Jacquemin, E. and Hagenbuch, B. and Wolkoff, A. W. and Meier, P. J. and Boyer, J. L.. (1995) Expression of sodium-independent organic anion uptake systems of skate liver in Xenopus laevis oocytes. American journal of physiology. Gastrointestinal and liver physiology, Vol. 268, H. 1 , G18-G23.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/dok/A5261746
Downloads: Statistics Overview
Abstract
The expression of the basolateral sodium-independent organic anion uptake system of the little skate (Raja erinacea) has been studied in Xenopus laevis oocytes. Injection of oocytes with skate liver poly(A)+ RNA resulted in the functional expression of chloride-dependent sulfobromophthalein (BSP) uptake and sodium-independent taurocholate uptake within 3-5 days. The expressed chloride-dependent BSP uptake activity exhibited saturation kinetics [apparent Michaelis constant (Km) 1.8 microM] and efficiently extracted BSP from its binding sites on bovine serum albumin. The chloride-sensitive portion of BSP uptake was inhibited by bilirubin (10 microM; 27%), 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (100 microM; 57%), bumetanide (100 microM; 48%), taurocholate (200 microM; 51%), and cholate (200 microM; 45%). Size fractionation of total skate liver mRNA revealed that a 1.8- to 2.9-kb size class mRNA was sufficient to express chloride-dependent BSP uptake and sodium-independent taurocholate uptake. In addition, a 1- to 1.7-kb size class mRNA expressed sodium-independent taurocholate uptake but had no effects on BSP uptake. This study confirms that an organic anion transport system for chloride-dependent BSP uptake, with characteristics similar to rat liver, is already expressed in the liver of lower vertebrates and thus represents a phylogenetically old system. Sodium-independent taurocholate uptake in skate liver may be mediated by two different transport systems.
Faculties and Departments: | 11 Rektorat und Verwaltung > Vizerektorat Forschung |
---|---|
UniBasel Contributors: | Meier-Abt, Peter J. |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | American Physiological Society |
ISSN: | 0002-9513 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Related URLs: | |
Identification Number: |
|
Last Modified: | 22 Mar 2012 14:21 |
Deposited On: | 22 Mar 2012 13:23 |
Repository Staff Only: item control page