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Summary  

 

The importance of metalloenzymes in nature is reflected by their involvement in many 

fundamental processes (e.g. photosynthesis, respiration, nitrogen fixation). The creation 

of artificial metalloenzymes for chemical and biochemical applications is an intriguing 

and potentially highly rewarding area of research. As a starting point, a catalytically 

active transition metal complex or catalyst precursor needs to be incorporated into a 

host protein thereby generating a hybrid, which exhibits attractive features of 

biocatalyst and chemocatalyst. Exploiting the biotin (strept)avidin technology for the 

creation of artificial metalloenzymes, is a convenient means, to ensure the cofactor 

localisation thanks to the high affinity of biotin for streptavidin. Synthetic cofactor and 

protein host can be separately modified by chemical- and genetic means, respectively 

and subsequently combined. The topic of this thesis is to create artificial transfer 

hydrogenases relying on this technology and to study the resulting constructs. With 

the ultimate goal of implementing efficient directed evolution protocols for the 

optimization of artificial metalloenzymes and for their application in vivo, the 

interaction between the active catalyst and the biological environment needs to be 

evaluated. Mutual inhibition between the synthetic catalyst and enzymes (other than 

Sav) was identified as one potential problem. After reviewing the main organometallic-

based methods for the non-enzymatic regeneration of NADH, a solution for the 

frequently observed inhibition between the organometallic NADH regeneration system 

and the NADH dependent enzyme, namely the compartmentalization of the synthetic 

cofactor in Sav, will be discussed.  The incorporation of the active organometallic 

catalyst [Cp*Ir(biot-p-L)Cl] into streptavidin, led to an active ATHase (Artificial 

Transfer Hydrogenase), utilized for NADH regeneration, which was subsequently 

successfully  coupled in a cascade biocatalysis reaction with HbpA (a NADH and 

FADH2 dependent monooxygenase), for the selective hydroxylation of 2-

hydroxybiphenyl to 2,3-hydroxybiphenyl. Next, the stereoselectivity of the ATHase 
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mediated-NAD+ reduction with deuterated formate as a deuteride source was 

investigated resulting in up to 90% de.  

Finally chemical variants of IrCp*/Sav- or RhCp*/Sav-based transfer hydrogenases were 

studied. In order to rapidly generate chemical diversity, a new approach for the 

creation of biotinylated complexes is presented. Tethering the biotin anchor to the Cp* 

moiety of the organometallic complex, thereby leaving three coordination sites vacant, 

enabled fast screening of libraries of bidentate ligands, which led to the identification 

α-amino amides as promising ligands for the asymmetric reduction of cyclic imines. 
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Chapter 1 

_______________________ 

Introduction 

 

1.1 Generalities about catalysis 

Enzymes are widely applied for chemical transformations[1] due to their high activity 

and selectivity resulting from their complex and well organized three-dimensional 

structure. Enzymes are able to perform complicated transformations such as 

photosynthesis, nitrogen fixation, respiration etc. Nowadays, the use of enzymes in 

industry is extensive for the synthesis of complex molecule e.g. in the production of 

pharmaceuticals, agrochemicals and flavours.[2,3] The preparation of enantiopure 

compounds from a racemic mixture or prochiral compounds is still considered  

challenging for a range of transformations. 

In 1893, Lord Kelvin was the first to define chirality “I call any geometrical figure, or 

group of points, chiral, and say it has chirality, if its image in a plane mirror, ideally 

realized, cannot be brought to coincide with itself ”.[4] Chirality is present in nature 

almost everywhere, and in different types of molecules including DNA, carbohydrates, 

amino acids, vitamins and alkaloids. Chiral molecules have two enantiomeric forms, 

which correspond to the respective image or mirror image of the molecule. Pure 

enantiomers possess the same physical and chemical properties (e.g. boiling points, 

density, solubility, redox potential, pKa, etc.) but interact differently with chiral system 

(e.g. proteins) and with polarized light (Figure 1.1).[5–7]  
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Figure 1.1 ― Some examples of the effects of enantiomers on biological systems. The central line 

indicates a mirror plane 

These few examples highlight the importance of chirality, and the importance to 

generate or isolate single enantiomers. In the context of synthesis, enantioselective 

catalysis occupies a place of choice. Its aim is to favour the exclusive formation of a 

single enantiomer starting from a racemic or prochiral starting materials. A common 

term to describe the ratio between two enantiomers, is the enantiomeric excess (ee) 

which is defined as (equation 1.1): 
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(1.1) 

 

The determination of ee can be achieved with different techniques like polarimetry, 

NMR-spectroscopy (after derivatization) and chromatographic methods (HPLC or GC). 

Commonly three different types of enantioselective catalysis are distinguished: 

heterogeneous, homogeneous and bio-catalysis. The last two research fields have 

generated a wide variety of methods for the synthesis of enantiopure compounds.[1,8]  

In homogeneous transition metal catalysis, the enantioselectivity of the reaction is 

provided by a catalyst consisting of a metal and a small enantiopure ligand directly 

bound to the metal. The chiral induction for the reaction relies on first coordination 

sphere interactions between ligand, metal and substrate, respectively. An exact 

prediction of the stereochemical outcome is difficult, and a screening approach is 

generally used.[9] In biocatalysis the chiral environment of the reaction is typically 

more precisely controlled through additional interactions of the substrate with the 

protein scaffold (hydrogen bonding, hydrophobic interactions) by the so-called “second 

coordination sphere”.[10] These additional interactions contribute to the stabilization of 

the transition state. Homogeneous catalysis and biocatalysis are complementary in 

many aspects (Table 1.1).[8,11]  
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Table 1.1 Comparison of typical features of homogeneous and enzymatic catalysis. 

 Homogeneous 

catalysis 

Bio- 

catalysis  

Substrate scope large small 

Enantiomers both enantiomers single enantiomers 

Turnover number limited large 

Metal involved any metal limited (biorelevant) 

Reaction repertoire large  small 

Reaction medium mostly organic mostly aqueous  

Optimization  chemical  genetic  

Second coordination sphere poorly defined well defined 

 

In line with arguments listen in the table above, biocatalysts can be very active and 

selective for specific reactions, whereas homogeneous catalysis covers a broader range 

of reactions. Hence, a catalytic system, which would combine the best aspects of these 

two approaches, is of high interest.  

 

1.2 Artificial metalloenzymes 

The first use of the word “enzyme” dates back to 1876 when German physiologist 

Wihelm Kühne identified it as a non-living substance able to perform fermentation.[12] 

Enzymes are macromolecules, mostly of proteinic nature, that function as bio-catalysts 

by increasing the reaction rates[13] and conform accordingly with the definition of a 

catalyst, which is ”a substance that increases the rate of a chemical reaction without 

itself being consumed”.[14]  

Metals are essential for all living organisms. They are frequently integrated in proteins 

where they contribute to structure and also often display catalytic function (such as 

photosynthesis, respiration, oxygen transport) in so-called metalloproteines.[15,16]  
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Metals play a key role in enzymes.[17] In metalloenzymes, the catalytic metal centre 

constitutes together with the coordinated moiety of the protein the 1st coordination 

sphere. The surrounding protein framework, around the 1st coordination sphere, 

constitutes the 2nd coordination sphere and plays a critical role in catalysis. 

The term “Artificial Metalloenzymes” refers to a catalyst resulting from the 

incorporation of a catalytically active metal ion or complex into a biomolecular host, 

such as a protein[11,18–20] or DNA.[21,22] 

In the light of the complementarity between homogeneous and enzymatic catalysis, 

artificial metalloenzymes appear as a promising alternative as they may combine the 

best of both worlds.[23] Artificial metalloenzymes have been successfully applied for a 

range of chemical reactions.[24–26]  

An artificial metalloenzyme consists of four elements; the biomolecular host, the 

anchor, the spacer, and the catalytic metal centre (Figure 1.2). 

 

Figure 1.2 ― Schematic representation of an artificial metalloenzyme. Chemical optimization is 

accomplished by modifying the spacer, the metal M, or the ligand scaffold X; genetic optimization is 

accomplished by site-directed mutagenesis in the proximity of the catalytic centre (*). 

There are two possible approaches to create an artificial metalloenzyme: a) de novo 

design, where the catalytic centre is incorporated into a designed polypeptide 

sequence;[27,28] b) modification of an existing protein.[23] 

The creation of artificial metalloenzymes needs to take three important parameters into 

consideration: 
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1. The choice of transition metal catalyst, which is determined by the reaction to 

be investigated.[23,29] The catalyst needs to be compatible with biomolecular 

scaffolds, and to operate under aqueous conditions. 

2. The biomolecular scaffold, which can be a polypeptide, a protein or a 

polynucleotide (RNA or DNA).[24] Apart from structural considerations, pH, 

temperature stability, and tolerance of the scaffold against organic solvents 

needs to be taken into account.[23] So far oxidations and reductions have only 

been carried out in combination with protein scaffolds, but not with DNA[23,24] 

The biomolecular scaffold affects not only the selectivity of the metal cofactor, 

but can also alter the reaction rate.[30,31] 

3. The anchoring strategy for the localization of the metal moiety in the 

biomolecular scaffold. Three different strategies are commonly distinguished: 

dative anchoring, covalent anchoring and supramolecular anchoring (Figure 

1.3). 

a. Dative anchoring relies on a metal that is linked to the biomolecular 

scaffold through a coordinative interaction of one or multiple amino acid 

side chains present in the host protein. These coordinating groups of the 

side chain typically stem from histidine, cysteine, methionine, glutamate 

or aspartate;[24] 

b. Covalent anchoring relies on the presence of a suitable electrophile in 

the ligand moiety, which reacts with accessible cysteine serine histidine 

residues.[24,29] The first example of a covalently protein linked metal 

catalyst was reported by Kaiser; [32,33]  

c. Supramolecular anchoring refers to a strong and specific non-covalent 

interaction between the biomolecular scaffolds and a small molecule 

ligand, which carries the artificial metal cofactor.[23,24,29] Whitesides was 

the first to report the creation of an artificial metalloenzyme by 

exploiting the high affinity of biotin for avidin.[34]  
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Figure 1.3 ― Different anchoring strategies: a) dative anchoring; b) covalent anchoring; c) 

supramolecular anchoring. M = catalytically active metal centre; the first coordination sphere is 

highlighted in red; the biomolecular scaffold is schematically depicted in green. 

All three different methodologies present distinct advantages and disadvantages. Dative 

anchoring does not require a chemical step to establish the linkage to the protein, but 

often suffers from selectivity due to competing coordinating residues on the surface of 

the protein. Covalent anchoring requires the presence of a unique reactive residue in 

the host protein for highly selective localization of the metal cofactor. Supramolecular 

anchoring is achieved by chemical modification of the complex with the ligand which 

binds to the protein. In principle, any cofactor which can be derivatized with a ligand 

that displays high affinity for a given protein can be employed, but the choice of 

scaffolds is accordingly limited to proteins that contain a binding pocket where the 

modified molecule can bind.[35]  

The creation of artificial metalloenzymes based on the biotin streptavidin technology is 

a well-established approach.[20,23–25,36] This technology is based on the strong 

supramolecular interaction between the host protein streptavidin and the guest 

molecule biotin (vitamin H). Streptavidin is a homotetrameric protein and each 

monomer constitutes a β-barrel which can bind a single molecule of biotin in a deep 

binding pocket leading to unambiguous positioning of the biotin ligand. The affinity of 

biotin for streptavidin  is one of the strongest non-covalent interactions known in 

nature (Ka ≈ 1013 M-1).[37,38] The introduction of the active catalyst moiety into 

streptavidin is achieved by derivatization of the valeric acid side chain of the biotin 

anchor. This derivatization does typically not alter the biotin streptavidin affinity 
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dramatically.[39]  Streptavidin is stable under harsh conditions such as pH values as low 

as 1.5, temperature (> 90°C), organic solvents (50% ethanol) and the presence of 

surfactants like sodium dodecyl sulphate.[40,41] Streptavidin can be easily expressed in E. 

coli (about 200 mg/L). Furthermore, the protein and cofactor can be modified 

independently by genetic and chemical means. These characteristics enable the 

application of artificial metalloenzymes in a wide range of catalytic transformations. 

Wilson and Whitesides were the first to use the biotin avidin technology for artificial 

metalloenzymes and incorporated a rhodium diphosphine catalyst for the asymmetric 

hydrogenation of activated olefins in avidin.[34] Following this pioneering work, many 

other catalysts have been incorporated into the structurally related streptavidin and a 

range of catalytic reactions scrutinized such as hydrogenation,[42] olefin metathesis,[43] 

transfer hydrogenation of ketones, imines and enones,[44,45] sulfoxidation,[46] 

dihydroxylation,[47] allylic alkylation [48] and C-H activation.[31]  

To evaluate the performance of artificial metalloenzymes in terms of rate, the kinetic 

model of Michaelis and Menten is typically applied (equation 1.2). In the first, step the 

enzyme (E) and the substrate (S) form a complex (ES), (k1 indicates the association rate 

and k-1 indicates the dissociation rate of the ES complex). In the second step, the 

reaction takes place and the ES complex is converted into product (P) and free enzyme 

(k2 is the rate constant for this step). The KM equals the dissociation constant of the 

enzyme substrate complex, if k2<<k-1.[49] 

 

(1.2) 

 

Another assumption is the “steady state” approximation: when the concentration of the 

substrate is much higher than the concentration of the enzyme ([S]>>[E]]), then the 

concentration of the enzyme-substrate complex ([ES]) remains constant in the initial 

phase of the reaction and the Michaelis–Menten equation can be expressed as (equation 

1.3): 
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(1.3) 

 

In the equation above, it is also assumed that the binding step is fast, thus k2 equals the 

total catalytic constant kcat which is defined as (equation 1.4): 

 

 (1.4) 

  

where [E]0 is the total enzyme concentration. The concentration of the substrate at 

which v=½Vmax is the KM. In an optimal case for catalysis, an enzyme shows high 

specific activity and should show minimal substrate (or other) inhibition.  

 

1.3 Catalytic scope 

1.3.1 NADH regeneration 

The application of biocatalysis in industrial processes has received increasing 

consideration.[50–53] Oxidoreductases present considerable potential and a large 

application field, due to their high activity and selectivity.[54,55] For their biological 

function, oxidoreductases require redox equivalents often provided in the form of 

cofactors, such as nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine 

dinucleotide phosphate (NADP+) (Figure 1.4).  
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Figure 1.4 ― NAD(P): structure and redox chemistry 

The regeneration of the cofactor is an important topic in biocatalysis, because the 

stoichiometric use of NAD(P) is not feasible due to its high cost (Table 1.2). A catalytic 

amount of cofactor is generally used in NAD(P) or NAD(P)H dependent 

biotransformations and a concurrent reaction is performed to regenerate the cofactor. 

Table 2.2 Cost of cofactors from Alfa-Aesar. Product purity: a) 97%; b) 98%; (April 2015) 

Cofactor €/g 

a) NAD+  34 

b) NADH 48 

b) NAD(P)+ 361 

b) NAD(P)H 1050 

  

Different strategies are employed for cofactor regeneration: a) the use of whole cells, 

which provide their own redox equivalents; b) the addition of a sacrificial co-substrate; 

c) the addition of a second enzyme and a co-substrate[54,56] The most  commonly 

employed enzymatic regeneration systems for synthetic applications are formate 

dehydrogenase/formic acid, glucose dehydrogenase/glucose, alcohol 
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dehydrogenase/sacrificial alcohol or glutamate dehydrogenase/glutamate.[56–58] In 

extension to the enzymatic methods mentioned above, further non-enzymatic 

regeneration approaches, namely chemical, electrochemical, and photochemical 

regeneration methods have been investigated.[59–62] Nowadays, none of the non-

enzymatic regeneration methods has reached the efficiency provided by enzymatic 

systems. Non-enzymatic regeneration methods will be discussed in chapter two of this 

thesis and include the use of artificial metalloenzymes based on the biotin 

(strept)avidin technology. The employment of artificial metalloenzymes for NADH 

regeneration will be presented in chapter 3. 

 

1.3.2 Transfer hydrogenation: asymmetric imine reduction 

The synthesis of enantiopure amines is of high interest due to the high value of these 

compounds arising from various applications in the pharmaceutical, agrochemical, and 

fine chemical industries.[63,64] Imine reduction is a convenient route to enantioenriched 

amines it has received increasing attention in the last 30 years.[65] A prominent role 

among the reduction methods is held by the asymmetric transfer hydrogenation (ATH) 

to access such compounds. ATH is an efficacious strategy to reduce ketones or imines 

with the assistance of homogeneous transition metal catalysis and an alternative to 

hydrogenation processes (using hazardous H2).[66–68] 

The first example of asymmetric transfer hydrogenation for the reduction of prochiral 

ketones or dehydrogenation of chiral alcohols, was reported in the late 1970s from 

Sinou[69] and Ohkubo[70], who used the Wilkinson’s catalyst, and either a chiral co-

substrate or a chiral ligand. However, these catalytic systems afforded modest results in 

terms of conversion and enantioselectivity. A remarkable advancement in asymmetric 

transfer hydrogenation appeared with the introduction of Noyori’s ruthenium based 

catalyst.[71] The η6-arene piano stool complex of Noyori was successfully applied in the 

asymmetric transfer hydrogenation of ketones,[67,71] and inspired related complexes 

bearing amino alcohols,[72] or C2-symmetric diphosphines/diamines as ligands,[73] formic 
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acid/triethylamine mixtures were also successfully employed instead of isopropanol as a 

hydride source.[74] Noyori’s ruthenium (II) based catalysts and analogous catalysts such 

as [η5-Cp*M(TsDPEN)Cl] (M=Ir, Rh)[75–77] are probably the most prominent catalysts for 

the asymmetric transfer hydrogenation of ketone substrates. 

Imine reduction by transfer hydrogenation is generally carried out using either 

isopropanol, formic acid or formate salts as reducing agents and ruthenium, iridium or 

rhodium based catalysts.[65] Grigg et al. reported in 1981 the use of Wilkinson's catalyst 

for the transfer hydrogenation of aldimines to secondary amines, using isopropanol as 

the hydride source.[78] Jones et al. reported in the late 1980s the ruthenium catalyst 

precursor Ru3(CO)12 for the transfer hydrogenation of benzylideneaniline.[79]  

The Shvo’s diruthenium complex[80] was utilized for the ATH of imines  and  

investigated by Casey[81,82] and Bäckvall.[83–85] 

The introduction of the Noyori’s ruthenium (II) based catalyst brought improved 

results in the ATH of imine.[86] Different isoquinolines and other cyclic and non-cyclic 

imines were reduced with up to 97% ee using formic acid-triethylamine as a hydride 

source. The reactivity of the catalyst was much higher for imine reduction compared to 

ketone reduction. 

In the last 2 decades, a range of ligands and many successful catalysts have been 

developed for the ATH of ketones and imines.[68,87] The increasing demand for efficient 

and environmentally-friendly chemistry encouraged also the development of water 

compatible catalysts.[88] Deng et al. reported the first examples for asymmetric transfer 

hydrogenation in water, employing Noyori’s ruthenium (II) TosDPEN piano stool 

complex for the reduction of a  range of cyclic and a few acyclic imines with good to 

excellent ee using HCO2Na as a hydride source and sulfonated analogue of the ligand 

for improved water solubility.[89] Modified versions of the complex for improved water 

solubility were also investigated in further studies.[90,91] Investigation on the influence 

of the pH  for the ATH in water, were conducted from Xiao in catalytic systems for 

ketone and[92] and quinoline reduction.[93] The reduction of dihydroisoquinoline-based 
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scaffolds can be considered as a model reaction for the evaluation of new catalysts. 

(Scheme 1.1). 

 

Scheme 1.1 ― Asymmetric transfer hydrogenation of cyclic imine.  

By anchoring a related complex with an achiral ligand moiety bound to a M-arene 

fragment  inside a protein scaffold and subsequent chemo-genetic optimization, 

artificial transfer hydrogenases (ATHases) were developed by the Ward group for the 

reduction of cyclic imines.[45] A range of three-legged piano stool complexes of Rh, Ir[77] 

and Ru[67] are highly active in the asymmetric transfer hydrogenation of imines. 

Considering the robustness of the Cp* moiety[94,95] and aiming at the fast generation of 

large artificial cofactor libraries, a new strategy to link the catalyst through the Cp* 

moiety to biotin, was employed.[96] This concept is discussed in more detail in chapter 5 

of this thesis. 
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1.4 Scope of the thesis 

The goals of this thesis are to improve and explore the potential of artificial transfer 

hydrogenases (ATHases) for new applications. The use of [(ηn-arene)M(ligand)] (M= 

Rh, Ru, Ir) complexes as catalysts for the creation of ATHases has been successfully 

demonstrated for several applications in the Ward group. In the light of these reliable 

ATHases, the objective of this thesis are: 

 

1. Employ the ATHases for NADH regeneration in coupled enzymatic 

transformations to overcome the mutual inhibition between an organometallic 

catalyst and an enzyme. 

 

2. Investigate the stereoselectivity of the ATHase in NAD+ reduction 

 

 

3. Explore new strategies towards increasing the chemical diversity of ATHases  
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2.1 Abstract  

Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide 

phosphate [NAD(P)H] constitute a major cost factor in preparative biotransformations. 

The development of efficient methods for their regeneration with cheap reducing 

equivalents has been an area of intense research in the last decades. Methods explored 

include chemical, electrochemical, and photochemical approaches. None of the 

methods to regenerate NADH has reached efficiency comparable with enzymatic 

regeneration (e.g. formate dehydrogenase), which remains the method of choice for 

most applications.  

In this review, we summarize primarily organometallic-based approaches for NADH 

regeneration methods which include non-enzymatic steps, before moving on to the 

most recent developments in synthetic NADH related transformations. We highlight 

the frequent problem of mutual inactivation between the organometallic catalyst for 

NADH regeneration and the corresponding NADH dependent downstream enzyme. 

Potential remedies are discussed, such as the compartmentalization of the 

organometallic complex.  

 

2.2 Introduction 

Ever since the groundbreaking work by Abril and Whitesides[1] and Steckhan and 

colleagues[2] on metal mediated nicotinamide adenine dinucleotide (NAD+) 

regeneration the field has blossomed and has been reviewed extensively.[3–12] While 

numerous metal-catalysts have been reported for the efficient reduction of the 

pyridinium moiety, several studies to date were performed on NAD+ (or analogs 

thereof) in the absence of the nicotinamide adenine dinucleotide (NADH) dependent 

enzyme. Indeed, combining both enzyme and organometallic catalyst often lead to 

deactivation of one or both catalytic systems. In this context and following a selection 
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of historically relevant abiotic NADH regeneration systems, we present the most 

promising means to overcome the mutual inhibition challenge.  

 

2.3 Pioneering non-enzymatic approaches for the regeneration of 

nicotinamide adenine dinucleotide phosphate [NAD(P)H] 

The first electro-enzymatic regeneration of NAD(P)H was reported by the group of 

Whitesides. For this purpose, they relied on a tungsten cathode to reduce either a 

disulfide to the corresponding dithiol[13] or methyl viologen[14] to provide the reducing 

equivalents for the enzymatic reduction of NAD+ or nicotinamide adenine dinucleotide 

phosphate (NADP+) with either lipoamide dehydrogenase or ferredoxin NADP 

reductase, respectively. This indirect approach allowed to overcome problems 

encountered in the direct electrochemical reduction, such as insufficient 

regioselectivity and radical dimerization.[15] The NADH produced served for the 

concurrent reduction of pyruvate with lactate dehydrogenase. The methyl viologen 

mediated NADPH regeneration was coupled to the glutamic dehydrogenase catalyzed 

formation of glutamate from α-ketoglutarate. 

The first example of indirect chemical regeneration of NADH, was also reported by 

Whitesides' group in 1981. They employed a water soluble organometallic diphosphine 

rhodium(I) catalyst, to convert pyruvate to lactic acid using H2 (2.72 atm) as reducing 

agent. In the presence of lactate dehydrogenase, NAD+ was reduced to NADH, thus 

enabling the stereoselective reduction of (1R,4S)-Norcamphor with horse liver alcohol 

dehydrogenase (Figure 2.1).[1] They note that the efficiency of the system is limited by 

the modest activity (TOF) of the rhodium complex in the pyruvate reduction (TOF ≈ 10 

h-1, TON = 1500), which nevertheless enables high productivity (TON). The 

deactivation of the rhodium complex by free thiol groups present on the enzymes was 

hypothesized. The addition of a fresh batch of the complex was required to complete 

the reaction.  



24 
 

 

Figure 2.1 ― The first example of NADH regeneration involving a metal-catalyzed step.[1] 

One of the first attempts to regenerate NADH by a photochemical reduction was 

reported by Kiwi in 1981. Here, [Ru(bpy)3]2+ was activated by irradiation with visible 

light, in the presence of TEA which served as the electron donor (Figure 2.2).[16] In 

contrast to their proposed final disproportionation step of the NAD radicals to NAD+ 

and NADH,[17] Steckhan subsequently showed that the radical dimerises practically 

exclusively to yield the non-active (NAD)2.[18] 
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Figure 2.2 ― Proposed photochemical NADH regeneration with [Ru(bpy)3]2+ as catalyst.[16] 

Steckhan was the first to report an indirect electrochemical NADH regeneration 

method. In this system, a [Rh(bpy)3]3+ catalyst is reduced electrochemically to 

[Rh(bpy)2]+ which subsequently reduces NAD+ in  buffered aqueous medium which 

serves as a proton source (Figure 2.3). The system was coupled to horse liver alcohol 

dehydrogenase (HLAD) catalyzed ketone reduction.[19] The use of a [Rh(bpy)3]3+ 

mediator prevents the formation of NAD radicals. Indeed, the direct electrochemical 

reduction of NAD+, requires a potential of > -1.1 V vs. the Ag/AgCl electrode, 

potentially leading to side-products, including the NAD dimer. In the presence of the 

redox-mediator, the potential can be reduced to -850 mV vs. Ag/AgCl electrode. The 

authors identified a passivation of the cathode due to the deposition of 

[Rh(bpy)2(H2O)2]Cl or [Rh(bpy)2(OH)2]Cl leading to low TONs with respect to Rh 

(TON = 2.2). Lacking enzyme activity as a possible cause for the low productivity was 

excluded. 
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Figure 2.3 ― First example of an indirect electrochemical NADH regeneration using an organometallic 

mediator.[19]  

Subsequently, Steckhan reported a photochemical system similar to Kiwi's whereby 

[Ru(bpy)3]2+ (used as sensitizer) is activated by visible light.[18] In the presence of TEOA, 

[Rh(bpy)3]3+ is converted to [Rh(bpy)2]+ and reduces NAD+. In subsequent work, they 

reported an improved version of the electrochemical regeneration. The improvement 

was mainly achieved by tuning the ligand: substituting the bipyridine by bipyridyl-5-

sulfonic acid, allowed to reduce the reduction potential to -730 mV vs. Ag/AgCl 

thereby overcoming the formation of NAD radicals. A TOF of 0.5 h-1 and a TON of 19 

with respect to Rh were achieved in the coupled reduction of cyclohexanone to 

cyclohexanol by HLAD.[20] 

Importantly, Steckhan introduced [Cp*Rh(bpy)Cl]+ to the arena of NADH regeneration. 

Compared to previous systems, the coupling of this catalyst with LDH shows 20 times 

higher reduction rates (TOF = 5 h-1, TON = 14 in respect to Rh) in the conversion of 

pyruvate.[2]  

In the latter system, the hydride [Cp*Rh(bpy)H]+ is the species responsible for NAD+ 

and NAD(P)+ reduction. Instead of using electrochemical means of production from 

[Cp*Rh(bpy)Cl]+, it can be generated by ligand substitution using sodium formate as 

hydride source in a purely chemical regeneration system (Figure 2.4).[21] For NADH and 

NADPH regeneration at 38°C the reported TOF is 82. It should be noted that sodium 
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formate had been introduced previously by Whitesides as a preparative stoichiometric 

reagent for the enzymatic regeneration of NAD+ with formate dehydrogenase.[22] 

 

Figure 2.4 ― Regeneration of NAD(P)H with [Cp*Rh(bpy)]2+ using formate as chemical hydride 

source.[21] 

 

2.4 Recent developments for NAD(P)H and NAD(P)+ 

regeneration 

The initial examples of NAD(P)H regeneration involving non-enzymatic steps, rely 

largely on rhodium―and ruthenium-based catalysts. Numerous other studies have 

been published in the past 20 years. Metals investigated for the reduction and oxidation 

of  NAD+/NADH  or analogues  (in solution or as electrode materials) include Co,[23–25] 

Mn,[26] Fe,[27] Pd-Au,[28] Pt-C,[29] Ni-C,[29] Cu, Au, Pt-Au,[30] Re,[31,32] Cu-Hg.[33] 

Recent reports feature increasingly iridium as the active metal center and address 

additionally the reverse reaction – the catalytic non-enzymatic oxidation of NAD(P)H 

under the simultaneous formation of metal hydrides.  

Fukuzumi  and co-workers[34] reported an efficient system where a [C-N] 

cyclometalated complex [Cp*Ir(4-(1H-pyrazol-1-yl)benzoic acid)H2O]SO4 can 

regenerate NADH under mild conditions (pH 6-8) utilizing H2 as the hydride source at 

room temperature and ambient pressure (Figure 2.5).  A TON of 9.3 at pD 8.0 was 

reported for an NMR experiment at high conversion after 90 min. Under moderately 

acidic conditions, the same complex catalyzes the oxidation of NADH (i.e. the 

microscopic reverse reaction). The TON was determined with 6.3 after 20 min. at a pD 
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of 4.6 and at high conversion. This offers interesting opportunities for catalysis in a 

biological environment since the hydride is transferred to the metal complex, before 

combining with a proton from the solvent to release H2. It is believed that the change 

in pH leads to protonation of the carboxylate group on the ligand, which modifies the 

electronic properties of the ligand and alters the total charge of the complex. 

Regeneration of NADH with this complex can also be accomplished with alcohols as 

reductants under basic aqueous conditions (pH 8.5-10) yielding the corresponding 

carbonyl compounds as 'byproducts'.[35] 

 

Figure 2.5 ― NAD+ reduction (neutral conditions) and NADH oxidation (acidic conditions) with a 

cyclometallated pianostool complex.[34] 

Shortly thereafter, Sadler showed that an organometallic ruthenium- or iridium 

catalyst can be employed for the reduction of pyruvate with NADH as the hydride 

source, thus mimicking the activity of lactate dehydrogenase.[36] In particular, the 

organometallic complexes [(η6-hmb)Ru(bmp)Cl]PF6 (hmb=hexamethylbenzene, 

bpm=2,2’-bipyrimidine) and [CpxphIr(phen)Cl]PF6 (xph= η5-C5Me4C6H5, phen=1,10-

phenanthroline) are two functional mimics of lactate dehydrogenase (for the iridium 

complex, a TON of 75 was reached) (Figure 2.6). The complex [Cp*Ir(phen)Cl]PF6 was 

employed to catalyze the reduction of quinones in a biomimetic reaction of ubiquinone 

oxidoreductase.[37] Sadler analyzed the influence of the nature of the arene cap and the 

N,N-bidentate ligand for Noyori type ruthenium complexes. The activity of the 

complex for NADH oxidation was particularly high when benzene was used as an 

arene cap and the chelating aminosulfonamide ligand carried electron poor 
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sulfonamides.[38] The oxidation of NADH to NAD+ was further performed in aqueous 

solution with the osmium containing pianostool complex [(η6-p-cym)Os(Impy-

NMe2)Cl]PF6 (p-cym= para-cymene, Impy=iminopyridine).[39] In preceding work, 

Sadler and co-workers[40] reported the application of  different ruthenium complexes 

for the generation of NADH under physiological conditions using formate as reducing 

agent. 

 

Figure 2.6 ― NADH oxidation coupled with pyruvate reduction. The resulting systems present lactate 

dehydrogenase activity.[36] 

An iron(III) porphyrin complex was introduced by Gröger for the oxidation of 

NAD(P)H.[41] This water soluble organometallic catalyst is able to oxidize both NADH 

and NAD(P)H with molecular O2 from air as the electron acceptor reaching a TON of 

48-50 (Figure 2.7). Efficient alcohol oxidation was achieved in conjunction with an 

alcohol dehydrogenase. Tests for H2O2 were negative, which accordingly did not need 

to be decomposed by the addition of a catalase. No mutual deactivation of 

metalloporphyrin and enzyme was reported. 
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Figure 2.7 ―  a) NAD(P)H oxidation by a biomimetic organometallic complex; b) water soluble iron(III) 

porphyrin for NAD(P)H oxidation.[41]  

Hollmann has been very active in the field of cofactor regeneration. He recently 

reported on coupling the well-established [Cp*Rh(Bpy)(H2O)]2+ catalyst for NADH 

regeneration with cyclohexanone reduction catalysed by alcohol dehydrogenase from 

thermophile Thermus sp. ATN1 (TADH) (Figure 2.8). Instead of formate, he relied on 

phosphite as the stoichiometric reducing agent reaching a TOF of 21 h-1.[42] Phosphite 

had previously been reported for enzymatic NADH regeneration with phosphite 

dehydrogenase.[43] While the authors observe product inhibition for the enzyme, no 

inactivation of the rhodium complex or of the enzyme was mentioned.  

Hollmann and co-workers[44] also reported the use of a Noyori-type rhodium catalyst 

[Cp*Rh(TsDPEN)Cl], immobilized on polyethylene solid support, for the regeneration 

of NADH with  a TOF of 2.5 h-1.  
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Figure 2.8 ― Chemical NADH regeneration using phosphite as hydride source, coupled with enzymatic 

alcohol dehydrogenase.[42] 

A photochemical approach employing flavin as photosensitizer for the regeneration of 

NADH was reported by Park. Electrons are provided by TEOA and 

[Cp*Rh(bpy)(H2O)]2+ serves once again as organometallic mediator. The NADH 

regeneration system was coupled to an enzymatic reaction for the formation of L-

glutamate from α-ketoglutarate with GDH (L-glutamate dehydrogenase) (Figure 2.9).[45] 

No inactivation of enzyme or mediator was reported.  

In a successive investigations, they used different photosensitizers such as Eosin-Y or 

dot-coated silica beads, the former also in conjunction with NAD+ analogues.[46,47] A 

related photochemical regeneration of NADPH was recently coupled with cytochrome 

P450 catalyzed the O-dealkylation. In this case, the author mention the inactivation of 

the cytochrome P-450 by [Cp*Rh(bpy)(H2O)]2+.[48]  
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Figure 2.9 ― NADH regeneration induced by visible light, mediate from organometallic rhodium 

catalyst, coupled with an enzymatic  ʟ-glutamate dehydrogenase.[45] 

 

2.5 Mutual inactivation of the organometallic catalyst and the 

enzyme 

A challenge, often encountered in combining transition metal-based NAD(P)H 

regeneration with enzymatic NAD(P)H-dependent processes is the mutual deactivation 

of the organometallic catalyst and the enzyme. 

Some of the publications summarized above, mention low TONs and suggest that this 

may be due to the limited compatibility of organometallic and enzymatic catalysts. We 

present below a selection of studies aimed at addressing this problem specifically. 

To the best of our knowledge, Schmid and Fish were the first to highlight the mutual 

inactivation between [Cp*Rh(bpy)(H2O)]2+ and an NADH dependent enzyme.[49] The 
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model system they investigated was the [Cp*Rh(bpy)(H2O)]2+ mediated regeneration of 

an NADH mimic with the enzymatic hydroxylation of 2-hydroxybiphenyl to the 

corresponding catechol catalysed by 2-hydroxybiphenyl-3-monooxygenase (HbpA) 

(Figure 2.10). 

Upon combining the organometallic cofactor regeneration system with the 

monooxygenase, no product formation was detected. The authors suggest that the 

interaction between the accessible nucleophilic amino acid residues (i.e. lysine (-NH2) 

and cysteine (-SH)) of the enzyme (HbpA) and the soft metal center of the 

organometallic catalyst causes deactivation of the rhodium catalyst. 

To overcome the problem, they immobilized the enzyme on a polymer support flanked 

with epoxide moieties which react with exposed nucleophilic amino acid residues. The 

resulting coupled system enabled substantial hydroxylation when natural NAD+ was 

employed.  

 

Figure 2.10 ― Organometallic regeneration of a mimic NADH coupled with enzymatic 

monooxygenase.[49] 
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Lütz and coworkers investigated in detail the problem of mutual inactivation between 

the organometallic mediator [Cp*Rh(bpy)(H2O)]2+ and an alcohol dehydrogenase from 

Lactobacillus brevis (Lb-ADH) and proposed a compartmentalization of the two 

entities.[50] 

For this purpose, they scrutinized the interaction of the piano stool complex with 

isolated amino acids to evaluate their influence. Interestingly, he identified tryptophan, 

in addition to the traditional suspects histidine and cysteine that lead to strong 

deactivation of the pianostool moiety. Compartmentalization was achieved by 

immobilizing the organometallic mediator used for the electrochemical regeneration as 

part of a water-soluble polymer and the enzyme on Sephabeads®. Additionally, a 

cellulose membrane, permeable only to NADH and substrate, was introduced to 

physically separate both catalysts (Figure 2.11). Based on recovered mediator after the 

reaction they calculated a feasible turnover number of >200. 
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Figure 2.11 ― Electroenzymatic reactor with separation of electrochemical NADH-regeneration and 

enzymatic reaction for the production of p-chloro-(R)-phenylethanol with Lb-ADH.[50] 

Building on previous observations, Hollmann and coworkers investigated the 

inactivation of various enzymes upon addition of [Cp*Rh(bpy)(H2O)]2+. In addition to 

the spatial separation described above, they scrutinized the use of coordinating buffers 

as a potential remedy to mutual inactivation. They found that addition of (NH4)2SO4 

leads to an increased compatibility between the enzyme and the pianostool catalyst 

[Cp*Rh(bpy)(H2O)]2+. Unfortunately, the catalytic NADH regeneration using formate 

was eroded. In stark contrast, the electrochemical regeneration in the presence of 

(NH4)2SO4 remained satisfying.[51] 

More recently, Bergman, Raymond and Toste presented an original supramolecular 

compartmentalization strategy to prevent mutual inactivation. For this purpose, they 

encapsulated the pianostool moiety [CpRu(NCMe)2PMe3]+ (Cp = cyclopentadiene) 

within a supramolecular tetrahedral host cage. As a proof of principle, they developed a 

tandem catalytic process where the organometallic guest [CpRu(NCMe)2PMe3]+ 

catalyses the isomerization of allylic alcohol  to the corresponding aldehyde which is 

subsequently reduced by an alcohol dehydrogenase to the saturated alcohol. A formate 



37 
 

dehydrogenase provides the NADH equivalents for the process (Figure 2.12).[52] 

Although this system does not constitute an artificial NADH regeneration systems, it 

highlights the improved compatibility of an organometallic catalyst with enzymes 

upon incorporation into a supramolecular host, to avoid the interaction with free 

amino acid residues from enzyme. 

 

 

Figure 2.12 ― Encapsulation of a ruthenium piano-stool catalyst in a supramolecular cage allows to 

combine a metal-catalyzed allylic isomerization with an enzyme cascade consisting of an NADPH-

dependent alcohol dehydrogenase (ADH) and formate dehydrogenase (FDH).[52] 

An alternative approach to address the problem of mutual inactivation was reported by 

Hollmann, Turner and Ward. They incorporated an Ir-piano stool complex for NAD+ 

regeneration into streptavidin, thereby creating an artificial metalloenzyme and 

efficiently compartmentalizing the NADH dependent downstream enzyme and the Ir-

complex.[53] The incorporation was realized by exploiting the biotin streptavidin 

technology.[54] 

In the same study it was observed that the catalyst [Cp*Ir(biot-p-L)Cl] is significantly 

more active in NADH regeneration than the well-established [Cp*Rh(bpy)(H2O)]2+. By 
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incorporation of the iridium catalyst into a streptavidin mutant S112A, the system was 

coupled to the hydroxybiphenyl monooxygenase (HbpA) catalyzed hydroxylation; 

efficient hydroxylation was achieved under relevant biological conditions (pH 7.5, 

30°C, open air) (Figure 2.13) with a TON of >100 in respect to[Cp*Ir(biot-p-L)Cl]. 

 

 

  

Figure 2.13 ― An artificial metalloenzyme for the NADH regeneration fully compatible with 

hydroxybiphenyl monooxygenase (HbpA).[53] 

 

2.6 Outlook 

Having identified the underlying principles of mutual inhibition, several 

complementary compartmentalization strategies have been developed in recent years: 

polymer immobilization, selective membranes, supramolecular encapsulation and 

anchoring within a macromolecular scaffold. Thus far however, the most promising 

organometallic regeneration systems rely on precious metals: rhodium and iridium 

occupying a place of choice. The next step will be to implement the above strategies to 

base-metals. 
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Chapter 3 

________________________ 

Synthetic cascades are enabled by combining 

biocatalysts with artificial metalloenzymes 

3.1 Preamble 

With the aim of performing in vivo catalysis, i.e. employing catalytic organometallic 

chemistry in biological systems, the activity of the corresponding catalyst in the 

cellular environment needs to be assured. Therefore, one needs to consider that the 

catalyst will interact with the cellular matrix. In order to perform directed evolution of 

artificial transfer hydrogenases, one of the challenges that needs to be overcome 

consists of the often detrimental interaction between cellular proteins and the 

synthetic metal complex. Mutual inactivation between organometallic catalyst and 

enzymes is an event that occurs frequently when these two catalytic systems are 

brought together. This is mainly due to the interactions of nucleophilic amino acid side 

chain functions on the protein surface (steming e.g. from histidine, cysteine) and the 

metal catalyst.[1,2] To overcome this problem, the active organometallic catalyst 

[Cp*Ir(biot-p-l)Cl] was incorporated  into streptavidin mutants to shield it from the 

enzymatic tandem catalysis partner and thereby prevent inhibitory interactions. To 

validate this concept, the resulting artificial transfer hydrogenases (ATHase) were 

tested for the regeneration of NADH coupled with the concurrent action of 2-

hydroxybiphenyl monooxygenase (HbpA), which performs the ortho-specific 

hydroxylation of an α-substituted phenol to the corresponding catechol and requires 

NADH as a redox equivalent (Scheme 3.1).  
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Figure 3.1 ― Hydroxylation of 2-hydroxybiphenyl, coupled to ATHase-catalysed NADH regeneration. 
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3.2 Abstract  

Enzymatic catalysis and homogeneous catalysis offer complementary means to address 

synthetic challenges, both in chemistry and in biology. Despite its attractiveness, the 

implementation of concurrent cascade reactions which combine an organometallic 

catalyst with an enzyme has proven challenging, due to the mutual inactivation of both 

catalysts. To address this, we show that incorporation of a d6-piano stool complex 

within a host protein affords an artificial transfer hydrogenase (ATHase) which is fully 

compatible with and complementary to natural enzymes, thus enabling efficient 

concurrent tandem catalysis. To illustrate the generality of the approach, the ATHase 

was combined with various NADH-, FAD- and heme-dependent enzymes resulting in 

orthogonal redox cascades. Up to three enzymes were integrated in the cascade and 

combined with the ATHase with a view to achieving i) a double stereoselective amine 

deracemisation, ii) a horseradish peroxidase-coupled readout of the transfer 

hydrogenase activity towards its genetic optimization iii) the formation of ʟ-pipecolic 

acid from ʟ-lysine and iv) regeneration of NADH to promote a monooxygenase-

catalyzed oxyfunctionalization reaction. 

3.3 Introduction 

Cellular biochemistry requires the orchestration of metabolic pathways in which many 

enzyme-catalysed processes are able to function simultaneously, resulting in the 

production of a wide range of primary and secondary metabolites within the cell. In an 

attempt to construct artificial cells, usingthe principles of synthetic biology, 

compartmentalization of cellular processes will need to be mimicked in order to allow 

cascade reactions to take place in parallel in an efficient manner.[3–8] Whereas enzymes 

have evolved in concert and in complex media, problems and mutual inactivation are 

often encountered upon combining chemocatalyst with biocatalysts.[9–11] Such 

incompatibility may be circumvented by performing cascades in sequential steps or by 

site-isolation of the individual catalysts through immobilization, heterogeneous or 
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biphasic reaction conditions, encapsulation and so on.[12–26] Recently, we have described 

one approach to cellular compartmentalization in which an E. coli cell was engineered 

to simultaneously express an intracellular enzyme (monoamine oxidase) and also bind 

palladium nanoparticles in its outer membrane, thereby allowing efficient chemo-

enzymatic deracemisation of amines[26] Artificial metalloenzymes which result from 

encapsulation of an organometallic catalyst within a protein scaffold, have been shown 

to combine attractive features of both chemocatalysts and biocatalysts for single-step 

transformations[27–34] In the context of concurrent cascade reactions, we reasoned that 

the artificial cofactor may be effectively shielded by its host protein, thus preventing 

the mutual inactivation commonly encountered upon combining an organometallic 

catalyst with an enzyme (Figure 3.1). To test the validity of the concept, we examined 

the combination of an artificial transfer-hydrogenase (ATHase) and a monooxygenase 

(Figure 3.2). For this purpose, we rely on the incorporation of a biotinylated 

[Cp*Ir(Biot-p-L)Cl] complex within streptavidin (Sav hereafter) as ATHase using 

sodium formate as hydride source (Figures 3.1 and 3.2).  
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Figure 3.1 ― Reaction cascades resulting from combining an ATHase with a biocatalyst. The 

organometallic transfer-hydrogenation catalyst [Cp*Ir(biot-p-L)Cl] and biocatalyst suffer from mutual 

inactivation thus precluding the implementation of reaction cascades. Relying on the strength of the 

biotin-streptavidin interaction, incorporation of the biotin-bearing complex [Cp*Ir(biot-p-L)Cl] within 

streptavidin (Sav) affords  an ATHase which is fully compatible with and complementary to a variety of 

natural enzymes thus leading to the development of concurrent orthogonal redox cascades. 

 

3.4 NADH regeneration for monooxygenases 

 The chemical and electrochemical recycling of NAD(P)H and analogues has been 

intensively investigated as an alternative to enzymatic regeneration.[1,2,14,35–40] In this 

context, [Cp*Rh(bipy)Cl]+ has emerged as redox mediator or catalyst of choice. 

However, in the presence of the downstream enzyme, mutual inactivation is 

commonly encountered.[1,2] To test the validity of the molecular compartmentalization 

concept outlined in Figure 3.1, we investigated the regeneration of NADH in the 

presence of an NADH-dependent enzyme using an ATHase. Although significantly 
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more active than [Cp*Rh(bipy)Cl]+ for the NADH regeneration in the absence of an 

NADH-dependent enzyme, [Cp*Ir(Biot-p-L)Cl] was rapidly deactivated in the presence 

of 2-hydroxylbiphenyl monooxygenase (HbpA from Pseudomonas azaleica, an NADH- 

and FAD-dependent enzyme). In the presence of Sav, however, the mutual inactivation 

of [Cp*Ir(Biot-p-L)Cl] and HbpA was efficiently prevented and robust hydroxylation 

activity was achieved (Table 3.1, Figure 3.2). We conclude that Sav shields the ATHase 

from the downstream enzyme, allowing the NADH regeneration with formate as 

hydride source (KM(app) = 165 µM (±6 µM), kcat(app) = 1.37 min-1 (± 0.01 min-1), Supporting 

Information Figure 3.7). Full conversion of 2-hydroxybiphenyl to 2,3-

dihydroxybiphenyl was accomplished in 2 h with a crude enzyme extract (Figure 3.2 

and Table 3.1) and Supporting Information Figure 3.5).  

Table 3.1 Orthogonal redox cascade combining ATHase with monooxygenases. 

Entry Substrate Product Sav-Mutant Monooxygenase Conv. (a) (%) 

1 

  

_ HbpA 3 

2 

  

S112A HbpA >99 

a) Conversion determined by HPLC 

The system could be run either in pure aqueous phase or as a biphasic system with 1-

decanol functioning as a substrate reservoir and product sink, thereby highlighting the 

applicability of the ATHase under a variety of reaction conditions. The biphasic system 

displayed again strong inactivation in the absence of Sav, whereas a TON of > 100 

(versus [Cp*Ir(Biot-p-L)Cl]) was achieved when Sav was present (Supporting 

information Figure 3.6). 
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Figure 3.2 ― Expanding the concept of orthogonal redox cascades to include other enzymes. Concurrent 

regeneration of NADH by the ATHase in the presence of a monooxygenase. 

 

3.5 Outlook 

 We have demonstrated herein that an ATHase consisting of [Cp*Ir(Biot-p-L)Cl] 

anchored within streptavidin mutants is complementary and compatible with a variety 

of redox enzymes relying on NADH, FADH2 and heme cofactors. Such artificial 

metalloenzymes display attractive features which are reminiscent of both biocatalysts 

and chemocatalysts: precious metal reactivity, genetic optimization potential and well-

defined second coordination sphere provided by a protein scaffold. This last feature 

could be further exploited with a view to achieving the immobilization of the entire 

enzyme cascade. 

To optimize such cascades, directed evolution protocols are highly desirable. With this 

goal in mind, we have shown that the ATHase can be integrated with a colorimetric 

coupled assay, leading to the identification of a genetically improved ATHase. These 

proof-of-principle examples open fascinating perspectives towards complementing bio-

catalytic cascades with molecularly compartmentalized organometallic catalysts. 
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3.6 Supporting Information 

General Information 

Chemicals were purchased from Sigma-Aldrich, Acros and TCI and used as received. 

Streptavidin (Sav) mutants were produced, purified and characterised as previously 

described.[41] The Sav used in this work and on which all variants were based was T7-

tagged core Sav described by Gallizia et al.[42]  and here we refer to this as wild-type 

Sav. The corresponding ATHase is also referred to as wild-type (WT). For a detailed 

synthesis procedure of [Cp*Ir(Biot-p-L)Cl] see reference.[43] Commercial enzyme 

preparations were purchased from Sigma. MAO-Nmutants used in this study are 

described elsewhere.[44,45] rac-2-cyclohexylpyrrolidine was prepared from 2-cycloexyl-

1-pyrroline by reduction with NaBH4 in MeOH. 2-cyclohexyl-1pyrroline wa prepared 

according by literature procedure.[46] Pseudooxynicotine was prepared as described in 

reference.[47] 2,3-dihydroxybiphenyl was a kind gift from Prof. Dr. Andreas Schmid (TU 

Dortmund, Dortmund, Germany). L-lysine-13C2 HCl (99% 13C) was obtained from 

Sigma. NMR Experiments were performed at 25°C (MeOH calibration) on Bruker 

Avance III NMR spectrometers operating at 600, 500 or 400 MHz proton frequency. All 

were equipped with direct (600 and 400 MHz) or inverse (500MHz) dual channel 

broadband probe-heads with z-gradients. Chemical shift were referenced to residual 

proton solvent peak (4.773 ppm for H2O, 7,26 for CHCL3).The quantitative constant 

time HSQC experiment was performed using 2048 data points in the F2 and 1024 data 

points in the F+ dimension, corresponding to acquisition time of 155ms in F2 and 34 ms 

in F1. Each increment was recorded with 8 scans resulting in a total experiments time 

of 2h 45min.  HPLC measurements were performend on Agilent (or hp) machines 

equipped with modules from the 1100 and 1200 series and diode array detectors, if not 

indicated otherwise. HPLC columns were used with the appropriate guard columns, if 

not indicated otherwise. Column and conditions are indicated for each compound 

separately. GC measurements were performed on Agilent GCs of the 6890 series 

equipped with FIDs. 
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NAD reduction and HbpA coupled hydroxylation of 2-hydroxybiphenyl 

Stock solutions: Potassium phosphate buffer (KPi) was prepared by dissolving  K2HPO4 

(114.8 mg) and KH2PO4 (590.2 mg) in distilled water (100mL, final conc. 50 mM, pH 

6.0). Then sodium formate was dissolved in phosphate buffer (final 200mM). The pH 

was adjusted with NaOH. Stock solutions of lyophilized streptavidin S112A (Sav 

S112A) corresponding to 1 mM free binding sites (assuming 3 free binding sites per 

tetramer) were prepared by dissolving Sav S112A (21.9 mg) in H2O (1 mL) directly 

before the experiment. The mixture was stirred until all protein was dissolved. The 

stock solutions of the metal complexes were prepared in DMF to the final 

concentration of 1 mM. NAD+ and NADH stock solutions were prepared in H2O to the 

final concentration of 10 mM and stored at -20°C. FAD stock solutions were prepared 

in water to the final concentration of 1 mM. 

HbpA preparation 

The enzyme 2-hydroxybiphenyl-3-monooxygenase (HbpA, E.C.1.14.13.44) was kindly 

supplied by Prof. Dr. Andreas Schmid (TU Dortmund, Dortmund, Germany). The 

enzyme had been produced using Escherichia coli recombinantly expressing HbpA (E. 

coli JM101 pHBP461 containing hbpA) following a published procedure.[48,49] For 

enrichment, the cell crude extracts (cell disruption was achieved by two passages 

through a French Press) were submitted to anion exchange chromatography 

(Streamline DEAE anion exchanger - Pharmacia). HbpA was eluted with 20 mM Tris 

HCl pH 7.5 using a linear gradient of NaCl from 0 to 1 M NaCl. HbpA was recovered in 

pooled fractions at 150 to 200 mM NaCl. The final enzyme preparation (pooled 

fractions) contained partially purified HbpA. Specific activities of purified fractions 

were determined at 30°C, 0.1 mM 2-hydroxybiphenyl and 0.1 mM NADH.[48,49] HbpA 

was stored as a lyophilised powder at -20°C. HbpA-preparation (typically 12.5 mg/mL) 

was dissolved directly before the experiments in KPi buffer (50 mM, pH 7.5).  
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NADH regeneration activity of [Cp*Ir(Biot-p-L)Cl]; [Cp*Ir(Biot-p-L)Cl]Sav with 

[Cp*Rh(Biot-p-L)Cl] 

The activity measurements of the biotinylated metal-complexes (in the absence or 

presence of SAV) for NADH regeneration was carried out in disposable UV cuvettes 

(polystyrene) at 30°C (Shimadzu UV-2401 PC spectrophotometer; Julabo F12 

Refrigerated/Heating Circulator). The reaction buffer (980 µL (or 970 µL for the 

reaction with SAV), 50 mM KPi, 200 mM NaHCO2, pH 7.5) was supplemented with 

[Cp*Ir(Biot-p-L)Cl] or [Cp*Rh(Biot-p-L)Cl], respectively (10 µL of a 1 mM solution in 

DMF). If indicated, SAV-S112A stocksolution (10 µL, 1 mM in free binding sites in 

H2O; 3 free binding sites per tetramer assumed) was added and the mixture was 

incubated at ambient temperature for 15 min. to allow for binding of the metal 

complex to SAV. The reactions were started by addition of NAD (10 µL of a 10 mM 

solution in H2O). The reaction progress was followed spectrophotometrically by 

recording UV spectra or simply by following the absorption change at 340 nm. For 

quantification of NADH formed, the molar absorption coefficient of 6220 M-1 cm-1 was 

used.[50] 

Representative UV spectra of the [Cp*Ir(Biot-p-L)Cl] and of the [Cp*Ir(Biot-p-

L)Cl]Sav mediated reduction of NAD are shown in Figure 3.3. The time courses of 

NAD reduction for all three regeneration catalysts are shown in Figure 3.3 (right) and 

initial rates compared in Table 3.2. 
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Figure 3.3 ― Left: UV-spectra recorded during the [Cp*Ir(Biot-p-L)Cl] (top left) and [Cp*Ir(Biot-p-

L)Cl]SAV (bottom left)-mediated reduction of NAD. Spectra were recorded at 10 sec and 60 sec 

intervals in case of [Cp*Ir(Biot-p-L)Cl] (top left) and [Cp*Ir(Biot-p-L)Cl]SAV (bottom left), respectively. 

Right: Time course of the metal-catalyzed reductions of NAD. [Cp*Ir(Biot-p-L)Cl]: green; [Cp*Ir(Biot-p-

L)Cl]SAV(S112A): red; [Cp*Rh(Biot-p-L)Cl]: black. 

Table 3.2 Comparison of initial rates for graph in Figure 3.3 (right). 

Compound TOF [h-1] relative activity [%] 

[Cp*Rh(Biot-p-L)Cl] 4.3 100 

[Cp*Ir(Biot-p-L)Cl] 276.0 6420 

[Cp*Ir(Biot-p-L)Cl]SAV(S112A) 42.5 988 
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Effect of Sav-S112A on the robustness of the chemoenzymatic 

hydroxylation reactions 

In a first set of experiments the mutual inactivation of [Cp*Ir(Biot-p-L)Cl] and HbpA as 

well as the protecting effect of [Cp*Ir-biot-p-L)Cl]SAV(S112A) was examined. For 

this, spectrophotometric activity assays were performed: To phosphate buffer (1560 µL, 

50 mM, pH 7.5) was added [Cp*Ir(Biot-p-L)Cl] (20 µL of a 1 mM solution in DMF) and 

either SAV-S112A (20 µL, 1 mM free binding sites in H2O; 3 free binding sites per 

tetramer assumed) or H2O (20 µL), respectively. Subsequently the mixtures were 

supplemented with HbpA stock solution (400 µL, 1 mg/mL in 50 mM KPi buffer, pH 

7.5). These mixtures were incubated in a shaking incubator at 30°C. At 1 and 2 hours 

aliquots were taken to measure the residual activity. Residual HbpA activity: An 

aliquot of the incubated mixture (200 µL) was added to a mixture of phosphate buffer 

(740 µL, 50 mM, pH 7.5), NADH stock (30 µL of a 10 mM solution in H2O) and FAD 

(10 µL of a 1 mM solution in H2O) in a disposable UV-cuvette (polystyrene). The 

resulting solution was placed in a UV spectrometer at 30°C and background activity 

was recorded for 1.5 min. Residual substrate-related activity was followed after adding 

2-hydroxybiphenyl (20 µL of a 25 mM methanolic solution) by the decrease in 

absorption at 340nm (NADH). For residual [IrCp*(Biot-p-L)L] activity an aliquot of the 

incubated mixture (100 µL) was added to formate containing buffer (890 µL, 50 mM in 

KPi, 200 mM in NaHCO2, pH 7.5) and the reactions were started by addition of NAD 

(10 µL of a 10 mM solution H2O). Table 3.3 summarizes the residual activities observed 

for the metal- and biocatalyst.  
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Table 3.3 Residual activity of HbpA and Ir-catalyst after co-incubation. 

 residual HbpA activity [%] residual Ir-activity [%] 

 incubation time 

 1h 2h 1h 2h 

[Cp*Ir(biot-p-L)Cl] <1 0 29 0 

[Cp*Ir(biot-p-L)Cl]S112A 62 49 68 57 

Potassium phosphate buffer 98 94 100 100 

 

Both HbpA and [Cp*Ir(Biot-p-L)L] were rapidly deactivated when brought into 

contact. The deactivation was largely alleviated if the Ir-catalyst was preincubated with 

SAV-S112A. Hence, we concluded that indeed, SAV shielded the Ir-complex efficiently 

from interaction with HbpA and thereby protected both catalysts from mutual 

deactivation. 

The effect of SAV-S112A on the chemoenzymatic hydroxylation of 2-

hydroxybiphenyl 

A first set of experiments was performed in aqueous medium: formate containing 

buffer solution (1.68 ml of 50 mM KPi, 200 mM NaHCO2, pH adjusted to 7.5 with 

NaOH) was placed in a 2 mL PP-tube, SAV-S112A stock solution (40 µL, 1 mM free 

binding sites in H2O; 3 free binding sites per tetramer assumed) was added, followed by 

[Cp*Ir(Biot-p-L)Cl] (40 µL, 1 mM in DMF). This mixture was incubated for 15 minutes 

at room temperature. Afterwards, the mixture was supplemented with FAD solution 

(20 µL of a 1 mM solution in H2O) and HbpA stock solution (80 µL, 12.5 mg/ml, 11 

U/ml in KPi buffer). After addition of the substrate 2-hydroxybiphenyl (40 µL of a 25 

mM stock solution in methanol) the reaction was started by addition of NAD (100 µL of 

a 10 mM stock solution in H2O). The reaction mixtures were placed in a thermoshaker 

(TWISTER comfort) and incubated at 30oC and 400 rpm. Samples of 50 µL were 
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withdrawn at the indicated time points, diluted with ACN/water (0.95 mL of a 50:50 

(v/v) mixture containing 0.1% TFA) and analysed by RP-HPLC. (Shimadzu LC-20 

system with a Shimadzu SPD-20A Photo Diode Array detector using a Waters Xterra 

column (RP18, 3.5 μM, 4.6 × 150 mm). The temperature was controlled to 40°C by a 

Shimadzu CTO-20AC column oven. The eluent was acetonitrile/water (50/50) isocratic 

and contained 0.1% TFA; flow rate: 1.1 mL/min, detection wavelength 254 nm). The 

quantification was based on calibration curves using authentic standards. Typical 

chromatograms are shown in Figure 3.4. 

 

Figure 3.4 ― Chromatograms of a typical chemoenzymatic hydroxylation reaction. Red: Sample taken 

immediately after initiation of the reaction, blue: sample taken after 40 min reaction time, green: sample 

taken after 24 h reaction time. 

The reaction without Sav S112A was performed under identical conditions but leaving 

out the SAV-S112A addition step. The time courses of performing the reaction in the 

presence and absence of Sav S112A are compared in Figure 3.5. If Sav S112A was 

absent from the reaction mixture, accumulation of the product ceased soon after start 

of the reaction yielding less than 5% conversion of the starting material. However, in 

the presence of SAV-S112A, the reaction progressed smoothly to full conversion, 

accumulating the desired product only. 
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Figure 3.5 ― Comparison of the chemoenzymatic hydroxylation of 2-hydroxybiphenyl in the presence 

(blue) and absence (red) of Sav S112A. 

Due to the low solubility of the substrate (2-hydroxy biphenyl) in aqueous reaction 

media, the performance of the catalysts was somewhat limited. Therefore, we 

investigated the cascade reaction in a byphasic system (2LS) wherein a hydrophobic 

organic solvent (e.g. 1-decanol) serves as substrate reservoir and product sink (Figure 

3.6). A typical procedure was: to a buffered solution of NaHCO2 (712 µL, 200 mM in 

NaHCO2, 50 mM in KPi, pH adjusted with NaOH to 7.5) was added [Cp*Ir-biot-p-L)Cl] 

(50 µL of a 1 mM solution in DMF) and either Sav S112A (50 µL, 1 mM free binding 

sites in H2O; 3 free binding sites per tetramer assumed) or H2O (50 µL), respectively. 

The mixture was then supplemented with an FAD solution (10 µL of a 1 mM solution 

in H2O) as well as HbpA stock solution (128 µL, 12.5 mg/mL, 6.9U/mL in KPi buffer, 

pH of buffer 7.5). Immediately afterwards 2-hydroxybiphenyl in 1-decanol (1 mL of a 

100 mM solution) was added. The reaction mixtures were placed in a thermoshaker and 

incubated at 30oC and 800 rpm. After a short mixing period (approx. 1 minute) a sample 

(0.1 mL) was withdrawn and centrifuged to induce phase separation. 10 µL of the 

organic phase were withdrawn (the remaining sample was added back to the reaction 

mixture), diluted with ACN/water (0.99 mL of a 50:50 (v/v) mixture containing 0.1% 
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TFA) and analysed by RP-HPLC as described above. The reaction was subsequently 

initiated by addition of NAD stock solution (50 µL of a 10 mM solution in H2O). 

Samples were taken at the indicated time points (Figure 3.6) and treated as described 

above. For analysis, only the substrate and product concentrations in the organic phase 

were considered. 

 

Figure 3.6 ― Time course of chemoenzymatic hydroxylation of 2-hydroxybiphenyl under biphasic 

(2LPS) conditions in the presence (blue) and absence (red) of Sav S112A. 

Determination of apparent kinetic constants of ATHase catalyzed NAD 

reduction 

Note: the reaction conditions for the kinetic measurement (50 mM KPi-buffer, 200 mM 

NaHCO2) are not identical to the conditions used in the monophasic reaction set-up (42 

mM KPi-buffer, 168 mM NaHCO2).Stock solution: 

 Buffer 1: phosphate buffer 50mM pH 7.5 

 Buffer 2: phosphate/formate buffer (50mM in phosphate, 200mM in NaHCO2 

pH adjusted with NaOH to 7.5) 

 NAD+: 10mM in buffer1 (29.27 mg, purity 90%, contains 10% H2O) was 

dissolved 3.970ml of buffer1. 

 Buffer 3: stock of NAD+ diluted to various concentrations (see Table 3.4).  
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 [Cp*Ir(Biot-p-L)Cl]: stock 1mM (MW 803, weight 2.32mg in 2.889 ml of DMF) 

 ATHase: 10.2 mg of Sav S112A were dissolved in buffer 1 (4.209 mL) and Ir-

stock solution (467µL) were added. This leads to a final concentration of 100 µM 

and a ratio of Ir/free binding sites of 1/3(3 free binding sites per tetramer 

assumed). 

Table 3.4 Volumes and concentrations 

entry volume 

buffer 1 

[µL] 

volume 

buffer 3 

with NAD+  

[µL] 

NAD 

concentration  

of buffer 3 

[µM] 

volume 

ATHase 

[µL] 

volume 

buffer 2 

[µL] 

final conc. 

of NAD+ 

[µM] 

1 450 0 0 50 500 0 

2 250 200 25 50 500 5 

3 250 200 50 50 500 10 

4 250 200 75 50 500 15 

5 250 200 100 50 500 20 

6 250 200 150 50 500 30 

7 250 200 250 50 500 50 

8 250 200 400 50 500 80 

9 250 200 500 50 500 100 

10 250 200 1000 50 500 200 

11 250 200 2000 50 500 400 

12 250 200 4000 50 500 800 

13 250 200 6000 50 500 1200 

14 250 200 8000 50 500 1600 
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15 250 200 10000 50 500 2000 

 

The sample was prepared in the cuvette (polystyrene) by adding  first  buffer 1 

(prewarmed to 30°C), followed by the ATHase, and then buffer 3 (prewarmed to 30°C). 

The reactions were started by the addition of formate containing buffer 2 (prewarmed 

to 30°C). 

Each measurement was performed in triplicate in a Shimadzu UV-1800 UV 

spectrophotometer (at 30°C) and analysed with UV probe, version 2.34. Absorption was 

detected at 340nm and an absorption coefficient of 6220M-1cm-1 for NADH was used 

for calculation of the kinetic parameters.[50] Rates were determined by considering the 

linear part of increase in absorbance over time. The apparent Michaelis-Menten 

parameters Vmax, Km and  Ki were obtained applying non-linear regression (least 

squares method) using GraphPad Prism 5.0® corresponding to the mMichaelis-Menten 

equation.[51] 
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Figure 3.7 ― Saturation kinetics of ATHase S112A in the reduction of NAD. Errors bars indicate 1 

standard deviation, determined from the triplicate measurement of each rate. 
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4.1 Abstract 

Stereoselectively labelled isotopomers of NAD(P)H are highly relevant for mechanistic 

studies of enzymes which utilize them as redox equivalents. Whereas several methods 

are firmly established for their generation in high diastereomeric purity by enzymatic 

methods, alternative methods have so far not been investigated. This chapter presents 

the stereoselective deuteration of NAD+ at the 4-position (90% de) of the pyridinium-

ring by means of an artificial metalloenzyme. The artificial matalloenzyme consist of a 

biotinylated iridium cofactor embedded in streptavidin isoforms and the resulting 

construct have been previously show to be compatible with natural enzymes. 

Alternative methods for stereoselective NAD(P)+ reduction are expected to be of high 

interest for the mechanistic study of enzyme that accept NAD(P)H mimics and for the 

synthesis of structurally related fine chemicals. 

 

4.2 Introduction 

The coenzymes NAD(P)+ and NAD(P)H play a crucial role in the redox machinery of 

living systems. This relates to their ability to either accept a hydride at the C4-position 

of the pyridine ring in their oxidized form or to donate the respective hydride in the 

reverse-reaction (Scheme 4.1). When the hydride is replaced by a deuteride in the 

reduction step, two diastereoisomers can be formed due to the presence of the 

enantiopure adenine dinucleotide moiety. The diastereoisomers thus differ only in 

their configuration at C4. Stereoselective labelling of the coenzymes with deuterium or 

tritium yields precious mechanistic information for the corresponding enzymes. 

Methods for their preparation in high stereoisomeric purity are well established.[1,2,3]  
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Scheme 4.1  ― Deuteration of NAD+ at the C4 position yields diastereoisomers. 

Biocatalysis gains an ever increasing share in modern chemical manufacture, boosted 

by powerful protein engineering strategies.[4] NAD(P)H or NAD(P)+ mol equivalents are 

required in various biotransformations, including ketoreductases, alcohol 

dehydrogenases, Baeyer-Villiger monooxygenases, imine reductases, and P450s.[5–8] 

These co-substrates are typically regenerated enzymatically in a catalytic concurrent 

fashion.[9] However, alternative approaches employing e.g. chemocatalysis or 

electrochemical reduction have received increasing attention since they offer 

additional flexibility in process conditions and are readily transferrable to NAD(P)-

mimics, which are substantially cheaper than their natural analogues.[10]  

One complex that has been frequently used in non-enzymatic regeneration systems for 

the transfer of reducing equivalents to NAD(P)+ is the achiral [Cp*Rh(bipy)(H2O)]2+.[11] 

At least one report exists where an enantiopure complex was utilized.[12] However, no 

labelling studies were undertaken and accordingly no diastereoselectivity for the 

reduction step studied. We recently reported on the application of an artificial transfer 

hydrogenase (ATHase) for the concurrent regeneration of NADH in a monooxygenase-

coupled reaction.[13] To generate the artificial metalloenzyme, a biotinylated iridium 

pianostool complex was incorporated into streptavidin (Sav) mutant S112A (Figure 4.1). 

The biotinylated ligand for the Cp*Ir moiety is achiral in the vicinity of the metal 

center, and the respective complex has been shown to induce only negligible 
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stereocontrol in the reduction of prochiral imine substrates in the absence of 

streptavidin. However, upon incorporation into Sav, substantial stereocontrol can be 

achieved.[14] Importantly, the concurrent process with the monooxygenase and other 

enzymes was only effective, when the complex was located inside Sav; otherwise 

dramatic deactivation of the monooxygenase and/or the artificial Ir-cofactor 

occurred.[15]    

We have previously shown that substrate reduction with ATHase derived from Sav 

mutants S112A and S112K lead to R- and S- enantiomers for both ketones and imines, 

respectively.[14]  The corresponding X-ray structures of [Cp*Ir-(Biot-p-L)Cl]  S112A[14]  

and [Cp*Ir-(Biot-p-L)Cl]  S112K [15] were recently reported and analysed: for S112A, 

the absolute configuration at [Cp*Ir-(Biot-p-L)Cl] is (S) and for S112K, the absolute 

configuration is (R). Based on modelling studies, we hypothesise that the absolute 

configuration at Ir by-and-large determines the absolute configuration of the alcohol 

and amine products: we term this phenomenon “induced lock-and-key” whereby the 

protein determines which prochiral face of the substrates is reduced.[15] 

Herein we report on the diastereoselectivity of NAD deuteration employing the Ir-

cofactor by itself and upon incorporation into two Sav-mutants (Figure 4.1).  

 

   

Figure 4.1 ― NAD+ reduction, a) with a biotinylated Ir-complex and deuterated sodium formate in the 

absence of streptavidin mutants proceeds with low diastereoselectivity. b) Upon incorporation into 

streptavidin isoforms, the reduction proceeds with high diastereoselectivity. The star symbolizes a 

mutation in streptavidin.  
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4.3 Results and Discussion 

To determine the diastereomeric ratio after reduction with deuteride, 1H-NMR-

spectroscopy offers a convenient means.[16,17] This technique enables the direct 

determination of the diastereoselectivity in the reaction mixture without requiring 

isolation of the products. The only noteworthy differences to potential preparative 

reactions lies in the presence of a small amount of deuterium oxide (5%), the 

dissolution of the biotinylated Ir-complex in DMF-d7 instead of DMF and a short 

centrifugation step. Based on catalysis results obtained in asymmetric imine 

reduction[14] and NADH regeneration[13] with artificial metalloenzymes, the selectivity 

with two representative mutants was investigated. Mutant S112A, employed previously 

for concurrent NADH regeneration, leads to superior enantiomeric excess and high 

turnover numbers in the reduction of 1-methyl-6,7-dimethoxy-3,4-

tetrahydroisoquinoline yielding (R)-configured salsolidine (up to 96% ee).[14] Reduction 

of the same substrate with the AME based on S112K, in contrast, leads to a bias in 

favour of the (S)-enantiomer (up to 78 % ee).[14]  

For the stereoselective NAD+ reduction experiments, deuterated sodium formate was 

used as a deuteride source in the presence of [Cp*Ir(biot-p-L)Cl]S112A and NAD+. 

Following centrifugation, the crude reaction mixtures were analyzed by 1H-NMR 

spectroscopy. While background signals of the protein and other components of the 

crude reaction mixture prevented unambiguous integration of 1D 1H-NMR data, a 

selective one-dimensional TOCSY NMR experiment using irradiation on H6 (5.89 ppm) 

yielded clean spectra with sufficient signal to noise ratio to reliably integrate the two 

resonances attributed to both diastereomers (Figure 4.1). As the TOCSY transfer occurs 

with slightly different efficiency for (4R-2H)-NADH and (4S-2H)-NADH, a calibration 

TOCSY experiment with commercial, non-deuterated NADH was performed (Figure 

4.2a) and the resulting integrals (1.00 : 1.13 for H4S : H4R) were used to normalize the 

integrals of the deuterated species (Figure 4.2b-d). Due to the collapse of the 2JHH 
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coupling constant of 18.1 Hz into a 2JHD of 2.8 Hz, both H4 resonances appear as broad 

singlets in the TOCSY spectrum and the fine structure is lost. The integration yielded a 

de of 87% for mutant S112A and a de of 90% for mutant S112K, while a de of 38% was 

obtained for the sample without Sav (all with an error margin of   1%), after 16 hours 

reaction time (Figure 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 ― Selected region from selective 1H-TOCSY spectra of a) commercial NADH, and catalytic 

reduction of NAD+ using 2HCOONa with, b) S112A; c) S112K; d) no Sav.  
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The modest but significant diastereoselectivity observed in the absence of Sav arises 

most likely from substrate control considering the formation of basically racemic 

product from achiral starting materials in related transformations.[13,14] Both mutants led 

to a significant improvement in the diastereomeric excess compared to the result 

obtained in the absence of streptavidin (Figure 4.2). Interestingly, for the NAD+ 

reduction, both S112A and S112K ATHases afford the same diastereomer preferentially. 

This observation stands in stark contrast with result previously reported for the ketone 

and imine reduction whereby S112A and S112K afford (R)- and (S)-reduction products 

respectively. In a matched-mismatched spirit, we speculate that the inherent chirality 

of the sugar moiety of NAD+ counterbalances the ATHase preference. This is supported 

by the inherent preference of the substrate in the absence of Sav. Alternatively, one 

NAD+ substrate could bind in the biotin vestibule in S112A, thus modifying the 

environment of the metal complex. Similar results were computed for the imine 

reductase with S112A.[15] The preparation and screening of further mutants might 

provide guiding answer towards the design of ATHases with inverted selectivities for 

the reduction of NAD+. 

 

4.4 Conclusions 

The high chiral induction observed is promising for further applications such as the 

investigation of specificity in enzymes utilizing NAD(P)-mimics and the resulting 

information would be of interest for future enzyme engineering tasks. Furthermore, 

related prochiral structures can be envisaged, namely 3,4 substituted pyridinium ions, 

which would provide valuable building blocks upon asymmetric conversion.[18]  

 

4.5 Experimental part 

Nicotinamide adenine dinucleotide hydrate (NAD+, contains 10% H2O) was purchased 

from Sigma. 2HCOONa was purchased from ABCR. Streptavidin was prepared as 

previously reported.[13] [Cp*Ir(biot-p-L)Cl] was a kind gift from Dr. Marc Dürrenberger 
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and prepared as reported in literature.[19] NMR experiments were performed at 25°C 

(MeOH calibration) on a Bruker Avance III NMR spectrometer operating at 600 MHz 

proton frequency, equipped with a direct detection dual channel, broadband probe-

head with z-gradient. Chemical shifts were referenced against proton solvent peaks 

(4.773 ppm for H2O). The selective TOCSY experiment[20,21] was performed using a 

MLEV17 spinlock sequence with a mixing time of 120 ms, trim pulses of 2.5 ms and a 

selective Gauss shaped refocusing pulse of 80 ms duration.  

Stock solutions: buffer 1: sodium phosphate 50 mM, pH 7.5; buffer 2: 2HCOONa 200 

mM, sodium phosphate 50mM, pH 7.5, {2HCOONa (138 mg) was dissolved in Milli-Q 

H2O (5 ml), sodium phosphate buffer (0.5 ml, 1M) was added and the pH adjusted to 

7.5 by addition of aq. NaH2PO4. Water was added to a total volume of 10 ml}; NAD+ 

stock solution: 10 mM in buffer 1 (NAD+ (29.9 mg, 405 µmol) was dissolved in buffer 1 

(4.05 ml); Ir-stock solution: 10 mM [Cp*Ir(biot-p-L)Cl] (2.55 mg, 3.17 µmol) was 

dissolved in DMF-d7 (317 µl). 

Preparation of ATHase: 

- Sav-mutant S112A (2.53 mg, assuming 3 free binding sites) was dissolved in 

buffer 1 (1.144 mL), and Ir-stock solution was added (11.6 µl).  

- Sav-mutant S112K (2.65 mg assuming 3 free binding sites) was dissolved in 

buffer 1 (1.195 ml), and Ir-stock solution was added (12.1 µl).  

- Sample without SAV mutant (intermediate solutions): buffer 1 (0.495 ml) and 

Ir-stock solution was added (5 µl). Mixing was achieved by means of a vortex 

mixer. 

Reaction set up: To buffer 1 (125 µl) was added buffer 2 (250 µl; final concentration of   

2HCOONa = 100 mM), ATHase (or intermediate solutions) (100 µl, final concentration 

of Ir = 20 µM) and NAD+ stock solution (25 µl, final concentration = 500 µM). 

The reaction was incubated and agitated at 30°C and 200 rpm for 24h by means of a 

Thermomixer (HLC Biotech Model MHR 23). 

Subsequently D2O (50 µl) was added and the NMR spectra recorded. 
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5.1 Abstract 

We report on the optimization of an articial imine reductase based on the biotin-

streptavidin technology. With the aim of rapidly generation chemical diversity, a novel 

strategy for the formation and evaluation of biotinylated complexes is disclosed. 

Tethering the biotin-anchor to the Cp* moiety leaves three free coordination sites on a 

d6 metal for the introduction of chemical diversity by coordination of a variety of 

ligands. To test the concept, 34 bidentate ligands were screened and a selection of the 6 

best was tested in the presence of 21 streptavidin (Sav) mutants for the asymetric imine 

reduction by the resulting three legged piano stool complexes. Enantiopure α-amino 

amides were identified as promising bidentate ligands: up to 63% ee and 190 turnovers 

were obtained in the formation of 1-phenyl-1,2,3,4-tetrahydroisoquinoline with 

[biotinCp*Ir(ʟ-ThrNH2)Cl]SavWT as a catalyst. 

 

5.2 Introduction 

Artificial metalloenzymes result from incorporation of an organometallic catalyst or 

catalyst precursor within a macromolecular scaffold (protein or oligonucleotide).[1–

19]The resulting hybrid catalyst can be optimized by using either genetic or chemical 

methods.[1–8,18–21] In the context of artificial metalloenzymes based on the biotin-

streptavidin technology, we and others have relied on synthesizing various biotinylated 

ligands to provide chemical diversity.[1–4,15,20,21] To generate larger artificial cofactor 

libraries quickly, we reasoned that separating the necessary biotin anchor moiety and 

variable ligand elements would enable us to screen commercially available ligands in 

the presence of streptavidin (Sav; Scheme 5.1). To test the validity of this strategy, we 

selected the asymmetric transfer hydrogenation of prochiral imines catalyzed by 

biotinylated moieties (M = Rh, Ir).  
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Scheme 5.1 ― Artificial metalloenzymes consist of an organometallic catalyst or catalyst precursor 

incorporated within a protein scaffold. The optimization of their catalytic performance is achieved either 

by mutating the protein (green star *) or by varying the bidentate ligand (A—A’). a) The recognition 

element (blue triangle ∆) and the variable bidentate ligand are covalently linked. b) The recognition 

element and the bidentate ligand (A—A’) are distinct and thus allow to screen readily available ligands.  

 

Considering the robustness of the Cp*M moiety,[22,23] we reasoned that for d6 transition 

metals tethering the biotin anchor to the Cp* unit would leave three free coordination 

sites around the metal for further functionalization. It is widely accepted that three-

legged piano stool complex-catalyzed asymmetric transfer hydrogenation proceeds via 

an outer sphere hydride transfer mechanism, which requires only one free 

coordination site around the metal for the reaction to proceed.24–27] This reaction is thus 

ideally suited to test the concept outlined in Scheme 5.1 b.  

 

5.3 Result and Discussion 

The synthesis of the biotinylated catalyst precursors [biotinCp*MCl2]2 (M = Ir, Rh) is 

described elsewhere.[12,19,28,29] The dimeric precursor was reacted in situ with a selection 

of commercially available bidentate ligands (Scheme 5.2). To identify suitable 

coordination conditions, the chiral ligand ʟ-ProNH2 was complexed in situ with the 

dinuclear catalyst precursors [biotinCp*MCl2]2 (M = Ir, Rh) at different pH values 

within the buffer range of 3-(N-morpholino)propanesulfonic acid (MOPS). As the best 
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conversion for the asymmetric transfer hydrogenation of prochiral imine 1a was 

observed at pH 7.8, this value was selected for all subsequent studies.  

A preliminary screen was performed with eight commercially available bidentate 

ligands using [biotinCp*MCl2]2 (M = Ir, Rh) for the reduction of 1-phenyl-3,4-

dihydroisoquinoline 1a with formate as hydride source. The results are presented in 

Table 5.1.  

 

Scheme 5.2 ― Initial selection of bidentate ligands (3-10) for the creation of artificial imine reductases 

based on the biotin-streptavidin technology.  

 

The following trends emerged from these results:  

1. The dinuclear catalyst precursor [biotinCp*IrCl2]2, devoid of any additional 

ligands, demonstrates only low detectable artificial transfer hydrogenases 
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ATHase activity both in the absence and in the presence of Sav, whereas 

[biotinCp*RhCl2]2 displays significant activity only in the absence of Sav (Table 

5.1, entry 1).  

2. Although most ligands tested afford >60 turnovers (>30% yield) if combined 

with [biotinCp*RhCl2]2, only four ligands give rise to >60 turnovers with 

[biotinCp*IrCl2]2. Notably the widely used amino sulfonamide ligand scaffold 

(ligand 9) performs only moderately in comparison to the best ligands under the 

experimental conditions adopted for this screening. With high throughput 

screening in mind, no particular effort was made to improve the performance of 

individual metal-ligand combinations. 

3. Incorporation within Sav leads to a significant decrease in conversion in all but 

two metal-ligand combinations. Both glycine amide 3 and bisoxazoline 10 

combined with [biotinCp*IrCl2]2 afforded more than 180 turnovers for the 

reduction of cyclic imine 1a. Owing to the enantiopure environment provided 

by the Sav host, the corresponding amine 2a is produced in enantioenriched 

form: (S)-2a in 43% ee with 3 and (S)-2a in 14% ee with 10 (Table 5.1, entries 2 

and 9 with [biotinCp*IrCl2]2. 
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Table 5.1 Identification of the most suitable ligand for activating a biotinylated piano stool catalyst 

precursor for the reduction of imine 1a.(a) 

Entry Ligand Yield (ee)(d) [%] 

  Ir(b) Rh(c) 

  No protein Sav-WT No protein Sav-WT 

1 ― 6 (-1) 3 (38) 81 (0) 5 (-5) 

2 3 93 (0) 94 (43) 60 (0) 5 (7) 

3 4 8 (-3) 2 (21) 51 (0) 4 (1) 

4 5 0 (0) 0 (0) 34 (0) 3 (-1) 

5 6 4 (-2) 0 (0) 16 (-1) 3 (-1) 

6 7 31 (0) 13 (16) 35 (-1) 3 (-1) 

7 8 44 (0) 0 (0) 6 (-1) 2 (-6) 

8 9 16 (-1) 6 (13) 36 (0) 3 (1) 

9 10 99 (0) 51 (14) 37 (0) 4 (0) 

(a) The best result are highlighted in boldface. For full experimental details, see the Supporting 

information; (b) Metal catalyst precursor = [biotinCp*IrCl2]2; (c) Metal catalyst precursor= 

[biotinCp*RhCl2]2; (d) A positive ee value refers to the (S) enantiomer; a negative value refers to the (R) 

enantiomer of amine 2a.  

After identifying the α-amino amide scaffold as a promising activating ligands[30–36] in 

the ATHase assembly for the reduction of imine 1a, 28 commercially available amino 

amides were tested in conjunction with [biotinCp*IrCl2]2 in the presence of Sav-WT 

(Figure 5.1 and Table 5.2).  

 

Figure 5.1 ― Selection of amino amide ligands screened for the enantioselective reduction of imine 1a. 
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The following trends emerge from these results: 

1. In the absence of Sav, the enantiopure biotinylated piano stool complexes 

demonstrate up to 29% ee for the reduction of imine 1a. The distant 

enantiopure biotin anchor does not significantly affect the enantioselectivity 

either in the presence of achiral ligands (Table 5.1) or in the presence of mirror-

image amino amides. Accordingly (in the absence of Sav) ʟ-PheNH2 and ᴅ-

PheNH2 afford the amine (S)-2a in 17% ee and (R)-2a in 16% ee respectively 

(Table 5.2, entries 10 and 11). 

2. In most of cases, the transfer hydrogenation activities in the absence and in the 

presence of Sav are comparable. However, incorporation within Sav leads to a 

significant increase in ee value for several combinations (Table 5.2, entries 1, 2, 

4, 6, 8, 12, 18 and 20) or to an inversion of the preferred product enantiomer 

(Table 5.2, entries 5, 7, 9 and 17). In general, incorporation in Sav-WT shifts the 

stereoselectivity in favor of the S enantiomer. 

3. Upon incorporation within Sav, >60% ee of (S)-2a and ≥170 turnovers are 

obtained with either ʟ-LeuNH2, ᴅ-ArgNH2, ʟ-IleNH2 or ʟ-ThrNH2 (Table 5.2, 

entries 6, 9, 18 and 20). The α-amino amides bearing a softer donor side chain 

(e.g. ʟ-MetNH2 and ʟ-HisNH2, Table 5.2, entries 19 and 25) completely inhibit 

catalysis. We hypothesize that the binding mode of these potentially tridentate 

ligands may differ from the other amino amide ligands tested.[34] 

4. The absolute configuration of the amino amide has a modest impact on the 

enantioselectivity of the corresponding artificial metalloenzyme. In the isolated 

cases tested, the Δee value for the matched versus mismatched combinations 

differ by ≤ 20% in the protein (Table 5.2, entries 4 and 5, entries 6 and 7, entries 

8 and 9, entries 10 and 11, entries 16 and 17), except in proline (Δee=75%; 

entries 2 and 3). 
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Table 5.2 Screening of different amino amide ligands for the reduction of imine 1a, employing 

[biotinCp*IrCl2]2 (with or without Sav-WT) as complex precursor.(a) 

Entry Ligand Yield (ee)(b) [%] 

  no protein Sav-WT 

1 GlyNH2 93 (0) 94 (43) 

2 ʟ-ProNH2 99 ( 17) 47 (67) 

3 ᴅ-ProNH2 99 (-29) 28 (-8) 

4 ʟ-ValNH2 99 (20) 70 (63) 

5 ᴅ-ValNH2 99 (-12) 66 (45) 

6 ʟ-LeuNH2 97 (9) 96 (63) 

7 ᴅ-LeuNH2 99 (-13) 96 (51) 

8 ʟ-ArgNH2 98 (7) 71 (52) 

9 ᴅ-ArgNH2 71 (-12) 85 (61) 

10 ʟ-PheNH2 97 (17) 98 (33) 

11 ᴅ-PheNH2 99 (-16) 96 (13) 

12 ʟ-SerNH2 99 (1) 98 (52) 

13 ʟ-GluNH2 99 (11) 94 (30) 

14 ʟ-Pro-NHethyl 83 (13) 5 (44) 

15 ʟ-3,4-dehydro-ProNH2 94 (24) 17 (58) 

16 ʟ-AlaNH2 57 (6) 87 (34) 

17 ᴅ-AlaNH2 56 (-6) 88 (36) 

18 ʟ-IleNH2 98 (5) 89 (65) 

19 ʟ-MetNH2 0 (0) 0 (0) 

20 ʟ-ThrNH2 86 (6) 96 (63) 

21 ʟ-AsnNH2 85 (12) 91 (56) 

22 ʟ-GlnNH2 45 (12) 86 (39) 

23 ʟ-TyrNH2 70 (16) 90 (36) 

24 ʟ-LysNH2 99 (1) 89 (26) 

25 ʟ-HisNH2 0 (0) 0 (0) 

26 ʟ-AspNH2 66 (13) 94 (43) 

27 ʟ-TrpNH2 65 (20) 95 (37) 

28 -GlyNH2 7 (2) 3 (28) 

(a) The best results highlighted in boldface. Reaction conditions: 35 mM substrate, 0.25 mol% 

[biotinCp*IrCl2]2, 0.55 mol% amino amide, 7.4 mg/ml Sav-WT, 0.56M MOPS, 1.4M formate, pH 7.8, 
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incubation for 18 h at 50°C. All listed results are the average of two runs; for full details see the 

supporting information; (b) A positive ee refers to the (S)-enantiomer, whereas a negative ee refers to the 

(R)-enantiomer of amine 2a.  

After identifying promising amino amide ligands, we proceeded to the genetic 

optimization of the ATHase activity. For this purpose, six amino amide ligands (ʟ-

ProNH2, ʟ-ValNH2, ʟ-LeuNH2, ʟ-IleNH2, ʟ-ThrNH2 and GlyNH2) were selected and 

screened in the presence of 21 Sav mutants for the reduction of cyclic imine 1a. The 

corresponding results are presented as a fingerprint in Figure 5.2.  
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Figure 5.2 ― Results of the chemogenetic optimization of ATHases for the asymmetric reduction of 

imine 1a, which are presented in bubble-chart format. The size of the bubbles is proportional to the 

conversion (between 4% and 99%), and the color codes the ee. See Table 5.2 for experimental details. 

The numerical values (conversion, ee) are listed in the Table 5.4.  

 

From the results presented in Figure 5.2, the following conclusions could be drawn: 

1. The best results in terms of enantioselectivity for any ligand are obtained with 

Sav-WT.  
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2. Mutating single residues at position S112 or K121, or mutating both residues 

simultaneously, lead to a decrease in enantioselectivity for all ligands tested. 

The S112Y mutant led, in combination with ʟ-LeuNH2, to an inversion of 

enantioselectivity compared to Sav-WT (63% ee of (S)-2a in Sav-WT and 20% 

ee of (R)-2a in the presence S112Y).  

3. All mutants at position K121 typically lead to high conversions with all amino 

amide ligand tested. In the presence of either ʟ-ProNH2 or ʟ-ValNH2, 

significantly improved conversions compared to Sav-WT were observed with 

mutants K121N, K121A, K121H and K121Y mutants.  

4. In the presence of L124K, L124Y or L124F mutant, a marked decrease in 

enantioselectivity compared with that in the presence of Sav-WT is observed 

for all ligands except ʟ-ProNH2. Conversions were generally good to excellent 

with the L124Y or L124F mutants.  

5. Good to excellent conversions were observed for all double mutant–ligand 

combinations, accompanied by a decrease in enantioselectivity (except ʟ-

ProNH2).  

 

Finally, the substrate scope of the artificial imine reductase was evaluated (Figure 5.3). 

 

 

Figure 5.3 ― Selection of substrates for the asymmetric transfer hydrogenation of cyclic imines. 
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For this purpose, six different prochiral cyclic imines were tested in the presence of 

artificial metalloenzymes [biotinCp*Ir(amino amide)Cl]Sav-WT (amino amide =  

ʟ-ProNH2, ʟ-ValNH2, ʟ-LeuNH2, ʟ-IleNH2, ʟ-ThrNH2, GlyNH2). The results of this 

screening are summarized in Table 5.3.  

 

Table 5.3 Screening of different substrates for the [biotinCp*Ir(amino amide)Cl]Sav-WT mediated 

transfer hydrogenation.  

Entry Ligand Yield (ee) (a) [%] 

  1a 1b 1c 1d 1e 1f 

1 ʟ-ProNH2 47 (67) 99 (5) 100 (6) 69 (-32) 60 (-11) 100 (18) 

2 ʟ-ValNH2 70 (63) 100 (17) 100 (17) 84 (-44) 80 (-22) 86 (16) 

3 ʟ-LeuNH2 96 (63) 100 (3) 100 (18) 95 (-45) 96 (-31) 100 (20) 

4 ʟ-IleNH2 89 (65) 100 (20) 100 (43) 83 (-32) 79 (-22) 10 (18) 

5 ʟ-ThrNH2 96 (63) 100 (25) 100 (41) 98 (-57) 95 (-35) 91 (20) 

6 GlyNH2 94 (43) 100 (4) 100 (18) 96 (-46) 94 (-9) 79 (2) 

(a) A positive value corresponds to the (S)-enantiomer, whereas a negative value corresponds to the (R)-

enantiomer. The absolute configuration of the amines 2d-f was not determined. The best result are 

highlighted in bold face. 

Variation of the substrate led to the following observations and trends: 

1. Conversion of bulky substrate 1a led generally to the highest observed 

enantioselectivites in favor of the (S) product.  

2. Reducing the size of the substituent at position 1 of the dihydroisoquinoline 

moiety from phenyl to methyl resulted in a considerable decrease in 

enantioselectivity.  

3. Introduction of methoxy substituents at position 6 and 7 of the 

dihydroisoquinoline moiety only moderately affected the selectivity.  

4. With 2-substituted 1-pyrrolines, conversions were generally good to excellent. 

5. The highest ee value for 1-pyrrolines was observed for the bulky substrate 

carrying a cyclohexyl substituent in combination with ʟ-ThrNH2. The ee values 
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for the benzyl- and phenyl-substituted substrates 1e and 1f, respectively were 

generally low.  

 

5.4 Conclusion 

To readily access large chemical diversity, a new artificial metalloenzyme design based 

on the biotin-streptavidin technology has been presented. Relying on three-legged 

piano stool complexes and tethering the biotin anchor on the Cp* moiety, allows to 

screen a variety of bidentate ligands for the asymmetric reduction of cyclic imines. An 

initial screen led to the identification of amino amides as versatile bidentate ligands in 

conjunction with the {biotinCp*Ir} moiety. Genetic diversity was introduced by site 

directed mutagenesis. Both chemical diversity and genetic diversity were shown to 

have a significant effect on the activity and the selectivity of the resulting artificial 

metalloenzyme.  

By taking into account the versatility of the {Cp*MLn} moiety in catalysis, we reasoned 

that the strategy disclosed herein will find wide application for the chemical 

optimization of artificial metalloenzymes. Current efforts are aimed at the structural 

and kinetic characterization of such hybrid catalysts.  

 

5.5 Experimental Section 

General procedure for the asymmetric transfer hydrogenation: 

Buffer A (100 l; 0.6M in MOPS in Milli-Q H2O at pH 7.8) was placed in a 

polypropylene (PP) tube, followed by the addition of the biotinylated metal complex 

[biotinCp*MCl2]2 stock solution (3.75 l; 5.0 mM in DMSO) and the ligand stock 

solution (3.75 l, 11 mM in Milli-Q H2O or DMSO, depending on the ligand). The 

mixture was agitated for 30 min at 30°C and 600 rpm in a thermo mixer for 

precomplexation. The corresponding lyophilized Sav mutant (1.6 mg) was dissolved in 

buffer B (100 μl, 0.6M in MOPS, 3.0M in HCO2Na in Milli-Q H2O at pH 7.8). Then, 

Sav-mixture (100 l) was added to the PP tube containing the metal complex and 

agitation was continued for 15 min at 30°C and 600 rpm, to ensure binding of the 



92 

 

biotinylated complex to Sav. Finally the substrate stock solution was added (7.5 l; 1M 

in DMSO) and the mixture was agitated at 50°C for 18 h. Subsequently, NaOH(aq) (60 µl 

5M solution) was added to the reaction mixture, followed by addition of CH2Cl2 (1 ml). 

The phases were mixed thoroughly with a vortex mixer. The organic phase was 

separated through pipetting and transferred to another PP tube, which contained 

anhydrous Na2SO4. Solids were separated by centrifugation (2 min. at 21’100 g) and the 

supernatant analyzed by using HPLC or GC.  

 

5.5 Supporting Information 

General information 

All amino acid amide ligands were purchased in their free form (H-ʟ-ProNH2, H-ᴅ-

ProNH2, H-ʟ-PheNH2, H-ᴅ-PheNH2, H-ʟ-GluNH2, H-ʟ-AspNH2, H-ʟ-LeuNH2, H-ᴅ-

LeuNH2) or as their hydrochloride salts (H-ʟ-ValNH2·HCl, H-ᴅ-ValNH2·HCl, H-ʟ-

ArgNH2·HCl, H-ʟ-ArgNH2·HCl, H-ʟ-SerNH2·HCl, H-ʟ-ProNHEt·HCl, H-ʟ-3,4-

dehydro-ProNH2·HCl, H-ʟ-AlaNH2·HCl, H-ᴅ-AlaNH2·HCl, H-ʟ-IleNH2·HCl, H-ʟ-

MetNH2·HCl, H-ʟ-ThrNH2·HCl, H-ʟ-AsnNH2·HCl, H-ʟ-GlnNH2·HCl, H-ʟ-

TyrNH2·HCl, H-ʟ-LysNH2·HCl, H-ʟ-HisNH2·HCl, H-ʟ-TrpNH2·HCl) from Bachem and 

used as received. H-GlyNH2.HCl was purchased from Fluka. All other bidentate ligands 

were purchased from Aldrich, Acros and TCI. 3-(N-morpholino)propanesulfonic acid 

(MOPS) was purchased from Alfa Aesar. 1-methyl-3,4-dihydroisquinoline 

hydrochloride hydrate was purchased from Acros. Racemic standards were prepared by 

reduction of the corresponding imine or the hydrochloric salt thereof with NaBH4 in 

methanol.  

Streptavidin (Sav) mutants were expressed, purified and characterized as previously 

described.[37] The synthesis of the biotinylated complexes [biotinCp*IrCl2]2 and 

[biotinCp*RhCl2]2 is described elsewhere.[19] Substrate 1a, 1d, 1e and 1f (Scheme 5.3) 

were synthesized according to literature procedures. [38,39]  

Reaction mixtures were agitated with a thermo mixer (HLC Biotech Model MHR 23). 

HPLC measurements were performed on Agilent (or hp) machines equipped with 
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modules from the 1100 and 1200 series and diode array detectors (if not indicated 

otherwise). HPLC columns were used with the appropriate guard columns. Column 

and conditions are indicated for each compound separately. GC measurements were 

performed on Agilent GCs of the 6890 series equipped with FIDs. 

 

Preparation of stock solutions 

Reaction buffer A was prepared by dissolving MOPS (final conc. 0.6 M) in Milli-Q 

H2O; the pH was adjusted to 7.8 with aq. 10N NaOH. Reaction buffer B was prepared 

by dissolving MOPS (final conc.0.6 M), NaHCO2 (final conc. 3.0 M) in Milli-Q H2O; 

the pH was adjusted to 7.8 with 10N aq. NaOH. The [biotinCp*IrCl2]2 and 

[biotinCp*RhCl2]2 stock solutions (5.0 mM) were prepared by dissolving the complexes 

in appropriate amounts of DMSO. The ligand stock solutions (11 mM) of the amino 

amides H-ʟ-ProNH2, H-ᴅ-ProNH2, H-ʟ-LeuNH2, H-ᴅ-LeuNH2, H-ʟ-PheNH2, H-ᴅ-

PheNH2 and β-GlyNH2 were prepared by dissolving these compounds in DMSO. All 

other amino amides were dissolved in Milli-Q H2O. All non-amino acid amide ligands 

were dissolved in DMSO to a final concentration of 11 mM. The substrate stock 

solutions were prepared by placing the corresponding substrate in a volumetric flask (1 

ml), followed by addition of DMSO to a final concentration of 1 M.  

 

General procedure for the asymmetric transfer hydrogenation 

Complexation:  

Buffer A (100 l) was placed in a 1.5 ml PP-tube, followed by addition of the 

biotinylated metal complex stock solution (3.75 l) and the ligand stock solution (3.75 

l). The mixture was agitated for 30 min at 30°C and 600 rpm in a thermo mixer to 

allow the formation of the complex.  
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Preparation of ATHase:  

The corresponding lyophilized Sav-mutant (1.6 mg for 100 l buffer; final 

concentration in the reaction = 7.4 mg/ml) was dissolved in buffer B (note: three free 

binding sites (fbs) per tetramer were assumed to ensure the presence of sufficient fbs; 

the actual number of fbs is usually higher).  

 

After complexation, 100 l of the prepared ATHase solution were added to the former 

PP-tube (containing the prepared metal complex), and agitation was continued for 15 

min at 30°C and 600 rpm (to allow the binding of the biotinylated complex to Sav). 

Finally the substrate stock solution was added (7.5 l; final concentration in the 

reaction = 35 mM) and the mixture was agitated at 50°C for 18 h. Subsequently aq. 

NaOH (60 µl of a 5 M solution) was added to the reaction mixture followed by addition 

of CH2Cl2 (1 ml).  

The phases were thoroughly mixed by means of a Vortex mixer. The organic phase was 

separated by pipetting and transferred to another PP-tube, which contained anhydrous 

Na2SO4. Solids were separated by centrifugation (2 min at 21’100 g) and the supernatant 

analyzed by HPLC or GC.  

 

Substrates 1a and 1b:  

Chiral stationary phase HPLC (chiralpak IC 250  4.6 mm, 5 m; hexane/i-

PrOH/HNEt2 97:3:0.06, 1 ml/min, 25°C, detection at 265 nm). Conversion of substrate 

1a: Tret = 7.6 min ((S)-2a), Tret = 10.5 min ((R)-2a), Tret = 16.0 min (starting material 1a). 

Conversion of substrate 1b: Tret = 10.6 min ((S)-2b), Tret = 11.4 min ((R)-2b), Tret = 17.9 

min (starting material 1b). The absolute configuration of amine 2a was assigned by 

comparison with a commercial sample of (S)-1-phenyl-1,2,3,4-tetrahydroisoquinoline 

(Fluorochem). The absolute configuration of amine 2b was assigned by comparison 

with literature data.[40] Conversions for substrates 1a and 1b were determined by 

comparison of the signal area of product and substrate peaks under consideration of the 

experimentally determined response factors.  
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Substrate 1c:  

Chiral stationary phase HPLC (chiralpak IC 250  4.6 mm, 5 m; CH2Cl2/i-

PrOH/HNEt2 98:2:0.1, 1 ml/min, 25°C, detection at 265 nm). Conversion of substrate 

1c: Tret = 5.6 min ((S)-2c), Tret = 6.1 min ((R)-2c), Tret = 7.8 min (starting material 1c). 

The absolute configuration of amine 2c was assigned by comparison with literature 

data.[20] Conversions for substrate 1c were determined by comparison of the signal area 

of product and substrate peaks under consideration of the experimentally determined 

response factors.  

 

Substrates 1d-f:  

For substrates 1d, 1e and 1f the conversion was determined by GC-FID (Agilent J&W 

CAM, 30 m × 0.32 mm, 0.25 µm; 150  C isothermal, 1.7 ml He/min; injector: 250°C, 

split 100; detector: 240°C). Conversion of substrate 1d: Tret = 3.6 min (amine 2d), Tret = 

3.3 min (imine 1d). Conversion of substrate 1e: Tret = 7.72 min (amine 2e), Tret = 8.7 min 

(imine 1e). Conversion of substrate 1f: Tret = 6.4 min (amine 2f), Tret = 9.2 min (imine 

1f). For ee-determination, products 2d, 2e and 2f were converted to their 

corresponding trifluoroacetamides. Trifluoroacetic anhydride (TFAA, 200 µl) was 

added to the GC-samples used for conversion determination and volatiles were 

removed to near dryness in a gentle stream of N2. The residue was dissolved in a small 

amount of CH2Cl2 (30-100 l) and analyzed by GC-FID on a chiral stationary phase 

(Agilent CP-Chirasil-DEX CB, 25 m × 0.25 mm, 0.25 µm; 140°C isothermal, 1.7 ml 

He/min; injector: 300°C, split 100; detector: 275°C). Product 2d: T1 = 9.6 min, T2 = 9.9 

min; Product 2e: T1 = 10.7 min, T2 = 11.0 min; Product 2f: T1 = 16.4 min, T2 = 17.0 min. 

The absolute configuration of products 2d-f was not determined.  
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Scheme 5.3 ― List of all substrates screened and the corresponding reduced products (standard 

conditions).  
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Table 5.4 Results of the chemogenetic optimization of ATHase for the asymmetric reduction of imine 

1a.(a) 

entry mutant 

ʟ-ProNH2 ʟ-ValNH2 ʟ-LeuNH2 ʟ-IleNH2 ʟ-ThrNH2 GlyNH2 

conv 

[%] 

ee(b) 

[%] 

conv 

[%] 

ee(b) 

[%] 

conv 

[%] 

ee(b) 

[%] 

conv 

[%] 

ee(b) 

[%] 

conv 

[%] 

ee(b) 

[%] 

conv 

[%] 

ee(b) 

[%] 

1 Sav-WT 47 67 70 63 96 63 89 65 96 63 94 43 

2 S112F 41 60 47 28 96 14 54 33 96 23 34 10 

3 S112Y 28 46 24 -3 68 -20 34 -7 69 -6 48 -7 

4 S112R 9 45 8 20 14 21 9 20 13 31 8 11 

5 S112T 29 58 32 22 91 26 31 30 86 29 93 25 

6 S112L 21 50 27 14 52 -6 25 13 52 11 40 -7 

7 S112D 21 50 27 14 52 -6 25 13 52 11 40 -7 

8 S112A 27 57 52 30 84 36 53 35 97 54 89 13 

9 S112G 26 54 34 16 46 33 23 24 55 39 30 22 

10 K121N 97 60 97 15 99 25 99 30 98 41 99 14 

11 K121A 86 58 97 25 99 39 97 29 97 40 98 15 

12 K121H 95 59 97 22 99 38 98 34 97 34 98 11 

13 K121Y 97 59 89 13 98 25 89 20 94 31 42 13 

14 K121R 44 61 72 27 96 40 82 36 93 51 76 17 

15 L124K 26 53 13 15 13 21 10 17 9 21 10 0 

16 L124Y 53 45 75 8 95 -3 59 3 87 9 58 -10 

17 L124F 70 58 91 7 98 4 94 4 97 15 97 -5 

18 L124V 50 52 32 13 67 16 38 20 50 13 48 -6 

19 S112G-N118T 42 60 79 18 97 27 91 27 97 49 97 18 

20 S112A-K121N 61 53 95 22 98 25 97 29 99 25 97 -2 

21 S112A-K121A 68 59 95 23 97 35 95 28 97 35 95 1 

(a) See Table 5.2 for experimental details. (b) A positive value corresponds to the (S)-enantiomer, 

whereas a negative value corresponds to the (R)-enantiomer of amine 2a.  
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Chapter 6 

_________________________ 

Conclusion and outlook  

The subject of this work was the creation of artificial metalloenzymes as a promising 

approach to combine the favourable aspects of biocatalysis and homogeneous catalysis. 

Based on the biotin/(strept)avidin technology and Cp*Ir and Cp*Rh derived 

organometallic moieties, ATHases (Artificial Transfer Hydrogenases) were generated. 

With the ultimate goal of performing efficient in vivo catalysis, potential interactions 

between the catalyst and the biological environment were considered. 

Biotransformation often requires cofactor regeneration, which is performed by a 

second enzyme. The development of alternative non-enzymatic NADH regeneration 

methods is still an active field of research. In the chemical method for NADH 

regeneration, the mutual inhibition between the organometallic catalyst and the 

natural enzymes is a common issue. We observed that [Cp*Ir(biot-p-L)Cl] is a better 

catalyst (TOF 4.6 min-1) compared to [Cp*Rh(bipy)H2O]2+ (TOF 0.27 min-1) in terms of 

activity for NADH regeneration. To overcome the mutual inhibition challenge, we 

incorporated the organometallic catalyst [Cp*Ir(biot-p-L)Cl] into streptavidin (Sav) to 

create an artificial transfer hydrogenase (ATHase). 

The resulting ATHase showed a TOF higher than [Cp*Rh(bipy)H2O]2+, and was 

successfully coupled with HbpA to convert 2-phenylphenol to phenylcatechol. Only 

the desired product was generated in the presence of Sav, while in the absence of Sav-

shielding, less than 5% of product was formed. The presence of Sav efficiently shielded 

the iridium complex from interaction with HbpA and subsequent mutual inhibition, 

demonstrating the applicability of concurrent cascade reactions. The concurrent 

reaction could also be carried out under biphasic conditions, illustrating the versatility 

of the ATHase in terms of reaction conditions.  
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Further studies should address the optimization of the ratio ATHase/HbpA to improve 

the reaction rates, as well as the dependence of the NADH regeneration system on the 

formate concentration. The immobilization of the entire enzyme cascade or the 

coupling of the ATHase for NADH regeneration with different redox NADH 

dependent enzymes should be investigated to demonstrate the general applicability of 

the regeneration system.  

The diastereoselectivity of NAD+-reduction at the C4-position was also investigated. In 

the absence of Sav, 38% d.e. was observed, due to substrate control (NAD+). However 

in the presence of mutants S112K and S112A, diastereomeric excesses of 90% and 87%, 

respectively, were obtained for the (R)-diastereomer. Additional work should be 

carried out to design and identify mutants, which will provide the opposite enantiomer 

for the reduction of NAD+, and allow to gain mechanistic information for the 

corresponding ATHase. 

The scope and potential of ATHases were investigated further. Taking into account the 

stability of three legged piano stool complexes based on IrCp* and RhCp*, the biotin 

anchor was tethered to the Cp* moiety, leaving three free coordination sites for 

screening various bidentate ligands. This methodology enabled the rapid generation of 

a large library of artificial cofactors, and led to the identification of α-amino amides as 

functional bidentate ligands in combination with the [biotinCp*IrCl2]2 for transfer 

hydrogenation. A range of 28 commercial available α-amino amides was screened, and 

the best six were combined with 21 streptavidin variants. Up to 63% ee and 96% yield 

(190 TON) were obtained in the presence of [biotinCp*Ir(ʟ-ThrNH2)CL]SavWT. 

These findings demonstrate that both chemical- and genetic diversity have significant 

effect on the activity and selectivity in the reduction of cyclic imines. Screening of a 

wider library of mutants will aim to improve the selectivity of the reaction, and the 

characterization of this novel hybrid catalyst will allow a better understanding of its 

mechanism. 

These studies revealed the potential and versatility of the created artificial transfer 

hydrogenases for different reactions in terms of activity and selectivity. Further 
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investigation will aim at structural, mechanistic and kinetic characterization of the 

created ATHases to better understand their operational mode, and expand their 

application by combining them with natural enzymes for biotechnological purposes. 
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