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Chapter 1

Introduction

Self-assembled semiconductor quantum dots (QDs) are nano-sized islands of semicon-

ductor material with a smaller band gab than the host material they are embedded in1

(Fig. 1.1). The resulting 3D confining potential is a trap for single electrons or holes,

whose spin states represent a solid state qubit2,3. Furthermore, they are high-brightness,

narrow linewidth single photon sources4. These properties make QDs very attractive for

exploring fundamental quantum physics and, if the issue of decoherence5 and scaling up

can be addressed, possible building blocks for quantum information processing6,7 and

quantum computation applications2.
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Dipole transitions 

Fig. 1.1. Transmission electron microscopy image of a single InAs quantum dot embedded

in charge tunable heterostructure. Courtesy of Jean-Michel Cauveau and Arne Ludwig.

1.1 Optical properties

In crystalline solids electrons are described by Bloch waves8 (ψ = exp(ixk) · u(x)), the

product of a plain wave with a periodic function (u(x)) reflecting the crystal periodicity.

Electronic and optical properties of solids can be explained with a band structure model9.
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Here, energy bands are plotted as a function of electron momentum E = E(k). InAs

and GaAs are direct band gap semiconductors, meaning the global conduction band

minimum lies directly “above” the global valence band maxima at k = 0, the so called

Γ-point. Hence the radiative recombination of an electron with a hole takes place without

involving a phonon. Around the Γ-Point the dispersion relations can be approximated

by a parabolas E ' h̄2k2/2m∗, where the solid state properties are included in the

effective mass m∗ (Fig. 1.2 (a)). In III-V-semiconductors the conduction (valence) band

is composed of atomic s-orbitals (p-orbitals). Spin-orbit coupling splits the J = 1/2 from

the J = 3/2 bands by ESO. The J = 3/2 band again is split into two bands, the light

hole band (mj = ±1/2) and heavy hole band (mj = ±3/2). The confinement of the QD

causes them to split by Ec, thus spontaneous emission only occurs from electron-heavy

hole recombination. Furthermore, the confinement quantizes the plane wave part of the

Bloch functions, resulting in a few discrete energy levels in the dot1 (Fig. 1.2(b)).

These properties can be exploited to build a two level quantum system10, where the

vacuum ground state |0〉 is coupled via a dipole transition to the excited state |X0〉,
consisting of a electron hole pair (exciton) bound to the QD. Exciting the transition with

a coherent laser and detecting either the transmission signal or resonance fluorescence

revealed all the textbook phenomena10 expected for a driven two level atom. Lorentzian
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Fig. 1.2. Schematic band structure of a quantum dot. (a) Simplified band structure around the

Γ point for a direct semiconductor. In the k ·p model the energy wave vector relation is parabolic with

one over the effective masses as pre-factors. The conduction (valence) band is composed of atomic s

(p) orbitals. Due to the sin-orbit interaction the J = 1
2

band is split by ESO. Strain and the strong

confining potential split the heavy hole and light hole band by Ec. (b) 3D confinement resulting from

the smaller band gap of InAs leads to quantized energy levels for electrons and holes. |0〉 and |X0〉 form

a two level quantum system coupled by an optical dipole transition and spontaneous emission.
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lineshapes11, power broadening, power induced transparency12; Rabi oscillations4, the

Molov triplet and anti-bunched resonance fluorescence4 have been observed. Typically,

the emission wavelength is around 950 nm and the emission rate is around 1 GHz13,

corresponding to a dipole moment of ∼ 0.5 nm·e, where e is the electronic charge. The

energy state separation for electrons and holes confined to the dot is on the order of

few 10s of meV, large compared to the thermal energy of 0.36 meV at T = 4.2 K.

Consequently, many spin experiments can be carried out in a simple bath cryostat.

1.2 Quantum dot growth and sample design

The workhorse system consists of InGaAs QDs surrounded by a GaAs matrix. These

devices are fabricated by molecular beam epitaxy (MBE) in the Stranski-Krastanov

mode. Here, strain due to the lattice mismatch between InAs and GaAs is the driving

force behind the self-assembly process, which starts after ∼1.5 monolayers of InAs14 are

deposited on GaAs. The resulting lens shaped QDs vary in size from dot to dot with

a typical hight of ∼5 nm along the growth direction and a diameter of ∼20 nm. A

film of InAs, the so-called wetting layer remains, forming a continuum for non-resonant

excitation. Ga diffusion into the dot, enabled by annealing during or after the growth,

-eVg 

Fig. 1.3. Sample design. Layer structure (top) and corresponding band structure (bottom) are shown.

Quantum dots are tunnel coupled to the Fermi sea of the highly doped back contact. The dashed line

indicates the Fermi Energy. Current flow is prevented by the blocking barrier, hence the device acts like

a plate capacitor. By varying the gate voltage Vg between top gate and back contact one can select the

occupancy with electrons.
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is exploited to fine tune the confining potential and hence optical emission wavelength.

Techniques from the semiconductor industry are available to alter the photonic and

electric environment. Post growth processing such as etching and lithography add to

the design toolbox. The QDs investigated in the first two chapters of this thesis are

embedded in a charge tunable device15 (Fig. 1.3). Here, electrons from the highly n+-

doped back contact can tunnel through a small barrier into the dot. This process is

controlled by adjusting the QD energy levels relative to the Fermi energy of the back

contact. Setting the gate voltage Vg charges the QD ground state with 1, 2 or 3 electrons.

The blocking barrier prevents current flow, making the device act as an plate capacitor.

Fine tuning of the exciton resonance is achieved by exploiting the Stark effect.

1.3 Single spins in a quantum dot

In principle the vacuum state |0〉 and the neutral exciton |X0〉 form a quantum two

level system. However, the coherence is limited to the ns time scale due to the rapid

radiative decay. Hence all quantum operations must be carried out on the ps time scale

with ultra fast optics. An alternative route is to use the spin of an electron (or hole

spin) trapped to the QD as a natural qubit2. In this case the exciton ground state

|e−〉 consists of one electron and the excited trion state |X1−〉 consists of one hole and

two electrons in a singlet state (Fig. 1.4(a)). Applying an external magnetic field B0
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Fig. 1.4. Singly charged quantum dot. (a) The ground state |e−〉 consists of one electron, the excited

state |X1−〉 of two electrons and one hole. (b) A magnetic field B0 along the growth direction lifts the

spine degeneracy. | ↑〉, | ↓〉 (| ⇑〉, | ⇓〉) denotes the electron (hole) spin states. According to the optical

selection rules only vertical transitions with the indicated circular polarization are allowed.
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along the growth direction splits the electron spin states | ↑〉 and | ↓〉 by the electron

Zeeman energy Eez = geµBB0, with ge the electron g factor and µB the Bohr magneton.

Correspondingly, the trion states are split by the hole Zeeman energy Ehz = ghµBB0, with

gh being the hole g factor and | ⇑〉, | ⇓〉 denoting the hole spin states (Fig. 1.4(b)). Since

the heavy holes are spin 3/2 particles (Fig. 1.2(a)) the optical selection rules only permit

transitions between | ↓〉 ←→ | ↑↓⇓〉 (σ−-polarized) and | ↑〉 ←→ | ↑↓⇑〉 (σ+-polarized).

Thus the transitions are specific in energy and polarization. Likewise, level diagrams

with the according selection rules can be constructed for in-plane magnetic fields and

dots charged with a single excess hole3. Electron and hole spins have been initialized

with close to unity fidelity via optical pumping schemes16–18. Furthermore, electron spin

manipulation with detuned laser pulses has been achieved on the 10 ps time scale19,20.

Also, conventional electron spin experiments with an alternating magnetic field have

been carried out on single quantum dots17. However, there is a need for experimental

improvements increasing the amplitude of the alternating B field to speed up the electron

spin rotations.

1.4 Nuclear spins in quantum dots

Self-assembled quantum dots are often referred to as artificial atoms. This is true in

the sense that they posses discrete energy levels and mimic two level atom behaviour.

However, since they vary in size and composition they are not indistinguishable. Fur-

thermore, the trapped particle’s interaction with the solid state environment leads to

decoherence21. A mayor crux is the interaction of the electron spin with N ∼ 105 nuclear

spins of the QD. Since the electron wavefunction is composed of atomic s-orbitals the

interaction is described by the Fermi contact Hamiltonian:

He
hf =

N∑
k

AkS · Ik, (1.1)

where S (I) is the electron (nuclear) spin operator and Ak is the coupling coefficient of

the kth nuclei22. The effect of polarized nuclear spins is described by the Overhauser

field BN , which is added to the external field, enabling read-out of the nuclear spin

polarization by changes in the exciton resonance position23. The effect of electron spin

polarization on the nuclei is described by the Knight field and flip-flop processes allow

spin transfer between electron to nuclei. Thus, nuclear spins can be polarized optically, a

process known as dynamic nuclear spin polarization (DNSP). Dipolar coupling between

the nuclei leads to fluctuations in BN . For large N one can assume a Gaussian distribu-
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tion of BN , with a standard deviation σN = Bmax
N /

√
N 24. Due to the mesoscopic size of

the ensemble the fluctuations are on the order of ∼ 10 mT. This is small compared to the

external fields of a few Tesla and thus fluctuations perpendicular to B0 are not a relevant

source of electron spin relaxation. However, fluctuations parallel to B0 represent a jitter

on the electron spin state precession and thus result in fast dephasing. Fully polarizing

the nuclear spin ensemble is one route to prolong electron spin coherence, but so far

only polarizations degrees of ∼50% have been achieved25. It is currently unknown what

hinders higher polarizations. Active feedback schemes have extended electron dephasing

times up ∼1µs.26 However, the technique is complex. Enhanced experimental resources

are needed to tackle these issues. An Alternative route is to use the hole spin states

split in an in-plane magnetic field as a qubit basis3,27. Here, the hyperfine interaction

is strongly reduced since the hole wavefunction is composed of atomic p-orbitals (Fig.

1.2(a)).

In the first two chapters we implement nano-scale nuclear magnetic resources on a

single quantum dot. The nuclear spin ensemble is highly inhomogeneous: there are four

different main isotopes with different gyromagnetic ratios; spin numbers are 3/2 for As,

Ga and 9/2 for In; the highly stained nature of the QD leads to large atom depended

quadrupolar shifts. Our method is to apply chirped pulses to address each transition at

some point of the sweep. To generate the high radio frequency (RF) field amplitudes

(∼5 mT) needed for efficient manipulation a low impedance high bandwidth microwire

structure was added to the standard device design. We are able to invert the ensemble

polarization with an efficiency of 72%. Varying the the pulse duration combined with

isotope selective measurements determines the key parameters of the ensemble: chemical

composition; effective nuclear spin temperatures, inversion efficiencies and quadrupolar

frequency distributions for each isotope.

In chapter 3 we use chirped NMR pulses to maximize the population difference be-

tween the +1/2 and -1/2 state and hence boost the signal from the central transition to a

detectable level. This enabled pulsed NMR measurements determining isotope selective

nuclear coherence times T2. For uncharged QDs we find T2 ∼ 5 ms. This is explained by

the suppression of the nuclear dipole-dipole interaction due to a second order quadrupo-

lar effect. When charged with a single electron T2 drops by more than two orders of

magnitude. We explain this observation by RKKY interactions, a second order process

were nuclear spin flip-flops are mediated by the electron spin. This is confirmed by the

recovery of T2 when the dot is charged with two electrons forming a spin singlet state.
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1.5 Quantum dots in nanowires

Due to the high refractive index of GaAs (∼3.5 at 950 nm) total reflection at the semi-

conductor vacuum interface occurs already at small angles (∼17◦). Thus one major

challenge for using semiconductor quantum dots as single photon sources is to efficiently

extract the light from the sample. This issue can be addressed by tailoring the photonic

environment. A quantum dot in a nanowire couples efficiently to the guided (Gaussian-

like) mode of the wire and extraction can be achieved by adiabatically tapering the

wire28. However, the top down fabrication is complex. In chapter 4 we investigate the

photonic properties from a fully self-assembled quantum dot in a GaAs/AlGaAs core

shell nanowire (NW) structure. We note that the QD self-assembly is driven by segrega-

tion processes rather than strain. Depending on the core shell structure the hexagonal

cross section is several hundred nm thick and the NWs are typically a few tens of µm

long. The quantum dots consist of AlGaAs island with low As concentration surrounded

by a AlGaAs barrier with high As concentration and typically emit in the range of 650-

730 nm. Interestingly, this is at a shorter wavelength than emission from the nearby

continuum formed by the GaAs core (∼830 nm). Experiments under non-resonant exci-

tation exhibit narrow emission lines (FWHM ∼ 30 µeV), close to the resolution limit of

our spectrometer. Pulsed and continuous wave time correlated single photon counting

reveal the highly anti-bunched (g(2)(t = 0) ≤ 2%) nature of the emission. Also, the CW

measurement shows the signature of a pure two level atom with no additional levels.

Decay curve measurements following pulsed excitation confirm the radiative lifetime of

∼0.5 ns. Single photon count rates of exceeding 1 MHz are measured close to saturation.

1.6 Opto-mechanical coupling

Due to their small size NWs are natural choice as AFM tips. The nanowires can be

functionalized to enhance sensitivity to electric or magnetic environments. In chapter 5

we investigate energy shifts in the quantum dot photoluminescence under the influence

of mechanical motion of the nanowire. To do so, we glue individual NWs on the edge of

a silicon chip and mount the chip on a piezoelectric transducer (PZT). The mechanical

modes of oscillation of the NW are excited by driving the PZT at the resonance frequency

of the NW (ν0 ∼0.5-1 MHz). This results in tensile/compressive stress, strongest close

to the clamping. Stress alters the lattice constant and consequently changes the band

gap, thus establishing a coupling mechanism between the NW motion and QD emission

energy. Large energy modulations exceeding 14 meV have been observed. Following in-
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terferometric calibration of the NW’s free end motion we determine the opto-mechanical

coupling rate λ = 66± 12 kHz, similar to the value measured by Yeo et al.29. Enhanc-

ing ν0/λ to or above unity would enable a quantum non-demolition readout of the QD

exciton state by detecting the free-end motion of the NW. Furthermore, stroboscopic

measurements show that different QDs within the focal spot of the microscope can by

dynamically tuned into resonance, a possible route to emitter-emitter coupling. Further-

more, for sensing applications reading the QD emission energy is an alternative way to

detect the nanowire motion.
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Chapter 2

Manipulation of the nuclear spin ensemble

in a quantum dot using chirped magnetic

resonance pulses

Adapted from:

Mathieu Munsch, Gunter Wüst, Andreas V. Kuhlmann, Fei Xue, Arne Ludwig, Dirk

Reuter, Andreas D. Wieck, Martino Poggio and Richard J. Warburton,

“Manipulation of the nuclear spin ensemble in a quantum dot with chirped

magnetic resonance pulses”, Nature Nanotechnology 9, 671-675 (2014).

The nuclear spins in nano-structured semiconductors play a central role in quantum ap-

plications1–4. The nuclear spins represent a useful resource for generating local magnetic

fields5 but nuclear spin noise represents a major source of dephasing for spin qubits2,3.

Controlling the nuclear spins enhances the resource while suppressing the noise. Nu-

clear magnetic resonance (NMR) techniques are challenging: the group-III and group-V

isotopes have large spins with widely different gyromagnetic-ratios; in strained material

there are large atom-dependent quadrupole-shifts6; nano-scale NMR is hard to detect7,8.

We report NMR on 100, 000 nuclear spins of a quantum dot using chirped radio-frequency

pulses. Following polarization, we demonstrate a reversal of the nuclear spin. We can

flip the nuclear spin back-and-forth a hundred times. We demonstrate that chirped-

NMR is a powerful way of determining the chemical composition, the initial nuclear spin

temperatures and quadrupole frequency distributions for all the main isotopes. The key

observation is a plateau in the NMR signal as a function of sweep-rate: we achieve inver-

sion at the first quantum transition for all isotopes simultaneously. These experiments

represent a generic technique for manipulating nano-scale inhomogeneous nuclear spin

ensembles and open the way to probe the coherence of such mesoscopic systems.
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(Experiments and results presented in this chapter were obtained in close collaboration

with Mathieu Munsch.)

2.1 Introduction

NMR signals can be boosted by polarizing the nuclei. This is particularly beneficial on

the nano-scale where NMR signals are invariably small and hard to detect. The nu-

clear spins in a self-assembled quantum dot can be polarized optically by exploiting the

hyperfine interaction with an electron spin3,5. Extremely long-lived polarizations4,9,10

(appendix A.2) up to about 50% have been achieved. The nuclear spin polarization

results in a shift of the optical resonance, the Overhauser shift, facilitating its sensitive

detection5. These features have enabled the observation of isotope-selective NMR of the

nuclear spins associated with strain-free GaAs quantum dots11,12. Self-assembled quan-

tum dots, attractive for single photon generation and optically-controlled spin qubits2,

have highly inhomogeneous nuclear spins5,13–15. Additional side peaks appear in the

NMR spectra, a consequence of a strain-dependent quadrupole interaction, along with

a distribution of chemical shifts6. Manipulating the nuclear spin ensemble of a sin-

gle quantum dot is challenging yet important: projection of the nuclear spins into a

specific state boosts the single electron spin dephasing time4; developing techniques to

probe nano-sized ensembles of highly inhomogeneous nuclear spins has impact also for

semiconductor nanowires16 and nanocrystals.

2.2 Concepts and experimental realization

2.2.1 Adiabatic passage: The Landau-Zener-Problem

Here we use chirped NMR pulses. The main concept is that by sweeping over a large

frequency range, the pulse addresses each nuclear spin at some point. For a spin-1
2

nucleus, a 2-level system, the Hamiltonian in the rotating frame is,

H = h∆ν(t)Iz +
1

2
hγBxIx (2.1)

where h is the Planck constant, I the nuclear spin, γ the gyromagnetic ratio of the

nuclear isotope (in frequency units) and ∆ν(t) is the time-dependent detuning between

the radio frequency (RF) excitation and the Larmor frequency νL = γBz. The coupling

between the RF magnetic field Bx and the spin, the second term in the Hamiltonian,

leads to an avoided crossing in the eigen-energies with splitting hνRF (Fig. 1(a)), where
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∆ν 

|-1/2〉 

|-1/2〉 |+1/2〉 

|+1/2〉 

0 

𝜈𝑅𝑅 = 𝛾𝐵𝑥 

Fig. 2.1. Eigen-energies of the nuclear spin I = 1
2

in the rotating frame versus RF detuning:

The static magnetic field is oriented along z and the oscillating (radio-frequency, RF) magnetic field

along x. Dashed blue lines show the diabetic states. The size of the avoided crossing νRF is proportional

to the strength of the RF filed BX .

νRF = γBx. On traversing the avoided crossing from large and negative ∆ν to large and

positive ∆ν with a single pulse (N = 1) at sweep rate α, the probability that the final

state is |↑〉 for initial state |↑〉, is

PLZ = exp(−π2ν2
RF /α), (2.2)

the Landau-Zener result17. In the sudden regime when PLZ ' 1, the system “tunnels”

through the avoided crossing and |↑〉 → |↑〉, |↓〉 → |↓〉. Alternatively, in the limit when

PLZ � 1, the states are swapped |↑〉 → |↓〉, |↓〉 → |↑〉: this is adiabatic passage (Fig.

2.1).

2.2.2 Experimental setup

We attempt to apply these concepts to a single nano-scale nuclear spin ensemble. The

challenges are, first, each nuclear spin is more complex than a two-level system; and

second, there is an inhomogeneous distribution of 105 nuclear spins. Initialization and

detection of the nuclear spin polarization of a single quantum dot is carried out optically

with exquisite spectral resolution provided by resonant laser spectroscopy, representing a

sensitivity to ∼ 1, 000 spins. The quantum dots for these experiments are gate-controlled

InxGa1−xAs quantum dots (appendix A.1), (Fig. 2.2(a)). The bias voltage Vg controls

both the occupation of the quantum dot (here empty) and the exact optical transi-

tion frequency via the Stark effect. Key to reaching the adiabatic limit PLZ � 1 is

the generation of RF fields with high amplitude. We use an on-chip, low-impedance,

high bandwidth microwire18 (appendix A.1), fabricated directly above the gate: large

oscillating currents in the microwire generate oscillating magnetic fields (Bx ' 5 mT,
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Manipu- 
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Read-out /  

Initialization 
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(d) 
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Vg 

SIL 

Back contact (n+ GaAs) 

Bz 

Bx 

Iwire 

Top contact (Au) 

(a) 

QD layer 

SiO2 

Fig. 2.2. Experimental setup. (a) Sample for magnetic resonance experiments on the nuclear spins of

a single self-assembled quantum dots. The quantum dots are embedded in a vertical tunnelling structure

controlled by gate voltage Vg. A gold microwire is fabricated above the gate with a hole for optical

access. Magnetic resonance is driven with an RF current passing through the microwire. A solid-

immersion-lens enhances the collection efficiency of the resonance fluorescence. (b) Cross-section of a

single InGaAs quantum dot (TEM image courtesy of Arne Ludwig and Jean-Michel Chauveau). (c) Top

view of microwire. (d) Pulse sequence of NMR experiment. A resonance is established with a constant

frequency laser. On ramping the gate voltage, the nuclear spins polarize in order to maintain the optical

resonance: the Stark effect is compensated by the Overhauser shift. A RF pulse is then applied to

manipulate the nuclear spin ensemble. The optical sequence is repeated to read-out the nuclear spin

polarization, acting also as initialization for the next sequence.

appendix A.1); the small impedance of the microwire enables fast pulsing. An aperture

in the microwire allows optical access to the quantum dots directly underneath (Fig.

2.2(a),(c)). The quantum dot optical resonance (X0) is driven with a coherent laser

with resonance fluorescence detection19,20, the read-out after one RF pulse providing

the initialization for the next (Fig. 2.2(d)).
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2.3 Reading and setting the nuclear spin polarization using the

dragging effect

A resonance fluorescence spectrum of the quantum dot at zero applied magnetic field,

Bz = 0 T, is shown in Fig. 2.3(a): the two lines, split by the fine-structure, have

linewidths of 1.2 µeV, close to the transform limit of 0.9 µeV21. At Bz ≥ 0.5 T, on

sweeping through the optical resonance, the nuclear spins adjust their polarization to

maintain an optical resonance of the quantum dot with the laser, the “dragging” ef-

fect22,23: the Overhauser shift OHS equals the laser detuning δL. Dragging represents a

way of generating large bi-directional nuclear spin polarizations22. An example is shown

in Fig. 2.3(b): starting with the nuclei in a depolarized state (appendix A.2), the optical

resonance is “dragged” to δL = −41 µeV. The nuclear spin polarization decays extremely

slowly (timescale days for an empty quantum dot4,9,10) (appendix A.2), resulting in op-

tical memory effects. A sequence of optical sweeps is shown in Fig. 2.3(b): the rise point

of each scan is related to the polarization set by the previous scan whereas the end of

the plateau sets the new polarization state.

2.4 Manipulation of the nuclear spin ensemble

For a given laser sweep direction, the change in width of the dragging “plateau” following

an NMR pulse is used to measure the change in the Overhauser field, ∆OHS in Fig. 2.4(a).

Manipulation of the nuclear spin ensemble is demonstrated in Fig. 2.4(a). The nuclear

spin polarization along z, 〈Iz〉, is initialized with a sweep from positive to negative

δL. With the laser off, a chirped NMR pulse is applied, ν = ν1 → ν2. The laser is

then turned back on and the sweep from positive to negative δL repeated. The optical

signal now appears not at negative δL but at positive δL, unambiguous evidence that

the RF pulse inverts the nuclear spin polarization. In this particular case, following

optical polarization, 〈Iz〉 /Imax
z ' +32%, and after one NMR pulse, 〈Iz〉 /Imax

z ' −13%

(appendix A.3). This interpretation is backed up by applying not one but a sequence of

chirped pulses, ν1 → ν2 → ν1 → ν2 . . . . As a function of pulse number N , 〈Iz〉 oscillates

from positive to negative, evidence of close-to-adiabatic manipulation of 〈Iz〉. We can

invert-restore the nuclear spin polarization ∼ 100 times before the signal is lost (Fig.

2.4(b)).
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Fig. 2.3. Resonance fluorescence versus laser detuning from a single quantum dot (X0

transition). (a) At Bz = 0, where δFS is the fine structure splitting. (b) Resonance fluorescence versus

laser detuning at Bz = 6 T on the blue X0 transition showing “dragging”. The plateau-like features

signify nuclear spin polarization. A sequence of sweeps shows clear memory effects. The extent of the

plateaux are reproducible to within 0.6 µeV on repeating a specific cycle. In blue (red) the laser is tuned

to more negative (positive) values.

2.5 Chemical composition and nuclear spin temperature

We explore the dependence on sweep rate α on tuning from low ν1 to high ν2 such

that all nuclear spins are addressed. The signal increases with decreasing sweep rate

(Fig. 2.6). Significantly, there is an exponential increase followed by a plateau and then

another exponential increase. The step-wise transition from the sudden to the adiabatic

regime is a consequence of a hierarchy of avoided crossings in the energy level structure.

It arises from a quadrupole interaction of the nuclear spin with a local electric field
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Fig. 2.4. Adiabatic passage of the nuclear spin ensemble. (a) A sequence of resonance fluorescence

sweeps with N chirped RF pulses (ν1 = 32.5 MHz, ν2 = 87.5 MHz, α = 0.18 GHz/s) following nuclear

spin polarization (N = 0, 1, 2, 3, 4). N = 0 reads initial 〈Iz〉 (appendix A); N = 1 inverts 〈Iz〉; N = 2

restores 〈Iz〉 to almost its N = 0 value, etc. The Overhauser shift (OHS) and the change in Overhauser

shift ∆OHS following a chirped pulse are labelled. (b) ∆OHS versus N for large N . The decay at large

N arises mostly from relaxation processes during the sweep; the residual signal at large N is presently

not understood. Solid lines are guides for the eye.

gradient resulting in an additional term in the Hamiltonian,

HQ =
1

6
hνQ

[
3I2
z − I(I + 1)

]
. (2.3)

where hνQ is the strength of the quadrupole field (appendix A.3). Fig. 2.5 shows the

eigen-energies for I = 3
2 , both in the laboratory and in the rotating frame.

When νQ � νRF , a hierarchy of avoided crossings appears, large for the first quantum

transitions (bare states separated by |∆m| = 1); intermediate at the second quantum

transitions (|∆m| = 2); and small at the third quantum transition (|∆m| = 3). A

similar but more complex hierarchy also arises in the In (I = 9
2) eigen-energies. Given

the exponential dependence of PLZ on the energy separation at the avoided crossing,

this means that the different quantum transitions satisfy the adiabaticity condition at

quite different sweep rates24–26. At the plateau in Fig. 2.6, the sweep is adiabatic for the

first quantum transitions (PLZ � 1) whereas the others are still in the sudden regime

(PLZ ' 1). At first sight, it is surprising that the step signifying adiabaticity at the first
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Fig. 2.5. Energy levels for a spin I = 3
2
. (a) In the laboratory frame. The static field Bz causes the

spin states to split into the Zeeman ladder, equally spaced by the Larmor frequency νL. The nuclear

quadrupolar moments couple to the electric field gradient resulting in alterations to the level spacing.

The central transition is only affected by second order terms. (b) In the rotating frame energy versus

RF detuning in the limit of νQ � νRF . There is a hierarchy of avoided crossings, the first, second and

third quantum transitions (|∆m = 1|, |∆m = 2| and |∆m = 3|, respectively) (appendix A.3).

quantum transitions survives the ensemble averaging. The explanation is to be found

in the scaling of the energies at the avoided crossings, hνeff. In the limit νQ � νRF ,

νeff ∝ νRF (νRF /νQ)|∆m|−1 for all I 24–26 (appendix A.3). This means that for |∆m| = 1,

νeff does not depend on νQ (to first order), suppressing the sensitivity of the adiabaticity

criterion to the quadrupole interaction.

The plateau in the sweep rate dependence is the key observation that allows both the

indium concentration x and the initial nuclear spin temperature T to be determined.

The point is that the signal at the plateau, ∆OHS = 28.8 µeV, and the initial Overhauser

shift, OHS = 27.0 µeV, are determined solely by x, T and the known nuclear parameters

(nuclear spins, hyperfine coupling constants and abundances of 75As, 115In, 69Ga and
71Ga), see appendix A.3. We find x = (20.2 ± 5.7)% and T = (8.2 ± 0.8) mK. The

composition x represents the indium concentration over the extent of the electron wave

function; the temperature, much lower than the bath temperature of 4.2 K, interprets

the dynamic nuclear spin polarization as a laser cooling phenomenon.

2.6 Spectroscopic measurements and quadrupole frequency

distributions

Spectroscopic identification of the isotopes is presented in Fig. 2.7 where the NMR pulse

is chirped from a fixed ν1 to a variable ν2 using a slow and constant sweep rate. The

NMR signal ∆OHS increases step-wise around 44 MHz. This arises when ν2 goes above
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Fig. 2.6. Nuclear spin inversion at the first quantum transition in chirped NMR. NMR signal,

∆OHS, following a single chirped RF pulse with ν1 → ν2 (ν1 = 32.5 MHz, ν2 = 87.5 MHz) as a function

of sweep rate α: experimental data (open circles) along with theory (dark gray line). The theory uses

x = 20.2%, T = 8.2 mK, Bx = 3.8 mT,
〈
νQ[75As]

〉
= 3.0 MHz,

〈
νQ[115In]

〉
= 1.5 MHz,

〈
νQ[69Ga]

〉
= 3.1

MHz,
〈
νQ[71Ga]

〉
= 2.1 MHz. The relative abundances are 75As (100%), 113In (4.3%), 115In (95.7%);

69Ga (60.1%) 71Ga (39.9%). ∆OHS versus α is shown for the four isotopes separately (colour plots). The

plateau arises because a range of α exists in which inversion at the first quantum transition is achieved

for all isotopes yet inversion at the second quantum transition is achieved for none. At the smallest α,

inversion at the first and second quantum transitions is achieved for the majority of In nuclei but only

inversion at the first quantum transition for the majority of I = 3
2

nuclei.

the central NMR frequency of a particular isotope, in this case 75As. Another clear

step arises at 79 MHz, the 71Ga resonance. Around the central transition, the single

spin satellite steps (appendix A.3) are broadened through atom-dependent quadrupole

couplings. This is particularly visible in the In contribution because of the large number

of satellites. This curve enables us to determine the average quadrupole frequency 〈νQ〉
and an approximate distribution p(νQ) for all the main isotopes, 75As, 115In, 69Ga and
71Ga.

For a specific I, νQ and νRF , we occupy the initial nuclear states according to the

known T , and integrate the Schrödinger equation numerically to determine 〈Iz〉 after a

single NMR pulse, converting 〈Iz〉 to ∆OHS with the appropriate hyperfine coefficient.

We find that the ν2-dependence is a strong function of both 〈νQ〉 and p(νQ) (appendix
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Fig. 2.7. Isotope-sensitive NMR with chirped pulses. NMR signal ∆OHS following a single chirped

RF pulse, ν1 → ν2 as a function of ν2: experimental data (open circles) along with theory (dark gray

line). The sweep rate α = 0.09 GHz/s and ν1 = 32.5 MHz. The vertical lines show the text-book NMR

frequencies of the In (I = 9
2
), Ga (I = 3

2
) and As (I = 3

2
) isotopes: step-wise increases in signal occur

each time ν2 crosses these particular frequencies. The theory uses x = 20.2%, T = 8.2 mK and Bx = 3.8

mT as in Fig. 3, along with Gaussian distributions for the quadrupole frequencies (inset).

A.3) and is therefore ideal to determine them. The 75As and 71Ga are well isolated as a

function of ν2 and in both cases, 〈νQ〉 and p(νQ) are readily determined by comparing

the experimental results to the theory. The 69Ga ν2-dependence can be predicted from

the 71Ga ν2-dependence simply by the known abundances and quadrupole moments (ap-

pendix A.3). The remaining signal at intermediate ν2 arises mostly from 115In allowing

us to determine the 115In quadrupole parameters. Fig. 2.7 shows that, first, we achieve

an excellent description of the experimental results; and second, the signals from the

four isotopes 75As, 115In, 69Ga and 71Ga overlap little facilitating the determination of

each quadrupole distribution.

We return to the sweep rate dependence. We calculate the α-dependence, adding the

results from each isotope with x, T , 〈νQ〉 as input parameters. (Bx is adjusted within

its error window to ensure that the plateau occurs at the correct α.) The same set of

parameters describes both the ν2- and α-dependences. Fig. 2.6 shows the contribution

from each isotope. 115In has the largest hνeff (on account of its large spin, I = 9
2)
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and inversion at the first quantum transition is achieved first of all, closely followed

by inversion at the first quantum transition for the I = 3
2 nuclei. At the smallest α,

inversion at the second quantum transition is achieved for most of the In nuclei (and

some of the 71Ga nuclei) but for most of the 75As and 69Ga nuclei, inversion at the

first quantum transition is complete but inversion at the second quantum transition is

not yet achieved. This explains the second change in gradient at the smallest α in the

experiment. The combination of the ν2 and the α-dependences allows in principle an

initial nuclear spin temperature to be determined for each isotope. In practice, these

temperatures are not significantly different to within the random error (appendix A.3)

and we take a common temperature for simplicity.

2.7 Conclusions

The overall conclusion is that frequency-swept NMR enables the determination of all

key parameters of the nuclear spins even at the single quantum dot level: the chemical

composition, the effective temperatures and the quadrupole frequency distribution of

each isotope. In chapter 3 we demonstrate that a sweep adiabatic for |∆m = 1| but

sudden for |∆m = 2| can be used to produce highly non-thermal distributions of the

spin states, boosting the NMR signal of the central transitions. This is the prerequisite

for the following nuclear spin coherence measurements (chapter 2). As an outlook we

note that at an intermediate sweep rate, a superposition of the spin states is created

with a chirped NMR pulse, and back-and-forth frequency sweeps result in quantum

interferences, the Stückelberg oscillations17,27–30. This experiment represents the ideal

springboard to explore quantum coherence in a complex nuclear spin ensemble using

multiple chirped pulses.
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Chapter 3

Nuclear spin coherence in a quantum dot

Self-assembled semiconductor quantum dots (QD) are excellent single photon sources1

and possible hosts for electron spin qubits2, which can be initialized, manipulated and

read-out optically3. For most solid state electron spin qubits in GaAs one unmastered

source of decoherence is the hyperfine interaction with the nuclear spins, whose coherence

is inevitably limited by nuclear dipole-dipole interactions. Resent work4,5 on uncharged

QDs showed that in strained nano-structures quadrupolar effects suppress dipole-dipole

interactions and prolong nuclear spin coherence times up to a few ms. It has been argued

this would also lead to enhanced electron spin coherence times. However, the effect of

actually loading the QD with an electron on nuclear spin coherence has so far only been

investigated theoretically6. Here we measure the nuclear spin ensemble coherence for a

single InGaAs quantum dot embedded in a charge tunable device7. For an empty dot

we confirm Hahn echo coherence times T2 of a few ms. In contrast, on charging with

a single electron T2 drops by more than a factor 100 down to a few tens of µs. The

reduction of coherence is explained by electron mediated coupling between nuclear spins

due to the hyperfine interaction6, an example of RKKY-type interaction. Charging the

QD with two electrons (a singlet state) recovers the T2 times of the empty dot, ruling

out any systematic errors resulting from the switching process itself.



3.1 Introduction

The proposal to use the spin of an electron bound to a quantum dot as a the basis

for quantum information processing2 has stimulated great research effort8. However, a

central crux for quantum dot based electron qubits is dephasing due to the interaction

with the ∼ 104 − 105 nuclear spins of the host material. Hence understanding, and

if possible controlling the underlying mechanisms is essential. The hyperfine coupling

between the electron spin and nuclear spins is described by the Fermi contact interaction.

Typically the static effect of the nuclear spins acting on the electron spin is described by

the Overhauser field BN . For optically active quantum dots, BN and hence the nuclear

spin polarization can read-out by measuring changes in the excitonic resonance position.

The static effect of the electron spin on the nuclear spins is described by the Knight

field. Furthermore, a flip-flop term in the Hamiltonian enables spin transfer between the

nuclei and the electron, enabling dynamic nuclear spin polarization (DNSP) by optical

means.

Dipolar coupling between the nuclear spins results in statistical fluctuations of BN

with a standard deviation σN = Bmax
N /

√
N around 10 mT9,10 for N ∼ 105. Here

Bmax
N is the maximum Overhauser field and N the number of nuclei. Narrowing σN by

suppressing dipolar coupling is supposed to be beneficial for the electron spin coherence.

In the case of high external magnetic fields the dipole-dipole interactions between two

nuclear spins I and J has the following form11:

Hdd = νdd(IzJz −
1

2
(IxJx + IyJy)), (3.1)

where the coupling strength νdd ≤ 200 Hz for nearest neighbours in InGaAs4 and scales

as r−3 with the nuclear distance r. For strained QDs atom-dependent quadrupolar

shifts12 (chapter 2) lead to modifications of the Zeeman energy ladder (Fig. 2.5). These

shifts are quantified by the quadrupole frequency νQ, typically a few MHz (chapter 2).

However, the central transition (CT) (+1/2 ↔ −1/2) is only affected by second order

quadrupolar effects ν
(2)
Q , resulting in a broadening of the CT with a width of just a

few 10-100 kHz4. Since νQ, ν
(2)
Q � νdd flip-flop processes described by the second term

of equation 3.1 are energetically forbidden. Thus nuclear spin diffusion out of the dot

is strongly suppressed resulting in T1 times for the ensemble polarization in the order

of days (appendix A.2) and spin bath coherence times T2 increased by a factor of ∼ 5

compared to values measured in unstrained structures4.

In this chapter we investigate the effect of charging the QD on nuclear spin coherence
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for indium and arsenic isotopes. To do so, we combine chirped and pulsed NMR tech-

niques with minimally invasive resonance fluorescence on a single QD embedded in a

charge tunable structure. For an empty and a doubly charged QD we confirm coherence

times of a few ms, as expected for suppressed nuclear dipolar interaction. In stark con-

trast the nuclear spin coherence is strongly reduced (by more than a factor 100) when

the QD is charged with a single electron. We attribute this observation to an RKKY

interaction, a second order process where nuclear spins are coupled to each other via

hyperfine interaction with the conduction electron. Adapting the theory for electron

mediated nuclear spin coupling in QDs developed by Klauser et al 6 we can explain the

decrease in nuclear spin coherence.

3.2 Concept and experimental cycle

The hardware of the experimental setup is the same as in chapter 2 (appendix A.1). A

measurement cycle is shown in Fig. 3.1(a). Again, we start with a dragging process13,

reading the previous nuclear spin polarization and setting the initial thermal nuclear

spin distribution (appendix A.3) for the next cycle. In order to obtain a detectable

signal we maximize the population difference between the +1/2 and the −1/2 state with

a preparation pulse. This is best understood by looking at the energy levels of a spin

3/2 in the rotating frame (Fig. 3.1(b)). In the limit of νQ � νRF the three first order

transitions are well separated in frequency. Furthermore, one can transverse the first

order transitions fully adiabatically, while still being in the fully sudden regime for the

higher order transitions (chapter 2). A chirped RF pulse starting from a large negative

(positive) detuning through the transition at −νQ (+νQ) and stopping before coming

close to the central transition swaps the population between +3/2 and +1/2 (−3/2 and

−1/2). The sweep rate α = 10 GHz/s was chosen so that first (second) order quantum

transitions are traversed fully adiabatic (sudden). Next, we select the QD charge state

by setting the gate voltage Vg and apply a coherent pulse (Rabi or Hahn-echo sequence)

on resonance with the central transition.

To minimize depolarization effects due to changing Vg, we keep the charging time fixed

and short (≤ 50 ms) compared to depolarization resulting from electron spin exchange

with the back contact. Even for Vg in between the empty and singly charged state,

the cotunneling regime, were the electron spin flip rate due to coupling with the back

contact is fastest, T1 processes can be neglected for times shorter than 50 ms (Fig. 3.2).

Furthermore, we determine the switching time of the device for charging the QD to

be ∼ 10 µs (appendix B) and hence introduce a 100 µs delay between setting Vg and
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applying the coherent RF pulse sequence.
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Fig. 3.1. Measurement cycle. (a) The initial dragging process reads the previous nuclear spin po-

larization and sets a new state, thermal distribution. Next, chirped pulses maximize the population

difference between the +1/2 and −1/2 state. Finally, we charge the QD and apply a pulse resonant with

the central transition. (b) Energy levels for a 3/2 spin in the rotating frame versus RF detuning in the

limit of νQ � νRF . The preparation pulses are indicated by red arrows.
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Fig. 3.2. Decay of the nuclear spin polarization for different gate voltages. For an uncharged

and a doubly charged QD the nuclear spin polarization decays extremely slowly (order of days), see

chapter A.1. The decay for a singly charged QD and in the region of maximum cotunneling is much

faster, but still slow compared to the time scale of a Hahn echo measurement (50 ms). Solid lines are

double exponential fits: NMR signal = C0 +C1exp(−t/τ1) +C2exp(−t/τ2). For the one electron regime

(max cotunneling regime) the fit yields C0 = 12.9 µeV, C1 = 18.0 µeV, t1 = 9.7 s, C2 = 8.5 µeV, t2 = 101

s (C0 = 9.6 µeV, C1 = 14.3 µeV, t1 = 0.6 s, C2 = 16.0 µeV, t2 = 5.6 s).
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3.3 Coherence of the nuclear spin ensemble under the

influence of QD charge

Applying a coherent pulse on resonance with the central transition drives the population

between the +1/2 and −1/2 state, where the exact resonance of the central transition

is determined using a method described in appendix B. Fig. 3.3 shows the NMR signal

(i.e. the change in the dragging plateau width) against pulse duration for indium and

arsenic in the case of three different QD charging states. Rabi oscillations, a signature

of coherent manipulation, are clearly resolved in all cases. The signal is proportional to

the population difference between two levels, rather than the occupancy of one level. A

function of the following form was used to fit the data:

NMR signal = D0 +D1e
−t/τRabi(sin2(πνeff t)− 0.5). (3.2)

The damping term results from inhomogeneous broadening of the CT, mainly due to

second order quadrupolar effects12. We observe that the damping is a factor ∼ 2 faster

for the singly charged QD compared to the empty or doubly charged QD. This effect

could result from the Knight field enhancing the inhomogeneous broadening or from a

reduced nuclear spin coherence due to electron mediated coupling, see below. The Rabi

frequency νeff = kγiBx is unaffected by the charging state. γi is the gyromagnetic ratio

of the respective isotope, Bx is the amplitude of the RF field and k is the scaling factor

in the effective 2 level approximation (appendix A.3). k = 2 for As and k = 5 for In.

Together with the different gyromagnetic ratios this explains the difference in the Rabi

frequencies: νeff = 65 kHz for As and νeff = 250 kHz for In. These measurements

confirm the results of chapter 2 that Bx is around 5 mT. Knowing νeff we can calibrate

the pulse duration for π/2 an π rotations on the Bloch sphere.

Next we perform a Hahn echo measurements by applying a π/2−τ−π−τ−π/2 pulse

sequence. This technique cancels out ensemble effects resulting from inhomogeneous

broadening and hence reveals the inherent T2 processes. The decay of the echo amplitude

is plotted against the total free precession time 2τ for In and As in the case of three

different charging states in Fig. 3.4. Single exponential functions ∼ exp(2τ/T2) are fitted

to the data to determine the coherence time T2. For As (In) we find T2 = 4.5± 0.7 ms

(T2 = 3.3±0.8 ms) when the dot is empty, T2 = 20±4 µs (T2 = 25±6 µs) when charged

with a single electron and T2 = 5.1± 0.8 ms (T2 = 3.0± 0.7 ms) when the dot is charged

with two electrons forming a spin singlet. We note that the revival of T2 for the doubly

charged QD rules out any systematic effect (loss of coherence via fast electron tunneling
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Fig. 3.3. Rabi oscillations of the nuclear spin ensemble. (a) Arsenic. (b) Indium. After the

state preparation we charge the QD (0,1 or 2 electrons) and apply a pulse resonant with the central

transition. Varying the pulse duration drives the population between the +1/2 and −1/2 state. The

function D0 + D1exp(−t/τRabi)(sin
2(πνeff t) − 0.5) is fitted to the data (solid lines). We find that the

Rabi frequency νeff = 65 kHz for As (νeff = 250 kHz for In) is not affected by the charging. Damping

of the oscillation amplitude is attributed to inhomogeneous broadening of the central transition due to

second order quadrupolar effects, whereas charging the dot with a single electron increases the damping

by a factor of two.

at the charging) caused by switching Vg.

A detailed investigation of T2 as a function of Vg is shown in Fig. 3.5 (b). The different

charging regions (vacuum, 1 e− and 2 e−) are identified by mapping the maximum

intensity of the X0 and X1− plateau (Fig. 3.5(a)). We observe a steady decrease in

nuclear spin ensemble coherence from about 5 ms down to 20 µs when Vg is changed

from the empty to singly charged region and a subsequent steady recovery of T2 when Vg

is tuned to the doubly charged region. In contrast, the electron spin coherence is highest

at voltages corresponding to the center of the charging plateau because electron spin

flip-flops due to co-tunneling to the Fermi reservoir of the back contact are strongest at

the edges of the plateau14,15.

We can estimate the cotunneling rate γct as a function of Vg by measuring the X1−

linewidth under resonant excitation and apply the model of Smith et al (Fig. 3.5(a)). In
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Fig. 3.4. Hahn echo T2 measurement. (a) Arsenic. (b) Indium. After the state preparation we

charge the QD (0,1 or 2 electrons) and apply a π/2 − τ − π − τ − π/2 sequence. The echo amplitude

is plotted against the total delay 2τ . We use single exponential fits (∼ exp(−2τ/T2)) to determine the

coherence times. T2 for the singly charged dot is more than a factor 100 lower than for the empty or

doubly charged QD.

the model γct is given by:

γct =
∆2

h

∫
ε

∣∣∣ 1

ε+ e(Vg − V1)/λ+ i
2Γ

+
1

e(V2 − Vg)/λ− ε+ i
2Γ

∣∣∣2×f(ε)[1−f(ε)]dε. (3.3)

With the Fermi energy defined to lie at zero energy, f(ε) = 1/(exp(ε/kBT ) + 1) is the

Fermi-Dirac function, ∆ is the tunnel energy, Γ is the energy broadening deduced from

the linewidth measurements, λ is the lever arm determined by the sample structure, V1

and V2 denote the edges of the charging plateau. The cotunneling rate as a function of

Vg is shown in Fig. 3.5(c). At the center of the plateau we find a co-tunneling rate of

∼ 30 MHz. The magnitude of this value is confirmed by the absence of spin pumping

combined with the knowledge of the branching ratio (appendix B).

To model the nuclear spin ensemble coherence under the presence of an electron spin

Franziska Maier and Daniel Loss adapted the theory developed by Klauser et al.6. The

details can be found in appendix B. Here we will give a qualitative description of the

calculations and their relevance for the observed phenomena. In this model nuclear

spins are described as spin 1/2 particles with a common gyromagnetic ratio and common
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Fig. 3.5. Nuclear and electron spin coherence times as a function of gate voltage. (a) Maximum

resonance fluorescence intensity maps of the neutral (X0) and singly charged exciton (X1−). Dashed

lines correspond to an X1− emission intensity drop of 50% and indicate the charging plateau boundaries.

Here, 0 e− and 1 e− ground state energies are the same and are thus occupied 50:50. (b) Nuclear spin

coherence times T2 versus Vg. (c) Co-tunneling rates extracted from linewidth measurements. The

solid line describes the dependence according to the model of Smith et al.16, see equation 3.3. Input

parameters used are: V1 = −2.75 V, V2 = −2.302 V, λ = 18.93, ∆ = 0.21 meV (d) Calculated nuclear

spin coherence as a function of QD size based on equation 3.8, with input parameters ω = 257 µeV,

A = 86 µeV.

hyperfine coupling constant. Quadrupolar and dipolar interactions are neglected and the

only coupling considered is mediated by hyperfine interactions with the electron spin,

where each of the N nuclear spins is coupled to the remaining N − 1 nuclear spins. In

reality the nuclear spin transitions for the entire ensemble are spread over a bandwidth

∼ 40 MHz at B0 = 6.6 T, due to different gyromagentic ratios and stain broadened

side bands (chapter 2). Since this bandwidth is comparable to the minimum value at

the cotunneling rate γminct = 30 MHz (at center of the charging plateau, (Fig. 3.5(c)))

Breit-Wiegner broadening enables coupling between all transitions. As will be shown

below T2 is proportional to N . The systematic error/uncertainty on γminct is large, so

that γminct can be viewed as an upper limit. For reduced γminct the involved number of

nuclei and consequently T2 are also reduced.
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The relevant Hailtonian H = H0 + V for modelling electron mediated nuclear spin

coupling is taken from Klauser et al.6, where:

H0 = εzSz + ηz
∑
j

Izj + SzOHS, (3.4)

V =
1

8ω

∑
j 6=l

AjAl

[(
1

2
+ Sz

)
(I−j I

+
l + I−l I

+
j )−

(
1

2
− Sz

)
(I+
j I
−
l + I+

l I
−
j )

]
. (3.5)

Here, Sz is the z component of the electron spin operator, Iz,±j (I±j = 1/
√

2(Ixj ± iI
y
j ))

are the components of the nuclear spin operator of the jth nuclear spin, and εz and ηz

are the electron spin and nuclear spin Zeeman splitting, respectively. The Overhauser

shift is given by OHS =
∑

j AjI
z
j , where Aj = Aν0|ψ(rj)|2, where A is the averaged

hyperfine coupling constant, ν0 is the volume of a single nucleus unit cell and ψ(rj) =

ψ(0)e−(rj/aB)2/2 is the electron envelope function (i.e. the QD is assumed to be spherical).

Here, the effective Bohr radius aB defines the total number of nuclear spins interacting

with the electron spin, N = 4
3πa

3
B/ν0. ω = εz + OHS = geµBB0 + OHS denotes the

effective Zeeman splitting of the electron spin. From equation 3.5 we see that the electron

mediated coupling strength in frequency units is νRKKY = AjAl/(8hω), where h is the

Plank constant. Knowing the indium concentration of 20% (chapter 2) we calculate

A = 86 µeV (appendix A.3). With ge = −0.7 (appendix B), B0 = 6.6 T, OHS ∼ 30

µeV (chapter 2), we determine ω = 287 µeV and consequently νRKKY ∼ 0.78 GHz. If

Sz in equation 3.5 is zero the electron mediated coupling is turned off. This is of course

the case for an empty dot and a doubly charged dot, when the electron spins couple to

a singlet state. Furthermore, if Sz fluctuates more rapidly than νRKKY the coupling is

suppressed, this is the case at the edges of the charging plateaus, where the co-tunneling

rates are high (Fig. 3.5(c)). Hence we can understand the steady decrease in T2 when

Vg is tuned from the edges to the center of the charging plateau.

Although the exact dependence of T2 on Vg is not described by the model we can find

a value for T2 at the center of the plateau since there νRKKY is ∼ 25 times larger than

νct and thus the effect of co-tunneling can be neglected. To do so we investigate the

time evolution of the transverse component of a single nuclear spin 〈I+
k (t)〉 coupled to

all other nuclear spins and calculate its decoherence rate:

Γk =
A3ν2

0

4π5/2h̄ω2a6
B

e−3(rk/aB)2 rk
aB

. (3.6)
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For a homogeneous ensemble polarization and short times (Γkt � 1, appendix B) the

decoherence rate of the ensemble can be approximated by:

Γ̂N =
∑
k

Γk =
A3ν0

18π3/2h̄ω2a3
B

. (3.7)

Since the Bohr radius determines the number of nuclei, the nuclear spin ensemble co-

herence time depends linearly on the number of nuclei:

T2 = Γ̂−1
N =

27
√
πh̄ω

2A
N (3.8)

For ω = 257 µeV, A = 86 µeV this relation is plotted in Fig. 3.5(d). For realistic dot sizes

(104 − 105 nuclei) T2 is around 20− 150 µs. Given the simplifications of the model and

the uncertainty on γminct this result agrees well with the measured value. We conclude

that electron mediated interactions are responsible for the reduction in T2.

3.4 Conclusion and Outlook

Chirped NMR pulses adiabatic for first order, but fully sudden for second order quantum

transitions were used to maximize the population difference between the +1/2 and −1/2

spin states. The resulting boost in signal from the central transition enables pulsed

NMR measurements to determine nuclear spin coherence times T2 in a highly strained

nanometer sized structure. We find that T2 strongly depends on the charging state of

the quantum dot: for an empty or doubly charged QD the net electron spin is zero and

T2 is on the order of a few milliseconds. This prolongation in coherence compared to

unstrained structures results from the suppression of nuclear dipole-dipole interactions

due to atom dependent quadrupolar shifts. When charged with a single electron, T2 drops

by more than two orders of magnitude. We attribute this phenomenon to an RKKY

interaction, where the electron mediates spin flip-flop processes between different nuclei.

This interpretation is backed up by model calculations yielding coherence times of the

same order of magnitude for this type of interaction.
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Chapter 4

Bright source of red single photons from a

new quantum-dot-in-nanowire system

Adapted from:

M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Margen, D. D. O’Regan, J. W. Lou,

B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R.

Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton and A.

Fontcuberta i Morral,

“Self-assembled quantum dots in a nanowire system for quantum photonics”,

Nature Materials 12, 439-444 (2013).

Quantum dots embedded within nanowires represent one of the most promising tech-

nologies for applications in quantum photonics. While the top-down fabrication of such

structures remains a technological challenge, their bottom up fabrication through self-

assembly is a potentially more powerful strategy. However, present approaches often

yield quantum dots with large optical linewidths, making reproducibility of their phys-

ical properties difficult. We present a versatile quantum-dot-in-nanowire system which

reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots

form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned

with nanometer precision relative to the nanowire centre. Unusually, their emission is

blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-

scale electronic structure calculations show that the origin of the optical transitions

lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-

assembling on silicon substrates, these quantum dots could therefore become building

blocks for solid-state lighting devices and third-generation solar cells.



(Experiments and results presented in this chapter were obtained in a large collabora-

tion. My contribution was designing, setting up, performing and analysing the following

experiments to characterize the optical quality of the QDs: confocal images; continuous

wave (cw) and pulsed second-order intensity correlation g(2)(t) measurements; determin-

ing radiative lifetimes; determining linewidths and single photon count rates.)

4.1 Introduction

Semiconductor quantum dots have been shown to be excellent building blocks for quan-

tum photonics applications, for instance single photon sources and nano-sensing applica-

tions. Desirable properties of a single photon emitter include high fidelity anti-bunching

(very small g(2)(t = 0)), narrow emission lines (ideally transform limited to a few µeV)

and high brightness (> 1 MHz count rate on standard detector). For simplicity, these

properties should be achieved either with electrical injection or non-resonant optical ex-

citation. Desirable properties of a nano-sensor include a high sensitivity to local electric

and magnetic fields, with the quantum dot located as close as possible to the target

region. A popular realization involves Stranski-Krastanow (SK) InGaAs quantum dots

embedded in a 3D matrix, which are excellent building blocks for the realization of prac-

tical single photon sources1. However, the photon extraction out of the bulk semicon-

ductor is highly inefficient on account of the large mismatch in refractive indices of GaAs

and vacuum. An attractive way forward is to embed the quantum dots in a nanowire2.

To solve the extraction problem, the nanowire is designed to operate as a single mode

waveguide, a so-called photonic nanowire, with a taper as photon out-coupler3. Also, for

nano-sensing applications, a quantum dot in a nanowire can be located much closer to

the active medium. Top-down fabrication of the photonic waveguide is technologically

complex, however. Bottom-up fabrication of the photonic waveguide is very attrac-

tive4–6, but it is presently challenging to self-assemble quantum dots in the nanowires

with narrow linewidths and high yields7,8. Nano-sensing applications are presently not

highly developed. Other degrees of freedom of the quantum-dot-in-nanowire system that

can be usefully exploited are the mechanical modes for opto-mechanics (chapter 5); and

doping for p-n junctions with applications in light harvesting9,10.

4.2 The quantum-dot-in-nanowire-system

We present here a promising new quantum-dot-in-nanowire system. A schematic of the

physical structure is shown in Fig. 4.1(a). The structure consists of Al-poor AlxGa1−xAs
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(x ∼ 10%) quantum dots in an Al-rich AlxGa1−xAs (x ∼ 60%) barrier wrapped in an

intermediate Al-content matrix (x ∼ 33%). The quantum dots form in the ridge of

an AlGaAs nanowire. The self-assembly is driven by the different Ga and Al adatom

mobilities on the nanowire surface, leading to Al segregation. The quantum dots can

be positioned close to the nanowire surface or close to the nanowire core during the

growth simply by choosing the growth mode, lateral or radial, and the overall diameter

of core and shell. We note that the quantum dot size is independent of the core diameter.

Significantly, the nanowire growth is not complicated by fluctuations in crystal structure

(polytypism). We find that the quantum dots are very stable, surviving prolonged

electron beam bombardment, exposure to air and so on, and that the quantum-dot-in-

nanowire growth is very reproducible from one run to the next: there is a wide window of

parameters under which they form. The quantum dots have excellent optical properties

even when they are located just a few nanometers from the surface: individual quantum

dots are very bright (MHz count rate) even without engineering the photonic modes, the

linewidths are small (sub-100 µeV) and the photons are highly anti-bunched (the upper

bound on g(2)(t = 0) is just 2%) even with intense non-resonant excitation.

An unusual feature is the blue-shift of the quantum dot emission relative to emission

from electrons and holes in the lowest energy continuum states, in this case emission

from the GaAs substrate, the core. This wavelength ordering of quantum dot and

continuum emission is reversed relative to SK quantum dots. We interpret this unusual

result with large scale calculations using both the empirical pseudopotential method

(modeling explicitly 500,000 atoms in this dot-in-wire structure) and density functional

theory (modeling a wire geometry with up to 12,000 atoms). The calculations show that

whereas the states at the band edge of the system as a whole are indeed located in the

GaAs layers, states at higher energy exist, confined to the quantum dot. The results

are summarized in an energy level diagram (Fig. 4.1(b)), which shows the band edge

valence and conduction states, h0 and e0, and the quantum dot valence and conduction

states, hQD and eQD. For SK dots, the continuum states are associated with the wetting

layer, a thin 2D layer connecting the quantum dots, and lie at higher energy than the

lowest energy quantum dot states, e0 and h0. For the quantum-dot-in-nanowire system

presented here, this energy reversal of quantum dot and continuum emission represents

a new Ansatz for a solid-state single photon emitter. For SK dots, the wetting layer

creates problems on non-resonant excitation: it can emit strongly11 and trap charges

over times comparable to the radiative lifetime12, resulting in an increase in g(2)(t = 0)

as the pump power is increased13. These problems are bypassed here. This, along with

the high material quality, is responsible for the very high fidelity photon anti-bunching
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Fig. 4.1. Schematics of the quantum-dot-in-nanowire system. (a) The nanowire core consists of

GaAs. The quantum dots form close to the outer edge of an AlxGa1−xAs shell. Aluminium segregates at

the nanowire edges owing to the lower mobility of aluminium. At the outer edge of the AlxGa1−xAs layer,

Al segregates further in the [112] directions leading to Al depletion and the formation of a nanoscale

inclusion, an Al-poor AlxGa1−xAs quantum dot. (b) The band edge diagram showing from left to right

the AlxGa1−xAs matrix and barriers, the lowest energy states confined to the quantum dot and the

external GaAs capping taken from atomistic pseudopotential theory.

in the emission from a single quantum-dot-in-nanowire.

GaAs nanowires were grown by molecular beam epitaxy on a 2 inch Si (111) substrate

using the gallium-assisted method14. After stopping the axial growth, the conditions

were switched from axial to lateral to grow AlxGa1−xAs shells with Al compositions

of x = 33% and x = 51%15,16. In the lower Al content shell, we also alternated

the AlxGa1−xAs shells with 20 nm thick GaAs quantum wells. The nanowires were

characterized structurally in cross-section using high-angle annular dark field scanning-

transmission electron microscopy. Images of a GaAs nanowire covered with alternating
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Fig. 4.2. Structure of quantum-dots-in-a-nanowire. (a) Aberration corrected HAADF STEM

image of the entire cross-section of a GaAs nanowire coated with multiple Al0.33Ga0.77As /GaAs shells.

(b) Zoom in of (a). (c) Detail of the Al-poor quantum dot located within the fork-like Al-rich stripes.

The colouring has been chosen to enhance the contrast between the different regions. (d) 3D atomic

model of the cross-sectional STEM image shown in (c). The different colours have been introduced for

clarity. (e), (f) Chemical profiling of a single quantum-dot-in-nanowire using EDX (energy-dispersive

X-ray) spectroscopy along two orthogonal directions.

layers of Al0.33Ga0.77As and GaAs are shown in Fig. 4.2(a)-(c). The lighter regions corre-

spond to GaAs, the darker regions to AlxGa1−xAs, the contrast correlating directly with

the Al content (Z-contrast). We observe the formation of dark stripes at the nanowire

corners indicating Al enrichment. This accumulation is consistent with the difference

in chemical potential and adatom mobility on (110) and (112)-type facets17–20. More

intriguing is the morphology of some stripes at the end of the AlxGa1−xAs layer (Fig.

4.2(b),(c)). The stripes open up, leaving a region of few nanometer extent with low Al

content: this region constitutes the quantum dot. Fig. 4.2(c) shows how the Al-rich

stripe following the (101̄) plane bifurcates into two Al-rich stripes parallel to the (11̄2̄)

and (2̄1̄1) planes, forming a Y-like shape, terminated on a polar (121) plane. Chemical

profiling realized by energy-dispersive X-ray (EDX) spectroscopy along the two princi-
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pal directions of the quantum dot is shown in Fig. 4.2(e),(f). In the direction from the

quantum dot base towards the apex, the Ga signal decreases and the Al signal increases

whereas across the base, the Ga and Al signals remain constant. This information is

consistent with a shape in the form of a pyramid21.

4.3 Optical characterization

4.3.1 Localizing single emitters

After the growth the nanowires are detached from the growth substrate and deposited

on a silicon chip. Single emitters can be localized using photoluminescence (Fig. 4.3) or

cathodoluminescence (Fig. 4.4) measurements. In both cases, in addition to a broad-

band emission around 820 nm (1.51 eV) which we attribute to emission from the GaAs

core, we observe sharp emission lines at higher energy, in the red part of the spectrum

(Fig. 4.5(a)). Representative cathodoluminescence measurements in the spectral region

630 − 690 nm (1.97 − 1.80 eV) along with the corresponding electron microscopy im-

age are shown in Fig. 4.4. While the 820 nm CL is spatially continuous21, the 677 nm

CL is spatially discontinuous along the nanowire (Fig. 4.4(b)-(d)): there is a chain of

bright, nanoscale emitters. This suggests that the quantum dots identified in the struc-

tural characterization are indeed responsible for the optical emission in the red. This

is reinforced by images at higher magnification (Fig. 4.4(c),(d)), which show extremely

localized emitters separated laterally by less than 200 nm, corresponding to quantum

dots on adjacent edges of the nanowire.
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Fig. 4.3. Confocal imaging. (a) Light microscope image with 200x magnification. Gold markers enable

orientation. (b) Confocal reflectivity scan, illumination with a laser diode (λ = 695 nm). (c) Spectrally

integrated (664-836 nm) confocal PL image from the same region as in (b), excitation with HeNe-laser

(λ = 633 nm). Strong emission from QD 1 located at the end of a NW is observed.
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Fig. 4.4. Cathodoluminescence of a single nanowire (a) Electron microscopy image of a GaAs

nanowire with a Al0.75Ga0.25As shell. (b) Cathodoluminescence (CL) mapping of a nanowire detecting

emission at 677 nm. (c), (d) Detailed CL map showing spatially localized CL centres corresponding to

quantum dots less than 200 nm apart on two adjacent edges of the nanowire emitting at 677 nm.

4.3.2 Analysing the photoluminescence polarization

Further confirmation that the structures identified in the TEM analysis are optically

active comes from PL characterization of individual quantum dots. The PL was collected

in a side-on geometry and its polarization dependence was measured as a probe of the

dielectric environment. The broadband emission from the core is strongly polarized

along the axis of the nanowire, reflecting the pronounced dielectric anisotropy (Fig 4.5

(b)). However, the sharp PL lines from individual quantum dots are preferentially

polarized in quantum-dot-dependent directions, and in some cases, the polarization lies

in a direction perpendicular to the nanowire axis (Fig. 4.5(b)). This observation supports

the assignment of the sharp quantum dot PL lines to emitters located not on the nanowire

axis but close to the surface.
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Fig. 4.5. Photoluminescence of a quantum-dot-in-nanowire system. (a) Photoluminescence

recorded from a nanowire with non-resonant excitation at 488 nm. The broad peak at 820 nm arises

from emission from the GaAs core; the sharp peaks at shorter wavelength arise from the quantum dots.

(b) Azimuthal polarization analysis of the emission from the nanowire core and from three quantum

dots.

4.3.3 Characterizing the single photon emission

A zoom-in of a typical PL spectrum of a single quantum dot is depicted in Fig. 4.6. For

this particular quantum dot, the emission is centred at 676 nm (1.83 eV), with a full-

width-at-half-maximum of 36 µeV. The linewidth varies from dot to dot. The smallest

linewidth observed so far is ∼ 29 µeV, with most quantum dots showing sub-100 µeV

linewidths.

The following data was recorded from the emission of QD 1 (Fig. 4.3(c)). Exciting with

a HeNe-laser (λ= 632.8 nm) the PL was sent through a Gaussian bandpass filter (FWHM

= 0.5 nm) and detected with a Si avalanche photo diode without spectrally resolving

the line. Fig. 4.7(a) shows how the integrated intensity increases linearly (exponent

0.99) with excitation power until the total count rate saturates at around 2 MHz. We

investigate the exciton decay using a Q-switched diode laser (pulse width 80 ps) as
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Fig. 4.6. PL spectrum of a single quantum dot. Recorded at T = 4.2 K with 0.03 µW/µm2 at

wavelength 632.8 nm of excitation. The points are the measured counts on the charge-coupled-device

camera, the black curve a Lorentzian fit. The blue curve corresponds to the spectrum after deconvoluting

the spectral response of the detector (Lorentzian with FWHM 46 µeV) and therefore represents the

quantum dot alone: the quantum dot PL spectrum has a FWHM of 36 µeV for this particular quantum

dot.

excitation source and time-correlated single photon counting. The decay curve is fitted

extremely well over 3 decades of intensity to a convolution of a single exponential decay

with the instrumental response function (IRF) (Fig. 4.7(b)). The IRF was measured with

the same setup by detecting a small amount of laser light. The decay curve provides no

evidence of a second decay channel: radiative decay clearly dominates. The fit yields

a decay time of 450 ps. This is an important result: even though the exciton state

is metastable, radiative decay is much faster than relaxation to the electron and hole

ground states in the core. In other words, once an electron-hole pair is created in the

quantum dot, it decays by spontaneous emission and not by electron and hole relaxation

to the band edge states, e0 and h0. The value of τ is sub-nanosecond, consistent with

a large electron-hole overlap22, i.e. inconsistent with a transition involving an electron

and hole localized in different regions of space: both electron and hole are confined to

the quantum dot.

In order to determine the quantum character of the emission, i. e. the nature of the

anti-bunching, we have measured the time-dependence of the second-order intensity cor-

relation g(2)(t) with a Hanbury Brown-Twiss interferometer. g(2)(t = 0) characterizes

the fidelity of the anti-bunching. Furthermore, with cw excitation, the full g(2)(t) func-
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Fig. 4.7. (a) Excitation power dependence of PL from the quantum dot. A single photon

count rate of two Megahertz is reached at saturation. (b) Decay curve of the quantum dot. The

black cure shows the instrument response function (IRF) of the setup. Convoluting a single exponential

decay with the IRF (blue curve) is used to fit the measured decay (red curve). There are no hints to a

secondary decay process.

tion is sensitive to the dynamics with 2-level, 3-level systems behaving very differently.

This allows us to probe if the quantum-dot-in-nanowire behaves like a 2-level atom for

which g(2)(t) = 1− exp(−|t|/τ). A histogram of stop-start delays with cw (HeNe-laser)

excitation is shown in Fig. 4.8(a). There is a very clear dip at time delay zero (t = 0),

demonstrating anti-bunching in the photon statistics. To probe 2-level behaviour, we

take τ from the lifetime measurement, and we measure in situ the temporal response

function of the experimental setup to quantify the jitter (dominated by the detectors).

We then calculate the convolution of the 2-level atom result with the system response.

Fig. 4.8(a) shows that this procedure describes the experimental results extremely well.

We stress that this method does not involve any fit parameters; in fact, the agreement

cannot be improved by allowing τ to vary in a fit procedure. In this way, we find that

the upper bound on the true value of g(2)(t = 0) is 2%: the fidelity of the photon

anti-bunching is extremely high.

The autocorrelation was also measured with the Q-switched diode laser as excitation

source to complement the autocorrelation recorded with a continuous wave laser. Apart

from the laser source, the setup for the autocorrelation measurement remained the same.

The autocorrelation measured with the pulsed laser is shown in Fig. 4.8(b) at a laser

power close to saturation. An upper bound for g(2)(t = 0) is determined by integrating

the counts in the peak at t = 0 and dividing this by the average integrated counts in the

peaks at finite delay. The upper bound on g(2)(t = 0) is around 11%. Unlike the bare
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Fig. 4.8. Second-order intensity correlations. (a) A g(2) measurement of QD 1 (Fig. 4.3(c)) using

continuous wave excitation at 632.8 nm. The count rate (right y-axis) was normalized to 1 far from the

dip at delay zero t = 0 (left y-axis). The radiative lifetime τ of this quantum dot was measured to be

450 ps by recording the decay curve following pulsed excitation (Fig. 4.7(a)). The black curve shows the

convolution of the ideal 2-level atom result, g(2)(t) = 1− exp(−|t|/τ), with the response of the detectors

(Gaussian with FWHM 0.62 ns) and describes the data extremely well. The blue curve shows the 2-level

atom response only. (b) A g(2) measurement under pulsed (FWHM = 80 ps) excitation at 638 nm. The

relative intensity of the t = 0 delay peak is 11%. This deviation from 0 is understood by considering

that τ is comparable to the pulse duration, which leads to a finite probability of generating two photons

per pulse.

data in the continuous wave measurement, this result is not influenced by the jitter of the

detectors. It represents however an upper bound on g(2)(t = 0) because the duration of

the laser pulse, 80 ps, is comparable to the radiative lifetime of the quantum dot exciton,

450 ps. This means that there is a finite probability of the creation of two photons per

laser pulse. These two photons should be antibunched, but the jitter of the detectors

prevents us from resolving a dip in the t = 0 peak. In the limit of high excitation (exciton

creation on a time much shorter than the laser pulse duration), for a 2-level atom the

relative integrated intensity of the t = 0 peak in the autocorrelation follows 1−exp(−l/τ)

where l is the laser pulse duration and τ is the radiative lifetime. This ratio explains

fully the observed value of 11%. In other words, the bare pulsed autocorrelation result

establishes a smaller lower bound on g(2)(t = 0) than the continuous wave measurement,

and its analysis supports a true g(2)(t = 0) value below about 2%.

However, as a more significant and general statement, we find that this quantum-

dot-in-nanowire mimicks a 2-level atom very closely. The origin of these 2-level-atom-

like optical properties is, at first sight, not so obvious based on a comparison with

the well-known SK dots. In a conventional SK InGaAs quantum dot embedded in a

GaAs matrix, the GaAs has the highest energy band edges, higher than the InGaAs
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quantum dot, and higher too than the wetting layer which forms an intermediate 2D

energy band. Photoexcitation of the wetting layer creates electrons and holes which relax

rapidly into the quantum dot levels. In contrast, in the current quantum-dot-in-nanowire

system (Fig. 4.1(a)) GaAs forms the lowest energy band edges (Fig. 4.1(b)), and acts

as the ultimate sink for photoexcited carriers. Furthermore, the 2.5 nm 60% Al shell

at first sight poses a rather ineffective barrier for the quantum dot-confined electrons.

Theoretical calculations modelling the confinement are shown in the next section.

4.4 Theory of the quantum confinement

To understand the two-level-like emission features at energies above the GaAs band gap,

we have studied theoretically quantum confinement in these large scale nanostructures.

The two state-of-the-art approaches used are the empirical pseudopotential method for

a quantum-dot-in-nanowire of more than a half-million atoms, and density functional

theory for a quantum wire of more than ten thousand atoms.

4.4.1 Pseudopotential calculations
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Fig. 4.9. Pseudopotential eigenstate densities. Results for a 10% Al content AlxGa1−xAs quantum

dot, 9 nm high surrounded by a 2.5 nm thickness 60% AlGaAs barrier embedded in an 30% AlGaAs

matrix and sitting on pure GaAs substrate (4 nm thickness in computational cell). Plotted are the

lowest energy conduction and valence states (e0 and h0, respectively) and the lowest energy quantum

dot-bound conduction and valence states (e19 and h67, respectively).

For the empirical pseudopotential calculations, the computational cell (Fig. 4.2(e))

contains (i) the 10% Al quantum dot with a square base in the (121) plane, quantum dot

height 9.0 nm, and four facets (112), (211), (121), and (212) to complete the pyramid;
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(ii) the 60% Al barrier, parallel to the quantum dot facets, having a thickness of 2.5

nm; (iii) the 30% Al layer; and (iv) the GaAs substrate, parallel to the quantum dot

(121) plane containing 14 monolayers of GaAs. The total number of atoms in the

computational cell is 511,104. We solve the atomistic Schrödinger equation using as

potential the superposition of the atomistic pseudopotentials of Ga, Al and As at the

corresponding lattice sites given by the structure, in a basis of the linear combination

of bulk bands23 using the folded spectrum method24, allowing the eigensolutions to be

obtained in a physically interesting energy window. Excitonic effects are calculated from

the single-particle states with a configuration interaction calculation. We find that the

highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital

(LUMO) of the whole system reside indeed on the GaAs substrate (correspondingly, in

the nanowire core) (Fig. 4.9). This supports our assignment of the broadband emission

at 1.51 eV to the nanowire GaAs core. The 67 lowest hole levels of the system as a

whole (h0-h66) are localized in the GaAs. The first hole state confined to the quantum

dot is hQD and corresponds to hole state h67 with energy 95 meV below the bulk GaAs

valence band edge (67 meV below the system HOMO state h0) (Fig. 4.1(b)). For the

electron states, the lowest 19 electron levels of the entire system (e0-e18) are localized on

GaAs, and the first state confined to the quantum dot is eQD corresponding to e19 with

energy 317 meV above the bulk GaAs conduction band edge (182 meV above the system

LUMO state e0) (Fig. 4.1(b)). The wave functions of states e0, h0, eQD and hQD are

shown in Fig. 4.9. The calculated emission energy of the quantum dot-localized states

is 1.902 eV (652 nm), red-shifted from the single-particle transition energy 1.932 eV by

excitonic effects.

4.4.2 Density functional theory calculations

Turning next to the density functional theory calculations, we have studied a quantum

wire bound by polar and non-polar interfaces, thereby taking into account both internal

electric fields and charge reorganisation effects. We model the 10% Al quantum dot by

an infinite [12̄1] oriented wire embedded in a 60% Al matrix with thickness either 1.4

nm (5,000 atom system) or 2.5 nm (12,168 atom system) (Fig. 4.10). In both cases, the

interface polarity was found to be insufficient to induce charge separation. We observe

well defined quantum dot-localized states close to the valence and conduction band edges

(Fig. 4.10). Using the experimental bulk GaAs band gap for the core region where the

edge states are dominant, but otherwise retaining our computed band offsets, we predict

transitions between these levels at 1.94 eV (640 nm), in broad agreement with both the

unscreened calculation and the experimental observation. We find that the thin 1.4 nm,
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Fig. 4.10. Localized Kohn-Sham states nearest the band edges. Computed using self-consistent

linear-scaling density functional theory, and viewed along the [11̄1] axis. (a) Highest localized valence

state, 0.07 eV below the band edge, for a 5,000 atom model system (10.0×10.0×1.3 nm3, fully periodic),

simulating the thin (1.4 nm) 60% Al barrier between the 10% Al quantum dot with a pure GaAs nanowire

shell. (b) Corresponding conduction state, located at 0.36 eV above the band edge. (c) As (b) but for

a 12,168 atom system (15.6 × 15.6 × 1.3 nm3, fully periodic, with a barrier of width 2.5 nm); 0.27 eV

above the conduction edge. Figures were produced using VESTA 325.

60% Al barrier is sufficient to provide quantum confinement irrespective of the polarity

of the facets. Hence, both atomistic pseudopotential of the quantum-dot-in-nanowire

and DFT of a charge-reorganised nanowire with the same cross-section predict states

with both electrons and holes confined to the quantum dot.

4.5 Conclusion

In summary, we report the self-assembly of a high quality quantum-dot-in-nanowire sys-

tem using two basic components, GaAs and AlAs. Self-assembly is not strain driven.

Instead, it proceeds by the different adatom mobility of Ga and Al on the host substrate.

This mechanism may well be effective with other semiconductor materials21. The shape

and composition of the quantum dots has been determined by high resolution, atom-

selective electron microscopy. Individual quantum dots are bright and spectrally pure

emitters of highly anti-bunched light even with non-resonant excitation and even, fur-

thermore, when they are positioned just a few nanometers from the nanowire surface.

The operating principle is that both electron and hole states involved in the transition lie

above the respective band edges of the nanowire itself, a point we understand quantita-

tively using atomistic calculations of the electronic states. In addition to applications as

single photon sources, an immediate possibility is the application of these quantum dots
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as nano-sensors and in forging a coupling between the optical and mechanical properties

(chapter 5). By adjusting the core and shell diameters of the nanowires, the quantum dot

emission can be efficiently funnelled into a waveguide mode in the nanowire. Further-

more, there are easy routes to embedding the quantum dots in a radial p-n junction26

opening up applications involving not just quantum light creation but also charge con-

trol27, single photon detection28 and spin29,30.
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L., and Forchel, A. Applied Physics Letters 96, 211117 (2010).

6. Reimer, M. E., Bulgarini, G., Akopian, N., Hocevar, M., Bavinck, M. B., Verheijen,

M. A., Bakkers, E. P. A. M., Kouwenhoven, L. P., and V., Z. Nature Communications

3, 737 (2012).

7. Uccelli, E., Arbiol, J., Morante, J. R., and Fontcuberta i Morral, A. ACS Nano 4,

5985–5993 (2010).

8. Bounouar, S., Elouneg-Jamroz, M., Hertog, M. d., Morchutt, C., Bellet-Amalric, E.,
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Chapter 5

Quantum Dot Opto-Mechanics in a Fully

Self-Assembled Nanowire

Adapted from:

Michele Montinaro, Gunter Wüst, Mathieu Munsch, Yannik Fontana, Eleonora

Russo-Averchi, Martin Heiss, Anna Fontcumberta i Morral, Richard J. Warburton and

Martino Poggio,

“Quantum Dot Opto-Mechanics in a Fully Self-Assembled Nanowire”,

Nano Letters 14, 4454-4460 (2014).

We show that optically-active quantum dots (QDs) embedded in MBE-grown

GaAs/AlGaAs core-shell nanowires (NWs) are coupled to the NW mechanical motion.

Oscillations of the NW modulate the QD emission energy in a broad range exceeding

14 meV. Furthermore, this opto-mechanical interaction enables the dynamical tuning

of two neighbouring QDs into resonance, possibly allowing for emitter-emitter coupling.

Both the QDs and the coupling mechanism – material strain – are intrinsic to the NW

structure and do not depend on any functionalization or external field. Such systems

open up the prospect of using QDs to probe and control the mechanical state of a NW,

or conversely of making a quantum non-demolition readout of a QD state through a

position measurement.

(Experiments and results presented in this chapter were obtained in close collaboration

with Michele Montinaro.)



5.1 Introduction

Experiments on micro- and nanomechanical oscillators are now addressing what were

once purely theoretical questions: the initialization, control, and read-out of the quan-

tum state of a mechanical oscillator. Researchers are able both to initialize the funda-

mental vibrational mode of a mechanical resonator into its ground state1,2 and even to

produce non-classical coherent states of motion3. The prospects are bright for exploit-

ing these achievements to produce mechanical sensors whose sensitivity is limited only

by quantum effects or to use a mechanical state to encode quantum information. The

ability to initialize and observe the quantization of mechanical motion is particularly

noteworthy not only from a fundamental point of view, but also because mechanical

oscillators are excellent transducers. By functionalizing a resonator with an electrode,

magnet, or mirror, mechanical motion can be transformed into the modulation of elec-

tric, magnetic, or optical fields4. The ease of this process has inspired proposals to use

mechanical resonators as quantum transducers, mediating interactions between different

quantum systems5–8. Furthermore, such couplings have now been demonstrated in a

variety of quantum systems including optical9 and microwave10 cavities, superconduct-

ing devices11, laser-cooled atoms12, quantum dots13 and nitrogen vacancy centers in

diamond14–16. In most cases, however, the functionalization of the mechanical oscillator

with a coupling element competes with the requirement of a small resonator mass, re-

quired for achieving a high coupling strength4. Moreover, the functionalization process

often adds additional paths of dissipation and decoherence, reducing the lifetime of the

coupled quantum system, or “hybrid” system.

In this letter, we report on the coupling of a nanomechanical oscillator with control-

lable quantum states, in which both the coupling interaction and the quantum states

themselves – here, optically addressable quantum dots – are intrinsic to the oscillator’s

structure. Not only is the strength of this coupling unusually strong, but its “built-in”

nature produces a hybrid system whose inherent coherence is unspoiled by external func-

tionalization and whose fabrication is simpler than top-down techniques. The specific

nanoresonator that we study is a bottom-up GaAs/AlGaAs core-shell nanowire con-

taining optically-active quantum dots17. These QDs have been shown to emit narrow

optical linewidth (down to 29 µeV) single photons with high brightness (count rates in

the MHz range)17, see chapter 4 . Here we show that their energy levels are coupled to

the mechanical vibrations of the NW through intrinsic material strain. We demonstrate

that mechanical motion allows a reversible tuning of the QD optical frequency with no

measurable influence on its photoluminescence intensity.
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5.2 Experimental setup

Our quantum-dot-in-nanowire structures are fully self-assembled by molecular beam epi-

taxy (MBE). As shown schematically in Fig. 5.1(a), there is strong evidence that the

QDs form at the apex of the GaAs/AlGaAs interface, in Al-poor regions embedded in

the Al-rich corners of the NW hexagonal cross-section17,18, see chapter 4. QD-like emis-

sion centers observed in similar core-shell NWs have also been attributed to randomly

distributed alloy fluctuations or defects within the AlGaAs shell19. In either case, by

controlling the overall diameter of core and shell during growth, it is possible to position

the QDs within a few nanometers of the NW surface. This proximity to the surface al-

lows for the optimal coupling of the QDs to the strain in the NW (Fig. 5.1(b)). Despite

their position near the surface, these QDs retain their high optical quality, making them

ideal for sensing applications. The NWs studied here have a predominantly zinc-blende

crystalline structure and display a regular hexagonal cross-section. The synthesis starts

with a 290-nm thick NW core, grown along [1 1̄ 1] on a Si substrate by the Ga-assisted

method detailed in Refs. 20,21. Once the NWs are about 25µm long, the axial growth

is stopped by temporarily blocking the Ga flux and reducing the substrate temperature

from 630 down to 465 ◦C. Then a 50-nm thick Al0.51Ga0.49As shell capped by a 5-nm

GaAs layer is grown as detailed in Ref. 22.

In order to study the opto-mechanical coupling, individual NWs are detached from

their growth substrate with micro-manipulators and glued (using an ultra-violet curing

adhesive) in a cantilever configuration to the edge of a Si chip, which has been pat-

terned with lithographically defined alignment markers (Ti/Au, 10/30 nm thick). The

suspended length of the NWs typically amounts to 20 µm. The chip is then rigidly fixed

to a piezoelectric transducer (PZT), which is used to excite mechanical oscillations of the

NW (Fig. 5.1(c)). The chip and PZT are mounted to a three-dimensional positioning

stage which has nanometer precision and stability (Attocube AG), in a low-pressure 4He

chamber (p = 0.35 mbar) at the bottom of a 4He cryostat (T = 4.2 K). The position-

ing stage allows precise alignment of individual QDs within each NW with the 400-nm

collection spot of a confocal optical microscope23 with high numerical aperture (NA

= 0.82). As shown schematically in Fig. 5.1(c), the microscope consists of a low-power,

non-resonant HeNe excitation laser at 632.8 nm, a camera for imaging the sample, and

a high-resolution spectrometer for analyzing the emitted photoluminescence (PL). The

mechanical oscillation of each NW is detected via laser interferometry24. 80µW of laser

light from a wavelength-tunable, highly coherent 780-nm laser diode are focused onto the

NW free end and the reflected light is collected by a fast photodetector. A low-finesse
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Fig. 5.1. Experimental setup. (a) Sketch of the NW cross-section, showing the composition of the

core/shell structure and the close proximity of the QDs to the surface of the NW. The purple regions are

rich in Al content and surround an Al-poor region (yellow), defining a QD17,18. (b) Finite element model

of the displacement-dependent strain in the NW. The color scale is proportional to the εzz component

of the strain tensor ε, computed for the prominent flexural vibration along x̂. (c) Schematic diagram of

the experimental setup.

Fabry-Pérot cavity, with a length of 118 ± 5 cm, forms between the NW and a low-

reflective window at the entrance of the 4He chamber, as confirmed by a measurement

of its free spectral range. Measurements of the NW displacement by the interferometer

are calibrated by an accurate determination of the laser wavelength (for more details,

see appendix D).

5.3 Interferometry: Calibrating the motion of the nanowire

free end

Using the PZT, we excite the fundamental mechanical mode of a NW and detect the

resulting oscillations with the interferometer. Fig. 5.2(a) shows the spectral response of

the free-end displacement x of the NW. A main resonance and a smaller peak at lower

frequency are clearly observable, separated by 350 Hz. The asymmetric clamping of the
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Fig. 5.2. NW mechanical characterization. (a) Spectrum of the NW free-end oscillation amplitude

xosc corresponding to its lowest order flexural vibrations at T = 4.2 K, driven by the PZT at VPZT =

40 mVpk. The red line is a model fit (see main text), highlighting two resonances split by 350 Hz,

corresponding to polarized, non-degenerate vibrational modes. The green curve represents the vibration

parallel to the NW substrate, while the blue curve represents the perpendicular one (both are shifted

for clarity). The mechanical quality factors of the two modes, extracted from the fit, are Q‖ = 7600

and Q⊥ = 5800. (b) NW free-end oscillation amplitude xosc as a function of the amplitude of the PZT

excitation voltage VPZT. The error bars correspond to the peak-to-peak amplitude of the interferometric

noise. The red line is a linear fit, from which we extract the conversion factor ∂x/∂VPZT = 0.53 ±
0.01 nm/mV.

NW to the Si chip, realized by gluing the NW with one hexagonal facet in contact with

the Si surface (Fig. 5.1(c)), splits the fundamental mode into a doublet of flexural modes,

oriented either perpendicular or parallel to the Si surface. This interpretation is con-

firmed by a finite element model (FEM) of the experimental system, see appendix D. The

mode oscillating perpendicular to the surface is preferentially driven by the PZT, because

its oscillation direction coincides with the axis along which the PZT moves. This mode is

also more easily detected by the interferometer, since its direction of oscillation coincides

with the interferometer optical axis. For these reasons, we interpret the main resonance

(Fig. 5.2(a)) as corresponding to the perpendicular mode. The asymmetry visible in this

resonance is due to the onset of a weak mechanical non-linearity of the NW25,26. When

excited in the linear regime, each of these mechanical resonances can be modeled as a

driven, dissipative, harmonic oscillator27. Fitting the NW response using this model,

we extract for the perpendicular mode a resonant frequency Ω0/2π = 795.4 kHz and a

mechanical quality factor Q⊥ = 5800 and for the parallel mode Q‖ = 7600. Further-

more, by driving the main resonance as a function of the excitation amplitude VPZT, we

explore the linear regime of the NW’s free-end displacement(Fig. 5.2(b)). With a linear

fit, we extract a conversion factor, ∂x/∂VPZT = 0.53 ± 0.01 nm/mV, between the PZT
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drive amplitude and the amplitude of the free-end displacement.

5.4 Spectrally resolved confocal photoluminescence imaging

We study the opto-mechanical coupling by collecting PL from individual QDs within a

single NW. QDs in proximity of the clamped end of the NW have the largest energy mod-

ulation, since the oscillation-induced material strain is highest in this area (Fig. 5.1(b)).

Using the scanning confocal microscope, a number of suitable QDs are identified near

the clamped NW end, having bright, narrow, and spectrally isolated exciton emission

lines. Fig. 5.3 shows a spatial map of the PL at 1.867 eV (664 nm) under non-resonant

laser excitation of the sample. The plot also includes a weak component of reflected light

at the filtered energy, which reveals the position of the NW and the Si substrate with its

alignment markers. The map highlights a conveniently located QD, which we label QD

1, whose PL spectral signature includes an exciton emission peak, shown in the inset.
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Fig. 5.3. Spectrally filtered scanning confocal micrograph. As a function of the excitation laser

position, we plot the light intensity detected from the sample (logarithmic color scale), spectrally filtered

at the peak PL energy E0
ex = 1.867 eV, corresponding to exciton emission of QD 1. The inset shows

the corresponding PL spectrum (white dots), together with a Lorentzian fit (red line). The linewidth

(FWHM) is 140µeV.
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5.5 Opto-mechanical coupling

5.5.1 The effect of nanowire excitation on the quantum dot

photoluminescence

In the next step, the laser beam is maintained in alignment with QD 1’s position and its

PL spectrum is recorded as a function of the PZT excitation frequency Ω/(2π), while

holding the amplitude VPZT constant. Several emission peaks are detected within the

same laser detection spot (Fig. 5.4(a)). As Ω is swept through the NW resonance Ω0,

the exciton emission peaks are broadened and deformed as a consequence of the time-

integrated sinusoidal motion of the NW13. The envelope of the PL spectra as a function

of Ω resembles the NW displacement spectrum shown in Fig. 5.2(a). In particular, the

low-frequency shoulder of the broadened envelope corresponds to the oscillation mode

parallel to the Si surface.
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Fig. 5.4. Effect of the NW excitation on the QD photoluminescence. PL spectra of some

neighbouring QDs (labeled QD 1 and QD 2) acquired while sweeping (a) the frequency of the PZT

excitation, with VPZT = 1 Vpk, and (b) the amplitude of the excitation, with the frequency set to the

resonance of the NW’s perpendicular flexural oscillation (Ω = Ω0 = 2π × 795.4 kHz).
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We explore the range of the exciton energy modulation by recording PL spectra as

a function of the excitation amplitude VPZT, while driving the NW on resonance with

the dominant perpendicular mode (Ω = Ω0). Each spectral line exhibits a different

broadening (Fig. 5.4(b)), as a consequence of its specific sensitivity to the local strain.

For high excitation voltages, we observe an asymmetric energy broadening, due to the

different response of the QD band structure under compressive or tensile stress in the

NW28,29. Note that a further increase of the excitation amplitude leads to a saturation

of the peak-to-peak exciton modulation width just beyond 14 meV. It is currently not

known whether this modulation is limited merely by how hard we are able to drive the

NW motion, or whether a more fundamental saturation eventually limits the range.

5.5.2 Determining the opto-mechanical coupling strength

While the mechanical motion of the NW in this experiment is best described in classical

terms, individual PL peaks from an embedded QD can be approximated as resulting from

a quantum two-level system with an exciton transition energy Eex(x) between ground

and excited states |g〉 and |e〉17. The coupling between the NW motion and the QD can

then be introduced as a shift in the exciton energy that depends on the displacement x

of the NW’s free end. Considering only the prominent perpendicular flexural vibration

and neglecting non-linear terms in x (as in Ref. 4), the time-dependent Hamiltonian of

our hybrid system can be written as:

Ĥ(t) =
1

2
mẋ2 +

1

2
mΩ2

0x
2 + E0

ex

σ̂z
2

+
∂Eex

∂x

∣∣∣∣
x=0

x
σ̂z
2
, (5.1)

where the first two terms describe the mechanical energy of the unperturbed NW, the

third term describes the emission energy of the unperturbed QD, and the last one

describes the opto-mechanical interaction. In the equation, m is the NW motional

mass, E0
ex is the transition energy of a QD exciton for the NW at its rest position,

σ̂z = |e〉 〈e| − |g〉 〈g| is the Pauli operator of the two-level system, and ∂Eex
∂x

∣∣
x=0

is the

opto-mechanical coupling parameter at the NW rest position. The NW motion produces

a time-varying deformation of the NW’s crystalline structure, in turn altering the energy

levels of the embedded QD via a deformation potential, and resulting in a time-varying

shift in the QD exciton emission energies. The sign and magnitude of this shift under

compressive or tensile strain depend on the localization of the QD within the NW cross

section and possibly on intrinsic properties of each QD30.

To evaluate the strength of the opto-mechanical coupling, we extract the PL profiles

of the exciton lines (Fig. 5.5(a)) for various values of the drive VPZT. The profiles
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Fig. 5.5. Strength of the opto-mechanical coupling. (a) PL spectrum of QD 1 (black dots) under

NW excitation on resonance with the perpendicular flexural mode (Ω = Ω0, VPZT = 250 mVpk). The

red line is a model fit (see main text), from which the exciton energy shift amplitude δEex is extracted.

(b) δEex of QD 2 versus the NW free-end displacement amplitude xosc. The red line is a linear fit, from

which we extract the opto-mechanical coupling parameter ∂Eex
∂x

∣∣
x=0

= 9.9±0.7µeV/nm. The error bars

on xosc are the same as mentioned in Fig. 5.2(b); those on δEex are the standard deviations extracted

from the fits of the mechanically excited PL spectra, as in (a).

are then fit with a Lorentzian whose central energy E0
ex is modulated by a sinusoid of

amplitude δEex
14. Using our interferometer measurements (Fig. 5.2(b)), we then relate

the displacement amplitude xosc of the NW free end with the amplitude δEex. The result,

displayed in Fig. 5.5(b) for QD 2 (which resides in the same optical spot as QD 1), shows

that in the linear regime of mechanical excitation, δEex is also linear in xosc. A fit to

this data provides an opto-mechanical coupling parameter ∂Eex
∂x

∣∣
x=0

= 9.9±0.7µeV/nm,

which is one of the largest observed in our measurements.

The energy shift of a QD exciton can be modeled by considering the strain-dependent

band structure of a semiconductor31,32. The deformation potentials and Poisson ratio

have been recently measured in an experiment on zinc-blende GaAs/AlGaAs core/shell

NWs grown along 〈1 1 1〉29. These parameters and a FEM of the NW strain tensor at the

position of the QD in question have been used to estimate the displacement-dependent

energy shift. The result of 13 ± 2µeV/nm is in agreement with our measurement and

corroborates the strain-dependence of the band structure as the dominant coupling mech-

anism, see appendix D.

In order to compare our results with other hybrid quantum systems4,13, the opto-me-

chanical interaction described in Eq. 5.1 can also be expressed in terms of the coupling
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rate

λ ≡ 1

2h̄

∂Eex

∂x

∣∣∣∣
x=0

xZPF, (5.2)

which is the exciton frequency shift per vibrational quantum. Here, xZPF =
√

h̄
2mΩ0

is

the NW’s zero-point motion at its free end and h̄ is the reduced Planck’s constant. Using

the FEM of the NW, we calculate its motional mass m = (3.5±0.7)×10−15 kg, where the

error is dominated by the measurement imprecision of the NW thickness. This result,

combined with knowledge of Ω0, allows us to calculate xZPF = (5.5 ± 0.6) × 10−14 m.

Therefore, for QD 2, the coupling rate λ/2π = 66 ± 12 kHz. This opto-mechanical

coupling rate is similar to that recently measured by Yeo et al.13 for etched nano-

pillars containing self-assembled QDs, where λ/2π = 230± 50 kHz (note that in Ref. 13

g0 = 2λ).

5.5.3 Stroboscopic measurement: Time evolution of the quantum dot

photoluminescence

We study the time evolution of the QD exciton energy shift by acquiring stroboscopic

PL spectra13,19. Two synchronized and isochronous signals drive the NW on resonance

through the PZT and, using an acousto-optic modulator (AOM), chop the laser excita-

tion with a 5% duty-cycle. The QDs are therefore excited only for 5% of the mechanical

oscillation period of the NW. By recording PL spectra as a function of the phase be-

tween the two modulation signals (Fig. 5.6) we explore the temporal evolution of the

QD exciton lines during a NW oscillation period. This experiment reveals exciton lines,

such as those of QD 1 and QD 2 in Fig. 5.6, that respond to the mechanical oscilla-

tion of the NW with opposite shifts in emission energy. The shifts in energy induced

by strain are a consequence of the change in the fundamental bands resulting from the

compression or extension of the lattice constant. Therefore, for a given strain, exciton

transitions from the same QD should show energy shifts of the same sign and similar

magnitude. Conversely, emission lines showing drastically different shift amplitudes or

even shifts with different signs correspond to QDs located at different positions within

the NW cross-section. In particular, two identical QDs within the same optical collec-

tion spot, located on opposite sides of the NW neutral axis, result in opposing strains

produced for the same cantilever free-end displacement. On the other hand, differences

in the extension and composition of each QD may also account for the varying responses

to NW motion30. When two spatially and spectrally close QD excitons display strong

opto-mechanical couplings of opposite sign, their energies may become degenerate for a

particular time in the oscillation period (or equivalently for a particular position of the
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Fig. 5.6. Time-resolved PL evolution. Stroboscopic PL spectra of several neighboring QDs as a function

of the phase (left axis) and the time delay (right axis) between the excitation-laser modulation and

the PZT drive (Ω = Ω0, VPZT = 250 mVpk). The dashed circle highlights two exciton spectral lines

dynamically tuned to the same energy.

NW free end), as for the spectral lines outlined by the dashed circle in Fig. 5.6. In the

future, exploiting this mechanically mediated tuning may allow us to couple two nearby

QDs within a single NW. In addition, the sinusoidal time evolution of the PL spectral

lines emerging from the measurement provides a confirmation of the mechanical origin

of the QD emission broadening. Note that the modulation of the QD energy has no

measurable influence on the corresponding PL intensity.

5.6 Conclusion

Both here and in Yeo et al., the ratio λ/Ω0 is not far from unity, which makes these

kinds of systems particularly promising for the quantum non-demolition (QND) readout

of a QD state through a precise measurement of the NW displacement13. In particular,

using Eqs. 5.1 and 5.2, we find that the displacement between the rest positions of the

NW free end in the QD states |g〉 and |e〉 is 4xZPFλ/Ω0. This displacement, in order

to be observable, must be larger than xZPF; in fact, at a finite temperature T , the

displacement must be larger than the NW’s thermal fluctuations xth. This implies that

a determination of the QD state can be made through a displacement measurement, if

λ/Ω0 > 1
4

√
1 + 2N , where N is the average phonon occupation number of the NW’s

fundamental mode. In the high temperature limit kBT � h̄Ω0, the requirement is that
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λ/Ω0 >
√

kBT
8h̄Ω0

, where kB is the Boltzmann constant. However, for our experimental

parameters, the ratio λ/Ω0 is still 103 times too small for such effects to be observed.

Auffèves and Richard33 have recently proposed an alternative approach to such a non-

demolition measurement, which takes advantage of the high Q of the NW oscillator. In

their scheme, the QD is optically excited by a continuous-wave laser modulated at the

NW resonance frequency. This process builds up, through constructive interference, a

large coherent mechanical excitation of the NW. On resonance with a QD transition, the

amplitude of the excitation is roughly Q times larger than the displacement difference

calculated in the aforementioned static case. For our experimental parameters, this am-

plitude would be 6 times larger than the NW thermal fluctuations, making it detectable

by a high-sensitivity interferometer34. It should be noted that a QND measurement also

requires the time necessary to build up such a coherent phonon field (Tr) to be smaller

than the quantum transition lifetime (τex), which is not the case here (Tr ≈ 18 ms,

while τex ≈ 1 ns) nor in the experiment of Yeo et al.13. The use of a longer-lived QD

state such as a dark exciton (1µs35) or a spin state (0.5 s36) could bring the system

closer to the required lifetime. In addition, given a detection of the NW displacement

with a large enough signal-to-noise ratio, Tr could be reduced using feedback damping,

which can modify a mechanical oscillator’s response time without affecting its intrinsic

properties37.

We note that prospects of quantum control over a mechanical resonator, or proposals

for using a mechanical resonator as a transducer for quantum information, require the

hybrid interaction to be large compared to the rates at which the coupled systems

decohere into their local environments9,38. Some proposals require the condition of

“large cooperativity”39,40: λ/
√
γexΓth > 1, where γex is the decoherence rate of the

quantum transition, in our case associated to a QD exciton (> 1 GHz17) and Γth = kBT
h̄Q

is the mechanical heating rate. Using the values from this experiment, the cooperativity

is 10−3. Nevertheless, the QD-in-NW system is particularly promising given that λ could

be improved by a factor 2 (or bigger) for second order (or higher) flexural modes of the

NW (see supporting information). Assuming that the experiment can be carried out in a

dilution refrigerator at T = 10 mK and that the mechanical Q can be improved to a few

times 106 – perhaps by surface treatment, as was demonstrated in Si cantilevers with

similar aspect ratios41 – the large cooperativity limit would then become accessible.

In summary, we demonstrate an “as-grown” opto-mechanical system produced entirely

by bottom-up self-assembly. The structure’s intrinsic properties couple multiple QDs to

the same NW mechanical oscillator. This interaction enables the tuning of QD energies

over a broad range exceeing 14 meV, opening the way for mechanically induced cou-

66



pling between different QDs in the NW. The sensitivity of the QDs in our system to the

resonant vibration of the NW could also be used to reveal variations in the mechanical

resonance frequency due to the application of electrical or magnetic forces or to a change

of the mass of the NW. This fact opens the perspective of using our QD-in-NW system

as an integrated force probe or as a nanomechanical mass sensor (see supporting infor-

mation). By measuring the QD PL, one could monitor the NW motion in a technically

simpler way than optical interferometry34,42–44 or other schemes45–47.
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S., Aspelmeyer, M., and Painter, O. Nature 478, 89–92 (2011).

3. O’Connell, A. D., Hofheinz, M., Ansmann, M., Bialczak, R. C., Lenander, M.,

Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis,

J. M., and Cleland, A. N. Nature 464, 697–703 (2010).

4. Treutlein, P., Genes, C., Hammerer, K., Poggio, M., and Rabl, P. arXiv:1210.4151

(2012).

5. Rabl, P., Kolkowitz, S. J., Koppens, F. H. L., Harris, J. G. E., Zoller, P., and Lukin,

M. D. Nat. Phys. 6, 602–608 (2010).

6. Kolkowitz, S., Bleszynski Jayich, A. C., Unterreithmeier, Q. P., Bennett, S. D., Rabl,

P., Harris, J. G. E., and Lukin, M. D. Science 335, 1603–1606 (2012).

7. McGee, S. A., Meiser, D., Regal, C. A., Lehnert, K. W., and Holland, M. J. Phys.

Rev. A 87, 053818 (2013).

8. Palomaki, T. A., Harlow, J. W., Teufel, J. D., Simmonds, R. W., and Lehnert, K. W.

Nature 495, 210–214 (2013).
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Chapter 6

Conclusions and outlook

Nuclear magnetic resonance on a quantum dot

In the first part of this thesis NMR techniques are applied to investigate the nuclear

spin ensemble of a semiconductor quantum dot. The challenges are the mesoscopic size

(∼ 105 spins) and the high inhomogeneity (4 different isotopes with widely different

gyromagnetic ratios, high spin numbers, atom dependent quadrupolar shifts) of the en-

semble. Resonance fluorescence is used to set and read the nuclear spin polarization

optically. To generate the high amplitude radio frequency (RF) pulses needed for effi-

cient nuclear spin manipulation a low impedance, high bandwidth gold micro-wire was

fabricated on top of a standard charge tunable device.

We show that frequency swept RF pulses can invert the nuclear spin polarization back

and forth over one hundred times before the signal is lost. More detailed measurements

enable the determination of all key properties of the nuclear spin ensemble: the chemical

composition, the effective temperatures and quadrupole frequency distribution of each

isotope. These properties determine the pulse parameters (sweep rate, frequency range

and amplitude) needed for the preparation of non-thermal states. In the next experiment,

this knowledge is exploited to maximize the population difference between the central

transition, enabling the observation of Rabi oscillations and Hahn echo T2 measurements.

For an uncharged dot T2 is on the order of 5 ms. Charging with a single electron

reduces T2 to 20 µs. We present a theory attributing this drastic reduction to electron

mediated coupling between the nuclei, an RKKY-type interaction. This is supported by

the recovery of T2 when the dot is charged with two electrons.

As an outlook, we note that the techniques used for the preparation of non-thermal

states in principle allow for fast population inversion and the observation of Stückelberg

oscillations, a fascinating quantum interference phenomenon. Furthermore, fabricating

a sample with a p-doped back contact would enable to investigate the effect of a hole

on nuclear spin coherence. This could lead to new insights in the hyperfine coupling

between hole spin and nuclear spins.
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A quantum dot in a nanowire

We investigate the emission from a fully self-assembled quantum-dot-in-nanowire system.

The NWs consist of a GaAs core surrounded by an AlGaAs shell. During the growth

of the shell segregation effects lead to the formation of Al poor regions encapsulated

by a thin Al rich barrier establishing a 3D confinement. Under non-resonant excitation

the quantum dots emit around 650-730 nm. Interestingly, this is at shorter wavelengths

than emission from the nearby continuum formed by the GaAs core (∼830 nm). CW

and pulsed second order intensity correlation measurements demonstrate the highly anti-

bunched nature of the emission (g(2)(t = 0) ≤ 2%). Single photon count rates of 2

MHz are observed on a conventional single photon detector. Decay curve measurements

following pulsed excitation determine the radiative lifetime τrad ∼ 0.5 ns. We emphasise

that the CW g(2) measurement perfectly mimics the behaviour of a two level atom, no

additional assumptions are needed to describe the data.

In the next experiment we investigate the opto-mechanical coupling between QD emis-

sion energy and the driven mechanical motion of the NW. Here, tensile/compressive

stress alters the lattice constant and consequently changes the band gap, thus modulat-

ing the QD emission energy. These modulations can exceed 14 meV, when the NW’s

oscillation modes are driven on resonant. Interferometric calibration of the NW’s free

end motion enables determination of the opto-mechanical coupling rate λ = 66±12 kHz.

Furthermore, stroboscopic measurements reveal the time evolution of QD emission and

show that two QDs within the focal spot can be tuned dynamically into resonance.

As an outlook, we note that constructing radial p-n junctions could enable electrically

driven single photon generation and charge control, the latter would greatly simplify the

implementation of resonant laser spectroscopy. The opto-mechanical coupling is a route

to non-demolition readout of QD states by detecting the NW’s free end position. Strain

can also modulate the g-factor and thus facilitate the coupling between the electron/hole

spin located in the QD and the NW motion. Furthermore, the QD is natural probe to

detect shifts in the NW’s resonance frequency. This enables detection of electrical and

magnetic forces or changes in mass.
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Appendix A

Supplementary information to chapter 2

A.1 Experimental details

A.1.1 Sample

The sample consists of low density self-assembled InGaAs/GaAs quantum dots (QDs)

grown by molecular beam epitaxy embedded in the intrinsic region of an n-type GaAs

Schottky diode (Fig. A.1). The layers in the heterostructure are:

1. Back gate: 50 nm Si-GaAs, doping n = 1.7× 1018 cm−3

2. Tunnel barrier: 25 nm i-GaAs

3. Active region: InGaAs QDs

4. Capping layer: 434.3 nm i-GaAs

5. Blocking barrier: 64 periods of 3 nm/1 nm AlAs/GaAs

6. Top cap: 10 nm i-GaAs

7. Top gate: 3 nm/7 nm Ti/Au

To generate the longitudinal radio frequency (RF) field we fabricate a gold microwire

directly on the sample. With a shadow mask we first deposit a 464 nm (= 3
4λ, λ= 950 nm)

thick SiO2 spacer onto the top gate, which serves as an electrical and thermal insulator

and as an anti-reflection coating. We then deposit a 10/200 nm Ti/Au microwire with

a photolithography procedure. The wire is 20 µm long, 6 µm wide and has a 2 µm by

6 µm hole, through which QD emission is detected (Fig. A.2). On top of the structure, a

ZrO2 solid immersion lens (SIL) (refractive index 2.15) is used to increase the detection

efficiency by a factor of ∼ 5. Markers fabricated together with the microwire allow the

SIL to be centred precisely. To contact the back gate we deposit 120 nm AuGe and

10 nm Ni and anneal the sample at 450 ◦C.
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Fig. A.1. Sample structure. (a) Layer structure of our sample. (b) Associated band structure.

Applying a voltage Vg between top gate and back gate allows the QD energy levels to be tuned relative

to the Fermi energy, which is determined by the n+-doping of the back gate. Here the ground state of

the X1− is shown. The lever arm (distance between top and back gate divided by the thickness of the

tunnel barrier) is 28.6.

back  
contact 

top gate 

SiO2 

layer 

microwire 

markers 
for SIL  

1 mm 

(a) (b) 

20 µm 

Fig. A.2. Top view of sample. (a) Shadow masks are used to deposit back contact, top gate and

SiO2 spacer layer. Microwire and markers for positioning the solid immersion lens are fabricated in one

photolithography step. We minimize the overlap of the microwire and the top gate to reduce the risk

of electrical shorts. Reducing the area of the SiO2 layer circumvents adhesion problems. (b) Zoom in

on the microwire. A hole in the wire enables optical access to the QD emission. Triangular markers

facilitate the positioning of the sample in the microscope.
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A.1.2 Set-up

The sample is cooled down to 4.2 K in a helium bath cryostat (Fig. A.3). A supercon-

ducting magnet provides a static field Bz up to 9 T along the growth direction (Faraday

geometry).

Initialization and read-out of the nuclear spin polarization is performed optically.

We use resonant excitation of the X0 transition which leads to the creation of a single

electron-hole pair with no excess carriers. The resonance fluorescence is detected with

a confocal dark-field microscope1. At Bz = 0 T, the ultra-high quality of the sample is

revealed by the small measured linewidth of 1.2 µeV, close to the ideal transform limit

of ∼ 0.9 µeV (Fig. 2.3) of chapter 2). At Bz = 6 T sweeping the laser energy across the

blue Zeeman transition of the X0 leads to dynamical nuclear spin polarization via the so

called “dragging effect”2,3. The result is a characteristic flat-top spectrum. In practice,

the detuning is achieved by sweeping the voltage applied to the gate,Vg. For the X0, the

Stark shift amounts to 0.447± 0.002 µeV/mV.

Two arbitrary waveform generators (AWGs) control and synchronize the experiment.

The first one controls the voltage applied to the gate, as well as the laser intensity via

an acousto-optic modulator (AOM) double passage set-up. The second one generates

chirped pulses at radio frequencies. Its 512 MB internal memory allows for a maximum

pulse duration of 1.3 s at a maximum sampling rate of 200 MHz. The output voltage is

sent to a RF amplifier and corrected for the frequency dependent gain of the amplifier.

High pass (HP) filters at 25 MHz and low pass filters (LP) at 150 MHz eliminate possible

noise. The signal is then split into two co-axial cables of the same length which go down

into the cryostat. The last ∼ 5 cm of the connection is made by a twisted pair. In one

arm, the phase of the signal is shifted by π to avoid electric fields at the microwire

which could influence the QD signal via the Stark effect. The DC-resistance measured

at the top of the cryostat is R = 3.5 Ω. The amplitude of the output voltage at the top

of the cryostat is measured over a 50 Ω resistance and kept at Vµwire = 10 V for all data

presented in this work.

We sometimes observe random “rigid” shifts in the QD spectrum. For high voltages

(Vµwire ≥ 12 V) these shifts become disruptively large (up to 100 µeV to both higher or

lower energy). We attribute these rigid shifts to a reorganisation of the defect charges

in the vicinity of the QD. Importantly, our read-out technique allows us to distinguish

between the these rigid shifts and the nuclear spin effects. In particular, the Overhauser

shift is measured by the width of the dragging plateau which does not depend on the

absolute frequency of the QD resonance. The data in Fig. 2.4 of chapter 2 are corrected

from these rigid shifts.
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Fig. A.3. Experimental set-up. The sample is mounted on a stack of X/Y/Z-piezo positioners and

held at T = 4.2 K. Polarizing beam splitters (PBS), a polarizer and a quarter wave plate (λ/4) within the

resonance fluorescence head enable high quality cross polarization between detection and excitation. A

spatial filter in front of the single photon avalanche diode ensures a low dark count rate of ∼ 10 counts/s.

AWG 1 controls the laser intensity (via an AOM setup) and the laser detuning by sweeping the gate

voltage. AWG 2 generates the chirped RF pulses which are then sent to a current amplifier (AMP).

High pass (HP) and low pass (LP) filters eliminate any unwanted noise and attenuators (AT) are used

to adjust the amplitude. The signal is then sent through a splitter which induces a 180 ◦ phase shift

between the different arms, thereby minimizing the electric field at the wire.

A.2 Supporting experimental results

A.2.1 Depolarization procedure

In order to randomize the QD spin ensemble, we use a series of short pulses whose fre-

quencies cover the whole 55 MHz bandwidth spanned by the QD nuclei at Bz = 6 T.

After a few minutes, the system reaches a stationary state, which corresponds to com-
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Fig. A.4. Randomization of the QD nuclear spin ensemble. The randomization signal is obtained

with current pulses in the wire at 25 kHz, with a duty cycle of 10% (see inset). The frequency is swept

over 55 MHz to cover the complete bandwidth spanned by the QD nuclear spins. After ∼ 600 s the

system reaches a stationary state.

plete depolarization of the sample. This is reported in Fig. A.4, where we plot the

dragging plateau width as a function of the number of cycles. Before each measurement

the system is initialized by dragging the QD transition from the blue, as described in

chapter 2. The pulse duration is set to 4µs, with a repetition rate of 25 kHz.

A.2.2 Nuclear-spin lifetime

A measurement of the nuclear spin relaxation in the lab frame shows that, after 22

hours, less than 30% of the initial polarization has relaxed (Fig. A.5). The T1 time of

the nuclear spin ensemble clearly exceeds one day (we note that the decay is not a simple

exponential). This extremely long decay time arises as a consequence of the suppression

of nuclear spin diffusion into the bulk due to the strained environment of the QD4 and

the low temperature. Hence for experiments on an uncharged QD, we can neglect relax-

ation on the time scale of our experiments.
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Fig. A.5. Nuclear spin relaxation in the laboratory frame. The change in Overhauser shift

following the decay of nuclear spin polarization is extremely slow and can be neglected on the few

minute time scale of our experiments.

A.2.3 Measurement of Rabi oscillations and estimate of Bx

In order to estimate the magnitude of the radio frequency (RF) transverse magnetic

field Bx produced by the microwire used in our optical experiments, we performed nuta-

tion measurements using a similar microwire in a magnetic resonance force microscope

(MRFM). Using the method described in Poggio et al.5, we measure the transverse field

experienced by an ensemble of ∼ 106 115In spins 350 nm from the microwire. These spins

are contained within an InP nanowire in a 6 T magnetic field at a temperature of 1 K.

The experiment is carried out with an adiabatic rapid passage pulse protocol similar to

the one used in the optical experiment at a carrier frequency of 57.25 MHz. To contact

the microwire similar lengths of exactly the same type of coaxial lines and twisted pairs

are used. Identical hardware is used to generate, split and filter the chirped pulses.

As shown in Fig. A.6, the microwire in the MRFM generates 50 mT of transverse

magnetic field (25 mT in the rotating frame). The amplitude of the drive voltage mea-

sured across 50 Ω at the same point at the top of the cryostat for the MRFM and the

optical experiments is 8.5 Vp-to-p and 10 Vp-to-p, respectively. Also, the geometry of the

microwire in the MRFM differs from that used in the optical experiment (Fig. A.6).

Finally, the spin ensemble in the MRFM is located 350 nm above the microwire, while

the QD in the optical experiment lies 1.17 µm below the microwire. By taking these dif-

ferences into account, we use the magnitude of the transverse field measured by MRFM

to estimate the field produced at the QD location in the optical experiment. In par-

ticular, these differences result in different currents passing through the two microwires
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1 µm 

Fig. A.6. Nutation measurement for 115In at T = 1 K. (a) SEM micrograph of the 260 nm thick

Au microwire with integrated FeCo tip used in the MRFM measurements. The microwire is 900 nm wide

and 2.87 µm long. The structure is patterned on a Si chip. (b) Resonant force noise from 115In spins

(points) is measured as a function of pulse length according to the protocol described by Poggio et al.5.

A frequency of 233 kHz is obtained from a decaying sinusoidal fit (solid line) to the Rabi oscillations,

resulting in Bx = 50 mT.

and in different distances between the detection volume and the respective RF current.

By approximating the two microwires as infinite wires, which produce a field decreasing

inversely with the distance, we calculate the transverse field at the QD positon. For a

drive of 10Vp-to-p across 50 Ω, the QD microwire should generate Bx = 5 mT. The value

Bx = 3.8 mT extracted from fits to our data is close to this estimation.

A.3 Theory

A.3.1 Concepts

Hamiltonian of a single spin I

During the manipulation step of our experiment, the evolution of a spin I can be de-

scribed by the time-dependent Hamiltonian

H(t) = HZ +HQ +HRF (t). (A.1)

HZ is the Zeeman energy, HQ describes the interactions between the nuclear quadrupole

moment and the electric field gradient (EFG) for a spin I > 1
2 in a non-cubic lattice,

and HRF (t) corresponds to the coupling to the transverse radio-frequency field. This is

most conveniently expressed in the frame rotating at the Larmor frequency νL = γ Bz,
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Fig. A.7. Energy level diagram for a spin I = 3
2

in the rotating frame. The calculation is

carried out with νRF
νQ

= 0.15. The eigenstates are labelled with the diabatic quantum number m in the

limit of large detunings. The numbers in colour represent the order ∆m associated with each transition.

where γ is the gyromagnetic ratio of the nuclei and Bz the magnetic field applied along

the z-direction (here the quantization axis). Using the rotating wave approximation

to neglect fast oscillating terms6 and assuming cylindrical symmetry of the EFG, H(t)

reduces to

H(1)(t) = h∆ν(t)Iz +
hνQ

6

[
3I2
z − I(I + 1)

]
+
hνRF

2
Ix (A.2)

where ∆ν(t) is the time-dependent detuning between the radio frequency and the Larmor

frequency, νRF = γBx the amplitude of the RF field and νQ the quadrupole frequency.

νQ describes the strength of the quadrupole interaction and depends on the nuclear

quadrupole moment Q and on the EFG Vz’z’ along the symmetry axis z′. Writing θ as

the angle between z and z′, we find

νQ =
3eQVz’z’

4hI(2I − 1)
[3 cos2 θ − 1]. (A.3)

We are interested in the eigenvalues of the problem for I > 1
2 . As an example, Fig.

A.7 shows the energy eigenstates for a spin I = 3
2 as a function of the detuning ∆ν(t).

Six different transitions can be observed: three first-quantum transitions (QTs), often

referred to as the central peak and its two satellites, two second-QTs and one third-QT,

corresonding to a change in angular momentum of |∆m| = 1, 2 and 3, respectively. We

note that each transition is well isolated, a consequence of νQ � νRF . A clear hierarchy

of avoided crossings can be observed: the lower the order of the QT, the more pronounced

the splitting. This result can be derived analytically in the limit where νQ � νRF using
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an effective pseudo-spin 1/2 approach7,8, which yields the following expression for the

coupling strengths

νeff(∆m) = k(mi,mj)νRF

(
νRF
νQ

)|∆m|−1

(A.4)

where k(mi,mj) is a scaling factor associated with the |mi〉 → |mj〉 transition. As an

example we show, in Table A.1, the scaling factors associated with the 3
2 -spin. Since

νQ � νRF it is clear from Eq. A.4 that νeff(∆m = 1) � νeff(∆m = 2) � νeff(∆m = 3).

Remarkably, νeff(∆m = 1) does not depend on the quadrupole frequency to first order.

mi / mj 3/2 1/2 −1/2 −3/2

3/2 −
√

3 7
2

3
2

1/2
√

3 − 2 7
2

Table A.1. Effective RF field scaling factors k(mi,mj) for the first and multiple-quantum

transitions of I = 3
2

8.

Adiabaticity criteria for a quadrupolar nucleus

To quantify the degree of adiabaticity of the manipulation, we assign a probability to

each type of transition according to the Landau-Zener model (Eq. 2.2 of chapter 2)

PLZ(∆m) = exp

(
−π2 ν

2
eff(∆m)

α∆m

)
. (A.5)

Note that, for higher-order transitions, the sweep rate α is replaced by an effective

sweep rate α∆m, which accounts for the magnified detuning rate (steepness of the level

crossings in Fig. A.7)9. PLZ corresponds to the probability that the system “tunnels”

through the avoided crossing and stays on the same diabatic state. The condition for

adiabatic passage is thus PLZ � 1, which translates into low α and/or large νeff.

Generally speaking, from Eqs. A.4 and A.5 it is clear that nuclei experiencing large

quadrupole interactions are harder to manipulate. However, to first order, adiabatic

passage is independent of the quadrupole interaction if it is possible to prepare the spins

in their ground state, since the first QTs do not depend on νQ (see also end of the

section).

In order to study the dynamics of the Landau-Zener problem in more detail we solve
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PLZ(∆m = 3) = 99.8%. For both cases four different initial conditions are considered, corresponding to

the pure states of the system. Black: |ψ(t = 0)〉 = |+ 3
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.

numerically the time-dependent von Neumann equation. Neglecting dissipation opera-

tors, the time-evolution of the density matrix ρ(t) obeys

ih̄ρ̇(t) = [H(t),ρ(t)] . (A.6)

In the following, we return to the example of a spin I = 3
2 to illustrate some concepts

of adiabatic passage for a quadrupolar nucleus. We first focus on the evolution of the

average spin projection 〈Iz(t)〉 = Tr[Izρ(t)] as we proceed with a linear sweep from

∆ν(t = 0) = −ν0 to ∆ν(t = τ) = +ν0. Fig. A.8 shows the result for four different initial

conditions corresponding to the pure states of the system. In (a), the adiabatic conditions

are fulfilled for the first QTs only. This is evidenced by the exchange of population at the

transitions associated with the central peak (∆ν = 0) and its two satellites (∆ν = ±νQ).

On the contrary, nothing happens at the second QTs (∆ν = ±νQ
2 ). In (b), the “opening”

of the second QTs is evidenced by two additional steps at ∆ν = ±νQ
2 . As a consequence

of the smaller coupling strength, these transitions are sharper compared to the ones

observed for the first QTs.

In the next step we retain only the polarization 〈Iz(τ)〉 after the sweep is complete

and study the effect of a decreasing sweep rate. We first focus on the same set of initial
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conditions as in Fig. A.9. At high sweep rates (here, α ≥ 105 GHz/s) the passage is

sudden, PLZ ' 1, and the polarization remains unchanged after the sweep. For lower

values of α, the polarization is modified by the RF pulse. We identify the three thresholds

corresponding to fulfilling the adiabatic conditions for the first, second and third QT,

respectively. In Fig. A.9(b), we turn to a more realistic thermal distribution at t = 0.

The evolution of 〈Iz(τ)〉 shows a step-like behaviour, with the steps corresponding to

the ∆m = 1, ∆m = 2 and ∆m = 3 thresholds.

Several comments should be made. First, if υRF
υQ
∼ 1, the different transitions identi-

fied in Fig. A.7 and Fig. A.8 are no longer isolated one from the other, and the step-like

behaviour of Fig. A.9 vanishes. Second, the efficiency of the manipulation for a given

sweep rate is not only related the quadrupole field but also to the initial polarization.

To clarify this point, let us consider an initial thermal distribution described by a tem-

perature T . In the high temperature limit (kBT � hνL, with hνL the Zeeman energy),

it is possible to show analytically that the manipulation efficiencies associated with the

successive opening of the first, second and third QTs are 60%, 90%, and 100%, respec-

tively. Conversely, in the limit where kBT � hνL, complete inversion is achieved as soon

as the adiabatic condition is satisfied for the first QT, which does not (to first order)

depend on νQ.

A.3.2 Quantitative analysis

The nuclear spin ensemble in an InxGa1−xAs QD is highly inhomogeneous. The first

obvious reason is the presence of various isotopes, mainly 75As, 115In, 69Ga and 71Ga

(see Table A.2). A second reason, which is intrinsic to self-assembled QDs, is the strain

which is not homogenously distributed over the QD10. This results in a position de-

pendent electric-field gradient, and thus a distribution of quadrupole frequencies over

the spin ensemble. This inhomogeneity, associated with the exact chemical composition

of the QD, influences the overall degree of adiabaticity that can be reached for a given

experiment. In the following we derive the effective nuclear spin temperature following

optical polarization, a quantitative value for the chemical composition, as well as the

isotope dependent quadrupole frequency distribution in the QD.

Chemical composition and nuclear spin temperature

Since the orbital part of the hole wave function is predominantly p-like, the contact

interaction of the nuclear spin ensemble with the hole spin can be neglected. Initialization
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Fig. A.9. Average spin projection 〈Iz〉 as a function of the sweep rate. The simulations are

carried out on 71Ga with Bz = 6 T, Bx = 16 mT and νQ = 1 MHz for different initial polarizations.

In (a), we consider the same pure states as in Fig. A.8. For α ≥ 105 GHz/s the passage is sudden.

After the first threshold, the adiabatic condition is satisfied for the first QTs (|∆m| = 1). We observe,

for example, | + 3
2
〉 → | − 3

2
〉 and | − 3

2
〉 → | + − 1

2
〉 as expected from the energy level diagram in

Fig. A.7. After the second (third) threshold, the adiabatic condition is also satisfied for |∆m| = 2

(|∆m| = 3). This has no impact if the population was initially all in the | + 3
2
〉 state (black line),

but now | − 3
2
〉 → | + 1

2
〉
(
| − 3

2
〉 → |+ 3

2
〉, green line

)
. In (b) we start with a thermal distribution

with T = 20 mK. The vertical lines correspond to PLZ = 1% for the first, second and third quantum

transitions.

and read-out thus depends primarily on the contact hyperfine interaction between the

nuclear spin ensemble and the electron spin. The effect of the nuclear spin ensemble

on the electron spin is described by an effective magnetic field BN , the Overhauser

field, which shifts the energy levels of the electron spin states. This Overhauser shift

is given by OHS = geµBBNSz, where ge is the effective electron g-factor, µB the Bohr

magneton and Sz the electron spin quantum number along the z-direction. For a spin

ensemble of isotope j with average polarization 〈Iz,j〉, OHS =
∑
j
A〈Iz,j〉Sz, where A

is the hyperfine coupling constant11,12. The experiments presented in chapter 2 are all

carried out on the blue transition such that Sz = −1
2 . Each nuclear spin interacts with

the same pumped electron spin so that it is safe to assume that the initial populations

of the nuclear spin levels for each isotope can be described with a temperature. It is

not necessarily the case that each isotope can be described with the same temperature.

For simplicity, we describe all isotopes with the same nuclear spin temperature and we

return to this assumption in section A.3.4. We now show that measurements of OHS, the

initial Overhauser shift, and ∆OHS(∆m = 1), the change in Overhauser shift measured
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I C [%] γ [MHz/T] A[µeV] Q [mb]

69Ga 3/2 60.18 10.219 74 171

71Ga 3/2 39.89 12.984 96 107

75As 3/2 100 7.219 86 314

113In 9/2 4.29 9.310 110 759

115In 9/2 95.71 9.330 110 770

Table A.2. Relevant parameters of the QD main isotopes: Nuclear spin number I, natural

abundance C, gyromagnetic ratio γ, contact hyperfine coupling strength A and quadrupole moments Q

for the relevant isotopes. Since 113In abundance is only 4.3% and its difference in γ compared to 115In

is beyond the resolution of our experiment we neglect this isotope in our analysis. Data taken from11.

at the first plateau (Fig. 2.6 of chapter 2), we can determine the In composition x and

the initial nuclear spin temperature T .

Using Boltzmann statistics the occupation probability of the mth level for isotope j is

pj,m =
1

Zj
exp

(
−Ej,m
kBT

)
(A.7)

where Ej,m = −mhγjBz is the Zeeman energy of themth level * , Zj =
∑
m

exp(−Ej,m/kT )

is the partition function, kB is the Boltzmann constant and m = 3
2 ,

1
2 ,−

1
2 ,−

3
2 for I = 3

2

spins (m = 9
2 ,

7
2 , ...,−

9
2 , for I = 9

2 spins). Thus the average nuclear spin polarization for

jth isotope amounts to

〈Iz,j〉 =
∑
m

pj,mm. (A.8)

By weighting each 〈Iz,j〉 with its corresponding coupling coefficient Aj (see Table A.2)

and relative concentration cj the initial Overhauser shift for each isotope is

OHSj = −1

2
cjAj〈Iinitialz,j 〉. (A.9)

Since Ga substitutes to In, the 75As concentration is known and equals to 50%, whereas

the other concentrations depends on x.

*Corrections to the level spacings due to first order quadrupolar effects (Eq. A.1) were included
in a mean approach by using the average quadrupole frequency determined in the below (subsection
Quadrupolar field) for each isotope. Note that, given 〈νQ〉 � γBz, the effect on T and x are small and
fall within the error bars.
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An adiabatic sweep leads to a change in nuclear spin polarization

∆Iz,j = 〈Ifinalz,j 〉 − 〈I
initial
z,j 〉. (A.10)

Thus the related change in Overhauser shift is

∆j
OHS =

1

2
cjAj∆Iz,j . (A.11)

For 3
2 -spins, assuming adiabatic conditions for the first order QTs only, one can determine

the final nuclear spin polarization (see energy level diagram of Fig. A.7):

〈Ifinalz,j 〉(∆m = 1) = +
3

2
pj, 1

2
+

1

2
pj,− 1

2
− 1

2
pj,− 3

2
− 3

2
pj, 3

2
(A.12)

The same is done analogously for the 9
2 -spins of indium.

We are finally left with the following set of equations

OHS =
∑
j

OHSj (A.13)

∆OHS(∆m = 1) =
∑
j

∆j
OHS(∆m = 1) (A.14)

where T and x as the only unknowns. Solving the system with inputs from the ex-

periment OHS = (27.0 ± 0.85) µeV and ∆OHS = (28.8 ± 0.85) µeV, we obtain an ini-

tial temperature T = 8.2 ± 0.8 mK and an In concentration for this specific QD of

x = 0.202 ± 0.057.

Quadrupolar field

In section A.3.1 we showed how we use the von Neumann equation to simulate the

evolution of the (projected) nuclear spin polarization with a linear sweep of the radio-

frequency. Now assuming an initial spin temperature of 8.2 mK, we are in a position to

model the NMR spectra measured in our experiment.

We first plot the expected change of polarization in the case of a single 71Ga spin for

different quadrupole frequencies (Fig. A.10). The simulations show clear steps associated

with the transfer of population at the first and second quantum transitions. As expected,

the total 〈∆Iz〉 reduces as νQ increases, a consequence of the smaller νeff for the high

order QTs. In order to account for the inhomogeneity in the sample, we then average
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this behaviour over a distribution of quadrupole frequency (νQ = 0 → νmaxQ ) using

(truncated) Gaussian distributions of the form

p(νQ) = λ exp

[
(νQ − ν0

Q)2

2σ2
Q

]
with νQ > 0, (A.15)

where λ normalizes the distribution,
∫ νmaxQ

0 p(νQ)dνQ = 1. The result is shown in Fig.

A.10(b). We note in particular that the steps associated with the satellite peaks are

smeared out as the distribution spreads. Ultimately, the NMR spectrum of the 3
2 -spin

reduces to one step at the position of the central frequency surrounded by a steady

(almost linear) increase due to the satellite transitions.

For In, the situation is similar (Fig. A.11(b)). After the averaging however, no step

remains, a consequence of the large number of transitions.

We finally compute an average quadrupole frequency 〈νQ〉 =
∫ νmaxQ

0 p(νQ)νQdνQ, which

slightly differs from ν0
Q if p(νQ) is truncated.

In order to describe the experimental data, we derive such spectra using the experi-

mental sweep rate α = 0.09 GHz/s for 3
2 -spins, and a slightly larger value α = 0.25 GHz/s

for 9
2 -spins*. Weighting each isotope’s contribution with its concentration determined

in section A.3.2, and multiplying by the corresponding coupling coefficient (Table A.2),

we obtain the theoretical spectra shown in Fig. 2.7 of chapter 2. In the case of 75As and
71Ga, the resonances are well isolated and it is straightforward to adjust p(νQ) to fit the

data. On the other hand, for 115In and 69Ga, the spectra overlap. Assuming a homo-

geneous distribution of both Ga isotopes within the QD (and thus similar electric field

gradient distributions), we can however predict the 69Ga spectrum simply by the ratio

of both isotope’s nuclear quadrupole moments using Eq. A.3 (see also Table A.2). The

remaining signal is then due to In. With this procedure we can thus determine an ap-

proximate distribution of quadrupole frequencies for all the main isotopes, see Table A.3

and inset of Fig. 2.7 of chapter 2.

A.3.3 Discussion and conclusions

Now using the temperature, In concentration and the average quadrupole frequencies

for each isotopes determined in previous sections, we can simulate the expected change

in the average nuclear spin polarization as a function α (Fig. 2.6 of chapter 2). With

Bx = 3.8 mT, the calculations show remarkable agreement with the experimental data.

*By doing so we significantly speed up calculations without modifying the expected result since both
rates belong to the second plateau for In (Fig. 2.6 of chapter 2)
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Fig. A.10. NMR spectrum of 3
2
-spins. (a) Change in polarization for a single 71Ga spin. The sweep

rate is set to α = 0.04 GHz/s (first and second QTs opened). Three different quadrupole frequencies

are shown: black circles νQ = 0.5 MHz, open diamonds νQ = 2.5 MHz and gray triangles νQ = 4.5 MHz.

(b) Change in polarization for an inhomogeneous ensemble of 71Ga spins. In black, red and blue, the

distribution of quadrupole frequencies are Gaussian functions centered around ν0Q = 2 MHz. In green

we consider a flat distribution. Insets: the quadrupole frequency distributions. For all calculations,

Bz = 6 T, Bx = 3.8 mT and the initial temperature is set to T = 8.2 mK.

In particular the plateau associated with the first QTs is reproduced, a signature of a

large quadrupole field for all isotopes. One can note that the first QTs are not reached

at the same α for all isotopes. This is due to different gyromagnetic ratios (see Table

A.2) and, in the case of In, to the different spin number. As can be seen from the

isotope selective α-dependency, the second step-like feature at low α arises due to In

spins reaching the plateau associated with the second QTs before the 3
2 -spins. The large
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Fig. A.11. NMR spectrum of 9
2
-spins. Change in polarization for In, with α = 1 GHz/s. In black,

the signal associated with a single spin with νQ = 1.2 MHz; in red, an inhomogeneous ensemble with a

Gaussian distribution of quadrupole frequencies centred around ν0Q = 1.2 MHz (see inset).

75As 115In 69Ga 71Ga

ν0
Q [MHz] 0 1.5 2.9 1.8

σQ [MHz] 4.0 0.4 1.6 1.6

〈νQ〉 [MHz] 3.0 1.5 3.1 2.1

Table A.3. Parameters of the (truncated) Gaussian distributions used in the description of the experi-

mental data (Fig. 2.6 of chapter 2). ν0Q is the central frequency, corresponding to the highest density,

σQ is the width of the distribution and 〈νQ〉 is the average quadrupole frequency, which differs from ν0Q

when the distribution is truncated.

contribution of the In spins along with the small dispersion in In quadrupole frequencies

explain the observed second step-like feature.

Finally, we gather all the results obtained from our calculations and compare them

with the experimental data. The results are shown in Fig. A.12 and Table A.4 and

commented hereafter:

Initial polarization: The initial polarization for each isotope 〈Iz,j〉/Imaxz,j is determined

solely by T . Due to the different gyromagnetic ratios and the much higher spin number

of In, the polarization is not equally distributed among the different isotopes (Table A.4).

For example, the initial polarization of As is only 21%, whereas the initial polarization
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of In reaches 50%. Weighting each isotope with its concentration yields a value of 32%

for the initial polarization of the ensemble. Finally, using the coupling coefficients Aj

from Table A.2 and our measured value ge = −0.71 ± 0.05 of the electron g-factor, we

calculate the Overhauser field corresponding to 32% polarization, BN = 2.0 T.

Efficiency of the nuclear spin manipulation: The inversion efficiency for each isotope

is defined as ∆Iz,j/(2I
initial
z,j ) = ∆j

OHS/(2OHSj). The efficiency depends on three pa-

rameters, first the spin quantum number I, second the initial polarization, and third

the quadrupole frequency. 75As has the lowest initial polarization, a broad quadrupole

frequency distribution and a large 〈νQ〉, thus the inversion efficiency (75%) is lower than

that for 71Ga (94%), which has a higher initial polarization and a smaller 〈νQ〉 with

a narrower distribution. Conversely, In has a much more complex level structure and

despite the high initial polarization the inversion efficiency is only 64%. By weighting

the efficiency for each isotope with its concentration we compute the efficiency for the

whole ensemble, which is 72%.

Sensitivity of the measurement: The sensitivity to the change in Overhauser shift is

obtained from the statistical distribution of the experimental results. Averaging over

more than 20 measurements, we obtain a standard deviation of 0.85 µeV for ∆OHS. Using

the value OHSmax = 81.8 µeV for the maximum Overhauser shift and 105 nuclei12, we

conclude that we are sensitive to the Overhauser field generated by the full polarization

of ∼ 1, 000 nuclei. The errors in x and T correspond to the statistical fluctuations in

the change of the plateau width. For all numbers deduced from the model the errors in

the change of dragging plateau width were propagated to find the error in a particular

quantity.

A.3.4 Nuclear spin temperature

The analysis so far has assumed an isotope-independent initial nuclear spin temperature.

An alternative assumption is that the polarization for all spin-3
2 nuclei is the same such

that there is a spread of temperatures in accord with the spread in gyromagnetic ratios.

This second Ansatz would hold if the only significant interaction is the first-order contact

hyperfine interaction13. We have attempted to describe the experimental data also

with this assumption, explicitly that the ratio β = (Ej,m+1 −Ej,m)/kBT (ratio Zeeman

energy to thermal energy) is the same for all isotopes. We find with this approach that

β = 0.302 ± 0.033, x = 0.221 ± 0.067 with temperatures 75As: (6.9 ± 0.8) mK; In:

(8.9±1.0) mK; 69Ga: (9.7±1.1) mK; 71Ga: (12.4±1.4) mK. Some important comments

are in order.
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Fig. A.12. Comparison of the measured change in Overhauser shift ∆OHS with the single

spin model at first and second quantum transitions. The results indicate that, for the slowest

rate, we achieve inversion at the second QT for In and 71Ga. The second QT is however not yet opened

for As and 69Ga. Input parameters to the model are T = 8.2 ± 0.8 mK and x = 0.20 ± 0.06.

- 75As 69Ga 71Ga 115In total

OHS [µeV] -6.6± 0.6 -3.80± 0.4 -4.0± 0.4 -12.6± 3.6 -27.0± 0.9

Initial Polarization [%] 21± 3 29± 3 36± 3 50± 3 32± 1

∆OHS(∆m= 1) [µeV] 8.4± 0.8 5.1± 0.6 5.5± 0.7 9.8± 4.8 28.8± 0.9

Efficiency (∆m= 1) [%] 63.0± 0.5 66.3± 0.7 68.8± 0.9 39.2± 1.3 55.0± 2.3

∆OHS(∆m= 1,2) [µeV] 12.1± 1.1 7.1± 0.8 7.5± 0.9 16.2± 4.8 42.9± 5.3

Efficiency (∆m= 1,2) [%] 91.6± 0.2 92.9± 0.3 93.9± 0.3 64.5± 1.5 81.3± 2.4

∆OHS(measured) [µeV] 9.5± 0.9 5.9± 0.9 7.2± 0.9 15.4± 0.9 38± 0.9

Efficiency (measured) [%] 75± 9 71± 14 94± 15 64± 19 72± 10

Table A.4. Initial polarizations and inversion efficiencies for the main isotopes. Values in

red are obtained from Figs. 2.4, 2.6 and 2.7. Values in black are deduced from the single spin model

described in section A.3.1 with T = 8.2 mK and x = 20%.

First, the indium concentration from the common polarization assumption is the same

to within the random error as before (common temperature assumption). The random

error is determined by noise in the initialization/read-out process. In other words, the

random error is larger than any systematic error arising from assumptions on the tem-

perature.

Secondly, the temperatures for 75As, In and 69Ga are also the same as before to within

the random error: the common temperature and common polarization assumptions do
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Fig. A.13. Comparison of the measured change in Overhauser shift ∆OHS with the single spin

model at first and second quantum transitions with the common polarization assumption.

As in Fig. A.12, for the slowest rate we achieve inversion at the first and second QT for In and 71Ga

but inversion at the first QT only for As and 69Ga. Input parameters to the model are β = 0.302 and

x = 0.221. The calculations for 71Ga lie below the experimental result and in this respect, the common

polarization assumption is inferior to the common temperature assumption of Fig. A.12.

not lead to significant differences. In principle, the experiment is capable of determining

a nuclear spin temperature for each isotope separately. In practice, the present resolution

is insufficient to reveal small differences.

Thirdly, the two assumptions, common temperature versus common polarization, lead

to significantly different temperatures for 71Ga. A detailed comparison of the two models

is shown in Fig. A.13 which plots ∆OHS, measured and calculated. The 71Ga result from

the common polarization model is significantly too small, and this discrepancy cannot

be resolved by including full inversion at the second quantum transition or by reducing

the In concentration. The conclusion is that the common temperature assumption is

more realistic than the common polarization assumption. This points to the presence of

another interaction in the initialization process. A likely explanation is that the electron

spin in the exciton provides a mechanism by which all the nuclear spins are coupled

together, a second-order process, in the presence of spontaneous emission of the exciton

which blurs energy conservation of the electron-nuclear interactions by up to 1 µeV.
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Appendix B

Supplementary information to chapter 3

B.1 Supporting experimental results

B.1.1 Hight accuracy measurement of the central NMR transition

Since the amplitude of Rabi oscillations decreases rapidly for excitation detuned more

than the Rabi frequency it is crucial to determine the resonance frequency with high

accuracy. Our method is to apply a frequency-swept pulse across all the side bands of a

particular isotope with a Gaussian amplitude dip and vary the center frequency νcenter

of the Gaussian (Fig. B.1(a)). When νcenter comes close central transition population

exchange between the +1/2 and −1/2 state is interrupted and hence a dip in the NMR

signal is observed (Fig. B.1(b)). A Gaussian fit determines the CT resonance with

accuracy of ±3 kHz for In (±8 kHz for As), considerably smaller than the Rabi frequency

νeff = 250 kHz for In (νeff = 65 kHz for As) and the recently measured linewidth of

the CT of 40 kHz for In at B0 = 5.3 T1 (30 kHz for As at B0 = 8 T2).

B.1.2 Gate switching bandwidth

In principle the characteristic time constant for the charge tunable device is given by

1/RC, where R is the resistance of the back contact and C is the capacitance between

top gate and back contact. To measure the bandwidth of the device we use the QD as

a sensor: the DC gate voltage Vg is modulated with a square wave (Vpp = 200 mV) and

the resonant excitation wavelength is fixed. If we now scan the DC component Vg across

the X0 resonance we observe two lines in the resonance fluorescence spectra separated

by 200 mV (Fig. B.2). Increasing the modulation frequency, we find that the bandwidth

of the device is around 100 kHz, i.e a switching time ∼ 10 µs. This is one order of

magnitude smaller then the 100 µs delay we introduce between switching to a charging

state an applying the RF pulse.
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Fig. B.1. Determining the resonance of the central transition. (a) Sketch of a chirped pulse with

a Gaussian amplitude modulation. (b) NMR signal vs center frequency νcenter of the Gaussian amplitude

modulation for Indium, where ν1 = 49 MHz, ν2 = 74 MHz, α = 10 GHz/s, FWHM of Gaussian = 0.3

MHz. The solid line is a Gaussian fit, where the error on the spectral position is less than 4 kHz.
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Fig. B.2. Switching speed of the charge tunable device. Resonance fluorescence spectra of the

neutral exciton, while the gate voltage is modulated with a square wave (Vpp = 200 mV) for different

frequencies. The maximum bandwidth of the device is ∼ 100 kHz.
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B.1.3 g-factors and branching ratio

From PL measurements of the X1− transition for different external magnetic fields (Fig.

B.3(a),(c)) we can determine the electron g-factor ge = −0.67 ± 0.06 and hole g-factor

gh = 1.59±0.06 by comparing the resonance positions (Fig. B.3(b)). The corresponding

gyromagnetic ratios are γe = −38.9± 3.4 µeV/T and γh = −92.3± 3.2 µeV/T.
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Fig. B.3. Branching ratio and g-factors (a) PL from the X1− transition recorded at B0 = 6 T and Vg

corresponding to maximum co-tunneling. Spectral positions Ei and intensities Ii for the four transitions

are determined with a multiple peak fit (solid line). (b) Energy levels for the X1− ground and excited

states, where single (double) arrows represent the electron (hole) spin states. Solid (dashed) red arrows

indicate transitions allowed (forbidden) according to the optical selection rules. The forbidden transitions

are enabled by a week light hole contribution to the hole wave function. Γi denote the transition rates

and γct the electron spin flip rate of the ground states resulting from co-tunneling to the back contact.

(c) X1− PL for different external magnetic fields. Zeeman spitting and diamagnetic shift are observed.

We determine electron ge = −0.67 ± 0.06 and gh = 1.59 ± 0.06. (d) Branching ratios (see legend) are

determined by comparing the intensities. With the knowledge of Γ1 = Γ4 ≈ 1 GHz we can determine

the diagonal rates Γ2 = Γ3 ≈ 50 MHz. Since we do not observe spin pumping under resonant excitation

the γct also must be on the order of tens of MHz.
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The diagonal transitions (dashed red arrows in Fig. B.3(b)) are in principle forbidden

by the optical selection rules, but are enabled by a weak light hole contribution to the

hole wave function. Knowing that the vertical transitions rates (solid red arrows in Fig.

B.3(b)) are about 1 GHz/s we can determine the diagonal transition rates to be a few

tens of MHz. The signature of spin pumping, a decrease of resonance fluorescence counts

at the center of the X1− plateau, is not observed (Fig. 3.5(a)). Hence we deduce that

the co-tunneling rate γct, which couples the spin split ground states, is of the same order

as the diagonal transition rates.

B.2 Theory: Decoherence of the nuclear spin ensemble

The work in this section was conducted by Franziska Maier and Daniel Loss.

B.2.1 Decoherence rate of a single nuclear spin

In this section, we describe the dynamics of the transverse spin component of a single

nuclear spin interacting with a narrowed nuclear spin bath in a quantum dot. The inter-

action between the nuclei is mediated by a single electron due to hyperfine interactions

and we neglect effects due to the dipolar and quadrupole interactions of the nuclear

spins. We consider a self-assembled quantum dot loaded with a single electron in a

strong magnetic field pointing perpendicular to the substrate along z. The Hamiltonian

used in this work, H ' H0 +V , is only valid in large magnetic fields and corresponds to

the effective Hamiltonian derived in Ref.3, where we omitted diagonal terms in V . The

single terms read

H0 = εzSz + ηz
∑
j

Izj + Szhz, (B.1)

V =
1

8ω

∑
j 6=l

AjAl

[(
1

2
+ Sz

)
(I−j I

+
l + I−l I

+
j )

−
(

1

2
− Sz

)
(I+
j I
−
l + I+

l I
−
j )

]
. (B.2)

Here, Sz is the z component of the electron spin operator, Iz,±j (I±j = Ixj ± iIyj ) are

the components of the nuclear spin operator of the jth nuclear spin, and εz and ηz

are the electron spin and nuclear spin Zeeman splitting, respectively. The Overhauser

field in z direction is denoted by hz =
∑

j AjI
z
j with Aj = Aν0|ψ(rj)|2, where A is

the total hyperfine coupling constant, ν0 is the volume of a single nucleus unit cell and

100



ψ(rj) = ψ(0)e−(rj/aB)2/2 is the electron envelope function. Here, the effective Bohr

radius aB defines the total number of nuclear spins interacting with the electron spin,

Ne. Eventually, the effective Zeeman splitting of the electron is given by ω ≈ εz + 〈hz〉 =

gµBB+pIA, where g is the electron g factor, µB is the Bohr magneton, B is the magnetic

field along z, p is the nuclear spin polarization and I denotes the nuclear spin.

Following Refs.3,4, we describe the transverse nuclear spin dynamics of a single nuclear

spin in the quantum dot. For factorized initial conditions, i.e. Pkρ(0) = ρ(0) we are able

to derive the exact Nakajima-Zwanzig general master equation5,

Pkρ̇(t) = −iPkLPkρ(t)− i
∫ t

0
dt′Σ(t− t′)ρ(t′) (B.3)

with the memory kernel Σ(t) = −iPkLe−iQkLtQkLPk. Here, we introduced a superop-

erator Pk that projects onto the subspace of a single nuclear spin k and is defined as

PkO = ρeI′(0)TreI′O, with its complement Qk = 1− Pk. We have ρ(0) = ρe(0)⊗ ρI(0)

and the density matrix ρeI′ = ρe ⊗j 6=k ρij . Furthermore, L = L0 + LV denotes the

complete Liouvillian, where L0O = [H0,O] and LVO = [V,O], respectively. Assuming

I = 1/2, we find in the Born approximation

〈İ+
k 〉t = −iωn〈I+

k 〉t − i
∫ t

0
dt′Σ

(2)
++(t− t′)〈I+

k 〉t′ (B.4)

where ωn = ηz +Ak[Sz]
mm−A2

k/2ω, with [Sz]
mm |m〉 = Sz |m〉, and where Σ

(2)
++(t) is the

matrix element of the memory kernel describing the transverse nuclear spin dynamics to

second order in LV . In Laplace space, the memory kernel is given by

Σ
(2)
++(s) =

−i
16ω2

∑
j 6=k

(c+ + c−)A2
kA

2
j

s− i[ηz +Aj [Sz]mm −A2
j/2ω]

, (B.5)

with the coefficients c± defined in Ref.4. To remove fast oscillations in Eq. (B.4), we

transform to a rotating frame with frequency shift ∆ω = −Re[Σ
(2)
++(s = i(ωn+∆ω)+0+)]

determined self-consistently, where 0+ denotes a positive infinitesimal. In the Born-

Markov approximation, the decoherence rate of a single nucleus k is given by Γk =

−Im[Σ
(2)
++(s = i(ωn + ∆ω) + 0+)], see Ref.6, Appendix C. We find

Γk =
A3ν2

0

4π5/2h̄ω2a6
B

e−3(rk/aB)2 rk
aB

. (B.6)

In Fig. B.4, we plot Γk for a realistic set of parameters as a function of rk.
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Fig. B.4. The decoherence rate Γk of a single nuclear spin k as a function of its position rk in the

quantum dot. Here, we assumed an In-concentration of 20% in the quantum dot, g = −0.7, B = 6 T,

p = 0.5, and AInGaAs = 87 µeV. Furthermore, ν0 = 23.5 Å3 and Ne = 105, thus we obtain an effective

Bohr radius aB = 8.25 nm.

B.2.2 Coherence rate of a NMR signal

In NMR experiments, the combined signal of an ensemble of N nuclear spins is measured.

We approximate the measured quantity, 〈I+
N (t)〉, by

〈I+
N (t)〉 ∼

∑
k

〈I+
k (t)〉 =

∑
k

e−Γkt〈I+
k (0)〉 ∝

∑
k

e−Γkt, (B.7)

where the sum
∑

k runs over all nuclear spins contributing to the signal. In the last step,

we assumed that 〈I+
k (0)〉 is constant over the dot. Note that the brackets describing the

averaging, 〈. . .〉, correspond to different traces for I+
N and I+

k . For small times t with

Γkt� 1, we find that

〈I+
N (t)〉 ∝ N − 1 + e−Γ̂N t (B.8)

with

Γ̂N =
∑
k

Γk =
A3ν0

18π3/2h̄ω2a3
B

. (B.9)

Inserting the parameters given below Fig. B.4, we find Γ̂−1
N ≈ 117 µs. In Fig. B.5, we plot

both the exact and approximated decay of 〈I+
N (t)〉, again for the parameters given below

Fig. B.4. We see that approximation captures the onset of the decay quite well, however,

at t ∼ 10−4 s, the approximation starts to deviate from the exact result. Interestingly,

the exact result then evolves into a linear decay.
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Fig. B.5. The NMR signal 〈I+N (t)〉 as a function of t, where we compare the exact (red) and the

approximated (black) decay. Here we used the same parameters as given below Fig. B.4.
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Appendix C

Supplementary information to chapter 4

C.1 Methods

Nanowire growth The nanowires were grown using a DCA P600 MBE machine. The

nanowire core structures were obtained under rotation of 7 rpm at a temperature of

640◦C under a flux of Ga equivalent to a planar growth rate of 0.03 nm/s and a V/III

ratio of 60. The conditions were then switched from axial to radial growth by increasing

the As pressure and reducing the substrate temperature. A 50 nm AlxGa1−xAs shell

was grown with Al compositions x = 0.33, 0.51 and 0.70 and capped with 5 nm GaAs

to prevent oxidation. One sample was grown with alternating layers of GaAs/AlGaAs

at x = 0.33.

Electron microscopy Cross-sections of the nanowires perpendicular to the growth

axis were prepared by mechanical polishing and ion milling. 3D atomic models were

obtained using the Rhodius software package1 which allows complex atomic models to

be created, including nanowire-like heterostructures2. High angle annular dark-field

(HAADF) scanning transmission electron microscopy (STEM) analyses were performed

in an aberration corrected probe FEI Titan 60-300 keV microscope. EDX analysis was

performed using a FEI Tecnai OSIRIS microscope operated at 200 kV using the Super-X

(0.9 radian collection angle) detector and Bruker Esprit software.

Optical spectroscopy The nanowires were transferred to a fresh silicon substrate and

subsequently probed side-on. Cathodoluminescence was realized in an adapted scanning

electron microscope3. Photoluminescence measurements were made with a confocal op-

tical microscope with sample scanning, exciting with a low power HeNe laser at 632.8 nm

or Ar+Kr+ laser at 488 nm and 514 nm. The PL was dispersed with a monochromator-

array detector system. PL in a bandwidth of 0.5 nm was sent to a Hanbury Brown-Twiss

photon coincidence setup with two nominally identical silicon avalanche photodiodes.
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The pulsed measurements (see SI) were performed with a Q-switched semiconductor

laser diode at 635 nm using time-correlated single photon counting for recording the

decay curve (SI).

Pseudopotential calculations The screened atomic potentials are adjusted by the

empirical pseudopotentials method to correct for the DFT errors in band gaps, effective

masses, inter-valley splittings and band offsets4. The single particle problem is solved

numerically in a plane-wave basis, including spin-orbit (340 meV for GaAs), using the

folded spectrum method5 which allows eigensolutions to be obtained in a physically in-

teresting energy window (about 300 meV from band edges) rather than at all energies.

The calculation is carried out with a fixed potential without iterating to self-consistency.

Self-consistent DFT calculations Using linear-scaling density functional theory (DFT)6,

as implemented in the ONETEP method7–9, which captures charge redistribution effects

both efficiently and accurately10,11, we have performed simulations on structures con-

taining 5,000 and 12,168 atoms (one of the largest fully self-consistent calculations ever

performed). The 5,000 atom calculation was carried out by iteratively refining a com-

pact real-space Wannier basis with respect to a primary plane-wave basis, whereas in

the 12,168 atom calculation, the real-space basis was pre-optimized for isolated atoms,

and thereafter fixed. In order to capture both the polar [121] and non-polar facets of the

observed quantum-dots-in-nanowires, our simulation cells consist of fully-periodic slabs

(1.3 nm thick, along the [1 − 11] direction) of an effective [1 − 21] wire. Simulations

at the interface with the GaAs outer shell (Fig. 5) and with the Al0.3Ga0.7As nanowire

core were separately carried out (see SI), using norm-conserving pseudopotentials, the

local-density approximation (LDA)12, and random alloying at each stated concentration.
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Appendix D

Supplementary information to chapter 5

D.1 Mechanical properties of the nanowire

We calculate the lowest order flexural vibrations and the induced dynamic strain of the

nanowire (NW) using a finite element model (FEM) of the experimental system. We

approximate the NW structure as an isotropic and homogeneous hexagonal prism of

AlGaAs, with a density given by the average of the densities of the different GaAs and

AlGaAs layers, each weighted according to its thickness (see main text). The dimensions

of the NW as well as its length that is tightly glued to the Si substrate on a lateral facet

are measured by scanning electron microscopy (SEM).

The FEM provides the eigenfrequencies of the NW flexural vibrations and the corre-

sponding mode shapes. While a symmetric clamping of the NW would result in doubly

degenerate vibrational modes, the asymmetry of the actual clamping geometry, i.e. with

only one lateral facet in contact with the substrate, splits each mode into a doublet of

flexural vibrations oriented either parallel or perpendicular to the Si surface, with the

former having the lower eigenfrequency. Figure D.1 shows the mode shape of the lowest

four non-degenerate vibrations. The spectral separation between two non-degenerate

modes in each doublet depends, aside from the nature of the clamping, on the symmetry

of the NW geometry: a dilatation of the hexagonal cross-section by only 1% along one

axis is enough to invert the spectral positions of the two modes.

As discussed in the main text, in this experiment we focus our attention on the lowest

order perpendicular mode. This orientation is preferentially driven by the piezoelectric

transducer attached to the sample, is more easily detected by the interferometer, and

driving higher order modes requires higher mechanical excitation power or a more sen-

sitive displacement detection. The calculation of the mode shape of the favored flexural

mode u⊥(r) as a function of the position r allows us to determine the corresponding
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Fig. D.1. FEM of the NW mechanical properties. Each subfigure shows the mode shape of the

lowest four non-degenerate vibrations, n being the mode index. The colour scale is proportional to the

component ε‖ of the material strain in the NW, for a 1-nm displacement of its free end.

motional mass m at the NW free-end, according to the definition:

m ≡
∫
ρ |u⊥(r)|2 dV, (D.1)

where the integral is calculated over the entire NW volume V , ρ is the NW density,

which in our model does not depend on r, and u⊥(r) is normalized so that its maximum

value is unity1. The result is m = (3.5± 0.7)× 10−15 kg, where the error is dominated

by the measurement imprecision of the NW thickness.

The flexural vibrations produce a time-varying material strain in the NW, which

translates into a dominant uniaxial stress along the NW growth direction ([1 1̄ 1] in crys-

tallographic notation). This oscillating material strain is responsible for the modulation

of the QD emission energy, therefore it is important to evaluate its strength and its spa-

tial distribution. For this purpose, it is necessary to determine the values of the Young’s

modulus EY and of the Poisson’s ratio ν, which fully characterize the elastic properties

of isotropic materials2.

To our knowledge, for a GaAs/AlGaAs nanostructure grown along 〈1 1 1〉, EY has

not yet been measured. The only reference is the value along this axis measured for

bulk GaAs (141.2 GPa)3. For this reason, we initially set EY as a free parameter in

our FEM, while calculating the NW eigenfrequencies. We then tune EY in the FEM
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until the calculated resonance frequency of the lowest perpendicular mode matches our

experimentally measured value of 795.4 kHz. The corresponding Young’s modulus is

EY = 153 GPa, which is 8% larger than the aforementioned value measured for bulk

GaAs. Possible reasons for this increase of the stiffness of our NW reside in its finite size

and in its core-shell structure, which introduces an additional intrinsic material strain.

The Poisson ratio expresses the relative strength of the strain tensor components. By

setting an xyz reference system with ẑ oriented along the NW growth direction, the

strain tensor in our case assumes the following form:

εij =


ε⊥ 0 0

0 ε⊥ 0

0 0 ε‖

 . (D.2)

In this reference system, the Poisson’s ratio can be written as follows:

ν = −ε⊥
ε‖
. (D.3)

Signorello et al.4 have recently measured ν for Zinc-Blende GaAs/AlGaAs core-shell

NWs grown along 〈1 1 1〉, as in our case, at a temperature of 100 K (see Table D.1).

Once these fundamental parameters have been inserted into our FEM, we compute

the strain distribution along the NW structure. Figure D.1 shows in color scale ε‖ for

the lowest four non-degenerate flexural vibrations, for a NW free-end displacement of

1 nm. The largest strain is obtained at the clamped end of the NW, at the borders of

its hexagonal cross-section perpendicular to the oscillation direction. The mode doublet

described by the indices n = 2 and 3 results in a maximum strain at the clamped end

Parameter Value Unit

ν 0.16± 0.04

a −8.6± 0.7 eV

d −5.2± 0.7 eV

Table D.1. Electro-mechanical material parameters. The values have been measured for Zinc-Blende

GaAs/AlGaAs core-shell NWs grown along 〈1 1 1〉, at a temperature of 100 K. Taken from Ref. 4.
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that is a factor 6 larger than the value of the lower index doublet. As confirmed by the

FEM analysis, flexural modes of even higher index result in a further increase of the

strain at the clamped end. Improvements in the detection of these higher modes should

provide an opto-mechanical coupling parameter increased as the strain. However, the

coupling rate λ defined in the main text also depends on the NW’s zero-point motion

xZPF =
√
h̄/ (2mnΩn). While the mode motional mass mn does not depend in our

geometry on n, the mode resonance frequency Ωn increases with n, by a factor 6 for the

second order doublet with respect to the first one. This dependence implies an increase

of λ by a factor 2 (or bigger) for the second order (or higher) flexural modes of the NW.

D.2 Effect of strain on the exciton transition energy

The application of mechanical strain to the NW alters the lattice constant and the

symmetry of the solid. These effects, in turn, cause significant changes in the electronic

band structure that manifest themselves in the optical properties. The hydrostatic and

shear components of the strain both contribute to such opto-mechanical coupling, with a

weight given by their respective deformation potential, conventionally indicated as a for

the hydrostatic deformation and d for the shearing induced by a stress along 〈1 1 1〉5,6.

The aforementioned work of Signorello et al.4 has obtained these deformation potentials

for NWs similar to ours (but without embedded QDs); the measured values are reported

in Table D.1.

The brightest exciton transition in our QDs concerns the conduction and the heavy-

hole bands, each responding in a different way to the applied strain. The variation

of the energy gap between these bands (∆EC-HH) under mechanical excitation can be

connected to the strain component ε‖ through the following model5:

∆EC-HH =

[
(1− 2ν) a+

1√
3

(1 + ν) d

]
ε‖. (D.4)

From the FEM of the NW, we extract the profile of ε‖ along ẑ corresponding to the

lowest order perpendicular mode, for a given displacement of the NW free end. The

graph in Fig. D.2 shows such a plot for ε‖ at 10 nm below the NW surface, a distance

where the QDs best coupled to strain are located. The red spot, in particular, marks

the position where the QDs analyzed in the main text are placed, 2.0 ± 0.3µm away

from the clamped edge of the NW. Inserting the value of ε‖ at the QD position into the

Eq. D.4, we obtain a displacement-dependent energy shift of 13 ± 2µeV/nm. Though

this estimation does not take into account the detailed QD band structure, the value we
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Fig. D.2. Strain profile along ẑ. The strain component ε‖ at 10 nm below the NW surface is plotted

for the NW free-end displaced through u⊥ by 1 nm along x̂. The shaded area from z = 0 to z = 5µm

marks the region of the NW which is clamped to the substrate. The red spot at z = 2.0± 0.3µm from

the edge of the clamped region marks the position where the QDs analyzed in the main text are located.

The upper inset shows the mode shape in consideration, with the strain amplitude in color scale as in

Fig. D.1.

have found is close to our experimental result (9.9± 0.7µeV/nm), therefore confirming

the strain-dependence of the band structure as the dominant coupling mechanism.

D.3 Distribution of the exciton energy shifts

We analyze the distribution of energy shifts of PL lines from QDs located in the same

position along the NW length (within the laser detection spot), and emitting in a spec-

tral range of 30 meV centered around 1.860 eV. This relatively narrow energy window

restricts our analysis to QDs with similar size and composition. We consider the energy

shift induced in the QDs by a resonant mechanical excitation of the NW. In order to

exclude the effect of asymmetric energy modulation, due to the different response of the

QD band structure under compressive or tensile stress4,7, we consider energy shifts only

towards higher energies. The distribution of the data is plotted in Fig. D.3(a).

The experimental result is compared to two different models for the spatial distri-

bution of the QDs in the shell of the NW. The first model, illustrated in Fig. D.3(b),

assumes QDs located at the apexes of the NW hexagonal cross-section. The histogram

in Fig. D.3(c), instead, results from a model of QDs uniformly distributed along the shell

perimeter.

The experimental distribution conforms more closely to the model of QDs located at
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Fig. D.3. Distributions of energy shifts. (a) Experimental distribution of energy shifts for QDs

emitting within a 30-meV spectral range and located at the same position along the NW length. (b)

Model distribution for QDs located at the apexes of the NW shell. (c) Model distribution for QDs

uniformly distributed along the shell perimeter. The two model distributions are normalized to the total

exciton count of the experimental analysis.

the apexes of the cross-section. Though not conclusive, this analysis lends support to

the interpretation of the QD spatial distribution in our NW structures originally given

by Heiss et al.8 and recently confirmed by Fontana et al.9. The observed deviations

from such a model can be explained as weak fluctuations of size and composition of the

analyzed QDs10, and to different distances from the center of the cross-section.
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D.4 Interferometric displacement detection

We use a 780-nm laser interferometer to detect the displacement of the NW free-end.

Due to the low finesse of our cavity, the interferometer fringe as a function of the cavity

length or of the laser wavelength is well approximated by a sinusoid. The NW oscillation

modulates the interferometer response in a small range around the fringe average, where

the response becomes linear. We stabilize the interferometer in this linear regime, by

controlling the laser wavelength via a PID feedback loop.

The cavity free spectral range measures (2.6± 0.1)× 10−13 m, from which we derive

a cavity length of 118 ± 5 cm. Measurements of the NW displacement are calibrated

by an accurate determination of the laser wavelength. In order to double-check this

calibration, we measure the displacement amplitude Aosc of the positioning stage along

x̂, while the stage is driven by a low-frequency oscillation (117 Hz). As shown in Fig. D.4,

the measurement is repeated for several drive voltages in order to extract, through a

linear fit, a conversion factor for the piezoelectric positioning stage equal to 11.6 ±
0.1 nm/V. The entire procedure is repeated with the interferometer aligned to a variety

of different positions on the yz plane, including the position of the NW free end. The

values measured using our interferometer are close to the specifications of the positioning

stage, which provide a rough conversion factor of 8 nm/V.
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Fig. D.4. Interferometer test. Amplitude of the positioning stage displacement oscillation at 117 Hz

as a function of the amplitude of the drive voltage, measured at a temperature of 4.2 K. The error bars

correspond to the peak-to-peak amplitude of the interferometric noise. The red line is a linear fit, from

which we extract a conversion factor of 11.6± 0.1 nm/V.
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D.5 Displacement, force, and strain sensitivities

The sensitivity of the QDs in our system to the resonant vibration of the NW could be

used to reveal displacement variations due to the application of electrical or magnetic

forces or to a change of the NW mass.

We estimate the sensitivity of our apparatus as a displacement transducer and as a

force or strain detector. To this purpose, we first measure, for a QD emission line, the

intrinsic fluctuation in time of the photon count in a narrow spectral bin around the

transition energy E0
ex. The amplitude of such fluctuation depends on the bin size and

on the integration time τ . An external force applied to the NW produces, through the

deformation potential coupling, a variation of the QD photon count in a given spectral

interval. For such a force to be detectable, the induced photon count variation has to

be bigger than the intrinsic fluctuation. This count variation is in turn a direct con-

sequence of the emission energy modulation, whose amplitude δEex can be calculated

through the model described in the main text. From the opto-mechanical coupling pa-

rameter ∂Eex
∂x

∣∣
x=0

measured for QD 2, we are then able to convert the emission energy

modulation into a root-mean-squared displacement xrms of the NW free-end. Finally, by

multiplying such displacement to the square root of τ , we obtain a displacement sensi-

tivity ≈ 3 nm Hz−1/2. Note that this result is limited, in particular, by the resolution of

our spectrometer, equal to 60µeV. On the other hand, the sensitivity could be improved

by 4 orders of magnitude by means of resonant laser spectroscopy11.

The applied force is proportional to the NW displacement xrms through the spring

constant k = mΩ2
0 = 90±20 mN/m. Therefore we are able to estimate a force sensitivity

≈ 300 pN Hz−1/2.

Our setup is also sensitive to strain variations in the NW. The finite element model

described in Section D.1 relates the strain to the NW displacement. It is then possible

to express a strain sensitivity of our setup, ≈ 5 × 10−6 strain Hz−1/2. This result is of

the same order of the sensitivity recently estimated for strain-mediated coupling of a

diamond cantilever to the spin of an embedded nitrogen-vacancy center12.
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W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi,

J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton,

and A. Fontcuberta i Morral,

Self-assembled quantum dots in a nanowire system for quantum photonics,

Nature Mater. 12, 439 (2013).
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