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“Scientific knowledge is a body of statements of varying degrees of certainty – some most

unsure, some nearly sure, none absolutely certain. ”

Richard Feynman, The Pleasure of Finding Things Out
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Computational Methods for Dissecting Transcription Regulatory Networks

by Saeed Omidi Klishami

Gene expression is regulated on many levels of which transcription regulation is the

most studied. Transcription factors (TF) arguably are the most integral part of tran-

scriptional regulation; by recognizing and specifically binding to short, but degenerate,

DNA sequences, TF control the transcription initiation of genes. In the mid 70s, the first

mechanism of TF binding recognition was introduced which is based on simple hydrogen

bonding rules. Since then numerous observations of complex TF binding site recognition

has substantially altered our viewpoint of the TF binding specificity. In particular, re-

cent studies have uncovered subtle pairwise dependencies (PD) between positions within

binding sites, which disapproves the common assumption in many current computational

models– that binding positions contribute independently toward the binding affinity of

a sequence. Several works already tried to incorporate PD within a framework of bind-

ing site recognition, but due to the complexity of this problem, they failed to provide

a consistent and rigorous methodology. In my PhD, we have addressed PD from a

computational perspective by introducing dinucleotide weight tensors (DWT), which

incorporates the entire information on PD into a robust mathematical model. Among

several advantages, the DWT model does not have any tunable parameters which makes

it highly applicable. Finally, recent boom of high-throughput data has provided a unique

window to investigate various questions regarding to binding specificity. Here, we have

systematically tested the DWT model against the classical non-dependent model over a

large number of human TF ChIP-seq data. The in vivo data has clearly demonstrated

the role of PD in binding specificity. Remarkably, we found resulting dependency models

from ChIP-seq data, outperform non-dependent models on separate in vitro data. In

fact, testing over the HT-SELEX data, a high-throughput variant of the SELEX, has

further corroborated the importance of PD.

http://www.unibas.ch
http://www.biozentrum.unibas.ch/research/groups-platforms/group/unit/nimwegen/
http://www.biozentrum.unibas.ch
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Chapter 1

The complexity of TF-DNA

interaction

1.1 The classical Protein-DNA recognition code

In almost every biological process, various proteins recognize and interact with other

molecules. Some of these interactions form tightly bound complexes, such as histone

interaction with DNA. Other types of interactions, that is the main goal of this work,

concerns with dynamically and reversibly binding of proteins to DNA, such as tran-

scription factors (TF) binding to their DNA binding sites [1]. There are different ways

that polypeptides interact specifically with other molecules such as DNA. These include

hydrophobic interaction, which plays an important role in protein folding. Another type

of interactions that are of more specific character owing to the directional character are

electrostatic interactions of which the most important form of them is hydrogen bond-

ing. Motivated by the stability of the hydrogen bond interaction between the proteins

and double helical DNA, Seeman et al. proposed the first protein recognition code in

1976 [2]. The proposed model defines the specific binding by the number of hydrogen

bonds, where as it is argued, the specific amino-acid side chain interactions involving

two hydrogen bonds are the components of the specific recognition system. In the ma-

jor groove an argenine binds to guanine, and asparagine or guanine interacts specifically

with adenine base pair. Using pairs of hydrogen bonds is sufficient to unambiguously

distinguish the A-T or G-C pairs in the major groove of the double helix DNA. How-

ever, this oversimplified view to the TF-DNA interaction is rejected after 30 years of

subsequent analysis. A multitude of studies have demonstrated myriad complications

with such simple recognition code [3]. This chapter briefly reviews various evidences

regarding to the complexity of TF binding site recognitions.

1



Chapter 1. The complexity of TF-DNA interaction 2

1.2 Direct versus Indirect readout mechanism

A direct recognition of DNA binding sequences by TF through direct interactions be-

tween amino-acid side chain and DNA base pairs is referred to as direct readout (also

known as base readout). Indirect readout is yet another type of TF-DNA interaction

that depends upon DNA conformation and its elastic properties [4]. In contrast to the

direct readout, in indirect readout the shape and structure of DNA contributes to the

binding affinity of DNA [5]. While the elements of direct readout contribute to the

binding site recognition by TF, it is clear that in many situation, where the form of

DNA deviates from the standard B-form double helix, the indirect readout influences

the binding affinity to some degree [6]. Formally, indirect readout, or equivalently shape

readout, is defined as TF-DNA interactions which is depend on base pairs that are not

directly touching the protein surface .

These observations are in contradiction with the current information-theoretic based

methods for binding site prediction, e.g. position specific weight matrix (PSWM) model.

For a detailed discussion on the PSWM model refer to the Chapter 2. The DNA consist-

ing of four basic nucleotides form a three-dimensional double-stranded structure in which

every base has a different conformation and chemical properties. Studies have demon-

strated that the conformation of the DNA is sequence-dependent, and so the structure

variation is actually utilized by proteins in order to recognize their binding sites [7] [8].

It is however more challenging to resolve the three-dimensional structure of DNA due

to its higher flexibility nature compare with the complexes. Nonetheless, Kardar and

colleagues presented the first structure-based model for PurR, an Escherichia coli TF,

recognition binding site [9]. Limited number, and low accuracy, of current structure data

has served as hindrance for building mechanistic models, therefore the statistical-based

methods that are learned form cognate sites are at the moment more pragmatic.

The miss-conformation of DNA from the standard B-form double helix is categorized

into two general groups: local and global shape miss-conformation [6]. In the local shape

readout, the deviation from the B-form double helix is localized in rather small regions

of the DNA and parameters such as kinks in the DNA can change the affinity of binding

to the sequence. On the other hand, the global readout refers to a larger deformation

or bent in DNA molecule. One example of the local shape readout is demonstrated by

Rohs et al. where a mechanism named as minor groove narrowing, often seen in AT-rich

sequences enhances the negative electrostatic potential of DNA [10]. It is suggested that

the recognition of the local variation in DNA by protein offers an opportunity for forming

specific TF-DNA complex. SRF-like and p53-like TFs are two TF classes, according to

SCOP superfamilies [11], that contact narrow minor grooves. The global shape readout

is observed in situation where the larger deformation of the DNA is involved. In a study
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on the binding of papillomavirus E2 TF, Rohs and colleagues by using an all-atom Monte

Carlo simulation found a greater deviation of DNA from the B-form double helix [12].

This study also suggests that the DNA conformation is highly sequence-dependent.

1.3 Spatial dependency between protein and DNA

Unlike the last section that was concerned with the role of DNA conformation in binding

specificity, this section explains an inherent flexibility of the folded protein in recognizing

DNA binding sites. As it has been discussed in (section 1.1), the favorable TF-DNA

interaction is brought about by hydrogen bonding between these two molecules. This

requires an exact spatial localization of TF versus its DNA binding site. The positioning

of protein against DNA is also called protein docking geometry. Thus, the correct dock-

ing geometry is of an utmost importance in establishing a specific binding interaction

[13]. The sheer number of possible geometrical alignments of the protein backbone to the

DNA molecules makes it very difficult to specify a simple model of the binding preference

of a protein. Very interestingly, it is shown that even a single TF can employ various

docking geometry when binding to different sequences. For instance, RelA homodimer, a

member of the larger NF-κB family, binds to the sequence 5’-GGAA(A)TTTC-3’, where

one subunit forms the hydrogen bond interaction with the half-site 5’-GGAA, and the

other subunit exhibits a major rotation, causing it not to touch the TTTC-3’ half-site

[14]. In contrast, both subunits specifically bind to the two half-sites of a symmetrical

sequence 5’-GGAA(A)TTCC-3’ [15]. In an earlier study, it was illustrated that different

types of Zn finger motifs show distinct docking geometry [16]. The two Zn finger motifs

in GLI show flexible binding geometry modes: with one mode contacting one strand of

DNA (Watson strand), and another motif facilities binding to another DNA strand. It

has also been shown that protein with multiple zinc fingers show a large range of docking

geometries [13].

1.4 Low-affinity and non-specific binding

Apart from sequences that bind with high specificity, there are roughly two classes of

other sequences that exhibit binding. These include low affinity DNA sites and non-

specific binding events. In low affinity binding, the sequence content of the site con-

tributes less to the binding affinity of the sequence compared to high affinity sequences.

However, several studies have pointed out their abundance in binding. On the other

hand, non-specific binding events are also observed specially in experiments such as

ChIP-seq. These non-specific binding events are not function of the sequence itself,
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but different parameters such as the openness of binding site inside the active genomic

regions.

High affinity sites

Low affinity sites

Non-specific sites

Binding Energy

D
en

si
ty

Figure 1.1: Learning the parameters in computational models is often done using
only high affinity binding sequences, which represent only a very small fraction of all
potential binding sequences. A second class of binding sequences corresponds to ‘low
affinity’ sequences that have sigificantly lower affinity than the high affinity sites, but
that still bind the protein more strongly than average sequences. Finally, non-specific
binding events can also occur at the bulk of sequences that have no sequence=specific

binding affinity.

Figure 1.1 shows a simple representation of the binding sequences in terms of their

binding free energy. High affinity sequences are representing a very small fraction of the

binding sequences that often perfectly match to the consensus sequences. Only this small

class of the sequences is usually the main focus of the published works. It is also true

that many of the computational models, e.g. PSWM matrix, and motif databases such

as JASPAR and Transfact are solely based on the high-affinity sequences. The other

important class of the sequences is low-affinity sequences. Despite their lower chance

for binding compared to high-affinity sequences, the low-affinity sequences exhibit a

modest number of binding events. Unlike what has been traditionally assumed, these

low-affinity sequences represent an important class of the binding sequences. Several

studies highlighted their importance in different context, such as in vivo experiments.

In a study Jiang and Levin [17] demonstrated the role of low-affinity binding of dorsal

(dl) binding in patterning the early embryo. In line with the results from Jiang and

Levin, other works showed the low-affinity binding tendency of different TF gradients,

which arise specially at the early stages of development in a spatio-temporal manner

[18] [19] [20] [21]. In a study on ETS family TFs, it was shown that binding events on
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genomic regions with low affinity sites were more common than binding events to ETS

consensus sequences [22]. It is speculated that the low-affinity binding is pronounced

due to the cooperative binding of a different number of proteins to different genomic

loci. Moreover, it was shown that the proteins from the same family share the same

high-affinity sequences, but they exhibit quite different medium-affinity and low-affinity

binding preferences. For example, mouse TFs Irf5 and Irf4, although sharing the same

high-affinity site, interestingly show a different lower-affinity sequences 5’-CGAGAC-3’

and 5’-TGAAAG-3’, respectively. Therefore, to disentangle this subtlety in binding, the

computational models should account for lower-affinity sequences. Even though, most

of the computational models today are only based on the higher-affinity sequences. The

PSWM model can be parametrized in a way to address low-affinity sequences [23], but

this might result in a a very flexible model with a high level of false positive rate.

Another class of the sequences that represent the majority of the possible binding se-

quences is non-specific binding sites (1.1). The non-specificity of binding has been ob-

served in many different studies [24] [25] [26]. The main picture for TF binding site

recognition is that the TF searches its functional, and specific, binding sequences in

a greater pool of non-specific sequences. During this scanning of the genome, the TF

establishes contacts to different genomic sequences, in a way that is not specific to the

local sequence. After a short contact, it then releases the DNA and continue searching

for the specific site. Once the specific site is visited, it stays there for relatively longer

time in order to perform a function: expression, or repression of a gene. How the pro-

tein recognizes its binding site and switches from non-specific interaction to a specific

binding mode [27].

1.5 Flanking DNA sequences

Surprisingly, it is observed that not only the core (or seed) binding sequences are es-

sential for binding specificity, but also the flanking sequences, often non-informative,

are exerting a significant effect on binding preference. In our study of the ENCODE

ChIP-seq data [28], we have repeatedly observed that PSWM models that include low-

information flanking positions, outperform shorter trimmed versions of the same motif.

It is also reported by other studies that flanking sequences, when they are taken into ac-

count, greatly improve predictions. Interestingly, in a high-throughput study on Gcn4,

a master regulator in Yeast, an important role of flanking sequences is illustrated [29].
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1.6 Multiplicity in DNA binding modes

Another complicating factor that has been revealed in a number of works is the multiple

modes of DNA binding. Over the last few years, high-throughput studies have been

increasingly reporting a degeneracy and binding diversity, which leaves the modeling

approaches with a great challenge to address the observed binding variability [30] [31]

[32] [33] [34]. Some of these intricacies are outlined in this section.

1.6.1 Multiple DNA binding domains

TFs can in general possess a number of distinct DNA binding domains (DBD) [35].

This can result in a flexibility for the DNA binding site recognition. For instance, Evi1,

a zinc finger protein, has 10 zinc finger domains which are functioning separately in

two autonomous DBD [36]. As a result, it recognizes separate classes of motifs, under

different conditions [37]. Yet a more complicated situation has been reported for the

mouse TF Oct-1, which contains two DBD. Remarkably, this allows Oct-1 to bind to

three classes of motifs, depending on the combinations of its two DBD. In addition to

the multiple DBD, each DBD can take on different conformations. For example, for

p53, an important regulator for cellular integrity and stress response, the DBD forms

two extended and recessed conformations, which can lead to different modes of binding

[38].

Siggers and Gordan
Nuc. Aci. Reas. 16, (2013)

Figure 1.2: Oct-1 can bind to three distinct classes of motifs, depending on which
combination of its two DBD, POUHD and POUS , is being used [3].

1.6.2 Flexible spacing

One interesting phenomenon regarding TF binding is that some TFs bind to two con-

secutive half sites in the DNA, that are separated by a distance of a few nucleotides,

and that this spacing may vary across conditions. This phenomena is known as variable
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or flexible spacing, because the space between two half-sites is not always fixed. It was

first reported for the case of leucine zipper (bZIP) proteins [39].

Variable spacing has also been observed for nuclear receptors. It is, for instance, ob-

served that there is a different spacing between the half-site 5’-AGGTCA-3’ for binding

of peroxisome proliferator activated receptors [40]. This variable spacing also applies

to RAR:RXR dimers, which bind to two half sites separated by a varying number of

nucleotides [41].

1.6.3 Multimeric binding

Some TFs can form complexes with other proteins, including other TF or co-factors. A

recent high-throughput study using HT-SELEX has uncovered the abundance of dimeric

binding, for proteins that are previously supposed to act as monomer, such as ELK1

[25]. The observed dimeric sites, are actually observed also in vitro.

1.7 Summary and outline

This chapter has briefly enlisted a number of complications that have been reported,

over the last three decades, for TF binding specificity. Starting from a simple model for

protein-DNA recognition code, which was a deterministic view to binding recognition,

the further researches in this field have revealed more and more discrepancy from this

simple view. Today, it has certainly been established that TFs and DNA exhibit a

complex landscape of interactions. TFs bind to short, but degenerate sequences under

different conditions. In recent years, following a revolution in sequencing technologies,

we have been able to collect larger sets of binding sites. This resulted in a remarkable

divergence from the simplistic view for binding specificity.

One of the elements that may contribute to the complexity of binding specificity is the

pairwise dependency between positions of binding. Unlike, what it has been assumed

previously that the binding positions within the TF binding sites are not interacting

together, the new observations have repeatedly violated this simplification. Despite the

fact that the positional dependency has been proved to impact the binding affinity, these

dependencies have not yet been satisfactorily modeled. As we will discuss in Chapter 2,

the modeling of dependency is computationally challenging, and current models need to

resort to approximations and various simplifications. As a main part of my PhD, we have

addressed this difficulty by proposing a novel Bayesian approach toward this problem.

We have systematically tested the new model against the classical approach, with no
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positional dependency, over a large collection of human TFs. We found that our model

outperforms the classical model, owing to the incorporation of positional dependencies.

In chapter 3, the same model that is used for TF binding site prediction, has been

generalized to address other classification problems. Finally, in recent years there has

been a great emphasis on enhancer elements, a class of distal regulatory sequences,

that play a crucial role in cell-type specific regulation of gene expression. In chapter

4 we propose a new method for incorporating enhancers into computational models of

transcription regulation.



Chapter 2

Dinucleotide weighted tensor

model

2.1 Introduction

The activity of transcription factors (TF) is highly crucial for the proper cellular re-

sponse to the external stimuli and stresses. TF function in conjunction as transcription

regulators through a myriad of interactions with DNA and other proteins such as co-

factors and chromatin modifiers. An integral part of transcription regulation is the

specific interactions of TF with the short DNA segments, also referred to as TF binding

sites (TFBS). In order to promote cooperatively and synergistic effect between TF, it

is conjectured that most of TFBS are clustered together within wider regulatory se-

quences, like promoters and enhancers [42]. Therefore, complete characterization of TF

binding specificity is central in further understanding the transcription regulation pro-

cess. TF often bind to a degenerate set of sequences that makes the task of modeling

their binding specificity very challenging [43]. In general, TF-DNA binding free energy

is dependent upon numerous interactions at the molecular level [44]; instead of taking

into account all these complications, however, many models today–including this work–

try to infer TF binding specificity from a set of observed binding sites. The classical

approach for inferring TF specificity assumes an independent contribution of binding

positions toward the binding affinity. Under this model, the binding specificity of a TF

is expressed by a matrix whose entry (n, i) quantifies the binding tendency of a TF

towards nucleotide n at position i, independent from any other position. This model is

referred to as position-specific weight matrix (PSWM), or weight matrix in short.

Started from mid 70s that Seeman et al. [2] proposed the first, and perhaps most

idealistic, model for the protein binding site recognition. For more than three decades

9
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researches in protein-DNA binding and binding site recognition have revealed numerous

complications beyond the simple hydrogen bonding recognition code model. In a recent

paper, Siggers and Gordan [3] reviewed the complicating factors in the protein-DNA

interaction. Over the past decade, the advancement in experimental techniques, specially

high-throughput technologies, has allowed us to pin down a larger number of binding

sequences. This provides a unique opportunity to investigate a variety of questions

related to the TF binding specificity and build up statistical models for discovering new

TFBS. One of the long-standing questions is the extent to which pairwise dependencies

(PDs) within binding positions contribute to the total binding affinity of a sequence [45]

[46] [32] [47]. In a large-scale study, Bulyk and colleagues assayed 104 distinct mouse

TF by using protein binding microarray (PBM) technology [32]. It was shown that

the binding energy landscape of human TF is more complex beyond what it had been

previously postulated. Notably, a number of assayed TF exhibit strong support for PD

within their binding sites. Other studies, such as [45] [46], has earlier pointed out the

incompetence of the PSWM model, which partly comes from the pairwise independence

assumption. As a final example, Nutiu et al. demonstrated that Gcn4p, a yeast amino

acid starvation master regulator, shows several strong PD within its binding sites [47].

It is shown that a model that includes PD outperforms the PSWM model to explain the

observed binding sequences.

In summary, over the last decade, several studies have identified the role of the PD in

TF binding specificity. The impact of PD on binding specificity, at least for a number

of TF, is arguably clear; nonetheless the extend in which that PD contributes to the

total binding free energy is not yet well understood. Rather, the crux of debate is that

how much including dependencies would increase TFBS prediction accuracy. To move

forward on this matter more biological evidence is needed, but even more importantly,

the complexity of modeling PD and incorporating them into computational models has

hindered further developments in this field. As we will discuss below, current compu-

tational models have not yet been able to provide a promising replacement over the

PSWM model. We believe that before understanding the role of PD in binding speci-

ficity, we require a robust and unbiased model that characterizes the PD in TF binding

specificity. We are proposing, a novel Bayesian model that rigorously incorporates PD

into a computational model. To the best of our knowledge, none of the state-of-the-art

models exercise such a proficiency and robustness. Our results show that the proposed

model offers a reliable substitution over the classical PSWM model.
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2.2 Toward a model for the pairwise dependency

Shortly after the importance of PD became evident, several studies tried to incorporate

PD into computational models. The main problem however is that including PD in

general is excessively difficult from a computational perspective, which will be explained

below. For this reason, current models resort into a variety of approximations and

simplifying rules. PD models can be divided into two main categories: models that only

allow dependency between certain positions such as neighboring ones [48] [49]. And,

models that allow any arbitrary position to be dependent on any other position. In

former it is obvious that this approach discards a subset of possible PD. But in the

latter, although more realistic, it is computationally expensive to calculate all the PD

relations between any pairs of positions. Hence, the models use a range of simplifications

and regularization techniques to reduce the computational complexity. In this section,

we review some of the models which consider arbitrary PD.

First, a model by Barash et al. which uses Bayesian networks to represent arbitrary PD

within TFBS [50]. In this model, the maximum likelihood network structure (topology)

is learned and employed to characterize the binding specificity. The proposed model

entails 3× 4×N free parameters, where N is the length of binding site. Moreover, it is

implicitly assumed that the maximum likelihood tree is sufficient to explain the binding

variety. This nonetheless can be approximately true if the best tree structure is invariant

under different conditions.

Another model that has been proposed by Sharon et al. aims to implement a model that

includes important PD [51]. The TF binding specificity is modeled by using a feature-

based approach, called FMM. The idea was to represent binding energy in terms of a

weighted sum of features. A feature is a binary statement that can be the appearance

of a specific nucleotide at a given position, or it can show a pair of nucleotides in two

positions. The authors implemented an iterative approach for learning the best model:

starting from an empty model, it tries to incorporate a new feature at a time to improve

the model’s fit. Using a significant test, only those features which significantly improve

the model’s fit would be considered to be added to the final model. Obviously, the

iterative learning algorithm may result in an over complicated model. To control this

undesired behavior, a L1-regularization is employed that penalizes adding too many

parameters into the model. As a result of the L1-regularization, the final model tends

to be relatively sparse. Seemingly, even this regularizing mechanism is not sufficient for

controlling the model’s complexity; so the authors placed another extra check-point at

the end of model learning. Those features that have become irrelevant during the last

stages of the learning will be removed from the final model. While the term irrelevant

is ambiguous in this context, the main reason for doing so, as the authors claimed, is
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that it is reasonable for features that were added at an early stage to become irrelevant

later on.

Finally, a very recent work proposed an alternative model to the PD [52]. This model

is very similar in many aspects to the model by Sharon et al.. The binding specificity

is translated into a statistical mechanics model, an inhomogeneous Potts model, which

incorporates information from single and interdependent binding positions. This model

is based on interaction parameters, resembling features in FMM approach. The PSWM

model is a special treatment of the inhomogeneous Potts model where the associated

interaction parameters to the PD were ruled out from the model. Setting interaction

parameters to the correct weights plays a crucial role in this model (the same holds for

weights of features in the above algorithm). The proposed learning algorithm iteratively

constructs the final model; by selecting one single pair of positions and pair of nucleotides

at a time (any possible 42×N(N−1)/2), and adjusts its associated weight by maximizing

the likelihood of the data. The selection of a new interaction term is based on a binomial

test. Interactions with a significant deviation from the theoretical binomial distribution

are added to the model. Adding more interaction terms, similar to the work from

Sharon et al., might lead to overfitting owing to a complex model. To prevent this, the

complexity of the model is tracked by the Bayesian information criterion (BIC).

In summary, modeling PD is considered by several works. Using Markovian models, some

modeled dependencies by allowing only the interactions between neighboring nucleotides.

The problem becomes more complicated, and computationally arduous, if one wishes to

allow dependency between any arbitrary positions. As a consequence, all the models

so far try to avoid these problems by seeking a range of heuristics and various rules.

The authors of this work believe that for at least a pedagogical purpose it is more

helpful to provide a formal description of the problem. We discuss the main challenge

with PD modeling in the Model section and provide a solution to it. In this paper, we

present a novel Bayesian model, dinucleotide weight tensor (DWT) model, that does not

have any of the pathologies of the previous models. First, from the modeling point of

view, we completely eschew ad hoc rules while still managing to computationally tackle

taking into account all possible PD. By exploiting from a combinatorial theorem, the

matrix-tree theorem [53], our model searches the whole parameter space in a polynomial

computational complexity. Most importantly, as it will be shown below, there is no

tunable parameter in the DWT model implying that the model is simply applicable in

practice. The complexity of the model is automatically adjusted only by the data itself,

meaning that there is no need for extra complexity metrics or regularization techniques.

As a result, the PD contribute to the scoring if they are supported by data, otherwise

the DWT model automatically reduces to the PSWM model. This prevents the model

from overfitting. In order to compare the DWT and PSWM models, we developed a
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testing framework aiming to remove the chance of systematic biases toward any of the

approaches. We examined a comprehensive set of human ChIP-seq, consisting of the in

vivo binding data for 78 human TF. The results show that the DWT model improves over

the PSWM model for about one third of the TF. For the rest of TF, the DWT model, as

it is expected, reduces to the simpler non-dependent model and performs similar to the

PSWM model. In addition, a new graphical representation of the binding specificity is

proposed that includes information about the important PD to the traditional sequence

logos.

2.3 The dinucleotide weight tensor model

In the current section, we present a Bayesian probabilistic model that quantitatively

characterizes TF binding specificity. As a generalization to the PSWM model, we name

our model dinucleotide weight tensor (DWT) model. Following the same approach which

was introduced originally by Burger and van Nimwegen [54], to predict protein-protein

interactions from the amino acid sequences, here we adapt the model for the TF binding

site prediction.

Let S indicate a set of nucleotide sequences of the fixed length l. If the sequences in S

are aligned together then the likelihood of column i, denoted by Si, is defined as

P (Si) =

∫
P (Si|ωi)P (ωi)dωi (2.1)

where ωi denotes the probabilities of different nucleotide at position i, it is equivalent to

the ith column of the weight matrix, The reason that we integrate over ω in the above

equation is because the matrix ω is unknown. We have chosen Dirichlet’s priors for the

prior probability P (ω). The likelihood of a column Si, given ω is given by

P (Si|ω) =
∏

x∈{A,C,G,T}

ω
nx
i
i,x (2.2)

where nxi is the number of the appearance of letter x at position i. Similarly we can

define the likelihood function of a pair of columns Si,j . We however need to integrate

over a tensor ω′ that each of its entries encode the probability of having a pair of letters

at a pair of columns. Having defined the basic likelihoods for the columns and pair of

the columns, the total likelihood of sample S, under i.i.d condition, is represented by

the following equation – that models individual positions being dependent on another

binding position.
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P (S|π) =

l∏
i=1

P (Si|Sπ(i)) (2.3)

In the above equation, π is a function that maps position i to another position π(i) which

there is a PD between them. In general, we do not have a prior information about the

positional dependencies (PD) and therefore the dependencies, which is encoded by π, is

unknown. For this reason, the correct practice of the probability theory instructs us to

marginalize over the unknown parameter π.

P (S) =
1

ll−2

∑
π

l∏
i=1

P (Si|Sπ(i)) (2.4)

In the above equation, the pre-factor 1/ll−2 is associated to a uniform prior over the all

possible trees of size l, because the number of nonidentical trees are ll−2. Performing

the sum in equation 2.4 is computationally expensive, however. Since the number of

all possible PD sets grows exponentially, previous methods have simplified the task by

taking into account the maximum likelihood (ML) estimate of the dependencies. In the

DWT model, on the other hand, we calculate the sum in equation 2.4 exactly. The

equation 2.4 is mathematically equivalent to the following form, which will serve an

important role in our model.

P (S) =
1

ll−2

∑
π

∑
π

l∏
i=1

Ri,π(j)P (Si) (2.5)

where Ri,π(j) is an entry of a symmetrical matrix R that its entries were defined by

Ri,j =
P (Si, Sj)

P (Si)P (Sj)
(2.6)

Matrix R can be regarded as the matrix of PD scores between any pairs of positions. In

fact, for large sample size, the log2(Ri,j) converges to the mutual information between

positions i and j. The detailed derivations of P (Si, Sj) and P (Si) are given in chapter

3. In order to solve the aforementioned computational difficulty in performing the sum

over all possible π, the matrix form of equation 2.5 provides us a way to exploit a

well-known theorem in combinatorics known as the matrix-tree theorem, or Kirchhoff’s

theorem [53]. Here, we refer to this theorem as the matrix-tree theorem. To establish

the connection between our problem and combinatorial graph theory, we represent π as

a spanning tree where nodes are the binding positions and the weights of connections
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(edges) are provided by the matrix R. Note that the choice of the tree topology in the

above model is to avoid circular reasoning in our inference.

The number of nonidentical spanning trees over n nodes follows an exponential function

nn−2 [55]. Therefore, a brute-force approach for calculating the sum in 2.5 for arbitrary

large graph size is computationally intractable. This computational intractability is

alleviated by utilizing the matrix-tree theorem which states that the total number of the

spanning trees inside a graph G is equal to any minor of the graph’s Laplacian matrix

[56]. The Laplacian matrix L of a graph is defined as the graph’s adjacency matrix

reduced from its degree matrix. The minor Mi,j of a matrix A is the determinant of a

smaller matrix A′, which is obtained by removing a row i and column j from the original

matrix A. To this end, as a result of the matrix-tree theorem application, we can rewrite

the likelihood function 2.5.

P (S) ∝ M1,1(L) ×
l∏

i=1

P (Si) (2.7)

In the above equation L is defined as the Laplacian matrix of R, and M1,1 is equal to the

determinant of the matrix L′ where the first row and column of the Laplacian matrix

L is removed. Note that the above equation is invariant under Mi,j for any choice of

1 ≤ i, j ≤ n. The first term at the right hand side of the equation 2.5 is equal to the

weighted sum of any possible spanning trees weighted by the product of the weights of

edges. Although the likelihood function 2.5 and 2.7 are mathematically equivalent, the

latter has a useful practical implication. Instead of computing the sum of nn−2 trees, we

need to compute the matrix determinant which can be numerically performed in O(n3).

One practical issue in calculating equation 2.7 is the wide range of values in the matrix

R that may potentially destabilize the determinant calculation. In order to make sure

of the numerical stability we have used a rescaling method on the dependency matrix

(section 2.3.1). To summarize, the main strength of the DWT model is that, instead of

assuming one fixed set of PD, it rigorously enumerates any possible arrangements of the

PD.

The model above, by incorporating PDs, allows a higher flexibility for the binding speci-

ficity. If , for instance, a nucleotide x is disfavored by the weight matrix at a certain

position i, the mismatch from a favorite nucleotide y costs log(pi,y/pi,x), where pi,x is

the probability of nucleotide x at position i and pi,y > pi,x, from the binding free energy.

Recent high-throughput studies, however, have revealed that it is often not as dramatic

the change of the binding free energy for a mismatching sequence as it is modeled by

the PSWM model. Under the DWT model, on the other hand, the mismatches from

the consensus motif will not be punished as harshly as the PSWM model. It can be a
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Figure 2.1: The probability of the nodes 1 and 2 being connected. In the numerator,
all the trees that have a link between nodes 1 and 2 were depicted. The denominator

shows all possible trees that can be made by four nodes.

sequence with an incompatible nucleotide at given position shows a high binding affinity,

when the mismatched nucleotide is paired with another nucleotide at a different position,

Of further practical interest is to find the dependent positions with the help of the

DWT model. We address this by calculating the posterior probability that a pair of

the binding positions are mutually interdependent. The probability of positions i and

j being dependent on each other is equal to the fraction of the spanning trees with i

and j being connected to the total trees. This idea is shown in figure 2.1, where we are

interested to find the fraction of the spanning trees with a connection between nodes 1

and 2, to the total number of nonidentical spanning trees which is possible to build with

four nodes. In our model, this is carried out by making matrix Ri−j that adds the rows

i and j into a single row and the same operation with the two columns. This intuitively

means that the two nodes are shrunk into a single super node. Therefore, the posterior

of the positional dependency between positions i and j, given the dependency matrix

R, is defined by

P ((i, j) |R) = Ri,j ×
Mk,l(L

i−j)

M1,1(L)
, for k, l 6= i, j (2.8)

where the numerator is the sum over all the trees with the edge (i, j). Using the above
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equation we can find out for any pairs of the binding positions if there is a PD relation-

ship between them. Our tests (Result section) show that the nearer positions, such as

adjacent positions, are more likely to be dependent.

Finally, and perhaps most importantly, the task of the TF binding site prediction using

the DWT model. By calculating P (s|S), under the likelihood model in equation 2.7,

we can evaluate any sequence s of being a binding site. By definition, P (s|S) is equal

to the ratio of the join probability distribution P (s, S) to the distribution P (S). The

join distribution P (s, S) is similar to the P (S), where a new sequence s is added to the

initial sample S.

P (s|S) =
M1,1(Lnew)

M1,1(L)
×

l∏
i=1

fsii (2.9)

The Lnew is the Laplacian of the new dependency matrix which is obtained by adding s

to the sample S. The fsii is the frequency of the letter si at the position i in the initial

sample S. For the detailed derivation of the above equation refer to chapter 3.

A main property of the equation 2.9 is that it decomposes two aspects of binding speci-

ficity: independent positional tendency toward different nucleotides, and PD between

the binding positions. The first term characterizes the total PD. The second term in

equation 2.9 designates the frequency of the nucleotide si at position i independent from

any other positions. This term is in fact exactly the same as the PSWM model. There-

fore, equation 2.9 can be regarded as a generalization of the PSWM model. Once the

evidence of the PD is low, the PD ratio converges to one and hence does not contribute

to the final score of the sequence. On the contrary, when there is a high evidence for

the PD, the PD ratio, combined with the PSWM score, determines the probability of

binding. As a result, whenever the evidence for the PD is negligible, instead of suffering

from overfitting, the DWT model reduces in an unsupervised manner to a simpler model

– that is the PSWM model. In brief, the DWT model above, unlike its counterparts,

relies on no arbitrary assumption or ad hoc rules, and it considers all possibilities for the

PD in a fast computational time. The complexity of the final model is only controlled

by the support of the PD in the data. Therefore, there is no need to monitor and control

the model’s complexity. These properties make our model easily applicable in practice

with no need to account for any unnecessary technicalities.
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2.3.1 Re-scaling of the dependency matrix

As it is discussed so far, our model relies upon the concept of the matrix-tree theorem.

Accordingly, our model needs to calculate the determinant of dependency matrix, nu-

merically. From the practical point of view, calculating the determinant may lead to

numerical instability. For example, when the numbers inside the matrix span a very

wide range of values, from very tiny numbers to huge values, their multiplication can

potentially lead to the overflow. To eliminate the possibility for the numerical errors,

we have used the following equation to scale the matrix entries.

Hij = exp
( k

logRmax
Rij
)

(2.10)

where Rmax is the biggest entry in the R matrix, and k is a predefined factor to adjust

the differences of the values in the new matrix H. The appropriate value of k depends

on the machine’s constraints. In this study, we have set k = 15.

2.4 Results

2.4.1 Graphical representation of the pairwise dependency

We propose a graphical representation of the binding specificity. This new method is a

generalized form of the classical sequence logos. The proposed representation method

has two main graphical components; the first component shows the nucleotide tendency

of the TF at each position, which is exactly similar to the classical sequence logos. The

second component provides information about the dependency between positions. Since

this representation method has the PD in addition to the sequence logos, it is named

dinucleotide logo (DiLogo). For example, figure 2.9a shows the DiLogo for the human

TF CEBPB. Each DiLogo has four layers that the top layer is the sequence logo of the

TF, as it is in the basic sequence logo. The bottom layer shows the matrix of the PD

posterior probability (Supplementary text) for dependency between any given pairs of

positions. Since the PD is symmetrical, showing only a half of the posterior matrix is

sufficient. The column of the dependency matrix is associated to the labels of the nodes

in the linear graph on top of the matrix. The linear graph shows the strong PD where

the two positions are connected if the posterior of the PD is higher than a predefined

cutoff.

In figure 2.9a we set 0.9 as the posterior cutoff. Note that links are directed, which we

call the nodes (positions) i and j as the parent and child nodes, respectively, if there
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is a direct link from i to j. In the next layer, the nucleotide tendency at the children

positions conditioned on the state of the parent positions are shown. The table rows

represent the state of the parents. For instance, in figure 2.9, if there is an A at position

2 (the parent of the position 3) there is a high chance to have a T at position 3. On the

contrary, if there is T at position 2, the chance of G and A at position 3 is higher. The

height of the letters, similar to the classical sequence logos, in the table corresponds to

the amount of the information for that letter.

2.4.2 The analysis setup

To pin down the role of PD in defining binding specificity we have developed a compre-

hensive testing framework to compare the two modeling approaches: the DWT model

and PSWM model. To test the models we need to have a set of sequences that are

experimentally validated for having binding sites for a specific TF. As a result, we are

interested to quantify the performance of the models in recognizing the true binding

sequences. Most importantly, care must be taken for any potential biases toward any

particular of the approaches. Put it in other terms, the test should not favor a model

over the another model due to a systematic bias.

The proposed test setup uses an iterative algorithm for model refinement; each of the

models separately learn the best model on the training dataset and the resulted models’

performance will be inquired on the test dataset Here, we are introducing an information-

theoretic measure that quantifies the performance of each model in distinguishing the

true sequences from decoy sequences. In fact, we are measuring that how much of the

initial entropy is resolved due to the assigned scores by the models (refer to section

2.4.6). Note that by decoy sequences we are referring to sequences that although similar

to the true sequences, they devoid cognate binding site (see section 2.4.5).

In the test setup, we use the top 1000 enriched sequences from the chromatin immuno-

precipitation by sequencing (ChIP-seq) method as the true binding sequences. ChIP-seq

method is a common technique that measures the binding affinity of the genomic re-

gions. A large number of studies have published ChIP-seq data for many TF in a vast

range of organisms and cell-lines. ENCODE project, for instance, published ChIP-seq

data for many human TF on a different cell types [28]. This technique, however, does

not pinpoint the exact location of the binding site; instead, it retrieves larger genomic

regions, with a few hundred base-pairs resolution, that the TF was bound, directly or

indirectly. Despite the fact that all peaks in ChIP-seq may not be resulted from the

direct interaction of the TF to the associated DNA region, provided that the TF can be

presented because of a multi-meric interaction with another TF, we believe that the top
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1000 peaks contains a significant fraction of the sequences with the desired TF’s binding

sites. Moreover, 1000 sequences provide us with enough material for a robust statistical

analysis.

DWT Model

PSWM model

ChIP-seq data processing

Model Training

Model Testing

Mixing with 

Decoy sequences

Initial model

TF bound 
sequences

DWT
Model

PSWM
Model

a)

AAGCTATATACGGCACGTATTATTTGCGCATCGCCAGTCAAGCAGCTGACCGATCGACCCGGAAGGGAGCGGAACTACAACACTATGGATGATGCAGGATGGTTATAGCATAT

b) c) d)

e) f)

Figure 2.2: The Testing Framework for PD. 1) We start with extracting the
sequences from the genomic regions which are highly enriched under the ChIP-seq assay.
In this work, we selected top 1000 ranking sequences. 2) The selected sequences then
divided into two separate sets of equal size: training and test sets. 3) An initial motif
is then used to predict the binding sites that will be used to build the initial models.
4) Both models separately refine the motif in an iterative manner until convergence.
5) The resulted models from the iterations are tested over the test set that is mixed
with the decoy sequences. The decoy sequences, although similar to the test sequences
from different aspects, are supposedly devoid of the TF binding sites. 6) The DWT and
PSWM models, by using the learned models from the iteration, assign a score to every
sequence. The distribution of the scores is shown here where the black line indicates
the scores of the decoy sequences and the red line for the genuine sequences’ scores. By
setting a cutoff over the scores, we call a sequence as genuine if its score is above the
cutoff and decoy with the score below the cutoff. Therefore, we measure how well such
score cutoff performs in order to distinguish the real genuine sequences from the decoy

ones.

Figure 2.2 summarizes the test setup. This framework is also implemented as a website
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that by uploading the binding sequences (in FASTA format) and an initial motifs per-

forms the PD analysis. Here we explain the different stages as it appears in the figure,

but more details will be provided in following sections.

Figure 2.3: The flowchart of the ChIP-seq data processing pipeline. Starting from the
quality filtering and removing the sequence adapters, the sequenced reads were mapped
to the reference genome, e.g. hg19. The problem with multi-mappers here is dealt with
defining a weight to each read that maps a multiple region. If a read maps to n genomic
loci, it will be counted 1/n at each of the regions. This is all encoded in an invented
format, called BEDWEIGHT format. After this phase, using a statistical model we
assign a Z-score to each of the genomic region and select the ones with a score bigger

than a cutoff, to be set from the dataset.

The ChIP-seq data was processed using CRUNCH, an in-house ChIP-seq data analysis

pipeline (to be published). Figure 2.3 summarizes the ChIP-seq data processing pipeline.

We have used Bowtie [57], an ultra-fast and memory-efficient algorithm for short read
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Figure 2.4: Read coverage profile of IRF4 in a 2 kbp long region. The actual read
coverage is shown by the solid black line, and the two Gaussian fits by green and red

dashed lines.

alignment, to map the sequenced reads to the reference genome. The Bowtie options

are given below.

bowtie -f -v 3 -a -B 1 --quiet --best --strata

The issue with the multimappers is treated by assigning a weight to each read. Reads

that are mapped to n genomic regions receive a weight of 1/n at each of the associated

regions. After this, we have a statistical model, originally developed for FANTOM4

project [58], to calculate the significance of the regions. In this study, we have selected

the top 1000 regions according to the whole-genome Z-scores. After peak calling and

calculating their Z-scores, we have selected the top 1000. peaks. The selected peaks

were further processed by extracting sub-regions that contain high density of sequenced

reads (2.4).

The resulted sequences were then divided into two disjoint sets: training and test sets.

An initial set of predicted binding sites is used to start the iterative model refinement.

The initialization is performed by running a de novo motif discovery algorithm, called

PhyloGibbs, which uses phylogenetic information [59]. Multiple alignments of the se-

quences were obtained by T-Coffee program [60]. The resulted binding sites from Phy-

loGibbs on the training set were then used to build the first DWT and PSWM models.

For those TF that we already have a motif in databases such as SwissRegulon [61] or

JASPAR [62], but under several tests we have found that the pipeline motifs, although

quite similar to the database motifs, are better models in the context of the processed

ChIP-seq dataset. Hence, the pipeline motifs were used in the consequent analysis.

After the initial models are made, by sliding a window over the training sequences each

model separately assigns score to each window. The background frequency model is set



Chapter 2. Dinucleotide weighted tensor model 23

according to the nucleotides frequencies in the sequences. Then the windows with the

relatively high score are selected, and the selected windows serve to build a new model.

This iterative process continues until convergence. For the DWT model, the convergence

is tested by calculating the distance between the two dinucleotide frequency matrices in

the last two rounds. Whereas for the PSWM model, the convergence is checked by the

distance of the single nucleotide frequency matrices. At the end of this iteration every

model proposes the best refined model for predicting the binding sites.

After the final models are learned, each model is examined over the test sequences. The

test sequences are mixed with decoy sequences that almost likely do not possess binding

sites. The decoy sequences, however, are similar to the test sequences from different

aspects such as nucleotide frequency and sequence length. Here, we chose to preserved

dinucleotide frequencies that might even make it more difficult for the dependency model

whenever there is dependency between adjacent positions. In the current setting, the

number of decoy sequences is four times bigger than the number of true sequences. The

two models assign a score to each sequence in the test set including the decoy sequences.

We calculate the binding affinity of each sequence as its score. The binding affinity E(S)

of a sequence S is defined as:

E(S) = log (
∑
∀i

exp(score(Si))) (2.11)

where si denotes a site inside the larger sequence S. Note that we consider both positive

and negative strands of the sequence when calculating the binding affinity. A simi-

lar approach is also used to compare experimental methods for measuring TF binding

specificity [63].

Finally, given the scores of all sequences we measure the classification accuracy of the

true binding sequences from the decoy ones. The score distribution for both classes of

sequences were represented by histograms in the figure 2.2. We then ask how much the

two classes of the sequences are separable by setting a cutoff over the sequence scores,

shown by the dashed line in the figure 2.2. In other words, if a score cutoff indicates the

class of sequence, how well this cutoff can separate the decoy and true sequences. After

having the cutoff, that provides the maximum separation between the genuine from the

decoy sequences, we propose a robust measure that in an information-theoretic sense

quantifies the performance of each model. The proposed measure calculates the amount

of the explained or resolved entropy inherent in the given decision-theory problem (see

section 2.4.6). Equivalently, the amount of information gain due to the usage of a

model, if one wants to distinguish the genuine from the decoy sequences. Hence, higher

the value is, better the performance of a model is in stratification of the two classes of



Chapter 2. Dinucleotide weighted tensor model 24

the sequences. The best score is one which implies the there is absolutely no uncertainty

in distinguishing the decoy and true sequences. A totally random predictor would have

a score of zero. As it is shown in section 2.4.7, the DWT model is always performs

at least as good as the PSWM model, and for several TF, including PD information,

resulted in a more accurate model on the binding specificity. An important implication

of this result is that the DWT model does not suffer from overfitting, or mistaking noise

for signal, which is owing to the rigorous integration of all the dependency trees. Once

the evidence of the PD is low, the DWT model automatically reduces to the simpler

PSWM model.

2.4.3 Iterative model refinement

The test framework is summarized in figure 2.2. Note that, the two models are learned

separately via an iteratively approach. The iteration algorithm, except the convergence

test, is similar for both models. The iteration is represented in 1, which requires a start

weight matrix as well as a set of sequences, which in our setting is the training sequences.

By running MotEvo [64] over the sequences, we select the sites with a posterior at least

0.5. This selected set of sites constitutes the initial model. In line 9 of 1, a model is

created using the predicted binding sites. A model can be either the PSWM model

or the dependency model. Next, by maximizing equation 2.15 with respect to a free

parameter c a score cutoff is fitted. This cutoff is then used to convert the log-likelihood

score L(s) of the sequence s, to a probability space by applying the following equation:

P (si, c) =
esi−c

1 + esi−c
(2.12)

As it is shown at line 14 of 1, using (2.12), we select the sites with a minimum probability

of 0.5. The predicted sequences at run i is compared with the predictions from the last

run i−1, and if the difference (distance) is less than a predefined value ε the iteration will

be terminated. The comparison, however, is performed differently for each of the models.

For the PSWM model the distance of the simple frequency matrices is calculated. Each

column k of Si is associated to a column k in the frequency matrix and four rows that are

representing the normalized frequency of the nucleotides at each column. The distance

of two frequency matrices Wi and Wj is measured by,

dist(Wi,Wj) =
l∑

m=1

∑
α∈{A,C,G,T}

2|Wi[α][m]−Wj [α][m]|
Wi[α][m] +Wj [α][m]

(2.13)
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Testing for the convergence in the dependency model is done on four-dimensional ma-

trices that represent the normalized pair-nucleotides frequency on every pair of the

positions. Each entry (m,n, α, β) of this matrix determines the frequency of the pair

(α, β) at positions (m,n). Similar to (2.13), the distance between two four-dimensional

matrices Zi and Zj is defined according to the following.

dist(Zi, Zj) =
l∑

m=1

l∑
n=1

∑
α∈{A,C,G,T}

∑
β∈{A,C,G,T}

2|Zi[α][β][m][n]− Zj [α][β][m][n]|
Zi[α][β][m][n] + Zj [α][β][m][n]

(2.14)

The iteration will be terminated if the distance between the two last matrices is less

than ε. In our tests, we set ε = 0.05. Finally, the iteration algorithm 1 returns the last

set of predictions as well as the last fitted value for the score cutoff c.

Algorithm 1 Iteration method

Require: D and wm #D is indicating the input sequences and wm the initial weight
matrix

1. i← 1 #number of iterations
2. Si ← [ ]
3. for s in

[
MotEvo(D, wm)

]
do

4. if P (s) ≥ 0.5 then
5. Si ← s
6. end if
7. end for
8. repeat
9. M ←Model(Si)

10. c← argmaxc
[
F (Si, c)

]
#fit the cutoff

11. i← i+ 1
12. Si ← [ ]
13. for s in D do
14. if

[
exp (L(s)− c)/(1 + exp (L(s)− c))

]
≥ 0.5 then

15. Si ← s
16. end if
17. end for
18. until distance(Si, Si−1) ≤ ε
19. return Si and c

2.4.4 Fitting the score cutoff

As it has been mentioned above, at the end of each iteration step, we select a number of

binding sites. This selection is based on setting a score cutoff over the sequence scores

that are calculated by (2.15). If the likelihood of the total scores is written as,
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F =
∑
∀i
log
[ P (si|B)

(1 + e−c)
+ P (si|M)× e−c

1 + e−c

]
(2.15)

where P (si|M) is equal to the score of sequence i according to the model and P (si|B)

is the sequence score under the background model, which here is a Markov process of

order zero. The best score cutoff would be the value of c, which maximizes the above

equation. Therefore, by determining the value of c at each round of the iteration, we

select a set of binding sites by choosing those sites with a minimum probability of 0.5

(equation (2.12)).

2.4.5 Test set and decoy sequences

Another important point in the explained motif refinement procedure in figure 2.2 is the

way we make the test set. A fraction of the test set consists of the true regions, the ones

with the real binding site. The other part of the test set is made of noise sequences.

This noise or false regions are generated by a Markov model that is trained over the

true regions. Therefore, pair frequency of letters is conserved. The other scenario that

we have also considered is to make the false regions by selecting some genomic regions

that were not enriched in the ChIP-seq experiment. We have found that this method,

although works acceptable for some TF, runs into problems for many TF. This maybe

due to the fact that the motif refinement instead of capturing the real motifs, goes to a

wrong direction by learning some sequence features that are not relevant to the actual

protein sequence specificity of interest. This then makes the models to mistake noise for

signal, by just learning the irrelevant sequence features. This behavior apparently is not

desirable in our purpose.

We have found that the sequences, which are generated by the Markov model, work

stable in the different circumstances. One choice that we made is the order of Markov

process, we have tested different Markov orders and we found the change of order from

one to higher ones does not change the final results considerably. Therefore, we kept the

Markov order one for all the tests that we have performed.

2.4.6 Performance assessment

At the end of the iteration, which is explained above, each of the models predict a set of

final binding sites in the training set. This set of predicted binding sites serve to create

the final model for testing. We have designed an experiment, where the experimentally

validated sequences (genuine) were mixed with a number of random sequences (decoy).
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a)

b)

Figure 2.5: Histogram of scores. a) Using the dependency model to score the se-
quences and (b) where the PSWM was used

For each genuine sequence we have four decoy sequences in the mixture. We assume that

the chance of having a binding site in the decoy sequences is very low. The decoys were

generated by a Markov model of order one which is trained over the genuine sequences.

Hence, the decoys have the same dinucleotide frequency as the genuine sequences, but

they are expected to be mostly devoid of the true binding sites. Next we challenged the

models to predict the binding sites in all the sequences. Note that we have used the

same background frequency that had been fitted over the training set. Having the log-

likelihood ratio for each binding site in the sequences in both forward and reverse strand

calculated by the two models, we assigned a score to each sequence by the following

equation.
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Score(Si) = log

( |Si−l|∑
k=1

exp
(
L(s+,−k,k+l)

))
(2.16)

The s+,−k,k+l indicates a sequence, in forward and reverse strand, starting at position k

with length l, which is the length of the binding site. The models are expected to assign

smaller scores to the decoy sequences comparing to the assigned scores to the genuine

sequences. For this reason, we ought to get a bimodal distribution of the scores from

(2.16), where the two peaks of the distribution represent two classes of sequences: the

bound and not-bound sequences. The shape of the final distribution however depends

on different factors, such as the quality of the experiment, the sequence specificity of

the TF and so on. Therefore, the score distribution will not necessary follow a bimodal

form. This, for instance, is demonstrated in figure 2.5 where the score histogram of

the two models were drawn. The two classes of sequences are represented by different

colors, red line indicates the score of the genuine sequences and black line shows the score

distribution of the decoy sequences. As it is clear, the genuine sequences have relatively

higher scores than the decoy sequences, but there is still some genuine sequences with

low scores that resemble the decoy sequence scores. It is probably because the TF was

not directly bound to these sequences, and instead it formed a dimer with other TF(s)

which was directly binding to the sequences.

The above experimental setting is equivalent to a decision-theory problem that is how

well we can categorize observations X into two classes c1 and c2. Here we would like

to collect the genuine sequences from the decoys based on the observed scores from

equation (2.16). Therefore, Different models are evaluated according to how well they

perform in separating the score distributions of the genuine sequences P1(X) and decoy

sequences P2(Y ). Intuitively, apreferred model is the one that brings the lowest overlap

between the two distributions P1(X) and P2(Y ). As a measure of the separation, here

we propose the likelihood ratio of the scores being picked up from a joint distribution

to the two independent distributions.

I =
P1(X)P2(Y )

P (X,Y )
(2.17)

Finding the distributions in (2.17) requires to bin the scores, but due to the finite sample

size this may affect the final measure. Therefore, we suggest a robust way of calculating

the distributions by removing the possible biases due to the binning effects.

P1(X) =

∫
ρ

( |ρ|∏
i

ρni
i

)
P (ρ)dρ (2.18)
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The ρ is the distribution function resulted from the binning, and ni is the number of

scores falling in the ith bin. The product term in (2.18) is the likelihood. Assuming a

Dirichlet prior on the ρ, and using the same integral identity (??), results in:

P1(X) =

∏|ρ|
i Γ(ni + ζ)

Γ(N + |ρ|ζ)
(2.19)

N is the total number of genuine sequences, which is equal to 500 here. The quantity ζ

serves as a pseudo-count for the bins, which we set it to 0.5 here. The same applies for

the decoy sequences distribution P2(Y ) as well as the joint distribution P (X,Y ). As a

result, the closed-form of (2.17) is:

I ∝ 1

N +M

∏
i

[Γ(ni + ζ)Γ(mi + ζ)

Γ(ni +mi + ζ)Γ(ζ)

]
(2.20)

The M and N are the number of the decoy and genuine sequences, respectively. The

above equation in fact is a measure of the divergence between two distributions of counts

(or scores). I is equal to one, if the two distributions are completely independent. On

the other hand, the value of I becomes smaller as the two distributions diverge. For large

number of counts it can be shown that log(I) converges to Jensen-Shannon divergence

JS{π,1−π}(P1(X), P2(Y )).

JS{π,1−π}(P1(X), P2(Y )) = H(πP1(X)+(1−π)P2(Y ))−πH(P1(X))−(1−π)H(P2(Y ))

(2.21)

Equation (2.4.6) measures the distance between two distributions that are weighted by

π. In our tests, π = 0.2, because it indicates the sample mixture ratio. Notice that the

equation is an approximation to the , and the approximation becomes more precise if

we have more sequences. As a result, we are in effect calculating the distance between

the two score distributions. We prefer the method with a higher divergence between the

genuine and decoy score distributions. As the final score, we have chosen the following

scoring schema.

S = 1 +
I

H({π, 1− π})
(2.22)

For large sample size, the above equation is equal to equivocation Ex[H(C|x)], as a

measure of the information gain, which sets an upper-bound for the probability of error

[? ]. The entropy function H(C|x) measures the complexity, or the degree of uncertainty,
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Figure 2.6: Comparison of the PSWM and DWT models scores.

in assigning the observation x to the different classes. For our purpose, it can be shown

that

H(C|x) = H({π, 1− π})− JS{π,1−π}(P1(x), P2(x)) (2.23)

where H({π, 1 − π}) is a measure of the initial uncertainty, for example here we have

H(0.2, 0.8), which it says how much the prior uncertainty we have in assigning a se-

quence, without knowing its score, to any of the two classes. If the two distributions

p1(x) and P2(x) is exactly equivalent the measured distance between them is zero, and

therefore the information gained measured by equation (2.23) is equal to the initial

uncertainty H(C); meaning that there is no information gained by the scores X. As

a conclusion, we are measuring the information gain in a robust way according to the

scores we observed. A given model is better than the other model if it has a bigger score

S. Figure 2.6 shows the results for 78 TF, and as it is clearly shown the DWT model

performs always at least as good as the PSWM model.

2.4.7 Comparison of the DWT and PSWM models over the ChIP-seq

data

We have processed published ChIP-seq data from the ENCODE project [28]. For con-

sistency, we have chosen all the TF from a single human cell-line (GM12878) and a few
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additional TF from other line. We have tested the DWT and PSWM models within

the testing framework that is explained in the last section. For each TF in the end we

report the measured performances of the two models. Figure 2.7 shows a summary of

the test for all 78 TF. Each point represents one TF and the X and Y axis indicate

the PSWM and the DWT models scores, respectively. If a point lies on the straight

y = x line means that the both models perform exactly the same. When however a

point is above the y = x line, it means that for the corresponding TF, the DWT model

outperforms the PSWM model. As it is clearly shown in figure 2.7 the DWT model

performs always at least as good as the PSWM model. For a number of TF the DWT

helped to improve the binding sequences recognition. Within the TF that are examined,

we have found 26 TF (3̃0% of the total TF) with the PD that their inclusion improves

the model’s performance (supplementary text). We have also looked at the different

protein structural families and found there is no correlation between the DWT model’s

performance and the protein families. While this classification may not be indicative for

the exhibiting PD, the detailed analysis of the protein structures is beyond the scope

of the current study. We observed that many TF exhibiting PD, but only a fraction of

them led to an increase in the model’s accuracy. For instance, we found two strong PD

in GABP binding sites (supplementary text). Including these dependencies, however,

did not make any appreciable improvement over the PSWM model. Even though, it is

still possible that the PD for GABP can improve the performance on other dataset.

2.4.8 The DWT models explain the HT-SELEX data better than the

PSWM models

Systematic evolution of ligands by exponential enrichment (SELEX) is a well-established

in vitro method for studying protein-DNA binding specificity [65]. This technique re-

lies on mechanisms commonly referred to evolution, such as selection and replication.

Starting from a random pool of double-stranded DNA, the sequences are subjected to se-

lection for binding. The selected sequences are then amplified to make the next sequence

pool. After a number of cycles the last pool of sequences contains DNA sequences with

a very high affinity of binding.

A high-throughput variant of this method (HT-SELEX) is introduced by Jolma et al.

[26] that the amplified sequences from each round of selection are sequenced using mas-

sively parallel sequencing. In a separate study, Jolma et al. [25] published a large number

of HT-SELEX data for human TF. This dataset has provided a good opportunity to

investigate different questions related to the TF binding specificity. In this work, we

have used the published HT-SELEX data as an independent dataset to test the DWT

and PSWM models that are resulted from the ChIP-seq study. We have used several
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Figure 2.7: The Comparison between DWT and PSWM Models. The PSWM
and the DWT model scores on the x-axis and y-axis, respectively. The units in the x
and y axis is the fraction of the explained entropy or uncertainty regarding to the
detecting of the real binding sequences from the decoy ones. The dashed y = x line
shows the equal performance. The dots are color coded according to a rough protein
family assignment. As expected, the PolII TF which are the specific factors show a high
level of specificity. This is in contrast with the Non-specific TF and co-factors such as

EP300.

criteria to compare the performance of the DWT and PSWM models for those TF that

there is a HT-SELEX data available.

First complication for model testing in the HT-SELEX data is that the read lengths

are generally larger than the length of the binding site. Instead of taking the score of

each window in the sequenced reads, we calculate the binding affinity of reads by the

similar method as we used in ChIP-seq data. Hence, the binding affinity E(S) of a read

S is calculated by equation 2.11. Using the DWT and PSWM models that are already

learned from ChIP-seq data we calculated two binding affinity scores. Therefore, the

predicted frequency of a sequence S at selection cycle (t+ 1) is defined as

p̂t+1(S) =
ft(S) exp{E(S) + Ens}∑
S′ ft(S

′) exp{E(S′) + Ens}
(2.24)
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where ft(S) is the observed frequency of the sequence prob S at the round t, and Ens

denotes the non-specific binding to the sequence S. For simplicity of the analysis here

we assume Ens = 0.

In the subsequent analysis we have compared the predicted frequencies pt+1(S), for every

consequent SELEX selection cycle, from the DWT and PSWM model to the observed

frequencies ft+1(S).
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Figure 2.8: The Comparison between the DWT and PSWM Models over
the HT-SELEX data. The PSWM and DWT model predict the abundance of the
sequences at the next selection cycle in SELEX, given the frequency of the sequences
at the current sequence pool, by using equation 2.24. a) The predicted frequency of
the top frequent sequences binned by the log transformed abundance ratio is compared.
The DWT model’s predictions are clearly higher in compare with the PSWM model
and matches the observed high abundance sequences. b) The likelihood ratio of the
two models is calculated for the three adjacent SELEX selection cycle. c) In this test
we simply asked whether the probability of the selection, or the predicted frequency,
provides us with a good information about the fact that a sequence would be selected in
the next round or not. The color’s darkness denote the SELEX cycle. At the first cycle,
where we are calculating the selection probability in a randomized pool of sequences, the
both model performs near a random classifier. However, as the more specific sequences
are aggregating in the sequence library the performance of the models also improve.

Figure 2.8 represents the results for three separate tests on the HT-SELEX data for

human TF MAFK. At first, we have compared the predicted frequency of the sequence

to the observed binding affinity of the sequence between any two adjacent SELEX cycle.

The observed affinity Ω(S) of each prob sequence S is basically calculated by Ω(S) =



Chapter 2. Dinucleotide weighted tensor model 34

log(ft+1(S)
ft(S)

). In figure 2.8a we have shown the distribution of the predicted frequencies for

the top 1000 high affinity sequences according to the values of Ω(S). Notably, The DWT

model assigns relatively higher prediction scores to these highly abundance sequences.

In another test, we have calculated the log-likelihood ratio of the two models. For the

log-likelihood ratio bigger than zero means a higher likelihood of the observed data under

the DWT model. The log-likelihood of the observed sequence abundances is defined as

below.

log(L) =
∑
S

(
nt+1(S)× log pt+1(S)

)
(2.25)

where nt+1(s) denotes the number of sequence S observed in the (t+1)th sequence library.

It is shown in figure 2.8b that the log-likelihood ratio is always positive, indicating the

the dependency model has a higher likelihood for the observed data. This is the case

for all of the tested TF.

At last, we have considered a simple scenario; how much the predicted frequency pt+1(S)

of the sequences are indicative of the fact that the sequence is being selected in the next

round. It can be represented as a bi-classification problem to decide whether or not a

sequence is being selected based on its predicted abundance. The three adjacent cycles

were considered. As it is shown in figure 2.8c at the cycles 1 (totally random sequences)

to 2, the both models perform poorly near to a random classifier. However, as the library

become more and more specific with the real binding sequences the predictions become

also more accurate. It is also clear here that the DWT model provides a better classifier

in compare with the PSWM model. We have calculated the area under the curve (AUC)

for all the tested TF and it is always the case that the DWT model outperforms the

PSWM model.

2.4.9 Determining pairwise dependencies

One question that naturally arises with respect to the PD is which pairs of positions

are dependent. We address this here by calculating the equation 2.8 to determine the

posterior probabilities of the PD between any pairs of the binding positions. Figure

2.9 represents the binding specificity of CEBPB factor. Our representation is similar to

the weight matrix sequence logo, which is augmented with the positional dependencies

information. The graph in the bottom of figure 2.9a shows the dependent positions. The

dependency relationship is not a directed, but for the sake of representation we made

the edges directed. Therefore, we can read the graph as to say position 5 is dependent

on position 4, because there is a directed edge from position 4 to 5. The middle part
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of the figure 2.9a characterizes the nucleotide frequencies for the dependent positions,

conditioned over the parent node. For example, whenever there is A, G or T at position

4, it is highly likely to see G at position 5. Having C at position 4, however, renders not

much information about the status of position 5. We have created similar plots for all

tested TF, which can be found in the supplementary materials.
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Figure 2.9: PD Analysis for CEBPB. a) The DiLogo representation for CEBPB.
Dependent positions are selected with at least 0.90 posterior of dependency, the poste-
riors are shown with the heat map. Position 2 and 3 are dependent and as it is shown
in this figure whenever there are A and C at position 2, there is a high chance of T
at position 3. If there is G at position 2, the chance of having A at 3 is higher than
T. This is even completely different if we had T at position 2, which then it makes G
very likely at position 3. The interpretation of the PD (4,5) is more straightforward.
If there is either of A, G or T at position 4, it is almost surely expected to have G at
the fifth position. But if 4 is C, every nucleotide at position 5 is equally likely. b) The
score distribution of the genuine (foreground) and decoy (background) sequences for
three models: the initial motif, learned PSWM model through iteration, and the DWT
model. c) Model comparison, a precision recall curve on the left side and the explained

entropy score on the right side based on the score distributions in (b).
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2.4.10 Pairwise dependency often occurs between neighboring posi-

tions

We have also investigated the distance between positions that we have found to be

dependent on each other. We found that the chance of PD decreases as we consider distal

positions rather than the adjacent ones. In other words, PD between two immediately

adjacent positions is more likely than between the distant positions. Figure 2.10 shows

the PD as a function of the distance between positions. As it is clearly demonstrated, the

neighboring positions have the highest probability of being in PD. For distal positions,

the trend can be divided into different regimes. For positions with the distance two and

three there is about the same chance of PD. For more distant positions, between four

until seven, there is no clear preference over the distance.

Fr
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Figure 2.10: PD Occurs Mostly between Neighboring Positions. The dis-
tribution of PD as a function of the distance between the positions. Here we show the
dependent positions with at least 0.9 posterior of PD. As it is shown here the adjacent

positions are more likely to be dependent on each other than the more distal ones.

2.4.11 The case of GABP

One of the TF that shows a strong dependencies is GA-binding protein (GABP) that

exhibits dependencies between positions 9 and 10 and another one between positions

2 and 3 (??). These dependencies, even though are strongly supported by the binding

data, their usage did not lead to an appreciable improvement over the PSWM model.

This might be due to the fact that these dependencies may improve the predictions in
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other datasets. This also means that not all the dependencies that are supported by the

data are going to necessarily improved the predictions.

Summary

The PD within the TF binding sites is addressed. The presence of the PD and the

effect they have on the TF binding specificity have been the matter of discussions.

From a computational perspective, modeling the binding specificity with the PD is

computationally intractable. For that reason the current methods simplify the problem

by taking into account only a small subset of the total PD. We proposed here a Bayesian

model, the DWT model, that rigorously brings a comprehensive view to the PD within

the TF binding sites. The DWT model, taking advantage of a generalization of the

matrix-tree theorem, explores the entire parameter space of PD in a computationally

feasible manner. Unlike its peers the DWT model is without any tunable parameter and

relies upon no extra regularization techniques. We show that the DWT model is in fact a

generalization to the PSWM model, which it automatically reduces to the PSWM model

whenever the support of PD is rare. In order to understand if the PD are helpful in a

context of TF binding sites prediction we have compared the two approaches: PSWM

and DWT models. A comprehensive testing framework is developed which removes the

possibility for systematic biases toward any of the two approaches. We have tested 78

human TF ChIP-seq data and found for about a third of them that the DWT model

outperforms the PSWM approach. For those TF without the PD, as it is predicted, the

DWT model performs the same as the PSWM model. The improvements that we have

been gained by the DWT model, although modest, proves the role of PD in the binding

specificity. In addition, we propose a new graphical representation for the TF binding

specificity that combines the classical logo with the significant PD. The results for all

the 78 tested TF is accessible via [HERE]. We have also developed a website that by

uploading the binding sequences (in FASTA format) as well as an initial weight matrix,

performs the PD analysis. The source code of DWT model (in C++) and other useful

scripts (often in Python) is available by request.
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Figure 2.11: GABP diLogo: As it is shown there are dependencies between positions
9-10 and 2-3.



Chapter 3

Feature-coupling based

classification

3.1 Introduction

Often in science and engineering we are interested to partition a group of entities into

a number of categories. In biology, for example, species are categorized into different

groups: eukaryotes for any organism whose cells contain a nucleus like man and yeast,

prokaryotes for organisms without nucleus like Bacteria and Archaea. At first sight,

it may sound queer having human and yeast grouped together, but this classification

is merely based on common cellular organelles and structure. Other classifications,

however, may distinguish between man and yeast using other features. For instance,

human is classified as a member of mammalian class along with mouse, cow and other

mammalians. In software engineering we might be interested to label an incoming email

as spam or normal message. Therefore, researchers search for the best set of features

that with a high accuracy indicates the nature of the message.

Formally, the problem of classification is stated in terms of the probability p(Ci|{f},θ),

for i = 1, 2, 3...N . The {f} is the observed data consisting of the desired features, note

that the set notation is because that the order is not relevant. The symbol θ stands for

model parameters. Using Bayes’ theorem, we can write

p(ci|{f},θ) = p(ci)
p({f}|ci,θ)

p(p({f}|θ)
(3.1)

where p(ci) is the prior probability to classify as ci, before seeing the input data {f}. The

function p({f}|ci,θ) is referred to as the likelihood function. Note that the likelihood

39



Chapter 3. Feature-coupling based classification 40

is not a probability distribution, it quantifies the likelihood of the parameters given the

data. In the denominator p(p({f}|θ) is for normalization purpose and is usually called

evidence of the data, where the class label ci is marginalized.

Since we are interested in the relative probability of any of the N classes, we can for

now just calculate

p(ci|{f},θ) ∝ p(ci)p({f}|ci,θ) for i = 1, 2, ..., N (3.2)

In this chapter different ways of treating the equation (3.2) is discussed.

3.2 Naive Bayes classifier

Calculating the likelihood function in (3.2), in a general sense, can be tractable. Fea-

tures can be dependent with each others in a pairwise manner or even higher orders of

dependency. Therefore, before proceeding with calculating the likelihood function (3.2)

we might need to make some assumptions. These assumptions can be very strong, for

example by assuming that the features are completely independent from each other. In

some situations, this may be a good approximation and sometimes it turns out to be

a very naive assumption which leads to a poor classifier. Hence, this method is ironi-

cally named as Naive Bayes method 1. Naive Bayes classifier has been used in different

domains, such as automatic text categorization and disease diagnostic systems.

Despite the strong independent assumption in this model, because of its simplicity and

the small number of parameters it has been used in many classification problems. How-

ever, one of the pathologies of this method is that its underlying non-dependency as-

sumption sometimes lead to overcounting. For example, two variables hypertension and

obesity are independently strong indicators of heart disease, but they are also highly

correlated. Therefore, the Naive Bayes approach leads to overcounting the importance

of these two variables [66].

Naive Bayes method is based on a strong independent assumption, that is

p({f}|ci,θ) =

M∏
n=1

p(fn|ci,θ) (3.3)

where M is the cardinality of the feature set {f}. In equation (3.3) the likelihood

function is equal to the product of each of the features separately.

1In some literature it is referred to as Idiot Bayes!
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Figure 3.1: Example of a DAG that represent a Bayesian network consisting of four
features.

One of the application of the Naive Bayes classifier is in transcription factors binding

site prediction. In this problem, every feature fi is the appearance of a nucleotide at

ith position in the binding site. If it appeared that each binding position contributes

to the total binding affinity of the sequence independent from the other positions, then

using Naive Bayes classifier is acceptable. This method in the context of binding site

prediction is commonly referred to as the position specific weight matrix (PSWM) model.

However, several lines of evidence have revealed that the positional non-interdependence

might not be a good approximation of the binding affinity. This will be discussed in

more detailed in the upcoming chapter.

3.3 Methods for incorporating feature dependency

In order to improve the performance of Naive Bayes method, several algorithms have

been suggested that consider the dependency between features. Solving this problem

in general is computationally arduous. But in there are several methods for taking the

dependent features into account that are usually named as graphical models.

3.3.1 Bayesian networks

This section briefly discusses Bayesian networks (or also referred to as belief network)

as a model for incorporating feature dependencies. Bayesian networks are widespread in

different fields that are trying to build up more realistic models by allowing dependencies

between input random variables. It is common to depict the Bayesian networks in

terms of directed acyclic graphs (DAG), where each node represents a random variable

(technically it is better to referred to nodes as features instead of random variables,

because the definition of random variables in Bayesian context is rather obscure. It is

more a term that is borrowed from frequentist statistics). And each directed edge stands

for a dependency from one feature to another feature.
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Figure 3.1 shows an example of a Bayesian network with four features f1, f2, f3 and

f4. As it is represented in figure 3.1 pair of features f1 and f2 are connected by a

directed edge from f1 to f2; this is equivalent of the conditional probability p(f2|f1). In

mathematical form, this example Bayesian network is written as

p(f1, f2, f3, f4|I) = p(f1|I)p(f2|f1, I)p(f3|f1, I)p(f4|f1, f2, I) (3.4)

where notation I indicates any prior information regarding to the model, such as the

topology of the Bayesian network.

In equation (3.4), feature f4 is dependent on two features simultaneously. This shows

that the dependency structure in Bayesian network is not only of first order, but higher-

orders of dependency can be encapsulated in the Bayesian network.

It is easy to see that the Naive Bayes model is in fact a specialized form of the general

Bayesian networks. By definition, when pairs of variables are conditionally independent

from each other, the resulted model is Naive Bayes model. Naive Bayes is just the most

compact representation of the Bayesian networks.

We have assumed above that the topology (or structure) of the Bayesian network is

previously known. This however may not be the case in some situation. Moreover, even

when the structure of the network is yielded, we might think of the parameters in the

model; the strength of connections. Below we discuss some of these issues.

3.3.2 Model learning in Bayesian networks

Learning algorithms for learning the parameters of Bayesian networks can be divided

into two categories [67]. First, several algorithms try to infer the conditional dependency

from the data empirically. By different test methods for the interdependency between

the variables of data, these algorithms find the best Bayesian network to explain the

observed data. An example of this algorithms is Bayesian Network Power Constructor

(BNPC) which uses independent tests and mutual information scores for characterizing

the variable pairwise dependency [68].

Another class of algorithms are based on a scoring function, or metric. The scoring

functions are based on different principles, such as maximum entropy scores, or minimum

description length. For instance, in an algorithm that is introduced by Heckerman et al.

[69] it searches the space of DAG for the best graph to explain the data. This algorithm

is based on local search (LS) method, that by starting from an initial DAG, by local

changes in the structure of the DAG improves the model’s fit.
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3.4 Ensemble tree model

So far we considered models that by incorporating variable dependency avoid overcount-

ing problem that may arise using Naive Bayes method. These models are based on only

one structure, where the dependency relationship between variables are fixed. There are

several learning algorithms for the network structure as well as the model’s parameters.

In this section, we are presenting a novel model that does not a priori assume that there

is one structure for the variable dependency. This model, that is called the ensemble

tree (ET) model, marginalize the tree structure. Therefore, there is no need for learning

the best dependency network topology.

The number of all possible (spanning) trees for n nodes is equal to n(n−2). Therefore, it

is computationally very expensive, in fact, impossible to calculate the sum of all trees

of any arbitrary size n. This problem formally is defined by

p({f}|θ) =
∑
π

[
p(π)

M∏
i=1

p(fi|fπ(i),θ)
]

(3.5)

where π denotes the tree structure that encodes the dependency relationships between

pair of variables. As it is discussed above, the number of times that the sum in (3.5)

should be performed scaled with MM−2. For an arbitrary large feature set {f}, com-

puting the equation (3.5) is tractable. Here we suggest another approach for computing

the above equation that only requires polynomial calculation time. For that, first we

need to rewrite the equation (3.5) in the following form:

p({f}|θ) =
∑
π

[
p(π)

M∏
i=1

(p(fi, fπ(i)|θ)

p(fπ(i)|θ)
× p(fi|θ)

p(fi|θ)

)]
(3.6)

In equation (3.6) by using the product rule in probability the conditional probability

p(fi|fπ(i),θ) is replaced by p(fi, fπ(i)|θ)/p(fπ(i)|θ).

Defining a symmetrical square matrix R that whose elements are

Rij = Rji =
p(fi, fj |θ)

p(fi|θ)p(fj |θ)
(3.7)

we can rewrite equation (3.6) as,

p({f}|θ) =
∑
π

[
p(π)

M∏
i=1

(
Riπ(i).p(fi|θ)

)]
(3.8)
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This alternative matrix form of the equation allows us to exploit a well-known combina-

torial theorem, known as matrix-tree theorem2. According to the matrix-tree theorem

sum of all nonidentical spanning trees for a connected graph that is represented by ad-

jacency matrix G is equal to any cofactor of the Laplacian form of matrix G [70] [56].

The Laplacian of a matrix G is defined as the difference of the degree matrix D and the

adjacency matrix G.

Therefore, using a uniform distribution over the spanning trees for prior probability

p(π), and applying the matrix-tree theorem, we have:

p({f}|θ) =
1

M (M−2) × det(R̃)
M∏
i=1

p(fi|θ) (3.9)

In the above equation R̃ is obtained by transforming the original R matrix into the

Laplacian matrix and then removing one arbitrary row and column from the matrix;

this is often called the minor of the graph. Equation (3.9) mathematically is equivalent

to the first equation (3.5), but it has a significant implication from a computational

perspective. Calculating the determinant of matrix R̃ is central in (3.9), which its com-

putational complexity is polynomial. In fact, calculating the determinant of a matrix of

size n by standard numerical methods, such as the Cholesky decomposition or the QR

decomposition, takes O(n3) computational time [71]. Hence, using the matrix-tree the-

orem we could replace the original computational intractable problem with conventional

numerical algorithms for calculating matrix determinant.

3.5 Likelihood of single features and feature pairs

So far we were concerning with the high level structure of the model, such as interdepen-

dency between pairs of features or non-dependency like in Naive Bayes models. However,

we have not talked about the basic probability functions: p(fi|θ) and p(fi, fj |θ).

Here we first assume that features are discrete with a finite feature space, meaning that

they accept countable and finite discrete values. For instance, binary features like the

pass or fail result for a course. Alternatively, it can be larger feature set like the IQ test

result that takes integer values from a minimum IQ to the maximum possible score. In

biology, example is the status of a position on DNA that can have either of four possible

nucleotides: A, C, G, or T.

2In some text, it is alternatively referred to as Kirchhoff’s theorem.
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Let x be a discrete variable taking on values 1, 2, ..., S; given the probabilities of taking

any of the possible values as p the likelihood of a dataset d consisting of N observation

is defined as:

p(d|p) =
S∏
k=1

pNk
k (3.10)

where Nk is the number of time that value k is observed in d and by definition N =

N1 + N2 + ... + NS . The evidence of the data d is obtained by application of product

rule as below.

p(d) =

∫
p

dp.p(d|p)p(p) (3.11)

In the equation (3.11) we are needed to decide on the prior probability over the probabil-

ities p. For that, it is common to use Dirichlet distribution. The Dirichlet distribution

is defined as:

p(p|λ) =
1

Z(λ)

∏
k

pλk−1k (3.12)

where λk is the hyperparameter of the Dirichlet distribution. The values of λk can be

treated as pseudo-counts, or virtual counts, that states a priori how much we expect to

see the count associated to the k-th state [72]. It can be shown that the Beta distribution

is a special case of the Dirichlet distribution when S = 2.

Note that the normalization constant Z(λ) is obtained by solving the following integral.

∫
p

∏
k

pλk−1k = 1 (3.13)

Solving the above integral yields:

Z(λ) =

∏
k Γ(λk)

Γ(
∑

k λk)
(3.14)

Hence, the evidence of the observed sample X is obtained by plugging equation (3.10)

and (3.12) in equation (3.11).

p(X|λ) =

∫
p

dp
∏
k

pNk+λk−1
k (3.15)
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The above integral is analogous to the integral in equation (3.13) that results in (3.14);

as a result, the evidence of the data is also Dirichlet distribution, where the hyperparam-

eters are Nk +λk. For this reason, in some literature the usage of Dirichlet distributions

for prior is referred to as conjugate priors.

p(X|λ) =
Γ(
∑

k λk)

Γ(N +
∑

k λk)

∏
k

Γ(Nk + λk)

Γ(λk)
(3.16)

which is the probability that the sample data X comes from one multinomial distribu-

tion.

The choices for the pseudo-count values λk is dependent on the data and the system that

we are modeling. But there are also some standard values for λ values. For instance,

having for any λ = 1/2 is known as the Jeffreys’ prior, or λ = 1 is equivalent to the

uniform prior [73].

According to the Dirichlet distribution, the posterior predictive distribution is equal to

p(x = k|X,λ) =
Nk + λk

N +
∑

k λk
(3.17)

Interestingly, if we use a uniform prior λ = 1, the above posterior is equal to Nk+1
Nk+K

. For

the case K = 2, this posterior is equivalent to the Laplace’s succession rule. In machine

learning community the usage of Dirichlet conjugate priors is sometimes referred to as

Laplace smoothing, or additive smoothing.

The connection of the evidence of data as in equation (3.16) to the concept of entropy,

when a uniform prior λk = 1 is employed, is given by the following equation.

log p(X|λk = 1) ≈ −N logN +N +
∑
k

(
Nk logNk −Nk

)
(3.18)

=
∑
k

Nk log
Nk

N
(3.19)

= −N H(Nk/N) (3.20)

This result shows that less entropic samples are more probable [73]. The approximation

in (3.18) is by the usage of Stirling’s approximation 3. In equation (3.20) function

3Stirling’s approximation: log Γ(n + 1) = n logn− n for any positive integer n
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H(pk) is the entropy function that is defined by H(pk) = −
∑

k pk log pk. Note that the

base of logarithm, when we are using the natural logarithm the uncertainty measure of

the entropy is in nats units; whereas when we using logarithm base 2, the measured

information is in bits.

In the same way that we have calculated the evidence p(X|λ) for a single observed counts,

we can define p(X,Y |λ) for a pair of data counts. The joint distribution p(X,Y |λ) using

the same conjugate Dirichlet distribution with the hyperparameters λk,l is obtained by

solving the following integral.

p(X,Y |λ) =

∫
p

dp
∏
k,l

p
Nk,l+λk,l−1
k,l (3.21)

Note that the resulted distribution is again a Dirichlet distribution.

p(X,Y |λ) =
Γ(
∑

k,l λk,l)

Γ(N +
∑

k,l λk,l)

∏
k,l

Γ(Nk,l + λk,l)

Γ(λk,l)
(3.22)

The value of the hyperparameters in equation (3.22) is obtained by the following rela-

tions.

λk,. =

R∑
l=1

λk,l (3.23)

λ.,l =

Q∑
k=1

λk,l (3.24)

where R and Q are the size of feature space for X and Y , respectively. The reason for

the form of hyperparameters λk,l is because of the additive property of the Dirichlet

distribution.

By replacing equations (3.22) and (3.16) into the equation (3.7) the values of the depen-

dency matrix R can be calculated.

Rij =
Γ(N +

∑
k,l λk,l)

Γ(
∑

k,l λk,l)

∏
k,l

Γ(Nk,l + λk,l)

Γ(λk,l)

R∏
k=1

Γ(λk,.)

Γ(Nk. + λk,.)

Q∏
l=1

Γ(λ.,l)

Γ(N.l + λ.,l)
(3.25)
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We can use the the entropy approximation in equation (3.20) for the logarithm of Rij

values [73].

logRij ≈ N
[
H(Nk,./N) +H(N.,l/N)−H(Nk,l/N)

]
(3.26)

= −N ×DKL(
Nk,.

N
×
N.,l

N
||
Nk,l

N
) (3.27)

= −N × I(
Nk,.

N
×
N.,l

N
;
Nk,l

N
) (3.28)

where the function DKL(x||y) is the Kullback-Leibler divergence function (or relative

entropy), and I(x; y) is the mutual information between two variables [74]. Note that

the Kullback-Leibler divergence is not a distance measure; meaning that DKL(x||y) is

not essentially equal to DKL(y||x).

According the the Gibbs inequality [72], the Kullback-Leibler divergence of two variables

is always at least zero. In other words, DKL(x||y) ≤ 0, with the equality when x and y

are identical distribution. Hence, this measure of dependency (correlation) between two

variables is biased toward the hypothesis that the two variables are dependent [73]. It

can be shown that the value of Rij is resulted from the following hypothesis testing.

Rij =
p(D|dep)
p(D|indep)

(3.29)

where p(D|dep) is the probability that the data is drawn from a joint distribution, and

p(D|indep) is the opposite, where the data is the result of two separate multinomial

distributions.



Chapter 4

Modeling gene expression

regulation with enhancers

4.1 Introduction

The proper functioning of any living organism relies on the flawless gene expression

regulation. The precise regulation of genes in space and time is highly crucial for any

biological process, including proliferation, development and differentiation in the mul-

ticellular organisms. In unicellular organisms it is critical to express proper genes in a

fluctuating environment in order to cope with various stress factors, such as the lack of

vital nutrients or the presence of lethal substances. A myriad number of interactions

between proteins, such as transcription factors (TF) and chromatin re-modelers, to DNA

sequences constitute the core of gene expression regulation. I think I can safely say that

this mechanism is yet too far from our total grasp.

Today we know that the gene expression regulation consists of a number of layers.

At first, it must be decided what part of the genome to be transcribed, or in other

words to control the production of RNA. This work, however, mainly concerns with the

transcription regulation. At the next layer, the transcribed RNA are processed, such

as splicing. Different splicing might lead to completely different function for the final

protein product. It is also shown, in the past decade, that a regulatory mechanism is

imposed on the RNA level. A class of RNA, generally referred to as microRNA (miRNA),

can block the translation of RNA to protein.

In this chapter, a new computational model for the transcription regulation is discussed.

It is widely known that TF through binding to promoters, DNA regions that are proximal

to the transcription start site, control the transcription of genes. In an abstract term,

49
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the RNA production of a gene is a function of its promoter sequence as well as the

presence or absence of regulatory proteins. Binding of different TF to the promoter can

activate or deactivate the transcription from the gene. We have discussed in the last

chapters that it is in fact very complicated to calculate the binding affinity of TF to

the DNA sequences. What makes it more difficult is the fact that a combination of TF

can behave differently under different conditions. This is referred to as combinatorial

binding, or combinatorial regulation.

In the last decades, another class of regulatory sequences are recognized that act some-

how mysteriously. It was recognized that a DNA sequence, although sitting far away

from the transcription start site, plays an important role in the transcription regulation

of the gene [75]. These distal elements are generally, and somehow meaninglessly, re-

ferred to as enhancers. Same as promoters, enhancers contain a number of binding sites

for some TF, and TF through binding to these sequences control the transcription of

a gene at a far distance. This somehow bizarre observation becomes maybe easier to

understand if we imagine the genome as a long polymer chain that is crumbled inside

a small nuclei compartment. Consequently, different parts of the polymer get closer

together in a three-dimensional space. Put in other terms, the DNA bend to get closer

two linearly distal regions. Recently another mechanism for the function of enhancers

has been suggested. It is shown that the enhancers are also transcribed into a non-

coding RNA, referred to as eRNA (for enhancer RNA) [76], and the resulted RNA has

a regulatory effect on far reaching genomic loci.

It is conjectured that the activity of enhancers is highly cell-type specific [77] [78]. En-

hancers originally defined as regulatory elements that act at distance, and independent

from orientation, can mediate the gene expression of a remote genomic loci [75].

4.2 Current methods for identifying enhancers

In the last few years, a number of methods has been proposed to identify potential en-

hancer elements. This section provides an overview on these methods. As it is discussed

in the last section, enhancers posses binding sites for TF and via binding to enhancers,

TF mediate the gene expression regulation at the distant genes. Remarkable, more

than 90% of binding events occur outside proximal promoters, at regions that resem-

bling enhancers [79] [80]. The presence of TF at active enhancers is associated to the

low nucleosome occupancy [81]. Put in other terms, the active enhancers are accessible

to the TF owing to the lack of nucleosome. It has been demonstrated that DNAse I

hypersensitive sites (DHS) are very useful for detecting nucleosome free regions [82].
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For instance, the results of ENCODE project shows that more than 97% of the non-

promoter elements, that includes enhancers and other regulatory units, to be located at

nucleosome free regions [82]. Even though useful to detect active regions of the genome,

it is not completely known that if all the open regions are fully functions. Furthermore,

enhancers constitute a subclass of the regulatory regions which include silencers and

insulators; therefore not all the open elements are associated to the enhancer function.

Several studies have recognized the role of co-factor EP300 (or sometimes referred to

as P300) in gene expression regulation, specifically in marking enhancer regions [83]

[84] [85] [86]. In a large-scale study, Visel et al. [87] explored the role of enhancers in

different embryo tissues of mouse by mapping the regions that are enriched by EP300

binding. Along with the binding of EP300, several studies have shown a correlation

between enhancers and some chromatin marks, namely the presence of acetylation of

histone H3 at lysine 27 (H3K27ac) and H3 lysine 4 monomethylation (H3K4me1) and

the absence of promoter-associated mark H3 lysine 27 trimethylation (H3K27me3) and

H3 lysine 4 trimethylation (H3K4me3) [88]. This study has found 5,118 genomic regions

with chromatin features resembling enhancers. In addition, it is shown that the active

enhancers lack H3K27me3, a modification associated with polycomb silencing.

It is just recently that it is discovered that enhancers are also transcribed. The resulted

transcribed often referred to as enhancer RNA (eRNA) [76]. Understanding the possible

role of eRNA in the activity of enhancers has become an active topic of research [89]

[90]. In a very recent study by FANTOM consortium [91], 43,011 potential enhancers,

defined as the to be expressed and directional-independent, for many human cell lines,

encompassing 432 primary cell, 135 tissue and 241 cell line samples, have been localized.

Remarkably, this study has revealed that many disease-associated SNP occur more often

at regulatory regions, specially those that are related to enhancers, rather than exonic

regions.

In summary, there are several approaches for localizing enhancers, mainly active en-

hancers, within the genome. These approaches ranging from chromatin marks, com-

parative genomic and accessibility of the genomic elements to the expressed transcripts

from enhancers. Within the last years, using variety of techniques many collections of

enhancers have been published; but it is still not quite clear that which enhancer reg-

ulates which gene, or group of genes. One experimental technique that tries to answer

this is the family of chromosome conformation capture (3C) methods [92]. In particular

a variant of 3C method, namely chromosome conformation capture carbon copy (5C),

has been of interest in the ENCODE project [93]. Using this technique, they were able

to query a small subset of human region, Beta-glubin, to detect possible long-range

interactions between the genomic elements. As it was expected, it is shown that the
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previously recognized enhancers are interacting with the promoter regions. One issue

with this technique, apart from the difficulty in interpreting data, is that it is applica-

ble at a low scale for only a small number of regions. A more recent high-throughput

variant of this technique introduced by Lieberman-Aiden et al. [94] which is called Hi-C

method. The authors were able to apply this technique on a genome-wide scale and

showed the interaction of distant genomic regions follow a scale free distribution. This

technique has been used to investigate 1 Mega bp human genome, which is still a very

low resolution for understanding the detailed mechanisms of gene expression regulation

by TF.

In this chapter, we are presenting a novel Bayesian approach that characterize enhancer

elements. Most importantly, this method provides a computational framework for find-

ing the best promoter-enhancer linkage. We can show that a model with enhancers along

with promoters explain the observed gene expression dynamics better than a model that

consists only of promoters. Finally, the proposed framework allows incorporating new

evidences or the available data for a more accurate enhancer and enhancer-promoter

recognition.

4.3 MARA: Transcription regulation as a function of pro-

moter sequence

In a probabilistic model Balwierz et al. [95] characterized the gene expression dynamic

across different samples, or time, as the function of predicted binding sites within genes’

promoters. This model, called motif activity respond analysis (MARA), infers the tran-

scription regulatory circuit that is behind the observed gene expressions. Formally, the

observed expression Eps at a promoter p, in sample s, varies linearly with the number

of binding sites Npm, for all possible (available) motif m.

Eps =
∑
m

NpmAms + noise (4.1)

The values of Npm for every motif on each promoter is calculated by summing the poste-

rior probabilities of binding for each site with promoters. For calculating the site counts

Npm, conservation of each sequence as well as its matching to the motif is considered

by MotEvo program [64]. What is needed to be inferred from the data are the values of

Ams, which denotes activity of motif m in sample s. The motif activity determines the

contribution of the motif in a particular sample to the observed gene expression profile.

Note that the motif m has no activity per se, it is the binding of TF that defines the
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motif activity. In the MARA model the noise is assumed to be originated due to the

model’s error; therefore, the noise is modeled as Gaussian distribution with an unknown

variance σ2, which is integrated out from the likelihood function.

One more point is the that the MARA model is in fact a so-called Ridge regression model,

meaning that it uses L2 regularizing term, also known as Tikhonov regularization, to

control the complexity of the final model. From the Bayesian point of view, it is similar

to have a Gaussian prior over the activity parameters.

The posterior of motif activities has a form of multi-variate Gaussian distribution

p(A|E,N, σ) ∝ σ−PS exp
[
−
∑

p,s

(
(Ep,s − summNpmAms)

2 + λ2
∑

mA
2
ms)
)

2σ2

]
(4.2)

where P and S are the total number of promoters and samples, respectively; and λ sets

the width of prior distribution over Ams relative to the width of the likelihood function.

The value of λ is determined through a 80/20 cross-validation scheme. In the next

section, we develop a new model that includes potential enhancers to the basic MARA

model.

4.4 The probabilistic Model

In this section, we present a statistical approach to characterize the role of distal regula-

tory elements, also referred to as enhancers, in the gene expression regulation. Instead

of detecting the distal elements using different techniques such as epigenetic signals that

mark the enhancers or chromatin conformation capture method, here we are concerned

with the functional activity of enhancers. The enhancers, similar to promoters, har-

bor a set of binding sites for different transcription factors (TF) that upon binding will

potentially activate the regulatory effect of the enhancer. This is physically done by

loop formations in the DNA that brings close the proximal promoters and the enhancers

(figure 4.1). The detailed mechanism for loop formation is still not fully understood,

but it is suggested that the loop stabilization might be mediated by TF and co-factors

that are bound, directly or indirectly, to the two regions: promoters and the enhancers.

Therefore, the arrangement of TF in both proximal and distal sequences would convey

information about their distal interaction and consequently their contribution toward

the gene expression regulation.

Under a simple linearity assumption, the observed gene expression of promoters is mod-

eled as it is explained in section 4.3 and equation 4.1. This idea is illustrated in figure
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Figure 4.1: Models of transcription regulation. a) when there is only the proximal
promoter plays the regulatory role and b) when the contact between distal enhancer

and the promoters control the expression of the gene.

4.1a, where the proximal regulatory unit is responsible in deriving the expression of the

gene next to it. Another mode of regulation can be done via interaction of the proximal

promoter to the remote regulatory element, facilitated via DNA loop formation. To

include the regulatory activity of the enhancer into the above model, as it is shown in

figure 4.1b, we model the binding sites composition as the mixture of binding sites from

the promoter and the enhancer.

Ep,s =
∑
m

Am,s((1− λp,e)Nm,p + λp,eNm,e) (4.3)

The mixture of TF binding sites is determined by the quantity λp,e that can reflect

the rate of physical contact between promoter p and the distal enhancer e. Note that

any other functional form can be assumed for the promoter-enhancer interaction. Here,

we only consider the weighted sum of the motifs in both enhancer and promoter. The

site-count Nm,e is calculated by the same way as Nm,p. By assuming a Gaussian noise

model and independence between different samples, we can write the likelihood model.
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P (Ep|N,A, λ, σ) =
( 1√

2πσ

)n
exp

(
−
∑

s

(
εp,s − λẼp,s

)2
2σ2

)
εp,s = Ep,s −

∑
m

Am,sNm,p , Ẽp,s =
∑
m

Am,s(Nm,p −Nm,e) ,

(4.4)

where n is the number of samples and to avoid the notational clutter we have replaced

λ for λp,e. Integrating out σ2 from the above equation, with a scale-invariant Jeffrey’s

prior over σ2, yields

P (Ep|N,A, λ) ∝
∫ ∞
0

σ−n−2 exp
(
−
∑

s(εp,s − λẼp,s)2

2σ2

)
dσ2 (4.5)

By substituting σ2 = 1/t (and so that dσ2 = −dt/t2), and using Gamma integral

equation, we can work out the integration for σ2.

P (Ep|N,A, λ) ∝ Γ(
n

2
)
( n∑
s=1

(
εp,s − λẼp,s

)2)−n/2
(4.6)

The maximum likelihood (ML) estimation for λ∗MLE (λ∗, in short) can be found by

finding the root of the first derivative of equation 4.6 with respect to the λ. We can do

the same over the log-transformed Lλ = log
(
P (Ep|N,A, λ)

)
of the equation 4.6.

∂Lλ
∂λ

=
n×

∑
s Ẽp,s

(
εp,s − λẼp,s

)∑
s

(
εp,s − λẼp,s

)2 (4.7)

The above equation is equal to zero if the sum term inside the numerator becomes zero.

Hence,

λ∗ =

〈
εp.Ẽp

〉〈
Ẽ2
p

〉 (4.8)

Negative inverse of the square root of the second derivative of Lλ provides the error-bar

of the ML estimation λ∗.

∂L2λ
∂2λ

=
−n×

〈
Ẽ2
p

〉〈
(εp,s − λẼp,s)2

〉 (4.9)

To summarize, the ML estimation of λ as well as the error-bar of the estimate is given

by:
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λ = λ∗ ±

√〈
(εp,s − λ∗Ẽp,s)2

〉√〈
Ẽ2
p

〉 n−1/2 (4.10)

The above calculation is a valid guess for the value of λ, as long as we pose an ignorant

prior over the value of λ. In section 4.2, we have discussed that currently there are

several methods for detecting candidate enhancers. This has led to a large number

of available genome-wide data, hence we prefer to have more informative prior over λ

rather than a totally ignorant prior. The idea of integrating previous observations into

the prior of λ is explained in the following section

4.4.1 Informative prior over λ

Given the pile of the available genomic data that has been collected in the last decade

regarding to the functional part of the genome, we might be able to incorporate previous

knowledge into the prior of λ. There is a number experiments that are designed to draw

a genome-wide picture of the state of the different genomic loci. For example, DNAse

I hypersensitivity assay is one of those experiments which reveals the open chromatin,

which are possibly active parts of the genome, and closed or inactive parts. Having an

experiment such this can help us to disentangle the potentially active regulatory regions

from the silence parts of genome. In the last years, ENCODE consortium has released

the DNAse data for 98 human cell-lines. As it has been shown there is only about two

percent of the genome being in open state. Therefore, the above approach to calculate

λ might lead to a lot of undesired false positives.

To encode the open-chromatin data into a prior model, we assume that the closed state

of a locus across many different cell-lines indicates a small λ, showing its lack of active

regulatory activity. On the other hand, when a locus is open in some circumstances, this

may show its regulatory activity, however not necessary toward a particular promoter

that we are testing for. For this purpose, we have chosen a truncated (between zero and

one) exponential distribution which the scaling-factor of the distribution is controlled

by the openness of the chromatin for a given locus.

P (λ|α) =
1

α
exp(−λ

α
) (4.11)

The value of α in equation 4.11 is set according to the fraction of time that the region

is being open across all samples. As a result, this value reflects our prior expectation

toward the value of λ; if the region is almost never open we do not expect it to have a
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functional regulatory activity and so the λ might be close to zero. On the other hand,

if we find a region to be open in a number of samples, this information is transferred to

the prior of λ by allowing relatively higher values of λ.

4.4.2 Identifying novel enhancers and enhancer-promoter linkage

Using the prior probability 4.11 and the already defined likelihood model 4.6, we are

able to write down the posterior over λ.

P (λ|Ep, N,A, α) ∝ 1

α
exp(−λ

α
)×

( n∑
s=1

(
εp,s − λẼp,s

)2)−n/2
(4.12)

Using this posterior, we can calculate the maximum a posteriori estimation (MAP) for λ

in a brute-force manner. The above model, gives us a way to assess the enhancer activity

of any region in regard to the expression of a gene. Care must be taken however when we

are considering this model, because from the modeling perspective we have introduced

more complexity to the model in compare with the more simpler approach which is

only-promoter method (figure 4.1a). This might be true that the explained model gives

us a good fit to the data but maybe the promoter-only model also fits the data decently.

Therefore we must compare both strategy in the light data and systematically consider

the complexity of each model in compare with each other. To this end, one might think

of employing different model comparison methods. We use here Bayes factor statistic

that is defined as:

P (M1|D)

P (M2|D)︸ ︷︷ ︸
Posterior odds

=
P (M1)

P (M2)︸ ︷︷ ︸
Prior odds

×
∫
θ1
P (D|M1, θ1)P (θ1)dθ1∫

θ2
P (D|M2, θ2)P (θ2)dθ2︸ ︷︷ ︸

Bayes factor K

(4.13)

The equality between Posterior odds and Bayes factor is established if the Prior odds

is one, or in other words we do not apriori prefer any model for the other. There are

observations that show the genomic distance between two distal regions determines the

background frequency in which two regions initiate a contact due to the loop formation

of the DNA polymer. For instance, the recent Hi-C data empirically shows a power-law

distribution, with scaling factor 1.08, for the background contact frequency between two

regions that are d nucleosome fiber (∼ 1.6 kb) apart. It is also theoretically shown that in

self-avoiding polymer model the contact probability of two distal parts are proportional

to the reverse of their distance. This information can be encoded in the prior of the

enhancer-promoter model and as a result scales the Bayes factor in equation 4.13. But
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for now we assume that the Prior odds are equal to one, so let us focus on deriving the

Bayes factor.

Deriving the enhancer-promoter model part of the Bayes factor K requires to integrate

the 4.6 for λ.

P (E|N,A, α) =

1∫
0

P (E|N,A, λ, α)P (λ|α)dλ (4.14)

Performing the above integral analytically is quite cumbersome, hence we can either

resort numerical computation of the integral or using some approximations. If we are

given a big enough sample size (say n > 20), the approximation might work good enough

to estimate of the integral. Taylor expansion of the log of P (E|N,A, λ, α), defined above

as Lλ, around its maximum with regard to λ, equation 4.8, can provide an estimate for

the true value of Lλ.

Lλ = Lλ∗ +
∂Lλ
∂λ

∣∣∣∣
λ=λ∗

(λ− λ∗) +
1

2

∂L2λ
∂2λ

∣∣∣∣
λ=λ∗

(λ− λ∗)2 + . . . (4.15)

Where the second term in the above sum is equal to zero as we defined the first derivative

around the maximum λ∗. Ignoring the higher terms of the Taylor expansion 4.15, and

replacing φ2 = −(1/L′′λ∗) results in:

P (E|N,A, α) =
exp(Lλ∗)

α

1∫
0

exp
(
− (λ− λ∗)2

2φ2
− λ

α

)
dλ (4.16)

With a little basic algebra, and defining z = λ∗ − (2φ2)/α, the above integral is equal

to:

P (E|N,A, α) =
φ
√

2π exp(Lλ∗)
2α

× exp
(z2 − λ∗2

2φ2
)

erf(1) (4.17)

In this equation erf(x) is the standard error-function. By using the above integral, and

the likelihood of only-promoter model, we can define the Bayes factor K as it follows:

K = c× φ

α
exp

(z2 − λ∗2
2φ2

)(∑
s

(
εp,s − λ∗Ẽp,s

)2∑
s ε

2
p,s

)−n/2
(4.18)
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Where c is defined as (
√

2π/2) × erf(1), which is equal to 1.05617 . In addition to the

Bayes factor K as it defined by 4.18, one can take into account the genomic distance

d into this statistics. As it has been explained we would expect that the more closer

both regions are, the more frequent would be their interaction. Here we incorporate this

information into the Prior odds, in equation 4.13, by using a power-law distribution.

P = d−β ×K (4.19)

where d indicates the genomic distance between two genomic loci. For instance, one can

define the d based on how many kilo base-pair two regions are apart, or similarly how

many nucleosome fiber (about 1600 bp) as the basic packing unit of DNA. The scaling

factor β > 1 can be set according to the other experiments or theoretical works. Here

we set β = 1.08 which is previously fit to the Hi-C data.

As a result of equation 4.19 we propose a method that for a given promoter tests whether

or not any genomic region can potentially be an enhancer. As long as we are in pos-

session of the motif activity matrix A and the expression matrix E for a given system,

such as stem-cell differentiation or immune respond, we can systematically determine

the enhancers and more importantly link the promoters to the discovered enhancers.

Therefore this method does not assume that any enhancer interacts specifically the clos-

est promoter, whereas the association is established merely by the function of enhancers.

In order to learn the motif activity matrix A we need however to have the enhancer pro-

moter relationships with their associated interaction λ. Since this is not possible to have

enhancers in advance, we simplify the problem by learning A under the promoter-only

model. And later use this matrix in order to detect functional enhancers.

4.5 Results

We have tested this model over the FANTOM time-course CAGE expression data on

Adipocyte. Using an iterative algorithm that will be explained below, we have found

a number of enhancers that adding their site-counts to the site-counts of associated

promoter regions increases the goodness of fit, if it is compared to a simpler promoter-

only model.

4.5.1 Fitting motif activities in the enhancer-promoter model

In the last sections a model is presented that can be used to identify candidate enhancers

for promoters. The new model, which consists of enhancers and promoters, proposes
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a new way to investigate on the motif activities across the gene expression dynamics.

Instead of a site-count matrix N that includes promoters’ site-counts for each motif, we

have replaced it by new matrix M whose elements indicate the weighted sum of the sites

in promoter and its associated enhancer.

To learn the model parameters λ for each promoter and its enhancer, and incorporate

it into a new site-count matrix, we propose an iterative procedure. By starting from a

simple model, that only includes promoters – that is simply the basic MARA model –

we fit the activities Ams. After that we sample a small number of promoters, and for

each of the sampled promoters, slide a fixed-size window up and down stream of the

promoter. The exonic and promoter regions are excluded from the windows. Then the

Bayes factor, equation 4.18, is calculated to test whether the window can be a potential

enhancer. We then select the window with the highest Bayes factor among the windows

with a Bayes factor of at least 10. For the selected window, the maximum a posteriori

(MAP) estimation for the λ is found. Using the MAP estimate of λ, we add the site-

count of the identified enhancer to the promoter. After that, a new site-count matrix is

built over the basic MARA site-count matrix. By the same method as MARA, the new

motif activities are calculated, and the fraction of explained variance between the new

model and the previous model is found. Once the difference in the fraction of explained

variance between two consequent models is low enough, the iteration stops. Otherwise,

a new set of promoters are sampled and their best enhancers site-counts are added to

the site-count matrix by the same way as it has been explained.

4.5.2 Adipocyte time-course data

Adipose tissue can account for between 5% in athletes to 60% of total body mass, which

makes it one of the most plastic organs in the body. It is demonstrated that under

stable conditions there is about 10% of the adipocytes turn over annually [96]. As a

part of FANTOM5 project, a time-course data of in vitro differentiation of adipocyte

from the adipose-derived mesenchymal stem cells (hADSC) is produced that consists of

17 time points and done in triplicates. We have used this data to build a model for

explaining the gene expression dynamics across time point. The final model includes

enhancers along side with promoters. By the approach that is explained in last section,

a set of candidate enhancers are identified and the site-count of the best enhancer is

added to the associated promoter’s site-count. This result is shown in figure 4.2 that

in the course of iteration for learning the model, the goodness of fit, or the fraction of

explained variance, improves. This is shown by the red curve. To test whether there

is a systematic bias for the fact that a more complex model tend to explain the data

better than the simpler model, we have shuffled the enhancer-promoter linkages. This is
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Figure 4.2: The improvement of fit for a model with enhancer once it is started
from the basic MARA model, which only includes the promoters. The x-axis indicate
the iteration time, at each step a small subset of promoters are sampled and for each
one the best enhancer within 100 kb up/downstream is identified. The blue curve is
a situation that the identified enhancers, not necessary the best one, is assigned to a

randomly chosen promoter.

done by picking an arbitrary candidate enhancer, not necessary the best enhancer, and

instead of adding its site-count to its promoter, adding it a randomly selected promoter.

We then looked at the activity profile of motifs. It is observed that for many motif,

the activity of the motif from a simple no-enhancer model amplifies once the enhancers

are added to the model. However, for some motifs the activity profile changes with the

enhancer-promoter model. This is shown for the top four motif in this system (figure

4.3), selected according to their Z-scores.

In the figure 4.4, the Chi-square score of each promoter is shown under the two models.

For each promoter there are two Chi-square scores which is calculated by the basic

MARA model and the final enhancer-promoter model. It is clearly shown that for the

promoters that an enhancer is assigned, the Chi-square score improves under the new

augmented model. Whereas for the promoter-only model, the difference between the

intact promoters – the ones that no enhancer is found – in the two models is negligible.
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Figure 4.3: The activity profile of the top four motifs in adipocyte system. The ac-
tivities are drawn for four time point of the iteration. Red curve indicates basic MARA
model. It is then followed by three other time points, after adding more enhancers to

the promoters’ site-counts.

4.6 Dynamics of promoter-enhancer interaction

In the previous section we outlined a statistical investigation on the function of enhancers

as the potential gene regulators. We, however, did not address the enhancers activity in

action. It has been shown and discussed that enhancers, unlike promoters, are of more

fluid nature. The DNA polymer is highly dynamics, with the different parts of the chain,

under many known and unknown physical constraints, is flopping around dynamically,

which this might bring a potential enhancer element in a close proximity to a promoter

of a gene. Therefore, enhancer-promoter interaction can be variable under time and

space. It is possible that an enhancer controls the transcription of a number of genes,

and a gene is under the control of multiple enhancers at different times. In this section,

we are suggesting a model or maybe better described as conjecture, for the dynamics of

enhancer-promoter interaction. Figure ?? shows the aforementioned problem, multiple

enhancers, in combination or solo, can play an activator role at a given time.
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Figure 4.4: Each point represents a promoter and for each promoter the Chi-square
score is calculated under both models: enhancer-promoter, and only promoter models.
The promoters are divided into two classes, promoters with an enhancer assigned to
them which is indicated in red; and promoters that no enhancer is found for them,

which are represented in blue.

A precise physical model that explains which enhancers are activating the gene expres-

sion under a set of initial conditions, is highly complicated. Here, however, we tackle

this problem in a less mathematical and computational complexity. By sticking to the

same principles as the last section, we would like to model the dynamics of the enhancer-

promoter interactions. More specifically, we are interested in knowing that the expression

of a gene, in a given cellular condition, is under which set of enhancers’ control. Putting

differently, which of the potential enhancers are more plausible to regulate the expres-

sion of the gene. The gene expressions profiles at a different time points constitute the

observables, and the other prerequisite is a list of candidate enhancers for each gene. To

infer that which enhancer is playing an activator role at a time or what is the dynamic

of promoter-enhancer interactions we use the Hidden Markov Model (HMM).

So far it is just as idea for modeling the dynamic of enhancer-promoter interaction, which

can be explored today owing to the great collection of enhancers and other experimental
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Figure 4.5: The HMM model for enhancer-promoter interaction gene expression reg-
ulation. At a given time it can be any enhancer interacting with the gene’s promoter
upon which mediate the expression of the gene, or even the promoter alone does all the
regulatory job. In addition, there is a dynamics between switching of enhancers from

time to time.

data. One can study what features are contributing to the interaction of a specific

enhancer with a particular promoter at a given time and space. It can be due to the

activity of a subset of TF, or maybe other physical constraints such as the distance along

the genome or the state of DNA inside the nucleus.

As a summary, we have investigated the role of enhancers from a transcription regulatory

point of view that is mediated by the interaction of TF with the enhancer and promoters.

We have extended the classical model for transcription regulation beyond the promoter

sequences, by incorporating the possible interaction of distal enhancer regions to the

promoters. The new model has shown an improvement in the model’s fit, and resulted

to a collection of the potential enhancers for each promoters. The dynamic of the

enhancer-promoter is briefly explored by introducing a latent variable model for the

enhancer usage. The motivation for this came from the fact that a given enhancer

can control several promoters at different times, and each promoter can have multiple

enhancers under different conditions.
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