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This chapter highlights the dynamic relationship between mammalian hosts and 

bacterial pathogens. Under mutual influence, hosts and pathogens modify their 

activities and functions during evolution. The consequence of an infection on the host 

organism relies mainly on the effectiveness of host defense systems. Successful 

pathogens have evolved a variety of unique strategies to circumvent this and 

breakdown or evade the host immunity at different stages. The virulence factors of 

pathogens are tailored to facilitate their entry, replication, and persistence by 

modulating host cellular processes. 

1.1 Host defense mechanisms  

Host defense lines against bacterial infection include natural barriers as well as 

nonspecific and specific immune responses. Natural barriers such as the skin, mucous 

membranes, and the respiratory tract develop the physical obstruction to bar the 

invading microorganisms. Once these barriers are overcome, a complex combination 

of the innate and adaptive immune systems provides a potent protection of the host 

against infectious pathogens. Generally, bacterial invasion triggers a couple of 

immune responses comprised of innate and adaptive components. When the immune 

surveillance detects foreign agents in the host, the inflammatory and phagocytic 

responses are immediately activated. Subsequently, specific immune responses are 

soon encountered responsible for elimination of pathogens and generation of host 

immunological memory.  

1.1.1 Host innate immunity 

The innate immune response constitutes the first line of defense to combat microbial 

infections or tissue damage. The innate leukocytes comprise natural killer (NK) cells, 

mast cells, eosinophils, and basophils; the phagocytic cells include macrophages, 

neutrophils, and dendritic cells (DCs). Upon pathogen invasion, the rapid 

inflammatory response can direct various immune cells to the infection sites. Guided 

by chemotaxis, phagocytes are drawn to pathogens and engulf them to limit the 

microbial spread. In phagocytes, phagocytic lysosomal contents are released to 

destroy pathogens [2]. To initiate the action of innate immunity, early recognition of 

the pathogen-associated molecular patterns (PAMPs) and damage-associated 
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molecular patterns (DAMPs) plays an essential role through a limited number of 

germline-encoded pattern recognition receptors (PRRs). PAMPs contain various 

components of bacterial cell wall (e.g., lipopolysaccharide (LPS), peptidoglycan (PG), 

and lipopeptides), flagellin, bacterial DNA and viral double-stranded RNA. DAMPs 

include intracellular proteins (e.g., heat shock proteins) and proteins derived from the 

extracellular matrix (e.g., hyaluronan fragments). Furthermore, four families of PRRs 

have been classified including transmembrane proteins, e.g., the Toll-like receptors 

(TLRs) and C-type lectin receptors (CLRs), and cytoplasmic proteins, e.g., the 

Retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) and NOD-like receptors 

(NLRs) [1]. PRR-induced signal transduction pathways result in synthesis of various 

molecules including cytokines, chemokines, cell adhesion molecules, and 

immunoreceptors. These PRRs are not only present on DCs and macrophages, but 

also on several non-immune cell types (e.g., epithelial cells, endothelial cells, and 

fibroblasts), which regulate receptor-mediated inflammation [2].  

Among PRRs, the family of TLRs is the most extensively studied. Based on 

homology to the Drosophila Toll protein, TLRs are evolutionarily conserved with an 

extracellular domain containing leucine-rich-repeat (LRR) motifs and a cytoplasmic 

domain homologous to the interleukin (IL)-1 receptor, termed the Toll/IL-1R 

homology (TIR) domain [3, 4]. TLRs play a pivotal role in cell activation in response 

to PAMPs. Based on related PAMPs, TLRs can be further divided into several 

subfamilies: the subfamilies of TLR1, TLR2, and TLR6 on the cell surface recognize 

lipopeptides, whereas TLR3, TLR7, TLR8, and TLR9, which are found exclusively in 

intracellular compartments, recognize nucleic acids. Furthermore, TLR4 and TLR5 

recognize bacterial LPS and flagellin from flagellated bacteria, respectively. Upon 

engagement with ligands, TLRs first recruit the adaptor proteins via the cytoplasmic 

TIR domain. They bind myeloid differentiation primary-response protein 88 (MyD88), 

MYD88-adaptor-like protein (Mal; also known as TIRAP), TIR domain-containing 

adaptor inducing IFN-β (TRIF; also known as TICAM-1), and TRIF-related adaptor 

molecule (TRAM) [5]. Based on the usage of the different adaptor proteins, each TLR 

induces unique signaling cascades. A detailed overview of TLR signal transduction is 

shown in Figure 1 [6].  
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The MyD88-dependent pathway is commonly shared by all TLR signaling pathways, 

with the exception of TLR3-mediated responses. For instance, TLR2 and TLR4 

signaling require the adaptor Mal as the bridge linking to MyD88. Subsequently, 

MyD88 interacts with IL-1R-associated kinase (IRAK)-4 to activate other IRAK 

family members, IRAK-1 and IRAK-2. Upon activation, the IRAKs dissociate from 

MyD88 and interact with TNFR-associated factor 6 (TRAF6). Together with an E2 

ubiquitin-conjugating enzyme, the complex catalyzes the synthesis of a lysine 63 

(K63)-linked polyubiquitin chain on TRAF6. TRAF6-medicated K63-linked 

polyubiquitination promotes TGF-β-activated kinase 1 (TAK1) activation. In turn, 

Figure 1. Mammalian TLR signaling pathways. TLR5, TLR11, TLR4, and the heterodimers of 

TLR2-TLR1 or TLR2-TLR6 bind to their respective ligands at the cell surface, whereas TLR3, 

TLR7-TLR8, TLR9, and TLR13 localize to endosomes, where they sense microbial and 

host-derived nucleic acids. TLR4 localizes at both the plasma membrane and the endosomes. TLR 

signaling is initiated by ligand induced dimerization of receptors. Following this, the TIR domains 

of TLRs engage TIR domain-containing adaptor proteins (either MYD88 and MAL, or TRIF and 

TRAM). Engagement of the adaptors stimulates downstream signaling pathways that involve 

interactions between IRAKs and the TRAFs. Followed by the activation of MAPKs, JNK and p38, 

this leads to the activation of transcription factors, such as NF-κB, IRFs, CREB and AP1 [6]. 
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TAK1 activates in the nuclear factor κB (NF-κB) pathway the IKK complex 

composed of IKK-α, IKK-β, and NF-κB essential modulator (NEMO). Subsequently, 

the IKK complex phosphorylates the NF-κB inhibitory protein IκBα, which is then 

degraded and leads to the release of NF-κB into the nucleus. Other than for the 

activation of the NF-κB pathway, TAK1 phosphorylates MKK6 in the mitogen 

activated protein kinase (MAPK) signaling. The activation of the MAP kinase cascade 

results in the formation of the transcription factor complex AP-1. Ultimately, both 

NF-κB and AP-1 complexes transcriptionally upregulate pro-inflammatory cytokines 

such as IL-1, IL-12, and tumor necrosis factor alpha (TNF-α) [7]. In addition to 

NF-κB-regulated cytokine expression, TLR7 and TLR9 are responsible for the 

production of type I Interferons (IFNs). TLR7 and TLR9 recognize viral 

single-stranded RNA and unmethylated cytosine-phosphate-guanine (CpG)-DNA, 

respectively. In a MyD88-dependent manner, the formation of a complex with IRAKs, 

TRAF6, TRAF3, IKK-α, and interferon regulatory factor 7 (IRF-7) is triggered. In the 

following, phosphorylated IRF7 translocates to the nucleus and subsequently activates 

the expression of type I IFNs for a potent antiviral defense in DCs [8, 9]. 

While TLR4 is internalized at cytoplasmic membrane and is trafficked to endosomes, 

its downstream signaling is switched from the MyD88-dependent to the 

TRIF-dependent pathway and requires TRAM as adaptor. Similarly, TLR3 triggers 

interferon-mediated antiviral defense through the adaptor TRIF instead of MyD88. 

TRIF in turn interacts with RIP1 and RIP3 (receptor interacting protein 1 and 3) 

through its C-terminal RIP homotypic interaction motif (RHIM). The N-terminal 

TRIF contains TRAF-binding motifs, which associate with TRAF3 and TRAF6. It 

was shown that TRAF3 promotes the activation of two IKK-related kinases, 

TANK-binding kinase 1 (TBK1) and IKK-i (also known as IKK-ε). Upon activation, 

TBK1 and IKK-i phosphorylate the transcription factor IRF3, which can induce 

IFN-β expression [10]. Furthermore, the TNFR1-associated death domain protein 

(TRADD) is critical in TRIF-dependent signaling. TRADD can form a complex with 

FAS-associated death domain-containing protein (FADD) and RIP1. On one hand, 

TRADD mediates the attachment of K63-polyubiquitin chains on RIP1, which is 

sufficient to activate the NF-κB pathway directly [11]. On the other hand, 

NF-κB-dependent inflammatory responses are indirectly also triggered by the 

activation of caspase-8 and caspase-10 through FADD [12].  
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1.1.2 Host adaptive immunity 

During the presentation of bacterial antigens to the immune system, the adaptive 

immunity is developed. It is composed of antibody-mediated immunity (AMI) and 

cell-mediated immunity (CMI) which are carried out by B cells and T cells, 

respectively (Fig. 2) [13]. In AMI, activation of B cells results in expanding two types 

of daughter cells, plasma cells and memory B cells. The plasma cells produce a 

variety of specific antibodies (Abs), known as immunoglobulins (Ig), which are 

secreted to circulate in the blood stream and the lymphatic system. The classical 

functions of Abs include the neutralization of toxins and viral particles by directly 

blocking their access to host receptors. Moreover, Abs facilitate microbial clearance. 

They bind as so-called “opsonins” to foreign components and label them for clearance. 

Such antibody-ligand complexes are recognized and neutralized by immune cells, 

which bind the antibodies through the interaction with specific Fcγ receptors (FcγRs) 

and complement receptors (CRs). The most potent opsonins is IgG, which is bound to 

FcγRI (CD64) on the surface of macrophages and neutrophils, thereby promoting 

phagocytosis. The alternative complement system utilizes immune complexes formed 

by IgG or IgM with antigens to clear complement-coated pathogens via osmotic lysis 

[14]. Furthermore, antibody-dependent cellular cytotoxicity (ADCC) occurs when 

immunoglobulin G (IgG) simultaneously engages the antigens on the target cells and 

FcγRIII (CD16) on natural killer (NK) cells. During this process, activated NK cells 

synthesize cytokines such as IFN-γ and mediate the killing of target cells [15]. In 

addition, it has been shown that eosinophils also use ADCC to kill IgE-coated 

parasitic worms known as helminths [16].  

CMI is the major defensive response against intracellular bacteria. First, foreign 

antigens are detected by antigen-presenting cells (APCs), such as DCs and 

macrophages. Upon the activation of APCs, fragments of the antigen are displayed 

with the major histocompatibility complex (MHC) at the surface of APCs to initiate 

the T cell-mediated responses. Two types of T cells play pivotal roles in CMI: CD4
+
 

helper T cells (Th) and CD8
+
 cytotoxic T cells (CTL). In a classical model, the CD4

+
 

helper T cell responses are subdivided into type 1 Th (Th1) and type 2 Th (Th2) 

immunities. Generally, Th1 cells regulated by the transcription factor Tbet produce 

distinct cytokines, particularly IFN-γ. Th1-dominant responses predominantly support 
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phagocytic cells to attack the intracellular pathogens and develop the delayed-type 

hypersensitivity (DTH) skin in response to viral or bacterial antigens. By contrast, 

Th2 cells regulated by the transcription factor GATA3 are heavily reliant on IL-4 to 

trigger the humoral immunity and eosinophil activation to eliminate extracellular 

organisms. Th1 and Th2 responses are considered mutually exclusive due to specific 

cytokines secreted in the microenvironment [17]. However, both are inhibited by a 

heterogeneous family of T cells, known as adaptive T regulatory (Treg) cells. Treg 

cells are devoted to suppressing immune responses by producing anti-inflammatory 

cytokines such as transforming growth factor-β (TGF-β) and IL-10 [18, 19]. Recently, 

beyond the Th1 and Th2 cells, a distinct subset of CD4+ T cells has been discovered 

and named as Th17 cells. Initially, the function of Th17 cells appears to be the 

clearance against bacteria and fungi. Other than that, increasing evidence suggests 

that Th17 cells are potent inducers of tissue inflammation in association with 

autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and Crohn's 

disease [20].  

 

 

Figure 2. Function of dendritic cells in the immune response. Following the uptake of foreign 

antigens, dendritic cells migrate to lymphoid tissue to prime naïve CD4
+
 T cells and CD8

+
 T cells. 

In addition, activated DCs produce a range of cytokines, such as IFNα, IL-12, and IL-15, which in 

turn activate NK cells. Depending on the cytokine signal, CD4
+
 T cells differentiate into Th1 or 

Th2 cells (dashed arrows). Th1 cell-mediated IFNγ secretion stimulates the activation of CTLs and 

the production of antibodies by B cells. Th2 cell-mediated cytokine production simulates antibody 

production by B cells but inhibits activation of Th1 cells [13]. 
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In addition to the CD4
+
 effector cell response, CD8

+
 CTLs eliminate the intracellular 

microbes by recognizing foreign peptides presented by MHC class I complex on the 

surface of infected target cells which have to be eliminated. The pro-apoptosic 

function of CTLs is based on the cytotoxic proteins: perforin and granzymes. The 

main function of perforin is to facilitate delivery of the granzymes into target cells by 

forming pores in the target cell membrane. Upon release into the cytoplasm, the 

granzymes cleave various substrates, including caspases, to initiate apoptosis. 

However, CTLs can kill target cells also in a granule-independent mechanism through 

a unique membrane receptor-ligation complex. The Fas ligand of CD8
+
 and of some 

CD4
+
 T cells is able to induce apoptosis when it binds to Fas of the target cells. 

Besides the direct cell killing, IFN-γ secreted by CTLs synergistically contributes to 

the inhibition of viral replication and activation of macrophages for host defense [21]. 

1.1.3 Dendritic cells   

The immune response to bacterial infection is based on a combination of both innate 

and adaptive immunity. As known, DCs are the most effective APCs specialized in the 

cross talk between innate and adaptive immune responses. Although DCs are a 

heterogeneous group of cells, they share several common features. All DCs originate 

from CD34 bone marrow stem cells. Through the blood stream, precursor DCs are 

strategically seeded to peripheral sites such as the lung, skin, or gut for antigen 

acquisition. Upon sensing of foreign antigens, phagocytic DCs mature and are 

transformed into efficient APCs which are able to activate T cell responses and initiate 

the adaptive immunity. Contrary to macrophages and neutrophils mediating the direct 

clearance of pathogens, the endocytic proteolysis of pathogens in DCs is aimed to 

produce antigenic peptides loaded onto MHC I and MHC II molecules and are 

presented on the DC surface to enhance the immune reaction. Moreover, DCs 

activated by pathogen encounter upregulate and display a variety of co-stimulatory 

molecules (e.g., CD40, CD80, and CD86) which bind to the complementary 

molecules on T cells (e.g., CD40L, CTLA-4, and CD28). In their maturation process, 

DCs have undergone cytoskeletal arrangements upregulate the expression of 

chemokine receptors (e.g., CCR7 and CXCR4) and adhesion molecules, which makes 

them ready for migration through the lymph to secondary lymphoid organs [22]. In 

the T cell zone of secondary lymphoid organs, antigen-presenting DCs deliver the 
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activating signals to naïve T cells through the engagement of pathogen-derived 

peptides and co-stimulatory molecules. Simultaneously, cytokines (e.g., IL-12) 

secreted by maturated DCs also condition the Th1 immunity and/or CTL development. 

All signals appear to be required for full effector T cell generation (Fig. 3) [23-25]. 

Despite the function of DCs majorly as mediator between a pathogen assault and the 

cellular immune response, DCs are more than a simple "on/off" switch of the immune 

response. The developmental stages of DCs are critical for influencing the character 

of T cell differentiation. In the steady state, the secondary lymphoid organs contain 

mainly immature DCs that maintain T cell anergy. Furthermore, Naïve T cells can also 

be driven into a regulatory cell fate characteristic for tolerance. Under this condition, 

DCs reach a stage of semi-maturation where they express high levels of MHC II and 

co-stimulatory molecules, but the pro-inflammatory cytokine production is low or 

absent [26, 27].  

 

 

1.2 Bacterial defense against host immune responses 

Central components of innate and adaptive immune responses to counter infectious 

agents are the phagocytes. Phagocytic cells are able to internalize pathogens for 

clearance and recruit additional immune cells to amplify host immune responses. 

Figure 3. Three dendritic cell-derived signals required for T cell stimulation. Signal 1 is the 

antigen-specific signal mediated through T cell receptor (TCR) triggering by MHC II-associated 

peptides. Signal 2 is the co-stimulatory signal, mainly mediated by ligation of CD28 with CD80 

and CD86. Signal 3 is the polarizing signal that is regulated by various soluble or membrane-bound 

factors, such as IL-12 and CCL2, which promote the development of Th1 or Th2 cells, respectively 

[24]. 
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However, bacteria evolve rapidly in relation to their host. Consequently, pathogenic 

bacteria have developed a range of strategies to overcome host immunological 

defenses, which contribute to the virulence of the microbe and the pathology of the 

disease. In the following paragraphs, various molecular mechanisms used by bacteria 

to subvert the functions of phagocytes in order to hide from the host immune system 

will be discussed. 

1.2.1 Avoidance of phagocytosis 

Phagocytosis constituting the first line of host defense provides an efficient way for 

the removal and destruction of microbial pathogens. Unlike intracellular bacteria that 

develop sophisticated strategies to survive within phagocytic cells, other bacteria have 

evolved mechanisms to prevent phagocytosis, thereby impairing the development of 

cellular immunity and enhancing the extracellular survival. The first step of 

phagocytosis is the receptor-mediated recognition, classified into opsonin-dependent 

(e.g., FcγRs and CRs) or opsonin-independent (e.g., mannose receptors, type A 

scavenger receptors, and integrins) mechanisms [28]. To counter their recognition, 

surface antigenic variation is one of the most common strategies of bacteria. For 

example, Neisseria spp. alters the antigenicity of several surface molecules, including 

pilus components, to avoid FcγR-mediated phagocytosis. Other bacteria (e.g., 

Streptococcus pneumoniae, Escherichia coli (E. coli) K1, Klebsiella pneumoniae, 

Neisseria meningitidis and Staphylococcus aureus) create capsules of surface 

polysaccharides to physically prevent the complement deposition in the opsonization 

process [29-33]. In the case of Streptococcus pyogenes, its M proteins are not only 

major virulence and antigenic determinants, but play themselves a major and so far 

controversial role in resistance to phagocytosis [34]. Similarly, YadA adhesin of 

Yersinia enterocolitica binds plasma proteins (e.g., factor H) to interfere with 

complement-mediated opsonization [35].  

Other than surface molecule variation, pathogenic bacteria harbor antiphagocytic 

properties in their effector proteins that they deliver through secretion systems at the 

site of bacterial direct contact. The protein tyrosine phosphatase (PTP) YopH of Y. 

enterocolitica was first effector described with an antiphagocytic function. It 

dephosphorylates host signaling proteins which are activated by the engagement of 
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surficial receptors [36]. Another Yersinia effector YopE mimicking a eukaryotic 

GTPase activating protein prevents actin polymerization and phagocytosis by 

inactivating small GTPases [37]. Similarly as YopE, two toxins of Pseudomonas 

aeruginosa, ExoS and ExoT, disrupt the internalization by targeting the GTPase 

family [39, 40]. YopT, a cysteine protease, exerts an influence on actin filaments, 

which results in excessive depolymerization and suggests for YopT a role in 

antiphagocytosis [38]. A mechanism neither targeting small GTPases nor actin directly, 

is used by the extracellular pathogen enteropathogenic E. coli (EPEC), which shows 

neutralization of phagocytic activity via inhibition of the PI3K-dependent phagocytic 

signals through its T3SS-dependent effectors [41]. 

1.2.2 Prevention of intracellular pathogen degradation 

Various bacteria reside in an assortment of organelles: early endosomes 

(Mycobacterium tuberculosis), late endosomes (Salmonella typhimurium), lysosomes 

(Coxiella burnetii), and rough endoplasmic reticulum (Legionella pneumophila) [42, 

43]. For intracellular bacteria to survive within phagocytes, they have to divert 

themselves from fatal delivery to the lysosome. To escape from the phagosome, 

Shigella is released into the cytosol via Ipa-mediated lysis of the endocytic structure 

surrounding it. Listeria monocytogenes and some Rickettsia species secrete lysins to 

effectively perforate the vacuolar membrane. The common strategy of intracellular 

bacteria to escape their degradation in a lysosomal compartment is the blockage of 

phagosome-lysosome fusion, although it is not well understand how these pathogens 

alter the involved vesicle transport to their benefit. M. tuberculosis persists in 

macrophages and arrests the phagosomal maturation. To achieve this, a 

bacteria-containing phagosome recruits early phagosomal proteins such as coronin-1 

but excludes the vesicular proton ATPase from the phagosomal membrane, which 

results in a failure of organelle acidification and helps maintain an intraphagosomal 

environment permissive for pathogen survival [44, 45]. Similarly, VacA of 

Helicobacter pylori disrupts the process of phagosome maturation by the recruitment 

and retention of coronin-1. Besides that, VacA supports the formation of large 

vesicular compartments called megasomes for H. pylori persistence in macrophages 

[46]. Likewise, many other bacterial factors are described to support the exploitation 

and modification of endocytic compartments to the benefit of the pathogen. For 
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example, the RalF protein of L. pneumophila is delivered through the Dot/ICM type 

IV secretion system to the host cytoplasm where it functions as a GTPase exchange 

factor to recruit ARF1 to bacteria-containing phagosomes for creation of a replicative 

organelle [47]. Whereas in L. pneumophila the T4SS plays a central role, it is the 

T3SS in S. typhimurium. The Salmonella pathogenicity island 2 (SPI-2) T3SS is used 

to secrete two effector proteins SseJ and SifA, which were identified to be responsible 

for the vacuolar membrane stability, which is crucial for bacterial replication within 

the host cell [48].  

Another antimicrobial mechanism of phagocytic cells to keep intracellular pathogens 

in check is through reactive nitrogen intermediates (RNIs). To protect themselves 

from such toxic intermediates, S. typhimurium interferes with the recruitment of nitric 

oxide synthase (iNOS) to the Salmonella-containing phagosome by the action of SPI2 

[49]. Similarly, Salmonella SPI2 is also required to prevent phagocyte NADPH 

oxidase-mediated killing [50]. Bacterial pathogens have also evolved ways to detoxify 

iNOS and thereby avoid killing. H. pylori produces arginase to degrade the iNOS 

substrate L-arginine, thereby avoiding NO-dependent killing [51]. For Citrobacter 

rodentium, an infection causes a remarkable iNOS activity but the iNOS level 

surrounding the bacteria is very low, suggesting that bacteria locally limit their 

exposure to host-derived NO [52]. 

1.2.3 Attenuation of pro-inflammatory responses 

Interference with intracellular signal transduction cascades 

Upon antigen recognition, a diverse set of cellular PRRs triggers intracellular signal 

transduction cascades for the secretion of immunomodulatory chemokines and 

cytokines as antimicrobial defense mechanisms. An increasing number of examples 

shows that bacterial pathogens utilize their secreted proteins to dampen host innate 

immune responses by interfering with two main inflammatory pathways: the MAPK 

signaling and the NF-κB pathway (Fig. 4) [53]. One of the earliest studies discovered 

anthrax lethal toxin (LF) of Bacillus anthracis as a metalloproteinase, which cleaves 

the amino terminus of MAPKK1 and MAPKK2 for the direct inhibition of MAPKs 

[54]. In addition, the acetyltransferase YopJ of Y. pestis targets multiple members of 

the MAPK kinase superfamily (e.g., all mitogen-activated protein kinase kinases 
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(MKKs) and IKKβ, excluding IKKα) to prevent them from target phosphorylation. 

The functional consequence of YopJ is the suppression not only of MAPK, but also of 

NF-κB pathways, which results in downregulation of various cytokines, chemokines, 

and adhesion molecules (e.g., TNF-α, IL-8, and intercellular adhesion molecule-1 

(ICAM-1)) [55]. Both AvrA of Salmonella and VopA/P of Vibrio parahaemolyticus 

which are homologous to YopJ show similar acetyltransferase activity. AvrA 

specifically targets MAPK4 and MAPK7 of the c-Jun NH2-terminal kinase (JNK) 

signaling pathway [56]. VopA/P inhibits the MAPK signaling pathways by acetylating 

MKKs [57, 58]. A different strategy to interfere with MAPK signaling is followed by 

Shigella flexneri. Its type III effector protein OspF (a homolog to the Salmonella 

SpvC and Pseudomonas syringae HopAI1) was discovered as a phosphothreonine 

lyase to catalyze a β-elimination reaction of phosphothreonine to a 

β-methyldehydroalanine, thus permanently dephosphorylating host MAPK enzymes. 

The OspF family takes advantage of a conserved MAPK docking motif (D motif) in 

mammals to specifically target the host substrates and inhibit the inflammatory 

activation [59].  

Beside the MAPK kinase signaling, the NF-κB pathway is another essential route 

involving TLR recognition. In the classical NF-κB pathway, NF-κB/p65 proteins are 

bound and inhibited by IκB proteins. Upon stimulation, kinase activity of the 

NEMO/IKKα/IKKβ complex is activated to free NF-κB/p65 complexes, which 

translocate to the nucleus and induce target gene expression. Several bacterial 

pathogens take advantage of the inhibition of NF-κB signaling pathways, thus greatly 

suppressing the induction of inflammation. Shigella, for instance, has evolved several 

unique mechanisms to interfere with NF-κB signaling transduction. OspI of S. flexneri 

deamidates the E2 ubiquitin ligase UBC13, thus prohibiting TRAF6 

autopolyubiquitination [60]. Shigella IpaH9.8, an E3 ubiquitin ligase, targets the 

NEMO complex for proteasomal degradation [61]. Besides, Shigella OspG is 

designed to inhibit the NF-κB-mediated inflammation by reducing E3-mediated 

ubiquitination of IκB and thereby preventing the dissociation of IκB/NF-κB/p65 

complexes [62]. The modulation of NF-κB-dependent responses is also critical to the 

success of attaching/effacing (A/E) human pathogenic E. coli (EPEC and EHEC). 

One of the type III effector proteins discovered in A/E pathogens is the translocated 

intimin receptor (Tir), which contributes dual functions to bacterial pathogenicity, 
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including the strong bacterial attachment to host cells and the suppression of host 

innate immune responses. To down-regulate the inflammatory cytokines, the 

tyrosine-based inhibitory motif (ITIM)-like motifs of the Tir effector promote 

recruitment of SHP-1 and SHP-2 to subsequently inhibit the ubiquitination of TRAF6, 

thereby dampening both MAPK and NF-κB pathways as introduction in chapter 1.1.1 

[63, 64]. Beyond Tir, some Nle proteins of A/E pathogens are identified to specifically 

inhibit NF-κB activation. In response to TNF-α stimulation, NleB targets 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an interaction partner to 

suppress TNF-α-dependent TRAF2-mediated polyubiquitination [65]. Furthermore, 

NleC and NleD catalyze the cleavage of p65 and thereby block NF-κB and AP-1 

activation [66]. NleE, a homolog of Shigella OspZ, possesses 

S-adenosyl-L-methionine-dependent methyltransferase activity to disrupt the binding 

of TAB2 and TAB3 to ubiquitin chains, which disables the activation of TAK1 and 

IKKs. Ultimately, NleE prevents thus the NF-kB components from being released for 

translocation to the nucleus [67]. 

 

 

Figure 4. Bacterial effectors that manipulate inflammatory pathways. In a MyD88-dependent 

manner, TLRs trigger intracellular signal transduction cascades (MAPK and NF-κB) for the 

secretion of immunomodulatory cytokines. Bacterial effector proteins inhibit this process in many 

different ways [52]. 
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Some cases of bacterial infections show a dampening effect on the host inflammatory 

cytokines, but the molecular mechanisms behind such phenotypes are not well 

elucidated. With unknown targets, Yersinia YopH contributes to the downregulation of 

TNF-α, IL1β, and the monocyte chemoattractant protein-1 (MCP-1) by suppressing 

the PI3K/Akt pathway. Furthermore, YopM possibly interferes with the expression of 

IL-15 receptor α (IL-15Rα) and IL-15, thereby resulting in global depletion of NK 

cells in hosts [68]. A recent study reveals that YopM directly binds caspase-1 and 

blocks formation of the mature inflammasome to prevent cell death and inflammation 

[69]. Unlike Yersinia which establishes acute infection, M. tuberculosis promotes 

long-term persistence. In the latent phase of infection, M. tuberculosis suppresses 

IL-12 expression. Furthermore, M. tuberculosis and LPS of H. pylori bind to the 

C-type lectin DC-SIGN, which blocks Th1 development and blocks DC maturation. 

[70, 71]. Additionally contributing to the inability of bacterial eradication during M. 

tuberculosis infection is the inhibition of macrophage responses to IFN-γ without 

inhibiting the production of NO [72]. In another bacterial pathogen, Brucella abortus, 

the TIR-contaning protein Btp1 (a homolog of Salmonella TlpA) inhibits the process 

of DC maturation including the repression of cytokines and the limitation of antigen 

presentation [73]. Although Francisella tularensis induces the phenotypic maturation 

of infected DCs, it represses the secretion of pro-inflammatory cytokines (e.g., TNF-α) 

and replicates efficiently within DCs [74]. 

Suppression of innate immune secretory mechanisms 

Bacterial pathogens harbor a variety of elegant strategies to dampen the host 

inflammatory response by interfering with cellular signal pathways. Recent evidence 

reveals that bacteria have evolved alternative mechanisms to inhibit innate immunity 

by blocking protein trafficking. The host general secretory pathway (GSP) delivers 

molecular cargo (e.g., cell-surface receptors and cytokines) from the endoplasmic 

reticulum (ER) to the Golgi apparatus and eventually releases proteins from the cell 

by vesicular fusion of the cytokine- and receptor-containing carriers with the plasma 

membrane. In general, secretory proteins cotranslationally enter the ER and are 

subsequently transported through different membrane bound compartments by means 

of vesicular transport. The latter requires coat proteins, which help collect cargo and 
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support vesicle formation. Key small GTPases in this process are ARF1 and SAR1, 

which regulate coat protein complexes I and II (COPI and COPII), which have their 

function in the vesicular anterograde and retrograde ER-Golgi and intra-Golgi 

transport. The type III effector proteins NleA (EspI), NleF, and EspG of A/E 

pathogens function as GSP inhibitors by targeting the early steps of GSP. Although 

the mechanism is not fully understood, it is clear that NleA directly interacts with the 

Sec24 subunit of COPII to inhibit the production of cargo-containing COPII vesicles 

at the ER-membrane destined for anterograde transport [75]. In contrast, NleF binds 

to the transmembrane protein Tmp21 to block COPI-type vesicles in the retrograde 

transport [76]. Furthermore, EspG servers as a bacterial catalytic scaffold and induces 

bi-directional traffic arrest by preventing the cycling of ARF1-GTP and by 

simultaneously inactivating Rab1 signaling [77]. S. flexneri, which is not an A/E 

pathogen, shows a similar strategy for GSP inhibition. Its VirA protein, a homolog of 

EspG, mediates the suppression of Rab1-mediated ER-to-Golgi trafficking [78]. 

Another Shigella effector IpaJ specifically cleaves the myristoylated glycine of ARF1 

and numerous lipid-modified substrates, thereby resulting in profound Golgi 

fragmentation [79]. The rapid turnover of GTPase signaling networks is essential for 

surficial receptor localization and cytokine secretion. Thus targeting the host GTPases 

and their downstream pathways by bacterial effectors constitutes a powerful 

mechanism for host immune evasion. 

1.2.4 Exploitation of anti-inflammatory cytokines 

Inflammation is a sophisticated and protective response to infection by the host 

immune system. Secreted cytokines provide signals for the communication between 

various immune cells to coordinate their actions. Although the acute inflammatory 

response provides a beneficial front-line defense against the bacterial infection, a 

dysregulation of inflammatory processes may lead to a harmful and chronic state, 

which can lead to destruction of tissues and result in autoimmune disorders. To 

balance host inflammatory responses, immunosuppressive cytokines (e.g., IL-10) 

function as negative feedback mechanisms to deactivate macrophages and abate the 

development of Th1 immunity. IL-10 is produced by macrophages, DCs, B cells, and 

various subsets of CD4
+
 and CD8

+
 T cells. Effects of IL-10 on monocytes and 

macrophages include the inhibition of MHC class II and co-stimulatory molecule 
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expression as well as the downregulation of pro-inflammatory cytokine and 

chemokine secretion. Besides, IL-10 can act directly on CD4
+
 T cells to inhibit cell 

proliferation and production of IL-2, IFN-γ, IL-4, IL-5, and TNF-α [80].  

Many bacterial pathogens with a stealth strategy (e.g., Bordetella bronchiseptica, M. 

tuberculosis, H. pylori, and L. monocytogenes) markedly exploit these 

immunosuppressive properties of IL-10 to shut off the host inflammatory responses 

[81]. This can be exemplified by the type III effector BopN of B. bronchiseptica. 

BopN, involved in the downregulation of MAP kinases, is translocated into the 

nucleus and enhances the nuclear translocation of NF-κB associated with increased 

IL-10 production [82]. Upon M. tuberculosis infection, macrophages and monocytes 

secrete not only pro-inflammatory, but also anti-inflammatory, cytokines, notably 

IL-10. A recent publication reveals that TLR3 is important for the sensing of 

mycobacterial RNA to induce IL-10 production through PI3K/AKT signaling [83]. H. 

pylori infection causes the formation of tolerogenic DCs, which secrete IL-18 and 

efficiently induce Foxp3
+ 

regulatory Treg cells. This promotes host immune tolerance 

and consequently enhances bacterial persistence [84]. Besides Treg cells, IL-10 

producing B cells are expanded at a relative early stage of H. pylori infection [85]. 

Similarly, B cells in the splenic marginal zone are dominant IL-10 producing cells in 

response to L. monocytogenes infection [86]. Interestingly, the impact of IL-10 is 

clearly determined by the timing and the site of its production where elevated IL-10 

correlates with poor pathogen control by the host. Thus, IL-10 represents a regulatory 

cytokine which is exploited by the bacterial pathogens to establish a state of chronic 

infection. 

1.2.5 Suppression of antigen presentation 

As described in the above paragraphs, inhibition of phagocyte activation by bacterial 

effectors always results in the downregulation of secreted cytokines and along with it 

in the inability of antigen-presentation. Evidence exists bacteria also developed 

unique strategies to specifically disrupt the antigen-presenting complex. For example, 

one function of the 19 kDa lipoprotein of M. tuberculosis is to inhibit MHC class II 

processing and presentation. This inhibition is attributed to intracellular sequestration 

of MHC II molecules and to decreased expression of the class II transactivator (CIITA) 
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[87, 88]. Besides the MHC class II complex, CD1 expression on DCs, which is 

responsible for presenting lipid antigens to T cell recognition, is also interfered with 

by Mycobacteria infection. Via CR-3-mediated phagocytosis, Mycobacteria infection 

activates ATF-2, which binds to the CD1A promoter and thereby inhibits CD1 

transcription [89]. Another example taken from Salmonella infection is the 

SPI2-T3SS-dependent suppression of intracellular loading of peptides on the MHC 

class II complex in DCs. The type III effectors (PipB2, SifA, SlrP, SopD2, and SspH2) 

of Salmonella are equally important for the interference with antigen presentation [90]. 

Furthermore, Salmonella infection induces T3SS-dependent polyubiquitination of 

HLA-DR which leads to removal of mature, peptide loaded MHC class II complexes 

from the cell surface [91]. This precise targeting of MHC class II molecules to reduce 

the presentation of antigens to T cells is crucial for bacterial evasion from the host 

adaptive immune response. 

1.2.6 Blockage of acquired immunity  

Most bacterial pathogens evade from the adaptive immune response by avoiding its 

activation as described above. However, few examples have shown that bacteria can 

directly counteract host acquired immunity. Yersinia YopH is responsible for 

inhibiting both T cell specific cytokine production and expression of the 

co-stimulatory receptor CD86 on B cells based on its phosphatase activity [92]. Also 

two cytotoxins of H. pylori, CagA through the type IV secretion system and VacA via 

a type V auto-transport secretion system, display immunomodulatory properties. It 

was shown that ectopical expression of CagA inhibits B cell proliferation by 

suppressing JAK/STAT signaling [93]. VacA in turn inhibits the stimulation-induced 

proliferation of CD4
+
 T cells, CD8

+
 T cells, and B cells [94]. In CD8

+
 T cells but not 

in CD4
+ 

T cells, the cytoplasmic presence of VacA inhibits NFAT nuclear 

translocation and subsequently downregulates IL-2 secretion by blocking the calcium 

influx [95]. VacA also causes an aberrant Rac activation what results in actin 

polymerization disorders and ultimately in defects in T cell activation [96]. Also 

Neisseria gonorrhoeae infection arrests the activation and proliferation of CD4
+ 

T 

cells. The Neisseria Opa proteins bind to CEACAM1 containing an ITIM motif (cf. 

chapter 1.2.3), thereby suppressing T cell responses [97]. Another strategy developed 

by several mucosal pathogens (e.g., Neisseria spp. and various Streptococci) is to 
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secrete bacterial IgA proteases by an auto-transporter mechanism. The IgA proteases 

specifically cleave the secretory antibody IgA1 in the hinge region, thereby 

annihilating IgA1-mediated agglutination and bacterial elimination [98]. 

1.3 Bartonella species 

The genus Bartonella constitutes a group of facultative intracellular pathogens with 

24 different species evolutionarily subdivided into four lineages (Fig. 5) [99, 100]. 

Bartonella species (spp.) are highly adapted to mammalian reservoir hosts, and an 

infection thus results in a long-lasting intraerythrocytic bacteremia through distinct 

stealth-attack strategies [101, 102]. Depending on the level of adaptation to the host, 

the disease develops a broad spectrum of symptoms from subclinical to clinical 

manifestations with limited morbidity to even fatal disease. Although Bartonella 

infections are ubiquitous among mammals as principal reservoir hosts, the majority of 

human diseases are caused by three species: the human-specific species B. 

bacilliformis and B. quintana, and the zoonotic feline-specific species B. henselae 

[103]. B. bacilliformis elicits life-threatening Carrión’s disease with two clinical 

phases: a primary acute stage of hemolytic anemia called “Oroya fever”, and a 

secondary chronic stage “verruga peruana” characterized by skin nodules and mulaire 

lesions (erythematous round lesions) along with bleeding, which lead to fibrosis [104, 

105]. Trench fever caused by B. quintana is usually mild and rarely fatal with 

characteristic five-day cycle of relapsing fever [106]. People are usually infected with 

B. henselae through cat scratches or cat fleas and immunocompetent patients typically 

suffer from cat scratch disease (CSD), characterized by local lymph node swelling and 

fever [107]. In contrast, immunocompromised patients (e.g., acquired immune 

deficiency syndrome (AIDS) patients) with B. henselae or B. quintana infections can 

develop vasoproliferative lesions (bacillary angiomatosis). Bacillary angiomatosis is 

often associated with peliosis hepatis, which is characterised by multiple blood-filled 

cavities throughout the liver. [108]. These tumor-like lesions arise from bacterial 

infection of vascular endothelial cells leading to their enhanced migration and 

proliferation [109]. 
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1.3.1 Cycle of Bartonella infection  

The infection cycle of Bartonella is initiated with the inoculation of a mammalian 

reservoir host, following transmission via bloodsucking arthropods (Fig. 6) [110, 111]. 

Sand fly (Lutzomyia verrucarum) is the most important vector for B. bacilliformis as 

the agent of human bartonellosis [112]. Moreover, previous studies have shown that B. 

quintana, B. henselae, and B. schoenbuchensis can infect and replicate in the digestive 

systems of their vectors: human body lice (Pediculus humanus corporis), cat fleas 

(Ctenocephalides felis), and deer ked (Lipoptena cervi), respectively [113-115]. 

Generally, other hematophagous arthropods are also to be considered as transmission 

vectors in which Bartonella can survive and gain access to new hosts. For example, 

ticks and biting flies are potential vectors of Bartonella spp. in nature.    

Little evidence is available to understand precisely Bartonella infection stages 

between the inoculation into the skin (e.g., from the feces of arthropod vectors) and 

the bacteremic stage. As exemplified by B. tribocorum infection in the rat model, a 

preceding period of residence in a primary niche is essential before intravenous 

Figure 5. Phylogeny tree of Bartonella spp. The phylogenetic analysis is based on 478 core 
genome genes of ten sequenced Bartonella spp. (indicated by bold and color font) and Brucella 
abortus. Bartonellae are subdivided into the ancestral Lineage 1 and the modern Lineages 2-4. 
Lineages harboring the VirB T4SS are shaded in gray. The primary mammalian hosts are indicated 
for each species [100].  
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inoculation. B. tribocorum seems unable to directly enter erythrocytes and thus 

rapidly clear out from circulating blood. During the primary phase of residence in a 

niche, bacteria remain below detectable levels for about four days and subsequently 

re-appear in the bloodstream, implying that Bartonella persists and becomes 

competent for erythrocyte interaction during colonization of the primary niche prior to 

blood-stage infection [116]. The synchronous release of bacteria into the bloodstream 

may recur at intervals of approximately five days and sustain the bacteremia for about 

ten weeks. Upon invasion of erythrocytes, bacterial replication and intraerythrocytic 

persistence enable continuous vector transmission [117].  

 

 

In vitro data show the marked affinity of Bartonella for endothelial cells. Their 

proximity to the bloodstream leads to the suggestion that endothelial cells may be one 

of the constituents of the primary niche. [118]. However, it remains elusive how it 

reaches its primary niche in the host. Although it is not yet supported by experimental 

data, it is tempting to speculate that Bartonella initially enters migratory cells, such as 

DCs, which assist the passage of bacteria from the typical intradermal inoculation 

environment to the primary site of infection. Moreover, the lymph node swelling 

caused by Bartonella infections may indicate that Bartonella is transported via the 

Figure 6. Bartonella infection strategy Following transmission by an arthropod vector (1), 
bartonellae colonize the dermis (2) and enter into migratory cells, likely DCs (3). DCs may 
disseminate bartonellae towards the primary niche (4). The vascular endothelium is considered as 
the primary niche and is referred to as the blood seeding niche (5). Bacteria are released into the 
bloodstream (6), where they invade erythrocytes and likely reinfect the primary niche. After limited 
replication (7), bacteria persist intraerythrocytically (8) competent for transmission by a 
bloodsucking arthropod (9) [111]. 
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lymphatic system. Consistently, a murine model of B. henselae infection showed that 

bacteria DNA are detectable in liver and lymph nodes already within six hours post 

intraperitoneal injection, proposing that lymphocytes or mononuclear phagocytes 

could be the vehicles of Bartonella transport [119]. Further, the most recent 

publication has revealed that Bartonella is capable of translocating bacterial effectors 

into DCs, thereby affecting cell migration [120]. Overall, current evidences strongly 

suggest that DCs may contribute the dissemination of Bartonella from the dermis to 

the lymphatic system eventually culminating in their release to the bloodstream. 

Further studies supporting this hypothesis including how Bartonella interacts with 

DCs by in vitro and in vivo models will be addressed in the next chapters. 

1.3.2 Bartonella virulence factors   

Bartonella adhesin A 

The trimeric autotransporter adhesins (TAAs) are important virulence factors in 

numerous gram-negative bacteria, e.g., Y. enterocolitica, N. meningitides, 

Haemophilus influenzae, and Moraxella catarrhalis. TAAs are modularly constructed 

consisting of typical head, stalk and anchor domains and they perform type Vc 

secretion [121]. Most research on the TAAs of Bartonella has been performed on 

Bartonella adhesin A (BadA) which is the largest identified TAA with the size of 328 

kDa per monomer and a length of about 240 nm [122]. The key functions of BadA in 

the molecular pathogenesis of B. henselae have been thoroughly studied with the 

Marseille strain (i.e., in the absence of a functional VirB/D4 T4SS: see chapter 1.3.3. 

for VirB/D4 T4SS). BadA contributes to the adhesion of B. henselae to extracellular 

matrix proteins (e.g., fibronectin (Fn), laminin, and collagens) and possesses 

antiphagocytic properties [123]. Furthermore, BadA plays an important role in the 

induction of host cell proangiogenic responses. In a VirB/Bep-independent manner, 

BadA promotes the activation of hypoxia-inducible factor 1 (HIF-1), a key 

transcription factor of angiogenesis [124], and the subsequent secretion of 

vasoproliferative cytokines, such as vascular endothelial growth factor (VEGF) [125]. 

With the exception of Fn binding, these functional properties are mediated by both the 

head and stalk domain of BadA whereas the stalk domain is exclusively responsible 

for Fn binding [126, 127]. 
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VirB/D4 type IV secretion system 

Type IV secretion systems (T4SSs) are ancestrally related to bacterial conjugation 

systems. A variety of bacteria intimately interacting with eukaryotic hosts utilize 

T4SSs to translocate bacterial effectors into recipient cells [128]. For the adaption to a 

wide range of mammalian hosts, Bartonella evolved two T4SSs, VirB/D4 and Trw. 

According to the prototype of Agrobacterium tumefaciens, the VirB/D4 T4SS consists 

of ten essential components, VirB2-11, and the coupling protein VirD4 serving as a 

substrate recognition module. Two signature-tagged mutagenesis (STM) screens in B. 

birtlesii and B. tribocorum showed that VirB/D4 T4SS is indispensible for the 

development of a successful bacteremia [129, 130]. Besides, the B. tribocorum 

infection model in rats strongly indicates that the VirB/D4 system is required at an 

early stage of infection before the onset of intraerythrocytic bacteremia [131]. To date, 

the VirB/D4 T4SS of B. henselae and its translocated effector proteins (Beps) are well 

studied in the Houston-1 strain (i.e., in the absence of a functional BadA). Although 

both VirB/D4 T4SS and BadA play crucial roles in B. henselae pathogenicity, most 

research studying B. henselae infections of human cells has been performed using B. 

henselae strains that either express a VirB/D4 T4SS but lack a full-length BadA or 

vice versa. The direct investigation of the potential functional interaction between 

BadA and the VirB/D4 T4SS is addressed in the Research article I (chapter 3.1). We 

show that VirB/D4-dependent effector secretion is negatively affected by BadA, but 

the functions of BadA itself remain intact when both factors are coexpressed in B. 

henselae [132]. However, in an earlier publication of our lab, a certain regulatory 

antagonism between VirB/D4 and BadA was found. Transcriptional analysis revealed 

that the expression of the VirB/D4 T4SS is upregulated whereas the one of BadA is 

downregulated under certain conditions in the in vitro model [133]. Therefore, 

VirB/D4 and BadA might not only have a functional interaction, but also their 

expression may be linked to balance the incorporation of both pathogenicity factors. 

Further experiments elucidating the regulatory patterns of these two systems are 

needed to understand the underlying mechanisms of gene regulation. 

Seven distinct Beps (BepA-G) of B. henselae have been identified as conjugative 

substrates delivered through the VirB/D4 T4SS (Fig. 7) [109]. The Beps display a 

highly modular architecture by sharing at least one copy of the Bep-intracellular 

delivery (BID) domain and positively charged residues at the C terminus together 
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acting as secretion signal for their transport through the VriB/D4 T4SS. In a subset of 

the Beps (BepE-G), additional BID domains are present and likely developed 

functions adapted to interfere with the host cell. BepG is exclusively composed of 

four BID domains. Moreover, BepA-C are homologs carrying a N-terminal 

filamentation induced by cAMP (FIC) domain. FIC domains of B. schoenbuchensis 

VbhT and B. rochalimae Bep2 were shown to mediate AMPylation, i.e., the covalent 

transfer of an AMP moiety onto hydroxyl side chains of target proteins, thereby 

contributing to the posttranslational regulation of protein function [134-136]. This 

peculiar enzymatic activity is also detected for BepA of B. henselae [137]. The 

N-terminal regions of BepD-F contain tandem-repeated tyrosine-containing sequences 

as EPLYA (Glu-Pro-Ile-Tyr-Ala)-related motifs [138]. Upon translocation into 

endothelial cells, tyrosine residues of BepD and BepE undergo phosphorylation [139]. 

Further validation revealed that BepE binds Csk and SHP-2 in a 

phosphorylation-dependent manner [140]. However, none of the FIC domains or 

EPIYA-related motifs of B. henselae effectors has been demonstrated to contribute to 

Bartonella virulence. In the Research article II (chapter 3.2), we demonstrate for the 

first time that the subversion of cellular functions relates to the EPIYA-related motifs 

of BepD by using in vitro and in vivo models.  

 

 

So far, several T4SS-dependent cellular phenotypes caused by B. henselae infection 

are described in association with a single effector or a subset of Beps. One example is 

the entry of B. henselae into host cells via invasomes. In a sequential process, B. 

Figure 7. Bartonella VirB/VirD4 and Beps (a) The genetic structure of the virB/virD4/bep 
pathogenicity island, which encodes 18 type IV secretion-related proteins. (b) The domain structure 
of BepA-G. BID, Bep intracellular delivery; Fic, filamentation induced by cAMP; Y, tyrosine 
residue within a putative phosphorylation motif [109]. 
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henselae is first taken up by the host cell in Bartonella-containing vacuoles (BCVs) 

within few hours after pathogen exposure [142]. A combination of BepC and BepF or 

BepG alone subsequently stall BCV-formation and lead to bacterial uptake in huge 

clusters, so called invasomes [143, 144]. This process goes along with massive 

rearrangements of the actin cytoskeleton and takes 16 to 24 hours [141, 142]. 

Invasome formation is elicited due to the inhibition of endocytosis-like uptake of 

individual bacteria in BCVs [143, 144]. It has been shown that the assembly of the 

F-actin invasome structure by B. henselae infection results from β1-integrin outside-in 

signaling mediated by FAK, Src kinase, paxillin, and vinculin in combination with 

talin1-mediated inside-out signaling [145]. A further example for the impact of Beps 

on host cell behavior relates to angiogenic properties of B. henselae. An in vitro 

three-dimensional spheroid sprouting assay disclosed that BepA profoundly induces 

capillary-like sprouting while the same process is inhibited by BepG; thus, both 

proteins seem to play a opposing role in controlling the angiogenic response triggered 

by B. henselae infection [143]. While promoting sprout formation, the VirB/Bep 

system antagonizes exogenous angiogenic stimulation of VEGFR2 signaling by 

VEGF, which is Bartonella induced [146]. These two independent lines of evidences 

suggest that the VirB/Bep system as an important factor balances the angiogenic 

potential of B. henselae with both pro- and anti-angiogenic characteristics. 

Furthermore, BepA efficiently prevents infected endothelial cells from apoptosis via 

elevating the cytosolic concentration of the second messenger cAMP [147, 148]. This 

BepA-mediated elevation of cAMP level depends on the stimulus of Gαs released 

from a G protein-coupled receptor [149]. Both in vitro phenotypes of BepA are 

closely related to its BID domain, likely through the same molecular activity. 

Additionally to the above, a recent publication of our lab shows that a deleterious cell 

fragmentation phenotype caused by BepC is restored by BID domains of BepE via the 

RhoA signaling pathway. Moreover, BepE is required for systemic dissemination 

from the dermal inoculation site to the bloodstream in the in vivo infection model 

[120].  

Trw type IV secretion system 

Unlike VirB/D4, the Trw T4SS apparently neither harbors a coupling protein nor does 

it translocates any known effectors. It carries multiple tandem gene duplications of 

trwL and trwJIH forming a multiprotein complex that spans the inner and outer 
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bacterial membranes and possesses a hypothetical pilus structure [150]. Moreover, 

only TrwJ1 and TrwJ2 are localized at the cell surface and bind to the band3 protein, 

one of the major outer-membrane glycoproteins of erythrocytes, thereby promoting 

the recognition of erythrocytes [151]. Strikingly, host specificity is defined by the 

capacity of Bartonella species to adhere exclusively to erythrocytes of their reservoir 

host in a Trw T4SS-dependent manner [129, 130].  

1.3.3 Immune evasion and immunomodulation  

Some bacterial pathogens cause an acute infection characteristically inducing disease 

symptoms that overwhelm the host innate defenses. In contrast, Bartonella using 

stealth-attack strategies characteristically avoid elicitation of a host immune response 

via both passive immune evasion and active immunomodulation. At a late stage of 

Bartonella infection, the colonization of the intraerythrocytic niche protects 

bartonellae from both innate and adaptive immunity [152]. As described above (see 

chapter 1.1.1), the LPS of gram-negative bacteria are endotoxins recognized by TLR4 

and trigger a strong inflammatory response, which prohibits bacterial persistence. 

Critically, LPS of Bartonella shows unusual structural features connected to a 

significantly lower endotoxic activity [153]. The immunomodulatory property of 

Bartonella LPS is extensively studied in B. quintana. Interestingly, B. quintana LPS 

acts as a TLR4 antagonist leading to transcriptional downregulation of the 

pro-inflammatory cytokines (e.g., TNF-α, IL-1β, and IL-6) whose production is 

triggered by E. coli LPS. However, a LPS-associated component of B. quintana 

selectively stimulates the secretion of IL-8 likely via TLR2 and induces leukocytosis 

[154-156]. Furthermore, many studies have reported that Bartonella infection (e.g., B. 

bacilliformis, B. quintana, and B. henselae) elevates IL-10 levels in human patients 

and various experimental models [157-160]. IL-10, as a multifunctional 

immunoregulatory molecule, is critically involved in persistence of bacteria by 

disarming innate and adaptive responses. [161]. Strikingly, B. birtlesii loses the ability 

to establish bacteremia in the IL-10 deficient mice, implicating that IL-10 plays a 

pivotal role for Bartonella pathogenicity [162].  

From the severity point of view of the disease symptoms, B. birtlesii infection 

establishes longer and higher bacteremia in CD4 deficient mice (i.e., lacking T helper 
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cells) compared to wild-type mice. In contrast, the bacteremia development is 

indistinguishable between CD8 deficient and wild-type mice [162]. In accordance 

with the central role of phagocytic cells and humoral immunity in Bartonella 

clearance, the course of B. grahamii bacteremia is transient in immunocompetent 

mice. However, bacteremia persists in Igh
−/−

 mice (i.e., lacking Ig-producing B cells) 

and Rag
−/−

 mice (i.e., devoid of both an intact B and T cell compartment). To further 

demonstrate that antibodies are necessary to abrogate B. grahamii infection, adoptive 

transferring of immune serum against B. grahamii into infected immunocompromised 

recipients results in a transient bacteremia congruent with the situation in an 

immunocompetent host [163]. In the case of feral cats with a natural infection of the 

feline-specific B. henselae, Th2 responses are induced culminating in the secretion of 

specific antibodies. Although the production of specific antibodies plays an important 

role in removing Bartonella from the bloodstream, it cannot eliminate relapses of 

bacteremia [164, 165]. Consistently, another report showed that passive antibodies to 

B. henselae protect cats from clinical disease symptoms but fail to prevent the 

establishment of bacteremia [166]. The induction of Th2, which is known to suppress 

Th1 immune responses, may contribute to the establishment of B. henselae 

persistence in naturally infected cats [167]. In accordance with this, experimental 

infection with B. henselae in cats revealed that rapid bacteremia clearance is 

associated with Th1 immune responses including IFN-γ and TNF-α production [156]. 

Consistently, various studies of the heterologous murine model have reported that B. 

henselae infection elicits Th1 responses and fails to cause bacteremia [119, 158, 168]. 

In addition, although B. henselae is able to enter and survive within the mouse 

macrophags cell line J774, IFN-γ mediated activation of macrophages significantly 

decreases the number of recoverable bacteria [169]. These results strongly suggest 

that the Th1 responses associated with IFN-γ secretion play a crucial role in recruiting 

phagocytes and activating T helper-mediated immunity for the elimination of 

bartonellae. Even so, it remains unclear how natural infection of Bartonella in the 

reservoir host leads to Th2-dominated responses instead of the Th1 immunity which is 

triggered in the experimental setup. In light of the complex interplay between 

pathogen and immune system, it has to be emphasized that the inflammatory profile 

observed after Bartonella infection in different hosts is inconsistent. This may 

partially explain the distinct outcome of Bartonella infection in reservoir and 
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incidental hosts. 

Among CSD patients, the characteristic lymphadenopathy originates from the 

formation of B cell rich granulomas with continuous recruitment of infected 

macrophages. These macrophages undergo apoptosis and likely lead to self-limitation 

of CSD [170]. In vitro analysis revealed that B. henselae-driven DC activation goes 

along with classical phenotypic changes as the increase of surface expression of 

co-stimulatory molecules and MHC class II complex as well as the release of 

cytokines (e.g., TNFα, IL-6, IL-10, CXCL8, and CXCL13). These cytokines are 

known to activate and recruit B cells. Remarkably, CXCL13-producing DCs are 

observed in CSD granulomas and likely contribute to the B cell and neutrophil 

recruitment [160]. To investigate the mechanisms causing lymphadenopathy in vivo, a 

comparative analysis of B. henselae (feline-specific species) and B. grahamii 

(rodent-specific species) was performed by subcutaneous infection in mice. 

Interestingly, only B. henselae infection causes a massive and long-lasting regional 

lymph node (LN) swelling in wild-type mice as incidental hosts. In vitro analysis 

showed that the production of IFN-α/β by bone marrow-derived dendritic cells 

(BMDCs) is significantly lower in response to B. henselae compared to B. grahamii. 

As opposed to that, both B. henselae and B. grahamii are able to induce 

lymphadenopathy in IFN-α/β receptor-deficient (IFNARI
−/−

) mice. Taken together, 

these findings indicate that homologous infection with Bartonella may induce the 

IFN-α/β secretion, which in turn exerts an inhibitory effect on the development of 

lymphadenopathy in its reservoir hosts [171]. In summary, both cellular and humoral 

immunity are essential for complete eradication of bartonellae from the hosts. 

Apparently, Bartonella actively counteracts the establishment of host immune 

responses to create a moderated inflammatory profile which is beneficial for bacterial 

persistence. However, Bartonella immunosuppression is restricted by host specificity. 

A mild Bartonella infection course is mostly observed in reservoir hosts, while the 

morbid course of infection in incidental hosts results from the failure in 

immunomodulation. Despite the phenotypic description of immunological attenuation 

during Bartonella infection, it is still elusive how Bartonella obstructs functions of 

the host immune system and which Bartonella virulence factors may contribute to it. 

These aspects will be addressed in the next chapters of the thesis.  
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Started in May 2011, my first project was collaborated with the group of Prof. Kempf 

in the Institute of Medical Microbiology and Infection Control at the University 

Hospital of the Johann Wolfgang Goethe-University in Frankfurt. Two pathogenicity 

factors of Bartonella henselae have been greater characterized in individual activities: 

the trimeric autotransporter Bartonella adhesin A (BadA) and the type IV secretion 

system VirB/D4 (VirB/D4 T4SS). In this study, we deeply investigated how these 

major virulence factors affect each other in their specific activities. 

In the second project, I focused on the natural host interface with Bartonella, 

particularly on the bacterial defense mechanisms against host immunity. To achieve 

this, my work was divided into two directions. One was to identify which Bartonella 

effector proteins as immunomodulatory molecules involved in intracellular 

communications to subvert the immunological signaling cascade. The other was to 

find the primary niche of Bartonella entry and replication in the natural reservoir host. 

By understanding the Bartonella infection cycle, I aimed to explore how Bartonella 

manipulate host immunity towards its pathogenicity in vivo. Taken in vitro and in vivo 

results together, I sought to complete this project with a comprehensive insight into 

which Bep displays immunosuppressive properties, how it works and what are the 

consequences of its function on host immunity. 
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3.1 Research article I 

Bartonella henselae trimeric autotransporter adhesin BadA 

expression interferes with effector translocation by the VirB/D4 type 

IV secretion system. 
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Statement of my contribution 

The project is collaborated with the group of Prof. V. Kempf in the Institute of 

Medical Microbiology and Infection Control at the University Hospital of the Johann 

Wolfgang Goethe-University in Frankfurt. In this study, the interaction of BadA and 

the VirB/D4 T4SS in B. henselae was analyzed. Our group focused on the functional 

analysis of the VirB/D4 T4SS and the BadA specific phenotypes were studied by the 

group of Prof. Kempf. My contributions include the characterization of clinical 

Bartonella henselae (Bhe) isolates and constructed Bhe mutants by analyzing BadA 

and VirB coexpression through the western blot and immunofluorescent labeling (Fig. 

1, 4A, and S2A). The phenotypic T4SS-dependent effects were studied in a variety of 

clinical Bhe isolates and constructed Bhe mutants by invasome formation and CRAfT 

assay (Fig. 3, 5, and 7). Moreover, to visualize the BadA structures and to further 

investigate the negative effect of BadA on the function of the VirB/D4 T4SS, Bhe 

infected cell samples were prepared for transmission electron microscopy (Fig. 6). 

The stability of the Cre-BID fusion constructs was showed by the western blot and 

CRAfT assay (Fig. S1A and S2B). Besides the protein level, gene regulation of bepD, 

virB4 and virB7 of Bhe mutants was analyzed by quantitative PCR (Fig. S2C). Finally, 

the manuscript was written by me, Dr. B. Franz, Dr. M. Truttmann, Prof. V. Kempf, 

and Prof. C. Dehio.  
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3.1.1 Summary   

The trimeric autotransporter Bartonella adhesin A (BadA) and the type IV secretion 

system VirB/D4 (VirB/D4 T4SS) of Bartonella spp. represent two of the most 

important pathogenicity factors of this genus - each displaying multiple functions in 

host cell interaction. The key functions of BadA in the molecular pathogenesis of B. 

henselae have been thoroughly studied with the Marseille strain (i.e., in the absence of 

a functional VirB/D4 T4SS). BadA mediates the binding to fibronectin (Fn), 

adherence to endothelial cells (ECs) and secretion of vascular endothelial growth 

factor (VEGF). The VirB/D4 T4SS of B. henselae are well studied in Houston-1 strain 

(i.e., in the absence of a functional BadA). It translocates several Bartonella effector 

proteins (Beps) into the cytoplasm of infected ECs, resulting in uptake of bacterial 

aggregates via the invasome structure, inhibition of apoptosis and activation of a 

proangiogenic phenotype. Despite this knowledge of the individual activities of BadA 

or VirB/D4, it is unknown whether these major virulence factors affect each other in 

their specific activities. In this study, expression and function of BadA and VirB/D4 

were analyzed in a variety of clinical B. henselae isolates. Data revealed that most 

isolates have lost expression of either BadA or VirB/D4 during in vitro passages. 

However, the phenotypic effects of coexpression of both virulence factors were 

studied in one clinical isolate stably coexpressing BadA and VirB/D4, as well as by 

ectopic expression of BadA in a strain only expressing VirB/D4. Our results showed 

that BadA forming a dense layer on the bacterial surface negatively affected 

VirB/D4-dependent Bep translocation and invasome formation by likely preventing 

close contact between the bacterial cell envelope and the host cell membrane. In 

contrast, BadA-dependent phenotypes, e.g., Fn binding, adhesion to ECs, and VEGF 

secretion, were not affected by a functional VirB/D4 T4SS. However, a certain 

regulatory antagonism is shown from previous transcriptional data that expression of 

the VirB/D4 T4SS was upregulated and that of BadA downregulated under certain 

conditions in the in vitro model, implying these essential virulence factors BadA and 

VirB/D4 are likely differentially expressed during different stages of the infection 

cycle of Bartonella. Further experiments elucidating the regulatory patterns of these 

two systems are needed to understand the underlying mechanisms of gene regulation 

in detail.  
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3.1.2 Manuscript  
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3.2 Research article II  

Bartonella translocated effectors, BepA and BepD, interfere with the 

maturation of dendritic cells 

Yun-Yueh Lu, Christoph Schmutz, Rusudan Okujava, Claudia Mistl, Timo Glatter, 

Antonius G. Rolink and Christoph Dehio* 

* Corresponding author 

Manuscript in preparation  

Statement of my contribution  

My contributions in this study include the establishment of BMDCs as an ex vivo 

model system (Fig. S1), characterization of phenotypic changes of infected BMDCs 

by Bartonella strains and E. coli LPS treatment (Fig. 1-2) as well as various 

comparative analyses of impaired DC maturation patterns by a vast number of Bhe 

mutants (Fig. 3-8 and Fig. 10-13). I constructed the listed of plasmids and Bhe 

mutants which were first described in this study, including strains overexpressing 

BepABhe homologs, BepDBhe homologs, all of the tyrosine substitution mutants of 

BepD-BXBIDBhe, and lenti-constructs of BepD (table S1 and Fig. S2). Furthermore, I 

established an in vitro model of JAWSII cell line (Fig. S7 and 14) and an inducible 

lentiviral system to ectopically express interest proteins (Fig. S8). This model was 

further used for identifying the interaction partners of BepD by Dr. C. Schmutz. In the 

following, I analyzed the STAT3 activation of infected BMDCs using immunoblotting 

(Fig. 19-21). I also analyzed the gene regulation of DC maturation markers, cytokines, 

and crem in infected BMDCs using quantitative PCR (Fig. 9, S4, and S6). For in vivo 

experiments, I first sequenced the B. taylorii, its virB2-11, virD4 and beps loci (Fig. 

S9 and S10), and established the Bta infection model in mice (Fig. 22). Following, I 

generated and examined the Bta deletion mutants for bacteremia development in mice 

(Fig. 23 and 24). 

This study was done with the great support by Dr. C. Schmutz, Dr. R. Okujava, and C. 

Mistl. Particularly, Christoph identified the interaction partners of BepD by the 

quantitative interactomic screen (Fig. 16), phospho-proteomic screen (Fig. 17), and 

co-immunoprecipitation (Fig. 15 and 18).  
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3.2.1 Summary   

In contrast to bacterial pathogens that cause acute diseases but rapidly cleared by host 

immune response, Bartonella infection in the natural reservoir host leads to long 

lasting bacteremia. A pre-requisite for this stealth-infection strategy is immune 

evasion. Dendritic cells (DCs), professional antigen-presenting cells, represent a cell 

type potentially relevant to the dermal stage of early Bartonella infection. To gain 

better understandings of immune evasion mediated by Bartonella immunomodulatory 

effectors, the murine bone marrow-derived DCs (BMDCs) were used as a model 

system. In response to Bartonella infection, BMDCs failed to fully mature. Impaired 

DC maturation was characterized by reduced surface expression of MHC class II 

complex and the co-stimulatory receptors CD40 and CD86, as well as strongly 

diminished secretion of the pro-inflammatory cytokines TNF-α and interleukin-6. 

These phenotypic changes were dependent on Bartonella effector proteins BepA and 

BepD, secreted via the type IV secretion system. The effect of BepA was narrowed 

down to its BID domain in association with elevations of intracellular cAMP level. 

BepD harbors an N-terminal array of tyrosine-phosphorylation motifs. Mutagenic 

analysis revealed the contribution of individual phospho-tyrosine residues to the 

impaired maturation phenotype. Several SH2 domain containing proteins were 

identified as interaction partners of BepD in dependence of its 

tyrosine-phosphorylation. Among them, STAT3 became significantly 

hyper-phosphorylated. STAT3 activation strongly correlated with the impaired DC 

maturation phenotype suggesting that it represents a key pathway hijacked by BepD 

to prevent DC maturation. These results showed that Bartonella was able to attenuate 

DC functions which may critically contribute to the modulation of T-cell mediated 

adaptive immunity. To further uncover the relevance of BepA and BepD in 

modulation of host immune response in vivo, a murine model with B. taylorii (Bta) 

infection was established. Through intradermal infection, Bta strains with deletion of 

bepA or/and bepD seemed to lose the fitness of bacteremia development. However, 

further optimizations and investigations are needed for a more sensitive in vivo system 

to study the function of Beps. Taken in vitro and in vivo data, we propose that 

Bartonella utilizes BepA and BepD as immnuomodulatory factors to mediate immune 

evasion and promote chronic bartonellosis.  
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3.2.2 Introduction 

The host immune response eliminating bacterial infection is based on a combination 

of both innate and adaptive immune systems. The orchestration of the immune 

response strictly relies on the interaction of pathogens with professional 

antigen-presenting cells (APCs). Among APCs, dendritic cells (DCs) have the unique 

ability to induce a potent antigen-dependent stimulation and play a central role in the 

initiation of the primary immune response. DCs are strategically located in the 

peripheral tissues where they reside in an immature state to exert a sentinel function 

for detecting foreign agents. Microbial stimuli trigger DC “maturation” describing the 

changes from immature antigen-capturing cells to mature antigen-presenting cells. 

These significant phenotypes of DC maturation include increased surface expression 

of co-stimulatory molecules (e.g., CD40, CD80, and CD86) and major 

histocompatibility complex class II (MHCII), as well as pro-inflammatory cytokine 

secretion (e.g., IL-6 and TNF-α). Furthermore, modified expression of chemokine 

receptors and adhesion molecules leads matured DCs migrating from peripheral 

tissues to the T cell zone of secondary lymphoid organs. Subsequently, activated DCs 

display pathogen-encoded antigens to naïve T cells and initiate the adaptive immunity 

[1, 2]. Early recognition of the pathogen-associated molecular patterns (PAMPs), e.g., 

bacterial lipopolysaccharide (LPS), peptidoglycan (PG), and lipopeptides, plays an 

essential role in DC maturation through germline-encoded pattern recognition 

receptors (PRRs). Among PRRs, the family of Toll-like receptors (TLRs) is the most 

extensively studied. Different TLRs are coupled to distinct downstream signaling 

pathways by the selective use of different TIR‐domain signaling adaptor molecules: 

MyD88, TRIF, TRAM, and TIRAP (Mal). In the following, three major signaling 

pathways are able to be activated by TLRs: mitogen‐activated protein kinase (MAPK), 

nuclear factor ‐ κB (NF ‐ κB), and interferon regulatory factors (IRFs), thereby 

cooperatively mediating pro‐inflammatory cytokine production [3, 4]. 

In recent times it has become clear that DCs are not only immune response initiators 

for T cell activation but also central inducers in the development of T cell tolerance. 

The particular immunological outcomes appear to be determined by the maturation 

state of DCs. Only the mature form promotes full blown T cell responses. In the 

steady state, immature DCs maintain T cell anergy to prevent self-destruction. More 
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than a simple “on/off” switch of DC activation, a semi-mature developmental stage of 

DCs is described in T cell tolerance mechanism. Inducible tolerance is believed to be 

generally attributed to semi-mature DCs, which are characterized by high levels of 

MHCII, but low or no expression of co-stimulatory molecules or pro-inflammatory 

cytokines. Such tolerogenic DCs can convert naïve T cells into regulatory T cells 

(Treg), which in turn suppress immune responses [5, 6]. 

Increasing evidence reveals that several bacterial pathogens develop unique 

mechanisms to subvert DC functions, thereby evading from host immune recognition. 

For example, Francisella tularensis exploits DCs not only as their replicative niches, 

but also for immune evasion. An attenuated type B strain of F. tularensis known as 

live vaccine strain (LVS) induces phenotypic activation with increased expression of 

MHCII and CD86 on the surface of DC. In the meanwhile, LVS inhibits the 

pro-inflammatory cytokines IL-12 and TNF-α secretion to facilitate pulmonary 

infection [7]. In addition, a virulent type A strain of F. tularensis Schu4 prevents the 

phenotypic activation of pulmonary DCs and macrophages as well as the secretion of 

pro-inflammatory cytokines [8, 9]. Similarly, other bacterial pathogens (e.g., 

Bordetella pertussis and Salmonella Typhimurium) also cause aberrant activation of 

DC but with limited bacterial growth in DCs. Bordetella infection causes phenotypic 

but not functional maturated DCs which secrete anti-inflammatory cytokine IL-10 and 

trigger activation of Treg cells [10, 11]. Although S. Typhimurium cannot prevent the 

induction co-stimulatory molecules and cytokine secretion, it is able to interfere with 

MHCII antigen presentation [12]. Additionally, other studies showed that 

Mycobacterium tuberculosis and Brucella abortus share similar profiles to 

comprehensively inhibit DC maturation. M. tuberculosis blocks NF-κB activation via 

the C-type lectin DC-SIGN, preventing DC maturation and reducing secretion of 

IL-12 [13-15]. As exemplified by B. abortus, its TIR-containing protein Btp1 

interferes with TLR2 signaling pathway to inhibit DC maturation [16]. Overall, the 

manipulation of DC maturation by bacterial pathogens constitutes an effective and 

powerful strategy for immune evasion. 

Bartonella transmission mainly replies on bloodsucking arthropods that initially 

inoculate bartonellae into the dermis. Bartonella infection results in a long-lasting 

bacteremia where erythrocytes serve as the immune-privileged niche. Little evidence 
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is available to understand precisely Bartonella infection stages from the intradermal 

inoculation to the bacteremic phase. A murine model of B. henselae infection revealed 

that bacterial DNA were detectable in liver and lymph nodes at 6 hours post 

intraperitoneal injection, proposing that lymphocytes or mononuclear phagocytes may 

be the vehicles of Bartonella transport [17]. A recent publication showed that 

Bartonella was capable of translocating bacterial effectors into DCs, thereby affecting 

cell migration [18]. Taken altogether, present evidences strongly suggest that DCs 

may constitute an important cellular niche to promote Bartonella dissemination from 

the dermis to the lymphatic system. Besides the migratory properties of DCs, we 

sought to understand consequences of Bartonella infection on the immune functions. 

Several virulence factors allow bartonellae to adhere, invade, proliferate, and persist 

within various host-cell types. Particularly, the VirB/D4 type IV secretion system 

(T4SS) represents an essential virulence factor which is likely required for the initial 

colonization rather than for the subsequent blood-stage infection [19]. Seven distinct 

Bartonella effector proteins (BepA-G) of B. henselae have been identified as 

conjugative substrates through VirB/D4 T4SS. Evolutionally, Beps maintain their 

ancestral domain constitution with at least one Bartonella intracellular delivery (BID) 

domain and a positively-charged tail in the C-terminus together as the translocation 

signal [20]. To date, most studies of T4SS-dependent phenotypes mainly focus on the 

subversion of various endothelial cell (EC) functions, including massive 

rearrangements of the actin cytoskeleton (known as invasome structures), activation 

of the NF-κB-dependent pro-inflammatory response, anti-apoptotic protection, 

capillary-like sprout formation, and prevention of cell fragmentation [21-26].  

Unlike bacterial pathogens which lead to acute infection and induce pro-inflammatory 

responses, Bartonella infection (e.g. B. bacilliformis, B. quintana, and B. henselae) 

elevates the levels of the anti-inflammatory cytokine IL-10 in human patients and 

various experimental models [27-30]. Though phenotypic descriptions on 

immunological attenuation by Bartonella infection, it is still unclear how Bartonella 

interferes with functions of the host immune system. Thus, we sought to explore 

whether Bartonella infection subverts DC functions for immune evasion, a strategy 

shared by other bacteria causing chronic diseases. In this study, we characterized the 

consequences of Bartonella infection on the inhibition of DC maturation, including 
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downregulation of MHCII, CD40, and CD86 surface expression as well as reduction 

of pro-inflammatory cytokine secretion, IL-6 and TNF-α. These specific 

immunosuppression phenotypes were assigned to BepA and BepD. The effect of 

BepA in DCs was associated with elevation of host cell cyclic adenosine 

monophosphate (cAMP) concentration. Furthermore, activated STAT3 strongly 

correlated with the impaired DC maturation phenotype caused by BepD. Thus, this 

article describes the remarkable features of these two Beps into a new perspective, 

highlighting the mechanisms they use to hijack host signaling pathways as 

stealth-attack strategies to evade the host immune responses. 
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3.2.3 Materials and Methods 

Bacterial strains, growth conditions and conjugations 

All bacterial strains used in this study were listed in the supplementary table S1.  

Bartonella strains were grown on Columbia base agar plates supplemented with 5% 

sheep blood (CBA) or cultured in medium M199 (Gibco) with 10% fetal calf serum 

(FCS) (Gibco) and appropriate antibiotics at 37°C and 5% CO2 for 2-4 days. E. coli 

strains were cultivated in Luria-Bertani liquid broth (LB) or on solid agar plates (LA) 

supplemented with appropriate antibiotics at 37°C overnight. When indicated, 

antibiotics or supplements were used in the following concentrations: kanamycin 30 

µg ml
-1

, gentamycin 10 µg ml
-1

, streptomycin 100 µg ml
-1

, 

isopropyl-β-D-thiogalactoside (IPTG) 500 µM and diaminopimelic acid (DAP) 1 mM. 

Constructed plasmids were introduced into Bartonella strains by conjugation from 

E. coli strain β2150 using three-parental mating as described previously by Dehio et 

al., 1998 [31] 

Cell lines and culture conditions 

Mouse bone marrow-derived dendritic cells (BMDCs) were differentiated in vitro 

using standard protocol [32]. Briefly, bone marrow cells were flushed from the tibias 

and femurs of Balb/c mice with culture medium composed of GlutaMAX DMEM 

(Gibco) supplemented with 10% FCS, 10mM HEPES, 1mM sodium pyruvate, and 0.5 

mM β-ME. After one centrifugation, BM cells were resuspended in RBC lysis buffer 

(Biolegend) for 2 min to lyse RBC. After one more centrifugation, BM cells were 

cultured at 1 × 10
6
 cells/ml in culture medium supplemented with 200 ng/ml 

recombinant human Flt3L (produced by 40E1 hybridoma cells, kind gift from Prof. A. 

Rolink). Cultures were incubated at 37°C in 5% CO2 for 8-10 days. 

JAWSII cell line (ATCC CRL-11904™, kindly provided from Prof. P. Broz) is a 

GM-CSF-dependent DC line established from bone marrow cells of a p53-knockout 

C57BL/6 mouse [33]. JAWSII cells were cultured at 37°C in 5% CO2 in complete 

culture medium consisting of MDM (Sigma-Aldrich) with 10% FCS, 4 mM 

l-glutamine, 1 mM sodium pyruvate, and 5 ng/ml GM-CSF (produced by X63 

hybridoma cells, kind gift from Prof. A. Rolink).  
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Construction of strains and plasmids 

DNA manipulations were performed according to standard techniques and all cloned 

inserts were DNA sequenced to confirm sequence integrity. Chromosomal deletions 

of B. taylorii were generated by a two-step gene replacement procedure as described 

previously by Schulein et al., 2002 [19]. For protein complementation/overexpression 

in B. henselae and B. taylorii, selected genes were cloned into the plasmid pPG100 or 

pPG180 under the control of the taclac promoter [20]. For protein overexpression in 

JAWSII cells, interest genes were cloned into the plasmid 

pCLX-pTF-R1-DEST-R2-EBR65, which is a lentivector, under the TET-inducible 

promoter pTF [34] through standard gateway cloning strategy (Gateway system, 

Invitrogen). TET-modified pTF promoter was induced by adding doxycycline (DOX) 

to a final concentration of 1 μg/ml. Detailed description for the construction of each 

plasmid is presented in supporting information. The sequence of all oligonucleotide 

primers used in this study is listed in table S2. 

Infection of BMDCs 

For Bartonella infection of BMDCs, bacterial strains were cultured in medium 

M199/10% FCS for 2 days. One day before infection, BMDCs were seeded at 2 × 

10
6
/well in 6-well plates. Next day, cells were washed once with M199 supplemented 

with 10% FCS and infected with a multiplicity of infection (MOI) of 25 bacteria per 

cell in M199/10% FCS/500 µM IPTG. Unless stated differently, infected BMDCs 

were harvested at 24 hours post-infection for following immunoblot analysis and flow 

cytometry. The supernatants were collected for cytokine detection.  

Lentiviral transduction of JAWSII cells 

To generate stable cell lines with integrated selected genes, lentiviral transduction was 

performed as previously described by Okujava et al., 2014 [18]. Subconfluent (3 × 

10
6
) HEK 293T cells in 10 cm cell-culture dishes were transfected with a total of 5 µg 

of plasmid DNA following the FuGENE transfection protocol (FuGENE 6 

Transfection Reagent, Roche). After 6 h, the cell culture media was replaced. For viral 

production, the cells were kept in culture for additional 48 h. One day before the viral 

transduction, 5 × 10
4
 JAWSII cells/well was seeded in the 6-well plate. The viral 

supernatant was filtered with the 0.45 µm filter and transferred onto the JAWSII cells, 
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3 ml of viral supernatant in presence of 0.5 µg/ml Polybrene (Sigma) was applied on 

each well. After 6 h, the cell culture media was replaced by the complete growth 

media for JWASII cells. Two days after transduction, blasticidin selection (5 µg/ml, 

Gibco) was performed for additional one week to enrich transduced JAWSII cells.  

Determination of cell surface markers by flow cytometry 

The following staining reagents from Biolegend were used: PE anti-mouse MHCII 

(M5/114.15.2), APC anti-mouse MHCII (M5/114.15.2), PE anti-mouse CD40 (3/23), 

PE anti-mouse CD80 (16-10A1), PE anti-mouse CD86 (GL-1), APC anti-mouse 

CD86 (GL-1), and APC anti-mouse CD11c (N418). Cell suspensions of BMDCs or 

JAWSII cells were stained at 4
o
C with the appropriate antibodies in PBS containing 

2% FCS. Surface markers MHCII, CD40, CD80, and CD86 were measured using a 

FACSCalibur flow cytometer (Becton Dickinson). Dead cells were excluded through 

the use of propidium iodide. Data were analyzed with FlowJo software (TreeStar). 

Expression levels of the maturation markers were given as the geometric mean of the 

fluorescence intensities (GMFI) normalized to samples of Bhe ΔbepA-G infection. 

Determination of cytokine secretion  

After 24 hours post-infection, cytokine production was measured in the medium of 

infected BMDCs with ELISA. All ELISA kits specific to mouse IL-6, IL-12p40, and 

TNF-α were from eBioscience. The assay was performed following the 

manufacturers' guidelines. 

Immunoblot analysis 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

immunoblotting for the detection of the expressed proteins in Bartonella were 

performed as described by Schulein et al., 2005 [20]. Bartonella bacterial culture was 

harvested in PBS after 48 h of growth on CBA plates supplemented with appropriate 

antibiotics and IPTG. After centrifugation, bacterial cell pellets were directly 

resuspended in 1x Laemmli sample buffer to final OD600 of 4. To verify the interest 

protein expression levels, infected BMDCs or JAWSII cells were collected and 

washed twice with 2ml ice-cold PBS. Cell pellets were lyzed by adding 100 µl 

PhosphoSafe reagent (Novagen) containing 1x protease inhibitor (Roche). Protein 

concentrations of the cleared lysates were quantified using BCA kit (Thermo 
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Scientific) and diluted to final 1× Laemmli sample buffer. Immunoblots were 

examined by the specific primary antibody to the target protein and followed by a 

1:5000 dilution of secondary horseradish peroxidase-conjugated antibody (GE 

Healthcare). In all experiments, immunoblots were developed using LumiGLO 

chemiluminescent substrate (KPL) and imaged using an ImageQuant LAS 4000 (GE 

Healthcare). Supplementary material Table S3 lists all primary antibodies used in this 

study. 

Quantitative RT-PCR 

RNA manipulation and real-time PCR was performed as previously described by 

Dehio et al., 2005 [35]. RNA extracts were purified with the RNeasy mini kit (Qiagen) 

and treated with DNase (RNase-Free DNase Set, Qiagen) to digest contaminating 

genomic DNA. Reverse transcription was performed using the SuperScript II Reverse 

Transcriptase (Invitrogen) according to the manufacturer's instructions. cDNA (5 µl of 

a 1:200 dilution) was subjected to real-time PCR on an ABI PRISM 7000 Sequence 

Detection System (Applied Biosystems) using a Power SYBR Green PCR Master 

Mix (Applied Biosystems). qPCRs were set up as follows: one cycle of 95°C for 

10 min, followed by 45 cycles of 95°C for 15 sec and 60°C for 1 min. All samples 

were normalized to GAPDH signal and relative changes in gene expression were 

determined using the comparative CT method [36]. Table S2 in the supplemental 

material lists all primers used for quantitative PCR in this study.  

GFP-Trap® _A for Immunoprecipitation 

24 hours after seeding JawsII cells, expression of GFP-fused BepD constructs was 

induced by the addition of 1µg/ml doxycycline for further 24 hours. Cells were put on 

ice and the supernatant containing cells in dispersion, as well as adherent cells were 

collected and washed twice with ice-cold PBS. Cells were resuspended in ice-cold 

lysis buffer (10 mM Tris/Cl pH 7.5; 150 mM NaCl; 0.5 mM EDTA; 0.5% NP-40, 1x 

PhosSTOP, 1x, 1x cOmplete, Mini, EDTA-free) and incubated for 30 minutes on ice. 

The cell lysate was centrifuged and the supernatant transferred to a new tube. The 

sample was subsequently diluted with 1.5x amount of dilution buffer (10 mM Tris/Cl 

pH 7.5; 150 mM NaCl; 0.5 mM EDTA). Meanwhile GFP-Trap® _A beads were taken 

and washed twice with ice-cold dilution buffer. The diluted cell lysate was then added 

to the GFP-Trap® _A beads and incubated for 1h at 4°C tumbled end-over end. 
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Afterwards, the mixture was washed 4 times with ice-cold dilution buffer and eluted 3 

times with ice-cold 0.2M glycine pH 2.5. The eluate was neutralized with 

Ammoniumbicarbonate to a pH > 8. 

Preparation of immunoprecipitated samples for mass spectrometry 

Disulfide bonds were reduced with tris (2-carboxyethyl) phosphine at a final 

concentration of 10 mM at 37 °C for 1 h. Free thiols were alkylated with 20 mM 

iodoacetamide at room temperature for 30 min in the dark. The excess of 

iodoacetamide was quenched with N-acetyl cysteine at a final concentration of 25 

mM for 10 min at room temperature. The proteins were digested overnight at 37 °C 

with sequencing-grade modified trypsin at a protein-to-enzyme ratio of 50:1. Peptides 

were desalted on a C18 Sep-Pak cartridge and dried under vacuum. 

Sample preparation for phosphoproteomics 

24 hours after seeding JawsII cells, expression of GFP-fused BepD constructs was 

induced by the addition of 1µg/ml doxycycline for further 24 hours. The plates were 

put on ice and washed twice with ice-cold PBS. Samples were then collected in urea 

solution [8 M Urea, 0.1 m Ammoniumbicarbonate, 1× PhosSTOP]. The samples were 

briefly vortexed, sonicated at 4 °C, shaked for 5 min on a thermomixer and 

centrifuged for 20 min at 4 °C and 16′000g. Supernatants were collected and stored 

at −80 °C for further processing. BCA Protein Assay was used to measure protein 

concentration. 

Phosphopeptide enrichment 

Disulfide bonds were reduced with tris (2-carboxyethyl) phosphine at a final 

concentration of 10 mM at 37 °C for 1 h. Free thiols were alkylated with 20 mM 

iodoacetamide at room temperature for 30 min in the dark. The excess of 

iodoacetamide was quenched with N-acetyl cysteine at a final concentration of 25 

mM for 10 min at room temperature. Lys-C endopeptidase was added to a final 

enzyme/protein ratio of 1:200 (w/w) and incubated for 4 h at 37 °C. The solution was 

subsequently diluted with 0.1 M ammoniumbicarbonate to a final concentration below 

2 M urea and digested overnight at 37 °C with sequencing-grade modified trypsin at a 

protein-to-enzyme ratio of 50:1. Peptides were desalted on a C18 Sep-Pak cartridge 

and dried under vacuum. Phosphopeptides were isolated from 2 mg of total peptide 



  RESULTS: Research article II  

- 71 - 

 

mass with TiO2 as described previously [46]. Briefly, dried peptides were dissolved in 

an 80% acetonitrile (ACN)–2.5% trifluoroacetic acid (TFA) solution saturated with 

phthalic acid. Peptides were added to the same amount of equilibrated TiO2 (5-μm 

bead size, GL Sciences) in a blocked Mobicol spin column that was incubated for 30 

min with end-over-end rotation. The column was washed twice with the saturated 

phthalic acid solution, twice with 80% ACN and 0.1% TFA, and finally twice with 

0.1% TFA. The peptides were eluted with a 0.3 M NH4OH solution. The pH of the 

eluates was adjusted to be below 2.5 with 5% TFA solution and 2 M HCl. 

Phosphopeptides were again desalted with microspin C18 cartridges. 

LC-MS/MS analysis 

Chromatographic separation of peptides was carried out using an EASY nano-LC 

system (Thermo Fisher Scientific), equipped with a heated 30cm RP-HPLC column 

(75 μm x 45 cm) packed in-house with 1.9 µm C18 resin (Reprosil-AQ Pur, Dr. 

Maisch). Phosphopeptide samples were analyzed per LC-MS/MS run using a linear 

gradient ranging from 98% solvent A (0.15% formic acid) and 2% solvent B (98% 

acetonitrile, 2% water, 0.15% formic acid) to 30% solvent B over 120 minutes at a 

flow rate of 200 nl/min. Peptides derived from immunoprecipitation experiments were 

analyzed separated on a 60 min gradient. Mass spectrometry analysis was performed 

on a dual pressure LTQ-Orbitrap mass spectrometer equipped with a nanoelectrospray 

ion source (both Thermo Fisher Scientific). Each MS1 scan (acquired with the 

Orbitrap) was followed by collision-induced dissociation (CID, acquired in the LTQ) 

of the 10 most abundant precursor ions with dynamic exclusion for 30 seconds. For 

phosphopeptide analysis, the 10 most abundant precursor ions were subjected to CID 

with enabled multistage activation. Total cycle time was approximately 2 s. For MS1, 

106 ions were accumulated in the Orbitrap cell over a maximum time of 300 ms and 

scanned at a resolution of 240,000 FWHM (at 400 m/z). MS2 scans were acquired 

using the rapid scan mode, a target setting of 104 ions, and accumulation time of 25 

ms. Single charged ions and ions with unassigned charge state were excluded from 

triggering MS2 events. The normalized collision energy was set to 35%, and one 

microscan was acquired for each spectrum. 

Label-free Quantification and Database Searching 

The acquired raw-files were imported into the Progenesis software tool (Nonlinear 
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Dynamics) for label-free quantification using the default parameters. MS2 spectra 

were exported directly from Progenesis in mgf format and searched using the 

MASCOT algorithm (Matrix Science) against a decoy database containing normal 

and reverse sequences of the predicted SwissProt entries of Mus musculus 

(www.ebi.ac.uk) and commonly observed contaminants generated using the 

SequenceReverser tool from the MaxQuant software. The precursor ion tolerance was 

set to 10 ppm and fragment ion tolerance was set to 0.6 Da. The search criteria were 

set as follows: full tryptic specificity was required (cleavage after lysine or arginine 

residues unless followed by proline), 2 missed cleavages were allowed, 

carbamidomethylation (C) was set as fixed modification and phosphorylation (S,T,Y) 

or oxidation (M) as a variable modification for TiO2 enriched or not enriched samples, 

respectively. Finally, the database search results were exported as a xml-file and 

imported back to the Progenesis software for MS1 feature assignment. For 

phosphopeptide quantification, a csv-file containing the MS1 peak abundances of all 

detected features was exported and for not enriched samples, a csv-file containing all 

protein measurements based on the summed feature intensities of all identified 

peptides per protein was created. Importantly, the Progenesis software was set that 

proteins identified by similar sets of peptides are grouped together and that only 

non-conflicting peptides with specific sequences for single proteins in the database 

were employed for protein quantification. Both files were further processed using the 

in-house developed SafeQuant R script [74]. In brief, the software sets the 

identification level False Discovery Rate to 1% (based on the number of decoy 

protein sequence database hits) and normalizes the identified MS1 peak abundances 

(extracted ion chromatogram, XIC) across all samples, i.e. the summed XIC of all 

confidently identified peptide features is scaled to be equal for all LC-MS runs. In the 

case of the IP experiments, the summed XIC confidently identified peptide features, 

matching the bait proteins, were used for normalization. In the case of 

phosphoproteomoics, all quantified phosphopeptides/proteins are assigned an 

abundance ratio for each time point, based on the median XIC per time point. The 

statistical significance of each ratio is given by its q-value (false discovery rate 

adjusted p values), obtained by calculating modified t-statistic p values and adjusting 

for multiple testing. The location of the phosphorylated residues was automatically 

assigned by MASCOT (score >10). 
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Ethics statement 

Animals were handled in strict accordance with good animal practice as defined by 

the relevant European (European standards of welfare for animals in research), 

national (Information and guidelines for animal experiments and alternative methods, 

Federal Veterinary Office of Switzerland) and/or local animal welfare bodies. Animal 

work was approved by the Veterinary Office of the Canton Basel City on June 2003 

(licence no. 1741). 

Infection of mice 

Female BALB/cJRj mice were obtained at the age of 6-8 weeks from Janvier Labs. 

All animal studies were approved by the authors' institutional review boards. After 

one week of adaptation, the mice were infected with B. taylorii through the 

intradermal route. Bacterial strains were grown as described above, harvested in PBS, 

and diluted to OD600 = 0.01. Mice were infected with 10 µl of the bacterial suspension 

in the dermis of the right ear. Blood samples were taken from the tail vein and 

immediately mixed with PBS containing 3.8% sodium-citrate to avoid coagulation. 

After freezing at -70°C and subsequent thawing, undiluted and diluted blood samples 

were plated on CBA plates at 35°C and 5% CO2. After 7-10 days of growth, colony 

forming units (CFU) were counted. 

Statistical analysis 

Statistical analyses were performed using Student's t test (two-tailed): p<0.05 was 

considered to be statistically significant. 
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Materials and Methods S1 

DNA manipulations 

Plasmids for expression of Flag-Beps.  

The vector expressing the BepD-BXBIDBhe was constructed by PCR amplifying a 

fragment of 1104 bp from boiled colony of B. henselae RSE247 with the primers 

prLU174 and prLU175. After digesting the PCR product with NdeI, it was inserted in 

the respective site of the flag-tag expression vector pPG100, yielding pLU030. 

The vector expressing the BepABgr was constructed by PCR amplifying a fragment of 

1657 bp from boiled colony of B. grahamii CHDE142 with the primers prLU259 and 

prLU260. After digesting the PCR product with NdeI, it was inserted in the respective 

site of the flag-tag expression vector pPG100, yielding pLU054. 

The vector expressing the BepA-BIDBbi was constructed by PCR amplifying a 

fragment of 748 bp from boiled colony of B. birtlesii PEE0249 with the primers 

prLU283 and prLU284. After digesting the PCR product with NdeI, it was inserted in 

the respective site of the flag-tag expression vector pPG100, yielding pLU065. 

The vector expressing the BepA-BIDBta was constructed by PCR amplifying a 

fragment of 748 bp from boiled colony of B. taylorii LUB046 with the primers 

prLU285 and prLU286. After digesting the PCR product with NdeI, it was inserted in 

the respective site of the flag-tag expression vector pPG100, yielding pLU064. 

The vector expressing the BepDBtr was constructed by PCR amplifying a fragment of 

1597 bp from boiled colony of B. tribocorum RSE149 with the primers prLU265 and 

prLU266. After digesting the PCR product with NdeI, it was inserted in the respective 

site of the flag-tag expression vector pPG100, yielding pLU053. 

The vector expressing the BepDBgr was constructed by PCR amplifying a fragment of 

1192 bp from boiled colony of B. grahamii CHDE142 with the primers prLU281 and 

prLU282. After digesting the PCR product with NdeI, it was inserted in the respective 

site of the flag-tag expression vector pPG100, yielding pLU061. 

The vector expressing the BepDBbi was constructed by PCR amplifying a fragment of 
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1078 bp from boiled colony of B. birtlesii PEE0249  with the primers prLU234 and 

prLU235. After digesting the PCR product with NdeI, it was inserted in the respective 

site of the flag-tag expression vector pPG100, yielding pLU060. 

The vector expressing the BepDBta was constructed by PCR amplifying a fragment of 

1063 bp from boiled colony of B. taylorii LUB046 with the primers prLU074 and 

prLU075. After digesting the PCR product with NdeI, it was inserted in the respective 

site of the flag-tag expression vector pPG100, yielding pLU058. 

Tyrosine to phenylalanine exchange mutant in BepDBhe.  

To exchange the putatively phosphorylated tyrosines to phenylalanines in the 

N-terminus of BepD, we re-amplified the entire plasmid pLU030 containing the 

sequence coding for BepD-BXBID for site-directed mutagenesis. The template DNA 

was eliminated by DpnI digestion which specifically targets the methylated DNA. The 

mutated plasmid generated in vitro is unmethylated; thus it was left undigested. To 

avoid any unexpected mutation generated in the plasmid, the mutated bepD-BXBID 

fragment was cut and inserted into the parental pPG100 vector through the NdeI 

ligation. The Y32F; Y72F; Y92F; Y114F; Y134F (BepD-BXBIDBhe YF) mutant 

was generated after sequential mutation rounds.  

Construction of in-frame deletions.  

In-frame deletion mutants of Bta LUB046 were generated by a two-step gene 

replacement procedure as described [19, 37]. All mutagenesis plasmids derived from 

the mutagenesis vector pTR1000 harbor a cassette with the flanking regions of the 

in-frame deletion in the genes of interest. This cassette was generated from two PCR 

fragments amplified from chromosomal DNA of Bta LUB046 as template by 

conventional cloning. 

pLU068 used for generating a Bhe ΔbepA mutant was constructed as follows. 

Oligonucleotide primers prLU299 and prLU318 amplified fragment 1 (1000 bp) and 

prLU319 and prLU302 amplified fragment 2 (1000 bp). Both fragments were 

combined by SOEing PCR with oligonucleotide primers prLU299 and prLU302, 

resulting in a fragment of 2 kb carrying an in-frame deletion in bepABta. By using 

flanking XbaI sites, the fragment was inserted into the corresponding site of pTR1000, 
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yielding pLU068. The use of pLU068 for gene replacement in Bta LUB046 resulted 

in the Bta ΔbepA mutant LUB291. 

pLU069 used for generating a Bhe ΔbepD mutant was constructed as follows. 

Oligonucleotide primers prLU063 and prLU320 amplified fragment 1 (750 bp) and 

prLU304 and prLU305 amplified fragment 2 (750 bp). Both fragments were 

combined by SOEing PCR with oligonucleotide primers prLU063 and prLU305, 

resulting in a fragment of 1.5 kb carrying an in-frame deletion in bepDBta. By using 

flanking XbaI sites, the fragment was inserted into the corresponding site of pTR1000, 

yielding pLU069. The use of pLU069 for gene replacement in Bta LUB046 resulted 

in the Bta ΔbepD mutant LUB293. Next, the use of pLU069 for gene replacement in 

Bta ΔbepA LUB291 resulted in the Bta ΔbepAD mutant LUB297. 

pLU072 used for generating a Bta ΔvirD4 in-frame mutant was constructed as follows. 

Oligonucleotide primers prLU059 and prLU060 amplified fragment 1 (753 bp) and 

prLU061 and prLU062 amplified fragment 2 (790 bp). Both fragments were 

combined by SOEing PCR with oligonucleotide primers prLU059 and prLU062, 

resulting in a fragment of 1.54 kb carrying an in-frame deletion in virD4Bta. By using 

flanking XbaI sites, the fragment was inserted into the corresponding site of pTR1000, 

yielding pLU072. The use of pLU072 for gene replacement in LUB046 resulted in the 

Bta ΔvirD4 mutant LUB163. 

Plasmids for doxycycline-inducible lentiviral expression. The lentiviral 

doxycycline-inducible vector pCLX-pTF-R1-DEST-R2-EBR65 was constructed with 

the TET-inducible promoter pTF [34]. The GFP fragment of 796 bp was amplified by 

PCR from pRO300 using prLU276 and prLU277. The GFP fragment was recombined 

to pDONR by gateway BP clonase reaction (Life Technologies), yielding an entry 

clone pLU073. The GFP fragment in pLU073 was recombined into the destination 

vector pCLX-pTF-R1-DEST-R2-EBR65 by gateway LR clonase reaction (Life 

Technologies), yielding pLU077. 

The vector expressing GFP-BepD-BXBIDBhe, pLU078, was constructed by two steps 

of PCR. First, the GFP fragment of 778 bp was amplified from pRO300 using 

prLU276 and prRO90. The BepD-BXBIDBhe fragment of 1113 bp was amplified from 

pLU030 using prLU199 and prLU278. Second, SOEing PCR amplifying an extended 
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GFP-BepD-BXBIDBhe fragment of 1876 bp using the primers prLU276 and prLU278. 

Two steps of gateway cloning brought this GFP-BepD-BXBIDBhe fragment first into 

pDONR, yielding an entry clone pLU074. Subsequently, second reaction into the 

destination vector resulted in the pLU078. 

The vector expressing GFP-BepD-BIDBhe, pLU079, was constructed by two steps of 

PCR. First, the GFP fragment of 778 bp was amplified from pRO300 using prLU276 

and prRO90. The BepD-BIDBhe fragment of 576 bp was amplified from pLU030 

using prLU197 and prLU278. Second, SOEing PCR amplifying an extended 

GFP-BepD-BIDBhe fragment of 1339 bp using the primers prLU276 and prLU278. 

Two steps of gateway cloning brought this GFP-BepD-BIDBhe fragment first into 

pDONR, yielding an entry clone pLU075. Subsequently, second reaction into the 

destination vector resulted in the pLU079. 

The vector expressing GFP-BepD-BXBIDBhe 5Ymuts (Y32/72/92/114/134F), pLU080, 

was constructed by two steps of PCR. First, the GFP fragment of 778 bp was 

amplified from pRO300 using prLU276 and prRO90. The BepD-BXBIDBhe 5Ymuts 

fragment of 1113 bp was amplified from pLU044 using prLU199 and prLU278. 

Second, SOEing PCR amplifying an extended GFP-BepD-BXBIDBhe fragment of 

1876 bp using the primers prLU276 and prLU278. Two steps of gateway cloning 

brought this GFP-BepD-BXBIDBhe 5Ymuts fragment first into pDONR, yielding an 

entry clone pLU076. Subsequently, second reaction into the destination vector 

resulted in the pLU080. 
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3.2.4 Results 

Bartonella inhibits a full maturation of infected BMDCs through 

T4SS dependent manner 

Based on the current infection cycle of Bartonella, DCs represent one of the candidate 

cell types for the “dermal niche” and may serve as transporters of bacterial cargo to 

the lymph nodes [18]. However, it is still not fully understood how Bartonella is 

capable of exploiting these professional antigen presenting cells for pathogenicity. To 

better understand the consequences of Bartonella infection on the immune functions 

of DCs, we used murine bone marrow derived DCs (BMDCs) by Flt3-ligand (Flt3L) 

stimulation as a model in vitro system. Flt3L-dependent differentiation of DCs allows 

the generation of plasmacytoid (pDCs) and conventional (cDCs) dendritic cells from 

bone marrow precursors [32]. An anti-CD11c staining confirmed that a mixed culture 

of BMDCs contained 70% CD11c
+
 differentiated DCs. Within the CD11c

+
 DCs, 60% 

of cells were cDCs (CD11b
+
) and 30% were pCDs (B220

+
). Furthermore, 60% of 

CD11c
+
 DCs were expressing MHCII, indicating that these BMDCs were partially 

activated during Flt3L differentiation (Fig. S1). Following experiments were 

performed using the described mixture of BMDCs. To further characterize the 

properties of Flt3L derived BMDCs, maturation patterns were monitored by the 

regulation of surface co-stimulatory (CD40, CD80, and CD86) and MHCII molecules 

using flow cytometry analysis (Fig. 1A). Expression levels of the maturation markers 

were presented as the geometric mean of the fluorescence intensities (GMFI). Flow 

cytometric analysis showed that BMDCs were able to fully maturate characterized by 

upregulation of MHCII, CD40, CD80, and CD86 on the cell surface upon E. coli LPS 

stimulation.  

To study the role of Bartonella type IV secretion system (T4SS) in DC maturation, we 

used B. birtlesii (Bbi), a murine-specific strain, to infect murine BMDCs [38]. At 24 

hours post-infection (hpi), infection of BMDCs with Bbi wild-type resulted in 

upregulation of all tested surface makers (MHCII, CD40, CD80, and CD86) 

compared to uninfected condition. Interestingly, Bbi wild-type caused significantly 

lower expression of MHCII, CD40, and CD86 than Bbi Tn-virD4, a T4SS secretion 

deficient strain. However, a converse effect was observed on the expression of CD80 
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(Fig. 1B). In addition, the culture medium of infected BMDCs was analyzed for 

detection of pro-inflammatory cytokines (TNF-α, IL-6, and IL-12p40) by ELISA. As 

compared to Bbi Tn-virD4, Bbi wild-type infection induced dramatically low TNF-α 

and slightly lowered IL-6 secretion by BMDCs. However, no difference in IL-12p40 

secretion was observed (Fig. 2). Thus, analysis of maturation makers and cytokines 

revealed that Bartonella infection leads to semi-maturation of DCs in a T4SS 

dependent manner.   

BepABhe and BepDBhe display immunomodulatory effects on DCs 

To further dissect which Bartonella effector protein (Bep) is involved in interfering 

with maturation of DCs, investigations with mutant strains of Bartonella are needed. 

However, due to the difficulty of genetic modification on Bbi, we had to switch to a 

well characterized strain - B. henselae (Bhe) [39]. First, experiments were performed 

to confirm that Bhe has a similar effect on DC maturation as Bbi. Indeed, compared to 

an effector-free mutant (Bhe ΔbepA-G), infection with Bhe wild-type induced lower 

MHCII, CD40, and CD86 but higher CD80 expression (Fig. 1A and 1B). The 

regulation of co-stimulatory molecules caused by Bhe infection was comparable to 

Bbi infection. Consistently, cytokine secretion (TNF-α and IL-6) was reduced upon 

Bhe wild-type infection. Even more, IL-12p40 suppression was observed with Bhe 

infection but not with Bbi infection (Fig. 2). All of the results from two different 

strains strongly indicate that Beps are capable of modulating the maturation state of 

infected BMDCs. 

To identify which Bep contributes to the semi-maturation phenotype of BMDCs and 

potential modulation of the host immune system, infections with 

effector-complemented strains expressing individual Beps (BepA-GBhe) in the 

substrate-free background (Bhe ΔbepA-G) were analyzed (Fig. S2A). Strikingly, two 

Beps, BepABhe and BepDBhe, interfered with full maturation of infected BMDCs. 

BepABhe mainly affected MHCII and CD40 repression, while BepDBhe inhibited 

MHCII and CD86 upregulation but induced CD80 expression (Fig. 3). Furthermore, 

both BepABhe and BepDBhe reduced IL-6 and TNF-α secretion. However, BepDBhe was 

more potent in TNF-α inhibition than BepABhe (Fig. 4). These differences of inhibition 

level imply that the two effectors might interfere differently with cellular signaling 

pathways. 
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The functions of BepABhe and BepDBhe are related to its BID domain 

and the N-terminal fragment, respectively 

As indicated earlier, both BepABhe and BepDBhe contain one BID domain as the 

intracellular delivery signal at the C-terminus. In Bartonella infection models, the 

BID domain was indispensable for Bep translocation into host cells. At the N-terminal 

region, BepABhe carries a FIC domain and BepDBhe several tandem-repeated 

tyrosine-containing peptide sequences [40, 41]. The tyrosine-phosphorylation sites of 

BepDBhe were characterized by the presence of the Glu-Pro-Ile-Tyr-Ala (EPIYA) 

closely related sequences (referred to EPIYA-related motifs) [42]. To narrow down 

which domain is responsible for the effects of BepABhe and BepDBhe, strains 

expressing only BID domain of BepABhe or BepDBhe were used to infect BMDCs (Fig. 

S2B). Interestingly, the results showed that the BID domain of BepABhe behaved 

comparably as the full length of BepABhe towards inhibition of the MHCII and CD40 

expression as well as secretion of the cytokine TNF-α, IL-6, and IL-12p40 (Fig. 5 and 

6). However, the BID domain of BepDBhe lost its ability to trigger the DC phenotypes 

as observed by the full length protein (Fig. 5 and 6). It implies that the N-terminal 

region carrying the tandem EPIYA-related motifs is essential to interfere with DC 

maturation. 

CD40 expression and inflammatory cytokine secretion are negatively 

regulated by BepABhe homologs 

Based on the significant similarity of BepA homologs from the Bartonella lineage 4 

species (Fig. S3), the functional conservation of BepA homologs from different 

Bartonella species (BepABtr from B. tribocorum, BepABgr from B. grahamii, 

BepA-BIDBbi from B. birtlesii, and BepA-BIDBta from B. taylorii) on BMDCs was 

analyzed. However, due to the difficulty in cloning, only the BID domains of BepA 

from B. birtlesii and B. taylorii were constructed instead of the full length (Fig. S2C). 

Although the BID domains of BepA homologs share more than 50% amino acids (aa) 

identity, the activity among BepA homologs was discordant. Indeed, BepABtr and 

BepA-BIDBbi interfered with the MHCII and CD40 expression as well as TNF-α and 

IL-6 secretion to a similar extend as BepABhe. However, BepA-BIDBta led to weaker 

inhibition of DC maturation and no significant activity was observed by BepABgr (Fig. 

7 and 8).  
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The effects of BepABhe homologs are in association with the 

acceleration of cellular cyclic AMP level 

According to previous studies, the BID domain of BepA protects infected human ECs 

against apoptotic stimuli by elevation of cellular cAMP levels [43, 44]. Moreover, an 

artificial increase of cAMP by forskolin in DCs leads to reduced antigen uptake, 

lower surface expression of MHCII and CD40 [45]. Taken these results together, we 

suspected that the phenotypic changes of DC maturation caused by BepA might be 

due to stimulating intracellular cAMP level. To address this question, we tested 

whether BepA homologs activated the cAMP-dependent CREM/CREB pathway in 

BMDCs by quantitative real-time PCR of the cAMP-inducible gene, crem. At 24 hpi, 

RNA samples of infected BMDCs were extracted to monitor the transciptional 

regulation of CD40 and crem. Strikingly, the repression of CD40 by BepA homologs 

significantly correlated with upregulation of crem (Fig. 9). Similar to BepABhe and 

BepA-BIDBhe, BepABtr and BepA-BIDBbi showed strong activities on CD40 inhibition 

in association with high level of crem gene activation. Consistently, BepABgr led to an 

increase of CD40 mRNA expression but no induction of crem gene. Besides, 

quantitative PCR analysis revealed that BepA also transcriptionally inhibited the 

genes of inflammatory cytokines (TNF-α, IL-6, and IL-12) regulation (Fig. S4). In 

summary, these findings indicate that BepA acts as a potent negative regulator in DC 

maturation in association with an acceleration of intracellular cAMP level. 

BepDBhe homologs possess conserved activities on inhibition of 

MHCII and CD86 expression, as well as pro-inflammatory cytokine 

secretion 

To study whether BepD homologs trigger similar phenotypes of interference with DC 

maturation, we first aligned the sequence of BepD homologs from the Bartonella 

lineage 4 species (e.g. B. tribocorum, B. grahamii, B. birtlesii and B. taylorii). 

Similarly as BepDBhe, BepDBtr contains duplicate fragments (refer to AX and BX) at 

its N-terminal region sharing 90% aa identity. Corresponding to BepD-BXBhe, the 

N-terminal fragments of BepD homologs showed pair-wise aa identity of 35-50% 

with conserved tyrosines in the putative phosphorylation motifs (Fig. S5). Various 

Bhe strains were constructed by heterologous complementation with BepDBhe 

homologs (BepDBtr, BepDBgr, BepDBbi, and BepDBta) in Bhe ΔbepA-G background 
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(Fig. S2C). At 24 hpi, FACS analysis showed that all tested BepDBhe homologs 

resulted in inhibition of MHCII and CD86 but induction of CD80 expression (Fig. 10). 

Furthermore, BepDBtr and BepDBta had a strong effect on TNF-α and IL-6 repression 

like BepDBhe. However, weak cytokine suppression was observed by BepDBgr and 

BepDBbi (Fig. 11). 

The functional EPIYA-related motifs are delineated in 

BepD-BXBIDBhe by tyrosine to phenylalanine exchanges 

Next, we sought to characterize which EPIYA-related motif in BepDBhe contributes to 

the impaired DC maturation phenotype. A truncated mutant (refer to BepD-BXBIDBhe) 

was generated to reduce the complexity of potential redundant effects by duplication 

of N-terminal fragments. The inhibition level of MHCII and CD86 in BMDCs was 

comparable between the full length of BepDBhe and BepD-BXBIDBhe (Fig. 12). 

However, compared to BepD-BXBIDBhe, the full length of BepDBhe gave an additive 

effect on TNF-α and IL-6 repression (Fig. 13). Nine putative tyrosine-phosphorylation 

motifs are located in the BepD-BXBhe. To assess which tyrosine is critical for the 

immunomodulatory activity of BepD-BXBIDBhe in DCs, we performed a systematic 

mutagenesis to exchange the tyrosines to phenylalanines (Y32F, Y52F, Y62F, Y72F, 

Y92F, Y114F, Y134F, Y155F, and Y176F) (Fig. S2D). Strikingly, flow cytometric 

analysis of DC maturation markers revealed that three tyrosine-substitution mutants 

(Y92F, Y114F, and Y134F) significantly attenuated the phenotype caused by 

BepD-BXBIDBhe (Fig. 12). Consistent with flow cytometric results, these mutants 

(Y92F, Y114F, and Y134F) induced high level of TNF-α and IL-6 secretion. Two 

mutants (Y32F and Y72F) slightly lost the activity on cytokine suppression (Fig. 13). 

Additionally, two multi-tyrosine substitution mutants (Y32/114/134F and 

Y32/72/92/114/134F) were constructed by sequential mutation cloning rounds. Indeed, 

these two mutants did not interfere with DC maturation state infection with the 

effector-free strain Bhe ΔbepA-G (Fig. 12 and 13). In the following experiments, this 

multi-tyrosine substitution mutant (Y32/72/92/114/134F) was used as a 

loss-of-function mutant (refer to BepD-BXBIDBhe 5Ymuts).  

Ectopic expression of BepD-BXBIDBhe actively suppresses JAWSII 

responses to E. coli LPS stimuli 

Based on the solid phenotypes of impaired DC maturation, we became interested in 
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understanding the underlying mechanisms of BepD. Preliminary results of 

quantitative real-time PCR revealed that BepD transcriptionally interfered with 

cytokine regulation of TNF-α, IL-6, and IL-12p40, but not clearly influenced MHCII, 

CD80 and CD86 regulation (Fig. S6). To further uncover the molecular bases of BepD, 

we set up an in vitro model using the JAWSII cell line, a DC line established from 

bone marrow cells of a p53-knockout C57BL/6 mouse [33]. Anti-CD11c staining 

confirmed that more than 90% cells are CD11c
+
. Moreover, JAWSII cells are 

identified as cDCs (CD11b
+
/B220

-
) (Fig. S7A). Upon E. coli LPS treatment, 

maturation patterns were monitored by the regulation of surface co-stimulatory (CD40, 

CD80, and CD86) and MHCII molecules to characterize DC properties of JAWSII 

cells. Compared to untreated JAWSII cells, E. coli LPS stimulated MHCII and CD86 

upregulation, but not CD40 and CD80 (Fig. S7B). Since our results showed that 

BepDBhe interfered with DC maturation, especially on MHCII and CD86 inhibition, 

JAWSII cells were suitable to be used for BepD study.  

A lentiviral transduction system was used to ectopically express GFP or GFP-fusion 

proteins (GFP-BepD-BXBIDBhe, GFP-BepD-BIDBhe, and GFP-BepD-BXBIDBhe 

5Ymuts) in JAWSII cells. Under the TET-inducible promoter pTF, these GFP and 

GFP-fusion proteins were easily induced by doxycycline treatment (Fig. S8). Upon 

challenging by E. coli LPS for 24 hours, only DOX-induced BepD-BXBIDBhe 

prevented the JAWSII cells from MHCII and CD86 upregulation. The BID domain 

alone and the tyrosine-substitution mutant (BepD-BXBIDBhe 5Ymuts) abolished the 

effect of BepD-BXBIDBhe (Fig 14). 

BepD-BXBIDBhe co-immunoprecipitates with SHP2 and STAT3 in a 

phosphorylation-dependent manner 

A previous study on the interactome of BepDBhe revealed that several SH2 

domain-containing signaling proteins (e.g. Csk and SHP-2) interact with BepDBhe 

upon phosphorylation of specific tyrosines within the motifs [40]. To further 

investigate the potential intracellular targets of BepDBhe, GFP nanobodies coupled to 

agarose beads were used to pull down specific interaction partners of 

GFP-BepD-BXBIDBhe from lysates of JAWSII cells. Cells expressing the BID domain 

of BepDBhe (GFP-BepD-BIDBhe) or the tyrosine-substitution mutant 

(GFP-BepD-BXBIDBhe 5Ymuts) were employed as the negative controls to 
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distinguish between specific interaction partners and nonspecific contaminants. Upon 

immunoprecipitation with the GFP nanobodies, staining with anti-GFP and 

anti-phosphotyrosine antibodies confirmed that only BepD-BXBIDBhe as “wild-type” 

was tyrosine-phosphorylated by the endogenous levels of tyrosine kinases in the 

JAWSII cells. However, BepD-BIDBhe and BepD-BXBIDBhe 5Ymuts did not show any 

detectable tyrosine-phosphorylation (Fig. 15).  

A quantitative interactomic screen showed that 12 candidates significantly interacted 

with BepD-BXBIDBhe (Fig. 16A). Significant changes of the BepD-BXBIDBhe versus 

BepD-BXBIDBhe 5Ymuts were defined by a q-value cutoff of < 0.01. The interactome 

was graphically illustrated based on the STRING database. Only proteins with at least 

one connection in STRING were represented. Data showed a complex network with 

several distinct functional modules (Fig. 16B). The top three potential interaction 

partners of BepD-BXBIDBhe were PTPN11 (SHP-2, a tyrosine phosphatase), STAT3 

(a transcription factor), and Abl (a tyrosine kinase) (Fig. 16C). To obtain a 

systems-level overview of host signaling with BepD expression, we further analyzed 

the global dynamics of protein phosphorylation using a phosphoproteomics strategy 

combining with phosphopeptide enrichment [46] (Fig. 17A). For simplification, 27 

proteins were identified undergoing a significant change of phosphorylation in 

dependence of BepD-BXBIDBhe, 19 proteins with increase and 8 proteins with 

decrease in phosphorylation (Fig. 17B and 17C). Significant phosphorylation changes 

were defined by a q-value cutoff of < 0.01. Interestingly, the top candidate was STAT3 

undergoing to be hyper-phosphorylated.  

To examine the interaction between potential partners (e.g., SHP2 and STAT3) and 

BepD-BXBIDBhe, upon immunoprecipitation with the GFP nanobodies, we probed the 

precipitate with anti-SHP2 and anti-STAT3 antibodies. In contrast to the 

tyrosine-substitution mutant (BepD-BXBIDBhe 5Ymuts), SHP-2 and STAT3 

specifically co-immunoprecipitated with BepD-BXBIDBhe, demonstrating that 

Y32/72/92/114/134 mediate the interaction of SHP2 and STAT3 to BepD-BXBIDBhe 

in dependence of its tyrosine-phosphorylation (Fig 18). Strikingly, staining with an 

anti-phosphoSTAT3 (Y705) antibody showed that the pulled down STAT3 by 

BepD-BXBIDBhe was in a activate form (Fig. 18). Together with the interactomic 

screen data, we suspected that BepD might provide a platform to recruit STAT3 and 
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tyrosine kinases (likely Abl), to subsequently activate STAT3 signaling.  

Phosphorylation of STAT3 strongly correlates with semi-maturation 

phenotype of BMDCs 

In order to determine whether inhibition of DC maturation by BepD relates with 

STAT3 activation, various Bhe strains expressing BepDBhe homologs or 

BepD-BXBIDBhe tyrosine-substitution mutants were used for infection of BMDCs. At 

24 hpi, the cell lysates of infected BMDCs were analyzed by western blotting using 

anti-STAT3 and anti-phosphoSTAT3 (Y705) antibodies. STAT3 activation was 

quantified by the ratio of phospho-STAT3 to total STAT3. Interestingly, only BepDBhe 

led to hyper-phosphorylation of STAT3 but not BepEBhe and BepFBhe even though they 

also contain EPIYA-related motifs, indicating that STAT3 activation is specific in 

response to BepDBhe. Furthermore, BepDBhe homologs (BepDBtr, BepDBgr, BepDBbi, 

and BepDBta) shared similar properties like BepDBhe to enhance cellular 

phospho-STAT3 level (Fig. 19). Consistently, analyses of BepD-BXBIDBhe 

tyrosine-substitution mutants showed that three individual-tyrosine substitution 

mutants (Y92F, Y114F, and Y134F) significantly diminished the upregulation of 

phospho-STAT3. A multi-tyrosine substitution mutant (Y32/72/92/114/134F) which 

was proved to no longer inhibit DC maturation failed in STAT3 activation (Fig. 20). 

Overall, quantification of STAT3 activation revealed that the level of phospho-STAT3 

strongly correlated with phenotypes of impaired DC maturation caused by BepD. 

The prolonged STAT3 activation is known to be essential for the anti-inflammatory 

signals mediated by IL-10 and subsequently inhibits LPS-triggered signaling [47]. To 

determine whether STAT3 phosphorylation caused by BepD is sustained, we 

performed a time course analysis. BMDCs were infected with strains expressing 

BepD-BXBIDBhe or BepD-BXBIDBhe 5Ymuts. Cell lysates were collected over a time 

course (1 h, 3 h, 6 h, 9 h, 12 h, and 24 h post-infection). Western blotting showed that 

compared to BepD-BXBIDBhe 5Ymuts, BepD-BXBIDBhe clearly enhanced STAT3 

phosphorylation starting at 9 hpi. Furthermore, the accumulation of phsopho-STAT3 

expression was sustained till 24 hpi (Fig. 21). 
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A murine model with B. taylorii intradermal infection is established 

for functional analysis of Beps in vivo 

Next, we sought to explore the role of BepD in an in vivo establishment of Bartonella 

infection. However, Bhe causes intraerythrocytic bacteremia as a hallmark of 

infection in its feline natural reservoir host only, which for ethical reasons is not an 

accessible experimental model. To establish an optimal murine model for functional 

analysis of Beps in vivo, B. taylorii (Bta) a murine-specific strain was introduced. 

Based on its high conjugation efficiency, this strain was able to uptake the suicide 

mutagenesis plasmid for genetic manipulations. To gain more information about the 

VirB/D4 T4SS in Bta, we sequenced the respective genomic region including the virB 

operon, virD4 and the bep genes. For sequencing purposes, primers for creating 

overlapping PCR fragments were deduced from the published Bhe strain Houston-1 

genome (Accession No. NC_005956.1) [48] and fragments were subsequently 

sequenced. Annotation of the Bta genomic fragment revealed that open reading 

frames encoding for VirB2-11 and VirD4 show high similarities to Bhe. However, 

only five effector proteins were annotated in Bta instead of seven Beps (BepA-G) in 

Bhe (Fig. S9). Among them, two Beps of Bta, BepDBta and BepEBta contained putative 

tyrosine-phosphorylation motifs as homologs of BepDBhe (identity of the N-terminal 

fragment: 53%) and BepEBhe (identity of the N-terminal fragment: 24%), respectively. 

The in vitro data revealed that BepDBta but not BepEBta showed the 

immunomodulatory activity which was comparable to BepDBhe in BMDCs. Thus, we 

reasoned that Bta could be used as an appropriate species to study BepD functions in 

vivo.  

Mutations associated with streptomycin resistance have been identified in the genes 

encoding 16S rRNA (rrs) and ribosomal protein S12 (rpsL) [49]. For in-frame 

deletion mutagenesis, a spontaneous streptomycin-resistant (Sm
R
) variant of Bta was 

selected serving as the “wild-type” in which rpsL changed with codon 43 mutation 

(AAGAGG; K43R). Recently, an intradermal (i.d.) infection model of B. birtlesii 

(Bbi) has been introduced by Marignac et al [50], where the bacteria are inoculated in 

the derma on the ear pinnae of mice. This model likely reflects the natural route of 

infection, mimicking the infectious bacteria transmitted by the arthropod vector. 

Through i.d. infection, the Sm
R
 Bta wild-type was examined with different doses 

inoculum (1 × 10
7
, 1 × 10

5
, or 1 × 10

3
 CFU/mouse) in Balb/c mice. Bacteremia was 
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monitored over time as CFU per ml of blood. Five out of five (100%) mice showed 

bacteremia with 1 × 10
7
 CFU inoculum, four out of five (80%) with 1 × 10

5
 CFU 

inoculum and four out of five (80%) with 1 × 10
3
 CFU inoculum. The course of 

bacteremia revealed that Bta tended to develop higher bacteremia and delay of 

clearance with lower doses inoculum. However, the bacteremia establishment became 

lesser synchronized with lower doses inoculum (Fig. 22). It might reflect that high 

doses inoculum of bacteria may prime an efficient immune response for bacterial 

elimination. Thus, instead of 1 × 10
7
 CFU/mouse which was used in most pervious 

Bartonella studies, bacterial inoculum of 1 × 10
5
 CFU was used for i.d. infection in 

the following mice experiments. 

Through intradermal infection, Bta ΔbepAD seems to lose the fitness 

of bacteremia development 

To study the immnuomodulatory effect of Bartonella infection in vivo, several mutant 

strains derived from Sm
R
 Bta wild-type were made with in-frame deletion of virD4, 

bepA, or bepD (referred to Bta ΔvirD4, Bta ΔbepA, and Bta ΔbepD, respectively). 

Both BepABta and BepDBta showed inhibitory effects on DC maturation. To reduce 

their redundant functions, a mutant strain with deletions of both genes bepA and bepD 

was constructed (referred to Bta ΔbepAD). To analyze the relevance of VirD4, BepA, 

and BepD in bacteremia development, mice were infected with Bta wild-type, Bta 

ΔvirD4, Bta ΔbepA, Bta ΔbepD, or Bta ΔbepAD (1x 10
5
 CFU/mouse; five mice per 

group). Blood samples were collected from each mouse until up to 8 weeks (Fig. 23). 

Infection with Bta ΔvirD4 completely lost the ability to establish the bacteremia in 

mice, indicating that the VirB/D4 T4SS is an indispensable virulence factor for Bta 

pathogenicity. Except Bta ΔvirD4, all of mice infected with Bta wild-type, Bta ΔbepA, 

Bta ΔbepD, or Bta ΔbepAD were bacteremic. The highest peak of each bacteremia 

from all the groups was reached at 14 dpi (Fig. 24). In the previous experiment, the 

infection with 1 × 10
5
 CFU inoculum of Bta wild-type resulted in 100% bacteremic 

mice with similar kinetics of bacteremia (reaching to 1 × 10
6
 CFU/ml blood) (Fig 22). 

However, in this experiment, four out of five mice infected with Bta wild-type 

developed expected course of bacteremia but one was only reaching to 5 × 10
3
 

CFU/ml blood. In the groups inoculated with mutants Bta ΔbepA, Bta ΔbepD, or Bta 

ΔbepAD, the bacteremia development showed a trend towards lower peak and shorter 

duration. More replicates are needed to gain statistically significance of the difference 
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between wild-type and mutant infections. 
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3.2.5 Discussion  

Impaired DC maturation by Bartonella infection 

In the arms race of host-microbe coevolution, successful microbial pathogens have 

evolved ingenious ways to evade, neutralize, or subvert host immunity. Interference 

with DC maturation is an example of a powerful mechanism used by various bacterial 

pathogens for host immune evasion. Since DCs are one of the potential vehicles for 

Bartonella transport in the host organism, we sought to examine the interaction 

between Bartonella and professional antigen-presenting DCs. Our data disclose 

immunosuppressive properties of Bartonella virulence factors, which are utilized to 

interfere with DC maturation. In response to Bartonella infection, murine BMDCs 

failed to fully mature and remained in a semi-developed stage. This impaired DC 

maturation was characterized by reduced surface expression of the MHCII complex 

and the co-stimulatory receptors CD40 and CD86, as well as strongly diminished 

secretion of the pro-inflammatory cytokines TNF-α and IL-6. Reminiscent of what is 

observed in Bartonella, also H. pylori-experienced DCs reach only a semi-mature 

state. These tolerogenic DCs secrete IL-18 and efficiently induce Foxp3
+
 Treg 

response in favor of H. pylori persistence [51]. In accordance with this, our findings 

support the idea that by induction of semi-maturation and thus tolerogenic properties 

of DCs, Bartonella may subvert the host immune response to develop and sustain a 

chronic bartonellosis.  

The impaired maturation of murine BMDCs was observed with both Bbi (a 

murine-specific strain) and Bhe (a feline-specific strain) infections in this study. This 

is contradictory to a previous publication, in which Bhe infection of human 

monocyte-derived DCs showed classical phenotypic changes of Bhe-driven DC 

activation including the increase of surface expression of co-stimulatory molecules 

(CD83 and CD86) and MHCII, as well as the release of cytokines (e.g., TNF-α, IL-6, 

IL-10, and CXCL13) [30]. These contradicting outcomes may be due to different host 

species, although Bhe infection in either murine or human DCs is heterogonous. 

Further, the experimental conditions diverge. Different from the RPMI medium used 

in [30], we took M199 medium for culturing bartonellae and for performing the 

bacterial infection in BMDCs. The latter may be a preferable condition to study the 
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function of T4SS because it was proven that regulation of VirB/D4 T4SS-related 

genes (e.g., virB and bepD), which is required for Bartonella virulence in DCs, is 

prominently induced in M199 medium [52].  

cAMP in Bartonella pathogenicity 

Interestingly, the induction of the phenotypic changes observed in DCs upon 

Bartonella infection could be attributed to two effector proteins, BepA and BepD. In 

particular, the BID domain of BepA strongly affected the downregulation of CD40 

expression and TNF-α production. In fact, our findings in this study are not the first 

ones to describe a role for BepA in Bartonella pathogenicity. It was shown that the 

BepA-mediated elevation of cAMP levels is linked to reduced caspase-3 activation 

and prevents infected ECs from apoptosis [24]. A recent publication of our lab 

demonstrated that the enhanced cAMP production is due to a BepA interaction with 

the host cell adenylyl cyclase Gαs [53]. The cAMP signaling has been extensively 

studied in context of either inhibiting or stimulating apoptosis [54]. These adverse 

phenotypes are attributed to the antagonistic interaction of protein kinase A (PKA) 

and Exchange protein activated by cAMP (Epac-1), a guanine nucleotide exchange 

factor (GEF) for Ras-like small GTPases downstream of cAMP signaling [55, 56]. 

Remarkably, BepABhe-mediated anti-apoptosis was cell type dependent. While BepA 

inhibited apoptosis in human umbilical vein ECs (HUVECs), it acted 

pro-apoptotically in the endothelial hybrid cell line (Ea.hy926) (Dr. A. Pulliainen, data 

unpublished). Both in vitro phenotypes of BepA described in different cell types were 

closely related to its BID domain and associated with cAMP elevation, likely through 

the same molecular mechanism. The cAMP signaling is known to influence a plethora 

of cellular functions based on its broad modulatory capabilities. We thus investigated 

the involvement of cAMP in the DC phenotype. The activation of cAMP-dependent 

CREM/CREB pathway in BMDCs was determined by quantitative real-time PCR of 

the cAMP-inducible gene, crem. It showed that this effect of BepA on BMDCs was 

associated with induction of intracellular cAMP levels. 

The inhibitory effects of BepA on DC maturation are in line with the general concept 

of cellular cAMP as a negative regulator of immune stimulation in phagocytes (e.g., 

macrophages and DCs). Bartonella BepA provides an intriguing example of cAMP 

level control by one single bacterial effector leading to a multifaceted manipulation in 
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different host cell types. Besides Bartonella, several other pathogenic bacteria (e.g., B. 

pertussis and Vibrio cholerae) have evolved mechanisms to exploit host cell cAMP 

signaling by virulence factors, such as pertussis toxin (PT) and AC toxin (CyaA) of B. 

pertussis, and the cholera toxin (CT) of V. cholerae. Though by distinct mechanisms, 

these toxins ultimately lead to a sustained increase of intracellular cAMP in target 

cells. Moreover, they share similar negative effects on phagocyte activation, including 

phagocytosis, cytokine production, chemotaxis, and superoxide production [57].  

In addition to BepABhe, we analyzed the effect of several BepA homologs on DC 

maturation: BepABtr, BepABgr, BepA-BIDBbi, and BepA-BIDBta. Although BepA 

homologs share high sequence identity, the functional readouts of them were not 

congruent. Particularly, BepABgr showed hardly any immunosuppressive activity in 

BMDCs. Additionally, it is interesting to note that BepABtr displayed opposing actions 

in different cells. A previous publication of our lab revealed that BepABtr failed to 

inhibit apoptosis of human ECs. However, BepABtr in this study strongly repressed 

CD40 expression and TNF-α production in BMDCs. Further investigations are needed 

to elucidate a potential cell type or host species specificity of BepA. 

Impact of BepD and STAT3 interaction of DC function  

Tyrosine-phosphorylation of proteins plays a central role during signal transduction in 

eukaryotes. Recent progress in the description of several bacterial effectors has shown 

that tyrosine-phosphorylation is a common feature on these proteins, which 

capacitates them for recruiting and binding host cellular interaction partners, thereby 

manipulating signaling pathways. To date, nine effectors displaying phosphorylated 

EPIYA-motifs have been identified in various bacteria, including Bartonella BepD-F 

[58]. Although these bacterial effectors are capable of undergoing versatile 

interactions with mammalian SH2 domain-containing proteins, only a few of them 

(e.g., CagA of H. pylori and Tir of enteropathogenic E. coli (EPEC)) have been 

proved so far to display pathogenic functions upon delivery into mammalian host cells. 

Most previous evidence relates to actin-cytoskeletal rearrangements influenced by 

EPIYA effectors. CagA for instance was found to be involved in cell scattering and Tir 

in pedestal formation [59, 60]. Recently, a second function of Tir in association with 

SHP-1 and SHP-2 has been discovered in the anti-inflammatory response [61, 62]. 

Here we demonstrate that another bacterial EPIYA effector, Bartonella BepD, 
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displays immunomodulatory properties similarly to EPEC Tir, but likely through a 

distinct mechanism. The phenotypic changes of infected DCs triggered by Bartonella 

BepD were represented by a downregulation of surface MHCII and CD86 expression, 

as well as by the repression of TNF-α and IL-6 production. Strikingly, analyses of 

tyrosine-substitution mutants showed that the effects of BepD are strongly linked to 

its EPIYA-related motifs (in particular Y92, Y114, and Y134). A loss-of-function 

mutant of BepD (Y32/72/92/114/134F) did not show any detectable 

tyrosine-phosphorylation and consequently no effect on DC maturation. Taken 

together, these findings indicate that the phosphorylation of certain EPIYA-related 

motifs is critical for the immunosuppressive activity of BepD. In fact, BepD was 

highly tyrosine-phosphorylated by endogenous tyrosine kinases in JAWSII cells. 

However, phosphorylation of BepD in HeLa cells was only observed by pre-treatment 

with vanadate to inhibit protein tyrosine phosphatases (data not shown), indicating 

that phosphorylation-based interaction of BepD with host factors may be cell 

type-specific. 

E. coli LPS is a well-known TLR4 agonist to induce massive inflammation [3]. 

Interestingly, ectopic expression of BepD in JAWSII cells prevented DC activation by 

E. coli LPS stimulation, strongly suggesting antagonistic effects of BepD on 

LPS-dependent TLR signaling. Based on a quantitative proteomic screen in JAWSII 

cells, several SH2 domain-containing eukaryotic interaction partners were identified 

for differentially tyrosine-phosphorylated forms of BepD. Among them were SHP-2 

and STAT3 whose interaction with a GFP-fusion of BepD-BXBIDBhe could be 

verified by co-immunopercipitation. SHP-2, as described above, is exploited by EPEC 

Tir as one of the interaction partners for its anti-inflammatory activity. The 

phosphorylation of Tir promotes the formation of the Tir/SHP-2/TRAF6 complex to 

prevent the ubiquitination of TRAF6, and that subsequently inhibits the MAP kinase 

and NF-κB pathways [62]. This molecular basis of Tir provides a potential working 

model for BepD signaling. Further experiments are needed to seek for evidence of 

such a mechanism utilized by BepD.  

Besides the potential mechanism associated with SHP-2, we found another intriguing 

pathway to be connected with the immunomodulatory activity of BepD. A pull down 

assay with a GFP-fusion of BepD-BXBIDBhe showed on an immunoblot a 
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hyper-phosphorylated form of STAT3. The STAT3 activation strongly correlated with 

the impaired DC maturation phenotypes caused by infection with various Bartonella 

strains. It suggests that STAT3 signaling represents a key pathway hijacked by BepD 

in DCs. Although BepE and BepF, themselves containing several EPIYA-related 

motifs, were also tyrosine-phosphorylated in host cells [40], STAT3 activation was 

specific for BepD. Based on the proteomic data, we propose that BepD may serve as a 

platform to recruit host kinases (such as Abl and c-Src) and STAT3, thereby preparing 

for a subsequent activation of STAT3 signaling. 

Numerous studies illustrate the important role of STAT3 in DC differentiation and 

function in cancer [63]. STAT3 signaling has been well-studied in connection with 

tumor-related factors, such as the pro-inflammatory cytokine IL-6 and the 

anti-inflammatory cytokine IL-10. Although IL-6 and IL-10 generate nearly opposing 

cellular responses, both cytokines activate STAT3 signaling and subsequently induce 

SOCS3 expression. The divergent actions of these two cytokines are based on the 

kinetics of STAT3 activation. In contrast to transient STAT3 activation by IL-6, 

stimulated IL-10 signaling leads to sustained STAT3 activation and results in an 

anti-inflammatory response [64, 65]. Similar to the effect of IL-10, also Bartonella 

BepD leads to a prolonged STAT3 phosphorylation and activation, which may explain 

the anti-inflammatory properties of BepD. Although H. pylori was described to induce 

phosphorylation of STAT3 in gastric cancer cells [66], a recent publication revealed 

that the STAT3 signaling is indirectly activated by the H. pylori effector protein CagA. 

In other words, CagA-secreting H. pylori induces a predominant secretion of IL-10, 

what in turn leads to enhanced STAT3 phosphorylation as required for induction of 

tolerogenic DCs [67]. These immunosuppressive properties of IL-10 are markedly 

exploited by many bacterial pathogens (e.g., B. pertussis and M. tuberculosis) with a 

stealth-infection strategy to shut off the host inflammatory responses [68, 69]. In 

contrast to the manipulation of IL-10 production, our findings shed light on a 

previously unknown mechanism, in which Bartonella BepD acts as a signaling hub 

and recruits host kinases together with STAT3. Subsequently, prolonged STAT3 

phosphorylation is triggered and eventually results in inhibition of DC maturation. 

Relevance of Beps’ function in vivo 

The phenotypes of BepA and BepD were majorly described in the in vitro model. To 
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translate our findings and put them into an in vivo context, we analyzed the 

bacteremia as a hallmark of Bartonella infection in mice. A minor impairment of 

bacteremia development was observed after infection with Bta strains harboring 

deletions of bepA or/and bepD, indicating that BepA and BepD contribute to the 

fitness of bacteremia. It is important to take into account that the inoculum of 1 x10
5
 

CFU/mouse used for i.d. infection may be still much higher than the dose occurring in 

natural infections. With high doses inoculum of bacteria, we might saturate our in vivo 

system, likely by priming an efficient immune response. Based on the results of 

bacterial inoculum titrations, we concluded that 80% mice infected with Bta wild-type 

1 × 10
3
 CFU/mouse led to stable bacteremia, yet its development was less 

synchronized. To sensitize our murine model, lower doses of inoculum (<10
3
 

CFU/mouse) will be tested in the next experiment.  

Although Bartonella harbors an atypical LPS with low endotoxic activities, which 

enables these bacteria to be less noticeable for host immune recognition, it is 

interesting that Bartonella develops two effector proteins, BepA and BepD, to 

interfere with DC maturation and particularly with the production of 

pro-inflammatory cytokines. Thus, we speculate that BepA and BepD may contribute 

to establishing chronic infection by evading from host immune surveillance within 

specific tissues. Further investigations are needed to uncover the local inflammation 

of Bartonella infection. 

Perspective in immune-attenuation by Bartonella infection 

In summary, our findings demonstrate that two immnunomodulatory Bartonella 

effectors, BepA and BepD, both have a role in generating a “semi-mature” state of 

DCs through independent mechanisms. BepA may take advantage of the regulation of 

host cAMP levels to repress upregulation of surface CD40 expression and TNF-α 

production. BepD instead may work as a signaling hub for triggering prolonged 

STAT3 activation to suppress certain consequences of an immune response, in 

particular the inhibition of MHCII and CD86 expression and the secretion of 

pro-inflammatory cytokines. Overall, these “semi-mature” DCs may display 

tolerogenic properties to convert the T cell response into Treg immunotolerance 

reflecting part of the Bartonella stealth-infection strategy.  
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3.2.6 Figure Legends 

Figure 1. DC maturation is impaired by Bartonella infection in a VirB/D4 T4SS 

dependent manner. (A) E. Coli LPS treatment (1 μg/ml) triggered DC maturation as 

the positive control. The BMDCs were infected with Bhe wild-type or Bhe ΔbepA-G 

(MOI = 25). After 24 hpi, maturation patterns were monitored by the regulation of 

surface co-stimulatory (CD40, CD80, and CD86) and MHCII molecules using flow 

cytometry analysis. Expression levels of the maturation markers were presented as the 

geometric mean of the fluorescence intensities (GMFI). One representative histogram 

image is displayed from three independent experiments. (B) The BMDCs were 

infected with Bbi wild-type, Bbi Tn-virD4, Bhe wild-type or Bhe ΔbepA-G (MOI = 25) 

for 24 h. Expression levels of MHCII, CD40, CD80, and CD86 were presented as 

relative GMFI. All data were normalized to infection with Bhe ΔbepA-G as 1 and 

showed as the mean ± SEM from three independent experiments. Statistical 

significance was determined using Student's t-test. P<0.05 was considered statistically 

significant. 

Figure 2. Pro-inflammatory cytokine secretion is diminished by Bartonella 

infection in a VirB/D4 T4SS dependent manner. The BMDCs were infected with 

Bbi wild-type, Bbi Tn-virD4, Bhe wild-type or Bhe ΔbepA-G (MOI = 25) for 24 h. 

Culture media were collected for cytokine detection (TNF-α, IL-6, and IL-12p40). 

The data showed as the mean ± SEM from three independent experiments. Statistical 

significance was determined using Student's t-test. P<0.05 was considered statistically 

significant. Data from one representative experiment (n = 3) are presented. 

Figure 3. BepABhe and BepDBhe inhibit upregulation of surface receptors of 

infected BMDCs. BMDCs were infected with Bhe ΔbepA-G mutant complemented 

with the indicated Bep-expression plasmids at MOI = 25 for 24 h. The maturation 

markers were monitored by the surface expression of MHCII, CD40, CD80, and 

CD86 using flow cytometry analysis. Expression levels of the maturation markers 

were presented as relative GMFI. All data were normalized to infection with Bhe 

ΔbepA-G as 1 and showed as the mean ± SEM from three independent experiments. 

Statistical significance was determined using Student's t-test. Data marked by an 

asterisk differ statistically significantly (P<0.05) from infection with Bhe ΔbepA-G. 
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Figure 4. Repression of pro-inflammatory cytokine secretion is assigned to 

BepABhe and BepDBhe. BMDCs were infected with Bhe ΔbepA-G mutant 

complemented with the indicated Bep-expression plasmids at MOI = 25. At 24 hpi, 

Culture media were collected for cytokine detection (TNF-α and IL-6) by ELISA. The 

data showed as the mean ± SEM from three independent experiments. Statistical 

significance was determined using Student's t-test. Data marked by an asterisk differ 

statistically significantly (P<0.05) from infection with Bhe ΔbepA-G. Data from one 

representative experiment (n = 3) are presented. 

Figure 5. The functions of BepABhe and BepDBhe on inhibition of DC mutation 

receptors are narrowed down to its BID domain and the N-terminal fragment, 

respectively. BMDCs were infected with Bhe ΔbepA-G mutant complemented with 

the indicated Bep-expression plasmids at MOI = 25 for 24 h. The surface expression 

of MHCII, CD40, CD80, and CD86 was monitored by flow cytometry analysis. 

Expression levels of the maturation markers were presented as relative GMFI. All 

data were normalized to infection with Bhe ΔbepA-G as 1 and showed as the mean ± 

SEM from three independent experiments. Statistical significance was determined 

using Student's t-test. Data marked by an asterisk differ statistically significantly 

(P<0.05) from infection with Bhe ΔbepA-G. 

Figure 6. The effects of BepABhe and BepDBhe on repression of pro-inflammatory 

cytokine secretion are related to its BID domain and the N-terminal fragment, 

respectively. BMDCs were infected with Bhe ΔbepA-G mutant complemented with 

the indicated Bep-expression plasmids at MOI = 25. After 24 hpi, Culture media were 

collected for cytokine detection (TNF-α and IL-6) by ELISA. The data showed as the 

mean ± SEM from three independent experiments. Statistical significance was 

determined using Student's t-test. Data marked by an asterisk differ statistically 

significantly (P<0.05) from infection with Bhe ΔbepA-G. Data from one 

representative experiment (n = 3) are presented. 

Figure 7. Expression of BepABhe homologs in the Bhe ΔbepA-G inhibits DC 

maturation receptors. BMDCs were infected with Bhe ΔbepA-G mutant 

complemented with the indicated Bep-expression plasmids at MOI = 25 for 24 h. The 

surface expression of MHCII, CD40, CD80, and CD86 was monitored by flow 

cytometry analysis. Expression levels of the maturation markers were presented as 
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relative GMFI. All data were normalized to infection with Bhe ΔbepA-G as 1 and 

showed as the mean ± SEM from three independent experiments. Statistical 

significance was determined using Student's t-test. Data marked by an asterisk differ 

statistically significantly (P<0.05) from infection with Bhe ΔbepA-G. 

Figure 8. Expression of BepABhe homologs in the Bhe ΔbepA-G represses 

pro-inflammatory cytokine secretion. BMDCs were infected with Bhe ΔbepA-G 

mutant complemented with the indicated Bep-expression plasmids at MOI = 25. After 

24 hpi, Culture media were collected for cytokine detection (TNF-α and IL-6) by 

ELISA. The data showed as the mean ± SEM from three independent experiments. 

Statistical significance was determined using Student's t-test. Data marked by an 

asterisk differ statistically significantly (P<0.05) from infection with Bhe ΔbepA-G. 

Data from one representative experiment (n = 3) are presented. 

Figure 9. BepA homologs mediate a downregulation of CD40 gene and an 

upregulation of cAMP response gene. BMDCs were infected with Bhe ΔbepA-G 

mutant complemented with the indicated Bep-expression plasmids at MOI = 25. After 

24 hpi, regulations of CD40 and the cAMP-responsive gene crem were determined by 

quantitative real-time PCR. Results were normalized to expression of the 

housekeeping gene GAPDH. The bars represent the mean of triplicate samples ± SEM. 

Statistical significance was determined using Student's t-test. Data marked by an 

asterisk differ statistically significantly (P<0.05) from infection with Bhe ΔbepA-G. 

Data from one representative experiment (n = 3) are presented. 

Figure 10. Expression of BepDBhe homologs in the Bhe ΔbepA-G inhibits DC 

maturation receptors. BMDCs were infected with Bhe ΔbepA-G mutant 

complemented with the indicated Bep-expression plasmids at MOI = 25 for 24 h. The 

surface expression of MHCII, CD40, CD80, and CD86 was monitored by flow 

cytometry analysis. Expression levels of the maturation markers were presented as 

relative GMFI. All data were normalized to infection with Bhe ΔbepA-G as 1 and 

showed as the mean ± SEM from three independent experiments. Statistical 

significance was determined using Student's t-test. Data marked by an asterisk differ 

statistically significantly (P<0.05) from infection with Bhe ΔbepA-G. 

Figure 11. Expression of BepDBhe homologs in the Bhe ΔbepA-G represses 
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pro-inflammatory cytokine secretion. BMDCs were infected with Bhe ΔbepA-G 

mutant complemented with the indicated Bep-expression plasmids at MOI = 25. At 24 

hpi, culture media were collected for cytokine detection (TNF-α and IL-6) by ELISA. 

The data showed as the mean ± SEM from three independent experiments. Statistical 

significance was determined using Student's t-test. Data marked by an asterisk differ 

statistically significantly (P<0.05) from infection with Bhe ΔbepA-G. Data from one 

representative experiment (n = 3) are presented. 

Figure 12. The functional tyrosine residue in BepD-BXBIDBhe is delineated for 

the inhibition of DC maturation receptors. BMDCs were infected with Bhe 

ΔbepA-G mutant complemented with the indicated tyrosine substitution mutants 

derived from BepD-BXBIDBhe at MOI = 25 for 24 h. The DC surface expression of 

MHCII, CD40, CD80, and CD86 was monitored by flow cytometry analysis. 

Expression levels of the maturation markers were presented as relative GMFI. All 

data were normalized to infection with Bhe ΔbepA-G as 1 and showed as the mean ± 

SEM from three independent experiments. Statistical significance was determined 

using Student's t-test. Data marked by an asterisk differ statistically significantly 

(P<0.05) from infection with the strain expressing BepD-BXBIDBhe. 

Figure 13. The functional tyrosine residue in BepD-BXBIDBhe is delineated for 

the repression of pro-inflammatory cytokine secretion. BMDCs were infected with 

Bhe ΔbepA-G mutant complemented with the indicated tyrosine substitution mutants 

derived from BepD-BXBIDBhe at MOI = 25. At 24 hpi, culture media were collected 

for cytokine detection (TNF-α and IL-6) by ELISA. The data showed as the mean ± 

SEM from three independent experiments. Statistical significance was determined 

using Student's t-test. Data marked by an asterisk differ statistically significantly 

(P<0.05) from infection with the strain expressing BepD-BXBIDBhe. Data from one 

representative experiment (n = 3) are presented. 

Figure 14. Ectopic expression of BepD-BXBIDBhe actively suppresses JAWSII 

responses to E. coli LPS stimuli. The GFP or GFP-fusion protein 

(GFP-BepD-BXBIDBhe, GFP-BepD-BIDBhe, and GFP-BepD-BXBIDBhe 5Ymuts) was 

ectopically expressed in JAWSII cells using the lentiviral transduction system. Under 

the TET-inducible promoter pTF, the GFP or GFP-fusion proteins was induced by 

doxycycline treatment (1 μg/ml) for 24 h. Upon challenging with E. Coli LPS (0.1 
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μg/ml or 1 μg/ml) for 24 h, the DC surface expression of MHCII and CD86 was 

monitored by flow cytometry analysis. Expression levels of the maturation markers 

were presented as relative GMFI. All data were normalized to JAWSII cells without 

treatments as 1 and showed as the mean ± SEM from three independent experiments. 

Statistical significance was determined using Student's t-test. Data marked by an 

asterisk differ statistically significantly (P<0.05) from each constructed cell line 

without doxycycline and E. coli LPS treatments. 

Figure 15. Ectopically expressed BepD-BXBIDBhe is phosphorylated in JAWSII 

cells. Upon immunoprecipitation with GFP nanobodies coupled to agarose beads, 

immunoblot of GFP and tyrosine-phosphorylation were determined from total cell 

lysates (input), the supernatant (flow-through), and the precipitate (IP) of JAWSII 

cells ectopically expressing corresponding BepD constructs depicted in figure. 

Figure 16. Interactomics reveals several putative BepD binding partners. (A) 

Volcano plot representing significance (q-values) versus the BepD-BXBIDBhe 

/BepD-BXBIDBhe 5Ymuts interaction ratio of indicated partners on the y- and x-axes, 

respectively. Interactions showing a q-value <0.01 were considered significantly 

regulated among the two conditions and are represented in red. Underlined proteins 

harbor an SH2 domain. (B) Graphical representation of the interactome using 

STRING (high confidence 0.7). The color indicates the ratio for each interaction 

partner between BepD-BXBIDBhe and BepD-BXBIDBhe 5Ymuts. Only proteins with at 

least one connection in STRING are represented. (C) Table showing all 27 

significantly regulated interaction partners (q-value <0.01) among BepD-BXBIDBhe 

/BepD-BXBIDBhe 5Ymuts.  

Figure 17. Phosphoproteomics reveals STAT3 hyper-phosphorylation in 

dependency of Bep-BXBIDBhe. (A) Diagram of the phosphoproteomics protocol 

applied to BepD-BXBIDBhe expression compared to BepD-BXBIDBhe 5Ymuts in 

JAWSII cells. (B) Volcano plot representing significance (q-values) versus the 

BepD-BXBIDBhe/BepD-BXBIDBhe 5Ymuts phosphorylation ratio on the y- and x-axes, 

respectively. Phosphopeptides showing a q-value <0.01 were considered significantly 

regulated among the two conditions and are represented in red. (C) Table showing all 

27 significantly regulated phosphopeptides (q-value <0.01) among BepD-BXBIDBhe 

/BepD-BXBIDBhe 5Ymuts.  
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Figure 18. SHP-2 and STAT3 specifically co-immunoprecipitates with 

GFP-BepD-BXBIDBhe. (A) Upon immunoprecipitation with GFP nanobodies 

coupled to agarose beads, immunoblot of SHP-2 was determined from total cell 

lysates (input), the supernatant (flow-through), and the precipitate (IP) of JAWSII 

cells ectopically expressing corresponding BepD constructs depicted in figure. (B) 

Immunoblots of STAT3 and STAT3 phosphorylation at Tyr-705 were determined from 

total cell lysates (input), the supernatant (flow-through), and the precipitate (IP) of 

JAWSII cells ectopically expressing corresponding BepD constructs depicted in 

figure. 

Figure 19. The enhanced phospho-STAT3 expression is BepD specific. 

Immunoblot of STAT3 phosphorylation at Tyr-705 was determined from total cell 

lysate of BMDCs infected with corresponding Bartonella strains depicted in figure. 

Actin was used as a loading control. Quantitative data showed as the mean ± SEM 

from two independent experiments. Data from one representative experiment (n = 2) 

are presented. 

Figure 20. The function of EPIYA-related motifs in STAT3 phosphorylation is 

delineated in BepD-BXBIDBhe by tyrosine to phenylalanine exchanges. 

Immunoblot of STAT3 phosphorylation at Tyr-705 was determined from total cell 

lysate of BMDCs infected with corresponding Bartonella strains depicted in figure. 

Actin was used as a loading control. Quantitative data showed as the mean ± SEM 

from two independent experiments. Data from one representative experiment (n = 2) 

are presented. 

Figure 21. STAT3 phosphorylation caused by BepD-BXBIDBhe is sustained until 

24 hpi. Immunoblot of STAT3 phosphorylation at Tyr-705 was determined for the 

indicated time periods from total cell lysate of BMDCs infected with strains 

expressing BepD-BXBIDBhe or BepD-BXBIDBhe 5Ymuts. Actin was used as a loading 

control. Quantitative data showed as the mean ± SEM from two independent 

experiments. Data from one representative experiment (n = 2) are presented. 

Figure 22. Lower doses of bacterial inoculation develop higher bacteremia by B. 

taylorii intradermal infection. Mice were inoculated in the ear dermis with Sm
R
 Bta 

wild-type: five mice per group with 1 × 10
7
, 1 × 10

5
, or 1 × 10

3
 CFU/mouse. Blood 
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was drawn at the indicated dpi, diluted and plated on sheep blood supplemented CBA 

plates for counting bacterial CFU. 

Figure 23. BepABta and BepDBta seem to be potent for the fitness of bacteremia 

development. Mice were inoculated in the ear dermis with Sm
R
 Bta wild-type (blue), 

Bta ΔvirD4 (brown), Bta ΔbepA (red), Bta ΔbepD (green), or Bta ΔbepAD 

(purple): five mice per group with 1 × 10
5
 CFU/mouse. Blood was drawn at the 

indicated dpi, diluted and plated on sheep blood supplemented CBA plates for 

counting bacterial CFU. 

Figure 24. Bta mutants with deletion of bepA or/and bepD tend to lose the fitness 

to reach the highest peak of bacteremia. The infections were performed as 

described for Fig 22. The highest peak of each bacteremia was displayed at 14 dpi. 

Figure S1. Up to 70% of BMDCs differentiated by Flt3L are CD11c
+
. BMDCs 

were generated by culturing BM cells with Flt3 ligand for 7 – 10 days. Cell 

suspensions were stained with anti-CD11c antibody combined with anti-CD11b or 

anti-B220 antibodies to determine subtypes of DCs: conventional DCs or 

plasmacytoid DCs, respectively. Staining with anti-MHCII indicated the activation 

state of DCs 

Figure S2. Immunoblots confirm the protein levels of the indicated Beps by 

overexpression in Bhe ΔbepA-G. All constructs for overexpression of individual 

Beps were derived from the flag-tag expression vector pPG100. Bartonella bacterial 

culture was harvested after 48 h of growth on CBA plates supplemented with 

appropriate antibiotics and IPTG (500 µM). The anti-Flag western blot (A-D) was 

obtained from total lysate of corresponding Bartonella strains depicted in figure. 

Figure S3. BepA homologs show the significant similarity from the Bartonella 

lineage 4 species. (A) The BepA homologs from Bartonella species depicted in the 

figure (BepABtr, BepABgr, BepABbi, and BepABta) were aligned to BepABhe using 

Geneious Pro 5.3.4. The amino acid sequence alignment with pairwise % identity is 

indicated. The FIC and BID domains were aligned independently. (B) The sequence 

alignment of BID domains of BepA homologs.  

Figure S4. Except BepABgr, BepA homologs mediate downregulations of cytokine 
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genes TNF-α, IL-6, and IL-12. BMDCs were infected with Bhe ΔbepA-G mutant 

complemented with overexpression of indicated BepA homologs at MOI = 25. After 

24 hpi, regulations of TNF-α, IL-6, and IL-12 were determined by quantitative 

real-time PCR. Results were normalized to expression of the housekeeping gene 

GAPDH. 

Figure S5. BepD homologs show the conserved EPIYA-related motifs from the 

Bartonella lineage 4 species. (A) The BepD homologs from Bartonella species 

depicted in the figure (BepDBtr, BepDBgr, BepDBbi, and BepDBta) were aligned to 

BepDBhe using Geneious Pro 5.3.4. The amino acid sequence alignment with pairwise 

% identity is indicated. The tyrosine-containing N-termini and BID domains were 

aligned independently. (B) The sequence alignments of tyrosine-containing N-termini 

of BepD homologs.  

Figure S6. BepD homologs mediate downregulations of genes of cytokines TNF-α, 

IL-6, and IL-12 but not of surface receptors. BMDCs were infected with Bhe 

ΔbepA-G mutant complemented with overexpression of indicated BepD homologs at 

MOI = 25. After 24 hpi, gene regulations of surface receptors (MHCII, CD80, and 

CD86) and cytokines (TNF-α, IL-6, and IL-12) were determined by quantitative 

real-time PCR. Results were normalized to expression of the housekeeping gene 

GAPDH. 

Figure S7. DC properties of JAWSII cells are confirmed by E. coli LPS treatment. 

(A) JAWSII cells were stained with anti-CD11c, anti-CD11b, or anti-B220 antibodies 

and analyzed by flow cytometry. (B) Upon E. coli LPS treatment with different 

concentrations (0.1 μg/ml, 1.0μg/ml, or 5.0 μg/ml) for 24 h, the surface expression of 

MHCII, CD40, CD80, and CD86 was monitored by flow cytometry analysis. 

Figure S8. Ectopic expression of the GFP or GFP-fusion proteins is well induced 

by doxycycline treatment. (A) All constructs for overexpression of indicated 

proteins were derived from lentiviral doxycycline-inducible vector 

pCLX-pTF-R1-DEST-R2-EBR65 and transduced into JAWSII cells. Upon 24 h 

doxycycline treatment (1 μg/ml), total cell lysate was harvested for the anti-GFP 

western blot. (B) Upon 24 h doxycycline treatment (1 μg/ml), these stable cell lines 

carrying indicated constructs were analyzed by flow cytometry. 



  RESULTS: Research article II  

- 103 - 

 

Figure S9. Genomic organization of the virB/D4 T4SS and beps loci in B. taylorii 

and B. henselae. Alignment of the conserved T4SS VirB/VirD4 (virB2-11 and virD4 

genes) and the highly variable translocated effectors (beps genes) in Bta and Bhe was 

analyzed using Geneious Pro 5.3.4. Sequence similarity is shown with the percent 

identity indicated according to the color scales. 
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3.2.7 Figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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3.2.8 Supplementary Tables  

Table 1: Bacterial strains and plasmids used in this study 

Bartonella strains  

Strain Relevant Genotype /Description Reference 

RSE247 Spontaneous Sm
R 

strain of B. henselae ATCC49882
T
,
  

serving as wild-type 

[70] 

MSE150 bepA-bepG deletion mutant, derivative of RSE247 [20] 

MSE156 MSE150 containing pPG101 (ΔbepA-G/pbepABhe) [24] 

MSE167 MSE150 containing pMS006 (ΔbepA-G/pbepBBhe) [24] 

MSE159 MSE150 containing pMS007 (ΔbepA-G/pbepCBhe) [24] 

PG4D03 MSE150 containing pPG104 (ΔbepA-G/pbepDBhe) [20] 

PG4D10  MSE150 containing pPG105 (ΔbepA-G/pbepEBhe) [71] 

TRB171 MSE150 containing pPG106 (ΔbepA-G/pbepFBhe) [71] 

TRB169 MSE150 containing pPG107 (ΔbepA-G/pbepGBhe) [71] 

MSE218 MSE150 containing pMS100-A (ΔbepA-G/pbepA-BIDBhe) [24] 

MSE220 MSE150 containing pMS100-D (ΔbepA-G/pbepD-BIDBhe) [24] 

LUB169 MSE150 containing pLU030 

(ΔbepA-G/pbepD-BXBIDBhe) 

This study 

LUB186 MSE150 containing pLU032  

(ΔbepA-G/pbepD-BXBIDBhe Y32F) 

This study 

LUB220 MSE150 containing pLU033  

(ΔbepA-G/pbepD-BXBIDBhe Y52F) 

This study 

LUB222 MSE150 containing pLU034  

(ΔbepA-G/pbepD-BXBIDBhe Y62F) 

This study 

LUB224 MSE150 containing pLU035  

(ΔbepA-G/pbepD-BXBIDBhe Y72F) 

This study 

LUB226 MSE150 containing pLU036  

(ΔbepA-G/pbepD-BXBIDBhe Y92F) 

This study 

LUB195 MSE150 containing pLU037  

(ΔbepA-G/pbepD-BXBIDBhe Y114F) 

This study 

LUB197 MSE150 containing pLU038  

(ΔbepA-G/pbepD-BXBIDBhe Y134F) 

This study 
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Table 1-continued 

LUB188 MSE150 containing pLU039  

(ΔbepA-G/pbepD-BXBIDBhe Y155F) 

This study 

LUB206 MSE150 containing pLU040  

(ΔbepA-G/pbepD-BXBIDBhe Y176F) 

This study 

LUB268 MSE150 containing pLU044  

(ΔbepA-G/pbepD-BXBIDBhe Y32/72/92/114/134F) 

This study 

MSE175 MSE150 containing pMS011 (ΔbepA-G/pbepABtr) [24] 

LUB234 MSE150 containing pLU054 (ΔbepA-G/pbepABgr) This study 

LUB270 MSE150 containing pLU065 (ΔbepA-G/pbepA-BIDBbi) This study 

LUB266 MSE150 containing pLU064 (ΔbepA-G/pbepA-BIDBta) This study 

LUB232 MSE150 containing pLU053 (ΔbepA-G/pbepDBtr) This study 

LUB258 MSE150 containing pLU061 (ΔbepA-G/pbepDBgr) This study 

LUB247 MSE150 containing pLU060 (ΔbepA-G/pbepDBbi) This study 

LUB242 MSE150 containing pLU058 (ΔbepA-G/pbepDBta) This study 

LUB046 Spontaneous Sm
R 

strain of B. taylorii,  

serving as wild-type 

This study 

LUB163 virD4 deletion mutant, derivative of LUB046 This study 

LUB291 bepA deletion mutant, derivative of LUB046 This study 

LUB293 bepD deletion mutant, derivative of LUB046 This study 

LUB297 bepA and bepD deletion mutant, derivative of LUB291 This study 

RSE149 Spontaneous Sm
R 

strain of B. tribocorum IBS 506T,  

serving as wild-type 

[19] 

CHDE142 B. grahamii, No 376, isolated from Microtus sp. [13] 

PEE0249  

 

B. birtlesii IBS 325T, isolated from Apodemus spp. [72] 

E. Coli strains   

Name Relevant characteristics Reference 

DH5α F- (Φ80dlacZDM15) D (lacZY AargF)U169 deoR recA1 

endA1hsdR17 (rk-, mK+), sup E44 l -thi-1 gyrA96 relA1 l -CH616 

[73] 

β2150 F' lacZΔM15 lacIq traD36 proA+B+ thrB1004 pro thi strA hsdS 

ΔdapA::erm (Ermr) pir 

[31] 

Helper strain β2150 containing pRK2013 [31] 
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Table 1-continued 

Plasmids 
  

Name Relevant characteristics Reference 

pPG100 Bartonella shuttle vector, encoding a short FLAG epitope [20] 

pPG101 Derivative of pPG100, encoding FLAG::Bhe BepA [24] 

pMS006 Derivative of pPG100, encoding FLAG::Bhe BepB [24] 

pMS007 Derivative of pPG100, encoding FLAG::Bhe BepC [24] 

pPG104 Derivative of pPG100, encoding FLAG::Bhe BepD [20] 

pPG105 Derivative of pPG100, encoding FLAG::Bhe BepE [71] 

pPG106 Derivative of pPG100, encoding FLAG::Bhe BepF [71] 

pPG107 Derivative of pPG100, encoding FLAG::Bhe BepG [71] 

pMS100-A Derivative of pPG100, encoding FLAG::Bhe BepA-BID [24] 

pMS100-D Derivative of pPG100, encoding FLAG::Bhe BepD-BID [24] 

pLU030 Derivative of pPG100,  

encoding FLAG::Bhe BepD-BXBID 

This study 

pLU032 Derivative of pPG100,  

encoding FLAG::Bhe BepD-BXBID Y32F 

This study 

pLU033 Derivative of pPG100,  

encoding FLAG::Bhe BepD-BXBID Y52F 

This study 

pLU034 Derivative of pPG100,  

encoding FLAG::Bhe BepD-BXBID Y62F 

This study 

pLU035 Derivative of pPG100,  

encoding FLAG::Bhe BepD-BXBID Y72F 

This study 

pLU036 Derivative of pPG100,  

encoding FLAG::Bhe BepD-BXBID Y92F 

This study 

pLU037 Derivative of pPG100,  

encoding FLAG::Bhe BepD-BXBID Y114F 

This study 

pLU038 Derivative of pPG100,  

encoding FLAG::Bhe BepD-BXBID Y134F 

This study 

pLU039 Derivative of pPG100,  

encoding FLAG::Bhe BepD-BXBID Y155F 

This study 

pLU040 Derivative of pPG100,  

encoding FLAG::Bhe BepD-BXBID Y176F 

This study 

pLU044 Derivative of pPG100,  

encoding FLAG::Bhe BepD-BXBID Y32/72/92/114/134F 

This study 
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Table 1-continued 

pMS011 Derivative of pPG100, encoding FLAG::Btr BepA [24] 

pLU054 Derivative of pPG100, encoding FLAG::Bgr BepA This study 

pLU065 Derivative of pPG100, encoding FLAG::Bbi BepA-BID This study 

pLU064 Derivative of pPG100, encoding FLAG::Bta BepA-BID This study 

pLU053 Derivative of pPG100, encoding FLAG::Btr BepD This study 

pLU061 Derivative of pPG100, encoding FLAG::Bgr BepD This study 

pLU060 Derivative of pPG100, encoding FLAG::Bbi BepD This study 

pLU058 Derivative of pPG100, encoding FLAG::Bta BepD This study 

pTR1000 Mutagenesis vector for in-frame deletion  

in Bartonella spp.  

[20] 

pLU068 Derivative of pTR1000, used for bepABta deletion This study 

pLU069 Derivative of pTR1000, used for bepDBta deletion This study 

pLU072 Derivative of pTR1000, used for virD4Bta deletion This study 

pLU073 pDONR-GFP, for gateway cloning This study 

pLU074 pDONR-Bhe BepD-BXBID, for gateway cloning This study 

pLU075 pDONR-Bhe BepD-BID, for gateway cloning This study 

pLU076 pDONR-Bhe BepD-BXBID 5Ymuts,  

for gateway cloning 

This study 

pLU077 pCLX, encoding GFP This study 

pLU078 pCLX, encoding GFP::Bhe BepD-BXBID This study 

pLU079 pCLX, encoding GFP::Bhe BepD-BID This study 

pLU080 pCLX, encoding GFP::Bhe BepD-BXBID 5Ymuts This study 

pMDL packaging vector for plenty [18] 

pREV packaging vector for plenty [18] 

pVSVG packaging vector for plenty [18] 
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Table 2: Oligonucleotides used in this study 

Cloning primers 

Name 
Sequence (5'-3') 

(restriction endonuclease cleavage sites are underlined) 
Restriction site   

prLU174 CGGCATATGTCAGGAAAGACAACACCCCCTCCGACA NdeI 

prLU175 CGGCATATGTTACATACCAAAGGCCATTCC NdeI 

prLU259 GGGAATTCCATATGCCAAAAGCAAAAGAA NdeI 

prLU260 GGGAATTCCATATGTTAGCAAGCCATAGCAAA NdeI 

prLU283 GGGAATTCCATATGGAGTTAAAAAACACGCTCATTCCA NdeI 

prLU284 GGGAATTCCATATGTTAGCTAGCCATAGCAAGCACATT NdeI 

prLU285 GGGAATTCCATATGGAACTTGAAAAAGTGCTCATCCC NdeI 

prLU286 GGGAATTCCATATGTTAGCTGGCCATAGCGAGCG NdeI 

prLU265 GGGAATTCCATATGCCAAAAGCCAAAGAA NdeI 

prLU266 GGGAATTCCATATGTTAGCTGGCTATAGCGAG NdeI 

prLU281 GGGAATTCCATATGAAAAAAAGTCACCCAACCGCT NdeI 

prLU282 GGGAATTCCATATGTTACATGGCAAAAGCCATTCC NdeI 

prLU234 GGGCATATGAAAAAACACCAGCCATCCCC NdeI 

prLU235 GGGCATATGTTACATCGCAAACGCCATTCC NdeI 

prLU74 CTTCATATGAAAAAGAATCATCCATCCCCTTCTC NdeI 

prLU75 AATCATATGTTACATCGCAAAAGCCATTCCTTTTCC NdeI 

prLU299 GCTCTAGAGCAGAGTTTTTCTCTCGAAGATCTTGC XbaI 

prLU318 CTGAAACACCAAGACTTTTCGCAAGTGTTTTGTTACCTCCTTATA

ATATAGCGTTGT 

 

prLU319 AAACACTTGCGAAAAGTCTTGGTGTTTCAG  

prLU302 GCTCTAGACCAGGCGCAAAGGGAATATTGCACACA XbaI 

prLU63 GCCTCTAGAGTGCGGAAGAGGCTGTTCCACAGCTAGTTG XbaI 

prLU320 GCTTGGGGATTTCACACCAAGTACTTTGTATGTTTCCTTTCAAGA

ATTATTTTAGAA 

 

prLU304 AAAGTACTTGGTGTGAAATCCCCAAGC  

prLU305 GCTCTAGACGGTATAGTCTTTTCTGGGCGTTTTGG XbaI 

prLU59 CCGTCTAGATGTTTATGGCAGCTCAAAAACATTAAACGAAC  
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Table 2-continued  

prLU60 CAGCAGCCGCTAACATTTCTTTTCTTCTCATTGTCTCTTACTTTC

GATTTTTTCTGACTATGCCAC 

 

prLU61 AGAAGAAAAGAAATGTTAGCGGCTGCTG  

prLU62 GGCTCTAGAAGCACAACGTTCATACAGTTTGTGTGGG XbaI 

prLU197 GGTGGCGGGCCCGGGATGCCAGGAAGGGCA  

prLU199 GGTGGCGGGCCCGGGATGTCAGGAAAGACA  

prLU276 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGA

ACCATGGTGAGCAAGGGCGAGGAGCTG 

 

prLU277 GGGGACCACTTTGTACAAGAAAGCTGGGTCCTACTTGTACAGCT

CGTCCATGC 

 

prLU278 GGGGACCACTTTGTACAAGAAAGCTGGGTCCTACATACCAAAG

GCCATTCCTT 

 

   

Primers for tyrosine to phenylalanine exchange mutant     

Name Sequence (5'-3') YF   

prLU172 GCAGAACCCCTCTTTGCACAGGTAAAT Y32F 

 prLU173 ATTTACCTGTGCAAAGAGGGGTTCTGC Y32F 

 prLU183 AGAAGAAACTATCTTTGCACCTCAAAACC Y52F 

 prLU184 GGTTTTGAGGTGCAAAGATAGTTTCTTCT Y52F 

 prLU185 ACCAGAAACTATCTTTGCACCCCAAAAAC Y62F 

 prLU186 GTTTTTGGGGTGCAAAGATAGTTTCTGGT Y62F 

 prLU252 CCTCTAGGAAATCCCTTTGACAGACTTGGTGGG Y72F 

 prLU253 CCCACCAAGTCTGTCAAAGGGATTTCCTAGAGG Y72F 

 prLU187 ACTAGTAGACCCCTTTGCAGTAACTGATG Y92F 

 prLU188 CATCAGTTACTGCAAAGGGGTCTACTAGT Y92F 

 prLU189 AGAAAATCCCCTCTTTGAGGGAGTTGGCG Y114F 

 prLU190 CGCCAACTCCCTCAAAGAGGGGATTTTCT Y114F 

 prLU191 ACCAGAACATCTCTTTGCAGAGCTTGAAT Y134F 

 prLU192 ATTCAAGCTCTGCAAAGAGATGTTCTGGT Y134F 

 
prLU160 TAGAATCTGTCTTTGCAACAGTTGGCA Y155F 

 prLU161 TGCCAACTGTTGCAAAGACAGATTCTA Y155F 
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Table 2-continued   

prLU193 TAAAAAATCCCCTCTTCGAAGGAGTTGGCC Y176F 

 prLU194 GGCCAACTCCTTCGAAGAGGGGATTTTTTA Y176F 

 

    qPCR Primers   

Name Sequence (5'-3') Gene   

prLU214 AACGACCCCTTCATTGAC GAPDH 

 
prLU215 TCCACGACATACTCAGCAC GAPDH 

 
prLU236 TTGTTGACAGCGGTCCATCTA CD40 

 
prLU237 GCCATCGTGGAGGTACTGTTT CD40 

 

prLU290 CTCACCAGGAAGCCTGC crem 
 

prLU291 CAGCTCCCGCTTGCGAGTTG crem 
 

prLU238 TGCTGCTGATTCGTCTTTCAC CD80 

 
prLU239 GAGGAGAGTTGTAACGGCAAG CD80 

 
prLU240 CTGGACTCTACGACTTCACAATG CD86 

 
prLU241 AGTTGGCGATCACTGACAGTT CD86 

 

prLU330 GAGGATACCACTCCCAACAGACC IL-6 
 

prLU331 AAGTGCATCATCGTTGTTCATACA IL-6 
 

prLU334 CATCTTCTCAAAATTCGAGTGACAA TNF-α 

 
prLU335 TGGGAGTAGACAAGGTACAACCC TNF-α 

 
prLU336 GGAAGCACGGCAGCAGAATA IL-12 

 
prLU337 AACTTGAGGGAGAAGTAGGAATGG IL-12 

 

    

Sequencing primers for B. taylorii   

Name Sequence (5'-3')     

prLU006 GTTTAAGGTCACAGAAATTTATTATGATCCCTTC   

prLU007 GAATATCGTTAAAGCACCTAAAGCGATTGG   

prLU008 CCTTGCATAAGAATAATTTGTTCATCTTGACGCAT   

prLU009 CATCATCGTCGTCATCACGCA   

prLU010 GGAACCCTCATGAGCCGTATTTTTGGCTTCGT   
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Table 2-continued   

prLU011 TGCAAAACAGAGTCAATATAACCACTTTCTTGAT   

prLU012 TCTTGCCAAAGCAGCAGGCCATCAGCTT   

prLU013 CTTCACGTTGTGTACGTGGTACACTATCAT   

prLU014 GCTATATGAACATTCTAGAAGAAGCGCGTG   

prLU015 CAAATTCAAGCTCTGCATAGAGATGTTCTGG   

prLU016 ATAAGATGTTTGCAGTTCAACCCAATGCTT   

prLU017 CCTCTCTCAAATCAGGAAATTGCCCGCAGAGTTC   

prLU018 ATGCCAAGGATTTGCTTACCAGCAAGCGGAGCAAA   

prLU021 ATCCCTTCAAGTGCATGGCTGCTGATGG   

prLU022 GCTTGTTTAATGCAAGTGTTGAAACGTT    

prLU023 CATGAACTTGAGAGCATAGTTCCAAGTTAT   

prLU024 GTGCATGACCATAATCCCAAAGGAACATTC   

prLU025 CGGTAAGAGCTAGCGATGAAGAGCGACT   

prLU026 TAACAACAGAGTTAATTCAATAGAGCGA   

prLU027 CACAATCAGAAGAAACTATCTATGCACC   

prLU028 AAACCACCACGCTGTAATGGCAAA   

prLU029 AGGGAGTTTAACGATATTCCTTGTTCC   

prLU030 GAACGCCTGACACAGGCTAGTATTGAAGCA   

prLU031 CATTAAGTCCAGCACGTCTCATTTGAGA   

prLU032 TGCGCTATTCGTAGCTCTCATAATCGACAT   

prLU033 TAGAAGAGCCCCTCTATGCGACGCCT   

prLU034 CTGCGTGACAATATTGGACCACCGTATTAC   

prLU035 ACCGGCTTGGTGCTCGACCACGCACAGT   

prLU036 GCATGCGGTTTCTTGACCATCTTCGGTA   

prLU037 TGCGTGCCAGCACCTTGGCAGGGATAAT   

prLU038 ATCGTCACGCAAGAGAAGAACGCCAGACTT   

prLU039 CAGCACATAGGGAAGGAACAGCGCCTTC   

prLU040 CTATGAAGTAAAGGAGAGAAGCATCGC   

prLU041 CAAACCATGAGCGCGCTCCCGCTTCTCC   
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Table 2-continued   

prLU042 GGTATTGGCTGGATGTACGGCTTTATTGAT   

prLU043 TATCACCTCTGGATCAGATCTATATTCCGA   

prLU044 TCGGAATATAGATCTGATCCAGAGGTGATA   

prLU045 CCTTGAACAAAACATTGCGCATAATAAA   

prLU046 ACCACCAGAACAACAAAGAGAAGCTTTG   

prLU047 TGCTTCATGAGCACAACGTTCATACAGT   

prLU048 CACAGTGTGCTCACGATTCAGCAAGAGCAA   

prLU049 GCGCCGCAACAAAGTATTCAACGGCATA   

prLU050 TATGCCGTTGAATACTTTGTTGCGGCGC   

prLU051 TTGCTCTTGCTGAATCGTGAGCACACTGTG   

prLU052 GAACGCATGAATCTTGCTAGCATTGCGTCA   

prLU053 CCACTGCCGGAGGAATGACAATTTGAATAC   

prLU054 GGCAACTTGCCAAGCAACGGAATTGCCA   

prLU055 GGCAACAAGGTCATTGTACATGCTACAG   

prLU056 AGGTGGATCTACATCTCCATTATGCCTT   

prLU057 TCGCATGCATGGCATGCGCGTGCGGATG   

prLU058 GTTATCGCTTCATCATAGTTGTTGGGAG   

prLU071 CACGCCCAGGTATGACCGATGGTTTA   

prLU072 CAGCACCAGAGAGTTTTGAAGCTGCAC   

prLU073 GCACCAGTTGAACGACGAAACCGTCGC   

prLU080 CATTATGGTGACCTTGGAAACACC   

prLU081 ATTCGTTGCCATTGTCGTTACAAC   

prLU082 GTCATTCTCTTCCGTGCGCTTCCTG   

prLU083 AATTCAGGCCATCCAGGTTCGA   

prLU084 TCTGAAGCCGGATTCCAGAGCAGTG   

prLU087 CTCAACAATTGCACACACGATTATTGAG    

prLU088 TGGTTAGGGTTTGTCCCATATTCG   

prLU095 ATAACATAGAACCCACAATGTAGAGAATAACAAT   

prLU098 CCTTGAACAAAACATTGCGCATAATAAA   
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Table 2-continued   

prLU106 CATCCCTATGTTTTGCCATTGAAAATTATGCCG    

prLU109 GCGATAAAGGCTGTAAGCTGTAAAGCAA    

prLU110 AATAAAGCCGTACATCCAGCCAATGCCCAC   
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Table 3: Primary antibodies used in this study 

Primary antibodies   

Specificity Source / Reference 

Flag Sigma 

GFP Molecular Probes 

Actin Millipore 

STAT3 Cell Signaling 

SHP-2 BD Transduction Laboratories 

phospho-STAT3 Cell Signaling 

phospho-tyrosine Millipore 

Secondary anti-mouse IgG-HRP antibodies GE healthcare 

Secondary anti-rabbit IgG-HRP antibodies GE healthcare 
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3.3 Additional data (preliminary) 

This chapter mainly describes in vivo preliminary data. To study the relevance of Beps 

in the modulation of host immune response, we aimed to establish various in vivo 

assays. All of work has been done in mice with two murine-specific strains: B. 

birtlesii (Bbi) and B. taylorii (Bta). Unless indicated, Balb/c mice (6 to 8 weeks old) 

were used. Although both strains are considered to lead to homogenous infections in 

mice, Bta developed more reliable and higher bacteremia than Bbi. Bbi wild-type (IBS 

325
T
) was used in the chapter 3.3.2. In addition, spontaneous streptomycin-resistant 

(Sm
R
) variants of Bta (LUB046) and Bbi (JKB016) were selected and used as 

“wild-type” in the following experiments. However, we realized later that Sm
R
 Bbi 

(JKB016) was attenuated and failed to develop the bacteremia. Thus, the studies of 

Bbi infection in mice (chapter 3.3.3 and 3.3.4) need to be carefully interpreted and 

re-performed. 

In vivo work has been done with the great support from Dr. R. Okujava and C. Mistl. 

Particulartly, the adoptive transfer of BMDCs was set up together with Rusudan. 

Furthermore, Claudia assisted me to establish the neonatal mice model.   
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3.3.1 Upregulation of co-stimulatory molecules by Bhe Δ

bepA-G infection is MyD88-independent 

Introduction 

DCs with highly professional antigen presenting function as critical sentinels in 

antimicrobial immune responses. Exposure to microbial components (PAMPs) such as 

LPS can provoke DC maturation characterized by upregulation of co-stimulatory 

molecules expression and of pro-inflammatory cytokine secretion. The DC maturation 

plays a central role in initiating and modulating the immune adaptive response [1]. 

TLR4, one of the pattern recognition receptors presented on DCs, is a potent receptor 

and signal transducer in response to bacterial LPS. Upon engagement with ligands, 

TLR4 recruits the adaptor proteins via the cytoplasmic TIR domain, such as MyD88, 

and subsequently triggers the activation of NF-κB pathway and MAKP signaling 

cascades. MyD88-depedent pathway is commonly shared within all the TLR signaling, 

with the exception of TLR3 [2]. The LPS of enteric bacteria, such as E. coli, is 

recognized by TLR4 with regard to their highly endotoxic activities. Unlike to other 

bacterial pathogens, LPS of Bartonella was shown to be modified with significantly 

lower endotoxic effect [3, 4]. However, previous work done in this thesis showed that 

infection by Bartonella effector-free strain (Bhe ΔbepA-G) triggered BMDC full 

maturation with enhanced expression of MHCII, CD40, and CD86, as well as 

increased production of pro-inflammatory cytokines (e.g., TNF-α and IL-6) (chapter 

3.2, Fig. 1 and 2). We became interested in understanding which TLR signaling of 

DCs is activated by Bartonella infection. To address this question, we investigated the 

maturation patterns of wild-type, MyD88/Ripk2-, and TLR4-deficient BMDCs in 

response to Bhe infection. These knock-out strains (MyD88
−/−

/Ripk2
−/−

 and TLR4
−/−

) 

of C57BL6 mice were kindly provided from Prof. W. Hardt. MyD88 is a potent 

adaptor protein in most TLR singling pathways. Ripk2 plays a central role in 

NOD-like receptor (NLR) activation.  

Results  

To assess the effects of Bartonella infection on DCs, BMDCs were generated by 

culturing bone marrow cells with Flt3 ligand (the experimental procedure is described 
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in chapter 3.2). BMDCs derived from C57BL6 wild-type, MyD88
−/−

/Ripk2
−/−

, and 

TLR4
−/−

 mice were infected with Bhe wild-type or Bhe ΔbepA-G. E. coli LPS, a TLR4 

ligand, served as the positive control to monitor the state of DC maturation. After 24 

hpi, we measured the surface expression of co-stimulatory (CD40, CD80, and CD86) 

and MHCII molecules using flow cytometry analysis (Fig. 1). As expected, E. coli 

LPS enhanced the expression of MHCII, CD40, CD80, and CD86 on wild-type 

BMDCs. These phenotypic changes of DC maturation patterns caused by E. coli LPS 

were diminished in TLR4- but not MyD88/Ripk2-deficient BMDCs. Consistent with 

pervious results (chapter 3.2), infection with Bhe ΔbepA-G compared to Bhe wild-type 

led to significantly higher expression of MHCII and CD86 on wild-type BMDCs. 

Similar to E. coli LPS stimulation, this enhanced expression of MHCII and CD86 in 

response to Bartonella infection seemed to be reduced in TLR4- but not 

MyD88/Ripk2-deficient BMDCs. However, since this was one experiment and results 

were quite variable, more replicates are needed before we draw a strong conclusion. 

Furthermore, the secretion of pro-inflammatory cytokines was measured (Fig. 2). 

Upon stimulation of E. coli LPS, wild-type BMDCs produced TNF-α and 

dramatically high IL-6. This cytokine induction by E. coli LPS was abolished in both 

TLR4- and MyD88/Ripk2-deficient BMDCs. Confirming with previous results 

(chapter 3.2), infection with Bhe ΔbepA-G compared to Bhe wild-type resulted in high 

levels of cytokine secretion (TNF-α and IL-6) in wild-type BMDCs. This induction of 

cytokines by Bartonella infection was abolished in MyD88/Ripk2-deficient BMDCs. 

However, in response to Bartonella infection, only TNF-α but not IL-6 production 

was reduced in TLR4-deficient BMDCs. 

Discussion 

LPS, a major component of the cell wall of gram-negative bacteria, is recognized by 

TLR4 and induces a variety of biological responses (e.g., cytokine secretion from 

macrophages and B cell proliferative response). MyD88-deficient mice show 

complete resistance to LPS responses, indicating that MyD88 is an essential 

component in LPS signaling [5]. However, it is known that while TLR4 moves from 

cytoplasm membrane to the endosomes, its downstream signaling is switched from 

MyD88-dependent to MyD88-independent pathway with another required adaptor 

TRIF [6]. Kaisho et al published that upon E. coli LPS stimulation, BMDCs and 
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splenic DCs from both wild-type and MyD88-deficient, but not TLR4-deficient mice 

are able to enhance the expression of co-stimulatory molecules. Furthermore, they 

demonstrated that both NF-κB and JNK are still activated with delayed kinetics in 

MyD88-deficient BMDCs, although IRAK activation is abolished [7]. Another study 

emphasizes that various bacterial endotoxins selectively induce MyD88-dependent 

and -independent signaling pathways of TLR4 [8]. Moreover, the 

MyD88-independent (TRIF/TICAM-1) pathway of TLR4 signaling activated by 

endotoxins was proved to be critical for DC maturation, in particular the upregulation 

of co-stimulatory molecules [9]. Consistent with these findings, our preliminary 

results showed that E. coli LPS-induced co-stimulatory molecules of BMDCs were 

dependent on TLR4 but can proceed in the absence of MyD88/Ripk2. The cytokine 

production triggered by E. coli LPS through TLR4 relied on a 

MyD88/Ripk2-dependent manner. Similarly, in response to Bartonella infection, 

MyD88 and Ripk2 were not required for the upregulation of co-stimulatory molecules 

on BMDCs but essential for cytokine production. Single gene knock-out mice are 

needed to specify the relevance of MyD88 and Ripk2 in response to Bartonella 

infection. Though low endotoxic activities of Bartonella LPS, TLR4 seemed to play a 

role in triggering the TNF-α but not IL-6 secretion, implying that another receptor 

may be activated to mediate IL-6 induction. Further examination of different receptors 

involving in Bartonella recognition will be performed. Moreover,  
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Figure 1. Upregulation of co-stimulatory receptors in BMDCs is through 

MyD88/Ripk2-independent manner. BMDCs were derived from wild-type 

(blue), MyD88/Ripk2- (red), or TLR4-deficient (green) mice. In the following, 

BMDCs were incubated with E. coli LPS (1 μg/ml), or infected with Bhe 

wild-type or Bhe ΔbepA-G (MOI = 25). After 24 hpi, cells were stained with 

fluorescently labeled antibodies and analyzed by flow cytometry. Expression 

levels of the maturation markers were presented as relative GMFI. All data were 

normalized to infection with Bhe ΔbepA-G. Data were analyzed from one 

experiment.  
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Figure 2. Cytokine production of BMDCs is MyD88- or Ripk2-dependent. 

BMDCs were derived from wild-type (blue), MyD88/Ripk2- (red), or 

TLR4-deficient (green) mice. In the following, BMDCs were incubated with E. 

coli LPS (1 μg/ml), or infected with Bhe wild-type or Bhe ΔbepA-G (MOI = 25) 

for 24 h. Amounts of TNF-α and IL-6 in the cell culture supernatants were 

measured by ELISA. Data were analyzed from one experiment. 
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3.3.2 B. birtlesii infection with a lower-dose inoculum induces 

higher bacteremia. 

Introduction  

Natural infection in animals, such as cats with Bhe, is mainly considered to be 

asymptomatic, despite developing long-lasting bacteremia. However, some evidence 

showed that experimental Bhe infection through intradermal (i.d.) route in cats 

induces various symptoms (e.g., fever, lymphadenopathy, and reproductive failure) 

[10, 11]. To investigate the pathogenicity of Bartonella on the laboratory mice, two 

types of murine models have been described: a homologous infection using several 

species of Bartonella isolated from wild rodents [12-14] and a heterologous infection 

with Bhe [15-17]. The very high inoculum doses (> 1 × 10
7
 CFU/mouse) used in most 

previous publications may be much higher than those occurring in natural infections. 

This may be the reason why experimental setup of homologous infection results in 

various clinical symptoms.  

How various inoculum doses impact the Bbi infection in mice was studied by 

Marignac et al. Three groups of eight C57BL/6 mice inoculated through the 

subcutaneous (s.c.) route with 5 × 10
3
, 5 × 10

5
 or 1.4 × 10

7
 CFU/mouse of Bbi showed 

similar bacteremia kinetics. Interestingly, the bacteremia was significantly higher and 

lasted one week longer with the lower inoculum doses compared to the higher 

inoculum doses [18]. It suggests that high inoculum doses may prime an efficient 

immune response to eliminate bacteria faster. Taken this into consideration, i.d. 

infection of a murine-specific strain Bbi with different inoculum doses was performed 

to determine minimal infection dose in our murine model. 

Results  

In two independent experiments, Balb/c mice were intradermally infected with 1 × 

10
2
, 1 × 10

5
, or 1 × 10

7
 CFU/mouse of Bbi wild-type (IBS 325T). Blood samples were 

collected from each mouse until up to 8 weeks (Fig. 1). Combining these two 

experiments, four out of four (100%) mice with 1 × 10
7
 CFU inoculum were all 

bacteremic at day 7. For the other two groups with lower-doses inoculum, the 

bacteremia became less synchronized. Four out of six (67%) mice with 1 × 10
5
 CFU 
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inoculum and three out of six (50%) mice with 1 × 10
2
 CFU inoculum were 

bacteremic. The highest peak of bacteremia reached to 10
6
 CFU/ml blood in the group 

inoculated with 1 × 10
2
 CFU inoculum. 

Discussion  

Consistent with the pervious study by Marignac et al. [18], our results confirmed that 

bacterial doses of inoculation affected the development of bacteremia in the host. 

Although reduced numbers of mice became bacteremic with low inoculum doses of 

Bbi infection, as soon as bacteria colonized in the blood, they tended to develop 

higher bacteremia and to delay the clearance. This phenomenon was also observed 

with Bta infection (chapter 3.2, Fig. 22). There as well higher levels and longer 

duration of bacteremia were observed with lower inoculum doses. Taken bacteremia 

results from two strains together, it suggests that Bartonella infection with low 

inoculum doses may be more capable of evading immune response, thereby resulting 

in high bacteremia. In nature, Bartonella transmission occurs passively when a vector 

leaves infective bacteria on the host skin (e.g., infected vector feces), indicating only a 

few bacteria are likely to be transferred to the host. Therefore, low inoculum doses 

may be closer to the natural situation and are more preferable to be used for 

Bartonella study in vivo. 
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Figure 1. B. birtlesii bacteremia kinetics in Balb/c mice through the 

intradermal infection. In the first experiment (upper), mice (n = 4) were 

inoculated with Bbi wild-type in the ear dermis: two with 1 × 10
5
 CFU (red) and 

two with 1 × 10
2
 CFU (green). In the second experiment (lower), mice (n = 12) 

were inoculated with Bbi wild-type in the ear dermis: four with 1 × 10
7
 CFU 

(blue), four with 1 × 10
5
 CFU (red), and four with 1 × 10

5
 CFU (green). Blood 

was drawn at the indicated days post-infection, diluted and plated on sheep blood 

supplemented CBA plates for counting the bacterial CFU. 
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3.3.3 B. birtlesii infection leads to lymphadenopathy in mice 

Introduction  

The clinical syndrome of cat scratch disease (CSD) was first reported in 1950 by 

Debré et al. The most typical form of CSD manifests subacute regional 

lymphadenopathy with an associated inoculation site due to a cat scratch or bite [19]. 

CSD granulomas resulting from Bhe infection are markedly characterized by the high 

content of B lymphocytes and neutrophils [20]. Similarly, a heterologous infection 

with Bhe in the murine model leads to lymphadenopathy as observed for CSD in 

humans but fails to establish bacteremia [16]. This lymph node swelling caused by 

heterologous Bartonella infections may indicate that bartonellae transport via the 

lymphatic system and trigger the granulomatous inflammation. However, Bartonella 

infection develops subclinical symptoms in the reservoir hosts. Thus, we speculate 

that homologous strains have evolved specific strategies to evade from host immune 

responses, thereby resulting in the prolonged bacteremia. In this study, we 

investigated the local inflammation by Bbi infection in mice, in particular focusing on 

ears and draining lymph nodes (LNs). 

Results  

To access the local inflammation in response to homologous infection, Bbi was used 

in the i.d. infection model where the bacteria were inoculated in the derma on the ear 

pinnae of mice. Mice were injected with 1 × 10
7 

CFU/mouse of Bbi wild-type (Sm
R
 

Bbi) or Bbi Tn-virD4, a translocation-deficient strain. Additionally, a group of mice 

were injected with phosphate-buffered saline (PBS) for comparison of the host 

response to the injection itself. At 2 dpi, cell suspensions from ears and draining 

lymph nodes were harvested. Cell samples of ear dermis were stained with a panel of 

fluorescently labeled antibodies specific for surface receptors of mouse DCs, 

macrophages, and neutrophils and analyzed by flow cytometry (Fig. 1). Moreover, the 

activation state of the dermal DCs (CD11c
+
) and macrophages (F4/80

+
) was 

determined by measuring MHCII expression levels. The activated neutrophils (LyG6
+
) 

were detected by anti-CD11b antibody staining. Analysis of the total population of 

DCs showed no difference among all three tested conditions. Compared to injection 

with PBS, infections with Bbi wild-type and Bbi Tn-virD4 recruited comparable 
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populations of macrophages (~ 20%) and neutrophils (~ 10-15%) to the ear dermis. 

These recruited neutrophils were CD11b
+
, indicating that they were activated.  

Previously, Dr. R. Okujava reported that Bbi i.d. infection (1 × 10
7
 CFU/mouse) led to 

the swelling LNs after 2 dpi even till 7 dpi. Indeed, the similar phenotype was 

observed in this study. Compared to PBS injection, infections with Bbi wild-type and 

Bbi Tn-virD4 caused the enlarged draining LNs (superficial cervical LNs) at 2 dpi. To 

determine the cell composition of swelling LNs, cell suspensions were stained with 

fluorescently labeled anti-CD3 and anti-CD19 antibodies specific for mouse T cells 

and B cells, respectively. Subtypes of T cells were distinguished by staining with 

anti-CD4 and anti-CD8 antibodies. Distant LNs (axillary and brachial LNs) were 

collected as a negative control. The diagram showing the locations of the principal 

LNs is displayed in Figure 2 [21]. Flow cytometric analysis revealed that comparable 

results were observed between infections with Bbi wild-type and Bbi Tn-virD4 (Fig. 

3). Compared to PBS injection, Bbi infection increased total population of CD19
+
 B 

cells ~ 10% in the draining LNs. Interestingly, a subgroup of cells expressing 

CD3
+
/CD19

+
 was increased ~ 5%. Staining with anti-CD4 and anti-CD8 antibodies 

showed a slight increased population of CD4
+
/CD8

+
 double positive cells. However, 

the population of single positive CD8
+
 maintained the same, but CD4

+
 cells decreased. 

In distant LNs, the cell composition remained similar in all three conditions. 

Discussion  

The results from two different locations (ears and draining LNs) showed no 

significant difference between infections with Bbi wild-type and Bbi Tn-virD4. Both 

Bbi strains induced the recruitment of macrophages and neutrophils to the inoculation 

site of the ear dermis and led to B cell-rich swelling draining LNs. It implies that 

T4SS of Bartonella does not involve in these phenotypes. However, the enlarged LNs 

caused by Bbi infection were not observed with low inoculum doses (1 × 10
5
 

CFU/mouse) (data not shown). This result along with previous data (chapter 3.3.2) 

may suggest that high inoculum doses of Bartonella non-selectively induce strong 

host innate immune responses, thus resulting in local immune cell recruitment, LN 

enlargement, and eventually low bacteremia. 

It was shown that B. grahamii (Bgr), a rodent-specific Bartonella species, compared 



  RESULTS: Additional data  

- 165 - 

 

to Bhe develops only a mild and short-lived lymphadenopathy in mice. The distinct 

course of LN swelling resulted from Bhe is due to the lymphocyte proliferation rather 

than migration. However, the relative increase of B cells compared to T cells is 

equivalent, but the rise of the absolute B cell and T cell numbers is larger in the case 

of Bhe infection because of the much pronounced lymphadenopathy [17]. Thus, using 

the relative percentage of cell population in this experiment may be not a proper way 

to study the lymphadenopathy caused by Bbi infection. The absolute cell numbers will 

be analyzed for the next investigation. 

Based on our results, a subgroup of CD3
+
/CD19

+
 double-positive cells was increased 

in the swelling LNs. However, we cannot exclude that these CD3
+
/CD19

+
 cells were 

doublets involving T cells. B cells appear as large cells that require a wide 

lymphocyte gate to be detected. By doing so, the risk of inclusion of cell doublets in 

the analysis is high. The expression of CD4 or CD8 molecules is associated with T 

helper or cytotoxic T cells, respectively. During thymic T cell development, a 

CD4
+
/CD8

+
 immature T cell stage exists. In the following, the expression of CD4 and 

CD8 cell surface molecules on mature T cells is thought to be mutually exclusive. 

Increasing evidence revealed that extrathymic CD4
+
/CD8

+
 double positive T cells are 

enhanced in the peripheral blood in patients with viral infections where these cells 

may harbor antiviral functions [22]. Besides, CD4
+
/CD8

+
 T cell population is 

commonly found in reactive LNs of nodular lymphocyte predominant Hodgkin 

lymphoma as a clue for the diagnosis [23]. These phenotypically distinct T cells 

appear to be comprised of memory cells based on their responses of antigen recall, 

expression of memory T cell markers, production of IFN-γ, and localization to 

inflammatory sites [24]. Interestingly, our results showed the CD4
+
/CD8

+
 population 

of T cells were slightly increased by Bbi infection. However, the function and 

significance of this induced small group of T cells remains to be elucidated.  
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Figure 1. Bbi infection induces the recruitment of macrophages and 

neutrophils to the ear dermis. Mice (n = 4) were intradermally infected with Bbi 

(1 × 10
7
 CFU/mouse). Two inoculated with Bbi wild-type and two with Bbi 

Tn-virD4. Besides, two mice were injected with PBS. At 2 dpi, cell suspensions 

from the ear dermis were stained with anti-CD11c, anti-F4/80, or anti-LyG6 

antibodies to determine DCs, macrophages, or neutrophils, respectively. The 

activation state of DCs and macrophages was determined by measuring MHCII 

expression levels. The activated neutrophils were detected by anti-CD11b staining. 

Results are presented as percentages of the total acquired events. 
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Draining lymph nodes 

Distant lymph nodes 

Figure 2. A scheme of the murine lymphatic system. All superficial LNs are 

bilateral and can be classified as: cervical superficial LNs (referred as draining 

LNs in red), situated immediately above the submandibular salivary glands; 

axillary LNs, present in the axillary fossa; brachial LNs, in proximity to the angle 

of the scapula; inguinal lymph nodes situated closed to the bifurcation of the 

superficial epigastric vein. Both axillary and brachial LNs are referred as distanced 

LNs in blue [21]. 
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Figure 3. Bbi infection induces recruitment of B cells to the draining LNs. 

Mice (n = 4) were intradermally infected with Bbi (1 × 10
7
 CFU/mouse). Two 

inoculated with Bbi wild-type and two with Bbi Tn-virD4. Besides, two mice were 

injected with PBS. At 2 dpi, cell suspensions of draining LNs (A) and distant LNs 

(B) were stained with a panel of fluorescently labeled anti-CD19 and anti-CD3 

antibodies specific for B cells and T cells, respectively. Subtypes of T cells were 

distinguished by staining with anti-CD4 and anti-CD8 antibodies. Results are 

presented as percentages of the total acquired events.  
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3.3.4 Bartonella-infected BMDCs migrate from the site of 

injection to draining LNs 

Introduction 

It was shown that Bhe infection leads to subacute regional lymphadenopathy in mice 

(also observed in chapter 3.3.3) and bacterial DNA is detected in LNs after 6 hpi, 

indicating that Bartonella is transported via the lymphatic system in the host [16]. 

Furthermore, a recent publication by Okujava et al revealed that Bhe affects BMDC 

cell migration through a T4SS-dependent manner [25]. Taken these two independent 

lines of evidence together, we speculate that Bartonella initially enters migratory cells, 

likely DCs, in the intradermal inoculation. In the following, DCs may serve as 

vehicles for Bartonella transport via the lymphatic system towards the blood stream. 

To assess this hypothesis, we established the hind-foot adoptive transfer of 

Bartonella-infected BMDCs in mice. Followed with the lymphatic drainage, 

migration of injected BMDCs was traced. Additionally, bacteremia development was 

analyzed to study whether Bartonella potentially exploits DCs as the carriers, 

eventually leading to successful colonization in erythrocytes. 

Results 

Adoptive transfer of Bartonella-infected BMDCs was established in Balb/c mice. 

BMDCs were infected ex vivo with Bbi wild-type (SmR Bbi) at MOI = 50. After 15 

hpi, infected BMDCs were treated with gentamycin (200 μg/ml) for 2 hours to 

remove extracellular bacteria. In the following, 5 × 105 uninfected or Bbi-infected 

BMDCs labeled with Vibrant DiO were injected subcutaneously (s.c.) in the right 

hind foot of mouse. The lymph drainage from the hind-foot primarily goes through 

the popliteal (PO) LN and inguinal (IN) LN. The PO LN drains centrally to the iliac 

(IL) LNs and following to the renal (RE) LN. (Fig. 1) [26]. At 1, 2, and 3 dpi, cell 

suspensions of the PO and IN LNs (referred as draining LNs) were collected and 

analyzed by flow cytometry. Our results clearly showed both uninfected and 

Bbi-infected BMDCs were able to migrate from the hind-foot to the draining LNs. 

Compared to the uninjected side as the negative control, the labeled cells were 

recovered from the draining LNs (0.2 - 0.3%) even until 3 dpi (Fig. 2). The absolute 
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cell numbers were showed in the figure 3. The highest amounts of fluorescent cells 

were detected at 1 dpi and decreased gradually. 

Discussion 

Our results showed that Bbi-infected BMDCs similar as uninfected BMDCs were 

detected within the draining LNs at 1 dpi, indicating that Bbi infection did not impair 

the DC migratory capability. However, only few bacterial colonies were recovered 

form cell suspensions of draining LNs (data not shown). It is difficult to interpret how 

well Bbi wild-type survived in BMDCs and passaged to lymphatic system in the 

established adoptive transfer model. Bacteria may be already released from BMDCs 

before cell suspensions were harvested. To address this question, bacteremia analysis 

could be a better way. The development of bacteremia from mice adoptively 

transferred with Bbi-infected BMDCs was analyzed from 3 to 28 dpi. However, five 

out of five mice were abacteremic. Later, we realized that different from Bbi 

wild-type (IBS 325T) leading to stable bacteremia (chapter 3.3.2), the Sm
R
 Bbi 

wild-type used in this experiment was attenuated and failed to develop the bacteremia 

in the i.d. infection model. Thus, experiments of adoptive transfer were re-performed 

using Sm
R
 Bta wild-type which was confirmed to be capable of establishing stable 

bacteremia in mice (chapter 3.2, Fig 22). Five out of Five mice became bacteremic 

with inoculation of Bta-infected BMDCs through the hind-foot of mouse (data not 

shown). It suggests that BMDCs may potentially serve as vehicles for Bartonella 

transport, thereby resulting in colonization in erythrocytes. However, more 

investigations are needed to exclude that BMDCs are lysed during injection and 

bacteria are exposed directly under the skin. 
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Draining lymph nodes 

Figure 1. A diagram shows lymphatic drainage in the mouse. The adoptive 

transfer was performed through hind-foot (arrow in blue). The lymph drainage 

from the hind-foot primarily goes through the popliteal (PO) LN and inguinal (IN) 

LN. The popliteal LN drains centrally to the iliac (IL) LNs and following to the 

renal (RE) LN. Both PO and IN LNs are referred as draining LNs labeled in red. 

[26] 
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Figure 2. Both uninfected and Bartonella-infected BMDCs migrate from the 

hind-foot to draining LNs. BMDCs were infected ex vivo with Bbi wild-type 

(Sm
R
 Bbi) at MOI = 50. Gentamycin (200 μg/ml) treatment was used to remove 

extracellular bacteria. In the following, 5 × 10
5
 uninfected (n = 1) or Bbi-infected 

(n = 2) BMDCs labeled with Vibrant DiO (FL1 channel) were injected 

subcutaneously (s.c.) in the right hind foot of mouse. At 1 dpi, cell suspensions of 

PO and IN LNs were collected from both sides and analyzed by flow cytometry.  
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Injection DAY 1 DAY 2 DAY 3 

BMDCs 3687 1136 1883 

#1 Bbi-infected BMDCs 4441 1513 1309 

#2 Bbi-infected BMDCs 2492 226 475 

 

  

Figure 3. The absolute numbers of fluorescent cells are detected in draining 

LNs. BMDCs were infected ex vivo with Bbi wild-type (Sm
R
 Bbi) at MOI = 50. 

Gentamycin (200 μg/ml) treatment was used to remove extracellular bacteria. In 

the following, 5 × 10
5
 uninfected (n = 1) or Bbi-infected (n = 2) BMDCs labeled 

with Vibrant DiO (FL1 channel) were injected subcutaneously (s.c.) in the right 

hind foot of mouse. At 1, 2, and 3 dpi, cell suspensions of PO and IN LNs were 

collected from both sides and analyzed by flow cytometry. This figure presents the 

absolute number of FL1 positive cells after subtraction of the background of 

autoflourescent events from control LNs.  
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3.3.5 B. taylorii infection in the neonatal murine model leads 

to extremely high bacteremia but not to bacterial persistence 

Introduction  

As reported, the domestic cats naturally infected with a feline-specific strain Bhe 

developed prolonged bacteremia for several weeks to more than one year [27]. With 

current experimental setup, Balb/c mice (6 to 8 weeks old) infected with homologous 

strains Bbi and Bta led to transient two-month bacteremia, which may be much 

shorter from those occurring in nature. As exemplified by H. pylori, experimental 

infection in mice during the neonatal period leads to bacterial persistence based on a 

mechanism of tolerogenic DCs reprogramming via a T4SS independent manner [28]. 

To get closer with the situation that Bartonella homogenous infection may persist for 

life, a neonatal murine model for Bta infection was established. Neonatal life is 

characterized by heightened sensitivity to infectious agents with severely reduced 

specific cellular and humoral immune responses. The sensitivity of newborns to 

infectious diseases is partly due to the lack of pre-existing immunological memory 

and the small number of immune cells presenting in peripheral lymphoid tissues. 

Aside from these quantitative differences, newborn immune cells are qualitatively 

distinct from adult cells. However, neonates are considered as immunodeviant instead 

of immunodeficient. Depending on the conditions of antigen exposure, neonates are 

able to mount various responses, ranging from deficient or deviant to fully mature 

[29]. Newborn mice are defined experimentally as those ages from 1 to 10 days. 

There are major changes in lymphoid-organ development during the first week. 

However, some adaptive immune responses are similar in 7-day-old and 1-day-old 

mice. In this study, Bta infections in mice at different ages: 7 days or 1 day, as well as 

in two species: C57BL6 or Balb/c were compared. 

Results  

Mice were infected with Bta wild-type during the neonatal period (i.e., at the age of 7 

days or 1 day) through an intraperitoneal route. After injection, neonates were placed 

back to the same cage with the mother mouse. Until they reached 21 days old, 

infected mice were separated by gender. Blood samples were collected from 21 dpi 
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until no detectable bacteremia. When C57BL6 mice were infected at the age of 7 days, 

four out of four (100%) mice with 1 × 10
7
 CFU inoculum, five out of five (100%) 

mice with 1 × 10
5 

CFU inoculum, and one out of four (25%) mice with 1 × 10
3
 CFU 

inoculum were bacteremic. The highest peak of bacteremia was almost 10
8
 CFU/ml 

blood in the group inoculated with 1 × 10
5
 CFU/mouse (Fig. 1). When C57BL6 mice 

were infected at 1 day old, six out of six (100%) mice with 1 × 10
7
 CFU inoculum, six 

out of six (100%) mice with 1 × 10
5
 CFU inoculum, and one out of two (50%) mice 

with 1 × 10
3
 CFU inoculum were bacteremic. The highest peak of bacteremia reached 

to 7 × 10
8
 CFU/ml blood in the groups inoculated with 1 × 10

5
 CFU/mouse and 1x10

3
 

CFU/mouse (Fig. 2A). Furthermore, when Balb/c mice were infected with Bta 

wild-type at the age of day 1, all of the mice with different inoculum doses (1 × 10
7
, 1 

× 10
5
, and 1 × 10

3
 CFU/mouse) were bacteremic. The highest peak of bacteremia 

reached 3 × 10
9 

CFU/ml blood in the groups inoculated with 1 × 10
5
 CFU/mouse and 

1 × 10
3 

CFU/mouse (Fig. 2B). The bacteremia kinetics was similar in all of tested 

groups (range, 8 to 9 weeks). 

Discussion 

In this study, Bta infection in neonatal mice (both at the age of 7 days and 1 day) did 

not lead to bacterial persistence. Similar to infection in 8 weeks old mice (considered 

as adults), the bacteremia kinetics in neonatal mice was in a range until 8 to 9 weeks. 

Based on pervious results in adult mice (chapter 3.2, Fig. 22), the highest peak of 

bacteremia reached at 14 dpi. In neonatal murine model, we started to collect blood 

sample at 21 dpi due to handling issues. Thus, we might have missed the highest peak 

of bacteremia in the neonates. Even so, Bta infection in 1-day-old C57BL6 mice 

showed that the highest detectable peak of bacteremia was around 1 log higher than 

infection in adult mice. Infection in 1-day-old Balb/c mice led to almost 2 log higher 

bacteremia than infection in adult mice. Interestingly, the age of infected mice has a 

significant effect on bacteremia development. Comparing bacteremia of different 

mice strains showed that Balb/c mice were more susceptible to Bartonella infection. 

Based on extremely high bacteremia in the neonatal mice model, it indicates that 

immunodeviant neonates poorly control the Bartonella replication in the early phase. 

While mice grow up and develop an intact immune system, the bacteremia is 

gradually cleared out. So far, it was never supported by in vivo data where Bartonella 

survives and replicates in the primary niche before the bacteremic stage. Based on the 
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extremely high bacteremia in newborn mice, this neonatal murine model may provide 

a better platform to study the primary niche of Bartonella infection. 
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Figure 1. Bacteremia kinetics of B. taylorii infection in 7-day-old mice. 

7-day-old C57BL6 mice (n = 14) were inoculated with Bta wild-type via i.p. route: 

five with 1 × 10
7
 CFU (blue), five with 1 × 10

5
 CFU (red), and four with 1 × 10

3
 

CFU (green). Blood was drawn at the indicated days post-infection, diluted and 

plated on sheep blood supplemented CBA plates for counting bacterial CFU. 
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Figure 2. Bacteremia kinetics of B. taylorii infection in 1-day-old mice. (A) 

1-day-old C57BL6 mice (n = 14) were inoculated intraperitoneally with Bta 

wild-type: six with 1 × 10
7
 CFU (blue), six with 1 × 10

5
 CFU (red), and two with 

1 × 10
3
 CFU (green). (B) 1-day-old Balb/c mice (n = 19) were inoculated 

intraperitoneally with Bta wild-type: eight with 1 × 10
7
 CFU (blue), six with 1 × 

10
5
 CFU (red), and five with 1 × 10

3
 CFU (green). For both experiments, blood 

was drawn at the indicated days post-infection, diluted and plated on sheep blood 

supplemented CBA plates for counting bacterial CFU. 
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3.3.6 Bta Δ bepDE loses the fitness of bacteremia 

development 

Introduction 

The immunomodulatory activities of BepDBhe were majorly studied in vitro analyses 

(chapter 3.2). In the following, we became interested in the role of BepD in an in vivo 

establishment of Bartonella infection. However, Bhe causes bacteremia as a hallmark 

of infection in its feline natural reservoir host only, which for ethical reasons is not an 

accessible experimental model. To establish an optimal murine model for the 

functional analysis of Beps, Bta, a murine-specific strain, was introduced with its 

feasibility of genetic manipulations. Annotation of the genomic fragment revealed that 

only five effector proteins can be annotated in Bta instead of seven Beps (BepA-G) in 

Bhe. Among them, two Beps, BepDBta and BepEBta contain putative 

tyrosine-phosphorylation motifs as homologs of BepDBhe (identity of the N-terminal 

fragment: 53%) and BepEBhe (identity of the N-terminal fragment: 24%), respectively. 

To avoid their potentially redundant functions, a mutant strain of Bta with deletions of 

both genes bepD and bepE was constructed (referred to Bta ΔbepDE). Mice were 

infected intradermally with Bta ΔbepDE and bacteremia was monitored up to 8 

weeks. 

Results 

In this experiment, ten mice were intradermally infected: five with Bta wild-type (1 × 

10
5
 CFU/mouse) and five with Bta ΔbepDE (1 × 10

5
 CFU/mouse). Different from Bta 

wild-type infection which led to five out of five (100%) bacteremic mice at 7 dpi, Bta 

ΔbepDE infection resulted in three out of five (60%) mice developing less 

synchronized bacteremia. The highest peak of bacteremia caused by Bta wild-type 

reached to 10
6
 CFU/ml blood. Although 60% mice were bacteremic, Bta ΔbepDE 

developed lower titer (range from 10
3
 to 10

5
 CFU/ml) and shorter duration (range 

from 3 to 5 weeks) of bacteremia (Fig. 1). 

Discussion 

Infection with Bta ΔbepDE led to lower and shorter bacteremia, indicating that less 

fitness of bacteremia development resulted from combined consequences of loss of 
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BepDBta and BepEBta. However, when the effect of BepDBta and BepEBta on DC 

maturation was analyzed in vitro, we realized that impaired DC maturation only 

resulted from BepDBta but not BepEBta. Most likely, these two effectors containing 

EPIYA-related motifs process different functions. To study the specific relevance of 

BepDBta in vivo, Bta ΔbepD was generated and analyzed in the Research article II 

(chapter 3.2).  

A recent publication by Dr. R. Okujava demonstrated a potent role of BepE in 

bacterial dissemination from derma to blood. In vitro analysis revealed that BepEBhe 

rescued the cell fragmentation which was triggered by BepCBhe. In the rat model, 

when the B. tribocorum mutant Btr ΔbepDE was abacteremic through the i.d. 

infection, complementation with BepEBtr, BepEBhe or BID domains of BepEBhe 

restored bacteremia. [25]. However, though leading to impaired bacteremia, Bta 

ΔbepDE was not abacteremic. One of the possibilities is that BID domain of other Bta 

effectors aside from BepDBta and BepEBta may possess similar function as BID 

domains of BepEBhe. Also, it remains unclear whether any of Bta effectors containing 

a FIC domain triggers the deleterious phenotypes as BepCBhe.   
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Figure 1. Bta ΔbepDE loses the fitness of bacteremia development. Mice (n = 

10) were inoculated intradermally: five with 1 x 10
5 

CFU of Bta wild-type (blue), 

and five with 1 x 10
5 

CFU of Bta ΔbepDE (red). Blood was drawn at the indicated 

days post-infection, diluted and plated on sheep blood supplemented CBA plates 

for counting bacterial CFU. 
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Functional interaction between BadA and VirB/D4 T4SS 

The first published report “Bartonella henselae trimeric autotransporter adhesin BadA 

expression interferes with effector translocation by the VirB/D4 type IV secretion 

system” (chapter 3.1) in my Ph.D. thesis was accomplished by collaboration with the 

group of Prof. V. Kempf. Our findings revealed that most Bartonella clinical isolates 

had lost expression of either BadA or VirB/D4 during in vitro passages. Only one 

exception of clinical isolate (strain San Antonio 3 variant-2) from our screen stably 

coexpressed BadA and VirB/D4. Furthermore, the phenotypic effects of coexpression 

of both virulence factors demonstrated that BadA interfered with the function of 

VirB/D4 T4SS, but kept its intact capabilities. Based on our data obtained from this 

study, we propose that BadA negatively affects VirB/D4-dependent Bep translocation 

and invasome formation by likely forming a physical barrier between the bacterial cell 

envelope and the host cell membrane. In contrast, BadA-dependent phenotypes are 

not affected by a functional VirB/D4 T4SS. Both virulence factors, each displaying 

multiple functions in host cell interaction, were described to be essential for 

Bartonella pathogenicity. Potentially, BadA and VirB/D4 are differentially regulated 

during the different stages of the infection cycle of Bartonella. Further experiments to 

elucidate the regulatory patterns of these two systems are needed. 

Immunomodulatory properties of BepA and BepD 

Through the intradermal infection, Bartonella VirB/D4 T4SS is known to be an 

indispensable virulence factor for the successful development of bacteremia. 

Particularly, it is required at an early stage of infection before the onset of 

intraerythrocytic bacteremia. Since DCs are one of the potential vehicles for 

Bartonella transport in the host organism, we sought to examine the functional 

consequences of professional antigen-presenting DCs in response to Bartonella 

infection. This resulted in the second manuscript “Bartonella translocated effectors, 

BepA and BepD, interfere with the maturation of dendritic cells” (chapter 3.2). Our 

data revealed that Bartonella infected DCs remained a “semi-mature” developmental 

stage, which was characterized by reduced surface expression of MHCII complex and 

co-stimulatory receptors CD40 and CD86, as well as strongly diminished secretion of 

the pro-inflammatory cytokines TNF-α and IL-6. These phenotypic changes of 
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impaired DC maturation observed upon Bartonella infection were attributed to two 

effector proteins, BepA and BepD.  

The BID domain of BepA strongly affected the downregulation of CD40 expression 

and TNF-α production, likely through cAMP elevation in BMDCs. In the following, 

how PKA and Epac-1, known as key players in the downstream of cAMP signaling, 

antagonistically interact with each other for the anti-inflammatory response of BepA 

will be further analyzed. Also, although BepA homologs share high sequence identity, 

the functional readouts of them were not congruent. Further investigations are needed 

to elucidate a potential cell type or host species specificity of BepA. 

The phenotypic changes of infected BMDCs triggered by Bartonella BepD were 

represented by the downregulation of surface MHCII and CD86 expression, as well as 

by the repression of TNF-α and IL-6 production. Besides in primary BMDCs, ectopic 

expression of BepD in JAWSII cells showed antagonistic effects on LPS-triggering 

TLR signaling. In this study, we demonstrated that BepD led to a prolonged STAT3 

phosphorylation and activation similar to IL-10 signaling, which may explain the 

immunosuppressive properties of BepD. Moreover, constitutive 

tyrosine-phosphorylation of BepD in JAWSII cells suggests that BepD acts as a 

signaling hub to actively trigger the STAT3 activation, in contrast to IL-10 receptor, 

which is thought to only become active upon engagement of its extracellular signals. 

To further verify this hypothesis, we will examine the effects of STAT3 protein 

knockdown by RNA interference on the immunomodulatory activity of BepD. 

DCs reaching a stage of semi-maturation are believed to be capable of driving naïve T 

cell into a regulatory cell fate characteristic for immunotolerance. To support this idea, 

functional analyses of these semi-mature DCs are needed. One was performed by 

using ex vivo T cell response assay. BMDCs from naïve mice were infected with 

Bartonella and subsequently co-cultured with OTII-transgenic T cells under 

conditions of ovalbumin-specific priming. Subsequently, the state of T cell activation 

was monitored by cell proliferation. However, in this experiment, BMDCs without 

Bartonella infection already primed a strong T cell activation, and thus this result was 

not conclusive (data not shown). In addition, to translate our findings into an in vivo 

context, we analyzed the bacteremia as a hallmark of Bartonella infection in mice. 

Although a trend of losing the bacterial fitness was observed after infection with B. 
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taylorii strains harboring deletions of bepA or/and bepD, the effects of BepA and 

BepD on bacteremia development were not strong. To sensitize our murine model, 

lower doses of inoculum will be tested in the next experiment. Also, further 

investigations uncovering the local inflammation (particularly at the site of injection 

and draining lymph nodes (LNs)) of Bartonella infection will be performed.  

Immunological signaling triggered by Bartonella infection 

Even though LPS of Bartonella shows unusual structural features connected to a 

significantly lower endotoxic activity, a strong inflammation in BMDCs was observed 

after infection with an effector-free strain of Bartonella (see chapter 3.2). We became 

interested in studying which immunological signaling in DCs was triggered by 

Bartonella infection (chapter 3.3.1). Examination of BMDCs from TLR4- and 

MyD88/Ripk2- deficient mice revealed that upregulation of surface MHCII complex 

and co-stimulatory receptors by E. coli LPS treatment or by Bartonella infection was 

through a MyD88/Ripk2-indepednent pathway. Contrarily, MyD88 or Ripk2 plays an 

essential role in cytokine production (TNF-α and IL-6). Results obtained from this 

experiment indicate that Bartonella infection of BMDCs provokes both 

MyD88/Ripk2-dependent and -independent immunological signaling pathways. To 

specify the relevance of MyD88 and Ripk2 to DC inflammation, single gene 

knock-out BMDCs will be used. Furthermore, upon Bartonella infection, TNF-α 

production was diminished in TLR4-deficient BMDCs, whereas IL-6 induction 

remained the same. It implies that besides TLR4, another receptor engaged with 

Bartonella to mediate IL-6 production. To assess this question, other TLR-deficient 

BMDCs will be analyzed.  

Bartonella transport at an early stage of infection 

To explore how Bartonella transport in the host organism, different in vivo analyses 

were established. We found that intradermal infection of B. birtlesii led to the 

enlargement of draining LNs in mice (chapter 3.3.3). Moreover, bacterial colonies 

could be recovered from the draining LNs at 24 hours post-infection (Dr. R. Okujava, 

data not shown). Taken together, these results indicate that Bartonella is transported 

through the lymphatic system and triggers the granulomatous inflammation in the 
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LNs. Furthermore, the adoptive transfer of Bartonella-infected BMDCs revealed that 

infected BMDCs were capable of migrating from the site of inoculation to draining 

LNs and eventually led to the bacteremia (chapter 3.3.4). Although there were some 

technical concerns, this result supports the idea that DCs are potential vehicles for 

bacterial spreading in the host. Upon migration, it is tempting to speculate that 

Bartonella colonizes the primary niche for preparing its competency to subsequently 

interact with erythrocytes. However, so far this assumption is not yet supported by in 

vivo experimental data. A neonatal murine model established in this thesis may 

provide a better platform to study the primary niche of Bartonella infection. 

Compared to adult mice, Bartonella infection in newborn mice developed extremely 

high bacteremia (chapter 3.3.5), indicating that immunodeviant neonates poorly 

control the Bartonella replication in the early phase of infection. 

A potential model of Bartonella stealth-infection strategy 

To summarize, a potential model of Bartonella stealth-infection strategy can be built 

based on results obtained from my Ph.D. thesis (Figure in next page). Upon 

inoculation into the host, Bartonella initially enters migratory cells, such as DCs, 

which assist the passage of bacteria from the intradermal environment via lymphatic 

system to the primary niche, eventually culminating in their release to the 

bloodstream. On one hand, DCs may be exploited by Bartonella for bacterial 

transport passing through the draining LNs. On the other hand, in the LNs, 

“semi-mature” DCs triggered by Bartonella infection may possess potential 

tolerogenic activities to subvert T cell response. The induction of semi-maturation 

observed in DCs is attributed to two effector proteins, BepA and BepD. Moreover, the 

underlying mechanisms of BepA and BepD involve in distinct host signaling 

pathways, cAMP and STAT3, respectively. In my Ph.D. thesis, this is the first time to 

reveal the immunomodulatory properties of the VirB/D4 T4SS reflecting part of the 

Bartonella stealth-infection strategy for a chronic bartonellosis. 

  



  CONCLUSIONS AND OUTLOOK  

- 190 - 

 

 

  

Figure. A potential model of Bartonella infection cycle. Upon inoculation into the host, 

Bartonella initially enters migratory cells, such as DCs, for bacterial transport from the intradermal 

environment via lymphatic system to the primary niche, eventually culminating in their release to 

the bloodstream. Upon Bartonella infection, “semi-mature” DCs possess potential tolerogenic 

activities to subvert T cell response in the LNs. This induction of the semi-maturation observed in 

DCs is attributed to two effector proteins, BepA and BepD. The underlying mechanisms of BepA 

and BepD involve in distinct host signaling pathways, cAMP and STAT3, respectively. 
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