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SUMMARY 
 
Tenascin-C (TNC) is involved in tumor initiation and metastasis, and high 

TNC expression has been associated with poor prognosis in cancers such as 

glioma, breast, colon and lung carcinoma (Orend and Chiquet-Ehrismann, 

2006; Oskarsson, 2013). Previous studies have shown that the transcriptional 

regulator megakaryoblastic leukemia-1 (MKL1) induces TNC expression in 

both normal and transformed mammary epithelial cells, and that this induction 

requires the potential DNA-binding SAP domain of MKL1 (Asparuhova et al., 

2011). Therefore, we postulated that SAP-dependent MKL1 action might be 

responsible for the tumor-specific induction of TNC. By transcript profiling 

analyses, we identified genes that are co-regulated with TNC in HC11 mouse 

mammary epithelial cells. We found that the expression of this gene set is 

associated with high-proliferative poor-outcome classes in human breast 

cancer and with reduced survival rate for breast cancer patients independent 

of tumor grade. Many of the newly discovered SAP-dependent/SRF-

independent MKL1 target genes are strongly implicated in cell proliferation, 

cell motility and cancer. Indeed, downregulation of these transcripts by 

overexpression of MKL1 lacking the SAP domain inhibited cell growth as well 

as cell migration. Interestingly, many of the SAP-dependent MKL1 target 

genes, including WNT1 inducible signaling pathway protein 1 (WISP1/CCN4) 

that we studied further, were mechanoresponsive (Gurbuz et al., 2014).   

 

WISP1 is a secreted, matricellular protein assigned to the CCN family, and 

aberrant WISP1 expression is observed in various pathologies including 

fibrosis and cancer (Berschneider et al., 2011). However, relatively little is 

known about the mechanistic details of its function. In our studies, we found 

that endogenous WISP1 expression correlates with the metastatic potential of 

isogenic mouse breast cancer cell lines. Furthermore, we observed that 

WISP1 mRNA levels within the mouse mammary gland tissue significantly 

increased upon irradiation, a treatment known to induce modifications in the 

tumor microenvironment leading to increased metastasis (Ruegg et al., 2011). 

Finally, we produced recombinant WISP1 protein and confirmed that WISP1 

is N-glycosylated and that the secreted form of the protein undergoes 
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additional post-translational modifications that increase its size and possibly 

add functional diversity to the protein. Using our purified recombinant protein 

we generated specific anti-WISP1 antibodies. In the future, these antibodies 

can be used to detect WISP1 in various tumor tissues.  
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CHAPTER 1: INTRODUCTION 
 
1.1 Signaling in Cancer: From Extracellular Space to Nucleus 

 
1.1.1 The Extracellular Matrix  
The extracellular matrix (ECM) is a non-cellular structure and is present in all 

tissues and organs. It not only passively provides physical support for tissues, 

organs and individual cells, but also actively modulates cellular responses, 

such as cell migration, proliferation, differentiation and survival through 

biochemical and biomechanical cues (Frantz et al., 2010; Mouw et al., 2014). 

ECM binds to soluble growth factors to control their localization, function and 

presentation to cells, and provides binding sites for cell-surface receptors, 

such as integrins and syndecans (Harburger and Calderwood 2009; Hynes, 

2009; Rozario and DeSimone 2010). Through cell surface receptors, ECM is 

involved in the transmission of extracellular signals and in the regulation of 

gene transcription. 

 

ECM is composed of proteoglycans (e.g., perlecan and decorin) and 

glycoproteins (e.g., collagens and non-collagenous proteins, including 

tenascins, laminins and fibronectin) (Frantz et al. 2010; Rozario and 

DeSimone 2010; Mouw et al., 2014). ECM proteins share common structural 

motifs, such as the Arg-Gly-Asp (RGD) sequence that is involved in the 

recognition and binding to cell surface receptors of the integrin family (Hynes, 

2009; Rozario and DeSimone 2010). Collagen is the most abundant protein 

within the ECM and makes up 30% of the total protein mass of a multicellular 

animal (Frantz et al. 2010; Rozario and DeSimone 2010; Mouw et al., 2014). 

Another fibrous glycoprotein within the ECM is fibronectin (FN). FN is 

secreted as a soluble dimer and then assembled into insoluble elastic fibrils 

by cells. The fibrillar fibronectin is biologically active and is involved in cellular 

processes such as adhesion, migration, proliferation, and differentiation, as 

well as in development, wound healing and metastasis of tumor cells (Baneyx 

et al., 2002). Likewise, a structurally related ECM glycoprotein family, the 

tenascins can modulate cellular behavior such as cell migration during wound 

healing and tissue development (Tucker and Chiquet-Ehrismann, 2009).  
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The composition of the ECM varies among tissues or physiological states, 

such as normal versus cancer (Frantz et al., 2010; Mouw et al., 2014). Similar 

to soluble growth factors, the molecular composition and the physical 

properties of the matrix (e.g., stiffness, elasticity) can influence cell behavior 

and cell fate (Rozario and DeSimone 2010). The rigidity or compliance of the 

ECM plays an important role in the differentiation and organization of various 

tissues and organs. When mesenchymal stem cells were plated on collagen-

coated acrylamide gels that possess the elasticity of brain, muscle or bone 

tissues they gave rise to neurogenic, myogenic and osteogenic cell fates, 

respectively (Engler et al., 2006). In the case of normal mammary epithelial 

cells, when cultured on a flexible ECM, such as a floating 3D collagen gel, 

they differentiate into tubules (Wozniak et al., 2003). On the other hand, when 

encountering a stiff ECM with high collagen concentration mammary epithelial 

cells obtain an undifferentiated, proliferative, and malignant phenotype 

(Wozniak et al., 2003; Paszek et al., 2005).  

 

In addition, ECM is dynamically remodeled, and its molecular components are 

subjected to post-translational modifications that influence its tensile strength 

and elasticity (Butcher et al., 2009; Frantz et al., 2010). To maintain tissue 

homeostasis, ECM composition and remodeling are tightly controlled by 

secretion of various ECM proteins, enzymes and growth factors.  FN, 

tenascins, collagens, proteoglycans, metalloproteinases (MMPs), tissue 

inhibitors of MMPs, lysyl oxidase (LOX) that crosslinks and stiffens the ECM, 

and transforming growth factor-β (TGF-β) which induces ECM gene 

transcription are crucial players in this regulatory process (Butcher et al., 

2009; Hynes, 2009; Frantz et al., 2010; Mouw et al., 2014). Deregulation of 

the matrix remodeling circuit may alter ECM composition and organization, 

and promote diseases including solid tumors (Figure 1), the hardening of 

arterial walls, atherosclerosis, and fibrosis (Lessey et al., 2012). For instance, 

as a result of increased collagen production as well as crosslinking in the 

stroma, tumors are stiffer than the surrounding healthy tissue and cancers are 

often diagnosed by a change of tissue rigidity sensed by palpation (Huang 

and Ingber, 2005; Butcher et al., 2009; Levental et al., 2009). Furthermore, 

women with mammographically dense breast tissue (high relative ratio of 
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ECM collagen to adipose cell volume ratio) have a four- to six-fold increased 

risk of developing breast cancer, and stiff crosslinked collagen was shown to 

be a poor prognosis factor in breast cancer (Boyd et al., 1998; Boyd et al., 

2011; Conklin et al., 2011).  

 

 
Figure 1: Increased extracellular matrix (ECM) stiffness compromises mechanoreciprocity 
and contributes to tumor progression in mammary tissue. Transformed epithelial cells secrete 
soluble factors that activate stromal cells and stimulate ECM remodeling and tissue stiffening. 
The activated stroma leads to increased survival and proliferation of tumor cells, and 
stimulate immune cell infiltration. The expanding tumor mass exerts outward projecting 
compression forces on the basement membrane. ECM balances these forces by an inward 
projecting resistance force. The modified tensional homeostasis facilitates tumor migration 
and invasion. (Adapted from Butcher et al., 2009).  
	
  

1.1.2 Mechanotransduction through Rho GTPase signaling and its role 
in tumor progression 
Rho family small GTPases, such as Rho, Rac, and Cdc42, are involved in 

multiple cellular events, including cell contraction and actin cytoskeleton 

organization, microtubule dynamics, cell polarity, cell migration, neurite 

outgrowth and cytokinesis (Amano et al., 2010). All members of the family 

have distinct roles in cytoskeletal organization. Rho regulates stress fiber 

formation and cell contraction; Rac and Cdc42 regulate the formation of 

lamellipodia and filopodia, respectively, and promote the formation of cell 

protrusions (Hall, 2005).  
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Under normal physiological conditions all cells are exposed to different types 

of mechanical forces and adapt to these forces by changing their cytoskeletal 

organization and by remodeling the microenvironment to re-establish the force 

equilibrium (Butcher et al., 2009; Lessey et al., 2012). The forces acting on 

cells can be cyclic, such as the blood flow, heartbeat or breathing, whereas 

others are sustained for varying periods of time (Butcher et al., 2009; Lessey 

et al., 2012). Endothelial cells and vascular smooth muscle cells lining blood 

vessels experience parallel forces, pulsatile stretching and shear forces 

during blood flow (Lessey et al., 2012; Burridge and Wittchen, 2013). Cells in 

the skeletal system (e.g. bones, joints, cartilage, ligaments) are exposed to 

perpendicular compression force (Lessey et al., 2012). Cells are able to sense 

these physical cues and translate them into biochemical signals, a 

phenomenon called cellular mechanotransduction. Mechanical signals are 

perceived and transmitted to the actin cytoskeleton through cell surface 

receptors of the integrin family that act as mechanoreceptors (Ridley and Hall, 

1992; Wang et al., 1993; Chrzanowska-Wodnicka and Burridge, 1996). 

Mechanotransduction provides a finely regulated feedback circuit and enables 

a reciprocal interaction between the cells and their microenvironment.   

 

To balance internal and external forces and to maintain tissue homeostasis, 

cells evaluate the exogenous mechanical signals within the tissue 

microenvironment and generate an endogenous tension. Multiple signaling 

pathways are involved in the integration of mechanical signals and generation 

of the reciprocal force response, and many of them converge in the activation 

of the small GTPase Rho (Lessey et al., 2012). Rho is responsible for the 

tension that is generated within the cells (Chrzanowska-Wodnicka and 

Burridge, 1996). Activation of Rho stimulates myosin contractility and results 

in actin stress fiber assembly (Ridley and Hall, 1992). Stress fibers consist of 

actin filaments, myosin II, and many other proteins, and are force-generating 

and tension-bearing structures (Burridge and Wittchen, 2013). Several 

downstream effector molecules of Rho, including the Rho-associated kinase 

(Rho-kinase/ROCK/ROK) and mDia are involved in these responses (Amano 

et al., 2010). ROCK and mDia act concurrently to facilitate actin stress fiber 

formation (Watanabe et al., 1999). The ratio of these two effector proteins is 
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reflected in the pattern of stress fibers; ROCK activity is associated with large 

condensed stress fibers, whereas mDia activity induces the assembly of 

filamentous F-actin (Watanabe et al., 1999). Once Rho is activated, it 

interacts with ROCK and activates it (Amano et al., 1996). The activated 

ROCK regulates myosin light chain (MLC) activity either directly by 

phosphorylation of the protein (Amano et al., 1996) or indirectly by 

phosphorylation and consequent inhibition of the MLC phosphatase (Kimura 

et al., 1996). The activation of MLC promotes assembly of myosin II, and 

generates a contractile force on actin filaments, which consequently results in 

the formation of stress fibers and focal adhesions (Figure 2) (Amano et al., 

1996; Lessey et al., 2012; Burridge and Wittchen, 2013). Another downstream 

effector of Rho, focal adhesion kinase (FAK) is a non-receptor protein tyrosine 

kinase localized at focal adhesions and is involved in converting external 

mechanical input into chemical signals (Wang et al., 2001b). Upon 

phosphorylation at its autophosphorylation site, Y397, FAK is activated and 

localizes to focal adhesions, which occurs in a Rho-dependent manner (Clark 

et al., 1998). FAK and its associated signaling pathways act as mediators of 

cell cycle regulation (Zhao et al., 1998). Furthermore, FAK promotes cell 

motility, survival and proliferation, and drives tumor progression and 

metastasis (Sulzmaier et al., 2014). 

 

 

 

 
Figure 2: Rho GTPase signaling. Activated 
Rho mediates the formation of actin stress 
fibers through its downstream effector 
proteins ROCK (Rho-associated kinase) 
and mDia. ROCK regulates myosin light 
chain (MLC) activity either directly by 
activation of the protein or indirectly by 
inhibition of the MLC phosphatase. 
Activated MLC promotes assembly of 
myosin II with actin filaments and formation 
of actin stress fibers. mDia induces actin 
polymerization and formation of thin actin 
filaments. (Adapted from Lessey et al., 
2012). 
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An injury or chronic inflammation may increase matrix stiffness and 

compromise the “mechanoreciprocity” between the cells and the ECM 

resulting in a sustained cytoskeletal tension, which in turn promotes the 

malignant transformation of a tissue (Paszek et al., 2005; Butcher et al., 

2009). Matrix rigidity can expand flexible ECM proteins and uncover cryptic 

binding sites within them (Hynes, 2009). As a conseqeunce, the extended 

ECM proteins can bind to additional growth factors and receptors, which in 

turn enhances integrin expression (Yeung et al., 2005) and clustering, 

Rho/ROCK mediated cytoskeletal contractility, and subsequent focal adhesion 

and actin stress fiber formation at the cell-ECM contact sites. (Ridley and Hall, 

1992; Chrzanowska-Wodnicka and Burridge, 1996; Bershadsky et al., 2003; 

Wozniak et al., 2003; Paszek et al., 2005; Vogel, 2006). The final response is 

increased FAK phosphorylation and cell proliferation (Wozniak et al., 2003). 

 

When cells are grown on a stiff matrix they exhibit elevated Rho activity, 

increased number of focal adhesions, and higher tension compared to cells 

grown on a compliant ECM (Paszek et al., 2005). Rho stimulates cell cycle 

progression, increases cell proliferation, disrupts cell-cell junctions and 

cellular organization, and finally results in a “dedifferentiation phenotype” 

(Ridley and Hall, 1992; Chrzanowska-Wodnicka and Burridge, 1996; Paszek 

et al., 2005). Thus, activated Rho signaling through matrix stiffening facilitates 

tumor progression (Wozniak et al., 2003; Huang and Ingber, 2005; Paszek et 

al., 2005). On the contrary, a flexible matrix results in the downregulation of 

Rho and FAK activity, and subseqeunt differentiation of cells (Wozniak et al., 

2003).  

 

Similar to mechanical forces exerted exogenously on cells, it was shown that 

endogenous forces generated within the cells might activate 

mechanotransduction pathways and promote tumor growth and progression 

(Samuel et al., 2011). Conditional activation of ROCK in mouse skin results in 

generation of actomyosin contractile tension within the cell, which 

consequently elevates collagen deposition, increases tissue stiffness, and 

promotes β-catenin-mediated proliferation (Samuel et al., 2011). This study 
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underlines how an intermediate player of Rho GTPase signaling affects tissue 

homeostasis and tumor development (Samuel et al., 2011). 

 

Rho GTPase signaling not only plays a role in cell proliferation and survival, 

but also in cell motility. The motility of eukaryotic cells is driven by the 

assembly and disassembly of actin filaments (Pollard and Borisy, 2003). Actin 

cytoskeleton reorganization enables cells to migrate in response to 

extracellular stimuli, and is required for the proper formation of organs and 

tissues during embryonic development (Olson and Sahai, 2009). In 

pathological situations like cancer, mechanical tension alters the 

mechanotransduction pathways and enhances the invasive behavior of tumor 

cells (Olson and Sahai, 2009).  

 

Cells can move in different ways. They either migrate individually 

(mesenchymal and amoeboid/ rounded) or collectively as multicellular units 

maintaining their cell-cell contacts (Friedl and Wolf, 2009). The two distinct 

single-cell migration behaviors, mesenchymal and amoeboid are associated 

with different effectors of Rho GTPase signaling (Sahai and Marshall, 2003). 

Elevated Rho/ ROCK activity and consequent actomyosin contractile tension, 

as well as inhibition of matrix degrading enzymes induces amoeboid-like 

migration that is associated with invasion and metastasis (Sahai and Marshall, 

2003; Friedl and Wolf, 2009). In contrast, low Rho activity is associated with 

amoeboid-to-mesenchymal transition (Friedl and Wolf, 2009). For instance, 

Sahai et al. showed that Smurf1 E3 ubiquitin ligase, which targets Rho for 

degradation is an important regulator of tumor cell migration (Sahai et al., 

2007). Inhibition of Smurf1 leads to increased Rho activity changing the tumor 

cell morphology from mesenchymal to amoeboid and enhancing invasion into 

blood vessels (Sahai et al., 2007).  

 

 

 

 

 

 



	
   10	
  

1.1.3 Megakaryoblastic leukemia protein 1 (MKL1): A link between the 
ECM and the nucleus 
Megakaryoblastic leukemia protein 1 (MKL1), also known as megakaryocytic 

acute leukemia (MAL), myocardin-related transcription factor-A (MRTF-A) or 

basic SAP and coiled-coil (BSAC), belongs to the MRTF family and functions 

as a co-activator for serum response factor (SRF) to enhance SRF-dependent 

transcription (Wang et al., 2002; Scharenberg et al., 2010). SRF activates the 

expression of genes with CArG box-containing promoters and regulates 

several important biological processes including gastrulation and 

development, as well as actin cytoskeletal dynamics, survival and apoptosis 

at the cellular level (Olson and Nordheim, 2010).  

 

MKL1 is expressed in a wide range of embryonic and adult tissues, with the 

most abundant expression in heart and liver (Wang et al., 2002). MKL1 

knockout mice are viable, but females are unable to feed their offspring due to 

impaired mammary myoepithelial cell differentiation (Li et al., 2006; Sun et al., 

2006). MKL1 was originally identified as a genomic fusion partner of RNA-

binding motif protein 15 (RBM15), also known as OTT, in infant acute 

megakaryoblastic leukemia (AMKL), caused by chromosomal translocation 

t(1;22) (p13;q13) (Ma et al., 2001; Mercher et al., 2001). In addition to the 

involvement in AMKL, MKL1 has been implicated in actin-based cell 

adhesion, spreading, migration and invasion in vitro as well as in the 

colonization of tumor cells in an in vivo experimental metastasis assay 

(Medjkane et al., 2009). In support of the role of MKL1 in tumor progression, it 

was shown that suppressor of cancer cell invasion (SCAI), a negative 

regulator of invasive cell migration, binds to MKL1 and inhibits its 

transcriptional activity by forming a ternary complex with SRF (Brandt et al., 

2009). Furthermore, MKL1 is involved in TGF-β-induced EMT via an 

interaction with Smad3 transcription factor (Morita et al., 2007). The MKL1-

Smad3 complex has been reported to drive the expression of the slug gene, 

thereby inducing the dissociation of cell-cell contacts (Morita et al., 2007). 
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MKL1 shares common homology domains with other MRTF family members 

(Figure 3), including three highly conserved N-terminal Arg-Pro-X-X-X-Glu-

Leu (RPEL) motifs, basic domains 1 and 2 (B1 and B2), glutamine-rich region 

(Q), SAP domain, leucine zipper-like region (LZ), and a C-terminal 

transactivation domain (TAD) (Scharenberg et al., 2010). MKL1 associates 

with SRF through its B1 domain and the adjacent Q domain; the RPEL 

domain mediates the interaction of MKL1 with globular actin (G-actin); basic 

regions, B1 and B2 are required for nuclear localization of MKL1 (Olson and 

Nordheim, 2010). Moreover, MKL1 contains a SAP domain, named after SAF-

A/B, acinus and PIAS, a peptide motif found in several proteins known to 

contact DNA (Aravind and Koonin, 2000; Olson and Nordheim, 2010). 

Mutations in the SAP domain are shown to disrupt the ability of myocardin to 

activate a subset of SRF-dependent genes (Wang et al., 2001a), however 

deletion of this region had no obvious effect on the transcriptional activity of 

MKL1 and MKL1-SRF complex formation (Cen et al., 2003; Miralles et al., 

2003). The LZ domain is involved in homo- and heterodimerization of 

myocardin and MKLs (Olson and Nordheim, 2010). The transcriptional 

activation domain, TAD is located at the C-terminal end of MKL1, and is 

required for the stimulation of SRF activity (Olson and Nordheim, 2010). 

 

Figure 3: Structure of myocardin-related transcription factor (MRTF) family members. Functional 
homology domains are indicated. Abbreviations: RPEL: actin-binding motifs with Arg-Pro-X-X-X-Glu-
Leu core consensus; B1 and B2: basic domains; Q: glutamine-rich domain; SAP: homology domain 
found in SAF-A/B, acinus, PIAS; LZ: leucine-zipper-like domain; TAD: transactivation domain. A 
cardiac-specific splice variant of myocardin (top row) contains a unique N-terminal sequence that is 
involved in the interaction with myocyte-specific enhancer factor 2 (MEF2) transcription factor, a 
MADS-box transcription factor related to serum response factor (SRF) (indicated by an arrow). This 
domain is present also in another member of MRTF family, MEF2-activating SAP transcriptional 
regulator (MASTR). MASTR lacks the basic domains and the glutamine-rich domain, which are 
involved in SRF interaction. The RBM15-MKL1 fusion protein observed in acute megakaryoblastic 
leukemia (AMKL) is shown at the bottom row. (Adapted from Olson and Nordheim, 2010).  
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The subcellular localization and following transcriptional activity of MKL1 is 

regulated by Rho GTPase signaling that transmits physical or biochemical 

extracellular signals to the actin cytoskeleton (Figure 4) (Butcher et al., 2009; 

Scharenberg et al., 2010). In unstimulated cells, MKL1 is sequestered in the 

cytoplasm by forming a stable complex with monomeric G-actin through its N-

terminal RPEL motifs, but translocates into the nucleus upon serum-induced 

Rho GTPase pathway activation and subsequent F-actin formation (Ridley 

and Hall, 1992; Miralles et al., 2003; Olson and Nordheim, 2010). Nuclear G-

actin also regulates the subcellular localization and the transcriptional activity 

of MKL1. Nuclear G-actin was shown to facilitate nuclear export of MKL1 and 

to prevent nuclear MKL1 from activating SRF target genes, unless actin 

binding is disrupted (Vartiainen et al., 2007). Thus, cellular G-actin regulates 

MKL1 at three levels: nuclear import, nuclear export and nuclear activation or 

inactivation of MKL1-SRF-dependent transcription (Vartiainen et al., 2007).  

 

Every stimulus that activates Rho GTPase signaling, including mechanical 

force, triggers the nuclear accumulation and consequent transcriptional 

activity of MKL1. Not surprisingly, it was observed that MKL1 translocates 

from the cytoplasm to the nucleus when strain is applied to rat cardiac 

fibroblasts (Zhao et al., 2007) and to mouse embryonic fibroblasts (Maier et 

al., 2008) in vitro or in mechanically overloaded rat bladders in vivo (Hanna et 

al., 2009). Additionally, mechanical strain-induced expression of the ECM 

protein tenascin-C (TNC) depends on Rho GTPase/ actin signaling pathway 

(Chiquet et al., 2004; Sarasa-Renedo et al., 2006; Maier et al., 2008). 

Previous work from our group revealed that MKL1 regulates the mechanical 

strain-induced TNC expression in mouse fibroblasts as well as in normal and 

transformed mouse mammary epithelial cells (Asparuhova et al., 2011). TNC 

induction by MKL1 required the SAP domain of MKL1, but was independent of 

SRF interaction, demonstrating for the first time the role of MKL1 as a bona 

fide transcription factor (Asparuhova et al., 2011).  
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Figure 4: Megakaryoblastic leukemia protein 1 (MKL1) is a mediator of Rho GTPase/ actin 
signaling pathway and links the extracellular matrix to the nucleus. The subcellular 
localization and following transcriptional activity of MKL1 is regulated through its interaction 
with G-actin. Extracellular stimuli (e.g. lysophosphatidic acid (LPA), serum, transforming 
growth factor-β (TGF-β)) can activate Rho signaling. Activated Rho induces actin 
polymerization and results in the nuclear translocation of MKL1. MKL1 acts as transcriptional 
co-activator of serum response factor (SRF) and is involved in the regulation of cytoskeletal 
dynamics. Furthermore, MKL1 plays a role in epithelial to mesenchymal transition via an 
interaction with Smad3 transcription factor. In addition to its transcriptional coactivator 
function of SRF and Smad3, previous studies from our group revealed that MKL1 may act as 
a bona fide transcription factor mediating SRF-independent induction of tenascin-C (TNC) 
transcription (Asparuhova et al., 2011). (Adapted from Cen et al., 2004; Morita et al., 2007).  
 
 
1.1.4 The role of the tumor stroma in cancer 
In 1889, the English surgeon Stephen Paget proposed the “seed and soil” 

hypothesis to explain why disseminating tumor cells tend to metastasize to 

specific organs, independently of the vascular anatomy and the rate of blood 

flow (Paget, 1889). Paget compared the cells of the primary tumor to the 

seeds of a plant, and the affected organs to the soil, which provides the fertile 

environment for the metastatic tumor growth.  

 

Today it has been widely accepted that cancer and metastasis are not only a 

result of genetic alterations or dysregulation of signaling pathways within the 

tumor cells, but also products of the reciprocal interaction between the tumor 

cells and the surrounding tumor stroma through cell-cell contacts and 
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paracrine signals (Figure 5) (Fidler, 2003; Mueller and Fusenig, 2004; Huang 

and Ingber, 2005; De Wever et al., 2008). The tumor stroma consists of 

fibroblasts, endothelial cells, pericytes, inflammatory cells, immunocytes, 

macrophages, and adipocytes, and provides the connective-tissue framework 

of the tumor (cf. Figure 1; Mueller and Fusenig, 2004; Kalluri and Zeisberg, 

2006; De Wever et al., 2008; Joyce and Pollard, 2009; Psaila and Lyden, 

2009). Malignant cells interact with their “niche”, the specialized local tissue 

microenvironment that supports tumor maintenance and growth at the primary 

tumor and at secondary metastatic sites (Psaila and Lyden, 2009). 

 

Cancer cells secrete growth factors, including fibroblast growth factor (FGF), 

vascular endothelial growth factor (VEGF), platelet-derived growth factor, 

interleukins, colony-stimulating factors, and TGF-β, thus activate the stromal 

cells (Mueller and Fusenig, 2004; Joyce and Pollard, 2009). As a result, the 

“reactive tumor stroma”, also known as desmoplasia supports the tumor 

progression through the stimulation of cancer-cell survival, proliferation, 

migration and invasion, as well as the activation of angiogenesis and the 

inflammatory response (Fidler, 2003; Mueller and Fusenig, 2004; Joyce and 

Pollard, 2009). Moreover, the tumor cells can modulate the ECM to support 

their growth at the metastatic niche by secreting TNC (Oskarsson et al., 2011) 

and LOX (Erler et al., 2009).  

 

Reactive tumor stroma harbors different activated cell types including 

carcinoma-associated fibroblasts (CAFs) (Kalluri and Zeisberg, 2006; De 

Wever et al., 2008). CAFs are mesenchymal cells that express different 

markers, such as α-smooth-muscle actin, vimentin, desmin and fibroblast 

activation protein (Mueller and Fusenig, 2004; Kalluri and Zeisberg, 2006). 

Like tumor cells, CAFs can change the composition of the ECM and promote 

tumor progression as well as metastasis by secreting ECM proteins including 

collagens, SPARC (secreted protein acidic and rich in cysteine also known as 

osteonectin), FN, periostin and tenascins (Kalluri and Zeisberg, 2006; 

Malanchi et al., 2012; Oskarson and Massague, 2012; Junttila and Sauvage, 

2013; Oskarsson, 2013). Furthermore, CAFs secrete MMPs, which are 

involved in ECM degradation and remodeling, as well as growth factors and 
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cytokines such as insulin-like growth factor 1, hepatocyte growth factor, 

VEGF, stromal-cell-derived factor 1 and TGF-β, which promote endothelial 

cell proliferation and angiogenesis, tumor-cell survival, migration and invasion 

(Li et al., 2003; De Wever et al., 2004; Mueller and Fusenig, 2004; Sato et al., 

2004; Kalluri and Zeisberg, 2006; Joyce and Pollard, 2009; Junttila and 

Sauvage, 2013). Through the secretion of inflammatory cytokines CAFs 

induce an immune response within the tumor stroma. The paracrine 

interaction between the inflammatory cells and tumor cells involving the 

secretion of colony-stimulating factor 1 (CSF1), epidermal growth factor and 

their receptors, induces the migration of cancer cells towards perivascular 

macrophages and the consequent intravasation into the blood circulation 

(Joyce and Pollard, 2009). 

 

 
 
Figure 5: Reciprocal interactions within the tumor stroma contribute to tumor progression. 
Cancer cells modulate their microenvironment and activate the stroma through a variety of 
stroma-modulating proteins, including extracellular matrix (ECM) protein Tenascin-C (TNC), 
lysyl oxidase (LOX), metalloproteinases (MMPs), fibroblast growth factor (FGF), members of 
the vascular endothelial growth factor (VEGF) family, platelet-derived growth factor (PDGF), 
colony-stimulating factors (CSFs), and transforming growth factor-β (TGF-β). (Factors 
secreted by the tumor cells are indicated in red). Activated fibroblasts within the tumor 
stroma, carcinoma-associated fibroblasts (CAFs) communicate with cancer cells, endothelial 
cells, pericytes and inflammatory cells through secretion of ECM proteins (collagens, SPARC 
(secreted protein acidic and rich in cysteine), fibronectin that contains the extra domain a 
(EDA-fibronectin), periostin and TNC), growth factors (VEGF, insulin-like growth factor 1 
(IGF1), hepatocyte growth factor (HGF), TGF-β and stromal-cell-derived factor 1 (SDF1)), 
inflammatory cytokines (monocyte chemotactic protein 1 (MCP1) and interleukin 1 (IL-1)), and 
MMPs. (Factors provided to tumor cells are indicated in black). In addition to CAFs, pericytes 
provide SDF1 to tumor cells to stimulate cancer-cell proliferation, migration and invasion. 
EGF: epithelial growth factor. (Adapted from Kalluri and Zeisberg, 2006).  
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The tumor microenvironment might serve as a potential therapeutic target. 

Combinatorial use of chemotoxic therapies with drugs that target the activated 

stroma might increase the efficiency of cancer treatment. Modulating tumor 

cell-stroma interaction through the inhibition of ECM receptors or by 

neutralizing paracrine growth factor and inflammatory cytokine signaling can 

reverse the malignant phenotype (Mueller and Fusenig, 2004; Junttila and 

Sauvage, 2013). For instance, in a breast cancer model, treatment of tumor 

cells with β1-integrin blocking antibody led to a morphological and functional 

reversion to a normal phenotype, and when these cells were injected into 

nude mice they had reduced number and size of tumors (Weaver et al., 

1997). Furthermore, non-steroidal anti-inflammatory drugs have been used to 

inhibit the inflammatory cells and cytokines, and they have been shown to be 

an effective treatment regimen for colorectal cancer (Ricchi et al., 2003). On 

the other hand, MMP inhibitors, including tanomastat, marimastat and 

prinomastat, which were designed to maintain the ECM integrity were not 

beneficial over the standard-of-care treatments present in the clinic (Junttila 

and Sauvage, 2013).  

 

Inhibition of angiogenesis by targeting VEGF signaling is an alternative 

approach for normalizing the tumor microenvironment (Goel and Mercurio, 

2013). In high-grade glioma, a selective inhibitor of VEGF signaling 

downregulated tumor growth and tumor cell infiltration (Vajkoczy et al., 2000). 

A humanized monoclonal anti-VEGF antibody, bevacizumab (Avastin), is the 

first US Food and Drug Administration (FDA) approved molecule that targets 

VEGF pathway (Ferrara et al., 2004). In combination with other agents or as 

monotherapy, bevacizumab showed beneficial effects for the treatment of 

metastatic colorectal cancer, advanced non-small-cell lung cancer, metastatic 

renal cancer, ovarian cancer, advanced metastatic cervical cancer and 

recurrent glioblastoma multiforme (Junttila and Sauvage, 2013). However, 

recent preclinical studies have suggested that anti-angiogenic drugs targeting 

the VEGF pathway may accelerate metastasis and decrease the overall 

survival in mice indicating the development of an adaptive resistance (Ebos et 

al., 2009; Paez-Ribes et al., 2009). In line with these studies, some patients 

with recurrent malignant glioma treated with bevacizumab had more invasive 
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tumors (De Groot et al., 2010). On the other hand, a recent clinical study 

shows that VEGF receptor tyrosine kinase inhibitor, Sunitinib does not 

accelerate tumor growth and does not shorten patient survival (Blagoev et al., 

2013). Alternatively, trastuzumab (herceptin), a monoclonal antibody against 

the cell surface receptor HER2 (human epidermal growth factor receptor-2) 

has been reported to reduce the diameter and volume of tumor blood vessels, 

as well as vascular permeability, and to slow down the tumor growth in an 

experimental breast cancer mouse model (Izumi et al., 2002). Besides, 

antibody-drug conjugates (ADCs) that enable targeted delivery of cytotoxic 

drugs with antibodies that selectively bind to tumor-associated antigens 

represent a promising strategy for increasing the therapeutic benefit for 

patients (Casi and Neri, 2012). Antigens expressed in the tumor stroma 

around the newly formed blood vessels are common targets in ADC 

technology. Antibodies against tumor vascular specific isoforms of FN (FN-

EDB and FN-EDA) (Villa et al., 2008) and TNC (A1) (Brack et al., 2006) serve 

as promising candidates for the development of ADCs.   

 

1.1.5 Radiation-induced modifications of the tumor microenvironment 
Ionizing radiation therapy is used as a routine method in cancer treatment. 

Radiation causes DNA damage directly by ionization or indirectly by the 

generation of reactive oxygen species. As a result, tumor cells undergo p53-

mediated apoptosis (Gudkov and Komarova, 2003). Furthermore, radiation 

induces apoptosis in tumor-associated endothelial cells, thus suppresses 

tumor angiogenesis and tumor growth (Ruegg et al., 2011). However, under 

certain circumstances, radiation exposure may alter the tissue 

microenvironment and contribute to metastasis. Radiation triggers several 

cellular mechanisms including ECM remodeling through the secretion of 

proteases, cytokines and growth factors, and recruitment of inflammatory cells 

(Barcellos-Hoff et al., 2005, Kuonen et al., 2012b). Furthermore, by 

suppressing angiogenesis, radiation results in hypoxia within the tumor tissue, 

which is associated with an aggressive tumor phenotype  (Ruegg et al., 

2011). Cancer cells that survive ionizing radiation can be radioresistant and   

cause tumor recurrence in cancer patients, and relapse after radiotherapy is 

often associated with increased local invasion, metastatic spread to lymph 
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nodes and distant organs, and poor prognosis (Ruegg et al., 2011; Li et al., 

2014).  

 

Experiments of different research groups revealed that the irradiated 

microenvironment induces the metastatic potential of tumor cells, a 

phenomenon that is known as “tumor bed effect” (Ruegg et al., 2011). When 

mammary epithelial cells were injected into the mammary fat pads of pre-

irradiated mice, the tumor size and incidence was higher compared with non-

irradiated hosts (Barcellos-Hoff and Ravani, 2000). Likewise, immortal 

myogenic cell lines have been reported to form tumors faster in irradiated than 

in non-irradiated host muscle (Morgan et al., 2002). Experimental tumors 

growing in irradiated tissues had a higher tendency to metastasize compared 

to tumors growing in a normal stroma (Milas et al., 1988). In another study, it 

was shown that ionizing radiation exposure induces senescence in human 

mammary stromal fibroblasts, alters the cytoskeletal network and upregulates 

ECM degrading MMP expression (Tsai et al., 2005). Furthermore, when 

breast carcinoma cells were grown with irradiated fibroblasts in three-

dimensional co-culture they showed increased invasive growth (Tsai et al., 

2005). Subcutaneous tumors growing within pre-irradiated mice had 

increased hypoxia and lung metastasis formation compared with tumors 

growing in non-irradiated control mice (Monnier et al., 2008). Cells derived 

from tumors grown in pre-irradiated beds preserved their metastatic capacity 

when injected into non-irradiated mice (Monnier et al., 2008). The study of 

Monnier et al. (2008) shows that pre-irradiated tumor stroma selects for tumor 

cells that have a high metastatic potential. CYR61/CCN1, the first member of 

the CCN matricellular protein family was identified as one of the genes linked 

to metastasis of tumor cells growing in a pre-irradiated bed (Monnier et al., 

2008). Likewise, in an orthotopic breast cancer model, tumors growing in pre-

irradiated mammary tissue had reduced angiogenesis and were more 

hypoxic, invasive, and metastatic to the lungs and to lymph nodes compared 

with control tumors (Kuonen et al., 2012a).  
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Previously it has been shown that prevention of apoptosis in endothelial cells 

attenuates the tumor response to radiotherapy (Garcia-Barros et al., 2003). 

Mauceri et al. (1998) reported that combined administration of ionizing 

radiation and anti-angiogenic treatment with angiostatin increases endothelial 

cell death in vitro and improves tumor management without increasing toxicity 

towards normal tissue (Mauceri et al., 1998). These results are clinically 

relevant. Anti-angiogenic drugs, such as bevacizumab that interfere with 

endothelial cell survival pathways and sensitize endothelial cells to ionizing 

radiation-induced death would improve the therapeutic response to 

radiotherapy (Wachsberger et al., 2004). On the other hand, anti-angiogenic 

therapies that reduce the blood supply might cause hypoxia within the tumor 

tissue and promote metastasis (Steeg, 2003).  

 

Several signaling pathways have been reported to mediate tumor progression 

after radiotherapy (Kuonen et al., 2012b). The WNT/β-catenin pathway can be 

aberrantly activated by irradiation exposure, resulting in the transcription of β-

catenin target genes (Kim et al., 2012). Aberrant activation of the WNT/β-

catenin signaling pathway has been implicated in radioresistance in mammary 

progenitor cells (Chen et al., 2007) and in an orthotopic model of glioblastoma 

(Kim et al., 2012). Following irradiation, mammary progenitor cells displayed 

higher levels of β-catenin (Chen et al., 2007). Glioblastoma cells isolated from 

xenograft tumors after irradiation had a more aggressive phenotype compared 

with control tumor cells (Kim et al., 2012). Transcriptome analyses using 

glioblastoma xenograft tumors with or without in vivo ionizing radiation 

treatment revealed that Wnt pathway associated genes were activated upon 

irradiation (Kim et al., 2012). Among the differentially expressed genes, WNT1 

inducible signaling pathway protein 1 (WISP1) showed the highest fold 

change (Kim et al., 2012). In line with these observations, upregulation of 

WISP1 was associated with poor clinical outcome in glioblastoma patients 

(Kim et al., 2012). A recent study shows that fractionated irradiation increases 

β-catenin activity and the expression of its target genes, including WISP1 in 

esophageal cancer cells (Li et al., 2014). WISP1 expression contributes to the 

development of fractionated irradiation-induced radioresistance (Li et al., 
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2014). Future work will reveal further mechanistic details of how radiation 

contributes to tumor progression.  

 

1.2 The family of CCN proteins 
 
1.2.1 Functions and mechanism of action of CCN proteins: 
ECM regulates cell behavior through different extracellular signaling 

molecules such as growth factors, cytokines, chemokines and extracellular 

enzymes, as well as directly by binding to and signaling through cell-surface 

receptors (Jun and Lau, 2011). A group of ECM proteins, known as 

matricellular proteins, are dynamically expressed and serve regulatory roles 

rather than contributing to the organization and structure of the vertebrate 

matrix (Bornstein and Sage, 2002; Jun and Lau, 2011). Thrombospondins, 

SPARC, hevin, osteopontin, tenascins, periostin, R-spondins, small leucine 

rich proteoglycans (SLRPs), the short fibulins including hemicentin, galectins, 

autotaxin, pigment epithelium derived factor (PEDF), plasminogen activator 

inhibitor-1 (PAI-1), and members of the CCN family are known matricellular 

proteins (Murphy-Ullrich and Sage, 2014). Matricellular proteins are usually 

expressed at high levels during development and in response to injury 

(Bornstein and Sage, 2002).  

 

The acronym “CCN” is derived from the names of the first three members of 

the family: CYsteine-Rich 61 (CYR61) (O’Brien et al., 1990), Connective 

Tissue Growth Factor (CTGF) (Bradham et al., 1991) and Nephroblastoma 

OVer-expressed (NOV) (Joliot et al., 1992), which are named as CCN1, 

CCN2 and CCN3, respectively (Brigstock et al., 2003). Together with three 

WNT1 inducible signaling pathway proteins, WISP1/CCN4, WISP2/CCN5 and 

WISP3/CCN6 they comprise a family of six homologous proteins (Chapter 

4.2, Supplementary Figure 1) (Pennica et al., 1998; Chen and Lau, 2009). 

CCN proteins contain a particularly high number of conserved cysteine 

residues, which corresponds to ~10% of the entire protein (Jun and Lau 

2011).  
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Early studies raised the idea that CCN proteins are polypeptide growth factors 

(Bradham et al., 1991; Frazier et al., 1996). Later on, combined work within 

the CCN field defined CCNs as matricellular proteins that are involved in 

regulating cell-ECM interactions and cellular responses to extracellular stimuli 

(Leask and Abraham, 2006; Chen and Lau, 2009). CCN proteins regulate 

several cellular processes like cell adhesion, migration, proliferation, 

differentiation, apoptosis, survival, and senescence as well as ECM 

production and gene expression (Yeger and Perbal, 2007; Jun and Lau, 

2011). At the organismal level, CCN proteins are implicated in 

embryogenesis, especially in cardiovascular, skeletal, renal and neuronal 

development (Chen and Lau, 2009; Jun and Lau, 2011). In postnatal 

development and in the adulthood, under normal situations CCN proteins are 

expressed at low levels in most tissues, however the expression increases 

upon inflammation, wound healing and fracture repair in bones and injury 

repair in many organs (Chen and Lau, 2009; Jun and Lau, 2011). 

Deregulation of CCN proteins results in various pathologies related to chronic 

inflammation and tissue injury, including arthritis, fibrosis and cancer, as well 

as cardiovascular diseases, diabetic nephropathy and retinopathy (Jun and 

Lau, 2011). The genes encoding CCN proteins are sensitive to growth factors, 

steroid hormones, and inflammatory cytokines such as interleukin 1 (IL-1) and 

tumor necrosis factor (TNF), as well as to environmental changes, like oxygen 

deprivation, ultraviolet light exposure, radiation, mechanical stress (e.g. 

mechanical stretch and tensile forces), and bacterial and viral infections  

(Chen and Lau, 2009; Jun and Lau, 2011).  

 

Variants of CCN proteins have been detected in normal and pathological 

conditions, and some truncated CCNs were reported to serve as effective 

biomarkers for various diseases (Perbal, 2009). Alternative splicing 

(Hirschfeld et al., 2009; Perbal, 2009), proteolysis by MMPs (Dean et al., 

2007) or post-translational modifications, such as glycosylation (Yang et al., 

2011) are involved in the generation of different CCN isoforms with distinct 

biological functions.  
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CCN proteins mediate their activities through interaction with various cell 

surface receptors and co-receptors (Figure 6). These receptors include, many 

different integrins, heparan sulfate proteoglycans (e.g. syndecan 4), 

lipoprotein receptor-related proteins, and Notch (Segarani et al., 2001; Chen 

and Lau, 2009). Unlike many other ECM proteins, CCN proteins do not 

contain the canonical RGD sequence that is required for integrin binding. 

Instead, they possess non-canonical binding sites for adhesion receptors (Jun 

and Lau, 2011). CCN proteins can physically interact with other ECM proteins 

including FN (Chen et al., 2004; Hoshijima et al., 2006), perlecan (Nishida et 

al., 2003), vitronectin (Francischetti et al., 2010) and dermatan sulfate 

proteoglycans (e.g. decorin and biglycan) (Desnoyers et al., 2001). Moreover 

CCNs can modulate the activity and bioavailability of several growth factors 

and inflammatory cytokines through functional and/or physical interaction 

(Chen and Lau, 2009; Jun and Lau, 2011). Binding of CCN proteins to VEGF 

(Inoki et al., 2002), FGF-2 (Nishida et al., 2011), TGF-β (Abreu et al., 2002) 

and bone morphogenetic proteins (BMPs) (Abreu et al., 2002) has been 

reported.  

 

 
 
Figure 6: CCN proteins interact with various cell surface receptors and extracellular proteins. 
Interacting domains are shown. CCN2 binds to the extracellular matrix proteins, fibronectin 
and perlecan through its CT domain, as well as to growth factors such as bone 
morphogenetic proteins (BMPs) and transforming growth factor-β (TGF-β) through the VWC 
domain, and vascular endothelial growth factor (VEGF) through the TSP and CT domains. 
CCN3 has been shown to bind to Notch receptor through its CT domain. (Adapted from Chen 
and Lau, 2009). 
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1.2.2 CCN proteins in embryonic development 
Targeted disruption of genes encoding CCN proteins in mice have been 

achieved. Among the different transgenic animals, the most commonly 

observed phenotype is defective cardiovascular and skeletal development 

(Chen and Lau, 2009; Jun and Lau, 2011). Targeted disruption of CCN1 

results in embryonic lethality with severe cardiovascular defects in mice (Mo 

et al., 2002). CCN2-null mice are neonatal lethal due to respiratory defects 

that occur as a secondary cause of severe skeletal malformations (Ivkovic et 

al., 2003). Transgenic mice that produce mutant CCN3 lacking the VWC 

domain instead of the full length CCN3 have been constructed (Heath et al., 

2008). Less than 50% of transgenic mice are viable and they show defects in 

the appendicular and axial skeleton, severe joint malformation, and abnormal 

remodeling of the endocardial cushions with associated cardiac septal defects 

(Heath et al., 2008). In another study, the entire CCN3 was inactivated by 

homologous recombination. CCN3-knockout (KO) animals were viable and 

mostly normal, exhibiting only modest and transient sexually dimorphic 

skeletal abnormalities (Canalis et al., 2010). WISP1/CCN4 KO mice show 

delayed wound healing and cartilage development compared to wildtype 

counterparts and they have lower expression levels of FN and Type I collagen 

(Seventh international workshop on the CCN family of genes, 2014) 

Moreover, dermal fibroblasts isolated from WISP1-KO mice show impaired 

cell proliferation and migration in vitro. Furthermore, WISP1 plays an 

important role in bone formation and maintenance. Conditional transgenic 

mice that overexpress human WISP1 in mineralized tissues have increased 

bone mineral density, trabecular thickness, and bone volume over wild-type 

controls (Ono et al., 2011). Mice were viable and no major abnormalities were 

observed, however female transgenics were unable to give birth (Ono et al., 

2011). Alteration of CCN5 expression in either direction leads to embryonic 

lethality: both CCN5-null mice and transgenic mice overexpressing CCN5 do 

not implant properly and die at or before the gastrulation stage suggesting 

that CCN5 plays a critical role in early embryonic development (Russo and 

Castellot, 2010, mentioned as unpublished data). Loss-of-function mutations 

in the CCN6 gene in humans has been reported to cause autosomal 

recessive skeletal disease progressive pseudorheumatoid dysplasia, a 
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juvenile-onset degenerative disease of the joints (Hurvitz et al., 1999) 

However, CCN6-knockout mice or mice that overexpress CCN6 do not exhibit 

any observable phenotype compared to wildtype animals (Kutz et al., 2005).  

 

1.2.3 CCN proteins in cancer and potential therapeutic approaches 
Aberrant expression of CCN proteins have been identified in cancers of 

numerous organs and tissues, including breast, colorectal, gallbladder, 

gastric, ovarian, pancreatic, and prostate cancers, gliomas, hepatocellular 

carcinoma, non-small cell lung and squamous cell carcinoma, lymphoblastic 

leukemia, melanoma, and cartilaginous tumors (Chen and Lau, 2009).  

 

CCN proteins can promote tumorigenesis and tumor progression by 

enhancing angiogenesis and stimulating tumor cell survival (Babic et al., 

1998; Shimo et al., 2001; Chen and Lau, 2009). In particular, expression of 

CCN1 and CCN2 promotes tumor vascularization, EMT, and tumor cell 

survival through the induction of anti-apoptotic proteins (Jun and Lau, 2011). 

Furthermore, CCN2 has been identified as one of the genes overexpressed in 

human breast cancer cell lines with elevated osteolytic bone metastasis (Kang 

et al., 2003). In support of that, treatment of nude mice with an anti-CCN2 

monoclonal antibody decreased osteolytic bone metastasis of human breast 

cancer cell xenografts (Shimo et al., 2006). Administration of a neutralizing 

CCN2-specific humanized monoclonal antibody, FG-3019 (FibroGen), 

attenuates tumor growth, lymph node metastasis, and tumor angiogenesis in 

xenograft (Dornhofer et al., 2006) and orthotopic (Aikawa et al., 2006) mouse 

models of pancreatic cancer. FG-3019 has been the subject of clinical trials in 

patients with idiopathic pulmonary fibrosis, liver fibrosis and pancreatic cancer 

(Yeger and Perbal, 2007). CCN3 expression has been associated with higher 

risk of developing metastasis and poor prognosis in Ewing’s sarcoma (Perbal 

et al., 2009), melanoma (Vallacchi et al., 2008), and breast cancer (Ghayad et 

al., 2009). Likewise, aberrant WISP1/CCN4 expression has been associated 

with cancer. This is summarized and dicussed in our review entitled 

“CCN4/WISP1 (WNT1 inducible signaling pathway protein 1): a focus on its 

role in cancer” following this chapter. 
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Depending on the tumor type and tissue context, some tumor suppressive 

effects of CCN proteins have also been demonstrated (Jun and Lau, 2011). 

For instance, it was shown that CCN1 expression promotes growth arrest in 

non-small cell lung carcinoma cells in vitro, and when these cells are injected 

into the nude mice they form smaller tumors compared with the control cells 

(Tong et al., 2001). CCN2 inhibits metastasis and invasion of human lung 

adenocarcinoma (Chang et al., 2004), suppresses liver metastasis of 

colorectal cancer, and its expression is correlated with good prognosis (Lin et 

al., 2005). Ectopic expression of CCN3 inhibits the proliferation of glioma cells 

in vitro and tumor growth in vivo (Gupta et al., 2001). In the late nineties, 

WISP1/CCN4 was identified as Elm1 (expressed in low-metastatic cells) that 

can suppress the in vivo growth and metastatic potential of mouse melanoma 

cells (Hashimoto et al., 1998). CCN5, named COP1, has been reported to be 

a negative regulator of cell transformation (Zhang et al., 1998). Later, it has 

been shown that CCN5 reduces the proliferative and invasive phenotypes of 

poorly differentiated breast cancer cells and plays a role in maintaining the 

differentiated, non-invasive phenotype of these cells (Fritah et al., 2008). In 

breast adenocarcinoma, CCN5 mRNA and protein levels are reduced as the 

cancer progresses from a noninvasive to invasive type, and CCN5 expression 

is inversely correlated with lymph-node positivity (Banerjee et al., 2008). 

CCN6 has been reported to suppress in vivo tumor cell growth, invasion and 

angiogenesis, and it has been shown that loss of CCN6 expression 

contributes to inflammatory breast cancer phenotype (Kleer et al., 2002). 

Moreover, mice bearing CCN6 expressing tumors have a longer survival rate 

compared to the controls (Kleer et al., 2002).  
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1.2.4 CCN4/WISP1 (WNT1 inducible signaling pathway protein 1): A 
focus on its role in cancer 
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a  b  s  t  r  a  c  t

The  matricellular  protein  WISP1  is  a member  of the  CCN  protein  family.  It is induced  by  WNT1  and  is  a
downstream  target  of  �-catenin.  WISP1  is  expressed  during  embryonic  development,  wound  healing  and
tissue  repair.  Aberrant  WISP1  expression  is  associated  with  various  pathologies  including  osteoarthri-
tis,  fibrosis  and  cancer.  Its  role  in tumor  progression  and  clinical  outcome  makes  WISP1  an  emerging
candidate  for  the  detection  and  treatment  of  tumors.
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. Introduction

The WNT1 inducible signaling pathway protein 1, also known as
CN4 or Elm1 is a cysteine-rich, matricellular protein that belongs
o the CCN family (Hashimoto et al., 1998; Jun and Lau, 2011). The
cronym “CCN” is derived from the names of the first three fam-
ly members: CYsteine-Rich 61 (CYR61/CCN1), Connective Tissue
rowth Factor (CTGF/CCN2) and Nephroblastoma OVer-expressed

NOV/CCN3) (Jun and Lau, 2011). WISP1 was originally identified
s a downstream target of WNT1 and �-catenin, and contributes to
-catenin-mediated tumorigenesis (Pennica et al., 1998; Xu et al.,
000).

Deregulation of WISP1 signaling may  result in various patholo-
ies including osteoarthritis, fibrosis and cancer. In a previous
eview, the role of WISP1 in development and disease was  dis-
ussed (Berschneider and Konigshoff, 2011). Here, we  focus on the
mpact of WISP1 in tumor progression and summarize recent stud-
es based on which WISP1 holds promise as a diagnostic marker
nd/or therapeutic target.
∗ Corresponding author at: Friedrich Miescher Institute for Biomedical Research,
aulbeerstrasse 66, CH-4058 Basel, Switzerland. Tel.: +41 61 697 24 94.
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2. Structure

CCN proteins possess a conserved modular structure consist-
ing of an amino-terminal secretory signal peptide followed by four
structural domains: an insulin-like growth factor binding protein-
like module (IGFBP), a von Willebrand factor type C repeat (VWC), a
thrombospondin-homology type 1 repeat (TSP1), and a C-terminal
cysteine-knot-containing (CT) domain (Jun and Lau, 2011). A non-
conserved, protease-sensitive hinge region is located between VWC
and TSP1 domains (Jun and Lau, 2011). Except CCN5, which lacks
the CT module (Pennica et al., 1998), all CCN proteins contain the
four complete structural modules (Fig. 1).

CCN protein variants that lack certain domains play distinct bio-
logical roles and have been implicated in several pathologies (Jun
and Lau, 2011). Alternative splicing results in WISP1v lacking exon
3 and thus the VWC  domain (Tanaka et al., 2001). This truncated
variant has been detected in scirrhous gastric carcinoma (Tanaka
et al., 2001) and invasive cholangiocarcinoma (Tanaka et al., 2003).
Moreover, in addition to full length WISP1 and WISP1v, two
hepatocellular carcinoma cell lines and a human chondrosarcoma-
derived chondrocytic cell line express further shorter variants,
WISP-1�ex3-4 (Cervello et al., 2004) and WISP1vx (Yanagita et al.,

2007), respectively. Models of all described WISP1 variants are
shown in Fig. 1.

The full length WISP1 protein consists of 367 aminoacids with
a predicted molecular mass of 40 kDa, has 38 conserved cysteine

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Modular structure of CCN proteins. Full length CCN4/WISP1 and truncated
variants are shown in orange. WISP1v is a gene product formed by alternative
splicing that lacks exon 3, hence the VWC  domain (Tanaka et al., 2001). WISP1vx
lacks  VWC  and TSP1 domains and part of the IGFBP domain (23 bp shorter than the
full-length exon). Owing to a frame-shift, the IGFBP/CT fusion coding frame is not
translated properly after the alternative splice site. The protein product is a single
IGFBP module, in which eight C-terminal amino acid residues are removed, and an
extra 14 residues are added in their place (Yanagita et al., 2007). WISP1�ex3-4 splice
variant is a product of joining of exons 2 and 5 with a frameshift that led to a prema-
ture  stop. As a result, the predicted protein has only the first module (Cervello et al.,
2004). SP: signal peptide, IGFBP: insulin growth factor binding protein, VWC: van
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For interpretation of the references to color in this figure legend, the reader is
eferred to the web  version of this article.)

esidues and four potential N-linked glycosylation sites (Pennica
t al., 1998; Berschneider and Konigshoff, 2011). Indeed, it was
bserved that WISP1 is glycosylated and that the pattern of gly-
osylation differs between cancer cells and normal fibroblasts
discussed in Soon et al., 2003). Furthermore, overexpression of

ISP1 in mammalian cells and external addition of the recombi-
ant WISP1 produced in Escherichia coli (E.coli), lacking mammalian
ost-translational modifications, had different biological effects
n cells (Inkson et al., 2008). According to these results, post-
ranslational modifications seem to affect WISP1 function.

. Regulation and biological function

WISP1 expression is regulated by different signaling pathways
nd is sensitive to different biochemical cues as well as extracel-
ular perturbations. Previous work from our group showed that

ISP1 is induced by megakaryoblastic leukemia protein 1 (Mkl1)
n a serum response factor-independent, SAP domain-dependent

anner and it was found to be part of a gene signature implicated
n cell proliferation and motility elevated in breast cancer patients

ith poor survival (Gurbuz et al., 2014). Many genes of this sig-
ature, including WISP1 were shown to be mechano-responsive in
yclically stretched mouse mammary epithelial cells (Gurbuz et al.,
014). Furthermore, WISP1 was induced by mechanical stretch

n lung alveolar epithelial cells (Heise et al., 2011). Additionally,
ellular processes that modulate Wnt/�-catenin signaling regu-
ate the expression of the downstream target genes, including

ISP1. In a rat model of alcohol-induced liver disease, it was  found
hat chronic alcohol feeding induces Wnt/�-catenin signaling and

ISP1 upregulation, which in turn increases hepatocyte prolifer-
tion and promotes tumorigenesis (Mercer et al., 2014). A recent
tudy shows that overexpression of WISP1 contributes to the
evelopment of fractionated irradiation-induced radioresistance

n esophageal cancer cells in vitro and in vivo, and links WISP1 to
adiation, a phenomenon that is known to activate Wnt/�-catenin
ignaling (Li et al., 2014).
CCN family members regulate complex biological processes dur-
ng embryogenesis, wound healing and tissue repair (Berschneider
nd Konigshoff, 2011). WISP1 expression has been observed in
he developing skeleton and during bone healing in the adulthood
l of Biochemistry & Cell Biology 62 (2015) 142–146 143

(French et al., 2004). WISP1 mRNA was detected in the adult heart,
kidney, lung, pancreas, placenta, ovary, small intestine, and spleen.
Low or no expression was  seen in the brain, liver, skeletal mus-
cle, colon, peripheral blood leukocytes, prostate, testis, or thymus
(Pennica et al., 1998). WISP1 knockout (KO) mice show delayed
wound healing and cartilage development compared to wildtype
mice (Seventh international workshop on the CCN family of genes,
2014). Many reports support a function of WISP1 in tumor cell pro-
liferation, migration and survival in vitro, as well as tumor growth
and metastasis in vivo.

Recombinant WISP1 (Source: E. coli) treatment is shown to pro-
mote mitosis in irradiated esophageal cancer cells (Li et al., 2014)
and in human bone marrow stromal cells (hBMSCs; Inkson et al.,
2008). Likewise, recombinant WISP1 treatment (Source: mouse
myeloma cells) induces proliferation of alveolar epithelial cells and
adenocarcinomic human alveolar basal epithelial cells (Konigshoff
et al., 2009). Overexpression of WISP1 variants increases the growth
rate of mouse embryonic fibroblasts (Tanaka et al., 2001), rat kidney
fibroblasts (Xu et al., 2000), hBMSCs (Inkson et al., 2008) and human
esophageal cancer cells (Nagai et al., 2011). Dermal fibroblasts iso-
lated from KO mice show impaired cell proliferation and migration
in vitro (Seventh international workshop on the CCN family of
genes, 2014). This seems to be different for melanoma cells. Mouse
melanoma cells expressing a high level of WISP1 showed slightly
slower in vitro and in vivo growth rates than cells expressing a low
level of the protein (Hashimoto et al., 1998). Furthermore, a recent
study shows that supplementation of recombinant WISP1 (Source:
mouse myeloma cells) in the culture medium has an inhibitory
effect on melanoma cell growth while migration is not affected
(Shao et al., 2011). The number of migrated gastric carcinoma cells
(Tanaka et al., 2001) and cholangiocarcinoma cells (Tanaka et al.,
2003) increased with exposure to WISP1v. Human prostate cancer
cells (Ono et al., 2013) and chondrosarcoma cells (Hou et al., 2011)
show increased migration and invasion toward WISP1 recombi-
nant protein (Source: E. coli), which suggests that WISP1 could
have chemotactic properties and might influence the homing of
cancer cells in case of metastasis. In support of these results, it
was reported that recombinant WISP1 treatment (Source: mouse
myeloma cells) induces epithelial to mesenchymal transition by
regulating marker gene expression and by increasing cell migra-
tion (Konigshoff et al., 2009). In contrast, WISP1 overexpression in
lung cancer cells leads to an inhibition of in vitro cell invasion and
motility, as well as lung metastasis (Soon et al., 2003).

How exactly WISP1 modulates cellular function and through
which receptors it transmits signals is unknown. Different inte-
grins have been identified as functional receptors for some CCN
proteins (Jun and Lau, 2011). Recent studies have confirmed the
functional and physical interaction of WISP1 with integrins. It was
shown that WISP1 physically interacts with �5�1 Integrin, and that
its overexpression increases �5 expression in bone marrow stro-
mal  cells (Ono et al., 2011). Two  other binding partners of WISP1
are decorin and biglycan, members of a family of small leucine-
rich proteoglycans present in the extracellular matrix of connective
tissue (Desnoyers et al., 2001).

4. Expression in cancer and role in prognosis

CNN proteins are aberrantly expressed in numerous diseases,
including cancer (Jun and Lau, 2011). Generally, WISP1 expression
has been associated with the promotion of tumor progression, and
in a range of tumor types high WISP1 expression has been identified
within the tumor tissue compared to the healthy organ (summa-

rized in Table 1). Likewise, transcript profiling studies available
from the Oncomine database reveal increased WISP1 transcript
levels in a wide variety of cancers (Fig. 2). Moreover, WISP1 cor-
relates with poor prognosis in the majority of cancer incidences.



144 I. Gurbuz, R. Chiquet-Ehrismann / The International Journal of Biochemistry & Cell Biology 62 (2015) 142–146

Fig. 2. Aberrant WISP1 expression has been identified in different tumor types. Oncomine differential gene expression analysis (Normal vs Cancer, Human Genome U133
Affymetrix Array data, Affymetrix Probe ID: 206796 at, www.oncomine.org) revealed that WISP1 mRNA expression levels are higher within tumor tissue compared with
normal tissue in most of the cancer incidences. Results are represented with a box plot: the thick line represents the median value. Minimal and maximal values are plotted
as  dots. Fold changes (FC) between normal and tumor tissues are indicated. Number of samples analyzed is shown within brackets.

http://www.oncomine.org/
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Table  1

Cancer type Expression level
tumor versus
normal

Correlation of
WISP1 level
with prognosis

Reference

Breast Cancer Higher
Not known
Higher

Bad
Good
Not known

Xie et al. (2001),
Davies et al. (2007),
Klinke (2014)

Gastric
Adenocarcinoma

Higher Not known Bizama et al. (2014)

Brain Cancer Higher Bad Xie et al. (2004)

Pancreatic Cancer Higher Not known Cao et al. (2004),
Badea et al. (2008)

Head and Neck
Cancer

Higher Not known Chuang et al.
(2013)

Lung
Adenocarcinoma

Higher Not known Chen et al. (2007),
Yang et al. (2014)

Colorectal Cancer Higher Good
Bad

Khor et al. (2006),
Davies et al. (2010)

Rectal Cancer Higher Bad Tian et al. (2007)

Colon
Adenocarcinoma

Higher Not known Pennica et al.
(1998)

Chondrosarcoma Higher Not known Hou et al. (2011)

Endometrial
Endometrioid
Carcinoma

Higher Bad Tang et al. (2011)

Esophageal Cancer Higher Bad Nagai et al. (2011)

Scirrhous Carcinoma Higher Not known Tanaka et al. (2001)

Cholangiocarcinoma Higher Bad Tanaka et al. (2003)

Prostate Cancer Higher Good Ono et al. (2013)

Melanoma Lower Not known Shao et al. (2011)

Aggressive
Fibromatosis

Higher Bad Skubitz and Skubitz
(2004), Misemer
et al. (2013)

Publication details only provided for reports that are not listed under References:
Badea et al. (2008) Hepatogastroenterology 55(88): 2016–2027; Bizama et al. (2014)
Int  J Cancer 134(4): 755–764; Cao et al. (2004) Cancer Biol Ther 3(11): 1081–1089;
Chen et al. (2007) PLoS One 2(6): e534; Chuang et al. (2013). PloS One 8(10): e78022;
Klinke (2014) PLoS Comput Biol 10(1): e1003409; Misemer et al. (2014) Cancer Med
3(1): 81–90; Skubitz and Skubitz (2004) J Lab Clin Med  143(2): 89–98; Tang et al.
(2011) J Obstet Gynaecol Res 37(6): 606–612; Xie et al. (2004) Clin Cancer Res 10(6):
2
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072–2081; Yang et al. (2014) Cancer Gene Ther 21(2): 74–82.

xceptionally, WISP1 levels in the primary prostate cancer stroma
nd in the patient’s sera decreases with increasing severity of the
ancer (Ono et al., 2013). In some cancers a role for WISP1 levels in
rognosis is controversial. For example, two independent studies
how that higher level of WISP1 is associated with poor histological
ifferentiation, tumor aggressiveness and poor clinical outcome in
olorectal and rectal carcinomas (Tian et al., 2007; Davies et al.,
010). In contrast, Khor et al. (2006) links WISP1 expression to

ell-differentiated colorectal tumors. A similar discrepancy is seen
hen analyzing WISP1 expression in breast cancer. Davies et al.

2007) show that the transcript levels are lower in node-positive
nd high-grade tumors and in patients with poor clinical outcome.
l of Biochemistry & Cell Biology 62 (2015) 142–146 145

These results contradict a previously published study where it was
shown that high WISP1 mRNA levels correlate with an advanced
stage of breast cancer (Xie et al., 2001).

The crosstalk between tumor cells and the tumor stroma has
a remarkable impact on tumor progression. Cancer cells secrete
growth factors and proteases to activate surrounding stromal
cells to form a supportive environment for tumor progression
(Mueller and Fusenig, 2004). Activated fibroblasts, also known
as carcinoma-associated fibroblasts (CAFs), in turn modulate the
tumor microenvironment by secreting extracellular matrix pro-
teins and matrix degrading enzymes (Mueller and Fusenig, 2004).
WISP1 is upregulated in CAFs compared with fibroblasts in the
adjacent normal tissue in colon cancer (Rupp et al., 2014) and in
breast cancer (Bauer et al., 2010). In many cancers and in WNT1
transgenic mice, WISP1 is localized to the tumor stroma surround-
ing the cancer cells (Pennica et al., 1998; Tanaka et al., 2001, 2003;
Bauer et al., 2010; Ono et al., 2013; Rupp et al., 2014). WISP1 over-
expressing rat kidney fibroblasts are not able to form colonies in
the soft agar, however when they are injected into nude mice
they form tumors (Xu et al., 2000). These results suggest that the
paracrine interactions may  have a positive regulatory effect on
tumor growth and progression. In contrast, Shao et al. (2011) show
that WISP1 expression is stronger in quiescent fibroblasts com-
pared with melanoma cells and “melanoma activated fibroblasts”,
which suggest a negative regulatory effect of paracrine WISP1
signaling in melanoma.

5. Possible applications in cancer diagnosis and therapy

The differential expression status of WISP1 between the tumor
tissue and normal healthy tissue, as well as the correlation of its
expression with clinical outcome makes WISP1 a promising target
for the evaluation of clinical diagnosis and prognosis of cancers.

In particular, WISP1 could be exploited to predict different
stages of prostate cancer and thus serve as an alternative biomarker
to Prostate Specific Antigen (Ono et al., 2013). In early stages of
prostate cancer, WISP1 was detected not only in tissue biopsies but
also in sera from patients (Ono et al., 2013). In the future, WISP1
might be used as a tumor marker that is easy to detect by a simple
blood test.

In addition to its diagnostic potential, WISP1 can be utilized as a
therapeutic target. Targeting WISP1 by neutralizing antibodies neg-
atively regulates progression of certain cancers, including prostate
cancer and recurrent esophageal carcinoma after radiotherapy. In
mouse xenograft models of human prostate cancer cells, treatment
with WISP1 neutralizing antibodies reduces tumor growth as well
as metastasis to bone (Ono et al., 2013). In another study, deple-
tion of WISP1 by neutralizing antibodies cause mitotic catastrophe
in radioresistant esophageal cancer cells without affecting normal
cancer cells (Li et al., 2014). Blocking WISP1 interaction with its
partners, such as cancer-associated integrins, might be another
therapeutic strategy to inhibit WISP1-mediated tumor progres-
sion. Furthermore, finding ways to down-regulate its expression
might open new treatment opportunities. Since WISP1 expression
is known to be induced by Wnt/�-catenin signaling as well as by
mechanical signals mediated by Mkl1, drugs constraining these
pathways may  help to alleviate WISP1-mediated effects on cancer
progression.
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1.3 Aim of the thesis: 
Our lab is interested in understanding extracellular matrix (ECM)-cell 

interactions and the role of these interactions in cancer progression. 

Megakaryoblastic leukemia 1 (MKL1) belongs to myocardin related 

transcription factor family and functions as a co-activator for serum response 

factor (SRF) (Scharenberg et al., 2010). It plays role in diverse biological 

processes, including cell adhesion, spreading and motility (Medjkane et al., 

2008). It has been shown that MKL1 is involved in tumor cell invasion and 

metastasis (Medjkane et al., 2008), and in transforming growth factor-β (TGF-

β)-induced epithelial-mesenchymal transition (EMT) (Morita et al., 2007). 

Through Rho GTPase/ actin signaling pathway, MKL1 forms a link between 

the ECM and the nucleus and functions as a mediator of 

mechanotransduction. Previous work from our group revealed a novel 

function of MKL1 and showed that MKL1 may act as a bona fide transcription 

factor mediating SRF-independent, SAP-domain-dependent induction of 

Tenascin-C (TNC) transcription (Asparuhova et al., 2011). In the present 

study our goal is to identify additional SAP-domain dependent MKL1 target 

genes that are co-regulated with TNC and to investigate whether such genes 

are implicated in cancer progression. For our analyses we used mutant MKL1 

constructs that were transfected into HC11 mouse mammary epithelial cells 

(Figure 7) (Asparuhova et al., 2011).  

 

 
Figure 7: Mouse MKL1 constructs used in the study. The full-length constract contains all 
functional domains. mutB1 constract has a mutated B1 domain, which is involved in serum 
response factor interaction. ΔSAP constract lacks the SAP domain, which is the homology 
domain found in SAF-A/B, Acinus, PIAS. SAP domain is involved in DNA binding. (Adapted 
from Asparuhova et al., 2011). 
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CHAPTER 2: RESULTS 
 
2.1 Published Manuscript 

“SAP domain-dependent Mkl1 signaling stimulates proliferation and cell 

migration by induction of a distinct gene set indicative of poor prognosis in 

breast cancer patients” 

 

Irem Gurbuz, Jacqueline Ferralli, Tim Roloff, Ruth Chiquet-Ehrismann and 

Maria B Asparuhova 

 

Molecular Cancer 2014, 13:22. 
 

My contribution: 
For this study, together with Maria B Asparuhova I designed and analyzed cell 

functional assays. I performed 5-bromo-2′-deoxyuridine (BrdU) incorporation 

assay to test the proliferation rate of HC11 cell strains. To investigate the cell 

motility, I performed Boyden Chamber migration assay. With the inputs of 

Jacqueline Ferralli and Maria B Asparuhova, I planned, performed and 

analyzed mechanical strain application experiments. Furthermore, I performed 

all qRT-PCR analyses and immunoblot experiments to test mRNA expression 

and protein expression, respectively. Finally, I contributed to the preparation 

of the manuscript. 
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RESEARCH Open Access
SAP domain-dependent Mkl1 signaling stimulates
proliferation and cell migration by induction of a
distinct gene set indicative of poor prognosis in
breast cancer patients
Irem Gurbuz1,2, Jacqueline Ferralli1, Tim Roloff1, Ruth Chiquet-Ehrismann1,2* and Maria B Asparuhova1
Abstract

Background: The main cause of death of breast cancer patients is not the primary tumor itself but the metastatic
disease. Identifying breast cancer-specific signatures for metastasis and learning more about the nature of the genes
involved in the metastatic process would 1) improve our understanding of the mechanisms of cancer progression
and 2) reveal new therapeutic targets. Previous studies showed that the transcriptional regulator megakaryoblastic
leukemia-1 (Mkl1) induces tenascin-C expression in normal and transformed mammary epithelial cells. Tenascin-C is
known to be expressed in metastatic niches, is highly induced in cancer stroma and promotes breast cancer
metastasis to the lung.

Methods: Using HC11 mammary epithelial cells overexpressing different Mkl1 constructs, we devised a subtractive
transcript profiling screen to identify the mechanism by which Mkl1 induces a gene set co-regulated with
tenascin-C. We performed computational analysis of the Mkl1 target genes and used cell biological experiments to
confirm the effect of these gene products on cell behavior. To analyze whether this gene set is prognostic of
accelerated cancer progression in human patients, we used the bioinformatics tool GOBO that allowed us to
investigate a large breast tumor data set linked to patient data.

Results: We discovered a breast cancer-specific set of genes including tenascin-C, which is regulated by Mkl1 in a
SAP domain-dependent, serum response factor-independent manner and is strongly implicated in cell proliferation,
cell motility and cancer. Downregulation of this set of transcripts by overexpression of Mkl1 lacking the SAP domain
inhibited cell growth and cell migration. Many of these genes are direct Mkl1 targets since their promoter-reporter
constructs were induced by Mkl1 in a SAP domain-dependent manner. Transcripts, most strongly reduced in the
absence of the SAP domain were mechanoresponsive. Finally, expression of this gene set is associated with
high-proliferative poor-outcome classes in human breast cancer and a strongly reduced survival rate for patients
independent of tumor grade.

Conclusions: This study highlights a crucial role for the transcriptional regulator Mkl1 and its SAP domain during
breast cancer progression. We identified a novel gene set that correlates with bad prognosis and thus may help in
deciding the rigor of therapy.
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Background
Most breast cancer patients die from tumor metastases
and not from the primary tumor itself. Thus, the identi-
fication of genes and signaling pathways influencing the
metastatic process are of utmost importance. Once the
mechanisms leading to metastasis are uncovered, they
can in the future serve as a rational basis for prognosis
and intervention. From the beginning of its discovery,
tenascin-C has been strongly associated with tumorigen-
esis and cancer progression in many different types of
tumors (reviewed in [1,2]). Tenascin-C was not only
enriched in breast cancer tissue [3,4], but its high ex-
pression was part of a gene signature of breast cancers
metastasizing to the lung [5]. There is strong evidence
that tenascin-C contributes to the metastatic behavior of
breast cancer cells [6] by providing a niche for their
settlement in the lung [7,8]. The source of tenascin-C
can be the tumor cells themselves as well as the stromal
cells of the cancer microenvironment. Downregulation
of tenascin-C by miR-335 or shRNA in human cancer
cells in a mouse xenograft model inhibits metastasis for-
mation [7], and in tenascin-C-deficient mice, metastasis
formation of tenascin-C positive cancer cells is also
suppressed [9].
There are many signaling pathways inducing tenascin-C

expression (reviewed in [10]). Among these, mechanical
strain application in vivo as well as to cells in culture is
a potent stimulus to induce tenascin-C expression in fi-
broblasts [11,12]. We have recently shown that induc-
tion of tenascin-C by cyclic mechanical strain requires
the action of Mkl1 [13]. Mkl1 is a member of the
myocardin-related transcription factor family (MRTF)
and a well-known transcriptional co-activator of serum
response factor (SRF) [14-16]. SRF target genes, which
are regulated upon recruitment of MRTF cofactors, en-
code proteins involved in actin cytoskeletal function
that can either be structural (for example, actin) or re-
lated to actin dynamics (for example, talin 1) (reviewed
in [17,18]). However, Mkl1-mediated stretch-induced
tenascin-C expression in fibroblasts did not require
SRF, but instead depended on the potential DNA-
binding SAP domain of Mkl1. This implies a novel
mode of Mkl1 action as a bona fide transcription factor
in mechanotransduction [13]. Interestingly, normal and
transformed mouse mammary epithelial cells also ap-
pear to be highly sensitive to Mkl1 signaling, respond-
ing to Mkl1 overexpression with several fold induction
of tenascin-C [13].
The present study was designed to find SAP-dependent

Mkl1 target genes co-regulated with tenascin-C and to
analyze whether such genes could be indicative of specific
physiological states of cells that might be controlled by
mechanotransduction. For our study, we made use of the
HC11 mammary epithelial cell line. HC11 cells are capable
of both self-renewal and differentiation and can be cul-
tured for unlimited time in an undifferentiated state [19],
the condition we used in our study. HC11 cells can recon-
stitute the ductal epithelium of a cleared mammary fat
pad in vivo with ductal, alveolar and myoepithelial cells,
illustrating their stem cell abilities [19,20]. In addition,
HC11 cells contain a mutated p53 gene that not only in-
creases the replicative potential of stem cells but confers
predisposition to mammary carcinoma [21]. Undifferen-
tiated HC11 cells share transcriptome signatures with
human breast cancer [22], supporting the relevance of
this model for breast cancer-related studies. We there-
fore concluded our study by investigating whether the
genes co-regulated with tenascin-C would also be impli-
cated in breast cancer progression.

Results
Screen for SAP-dependent Mkl1 target genes
We devised a screening method to identify genes co-
regulated with tenascin-C by Mkl1 in a SAP domain-
dependent manner without involvement of SRF. For this
purpose, we used HC11 mammary epithelial cells that
react strongly to the overexpression of Mkl1 with in-
duction of tenascin-C expression [13]. We compared
three HC11 strains that either overexpress the C-terminal
red fluorescent protein (RFP)-tagged full length Mkl1
(HC11-FL), Mkl1-RFP with a mutated SRF-interaction site
(HC11-mutB1) or Mkl1-RFP with a deletion of the SAP
domain (HC11-ΔSAP). None of the three Mkl1 variants
appear to be toxic to the cells, as we have not observed
any changes in viability or cell morphology. HC11-FL cells
were shown to overexpress Mkl1 7.1-fold above the en-
dogenous Mkl1 present in parental HC11 cells [13], and
were used as control cells in our study. All cell strains
were FACS sorted to express similar levels of Mkl1-RFP
proteins. These cells were used for transcript profiling
and gene lists of interest were established as shown in
Figure 1A, B. A scatter plot (Figure 1A) of all transcripts
expressed in HC11-mutB1 versus HC11-FL control cells
(y-axis) and all transcripts expressed in HC11-ΔSAP
versus HC11-FL control cells (x-axis) shows that a large
majority of transcripts does not differ significantly be-
tween the three cell strains (log fold change (FC) ≈ 0;
black dots). Setting the threshold to a 2-fold reduction
(logFC = -1; grey lines), three gene sets can be distin-
guished: 1) blue dots represent genes that are lower in
HC11-mutB1 than in HC11-FL control cells, but are
unaffected in HC11-ΔSAP cells, thus representing typ-
ical SRF/Mkl1 target genes; 2) green dots represent
genes that are lower in HC11-ΔSAP than in HC11-FL
control cells, but are unaffected in HC11-mutB1 cells
(this gene set includes tenascin-C); and 3) red dots indi-
cate genes with reduced expression in both HC11-mutB1
and HC11-ΔSAP cells compared to HC11-FL control cells.



Figure 1 (See legend on next page.)
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Figure 1 Screen for SAP-dependent Mkl1 target genes and their implication in cancer. (A) Scatter plot and (B) Venn diagram representing
classification of Mkl1 target genes into three groups: SRF-dependent/SAP-independent (blue), SRF-dependent/SAP-dependent (red) and
SRF-independent/SAP-dependent (green). The scatter plot (A) represents the log fold change (logFC) in gene expression in HC11-ΔSAP versus
HC11-FL control cells (x-axis; ΔSAP vs. FL) and between HC11-mutB1 versus HC11-FL control cells (y-axis; mutB1 vs. FL). Each dot represents a
probeset, and the one for tenascin-C is highlighted (Tnc). The vertical and horizontal lines in the chart denote the 2-fold change cutoff (logFC
= -1). The Venn diagram (B) represents the number of probesets for transcripts, which are more than 2-fold reduced in either HC11-mutB1 or
HC11-ΔSAP cells when compared to HC11-FL control cells. Boxes below the Venn diagram indicate the cell strains that have reduced levels of
the respective transcripts. (C, D) Functional analysis for the three Mkl1-regulated gene sets performed using the IPA software. The high-level
functional (C) and disease (D) categories are displayed along the x-axis of each bar chart. The y-axis displays the –log of the P-value determined
by right-tailed Fisher’s exact test. The P-value is a measure of the likelihood that the association between a set of genes in each dataset and a
related function or disease is due to random association. The grey vertical line denotes the cutoff for significance (P = 0.05; -logP = 1.3).
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Thus, this approach enabled us to form three gene sets
that were distinct from the large majority of transcripts
and were dependent for expression on the B1 site of
Mkl1, the SAP domain, or both. The three groups pre-
sented by a Venn diagram (Figure 1B) contain 141 pro-
besets for transcripts that depended on the function of
the B1 site but not the SAP domain for their induction,
113 probesets for transcripts that depended on both of
these Mkl1 domains and a third group of 205 probesets
for transcripts co-regulated with tenascin-C that did not
require an interaction of Mkl1 with SRF but depended
on the SAP domain for induction (complete probeset
lists and annotations are found in Additional file 1:
Table S1, Additional file 2: Table S2 and Additional file 3:
Table S3). This analysis revealed that the SAP-dependent
mechanism of tenascin-C regulation by Mkl1 is shared
by a large cohort of genes. Below the Venn diagram, we
indicated which cells were deficient in the respective
transcripts. Thus, the typical SRF/Mkl1 target genes are re-
duced in HC11-mutB1 cells, while the SRF-independent/
SAP-dependent genes are reduced in HC11-ΔSAP cells.
The intermediate group that requires both Mkl1 activities
is reduced in both the HC11-mutB1 and HC11-ΔSAP
cells.
The SAP-dependent Mkl1 target genes are implicated in
cancer
Functional analysis of the three gene lists using the
IPA software revealed different molecular and cellular
functions (Figure 1C) and different disease associations
(Figure 1D) for the three types of gene signatures. Thus,
the SRF-dependent/SAP-independent signature implicated
a function of these genes in cellular movement and the
linked diseases included connective tissue disorders, in-
flammatory disease and skeletal and muscle disorders,
which are the main features known to be regulated by
SRF/Mkl1 interaction [23-25]. The SRF-dependent/SAP-
dependent group of genes includes as major functions
post-translational modification, protein degradation and
protein synthesis, and the top disease association is cancer.
Finally, the genes of the SRF-independent/SAP-dependent
group were associated with extremely high significance
with cell cycle and cancer (-logP ≥ 25 and ≥ 30, respect-
ively), while the SRF/Mkl1 target genes were associated
with the same two categories at low significance only
(-logP ≥ 2 and ≥ 7, respectively). These data imply that
SAP-dependent induction of transcription by Mkl1 may
counteract the known differentiation-promoting effect of
SRF/Mkl1-induced transcription. A list of SAP-dependent
genes with published cancer-related functions, whose
transcripts were downregulated more than 3-fold in
HC11-ΔSAP compared to HC11-FL control cells, is pre-
sented in Table 1. To confirm that these transcripts are
indeed differentially expressed in the different HC11
cell strains, qRT-PCR analysis was performed using
cDNA from three different batches of the respective
HC11 strains. Differences in gene expression between
HC11-ΔSAP and control cells are presented in Table 1
and in more detail in Additional file 4: Figure S1. The
qRT-PCR results agreed with the data obtained by tran-
script profiling. We also tested the SAP-dependent gene
expression in the HC11 strains when grown in the pres-
ence of serum. It is interesting to note that in the presence
of 3% FCS, these transcripts remained strongly reduced in
HC11-ΔSAP compared to control cells (Table 1). Thus,
the induction of these genes seems to depend mainly on
whether the SAP domain is present in the transfected
Mkl1 construct.
In addition, we monitored changes in the expression

of some of the SRF-independent/SAP-dependent Mkl1
targets on a protein level. In agreement with the changes
seen at the transcript level, we confirmed the reduction
of tenascin-C, Wisp1 and Nox4 proteins in cells overex-
pressing the ΔSAP-Mkl1 construct compared to the
HC11-FL control and HC11-mutB1 cells (Additional file 4:
Figure S2). Using zymography, we found that Mmp2, a
gene that was not affected by Mkl1 overexpression at
the transcript level was highly expressed in all three cell
strains, whereas Mmp3 and/or 12, which belonged to
the SRF-dependent/SAP-dependent gene set, were al-
most completely lacking in HC11-mutB1 as well as
HC11-ΔSAP cells, corresponding to the data obtained
by transcript profiling.



Table 1 SAP-dependent Mkl1 target genes

Gene Description Fold Reduction in
HC11-ΔSAP vs. HC11-FL cells

Functions

Microarrays
in 0.03% FCS

qRT-PCR in
0.03% FCS

qRT-PCR
in 3% FCS

SRF-independent genes

Tnc Tenascin C, ECM protein 3.07*** 3.50*** 26.34*** Cell adhesion, cell migration, wound healing and tissue
remodeling, cancer cell invasion and metastasis [10]

Anln Anillin, actin binding protein 3.10*** 1.93*** 1.38** Cell cycle regulation [26], cell motility and cancer
progression [26-28]

Nox4 NADPH oxidase 4 3.31*** 94.19** 332.70*** Cell growth, differentiation and migration [29], tumor
angiogenesis [30]

Adamts16 Metallopeptidase, ECM protein 3.63*** 5.70*** 14.84** Cell growth and motility [31], role in arthritis [32] and cancer
[31]

Krt5 Keratin 5, intermediate filament
protein

3.73*** 2.74*** 8.02*** Protein synthesis, epithelial cell growth and
differentiation [33,34]

p15 (PAF) 2810417H13Rik,
PCNA-associated factor

3.91*** 1.89*** 1.34*** DNA repair and cell cycle regulation, cell survival and
proliferation, tumorigenesis [35-37], hematopoiesis [38]

Ass1 Argininosuccinate synthetase 1 4.23*** 3.89** 2.72** Regulation of nitric oxide production and cell viability [39,40]

Cd34 CD34 antigen, stem cell antigen 4.25*** 10.61*** 1.72*** Vessel development and function [41], tumor growth [42,43]

Wisp1 WNT1 inducible signaling
pathway protein 1, ECM protein

4.41*** 2.54** 4.06** Cell proliferation and survival, ECM deposition and turnover,
EMT, tumorigenesis, tissue remodeling [44]

Mcm6 Minichromosome maintenance
complex component 6

4.42*** 2.83*** 1.30*** Cell cycle regulation [45]

Car12 Carbonic anyhydrase 12 4.58*** 16.11*** 26.07** Cell survival under hypoxic conditions, tumor-associated cell
migration and invasion [46,47]

Htatip2 Hyaluronectin, TIP30,
transcriptional regulator

5.89*** 548.59*** 245.27*** Regulation of apoptosis [48], tumor growth and
metastasis [49]

Kif26b Kinesin family member 26B 6.33*** 8.36*** 61.22*** Regulation of adhesion and cell polarity in kidney
development [50]

SRF-dependent genes

Lox Lysyl oxidase, ECM protein 4.61*** 4.70** 12.04*** ECM turnover, connective tissue remodeling and repair,
tumor progression and metastasis [51,52]

Mmp12 Matrix metallopeptidase 12,
metalloelastase

12.01*** 23.49*** 4.90** ECM degradation in tissue remodeling [49] and
tumorigenesis [53]

Mmp3 Matrix metallopeptidase 3,
stromelysin-1

15.64*** 14.70*** 2.08** ECM degradation in tissue remodeling [49] and
tumorigenesis [54]

Abbreviations: ECM extracellular matrix protein, PCNA proliferating cell nuclear antigen, EMT epithelial-to-mesenchymal transition.
***P < 0.001, **P < 0.01, Student’s t test.
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SRF-independent/SAP-dependent transcripts represent
direct Mkl1 target genes
Since we have previously shown that the SAP domain of
Mkl1 interacts with the proximal promoter of tenascin-C
to induce its transcription [13], we tested whether this was
also the case for other transcripts of the same group.
The promoters of the SRF-independent/SAP-dependent
genes listed in Table 1 encompassing at least 500 bp up-
stream of the transcription start site (TSS) were fused
to the secreted alkaline phosphatase (SEAP) reporter
gene of pSEAP2-Basic. We tested the induction of each
promoter-reporter construct by co-transfection with FL-
Mkl1 (Figure 2A). This revealed that the majority of the
new promoters tested (8 out of 12) were induced at least
2-fold by Mkl1 in comparison to co-transfection with
an inactive Mkl1 devoid of the transactivation domain,
indicating that these are indeed direct Mkl1 target
genes. The promoter constructs that did not respond to
Mkl1 overexpression may represent genes that are in-
directly regulated by Mkl1, or the relevant promoter
regions were not contained in the constructs tested.
Next, we investigated whether the induction was SAP-
dependent and SRF-independent by comparing the re-
porter activity after co-transfection with mutB1- versus
ΔSAP-Mkl1 variants (Figure 2B). Indeed, the promoter-
reporter constructs induced by FL-Mkl1 were also
strongly induced by mutB1-Mkl1, but not by ΔSAP-Mkl1.
In contrast, the promoter construct for Acta2, a gene from
the SRF-dependent/SAP-independent gene set was strongly
induced by ΔSAP-Mkl1 but not by mutB1-Mkl1, as



Figure 2 SRF-independent/SAP-dependent transcripts represent
direct Mkl1 target genes requiring the SAP domain of Mkl1 to
induce transcription from their proximal promoter. (A) The
indicated promoter constructs that contained at least 500 bp
upstream of the transcription start site (TSS) and were linked to the
secreted alkaline phosphatase (SEAP) reporter gene, were
cotransfected in HC11 cells together with an inactive Mkl1 devoid of
the transactivation domain [13] or the FL-Mkl1 construct. SEAP activity
is expressed as fold induction above the level obtained with the
inactive Mkl1. In addition to Tnc, for 8 out of the 12 new promoters
tested, induction greater than 2-fold (indicated by the red line) was
obtained. Values are means ± SEM from three to seven independent
experiments. (B) HC11 cells were cotransfected with the indicated
promoter constructs that were either > 500 bp or shortened to 200 bp
upstream of the TSS, and with vectors encoding the indicated mutant
Mkl1 constructs. SEAP activity is normalized and expressed as in
(A). Means ± SEM from at least three independent experiments and
significant differences between either mutB1- and ΔSAP-Mkl1-
transactivated promoter constructs or between the longer and shorter
promoter constructs transactivated by mutB1-Mkl1, ***P < 0.001,
**P < 0.01, *P < 0.05 are shown.
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expected for a typical SRF/Mkl1 target gene [18,55,56]. All
promoters that revealed SAP-dependency were shortened
to 200 bp upstream of the TSS to test whether this was
sufficient to relay the Mkl1 response, as it has been seen
previously for tenascin-C [13]. With the exception of Krt5
and Nox4, for which some activity was lost by shortening
the promoters, the 200 bp proximal promoters of all other
genes tested were induced equally well as the longer con-
structs (Figure 2B). Thus, we conclude that there are many
genes that are regulated similarly as tenascin-C requiring
the SAP domain of Mkl1 to induce transcription from
their proximal promoter.

The different HC11 cell strains proliferate at different
rates and show distinct migration behaviors
Next, we tested whether the differential gene expression
seen in the different HC11 strains overexpressing either
FL-, mutB1- or ΔSAP-Mkl1 constructs have functional
consequences on their behavior. Since most of the SAP-
dependent transcripts are proposed to have a function
in cancer, we decided to analyze two main functions im-
portant for cancer progression: proliferation and cell mi-
gration. An approximately equal overexpression of the
different Mkl1 protein variants in the HC11 cell lines was
confirmed by Western blot analysis (Figure 3A). An HC11
cell strain stably transfected with an empty vector [13]
expressing only endogenous Mkl1 (below the detection
limit in Figure 3A) was also included in these studies.
The proliferation rates of the HC11 strains were ana-
lyzed using a 5-bromo-2′-deoxyuridine (BrdU) incorp-
oration assay. The incorporated BrdU was measured
immediately after plating (0 h) as well as at 24, 48, 72
and 96 h. Compared to empty vector-, FL- or mutB1-
transfected HC11 strains, there was a significant decrease
in BrdU uptake into newly synthesized DNA in HC11-
ΔSAP cells over the entire time period tested (Figure 3B).
To investigate cell motility, we used a transfilter migration
assay. Similarly to the effect on cellular proliferation, the
expression of ΔSAP-Mkl1 significantly inhibited HC11 cell
migration by 2.7-fold compared to endogenous or full
length Mkl1 expression, and more than 3.5-fold compared
to mutB1-Mkl1 expression (Figure 3C).
Thus, overexpression of FL-Mkl1 protein in HC11

cells did not affect their behavior. However, overexpres-
sion of ΔSAP-Mkl1 led to a significant reduction in the
proliferative and migratory ability of HC11 epithelial cells,
either through a dominant-negative effect of ΔSAP-Mkl1
on SRF-mediated action and/or a positive impact of the
SAP-dependent Mkl1 target genes on these functions
important for cancer progression.

SAP-dependent Mkl1 target genes are
mechanoresponsive
We have previously found that the SAP-dependent in-
duction of tenascin-C was triggered by applying mech-
anical strain to fibroblasts. Mammary epithelial cells are
also exposed to mechanical strains, both during normal
development, pregnancy and lactation, as well as under
pathological conditions such as in cancer. Therefore, we



Figure 3 The different HC11 cell strains proliferate at different
rates and show distinct migration behaviors. (A) Immunoblot
with mAb65F13 of Mkl1 proteins in whole-cell extracts from the
empty vector-, FL-, mutB1- or ΔSAP-transfected HC11 strains.
Anti-Gapdh served as loading control. Endogenous Mkl1 protein was
below the detection limit in empty vector cells. (B) SAP-dependent
proliferation of HC11 mammary epithelial cells. Proliferation rates of
the four HC11 cell strains were assessed by BrdU incorporation into
newly synthesized DNA immediately after plating (0 h) as well as at
24, 48, 72 and 96 h. Means ± SD from three independent
experiments and significant differences to the HC11-ΔSAP cells,
***P < 0.001, **P < 0.01, *P < 0.05 are shown. (C) SAP-dependent
migration of HC11 mammary epithelial cells. Cell migration of the
four HC11 strains was evaluated by Transwell migration assay using
filters with 8 μm pore size. Quantification of the cell migration was
measured by the area on the lower side of the filter covered with
cells. Above the bar graph, a photo of fixed and stained cells seeded
in parallel in a 24-well plate is shown as a seeding control, and
representative photos of fixed and stained cells of each of the cell
strains that have migrated to the lower side of the filter, are shown
below (bar, 200 μm). Data and statistical significance are expressed
as in (B).
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tested whether tenascin-C and other members of the
SAP-dependent Mkl1-induced gene set are mechanore-
sponsive in HC11 cells. We tested two paradigms: 1) static
strain that was shown to induce c-fos, a very prominent
mechanoresponsive gene in HC11 cells [57] that we used
as a control, and 2) cyclic strain. While we were able to
confirm induction of c-fos by applying static strain at 20%
for 1 h, there was no induction of tenascin-C under these
conditions compared to cells at rest (Figure 4A). However,
using 15% cyclic strain at a frequency of 0.3 Hz for 1 h, we
found that not only the control gene c-fos but 11 out of
16 SAP-dependent genes, including tenascin-C were sig-
nificantly upregulated above the expression levels obtained
in resting cells (Figure 4). Even though significant, the in-
duction of tenascin-C was minimal (Figure 4A) compared
to 18-fold upregulation for Adamts16 or 10-fold upreg-
ulation for Lox (Figure 4B), both of which are enzymes
involved in extracellular matrix (ECM) remodeling and
cancer progression [31,58]. Being mechanoresponsive,
the SAP-dependent Mkl1 target genes might be activated
in stiff tumor tissue, which further confirms their relation
with cancer.

The SRF-independent/SAP-dependent genes represent a
bad prognostic signature for breast cancer patients
In order to investigate whether the SRF-independent/SAP-
dependent genes were prognostic of accelerated cancer pro-
gression in human patients, we used the bioinformatics tool
Gene expression-based Outcome for Breast cancer Online
(GOBO) that allowed us to investigate a breast tumor
data set containing 1881 samples analyzed by Affyme-
trix Human Genome U133A arrays. GOBO is designed
to assess gene expression levels and association with out-
come of single genes or gene sets in multiple subgroups of



Figure 4 SAP-dependent Mkl1 target genes are
mechanoresponsive. (A) Effect of static (20%) and cyclic (15%,
0.3 Hz) strain on Tnc and c-fos mRNA levels. HC11 cells were
cultured on either growth factor reduced matrigel matrix- or
fibronectin-coated silicone membranes in 0.03% serum-containing
medium for 24 h before applying static or cyclic strain for 1 h. Cells
cultured under the same conditions and not exposed to mechanical
stimulation were used as a resting control. The two types of coating
gave identical results under the indicated experimental conditions.
Total RNA was extracted and qRT-PCR was performed for Tnc and
c-fos mRNA levels. Values normalized to Gapdh are expressed
relative to the values of resting cells. Data represent means ± SD
from three independent experiments. Significant differences to the
resting control, ***P < 0.001, **P < 0.01, *P < 0.05. (B) SAP-dependent
genes respond to cyclic strain. HC11 cells were stretched and mRNA
analyses were performed as described in (A). Data and statistical
significance are expressed as in (A).
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this breast cancer data set [59]. Here, we analyzed two
sets of genes, namely the SRF/Mkl1-induced gene set
(SRF-dependent/SAP-independent) and the SAP-dependent
gene set (SRF-independent/SAP-dependent) containing
tenascin-C. The analysis was performed across tumor
samples stratified according to PAM50 subtypes [60],
estrogen receptor (ER)-status and histological grade. In
contrast to the SRF/Mkl1 target genes that were predom-
inantly associated with tumors classified as normal-like
and with lower histological grades (1 and 2) (Figure 5A),
elevated expression of SAP-dependent genes was associ-
ated with extremely high significance (P < 0.00001) with
typical high-proliferative poor outcome classes in breast
cancer, such as basal-like, HER2-enriched, luminal B, ER-
negative and histological grade 3 tumors (Figure 5B). Next,
a functional correlation analysis to find a possible inter-
connection between the SAP-dependent Mkl1 target
genes was performed using the GOBO tool (Additional
file 4: Figure S3). This analysis explores the correlation
of expression of individual genes in our gene sets with
eight different co-expressed gene modules emulating
breast cancer-specific as well as general tumor biological
processes [61]. Interestingly, whereas the gene set of SRF/
Mkl1 targets did not show a significant correlation with
any of these modules, the genes in the SAP-dependent
gene set were correlated with a very high significance
(P < 0.00001) with two proliferation modules – mitotic
checkpoint and mitotic progression. Both modules con-
tain genes related to central mitotic processes involved
in either the regulation of the M-phase and the mitotic
checkpoint or in carrying out the M-phase. Finally, the
association of our gene sets with outcome using distant
metastasis free survival (DMFS) as an endpoint and 10-
year censoring was analyzed. The survival analysis was
performed in all tumors for which DMFS follow-up is
available (1379 cases), as well as in 21 groups that were
stratified based on gene expression subtypes (PAM50
classifier), ER-status, lymph node (LN)-status, histological
grade, and treatment status. Samples in the whole cancer
data set (1881 patients) were stratified into three quan-
tiles, low, intermediate and high, based on SRF-dependent/
SAP-independent or SRF-independent/SAP-dependent gene
expression. Interestingly, high expression of SRF/Mkl1-
induced genes was associated with a better clinical out-
come for all tumors, as well as for LN-negative and
untreated tumors compared to low and intermediate ex-
pression of these genes (Figure 6A). In contrast, both high
and intermediate expression of the SAP-dependent genes
was associated with bad clinical outcome in all tumors,
and particularly in LN-negative, systemically untreated,
ER-positive, Grade 1 and 2 tumors (Figure 6B). Similar re-
sults were obtained for the typical breast cancer gene
CCNB1 by Ringnér et al. [59]. The Kaplan-Meier survival
analyses were supported by the corresponding multivariate
analyses (Figure 7A, B). The hazard ratio for the variate
Grade shows statistical significance, proving that the in-
fluence of high SAP-dependent gene expression on pa-
tient survival is independent of tumor grade. Among all
tumors for which DMFS data are available, a hazard ra-
tio of 0.44 (95% CI = 0.28-0.68; P = 0.0003) for the low
SRF-independent/SAP-dependent tercile was detected
compared to the high SRF-independent/SAP-dependent
tercile (Figure 7B, all tumors). This indicates that patients



Figure 5 SAP-dependent Mkl1 target genes are associated with typical high-proliferative poor outcome classes in breast cancer. The
expression levels for the SRF-dependent/SAP-independent (A) and SRF-independent/SAP-dependent (B) gene sets are analyzed across the
1881-sample breast cancer data set stratified according to PAM50 subtypes (left panels), estrogen receptor (ER)-status (middle panels) and
histological grade (right panels), and represented by box plots using the GOBO bioinformatics tool. The number of tumors in each breast cancer
subtype and the significant difference in gene expression (P-value calculated using ANOVA) between them are shown above the box plots.
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with tumors expressing high levels of the SAP-dependent
genes are more than twice as likely to develop metastatic
disease. Similar hazard ratios, in the range of 0.28-0.44
for the low tercile compared to the high tercile were also
detected among subgroups of untreated, LN-negative,
ER-positive, Grade 1 and 2 tumors (Figure 7B). Thus,
the association of high SRF-independent/SAP-dependent
gene expression with reduced DMFS among patients not
receiving adjuvant therapy, as well as among LN-negative,
ER-positive, Grade 1 and 2 patients indicates that in-
creased expression of the SAP-dependent Mkl1 target
genes plays a significant role in the natural metastatic
progression of non-aggressive towards highly aggressive
breast cancer in human patients.
Discussion
Given the heterogeneity of mutations in tumor cells, it
becomes increasingly clear that not only individual
genes but pathways govern the course of tumorigenesis
and cancer progression [62]. We have recently shown
that induction of tenascin-C by cyclic mechanical strain
required the action of the potential DNA-binding SAP
domain of Mkl1 independently of an interaction of
Mkl1 with SRF [13]. Now, we report a screen for genes
co-regulated with tenascin-C by the same SAP-dependent
and SRF-independent mechanism in mammary epithelial
cells. This screen reveals a set of SAP domain-dependent
Mkl1 target genes with a strong implication in cell prolif-
eration, cell motility and cancer.
To date only a few studies have shown that Mkl1 is

implicated in cancer-related processes (reviewed in [63])
and most of them have concentrated on the SRF/Mkl1
signaling for the induction of individual genes [64-67].
The first study reporting that depletion of Mkl1/2 proteins
reduced motility, invasion and colonization of metastatic
tumor cells in an experimental in vivo metastasis assay
[64] was further supported by the discovery of the Mkl1-
binding protein, suppressor of cancer cell invasion (SCAI),
which inhibited SRF/Mkl1-mediated expression of β1 in-
tegrin [68]. Since then, several studies describing opposing
biological effects for Mkl1 appeared. For instance, several
antiproliferative SRF/Mkl1 target genes including mig6/
errfi-1, a negative regulator of the EGFR-MAPK pathway,
were identified [65], or the tumor suppressor gene Eplin-α
was described as a direct target of the SRF/Mkl1 path-
way [66]. Furthermore, expression of a constitutively ac-
tive form of Mkl1 in oncogenic ras- or src-transformed
rat intestinal epithelial cells injected into the spleen of
nude mice significantly suppressed tumor formation
and reduced liver metastases by rescuing the expression
of the SRF/Mkl1 targets tropomyosin and caldesmon
[67]. In line with these findings, we could show that
high expression of SRF/Mkl1 target genes is associated
with an improved clinical outcome in breast cancer pa-
tients. However, the opposite is the case for high expression



Figure 6 The SRF-independent/SAP-dependent genes represent a bad prognostic signature for breast cancer patients. Tumors in the
1881-sample breast cancer data set were stratified into three quantiles, low, intermediate and high, based on SRF-dependent/SAP-independent
(A) or SRF-independent/SAP-dependent (B) gene expression. (A) Kaplan-Meier survival analysis using distant metastasis free survival (DMFS) as endpoint
and 10-year censoring for all tumors (n = 1379; left panels), or in the subgroups of lymph node (LN)-negative (n = 1111; middle panels) and untreated
tumors (n = 821; right panels) was performed using the GOBO bioinformatics tool, interrogating the group of SRF-dependent/SAP-independent target
genes. P-value is calculated using log-rank test. (B) Kaplan-Meier survival analysis for tumors with expression of SRF-independent/SAP-dependent Mkl1
target genes was performed as in (A). Association with clinical outcome was assessed in the subgroups of ER-positive (n = 856; left panel),
Grade 1 (n = 141, middle panel) and Grade 2 (n = 446; right panel) tumors in addition to all tumors and the subgroups used in (A). P-value is
calculated using log-rank test.
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of SAP-dependent Mkl1 target genes. These genes are asso-
ciated with poor clinical outcome predominantly in less ag-
gressive tumors such as LN-negative, ER-positive, Grade 1
and 2 tumors, which makes them valuable predictors of
breast cancer progression. A scheme that depicts our model
for Mkl1 action in breast cancer is presented in Figure 8. In
this model Mkl1 is transactivating SRF-target genes in less
aggressive tumors, while in the course of cancer progres-
sion and metastatic behavior Mkl1 is activating a new
group of genes in a SAP-dependent manner either by direct



Figure 7 Elevated expression of SAP-dependent Mkl1 target genes is a poor prognosis factor in breast cancer independent of histological
grade. Multivariate analysis supporting the Kaplan-Maier survival analysis (shown in Figure 6) for the SRF-dependent/SAP-independent (A) and
SRF-independent/SAP-dependent (B) gene sets, was performed using the GOBO bioinformatics tool. The analysis was executed for all tumors
(n = 1379) and in the subgroups of LN-negative (n = 1111) and untreated tumors (n = 821) (A, B), as well as in the subgroups of ER-positive
(n = 856), Grade 1 (n = 141) and Grade 2 (n = 446) tumors (B), using LN-status, ER-status, and stratified histological grade (histological grade 1
and 2 vs. 3) as covariates, DMFS as endpoint and 10-year censoring. The hazard ratio and the 95% confidence interval (CI) are plotted for each
of these covariates. Specified covariates may be omitted in certain comparisons, e.g. ER-status is omitted when analyzing ER-positive tumors
only, or when not all of the investigated cases have clinical follow-up or clinical information for the specified covariate.
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interaction with the promoters of these genes or by inter-
action with additional DNA-binding factors.
Interestingly, in parental HC11 cells many of the genes

that we found in the SAP-dependent gene set that foster
cell proliferation and migration and may cause poor
survival of breast cancer patients are also induced by
mechanical strain. A recent study has demonstrated
that inhibition of cell spreading due to a lack of matrix
stiffness is overcome by externally applied stretch, sug-
gesting that similar mechanotransduction mechanisms
sense stiffness and stretch [69]. Tumor stroma is typically
stiffer than normal stroma. In breast cancer, diseased tis-
sue can be 10 times stiffer than normal breast [70,71]. It is
known that abnormal ECM stiffness plays an important
role in cancer progression [72,73], but the mechanisms by
which stiffness influences cancer progression are still
under investigation. If we assume that we have discovered
a general reaction of mammary epithelial cells to mechan-
ical strain, we envisage that epithelial cells in a stiff,
mechanically dynamic tumor environment may react by
inducing a SAP-dependent Mkl1 gene set that in turn
affects tumor progression. Furthermore, the products of
these genes, many of which are involved in ECM turn-
over and function, for example Lox [58], Mmps [74],
Adamts16 [31] or Wisp1 [44] might themselves manipu-
late the tumor microenvironment, thereby influencing
tumor cell survival by a positive tumorigenic feedback
loop.
Finding how to switch the mode of action of Mkl1 be-

tween SRF transactivation versus its SAP-dependent
transcriptional activity is a subject of ongoing research
in our lab that in future may help with the development
of new therapeutic interventions for breast cancer. Post-
translational modifications such as sumoylation are known
to influence Mkl1 transcriptional activity [75] and phos-
phorylation has been shown to influence interaction of
Mkl1 with nuclear actin resulting in transcriptional
changes [76,77]. Further characterization of these and



Figure 8 Schematic representation of the Mkl1 action in breast cancer. A circular Mkl1 model is depicted with four of its domains: RPEL,
actin binding motifs with RPxxxEL core consensus; B1, basic domain involved in SRF-binding; SAP, homology domain found in the nuclear
proteins SAF-A/B, Acinus, PIAS; TAD, transactivation domain. Serum response factor is drawn as a red shape and putative unidentified
DNA-binding proteins as white shape with a question mark. Mkl1 exerts two distinct modes of action: one of them is through the B1 domain
required for serum response factor (SRF)-binding activity and induction of SRF/Mkl1 target gene expression; the other one is strongly dependent
on the SAP domain and triggers the expression of a specific set of pro-proliferative and pro-migratory genes that we called SAP-dependent Mkl1
target genes. High expression of SRF-dependent genes is associated with good clinical outcome for breast cancer patients, whereas elevated
expression of SAP-dependent targets correlates with poor prognosis and indicates a significant role for these genes in breast cancer progression.
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other post-transcriptional changes of Mkl1 deserve spe-
cial attention when trying to answer the above question.

Conclusions
In the current study, we discovered a breast cancer-
specific set of genes that is highly interesting as a prog-
nostic marker and therapeutic target for several reasons.
(1) The expression of this gene set is regulated by Mkl1
and its SAP domain and is independent of SRF. (2) The
SAP-dependent, SRF-independent Mkl1signaling is trig-
gered by mechanical strain and may thus be activated in
stiff tumors with a high stromal content and high inter-
stitial tissue pressure. (3) This gene set is composed of
interesting members some of which represent novel
candidates for playing a functional role in cancer and
others that have already been implicated in cancer-
related functions, as for example tenascin-C, a meta-
static niche component important for lung colonization
[8], or Lox as a gene mediating collagen crosslinking re-
sponsible for fibrosis-enhanced metastasis [58]. (4) The
SAP-dependent Mkl1 target genes are associated with a
poor clinical outcome in breast cancer patients, not re-
ceiving adjuvant therapy or having a cancer classified
as non-aggressive such as LN-negative, ER-positive,
Grade 1 or 2 tumors. This makes these genes potential
valuable prognostic markers in selecting patients who
may benefit from an immediate and/or more aggressive
therapy.

Methods
Cell culture
Full length Mkl1 (FL-Mkl1) and the two Mkl1 mutants,
mutB1-Mkl1 comprising alanine substitutions of four
amino acids (underlined) in the B1 domain of Mkl1 (KKA
KELKPKVKKLKYHQYIPPDQKQD) [78] and ΔSAP-Mkl1
with a deletion of the SAP domain [15], were constructed
based on transcript variant 1 (GenBank accession num-
ber NM_153049) as previously described [13]. All Mkl1
variants were expressed as C-terminal RFP-tagged fusions.
An empty vector expressing RFP alone was previously
described [13].
HC11 mammary epithelial cells, kindly provided by

Dr. N. Hynes (Basel, Switzerland), were grown in RPMI-
1640 medium supplemented with 10% FCS, 5 μg/ml insu-
lin (Sigma, Buchs, Switzerland) and 10 ng/ml epidermal
growth factor (EGF; Invitrogen, Zug, Switzerland). In most
of the experiments, the HC11 cells were starved in 0.03%
FCS/RPMI without EGF. To obtain HC11 cells stably
expressing FL-Mkl1-RFP (HC11-FL), mutB1-Mkl1-RFP
(HC11-mutB1), ΔSAP-Mkl1-RFP (HC11-ΔSAP) or RFP
alone (HC11-empty vector), cells were transfected using
FuGENE® 6 (Roche, Basel, Switzerland) and selected
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with Geneticin (1 mg/ml; Roche) for 14 days before
fluorescence-activated cell sorting (FACS) of RFP-positive
cells on aVantage SE (Becton Dickinson, Basel, Switzerland).
Cell viability of the four HC11 cell strains was assessed by
the CellTiter-Blue viability assay (Promega, Duebendorf,
Switzerland).

Cell proliferation assay
Proliferation rates of the HC11 cell strains were determined
using BrdU incorporation assay (Roche). After 24 h of star-
vation, cells were plated in triplicate on Black 96-well mi-
crotiter plates (PerkinElmer, Schwerzenbach, Switzerland)
at 5 × 103 cells/well in 3% FCS/RPMI and allowed to pro-
liferate for 0, 24, 48, 72 and 96 h before labeling with BrdU
for 2 h. BrdU incorporation into newly synthesized DNA
was determined according to the manufacturer’s protocol
using a Luminometer Mithras LB940 (Berthold Technolo-
gies, Regensdorf, Switzerland). Experimental values were
normalized to the values of HC11-ΔSAP cells at the time
point 0. Data represent means ± SD from three independ-
ent experiments.

Cell migration assay
Cell migration was assayed using transwell polycarbonate
membrane inserts (6.5 mm; Corning, Amsterdam, The
Netherlands) with 8 μm pores as described [79]. After
24 h of starvation, 5 × 104 cells were plated in the top in-
sert chamber with 100 μl serum-free RPMI. The lower
chamber was filled with 600 μl 10% FCS/RPMI. Cells were
allowed to migrate across the filter for 22 h at 37°C before
fixation and crystal violet-staining. Images of duplicate in-
serts were acquired on a Nikon Eclipse E600 using 10×
magnification and a color CCD camera. Migration was
quantified by measuring the area covered by migrated cells
using the Fiji distribution of ImageJ [80]. Data represent
means ± SD from three independent experiments.

Mechanical stimulation of cells
2 × 105 HC11 cells/well were seeded in BioFlex® 6-well
culture plates (Flexcell International, Hillsborough, NC,
USA) coated with either growth factor reduced-Matrigel
(BD Biosciences, Basel, Switzerland) or fibronectin [11].
Cultures were starved for 24 h before applying either
equibiaxial cyclic strain (15%, 0.3 Hz) or static strain
(20%) at 37°C for 1 h using Flexcell FX-4000 (Flexcell
International). Cells cultured under the same conditions
and not exposed to strain were used as a resting control.
After mechanical stimulation, cells were lysed and total
RNA was isolated using the RNeasy Mini Kit (Qiagen,
Basel, Switzerland).

Transcript profiling and bioinformatics analysis
HC11 cell strains stably expressing Mkl1 variants were
starved for 48 h before total RNA was extracted,
converted into labeled cDNA and hybridized to Affy-
metrix GeneChip Mouse Gene 1.0 ST arrays. RMA-
normalized expression values were calculated with the
Affy package from Bioconductor 2.4 [81], and differen-
tially expressed genes were identified using moderated
t-statistics calculated with the empirical Bayes method
as implemented in the Bioconductor limma package
[82]. To be considered as differentially expressed be-
tween HC11-FL and HC11-mutB1 or HC11-ΔSAP
cells, genes had to pass the filters: adjusted P-value ≤
0.01 (with Benjamin-Hochberg false discovery correc-
tion), a minimum absolute linear fold change differ-
ence of 2.0 and a minimum average expression value of
4.0 (log2). Microarray data files are available from the
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/), accession number GSE44907. Using the
above parameters, gene lists of the two contrasts (mutB1/
FL and ΔSAP/FL) were compared resulting in the forma-
tion of three gene groups: SRF-dependent/SAP-independ-
ent, SRF-dependent/SAP-dependent and SRF-independent/
SAP-dependent. The three gene sets were analyzed using
the bioinformatics softwares: 1) IPA (Ingenuity® Systems;
www.ingenuity.com); and 2) GOBO (http://co.bmc.lu.se/
gobo) [59]. In order to use the latter tool, Affymetrix Gene-
Chip Mouse Gene 1.0 ST IDs were mapped to Affymetrix
Human Genome U133A IDs using Biomart for Ensembl
build 66. The module “Gene Set Analysis Tumors” was
used to investigate the expression pattern and to per-
form survival and functional correlation analyses for the
SRF-dependent/SAP-independent and SRF-independent/
SAP-dependent gene sets across 1881 breast cancers char-
acterized by Affymetrix Human Genome U133A arrays.
RNA analyses by qRT-PCR
Total RNA was isolated from HC11 cell strains after
24 h of incubation either in 0.03 or 3% FCS/RPMI.
RNA was reverse transcribed and relative tenascin-C
and c-fos mRNA levels were detected as described
[12,13]. Relative mRNA levels for the genes listed in
Table 1, normalized to Gapdh, were measured using
Platinum® SYBR® Green qPCR SuperMix-UDG with
ROX (Invitrogen) and the primers listed in Additional
file 4: Table S4. Real-time PCR was performed in a Ste-
pOnePlus Real-Time PCR System (Applied Biosystems,
Rotkreuz, Switzerland) using a standard cycling profile.
All samples were run in duplicate. Data were analyzed
by the ΔCt method [83] and presented as fold changes
in mRNA expression levels between HC11-FL and
HC11-ΔSAP cells. RNA from stretched cells was ana-
lyzed by qRT-PCR using the efficiency ΔΔCt method
[84] that included a further normalization to the rest-
ing control. Data represent means ± SD from three in-
dependent experiments.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ingenuity.com
http://co.bmc.lu.se/gobo
http://co.bmc.lu.se/gobo
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Protein analyses by immunoblotting and zymography
After 24 h of starvation, whole-cell extracts from the
three HC11 strains were prepared in RIPA buffer and
immunoblotting was performed as described [12,13].
The following primary antibodies were used: mAb65F13
anti-Mkl1 [12], MTn12 anti-Tnc [85], anti-Wisp1/CCN4
(clone 214203, R&D Systems), anti-Nox4 (NB110-58851,
Novus Biologicals), anti-Vcl (clone hVIN-1, Sigma) and
anti-Gapdh (ab9485, Abcam).
After reaching 90% confluency, HC11 strains were

starved for 48 h before conditioned medium was col-
lected, concentrated and analyzed by zymography as
described [86].
Promoter-reporter assays
The tenascin-C promoter used in this study was described
as TNC 247 bp [13]. Promoters of Acta2 [87] and all SRF-
independent/SAP-dependent genes described in Table 1
were PCR-amplified from genomic DNA and corresponded
to the sequences listed in Additional file 4: Table S5. Each
promoter contained ≥ 500 bp 5′ of the TSS and was cloned
into the pSEAP2-Basic (Clontech, Saint-Germain-en-Laye,
France). For some promoters also 200 bp proximal pro-
moter sequences were cloned as described above. All clones
were verified by DNA sequencing.
HC11 cells in 6-well plates were cotransfected with

1 μg of the SEAP reporter vectors, 1 μg of pcDNA3 vectors
encoding Mkl1 variants [13], and 200 ng of the secreted
luciferase MetLuc vector (Clontech) used to normalize
for transfection efficiency. Cells were cultured in 0.03%
FCS/RPMI for 24 h before enzymatic activity measure-
ments were performed as described [13]. Experimental
values represent averages of three independent experi-
ments, each performed in duplicate.
Statistical analysis
Numerical results were expressed as means ± SD. Stat-
istical analysis was completed using GraphPad InStat
Software, version 3.05. The two-tailed Student’s t test
was used to evaluate differences between two groups.
Multiple comparisons were performed using one-way
analysis of variance (ANOVA). Values of P less than 0.05
were considered statistically significant. Statistics for bio-
informatics analyses is given in figure legends.
Additional files

Additional file 1: Table S1. SRF-dependent/SAP-independent
probeset list.

Additional file 2: Table S2. SRF-dependent/SAP-dependent probeset
list.

Additional file 3: Table S3. SRF-independent/SAP-dependent
probeset list.
Additional file 4: Table S4. Primer sequences. Table S5. Promoter
constructs. Figure S1. Quantification of SAP-dependent Mkl1 target gene
expression using qRT-PCR analysis. Figure S2. Differential expression of
newly discovered Mkl1 target genes in HC11 strains overexpressing either
FL-, mutB1- or ΔSAP-Mkl1 constructs (protein analyses performed by
immunoblotting and zymography). Figure S3. SAP-dependent Mkl1
target genes are correlated with a very high significance (P < 0.00001)
with the two proliferation modules – mitotic checkpoint and mitotic
progression (a functional correlation analysis performed using the GOBO
bioinformatics tool).
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2.1.1 Supplementary information 
 

Additional file for: 

 

“SAP domain-dependent Mkl1 signaling stimulates proliferation and cell 

migration by induction of a distinct gene set indicative of poor prognosis in 

breast cancer patients”  

 

Content: 

Table S4. Primer sequences. 

Table S5. Promoter constructs. 

Figure S1. Quantification of SAP-dependent Mkl1 target gene expression 

using qRT-PCR analysis. 

Figure S2. Differential expression of newly discovered Mkl1 target genes in 

HC11 strains overexpressing either FL-, mutB1- or ΔSAP-Mkl1 constructs 

(protein analyses performed by immunoblotting and zymography). 

Figure S3. SAP-dependent Mkl1 target genes are correlated with a very high 

significance (P < 0.00001) with the two proliferation modules: mitotic 

checkpoint and mitotic progression (a functional correlation analysis 

performed using the GOBO bioinformatics tool). 
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Table S4. Primer Sequences. 
Gene 
symbol 

Gene bank accession 
number 

          Primer pair (fwd/rev) Amplicon 
size (bp) 

Anln NM_028390.3 5’-CAGTGGTGACGCTCTGACAT-3' 
5’-GGGACTGGCCATAACTGAAG-3' 

220 

Nox4 NM_015760.4 5’-CATTCCAGTGGTTTGCAGATT-3' 
5’-AACTGGGTCCACAGCAGAAA-3' 

249 

Adamts16 NM_172053.2 5’-TTGGAGAGAAAGCCAAGCTC-3' 
5’-GGGCCTTCATCACCGTACT-3' 

181 

Krt5 NM_027011.2 5’-CAGGACCTGGTGGAGGACTA-3' 
5’-CCATGGAAAGGACCACAGAT-3' 

241 

p15(PAF) NM_026515.2 5’-GGGAATTCTTCAGGCTGTCC-3' 
5’-CAACAAGCCAATTGGACAAA-3' 

227 

Ass1 NM_007494.3 5’-CACCACATCCCTGGAACTCT-3' 
5’-ATGAGCGTGGTAAAGGATGG-3' 

151 

Cd34 NM_001111059.1 5’-AGGCTGATGCTGGTGCTAGT-3' 
5’-ACTCCAGAGGTGACCAATGC-3' 

235 

Wisp1 NM_018865.2 5’-GCTCTACCACCTGTGGCCTA-3' 
5’-ACAGCCTGCGAGAGTGAAGT-3' 

194 

Mcm6 NM_008567.1 5’-CATGTCCCGCTTTGATCTCT-3' 
5’-CTGGCGGAGACGTTTGTACT-3' 

232 

Car12 NM_178396.4 5’-GTTCGATGAGAGGCTGGTGT-3' 
5’-CCTCAGCCTCCTTCTTGATG-3' 

215 

Htatip2 NM_016865.3 5’-GCTGGATGTCTATGCTTCTGC-3' 
5’-TCAACCTTGGCTTCCACTTC-3' 

243 

Kif26b NM_001161665.1 5’-AAGAAGCAGCCAGGTTCCTC-3' 
5’-AATGCCCAGGTTCTGCATAG-3' 

214 

Lox NM_010728.2 5’-CAGGGATTGAGTCCTGGATG-3' 
5’-ACTGGGAACTGGGCTTCTTT-3' 

242 

Mmp12 NM_008605.3 5’-CATCCCATCTGGTATTCAAGC-3' 
5’-ATGAGCTCCTGCCTCACATC-3' 

249 

Mmp3 NM_010809.1 5’-CATCACCAATGTGCAGCTCT-3' 
5’-CTCCTCGTGCCCTCGTATAG-3' 

248 

Gapdh NM_008084.2 5’-CTTGTGCAGTGCCAGCCTC-3' 
5’-GCCGTGAGTGGAGTCATACTG-3' 

189 
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Table S5. Promoter constructs. 

Promoter Accession number Nucleotide position 

mTNC 247bp NT_039260.7 3336826-3336433 

Wisp1 >500bp NT_039621.7 28008443-28009129 

Wisp1 200bp NT_039621.7 28008801-28009129 

Krt5 >500bp NT_039621.7 62829844-62829249 

Krt5 200bp NT_039621.7 62829551-62829249 

Kif26b >500bp NT_039185.7 22360019-22360523 

Kif26b 200bp NT_039185.7 22360158-22360523 

Htatip2 >500bp NT_039424.7 10657737-10658750 

Htatip2 200bp NT_039424.7 10658493-10658750 

Nox4 >500bp NT_039433.7 4994940-4995484 

Nox4 200bp NT_039433.7 4995123-4995484 

Car12 >500bp NT_039474.7 12981551-12982239 

Car12 200bp NT_039474.7 12981860-12982239 

Adamts16 >500bp NT_039589.7 16522290-16521672 

Adamts16 200bp NT_039589.7 16522032-16521672 

Cd34  >500bp NT_039190.7 2888907-2889501 

Cd34  343bp NT_039190.7 2889159-2889501 

Anln >500bp NT_039472.7 8976459-8975867 

p15(PAF) >500bp NT_039474.7 12158197-12158785 

Mcm6  >500bp NT_078297.6 42913044-42912468 

Ass1 >500bp NT_039206.7 8927941-8928521 

Acta2 562bp NT_039687.7 27442283-27441676 
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Figure S1. Quantification of SAP-dependent Mkl1 target gene expression using qRT-
PCR analysis. Relative mRNA levels for the genes listed in Table 1, normalized to Gapdh, 
were analyzed in HC11 cells stably transfected with either empty vector or with vectors 
encoding FL-, mutB1- or ΔSAP-Mkl1 proteins. The results agreed with the data obtained by 
transcript profiling (Figure 1). Induction of these genes strongly depends on the SAP domain 
of Mkl1 as well as on the B1 domain for Lox, Mmp12 and Mmp3 genes, which belong to the 
SRF-dependent/SAP-dependent gene set. Means ± SD from three independent experiments 
and significant differences to the HC11-FL cells, ***P < 0.001, **P < 0.01, *P < 0.05 are 
shown. 
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Figure S2. Differential expression of newly discovered Mkl1 target genes in HC11 
strains overexpressing either FL-, mutB1- or ΔSAP-Mkl1 constructs. Western blot 
analysis of Tnc, Wisp1 and Nox4, and zymographic analysis for Mmp12/3 show SAP-
dependent protein expression in HC11 epithelial cells. Secreted Tnc protein was detected in 
cell culture media using the MTn12 anti-Tnc antibody, and bovine serum albumin (BSA) from 
the medium visualized by Ponceau S staining served as loading control. Wisp1 and Nox4 
proteins were detected in whole-cell extracts from the three HC11 cell strains, HC11-FL, 
HC11-mutB1 and HC11-ΔSAP using respective antibodies. Anti-Vcl served as loading 
control. Conditioned media from the three HC11 cell strains was subjected to casein or 
gelatin zymography for detection of the matrix metalloproteinases Mmp12/3 and Mmp2, 
respectively. For Mmp2, both an inactive (proMmp2) and active form was detected and 
served as loading control. Relevant bands and molecular weight markers (in kDa) are 
indicated on the right and left of each panel, respectively. 
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Figure S3. SAP-dependent Mkl1 target genes are correlated with a very high 
significance (P < 0.00001) with the two proliferation modules – mitotic checkpoint and 
mitotic progression. Functional correlation of genes in the SRF-dependent/SAP-
independent (left panel) and SRF-independent/SAP-dependent (right panel) gene sets to 
different gene expression modules emulating breast cancer-specific biological processes [33] 
was performed using the GOBO bioinformatics tool. For each gene module and gene in the 
two gene data sets, a Spearman correlation value is computed by comparing the expression 
pattern across all samples for a specific gene to the corresponding rank sum for each sample 
in the specific module. Dots indicate actual correlation values. 
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2.2 Unpublished Results 
 
2.2.1 WISP1 mRNA expression in transformed mouse mammary 

epithelial cell lines 

Isogenic mouse breast cancer cell lines, 67NR, 168FARN, 4T07, 4T1 can 

form primary tumors with equivalent kinetics but differ in their ability to 

metastasize when implanted into the mammary glands of BALB/c mice 

(Aslakson and Miller, 1992) (Figure 1). 67NR cells can form primary tumors, 

but tumor cells do not intravasate and metastasize. 168FARN cells are slightly 

metastatic and can be detected in the lymph nodes, but rarely in other tissues 

such as the lungs. This observation suggest that 168FARN cells can 

disseminate from the primary tumor site and enter the blood stream, however 

they do not extravasate efficiently.  Cells of the 4TO7 line are able to spread 

to the lungs, but cannot form visible metastatic nodules. Moreover, when the 

primary 4T07 tumor is removed, clonogenic cells within the lungs disappear 

suggesting that they fail to colonize distant sites. 4T1 cells are fully metastatic 

and can form macroscopic lung nodules (Aslakson and Miller, 1992). 
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Figure 1: The breast cancer metastasis model comprising four isogenic mouse mammary 
tumor cell lines that differ in their ability to metastasize when implanted into the mammary fat 
pad. (Schematic representations were adapted from Yang et al., 2004 and Ho et al., 2009). 

We analyzed the endogenous WISP1 mRNA levels in the parental isogenic 

tumor cells, 67NR, 168FARN, 4T07 and 4T1. Compared with the non-

metastatic 67NR cells, 168FARN and 4T07 cells exhibit ~6 fold higher WISP1 

mRNA expression. Strikingly, WISP1 mRNA levels in the aggressively 

metastatic 4T1 cells were ~18 fold higher compared with 67NR cells. This 

result shows that the endogenous WISP1 levels correlate with the metastatic 

potential of mouse mammary tumor cell lines (Figure 2).  

 

 

 
Figure 2: qRT-PCR analysis of 
WISP1 mRNA expression in isogenic 
mouse mammary epithelial tumor cell 
lines with different metastatic 
potential. WISP1 mRNA levels in all 
cell lines were normalized towards 
WISP1 mRNA levels in 67NR cells. 
Data represent means ± SD from 
technical replicates 
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2.2.2 Change in WISP1 mRNA expression in response to WNT ligand 
Wnt3A stimulation 
The normal mouse mammary epithelial cell line HC11 is derived from 

COMMA-1D mouse mammary epithelial cells that were isolated from 

mammary tissue of mid-pregnancy Balb/c mice (Danielson et al., 1984; Ball et 

al., 1988). HC11 cells resemble mammary stem cells or progenitor cells and 

possess unlimited proliferation capacity. They are able to differentiate into 

milk-producing cells in vitro  (Ball et al., 1988) and to reconstitute the ductal 

epithelium of a cleared mammary fat pad with myoepithelial, alveolar and 

ductal luminal cells in vivo (Humphreys et al., 1997).  

 

WISP1 is a downstream target of the canonical WNT/β-catenin signaling 

pathway (Pennica et al., 1998; Xu et al., 2000). Hence, stimuli activating the 

WNT/β-catenin signaling pathway are expected to increase the expression of 

the target genes, including WISP1. Activation of WNT/β-catenin signaling is 

linked to different pathologies including fibrosis and cancer (Clevers 2006; 

Konigshoff et al., 2009). Previously, Konigshoff and colleagues have shown 

that either the treatment of mice with the recombinant Wnt3A or induction of 

experimental lung fibrosis in mice result in WNT/β-catenin pathway activation 

(Konigshoff et al., 2009). Furthermore, they reported that WISP1 expression 

in primary alveolar epithelial type II (ATII) cells increases upon Wnt3A 

stimulation in vitro (Konigshoff et al., 2009). 

 

To test whether activation of WNT/β-catenin signaling results in upregulation 

of WISP1 in mouse mammary epithelial cells, we stimulated the cells with 

WNT ligand Wnt3A for 12 and 24 hours. For Wnt3A stimulation, cell culture 

media of L cells stably overexpressing Wnt3A was used. The presence of 

Wnt3A protein was confirmed by immunoblotting (Figure 3A). As seen in 

figure 3B, compared to untreated control cells, WISP1 mRNA levels in HC11 

normal mouse mammary epithelial cells stimulated with Wnt3A didn’t 

increase. On the contrary, we observed a slight decrease of WISP1 

expression in HC11 cells in response to Wnt3A treatment. However, WISP1 

expression in mouse mammary tumor cells did increase upon Wnt3A 

treatment. In 168FARN cells the change in WISP1 mRNA levels after both 12 
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hours and 24 hours treatment was minor. WISP1 expression in 67NR, 4T07 

and 4T1 cells slightly increased after 12 hours of Wnt3A stimulation (less than 

1.5 fold). The upregulation of WISP1 expression was more prominent after 24 

hours of Wnt3A treatment (1.5 fold for 67NR cells, more than 2 fold for 4T07 

cells and 2 fold for 4T1 cells). Thus, although we could not observe activation 

of WNT/β-catenin signaling and subsequent upregulation of the target gene 

WISP1 in normal mammary epithelial cells, most of the mammary tumor cells 

(3 out of 4) responded to WNT ligand treatment by increased WISP1 

expression.  

 

 
 

Figure 3: Change in WISP1 mRNA expression in response to WNT ligand Wnt3A stimulation. 
A) Immunoblot with anti-Wnt3A antibody of Wnt3A in L Wnt3A cell culture medium and 
control cell medium. Samples were run on a 10 % SDS-PAGE gel. B) Change in WISP1 
mRNA expression in response to Wnt3A treatment for 12 hours and 24 hours. mRNA 
expression levels were normalized towards the WISP1 mRNA expression in untreated cells. 
Data represent means ± SD from technical replicates.  
 

2.2.3 WISP1 mRNA expression in tumors growing in pre-irradiated 
stroma versus non-irradiated control stroma  

It was previously shown that the expression of CYR61/CCN1, another CCN 

family member is elevated in cell lines derived from subcutaneous tumors 

grown in irradiated mice compared with the cell lines derived from tumors 

grown in non-irradiated mice (Monnier et al., 2008). In an orthotopic breast 
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cancer model tumors growing in pre-irradiated mammary tissue were more 

invasive compared with control tumors (Kuonen et al., 2012a). Furthermore, 

WNT/β-catenin pathway can be aberrantly activated by irradiation exposure, 

resulting in the transcription of β-catenin target genes, including WISP1 (Kim 

et al., 2012). WISP1 is known to be involved in the development of 

radioresistance in esophageal carcinoma cells (Li et al., 2014). To investigate 

whether irradiation of the mammary gland triggers WISP1 expression in mice, 

we analyzed WISP1 mRNA levels in tumors growing either in pre-irradiated 

mammary gland or in untreated tissue. Tumors were initiated by the injection 

of 4T1 mouse mammary tumor cells. WISP1 mRNA levels within the tissue 

homogenates consisting of 4T1 tumors and the tumor stroma were measured. 

As seen in Figure 4, WISP1 mRNA expression in tumors growing in pre-

irradiated mammary glands (IRR_4T1) did not change compared with tumors 

growing in non-irradiated stroma (4T1).  Samples were derived from 8 

different animals per group (pre-irradiated versus non-irradiated). Especially 

for the pre-irradiated group of mice, we observed a high variablility between 

animals resulting in a high standard deviation (Figure 4B).  

 
 
Figure 4: qRT-PCR analysis of WISP1 mRNA expression in tumors growing in pre-irradiated 
stroma versus non-irradiated control stroma. WISP1 expression is normalized to GAPDH in 
tumor tissue homogenates. Primary tumors were initiated by the injection of 4T1 cells into the 
mammary gland of mice. Before injection, the mammary gland was locally irradiated 
(IRR_4T1) or not treated (4T1). A) Each bar represents the mean WISP1 mRNA level ± SD 
from technical replicates within the sample isolated from one animal. There are 8 animals/ 
group. B) Average WISP1 mRNA expression in tumors grown in pre-irradiated stroma versus 
control stroma. Values were normalized towards non-irradiated sample values. Data 
represent means ± SD from 8 samples.    
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2.2.4 WISP1 mRNA expression in pre-irradiated mammary tissue versus 
non-irradiated control tissue 
In many cancers and in WNT1 transgenic mice, WISP1 is localized to the 

tumor stroma surrounding the cancer cells (Gurbuz and Chiquet-Ehrismann, 

2014, submitted). To exclude the possibility that the tumor cells containing low 

levels of WISP1 dominate the stroma and veil the change in WISP1 

expression upon irradiation, we decided to test WISP1 mRNA levels in normal 

mammary gland tissue without the injection of tumor cells. WISP1 mRNA 

levels within the mammary tissue homogenates were measured and 

compared with untreated control tissue. Figure 5 shows a statistically 

significant increase in WISP1 mRNA expression (~1.5 fold) in pre-irradiated 

mammary glands (IRR) compared with non-irradiated tissue (Non_IRR).  

Samples were derived from 8 different animals per group (pre-irradiated 

versus non-irradiated).  

 
 
Figure 5: qRT-PCR analysis of WISP1 mRNA expression in pre-irradiated mammary tissue 
versus non-irradiated control tissue. WISP1 expression is normalized to GAPDH in tissue 
homogenates. The normal mammary gland was locally irradiated (IRR) or not treated 
(Non_IRR). A) Each bar represents the mean WISP1 mRNA level ± SD from technical 
replicates within the sample isolated from one animal. There are 8 animals/ group. B) 
Average WISP1 mRNA expression in tumors grown in pre-irradiated tissue versus control 
tissue. Values were normalized towards non-irradiated sample values. Data represent means 
± SD from 8 samples. t-test revealed a statistically significant difference between the input 
groups (P = 0.042). 
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2.2.5 Generation of cell lines stably overexpressing WISP1 
The positive correlation between the WISP1 mRNA expression and the 

metastatic potential of mouse mammary tumor cells, as well as differential 

WISP1 expression between tumor tissue and normal tissue (Gurbuz and 

Chiquet-Ehrismann, 2014, submitted) prompted us to investigate the 

mechanism of action of WISP1 in a tumor context. We attempted to generate 

mouse mammary epithelial cell lines, HC11 and 4T1 stably overexpressing 

WISP1 to study the effect of increased WISP1 expression on cell behavior in 

vitro and on primary tumor growth and lung metastasis in vivo, respectively. 

By retroviral gene transfer, we introduced a WISP1 gene into the cells. After 

stable selection with relevant antibiotics, we analyzed the protein expression 

by immunofluorescence (IF, Figure 6A) and by immunoblotting (IB, Figure 

6B). In IF staining we could observe a low WISP1 protein expression in the 

majority of stable HC11 cells, while almost no WISP1 expression was 

detected in 4T1 cells. IB confirmed WISP1 expression in HC11 cells, but no 

WISP1 protein was detected in the cell culture media.  

 

 
 
Figure 6: WISP1 protein expression in HC11 and 4T1 cells stably transfected with either 
pQC-Neo (control) or with pQC-WISP1-Neo. A) Immunofluorence staining of intracellular 
WISP1 with anti-myc antibody. B) Immunoblot of intracellular (total cell lysate) and secreted 
(cell culture medium) WISP1 with anti-myc antibody. Samples were run on a 10 % SDS-
PAGE gel. Intracellular WISP1 in COS-7 cells transiently transfected with pCMV6-WISP1 was 
used as positive control. Ponceau S staining of the membrane was used to visualize the BSA 
from the medium as loading control. Molecular weight marker (kDa) is labeled on the left.  
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For the purification of WISP1 protein, we were interested in generating 

mammalian cell lines that express a HIS-tagged variant of WISP1 protein. Our 

aim was to purify the HIS-tagged protein from the cell culture medium of cells 

stably overexpressing WISP1 and to use this recombinant protein either in cell 

functional assays or for antibody production. Published studies suggest that 

WISP1 is involved in both autocrine and paracrine signaling (for review see 

Gurbuz and Chiquet-Ehrismann, 2014, submitted). To test whether these two 

WISP1 signaling mechanisms have different roles in cellular function, we 

decided to compare the effects of endogenous and exogenous proteins. For 

this, in addition to cell lines overexpressing WISP1, we produced recombinant 

WISP1 that could be use as exogenous protein in cell functional assays. It 

was previously shown that overexpression of WISP1 in mammalian cells and 

external addition of the recombinant protein produced in E.coli, had different 

biological effects on cells (Inkson et al., 2008; discussed in Gurbuz and 

Chiquet-Ehrismann, 2014, submitted). Considering the role of post-

translational modifications on protein function we decided to use mammalian 

cells for the expression of the protein.  

 

We attempted to generate EBNA-293 and COS-7 cells stably overexpressing 

WISP1. The human embryonic kidney HEK293-EBNA cells constitutively 

express the Epstein Barr Virus protein EBNA-1, allowing episomal replication 

of the pCEP-Pu vector (Yates et al., 1985; Young et al., 1988). The COS-7 

cell line was derived from CV-1 kidney cells of the African Green Monkey, 

Cercopithecus aethiops through transformation with the Simian Vacuolating 

Virus 40 (Gluzman 1981). We introduced the HIS-tagged WISP1 gene into the 

two cell lines. After stable selection with relevant antibiotics, we analyzed the 

protein expression by IF (Figure 7A) and by IB (Figure 7B). IF staining 

showed that a high percentage of both EBNA-293 and COS-7 cells were 

expressing WISP1 protein. IB of WISP1 in lysates of EBNA-293 and COS-7 

cells confirmed the protein expression. The cell culture medium of COS-7 

cells was positive for WISP1 protein expression, and the size of the secreted 

protein was larger than the intracellular form (discussed in chapter 2.2.6).  
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No secreted protein was detected in the cell culture medium of EBNA-293 

cells. To test whether EBNA-293 cells were not able to secrete WISP1 or the 

secreted protein was below the detection limit by IB, we precipicated the 

proteins in the EBNA-293 cell culture medium with TCA (Figure 7B). Upon 

TCA precipitation, we were able to detect secreted WISP1 in EBNA-293 cells. 

Since WISP1 protein concentration in the cell culture medium of EBNA-293 

cells was low, we decided to use COS-7 cells for recombinant protein 

expression and subsequent protein purification.  

 

 
 
 
Figure 7: WISP1 protein expression in EBNA-293 and COS-7 cells stably transfected with 
pCEP-Pu-WISP1-HIS. A) Immunofluorence staining of intracellular WISP1 with anti-myc 
antibody. B) Immunoblot of intracellular (total cell lysate) and secreted (cell culture medium) 
WISP1 with anti-myc antibody. Samples were run on a 10 % SDS-PAGE gel. To analyze the 
presence of secreted WISP1 in EBNA-293-WISP1 cell culture, proteins were precipicated 
with TCA. For total cell lysates vinculin (116 kDa), for cell culture media BSA (70 kDa) stained 
with Ponceau S serves as loading controls. Molecular weight marker (kDa) is labeled on the 
left.  
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2.2.6 WISP1 is a glycosylated protein 
IB of intracellular and secreted WISP1 showed that the secreted form of the 

protein has a higher molecular weight (~65 kDa) compared to the intracellular 

form (~52 kDa), and that the observed molecular weights are different than 

the predicted molecular weights (predicted molecular weight of intracellular 

WISP1: 40 kDa, predicted molecular weight of secreted WISP1: 38 kDa) 

(Figure 8A). This observation prompted us to analyze the post-translational 

modification status of WISP1.  

 

In 1998 Pennica et al., reported for the first time that WISP1 has four potential 

N-linked glycosylation sites. Later on, different studies showed that WISP1 is 

post-translationally modified and that these modifications affect its biological 

function (Gurbuz and Chiquet-Ehrismann, 2014, submitted). Furthermore, 

experimentally it was proven that other CCN proteins, CCN2/CTGF and 

CCN3/NOV, are N-glycosylated (Bohr et al., 2010). Inkson et al. (2008) 

observed that total cell lysates from hBMSC reveal expression of a WISP1 

protein with a larger molecular weight than predicted, and larger than that of 

the recombinant WISP1 (human, prepared in E.coli). 

 

The in silico prediction of potential N-Glycosylation sites on the WISP1 protein 

sequence is shown in figure 8B. In order to confirm the prediction, we N-

deglycosylated the protein by using PNGase F (Figure 8C). PNGase F is an 

amidase that cleaves between the innermost GlcNAc and asparagine 

residues and removes high mannose, hybrid and complex oligosaccharides 

from N-linked glycoproteins (Maley et al., 1989). PNGase F treatment resulted 

in a shift of the protein band of both intracellular and secreted WISP1. This 

result shows that both forms of WISP1 are N-glycosylated. However the 

secreted WISP1 must undergo additional post-translational modifications, 

possibly other types of complex glycosylations, which cannot be removed by 

PNGase F treatment.  
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Figure 8: WISP1 is a N-glycosylated protein. A) Immunoblot with anti-myc antibody of 
intracellular (total cell lysate) and secreted (cell culture media) WISP1 in COS-7 cells 
transiently transfected  with pCMV6-WISP1. Samples were run on a 10 % SDS-PAGE gel. 
Ponceau S staining of the membrane was used to visualize the BSA from the medium as 
loading control. Molecular weight marker (kDa) is labeled on the left. Secreted WISP1 has a 
higher molecular weight than the intracellular WISP1. B) N-glycosylation sites within WISP1 
protein sequence were predicted using NetNGlyc 1.0 server. Xaa-Ser/Thr sequons are 
highlighted in blue. Asparagines predicted to be N-glycosylated are highlighted in red. Below, 
N-glycosylation site prediction is represented by a graph. C) Immunoblot as explained in A. 
For deglycosylation, protein samples (total cell lysate and cell culture medium) were treated 
with PNGase F. RNase B, positive deglycosylation control, was stained with Coomassie Blue 
dye. All samples were run on a 12.5 % SDS-PAGE gel. Both intracellular and secreted WISP1 
are N-glycosylated.  
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2.2.7 HC11 cells stably overexpressing WISP1 show distinct proliferation 
rates and migration behaviors  
To analyze the effect of WISP1 on cell behavior, we used HC11 cells stably 

overexpressing WISP1. Since WISP1 is known to have a function in cancer 

(Gurbuz and Chiquet-Ehrismann, 2014, submitted), we decided to analyze 

two main cell functions important for cancer progression: proliferation and cell 

migration. An HC11 cell strain stably transfected with an empty vector 

expressing only endogenous WISP1 served as a negative control in these 

studies. The proliferation rates of HC11 cells were analyzed using a 5-bromo-

2′-deoxyuridine (BrdU) incorporation assay. The incorporated BrdU was 

measured at 24, 48 and 72 hours after plating. Compared with empty vector-

transfected control HC11 cells, there was an increase in BrdU incorporation in 

HC11-WISP1 cells over the entire time period tested (Figure 9A). The 

difference in cell growth was not due to decreased cell death rate in HC11-

WISP1 cells, as we have not observed any changes in cell viability (Figure 

9B). To investigate cell migration, we used wound healing scratch assays. 

After 12 hours, we did not observe any major difference in wound closure rate 

(Figure 9C). However, to close the gap, HC11-WISP1 cells seemed to exhibit 

a different cell locomotion mechanism compared with the control cell line. 

Whereas HC11-WISP1 cells migrated collectively as continuous sheets in a 

sliding fashion, HC11-empty cells near the wound margin crawled as 

individual cells. In conclusion, overexpression of WISP1 protein in HC11 cells 

led to an increase in cell proliferation and changed the mechanism of cell 

motility without affecting cell viability.  
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Figure 9: HC11 cells stably overexpressing WISP1 show distinct proliferation rates and 
migration behaviors. WISP1 does not affect HC11 cell viability. A) Proliferation rates of HC11 
cells were assessed by BrdU incorporation into newly synthesized DNA at 24, 48 and 72 
hours. Each line represents the mean BrdU incorporation ± SD from technical replicates. B) 
The viability of HC11 cells was analyzed by CellTiter-Blue® assay. The fluorescent signal is 
proportional to the number of viable cells. No change in cell viability was observed upon 
WISP1 overexpression. Each line represents the mean fluorescence value ± SD from 
technical replicates. C) HC11 cell migration was evaluated by wound healing scratch assay. 
After 12 hours of incubation, the images of cells infiltrating the scratch were recorded.   
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2.2.8 COS-7 cells stably overexpressing WISP1 show distinct 
proliferation rates and migration behaviors 
To analyze the role of WISP1 in cell proliferation and migration, in addition to 

mouse mammary epithelial HC11 cells, we used COS-7 cells stably 

overexpressing the HIS-tagged variant of WISP1. Although COS-7 cells are 

not frequently used in cell behavior assays, we decided to use our COS-7-

WISP1 cell line, because these cells had a high intracellular WISP1 protein 

expression level and were able to secrete a reasonable amount of protein in 

the cell culture medium (Figure 7B). Parental COS-7 cells served as negative 

controls in these studies. As for HC11 cells, the proliferation rates of COS-7 

cells were analyzed using BrdU incorporation assay. The incorporated BrdU 

was measured at 24, 48 and 72 hours. Compared with parental control COS-7 

cells, there was a decrease in BrdU incorporation in COS-7-WISP1 cells over 

the entire time period tested (Figure 10A). The difference in cell growth was 

not due to increased cell death rate in COS-7-WISP1 cells, as we have not 

observed any changes in cell viability (Figure 10B). To analyze cell motility, 

we used wound healing scratch assay as well as Boyden Chamber Migration 

assay. Wound healing assay showed that COS-7 cells stably overexpressing 

WISP1 were faster in closing the gap compared with the wild-type controls 

(Figure 10C). On the other hand, in Boyden Chamber Migration assay we 

observed that the overexpression of WISP1 downregulated COS-7 cell 

migration by ~1.4 fold compared with endogenous WISP1 expression in 

parental COS-7 cells (Figure 10D). In summary, the effect of WISP1 on cell 

proliferation seems to be cell type dependent as opposite effects were 

observed in HC11 and COS-7 cells. Moreover, the role of WISP1 in cell 

motility varies depending on the assay used. WISP1 overexpression does not 

have an impact on HC11 or COS-7 cell viability. 
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Figure 10: COS-7 cells stably overexpressing WISP1 show distinct proliferation rates and 
migration behaviors. WISP1 does not affect COS-7 cell viability. A) Proliferation rates of COS-
7 cells were assessed by BrdU incorporation into newly synthesized DNA at 24, 48 and 72 
hours. Each line represents the mean BrdU incorporation ± SD from technical replicates. B) 
The viability of COS-7 cells was analyzed by CellTiter-Blue® assay. The fluorescent signal is 
proportional to the number of viable cells. No change in cell viabiliy was observed upon 
WISP1 overexpression. Each line represents the mean fluorescence value ± SD from 
technical replicates. C) COS-7 cell migration was evaluated by wound healing scratch assay 
(C) and Boyden Chamber migration assay using filters with 8 µm pore size (D). C) After 12 
hours of incubation, the images of cells infiltrating the scratch were recorded. D) 
Quantification of COS-7 cell migration towards 10% FCS was measured by the area on the 
lower side of the filter covered with cells. Values were normalized towards the total area 
covered by migrated COS-7-WT cells. Each bar represents the mean area ± SD from 
technical replicates. Representative photos of fixed and stained cells that have migrated to 
the lower side of the filter are shown above the bar graph.  
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2.2.9 Purification of WISP1 protein and polyclonal anti-WISP1 antiserum 
production 
So far, in our experiments we used commercially available WISP1 antibodies 

that were generated against a peptide sequence of WISP1 (Gurbuz et al., 

2014). However in immunoblotting, we observed non-specific binding of the 

commercial antibodies. For immunostaining a specific antibody without cross-

reactivity with other proteins is needed. Thus, we decided to produce antisera 

against the entire protein.  

 

Recombinant WISP1 was purified from the cell culture medium of COS-7 cells 

stably overexpressing the HIS-tagged variant of WISP1 (Figure 11). 2 rabbits, 

SY6205 and SY6206, were immunized with the soluble recombinant WISP1 

protein and sera from the animals containing the polyclonal anti-WISP1 

antibodies, SAB-SY6205 and SAB-SY6206, were obtained. The quality of the 

anti-WISP1 antibodies in the rabbit sera were tested by IF and IB (Figure 12). 

Large bleed samples of the anti-WISP1 antibodies were compared with the 

anti-myc antibody, as well as with the pre-immune sera (Figures 12A and 

12C). To find the optimal antibody concentration, different dilutions were 

tested. Pre-immune test bleed served as a negative control since it was 

collected from the same animal that was used to generate the antibody before 

immunization. The large test bleed was used to monitor the antibody titer. The 

IB showed that both antibodies were able to recognize the intracellular WISP1 

at ~52 kDa in cell lysates of WISP1-transfected cells. The pre-immune sera 

PPI-SY6205 and PPI-SY6206 did not bind to WISP1, which proves the 

specificity of the antibodies. SAB-SY6206 showed a higher affinity towards 

WISP1 than SAB-SY6205; even 1:2000 dilution of the antibody was able to 

detect the protein. For both antibodies 1:1000 seemed to be the optimum 

concentration. Although both antibodies recognized WISP1, they also showed 

cross-reactivity towards an unspecific protein at ~45 kDa. To test whether the 

antibodies recognize secreted WISP1 in the cell culture medium we 

performed another IB. This time, we incubated the entire membrane with anti-

WISP1 antibodies diluted 1:1000 to test whether they bind to additional 

unspecific proteins (Figures 12B and 12D). Both SAB-SY6205 and SAB-

SY6206 were able to recognize the secreted WISP1 at ~65 kDa in cell culture 
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media of WISP1-transfected cells. In addition to the unspecific protein 

detected at ~45 kDa, another cross-reactivity was observed at ~250 kDa. The 

unspecific binding at ~250 kDa was weaker for SAB-SY6205 than for SAB-

SY6206. Mass Spectrometry Analysis showed that the non-specific proteins 

recognized by the anti-WISP1 antibodies at ~45 kDa and ~250 kDa were 

plasminogen activator inhibitor type 1 (PAI1) and fibronectin (FN), 

respectively. Last but not least, SAB-SY6206 anti-WISP1 antibody was tested 

in immunofluorescence staining and compared with anti-myc antibody (Figure 

12E). SAB-SY6206 was able to detect intracellular WISP1 in 67NR cells 

transiently transfected with WISP1.  

 

 
 

Figure 11: Coomassie-stained gel of protein purification steps. HIS-tagged, secreted WISP1 
is purified from the serum free cell culture medium of COS-7 cells stably transfected with 
pCEP-Pu-WISP1-HIS. Soluble proteins were precipitated with ammonium sulfate, dialyzed 
against PBS and affinity purified on Ni-NTA resin. WISP1 was eluted with imidazole. Eluted 
proteins (24 µl/ well) were run on a 10 % SDS-PAGE gel and stained with Coomassie Blue 
dye. WISP1 is indicated by arrowhead. Molecular weight marker (kDa) is labeled on the left. 
The eluates marked with the red rectangle were used as the antigens for the polyclonal 
antibody production.  
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Figure 12: Characterization of anti-WISP1 rabbit polyclonal antibodies. 2 Rabbits (SY6205 
and SY6206) were immunized with the recombinant WISP1 produced in COS-7 cells. Pre-
immune serum (PPI, Day: 0), large bleed (GP, Day: 21) and final bleed (SAB, Day: 28) were 
tested. Immunoblot of intracellular (total cell lysate) WISP1 with anti-myc antibody (1:100), 
PPI-SY6205 (1:100), GP-SY6205 (1:100), SAB-SY6205 (1:100-1:2000) (A) and with anti-myc 
antibody (1:100), PPI-SY6206 (1:100), GP-SY6206 (1:100), SAB-SY6206 (1:100-1:2000) (C). 
Total cell lysates isolated from parental COS-7 cells or from COS-7 cells transiently 
transfected with pCMV6-WISP1 were run on a 10 % SDS-PAGE gel. Vinculin (116 kDa) 
served as loading control. Immunoblot of intracellular (total cell lysate) and secreted (cell 
culture medium) WISP1 with SAB-SY6205 (B) and SAB-SY6206 (D) antibodies. Samples 
were run on a 7.5 % SDS-PAGE gel. The locations of FN (fibronectin, 263 kDa, human), 
WISP1 (secreted and intracellular, mouse) PAI1 (plasminogen activator inhibitor type 1, 45 
kDa, human) are indicated. Molecular weight marker (kDa) is labeled on the left side of the 
blots. E) Immunofluorescence staining of intracellular WISP1 in 67NR cells transiently 
transfected with with pCMV6-WISP1. 67NR cells were stained with anti-myc primary antibody 
(1:20) and Alexa488-labeled secondary antibody (1:1000) or with SAB-SY6206 primary 
antibody (1:1000) and Alexa568-labeled secondary antibody (1:1000).  
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CHAPTER 3: DISCUSSION AND FUTURE DIRECTIONS 
 
Previous work from our group revealed that Megakaryoblastic leukemia 1 

(MKL1) acts as a bona fide transcription factor in mechanotransduction and 

mediates serum response factor (SRF)-independent, SAP-domain dependent 

transcription of cyclic stretch-induced tenascin-C (TNC) expression 

(Asparuhova et al., 2011). We were interested in identifying additional MKL1 

target genes co-regulated with TNC and to analyze whether such genes could 

be implicated in cancer progression.  

 

In the present work we discovered SRF-independent, SAP domain-dependent 

MKL1 target genes that are implicated in cell proliferation and motility, and 

found that these genes are elevated in breast cancer patients with poor 

survival (Discussed in detail in Gurbuz et al. 2014). From this group of genes 

WNT1 inducible signaling pathway protein 1 (WISP1) caught our interest. Xu 

et al. (2000) reported that WISP1 is a β-catenin responsive oncogene. Like 

TNC, WISP1 is transiently expressed during embryonic development, wound 

healing and tissue remodeling, and its aberrant expression is associated with 

various pathologies including cancer (Chiquet-Ehrismann and Chiquet, 2003; 

Gurbuz and Chiquet-Ehrismann, 2014, submitted). Transcript profiling studies 

available from the Oncomine database revealed increased WISP1 expression 

in many human cancers (Gurbuz and Chiquet-Ehrismann, 2014, submitted). 

Despite of a considerable number of data showing increased WISP1 

expression in cancer, relatively little is known about the mechanistic details of 

its function. Therefore, we focused on the biochemical and cell biological 

characterization of the WISP1 protein, as well as its role in cancer 

progression. 

 

3.1 Cell biological characterization of WISP1 
Yang et al. (2004) hypothesized that the altered expression of a specific group 

of genes causes the metastatic properties of the four isogenic mouse 

mammary tumor cells lines, 67NR, 168FARN, 4T07 and 4T1. They compared 

the transcription profiles of the four tumor cell lines and identified several 

differentially expressed genes. Among these genes, they focused on the 
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transcription factor Twist that was strongly upregulated in 168FARN, 4TO7, 

and 4T1 tumor cells compared to 67NR cells, and investigated its mechanistic 

role in promoting metastasis. When we tested the mRNA levels of WISP1 in 

these four cell lines, we observed the same tendency. Endogenous WISP1 

expression positively correlated with the metastatic potential of the cells. 

Since WISP1 expression increases during cellular processes that require cell 

migration and ECM remodeling (Berschneider and Konigshoff, 2011), we think 

that increased WISP1 levels might play a stimulatory role in tumor invasion 

and metastasis.  

 

As summarized before (chapter 1.1.5), ionizing radiation alters the tissue 

microenvironment and may contribute to tumor progression. Experimental 

tumors growing in pre-irradiated mammary tissue were more metastatic 

compared to tumors growing in normal stroma (Milas et al., 1988; Kuonen et 

al., 2012a). Furthermore, tumor cells isolated from glioblastoma xenografts 

after in vivo ionizing radiation had an activated WNT/β-catenin signaling 

pathway and increased transcription of β-catenin target genes, including 

WISP1 (Kim et al., 2012). WISP1 expression has been associated with tumor 

progression and poor prognosis in patients with many different types of solid 

tumors (Gurbuz and Chiquet-Ehrismann, 2014, submitted). Furthermore, as 

mentioned in the previous paragraph, we observed a positive correlation 

between the metastatic potential of mouse mammary tumor cell lines and 

WISP1 expression. Considering the contribution of irradiation to metastasis, 

we hypothesized that WISP1 might be one of the players mediating this effect. 

To investigate whether irradiation triggers WISP1 expression in an orthotopic 

breast cancer model, we analyzed WISP1 mRNA levels in 4T1 tumors 

growing either in pre-irradiated mammary gland or in untreated tissue. When 

we analyzed tumor tissue homogenates, we could not detect any significant 

changes in WISP1 expression upon irradiation. However, since WISP1 is 

predominantly expressed within the stroma rather than the epithelial tumor 

cells (Gurbuz and Chiquet-Ehrismann, 2014, submitted), we were interested 

in seeing the radiation-induced response of the normal mammary gland 

without injection of tumor cells. For this, we tested the WISP1 expression in 

normal mammary gland tissue without tumors and observed a significant 



	
   76	
  

increase in WISP1 expression upon irradiation. Future studies that uncover 

the mechanism of how radiation activates WISP1 expression and how this 

activation contributes to tumor metastasis are warranted.  

 

To study the cell biological function of WISP1 in cell proliferation and 

migration in vitro and in primary tumor growth and lung metastasis in vivo, we 

decided to generate cell lines stably overexpressing WISP1. We introduced 

the WISP1 gene into normal HC11 and transformed 4T1 mouse mammary 

epithelial cells and selected for cells that have stably incorporated the plasmid 

into their genomic DNA. Most of the antibiotic-resistant HC11 cells were also 

positive for WISP1 expression, although the level of expression was low. On 

the other hand, almost no WISP1 expression was detected in 4T1 cells. Either 

in the long term 4T1 cells cannot tolerate WISP1 expression and as result 

cells with the resistance gene only but without WISP1 are taking over or in our 

experiments the selective pressure was not strong enough.  

 

The other cell lines generated were EBNA-293 and COS-7 cells stably 

overexpressing WISP1. After selection with antibiotics both cell lines were 

positive for WISP1 expression. However secreted WISP1 was detected in the 

cell culture medium of EBNA-293 cells only after TCA precipitation showing 

that in EBNA-293 cells, the concentration of secreted WISP1 was low. Either 

the cells produced not enough protein, or they were not able to secrete the 

protein efficiently. It is possible that EBNA-293 could only tolerate 

intermediate levels of WISP1. On the other hand, COS-7 cells expressed and 

secreted easily detectable amounts of WISP1 protein. Among all four stable 

cell lines (HC11, 4T1, EBNA-293, COS-7), COS-7 cells exhibited the highest 

amount of intracellular and secreted WISP1 protein within the total cell lysates 

and cell culture medium, respectively. Although, normally the EBNA-293 cell 

line is the most suitable model for recombinant protein expression and 

subsequent protein purification, due to low endogenous secreted proteins 

within the cell culture medium, we could not use this cell line. Hence, for 

protein purification we expanded COS-7 cells that stably overexpress WISP1. 

Nevertheless, the concentration of the recombinant WISP1 was low. This may 

be due to the fact that even COS-7 cell do not produce that large amounts of 
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WISP1 protein. Another possibility is that we lost some protein during the 

purification process. According to the literature, biologically active CCN 

proteins are difficult to purify, presumably because of the high number of 

cysteine residues (Leask and Abraham, 2006; Inkson et al., 2008; Chen and 

Lau, 2009). Using the small amount of protein we had, we performed cell 

migration assays by either direct addition of the recombinant protein to the cell 

culture media or by coating the transwell inserts with the recombinant protein. 

However, we were not able to see any significant difference in cell migration 

compared with the controls (data not shown).  

 

Most of the purified WISP1 was used to immunize two rabbits. We could 

obtain 2 different polyclonal anti-WISP1 antibodies, SAB-SY6205 and SAB-

SY6206. Both SAB-SY6205 and SAB-SY6206 could specifically recognize the 

intracellular and the secreted forms of WISP1 at the expected sizes (~52 kDa 

and ~65 kDa, respectively). However, both antibodies showed cross-reactivity 

with two other proteins, plasminogen activator inhibitor type 1 (PAI1) and 

fibronectin (FN). According to the Mass Spectrometry Analysis, the 

contaminants FN and PAI1 were human proteins. Since human and monkey 

proteins have a high sequence similarity we assume that these proteins 

originate from the COS-7 monkey cells. Nevertheless, since the polyclonal 

WISP1 antibodies recognize one specific band at the right size, only in 

transfected cells, they can be used for immunoblotting. However, due to the 

cross-reactivity with FN and PAI1, they cannot be used in immunostaining as 

is. In the future, we are planning to use the antibodies to analyze WISP1 

protein expression in cancer tissue microarrays. For this, we have to remove 

the cross-reactivity of the antibodies by absorption to FN and PAI1.  

 

Since we could not generate 4T1 cell lines that stably overexpress WISP1, we 

were not able to continue our planned in vivo experiments. Nevertheless, by 

using stable HC11 and COS-7 cell lines we performed cell biological assays. 

We analyzed cell proliferation, migration, and survival, three main cellular 

functions that are frequently deregulated in cancer. First of all, WISP1 had no 

effect on cell survival in both cell lines tested, as we have not observed any 

changes in cell viability upon WISP1 overexpression. Compared with empty 
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vector-transfected control cells, HC11-WISP1 cells showed increased 

proliferation suggesting that endogenous WISP1 expression positively affects 

cell proliferation in HC11 mammary epithelial cells. In support of that, it has 

previously been shown that overexpression of WISP1 induces proliferation of 

human bone marrow stroma cells (Inkson et al., 2008). In contrast to these 

observations, endogenous WISP1 had a negative effect on COS-7 cell 

proliferation as we have observed a decrease in BrdU incorporation in COS-7-

WISP1 cells compared with their parental controls. It is possible that the role 

of WISP1 in cell proliferation depends on the cellular system used. In addition, 

we have to keep in mind that parental COS-7 cells do not serve as the proper 

controls, since they have not been transfected and they have not been treated 

with antibiotics. In the future, we are planning to repeat this proliferation assay 

by using empty vector-transfected control cells.  

 

To test the effect of WISP1 on cell migration, first we performed wound 

healing scratch assays. Although we didn’t observe any major difference in 

the wound closure rate of HC11-WISP1 cells compared to the controls, the 

mode of cell migration seemed different. HC11-WISP1 cells exhibited 

collective, gliding-type migration while HC11-empty cells at the wound edge 

migrated as single units. Cells move either individually or collectively 

depending on the absence or presence of cell-cell junctions (Friedl and Wolf, 

2009). Collective cell migration is involved in tissue regeneration and can 

contribute to metastasis by local invasion (Friedl and Wolf, 2009). Considering 

the role of WISP1 in wound healing, tissue remodeling and tumor progression, 

we can speculate that endogenous WISP1 expression induces single-cell-to-

collective transition and results in a change in the mode of migration by 

enhancing cell-cell adhesions. This needs to be addressed and verified in 

detail in further experiments. In addition it would be interesting to test the 

effect of endogenous WISP1 on cell adhesion.  

 

Unlike HC11 cells, COS-7 cells exhibited a clear difference in wound closure 

rate. COS-7 cells that stably overexpress WISP1 were faster in closing the 

gap compared with the wild-type controls. Intuitively, one would expect that 

the untreated parental cells are more “fit” and move faster compared to the 
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cells that went through transfection and an antibiotic selection process. With 

this in mind we conclude that forced WISP1 expression may indeed contribute 

to undirected cell migration in COS-7 cells. In contrast, in Boyden Chamber 

Migration assay we observed that the overexpression of WISP1 

downregulated COS-7 cell migration compared with parental controls. In line 

with our observation, in a previous study it has been reported that 

overexpression of WISP1 downregulates the motility of H460 and H1299 lung 

cancer cells that were plated in Boyden chambers and induced to migrate 

towards a serum gradient (1.5% FBS) (Soon et al., 2003). There may be 

different reasons for the apparent contradictory results obtained in two cell 

motility assays. First, wound healing scratch assays and Boyden Chamber 

migration assays are two different experimental systems. In the wound 

healing assay random cell motility is analyzed, whereas Boyden Chamber 

migration assay is used to test directed cell motility towards a soluble 

chemoattractant (i.e. serum). Second, COS-7 cells might have different 

modes of migration. If we assume that COS-7-WISP1 cells migrate 

collectively as cohesive multicellular units, we can speculate that the cellular 

aggregates formed cannot get through the pores of the transwell inserts. On 

the other hand, COS-WT cells that migrate individually can easily go through 

the pores. The difference between the migration patterns of COS-7 cells might 

give us a wrong impression about their migration speeds. An additional cell 

motility assay, such as time-lapse microscopy of live cell migration might be 

useful to clarify the role of endogenous WISP1 in HC11 and COS-7 cell 

migration.  

 

In a range of tumors, WISP1 expression is localized to the tumor stroma 

surrounding the epithelial cancer cells (Gurbuz and Chiquet-Ehrismann, 2014, 

submitted). This suggests that WISP1 might be an oncogenic factor that is 

secreted by stromal fibroblasts to stimulate epithelial tumor progression in a 

paracrine manner. It would be interesting to study the effect of paracrine 

WISP1 signaling on cell proliferation and migration in vitro and on primary 

tumor growth and lung metastasis in vivo. For this purpose we are planning to 

generate BalbC-3T3 fibroblasts that stably overexpress WISP1 and to use 
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these stromal cells together with the isogenic mouse mammary tumor cells 

lines, 67NR, 168FARN, 4T07 and 4T1 in in vivo studies.  

 

3.2 Biochemical characterization of WISP1: Post-translational 
modifications  
 

Immunoblots of intracellular and secreted WISP1 showed that the secreted 

form of the protein has a higher molecular weight compared to the intracellular 

form, and that the observed molecular weights are different than the predicted 

molecular weights. The covalent attachment of carbohydrates, glycosylation is 

the most common post-translational protein modification that is conserved 

from bacteria to eukaryotes (Spiro, 2002; Hess et al., 2008; Lommel and 

Strahl, 2009). Various carbohydrate-peptide linkages have been reported that 

increase the functional diversity of the protein (Spiro, 2002). Attached 

carbohydrates can interfere with the cellular localization, turnover and ligand 

interaction capacity of a protein (Lommel and Strahl, 2009). The glycopeptide 

bonds are distributed into five main groups: N-glycosidic bonds, O-glycosidic 

bonds, C-mannosyl bonds, phosphoglycosyl bonds and glypiated bonds 

(Spiro, 2002). Attachment of GlcNAc to asparagine is the most common 

carbohydrate-peptide bond (Spiro, 2002). Studies showed that the 

recombinant CCN2/CTGF and CCN3/NOV are N-glycosylated (Bohr et al., 

2010). Moreover, according to in silico prediction data, WISP1 protein 

sequence possesses 4 potential N-glycosylation sites. By PNGase F 

treatment we could confirm that both the intracellular and secreted WISP1 

proteins are N-glycosylated. However, after N-deglycosylation, the two 

proteins were still different in size. This observation suggests that the 

secreted WISP1 undergoes additional post-translational modifications, which 

cannot be removed by PGNase F treatment. 

 

Hofsteenge et al. showed that thrombospondin type 1 (TSP1) repeats are 

subject to two types of glycosylations: C-mannosylation and O-fucosylation 

(Hofsteenge et al., 2001). TSP1 repeats are found in several secreted or cell-

surface proteins, such as thrombospondins and CCN family members, 

including WISP1 (Hofsteenge et al., 2001; Leonhard-Melief and Haltiwanger, 
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2010; Jun and Lau, 2011). TSP1 repeats contain conserved tryptophan 

residues in a “WXXW” pattern, the recognition motifs for protein C-

mannosylation (Hofsteenge et al., 2001). Analysis of human and mouse 

WISP1 revealed that this recognition motif does not exist in the WISP1 protein 

sequence. In O-glycosylation, sugar residues get attached to an amino acid 

containing a hydroxyl group (e.g. serine, threonine, tyrosine, hydroxyproline, 

and hydroxylysine) (Spiro, 2002; Lommel and Strahl, 2009). TSP1 repeats are 

found to contain an O-linked disaccharide “Glc-Fuc-O” on the threonine or 

serine residues in the sequence “CXX(S/T)CG” (Hofsteenge et al., 2001). We 

could indeed detect this O-fucosylation motif on the mouse (CSX(T)CG) and 

human (CSX(S)CG) WISP1 protein sequence within the TSP1 domain. 

Several other matricellular proteins, including thrombospondins, ADAMTS (A 

Distintegrin And Metalloprotease with Thrombospondin type 1 repeats), and 

CCNs (CCN1/CYR61, CCN2/CTGF, CCN3/NOV, CCN6/WISP3) are reported 

to contain O-fucosylation motifs (Leonhard-Melief and Haltiwanger, 2010). 

Protein fucosylation has been implicated in pathological conditions, such as 

inflammation and cancer, and certain types of fucosylated glycoproteins have 

been used as tumor markers (Miyoshi et al., 2008). Taken together, it would 

be interesting to confirm the O-fucosylation of WISP1 and to investigate the 

role of this particular post-translational modification in a tumor context.  
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CHAPTER 4: APPENDIX  
 
4.1 Experimental Procedures (Unpublished Results) 

 
Cell culture and gene transfers 
Mouse mammary epithelial HC11 cells were grown in RPMI-1640 medium 

supplemented with 10% FCS, 5 µg/ml insulin (Sigma, Buchs, Switzerland) 

and 10 ng/ml epidermal growth factor (EGF; Invitrogen, Zug, Switzerland). 

Isogenic mouse breast cancer cells, 67NR, 168FARN, 4T07 and 4T1, as well 

as human embryonic kidney HEK293-EBNA cells and African Green Monkey 

kidney cells COS-7 were grown in DMEM medium supplemented with 10% 

FCS.  

 
The mammalian expression vector pCMV6-WISP1 (C-terminal Myc and DDK 

Tagged) was purchased from Origene (MR205645, Wisp1 (NM_018865) 

Mouse cDNA ORF Clone, OriGene, Rockville, MD, USA). COS-7 and 67NR 

cells were transfected using FuGENE® 6 (Roche, Basel, Switzerland) and 

jetPEI® DNA transfection reagent (Polyplus), respectively according to the 

manufacturers’ instructions.  

 
To obtain cells stably expressing WISP1, retroviral gene transfer and 

subsequent selection were performed. First, full-length WISP1 cDNA  

(MR205645, OriGene, Rockville, MD, USA) was amplified by PCR adding 

AgeI and PacI restriction sites at the 5’ and 3’ ends, respectively, followed by 

a stop codon at the C-terminus using the following primers: 5′-

ATACCGGTATGAGGTGGCTCCTGCCCTG-3’ (forward primer) and 5’-

ATTTAATTAATTACAGATCCTCTTCTGAGATGAG-3’ (reverse primer). 

During the cDNA amplification the DKK-tag was removed whereas the myc-

tag was conserved. The amplified fragments were subsequently cloned in the 

multiple cloning site II of the bicistronic pQCXIX Retroviral Vector (Clontech 

Laboratories, Mountain View, CA USA) plasmid. The selection marker 

neomycin (Neo) has been previously cloned in the multiple cloning site II of 

pQCXIX vector as described (Asparuhova et al., 2011) resulting in pQCX-

Neo. The packaging cells EcoPack2TM-293 (Cat.No: 631507, Clontech 
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Laboratories, Mountain View, CA USA) were transfected using TransIT®-293 

Transfection Reagent (Mirus Bio LLC., WI,  USA) according to the 

manufacturer’s protocol. The supernatant of EcoPack2TM-293 cells containing 

the virus was collected and used to infect the target 4T1 and HC11 cells. The 

infection was performed as described in the manufacturer’s manual. To obtain 

4T1 and HC11 cells stably expressing WISP1, cells were selected with 

Geneticin (1 mg/ml; Roche). To generate control cell lines, cells were 

transfected with pQCX-Neo vectors that lack the WISP1 gene and were 

selected with Geneticin (1 mg/ml; Roche). 

 

For recombinant protein affinity purification, a polyhistidine-tag was added at 

the C-terminus of the coding sequence of WISP1.  For this, full-length WISP1 

cDNA was amplified by PCR from the mouse WISP1 clone (MR205645, 

OriGene, Rockville, MD, USA) using the following primers: 5′-

TCAGAATTTTGTAATACGACTC-3′  (forward primer) and 5′-

ATGCTAGCTCAGTGATGGTGATGGTGATGCAGATCCTCTTCTGAGATGA

G-3′ (reverse primer). WISP1 was amplified adding NheI restriction site at the 

3’ end, as well as a sequence encoding 6 histidines (CAT-CAC-CAT-CAC-

CAT-CAC) followed by a stop codon at the C-terminus. During the cDNA 

amplification the DKK-tag was removed whereas the myc-tag was conserved. 

The amplified fragments were subsequently cloned into the expression vector 

pCEP-Pu (provided by J. Engel, Biozentrum, Basel, Switzerland). To generate 

cell lines stably overexpressing the HIS-tagged variant of WISP1, HEK293-

EBNA and COS-7 cells were transfected with 3 µg of the expression plasmid 

using jetPEI® DNA transfection reagent (Polyplus). After 24 hours of culture, 

transfected HEK293-EBNA and COS-7 cells were selected with 1 µg/ml 

puromycin and with 4.5 µg/ml puromycin, respectively.   

 

All clones were verified by DNA sequencing. (For vector information, see 

Chapter 4.2, Supplementary Figure 2) 
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Protein purification from mammalian cells and subsequent polyclonal 
antibody production 

COS-7 cells stably overexpressing the HIS-tagged variant of WISP1 were 

expanded in 3-layer flasks. After they reached confluency, cells were washed 

3 times with serum-free DMEM media and new serum-free culture media 

were added to the cells. After 48 hours of incubation, serum free media 

containing recombinant soluble protein were collected and stored at -80°C. 

This media collection procedure was repeated 6 times. Collected media were 

pooled and proteins present in these conditioned media were precipitated with 

ammonium sulfate (440 g/ 1 l medium) and dialyzed against PBS using 12-14 

kDa cut-off dialysis bags (Regenerated cellulose tubular membrane, 

Cellu.Sep®, Uptima). This was followed by affinity purification on Ni-NTA resin 

(Invitrogen). After washing of the column with 20 mM, 50 mM, 100 mM and 

200 mM imidazole, the protein was eluted with 300 mM imidazole. To 

visualize the presence of purified WISP1, protein samples (24 µl/ well) were 

loaded and run on 10% SDS gels. Gels were stained with InstantBlueTM 

(Coomassie Blue® based stain, Expedeon). 

 

Fractions in elution buffer (300 mM Imidazole, 0.9 M NaCl, physiological 

buffer) contained approximately 225 µg of purified WISP1 protein distributed 

among 8 aliquots. These samples were sent to the custom antibody 

production company (Eurogentec SA, Seraing, Belgium). Two rabbits (Animal 

1: SY6205, Animal 2: SY6206) were immunized according to the speedy 28-

day protocol (4 injections, 3 bleeds). Pre-immune serum (PPI, Day: 0), large 

bleed (GP, Day: 21) and final bleed (SAB, Day: 28) were received and used in 

immunoblotting and immunofluorescence assays as described.  

 

Cell Viability Assay  
Different numbers of COS-7 and HC11 cells (between 9×104 and ~3×102) 

were plated in triplicates on 96-well plates in serum free DMEM or RPMI, 

respectively, and were incubated at 37°C for 3 hours. After the addition of 

CellTiter-Blue solution (Promega, Duebendorf, Switzerland), cells were 

incubated for 4 hours and fluorescence was recorded at 560/ 590 nm 
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according to manufacturer’s protocol. Data represent means ± SD from 

technical replicates. 

 

Cell Proliferation Assay 
Proliferation rates of the HC11 and COS-7 cells were determined using the 

chemiluminescent Cell Proliferation ELISA, BrdU incorporation assay 

(Roche). HC11 and COS-7 cells were plated in triplicates on black, clear 

bottom, 96-well microtiter plates (PerkinElmer, Schwerzenbach, Switzerland) 

in 3% FCS/RPMI at 5×103 cells/well and 3×103 cells/well, respectively, were 

incubated at 37°C and allowed to proliferate for 24, 48 and 72 hours at which 

time points cells were labeled with BrdU for 2 h. BrdU incorporation was 

determined according to the manufacturer’s protocol using a Luminometer 

Mithras LB940 (Berthold Technologies, Regensdorf, Switzerland). Data 

represent means ± SD from technical replicates. 

 

Boyden Chamber Cell Migration Assay 
Directed migration of COS-7 cells was analyzed using transwell 

polycarbonate membrane inserts (6.5 mm; Corning, Amsterdam, The 

Netherlands) with 8 µm pore. 3×104 cells were plated in the top insert 

chamber in 100 µl serum-free DMEM. The lower chamber was filled with 600 

µl 10% FCS/DMEM. Cells were incubated at 37°C and were allowed to 

migrate across the transwell filters for 16 hours. Migrated cells were fixed and 

stained with crystal violet. 3 Images/ insert were acquired on a Nikon Eclipse 

E600 using 4X magnification and a color CCD camera. Migration was 

quantified by measuring the area covered by migrated cells using the Fiji 

distribution of ImageJ. Data represent means ± SD from technical replicates. 

 

Wound Healing Scratch Assay 
2×106 COS-7 cells and 3×106 HC11 cells were plated on 60 mm plates in 

DMEM and RPMI medium, respectively, supplemented with 10% FCS, and 

incubated at 37°C overnight. A single uniform scratch was made on the 

confluent monolayer of cells as described by Liang et al., 2007.  The wells 

were then washed with RPMI/ DMEM media to remove the detached cells. 

Before taking the images, fresh media were added to the culture. The first 
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picture was taken at time point “0”.  Migrating cells were allowed to infiltrate 

the scratch for 12 hours and an image at the same position was recorded 

once again. For image acquisition a Nikon light microscope was used.  

 
Wnt3A treatment 
L Wnt-3A (ATCC® CRL-2647TM) cells express and secrete a non-tagged form 

Wnt3A protein (Shibamoto et al., 1998, Willert et al., 2003). L Wnt-3A cells 

and the control parental cell line (ATCC® CRL-2648 TM) were cultured in 10% 

FCS/ DMEM and conditioned media were collected according to the 

manufacturer’s protocol. Parental HC11, 67NR, 168FARN, 4T07 and 4T1 

cells were incubated for 12 and 24 hours in L-Wnt3a or L-control conditioned 

media diluted with fresh 10% FCS/ DMEM (1:2). Following Wnt3A treatment, 

total RNA was isolated and mRNA levels were analyzed as described in 

“Quantitative Reverse-Transcriptase PCR”. 

 

Irradiation of mice 
5- to 7-week old BALB/c female mice (Charles River Laboratories) were used 

as host animals to graft tumors. Primary tumors were initiated by the injection 

of 4T1 cells (5x104 cells/mouse, in 50 µl of 1:5 mixture of Matrigel (BD 

Biosciences) and PBS) into the right fourth mammary gland. Before injection, 

the mammary gland was locally irradiated with a single 20 Gy dose using an 

X-ray unit (Philips, RT 250, Germany), operated at a 125 kV, 20 mA, with a 2-

mm Al filter (Monnier et al., 2008; Kuonen et al., 2012). Mice were sacrificed 

18 days after tumor cell injection. Tissue samples (tumors and mammary 

glands) were collected, flash-frozen in precooled tubes and homogenized in 

RLT buffer using a Dispomix Drive (5x the “40sec grad” profile; Medic Tools). 

Total RNA from tissue homogenates was isolated and mRNA levels were 

analyzed as described in “Quantitative Reverse-Transcriptase PCR”. 

Irradiation, homogenization and RNA isolation procedures are the same for 

the normal mammary glands without the injection of 4T1 tumor cells. All 

animal experiments were approved by the Swiss veterinary authorities. 

 

 

 



	
   87	
  

Quantitative Reverse-Transcriptase PCR 
Using the RNeasy Mini Kit (Qiagen), total RNA was isolated from parental 

67NR, 168FARN, 4T07 and 4T1 cells after overnight incubation in 0.03% 

FCS/DMEM. RNA was reverse transcribed and relative WISP1 mRNA levels 

were detected as described in Asparuhova et al., (2011) and Gurbuz et al., 

(2014). Relative WISP1 mRNA levels normalized to Gapdh, were measured 

using Platinum® SYBR® Green qPCR SuperMix-UDG with ROX (Invitrogen). 

WISP1 primers can be found in Gurbuz et al., (2014) (Chapter 2.1.1, 

Additional file: Table S4). Real-time PCR was performed in StepOnePlus 

Real-Time PCR System (Applied Biosystems, Rotkreuz, Switzerland) using a 

standard cycling profile. All samples were run in duplicate. Endogenous 

WISP1 mRNA expression levels and WISP1 mRNA expression levels upon 

Wnt3a stimulation were analyzed by ΔΔCt method (Livak et al., 2001) that 

included an additional normalization to a control cell line. RNA from pre-

irradiated and normal tumor stroma was analyzed by the ΔCt method 

(Schmittgen et al., 2008). Data represent means ± SD from technical 

replicates. 
 
Protein analyses by Immunoblotting  

After 24 hours of incubation in 0.03% FCS/media, whole-cell extracts were 

prepared by lysis in RIPA buffer and immunoblotting was performed as 

described previously (Maier et al., 2008). HC11 cells were starved in media 

without EGF. Secreted WISP1 protein was detected in cell culture medium. 

Samples were run on 7.5%-12.5% SDS–PAGE and transferred to 

nitrocellulose membrane. Ponceau S (0.1%) staining of the membranes was 

used to visualize the BSA from the medium as loading control. Blots were 

incubated with the following antibodies: anti-WISP1 (diluted in 5% 

milkpowder/ TBS-T, SAB-SY6205 and SAB-SY6206 rabbit polyclonal, 

Eurogentec), anti-myc (diluted 1:100 in 5% milkpowder/ TBS-T, mouse 

monoclonal antibody, Clone: 9E10), anti-Wnt3a (diluted 1:1000 in 5% BSA/ 

TBS-T, C64F2, Rabbit mAb, Cell Signaling), anti-Vcl (diluted 1:1000 in 5% 

milkpowder/ TBS-T, clone hVIN-1, Sigma). Cell lysates of COS-7 cells 

transiently transfected with WISP1 were blotted and probed with the 

polyclonal anti-WISP1 antibody. Proteins were visualized using the primary 
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antibodies listed above followed by horseradish peroxidase-conjugated 

secondary antibodies (1:10,000; MP Biomedicals, France) for detection with 

the ECL Western blotting System (Amersham, Switzerland), and exposed to 

Kodak X-ray film.  

 
Immunofluorescence 
Stable HEKEBNA-WISP1-HIS (5x105 cells), COS-7-WISP1-HIS (3x105 cells), 

HC11-WISP1 (3x105 cells) and 4T1-WISP1 (4x105 cells) cells were plated on 

35×10 mm cell culture dishes with 4 inner rings (Greiner Bio-One GmbH, 

Germany) in 10% FCS supplemented RPMI/ DMEM media. After overnight 

incubation at 37°C, cells were fixed with Zinc Formal-Fixx™ (Thermo Fisher 

Scientific) for 30 minutes, permeabilized with 0.1% Triton X-100 (Fluka, 

Sigma-Aldrich) for 5 minutes and blocked with 3% BSA-PBS for 15 minutes. 

Cells were labeled at room temperature with anti-myc mouse monoclonal 

antibody (diluted 1:20 in blocking solution, Clone: 9E10) for 90 minutes and 

then incubated with Alexa488- or Alexa568-labeled secondary antibodies 

(diluted 1:1000 in blocking solution) for 60 minutes. Cells were mounted in 

Prolong Gold antifade reagent (Invitrogen, Switzerland). Images were taken 

on a Zeiss-Axioscope fluorescent microscope equipped with a 40X objective 

and Hamamatsu ORCA-ER camera. 67NR cells transiently transfected with 

WISP1 (MR205645, Wisp1 (NM_018865) Mouse cDNA ORF Clone, OriGene, 

Rockville, MD, USA) were probed with anti-WISP1 antibody (SY6206 rabbit 

polyclonal, Eurogentec). 24 hours following transfection, 67NR cells were 

fixed and stained as described above.  

 
Deglycosylation with PNGase F 
Total cell lysates and cell culture medium samples of COS-7 cells transiently 

transfected with WISP1 (MR205645, Wisp1 (NM_018865) Mouse cDNA ORF 

Clone, OriGene, Rockville, MD, USA) were treated with Peptide-N-

Glycosidase F (PNGase F, P0704 and P0705, New England Biolabs) 

according to the manufacturer’s protocol. RNase B (P7817S, New England 

Biolabs) was used as a positive control for PNGase F endoglycosidase 

treatment. RNase B is a high mannose glycoprotein that possesses one 

single N-linked glycosylation site  (Plummer and Hirs, 1964). After the SDS-
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PAGE, half of the gel containing RNase B samples was stained with 

InstantBlueTM (Coomassie Blue® based stain, Expedeon). For the other half, 

immunoblotting was performed as described. 

 

Protein concentration by TCA precipitation 
To precipitate proteins within the HEKEBNA-293-WISP1-HIS cell culture 

medium, trichloric acid (TCA) was added to the supernatant sample (Final 

concentration: 10%). The supernatant-TCA mix was vortexed for 10 seconds 

and centrigufed at 4°C at 12000 rpm for 10 minutes. The supernatant was 

removed and 800 µl Aceton (pre-cooled at -20°C) was added. The sample 

was centrifuged at 4°C at 12000 rpm for 5 minutes. The supernatant was 

removed and the pellet was air-dried at room temperature for 60 minutes. 

Finally the pellet was dissolved in sample buffer for SDS-PAGE and 

immunoblotting was performed as described.  

 
Mass Spectrometry Analysis 
To identify the additional proteins that are recognized by our WISP1 

antibodies (SAB-SY6205 and SAB-SY6206 rabbit polyclonal, Eurogentec) 

Mass Spectrometry Analysis was performed. Proteins that were eluted as 

described in “Protein purification from mammalian cells and subsequent 

polyclonal antibody production” were separated via SDS-PAGE. Protein 

bands were excised, washed with 25 mM NH4HCO3 and acetonitrile. Samples 

were reduced with tris(2-carboxyethyl)phosphine (TCEP), alkylated with 

Iodoacetamide and digested with Trypsin overnight at 37 ̊C. Samples were 

acidified with 1 µl 20% Trifluoroacetic acid (TFA) and sonicated for 5 minutes. 

Peptides were analyzed by liquid chromatography mass spectrometry (LTQ 

Orbitrap Velos, Thermo Fisher Scientific). The results were analyzed with 

Scaffold 3.0 (Proteome Software, Portland, Oregon, USA).  

 

Prediction Tools and Bioinformatics Analyses 

Using the Oncomine database (www.oncomine.org) WISP1 expression levels 

in Brain and Central Nervous System Cancer, Breast Cancer, Colorectal 

Cancer, Gastric Cancer, Head and Neck Cancer, Lung Cancer, Pancreatic 
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Cancer and Sarcoma were compared to control samples (Cancer vs. Normal 

differential analysis) according to Human Genome U133 Affymetrix Array data 

(Affymetrix Probe ID: 206796_at). Results are represented with a box plot. 

The thick line represents the median value. Minimal and maximal values are 

individually plotted as small dots. Student's t-test was performed by Oncomine 

to generate p-values. 

 

Using NetNGlyc 1.0 Server (Gupta et al., 2004, 

http://www.cbs.dtu.dk/services/NetNGlyc/) potential N-Glycosylation residues 

of WISP1 protein were determined. The server predicts N-Glycosylation sites 

in human proteins. The graph shows predicted N-glyc sites across the protein 

chain. X-axis represents protein length from N- to C-terminal. A position with a 

potential (vertical lines) crossing the threshold (horizontal line at 0.5) is 

predicted to be glycosylated. 

 

Statistical analysis 
Differences between 2 groups were assessed by Student’s t-test. All analyses 

were carried out using GraphPad InStat 3.05 software (GraphPad, San Diego, 

CA, USA). Values of P < 0.05 were considered significant. 

 

 
 
 

 
 
 
 

 
 
 
 

 
 
 



	
   91	
  

4.2 Supplementary Figures 
 

 

	
  
	
  
Supplementary Figure 1: The Universal Protein Resource (UniProt) protein alignment of the 
six human CCN proteins. Signal peptides at the N-terminus, disulfide bonds and potential 
glycosylation residues were annotated. The tree based on genetic distance is shown. 
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Supplementary Figure 2: Vectors that were used for WISP1 gene transfer. A) pCMV6-
WISP1 (MR205645, WISP1 mouse cDNA ORF Clone, C-terminal Myc and DDK Tagged) was 
used for transient transfections. B) Bicistronic pQCXIX Retroviral Vector. WISP1 gene and 
the selection marker neomycin (Neo) were cloned in the multiple cloning site I (MCS I) and 
multiple cloning site II (MCS II) of the vector, respectively. pQC-Neo-WISP1 was used for 
stable transfections of HC11 and 4T1 mouse mammary epithelial cells. C) pCEP-pu 
expression vector. HIS-tag was added to WISP1 gene and WISP1-HIS was cloned in the 
pCEP-pu vector. pCEP-Pu-WISP1-HIS was used for stable transfection of COS-7 and EBNA-
293 cells and subsequent protein purification from the cell culture medium.  
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