niche  
Importantly, with our genome-wide siRNA screens, we were also able to discover a 

novel host factor, Vps35 that is a component of the retromer complex involved in 

endosome to Golgi transport. The specificity of Vps35 knockdown was confirmed 

with complementary cDNA being able to rescue the knockdown phenotype. 

Furthermore, treatment of HeLa cells with Retro-2 inhibitor that specifically inhibits 

transport from endosome to Golgi also showed a significant decrease in Brucella 

infection, suggesting a general role of this transport pathway in infection. Preliminary 

results showed that a knock down of Vps35 caused Brucella to stay in endo-

lysosomal compartments at time points where it is expected to reach its replicative 

niche (Results section 3.5). Nevertheless, we also identified a Rab GTPase-activating 

protein (GAP), USP6NL, in our genome-wide siRNA screen to increase Brucella 

infection upon depletion. USP6NL has been reported to be involved in Shiga toxin 

transport from endosomes to Golgi via regulation of Rab43 (87), suggesting that 

possibly a similar path is exploited by Brucella during infection. It would now be 

important to understand the molecular mechanisms underlying this process and 

components of this transport pathway that are needed during Brucella infection. 

Retro-2 inhibitor has been shown to be very specific in inhibiting toxin transport from 

endosomes to the Golgi without affecting the endocytic or recycling pathway, 

secretory pathway or trafficking of major cargoes. However, it was found that Retro-2 

inhibitor alters the localization of SNARE proteins, syntaxin 5 and syntaxin 6 (89). 

Syntaxin 5 is normally localized at the Golgi and receives traffic from the ER, playing 

a role between the Golgi and ER. Treatment of cells with Retro-2 caused 

relocalization of syntaxin 5 and, to a lesser extent, syntaxin 6 from the Golgi to the 

cytoplasm (89). Syntaxin 5 and syntaxin 16 are also known to be important for 

retrograde transport of Shiga toxin, CIMPR, cholera toxin and ricin (127). Therefore, 
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it would be interesting to understand the role of these SNARE proteins in the context 

of Brucella infection, specifically in trafficking to the replicative niche. 

Despite recent advances, it remains unknown how Brucella traffics from the 

endocytic pathway to an ER-derived replicative niche. There are studies that show 

controversial roles of the Golgi or the retrograde pathway from the Golgi to the ER 

during Brucella infection (46, 50, 128). Experiments that were performed to study this 

pathway were done with Brefeldin A (BFA) treatment that inhibits protein transport 

from ER to Golgi, ultimately causes a collapse of the Golgi. In these studies, Fugier et 

al reported an effect on Brucella infection upon prolonged BFA treatment while Celli 

et al showed no effect on Brucella replication with BFA treatment not longer than 3 h 

at 30min before infection as well as 30min, 2 h, 5 h or 8 h after infection (46, 128). It 

would be important to confirm the role of the Golgi during Brucella infection by 

repeating this experiment with BFA treatment in our system, and to include time 

points later than 8 h in our studies.  

Furthermore, the role of endosomes to Golgi traffic has not been explored. It would 

be important to study in detail the role of the Golgi prior to Brucella arrival at its 

replicative niche. Since interaction with the Golgi could be transient, experiments 

with live cell imaging using stable cell lines expressing Golgi markers could be 

utilized to identify specific time points where this interaction could be observed. With 

that, correlative light and electron microscopy studies (Results Section 3.6) could be 

performed to confirm this interaction in an ultrastructural level.  

Another possibility to be considered is that Brucella does not traffic by itself to the 

Golgi, but only requires a functional retrograde trafficking pathway due to its need for 

distinct components from this system. Legionella effector RidL for example has been 

shown to inhibit retrograde trafficking by binding to Vps29 subunit of the retromer 

complex for the benefit of its infection. The molecular mechanism of this inhibition is 

still unknown (85). It also remains unclear whether the retrograde trafficking pathway 

or its associated components are only required to be present or are actively 

manipulated during the course of infection. Therefore, it would be interesting to test 

the effect of Brucella infection on the retrograde trafficking pathway using different 

cargoes e.g. mannose 6-phosphate receptor (CIMPR) or toxins (Shiga toxin B-subunit, 

cholera toxin B-subunit) that were known to utilize this pathway to arrive at the Golgi 

 
231 



General conclusions and Outlook 

 
(84, 129). Experiments could be repeated with Brucella abortus ΔvirB9 mutant to 

understand the role of the VirB type IV secretion system in this infection context. 

In summary, we discovered a novel host factor, Vps35, which is a component of the 

retromer complex to be important for Brucella trafficking to its replicative niche, with 

Brucella ending up in an endo-lysosomal compartment upon Vps35 depletion. 

Furthermore, interfering retrograde trafficking from endosome to Golgi also caused a 

significant decrease in Brucella infection suggesting a general role of this pathway in 

the course of infection. 

 

All in all, genome wide-siRNA screen with an endpoint infection assay allows 

identification of relevant and novel signalling pathways covering the entire 

intracellular life cycle of Brucella infection. It is now crucial to understand in a 

deeper level how these pathways contribute or inhibit Brucella infection. With 

available tools of HeLa cells stably expressing fluorescently labeled cellular 

compartmental markers of interest, we will be able to gain a deeper understanding 

with fluorescence microscopy, live cell imaging and CLEM studies the intracellular 

trafficking pathway of Brucella and its interaction with the host. 
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