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Abstract

At the heart of a statistical analysis, we are interested in drawing conclusions
about random variables and the laws they follow. For this we require a
sample, therefore our approach is best described as learning from data. In
many instances, we already have an intuition about the generating process,
meaning the space of all possible models reduces to a specific class that is
defined up to a set of unknown parameters. Consequently, learning becomes
the task of inferring these parameters given observations. Within this scope,
the thesis answers the following two questions:

Why are invariances needed? Among all parameters of the model, we
often distinguish between those of interest and the so-called nuisance. The
latter does not carry any meaning for our purposes, but may still play a crucial
role in how the model supports the parameters of interest. This is a fundamen-
tal problem in statistics which is solved by finding suitable transformations
such that the model becomes invariant against unidentifiable properties. Of-
ten, the application at hand already decides upon the necessary requirements:
a Euclidean distance matrix, for example, does not carry translational infor-
mation of the underlying coordinate system.

Why Gaussian models? The normal distribution constitutes an important
class in statistics due to frequent occurrences in nature, hence it is highly rele-
vant for many research disciplines including physics, astronomy, engineering,
but also psychology and social sciences. Besides fundamental results like the
central limit theorem, a significant part of its appeal is rooted in convenient
mathematical properties which permit closed-form solutions to numerous
problems.

In this work, we develop and discuss generalizations of three established
models: a Gaussian mixture model, a Gaussian graphical model and the
Gaussian information bottleneck. On the one hand, all of these are analyt-
ically convenient, but on the other hand they suffer from strict normality
requirements which seriously limit their range of application. To this end,
our focus is to explore solutions and relax these restrictions. We successfully
show that with the addition of invariances, the aforementioned models gain a
substantial leap forward while retaining their core concepts of the Gaussian
foundation.
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Symbols and Notation

Symbol Description Format
Univariate
Normal
X random variable 1x1
o mean 1x1
o? variance 1x1
T realization 1x1
Multivariate
Normal
X vector of random variables px1
) mean vector px1
by covariance matrix PXDp
T realization px1
Matrix-variate
Normal
X matrix of random variables pXNn
M mean matrix pXn
X row covariance matrix PXDp
w inverse row covariance matrix PXDp
v column covariance matrix nxXn
X realization pXN
v vector of row means px1
w vector of column means nx1
S inner product matrix PXD
D squared Euclidean distance matrix p X p
Vector and
Matrix
1, column vector of 1s px1
Opxn matrix of Os pXn
xT transpose of matrix X
»1 inverse of matrix X

iX



Likelihood

e IE=
OO0

distribution function
density function
likelihood function
log-likelihood function
parameter of interest
nuisance parameter

Distributions

Q=
SO0

—~
~—

S
OO

normal distribution
gamma distribution
Wishart distribution
T distribution
uniform distribution

Sets

R, RP, RP*"
diag

Sy

S_

real numbers/vectors/matrices
diagonal matrices

symm. pos.-definite matrices
symm. neg.-definite matrices

Clustering

SV

mixture weight

inner product of cluster means
counterpart of A in the
inverse covariance matrix
cluster assignment matrix

1x1

kxk

kxk

p Xk

Compression

A Q

copula, Gaussian copula
copula density
correlation matrix
standard normal
random variable
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Chapter 1
Introduction & Basic Concepts

In the field of machine learning, we are interested in drawing conclusions
about random variables (rvs) and the principles and laws they follow. For
this, we require realizations, also referred to as observations, or the sample.
In essence, the approach can be described as learning from data.

Often, we already have some knowledge about the process from which the
underlying data are generated, so it is possible to restrict our analysis to a
specific class, where only the parameters need to be determined. For example,
one may assume a normal distribution and be interested in estimates of the
mean and/or the variance. Thus, whenever we limit the space of all possible
processes to a smaller set, we also speak of a model, and, if such a set is
defined up to a parametrization, the model is said to be of parametric kind.
It is important to bear in mind that all subsequent analysis is conditional on
this model and the explanatory power may suffer greatly if this is not valid.
Any conclusion we draw is based on this very choice, hence, we will assume
that it either matches the true process or is reasonably close.

As suggested by the title, the thesis is centered around the normal (or
equivalently Gaussian) distribution, which constitutes an important class in
statistics due to special properties and its frequent appearances in nature.
When we restrict ourselves to the normal distribution, our model is paramet-
ric and we seek to identify mean and/or variance, or in the higher-dimensional
case, mean and/or covariance matrix. In short, this is the most concise and
compact formulation of our goal.

Although there exist estimators for the parameters of Gaussian models
when all data are available in full, some interesting special cases arise if
the information carried by the sample is limited. As an example, consider
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kernel or distance matrices, which are functions or statistics of the original
data, but leave out vital properties: due to pairwise evaluation, a part of what
characterizes each individual entity is inevitably lost. The problem becomes
more evident when we think of three points in a Euclidean space: Having
access to the individual properties or features of the points gives a more in-
formative representation than only their relative distances. Thus, if distances
are observed, there is an infinite number of geometric configurations from
which the outcome could have originated. Unfortunately, this issue often
precludes a direct application of Gaussian models in case it requires the full
representation of the data. If we settle for one possible choice, it potentially
determines how, say, the covariance matrix is inferred eventually. Hence, we
find ourselves in a position, where some specific information is required by
the model, but its reconstruction may interfere with the outcome.

In order to solve the above problem, we will apply certain transformations
to the model, such that it only depends on the limited information at our
disposal. Speaking in more formal terms, the idea is closely tied to the
principle of sufficiency, stating that for a suitable statistic of the data, the
probability density factors into two parts: one depends on the parametrization
and the other is a function solely of the data. The latter term can then safely
be discarded since it does not affect how the parameters are inferred. In
general, we wish to remove as much irrelevant information as possible while
still being able to fully and correctly distinguish two hypotheses. If a function
satisfies this property, it is said to be minimal sufficient with regards to the
parameters.

One may also look at this from a different point of view, where the trans-
formation partitions the space of all data into equivalent sets, meaning the
conclusion drawn for the parameters will be the same across each set, in-
dependent of which individual representative is selected. When a model
exhibits such a property, we say it is invariant against certain characteristics.
This concept shall be explored in more detail in the following chapters.

Apart from the removal of irrelevant information to support the inference
process, there is a second justification for this concept: Assume the model
has multiple parameters and we are interested only in one of them, then
the remainder does not carry any particular meaning for us. This is a very
common phenomenon in statistical analysis which garnered a lot of attention,



the reason being the separability between interest and nuisance. Ideally, we
would like to ignore all uninformative degrees of freedom, which is possible
when the probability density factorizes a part which only depends on the
nuisance. In such instances, these terms can safely be discarded since they
do not impair our judgment of the parameter of interest. In all other cases,
however, they persist and may have a critical impact on how the parameter
of interest is perceived. A suitable treatment of this issue will again be based
on the principle of sufficiency, where we now distinguish between interest
and nuisance. All these techniques are introduced in the following section
about invariances along with a more formal background.
At its core, the thesis is centered around three topics:

e A Gaussian mixture model for distances
(Adametz and Roth, |2011; |Vogt et al.,|2010)

e A Gaussian graphical model for distances
(Adametz and Roth, 2014; [Prabhakaran et al., 2013)

e A Gaussian copula model for mixed data
(Adametz et al., 2014; Hoft], 2007; |Rey and Roth} [2012)

Although all methods share the normal distribution as a common foundation,
we will introduce specific invariances, hereby making the models suitable to
a larger class of problems. Effectively, this can be seen as a generalization,
which arises from information loss in certain domains.

The first two topics are related, since they both operate on pairwise dis-
tances as opposed to full vectorial data, yet they infer different parameters.
Most importantly, the fact that inference only relies on the input of a dis-
tance matrix enables us to make use of the vast set of kernel functions for
seemingly any data type or domain, be it protein sequences, semantic texts,
images, chemical structures or graphs. In similar vein to the kernel trick,
e.g. (Rasmussen and Williams, 2006, p. 12), we exploit the property that
objects are not required to be vectorial as long as they permit evaluating
pairwise (dis)similarities.

The third topic is concerned with estimating the correlation between rvs,
but tackles a conceptually different problem: here, individual data are ac-
cessible, but obscured by discrete distribution functions, which reduces the
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original values to a limited set of levels. This condition effectively precludes
standard approaches acting on Gaussian data, making it impossible to per-
form inference by conventional means. By integrating suitable invariances
into the model, the correlation matrix can be estimated in spite of information
loss. As a result, this enables new possibilities in the context of biological
pathways, which are demonstrated in the later course of the thesis.

This concludes the general description of the applications and the tools
we will employ for inference in Gaussian models. We begin by providing
the theoretical foundation of which all subsequent analysis is based upon.

1.1 Likelihood

Consider a rv X with an unknown probability density function (or simply
density) f (ac)ﬂ Then, given a set of realizations

{z1,..., 20}, (1.D)

a statistical analysis is concerned with drawing conclusions about the un-
derlying distribution. This knowledge will give us further insights into the
process and help us understand, how the data were generated.

We may already have some intuition about the family F of density f,
hence the space of all possibilities, or hypotheses, reduces to the parameters
0 that specify this distribution. The dependence is made explicit by writing

f(z;0), (1.2)

which interprets the density as a function of €. Since  is not known, however,
it represents a whole class of plausible densities, also called model. More
importantly, we implicitly assume that the true f(x) is a member of the class,
thus all the following will be conditioned on this very choice of a model.
From a mathematical point of view, the density is a function with a fixed
f which is evaluated at different . For our purposes, however, the roles of
inputs are reversed: the data are assumed to be fixed and the interest lies in
finding a hypothesis 6 which best explains the observations. After all, our

"For discrete rvs, f(z) is the probability mass function.
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goal is to evaluate different hypotheses on the same sample. Therefore, we
define the likelihood as

L(9)=L(O;x) x f(x;0), (1.3)

which tells us how likely hypothesis 6 is given data x. It is important to note
the proportionality sign, showing that all constant factors are absorbed. Due
to this, the likelihood is, technically speaking, not a statistical distribution
anymore and the area under the curve does not carry a meaning. Instead, its
sole purpose is to distinguish different hypotheses, which is found by the
likelihood ratio

L(0y;x) _ L(6:)

= . 14
L(B2;2)  L(6) 19

If the ratio is greater than 1, then, given the observations, we shall prefer
0, over 0. In the literature, this is also referred to as the law of likelihood
(Edwards, [1992)), which is based on the premise that the likelihood contains
all information that is needed to fully evaluate a hypothesis (likelihood prin-
ciple). At this point, it is clear the likelihood can only be interpreted in a
relative fashion rather than on an absolute scale. When depicted graphically,
the convention is to fix its maximum at 1.

For mathematical convenience, the likelihood is often written in its (nat-
ural) logarithmic form

0(0) = log L(0), (1.5)
meaning products are transformed to summations. Eq. (I.4) now becomes
€(61) — £(02), (1.6)

being greater than zero if hypothesis 0, is better supported than 5.
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1.1.1 A Note on the Historical Developments in Statistics

According to|Young and Smith| (2005} p. 2f) and [Efron| (1998)), statistics can
be classified into three schools: Bayesian, Fisherian and frequentist. The dis-
tinction between them is not clear and sometimes even under strong dispute,
which is due to the historical developments. For our purposes, however, it
suffices to highlight some properties and their implications for inference.

In the Bayesiarﬂ paradigm, parameter 6 is a rv itself, hence, it requires
the specification of a prior belief before observing any datum. Using Bayes’
rule, the prior is transformed by the likelihood into the posterior, on which
inference is based. Importantly, the Bayesian concept treats a probability as
the belief in a hypothesis.

In contrast to the above, the Fisheriarﬂ school assumes that 6 is unknown,
but fixed, thereby avoiding any prior distribution. Still, for inference to be
most expressive, the likelihood must be conditional on everything that is
already known about 6. In the same spirit, it is desirable to remove all irrel-
evant information contained in the data as long as judgment about 6 is not
impaired. This need for efficiency is more formally expressed in the princi-
ple of (minimal) sufficient statistics. The likelihood principle—perhaps the
most central aspect of the Fisherian concept—naturally lead to the maximum
likelihood estimate as an optimization task to identify the best supported
parameter given the sample. In order to highlight the overlap between par-
adigms, one can state that the Bayesian school also obeys the likelihood
principle—meaning the likelihood contains all required information to infer
0, even though 0 is treated as a rv itself.

Finally, the frequentist approach carries over the sufficiency principle, but
interprets a probability as the number of successful trials relative to their
total number. In more detail, inference is treated as a decision problem
which occurs before seeing any datum. J. Neyman and E. Pearson are often
referenced as main contributors to the frequentist theory.

The above is intended as a general, non-exhaustive overview of the devel-
opments in statistics. In the course of the next section, we will introduce
techniques that mainly fall into the Bayesian and Fisherian category.

The term Bayesian is in honor of Thomas Bayes (1071-1761).
3Named after the influential statistician and biologist Sir Ronald A. Fisher (1890—1962).
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1.2 Invariances

So far, we considered inference for a single parameter ¢ and as we learned,
the likelihood enables the evaluation of hypotheses such that they can be
assessed relative to each other. Using the likelihood ratio, it can be tested
which value of § € © (out of two) is better supported given the sample. Thus,
if we continue this line of thought, the best ¢ is found at the maximum of
the likelihood (assuming, of course, that the likelihood principle applies).
Inference consequently becomes an optimization problem.

Many parametric models—including the Gaussian—have multiple para-
meters, but often, we are interested only in some of them. To make matters
clear, we write § = (1, ), where ¢ is the parameter of interest and )\ refers
to nuisance. In the trivial case when the likelihood factors into two indepen-
dent terms, the likelihood ratio for two hypotheses ¢); and )2 becomes

L N) _ () L) _ L) W

L2, ) e¢(A) - L(¥2)  L(¥2)’
which does not involve A anymore. Equivalently, one can also treat ¢(\) as an
unknown, but constant factor and absorb it into the proportionality constant
of the likelihood. The more common situation is, however, that there exists
a functional relationship between v and A.

As a consequence, we may not use the likelihood ratio anymore to com-
pare two hypotheses t); and 1), for then the outcome depends on the un-
known true A\g. If A was fixed at an incorrect value, we may inadvertently
favor the wrong hypothesis. The appearance of nuisance parameters consti-
tutes a fundamental problem in statistical analysis and unfortunately there
is no universal solution to it. Generally speaking, the goal is to encode
invariances into the model, such that we can perform inference as in the
single-parameter case.

The following will discuss different approaches of how to remove nui-
sance parameters from the likelihood, each with different requirements and
implications. There might be situations in which we arrive at multiple solu-
tions, but each is valid in its own right. In other instances, the solutions of
two different methods may even coincide. Yet, what ultimately matters is
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the ability to make robust inference about the parameter of interest. As we
will learn, invariances may come at the price of information loss and require
that some aspect of the data is discarded. Therefore, it is essential to strike
a good balance between the sacrifice of information and gain of statistical
power. The tools at our disposal can roughly be divided into three categories
which are detailed next.

1.2.1 Conditional and Marginal Likelihood

When we seek to infer a parameter 6 using the likelihood, in many cases
not all the properties of the sample are actually needed. Instead, a lower-
dimensional function 7'(X') may suffice to arrive at the same conclusion for
. T'(X) is also called a statistic and can be as simple as the sum of two
observations or the maximum value of the sample.

For the present setting, the only incentive behind statistics is the reduction
of information, meaning we may restrict ourselves to a certain aspect of
our sample that is fully sufficient for the task at hand. Indeed, we say that
a statistic is sufficient for 0 if there is no benefit in knowing the data (in
addition to the statistic). There may exist many sufficient statistics for a
parameter, therefore, a minimal sufficient statistic is the largest possible data
reduction provided that any two hypotheses are still correctly distinguished.
As mentioned earlier, this is one of the principles of the Fisherian paradigm.
Mathematically, a statistic 7" is sufficient if and only if there are functions
g(e) and h(e) such that the Fisher-Neyman factorization holds (Davison),
2008, p. 104):

f(z;0)=g(t;0) h(z) (1.8)

In particular, we see that the statistic separates the relevant from the irrel-
evant, where (constant) h(x) is not needed for inference about §. By the
definition of the conditional density, we have

f(z,t;0)

f(x‘té‘%zw- (1.9

Since T is sufficient for 6 (that is, 7" contains all necessary information
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about 0), the conditional density of X given 7' is independent of . Also, as
f(z,t;0) = 0except for t = t(x), we can state f(z,t;6) = f(x;60). Thus,
Eq. (1.9) becomes (Davison, [2008, p. 104)

fz;0)
z|t) = (1.10)
T
or equivalently when terms are rearranged
f(a;0) = f(t:0)- f(z]t). (1.11)
—— ——
g(t;0) h(z)

Now, we may use the likelihood L(6;t) o f(t;6) for inference about
instead of f(x;#). As noted above, the latter contains irrelevant information,
in particular f(z | ), which can safely be ignored—its only application may
be for internal model checking (Reid, |1995)), since it does not depend on 6.

For a better understanding of sufficiency and its implication for inference,
let us give a simple example: Assume we are interested in the variance of
normal rv X with zero mean. Then T'(X) = | X| is sufficient, because the
sign does not carry any meaning for the parameter of interest. Further, the
sample space is partitioned into groups that are equivalent under the statistic,
e.g., t(+2) = t(—2) = 2. We also refer to these groups as orbits (Young
and Smith, 2005, p. 86). Hereby, the statistic is a surjective transformation,
because each realization  maps exactly to one orbit ¢(z) and each orbit con-
sists of two z. The remaining question is “What is the coarsest possible set of
orbits?” which is equivalent to “What is the largest possible data reduction?”.

Up until this point, we only studied the sufficiency of a statistic as a means
to extract relevant aspects of the sample, but the same argument holds for
nuisance parameters. Again, suppose 0 = (1, A), where 1 is the parameter
of interest and A is the nuisance. Since we need to distinguish between the
two, let us partition the (minimal) sufficient statistic 7' = (U, V) for 6 in
such a way that the density factors as

f(@59,A) oc f(u,v59,A) = fu|v;y) - f(v;, ). (1.12)

Here, the proportional constant absorbs the Jacobian determinant due to the
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transformation from x to (u, v). For inference about v, we can now resort to

L(ysulv) oc f(u|v;v), (1.13)

which is called conditional likelihood (see |Davison| (2008, p. 645ff), Boos
and Stefanski| (2003, p. 57), Severini| (2001, p. 278ff), [Young and Smith
(2005, p. 146)). Note that the second term in Eq. is intentionally
discarded, even though it contains some information about . The reason
is, it may be too complicated to obtain, thereby outweighing the benefits
(Davison, 2008, p. 656), or the loss is small (Garthwaite et al., 2002, p. 56).
Clearly, this is a potential drawback of Eq. (I.12), but one could additionally
require that the density of V' does not depend on ¢ (Reid, [1999), that is,

flu,v59,X) = f(ulv;) - f(v;A). (1.14)

In this special case, V is called an ancillary for 1) in the sense that it does not
contain any information about the parameter of interest (Garthwaite et al.,
2002, p. 57). Hence, Eq. (I.14) solves the problem of information loss, but
it may not be possible to find a suitable U and V" after all.

As an alternative, we may reverse the conditioning of U and V' to receive

f(uvv;wv)‘):f(u;w)'f(v‘u;¢v)‘)v (1.15)

for then, the first factor can be used as marginal likelihood, see (Severini,
2001}, p. 278ff) and (Davison, [2008,, p. 645ff),

L(tp;u) o< fus), (1.16)

thereby again ignoring the information loss due to the discarded term. In
certain instances, it may be possible to arrive at a similar form as Eq. (I.14):

flu, v, X) = fus) - f(v]u; ). (1.17)

This, however, requires further assumptions about U and V' as shown above.
Note that the knowledge of U suffices to perform marginal inference, whereas
V is often not explicitly specified unless we investigate the potential infor-

10
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mation loss.

The main idea of the above is to isolate the parameter of interest by con-
ditioning, such that we can base the corresponding likelihood on a single
factor of the density. This is a powerful approach to incorporate invariances
into the model, but it may fall short due to information loss or when we
simply cannot find suitable statistics. Therefore, the following explores two
complementary methods for the treatment of nuisance parameters.

1.2.2 Profile Likelihood

The profile likelihood (Severini| (2001, p. 126ff),Young and Smith| (2005,
p- 135ff)) is a more recent development and it borrows from the idea of
maximum likelihood estimation. Essentially, it aims to replace the unknown
nuisance parameter \ by a point estimate, that is best supported under the
likelihood. For this, all remaining parameters are assumed to be fixed, in-
cluding the parameter of interest ¢). In mathematical terms, we solve

Xw = argmax L(1), A), (1.18)
A

where subscript , denotes that ¢ was fixed. Inserting the estimate back into
the likelihood, we arrive at

Lp(¥) = L(¥, Ay), (1.19)

which is a function of ¢ only. In the general likelihood L(1), A) both parame-
ters are allowed to vary freely in the space ¥ x A. By replacing the nuisance
parameter with its maximum likelihood estimate, we reduce this space to
U x { X¢}> which can be thought of as cutting out a profile, hence the name.

Intuitively, the approach seems very reasonable, since it relies on the value
that is best supported by the likelihood. However, if Xw differs from the
true g, our judgment of ) can be seriously biased. Therefore, the profile
likelihood works best for a large sample size, such that Xd) ~ \g. The same
holds true if there is more than one nuisance parameter, but then the sample
size must grow in relation to their number, informally speaking.

To gain further insights into the maximum likelihood estimate, let us recall

11
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that the data are an incomplete set of observations {x1,...,z,} for rv X.
Consequently, also the likelihood is random to some degree, since it is a
function of the sample. The same applies to 6 = argmaxy L(6; x), which
may change its value once more observations are available. Thus, how can
we be sure that 8 is close to the true value 0y?

One solution is to investigate the likelihood in the parameter space sur-
rounding 9. This is the general idea behind the Fisher information (Young
and Smith/ (2005, p. 123), Cox| (2006, p. 97)), being defined as

(1.20)

i6) _E[82€(9;x)]

002 |

Here, the expectation is over the Hessian matrix of the log-likelihood, that
is, the second order partial derivatives. In other words, this measure tells
us about sensitivity or curvature of the log-likelihood (Coxl 2006, p. 97). If
the curvature is sharp at 6, i.e., when the likelihood strongly peaks at this
value, we can be fairly certain to be close to 6. Correspondingly, if the log-
likelihood is rather flat at 6, it conveys only little information to discriminate
different 0. For the partition § = (¢, \), the Fisher information becomes a
matrix (Young and Smith, 2005} p. 135f)

; — wa(wa)‘) iw(ﬁ%)\)
i0) = ixg (P, A) (i, A) | (12D

where the off-diagonals allude to an interesting special case. In more detail,
if iy, = 1)y = 0 for some/every ¢ and A, then the parameters are said to
be locally/globally orthogonal, see (Young and Smith, 2005, p. 143) and
(Cox and Reid, [1987). This implies 1Z and \ are asymptotically independent
(Young and Smith| (2005} p. 145), [Cox| (2006, p. 112)), such that X¢ varies
little in the neighborhood of QZ = argmax,, Lp(3). In practice, this only
gives an approximative indication if the profile likelihood approach enables
inference, yet we will encounter both working and failing examples.

On a technical note, the profile likelihood is not a genuine likelihood in
a strict sense, because it is not based on the density of a rv (Severini, 2001,
p. 323). Still, for certain models, it may coincide with the marginal (or
conditional) likelihood, which are considered genuine.

12



1.2 Invariances

1.2.3 Integrated Likelihood

The third approach is generally applicable, although it may not be possible
to calculate the result analytically. If there is no knowledge available about
A, we can always remove its dependence by integration over its support A:

L) x /A L(, A) dA (122)

The resulting likelihood is sometimes also called (Bayesian) marginal like-
lihood, or, for a better differentiation from the previous case: integrated
likelihood (Severinil 2001}, p. 306ff). In fact, Eq. (I1.22) strongly resembles
a Bayesian scheme with an uninformative prior, where the complete lack of
knowledge is expressed by a uniform distribution. Following this idea, we
achieve a more general formulation via

L) x /A L, 3) - F(A] B) dA, (1.23)

where \ is distributed according to prior density f(A|f3) with hyperpara-
meter 3. The Bayesian regime treats the likelihood as a function which
transforms the prior belief into the posterior. Hence, due to integration over
all parameter values, we transform the full prior in its entirety instead of only
a single point.

When seen from a different perspective, Eq. computes a weighted
sum of the likelihood, where the importance of each value of the nuisance
parameter is specified by the prior. This means, if the prior is highly concen-
trated with a peak, the integrated likelihood (the posterior) will be conditional
on this choice. At the same time, a flat prior that assigns a non-zero weight
to all nuisance parameters results in a very balanced, but also vague like-
lihood with regards to A—the extreme is found with a uniform prior. In
any case, the choice of the prior affects the maximum of the posterior, as
seen by hyperparameter (3 in Eq. (1.23)), which carries over to the integrated
likelihood.

For specific combinations of likelihood and prior, the integral can be
solved analytically. Further, if prior and posterior are members of the same

13



Chapter 1 Introduction & Basic Concepts

distribution family, the prior is said to be conjugate to the likelihood. Similar
to before, the constant normalizing factor can safely be discarded.

In review of the integrated likelihood, we can highlight its general applic-
ability for all nuisance parameters, provided that a suitable and meaningful
prior is defined. Also, under certain conditions, the solution to the integral is
found analytically. On the negative side, followers of the Fisherian paradigm
criticize the burden to specify a prior, meaning sometimes the expressive-
ness of the posterior is sacrificed in favor of computability, thereby forcing a
certain interpretation into the likelihood. It goes to show that some questions
do not allow a universally accepted answer and heavily depend on the point
of view. To this end, we shall judge all the above approaches without bias
and evaluate their performance for the situation at hand.

1.3 Gaussian Models

As suggested by the title, the thesis is centered around the normal distribu-
timﬂ which constitutes an important distribution in statistics, if not the most
important one. The reason is that many phenomena in nature appear to be
governed by normally distributed rvs. Areas of application are widespread
and include for example physics, astronomy, but also psychology, social
sciences and many others. While it is usually not possible to assert exact
normality of an observed rv, one often resorts to the expression approximate
normal. This is a common assumption when nothing is known about a rv,
for example regarding noise terms.

A mathematically more satisfying justification for normal assumptions
can be found by the central limit theorem (see van der Vaart| (2000, p. 6f),
Severini (2001, p. 28f)). Given rv X and a sequence of independent and

identically distributed (i.i.d.) observations {Ccl, e 7In}, the following holds
ZT; /1 g as n (0] .
\/ﬁ n ! ’ ’

i=1

“The normal distribution is frequently called Gaussian distribution due to the contributions
of Carl Friedrich Gauss (1777-1855).
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1.3 Gaussian Models

where 1 and o2 are mean and variance, respectively. The theorem states
that under mild conditionsE], the sum of an i.i.d. sample follows a normal
distribution in the limit of infinite observations. Thus, the larger the sample
size, the better the approximation becomes. Perhaps surprisingly, the result
is true regardless of the underlying distribution of X.

The above statement partly explains the ubiquity of the normal distribu-
tion and its practical appeal, but it also alludes to a much broader role: many
statistical formulae involve the sum of rvs and are therefore closely related to
the concept of normality. In fact, the normal distribution is the limit of other
distributions, for example the chi-squared distribution with a large degree of
freedom. From a technical perspective, it also has a number of convenient
properties: It is fully defined by mean and variance (with all higher moments
being zero), it is symmetric, has infinite support and is infinitely differen-
tiable. The sum or the difference of two normally distributed rvs is, again,
normal and this property also applies to linear combinations of normals.

In the course of the thesis, we will consider different forms of the normal
distribution, namely the univariate, multivariate and the matrix-valued case.
The following introduces each individually, starting with univariate rv

X ~ N(p,o?). (1.25)

Here, 1 and o2 are both scalar and refer to the mean and variance. The
density of the univariate normal distribution is written as

flz;p,o0?) = 1exp<—(x_'u)2). (1.26)

o2 202

Due to its importance in the literature, the symbol ¢(x) = f(z;0, 1) is often
reserved for the standard normal density with 1 = 0 and 02 = 1.

In the multivariate case, we assume a vector of p rvs

X =[X1,..., X" ~Ny(, %) (1.27)

SMean and variance must be finite.
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having a vectorial instance € RP. Here, the density reads

1
%) = _exp(—L@—p)' Sz —p)), 1.28
f(@sm,3) <27r>’5|z\2ep< Se—w) =@ - ), (28)

which uses mean vector p € RP and p x p positive-definite covariance
matrix .. Finally, the most general form is achieved by a random matrix

X ~ Npn(M, 20 0), (1.29)

where all parameters are matrices, including mean matrix M of size n X p,
row covariance matrix 3. of size p X p and column covariance matrix ¥V of
size n x n. In this configuration, an instance is denoted by X € RP*™ and
the density becomes (Gupta and Nagar, [1999))

f(X M, 2,0) =
1
n n 1 e
2m) 7 |z|2|w|

xp(—% tr{ U I(X - M) 2L (X - M)}). (1.30)

We can think of matrix X as being composed column-wise of p-variate re-
alizations, where additionally the n realizations are governed by covariance
matrix . To better distinguish 2 and ¥, we refer to them as row and column
covariance matrix, respectively. It is easy to see that Eq. (1.30) coincides
with Eq. whenn = 1 and ¥ = 1, which further reduces to Eq.
forp = 1and ¥ = o2. To this end, Table graphically compares all the
three variants of the normal distribution.

When speaking about Gaussian models, we assume the data originate
from a source that follows one of the above classes, however, its parameters
are typically unknown. The process of inference is then concerned with
estimating these parameters from a set of observations. Having access to
them enables us to better understand the generating process.

In the following chapters, we will look into the applications of clustering,
graphical models and information-theoretic compression—all based on the
Gaussian foundation, but under the constraints of information loss. This
also involves a tailored treatment of nuisance parameters, such that the final
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1.3 Gaussian Models

model adheres to all required invariances.

Type Graphical Interpretation

univariate

X ~ N(p,o?) X
g

multivariate
1
O
X ~ Np(p, %) X
>
p__
matrix-variate
1 n
) -
X >
p -
XNNp,n(M,E@)\I’) ' ;
U

Table 1.1: Graphical comparison of the univariate, multivariate and matrix-
variate normal distribution. A diagonal line represents symmetry.
Since the mean always has the same format as its corresponding
rv(s), it is omitted on the right-hand side.
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1.4 Distances

The current section introduces an important topic that is used frequently
throughout the thesis: squared Euclidean distances from Gaussian data. As
we will learn in the following, distances naturally arise in many applications
where the individual objects do not live in a Euclidean space. Take, for ex-
ample, phylogenetics as a field in evolutionary biology, which studies the
relationships of species by analyzing their genetic information. It may be
computationally and algorithmically difficult to work with abstract objects
like DNA sequences, but it is straight forward to compute their pairwise dis-
tances. Due to this property, distance matrices are one of the main forms of
representation for constructing phylogenetic trees, reminiscent of Darwin’s
tree of life (Darwin, 1859, p. 108f).

The idea of working with abstract objects via pairwise comparison is also
at the heart of kernel theory in machine learning. As of today, a myriad
of kernels have been developed for virtually any domain, including graphs,
strings, semantic texts, probability distributions, images and many more.
When such a kernel function is evaluated for all pairwise combinations of ob-
jects, the outcome is stored in a so-called kernel matrix, which is symmetric
and positive (semi-)definite.

There is, however, a conceptual difference between a kernel matrix and
the above-mentioned distance matrix, in that kernels measure similarity and
distances express dissimilarity. This may appear superficial at first, but there
is a deeper connection between the two: Every kernel or similarity matrix
corresponds to exactly one squared Euclidean distance matrix, but addition-
ally it carries information about the point of origin of the underlying feature
space. As a consequence, there can be two unique kernel matrices which
map to the same distance matrix.

At this point, we make an important design decision: we henceforth as-
sume the point of origin is irrelevant and argue that this is in fact a reasonable
choice for many applications. As an example, take a graph kernel to compute
the similarity between two chemical compounds; since the kernel implicitly
operates in a potentially infinite-dimensional feature space, we lack the ev-
idence to decide if the origin is informative or fixed arbitrarily. Due to this
reason, our interest is exclusively confined to the part defining the distances.
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1.4 Distances

Clearly, one can construct a kernel function where the point of origin is
indeed meaningful, but in the context of our applications, we intentionally
discard this information. Speaking in terms of the Fisherian concept of data
reduction, the distance represents the parameter of interest and the point of
origin is treated as a nuisance.

The next section will lay the technical foundation for distance-based infer-
ence and it starts by developing a geometric interpretation.

1.4.1 A Geometric Interpretation of Distances

For a better understanding of distances in the framework of kernel matrices,
let us assume that all objects and their individual feature values are known.
Further, suppose X is the p X n matrix containing full information about
p objects living in an n-dimensional Euclidean space. As a measure of
similarity, we use the p X p symmetric inner product matrix

S=XxXX", (1.31)

which is positive definite if X has n > p linearly independent columns, else
it is only positive semi-definite. S inherently depends on the coordinate
system of X, because for a single pair of objects X;o and X, both being
row vectors in R™, the inner product (or scalar product) corresponds to

Sij = XieXjo = [ Xiall2 [ Xjall2 cos(a). (1.32)

From this definition, it follows that the measure involves the length of both
vectors as well as their angle o. As a result, the similarity of two objects
depends on their position relative to the point of origin and, consequently, S
changes when objects are jointly shifted in space. S is, however, invariant
against rotation or reflection, which can be seen from

XO(X0)" =X00"X"T =XXT, (1.33)

where O is an arbitrary n X n orthogonal transformation matrix.
When we speak of the term distance in the context of this work, we should
correctly refer to it as squared Euclidean distance, meaning the underlying
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data are always assumed to be vectorial, even if they live in an unknown,
possibly infinite-dimensional feature space (in accordance with the kernel
trick). The reason for using the squared distance is due to its connection to
the inner product, which we will see shortly, but first, the formal definition is

Dij = || Xie — Xjo|2 = (Xie — Xjo)(Xie — Xjo) . (1.34)

This leads to a p X p symmetric matrix D which has exactly one positive
eigenvalue and is negative semi-definite on a (p — 1)-dimensional subspace
(Schoenberg, [1937; |Gower, [1985). Fig. [I.1]depicts X, S and D.

Figure 1.1: The differences between X, S and D. Left: p = 2 objects ¢ and
j live in an = 3 dimensional space, which is the full informa-
tion captured by X. Center: The scalar product S;; measures
the similarity of objects, which is relative to the point of origin.
Right: The pairwise distance D;; is independent of the point of

origin (the plot shows |/D;;).

Finally, distance and inner product are related via

Dij = XieXj0 + Xjo X[y — 2X;0 X, (1.35)
= Sii + Sj; — 28 (1.36)

or written in matrix notation:
D = diag(5)1, + 1,diag(S)" — 28. (1.37)

The fact that D does not depend on the translation of X can readily be seen
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1.4 Distances

from Eq. (1.34), but what is the impact on S? Let all objects in X be jointly
shifted in space, such that

X=X+1w' (1.38)

with w € R"™. Then, for the corresponding inner product matrix, we have

S=XX" (1.39)
—(X+1w )X +1,w")’ (1.40)
= XX+ (Xw)l)] +1,(Xw) +w wl,1]. (1.41)

S

Here, the last three terms only occur due to translation. Therefore, by varying
vector w, we can construct a whole set of matrices S, which all map to the
same D. For a more compact representation, notice that Eq. (I.41) can be
rearranged as

S=5+Xw+ tw wl,)] +1,(Xw+ iw wl,), (142

u ul

such that for any w € R" there is a corresponding u € R? without loss of
generality. Hence, we can now formally define the set as

S(D)={§ ‘ S=S+1,u’ +ull, S>0, ueRp}. (1.43)

In this definition, S does not have any particular meaning other than to serve
as a member from which the set is spanned. Fig. depicts an example,
where two matrices X and X lead to the same distance matrix D.

1.4.2 Further Operations on Distances

So far, we focused on a specific type of transformation X + lp'wT which
does not enter the distances. There are, however, many other operations that
do have an impact. As an example, assume X + v1, with v € RP: Hereby,
it is possible to move single objects in feature space such that their pairwise
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X S D

7

B SRER"

X S D

Figure 1.2: The mapping from X to S to D is surjective and involves a loss
of information.

distances are altered completely. Obviously, we consider this information
a vital part of the structure of a distance matrix and therefore do not allow
modifications of this kind. Fig.[I.3]depicts both variants of the mean.

n

X= p lLyw' = vl =

column means row means

Figure 1.3: Matrix X and two complementary mean models. Only column
means are canceled in distance matrix D; row means persist.

A second transformation concerns the scaling ¢, which appears as cX
and changes the distance matrix as ¢>D. For the models being developed
in the following, we decide that this parameter is uninformative, analog to
our assumption concerning the point of origin. Therefore, scaling ¢ will be
treated as a nuisance.

In conclusion, all thoughts and considerations about distance matrices give
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1.4 Distances

a first impression as to what is required by a statistical model. To that extent,
the next two chapters formulate these ideas in a more concise manner and
develop the necessary modifications for Gaussian models. Also, we shall
discuss their implications with regards to inference.
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Chapter 2

A Gaussian Mixture Model
for Distances

2.1 Introduction

Cluster analysis can best be described as finding unique and distinct group{]
within a population, such that their resulting composition is homogeneous.
In our case, we explain the data by a mixture of k£ normal distributions
(McCullagh and Yang| 2008), where the density of a single object x € R" is

k

fl@) oY - flasmy, 0). 2.1)

J=1

Hereby, component j is parametrized by mixture weight 7;, mean vector
m; € R" and covariance matrix ¥ € R"*". Fig. demonstrates an
example of a Gaussian mixture in n = 1 dimension, where the solid line
depicts the density. For a fixed variance, the contribution of each component
(dashed line) is fully defined by mean m; and mixture weight ;. Finally,
the black dots on the x axis represent p = 50 objects drawn from the mixture
distribution. Inference reverses this generative process and aims to identify
the components from the sample. This means, if a set of objects is well
explained by one component, they form a cluster and will consequently be
assigned the same label.

For reasons of simplicity, all clusters are assumed to have the same spheri-
cal shape, which implies ¥ = I,,. Since the normal density has infinite sup-

"The terms group, cluster and class are used interchangeably.
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ma mo ms X

Figure 2.1: Density for a mixture of £k = 3 Gaussians in n = 1 dimension.

port, each object is jointly explained by all kK components (hence, mixture),
however, the contribution of a component quickly declines with increasing
distance from its mean in accordance with its bell shape.

The challenge in our setting is to harmonize the Gaussian mixture model
with a distance matrix, which prevents us from directly identifying the com-
ponent means, since the n-dimensional feature space is latent. Thus, we
have to find an alternative way to express the clusters and their geometric
configuration.

2.2 Related Work

Clustering has historically attracted a lot of attention and today constitutes
a large field in machine learning. A popular representative is the k-means
algorithm (Steinhaus, |1956; MacQueenl (1967 Jain, 2010), which minimizes
a functional

J =

J

k

> i — my1%, 2.2)
=1 i=1
that is, the sum of squared errors for p objects over all k clusters.

The method works in the following way: Randomly initialize the cluster
centers m, of a fixed and predefined number k, then assign all objects to the
closest cluster. Next, relocate the centers to the current mean of each cluster.
These two steps are alternated until the assignments finally converge to a
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local optimum. Although the shortcomings of this approach are apparent,
namely the dependence on the initialization and the need to fix the number
of clusters beforehand, k-means can be formulated such that it only depends
on the inner product of objects (kernel k-means, see (Scholkopf et al.l [1998))
or their pairwise distances (Roth et al.| [2003). Hereby, it is not required to
compute the mean of a cluster explicitly.

In contrast to the above, our approach will employ a Dirichlet process
mixture model, which relieves us from specifying the number of clusters be-
forehand. Also, we will formulate the problem in a way that it only depends
on distance information.

2.3 Model

As a starting point, let us assume the simplest possible case, where the obser-
vations are generated from the matrix-variate normal distribution,

X ~ Npn(M, I, ® I,). (2.3)

We interpret X as a collection of p objects, each being a row vector X;, € R".
An important observation is that both rows (= objects) and columns (= fea-
tures) are independent; the clusters are solely defined by mean matrix M,
which is composed of k distinct rows, see Fig. Here, k refers to the
number of clusters and m; € R", j € {1,...,k}, are the distinct compo-
nent means. Note that matrix M groups objects by cluster, but this is not a
requirement. Also, the numbering of the clusters, i.e., their individual label,
is arbitrary and carries no information.

When data are generated from Eq. (2.3) with M as defined in Fig. 2.2}
there will be k spherical clusters, each with the same diameter. In particular,
the spherical shape comes from W = I, and the identical diameters are on
account of ¥ = I,,. It is well-known that when X is distributed as Eq. (2.3),
its inner product follows a non-central Wishart distribution, that is,

S=XX" ~W,(n,I,0) (2.4)

with n degrees of freedom, covariance matrix [, and p X p non-centrality
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Figure 2.2: Objects (= rows) associated with the same cluster j are assumed
to have a common mean ;. Hereby, mean matrix M is com-
posed of individual mean vectors as shown above.

matrix © = MM . The latter gives rise to a hypergeometric function in
the density of 5, see (Diaz-Garcia et al.,|1997) and (Gupta and Nagar, 1999,
p. 114), which vanishes for M = 0, thereby leading to the simpler central
Wishart distribution.

Unfortunately, the practical use of the non-central Wishart is severely ham-
pered by its complicated form, and even more so, estimating the unknown ©
based on a single realization S is impossible. For this reason, the following
is of particular interest: It is possible to define a central-Wishart distribution
which approximates a non-central Wishart; their first moments are identi-
cal and the second moments differ by order (’)(n_l) (Tan and Guptal, 1982
Kollo and von Rosen, |1995). This yields

Wp(n, I, ©) = Wy(n, L MM T +1,), (2.5)

which is a remarkable connection, because it implies that matrix S could
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have either originated from Eq. (2.3)),
X ~ Npn(M, I, ® 1),
or from the zero-mean
X ~ Ny (Opens AMMT + 1) @ 1), 2.6)

Thus, in summary, the cluster-defining means were transformed into the
covariance matrix of an equivalent distribution. On closer inspection of
%M MT+ I,,, we see that it is a p X p symmetric, block diagonal matrix with
full rank p. Therefore, using a different parametrization, it can be written as

ZAZ" + 1, 2.7

where A € R¥** corresponds to the inner product of the k distinct mean
vectors mq and Z € {0,1}*** is an indicator matrix, such that Zij =1
represents object ¢ being a member of cluster j. Since every object can only
be assigned to one cluster at a time, matrix Z has one 1 per row, leading to a
total of p non-zero elements.

At this point, a legitimate question is: What is the benefit of this param-
etrization compared to the one using M? Recall that the observations are
received in the form of a distance matrix, which permits neither explicit state-
ments about the feature space nor the number of features n. Although we
can find one possible Euclidean embedding X which corresponds to a given
distance matrix, it makes a choice concerning the latent feature space and
therefore potentially introduces a bias. Our decision is to avoid any recon-
struction altogether; the parametrization in (Z, A) relieves us from explicitly
specifying the means in terms of the underlying feature space.

Combining all statements and properties we derived so far, recall that our
model assumption was to regard scaling c as uninformative. Further, the fact
that we observe a distance matrix implies loss of knowledge about potential
column shifts. Therefore, we arrive at the distribution

X~ Npn(Lyw' S @ 1) (2.8)
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with corresponding log-likelihood

S, c,w) = — Zlog|c?y|

29
Ll X - 1w )(X - 1L,w’)'}. 29

Here, X = ZAZ" + I, are the parameters of interest and (¢, w) corresponds
to nuisance. The following will remove the dependence on the nuisance
terms in two separate steps, and we begin with translation vector w. For
a compact notation during the transformations of the likelihood, we will
temporarily retain the symbol 3.

2.4 Invariance against Translation

2.4.1 Marginal Likelihood Approach

For the removal of nuisance parameter w, assume the statistic

u(X) = LX, (2.10)
where L can be any projection matrix of size (p — 1) X p that satisfies

L1, =0¢_y. (2.11)

Fig.[2.3|explains this mapping graphically for p = 2, which is loosely based
on (Lay, 2011, p. 204). Notice how multiples of 19 (that is, all points on
the dashed line) are mapped to 0. The plot used L = [—1 1], however, any
mapping with kernel 15 suffices for the purpose of removing nuisance w.
Other valid examplesare L = [1 —1]and L =[2 —2].

The idea behind projection L is
LX = L(cX + 1,w') = L(cX), (2.12)

such that X and ¢X become equivalent, i.e., they are assigned to the same
group orbit. Since L removes information from X, we could theoretically
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¢ (

[ ]
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Y

Figure 2.3: Projection L for p = 2 is a function R? — R!.

define a statistic V' to capture this very loss, say

v(X)=1xT1,, (2.13)

Tp

which is in fact an estimator for column means w:

v(X) =X +1,w")', (2.14)
= %c)ZT1p+w (2.15)
= . (2.16)

Both statistics U and V are linear transformations of the matrix-variate nor-
mal distribution, hence they are distributed as

LX ~ Nip1yn (0p-1ycns (PLELT) @ 1) 2.17)
and

respectively. Notice how the distribution of LX does not depend w anymore,
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which was the purpose of the transformation. When analyzed jointly, (U, V)
is sufficient for > and ¢, because it captures all information about X .

Restating the definition of the marginal likelihood, Eq. (1.15)), we have
——
Ly u)

with parameter of interest 1) = (X, c)E] and nuisance term A = w. The
fact that the dependence on w is removed can be seen from the reduced
dimensionality of LX € R®~1*" compared to X € RP*". Due to the
above factorization, the marginal log-likelihood based on Eq. becomes

U, c; LX) = — 2log|c*LYLT|

(2.19)
—Ltr{c?LT(LELT) T LXX T
Next, we redefine a part of the trace as
wWQ=L"(LxLT) 'L, (2.20)
where W =X 1and Q = ©LT (LXLT) ' L. Further, we have
QWQ=LT(LsL) 'L (2.21)
=WLT(LL)) 'L (2.22)
=WQ. (2.23)

This identity will become more important in the later course, since the trace
allows cyclic permutations of a product. Notice how p x p matrix ) depends
on L, which results in the property ()1, = 0,,. However, we did not specify
L other than to comply with L1, = 0(,_1), therefore, let us express  solely
in terms of kernel 1,, (McCullagh, 2009), which yields

Q=1I,— (1, W1,)"1,1]W. (2.24)

2Scaling c is temporarily treated as an interest parameter, because the current transformation
is concerned with the removal of w.
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Now, @ is only a function of W, however its rank is p — 1. Due to this, the
determinant in Eq. (2.19) (after factoring out ) reads

ILSLT |t = (2L 7Y (2.25)
= det(LT(L2LY 'Ly - |LTL) ! (2.26)
= det(WQ)-|LTL|™! (2.27)
=p- (1, W1,) " W[ [LTLIT (2.28)

see (McCullagh, 2009), where det(e) represents the generalized determinant
as product of non-zero eigenvalues, because W () is rank deficient. Both p
and |L T L| in Eq. are absorbed into the proportionality constant of the
likelihood, thereby removing all remaining occurrences of L. In summary,
the translation-invariant log-likelihood in W = ¥~ is

(W, c) = 5 log|W| — %log(liTWlp)

(2.29)
- L;”” log(c?) — %0_2 tr{WQXX"}.

2.4.2 Profile Likelihood Approach

For the derivation of the marginal likelihood, we resorted to a statistic that
removes the dependence on w. As an alternative approach, it is also possible
to find the maximum likelihood estimate for w in Eq. (2.9) by

0 ! N _
%E(I/V,c,w)zon & w=(1)WL,) ' XTWi, (2.30)

which already has strong resemblance with the previous result. Using w, the
trace of Eq. (2.9) becomes (factoring out c)

.
(x - @fwi,) "y, wx) w(x - (17w, ', wx)
T
= d (Ip - (1;W1p)—11p1;W) W(Ip - (1;W1p)—11p1;W)X

=X'Q'WQXx
= X"WQX.
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The cyclic property of the trace allows us to rewrite the last line as WQX X .
Since w depends on X, the normalization term (Harville, |1974) changes to

p- (1;W1,,)—1 W, (2.31)

which is equivalent to det(WW Q). Inserting w back into the log-likelihood
and using the above identities, the profile log-likelihood coincides with the
marginal log-likelihood in Eq. (2.29), however, it adds a different perspective
to the previous result.

2.5 Invariance against Scaling

2.5.1 Profile Likelihood Approach

Using the translation-invariant log-likelihood from Eq. (2.29), we now aim
to remove scaling factor ¢ by calculating its maximum likelihood estimate:

9 _ ~2 _ 1 T

As a result, we receive the profile log-likelihood as
(p(W) = 2 log|W| — Zlog(1) W1,) — @ log tr{WQX X T}, (233)

which is invariant against scalar multiples of X.

2.5.2 Marginal and Integrated Likelihood Approach

Alternative to the above, it is also possible to apply the statistics
u(X) = LX/|vec(LX)|| and v(X) = |vec(LX)] (2.34)

in order to normalize the data to a fixed scale (McCullagh, 2003; (Crud{
das et al., |1989; [Tunnicliffe-Wilson, |1989). In particular, u implies that
|lvec(LX)||# 0. Following the marginal likelihood scheme with interest
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parameter ¢ = W and nuisance A = ¢, we have

flu,visWie) = flu; W) - f(v]u;c). (2.35)
——
L(W ;u)
Hereby, the likelihood is based on the marginal density of u, which does not

depend on scaling factor c. After the transformation of rvs X — (U, V),
we receive a marginal log-likelihood which is identical to the profile log-

likelihood in Eq. (2.33).

Interestingly, Harville| (1977) showed that the same scale-invariant likeli-
hood also arises when an improper uniform prior over the real line is imposed
on c. Integrating it out yields

L(W) x /RL(W, c)- f(e)de. (2.36)

Hence, all discussed approaches lead to the same result.

2.6 The Formulation in Distances

Now that the likelihood is invariant against translation 1pr and scaling c,
we are left with an explicit dependence on X. To remedy this shortcoming,
recall the identity W(Q = Q"W Q and the cyclic property of the trace, such
that we can write

tr{WQXX"} =tr{WQXX"'Q"}. (2.37)

Further, take the connection between S = XX ' and D in Eq. (1.37) and
multiply it from left and right with @ and Q T, respectively. This yields

QDQ" = Qdiag(9)1) QT + Q1,diag(S) Q" —2Q5Q"  (2.38)
= —2Q5Q", (2.39)

where the diagonal terms of .S cancel due to )1,, = 0,,. Combining all above
identities, the translation- and scale-invariant log-likelihood from Eq. (2.33))
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finally becomes a function in D:

UW) = 2 log|W| — Zlog(1) W1,) — P log tr{—1WQD}. (2.40)

2.7 Inference

Summarizing our current efforts, we observe a p X p distance matrix D
and want to infer the underlying covariance matrix . of a Gaussian mixture
model, which is parametrized by ZAZ T + I, for obtaining a block-wise
approximation. These two parameters A and Z will be estimated in Bayesian
fashion, hence the following develops suitable priors.

2.7.1 A Prior for the Inner Product of Cluster Means

So far, we did not specify A other than to be the inner product of the cluster-
defining means. In fact, however, there are three possible choices for A, each
permitting different degrees of freedom (compare Fig. [2.4]and Fig. [2.5):

e AcR: ZAZT isblock diagonal with scalar value A in all k£ blocks.
This implies, the cluster centers have an orthogonal basis and the same
distance from the point of origin.

e A c diag: ZAZT is block diagonal, however with different values
in each block. Similarly, the cluster centers are still spanned by an
orthogonal basis, but with arbitrary distances to the point of origin.

e A € Si: A symmetric, positive-definite k£ x k matrix leads to a full
block matrix ZAZ ". As aresult, the cluster centers may have arbitrary
geometry without the need for an orthogonal basis. This enables us,
for example, to place three clusters on a line—something which cannot
be captured with the previous two models.

For a perhaps more intuitive explanation of Fig. recall that the block
structure originates from %M M ", meaning zeros in ¥ arise from orthogonal
mean vectors m,. The translation invariance enables us to cluster the data
as if they were centered in the latent feature space. In other words, the
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Figure 2.4: A graphical representation of covariance matrix ¥ = ZAZ " +1. "
for three models of A: R (left), diag (center) and S, (right).

Figure 2.5: Geometry of the cluster centers corresponding to Fig. Here,
we look at only one out of many possible (k = 3)-dimensional
subspaces, which A lives in. From left to right: All centers
must be placed on an orthogonal basis and be equidistant (A €
R); centers are placed on an orthogonal basis, but may have
different distances to each other (A € diag); centers are allowed
to have arbitrary geometry and distances to each other (4 €
S4+). Note that due to the model’s invariances, every translation,
rotation/reflection and scaling of these geometries is equivalent.
The plots only represent one single choice of a coordinate system.

37



Chapter 2 A Gaussian Mixture Model for Distances

model was constructed in such a way that the clusters are independent of
absolute location, rotation, reflection or scaling in feature space. All required
information is captured by the inner product of (relative) means, A.

Since the likelihood explicitly requires precision matrix W, it is meaning-
ful to analyze the parametrization of inverse.

Theorem 1. ¥ = ZAZ " + Ipand W = Y~! have the same block structure.
Further, the cluster-defining matrix B of W is a function of A and Z.

Proof. Assume

Y =ZAZ" +1, (2.41)
W =2BZ" +1, (2.42)

and require X W < I,,. This leads to

ZAZTZBZ' + ZAZ + ZBZ' + 1, =1, (2.43)
Z(AZ"ZB+ A+ B)Z" = 0,5y (2.44)
AZ"ZB + A+ B = Opxp (2.45)

B= —(AZ"Z+1I,) " A. (2.46)

O]

From Eq. , we can deduce the following: Due to A and Z " Z being
positive definite, B is a negative-definite matrix, caused by the minus sign.
Also, the Z parametrization of I implies that blocks of X persist in its
inverse. Interestingly, a scalar A results in a k£ x k diagonal matrix B. This
is due to the occurrence of Z ' Z which counts the number of objects per
cluster on its diagonal. If the clusters are not of equal size, B has different
values on the diagonal in spite of A € R. In the case of A € diag, B is again
diagonal. This means, from the standpoint of B, there is no computational
benefit of choosing A € R instead of A € diag; generating and updating
A, however, involves different costs. Finally, for the maximum degree of
freedom, A € S, we have a corresponding negative-definite B € S_.
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In all cases, matrix B is never chosen directly, but rather computed from
Z and A. Why is this? Assume there is a fixed A and a single object changes
its assignment from cluster i to j. Then, ¥ = ZAZ " + I, only changes by
one row and one column, however, this very operation affects multiple blocks
in W (at least 2 blocks, depending on the model for A). The reason for this
behavior is due to B being a function of the individual cluster sizes, as seen

in Eq. (2.46).

For a scalar A, any prior for positive reals is suitable, for example, a
gamma distribution with density

60&
[(a)

f(As;a,B) = Aol exp(—pA), (2.47)

where shape « > 0 and rate 8 > 0. The same choice can be carried over to
the diagonal

A = diag(A4, ..., Ax), (2.48)
such that each element A;, is i.i.d. gamma distributed.

For a positive-definite matrix A, one possibility is the Wishart distribution,
having density

]_ qg—k—1

— - |A|"2 exp(—1tr{4;'A}) (2.49)
(2m) 2 |Ao|2 Tk (2)

f(A;Ag,q) =

with ¢ > k degrees of freedom, k x k positive-definite matrix Ag, and 'y (e)
as the multivariate gamma function.

Note that a prior for A is required despite scale invariance of the likelihood,
even for A € R. Hereby, we can fix the noise scale at 1 without loss of
generality, as done in ¥ = ZAZ" + I, such that the scale of A carries only
a relative meaning. To name an example, small values of A (relative to I,))
imply a large noise level.

39



Chapter 2 A Gaussian Mixture Model for Distances

2.7.2 A Prior for Mixture Weights and Cluster
Assignments

The underlying assumption of our model was the standard mixture of Gaus-
sians in Eq. (2.1)), where the k£ components and its parameters

{(Wlaml)a"'a(wkamk’)}v (2.50)

are supposed to be inferred from data. It is important to stress that the above
parametrization is not unique, since any pairwise shuffling produces the same
outcome. As a consequence, the order is non-identifiable, or, speaking in
previous terms, a nuisance parameter. In Bayesian inference, such a char-
acteristic is problematic, as the ambiguity in labeling introduces modes of
symmetry in the posterior, which severely interfere with its estimation. We
also refer to this phenomenon as label switching (Redner and Walker, 1984;
Stephens, 2000). The solution is to either make the clusters artificially iden-
tifiable (for example, by an ordering constraint on the component means
|lma]|2< - -+ < ||mg||2) or to break the symmetry by removing the depen-
dence on the labels altogether (McCullagh and Yang}, 2008)). In comparison,
the latter choice is more elegant, because it excludes unnecessary informa-
tion and reduces the problem to what is relevant. To briefly explain their
scheme, let the mixture weights follow a symmetri Dirichlet distribution

m=[m,...,m ] ~DE/k), (2.51)

where £ > 2, > 0and ) 7; = 1. Its density reads

f(ms& k) = §/k: H i (2.52)

The Dirichlet distribution is a common choice in clustering, as it can explain
an infinite number of mixtures (Neal, 2000). Given weights 7, the objects

3Symmetry means that every mixture component is equally likely, which is a plausible
choice prior to seeing the data. Therefore, a symmetric Dirichlet distribution is parame-
trized by a single concentration parameter instead of k different ones.
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are then labeled with
z=[21,.. %] (2.53)

from a multinomial distribution with density

k

! A
pl.-...-pk.jzl

with p; describing how many times label j € {1,...,k} was observed
among p objects, which also implies > p; = p. This particular combi-
nation of distributions is mathematically convenient, since the Dirichlet is
conjugate to the multinomial. Consequently, we can analytically integrate
out the mixture weights from the product to receive

f(z16.k) = / flzsm k) f(ms6,k) dm (2.55)

_ T LT+ ek
Twemr ters

Finally, in order to eliminate the label-switching problem, McCullagh and
Yang| (2008) express Eq. (2.56) in terms of blocks in ZZ T, leading to

F(Z5€, kmix)
k

_kad T T P+ & ki)
_(k’mm*k‘)' (F(é/kmlx))k F(ijg) s (257)

where kyix > k is the number of mixtures. Also, the first factor has been
added to account for symmetric modes, such that unidentifiable permutations
with the same outcome are combined into one. If k,;x <+ 00, one arrives at
the Ewens process, also known as Chinese Restaurant process, see (Aldous,
1985, p. 91) and (Pitman, |1995). Conversely, if knix < N € N, we speak
of a truncated Ewens process which enforces an upper bound £ < N. Note
that k£ < p, meaning p objects can form at most & = p singleton clusters.
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For practical applications using an MCMC sampler, we always compare
two partitions against each other via the ratio of densities. Say, we have
partition G and H, then

r—= f(G ) 57 kmix) (258)

f(H ;57 kmix) '
Hence, if it is possible to split off constant factors from Eq. ([2.57), it suffices
to evaluate only terms that actually differ. As a simple example, let partition
G have p4 objects in block 4 and p7 objects in block 7. Further, the total
number of blocks in G is k. If H supersedes G in that it switches an object
from block 4 to block 7, then Eq. (2.58)) simplifies to

- (p4 - 1) +£/kmix
T 4 1) + E ki

(2.59)

If H instead assigns the same object to a new block, the ratio becomes

(p4 - 1) + E/kmix
5(1 - k/kmiX) '

Therefore, the densities never need to be evaluated in full as long as we only
compare incremental changes.

Finally, when using the truncated Ewens process with finite kpijx < N <
p, the ratio for a new cluster in Eq. becomes exactly zero if k = N.
This implies there can be at most kK = N — 1 blocks, which was, in fact, the
purpose of truncation.

(2.60)

T4—x =

2.7.3 Markov Chain Monte Carlo Sampling

Combining the translation- and scale-invariant likelihood from Eq. (2.40)
and the above priors for A and Z, we receive the posterior

f(Z)A‘D).)ch(DH/Van)'f(Z|£akmix)'f(A|.)7 (2.61)

where W = 71 = (ZAZT + Ip)fl. There is one remaining parameter
in the likelihood, which has not been addressed yet: the dimensionality of
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the latent feature space, n. If there are fewer linear independent dimensions
than objects, it is possible to identify n by the rank of D. In the typical
case however, we have n > p, which means the parameter is not observable
anymore and possibly infinite. The solution is to interpret n as a temperature
as used in simulated annealing, since it appears in the exponent of every
term in the likelihood. Hereby, we can effectively control the variance of
the posterior samples from the MCMC process: small (large) values of n
lead to large (small) temperature (= variation). We start with a small value,
for example, n < p, and increase it slowly until the MCMC samples finally
converge, say, 1% of all objects changed their assignment in the last 1000
samples. In conjunction with a logarithmic cooling schedule, this scheme
is guaranteed to converge to the global optimum in the limit of infinite time
(Nourani and Andresen, |1998)).

In order to generate an MCMC sample from the posterior, we propose
a simple Metropolis-within-Gibbs scheme that is explained in Algorithm I]
and 2] Further, we also report the complexity in big O notation for each step:
first for A € R and A € diag (since they both lead to B € diag), second for
A € S,. The sampler is initialized with the following parameters:

k<1, Z<+<1, A<1 and n<+p.

2.7.4 Complexity Analysis

The runtime of Algorithm[I]is mainly governed by the innermost loop over
every object and every cluster, therefore, this is the primary target for opti-
mization. In fact, when the posterior is naively recomputed in every iteration,
the worst-case complexity for the standard Ewens process (knix <— 00) adds
up to O(p°), which is clearly not suited for any practical application. To
remedy this, observe that each operation makes only incremental changes
to the previous state. In addition, an important technique is to exploit the
block structure, such that actions involving p X p matrices can be reduced to
k calculations. For example, we can write

\W|=|ZBZ" +1,| =|Z"ZB + I, (2.62)

43



Chapter 2 A Gaussian Mixture Model for Distances

Algorithm 1 Gibbs sampler

fori =1topdo
Precompute fixed terms for the loop in ¢ ~ O(p)/O(p)
for j = 1to k do
Assign object 7 to cluster j, compute posterior  ~+ O(k)/O(k?)

end for
Assign object i to new cluster, compute posterior ~+ O(k)/O(k?)
Assign object ¢ permanently ~ 0(1)/0(1)
if object ¢ is assigned to new cluster then
Sample new A, see Algorithm [2] ~ O(k?)/O(k3)

end if

end for

Sample new A, see Algorithm ~ O(k?)/O(k3)

Algorithm 2 Metropolis sampler for A

Generate proposal A* and compute posterior ~ O(k?)/O(k3)
if acceptance ratio > u ~ 1/(0, 1) then

A A - 0(1)/0(1)
end if

which is the determinant of a smaller k x k matrix, hence O(p?) is reduced to
O(k3). Further, it is even possible to avoid full recomputation of | Z T ZB +
Ik, when operations can be written in terms of rank-1 updates. In this case,
an existing Q R decomposition (Lay, 2011, p. 356f) can be updated in O(k?)
to reflect these changes. The determinant is then obtained in O(k) by

|det(Z" ZB + I,)| = |det(Q)| - [det(R)| = |] ] Rail- (2.63)
Here, we used det(e) for a better distinction from the absolute value. Note

that the absolute value does not pose a problem, since W is positive definite
by definition.

If B is a diagonal matrix, then the () R decomposition is not needed. In-
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stead, the determinant of W breaks into the product of block-wise determi-
nants, thus O(k). In addition, incremental updates are found in O(1). Other
optimization techniques include the order of calculation, that is,

1)W1, =1)(ZBZ" +I,)1,=(Z2"1,) ' B(Z"1,) +p  (2.64)

only requires “small” matrix-vector products of order k instead of costly
matrix-matrix operations. A second technique employs cyclic permutation
to split the trace into smaller parts, where we have

tr{—3WQD} (2.65)
- tr{—%W(Ip - (1yw1,) 1,1, W) D} (2.66)

= —Ie{BZ'DZ} - str{D} - 11} ZzBZ"1,+p)”"
T T T T T (2.67)
-(1,2B2"DZBZ"1,+2-1) DZBZ 1, + {D}).

From Eq. (2.67), we see that some terms occur multiple times and can be
pulled out of the innermost loop: The contribution of object ¢ in (D;eZ)
is found in O(p) and tr{D} can be precomputed once. Again, for a fast
runtime, the evaluation order must be considered to use matrix-vector multi-
plications where possible.

In summary, there is a large potential for optimization due to the block
structure and many reappearing terms. Table [2.1] reports the overall com-
plexity when these properties are successfully exploited. Hereby, the results
simply aggregate the complexity for the individual steps that were already
stated in Algorithm[I]and 2]

Due to A € R and A € diag leading to a diagonal matrix BE], both
models have the same complexity in big O notation. When the objects can
be partitioned into only few clusters, we can expect reasonable performance
of the truncated Ewens process with approximately quadratic cost. Also, the
flexibility of A € S, comes at the price of O(p*) for the standard Ewens
process, thereby preventing an application to large-scale data. Only for the
truncated variant with ki << p, the model regains its practical relevance.

“Recall that B is the cluster-defining part of the inverse covariance matrix W.
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Ewens process

A B truncated standard
R diag O(p®+pN?) O(p®)
diag diag O(p? + pN?) O(p?)
S+ S- O(p®+pN?) O(p")

Table 2.1: Overall complexity for Algorithm and [2fusing the various mod-
els for A. Regarding truncation, it is guaranteed that k < N < p,
which is a fixed and predetermined number. For the standard
Ewens process, we have k < p, that is, p objects can form at most
p singleton clusters.

The next section will explore an extension to the cluster model aimed
specifically at lowering the worst-case complexity. In more detail, there
is an interesting analogy between a covariance matrix and a binary rooted
tree. This gives a different perspective on the centering problem, which was
previously solved by making the likelihood invariant against translation.

2.8 Extension: Centering by Trees

When we incorporated translation invariance into the likelihood, the motiva-
tion was to find a projection of the data that removes any column means of
the form M = 1,w ", where w € R". The important detail is the resulting
projection matrix

Q=1I,—(1,W1,) '1,1) W,

which has the property ()1, = 0,,. In particular, note that () is a function
of W = X!, Let us now restate the scale- and translation-invariant log-
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likelihood from Eq. (2.40) with identity WQ = QTWQ:
UW) = Zlogdet(QTWQ) — P log tr{~1QTWQD}.  (2.68)

At this point, the cyclic property of the trace gives rise to two different inter-
pretations: The log-likelihood can either be seen as a function in transformed
inverse covariance matrix QW Q given D, written as

UQTWQ; D), (2.69)
or as a function in W given the transformed distances QDQ", that is,
(W ;QDQT). (2.70)

The first option was used to derive the translation-invariant likelihood, but
the second is in fact equivalent, thereby raising the question whether there is
any benefit to it. To better understand its meaning, notice that

-1QDQ" =QsQ" = s, (2.71)

is essentially a centering operation of the data to identify a single matrix
S, out of the equivalence set S(D), although S is strictly speaking rank-
deficient. At first glance, we cannot make proper use of projection (), because
it is a function of the yet to be inferred W. However, if we had an intuition
about W, hypothetically, we could approximate S, in a preprocessing step
and then fall back to the simpler translation-variant (but still scale-invariant)
log-likelihood (see Section [A.T]for its derivation):

(W) = §log|W| — =2 log tr{W5.}. (2.72)

In conjunction with a diagonal cluster model, A € diag, this leads to an al-
gorithm with worst-case complexity of only O(p?) instead of O(p?). Details
are found in Section[A.1l

Now, assume we are given an estimate W~ W, then the projection be-
comes Q ( and leads to S = -3 QDQ—r Although Sisan approximation
of the centered S, we are guaranteed to stay inside the set S(D) and leave
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the pairwise distances unchanged, even for poor choices W % W. Our hope
is that even a rough estimate already leads to a reasonably well-centered S.In
that case, the expected gain in computational performance by far outweighs
the loss due to approximation. Still, there are also special instances when W
can be estimated accurately, as will be shown in the following. For now it suf-
fices to see that if we had access to the true W, the translation-variant model
using S, would be equivalent to the translation-invariant model based on D.
This is a substantial property and speaks in strong favor for the soundness of
the approach.

2.8.1 Constructing a Tree from Distances

At the current stage, we do not know W (or @ for that matter), however, there
exist methods to construct a tree from a distance matrix—many of these were
developed in biology to identify phylogenetic relationships between taxa (=
species). More specifically, the data are mapped to a tree with p leaves,
where each leaf represents one object; the distance between two leaf nodes is
given by summing up edge lengths along the shortest connecting path in the
tree. The goal is now to find a topology, where the distance d;;, as measured
between leaf 7 and j, matches what is given by the distance matrix, D;;. In
other words, we wish to minimize

(Dyj — dij)*. (2.73)

p
=1

i=1j

From a combinatorial perspective, a binary rooted tree with p leaves has p—1
internal nodes and 2(p — 1) edges, thereby leading to a total number of

1, oddp

2, evenp (2.74)

2p-=3)!"=2p—-3)2p—5)---(c+2)e, c= {
possible tree topologies (Page and Edward, [1998]). This heavily outweighs
the degrees of freedom in a distance matrix, which has at most O(p?) distinct
values, that is, all elements on the upper or lower triangular submatrix. For
example, a distance matrix with p = 12 contains a maximum of 66 unique
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values, but there are already 21!!~ 1.37 - 10'° potential tree topologies.
Therefore, finding a tree is a strongly underdetermined problem unless we
impose further constraints on the data. One special case is the ultrametric
space (Page and Edward, (1998}, [Felsenstein, [2003)), which requires that the
distances between any three points A, B and C satisfy

Dac <max{Dap,Dpc}. (2.75)

This can be seen as a stronger version of the triangle inequality, such that
ABC! is restricted to an isosceles triangle, where the sides of same length are
longer than the third side. The triangle ABC' is also allowed to be equilateral,
thus having three sides of same length. If a distance matrix follows this
property, there is exactly one corresponding binary rooted tree which can
be recovered using the UPGMA algorithm (unweighted pair-group method
with arithmetic mean) (Sokal and Michener, |1958)). This method operates
directly on the distance matrix and iteratively merges two nodes with the
smallest distance into a new parent node. For every merge, the rows and
columns of the children are removed from the distance matrix and replaced
by new distances of the parent node to all remaining nodes. The process
continues until there is only one node left—the root. Given pairs of nodes
to be merged and their distances, we can draw a graphical representation
of the procedure to receive the tree. Note that if the distance matrix does
not conform to the ultrametric property—as often encountered in practice—,
UPGMA produces the closest matching tree under the infinity norm. To
demonstrate this, Fig. [2.6|shows a non-ultrametric D for p = 12 objects and
the resulting tree.

The ultrametric assumption can easily be seen from the tree structure:
First, it requires a root node, which implies that all species (the leaves) stem
from one common ancestor. Second, all leaf nodes have the same distance to
the root. In the context of phylogenetic trees, this is also known as a clock-
like topology (Felsenstein, [2003)), because it assumes a common molecular
clock which governs the rate of mutation across all species. This also implies
that the vertical direction serves as a time axis, where the leaf nodes live
on a joint temporal front. In general, there is no formal justification for
a molecular clock or even a root node, but it is a common and plausible
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Figure 2.6: Constructing a tree from distances. Left: Non-ultrametric dis-
tance matrix D. Right: Closest matching binary rooted tree.

assumption for the analysis of (roughly) related species.

2.8.2 Covariance Matrix from a Tree

The purpose of constructing a tree from a distance matrix is to eventually
receive an estimate of the inverse covariance matrix V. To this end, Fig.
demonstrates how every edge in the previous tree represents a binary par-
tition of the leaf nodes. Yet, the tree—being a hierarchical clustering of
leaves—contains even more information: the length of an edge indicates the
importance or weight of its associated binary partition (see \; in Fig. [2.7).

Thus, if we combine these two sources of information and compute the
weighted sum over all possible partition matrices, we receive the underlying
covariance matrix (McCullaghl 2009). We can also think of this as finding a
consensus clustering from many simple, binary partitions, where the individ-
ual partitions are highly overlapping due to the nature of a tree topology. For
a mathematical description of the 2-block matrix in Fig. corresponding
to the cut of edge 7, we write

1,1 + 1,1, (2.76)

where 1; € {0,1}" and 1, = 1, — 1, are the indicator vector and its binary
complement, respectively; their purpose is to denote which leaf node belongs
to which group. In total, there are 2(p — 1) edges in a binary rooted tree
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Figure 2.7: Cutting the tree from Fig. at the indicated edge splits the leaf
nodes into two groups 1-8 and 9-12 (left), which is equivalently
captured by a binary partition matrix (right).

(excluding the edge above the root), thus we have
2(p—1)
Ytree = Z Ai - (]li]lg— + ]li]l;'r) 2.77)
i=1

with \; being the length of edge i. Note that we call the resulting covariance
matrix Yy to distinguish it from the block-structured > = ZAZ T4+ Ip.
Finally, Fig. [2.8] demonstrates how Eq. is applied to the running ex-
ample of the previous figures to obtain Y. Although the distances did not
satisfy the ultrametric property, the estimate is surprisingly close to the true
Y. For a better judgment of the result, note how the data were generated:
Sample X ~ N, (0pxn, X ® I,) with p = 12 and n = 100, then compute
the corresponding distances by D;; = (Xje — Xjo)(Xje — X )T.

As a final remark, the time complexity for the UPGMA algorithm and
the subsequent decomposition is O(pQ) (Murtagh, (1984} |Adametz and Roth,
2011). A binary rooted tree can also be found via other distance-based
methods like the single- or complete-linkage algorithm; both have efficient
implementations in (’)(pQ), see (Gower and Ross), [1969; |Sibson, [1973)) and
Defays| (1977).
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Figure 2.8: Inferring the covariance matrix from the tree in Fig. Left:
True covariance matrix underlying the distances in D. Cen-
ter: All binary partition matrices multiplied by their edge length.
Right: Estimated covariance matrix as the sum of weighted par-

tition matrices. Note: The grayscale palette was rescaled in the
right plot to match the range of values.

2.8.3 Computational Advantages by using the Tree

With estimated covariance matrix Y. in place, we can now calculate Wyee =

Y e and proceed to the centering operation

5= 100Q"
where
@ = Ip - (1;I/Vtreelp)711pl;mree' (2.78)

From a computational point of view however, this particular step would
require O(p?) due to matrix inversion and a matrix-matrix product, thereby
making it the most expensive calculation in the pipeline. To this end, notice
how the inverse Wy, only enters @ by vector

Y = (Wireelp) € R?, (2.79)

which gives rise to a more efficient formulation in conjunction with the tree.
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2.9 Experiments

The remaining steps are only given in condensed form; for a detailed

proof, see (Adametz and Roth, 201T).

In short, the idea is to first find y by

ngnuztreey — 1, (2.80)

in O(p?), which exploits the tree topology to compute Yyeoy. Next, identity
Q=11 y) 'Ly’ (2.81)
enables us to calculate

S=-1QDQ" (2.82)

= —3D+5(1,9) " Ly D+ 3(1,y) Dyl ) 83

LqToN—24 T T (2.83)
—3(1,y) "L,y Dyl,

in O(p?). Hence, the time complexity to (i) construct the tree, (ii) decompose
it into a covariance matrix and then (iii) find a centered Sis O(p?). From an
overall standpoint, the appeal of the approach is primarily due the significant
speed up in clustering, but it also shows an alternative treatment of translation
as a nuisance parameter: the extensive work on phylogenetic trees can now
be used as a tool for centering, to make one choice among the set S(D).

2.9 Experiments

The goal of this section is to give a better picture about the cluster models,
the tree extension as well as related methods. We will refer to the standard
model as TiWD (Translation-invariant Wishart Dirichlet process)
and the tree-based counterpart as fastTiWD (Adametz and Roth|, 201T).
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2.9.1 Synthetic Data

In the first experiment, we generate data as follows: Z is initialized as a
zero matrix with p = 500 rows and k£ = 5 columns. Each object is then
uniform randomly assigned to one of the five clusters, which approximately
comprise an equal number of objects. To define the inner product of the
cluster centers, A € S, is drawn from Wy (k + 3, Ii,). Regarding the noise,
ZAZ" is complemented with a scaled identity matrix that defines the noise
level. Since we aim for a challenging cluster structure, the noise factor is
set to 40. Note that due to scale invariance, the likelihood treats >; =
ZAZ" + 401, and Sy = Z(;5A)Z" + I, as equivalent, hence the relative
noise level is sufficient. From X1, we sample X ~ ./\/'(Oan, Y1® In)E] with
n = 600, which is finally used to compute the pairwise distances D. The
process is repeated to produce a total number of 100 datasets, each of which is
evaluated by TiWD, fastTiWD (both using A € S;) and competing methods.

Figure 2.9: Clustering of synthetic data (kK = 5, p = 500, n = 600). Left:
True covariance matrix X, which leads to highly overlapping
clusters. Right: Given X, we can sample X ; the plot shows its
2D-PCA projection with true cluster labels.

Fig. 2.9 illustrates a single covariance matrix > and its corresponding

3 Adding column shifts to X is not necessary here as they automatically cancel in D.
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Adjusted Rand index over 100 datasets
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Figure 2.10: The adjusted Rand index as boxplot over 100 datasets. Methods
are (from left to right): single linkage, complete linkage, Ward’s
method, TiIWD and fastTiWD.

data matrix X in a 2D-PCA projection. The resulting clusters are highly
overlapping and pose a challenging task as can be seen in Fig. The
performance of each method is measured by the adjusted Rand index be-
tween true and inferred labels. While single-linkage clustering performs
worst, complete-linkage clustering seems to capture minimal structural in-
formation. Ward’s method is able to exceed both, however only by a small
margin. The highest results are achieved by TiWD (A € S;) with a me-
dian adjusted Rand index of about 0.63, where each run consisted of 5000
iterations of the MCMC sampler. In order to put this into perspective, we
also applied the centering operation using a tree construction from D. The
algorithm relies on S, an estimate of the centered S, = —%QDQT, to use
the simpler translation-variant likelihood. Although the computations are
slightly simplified, the algorithm does not gain any significant benefits for
A € S, as the complexity is maintained. Still, judging from its accuracy
(median adjusted Rand index ~ 0.61), fastTiWD performs virtually identical
compared to its fully translation-invariant counterpart. The slight drop can
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be explained by the tree construction, which requires ultrametric distances
and therefore identifies the closest matching tree. Aside from the difference
in likelihood, all parameters were kept identical.

2.9.2 Real-World Data: Semi-Supervised Clustering of
Protein Sequences

This experiment largely follows (Adametz and Roth, [2011)), but adds

further details and explanations.

Since fastTiWD has only quadratic complexity in combination with a scalar
or diagonal model A, it is possible to apply it to fairly large datasets in a rea-
sonable amount of time. For a demonstration of this, we select an application
from biology where the task is to classify protein sequences based on a few
examples with an already known label. While it is always possible to infer
structure from the data without any prior knowledge, the semi-supervised
setting is presumably the most interesting in practice. Hence, the question is
which protein sequences fall into already existing categories and which are
different enough to form groups of their own.

Due to the non-vectorial nature of proteins, it is difficult to cluster the
objects when they are represented as amino-acid chains, for example, AST-
KGPSVF... . Our solution is to abandon the original domain of the se-
quences and instead evaluate it in terms of pairwise alignment scores, which
are straightforward to compute. We can think of this a kernel function that
operates in the feature space of amino acids, hereby measuring the simi-
larity between two inputs. The implication of a kernel is, however, that it
fixes the point of origin in the latent feature space, which we assumed to be
uninformative. Therefore, only the distances are actually relevant to us.

In the current problem, the semi-supervised type of clustering naturally
arises due to two different databases: SwissProt contains protein sequences
that are manually annotated with a stringent review process; TrEMBL is
larger, not reviewed and consists only of automatic annotations. From a clus-
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tering perspective, we assume that the high-quality labels given by SwissProt
are true (the supervised examples), whereas the classification from TrEMBL
is untrusted and therefore completely discarded. In essence, this means as-
signment matrix Z contains a set of fixed rows, which are not altered during
the sampling process.

Vogt et al.|(2010) also analyzed this particular semi-supervised task, but
the cubic complexity limited the size of the dataset: In total, p = 3771 globin-
like protein sequences were used, out of which 1168 sequences belonged to
114 classes as given by the SwissProt database. Now, due to the significant
speedup via the tree construction, it is feasible to go beyond the scope of
globins and handle the superset of oxygen binding and transport, adding up
to p = 12290 sequences. This set contains a much richer and diverse class of
sequences among which we find hemocyanins, hemerythrins, chlorocruorins
and erythrocruorins. SwissProt lists 1731 sequences with 356 known classes.

We conducted 5000 Gibbs iterations (the cluster structure stabilized after
around 1100), and the total runtime on a standard computer was approx-
imately 6 hours. In this instance, we used the scalar model of A, which
requires the least amount of computations, although it formally has the same
complexity in big O notation as its diagonal counterpart. The most inter-
esting detail is how it compares to TiWD (while using the identical model
for A), but unfortunately its runtime is beyond being feasible for clustering.
Hence, we ran both methods alongside each other for 100 iterations and
found an improvement of factor 192, which would result in an estimated
runtime of 1152 hours (or 48 days) for TiWD. This clearly demonstrates the
significant performance gain, but it also explains why a complexity reduction
is undoubtedly needed for larger datasets.

In our experiment with fastTiWD, we were able to identify 23 unique clus-
ters among the TrTEMBL sequences, which are dissimilar to any class given
by SwissProt. Such a result is particularly interesting from a biological stand-
point, because it integrates new data into existing knowledge and highlights
potential candidates for further research. The result is pictured in Fig.[2.11]

Most of the newly identified clusters contain sequences with rare, but spe-
cific structural properties. Similar to the results in (Vogt et al., 2010), we
find a large cluster containing flavohemoglobins from a particular species
of funghi and bacteria. These proteins have a certain domain architecture
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Chemotaxis methyl-accepting receptor,
magnetic bacteria

Iron-sulfur cluster repair di-iron proteins

-7 Flavohemoglobins, NAD/FAD domain

Figure 2.11: Inferred block structure for all p = 12 290 protein sequences in-
volved in oxygen binding and transport. The supervised labels
are derived from the SwissProt database, which assigns 1731
sequences to one of 356 classes. Interestingly, we could find 23
new clusters among the sequences listed in the TTEMBL data-
base, which are different from any existing class in SwissProt
(see enlarged area).

in common, which is composed of a globin domain fused with ferredoxin
reductase-like FAD- and NAD-binding modules. A second example is a
new cluster containing proteins with a chemotaxis methyl-accepting receptor
domain from a special class of magnetic bacteria, which are able to align
themselves to earth’s magnetic field. One potential advantage of this orienta-
tion property (known as magnetotaxis) is that by keeping the bacteria aligned
against Brownian motion, they might be more efficient at sensing chemical
signals for directing their movements (chemotaxis), see (Dusenberyl, 2009,
p. 164-167). The domain architecture of these proteins (see Fig. is
unique among all sequences in the dataset.

Haemerythrin/ Haemerythrin/ Nitrate/

HHE cat-bd HHE cat-bd nitrite sensing
Chemotax HAMP linker HAMP linker
methyl-accept. domain domain

Figure 2.12: Domain architecture of the magnetic bacteria.
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A last example is a cluster of iron-sulfur cluster repair di-iron proteins.
These proteins contain a polymetallic system, the di-iron center, constituted
by two iron ions bridged by two sulfide ions. In our dataset, such di-iron
centers occur only in this particular cluster.

Overall, the purpose of this experiment is to demonstrate how fastTiWwD
enables analysis that was previously infeasible because of high computa-
tional requirements. Like TiWD, the Gibbs sampler can easily be altered
to allow semi-supervised clustering, such that new data can be conveniently
integrated into existing knowledge. Hence, fastTiWD offers all advantages
and properties of TiWD at much smaller cost. Could we have arrived at the
same results without clustering? Theoretically yes, considering we are able
to dig into numerous protein databases and fuse their information. It would,
however, also involve a large portion of domain knowledge and probably
human interaction to a high degree—something that grows out of proportion
for numbers of 12 000 proteins. This is in fact one of the main reasons why
SwissProt is much smaller than TrEMBL.

2.10 Conclusion

In this chapter, we presented a method for clustering pairwise distances,
which is based on the mixture of Gaussians. While the setting is well-defined
when the full design matrix X is observed, the transfer to distances is not
straightforward. The immediate challenge comes from the fact that infor-
mation loss occurs, which affects a range of parameters that are otherwise
essential for statistical inference. In particular, due to the nature of pair-
wise (dis)similarities, certain properties that characterized the original fea-
ture space become inaccessible—the individual features, the dimensionality
of the feature space (if D has full rank) and the point of origin. Not only
does this increase the difficulty, but the lack of knowledge also introduces
a high degree of freedom of potential matrices X from which the distances
could have originated from. Since the likelihood explicitly depends on this
information, we referred to these parameters as nuisance. In the subsequent
sections, it was shown how different techniques can be applied to incorporate
invariances into likelihood, such that the unknown nuisance parameters are
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either (i) removed by marginalization via suitable statistics or (ii) substituted
with their best supported estimate, hereby collapsing the parameter space into
a profile. Fig.[2.13|demonstrates the invariances that were developed through-
out this chapter: all variations of the data and any combinations thereof are
equivalent. Hence, what uniquely defines a partition are the object-to-cluster
assignments and the inner product of cluster means relative to the noise level.
The plots were generated with a diagonal matrix A, which implies that the
geometry of the clusters possesses an orthogonal basis (possibly coinciding
with the point of origin).

original data rotation & reflection

translation scaling

Figure 2.13: The model is invariant against the above three modifications.
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Throughout the domain of clustering, we found two complementary ap-
proaches for dealing with information loss regarding the point of origin: The
first was to avoid making any choice about the unknown parameter. Instead,
we applied a transformation, such that the term completely cancels from the
likelihood. In an extension arising from the cyclic property of the trace, the
second option was to pick one candidate explicitly by means of a tree. This
alternative approach does not render translation invariance obsolete as it uses
an approximative centering of the data which depends on external knowledge.
Yet, we gain a considerable benefit in runtime and its accuracy is in many
instances very close to that of the full model, even though the data does not
strictly meet all requirements, say, the ultrametric property. Maybe most
importantly, it adds an alternative interpretation to the problem and further
shows a potentially deeper relationship to consensus clustering.

At the core of a Gaussian mixture model, the underlying assumption is
that objects form a cluster whenever they can be explained by a common
mean, hence, the essential part of inference concerns the identification of
cluster structure. Since we are unable to characterize these means in terms
of their latent feature space, we took the intermediate step to approximate
the non-central Wishart distribution by a central one, hereby expressing the
cluster geometry conveniently via their inner product as captured by matrix
A. The choice for its model—scalar, diagonal or symmetric positive defi-
nite—heavily depends on requirements of the user and the problem at hand,
but it is important to keep in mind that the added flexibility comes at the
price of substantially increased computational cost. It is relatively easy to ar-
tificially construct cluster geometries which cannot be expressed by a scalar
or diagonal A, for example when three clusters are positioned on a line. In
these instances, the model is likely to compensate by introducing additional
clusters such that the mismatch is reduced. This clearly speaks for the most
flexible variant, that is, a full matrix A, however it might not be necessary
for a large number of clusters: Since A lives in the space of cluster centers,
an orthogonal basis in high dimensions (= many clusters) might already be a
very good fit, albeit not perfect.

In typical situations, the aspect of runtime is a much more decisive factor
than modeling the cluster geometry exactly. Also, the data we work with
might not be Gaussian after all, thereby possibly violating our assumption of
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spherical clusters. Hence, the sacrifice in flexibility is often subordinate and
should more suitably be treated in an approximative manner. As long as the
data exhibits a reasonably clear cluster separation, the correct partition can
most certainly be found—in spite of a model mismatch.

Further thoughts about the model are given in Appendix [A]
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Chapter 3

A Gaussian Graphical Model for
Distances

In this chapter we introduce a method for estimating Gaussian graphical
models (GGMs) from pairwise distance data. Since it relies on the same input
as the model for clustering, there is a certain amount of overlap, however, it
also has considerable differences that justify a dedicated chapter.

3.1 Introduction

Let us begin with a description of the classic GGM: its main building block
is a p X n matrix X, which contains information about p objects (= rows)
living in an n-dimensional space (= columns). The important assumption is
that this matrix follows a matrix normal distribution, that is

X ~ Ny (M, 2@ 1,). (3.1)

The goal in GGMs is to identify precision matrix W = X 7!, since it encodes
the conditional independences between the p objects. More specifically, a
zero element in W, say W;; = Wj; = 0, represents that object 1 and j are
conditionally independent given all other objects. This fundamental property
only holds for the normal distribution and is yet another reason for its impor-
tance in statistical analyses. To this end, W captures characteristics about
X, which give deeper insights into the data. Conditional independences are
explained in more detail by the following example.
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Conditional Independences for Gaussian Data

Assume a vector of normal rvs distributed as

X 0 YXxx Yxy Xxz
Y| ~ Ng 01,2=[2vx 2Xvy Xvz . (3.2)
A 0 Yzx Yzy Xzz

Then, the conditional distribution of X and Y given Z reads
X,Y | Z ~ Ny(0,%), (3.3)
where

< [Zxx —Zxz370%zx Exvy — Sxz85,%zy

) 3.4

T [ Zyx —ZyzE55%zx Syy — SvzX pYzy

X and Y are conditionally independent given Z, that is, the off-
diagonal elements in Y are zero, if and only if the precision matrix
has the property

Wxx 0 Wxyz
Tl=w=| 0 Wyy Wyzl, (3.5)
Wzx Wzy Wzz

meaning Wxy = Wy x = 0.

It is common to draw a graphical representation for W in terms of an undi-
rected graph, where the objects are vertices and the individual values in W
become edges. In more detail, the edge color describes the sign (e.g., +/—
as black/gray) and edge thickness matches the absolute value (up to a scalar
factor). The most interesting information, however, concerns the conditional
independences, which correspond to the absence of an edge. Fig.[3.1]demon-
strates this for an exemplary precision matrix and its associated graph.
Clearly, the estimated precision matrix is required to be sparse (up to a
user-defined level), otherwise the graph is fully connected and its topology
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O

Figure 3.1: Precision matrix W (left) and its interpretation as an undirected
graph (right). Matrix elements with white color contain zeros.
As for the graph, self-loops due to the diagonal elements are
typically omitted.

is meaningless for analyzing the conditional independences. At this point, a
valid question is whether network inference is equivalent to clustering and
if its block parametrization of W can be reused. From Fig. [3.2] we see that
the definition of a cluster—a set of similar objects which is distinct from
other sets—does not translate properly to GGMs. Instead, both approaches

>

Figure 3.2: Clustering versus network inference. Block-diagonal precision
matrix (left) as derived from clustering, but interpreted as an undi-
rected graph (right). Blocks correspond to mutually independent,
but internally fully-connected subgraphs (cliques).

are rather complementary: if we had coherent subgroups among the objects,
we could first cluster them and then either (i) analyze their conditional inde-
pendences individually (micro level) or (ii) infer a network between clusters
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(macro level). These are, in fact, two possibilities to effectively break down
a large number of objects into smaller sets, the latter being referred to as
module networks by |Prabhakaran et al.| (2013).

Due to our focus on distance-based methods, any domain is suitable for
analysis as long as a kernel- or distance matrix can be computed. Conse-
quently, we can infer a network of probability distributions, of strings or
protein sequences, of semantic texts or images, of chemical structures or
even graphs themselves. This is made possible by the ‘zoo’ of kernel func-
tions which have been developed for virtually any type of input data. In
that regard, the scope of potential applications is much larger than that of
classical GGMs, which is limited to vectorial representations of the data.

For a proper understanding of the basic idea, let us begin with a related
model: |Prabhakaran et al.[(2013) proposed the Translation-invariant Wishart
network (TiWnet), which builds on the matrix normal distribution described
in Eq. and assumes squared Euclidean distances between object ¢ and j,

Dij = (Xie — Xjo) (Xie — Xj0) . (3.6)

Euclidean distances also formed the basis of the cluster model from the
preceding chapter, however, we will now focus on a variation of Eq.[3.1}

X =XU2 ~ Ny (M, S0 0). 3.7)

Both X and X are p X n matrices, but their difference lies in the additional
feature correlation as given by n X n matrix ¥. Although this may initially
appear as a minor modification, its importance becomes more evident when
we compute the corresponding distances: Suppose the existence of a fea-
ture correlation was known, then we should correctly evaluate the squared
Mahalanobis distance

(Dwn);; = (Xie — Xjo) U™ (Xie — Xja) |, (3.8)

such that the bias from correlation is accounted for. Under this treatment,
Dy = g(X) and D = h(X) are equivalent.

The difficulty arises when a distance matrix is given, which by definition
allows no access to its underlying features. In that situation, it is not clear
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which of the two distance measures was applied to generate the observations;
the (now) latent features may or may not have been correlated. Hence, there
are two options:

1. We decide to enforce strict feature independence as done in (Prab
hakaran et al.,[2013]) to make the problem tractable first and foremost.
This implies that the distances are assumed to be Euclidean and, to
this end, Fig.[3.3|demonstrates how distances are perceived differently
under feature correlation. In the worst case scenario, the data might
be misinterpreted.

2. We choose the Mahalanobis distance, because it is more general and
also includes feature independence as a special case. Unfortunately,
the features are not accessible, therefore, their correlation cannot sim-
ply be removed by transformation, for example, as in

XU~3 =X,

although it may have a big impact on the distances. To make matters
worse, not even the number of features is known if it exceeds the
number of objects, as we learned in Chapter I}

In summary, the introduction of feature correlation complicates inference
from distances, since it alters the data in its underlying latent space. The
challenge comes from the fact that distances depend on four individual para-
meters: number of features n, mean matrix M, row covariance Y and column
covariance/correlation . This means, finding a network is the task of iso-
lating . from the remainder, or in other words, we are required to interpret
every single pairwise distance in such a way, that structural properties are
distinguished from nuisance parameters, which only act on the feature space.

For a better intuition about the problem, it is always helpful to analyze
the balance between number of variables and observations: We are given
a p X p distance matrix D to infer a p X p precision matrix W, while an
unknown portion of D might be caused by n x n feature correlation matrix
¥ with n > p. Hence, the task is significantly underdetermined. To this
end, imagine a fictitious experiment in which D is subject to strong feature
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v =1 U =]

Figure 3.3: Euclidean distances between p = 3 points when n = 2 features
are uncorrelated (left) and correlated (right). The concentric cir-
cles on the left-hand side represent “true” equidistant points rel-
ative to the white point, while the correlation on the right-hand
side transforms the circles into ellipses.

correlation, but without any conditional dependence structure, i.e., W = I,,.
In that particular case, enforcing feature independence would falsely attribute
all the information to network structure where in fact there is none. This goes
to show why latent feature correlation matters and why it demands a well-
considered solution.

The following describes an application, which is potentially subject to
feature correlation while sharing all the aforementioned properties.

3.1.1 Example: A Network of Biological Pathways

Suppose we are in a clinical domain where the task is to study a specific
disease (say colon cancer) based on a patient cohort. Since the disease in-
fluences the human body on a wide range of biological functions, a tissue
sample from the affected region is taken for each patient and subsequently
analyzed with a DNA microarray. As a result from this procedure, we si-
multaneously receive expression values for around 24 000 known genes in
humans, which in simplistic terms could be described as “gene activity”. Un-
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fortunately, these measurements are highly prone to noise and only weakly
informative when analyzed on their own. Therefore, in an attempt to allevi-
ate these shortcomings, we instead focus on groups of functionally related
genes that jointly contribute to higher-level functions. In more precise terms,
such a set of genes is also called pathway (Curtis et al., 2005). Our hope is
that the weak signals underlying a single gene are amplified in a pathway,
such that visible and stable patterns can be detected.

genes

patients

H,—/

Y

genes on pathway ~ mean  variance

patients

Figure 3.4: A pathway interpreted as the distribution of genes across patients.

Given the transition from single genes to high-level information, we could
ask how different pathways interact with each other and if some of them are
conditionally independent given others. To this end, note that a pathway con-
tains a characteristic collection of gene expression values, meaning the object
of interest is a probability distribution, see Fig. It is not clear how to op-
erate in this abstract domain directly, however, we can easily compute their
pairwise dissimilarities using the Bhattacharyya distance (Bhattacharyya,
1943} |Jebara and Kondor, [2003). This defines the foundation on which we
wish to construct a network of pathway distributions. The question is: Are
the patients (i.e., the features) truly independent realizations or could their
common sex, age and treatment have “skewed” the distances? We will find
an insightful answer in the experimental section.
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3.2 Related Work

On the most basic level, all following methods rely on the matrix normal
distribution

X ~ Npn(M,S x T), 3.9)

which is the building block for GGMs. The goal is always to infer a sparse
W = !, however, the approaches differ in their individual assumptions
about M and ¥. An overview for all discussed variants is given in Fig.

input X S=XXT D
means M =wvl, M =0pxn M=1,w"
feature
correlaion ¥ = In v v=I Vv=I, 4
model oL TRCM oL TiWnet

Figure 3.5: The big picture (Adametz and Roth, [2014). Different assump-
tions about M and W lead to different models.

We begin with the distance-based approaches whose mean model is M =
1pr, w € R"”, because this information vanishes in D. Every other form
of the mean, as for example row means v1, with v € RP, alters D and
is therefore regarded as informative. Next, if we assume independent fea-
tures, we receive TiWnet (Prabhakaran et al., [2013) as introduced before.
An arbitrary feature correlation falls into our current setup, leading to the
Translation-invariant Matrix-T process (TiMT) (Adametz and Roth, 2014).

If matrix X is known, which contains full feature information, the mean
is assumed to be M = '01:; , that is, row means. Compared to the distance
methods, this is neither better nor worse, but simply a different choice for a
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different application. Analog to the above, feature correlation divides this
branch into the graphical LASSO (gL) (Friedman et al.,2008; Yuan and Lin,
2007) and the Transposable Regularized Covariance Model (TRCM) (Allen
and Tibshirani, 2010). Both approaches are similar in that they optimize the
likelihood under an L1 penalty, but TRCM estimates both ¥ ! and ¥~! by
alternation.

The last branch uses similarity (or kernel) matrix S = X X T with a strict
zero mean assumption to avoid the centering problem. Further, when com-
bined with independent features, we also receive gL, however, this should
rather be treated as a special case due to its highly selective requirements.

3.3 Model

The starting point is the matrix normal log-likelihood:

(W, W, M5 X) = 2 log|W| — & log|¥|

— L {W(X - M)yTY (X - M) T} G40

To recapitulate the parameters, our goal is to infer precision matrix W, while
everything related to the features is considered a nuisance:

e number of latent features n

e feature correlation ¥

e mean matrix M = 1,w"

The reader should notice that, from the very outset, this is quite a difficult
problem, because none of the parameters are known, not even data matrix X
(or X ). Still, we can intuitively say that there must be some property of D
that permits a statement about W, although it is not yet clear how to extract
this limited information in mathematical terms. From a technical perspective,
it is always possible to incorporate invariances into a model somehow, yet,
this does not imply any guarantees about inference, as we will see. Therefore,
the actual challenge is to maximize the statistical power of the model under
information loss, which is particularly true for the current situation. The next

71



Chapter 3 A Gaussian Graphical Model for Distances

section will discuss transformations of Eq. (3.10)), such that it only depends
on pairwise distances, and we begin by the correlation of features.

3.3.1 Invariance against Feature Correlation
Profile Likelihood Approach

Given our previous experience with the profile likelihood, it seems promising
to base invariance on the maximum likelihood estimate of ¥ (McCullaghl
2008)). Straight forward calculations lead to

0 ~
a—\I’E(W,M;X, ) = Opxp & ¥ = I%(X — M)TW(X — M), (3.11)
meaning the best-supported feature correlation is a function of W and M.
By inserting ¥ back into the log-likelihood, we arrive at

(p(W, M ; X, )
= 2 log|W| — Blog|¥| — L tr{W(X - M)THX - M)} (3.12)
= log|W| — Zlog|W (X — M)(X — M)"|. (3.13)

It appears that this is a valid model, but Eq. (3.12) reveals an important
limitation on closer inspection: ¥ is an n X n matrix which can only be
inverted if n < p. For the boundary condition n = p, we have an interesting
special case:
(p(W,M; X, )

= Zlog|W| — Blog|W (X — M)(X — M)"| (3.14)

= Zlog|W| — Blog|W| — Zlog|(X — M)(X — M) (3.15)

= — Zlog|(X — M)(X - M)"|. (3.16)

Here, the profile log-likelihood becomes degenerate as W cancels com-
pletely. As a result, the approach is only valid for n < p.

McCullagh| (2008) identified an anomaly in the behavior of the resulting
model with regards to n: Starting with a small n < p, the Fisher information
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grows when increasing n. However, from n = £ on, it declines monotoni-

cally and at n = p, it becomes zero. This is perhaps an unsurprising result,
taking into account that the maximum likelihood estimate is only accurate
if the sample size (here: p) is large relative to the number of variables (here:
n). When approaching n = p, the performance deteriorates and the estimate
becomes uninformative, e.g., if we were to compute the mean based on a
single observation. Hence, this behavior is in accordance with our intuition.

In conclusion, the current profile likelihood has very limited practical
appeal due to the aforementioned restrictions, and is therefore not suitable
for inference in general distance matrices.

Integrated Likelihood Approach

The removal of nuisance parameters by integrating out a Bayesian prior has
the advantage of being generally applicable, however, it requires a sensibly
chosen distribution and the calculations may be difficult unless the prior is
conjugate to the likelihood function. In our situation, a candidate distribution
is required to have symmetric, positive-definite support and, to this end,
Iranmanesh et al.| (2010) proposed the use of an inverse matrix gamma prior

v~ G, (e, 8,9) (3.17)
with density

|Q‘a ‘\Ij‘faf(n+1)/2

-1 -1
Fon T (a) exp(—8 tr{QV¥'}), (3.18)

flo, 8,825 V) =

which is parametrized by n x n matrix Q = 0, &« > (n — 1) and 3 > 0.
Further, I';, (@) in the normalization constant refers to the multivariate gamma
function. Note that this distribution is in fact a generalization of the inverse
Wishart distribution in q degrees of freedom,

T~ W, g, Q), (3.19)

which is received by setting a = 4 and § = 2.
As shown in (Iranmanesh et al.| [2010), the inverse matrix gamma prior
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can be integrated out analytically in
f(X|a, B, M, W, Q) = f(X|M,W,0)- f(V|a,s,Q)d¥, (3.20)
-0

thereby leading to the (generalized) matrix T distribution
X ~ Tpnl(a, B, M, W,Q) (3.21)
and its corresponding log-likelihood function

W, M ;0,8,X,9) = 3 log| W]

3.22
~(a+ Bloglly + WX — a0 (x — 3]

Upon closer inspection, we see that Eq. (3.22)) shares many similarities with
the profile log-likelihood in Eq. (3.13). Aside from the hyperparameters of
the prior, the determinant now has an additional identity matrix, which not
only ensures full rank, but also serves as regularization in conjunction with

B > 0, see Fig.

6 —_
X —e— without regularization

5 \ x— B>2
° 4 - AN [)) <2
=
2 3
()
(2]
° 2 -

1 4 K&

0 *—eo

Figure 3.6: Eigenvalues of the determinant in Eq. for synthetic data.
Although the second part of the determinant can be rank-deficient
(as pictured by black dots), the identity matrix ensures that all
eigenvalues are > 1. Additionally, the eigenvalues can be scaled
with hyperparameter .
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Therefore, any n > 1 is valid, independent of p. Concerning /3, there are
two boundary conditions: for 5 — 0, we have maximal regularization and
the likelihood becomes independent of the data (i.e., a determinant equal to
1); for 8 — oo, the identity matrix “vanishes” and therefore no regularization
is in effect, reminiscent of the profile log-likelihood. In fact, the integrated
likelihood can often be reduced to the profile likelihood when using an im-
proper prior (de Vos and Franckel 2008]). To better understand this behavior,
it is helpful to analyze the (co)variance of matrix X following the matrix T
distribution:

2(W~t® Q)
BR2a—p-1)
Here, o and § jointly control the variance, which means that for a fixed «

and 8 — 0, the density becomes flat. In case of 5 — co, however, it peaks
infinitely sharp and collapses to a single element of support.

cov(X) = (3.23)

As can be seen by the variance, the hyperparameters give us a certain
amount of flexibility to alter the model’s behavior. Hence, we use this fact to
fix (2 = I,,, meaning, on expectation, the latent features are assumed to be
independent, which is a sensible choice prior to seeing any datum. The skep-
tical reader may wonder if this is a serious limitation of the model, however,
we argue that the flexibility comes from the remaining hyperparameters to
define a flat prior and, as a result, every possible ¥ contributes with a non-
zero weight. Further, () = I,, is an important prerequisite for the transition
to distances in the next section.

3.3.2 Invariance against Column Means and Formulation
in Distances

Incorporating translation invariance into the matrix T distribution (Adametz
and Roth| 2014)) is analog to the procedure in the matrix normal case. In
essence, we formulate the likelihood not in X, but in statistic LX, where
Lisa (p—1) x p linear projection matrix. L satisfies the property L1, =
0(p—1), such that the column means M = 1p'w—r are mapped to 0, 1)xp-
In particular, |Iranmanesh et al.| (2010) proved that the matrix T distribution
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under affine transformations behaves in the following way:
AXB ~ Tyn(a, 3, AMB, AW~ *A" BTQB). (3.24)

Currently, we have A = L, B = I, and ) = I, which yields the marginal
log-likelihood

((Wsa, 8, LX)
= — log|LW'LT| 525
~ (ot B log| Iy + SEW L) T LXXTLT|
= — Zlog| LW 'L"|
(3.26)

— (a+ 51 log)Ip + §LT(LW*1LT)*1LXXT‘.

Note that LX is of size (p — 1) x n, which is reflected in Eq. (3.25). It
is possible to cyclically permute the argument of the second determinant to
arrive at Eq. (3.26)), because the determinant is the product of eigenvalues and
the pth eigenvalue is 1. In what follows, we have the previously introduced
transition to ()

LTWw 'L 'L =Q™wQ =wQ,
and further,
Q=1,— (1) Ww1,) "1,1] W,
because L is arbitrary other than to satisfy L1, = 0(,_1). Again, identity
QDQ" = —-2Q5Q"

applies with S = X X T, which gives the translation-invariant log-likelihood
in terms of D,

(W50, 8) = § logl W] - )2 81, W1) (327)

— (a+ 25 log|I, — SWQD|.
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This formulation finally adheres to our initial model requirements in that (i) it
only depends on pairwise distances I, meaning it is constant across column
shifts, but more importantly, (ii) it achieves independence from any ¥ for
a sensible choice of («, 8). Note that in comparison to enforcing ¥ = I,,,
our model only assumes independent features on expectation and it is able
to account for arbitrary feature correlation due to the Bayesian prior and
its hyperparameters. Hence, / Adametz and Roth| (2014) describe this as a
Bayesian relaxation of feature independence.

One might ask whether Eq. (3.27) requires further transformations to ac-
count for unknown scaling. The answer is a qualified “no”, because we may
attribute a scalar c to feature correlation W, as in

X =cX ~ N,y (1pr, wle {CQ\IJ}), (3.28)

which is then integrated out in the matrix T posterior. Here, w absorbs the
scaling without loss of generality. Equivalent to the above, Eq. (3.24) also
permits B = ¢, such that factor ¢ can be merged into the hyperparameters.
This intuitively makes sense, because a regularization parameter like S must
always be specified relative to the scale of the input.

As a last remark, a critical reader may point out that W = X! in the
matrix T distribution does not necessarily encode conditional independences
as it did in the matrix normal distribution. This statement is correct, however,
we regard invariances merely as technical means to isolate the parameter of
interest—had we known the nuisance parameters explicitly, these operations
would have not been required. Therefore, we eventually interpret W in
terms of the original matrix normal distribution, regardless of all intermediate
transformations applied to the likelihood.

3.4 Inference

Similar to Bayesian inference in the clustering application, we will now
construct an MCMC sampler, which requires suitable priors for W and the
remaining parameters.
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3.4.1 Hyperparameters
The likelihood in its current form, see Eq. (3.27),

(W o, B) = % log|W| — Zlog(1, W)
— (a+ 254) log| I, — §WQD),

still depends on the number of latent features n, which does not appear in all
terms and therefore prevents its use as an annealing parameter. A solution
is found by the free hyperparameter « to express the factor as a multiple of
n/2, such as in

a+(p—1)/2=vn/2. (3.29)

Here, v is any scalar satisfying v > 1+ (p — 2)/nduetoa > (n —1)/2
and consequently, this yields:

UW 50, 8) = 2 log|W| — Zlog(1) W1,) —v2log|I, — SWQD]|. (3.30)

Now, n can again be interpreted as an annealing parameter to control the
variance of the distribution on a global level. Due to the introduction of v,
the translation-invariant matrix T distribution has the property

LWL ®Q
Blon—2(p—1)+1)’

meaning a small (large) value of vn leads to a large (small) variance. It must
be stressed that v and 3 play an important role in inference, because they
distribute the probability mass in the space of the prior, which effectively
determines the scope of plausible U (Adametz and Roth, [2014).

Interestingly, the matrix T model behaves exactly like TiWnet if v is set
to a large value, for then the prior peaks sharply at independent features,
that is, 2 = I,,. More details concerning model behavior are given in the
experimental section.

For the practical application of our model, it is not meaningful to adjust 5
and v simultaneously, therefore, we propose to fix v at the smallest possible
value. Further, 5 can be stochastically integrated out, because it depends

cov(LX) = (3.31)
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on the particular scale of D. For this purpose, a standard gamma prior with
density

f(B:k,0) o< 7% Lexp(—071p), (3.32)

is one possible choice. Here, k > 0 and € > 0 are shape and scale parameter,
respectively.

3.4.2 A Prior for Network Analysis

Contrary to the block-structured parametrization of W in clustering, network
analysis requires fine-grained control over each individual element. More-
over, a qualified prior must also be flexible and enforce sparsity. For these
reasons, we adopt the construction of (Prabhakaran et al.l 2013; |Adametz
and Roth, 2014), which consists of the two following componentsﬂ:

e f1(W) places a 3-level uniform prior on each element W;; with levels
{_ 17 07 +1}7

which correspond to negative/zero/positive edge weight, respectively.
Also, the diagonal elements are chosen in a way that W maintains
positive-definiteness at all times.

Although the scheme can be criticized for its limitation to three levels,
we argue that (i) it proved to be sufficiently flexible in practice and
(ii) it can easily be extended to accommodate for more levels, say,
{-1.0,—-0.5,0.0,40.5, +1.0}. However, note that the range of values
is intentional, because the MCMC sampler should not explore scaling
due to the model’s scale invariance.

e fo(W) enforces sparsity by penalizing the total number of non-zero
Wi;, say, N. Possible choices include a Laplacian prior

fo(W3A) xexp(=AN), A>0 (3.33)

! Alternative choices for a prior include spike and slab (Mitchell and Beauchamp, |1988) and
partial correlation (Daniels and Pourahmadi, |2009).
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for keeping the number of edges at a low level, or a gamma prior
fo(Wsk,m) o< "N* Lexp(—=n~'N), £>0,7>0, (3.34)

if it is desirable to cover a specific range of edge numbers, for example
between 30 and 50.

3.4.3 Posterior and Algorithm

The likelihood in conjunction with all priors finally leads to the following
posterior for network analysis:

fW,B|D,e)oc f(DIW,B) - L(W) - f2(W|A)- f(B]k,0). (3.35)

Let us now give some exemplary parameter values for MCMC sampling: For
a full-rank p x p distance matrix D with p = 100, we initialize n = 100
and fix v at 2 > 1 + (p — 2)/n. During sampling, n is gradually increased
until W does not change anymore, say, 1 accepted proposal among the last
100 samples. At this point, n is frozen and we average over the following
1000 samples to receive the final W. This enables us to draw a graph with
variable edge widths in spite of only having three levels.

The above model was introduced by |/Adametz and Roth| (2014) as TiMT,
the Translation-invariant Matrix T process. Its corresponding MCMC sam-
pler is explained in detail in Algorithm [3] Note that superscript * refers to a
proposal. From a high-level perspective, the approach essentially performs a
symmetric random walk in W (Prabhakaran et al., 2013)), where every other
W can be reached in at most %p(p — 1) edge flips, that is, the number of
elements in the upper or lower triangular submatrix. Therefore, the prior
assigns a non-zero weight to every possible graph configuration.

3.4.4 Complexity

One loop in Algorithm [3|comprises p edge flips, where each flip requires the
evaluation of the posterior. Thus, a naive implementation would recompute
the determinant from scratch in O(p?), hence leading to complexity O(p*)
for the full loop, which is fairly expensive.
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Algorithm 3 One loop of the MCMC sampler (Adametz and Roth,|[2014)

Input: distance matrix D, temperature n, fixedv > 1+ (p — 2)/n
fori=1topdo
Set W* W
Uniform randomly select j 7 ¢ and sample W}, from {-1,0,+1}
Set W}; <— W/ and update W;; and W, accordingly
Compute posterior of W* in Eq.
if acceptance ratio > u ~ U(0, 1) then
W« W~
end if
end for
Generate proposal 5* and compute its posterior in Eq.
if acceptance ratio > u ~ 1/(0, 1) then
BB

end if

The key observation is that a single flip in W only contributes as rank-1
matrix, which gives rise to an efficient update scheme involving the QR
decomposition. In more detail, the prior with & = 3 levels {—1,0,+1}
permits a total of k(k — 1) = 6 possible flips:

*.

-1— 0 0— -1 +1— -1
-1—+1 0— +1 +1—= 0

} (3.36)

If an element W;; is flipped at (4, j) = (3, 1), then there are 6 option for

-1 0 +1 0 0 +2
(W*—W) € 0 0 of,] 0 0o of,...% (337
1 0 —1| |[+2 0 o0

All these matrices can be expressed as either uv | or uv ' + ab', such that
|W*| is computed in O(p?) for a known QR decomposition of .

The example uses p = 3 for simplicity and without loss of generality.
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The second determinant of the likelihood, Eq. (3:30), also decomposes
into rank-1 terms, although being marginally more complex, which is why
we point to (Adametz and Roth|, 2014) for details.

In conclusion, one full loop in TiMT is calculated in only O(p?), which is
even on par with the complexity of TiWnet (Prabhakaran et al.,2013)). This
is a surprising result, given that the model based on the matrix T distribution
is much more flexible than its Gaussian predecessor.

3.5 Experiments

This section largely follows the results by /Adametz and Roth| (2014),

but adds more details and background information.

The derivation of the model faced a number of challenges, which were over-
come by suitable invariances. What remains to be seen is how it performs in
practice, in particular with and without known feature correlation.

3.5.1 Synthetic Data
Independent Features

In the first experimental setup, the goal is to confirm that TiMT—as a gen-
eralization of TiWnet—is also applicable to the standard case of fully inde-
pendent features. To do this, we generate data in the following way: matrix
X is sampled from a matrix normal distribution with p = 30, n = 300,
M = Opxyn and ¥ = I,,. Further, the true matrix W consists of two parts:
(i) a sparse structure and (ii) real-valued weights. We obtain a challenging
structure by element-wise sampling from a binomial with 1 trial and a Pareto-
distributed probability of success, which results in a upper-triangular matrix
of Os and 1s. The sign of the 1 elements is then determined by a uniform
distribution, that is, v ~ U(0,1), where u > 0.5 yields —1. Next, the
weights of the non-zero elements are independently sampled from a gamma
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distribution with shape and scale 2.0. As a final step, we mirror the upper
to the lower triangular matrix and adjust the diagonal entries as the sum of
their row plus € = 0.5 to ensure positive definiteness. This concludes all
parameters needed to generate a single matrix X and its corresponding Eu-
clidean distance matrix D with D;; = (Xie — Xje)(Xie — Xjo) . Fig.
depicts an example network and the reconstruction by TiMT and TiWnet
under identical parameters. Here, the MCMC sampler ran for 20 000 loops
each.

True network TiMT TiWnet

Figure 3.7: An example for synthetic data with independent features. The
true network (left) has a challenging structure, but it can be re-
covered fairly well by both TiMT (center) and TiWnet (right).
Black/gray edges refer to positive/negative sign.

For a comprehensive benchmark, the above procedure is repeated to pro-
duce a set of 100 distance matrices. Since the ground truth is known, we can
calculate the accuracy of the inferred networks via F—scoreE] and false positive
rate, leading to an overall performance as shown by the boxplots in Fig.[3.§]
The list of contestants also includes TRCM and gL, which operate on X,
however. Note that a distance matrix implies unknown column means and
therefore, X is translated by M = 1p'wT, where each element in vector w
is an independent draw from a gamma distribution with shape 0.5 and scale
10°. As expected, the accuracy of TRCM and gL suffers heavily, because

3Here, we only discriminate between positive, negative and zero elements. The individual
values themselves are discarded.
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column means conflict with their model assumptions. This is why we also
analyze TRCM in conjunction with the original zero-mean X, thus TRCM.u
(unshifted). The resulting modification yields a comparable performance to
the distance-based approaches.

Independent Latent Features

F-score False positive rate
1.0 - . 1.0 1
0.8 1 _ _ 0.8 1 E
0.6 1 E| i E E 0.6 1 i
o TEm - T
- == . |
0.2 == 0.2 A i |

T T T T T
TRCM.u TRCM gL TiWnet @l
MISMATCH

T T T T T
TRCM.u TRCM gL TiWnet @ULlL
MISMATCH

Figure 3.8: Accumulated accuracy over 100 synthetic datasets as measured
by F-score and false positive rate. TRCM.u (using X with
M = 0pxn), TiWnet and TiMT perform almost on par, however,
TRCM and gL (both using X with M = 1pr) fall behind,
because column means do not match their model assumption.

All methods in this experiment require a sparsity parameter which deter-
mines the number of edges in the final graph and therefore has a crucial
impact on the accuracy. In detail, TIMT and TiWnet use a single fixed value
for all 100 networks, while TRCM, TRCM.u and gL were individually opti-
mized for each network. This is clearly in favor of the competing methods.

Correlated Features

For the second experiment, we adopt the previous setup with p = 30 and
n = 300, but introduce feature correlation W that has a strong and visible
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impact on the data. One way of generating such a matrix is the following:
We sample a n x 5n matrix G ~ Ny, 51, (0n,x5n, In ® I5y,) and add vector
a € R with gamma-distributed elements to randomly selected rows in G.
This gives a full-rank feature correlation matrix ¥ = GG /(5n). Finally,
we repeat this step to arrive at a total number of 100 different matrices W,
each leading to one matrix X and its associated Euclidean distance D.

Oo/?o/ooo
shid D?%

OO

True network

Figure 3.9: An example for synthetic data with correlated features. Black/
gray edges refer to positive/negative sign. TiMT is relatively
close to the true network, but TiWnet compensates the model
mismatch with additional, yet unnecessary structure. As a result,
the accuracy of TiWnet suffers heavily.

Fig. [3.9] picks one example to demonstrate the behavior of TiMT and
TiWnet. Note that the addition of feature correlation dramatically increases
the difficulty for inference, hence, the accuracy will drop for all methods,
yet, even under these conditions, TIMT recovers a network that is quite close
to ground truth. This is an interesting result given that TiWnet completely
overestimates the network structure. After all, it is forced to explain every
observation solely by W, while TiMT can shift conflicting aspects into the
prior. By looking at the overly dense topology obtained from TiWnet, a
critical observer might try to tune the sparsity parameter in order to achieve a
more appropriate number of edges. This, however, will not succeed, because
it would remove true and false positive edges alike; W and W are inherently
“combined” in D and therefore, we cannot hope to recover the true W if the
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model already decided upon a separation for us (unless if ¥ = I,).

Correlated Latent Features

F-score False positive rate
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Figure 3.10: Boxplots for F-scores and false positive rates after analyzing
100 datasets with correlated features. Among the introduced
methods, only the models of TRCM.u (using zero-mean X)
and TiMT (using D) satisfy all requirements.

In this respect, Fig. paints a similar picture for all contestants: the
median F-score deteriorates on a global scale and every model mismatch
adds another penalty, especially for TiWnet which has the lowest F-score,
but also a very consistent false positive rate. Further, the model assumptions
of gL are violated twice, thereby leading to the highest false positive rate and
the second lowest median F-score. Given the difficulty of this task, TiMT
performs remarkably well and is almost on par with TRCM.u in terms of
F-score. Notice that this experiment is in strong favor of TRCM.u, because it
operates on the latent, zero-mean 30 x 300 data matrix X with an optimized
sparsity parameter, whereas TiMT arrives at the same conclusion from only
a symmetric 30 x 30 distance matrix D without any knowledge about n. In
that regard, TRCM.u serves as an upper bound of what could be achieved
hypothetically under optimal conditions—the small remaining gap is perhaps
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the most impressive demonstration of invariances in the scope of the thesis.

A Note on the Ratio p/n

Both synthetic experiments used p = 30 and n = 300 to generate
data, but is it necessary to repeat them for different ratios? In short,
the answer is “no”; for a thorough explanation, notice that n controls
the variance of the matrix normal distribution, such that small n allow
samples D to differ completely from each other, which in turn ren-
ders correct inference virtually impossible. Analogously, samples D
generated with large n show almost no variation and, hence, the prob-
lem becomes too easy. With this in mind, the ratio p/n = 1/10 was
chosen as a middle ground for challenging datasets (median F-score
of 0.5) while making differences between methods visible.

3.5.2 Real-World Data

Given that TiMT successfully recovers the underlying networks in the syn-
thetic examples, we can now advance to practical domains, where a distance
or kernel matrix is the only available input. On the one hand, this precludes
TRCM and gL, but on the other hand it implies that there is no ground truth
to compare the network against. Hence, we resort to expert knowledge in the
form of side information to check individual conditional independences.

A Network of Cancer Drugs

In the first application, we are interested in finding a network of all known
cancer drugs based on the similarity between chemical structures. For this
purpose, we obtain a list of p = 84 non-experimental cancer drugs from
the publicly available CancerDRE| (Cancer Drug Resistance) database and
look up their chemical structures on the NCBI pubchem Websiteﬂ Based
on the atomic coordinates in SMILES notation (Simplified Molecular-Input

*http://crdd.osdd.net/raghava/cancerdr/
>http://pubchem.ncbi.nlm.nih.gov
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Line-Entry System), similarity matrix S is constructed by the sum over three
types of graph kernels: marginalized Kashima et al.| (2003}, 2004), lambda-K
and pharmacophore [Mahé et al.|(2006). The idea behind this is to arrive at
a comprehensive representation of the compounds. In summary, matrix S is
of size 84 x 84, from which we extract the corresponding distance matrix
D = diag(5)1) + 1, diag(S)" - 28.

Both TiMT and TiWnet use identical parameters, but produce drastically
different network topologies after 15 000 iterations of the MCMC sampler,
see Fig. 3.T1] Note that the node size either stands for “in clinical trial”

TiWnet

Figure 3.11: A network of p = 84 chemical compounds as inferred by TiMT
and TiWnet with identical parameters. Due to their importance
in cancer medication, Rapamycin (R) and Temsirolimus (T) are
labeled in each graph.

(small) or “approved” (large). In particular, the network inferred by TiMT
shows some interesting properties: One of the highly-connected hubs is
Rapamycin—a key element for cell signaling, which binds to the MTOR
protein (Mammalian Target of Rapamycin) (Wullschleger et al., 2006). In
turn, this protein is responsible for a cascade of signal-transduction pathways
among which the MTOR pathway is known to be strongly deregulated in
cancer. The other hub node, Temsirolimus, is highly related because of its
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inhibitive function regarding the MTOR protein. It appears that the graph is
able to capture these deep relationships.

As we saw in the synthetic experiments, TiWnet has a tendency to over-
estimate the structure, because it explains any observation solely by W. In-
tuitively, this issue also seems to apply to the current situation, but without
knowledge of X we lack the foundation to prefer either result. Still, we can
explore subsets of each network and check for plausibility via experiments
under artificial conditions.

BMS708163
ABT263 0.5
AZD7762
0
2 o) o)
© © ©
0/\/\ Q;o/ /\ch\
W ¥ %®%

Figure 3.12: Inverse covariance of chemical compounds using cell lines.

One descriptive example is given in Fig.[3.12] where cell lines are evalu-
ated in terms of the inverse covariance between three compounds. To arrive
at this result, we extracted all available information from the COSMIC data-
baseﬁ for the compounds BMS708163, ABT263 and AZD7762. Since these
data have missing values and their empirical margins are non-Gaussian, we
use a Gaussian copula model to estimate the inverse covariance matrix, to-
gether with a Bayesian inference method that is capable of dealing with
missing values (see the next chapter for details). According to the cell line
experiments, BMS708163 and ABT263 are conditionally independent given
AZD7762, and therefore, this property should also be reflected in the net-
works of Fig. Thus, we remove AZD7762 from both networks and
check for remaining paths between ABT263 and BMS708163, which is il-

lustrated in Fig.

®http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
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Lenalidomide BI2536

AZD2281

Bicalutamide
ABT263
O
ABT263
BMS708163 Bicalutamide
BMS708163 PAG1
TiMT TiWnet

Figure 3.13: Subgraphs from networks in Fig. after removing com-
pound AZD7762. Dashes represent connections across several
other nodes.

While the network obtained from TiMT correctly supports conditional in-
dependence between BMS708163 and ABT263 (no remaining path between
them after removing AZD7762), the network found by TiWnet produces a
more complex and fairly interconnected graph. If we wanted to arrive at the
correct independence pattern, we would have to block at least two additional
nodes, for example, BI2536 and PACI. The above subnetwork is only one
example among many, where the reconstruction of TiMT agrees with cell
line experiments.

A Network of Biological Pathways

The second application revisits the introductory example of Section|3.1.1|as
a means to derive a network of biological pathways in cancer patients. We
start with the publicly available dataset of Sheffer et al.| (2009) containing the
expression values for 13 437 genes across 182 colon cancer patients (category
primary tumor). Our motivation is the departure from single-gene analysis,
which (i) heavily suffers from the imbalance between unknowns (genes)
and measurements (patients) and (ii) is very prone to noise. Thus, we turn
to the KEGG database[] (Kyoto Encyclopedia of Genes and Genomes) and
extract information for all p = 276 pathways, each defined as a specific

"http://www.genome jp/kegg/
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collection of genes. Using this, the gene expression matrix decomposes into
276 submatrices, where overlaps are explicitly allowed due to the pivotal role
of many genes. Every submatrix has a characteristic distribution of genes,
thus we calculate the mean and variance for each patient to arrive at 182-
dimensional mean vector m and 182 x 182 covariance matrix C for each of
the pathways. In other words, the data we base inference on has the form

{(my,Cy), (M2, C2), ..., (mare, Core) } (3.38)

As stated in the introduction, it is straight-forward to work with vectorial
objects, but currently we have a set of distributions, whose integration into a
GGM is non-trivial. To this end, the Bhattacharyya distance (Bhattacharyyal
1943}, |Jebara and Kondor, [2003) is a pairwise distance measure for distribu-
tions, which finally gives rise to a 276 x 276 matrix D.

Due to the nature of a distance matrix, there is no access to vectorial
features, but it is clear this information resides in mean and covariance of the
patients. Consequently, we expect that the assumed correlation of patients
influences the distances to some degree, simply because all patients belong to
the primary tumor category, which exhibit similar symptoms, receive similar
treatment and possibly share many clinical properties. Therefore, we should
not treat them as independent realizations, intuitively speaking.

Using the Bhattacharyya distance matrix, we run TiMT and TiWnet with
identical parameters for 20 000 iterations of the MCMC sampler each. Since
this is a moderately large dataset for GGMs, we measure the runtime sepa-
rately and arrive at the following duration: TiWnet finishes after 3:00 hours,
TiMT requires 3:10 hours, and a naive O(p*) implementation of TiMT takes
around 20 hours to complete. TiWnet has the same cubic complexity as
TiMT, but does not use hyperparameter 3, thus it is slightly faster.

The final results are reported in Fig. [3.14] which again shows a sparse
network for TiMT and a densely connected graph for TiWnet. In spite of
the lack of ground truth, this is a clear indicator for latent feature correlation,
since both methods have the same Gaussian foundation other than the invari-
ance against W. As alluded in the synthetic experiments, the assumption of
independent features in TiWnet can not be compensated by inducing more
sparsity; this would cancel both true and false positive edges.
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TiMT TiWnet

Figure 3.14: A network of p = 276 pathways in colon cancer.

Although TiMT produced a sparser graph, there is no guarantee that it ac-
tually captures meaningful conditional independences, hence, we consult the
BioGRID databaseﬁ for protein-protein interactions and compute the func-
tional overlap between pathways relative to the union of their parts. This
information is completely detached from the colon cancer dataset, as it relies
only on “raw” pathway definitions and aggregated expert knowledge.

Given that the medical study targets colon cancer, we analyze three path-
ways which indicate elevated susceptibility (Peltomikil, 2001} |Fortini et al.,
2003): base excision repair (token: 96), mismatch repair (token: 98) and cell
cycle (token: 114). Extracting the corresponding subnetworks of these path-
ways including all neighboring pathways in range of two edges, we arrive at
Fig. Interestingly, the protein-protein interactions hint at a particular
structure, where pathway 98 links pathway 96 and 114, but 96 and 114 share
no common basis. This information is in exact support of the subgraph by
TiMT, which places 96 and 114 on diverging branches. In contrast, TiWnet
infers a densely connected structure.

All in all, we do not know whether a GGM is truly a good fit for this

8http://thebiogrid.org, version 3.2
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®~@ . |
98

TiMT TiWnet

Figure 3.15: Conditional independences in detail. From both networks in
Fig. we extract a subgraph of three pathways (solid black
nodes) including all neighbors in reach of two edges (white
nodes). The matrix in the center shows external information
on pathway similarity based on their relative number of protein-
protein interactions from the BioGRID database.

domain, although there are numerous subnetworks with confirmed indepen-
dence patterns. Still, this type of analysis was only made possible by distance-
based approaches and, in its current state, it represents an interesting step
towards a more thorough understanding of pathways. Note that pathway
interactions constitute a relatively young field, which is typically analyzed
in terms of static gene/protein set intersections and raw count information,
meaning it primarily caters to data mining aspects. A case-driven analysis,
as shown for this colon cancer dataset, is unexplored for the most part. After
all, our inferred network does not explain pathway interactions under regular
conditions, but rather what happens in colon cancer specifically.

3.6 Conclusion

In this chapter, we presented how to incorporate the framework of Gaussian
Graphical Models (GGMs) into the scope of distance-based methods. As
we learned, distances not only obscure translational information, but also the
underlying feature space, including the correlation of features. This poses a
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serious challenge for any statistical model, because row precision matrix W
(the parameter of interest) and W (the nuisance) jointly impact the perceived
distances D and the task is to recover their correct separation.

We may, of course, simplify the problem by assuming strict feature inde-
pendence, however, this consequently forces the model to explain the data
solely by adding structure, which can produce misleading results, as shown
in the synthetic experiments. In fact, in many applications it is plausible
to assume feature correlation, yet,—assuming it can be detected—we are
unable to remove it without access to the underlying features. Due to this
reason, TiMT expects a non-trivial ¥, but never tries to reconstruct it ex-
plicitly. By the definition of the integrated likelihood, we account for every
possible ¥ and transform its prior belief into the posterior using the like-
lihood. In contrast, the profile likelihood makes an attempt in finding an
explicit reconstruction at the price of requiring n < p, which disqualifies its
application to the large majority of distance matrices.

The combination of integrated and marginal likelihood for the invariance
against feature parameters may appear arbitrary at first, however, note that
translation affects merely one direction in an p-dimensional space (illus-
trated by (p — 1) x p projection L), while feature correlation concerns a
much larger scope with potentially n >> p, which is more suitably expressed
by a Bayesian prior. Without question, it is technically possible to formu-
late a likelihood that is invariant against any right—mulltiplication of X (i.e.,
the profile likelihood approach), as for example X W2. However, the sub-
sequent information loss significantly impairs the statistical power of the
model—especially in the domain of distances. This goes to show that the
Bayesian relaxation of strict feature independence (Adametz and Roth, [2014])
is a superior, but also much more careful approach. After all, we are finally
able to use all latent parameters of the matrix normal while only requiring
pairwise distances on input.

On the computational side, it was shown that the algorithm of TiMT can be
elegantly reformulated in terms of O(p?), which brings it on par with TiWnet
despite the greatly increased flexibility. Most importantly, TIMT does not
suffer from the additional degree of freedom as we confirmed experimentally:
if the true features are independent, TiMT and TiWnet recover the same
conditional independences. Moreover, when the hyperparameters of TiMT
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are chosen in a way that the underlying prior assigns all its mass to feature
independence, both methods behave identically. Therefore, TiMT fulfills all
requirements of a proper generalization.

Additional thoughts about the model are given in Appendix [B]
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Chapter 4

A Gaussian Copula Model
for Mixed Data

The third and final pillar of the thesis describes a model for estimating the de-
pendence structure of multivariate distributions, in particular meta-Gaussian
distributions. The approach due to |Hoff] (2007) is complementary to the
distance-based methods, but can be used for an interesting generalization of
the information bottleneck (Tishby et al.,|1999; |Chechik et al., 2007; Rey and
Roth| 2012). Hereby, it is possible to find an information-theoretic compres-
sion of continuous and discrete random variables (rvs) with possibly missing
values—all while maintaining the benefits of the Gaussian foundation.

4.1 Introduction
The entry point of this chapter is the univariate normal distribution,
X ~ N(ux,0%), 4.1

where X is a rv with mean p x, variance 03( and a realization z. Further, X
has density fx and (cumulative) distribution function

Fe(@) = [ rxa (42)

which is non-decreasing and satisfies F'x(—o0) = 0 and Fx(oc0) = 1
(Nelsen, 2007, p. 17). A fundamental property is given by the probabil-
ity integral transform (Genest and Rivest| (2001),Davison| (2008, p. 39)): If
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X follows a continuous distribution with distribution function F'x, then
U=Fx(X)~U0,1), “4.3)

which is the uniform distribution on interval [0, 1]. Fig.[4.1]provides a graph-
ical interpretation. Note that this relationship is also a constructive way of
generating samples from F'x (Nelsen, 2007, p. 40f): first, draw from a uni-
form distribution to receive u, then transform it via x = F;l (u); the inverse
Fy Lis also known as quantile function. If F is strictly increasing, the trans-
formation is bijective, meaning x and u have a one-to-one correspondence.

3 —

T R 0

° | /T Fx(@)

Uy @ =< o

us i‘ """""""""""""" /‘/

Ug @ =< 0

(251 0‘4 rrrrrrrrrrrrrrrrrr o/ |

0 . — >
X1 T2 T3 Ty Ts x

Figure 4.1: The continuous distribution function Fx (x) transforms realiza-
tions x; onto the uniform interval [0, 1].

4.2 Dependence and Correlation

In the case of multiple normal rvs, say, X and Y, we are interested in their
dependence, because it tells us, for example, that a large x implies a large y.
If the rvs are jointly Gaussian, they follow a multivariate normal distribution,

denoted by
X X Yxx Yxy
~ N = , U= 4.4
B e e o I
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with mean vector u, covariance matrix > and distribution function Flxy.
The covariance matrix, in particular, determines the dependence between rvs.
It is composed of

4.5)

_ {COV(X,X) cov(X,Y)}
cov(Y, X) cov(Y,Y) |’

which can be rewritten using the identities cov(X, X) = var(X) = 0% and
cov(X,Y) = cov(Y, X) = poxoy, such that

s—| ox poxov (4.6)
pPOXOYy 012/ ’ ’

Further, by the definition of the linear correlation (Pearson, |1895)),

XY
corr(X,Y) = cov(X,Y) (4.7)
oxoy
we receive the corresponding correlation matrix as
1
R= { P } . (4.8)
p 1
In matrix notation, the connection is found by
R = diag(X) "2 ¥ diag(X) "2, 4.9)

hence, due to affine transformations of the multivariate normal, we have

3 () = [ -,

where X and Y are standard normal rvs, each with a marginal distribution
function ® of mean zero and unit variance.

For p = 0 (that is, R = I5), we say that X and Y are uncorrelated, which,
in the Gaussian case, is equivalent to being independent (Schmidt, [2007)). As
a result, the joint distribution function factors into the product of univariate
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marginals:
Fxy(z,y) = Fx(z) - Fy (y). (4.11)

Note that for general distributions, uncorrelated rvs are still dependent.

4.3 Copula

The rationale behind introducing correlation is to find the most “efficient”
description of dependence between X and Y. To this end, [Sklar (1959)
showed that every multivariate distribution decomposes into two distinct
parts: the marginals, which are specific to each rv, and the copula (Nelsen
(2007, p. 10ff); Schmidt| (2007); |Aas| (2004)), which captures their depen-
dence. Therefore, we write

Fxy(z,y) = C(Fx (), Fy (y)), (4.12)

where copula C'is a mapping of the unit square to [0, 1], which is exemplified
by Fig. An important property of Eq. ¢.12) is that if F'x and Fy are

CR (Ux, Uy)

Figure 4.2: Gaussian copula for p = 40.5 (left) and p = —0.5 (right).

continuous, C' is unique; else it is only unique on the range of F'y and Fy
(Schmidt, [2007). The above decomposition can also be formulated in terms
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of densities, that is

fxv(z,y) = c(Fx(z), Fy(y)) - fx(2) - fy (), (4.13)

where c refers to the copula density

82

_— 4.14
Dux Oy C(ux,uy) (4.14)

clux,uy) =

with (ux, uy) € [0,1)°.

At this point, we have already implicitly used the Gaussian copula Cg,
which is inherent to every multivariate normal distribution and fully defined
by correlation matrix R (as denoted by the subscript). In many applications
acting on Gaussian data, the covariance matrix is the object of interest, say,
for the Gaussian graphical model based on distance matrices, yet, what we
actually seek can often be reduced to correlation matrix R, which is devoid
of scaling of the marginals, that is, the nuisance.

To estimate R in the Gaussian case, we can do the following: Assume
there are n realizations {(x1,v1), ..., (Zn, yn)} from

2
L] Lo 78] e
Y Ky poxoy Oy
where the marginals F'x and Fy are known. Then, it is possible to apply the
probability integral transform twice to receive

X=3YFx(X)) and Y = o (Fy(Y)), (4.16)

where X and Y are standard normal rvs with marginal distribution function
®. This means, for any realization x;, we can calculate the associated normal
score T; = ®~(Fx(x;)), which applies analogously to y; and ;. A visual
interpretation is given in Fig.[4.3] Finally, the correlation matrix is estimated
by

~ [1 7 : Ll
R_[ﬁ 1] with p—n_llz:;:riyi. 4.17)
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Although a mapping from one Gaussian rv to another is not meaningful in
practiceﬂ the key observation is the removal of nuisance parameters mean
and scale, which are both attributes of the marginal. Hereby, we can treat the
observations as if they were generated from a standard multivariate normal
distribution, which enables us to estimate the correlation matrix as above.

>
>

=Y

Figure 4.3: Calculating the normal score Z; of a realization x; involves the
distribution function F'x (x) and the quantile function of the stan-
dard normal distribution, ®~!(u).

Given that Sklar’s theorem decouples marginals from dependence structure,
the next step is to replace the Gaussian marginals with other distribution
functions. This leads to the class of meta-Gaussian distributions (Rey and
Roth, 2012), which all have the Gaussian copula in common. Note that
estimating the correlation matrix of a meta-Gaussian distribution is identical
to Eq. (4.17)), since it only depends on the normal scores.

In case the distribution functions F'x and Fy are unknown, we can instead
use the empirical marginals (Rey and Roth, 2012),

~ _ rank(x)

Fx(xz) = e (4.18)
which evaluates the rank of © among n realizations to define a step function
between 1/(n+ 1) and n/(n+ 1). Fig.[4.4illustrates the construction of Fx
using the example of actual gene expression values, where every observation

'nstead of the probability integral transform, we could have also applied linear transforma-
tions to arrive at the same result.
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contributes as a step of height 1 /(n + 1). With an increasing number of
expression values, F'x approaches the true underlying distribution function.
The best result is achieved for all n = 313 measurements (right plot).

n=313

00 02 04 06 08 1.0
. ! L L ! !

00 02 04 06 08 1.0
L | L L L |

00 02 04 06 08 1.0
! L L ! !

+——oamwx @ o
T T T T T T T T T T T T T T T T T T
35 40 45 50 55 6.0 35 40 45 50 55 6.0 35 40 45 50 55 6.0

xT

Figure 4.4: Empirical distribution function for expression values of gene

TNF (Tumor Necrosis Factor), data due to (Sheffer et al., 2009).

The following example further helps to understand the notion.

Example

Assume we have n = 6 observations with unknown F'y,
x = {1.05,0.60,0.21,1.01,0.96,1.51},
and corresponding ranks
rank(x) = {3,2,5,4,1,6}.

Then the empirical distribution function in Eq. (.18) yields

Fx(z) = {0.43,0.29,0.71,0.57,0.14, 0.86},
leading to the normal scores

=0 "(Fx(z)) = {-0.18,—0.57,0.57,0.18, —1.07, 1.07}.

Note that the normal scores do not change under scaling, translation or
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any transformation that leaves the ranks intact, hence, this describes
a very general class of invariances.

Suppose rvs X and Y follow a joint meta-Gaussian distribution, where F'x
and Fy are unknown. Computing the normal scores using their empirical
marginals

k(x; _ k(y;

gives rise to the Gaussian rank correlation (Boudt et al., 2012)

1 p - (I)il< +1
o~ n
R(;:[ﬁ f] with 7=

=1

)
n+1

Notice how the observations are evaluated only in terms of their ranks; the
marginals F'x and Fy hereby become irrelevant. An important property of
rank-based estimators is robustness against outliers, because extreme values
either have rank 1 or n and therefore their contribution does not skew the
results as much as their value would. This distinguishes rank correlation
from linear correlation (Schmidt, [2007).

M) o1 (%

) . (4.20)

4.4 Discrete Random Variables and Missing
Values

As we learned in the previous section, calculating the normal scores enables
us to robustly estimate the underlying correlation matrix, which in turn fully
defines the dependence structure of a meta-Gaussian distribution. The setup,
however, is only valid for continuous rvs, because their distribution functions
are non-decreasing. By contrast, discrete rvs have ties among realizations,
such that also their corresponding normal scores collapse into a finite number
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of levels. As a result, the mapping
z; = ® 1 (Fx(z;)) (4.21)
does not produce unique normal scores anymore (Fig. [4.5)), but the converse
z = Fx ' (®(2)) (4.22)

still holds (Fig. . Here, Fgl is the generalized quantile function.

e 1
Fx(x) D' (u)
— ‘
0 H ‘ /v Y
T=A r=B T,0 Ty T

Figure 4.5: A discrete rv does not have unique realizations, which leads to
ties among normal scores.

14 I 17 -~
L S R ]
Fi'(w) e o S e
b l ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
T=A =B Ty 0 Ty T

Figure 4.6: Continuous 7; can easily be mapped to their discrete counterparts
using the generalized quantile function (pictured left).
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The above implies a loss of information due to the discrete distribution func-
tion, which prevents us from estimating the underlying correlation matrix R.
Unfortunately, there are many applications using discrete rvs, for example,
a medical study may involve age, sex or the cancer stage of a patient. In
the current situation, we are not able to estimate R if at least one rv is dis-
crete. To this end, Hoff] (2007) defined the extended rank likelihood, which
assumes a unique normal score for every observation, but without modeling
any distribution function. Instead, the approach relies on the fundamental
fact that if two observed values have the relation

T < X9, (4.23)
their associated normal scores must comply:
71 < Ta. (4.24)

We can easily confirm this property for a continuous rv in Fig. and a
discrete rv in Fig. 4.5

1+ .‘/—0
/| d(z)
.
-~—— >
. |
/l T 1: T
il :EB ‘,ZI2 j4

Figure 4.7: Normal scores must only obey to the (incomplete) ordering con-
straints given by their discrete observations.

As a consequence, a normal score Z; is valid if it obeys to all ordering
constraints which are defined by their observed values z. Fig. gives a
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graphical representation of the constraints for the binary rv of Fig.[d.5] In
this example, Z; and T3 are associated with level A, while Zs and z4 corre-
spond to level B. Here, Zo must satisfy o > max(Z1, Z3), which excludes
the highlighted region in gray (it continues to minus infinity). If discrete
realization x9 was missing, its normal score Z2 would not be constrained.

In the case of k levels, normal scores may be confined from left and right.
Note that the ordering constraints also generalize to continuous data, which
can be seen as an n-level discrete variable without ties. In this case, a normal
score Z; is limited to one of n intervals; if n — oo, it becomes equivalent to
the mapping 7; = ®~1(Fy (x;)).

4.5 The Extended Rank Likelihood

This section primarily follows the model given in 2007).

How do these properties fit into our concept of invariances? To answer this
question, let us begin by defining a vector of p standard normal rvs

X =[X,....X,]" (4.25)
distributed as
X ~ Np(0,, R) (4.26)

with density f(X ; R). For the observed continuous/discrete/mixed rvs, we
write (without bar notation)

X =[X1,..., X", (4.27)

where the connection is formally given by X; = F; '(®(X;)) fori €
{1,..., 1_9}. Since we only want honor the order relations tying together
X and X, we introduce the notation X € Z as used in (Hoff, 2007)), where

Z is the set of all possible X satisfying the order constraints of n realizations.
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Notice that Z is fully defined by the discrete rvs X. Fig. gives a better
intuition about the setup.

one realization

X, 03[0.1(@12]07 21 @) 4 3| matrixofranks
X, AlAlc @ Bl=|11 3@ :2
X3 FIF M|F 1l212/1]2

—————————————————————————————— 1} order relations - - - -

X, -0.3|-0.8|-0.1| 0.8| 0.3|—— matrix of

— normal scores
X -0.6/-0.5| 0.7| 0.5/-0.1

X3 -0.4| 0.4] 05|-0.2| 0.1

Figure 4.8: p = 3 mixed rvs X have n = 5 realizations with ranks as shown
on the top right. Question marks refer to missing values. The
bottom row shows one example for corresponding realizations
of X € Z, which conforms to the order relations.

Now, recall the derivation of the marginal likelihood in Eq. (I.I3)) from the
introduction of invariances (Section|1.2)),

flu,v59,X) = f(us9) - f(v]u;,N),

where (U, V') are sufficient statistics, v is the parameter of interest and A
represents the nuisance terms. Due to the factorization, ) becomes isolated
and the marginal likelihood is given by L(¢;u) o< f(u ;). If applied to
the current situation, the density factors as given in (Hoftf, 2007),

f(X€Z X:RF,... Fp)

=f(X€Z;R)- f(X|X €Z;R F,...,F), (4.28)
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and we are now in a position to define the likelihood
LR; X € Z)x f(X € Z;R) (4.29)

which is devoid of the marginal distribution functions and only relies on the
ordering constraints given by Z.

Our task is to infer R given mixed data, which can now be solved via
Bayesian inference: complementing the likelihood with an inverse Wishart
prior (Hoff} 2007)

R~ W, (v, Ry) (4.30)
with v degrees of freedom and scale matrix Ry, we receive the posterior
f(RIX € Z,v,Ro) x f(X € Z|R) - f(R|v, Ry). (4.31)

Unfortunately, however, samples from the posterior would not be valid cor-
relation matrices satisfying diag(R) = 1,, therefore, Hoff (2007) modifies

Eq. @.31),
f(B|X € Z,v,By) x f(X € Z|B) - f(B|v, By), (4.32)
where B is a p X p covariance matrix, which is scaled to
R« diag(B)"2 B diag(B) 2. (4.33)

Averaging over the posterior samples then yields the estimate R. Note that
although the standard normal rvs X are currently only a byproduct to calcu-
late R, we can also estimate the normal scores by averaging, which requires
an adjustment of scaling:

XieXi/\/Biz} 1€ {1,...,]9}. (4.34)

These normal scores play an important role in the information bottleneck,
which is introduced in the next section.

Algorithm (4| describes a simple Gibbs sampler to calculate the posterior
in Eq. (4.32) as used in (Adametz et al.,[2014), which in turn is an extended
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version of (Hoff, 2007). The major differences are the estimation of normal
scores and the use of a Wishart prior (instead of an inverse Wishart prior) to
avoid matrix inversion in the innermost loop. The notation V_; ; stands for
column vector j of matrix V' without element 7.

Algorithm 4 Sampling correlation matrix R and matrix X of normal scores

Input: p x n matrix X containing observations from p rvs
SetV < I, Vo <e€lp, e>0, v<p+1
Initialize X by Xjo ¢ &~ (%) fori e {1,...,p}
for k = 1... Ngamples do
forrvi=1...pdo
for level r in X;, do
Find lower bound a <+ max(X;e | Xie < 7)
Find upper bound b < min(X;e | X6 > 7)
for every j € {1,...,n} where X;; = r do
Set p + —Vii_1 Vi—i X—i,j
Set 02 Vii_1
Sample X;; ~ N (i, 02, a,b)
end for
end for
end for
Sample V ~ W, (v +n, (Vo + XX )™
Compute B + V1
Compute R diag(B)_% B diag(B)_%
Compute X;o < Xjo/v/Bii fori € {1,...,p}
end for

Notice how the normal scores are sampled from a truncated normal distri-
bution N'(1, 0%, a,b). In case of missing values, there is no upper or lower
bound, which leads to the unconstrained normal distribution (Hoff, 2007).
As a final remark, the complexity of Algorithm 4|is O(p> 4 np?) per full
loop of the sampler, where it is assumed that n > p.
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4.6 Application: The Information Bottleneck

Given our ability to estimate correlation matrix I for mixed rvs, we now turn
to an application that benefits from this: The information bottleneck (Tishby
et al.,|1999) assumes two rvs X and Y, and the goal is to find a compression
T of X while preserving information about Y. Its elegance is due to the fact,
that choosing Y determines which aspect of X is relevant. In information-
theoretic terms, the idea is to force the information of Y contained in X
through a limited set of code words T" (the bottleneck), where the mapping
is stochastic: f(¢|z). This leads to a variational problem of minimizing a
functional

J=I1(X;Y)-BI(T;Y) (4.35)

with regards to code-word mapping f(t|z). Here, I(e) measures mutual
information between two rvs and 8 > 0 is a Lagrange parameter, which
controls the trade-off between the best compression (8 — 0) or being most
informative about Y (5 — o0). The above is a very broad problem formu-
lation, which only requires access to the joint distribution Fyy (z,y), yet it
makes no statement about the distribution families. For this reason, there ex-
ists no general closed-form solution, which motivated (Chechik et al.| (2007)
to analyze the special case of Gaussian rvs. The Gaussian information bottle-
neck assumes random vectors X and Y of size p and ¢, respectively, having
the joint multivariate normal distribution

X 0, Yx 2Xxyvy
HE(AE )
Interestingly, this implies that also T is Gaussian (Chechik et al., 2007),

T=AX +&, (4.37)

which depends on p X p projection matrix A and noise component £ ~
Np(0p, X¢). Calculating A involves the left eigenvectors v; and eigenvalues
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A; < 1 of matrix

B=Sxyly (4.38)
=1, - xySy' SyxEy (4.39)
together with scaling
1—X)—1 -
ﬂ(T—Z) if8>(1—x)""
0 else,

where A; < ... < A, Finally, this yields the projection matrix

Oq’UlT
A= : : (4.41)

Notice that due to the definition of matrix B in Eq. (4.38)), there can be at
most N = min(p, ¢) eigenvalues \; < 1, which implies N non-zero rows
in matrix A if § is suitably large. To this extent, medium to small values
of 5 introduce even further rows of zero in A, thereby losing information
about Y in favor of a better compression of X. As described above, the
most informative compression is achieved when A contains all NV non-zero
rows for large 3; further increasing (3 only affects the scaling.

Although the Gaussian information bottleneck has a convenient closed-
form solution, it is by definition limited to normal rvs. To this end, Rey|
and Roth| (2012)) reformulated functional J of Eq. (.35) in terms of copula
densities to receive

H(cx) + H(ep) — H(exr) — ﬁ(H(cY) + H(cp) — H(CYT)), (4.42)
where H (o) denotes entropy. This reveals two fundamental properties:

e The general information bottleneck problem is independent of the
marginals 71, ..., Fpy,.
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e The Gaussian information bottleneck is optimal for the family of meta-
Gaussian distributions, because a copula is invariant against strictly
increasing transformations, i.e., the marginals.

This generalization is also known as the meta-Gaussian information bottle-
neck (MGIB) (Rey and Roth, 2012). From a practical standpoint, the differ-
ence in comparison to the Gaussian information bottleneck only concerns
Eq. (.38), which now becomes

B = RxyRY. (4.43)

While the approach of |Rey and Roth| (2012) requires continuous meta-Gauss-
ian distributions, we can now apply the correlation estimate for mixed data
from Algorithm {4 thereby further generalizing the information bottleneck,

see Fig.[4.9]

- -
- -

- -~
- -

(X7 Y) \\
(X,Y) meta-Gaussian,
meta-Gaussian mixed random variables

. . . /
with missing values ,/

-~
-~ -
-~ -

Figure 4.9: The big picture comparing the scope of methods.

Let us now briefly summarize the necessary steps for compression of mixed
data with missing values:

1. For p- and ¢-dimensional random vectors X and Y, estimate (p +
q) x (p + ¢) correlation matrix R and p-dimensional standard nor-
mal random vector X using the extended-rank-likelihood sampler of
Algorithm 4]

2. Compute p X pmatrix B = R X‘YR;(l including its left eigenvectors
v; and eigenvalues \;.
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3. Calculate p X p projection matrix A for a given 3, see Eq. (4.41).

4. Find p-dimensional compression T' = AX + &.

4.6.1 Removal of Information

Complementary to highlighting a relevance variable Y in compression T,
one might also be interested in the opposite, that is, a compression free of
nuisance information. In medical applications for example, age and sex are
often known to have unwanted effects, which require a normalization of
the data. The conventional approach is to introduce a dummy coding for
binary or discrete rvs and then perform multiple regression to cancel their
interaction (Lay, 2011} p. 372). This quickly becomes cumbersome in the
presence of multiple discrete rvs with many levels.

The more convenient alternative is to apply the meta-Gaussian information
bottleneck with a minor modification (Adametz et al., 2014): Recall that
projection matrix A in compression T' = A X + £ specifically captures every
aspect of X that is relevant to Y . If A is replaced by ), whose columns Qs
span the nullspace of A, satisfying

A (Qaj) = 0y, (4.44)
then compression
T=Q X +¢ (4.45)

is explicitly devoid of Y . Due to this notion, we also referto Y as irrelevance
variables (Adametz et al.,[2014). Fig. and Fig. give examples for
A and @ including their associated compression.

Analog to the case of compression, we can control to which extent infor-
mation about Y is removed. By choosing a value for trade-off parameter
B > 0, the resulting compression 1" may cancel only main effects of Y
(small 3) or a wide range of its characteristics (large 3). Table exem-
plary describes different levels of 5 along with their interpretation regarding
T. Note that projection A can only have as many as N = min(p, ¢) non-
zero rows, where p and ¢ refer to the length of random vector X and Y,
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A Q = OPXP
0/ojof = 0

OT

OT

Figure 4.10: A schematic example of matrix A and @) for p = 5.

respectively. Therefore, in the above example of
X = [gene 1,...,genep]T and Y = [age,sex]T,

projection matrix () removes a maximum of two directions for a sufficiently
large 3, whose value depends on the left eigenvalues of B = R X|YR;(1, see
Eq. (4.40) and Eq. (4.43). Intuitively speaking, by applying (), we transform
the space RP to subspace R(P~2), where the effects of age and sex are mapped
to zero.

T = A X + ¢ T = QT X + ¢
— + — or +
o’ 0"
0" 0"

Figure 4.11: Using the matrices from Fig. a compression either high-
lights (left) or discards (right) side information Y.

The information conveyed by Y; and Y5 is jointly removed from the com-
pression, meaning there is no exclusive correspondence between 77 and Y]
(or T and Y3). This is analog to PCA, which computes linear combinations
of the underlying variables in order to identify directions of largest variance.
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A QT Interpretation
0" No characteristic about Y is cap-
0’ tured in A, therefore, applying
01 1 Q" = I, does not alter the data:
8T compression 7' is equal to X (ig-
noring noise component §).
Projection A captures the domi-
0’ nant/main effect of Y on X and
01 therefore, Q" specifically removes
gT 7 a single direction.
Projection A captures several ef-
fects of Y on X and Q' keeps
. 0: everything pertaining to the remain-
gT gT ing subspace.
Matrix Q" extracts a single direc-
0’ tion from the space of X; the re-
01 mainder is canceled completely.
0
0’ 0’
0" All facets of Y are deemed impor-
0" tant and shall be removed from X,
01 hence, no information is left after
gT applying Q.

Table 4.1: Parameter 3 determines to which extent information about Y is
removed from compression T' = Q" X +£. The plots range from
small 5 (top row) to large 3 (bottom row). It is assumed that A
can have up to N = min(p, ¢) = p non-zero rows.
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4.7 Experiments

4.7.1 Synthetic Data

Since the estimation of a correlation matrix from mixed data is the core com-
ponent of this chapter, we begin with an analysis of Algorithm {4 Let us
therefore generate a covariance matrix > with visible dependencies between
p = 10 rvs, constructed by the same scheme as in the synthetic experiment
for Gaussian graphical models, p.[84fff. By rescaling, we receive the correla-

tion matrix as R = diag(2) 2 ¥ diag(X) 2, which is used in
X ~ N,(0,,R) (4.46)

for n = 100 independent draws. All observations are stored as columns in
p x n matrix X, from which we compute the p x p Gaussian rank correlation
}A%G (subscript ), see Eq. (#.20).

In a first setup, we use matrix X containing the normal scores and run the
extended-rank-likelihood sampler (subscript £) to obtain R g by averaging
over 1000 sweeps. It is important to keep in mind that both estimators do
not use the normal scores in X directly, but rather only their ranks. Hence,
we could have theoretically applied, say, beta or gamma marginals, however,
their purpose is defeated by the fact that continuous marginal transformations
preserve the rank. In our previous terminology, all such operations remain
inside the invariance class (that is, the group orbit of the rank statistic) and
therefore, they do not bias inference.

In order to make the task more challenging, we introduce 5, 10, 15, 20 and
25% missing values at randomly selected elements of X to receive matrix
Xxa, which is not covered by the Gaussian rank correlation. The extended
rank likelihood handles missing values by assuming an unconstrained nor-
mal distribution; all observed values follow a truncated normal distribution
which satisfies the given ranks. For a better understanding of the data and its
composition, Fig.[4.12] deplcts one dataset.

The obtained correlations 1 g and RG are compared by

URp;X) — (R X), (4.47)
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full data matrix

X

matrix XNA
with 25%
missing values

matrix XNA
with 25%
missing values

Figure 4.12: An excerpt from one dataset as used in the experiment. Top:
Normal scores, where rvs are correlated according to R. Cen-
ter: Same matrix as above, but 25% of all values are removed.
Bottom: The remaining observations are transformed into dis-
crete values with only 3 levels; hereby, every rv has a different
discrete marginal, but the order of levels is supported by the

-1.75 | +0.45 | -0.75 | +0.14 | +0.64 | -0.49
-1.31 | -0.26 | -0.81 | -2.15 | -1.05 | -0.64
+0.96 | +0.63 | +0.22 | +0.50 | +1.05 | +0.27
-0.31 | -0.63 | -0.11 | +0.96 | -0.67 | +0.44
@ | +045|-075|+0.14 | +0.64 | -0.49
-1.31|-026 | -0.81 | @ |-1.05|-0.64
@ | 063 @ |+050|+1.05|+0.27
-0.31| @ |-0.11[+0.96|-067 | @
® | 3 2 2 g 2
1 2 2 | @ 1 1
O 3 0 3 2
3 3

3

order of normal scores. Each matrix has size 10 x 100.
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where ]/%E used Xna and }ARG resorted to X. For a proper evaluation, we
repeat the above procedure to generate a total of 1000 correlation matrices
R and matrix-realizations X . The results can be seen in Fig. - (left).

Continuous marginals Discrete marginals with 3 levels
0 -e-
E -
§ ?E T T T T T
8EE EEE:EE
_ - TS EE =
= 507 ! Lo
o @ i i |
® 9 E 0 H
T : E Byl -
- lee by
5 ? |
‘€ 100 + ? § g g -t
: S 8§ ¢
[e]
& 8 §
5§
[0
-150

o
I T I I I T I I I T I I
0% 5% 10% 15% 20% 25% 0% 5% 10% 15% 20% 25%

missing values missing values

Figure 4.13: Boxplots over the difference in log-likelihood between R £ and
RG using 1000 synthetic datasets X with p = 10 and n = 100.

As expected, R £ and EG are virtually identical for continuous marginals
and no missing values, while the performance only slightly decreases when
few data are missing. The removal of more than 5% has a visible impact
(notice the use of the log form).

In a second experiment, we transform all 1000 matrices X row-wise into
discrete observations of only 3 levels, where the order of levels is in accor-
dance with the ranks of the normal scores. This means, R g 1s now inferred
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from matrix Xna, which refers to discrete observations with missing values.
As a result, this transformation considerably increases the difficulty due to
ties among ranks, see again Fig. For a proper comparison, we again
remove 5, 10, 15, 20 and 25% of the data at the exact same locations as be-
fore. To this end, Fig. (right) reports the outcome for discrete marginals
over all 1000 datasets. The performance without missing values is roughly
equivalent to that of continuous marginals with 25% missing values. Further,
introducing discrete marginals increases uncertainty, which is to be expected.

The reader should keep in mind that the second experiment demonstrates
the extended-rank-likelihood sampler in situations with significant informa-
tion loss and rather large numbers of missing values. Real-world data with
mixed marginals is likely situated somewhere in between both experiments.

4.7.2 Real-World Data — Pathway-Based Cancer Analysis

For a practical application of the meta-Gaussian information bottleneck to
mixed data, let us revisit the pathway domain, as introduced in Section[3.1.1]
Recall that a pathway is a distinct group of genes, which contributes to a
specific biological function. For our purposes, we again adapt the pathway
definitions from the KEGG database, which enables us to abandon single-
gene analysis. Hereby, we solve two conceptual issues:

e Identifying single factors among 24 000 genes on the basis of only
hundreds of patients is a strongly underdetermined problem. As a
result, this often leads to the false discovery of genes, which perfectly
explain a target, but cannot be reproduced independently (Ein-Dor
et al.,|2006). The solution is either to dramatically increase the sample
size, or to turn to a pathway-centric analysis, such that the number of
candidate genes is limited. Hereby, we can make practical use of rich
biological expert knowledge.

e Pairing functionally related genes amplifies signals which are weak,
but consistent. Such patterns may not be discoverable by other means,
especially given the high noise level of a single gene.

Due to these reasons, the objective is to fuse all information of a gene set
and extract its characteristic properties. One suitable tool is PCA, which
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identifies the directions of largest variance in the genes. Note however, that
variance merely represents a single choice among a host of relevant biological
properties. For instance, we could ask “What information does a pathway
convey about cancer stage?”. This is in fact a prime example of the meta-
Gaussian information bottleneck for mixed data, which can now be handled
with the extended rank likelihood. Fig.[#.14] gives a schematic outline.

n patients n patients
25 genes —> ] ] 1 dimension
50 genes - —) e 1 dimension
clinical variables I . I' .
input compression

Figure 4.14: Overview of pathway compression. The above shows two path-
ways (gene sets) comprising gene expression values for n pa-
tients. The goal is to fuse and compress their information into a
single dimension while highlighting clinical properties. Black
boxes symbolize missing values in clinical data.

Clinical information is often subject to missing values due to various rea-
sons: in some cases, information is redacted to protect a patient’s privacy,
in other situations, health concerns or the need for additional surgery pre-
vent complete measurements. For a better intuition about the data, Fig. [d.15]
reports a set of exemplary measurements.

Our analysis is based on the colon cancer dataset of Sheffer et al.|(2009) as
in the previous experiments for Gaussian graphical models, however, differ-
ent from before we now use all n = 313 patients, falling into the categories
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patient 1 patient2 patient3 ... patientn
genel | 1.48 059 —024 ... —157 ]
gene p —0.81 —1.01 032 ... 2.15
age 68 43 - 39
sex F M F .
T 3 2 . 4
N 1 0 . 0
M 1 0 1

Figure 4.15: A fictitious sample of gene expression data accompanied by
clinical features. The matrix shows measurements for p genes
and g = 5 clinical traits across n patients.

healthy (53 patients), primary tumor (184 patients), polyp (46 patients) and
metastasis (30 patients). Further, the dataset comprises a total of 13437
genes. In addition to gene expression values, a separate table lists clinical fea-
tures age, sex and TNM tumor staging, where 7' = {70, 71,72, T3, T4} is
the size of the tumor, N = {NO, N1, N2, N3} represents the spread to adja-
cent/distant lymph nodes and M = {MO0, M1} stands for absence/presence
of metastasis in distant body regions. Note that for some patients, lymph
nodes are not evaluated thus leading to missing values. In summary, the clin-
ical side information consists of binary or discrete observations with various
numbers of levels.

The data are analyzed in the following way: First, select a pathway and
look up its p genes from the KEGG database. Then, proceed in two steps:

1. Normalize gene expression to remove bias from age and sex:

a) For random vectors X (p genes) and Y (age, sex), estimate thf:
joint correlation matrix R and standard normal random vector X
using the extended-rank-likelihood sampler of Algorithm 4]

b) Calculate B = R X‘YR;(I, projection A for a sufficiently large
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[ and its nullspace matrix Q).

¢) Compute compression Ty = QTX + £.

2. Compress gene expression values with regards to cancer stage:

a) For random vectors X = T oim (pf genes after normalization)
andY (T, N, M), estimate R and X using Algorithm

b) Calculate B = R X|YR;(1 and projection A for a small 5.

¢) Compute compression T'rypyr = AX + .

The resulting rv T'7n s captures all information of the gene expression val-
ues pertaining to cancer stage while being free from the bias of age and sex.
As it is difficult to visually interpret the compression of every pathway, we
evaluate the outcome using software package Pathifier (Drier et al., [2013)).
This method measures the deregulation score for each patient as the distance
from the average healthy patient, see Fig. [d.16] In addition, the patient with
the largest distance defines score of 1. Since every pathway captures dif-
ferent aspects of the patients, the distances are computed for each pathway
separately.

By default, Pathifier first projects the gene expression values onto eigen-
vectors corresponding to largest variance (PCA), which we now replace by
the MGIB compression. The comparison can be found in Fig. along
with T'N M cancer staging and a selection of pathways that are known to be
affected in colon cancer. Here, rows are pathways, columns are patients and
their gray value corresponds to the distance from the average healthy patient
along the principal curve. Patients are categorized into the classes healthy
(H), metastasis (M), polyp (P) or primary tumor (T). The bottom rows show
cancer staging T'N M, which contains missing values (white bars) for (M)
and (P) patients. Note that the order of patients and pathways is identical in
both plots.

The compression identifies interesting new patterns in the data, which
divide the primary tumor patients (T) into two very distinct subgroups. It
appears the presence of metastasis leads to a characteristic activation of the
pathways VEGF, MTOR and ErbB signaling and the more general “Pathways
in Cancer”. In particular, patients with cancer stage M/ = 1 (metastasis in
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average healthy patient

cancer patient /

(strong deregulation)

&as s healthy patient

cancer patient

/ (weak deregulation)

Figure 4.16: Pathifier assumes that—for each pathway—the patients form
point clouds with meaningful structure. After identifying the
skeleton line (the principal curve), the algorithm measures the
distance of a cancer patient to the average healthy patient along
the curve. The greater the distance, the stronger a patient is
deregulated.

distant body regions) and N = {2, 3} (spread to distant lymph nodes) behave
similarly to metastasis patients (patient category M).

The deregulation scores based on principal components do not exhibit
any of these patterns, which goes to show that variance does not necessarily
capture all meaningful facets. In that regard, the information bottleneck is
a method of feature extraction akin to PCA, but with the added flexibility
to determine what is relevant to the user. The experiment demonstrates how
previously unused side information can now be incorporated to gain a more
expressive and problem-specific representation of genes.

Lastly, the (meta-)Gaussian information bottleneck has another interesting
property for pathway analysis: Recall that the optimal compression is a linear
projection of X, which means it is possible to identify the contribution of
each rv (= gene). This information can be leveraged to trace back single
factors within the confines of a pathway. For more details and an in-depth
discussion of the results, we point the reader to (Adametz et al., 2014).
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Deregulation scores using PCA

Prostate Cancer — " I " 1.0
Colorectal Cancer —
Gap Junction — 0.8
Cytosolic DNA Sens. —
NOD-like Rept Sign. —| il | 0.6
Toll-like Rept Sign. —
Chemokine Sign. —|| | 04
VEGF Sign. o |||
MTOR Sign. — 0.2
Pathways in Cancer
ErbB Sign. 0.0

Deregulation scores using MGIB
irrelevant = (age, sex), relevant = (T, N, M)

Prostate Cancer
Colorectal Cancer
Gap Junction
Cytosolic DNA Sens.
NOD-like Rept Sign.
Toll-like Rept Sign.
Chemokine Sign.
VEGF Sign.

MTOR Sign.
Pathways in Cancer
ErbB Sign.

Patient Category
T
N
-

Figure 4.17: Pathifier computes the deregulation scores based on PC projec-
tion (top) and MGIB compression (bottom) for the colon cancer

dataset of [Sheffer et al. (]m[)
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4.8 Conclusion

At the heart of the current chapter, we focused on the dependence of rvs
when i.i.d. realizations are directly accessible. To this end, Sklar’s theorem
(Sklar, [1959) provided the theoretical foundation to decompose any multi-
variate distribution into univariate marginals and the so-called copula, which
induces dependencies. In the Gaussian case, the copula is fully specified by
correlation matrix R, which makes it the parameter of interest. Moreover,
disentangling marginal properties and dependencies forms the basis of meta-
Gaussian distributions (Rey and Rothl |2012), which maintain the Gaussian
copula but permit arbitrary marginals.

As a consequence of the probability integral transform, it is possible to
convert continuous realizations back and forth into normal scores (realiza-
tions from a standard normal rv) if the distribution function is known. In
turn, this gives rise to a straight-forward estimation of the correlation matrix.
On the contrary, if the distribution function is not known, we can resort to
empirical marginals, leading to an estimate that is only a function of the
ranks (Boudt et al., 2012).

Since a host of applications solely require the dependence of Gaussian
rvs, the generalization from Gaussian to meta-Gaussian distributions vastly
extends the range of practical applications (Rey and Roth} |2012). Still, this
setup excludes discrete rvs due to ties among the ranks, which would oth-
erwise violate the uniqueness property of the copula. In accordance with
the overarching subject of the thesis, the issue is rooted in information loss
and the need to identify unique ranks, while the evidence does not permit
any such statement. Intuitively speaking, discrete observations do carry in-
formation with regards to correlation and treating them as an incomplete
set of order relations is the fundamental principle behind the extended rank
likelihood (Hoff], [2007).

Finally, the ability to derive the correlation between continuous and dis-
crete rvs opens new possibilities, as was demonstrated by the information
bottleneck and its application to pathways. Here, we are interested in com-
pressing a gene set in such a way that it only maintains characteristics related
to side information, hence, the information bottleneck describes the notion
of relevance in the data. While clinical features are typically only used at
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later stages of gene expression analysis, it is now possible to integrate this
information very early on to extract subtle aspects of the data. In addition,
we can not only highlight specific features, but also remove them in a unified
fashion. Notice that the applied invariance is indispensable for this type of
analysis—it represents an important step towards generalizing information-
theoretic feature extraction.

Appendix [C]discusses links to distance-based methods.
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Chapter 5
Discussion & Outlook

5.1 A Global Perspective on Invariances

In review of the three models introduced in this work, the concept of invari-
ances played a major role in statistical inference. On the most fundamental
level, all discussed applications have in common that a sample offers limited
information with regards to the initial model. This gives rise to what was
called nuisance parameter A\, which prevents us from evaluating hypotheses
for an interest parameter 1. We lack the means to distinguish

L(1, A ;)
L(a, A5 x)

because the choice of A\ determines if the likelihood favors v; over 5 or vice
versa. If we were to fix the unknown ) at an incorrect value, the conclusion
drawn for ¢ could potentially be wrong. Hence, it goes to show that problems
of this kind require a cautious and well-considered treatment. Unfortunately,
however, there exists no universal solution and the requirements often vary
depending on the application at hand.

To this end, the thesis discussed an assortment of methods established
in the literature: marginal and conditional likelihood, profile likelihood and
integrated likelihood. These approaches all have their specific strengths and
weaknesses, but most importantly, they do not guarantee a robust estimation
of % or that inference is possible in the first place.

Let us demonstrate this schematically by Fig. [5.1] using the example of
the marginal likelihood. Here, the box represents all available information
contained in sample x and by applying statistic u = U(z), only a certain

?
z 1, 5.1)
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aspect of it is used. Among the contents of x, we find a portion related to
interest parameter ¢ (white area), while the remainder is considered irrele-
vant. The dashed line symbolizes that U is unable to capture all necessary
properties in their entirety, hence, some information is inadvertently lost. For
our purposes, a statistic U is required to be strictly free of A, therefore a loss
can often not be avoided and is minimal at best.

flu; ) o< L(; )

D
T } information loss
™) Folus )

Figure 5.1: Abstract interpretation of the marginal likelihood.

The above alludes to the fact that many problems do not allow an accurate
isolation of the subset concerning 7). In such instances, the loss is assumed to
be negligible and therefore, certain characteristics are intentionally discarded
in favor of the complete marginalization of nuisance A. There are certainly
situations, where ) and A can be separated perfectly, however, these should
rather be treated as special cases. In general, the model always loses ro-
bustness, especially when A comprises multiple parameters, as for example
column means, scaling and feature correlation. This also implies that with
every additional statistic, the available support is potentially cut back further
and further. Therefore, incorporating invariances is, generally speaking, at
the expense of statistical power—the question is whether the remainder still
permits inference.

It is important to stress that depending on the nuisance parameter and
the specific model, there may not necessarily be a statistic which meets
our requirements. In some instances, suitable statistics do exist, but the
remaining information about X is insufficient for inference. To name one
example, the removal of column means via projection L with kernel 1,
succeeded, because it affects a one-dimensional subspace in a p x p distance
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matrix. Yet, the profile likelihood using an n X n maximum-likelihood
estimate of feature correlation WU failed, because the invariance against right-
multiplication of arbitrary matrices renders the model virtually insensitive
to detecting conditional independences. Therefore, the mere existence of a
statistic does not necessarily imply viability.

Interestingly, different techniques sometimes lead to the same likelihood,
as could be observed for translation or scale invariance. On a purely technical
level, this does not offer any benefit, but it adds a new interpretation to the
result and enhances our understanding of the model. A conceptually different
invariance was applied in the third domain to estimate the normal scores
based on non-unique rank information. Considering that the extended rank
likelihood builds on classical marginalization, there is an enormous diversity
of potential invariances.

5.2 Invariances as a Means of Generalization

If a model depends only on, say, pairwise distances instead of the full normal-
distributed data matrix, we regard it as being more efficient, because it uses
less information to infer the same outcome. The more important implication
is however, that we can now apply it to any domain provided that it permits
the computation of distances—regardless if the underlying data were vector-
ial or not. To this extent, the vast portfolio of kernel functions opens a huge
field of potential applications, which, on a technical level, can all be treated
as if they originated from a normal distribution. Its appeal is due to the fact
that we can operate in a possibly infinite-dimensional feature space without
the need to specify it explicitly.

The underlying Gaussian assumption is of course not appropriate for every
application, but the normal distribution appears in many natural phenomena
and is therefore a common choice when many rvs contribute additively or
when nothing is known about the inner workings of a process. Further, if a
distance matrix is the sole input to infer, say, a Gaussian graphical model,
then the discussed methods TiMT and TiWnet are, to our knowledge, the
only choice. In that regard, the contributions of this work cover...
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e a Gaussian mixture model for clustering in distance matrices,

e a Gaussian graphical model to infer conditional independences in
distance matrices and

e a Gaussian copula model for the compression of mixed data with
missing values.

All three approaches inherit the core properties from their preceding models,
but they now enter new ground for applications that could not be analyzed
before. Hence, removing the dependence on nuisance parameters always
implies a generalization.

It should be noted, however, that the standard models have an advantage
over distance-based approaches in case of vectorial data, since they are not
subject to potential information loss. Although the invariances were con-
structed in a way to maintain statistical power, say, to counter the effects
of latent feature correlation in Gaussian graphical models, a certain loss
is unavoidable and can only be minimized. This could be seen from the
synthetic experiment in Section [3.5.1] where the distance-based approach
(TiMT) closely follows the model with access to the underlying data matrix
(TRCM), but it can never exceed it. Therefore, having full information serves
as an upper bound of what is achievable under ideal conditions. The same
applies to the Gaussian copula model if we compare the performance for
discrete data and its true continuous representation.

Finally, for a side-by-side comparison of all models, see Table

5.3 A Note on the Mean Model

Throughout the development of invariances in Gaussian models, we often
referred to column means, because these are motivated by the definition of a
distance matrix; in terms of the Gaussian copula model, we are limited to row
means exclusively. Hence, it is justified to ask if there are alternatives beyond
these examples. First of all, recall that data in our context are distributed as

X ~ Npn(M, 2@ ),
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(fast)TiWD TiMT Copula
Model

Application

clustering network compression

inference
Distribution
X~ Nppn(M, 2@ )
Parameter
input D (or S) D (orS) X
mean M 1w’ 1w’ vl
. x X x

row covariance X SE*P SE<P SE*P
column covariance ¥ I, Niak I,
parameter of interest by »-1 R from X
Model infers...

cluster conditional in- correlation of

assignments dependences  rows

of rows of rows
Invariance against...
number of columns n v v —
row means v1, — — v
column means 1pw—r v v —
scaling ¢ v v v
column covariance ¥ — v —
rank-preserv. operations — — v

Table 5.1: Comparison between the three introduced models, which all build
on the matrix normal distribution. S; refers to the set of symmet-

ric positive-definite matrices.
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where mean matrix M has the same format p X n as a realization X. The
fact that we observe a single matrix X (or D) does not permit any conclusive
statement for a general M, same as in the scalar case, if a single observation
x shall be used to identify the mean p. The only deduction we could make
is M = X (or p = z), therefore it is imperative to assume a direction of
repeated measurements:

M = 1pr, w e R or M = vlz, v eRP. (5.2)

Making a choice between the two is closely tied to the composition and
interpretation of matrix X, that is, objects and features or similarly rvs and
realizations. In that regard, Fig. [5.2] explains the differences between the
distance-based methods and the Gaussian copula approach. Notice that in
spite of their assumptions, both aim to infer row covariance matrix

As can be seen, distances are independent of column means, but sensitive
to a modification of rows. The Gaussian copula model interchanges these
assumptions, because rows correspond to rvs and columns are independent
realizations. Theoretically, it is possible to center both rows and columns
simultaneously, however, this is not meaningful for either model.

5.4 Nuisance Parameters and Embeddings

For distances, statements about the underlying feature space were avoided,
however, a skeptical reader may propose an embedding X of distance matrix
D, as done, for example, in multidimensional scaling (Gower, |1966; Mc+
Cullaghl, 2009). The rationale behind this is to resort to the standard normal
likelihood with the intention of skipping invariances altogether. Notice the
idea does not cause computational problems, but rather introduces a potential

"We could alter the notation of the copula model, such that the mean models become
identical, however, this would also reverse the roles of ¥ and ¥. The intention behind
the current notation is to unify the frameworks of distances and copulas. In doing so, we
accept having two different models of the mean.
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bias, which may alter the likelihood ratio

L (1/}27 )‘)
if A # Ag. In fact, there is an infinite number of Euclidean configurations
which are equivalent from the standpoint of distances. At the same time,
each makes a different choice concerning the nuisance parameters.

Fig. [5.3] depicts this situation: Every box represents a matrix and a di-
agonal line symbolizes symmetry. A distance matrix D implies a space of
potential originating matrices .S + 1jl,uT + ulg for any u € RP. If we de-
cide on one candidate S = X X T, there is another space of corresponding
matrices X € RP*™ which contains n unknown features (columns) as well
as orthogonal projections thereof. Making a choice among X is the same as
estimating unidentifiable nuisance parameters.

>

Figure 5.3: A schematic interpretation of X, S and D when seen from the
perspective of distances.

Inferring the correlation matrix from mixed inputs pursues a conceptually
different line of thought: By sampling the normal scores, the underlying data
are explicitly reconstructed from the limited number of order constraint, how-
ever, it avoids specifying the marginals, which are attributed to the nuisance
parameters. The reconstruction quality very much depends on the number of
levels and observations, as well as the occurrence of missing values.
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5.5 Support for Inference

5.5 Support for Inference

The following picks up the idea of embeddings, but interprets it from a
different standpoint: As mentioned above, the foundation of all models is

X ~ Npn (M, 2@ 0),

from which we are interested only in v, while the remainder is considered
as nuisance ). Suppose the application at hand defines ) = £~ ! and

A= {M, ¥}, (5.4)

then we would proceed by incorporating invariances, such that the density
becomes independent of A\. Note that if X is accessible, its features are
known and the number of columns n can simply be read off.

Computing the distances D is essentially a statistic that obscures informa-
tion, which implies that the nuisance parameters grow in number to

A={M,¥, X}, (5.5)

where X refers to the feature space of X and includes n. To this end, the
density for M = Opxp, and ¥ = I;, reads

fX %) xexp(—L {7 XX T}, (5.6)

meaning X and its feature space X only enter by way of the inner product.
In other words, the density already partitions X" into equivalent sets. For a
general U # [, however, all features interact with each other in

FX52,0) oc exp(— 3 tr{E ' XTIX T}, (5.7)

This is in fact the main reason why feature correlation in distances is a highly
challenging problem that requires a Bayesian approach—it now affects the
possibly high-dimensional X'. Our solution was specifically tailored to the
distance domain as we successfully avoided any explicit statement about ¥
or X altogether. Instead, both entered the likelihood only implicitly via the
hyperparameters of the prior and therefore, it was not necessary to specify
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X directly, akin to the kernel trick.

A related issue applies to the Gaussian copula model, where X is accessi-
ble in discretized form instead of its true representation. Using incomplete
rank information, the task was to estimate the normal scores, which, in turn,
give rise to correlation matrix R. Fig.[5.4]picks up the idea that reconstruction
of the underlying normal matrix X is a task of identifying the true nuisance
parameters, Ag.

information loss

N

( distances D
X —or—
A
|

discretization of X

N~

reconstruction / embedding

Figure 5.4: Nuisance parameter A seen as a reconstruction. Matrix X is only
accessible in reduced form, which makes it difficult to assess
the parameter of interest due to information loss. Reverting this
process is equivalent to identifying the true Ao, because feature
space X is in part a nuisance parameter.

All previous discussion was mainly focused on incorporating suitable in-
variances into the likelihood, which represents a gradual removal of depen-
dence from X. However, when we think of the data reduction or efficiency
principle as a recurring theme in the Fisherian likelihood concept, we could
also ask which distribution our inference is actually based on, had we access
to the true nuisance parameters )\g including all missing information about
feature space X'. Hereby, we obtain the following interpretations:

e Clustering model (fast)TiWD assigns objects to the same cluster if
they can be explained by a distribution with shared mean. We have

X ~ Npu(M, I, ® I,), (5.8)
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where each row in M is associated with one cluster center m; € R",
j € {1...k}. Most properties of M pertaining to the feature space
are lost when calculating the pairwise distances, which lead to a model
that only requires the inner product %M M. At the same time, this
formulation introduces equivalence classes among cluster geometries.

e At its core, inferring a Gaussian graphical model via TiMT relies on
X ~ Npn(Opscn, W @ 1), (5.9)

Contrary to (fast)TiWD, it assumes the distances have been altered by
feature correlation W.

e The Gaussian copula model is based on the underlying matrix
X ~ Npn(Opxn, RS 1), (5.10)

which is treated as n independent realizations of a p-dimensional stan-
dard normal random vector X. Many vital characteristics of X are
lost due to discretization and missing values, such that the approach
only uses the non-unique rank information.

The above is a description of the core mechanics if the data were completely
devoid of nuisance terms. Its intention is to give an insight into the support
for inference in terms of the underlying matrix normal distribution.

5.6 Outlook

Invariances constitute a powerful tool in statistical analyses, which offers
new possibilities for existing, well-established models. As we learned, these
techniques frequently involve a trade-off between removal of information and
statistical explanatory power, hence, the essential question is how far we can
go while maintaining a robust model for the task at hand. A boundary could
be seen by the invariance against feature correlation in Gaussian graphical
models (Adametz and Roth, [2014])), which initially appeared as infeasible: the
nuisance term affected a significant portion of the data which even exceeded
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the dimensionality of the parameter of interest. By using a flat prior in
conjunction with the integrated likelihood approach, we could strike a careful
balance to isolate what is relevant. For the first time, the model accounted
for all available parameters of the matrix normal distribution when only a
distance matrix is given on input.

Clustering in distances, as a generalization of the standard mixture of Gaus-
sians, described two complementary approaches to the centering problem:
either the likelihood is modified to be constant across the set of unidenti-
fiable nuisance parameters (Vogt et al., [2010), or we intentionally make a
decision and select the nuisance parameter in a preprocessing step (Adametz
and Roth|, 2011). The latter relied on external knowledge from phylogenetics
to center the data via a simple tree construction. Although the result is only
optimal if the distances satisfy the ultrametric inequality, the closest match-
ing tree is often sufficient to produce very good clustering results at signifi-
cantly lower cost. Leaving computational aspects aside, the most interesting
aspect concerns theoretical links to ensemble methods like consensus clus-
tering, which—similar to a binary tree—aggregate a large number of simple
building blocks into complex decisions. We conjecture a deeper connection
between tree decomposition, translation invariance and the aforementioned
methods.

Not all invariances necessarily lead to meaningful models, though, be it
due to excessive information loss or negligible practical benefits. As an
example, we refer to the matrix T likelihood for clustering (see Appendix
[B), which permits elliptical clusters under the restriction of equal orientation.
Unfortunately, a single-matrix distribution conflicts with arbitrary cluster
alignments, thereby making it impossible to bring this assumption in line
with our existing framework of distances.

Finally, the generalization from Gaussian to meta-Gaussian distributions
(Rey and Roth, [2012) considerably expands the range of potential applica-
tions. The approach in (Adametz et al.,|2014) enables the treatment of mixed
continuous and discrete data in the information bottleneck (Tishby et al.,
1999; (Chechik et al., 2007), which is promising especially for the domain
of pathway analysis. Here, it allows to identify subtle new patterns in gene
expression data that would otherwise be lost when maximizing variance. We
think of the meta-Gaussian information bottleneck as a module for feature
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extraction, which can be plugged into any existing pipeline whenever side
information is available.

The discussion goes to show how the standard Gaussian models—which
are appealing theoretically, but often limited practically—experience a sub-
stantial leap forward by invariances, thereby establishing the basis for a vast
spectrum of new applications.

If we go beyond the presented work, there exist many fields of research
that deeply rely on invariances, one of which is computer vision. As part
of the greater goal to reach human levels of visual understanding, object
recognition represents an elementary building block therein. In more detail,
a task may require invariances against the camera viewing angle or lighting
conditions, therefore, the literature is frequently concerned with invariant
representations (Sohn and Lee, 2012; [Monasse and Guichard, [2000) or in
a more abstract sense, the learning of invariances (Wiskott and Sejnowski,
2002)). From a human standpoint, the existence of a solution may be clear
intuitively, yet, a concise mathematical formulation is often hard if not impos-
sible. Regarding an invariance against lighting conditions, one might simply
define a filtering step that only leaves outer object contours—a statistic in our
terminology. Such an ad-hoc solution is valid in the sense of the nuisance
parameter, but it might render the recognition task (or inference) exceedingly
difficult; after all, the mentioned filter would discard a large amount of rel-
evant information. The gist is that invariances of this kind demand a high
degree of problem-specific knowledge.

The human cognitive system is already equipped with an enormous num-
ber of invariances (DiCarlo and Cox, 2007; [Wallis and Rolls, (1997), which
are vital for its remarkable performance (Quiroga et al., [2005) but also its
stringent energy conservation. To cite one simple example related to visual
perception, stimuli in the retina are only processed and forwarded if certain
patterns are detected—irrelevant information is discarded at a very early
stage. This has an interesting analogy to our implementation of invariances:
As could be seen in the clustering domain, we sometimes have the choice
to either incorporate a desired invariance directly into the core of the infer-
ence process or we shift it into a preprocessing step and receive a simpler
model. In this regard, computational requirements are often a decisive factor,
but a faster runtime may also involve approximative solutions or a loss of
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statistical robustness.

In a nutshell, the general concept of invariances has tremendous appeal
for data analysis, because it concerns a wide array of facets: it can be used
to generalize existing models, it is an essential requirement for many statis-
tical problems and, most importantly, it deepens our understanding of the
underlying probabilistic mechanisms.
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Gaussian Mixture Model

A.1 Translation-Variant Likelihood

Let X ~ Npn(Opxn, (¢*%) ® I,,), then its inner product S = XXT fol-
lows a central Wishart distribution S ~ W,(n, ¢ ¥). The log-likelihood in
inverse covariance W = Y. ~! and scaling c reads

(W, c) = Zloglc 2 W| — L tr{c > WS}. (A1)

In order to remove nuisance parameter ¢, we first compute its maximum
likelihood estimate

9 ! ~2 1
EZ(W, c)=0 & ¢ = o tr{Ws} (A.2)

and then insert it back into Eq. (A.T)) to receive the scale-invariant profile
log-likelihood

tp(W) = §log|W| — = log tr{WS}. (A3)
This coincides with the marginal log-likelihood, analog to scale invariance

in the translation-invariant case.

A.1.1 Complexity

Evaluating the translation-variant likelihood requires fewer computations
than its translation-invariant counterpart. Specifically for clustering, we have
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W =ZBZ" + I, with k£ x k matrix B. Hereby the determinant becomes
\W|=|ZBZ" +1,| = |BZ" Z + I| (A4)
and the trace transforms to
tr{WS} =tr{ZBZ"S + S} = tr{BZ"SZ} + tr{S}. (A.5)

Besides precomputing term tr{.S}, it is possible to exploit incremental up-
dates. This means, we can apply the same techniques analog to the trans-
lation-invariant likelihood:

e B € diag: Updating the determinant requires O(1), because it only
involves diagonal terms. The trace builds on the diagonal elements of
the block sums Z T SZ, which in total consumes O(p) for assigning
one object to all k existing clusters. The assignment to a new cluster,
however, is constant. Finally, generating and evaluating proposal B*
is O(k).

e B € S_: The determinant is found by a () R decomposition for rank-1
updates in O(k?); the trace term only requires the k diagonal entries of
its argument, hence it suffices to update the block sums Z " SZ, such
that an assignment of one object to one existing cluster consumes O (k).
The most expensive operation is to compute B from scratch when A
grows by one dimension or changes completely (as with proposal A*
and its counterpart of the inverse, B*): this requires O(k?3), albeit not
in the innermost loop. Evaluating the likelihood for B* falls back to
only O(k?).

When all computations are combined as in Algorithm [T]and [2] the overall
complexity can be summarized as shown in Table [A.T] Unfortunately, the
most flexible model, A € S, does not benefit from the simpler likelihood,
however, the worst-case complexity for A € diag is successfully reduced
from cubic to square. In combination with tree construction, decomposition
and centering to receive matrix §, a diagonal model for A is the middle
ground between flexibility and computational cost. Hereby, the full pipeline
consumes O(p?).
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Ewens process

A B truncated standard
R diag O(p?) O(p?)
diag diag O(p?) O(p?)
S+ S- O(p®+pN?) O(p")

Table A.1: Overall complexity of clustering with Algorithm andwhen us-
ing the translation-variant model. diag, S; and S_ represent the
set of diagonal, symmetric positive-definite and negative-definite
matrices, respectively. Truncation assumes kpix < N € N,
where k < N < p.

A.2 Translation Invariance and its Relation to
Kernel PCA

Translation invariance can be interpreted as a special way of centering the
data and to this end, it is natural to ask how it compares to projections used in
other methods. One popular example is kernel principal component analysis
(kernel PCA) (Scholkopf et al.l [ 1998)), which constructs

Qpca = I, — %1;;1; (A.6)
to receive the centered inner product matrix
Seca = QpcaSQpca- (A7)

At first glance, this appears as a valid choice, because it satisfies Qpcal, =
0,, such that all column means lpr, w € R"™, are mapped to zero. How-
ever, in comparison to the projection for translation invariance,

Q=1I,—(1,W1,) 1,1, W,
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we see that both coincide for W = I,,. This means, kernel PCA assumes
the special case of fully independent rows (= objects), something that is not
meaningful in the context of clustering. Even though it can technically be
applied to our domain, this particular choice of centering would introduce a
serious bias.

The problem can also be seen from another point of view: each of the
n columns in X is allowed to have an individual mean according to M =
1pr. As a result, they are independently, but not identically distributed.
In other words, the first column follows N, (w; - 1,, ), while the second is
distributed as N, (ws - 1p, X), where w; # wo. This property violates the
assumptions of kernel PCA.

A.3 Translation Invariance and Cluster
Geometry

The flexibility of the model A € S leads to an insightful connection regard-
ing translation invariance:

Theorem 2. A full k x k positive-definite matrix A is flexible enough to
model any cluster geometry without the need for translation invariance.

Proof. Let mean matrix M consist of a cluster-geometry-defining part M 4
and a translational part M, that is,

M = My + Mr, (A.8)

where M = lpr, w € R™ and MAMX = ZAZT. Here, A is the inner
product of all k£ cluster means,

T
mq

my
A= . m; mg ... mg |, (A9)
my;
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with me € R". Then, we have

evaval
= 2(Ma+ Mp)(Ma + Mr)" (A.10)
L(MaM, + MaM] + MpMj + My M) (A.11)
=1(ZAZ" + Zal] + 1,027 + w'wl,1)) (A.12)
=YZAZ" + Za1[Z" + 710" Z7 + w w2141 ZT) (A13)
=ZL(A+al] + La” +ww11])27 (A.14)
= ZAZ'. (A.15)

Eq. |i used the fact that the mixed product of M AM}r leads to Z al;)r
with vector

a= . w. (A.16)

Next, Eq. (A.13) relied on the identity Z1; = 1,. As can be seen above,
there is always a positive-definite matrix A that captures both cluster-defining
A and translation 1p'wT simultaneously. 0

Due to this property, we can use the most flexible model for A and explicitly
learn the column translation. There is, however, a practical implication in
the sense that large shifts will dominate the values of A by %wT'wl kl;gr in
Eq. (A.T4). Hence, in Bayesian inference, a prior for A should ideally peak
at this scale, otherwise the exploration of the space is slow.

The question is whether to model the inner product of the cluster means on
an absolute scale or only on the relative part that defines the cluster structure.
Translation invariance explicitly distinguishes these two and allows us to
treat the cluster means as if they were centered.
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A.4 Variable Cluster Diameters

The focus on the covariance matrix was to model the inner product of the
cluster means via different assumptions for matrix A, but at the same time
the noise level was identical for all clusters. It is easy to imagine a dataset,
which does not fit into this category and instead exhibits clusters of different
diameter. Hence, the covariance model can be extended by writing

Y =ZAZ" + diag(Za), (A.17)

where vector a € R¥ defines the noise level for all clusters and Za distributes
its values according to the block structure. In the simplest case, we have
a = 1y, thus leading to diag(Za) = diag(1,) = ).

The reader should notice that the added degree of freedom also entails
further complications, since it must not conflict with scale invariance. This
means, vector a should only define the noise level relative to the scale of
matrix A. If this is ignored, it forces A to follow a in scale and conse-
quently, the MCMC sampler would unnecessarily explore equivalent cluster
configurations. A solution could be to enforce additional constraints, as for
example

S =1 (A.18)

Variable cluster diameters are ultimately a valid extension, but it is important
to keep in mind that (i) it requires a suitable and flexible prior, (ii) it must
avoid redundancy and should nort interfere with the scale of matrix A, and
(iii) it has a practical impact on the sampling process due to the increased
parameter space. For these reasons, we acknowledge the idea, yet maintain
a fixed noise term I,,.
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Gaussian Graphical Model

B.1 Clustering and Feature Correlation

Having developed the matrix T distribution as a generalization of the matrix
normal, it is possible to revisit the Gaussian mixture model for distance
matrices. Recall that the main difference between clustering and network
inference lies in the parametrization of covariance matrix ¥ = W !, where
clustering uses block structure ZAZ " + I, with A referring to the inner
product of cluster centers. For a better understanding of feature correlation
U in the context of clustering, let us generate three configurations from the
matrix normal distribution /\/'pm(Opxn7 Y ® W), as depicted in Fig.

=1, S =ZAZT +1, S =ZAZT +1,
v=1I, v=1I, \1175]71‘

Figure B.1: A (p = 1000) x (n = 2) sample X of the matrix normal distri-
bution is generated according to three different configurations.

If both covariances are identity matrices, the structure is trivial and all
objects correspond to a single spherical cluster. The addition of a block-
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structured X partitions the objects into three groups, each being of spherical
shape, and finally, ¥ # I, induces elliptical clusters. The important observa-
tion is that all ellipses have the same orientation, because ¥ affects all rows
in the same fashion, regardless of their cluster assignment. Therefore, the
model in Fig. [B.I] (right) is indeed an improvement over strictly spherical
clusters, albeit only a minor step forward.

From a clustering perspective, a more interesting dataset would comprise
elliptical clusters with different orientation, see Fig. (left). Unfortunately,
however, it is not possible to generate this from a single matrix normal
distribution; here, we applied different feature correlations ¥; and ¥y to
the clusters. If we ignore this warning and deliberately evaluate the matrix

True Labels Inferred Labels

Figure B.2: Clustering p = 500 objects using the matrix T likelihood with
block-parametrized W, where the data were generated by two
different matrix normal distributions. This is a clear violation of
the single-matrix assumption. The plots shows X (500 x 2).

T likelihood, the outcome looks like Fig. [B.2] (right). Clearly, the model
cannot explain the observations properly, which is why the most pronounced
elliptical cluster determines the global orientation and all remaining clusters
are aligned accordingly. Moreover, there is only one way for the model to
compensate the overall mismatch—introducing additional clusters.

In conclusion, feature correlation in the matrix normal distribution only
has practical relevance for Gaussian graphical models; its transfer to cluster-
ing adds some flexibility, but the resulting benefit is minor.
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Gaussian Copula Model

C.1 Distances and Meta-Gaussian Distributions

Regarding inference in pairwise distances, it first appears promising to decou-
ple the dependence structure from everything pertaining only to the individ-
ual rvs, however, recall that this explicitly requires access to the realizations
or at least their rank information. It is indeed possible to compute pairwise
distances from a meta-Gaussian distribution, provided that all p marginals
are continuous (that is, they permit a scalar product). Unfortunately, the
resulting distance matrix lacks the foundation to separate dependence from
marginals, or in other words: Sklar’s theorem is not applicable.

A second argument concerns the mean model: The meta-Gaussian setup
assumes that rows correspond to rvs, each following an individual marginal
distribution. Hence, it accounts for row means

M =vl], (C.1)

where v € RP. This, however, conflicts with the definition of pairwise
distances, which depends on above information as, for example, in the
Gaussian mixture model. Instead, a distance matrix cancels column means
M = 1pwT with w € R"™. Hence, the approaches are not compatible with
each other, except for the trivial case when both means are zero.
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C.2 Correlated and Independent Features

When developing the Gaussian graphical model for the domain of distances,
a considerable portion was spent to explain the consequences of latent fea-
ture correlation, thereby leading to a model based on Mahalanobis distances
rather than Euclidean distances. In that regard, we utilized the gene expres-
sion dataset of[Sheffer et al.|(2009) to demonstrate that a network of pathways
is very likely subject to correlation among patients. However, revisiting the
application using the information bottleneck, we required the patients to be
independent, which is obviously a contradiction.

It is true that the meta-Gaussian extension for mixed data requires i.i.d. re-
alizations, because it depends on the ranks to estimate the underlying corre-
lation matrix. If this independence property were violated, the realizations
would consequently change their order or become shuffled in the extreme
case. Detecting the occurrence of such a condition is a non-trivial problem,
especially for discrete rvs with only few levels.

In defense of the pathway experiments, note that the Gaussian graphical
model was restricted to only primary tumor patients in conjunction with char-
acteristic distributions across genes, while the information bottleneck used
expression values from all patient groups. Regarding the second, we ex-
plicitly accounted for the effects of age and sex, thereby removing the main
confounding factors that are known to skew our perception of gene expres-
sion data, see for example (Licastro et al., 2005; Baffert et al., 2004; Pal and
Hurrial 2010; Soderlund et al.l 2010). It appears plausible that these factors
also contribute to latent feature correlation as observed between TiMT and
TiWnet. Due to this, we argue that both experiments are sufficiently different
and do not compete, but rather complement each other. The combination of
both results leads to a more cohesive interpretation of pathways.
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