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A B S T R A C T

The efficient and accurate numerical simulation of time-dependent wave phe-
nomena is of fundamental importance in acoustic, electromagnetic or seismic
wave propagation. Model problems describing wave propagation include the
wave equation and Maxwell’s equations, which we study in this work. Both mod-
els are partial differential equations in space and time. Following the method-of-
lines approach we first discretize the two model problems in space using finite
element methods (FEM) in their continuous or discontinuous form. FEM are
increasingly popular in the presence of heterogeneous media or complex geome-
try due to their inherent flexibility: elements can be small precisely where small
features are located, and larger elsewhere. Such a local mesh refinement, how-
ever, also imposes severe stability constraints on explicit time integration, as the
maximal time-step is dictated by the smallest elements in the mesh. When mesh
refinement is restricted to a small region, the use of implicit methods, or a very
small time-step in the entire computational domain, are generally too high a
price to pay.
Local time-stepping (LTS) methods alleviate that geometry induced stability re-
striction by dividing the elements into two distinct regions: the “coarse region”
which contains the larger elements and is integrated in time using an explicit
method, and the “fine region” which contains the smaller elements and is inte-
grated in time using either smaller time-steps or an implicit scheme.
Here we first present LTS schemes based on explicit Runge-Kutta (RK) meth-
ods. Starting from classical or low-storage explicit RK methods, we derive ex-
plicit LTS methods of arbitrarily high accuracy. We prove that the LTS-RKs(p)
methods yield the same rate of convergence as the underlying RKs scheme. Nu-
merical experiments with continuous and discontinuous Galerkin finite element
discretizations corroborate the expected rates of convergence and illustrate the
usefulness of these LTS-RK methods.
As a second method we propose local exponential Adams-Bashforth (LexpAB)
schemes. Unlike LTS schemes, LexpAB methods overcome the severe stability
restrictions caused by local mesh refinement not by integrating with a smaller
time-step but by using the exact matrix exponential in the fine region. Thus, they
present an interesting alternative to the LTS schemes. Numerical experiments
in 1D and 2D confirm the expected order of convergence and demonstrate the
versatility of the approach in cases of extreme refinement.
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1

I N T R O D U C T I O N

Wave phenomena appear in many fields of science, for example in seismology,
acoustics and electromagnetics.
We can distinguish between two main type of waves. Mechanical waves, the first
type, need a medium to propagate and are characterized by transferring en-
ergy through a medium. Mechanical waves can only occur in media which pos-
sess elasticity and inertia. Examples are sound, seismic and water waves. The
medium further characterizes the properties of the wave (e.g. speed). The second
type of waves are electromagnetic waves. They require no medium to travel within
and can propagate in vacuum, but they can still exist in a medium. Typical exam-
ples are light (visible, infrared and ultraviolet), radio waves, microwaves, X-rays
and many more.
Equations that model wave propagation can be assigned to three physical cate-
gories. The acoustics equation and the elastic system model mechanical waves
in fluids and solids, respectively, and Maxwell’s equations, which describe the
propagation of electromagnetic waves. As these equations so widely appear in
science it is of importance to have accurate and efficient numerical solvers.
We focus in this thesis on two types of equations: on acoustic wave equations and
Maxwell’s equations. We consider both in time domain rather than frequency
domain. Both approaches have their advantages, but time dependent equations
appear to have a wider range of applications. Especially when dealing with pulse
sources or radar sources covering a large range of frequencies time dependent
equations model the phenomena better.

1.1 model problems

Wave equation
As a first model problem we consider the damped wave equation

∂2u
∂t2 (x, t) + σ

∂u
∂t

(x, t)−∇ · (c2∇u(x, t)) = f (x, t) in Ω× (0, T), (1.1)

a standard model for wave phenomena. Here Ω is a bounded domain in Rd,
d = 1, 2, 3, x ∈ Rd, f is a (known) source term. The damping coefficient, σ = σ(x),
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2 introduction

is assumed non-negative (σ(x) ≥ 0) whereas the speed of propagation, c = c(x),
is piecewise smooth and strictly positive (c(x) ≥ c0 > 0). If σ is identically zero
throughout Ω, then (1.1) coincides with the classical (undamped) wave equation.
Given initial and boundary conditions complete the model. For a more detailed
description see Chapter 3.
Maxwell’s equations
The second problem we want to study in this work is the propagation of a time-
dependent electromagnetic field through a linear isotropic medium. The set of
equations

∂D
∂t

(x, t)−∇×H(x, t) = −J(x, t) in Ω× (0, T), (1.2)

∂B
∂t

(x, t) +∇× E(x, t) = 0 in Ω× (0, T), (1.3)

∇ · B(x, t) = 0 in Ω× (0, T), (1.4)
∇ ·D(x, t) = ρ(x, t) in Ω× (0, T), (1.5)

known as Maxwell’s equations, forms the basis of classical electromagnetic phe-
nomena and describes the interaction between E, H, D and B, the electric and
magnetic fields and the electric and magnetic inductions, respectively. The vec-
tor E contains x-, y- and z-component of the electric field, i.e. E = (Ex, Ey, Ez). H,
D and B are defined likewise. J denotes here the current density and ρ a given
charge density. For this model we assume that Ω ⊂ Rd, d = 1, 2, 3, is a bounded
polygon/polyhedron.
For linear and isotropic material we have additionally the following relations

D(x, t) = ε(x)E(x, t), (1.6)
B(x, t) = µ(x)H(x, t), (1.7)

which we can use to eliminate D from (1.2) and B from (1.3). Here µ and ε

denote the relative magnetic permeability and the relative electric permittivity,
respectively, and are positive, bounded scalar functions of position.
Moreover, if the fields are not too strong, we can assume that Ohm’s law holds
and thus

J(x, t) = σE(x, t) + Ja(x, t), (1.8)

where σ is a non-negative function of position, the so-called conductivity of the
medium, while Ja describes the applied current density.
In the following we shall generally refer to the set of equations

ε
∂

∂t
E(x, t)−∇×H(x, t) + σE(x, t) = −Ja(x, t) in Ω× (0, T), (1.9)

µ
∂

∂t
H(x, t) +∇× E(x, t) = 0 in Ω× (0, T), (1.10)
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as Maxwell’s equations, which we get from inserting (1.6) and (1.8) into (1.2) and
(1.7) into (1.3). Regions where σ is positive are called conductors. Where σ = 0
and ε 6= ε0, the material is termed a dielectric, and ε is referred to as the dielectric
constant. In vacuum (or air at low field strength) we find that σ = 0, ε = ε0 and
µ = µ0. We again need initial and boundary conditions to complete the model. It
can be shown that if (1.4) and (1.5) hold at one time, they hold for all time. Thus,
if the initial conditions satisfy (1.4) and (1.5), the solutions of (1.9) and (1.10)
fulfill the divergence conditions and we can omit them in our set of equations.

Both the damped wave equation (1.1) and Maxwell’s equations (1.9)–(1.10) are
examples of partial differential equations (PDEs) in space and time. Following
the method-of-lines approach we discretize them first in space and then in time.
Different spatial discretizations are available; among the most popular choices
are finite differences (FD). FD methods often reach their limit when dealing with
locally refined meshes. These meshes are very useful to capture local behavior
originating from small geometric features without introducing too many un-
knowns and are thus computationally efficient. In this work we are using finite
element methods (FEM). These methods, in their continuous and discontinuous
form, are well able to handle locally refined unstructured meshes and their ex-
tension to higher orders is straightforward. For more details we refer to Part I
of this work. The spatial discretization of our model problems leads to ordinary
differential equations (ODEs) in time, which we subsequently need to solve.

Locally refined meshes, however, impose severe stability restrictions on explicit
time integration as the maximal time-step allowed by the CFL condition is dic-
tated by the smallest element in the mesh. When mesh refinement is restricted
to a small region, the use of implicit methods, or a very small time-step in the
entire computational domain, are generally too high a price to pay.

Over the last decades various schemes, such as multirate and local time-stepping
(LTS) methods, have been developed to overcome this geometry induced stiff-
ness.

In this work we propose high-order local time-stepping (LTS) schemes based
on explicit Runge-Kutta (RK) methods and local exponential Adams-Bashforth
(Lexp-AB) methods. By using smaller time-steps or the exact matrix exponen-
tial precisely where the small elements in the mesh are located, these methods
overcome the severe stability restrictions caused by local mesh refinement with-
out sacrificing the explicitness, accuracy or efficiency of their underlying explicit
time integration scheme.

Before we describe the two methods in detail we give an overview on existing
multirate and LTS methods in Sections 1.2 and 1.3. A short survey on some of
the methods mentioned here can also be found in [44].
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1.2 multirate methods

Multirate schemes were developed in the ODE community for first order sys-
tems, where different components need different time scales. Already in 1960

Rice [90] derived split RK methods for equations of the form

x′(t) = F(x, y, t), x(0) = x0, (1.11)
y′(t) = G(x, y, t), y(0) = y0, (1.12)

where the component y(t) does not depend strongly on x(t) or varies much
more rapidly than x(t). The scheme proposed in [90] allows (1.11) and (1.12) to
be solved with different time-steps, while keeping the self-starting property of
the classical RK method and the ability to change the integration step easily.
Gomm and later Andrus presented a stability analysis of multirate versions of
linear multistep methods [46] and fourth- and third-order RK methods [2]. Gear
and Wells [45] described multirate schemes based on linear multistep methods
with automatic stepsize and order control. In [94] Skelboe and Andersen studied
the stability for multirate schemes based on backward Euler.
In [52] Günther, Kværnø and Rentrop introduced multirate partitioned RK meth-
ods, which can be viewed as a generalization of both partitioned RK [89] and
multirate Rosenbrock-Wanner methods [53]. Starting from a first order ODE the
unknowns are divided into an active component, which is rapidly changing, and
a latent but stiff component. The computation of the active (non-stiff) part using
an explicit scheme with a small time-step is coupled with the linearly implicit
computation of the latent (stiff) part.
The multirate methods mentioned so far all require an a priori knowledge of
the splitting into active and latent components. To overcome this, Engstler and
Lubich [39] proposed a multirate method based on Richardson extrapolation.
This approach allows for a dynamic partitioning into several classes of slow to
fast components.
A finite element based approach is presented by Logg in [74, 75]. The multi-
adaptive Galerkin method for ODEs even lets each individual component have
its own time-step, but it also leads to complicated implicit relations which need
to be solved iteratively across each time-slab.
More recently, Savcenco, Hundsdorfer and Verwer [92] introduced a self-adjusting
multirate time-stepping strategy for stiff ODE’s starting from a second-order (lin-
early implicit) Rosenbrock method with an embedded first-order method. This
approach allows large time steps for inactive components, without sacrificing
accuracy.
In their recent work [29] Demirel et al. presented multiple time-stepping (MTS)
algorithms which allow any choice of explicit Adams type or predictor-corrector
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scheme for the non-stiff integration and any choice of ODE solver for the stiff
part. Furthermore, they constructed MTS schemes with optimized stability con-
tours for both stiff and non-stiff integration.

1.3 local time-stepping schemes

So-called local time-stepping methods present another approach. They were
developed in the PDE community to overcome the bottleneck in explicit time-
stepping caused by locally refined meshes by dividing the mesh into two parts:
”fine” and ”coarse”. While they integrate in the coarse region with an explicit
scheme, they resolve the stability restriction on the fine part by using either an
implicit scheme (locally implicit methods) or an explicit method with a finer
time-step (locally explicit methods).

1.3.1 Locally implicit methods

Locally implicit methods build on the long tradition of hybrid implicit-explicit
(IMEX) algorithms for operator splitting for advection-diffusion-reaction equa-
tions. The different terms appearing in the ODE after spatial discretization pos-
sess different characteristics and IMEX schemes allow to treat the stiff term (e.g.
diffusion term) implicitly while using an explicit scheme for the non-stiff part
(e.g. advection) – see [4, 67] and the references therein. In 2006, Piperno [87]
presented a combination of the explicit leap-frog (LF) with the implicit Crank-
Nicolson (CN) scheme for a nodal discontinuous Galerkin (DG) discretization
of Maxwell’s equations in a non-conducting medium. Here, a linear system
needs to be solved inside the refined region at every time-step. Although each
method is time accurate of order two, the implicit-explicit component splitting
can reduce by one the order of convergence of the resulting scheme when both
the time-step and the mesh size decrease simultaneously [34, 32]. By using the
LF/CN-IMEX approach of Verwer [98] instead, Descombes, Lanteri and Moya
[32] resolved that unexpected loss in accuracy and hence recover second-order
convergence, yet at the price of a significantly larger albeit sparse linear system.
To achieve higher accuracy, Kanevsky et al. [68] applied a fourth-order IMEX RK
method [70] to nodal DG discretizations in fluid flow. The nonlinear system asso-
ciated with the ”fine” elements needs to be solved by a Newton-Krylov method
at every time-step and becomes increasingly ill-conditioned as the grid-induced
stiffness increases. This can however be corrected with the use of suitable pre-
conditioners.
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1.3.2 Locally explicit schemes

Unlike locally implicit schemes, explicit LTS methods overcome the crippling
effect of local refinement by using smaller time-steps inside the refined region,
while remaining fully explicit in the entire computational domain. One of the
first local time-stepping methods based on the forward Euler scheme was pre-
sented by Osher and Sanders in [85] for one-dimensional conservation laws us-
ing finite volume schemes in space. In the mid-eighties Berger and Oliger [12]
and Berger and Colella [10] proposed a local adaptive mesh refinement (AMR)
strategy for first-order nonlinear hyperbolic conservation laws, based on a hier-
archy of rectangular finite-difference grids. In [11] Berger and LeVeque extended
this strategy to hyperbolic equations not necessarily in conservation form.
More recently, Dawson and Kirby [28] developed local time-stepping for con-
servation laws based on forward Euler and second order time discretizations,
which satisfy, as an additional property, a maximum principle.
To achieve higher-order schemes Baeza and Mulet [5] and Dumbser et al. [36]
combined the AMR strategy with weighted essentially non-oscillatory (WENO)
reconstruction techniques.
As already mentioned, finite element based approaches are a natural choice in
the presence of complex geometry or adaptive mesh refinement due to their
flexibility.
In [42] Flaherty et al. presented the first combination of DG FE on unstructured
meshes and LTS. The results, however, were restricted to first order.
In [41] Ezziani and Joly combined the energy conserving, second-order LTS
approach from Collino et al. [23, 24, 25] with a DG FE discretization for the
numerical solution of symmetric first-order hyperbolic systems. That LTS ap-
proach is explicit inside the coarse and the fine mesh; at the interface, how-
ever, it nonetheless requires the solution of a linear system at every time-step.
In [87], Piperno also proposed a fully explicit second-order Störmer-Verlet LTS
scheme for Maxwell’s equations in first-order formulation; while it preserves a
discrete form of the electromagnetic energy in a non-conducting medium, it is
also limited to second-order accuracy. In [79] Montseny et al. presented a local
time-stepping strategy defined by a recursive multi-class method based upon
a leap-frog scheme, which they combined with discontinuous hexahedral ele-
ments. Starting from the standard LF method, energy conserving fully explicit
LTS integrators of arbitrarily high even accuracy were proposed for the classi-
cal wave equation [33] by Diaz and Grote. In [48] Grote and Mitkova extended
this approach to Maxwell’s equation for non-conductive media in second-order
formulation. Furthermore, an explicit LTS scheme is derived for conducting me-
dia by combining LF and Crank-Nicolson methods. This is, however, limited to
second-order.
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Based on the arbitrary high-order derivatives (ADER) DG approach, alternative
explicit LTS methods for Maxwell’s equations and for elastic wave equations
were proposed by Taube et al. [97] and Dumbser et. al [35]. Constantinescu et
al. and later Krivodonova devised multirate explicit methods for hyperbolic con-
servation laws , which are based on Runge-Kutta [26, 71] and Adams-Bashforth
[27] schemes; again these schemes are limited to second-order accuracy. Mono-
tonicity conditions of multirate schemes based on first and second order explicit
RK methods [85, 96, 26, 92] were analyzed by Hundsdorfer et al. in [66].
To achieve arbitrarily high accuracy in the presence of dissipation, while remain-
ing fully explicit, Grote and Mitkova [49] derived LTS methods for damped wave
equations based on Adams-Bashforth (AB) multi-step schemes; they can also be
interpreted as particular approximations of exponential-Adams multi-step meth-
ods [63]. Recently, Angulo et al. [3] proposed a ”causal-path” LTS technique
for both the second-order LF and a fourth-order low-storage (LS) explicit RK
method [15], which assorts elements in tiers according to their size and com-
putes required intermediate values recursively.

Here, we propose explicit LTS methods based on standard explicit RK schemes
of arbitrarily high accuracy. Since RK methods are one-step methods, they do
not require a starting procedure and easily accommodate adaptivity in time.

1.3.3 Local exponential integrators

The second type of methods we investigate in this work are local exponential
Adams-Bashforth (Lexp-AB) schemes which are based on exponential Adams
methods.
In [63] Hochbruck and Ostermann presented exponential multistep methods for
semilinear problems of the form

u′(t) = −Au(t) + g (t, u(t)) , u(t0) = u0,

which, for A = 0 reduce to well-known AB methods. Beside the construction,
implementation and numerical analysis of exponential Adams methods, the ar-
ticle further provides a stiff error analysis performed in the abstract framework
of linear semigroups. An error analysis based on order conditions for exponen-
tial general linear methods is presented by Ostermann et al. in [86]. Exponential
Adams methods were first introduced by Certaine in [16] and by Nørsett in [84].
They are part of a long tradition of exponential integrators dating back to the
60th and regaining a stronger interest in recent years. For an overview on differ-
ent methods, applications and extensive references we refer to Hochbruck and
Ostermann [62].
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Instead of choosing a smaller time-step in the fine region Lexp-AB methods
calculate the matrix exponential and can thus keep one global time-step. The
idea was first presented in [63]. Especially when facing problems with very few,
but very small, fine elements, these methods present an interesting alternative
to LTS schemes.

1.4 outline of the thesis

The rest of the thesis is structured in three parts.
In Part I we introduce the model problems (1.1) and (1.9)-(1.10) in more details
as to function spaces, boundary and initial conditions, etc. Furthermore, we in-
troduce variational formulations, which build the basis for our finite element
discretizations, both continuous and DG. Additionally we present some conver-
gence results for semi-discrete schemes.

Part II describes the derivation of RK based LTS schemes. We further present
and prove theoretical convergence results and conclude by giving numerical
results, both in one dimension, which confirm our convergence results and show
stability results, and two dimensions, for both wave equations and Maxwell’s
equations.

In Part III we propose Lexp-AB methods. Numerical results in one spatial dimen-
sion show the expected high rates of convergence and optimal stability prop-
erties. We explain with the help of examples why the use of Krylov methods
to evaluate matrix exponential times vector does usually not give the desired
results when applied to ODEs coming from the FE discretization of wave equa-
tions. Additionally we present numerical results in two spatial dimensions.

We end this work with concluding remarks and an outlook to possible future
work.



Part I

M O D E L P R O B L E M S A N D S PAT I A L
D I S C R E T I Z AT I O N





2

I N T R O D U C T I O N

A variety of different spatial discretizations for model problems describing wave
phenomena such as (1.1) or (1.9)–(1.10) is available when following the method-
of-lines strategy. As mentioned in Section 1.1 FD present an intuitive and easy
approach, as they directly start from the PDEs (1.1) or (1.9)–(1.10) and replace
the appearing spatial derivatives by difference quotients. Due to their simplicity
they are still popular and often present the method of choice in engineering.
The construction of higher-order schemes, which are essential to achieve the
necessary high accuracy, is however more involved. [1] is one of the earliest
work on a fourth-order FD scheme for the acoustic wave equation. It presents
a 9-point scheme in space for the wave equation in two dimensions. Extensive
work on higher-order schemes in space began in geophysics around 1985. A nice
overview and extensive references can be found in [21], Part II.
In electromagnetics the research on FD methods for time dependent problems
was less active. However, among the most popular methods to advance time-
dependent electromagnetic fields we find the Yee-scheme [100], which uses sec-
ond order FD in space and time on a staggered grid and is still regarded as a
reference method. For a detailed overview on FD methods for Maxwell’s equa-
tions see [95].
The main drawback of FD methods is that they are restricted to quadrilateral
and hexahedral meshes in two and three dimensions, respectively. Hence, they
are not well suited for complex geometries and local mesh refinement.
FEM appear to be a natural solution to this problems as they are able to han-
dle locally refined and unstructured grids. However, such methods introduce a
mass-matrix M, which needs to be inverted even when applying explicit time
integration schemes, thus compromising the efficiency of explicit methods. To
avoid that computational work, various mass-lumping techniques have been de-
veloped [20, 80], which replace M by a diagonal approximation without spoiling
the accuracy [9].
Approximating Maxwell’s equations with standard (H1- conforming) finite el-
ements would lead to a numerical solution without singularities, even in the
presence of re-entrant corners. With this approach we would consequently loose
actual physical solutions. The appropriate space to consider is H(curl, Ω) which

11
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only asks continuity of the tangential component of a field, but allows its normal
component to jump across element boundaries. The first finite elements based on
this principle can be found in [81, 82]. [78] gives an overview on these so-called
edge elements. In [22] Cohen and Monk presented mass-lumping for Maxwell’s
equations and mixed finite elements on quadrilateral meshes, which can be ex-
tended to triangular meshes [37, 38].
When considering problems in 3D, mass-lumping introduces additional degrees
of freedom (23 dofs instead of 10 for third-order methods). This drastically influ-
ences their efficiency. Furthermore, mass-lumped finite elements in 3D are only
known up to order four [17]. Spectral element methods (SEM) [14, 69] present
an alternative. They can be interpreted as extensions of mass-lumped finite el-
ements in 1D to higher dimensions [21] and provide a diagonal mass matrix.
However, they are again restricted to quadrilateral and hexahedral meshes.
DG methods automatically lead to a block-diagonal mass matrix with block size
equal to the number of degrees of freedom per element; therefore M is com-
putationally cheap to invert. Furthermore DG schemes allow for locally refined
and even irregular nonmatching meshes without enforcing continuity across el-
ement boundaries. The first DG method was presented by Reed and Hill in [88]
for the solution of the steady-state neutron transport equation. Today various
different DG schemes are available [19, 91, 50, 51]. For an extensive overview on
the development of DG schemes see [18, 57, 31] and references therein.
In this work we focus on two different discretizations of our model problems:
continuous FEM with mass-lumping [20, 80] (for the wave equation) and nodal
DG methods [56, 57] (for both wave equation and Maxwell’s equations).
The rest of this part on model problems and spatial discretizations is structured
as follows. In Chapter 3 we present the wave equation in more detail. We recall
both continuous FEM with mass-lumping and nodal DG FEM as discretization
methods to attain ODEs in time, which we can rewrite as a general first-order
system of differential equations. In Chapter 4 we extend the nodal DG formula-
tion to Maxwell’s equations. This again leads to first-order system of ODEs in
time.



3

F I N I T E E L E M E N T D I S C R E T I Z AT I O N S O F WAV E
E Q U AT I O N S

In this chapter we present the wave equation (1.1) in more detail. We state some
classical existence, uniqueness and regularity results for the weak solution of
the wave equation and present spatial discretizations based on standard H1-
conforming FEM with mass-lumping and nodal DG methods.
We remind the reader of the wave equation presented in (1.1)

utt + σut −∇ · (c2∇u) = f in Ω× (0, T),
u(·, t) = 0 on ∂Ω× (0, T), (3.1)

u(·, 0) = u0 , ut(·, 0) = v0 in Ω,

which serves as a standard model problem for wave phenomena. As introduced
before, Ω is a bounded domain in Rd, f is a (known) source term, while u0 and
v0 are prescribed initial conditions. At the boundary, ∂Ω, we impose a homo-
geneous Dirichlet boundary condition, for simplicity. The damping coefficient,
σ = σ(x), is assumed non-negative (σ(x) ≥ 0) whereas the speed of propaga-
tion, c = c(x), is piecewise smooth and strictly positive (c(x) ≥ c0 > 0). If σ is
identically zero throughout Ω, then (3.1) coincides with the classical (undamped)
wave equation.

3.1 continuous fem

Various FEM are available for the spatial discretization of (3.1). For instance, the
standard H1-conforming FEM with mass-lumping starts from the weak formu-
lation: Find u : [0, T]→ H1

0(Ω) such that

(utt, v) + (σut, v) + (c∇u, c∇v) = ( f , v) ∀ v ∈ H1
0(Ω), t ∈ (0, T),

u|t=0 = u0 in Ω, (3.2)
ut|t=0 = v0 in Ω,

where (·, ·) denotes the standard inner product on L2(Ω)

(w, v) =
∫

Ω
w(x)v(x) dx.

13



14 finite element discretizations of wave equations

For σ = 0 (3.2) reduces to the variational formulation of the classical wave equa-
tion. After several assumptions on initial conditions and source term we get the
following result on the existence and uniqueness of a weak solution of (3.2).

Theorem 3.1. Let u0 ∈ H1
0(Ω), v0 ∈ L2(Ω) and f ∈ L2(0, T; L2(Ω)). Then there

exists a unique weak solution of (3.2) u ∈ L2(0, T; H1
0(Ω)) with ut ∈ L2(0, T; L2(Ω)).

The proof can be found in [40]. Furthermore one can proof that the solution
has actually even more regularity, i.e. u ∈ C(0, T; H1

0(Ω)) ∩ C1(0, T; L2(Ω). For
σ(x) > 0 similar results can be found in [73].
Next, we consider a family of shape-regular meshes {Th}h that each partition Ω
into disjoint elements K, i.e. Ω = ∪K∈Th K; for simplicity, we assume that Ω is
polygonal. The diameter of element K, a triangle or a quadrilateral in two space
dimension, and a tetrahedron or hexahedron in three dimensions, is denoted by
hK; hence, the mesh size, h, is given by h = maxK∈Th hK. We also let Vh ⊂ H1

0(Ω)
denote the finite dimensional subspace

Vh = {v ∈ H1
0(Ω) : v|K ∈ S `(K), ∀K ∈ Th}, ` ≥ 1,

where S `(K) corresponds to the space P `(K) of polynomials of total degree at
most `, if K is a triangle or tetrahedron, or the space Q`(K) of polynomials of
maximal degree ` in each variable, if K is a quadrilateral or hexahedron.
The semi-discrete Galerkin approximation, uh(t) ∈ Vh, is then defined for 0 ≤
t < T by the restriction of (3.2) to Vh: Find uh : [0, T]→ Vh such that

(uh
tt, v) + (σuh

t , v) + (c∇uh, c∇v) = ( f , v) ∀ v ∈ Vh , t ∈ (0, T) ,

uh(·, 0) = Πhu0 , uh
t (·, 0) = Πhv0 .

(3.3)

Here, Πh denotes the L2-projection onto Vh. In [7] semi-discrete convergence
results for (3.3) as well as fully-discrete convergence proofs are presented. This
was extended in [8] to a first-order formulation of (3.3).
Let U(t) ∈ RN denote the coefficients of uh(t) with respect to the standard
Lagrangian basis {φi}i=1,...,N of Vh. Then (3.3) is equivalent to the second-order
system of ODEs

M
d2U
dt2 (t) + Mσ

dU
dt

(t) + K U(t) = R(t) , t ∈ (0, T),

MU(0) = uh
0, M

dU
dt

(0) = vh
0,

(3.4)

where uh
0, vh

0 are suitable approximations to the initial conditions. Moreover, the
mass matrix, M, and the stiffness matrix, K, are given by

Mij = (φj, φi), Kij = (c∇φj, c∇φi);
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the matrix Mσ also corresponds to a mass matrix with weight σ. The matrix M
is sparse, symmetric and positive definite, whereas the matrices K and Mσ are
sparse, symmetric but, in general, only positive semi-definite.

Even though explicit numerical time integration may be applied directly to (3.4),
every time-step then requires the solution of a linear system involving M or
multiplication with the inverse of M, which need no longer be sparse. To avoid
that computational work, various mass-lumping techniques have been devel-
oped [20, 80], which replace M by a diagonal approximation without spoiling
the accuracy [9]. Alternatively, the spectral element method [14, 69] and the sym-
metric interior penalty DG method [50] both waive the need for mass-lumping
altogether: The former inherently leads to a diagonal mass matrix, whereas the
latter leads to a block-diagonal mass matrix with block size equal to the number
of degrees of freedom per element. Thus, both mentioned alternative discretiza-
tions also lead to (3.4) with an essentially diagonal mass matrix M.

Since M in (3.4) is symmetric, positive definite and (block) diagonal, the matrix
M−

1
2 is immediately available. Then, multiplication of (3.4) by M−

1
2 yields

d2z
dt2 (t) + D

dz
dt

(t) + Az(t) = R̃(t), (3.5)

with

z(t) = M
1
2 U(t), D = M−

1
2 MσM−

1
2 , A = M−

1
2 KM−

1
2 , R̃(t) = M−

1
2 R(t).

Again, the matrix A is sparse, symmetric and positive semi-definite.

LTS techniques based on leap-frog type methods start from the second-order
system (3.5). To apply a RK type or AB method, however, we first need to rewrite
(3.5) as a first-order system

dy
dt

(t) = By(t) + F(t) , t ∈ (0, T) ,

y(0) = y0 ,
(3.6)

where we have introduced

y(t) =
(

z(t),
dz
dt

(t)
)T

, B =

(
0 I
−A −D

)
, F(t) =

(
0

R̃(t)

)
.
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3.2 nodal discontinuous galerkin methods

As an alternative to mass-lumped FEM we consider now the discretization of
(3.1) using nodal DG elements [56, 57]. We start by introducing new variables
v := ut, w := −∇u, and thus rewriting (3.1) as a first-order hyperbolic system:

vt + σv +∇ · (c2w) = f in Ω× (0, T) ,
wt +∇v = 0 in Ω× (0, T) ,

v(·, t) = 0 on ∂Ω× (0, T) ,
v(·, 0) = v0 , w(·, 0) = −∇u0 in Ω ,

(3.7)

or in more compact notation as

qt + Σ q +∇ · F (q) = S , (3.8)

with

q =

[
v
w

]
, Σ =

[
σ 0
0 0

]
, F (q) =

[
c2w>

vId×d

]
, S =

[
f
0

]
.

Similar to the case of continuous FEM we search for solutions of (3.8) in the weak
sense. The weak formulation is however posed on a local instead of a global level.
We start again by approximating Ω by nonoverlapping elements.
To take discontinuous solutions into account, it is further necessary to double
the inner points.
On each element K we express the local numerical solution as a polynomial of
degree N

qK
h (x, t) =

Np

∑
i=1

qK
h (x

K
i , t)`K

i (x), (3.9)

where xk
i represent the Np = N + 1 grid points based within the element K and

`K
i (x) is the multidimensional Lagrange polynomial based on these grid points.

The grid points are chosen to lead to well-behaved interpolation. They can be
interpreted as extensions of the Legendre-Gauss-Lobatto points in 1D [57]. The
global solution is given by the direct sum of the K local polynomials

q(x, t) ' qh(x, t) =
⊕

qK
h (x, t). (3.10)

To calculate the local solutions we insert qK
h (x, t) into (3.8), multiply with `K

j (x)
and integrate over K to get

∫
K

(
∂

∂t
qK

h + ΣqK
h +∇ · FK

h − Sk
h

)
`K

j dx =
∫

∂K
n̂ ·
(
FK

h −F ∗
)
`K

j ds, (3.11)
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where n̂ is the local outward pointing normal. The here introduced numerical
flux F ∗ plays a crucial role in the design of a DG method. Without the numer-
ical flux the expression in (3.11) would be fully local and the solution at the
element interfaces multiple defined. The choice of numerical flux determines
which solution, or which combination of solutions, is chosen. Additionally, the
boundary conditions are imposed weakly through the numerical fluxes. This fur-
ther highlights the importance of the choice. Two popular examples are upwind
and central flux. While the energy conserving central flux is the average of the
different solutions at the interface, the upwind flux takes information were it
comes from. This, however, introduces an artificial dissipation to the numerical
solution. It depends on the problem we want to study, which numerical flux is
adequate. As an example we comment on the upwind flux for the wave equation
in 1D with constant c. With v = ut, w = −ux (3.8) reduces then to

qt + Σq +Aqx = S, (3.12)

where

q = (v, w)> , S = ( f , 0)> , Σ =

[
σ 0
0 0

]
, A =

[
0 c2

1 0

]
.

The flux of the first-order hyperbolic system (3.12) is then given by Aq. The
eigenvalues of A are ±c and represent two waves with speed c travelling in
opposite directions. In the following, interior information of an element will be
marked with a superscript ”–” and ”+” is the symbol for exterior information. By
applying the Riemann jump conditions [72] we recover the following equations

c
(
q∗ − q−

)
+ (Πq)∗ − (Πq)− = 0, (3.13)

−c
(
q∗ − q+

)
+ (Πq)∗ − (Πq)+ = 0, (3.14)

where q∗ refers to the intermediate state, (Πq)∗ is the numerical flux along the
outward normal n̂ with operator Π defined as

Πq = n̂ · (Aq) = n̂ ·
[

c2w
v

]
. (3.15)

We can derive an equation for the unknown numerical flux (Πq)∗ by combining
(3.13) and (3.14) and thus arriving at

(Πq)∗ =
1
2
(
c(q− − q+) + (Πq)− + (Πq)+

)
. (3.16)

With (3.15) and (3.16) we finally get expressions involving v∗ and w∗

(Πq)∗ = n̂ ·
[

c2w∗

v∗

]
=

1
2

(
c
[

v− − v+

w− − w+

]
+ n̂ ·

[
c2(w− + w+)

v− + v+

])
. (3.17)
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0 xK−1
l

xK−1
r = xK

l

K − 1 K K + 1

xK
r = xK+1

l
xK+1
r

L

Figure 1: Element K with neighbors.

We are now ready to formulate the equations of the local solutions in matrix-
vector form. For simplicity we restrict ourselves again to the one-dimensional
case, see Fig. 1 for the grid. (3.9) corresponds then to the two equations

vK
h (x, t) =

Np

∑
i=1

vK
h (xK

i , t)`K
i (x), wK

h (x, t) =
Np

∑
i=1

wK
h (xK

i , t)`K
i (x),

which we can now insert into (3.11). This gives us the following local semi-
discrete scheme

MK d
dt

vK
h + σMKvK

h + c2SKwK
h −MKfK

h = c2
∮ xK

r

xK
l

n̂ · (wK
h − w∗)`K

j ds, (3.18)

MK d
dt

wK
h + SKvK

h =
∮ xK

r

xK
l

n̂ · (vK
h − v∗)`K

j ds, (3.19)

where vK
h ∈ RNp denotes the vector of the coefficients vK

h (xK
i , t), i = 1, . . . , Np,

and MK and SK are the local mass and stiffness matrices, respectively. Their
entries can be calculated as follows

MK
ij =

∫ xK
r

xK
l

`K
j (x)`K

i (x) dx =
∫ 1

−1
`j(r)`i(r) dr =

hK

2
MI

ij,

SK
ij =

∫ xK
r

xK
l

`K
i (x)

`K
j (x)

dx
dx =

∫ 1

−1
`i(r)

`j(r)
dr

dr = S I
ij.

with hK = xK
r − xK

l the length of element K. Thus, we only have to calculate the
local matrices once on the reference element I = [−1, 1].
As the above equations (3.18) and (3.19) are only local, inverting the arising local
mass matrix MK is cheap. Using further the expression for the numerical flux
(3.17), we can represent the global solution with the following global system of
ODEs
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d
dt

vh(t) =
(
−σvh(t)− c2M−1Swh(t) +M−1Cwh(t) + fh(t)

)
, (3.20)

d
dt

wh(t) =
(
−M−1Svh(t) +M−1Cvh(t)

)
, (3.21)

with global mass and stiffness matrixM and S and interface matrix C.
(3.20) and (3.21) can be directly written as (3.6)

dy
dt

(t) = By(t) + F(t) , t ∈ (0, T) ,

y(0) = y0 ,

with

y(t) =
(

vh
wh

)
, B =

( −σI −c2M−1S +M−1C
−M−1S +M−1C 0

)
, F(t) =

(
fh
0

)
.

Note that we in general never assemble the global matrices as displayed in (3.20)
and (3.21), but only compute them on a local level.
In a similar way as presented here for the 1D wave equation we can discretize
any first-order hyperbolic system (3.8). We likewise end up with d + 1 local
equations corresponding to (3.18)-(3.19) which can be rewritten in global form
as (3.6).
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M A X W E L L’ S E Q U AT I O N S

In this chapter we concentrate on Maxwell’s equations and their spatial dis-
cretization schemes. We restrict ourselves here to nodal DG approach [56, 57].
We start by repeating our model problem as seen in Chapter 1

ε
∂

∂t
E−∇×H + σE = −Ja, in Ω× (0, T), (4.1)

µ
∂

∂t
H +∇× E = 0 in Ω× (0, T), (4.2)

where Ω ⊂ Rd, d = 1, 2, 3, is a bounded polygon/polyhedron. Here µ, ε and σ de-
note the relative magnetic permeability, the relative electric permittivity and the
conductivity of the medium, respectively, while the source term j corresponds
to the applied current density. σ(x) is a non-negative function of position. Re-
gions where σ is positive are called conductors. Where σ = 0 and ε 6= ε0, the
material is termed a dielectric, and ε is referred to as the dielectric constant. In
vacuum (or air at low field strength) σ = 0, ε = ε0 and µ = µ0. For simplicity,
we assume that materials are piecewise constant. Furthermore, let E(·, t) = 0 on
∂Ω× (0, T) corresponding to a physical situation where the computational do-
main is enclosed in a metallic cavity (also called perfectly electrically conducting
(PEC) boundaries). Given initial conditions will complete our model.

4.1 spatial discretization

We extend the nodal DG discretization seen in Chapter 3 for damped wave equa-
tions to electromagnetic problems described by Maxwell’s equations. Following
[56] we rewrite (4.1)-(4.2) as a system of the form

Q(x)qt + Σ q +∇ · F (q) = S , (4.3)

with

Q =

[
εId×d 0

0 µId×d

]
, q =

[
E
H

]
, Σ =

[
σId×d 0

0 0

]
, Fi(q) =

[−ei ×H
ei × E

]
, S =

[−Ja
0

]
.
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Here ei, i = 1, 2, 3, denote the three Cartesian unit vectors. (4.3) can be directly
written into the form of (3.8) by inverting Q. Thus, the derivation of the local
solution (3.11) also holds for Maxwell’s equations (4.1) - (4.2). Again the most
crucial part in designing the DG method is the choice of numerical flux. As for
the wave equation the numerical flux along a normal n̂ can be obtained with
the Riemann jump conditions, also known as the Rankine-Hugoniot conditions.
First we recall that the normal component of the flux in (4.3) is given by

n̂ · F =

[−n̂×H
n̂× E

]
and thus represents the tangential field components. This leads to the following
equations for the numerical fluxes

n̂ · (F −F ∗) =


− 1

2 {Z} n̂× (Z+ (H− −H+)− αn̂× (E− − E+))

1
2 {Y} n̂× (Y+ (E− − E+) + αn̂× (H− −H+))

(4.4)

for electric and magnetic fields, respectively – see [56] for derivation. Here, {·}
denotes the average, i.e.

{Z} = Z+ + Z−

2
.

For simplicity we assume that ε and µ are piecewise constant. Thus,

Z± =
1

Y±
=

√
µ±

ε±
,

gives us the relation between local impedance Z and conductance Y.
The choice of α = 1 results in a classical upwind flux. For α = 0, (4.4) re-
duces to the nondissipative central flux. Applying a central flux gives an energy-
conserving method for σ = 0. However, we do not always get optimal conver-
gence rates, but an even-odd pattern where we get accuracy of O(hN+1) for N
even and O(hN) for N odd, see [21], Chapter 6.5 (presentation of phenomena
for Maxwell) and Chapter 7.1 (theoretical results, for Heat equation). Here, N is
the degree of the local polynomial on each element. Furthermore, when study-
ing the stability of explicit RK methods, we observe another advantage of an
upwind flux as it gives a system matrix with a spectrum better suited for the
stability regions of RK schemes than that of system matrices originating from
continuous FEM or DG with central flux discretizations, see Section 8.1.
For illustration we present now more detailed calculations for Maxwell’s equa-
tions in 2 spatial dimensions. If the electric and magnetic fields only depend on
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the two spatial components x and y, but not on z, then the system of equations
(4.1) and (4.2), containing 6 unknowns, decouples and we get 2 independent
sets of equations, one involving Hx, Hy, Ez (known as transverse magnetic form
(TM)) and a second one containing Ex, Ey, Hz (transverse electric form (TE)). The
two sets can then be solved in parallel. Here we only consider the TM form,
which is given by

ε
∂Ez

∂t
−
(

∂Hy

∂x
− ∂Hx

∂y

)
+ σEz = −Ja in Ω× (0, T), (4.5)

µ
∂Hx

∂t
+

∂Ez

∂y
= 0 in Ω× (0, T), (4.6)

µ
∂Hy

∂t
− ∂Ez

∂x
= 0 in Ω× (0, T). (4.7)

Following what we have seen in Section 3.2 for the wave equation in 1D we start
discretizing (4.5)-(4.7) in space by deriving local weak formulations for each
element K. This gives us again a set of local equations

dEz,K
h

dt
=

1
εK

(
DK

x Hy,K
h −DK

y Hx,K
h − σkEz,K

h − JK
a,h +M−KCKPEz

)
(4.8)

dHx,K
h

dt
= − 1

µK

(
DK

y Ez,K
h +M−KCKPHx

)
(4.9)

dHy,K
h

dt
=

1
µK

(
DK

x Ez,K
h +M−KCKPHy

)
(4.10)

Here, MK is again the local mass-matrix, CK is the interface matrix, while DK
m,

m = x, y, z, is given by

DK
m =M−KSK

m, with
(
SK

m

)
ij
=
∫

K
`K

i (x)
`K

j (x)

dm
dx

The terms PHx , PHy and PEz stand for the fluxes and are chosen as

PEz =
1
2
(
n̂y[Hx

h ]− n̂x[H
y
h ]− α[Ez

h]
)

PHx =
1
2

(
n̂y[Ez

h] + α
(

n̂xJHkK− [Hx
h ]
))

PHy =
1
2

(
−n̂x[Ez

h] + α
(

n̂yJHkK− [Hy
h ]
))

where [q], JqK and JqK, the jumps along the normal n̂ are defined as

[q] = q− − q+ = n̂ · JqK, JqK = n̂−q− + n̂+q+, JqK = n̂− · q− + n̂+ · q+.
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Note the difference between the definitions for scalar functions q and vector
valued functions q. For the detailed derivation of the fluxes see [21].
In the same way as in the one-dimensional damped wave equation we can again
rewrite the local expressions (4.8)-(4.10) as global equations and end up with a
system of the form (3.6):

dy
dt

(t) = By(t) + F(t) , t ∈ (0, T) ,

y(0) = y0 ,

with
y(t) =

(
Hx

h, Hy
h, Ez

h
)>

, F(t) = (−Ja,h(t), 0, 0)>

and

B =


−σI −1

ε
Dy

1
ε
Dx

− 1
µ
Dy 0 0

1
µ
Dx 0 0

+M−1C.
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5

I N T R O D U C T I O N

Following the method of lines approach we have, in Part I, discretized our model
problems in space using FE methods, both continuous and discontinuous. We
have seen that either discretization leads to a system of first order ODEs (3.6) of
the form

dy
dt

(t) = By(t) + F(t) , t ∈ (0, T) ,

y(0) = y0 .

Especially the spatial discretizations we consider in this work, i.e. FE based
schemes, can easily handle locally refined meshes, which appear when dealing
with complex geometries or adaptivity; however at a high price for explicit time
integration as the admissible time-step is dictated by the smallest elements in the
mesh. Calculating with an implicit scheme or with an explicit scheme with the
small time-step dominated by the refined region everywhere, is computationally
too expensive if the fine region is small compared to the whole domain.
Here, we propose LTS methods based on explicit RK schemes of arbitrarily high
accuracy.
The rest of this part is organized as follows. In Chapter 6, we derive explicit LTS
methods of arbitrarily high accuracy by starting from standard or low-storage
RK methods. Next, we prove in Chapter 7 that those LTS-RK methods indeed
preserve the accuracy of their original single time-step counterparts. Finally, nu-
merical experiments that illustrate the expected convergence and stability prop-
erties of our LTS-RK schemes are given in Chapter 8 for both damped wave
equation and Maxwell’s equations. The work presented here is based on [47].
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6

R U N G E - K U T TA B A S E D LT S

We shall now derive high-order explicit LTS methods for (3.6), which are based
on explicit RK schemes. Although we concentrate on classical and low-storage
RK schemes, probably the most popular methods for the time integration of par-
tial differential equations, the derivation below also applies to any other explicit
RK variant [15, 55, 83, 99].
Explicit Runge-Kutta methods, generalizations of the famous Euler method (1768),
have been around for many years. Due to their one-step nature and their avail-
ability in higher order they are still among the most popular methods for the
integration of time dependent problems today.
In the following chapter we introduce RK methods and their notation, derive
LTS schemes based on explicit RK methods, both classical and low-storage and
present the LTS algorithm based on the popular classical RK4 scheme.

6.1 runge-kutta methods

Starting from an explicit s-stage RK (RKs) method of order k [55], we now derive
an explicit LTS scheme of the same accuracy for (3.6). Let yn denote the numer-
ical approximation to the exact solution y(tn) at tn = n∆t and Fn = F(tn). A
general explicit RKs method applied to (3.6) then yields

k1 = Byn + F(tn) ,
k2 = B(yn + ∆t a21k1) + F(tn + c2∆t) ,

...

ks = B

(
yn + ∆t

s−1

∑
i=1

asiki

)
+ F(tn + cs∆t) ,

yn+1 = yn + ∆t
s

∑
i=1

biki .

(6.1)

The constants aij, bi and ci, with c1 = 0, uniquely identify the RK method and
are typically listed in a Butcher-tableau, as in Table 1.
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Table 1: Butcher-tableau of an explicit RKs scheme.
0

c2 a21
c3 a31 a32
...

...
... . . .

cs as1 as2 . . . as,s−1
b1 b2 . . . bs−1 bs

If the RKs method has order k, with s ≥ k, then bi, ci, i = 1, . . . , s must satisfy
[55]

s

∑
i=1

bic
q−1
i =

1
q

, q = 1, . . . , k . (6.2)

Hence the underlying quadrature formula with weights b1, . . . , bs and nodes
c1, . . . , cs also has at least order k.

6.2 explicit rk based lts methods

We now wish to derive an RKs based LTS scheme for (3.6), which permits arbi-
trarily small time-steps precisely where the smaller elements in the FE mesh are
located. To do so, we first partition the vectors y(t) and F(t) as

y(t) = (I− P)y(t) + Py(t) = y[c](t) + y[f](t),

F(t) = (I− P)F(t) + PF(t) = F[c](t) + F[f](t),
(6.3)

where the matrix P is diagonal. Its diagonal entries, equal to zero or one, identify
the unknowns associated with the locally refined region, where smaller time-
steps are needed. The exact solution of (3.6) is given by

y(tn + ξ∆t) = y(tn) +
∫ tn+ξ∆t

tn
By[c](t) + F[c](t) dt

+
∫ tn+ξ∆t

tn
By[f](t) + F[f](t) dt, 0 ≤ ξ ≤ 1 .

(6.4)

Hence, any numerical method for the time integration of (3.6) in fact approxi-
mately evaluates the right side of (6.4).
Inside the coarse region, the LTS method we seek ought to coincide with the ini-
tial kth-order RKs method. Therefore, we approximate in (6.4) the term involving
y[c](t) by the corresponding quadrature formula∫ tn+ξ∆t

tn
By[c](t) dt ' ξ∆tB

(
s

∑
i=1

biy[c](tn + ciξ∆t)

)
. (6.5)
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Next, we approximate the (unknown) values of y[c] at the quadrature points by
Taylor expansion:

∫ tn+ξ∆t

tn
B(I− P)y(t) dt ' ξ∆tB(I− P)

(
s

∑
i=1

bi

s−1

∑
j=0

cj
i(ξ∆t)j

j!
y(j)(tn)

)
. (6.6)

Repeated use of (3.6) to evaluate the derivatives y(j) of y in (6.6) then leads to

∫ tn+ξ∆t

tn
B(I− P)y(t) dt ' ξ∆tB(I− P)

(
s

∑
i=1

bi

s−1

∑
j=0

cj
i(ξ∆t)j

j!

(
Bjyn

+
j

∑
`=1

Bj−`F(`−1)(tn)

))
.

(6.7)

To avoid the derivatives of F(t) in (6.7), we now interpolate F(t) by a polynomial
q(t) through the points (tn + ci∆t, F(tn + ci∆t)), i = 1, . . . , s. Since the nodes ci,
i = 1, . . . , s need not be distinct (e.g. c2 = c3 = 1/2 for RK4, see Table 18 in the
Appendix), the degree of q may be strictly less than s− 1. We now replace the
derivatives of F in (6.7) by the corresponding derivatives of q to obtain

y(tn + ξ∆t) ' yn

+ B(I− P)

(
s

∑
i=1

bi

s−1

∑
j=0

cj
i(ξ∆t)j+1

j!

(
Bjyn +

j

∑
`=1

Bj−`q(`−1)(tn)

))

+ (I− P) (q̂(tn + ξ∆t)− q̂(tn)) +
∫ tn+ξ∆t

tn
(BPy(t) + PF(t)) dt , (6.8)

where q̂′(t) = q(t). Since F is known, so are q and q̂, and thus all terms needed
in (6.8) to advance the solution inside the coarse region, that is those involving
(I− P), are also explicitly known.
As we seek to compute y(tn + ∆t), we need to evaluate the entire right side of
(6.8). To circumvent the severe stability restriction on ∆t dictated by the smallest
elements in the mesh, we shall treat y[f](t) and F[f](t) differently from y[c](t) and
F[c](t). Hence, we now approximate the remaining integral in (6.8) as∫ tn+ξ∆t

tn
BPy(t) + PF(t) dt '

∫ ξ∆t

0
BPỹ(τ) + PF(tn + τ) dτ ,

where ỹ(τ) solves the following differential equation for 0 < τ ≤ ∆t:

dỹ
dτ

(τ) = B(I− P)

[
s

∑
i=1

bi

s−1

∑
j=0

(j + 1)cj
iτ

j

j!

(
Bjyn +

j

∑
`=1

Bj−`q(`−1)(tn)

)]
+ (I− P)q(tn + τ) + BP ỹ(τ) + PF(tn + τ) , (6.9)

ỹ(0) = yn .
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Its exact solution is given by

ỹ(ξ∆t) = yn

+ B(I− P)

(
s

∑
i=1

bi

s−1

∑
j=0

cj
i(ξ∆t)j+1

j!

(
Bjyn +

j

∑
`=1

Bj−`q(`−1)(tn)

))
(6.10)

+ (I− P) (q̂(tn + ξ∆t)− q̂(tn)) +
∫ ξ∆t

0
BPỹ(τ) + PF(tn + τ) dτ .

Since the right side of (6.10) coincides with that of (6.8) with Py(t) replaced by
Pỹ(t) inside the integral, we immediately infer that y(tn + ξ∆t) ' ỹ(ξ∆t) .
To advance y from tn to tn +∆t, we shall therefore evaluate ỹ(∆t) by solving (6.9)
on [0, ∆t] numerically. Here, we again use the RKs method of order k, though
with a smaller time-step ∆τ = ∆t/p, where p denotes the ratio of local mesh re-
finement. Clearly, in doing so we must ensure that the overall numerical scheme
remains truly kth-order accurate, as we shall show in Chapter 7. In summary,
given yn the kth-order RKs based LTS algorithm for the solution of (3.6) com-
putes yn+1 ' y(tn + ∆t), as follows:

Algorithm 6.1. LTS-RKs(p)

1. Set ỹ0 := yn.

2. For j = 0, . . . , s− 1 compute

wn,j :=
(j + 1)

j!
B(I− P)

s

∑
i=1

bic
j
i

(
Bjyn +

j

∑
`=1

Bj−`q(`−1)(tn)

)
. (6.11)

3. For m = 0, . . . , p− 1 compute

kr, m+1
p

:=
s−1

∑
j=0

((m + cr)∆τ)j wn,j + (I− P)q(tn + (m + cr)∆τ)

+BP

(
ỹ m

p
+ ∆τ

r−1

∑
i=1

ariki, m+1
p

)
+ PFn,m+cr , r = 1, . . . , s ,

ỹ m+1
p

:= ỹ m
p
+ ∆τ

s

∑
i=1

biki, m+1
p

.

4. Set yn+1 := ỹ1.

Here, we have introduced the notation Fn,m+cr = F(tn + τm+cr), where τm+cr =
(m + cr)∆τ; note that Fn,0 = F(tn + τ0) = F(tn) = Fn.
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In Algorithm 6.1, steps 1–3 correspond to the numerical solution of (6.9) until
τ = ∆t by using the kth-order RKs scheme with local time-step ∆τ = ∆t/p. In
step 2, we precompute all s multiplications with B(I− P)Bj, j = 1, . . . , s. Those
higher powers of B are never explicitly computed but simply successively ap-
plied to the vectors yn and q(`−1)(tn); hence, it suffices to implement a single
matrix-vector multiplication with nearest-neighbor communications in a paral-
lel environment. The remaining s × p multiplications with BP in step 3 only
affect those unknowns located inside the fine part of the mesh, or immedi-
ately next to it; hence, their computational cost is proportional to the number
of unknowns associated with the locally refined region only. In that sense, Al-
gorithm 6.1 corresponds to a local time-stepping method. In step 3, the term
(I− P)q(tn + (m + cr)∆τ) appears inside the inner for-loops only for ease of no-
tation. In fact given any specific RK-method, we can explicitly calculate q and
then add at once its j-th order term involving ((m + cr)∆τ)j to wn,j in step 2 –
e.g. Algorithm 6.5 for LTS-RK4 in Section 6.4.
To investigate the theoretical speed-up of the LTS-RKs method over a standard
RKs scheme with a small time-step in the entire computational domain, we con-
sider (3.6) with F = 0. Now let r denote the percentage of “fine” elements,
0 < r < 1. Thus rN degrees of freedom belong to the locally refined mesh and
(1− r)N to the remaining coarse region, 0 < r < 1. To leading order, the com-
putational cost is determined by matrix-vector products with B and we denote
by qN the cost of multiplying B with any vector. Hence, the cost to advance the
solution from tn to tn+1 by performing p small time-steps of size ∆τ = ∆t/p
everywhere with a standard RKs method is

CRK ' psqN. (6.12)

For the LTS-RKs(p) method, Algorithm 6.1 reduces to the underlying standard
RKs scheme in the coarse region – see also Remark 4 in Section 4. Again to
leading order, the computational cost here is sq(1− r)N, since the product of B
with a vector of the form (I− P)v only affects entries which are associated with
the coarse part of the mesh. In the fine region, we have sp multiplications with
B, which only affect unknowns located in the fine part – see step 3 of Algorithm
6.1. Therefore, the total cost of the LTS-RKs scheme is

CLTS-RK ' sq(1− r)N + psqrN. (6.13)

The ratio of CLTS-RK over CRK thus yields the theoretical speed-up Qeff:

Qeff(r, p) =
CLTS-RK

CRK
' r +

1− r
p

. (6.14)

In Fig. 2 we illustrate the dependence of Qeff for varying r or p. The smaller r,
the larger the gain in using the LTS-RKs method for increasing values of p. In
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Figure 2: The theoretical speed-up Qeff vs. r for p = 2, 5, 10, 100 (a) and Qeff vs.
p for r = 0.5, 0.1, 0.05, 0.01 (b).

addition, for larger values of p, we observe in Fig. 2(b) that Qeff quickly reaches
its asymptotic value at r.

Remark 6.2. Conservation of linear invariants is an important property of all explicit
and implicit Runge-Kutta methods (see [54], Chapter IV, Theorem 1.5). To verify the
conservation of linear invariants we consider (3.6) with F = 0 and let d ∈ RN satisfy
d>B = 0. Hence, d>y(t) is a conserved quantity. To show that any LTS-RKs scheme
also conserves linear invariants, we must show that d>yn+1 remains constant. This
easily follows by induction, since d>kr, m+1

p
= 0, for 1 ≤ r ≤ s, m = 0, . . . , p− 1 in

step 3 of Algorithm 6.1. Unlike partitioned RK methods, where conservation gives rise to
restrictions on the choice of coefficients (see [66]), the LTS-RK methods therefore always
conserve linear invariants.

6.3 low-storage rk based lts methods

Following the derivation in the previous section, we now delineate the main
steps in devising an LTS method based on an s-stage LSRK (LSRKs) scheme of
order k. A general explicit 2N-storage LSRKs method [15, 99] applied to (3.6)
advances the solution from tn to tn+1 as

z0 = yn ,
kr = Ar kr−1 + ∆t (B zr−1 + F(tn + Cr∆t)) , r = 1, . . . , s ,
zr = zr−1 + Brkr , r = 1, . . . , s ,

yn+1 = zs ,

(6.15)
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with A1 = 0 for a self-starting algorithm. Note that kr and zr only depend on
quantities from the previous stage r− 1. Every LSRK scheme can be put into the
standard RK form (6.1) through variable substitutions

Ar = (br−1 − Br−1)/br , r = 2, . . . , s, br 6= 0 ,
Ar = (ar+1,r−1 − cr)/Br , r = 2, . . . , s, br = 0 ,
Br = ar+1,r , r = 1, . . . , s− 1 ,
Bs = bs ,
Cr = cr , r = 1, . . . , s ,

(6.16)

but not vice-versa – see [15, 99] for various sets of values for Ar, Br and Cr with
s ≤ 5.
Starting from the LSRKs scheme (6.15), we thus first calculate the corresponding
standard RK constants aij, bi and ci from (6.16). Following the derivation in
Section 6.2, we then evaluate ỹ(∆t) by solving (6.9) until τ = ∆t to advance
y from tn to tn+1, though now by applying the LSRKs scheme with smaller time-
step ∆τ = ∆t/p. In summary, given yn the kth-order LSRKs based LTS algorithm
for the solution of (3.6) computes yn+1 ' y(tn + ∆t), as follows:

Algorithm 6.3. LTS-LSRKs(p)

1. Set ỹ0 := yn.

2. For j = 0, . . . , s− 1 compute wn,j as in (6.11).

3. For m = 0, . . . , p− 1 compute

z0, m+1
p

:= ỹ m
p

;

for r = 1, . . . , s compute

kr, m+1
p

:= Arkr−1, m+1
p

+ ∆τ

[
s−1

∑
j=0

((m + Cr)∆τ)j wn,j + (I− P)q(tn + (m + Cr)∆τ)

+ BPzr−1, m+1
p

+ PFn,m+Cr

]
,

zr, m+1
p

:= zr−1, m+1
p

+ Brkr, m+1
p

;

ỹ m+1
p

:= zs, m+1
p

.

4. Set yn+1 := ỹ1.
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Here, Steps 1–3 correspond to the numerical solution of (6.9) until τ = ∆t by
using the LSRKs scheme of order k with the smaller time-step ∆τ = ∆t/p.

For k = s, we observe that (6.11) reduces to

wn,j :=
1
j!

B(I− P)

(
Bjyn +

j

∑
`=1

Bj−`q(`−1)(tn)

)

because of (6.2); then, the constants br and cr are not needed and the LTS-
LSRKs(p) algorithm only uses the coefficients Ar, Br and Cr of the underlying
LSRKs scheme. In general, however, Step 2 of Algorithm 6.3 also requires the
values for br and cr of the corresponding standard RKs scheme, given by (6.16).

Remark 6.4. If the fraction of nonzero entries in P is small, the overall cost of the
LTS-RKs(p) and LTS-LSRKs(p) algorithms is dominated by the computation of the s
vectors wn,j, j = 0, . . . , s − 1, in Step 2 which requires s multiplications by B(I −
P) per time-step ∆t. All further s× p matrix-vector multiplications by BP only affect
those unknowns that lie inside the refined region, or immediately next to it; hence, their
computational cost remains negligible as long as the locally refined region contains a
small part of the computational domain.

6.4 the rk4 based lts method

In Section 6.2, we have shown how to derive an LTS-RKs(p) starting from an
arbitrary k-th order explicit RK method. Because of its popularity, we shall now
present in detail the LTS method based on the classical explicit RK4 scheme with
coefficients listed in Table 18 in the Appendix.

Following the previous derivation, we first split the vectors y(t) and F(t) as in
(6.3) and approximate the term in (6.4) involving y[c](t) by Simpson quadrature.
Next, we approximate in (6.5) the values of yn+ ξ

2
and yn+ξ , still unknown at time

t = tn, by their Taylor expansions up to O(∆t4). We also interpolate the points
(tn, Fn), (tn+ 1

2
, Fn+ 1

2
) and (tn+1, Fn+1) by the quadratic polynomial,

q(tn + τ) = Fn +
τ

∆t

(
−3Fn + 4Fn+ 1

2
− Fn+1

)
+

τ2

2∆t2

(
4Fn − 8Fn+ 1

2
+ 4Fn+1

)
.
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Thus, we can integrate exactly the term in (6.4) involving F[c](t) and also explic-
itly evaluate the derivatives of q to approximate F

′
(tn) and F

′′
(tn). The differen-

tial equation (6.9) for ỹ(τ) is now given by

dỹ
dτ

(τ) = B(I− P)
[

yn + τ (Byn + Fn)

+
τ2

2

(
B2yn + BFn +

−3Fn + 4Fn+ 1
2
− Fn+1

∆t

)

+
τ3

6

(
B3yn + B2Fn + B

−3Fn + 4Fn+ 1
2
− Fn+1

∆t
+

4Fn − 8Fn+ 1
2
+ 4Fn+1

∆t2

)]

+ (I− P)

[
Fn + τ

−3Fn + 4Fn+ 1
2
− Fn+1

∆t
+

τ2

2

4Fn − 8Fn+ 1
2
+ 4Fn+1

∆t2

]
+ BP ỹ(τ) + PF(tn + τ) ,

ỹ(0) = yn .
(6.17)

Again to advance y from tn to tn + ∆t, we shall solve (6.17) by using the RK4
scheme with a smaller time-step ∆τ = ∆t/p. In summary, given yn, the LTS
algorithm based on the classical explicit RK4 method for the solution of (3.6)
computes yn+1 ' y(tn + ∆t) as follows:

Algorithm 6.5. LTS-RK4(p)

1. Set ỹ0 := yn.

2. Compute

wn,0 := B(I− P)yn + (I− P)Fn ,

wn,1 := B(I− P)(Byn + Fn) + (I− P)
−3Fn + 4Fn+ 1

2
− Fn+1

∆t
,

wn,2 := B(I− P)

(
B2yn + B Fn +

−3Fn + 4Fn+ 1
2
− Fn+1

∆t

)

+ (I− P)
4Fn − 8Fn+ 1

2
+ 4Fn+1

∆t2 ,

wn,3 := B(I− P)

(
B3yn + B2 Fn + B

−3Fn + 4Fn+ 1
2
− Fn+1

∆t

+
4Fn − 8Fn+ 1

2
+ 4Fn+1

∆t2

)
.
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3. For m = 0, . . . , p− 1, compute

k1, m+1
p

:= wn,0 + m ∆τ wn,1 +
m2

2
∆τ2 wn,2 +

m3

6
∆τ3 wn,3

+ BP ỹ m
p
+ PFn,m ,

k2, m+1
p

:= wn,0 +

(
m +

1
2

)
∆τ wn,1 +

1
2

(
m +

1
2

)2

∆τ2 wn,2

+
1
6

(
m +

1
2

)3

∆τ3 wn,3 + BP
(

ỹ m
p
+

∆τ

2
k1, m+1

p

)
+ PFn,m+ 1

2
,

k3, m+1
p

:= wn,0 +

(
m +

1
2

)
∆τ wn,1 +

1
2

(
m +

1
2

)2

∆τ2 wn,2

+
1
6

(
m +

1
2

)3

∆τ3 wn,3 + BP
(

ỹ m
p
+

∆τ

2
k2, m+1

p

)
+ PFn,m+ 1

2
,

k4, m+1
p

:= wn,0 + (m + 1) ∆τ wn,1 +
1
2
(m + 1)2 ∆τ2 wn,2

+
1
6
(m + 1)3 ∆τ3 wn,3 + BP

(
ỹ m

p
+ ∆τ k3, m+1

p

)
+ PFn,m+1 ,

ỹ m+1
p

:= ỹ m
p
+

1
6

∆τ

(
k1, m+1

p
+ 2k2, m+1

p
+ 2k3, m+1

p
+ k4, m+1

p

)
.

4. Set yn+1 := ỹ1.

Steps 1–3 compute the numerical solution of (6.17) at time τ = ∆t by using the
classical RK4 scheme with local time-step ∆τ = ∆t/p. In contrast to Algorithm
6.1 for a general RKs method, we have precomputed the (I − P)q values at
intermediate times and already added them to wn,j.
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A C C U R A C Y A N D C O N V E R G E N C E

Starting from an arbitrary explicit RK scheme of order k, we have shown in
Chapter 6 how to derive an explicit LTS method from it. We shall now prove that
the resulting LTS-RK method indeed preserves the accuracy of the original RK
scheme and is also convergent of order k. Hence we consider a general explicit
RKs method (6.1) of order k and denote by {c̃1, . . . , c̃s0} ⊂ {c1, . . . , cs} the maxi-
mal subset of all coefficients ci such that no two are identical, i.e. c̃i 6= c̃j if i 6= j.
We assume that s0 ≥ k− 1, a condition fulfilled by standard explicit RK methods.
For the RK4 method, for instance, we have c1 = 0, c2 = c3 = 1/2, c4 = 1 and
c̃1 = 0, c̃2 = 1/2 and c̃3 = 1; hence, s0 = 3, k = 4 and the condition is indeed
satisfied. We now prove the following technical lemma.

Lemma 7.1. Let y be the solution of (3.6), ỹ the solution of (6.9), q(η) the interpolation
polynomial through the points (tn + c̃i∆t, F(tn + c̃i∆t)), i = 1, . . . , s0 and F(t) satisfy
F ∈ Cs0([0, T]). Then,

ỹ′(0) = y′(tn) , ‖ỹ(ν)(0)− y(ν)(tn)‖∞ ≤ O(∆ts0−ν+1) , ν = 2, . . . , k− 1 . (7.1)

Proof. Since ỹ(0) = y(tn), q(tn) = F(tn) and ∑s
i=1 bi = 1, we immediately find

from (6.9) with τ = 0 that

ỹ′(0) = B(I− P)
s

∑
i=1

biy(tn) + (I− P)q(tn) + BPỹ(0) + PF(tn)

= By(tn) + F(tn) = y′(tn),

which yields the equality in (7.1).
To prove the inequality for ν = 2, . . . , k− 1 in (7.1), we first note that straightfor-
ward differentiation of (3.6) yields the identity

y(ν)(t) = Bνy(t) +
ν

∑
m=1

Bν−mF(m−1)(t), ν ≥ 1. (7.2)

39
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Next, we derive an upper bound on the error in approximating F(j), the j-th
derivative of F, by the corresponding derivative of q. From [64], we recall that

‖F(j) − q(j)‖∞ ≤ ‖ω(j)‖∞
‖F(s0)‖∞

j! (s0 − j)!
, 1 ≤ j ≤ s0 − 1, (7.3)

where ω(η) := ∏s0
i=1(η − tn − c̃i∆t) for η ∈ [tn, tn+1]. Since

ω(j)(η) =
s0

∑
m1=1

s0

∑
m2=1

m2 6=m1

· · ·
s0

∑
mj=1

mj 6=m1,...,mj−1

s0

∏
i=1

i 6=m1,...,mj

(η − tn − c̃i∆t)

and η ∈ [tn, tn+1], we have ‖ω(j)‖∞ = O(∆ts0−j) and therefore

‖F(j)(tn)− q(j)(tn)‖∞ ≤ O(∆ts0−j), 1 ≤ j ≤ s0 − 1. (7.4)

We shall now prove the inequality in (7.1) by induction over ν. First, let ν = 2.
We differentiate (6.9) and set τ = 0 in the resulting expression, which yields

ỹ′′(0) = B(I− P)

[
s

∑
i=1

2bici (Byn + q(tn))

]
+ (I− P)q′(tn) + BPỹ′(0) + PF′(tn).

Then, we use (6.2) with q = 2, the fact that q(tn) = F(tn), and the equality in
(7.1) to obtain

ỹ′′(0) = B(I− P) (By(tn) + F(tn)) + (I− P)q′(tn) + BPy′(tn) + PF′(tn). (7.5)

By using (3.6) and reordering terms, we rewrite (7.5) as

ỹ′′(0) = By′(tn) + (I− P)q′(tn) + PF′(tn),

or equivalently as

ỹ′′(0) = y′′(tn) + q′(tn)− F′(tn) + P
(
F′(tn)− q′(tn)

)
,

where we have used (3.6) differentiated once. Finally, we apply (7.4) with j = 1
and use ‖P‖∞ ≤ 1 to obtain

‖ỹ′′(0)− y′′(tn)‖∞ ≤ (1 + ‖P‖∞)‖F′(tn)− q′(tn)‖∞ ≤ O(∆ts0−1), (7.6)

which yields (7.1) with ν = 2.
Next, we proceed with the induction step and assume that (7.1) holds for ν− 1.
We differentiate (6.9) ν − 1 times and set τ = 0 in the resulting expression to
obtain

ỹ(ν)(0) = B (I− P)

[
ν!

(ν− 1)!

s

∑
i=1

bicν−1
i

(
Bν−1y(tn) +

ν−1

∑
`=1

Bν−`−1q(`−1)(tn)

)]
+ (I− P) q(ν−1)(tn) + BPỹ(ν−1)(0) + PF(ν−1)(tn).

(7.7)
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By using (6.2) and reordering terms, we rewrite (7.7) as

ỹ(ν)(0) = Bνy(tn) +
ν−1

∑
`=1

Bν−`q(`−1)(tn) + q(ν−1)(tn)− BP

(
Bν−1y(tn)

+
ν−1

∑
`=1

Bν−`−1q(`−1)(tn)

)
+ BPỹ(ν−1)(0) + P

(
F(ν−1)(tn)− q(ν−1)(tn)

)
.

(7.8)

We now use (7.2) to replace the first term on the right of (7.8), which yields

ỹ(ν)(0) = y(ν)(tn) +
ν

∑
`=1

Bν−`
(

q(`−1)(tn)− F(`−1)(tn)
)
+ BPỹ(ν−1)(0)

− BP

[
Bν−1y(tn) +

ν−1

∑
`=1

Bν−`−1F(`−1)(tn) +
ν−1

∑
`=1

Bν−`−1
(

q(`−1)(tn)

− F(`−1)(tn)
)]

+ P
(

F(ν−1)(tn)− q(ν−1)(tn)
)

.

(7.9)

Again we use (7.2) to replace the first two terms in square brackets in (7.9) by
y(ν−1). Then we repeatedly apply the triangle inequality and use that ‖P‖∞ ≤ 1
to derive the upper bound

‖ỹ(ν)(0)− y(ν)(tn)‖∞ ≤
ν

∑
`=1
‖Bν−`‖∞‖q(`−1)(tn)− F(`−1)(tn)‖∞

+ ‖B‖∞‖ỹ(ν−1)(0)− y(ν−1)(tn)‖∞ + ‖F(ν−1)(tn)− q(ν−1)(tn)‖∞

+ ‖B‖∞

ν−1

∑
`=1
‖Bν−`−1‖∞‖q(`−1)(tn)− F(`−1)(tn)‖∞.

(7.10)

Finally we use the induction hypothesis to estimate the second and (7.4) to esti-
mate the remaining terms on the right side of (7.10), which yields (7.1).

We are now ready to establish the accuracy of the LTS-RKs methods from Chap-
ter 6.

Proposition 7.2. Let y ∈ Ck+1(0, T) be the solution of (3.6) and yn+1 defined by
Algorithm 1 with yn = y(tn). Then ‖y(tn+1) − yn+1‖∞ = O(∆tk+1), i.e. the LTS-
RKs(p) method is kth-order accurate.

Proof. Let ỹ(τ) be the solution of (6.9) for 0 ≤ τ ≤ ∆t. We split the local trunca-
tion error as

‖y(tn+1)− yn+1‖∞ ≤ ‖y(tn+1)− ỹ(∆t)‖∞ + ‖ỹ(∆t)− yn+1‖∞.
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Since yn+1 corresponds to the numerical solution of (6.9) with the initial k-th
order RKs method (6.1) with time-step ∆τ = ∆t/p, we immediately have

‖ỹ(∆t)− yn+1‖∞ = O(∆tk+1).

To complete the proof we thus need to show that ‖y(tn+1)− ỹ(∆t)‖∞ = O(∆tk+1).
First, we integrate (6.9) from 0 until ∆t to obtain

ỹ(∆t) = y(tn) + B(I− P)

[
s−1

∑
j=0

1
j!

s

∑
i=1

bic
j
i∆tj+1

(
Bjy(tn) +

j

∑
`=1

Bj−`q(`−1)(tn)

)]

+
∫ ∆t

0
(I− P)q(tn + τ) dτ +

∫ ∆t

0
BPỹ(τ) dτ +

∫ ∆t

0
PF(tn + τ) dτ.(7.11)

We now approximate the first and last integral on the right of (7.11) using the
k-th order quadrature formula defined by the weights bi and the nodes ci. Since
q interpolates F at the nodes tn + ci∆t, we conclude that

∫ ∆t

0
(I− P)q(tn + τ) dτ +

∫ ∆t

0
PF(tn + τ) dτ =

∫ tn+1

tn
F(t) dt +O(∆tk+1). (7.12)

Next, we truncate in (7.11) the sum in square brackets at j = k− 1 and use (6.2)
to replace ∑s

i=1 bic
j
i by 1/(j + 1). By using (7.2) in the resulting expression, we

thus rewrite the second term on the right of (7.11) as

B(I− P)

[
s−1

∑
j=0

1
j!

s

∑
i=1

bic
j
i∆tj+1

(
Bjy(tn) +

j

∑
`=1

Bj−`q(`−1)(tn)

)]

= B(I− P)

[
k−1

∑
j=0

∆tj+1

(j + 1)!
y(j)(tn)

]
+ B(I− P)

[
k−1

∑
j=0

∆tj+1

(j + 1)!

j

∑
`=1

Bj−`
(

q(`−1)(tn)

− F(`−1)(tn)
)]

+O(∆tk+1).

(7.13)

On the right of (7.13), we identify the first term as the Taylor expansion of By(t),
integrated up to ∆t, and hence rewrite it as

∫ tn+1

tn
By(t) dt− BP

k−1

∑
j=0

∆tj+1

(j + 1)!
y(j)(tn) +O(∆tk+1).



accuracy and convergence 43

Similarly, we approximate ỹ(τ) in the remaining integral of (7.11) by Taylor ex-
pansion up to order k− 1. By combining the above approximations of the various
terms on the right of (7.11), we conclude that

ỹ(∆t) = y(tn) +
∫ tn+1

tn
By(t) dt +

∫ tn+1

tn
F(t) dt− BP

k−1

∑
j=0

∆tj+1

(j + 1)!
y(j)(tn)

+ BP
k−1

∑
j=0

∆tj+1

(j + 1)!
ỹ(j)(0) + B(I− P)

[
k−1

∑
j=0

∆tj+1

(j + 1)!

j

∑
`=1

Bj−`
(

q(`−1)(tn)

− F(`−1)(tn)
)]

+O(∆tk+1).

(7.14)

The sum of the first three terms on the right of (7.14) equals y(tn+1). By using
the triangle inequality and the fact that ‖P‖∞ ≤ 1, we therefore obtain

‖ỹ(∆t)− y(tn+1)‖∞ ≤ ‖B‖∞

k−1

∑
j=0

∆tj+1

(j + 1)!
‖ỹ(j)(0)− y(j)(tn)‖∞

+‖B(I− P)‖∞

k−1

∑
j=0

∆tj+1

(j + 1)!

j

∑
`=1
‖Bj−`‖∞‖q(`−1)(tn)− F(`−1)(tn)‖∞ +O(∆tk+1),

where the first two terms on the right can be estimated by using (7.4) and Lemma
7.1. This concludes the proof.

We shall now show that the LTS-RKs methods with s = k = 2, 3, 4 converge as
O(∆tk). For simplicity, we shall restrict ourselves to the homogeneous case with
F(t) = 0. In the following Lemma, we first rewrite the LTS-RKs(p) scheme for
s = k = 2, 3, 4 as a one-step method.

Lemma 7.3. Let ỹ m+1
p

be defined by Algorithm 6.1 for s = k = 2, 3 or 4, m ≥ 0, and

assume that F(t) = 0. Then we have for 0 ≤ m ≤ p− 1:

ỹ m+1
p

= yn + (m + 1)∆τByn +
(m + 1)2

2
∆τ2B2yn

+
2m+2

∑
i=3

∆τiαi,m+1(BP)i−2B2yn

(7.15)

for s = k = 2,

ỹ m+1
p

= yn + (m + 1)∆τByn +
(m + 1)2

2
∆τ2B2yn +

(m + 1)3

6
∆τ3B3yn

+
3m+4

∑
i=4

∆τi
(

αi,m+1(BP)i−2B2yn + βi,m+1(BP)i−3B3yn

) (7.16)
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for s = k = 3, and

ỹ m+1
p

= yn + (m + 1)∆τByn +
(m + 1)2

2
∆τ2B2yn +

(m + 1)3

6
∆τ3B3yn

+
(m + 1)4

24
∆τ4B4yn +

4m+6

∑
i=5

∆τi
(

αi,m+1(BP)i−2B2yn

+ βi,m+1(BP)i−3B3yn + δi,m+1(BP)i−4B4yn

) (7.17)

for s = k = 4. The constants αi,m+1, βi,m+1 and δi,m+1 are determined recursively.

Proof. We shall now prove (7.15) by induction on m. The proofs of (7.16) and
(7.17) are similar but more cumbersome; hence, they are omitted here.
We let s = k = 2 and consider Algorithm 6.1. Since F(t) is identically zero, so is
the interpolation polynomial q(t). Therefore, Step 2 of Algorithm 6.1 reduces to

wn,0 = B(I− P)
2

∑
i=1

biyn, wn,1 = B(I− P)
2

∑
i=1

biciByn. (7.18)

The coefficients of the underlying RK2 method satisfy the order conditions (6.2)
with q = 1, 2 and c1 = 0 – see also ([13], p. 156):

a21 = c2, b1 + b2 = 1, b2c2 = 1/2. (7.19)

Thus, we rewrite (7.18) as

wn,0 = B(I− P)yn, wn,1 = B(I− P)Byn. (7.20)

In Step 3 of Algorithm 6.1, we now use (7.20), the fact that ỹ0 = yn and (7.19) to
calculate

k1, 1
p
= wn,0 + BPỹ0 = Byn,

k2, 1
p
= wn,0 + c2∆τwn,1 + BP

(
ỹ0 + ∆τa21k1, 1

p

)
= Byn + c2∆τB2yn.

Then we complete the first local time-step as

ỹ 1
p
= ỹ0 + ∆τ

(
b1k1, 1

p
+ b2k2, 1

p

)
= yn + ∆τByn +

∆τ2

2
B2yn, (7.21)

which yields (7.15) with m = 0.
We now proceed with the induction step and assume that (7.15) holds for m ≥ 0.
Following Algorithm 6.1, we again explicitly calculate

k1, m+1
p

= wn,0 + m∆τ wn,1 + BPỹ m
p

,

k2, m+1
p

= wn,0 + (m + c2)∆τ wn,1 + BP
(

ỹ m
p
+ ∆τa21k1, m+1

p

)
.

(7.22)
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Next, we use the induction hypothesis to replace ỹ m
p

and rewrite (7.22) as

k1, m+1
p

= Byn + m∆τB2yn +
m2∆τ2

2
BPB2yn +

2m

∑
i=3

αi,m∆τi(BP)i−1B2yn,

k2, m+1
p

= Byn + (m + c2)∆τB2yn + (m2 + 2mc2)
∆τ2

2
BPB2yn

+
2m

∑
i=3

αi,m∆τi(BP)i−1B2yn +
2m

∑
i=3

c2αi,m∆τi+1(BP)i−2B2yn.

We now insert these expressions for the two stages k1, m+1
p

, k2, m+1
p

into the update

of Step 3 in Algorithm 6.1,

ỹ m+1
p

= ỹ m
p
+ ∆τ

(
b1k1, m+1

p
+ b2k2, m+1

p

)
,

and again use the induction hypothesis to replace ỹ m
p

. These calculations lead to

ỹ m+1
p

= yn + m∆τByn +
m2∆τ2

2
B2yn +

2m

∑
i=3

αi,m∆τi(BP)i−2B2yn

+ b1∆τ

(
Byn + m∆τB2yn +

m2∆τ2

2
BPB2yn +

2m

∑
i=3

αi,m∆τi(BP)i−1B2y

)

+ b2∆τ

(
Byn + (m + c2)∆τB2yn + (m2 + 2mc2)

∆τ2

2
BPB2yn

+
2m

∑
i=3

αi,m∆τi(BP)i−1B2yn +
2m

∑
i=3

c2αi,m∆τi+1(BP)i−2B2yn

)
.

By collecting like powers in ∆τ and again using (7.19), we obtain (7.15), where
the coefficients αi,m+1, i ≥ 3, are recursively determined by αi,m as

α3,m+1 = α3,m +
m2 + m

2
, α4,m+1 = α3,m + α4,m +

m2

4
,

αi,m+1 = αi,m + αi−1,m +
αi−2,m

2
, for 5 ≤ i ≤ 2m,

α2m+1,m+1 = α2m,m +
α2m−1,m

2
, α2m+2,m+1 =

α2m,m

2
,

with starting values αi,0 = 0.

Remark 7.4. Multirate partitioned RK methods [52, 92, 66], originally developed for the
integration of multi-component dynamical systems, can also yield explicit LTS strategies
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in the PDE context if the coarse/refined regions correspond to the latent/active compo-
nents. If we apply the explicit second-order SH2 method by Hundsdorfer et al. [92], for
instance, to (3.6) with F = 0 and p = 2, it reduces to

ySH2
n+1 = yn + ∆tByn +

∆t2

2
B2yn + ∆t3

(
3
16

PB3yn −
3
32

(PB)2Byn

)
+ ∆t4

(
1

32
(PB)2B2yn −

1
64

P(BP)2B2yn

)
+

∆t5

256
(PB)3(I− P)B2yn.

(7.23)

Similarly from (7.15) with p = 2, we immediately obtain the one-step formulation of the
LTS-RK2 method:

yn+1 = yn + ∆tByn +
∆t2

2
B2yn +

∆t3

8
BPB2yn +

5∆t4

4
(BP)2B2yn. (7.24)

Clearly, the two methods differ – recall that P and B do not commute; moreover, the SH2
method involves additional terms and higher powers of B.

By combining the upper bound on the truncation error from Proposition 7.2
with the one-step formulation from Lemma 7.3, we shall now prove the conver-
gence of the LTS-RKs methods from Chapter 6, which we state as the following
theorem.

Theorem 7.5. For s = k = 2, 3, 4 the LTS-RKs(p) method is convergent of order k.

Proof. First, we let s = k = 2, ∆τ = ∆t/p, and set m = p − 1 in (7.15). From
Lemma 7.3, we then infer that

yn+1 = ỹ1 = yn + ∆t ΦRK2(yn, ∆t), (7.25)

with

ΦRK2(yn, ∆t) = Byn +
∆t
2

B2yn +
2p

∑
i=3

αi,p
∆ti−1

pi (BP)i−2B2yn. (7.26)

Moreover, Proposition 7.2 implies that the truncation error satisfies

‖y(t + ∆t)− y(t)− ∆t ΦRK2(y(t), ∆t)‖ ≤ C∆t3. (7.27)

To apply standard convergence theory for one-step methods (e.g. [55]) and thus
conclude the proof, we must show that the increment function ΦRK2 is Lipschitz-
continuous in its first argument. Since ‖P‖ ≤ 1 and also ∆t‖B‖ ≤ 1 for ∆t
sufficiently small, we conclude that

‖ΦRK2(u, ∆t)−ΦRK2(v, ∆t)‖

≤
∥∥∥∥∥B +

∆t
2

B2 +
2p

∑
i=3

αi,p
∆ti−1

pi (BP)i−2 B2

∥∥∥∥∥ · ‖u− v‖ ≤ LRK2 ‖u− v‖ .
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Here,

LRK2 = ‖B‖+ ∆t
2
‖B‖2 +

2p

∑
i=3
|αi,p|

∆ti−1

pi ‖B‖
i ≤ C‖B‖,

where C independent of ∆t, p and ‖B‖ for ∆t sufficiently small. Therefore,
ΦRK2(y, ∆t) is Lipschitz-continuous and the LTS-RK2 method convergent of or-
der two.
For s = k = 3 or s = k = 4, the proof is similar with (7.15) replaced by (7.16) or
(7.17), respectively.

The proof of Theorem 7.5 is straightforward and immediately extends to arbi-
trarily high order of accuracy. It relies, however, on the one-step formulation pro-
vided by Lemma 7.3, which cannot be stated for arbitrary k because no generic
form of the order conditions, such as (7.19), is available for k ≥ 5 – see [55].

Remark 7.6. For s = k, the one-step formulations (7.15)–(7.17) of the LTS-RKs methods
with m = p− 1 and P = 0 reduce to

yn+1 = ỹ1 = R(∆t B) yn,

where R(z) = 1 + z + . . . zs/s! denotes the (unique) stability function of the corre-
sponding standard RKs method. Thus for F = 0, the LTS-RKs scheme coincides with
the standard RKs scheme inside the coarse region, independently of the number of local
time-steps p.
For s > k, however, the one-step formulation of the underlying RKs method applied to
(3.6) yields

yn+1 =
k

∑
j=0

(∆tB)jyn

j!
+

s

∑
j=k+1

σj(∆tB)jyn, (7.28)

where the additional parameters σj, j ≥ k + 1 are no longer uniquely determined by the
order of accuracy, but instead depend on the coefficients bi, aij, and ci, 1 ≤ i, j ≤ s, of the
particular RKs method. Similarly in the derivation of the LTS-RKs method with s > k,
the coefficients j ≥ k in the Taylor expansion (6.6) can be modified without affecting the
order of accuracy. Then, Step 2 of Algorithm 6.1 becomes:

2. For j = 0, . . . , s− 1 compute

wn,j =


1
j!

B(I− P)
(

Bjyn + ∑
j
`=1 Bj−`q(`−1)(tn)

)
, j ≤ k− 1

γjB(I− P)
(

Bjyn + ∑
j
`=1 Bj−`q(`−1)(tn)

)
, j > k− 1

.
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Although the coefficients γj do not affect the accuracy of the scheme, they do affect its
stability. To recover the stability properties of the original RKs method, we also rewrite
the LTS-RKs method for p = 1, P = 0, and F = 0 as a one-step method

yn+1 =
k

∑
j=0

(∆tB)jyn

j!
+

s

∑
j=k+1

γj−1

s

∑
i=1

bic
j−1
i (∆tB)jyn. (7.29)

The two stability functions in (7.28) and (7.29) are identical, if

γj−1 =
σj

∑s
i=1 bic

j−1
i

, k ≤ j ≤ s,

which we shall henceforth assume.
For the LSRK5 scheme with s = 5 and k = 4, for instance, the choice of

σ5 =
5

∑
i,j,k,l=1

biai,jaj,kak,lcl

is crucial for the stability of the scheme; the optimal value, σ5 = 1/200, indeed corre-
sponds to the values in Table 19 [15]. To retain that optimal stability for the LTS-LSRK5
method, we infer from the LTS-LSRK5(1) algorithm with F = 0 and P = 0 that γ4 must
equal

γ4 =
σ5

∑5
i=1 BiC4

i + ∑5
i=2 Bi AiC4

i−1 + ∑5
i=3 Bi Ai Ai−1C4

i−2 + B5A5A4A3C4
2

.
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N U M E R I C A L E X P E R I M E N T S

We shall now present numerical experiments, for both wave equation (3.1) and
Maxwell’s equations (4.1) and (4.2), which validate the expected order of conver-
gence of the LTS-RK methods derived in Chapter 6, illustrate their stability prop-
erties and demonstrate their usefulness in the presence of complex geometry. Ini-
tially we analyse the numerical properties of different LTS-RK schemes for the
simulation of acoustic waves. First, we consider a simple one-dimensional test
problem to show that the kth order LTS-RK methods always yield the optimal
space-time rate of convergence when combined with a spatial FE discretization
of comparable accuracy. Next, we study the stability properties of the various
LTS-RK schemes. We then illustrate the versatility of our LTS schemes by simu-
lating the propagation of a plane wave across a narrow gap. Finally, we present
the convergence results seen for the wave equation also for Maxwell’s equations
in 1D and further demonstrate the usefulness of the LTS approach by studying
electromagnetic waves on a complex 2D example.

8.1 numerical results for the wave equation

In this section we choose the damped wave equation as our model problem
to study convergence and stability properties of the proposed LTS-RK schemes.
We additionally present a two-dimensional example, where we combine P2 con-
tinuous mass-lumped FE with a third-order LTS-LSRK3 scheme to simulate a
propagating wave field.

Convergence:
We consider the damped wave equation (3.1) in 1D with c = 1 and σ = 0.1 on the
interval Ω = [0 , 6]. The initial conditions u0 = sin(πx), v0 = 0 and the source

f (x, t) = sin(πx)
((

π2 − 1
)

cos(t)− σ sin(t)
)

yield the exact solution

u(x, t) = cos(t) sin(πx) .

49
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Next, we divide Ω into three equal parts. The left and right intervals, [0, 2]
and [4, 6], respectively, are discretized with an equidistant mesh of size hcoarse,
whereas the interval Ω f = [2, 4] is discretized with an equidistant mesh of size
hfine = hcoarse/p – see Fig. 3. Hence, the two outer intervals correspond to the
coarse region and the inner interval [2 , 4] to the refined region.

Figure 3: One-dimensional example: the computational domain Ω = [0, 6] with
the refined region Ω f = [2, 4].

We begin with the LTS schemes based on the popular RK4 and LSRK5 meth-
ods from Sections 6.2 and 6.3. On a sequence of increasingly finer meshes with
mesh size hcoarse and fixed ratio hfine = hcoarse/p, we consider a continuous
P3-FE discretization of (3.1) with mass lumping. For every time-step, ∆t, we
take p local steps of size ∆τ = ∆t/p inside Ω f , either with the LTS-RK4(p)
or the LTS-LSRK5(p) algorithms from Sections 6.2 – see also Tables 18 and 19

in the Appendix. Due to stability, every reduction of the mesh size implies a
corresponding reduction of the time-step, which depends linearly on hcoarse. As
we simultaneously reduce hcoarse and ∆t, we monitor the L2 space-time error
‖u(·, T) − uh,∆t(·, T)‖L2(Ω) at the final time T = 10. Regardless of the rate of
local refinement p = 2, 5 or 11, the LTS-RK4 and LTS-LSRK5 methods yield
fourth-order convergence, as shown in Fig. 4(a) and Fig. 5(a).

p RK4 LTS-RK4

2 2.4014e− 07 2.4395e− 07

5 2.4003e− 07 2.3997e− 07

11 2.3994e− 07 2.3997e− 07

(a) continuous FE

p RK4 LTS-RK4

2 1.1407e− 06 1.1925e− 06

5 1.1395e− 06 1.1401e− 06

11 1.1395e− 06 1.1396e− 06

(b) nodal DG-FE

Table 2: L2-error at T = 10 for hcoarse = 0.05 for varying p.

Next, we repeat the numerical experiment with a P3-FE nodal DG discretization
with upwinding flux [57]. As shown in Fig. 4(b) and Fig. 5(b), both the LTS-
RK4(p) and LTS-LSRK5(p) methods again yield overall fourth-order convergence



8.1 numerical results for the wave equation 51

10
−2

10
−1

10
0

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

H

E
R

R
O

R

 

 

p = 2

p = 5

p = 11

h
4

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

H

E
R

R
O

R

 

 

p = 2

p = 5

p = 11

h
4

(a) continuous FE (b) nodal DG-FE

Figure 4: LTS-RK4(p) L2-error at T = 10 vs. H = hcoarse = 0.2, 0.1, 0.05, 0.025 for
different P3 FEM with p = 2, 5, 11. The errors for different p coincide at this
scale - see also Table 2.

independently of p. Additionally we compare our results with the classical RK4

method with time-step ∆τ = ∆t/p on the whole domain. For this we fix hcoarse =
0.05 and vary p. We again monitor the L2-error at final time T = 10 and obtain
comparable results, with or without LTS for both continuous and nodal DG FE.
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Figure 5: LTS-LSRK5(p) L2-error at T = 10 vs. H = hcoarse = 0.2, 0.1, 0.05, 0.025
for different P3 FEM with p = 2, 5, 11. The errors for different p coincide at this
scale.

Similar numerical experiments with P s−1 continuous and nodal DG FE also
corroborate the space-time s-th order rate of convergence of both the LTS-RKs
and the LTS-LSRKs methods for s = 2, 3; these results are omitted here. Note
that for the LTS-RK2 method the local time-step ∆τ must also comply with the
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suboptimal CFL-condition ∆t ≤ Ch4/3 of the RK2 (or Heun’s) method [30], and
thus satisfy ∆τ = ∆t/ p̃ with p̃ = dp4/3e when combined with a continuous FEM
discretization.

Stability:
Before discussing the stability properties of the proposed LTS-RK methods, we
first want to recall the stability regions of the underlying explicit RK schemes –
see [55] for details.

−5 −4 −3 −2 −1 0
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RK3
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RK54

Figure 6: Stability domains of RKs methods for k = s = 2, 3, 4 and RK5 of order
4.

In Fig. 6 the stability domains of RKs methods with k = s = 2, 3, 4 are displayed.
Additionally we can also observe how the additional stage increases the stability
contour of the fourth-order LSRK5 scheme significantly when compared to the
classical RK4 method.
With Fig. 6 in mind we want to motivate our choice of numerical flux, when opt-
ing for a nodal DG spatial discretization. As mentioned in Part I, both proposed
fluxes, upwind and central, have their advantages. While the non-dissipative
central flux gives us a numerical scheme, which is energy conserving, the choice
of an upwind flux results in a system matrix with a spectrum better suited for a
time integration with RK type methods. In Fig. 7 we can see the eigenvalues of
the system matrix B for three different P1 finite elements: continuous FEM with
mass lumping (left) and nodal DG FE with both central (middle) and upwind
flux (right), respectively. For all three we consider (3.1) with c = 1, σ = 0, 0.1
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and f = 0 on the interval Ω = [0 , 6] on an equidistant mesh with mesh size
h = 0.5.
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Figure 7: The spectral radius of B for different P3 FEM, with σ = 0 (first row)
and σ = 0.1 (second row).

Note that the larger number of eigenvalues for the DG discretization originates
from duplicating inner points in order to allow for discontinuous solutions. We
can observe, that the spectrum of B coming from a DG discretization with up-
wind flux has a similar shape as the stability contours of the RK schemes pre-
sented in Fig. 6. This improves the stability behaviour when combining the two
discretization methods. It also gives a possible explanation, why we don’t ob-
serve the suboptimal stability condition for RK2 when discretizing in space with
nodal DG FE. In [83] Niegemann et al. go even a step further by designing low-
storage RK schemes with a stability region adapted to the spectral shape of a
given physical problem. Those methods are found to yield significant perfor-
mance improvements over previously known LSRK schemes.
We now focus on the stability of our LTS schemes. To do so, we consider again
(3.1) with c = 1, σ = 0.1, but f = 0 on the interval Ω = [0 , 6], where [0 , 2] and
[4 , 6] are discretized with an equidistant mesh of size hcoarse, whereas Ω f = [2 , 4]
is discretized with an equidistant mesh of size hfine = hcoarse/p – see Fig. 3.
For p = 1, the mesh is equidistant throughout Ω and we denote by ∆tRKs or
∆tLSRKs the largest time-step permitted by the standard RKs or LSRKs method,
respectively; note that ∆tRKs = ∆tLSRKs for s = 2, 3.
For p ≥ 2, we use either the LTS-RKs(p) or LTS-LSRKs(p) method and take p
substeps of size ∆τ = ∆t/p inside Ω f . Clearly, the maximal permissible time-
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Figure 8: The spectral radius of CLTS−RK4 vs. ∆t/∆tRK4 for different P3 FEM.

step, denoted by ∆tp, satisfies either ∆tp ≤ ∆tRKs or ∆tp ≤ ∆tLSRKs, respectively.
If ∆tp = ∆tRKs or ∆tp = ∆tLSRKs, the corresponding LTS method imposes no
further constraint on ∆t and its CFL-condition is therefore optimal.
To determine the stability range of any LTS scheme from Chapter 6, we proceed
as follows:

1. Determine ∆tRKs, respectively ∆tLSRKs, the maximal ∆t allowed by the cor-
responding standard or low-storage RKs method (without LTS) for the
equidistant mesh of mesh size hcoarse;

2. refine the mesh p times inside Ω f ;

3. determine the maximal time-step ∆tp allowed by the LTS method for the
locally refined mesh and compare ∆tp with ∆tRKs or ∆tLSRKs, respectively.

Again, we begin with the popular RK4 scheme and consider a continuous P3-FE
discretization with mass lumping on an equidistant mesh of size hcoarse = 0.2.
The RK4 method, which we rewrite as

yn+1 = CRK4 yn , CRK4 = I + ∆t B +
∆t2

2
B2 +

∆t3

3!
B3 +

∆t4

4!
B4 ,

is stable if ρ(CRK4) ≤ 1, where ρ(CRK4) denotes the spectral radius of the matrix
CRK4 [55]. Progressively increasing ∆t while monitoring ρ(CRK4), we find that
the maximal time-step is ∆tRK4 = 0.0656.
Next, we refine by a factor p = 2 those elements that lie inside the interval [2, 4],
that is hfine = 0.1, and set to one all corresponding entries in the matrix P. To
determine the stability range of the LTS-RK4(2) method (Algorithm 6.5, Sect. 6.4),
we use Lemma 7.3 with s = k = 4 to rewrite it as

yn+1 = CLTS−RK4 yn ,
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where the matrix CLTS−RK4 is explicitly given by (7.17) with p = 2 and m = p− 1.
Again, the LTS-RK4 method is stable when CLTS−RK4 ≤ 1. In Fig. 8(a), we
observe that the spectral radius of CLTS−RK4 lies below one for all time-steps
∆t ≤ ∆tRK4. Therefore, the LTS-RK4(2) scheme, when combined with standard
P3-elements, is stable up to the maximal time-step and hence its CFL-condition
optimal. Next, we repeat the numerical experiment for the P3 nodal DG-FE dis-
cretization with upwinding flux. As shown in Fig. 8(b), the range of stable time-
steps again is maximal and the CLF condition thus optimal. The non-monotone
dependence of the eigenvalues in Fig. 8(b) and Fig. 9(b) is due to the limited
accuracy in the numerical computation of the eigenvalues. As standard methods
such as eig or eigs in Matlab, proved even less accurate for this problem, we
have used here the augmented block Householder Arnoldi method [6] instead.
We perform similar numerical experiments with different values of p, but also
P s−1 continuous and nodal DG FE for the LTS-RKs methods with s = 2, 3. These
results are summarized in Table 3. Since the CFL-condition of the RK2 method
when combined with continuous FEM is not linear but instead constrained by
∆t ≤ Ch4/3 [30], we again set ∆τ = ∆t/ p̃ with p̃ = dp4/3e for stability.

p = 2 p = 3 p = 5 p = 11

FE DG FE DG FE DG FE DG

LTS-RK2(p) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

LTS-RK3(p) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

LTS-RK4(p) 1.0 1.0 1.0 1.0 1.0 1.0 0.98 1.0

Table 3: Stability of the LTS-RKs(p) schemes for s = 2, 3, 4 when combined
with a continuous FE or nodal DG-FE discretization with hcoarse = 0.2: the ra-
tio ∆tp/∆tRKs is shown for varying p.

Next, we repeat the above numerical stability analysis for the LTS-LSRKs meth-
ods. For s = 2, 3, we obtain identical results, as expected, since all methods with
k = s have the same stability regions; these results are omitted here.
Different values of hcoarse lead to similar results, as shown in Table 4 for hcoarse =
0.05.
To study the stability of the fourth-order LTS scheme based on the LSRK5 method
– see Section 6.3 and also Remark 7.6 – we consider either a continuous or a nodal
DG P3-FE discretization. Again, we set hcoarse = 0.2 and refine by a factor p = 2
those elements that lie inside the interval [2, 4]. Hence for every time-step ∆t,
we use the fourth-order LTS-LSRK5(2) method with ∆τ = ∆t/2 inside the re-
fined region. After refomulating the LTS-LSRK5(2) scheme as one-step method,
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p = 2 p = 3 p = 5 p = 11

FE DG FE DG FE DG FE DG

LTS-RK2(p) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

LTS-RK3(p) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

LTS-RK4(p) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 4: Stability of the LTS-RKs(p) schemes for s = 2, 3, 4 when combined
with a continuous FE or nodal DG-FE discretization with hcoarse = 0.05: the ratio
∆tp/∆tRKs is shown for varying p.
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Figure 9: The spectral radius of CLTS−LSRK5 for different P3 FEM.

yn+1 = CLTS−LSRK5yn, we compute the spectral radius of CLTS−LSRK5 for varying
∆t/∆tLSRK5. As shown in Fig. 9(a), the spectral radius of CLTS−LSRK5 lies below
one for all time-steps ∆t ≤ ∆tLSRK5. Hence the LTS-LSRK5(2) scheme, when
combined with standard P3-elements, is stable up to the optimal time-step. Sim-
ilarly, we observe in Fig. 9(b) that the LTS-LSRK5(2) scheme also yields optimal
stability when combined with a P3 nodal DG-FE discretization.
Finally to illustrate the effect of damping on the stability, we display in Table 5

the (maximal) time-step ratio ∆t2/∆tRKs (s = 2, 3, 4) for varying σ, either with
a conforming or a nodal DG FEM. Most of the LTS schemes yield an optimal
CFL-condition, independently of σ > 0. Identical results were obtained with
the LTS-LSRKs (s = 2, 3, 5) methods. For σ = 0, the LTS-RK3 method remains
stable regardless of the spatial discretization, whereas the LTS-RKs (s = 2, 4)
and LTS-LSRKs (s = 2, 5) methods are stable when combined with the nodal
DG-FE discretization with an upwinding flux.
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LTS-RK2(2) LTS-RK3(2) LTS-RK4(2)
σ cont. FE nodal DG cont. FE nodal DG cont. FE nodal DG

0.001 1.0 1.0 1.0 1.0 1.0 1.0
0.01 1.0 1.0 1.0 1.0 1.0 1.0
0.1 1.0 1.0 1.0 1.0 1.0 1.0
1 1.0 1.0 0.97 1.0 1.0 1.0

10 1.0 1.0 0.91 1.0 0.99 1.0

Table 5: The LTS-RKs(2) scheme for s = 2, 3, 4 when combined with a continuous
FE or nodal DG-FE discretization: the ratio ∆t2/∆tRKs is shown for varying σ.

Two-dimensional example:
To illustrate the usefulness of the LTS-RK methods, we now consider (3.1) in Ω,
a rectangular domain of size [0, 2] × [0, 1] with two rectangular barriers inside
forming a narrow gap, as shown in Fig. 10. We set the constant wave speed to
c = 1 and the constant damping coefficient to σ = 0.1. At the boundary of Ω, we
impose homogeneous Neumann conditions and choose as initial conditions the
vertical Gaussian plane wave

u0(x, y) = exp
(
−(x− x0)

2/δ2
)

, v0(x, y) = 0, (x, y) ∈ Ω ,

centered about x0 = 0.8 and of width δ = 0.009 .

Figure 10: The initial triangular mesh (left); zoom on the “fine” mesh indicated
by the darker (green) triangles (right).

For the spatial discretization we opt for P2 continuous finite elements with mass
lumping. The homogeneous Neumann conditions are weakly imposed within
the variational formulation. First, Ω is discretized with triangles of maximal size
hcoarse = 0.03, where the mesh size h denotes the radius of the inscribed circle.
However, such coarse triangles do not resolve the small geometric features of the
gap, which require hfine ' hcoarse/7, as shown in Fig. 10. Then, we successively



58 numerical experiments

Figure 11: Two-dimensional example: the solution is shown at times t =0.1, 0.3,
0.45, 0.55, 0.7 and 0.9.

refine the entire mesh three times, each time splitting every triangle into four.
Since the initial mesh in Ω is unstructured, the boundary between the fine and
the coarse mesh is not well-defined. Here we let the fine mesh correspond to all
triangles with h < 0.7 hcoarse in size, i.e. the darker (green) triangles in Fig. 10. The
corresponding degrees of freedom in the finite element solution are then selected
merely by setting to one the corresponding diagonal entries of the matrix P – see
Chapter 6.
For the time discretization, we choose the third-order LTS-LSRK3(7) scheme with
p = 7, which for every time-step ∆t takes seven local time-steps inside the re-
fined region that surrounds the gap. Thus, the numerical method is third-order
accurate in both space and time with respect to the L2-norm. If instead the same
(global) time-step ∆t was used everywhere inside Ω, it would have to be about
seven times smaller than necessary in most of Ω. In Fig. 11, snapshots of the
numerical solution are shown at different times. The vertical Gaussian pulse
initiates two Gaussian plane waves propagating in opposite directions. As the
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right-moving wave proceeds, it impinges upon the obstacle; then, a fraction of
the wave penetrates the gap and generates a circular wave, which further inter-
acts with the propagating wave field.

8.2 numerical results for maxwell’s equation

In this section we study our LTS-RK schemes for electromagnetic problems. First
we consider a simple one-dimensional test problem and show that kth-order
LTS-RK methods always yield the optimal space-time rate of convergence when
combined with a spatial finite element discretization of comparable accuracy, in-
dependently of the number of local time-steps p used in the fine region. Second,
we apply our LTS-RK method to a more complex two-dimensional electromag-
netic scattering problem.

Convergence:
We consider the one-dimensional homogeneous model problem, where (4.1) and
(4.2) reduce to

ε
∂

∂t
E(x, t) = − ∂

∂x
H(x, t)− σE(x, t)− Ja(x, t), (8.1)

µ
∂

∂t
H(x, t) = − ∂

∂x
E(x, t). (8.2)

For simplicity we further assume constant material properties µ = ε = 1 and
σ = 0.1 on the interval Ω = [0, 6]. The initial conditions and right-hand side are
chosen to yield the exact solutions

E(x, t) = − cos(t) sin(πx), (8.3)
H(x, t) = −π cos(t) cos(πx). (8.4)

Next we divide Ω into three equal parts. The left and the right intervals, [0, 2]
and [4, 6], respectively, are discretized with an equidistant mesh of size hcoarse,
whereas on the interval [2, 4] the mesh size is chosen as hfine = hcoarse/p. Hence,
the two outer intervals correspond to the coarse region and the inner interval to
the refined region.
First we discretize in space using nodal DG with P1- elements with upwind
flux on a sequence of increasingly finer meshes. For every time-step ∆t, we shall
take p ≥ 2 local steps of size ∆τ = ∆t/p in the refined region, with the second-
order time-stepping scheme LTS-RK2(p). As we systematically reduce the global
mesh size hcoarse, while simultaneously reducing ∆t, we monitor the L2 space-
time error in the numerical solution ‖E(·, T)− Eh,∆t(·, T)‖L2(Ω) at the final time
T = 1.
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Figure 12: LTS-RK2(p) error vs. H = hcoarse = 0.02, 0.01, 0.005, 0.0025 for P1 finite
elements with p = 3, 7, 13.

In Fig. 12 we show the numerical solution for hcoarse = 0.1 and p = 2 (a) and the
L2 error (b). We observe that regardless of the number of local time-steps p = 3,
7 or 13, the numerical method converges with order two.
Next, we combine the fourth-order LTS-RK4(p) and LTS-LSRK5(p) scheme with
P3- elements. Thus, we expect an overall fourth-order convergence with respect
to the L2- norm. In Fig. 13 we display the numerical error vs. the mesh size H =
hcoarse for a sequence of meshes and different values of p. The results confirm the
expected fourth-order convergence.
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Figure 13: LTS-RK4(p) error (a) and LTS-LSRK5(p) (b) vs. H = hcoarse =
0.04, 0.02, 0.01, 0.005 for P3 finite elements with p = 3, 7, 13.
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Figure 14: The initial triangular mesh : h f ine ≈ hcoarse/7

Two-dimensional example:
To further illustrate the usefulness of the LTS-RK methods, we now consider
Maxwell’s equations in two space dimensions in transverse magnetic form. The
computational domain Ω corresponds to a rectangle of size [0, 3] × [0, 1] from
which the shape of a roof mounted antenna of thickness 0.01 has been cut out,
as shown in Fig. 14. We set σ = 0 and µ = ε = 1, Ja = 0, and impose PEC
boundary conditions. A circular Gaussian wave is initiated through the initial
conditions.
We choose P3 nodal DG elements in space. First, Ω is discretized with triangles
of maximal size hcoarse ≈ 0.023, where the mesh size h denotes the radius of the
inscribed circle. However, such coarse triangles do not resolve the small geomet-
ric features of the antenna, which require hfine ' hcoarse/7, as shown in Fig. 14.
Then, we successively refine the entire mesh two times, each time splitting every
triangle into four. Again, we let the fine mesh correspond to all triangles with
h < 0.7 hcoarse in size, i.e. the darker (green) triangles in Fig. 14. The correspond-
ing degrees of freedom in the finite element solution are then selected merely by
setting to one the corresponding diagonal entries of the matrix P.
For the time discretization, we choose the fourth-order LTS-RK4(7) scheme with
p = 7, which for every time-step ∆t takes seven local time-steps inside the re-
fined region that surrounds the antenna. Thus, the numerical method is fourth-
order accurate in both space and time with respect to the L2-norm. If instead the
same (global) time-step ∆t was used everywhere inside Ω, it would have to be
about seven times smaller than necessary in most of Ω.
In Fig. 15, snapshots of the numerical solution Ez

h at different times show how the
circular wave impinges on the antenna and then subsequent reflections interact
with the propagating wave front.
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Figure 15: Snapshots of Ez
h at times t = 0.2, 0.35, 0.5, 0.75
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I N T R O D U C T I O N

As an alternative to the presented LTS-RK schemes we propose here local ex-
ponential integrators based on Adams methods for the time discretization of
damped wave equations.
Exponential integrators have been around since the late 1950th – see [77] for an
historical overview. But as the evaluation of matrix exponentials is very expen-
sive they have only regained interest with the development of Krylov methods,
which allow a more efficient computation of matrix function times vector prod-
ucts. For an extensive overview on existing methods we refer to [62].
Starting from the ODE (3.6) we focus here on exponential Adams-methods,
which were presented in [63] for semilinear parabolic problems. Instead of split-
ting into linear and nonlinear part, we distinguish between fine and coarse part.
We thus have the advantage of one global time-step, whose size is determined
by the mesh size of the coarse region.
In this part we briefly discuss exponential Adams methods (for more details see
[63]) and adapt them to our model problem. Numerical results in 1D confirm the
expected space-time convergence rate and optimal stability properties. We give
some comments on why Krylov methods fail to work in our case. Numerical
results, however, suggest that local exponential integrators still present a good
alternative in special cases, where we consider problems with only a few fine
elements with a very high refinement rate.
We conclude with the familiar narrow-gap example from Part II.
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L O C A L E X P O N E N T I A L A D A M S - M E T H O D S

Following the approach presented in [63], we introduce exponential Adams
methods in this chapter. We start by giving a derivation of the method for a
general semilinear problem. We then apply the scheme to our model problem
(3.6) using a splitting into coarse and fine elements and give some comments on
efficient implementation.

10.1 exponential methods of adams-type

We start by considering an abstract semilinear initial value problem

y′(t) = −Ay(t) + g(t, y(t)), y(t0) = y0 (10.1)

where A is a square matrix and g is assumed to be Lipschitz continuous.
We formally get an exact solution of (10.1) at time tn+1 = tn +∆t by the variation-
of-constants formula

y(tn+1) = e−∆tAy(tn) +
∫ ∆t

0
e−(∆t−τ)Ag(tn + τ, y(tn + τ)) dτ. (10.2)

To derive a numerical method from (10.2) we proceed as for the classical Adams-
Bashforth schemes and replace g by its interpolation polynomial pn through the
k points (

tn−k+1, g(tn−k+1, yn−k+1)
)
, . . . ,

(
tn, g(tn, yn)

)
,

where yj ≈ y(tj) is a suitable approximation.
Thus, the polynomial pn is given by

pn(tn + θ∆t) = Gn +
k−1

∑
j=1

(−1)j
(−θ

j

)
∇jGn, Gj = g(tj, yj), (10.3)

where
(−θ

j

)
is a generalization of binomial coefficients, i.e.

(
α

j

)
=

α(α− 1)(α− 2) · · · (α− j + 1)
j!

for j ∈N, α ∈ R.

67
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Here, ∇jGn denotes the jth backward difference, which is recursively defined as

∇0Gn = Gn, ∇jGn = ∇j−1Gn −∇j−1Gn−1, j = 1, 2, . . . .

We now replace the exact solution at time tn by its approximation yn and the
nonlinearity g(tn, yn) by the interpolation polynomial pn in (10.2), which yields
the numerical method

yn+1 = e−∆tAyn +
∫ ∆t

0
e−(∆t−τ)Apn(tn + τ) dτ. (10.4)

Inserting the interpolation polynomial (10.3) into (10.4) gives

yn+1 = e−∆tAyn + ∆t
k−1

∑
j=0

γj(−∆tA)∇jGn (10.5)

with weights

γj(z) = (−1)j
∫ 1

0
e(1−θ)z

(−θ

j

)
dθ, j ≥ 0, (10.6)

which we henceforth refer to as exponential Adams-methods.
The first 4 weights γj for j ∈ {0, 1, 2, 3} are given by

γ0(z) =
ez − 1

z
,

γ1(z) =
ez − z− 1

z2 ,

γ2(z) =
1
2
(2 + z)ez − 2z2 − 3z− 2

z3 ,

γ3(z) =
1
3!
(6 + 6z + 2z2)ez − 6z3 − 11z2 − 12z− 6

z4 .

(10.7)

Furthermore, it follows directly from (10.6) that for z = 0 the γj’s reduce to the
well-known coefficients of the classical Adams-Bashforth (AB) methods

γj(0) = (−1)j
∫ 1

0

(−θ

j

)
dθ, j ≥ 0.

Thus, for A = 0 the exponential Adams methods reduce to the classical AB
methods

yn+1 = yn + ∆t
k−1

∑
j=0

γj(0)∇jGn. (10.8)
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j 0 1 2 3

γj(0) 1 1/2 5/12 3/8

Table 6: Coefficients for the Adams-Bashforth methods

In Table 6 we present the values of γj(0) for j = 0, 1, 2, 3. For more details on AB
methods see [55].
We are now ready to apply (10.5) to our model problem (3.6). Instead of splitting
into linear and nonlinear part, however, we will distinguish between coarse and
fine region

10.2 application to the damped wave equation

In this section we want to apply the exponential Adams methods derived in
Section 10.1 to the first order system (3.6)

dy
dt

(t) = By(t) + F(t) , t ∈ (0, T) ,

y(0) = y0 .

We have in mind that our first-order system (3.6) originates from the spatial
discretization of the wave equation. We further restrict ourselves in this part
to the spatial discretization with continuous FEM. The matrix B is potentially
large and directly applying an exponential method not feasible. If, however the
fine region is small compared to the whole computational domain, calculating
with an explicit one-step (e.g. RK) or multi-step (e.g. AB) method and a small
time-step is too expensive. As an alternative to the LTS-RK presented in Part II
schemes we want to adapt (10.5) to make use of the matrix functions γj only in
the fine part. To do so, we follow the ideas of Part II and split our unknowns
into coarse and fine

y(t) = Py(t) + (I− P)y(t),

where P is the diagonal projector matrix described in Chapter 10.1.
For simplicity we further assume that F = 0. Thus, (3.6) reduces to

y′(t) = BPy(t) + B(I− P)y(t). (10.9)

Let −A = BP and g(t, y(t)) = B(I− P)y(t). Then, (10.5) is equivalent to

yn+1 = e∆tBPyn + ∆t
k−1

∑
j=0

γj(∆tBP)B(I− P)∇jyn. (10.10)
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To achieve a more efficient implementation (10.10) should be rewritten as

yn+1 = yn + ∆tγ0(∆tBP)Byn + ∆t
k−1

∑
j=1

γj(∆tBP)B(I− P)∇jyn, (10.11)

which we can interpret as a corrected exponential Euler step. This reduces the
number of matrix function evaluations by one.
Note that for P = 0, i.e. for an equidistant coarse mesh, these methods reduce to
the well known AB methods. Therefore the stability constraints are at best those
of the underlying AB method on a grid, where no refinement took place.

10.3 efficient implementation

Even with the corrected exponential Euler step (10.11) the exponential Adams
method requires the multiplication with full matrices as the exponential of a
sparse matrix is usually full. We want to exploit our special situation, i.e. the fact
that we assume that the region of mesh refinement is small in comparison to the
entire domain. Therefore, we rewrite our system

y′(t) = By(t),

following the idea proposed in [63] as[
v
w

]′
=

[
Bf Z
Y Bc

] [
v
w

]
. (10.12)

Here we have sorted the unknowns into fine, v, and coarse, w, which we get

from y via permutation, i.e.
[

v
w

]
= Qy, where Q is a permutation matrix with

[
Bf Z
Y Bc

]
= QBQ>.

Note that Bf and Bc have the same structure as the original matrix B, but are
smaller in dimension as they only correspond either to the fine or the coarse
unknowns. In particular, we find that B f is invertible.
We can now apply an exponential Adams method (10.5) to (10.12) with

−A =

[
Bf 0
Y 0

]
, g(t, v, w) =

[
0 Z
0 Bc

] [
v
w

]
. (10.13)

This representation allows us to derive an efficient method for time integration
based on exponential Adams methods for the splitting into coarse and fine part.
To do so, we have to verify the following Proposition, which allows us to easily
evaluate the arising matrix functions for splittings of the form (10.13).
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Proposition 10.1. Let φ be an analytic function and A as defined in (10.13). Then

φ(−∆tA) =

[
φ(∆tBf) 0

∆tYφ[1](∆tBf) φ(0)I

]
, (10.14)

where
φ[1](z) =

φ(z)− φ(0)
z

. (10.15)

Proof. If φ is an analytic function, we can make use of the series expansion to
calculate φ(−∆tA). Let φ(x) = ∑∞

n=0 anxn be the Taylor expansion of φ. We can
show by induction that[

Bf 0
Y 0

]n

=

[
Bn

f 0
YBn−1

f 0

]
for n ≥ 1. (10.16)

Thus we get

φ(−∆tA) =
∞

∑
n=0

an

(
∆t
[

Bf 0
Y 0

])n

= a0

[
I 0
0 I

]
+

∞

∑
n=1

an∆tn
[

B f 0
Y 0

]n

=

[
φ(∆tBf) 0

α φ(0)I

]
,

with a0 = φ(0). We now need to determine α. With (10.16) we find that

α =
∞

∑
n=1

an∆tnYBn−1
f (10.17)

or equivalently

α = Y

(
∞

∑
n=1

an∆tnBn
f B−1

f + a0B−1
f − a0B−1

f

)
. (10.18)

We thus get

α = Y∆t(φ(∆tBf)− φ(0)I) (∆tBf)
−1. (10.19)

Now (10.14) follows from (10.19) with (10.15).

By remarking that
[

Bf 0
Y 0

]
corresponds to BP and

[
0 Z
0 Bc

]
to B(I− P) we thus

get the following k-step method from (10.11)[
vn+1
wn+1

]
=

[
vn
wn

]
+ ∆t

[
γ0(∆tBf) 0

∆tYγ
[1]
0 (∆tBf) γ0(0)I

]([
Bf Z
Y Bc

] [
vn
wn

])

+ ∆t
k−1

∑
j=1

[
γj(∆tBf) 0

∆tYγ
[1]
j (∆tBf) γj(0)I

]
∇j
[

Zwn
Bcwn

]
,
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which we can restate as

vn+1 = vn + ∆tγ0(∆tBf) (Bfvn + Zwn) + ∆t
k−1

∑
j=1

γj(∆tBf)∇jZwn,

wn+1 = wn + ∆tY

(
γ0(∆tBf)vn + ∆tγ1(∆tBf)Zwn + ∆t

k−1

∑
j=1

γ
[1]
j (∆tBf)∇jZwn

)

+ ∆t
k−1

∑
j=0

γj(0)∇jBcwn.

(10.20)

If the refined region in our mesh is small in comparison to the coarse part, the
arising matrix functions γi(∆tBf) will be small in comparison to the exponential
of the whole matrix BP. We still have to multiply with full matrices in (10.20),
however of much smaller dimensions. Thus we can reduce the effort noticeably
by the described approach. We are going to call (10.20) local exponential Adams
method denoted by LexpABk.
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N U M E R I C A L E X P E R I M E N T S

After deriving LexpAB schemes based on kth order AB methods in Chapter 10

we now show the results of numerical experiments done for the damped wave
equation (3.1) in one and two dimensions. First we consider problems in 1D
that confirm the expected order of convergence for different refinement factors
p. Afterwards we simulate a plane wave and its reflections in a two dimensional
domain with a barrier. We then present performance results where we compare
LexpABk with their classical AB counterpart on a mesh in 1D with a small fixed
number of fine degrees of freedom, but with an increasing rate of refinement
p. Finally, we show why for locally refined meshes where the number of fine
gridpoints is not very small compared to the whole computational domain, ex-
ponential integrators seem to be an unfortunate choice for the simulation of
acoustic waves as Krylov methods fail to give an accurate approximation of the
involved matrix function times vector.

11.1 convergence study

To study the convergence rates of LexpAB schemes we consider (3.1) in 1D on
the interval Ω = [0, 4] for t ∈ [0, T], where T = 1.5, with constant wave speed
c = 1, damping factor σ = 0.1 and homogeneous Dirichlet boundary conditions.
The initial conditions are set to yield the exact solution

u(x, t) =
2e−

σt
2√

4π2 − σ2
sin(πx) sin

(
t
2

√
4π2 − σ2

)
.

First Ω is discretized with an equidistant mesh of size hcoarse. Then we refine
the interval [1, 1 + hcoarse] by a factor p = 2, 5 or 13, i.e. the size of the mesh in
the fine part is hfine = hcoarse/p. Hence the two intervals [0, 1) and (1 + hcoarse, 4]
correspond to the coarse region Ωc whereas Ω f = [1, 1 + hcoarse].
First we discretize in space using a continuous P1-FE discretization of (3.1) with
mass lumping on a sequence of increasingly finer meshes . We combined this
spatial discretization with the second-order LexpAB2 scheme, which for k = 2
reduces to

73
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yn+1 = e∆tBPyn + ∆t
(
γ0(∆tBP)B(I− P)yn + γ1(∆tBP)B(I− P)(yn − yn−1)

)
,

with γ0 and γ1 as calculated in Section 10.1.
As we systematically reduce the global mesh size H = hcoarse, while simultane-
ously reducing ∆t, we monitor the L2 space-time error in the numerical solution
‖u(·, T)− uh,∆t(·, T)‖L2(Ω) at the final time T = 1.5.
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Figure 16: Exact and numerical solution at time T = 1.5 (a) and Lexp-AB2(p)
error vs. H = hcoarse = 0.04, 0.02, 0.01, 0.005 for P1 finite elements with p =
2, 5, 13(b).

In Fig. 16 we display the numerical solution for hcoarse = 0.1 and p = 2 (a) and
the L2-errors at time T = 1.5 for hcoarse = 0.04, 0.02, 0.01, 0.005 and different
local refinement factors p (b). The numerical results thus confirm the expected
second-order accuracy independently of the refinement factor p.
Next, we repeat this numerical experiment with a continuous P2-FE discretiza-
tion with mass lumping. In Fig. 17 (a) we can observe that the LexpAB3 method

yn+1 = e∆tBPyn + ∆t
2

∑
j=0

γj(∆tBP)B(I− P)∇jyn,

yields overall third-order convergence independently of p.
Finally we combine a continuous P3-FE discretization with mass lumping with
a fourth-order LexpAB4 scheme

yn+1 = e∆tBPyn + ∆t
3

∑
j=0

γj(∆tBP)B(I− P)∇jyn,
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Figure 17: Lexp-ABk(p) error vs. H = hcoarse = 0.04, 0.02, 0.01, 0.005 for P k−1

finite elements with p = 2, 5, 13 for k = 3 (a) and k = 4 (b).

and monitor the L2 space-time error. Again, the numerical results confirm the
expected fourth-order convergence for varying p – see Figure 17 (b).

The schemes in (10.10) are clearly multistep methods. We calculate the necessary
starting values with a classical RK4 method.

11.2 stability

In this section the stability of our methods (10.10) applied to the model problem
(3.1) will be discussed. Again we consider the case where Ω = [0, 4] , T = 1.5,
with constant wave speed c = 1, damping factor σ = 0.1 and homogeneous
Dirichlet boundary conditions. As the exponential Adams methods reduce to
Adams-Bashforth methods for p = 1, i.e. in the case of an equidistant coarse
mesh, we have to at least fulfill the stability constraints arising from those under-
lying methods. Therefore we rewrite our k-step Adams-Bashforth method into a
one-step method and choose ∆tABk to be the largest ∆t such that the eigenvalues
of the matrix arising from the transformation have an absolute value strictly less
than 1.

We want to demonstrate that the locally refined mesh imposes no further sta-
bility constraint, i.e. the exponential Adams-methods are stable for ∆t = ∆tABk.
To do so we likewise transform our local exponential k-step method into an
one-step method and examine the eigenvalues of the matrix arising.

In the following experiments we choose hcoarse = 0.1 and p = 13. Instead of
refining only on one element, we consider now refinement on the intervall [1, 2].



76 numerical experiments

For k = 2 we first consider the underlying AB2 method

yn+1 = yn + ∆t
(

3
2

Byn −
1
2

Byn−1

)
. (11.1)

We proceed by rewriting (11.1) as a one-step method[
yn+1

yn

]
= CAB2

[
yn

yn−1

]
, (11.2)

with

CAB2 =

I + ∆t
3
2

B −∆t
1
2

B

I 0


To guarantee stability we have to ensure that all the eigenvalues of CAB2 are in
absolute value strictly less than 1. ∆tAB2 is the maximum ∆t such that this is
fulfilled.
In Table 7 we can see ∆tAB2 for different σ. An increasing σ seems to have a
positive effect on the stability behavior as ∆tAB2 gets larger as σ gets bigger.

σ 0.1 1 20

∆topt 0.01065 0.022 0.0454

Table 7: ∆tAB2 for linear FE combined with AB2 on equidistant coarse mesh for
different σ.

For the discretization in time on the locally refined mesh the exponential Adams
method is the following

yn+1 = e∆tBPyn + ∆t (γ0(∆tBP)B(I− P)yn + γ1(∆tBP)B(I− P)(yn − yn−1)) ,

which can again be written as a one-step method[
yn+1

yn

]
= CLexpAB2

[
yn

yn−1

]
,

with

CLexpAB2 =

[
α1 α2
I 0

]
,

where α1 and α2 are given by

α1 = e∆tBP + ∆t (γ0(∆tBP)B(I− P) + γ1(∆tBP)B(I− P)) ,
α2 = −∆tγ1(∆tBP)B(I− P).
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Figure 18: Eigenvalues of CAB2 (top) and CLexpAB2 (bottom) for σ = 0.1 (left), 1

(middle) and 20 (right) and ∆t = ∆topt.

In Fig. 18 we can see that even with a refinement (in this numerical example
p = 13) ∆tAB2 is small enough to ensure that our method for time integration is
stable, i.e. all eigenvalues are still inside the unit circle. This is further confirmed
by Fig. 19 where we observe, that the spectral radius ρ(CAB2) is below 1 for all
∆t ≤ ∆tAB2.
We repeat this approach for the case of continuous P2 FEM in combination with
the third-order LexpAB3 scheme. Starting from the well-known AB3 method

yn+1 = yn + ∆t
(

23
12

Byn −
16
12

Byn−1 +
5
12

Byn−2

)
, (11.3)

we rewrite (11.3) as a one-step method

yn+1
yn

yn−1

 = CAB3

 yn
yn−1
yn−2

 , (11.4)

in order to determine the optimal ∆t.
Here the matrix CAB3 is given by

CAB3 =

α1 α2 α3
I 0 0
0 I 0


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Figure 19: Maximal norm of the eigenvalues of CAB2 (top) and CLexpAB2 respec-
tively with respect to ∆t for σ = 0.1 (left), 1 (middle) and 20 (right)

with α1 = I + ∆t
23
12

B, α2 = −∆t
16
12

B and α3 = ∆t
5
12

B.
In Table 8 we display ∆tAB3 for different σ. This time we cannot observe the
positive effect of σ on the stability behavior seen for AB2.

σ 0.1 1 20

∆tAB3 0.0147 0.0146 0.0135

Table 8: ∆tAB3 for quadratic FE combined with AB3 on equidistant coarse mesh
for different σ.

Rewriting the 3-step exponential Adams method

yn+1 = e∆tBPyn + ∆t
(
γ0(∆tBP)B(I− P)yn + γ1(∆tBP)B(I− P)(yn − yn−1)

+ γ2(∆tBP)B(I− P)(yn − 2yn−1 + yn−2)
)

(11.5)

into a one-step method leads toyn+1
yn

yn−1

 = CLexpAB3

 yn
yn−1
yn−2

 ,

with

CLexpAB3 =

α̃1 α̃2 α̃3
I 0 0
0 I 0


where

α̃1 = e∆tBP + ∆t (γ0(∆tBP)B(I− P) + γ1(∆tBP)B(I− P) + γ2(∆tBP)B(I− P)) ,
α̃2 = −∆t (γ1(∆tBP)B(I− P) + 2γ2(∆tBP)B(I− P)) ,
α̃3 = ∆t (γ2(∆tBP)B(I− P)) .
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Figure 20: Eigenvalues of CAB3 (top) and CLexpAB3 (bottom) for σ = 0.1 (left), 1

(middle) and 20 (right) and ∆t = ∆topt.

A similar behavior as in the case of linear finite elements can be seen in Fig.
20 and 21. The choice of ∆t ≤ ∆tAB3 guarantees that the eigenvalues of both
matrices have an absolute value strictly less than 1. For a larger damping factor
σ, eigenvalues close to the unit circle seem to be moving inwards.
If we consider cubic finite elements the exponential Adams method, required
to guarantee fourth order convergence, reduces to a 4-step Adams-Bashforth
method in the case of an equidistant coarse mesh

yn+1 = yn + ∆t
(

55
24

Byn −
59
24

Byn−1 +
37
24

Byn−2 −
3
8

Byn−3

)
, (11.6)

which can again be restated as a one-step method
yn+1

yn
yn−1
yn−2

 = CAB4


yn

yn−1
yn−2
yn−3

 .

where

CAB4 =


α1 α2 α3 α4
I 0 0 0
0 I 0 0
0 0 I 0


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Figure 21: Maximal norm of the eigenvalues of CAB3 and CLexpAB3 respectively
for σ = 0.1 (left), 1 (middle) and 20 (right)

Here α1 = I + ∆t
55
24

B, α2 = −∆t
59
24

B, α3 = ∆t
37
24

B and α4 = −∆t
3
8

B.
We display the optimal ∆t for different σ in Table 9.

σ 0.1 1 20

∆tAB4 0.00498 0.00495 0.00468

Table 9: ∆tAB4 for cubic FE combined with AB4 on equidistant coarse mesh for
different σ.

As done before for linear and quadratic elements we transform the correspond-
ing exponential Adams method

yn+1 = e∆tBPyn + ∆t
(

γ0(∆tBP)B(I− P)yn + γ1(∆tBP)B(I− P)(yn − yn−1)

+ γ2(∆tBP)B(I− P)(yn − 2yn−1 + yn−2)

+ γ3(∆tBP)B(I− P)(yn − 3yn−1 + 3yn−2 − yn−3)

)
into a one-step method 

yn+1
yn

yn−1
yyn−2

 = CLexpAB4


yn

yn−1
yn−2
yn−3

 ,

where

CLexpAB4 =


α̃1 α̃2 α̃3 α̃4
I 0 0 0
0 I 0 0
0 0 I 0


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with

α̃1 = e∆tBP + ∆t
(

γ0(∆tBP)B(I− P) + γ1(∆tBP)B(I− P) + γ2(∆tBP)B(I− P)

+ γ3(∆tBP)B(I− P)
)

,

α̃2 = −∆t
(

γ1(∆tBP)B(I− P) + 2γ2(∆tBP)B(I− P) + 3γ3(∆tBP)B(I− P)
)

,

α̃3 = ∆t
(

γ2(∆tBP)B(I− P) + 3γ3(∆tBP)B(I− P)
)

,

α̃4 = −∆tγ3(∆tBP)B(I− P).

Figure 22: Eigenvalues of CAB4 (top) and CLexpAB4 (bottom) for σ = 0.1 (left), 1

(middle) and 20 (right) and ∆t = ∆topt.

Figure 22 shows us the eigenvalues of CAB4 and Cexp 4 for different σ’s, ∆t =
∆tAB4 and p = 13. They all have an absolute value less than 1. Thus the expo-
nential 4-step Adams method is stable for ∆tAB4. This is confirmed by Fig. 23,
where we can observe that the biggest eigenvalue in absolute value is below 1
for ∆t ≤ ∆tAB4.

11.3 two-dimensional example

If the fine part of the mesh is small, LexpABk schemes present a efficient al-
ternative for solving the damped wave equation even in two space dimensions.
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Figure 23: Maximal norm of the eigenvalues of CAB4 (top) and CLexpAB4 respec-
tively for σ = 0.1 (left), 1 (middle) and 20 (right)

We consider here the model problem (3.1) on a domain Ω, rectangular of size
(0, 2)× (0, 1) with two rectangular barriers separated by a narrow gap seen in
Chapter 8. As shown in Fig. 24, the mesh resolves the small geometric features

Figure 24: Initial triangular mesh with local refinement ratio p = 6, i.e. hfine ≈
hcoarse/6

of the narrow gap. Notice that we choose the fine region here much smaller than
in the case of LTS presented before. We want our mesh to have only a few fine
elements in order for LexpAB to perform well.
At all boundaries we impose homogeneous Neumann boundary conditions; a
vertical plane wave is excited through the initial conditions,

u(x, 0) = exp

(
− (x− 0.8)2

0.00722

)
,

and v(x, 0) = ut(x, 0) = 0. In space, we discretize using P2 continuous finite
elements with mass lumping after having refined our initial mesh (see Fig. 24)
three times, each time dividing every triangle into four.
As the initial mesh is unstructured, we have to decide which elements belong
to the fine mesh, and which do not. Given hcoarse as the maximal radius of all
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triangles, the fine mesh consists of all triangles with h < 0.7hcoarse. For the time
integration we choose the third-order scheme LexpAB3 with ∆t = 0.07hcoarse

determined experimentally. Thus the numerical method is third order accurate
in both space and time. We calculate the starting values by applying a standard
fourth-order Runge-Kutta method. In Fig. 25, we follow the plane wave as it im-

Figure 25: Numerical solution at times t = 0.1, 0.3, 0.5 and 0.7

pinges on the obstacle and reflections occur, while the gap sheds circular waves
into the medium.

11.4 comparison

In this section we illustrate the performance of LexpAB methods compared to
their underlying AB schemes in different geometrical situations. We want to
show that for a fixed small number of fine elements, which are characterized
by a very high ratio p between hcoarse and hfine, LexpAB schemes outperform
classical AB methods as the computational work only depends on the number
of fine degrees of freedom, and not on p.
To do so we consider the damped wave equation (3.1) in one dimension for
Ω = (0, 6), c = 1, σ = 0.1, T = 5 and f (x) = 0.
We start with an equidistant mesh with mesh size hcoarse and add µ = 1 addi-
tional fine point at hfine = hcoarse/p – see Figure 26. We discretize (3.1) in space
using continuous P2-FE with mass lumping.
We monitor the L2-error at the final time T = 5 and the runtime in seconds for
LexpAB3 and compare it to the results of AB3 on the same mesh with ∆t =
∆tAB3/p for different p.
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0 6

Figure 26: Ω with one fine element.

In a first test we set hcoarse = 0.2. The optimal ∆t on the equidistant coarse mesh
is here ∆tAB3 = 2.95e− 02.

LexpAB3 AB3

p L2- Error Runtime in s L2- Error Runtime in s

5 3.3845e− 04 0.476365 3.8590e− 04 0.115519

11 1.3254e− 04 0.477085 3.8230e− 04 0.156068

53 2.0152e− 04 0.473089 3.7306e− 04 0.423811

100 6.2434e− 05 0.481397 3.7151e− 04 0.744742

1000 1.4716e− 04 0.482522 3.6978e− 04 6.659287

2000 1.0888e− 04 0.479547 3.6968e− 04 13.020158

Table 10: Runtime results for µ = 1 and hcoarse = 0.2 for different p

In Table 10 we can observe the results for different p. Notice that the runtime for
LexpAB3 is constant, i.e. only depends on the size of the matrix Bf and not on p,
while the runtime for AB3 grows linearly with increasing p.
In a second experiment we reduce the mesh size to hcoarse = 0.05. Thus, the size
of the first-order system (3.6) increases. The optimal ∆t on the equidistant coarse
mesh is now ∆tAB3 = 7.39e− 03.
The results displayed in Table 11 confirm our results for the coarser mesh. The
ratio between runtime of AB3 and runtime of corresponding LexpAB3 even in-
creases for growing p.
We repeat the experiments above but increase the number of fine points at the
beginning of the domain to µ = 3 – see Figure 27 for the new grid.

0 6

Figure 27: Ω with three fine element.

Again, we first consider the case with hcoarse = 0.2.
In Table 12, the results corroborate those in Table 10, i.e. the additional points do
not change the outcome.
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LTS-expAB3 AB3

p L2- Error Runtime in s L2- Error Runtime in s

5 2.8130e− 06 1.009038 1.4138e− 06 0.262177

11 1.5893e− 05 1.010626 1.3219e− 06 0.450336

53 8.7525e− 06 1.005432 1.4236e− 06 1.775844

100 1.4042e− 05 1.020723 1.4292e− 06 3.315734

1000 1.8929e− 05 1.016705 1.4272e− 06 31.811840

2000 4.8814e− 07 1.017659 1.4270e− 06 63.661842

Table 11: Runtime results for µ = 1 and hcoarse = 0.05 for different p

Last we consider hcoarse = 0.05. The optimal ∆t on the equidistant coarse mesh is
again ∆tAB3 = 7.39e− 03.

Again the results in Table 13 confirm the results seen before. We note that p
has to be high for LexpAB3 to actually beat AB3. When we further increase
the number of fine points, the computation of the matrix functions gets more
expensive and we thus have to choose a higher p to still beat AB3.

11.5 krylov-methods

In Section 11.4 we presented experiments which suggest that in presence of a
local mesh refinement of only a few, but very small elements LexpABk schemes
appear to be an interesting alternative to LTS schemes. However, if the number
of fine degrees of freedom increases, and thus the dimension of B f , directly
evaluating the arising matrix functions becomes inefficient. Here we explain why
standard Krylov method fail to be an alternative to direct methods when dealing
with the damped wave equation.

We start by considering the damped wave equation (3.1) in one dimension for
Ω = (0, L), σ(x) ≥ 0 and c(x) is piecewise smooth and strictly positive. We
discretize (3.1) in space by using standard finite elements while leaving time
continuous and thus get a system of ODEs of the form (3.6). For simplicity, we
further assume that F = 0. Hence, (3.6) reduces to

y′(t) = By(t) y(0) = y0. (11.7)
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LexpAB3 AB3

p L2- Error Runtime in s L2- Error Runtime in s

5 3.8811e− 04 0.495881 3.9625e− 04 0.113812

11 1.5967e− 04 0.490194 3.9759e− 04 0.157157

53 1.9158e− 04 0.508014 3.7946e− 04 0.420513

100 2.0223e− 04 0.491436 3.7518e− 04 0.747162

1000 1.5863e− 04 0.496777 3.7018e− 04 6.562576

2000 1.8596e− 04 0.493427 3.6988e− 04 12.929323

Table 12: Runtime results for µ = 3 and hcoarse = 0.2 for different p

The exact solution of (11.7) can be written as

y(t) = etBy0. (11.8)

If B is small, we can use the MATLAB function expm.m, which makes use of
the Padé approximation for calculating the exponential of a matrix (see [58]
for details). As soon as B gets too big, more efficient methods are desirable to
evaluate (11.8).
The idea behind the use of Krylov subspace techniques is to project the expo-
nential of the large matrix onto a small Krylov subspace [43]. In a first attempt
we ignore the special structure of the matrix and just notice, that it is not sym-
metric. Hence we use the standard Arnoldi method to generate an orthonormal
basis Vm = [v1, . . . , vm] of the Krylov space Km = span{y0, By0, . . . , Bm−1y0}
with v1 =

y0

‖y0‖
and a Hessenberg matrix Hm of dimension m. We know that the

Hessenberg matrix is of the form Hm = V>mBVm. Therefore Hm represents the
projection of the linear transformation B onto the subspace Km with respect to
the basis Vm. We can now approximate exp(tB)y0

etBy0 ≈ VmetHm V>my0 = βVmetHm e1, (11.9)

where β = ‖y0‖ and e1 is the first standard basis vector of RN. If m is small,
we can use a direct method to evaluate the matrix exponential etHm , for example
expm.m. Hochbruck and Lubich describe in [59] how to choose m for different
classes of matrices. It turns out that superlinear convergence usually requires
m� ‖tB‖. For symmetric negative definite matrices B we observe this behavior
already for m ≥

√
‖tB‖. As our matrix B in (11.7) is not symmetric, we only
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LTS-expAB3 AB3

p L2- Error Runtime in s L2- Error Runtime in s

5 9.4320e− 06 1.030653 1.4286e− 06 0.263381

11 8.7312e− 06 1.030607 1.3415e− 06 0.454422

53 1.8880e− 05 1.030758 1.4312e− 06 1.789966

100 1.0902e− 05 1.031568 1.4336e− 06 3.356812

1000 8.3640e− 06 1.026235 1.4276e− 06 32.103770

2000 8.9643e− 06 1.030787 1.4273e− 06 63.582393

Table 13: Runtime results for µ = 3 and hcoarse = 0.05 for different p

get convergence for m < ‖tB‖ in special cases, e.g. if the vectors, with which we
approximate the matrix function, are particularly smooth (it turns out that our
initial value y0 has this property).

This restriction on m may lead to difficulties in our case, where we deal with
damped wave equations (3.1) in one space dimension. For simplicity we assume
that T = 3.5 and that c = 1 and σ = 0.1 are constant. We discretize (3.1) in space
using continuous P2-FE with mass-lumping on an equidistant mesh with mesh
size h = 0.1 for [0, L] = [0, 4]. For this simple example ‖B‖ ≈ 2.4 · 103 whereas
the dimension of B is only N = 158, i.e. m � N and we were hoping for a m
that is a lot smaller than N. If we still want to approximate the exponential with
Krylov methods and a reasonable m, we can reduce our t, which results in a time
stepping scheme of the form

yk = Vm,ke∆tHm,k V>m,kyk−1, k = 1, . . . , n. (11.10)

Here ∆t =
T
n

, where Vm,k and Hm,k belong to the Krylov projection associated
with B and starting vector yk−1. For (11.10) to be stable we need to require that
the eigenvalues of e∆tHm,k are in the unit circle. This gives us a restriction for
∆t. So we have two different options to achieve superlinear convergence for the
Arnoldi iteration. We can either increase the number of projections m or decrease
the time-step ∆t. As an increasing m leads to a bigger Hessenberg matrix Hm,k
of which we then have to calculate the matrix exponential, we will keep m = 10
fixed and focus on the influence of ∆t in the following experiments.
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We first choose an example with initial conditions

u0(x) = e−
(x−2)2

0.252 ,
v0(x) = 0.

(11.11)

Figure 28: Reference solution (blue) and solution calculated using an Arnoldi
method with m = 10 (green) at time T = 3.5

Obviously a small m won’t guarantee convergence (see Figure 28). If we now
use a time-stepping scheme but with a ∆t that is too big, we even get problems
with stability. While the eigenvalues of Hm,0 approximate the eigenvalues of
B rather well, the eigenvalues of Hm,k for k ≥ 1 need not even be in the left
half plane. Thus the solution of the time stepping scheme (11.10) might explode.
To understand this behavior better, we will examine the eigenvalues of Hm,k
carefully.
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Figure 29: Eigenvalues of B (left), of H10,0 and of a Hessenberg matrix H gener-
ated with a random vector v.

We can see in Figure 29 that the eigenvalues of H10,0 approximate the spectrum
of B significantly better than the eigenvalues of the projection onto a Krylov sub-
space of the same dimension but generated by an arbitrary vector v. Especially
the two eigenvalues in the right half plane will cause problems. Similar behavior
can be seen when doing more time steps. Thus the very good approximation
of B that H10,0 seems to give us, is an exception probably related to the Krylov
subspace Km = span{y0, By0, . . . , Bm−1y0} we project on.

Figure 30: Eigenvalues of H10,1 (left), e
T
3 H10,1 (middle) and V10,1e

T
3 H10,1V>10,1 (right).

In Figure 30 we see the eigenvalues of the Hessenberg matrix after the first time
step. It is important to notice that the eigenvalues of e

T
3 H10,1 are no longer inside

the unit circle. The eigenvalues of H10,1 located in the right half plane result in
the instability of the time stepping method as the solution will grow. This can
be prevented by choosing a smaller ∆t, such that the eigenvalues of e∆tH10,1 are
again less than 1 in absolute value.
Our experiments show that it is usually more efficient to choose a small m and
thus also a rather small ∆t, as the effort of the Arnoldi method grows quadrati-
cally with m.
In fact, we can create special situations, where an exponential integrator with
Krylov methods beats standard Adams-Bashforth methods. Due to the structure
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of the matrix B in (11.7), i.e. especially the large norm of B, however, the expo-
nential integrator can’t compete with Adams-Bashforth methods in most of the
examples. We illustrate this behavior now in the following.
We consider two different meshes for our tests. In both cases we start an equidis-
tant mesh of size h on [0, 4]. In case A we add two additional points at 2 + hfine

and 2 + 2hfine for hfine = 0.0001, while in case B we refine the whole interval
[2, 2 + h] with hfine.
In the following we compare the performance of three different approaches. The
first one calculates the solution (11.8) of (11.7) directly using the MATLAB func-
tion expm.m. As a second method we use the MATLAB function expv.m by [93].
This calculates an approximation of (11.8) with an Arnoldi method and adaptive
time-stepping. In all experiments presented here we choose m = 10. We opt for
a small m as the function expv.m calculates the exponential of the arising Hes-
senberg matrix in a direct manner. We compare both methods with the standard
AB3 scheme with a small time-step dictated by the fine elements on the whole
domain.

method # of time-steps L2- Error Runtime in s

direct 1 1.3368e− 03 0.374

expv 1357 1.3368e− 03 2.987

AB3 21605 1.3368e− 03 1.345

Table 14: Case A with h = 0.1 and hfine = 0.001.

For small problems the direct method is the best choice as its performance only
depends on the size of the matrix and not on the refinement factor p = h/hfine –
see Table 14 for details.

method # of time-steps L2- Error Runtime in s

direct 1 1.3092e− 03 4.245

expv 3538 1.3092e− 03 7.656

AB3 25000 1.3092e− 03 2.778

Table 15: Case B with h = 0.1 and hfine = 0.001.

If we, however, increase the number of fine unknowns and thus enlarge our
system the direct method becomes less efficient than AB3 – see Table 15.
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We now repeat both tests with a smaller h and hfine.

method # of time-steps L2- Error Runtime in s

direct 1 1.2683e− 07 60.561

expv 8215 1.2602e− 07 21.148

AB3 214724 1.2608e− 07 30.997

Table 16: Case A with h = 0.01 and hfine = 0.0001.

In Table 16 we found an example, where the Krylov method actually presents
the most efficient method.

method # of time-steps L2- Error Runtime in s

direct 1 1.2610e− 07 109.140

expv 24035 1.2522e− 07 67.776

AB3 258095 1.2520e− 07 38.733

Table 17: Case B with h = 0.01 and hfine = 0.0001.

If, however, we increase the number of fine elements, expv cannot compete with
the classical AB3. Note further that the direct method fails in both cases as the
system gets too large and thus the direct calculation of the matrix exponential
too expensive.
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C O N C L U S I O N A N D F U T U R E W O R K

12.1 concluding remarks

Starting from standard explicit Runge-Kutta (RK) methods, we have derived
explicit local time-stepping (LTS) methods which permit arbitrarily small time-
steps precisely where the smallest elements in the underlying mesh are located.
When combined with a finite element discretization with an essentially diagonal
mass matrix, the resulting discrete time-marching schemes remain fully explicit
and thus highly parallel. The LTS methods based on classical RK schemes are
given in Algorithm 6.1, the LTS methods based on low-storage (LS) RK methods
are given in Algorithm 6.3, and the LTS method based on the popular RK4
method is detailed in Algorithm 6.5. Like their standard RK counterparts, our
LTS-RK methods preserve linear invariants.
Let ∆t denote the time-step dictated by the CFL-condition in the coarser part
of the mesh. Then, during every (global) time step ∆t, each local time step of
size ∆t/p inside the locally refined region of the mesh, with p ≥ 2 any integer,
simply corresponds to sparse matrix-vector multiplications that involve only the
degrees of freedom associated with the fine region of the mesh. Those ”fine”
degrees of freedom can be selected individually and without any restriction by
setting the corresponding entries in the diagonal partition matrix P to one; in
particular, no adjacency or coherence in the numbering is assumed. Hence, the
implementation is straightforward and requires no special data structures. The
intermediate values needed at the coarse/fine mesh interface during sub-steps
are obtained through a judicious combination of interpolation and Taylor expan-
sion, which preserves the accuracy of the original scheme without resorting to
the solution of a linear systems or recursive dependencies.
If the underlying s-stage RK method has order k, we have proved that the cor-
responding LTS-RKs method retains the same accuracy, independently of s ≥ k.
For s = k = 2, 3, 4 we have proved that the LTS-RKs methods converge as ∆t→ 0
to the semi-discrete solution. Our numerical experiments indicate that if an LTS-
RK method of order k is combined with a P k−1 FE spatial discretization, the nu-
merical solution will converge to the true solution with optimal rate O(hk, ∆tk),
as h, ∆t → 0. Moreover, our numerical experiments suggest that the LTS-RK
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methods preserve the optimal CFL-condition imposed on ∆t by the coarser re-
gion of the mesh, independently of p. Hence our LTS-RK methods overcome
the bottleneck caused by the geometry induced stiffness without sacrificing the
explicitness, accuracy or efficiency of the original RK method.
Our derivation of explicit LTS-RK methods applies to a general explicit RK
method of arbitrary order. Hence, it not only applies to low-storage RK meth-
ods, but also to any other explicit RK method, such as the low-dispersion low-
dissipation RK methods from [65]. Although the LTS-RK methods are particu-
larly appropriate for computational wave propagation, where the use of explicit
time integration prevails, they are likely to also prove useful for other partial
differential equations.
As an alternative to LTS-RK schemes, we have presented exponential Adams
methods for the time integration of damped wave equations as a way to over-
come the severe stability constraints imposed by a locally refined mesh. In the
last part of this thesis we have seen some numerical results which confirm
that LexpAB schemes preserve the accuracy of the corresponding classical ABk
method and we have studied the stability of our methods. We have observed that
especially if the locally refined part is small in comparison to the entire mesh,
LexpAB schemes present an interesting option for the time integration of wave
equations.

12.2 future work

A central and important contribution of this thesis and of [47] is the proof in the
ODE sense for LTS-RK schemes. We have shown in Section 7 that the LTS-RKs
method preserves the accuracy of the underlying RK method. Further we have
proved that for the LTS-RKs methods converge as ∆t → 0 to the semi-discrete
solution s = k = 2, 3, 4. To study the fully discrete error analysis for LTS-RKs
schemes when combined with a spatial discretization of suitable order seems a
natural extension of this thesis and is of interest for our future work.
Until now we have distinguished between coarse and fine for our LTS approach.
As common meshes normally have more levels of refinement, we are deriving
multilevel LTS schemes which are able to handle hierarchical meshes. First re-
sults when combined with a Summation-By-Parts-Simultaneous Approximation
Term (SBP-SAT) FD methods [76] seem very promising and a further investiga-
tion is work in progress.
To compare our LTS-RK schemes with local exponential integrators we are cur-
rently extending the ideas described in Part III to exponential integrators of RK
type [61, 60]. Again, we hope that in cases where we have only a few tiny ele-
ments LexpRK methods present an exciting and new alternative to established
LTS schemes.
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Here we give the coefficients of the RK methods we use for the numerical exper-
iments. For convenience they are presented in the well-known Butcher tableau –
see [13] for details.

Table 18: Coefficients of the classical RKs methods.
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Table 19: Coefficients of the LSRKs methods.

0 0

1 −1

1 1
2

0 0
1
3 −5

9

−3
4 −153

128

1
3

15
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8
15

(a) LSRK2 (order 2) (b) LSRK3 (order 3)

i Ai Bi Ci

1 0 1432997174477
9575080441755 0

2 − 567301805773
1357537059087

5161836677717
13612068292357

1432997174477
9575080441755

3 −2404267990393
2016746695238

1720146321549
2090206949498

2526269341429
6820363962896

4 −3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

5 −1275806237668
842570457699

2277821191437
14882151754819

2802321613138
2924317926251

(c)LSRK5 (order 4)
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uous Galerkin method for Maxwell’s equations: energy norm error estimates, J.
Comput. Appl. Math., 204 (2007), pp. 375–386.

[52] M. Günther, A. Kværnø, and P. Rentrop, Multirate partitioned Runge-
Kutta methods, BIT, 41 (2001), pp. 504–514.

[53] M. Günther and P. Rentrop, Multirate ROW methods and latency of electric
circuits, Applied Numerical Mathematics, 13 (1993), pp. 83 – 102.

[54] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration,
vol. 31 of Springer Series in Computational Mathematics, Springer-Verlag,
Berlin, 2002. Structure-preserving algorithms for ordinary differential
equations.

[55] E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equa-
tions I: Nonstiff Problems, Springer–Verlag, 2000.

[56] J. S. Hesthaven and T. Warburton, Nodal High-Order Methods on Unstruc-
tured Grids: I. Time-Domain Solution of Maxwell’s Equations, J. Comput. Phys.,
181 (2002), pp. 186 – 221.

[57] , Nodal Discontinuous Galerkin Methods, Springer, 2008.

[58] N. J. Higham, The scaling and squaring method for the matrix exponential revis-
ited, SIAM Rev., 51 (2009), pp. 747–764.

[59] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the
matrix exponential operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911–1925.

[60] M. Hochbruck and A. Ostermann, Explicit Exponential Runge–Kutta
Methods for Semilinear Parabolic Problems, SIAM J. Numer. Anal., 43 (2005),
pp. 1069–1090.

[61] M. Hochbruck and A. Ostermann, Exponential RungeKutta methods for
parabolic problems, Appl. Numer. Math., 53 (2005), pp. 323 – 339.



106 BIBLIOGRAPHY

[62] , Exponential integrators, Acta Numerica, 19 (2010), pp. 209–286.

[63] , Exponential multistep methods of Adams-type, BIT, 51 (2011), pp. 889–
908.

[64] G. W. Howell, Derivative Error Bounds for Langrange Interpolation: An Ex-
tention of Cauchy’s Bound for the Error of Langrange Interpolation, J. Approx.
Theory, 67 (1991), pp. 164–173.

[65] F. Q. Hu, M. Y. Hussaini, and J. L. Manthey, Low-dissipation and low-
dispersion Runge-Kutta Schemes for computational acoustics, J. Comput. Phys.,
124 (1996), pp. 177–191.

[66] W. Hundsdorfer, A. Mozartova, and V. Savcenco, Monotonicity con-
ditions for multirate and partitioned explicit Runge-Kutta schemes, in Recent
developments in the numerics of nonlinear hyperbolic conservation laws,
vol. 120 of Notes Numer. Fluid Mech. Multidiscip. Des., Springer, Heidel-
berg, 2013, pp. 177–195.

[67] W. Hundsdorfer and J. G. Verwer, Numerical solution of time-dependent
advection-diffusion-reaction equations, vol. 33 of Springer Series in Computa-
tional Mathematics, Springer-Verlag, Berlin, 2003.

[68] A. Kanevsky, M. H. Carpenter, D. Gottlieb, and J. S. Hesthaven, Ap-
plication of implicit-explicit high order Runge-Kutta methods to discontinuous-
Galerkin schemes, J. Comput. Phys., 225 (2007), pp. 1753–1781.

[69] G. E. Karniadakis and S. J. Sherwin, Spectral/hp element methods for com-
putational fluid dynamics, Numerical Mathematics and Scientific Computa-
tion, Oxford University Press, New York, second ed., 2005.

[70] C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes
for convection-diffusion-reaction equations, Appl. Numer. Math., 44 (2003),
pp. 139–181.

[71] L. Krivodonova, An efficient local time-stepping scheme for solution of nonlin-
ear conservation laws, J. Comput. Phys., 229 (2010), pp. 8537–8551.

[72] R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts
in Applied Mathematics, Cambridge University Press, Cambridge, 2002.

[73] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and
applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972.

[74] A. Logg, Multi-adaptive Galerkin methods for ODEs. I, SIAM J. Sci. Comput.,
24 (2003), pp. 1879–1902.



BIBLIOGRAPHY 107

[75] , Multi-adaptive Galerkin methods for ODEs. II. Implementation and appli-
cations, SIAM J. Sci. Comput., 25 (2003), pp. 1119–1141.

[76] K. Mattsson, F. Ham, and G. Iaccarino, Stable and Accurate Wave-
propagation in Discontinuous Media, J. Comput. Phys., 227 (2008), pp. 8753–
8767.

[77] B. V. Minchev and W. M. Wright, A review of exponential integrators for first
order semi-linear problems., Preprint Numerics No. 2/2005, NTNU Trond-
heim, 2005.

[78] P. Monk, Finite element methods for Maxwell’s equations, Numerical Math-
ematics and Scientific Computation, Oxford University Press, New York,
2003.

[79] E. Montseny, S. Pernet, X. Ferrires, and G. Cohen, Dissipative terms and
local time-stepping improvements in a spatial high order Discontinuous Galerkin
scheme for the time-domain maxwells equations, Journal of Computational
Physics, 227 (2008), pp. 6795 – 6820.

[80] W. A. Mulder, Higher-order mass-lumped finite elements for the wave equation,
J. Comput. Accust., 9 (2001), pp. 671–680.
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