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1. Summary

This is a thesis in the field of low-dimensional topology, more specifically about the mapping
class group, knots and links, and 3-manifolds.

For the most part, we will define and examine so-called tête-à-tête twists, a rich and well-
structured collection of elements of the mapping class group that are described by tête-à-tête
graphs. Whereas Dehn twists are twists around a simple closed curve, tête-à-tête twists are
twists around a graph. We will see how to describe mapping classes of finite order, or periodic
pieces of mapping classes, by tête-à-tête twists.

Another main result is a new criterion to decide whether a Seifert surface of a fibred knot or
link is a fibre surface.

Organization of the text

First, Chapter 3 will introduce tête-à-tête graphs and twists and give some examples.
Chapter 4 then establishes some basic results about those objects. We will see a notation,

using chord diagrams, that helps to classify and study them. And we will study elementary
twists, which can be seen as building blocks of more complicated tête-à-tête twists.

In Chapter 5, an interesting result is proven: Tête-à-tête twists describe precisely the (freely)
periodic diffeomorphism classes of surfaces with boundary or punctures. From this fact, we
can deduce combinatorially some properties about the orders of such maps. We will also see
that another characterization of periodic maps is the existence of an invariant spine of the
surface.

The next chapter, Chapter 6, is concerned with tête-à-tête twists as monodromies of knots
and links in the 3-sphere, and more generally with open books of tête-à-tête twists.

Chapter 7 is rather independent from the others. It provides a simple characterization of
fibre surfaces, which can be used to justify the examples given in the introduction, as well as to
give easy new proofs of statements about fibre surfaces.

Chapter 8 treats tête-à-tête twists in the context of the mapping class group. Among other
things, we will see how to use them to generate the mapping class group, as well as some
statements about roots of mapping classes.

Finally, Chapter 9 describes a software that I have used to do some experiments with
tête-à-tête graphs and twists.
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3. Introduction

3.1. Tête-à-tête graphs

It is possible to see a tête-à-tête graph in the real world. Imagine two strangers standing on the
pavement on two sides of a street with bustling morning traffic. Their eyes meet, but then they
both walk on, continuing towards their right, safe from the cars. Upon having walked for two
hundred metres they once more look across the street and, to their surprise, find themselves
meeting again. And not by coincidence: It would be bewildering for them to discover that the
same thing would have happened no matter where they started.
We will examine networks of streets with this property; networks which, like real streets,

can include some over- and underpasses. Mathematically speaking we do the following: Take at
a metric graph G embedded in an oriented surface Σ that deformation retracts to G. Measure
walking distance by using the retraction ρ : Σ Ñ G to pull back the metric of the graph, which
means that only movement in the direction of the edges is taken into account. If the reunion
of the two strangers described above takes place for some fixed walking distance l and for every
starting position on the boundary of Σ, G is said to have the tête-à-tête property with walk
length l . The strangers do not turn back, meaning that their path is required to be transverse to
the fibres of the retraction ρ. Fortunately, when they see each other again, the traffic lessens for
a moment; so they get to meet, albeit in the middle of the road. We call such a path, starting
on BΣ, continuing in Σ �G, and ending on G, a safe walk of length l . If l is a negative number,
the safe walks are understood to lead to the left instead of to the right.

3.2. Tête-à-tête twists

Norbert A’Campo, who coined these terms, defined in this way a natural generalization of
Dehn twists ( [ACa09]). The cylinder is replaced by an arbitrary surface with boundary Σ, and
the simple closed curve along one twists by an embedded graph G as above.
One example is the Θ-graph in Figure 3.1, which is a deformation retract of the one-holed

torus; see also Figure 4.12 on page 23 for two alternative views. We parameterize all edges such
that they have length one (and will always do so in this text, unless stated otherwise). Then
one can check that this graph does indeed have the tête-à-tête property with walk length 2.
An even simpler example is, of course, a circle consisting of two (unit-length) edges. Here

we have the tête-à-tête property with walk length 1. This graph will give us back the standard
Dehn twist, and we define a diffeomorphism of Σ accordingly:

1



3. Introduction

Figure 3.1.: Tête-à-tête graph on a one-holed torus

Figure 3.2.: Tête-à-tête graph for a Dehn twist

2



3.3. Torus link monodromies

Figure 3.3.: Cyclic ordering Figure 3.4.: Blackboard framing

Choose one properly embedded arc for each edge of G, in such a way that the deformation
retraction contracts it to a single point on the edge, where the arc meetsG transversely. We call
such an arc a crossing arc. The tête-à-tête twist TG,l (or simply TG ) then maps the two halves of
the crossing arc to safe walks of length l along the graph. The union of all the transverse arcs
cuts Σ into a collection of disks, so there is a unique way, up to isotopy, to complete TG,l to a
diffeomorphism of Σ.

3.2.1. Naming matters and conventions

A graph together with an oriented surface that deformation retracts to it is often called ribbon
graph, fatgraph, or also spine (of the surface). An alternative description would be an abstract
graph and, additionally, for each vertex a cyclic ordering of the edges adjacent to it, as illustrated
in Figure 3.3.
Tête-à-tête graphs are ribbon graphs and thus come automatically equipped with a surface.

Therefore, notation like BG, when G is a tête-à-tête graph, means “the boundary of the surface
which gives G its ribbon structure”. When a safe walk of length l makes an entire turn around
one chosen boundary component, we call this l the length of this boundary component.
When the graph is obvious from the picture of the surface, it will often be omitted. When-

ever, on the other hand, the surface is omitted from the drawing, blackboard framing is used:
The graph should be thickened inside the plane of the paper, or blackboard, with the obvious
modifications at crossings (see Figure 3.4). Over- and undercrossings need not be distinguished
and are not always drawn.

3.3. Torus link monodromies

A very nice application of tête-à-tête twist, suggested by A’Campo, is a description of the
monodromy of torus knots and links. The theory of fibred links and monodromies will
be outlined later in Chapter 6. The monodromy of a pp, qq-torus link is a mapping class
φp,q which is defined on a surface with d “ gcdpp, qq boundary components and genus
g “ 1

2ppp ´ 1qpq ´ 1q ´ d ` 1q. Its order, up to Dehn twists along the boundary, is pq . φp,q

3



3. Introduction

(i) (ii) (iii)

Figure 3.5.: Three more tête-à-tête graphs, with walk lengths 2, 1, and 2.

can be described using the fact that a pp, qq-torus link is the link of the singularity xp ` yq in
C
2.
But tête-à-tête twists make the map much more explicit: φp,q is a tête-à-tête twists along a

complete bipartite graph Bp,q with p ` q vertices. These graphs have the tête-à-tête property
for walk length 2, and φp,q “ TBp,q ,2. As an example, see Figure 3.6 on the next page, where
pp, qq “ p3, 4q. Using general properties of tête-à-tête twist, described in the next chapter, we
see for example that φp,q permutes the pq edges of the graph cyclically, and individually it
permutes cyclically the p vertices above and the q vertices below.
It was noted by Sebastian Baader that the particular embedding of the ribbon graph that is

chosen in the picture – edges are stacked vertically according to the number of their bottom
(or top) endpoint – actually makes it into a Seifert surface for the link ( [Baa11]); if one looks
carefully, its boundary unveils itself as the p3, 4q-torus knot. This fact will be used in Chapter 7
to prove that the tête-à-tête description is indeed correct.

4



3.3. Torus link monodromies

Figure 3.6.: Tête-à-tête twist for the p3, 4q-torus knot. The actual graph has been omitted as
it is clear from the picture. One transverse arc is shown together with its image,
which is composed of two safe walks of length two.
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4. Properties and classification of tête-à-tête
twists

Directly from the definition of tête-à-tête twists, it may seem mysterious which graphs inside
which surfaces could have the tête-à-tête property. But we can establish properties for those
twists that allow for a better understanding and also for a systematic approach to listing and
examining tête-à-tête graphs.
Later in this chapter, we will restrict ourselves to tête-à-tête graphs with one boundary

component and describe a notation for them, but generalizations to an arbitrary number of
boundary components are possible and often straightforward.

4.1. Basic properties of tête-à-tête diffeomorphisms

The following proposition establishes some properties of tête-à-tête twists that help us imagine
what they do.

Proposition 4.1.1. A tête-à-tête twist TG,l can be represented by a diffeomorphism (which we also
write as TG,l ) such that

(i) TG,l pGq “ G,
(ii) T n

G,l “ TG,nl pn P Zq,
(iii) TG,l is of finite order outside a tubular neighbourhood of the boundary of G’s surface.

Figure 4.1.: Smoothing around the vertices

7



4. Properties and classification of tête-à-tête twists

Proof. We can see a tête-à-tête twist in a more explicit way, similar to a Dehn twist. To do this,
choose a Riemannian metric on the surface Σ such that all edges of G are unit length geodesics.
Around each vertex, choose a small rotationally symmetric polygon whose vertices lie on G
with their adjacent edges tangent toG; see Figure 4.1. Let Ḡ beG together with these polygons.
Σ � Ḡ is a collection of annuli. Choose the deformation retraction ρ of Σ to G in such a way
that it gives us Σ as a tubular neighbourhood of Ḡ and decomposes each component of Σ � Ḡ
as a product S1 ˆ r0, 1s, such that S1 ˆ t0u is a boundary component of Σ. Assume that S1 is
parameterized as r0, bs{t0, bu, where b is the length of the respective boundary component, or
of the cycle in G around it, and ρptmu ˆ r0, 1sq is a vertex for every m P N, 0 ď m ď b .
The tête-à-tête twist TG,l can now be realized as

pθ, tq ÞÑ pθ ` l ¨ ℎptq, tq,
where ℎ : r0, 1s Ñ r0, 1s is a smooth function which is zero on r0, 1{3s and one on r2{3, 1s. At
the same time, the polygons are exchanged and/or rotated appropriately.
In this description, the first two statements of the proposition are obvious. And when bi ,

1 ď i ď r , is the length of the ith boundary component, put n “ 1
l ¨ lcmpb1, . . . , br , l q. Then

T n
G,l consists of (possibly multiple) Dehn twists around the boundary components of Σ. �

Trying to understand which graphs have the tête-à-tête property, one should note the trivial
cases:

Remark. Every ribbon graph has the tête-à-tête property at least for all multiples of l “
lcmpb1, . . . , bnq, the least common multiple of the lengths of all boundary components. The
corresponding twists are compositions of Dehn twists along the boundary.

4.1.1. Justifying the definition

The simplicity of the definition of tête-à-tête twists that was given above lends itself to two
obvious generalizations regarding the walk length.
First, the original definition used by A’Campo assigns to each edge of the graph a positive

real length and chooses a uniform walk length of π. Choosing π is no restriction since we can
rescale. For the moment, call these graphs tête-à-tête graphs with real edge lengths. This definition
is more general, but as it will turn out, produces the same isotopy classes of tête-à-tête twists.
Second, one could also specify different walk lengths for safe walks starting at different

boundary components of the tête-à-tête graph. Call these graphs multi-speed tête-à-tête graphs.
When G has r boundary components, we write them as TG, l “ TG,pl1,...,lr q. This definition
is indeed more general: By assigning positive numbers to some boundary components and
negative ones to others, it allows walks in different directions. The freedom of direction,
however, is all that is generalized, as the following theorem shows.

Remark. There is a very special case which we treat first: If some li is zero, then all edges
of G adjacent to the ith boundary component are fixed pointwise. Therefore when, say, the

8



4.1. Basic properties of tête-à-tête diffeomorphisms

jth boundary component lies on the other side of such an edge, l j must be a multiple of bj .
The same goes for all other boundary components, provided G is connected. In this case, φ
is a composition of some Dehn twists around boundary components. Therefore, the li are
assumed to be nonzero in what follows.
By “tête-à-tête twist”, we will always mean the definition given in the introduction, using a

single walk length measured in number of edges. Multi-speed twists come in handy in various
situations, and their slightly greater generality will be used in Chapter 5.
The definitions are related in the following way:

Theorem 4.1.2. Let φ be a mapping class. The following are equivalent:

(i) φ is a tête-à-tête twist,
(ii) φ is a twist along a tête-à-tête graph with real edge lengths,
(iii) φ is a twist along a multi-speed tête-à-tête graph, and all walk lengths have the same signs.

Provided that G is connected and not a circle, it can be chosen without bivalent vertices in case (ii),
and without uni- nor bivalent vertices in case (iii).

Proof. We show (ii) ùñ (iii) and (iii) ùñ (i); that (i) implies the other two is trivial. Then we
show how to get rid of uni- and bivalent vertices in cases (ii) and (iii).

(ii) ùñ (iii). Pick one boundary component and look at the cycle in G that surrounds it. φ
induces a symmetry of that cycle, sending vertices to vertices. Starting at any one vertex and
counting the number of edges that are passed during φ’s safe walk, we get, for that boundary
component, the correct walk length for a multi-speed tête-à-tête twist (with unit-length edges).
The signs of the walk lengths are the same by assumption.

(iii) ùñ (i). Let G have r boundary components of length b1, . . . , br respectively, and let φ
be given as TG,pl1,...,lr q.
Assume that no li is zero; see the remark on the facing page. By assumption, all li have the

same sign; assume that they are all positive (or change the orientation of the surface to achieve
this). We will see how one can, at the cost of introducing uni- and bivalent vertices, modify
the graph to give back the same mapping class with one single walk length.
First, subdivide each edge once and replace each li by 2li . The induced tête-à-tête twist re-

mains the same. Each newly introduced bivalent vertex has two nearby boundary components.
Towards both of them, we add a small linear graph which, if it goes towards the ith boundary
component, has length

si “ 1
2li

lcmpl1, . . . , lr , 2q ´ 1.

si can be zero, which means there is nothing to add. To walk along one edge in the original
graph is the same as walking for distance 2 ` 2si in the changed graph. To describe the same
tête-à-tête twist as before, replace therefore the walk length 2li by

l “ p2 ` 2siqli “ lcmpl1, . . . , lr , 2q,

9
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Figure 4.2.: A graph sprouting new twigs

which is the uniform walk length we were looking for.

Removing uni- and bivalent vertices. On a tête-à-tête graph with real edge lengths, a bivalent
vertex can easily be removed by giving the new combined edge a length which is the sum of
the two pieces; that is, provided the graph does not just consist of a single loop. In many cases,
suitable rescaling of edges may also eliminate the need of univalent vertices.
A multi-speed tête-à-tête graph G, if it is connected and not a circle, needs neither uni- nor

bivalent vertices. Choose one boundary component and start a safe walk of the specified walk
length, say li , at a vertex which is not bivalent. Let wi be the number of bivalent vertices
passed by this safe walk. l 1

i “ li ´ wi is the new walk length to be used at this boundary
component after all bivalent vertices have been removed from G. Univalent vertices can be
removed similarly. �

For a (standard) tête-à-tête twist, uni- and bivalent vertices may be necessary; see the example
on page 17.

4.1.2. Bounds for general tête-à-tête graphs and twists

The Euler characteristic of a tête-à-tête graph with b boundary components and genus g , v
vertices and e edges is

v ´ e “ χpΣq “ 2 ´ 2g ´ b,

hence
g “ 1 ` e ´ v ´ b

2
. (4.1)

Assume now that the graph has neither uni- nor bivalent vertices. As we have seen, this can
be achieved by permitting different walk lengths for different components of the boundary, if
there is more than one. Then

v ď 2
3
e

10
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Figure 4.3.: Trivalent ribbon graph of genus 5

and therefore, since b is at least 1,
e ď 6g ´ 3. (4.2)

Any graph with at least trivalent vertices can be made trivalent by inserting new edges; then
the inequality becomes an equality. Figure 4.3 shows an example.

Remark. This bound shows that there is a finite number of tête-à-tête graphs of a given genus.
Hence, on each fixed surface there is only a finite number of tête-à-tête twists that are not
powers of others, up to conjugacy. For example, there are only two tête-à-tête twists on the
one-holed torus, and powers of them: The trefoil twist Tr – the monodromy of the trefoil
described above – and the bifoil twist Bi, depicted in Figure 4.4.

l “ 1 l “ 1

Figure 4.4.: The only tête-à-tête graphs of genus 1: The graphs for the trefoil and the bifoil
twist

11
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Figure 4.5.: A chord diagram with five chords

4.2. Chord diagram notation

To be able to systematically examine the zoo of tête-à-tête twists, or do computer experiments,
we need an appropriate notation for them. The goal is to encode a pair of a surface Σ with
one boundary component and a tête-à-tête graph G Ă Σ. Since by definition Σ deformation
retracts to G, Σ �G is homeomorphic to S1 ˆ s0, 1s. So the pair pΣ,Gq can be constructed
from an annulus S1 ˆ r0, 1s by dividing one of its boundary components into 2e pieces, where
e is the number of edges of G, and identifying them pairwise.

Definition 4.2.1. A chord diagram of size n is a fixed-point free involution of the set t1, . . . , 2nu,
graphically represented by arcs (the chords) that connect labelled points on a circle. We call
two chord diagrams equivalent if they only differ by a rotation (keeping the labels fixed).

A chord whose endpoints are r and s will usually be given by the notation tr , su, and
whenever convenient, r and s are to be understood as elements of Z{2nZ. They may also be
labelled by numbers from 0 to 2n ´ 1, for example when used for computations.

Correspondence between chord diagrams and ribbon graphs

Equivalence classes of chord diagrams correspond to ribbon graphs with one boundary com-
ponent in a natural way. To build a ribbon graph from a chord diagram, take a 2n-gon and
identify pairs of sides, reversing orientation, as prescribed by the diagram, which makes a
closed surface. When a similar smaller 2n-gon is removed, one gets a surface with boundary,
and the glued edges form an embedded graph. Alternatively, the edges to be glued can be put
at the inside, as in Figure 4.6.
There is another way to construct these surfaces, which is sometimes useful even though

the graph can be seen less clearly in this way: Replace the circle of the chord diagram by an
annulus and glue bands to its inner boundary exactly as indicated by the chords. Two such
bands may cross, but whether one passes over the other or vice-versa is not important. This

12
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glueing

graph

BΣ
Σ

1

6

2

3

4 5

1

6

2 3

4

5

(i) (ii)

(iii)

two intervals and
their images

Figure 4.6.: (i) a chord diagram, with its two internal boundaries marked by one dotted and
one solid line; (ii) the corresponding tête-à-tête graph, with the dotted internal
boundary corresponding to the lower vertex, the solid one to the upper vertex;
(iii) how the tête-à-tête graph is obtained from the diagram and how two properly
embedded intervals are mapped by the tête-à-tête twist.
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4. Properties and classification of tête-à-tête twists

makes a surface with potentially many boundary components, but of the same genus as in the
previous construction. One boundary component is the outside of the annulus, the others we
will call internal boundaries of the chord diagram. To get the same surface as before, cap off all
internal boundaries with disks. While the chords correspond to the edges of the graph, the
internal boundaries correspond to the vertices.
For a graph with one boundary component, where e is the number of chords in its chord

diagram and v the number of internal boundaries, Formula 4.1 becomes

g “ 1 ` e ´ v
2

. (4.3)

When we are given a ribbon graph with one boundary component and want to obtain its
chord diagram from it, we choose an arbitrary point on the boundary and, moving along the
boundary to the right, label each of the two sides of each edge by consecutive numbers, as in
the top half of Figure 4.6. The two numbers we see at an edge give us a chord.

The tête-à-tête property in chord diagrams

A chord diagram greatly helps recognizing a tête-à-tête property. This is illustrated in the
bottom part of Figure 4.6, where the arrows indicate a gluing. We see here that the Θ-graph
from the previous picture has the tête-à-tête property with walk length 1 because paths which
have the same endpoint on the graph again share the same endpoint when they are composed
with a safe walk of length 1. Thus the tête-à-tête property or, more precisely, the possible
walk lengths, show up as a rotational symmetry of the chord diagram. G having the tête-à-tête
property with walk length l means that the gluings are invariant under rotation by l

2n ¨2π “ lπ
n .

4.2.1. Building steps for ribbon graphs

Chord diagrams lead us to the following observation:

Proposition 4.2.1. Two ribbon graphs with one boundary component are related to each other by
a sequence of the following two moves and their inverses:

(i) stretching a vertex / collapsing an edge

(ii) hitching two vertices / unhitching a vertex

14



4.2. Chord diagram notation

Otherwise stated, every such ribbon graph can be built from the graph with just one vertex
and no edges by vertex stretching and hitching.

Proof. The graph with one vertex and no edges is represented by the empty chord diagram.
Whenever a new edge is added to some chord diagram, two things are possible:

(i) The chord separates an internal boundary component into two: This corresponds to
stretching the respective vertex.

(ii) The chord connects two internal boundaries: This corresponds to hitching two vertices,
and increases the genus of the surface by one.

�

Remark. A consequence from these considerations that will be used further on is: Adding new
chords to a chord diagram can only increase its genus.

4.2.2. Equivalence of tête-à-tête graphs

Some tête-à-tête twists are equivalent to others in the sense that they represent the same
mapping classes. For example, we have already seen that edges can be subdivided and the walk
length adapted accordingly, if the subdivision is done equally for the entire orbit of the edge.
On the level of chord diagrams, this corresponds to replacing a chord, as well as its images under
the given rotation, by two or more parallel ones. If there is only one boundary component,
orbits of univalent vertices can be removed (or introduced) at will. This corresponds to
removing an orbit of chords that connect neighbouring labelled points.

These two modifications are in fact examples of a slightly more general process, which is of
course reversible:

Proposition 4.2.2. Let TG,l be a tête-à-tête twist with an edge orbit that consists of contractible
components. Then TG1,l 1 , where G 1 is obtained from G by contracting all edges of this orbit and l 1 is
the suitably adapted walk length, defines the same mapping class.

This process works because the contracted components are homeomorphic to disks and the
symmetry of the graph is not destroyed.
In the special case where the twist is the identity, or a composition of Dehn twists around

boundary components, one can contract every edge that is not a loop and end up with a
bouquet of circles. One might ask whether the collapse of a contractible edge orbit this is the
only kind of equivalence that is needed:

15
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“ �

Figure 4.7.: A (2,3)-bipartite graph with its 2-vertex set “blown-up” to two (2,3)-bipartite
graphs. The crosses on the edges represent a half twist. This tête-à-tête graph has
an edge orbit with contractible components.

Question. If TG1,l1 and TG2,l2 (possibly with multiple walk lengths) represent the same mapping
class, is there a graph G that is obtained from both G1 and G2 by collapsing contractible edge
orbits?

An example obtained by “blow-up”

An example of such a contraction is shown in Figure 4.7. On the left, we see the complete
bipartite graph which (with its minimal walk length of 2) describes the monodromy of the
p2, 3q-torus knot, the trefoil. If one of the two top vertices is pulled down, it looks like the
surface in the middle, where the three bands going down have received a half twist. We “blow
up” the two vertices by replacing them with another tête-à-tête graph – in this case the same
complete p2, 3q bipartite graph – and update the walk length such that it induces the same
symmetry on the original edges. This is a general construction, suggested by A’Campo, to
create more complicated tête-à-tête graphs.
The edges coming from the original graph are still all in one orbit, but are now separated

into three connected components which can be contracted. When we do so, we obtain a
complete p4, 3q bipartite graph. Note, however, that the induced walk length is the double of
the minimal walk length for this graph. Therefore the tête-à-tête twist we get is the square of
the monodromy of the p4, 3q torus knot.

A necessary bivalent vertex

Figure 4.8 shows an example of a tête-à-tête graph with a walk length of 3 where the bivalent
vertex cannot be removed, unless the twists is described as a multi-speed twist with different
walk lengths for the two boundary components.
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Figure 4.8.: A tête-à-tête graph with two boundary components, genus two, and a walk length
of three, that needs its bivalent vertex

4.3. Elementary tête-à-tête twists

In this part we are going to study a class of tête-à-tête twists which can be seen as building blocks
for general tête-à-tête twists for surfaces with one boundary component. Their combinatorics
will also be important in Chapter 5, where we will use them to study periodic diffeomorphisms.

Definition 4.3.1. A tête-à-tête twist TG,l with #BG “ 1 is called elementary if it acts transitively
on the set of edges of G.

Most graphs we have seen up to now are of this type. For example, the twists along pp, qq-
bipartite graphs that represent the monodromy of pp, qq-torus knots act on their p ¨ q edges by
cyclic permutation.
We first prove a classification for elementary twists:

Theorem 4.3.1. Elementary tête-à-tête twists TG,l have underlying graphs G from a two-parameter
family En,a, n, a P N, a ď n, a odd if a ă n. Its members are described by chord diagrams with n
chords and constant chord length a, with chords of the form t2k, 2k ` au and t2k ` 1, 2k ` 1´ au.
For the twists, l “ 1 or 2 automatically.
The diffeomorphism TG,l can always be represented as some TEn,a,2 with a ă n.
Conversely, every tête-à-tête twist with walk length 1 or 2 and one boundary component is

elementary (and is hence of the form En,a ).

Here, the length of a chord from r to s is minp|r ´ s |, n ´ |r ´ s |q. This also corresponds
to the length of the shortest safe walk from one side of the edge represented by the chord to
the other – in terms of the introduction: the shortest way to get to the other side of the road
without crossing it. We will use the notation En,a for both the graph and the chord diagram.

17



4. Properties and classification of tête-à-tête twists

1

10

23

4

5

6

7 8

9

Figure 4.9.: The chord diagram E5,3
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Figure 4.10.: Changing E5,5 to E10,9

Proof. Let T“ TG,l have only one edge orbit. This means that for each pair c1, c2 of chords in
the chord diagram of G there is a rotation bringing c1 to c2. The lengths of c1 and c2, and of
all chords, are necessarily equal. Call this length a, and let tr , r ` au be one chord. Next to it,
there must be either a chord tr ` 1, r ` 1 ` au, or a chord tr ` 1, r ` 1 ´ au.
If the former is the case, then the rotation by one step, sending r to r ` 1, must be a

symmetry of the diagram. Hence also the rotation r ÞÑ r ` a is a symmetry, so tr ` a, r `2au
must be a chord as well. We end up in the case where a “ n, meaning all chords are diameters
and l “ 1.
Assume now that a ă n, which implies that tr ` 1, r ` 1 ´ au is a chord. The next one,

by analogous reasoning, will be tr ` 2, r ` 2 ` au. We get a chord diagram with a two-step
symmetry that sends r to r ` 2. a must be odd in this case.
The case where l “ 1 is special in that powers of Twill not only act transitively on chords,

or edges, but can also map them to themselves while reversing orientation. This can be changed
by replacing each chord by two parallel chords, which corresponds to subdividing each edge
once. Hence whenever we like, we are free to replace TEn,n,1 with TE2n,2n´1,2 (see Figure 4.10).
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Figure 4.11.: E6,3 with its two outer vertices (dotted) and its one inner vertex (dashed)

For the converse statement, remark first that it is clear that whenever a chord diagram has a
rotational symmetry sending r to r ` 1, all chords must be diameters, that is to say, of the
form tr , r ` nu.
The interesting case is l “ 2 and a ă n. Now each chord has a well-defined “first” and

“second” endpoint, counting clockwise. Since each of the 2n points of the diagram is either a
first or a second endpoint, and the rotation has two equal orbits on the level of points, it acts
transitively on the set of first endpoints, hence on chords. �

4.3.1. Bounds for elementary tête-à-tête twists

Because vertices correspond to internal boundaries of a chord diagram, we can also observe:

Remark. All elementary tête-à-tête graphs En,a where a ă n are bipartite.

This is because a chord divides the unit disk into two parts, the bigger of which could be
called the “outside”, the smaller one the “inside”. A vertex of En,a lies either on the outside or
on the inside of the chords that bound it. So it falls into one of two classes; and edges, as they
correspond to chords, connect only vertices of one class to vertices of the other. Let us call the
two classes of vertices “outer” and “inner” vertices for the moment. We can easily count their
number: Following the chords along an outer vertex, we encounter first endpoints at a distance
of a`1

2 . Since there are n first endpoints, the number of outer vertices is the greatest common
divisor of a`1

2 and n, for which we write gcd
` a`1

2 , n
˘
. Likewise, the number of inner vertices

is gcd
` a´1

2 , n
˘
. Thus we have:

Lemma 4.3.2. The elementary tête-à-tête graph En,a with a ă n has

v “ gcd
ˆ
a ´ 1
2
, n

˙
` gcd

ˆ
a ` 1
2
, n

˙
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vertices. Its genus is

gpEn,aq “
1 ` n ´

´
gcd

` a´1
2 , n

˘ ` gcd
` a`1

2 , n
˘¯

2
.

When a “ n, there are just one or two vertices depending on whether n is even or odd, and
gpEn,nq “ tn{2u.

The case a “ n with only diametral chords is easily understood; its surface is obtained from
gluing opposite edges and its tête-à-tête twist TEn.n,1 corresponds to the rotation of a 4g - or
4g`2-gon by one click.

Assume again a ă n. The case a “ 1 is not interesting as it just produces a disk with a
star of n univalent vertices. The case En,n´1, for n even, corresponds to En{2,n{2 with all edges
subdivided once. If we want to forbit uni- and bivalent vertices, we have thus to restrict a to an
odd number between 3 and n ´ 2. The order of TEa,n,2 is equal to the number of edges n. The
following lemma restricts n depending on the genus; it is much stronger than the calculations
for general graphs in Section 4.1.2.

Lemma 4.3.3. Let 3 ď a ď n ´ 2 in the elementary tête-à-tête graph En,a, and g “ gpEn,aq be its
genus. Then

n ď
#
3g ` 3, g ” 0, 1
3g, g ” 2

pmod 3q.

Moreover, both inequalities are sharp, i. e. there exists an elementary tête-à-tête graph whose twist is
of order 3g ` 3 or 3g , respectively.
When g ě 4, this graph is unique and given by the pair

pn, aq “

$’&
’%

p3g ` 3, 2g ` 1q, g ” 0
p3g ` 3, 2g ` 3q, g ” 1
p3g, 2g ´ 1q, g ” 2

pmod 3q.

Proof. Set k “ a`1
2 , which is an integer. We then have to bound the sum v “ gcd pk ´ 1, nq `

gcd pk, nq from above, for k between 2 and n´1
2 . Since k ´ 1 ą 0 and since k ´ 1 and k have

no common divisor, gcd pk ´ 1, nq ¨ gcd pk, nq ď n. If, say, gcd pk ´ 1, nq “ n
r , we get that

v “ gcd pk ´ 1, nq ` gcd pk, nq ď n
r

` r .

Since k ď n´1
2 , both summands are at most n

3 . Therefore 3 ď r ď n
3 , and using that

n
r ` r ď n

3 ` 3 (with equality only if r “ 3 or r “ 1
3 ), we get that

n “ 2g ` v ´ 1 ď 2g ` n
3

` 3 ´ 1,
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hence
2
3
n ď 2g ` 2

and the inequality is proved for g ı 2 pmod 3q.
Let us assume that n “ 3g0 ` 3 for some g0 and try to actually find an a, or k, such that

g “ gpEn,aq “ g0. Either k or k ´ 1 must be equal to n
3 , the other must be divisible by 3. If

g0 ” 0 pmod 3q, take
k “ n

3
“ g0 ` 1 ” 1 pmod 3q,

which means that a “ 2g0 ` 1. If g0 ” 1 pmod 3q, take
k ´ 1 “ n

3
“ g0 ` 1 ” 2 pmod 3q,

which means that a “ 2g0 ` 3. Those choices are unique.
Now to the case that g0 ” 2 pmod 3q. When n “ 3g0, we can take

k “ n
3

“ g0 ” 2 pmod 3q,
so k ´ 1 is not divisible by 3 and v “ g0 ` 1 as required in this case. We have a “ 2g ´ 1.

There is no way to choose k such that v “ n
3 ` 3, so n “ 3g ` 3 cannot be achieved. 3g ` 2

and 3g ` 1 are not divisible by 3, so in these cases gcd pk ´ 1, nq and gcd pk, nq will be strictly
smaller than n

3 .
To prove that there are no twists of order 3g ` 2 and 3g ` 1 and no further twists of order

3g , it remains to check that no r bigger than 3 can work. An easy way to check this is to
observe that when r ě 4 and v ď n

4 ` 4, then n ě 3g implies that n ď 36. One can check
these cases by computer or by hand.
The only collision occurs for g “ 3, where it happens that 3g ` 3 “ 4g “ 12, and we find

both E12,7 and E6,6 of order 12. �

Elementary tête-à-tête twists realize the highest possible orders among tête-à-tête twists with
one boundary component: As we have seen in Proposition 4.2.1, adding chords can only
increase the genus. When a chord diagram with more than one edge orbit has a rotational
symmetry of order n, all its edge orbits individually have a rotational symmetry of order n, or
possibly 2n for orbits that consist of diameters. We can therefore conclude:

Corollary 4.3.4. Let T be a tête-à-tête twist whose graph is of genus g with one boundary component.
Then its order is either 4g ` 2, 4g , or

ordpTq ď
#
3g ` 3, g ” 0, 1
3g, g ” 2

pmod 3q.

In all of these cases, as soon as g ě 4, there exists a unique conjugacy class of tête-à-tête twists
realizing the given order. This class is described by an elementary tête-à-tête twist En,a with pn, aq
as in Lemma 4.3.3 above. �
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Given g ě 2, observe that when we take a twist of order 4g or 4g ` 2, adding a second edge
orbit cannot thwart uniqueness. Those twists have chord diagrams consisting of diameters.
When we add a second orbit consisting of diameters also, we get a twist of order 2g or 2g ` 2,
which is smaller than 3g . Only when g “ 2, we find a second twist of order six: TE6,6,4 “ T 2

E6,6,2
,

in addition to TE6,3,2. When we add a second orbit which does not consist of diameters, the
restrictions from Lemma 4.3.3 apply to that orbit.
The last thing to note is this: Even when the second edge orbit does not increase the genus,

it will not produce a new conjugacy class. Because in that case, as seen in Proposition 4.2.1,
new edges are introduced at vertices without breaking the symmetry of the graph. This will
not change the isotopy class of the tête-à-tête twist.

4.3.2. Chord diagrams for torus knots

The tête-à-tête graphs that describe the monodromies of torus knots were described in the
introduction; as mentioned in the beginning of this chapter they have walk length 2 and are
therefore described by an elementary tête-à-tête twist. Figure 3.6 on page 5 can serve as an
example. If we want to describe such a graph in the form En,a we have to calculate the chord
length, i. e. check how long a safe walk takes to “cross the street”. It is an even number. A safe
walk of length 2 corresponds to the twist and exchanges cyclically the vertices at the top as
well as those at the bottom. This leads to a simple calculation and to the following statement:

Proposition 4.3.5. The monodromy of a pp, qq-torus knot, p ă q, is a tête-à-tête twist with walk
length 2 around the elementary tête-à-tête graph Epq,2mp´1, where m ¨ p ” 1 pmod qq. �

The chord length a “ 2mp ´ 1 in the proposition may be “the long way around” the
surface. In that case, it can of course be replaced by 2pq ´ a. In the example, which shows the
p3, 4q-torus knot, we have 12 edges or chords, and since 3 ¨ 3 ” 1 pmod 4q, the chord length is
2 ¨ 3 ¨ 3 ´ 1 “ 17, or better 24 ´ 17 “ 7. One may check this by labelling the two sides of the
edges as in Figure 4.6 on page 13.

4.4. Fixed points

All tête-à-tête twists leave the boundary of the surface Σ on which they live pointwise fixed.
But these are not “essential” fixed points as they can be removed by a small perturbation, like a
small translation along BΣ in the direction induced by the orientation of Σ if the walk length is
positive.

Fixed points in Σ � pBΣYGq can likewise be removed by composing with a diffeomorphism
that pushes all such points slightly away from BΣ and towards G. So essential fixed points
should be searched on G, which is mapped to itself by tête-à-tête twists, as we have seen.

Both twists with fixed points as well as without occur. Most famously, a Dehn twist has no
(essential) fixed points, and neither has any power of it, although in this case we must modify
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Figure 4.12.: E3,3

the diffeomorphism in such a way that the circle G is not any more mapped to itself. But
also the monodromy of the trefoil, TE3,3,1 has none: It permutes the three edges cyclically and
interchanges the two vertices.

On the other hand, Bi “ TE2,2,1 maps the only vertex of E2,2 to itself. And this fixed point is
indeed essential: The Lefschetz number of Bi is

ΛpBiq “ 1 ´ trpBq “ 1

where B denotes the induced action of Bi on H1pΣq, in this case given by a matrix conjugate
to

` 0 ´1
1 0

˘
.
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5. Tête-à-tête twists and periodic
diffeomorphisms

A mapping class φ is called periodic or of finite order if there is some k ą 0 such that φk is the
isotopy class of the identity. Nielsen has shown in 1942 ( [Nie42]) that such mapping classes
contain a representative – a diffeomorphism – f such that f k is actually equal to the identity.
Moreover, whenever the surface has negative Euler characteristic, one can find a hyperbolic
metric such that the diffeomorphism is an isometry for this metric. This is true for closed
surfaces, as well as for surfaces with punctures and for surfaces with boundary where one
allows the boundary to rotate.

5.1. Periodic diffeomorphisms on surfaces with boundary

If one requires the boundary of a surface to be pointwise fixed by the diffeomorphisms and the
isotopy, as we always do here, there are no periodic mapping classes apart from the identity.
Using Nielsen’s theorem, this can be seen geometrically: Via the exponential map, an isometry
is determined by the image of a point and a tangent vector at the point. Points on the boundary
are fixed, and if the isometry is to be periodic an inward pointing tangent vector must be fixed
as well, so the map is the identity. Tête-à-tête graphs will give us another, topological, proof of
this.

We can therefore use the term “periodic” in a more general way and call a mapping class, or
diffeomorphism, that fixes the boundary freely periodic or simply periodic if, for some k ą 0,
φk is isotopic to the identity, where the isotopy is allowed to move the boundary.
Another way to say this: When Σ is a surface with b boundary components and 9Σ is Σ with

its boundary collapsed to punctures, there is a central extension

0 Ñ Zb Ñ ModpΣq cÑ Modp 9Σq Ñ 0

where the subgroup Zb is generated by the Dehn twists along the boundary components.
Thus we call φ periodic (or of finite order) if cpφq is periodic in the ordinary sense. This
usage is quite common in the context of monodromies of singularities (although sometimes
“monodromy” can refer to the action on homology only).

We have seen in Proposition 4.1.1 that tête-à-tête twists are periodic in the above sense. One
may now ask how one could recognize whether a periodic map is induced by a tête-à-tête twist,
and how to find a tête-à-tête graph for it in this case. The answer is surprisingly simple: Every
periodic diffeomorphism comes from a tête-à-tête graph.
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5. Tête-à-tête twists and periodic diffeomorphisms

Figure 5.1.: A tête-à-tête graph with walk length 6, describing the map of order 2 one gets by
rotating the whole surface by 180 degrees along a vertical axis, while keeping the
top boundary fixed

Theorem 5.1.1. Let Σ be a (compact, connected, oriented) surface with nonempty boundary and
φ P ModpΣq a mapping class. Then the following are equivalent:

(i) φ is a multi-speed tête-à-tête twist,
(ii) there is an embedded graph that fills Σ and and is invariant under φ,
(iii) Σ has a spine that is invariant under φ,
(iv) φ is (freely) periodic.

We say that a graph G Ă Σ fills Σ if its complement Σ � G consists only of disks and
boundary-parallel annuli.
During the proof, we will see how to explicitly find a tête-à-tête graph, given a periodic

diffeomorphism. The invariant graph in (iii) will be the graph around which one twists. It
can also be useful to view the bigger filling graph from (ii) as a tête-à-tête graph, one whose
embedding corresponds to a subsurface of Σ.

Proof. We have already seen in Proposition 4.1.1 that tête-à-tête twists are periodic and that
they leave the defining tête-à-tête graph invariant, so (ii), ( iii), and (iv) follow from (i).

(iii) ùñ (i). We first argue why having an invariant graph as in (iii) makes φ a tête-à-tête
twist. To see this, assume without loss of generality that the graph has no bivalent vertices
and is contained in the interior of Σ. Pick one boundary component; see Figure 5.2. Between
that boundary component and G there is an annulus A. Choose a vertex of G that is adjacent
to A, and an arc going from the boundary component to the vertex. By assumption, φ fixes
the boundary of Σ, and in particular the endpoint of the arc which lies on the boundary. And
being a diffeomorphism that leaves G invariant, it sends vertices to vertices.
Therefore it must send the second endpoint to some other adjacent vertex, or perhaps the

same, possibly winding around the annulus a few times. Up to isotopy, the image of the arc
determines the mapping class on A, and similarly on all of Σ. The images of the chosen arcs are
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5.1. Periodic diffeomorphisms on surfaces with boundary

Figure 5.2.: The image of one arc determines the map on the annulus up to isotopy

safe walks of some lengths li , and with these walk lengths we have described φ as a multi-speed
tête-à-tête twist TG,l . Note that this process accurately recovers the amount of “twisting around
the boundary”. If we prefer to have a tête-à-tête twist TG1,l with a single walk length for all
boundary components, we have to modify G as in Theorem 4.1.2.

(iv) ùñ (ii). Now we prove that for any periodic map, as in (iv), there is an invariant filling
graph.
Finding such a graph is easy once we have Nielsen’s theorem cited above. Represent the

mapping class φ by a diffeomorphism f which is of finite order. f will still not interchange
the boundary components, but will in general not fix them pointwise. Now choose any graph
G0 that fills Σ, or is even a spine for it. The union

G1 “
ordpφq´1ď

k“0

f kpG0q

becomes a graph when intersection points between iterates are considered vertices.
For the sake of completeness we should ensure that G1 is indeed a finite graph. Since f can

be realized as an orientation-preserving isometry of some Riemannian metric (by averaging
any metric, or by using the hyperbolic metric from Nielsen’s theorem), its fixed points are
isolated. Thus we can require that G0 not meet any fixed point. Likewise, points with a
period smaller than the order of f are also isolated since they are fixed points of a power of f
which is not the identity. We choose G0 to be disjoint from these as well. In particular, the
vertices of G0 will be disjoint from the vertices of f kpG0q for all k between 1 and ordp f q ´ 1.
Therefore, possibly after a small perturbation of the edges of G0, all intersections between G0
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5. Tête-à-tête twists and periodic diffeomorphisms

BΣ
Σ

G1

Figure 5.3.: Invariant collapse

and f kpG0q happen between interior points of edges. Around each vertex there is a small open
neighbourhood which is disjoint from all its iterates. Remove these neighbourhoods from G0
and call the result E0, a smooth compact submanifold (with boundary) of Σ. f k leaves none
of its points fixed; therefore it is possible to move E0 by a small isotopy to make it intersect
f kpE0q transversely; see the lemma on the facing page. The edge endpoints need not be moved
since they are already disjoint from their iterates, and they can be connected back to E0 by
paths that are themselves disjoint from their iterates. Since transversality is an open condition,
we can achieve transversality simultaneously for all k.

The new graph G1 we obtain is certainly invariant under f , but usually not a deformation
retract. However, it fills Σ, meaning that all its facets (the connected components of Σ �G1)
that do not touch the boundary of Σ are disks. We see this because of two facts: First, the facets
of G1 are contained in disks and boundary-parallel annuli inside Σ, namely the facets of G0,
which are unions of facets of G1. And second, G1 is connected. To convince oneself of this,
one can look at the edges of G1 surrounding a boundary component and see that among those
one encounters edges from all iterates since f is of finite order. Then, since G0 is connected,
G1 is connected as well. From the two facts we conclude that all internal facets are disks.

(ii) ùñ (iii). The invariant filling graph we found may be too big to be a spine, so in this
step we modify it to remove all facets apart from the boundary annuli.
The strategy is to collapse them from the boundary. This is done as in the picture on the

current page, by pushing in edges that are adjacent to the boundary annuli. The white polygon
symbolizes any facet of G1 that touches one chosen boundary annulus. The rest of the graph,
which may be complicated, is symbolized by the dotted area. Call the polygon P . Among
the edges of P that touch the boundary annulus, some may be in the same orbit under f , but
since f leaves the boundary components invariant, the edges are not sent to any other part
of P . Let i ą 0 be the smallest number such that f i sends the polygon to itself. f i acts on
the boundary of P as (conjugate to) a rotation. We can modify f inside P by an isotopy such
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5.1. Periodic diffeomorphisms on surfaces with boundary

that f i |P is conjugate to a rotation (see also the note following the proof). Choose a regular
Euclidean polygon PE Ă R2 of the same type and a diffeomorphism η : P Ñ PE . Assume that
η ˝ f i ˝ η´1 is a Euclidean rotation. Now we can collapse: Remove from P all edges that touch
the selected boundary component. Then take a radius of PE whose preimage in P goes to any
of its remaining edges or vertices. Add all its images under powers of f to get a new invariant
graph with one facet less. Repeat until there are no more disk components and get an invariant
spine. �

Note. By Lemma 5.1.3, f i is actually already conjugate to a rotation, so it does not even need
to be modified. However, by allowing for the modification we can avoid using the lemma if we
want and get more control on what happens on the edges of P .

We have used this transversality lemma in the proof:

Lemma 5.1.2. Let M be a manifold and A Ă M a compact submanifold (which may have
boundary). Let f : M Ñ M be a diffeomorphism without fixed points on A. Then there is
diffeomorphism ℎ : M Ñ M, arbitrarily close to the identity, such that ℎpAq and f pℎpAqq intersect
transversely.

Proof. Since f has no fixed points on A, each point of A has a neighbourhood U such
that f pU q X U “ ∅. Out of these neighbourhoods we choose a finite subcover pUiqni“1.
Furthermore, choose compact sets Ki Ă Ui such that the union of the interiors K̊i still covers
A. Using standard tranversality theory we can find a small isotopy H1 : r0, 1s ˆ A Ñ M with
the following properties:

H1p0, ¨q “ idA,
H1pt, ¨q|A�U1 “ idA�U1 for all t P r0, 1s,

such that, when we define ℎ1 : A Ñ M as ℎ1 “ H1p1, ¨q, we have that ℎ1pAq X K1 is transverse
to f pAq X K1. We require furthermore that

ℎ1pA X K1q Ă U1.

By assumption, f pU1q XU1 “ ∅, which implies that f pAq X K1 “ f pℎ1pAqq X K1. Hence
we have achieved the desired transversality locally.

We continue constructing maps ℎi in a similar way. Assume we already have ℎ1 to ℎi´1
such that pℎi´1 ˝ . . . ˝ ℎ1qpAq X Kr is transverse to f ppℎi´1 ˝ . . . ˝ ℎ1qpAqq X Kr for all r
between 1 and i ´ 1. Build a homotopy Hi analogously to H1, but taking care to choose it
small enough such that all ℎippℎi´1 ˝ . . . ˝ ℎ1qpAqq X Kr and f ppℎipℎi´1 ˝ . . . ˝ ℎ1qpAqq X Kr
remain transverse. This is possible since the sets M � Kr are open and because being transverse
is an open condition. In the end, we obtain a diffeomorphism ℎ “ ℎn ˝ . . . ˝ ℎ1 that fulfils the
requirements of the lemma. �
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5. Tête-à-tête twists and periodic diffeomorphisms

The following lemma was stated by Kerékjártó in 1919 ( [Ker19]), but without satisfactory
proof. See the article of Constantin and Kolev ( [CK03]) for a complete treatment. When f is
a diffeomorphism, there is a quick geometric proof, given below.

Lemma 5.1.3. Let D be the unit disk in R2. Then any orientation-preserving homeomorphism
f : D Ñ D of finite order is conjugate to a rotation.

Proof when f is a diffeomorphism. Choose any Riemannian metric g on the interior D̊ and
average it by taking g 1 “ g ` f ˚g ` p f 2q˚g ` . . .` p f k´1q˚g where k is the order of f . By the
uniformization theorem for Riemann surfaces, there is a conformally equivalent metric ℎ such
that pD̊, ℎq is either isometric to the hyperbolic disk H or to the complex plane C. Via this
isometry, f becomes an automorphism of H or C. For both cases, conformal automorphisms
of finite order are conjugate to rotations about the origin.
The diffeomorphism which conjugates f to a rotation is the composition of the isometry

and the conjugacy inside the automorphism group. �

An easy consequence of the theorem is the following proposition that has been mentioned
before:

Corollary 5.1.4. Let Σ be a surface with boundary. Then the only mapping class of finite order (in
the strict sense) that fixes the boundary is the identity.

Proof. Assume Σ is neither a disk nor a cylinder. Since the mapping class is given by a multi-
speed tête-à-tête twist with nonzero walk length around a spine of the surface, some power of
it consists of Dehn twists around the boundary components.
By basic facts about Dehn twists (see e. g. [FM12, Chapter 3]), one sees that this product

is of infinite order. For example, one can study its effect on curves that live on the double
of Σ, which is obtained from two copies of Σ by identifying the corresponding boundary
components.
The cylinder is different because it has two isotopic boundary components, but there the

statement is clear since the only tête-à-tête twists on a cylinder are powers of Dehn twists,
which have infinite order. �

Looking at the proof of Theorem 5.1.1, one sees that one can in fact construct an invariant
spine not only for the powers of a finite order diffeomorphism, but also for any finite subgroup
of the diffeomorphism group. From this we can conclude the following (well-known) fact:

Corollary 5.1.5. On a connected (oriented, compact) surface with boundary or punctures, any
finite subgroup of the orientation-preserving diffeomorphism group is cyclic.

Proof. All elements of the subgroup are multi-speed tête-à-tête twists (with free boundary)
along the same graph. Since Dehn twists along the boundary are trivial when the isotopy can
move the boundary, they are described by walk lengths pl1, . . . , lr q with natural numbers li
defined modulo bi , the length of the i-th boundary component. When the surface is connected,
l2 up to lr are already determined by l1. The statement follows. �
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5.1. Periodic diffeomorphisms on surfaces with boundary

Nielsen’s theorem has a more general and more difficult version that was proved by Kerckhoff
using, among other things, “earthquake maps”. It says that in all finite subgroups of the
mapping class group, we can represent mapping classes by concrete diffeomorphisms. Nielsen’s
theorem says the same for finite cyclic subgroups.

Theorem 5.1.6 (Kerckhoff, [Ker83]). Let κ : DiffpΣq Ñ ModpΣq be the canonical quotient map
from the diffeomorphism group of a surface Σ to its mapping class group. Let G Ă ModpΣq be a
finite subgroup. In that case, the restricted map κ| : κ´1pGq Ñ G has a section.

Therefore, all finite subgroups of the mapping class group of a surface with punctures are
cyclic.
As an alternative to the above proof of Theorem 5.1.1, one can use geometry to find an

invariant graph. I owe the idea for such a proof to Marc Lackenby.

Geometric proof. Start with a finite subgroup of the diffeomorphism group of a surface with
boundary. If the surface is neither the disk nor the cylinder, it has negative Euler characteristic.
By averaging and using the uniformization theorem, we are able to find a complete hyperbolic
metric such that all members of the subgroup act as isometries, as in the proof of 5.1.3. The
boundary components become cusps of the surface. Lift each cusp to the universal cover of
the surface, where it will be a point in the boundary the hyperbolic disk.
Around each of these lifts, choose a horoball which is small in the sense that its projection

down to the surface is still embedded and such that it does not touch any other horoball. Then
we let all horoballs grow at constant speed. Think of (projections of the) the horoballs as paint,
one colour for each cusp, that is poured into the white surface and spreads out smoothly. As
time passes, more of the surface is painted; the rest is still white. At some point, one of two
accidents will happen: The projection of a horoball will fail to be embedded, or two horoballs
will touch. We assume that at places where paint arrives from two sides, it does not continue
further and does not mix. These places will form the graph in the end.
More precisely, starting at the time of the accident, there will be a self-intersection of a

horocycle, or an intersection of two horocycles, respectively. We mark all such intersections of
horocycles, as long as they occur on the boundary between painted and white regions of the
surface. These markings will form a graph of the surface. It is obvious from the construction
that the surface deformation retracts to it. Moreover, since it only depended on the hyperbolic
metric (and a choice of initial horoballs), it is invariant under the chosen subgroup. �

Note that resorting to geometry in the proof allows for some additional statements to be
made about the graph. For example, we can select one of the cusps, choose a horoball there,
and then choose very small horoballs around all of the other cusps. In that case, the paint from
the selected cusp will fill the entire surface except for the tips of the other cusps, where it meets
their respective paint. Thus we get the following corollary:

Corollary 5.1.7. Every (multi-speed) tête-à-tête twist is equivalent to (i. e. produces the same
mapping class as) one of the following form:
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5. Tête-à-tête twists and periodic diffeomorphisms

Figure 5.4.: Tête-à-tête graph on a 3-holed torus

There is one special boundary component which we call central. The graph only contains edges
that meet the central boundary component on at least one side. That is, the other boundary
components meet nowhere. The cycles that surround the noncentral boundary components are
embedded polygons with bi- or trivalent vertices. �

We can therefore think that a general tête-à-tête twist is derived from a tête-à-tête graph with
a single boundary component, with some of its vertices, which are fixed points for the twist,
blown up to a circle; see Figure 5.4 for an example of such a graph.

5.2. Periodic di�eomorphisms on closed surfaces

Tête-à-tête graphs (possibly multi-speed) can be embedded into closed surfaces; see also Chapter
8. If the tête-à-tête graph fills the surface, meaning that the surface is obtained by capping off
boundary components with disks, it induces a map of finite order. In this case, we see a fixed
point in each of these disks. Vice versa, when a finite-order diffeomorphism has a fixed point,
we can remove an invariant disk around the fixed point to get a surface with boundary (see e. g.
[CK03] for why such a disk exists, even for homeomorphisms), and in that case it is described
by a tête-à-tête twist.

A map of finite order can also appear when two boundary components of the tête-à-tête
graph are glued together. For this to happen, the Dehn twists along the glued boundary
components that appear in some power of the tête-à-tête twist must cancel themselves.

The same is possible when two or more tête-à-tête graphs are embedded disjointly such that
their boundary twists cancel; see Figure 5.5 for an example. In that and in the former case,
the diffeomorphism will not necessarily have fixed points, but will have an invariant circle.
Again, vice versa, whenever a finite-order diffeomorphism has an invariant circle whose two
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5.3. Bounds for periodic diffeomorphisms

l1 “ 1 l2 “ ´1

Figure 5.5.: Periodic map of order 6, without fixed points, on a surface of genus 2

sides are not interchanged we can cut along the circle, and the induced diffeomorphism will
be described completely by two or one tête-à-tête twists, depending on whether the invariant
curve is separating and essential or not. If it is essential, the diffeomorphism is reducible
according to the Nielsen-Thurston classification.
Note that when a circle is invariant, but its two sides are interchanged, then the circle itself

undergoes a reflection and there are actually two fixed points on it.
However, we are left with the finite-order maps without invariant circles, and it is not clear

how to apply tête-à-tête twists to describe those as well.

5.3. Bounds for periodic diffeomorphisms

In 1895, Anders Wiman proved the so-called “4g+2 theorem”: On a surface of genus at least 2,
the order of a periodic diffeomorphism is at most 4g ` 2 ( [Wim95]). To be precise, Wiman
proved the statement for automorphisms of algebraic curves and used the branched covering
structure coming from the polynomial equation. Using the theorem above and the results
about orders from Corollary 4.3.4, we get a topological proof for Wiman’s theorem for the
case of surfaces with at least one boundary component.

Remark. As noted in the previous section, the situation is a bit different for closed surfaces and
the proof does not apply for all diffeomorphisms. It does apply when the diffeomorphism has
a fixed point, or more generally an invariant circle, in which case the map can be described
by tête-à-tête twists. When the action of the diffeomorphism is free, meaning that none of its
iterates apart from the identity has a fixed point, the order of f is even smaller; see Lemma 5.3.7
on page 35.

We can copy the corollary about tête-à-tête twists with its more precise information about
the highest and second-highest orders and get the following “3g+3 theorem”:
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5. Tête-à-tête twists and periodic diffeomorphisms

Corollary 5.3.1. On an orientable surface with boundary which is neither a disk, a sphere, or a
torus, let f be a (freely) periodic orientation-preserving diffeomorphism. Then its order is either
4g ` 2, 4g , or

ordp f q ď
#
3g ` 3, g ” 0, 1
3g, g ” 2

pmod 3q.

In all of these cases, as soon as g ě 4, there exists a unique conjugacy class of diffeomorphisms of the
given order.

This conjugacy class is described by an elementary tête-à-tête twist En,a with pn, aq as in Lemma
4.3.3.

For a closed surface, this elementary twist corresponds to the rotation of a polygon by two
clicks, with its sides glued as specified by the chord diagram.

Proof. All that is left to prove is a subtle point shown in Lemma 5.3.2: On a surface of negative
Euler characteristic, as in the corollary, two periodic diffeomorphisms that are isotopic have
the same order. This is of course wrong on the disk, the sphere and the torus where, for
example, a rotation by one third and a rotation by one quarter are isotopic. But apart from
these cases, we can start with a diffeomorphism, find an invariant spine for it, conclude that
the isotopy class of the diffeomorphism is a tête-à-tête twist around that spine, and that its
order is the same as the order of the tête-à-tête twist. �

Lemma 5.3.2. On an orientable surface which is neither the disk, the sphere, or the torus, let f and
g be two periodic orientation-preserving diffeomorphism which are isotopic. Then their order is the
same, meaning: If k,l ą 0 are minimal such that f k “ g l “ id, then k “ l .

Note that, unlike stated in [FM12, p. 200], this does not follow from the fact that nontrivial
elements of the mapping class group act nontrivially on homology. The latter is true on the
torus, but on the torus there are many diffeomorphisms of finite order which are isotopically
trivial.

Remark. Also, the following very similar statement, where “equal” is replaced by “isotopic”, is
trivial:
Let f and g be as above. Let k and l be minimal such that f k and g l are isotopic to the

identity. Then k “ l .

Before we prove the lemma, we prove some preliminary facts about diffeomorphisms of
finite order. In the three following statements, let f be an orientation-preserving finite-order
diffeomorphism of an orientable surface.

Lemma 5.3.3 ( [CK03]). Let x be a fixed point of f and N a neighbourhood of x. Then there exists
a disk D that contains x in its interior, is contained in N , and is mapped to itself: f pDq “ D.

Proof. See [CK03] for the proof, which uses the Jordan-Schoenflies theorem. �
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5.3. Bounds for periodic diffeomorphisms

Lemma 5.3.4. If f ‰ id, its fixed points are isolated.

Proof. Around a fixed point, choose an invariant disk D as in the previous lemma. By the
lemma of Kerékjártó (Lemma 5.1.3), f acts on D by rotation. �

Lemma 5.3.5. The fixed-point index of f at every fixed point is `1.

Proof. This follows from the previous lemma. Alternatively, do the following: Around a fixed
point x , choose again a small invariant disk D Q x which we imagine inside a local chart. The
fixed-point index measures the rotation of the vector y ´ f pyq while y moves along a small
simple closed curve around x , for which we take BD . Since f pBDq “ BD , without fixed points
on BD , the fixed-point index is `1. �

Lemma 5.3.2 is a consequence of the following statement:

Lemma 5.3.6. Let ℎ be an orientation-preserving finite-order diffeomorphism of a compact surface
Σ of negative Euler characteristic. Assume that ℎ » id. Then ℎ “ id.

Proof. Assume that f ‰ id. Because the fixed points of f are isolated, there are only finitely
many of them. Since ℎ » id, the Lefschetz number Λp f q satisfies Λp f q “ Λpidq “ χpΣq ă 0.
By the Lefschetz fixed point formula, f would have a fixed point of negative index, which is a
contradiction. �

Proof of Lemma 5.3.2. Assume that k ą l and let ℎ “ f k´l . Then, by the remark, ℎ “
f k f ´l » f k g´l “ f k “ id, but ℎ ‰ id. And also ℎk “ p f k´l qk “ p f kqk´l “ id. By the
previous lemma, this is impossible. �

Diffeomorphisms on closed surfaces that act freely

As mentioned above, the corollary applies to all diffeomorphisms that have an invariant
circle, even if they have no fixed points. An example of such a diffeomorphism is drawn in
Figure 5.6: Take the depicted surface of genus g and rotate it around the central hole to get a
diffeomorphism without fixed points of order g ´ 1. This is actually the highest possible order
if f has no points whose orbit is smaller than the order of f :

Lemma 5.3.7. Let Σ be a closed orientable surface of genus g ě 2 and let f be an orientation-
preserving periodic diffeomorphism that acts freely on the surface. Then the order of f is at most
g ´ 1.

Proof. When f is periodic of order k and acting freely, f induces a covering

π : Σ Ñ Σä f .

For the Euler characteristic, we have

χ
´
Σä f

¯
“ 1

k
χpΣq.
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5. Tête-à-tête twists and periodic diffeomorphisms

Figure 5.6.: A diffeomorphism (of order 7) without fixed points

Since the Euler characteristic of Σ is negative by assumption, i. e. smaller than ´2, the same is
true for Σä f and hence

2 ď �
�
�
�

χ
´
Σä f

¯
�
�
�
�

“ �
�
�
�

1
k
χpΣq���

�

,

which implies that k ď 1
2 | χpΣq| “ g ´ 1. �
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6. Tête-à-tête twists as monodromies

This chapter shows tête-à-tête twists in action as monodromies of fibred knots, both in the
3-sphere as well as in other manifolds.

6.1. Open books, fibred links and monodromy

We start with some definitions that are standard in low-dimensional topology; first that of an
open book decomposition. It provides a very fruitful connection between mapping classes that
fix the boundary of a surface and 3-manifolds.

Definition 6.1.1. Let M be a manifold. An open book decomposition of M is a pair pL, πq,
where L Ă M is a link in M called the binding, and π : M � L Ñ S1 is a fibre bundle map. The
fibres (usually called pages of the open book) are open orientable surfaces. Their closures are
homeomorphic to a fixed compact surface Σ and have L as their boundary.

An open book decomposition comes with a mapping class φ P ModpΣq, the monodromy
(diffeomorphism), that fixes the boundary of Σ. It can be constructed by choosing a smooth
vector field on M, transverse to the pages, that on L is zero and on M � L projects to the vector
Bθ on S1, which here denotes the unit circle in C. When we identify Σ with the closure of the
fibre π´1p1q and follow the flow of the vector field for time 2π, we get a diffeomorphism of
Σ. Any two such vector fields are isotopic, therefore the monodromy φ is well-defined up to
isotopy.
A link which is the binding of some open book decomposition is called a fibred link,

especially if the manifold is the 3-sphere.
We will need some notation for the rest of the fibres as well: For θ P S1, denote by
Σθ “ π´1pθq the closure of the fibre over θ, and for t P r0, 1s such that θ “ expp2πi tq, denote
by Φt : Σ “ Σ1 Ñ Σθ the diffeomorphism given by the flow of the vector field for time t .

6.1.1. Bookbinding

There is a tendency to speak of “open book decompositions” in the above sense, but just
of open books when the same object is described by different data. Namely, instead of the
triple pM ,L, πq, we specify the compact orientable surface Σ together with a mapping class
φ P ModpΣq. From this, we can construct a 3-manifold M “ MpΣ,φq with an open book
decomposition whose fibre is Σ and whose monodromy is φ:
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π´1p0q

L

M

Figure 6.1.: The fibres of an open book decomposition of the 2-sphere. For a 3-manifold, the
lines represent surfaces and L is a link.

Take Σ ˆ r0, 1s and identify Σ ˆ t1u with Σ ˆ t0u by sending tp, 1u to tφppq, 0u. This
produces the mapping torus of φ, whose boundary is given the structure of a trivial circle
bundle over BΣ by this construction since φ is the identity on BΣ. Now collapse this boundary
to circles by identifying all tq, su with tq, s 1u where q is in BΣ and s , s 1 are in S1. Alternatively,
one can fill the boundary components with full tori such that the fibre circles are contractible.
In any way, we get a closed 3-manifold M together with a link L – the contracted boundary
or the souls of the glued tori, respectively – and a fibration of M � L over S1 with fibre Σ, in
other words an open book with monodromy φ, illustrated by Figure 6.1.

Remark. If the binding is connected, it is always a homologically trivial knot since it bounds a
surface.

6.2. Seifert manifolds

A closed Seifert manifold is a closed 3-manifold that is foliated by circles, with the additional
requirement that every leaf of the foliation has a neighbourhood which is leaves-preserving
diffeomorphic to a standard fibred torus. A Seifert fibration need not be a true fibration in the
usual sense; the name is used nevertheless and the leaves are usually called fibres.

A standard fibred torus is obtained from a solid cylinder D2ˆr0, 1s by gluing top to bottom by
some rational rotation. That is to say, given two coprime integers a and b , a ě 1, we identify
pz, 1q with pe 2πib

a z, 0q. The vertical lines of the cylinder, tpz, tq | t P r0, 1su where z P D2 is
fixed, become circles under this gluing. If a is not one, the middle fibre tp0, tq | t P r0, 1su
(which is somehow “shorter”) is called a singular fibre.
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Seifert manifolds are allowed to have boundary, also fibred by circles, hence consisting of
tori.

6.2.1. Tête-à-tête twists produce Seifert manifolds

As we have seen, a tête-à-tête twist is of finite order, in the sense that some kth power of it
is isotopic to a Dehn twist along the boundary of the surface. We have also seen how one
can represent this periodic map by an actual diffeomorphism which is periodic on the Seifert
surface minus a small neighbourhood of the boundary. This implies:

Proposition 6.2.1. The open book produced by a tête-à-tête twist with nonzero walk length is a
Seifert manifold.

Proof. Represent the tête-à-tête twist by an actual finite-order diffeomorphism f defined on Σ̊,
which is Σ minus a small tubular neighbourhood of its boundary. Then for every point p P Σ̊,
tpu ˆ r0, 1s is glued to t f ppqu ˆ r0, 1s in the open book Mφ, then to t f 2ppqu ˆ r0, 1s, and so
on, until it closes up to a circle inside Mφ. The only points on Σ̊ which are possibly of lower
order are the vertices of the tête-à-tête graph, where we get singular fibres.
This makes the complement of the binding a Seifert manifold. Since the walk length is not

zero, it is possible to extend the Seifert structure to the solid tori around the binding. If the
walk length were zero, however, the circles of the Seifert fibration would bound disks in these
solid tori, which would make the extension impossible. �

Later in this chapter (see Section 6.4), we will study the manifolds that arise as open books
for tête-à-tête twists a little further.

6.3. Fibred knots with tête-à-tête monodromies

In this section, we study fibred knots and links in S3.

6.3.1. Trivial monodromies

Let M be an irreducible 3-manifold, L Ă M a fibred link and, as before, pΣθqθPS1 a family of
(closures of) fibres, L “ BΣθ , and`

Φt : Σ0 Ñ Σexpp2πi tq
˘
tPr0,1s

a smooth family of diffeomorphisms such that the mapping class φ of Φ1 is the monodromy.
We abbreviate Σ1 as Σ. Then we have the following:

Lemma 6.3.1. Let γ Ă Σ be a properly embedded arc such that φpγq is isotopic to γ. Then γ is
separating.
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6. Tête-à-tête twists as monodromies

Proof. Regardless of the isotopy assumption, the monodromy family gives rise to a disk
D “ Ť

tPr0,1sΦt pγq whose interior is embedded in M � Σ. Assuming now that φpγq is isotopic
to γ, we can arrange D to be an embedded sphere that intersects Σ in γ only. Since M is
irreducible, the sphere, and hence γ, separate Σ. �

Corollary 6.3.2. The only link in S3 with trivial monodromy is the unknot.

Like always, it is important to be aware of the type of monodromy we study. For example,
Eisenbud and Neumann give us in their book [EN85] a list of “links with trivial geometric
monodromy”. One example is in the introduction, its fibre surface is a knotted three-holed
sphere. However, constructing the open book over the three-holed sphere with trivial mono-
dromy produces the manifold S2 ˆ S1#S2 ˆ S1. We can see this by looking at the surface cross
S1 and first collapsing one of the boundaries to a circle. The resulting manifold is the 3-sphere
with two full tori removed along a two-component unlink. Collapsing these two boundaries as
well is equivalent to gluing in two full tori whose meridian goes along the canonical longitudes
(a 0-Dehn filling).

So why is this not a contradiction? The point here is simply that the monodromy in these
examples is only isotopically trivial if we do not require the boundary to be fixed during the
isotopy. This determines the link complement, but does not say much about the open book
as a whole. In fact the Hopf link would be the simplest nontrivial example of this kind as its
monodromy is a Dehn twist which is trivial in that sense.

6.3.2. Knots with tête-à-tête monodromy

The monodromy of torus knots were the first examples of tête-à-tête twists that A’Campo
considered. Since there are various modifications to tête-à-tête graphs which produce new,
more complicated, tête-à-tête graphs, one can wonder what other knot monodromies can be
described by them. But as it turns out, fibred knots with tête-à-tête monodromies are precisely
the torus knots:

Theorem. Let K be a fibred knot whose monodromy is represented by a tête-à-tête twist. Then K
is a torus knot.

In fact one can say:

Theorem 6.3.3. Let K be a fibred knot whose monodromy is of finite order, i. e. has a power which
is a product of Dehn twists along the boundary of the fibre surface. Then K is a torus knot.

It was not obvious where to find this result in the literature; but it was, for example, stated by
Burde and Zieschang ( [BZ66]). The theorem is a direct consequence of the following theorem
by Seifert, which he proved in his second dissertation (Topologie dreidimensionaler gefaserter
Räume ‘Topology of three-dimensional fibred spaces’, [Sei33]) where he founded the theory of
Seifert fibred spaces:
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Theorem 6.3.4. Any fibre of a Seifert fibration of the 3-sphere is a torus knot.

Sketch of the proof. In chapter 11, Seifert classifies all possible Seifert fibrations of the 3-sphere.
The result follows from this classification.

First, one can prove that the space of fibres of a Seifert fibred 3-manifold is a surface
(Zerlegungsfläche ‘decomposition surface’), the orbit surface, which is closed if the manifold
is closed. It comes equipped with a projection map, the continuous map which maps a point
of the manifold to the point representing the fibre it lies on. Note that, in general, an orbit
surface cannot be seen as a surface that lies inside the 3-manifold.
We can lift any path on the orbit surface to a path in the manifold. A homotopy of the

lifted path projects to a homotopy on the orbit surface. Therefore the orbit surface of a
simply-connected manifold is also simply connected, hence a sphere in the case of the 3-sphere.
An important part of Seifert’s text is the classification of Seifert fibred spaces. He defines a

set of invariants (up to elementary modifications)

ptype; surface | b ; pα1, β1q; . . . ; pαr , βr qq
where surface is the genus or number of cross-caps of the orbit surface and type is some
information about orientation that can take one of six possible values. The pairs pαi, βiq
describe the exceptional fibres. If one bores out all exceptional fibres and replaces them by
regular ones, one gets a circle bundle over the orbit surface. The invariant b , like the Euler
class, distinguishes between the different circle bundles over the given surface. Seifert shows
that these invariants completely determine the Seifert fibre space up to isomorphism.
In chapter 10, Seifert derives a presentation for the fundamental group of a closed Seifert

fibred 3-manifold from the invariants. Hence in the case of the sphere with n exceptional fibres,
everything is encoded in b plus n rational numbers.
Using his presentation, Seifert notes that some quotient of the fundamental group is a

polygon group, that is to say, the symmetry group of a black-and-white tessellation by n-gons.
If n ě 4, this tessellation necessarily lives in Euclidean or hyperbolic space, hence the group
is infinite. For n “ 3, there is a finite number of families of finite groups corresponding to
tessellations of the sphere. But if the group is to be trivial, n must be at most 2.

So there are at most two exceptional fibres, and Seifert describes such fibrations in chapter 3.
They are given by the orbits of the rotation¨

˚̋̊ cospmtq sinpmtq
´ sinpmtq cospmtq

cospntq sinpntq
´ sinpntq cospntq

˛
‹‹‚, gcdpm, nq “ 1,

of S3, seen as the unit sphere in R4. Since the data described above completely determines the
manifold up to fibre-preserving homeomorphism, we now know all possible Seifert fibrations
of the 3-sphere. The exceptional fibres are always unknotted here, therefore the regular fibres
are torus knots. �
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6. Tête-à-tête twists as monodromies

Figure 6.2.: The link of the singularity xpy2 ´ x4q

The following example shows that Theorem 6.3.3 does not hold for links:

Example 6.3.1. The link of the singularity xpy2 ´ x4q is not a torus link, but its monodromy
is of finite order.

The link in question is

L “ �px, yq P C2 | xpy2 ´ x4q “ 0, |x |2 ` |y |2 “ 1
(
.

Its genus is 2 and it has 3 components. The genus of the pp, qq-torus link T pp, qq is calculated
by g “ 1

2ppp´1qpq´1q´d`1q,where d “ gcdpp, qq, which must be 3 in this case. Therefore,
L cannot be a torus link because the genus of T p3, 3q is 1 and the genus of T p3, 6q is already 4.
L does, however, contain a p2, 4q-torus link due to the factor y2 ´ x4, in fact it has a diagram as
in Figure 6.2.
Setting

F px, yq “ f px, yq
| f px, yq|

with f px, yq “ xpy2 ´ x4q, we get the projection of a fibration S3 � L FÝÑ S1. Let us describe
the monodromy of L as a diffeomorphism of S “ F ´1p1q. First note that f `

e 2πi t{5x, e 4πi t{5y
˘ “

e2πi t f px, yq, so whenever a point px0, y0q is in S , then f
`
e 2πi t{5x0, e 4πi t{5y0

˘ “ e2πi t for all t P R.
Thus we get an isotopy ℎ : S ˆ r0, 1s Ñ S3 � L with F pℎt px0, y0qq “ e2πi t , and a self-map
ℎ1 : S Ñ S .
ℎ1 is not exactly the monodromy because it does not extend to the identity on BS̄ . To fix

this, we can modify the isotopy in a small collar neighbourhood of the boundary and smoothly
interpolate it to the identity on BS̄ . By this modification, we get the monodromy φ from
t “ 1. Because ℎ51 “ id, φ5 is the product of some Dehn twists along the boundary of S̄ .

f is an example of a quasihomogeneous polynomial. Being quasihomogeneous is exactly the
property we used above, namely that there are weights ω1, ω2 and ω in Z such that for every
λ P C we have

f pλω1 x, λω2yq “ λω f px, yq.
Since all of these have periodic monodromy, the result from Section 5.1 applies and we get:
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6.4. Tête-à-têtes with open books

Figure 6.3.: How to slow down a monodromy near the boundary using a smooth family of
intervals that connect to a fixed point of the boundary

Corollary 6.3.5. Let φ be the monodromy of a quasihomogeneous polynomial in Crx, ys. Then φ
is given by a tête-à-tête twist.

6.4. Tête-à-têtes with open books

As we have seen in the previous section, only few tête-à-tête twists are monodromies of knots
or links, by which we meant knots or links in S3. But one can of course ask whether other
tête-à-tête twists could be monodromies of knots or links in different 3-manifolds, and if yes,
in which.
The answer to the first question is trivially “yes”, as we have seen in the beginning of this

chapter: To every mapping class fixing the boundary of a surface one can construct the open
book for it, making it into a monodromy. However, asking what manifolds arise leads to
plenty of interesting examples.
Alexander has shown in 1923 ( [Ale23]) that every closed orientable 3-manifold can be

equipped with an open-book decomposition and can thus be obtained by constructing the
open book corresponding to a diffeomorphism of a surface; so a priori this is no restriction on
the type of manifolds produced by tête-à-tête twists. The open book can even be chosen to
have connected boundary, as shown by González Acuña ( [Gon75]) and Myers ( [Mye78]).

6.4.1. Seifert symbols

We have, however, the strong restriction of Proposition 6.2.1 above: The open book produced
by a tête-à-tête twist (with nonzero walk length) is a Seifert manifold. One could also write
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6. Tête-à-tête twists as monodromies

down the Seifert symbol (as shown on page 41) from the tête-à-tête graph: There can be one
exceptional fibre for each boundary component, where different coefficients correspond to
different Dehn fillings of the mapping torus of the diffeomorphism. Also at each vertex an
exceptional fibre can occur. Their coefficients depend on the amount of rotation that occurs
when the vertex it is mapped to itself by a (minimal) power of the diffeomorphism. We will
not pursue this course in the following section, but rather study the fundamental group of the
open book that we construct. However, note the following:

Proposition 6.4.1. The open book belonging to an elementary tête-à-tête twist TEn,a,2, for a ă n,
is a Seifert fibred manifold with base S2 and at most 3 exceptional fibres.

Proof. Since the tête-à-tête twist acts transitively on edges, the quotient of the graph by the
twist consists of a single edge that connects two vertices, one corresponding to “inner” and
one to “outer” vertices of the chord diagram (see the remark on page 19). The base manifold
then consists of a disk which is the thickening of this edge, with possibly exceptional fibres at
the two vertices, and a disk that represents the Dehn filling, with another possible exceptional
fibre in its middle. �

6.4.2. A presentation of the fundamental group

In this section we will see how to find a presentation for the fundamental group of open
books coming from tête-à-tête twists and how to use this to recognize some of the manifolds
constructed in this way.

When we build a 3-manifold Mφ from a surface Σ and a diffeomorphism φ as an open book,
we can use the theorem of Seifert and van Kampen to calculate its fundamental group. To do
this, we split Mφ into two parts by removing a closed surface, the double of Σ, given by

DΣ “ π´1p0q Y π´1p1{2q Y L,

where L is the binding of the open book decomposition of Mφ and π : Mφ � L Ñ S1 “ R{Z
is its projection map. Mφ � DΣ then consists of the two parts π´1`p0, 1{2q˘

and π´1`p1{2, 1q˘
,

whose closure is in each case homeomorphic to Σˆ r0, 1s and whose fundamental group is thus
just π1pΣq. The theorem of Seifert and van Kampen now gives us π1pMφq as an amalgamated
product of the form π1pΣq ˚π1pDΣq π1pΣq.

When the boundary of Σ is connected, we can explicitly write down generators and relations
for the fundamental group.
The presentation we use here depends on the choice of a basepoint on the boundary, or a

choice of a “first” – or rather “zeroth” – endpoint in the chord diagram. We then label the
endpoints from 0 to 2n ´ 1. Recall the construction of the ribbon graph from a chord diagram
described in the second paragraph of Section 4.2: Starting with an annulus, we glue a band for
every chord, and a disk for every internal boundary component of the diagram.

We use one generator for each chord, which corresponds to starting at the basepoint, walking
anticlockwise to the first endpoint of the chord, traversing it, and walking back clockwise to
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1

0

2

3

4 5

Figure 6.4.: The generator c2 in the chord diagram E3,3

the basepoint. When the chord from endpoint i to endpoint j , j ą i, is traversed, we call this
generator ci . There is one additional generator, ω, which corresponds to walking once around
the whole annulus in anticlockwise direction.
Each internal boundary component provides one relation, namely the product of ci ’s and

c´1
i ’s that gets trivial by gluing in the corresponding disk. When, as we walk along one internal
boundary, we pass by the basepoint, we add ω to the product. Using these relations, we get a
presentation of π1pΣq.
The group π1pM q has the additional relations that come from gluing the two copies of
Σ ˆ r0, 1s. Those actually have their boundaries pinched so they look like in Figure 7.2 on
page 55 in the next chapter. We glue using φ on one side and the identity on the other. The
additional relations just state that a generator ci becomes equal to its image under φ. When
l is the walk length of the twist, let i 1 “ i ` l mod 2n and j 1 “ j ` l mod 2n, understood
as numbers in t0, . . . , 2n ´ 1u. Let ri “ X i`l

2n
\
and r j “ X j`l

2n
\
, which denote the number of

times the endpoints i and j are rotated past the basepoint. The image of ci is then ωri ci1ωr j if
i 1 ă j 1, and ωri c´1

j 1 ω
r j otherwise.

Example 6.4.1. We calculate the fundamental group for the now familiar example of E3,3
with walk length 1, which should be trivial since this twist represents the monodromy of the
trefoil. Figure 6.4 shows the chord diagram, with chords replaced by bands, together with the
basepoint and one generator.

Writing down the generators and relations as described before, with Tr “ TE3,3,1, we get that

π1pMTr q “ xc0, c1, c2, ω | Rb Y Rmy,
where Rb , the relations given by the internal boundaries of the chord diagram (or the vertices
of the graph), is

Rb “ �
c1c

´1
2 c´1

0 , c0c
´1
1 c2ω

(
,
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and Rm , the relations given by the gluing map, is

Rm “ �
c0 “ c1, c1 “ c2, c2 “ c´1

0 ω
´1( ,

with the obvious abuse of notation that c0 “ c1 actually means c0c´1
1 .

From the relations in Rm we immediately see that all ci are equal to c1, hence trivial by the
first relation in Rb , and ω is trivial as well. We therefore obtain the trivial group and, by the
Poincaré conjecture, the manifold is the 3-sphere, as we already knew.

Homology of open books

Using the Mayer-Vietoris sequence for the same pair that we used in the calculation of the
fundamental group – A “ Σ ˆ r0, 1{2s and B “ Σ ˆ r1{2, 1s with intersection DΣ – we get that

H1pMφq – H1pAq ‘ H1pBqäkerpι˚ ´ κ˚q “ H1pAq ‘ H1pBqäimpμ˚, ν˚q

where ι : A ãÑ Mφ and κ : B ãÑ Mφ as well as μ : DΣ ãÑ A and ν : DΣ ãÑ B are the respective
inclusion maps. This is standard and corresponds to the abelianized version of the theorem of
Seifert and van Kampen.
In our case, we also get the isomorphism

H1pMφq – kerpμ˚, ν˚q.

This map works as follows: If a cycle in H1pDΣq is trivial in both H1pAq and H1pBq, it is in
each one the boundary of a two-chain, which combine to a two-cycle in Mφ. Poincaré duality
gives us then an element in H1pMφq.

6.4.3. Examples of open books given by tête-à-tête twists

Using the above presentation of the fundamental group, we can calculate some examples using
the computer algebra system GAP.1 Chapter 9 will treat a computer program written in Java
that produces ready-made GAP code that describes the fundamental group for a given tête-à-tête
twist with one boundary component. GAP provides many commands to examine the group.
Sometimes, the commands IdGroup or StructureDescription will be able to identify
the group in a list and output a description. All the examples in this section (apart from three
which have more than one boundary component) have been found using a computer; when
there is a theoretical justification for the outcome, this confirms the validity of the program.

1http://www.gap-system.org
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Spherical manifolds

The GAP command IsFinite is sometimes able to tell whether the group is finite. If it
is, we know that the manifold is a so-called spherical manifold, that is, that the fundamental
group acts faithfully by isometry on the 3-sphere and that the manifold is homeomorphic
to the quotient of the 3-sphere by this action. This statement was Thurston’s elliptization
conjecture, a consequence of the geometrization conjecture now proved by Perelman. Unless
the fundamental group is cyclic, there is a unique such quotient.

If it is cyclic, however, the manifold is a lens space Lpp; qq and there is a family of them that
share the same fundamental group. But it is known which lens spaces are homeomorphic. For
example, all lens spaces of the form Lp2; qq are homeomorphic to real projective space RP3,
hence whenever we see a manifold whose fundamental group is Z{2Z, we know that it is RP3.
The simplest tête-à-tête twist that produces RP3 is the bifoil twist Bi “ TE2,2,1.

The book of Orlik about Seifert manifolds ( [Orl72]) gives a description of all possible
fundamental groups of spherical manifolds. Powers of Bi also produce interesting examples:
The fundamental group of the open book of Bi2 is the binary dihedral group D˚

2 of order 8,
also called the dicyclic group Dic2 or the quaternion group Q. From Bi3 we obtain the binary
octahedral group, a group of order 48.

Powers and branched covers

Constructing the open book Mφk of the power φk of a diffeomorphism φ corresponds to
taking a cyclic branched cover of the manifold Mφ. In particular, if φ is the monodromy of a
knot, Mφk is a k-fold branched cover of S3 branched over the knot.
For example, the twist with walk length 2 around the elementary tête-à-tête graph E30,29

corresponds to the p2, 15q-torus knot monodromy. Its square produces a manifold whose
fundamental group is Z{15Z, and which therefore is a lens space L. The double cover branched
over the p4, 15q-torus knot, call it L1, is itself a double branched cover of L because of the
symmetry of the p4, 15q-torus knot. GAP can calculate its homology, which is still Z{15Z, but
is not able to calculate its fundamental group. In 1983, Hodgson and Rubinstein have shown
( [HR85]) that a lens space occurs as the double branched cover of a unique knot in S3, which
is in fact a 2-bridge knot, therefore L1 cannot be a lens space. (Only the p2, nq-torus knots are
also 2-bridge knots. The bridge number of a pp, qq-torus knot is minpp, qq; see [Sch07].) GAP
can also calculate the homologies of the double branched covers over the torus knots p8, 15q
and p16, 15q, which remain Z{15Z.

In the bifoil twist example above, we have seen “quaternion space” as a double, and “binary
octahedral space” as a triple branched cover over real projective space.
There is an obvious symmetry for any diffeomorphism φ:

Mφ´k “ ´Mφ k ,
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where ´M denotes M with reversed orientation. Any calculation with a negative walk length
´l will therefore result in a fundamental group which is isomorphic to the one coming from
the positive walk length l .

Homology spheres

Using the GAP command AbelianInvariants, one finds the abelianization of the funda-
mental group, that is, the first homology group H1pMφq. If the fundamental group is perfect,
meaning that H1pMφq is trivial, Mφ has the same homology as the 3-sphere and is called a
homology sphere. See the book of Saveliev ( [Sav02]) and the introduction of [FS91] for
overviews.

We know that all Mφ are Seifert fibred. Examples of Seifert fibred homology spheres are the
so-called Brieskorn spheres Σpp, q, r q, the links of the singularities xp ` yq ` z r “ 0, where p,
q , and r are pairwise coprime positive integers.
The only perfect fundamental group of a 3-manifold that is finite is the binary icosahedral

group, the fundamental group of the Poincaré sphere. Therefore, due to the elliptization
conjecture, the Poincaré sphere is the only homology sphere with finite fundamental group.
It arises as the 5-fold cyclic branched covering of the trefoil, that is, as the open book of Tr 5,
the fifth power of the trefoil twist Tr “ TE3,3,1. The Poincaré sphere is also a Brieskorn sphere,
namely Σp2, 3, 5q. More generally, the k-fold cyclic branched covering of the pp, qq-torus knot
is the Brieskorn sphere Σpp, q, kq. Indeed we find another homology sphere, Σp2, 3, 7q by
looking at the open book that belongs to Tr 7, or Σp2, 3, 11q from Tr 11.

Dehn surgery

A tête-à-tête twist has a power which is isotopic to a composition of Dehn twists around
its boundary. Two open books obtained from diffeomorphisms which differ by boundary
twists are related by some Dehn surgery along the boundary link. In the special case where a
tête-à-tête twist Tis a torus knot monodromy, hence MT– S3, and k is its order, MT 1`nk is the
result of 1{n-surgery on the knot. In the general case, the framing would be determined by the
algebraic intersection number with the surface.

Take the example of the left-handed trefoil, which is the binding in the open book for Tr´1.
The open book of Tr 5 “ Tr 6Tr´1 is the result of `1-surgery on the left-handed trefoil, which
is known to be the Poincaré sphere – another way to see why the calculation for Tr 5 mentioned
above is correct.
Like in this example, the homology never changes under this kind of surgery; this can also

be seen without referring to surgery from the fact that boundary twists act trivially on the
homology of the surface. Therefore, and since the homologies of M and ´M are the same, all
the H1pMT r`nk q as well as all the H1pMT ´r`nk q are isomorphic, where T is a twist of order k
and n is an arbitrary integer.
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When T is a tête-à-tête twist on a surface Σ we get in particular that

H1pMT nk q “ H1pMidΣq “ H1pΣq,
which is free abelian. In these cases, unless Σ is a disk, the fundamental group is infinite.

Selection of examples

The following table contains a rather arbitrary selection of calculations. The columns are the
tête-à-tête graph with its genus and number of boundary components, the walk length, which
power of the twist with minimal walk length is considered, the fundamental group of the open
book, its homology, and some remarks.
The symbol D˚

2 , as before, denotes the binary dihedral group with 8 elements, or the
quaternion group; T˚ the binary tetrahedral group, which is of order 24 and isomorphic to
SLp2, 3q; O˚ the binary octahedral group, which is of order 48; I˚ the binary icosahedral group,
which is of order 120 and isomorphic to SLp2, 5q. 8 denotes any infinite group, and Zn is
short for Z{nZ. 1, as well as 0, denote the trivial group. Where the fundamental group is not
indicated, GAP was not able to tell whether it is finite or not, most likely because it is not.
Graphs (i), (ii), and (iii) are the ones from Figure 3.5 on page 4.

twist open book

graph l power π1 H1 remark
pg, bq
E2,2 1 1 Z2 Z2 RP

3

p1, 1q 2 2 D˚
2 Z2

2

3 3 O˚
Z2

4 4 8 Z
2

5 5 Z2

E3,3 1 1 1 0 S3, trefoil
p1, 1q 2 2 Z3 Z3 lens space Lp3, 1q

3 3 D˚
2 Z2

2

4 4 T˚
Z3

5 5 I˚ 0 Poincaré sphere
6 6 8 Z

2

E5,3 2 1 Z5 Z5 lens space
p2, 1q 4 2 Z5

6 3 Z5

8 4 Z5
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6. Tête-à-tête twists as monodromies

twist open book

graph l power π1 H1 remark
pg, bq

10 5 8 Z
4

E6,3 2 1 Z3 Z3 lens space
p2, 1q 4 2 Z3

2

6 3 8 Z
2

8 4 Z3
2

10 5 Z3

12 6 8 Z
4

E7,3 2 1 Z{7Z Z7 lens space
p3, 1q 4 2 Z7 also for powers 3,4,5,6

14 7 8 Z
6

E7,5 like for E7,3

p3, 1q
E12,7 2 1 1 0 S3, p3, 4q-torus knot
p3, 1q 4 2 D˚

2 Z3

6 3 Z4
2

8 4 Z3
3

10 5 0 homology sphere
12 6 8 Z

2 ` Z22
14 7 0 homology sphere
16 8 Z3

3

18 9 Z4
2

20 10 Z3

22 11 0 homology sphere
24 12 8 Z

6

E12,11 2 1 Z2 Z2 RP
3

p3, 1q 4 2 D˚
6 Z2

2 order 24
E12,5 2 1 Z2 Z2 RP

3

p4, 1q 4 2 Z2
2 ` Z3

E12,3 2 1 Z6 Z6

p5, 1q
E60,19 2 1 Z2 Z2 RP

3

p24, 1q 4 2 Z2
2 ` Z3

E52,13 2 1 Z26 Z26 lens space
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6.4. Tête-à-têtes with open books

twist open book

graph l power π1 H1 remark
pg, bq
p25, 1q 4 2 Z2

2 ` Z132
E120,119 2 1 Z2 Z2 RP

3

p30, 1q 4 2 D˚
60 Z2

2 order 240
6 3 Z2

3

E120,59 2 1 Z4 Z4 lens space
p45, 1q
E120,5 2 1 Z20 Z20 lens space
p58, 1q 4 2 Z3`Z42`Z52

(i) 2 1 Z2 Z2 RP
3

p1, 4q
(ii) 1 1 Z4 Z4 lens space
p1, 2q

(iii) 2 1 1 0 S3

p0, 2q 4 2 Z2 Z2 RP
3

2n n Z2n Z2n

All the elementary tête-à-tête graphs of the form E2n,2n with walk length 1, or equivalently
E4n,4n´1 with walk length 2 can easily be shown to produce RP3 as its open book, as suggested
by the list. From their powers we therefore get branched covers of RP3.
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7. Fibred knots in R3

7.1. Introduction

This chapter digresses from the study of tête-à-tête twists and treats the subject of fibred links
in the 3-sphere, which already appeared in the previous one. Its main result is a criterion for
fibredness. Whereas fibredness is a property of links and surfaces in S3, it is very natural to use
the criterion in R3.
Recall that a knot or link K in S3 is called fibred if the link complement S3 � K admits the

structure of a fibration over S1, and moreover, the closures of the fibres are compact surfaces
that intersect exactly in K . The closures of fibres, called fibre surfaces, are Seifert surfaces for
the link. When K is oriented, the fibers are required to induce the correct orientation on it.
Many examples come from plane curve singularities: If a polynomial function f : C2 Ñ C

has an isolated singularity at 0, we can define K to be the intersection of f ’s zero set with a
sufficiently small transverse sphere,

K “ �
p P C2 | f ppq “ 0 and |xppq|2 ` |yppq|2 “ ε( ,

and the projection F : S3 � K Ñ S1 to be the quotient f {| f |; see Milnor’s book [Mil68].
The simplest examples of such algebraic links are the trivial knot, described by the function
f ppq “ xppq; the Hopf link, described by f ppq “ xppq2 ` yppq2; and the trefoil, described
by f ppq “ xppq2 ` yppq3. However, there are many knots which are fibred but not algebraic,
for instance the figure-eight knot. And not every knot is fibred: A fibred knot has a monic
Alexander polynomial, therefore knots like 52 or 61 (in Rolfsen’s notation) are not fibred.

The converse of this criterion is false, but others exist. In 1962, John Stallings showed that
a link is fibred if and only if the commutator subgroup of its fundamental group is finitely
generated ( [Sta62]). In 1986, David Gabai presented his theory of sutured manifolds ( [Gab86]),
which in many cases allows to decide whether or not a link is fibred. More recently, Yi Ni has
shown that Knot Floer homology detects whether a knot is fibred ( [Ni07; Ni09]).
If we look at the fibre Σ over 1, that is Σ “ F ´1p1q “ F ´1p1q Y K , and then follow the

points of Σ as it is moved through the fibration, we get a diffeomorphism of Σ called the
monodromy. This can be done by choosing a vector field on S3 that is zero on K and otherwise
projects to a field of unit tangent vectors on S1. The monodromy is unique up to isotopy. In
particular, we can look at the image of a properly embedded arc under the monodromy. The
interior of such an arc is moved by the flow of the vector field through the complement of Σ
and, in general, ends up in a different position.
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7. Fibred knots in R3

Figure 7.1.: Two views of the same Hopf band with the action of the monodromy on an elastic
cord

In this chapter we will see how and why studying such arcs is sufficient to determine whether
a knot is fibred as well as to describe the monodromy. It turns out that all one needs to study
fibre surfaces are a bunch of those elastic luggage cords with hooks. The main statement is: If
every elastic cord, attached to the boundary of the surface, can be dragged to the other side of the
surface, the knot is fibred; and the monodromy is determined by where the elastic cords end up.
The results cited in this chapter are formulated in the PL category, hence all statements

about surfaces and elastic cords are to be understood in the piecewise linear sense as well, even
if not explicitly stated, or drawn. Of course, every continuous movement of an elastic cord
can be piecewise linearly approximated.

7.2. Elastic cords

From now on, let Σ Ă S3 be an embedded connected compact oriented surface with boundary.
We will often have to thicken Σ in a specific way, illustrated by Figure 7.2, which we call a
“lens thickening” and is natural in the context of fibred links. This thickening can be imagined
to be very thin and is mainly used to distinguish the two sides of the surface Σ.

Definition 7.2.1. LetN pΣq be a closed tubular neighbourhood “with boundary” of Σ, parame-
terized by τ : Σˆr´1, 1s Ñ N pΣq. Let ℎ : Σ Ñ r0, 1s be a smooth function which is zero on the
boundary of Σ and positive on its interior. The image LpΣq of the map pp, tq ÞÑ τpp, ℎppq ¨ tq,
together with its structure as a fibration LpΣq � BΣ Ñ r´1, 1s given by the parameter t , is
called a lens thickening of Σ.
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7.2. Elastic cords

Σ

BΣ

Figure 7.2.: Slice through a lens thickening of a band

Some further terminology: The image of Σˆs0, 1s lies above, the image of Σ ˆ r´1, 0r
below Σ. The part of the boundary of LpΣq which lies above Σ will be denoted by B`LpΣq,
the part below by B´LpΣq. Finally, let EpΣq “ S3 � LpΣq, the exterior of Σ. We will also
tacitly remember the projection to Σ induced by the tubular neighbourhood structure, but
this projection could be reconstructed up to isotopy from the fibration structure.

Definition 7.2.2. Choose a fixed lens thickening LpΣq. An elastic cord attached to Σ is an
embedded arc in EpΣq whose endpoints lie on BΣ.
We say that an elastic cord is spanned above Σ when its interior is contained in B`LpΣq,

spanned below Σ when its interior is contained in B´LpΣq. A cord spanned below Σ can be
dragged to the other side of Σ if there is an isotopy of elastic cords moving it to a cord above,
while keeping its endpoints fixed.

Theorem 7.2.1 (existence of a fibration). If every elastic cord on Σ can be dragged to the other
side, Σ is a fibre surface.

In fact, it suffices to study a collection of disjoint cords whose projections generate H1pΣ, BΣq,
or equivalently, cut the surface into one disk. Moreover, this existence statement can even be
slightly strengthened to allow for the dragged cords to cross over themselves, as in Theorem
7.2.4 below. We also have:

Theorem 7.2.2 (uniqueness of the monodromy). Monodromies are unique up to isotopy. More
precisely: If Σ is a fibre surface, there is only one way to drag a cord spanned below it to a cord
spanned above it, up to isotopy. The position of the dragged cords determines the monodromy.

These two theorems have been obtained in collaboration with Sebastian Baader. In their
proofs, we will mainly be concerned with resolving singularities of images of disks, a standard
problem in 3-manifold topology. We will use, to some extent, four important classical theorems,
namely Dehn’s lemma, the sphere theorem, Alexander’s theorem, and later the loop theorem.
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7. Fibred knots in R3

The first three are stated right below. References for those statements are the book of Bing
( [Bin83]) and the book of Hempel ( [Hem76]), both with proofs. PL manifolds and maps
are used, which will be implicit in the statements below. The unpublished book fragment of
Hatcher ( [Hat]) states the theorems for continuous maps.

Dehn’s Lemma (Papakyriakopoulos, 1957, [Pap57]; see [Hem76, p. 39]). Let M be a 3-manifold
and f : D2 Ñ M a map such that for some open neighbourhood A of BD2 the restriction f |A
is an embedding and f ´1p f pAqq “ A. Then there is an embedding g : D2 Ñ M such that
Bp f pD2qq “ BpgpD2qq. �

Sphere Theorem (Papakyriakopoulos, 1957, [Pap57]; see [Hem76, p. 40]). Let M be an
orientable 3-manifold with nontrivial π2pM q. Then there exists an embedding of the 2-sphere which
is nontrivial in π2pM q. �

Alexander’s Theorem (Alexander, 1924, [Ale24]). A 2-sphere that is embedded in S3 bounds a
3-ball on both sides. �

Proof of existence (Theorem 7.2.1). We prove the statement in three steps:

1. Each cord can be moved along an embedded disk;
2. for cords which do not intersect, those disks can be chosen to be disjoint;
3. the fibration structure on the union of Σ and the right amount of such disks can be

extended (uniquely) to the complement, which is a ball.

The first claim follows from Dehn’s lemma. Choose one cord α and drag it to the other
side. Since the movement of its interior happens away from the surface, we can choose a small
neighbourhood Nε of LpΣq and modify the isotopy H : r0, 1s ˆ α Ñ EpΣq to make it injective
on H´1pNεq. Dehn’s lemma now says that there is an embedded disk whose boundary is the
original one, namely the union of the two cords H pt0u ˆ αq Y H pt1u ˆ αq.

Now take two disjoint cords α and β and find two embedded disks Dα and D β along which
they can be dragged to cords α1 and β1. The disks, as well as α1 and β1 themselves, might
intersect each other. To make them disjoint, start by perturbing one of the disks slightly to
make it transverse to the other one. Now, they intersect in some disjoint embedded circles and
arcs. Since the disks do not intersect the surface and the four cords lie on a lens thickening of
it, we can ask furthermore that the boundary of each disk do not intersect the interior of the
other disk. The arc components of the intersection now have their endpoints on the boundary,
more precisely on α1 X β1.

The goal is to successively remove innermost circles and arcs. A circle is called innermost for
a disk if it contains no other circles or arcs. An arc divides the disk into two parts, only one
of which touches α or β. We will call the other part its “inner disk” and say that the arc is
innermost if its inner disk contains no other arcs or circles.

Here is what we do with circles: Choose one which is innermost for D β . In D β , this circle
bounds a disk D 1

β . The part of Dα which lies inside the circle is also a disk, call it D 1
α, but one
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7.2. Elastic cords

D̃2

γ2

BΣ

D̃1

Figure 7.3.: An octagon obtained by cutting a three-holed sphere, for which b1 “ 2

that possibly intersects D β many times. We can now do surgery to modify Dα and reduce the
number of intersections by at least one: Remove D 1

α, together with a small annulus around it,
from Dα and replace it by a disk parallel to D 1

β . Because the circle was innermost for D β , we
do not introduce any self-intersections.

Arcs are treated in the same way. When an arc is innermost for D β , the inner disk in Dα is
removed, together with a small band around it, and replaced with a disk parallel to the inner
disk bounded in D β .
Repeating these steps produces two disjoint disks in the end. Because we have only ever

modified Dα, we can continue this process to make Dα disjoint from as many other disks as
we like, and by induction we can choose all disks to be disjoint.

As a remark: π2pS3 � Σq is trivial, for if it were not, there would exist an essential sphere (by
the sphere theorem) which would bound two balls in S3 (by Alexander’s theorem). Since Σ is
connected, only one of the balls can contain Σ, so the sphere was not essential after all. This
means that our disk Dα could indeed have been moved to the surgered disk by a homotopy.
To build the fibration, we choose a maximal nonseparating collection of disjoint properly

embedded arcs γi in Σ, push them to B´LpΣq, and construct a disk Di for each of them as
before, which we thicken slightly to a two-handle D̃i . There will be b1 “ 2g ` r ´ 1 of them,
where g is the genus and r the number of boundary components of Σ, and b1 is the rank of
H1pΣ, BΣq and H1pΣq. The fibration is already defined on LpΣq� BΣ; it can be extended to the
(thickened) disks D̃i where it reflects the movement of the cords through them, and we would
like to extend it to the rest of S3 � BΣ.
The boundary of LpΣq Y Ťb1

i“1 D̃i is a sphere. We can prove this by simply calculating its
Euler characteristic: Cutting Σ along the b1 arcs produces a 4b1-gon whose edges alternatingly
belong to the boundary of Σ and to the cutting arcs. By pushing the arcs down, we likewise
cut B´pΣq to a polygon like in Figure 7.3. B`pΣq, cut along the dragged arcs, will also look

57



7. Fibred knots in R3

Figure 7.4.: The remaining ball with a prescribed fibration on its boundary. Top and bottom
are one fibre each; the rim, not including the windows, is BΣ.

like Figure 7.3 since on Σ any two choices of a nonseparating collection of disjoint embedded
arcs with the same endpoints as the γi are related by a diffeomorphism of Σ. The sphere will
consist of the cut B´pΣq and B`pΣq, glued together along the boundary parts, and of 2b1 disks
attached at the cuts; we end up with 2 ` 2b1 disks, 2b1 ` 4b1 edges, and 4b1 vertices.
By Alexander’s theorem, the sphere bounds a ball on both sides. The ball on the outside

looks like in Figure 7.4, and it is easy to extend the fibration to it. Another way to look at it is
to reglue the parts of its boundary which border the thickened disks (the windows of the flying
saucer in the picture), respecting their fibration induced by the disks, and get a handlebody to
which we can give the structure of a lens thickening.

This completes the fibration of the link complement and proves the theorem. �

To prove the statement of Theorem 7.2.2, uniqueness of the monodromy, we need the
following well-known proposition:

Proposition 7.2.3. A fibre surface is incompressible in the link complement.

Also some converse of this statement would be true: A Seifert surface of a fibred link is a
fibre surface if and only if it is incompressible in the knot complement. We prove only the
“only-if” part:

Proof. Assume the surface, which we call again Σ, is compressible. Let D be a compressing
disk whose boundary we assume to lie in the interior of the surface.
There may or may not be boundary components of Σ on either side of BD (possibly the

same one on both sides if BD is nonseparating). If there are, choose a cord that lies on the
same side of Σ as D and intersects D in exactly one point. An isotopy that fixes the chord’s
endpoints can only change the number of intersection points by an even number, so this cord
cannot be brought to the other side.
We are left with the case that one component of Σ � BD is capped off by D to a closed

two-sided surface whose genus is at least one. Hence its inside, which we call I , contains an
essential loop with basepoint on D . Prolong this on the other side of D to an essential loop γ
with basepoint on BΣ. Choose now an elastic cord α attached to BΣ near γ’s basepoint and
isotopic to γ in S3 � Σ. α can be laid down on one side of Σ, but since it cannot leave I it
cannot be brought to the other side. �
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7.2. Elastic cords

Proof of uniqueness (Theorem 7.2.2). Let us assume that there exists a cord α below which can
be dragged to two nonisotopic cords α1

1 and α
1
2 above. As in the proof of Theorem 7.2.1, this

movement can be thought to happen along two embedded disks. Then, we can use the same
surgery techniques to find two embedded disks, one between α and α2

1, and one between α
and α2

2 , that only intersect along α. For example, one could move α slightly away from itself,
find two disjoint disks and then undo the movement.
But then, provided α2

1 and α
2
2 are still not isotopic, we can combine the two disks to find a

compressing disk whose boundary is α2
1 Y α2

2 , in contradiction to the assumption that Σ was a
fibre surface. If it should happen (and it can) that α2

1 and α
2
2 are isotopic, then necessarily one

of the disks we used for surgery had a boundary which was an essential loop in the surface and
can be used as a compressing disk.
The second statement of the theorem is clear, since the disks are mapped to disks again,

and there is only one (orientation-preserving) way to do this, up to isotopy. Therefore the
monodromy is completely determined by the images of the arcs. �

With a little bit more work, we can allow elastic cords to be immersed instead of embedded,
or even to be just arbitrary continuous images of an interval, as well when we put them down
on the surface as during the movement. All that is needed is a homotopy keeping the endpoints
fixed and moving the interior of the cord from the negative to the positive boundary part of a
lens neighbourhood.

Theorem 7.2.4. If every (embedded) elastic cord on Σ can be moved to the other side of the surface,
not necessarily remaining embedded, then Σ is a fibre surface.

Proof. We repeat the first step of the proof of Theorem 7.2.1 under this weaker assumption.
The rest of the proof remains the same. Since we never needed to consider elastic cords whose
projection separates Σ, we can assume that the cord which is to be moved is nonseparating,
without loss of generality.

First of all, the topological disk swept out by the elastic cord can be approximated by a
piecewise-linear disk D that only has singularities of a certain kind, namely double lines, triple
points and branch points, see for example the book of Bing ( [Bin83, Chapter XVII.1. and
p. 205]). Bing calls this a “normal singular disk”.
Now, we should find an embedded disk whose boundary is still contained in BLpΣq and

whose intersection with B´LpΣq is the original embedded elastic cord. We use the loop
theorem, first proved by Papakyriakopoulos (also in [Pap57]), in a version which corresponds
to Theorem XVII.1.E in Bing’s book. It says that, using local modifications of the singular disk
near the singularity set called “cut, paste and discard”, there exists an embedded disk whose
boundary is a part of the original boundary with smoothed crossings. For this new boundary,
one can furthermore choose a forbidden normal subgroup N of the fundamental group of
the surface, of course provided that N does not contain the original boundary. We use N to
ensure that the original elastic cord is not discarded. The manifold M in the theorem will be
S3 � LpΣq.
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7. Fibred knots in R3

Loop Theorem. Suppose D is a normal singular disk in a PL 3-manifold-with-boundary M and
B is a boundary component of BM. Let N be a normal subgroup of π1pBq that does not contain the
representatives of the conjugacy class of BD. Then D can be changed by cut, paste and discard to a
nonsingular disk E such that BE Ă B and the representatives of the conjugacy class of BE do not
belong to N . �

For N � π1pBLpΣqq, choose the normal subgroup generated by the subgroup π1pB`LpΣqq.
Since the elastic cord spanned below Σ does not separate B´LpΣq by assumption, we can
choose an oriented simple closed curve c in B´LpΣq whose intersection number with BD is 1.
But the intersection number of any element of N with c is 0, so the representatives of BD are
not contained in N .
The loop theorem provides us with an embedded disk E such that BE is contained in BD

away from the intersection points of BD. And BE X B´LpΣq is the original elastic cord,
because if BE did not pass at all through B´LpΣq, it would be contained in N .
This disk allows to move the elastic cord to the other side of Σ through embedded elastic

cords and thus the theorem is proved. �

7.2.1. Decision problems

Visualizing the moving elastic cords can be difficult. On a bad day, the following modification
can be easier to handle:

Corollary 7.2.5. A cord ρ in upper position can be dragged to a cord ρ1 in lower position (with
the same endpoints) if and only if ρ Y ρ1 is unknotted and unlinked with Σ.

Proof. As we have seen in the proof of Theorem 7.2.1, the movement from ρ to ρ1 can be
performed along a disk whose interior is embedded and disjoint from Σ. ρ Y ρ1 bounds this
disk, so it is unknotted and not linked with Σ.

On the other hand, a trivial knot that is not linked to Σ always bounds such a disk, so ρ can
be pushed along it. �

Since there exist algorithms to decide whether a surface is a fibre surface, one may ask:

Question. How can this criterion be made into an algorithm?

Here, we should clarify the relation between fibredness of a link and fibredness of its Seifert
surfaces: When we are given only the link, we can use Haken’s normal surface theory to find
a Seifert surface of minimal genus for it (and giving it its proper orientation). If the link is
fibred, it is well known that this surface must be the fibre surface. Therefore Haken’s algorithm
together with a criterion to decide whether a surface is fibred are sufficient to decide whether a
link is fibred.
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7.3. Examples and applications

Figure 7.5.: A Seifert surface for the p4, 2q-torus link which is not a fibre surface

7.3. Examples and applications

A standard example in the theory of fibre surfaces is the twisted unknotted annulus.

Example 7.3.1. An unknotted annulus in S3 with n full twists, n ‰ 0, is (when we disregard
orientation) a Seifert surface for the p2, 2nq-torus link, which is fibred. Trivially, an annulus is
a Seifert surface of minimal genus. For fibred knots this would imply that it would also be a
fibre surface, but unless |n | “ 1, this is not the case here. If it were, it would be possible to
complete the cord ρ in Figure 7.5, which lies on the back of the surface, with another cord ρ1
on top of the surface, to a trivial knot that is unlinked with the annulus. But if we choose ρ1
to have the same projection as ρ, the linking number of ρ Y ρ1 with the annulus is 1, and if ρ1
goes k times around the annulus, the linking number is changed by k ¨ n.

Example 7.3.2. A complete bipartite graph with p ` q vertices, embedded as in Figure 7.6,
and with blackboard framing, is a fibre surface for the pp, qq-torus link. Its monodromy is
given by the tête-à-tête map of walk length 2.
This is the example mentioned on page 3 in the introduction. Norbert A’Campo has

mentioned to me that the monodromy of torus links has been described (in the language of
singularity theory) by Frédéric Pham in 1965 ( [Pha65]); he proved that the fibre surface retracts
to the join of p ` q roots of unity which are cyclically permuted.
To see why the statement is true, note first that the same surface can be drawn in a more

symmetric way as seen in Figure 7.7, which shows the stereographic projection of a thickened
complete bipartite graph whose vertices lie on two Hopf circles in the 3-sphere. Knowing
this, the proof of the statement can be seen in Figure 7.6: A cord spanned below the surface
is dragged to one spanned above it. Its projection is given precisely by the application of a
tête-à-tête twist to the projection of the original cord.

7.3.1. Murasugi sums

From the main theorem, we can also deduce the following known result whose “if" part was
proved by Stallings in 1978 ( [Sta78]), and the whole theorem later by Gabai ( [Gab83]).
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7. Fibred knots in R3

Figure 7.6.: A complete bipartite graph with 3 ` 4 vertices and blackboard framing, giving a
fibre surface for the p3, 4q-torus knot

Corollary 7.3.1. Let Σ be a Murasugi sum of Σ1 and Σ2. Then Σ is a fibre surface if and only if
both Σ1 and Σ2 are fibre surfaces.

Σ is called a Murasugi sum of two subsurfaces Σ1 and Σ2 if Σ1 Y Σ2 “ Σ, their intersection
is a polygon D whose edges alternatingly belong to Σ1 and Σ2, and there are two balls B1
and B2 containing Σ1 and Σ2, respectively. One usually requires that B1 Y B2 “ S3 and
BB1 X Σ1 “ BB2 X Σ2 “ D .
This is a powerful theorem, as it permits in many cases to decompose the surface into a

Murasugi sum and then check fibredness for the simpler surfaces.
For the proof, we choose small lens thickenings LpΣ1q and LpΣ2q for the two surfaces in

such a way that their upper boundaries lie inside the respective ball, i. e. B`LpΣ1q Ă B1 and
B`LpΣ2q Ă B2. We choose them in a compatible way such that LpΣ1q YLpΣ2q fits together to
a lens thickening LpΣq of Σ, where LpΣ2q is LpΣ2q with the roles of “up” and “down” reversed.

Proof. It is easy to see that there exists a collection α of disjoint properly embedded arcs in Σ1
that are disjoint from D , such that Σ1 �

Ť
α is a disk; likewise there is such a collection β for

Σ2.
Assume now that Σ1 and Σ2 are both fibre surfaces, with monodromies φ1 and φ2. Push the

curves of α down to get elastic cords spanned below Σ1 Ă Σ. Each of them can be dragged to
the other side of Σ1 in S3 � Σ1. Since Σ2 is contained in a ball which is disjoint from the elastic
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Figure 7.7.: The same complete bipartite graph, drawn with vertices on two great circles of S3

instead of two skew lines
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Σ1

Σ2

B1 X B2

B1

B2

Figure 7.8.: A Murasugi sum along a hexagon

cord and can be contracted to a part of B´pΣq near D , the cord can clearly still be dragged to
B`pΣq inside S3 � Σ.

Now take the arcs in β and push them up to get elastic cords spanned above Σ2, that is, below
Σ. Now, Σ1 might get in the way of dragging these to the other side since the monodromy can
well map them to cords whose projections intersect D . But this can be avoided by considering
the collection φ´1

2 pβq instead. The (projections of the) corresponding cords below Σ might
intersect D, but B1 lies on the other side of the cords, so this is no problem and they can be
dragged. Σ2 �

Ť
φ´1
2 pβq is still a disk, Σ1 � pŤ

α Y Dq is a collection of disks attached to it,
therefore Σ �

`Ť
α Y Ť

φ´1
2 pβq˘

is a disk and we have enough elastic cords to prove that Σ is a
fibre surface.
To prove the converse, assume that Σ is a fibre surface. Of course, this also means, equiva-

lently, that every elastic cord spanned above it can be dragged to one below. Take the arcs of α,
push them up to elastic cords spanned above Σ1 and drag them to the other side of Σ. They
might pass over Σ2 as well, so use a retraction of B2 to D to get a (possibly nonembedded) cord
spanned below Σ1.
The arcs in β are pushed down with respect to Σ, or up with respect to Σ2, and treated

analogously. �
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8. Rendezvous with the mapping class
group

Max Dehn showed in the 1930s that the mapping class group of a surface is generated by the
set of all Dehn twists along simple closed curves ( [Deh38]). This paragraph will relate this fact
to tête-à-tête twists in two ways: Firstly by some considerations how a tête-à-tête twist can be
written as the product of Dehn twists, and secondly by showing that, vice-versa, the mapping
class group can itself be generated by certain tête-à-tête twists.

8.1. Bifoil and trefoil twists

The trefoil and bifoil twists depicted in Figure 4.4 on page 11 are the only tête-à-tête twists on
the torus. As elementary twists, their notation is TE3,3,1 and TE2,2,1, respectively. Both of these
twists have a simple presentation as a product of Dehn twists along two curves that generate
the homology of the torus. Those curves are drawn in Figure 8.1; on the left for the trefoil, on
the right for the bifoil twist; the graphs are omitted. One can verify the following statements
by studying the images of two crossing arcs, or any two nonseparating properly embedded
arcs.

Proposition 8.1.1. Let Tr “ TE3,3,1 and Bi “ TE2,2,1 be the trefoil and bifoil twist. Then

Tr “ tα t β “ tγ tα “ t β tγ (8.1)
and

Bi “ tα t β tα “ t β tα t β, (8.2)

for curves α and β as indicated in the left and right part of Figure 8.1, respectively, and γ “ tαpβq.
Note that the roles of α and β are symmetric for the bifoil twist, but not so for the trefoil

twist. In that case, when traversing the middle, vertical, band of the graph, α meets β coming
from the right. Also, the order of tα and t β does matter. When in doubt, its correctness can be
checked easily: For a crossing arc a that intersects α but not β, Tr paq “ tα t βpaq “ tαpaq.

8.2. Positivity and veer of tête-à-tête twists

On an oriented surface, Dehn twists come in two flavours: left and right, depending on
whether an arc which is transverse to the twisting curve is mapped to the left or to the right.
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8. Rendezvous with the mapping class group

β α α

β

Figure 8.1.: How the tre- and bifoil twist can be factorized into Dehn twists

rightleft

Figure 8.2.: The effects of a left (or negative) and a right (or positive) Dehn twist. The dotted
interval is mapped to the one going once around.
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8.2. Positivity and veer of tête-à-tête twists

Often one of the two possibilities is called positive and one negative, this choice is arbitrary
and usage varies, but in this text “positive” is chosen to mean “right”. It is interesting to
restrict oneself to only using positive (or only negative) Dehn twists and study Deℎn`pΣq,
the monoid generated by all positive Dehn twists. For example, Loi and Piergallini ( [LP01]),
and later Akbulut and Özbağcı ( [AÖ01]) proved the following theorem:

Theorem 8.2.1. If the monodromy of an open book can be factorized into a product of positive
Dehn twists, the open book is Stein-fillable.

This condition is fulfilled by bi- and trefoil twists, as we have seen. There are possible
strategies to factorize other twists into positive Dehn twists, but up to now, this remains
without a definite answer:

Question. Can every tête-à-tête twist be factorized as a product of positive Dehn twists?

On closed surfaces, every mapping class has this property. This is because there are so-called
positive relations, meaning products of positive Dehn twists about nonseparating curves which
are trivial in the mapping class group. Because they exist, and because all Dehn twists about
nonseparating curves are conjugate, a negative twist can be written as a product of positive
twists. As an example, choose standard homological generators α and β on the torus and check
that

ptα t βq6 “ id,

and therefore
t´1
α “ t βptα t βq5.

Indeed the twists tα and t β can be represented by the action of the matrices
`
1 1
0 1

˘
and

` 1 0´1 1
˘

on R2{Z2, from which the above relation follows.
Following Wajnryb ( [Waj06]), a positive relation on a surface with boundary is any way to

write a product of Dehn twists along boundary components as a product of positive Dehn
twists. Any tête-à-tête twist which can be factorized explicitly into positive Dehn twists
provides such a positive relation. There is a proposed list of all positive relations due to Ivan
Smith, but whether it is complete is still unknown.

A weaker property than positivity – right veer – that has been defined and studied by Honda,
Kazez, and Matić ( [HKM07]), can be proved easily:

Proposition 8.2.2. Tête-à-tête twists with nonnegative walk length are right-veering.
More generally, multi-speed tête-à-tête twists with nonnegative walk lengths are right-veering.

Begin right-veering means that every properly embedded arc is moved to the right. More
precisely: A properly embedded arc can be lifted to the universal cover of the surface. Looking
from one of its endpoints, it will divide the universal cover into two regions, the “left” and
the “right” one. Represent the lifted arc as well as its image geodesically, letting them share the
chosen endpoint on the boundary. If the map is right-veering, the image must be contained in
the closure of the region to the right.
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8. Rendezvous with the mapping class group

More generally, being right-veering with respect to one boundary component means that
every properly embedded arc with an endpoint on that boundary component is mapped to the
right when viewed from that endpoint.

Positive Dehn twists are right-veering. Furthermore, one can show that compositions of pos-
itive Dehn twists are right-veering as well, but also that there are right-veering diffeomorphisms
that are not in any way a product of positive Dehn twists.
In the same article, Honda, Kazez, and Matić consider the fractional Dehn twist coefficient.

For a diffeomorphism f P DiffpΣ, BΣq that is freely isotopic to a diffeomorphism g P DiffpΣq
of finite order, say gk “ idΣ, the fractional Dehn twist coefficient ci is the amount of rotation
of the ith boundary component in an isotopy that connects f to g . This is well-defined once
the mapping class of f induces a unique symmetry on the graph, which is true whenever Σ is
not a disk or an annulus. In the language of tête-à-tête twists, ci is equal to li{bi , where bi is
the length of the ith boundary component and li the respective walk length.
The proposition follows from Proposition 3.2 in [HKM07], which states that a diffeomor-

phism is right-veering with respect to the ith boundary component if and only if either ci ą 0
or else ci “ 0 and c j ě 0 for all other boundary components.

8.3. Generating the mapping class group

Dehn twists generate the mapping class group, and a Dehn twist is a simple example of a
tête-à-tête twist. Like the annulus on which a Dehn twist is defined, the ribbon graph of an
arbitrary tête-à-tête twist can be embedded into a closed surface and defines an element of
its mapping class group. In this section, we will look at the two next simplest examples of
tête-à-tête twists, the bifoil twist Tr and the trefoil twist Bi (see Section 8.1), and show that
they generate the mapping class group as well, if the genus is high enough.
In the case of Dehn twists, it is easy to see that there are relations in the mapping class

group that allow us to write twists along separating curves as compositions of twists along
nonseparating curves. Since for every pair of nonseparating curves there is a diffeomorphism
sending one to the other, all such twists are conjugate, and thus the mapping class group is
generated by a single conjugacy class of Dehn twists. The same is true for generation by bifoil
and trefoil twists, but for an even better reason: There is, up to diffeomorphism, only one way
to embed them into a surface.

Theorem 8.3.1. Let Σ be a closed surface of genus at least 3, let G be one of E2,2 or E3,3. Then
ModpΣq is generated by tête-à-tête twists along all embeddings of G. Moreover, all those twists are
conjugate.

Since, unlike Dehn twists, Tr and Bi act on the homology of Σ by finite order, we immedi-
ately get:

Corollary 8.3.2. The symplectic group Spp2n,Zq, n ě 3, is generated by a set of conjugate torsion
elements of order 4, and also by a set of conjugate torsion elements of order 6. �
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8.3. Generating the mapping class group

By calculating the action on homology, one finds that those elements are conjugate to¨
˚̊̊
˚̋

0 1
´1 0

1
. . .

1

˛
‹‹‹‹‚ and

¨
˚̊̊
˚̋

0 ´1
1 1

1
. . .

1

˛
‹‹‹‹‚,

respectively.
To prove the theorem, it is not sufficient to note that a power of these tête-à-tête twists is a

Dehn twist, because this twist happens along a separating curve. This could only be used to
show that they generate the Johnson kernel, the subgroup of ModpΣq generated by separating
twists, which is itself contained in the Torelli group, the subgroup acting trivially on homology.
We need the factorization of bifoil and trefoil twists into Dehn twists from Section 8.1. In

both cases, we have two curves α and β transversely intersecting in exactly one point,

Tr “ tα t β
and

Bi “ tα t β tα.

And both tête-à-tête graphs E2,2 and E3,3 live on a one-holed torus which deformation retracts
to the union α Y β. Moreover, every two choices of such a pair of curves are related by a
diffeomorphism of the whole surface; this follows directly from the classification of surfaces
when one cuts, one at a time, along the two curves. Uniqueness up to diffeomorphism proves
the statement that all bi- or trefoil twists in a surface are conjugate.
In what follows, “αXX β” means “α intersects/intersecting β transversely in one point”.

Proposition 8.3.3. Given simple closed curves α and β in a closed surface Σ, αXX β, there is a
an embedded graph G Ă Σ representing E3,3 such that TG,1 “ tα t β . Likewise, there is H Ă Σ
representing E2,2 such that TH ,1 “ tα t β tα.

Proof. This is actually already proved by the fact that there is just one choice of α and β
up to diffeomorphism, so if we embed E3,3 or E2,2 in any way we will only have erred by a
diffeomorphism.
More explicitly, E2,2 will of course just be embedded as α Y β with its natural structure as

a graph with one vertex α X β, and give us tα t β tα, which is the same as t β tα t β . There is no
choice involved here.

On the other hand, when we expand the single vertex of α Y β to two trivalent vertices, we
find E3,3. There are two ways to do this, corresponding to two different embeddings of E3,3
that give back either tα t β or t β tα. �

Proposition 8.3.4. Let α and γ be two disjoint nonseparating simple closed curves. Then tα t´1
γ

can be written as a product of bifoil twist as well as as a product of trefoil twists (and their inverses).
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8. Rendezvous with the mapping class group

Figure 8.3.: Finding embeddings of E3,3

Proof. The union αYγ either disconnects the surface into two pieces, or it is still nonseparating.
In either case, it is easy to see that there is a curve β such that αXX β and βXX γ.
For trefoil twists, we use`

tα t β
˘ `

tγ t β
˘´1 “ tα t β t´1

β t´1
γ “ tα t´1

γ

and notice that both factors on the left-hand side can be realized as trefoil twists.
For bifoil twists, we use a twist along the E2,2 tête-à-tête graph t´1

β pαq Y β, an inverse twist
along t´1

β pγq Y β, and calculate their product:

´
t β tt´1

β
pαqt β

¯ ´
t β tt´1

β
pγqt β

¯´1

“ t β tt´1
β

pαqt β t´1
β t´1

t´1
β

pγqt
´1
β

“
´
t β tt´1

β
pαqt

´1
β

¯´
t β t

´1
t´1
β

pγqt
´1
β

¯
“ tα t´1

γ .

�

The last equation uses an identity in mapping class groups which is obvious when stated in a
more general form: For any curve δ and any diffeomorphism ϕ,

ϕtδϕ
´1 “ tϕpδq.

We are now ready to finish the proof of Theorem 8.3.1. We will show how to write a Dehn
twist along a nonseparating curve as a product of bi- or trefoil twists. This part uses the lantern
relation, an important equation between a product of three Dehn twists one side and four on
the other that has been found by Dehn and later by Johnson ( [Joh79]). The “lantern” is the
four-holed sphere in Figure 8.4, and we have that

tρ tσ tτ “ tα t β tγ tδ .
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δ

γ
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β
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β

γ

δ

σ

ρ

τ

Figure 8.4.: Two views of the lantern relation

σ

δ

γ

α

β

τ

ρ

Figure 8.5.: A lantern in a surface of genus at least 3
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8. Rendezvous with the mapping class group

When the genus of our surface is at least 3, we can embed the lantern in such a way that all
curves involved are nonseparating. This is shown in Figure 8.5. The trick is to rewrite the
lantern relation in the following way:

tδ “ `
tρ t´1
α

˘`
tσ t

´1
β

˘`
tτ t´1
γ

˘
Together with the previous proposition, this demonstrates the theorem. �

8.3.1. Small genus

Neither bi- nor trefoil twists generate the mapping class group of the torus; and trefoil twists
do not generate the mapping class group of a surface of genus 2.
Would they generate, they would map to a single generator of the abelianization Modab

because they are all conjugate. But the same is true for Dehn twists along separating curves
since they also generate the mapping class group; call their image 1 P Modab . TE2,3 now gets
mapped to 2, TE2,2 to 3.
The abelianization of SLp2,Zq, the mapping class of the torus, is Z{12Z, which is not

generated by 2 nor by 3. For the surface of genus 2 it is Z{10Z, which is not generated by 2.

Trefoil twists in genus 2

There is a presentation for the mapping class group of genus 2, suggested by Bergau and
Mennicke ( [BM60]), proved to be correct by Birman and Hilden ( [BH71]). From it, can derive
the abelianization Z{10Z mentioned before and conclude: When we have a diffeomorphism of
the surface of genus 2, the abelianization allows us to count the number of Dehn twists along
nonseparating curves needed to write it, modulo 10. In particular, it allows for a nontrivial
homomorphism to Z{2Z, i. e. to count modulo two and distinguish between “even” and “odd”
diffeomorphisms.
It can be shown that trefoil twists in genus 2 generate the normal subgroup of even diffeo-

morphism. It is obvious that every product of trefoil twists is even. And the converse is also
true, as the following proposition shows.

Proposition 8.3.5. For any pair of nonseparating curves α and γ, tα tγ , t
´1
α t´1
γ , tα t

´1
γ , and t´1

α tγ
can be written as a product of trefoil twists.

We need a small lemma which is proved by techniques similar to the ones in Lickorish’s
proof that the mapping class group is generated by Dehn twists.

Lemma 8.3.6. For any pair of nonseparating curves α and γ, intersecting transversely, there is a
chain of curves α “ β0 XX β1 XX . . .XX βk´1 XX βk “ γ.
Proof. If αXX γ, we are done. If αXγ “ ∅, we choose a curve β with αXX βXX γ. Else, choose
one arc of γ between two intersection points with α. We have one of the two configurations
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γ

β1

α

α

γ

β2

α

α

β1
2

Figure 8.6.: Modifications between two crossings

pictured in Figure 8.6, depending on whether α passes twice from the same side or not. Modify
α as in the pictures.
In the first situation, we find β1 such that αXX β1 and 1 ď #β1 X γ ă #αX γ. Since αXX β1,
β1 is still nonseparating. Proceed by induction.
In the second situation, we find β2 with α X β2 “ ∅ and #β2 X γ ď #α X γ ´ 2. There is a

caveat: β2 may well be separating. But as shown in the picture, there is a second possible choice
β1
2, and rβ2s ` rβ1

2s “ rαs ‰ 0 P H1pΣq, so one of β2 and β1
2 is nonseparating. Assume it is

β2. Choose β1 such that αXX β1 XX β2. Proceed by induction. When at some point βk XX γ,
we are done; when βk´1 X γ “ ∅, we choose βk with βk´1 XX βk XX γ. �

Proof of the proposition. Choose such a chain for the two twist curves α and γ. tα t
´1
γ , and

analogously t´1
α tγ , are then a product of bifoil twists by induction and Proposition 8.3.4 from

above.
Choose some curve βXX γ. Then
`
tγ t β

˘2 `
t β tγ

˘´1

“ tγ
`
t β tγ t β

˘ `
t β tγ

˘´1

“ tγ
`
tγ t β tγ

˘ `
t β tγ

˘´1

“ t 2γ .

Therefore, we are also able to get tα tγ “ tα t´1
γ t 2γ and its inverse,

`
tα tγ

˘´1. �

Bifoil twists in genus 2

3 generates Z{10Z, so could bifoil twists also generate the mapping class group of a genus 2
surface?
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α ε

β

γ

δ

Figure 8.7.: Generators for the surface of genus 2

Indeed they do; we can write a Dehn twist along a nonseparating curve as a product of 21
bifoil twists or their inverses. We need a relation in the mapping class group of genus 2, to
be found for example in the survey article by Ivanov ( [Iva01, p. 568]). Set A “ tα, B “ t β ,
C “ tγ , D “ tδ , and E “ tε for the curves in picture 8.7. Then

pABC q4 “ E2.

As we have seen, products of the form CA´1, for example, are a product of a bifoil twist and
an inverse bifoil twist. Thus we can form`pCBC q´1pCA´1q˘4 “ pABC q´4 “ E´2,

using 4 bifoil twists and 8 inverses, and

pEA´1q`pAD´1qpDEDqpD´1Aq˘pA´1Eq “ pEA´1qpAEAqpA´1Eq “ E3,

using 5 bifoil twists and 4 inverses. Hence we can form E , a twist along a nonseparating curve,
and thus produce the entire mapping class group.

8.4. Roots of tête-à-tête and Dehn twists

A diffeomorphism ρ is called a root of a diffeomorphism φ if φ is a nontrivial power of ρ.

8.4.1. Which tête-à-tête twists have roots?

Some tête-à-tête twists are obviously powers of others, namely when the walk length is
not minimal: TG,kl “ T k

G,l . In general, when a tête-à-tête twist TG,l is a power of another
diffeomorphism ρ, ρ is again (freely) of finite order, hence we know from Chapter 5 that ρ
is again a tête-à-tête twist, say ρ “ TG1,l 1 and TG,l “ TG1,kl 1 “ ρk . G and G 1 are spines for the
same surface.

74



8.4. Roots of tête-à-tête and Dehn twists

The graphs G and G 1 need not be equal, unfortunately. For instance, G 1 can have more
symmetries than G, and could be obtained from G by the collapse of an edge orbit that consist
of contractible components (see Section 4.2.2). It is also possible that G has more symmetries,
e. g. when TG,l is a composition of Dehn twists around boundary components, in which case it
can be a bouquet of circles. Even if the answer to the question on page 16 is “yes”, one would
therefore have to introduce as well as remove contractible edge orbits in order to see whether a
tête-à-tête twist (or any periodic map) has a root.
We see interesting examples when we look at powers of elementary twists. They are

best studied as chord diagrams, remembering that chords correspond to edges and internal
boundaries to vertices. It is often possible to collapse an edge orbit and find roots of powers.
Recall also that collapsing an edge means removing a chord; see Section 4.2.1. As an example, the
periodic map E3

12,7 (short for T
3

E12,7,2
) on the surface of genus 3 with one boundary component

is the same as E2
8,5, and hence has a square root. Or consider the fourth power E4

12,7 – it is equal
to E3

9,5, and hence has a cube root.

8.4.2. Monodromies have no roots

A monodromy of a fibred knot or link can never be a nontrivial power. “Monodromy”
must be understood in the sense of Section 6.1, as a class of diffeomorphisms that fix the
boundary, modulo isotopies that fix the boundary; see also Example 8.4.1 on the following
page. The statement follows from the answer to a question asked by Paul A. Smith in the 40’s
of the last century when he could prove that the fixed point set of a nontrivial finite-order
orientation-preserving homeomorphism of the 3-sphere can either be empty or be a circle.
Smith then asked whether such a circle could be knotted; the answer turns out to be “no” for
diffeomorphisms:

Smith Conjecture. Let φ be a nontrivial finite-order orientation-preserving diffeomorphism of
S3 that has fixed points. Then the fixed point set of φ is an unknot.

The proof of this result was built upon the work of many mathematicians and was finally
assembled by Cameron Gordon. Those efforts are described in a book ( [MB84]).
We can conclude from the Smith conjecture:

Corollary 8.4.1. A nontrivial power of a nontrivial mapping class is never the monodromy of a
fibred link.

Proof. Assume that φ “ ρn is the monodromy of a fibred link with fibre surface Σ. The
open book Mφ “ Mρk – S3 can be constructed from n copies of Σ ˆ r0, 1s, labelled as
Σˆr0, 1sˆZ{nZ, by identifying pp, 1, kq with pρppq, 0, k`1q for 0 ď k ď n´1 and collapsing
the boundary. Define a diffeomorphism f : S3 Ñ S3 by f : pp, t, kq ÞÑ pp, t, k ` 1q. f is
well-defined since it respects the gluings. If k ą 1, its fixed point set is precisely BΣ, so by
Smith’s result BΣ is connected. And f n “ idS3 , so the Smith conjecture implies that BΣ is an
unknot. �
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Remark. The Smith conjecture in fact implies, as shown by Smith himself, that such a diffeo-
morphism is conjugate via diffeomorphism to an action of SOp4q, where S3 is considered as
the unit sphere in R4. This looks like a direct analogue to Kerékjártó’s lemma on page 30,
which is also true for the sphere S2. But the Smith conjecture is not true for homeomorphisms:
Montgomery and Zippin, based on constructions by Bing, gave examples of homeomorphisms
of the 3-sphere whose fixed-point set is a wild knot (see [MZ54]).

The following example, suggested by Michel Boileau, shows that monodromies can be
nontrivial powers when we consider diffeomorphisms that can move the boundary, modulo
isotopies that can move the boundary. To keep the naming conventions consistent, this
mapping class is called the free monodromy in the example. Two remarks should be made first:

Remark. Unlike for links (see Section 6.3.1), the free monodromy of a nontrivial knot is always
nontrivial. If it were trivial, the monodromy would be freely periodic (with order one), hence
the knot would need to be a torus knot (see Theorem 6.3.3). But the free monodromy of
(nontrivial) torus knots is also nontrivial, as we can see from the description by complete
bipartite graphs.

Remark. A knot K in S3 is fibred if and only if its complement is fibred, that is, if there is a
fibration π : S3 � K Ñ S1. This is, for example, true because of Stalling’s fibration criterion.
Moreover, two fibrations of a knot complement are isotopic, therefore π indeed extends to a
fibration for K , i. e. the fibres of π are Seifert surfaces for K .

Example 8.4.1. The pretzel knot K “ P p´2, 3, 7q is a famous example of a knot with lens
space surgery: Both 18- and 19-surgery on K produce lens spaces, namely Lp18, 5q and Lp19, 8q,
respectively, as shown by Fintushel and Stern in [FS80].

When we do surgery on K , say 18-surgery, we get an induced knot K 1 in the new manifold,
namely the soul of the surgered solid torus. A meridian of K will induce a generator of
the fundamental group of the lens space, which is a cyclic group of order 18. An 18-fold
(unbranched) cover of this lens space is the 3-sphere, and it contains a new knot K 2 which
is the preimage of K 1 under the cover. The exterior of K 2 is the mapping torus of the 18th
power of K ’s (free) monodromy. Hence it is also fibred, and K 2 is a fibred knot whose free
monodromy is an 18th power.

8.4.3. Dehn twists have roots

This is the title of a 2-page paper by Margalit and Schleimer ( [MS09]), where they prove that
every Dehn twist along a nonseparating simple closed curve on a closed, connected, orientable
surface of genus at least two has a nontrivial root. As they note, it easy to find a square root
of a Dehn twist along a separating curve: The curve cuts the surface into two halves; one can
put the surface into a standard position where one half is on the left and one on the right and
then twist the left half by 180 degrees. We have seen that tête-à-tête twist with one boundary
component give rise to many more roots of separating Dehn twists.
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8.4. Roots of tête-à-tête and Dehn twists

The case of nonseparating curves is less obvious. Note first, as mentioned by Margalit
and Schleimer, that Dehn twists on the torus have no roots; this comes from the fact that
the mapping class group of the torus is SLp2,Zq and the matrix

`
1 1
0 1

˘
, which represents a

Dehn twist in an appropriate basis, has no roots. Indeed it has trace 2 and therefore, in the
classification of matrices of SLp2,Rq, is parabolic. That is to say, its action on the upper half
plane has a unique fixed point on the boundary, which in this case is the point 8, and the same
must be true for every root of the matrix. Since the matrices in SLp2,Rq which fix 8 are all of
the form

`
1 x
0 1

˘
for x P R, the claim follows.

For higher genus, however, we can always find roots, and we can use tête-à-tête twists to do
so. A Dehn twist tα is obviously reducible with reduction system α, and the following lemma
shows that the same is true for any root of tα:

Lemma 8.4.2. Let α be an isotopy class of a simple closed curve on a closed, connected, orientable
surface. Let ρ be a mapping class such that ρk “ tα for some k. Then ρpαq “ α.
Proof. tα “ ρk “ ρ ˝ ρk ˝ ρ´1 “ ρ ˝ tα ˝ ρ´1 “ tρpαq, thus ρpαq “ α. �

We can therefore cut the surface along α and examine the root as a diffeomorphism defined
on a surface with two boundary components.

Question. How can one show, directly, that a root will not exchange the two sides of α, and
that therefore the induced diffeomorphism of the cut surface preserves the two boundary
components setwise?

In that case, by definition, this induced diffeomorphism is freely of finite order; hence it is
described by a multi-speed tête-à-tête twist with two boundary components, as seen in Chapter
5. Note that, by Corollary 5.1.7, we can choose the tête-à-tête graph to have an embedded circle
around one of the boundary components, which simplifies the set of graphs to consider. This
makes it possible to use a chord diagram of the graph along the second boundary component,
together with instructions on how to glue it to the circle around the first one.

Some power T k of the tête-à-tête twist Twill consist of a composition of Dehn twists around
the two boundary components. We cannot choose one walk length to be zero because this
would imply that we must choose the walk length for the other boundary component so as
to induce a power of a Dehn twist; thus we would not get a nontrivial root. Moreover, we
must choose different signs for the two walk lengths, such that T k consists of positive as well
as negative Dehn twists that add up to a single one on the original surface.

Modulo the question, tête-à-tête twists should allow for a complete description of all possible
roots of Dehn twists along nonseparating curves. For example, those roots are subject to the
conditions on the bounds for periodic maps given in Chapter 5. Note that different embeddings
of the same tête-à-tête graph into the same (cut) surface, of which there are usually many, lead
to different, but conjugate roots. They are related by some map ψ on the closed surface such
that ψpαq “ α, and when ρk “ tα, then pψρψ´1qk “ tα.
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8. Rendezvous with the mapping class group

l2 “ 2l1 “ ´1

Figure 8.8.: A fifth root on a surface of genus 3

Example 8.4.2. Figure 8.8 describes a fifth root of a Dehn twist along a nonseparating curve
on a closed surface of genus 3. The walk lengths are l1 “ ´1 and l2 “ 2. The graphG describes
a surface of genus 2 with two boundary components α1 and α2, both of length 5, which we
identify to get the nonseparating curve α for the Dehn twist. With the chosen walk lengths,
T 5
G,´1,2 “ t´1

α1 t
2
α2 “ tα.

This example has been found by a chord diagram with two circles; however, the symmetry
is less obvious from the drawing than in the single-boundary case.

Example 8.4.3. Figure 8.9 describes a third root of a Dehn twist along a nonseparating curve
on a closed surface of genus 2. The walk lengths are l1 “ 2 and l2 “ ´3. The graphG describes
a surface of genus 1 with two boundary components α1 and α2, one of length 3, the other of
length 9, which we identify like before to get the nonseparating curve α for the Dehn twist.
With the chosen walk lengths, T 3

G,2,´3 “ t 2α1 t
´1
α2 “ tα.

This example corresponds to one constructed by Margalit and Schleimer: Take the square of
the monodromy of the trefoil. This map leaves the two trivalent vertices invariant, so we can
blow them up to a circle. When we cap off the third (original) boundary component, we get
an embedded graph on a two-holed torus. Using the collapse from Chapter 5 (see Figure 5.3),
we can get rid of the enclosed disk and get the tête-à-tête twist from the picture.
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8.4. Roots of tête-à-tête and Dehn twists

l1 “ 2l2 “ ´3

Figure 8.9.: A third root on a surface of genus 2, to the left with blackboard framing, to the
right, more symmetrically, as a ribbon graph
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9. The computer program “t.a.t.”

The computer program “t.a.t” allows for some experiments and calculations with tête-à-tête
twists. It has been written in the programming language Java and is best run from within an
integrated development environment (IDE) like the free application “Eclipse”, where the code
for the experiments can be easily modified and run.

9.1. Features

The main purpose of the program is to take a chord diagram and a compatible walk length,
display the diagram graphically and write down a presentation of the fundamental group of the
corresponding open book as a string that can be given to the computer algebra system GAP.
Since it relies on chord diagrams, only tête-à-tête graphs with one boundary component can be
studied.
The class TaTTest contains the main(. . . ) method which is executed. It also provides

some documented sample use cases, mostly for specific twists, which can be called from
main(. . . ). TaTTest provides some additional methods, like counting all elementary
tête-à-tête twists of a given order and a given genus, or finding the unique elementary twist of
order 3g or 3g ` 3, respectively (verifying Lemma 4.3.2).

ChordDiagram is the class which represents a chord diagram. It provides methods to
calculate the genus of the tête-à-tête graph, a list of vertices, a possible isomorphism with
another chord diagram, and its rotational symmetry and thus the minimal walk length for the
graph.
Chord diagrams are constructed by the ChordDiagramFactory. This factory class pro-

vides additional methods to create random chord diagrams, random diagrams with a given
symmetry, elementary chord diagrams, and chord diagrams for torus knot monodromies.

Some simple mathematical methods are contained in the MoreMath class, among others one
to generate a list of pairs of coprime integers, if one is interested in torus knot monodromies.
Finally, tête-à-tête twists are described by a chord diagram together with a walk length,

which is encapsulated by the ChordTaTTwist class, and objects of this class can be asked for
a presentation of the fundamental group of their corresponding open book.
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A. Java code extracts

This appendix contains the Java code which writes down a presentation of the fundamental
group of the open book that corresponds to a tête-à-tête twist, as described in Section 6.4.2.
The following code in the class ChordTaTTwist calculates the generators. The method
getOpposite(. . . ) that is used here is called with a number that denotes an endpoint of
a chord in a chord diagram; it returns the opposite endpoint of the chord. getSize() returns
the number of chords.

/**
* C a l c u l a t e s t h e g e n e r a t o r s o f t h e fundamenta l g roup .
*
* @param inGenL i s t
* t h e l i s t o f g e n e r a t o r s
*/

pr i v a t e void f i l l G e n e r a t o r s ( L i s t<S t r i n g> inGenLi s t ) {
// add a g e n e r a t o r f o r e a c h c ho rd
for ( i n t i = 0 ; i < 2 * diagram . g e t S i z e ( ) ; i++) {

i f ( d iagram . ge tOppos i t e ( i ) > i ) {
// add a g e n e r a t o r o f t h e form " g0 " , " g27 "
// or t h e l i k e , l a b e l l e d by t h e f i r s t
// end p o i n t o f t h e c h o rd
inGenLi s t . add (GEN_PREFIX + i ) ;

}
}

// add a g e n e r a t o r f o r " g o i n g onc e around t h e c i r c l e "
inGenLi s t . add (GEN_OMEGA) ;

}

A method in the same class writes down the relations that come from the interior boundaries
of the chord diagram, or the vertices of the graph:

/**
* C a l c u l a t e s t h e r e l a t i o n s coming from t h e
* i n t e r i o r b o un d a r i e s o f t h e c h o rd diagram .
*
* @param i nR e l L i s t
* t h e l i s t o f r e l a t i o n s
*/

pr i v a t e void f i l l B o un d a r yR e l a t i o n s ( L i s t<S t r i n g> i nR e l L i s t ) {
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A. Java code extracts

// i t e r a t e ov e r t h e l i s t o f b o un d a r i e s
for ( L i s t<In t e g e r> aBoundary : d iagram . g e tBounda r i e s ( ) ) {

S t r i n g B u f f e r aRe l a t i on = new S t r i n g B u f f e r ( ) ;
boolean isEmpty = true ;
// i t e r a t e ov e r c h o r d s in t h e boundary component
for ( I t e r a t o r<In t e g e r> a n I t e r a t o r = aBoundary . i t e r a t o r ( ) ;

ãÑ a n I t e r a t o r . hasNext ( ) ; ) {
i n t aChordEnd = a n I t e r a t o r . next ( ) . i n tVa l u e ( ) ;
i n t aChordS ta r t = diagram . ge tOppos i t e ( aChordEnd ) ;
// append a m u l t i p l i c a t i o n s i g n i f n e c e s s a r y
i f ( ! isEmpty ) {

aRe l a t i on . append ( " * " ) ;
}
// append t h e name o f t h e c h o rd or i t s i n v e r s e
i f ( aChordS ta r t < aChordEnd ) {

aRe l a t i on . append (GEN_PREFIX) ;
aRe l a t i on . append ( aChordS ta r t ) ;

} e l s e {
aRe l a t i on . append (GEN_PREFIX) ;
aRe l a t i on . append ( aChordEnd ) ;
aR e l a t i on . append ( "^´1" ) ;

}
// i f we ’ r e a t t h e l a s t chord ,
// append t h e g e n e r a t o r omega
i f ( aChordEnd == diagram . g e t S i z e ( ) * 2 ´ 1 ) {

aRe l a t i on . append ( " * " ) ;
aR e l a t i on . append (GEN_OMEGA) ;

}
isEmpty = f a l s e ;

}
// add t h e new r e l a t i o n t o our l i s t
i nR e l L i s t . add ( aRe l a t i on . t o S t r i n g ( ) ) ;

}
}

Finally, the relations coming from the twist itself, or the gluing map of the open book, are
listed. The function pmod(. . . ), called with two integers x and m, m positive, returns the
number pmodpx,mq ” x pmod mq, represented by an integer between 0 and m ´ 1.
/**
* C a l c u l a t e s t h e r e l a t i o n s coming from t h e mapping o f
* c h o r d s t o one an o t h e r .
*
* @param aR e l L i s t
* t h e l i s t o f r e l a t i o n s
*/

pr i v a t e void f i l lM a pp i n gR e l a t i o n s ( L i s t<S t r i n g> aRe l L i s t ) {
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// t h e modulus i s t h e number o f e n d p o i n t s on t h e
// cho rd diagram , which i s t w i c e t h e number o f c h o r d s
i n t aMod = 2 * diagram . g e t S i z e ( ) ;
for ( i n t i = 0 ; i < 2 * diagram . g e t S i z e ( ) ; i++) {

// Le t n be t h e number o f c h o r d s , l t h e walk l e n g t h .
// The c ho rd c _ i from i t o j ( i<j ) i s mapped t o
// c_ ( i+l ) , which g o e s from i+l t o j+l .
// The i n d i c e s a r e modulo aMod , bu t we have t o k e e p
// t r a c k o f how many t im e s we made a c omp l e t e tu rn .
// Al so , c h o r d s a r e l a b e l l e d by t h e i r l owe r
// endpo in t , s o we may have t o c h ang e t h e l a b e l
// a c c o r d i n g l y and u s e i n v e r s e s .
i n t j = diagram . ge tOppos i t e ( i ) ;
// t r e a t e a c h c ho rd on l y on c e
i f ( i > j ) {

continue ;
}
// where i and j a r e mapped t o
i n t aNewI = pmod ( ( i + walkLength ) , aMod ) ;
i n t aNewJ = pmod ( ( j + walkLength ) , aMod ) ;
// how many t im e s i and j a r e t u rn ed p a s t t h e
// b a s e p o i n t . Note : t h i s i s i n t e g r a l d i v i s i o n .
i n t aRotI = ( i + walkLength ) / aMod ;
i n t aRotJ = ( j + walkLength ) / aMod ;
// where t h e c h o rd i s mapped t o
S t r i n g aNewChord = GEN_PREFIX + ( aNewI < aNewJ ? aNewI : aNewJ

ãÑ + "^´1" ) ;
// t h e new r e l a t i o n
S t r i n g B u f f e r aRe l a t i on = new S t r i n g B u f f e r ( ) ;
// w r i t e omega , or omega t o some power , or no t h i n g
i f ( aRotI >= 2 ) {

aRe l a t i on . append (GEN_OMEGA) ;
aRe l a t i on . append ( " ^ " ) ;
aR e l a t i on . append ( aRotI ) ;
aR e l a t i on . append ( " * " ) ;

} e l s e i f ( aRotI == 1 ) {
aRe l a t i on . append (GEN_OMEGA) ;
aRe l a t i on . append ( " * " ) ;

}
// w r i t e t h e c h o rd
aRe l a t i on . append ( aNewChord ) ;
// w r i t e t h e i n v e r s e o f omega t o some power ,
// or no t h i n g
i f ( aRotJ >= 1 ) {

aRe l a t i on . append ( " * " ) ;
aR e l a t i on . append (GEN_OMEGA) ;
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A. Java code extracts

aRe l a t i on . append ( "^´" ) ;
aR e l a t i on . append ( aRotJ ) ;

}
// a l l o f t h i s i s t h e image o f t h e o r i g i n a l c h o rd
// c_ i , s o we add t h e i n v e r s e o f c _ i t o c omp l e t e t h e
// r e l a t i o n
aRe l a t i on . append ( " * " ) ;
aR e l a t i on . append (GEN_PREFIX) ;
aR e l a t i on . append ( i ) ;
aR e l a t i on . append ( "^´1" ) ;
// s t o r e t h e new r e l a t i o n
aR e l L i s t . add ( aRe l a t i on . t o S t r i n g ( ) ) ;

}
}
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Glossary of symbols

» isotopic

– isomorphic, homeomorphic, or diffeomorphic

XX intersecting transversely in one point

BG (when G is a tête-à-tête graph) boundary of the surface that deformation
retracts to G

Bi bifoil twist: TE2,2,1

En,a elementary tête-à-tête graph belonging to a chord diagram with n chords of
length a (see Section 4.3)

MpΣ,φq or Mφ open book built from the mapping class or diffeomorphism φ of the surface
Σ (see Section 6.1)

ModpΣq mapping class group of the (compact oriented) surface Σ, fixing its boundary
pointwise

Mod1pΣq mapping class group of the (compact oriented) surface Σ, fixing its boundary
components setwise; often encountered as the pure mapping class group of a
surface with punctures

ordpφq the order of the mapping class φ

Tr trefoil twist: TE3,3,1

tα Dehn twist along the curve α

TG tête-à-tête twist along the graph G
TG,l tête-à-tête twist along the graph G with walk length l
TG,l1,...,lb multi-speed tête-à-tête twist along the graph G with walk lengths l1 to lb
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