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1 Summary 
 

 

Group 3 innate lymphoid cells (ILC3s) play decisive roles in mammalian physiology 

including lymphoid tissue development, tissue repair and immune regulation. So far, 

the functions of ILC3s in the adult immune system have been mainly linked to their 

capacity to release cytokines in response to microbial or inflammatory signals. It 

could be demonstrated that ILC3s are indispensable for protective immunity against 

the mouse intestinal pathogen Citrobacter rodentium by the early production of IL-22 

in response to IL-23 secreted mainly by dendritic cells (DCs) upon microbial 

exposure. However, whether ILC3s are able to directly sense and respond to the 

presence of pathogens thereby contributing to innate immunity is not yet known. 

Furthermore, whether these cells are capable to interact with cells of the adaptive 

immune system to meaningfully regulate adaptive immune responses has to be 

explored.  

In the present study, I could show that ILC3s directly responded to microbial products 

such as the Toll-like receptor (TLR) ligands CpG and Poly I:C in vitro. They up-

regulated the surface expression of the early activation marker CD69 and secreted 

IL-22, a cytokine known for its protective immune function in the mucosa. 

Additionally, I could demonstrate that in vivo challenge with TLR ligands CpG and 

LPS was able to induce ILC3 activation in vivo. Furthermore, ILC3s produced high 

amounts of IL-17 and IL-22 upon exposure to the pro-inflammatory cytokine IL-1β. IL-

1β emerged as a strong activator of ILC3s as its presence induced the production of 

a broad range of cytokines by ILC3s. Altogether, the response of ILC3s varied 

depending on the nature of innate stimuli. 

In addition, I could demonstrate that upon IL-1β exposure, peripheral ILC3s up-

regulated the expression of surface major histocompatibility complex class II (MHC 

II) molecules and expressed co-stimulatory molecules reminiscent of an antigen-

presenting cell-like phenotype. Further, I found that ILC3s could take up latex beads, 

process protein antigen (Ag) and consequently prime CD4+ T cell responses in vitro. 

The cognate interaction of ILC3s and CD4+ T cells led to T cell proliferation both in 

vitro and in vivo. By using a mouse model with MHC II deficiency exclusively in ILC3s 

I could demonstrate that the disruption of Ag-dependent interaction of ILC3s and 

CD4+ T cells impaired specific T cell and T-dependent B cell responses in vivo. In 

addition, I found that IL-1β-activated peripheral ILC3s were more efficient than non-

activated ILC3s in the induction of CD4+ T cell responses. ILC3-CD4+ T cell 
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interactions turned out to be bidirectional and led to the activation of ILC3s. The 

activating feedback loop of CD4+ T cells to ILC3s was most likely mediated by 

soluble factors produced by CD4+ T cells upon Ag encounter. Taken together, my 

data reveal an activation-dependent function of peripheral ILC3s in eliciting cognate 

CD4+ T cell immune responses, ascribing to them a novel function in adaptive 

immunity.  

Finally, I found that small intestinal ILC3s and peripheral ILC3s differed from each 

other in regard to their phenotype, responsiveness to IL-1β and immune function. In 

contrast to peripheral ILC3s, small intestinal ILC3s expressed high levels of CD69 on 

their surface suggesting an activated phenotype. I could show that CD69 expression 

was independent of TLR- and IL-1R signaling, the presence of T and B cells, or the 

microbiota as well as the availability of IL-23. In addition, small intestinal ILC3s were 

not able to increase the expression of MHC II molecules and to express co-

stimulatory molecules upon IL-1β exposure. Although they were able to take up latex 

beads and to process exogenous Ag, they were far less efficient in CD4+ T cell 

activation than peripheral ILC3s. However, they were capable to produce high 

amounts of IL-22 in response to IL-1β stimulation. Taken together, these data 

suggest that the immune functions of ILC3s are tissue specific and might be 

regulated by environmental factors and/or interactions with tissue-specific cells. 
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2 Introduction 
 

2.1 Innate and adaptive immunity 
	
  

Humans are daily exposed to a variety of bacteria, viruses, fungi and parasites. Our 

body has to be protected from all these infectious agents by the highly organized and 

regulated work of our immune system. To fulfill this difficult task, the immune system 

has established two different branches, first, the innate immunity and second, the 

adaptive immunity. The perfect interplay of both of these parts is required to get rid of 

invading pathogens and to clear ongoing infections.  

The innate immunity serves as a first line of defense. It is composed of soluble 

factors (e.g. complement system) and cells that express so-called pattern recognition 

receptors (PRRs). These germ-line encoded invariant PRRs are able to recognize 

molecules and regular patterns that are characteristic components of pathogenic 

microorganisms, known as pathogen associated molecular patterns (PAMPs). 

PAMPs are present in many microorganisms but not in the body`s own cells 

providing already an initial discrimination between self and non-self.   

The prototypes of PRRs are so-called Toll-like receptors (TLRs; see chapter 2.3.1 

TLR ligands induce early immune responses). The innate immune system mainly 

contains phagocytic cells like macrophages (MΦ) and neutrophils able to engulf 

pathogens, to digest and destroy them in intracellular vesicles by the production of 

degradative enzymes and antimicrobial substances. Natural killer (NK) cells are an 

additional tool of the innate branch of the immune system. These cells are able to 

recognize molecules on virus-infected and malignantly-transformed cells via germ-

line encoded receptors in order to kill these target cells. Upon recognition of the 

target cell, NK cells release cytotoxic granzymes and the pore forming protein 

perforin from their cytoplasmic granules penetrating the cell membrane of the target 

cell and inducing programmed-cell death (see chapter 2.2.1 Group 1 ILCs). In 

response to an infectious agent, innate immune cells produce a variety of cytokines 

and chemokines inducing a process known as inflammation. The induction of an 

inflammation can be beneficial, as released cytokines and chemokines attract 

additional effector molecules and immune cells from the blood to the site of infection.  

The response of the innate branch of the immune system is extremely fast (within 

hours) and immediately induced after the recognition of an infectious agent. 

However, innate defenses are not highly specific and cannot lead to immunological 

memory, a hallmark of the adaptive immunity. 



	
   8 

In contrast to innate immune cells, cells of the adaptive immune system are able to 

recognize pathogens with high specificity by the expression of antigen (Ag)-specific 

receptors. Thereby, adaptive immune cells can eliminate those pathogens, which 

managed to overcome innate immunity. Furthermore, a unique feature of the 

adaptive immunity is the generation of immunological memory providing faster and 

enhanced protection against re-infections. The key components of the adaptive 

branch of the immune system are B and T lymphocytes, which develop in the primary 

lymphoid organs bone marrow (BM) and thymus, respectively. B cells recognize 

native Ags from the extracellular environment and consequently secrete antibodies 

(Abs) promoting the killing of extracellular pathogens (humoral immune response) 

while T cells are specialized to kill target cells infected with intracellular pathogens or 

viruses (cytotoxic T cells) and to support the humoral immune response (T helper 

(Th) cells). T cells only recognize Ag-derived peptides, which are presented to them 

in context of the major histocompatibility complex (MHC) expressed by Ag-presenting 

cells (APCs; see chapter 2.4.1 Processing and presentation of Ag to CD4+ T cells). 

Each lymphocyte of the adaptive immune system bears a unique variant of a 

receptor on its surface, which is generated by random recombination of variable 

receptor gene segments and the pairing of distinct variable chains. Thus, the whole 

population of lymphocytes expresses an enormous repertoire of different receptors 

with highly diverse Ag recognition sites allowing the specific recognition of a wide 

variety of different pathogens. Clonal selection and subsequent expansion of the 

lymphocyte carrying the specific Ag-receptor for the invading pathogen is required for 

complete elimination of the pathogen. Hence, the adaptive immunity is characterized 

by its high specificity but requires some time (up to days) to become fully 

established. Further, adaptive immunity is able to generate immunological memory.1,2 

 

2.2 The family of innate lymphoid cells  
 

Innate lymphoid cells (ILCs) are the most recently identified constituents of the innate 

immune system and represent a novel family of hematopoietic effector cells. In 

recent years, the family of ILCs has continuously grown and several different cell 

types with unique effector functions are identified. Previously, it was believed that 

innate lymphocytes are represented by a single lymphoid lineage, the natural killer 

(NK) cells. Nowadays, several different innate lymphocytes are described and 

referred in general to as innate lymphoid cells (ILCs).  
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All members of the ILC family are characterized by a classical lymphoid morphology 

and the lack of recombination activating gene (Rag)-dependent rearranged Ag 

receptors. In addition, all of them lack the expression of cell surface molecules that 

identify other immune cells and are therefore characterized as cell lineage marker 

negative (lin-) cells.3 Furthermore, all ILCs depend on the expression of the common 

cytokine receptor γ chain (γc chain) and the transcriptional repressor inhibitor of DNA 

binding 2 (Id2) for their development.3, 4 The different members of the ILC family are 

found to play crucial roles in the development of lymphoid tissues, tissue repair and 

wound healing after injury. They have been reported to regulate commensal bacterial 

communities, to promote inflammation, to contribute to the resistance to helminthes 

and bacterial pathogens and to be important for maintenance of organ homeostasis. 

Extensive research in the past few years has led to the discovery of an 

unprecedented complexity in the innate lymphocyte lineages collectively referred as 

ILCs. Therefore, three broad categories of ILCs have been defined based on the 

expression of different transcription factors and the distinct pattern of effector 

molecules these cells secrete; i) group 1 ILCs, ii) group 2 ILCs and iii) group 3 ILCs 

(Fig. 1).3  

Group 1 ILCs are composed of conventional NK cells and a second subset named 

ILC1s. Cells within the group 1 ILCs are characterized by their dependency on the T-

box transcription factor T-bet and the production of interferon (IFN)-γ, thereby 

resembling T helper type 1 (Th1) cells. Group 2 ILCs produce Th2 related cytokines 

such as interleukin (IL)-4, IL-5, and IL-13 and are involved in anti-helminth immunity 

and the development of allergic diseases such as asthma. So far, within the group 2 

ILCs only one cell type, the ILC2, is described. The development of ILC2s depends 

on the transcription factors retinoic acid related orphan receptor (ROR)-α and Gata3. 

Group 3 ILCs are identified as the producer of Th17-related cytokines IL-17A, IL17F 

and IL-22. All subsets within this group depend on the transcription factor RORγt. 

The group 3 ILCs are composed of the classical lymphoid tissue inducer cells (LTi 

cells) responsible for lymphoid organogenesis during embryogenesis and in 

neonates and two other populations with a similar phenotype discovered in adults. 

Adult ILC3s either express the natural cytotoxicity receptor (NCR) NKp46 or are 

negative for this molecule. NCR+ILC3s lack the expression of CD4 whereas within 

the NCR-ILC3s a CD4+ and CD4- subpopulation exists. NCR+ILC3s mainly produce 

IL-22 and contribute to immunity against intestinal bacteria. NCR-ILC3s lacking the 

expression of NKp46 are able to secrete IL-17 and IL-22, and under certain 

conditions also IFNγ.  
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Since, the transcriptional and effector program of the various ILC populations 

resembles those of T helper (Th) cells, ILCs are believed to be the innate 

counterparts of the adaptive Th cells. 

  

	
  
Figure 1:	
   Family of innate lymphoid cells. Simplified illustration of the members of the 
innate lymphoid cell family, their developmental requirements and cytokine production 
profiles. AhR: aryl hydrocarbon receptor; ROR: retinoic acid related orphan receptor; SCF: 
stem cell factor; TCF-1:  T cell factor 1; TSLP: thymic stromal lymphopoietin. Adapted from 
Spits et al., Nature Review (2013)3 and Artis et al., Nature (2015).5 

 

 Group 1 ILCs 2.2.1
 

Natural killer cells 

The first described subset of group 1 ILCs are NK cells. NK cells have been first 

identified in 1975 as innate effector lymphocytes exhibiting cytotoxic activity against 

tumor cells.6, 7 Later, NK cells have been found to be important during viral 

infections.8 Mature NK cells can be found in different tissues such as spleen, lymph 

nodes (LNs), liver, lung, skin and blood. They express several different germline 

encoded activating receptors such as NKp46 (also known as NCR1, natural 

cytotoxicity triggering receptor 1) and NK1.1 as well as inhibitory receptors (e.g. 

Ly49) on their surface. The cytotoxicity of NK cells is regulated by the net signaling of 

these activating and inhibitory receptors9 and the cytotoxic activity of NK cells is 

exhibited via a variety of effector molecules such as perforin, granzymes, Fas ligand 
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(FasL) and TNF-related apoptosis inducing ligand (TRAIL) inducing apoptosis.10, 11 

Hence NK cells are crucial for the defense against viral infections and tumors and the 

amplification of inflammatory responses through the induction of TNFα and high 

levels of IFNγ production. 

Conventional NK cells differentiate from the common lymphoid progenitor (CLP) in 

the BM and their development requires the transcription factor E4BP4 (also known 

as NFIL3, nuclear factor IL-3)12, 13 and the cytokine IL-15.14, 15, 16 NK cells co-express 

the T-box transcription factors eomesodermin (Eomes) and T-bet, which cooperate in 

the regulation of the development, maturation and function of NK cells.17 Although 

NK cells are the only cytotoxic innate lymphocytes of the ILC family, these cells are 

classified within the group 1 ILCs based on the expression of T-bet and the 

production of IFNγ.  

 

ILC1s 

So far, ILC1s within the group 1 ILCs are not well defined and characterized. To 

date, under the term ILC1 several different cell types are described. ILC1s are 

currently believed to be either intraepithelial ILC1s18 or so called “ex-RORγt+” 

ILC3s.19, 20, 21 Very recently, another distinct ILC1 cell type has been discovered in 

the small intestine.22  

Intraepithelial ILC1s are first discovered in human tonsils and small intestine as cells 

expressing transcription factors Eomes and T-bet, and NK cell surface molecule 

NKp44 whereas they lack expression of the transcription factors RORγt and aryl 

hydrocarbon receptor (AhR), which both are crucial for ILC3 development.18 In 

addition, intraepithelial ILC1s express intraepithelial lymphocyte markers CD103, 

CD101 and CD160 and a specific integrin repertoire (e.g. β7 integrin, CD49a) 

allowing their intraepithelial localization. Further, intraepithelial ILC1s produce IFNγ in 

response to IL-12 and IL-15 stimulation in vitro while lacking IL-22 production. These 

findings clearly separate intraepithelial ILC1s from ILC3s. Interestingly, some of the 

intraepithelial ILC1s contain intracellular perforin and granzyme and exhibit lytic 

activity in presence of a tumor cell line.18 The murine counterparts of human 

intraepithelial ILC1s have been identified as cells expressing NKp46 and NK1.1 as 

well as CD160 distinguishing them from murine splenic NK cells, which do not 

express CD160 at steady state. Murine intraepithelial ILC1s produce IFNγ in 

response to IL-12 and IL-15 in vitro mirroring the human ILC1 response.18 

Intraepithelial ILC1s are present in RORγt-deficient (RORγ-/-) and in AhR-deficient 

(AhR-/-) mice, both lacking ILC3s, but in contrast, they are absent in mice deficient in 
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T-bet or NFIL3, two transcription factors previously shown to be master regulators of 

NK cell development.17, 23 This suggests a developmental relationship rather between 

intraepithelial ILC1s and conventional NK cells than between ILC1s and ILC3s. 

However, analysis of IL-15-receptor-α-chain-deficient (IL-15Rα-/-) mice does not 

support this idea. IL-15Rα-/- mice show a complete absence of splenic NK cells24 

whereas intraepithelial ILC1s are minimally affected by the lack of IL-15Rα 

suggesting that intraepithelial ILC1s are a unique ILC1 cell subset distinct from 

conventional NK cells.18 

In RORγt-fate map mice, generated by crossing mice expressing Cre recombinase 

under the control of the Rorc promotor (Rorc(γt)-Cretg mice)25 with Rosa26-reporter 

mice (R26R-EYFP)26, all cells derived from RORγt+ precursors are heritably and 

permanently labeled by the enhanced yellow fluorescence protein (EYFP)-reporter, 

even when they loose RORγt expression over further development. By following 

small intestine-derived RORγt-fate map-positive (RORγtfm+) cells transferred into 

alymphoid mice, it could be shown that RORγt+NKp46+RORγtfm+ cells 

(RORγt+NKp46+ ILC3s) are able to develop into RORγt-NKp46+RORγtfm+ cells.19 

These RORγt-NKp46+RORγtfm+ cells have lost RORγt expression, however, they are 

originally derived from RORγt+ cells indicated by positive fate-map labeling 

(RORγtfm+). In vitro stimulation with different cytokine (e.g. IL-12 or IL-23) revealed 

that whereas RORγt+NKp46+RORγtfm+ ILC3s produce IL-22 and lack IFNγ production, 

the RORγt-NKp46+RORγtfm+ cells mainly secrete IFNγ while IL-22 production is 

missing.19 Therefore, RORγt-NKp46+RORγtfm+ cells are categorized as ILC1s but are 

most probably “ex-RORγt+” ILC3s. Additionally, these ex-RORγt+-ILC3-ILC1s have 

been suggested to be involved in the pathogenesis of anti-CD40 induced colitis by 

their massive production of IFNγ.19 

Another study has identified a cell type with ILC1 phenotype and high IFNγ 

production accumulating in the gut during dextran sodium sulfate (DSS) colitis in 

mice with a human immune system or in human patients with Crohn`s disease.20 

Originally, this ILC1 type of cell has been identified in human tonsils characterized by 

high levels of T-bet expression required for IFNγ production27 and low levels of 

RORγt expression suggesting that these cells are originally derived from ILC3s. 

Supporting this idea, it has been shown that these tonsil ILC1s are distinct from 

conventional NK cells as they lack perforin and granzyme B. In addition, they do not 

express NK cell markers CD94 and CD56 and lack the expression of the IL-15Rα 

chain of the IL-15R, which is essential for the development of NK cells.14 In patients 
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with Crohn`s disease the frequency of such ILC1s in the gut is significantly increased 

compared to controls without inflammatory bowel disease (IBD) and gut ILC1s 

express high levels of IFNγ.20 That these ILC1s might also be “ex-RORγt+” ILC3s is 

additionally supported by the fact that RORγt+ fetal gut-derived NKp44+ ILC3s are 

able to differentiate into ILC1s when cultured with IL-2 and IL-12 in vitro.  

The T-box transcription factor T-bet is a central regulator of type 1 immunity by 

controlling the expression of IFNγ.27, 28 Analysis of T-bet-deficient mice (Tbx21-/- 

mice)29 and adoptive transfer of RORγt+ ILCs into alymphoid mice could show that 

the acquisition of T-bet expression is required for RORγt+ ILCs to express NKp46 and 

to produce IFNγ.21 That T-bet expression is required for proper IFNγ production by 

ILCs has been as well described in a mouse model of ulcerative colitis (UC).30 In so-

called TRUC mice (Tbx21-/-Rag2-/- ulcerative colitis mice), which spontaneously 

develop IBD due to the lack of T-bet,31 ILCs mainly produce IL-17 promoting the 

disease whereas their IFNγ production is missing.30 A report from Klose et al. 

suggested that ex-RORγt+-ILC3-ILC1s develop from RORγt+ ILC3s, which expand 

after birth through AhR signals, up-regulate T-bet expression required for IFNγ 

production and simultaneously down-regulate RORγt expression.21 Such ex-RORγt+-

ILC3-ILC1s have been identified as the main IFNγ producer in an intestinal infection 

model of Salmonella typhimurium.21 IFNγ produced by these ILC1s in response to S. 

typhimurium infection has diverse roles. It has been shown to control the mucin 

release by goblet cells and thereby protecting the epithelial barrier, however, it is as 

well able to promote enterocolitis.21 

Recently, Klose et al. have identified another ILC1 cell type in the small intestine 

expressing the activating NK cell receptors NKp46 and NK1.1, and T-bet whereas 

the expression of Eomes and RORγt is absent.22 Studies using the RORγtfm mouse 

showed that these cells are RORγt-fate map negative (RORγtfm-) and therefore do not 

represent a subset of “ex-RORγt+” ILC3s.22 Transcriptome analysis of these ILC1s 

revealed that they have only low cytotoxic activity but, however, show high levels of 

IFNγ and TNF gene expression.22 In an intracellular infection model, in which mice 

are orally infected with the parasite Toxoplasma gondii, ILC1s have been identified 

as the main producer of IFNγ and TNF promoting the control of parasite replication. 

Furthermore, adoptive transfer of ILC1s into alymphoid mice after T. gondii infection 

resulted in the production of IFNγ and TNF and subsequently to a substantial 

reduction of Toxoplasma titers.22 These findings indicate that those recently 

discovered ILC1s are crucial during intracellular infections. Due to the fact that these 
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ILC1s lack the expression of Eomes and are RORγtfm- they develop independently of 

the NK cell as well as the ILC3 lineage suggesting that they are an individual ILC1 

lineage.22  

Collectively, several different cell types with different phenotypic and functional 

properties are described as ILC1s. In general, ILC1s are cells with a markedly 

production of IFNγ and the expression of T-bet mirroring Th1 type of cells. The 

plasticity between ILC1s and ILC3s is still under debate. Moreover, the relationship 

between ILC1s and conventional NK cells is not fully understood. Further research is 

required to identify precursor populations and developmental requirements of these 

cell types.  

 

 Group 2 ILCs 2.2.2
 

Innate lymphocytes capable to produce type 2 cytokines and thereby mirroring Th2 

cells are categorized within group 2 ILCs. The existence of innate lymphocytes 

dedicated to type 2 cytokine production is already reported in 2001. Fort et al. 

demonstrated that in vivo IL-25 administration induced the production of IL-5 and IL-

13 in Rag2-/- mice lacking conventional T and B cells.32 Subsequently a non-T/non-B 

FcεR1-negative (non-mast cell) cell population able to produce type 2 cytokines in 

response to IL-25 was identified and shown to be crucial at the onset of helminth 

infections.33 In 2010 three different groups independently of each other identified and 

further characterized such type 2 cytokine producing innate lymphocytes. These 

cells, identified by the different groups, have been referred to as natural helper 

cells,34 nuocytes35 and innate helper 2 cells (Ih2 cells).36 However, recently it has 

been agreed that these cells can collectively be referred to as ILC2s due to their 

common production of type 2 cytokines IL-4, IL-5 and IL-13.3, 34, 35, 36  

ILC2s can be found in mesenteric fat-associated lymphoid clusters (FALCs), a newly 

identified lymphoid structure associated with adipose tissue in the mouse peritoneal 

cavity.34 Additionally, ILC2s are present in mesenteric LNs, liver, spleen and 

intestine34, 35, 36 as well as in the airways. 37, 38, 39, 40, 41 

ILC2s can be found in Rag2-/- mice whereas they are absent in Rag2-/-γc
-/- mice 

indicating their dependence on γc receptor signaling.34, 35, 36 Additionally, IL-7-deficient 

(IL-7-/-) or IL-7-receptor-α-chain-deficient (IL-7Rα-/-) mice as well as mice with 

mutations in either SCF or CD117 show reduced numbers or complete absence of 

ILC2s while the presence of IL-7 in in vitro cultures induces proliferation of ILC2s.34, 42 

These findings suggest a role for IL-7 and SCF in the development and maintenance 
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of ILC2s. Further, ILC2s are present in IL-15-deficient (IL-15-/-) mice lacking NK cells 

and in AhR-/- mice, which are diminished of ILC3s.43 In contrast to ILC3s, ILC2s 

develop independent of RORγt as RORγ-/- mice show normal ILC2 numbers.34 Hence, 

another member of the ROR family of transcription factors, RORα, plays an essential 

role in the development and function of ILC2s.42, 44 Studies with staggerer mice 

(RORαsg/sg mice),45 which have a spontaneous deletion in Rora, showed that ILC2s 

do not develop in absence of RORα.42, 44 Additionally, transplantation of total BM 

cells from RORαsg/sg mice into irradiated recipient mice fail to generate ILC2s and 

recipient mice show an impaired immunity to parasitic helminthes.42, 44 In addition to 

Id2, which is absolutely necessary for the development of all innate lymphocytes,4, 34 

the transcription factors Gata3 and TCF-1 (T cell-specific high-mobility group box 

transcription factor) have been shown to be required for the differentiation of ILC2s.42, 

43, 46, 47 The majority of ILC2s continuously express high levels of Gata3 and mice 

with a temporally deletion of Gata3 revealed that Gata3 expression is required for the 

differentiation of ILC2s from their precursors as well as the maintenance of ILC2s.43 

TCF-1-deficient mice (Tcf7-/- mice; Tcf7 is the gene encoding TCF-1) are not able to 

generate functional ILC2s46 probably due to the lack of immature ILC2 progenitors43, 

44 in the BM. Tcf7-/- mice are unable to mount an efficient immune response upon 

intranasal challenge with papain (inducing protease-mediated airway inflammation) 

or upon helminth infection with Nippostrongylus brasiliensis that are both infection 

models in which ILC2s have been demonstrated to promote protective immunity 

through their production of IL-5 and IL-13.44, 46 In both infection models, the transfer 

of WT ILC2s into Tcf7-/- mice is sufficient to restore ILC2 numbers in the lung and for 

worm clearance, respectively.46 Recently, it has been shown that the development of 

ILC2s also requires Notch signaling.42, 46 Notch signaling has been reported to 

support the development of ILC2s in vitro as it could be demonstrated that BM-

derived common lymphoid progenitors (CLPs) cultured on OP-9 stromal cells 

expressing the Notch ligand Delta-like 1 (OP9-DL1 cells) can give rise to ILC2 in the 

presence of IL-7 and IL-33.42 Normally, OP9-DL1 cells support T cell development 

from BM-derived CLPs in the presence of IL-7 and fms-like tyrosine kinase 3 ligand 

(FLT3L).48 Additionally, multipotent BM precursors in which dominant-negative 

Mastermind like-1 (dnMAML), a pan-Notch inhibitor is retrovirally induced, fail to 

differentiate into ILC2s in vivo.46 At the current state of research, ILC2s are 

phenotypically characterized as cells lacking markers of other lineages (lin-), and 

simultaneously expressing CD90, IL-7Rα, IL-25R (IL-17BR), IL-33R (T1/ST-2), 

KLRG1 and high levels of Sca-1 and Gata3.34, 35, 36 
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ILC2s as a prominent source of type 2 cytokines provide protective immunity against 

helminth infections.34, 35, 36, 43 ILC2s are able to expand at different anatomical sites in 

response to IL-25, IL-33 and thymic stromal lymphopoietin (TSLP) mainly produced 

by epithelial cells during infections. The production of IL-5 and IL-13 by ILC2s results 

in eosinophilia and goblet cell hyperplasia increasing mucus production. Additionally 

it has been reported that ILC2s through the production of IL-5 and IL-6 support the 

self-renewal of B1 B cells in vitro and in vivo.34 B1 B cells are most abundant in the 

peritoneal cavity and play a critical role in innate type immune responses by the 

production of natural antibodies.49 Further, ILC2s have been implicated in allergic 

airway inflammation as well as in lung epithelial tissue repair, thus, playing both 

damaging and tissue protective roles.37, 38, 39, 40, 41 A study showed that ILC2s are able 

to mediate virus-induced airway hyper-reactivity (AHR) through their responsiveness 

to IL-33, which is produced by alveolar MΦ accumulating during influenza-induced 

AHR in the lung. Depletion of ILC2s in influenza-infected mice significantly alleviated 

AHR whereas adoptive transfer of WT ILC2s into IL-13-/- mice, unable to establish 

AHR due to the lack of IL-13, is sufficient to induce AHR.39 In contrast, another study 

revealed that the depletion of ILC2s in mice infected with another influenza virus 

strain severely worsened virus-induced AHR. In this study, depletion of ILC2s or 

blocking of IL-33R signaling through administration of blocking IL-33R mAb, results in 

diminished lung function and impaired ability to generate hyperplastic epithelial cell 

responses. It could be shown that the tissue protective role of ILC2s during AHR 

reported in this study is mediated by the production of amphiregulin, a member of the 

epidermal growth factor family. Administration of recombinant amphiregulin into 

ILC2-depleted mice is able to restore airway epithelial integrity and lung function 

reducing AHR.41  

 

ILC2s and T cells 

Several reports showed that ILC2s play important roles in a variety of innate immune 

responses. They are crucial in immunity against helminthes, in allergy and asthma as 

well as in tissue repair and remodeling mediated via their production of various 

cytokines such as IL-5 and IL-13, and growth factors (e.g. amphiregulin). It could be 

shown that in the absence of T and B cells (Rag2-/- mice) ILC2s are able to expand 

and to produce type 2 cytokines upon N. brasiliensis infection, although not efficiently 

enough to expel the worm infection.34, 35 N. brasiliensis infection in Rag2-/- mice 

induce rapid expansion of ILC2s 4 days post infection. However, ILC2 numbers 

cannot be maintained in the absence of T and B cells.35 This finding suggests that 

expanded ILC2s are maintained by the presence of T cells (B cells have been show 
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to be dispensable for worm expulsion)50 and gives a first hint for a possible dialog 

between ILC2s and T cells. In fact, within the last year, several reports demonstrated 

that ILC2s and T cells interact with each other to promote immunity.51, 52, 53, 54 

In vitro studies showed that co-culture of ILC2s and CD4+ T cells, which are activated 

through anti-CD3/anti-CD28 coated on the plate, results in proliferation of ILC2s and 

enhances their production of Th2 cytokines.51 This effect is independent of cell-cell 

contact and occurs over soluble factors shown by the use of a transwell culture 

system in which ILC2s and CD4+ T cells have been separated by a culture insert.51 

IL-2 produced by activated CD4+ T cells has been reported to be responsible for the 

proliferation and increased type 2 cytokine production by ILC2s, since addition of 

neutralizing IL-2 mAb to co-cultures markedly impaired proliferation and cytokine 

secretion of ILC2s.51 The crucial role of IL-2 for ILC2 expansion and activation has 

been confirmed by the finding that Rag2-/- mice treated with IL-2/anti-IL-2 complexes 

are able to efficiently expel worms upon N. brasiliensis infection although CD4+ T 

cells are missing. The rapid worm expulsion correlates with elevated ILC2 numbers.54 

Therefore, the presence of activated CD4+ T cells producing IL-2 induces the 

expansion of ILC2s and enhances their type 2 cytokine production. Furthermore, it 

has been shown that the culture of naïve CD4+ T cells in the presence of plate-bound 

anti-CD3/anti-CD28 results in proliferation of CD4+ T cells and addition of ILC2s even 

increases the proliferation of CD4+ T cells and also enhances their production of type 

2 cytokines.51, 53 It has been reported that this effect is dependent on cell-cell contact 

via OX40-ligand (OX40L) expressed on ILC2s.53 Thus, the presence of ILC2s 

induces T cell proliferation and supports their differentiation into Th2 cells. These 

data could be confirmed in in vivo studies using two different mouse models with an 

ablation of ILC2s. Mice lacking ILC2s (iCOS-T or Rorαfl/sgIl7rCre mice) showed 

delayed worm expulsion upon N. brasiliensis infection and a dramatic reduction of IL-

5 and IL-13-producing CD4+ T cells.54 Furthermore, adoptive transfer of both CD4+ T 

cells and ILC2s into IL-7Rα-/- mice lacking ILC2s and T cells results in robust airway 

eosinophilia upon Ovalbumin (OVA) Ag plus bromelain (a cysteine protease) 

exposure. Transfer of either CD4+ T cells or ILC2s only shows minimal airway 

inflammation.53 Therefore, the in vivo interplay between ILC2s and CD4+ T cells is 

critical for the generation of Th2 cell immunity.  

ILC2s are shown to express major histocompatibility complex class II (MHC II) on 

their surface.35, 51, 54 This fact raised the question whether ILC2s can act as Ag-

presenting cells (APCs). Indeed, ILC2s have been reported to be able to induce 

CD4+ T cell proliferation in the presence of peptide-Ag in vitro and preferentially 
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induce the production of type 2 cytokines by CD4+ T cells.51, 54 Detailed analysis 

showed that ILC2s are able to endocytose soluble Ag and to degrade OVA-DQ, a 

self-quenched conjugate of Ovalbumin protein that fluoresces when cleaved.54 

Although ILC2s are able to process and present Ag on their surface, confirmed by 

the presence of E-alpha (Eα)-derived peptides in context with MHC II on the surface 

of ILC2s 20 h after incubation with the Eα-green fluorescent protein (GFP) fusion 

protein, ILC2s are not able to induce CD4+ T cell proliferation in the presence of 

whole protein-Ag in vitro.54 In addition to MHC II, a proportion of ILC2s are reported 

to express CD80 and CD86 on the surface. Blocking of CD80 and CD86 with 

neutralizing Abs in co-cultures of ILC2s and CD4+ T cells with peptide has been 

shown to decrease CD4+ T cell proliferation and production of type 2 cytokines 

suggesting another cell-cell contact-dependent way of T cell activation by ILC2s. In 

addition, in vivo models demonstrated that IL-13 production by ILC2s is most crucial 

for the generation of efficient Th2 responses. Intranasal administration of IL-13 or 

adoptive transfer of IL-13-producing WT ILC2s is sufficient to rescue Th2 

differentiation of CD4+ T cells in vivo.52 In this study, a role for ILC2-derived IL-13 in 

the migration of activated DCs to the lung draining LNs and the subsequent support 

of Th2 differentiation in the LNs is suggested.52 Collectively, ILC2s and CD4+ T cells 

are able to interact via soluble factors, surface molecules and Ag-MHC II complexes. 

The presence of both cell types and their interaction is required to increase ILC2- as 

well as CD4+ T cell-mediated Th2 immunity. The so far identified immune functions of 

ILC2s are summarized in figure 2 (Fig. 2). 
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Figure 2:	
   Type 2 immunity and homeostasis mediated by ILC2s. Illustration of the 
different functions of ILC2s during type 2 immunity and tissue homeostasis. LN: lymph nodes; 
DC: dendritic cells; TCR: T cell receptor; TSLP: thymic stromal lymphopoietin; MHC II: major 
histocompatibility complex class II. Adapted from Mc Kenzie et al., Immunity (2014).55  

 

 Group 3 ILCs 2.2.3
 

Lymphoid tissue inducer cells  

The prototypes of the nowadays called ILC3s are lymphoid tissue inducer cells (LTi 

cells). LTi cells are first discovered in 1992 as a novel population of CD45+CD3-CD4+ 

cells accumulating in the LN during the first days of life.56 Additionally, these cells are 

found to be present in the spleen of neonates showing lymphoid size and 

morphology.  

Several years later, CD45+CD3-CD4+ cells were identified as the first cells colonizing 

the fetal LN anlagen, spleen (at embryonic day E13.5), small intestine, stomach and 

colon, however, they were found to be absent in the fetal liver (FL) and thymus.57, 58 
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CD45+CD3-CD4+ cells belong to the hematopoietic lineage (CD45+) and develop 

independently of the presence of spleen or thymus. A more detailed analysis of the 

phenotype of these cells revealed that they are negative for other lymphoid, myeloid 

and erythroid markers. T cell receptor (TCR) and B cell receptor (BCR) genes are 

found to be in germ line configuration and the mRNA for the recombination activating 

genes Rag1 and Rag2 are missing. However, these cells show expression of the 

common gamma (γc) chain (CD132, IL-2Rγ), CD25 (IL-2Rα), IL-7Rα, CD117, CD90 

and lymphotoxin (LT)-β.57 Additionally, CD45+CD3-CD4+ cells express the homing 

receptor integrin α4β7, which is a ligand for the mucosal vascular addressin cell 

adhesion molecule (MadCAM-1) that is exclusively expressed on high endothelial 

venules (HEV) in peripheral and mesenteric LNs until 24 hours after birth.59 

Therefore, α4β7 expression allows the selective entry of LTβ-expressing CD45+CD3-

CD4+ cells into the developing LN, a fact, which together with the finding that 

CD45+CD3-CD4+ cells are amongst the earliest hematopoietic cells colonizing fetal 

LN anlagen, the fetal spleen and intestine already suggests a role for these cells in 

lymphoid tissue development during ontogeny.57, 58 However, the contribution of 

CD45+CD3-CD4+ cells to lymphoid tissue development and the molecular and cellular 

events behind it, were still not known at that time.  

 

Origin and differentiation of LTi cells 

Two different groups independently of each other could identify a precursor 

population for LTi cells.60, 61 Mebius et al. found an IL-7Rα+Sca-1lowCD117low 

population in the FL at E12.5-E14.5 showing differentiation potential to CD45+CD3-

CD4+ cells.60 IL-7Rα+Sca-1lowCD117low cells, phenotypic analog to the CLP of the 

BM, additionally showed in vivo differentiation potential to B and T cells, NK cells and 

DCs whereas MΦ only developed from these precursors in in vitro studies.60 In 

addition, Yoshida et al. described a Lin-IL-7Rα+α4β7
+ cell population present in the FL 

(E12.5) as precursor for CD45+CD3-CD4+ cells.61 Lin-IL-7Rα+α4β7
+ cells have been 

reported to lack myeloid and B cell differentiation potential and to loose their T cell 

differentiation potential after migration to the embryonic intestine where they are 

suggested to be involved in the formation of Peyer`s Patches (PPs), organized  

lymphoid tissues containing mainly B lymphocytes. It has been demonstrated that IL-

7Rα-/- mice are not able to generate PPs and that the administration of an 

antagonistic IL-7Rα mAb to pregnant mice completely blocked the generation of 

PPs.62, 63 Since CD45+CD3-CD4+ cells express IL-7Rα, these findings suggested the 

involvement of CD45+CD3-CD4+ cells in the formation of PPs.  
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Role of LTi cells in lymphoid tissue development 

The identification of molecular and cellular requirements for the formation of 

lymphoid tissues started with the characterization of the LTα- deficient (LTα-/-) mice 

in 1994.64, 65 LTα-/- mice are unable to generate lymphoid tissues and completely lack 

LNs and PPs. LTα belongs to the tumor necrosis factor (TNF) superfamily and can 

form heterotrimers with LTβ consisting of one α-chain and two β-chains (LTα1β2). 

LTα1β2 binds to its own receptor, LTβ – receptor (LTβR).66, 67 The crucial role of LTβR 

triggering in the formation of lymphoid tissues has been shown by the fact that 

administration of soluble LTβR into pregnant WT mice blocked the formation of LNs 

and PPs in the offspring.68 In 1998 the LTβR-/- mice have been described and 

confirmed the requirement of LTβR triggering for the formation of lymphoid tissues.69  

The cellular requirements for lymphoid tissue formation are uncovered by studying 

two different mouse models, Id-2-/- mice4 and RORγt-/- mice,70 respectively. In the 

absence of either the helix-loop-helix inhibitor of DNA binding 2, Id2, or the orphan 

nuclear hormone receptor, RORγt, LN and PP development fails completely and 

subsequent analysis of these mice revealed that they lack CD45+CD3-CD4+ cells.  

Finally, two in vivo adoptive transfer experiments confirmed that CD45+CD3-CD4+ 

cells are indeed able to induce lymphoid tissue formation. First, Finke et al. have 

demonstrated that adoptive transfer of CD45+CD3-CD4+ cells isolated from the fetal 

spleen is able to induce PP development in CXCR5-/- mice and secondly, Fukuyama 

et al. adoptively transferred fetal intestinal CD45+CD3-CD4+ cells into Id-2-/- mice 

thereby inducing the formation of nasal-associated lymphoid tissue (NALT)-like 

structures.71, 72 Based on these findings CD45+CD3-CD4+ cells are renamed as 

lymphoid tissue inducer (LTi) cells.  

In general, the generation of lymphoid tissues such as LNs and PPs require the 

interaction of LTαβ-expressing hematopoietic cells and LTβR-expressing stromal 

cell.68 LTβR triggering on stromal cells induces the activation of the nuclear factor-κ-

B (NFκB) pathway resulting in the expression of the adhesion molecules vascular 

cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and 

mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) as well as the 

production of the chemokines CXCL12, CXCL13, CCL19 and CCL21. These 

chemokines are required for the recruitment and retention of additional hematopoietic 

cells at putative sites for LN or PP development (Fig. 3).73  
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Figure 3: Illustration of lymphoid tissue organogenesis mediated by LTi cells. LTi: 
lymphoid tissue inducer; LTαβ: lymphotoxin αβ; VCAM-1: vascular cell adhesion molecule-1. 
Adapted from Mebius, Nature Reviews (2003).74 

 

Lymph node organogenesis 

LN development starts with the formation of the lymphatic system by the 

development of the lymph sac at approximately E10.5. Prox1, a homeobox gene, is 

crucial for the budding and sprouting of lymphatic endothelium to form the lymph 

sacs.75 Subsequently, from these early lymph sacs lymphatic vessels sprout into 

tissues and reconnect with other lymphatic vessels. At E15.5 a complete network is 

formed.75 At E12.5 – E13.5 the earliest LN anlagen are formed by the colonization 

with LTi cells that cluster with VCAM-1+ stromal cells. LTα1β2 expression on LTi cells 

was shown to be induced through IL-7R- and TNF-related activation-induced 

cytokine receptor (TRANCER)- signaling76 and allows the cells to interact with LTβR-

expressing stromal cells activating their NFκB pathway.73 Signaling through LTβR on 

stromal cells interacting with LTαβ-expressing LTi cells is absolutely crucial for LN 

organogenesis.68 NFκB pathway activation induces the expression of VCAM-1, 

ICAM-1 and MAdCAM-1 on the stromal cells amplifying their interaction with LTi cells 

expressing the corresponding receptors α4β1 and α4β7, respectively.57 On the other 

hand, activation of the NFκB pathway of stromal cells triggers secretion of several 

chemokines including CXCL13 and CCL21 that attract and retain additional LTi cells 

expressing the respective chemokine receptors CXCR5 and CCR7.57 The crucial role 

for NFκB signaling in lymphoid organogenesis has been confirmed by the finding that 

NFκB-inducing kinase (NIK)-deficient mice fail to develop LNs.77 Further, interaction 

of LTi cells and stromal cells via LTαβ and LTβR has been reported to induce the 
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secretion of IL-7 and TRANCE by the stromal cells.78 Both IL-7 and TRANCE are 

able to induce LTαβ expression on newly arriving LTi cells resulting in enhanced 

LTβR triggering on stromal cells generating a positive feedback loop.78 

 

Peyer`s patch organogenesis 

For PP development three distinctive stages are described starting with the first at 

E15.5 involving clustering of VCAM-1+ and ICAM-1+ cells.58 VCAM-1+ICAM-1+ 

stromal cells in the developing PP express LTβR and upon LTβR triggering produce 

the homeostatic chemokines CXCL13, CCL19 and CCL21, which are potent 

chemoattractants for LTi cells.79 Thus, subsequently LTi cells colonize these first 

stromal cell clusters and co-localize with VCAM-1+ICAM-1+ stromal cells in the 

intestine (E16.5 – E17.5, stage 2).79 The third stage involves the recruitment of and 

further colonization by T and B lymphocytes. In addition to the requirement of VCAM-

1+ICAM-1+ stromal cells and LTi cells for the development of PPs, another lymphoid 

cell type has been described to be essential. The so-called lymphoid tissue initiating 

cell (LTin) is found in the embryonic gut from day E15.5 – E16.5 on and expresses 

CD11c and CD117 while lacking CD4, CD3 and IL-7Rα expression.80 In the absence 

of LTin cells, PP development has been reported to be significantly reduced.80  

As described for LN development, PP development depends as well on signaling 

through the LTαβ-LTβR axis. Mice deficient for LTβR, LTα or LTβ are unable to 

generate PPs.64, 69, 81 The chemokine CXCL13 is produced by stromal cells in the 

fetal intestine and is known to direct B cells to lymphoid follicles.79, 82 Through 

signaling via CXCR5 expressed on LTi cells, CXCL13 can trigger β1 integrin 

activation. β1 integrin expression on LTi cells allows the interaction with VCAM-1 

expressing stromal cells.71 The activation of the β1-VCAM-1 axis induces augmented 

expression of CXCL13 which signals via CXCR5 resulting in the induction of LTαβ 

expression on LTi cells. Thus, a feedback loop for PP formation is generated via the 

β1-integrin – VCAM-1 axis.71 Moreover, signaling via the receptor tyrosine kinase 

RET is required for the formation of PP anlagen. Despite normal numbers of LTi 

cells, the lack of RET disrupts the cell cluster aggregation.80  

 

Different requirements for LN and PP development 

LN and PP organogenesis shows many similarities such as the requirement for the 

LTαβ-LTβR signaling axis. However, some factors involved in the developmental 

program differ for LNs and PPs. TRANCE-/- mice are shown to lack LNs whereas PPs 

develop normally.83 Therefore, TRANCE-TRANCER signaling axis is an additional 
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example of TNF/TNFR family members crucial for LN development.  LTi cells 

express both TRANCE and TRANCER and the TRANCE/TRANCER signaling axis is 

required for survival of LTi cells and their clustering at putative sites of LN formation 

as TRANCE overexpression in TRANCE-/- mice is able to rescue LTi cell numbers 

and LN development.84 However, TRANCE overexpression in LTα-/- mice does not 

result in rescued LN development suggesting different roles for the 

TRANCE/TRANCER and the LTαβ/LTβR signaling axis.84 Moreover, the role of IL-

7Rα signaling in PP and LN development differs. While PP development is 

completely dependent on IL-7Rα-signaling displayed by the lack of PPs in mice with 

a IL-7Rα deficiency,62, 85, 86 LN organogenesis does only partially depend on IL-7Rα 

signaling.87 As lymphocyte-deficient Rag1-/- mice generate LNs normally, the 

absence of some LNs in IL-7Rα-/- mice is not due to the role of IL-7R signaling in 

lymphocyte development.87 Further, the cytokines IL-7 and SCF (Kit Ligand) 

differentially regulate LN and PP development. Both IL-7 and SCF are shown to be 

growth factors for LTi cells and their FL precursors in vitro and in vivo.88, 89 However, 

IL-7-/- mice show defects in LN generation, whereas PP development is not 

perturbed.88 In contrast, PP development is highly reduced in mice with a deficiency 

in Kit signaling while all LNs develop normally.89 In line with this, it could be 

demonstrated that stromal cells isolated from LNs show high IL-7 and low SCF 

expression while stromal cells of PPs are characterized by high SCF and low IL-7 

expression.89 

Transgenic overexpression of IL-7 in mice revealed that IL-7 is a survival factor for 

both LTi cells and their FL precursor by increasing cell survival rather than 

proliferation. Increased IL-7 availability in these mice induces de novo generation of 

VCAM-1+ PP anlagen resulting in increased numbers of PPs in the intestine of adult 

mice. Furthermore, ectopic lymphoid tissues so-called tertiary lymphoid tissues are 

formed. The generation of additional PPs and LNs has been reported to depend on 

the availability of IL-7, LTi cells and LTαβ signaling.88 Since IL-7-/- mice are unable to 

form LNs and IL-7 regulates the size of the LTi cell pool in vivo it has been suggested 

that low numbers of LTi cells in IL-7-/- mice are responsible for the defects in LN 

organogenesis.88 IL-7 and TSLP have been reported to exhibit overlapping biological 

functions.90 Transgenic overexpression of TSLP in IL-7-/- mice is able to restore LN 

development due to the induction of an increase in LTi cell numbers. The same is 

found when TSLP is transgenetically overexpressed in Rag2-/-γc
-/- mice demonstrating 

that peripheral lymphocytes are not required for LN formation.91 Altogether, IL-7, 

TSLP and SCF have been shown to regulate the size of the LTi cell pool by 
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increasing the generation and survival rather than the proliferation of these cells. LN 

and PP development is clearly regulated by the number of LTi cells, the availability of 

region-specific cytokines and signaling via LTβR.  

 

LTi cells persist after birth 

Beside the existence of fetal LTi cells playing an essential role in lymphoid tissue 

formation during embryogenesis, several studies showed that LTi-like cells could be 

found after birth.  

RORγt has been described to be essential for the generation of fetal LTi cells and 

consequently for the formation of lymphoid tissues.70, 92 In a transgenic mouse model, 

in which the enhanced green fluorescent protein (EGFP) was used as a reporter 

gene inserted into the gene encoding RORγt (Rorc(γt)+/GFP mouse), it could be shown 

that RORγt is an exclusive marker for LTi cells during fetal life.93 Additionally, further 

analysis of Rorc(γt)+/GFP mice revealed that RORγt+ cells could be found in the gut of 

adult mice.25 They have been identified within cryptopatches (CPs), isolated 

lymphoid follicles (ILFs) and PPs, all organized structures in the gut. These RORγt+ 

cells additionally express IL-7Rα and CD117 and lack the expression of lineage 

markers suggesting that they are the adult counterparts of the fetal LTi cells.25 In 

RORγt-deficient mice, reached by breeding Rorc(γt)+/GFP mice to homozygosity 

(Rorc(γt)GFP/GFP mice), intestinal RORγt+ cells are absent and CPs as well as ILFs do 

not develop.25 Thus, adult RORγt+ cells identified in the adult gut share 

developmental requirements, phenotype and function with fetal LTi cells and are 

therefore thought to be the adult equivalents of the fetal LTi cells.  

Moreover, Lane et al. identified a cell type in the spleen of adult mice with a 

phenotype closely resembling them of fetal LTi cells. These CD3-CD4+CD11c- cells 

are found in the spleen mainly in and around B cell follicles as well as at the T:B cell 

interface in close proximity to T cells. Detailed analysis revealed that compared to 

embryonic and neonatal LTi cells these cells express high levels of the T cell co-

stimulatory molecules CD30-ligand (CD30L) and OX40L.94 The receptors for CD30L 

and OX40L, CD30 and OX40, are only expressed by primed but not by naïve T cells. 

Therefore, it has been suggested that adult CD3-CD4+CD11c- splenic LTi-like cells 

are potential candidates for providing co-stimulatory signals to T cells.94 Indeed, mice 

with a deficiency in CD30 and OX40 (CD30-/-OX40-/- mice) are shown to lack proper 

memory antibody responses due to a failure in the survival of primed CD4+ T cells.95 

It could be shown that this failure was due to the inability of primed CD4+ T cells to 

interact with CD30L- and OX40L-expressing splenic LTi-like cells.95 The lack of 
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CD30L and OX40L revealed as the only difference between embryonic/neonatal LTi 

cells and adult splenic LTi-like cells. Otherwise embryonic/neonatal LTi cells and 

CD3-CD4+CD11c- splenic LTi-like cells share a genetic fingerprint, which clearly 

separates these cells from other lineages.96  

LTα-/- mice show a disruption of B and T cell segregation in the spleen, which could 

not be rescued by the transfer of total WT splenocytes.97 However, the transfer of 

LTα-/- splenocytes into Rag-/- mice was able to rescue the spleen organization, 

thereby suggesting a non-T and non-B cell type to be responsible for proper B/T 

segregation.98 Indeed, it could be shown that the transfer of either fetal LTi cells or 

adult LTi-like cells, both expressing high levels of LTαβ, is able to restore B/T cell 

segregation in the spleen of LTα-/- mice within 10 days whereas the transfer of either 

lymphocytes or DCs fails to restore a correct organization in the spleen.98 Thus, adult 

LTi-like cells are important for a correct T and B cell segregation in the adult mouse 

spleen.98 

The infection with lymphocytic choriomeningitis virus (LCMV) is characterized by 

cytotoxic CD8+ T cell-mediated destruction of the T cell zone stromal cell network.99 It 

has been shown that the fibroblastic reticular cell (FRC) network is mainly affected by 

the LCMV infection and consequently hosts are not able any more to mount proper 

immune responses and loose their immunocompetence. The rebuilding of a correct 

lymphoid microarchitecture is required to regain immune responsiveness. At the 

peak of LCMV-mediated tissue destruction, increased numbers of CD45+IL-7Rα+lin- 

cells are found in LNs and spleen, most probably through a proliferative 

accumulation of these cells.99 These CD45+IL-7Rα+lin- cells bear a phenotype similar 

to embryonic LTi cells and could be shown to be able to fully restore the T cell zone 

stromal network through LTαβ-LTβR-mediated FRC stimulation.99 In the absence of 

CD45+IL-7Rα+lin- cells, the reorganization of the spleen is delayed whereas adoptive 

transfer of LTi cells into RORγt-/- chimeras has been shown to accelerate the 

restoration of the splenic architecture after LCMV caused destruction.99 These data 

indicate that adult LTi-like cells are important for restoration and reorganization of 

destroyed tissue after birth thereby following the same program as during fetal life. 

Moreover, LTi cells have been described to play a role in the generation of T- 

independent IgA in the gut.100 T- independent IgA is produced in mainly B cell 

containing ILFs, which only develop in presence of LTi cells, their LTαβ-LTβR-

dependent interaction with stromal cells, and signals from bacteria that enhance the 

interaction of these two cell types.100, 101 
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As already described for fetal LTi cells and their progenitors,88, 89 it could be 

demonstrated that the size of the adult splenic LTi-like cell pool depends on the 

availability of IL-7. Adult IL-7-/-, IL-7Rα-/- and mice lacking the γc chain (γc
-/- mice) show 

reduced numbers of splenic LTi-like cells whereas mice with a transgenic 

overexpression of IL-7 show increased numbers of LTi-like cells in the spleen.102, 103 

Additionally, the treatment of adult IL-7-/- mice with IL-7/anti-IL7 complexes104 has 

been shown to be able to rescue numbers of splenic LTi-like cells in adult mice.103  

Moreover, the transfer of adult splenic LTi-like cells into newborn CXCR5-/- mice has 

been demonstrated to result in the appearance of PP anlagen.103 This revealed for 

the first time that adult splenic LTi-like cells are bona fide LTi cells able to induce the 

de novo formation of lymphoid tissue. However, compared to fetal LTi cells, adult 

LTi-like cells have been shown to be less efficient in the induction of PP anlagen.   

 

Development of LTi-like cells found after birth 

Whether fetal LTi cells persist or adult LTi cells are newly generated from BM 

precursors is not fully understood. Fetal LTi cells, which are transferred into adult 

mice, could be recovered in the spleen expressing CD30L and OX40L.94, 96 This 

finding supported the idea that adult LTi cells might develop from fetal LTi cells. Fetal 

LTi cells have been reported to develop from precursors of the FL.60, 61 After birth, the 

BM is the major site of hematopoiesis. Whether a precursor for adult LTi cells exists 

in the BM was not known. The transfer of total FL cells or total BM cells into IL-7Rα-/- 

mice revealed that LTi cells are able to develop either from FL or from BM cells.103 

However, the successful and efficient generation of adult LTi cells from BM cells 

requires exogenous IL-7.103 Another study supported the idea that the BM might be 

the source of adult LTi cells. In this study, the transfer of total BM cells into RORγt-/- 

mice results in the generation of CP and ILFs.100 

Collectively, several reports showed that cells with an extremely similar phenotype to 

fetal LTi cells exist after birth. These cells are called at the time of its discovery LTi-

like cells and could be shown to achieve numerous functions. Some of the functions 

of LTi-like cells after birth are related to their original function as lymphoid tissue 

inducer,25, 99, 103 however, LTi-like cells also contribute within several ways to 

immunity.94, 95, 100  

 

NKp46- and NKp46+ ILC3s 

In general, the group 3 ILCs are defined as RORγt+ IL-17 and/or IL-22-producing 

cells, thus resembling Th17 cells. The group 3 ILCs are divided into LTi cells 
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(extensively described before) and a heterogeneous population of RORγt+ ILC3s. 

This heterogeneous population of RORγt+ ILC3s consists of RORγt+ ILC3s, which 

additionally express the natural cytotoxicity receptor NKp46 on their surface, here 

referred to as NCR+ILC3s, and RORγt+ ILC3s lacking NKp46 expression, so-called 

NCR-ILC3s. NCR-ILC3s are characterized by the expression of IL-17 and IL-22,105, 106 

and under inflammatory circumstances as well IFNγ107 while NCR+ILC3s exclusively 

express IL-22 and predominantly exist in the intestine.108, 109, 110  

The term NCR-ILC3s for adult RORγt+ ILC3s lacking NKp46 was introduced by the 

new nomenclature of the ILC family3 and most probably the LTi-like cells (see 

chapter 2.2.3 Group 3 ILCs, LTi cells persist after birth), which exist after birth 

exhibiting several functions in tissue organogenesis25, 99, 103 and immunity,94, 95, 100, 105 

are equivalent to these nowadays called NCR-ILC3s. 

The development of NCR- and NCR+ILC3s depends on the expression of Id2 and 

RORγt as these cells are missing in Id2-/- mice4 and RORγtGFP/GFP mice.19, 93, 108, 109, 110 

The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, plays a 

crucial role in the expansion of NCR- and NCR+ILC3s after birth.111, 112 It has been 

reported that AhR-/- mice or mice, which only lack AhR on RORγt+ ILCs and T cells 

(AhrΔLTi, T mice) are not able to generate CPs and consequently also ILFs are 

missing, while their prenatal formation of secondary lymphoid tissues is not 

affected.111, 112 It could be shown, that ligand binding to AhR inducing AhR signaling 

is required for the postnatal expansion of ILC3s, which subsequently are able to 

generate CPs that develop under the influence of signals from the microbiota into 

ILFs.111 In contrast, AhR signaling is dispensable for LTi cell development and 

function during embryogenesis additionally reflected by the presence of PPs in the 

gut.112 Kiss et al. could show that AhR signaling induces the transcription of Kit 

(SCF), which has been previously reported to be crucial for ILC3 expansion, survival 

and maintenance.89 Therefore, Kiss et al. suggested that the postnatal expansion of 

ILC3s is mediated via the AhR-Kit axis.111 Furthermore, due to the lack of post-natal 

occurring IL22- producing ILC3s, AhR-/- mice are unable to mount protective 

immunity against C. rodentium infection, an intestinal mouse pathogen that requires 

IL-22-producing cells for its clearance.111, 112, 113 AhR is not only responsible for the 

expansion and maintenance of IL-22-producing ILC3s after birth as it could be 

demonstrated that AhR influences the IL-22 production on a per cell basis reflected 

by reduced IL-22 production of remaining ILC3s in AhR-/- mice.114 

A recent study showed that Tbx21-/- mice lack NCR+ILC3s while NCR-ILC3s develop 

normally suggesting that T-bet expression is only required for NCR+ILC3 but not for 
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NCR-ILC3 development.22 Further research is required to uncover the precise role for 

T-bet in the development and function of ILC3s.  

The contribution of the microbiota and its microbial signals to the development and 

maintenance of NCR- and NCR+ILC3s in the intestine is not fully understood and 

several reports noted different findings.108, 109, 112, 115 By the analysis of germfree mice 

two groups reported that the numbers of RORγt+ NCR+ILC3s are extremely reduced 

whereas numbers of RORγt+ NCR-ILC3s (or LTi-like cells) and conventional NK cells 

are normally represented in the intestine.108, 109 Additionally, the remaining 

NCR+ILC3s in germfree mice produce lower levels of IL-22. However, it could be 

shown that the recolonization of germfree mice with normal microbiota is able to 

rescue the numbers of NCR+ILC3s.109 In contrast, two other groups reported that the 

numbers of RORγt+ NCR+ILC3s are not changed in the intestine of either germfree 

mice or mice treated with antibiotics efficiently eradicating intestinal bacteria.112, 115 

Furthermore, it has been shown that compared to NCR+ILC3s of adult germfree or 

antibiotic-treated mice, NCR+ILC3s from normal mice produce lower levels of IL-22, 

suggesting that the presence of the microbiota represses the IL-22 production of 

NCR+ILC3s. Indeed, it could be demonstrated that the presence of the microbiota 

induces IL-25 production by epithelial cells, which in turn activates DCs that 

subsequently inhibit IL-22 production by NCR+ILC3s in a cell-cell contact dependent 

manner.115  

RORγt+ ILC3s expressing NKp46 on the surface (NCR+ILC3s) have been discovered 

by several research groups independently.108, 109, 110 Up to that time, NKp46 was 

believed to be highly and specifically expressed by conventional NK cells.116, 117 In 

contrast to NK cells, NCR+ILC3s have been reported to develop independent on IL-

15 and do not produce perforin or granzymes, therefore lack cytotoxicity.108, 109, 110 

However, NCR+ILC3s have been identified as important producers of IL-22,108, 109, 110 

a cytokine, which is crucial during the infection with the attaching and effacing 

bacterial pathogen C. rodentium.113 IL-22-deficient (IL-22-/-) mice infected with C. 

rodentium show increased epithelial damage followed by bacterial dissemination and 

a high systemic bacterial burden.113 It could be shown that IL-22 plays a crucial role 

in the early phase of host defense against C. rodentium infection, as administration 

of neutralizing IL-22 Ab118 to WT mice at day 0 after inoculation with C. rodentium 

results in weight loss, bacterial dissemination and increased mortality whereas WT 

mice, which received the neutralizing IL-22 Ab at day 8 after C. rodentium inoculation 

are able to fully recover from the infection.113 The receptor of IL-22 (IL-22R) is 

exclusively expressed by epithelial cells119 and epithelial cells are able to produce 
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many anti-microbial proteins such as RegIIIβ and RegIIIγ promoting epithelial cell 

integrity thereby limiting bacterial dissemination.113 In addition to the crucial role of 

NCR+ILC3s during C. rodentium infection in vivo, another study showed that NCR-

ILC3s (or LTi-like cells) contribute substantially to protective immunity against C. 

rodentium.106 Sonnenberg et al., could show that NCR-ILC3s are able to expand and 

to produce increased levels of IL-22 upon C. rodentium infection in an IL-23-

dependent manner.106 NCR-ILC3s are the main source of IL-22 at early time points of 

the infection and absolutely required to survive the first days until the adaptive 

immunity starts to work.106 Thus, NCR- and NCR+ILC3s are shown to be the main 

producers of IL-22 early after infection with C. rodentium and are thus indispensable 

for the clearance of the infection.106, 108, 109 Another study identified a crucial role for 

NCR-ILC3s (or LTi-like cells) in innate immunity mediated by their ability to produce 

high amounts of IL-17 in response to microbial products.105 Takatori et al. reported 

that NCR-ILC3s are able to produce IL-17, a major mediator of inflammation, in 

response to the yeast cell wall product zymosan in vivo.105 They could show that 

NCR-ILC3s found in the spleen of zymosan-treated Rag2-/- mice produce high levels 

of IL-17 and also IL-22.  Zymosan treatment induces IL-23 production by DCs, which 

in turn has been suggested to activate NCR-ILC3s expressing high levels of IL-

23R.105 In line with this, it has been proposed that the protective response of NCR- 

and NCR+ILC3s during C. rodentium infection depends on IL-23 as mice lacking IL-

23 (IL-23p19-/- mice) are not able to recover from C. rodentium infection.106, 113 

Indeed, it could be shown that IL-22 production by ILC3s is induced by IL-23 

secreted by DCs and simultaneously ILC3s enhance the IL-23 production by DCs 

through activation of LTβR in a positive feedback loop.120 Accordingly, several in vitro 

studies confirmed that ex vivo isolated ILC3s are able to produce IL-22 in response 

to IL-23 supporting the importance of the IL-23-IL-22 axis.105, 106, 108 

 

ILC3s in adaptive immunity 

In addition to their crucial role as cytokine-producing cells in innate immunity, NCR- 

and NCR+ILC3s have been reported to be involved in adaptive immunity.  

Granulocyte-macrophage colony-stimulating factor (GMCSF) has been shown to be 

essential for the induction and maintenance intestinal tissue-resident DCs,121 which 

are implicated, together with MΦ, in the induction and expansion of regulatory T cells 

(Tregs).122, 123 Tregs itself have been reported to regulate intestinal tolerance.124 Thus, 

provision of GMCSF is important for the conversion of T cells into Tregs in the intestine 

to balance the intestinal immune response. In addition to epithelial cells, which are 
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believed to be the source of GMCSF in the gut,125 a GMCSF-producing cell 

population expressing RORγt has been found in the small and large intestine of mice 

at steady state. This cell population contains NCR- and NCR+ILC3s and significantly 

reduced levels of GMCSF in the gut of RORγt-/- mice lacking NCR- and NCR+ ILC3s 

confirmed these cells as important GMCSF producer.126 Since GMCSF is not 

detectable in newborns but increases with age, commensal bacteria-driven signals 

have been suggested to induce GMCSF production by ILC3s in the intestine. Indeed, 

intestinal MΦ could be identified as main source of IL-1β in response to microbial 

products, which in turn activates ILC3s to produce GMCSF.126 The importance of IL-

1β and IL-1R1 signaling has been confirmed by the fact that ILC3s from IL-1R1-/- 

mice are unable to produce GMCSF. In addition, adoptive transfer of ILC3s from 

either GMCSF-sufficient (Csf2+/+) or GMCSF-deficient (Csf2-/-) mice into Rag2-/-γc-/- 

mice revealed that only mice, which received GMCSF-sufficient ILC3s are able to 

produce GMCSF and to convert T cells into Tregs upon T cell transfer and 

immunization.126 Thus, IL-1β-responsive GMCSF-producing ILC3s are the primary 

source of GMCSF in the intestine crucial for the induction of Tregs mediating intestinal 

immune tolerance.  

ILC3s are also able to interact with B cells. A recent study showed that ILC3s in the 

spleen are capable to enhance Ag production of marginal zone B cells (MZB cells).127 

NCR+ILC3s can be found in the marginal zone (MZ) and perifollicular zone areas of 

the spleen where they are able to interact with marginal reticular cells (MRCs), a MZ 

subset of stromal cells.127 The interaction of NCR+ILC3s with MRCs has been shown 

to be bidirectional as MRCs promote the survival of NCR+ILC3s through the release 

of chemokines and cytokines while NCR+ILC3s induce up-regulation of ICAM-1 and 

VCAM-1 on MRCs.127 In addition to the activation of MRCs, mouse splenic ILC3s 

express APRIL, a B cell activating factor (BAFF)-related molecule shown to enhance 

plasma cell survival.128 Furthermore, ILC3s have been shown to produce GMCSF, 

which allows the recruitment of neutrophils resulting in enhanced T- independent (TI) 

production of Abs.127 In line with this, adoptive transfer of GMCSF-sufficient, but not 

GMCSF-deficient ILC3s, is able to increase the abundance of splenic neutrophils in 

Rag1-/-γc-/- mice.127 Another study could show that intestinal ILC3s promote the IgA 

production by B cells either through membrane bound lymphotoxin αβ (LTα1β2) or 

secreted soluble lymphotoxin α (sLTα3).129 It has been reported that intestinal ILC3s 

interact with CD11c+ DCs via membrane bound LTα1β2
 triggering LTβ receptor 

(LTβR) expressed on DCs. This interaction controls the expression of inducible nitric 

oxide synthase (iNOs) by DCs, which is known to be critical for IgA induction.130, 131 
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DCs isolated from mice lacking LTβ expression on ILC3s and T cells (LTβ ΔILC,T mice) 

are shown to be less potent in inducing IgA in vitro when cultured with IgM+ B 

cells.129 Furthermore, in contrast to LTβ ΔILC,T mice, mice with a deficiency of LTα 

expression on ILC3s and T cells (LTα ΔILC,T mice) are not able to produce soluble 

LTα3 and consequently show highly reduced numbers of CD40L-expressing T cells 

and reduced IgA levels in the intestine.129 It could be shown that the provision of 

CD40L-sufficient, but not CD40L-deficient T cells results in increased IgA levels 

assuming a crucial role for sLTα3 in promoting the recruitment of T cells to the 

intestinal lamina propria.129 Thus, the production of membrane bound LTα1β2 by 

ILC3s regulates TI IgA induction via controlling iNOS induction by DCs whereas the 

production of sLTα3 by ILC3s regulates the induction of T-dependent (TD) IgA 

induction via recruitment of T cells to the gut.129  

MHC II expression on ILC3s has been reported already some time ago.57, 93 

However, only recently a study suggested that ILC3s regulate CD4+ T cell responses 

in the intestine most probably through the presentation of commensal bacteria-

derived peptides as ILC3s could be shown to produce the Ag-processing machinery 

for class II presentation.132 Genome wide transcriptional profiling revealed that ILC3s 

are highly enriched in transcripts involved in MHC II Ag processing and presentation 

pathways such as Cd74, H2-Ab1, H2-Aa, H2-DMb2 and H2-DMa.132 It could be 

shown that MHC II protein is expressed at highest level on NCR-ILC3s whereas 

NCR+ILC3s only showed minimal expression of MHC II.132 In vitro studies 

demonstrated that NCR-ILC3s are able to process exogenous Ag and to present 

peptide on the cell surface approved by detection of GFP-Eα protein derived 

peptides (GFP- Eα protein; see chapter 2.2.2 Group 2 ILCs). However, OVA-pulsed 

ILC3s failed to induce OVA-specific CD4+ T cell proliferation in vitro most probably 

due to the lack of co-stimulatory molecules CD40, CD80 and CD86.132 As Ag 

presentation in the absence of co-stimulation has been proposed to limit T cell 

responses,133 ILC3s have been suggested to negatively regulate CD4+ T cell 

responses. Indeed, in a mouse model in which MHC II is exclusively deleted on 

ILC3s (MHCIIΔILC mice) spontaneous inflammation in the intestine as well as 

significantly increased levels of proliferating T cells with a memory effector 

phenotype could be observed.132 The authors of this study claimed that due to the 

lack of MHC II on ILC3s CD4+ T cell responses to commensal bacteria are 

dysregulated promoting intestinal inflammation.132 Some functions of NCR- and 

NCR+ILC3s in innate and adaptive immunity are summarized in figure 4 (Fig. 4).  
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Figure 4:	
  ILC3s in innate and adaptive immunity. A and B) ILC3-mediated innate (A) and 
adaptive (B) immunity. DC: dendritic cell; MHC II: major histocompatibility complex class II; 
TD: T-dependent; TI: T-independent; sLTα3: soluble lymphotoxin α3; LTα1β2: lymphotoxin 
α1β2; IgA: immunoglobulin type A. Adapted from Mc Kenzie et al., Immunity (2014)55 and 
Magri et al., Current Opinion in Immunology (2015).134  

 

Origin and developmental requirements of ILC2s and ILC3s  

During fetal development, LTi cells arise from lin-IL-7Rα+α4β7
+ precursor found in the 

FL.60, 61 In adults, ILC2s and ILC3s have been reported to develop from CLPs in the 

BM.42, 46, 135 A recent study showed, that for ILC2s a more committed precursor, 

which is called immature ILC2 (iILC2), exists in the BM.43 In contrast to CLPs, iILC2s 

express Id2 as well as high levels of Gata3 and show a close relationship to adult 

mature ILC2s in genome-wide analysis. It could be shown that iILC2s are able to 

differentiate successfully into fully functional ILC2s in vitro and in vivo.43 Another 
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research group reported the so-called common helper innate lymphoid progenitor 

(CHILP; lin-Id2+IL-7Rα+CD25-α4β7
+), which can be found in the FL as well as in the 

BM. The CHILP, which is assumed to arise from the CLP, is able to differentiate in 

vitro and in vivo into all helper-like ILCs including ILC1s, ILC2s and ILC3s but not into 

conventional NK cells that are cytotoxic ILCs.22 

In addition to the expression of the transcriptional repressor Id2, which is required for 

the development of ILC2s and ILC3s (including LTi cells), Notch signaling has been 

reported to contribute to ILC2 and ILC3 development.42, 46, 135, 136 It has been shown 

that active Notch signaling is required for the development of ILC2s in vitro and in 

vivo,42, 46 whereas the role of Notch signaling in ILC3 development is not completely 

clear. The development of ILC3s from their precursor appears to depend on Notch 

signaling that is differentially regulated in fetal and adult precursors.135 One report 

claimed, that active Notch signaling is important at very early steps of ILC3 

development, but has to be switched off for further differentiation into adult ILC3s.136  

The development of ILC2s and ILC3s (including LTi cells) requires the cytokine IL-

7.34, 42, 88, 89 Other cytokines such as SCF and TSLP have been reported to play as 

well a crucial role in the development of LTi cells.89, 91 Not surprisingly, fetal as well 

as adult ILC precursors express the respective receptors for the cytokines IL-7 and 

SCF.60, 61, 137 Additionally to IL-7Rα (for IL-7) and CD117 (for SCF), they express the 

cytokine receptor fms-like tyrosine kinase 3 (flt3 also known as CD135).135, 138, 139 The 

ligand binding to flt3 is FLT3L, and is a cytokine known to be important for the 

development of several hematopoietic lineages.140, 141 The role of FLT3L in the 

development of ILCs is not yet understood. The effect of FLT3L on ILC precursors, 

on LTi cells in fetal and neonatal mice as well as on adult ILC populations (including 

ILC2 and ILC3s) is discussed in the manuscript: “FLT3L regulates the development 

of innate lymphoid cells in fetal and adult mice” attached in the appendix. By the use 

of FLT3L-deficient mice (flt3l-/- mice)141 and mice with a transgenic overexpression of 

FLT3L under the control of human β-actin promotor (flt3l-tg mice)142 as well as an 

approach in which recombinant FLT3L is administrated to adult mice, the role of 

FLT3L on fetal and adult ILCs and on the development of lymphoid tissues such as 

PPs has been investigated.   
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2.3 Activators of immune cells: Toll-like receptor (TLR) ligands 

and IL-1β  
 

The initiation of an immune response starts with the recognition of the pathogen 

invading the body. Innate immunity serves as the first line of defense and acts mainly 

via innate immune cells expressing germ-line encoded pattern-recognition receptors 

(PRRs) recognizing highly conserved molecular structures of pathogens. Pathogen 

recognition can induce a variety of effector functions by the innate immune system 

such as phagocytosis and subsequent digestion of pathogens or the release of 

cytokines inducing an inflammation. Some pathogens are able to overcome the 

defense mechanisms of the innate immunity. In this case, the adaptive immunity, the 

second arm of the immune system, is required for efficient defense against them. A 

well-orchestrated interplay between the innate and the adaptive immunity is 

indispensable to mount an efficient immune response. Signals derived from the 

innate branch have to be integrated by the adaptive branch to fulfill this task. Some 

of the activators of innate immune cells are described in the following sections. 

 

 TLR ligands induce early immune responses 2.3.1
 

Toll-like receptors (TLRs) are the prototypes of PRRs in mammals able to recognize 

molecular structures broadly shared by pathogens, the so-called pathogen-

associated molecular patterns (PAMPs). Thus, innate immune cells expressing TLRs 

play an essential role in the early recognition of microbial components and 

integration of such signals thereby representing an efficient first line defense. TLRs 

represent an evolutionary ancient host defense system.143 Nowadays, in mice, 13 

different TLRs are identified and each of them recognizes a distinct set of molecular 

patterns that are not found on healthy host cells allowing the discrimination between 

self and non-self in a limited way.144 TLRs are able to recognize various components 

of the bacteria cell wall such as lipopolysaccharide (LPS) of Gram-negative bacteria, 

which is exclusively recognized by TLR4.145, 146 TLR2 is able, together with TLR1 or 

TLR6, to sense peptidoglycan, lipoproteins and lipopeptides of Gram-positive 

bacteria.147, 148, 149, 150, 151 Flagellin, a protein subunit from the bacterial flagella, is 

recognized by TLR5.152 TLR3 has been found to recognize double stranded RNA, a 

major component of many viruses.153 Additionally, TLR7 is identified as an antiviral 

TLR, as it senses the synthetic chemical imiquimod, which is known to stimulate 

antiviral responses.154 Subsequently, TLR7 and the related TLR8 are shown to 
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recognize single stranded viral RNA.155, 156, 157 DNA with unmethylated repeats of the 

dinucleotide CpG, which are frequent in bacteria but rare in vertebrates, is 

recognized by TLR9.158 Furthermore, mouse TLR13 is able to recognize bacterial 

ribosomal RNA.159, 160, 161 Thus, the expression of several distinct TLRs allows the 

recognition of a wide range of different pathogens and viruses. TLRs are either 

expressed on the surface of the cell (TLR1, TLR2, TLR4, TLR5 and TLR6) and 

largely recognize microbes on the basis of microbial membrane components in the 

extracellular space, or they are located within intracellular vesicles (TLR3, TLR7, 

TLR8 and TLR9) and mainly recognize nucleic acids.162 TLR engagement activates 

signaling pathways that provide specific immune responses corresponding to the 

recognized PAMP. The recruitment of one or a combination of Toll/IL-1R (TIR)-

domain containing adaptor proteins (e.g. MyD88, TIRAP, TRIF or TRAM) initiates the 

specific response.163 The adaptor molecule, myeloid differentiation primary response 

protein 88 (MyD88) is used by all TLRs, except by TLR3, which requires TIR-domain 

containing adaptor inducing interferon beta (TRIF) for downstream signaling. TLR 

signaling is mediated via the activation of NFκB, mitogen activated protein (MAP) 

kinases and in case of TLR3 and TLR4 the interferon regulatory transcription factor 3 

(IRF3).163 TLR downstream signaling events culminate in the secretion of 

inflammatory cytokines, type I IFNs, chemokines as well as antimicrobial peptides 

leading to activation of MΦ, recruitment of neutrophils and IFN-inducible gene 

expression.163 One prominent pro-inflammatory cytokine, which is involved in a 

variety of effects mediating innate immunity and host responses, is IL-1β described in 

the next paragraph. 

 

 IL-1β  production and pro-inflammatory function 2.3.2
 

IL-1β production and release are mainly initiated through invading microorganisms 

recognized as PAMPs (described before) or the presence of damage-associated 

molecular pattern molecules (DAMPs), such as uric acid crystals released by dying 

cells. Monocytes, MΦ and DCs are the main cell types producing and secreting IL-1β 

within inflammatory conditions.164, 165, 166, 167 IL-1β is first synthesized as an inactive 

form, the so-called pro-IL-1β, and requires its cleavage into a biological active form, 

IL-1β.168 This cleavage is mediated by a cysteine protease called caspase-1. 

Caspase-1 activation requires the assembly and activation of the inflammasome, a 

multiprotein complex.168 Subsequently, the biological active form of IL-1β is released 

into the extracellular milieu. The receptor for IL-1 contains extracellular 
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immunoglobulin domains and a TIR-domain in the cytoplasmic portion. Signaling via 

IL-1R starts with the binding of IL-1β to the primary receptor subunit, IL-1R1, which 

subsequently allows the recruitment of the second receptor subunit, the IL-1R 

accessory protein (IL-1RAP). The formation of the heterodimer induces the 

recruitment of signaling intermediates such as MyD88 resulting in the activation of 

NFκB and MAP kinase (MAPK) pathways.169 IL-1β released upon microbial triggers 

or other factors induces a variety of processes in other immune cells. MΦ enhance 

their cytokine production and phagocytic ability in response to IL-1β.170 Furthermore, 

by the induction of the transcription factor IFN regulatory factor 4 (IRF4) IL-1 

contributes to the development of Th17 cells, secreting IL-17 and IL-22.171, 172  

Integration of microbial signals directly via TLRs or indirectly via inflammatory 

cytokines  (e.g. via IL-1β) induces the maturation of immature DCs (iDCs) into 

mature DCs, which are able to present peptides derived from ingested pathogens to 

T cells of the adaptive immune system. Before maturation, iDCs are highly 

phagocytic cells of the innate immune system able to recognize microbial products 

via TLRs and to ingest pathogens. DC maturation includes up-regulation of MHC II 

and co-stimulatory molecule (CD40, CD80 and CD86) expression thereby changing 

from a preferentially phagocytic cell to a professional APC able to activate T cells 

inducing T cell effector functions.173, 174 Thus, DCs can be placed at the interface of 

innate and adaptive immunity, capable of integrating “danger” signals and 

transmitting them resulting in the induction of a protective adaptive immune 

response. Ag processing and presentation to CD4+ T cells via MHC II, the role of co-

stimulatory molecules and the effector T cell responses, which can be subsequently 

initiated are described in the following paragraphs.  

 

2.4 Activation of CD4+ T cell responses 
 

 Processing and presentation of Ag to CD4+ T cells  2.4.1
 

T cell-mediated immune responses rely on the recognition of pathogen-derived 

peptides, which are presented via MHC I or II molecules. Peptides presented via 

MHC II molecules are recognized by CD4+ T cells whereas peptides presented in 

context of MHC I molecules are recognized by CD8+ T cells. MHC I molecules are 

specialized to present intracellular Ags, such as viruses or tumor Ags, while Ags from 

extracellular sources, such as bacterial Ags, are presented via MHC II.175 In contrast 

to MHC I molecules, which are constitutively expressed on almost all nucleated cells, 
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expression of MHC II molecules is restricted to professional APCs including DCs, MΦ 

and B cells.  

MHC II molecules consist of two transmembrane chains, α- and β-chain, which are 

synthesized in the endoplasmic reticulum (ER). Stable assembly of the MHC II αβ 

heterodimer in the ER relies on a specialized type II transmembrane chaperone 

protein, the invariant chain (Ii, also known as CD74).176, 177, 178 Ii binds in the MHC II-

peptide binding groove, thereby acts like a surrogate peptide, stabilizes the MHC II 

protein and prevents premature loading of antigenic peptides. The Ii-MHC II 

heterotrimer is transported via the Golgi apparatus into an endolysosomal 

compartment, termed MHC II compartment (MIIC). In the MIIC, Ii is degraded by a 

series of proteolytic cleavage events mediated by the proteases cathepsin S and 

cathepsin L and a residual class-II associated Ii peptide (CLIP) is left in the peptide-

binding groove of the MHC II heterodimer.179 The CLIP bound to each MHC II 

heterodimer has to be replaced by peptides arrived in the MIIC via endosomal 

pathway from the extracellular milieu. Once endocytosed, exogenous proteins are 

degraded by proteases, the CLIP is replaced by such peptides and MHC II molecules 

loaded with the specific peptide are transported to the cell surface where they are 

able to present their loaded peptide to CD4+ T cells.180 HLA-DM (or in mouse H2-DM) 

accelerates the exchange of the CLIP with peptides within MIIC.181, 182, 183 

MHC II expression is mainly restricted to professional APCs like DCs, MΦ and B cells 

as mentioned before. However, MHC II expression can be induced in non-

hematopoietic cell types following the exposure to cytokines, whereby IFNγ is the 

most potent inducer.184 For the transcription of MHC II genes the class II 

transactivator, CIITA, is absolutely required. CIITA is the master regulator of 

constitutive and inducible expression of all MHC II genes as well as their accessory 

genes (e.g. the invariant chain Ii).185, 186, 187 CIITA is recruited to a multiprotein 

complex referred to as MHC II enhanceosome consisting of several factors 

(regulatory factor X (RFX), nuclear factor Y (NFY) and cyclic AMP response element 

binding protein (CREB)) required for MHC II gene expression.186 The MHC II 

enhanceosome serves as a “landing pad” for CIITA subsequently inducing the 

transcription of MHC II genes.186, 188 In contrast to the components of the MHC II 

enhanceosome, which are produced in many cell types, the synthesis of CIITA is 

highly controlled. In mouse, the expression of the gene encoding for CIITA 

(MHC2TA) is regulated by three different promotors (pI, pIII and pIV), which can 

individually be activated in a cell type- as well as stimulus-specific manner.189 This 
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restricted expression of CIITA can act as a molecular switch that controls the specific 

expression of MHC II.  

Before extracellular Ags can be presented via MHC II to CD4+ T cells, these Ags 

have to be taken up by phagocytic cells. Neutrophils, MΦ and immature DCs are 

efficient phagocytic cells. Whereas neutrophils and MΦ mainly destroy phagocytosed 

particles, DCs show reduced degradation and consequently increased conservation 

of antigenic peptides. Moreover, DCs are the key players in presentation of such 

antigenic peptides via MHC II and subsequent activation of CD4+ T cells. Immature 

DCs are known to take up Ag via different types of endocytosis namely phagocytosis 

or macropinocytosis.190 Phagocytosis is triggered by the attachment of extracellular 

particles to surface receptors, such as complement receptors, Fc receptors and 

mannose receptors.191 Macropinocytosis is a non-specific process, where large 

volumes of surrounding fluid containing extracellular Ags are engulfed. Endocytosed 

extracellular Ags are placed into membrane-delimited compartments, known as 

phagosomes. Phagosomes finally fuse with lysosomes to form the phagolysosome in 

which the Ag is degraded by lysosomal proteases. Degraded Ag are loaded on MHC 

II molecules within the phagolysosome and transported to the cell surface.  

 As already mentioned before, DCs express TLRs through which they can recognize 

pathogens and become activated. Exposure to pathogens induces remarkable 

transformation in DCs.  Immature DCs undergo a maturation process and develop 

from highly endocytic cells into professional APCs. DC activation by stimulation with 

either TLR ligands or inflammatory cytokines results in migration of DCs to lymphoid 

organs, redistribution of MHC II molecules from MIIC to the cell surface and 

expression of co-stimulatory molecules.192, 193 Although Ag uptake is transiently 

increased in response to TLR signaling endocytosis is decreased in mature DCs.194 

Furthermore, TLR signaling increases the efficiency of Ag presentation by DCs 

through phagosome maturation.195 

 

 CD4+ T cell activation and effector function 2.4.2
 

The priming of naïve CD4+ T cells to become effector CD4+ T cells carrying out 

different effector functions requires three distinct signals. The first signal is delivered 

by the APCs presenting the Ag via MHC II complex to the CD4+ T cells, which 

recognize the peptide-MHC II complex via its T cell receptor (TCR) inducing TCR 

downstream signaling. Subsequently the second signal, the co-stimulation, has to be 

delivered. APCs express co-stimulatory molecules on their surface, which interact 
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with the corresponding receptors expressed by CD4+ T cells. Finally, the third signal 

is mediated through cytokines produced by the activated APCs and secreted into the 

immunological synapse.196  

CD4+ T cells proliferate and start to produce cytokines when they interact via TCR 

with APCs presenting their specific Ag in context of MHC II and providing the 

additional co-stimulation via binding of co-stimulatory molecules to the corresponding 

receptors on the CD4+ T cells.197, 198, 199, 200, 201 CD69, a C-type lectin receptor, is one 

of the earliest glycoproteins acquired during lymphocyte activation.202 CD69 

expression is induced on the surface of T cells upon TCR engagement.202, 203 The 

induction of CD69 expression is extremely rapid (within hours) and requires de novo 

synthesis.204, 205, 206 Thus, T cell proliferation and CD69 up-regulation on the surface 

of T cells are two parameters to measure early T cell activation upon interaction with 

the cognate Ag presented by APCs.  

APCs are the main drivers of T cell activation and differentiation in lymphoid organs. 

DC are known as professional APCs and are absolutely crucial for the regulation of T 

cell activation, the differentiation into a certain T helper subset, and the T cell effector 

function and survival. In response to microbial simulation, recognized through TLRs, 

or to inflammatory cytokines, DCs undergo maturation, allowing them to migrate into 

lymphoid organs where they can interact with T cells, and inducing the expression of 

the co-stimulatory molecules CD80 and CD86 (also known as B7-1 and B7-2) on 

their surface.207 Via CD80 and CD86, DCs are able to deliver the co-stimulation to 

CD4+ T cells expressing the corresponding receptor, CD28, on the surface.208, 209 The 

CD80/CD86 – CD28 co-stimulation pathway is suggested to deliver the most efficient 

signal, as it could be shown that CD28-deficient cells fail to proliferate in the 

presence of APCs.210 CD28 engagement on T cells has several distinct effects. It 

stimulates the proliferation of T cells and induces up-regulation of high levels of IL-2 

secreted by the T cells.211 Further it promotes T cell survival by enhancing Bcl-XL 

expression.212 Those effects have been shown to depend on the engagement of 

downstream signaling via phosphoinositide-3 kinase (PI3K), NFκB and protein 

kinase B (PKB).213 TCR and CD28 triggering induces several signaling cascades, 

including NFκB, NFAT (nuclear factor of activated T cells), JNK (c-Jun N-terminal 

kinase) and ERK (extracellular regulated kinase), resulting in the expression of IL-

2.214 IL-2 secretion and IL-2 receptor expression by T cells is increased upon 

activation thereby IL-2 achieves an autocrine effect and supports the survival of T 

cells.215 The main elements of this co-stimulatory pathway, CD80216 and CD28217 

were already discovered a long time ago and the absolute requirement for co-
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stimulation to induce activation and proliferation of T cells could be demonstrated by 

the fact that T cells were unresponsive upon TCR engagement in the absence of co-

stimulation.218 T cell activation through TCR triggering in the absence of CD80/86-

CD28 co-stimulation leads to a state of anergy characterized by severely reduced 

production of IL-2 and other effector cytokines.219 CD40, another co-stimulatory 

molecule, mediates APC-T cell dialog and is expressed on DCs. CD40 can be ligated 

by its corresponding ligand, CD40L, expressed on T cells. This results in the 

activation of the NFκB pathway220 inducing increased DC survival221 and DC 

maturation including up-regulation of the co-stimulatory molecules CD80 and 

CD86.222  

DCs can provide all three signals required for efficient CD4+ T cell activation. They 

are able to prime naïve CD4+ T cells inducing activation (signal 1), survival (signal 2) 

and differentiation (signal 3) into different CD4+ T cell effector subsets. CD4+ T cells 

are categorized within these Th cell subsets based on the secretion of a distinct set 

of effector cytokines. Nowadays the following Th subsets are described: Th1 cells, 

Th2 cells, Th17 cells, T follicular helper cells (Tfh) and inducible regulatory T cells 

(iTregs).223, 224 The plasticity between the distinct Th subsets as well as the lineage 

commitment and differentiation into these subsets, and the categorization based on 

the effector cytokine repertoire is still under debate.224 Th1 and Th2 cells, 

characterized by the expression of IFNγ and IL-4, respectively, have been already 

identified in 1986.225 Further research revealed that Th1 cell development depends 

on the expression of the transcription factor T-bet and the presence of IL-12 and IFNγ 

produced by other immune cells (e.g. DCs and NK cells, respectively). By the 

production of IFNγ, Th1 cells are able to promote immunity to intracellular 

microorganism.223, 226, 227 Additionally to IL-4 production, Th2 cells are capable to 

secrete IL-5, IL-9, IL-10, IL-13, IL-25 and amphiregulin thereby contributing to 

immunity against extracellular parasites and to the induction and persistence of 

asthma and allergies. Th2 differentiation requires the transcription factor Gata-3 and 

the cytokines IL-2 and IL-4 whereby IL-4 is a positive feedback loop cytokine in Th2 

differentiation produced by the Th2 cell itself.223, 228, 229, 230 Th17 cells require RORγt 

and the presence of transforming growth factor (TGF)-β for their development.231, 232, 

233, 234 They are characterized as IL-17 and IL-22 producing cells thereby promoting 

immunity against extracellular bacteria and fungi.223, 235 iTreg development depends on 

the transcription factor FoxP3 and the cytokine TGFβ.236, 237 Survival of iTregs is 

mediated via IL-2 as these cells express high levels of CD25, the high affinity 

receptor for IL-2.238 iTregs are involved in the regulation and suppression of immune 
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responses.238 The cytokines IL-6 and IL-21 are the main cytokines involved in the 

differentiation of Tfh cells.239, 240 Recently the transcription factor Bcl-6, which is 

selectively expressed by Tfh cells, has been identified to play an important role in Tfh 

cell differentiation.241 Tfh cells are located in follicular areas of lymphoid tissue and 

participate in the development of Ag-specific B cell immunity.242, 243 They are able to 

interact with Ag-primed B cells in special structures called germinal centers inducing 

the differentiation of B cells into Ig-producing plasma cells and the development of 

long-lived memory B cells.244 Thereby Tfh cells play a significant role in mediating 

humoral immune responses through the interaction with B cells.  

Collectively, DCs are professional APCs and play crucial roles in the induction of 

adaptive immunity. They are able to integrate innate signals and thereby modulate 

the outcome of an immune response. They induce the differentiation of CD4+ T cells 

into distinct helper subsets and promote their survival. Thus, they are able to initiate 

a pathogen-dependent fine-tuned immune response by the induction of the correct T 

cell effector subset. 
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3 Aim of the project 
 

 

Group 3 innate lymphoid cells (ILC3s) were initially described as key players for the 

induction of lymphoid tissue formation and organization during embryogenesis. 

These cells are also found after birth, mainly present at mucosal surfaces in the 

gastrointestinal tract as well as in peripheral secondary lymphoid organs. An innate 

immune function has been attributed to ILC3s in the mucosa of adult mice based on 

their ability to release effector cytokines in response to soluble factors secreted by 

other cells such as dendritic cells (DCs). However, whether ILC3s are able to directly 

sense microbial products is not yet known. Additionally, whether ILC3s possess the 

ability to directly interact with cells of the adaptive immune system and thereby 

contribute to adaptive immune responses is not fully understood. Finally, the tissue-

specific properties of ILC3s have not been investigated until now. 

 

The first aim of the present study was to investigate whether ILC3s are able to 

directly sense and to respond to innate stimulation. To address this question, I tested 

the response of ILC3s to different microbial products and inflammatory cytokines. 

The response of ILC3s to innate challenge was monitored by the examination of 

changes in the phenotype and cytokine production.  

 

The finding that fetal/neonatal ILC3s can express major histocompatibility complex 

class II (MHC II) on their surface57 suggested that ILC3s might be able to interact 

with CD4+ T cells. Therefore, the second aim of the present study was to uncover the 

role of ILC3s in T cell and T-dependent B cell responses. To address this question, I 

tested, whether ILC3s are able to take up antigen (Ag), to process and to present it 

via MHC II to CD4+ T cells. Subsequently, I investigated whether ILC3s are capable 

to promote CD4+ T cell responses in vitro.  To examine the role of ILC3s in CD4+ T 

cell-mediated immunity in vivo, I generated a mouse model with a deficiency of MHC 

II exclusively in ILC3s, and tested Ag-specific CD4+ T cell and T-dependent B cell 

responses. 

Finally, to uncover tissue-related and environment-dependent ILC3 functions, I 

compared the phenotype as well as the ability of peripheral spleen-derived ILC3s 

and small intestine-derived ILC3s to respond to innate challenge and to induce CD4+ 

T cell responses. 
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4 Materials and methods 
 

4.1 Materials 
 

 Reagents and chemicals 4.1.1
 

2-mercaptoethanol      Gibco 

2-propanol (CH3CH(OH)CH3) Merck KgaA 

2x SensiMix SYBR Hi-ROX     Bioline 

Albumin from bovine serum (BSA)    Sigma-Aldrich 

Alum (Aluminium potassium sulphate, AlK(SO4)2)  Sigma-Aldrich  

Ammonium chloride (NH4Cl)     Sigma-Aldrich 

Anti-CD3 soluble Ab (clone 2cll) A. Rolink, University of 

Basel 

Anti-CD4 microbeads      Miltenyi Biotec 

Anti-PE microbeads      Miltenyi Biotec 

Brefeldin A (BFA)      Sigma-Aldrich 

Carboxyfluorescein succinimidyl ester (CFSE)  Molecular Probes 

Ciproxine       Bayer  

Collagenase D      Roche 

Cytochalasin D (CytD)  AppliChem 

D (+) – glucose monohydrate (C6H12O6 x H2O) Merck KgaA 

Deoxyadenosine triphosphate (dATP) Sigma-Aldrich 

Deoxycytidine triphosphate (dCTP) Sigma-Aldrich 

Deoxyguanosine triphosphate (dGTP) Sigma-Aldrich 

Deoxythymidine triphosphate (dTTP) Sigma-Aldrich 

Di-ethanolamine (C4H11NO2) Sigma-Aldrich 

Di-nitrophenyl phosphate (dNPP) Sigma-Aldrich 

Di-potassium hydrogen phosphate (K2HPO4) Merck KgaA 

Di-sodium hydrogen phosphate (Na2HPO4 x 2 H2O) Merck KgaA 

DMEM (1x) GlutaMaxTM-I Gibco 

DNase I Roche 

EDTA disodium salt dihydrate AppliChem 

Ethanol (C2H5OH) Merck KgaA 

Fetal calf serum (FCS, heat-inactivated) Gibco 

FluoSpheres® carboxylate-modified microspheres  Molecular Probes 



	
   45 

Hoechst 33342 Invitrogen 

Hypoxanthine-aminopterin-thymidine (HAT) supplement  Gibco 

Intracellular (IC) fixation buffer eBioscience 

Insulin Transferrin Selenium Gibco 

Iscove`s modified Dulbecco`s medium (IMDM) Sigma-Aldrich 

Kanamycin Sigma-Aldrich 

L929 Sigma-Aldrich 

Magnesium chloride (MgCl2) Roche 

Magnesium chloride hexahydrate (MgCl2 x 6 H2O) AppliChem 

Non-essential amino acids (NEAA) Gibco  

Oligo dT  Promega 

Phosphate buffered saline (PBS) Biochrom AG 

Penicillin Streptomycin (Pen Strep) Gibco 

Percoll GE Healthcare 

Polyethylene Glycol (PEG) 1500 Roche 

Potassium bicarbonate (KHCO3) Sigma-Aldrich 

Potassium chloride (KCl) AppliChem 

Primatone Sigma-Aldrich 

Propidium iodide (PI) Sigma-Aldrich 

Proteinase K Roche 

Random hexamers Sigma-Aldrich 

Sodium acide (NaN3) Merck KgaA 

Sodium chloride (NaCl) AppliChem 

Sodium dodecyl sulfate (SDS, C12H25NaO4S) BioRad 

Sodium hydrogen carbonate (NaHCO3)  Merck KgaA 

Sodium hydroxide (NaOH) Merck KgaA 

SuperScriptTM III Reverse Transcriptase   Invitrogen 

Taq Polymerase homemade 

Tris (C4H11NO3) Carl Roth GmbH 

Tween-20 AppliChem 

 

 Buffers, solutions and media 4.1.2
 

1x PBS      137 mM NaCl 

       2.7 mM KCl 

       10 mM Na2HPO4 x 2 H2O 
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       2 mM KH2PO4 

       in dH2O 

 

1x TE buffer      10 mM Tris 

       1 mM EDTA 

       in dH2O 

 

BMDC medium     IMDM (SF) 

       5 % FCS 

       200 ng/ml FLT3L 

 

BMMΦ medium     DMEM (1x) GlutaMaxTM-I 

       L929 

 

BW-OTII medium     IMDM (SF) 

       5 % FCS    

 

DMEM (1x) GlutaMaxTM-I    (+) 4.5 g/L D-Glucose 

       (-) Pyruvate 

 

dNTP mix      10 mM dATP 

       10 mM dCTP 

       10 mM dGTP 

       10 mM dTTP 

       in nuclease-free H2O 

 

ELISA buffer (NP-OVA ELISA)   1 % BSA  

       0.2 % Tween-20 

       in 1x PBS 

 

ELISA wash buffer (NP-OVA ELISA)   0.1 % Tween-20 

       in H2O 

 

Erythrolysis buffer     0.15 M NH4Cl 

       10 mM KHCO3 

       0.1 mM EDTA 

       in dH2O (pH 7.2 – 7.4) 
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FACS buffer      1x PBS 

       3 % FCS 

       2 mM EDTA 

 

HAT medium      IMDM (powder) 

       3.02 g NaHCO3 

       2 % FCS 

       2 % IL-6 supernatant 

       1x HAT supplement 

       0.5 % Ciproxine 

 

IMDM (SF)      IMDM (powder) 

       3.02 g NaHCO3 

       1 % PenStrep 

       1 % Ciproxine 

       0.1 % Kanamycin 

       1 % Insulin Transferrin  

       Selenium 

       0.3 % Primatone 

       1 % NEAA 

       0.1 % 2-mercaptoethanol 

 

IMDM 2 % FCS     IMDM (SF) 

       2 % FCS 

 

IMDM 5 % FCS     IMDM (SF) 

       5 % FCS 

 

IMDM 10 % FCS     IMDM (SF) 

       10 % FCS 

 

lysis buffer       1 mM Tris (pH 8.0) 

(for DNA isolation from mouse biopsies)  100 mM NaCl   

10 mM EDTA (pH 8.0) 

0.5 % SDS   

 in dH2O  
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substrate buffer (NP-OVA ELISA)   0.1 g MgCl2 x 6 H2O 

       10 mM NaN3 

       10 % C4H11NO2 

in 1 l dH2O (pH 9.8)   

 

 Cytokines, TLR ligands, peptides, proteins 4.1.3
 

FMS-like tyrosine kinase ligand (FLT3L)  A. Rolink, University of Basel 

IL-1β, recombinant     Biovision 

IL-6, supernatant (clone X63)    A. Rolink, University of Basel 

IL-7, recombinant     Peprotech 

IL-23, recombinant     eBioscience 

SCF, recombinant     Peprotech 

TNFα, recombinant     R&D systems 

IFNβ, recombinant     Sigma-Aldrich   

IFNγ, recombinant     R&D systems 

 

CpG (class B) Trilink Biotechnologies (CpG-

ODN1826 InvivoGen) 

Flagellin (Flag) InvivoGen 

Imiquimod (Imiqui) InvivoGen 

Lipopolysaccharide (LPS) Sigma-Aldrich 

Pam3Cys (P3C) InvivoGen 

Poly I:C InvivoGen  

Zymosan (Zym) InvivoGen 

 

Ovalbumin323 - 339 (OVA323 - 339) peptide AnaSpec 

OVA protein (Imject Ovalbumin) Thermo Fisher Scientific Inc. 

4-hydroxy-3-nitrophenylacetyl NP- (18)-OVAL  Biosearch Technologies Inc. 
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 Antibodies (Abs) 4.1.4
 

Abs used for flow cytometry analysis (directed against murine proteins) 

specificity      clone 

CD3ε        17A2, 145-2C11  

CD4        RM4-4, RM4-5 and GK1.5  

CD8α        53-6.7 

CD11b       M1/70 

CD11c       117310, N418  

CD19        6D5 

CD21       7G6 

CD23        B3B4 

CD25  (IL-2Rα)     PC61, 7D4  

CD29  (β1 integrin)     HMb1-1 

CD40       1C10, HM40-3  

CD44        IM7 

CD45R (B220)     RA3-6B2 

CD54  (ICAM-1)     3E2 

CD62L       MEL-14  

CD69        H1.2F3  

CD80        16-10A1  

CD86        GL1  

CD90.2 (Thy1.2)     30-H12 

CD117 (ckit)      2B8 

CD127 (IL-7Rα)      A7R34  

CD132 (γc chain)     TUGm2 

CD184 (CXCR4)     2B11  

CD185 (CXCR5)     2G8  

CD196 (CCR6)     29-2L17 

CD197 (CCR7)     4B12 

CD275 (ICOSL)     HK5.3 

CD278 (ICOS)      C398.4A 

α4β7        DATK32 

F4/80        BM8 

Gr-1        RB6-8C5 

IFNγ        XMG1.2 
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MHC II       M5/114.15.2, 25/09/2017 

NKp46       29A1.4 

NK1.1        PK136 

RORγt        AFKJS-9, B2D 

TCRβ        H57-597  

TCRγδ        UC7-13D5 

 

All reagents were purchased from BD Bioscience, eBioscience or Biolegend (all San 

Diego, CA). Primary monoclonal Abs (mAbs) were conjugated to either fluorescein 

isothiocyanate (FITC), phycoerythrin (PE), allophycocyanin (APC), brilliant violet 421 

(BV421TM) or the tandem dyes phycoerythrin cyanine 7 (PECy7), peridinin chlorophyll 

(PerCP)-eFluor 710 and allophycocyanin cyanine 7 (APCCy7).  

Biotin-conjugated primary mAbs were detected using secondary anti-rat polyclonal 

Abs conjugated either to Streptavidin/PECy7, Streptavidin/APCCy7 or 

Streptavidin/BV421TM (Biolegend). 

Blocking of Fc receptors was performed using anti-mouse FcγRII/III mAb (clone 

2.4G2, purified supernatant, home made). 

 

Abs used for Lymphotoxinαβ  staining 

LTβ-R Fc (human)     J. Browning, Biogen 

Biotin-conjugated goat anti-human IgG  Jackson Immunosearch 

 

Abs used for ELISA (NP - OVA) 

For coating of plates: 

Purified anti-mouse IgM (unlabeled) M41 (A. Rolink, University of 

Basel)  

Purified anti-mouse IgG3 (unlabeled)   R2-38, BD Bioscience 

 

For detection: 

Biotin-conjugated goat anti-mouse IgM M41 (A. Rolink, University of 

Basel) 

Biotin-conjugated goat anti-mouse IgG  Caltag Laboratories 

Biotin-conjugated goat anti-mouse IgG1  Caltag Laboratories 

Biotin-conjugated goat anti-mouse IgG2a  Caltag Laboratories 

Biotin-conjugated goat anti-mouse IgG2b  Caltag Laboratories 

Biotin-conjugated goat anti-mouse IgG3  Caltag Laboratories 
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Alkaline phosphatase (AKP) – Streptavidin  Roche 

AKP- anti-mouse IgG3    R40-82, BD Bioscience 

 

 Primers for real time quantitative PCR (RT qPCR) 4.1.5
 

β-actin: 

Fwd: 5’ CAATAGTGATGACCTGGCCGT 3’ 

Rev: 5’ AGAGGGAAATCGTGCGTGAC 3’ 

IL-1β: 

Fwd: 5’ GACCCCAAAAGATGAAGGGCT 3’   

Rev: 5’ ATGTGCTGCTGCGAGATTTG 3’ 

TNFα: 

Fwd: 5’ CCAAGTACTTAGACTTTGCGG 3’ 

Rev: 5’ CTGAGGAGTAGACAATAAAGGG 3’ 

IFNγ: 

Fwd: 5’ CTGAGACAATGAACGCTACAC 3’ 

Rev: 5’ TTTCTTCCACATCTATGCCAC 3’ 

 

 Kits 4.1.6
 

Experion RNA HighSens Analysis Kit   BioRad 

Foxp3 staining buffer set      eBioscience 

LIVE/DEAD® Fixable Aqua Dead Cell Stain Kit   Molecular Probes 

mouse IL-17 ELISA MAXTM Standard Set    Biolegend 

mouse IL-22 ELISA MAXTM Deluxe Set    Biolegend  

RNeasy Micro Kit       Qiagen  

RNeasy Mini Kit       Qiagen 

SensiMix SYBR Hi-ROX Kit     Bioline 

SuperScriptTM III Reverse Transcriptase   Invitrogen 

Zombie AquaTM Fixable Viability Kit     Biolegend 
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 Tools and instruments 4.1.7
 

BD Microtainer SST tubes      BD Bioscience 

Cell counter CASY INNOVATIS    Roche 

Cell strainer (70 µm / 100 µm)    Falcon 

CO2 - incubator       Binder 

Confocal microscope LSM 510 Meta    Zeiss 

Cs-137 radiator      Gammacell 

Eppendorf centrifuge 5810 R, 5415 R, 5417 R  Eppendorf 

Eppendorf Thermomixer Comfort    Eppendorf 

Eppendorf Mastercycler Gradient    Eppendorf 

ELISA plate reader      ASYS Expert Plus 

FastPrep-24 instrument      MP Biomedicals 

Flow cytometer BD FACSAria Ilu    BD Bioscience 

Flow cytometer BD FACSCalibur    BD Bioscience 

Flow cytometer BD FACSCanto II    BD Bioscience 

MACS® multi stand (magnetic column holder)  Miltenyi Biotec 

MACS® separation columns MS/LS Miltenyi Biotec 

MAXI sorb 96 well plates     Nunc 

Micro tubes PP (1.5 ml)      Sarstedt 

Luminex 100 (LX100) analyzer     Invitrogen 

Nanodrop 2000c      Thermo Scientific 

Rotorgene RT PCR machine (RG-3000A)   Corbett Research 

Shaker Polymax 1040      Heidolph 

Syringes 1 ml BD MicroFine+      BD Bioscience 

Thermocyler Biometra (PCR)     BIOLABO 

Vortex Genie       Scientific Industries 

Waterbath       GFL 

Zirconia beads       BioSpec Products 

 

 Software 4.1.8
 

Program  Application    Provider 

FlowJo   FACS analysis   Tree Star Inc., USA 

Prism   Graphs, calculations   GraphPad Software  

        Inc., USA 

ImageJ  Image analysis   NIH, USA  
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 Mice 4.1.9
 

C57BL/6 (WT) mice were purchased from Janvier (Saint Berthevin Cedex, France). 

RORγ-/-,70 MHCIIΔ/Δ (here referred to as I-ab-/-),245 Rag2-/- (provided by G. Hollaender, 

University of Basel, Switzerland and Jesus College Oxford, UK),246 OT-IItg (provided 

by A. Rolink, University of Basel, Switzerland),247 I-abneo (provided by E. Palmer, 

University of Basel, Switzerland),248 RORc(γt)-Cretg mice (provided by A. Diefenbach, 

University of Mainz, Germany),25 MyD88fl,249 MyD88-/- (provided by M. Donath, 

University Hospital, Basel, Switzerland),250 MyD88-/-Trif-/- (crossing between MyD88-/- 

and Trif-/-  mice,251 provided by B. Holzmann, Technische Universität München, 

Munich, Germany), IL-1R1-/- (provided by M. Manz, University of Zurich, 

Switzerland),252 IL-23p19-/- (provided by B. Becher, University of Zurich, 

Switzerland),253 I-abΔILC3 (MHC II deficiency exclusively in RORγt+ ILCs) and 

MyD88ΔILC3/T mice (MyD88 deficiency exclusively in RORγt+ cells) were kept under 

specific-pathogen free (SPF) conditions. The animal experiments received the 

approval of the Cantonal Veterinary Office of the city of Basel, Switzerland. 

 

4.2 Methods 
 

 Time mating 4.2.1
 

For timed pregnancies two females and one male were placed in the same cage in 

the late afternoon. The next morning (approx. 15 h later), male and females were 

separated again. Females were checked for vaginal plugs. Plug positive females 

were assumed to be at gestational age 0.5 days.  

 

 Generation of I-abΔILC3 and MyD88ΔILC3/T mice 4.2.2
 

I-abΔILC3 mice were generated by crossing I-abneo mice, which contain a floxed H2-

Ab1 allele, with RORc(γt)-Cretg mice. F1 generations were backcrossed to I-abneo 

mice. I-abΔILC3 mice are homozygous for the floxed H2-Ab1 allele and carry one copy 

of the Cre transgene.  

MyD88ΔILC3/T mice were generated by crossing MyD88fl mice, which contain a floxed 

MyD88 allele, with RORc(γt)-Cretg mice. F1 generations were backcrossed to 

MyD88fl mice. MyD88ΔILC3/T mice are homozygous for the floxed MyD88 allele and 

carry one copy of the Cre transgene. 
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 Genotyping of I-abΔILC3 and MyD88ΔILC3/T mice 4.2.3
 

Isolation of DNA 

For isolation of genomic DNA, biopsies were digested in lysis buffer containing 300 

µg/ml Proteinase K (at least 3 h at 56 °C while shaking at 700 rpm on a heat block). 

Saturated NaCl (6 M) was added for 10 min at 4 °C to remove membrane lipids. After 

centrifugation, supernatant was collected and DNA was precipitated by addition of 2-

propanol for 15 min at RT. DNA was recovered in 1x TE buffer and stored at 4 ºC. 

 

Reaction mix for PCR 

1. Cre - PCR 

Primer Cre Fwd:  5’ CGTACTGACGGTGGGAGAAT 3’ 

Primer Cre Rev:  5’ TGCATGATCTCCGGTATTGA 3’ 

 

PCR reaction mix: 

2.5 µl  10x buffer  

0.5 µl  Cre Fwd primer (10 µM) 

0.5 µl  Cre Rev primer (10 µM) 

0.5 µl  dNTPs (10 mM)   

0.1 µl    Taq Polymerase (homemade) 

 1 µl  genomic DNA 

fill up to 25 µl final volume with H2O 

 

PCR program for amplification:  

step 1  94 ºC  5 min 

step 2  94 ºC  30 sec 

step 3  58 ºC  30 sec 

step 4  72 ºC  90 sec  step 2 - 4 33 x 

step 5  72 ºC  10 min 

step 6  10 ºC  hold 

 

product length:   

Cre: ~420 base pairs (bp) 

 

2. MyD88fl - PCR 

Primer MyD88 Fwd:   5’ GTT GTG TGT GTC CGA CCG T 3’ 
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Primer MyD88 Rev:   5’ GTC AGA AAC AAC CAC CAC CAT GC 3’ 

 

PCR reaction mix: 

1.2 µl  10x buffer  

1.2 µl  MyD88 Fwd primer (10 µM) 

1.2 µl  MyD88 Rev primer (10 µM) 

 0.24 µl dNTPs (10 mM)   

 0.96 µl MgCl2 

 1 µl    Taq Polymerase (homemade) 

 1 µl  genomic DNA 

fill up to 12 µl final volume with H2O 

 

PCR program for amplification:  

step 1  94 ºC  3 min 

step 2  94 ºC  30 sec 

step 3  66 ºC  1 min 

step 4  72 ºC  1 min  step 2 - 4 35 x 

step 5  72 ºC  2 min 

step 6  10 ºC  hold 

 

product length:  

homozygote: 353 bp 

heterozygote: 266 bp and 353 bp 

wild type: 266 bp 
 

3. I-abneo -PCR 

Primer common Fwd:   5’ CTC TAC ACC CCC AAC ACA CC 3’ 

Primer WT Rev:   5’ AGT GAG CGA GCA CAG ACA AG 3’ 

Primer I-ab Rev:   5’ TCG CCT TCT TGA CGA GTT CT 3’ 

 

PCR reaction mix: 

1.2 µl  10x buffer  

1.2 µl  common Fwd primer (10 µM) 

1.2 µl  WT Rev primer (10 µM) 

1.2 µl  I-ab Rev primer (10 µM) 

0.24 µl  dNTPs (10 mM)   
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0.96 µl  MgCl2 

1 µl    Taq Polymerase (homemade) 

1 µl  genomic DNA 

fill up to 12 µl final volume with H2O 

 

PCR program for amplification:  

step 1  94 ºC  3 min 

step 2  94 ºC  30 sec 

step 3  62 ºC  30 sec 

step 4  72 ºC  30 sec  step 2 - 4 35 x 

step 5  72 ºC  2 min 

step 6  10 ºC  hold 

 

product length:  

homozygote: 199 bp 

heterozygote: 199 bp and 295 bp 

wild type: 295 bp 

 

 Flow cytometry and cell sorting 4.2.4
 

Cells derived from various organs were stained with mAbs using standard 

protocols.88 Briefly, cells were resuspended in FACS buffer and stained with 

biotinylated or fluorochrome-conjugated Abs (30 min, 4 ºC). Fc receptors were 

blocked by incubation of the cells with anti-mouse FcγRII/III mAb (clone 2.4G2). 

Fluorochrome-conjugated streptavidin was added as a second incubation step (20 

min, 4 ºC) for stainings including biotinylated Abs.  

Intracellular RORγt staining was carried out using Foxp3 staining buffer set 

(eBioscience) according to manufacturer`s protocol. For intracellular cytokine 

staining (IFNγ), IC fixation buffer (eBioscience) was used and cells were incubated 

with 10 µg/ml Brefeldin A (BFA) for 4 h at 37 °C before analysis. 

Dead cells were identified using LIVE/DEAD® Fixable Aqua Dead Cell Stain Kit 

(Molecular Probes), Zombie AquaTM Fixable Viability Kit (Biolegend) or in case of 

non-fixed cells propidium iodide (PI) solution (Sigma-Aldrich).  

Lymphotoxinαβ (LTαβ) staining was performed as previously described.87 Briefly, 

cells were treated with anti-FcγRII/III mAb (clone 2.4G2) and 0.5 % mouse and rat 

serum. LTβR-Fc (J. Browning, Biogen, Cambridge) was added and detected using 
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biotin-conjugated goat anti-human IgG (Jackson Immunoresearch) pretreated for 30 

min with 4 % rat and mouse serum. Finally, fluorochrome-conjugated streptavidin 

and surface Abs were added. 

Data acquisition was realized using FACSCalibur (four color staining) or FACSCanto 

II (eight color staining). Data were analyzed using FlowJo software (Tree Star). 

Cell sorting was done using FACSAria Ilu (BD Bioscience, >98 % purity). 

Absolute numbers of cells derived from various organs were determined by counting 

cells with the cell counter CASY INNOVATIS (Roche). 

 

 Cell isolation and culture 4.2.5
 

For in vitro generation of FL-derived NCR-ILC3s, total FL cells were isolated from 

14.5 days post coitum (dpc) WT embryos, stained with PE-conjugated anti-α4β7 Ab 

(DATK32) and purified with magnetic associated cell sorting (MACS®, Miltenyi 

Biotec). MACS® - enriched FL-derived α4β7
+ ILC3 precursors were cultured for 5 days 

in supplemented Iscove’s modified Dulbecco’s medium containing 2 % FCS (IMDM 2 

% FCS) in the presence of 20 ng/ml IL-7 (Peprotech) and 20 ng/ml SCF (Peprotech) 

at 37 ºC and 10 % CO2 as described before.89 Total cells were harvested from 

cultures and in vitro generated NCR-ILC3s were sorted based on CD90.2, CD117 

and CD4 expression. 

Splenic and small intestinal lamina propria (LP) NCR-ILC3s were isolated from spleen 

and small intestine (SI) of adult mice. Briefly, SI was opened longitudinally, feces 

were removed, and SI was cut into small pieces, which were incubated in 1x PBS 

containing 30 mM EDTA for 30 min at 4 ºC (tubes were laid down horizontally on 

ice). Afterwards, tissue pieces were washed several times in 1x PBS by vigorous 

shaking and then incubated in Dulbecco modified eagle’s minimal essential medium 

(DMEM, Gibco) containing 0.025 mg/ml DNAseI (Roche) and 1 mg/ml Collagenase D 

(Roche) for total 1 h at 37 ºC. Every 15 min, tissue pieces in medium were pipetted 

up and down 20 times and afterwards the supernatant was collected (by passing 

through a 100 µm filter). The remaining tissue pieces were re-incubated with fresh 

pre-warmed medium containing DNAseI and Collagenase D. Cell suspension was 

pelleted, resuspended in 5 ml 40 % Percoll (GE Healthcare), underlaid with 3 ml 80 

% Percoll and centrifuged for 30 min at 20 ºC (1800 rpm, acceleration 4, brake 1). 

Cells of the interphase were collected (total LP lymphocytes).  

Spleens were cut into pieces, washed in 1x PBS by vigorous shaking and digested 

with DNaseI and Collagenase D as described for SI tissue pieces.  After digestion, 
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spleen cells were pelleted, washed and red blood cells were lysed using erythrolysis 

buffer (2 min at room temperature (RT)).  

Ex vivo isolated splenic or small intestinal LP ILC3s were sorted based on the 

expression of CD117 or CD90.2 and the lack of the lineage marker CD3ε, CD8α, 

CD11c, CD19, B220, Gr-1, TCRβ, TCRγδ, NK1.1 and NKp46.  

Naïve CD4+ T cells from spleen and LNs of OT-IItg mice were magnetically purified by 

using CD4-beads (LTR4, Miltenyi Biotec) following manufacturer’s instruction. 

Additionally, MACS® - enriched CD4+ T cells were sort-purified based on CD4 

expression and the lack of CD11c to reach >98 % CD4+ T cell purity.  

BMDCs and BMMΦ were generated as described elsewhere.254, 255 In brief, femurs 

and tibias of WT mice were collected and the BM was recovered by crushing the 

bones. Red blood cells were lysed using erythrolysis buffer (2 min at RT). For 

BMDCs, total BM cells were cultured in a 6 well plate (Nunc) in supplemented IMDM 

containing 5 % FCS (IMDM 5 % FCS) in the presence of 200 ng/ml FLT3L (A. Rolink, 

University of Basel) at 37 ºC and 10 % CO2. For BMMΦ, total BM cells were cultured 

in a 10 cm petridish (Sarstedt) in DMEM (Gibco) supplemented with L929 (Sigma 

Aldrich) at 37 ºC and 10 % CO2. Cells were harvested after 7 days in culture.  

 

 Generation of BW - OTII cells 4.2.6
 

BW-OTII cells were generated as already described.256 Briefly, total splenocytes of 

an OT-IItg mouse were cultured for 2 days in supplemented IMDM containing 10 % 

FCS (IMDM 10 % FCS) in the presence of 5 µg/ml soluble anti-CD3 Ab (clone 2cll, A. 

Rolink, University of Basel). Activated OT-IItg splenocytes were fused with the 

TCRαβ- BW5147 NFAT-EGFP fusion partner using pre-heated PEG 1500 solution. 

Cells were plated out at limiting dilution in the presence of HAT (hypoxanthine-

aminopterin-thymidine) medium. Grown BW-OTII clones were tested in vitro in the 

presence of irradiated WT splenocytes and OVA323-339
  peptide.   

 

 ILC3 stimulation and Ag presentation assay in vitro 4.2.7
 

Sort-purified in vitro generated NCR-ILC3s or ex vivo isolated splenic and LP NCR-

ILC3s were cultured in a 96-well plate (Costar, Corning Inc.) in the presence of either 

TLR ligands (100 ng/ml Pam3Cys, 25 µg/ml Poly I:C, 1 µg/ml Flagellin, 1 µg/ml 

Imiquimod, 10 µg/ml Zymosan, 1 µg/ml LPS, 1 µM CpG), pro-inflammatory cytokines 

(20 or 100 ng/ml IL-1β, 20 ng/ml IL-23) or in medium alone for 48 h.  
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To test Ag presentation and CD4+ T cell activation, 5 x 104 sort-purified stimulated 

(20 ng/ml IL-1β, 24 h) NCR-ILC3s were co-cultured with either 1.5 x 105 ex vivo 

isolated and sort-purified OT-IItg CD4+ T cells or 1 x 105 cultured BW-OTII cells in the 

presence of either OVA323-339
 peptide (5 µg/ml), OVA protein (100 µg/ml) or medium 

alone (w/o Ag) for 48 - 72 h or 12 - 15 h, respectively.  

 

 CFSE labeling and fluorescent latex bead uptake 4.2.8
 

To follow up proliferation of CD4+ T cells upon antigen (Ag) challenge, OTIItg CD4+ T 

cells were labeled with 7.5 µM carboxyfluorescein succinimidyl ester (CFSE) in 1x 

PBS for 10 min at 37 °C. The reaction was stopped by addition of 1x PBS containing 

80 % FCS. 

Fluorescent latex bead uptake was performed as previously described with some 

adaptations.257 Briefly, in vitro generated NCR-ILC3s or ex vivo isolated splenic and 

LP NCR-ILC3s were cultured in a 96-well plate flat bottom over night (o/n) to allow 

the cells to settle down. Latex beads (FluoSpheres® carboxylate-modified 

microspheres, 1 µm, red fluorescent (580/605)) were added for 6 h at 37 ºC and 4 

ºC. To examine the specificity of bead uptake, ILC3s were pre-incubated for 1 h in 

the presence of 0.5 µM Cytochalasin D, washed and afterwards incubated with latex 

beads for 6 h at 37 ºC. To compare bead uptake of BMMΦ and NCR-ILC3s, cells 

were harvested after 2 h or 24 h. Bead internalization was analyzed by flow 

cytometry and immunofluorescence microscopy. For immunofluorescence 

microscopy, in vitro generated NCR-ILC3s were stained with FITC-conjugated anti-

CD90.2 (30-H12, 30 min at 4 °C) and HOECHST dye (Hoechst 33342, 30 min at 37 

°C) after incubation with beads. Bead uptake was monitored using a confocal laser-

scanning microscope (Zeiss LSM 510 Meta). Images were analyzed with ImageJ (W. 

Rasband, NIH). An adjustment of brightness and contrast was performed. 

 

 Adoptive cell transfer and immunization 4.2.9
 

To investigate CD4+ T cell proliferation in vivo, 3 x 106 OT-IItg CD4+ T cells (CFSE+) 

were intravenously (i.v.) injected into WT, I-abΔILC3 and I-ab-/- recipient mice, which 

additionally were i.v. immunized with OVA323-339 peptide (20 µg), OVA protein (100 

µg) and CpG (50 µM). 48 h later, OT-IItg CD4+ T cell proliferation was examined in 

the spleen by flow cytometry.  
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To examine T- dependent (TD) B cell responses in vivo, 2 x 106 OT-IItg CD4+ T cells 

plus CpG (25 µM) were i.v. injected into WT, I-abΔILC3 and RORγ-/- mice. Mice were 

immunized intraperitoneally (i.p.) with 100 µg alum-precipitated NP-OVA (NP (18)-

OVAL) at day 0. Sera were collected 1 day before (day -1) and at day 5 and 14 after 

NP-OVA immunization and CD4+ T cell transfer. 

To monitor CD4+ T cell – NCR-ILC3 interaction in vivo, APCs (either BMDCs or in 

vitro generated NCR-ILC3s) were i.v. injected into I-ab-/- mice. 24 h later, OT-IItg CD4+ 

T cells were adoptively transferred (i.v.) and mice were immunized. Different 

immunization strategies were used; i) alum-precipitated NP-OVA (100 µg), ii) OVA 

peptide (20 µg) and OVA protein (100 µg), iii) OVA peptide (20 µg), OVA protein (100 

µg) and CpG (50 µM). CD4+ T cell proliferation was monitored 48 h after 

immunization in the spleen, the inguinal LNs and the mesenteric LNs. In a second 

approach, APCs were injected into the foot pad (f.p.) of I-ab-/- mice in a maximal 

volume of 50 µl and monitored after different time points (3 - 24 h) in the draining LNs 

(popliteal LNs).  

To investigate activation state of NCR-ILC3s upon innate challenge in vivo, WT or 

Rag2-/- mice were injected i.p. with 100 µM CpG (CpG-ODN1826) or 100 µg LPS. 

The phenotype of splenic NCR-ILC3s was assessed 6 h later by flow cytometry. To 

perform RT qPCR analysis of spleen tissue, a small tissue piece was immediately 

frozen in liquid nitrogen (N2). 

 

 Antibody and cytokine detection by ELISA and Luminex assay 4.2.10
 

To detect NP-OVA-specific Abs in the serum of immunized mice, NUNC 

immunoplate Maxisorb F96 plates were coated with 5 µg/ml NP-OVA (Biosearch 

Technologies Inc.) in 1x PBS at 4 ºC o/n. Sera were incubated for 1.5 h at RT and 

after washing (H2O, 0.1 % Tween-20) biotin-conjugated goat anti-mouse IgG, IgG1, 

IgG2a, IgG2b or IgG3 (Caltag Laboratories, 1.5 h, RT) were added and detected by 

alkaline-phosphatase (AKP)-conjugated Streptavidin (Roche, 45 min, RT). Plates 

were developed with dinitrophenyl phosphate (dNPP, 1 mg/ml, Sigma) in substrate 

buffer. The reaction was stopped with 1 M NaOH (Fluka). The optical density (OD) 

was determined at 405 nm with an ELISA reader (ASYS Expert plus).  

To detect total IgM and IgG3 levels in the serum of non-immunized mice, NUNC 

immunoplate Maxisorb F96 plates were coated with either 5 µg/ml purified anti-

mouse-IgM (unlabeled, clone M41) or purified anti-mouse IgG3 (clone R2-38) in 1x 

PBS at 4 ºC o/n. Sera were incubated for 1.5 h at RT and after washing biotin-
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conjugated goat anti-mouse IgM was added to IgM coated plates (1.5 h, RT) and 

detected by AKP-conjugated Streptavidin (45 min, RT). AKP-conjugated anti-mouse 

IgG3 (R2-38) was added to IgG3 coated plates (1.5 h, RT). Plates were developed 

and OD at 405 nm was determined as described before.  

IL-17 and IL-22 were determined in the cell culture supernatants of NCR-ILC3s by 

either using mouse IL-17 ELISA MAXTM Standard Set (Biolegend) or mouse IL-22 

ELISA MAXTM Deluxe Set (Biolegend) according to manufacturer’s instructions. OD 

was determined at 450 nm with an ELISA reader (ASYS Expert plus).  

In addition, cytokines in cell culture supernatants of in vitro generated NCR-ILC3s 

were quantified using a multiplex-bead based Luminex assay (mouse cytokine 20-

plex panel, Invitrogen, Life technologies) according to manufacturer’s protocol. 

Analysis was performed with a Luminex 100 (LX100) analyzer (Invitrogen, Life 

technologies). 

 

 RNA isolation, cDNA synthesis and RT qPCR 4.2.11
 

For RNA isolation from whole spleen tissue, a small tissue piece was immediately 

frozen in liquid N2 in a 1.5 ml Micro tube PP (Sarstedt) containing Zirconia beads 

(BioSpec Products). Whole tissue was homogenized using FastPrep-24 instrument 

(MP Biomedicals) for 1 min at 6.5 m/sec. Afterwards, RNA was isolated with the 

RNeasy Mini Kit (Qiagen) according to manufacturer’s protocol. RNA quantification 

and quality assessment were performed on a Nanodrop 2000c (Thermo Scientific 

Inc.).  

First-strand cDNA synthesis was carried out using Oligo dT (Promega), dNTPs 

(Roche), random hexamers (Sigma-Aldrich) and Superscript III Reverse 

Transcriptase (Invitrogen) according to manufacturer’s instructions. Real-time qPCR 

for quantitative expression analysis was performed on a Rotor-Gene RG-3000A 

(Corbett research) using SensiMix SYBR Hi-Rox Kit (Bioline). The results were 

normalized to the housekeeping gene β-actin using the comparative threshold cycle 

method (ΔCT) for relative quantification. 

 

 DNA microarray analysis 4.2.12
 

The gene expression profiles of in vitro generated CD4+ and CD4- NCR-ILC3s were 

assessed using Affymetrix Gene 2.0 ST Array (Affymetrix, Santa Clara, CA). 

Microarray data were generated by analysis of only one specimen per experimental 
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condition; i) naïve CD4+ NCR-ILC3s, ii) naïve CD4- NCR-ILC3s, iii) IL-1β-activated 

CD4+ NCR-ILC3s and iiii) IL-1β-activated CD4- NCR-ILC3s. The activation of cells 

with IL-1β was carried out in in vitro cultures for 1 h at 37 °C. RNA from sort-purified 

in vitro generated CD4+ and CD4- NCR-ILC3s (2 x 105 – 1 x 106 cells) was isolated 

using the RNeasy Micro Kit (Qiagen) according to manufacturer’s protocol. High 

quality of RNA was confirmed with the Experion RNA HighSens Analysis Kit 

(BioRad). RNA target synthesis starting with 258.7 ng RNA was performed using WT 

Expression Kit (Ambion).  Fragmentation and labeling of amplified cDNA were 

carried out using GeneChip® WT Terminal Labeling Kit (Affymetrix). DNA was 

loaded on Mouse Gene 2.0 ST Array (Affymetrix), hybridized for 17 h and afterwards 

washed and stained using Affymetrix protocol FS450_0007. The GeneChips were 

processed with an Affymetrix GeneChip® Scanner 3000 7G and DAT images (raw 

image data from chip scanner) as well as CEL files (intensity values) of the 

microarray were generated using Affymetrix GeneChip® Command Control® 

Software (AGCC, version 3.0.0.1214). Affymetrix CEL files were normalized based 

on the RMA (Robust Multiarray Average)258 and data were log2-transformed using 

Partek® Genomics Suite (version 6.12.0907) software (Partek Inc. St. Louis, MO).  

 

 Statistical analysis 4.2.13
 

Statistical analysis was performed using Mann Whitney U test, unpaired Students t-

test and Wilcoxon test with Prism software (GraphPad Software, Inc.). 
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5 Results 
 

5.1 In vitro generation of natural cytotoxicity receptor-negative 
(NCR–) ILC3s. 

 

 Fetal liver-derived α4β7
+ cells can give rise to CD4+ and CD4- 5.1.1

NCR- group 3 innate lymphoid cells in vitro.  
 

To study the immune response of natural cytotoxicity receptor (NCR)- group 3 innate 

lymphoid cells (NCR-ILC3s) toward innate stimuli in vitro, these cells were either in 

vitro generated from α4β7
+ ILC3 precursors or ex vivo isolated from different organs 

of adult mice. The α4β7
+ ILC3 precursors could be found in the fetal liver (FL) of WT 

embryos 14.5 dpc and were known to give rise to NCR-ILC3s in vitro.60, 61 Therefore, 

for in vitro generation of NCR-ILC3s, I cultured FL-derived α4β7
+ ILC3 precursors for 5 

days in the presence of IL-7 and SCF. These two factors were known to be essential 

for the survival and maintenance of NCR-ILC3s in vitro and in vivo.88, 89, 91, 103 By the 

use of these culture conditions the majority of α4β7
+ ILC3 precursors differentiated 

into FL- derived NCR-ILC3s expressing characteristic phenotypic markers of NCR-

ILC3s like CD90.2, CD127 (IL-7Rα) and CD117 (Fig. 5 A).  

 

 



	
   64 

	
  	
  	
  	
  	
  	
  	
   	
  
 

Figure 5:	
   In vitro generation of NCR-ILC3s from α4β7
+ ILC3 precursors isolated from the FL of 

14.5 dpc WT embryos. A) Phenotype of α4β7
+ cells isolated from the FL of 14.5 dpc WT embryos 1, 4 

and 5 days in culture with IL-7 and SCF. Representative dot plots are shown. Numbers in dot plots show 
the percentage of cells in each gate. 

 

Phenotypic analysis of in vitro generated NCR-ILC3s revealed that within the 

CD90.2+CD117+ population of NCR-ILC3s two different subpopulations of cells 

existed (Fig. 6 A). One subpopulation showed CD4 expression on the surface (CD4+ 

NCR-ILC3s, approximately 30 % of total NCR-ILC3s), whereas the other lacked the 

expression of CD4 (CD4- NCR-ILC3s, approximately 70 % of total NCR-ILC3s) (Fig. 6 

A). To examine whether differences in the phenotype of these two subpopulations 

exist, I performed a detailed analysis of in vitro generated NCR-ILC3s. 

The retinoic acid related orphan receptor RORγt is a transcription factor, which is 

absolutely required for the development of all ILC3 subsets.70, 93 In line with this, both 

in vitro generated CD4+ and CD4- NCR-ILC3s expressed comparable high levels of 

RORγt (Fig. 6 B). Since IL-7 and SCF are both important cytokines required for the 

survival and maintenance of ILC3s and their precursors,88, 89, 91, 103 I investigated the 

expression of their according receptors on in vitro generated NCR-ILC3s. Both CD4+ 

and CD4- NCR-ILC3s showed high expression of the γc chain, which builds together 

with the IL-7Rα chain the receptor for IL-7 (Fig. 6 B).259 The IL-7Rα chain was as well 

expressed on both CD4+ and CD4- NCR-ILC3s (Fig. 5 A). Additionally, high 

expression levels for CD117, the receptor for SCF, could be detected on both 

subsets of in vitro generated NCR-ILC3s (Fig. 6 B). During embryogenesis, ILC3s 
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play a crucial role in lymphoid tissue formation and organization.4, 70, 71, 72 This 

process involves the interaction of LTαβ-expressing ILC3s and LTβR-expressing 

stromal cells.68, 260 In line with this, both CD4+ and CD4- NCR-ILC3 subsets 

expressed comparable high levels of LTαβ (Fig. 6 B). In addition to LTαβ-LTβR 

signaling, several integrins and adhesion molecules (α4β7 and β1 integrin, ICAM-1) 

as well as chemokine and cytokine receptors (CXCR4, CXCR5, CCR6 and CCR7) 

are involved in the process of lymphoid tissue formation mediated by ILC3s.73, 79 In 

accordance, both CD4+ and CD4- NCR-ILC3 subsets expressed α4β7 and β1 integrin 

as well as ICAM-1 (Fig. 6 B). Further, CXCR4, CXCR5, CCR6 and CCR7 were 

expressed on CD4+ and CD4- NCR-ILC3s (Fig. 6 B). Additionally, CD4+ and CD4- 

NCR-ILC3s expressed comparable high levels of CD44 whereas they both lacked the 

expression of CD62L and NKp46 (Fig. 6 B). The expression of NK1.1 and CD69 was 

low on both subpopulations of in vitro generated NCR-ILC3s (Fig. 6 B). Altogether, 

these data demonstrated that in vitro generated NCR-ILC3s display a characteristic 

NCR-ILC3 phenotype already described in 1997.57 Furthermore, the in vitro 

generated CD4+ and CD4- NCR-ILC3 subsets show an equal phenotype.  
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Figure 6:	
  Phenotype of in vitro generated NCR-ILC3s. A) Phenotype of in vitro generated NCR-ILC3s 
derived from α4β7

+ ILC3 precursors. First dot plot shows total cells differentiated from α4β7
+ ILC3 

precursors after 5 days in culture. Second dot plot shows CD4+ and CD4- subsets within the 
CD90.2+CD117+ NCR-ILC3 population. Representative dot plots are shown. B) Representative 
histograms of intracellular RORγt expression and the expression of several surface molecules (indicated 
in the figure) by CD4+ and CD4-NCR-ILC3 subsets.  
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5.2 In vitro generated NCR-ILC3s produce cytokines and show an 
activated phenotype after innate stimulation in vitro. 

 

 Innate stimulation of in vitro generated NCR-ILC3s induces 5.2.1
cytokine secretion. 

 

Innate immunity is mainly mediated by immune cells directly recognizing microbial 

products through pattern recognition receptors (PRRs), such as Toll-like receptors 

(TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors.  

To examine whether in vitro generated NCR-ILC3s were either able to directly sense 

the presence of pathogens or to respond to inflammatory cytokines produced by 

other immune cells, I cultured NCR-ILC3s for 48 h in the presence of several different 

pro-inflammatory cytokines or TLR ligands. Cytokines and TLR ligands were used at 

concentrations already described for in vitro stimulation.30, 261, 262  
IL-22 is a cytokine, which is able to directly induce antimicrobial host defense. It 

stimulates epithelial cells to produce antimicrobial peptides and contributes to 

epithelial cell integrity.113 Therefore, I measured whether innate stimulation of NCR-

ILC3s was able to induce IL-22 production. Upon stimulation with the pro-

inflammatory cytokine IL-1β, in vitro generated NCR-ILC3s produced high levels of 

IL-22 whereas non-stimulated naïve NCR-ILC3s did not show IL-22 secretion (Fig. 7 

A). IL-22 secretion upon IL-1β stimulation even exceeded those induced in response 

to IL-23 stimulation, a factor which was already reported to induce IL-22 production 

by ILC3s (Fig. 7 A).105, 106, 108, 120 Both CD4+ and CD4- NCR-ILC3 subpopulations 

produced comparable levels of IL-22 in response to IL-1β stimulation (Fig. 7 A).  
IL-17 is a major mediator of inflammation and plays a critical role in host defense 

against extracellular bacteria and fungi.263, 264 Therefore, I additionally measured 

whether in vitro generated NCR-ILC3s were able to produce IL-17 in response to 

innate stimulation. Indeed, in vitro generated NCR-ILC3s produced IL-17 upon 

exposure to IL-1β, although at lower levels than IL-22 (Fig. 7 B). In vitro IL-23 

stimulation did not induce IL-17 production by in vitro generated NCR-ILC3s although 

it was previously reported that IL-17 production of ILC3s upon Candida albicans 

infection depends on IL-23 (Fig. 7 B).265  
Furthermore, I measured cytokine production of NCR-ILC3s after 48 h in vitro 

stimulation with TLR ligands. In response to Poly I:C, the TLR ligand for TLR3, NCR-

ILC3s secreted significantly higher amounts of IL-22 compared to naïve NCR-ILC3s. 



	
   68 

Other TLR ligands such as Imiquimod and CpG only led to low or negligible 

production of IL-22 (Fig. 7 C). The addition of TLR ligands to in vitro cultures was 

unable to induce IL-17 secretion by in vitro generated NCR-ILC3s (Fig. 7 C). Notably, 

IL-1β was an extremely strong inducer of IL-17 and IL-22 production by NCR-ILC3s. 

Basal and IL-23-induced IL-22 production by ILC3s was reported to be dependent on 

IL-1R1,266, 267, 268 but whether ILC3s release other cytokines in response to IL-1β was 

not known so far. Therefore, I screened for additional cytokines produced by in vitro 

generated NCR-ILC3s after 48 h IL-1β exposure. IL-1β-exposed NCR-ILC3s secreted 

IL-2, IL-6, MIP-1α, IFNγ and TNFα, all known for their capacity to promote T cell 

responses (Fig. 7 D). In addition, IL-1β induced NCR-ILC3s to secrete interferon-

induced protein of 10 kDa (IP-10), a chemoattractant for mononuclear cells and 

CXCR3+ effector T cells (Fig. 7 D).268 Reminiscent of its RORγt-dependent 

expression in T cells,269 GMCSF was already produced by naïve NCR-ILC3s and its 

secretion was enhanced upon IL-1β exposure (Fig. 7 D).  

Collectively, these data demonstrated that the response of NCR-ILC3s to innate 

stimulation differed dependent on the nature of the stimuli. IL-1β acted as a strong 

activator of NCR-ILC3s inducing the production of a wide range of cytokines, many of 

which were known to alter T cell behavior. Moreover, NCR-ILC3s responded directly 

to TLR3 stimulation with IL-22 secretion. 
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Figure 7: Cytokine secretion of activated NCR-ILC3s. A) IL-22 secretion by in vitro generated total 
NCR-ILC3s upon 48 h exposure to IL-1β, IL-23 or medium alone (unstim) and by CD4+ and CD4-NCR-

ILC3 subsets upon 48 h exposure to IL-1β. Data are shown as mean values + SD (n = 3 - 7, 3 
independent experiments; *P < 0.05). B) IL-17 secretion by in vitro generated total NCR-ILC3s upon 48 
h exposure to IL-1β, IL-23 or medium alone (unstim). Data are shown as mean values + SD (n = 3 - 6, 2 
independent experiments; n.s. = not significant; *P < 0.05; **P < 0.01). C) IL-22 and IL-17 secretion by 
in vitro generated total NCR-ILC3s upon 48 h exposure to TLR ligands (indicated in the figure) or 
medium alone (unstim). Data are shown as mean values + SD (n = 3 - 7, at least 2 independent 
experiments; **P < 0.01). D) Cytokine production by in vitro generated NCR-ILC3s after 48 h exposure 
to IL-1β or medium alone. Results are shown as mean values + SD. 
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 In vitro generated NCR-ILC3s show an activated phenotype 5.2.2
upon innate stimulation.  

 

Based on the findings that in vitro generated NCR-ILC3s were able to respond to 

innate stimulation with the production of cytokines, I next investigated, whether 

stimulation with microbial products or inflammatory cytokines induces changes in the 

phenotype of NCR-ILC3s. How dendritic cells (DCs) undergo maturation and 

activation upon exposure to signals associated with infection and inflammation is well 

documented.173 However, the mechanism by which NCR-ILC3s undergo activation 

and change in phenotype and function was still not known. I therefore tested pro-

inflammatory cytokines and TLR ligands for their ability to induce phenotypical 

changes resembling activation of NCR-ILC3s. 

CD69 is known as the earliest inducible cell surface glycoprotein acquired during 

lymphocyte activation.202 Thus, I screened for CD69 expression on NCR-ILC3s 

cultured in the presence of either pro-inflammatory cytokines or TLR ligands. Indeed, 

IL-1β, Poly I:C and CpG were able to induce surface CD69 expression on NCR-ILC3s 

indicating their activation (Fig. 8 A).  

MHC class II (MHC II) expression is required for Ag presentation to CD4+ T cells. 

Additionally, the expression of co-stimulatory molecules such as CD80/CD86 and 

CD40 on professional APCs, like DCs, provide accessory signals to CD4+ T cells, 

which are required for complete CD4+ T cell activation, proliferation and increased 

survival.207 Therefore, I asked whether, analog to DCs, activated NCR-ILC3s 

expressed co-stimulatory molecules and up-regulated MHC II molecule expression 

on the surface. When cultured in medium alone, in vitro generated sort-purified CD4+ 

NCR-ILC3s showed a naïve phenotype displayed by the absence of CD69 and co-

stimulatory molecules (Fig. 8 B). Upon exposure to IL-1β for 48 h, sort-purified in 

vitro generated CD4+ NCR-ILC3s expressed the co-stimulatory molecules CD80 and 

CD86 and up-regulated the expression of CD40, CD69 and MHC II (Fig. 8 B). Hence, 

upon IL-1β stimulation, in vitro generated NCR-ILC3s acquired an APC-like 

phenotype, reminiscent of activated DCs.  

Further, I determined the gene expression profile of CD4+ and CD4- NCR-ILC3s by 

performing a whole transcript array (Affymetrix Mouse Gene 2.0 ST Array). First, 

sort-purified in vitro generated naïve and activated CD4+ and CD4- NCR-ILC3s were 

analyzed for the expression of genes related to their phenotype. It has to be noted 

that CD4+ and CD4- NCR-ILC3s were activated in vitro only for 1 h in the presence of 

IL-1β. Genes related to the phenotype of NCR-ILC3s such as Cd4, Rorc, Cd90, 



	
   71 

Cd117 and Il1r1 were highly expressed by CD4+ and CD4- NCR-ILC3s shown by an 

expression value of around 12.0 (log2 values of signal intensity measured in the 

array; Fig. 8 C). Expression values around 5.0 were measured for genes like Cd3 

and Cd19, which are related to T and B cells, respectively (Fig. 8 C). Based on these 

findings, I assumed that genes with an expression value below or around 5.0 were 

not expressed by NCR-ILC3s while genes with an expression level of around 12.0 

were highly expressed by these cells. Therefore, both naïve and IL-1β-activated 

CD4+ and CD4- NCR-ILC3s showed expression of genes related to their phenotype 

at high levels (Fig. 8 C). No differences in genes related to the phenotype of NCR-

ILC3s were found when naïve and IL-1β-activated NCR-ILC3s were compared (Fig. 8 

C). The expression value of Cd4 in naïve and IL-1β-activated CD4+ NCR-ILC3s was 

12.8 and 12.7, respectively. CD4- NCR-ILC3s showed Cd4 expression values clearly 

lower than that of CD4+ NCR-ILC3s (8.4 and 8.0; Fig. 8 C). The fact that in vitro 

generated NCR-ILC3s expressed an APC-like phenotype upon IL-1β exposure 

indicated, that these cells might be involved in Ag presentation. Therefore, I 

examined the expression of genes related to MHC II-dependent Ag-presentation in 

CD4+ and CD4- NCR-ILC3s. Genes related to Ag-presentation such as Cd74, H2-Ab1 

and H2-Aa were expressed by both naïve and IL-1β-activated CD4+ and CD4- NCR-

ILC3s at high levels (expression values in the range of 9.3 – 11.7; Fig. 8 C). Other 

genes related to Ag-presentation like H2-DMb2 and H2-DMa were expressed at 

slightly lower levels (7.7 – 8.6; Fig. 8 C). No differences in transcript levels of genes 

related to Ag-presentation could be observed when naïve NCR-ILC3s were 

compared to IL-1β-activated NCR-ILC3s (Fig. 8 C).  
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Figure 8: Innate stimulation of in vitro generated NCR-ILC3s induces changes in the expression 
of surface molecules. A) Representative histograms of CD69 expression on in vitro generated NCR-

ILC3s after 48 h stimulation with IL-1β, Poly I:C, CpG or medium alone. B) Expression of CD69, CD80, 
CD86, CD40 and MHC II on sort-purified in vitro generated CD4+ NCR-ILC3s cultured for 48 h with IL-
1β or medium alone as indicated in the figure. Numbers in contour plots show the percentage of cells in 
each quadrant. Data are representative of 3 independent experiments. C) Expression levels of individual 
genes expressed in naïve and IL-1β-activated (1 h) CD4+ and CD4- NCR-ILC3s. The expression values 
are shown as log2 transformed values of signal intensities measured in the array. Expression values are 
depicted as numbers (5.0 = negative or low expression; 13.0 = positive or high expression) and in a 
color code (white = neg. or low expression; blue = pos. or high expression). Genes were clustered as i) 
genes related to the phenotype of NCR-ILC3s, ii) genes related to Ag-presentation, and iii) genes 
related to T and B cell phenotype. Data shown were generated by the analysis of DNA isolated from one 
individual specimen of two independent rounds of in vitro NCR-ILC3 generation. 90 - 120 embryos 
collected from 13 - 15 pregnant female WT mice were used to isolate α4β7

+ ILC3 precursors 
differentiating into NCR-ILC3 in vitro.  

 

Altogether, I could show that α4β7
+ ILC3 precursors isolated from the FL of WT 

embryos could give rise to NCR-ILC3s in vitro. CD4+ and CD4- NCR-ILC3s, sharing 

an identical phenotype, were both able to respond to innate stimulation. They 

produced IL-17 and IL-22 upon exposure to the pro-inflammatory cytokine IL-1β. 

Additionally, remarkable IL-22 secretion by NCR-ILC3s could be induced in the 

presence of the cytokine IL-23 and the TLR ligand Poly I:C. Furthermore, the TLR 

ligands CpG and Poly I:C as well as the pro-inflammatory cytokine IL-1β induced the 

up-regulation of the early activation marker CD69 on NCR-ILC3s indicating that NCR-

ILC3s are able to directly respond to innate stimuli. Finally, IL-1β turned out to be a 

remarkable strong activator of in vitro generated NCR-ILC3s, capable to induce the 

production of a broad repertoire of cytokines and the expression of co-stimulatory 

molecules and MHC II molecules. All findings observed by in vitro stimulation of in 

vitro generated NCR-ILC3s are summarized in Table 1. 	
  

 



	
   74 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
 

Table 1: Summary: Innate stimulation of in vitro generated NCR-ILC3s induces cytokine 
secretion and changes in the phenotype. Summary of changes in in vitro generated NCR-ILC3s in 
response to innate stimulation with different TLR ligands and pro-inflammatory cytokines as indicated. 
Red: up-regulation of cytokine production or surface marker expression; yellow: no changes observed; 
n.a: not available. 

	
  

5.3 Splenic NCR-ILC3s can become activated through innate 
stimulation in vivo and acquire an APC-like phenotype upon 

IL-1β  exposure in vitro. 
 

 Stimulation with TLR ligands induces activation of splenic 5.3.1
NCR-ILC3s in vivo. 

 

Our research group and others have previously shown that FL-derived and adult 

ILC3s share phenotypic and functional properties such as lymphotoxin β-dependent 

formation of lymphoid tissues and its organization.96, 103 I could show that FL-derived 

NCR-ILC3s produced cytokines and changed their phenotype upon in vitro exposure 

to either microbial products or pro-inflammatory cytokines. However, whether adult 

NCR-ILC3s in vivo were able to sense innate stimulation was not known.  

In vivo, NCR-ILC3s could be identified in the spleen of adult mice by the lack of all 

lymphoid lineage markers (lin-) and the expression of CD90.2 and CD117 at high 

levels (Fig. 9 A). The lineage cocktail used to distinguish lineage positive (lin+) and 
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lineage negative (lin-) cells contained antibodies against CD3ε, CD8α, CD11c, CD19, 

B220, Gr-1, TCRβ, TCRγδ, NK1.1 and NKp46. Similar to in vitro generated NCR-

ILC3s, ex vivo isolated splenic NCR-ILC3s could be subdivided into two 

subpopulations, CD4+ and CD4- NCR-ILC3s, respectively (Fig. 9 A). Approximately 

70 % of all NCR-ILC3s expressed CD4 whereas approximately 30 % lacked CD4 

expression (Fig. 9 A). Both subpopulations expressed comparable high levels of the 

transcription factor RORγt (Fig. 9 A). Hence, considering phenotypic markers that are 

characteristic for NCR-ILC3s, ex vivo isolated splenic and in vitro generated NCR-

ILC3s were identical (Fig. 9 A). For identification and phenotypic characterization of 

splenic NCR-ILC3s, I used Rag2-/- mice since these mice harbor increased numbers 

of NCR-ILC3s compared to WT mice. The phenotype of splenic NCR-ILC3s of Rag2-/- 

mice did not differ from that of WT mice.  

In order to test whether in vivo exposure to innate stimuli was able to induce 

activation of splenic NCR-ILC3s, WT mice were injected intraperitoneally (i.p.) with a 

single dose of 100 µM CpG, the ligand for TLR9. Control mice were injected with a 

single dose of PBS. First of all, I monitored the effects of in vivo CpG treatment on 

the whole splenic tissue of WT mice. 6 h after CpG injection the relative expression 

of the pro-inflammatory cytokines IL-1β, TNFα and IFNγ was significantly increased 

compared to PBS treated mice (Fig. 9 B). Thus, CpG was able to generate an 

inflammatory milieu in the spleen of treated WT mice including elevated levels of IL-

1β, a factor, which was shown to act as a strong activator of in vitro generated NCR-

ILC3s.  

Therefore, I next investigated the phenotype of NCR-ILC3s ex vivo isolated from the 

spleen of either CpG or PBS treated mice. Indeed, i.p. injection of CpG induced 

activation of splenic NCR-ILC3s displayed by high surface expression of CD69 in 

CpG compared to PBS treated WT mice (Fig. 9 C) consistent with the data observed 

for in vitro generated NCR-ILC3s after CpG stimulation in vitro (Fig. 8 A, Table 1). 

Whether splenic NCR-ILC3 activation resulted from a direct effect of CpG or indirectly 

through the established inflammatory milieu (e.g. IL-1β) could not be determined. 

Microbial products as well as sterile host-derived danger molecules released upon 

injury are able to induce the inflammasome complex, which promotes the cleavage of 

pro-IL-1β into bioactive IL-1β.270, 271 One of these microbial products is 

Lipopolysaccharide (LPS), the component of the outer membrane of gram-negative 

bacteria. LPS, the ligand of TLR 4, is known to induce IL-1β production upon in vivo 

challenge.167 Therefore, I additionally tested whether in vivo treatment with LPS was 

able to induce activation of splenic NCR-ILC3s in adult mice. Injection of 100 µg LPS 
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resulted in high expression of CD69 and up-regulation of MHC II expression on 

splenic CD4+ NCR-ILC3s examined 6 h after treatment (Fig. 9 D). In vivo LPS 

treatment did not affect the amount of splenic NCR-ILC3s nor the ratio between CD4+ 

and CD4- NCR-ILC3s (Fig. 9 D). Whether activation of NCR-ILC3s was mediated 

directly by LPS or by LPS-induced IL-1β has to be explored.  

Collectively these data demonstrated that in vivo treatment of adult mice with TLR 

ligands CpG or LPS resulted in activation of splenic NCR-ILC3s monitored by 

increased CD69 and MHC II expression. However, from these experiments it could 

not be revealed whether the TLR ligands acted directly on the cells or indirectly by 

generating an inflammatory environment.  
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Figure 9:	
   In vivo treatment with TLR ligands induces an inflammatory milieu in the spleen and 
activates splenic NCR-ILC3s. A) Phenotype of NCR-ILC3s ex vivo isolated from the spleen of adult 
Rag2-/- mice. Numbers in dot plots show the percentage of cells in each gate. Representative dot plots 
and histogram are depicted. B) qRT-PCR of IL-1β, TNFα and IFNγ transcripts in total spleen tissue from 
WT mice 6 h after i.p. injection of either PBS or CpG. Expression is shown relative to the house keeping 
gene β-actin. Data are representative for 1 of 2 independent experiments (n = 5; mean values + SD; *P 
< 0.05; **P < 0.01). C) CD69 expression of splenic CD4+ NCR-ILC3s of WT mice 6 h after i.p. injection of 
PBS or CpG as indicated in the figure. Representative dot plots and a histogram of 3 independent 
experiments is shown. D) CD69 and MHC II expression of splenic NCR-ILC3s of Rag2-/- mice 6 h after 
i.p. injection of PBS or LPS as indicated in the figure. First dot plots represent live cells. Histograms 
show CD4+ and CD4- subsets within the lin-CD90.2+CD117+RORγt+ population. Dot plots are 
additionally gated on CD4+ NCR-ILC3s. Numbers show the percentage of cells in each gate. Data are 
representative of at least 3 independent experiments. 
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 IL-1β activates splenic NCR-ILC3s and induces up-regulation 5.3.2

of MHC II and co-stimulatory molecule expression.  
 

My previous findings showed that in vitro generated NCR-ILC3s were able to respond 

to innate stimulation in vitro. Further, in vivo challenge of adult mice with TLR ligands 

induced activation of splenic NCR-ILC3s. However, whether splenic NCR-ILC3s 

isolated from adult mice were able to express co-stimulatory molecules and MHC II 

upon IL-1β exposure, as it has been demonstrated for in vitro generated NCR-ILC3s 

(Fig. 8 B), remained to be determined. To test this, I isolated NCR-ILC3s from the 

spleen of adult Rag2-/- mice. As mentioned before, Rag2-/- mice harbor increased 

numbers of ILC3s compared to WT mice while lacking T and B cells. Therefore, the 

usage of Rag2-/- mice facilitated the enrichment of a high number of ILC3s without 

contaminating T or B cells. Ex vivo isolated splenic NCR-ILC3s of Rag2-/- mice were 

sort-purified based on the expression of CD90.2/CD117 and the lack of lineage 

markers (lin-). 48 h after IL-1β exposure, splenic NCR-ILC3s up-regulated the 

expression of CD69 and co-stimulatory molecules (Fig. 10 A). Interestingly, 

compared to naïve in vitro generated NCR-ILC3s, which lacked MHC II expression 

(Fig. 8 B), ex vivo isolated NCR-ILC3s already expressed MHC II on their surface in 

the absence of innate stimulation. Furthermore, MHC II expression was increased 

upon IL-1β exposure and exceeded those of IL-β-activated in vitro generated NCR-

ILC3s (Fig. 10 A and Fig. 8 B). Altogether, ex vivo isolated splenic NCR-ILC3s were 

able to respond to IL-1β stimulation thereby acquiring an APC-like phenotype.  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
 

Figure 10:	
  IL-1β  induces the expression of MHC II and co-stimulatory molecules on splenic NCR-

ILC3s. A) Expression of CD69, CD40, CD86 and MHC II on sort-purified ex vivo isolated splenic CD4+ 

NCR-ILC3s cultured for 48 h in the presence of IL-1β or medium alone as indicated in the figure. 
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Numbers in contour plots show the percentage of cells in each quadrant. Data are representative of 3 
independent experiments. 

 

5.4 Peripheral NCR-ILC3s are able to take up latex beads, to 
process protein Ag and to promote CD4+ T cell responses in 
vitro. 

 

 NCR-ILC3s can internalize latex beads.  5.4.1
 

Based on the notion that inflammatory stimulation of NCR-ILC3s induced the 

acquisition of an APC-like phenotype, I wondered whether ILC3s could function as 

APCs. Therefore, I asked whether NCR-ILC3s were able to internalize and process 

exogenous Ag in order to present it to naïve CD4+ T cells. First of all, I measured the 

capacity of NCR-ILC3s to take up exogenous Ag using red fluorescent latex beads 

with a size of 1 µm. Sort purified in vitro generated and ex vivo isolated splenic NCR-

ILC3s were cultured for 6 h in the presence of red fluorescent latex beads. Both in 

vitro generated and ex vivo isolated NCR-ILC3s were able to internalize red 

fluorescent latex beads at 37 °C (Fig. 11 A - C). Bead uptake was severely inhibited 

at 4 ºC or in the presence of 0.5 µM Cytochalasin D (CytD), an inhibitor of actin 

polymerization (Fig. 11 B and C). Those two controls showed the specificity of bead 

internalization by NCR-ILC3s. As previously described, in vitro generated NCR-ILC3s 

could be subdivided into CD4+ and CD4-NCR-ILC3 subsets (Fig. 6 A and B). Both 

CD4+ and CD4- NCR-ILC3 subsets were able to internalize latex beads, although 

CD4+ NCR-ILC3 were slightly more efficient in taking up Ag than their CD4- 

counterpart (Fig. 11 D). However, compared to BM-derived macrophages (BMMΦ), 

bead uptake by NCR-ILC3s occurred with slower kinetics (Fig. 11 E). Altogether, I 

could show that NCR-ILC3s were able to internalize exogenous Ags. 
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Figure 11:	
   Naïve NCR-ILC3s can internalize latex beads. A) Representative immunofluorescence 
image of red fluorescent latex bead uptake by sort-purified in vitro generated NCR-ILC3s. Scale, 5 µm.   
B - C) Representative plots of sort-purified (B) in vitro generated or (C) ex vivo isolated splenic NCR-

ILC3s cultured with beads for 6 h at either 37 ºC or 4 ºC, or at 37 ºC in presence of 0.5 µM Cytochalasin 
D (CytD) as indicated in the figure. Histograms show bead+ cells. Data are representative of at least 3 
independent experiments (n = 3 - 5). D) Percentage of bead+ and bead- cells within in vitro generated 
CD4+ and CD4- NCR-ILC3s after 6 h incubation with beads (mean values + SD). Data shown are 
representative of at least 3 independent experiments (n = 3 - 5). E) Bead internalization by NCR-ILC3s 
and BMMΦ. Percentage of bead+ cells 2 and 24 h after addition of beads (mean values + SD; n = 3 - 5; 
n.s. = not significant; **P < 0.01). 

 

 Activated NCR-ILC3s can induce Ag-specific CD4+ T cell 5.4.2
activation and proliferation.  

 

To further investigate Ag processing and presentation by NCR-ILC3s as well as the 

induction of CD4+ T cell priming in vitro, I made use of a T cell transgenic mouse 

model, the OT-II transgenic (OT-IItg) mouse.247 All CD4+ T cells found in homozygous 

OT-IItg mice bear a transgenic T cell receptor (TCR) on their surface that specifically 

recognizes chicken Ovalbumin (OVA323-339) in the context of MHC II (H-2b). OT-II 
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transgenic CD4+ T cells were isolated from LNs and spleen of naïve OT-IItg mice, 

enriched with magnetically associated cell sorting and sort-purified before use for in 

vitro and in vivo experiments. Sort-purified OT-IItg CD4+ T cells showed a naïve 

phenotype displayed by the lack of CD69 expression and simultaneously high levels 

of CD62L expression (Fig. 12 A). CD44, a marker indicating an activated memory-

like phenotype for T cells was only expressed by a minority of sorted OT-IItg CD4+ T 

cells (Fig. 12 A). To test the ability of NCR-ILC3s to prime CD4+ T cells in vitro, sort-

purified NCR-ILC3s (H-2b) were first in vitro stimulated with IL-1β for 24 h and 

afterwards incubated for 72 h with sort-purified carboxyfluorescein succinimidyl ester 

(CFSE)-labeled OT-IItg CD4+ T cells in the presence of OVA peptide323-339 or whole 

OVA protein (Fig. 12 B). CFSE labeling of OT-IItg CD4+ T cells allowed me to monitor 

T cell proliferation under different co-culture conditions. BM-derived dendritic cells 

(BMDCs), known as professional APCs, were used as a positive control for efficient 

Ag presentation and CD4+ T cell activation. The activation of CD4+ T cells was 

monitored by surface CD69 expression and the CFSE proliferation profile. Ex vivo 

isolated and in vitro generated CD4+ and CD4- NCR-ILC3s were able to activate the 

majority of CD4+ T cells in the presence of OVA peptide considering surface CD69 

expression (Fig. 12 B). When naïve OT-IItg CD4+ T cells and IL-β-activated NCR-

ILC3s were co-cultured without Ag, neither CD4+ T cell activation (CD69 expression) 

nor proliferation could be observed (Fig. 12 B). In vitro generated FL-derived CD4+ 

and ex vivo isolated splenic NCR-ILC3s were able to induce several rounds of OVA-

specific CD4+ T cell proliferation when pulsed with OVA peptide or, to a lesser extent, 

with OVA protein (Fig. 12 B). CD4- NCR-ILC3s were considerably less efficient in 

inducing protein Ag-specific CD4+ T cell responses (Fig. 12 B).  

To further examine the effect of pre-activation of NCR-ILC3s on their capacity to elicit 

T cell responses, I stimulated ex vivo isolated splenic NCR-ILC3s with IL-1β for 24 h 

or left them untreated, and co-cultured them for additional 48 h with naïve OT-IItg 

CD4+ T cells in the presence or absence of whole OVA protein (Fig. 12 C - E). 30.2 

% of the CD4+ T cells in culture with untreated NCR-ILC3s and OVA protein 

expressed CD69 and only 4.3 % of the T cells proliferated (Fig 12 C). IL-1β-activated 

NCR-ILC3s increased the percentage of both CD69+ and proliferating T cells (Fig. 12 

C - E). Together, these results showed that NCR-ILC3s were able to induce CD4+ T 

cell activation and proliferation in vitro and that pre-activation of NCR-ILC3s with IL-

1β increased their efficiency to induce CD4+ T cell activation. 
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Figure 12:	
   NCR-ILC3s can induce Ag-specific CD4+ T cell activation and proliferation. A) 
Representative dot plots of ex vivo isolated sort-purified OT-IItg CD4+ T cells. Live cells after isolation 
and sort-purification are represented in the first dot plot. Surface expression of CD69, CD62L and CD44 
is shown gated on CD3+CD4+ T cells. Numbers in dot plots show the percentage of cells in each gate. 
B) Naïve CFSE-labeled OT-IItg CD4+ T cells were cultured with either BMDCs, IL-1β-activated ex vivo 
isolated splenic NCR-ILC3s or in vitro generated CD4+ or CD4- NCR-ILC3s in the presence of OVA 
peptide, OVA protein or medium alone (w/o Ag) as indicated in the figure. Representative plots of CD69 
and CFSE expression by CD4+ T cells 72 h later. Bold black numbers: % of proliferating T cells. Bold 
red numbers: % of total CD69+ T cells.  C) Naïve CFSE-labeled OT-IItg CD4+ T cells were cultured with 
non- or IL-1β-activated splenic NCR-ILC3s in the presence of OVA peptide, OVA protein or medium 
alone (w/o Ag) for 72 h as indicated in the figure. Representative dot plots are shown. D) Percentage of 
CD69+ T cells upon co-culture with non- or IL-1β-activated splenic NCR-ILC3s in the presence or 
absence of Ag as indicated in the figure. Data are shown as mean values + SD (n = 3 - 7; *P < 0.05; 
***P < 0.001). E) Fold increase of percentage of CD69+ T cells upon co-culture with non- or IL-1β-
activated splenic NCR-ILC3s in the presence of OVA protein relative to co-culture of IL-1β- activated 
splenic NCR-ILC3s and T cells in the absence of Ag as indicated in the figure. Data are shown as mean 
values + SD (n = 3 - 7; *P < 0.05). D – E) Data are representative of at least 3 - 7 independent 
experiments. 

 

 Ag-dependent interaction of CD4+ T cells and splenic NCR-5.4.3
ILC3s induces de novo activation of splenic NCR-ILC3s. 

 

In co-cultures of naïve OT-IItg CD4+ T cells and untreated splenic NCR-ILC3s, the 

surface expression of CD69 on NCR-ILC3s was increased approximately 7-fold when 

Ag (OVA protein) was present compared to co-cultures without Ag (Fig. 13 A). This 

phenomenon was not further increased by previously activating NCR-ILC3s with IL-

1β (Fig. 13 A). It is important to note, that pre-activation of NCR-ILC3s (IL-1β, 24 h) 

induced CD69 expression, which peaked early after activation and later decreased in 

co-cultures, unless T cells and Ag were added. To exclude that the presence of 

whole OVA protein was responsible for CD69 up-regulation on NCR-ILC3s in co-

cultures with CD4+ T cells and OVA protein, I cultured sort-purified ex vivo isolated 

splenic NCR-ILC3s in the presence or absence of whole OVA protein for 48 h and 

examined their CD69 expression. The presence of whole OVA protein did not induce 

CD69 expression on NCR-ILC3s (Fig. 13 B). Thus, this experiment showed that Ag 

alone was not able to activate naïve NCR-ILC3s. 
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Figure 13: Ag-dependent CD4+ T cell activation induces activation of splenic NCR-ILC3s. A) Fold 
increase of mean fluorescent intensity (MFI) of CD69 expression on non- or IL-1β-activated (24 h) 
splenic NCR-ILC3s co-cultured with OT-IItg CD4+ T cells in the presence or absence of OVA protein (48 - 
72 h) relative to non-activated splenic NCR-ILC3s co-cultured with OT-IItg CD4+ T cells in the absence of 
Ag. Data are shown as mean values + SD (3 - 7 independent experiments). B) Representative 
histogram of CD69 expression on non-activated splenic NCR-ILC3s in presence of OVA protein or in 
medium alone. 

 

 Activation of NCR-ILC3s can be induced by soluble factors 5.4.4
produced in co-cultures of APCs and CD4+ T cells in the 
presence of cognate Ag.  

 

My previous observations showed that the presence of cognate Ag in co-cultures of 

OT-IItg CD4+ T cells with NCR-ILC3s induced and sustained activation of NCR-ILC3s 

(Fig. 13 A). This activation of NCR-ILC3s reached an equal level regardless of 

whether NCR-ILC3s were pre-activated with IL-1β or not (Fig. 13 A). Further, the 

presence of Ag alone was not able to induce activation of NCR-ILC3s in vitro (Fig. 13 

B). Thus, I assumed that OT-IItg CD4+ T cells produced some soluble factors after 

Ag-dependent interaction with NCR-ILC3s, which were able to activate NCR-ILC3s. 

However, one could not exclude that NCR-ILC3s themselves also secreted soluble 

factors upon Ag-dependent interaction with CD4+ T cells. To further test the effect of 

soluble factors produced by activated CD4+ T cells on the activation of NCR-ILC3s, 

cell culture supernatant (SN) of activated CD4+ T cells had to be produced. The 

following possibilities existed; i) co-cultures of NCR-ILC3s and CD4+ T cells with Ag, 

ii) co-cultures of BMDCs and CD4+ T cells with Ag, or iii) CD4+ T cell activation in 

presence of anti-CD3/anti CD28 Abs. In my previous in vitro assay, I could show that 

OT-IItg CD4+ T cells were fully activated in the presence of BMDCs and OVA protein 
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(Fig. 12 B). Therefore, I decided to use the SN of co-cultures of BMDCs with CD4+ T 

cells and Ag to further test soluble factor-mediated activation of splenic NCR-ILC3s.  

Sort-purified ex vivo isolated splenic NCR-ILC3s showed increased expression of 

CD69 when cultured for 48 h in the presence of SN collected from co-cultures of 

BMDCs and CD4+ T cells with Ag (Fig. 14 A). The CD69 expression level was 

compared to that of NCR-ILC3s, which were either cultured in cell culture medium 

alone or in SN collected from co-cultures of BMDCs and CD4+ T cells without Ag 

(Fig. 14 A). In addition to increased CD69 expression, only SN collected from co-

cultures of BMDCs and CD4+ T cells with Ag induced a slight up-regulation of CD80 

and CD40 on splenic NCR-ILC3s (Fig. 14 B). Together, these data showed that 

soluble factors secreted upon Ag-dependent interaction of CD4+ T cells and BMDCs 

were able to induce the activation of splenic NCR-ILC3s. Moreover, these soluble 

factors assumed to support the efficiency of Ag-dependent splenic NCR-ILC3-CD4+ T 

cell interaction by the induction of co-stimulatory molecule expression.  

CD4+ T cells are known to produce cytokines such as IFNγ upon encounter of Ag 

presented via MHC II on APCs.272 My previous data showed that in vitro generated 

NCR-ILC3s increased CD69 and MHC II expression upon exposure to IFNγ (Table 

1). Thus, IFNγ might be a potential soluble factor inducing and sustaining activation 

of NCR-ILC3s during Ag-dependent interaction with CD4+ T cells. In line with this, 

intracellular staining of OT-IItg CD4+ T cells revealed that CD4+ T cells produced IFNγ 

only in the presence of BMDCs and OVA protein (Ag) while IFNγ production was low 

or not detectable in CD4+ T cells co-cultured with BMDCs in the absence of Ag (Fig. 

14 C). The role for CD4+ T cell-derived IFNγ in NCR-ILC3 activation needs to be 

further explored.  

CD4+ T cells are known to produce IL-2 as a consequence of activation through their 

antigen receptor.211 IL-2 secreted by activated CD4+ T cells was shown to directly 

induce the proliferation of group 2 ILCs (ILC2s).51 Moreover it was reported that the 

presence of IL-2 in co-cultures of CD4+ T cells and ILC2s enhanced the ability of 

ILC2s to produce type 2 related cytokines.51 Although the interplay of IL-2 and ILC2s 

was well described, a role for IL-2 in ILC3-mediated CD4+ T cell responses was so 

far not known. Therefore, I examined whether naïve splenic NCR-ILC3s express the 

receptor for IL-2. CD25, the IL-2 receptor alpha chain (IL-2Rα), builds together with 

the IL-2Rβ and IL-2Rγ chain the high affinity receptor for IL-2.273 Analysis of naïve ex 

vivo isolated splenic NCR-ILC3s revealed that CD25 was highly expressed on the 

surface of these cells (Fig. 14 D).  The presence of SN collected from co-cultures of 

BMDCs and CD4+ T cells with Ag even increased expression of CD25 on splenic 
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NCR-ILC3s (Fig. 14 D). Thus, NCR-ILC3s expressed the high affinity receptor for IL-2 

providing the possibility to respond to IL-2. However, the effects of T cell-derived IL-2 

on NCR-ILC3s have to be explored in further experiments.  

The inducible T cell co-stimulator ICOS belongs to the CD28/CTLA-4 family and is 

mainly de novo expressed on T cells upon activation.274 ICOS acts, like CD28, as a 

co-stimulatory signal for T cell proliferation, however it is not able to induce IL-2 

production.275 Interestingly, whereas naïve splenic NCR-ILC3s expressed low levels, 

the expression of ICOS was increased in the presence of SN collected from co-

cultures of BMDCs and CD4+ T cells with Ag (Fig. 14 D). Furthermore, the ligand for 

ICOS (ICOSL) was also expressed on naïve ex vivo isolated splenic NCR-ILC3s but 

contrary to ICOS its expression was diminished in the presence of SN from co-

cultures with Ag (Fig. 14 D). The precise role for ICOS and its ligand expressed on 

NCR-ILC3s is completely unknown and requires further investigation. Collectively, 

these data showed that NCR-ILC3s underwent different phenotypical changes 

reflecting their activation in the presence of soluble factors produced by activated 

CD4+ T cells.  
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Figure 14:	
  Splenic NCR-ILC3s show changes in the phenotype in the presence of soluble factors 
produced in co-cultures of BMDCs, CD4+ T cells and the cognate Ag. A) Representative 
histograms of CD69 expression on sort-purified ex vivo isolated splenic CD4+ NCR-ILC3s in the 
presence of co-culture SN (BMDCs and CD4+ T cells with or without Ag). B) Histograms of CD40 and 
CD80 expression on splenic NCR-ILC3s in the presence of co-culture SN. C) Representative histogram 
of IFNγ expression by OTIItg CD4+ T cells upon 48 h co-culture with BMDCs in the presence or absence 
of OVA protein. D) Representative dot plots of CD25, ICOS and ICOSL expression of naïve sort-purified 
ex vivo isolated splenic NCR-ILC3s upon 48 h culture in medium alone. Representative histograms of 
CD25, ICOS and ICOSL expression of CD4+ NCR-ILC3s upon 48 h culture in the presence of co-culture 
SN. Data shown are representative of at least 2 independent experiments. SN; supernatant.  
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5.5 NCR-ILC3s elicit CD4+ T cell immunity in vivo by promoting 
Ag-dependent CD4+ T cell proliferation and enhancing T-
dependent B cell responses. 

 

 I-abΔILC3 mice – a model to study Ag presentation by ILC3s in 5.5.1
vivo.  

 

I could show that NCR-ILC3s, either generated in vitro from a FL-derived precursor or 

isolated ex vivo from the spleen of adult mice, were able to elicit CD4+ T cell 

responses in vitro by processing and presenting Ag via MHC II as well as by 

providing co-stimulatory signals. To examine the role of NCR-ILC3s in CD4+ T cell 

responses in vivo, I generated a new mouse model in which MHC II expression was 

deleted exclusively in ILC3s. For this reason, I crossed mice expressing Cre 

recombinase under the control of the RORc promoter (RORc(gt)-Cretg)25 to mice 

carrying a floxed H2-Ab1 allele (I-abneo).248 Mice homozygous for the floxed H2-Ab1 

allele and carrying one copy of the Cre transgene are here referred as I-abΔILC3 mice. 

I-abΔILC3 mice were healthy, did not show signs of spontaneous inflammation and had 

a normal distribution of T and B lymphocytes, macrophages (MΦ), dendritic cells 

(DCs) and natural killer (NK) cells in the spleen (Fig. 15 A and B). Numbers of 

splenic ILC3s were also similar in WT and I-abΔILC3 mice (Fig. 15 B). Within the 

splenic B cell compartment, absolute numbers of splenic marginal zone B cells 

(MZB; CD19+CD21highCD23low) and follicular B cells (FolB; CD19+CD21lowCD23high) 

did not differ in I-abΔILC3 compared to WT mice (Fig. 15 C). I-abΔILC3 mice displayed a 

small reduction in absolute numbers of naïve CD4+ and CD8+ T cells 

(TCRβ+CD62LhighCD44-/low) compared to WT mice whereas numbers of central 

memory (TCRβ+CD62LhighCD44high) as well as effector memory (TCRβ+CD62L-

/lowCD44high) CD4+ and CD8+ T cells were comparable between I-abΔILC3 and WT mice 

(Fig. 15 D).  MHC II was highly expressed on splenic B cells, DCs and MΦ of I-abΔILC3 

and WT mice whereas splenic NCR-ILC3s of I-abΔILC3 mice completely lacked MHC II 

(Fig. 15 E).  

Furthermore, I tested splenic NCR-ILC3s isolated from adult I-abΔILC3 mice for their 

ability to respond to innate stimulation. Therefore, ex vivo isolated sort-purified 

splenic NCR-ILC3s of I-abΔILC3 mice were cultured in the presence of IL-1β or in 

medium alone. 48 h later, I-abΔILC3 derived splenic CD4+ NCR-ILC3s showed 

increased levels of CD69 expression (Fig. 15 F) and up-regulated the expression of 
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the co-stimulatory molecule CD86 on the surface (Fig. 15 F). Only a slight increase 

of CD40 expression (from 6.7 % to 10.0 %) on IL-1β-activated CD4+ NCR-ILC3s 

could be observed (Fig. 15 F). As expected, MHC II expression was absent on 

splenic CD4+ NCR-ILC3s isolated from I-abΔILC3 mice, however, 5 % of IL-1β-

activated splenic NCR-ILC3s were found to express MHC II at low levels (Fig. 15 F). 

It cannot be excluded, that blast formation induced by IL-1β activation was 

responsible for this slight shift in MHC II expression (from 0 % to 5.0 %). As a 

comparison, 55.9 % of naïve splenic CD4+ NCR-ILC3s of WT mice expressed MHC II 

and increased their MHC II expression to 69.5 % upon 48 h exposure to IL-1β (Fig. 

10 A). Therefore, one could assume that the 5 % of CD4+ NCR-ILC3s expressing low 

levels of MHC II in I-abΔILC3 mice were not relevant for Ag presentation. Altogether, I-

abΔILC3 mice displayed completely normal immune compartments, lacked the 

expression of MHC II only on ILC3s and IL-1β stimulation was able to induce 

activation of splenic NCR-ILC3s in vitro. 
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Figure 15: I-abΔILC3 mice show normal numbers of lymphocytes in the spleen and lack MHC II 
expression exclusively on RORγt+ ILC3s. A – C) Absolute numbers of (A) T cells (CD3+) and B cells 
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(CD19+), (B) DCs (CD11c+), MΦ (CD11b+F4/80+), NK cells (NK1.1+NKp46+) and NCR-ILC3s (lin-

RORγt+CD117+NCR-), and (C) marginal zone B cells (MZB; CD19+CD21highCD23low) and follicular B 
cells (FolB; CD19+CD21lowCD23high) in the spleen of WT and I-abΔILC3 mice. D) Absolute numbers of 
naïve (TCRβ+CD62LhighCD44-/low), central memory (TCRβ+CD62LhighCD44high) and effector memory 
(TCRβ+CD62L-/lowCD44high) CD4+ and CD8+ T cells in the spleen of WT and I-abΔILC3 mice. E) 
Representative histograms of MHC II expression on splenic B cells, DCs, MΦ and CD4+ NCR-ILC3s of 
WT and I-abΔILC3 mice. F) Expression of CD69, CD40, CD86 and MHC II on sort-purified ex vivo isolated 
splenic CD4+ NCR-ILC3s of I-abΔILC3 mice cultured for 48 h in the presence of IL-1β or medium alone. 
Numbers in contour plots show the percentage of cells in each quadrant. Data are representative of 2 
independent experiments. A – D) All data are shown as mean + SD (n = 9 - 12; 3 - 4 independent 
experiments; n.s. = not significant; *P < 0.05).	
  

 

 ILC3s elicit Ag-specific T cell proliferation in vivo.  5.5.2
 

To examine the ability of NCR-ILC3s to act as APCs in vivo, I first tested whether 

NCR-ILC3s contribute to Ag-specific CD4+ T cell proliferation in vivo. In order to 

address this question, I compared the proliferation of adoptively transferred OT-IItg 

CD4+ T cells after in vivo immunization with the cognate Ag (OVA) in the following 

recipients; WT, I-abΔILC3 and I-ab-/- mice. I-ab-/- mice have a complete deficiency of all 

MHC II genes and were therefore used as negative controls unable to present Ag via 

MHC II to CD4+ T cells.245 I-ab-/- mice displayed a normal distribution of total CD3+ T 

and CD19+ B lymphocytes in the spleen compared to WT mice (Fig. 16 A). Absolute 

numbers of MZB cells (CD19+CD21highCD23low) and FolB cells 

(CD19+CD21lowCD23high) in I-ab-/- mice were similar to WT mice (Fig. 16 B). However, 

I-ab-/- mice showed significantly reduced relative and absolute numbers of CD4+ T 

cells compared to WT mice (Fig. 16 C). MHC II expression is involved in the 

selection process and maturation of CD4+ T cells in the thymus whereas T cell 

differentiation into the CD8+ lineage is not affected by the loss of MHC II genes in I-

ab-/- mice.245, 276 In line with this, I found significantly increased relative and absolute 

numbers of CD8+ T cells in I-ab-/- mice, probably as a result of expansion in the 

absence of CD4+ T cells (Fig. 16 C). Detailed characterization of the T cell subsets in 

I-ab-/- mice revealed that the remaining CD4+ T cells mainly showed an activated 

memory-like phenotype. Absolute and relative numbers of naïve CD4+ T cells (Tnaïve; 

TCRβ+CD62LhighCD44-/low) were significantly reduced whereas relative numbers of 

CD4+ T cells with an effector memory-like phenotype (TEM; TCRβ+CD62L-/lowCD44high) 

were significantly increased compared to WT mice (Fig. 16 D). However, absolute 

numbers of central memory (TCM; TCRβ+CD62LhighCD44high) and effector memory 

CD4+ T cells were both significantly lower in I-ab-/- compared to WT mice (Fig. 16 D). 

Analysis of the CD8+ T cell subsets in I-ab-/- mice revealed that relative and absolute 

numbers of naïve and central memory CD8+ T cells were comparable to WT mice 
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and only a significant increase in relative and absolute numbers of effector memory 

CD8+ T cells could be observed (Fig. 16 D). Altogether these data showed that 

although I-ab-/- mice had a normal distribution of CD8+ T cells they harbored a 

disrupted CD4+ T cell compartment with a severe reduction of naïve CD4+ T cells. 

Therefore, to proper compare CD4+ T cell responses in WT, I-abΔILC3 and I-ab-/- mice, 

adoptive transfer of Ag-specific OT-IItg CD4+ T cells was performed providing each 

recipient with the same amount of naïve CD4+ T cells capable to respond to OVA 

immunization.  

 

	
  
 

Figure 16:	
   I-ab-/- mice show reduced numbers of CD4+ T cells in the spleen. A - B) Absolute 
numbers of (A) T cells (CD3+), B cells (CD19+) and (B) marginal zone B cells (MZB; 
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CD19+CD21highCD23low) and follicular B cells (FolB; CD19+CD21lowCD23high) in the spleen of WT and I-
ab-/- mice.  C - D) Absolute and relative numbers of CD4+ and CD8+ T cell subsets in the spleen of WT 
and I-ab-/- mice as indicated in the figure. A – D) All data are shown as mean + SD (n = 5; n.s. = not 
significant; *P < 0.05; **P < 0.01). Tnaïve: naïve T cells; TCM; central memory T cells; TEM: effector 
memory T cells. 

 

To examine the contribution of NCR-ILC3s to CD4+ T cell proliferation in vivo, 3 x 106 

CFSE-labeled OT-IItg CD4+ T cells were adoptively transferred into WT, I-abΔILC3 or I-

ab-/- mice followed by an immunization with ovalbumin (OVA) peptide323-339 and OVA 

protein in combination with CpG (Fig. 17 A). CpG was additionally used for the 

immunization as an adjuvant since it induced activation of splenic NCR-ILC3s and an 

inflammatory milieu in the spleen of WT mice upon in vivo treatment (Fig. 9 B and C). 

The proliferation of adoptively transferred OT-IItg CD4+ T cells in the different 

recipient mice was examined 2 days later to uncover the contribution of NCR-ILC3s 

to transient CD4+ T cell responses.277 As expected, CFSE-labeled OT-IItg CD4+ T 

cells proliferated in WT, but not I-ab-/- mice (Fig. 17 B). In I-abΔILC3 mice, OT-IItg CD4+ 

T cell proliferation was significantly reduced demonstrating that ILC3s were able to 

present Ag and to meaningfully alter OVA-specific CD4+ T cell responses in vivo (Fig. 

17 B).  

 
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
 

Figure 17:	
   ILC3s elicit Ag-specific T cell proliferation in vivo. A) Schematic representation of the 
experimental performance of the in vivo experiment. t = time (h). B) Sort-purified CFSE-labeled OT-IItg 
CD4+ T cells were injected i.v. into WT (�), I-abΔILC3 (§) and I-ab-/- (�) mice immunized with OVA peptide, 
OVA protein and CpG. Absolute numbers of proliferating OT-IItg CD4+ T cells recovered from the spleen 
2 days later (mean values + SD; 4 independent experiments; n = 6 – 7; *P < 0.05; **P < 0.01). 	
  

  



	
   94 

 ILC3s support Ag-specific T-dependent B cell responses in 5.5.3
vivo.  

 

My data could demonstrate that ILC3s were able to elicit Ag-dependent CD4+ T cell 

proliferation in vivo. However, whether ILC3s contribute to T dependent (TD) B cell 

responses was not yet investigated. To study the role of ILC3s in TD B cell 

responses, I compared B cell responses in WT, I-abΔILC3 and RORγ-/- mice. RORγ-/- 

mice are described to completely lack ILC3s and consequently LNs and PPs the 

places where immune responses can be generated.25, 70 Therefore, the spleen, which 

develops independently of ILC3s, serves as the main place to generate adaptive 

immune responses in RORγ-/- mice. Further, RORγ-/- mice show a diminished T cell 

pool.70 It has been reported that RORγt regulates the survival of double positive 

(CD4+CD8+) thymocytes during T cell development in the thymus by enhancing the 

expression of the anti-apoptotic factor Bcl-xL.70 In line with this, analysis of RORγ-/- 

mice revealed significantly reduced relative numbers of CD3+ T cells compared to 

WT mice (Fig, 18 A). This reduction could not be reflected in absolute cell numbers, 

probably due to the fact that T cells in RORγ-/- mice only have the possibility to 

accumulate in the spleen while T cells in WT mice can be distributed within other 

secondary lymphoid organs (Fig. 18 A). The development of B cells was not affected 

by RORγt deficiency shown by increased relative and absolute numbers of total 

CD19+ B cells in the spleen of RORγ-/- mice compared to WT mice (Fig. 18 A). Within 

the splenic B cell compartment, a normal distribution of MZB cells 

(CD19+CD21highCD23low) and FolB cells (CD19+CD21lowCD23high) was observed (Fig. 

18 B). The significant increased in B cell numbers in RORγ-/- mice might be the 

consequence of accumulation of these cells in the spleen. Furthermore, RORγ-/- mice 

showed a decrease in relative numbers of CD4+ but not CD8+ T cells compared to 

WT mice (Fig. 18 C). This reduction was probably induced by the lack of a subset of 

CD4+ T cells, the Th17 cells, whose differentiation is known to be regulated by RORγt 

expression.231 However, the decreased relative numbers of CD4+ T cells in RORγ-/- 

mice could not be reflected in absolute cell numbers (Fig. 18 C). The majority of 

CD4+ and CD8+ T cells found in the spleen of RORγ-/- mice showed a memory-like 

phenotype (Fig. 18 D - E).  Relative and absolute numbers of naïve CD4+ T cells 

(Tnaïve; TCRβ+CD62LhighCD44-/low) were significantly reduced in RORγ-/- mice whereas 

effector memory CD4+ T cells (TEM; TCRβ+CD62L-/lowCD44high) were increased 
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compared to WT mice. Collectively, these data showed that RORγ-/- mice harbored a 

diminished T cell pool.  

 

	
  
 

Figure 18:	
  RORγ -/- mice show a diminished T cell repertoire with a bias to memory-like phenotype 
T cells. A - C) Relative and absolute numbers of (A) T cells (CD3+) and B cells (CD19+), (B) marginal 
zone B cells (MZB; CD19+CD21highCD23low) and follicular B cells (FolB; CD19+CD21lowCD23high), and 
(C) CD4+ and CD8+ T cells in the spleen of WT and RORγ-/- mice. D - E) Relative (D) and absolute (E) 
numbers of CD4+ and CD8+ T cell subsets in the spleen of WT and RORγ-/- mice. A – E) All data are 
shown as mean + SD (n = 5; n.s. = not significant; *P < 0.05). Tnaïve: naïve T cells; TCM; central memory 
T cells; TEM: effector memory T cells. 
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Since RORγ-/- mice only showed low numbers of naïve T cells, adoptive transfer of 

OT-IItg CD4+ T cells was required to provide a pool of naïve CD4+ T cells able to 

achieve CD4+ T cell help to B cells. Hereby, RORγ-/- mice could be used to study TD 

B cell responses in the complete absence of ILC3s.  

To examine the contribution of ILC3s to TD B cell responses, 2 x 106 OT-IItg CD4+ T 

cells were adoptively transferred into WT, I-abΔILC3 and RORγ-/- mice at day 0. 

Subsequently, all mice were immunized i.p. with a single dose of Alum-precipitated 

4-hydroxy-3-nitrophenyl-acetyl (NP)-OVA (100 µg per mouse) plus CpG at day 0. 

Mice were bleed one day before adoptive transfer and immunization (day -1; naïve), 

and 5 (day 5) as well as 14 (day 14) days after adoptive transfer and immunization 

(Fig. 19 A). Each time the serum was collected to measure immunoglobulin (Ig) 

levels in the different recipients.  

Naïve WT and I-abΔILC3 mice showed similar levels of total IgM measured in the 

serum at day -1 whereas total IgM levels in naïve RORγ-/- mice were slightly higher 

(Fig. 19 B). Furthermore, IgG3, the Ig subtype often produced in response to T 

independent (TI) Ags, could be detected in I-abΔILC3 and RORγ-/- mice at day -1 at 

slightly higher levels than in WT mice (Fig. 19 C). These findings indicated that naïve 

I-abΔILC3 and RORγ-/- mice were able to mount immune responses against TI Ags and 

to secrete normal or even higher levels of IgG3 than WT mice.  

The establishment of a humoral immune response to TD Ags includes isotype class 

switch, a process that takes place within germinal centers (GC), which are especially 

formed in response to the encountered Ag.278, 279 Therefore it was not surprising that 

the level of total IgG produced against nitrophenylacetyl (NP)-OVA was low in the 

serum of mice only 5 days upon immunization and CD4+ T cell transfer (Fig. 19 D). 

14 days after immunization, NP-OVA-specific total IgG was increased in all three 

different recipient mouse strains (Fig. 19 E). The loss of MHC II on ILC3s (I-abΔILC3) 

resulted in a significant reduction of NP-OVA-specific IgG titers compared to IgG 

titers measured in WT mice (Fig. 19 E). In RORγ-/- mice, which lack ILC3s, Th17 

cells, LNs and PPs, NP-OVA-specific IgG titers were even more reduced (Fig. 19 E). 

Additionally, a more detailed analysis of IgG subtypes revealed that NP-OVA specific 

IgG1, IgG2a, IgG2b and IgG3 levels were all low or not detectable 5 days after 

immunization (Fig. 19 F). However, the IgG subtypes IgG1, IgG2a, IgG2b and IgG3 

were found to be produced against NP-OVA 14 days after immunization (Fig. 19 G). 

MHC II deficiency on ILC3s in I-abΔILC3 mice resulted in a significant reduction of all 

NP-OVA-specific IgG subtypes compared to WT mice (Fig. 19 G).  RORγ-/- mice 

showed again an even higher reduction of NP-OVA specific IgG subtypes (Fig. 19 
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G). Collectively, these data showed that Ag-presentation by ILC3s contributed to T 

cell priming in vivo, and that TD B cell responses were impaired when Ag-

presentation was abolished in ILC3s. 

	
  

	
  
 

Figure 19:	
   ILC3s support Ag-specific TD B cell responses in vivo. A) Schematic representation of 
the experimental performance of the in vivo experiment. t = time (days). B - C) Total IgM (B) and total 
IgG3 (C) levels in naïve WT, I-abΔILC3 and RORγ-/- mice measured 1 day before immunization (day -1). 
Data are shown as mean values + SD (n = 9 – 10, n.s. = not significant; *P < 0.05; **P < 0.01; ***P < 
0.001). D - E) WT, I-abΔILC3 and RORγ-/- mice were i.p. immunized with 100 µg Alum-precipitated NP-
OVA after i.v. injection of OT-IItg CD4+ T cells plus CpG. NP-OVA-specific total IgG level 5 days (D) and 
14 days (E) after immunization are shown. Data are representative as mean values + SD (n = 9 – 10) 
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from 3 independent experiments (**P < 0.01; ***P < 0.001; ****P < 0.0001). F - G) NP-OVA-specific 
IgG1, IgG2a, IgG2b and IgG3 levels in WT, I-abΔILC3 and RORγ-/- mice measured 5 days (F) or 14 days 
(G) after i.p. immunization with 100 µg NP-OVA in Alum and i.v. injection of OT-IItg CD4+ T cells plus 
CpG. Data are depicted as mean values + SD (n = 9 – 10; n.d. = not detectable; n.s. = not significant; *P 
< 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).	
  

 

 CD4+ T cell - NCR-ILC3 interaction in vivo. 5.5.4
 

My previous data showed that NCR-ILC3s contribute to CD4+ T cell responses in 

vitro as well as in vivo by direct interaction with CD4+ T cells in an Ag-dependent 

manner. For the in vivo experiments I made use of the I-abΔILC3 mouse model, in 

which ILC3s lacked MHC II expression and were therefore not able to contribute with 

Ag-presentation to CD4+ T cell responses. 

To gain more insight into the interaction of NCR-ILC3s and CD4+ T cells in vivo, the 

next approach was to monitor Ag-dependent interaction of CD4+ T cells and NCR-

ILC3s directly in vivo. Adoptive transfer of Ag-specific OTIItg CD4+ T cells and NCR-

ILC3s into I-ab-/- mice followed by immunization with the cognate Ag should allow the 

monitoring of CD4+ T cell - NCR-ILC3 interaction in vivo.  Therefore, I started to 

establish a protocol for adoptive transfer of OTIItg CD4+ T cells in combination with 

APCs (BMDCs or NCR-ILC3s) into I-ab-/- recipients. 

First, I adoptively transferred 3 x 106 naïve CFSE-labeled OTIItg CD4+ T cells i.v. at 

time point 0 h into I-ab-/- mice to allow the migration of transferred cells into 

secondary lymphoid tissues. 24 h later, 1 x 106 APCs were additionally injected i.v. 

and the recipient mice were immunized with the cognate Ag. The proliferation of 

adoptively transferred OTIItg CD4+ T cells was examined 48 h later as a first 

indication for Ag-dependent CD4+ T cell – NCR-ILC3 interaction (Fig. 20 A).280 

According to my previous in vivo experiments, the following different immunization 

strategies were tested; i) alum precipitated NP-OVA, ii) OVA peptide/OVA protein or 

iii) OVA peptide/OVA protein plus CpG. These immunization strategies should 

provide the cognate Ag as well as additional stimulation of recipient mice. 

Analysis of I-ab-/- mice 72 h after the start of the in vivo experiment revealed that i.v 

injected OTIItg CD4+ T cells were detectable in the spleen as well as in the inguinal 

and mesenteric LNs (mLNs; Fig. 20 B and C). However, independent of the 

immunization strategy, the recovered OTIItg CD4+ T cells did not proliferate in the 

recipient mice (Fig. 20 B and C). No differences in CD4+ T cell proliferation in I-ab-/- 

recipients were observed by injection of either BMDCs or NCR-ILC3s as APCs (Fig. 

20 C and D). The absence of CD4+ T cell proliferation could be due to the inability of 

APCs to reach the areas where interaction with CD4+ T cells would take place within 
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the secondary lymphoid organ. Thus, further experiments are required to examine 

whether transferred APCs were localized in close proximity to adoptively transferred 

CD4+ T cells.  

CXCR5 was shown to be crucial for B cell homing to peripheral LNs.281 Since NCR-

ILC3s express high levels of CXCR5 (Fig. 6 B) I assumed that these cells were able 

to reach LNs upon adoptive transfer in order to interact with CD4+ T cells in such 

organized structures. Therefore, in a second approach, I tried to limit the migration of 

NCR-ILC3s and CD4+ T cells to the popliteal LNs in order to increase the possibility 

of interaction of these two cell types (Fig. 20 E). The popliteal LNs are the draining 

LNs upon injection into the foot pad of mice. Thus, I first injected different amounts (3 

x 105 – 1 x 106 cells) of in vitro generated NCR-ILC3s into the foot pad of I-ab-/- mice 

and screened for the presence of transferred NCR-ILC3s after different time points by 

flow cytometry. NCR-ILC3s were only detectable in very low numbers 3 h after 

injection. At later time points after injection, I could not detect NCR-ILC3s in the 

draining LNs indicating that these cells either migrate further or die. Since, with this 

approach it was not possible to provide the popliteal LN of I-ab-/- mice with MHC II-

expressing NCR-ILC3s, there was no need for further transfer of CD4+ T cells and 

immunization of recipient mice in this experimental approach. Thus, by the use of the 

different approaches described before it was not possible to monitor CD4+ T cell – 

NCR-ILC3 interaction directly in vivo. 
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Figure 20:	
   Establishment of adoptive transfer of APCs and OTIItg CD4+ T cells in vivo. A) 
Schematic representation of the experimental performance. B) Summary of the outcome of different 
approaches carried out to establish a protocol for adoptive transfer of APCs and OTIItg CD4+ T cells in 
order to monitor NCR-ILC3s-CD4+ T cell interactions in vivo. ✔ = yes; OTIItg CD4+ T cells could be 
recovered, ✖ = no; recovered OTIItg CD4+ T cells did not proliferate. C) Representative dot plots of 
adoptively transferred CFSE-labeled CD4+ T cells (blue gate) recovered in the inguinal LNs of I-ab-/- 
mice 72 h after adoptive transfer either alone or in combination with BMDCs (DCs) and immunization as 
indicated in the figure. D) Representative dot plot of adoptively transferred CFSE-labeled CD4+ T cells 
recovered in the inguinal LNs of I-ab-/- mouse, which received in vitro generated NCR-ILC3s followed by 
immunization indicated in the figure. E) Schematic representation of the experimental performance of 
the second approach. i.v.: intravenous; f.p.: foot pad.  
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5.6 Small intestinal NCR-ILC3s differ from splenic NCR-ILC3s in 
regard to their phenotype, response to innate stimulation and 
ability to induce CD4+ T cell responses. 

 

 The phenotype of small intestinal lamina propria-derived NCR-5.6.1
ILC3s differs from that of splenic NCR-ILC3s. 

 

In vivo, ILC3s are predominantly found in mucosa-associated tissues such as the 

gastrointestinal tract.108, 109, 110, 266 How intestinal NCR-ILC3s contribute to innate and 

adaptive immune responses was not fully understood. Therefore, I focused more 

detailed on NCR-ILC3s found in the lamina propria (LP) of the small intestine of adult 

mice. First of all, I examined the phenotype of ex vivo isolated small intestinal LP 

NCR-ILC3s of adult WT mice. LP NCR-ILC3s could be identified as lin-

CD90.2+CD117+RORγt+ cells (Fig. 21 A). Within this cell population, both CD4+ and 

CD4- subpopulations could be found (Fig. 21 A). The CD4+ population represented 

approximately 10 % of total LP NCR-ILC3s whereas 90 % of the cells were CD4- (Fig. 

21 A). Both CD4+ and CD4- LP NCR-ILC3s expressed comparable high levels of 

RORγt (Fig. 21 A). The expression profile of the chemokine receptor CCR6 differed 

in CD4+ and CD4- LP NCR-ILC3s. Whereas all CD4+ LP NCR-ILC3s expressed 

CCR6, within the CD4- LP NCR-ILC3s subset 60 % of the cells was CCR6- (counting 

for 70 % of total CD4- LP NCR-ILC3s; Fig. 21 B). This indicated that the CD4- LP 

NCR-ILC3 subset represented a more heterogeneous population. MHC II expression 

could be observed on both CD4+ and CD4- LP NCR-ILC3s (Fig. 21 B). Whereas 

around 40 % of all CD4+ LP NCR-ILC3s expressed MHC II only approximately 20 % 

of all CD4- LP NCR-ILC3s were MHC II+. 

The intestine contains a large number of commensal bacteria as well as potential 

pathogens,282 which might have an influence on the activation state of LP NCR-

ILC3s. Therefore, I investigated the expression of co-stimulatory molecules CD40 

and CD86 as well as the early activation marker CD69 on the surface of LP NCR-

ILC3s ex vivo isolated from naïve WT mice. Both subsets of LP NCR-ILC3s lacked 

the expression of CD40 and CD86 (Fig. 21 C). CD69 was highly expressed on both 

CD4+ and CD4- LP NCR-ILC3 subsets isolated from naïve WT mice (Fig. 21 D). LP 

NCR-ILC3s expressed CD69 two to three fold higher compared to ex vivo isolated 

splenic NCR-ILC3s, which lack CD69 expression (Fig. 21 E). It was possible that 

either bacteria, endogenous IL-1 or IL-23 present in the small intestine induced the 
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expression of CD69 on LP NCR-ILC3s of naïve WT mice. Therefore, I investigated 

IL-1R1-/- mice, which lack the receptor for IL-1 and hence are unresponsive to IL-1.  

LP NCR-ILC3s isolated from naïve IL-1R1-/- mice showed CD69 expression at similar 

levels to WT mice (Fig. 21 F). Thus, signaling via IL-1R1 was not responsible for the 

high expression of CD69 on LP NCR-ILC3s. Microbial products and components of 

bacteria are mainly sensed through TLRs. Therefore, I investigated CD69 expression 

on LP NCR-ILC3s ex vivo isolated from MyD88ΔILC3/T mice, which lack the expression 

of MyD88 on RORγt-expressing cells. MyD88 is an adaptor molecule used by almost 

all TLRs for activation of NFκB downstream signaling transmitting the recognized 

stimulus.163 However, CD69 was highly expressed on LP NCR-ILC3s lacking MyD88. 

Furthermore, ex vivo isolated LP NCR-ILC3s of mice with a complete deficiency of 

MyD88 (MyD88-/-) also showed high expression of CD69 (Fig. 21 F). These findings 

indicated that the absence of MyD88-mediated TLR signaling in ILC3s as well as in 

all other immune cells did not influence CD69 expression on LP NCR-ILC3s. TLR3 

and TLR4 are known to signal independent of MyD88 by the use of another adaptor 

molecule, named TRIF.283, 284 Therefore, I tested mice with a deficiency in both 

MyD88 and TRIF (MyD88-/-Trif-/-) for the expression of CD69 on LP NCR-ILC3s. 

Naïve MyD88-/-Trif-/- mice showed as well high levels of CD69 expression on LP 

NCR-ILC3s (Fig. 21 F).  Thus, bacteria and microbial products sensed through TLRs 

were not responsible for CD69 expression by LP NCR-ILC3s. My previous in vitro 

stimulation data suggested IL-23 as a potential activator of ILC3s (Fig. 7 A and Table 

1). Furthermore, IL-22 production by ILC3s in a model of C. rodentium infection, an 

intestinal pathogen, has been reported to be IL-23 dependent.106 Thus, I investigated 

the phenotype of LP NCR-ILC3s ex vivo isolated from IL-23p19-/- mice. However, LP 

NCR-ILC3s isolated from IL-23p19-/- mice showed CD69 expression similar to WT 

(Fig. 21 F). Additionally, LP NCR-ILC3s isolated from germfree mice expressed 

CD69 excluding the microbiota to be responsible for this phenomenon (Fig. 21 F). 

CD69 expression on LP NCR-ILC3s was also not the consequence of the presence 

of T and B lymphocytes, as Rag2-/- mice contained LP NCR-ILC3s expressing CD69 

at levels comparable to WT (Fig. 21 F). Altogether, compared to splenic NCR-ILC3s, 

LP NCR-ILC3s continuously expressed CD69 independent of IL-1R1- and TLR 

signaling, the presence of T and B cells, as well as the microbiota or the availability 

of IL-23.  
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Figure 21:	
  Naïve LP NCR-ILC3s express CD69 independent on IL-1R1 and TLR signaling, IL-23, 
the microbiota and the presence of T and B lymphocytes. A) Phenotype of ex vivo isolated LP NCR-

ILC3s of WT mice. RORγt expression of LP CD4+ and CD4- NCR-ILC3s is shown. RORγt expression of 
total LP NCR-ILC3s (black line) is displayed in the histogram. Grey solid line corresponds to lin+ cells. 
Numbers in dot plots show the percentage of cells in each gate. Representative dot plots and histogram 
are illustrated. B - C) Expression of (B) CCR6 and MHC II, and (C) CD40 and CD86 on naïve ex vivo 
isolated LP NCR-ILC3s of adult WT mice. Numbers in dot plots show the percentage of cells in each 
gate. Representative dot plots are shown. D) Representative dot plot of CD69 expression of LP NCR-

ILC3s. E) Representative histogram of CD69 expression of LP compared to splenic NCR-ILC3s. F) 
Representative dot plots of CD69 expression on CD4+ and CD4- LP NCR-ILC3s isolated from different 
mouse strains as indicated in the figure. 

 

 Small intestinal LP NCR-ILC3s do not express co-stimulatory 5.6.2

molecules upon IL-1β stimulation.  
 

It has been previously reported that mucosa-associated intestinal ILC3s rather limit 

CD4+ T cell responses to commensal bacteria than promote CD4+ T cell responses 

due to the lack of co-stimulatory molecules.132 However, whether these cells express 



	
   104 

co-stimulatory molecules under inflammatory condition similar to splenic NCR-ILC3s 

has never been investigated. Therefore, I isolated LP NCR-ILC3s from adult Rag2-/- 

mice as these mice harbor increased numbers of ILC3s and simultaneously lack T 

and B cells facilitating the enrichment of high numbers of ILC3s without 

contaminating T or B cells. Similar to WT derived LP NCR-ILC3s (Fig. 21 A and B) 

Rag2-/- derived LP NCR-ILC3s could be identified as lin-CD90.2+CD117+ cells 

expressing high levels of the transcription factor RORγt (Fig. 22 A). Sort-purified ex 

vivo isolated NCR-ILC3s were then cultured for 48 h in the presence of IL-1β or in 

medium alone. In vitro exposure to IL-1β induced blast formation of LP NCR-ILC3s 

(Fig. 22 B). However, despite increasing amount of IL-1β in the in vitro cultures, 

neither the expression of the co-stimulatory molecules CD40 and CD86 nor the up-

regulation of MHC II could be detected on LP NCR-ILC3s (Fig. 22 C). Furthermore, 

LP NCR-ILC3s showed high levels of IL-22 production in the absence of IL-1β, and 

IL-22 secretion was increased in the presence of IL-1β (Fig. 22 D). IL-22 secretion by 

IL-1β-activated LP NCR-ILC3s exceeded those of IL-1β-activated splenic NCR-ILC3s. 

In contrast to LP NCR-ILC3s, splenic NCR-ILC3s did not secrete IL-22 in the absence 

of innate stimulation (Fig. 22 D). Therefore, the response of LP NCR-ILC3s to innate 

stimulation differed from that of splenic NCR-ILC3s as such as LP NCR-ILC3s 

predominantly produced IL-22 and did not up-regulate expression of MHC II and co-

stimulatory molecules upon IL-1β exposure. 
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Figure 22:	
   Small intestinal LP NCR-ILC3s do not express co-stimulatory molecules upon 
stimulation with IL-1β . A) Phenotype of NCR-ILC3s ex vivo isolated from the lamina propria (LP) of the 
small intestine of Rag2-/- mice. Numbers in dot plots show the percentage of cells in each gate. 
Representative dot plots and histogram are depicted. B) Representative histogram of forward scatter 
(FSC) level in LP NCR-ILC3s cultured for 48 h in the presence of IL-1β or in medium alone. C) 
Expression of MHC II, CD40 and CD86 by LP NCR-ILC3s cultured for 48 h in the presence of different 
concentrations of IL-1β or in medium alone as indicated in the figure. Data are representative of 4 
independent experiments. Numbers in dot plots show the percentage of cells in each quadrant. D) IL-22 
secretion by either ex vivo isolated LP or splenic NCR-ILC3s upon 48 h exposure to IL-1β or medium 
alone. Data are shown as mean values + SD (n = 3 - 6, at least 3 independent experiments; *P < 0.05; 
**P < 0.01).  

 

 Small intestinal LP NCR-ILC3s are able to internalize 5.6.3
exogenous Ag.  

 

Naïve LP NCR-ILC3s showed MHC II expression on their surface (Fig. 21 B and Fig. 

22 C). Therefore, I tested the capacity of LP NCR-ILC3s to take up exogenous Ag. 

Sort-purified ex vivo isolated LP NCR-ILC3s were cultured for 6 h in the presence of 

red fluorescent latex beads at 37 °C and 4 °C. Whereas LP NCR-ILC3s were able to 
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internalize latex beads at 37 °C, bead uptake was severely impaired at 4 °C as 

expected (Fig. 23 A). Thus, naïve ex vivo isolated LP NCR-ILC3s, similar to splenic 

NCR-ILC3s, were capable to internalize exogenous Ag.  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
 

Figure 23: LP NCR-ILC3s are able to take up exogenous Ag. A) Representative plots and histograms 
of sort-purified ex vivo isolated LP NCR-ILC3s incubated for 6 h with red fluorescent latex beads at 37 
ºC or 4 ºC. Number in the dot plots shows percentage of bead+ cells (4 independent experiments).  

 

 Small intestinal LP NCR-ILC3s are unable to efficiently induce 5.6.4
CD4+ T cell activation. 

 

Upon IL-1β exposure, LP NCR-ILC3s were unable to express co-stimulatory 

molecules (Fig. 22 C). Interaction of T cells with APCs lacking co-stimulatory 

molecules rather limits T cell responses and induces T cell anergy.133, 218 Whether LP 

NCR-ILC3s were able to either elicit CD4+ T cell responses or limit them was not fully 

understood. Therefore, I tested the ability of pre-activated LP NCR-ILC3s to induce 

CD4+ T cell responses in vitro by the use of so-called BW-OTII cells. BW-OTII cells 

were generated by the fusion of activated OT-IItg T cells (activated in the presence of 

soluble anti-CD3 Ab) with TCRαβ- BW-5147 NFAT-EGFP fusion partner (see 4.2.6 

Generation of BW-OTII cells).256 TCRαβ- BW-5147 NFAT-EGFP hybridoma cells 

contain nuclear factor of activated T cells (NFAT)-binding sites inserted upstream of 

the enhanced green fluorescent protein (EGFP) coding sequence. Thus, TCRαβ- 

BW-5147 NFAT-EGFP hybridoma cells fused to OT-IItg CD4+ T cells (BW-OTII cells) 

provide a tool to study Ovalbumin-MHC II dependent TCR engagement (Fig. 24 A 

and B). Ex vivo isolated sort-purified LP or splenic NCR-ILC3s were activated with IL-
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1β for 24 h and subsequently co-cultured with BW-OTII cells in the presence or 

absence of OVA peptide (Fig. 24 A and B). The percentage of GFP+ BW-OTII cells in 

the co-culture reflected the efficiency of Ag presentation by NCR-ILC3s. IL-1β-

activated LP NCR-ILC3s were less efficient in BW-OTII activation in the presence of 

OVA peptide compared to splenic NCR-ILC3s (Fig. 24 A and B). GFP+ BW-OTII cells 

were almost not detectable in co-cultures in the absence of Ag (Fig. 24 A and B). To 

test whether LP NCR-ILC3s were able to process also whole OVA protein in order to 

interact with CD4+ T cells, IL-1β-activated LP NCR-ILC3s were co-cultured with sort-

purified ex vivo isolated OT-IItg CD4+ T cells either in the presence or absence of 

whole OVA protein (Fig. 24 C and D). LP NCR-ILC3s were 3 times less efficient to 

induce cognate T cell activation in vitro compared to splenic NCR-ILC3s (Fig. 24 C 

and D). Thus, these data demonstrated that although NCR-ILC3s were able to 

process exogenous Ag and to interact with CD4+ T cells, they showed only low CD4+ 

T cell activation efficiency. Collectively, these data showed that LP NCR-ILC3s 

responded differentially than splenic NCR-ILC3s to innate simulation and were less 

efficient in triggering CD4+ T cell responses.  
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Figure 24:	
  Activated LP NCR-ILC3s do not induce efficient CD4+ T cell activation. A) 
Schematic representation of naïve GFP- BW-OTII cells (fusion of TCRαβ- BW5147 NFAT-
EGFP cells with OT-IItg CD4+ T cells) and activated GFP+ BW-OTII cells upon TCR 
engagement. B) Percentage of GFP+ BW-OTII cells upon co-culture with IL-1β-activated LP 
or splenic NCR-ILC3s in the presence or absence of OVA peptide. Data are shown as mean 
values (n= 2-3). C) Naïve sort-purified OT-IItg CD4+ T cells were cultured with IL-1β-activated 
LP or splenic NCR-ILC3s in presence of OVA protein or medium alone (w/o Ag) as indicated 
in the figure. Representative plots of CD69 expression by OT-IItg CD4+ T cells 48 h later. Data 
are representative of 4 independent experiments. D) Percentage of CD69+ OT-IItg CD4+ T 
cells upon co-culture with IL-1β-activated LP or splenic NCR-ILC3s in the presence or 
absence of OVA protein. Data are shown as mean values + SD (4 independent experiments). 
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6 Discussion 
 

 

Beside the role as key players in the induction of lymphoid tissue formation and 

organization during embryogenesis, ILC3s are found after birth, mainly accumulating 

in the intestine and are as well present in peripheral organs. So far, the immune 

functions described for NCR- and NCR+ILC3s in the adult immune system are based 

on their ability to secrete effector cytokines in response to soluble factors derived 

from other immune cells. I show here that NCR-ILC3s were able to directly sense and 

respond to microbial products and pro-inflammatory cytokines. Upon IL-1β exposure, 

peripheral NCR-ILC3s expressed MHC II and co-stimulatory molecules and became 

bona fide APCs, as they were able to take up exogenous Ag, to process it and 

consequently promoted OVA-specific CD4+ T cell proliferation in vitro and in vivo. In 

addition, activated NCR-ILC3s expressed an unexpected repertoire of cytokines 

known to alter T cell responses. Ag-specific T cell proliferation and IgG-mediated 

humoral immunity were impaired in animals in which Ag-presentation was abolished 

exclusively in ILC3s. Moreover, in the presence of Ag, the T cell priming led to an 

extended activation of ILC3s suggesting a reciprocal crosstalk between NCR-ILC3s 

and CD4+ T cells. Indeed, soluble factors most likely produced by CD4+ T cells upon 

Ag encounter were able to induce de novo activation of NCR-ILC3s. These novel 

data suggest that under inflammatory conditions the cognate interaction of NCR-

ILC3s and CD4+ T cells contributes to adaptive immunity. Furthermore, I show here 

that small intestinal NCR-ILC3s differed phenotypically and functionally from 

peripheral NCR-ILC3s. Small intestinal NCR-ILC3s produced high amounts of IL-22 

upon exposure to IL-1β, but were not able to up-regulate MHC II molecule 

expression or to express co-stimulatory molecules. Moreover, although they were 

able to take up, process and present exogenous Ag, the induction of CD4+ T cell 

responses was less efficient compared to peripheral NCR-ILC3s. These data suggest 

that NCR-ILC3 immune function might be tissue-specific and depend on 

environmental signals that are differentially active under homeostatic and 

inflammatory conditions.  
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Innate stimulation of NCR-ILC3s induces cytokine production and 
changes in the phenotype. 
 

The FL harbors a population of α4β7
+ cells, which were described to give rise to 

ILC3s lacking the expression of the natural cytotoxicity receptor (NCR) NKp46 in 

vitro.60, 61 I line with this, I was able to generate NCR-ILC3s from the α4β7
+ ILC3 

precursor population isolated from the FL of 14.5 dpc WT embryos. These in vitro 

generated NCR-ILC3s showed a phenotype (Fig. 6 A - B), which is similar to the 

classical phenotype described for NCR-ILC3s.57 The existence of a CD4+ and a CD4- 

NCR-ILC3 subpopulation in embryonic tissues was reported in several studies61, 63, 93 

and CD4+ and CD4- NCR-ILC3s showed nearly identical phenotype and gene 

expression patterns.285 In line with this, I could demonstrate that in vitro generated 

NCR-ILC3s can be subdivided into CD4+ and CD4- NCR-ILC3s possessing an 

identical phenotype except the surface expression of CD4 (Fig. 6 A - B). Altogether, 

the in vitro generation of NCR-ILC3s provided me with sufficient numbers of cells to 

study the function of CD4+ and CD4- NCR-ILC3s in innate and adaptive immune 

responses. 

NCR-ILC3s were reported to produce IL-17 and IL-22 upon in vivo challenge with 

zymosan, a yeast cell wall product.105 Furthermore, NCR-ILC3s could be shown to 

provide protective immunity during fungal infection with Candida albicans265 or 

bacterial infection with Citrobacter rodentium106 by massive production of IL-17 and 

IL-22, respectively. The secretion of IL-17 and/or IL-22 was dependent on the 

presence of IL-23 produced by other immune cells in response to the pathogens or 

microbial products.105, 106 Consistent with these findings, I could show that in vitro 

generated NCR-ILC3s were able to produce high amounts of IL-22 in response to IL-

23 stimulation in vitro. In addition, I could demonstrate that NCR-ILC3s secreted IL-

22 upon exposure to several TLR ligands whereby Poly I:C induced the production of 

significantly high levels of IL-22 (Fig. 7 A and C). Thus, NCR-ILC3s are as well 

capable to directly sense and respond to the presence of microbial products without 

the involvement of other immune cells suggesting a rapid and independent cytokine-

mediated role for NCR-ILC3s in protective immunity. Only few studies reported the 

expression of TLRs on ILC3s.286, 287, 288 TLR4 was shown to be expressed on murine 

ILC3s whereas TLR2 expression was reported on murine and human ILC3s.287, 288 

Nevertheless, my data suggest, that NCR-ILC3s express at least some TLRs 

allowing the direct response to microbial products.  
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IL-17 secretion could not be observed in the presence of the tested TLR ligands (Fig. 

7 C). Whether the exposure of NCR-ILC3s to a combination of several TLR ligands is 

required and sufficient to induce IL-17 secretion remains to be investigated. 

Moreover, whether ligands for the aryl hydrocarbon receptor (AhR), which are 

reported to be crucial for the secretion of IL-17 and IL-22 by Th17 cells,289 are 

potential inducer of IL-17 and/or IL-22 production by NCR-ILC3s remains to be 

explored. In contrast to other studies, which reported IL-23-dependent IL-17 

production by NCR-ILC3s,105, 265 I could not observe IL-17 secretion of in vitro 

generated NCR-ILC3s in response to IL-23 stimulation in vitro. However, the 

presence of the pro-inflammatory cytokine IL-1β induced IL-17 secretion (Fig. 7 B). 

Considering IL-17 production by ILC3s in different in vivo infection models, my in 

vitro data hence suggest that NCR-ILC3s might require IL-23 and additional factors, 

such as IL-1β, to secrete IL-17.  

The pro-inflammatory cytokine IL-1β was able to induce remarkably high levels of IL-

22 secretion by NCR-ILC3s even exceeding those induced by IL-23 (Fig. 7 A). Both 

CD4+ and CD4- NCR-ILC3 subsets were capable to secrete IL-22 at similar levels, 

indicating that in addition to similarities in their phenotype they shared the capacity to 

secrete typical ILC3 cytokines. In line with the responsiveness to IL-1β, ILC3s were 

reported to express the appropriate receptor, IL-1R1 and MyD88 allowing IL-1R1 

downstream signaling.266, 267, 268, 288 In addition, it was shown that basal and IL-23- as 

well as IL-1β-induced production of IL-22 by ILC3s was dependent on IL-1R1.266, 267, 

268 Blockade of IL-1β in vivo resulted in a decreased production of IL-17 and IFNγ by 

ex vivo isolated ILC3s upon IL-23 stimulation consistent with the fact that levels of IL-

23R expression by ILC3s were reduced.290 Similarly, the production of IL-17, IL-22 

and IFNγ by ILC3s, their expansion in vitro and their accumulation at sites of infection 

in vivo was partially triggered through IL-1R signaling.262, 291 Altogether, these data 

suggest that IL-1β triggers ILC3 responses. IL-1β and/or IL-23 are produced by DCs 

and MΦ under steady state and upon microbial challenge.126, 164, 165, 166, 167, 170, 292 

Considering my findings that NCR-ILC3s are responsive to both, microbial products 

and cytokines, one could assume that their full activation might be reached by a 

combination of direct pathogen recognition and indirect sense of a cytokine milieu 

provided by other immune cells. Further, it could be shown that IL-1β is able to 

increase IL-23R expression on NCR-ILC3s,290 a fact, which might enhance their 

responsiveness to IL-23 and therefore suggests a role for IL-1β in orchestrating IL-

23-dependent NCR-ILC3 responses. Several TLR ligands such as Poly I:C and LPS 

were previously reported to induce pro-IL1β.293 However, Poly I:C-induced direct 
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NCR-ILC3 activation was not mediated through IL-1β secretion of NCR-ILC3s as 

addition of neutralizing IL-1β Ab was not able to reduce activation in the presence of 

Poly I:C (data not shown). This suggests, that TLR ligand-induced NCR-ILC3 

activation was at least not mediated through IL-1β secretion of NCR-ILC3s.  

Moreover, I could show that the exposure of in vitro generated NCR-ILC3s to IL-1β 

induced the secretion of an unexpected broad repertoire of different cytokines, such 

as IL-2, IL-6, MIP-1α, IP-10, IFNγ, TNFα and GMCSF, all known for their capacity to 

alter T cell responses (Fig. 7 D). Whereas IL-2 and IL-6 are involved in T cell 

activation and proliferation,211, 294, 295, 296 MIP-1α and IP-10 can act as 

chemoattractants for mononuclear cells and effector T cells.297, 298 IFNγ has been 

shown to induce Th1 cell differentiation,299 whereas GMCSF plays an important role 

in the induction and maintenance of intestinal tissue resident DCs,121 which are in 

turn crucial for the induction of regulatory T cells (Tregs) responsible for the regulation 

of intestinal tolerance.122, 123, 124 In line with this, it could recently be shown that IL-1β-

induced secretion of GMCSF by ILC3s in the intestine indirectly regulates the 

differentiation and number of Tregs suggesting a cytokine-mediated regulatory role for 

ILC3s in the intestinal immune system.126 However, the role of the different cytokines 

released by NCR-ILC3s in response to IL-1β stimulation needs to be further explored. 

T cell activation, proliferation, survival, differentiation or migration could be examined 

in the presence of soluble factors produced by IL-1β - exposed NCR-ILC3s in vitro. 

Further, one has to consider that most likely not each cell of the in vitro generated 

NCR-ILC3 population was able to produce the entire repertoire of cytokines. It might 

be possible that this population is functionally heterogeneous containing several 

different cell clones capable of producing one or more cytokines. In response to IL-

1β, or to other pro-inflammatory cytokines and microbial products, those different cell 

clones might be able to secrete one single or even several effector cytokines as 

described for human ILC and CD4+ T cell clones.20, 287, 300, 301 Altogether, these data 

suggested that activation-induced and stimuli-dependent cytokine production by 

NCR-ILC3s might play different roles in immunity. 

Beside cytokine production upon direct exposure to microbial products and pro-

inflammatory cytokines, I examined whether one can phenotypically distinguish naïve 

and “experienced” NCR-ILC3s. In order to answer this question, I measured the 

surface expression of CD69, which is reported to be the earliest inducible 

glycoprotein during lymphocyte activation.202 In vitro generated NCR-ILC3s 

expressed low to negligible levels of CD69, indicating their naïve phenotype obtained 

upon differentiation from α4β7
+ ILC3 precursors residing in the sterile environment of 
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the FL (Fig. 6 B and Fig. 8 B). However, in vitro exposure to TLR ligands Poly I:C 

and CpG, as well as the pro-inflammatory cytokine IL-1β, increased the expression of 

CD69 indicating the activation of NCR-ILC3s (Fig. 8 A). Further, I could demonstrate 

that in vivo challenge with CpG or LPS induced activation of NCR-ILC3s residing in 

the spleen of adult mice. Splenic NCR-ILC3s up-regulated the expression of CD69 

and MHC II (Fig. 9 C and D). It has been reported, that CpG is able to induce 

activation and maturation of DCs resulting in the up-regulation of the expression of 

certain surface molecules, such as MHC I and II, and co-stimulatory molecules.302, 303 

In line with the finding that CpG stimulates APCs to secrete cytokines like IL-1, 

TNFα, IL-12 and IFNγ,302, 303, 304, 305 I could demonstrate that in vivo administration of 

CpG induced an inflammatory milieu in the spleen with significantly increased levels 

of the pro-inflammatory cytokines IL-1β, TNFα and IFNγ (Fig. 9 B). Similar to CpG, it 

has been reported that in vivo challenge of mice with LPS induces the production of 

IL-1β.167 Regarding the fact that the pro-inflammatory cytokine IL-1β appeared to be 

a strong activator of NCR-ILC3s in vitro able to induce the production of various 

cytokines and the up-regulation of CD69 expression, one can assume that the 

activation of splenic NCR-ILC3s observed upon in vivo challenge of adult mice with 

microbial products was at least partially mediated by the induction of a pro-

inflammatory milieu.  

Altogether, my data showed that direct recognition of certain microbial products and 

sensing of pro-inflammatory cytokines induced activation of NCR-ILC3s in vitro and in 

vivo. Activation and cytokine production of NCR-ILC3s was dependent on the nature 

of the present stimuli suggesting that NCR-ILC3s might be able to differentially 

regulate and adapt their responses to innate stimulation.  

 

Activated NCR-ILC3s acquire an APC-like phenotype.  
 

In addition to CD69 up-regulation, I could demonstrate that in vitro generated and ex 

vivo isolated splenic NCR-ILC3s increased the expression of MHC II molecules and 

acquired the expression of co-stimulatory molecules CD80/86 and CD40 upon IL-1β 

exposure in vitro (Fig. 8 B and 10 A). These data showed that peripheral NCR-ILC3s 

were able to acquire an APC-like phenotype upon exposure to inflammation-

associated signals. This phenomenon was already well documented for DCs, which 

were able to mature into professional APCs fully capable of initiating efficient CD4+ T 

cell immunity.173 Expression of MHC II by a fraction of fetal/neonatal ILC3s was 

already reported.57 Here, I could show that whereas naïve splenic NCR-ILC3s 
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already expressed MHC II molecules on their surface, naïve in vitro generated NCR-

ILC3s only showed low levels of MHC II expression. This low expression level might 

arise due to the fact that these cells differentiated from α4β7
+ ILC3 precursors 

residing in the sterile environment of the FL whereas splenic NCR-ILC3s of adult 

mice might have already been exposed to factors able to induce MHC II expression. 

The determination of the gene expression profile of in vitro generated CD4+ and CD4- 

NCR-ILC3 subsets revealed the expression of gene-transcripts related to MHC II 

expression and Ag presentation at high levels under steady state (Fig. 8 C). This 

suggests that already naïve NCR-ILC3s possess the machinery for MHC II-

dependent Ag presentation. Surprisingly, no differences in the transcript levels of 

these genes could be observed upon exposure to IL-1β in vitro for 1 h suggesting 

that this short stimulation might not be sufficient to induce substantial changes. 

Hence, these data might imply that NCR-ILC3s require a prolonged exposure to 

inflammatory signals to acquire an APC-like phenotype.  

 

NCR-ILC3s take up latex beads, process protein Ag and promote CD4+ T 
cell responses in vitro.  
 

Having demonstrated that peripheral NCR-ILC3s were able to acquire an APC-like 

phenotype upon innate stimulation, I intended to examine their ability to take up 

exogenous Ag and to induce CD4+ T cell responses. Indeed, I could show that 

peripheral NCR-ILC3s were capable to internalize latex beads although with slower 

kinetics than MΦ (Fig. 11 A - E). This could be either due to less efficient 

internalization of beads by or due to limitations in the experimental technique. In fact, 

MΦ were adherent in in vitro cultures facilitating the uptake of soluble beads 

compared to NCR-ILC3s, which were in suspension. Moreover, I could demonstrate 

the specificity of bead internalization by peripheral NCR-ILC3s as bead uptake was 

severely inhibited in the presence of Cytochalasin D, reported to inhibit 

phagocytosis,257, 306 and when bead uptake was performed at 4 °C, a condition 

shown to prevent ingestion of targets.307  

In addition, I could show that peripheral NCR-ILC3s were able to prime naïve Ag-

specific CD4+ T cells. CD4+ T cell proliferation could be observed in the presence of 

activated peripheral NCR-ILC3s and peptide-Ag, and to a lesser extent with entire 

protein-Ag (Fig. 12 A - E). Not surprisingly, peripheral NCR-ILC3s were less potent in 

priming naïve T cells than BMDCs, probably because DCs were more efficient in 

processing of protein Ag and expressed higher levels of co-stimulatory and MHC II 
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molecules. Despite their similarities in phenotype (Fig. 6 B), cytokine production (Fig. 

7 A) and gene expression (Fig. 8 C),285 in vitro generated CD4+ NCR-ILC3s had a 

greater potential to induce protein Ag-specific T cell proliferation than CD4- NCR-

ILC3s (Fig. 12 B). These data were in line with a previous finding that embryonic 

CD4+ NCR-ILC3s were more differentiated than their CD4- counterpart308 and my data 

showing that CD4+ NCR-ILC3s were slightly more efficient in bead uptake (Fig. 11 D).  

Although activation of splenic NCR-ILC3s led to significantly increased CD4+ T cell 

activation, I unexpectedly observed that naïve splenic NCR-ILC3s without prior 

activation were able to induce CD4+ T cell responses (Fig. 12 C - E). However, I 

could show that Ag-dependent interaction of NCR-ILC3s and CD4+ T cells resulted in 

NCR-ILC3 activation (Fig. 13 A), which might explain why naïve NCR-ILC3s could 

trigger T cell priming in the absence of previous activation by IL-1β. These data 

suggested that T cell-derived signals might be able to enhance and/or prolong NCR-

ILC3-mediated T cell activation. A similar crosstalk has been reported for ILC2-T cell 

interactions whereby CD4+ T cells activated through TCR engagement produced 

cytokines able to reciprocally induce ILC2 proliferation and to increase their Th2 type 

cytokine production.51 Another study suggested an additional reciprocal effect in 

which ILC2s induced T cell proliferation and increased Th2 cytokine production in a 

cell-cell contact-dependent manner via OX40L.53 Collectively, this illustrates a 

multifaceted crosstalk between ILCs and T cells, which most likely acts on T as well 

as ILC responses. A role for OX40L expressed on adult ILC3s in CD4+ T cell 

responses was already proposed a decade ago.94, 95 It could be shown that adult 

ILC3s expressed OX40L and CD30L providing the possibility to interact within 

secondary lymphoid organs with primed CD4+ T cells expressing CD30 and OX40.94, 

95 Thereby, it was suggested that ILC3s promoted the survival of CD4+ memory T 

cells by providing accessory signals, at least via OX40L.94, 95, 309 The expression of 

CD30L and OX40L on adult ILC3s was reported to be the only difference between 

fetal and adult ILC3s,102 which otherwise were shown to share phenotypic and 

functional properties.96, 103 In line with this, I found that splenic NCR-ILC3s were 

phenotypically similar to FL-derived NCR-ILC3s (Fig. 6 A - B and Fig. 9 A).  

Having demonstrated that the presence of Ag could not be responsible for NCR-ILC3 

activation upon Ag-dependent interaction with CD4+ T cells (Fig. 13 B), I assumed 

that a positive feedback loop based on secreted cytokines from T cells to ILC3s 

might exist as it was already demonstrated for ILC2-T cell interactions.51 Therefore, I 

examined the ability of soluble factors produced by CD4+ T cells upon cognate Ag-

encounter to reciprocally induce NCR-ILC3 activation. The following approaches 

were used to generate cell culture supernatant (SN) containing CD4+ T cell-derived 
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cytokines; i) co-culture of NCR-ILC3s and CD4+ T cells with Ag, ii) co-culture of 

BMDCs and CD4+ T cells with Ag, or iii) CD4+ T cell activation in presence of anti-

CD3/anti-CD28 Abs coated on a plate. Indeed, I could show that naïve splenic NCR-

ILC3s up-regulated the expression of CD69 and slightly increased the expression 

levels of CD40 and CD80 in response to soluble factors produced in the co-culture of 

BMDCs and CD4+ T cells with Ag (Fig. 14 A and B) suggesting that these soluble 

factors induced activation of NCR-ILC3s, which might increase their efficiency to 

promote CD4+ T cell responses. In line with the previous finding that CD4+ T cells 

secrete IFNγ upon Ag encounter,272 I could show that CD4+ T cells in in vitro cultures 

with BMDCs and Ag produced IFNγ (Fig. 14 C). IFNγ was previously reported to 

enhance MHC II expression either on cells constitutively expressing MHC II 

molecules, such as B cells and DCs310 or on cells, which do not constitutively 

express MHC II.311 In addition, IFNγ was shown to increase the expression of other 

genes involved in the class II Ag presentation pathway overall suggesting that IFNγ 

indirectly promotes peptide-specific activation of CD4+ T cells.312, 313, 314 As I could 

demonstrate that NCR-ILC3s up-regulated MHC II expression in response to IFNγ 

stimulation in vitro (Table 1), IFNγ might mediate NCR-ILC3 activation observed 

during Ag-dependent NCR-ILC3-CD4+ T cell interactions. To further test the 

involvement of IFNγ during ILC3-CD4+ T cell interactions one could examine NCR-

ILC3 activation in the presence of neutralizing IFNγ Ab. IL-2, another cytokine 

produced by CD4+ T cells upon Ag encounter,211 was previously reported to promote 

survival, proliferation and type 2 cytokine secretion by ILC2s.51 Furthermore, 

treatment of Rag2-/- mice with IL-2/anti-IL-2 complexes upon infection with 

Nippostrongylus brasiliensis was reported to increase the ILC2 numbers and the 

production of Th2 type cytokines in absence of CD4+ T cells sufficient to overcome 

the infection.54 I could show that CD25, the high affinity receptor for IL-2, was 

expressed at high levels on naïve NCR-ILC3s and was even more increased upon 

their activation (Fig. 14 D). Moreover, I found that NCR-ILC3s were able to secrete 

IL-2 upon IL-1β exposure in vitro (Fig. 7 D). These data suggest a role for IL-2, either 

NCR-ILC3- or T cell-derived, on the survival, proliferation or cytokine production of 

both cell types. I could show that the ligand for ICOS, ICOSL, was expressed on 

naïve NCR-ILC3s (Fig. 14 D). ICOSL binding to ICOS, which is de novo expressed 

on CD4+ T cells upon activation,274 has previously been reported to be involved in the 

induction CD40L expression on T cells allowing the interaction with CD40+ B cells.315 

This is crucial for the induction of T-dependent B cell responses.316, 317 This finding 

suggested that NCR-ILC3s can provide an additional co-stimulatory signal promoting 
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CD4+ T cell-mediated immunity. In line with a previous finding, that ICOS is able to 

down-regulate ICOSL expression,318 I observed decreased levels of ICOSL 

expression on NCR-ILC3s in the presence of soluble factors produced by CD4+ T 

cells upon Ag-encounter. At the same time ICOS expression on NCR-ILC3s was 

increased in vitro (Fig. 14 D). It is possible that the level of ICOS expression on NCR-

ILC3s induced by the integration of signals from CD4+ T cells regulates ICOSL 

expression and thereby NCR-ILC3 immune function. However, the precise role for 

ICOS-ICOSL interactions of NCR-ILC3s with CD4+ T cells in vivo remains to be 

explored.  

The data regarding the positive feedback loop from CD4+ T cells to NCR-ILC3s were 

based on in vitro experiments transferring the SN of co-cultures from BMDCs and 

CD4+ T cells with Ag to naïve NCR-ILC3s. It could not be excluded that in addition to 

CD4+ T cells, BMDCs produced soluble factors upon Ag-dependent interaction with 

CD4+ T cells leading to NCR-ILC3 activation. Therefore, the SN of CD4+ T cells, 

which are activated by anti-CD3/anti-CD28 Abs should be used to confirm these 

findings. Secondly, it is possible that NCR-ILC3s secrete cytokines itself in response 

to Ag-dependent interaction with CD4+ T cells, which might further affect NCR-ILC3 

activation in an autocrine manner. Finally, one has to consider that the in vitro 

findings of Ag-dependent NCR-ILC3-T cell crosstalk might not fully reflect the in vivo 

situation.  

 

The disruption of Ag-dependent interaction of NCR-ILC3s and CD4+ T 
cells impairs CD4+ T cell and T-dependent B cell responses in vivo. 
 

By using I-abΔILC3 mice, I studied the role of MHC II-mediated Ag presentation by 

ILC3s in T cell responses in vivo. In contrast to a previous study in which the I-abΔILC3 

mouse strain has been reported to spontaneously develop signs of systemic 

inflammation,132 our I-abΔILC3 mouse colony kept under strict specific pathogen free 

conditions did not show any pathology or abnormal lymphocyte numbers (Fig. 15 A - 

D). In the study mentioned above, I-abΔILC3 mice developed intestinal inflammation at 

12 weeks of age, which could be attenuated by antibiotic treatment demonstrating 

the dependence on intestinal pathogens.132 Thus, the discrepancy between our mice 

and the mice reported by Hepworth et al., might be due to exposure to local intestinal 

pathogens in different animal facilities. This assumption was in line with another 

study, reporting as well the absence of intestinal inflammation in the same mouse 

strain up to the age of 30 weeks.319 In contrast to the finding of Hepworth et al. that T 
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cells in I-abΔILC3 mice preferentially possess an activated memory-like phenotype,132 I 

could show that our I-abΔILC3 mice had normal numbers of CD4+ and CD8+ memory T 

cells and only a slight reduction in the naïve T cell compartment (Fig. 15 D) 

suggesting that these mice were overall comparable to naïve WT mice. Using these 

mice, I could demonstrate that the specific lack of MHC II on ILC3s drastically 

impaired CD4+ T cell responses in the spleen. The proliferation of adoptively 

transferred CD4+ T cells upon immunization was significantly reduced in I-abΔILC3 

mice when compared to WT mice demonstrating the crucial role of MHC II-mediated 

Ag presentation of ILC3s in vivo (Fig. 17 B). This substantial reduction in CD4+ T cell 

proliferation in I-abΔILC3 mice was not expected, as these mice showed normal 

numbers of DCs with high expression of MHC II (Fig. 15 B and E). Moreover, my in 

vitro data demonstrated that BMDCs were more efficient in the induction of CD4+ T 

cell activation than NCR-ILC3s in vitro (Fig. 12 B). Despite this, the in vivo data 

suggested that the ability of NCR-ILC3s to present Ag might be increased in the 

splenic microenvironment. It is possible that the splenic cytokine milieu or the 

positioning of ILC3s within the spleen increases their efficiency in CD4+ T cell 

activation. In line with this, NCR-ILC3s were previously reported to reside at the 

interface between B and T cell zones and it was shown that they were placed in the 

spleen around blood vessels and in LNs around high endothelial venules (HEVs), 

providing the possibility to directly capture Ag or to interact with incoming 

lymphocytes.94, 98, 102 Thus, NCR-ILC3s were located strategically within the lymphoid 

microenvironment to efficiently promote immune responses in vivo. Another 

possibility would be that splenic NCR-ILC3s are able to crosstalk with other APCs 

within the splenic compartment. They might for example provide cytokine- or cell-cell 

contact-dependent signals to DCs thereby enhancing DC immune function. This 

might explain the discrepancy between the data observed in vitro and in vivo. My 

data showed that MHC II-mediated Ag presentation by peripheral ILC3s was crucial 

for the induction of CD4+ T cell activation and proliferation within transient T cell 

responses (2 days). The expected peak of T cell proliferation is around day 8 upon 

immunization.277 Therefore, one should additionally examine the contribution of 

peripheral ILC3s to persisting CD4+ T cell responses (day 8) in comparison to DCs. 

I also investigated the role of peripheral ILC3s in the induction of TD B cell responses 

in vivo. I could show that immunization of I-abΔILC3 mice with a TD Ag (NP-OVA in 

Alum) after adoptive transfer of Ag-specific CD4+ T cells resulted in drastically 

impaired TD B cell responses compared to WT mice. NP-OVA-specific IgG levels 

were significantly reduced in I-abΔILC3 mice (Fig. 19 E and G). The overall decrease in 

NP-OVA-specific Ab isotypes suggested that cognate ILC3-T cell interactions did not 
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significantly affect T helper cell polarization. RORγ-/- mice, completely lacking ILC3s, 

Th17 cells, LNs and PPs,25, 70, 231 showed even more reduced NP-OVA-specific IgG 

levels (Fig. 19 E and G). This might either be due to the absence of LNs, normally 

providing a site for germinal center formation required for isotype class switch, or due 

to the absence of NCR-ILC3s, which were reported to promote the survival of 

memory T cells within the spleen.309 T-independent (TI) Ags, which do not require the 

help of primed T cells, stimulate marginal zone B (MZB) cells to produce IgM and 

IgG3 class Abs.320, 321 In line with increased numbers of MZB cells, RORγ-/- mice 

showed the highest levels of total IgM and IgG3 compared to WT and I-abΔILC3 mice 

measured before immunization (Fig. 19 B and C). In contrast, another study 

suggested that elevated levels of IgM observed in RORγ-/- mice were caused by an 

increase in B1 B cells migrating from the peritoneal cavity to the spleen due to the 

lack of gut-associated lymphoid tissues,127 a fact, which cannot be exclude as I did 

not examine B1 B cell numbers. The role of ILC3s in TI immune responses is not 

fully understood, as splenic ILC3s could also be shown to enhance Ab production of 

MZB cells through GMCSF secretion.127 Further, IgA production in the gut was 

reported to indirectly depend on ILC3s.100, 129 

Collectively, my in vivo data demonstrated that peripheral NCR-ILC3s were able to 

support Ag-specific CD4+ T cell and TD B cell responses. One has to consider that in 

I-abΔILC3 mice MHC II expression was deleted not only on NCR-ILC3s but also on 

ILC3s expressing the natural cytotoxicity receptor NKp46 (NCR+ILC3s). However, 

MHC II was reported to be substantially expressed on NCR-ILC3s when comparing 

MHC II expression on the different ILC3 subsets suggesting that NCR-ILC3s were 

mainly affected by the deficiency of MHC II in the I-abΔILC3 mouse model.132, 319 

 

Small intestinal NCR-ILC3s differ from splenic NCR-ILC3s in regard to 
their phenotype, response to innate stimulation and ability to induce 
CD4+ T cell responses.  
 

ILC3s predominantly accumulate in gut-associated lymphoid tissues, such as the 

lamina propria (LP) of the small and large intestine, ILFs, PPs and mLNs.108, 266 

Having demonstrated that activated peripheral ILC3s expressed both MHC II and co-

stimulatory molecules and were fully capable of inducing T cell responses in vitro and 

in vivo, I intended to examine the role of NCR-ILC3s residing in the LP of the small 

intestine of adult mice in CD4+ T cell responses. Small intestinal NCR-ILC3s could be 

identified based on the expression of classical ILC3 markers (Fig. 21 A). However, 
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they differed in the expression of the early activation marker CD69. Whereas naïve 

splenic NCR-ILC3s did not express CD69, its expression was high on naïve small 

intestinal NCR-ILC3s (Fig. 21 D - E). It could be excluded that the slightly different 

experimental procedure used to isolate splenic and small intestinal NCR-ILC3s (see 

4.2.5 Cell isolation and culture) was responsible for the expression of CD69 on small 

intestinal NCR-ILC3s (data not shown). A recent study associated the function of 

intestinal ILC3s to an inhibition of CD4+ T cell responses.132 The fact that small 

intestinal NCR-ILC3s were highly positive for CD69 let me ask the question whether 

intestinal CD69+ NCR-ILC3s have a repressive immune function. None of the tested 

mouse strains contained CD69- NCR-ILC3s in the gut. CD69 expression appeared to 

be independent of TLR- and IL-1R signaling as well as the presence of the 

microbiota or IL-23 (Fig. 21 F). Thus, these findings excluded that commensal 

bacteria, microbial products, or IL-1 and IL-23 secreted by intestinal DCs or MΦ at 

steady state or upon microbial stimulation,126, 165, 292, 322 led to activation-induced up-

regulation of CD69. Which other factors, not investigated in this thesis, were 

responsible for CD69 expression on small intestinal NCR-ILC3s remains to be 

explored. Previous reports demonstrated that CD69 regulates lymphocyte egress 

from lymphoid organs.323, 324 Therefore CD69 expression might retain Ag-loaded 

NCR-ILC3s in the lamina propria and prevent T cell priming in other lymphoid organs. 

In addition, CD69 deficiency was previously reported to be associated with increased 

production of pro-inflammatory cytokines by intestinal CD4+ T cells and reduced 

induction of Tregs suggesting an important role for CD69 expression in the regulation 

of mucosal immune responses.325 Furthermore, a recent study demonstrated that a 

fraction of Tregs expressed CD69 at steady state enhancing their expression of 

suppression-associated markers (e.g. CTLA-4) and their suppressive function 

compared to Tregs lacking CD69.326 However, the precise function of CD69 

expression by small intestinal NCR-ILC3s remains to be explored. Preliminary data of 

adoptive transfer experiments showed that NCR-ILC3s were able to regulate their 

CD69 expression dependent on the lymphoid tissue they have colonized suggesting 

as well an organ-dependent regulation of CD69. 

The regulatory role of ILC3s in CD4+ T cell immunity in the intestine was supported 

by the idea that ILC3s limit T cell responses to commensal bacteria in the intestine at 

steady state through Ag presentation in the absence of co-stimulation.132 However, 

the role of small intestinal NCR-ILC3s in CD4+ T cell immunity under inflammatory 

conditions was not known. I could show that small intestinal NCR-ILC3s were fully 

capable to internalize latex beads (Fig. 23 A) and expressed MHC II molecules on 

their surface (Fig. 21 B and Fig. 22 C) suggesting that they were able to present 
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exogenous Ag to CD4+ T cells. However, in contrast to peripheral NCR-ILC3s, I found 

that small intestinal NCR-ILC3s were unable to express co-stimulatory molecules 

after in vitro stimulation with IL-1β (Fig. 22 C). In addition, I could show that in 

contrast to peripheral NCR-ILC3s, small intestinal NCR-ILC3s were far less efficient 

in promoting peptide- or protein-specific CD4+ T cell responses (Fig. 24 A - D). 

Preliminary data suggested that CD4+ and CD4- NCR-ILC3 subsets of either splenic 

or small intestinal NCR-ILC3s did not differ in their ability to induce CD4+ T cell 

activation, as it was shown for FL-derived in vitro generated NCR-ILC3s (Fig. 12 B), 

ruling out that the relatively high ratio of CD4+ NCR-ILC3s in the spleen (Fig. 9 A) 

compared to the small intestine (Fig. 21 A) accounts for the higher efficiency in CD4+ 

T cell activation. Hence, it appeared that while splenic NCR-ILC3s were capable of 

priming T cell responses, mucosal NCR-ILC3s might rather prevent T cell responses 

through the absence of co-stimulation. It remains to be investigated whether small 

intestinal NCR-ILC3s can become efficient APCs when they were ex vivo cultured for 

several days before co-culture with Ag and T cells. Long-term ex vivo culture of small 

intestinal NCR-ILC3s might lead to the loss of their organ-dependent phenotype, 

activation state and function. It has to be noted that the exposure of small intestinal 

NCR-ILC3s to IL-1β indeed induced further activation of these cells. For example, 

small intestinal NCR-ILC3s produced high levels of IL-22, a cytokine involved in 

intestinal homeostasis, in response to IL-1β (Fig. 22 D). Altogether, my findings 

supported the idea that IL-1β is a strong activator of ILC3s, and that the outcome of 

ILC3 effector functions depends on additional tissue-specific cells and cytokines. 

Hence, the microenvironments in which ILC3s reside might profoundly alter their 

function and responsiveness to stimulatory factors, as suggested by the different 

expression signature profiles displayed by ILC3s isolated from various tissues.327, 328  
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7 Conclusion  
 

 

Innate lymphoid cells are crucial for tissue formation and remodeling, protective 

innate immunity and immune regulation. The data of my PhD thesis work shown here 

demonstrate that mouse ILC3s are able to directly sense and recognize pathogen-

derived products and pro-inflammatory cytokines. Naïve ILC3s can be generated 

from fetal liver progenitors. Upon challenge with TLR ligands or cytokines such as IL-

1β, they show an activated phenotype. Moreover, in response to innate challenge 

ILC3s produce different cytokines dependent on the nature of the stimuli. My findings 

further show that innate stimulation induces ILC3s to acquire an APC-like phenotype. 

Thereby, I could demonstrate that ILC3s meaningfully regulate CD4+ T cell 

responses in vitro and in vivo. ILC3s are able to take up, process and present Ag to 

CD4+ T cells. Results of several in vivo models reveal that ILC3s are able to 

contribute to T cell and TD B cell responses ascribing to them a novel function in 

adaptive immunity. Furthermore, I could show that during Ag-dependent interaction 

of ILC3s and CD4+ T cells a positive feedback loop exists inducing further activation 

of ILC3s. Finally, my data point out tissue-specific immune functions of ILC3s, 

namely peripheral ILC3s differ from small intestinal ILC3s with respect of their 

phenotype, response to innate stimulation and induction of CD4+ T cell immunity. 

Intestinal ILC3s release cytokines in response to innate activation but lack co-

stimulatory molecules and are less efficient in T cell stimulation. 

Altogether, my findings show that ILC3s are capable to contribute to innate and 

adaptive immunity by the production of cytokines and the ability to present Ag and to 

directly interact with CD4+ T cells. Not only the response of ILC3s to innate challenge 

seems to be fine-tuned dependent on the stimuli, but also the tissue in which ILC3s 

reside appears to alter their immune function.  
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9 Appendix 
 

9.1 Abbreviations and symbols 
 

 Abbreviations 9.1.1
 

Ab  antibody 

Ag  antigen 

AhR  aryl hydrocarbon receptor 

AHR  airway hyper-reactivity 

AKP  alkaline phosphatase 

Alum   aluminium potassium 

APC   antigen presenting cell 

APC  allophycocyanin 

APC Cy7  allophycocyanin cyanine 7 

BCR  B cell receptor 

BFA  Brefeldin A 

BM  bone marrow 

BMDCs bone marrow derived dendritic cells 

BMMΦ  bone marrow derived macrophages 

bp  base pair 

BSA   bovine serum albumin  

BV  brilliant violet 

CCL  chemokine (C-C motif) ligand 

CCR  chemokine (C-C motif) receptor 

CD  cluster of differentiation 

CFSE  carboxyfluorescein succinimidyl ester 

CHILP  common helper innate lymphoid progenitor 

CIITA  class II transactivator 

CLIP  class II associated invariant chain peptide 

CLP  common lymphoid progenitor 

CP  cryptopatch 

CpG  cytosine phosphatidyl guanine 

CXCL  chemokine (C-X-C motif) ligand 

CXCR  chemokine (C-X-C motif) receptor 

CytD  cytochalasin D 
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DAMP  danger associated molecular pattern 

DC  dendritic cell 

DMEM  Dulbecco`s modified eagle minimal essential medium 

DNA  deoxyribonucleic acid 

dNPP  dinitrophenyl phosphate 

dpc  days post coitum 

DSS  dextran sodium sulfate  

E  embryonic day 

EDTA  ethylenediamine-tetraacetic acid (disodium salt dehydrate) 

e.g.  [exempli gratia], for example 

EGFP  enhanced green fluorescent protein 

ELISA  enzyme linked immunosorbent assay 

ER  endoplasmic reticulum 

ERK  extracellular signal regulated kinase 

et al.  [et alii], and others 

EYFP  enhanced yellow fluorescent protein 

FACS  fluorescence-activated cell sorting 

FALC  fat associated lymphoid cluster 

FcγR  Fc gamma receptor chain 

FCS  fetal calf serum 

FITC  fluorescein isothiocyanate  

FL  fetal liver 

Flag  flagellin 

Flt3  fms-like tyrosine kinase 3 

FLT3L  fms-like tyrosine kinase 3 ligand 

fm  fate map 

FolB  follicular B cell 

FoxP  forkhead box protein P3 

f.p.  foot pad 

FRC  fibroblastic reticular cell 

Fwd  forward 

GALT  gut-associcated lymphoid tissue 

GATA3 gata binding protein 3 

GC  germinal center 

γc  common cytokine gamma chain 

GFP  green fluorescent protein 
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GMCSF granulocyte macrophage colony stimulating factor 

HAT  hypoxanthine-aminopterin-thymidine 

HEV  high endothelial venule 

IBD  inflammatory bowel disease 

IC  intracellular 

ICAM-1 intracellular adhesion molecule 1 

ICOS  inducible T cell co-stimulator 

ICOSL  inducible T cell co-stimulator ligand 

Id2  inhibitor of DNA binding 2 

IFNγ  interferon gamma 

IFNβ  interferon beta  

Ig  immunoglobulin 

Ii  invariant chain 

iILC2  immature group 2 innate lymphoid cell 

IL  interleukin 

IL-1R1  interleukin 1 receptor type 1 

IL-7R  interleukin 7 receptor 

IL-23R  interleukin 23 receptor 

ILC  innate lymphoid cell 

ILF  isolated lymphoid follicle 

IMDM  Iscove`s modified Dulbecco`s medium 

Imiqui  Imiquimod 

iNOS  inducible nitric oxide synthase 

i.p.   intraperitoneal 

IP-10  IFNγ-induced protein 10 

IRF3  interferon regulatory transcription factor 3 

i.v.  intravenous 

JNK  c-Jun N-terminal kinase 

LCMV  lymphocytic choriomeningitis virus 

lin  lineage 

LN  lymph node 

LP  lamina propria 

LPS  lipopolysaccharide 

LTαβ  lymphotoxin αβ 

LTβR  lymphotoxin β receptor 

LTi   lymphoid tissue inducer  
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LTin  lymphoid tissue initiating  

mAb  monoclonal antibody 

MACS® magnetic associated cell sorting 

MadCam-1 mucosal addressin cell adhesion molecule 1 

MAPK  mitogen associated protein kinase 

MFI  mean fluorescent intensity 

MHC  major histocompatibility complex 

MHC I  major histocompatibility complex class I 

MHC II  major histocompatibility complex class II 

MIIC  major histocompatibility complex class II compartment 

MIP-1α macrophage inflammatory protein 1 alpha  

mLN  mesenteric lymph node 

MRC  marginal reticular cell 

Myd88  myeloid differentiation primary response gene 88 

MZ  marginal zone 

MZB  marginal zone B cell 

MΦ  macrophage 

NALT  nasal-associated lymphoid tissue 

NCR  natural cytotoxicity receptor 

NEAA  non-essential amino acid 

NFAT  nuclear factor of activated T cells 

NFκB  nuclear factor-kappa B 

NIK  nuclear factor-kappa B inducing kinase 

NK  natural killer 

NODR  nucleotide binding oligomerization domain-like receptor 

NP  4-hydroxy-3-nitrophenyl-acetyl 

OD  optical density 

OVA  Ovalbumin 

o/n  over night 

PAMP  pathogen associated molecular pattern 

PBS   phosphate buffer saline 

PCR   polymerase chain reaction 

PE  phycoerythrin 

PECy7  phycoerythrin cyanine 7 

PEG  polyethylene glycol 

PerCP  peridinin chlorophyll 
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pH  [pondus hydrogenii], potential hydrogen 

PI  propidium iodide 

Poly I:C polyinosinic:polycytidylic acid 

PP  Peyer`s patch 

Prox1  prospero homeobox gene 1 

PRR  pattern recognition receptor 

P3C  Pam3Cys 

RAG  recombination activating genes 

RegIIIβ  regenerating islet-derived protein III beta  

RegIIIγ  regenerating islet-derived protein III gamma   

Rev  reverse 

RNA  ribonucleic acid 

RORα  retinoic acid related orphan receptor alpha  

RORγt  retinoic acid related orphan receptor gamma  

RT  room temperature 

RT qPCR real time quantitative PCR 

SCF  stem cell factor 

SD  standard deviation 

SF  serum free 

sg  staggerer 

SI  small intestine 

SN  supernatant 

SPF  specific pathogen free 

TCF-1  T cell factor 1 

TCM  central memory T cell 

TCR  T cell receptor 

TD  thymus dependent 

TEM  effector memory T cell 

Tfh  T follicular helper 

Tg  transgenic 

TGF  tumor growth factor 

Th  T helper 

Th1  T helper type 1 

Th2  T helper type 2 

Th17  T helper type 17 

TI  thymus independent 
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TIR  Toll/Interleukin-1 receptor homology 

TIRAP  TIR-domain containing adaptor protein 

TLR  Toll-like receptor 

Tnaïve   naïve T cell 

TNF  tumor necrosis factor  

TRAF  TNF receptor associated factor 

TRAIL  TNF related apoptosis inducing ligand 

TRAM  TRIF-related adaptor molecule 

TRANCE TNF related activation induced cytokine  

TRANCER TNF related activation induced cytokine receptor 

Treg  regulatory T cell 

TRIF  TIR-domain containing adaptor inducing interferon beta  

TRUC  Tbx21-/- Rag2-/- ulcerative colitis mouse model 

TSLP  thymic stromal lymphopoietin 

UC  ulcerative colitis 

VCAM-1 vascular cell adhesion molecule 1 

WT  wild type 

w/o  without 

Zym  zymosan 

 

 Symbols 9.1.2
 

%  percent 

°C  degree Celsius 

#  number 

cm  centimeter 

g  gram 

h  hour 

kDA  kilo dalton 

l  liter 

m  meter 

M  molar 

mg  milligram 

min  minutes 

ml  milliliter 

mM  millimolar 
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ng  nanogram 

nm  nanometer 

pg  picogram 

rpm  rounds per minute 

sec  seconds 

U  Unit 

µg  microgram 

µl  microliter 

µm  micrometer 

µM  micromolar 

  



	
   155 

9.2 Publication/Manuscript submitted/in preparation 
 

 

1. Activated group 3 innate lymphoid cells promote T-cell-mediated 
immune responses 
 

Nicole von Burg, Stéphane Chappaz, Anne Baerenwaldt, Edit Horvath, Somdeb 

Bose Dasgupta, Devika Ashok, Jean Pieters, Fabienne Tacchini-Cottier, Antonius 

Rolink, Hans Acha-Orbea, and Daniela Finke 

 

Proc Natl Acad Sci U S A. 2014, 111: 12835-12840 

 

 

 

2. FLT3L regulates the development of innate lymphoid cells in the fetal 
and adult mice 
 
Anne Baerenwaldt, Matthias Kreuzaler, Nicole von Burg, Edit Horvath, Annick 

Peter, David Voehringer, Antonius Rolink, and Daniela Finke 

(submitted) 

 

 

 

3. Maintenance of immune homeostasis through ILC/T cell interactions 
 
Nicole von Burg and Daniela Finke 

(peer reviewed Frontiers in Immunology review article, in preparation) 

  



	
   156 

von Burg N et al., 2014 
 

 

Activated group 3 innate lymphoid cells promote T-cell-mediated 
immune responses 
 

Nicole von Burg, Stéphane Chappaz, Anne Baerenwaldt, Edit Horvath, Somdeb 

Bose Dasgupta, Devika Ashok, Jean Pieters, Fabienne Tacchini-Cottier, Antonius 

Rolink, Hans Acha-Orbea, and Daniela Finke 

 

Proc Natl Acad Sci U S A. 2014, 111: 12835-12840 
  



	
   157 

Activated group 3 innate lymphoid cells promote
T-cell–mediated immune responses
Nicole von Burga,b,1, Stéphane Chappaza,c,d,1, Anne Baerenwaldta,b, Edit Horvatha,b, Somdeb Bose Dasguptae,
Devika Ashokf, Jean Pieterse, Fabienne Tacchini-Cottierf,g, Antonius Rolinka, Hans Acha-Orbeaf, and Daniela Finkea,b,2

aDepartment of Biomedicine, University of Basel, 4058 Basel, Switzerland; bUniversity Children’s Hospital of Basel, 4056 Basel, Switzerland; cAustralian Cancer
Research Foundation Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; dDepartment of
Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; eBiozentrum, University of Basel, 4056 Basel, Switzerland; and fDepartment of
Biochemistry and gWorld Health Organization Immunology Research and Training Centre, University of Lausanne, 1066 Epalinges, Switzerland

Edited by Ruslan Medzhitov, Yale University School of Medicine, New Haven, CT, and approved July 25, 2014 (received for review April 15, 2014)

Group 3 innate lymphoid cells (ILC3s) have emerged as important
cellular players in tissue repair and innate immunity. Whether
these cells meaningfully regulate adaptive immune responses
upon activation has yet to be explored. Here we show that
upon IL-1β stimulation, peripheral ILC3s become activated, secrete
cytokines, up-regulate surface MHC class II molecules, and express
costimulatory molecules. ILC3s can take up latex beads, process
protein antigen, and consequently prime CD4+ T-cell responses
in vitro. The cognate interaction of ILC3s and CD4+ T cells leads
to T-cell proliferation both in vitro and in vivo, whereas its disrup-
tion impairs specific T-cell and T-dependent B-cell responses in
vivo. In addition, the ILC3–CD4+ T-cell interaction is bidirectional
and leads to the activation of ILC3s. Taken together, our data re-
veal a novel activation-dependent function of peripheral ILC3s in
eliciting cognate CD4+ T-cell immune responses.

T-cell activation | antigen presentation

Innate lymphoid cells (ILCs) are a group of lymphocytes that
play a critical role in immediate immune host defense as well

as mucosal and lymphoid tissue homeostasis. Although they lack
somatically rearranged antigen (Ag) receptors, they exhibit
a transcription factor and cytokine profile similar to T helper
(Th) cells. Therefore, ILCs are classified into three major fam-
ilies (1). Reminiscent of Th1 cells, ILC1s are characterized by
Interferon (IFN)γ production and developmental regulation by
T-bet. ILC2s secrete interleukin (IL)-5, IL-9, and IL-13 and,
analogous to Th2 cells, depend on Gata3. ILC3s produce IL-22
and IL-17A and together with Th17 cells express the retinoic acid
receptor-related orphan receptor RORγt (2, 3). ILC3s can be frac-
tioned into NKp46+ and NKp46− subsets including lymphoid tissue
inducer (LTi) cells. Here, lin−NKp46−CD4+/−RORγt+ ILCs are re-
ferred to as natural cytotoxicity receptor (NCR)−ILC3s. ILCs express
Toll-like receptors (TLRs) (4) and IL-1R, indicating that they can
directly sensemicrobial products and inflammatory signals (5–7).The
ability to rapidly release cytokines upon microbial challenge fostered
the idea that ILCs may bias the outcome of T-cell responses. In ad-
dition, both ILC2 and ILC3s were recently shown tomodulate CD4+
T-cell responses throughAg-peptidepresentationbyMHCclass II (8,
9). In line with this, it was proposed a decade ago that ILC3s interact
withTcells in secondary lymphoidorgansand therebypromoteCD4+
T-cell memory responses (10, 11). Whether peripheral ILC3s can
mature into Ag-presenting cells (APCs) providing costimulation for
T-cell–mediated immunity has never been explored. In the present
study, we show that inmicewhereMHCclass II is specifically deleted
in ILC3s, Ag-specific T-cell and T-dependent (TD) B-cell responses
are impaired, demonstrating that ILC3spresentAg toCD4+Tcells in
vivo. IL-1β strongly activates fetal liver (FL)-derived and splenic
NCR−ILC3s and induces both the expression of costimulatory
molecules and the up-regulation of MHC class II molecules,
thereby enhancing their T-cell priming potential. Finally, we show
that in thepresenceofAg, the cognate interactionbetweenCD4+T
cells and NCR−ILC3s leads to the activation of the latter,

suggesting an unexpected crosstalk between these two cell types.
Altogether, we show that peripheral ILC3s can mature upon
activation into bona fide APCs shaping T-cell–mediated immune
responses.

Results
ILC3s Elicit Ag-Specific T-Cell Proliferation and TD B-Cell Responses in
Vivo. To investigate whether ILC3s can initiate CD4+ T-cell
responses in vivo, we generated mice with a deletion of Iab ex-
clusively in ILC3s by crossing mice expressing Cre recombinase
under the control of the RORc promoter [RORc(γt)-Cretg] (12)
to mice with a floxed H2-Ab1 allele (I-abneo) (13). Mice homo-
zygous for the floxed H2-Ab1 allele and carrying one copy of the
Cre transgene, here referred to as I-abΔILC3 mice, were healthy,
did not show signs of spontaneous inflammation, and had
a normal distribution of lymphocytes, macrophages (MΦ), and
dendritic cells (DCs) (Fig. 1A). Numbers of ILC3s were also
similar in WT and I-abΔILC3 mice (Fig. 1A). MHC class II ex-
pression was normal on splenic B cells, DCs, and MΦ, whereas
NCR−ILC3s completely lacked MHC class II (Fig. 1B). To ex-
amine Ag-specific CD4+ T-cell proliferation in vivo, 3 × 106
carboxyfluorescein succinimidyl ester (CFSE)-labeled CD4+ T
cells from OT-II (H-2b) T-cell receptor transgenic mice (OT-IItg)
were adoptively transferred into WT, I-abΔILC3, or I-ab−/− mice.
Following immunization with ovalbumin (OVA) peptide323–339
and OVA protein plus CpG, labeled OT-IItg T cells proliferated
inWT, but not in I-ab−/− mice (Fig. 1C). In I-abΔILC3 mice, OT-IItg
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T-cell proliferation was significantly reduced, demonstrating
that ILC3s were able to present Ag and to meaningfully alter
OVA-specific T-cell responses in vivo. To study the role of ILC3s
in TD B-cell responses, we immunized WT, I-abΔILC3, and
RORγ−/− mice intraperitoneally (i.p.) with a single dose of Alum-
precipitated nitrophenylated-OVA (100 μg) and adoptively
transferred 2 × 106 OT-IItg CD4+ T cells plus CpG. The loss of
MHC class II on ILC3s (I-abΔILC3) resulted in a significant re-
duction of 4-hydroxy-3-nitrophenyl-acetyl (NP)-OVA–specific
IgG 14 d after immunization (Fig. 1D). Additionally, a more
detailed analysis of IgG subtypes revealed that specific IgG1,
IgG2a, IgG2b, and IgG3 levels were significantly reduced (Fig. 1
E–H). In RORγ−/− mice, where ILC3s, Th17 cells, lymph nodes,
and Peyer’s patches were completely absent, NP-OVA–specific
IgG titers were even more reduced. Collectively, these data un-
ambiguously show that Ag presentation by ILC3s contributes to
T-cell priming in vivo and that CD4+ T-cell proliferation and TD
B-cell responses were impaired when Ag presentation was
abolished in ILC3s.

NCR−ILC3s Can Internalize Latex Beads. Based on the in vivo finding
that the lack of MHC class II molecules by ILC3s impaired
T-cell–mediated immune responses, we tested the capacity of
NCR−ILC3s generated from α4β7+ FL progenitor cells in vitro
(14) or ex vivo isolated from the spleen of adult mice to take up
red fluorescent latex beads. We and others have previously
shown that FL-derived and adult ILC3s share phenotypic and
functional properties such as lymphotoxin β-dependent induction
of lymphoid tissue formation (15, 16). Both in vitro-generated
and ex vivo-isolated NCR−ILC3s were capable of internalizing
red fluorescent latex beads, although with slower kinetics than
bone marrow (BM)-derived MΦ (BMMΦ) (Fig. 2 A and B and
Fig. S1). Bead uptake was severely inhibited at 4 °C or in the
presence of 0.5 μM Cytochalasin D (CytD), an inhibitor of actin
polymerization, showing the specificity of internalization (Fig.
2C). In vitro-generated NCR−ILC3s could be subdivided into
CD4+ and CD4−NCR−ILC3 subsets (Fig. S2 A and B). Both
subsets had a CD69− naïve phenotype and expressed compa-
rable levels of RORγt, LTαβ, common gamma chain (γc),
CD117, integrins, and chemokine receptors (Fig. S2C). CD4+
NCR−ILC3s were slightly more efficient in taking up Ag than
their CD4− counterpart (Fig. S2D). Thus, NCR−ILC3s can in-
ternalize and process exogenous Ags.

Upon Proinflammatory Stimulation NCR−ILC3s Become Activated and
Secrete Cytokines. How DCs undergo maturation and activation
upon exposure to signals associated with infection and inflammation
is well documented (17). We therefore tested proinflammatory
cytokines and TLR ligands for their ability to activate NCR−ILC3s.
IL-1β, Poly I:C, and CpG up-regulated the expression of surface
CD69 on NCR−ILC3 (Fig. 3A). Similar results were obtained from
ex vivo-isolated splenic NCR−ILC3s of WT mice 6 h after i.p. in-
jection with CpG (Fig. S3). Upon stimulation with IL-1β, in vitro-
generated NCR−ILC3s produced high levels of IL-22, exceeding
those induced upon IL-23 stimulation (Fig. 3B). In vitro stimulation
with TLR ligands revealed that Poly I:C could induce IL-22 pro-
duction by NCR−ILC3s (Fig. 3C). Thus, these data show that
ligands for TLR 3 and 9 have the ability to directly activate
NCR−ILC3s and that IL-1β is a remarkably strong inducer of IL-22
secretion. In addition, IL-1β–exposed NCR−ILC3s secreted IL-2,
IL-6, macrophage inflammatory protein 1 (MIP-1)α, IFNγ, and
tumor necrosis factor (TNF)α, all known for their capacity to pro-
mote T-cell responses (Fig. 3D). IL-1β also induced the secretion of
IFN-induced protein of 10 kDa (IP-10), a chemoattractant for
mononuclear cells and CXCR3+ effector T cells (18). Collectively,
these data demonstrate that IL-1β and TLR ligands can activate
NCR−ILC3s, remarkably altering the repertoire of cytokines
they produce.

Fig. 1. ILC3s elicit Ag-specific T-cell proliferation and TD B-cell responses in vivo.
(A) Absolute numbers of T cells (CD3+), B cells (CD19+), DCs (CD11c+), MΦ (CD11b+

F4/80+), natural killer (NK) cells (NK1.1+NKp46+), and NCR−ILC3s (lin−RORγt+

CD117+NCR−) in the spleenofWTand I-abΔILC3mice.Data are shownasmean±SD
(n = 9; three independent experiments). (B) Representative histograms of MHC
class II expression on splenic B cells, DCs, MΦ, and CD4+NCR−ILC3s of WT and
I-abΔILC3 mice (three independent experiments). (C) Sort-purified CFSE-labeled
OT-IItg CD4+ T cells were injected i.v. intoWT (filled circle), I-abΔILC3 (filled square),
and I-ab−/− (filled triangle) mice immunized with OVA peptide, OVA protein, and
CpG. Absolute numbers of proliferating OT-IItg CD4+ T cells recovered from the
spleen 2 d later (mean values ±SD; four independent experiments; n = 6–7; *P ≤
0.05; **P ≤ 0.01). (D–H)WT, I-abΔILC3, and RORγ−/−mice were i.p. immunized with
100 μg alum-precipitated NP-OVA after i.v. injection of OT-IItg CD4+ T cells plus
CpG. NP-OVA–specific IgG (D), IgG1 (E), IgG2a (F), IgG2b (G), and IgG3 (H) levels
14 d after immunization. Data are presented asmean values± SD (n= 9–10) from
three independent experiments (n.s., not significant; *P≤ 0.05; **P≤ 0.01; ***P≤
0.001; ****P ≤ 0.0001).
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IL-1β Induces the Expression of MHC Class II and Costimulatory
Molecules on Peripheral NCR−ILC3s. We further asked whether,
analogous to DCs, activated NCR−ILC3s express costimulatory
molecules and up-regulate MHC class II molecules. Both
in vitro-generated and ex vivo-isolated CD4+NCR−ILC3s
had a naïve phenotype shown by the absence of CD69 and
costimulatory molecules (Fig. 4 A and B). Upon stimulation with
IL-1β for 48 h, both sort-purified in vitro-generated CD4+
NCR−ILC3s and ex vivo-isolated CD4+NCR−ILC3s expressed
the costimulatory molecules CD80 and CD86 and up-regulated
the expression of CD40, CD69, and MHC class II (Fig. 4 A and
B). Hence, upon IL-1β stimulation, NCR−ILC3s acquire an
APC-like phenotype, reminiscent of activated DCs. It has been
reported that mucosa-associated ILC3s were unable to express
costimulatory molecules (9). Whether these cells could respond
to inflammatory stimulation has never been investigated.
Therefore, we stimulated ex vivo-isolated small intestinal lamina
propria (LP)-derived NCR−ILC3s with IL-1β for 48 h. In-
terestingly, although IL-1β stimulation resulted in blast forma-
tion, even with high concentrations of IL-1β, we were unable to
detect up-regulation of MHC class II or expression of CD40 and
CD86 (Fig. S4 A and B). These data unambiguously show that
peripheral but not LP NCR−ILC3s express costimulatory mole-
cules upon innate activation.

Activated NCR−ILC3s Can Induce Ag-Specific CD4+ T-Cell Activation
and Proliferation. We next examined whether peripheral
NCR−ILC3s could trigger naïve T-cell priming in vitro.
NCR−ILC3s (H-2b) were in vitro stimulated with IL-1β and in-
cubated with CFSE-labeled OT-IItg CD4+ T cells in the presence
of OVA peptide323–339 or OVA protein. Ex vivo-isolated and in
vitro-generated CD4+ and CD4− NCR−ILC3s were able to ac-
tivate the majority of CD4+ T cells in the presence of OVA
peptide monitored by CD69 expression (Fig. 5A). In vitro-gen-
erated CD4+ and ex vivo-isolated NCR−ILC3s were able to in-
duce several rounds of OVA-specific CD4+ T-cell proliferation
when pulsed with OVA peptide or, to a lesser extent, with OVA
protein. CD4−NCR−ILC3s were considerably less efficient in
inducing protein Ag-specific CD4+ T-cell responses (Fig. 5A). To

further examine the effect of activation of NCR−ILC3s on the
capacity to elicit T-cell responses, we stimulated ex vivo-isolated
splenic NCR−ILC3s with IL-1β or left them untreated and
cocultured them with OT-IItg CD4+ T cells and OVA protein
(Fig. 5 B–D). A total of 30.2% of the T cells in culture with
untreated NCR−ILC3s and OVA protein expressed CD69, and
only 4.3% of the T cells proliferated (Fig. 5B). IL-1β–activated
NCR−ILC3s increased the percentage of both CD69+ and pro-
liferating T cells (Fig. 5 B–D). Compared with splenic
NCR−ILC3s, LP NCR−ILC3s were three times less efficient to
induce cognate T-cell activation in vitro (Fig. S5 A and B). In-
terestingly, we noted that the CD69 surface expression level of
NCR−ILC3s increased approximately sevenfold in the presence
of OT-IItg CD4+ T cells and OVA protein, compared with
cocultures without Ag and without previous IL-1β stimulation.
This phenomenon was not further increased by previously acti-
vating NCR−ILC3s with IL-1β (Fig. S6A). It is important to note
that CD69 expression on NCR−ILC3s peaked early after acti-
vation and decreased in cocultures, unless T cells and Ag were
added. Ag alone was not able to sustain CD69 expression (Fig.
S6B). Together, these results show that IL-1β increased the ca-
pacity of NCR−ILC3s to induce CD4+ T-cell activation and that
the cognate ILC3–CD4+ T-cell interaction led to the activation
of NCR−ILC3s.

Discussion
We show here that upon IL-1β stimulation NCR−ILC3s ex-
pressed MHC class II and costimulatory molecules and became
bona fide APCs as they were able to promote OVA-specific
CD4+ T-cell proliferation in mice. In addition, activated
NCR−ILC3s expressed an unexpected repertoire of cytokines
known to alter T-cell responses. Ag-specific T-cell proliferation
and IgG-mediated humoral immunity were impaired in animals
in which Ag presentation was abolished exclusively in ILC3s.
Finally, in the presence of Ag, the T-cell priming led to an ex-
tended activation of ILC3s. These novel data suggest that upon

Fig. 2. Naïve NCR−ILC3s can internalize latex beads. (A) Representative
immunofluorescence image of red fluorescent latex bead uptake by sort-
purified in vitro-generated NCR−ILC3s. (Scale bar, 5 μm.) (B) Bead in-
ternalization by NCR−ILC3s and BMMΦ. Percentage of bead+ cells 2 and 24 h
after addition of beads (mean values ± SD; n.s., not significant; **P ≤ 0.01).
(C) Representative plots of NCR−ILC3s cultured with beads for 6 h at either
37 °C or 4 °C, or at 37 °C in the presence of 0.5 μM CytD. Data are repre-
sentative of at least three independent experiments (n = 3–5).

Fig. 3. Cytokine secretion of activated NCR−ILC3s. (A) Representative his-
tograms of CD69 expression on in vitro-generated NCR−ILC3s after 48 h
stimulation with IL-1β, Poly I:C, CpG, or in medium alone (four independent
experiments). IL-22 secretion by in vitro-generated NCR−ILC3s upon 48 h
exposure to IL-1β, IL-23 (B), TLR ligands (C), or medium alone (mean values ±
SD, n = 6–7, three independent experiments; *P ≤ 0.05; **P ≤ 0.01). (D)
Cytokine production by in vitro-generated NCR−ILC3s after 48 h culture with
IL-1β or medium alone. Results are shown as mean values ± SD.

von Burg et al. PNAS Early Edition | 3 of 6

IM
M
UN

O
LO

G
Y
A
N
D

IN
FL
A
M
M
A
TI
O
N



	
   160 

inflammation the cognate interaction of NCR−ILC3s and CD4+
T cells contributes to adaptive immunity.
Our in vivo data demonstrate that peripheral NCR−ILC3s

process protein Ags and stimulate Ag-specific CD4+ T-cell
responses. Whether the cognate interaction between NCR−ILC3s
and CD4+ T cell leads directly to the priming of T cells or
whether this interaction rather polarizes or enhances the T-cell
response has yet to be established. In either case, the cytokines
that are secreted by NCR−ILC3s upon activation are likely to
decisively impact the outcome of T-cell responses. Because
NCR−ILC3s reside at the interface between B- and T-cell zones
(10, 19), they are located strategically within the lymphoid mi-
croenvironment to efficiently promote immune responses in vivo.
Considering their 10 times lower numbers compared with DCs in
the spleen of WT mice, our in vivo data emphasize the potential
of ILC3s to induce CD4+ T-cell proliferation. The immunization
of I-abΔILC3 mice indeed showed that the specific lack of MHC
class II on NCR−ILC3s drastically impaired T and TD B-cell
responses in the spleen. The overall decrease in Ag-specific Ab
isotypes suggests that cognate ILC3–T cell interactions did not
significantly affect Th cell polarization. In vitro, NCR−ILC3s
were less potent than BM-derived DCs in priming naïve T cells,
probably because DCs expressed higher levels of costimulation
and MHC class II molecules. Despite this, our data show that
ILC3s are crucial for mounting adaptive immune responses in
vivo, suggesting that their ability to present Ag is increased in the
splenic microenvironment. This could be either due to the splenic
cytokine milieu or the crosstalk between ILC3s and other im-
mune cells. In line with the finding that CD4+NCR−ILC3s are

more differentiated than their CD4− counterpart (20), CD4+

NCR−ILC3s had a greater potential of inducing Ag protein-
specific T-cell proliferation.
The I-abΔILC3 mouse strain generated by others has been

reported to spontaneously develop signs of systemic inflammation
(9). In our I-abΔILC3 mouse colony that we kept under strict
specific pathogen-free conditions, we did not observe any pa-
thology or abnormal lymphocyte numbers. The discrepancy
between our mice and the mice reported by Hepworth et al.
might be due to microbial exposure in different animal facilities.

Fig. 4. IL-1β induces the expression of MHC class II and costimulatory mol-
ecules on peripheral NCR−ILC3s. Expression of CD69, CD40, CD80, CD86, and
MHC class II on sort-purified in vitro-generated CD4+NCR−ILC3s (A) and ex
vivo-isolated splenic CD4+NCR−ILC3s (B) cultured for 48 h with IL-1β or me-
dium alone. Numbers in contour plots show the percentage of cells in each
quadrant. Data are representative of three independent experiments.

Fig. 5. NCR−ILC3s can induce Ag-specific CD4+ T-cell activation and pro-
liferation. (A) Naïve CFSE-labeled OT-IItg CD4+ T cells were cultured with
either BMDCs, IL-1β–activated ex vivo-isolated splenic NCR−ILC3s, or in vitro-
generated sorted CD4+ or CD4−NCR− ILC3s in the presence of OVA peptide,
OVA protein, or medium alone (without Ag). Representative plots of CD69
and CFSE expression by CD4+ T cells 72 h later. Bold black numbers, per-
centage of proliferating T cells; bold red numbers, percentage of total CD69+

T cells. (B) Naïve CFSE-labeled OT-IItg CD4+ T cells were cultured with non- or
IL-1β–activated splenic NCR−ILC3s in the presence of OVA peptide, OVA
protein, or medium alone (without Ag) for 72 h. (C) Percentage of CD69+

CD4+ T cells upon coculture with non- or IL-1β–activated splenic NCR−ILC3s in
the presence or absence of Ag. Data are shown as mean values ± SD (n = 3–7;
*P ≤ 0.05; ***P ≤ 0.001). (D) Fold increase of percentage of CD69+ CD4+ T cells
upon coculture with non- or IL-1β–activated splenic NCR−ILC3s in the presence
of OVA protein relative to coculture of IL-1β–activated NCR−ILC3s and T cells
in the absence of Ag. Data are shown as mean values ± SD (n = 3–7; *P ≤
0.05). Data are representative of at least three independent experiments.
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Whereas ILC3s appear to limit T-cell responses to commensal
bacteria in the intestine through Ag presentation in the absence
of costimulation (9), we show here that splenic NCR−ILC3s have
the ability to promote T- and B-cell responses in the periphery.
Interestingly, we were unable to detect costimulatory molecules
on LP NCR−ILC3s ex vivo or after in vitro stimulation with IL-1β.
Hence, it appears that the microenvironments in which ILC3s
reside profoundly alter their function, as suggested by the dif-
ferent expression signature profiles displayed by ILC3s isolated
from various tissues (21, 22). We observed that ex vivo-isolated
splenic ILC3s from naïve mice lacked costimulatory molecules
but a substantial fraction expressed MHC class II. Activated
NCR−ILC3s, however, expressed both MHC class II and cos-
timulatory molecules and were fully capable of inducing T-cell
responses in vitro and in vivo. In the mucosa, the microbiota-
driven release of IL-1β promotes the production of granulocyte
macrophage colony-stimulating factor (GM-CSF) by ILC3s. This
triggers the release of retinoic acid and IL-10 by mucosal DCs
and MΦ, leading to the expansion of regulatory T cells (23).
These data together with our findings support the idea that IL-1β
is a strong activator of ILC3s and that the outcome of ILC3 ef-
fector functions depends on additional tissue-specific cells and
regulatory cytokines. Hence, splenic ILC3s are fully capable of
priming T-cell responses, whereas mucosal ILC3s may prevent
T-cell responses through absence of costimulation and induction
of tolerogenic cytokine responses by other cells. Because of their
remarkable ability to secrete cytokines, ILCs are emerging
as important cellular players, actively modulating immune re-
sponses. For instance, human splenic ILC3s enhance the survival
of marginal zone B cells through the release of B-cell activating
factor (BAFF) and stimulate perifollicular neutrophils through
GM-CSF (24). In humans, IL-1R signaling was shown to induce
NCR−ILC3s to produce IL-17, IL-22, and IFNγ (25, 26). We
show here that IL-1β increased the secretion of IL-2, IL-6, MIP-
1α, IP-10, IFNγ, TNFα, and GM-CSF in vitro. Although our in
vitro data suggest that IL-1β is likely to play an important role in
ILC activation and immunity, the actual molecular and cellular
events leading to NCR−ILC3 activation in vivo are still un-
known. Ag-dependent cognate interaction between ILC3s and
T cells also led to NCR−ILC3 activation reflected by the up-
regulation of CD69 (Fig. S6A). This result may explain why naïve
NCR−ILC3 could trigger T-cell priming in the absence of pre-
vious activation by IL-1β (Fig. 5B). A similar TCR-dependent
crosstalk occurs during ILC2–T cell interactions (8), illustrating
that T cells or T-cell–derived cytokines may reciprocally act on
ILC responses. Collectively, our data reveal an important func-
tion for group 3 ILCs in promoting peripheral T-cell–mediated
responses and improve our understanding of how these cells may
link innate and adaptive immune responses.

Materials and Methods
Mice. C57BL/6 were purchased from Janvier (Saint Berthevin). RORγ−/− (3)
and MHCIIΔ/Δ (here referred to as I-ab−/−) (27) were described elsewhere.
OT-IItg mice were kindly provided by A. Rolink, Rag2−/− mice by G. Hollaender
(UniversityofBasel, Basel, and JesusCollege,Oxford), I-abneo (13)micebyE. Palmer
(University of Basel, Basel), and RORc(γt)-Cretg mice (12) by A. Diefenbach
(University of Freiburg, Freiburg im Breisgau, Germany). All mice were bred
and maintained under specific pathogen-free conditions. I-abΔILC3 mice
were generated by crossing I-abneo mice, which contain a floxed H2-Ab1
allele, with RORc(γt)-Cretg mice. F1 generations were backcrossed to I-abneo

mice. The animal experiments received the approval of the Cantonal Veterinary
Office of the city of Basel.

Antibodies. FITC, Phycoerythrin (PE), PerCP–eFluor 710, PE–Cy7, Allophy-
cocyanin (APC), APC–Cy7, BV421 or biotin-conjugated anti-CD3 (17A2),
anti-CD4 (RM4-5), anti-CD11b (M1/70), anti-CD11c (117310, N418), anti-
CD19 (6D5), anti-CD29 (HMb1-1), anti-CD40 (1C10), anti-CD45R (RA3-6B2,
B220), anti-CD69 (H1.2F3), anti-CD90.2 (30-H12), anti-CD117 (2B8), anti-
CD196 (29-2L17), anti-CD197 (4B12), anti–Gr-1 (RB6-8C5, Ly-6G), anti-TCRβ

(H57-597), anti-TCRγδ (UC7-13D5), anti-MHC II (M5/114.15.2), anti-α4β7
(DATK32), and anti-NKp46 (29A1.4) antibodies (Abs) were purchased from
BioLegend; anti-CD54 (3E2), anti-CD132 (TUGm2, γc chain), anti-CD184
(2B11, CXCR4), anti-CD185 (2G8, CXCR5), and anti-MHC II (25-9-17) Abs from
BD Bioscience; and anti-CD3 (145-2C11), anti-CD8α (53-6.7), anti-CD11c
(N418), anti-CD80 (16-10A1), anti-CD86 (GL1), anti-F4/80 (BM8), anti-NK1.1
(PK136), NKp46 (29A1.4), and anti-RORγt (AFKJS-9, B2D) Abs from eBioscience.
As secondary reagent, fluorochrome-conjugated streptavidin (BioLegend)
was used.

Flow Cytometry and Cell Sorting. Flow cytometry stainings were performed
using standard protocols (28). Intracellular RORγt staining was performed
using a fixation/permeabilization kit (FoxP3 staining buffer kit, eBioscience).
Dead cells were identified using fixable Aqua Live/Dead cell staining kit
(Molecular Probes, Life Technologies) or propidium iodide solution (Sigma-
Aldrich). Lymphotoxin staining was performed as previously described (29).
Data acquisition was performed with a FACSCalibur or FACSCanto II (BD
Bioscience), and data were analyzed using FlowJo software (Tree Star). Cell
sorting was done using a FACS Aria (BD Bioscience, >98% purity).

Cell Isolation and Culture. BMDCs and BMMΦ were generated as described
elsewhere (30, 31). Cells were harvested after 7 d in culture at 37 °C, 10%
CO2. NCR

−ILC3s were generated in vitro from α4β7+ precursors as described
before (14) and sorted based on CD90.2, CD117, and CD4 expression. Splenic
and small intestinal LP NCR−ILC3s were isolated from the spleen and small
intestine of adult Rag2−/− mice. The small intestine was opened longitudi-
nally, cut into pieces, incubated in 1× PBS containing 30 mM EDTA (30 min,
4 °C), washed several times in 1× PBS, and then incubated in DMEM con-
taining 0.025 mg/mL DNaseI (Roche) and 1 mg/mL Collagenase D (Roche) for
1 h at 37 °C. Every 15 min, the supernatant was collected, and tissue pieces
were washed and reincubated with medium containing DNaseI and Colla-
genase D. Cell suspension was pelleted, resuspended in 5 mL 40% Percoll (GE
Healthcare), underlayed with 3 mL 80% Percoll, and centrifuged at 20 °C and
630 × g for 30 min. Cells of the interphase were collected. Spleens were also
cut into pieces, washed in 1× PBS, and digested with DNaseI and Collagenase
D as described above. After digestion, spleen cells were washed and eryth-
rolysis was performed. Ex vivo-isolated splenic or LP NCR−ILC3s were sorted
based on the expression of CD117 and the lack of the lineage marker CD3,
CD8α, CD11c, CD19, B220, Gr-1, TCRβ, TCRγδ, NK1.1, and NKp46. CD4+ T cells
from the spleen and lymph nodes of OT-IItg mice were magnetically purified
by using CD4 beads (LTR4, Miltenyi Biotec) following the manufacturer’s
instruction. MACS-enriched CD4+ T cells were sorted to reach >98% purity
and labeled with 7.5 μM CFSE (Molecular Probes) in 1× PBS (8 min,
room temperature).

NCR−ILC3 Stimulation and Ag Presentation Assay. Sort-purified in vitro-gen-
erated NCR−ILC3s or ex vivo-isolated splenic or LP NCR−ILC3s were cultured
in a 96-well plate (Costar, Corning, Inc.) in the presence of either TLR ligands
[100 ng/mL Pam3Cys, 25 μg/mL Poly I:C, 1 μg/mL Flagellin, 1 μg/mL Imiquimod
(InvivoGen), 10 μg/mL Zymosan, 1 μg/mL lipopolysaccharide (LPS) (Sigma-
Aldrich), 1 μM CpG (Trilink Biotechnologies, ODN1826 sequence InvivoGen)],
proinflammatory cytokines [20, 100 ng/mL IL-1β (Biovision, Inc.), 20 ng/mL
IL-23 (eBioscience)], or in medium alone for 48 h. To test Ag presentation
and T-cell activation, sort-purified stimulated (20 ng/mL IL-1β, 24 h) NCR−ILC3s
were cocultured in the presence of OT-IItg CD4+ T cells and either OVA323–339

peptide (5 μg/mL, AnaSpec), OVA protein (100 μg/mL, Imject Ovalbumin,
Thermo Fisher Scientific, Inc.), or medium alone (without Ag) for 48–72 h.

Fluorescent Latex Bead Uptake. Fluorescent latex bead uptake was performed
as previously described (32) with some adaptations. Briefly, in vitro-gener-
ated or ex vivo-isolated splenic NCR−ILC3s were cultured in a 96-well plate,
and latex beads [FluoSpheres carboxylate-modified microspheres, 1 μm, red
fluorescent (580/605), Molecular Probes, Life Technologies] were added for
6 h at 37 °C, 4 °C, or 37 °C in the presence of 0.5 μM CytD (Applichem). To
compare bead uptake of BMMΦ and NCR−ILC3s, cells were harvested after
2 h or 24 h. Bead internalization was analyzed by flow cytometry. For im-
munofluorescence microscopy, in vitro-generated NCR−ILC3s were stained
with FITC-conjugated anti-CD90.2 (30-H12, 30 min at 4 °C) and HOECHST dye
(Hoechst 33342, Invitrogen, 30 min at 37 °C) after incubation with beads.
Bead uptake was monitored using a confocal laser-scanning microscope
(Zeiss LSM 510 Meta). Images were analyzed with ImageJ (W. Rasband,
National Institutes of Health, Bethesda). An adjustment of brightness and
contrast was performed.
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Adoptive Cell Transfer and Immunization. We injected 3 × 106 OT-IItg CD4+ T cells
(CFSE+) intravenously (i.v.) into WT, I-abΔILC3, and I-ab−/− recipient mice i.v. im-
munized with OVA323–339 peptide (20 μg/mL), OVA protein (100 μg/mL), and CpG
(50 μM). Forty-eight hours later,OT-IItg CD4+ T-cell proliferation was examined in
the spleen. We i.v. injected 2 × 106 OT-IItg CD4+ T cells plus CpG (25 μM) intoWT,
I-abΔILC3, and RORγ−/− mice. Mice were immunized i.p. with 100 μg alum-pre-
cipitated NP-OVA [NP (18)-OVAL, Biosearch Technologies, Inc.]. Sera were col-
lected 14 d after NP-OVA immunization.

Ab and Cytokine Detection by ELISA and Luminex Assay. To detect NP-OVA–
specific Abs in the serum of immunized mice, NUNC immunoplate Maxisorb
F96 plates (Thermo Scientifics) were coated with 5 μg/mL NP-OVA (Bio-
search Technologies, Inc.) in 1× PBS at 4 °C overnight. Sera were incubated
for 1.5 h at room temperature, and after washing [H2O 0.1% Tween-20
(AppliChem)] biotin-conjugated goat anti-mouse IgG, IgG1, IgG2a, IgG2b, or
IgG3 (Caltag Laboratories) was added, incubated for 1.5 h at room temper-
ature, and detected by alkaline-phosphatase–conjugated Steptavidin (Roche,
45 min, room temperature). Plates were developed with dinitrophenyl
phosphate (1 mg/mL, Sigma) in substrate buffer [0.1 g MgCl2 × 6 H2O
(Merck), 10 mM NaN3 (Sigma), and 10% diethanolamine (Sigma) at pH 9.8
filled up to 1 L]. The reaction was stopped with 1 M NaOH (Fluka). OD was
determined at 405 nm with an ELISA reader (ASYS Expert plus). IL-22 was

determined in the supernatant of NCR−ILC3s cultures by using mouse/rat
ELISA MAX Deluxe Set (Biolegend) according to the manufacturer’s
instructions. OD was determined at 450 nm with an ELISA reader (ASYS
Expert Plus). In addition, cytokines were quantified using a multiplex-
bead–based Luminex assay (mouse cytokine 20-plex panel, Invitrogen,
Life Technologies) according to the manufacturer’s protocol. Analysis
was performed with a Luminex 100 (LX100) analyzer (Invitrogen, Life
Technologies).

Statistical Analysis. Statistical analysis was performed using Mann–Whitney U
test, unpaired Student t test, and Wilcoxon test with Prism software (GraphPad
Software, Inc.).
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Fig. S1. Sort-purified ex vivo-isolated splenic NCR−group 3 innate lymphoid cells (ILC3s) incubated for 6 h with red fluorescent latex beads at 37 °C or 4 °C.
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Key points: 

1. Flt3L controls intestinal ILCs in fetal and adult mice by regulating the 

progenitor pool in the fetal liver and bone marrow. 

2. Development of ILC2s and ILC3s is independent of the presence of dendritic 

cells. 



	
   170 

Abstract 

 

Fms-like tyrosine kinase 3 ligand (Flt3L) promotes survival of lymphoid progenitors 

in the bone marrow (BM) and differentiation of dendritic cells (DCs), but its role in 

regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. 

By using Flt3L knockout and transgenic mice we could demonstrate that Flt3L 

controlled ILC numbers by regulating the pool of α4β7- and α4β7+ lymphoid tissue 

inducer (LTi) cell progenitors in the fetal liver (FL) and common lymphoid 

progenitors in the BM. Deletion of flt3l severely reduced the number of FL 

progenitors and LTi cells in the neonatal intestine resulting in impaired development 

of Peyer’s patches (PPs). In the adult intestine, natural killer cells and group 2 and 3 

ILCs were severely reduced. This effect occurred independently of DCs as ILC 

numbers were normal in mice in which DCs were constitutively deleted. Finally, we 

could show that administration of recombinant Flt3L increased the number of NKp46- 

ILC3s in WT and even in Il7-/- mice, which generally have reduced numbers of ILCs. 

Taken together, Flt3L is essential for ILC and PP development by targeting lymphoid 

progenitor cells during fetal and adult life. 
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Introduction 

Innate lymphoid cells (ILCs) are a family of immune cells that participate in the early 

response to infections at mucosal surfaces.1,2 Beside their abundance in mucosa-

associated tissues like gastrointestinal tract, skin and lung,2-5 ILCs are found in 

lymphoid organs such as spleen, lymph nodes (LNs), Peyer’s patches (PPs) and 

tonsils.6,7 Recently, ILCs were categorized into three groups due to their 

transcriptional regulation of development and cytokine production.8 Group 1 ILCs 

consist of natural killer (NK) cells and ILC1s. They are characterized by the 

expression of NK1.1 and NKp46,2,9 require the transcription factor T-bet 10,11 and 

produce interferon gamma.12,13 Group 2 ILCs (ILC2) are identified by the expression 

of Sca1, CD25 and CD127.14 They depend on the transcription factors Gata3 15 and 

RORα 14,16  and produce T helper cell type 2 cytokines like interleukin (IL)-5 and IL-

13.14,17 Group 3 ILCs (ILC3s) include lymphoid tissue inducer (LTi) cells that are 

important for the development of LNs and PPs 7,18-20 and adult ILC3s. The latter are 

divided into several subsets according to their expression of CD4 and NKp46.21,22 

They depend on the expression of RAR-related orphan receptor gamma (RORγt) 20 

and produce IL-17 and/or IL-22.23-25 

Cytokines play an important role during hematopoietic development, either by 

supporting proliferation, survival or lineage commitment.26 Only few cytokines are 

described that are required for the development and maintenance of ILCs under 

steady state conditions. NK cell development depends on IL-15 but not on IL-7,27 

which instead is crucial for ILC3s 13,28-30 and ILC2s.15,17 In addition, we have shown 

that stem cell factor (SCF) 29 and thymic stromal lymphopoietin 31 are important for 

LTi cell development. During fetal development, LTi cells arise from α4β7+ CD127+ 

fetal liver (FL) progenitors.32 In adults, ILCs develop from common lymphoid 

progenitors (CLPs) in the bone marrow (BM).16,33,34 Fetal and adult ILC progenitor 

express receptors for cytokines that are important for ILC development, like the 

receptors for IL-7 (CD127) and SCF (CD117).32,35,36 Additionally, they express the 

cytokine receptor fms-like tyrosine kinase 3 (flt3 or CD135).33,37,38 Evidence for a role 

of flt3 ligand (Flt3L) for ILC development came from a study of Yang and colleges, 

who reported a diminished development of lung ILC2s after transfer of BM cells from 

flt3-/- mice into irradiated WT mice.39 Another study, however, reported normal ILC 
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numbers in the small intestine (SI) of flt3l-/- mice.40 In order to clarify the effect of 

Flt3L on ILC development, we analyzed flt3l-/- and flt3l-tg mice as well as mice 

treated with recombinant Flt3L. In addition, we compared fetal and adult ILC 

development in flt3l-/- and Il7-/- mice. We show that Flt3L controls intestinal LTi cell 

numbers in neonatal mice and ILC numbers in the SI of adult mice by regulating the 

ILC progenitor pool in FL and BM. 

 

Materials and Methods 

 

Mice 

C57BL/6 mice were obtained from Janvier. Rag2-/-Il2rg-/-,31 Il7-/-,41 flt3l-/-,42 flt3l-tg,43 

CD11c-Cre44 and R-DTA45 mice were on a C57BL/6 background. All mice were bred 

and maintained under SPF conditions according to the guidelines of the cantonal 

veterinarian office of Basel or the animal care and use committees of Lower 

Franconia, Germany. LN numbers of mice were determined by injection of 1% 

Chicago sky Blue 6B ink (Sigma-Aldrich) subcutaneously into the footpads of mice 2 

days before analysis. For Flt3L treatment mice were injected intraperitoneally (i.p.) 

for 10 days with 20µg recombinant Flt3L per day and sacrificed 1 day after the last 

treatment.  

 

Antibodies, intracellular staining, flow cytometry and cell sorting 

The following antibodies (Abs) used for flow cytometry were purchased from 

Biolegend: FITC-conjugated anti-CD3 (145-2C11), anti-CD8 (53-6.7), anti-CD11c 

(M1/70), anti-CD19 (6D5), anti-Gr-1 (RB6-8C5), anti-TCRβ (h57-597), anti-TCRγδ 

(UC7-13D5); Alexa-488 conjugated anti-CD103 (2E7); PE-conjugated anti-CD3 

(145-2C11), anti I-A (MHC II) (M5/114.15.2); PE-Cy7-conjugated anti-CD11b 

(M1/70); APC-conjugated anti-CD11c (N418), anti-CD25 (PC61); anti-CD117 (2B8), 

anti-KLRG1 (2F1/KLRG1); Alexa-647 conjugated anti-CD45.2 (104); APC-Cy7-

conjugated anti-CD4 (GK1.5) and streptavidin; Brilliant Violet 510 conjugated anti-

Thy1 (53-2.1) and anti-Sca1 (D7). The following Abs used for flow cytometry were 

purchased from eBioscience: FITC-conjugated anti-B220 (RA3-6B2), anti-NK1.1 

(PK136); PE-conjugated anti-CD135 (A2F10); PE-Cy7-conjugated anti-CD45.1 

(A20), anti-CD127 (A7R34); eFluor660-conjugated anti-NKp46 (29A1.4); 
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biotinylated anti-Sca-1 (D7). Brilliant Violet 421-conjugated anti-CD117 (2B6) was 

purchased from Biolegend or BD Biosciences. PE-conjugated anti-α4β7 (DATK32) 

was purchased from BD Biosciences. 

The lineage cocktail used for the identification of ILCs consisted of: anti-CD3, anti-

CD8, anti-CD11c, anti-CD19, anti-B220, anti-NK1.1, anti-Gr-1, anti-TCRβ and anti-

TCRγδ. For intracellular staining of RORγt and Gata3, the FoxP3 staining buffer kit 

with PE-conjugated anti-RORγt (AFKJS-9) and eFluor660-conjugated anti-Gata3 

(TWAJ) (eBioscience) was used. Cells were acquired using a FACS Canto II or LSR 

Fortessa (BD Biosciences) and analyzed with Flow Jo software (Tree star). Cell 

sorting was done using a FACS Aria II. 

 

Whole mount immunohistochemistry 

Whole mount VCAM staining of small intestines (SIs) from 1-2 day old mice was 

performed as described before.18 Briefly, after removing the serosa, intestines were 

fixed with 4% paraformaldehyde. Free aldehyde groups were quenched with 4% 

glycin in phosphate-buffered saline (PBS) and tissue was rehydrated using 50%, 70% 

and 100% methanol. Endogenous peroxidase was blocked by incubation with 30% 

H2O2 in methanol. After blocking with PBS, 1.5% skim milk, 0.1% Triton X-100 

(PBSMT), intestines were incubated with biotinylated anti-VCAM Abs (eBioscience, 

clone 429) over night at 4ºC. After extensive washing with PBSMT, intestines were 

incubated with horseradish peroxidase-conjugated streptavidin (Biolegend) for 3h at 

RT. After washing with PBS and tris-buffered saline, 3,3’-Diaminobenzidine 

substrate (Sigma) was added to visualize Ab binding.  

 

Cell isolation 

BM cells were obtained by crushing bones in a mortar. Cells from the spleen, 

mesentery and FL were obtained by gently pressing the organs between two glass 

slides. Lamina propria (LP) preparation from SI of adult mice was done as described 

before.21 Briefly, SIs were collected, PPs were removed, SIs were opened 

longitudinally, cut into 1-2cm pieces and incubated in Ca2+- and Mg2+- free PBS 

containing 30mM EDTA (Ethylenediaminetetraacetic acid) for 30 min on ice. 

Epithelial cells and intra-epithelial cells were removed by shaking vigorously and 

repeated washing of the tissue with PBS. Intestinal pieces were incubated 4 times 
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with DMEM containing 1mg/ml Collagenase D (Roche) and 0,025mg/ml DNAse I 

(Roche) for 15 min at 37ºC. After each digestion, supernatant was collected in 

DMEM, 5% FCS, 2mM EDTA. LP cells were purified using a Percoll (GE 

Healthcare) gradient at 20ºC and 1800rpm for 30min. Cells of the interphase were 

collected. 

SI from 0.5 days old mice were collected and mesenteric tissue was removed under 

the microscope. Intestines were opened longitudinally and washed with PBS by 

vigorous shaking. E15.5 intestines were collected under the microscope and 3 

intestines were pooled. For digestion of fetal and neonatal tissue, intestines were cut 

into small pieces and digested 2 times with DMEM containing 1mg/ml Collagenase D 

(Roche) and 0,025mg/ml DNAse I (Roche) for 30 min at 37ºC. Supernatant was 

collected in DMEM, 5% FCS, 2mM EDTA. 

 

Statistical analysis 

Statistical analysis was performed with GraphPad Prism 6 for Macintosh OS X. All 

data were tested for normal distribution using the Shapiro-Wilk test. If data were 

normal distributed, differences between groups were calculated using a two-tailed 

unpaired Student’s T-Test. If data were not normal distributed differences between 

groups were calculated using the Mann-Whitney-U test. Statistical significant 

differences are depicted as follows: *p<0.05, **p<0.01, ***p<0.001. 

 

Results 

 

Flt3L controls LTi cell and Peyer’s patch development  

During fetal development LTi cells arise from FL progenitors.32,35 They can be 

derived either from CD117+ CD127+ α4β7- or from CD117+ CD127+ α4β7+ 

progenitors,33,46 which were reported to express CD135.33,37 In line with this, we 

found that the majority of both α4β7- and α4β7+ Thy1- progenitors in the FL were 

CD135+ (Figure 1A). We have previously shown that IL-7 is crucial for LTi cell and 

LN development and that in addition to IL-7 other cytokines promote intestinal LTi 

cell and PP development.29,31,47 To understand the influence of Flt3L on LTi cell 

development we analyzed fetal and neonatal flt3l-/- mice. Absolute numbers of α4β7- 
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and α4β7+ progenitors were reduced in the FL of E14.5 flt3l-/- mice as compared to 

WT and Il7-/- mice (Figure 1B). PP development was significantly impaired in flt3l-/- 

mice (Figure 1C). Accordingly, we detected a 3-fold reduction of LTi cells in the SI 

of day 0.5 flt3l-/- mice (Figure 1D). It was reported that a CD11c+ lymphoid cell 

population called lymphoid tissue initiating cell (LTin) contributes to PP 

development.48 We found that the number of LTin cells (gating see Figure S1B) was 

reduced in the intestine of E15.5 flt3l-/- embryos (Figure 1E). In contrast to Il7-/- mice, 

almost all LNs were present in flt3l-/- mice (Figure 1F). Accordingly, LTi cell 

numbers in the mesenteries of 0.5 days old neonatal mice (see gating in Figure S1A) 

were slightly reduced in Il7-/- mice but normal in flt3l-/- mice (Figure 1G). Since LTi 

cells were negative for flt3 (Figure S2A), we conclude that Flt3L deficiency mainly 

affected LTi progenitors in the FL. Together, these data show that Flt3L regulates PP 

development by controlling the number of intestinal LTi and LTin cells.  

 

Flt3L controls ILC3 numbers in the lamina propria of adult mice 

To investigate the role of Flt3L for adult ILCs, we compared the number of NK cells, 

ILC2s and ILC3s (see gating in Figure S1C-E) in the SI of WT, Il7-/-, flt3l-/- and flt3l-

tg mice. As already reported, NK cell numbers were normal in the SI of Il7-/- mice, 

while ILC2s and ILC3s were reduced (Figure 2A).13,15 In contrast, loss of Flt3L led to 

a significant reduction of NK cell, ILC2 and ILC3 numbers in the SI compared to WT 

controls (Figure 2A). While ILC2 reduction was comparable in Il7-/- and flt3l-/- mice, 

ILC3 numbers were lower in flt3l-/- mice compared to Il7-/- mice (Figure 2A). 

Transgenic over-expression of Flt3L under the control of the human β-actin promoter 

led to increased numbers of NK cells, ILC2s and ILC3s (Figure 2A). To further 

characterize the influence of Flt3L on ILC3s in the SI, we analyzed the different ILC3 

subsets, namely CD4+ ILC3s, NKp46+ ILC3s and CD4- NKp46- (DN) ILC3s (gating 

see Figure S1E). In flt3l-/- mice, we detected a 4-fold reduction of DN and NKp46+ 

ILC3 and a 8-fold reduction of CD4+ ILC3 numbers compared to WT mice (Figure 

2B). CD4+ and DN ILC3 numbers were significantly lower as in Il7-/- mice. In flt3l-tg 

mice CD4+ ILC3s were 20-fold, DN ILC3s were 16-fold and NKp46+ ILC3s were 9-

fold increased as compared to WT controls. Together, these data show that Flt3L 

controls the number of ILCs in the adult gut, preferentially targeting CD4+ and DN 

ILC3s.  
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Administration of recombinant Flt3L increases ILC numbers in WT and Il7-/- 

mice 

The results obtained from flt3l-tg mice prompted us to ask whether the treatment of 

adult mice with recombinant Flt3L could increase SI ILC numbers in WT mice and 

restore SI ILCs in Il7-/- and flt3l-/- mice. Therefore, we injected recombinant Flt3L 

over a period of 10 days into adult mice. As a control, we determined the number of 

CD11c+ DCs that are known to expand during Flt3L administration.49 DCs in the SI 

were highly increased after Flt3L treatment in all three strains (Figure 3A). In WT 

mice, the number of NK cells and ILC2s was significantly higher in Flt3L-treated 

mice compared to PBS-treated controls (Figure 3B). Amongst ILC3s, the CD4+ and 

DN subsets were mainly responding to Flt3L treatment in WT mice (Figure 3C), 

confirming our previous data. In Il7-/- mice, NK cells and ILC3s expanded upon Flt3L 

treatment while ILC2s were not changed in numbers (Figure 3B-C). Flt3L treatment 

was unable to expand the number of NK cells, ILC2s and ILC3 in flt3l-/- mice (Figure 

3B-C). These data show that short-term administration of Flt3L increases the number 

of several ILCs in the SI of WT and Il7-/- mice. However, ILC numbers could not be 

restored in flt3l-/- mice.  

 

CD103+ DCs are not required for ILC development 

Flt3L is an important cytokine for the development of DCs.42,50 In the intestine, three 

subsets of DCs can be discriminated by their expression of CD103 and CD11b.51 

CD103+ DCs were described to be responsive to Flt3L.51 Indeed, CD11chigh DCs, 

which contain mainly CD103+ DCs, were dramatically reduced in the SI of flt3l-/- 

mice, while numbers of CD11clow cell including CD103- DCs and monocytes were 

comparable to WT mice (Figure 4A-B). Recently, it has been reported that CX3CR1+ 

DCs can regulate ILC3 numbers in the SI.52 To investigate whether the effect of Flt3L 

on ILCs was indirectly mediated by DCs, we analyzed mice in which DCs were 

constitutively ablated by crossing CD11c-Cre mice with mice expressing Diphtheria 

toxin A (DTA) under the control of a loxP flanked stop cassette in the Rosa26 locus 

(R-DTA). The resulting CD11c-Cre/R-DTA (ΔDC) mice 53 lack more than 90% of 

conventional DCs including myeloid, lymphoid and plasmacytoid DCs in thymus, 

spleen and LNs.53 In the SI, ΔDC mice showed a severe reduction of CD11chigh DCs 

with an almost complete absence of CD103+ DCs (Figure 4C-D).  In contrast, 
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CD11clow macrophages (MΦ) showed a moderate reduction (Figure 4C-D). Despite 

the notion that ΔDC mice and flt3l-/- mice had reduced DC numbers in the SI, ΔDC 

mice had normal numbers of PPs (Figure 4E) suggesting that CD103+ DCs are not 

required for LTi cell development. While NK cell numbers were normal in the SI of 

ΔDC mice, ILC2 numbers were increased (Figure 4F). Analysis of the different ILC3 

subsets revealed that the number of NKp46+ ILC3s but not CD4+ or DN ILC3s was 

elevated (Figure 4G). Thus, we could show that ILCs in the SI were not dependent on 

CD103+ DCs.  

 

Flt3L affects CLP numbers but not their differentiation into ILC3s 

Since we neither found Flt3 protein nor transcript expression in ILC2s or ILC3s 

(Figure S2B-C), we focused on ILC progenitors in the BM. Therefore, we analyzed 

the number of CLPs and immature ILC2s (iILC2s) in the BM, which are progenitors 

for all ILCs and for ILC2s, respectively.15,33 Previous studies have shown that CLP 

numbers are reduced in flt3l-/- mice.54 In line with this, we found a 4.5-fold reduction 

of CLPs in the BM of flt3l-/- mice while CLP numbers were normal in the BM of Il7-/- 

mice as compared to WT controls (Figure 5A). In contrast to CLPs, iILC2s were only 

reduces 2-fold in flt3l-/- mice (Figure 5B), while Il7-/- mice showed a severe loss of 

these cells. 

Although CLP numbers are reduced in flt3l-/- mice, not all CLP-derived lymphocytes 

were affected to the same degree in the periphery. In the spleen, NK cells were 

severely reduced, while B cells were only diminished 2-fold and T-cells did not differ 

from WT numbers (Figure 5C). In the SI no difference in IgM+ B cell and T cell 

numbers was detectable in WT and flt3l-/- mice (Figure 5D). This prompted us to ask 

whether the loss of Flt3L might impair the ability of CLPs to generate ILCs. 

Therefore, we adoptively transferred FACS sorted Lin
-
 CD117low CD127+ Sca1low 

CD135+ CLPs (gating see Figure S1F) from WT mice (CD45.1) and from flt3l-/- mice 

(CD45.2) in a 1:1 ratio into Rag2-/-Il2rg-/- mice (CD45.2). As controls, we 

reconstituted Rag2-/-Il2rg-/- mice with CD45.1 and CD45.2 WT CLPs and analyzed the 

mice 6 weeks later. The frequency of ILC3s derived from WT and flt3l-/- CLPs was 

comparable (Figure 5E-F) indicating that flt3l-/- CLPs had no intrinsic defect in ILC 

lineage commitment. 
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Discussion 

Flt3L plays an essential role in survival of lymphoid progenitors in the BM 54 and 

differentiation of DCs.42,50 In this study we show that Flt3L is important to control 

ILC numbers in the SI during fetal and adult life and the ILC progenitor pool in the 

FL and BM. 

During fetal development, LTi cells are crucial for the development of LNs and PPs. 

Both organs are differently regulated by cytokines such as IL-7, SCF and tumor 

necrosis factor-family members like receptor activator of NFκB ligand 

(RANKL).29,55-57 Our data demonstrate that in the absence of Flt3L, PP development 

was impaired while LN development was normal. This was reflected by normal LTi 

cell numbers in the mesenteries and highly reduced LTi cell numbers in the SI of 

neonatal mice. In addition, the reduced number of LTin cells in flt3l-/- mice probably 

contributed to the almost complete abrogation of PP development. Since FL 

progenitors expressed CD135 and were severely reduced in flt3l-/- mice, Flt3L 

controls the size of the fetal ILC progenitor pool. Why Flt3L is dispensable for LN 

anlagen remains to be investigated. 

In the adult system, we could show that Flt3L controls the number of NK cells, ILC2s 

and ILC3s. A former study by Kinnebrew and colleges postulated that ILCs are not 

diminished in flt3l-/- mice.40 In their study the frequency of CD3- CD4- Thy1+ cells 

amongst CD45+ cells was equal in WT and flt3l-/- mice. Since a change in the number 

of other cell types influences the frequency of the analyzed population, it is possible 

that the loss of DCs led to normal ILCs frequencies in flt3l-/- mice although total cell 

numbers may be reduced.  In contrast, we determined the absolute number of the 

different ILC groups in flt3l-/- mice. We observed a significant reduction of NK cells 

in the SI of flt3l-/- mice. This is in line with the observation of reduced NK cell 

numbers in the spleen of flt3l-/- mice.42 ILC2s were reduced in the SI of adult flt3l-/- 

mice, which is in agreement with previous data showing that Flt3L is important for 

ILC2 development.39 CD4+ and DN ILC3s were mainly affected by the loss of Flt3L. 

This was also obvious in flt3l-tg mice as well as in WT and Il7-/- mice treated with 

recombinant Flt3L, in which the CD4+ and DN ILC3s were the main ILC3 subsets 

responding to Flt3L.  

Administration of recombinant Flt3L was previously shown to increases the number 

of DCs.49 In addition, NK cells and regulatory T cells were reported to expand after 
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Flt3L treatment.58-62 The increase of these two cell types was shown to be a result of 

the Flt3L-driven expansion of DCs and their secretion of IL-2 and IL-15. 59-62 As the 

expansion of DCs could be responsible for the increase of ILC2s and ILC3s after 

Flt3L treatment we analyzed ΔDC mice, which mainly lack the Flt3L-responsive 

CD103+ DCs in the SI. ILC numbers were normal or even increased in ΔDC mice, 

strongly arguing against the hypothesis that ILC expansion is driven by DCs. The 

inability of Flt3L treatment to increase ILCs in flt3l-/- mice, albeit increasing DC 

numbers, also supports our conclusion. It was recently shown that the number of 

NKp46+ ILC3s depends on CX3CR1+ cells, which contain CD103- DCs and resident 

MΦ.52 In ΔDC mice, NKp46+ ILC3s were even increased, which might be explained 

by the relative enrichment of CD11clow CD103- MΦ.  

As ILCs are negative for CD135, the effect of Flt3L on ILC numbers was most likely 

mediated by regulating the CD135+ progenitor pool (CLPs) of ILCs in the BM. In 

agreement with this hypothesis, we found a strong reduction of CLP numbers in flt3l-/- 

mice, which was comparable to the reduction of ILC3s in the SI (Figure 2A and 5A). 

The reduction of ILC2s and iILC2s was less severe in the absence of Flt3L (Figure 

2A and 5F) probably because other cytokines such as IL-7 can rescue ILC2 

development. The important role of IL-7 for ILC2 development is also reflected by 

the finding that Flt3L treatment did not increase ILC2 numbers in Il7-/- mice. 

Despite reduced CLP numbers in flt3l-/- mice, competitive transfer experiments 

showed that CLPs from flt3l-/- mice have the same ability as WT CLP to give rise to 

ILC3s if transferred at the same number into Flt3L-sufficient hosts. Considering the 

clear dependence of CLP numbers on Flt3L, the unequal number of CLPs in WT and 

in flt3l-/- mice might explain why Flt3L-treatment in flt3l-/- mice was not able to 

increase ILC numbers as seen in WT mice. Thus, it is likely that an extended 

treatment with recombinant Flt3L can compensate for low CLP numbers and can 

increase ILC numbers in flt3l-/- mice. In addition, we cannot exclude that flt3l-/- mice 

mounted an immune response against the recombinant protein, which led to the 

neutralization and subsequently lower abundance of Flt3L.  

Taken together, our study demonstrates that the presence of Flt3L is important to 

generate ILCs during fetal development as well as during adult life. Our data offer the 

possibility to use Flt3L as therapeutic approach for restoring intestinal ILCs in 

patients with severe combined immunodeficiency and for immune protection of 



	
   180 

mucosal surfaces. Since Flt3L treatment is already approved for treatment of cancer 

patients 63 beneficial effects of this cytokine for mucosal immunity could be tested in 

human trials. 
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Figure legends 

 

Figure 1. Flt3L controls Peyer’s patch development. (A-B) Analysis of α4β7- and 

α4β7+ progenitors in the fetal liver (FL) of E14.5 embryos. (A) Surface expression of 

flt3 (CD135) on WT cells (black), grey shaded: unstained. (B) Number of progenitors 

(n=10-12). (C) Analysis of PP anlagen in the SI of 0.5 days old mice by VCAM-1 

whole mount staining. left: Representative pictures. VCAM+ spots are indicated by 

arrows. Right: Quantification of PP anlagen. (D) LTi cell number in the SI of 0.5 days 

old mice (n=14-16). (E) LTin cell numbers in the gut of E15.5 embryos (n=6). (F) 

Presence of lymph nodes (LN) in adult Il7-/- and flt3l-/- mice compared to WT set as 

100% (n=6-8). (G) LTi cell number in the mesenteric region of 0.5 days old mice 

(n=17-28). *P < .05; ** P < .01; *** P < .001 

 

Figure 2. Flt3L controls ILC numbers in the intestine. (A-B) Number of NK cells, 

ILC2s and ILC3s (A) as well as ILC3 subsets (B) in the SI of indicated mice. DN: 

CD4- NKp46- (double negative) (n=6-18). Bars show the mean with SEM. *P < .05; 

** P < .01; *** P < .001 

  

Figure 3. Flt3L treatment increases ILC numbers in the adult intestine. Mice 

were treated with 20µg recombinant Flt3L for 10 days (grey bars). Controls were 

injected with PBS (white bars). Numbers of CD11chigh DCs (A), NK cells and ILC2s 

(B) as well as ILC3 subsets (C) in the SI are shown (n=5-6). Bars show the mean with 

SEM. *P < .05; ** P < .01; *** P < .001 

 

Figure 4. Loss of DCs does not reduce ILCs in the intestine. (A-D) Analysis of 

macrophages (MΦ) and DC subsets in the SI of adult mice. (A and C) Representative 

FACS plots of MΦ and DC subsets in WT and flt3l-/- mice (A) and ΔDC mice with 

littermate controls (litters) (C). (B and D) Number of CD11chigh DCs and CD11clow 

MΦ in WT and flt3l-/- mice (n=6) (B) and in ΔDC mice and litters (n=4-8) (D). (E) 

Number of PPs in adult ΔDC mice and litters. Lines show the mean. (F-G) Number of 

NK cells, ILC2 (F) and ILC3 subsets (G) in the SI of ΔDC mice and litters (n=4-8). 

Bars show the mean with SEM. *P < .05; ** P < .01 
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Figure 5. Flt3L affects CLP numbers but not their differentiation into ILC3s. (A) 

Number of CD135+ CLP per 1 Mio. lineage- (Lin-) BM cells (n=6-8). (B) Number of 

iILC2s per 1 Mio. Lin- BM cells (n=6-8). (C) Number of NK cells, CD19+ B cells and 

CD3+ T cells in the spleen (n=6). (D) Number of CD19+ IgM+ B cells and CD3+ T 

cells in the SI (n=6-12). (E-F) Rag2-/- Il2rg-/- mice were injected with a 1:1 mixture of 

Ly5.1 WT CLPs and Ly5.2 Flt3l-/- (n=8) or Ly5.2 WT CLPs (n=4). Frequency of 

CD45.1+ and CD45.2+ ILC3s (lineage- Thy1+ RORγt+) in the SI was analyzed 6 

weeks later. Representative FACS plots (E) and pie charts for all mice (F) are shown. 

Bars and pie charts show the mean with SEM. *P < .05; ** P < .01; *** P < .001 

 

Supplementary figure legends 

 

Figure S1. Gating strategies. Gating strategy for: (A) LTi cells from the mesentery 

of 0.5 days old mice. (B) LTin cells in the gut of E15.5 embryos. (C-E) NK cells (C), 

ILC2s (D) and ILC3s with their subsets (E) in the SI of adult mice. (F-G) CLPs (F) 

and iILC2s (G) in the BM.  

 

Figure S2. CD135 expression on ILCs. (A) CD135 expression on LTi cells (CD117+ 

CD3- Thy1+ CD127+) in the mesentery of 0.5 days old mice (gray). As control 

CD117+ CD3- Thy1- cells were used (black). Light grey: unstained. CD135+ cells are 

marked with an arrow. (B) CD135 expression on lineage- CD117+ KLRG1+ RORγt- 

ILC2s (light gray) and lineage- CD117+ KLRG1- RORγt+ ILC3s (dark gray) from the 

SI of WT mice in comparison to lineage+ CD117+ DCs (black). (C) qRT-PCR of flt3 

transcripts in FACS sorted ILC3s from the SI of WT mice compared to WT 

splenocytes. Bars show characteristic data from 1 of 2 independent experiments. 
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