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Abstract 

XRN2 is an essential nuclear 5’  3’ exoribonuclease that is involved in quality control, processing 

and degradation of RNAs, such as rRNA, snRNA and miRNAs. Recently, C. elegans XRN2 was 

discovered to exist in a stable complex with PAXT-1. Binding to XRN2 is mediated by PAXT-1’s 

DUF3469/XRN2 binding domain (XTBD). Whereas binding of the XTBD confers stability on XRN2 

similar to observations made for yeast Rai1 – Rat1 complexes, kinetic analysis using the Michaelis-

Menten model does not show any contributions to catalytic activity by PAXT-1. However, XRN2 alone 

processively degrades small RNAs, like its paralog XRN1, but shows no release activity for miRNAs off 

AGO, even when bound to PAXT-1. Here we show the XTBD to be a general binding domain for 5’  

3’ exoribonucleases 2 and present the crystal structure of the XTBD – XRN2 complex. Whereas the 

XTBD serves as a general adapter to XRN2, XRN1 binding is excluded due to sterical hindrance. 

Strikingly, a single point mutation in PAXT-1 Tyr56 completely abrogates binding to XRN2 in vitro and 

in vivo. Using CRISPR to generate endogenous PAXT-1 Tyr56 to Ala mutations, phenotypes identical 

to paxt-1 null mutant worms are observed. Remarkably, paxt-1null mutant worms can be rescued by 

an unrelated XTBD-containing protein from humans, CDKN2AIPNL, which confers stability to XRN2 

by formation of a chimeric complex in vivo. We conclude that XRN2 uses a similar mechanism for 

substrate binding and processive degradation as XRN1 and that PAXT-1 confers stability to the 

nuclease complex by binding through its XTB domain. Moreover, the XTBD serves as a general 

binding adapter for the XRN2 nuclease family, yet excluding XRN1 binding.  
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I Introduction  

1 RNA metabolism 

Ribonucleic acids (RNA) are molecules that play an important role in crucial metabolic functions 

such as protein synthesis and its regulation. The molecule itself is built by a multiple of connected 

mononucleotides. These consist of a ribofuranose moiety linked with one of four bases on the 1’ 

carbon, assembling to adenosine (A), cytidine (C), guanosine (G) and uridine (U) and a phosphate 

group at the 5’ carbon (Westheimer, 1987). Unlike deoxyribonucleic acid (DNA), RNA mostly exists as 

a single strand, however forms secondary structures by base-pairing with itself (Holley et al., 1965; 

Mathews et al., 2004; Tinoco and Bustamante, 1999). In certain circumstances RNAs also form 

intermolecular duplexes, e.g. miRNA – mRNA or miRNA passenger – guide duplexes (Bushati and 

Cohen, 2007; Krol et al., 2010). Until two decades ago the RNA field was mainly focused on RNA 

molecules supporting and facilitating protein synthesis. Five major RNA species play a crucial role, 

messenger RNA (mRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), transfer RNA (tRNA) and 

ribozymes/RNase P. However, with the discovery of previously unknown non-coding RNAs (ncRNA) 

such as micro-/small interfering- and Piwi-interacting RNAs (miRNA/siRNA/piRNA) as well as long 

non-coding RNAs (lncRNA), the field of RNA rapidly gained attention (Brosius and Tiedge, 2004; 

Girard et al., 2006). This is because only about 2% of the genome codes for protein-coding mRNAs 

and until recently the remainder was considered “junk DNA” (Frith et al., 2005; Mattick, 2001; Ohno, 

1972). Remarkably, with new RNA species emerging it becomes evident, that some of the so called 

“junk DNA” serves coding for functional RNAs yet do not code for proteins (Kapranov et al., 2010). 

While RNAs execute many important functions, their biogenesis, processing and decay is 

dependent on RNA nucleases (RNases) (Miki and Großhans, 2013; Nagarajan et al., 2013; Yang, 2011; 

Yang et al., 2006). This class of enzymes cleaves phosphodiester bonds of the ribonucleic phosphate 

backbone and can be regarded as molecular machines that solely degrade the RNA polymer (Yang, 

2011). However such a simplified view does not account for the many essential biological tasks 

RNases are involved in, such as rRNA maturation, splicing, gene silencing, and viral defense (Krol et 

al., 2010; Li et al., 2015; Miki and Großhans, 2013). Thus, understanding RNases and their functional 

relationship with RNAs as well as the underlying molecular mechanism are important to understand 

fundamental processes of life. Expression of a gene, meaning the transformation of the genetic code 

into functional molecules, is such a fundamental process and illustrates the functional complexity of 

RNAs and RNA nucleases (Figure 1). It starts with transcription, generating the nascent mRNA, and 

RNA nucleases CPSF as well as XRN2 make important contributions in mRNA cleavage and 

transcription termination, respectively (Hsin and Manley, 2012). Concomitantly, introns are excised 

through a process called splicing, which involves ribozymes exhibiting RNase activity to support 
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maturation of the mRNA (Wachtel and Manley, 2009; Will and Lührmann, 2011). Subsequently, the 

ribosome, a molecular machine consisting of rRNAs and proteins, translates the mRNA sequence to 

synthesize a polypeptide chain, which then assumes a functional three-dimensional fold (Ben-Shem 

et al., 2011; Klinge et al., 2011; Rabl et al., 2011). rRNAs themselves heavily depend on, for example, 

small nucleolar RNAs (snoRNA) and various RNases, such as XRN2, to fully mature to functional 

molecules (Gerbi et al., 2001). Finally the mRNA is degraded by the exosome and/or XRN1, which is 

initiated by various mechanisms such as decapping, deadenylation, non-sense mediated decay 

(NMD) or RNA interference (RNAi) (Figure 1) (Garneau et al., 2007; Krol et al., 2010; Schoenberg, 2011). 

Thus RNases are more specialized and appear more versatile than pure scavenger RNA nucleases 

would suggest. Especially the RNase XRN2 acts on various different, yet important RNAs and 

understanding this molecular machine on a functional and molecular level will thus expand our 

understanding of many key biological processes (Miki and Großhans, 2013; Nagarajan et al., 2013). 
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Figure 1: The scheme shows the various different stages of transcription and translation, in which RNases are 
involved (drawing taken from Houseley and Tollervey, 2009). 

 

1.1   RNases and Their Role in Eukaryotic Gene Expression of Proteins 

The messenger RNA conveys the genetic information from the nucleus to the cytoplasm and serves 

as a blueprint for protein synthesis (Carmody and Wente, 2009; Khorana et al., 1966; Nirenberg et al., 

1966). Its biogenesis starts with the transcription of DNA by RNA polymerase II (RNAP II) (Bentley, 

1999; Maniatis and Reed, 2002). Transcription is initiated by formation of a pre-initation complex 

(PIC), harboring transcription factors, co-activators and chromatin-remodeling complexes, at the 

promoter of a gene, upstream of transcribed DNA (Kim et al., 1997). This complex forms the 

transcription bubble, so that RNAP II binds the DNA and synthetizes an RNA polymer  (Holstege et 

al., 1997; Kim et al., 2000; Wang et al., 1992). RNAP II, a nucleotidyltransferse with 12 subunits, then 

synthesizes a polynucleotide chain by using nucleoside triphosphate substrates (Gnatt et al., 2001; 

Kershnar et al., 1998; Myer and Young, 1998). Moreover, the largest subunit RPB1 of the RNAP II 

holoenzyme contains a carboxy terminal domain (CTD) and RNAP II activity is regulated through the 

CTD phosphorylation state (Hsin and Manley, 2012). For example, transcription factor TFIIH 

associated cyclin-dependent kinase 7 (CDK7) phosphorylates Ser5 of the CTD and releases RNAP II 

from the promoter region to start elongation (Akoulitchev et al., 1995; Feaver et al., 1991; Lu et al., 

1992). Co-transcriptionally, the pre-mRNA is processed by factors loaded onto RNAP II’s CTD as soon 

as it emerges from the RNA exit channel. Its 5’- end is capped with a methylated guanine 

monophosphate (m7GMP), which is linked by a 5’ – 5’ triphosphate bridge to the pre-mRNA to protect 

it from nucleolytic degradation (Garneau et al., 2007; Shatkin, 1976). Furthermore, introns, non-

coding sequences, are excised from the pre-mRNA and flanking exons are joined together in a 

process referred to as splicing (Wachtel and Manley, 2009; Will and Lührmann, 2011). The complex 

process of splicing is carried out by the spliceosome, made up by protein complexes containing non-

coding snRNAs U1, U2, U4, U5 and U6, called small ribonucleic proteins (snRNPs). These snRNPs 

transiently interact with each other, dependent on the specific splicing step. In a first step the 

intronically encoded splice site is recognized, followed by the nucleophilic attack of the branch point 

adenosine forming the intron lariat. Subsequently, the lariat is cleaved and flanking exons end-

joined. This reaction is catalyzed by the snRNAs U2 and U6, as they show Mg2+ dependent 

endonuclease activity and are referred to as ribozymes (Valadkhan et al., 2007). U2 and U6 form a 

complex through extensive base-pairing and the AGC triad as well as the adjacent ACAGAGA box of 

U6 are crucial for catalysis (Dayie and Padgett, 2008; Hilliker and Staley, 2004; Lesser and Guthrie, 

1993; Wachtel and Manley, 2009). However protein-free splicing reactions are slow, suggesting that 

proteins must be involved in catalysis or at least stimulate ribozyme activity (Valadkhan et al., 2007). 
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Remarkably, the crystal structure of a domain of Prp8, interacting with U2 and U6 at the core of 

splicing catalysis, revealed an RNase H-like fold and Mg2+ binding capabilities (Pena et al., 2008; 

Ritchie et al., 2008; Yang et al., 2008). Even though the RNase H-like domain is truncated and lacks 

some key catalytic residues, point mutations at Prp8’s active site have severe viability defects, 

suggesting a direct engagement in catalysis (Pena et al., 2008). To guarantee for a correct exon 

sequence, splicing is carried out co-transcriptionally and the RNAP II CTD in part recruits splicing 

factors to do so. In a final step, the capped- and spliced- pre-mRNA is endonucleolytically excised off 

the RNAP II – DNA complex and polyadenylated at its 3’-end by CPSF (cleavage/polyadenylation 

specificity factor) and polyadenylate polymerase (PAP), respectively (Balbo and Bohm, 2007; Murthy 

and Manley, 1995). The CPSF is a tetrameric protein complex with subunit CPSF-160 recognizing and 

binding the polyadenylation signal (AAUAAA) and CPSF-73 mediating cleavage (Mandel et al., 2006). 

CPSF-73 belongs to the β-CASP nucleases adapting a metallo-β-lactamase fold and hydrolyzes 

phosphodiester bonds in RNA or DNA. Remarkably, hydrolysis depends on two Zn2+ ions and works 

either endo- or 5’- exoribonucleolytically. Unique zinc-dependency of the β-lactamase class enzymes 

is probably mediated by a high number of histidines in the catalytic center (Mandel et al., 2006; Yang, 

2011). Subsequently, the acquired poly(A) tail is bound by different poly(A)-binding proteins (PABP), 

which modulates PAP activity (nuclear PABPN1) (Kerwitz et al., 2003; Kühn et al., 2009; Wahle, 1991) 

and translation (cytoplasmic PABPC) (Gray et al., 2000; Imataka et al., 1998; Otero et al., 1999) as well 

as protecting the 3’- tail from exonucleolytic degradation in vitro (PABPC) (Bernstein et al., 1989; Ford 

et al., 1997; Körner and Wahle, 1997; Wormington et al., 1996). Finally, transcription is terminated 

through a yet not well understood mechanism, however an increasing number of reports indicate 

XRN2 to play an important role (see below) (Brannan et al., 2012; Dengl and Cramer, 2009; El Hage et 

al., 2008; Kim et al., 2004; Luo et al., 2006; Wagschal et al., 2012; West et al., 2004).   

The final transcript is then exported to the cytoplasm and used as a template for translation to 

generate functional proteins (Carmody and Wente, 2009). Accordingly, tRNAs, which are covalently 

bound to one of the 21 amino acids at the 3’-end, pair to the template mRNA with their 

corresponding anti-codon and thus deliver substrates for protein synthesis (Schimmel et al., 1993). 

tRNAs themselves interact with RNases such as RNase Z, RNase P and XRN2 for maturation and 

quality control, respectively (Wichtowska et al., 2013). RNase Z cleave the 3’ trailer and RNase P the 5’ 

leader sequence of the pre-tRNA endonucleolytically. Whereas RNase Z depends on two Zn2+ ions 

and shares similarities to the β-lactamase fold, RNase P is a classical ribozyme using two Mg2+ ions 

for hydrolysis (Kirsebom, 2007; de la Sierra-Gallay et al., 2005). 

Translation, similarly to transcription, follows a heavily regulated and complex initiation-, 

elongation- and termination process (Schmeing and Ramakrishnan, 2009) mainly driven by the 

ribosome. The ribosome, with its major 60 S and 40 S subunits, is a 3.2 MDa RNP and both subunits 
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in turn are complexes of mature rRNAs and various protein subunits. It catalyzes the peptidyl 

transferase reaction by which a polypeptide chain is formed (Ben-Shem et al., 2011; Klinge et al., 

2011; Rabl et al., 2011). The 28 S ribosomal RNA, with its enzymatic activity, is a prime example of a 

ribozyme, which was believed to be an exclusive function of proteins for decades (Kruger et al., 1982; 

Nissen et al., 2000; Voorhees et al., 2009). As such, rRNAs are crucial for protein synthesis and their 

biogenesis as well as quality control is driven by RNases such as XRN2 (see below) (Miki and 

Großhans, 2013; Nagarajan et al., 2013).  

 

1.2 Regulation of Gene Expression Through small RNAs and RNases 

Whereas mRNAs convey information for protein synthesis as described above, non-coding RNA 

(ncRNA) function as scaffolds, guides or exhibit enzymatic activity (Mattick and Makunin, 2006). This 

class of RNA is roughly divided by size into small- and long- ncRNAs (Guttman and Rinn, 2012; Kim et 

al., 2009), with small ncRNAs being capable to regulate gene expression post-transcriptionally 

(Fabian and Sonenberg, 2012; Krol et al., 2010; Peters and Meister, 2007).  

RNA induced gene silencing is a post-transcriptional process by which translation is inhibited 

and/or mRNA degradation is induced (Ecker and Davis, 1986; Fire et al., 1998; Ratcliff et al., 1997). This 

process is driven by small 20 to 25 nt long single stranded RNA molecules, derived from endogenous 

or exogenous RNA precursors. For siRNAs, RNA precursors originate from viral RNA material and serve 

as an antiviral defense mechanism or can be taken up from the environment (C. elegans RNAi by 

feeding) (Hamilton and Baulcombe, 1999; Timmons and Fire, 1998). For miRNAs these precursors are 

RNAP II transcripts, containing a cap-structure as well as a poly(A) tail, that are referred to as primary 

micro RNA (pri-miRNA) (Lee et al., 2002). 

An enzyme complex consisting of DGCR8, a RNA binding protein, and endonuclease Drosha (for 

details see below) bind and cleave the pri-miRNA to a shorter, approx. 70 nt long hairpin RNA called 

precursor miRNA (pre-miRNA) (Denli et al., 2004; Gregory et al., 2004; Lee et al., 2003). Bound by 

exportin 5, the pre-miRNA is exported to the cytoplasm (Bohnsack et al., 2004; Lund et al., 2004; Yi et 

al., 2005) and undergoes its final maturation step by cleavage through Dicer. The endoribonuclease 

Dicer processes not only pre-miRNAs but also exogenous RNA fragments to produce dsRNA 

fragments consisting of a guide-/passenger- or 5p-/3p- strand for siRNA and miRNA, respectively 

(Bernstein et al., 2001; Grishok et al., 2001; Hutvágner et al., 2001; Knight and Bass, 2001). Dicer and 

Drosha are eukaryotic homologs of bacterial RNase III and comprise two active centers to produce 

double stranded RNA fragments. This class of enzymes depend on two metal ions for sequence 

independent cleavage and the catalytic event is thus similar to that of RNase H (Gan et al., 2006). The 

two active sites, built by two aspartates and a glutamate, are aligned to the substrate such that 
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cleavage occurs symmetrically to produce a 2 nt overhang at each strand’s 3’ end. Whereas substrate 

binding is facilitated by a dsRNA binding domain, analysis of the Dicer crystal structure revealed 

additional RNA binding domains. These domains mediate length and structure specificity for 

cleavable substrates to produce Dicer typical dsRNAs with a usual length of approx. 20 nt (Gan et al., 

2006; Macrae et al., 2006; MacRae et al., 2007). Of note, miRNA duplexes contain a bulge, a locus of 

unpaired nucleotides, whereas siRNA duplexes are usually fully complementary. One strand is then 

selected and loaded to an argonaute protein (Aza-Blanc et al., 2003; Khvorova et al., 2003; Schwarz 

et al., 2003). 

The argonaute protein family (AGO) is grouped in three subfamilies, the AGO clade, the Piwi clade 

and the worm specific WAGO clade, with each clade and their respective proteins serving different 

specialized functions (Ender and Meister, 2010; Peters and Meister, 2007). Argonautes have a well 

conserved domain architecture. Whereas its PAZ domain recognizes and binds the 3’- end of the 

selected RNA (Lingel et al., 2003; Yan et al., 2003), its MID domain binds the 5’- phosphate. The Piwi 

domain adopts an RNase H fold, which is – depending on the specific AGO – active and exhibits 

endonuclease activity towards an RNA – RNA duplex (Elkayam et al., 2012; MacRae et al., 2008; Schirle 

and MacRae, 2012; Song et al., 2004). This enzymatic activity relies on the catalytic DEDH motif, which 

coordinates three metal ions similar to transposases (Rivas et al., 2005). Interestingly, human Ago3 

(hAgo3) harbors this catalytic motif, but exhibits no endonucleolytic activity. As the DEDH motif is a 

prerequisite for activity, the presence of two unstructured loops in the N-terminal domain, absent in 

hAgo3, are required to determine an AGO protein to be cleavage-competent, at least in humans 

(Faehnle et al., 2013; Hauptmann et al., 2013; Schürmann et al., 2013). The varying number of different 

AGO proteins reflect the importance of their functional role and different small RNA species may be 

loaded to certain AGOs. Whereas siRNAs are preferably loaded to cleavage-competent AGOs, 

miRNAs are loaded to catalytically inactive forms (Chekulaeva et al., 2011; Fabian et al., 2012; 

Förstemann et al., 2007; Jannot et al., 2008; Mathys et al., 2014; Mi et al., 2008; Okamura et al., 2009; 

Steiner et al., 2007). MiRNA-loaded AGOs bind to the 3’ untranslated region (UTR) of an mRNA by 

imperfect base pairing. Precisely, the miRNA seed-sequence (nt 2 – 8), located on its 5’-end, binds 

the 3’ UTR fully complementary, whereas some nucleotides within its 3’-end do not match the target 

sequence (Lai, 2002; Lee et al., 1993; Lewis et al., 2003; Lim et al., 2005; Wightman et al., 1991). Upon 

binding to the 3’ UTR, the RNA-induced silencing complex (RISC) is formed, including miRNA-AGO 

complex and GW182 protein (AIN-1/2 in C. elegans) mediating translation inhibition and mRNA 

degradation (Chekulaeva et al., 2011; Hammond et al., 2000; Li et al., 2008; Meister et al., 2005; 

Rehwinkel et al., 2005). GW182 is a scaffold protein and recruits the CCR4/NOT effector complex 

through its multiple tryptophan repeats (Braun et al., 2011; Chekulaeva et al., 2011). The deadenylase 

CCR4/NOT acts on the targeted mRNA by translationally repressing it and subsequently initiating its 
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degradation by the exosome due to the loss of the mRNA’s poly(A)- tail (see details below) (Behm-

Ansmant et al., 2006; Chen et al., 2009; Piao et al., 2010). For siRNAs bound by slicing AGO2 however, 

mRNAs are endonucleolytically cleaved and therefore form a suitable substrate for exoribonucleases 

(see details below).  

Taken together, RNPs consisting of argonaute proteins and small non-coding RNAs, fine tune gene 

expression post-transcriptionally and 50% of all mRNAs are predicted to be controlled by this 

mechanism, which is supported by various RNases (Figure 2) (Krol et al., 2010). 

 

Figure 2: The scheme illustrates the multiple steps of miRNAs and siRNAs maturation mediated by Drosha and 
Dicer as well as RNase activity triggered by the RNA-induced gene silencing mechanism (drawing taken from 
Houseley and Tollervey, 2009).  
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2 RNA Degradation by Exoribonucleases 

RNA nucleases are enzymes that execute many vital tasks to ensure cellular viability and protection 

(Yang, 2011). They can be grouped by their mode of action as endoribonucleases cleaving within an 

RNA molecule or as exoribonuclease cleaving from either the 5’- or 3’-end. Alternatively, RNases can 

be grouped by their metal-ion dependencies, which is the requirement of one, two or no metal ion 

for catalysis, reflecting the molecular mechanism underlying the cleavage process. Exoribonucleases 

belong to the two-metal-ion dependent nucleases and this catalysis mechanism is the most 

abundant (Chang et al., 2011a; Yang, 2011).  

 

2.1 5’  3’ Exoribonucleases 

The family of 5’  3’ Exoribonucleases (XRN) are made up of XRN1 (PACMAN in D. melanogaster) 

and its paralog XRN2 (Rat1p in yeast). Both enzymes share a high sequence identity of approx. 40 – 

50% in their N-terminal nuclease region (Chang et al., 2011a; Miki and Großhans, 2013) and act on 

various RNA substrates such as mRNA for XRN1 and miRNA and rRNA for XRN2 (see details below). 

Eukaryotes have usually both XRN1 and -2, which predominantly locate to the cytoplasm and 

nucleus, respectively (Heyer et al., 1995; Johnson, 1997). As plants lack an XRN1 ortholog, the XRN2 

homolog XRN4 takes over its function as it is localized in the cytoplasm (Kastenmayer and Green, 

2000). Due to this separation, XRN1 and -2 have access to different RNA substrates, resulting in 

different tasks. In yeast, XRN2 is essential, whereas deletion of XRN1 causes phenotypes such as 

growth reduction (Amberg et al., 1992; Larimer and Stevens, 1990). In contrast loss of XRN1 causes 

defects in ventral closing and thorax formation in D. melanogaster (Grima et al., 2008) and absence 

of XRN2 leads to phenotypes such as growth delay, sterility and larval molting defects in C. elegans 

(Chatterjee and Grosshans, 2009; Frand et al., 2005; Miki et al., 2014a). 

XRN’s molecular organization is divided into an N-terminal nuclease segment comprising two 

conserved regions CR1 and CR2 connected by an unconserved unstructured part and a C-terminal 

segment. Whereas in XRN1 this C-terminal segment comprises additional well conserved domains 

connected to an unstructured and poorly conserved C-terminal tail, XRN2 lacks these additional C-

terminal domains (Chang et al., 2011b; Jinek et al., 2011; Xiang et al., 2009). XRNs belong to 5’- 

phosphomonoesters producing hydrolases (EC 3.1.13) and use two divalent cations such as Mg2+ or 

Mn2+ for catalysis (Jinek et al., 2011; Kenna et al., 1993; Stevens and Poole, 1995; Xiang et al., 2009). By 

this, XRNs have distant relations with other Mg2+- dependent nucleases such as flap-endonuclease 

FEN-1 and bacteriophage T4 RNase H (Jinek et al., 2011; Yang, 2011). Despite similarities with 

endoribonucleases, XRNs exclusively bind to 5’- monophosphorylated single stranded nucleic acids, 

with high preference for RNA and an approx. 10-fold reduced affinity for DNA (Kenna et al., 1993; 
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Poole and Stevens, 1995; Stevens and Poole, 1995). Recently, the structure of XRN1 in complex with 

a trinucleotide substrate was solved and explains the molecular mechanism of substrate binding. 

Steric hindrance in front of the nuclease cleft formed by helix α1 and a conserved loop (~ residues 

Leu515 – Asp550) prevents double stranded substrate access. Efficient substrate binding is achieved 

by a minimum of three unpaired nucleotides which are bound by XRN through a π – π base stacking 

with His41 and Trp540 in XRN1. Moreover the basic pocket is made up by highly conserved Lys93, 

Gln97, Arg100 and Arg101 residues and the latter two form hydrogen bonds with the 5’ phosphate 

bound oxygens (Jinek et al., 2011). This explains XRN’s preference for 5’ phosphorylated RNAs and 

excludes larger 5’ terminal groups due to electrostatic and sterical limitations. XRNs degrade their 

substrate in a processive manner, by binding an RNA polymer, fully degrading it to mononucleotides 

without release of intermediate products (Jinek et al., 2011; Kenna et al., 1993; Stevens and Poole, 

1995; Xiang et al., 2009). Two metal ion dependent nucleases usually employ two Mg2+ ions, 

coordinated by 8 highly conserved acidic residues, which coordinate the scissile phosphate (3’ 

phosphate) of the RNA phosphate backbone and drive the hydrolytic reaction, which is based on a 

nucleophile substitution Sn2 mechanism. One Mg2+ ion supports the formation of a nucleophile, a 

hydroxide ion, followed by the in-line nucleophilic attack and the second Mg2+ stabilizes the 

pentacovalent phosphate intermediate, which then creates the single 3’ OH nucleotide leaving 

group (Steitz and Steitz, 1993; Yang et al., 2006). For XRNs,  direct coordination of the scissile 

phosphate by the second Mg2+ would be too large for inner-sphere coordination with phosphate-

bound oxygens and are likely to interact through inner-sphere coordinated H2O molecules with the 

scissile phosphate (Jinek et al., 2011). Thus, Jinek et al. hypothesizes a distinct catalytic mechanism 

for XRN1 compared to the canonical two-metal-ion catalysis. The processivity of XRN1 is mainly 

achieved by base stacking residue His41 and 5’- phosphate coordinating Lys93 as mutants thereof 

show substrate intermediates upon catalysis. Therefore Jinek and colleagues propose a Brownian 

ratchet-like mechanism by which the substrate translocation is mediated by His41 π – π base 

stacking in concert with the conserved basic pocket (Jinek et al., 2011). In vitro both XRNs show little 

substrate specificity, but execute specialized functions in vivo, pointing to an underlying regulatory 

network for these enzymes.  

 

2.1.1 The 5’  3’ Exoribonuclease 2 is a Complex and Acts on Multiple Substrates 

Initially, XRN2 was found to be involved in rRNA maturation, but soon more substrates sensitive to 

XRN2 were identified (Miki and Großhans, 2013; Nagarajan et al., 2013). Among them are functional 

RNAs from transcription and translation, such as pre-mRNA and tRNA, respectively as well as small 

RNAs involved in gene silencing. Moreover functions such as transcription termination and miRNA 

release off AGO were discovered, which emphasizes its multifunctional character.  
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As described above, there are many RNA species involved in transcription and translation. 

Accordingly, XRN2 contributes significantly to their maturation and quality control. A precursor-rRNA 

(pre-rRNA) molecule is divided in the functional 18S, 5.8S and 25S (in yeast; 28S in mammals) rRNA 

fragments, two external transcribed spacers (5’ and 3’ ETS) and two internal transcribed spacers (ITS1 

and – 2) (Figure 3) (Henras et al., 2008). XRN2 is involved in 5’ trimming of 5.8S and 25S/28S as well as 

clearance of some spacer fragments (Amberg et al., 1992; Couvillion et al., 2012; Petfalski et al., 1998; 

Wang and Pestov, 2011; Zakrzewska-Placzek et al., 2010). However prior endonucleolytic cleavage of 

the pre-rRNA is necessary for substrate access. The MRP endonuclease (evolutionary related to 

ribonucleoprotein RNase P) generates an XRN2 competent substrate by cleavage within the ITS1 

upstream of the 5.8S, which is subsequently trimmed by XRN2 (Shadel et al., 2000). Similarly, XRN2 

trims the 5’ extension of a 25S rRNA precursor after endonucleolytic cleavage at ITS2 (Henry et al., 

1994; Schmitt and Clayton, 1993). Recruitment of XRN2 to the pre-rRNA is mediated by NOP4 and 

NOP15 in yeast, as their potential RNA remodeling activity allows for XRN2 substrate access 

(Granneman et al., 2011). However, 5’-end trimming is not exclusively maintained by XRN2 as 

recently identified Rrp17 exonuclease redundantly acts on 5’-end rRNA maturation (Oeffinger et al., 

2009). Moreover XRN1 can substitute for XRN2 function in rRNA maturation, in case of loss or 

inactivity (Fang et al., 2005; Henry et al., 1994). Most work elucidating rRNA maturation was done in 

yeast, but this process seems to be conserved in mammals as XRN2 RNAi in mouse LAP3 cells result 

in similar accumulation of extended 5.8S and 28S rRNAs (Wang and Pestov, 2011). Due to XRN2’s 

processive activity, questions about termination of this trimming process remain. Apart from rRNA 

maturation, XRN2 is indicated to support the exosome in clearance of aberrant pre-rRNA species 

(Fang et al., 2005; Wang and Pestov, 2011). Furthermore XRN2 mediates small nucleolar RNA 

(snoRNA) maturation in a similar fashion to rRNA maturation, where endoribonuclease Rnt1 renders 

suitable RNA substrates for 5’ trimming of snR190, U14 and snR72-78 (Chanfreau et al., 1998; Petfalski 

et al., 1998; Qu et al., 1999). These small ncRNAs bind to pre-rRNAs and support the processing 

thereof. On the other hand, maturation of tRNAs is driven by RNases, such as RNase Z and RNase P, 

processing the 3’- and 5’-end, respectively (see above) (Minagawa et al., 2004; Xiao et al., 2001). 

However, defective tRNAs are rapidly cleared by XRN1 and XRN2, to avoid production of deleterious 

proteins (Chernyakov et al., 2008). Similarly, XRN2 is involved in surveillance of pre-mRNA. The tight 

regulation of mRNA quantities correlate with protein production, hence XRN2 and the exosome 

compete with the splicing machinery for pre-mRNAs as a substrate (Bousquet-Antonelli et al., 2000; 

Brannan et al., 2012; Das et al., 2003). As defects within pre-mRNAs would lead to erroneous protein 

products, quality control of aberrant pre-mRNAs and subsequent decay by the exosome and XRN2 

are necessary. This task is predominantly executed by the exosome in yeast, but in human cells XRN2 

plays a more important role (Davidson et al., 2012; Gudipati et al., 2012). 
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Figure 3: The scheme illustrates the rRNA maturation and RNases involved in this process (adapted from 
Granneman et al., 2011). 

 

Whereas maturation and decay of RNAs are important for their function and homeostasis/quality 

control, degradation of RNAs can also influence cell aging and senescence as it was discovered for 

the TERRA RNA and XRN2. Telomeres are repeat sequences at the end of chromosomes, which are 

shortened each DNA replication and telomere loss can lead to stop in growth, senescence or 

apoptosis. Hence the telomerase replenishes and maintains the integrity of telomeres, but it is 

suggested that its activity is repressed by telomeric repeat-containing RNA (TERRA) (O’Sullivan and 

Karlseder, 2010). These TERRA molecules bind telomere sequences and XRN2 is implicated in their 

degradation and thus indirectly regulates telomerase activity (Luke et al., 2008). Likewise, XRN2 

catalysis is thought to induce transcription termination. For RNAP II transcription (see details above) 

to be terminated, there is increasing evidence for XRN2 to play a major role, which is explained by 

the torpedo model (Kim et al., 2004; West et al., 2004). After cleavage of the nascent pre-mRNA 

transcript, RNAP II remains bound to the DNA strand and continues transcription. Indeed, the 

cleavage event yields a 5’ monophosphate and serves as an entry point for XRN2. Thus XRN2 starts 

degradation and, by colliding, displaces RNAP II from the DNA strand to terminate transcription. 

However reports in yeast show this mechanism not to be essential and in mammals only a subset of 

genes are sensitive to XRN2 mediated transcription termination (Banerjee et al., 2009; Brannan et al., 
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2012; Luo et al., 2006). Thus, the torpedo model explains a specialized process rather than a general 

mechanism. Of note, XRN2 is also implicated in premature termination of RNAP II transcription as 

well as termination of RNAP I pre-rRNA- and intergenic RNAP II pri-miRNA transcription (Ballarino et 

al., 2009; El Hage et al., 2008; Kawauchi et al., 2008). Taken together XRN2 mediated decay involves 

maturation and quality control of functional RNAs as well as contributes to processes like cell aging 

and transcription termination. 

 

So far, all described functions of XRN2 are related to RNA decay, however a recent function with no 

obvious connection to catalysis was discovered. It was shown that XRN2 depleted worm lysates 

incubated with immunoprecipitated miRNA-AGO complexes showed elevated miRNA levels 

remaining on AGO (Chatterjee and Grosshans, 2009). Thus XRN2 depletion leads to reduced release 

activity, however the underlying mechanism remains elusive.  

Small RNAs, such as miRNAs, gained much attention in the last decade and efforts tried to identify 

specific RNases responsible for their decay. In C. elegans, XRN2 has been found to degrade miRNAs, 

as knock-down of XRN2 rescued let-7 point mutant worms by increasing let-7 levels (Chatterjee and 

Grosshans, 2009). However, further analysis revealed that only a subset of miRNAs are sensitive to 

XRN2 degradation, indicating a targeted process for miRNA degradation in vivo (Miki et al., 2014a). In 

contrast, miRNAs might simply be cleared by multiple RNases, depending on their cellular location 

and accessibility. In a less well-understood mechanism, exogenous non-targeting siRNAs are cleared 

by XRN2 (Wei et al., 2011). These small RNAs induce NPGPx (non-selenocysteine-containing 

phospholipid hydroxyperoxide glutathione peroxidase) expression, followed by complex formation 

through covalent binding of NPGPx to XRN2 and small RNA degradation. Whether this process is 

relevant under physiological conditions remains unclear. 

As just described, XRN2 has many different substrates as well as specific functions, but one wonders 

how this is achieved by a single molecule? Indeed, during purification of yeast XRN2, a second 

protein called Rat1p interacting protein (Rai1p) was readily co-purified (Stevens and Poole, 1995; 

Xiang et al., 2009). Analysis showed, that binding of Rai1p confers stability to XRN2 and 

enhances/activates nuclease activity (Xiang et al., 2009; Xue et al., 2000). Moreover Rai1p itself was 

found to harbor pyrophosphatase activity (Xiang et al., 2009). Interestingly, complex formation of 

XRN2 with Rai1p permits the enzyme complex to access a much broader spectrum of substrate, as 

XRN2 alone is limited to 5’ monophosphorylated RNA substrates. However, Rai1p homologs 

Dom3Z/DXO seem not to bind XRN2 (Xiang et al., 2009). Interestingly, we recently identified C. 

elegans XRN2 to form a complex with PAXT-1, but no homology of PAXT-1 and Rai1p is detected (Miki 

et al., 2014b). Instead PAXT-1 seems to bind XRN2 through its N-terminal segment containing a 
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domain of unknown functions (DUF3469) also termed XRN2 binding domain (XTBD), which is not 

detected in Rai1p nor in any other yeast protein (Miki et al., 2014b). Loss of PAXT-1 results in reduced 

XRN2 protein levels, whereas mRNA levels remain unaffected, suggesting a stabilizing effect of PAXT-

1 on XRN2 (Miki et al., 2014b). Other XRN2 interactions with XTBD-containing proteins were 

identified in Tetrahymena thermophila and humans (Brannan et al., 2012; Couvillion et al., 2012; Miki 

et al., 2014b). T. thermophila XRN2 associates in a ternary complex with Ago/Piwi protein Twi12 and 

XTBD-containing protein Tan1, with both binding to independent XRN2 interfaces. Whereas Twi12 

seems to stabilize XRN2, no function is attributed to Tan1 (Couvillion et al., 2012). How these findings 

relate to reports from C. elegans, where XTBD- containing protein PAXT-1 confers stability, remain 

elusive. Co-immunoprecipitation experiments in humans identified two XTBD- containing proteins 

NKRF and CDKN2AIP/CARF to interact with XRN2 and Pfam alignments of DUF3469 (XTBD) suggests 

a third XTBD-containing protein CDKN2AIPNL to exist in an XRN2 complex (Brannan et al., 2012; 

Close et al., 2012; Miki et al., 2014b). Whereas NF-κ-B-repressing factor (NKRF) acts as a transcriptional 

repressor, collaborator of ARF (CARF/CDKN2AIP) is a tumor suppressor that acts through p53-

activation, but CDKN2AIPNL has no attributed functions (Cheung et al., 2014; Feng et al., 2002; Hasan 

et al., 2002, 2004). Until now, direct interaction was only shown for the C. elegans PAXT-1 – XRN2 

complex, but there is evidence for other XTBD-containing proteins to form similar complexes with 

their XTBD domain (Miki et al., 2014b). Accordingly, XRN2 may exists in multiple complexes that 

potentially affect or regulate its function. Moreover, studies on transcription termination identified 

higher order complexes of XRN2. In yeast, a trimeric complex consisting of Rat1p, Rai1p and Rtt103 

was identified, which localizes to the 3’ end of protein coding genes (Kim et al., 2004). Interestingly, 

Rtt103 binds to phosphorylated serine2 of the CTD of RNAPII and possibly links the exonuclease 

complex to the transcription machinery (Kim et al., 2004). In vitro analysis show however, that a this 

trimeric complex is not enough for transcription termination (Dengl and Cramer, 2009). Similarly, 

human XRN2 is recruited to RNAPII by the protein complex p54nrb/PSF, which was found to stably 

interact with the C-terminus of XRN2. p54nrb/PSF itself is a multifunctional protein complex and 

involved in transcription, splicing and polyadenylation of nascent mRNA transcripts (Gozani et al., 

1994; Liang and Lutz, 2006). It is thus suggested, that p54nrb/PSF couples pre-mRNA 3’-end 

processing and transcription termination (Kaneko et al., 2007).  

 

2.1.2 5’  3’ Exoribonuclease 1 

XRN1 is the cytoplasmic paralog of XRN2 and shares high sequence identity with XRN2 in its N-

terminal segment (see above). However XRN1 acquired a set of domains absent from XRN2, which 

possibly provides additional functions to the enzyme (Chang et al., 2011b; Jinek et al., 2011). Both, 

the SH3- and PAZ/Tudor domain mediate structural stability to XRN1, by interaction with the 
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nuclease region (Jinek et al., 2011). Whereas the SH3-domain achieves this through non-canonical 

binding due to the lack of canonical residues involved in proline-rich peptide interactions, Jinek et 

al. (2011) hypothesize the PAZ/Tudor domain to substitute for Rai1p induced stabilization because 

of the vast interface formed by this interaction (Jinek et al., 2011). The canonical PAZ and Tudor 

domains bind RNAs and motifs containing methylated arginine, respectively. In XRN1, however the 

functional surfaces of the PAZ/Tudor domain are covered by an SH3 protruding loop and thus 

exclude additional binding capabilities by these domains (Jinek et al., 2011). For the winged-helix 

domain, which is located above the catalytic center, it is postulated that it supports RNA binding and 

potential catalytic activity and that it may act as a scaffold for possible protein-protein interaction 

(Jinek et al., 2011). 

XRN1 mainly localizes throughout the cytoplasm, but is sometimes found in distinct foci called P-

bodies, co-localizing with enzymes such as decapping factor DCP2 and LSM1-7 complex supporting 

degradation by coupling deadenylation and decapping events (Bashkirov et al., 1997; Cougot et al., 

2004; Heyer et al., 1995; Johnson, 1997; Newbury, 2006). P-bodies are however thought to be storage 

sites for inactive mRNAs, as mRNAs can either be degraded by XRN1 or released to continue 

translation (Brengues et al., 2005; Eulalio et al., 2007; Stalder and Mühlemann, 2009). Yet, these foci 

are no prerequisite for mRNA degradation, but seem to be increased during stress response (Cougot 

et al., 2004; Kedersha et al., 2005; Sheth and Parker, 2003).  

The main task of XRN1 is the clearance of mRNA species. Access to this substrate, however needs 

preceding mRNA processing to render unpaired 5’ monophosphorylated nucleotides. One way is 

removal of the 5’ end of the mRNA through decapping enzymes such as DCP2 and its activator DCP1, 

which usually occurs after deadenylation of the mRNA, however deadenylation is not a prerequisite 

(Braun et al., 2012; Gazzani et al., 2004; Lejeune et al., 2003; Muhlrad et al., 1994). As previously 

discussed, endonucleolytic cleavage of mRNAs by siRNA loaded Argonaute also results in XRN1 

competent mRNA substrate (Chekulaeva et al., 2011; Sheth and Parker, 2003). Moreover quality 

control of mRNAs through nonsense-mediated decay (NMD) protects the organism from harmful 

aberrant mRNAs and triggers XRN1 mediated clearance of these mRNAs (reviewed in Rebbapragada 

and Lykke-Andersen, 2009). When a premature termination codon (PTC) is detected, NMD triggers 

its endonucleolytic cleavage through SMG6 endonuclease (which belongs to the FEN1 ribonuclease 

superfamily) or direct induction of exonucleolytic decay from both ends (Eberle et al., 2009; Glavan 

et al., 2006; Huntzinger et al., 2008; Yang, 2011). In addition, the exosome, a multi-subunit protein 

complex with 3’  5’ exoribonuclease activity, cooperatively and/or independently degrades 

deadenylated and endonucleotlytically cleaved mRNAs (see below). Noteworthy, neither XRN1 nor 

the exosome can substitute for each other in multicellular organisms, suggesting that at least a 

subset of transcripts are individually regulated and controlled by either enzyme (Jones et al., 2012; 
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Newbury and Woollard, 2004). Besides its predominant role in mRNA degradation, XRN1 has also 

been implicated in degradation of some miRNAs, however this evidence seems to support a model, 

where XRN1 simply clears unprotected miRNAs rather than acting as a specific miRNase (Bail et al., 

2010; Chatterjee et al., 2011).  

Despite its important role in mRNA surveillance and decay, XRN1 is not essential in unicellular 

eukaryotes, as its knock-out causes phenotypes such as reduction in growth rate, decreased rates of 

diploid formation and sporulation, defects in meiotic recombination and reduced transcription of a 

subset of genes due to XUT (XRN1-sensitive unstable transcripts) accumulation (Amberg et al., 1992; 

van Dijk et al., 2011; Larimer and Stevens, 1990; Tishkoff et al., 1995). In contrast multicellular 

organisms depend on XRN1 as null mutations in D. melanogaster are lethal and XRN1 mutations 

cause specific developmental phenotypes, such as reduced fertility and failure in epithelial sheet 

sealing (Grima et al., 2008; Zabolotskaya et al., 2008). Similar observations were made in C. elegans, 

by XRN1 RNAi, however no XRN1 mutant worm line exist to verify these observations (Newbury and 

Woollard, 2004). This suggests, that XRN1 is specifically deployed for degradation of certain 

transcripts involved in development. In line with these observations, studies of patient derived cell 

samples link XRN1 with osteosarcoma, a common childhood cancer (Zhang et al., 2002). This type of 

cancer originates from mesenchymal cells, that failed to properly differentiate and XRN1 mRNA levels 

were reduced, probably due to a mis-sense mutation within the XRN1 gene.  

Whereas subunits of XRN2 complexes form strong interactions and mainly act as stabilizers, XRN1 

has not been found to exist in such prominent and stable complexes. However XRN1 interacts with 

proteins such as DCP1, LSM1-7, PAT1 and UPF1, UPF2, UPF3X implicated in mRNA decapping and 

NMD, respectively (Bouveret et al., 2000; Lejeune et al., 2003; Nissan et al., 2010). Interestingly, in C. 

elegans and yeast, XRN1 was found to interact with DCS1, a scavenger decapping enzyme and DCS1 

stimulated XRN1 activity independently of its own catalytic activity in vitro and in vivo (Bossé et al., 

2013; Sinturel et al., 2012). 

 

2.2 The Exosome – Example of a 3’  5’ Exoribonuclease 

The eukaryotic exosome is a multi-subunit RNase complex engaged in many RNA decay-, quality 

control- and processing pathways (see above) and is conserved throughout all kingdoms of life. 

Whereas ancestral exosomal complexes rely on phosphorolytic catalysis with their 6 RNase PH 

domains, the eukaryotic exosome switched to a hydrolysis mechanism. Its additional nuclease 

subunits Rrp44 and Rrp6 supply catalytic activity, whereas all RNase PH domains are catalytically 

inactive and seem to act solely as scaffolds (Januszyk and Lima, 2014; Schneider and Tollervey, 2013).  
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 The molecular structure of the exosome core (EXO9) is made up of 9 subunits that forms a barrel-

like structure, sharing similarities to the proteasome or the bacterial polynucleotide phosphorylase 

(PNPase) (Liu et al., 2006). In eukaryotes, the barrel is formed by six subunits 

(Rrp41/42/43/45/46/Mtr3) harboring a phosphorolytic 3’  5’ exoribonuclease domain homologous 

to RNase PH 1 or - 2, which are however catalytically inactive (Liu et al., 2006). Rrp40, Rrp4 and Csl4 

subunits form a cap on top of the barrel and contain S1 and/or KH RNA-binding domains. The EXO9 

barrel forms a channel with a 8 to 10 Å opening, capable of accommodating only single stranded 

RNA (Liu et al., 2006). With the lack of active RNase PH domains, the exosome acquired two catalytic 

competent subunits, Rrp6 and Rrp44, to form the canonical EXO11 complex. Structural analysis 

revealed Rrp44/Dis3 (human) to bind on the base of the barrel and to contain a processive 3’  5’ 

exoribonuclease domain homologous to RNase II/R as well as an endoribonucleolytic PIN (PilT N 

terminus) domain (Bonneau et al., 2009; Frazão et al., 2006; Lorentzen et al., 2008). The PIN domain, 

which is homologous to T4 RNase H, however shows activity only at unphysiological high 

manganese concentrations of 5 mM (Lebreton et al., 2008). Furthermore Rrp44’s catalytic activity 

depends on the integrity of the EXO9 channel, as the RNA substrate needs to be threaded through 

the channel to reach the nuclease cleft (Dra̧zkowska et al., 2013; Wasmuth and Lima, 2012). For 

substrate longer than 35 nt, this seems a prerequisite but if shorter substrates have alternative access 

paths to Rrp44 remains unclear (Dra̧zkowska et al., 2013; Wasmuth and Lima, 2012). Interestingly, 

humans have three Rrp44 homologs (DIS3, DIS3L, DIS3L2), which are tied to different subcellular 

compartments and exosome complexes are found in the cytoplasm and the nucleus associated with 

DIS3L and DIS3, respectively (Malecki et al., 2013; Tomecki et al., 2010). No interaction of the exosome 

with DIS3L2 has been described yet. In contrast to Rrp44, Rrp6 locates to the top of the exosome by 

forming a vast binding interface with EXO9 components and supplies distributive 3’  5’ 

exonucleolytic activity to the exosome (Januszyk et al., 2011; Midtgaard et al., 2006). The catalytic 

domain is homologous to RNase D, dependent on two Mg2+ ions, and substrate pools of Rrp6 and 

Rrp44 are non-redundant (Gudipati et al., 2012; Kiss and Andrulis, 2010). It has been shown that Rrp6 

lacking yeast accumulate nuclear RNA species such as pre-rRNA and snRNA, indicating a specific role 

for an Rrp6-loaded exosome in nuclear RNA processing (Allmang et al., 1999, 2000; Neil et al., 2009).  

Moreover, specialized complex configuration exist to serve its compartmentalization as well as 

regulation, with a cytoplasmic EXO10 exosome (EXO9 – Rrp44), a nuclear EXO11 and an EXO9 – Rrp6 

complex, suggested to exist in the nucleolus (Januszyk and Lima, 2014). 
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II Results 

During the last decade, microRNAs (miRNA) emerged as important regulator of post-

transcriptional gene expression, controlling development, cell growth and homeostasis. Accordingly 

miRNAs are implicated in diseases such as cancer, and they are deregulated in many tumors. Hence 

dissecting the molecular basis of miRNA biogenesis, mRNA silencing and the active turnover of 

miRNA marks an important research goal. Previously, we identified the 5’  3’ exoribonuclease XRN2 

as a miRNA nuclease in C. elegans. Moreover, we recently identified PAXT-1 as a subunit of an XRN2 

complex, which seems to stabilize XRN2. To dissect its function I was expressing XRN2 and PAXT-1 – 

XRN2 complexes recombinantly to perform in vitro turnover assays, interaction studies and stability 

assays. Furthermore, I crystallized the XTBD – XRN2 complex and together with Dr. Heinz Gut solved 

its structure. Dr. Iskra Katic and I then confirmed in vitro results concerning the importance of Tyr56 

in vivo by using MosSCI and CRISPR technology to generate mutant worms.  
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Abstract 

The ribonuclease XRN2 is an essential player in RNA metabolism. In Caenorhabditis elegans, XRN2 

functions in a complex with PAXT-1, which shares a putative XRN2-binding domain (XTBD) with 

otherwise unrelated mammalian proteins. Here, we characterize structure and function of XTBD in 

complex with XRN2. Although XTBD stably interconnects two XRN2 domains through numerous 

interacting residues, we identify a critical residue whose mutation suffices to disrupt XTBD – XRN2 

complexes in vitro, and recapitulate paxt-1 null mutant phenotypes in vivo. XRN2-binding is highly 

conserved as vertebrate XTBD-containing proteins form complexes with XRN2 in vitro, and human 

CDKN2AIPNL/C2AIL can substitute for PAXT-1 in vivo. With three distinct XTBD-containing proteins 

existing in vertebrates, stable binding suggests that cellular XRN2 partitions to distinct heterodimeric 

complexes, likely differing in subcellular localization or function. In C. elegans, complex formation with 

the unique PAXT-1 may serve to preserve the stability of XRN2 when not bound to substrate.  
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Introduction 

Ribonucleases (RNases) are central to both RNA processing and degradation events and hence key 

enzymes in RNA metabolism. Thus, the nuclear 5’  3’ exoribonuclease XRN2 functions in ribosomal 

and small RNA processing (Chanfreau et al., 1998; Couvillion et al., 2012; Geerlings et al., 2000; 

Petfalski et al., 1998; Wang and Pestov, 2011; Zakrzewska-Placzek et al., 2010), transcriptional 

termination (Kim et al., 2004; West et al., 2004), clearance of aberrant pre-mRNA (Davidson et al., 

2012) and hypomodified tRNA (Chernyakov et al., 2008), degradation of miRNAs (Chatterjee and 

Grosshans, 2009) and other pathways (reviewed in Miki and Großhans, 2013; Nagarajan et al., 2013). 

Accordingly, XRN2 is conserved from yeast to humans, and encoded by an essential gene in both yeast 

and worms (Amberg et al., 1992; Miki et al., 2014a). A cytoplasmic paralogue of XRN2, XRN1, plays a 

central role in mRNA degradation (Parker and Sheth, 2007). The two enzymes share a substrate 

preference for 5’ monophosphorylated, single-stranded RNAs (Jinek et al., 2011; Kenna et al., 1993; 

Poole and Stevens, 1995; Stevens and Poole, 1995). 

In yeast, the XRN2 protein Rat1p occurs in a complex with Rai1p (Rat1 interacting protein; Stevens and 

Poole, 1995; Xiang et al., 2009), a protein that promotes XRN2 activity through mechanisms that 

remain to be identified (Xiang et al., 2009; Xue et al., 2000). However, the metazoan Rai1p orthologues 

Dom3z/DXO do not bind to their respective XRN2s (Xiang et al., 2009). In C. elegans, XRN2 forms 

instead a complex with the novel protein PAXT-1 (Partner of XRN-Two) (Miki et al., 2014b). Loss of 

PAXT-1 causes a reduction in XRN2 levels, and, when worms are grown at a relatively high temperature 

of 26°C, embryonic lethality, which can be prevented by increased XRN2 gene levels (Miki et al., 

2014b). As paxt-1 mutations cause reduced XRN2 protein but not mRNA levels, PAXT-1 may stabilize 

the XRN2 protein (Miki et al., 2014b). 

Although PAXT-1 is 375 amino acids (aa) long, its N-terminal 121 amino acids suffice to co-

immunoprecipitate XRN2 and restore animal viability and XRN2 levels when expressed as a transgene 

in paxt-1 mutant animals (Miki et al., 2014b). This portion of PAXT-1 also comprises a predicted domain 

of unknown function, DUF3469, and although PAXT-1 is not well conserved outside nematodes, this 

domain is also found in unrelated vertebrate and ciliate but not yeast proteins (Miki et al., 2014b). 

Although it is not known whether these proteins also bind XRN2, three of them, mammalian NKRF/NRF 

and CDKN2AIP/CARF, and ciliate Tan1 were observed in XRN2 complexes  (Brannan et al., 2012; Close 

et al., 2012; Miki et al., 2014b; Couvillion et al., 2012). Hence, DUF3469 may mediate XRN2 binding 

(Miki et al., 2014b).   

Here, we have used biochemical, crystallographic and molecular genetic approaches to test whether 

DUF3469 is an XRN2-binding domain (XTBD), dissect its structure, and elucidate its function.  We 

identify a core XTBD domain and present its crystal structure in complex with XRN2. We uncover a 
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conserved interaction interface, on which a single amino acid on XTBD makes crucial contributions to 

complex formation, such that its mutation disrupts the complex in vitro and in vivo and renders mutant 

animals inviable. We demonstrate that XTBDs are generic XRN2 binders, across species, in vitro, and 

that, despite limited sequence similarity, human CDKN2AIPNL/C2AIL can substitute for C. elegans 

PAXT-1 in vivo. Although XRN2 has low thermal stability, which PAXT-1 binding greatly increases, it 

retains activity at elevated temperature in vitro. This appears to be a consequence of a stabilizing effect 

of substrate binding, in turn suggesting that a function of PAXT-1 is to preserve stability of 'empty' 

XRN2 to buffer cellular RNase activity. 
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Results 

 

The Crystal Structure of the XTBD – XRN2 Complex Reveals a Conserved Binding Interface 

Our previous work examined the function of the N-terminal amino acids 1 - 121 of C. elegans PAXT-1, 

which contains the DUF3469 domain, and showed that this truncated PAXT-1 sufficed for both binding 

to XRN2 in vivo and restoration of viability in paxt-1(0) worms (Miki et al., 2014b). However, Pfam 

annotates the boundaries of this domain as residues 7 – 93 (http://pfam.xfam.org/family/DUF3469). 

Hence, we sought to redefine the XTBD core element. Based on HHPred secondary structure 

predictions (Söding et al., 2005) and disorder analysis by PSIPRED Protein Analysis Workbench (Buchan 

et al., 2013) and DisEMBL (Linding et al., 2003), we decided to test recombinant proteins comprising 

residues 1 – 121, 1 – 96,  and 1 – 75, respectively, for binding to XRN2. We found that the binding 

properties of all three polypeptides were comparable to that of the full-length protein (Fig. S1A). Thus, 

at 75 amino acids the functional XTBD is substantially smaller than previously annotated. 

To obtain structural information on XTBD, we sought to express and purify an XRN2 – PAXT-1_1-75 

complex for crystallographic analysis. Extensive protein engineering on XRN2 was necessary to yield 

high-quality diffracting protein crystals. We deleted a zinc-finger containing loop (residues 258 – 294), 

a predicted disordered region in the middle of the protein (residues 417 – 532), and the glycine-rich C-

terminus (residues 788 – 975). This protein construct is referred to as XRN2ΔZLC. Following co-

expression of XRN2ΔZLC and PAXT-1_1-75 in bacterial cells, purification and crystallization, we 

determined the crystal structure of the 83 kDa complex at 2.85 Å resolution. The macromolecular 

complex crystallized in space group P212121 with six XTBD – XRN2ΔZLC heterodimers in the 

crystallographic asymmetric unit and a solvent content of ~64%. The structure was determined by 

molecular replacement and model building was carried out with the help of phased anomalous 

difference Fourier electron density maps obtained from seleno-methionine derivative crystals. Data 

collection and refinement statistics are summarized in Table 1. The final XTBD – XRN2ΔZLC structure 

consists of residues 4 – 25, 35 – 149, 153 – 413, and 534 – 787 for XRN2ΔZLC (chain A) and 1 – 73 for 

XTBD (chain B), which show clear electron density.  

A previous domain assignment of XRN2 was based on sequence conservation and annotated two 

domains, CR1 (conserved region 1; corresponding to residues 1 – 409) and CR2 (residues 543 – 713), 

connected by an non-conserved disordered region and a poorly conserved C-terminus (Xiang et al., 

2009). Based on our structural data, and taking into account previous structures of Rat1p (Xiang et al., 

2009) and XRN1 (Jinek et al., 2011), we further refine the XRN2 domain classification.  We now define 

the nuclease core domain 1 (NCD1, residues 1 – 310), the nuclease core domain 2 (NCD2, 311 – 612), 
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the PAXT-1 binding domain (PBD, 613 – 705), the C-terminal domain 1 (CTD1, 706 – 787) and the C-

terminal domain 2 (CTD2, 788 – 975) (Fig. 1A and 1B). The structure of XRN2ΔZLC is highly similar to S. 

pombe Rat1 (PDB 3FQD) (Xiang et al., 2009) with a root-mean-square deviation (r.m.s.d.) of 1.46 Å over 

580 aligned Cα atoms (53% sequence identity). It also superimposes very well onto the exonuclease 

cores of D. melanogaster and K. lactis XRN1s with r.m.s.d. values of 1.51 Å (503 aligned Cα atoms, 44% 

sequence identity, PDB 2Y35) (Jinek et al., 2011) and 1.36 Å (475 atoms, 42% identity, PDB 3PIE) (Chang 

et al., 2011), respectively.  

Consistent with the PAXT-1 truncation analysis above, the crystal structure confirms PAXT-1_1-75 as 

the core XRN2-binding domain. It binds to a large groove on XRN2, which is formed by NCD1 and PBD. 

XRN2 residues 645 – 681 form a long loop protruding from the globular core of the PBD and fold around 

the base of a large α-helix, known as the tower domain (residues 108-139; Xiang et al., 2009) (Fig. 1B 

and S1B). XTBD folds into a globular four-helix bundle (H1 – H4) connected by three loops (L1 – L3) 

(Figure 1C). H1 – H3 form an antiparallel helical array and H4 folds back on top of H2/H3 at a 90° angle. 

H1 is short, comprising only six residues, whereas helices H2 – H4 are much longer (10-15 residues). 

The four-helical bundle is mainly stabilized by hydrophobic helix – helix interactions together with 

additional polar interactions between side chains located on neighboring helices. A peculiarity is L3, 

connecting H3 and H4, which is in a completely linear conformation (Fig. S1C). Although a DALI (Holm 

and Rosenström, 2010) search against the Protein Data Bank (PDB) identified many structures with a 

topologically similar arrangement of three to four α- helices, either as single units or as part of a larger 

helical array, these differed substantially in their helix to helix angles and therefore represent only 

distant hits with low Z-scores (Z < 4.5) and rather large r.m.s.d. values (> 3.0 Å). Hence, it seems that 

the four-helical bundle of XTBD represents a structurally unique arrangement for XRN2 binding with 

no closely related protein structure present in the PDB. 

 

XTBD Tyrosine 56 is Critical for Complex Formation in vitro and in vivo 

Crystal packing analysis suggests that the XTBD – XRN2ΔZLC complex exists as a single heterodimer and 

SEC MALS (size exclusion coupled to multi-angle light scattering) experiments confirm this. The XTBD 

– XRN2ΔZLC complex elutes as monodisperse heterodimer with a measured mass of 80.9 kDa 

(calculated mass: 83.0 kDa) (Fig. S2A). Analysis of the protein – protein interface by PISA (Krissinel and 

Henrick, 2007) and EPPIC (Duarte et al., 2012) reveals a rather small buried solvent-accessible area on 

either protein of ~1000 Å2 upon complex formation. 24 residues of XTBD interact with 36 residues of 

XRN2ΔZLC in a hydrophobic and polar manner, and these interface residues are highly conserved as 

shown by ConSurf analysis of both proteins (Ashkenazy et al., 2010; Celniker et al., 2013) (Fig. 2A). The 
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hydrophobic character of the interface is mainly formed by XTBD residues on L1, H3, and L3 (Trp14, 

Ile37, Cys41, Leu52, Cys54, Tyr56, Leu60) and contributes to interaction with XRN2ΔZLC residues Val553, 

Phe560, Pro591, Pro650, Ile652, Asp653, Pro656, Pro677, and Phe678 (Fig. 2B and S2B). Additional 

binding energy is provided by the formation of 13 hydrogen bonds and three salt bridges upon complex 

formation (Fig. 2C, 2D and S2C). Although the XTBD - XRN2 interface is relatively small at ~1000 Å2, the 

complex is very stable and resists disruption by high salt washes (data not shown) and high dilution 

(Fig. S2A).  

To further dissect the XTBD – XRN2ΔZLC interaction, we generated PAXT-1 interface point mutant 

proteins based on the structural information. To test their binding capacities we co-expressed them 

with XRN2 and purified the PAXT-1 mutant proteins through their His6-tags by Immobilized Metal 

Affinity Chromatography (IMAC) (Fig. 2E). While XRN2 co-purification through PAXT-1 pull-down was 

unaffected by the PAXT-1 point mutations Trp14-to-Ala and Cys41-to-Gly, respectively, less XRN2 was 

seen with the Cys54-to-Gly mutation. However, this mutation also decreased PAXT-1 levels, leaving it 

unclear whether decreased XRN2 purification truly reflects decreased binding capacity. By contrast, 

the Tyr56-to-Ala mutation completely abrogated interaction of XTBD with XRN2 without destabilizing 

PAXT-1, highlighting Tyr56 as a key interface residue.  

The fact that a single point mutation, Tyr56-to-Ala, abrogates binding although numerous side chains 

contribute to the total binding energy of the interface, appears surprising. However, it is explained by 

its crucial role in shaping the unique linear conformation of the loop L3. With all seven residues, 

XTBD_51-57 engaged in XRN2 binding (Fig. S2C), L3 contributes 33% (338 Å2) buried surface area (BSA) 

and four hydrogen bonds to the XTBD – XRN2 interface, whereas the other 17 interacting residues 

together contribute the remaining 698 Å2 BSA and nine hydrogen bonds. Mutation of Tyr56 to alanine 

lacks the key constraint for the 51 – 57 conformation due to the missing phenol ring, which is normally 

sandwiched between Leu45 (XTBD, H3) and Pro656 (XRN2ΔZLC), forming a CH – π – interaction with 

Pro656 (XRN2ΔZLC) (Fig. 2C). Through its hydroxyl group, Tyr56 also forms hydrogen bonds (2.8 Å) with 

the backbone carbonyl of Asp653 (XRN2ΔZLC) (Fig. 2C). A second constraining residue, XTBD Cys54, is 

found in hydrophobic interaction with Pro656 (XRN2ΔZLC) and additionally forms a hydrogen bond with 

the backbone carbonyl of Leu675 (XRN2ΔZLC) (Fig. S2C). Together, Cys54 and Tyr56 promote formation 

of an isolated β-bridge between backbone atoms of XTBD_Glu55 and XRN2_Asp658 (Fig. 2D). Mutation 

of Tyr56 to alanine and Cys54 to glycine removes the constraining side chains for this stretch and 

induces backbone flexibility, thus compromising/disrupting all interactions between 51 – 57 XTBD 

residues and XRN2. The resulting loss of one third of BSA explains the severe consequences of these 

mutations. By contrast Trp14-to-Ala or Cys41-to-Gly have only limited effects on the BSA and thus no 

major effect on complex formation in vitro.  
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To validate the importance of XTBD Tyr56 for XRN2 binding under physiological conditions, we sought 

to test whether mutating it would similarly translate into a loss of interaction in vivo. We utilized 

genome editing through CRISPR/Cas9 and homology-directed DNA repair (Arribere et al., 2014; 

Dickinson et al., 2013) to create the Tyr56-to-Ala point mutation in endogenous PAXT-1. Strikingly, 

when we grew the resulting paxt-1(xe29) worms at 26°C, they arrested as L1 larvae, just like paxt1(0) 

animals (Fig. 2F). Also, just like in paxt-1(0) animals, (Miki et al., 2014b), accumulation of XRN2 was 

reduced and PAXT-1 not detectable as revealed by western blotting (Fig. 2G). Altogether, our data thus 

identify Tyr56 as a critical residue for interaction with XRN2 in vitro and in vivo, and explain the 

structural basis of this importance, as well as the high degree of conservation of this XTBD residue: In 

XTBDs, this position is always held by residues with aromatic side chains (Tyr, Phe, Trp, Fig. 1A), which 

can occupy the XRN2 Pro656 pocket via a stacking interaction. 

 

XTBD Is a Generic XRN2 Adapter 

Although different XTBD/DUF3469-containing proteins occur in complexes with XRN2 (Brannan et al., 

2012; Close et al., 2012; Couvillion et al., 2012; Miki et al., 2014b), these interactions were generally 

examined through co-immunoprecipitation, leaving it unclear whether the interaction is indeed direct 

and mediated by this specific domain. The fact that the interaction surfaces of both XRN2 and XTBD 

are highly conserved (Fig. 2A), supported a conserved and direct interaction. To test this notion 

experimentally, we produced recombinant XRN2 and the XTBD-containing proteins CDKN2AIP and 

CDKN2AIPNL/C2AIL (for brevity we use C2AIL in the following) from Danio rerio (zebrafish) in E. coli 

and determined their interactions. Whereas CDKN2AIP is a tumor suppressor that can activate p53, 

C2AIL is as yet uncharacterized. When purifying the N-terminally-His6-tagged XTBD-proteins, XRN2 co-

purification was readily detectable in both cases (Fig. 3A). Similarly, human XRN2 co-purified with 

human His6-C2AIL (data not shown). To confirm that the mode of interaction between XTBD and XRN2 

was also conserved, we sought to disrupt it in the human C2AIL – XRN2 complex by mutating C2AIL 

Tyr82, which corresponds to PAXT-1 Tyr56 (Fig. S3B). Thus, we transfected human HEK293T cells with 

either wild-type or Tyr82-to-Ala mutant human FLAG-HA-C2AIL and immunoprecipitated the 

respective protein by use of an anti-FLAG antibody. Western blotting confirmed robust co-

immunoprecipitation of endogenous XRN2 with wild-type but not mutant FLAG-HA-C2AIL (Fig. 3B). 

This result confirms the specificity of this interaction and the importance of this residue for XRN2-

binding by XTBD. Finally, we showed by SEC that D. rerio XRN2 formed a stable, chimeric complex with 

human C2AIL (Fig. 3C). We conclude that XTBD constitutes a generic XRN2-binding domain whose 

function is conserved across animal phylogeny.  
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Human C2AIL can substitute for C. elegans PAXT-1 in vivo 

To validate our insights on XTBD conservation that the in vitro and cell-based studies had generated, 

we sought to test them in vivo by expressing a codon-optimized and flag-tagged human c2ail single-

copy transgene in C. elegans paxt-1 null mutant animals. Strikingly, immunoprecipitation of FLAG-

Hs_C2AIL from paxt-1(0); hs_c2ail worm lysates co-immunoprecipitated endogenous C. elegans XRN2 

as confirmed by western blot (Fig. 3D) and mass spectrometry (data not shown). This validates the 

formation of a chimeric complex in vivo. 

Although PAXT-1 is dispensable at lower temperatures, paxt-1(0) animals arrest as L1-stage larvae 

when grown at 26°C, a phenotype that can be rescued by expression of PAXT-1_1 – 121 (Miki et al., 

2014b). Strikingly, the hs_c2ail transgenic worms similarly continue development into adulthood and 

go on to produce F2 progeny (Fig. 3E). Hence, not only the molecular but also the developmental 

function of PAXT-1 can be taken over by human C2AIL, despite the fact that these two proteins share 

only ~35% sequence identity in their XTBDs, but consistent with the good correlation of the C2AIL 

homology model with the XTBD structure (Fig. S3A, S3B).  

 

XRN2 Stability Depends on the Structural Integrity of the PBD 

We recently reported that loss of PAXT-1 in C. elegans causes a reduction of XRN2 protein but not 

mRNA levels in vivo, consistent with destabilization of the nuclease (Miki et al., 2014b). To test a 

stabilizing function of PAXT-1 towards XRN2 directly, we examined the thermal stability of 

recombinant XRN2 and its complex. For this we monitored the unfolding of the PAXT-1 – XRN2 complex 

versus XRN2 alone. Whereas XRN2 alone has an experimentally determined melting temperature Tm 

of ~31°C, the Tm of the PAXT-1 – XRN2 complex is ~55°C (Fig. 4A). This striking shift of melting 

temperatures by a ΔTm of 24°C reveals that PAXT-1 indeed has a pronounced stabilizing activity 

towards XRN2. Moreover, PAXT-1 – XRN2, PAXT-1 – XRN2ΔZLC and XTBD – XRN2ΔZLC complexes have 

measured Tm values of 55°C, 54°C, and 53°C, respectively. Hence, the major stabilizing activity of PAXT-

1 resides in the XTBD. Finally, the fact that the Tm of 31°C for XRN2 alone is close to the temperature 

at which larval arrest phenotypes in C. elegans paxt-1(0) mutants are observed (26°C) suggests the 

possibility that XRN2 destabilization in vivo occur through its unfolding and subsequent degradation. 

Previously we examined the influence of PAXT-1 on the enzymatic activity of XRN2 (Miki et al., 2014b) 

and found the PAXT-1 – XRN2 complex more active than XRN2 alone over extended periods of time. 

However, initial velocities remained unchanged in the presence or absence of PAXT-1, implying a 
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stabilizing rather than a stimulatory effect. Indeed, although closer inspection of the XTBD – XRN2 

structure suggested the possibility of a modulatory function of PAXT-1 on XRN2 activity (see below), 

examination of Michaelis-Menten enzyme kinetics failed to provide any evidence for such a function 

(Fig. S4A). To test the consequences of destabilization by temperature increase, we compared the 

activity of XRN2 in vitro at two temperatures, 25°C (default temperature of previous activity assays) 

and 30°C. We chose these two temperatures because they are within, or close to, the physiological 

range of C. elegans. [C. elegans can survive at 30°C for at least several hours, but does not procreate.] 

From the melt curve, we estimate that 45% of XRN2 would be unfolded at 30°C. Nonetheless, and 

contrary to our expectation, we found that XRN2 activity was consistently, and over extended times, 

higher at 30°C than 25°C (Fig. 4B). 

Although an increase in temperature accelerates enzymatic reaction, according to Arrhenius’ equation, 

we would expect at most a modest effect with the narrow temperature window that we used. Hence, 

we considered the possibility that XRN2 might indeed be unexpectedly stable under the conditions of 

the assay, stabilized by substrate binding. To test this, we examined XRN2 thermal stability in the 

absence and presence of the 30mer RNA substrate used for catalytic assays. This revealed a stabilizing 

effect of the substrate, which increased the Tm by 2°C to ~33°C (Fig. 4C). Although the effect was small 

relative to that seen for PAXT-1, it is above the 1°C threshold previously proposed to be significant 

(Querol et al., 1996), and it occurred reproducibly at two different substrate concentrations (data not 

shown). Moreover, it was highly specific, as inclusion of tRNA, which is not a good XRN2 substrate due 

to high secondary structure and paired 5’ terminal nucleotides (Jinek et al., 2011; Stevens and Poole, 

1995), did not increase thermal stability of XRN2. Hence, we conclude that substrate binding can 

stabilize XRN2. 

To understand the interaction of XRN2 with substrate, we superimposed the XRN1 – substrate complex 

(Jinek et al., 2011; PDB 2Y35) onto the XTBD – XRN2 structure. This revealed a crucial role of the PBD-

protruding loop in substrate binding, as its Trp670 base-stacks with three unpaired 5’- terminal 

nucleotides and His60 of α-helix 2 (Fig. 4D). Moreover, Trp670 in XRN2, as Trp540 in XRN1 (Jinek et al., 

2011), forms a steric barrier in concert with N-terminal α-helix 1 to restrict access to the active site for 

single stranded RNA. That the mode of substrate binding is indeed conserved between the two RNases 

is confirmed by the identification of a sulfate ion from the crystallization buffer of the XTBD – XRN2 

complex occupying the precise position of the 5’ phosphate of the XRN1 – RNA substrate complex (Fig. 

4D). 

From the structures of the two complexes it is thus evident that both substrate and PAXT-1 bind to the 

PBD. To determine whether this might affect PBD structure, we compared the PBDs from these two 

complexes to that of K. lactis XRN1, which was crystallized in the absence of both substrate and 
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additional proteins (Chang et al., 2011; PDB 3PIF). Strikingly, whereas the PBD is fully structured in 

XRN2 – XTBD and Drosophila XRN1, it is heavily disordered in the structure of K. lactis XRN1 and the 

domain could not be entirely built in the crystallographic model (Fig. 4E). Hence, although not a proof, 

these structures are consistent with the notion that stabilization of XRN2 is achieved through 

maintenance of the integrity of the PBD, which both XTBD- and substrate-binding can accomplish (Fig. 

4E). 
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Discussion 

Based on the recurring identification of DUF3469 domain-containing proteins in complexes that also 

contain XRN2 (Brannan et al., 2012; Couvillion et al., 2012; Miki et al., 2014b), we previously 

hypothesized that it mediates XRN2-binding. Here, we have tested this notion and demonstrate that a 

core DUF3469/XTBD domain, substantially smaller than initially predicted, mediates direct and specific 

binding to XRN2. Chimeric interactions between XTBD-containing proteins and XRN2 from different 

species in vivo and in vitro confirm the generality of this finding. Moreover, although the XRN2 

paralogue XRN1 is highly similar in sequence to XRN2, including in the PAXT-1 binding groove formed 

by the NCD2 and the PBD (Fig. S1D, S1E), binding of PAXT-1 to XRN1 is disfavored: the NCD2 of XRN1 

extends further into the groove than that of XRN2, suggesting a steric clash between this domain and 

XTBD (Fig. S1E). This is consistent with co-immunoprecipitation (co-IP) experiments, which revealed a 

specific interaction of PAXT-1 with XRN2, but not XRN1 (Miki et al., 2014b). We conclude that XTBD is 

a generic and specific XRN2 binding domain. 

Although PAXT-1 is the only XTBD-containing protein in C. elegans, many vertebrates have three such 

predicted XTBD proteins, CDKN2AIP, C2AIL, and NKRF (Miki et al., 2014b). Outside their XTBDs, these 

proteins exhibit little sequence homology, and their cellular functions, although not well characterized, 

appear distinct: Mammalian NKRF was identified as a transcriptional repressor, CDKN2AIP appears to 

function as an activator of p53 (Cheung et al., 2014; Feng et al., 2002; Hasan et al., 2002, 2004), and 

C2AIL has currently no known function. However, the strong interaction that we observe between 

XTBDs and XRN2, resistant to high salt levels and high dilution, implies that all of these proteins will 

exert at least part of their functions with or through XRN2. The ability to uncouple these proteins from 

XRN2 through a single point mutation now provides the tool to test, in future work, whether and to 

what extent this holds true for each of these proteins.  

A second implication of the stable and heterodimeric binding between XRN2 and XTBD is that 

vertebrate XRN2 can be assumed to exist in multiple complexes that occur in separate, non-

interchangeable pools, thus potentially diversifying XRN2 functions. Different binding partners may 

endow XRN2 with distinct catalytic activities, facilitate differential regulation of XRN2 through distinct 

subunits, or recruit XRN2 to distinct cellular locations. Results from immunofluorescence experiments 

on human U-2 OS osteosarcoma cell lines indeed provide circumstantial evidence for the latter, as 

XRN2 staining is observed in both nucleus and nucleoplasms, whereas NKRF locates to the nucleolus, 

from which the nucleoplasmic CDKN2AIP appears excluded (Uhlén et al., 2015). 

According to such a model of functional specialization of XRN2 complexes, XTBD serves a bridging 

function between XRN2 and specific protein domains that provide additional functionalities. As a 

complex of XRN2 with full-length PAXT-1 did not crystallize, we do not know what such functions could 
32 

 



be in the case of the PAXT-1 C-terminal sequence, which is conserved across nematodes. However, we 

may speculate that it could serve to modulate XRN2 activity or to block access of specific substrates to 

the XRN2 active site. This is because the structure of the XRN2 – XTBD complex implies that the PAXT-

1 C-terminus would be located right in front of the XRN2 nuclease cleft, and because analysis by 

PSIPRED (Buchan et al., 2013) and DisEMBL (Linding et al., 2003) suggests it to be structured (data not 

shown).  However, since we have thus far been unable to observe regulation of XRN2 activity by PAXT-

1 in vitro, it seems possible that such functions would only occur on specific substrates or under specific 

conditions that remain to be identified. 

In agreement with a more specialized role of the PAXT-1 C-terminus, it is dispensable for C. elegans 

viability (Miki et al., 2014b). Together with the fact that the heterologous human C2AIL can substitute 

for PAXT-1 in vivo, this then implies functions of XTBD beyond that of a passive XRN2 adapter. Our data 

support this function to be stabilization of XRN2 by promoting the folding of its PBD domain. The Tm is 

a measure of a protein’s thermal stability and depends on numerous molecular parameters such as 

the amino acid composition, surface hydrophobicity, number of hydrogen bonds and labile secondary 

structures such as loops (reviewed in Vieille and Zeikus, 2001). Upon XTBD-binding, 13 hydrogen bonds 

are formed, a hydrophobic patch covered and the flexibility of the PBD loop reduced. Decreased 

thermal stability of XRN2 in the absence of XTBD in vitro may then reflect decreased half-life in vivo 

(Ghaemmaghami and Oas, 2001; McLendon and Radany, 1978; Parsell and Sauer, 1989), as even 

partially unfolded proteins exhibit increased susceptibility to proteolysis (Kumar et al., 2000; Parsell 

and Sauer, 1989). This then explains how PAXT-1/XTBD binding increases XRN2 levels in vivo.  

Although PAXT-1 is expressed throughout C. elegans development (Miki et al., 2014b), its loss causes 

defects only at specific stages: when paxt-1(0) mutant animals are shifted to the restrictive 

temperature of 26°C during the L4 stage, they will continue development through adulthood and 

produce F1 progeny, which, however, will arrest at the first larval (L1) stage (Miki et al., 2014b). This 

delayed effect does not appear to simply reflect the time it takes to deplete XRN2, as L1 stage arrest 

of F1s also occurs if parental animals were already shifted to 26°C during their L1 stage (Miki et al., 

2014b). Moreover, although animals may conceivably be more dependent on XRN2 activity during 

some developmental stages than others, developmental arrest can be induced in virtually any stage 

upon direct inactivation of XRN2 (Miki et al., 2014a). Hence, we speculate that it is the stability of XRN2 

that varies with development stage. Specifically, with substrate binding conferring some stability to 

XRN2, the stabilizing activity of PAXT-1 may be more important when substrate levels are low. Thus, a 

key function of XTBD may be to preserve, rather than promote XRN2 activity, guarding enzyme not 

bound by substrate against decay to retain a constant pool of active protein.  
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Material & Methods 

 

Protein Expression and Purification 

Constructs were expressed in E. coli BL21(DE3) using a modified bis-cistronic vector from Novagen 

where XTBD-containing proteins carried an N-terminal His6-tag whereas XRN2 proteins were untagged. 

Cleared lysate was obtained by sonication and centrifugation. Target protein was purified using IMAC, 

TEV-cleavage, ion-exchange and size-exclusion chromatography. Protein fractions were subsequently 

concentrated as desired and used for crystallography or aliquoted and flash-frozen for storage. See 

Supplementary Methods for details. 

 

Crystallization, Data Collection and Structure Solution 

Protein crystallization was carried out at 20°C using the sitting-drop vapor diffusion method with a 

Phoenix robot (Art Robbins) dispensing 300 nl drops (100 nl crystallization buffer and 200 nl protein 

solution). XRN2ΔZLC − XTBD crystals, obtained in 2 M ammonium sulfate, 0.1 M Bis-TRIS pH 6.5 or 0.1 

M TRIS pH 8.5 were harvested and flash-cooled in liquid nitrogen after cryoprotection with 3.2 M 

ammonium sulfate, 0.1 M Bis-TRIS pH 6.5 or 0.1 M TRIS pH 8.5. Highest resolution data was obtained 

with a seleno-methionine derivative crystal, which diffracted to 2.85 Å at the SLS PX-II beamline 

(Villigen, Switzerland) and belonged to space group P212121 with six XRN2ΔZLC – XTBD heterodimers in 

the asymmetric unit. Diffraction data was integrated and scaled using the XDS program package 

(Kabsch, 2010) and the structure was solved by the molecular replacement method with PHASER 

(McCoy et al., 2007) using an XRN2 homology model consisting of the exonuclease core as search 

model. Phases from this solution were calculated and used for automatic model building with 

BUCCANEER (Cowtan, 2006). The XRN2ΔZLC – XTBD structure was further improved by the 

crystallographic simulated annealing routine followed by grouped B-factor refinement in PHENIX 

(Afonine et al., 2012), several rounds of manual rebuilding in COOT (Emsley et al., 2010), and 

refinement in PHENIX and BUSTER (Bricogne et al., 2011). Non-crystallographic symmetry restraints 

were used throughout the structure solution and refinement process. Model building and validation 

was carried out with the help of anomalous difference Fourier electron density maps to locate seleno-

methionine positions. The final structure was validated using COOT. Structural images for figures were 

prepared with PyMOL (Schrödinger, 2010). 

 

Thermal Shift Assay 

34 
 



A Protein Thermal Shift™ Dye Kit (Applied Biosystems) was used according to the manufacturer’s 

instruction. Two µg total protein (1 µg when mixed with substrate) was assayed in triplicates using the 

melt-curve program of a StepOnePlus™ real-time PCR system. The sigmoidal part of the melt curve 

was fitted to the Boltzman equation with the non-linear regression analysis using Microsoft Excel. 

These functions were normalized to 1, scaled for concise representation and plotted along with the 

corresponding raw-data.  

 

Real-time Exonuclease Activity Assay and Kinetic Analysis  

The kinetic assay was performed as described in Sinturel et al., (2009) with the following modifications: 

A substrate mix of RNA – DNA duplex, where the RNA is FAM-labeled whereas the DNA carries a 

quencher, and unlabeled let-7 was used at a ratio of 1:4 to increase the  dynamic range of the assay. 

Enzymes were assayed with an excess of total substrate of 5 to 200 fold. Data was subsequently fitted 

to the Michaelis – Menten-model by the least square method. 

 

Strains 

Standard procedures were used to culture the Bristol N2 wild-type, mutant and transgenic strains 

(Brenner, 1974). HW1091: paxt1-(xe5) is the null mutation described by Miki et al. (2014b). Generation 

of HW 1641: paxt-1(xe5) I; xeSi203[Ppaxt-1::C.elegans_co_human_C2AIL_FLAG_ operon_GFP_tbb-2-

3'UTR, unc-119(+)] II and HW 1644: paxt-1(xe29[I:8597012-8597014 = TAT -> GCT,  I:8597041 A -> T] 

(expressing PAXT-1_Y56A and containing a silent mutation to facilitate screening for genome editing 

events) are described in detail below. 

 

Genome Editing of C. elegans Using CRISPR-Cas9 

A suitable site for 20 nt long sgRNA was identified by considering availability of a PAM site to create a 

double strand break on the paxt-1 gene. Two complementary nucleotides were hybridized and cloned 

by Gibson assembly (Gibson et al., 2009) into pIK111, a derivative of the PU6::sgRNA backbone 

(Friedland et al., 2013; Katic et al., 2015). Furthermore, a 100 nt DNA single stranded repair oligo was 

designed with the desired point mutation and a silent mutation at the sgRNA binding site. A CRISPR 

co-conversion mix, also containing Peft-3::Cas9::tbb-2 3’ UTR (Dickinson et al., 2013), the sgRNA and 

oligonucleotide to recreate the sqt-1(sc1) mutation (analogous to (Arribere et al., 2014) ) was injected 

35 
 



into N2 animals (Katic et al., 2015). Roller progeny were cloned and their progeny were analyzed for 

desired mutations by PCR. 

 

Rescue Experiments Using MosSCI 

The paxt-1 promoter, H. sapiens C2AIL (codon-optimized + two artificial introns) coding sequence and 

tbb-2 3’ UTR sequences were cloned into pCFJ150 by Gateway cloning. An operon_GFP sequence 

between C2AIL and the tbb-2 3’UTR was included to permit visualization of transgene expression 

without altering the sequence of the encoded protein. The resulting plasmid was inserted into the 

ttTi5605 site by MosSCI (Frøkjaer-Jensen et al., 2008; Frøkjær-Jensen et al., 2012), yielding 

xeIs203[Ppaxt-1::C.elegans_co_human_C2AIL_FLAG_operon_GFP_tbb-2-3'UTR,unc-119(+)] II animals. 

The integrants were outcrossed to wild-type N2 and crossed into the paxt-1(xe5) mutant. Rescue of 

the paxt-1(0) mutant phenotype was examined as reported (Miki et al., 2014b).  

 

Cell Culture and Transient Transfection of HEK293T Cells 

Transfection and culturing of HEK293T cells were done as described in de la Mata et al. (2015). 

pIRESneo (Addgene plasmid #10822) harboring either wild type or Tyr82-to-Ala mutated Hs_C2AIL and 

pSD44 (modified Addgene plasmid #12252) expressing GFP were used for transfection. 

 

Antibodies, Co-Immunoprecipitation and Western Blot Experiments 

Antibodies, immunoprecipitation and western blotting are described in detail in the supplementary 

methods. 

 

Microscopy 

Stereoscopic images were taken with a M205 A stereo microscope (Leica, Solms, Germany). 
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Figure Legends 

 

Figure 1: Overall Structure and Domain Architecture of the XTBD – XRN2ΔZLC Complex 

(A) Schematic of the domain architecture of PAXT-1 and XRN2 and protein constructs used in this study. 

Hatched and dotted areas within NCD1 and NCD2 mark the zinc-finger and disordered loop, 

respectively.  The blow-up shows a sequence logo  (Wheeler et al., 2014) of XTBD. (B) Overall structure 

of the XTBD – XRN2ΔZLC complex as cartoon model with transparent surface for XRN2ΔZLC. Colors for 

XRN2ΔZLC and for XTBD correspond to colors in (A). (C) Cartoon representation of XRN2 (red, green and 

cyan) in complex with the XTBD (yellow).  Seleno-Methionine residues are shown as sticks with 

corresponding anomalous difference Fourier peaks in magenta (5 σ).  

 

Figure 2: Tyr56 Is Critical for Stability of the Highly Conserved XTBD – XRN2ΔZLC Interface 

(A) Surface representation of XRN2ΔZLC and XTBD structures highlighting the high degree of 

conservation of the protein – protein interface (XTBD rotated 180 ° with respect to XRN2ΔZLC). Position-

specific conservation scores computed by Consurf (Ashkenazy et al., 2010; Celniker et al., 2013) are 

displayed from white (weak to average conservation, Consurf levels 1-6) to red (most conserved, level 

9). The dashed-dotted line on XRN2ΔZLC represents the projection of bound XTBD. (B) XTBD residues 

Cys54 and Tyr56 and their interaction with XRN2ΔZLC residues. (C) Zoom-in on Tyr56, which is locked 

by Leu45 and forms a CH – π interaction with Pro656 and a hydrogen bond with the backbone carbonyl 

of Asp653. (D) Zoom-in on the Tyr56/Cys54 side chain arrangement, which allows formation of the 

isolated β-bridge between backbone atoms of Glu55 (XTBD) and Asp658 (XRN2ΔZLC). Hydrogen bonds 

are indicated by gray dotted lines. (E) Ni-NTA pull-down experiment of His6-PAXT-1 (arrow) and its 

point mutants co-expressed with XRN2 (arrowhead). XRN2 is not co-purified with His6-PAXT-1 Tyr56-

to-Ala (lane 6) and Cys54-to-Gly (lane 5) mutant proteins, where Cys54-to-Gly but not Tyr56-to-Ala 

destabilizes PAXT-1. (F) Stereoscopic images of nematodes at a magnification of 25x. C. elegans were 

grown as indicated by the scheme (above pictures). paxt-1(xe29) Tyr56-to-Ala point mutant animals 

arrest at L1 larval stage similar to paxt-1(0), whereas wild type worms continue to develop. (G) Western 

blot of 100 µg lysate from worms grown at 26°C. XRN2 levels are reduced in paxt-1(0) and paxt-1(xe29) 

mutant relative to wild-type animals. 

 

Figure 3: XTBD is a Generic Binding Adapter for XRN2 
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(A) D. rerio XRN2 (arrowhead; aa 1-803), co-purifies with D. rerio His6-C2AIL (black arrow) and D. rerio 

His6-CDKN2AIP (blue arrow), respectively. The proteins were co-expressed in E. coli and the XTBD-

containing proteins pulled down by Ni-NTA. (B) Endogenous XRN2 co-immunoprecipitates from 

HEK293T cells with wild-type transgenic human FLAG-HA-tagged C2AIL (FH-C2AIL) but not a Tyr82-to-

Ala mutant variant thereof. Immunoprecipitation occurred by anti-FLAG antibody; transfection of a 

GFP-expressing vector was used as mock control (-). Anti-XRN2 and anti-HA antibodies, respectively 

were used to detect the proteins. (C) SEC elution profiles of C. elegans XRN2 alone (blue line), and 

complexes of PAXT-1 – XRN2 (orange), XTBD – XRN2ΔZLC (yellow) and H. sapiens C2AIL – D. rerio XRN2 

(aa 1-803, purple line). (D) Human FLAG-tagged C2AIL (FLAG-Hs_C2AIL) was expressed in paxt-1(0) 

mutant C. elegans from an integrated single-copy integrated transgene and precipitated by anti-FLAG 

antibody. Western blotting of 3% lysate (Input) and 50% eluate reveals co-immunoprecipitation of 

endogenous XRN2, detected by an anti-XRN2 antibody. Non-transgenic wild-type animals were used 

as negative control. (E) paxt-1(0) mutant animals carrying the FLAG-Hs_C2AIL encoding transgenes or 

no transgene were grown as indicated by the scheme (above pictures) and imaged under a 

stereomicroscope. In the absence of the transgene, animals arrest at L1 larval stage, whereas 

expression of Hs_C2AIL permits their progression to adulthood. 

 

Figure 4: The Structural Integrity of the PBD can be Maintained by XTBD or RNA Substrate 

(A), (C) XTBD and substrate binding promote XRN2 thermal stability. Protein unfolding was recorded 

for (A) XRN2 alone (blue line), a PAXT-1 – XRN2 complex (orange line), a PAXT-1 – XRN2ΔZLC complex 

(green line), an XTBD – XRN2ΔZLC complex (yellow line), and (C) XRN2 alone or in the presence of a 

single-stranded, 5' phosphorylated substrate (purple line) or tRNA (gray line) respectively. The 

sigmoidal part of each melt curve was fitted to the Boltzman equation, normalized to 1 and scaled for 

concise representation, and plotted along with the corresponding raw-data. A right shift in the curve 

signals stabilization. Melting points (Tm), calculated as the inflection point of each curve are indicated 

by squares. The same curve for XRN2 alone is shown in (A) and (C). (B) Enzymatic activity of XRN2 at a 

substrate excess of 50x over time. Despite thermal instability, consistently higher activity is recorded 

at 30°C (dashed blue line) than at 25°C. The negative control (no enzyme) at 30°C is shown as a gray 

line. (D) XRN2 substrate binding is inferred by superposition of XTBD (yellow) in complex with XRN2ΔZLC 

(gray/red/cyan) and D. melanogaster XRN1 in complex with substrate (PDB 2Y35). Only substrate is 

shown, in stick model, for the latter, and a mFo-DFc map of the XTBD – XRN2ΔZLC complex is overlaid 

and displayed at the SO4
2- position only (5.5 σ). XRN2 employs the identical substrate binding 

mechanism as XRN1 by base-stacking a tri-nucleotide with its His60 and Trp670. (E) Left: Comparison 

of the PBDs of C. elegans XRN2 (cyan) in complex with XTBD (yellow, surface representation), D. 
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melanogaster XRN1 (purple; PDB 2Y35, Jinek et al., 2011) in complex with a tri-nucleotide substrate 

and K. lactis XRN1 (orange; PDB 3PIF Chang et al., 2011). Disordered regions within the K. lactis PBD 

are marked in orange dashed lines. Right: A superposition of all three PBDs including XTBD (yellow) 

and tri-nucleotide (stick-model). 
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Table I.  Crystallographic Data Collection and Refinement Statistics 

 

 XTBD-XRN2∆ZLC (Se-Met) 
Data collection  
Space group P212121 
Unit cell dimensions  
a, b, c (Å) 170.2, 200.8, 203.0 
α, β, γ (°) 90.0, 90.0, 90.0 
Resolution range (Å)a 50.0 – 2.84 (2.91-2.84) 
Wavelength (Å) 0.97796 
Completeness (%)a 94.6 (84.5) 
Redundancya 3.2 (3.1) 
Rsyma  0.126 (1.261) 
I/σ(I)a 7.1 (0.75) 
CC (1/2) (%)a 99.3 (36.5) 
Unique reflections 155519 
  
Refinement  
Rwork 0.197 
Rfree 0.221 
Resolution range (Å) 41.6 – 2.84 
Reflections (all) 155439 
Reflections (test set) 3899 (2.5%) 
Number of atoms 34653 
RMS Deviations  
Bond lengths (Å) 0.008 
Bond angles (°) 0.97 
Ramachandran plot  
Allowed (%) 99.6 
Outliers (%) 0.4 

 
a Values in parentheses refer to the highest resolution shell 
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Supplementary Methods 

 

Protein Expression and Purification 

Expression constructs were cloned into a modified bis-cistronic pCOLADuet™ vector from Novagen. 

XTBD-containing constructs were cloned into the first multi-cloning site (MSC), and thus N-terminally 

extended by a Hexahistidine (His6) tag followed by a tobacco etch virus protease (TEV) cleavage site, 

whereas the XRN2 constructs in the second MSC remain untagged. All constructs were expressed in E. 

coli BL21 (DE3). Cells were lysed by sonication and the lysate cleared by centrifugation. Immobilized 

metal affinity chromatography (IMAC) slurry (Qiagen) was used to bind the His6-tag of the target 

protein. Next, protein was eluted through cleavage by TEV (home made (Blommel and Fox, 2007). 

IMAC was repeated and the unbound fraction collected, diluted, and subjected to a Mono Q™ 5/50 GL 

(GE Healthcare) anion exchange column. Positive fractions were pooled, filtered  with a Millex-GV 0.22 

µm filter and loaded onto a Superdex™ 200 HiLoad™ 16/600 (GE Healthcare) column. Finally the target 

fractions were collected and concentrated using Millipore® Amicon® Ultra Centifugal Filter 

Concentrators with suitable pore size. 

Incorporation of seleno-methionine was done as described by Molecular Dimensions’ 

SelenoMethionine media kit, using E.coli B834 (DE3).   

 

Crystallization, Data Collection, and Structure Solution 

Protein crystallization was carried out at 20°C using the sitting-drop vapor diffusion method with a 

Phoenix robot (Art Robbins) dispensing 300 nl drops (100 nl crystallization buffer and 200 nl protein 

solution). XRN2ΔZLC − XTBD crystals, obtained in 2 M ammonium sulfate, 0.1 M Bis-TRIS pH 6.5 or 0.1 

M TRIS pH 8.5 were harvested and flash-cooled in liquid nitrogen after cryoprotection with 3.2 M 

ammonium sulfate, 0.1 M Bis-TRIS pH 6.5 or 0.1 M TRIS pH 8.5. Highest resolution data was obtained 

with a seleno-methionine derivative crystal diffracting to 2.85 Å at the SLS PX-II beamline (Villigen, 

Switzerland) and belonged to space group P212121 with six XRN2ΔZLC – XTBD heterodimers in the 

asymmetric unit. Diffraction data was integrated and scaled using the XDS program package (Kabsch, 

2010) and the structure was solved by the molecular replacement method with PHASER (McCoy et al., 

2007) using an XRN2 homology model consisting of the exonuclease core as search model. Phases from 

this solution were calculated and used for automatic model building with BUCCANEER (Cowtan, 2006). 

The XRN2ΔZLC – XTBD structure was further improved by the crystallographic simulated annealing 

routine followed by grouped B-factor refinement in PHENIX (Afonine et al., 2012) and several rounds 
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of manual rebuilding in COOT (Emsley et al., 2010) and refinement in PHENIX and BUSTER (Bricogne et 

al., 2011). Non-crystallographic symmetry restraints were used throughout the structure solution and 

refinement process. Model building and validation was carried out with the help of anomalous 

difference Fourier electron density maps to locate seleno-methionine positions. The final structure 

was validated using COOT. Structural images for figures were prepared with PyMOL (Schrödinger, 

2010). 

 

Sequence Logo 

The profile hidden Markov model (HMM) of DUF3469 from Pfam was exported and uploaded to 

Skylign.org (Wheeler et al., 2014). For concise representation, the following parameters were set: a) 

Alignment Processing to “Create HMM - remove mostly-empty columns”, b) Fragment Handling to 

“Alignment sequences are full length” and c) Letter Height to “Information Content - Above 

Background”. The resulting logo was exported without showing the gap parameters. 

 

 

Thermal Shift Assay 

In a 20 µl reaction, 2 µg of assayed protein was mixed with Protein Thermal Shift™ Dye and – Buffer 

from Applied Biosystems to a final concentration of 1x. In the presence of RNA substrate however, 1 

µg of protein was used instead to reduce the otherwise high concentrations of RNA. Purified yeast 

tRNA (Ambion™) or a 30mer XRN2 substrate, identical to that used in the kinetic assays (see below) 

were used when examining the effect of substrate binding. The reaction was prepared in a 96 well 

MicroAmp® optical microplate at 4°C and sealed with MicroAmp® Optical Adhesive Film. After 

centrifugation for 25 s at 1,000 g the plate was read in a StepOnePlus™ real-time PCR system using a 

melt curve program from 25 – 99°C. No normalizing quencher was used and reactions were run in 

triplicates. Raw data was exported and plotted using Microsoft Excel. The sigmoidal part of the curve 

was fitted to the Boltzman equation to calculate the melting point Tm using non-linear regression by 

maximizing R² and varying Tm and C. The resulting function was normalized to 1 and plotted (see 

below). Raw-data was also normalized to 1 and plotted as dashed lines. In addition, XRN2, XRN2 + tRNA 

and XRN2 + RNA curves and values were re-scaled by a factor of 1.9, 1.3, and 1.8, respectively for 

concise representation. 

 𝐹𝐹(𝑇𝑇) = 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝

1+𝑒𝑒
𝑇𝑇𝑚𝑚−𝑇𝑇
𝐶𝐶

, where Fpre is baseline fluorescence, Fpost is maximal fluorescence, T is temperature in 

°C, Tm is melting temperature in °C and C is entalphy. 
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Real-time Exonuclease Activity Assay and Kinetic Analysis  

The kinetic assay was performed as described in (Sinturel et al., 2009) with the following modifications: 

The RNA-DNA duplex substrate, where the RNA is FAM-labeled whereas the DNA carries a quencher, 

was diluted with fourfold excess of unlabeled 5’ phosphorylated let-7, which increased the dynamic 

range of the qPCR system. 300 fmol enzyme was assayed with varying concentrations of total substrate 

(sum of RNA-DNA duplex and let-7) in an excess from 5 to 200 fold. Each kinetic reaction was run in 

triplicates and gave 1 data point. After each data point was normalized to its baseline, the initial linear 

phase from 0 to 180 s was fitted by linear regression. The slope of this function equals the velocity at 

the corresponding substrate concentration [S]. Furthermore the average of three velocities was 

plotted over [S] and fitted to the Michaelis – Menten-model (see below) with the least-square method.  

𝑣𝑣 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚∙[𝑆𝑆]
𝐾𝐾𝑀𝑀+[𝑆𝑆]

, where V is velocity, Vmax is maximal velocity, [S] is substrate concentration and KM is the Michaelis- 

Menten- constant. 

 

Cell Culture and Transient Transfection of HEK293T Cells 

HEK293T cells were available in our lab, checked for mycoplasma contamination and grown in DMEM-

F12 (Gibco™) supplemented with 10% (v/v) FCS and 25 U/ml Penicillin-Streptomycin (Gibco™) at 37°C. 

Prior to transfection (described in de la Mata et al., 2015) using the PEI method, 2·106 cells were plated 

on a 6 cm dish per construct and grown for one day. Each transfection was run in 2 technical duplicates 

with plasmids derived from pIRESneo (Addgene plasmid #10822) to encode N-terminally FLAG-HA-

tagged wild-type or Tyr82-to-Ala mutated hsa_C2AIL. pSD44 harboring GFP was used as mock control. 

It is modified from the pRRLSIN.cPPT.PGK-GFP.WPRE (Addgene plasmid #12252) backbone, containing 

the SV40 enhancer/early promoter driving expression of a puromycin selectable marker. Cells were 

harvested 72 h after transfection. 

 

Western Blot and Co-Immunoprecipitation Experiments 

Worm lysates were prepared by douncing harvested worms with 150 pestle strokes in extraction buffer 

(50 mM HEPES, pH 7.4, 50 mM KCl, 5 mM MgCl2, 0.1% w/v Triton X-100, 10% w/v Glycerol) finalized 

with 7 mg protease inhibitor (Roche complete EDTA-free), 2 µl 1 M DTT and 10 µl 100 mM PMSF per 

ml extraction buffer. The lysate was cleared by centrifugation at 16,000 g for 20 min and protein 

concentrations of the lysates were measured using Bradford reagent (Bio-Rad Protein Assay). 
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Subsequently, 100 µg of lysate were loaded and separated by a Bis-TRIS SDS-PAGE 4 – 12% gradient 

gel (NuPAGE® Life Technologies). Proteins were then blotted on a PVDF membrane using standard 

procedures. Antibodies against XRN2, PAXT-1 (Miki et al., 2014) and FLAG-tag (Monoclonal ANTI-FLAG® 

M2-Peroxidase, Sigma) were used in a 1:500, 1:500 and 1:2000 dilution, respectively. Horseradish 

peroxidase-conjugated antibodies (GE Healthcare, Little Chalfont, UK) were used for detection, except 

for FLAG (see above). For IP experiments, 3 mg lysate was incubated with 40 µl magnetic anti-FLAG 

bead slurry (Sigma. Cat # M8823) in 1 ml finalized extraction buffer for 2 h on the rotating wheel at 

4°C. Then beads were washed 4 times with 600 µl extraction buffer followed by 1 h elution on a vertical 

shaker (4°C) with 40 µl of 1 µg / µl FLAG peptide. 

Immunoprecipitation of FLAG-HA-tagged Hs_C2AIL was performed using Anti-FLAG M2 Magnetic 

Beads (Sigma. Cat # M8823) as described in de la Mata et al. (2015). For this, 2·106 transfected HEK293T 

cells per IP and construct were washed with 4 ml cold PBS, harvested and lysed in 500 µl lysis buffer 

(50 mM TRIS pH 7.5, 150 mM NaCl, 1% v/v TritonX-100, 1 mM EDTA, 1x EDTA-free Roche cOmplete 

Protease Inhibitor Cocktail) and incubated for 30 min on ice. Subsequently, the lysate was cleared by 

centrifugation at 16,000 g for 10 min. Per IP, 40 µl of bead slurry (see above) was washed twice with 

cold TBS (50 mM TRIS pH7.4, 150 mM NaCl), added to the lysate and filled to 1 ml final volume with 

TBS. After 2 h of incubation on the rotating wheel, beads were washed three times with 400 µl TBS 

and boiled at 70°C for 10 min in 40 µl SDS loading buffer for western blot analysis detecting the 

transgene with anti-HA antibody (1:1000 dilution; clone 3F10, Roche). Human XRN2 was detected as 

described in Miki et al. (2014). 
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2 XRN2 Processively Degrades miRNAs Under Single Turnover 

Conditions 

The XRN2 paralog D. melanogaster XRN1 was shown to processively degrade 5’ 

monophosphorylated RNA molecules under single turnover conditions (Jinek et al., 2011). In 

contrast, Rat1p (yeast XRN2) seems to processively degrade RNA molecules only in complex with its 

interaction partner Rai1p, despite extensive sequence and structural similarities to XRN1 (Jinek et al., 

2011; Kenna et al., 1993; Stevens and Poole, 1995; Xiang et al., 2009). On the other hand, XRN2s from 

other species have not been investigated in respect to their mode of catalysis. Thus, questions of how 

C. elegans XRN2 executes processive substrate decay remains to be analyzed. Hence, we checked for 

processive catalysis of recombinant C. elegans XRN2 under single turnover conditions. For this, 50 

pmol synthetic 5’-monophosphorylated let-7 were labeled on the 3’-end with equimolar amounts of 

pCp using T4 RNA ligase. Subsequently, the substrate was spin-column purified and adjusted to 0.5 

nM radiolabeled substrate using the scintillation counter. For each reaction, 1 µl labeled substrate 

was used, corresponding to 0.5 fmol, and incubated with 90 fmol of recombinant enzyme at 25 °C. 

Of note, 3’-end labeling depends on an inefficient enzymatic ligation reaction and therefore a 

considerable amount of unlabeled substrate is present in each reaction. Finally, the reaction mix was 

resolved with an 8 M urea PAGE-gel and the RNA detected by autoradiography. Remarkably, for 

XRN2, without being complexed by PAXT-1, processivity similar to XRN1 was observed for let-7 decay 

in time course experiments (Figure 4). No intermediates are detected, as degradation bands for full 

length XRN2 (XRN2_fl) and XRN2 lanes represent pCp (determined in other experiments, data not 

shown). In contrast, previous results show, that Rat1p needs to be in complex with Rai1 to achieve 

similar results (Xiang et al., 2009). However earlier experiments with Rat1 were performed with much 

longer substrates and potential secondary structure elements might have inhibited processivity.  

 

60 
 



Figure 4: Shown is an autoradiography of the turnover of 0.5 fmol 3’- labeled let-7 miRNA comparing full length 
XRN2 (XRN2_fl, residues 1 – 975) and XRN2 (residues 1 – 821) over a period of 15 minutes at indicated times. 
Moreover catalytic dead XRN2 (XRN2*) of both constructs, buffer components (NC, negative control) and a C. 
elegans worm lysate were tested for activity and incubated for 15 min. The final reaction product for XRN2_fl 
and XRN2 corresponds to pCp (arrow/schematic). 

 

While activity and processivity is maintained by C. elegans XRN2 alone under single turnover 

conditions, we were wondering if PAXT-1 could influence the enzymatic activity of XRN2 under 

multiple turnover conditions. For this we followed its enzymatic activity in real-time in presence or 

absence of PAXT-1 as described by Sinturel and colleagues (Sinturel et al., 2009). In short, a 30 nt RNA, 

coupled to a fluorophore (FAM) at its 3’-end, is hybridized with a 17 nt DNA primer harboring a 

quencher (TAMRA) at its 5’-end. Upon catalysis, the DNA primer is dislodged and fluorescence of 

released single nucleotide-fluorophore conjugates are measured over time (Figure 5A). Of note, it 

cannot be excluded that the RNA – DNA duplex substrate affects the kinetic behavior of the enzyme 

as it relies on primer dissociation and therefore deviates from a true single stranded RNA catalysis. In 

a multiple-turnover setup with 50 fold excess of RNA substrate (DNA primer hybridized in two-fold 

excess in respect to RNA), we followed RNA decay over 1 h in presence or absence of PAXT-1 (Figure 

5B). Whereas the PAXT-1 – XRN2 complex degrades approx. 58% (+/- 0.3%) of the substrate after 3600 

s, XRN2 alone degrades approx. 43% (+/- 1%) in the same time, so that both reactions are in multiple-

turnover conditions for the entire measurement (published in Miki et al., 2014b). Interestingly, PAXT-

1 – XRN2 complexes seem more active after approx. 1000 s (Figure 5B). However initial velocities 

(initial 150 s) of XRN2 and PAXT-1 – XRN2 complex are equal, indicated by equal slopes (Figure 5B, 

inset). Thus, higher activity of the PAXT-1 – XRN2 complex is not due to stimulation of enzymatic 

activity of XRN2 by PAXT-1, but rather through the stabilizing effect of PAXT-1 on XRN2. Yet, the 

assayed RNA substrate is only 30 nt of length and we cannot rule out influences of PAXT-1 on XRN2 

catalysis on larger substrates.  
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Figure 5: A, Schematic shows the principle of the real time degradation assay for 5’  3’ exoribonucleases. B, 
Shows the kinetic behavior of PAXT-1 – XRN2 complex (orange line) in comparison with XRN2 alone (blue line), 
nuclease dead complex (black line) and mock control (gray line) using 10 nM protein and 500 nM substrate in 
multiple turnover condition over 3600 seconds. The inset magnifies the initial velocity of the reaction. 

 

3 No Detection of MiRNA Release Off AGO with Recombinant XRN2 in 

vitro 

Previously, Chatterjee et al. (2009) showed that C. elegans lysates are capable of releasing the 

miRNA let-7 off immunoprecipitated ALG-1/2 complexes and upon depletion of XRN2 by RNAi, 

release activity of these lysates was reduced (see above). So we were curious to see if XRN2 and its 

complex with PAXT-1 has releasing capabilities in vitro. For this we incubated co-immunoprecipitated 
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miRNA – ALG-1/2 complexes from C. elegans lysates with recombinant XRN2 or PAXT-1 – XRN2 

complex and measured let-7 retained on ALG-1/2 by qPCR. To account for potential losses of miRNAs 

during RNA extraction, 3 fmol of an unrelated rat miRNA, miR-132, was spiked-in and used to 

normalize for let-7 levels using a standard curve. Release of let-7 could be detected on ALG-1/2 

complexes incubated with worm lysates (Figure 6A), whereas signals similar to input were detected 

when incubated with full length XRN2 (XRN2_fl), XRN2 (residues 1 – 821), PAXT-1 – XRN2 and XTBD 

– XRN2 complexes (Figure 6A and C). To confirm qPCR results, 50% of the release reaction mix was 

analyzed using northern blot optimized for small RNA detection (Pall and Hamilton, 2008). There, 

extracted RNAs are separated by an 8 M urea PAGE-gel, transferred (blotted) and cross-linked to a 

membrane, followed by hybridization with a complementary 32P labeled nucleic acid probe. This 

signal is then detected using autoradiography. Similar to the qPCR assay, loss of RNA, due to 

extraction and handling procedures, was controlled for by spike-in of 3 ng yeast leucine tRNA 

(tRNALeu). When probing release reactions of lysate and full length XRN2 (XRN2_fl) with an α-let-7 

probe by northern blot, observations made by qPCR (Figure 6A) were confirmed (Figure 6B). Taken 

together, no release activity could be detected for recombinant XRN2 nor in complex with PAXT-1. 

Thus, other factors within the worm lysate seem to mediate release activity but could potentially be 

linked with XRN2. This could explain partial loss of release activity upon XRN2 RNAi.  
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Figure 6: A and B, Shown is the fold change and northern blot of co-immunoprecipitated ALG-1 and -2 bound 
let-7 incubated with buffer (neg. ctrl), C. elegans N2 worm lysate or full length XRN2 (XRN2_fl) for 15 min at 25 
°C compared to input. Samples were quantified using a standard curve (blue bars) and normalized to spiked-
in mir-132 (red bars) to correct for losses during RNA purification. Plotted values represent the mean ± standard 
deviations from three technical replicates (n = 3). C, Repitition of the assay from A, at which also PAXT-1 – XRN2 
and XTBD – XRN2ΔZLC (deletion of the zinc-finger, loop and C-terminal tail) complexes were tested for release 
activity. 

  

64 
 



III Discussion 

With the rapid discoveries of new RNA species and their respective functions, scientists became 

increasingly interested in RNA nucleases as these are capable to process, decay or mediate function 

to RNAs. Thus, a growing number of new nucleases or proteins harboring conserved RNase folds are 

discovered, such as AGO or Dicer. Although new multiple sequence alignment algorithms based on 

probabilistic models, such as the Hidden Markov model, can help such discoveries (Finn et al., 2011, 

2014), conservation of the primary amino acid sequence is lower than its three dimensional fold. 

Thus X-ray crystallography of proteins involved in the RNA metabolism made important 

contributions in identifying new RNases or RNase domains, such as AGO, spliceosome component 

Prp8 or NMD factor SMG6, and their molecular mode of action (Glavan et al., 2006; Pena et al., 2008; 

Song et al., 2004).  

 

Functional Implications Based on XRN Structures 

Up to now, structures of yeast and C. elegans XRN2 as well as K. lactis and D. melanogaster XRN1 are 

solved and elucidated the substrate binding mode as well as the structural elements mediating 

processivity for this class of enzymes. However, there are observed discrepancies of RNA decay 

between XRN1 and XRN2, which cannot simply be explained by their respective structures. 

Structural analysis of the XRN1 – substrate complex revealed a π – π base stacking mode for 

substrate binding formed by residues His41 and Trp540 as well as the Brownian ratchet-like mode 

for processive degradation, which relies on α-helix 1 and a conserved loop harboring Trp540 (Jinek 

et al., 2011). In line with our structural data and comparison to Rat1p, XRN2 seems to use the same 

substrate binding mechanism as key residues and structural features are conserved and electron 

densities from sulfate ions (component within the crystallization buffer) are detected at the substrate 

5’ phosphate position. Upon degradation of structured substrates, such as stem-loop containing 

RNAs, however, stalling of XRN2 was observed (Xiang et al., 2009). In contrast, such substrates are 

efficiently degraded by XRN1, with only G-quartet tracts harboring RNAs and some viral RNA being 

capable of inducing stalling (Chapman et al., 2014; Poole and Stevens, 1997). Thus an unwinding 

mechanism for XRN1 is proposed, by which the conserved loop and α-helix 1 form a small entrance 

allowing for single stranded substrate only and thus acting as a steric barrier. Either unwinding is 

conveyed actively by substrate translocation or simply by thermal breathing of the substrate, as it is 

threaded through the steric barrier to access the nuclease cleft. It thus is an extended mechanism of 

the Brownian ratchet model and processive substrate degradation (Jinek et al., 2011). It is puzzling, 

however that studies from yeast show XRN2 degradation to be limited by RNA secondary structure 
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elements, but all structural features responsible for processivity and duplex unwinding are present 

in XRN2 as well. It is worth mentioning, that XRN turnover studies do not use identical substrates 

consistently, nor turnover conditions. Studies on XRN1 from Jinek et al. were performed under single 

turnover conditions, with a large excess in enzyme concentration and so did Xiang et al. for yeast 

XRN2 with yet longer substrates. Our studies suggest a processive activity for XRN2 in multiple 

turnover conditions for small sized substrates such as miRNAs, even without being in complex with 

PAXT-1. Thus it remains to be seen, if there are indeed differences in substrate degradation on the 

molecular level between XRN1 and XRN2, and if, it would be interesting to pin point these differences 

on a structural level.  

Strikingly, the XTBD – XRN2 interface is mainly formed by the conserved loop, which would suggest 

an influence on XRN2’s catalytic activity. Yet, we do not observe any alterations in XRN2’s kinetic 

behavior in presence or absence of PAXT-1, but support of RNA binding and/or degradation of 

structured/longer substrates by PAXT-1 cannot be excluded. Conversely, PAXT-1 might as well 

regulate XRN2’s activity by restricting for certain substrate types. Unfortunately, thorough 

biochemical analysis of XRN2 substrate degradation is sparse, which might be due to the fact, that 

production of larger and structured high quality RNA molecules harboring desired modifications still 

pose a huge problem. However those studies are needed and could help to gain insights of how this 

molecular machinery works. A less appealing hypothesis would suggest XRN2 to be an ordinary 

degradation machine, which has to be kept in check by supporting cellular factors. Then XRN2 would 

possibly acquire specificity by localizing and limiting it to certain substrates. 

Compared to XRN1, XRN2 acts on a diverse spectrum of substrate classes and takes part in 

processes like transcription termination and miRNA release off AGO. Thus, it could well be, that such 

specialized functions are reflected on the structural level. One of the most prominent structural 

feature of XRN2 is its tower domain. It is a long α-helix spanning from the bottom through the 

molecule and well above the globular surface, thus mainly contributing to the unique shape of XRN2 

(Xiang et al., 2009). The tower domain makes important contributions to substrate binding/access 

and stability (Jinek et al., 2011; Xiang et al., 2009). However it is unlikely that either of these 

contributions require the tower domain’s extended length. Remarkably, the tower domain of XRN1 

is smaller and the XRN1 molecule adapts a more globular shape through its additional domains than 

XRN2 does. Hence it seems unlikely, that such a prominent shape is evolutionary conserved without 

any functions attributed to it. As XRN2 is involved in transcription termination in a model by which 

RNAPII is sterically displaced by XRN2, it is tempting to link this function to the tower domain. While 

approaching RNAPII, which is significantly bigger than XRN2, through substrate degradation, the 

tower domain could function as a battering ram for displacement of RNAP II. Hence the extended 

length of the tower domain coupled with XRN2’s catalytic activity would increase the “power” 
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available for this process. But maybe XRN2 doesn’t displace RNAP II directly, as suggested by the 

torpedo model, but uses the tower domain as an extension to kick off certain subunits bound to 

RNAP II’s tail. This idea is especially interesting, as RNAP II could be loaded with specific sets of factors 

regulating the transcription of specific genes and XRN2 might reach only subunits bound to specific 

interfaces of RNAP II due to the length of its tower domain. As a consequence, termination of 

transcription by XRN2 could be controlled by such factors and add another layer of regulation. 

 

The Subunits of the XRN2 Nuclease: What, Where, Why? 

In the past, XRN2 has been studied thoroughly in yeast, elucidating many substrates and functions, 

but just recently it became apparent, that XRN2 exists in a tight complex with a single additional 

subunit. Surprisingly, its paralogue XRN1, despite interacting with many proteins, was not found to 

form a similar nuclease complex. Two crystal structures of an XRN2 complex, from yeast and C. 

elegans, are available to date (Xiang et al., 2009; this study). Strikingly, both subunits, Rai1p and PAXT-

1 from yeast and C. elegans, respectively, bind to different XRN2 interfaces and share no similarities. 

In contrast they do share their function in stabilization of XRN2 through binding. Moreover Rai1 was 

shown to enhance nuclease activity of XRN2, whereas no such effect could be attributed to PAXT-1 

(Xiang et al., 2009; Xue et al., 2000). It is however unclear, how Rai1p stimulates XRN2, since it binds 

to the bottom of XRN2, far away from the nuclease cleft. One explanation could be that previous 

observations of increased activity of Rai1 – XRN2 complexes are merely mediated by an increased 

stability of the complex rather than increased catalytic activity. This notion is supported by 

observations of C. elegans XRN2 complexes, where real-time turnover analysis revealed increased 

activity over time for PAXT-1 – XRN2 complexes compared to XRN2 alone, but Michaelis-Menten 

kinetics analysis thereof revealed no change in catalytic activity. Therefore it was concluded, that 

increased activity mediated by PAXT-1 was due to its stabilizing function towards XRN2. Moreover, 

questions, of how XRN2 stabilization through binding to two different interfaces is mediated, remain. 

PAXT-1 forms a tight complex with XRN2 through a yet small interface of approx. 1000 Å² close to the 

substrate binding site, but makes significant contributions to complex formation (PISA score = 1) 

(Krissinel and Henrick, 2007). Rai1p’s interface however, scatters around the bottom of the nuclease, 

totaling to approx. 800 Å² and PISA interface analysis scores the Rai1 – XRN2 interface to be 

insignificant (Krissinel and Henrick, 2007; Xiang et al., 2009). Curiously, biochemical data from yeast, 

XRN2 purifications readily detect Rai1p bound to XRN2 and the complex is regarded stable (Kenna 

et al., 1993; Stevens and Poole, 1995; Xiang et al., 2009). Hence, direct comparison of the stability of 

PAXT-1 – XRN2 and Rai1p – Rat1p complexes as well as their stabilizing function could shed light on 

these discrepancies.  
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The crystal structure of the C. elegans XRN2 nuclease complex was solved using a construct 

containing only the N-terminal XTBD of PAXT-1, whereas the remaining C-terminus is missing. 

Bioinformatics analysis predicts a structurally well-ordered PAXT-1 C-terminus, however sequence 

alignments do not identify any known domains. It is tempting to imply RNA-related functions for this 

C-terminus, such as RNA-binding or substrate specificity, especially since structural data suggests its 

location just in front of the nuclease cleft. Therefore structural determination of the PAXT-1 C-

terminus alone could give further insights to PAXT-1 function and how this relates to XRN2.  

As PAXT-1 was recently identified as a subunit in the XRN2 nuclease complex, available data is 

concerned with its function related to XRN2. Nevertheless it might well be, that PAXT-1 has additional 

functions independently of XRN2, which are yet to be discovered. However, recent results show a 

direct relationship on protein stability for PAXT-1 and XRN2 as knock-down of either subunit of the 

PAXT-1 – XRN2 complex results in loss of the other, with mRNA levels being unaffected. Therefore 

dissecting any independent function of PAXT-1 seems difficult. Moreover production of recombinant 

PAXT-1 failed, as it seems unstable in high dilution in vitro. 

From an evolutionary perspective, PAXT-1 homologs are only found in nematodes, whereas the 

XTB domain is readily detected in proteins from metazoans and ciliates (Pfam DUF3469). It is puzzling 

though, that yeast lack proteins with an XTBD completely. Whether yeast XRN2 is intrinsically more 

stable than its metazoan counterpart or Rai1 has indeed similar stabilizing capabilities as PAXT-1 

(discussed above) remains to be tested. Also, it could very well be, that the XTBD evolved besides the 

existing Rai1 and gradually replaced it, as it turned out to be more stable and more suitable as an 

adapter. Conversely, the Rai1 – XRN2 interaction also couples two enzymatic activities plus 

stabilization. In certain situations this enzymatic coupling is maybe undesirable, as potential 

protection of an RNA by a 5’- trisphosphate would be a substrate for the Rai1 – XRN2 complex. 

Moreover, it could be that other functions than pyrophosphatase activity became increasingly 

important, such as substrate specificity, and displaced Rai1 with XTBD interaction/stabilization. 

Interestingly, alignment algorithms predict three different XTBD-containing proteins in mammals, 

in contrast to only one found in nematodes (PAXT-1). An enticing model could be, that XRN2 is 

capable of acquiring additional functionality by complex formation with different XTBD-proteins. 

Especially NKRF and CARF are not well characterized, functionally nor structurally, and their domain 

architecture is largely undetermined, apart from their predicted XTBD and RNA binding domain. 

Moreover, biochemical studies show PAXT-1 and XRN2 to form a strong complex, as this complex 

resists disruption in high salt environments and high dilutions. Hence, it is hard to imagine how XRN2 

subunits will be interchanged within the cellular environment. Either different XRN2 complexes are 

formed co-transcriptionally/co-translationally or there is an active exchange mechanism facilitating 
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loading/unloading of different XTBD-containing subunits. The first hypothesis is particularly 

interesting, as it permits the cell to use the regulatory machineries during gene expression to time 

and setup XRN2 complexes with different functionalities. Yet, it is possible that other proteins interact 

with XRN2 independently of an XTB domain. Conversely, XTBD-proteins may also recruit and bind 

additional subunits in an XRN2 complex. Considering all these possibilities, XRN2 possibly gains 

many of its specialized functions directly or indirectly by complex formation with XTBD- proteins. As 

now the XTBD key interface residue Tyr56 was identified, mutations will thus allow further 

dissections of XRN2’s complex functions and potential regulation. Also elucidating the interactome 

of the XTBD-proteins could shed more light on potential functions, substrates and subcellular 

localization related to XRN2 

 

XRN2 and the Mysterious Release Factor 

Previously, Chatterjee and colleagues observed an unusual function of XRN2 with no obvious link 

to catalysis. When co-immunoprecipitated miRNA – AGO complexes were incubated with XRN2 

depleted C. elegans lysates more miRNAs remained bound to AGO compared to wild type lysates. 

This led to the hypothesis, that XRN2 is involved in mediating miRNA release off AGO. However 

testing for potential release activity in vitro using recombinant XRN2 and PAXT-1 – XRN2 complex, 

no such activity was observed. This suggests, that XRN2 guides releasing factors to AGO complexes 

rather than exhibiting release activity itself. As pointed out earlier, XTBD-proteins could serve as 

protein scaffolds, recruiting more subunits to XRN2, hence also serving as a release factor binding 

platform. Thus it would be interesting to create PAXT-1 C-terminus deletion worm lines and check if 

similar release defects occur as observed for XRN2 knock-downs. However, off-target effects of XRN2 

RNAi or secondary effects thereof, such as reduced stability of yet unknown proteins, could have led 

to wrong assumption of an XRN2 mediated miRNA unloading off AGO and this mechanism might be 

completely unrelated to XRN2. 

 

Implication for XRN2 in Human Diseases 

XRN2 and its important functions are well studied in various model organisms, such as yeast and 

C. elegans. It plays crucial roles in the RNA metabolism as described earlier, however studies 

investigating its physiological role in humans lack behind. Interestingly, it could recently be shown, 

how hepatitis virus C (HCV) uses endogenous miRNAs to prevent degradation of its RNA genome by 

XRN2 as well as XRN1 (Li et al., 2015; Sedano and Sarnow, 2014). HCV’s RNA genome harbors binding 

sites at its 5’-end for liver miRNA miR-122, which forms a duplex protecting for potential degradation. 
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It is however not well understood, how a predominantly nuclear nuclease like XRN2 acts on HCV’s 

cytoplasmic genome, especially since its 5’-end harbors a triphosphate group. 

Moreover, XRN2 is found to be amplified in breast cancer coinciding with amplifications of 

CDKN2AIP (Cerami et al., 2012; Eirew et al., 2014; Gao et al., 2013). Also, mutations of cis-acting 

regulatory elements in spontaneous lung cancer of nonsmokers lead to increased XRN2 mRNA levels. 

Accordingly, XRN2 is implicated in proliferation and differentiation of lung epithelial cells (Lu et al., 

2010). Remarkably, staining of CDKN2AIP and NKRF in human U-2 OS osteosarcoma cells reveal 

specific localization to the nucleus and the nucleolus, respectively (Uhlén et al., 2015). This underlines 

the hypothesis, of XRN2 forming multiple complexes to execute its diverse functions at different 

subcellular compartments. 
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