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1. Summary 
 

In mammalian cells, the serine/threonine protein kinase mTOR (mammalian target of rapamycin) is 

present in two complexes, called mTORC1 and mTORC2. While several of the components are 

common to both complexes, raptor and rictor are only associated with mTORC1 or mTORC2, 

respectively. Due to differences in their molecular composition mTORC1 and mTORC2 possess 

distinct functions and properties (Laplante & Sabatini, 2012). For example, mTORC1 but not 

mTORC2 is sensitive to the immunosuppressive drug rapamycin. mTORC1 integrates various 

extracellular signals (e.g. growth factors, energy status or amino acid availability) to promote protein 

synthesis, to regulate lipogenesis and to inhibit autophagy (Shimobayashi & Hall, 2014). In line with 

these features, mTORC1 was found to be essential for cell growth and proliferation. In contrast, 

activation and function of mTORC2 is less well understood. It phosphorylates and activates members 

of the AGC kinase family, including Akt, SGK1 and PKC, suggesting a role in cell 

survival/metabolism and actin cytoskeleton organization.  

In the brain, mTOR signalling has been implicated in several neurodevelopmental and 

neurodegenerative disorders like autism spectrum disorders (ASD) or Huntington’s disease. The 

availability of approved drugs, such as rapamycin and its analogs (called rapalogs), has made the 

mTOR signalling pathway an attractive target for the treatment of those diseases. Although rapamycin 

has been shown to preferentially target mTORC1, prolonged exposure also inhibits mTORC2 

(Sarbassov et al., 2006). Thus, it is important to unravel the specific and the common functions of 

mTORC1 and mTORC2 in the central nervous system. 

In this study, the roles of mTORC1 and mTORC2 were analysed in Purkinje cells by 

conditionally deleting floxed Rptor or Rictor genes, respectively, using an L7/Pcp-2-driven expression 

of the Cre recombinase. The resulting mouse lines are called RAPuKO or RIPuKO, which stands 

for raptor or rictor Purkinje knockout, respectively, and allowed to study the functions of mTORC1 

and mTORC2 in developing and adult Purkinje cells and to investigate the effect on mouse behaviour.  

We found that the phenotypes of RAPuKO and RIPuKO mice only sparsely overlapped but 

mostly differed, which assigns mTORC1 and mTORC2 distinct functions in these neurons. (I) 

mTORC1, but not mTORC2 abrogation in Purkinje cells reduced the social interest of mice. (II) 

Ablation of either mTORC1 or mTORC2 in Purkinje cells was sufficient to cause motor coordination 

deficits, yet, for RAPuKO mice the onset of these deficits was age-dependent while motor deficits of 

RIPuKO mice could be detected at any tested age. (III) The motor phenotype of RIPuKO mice was 

accompanied by developmental aberrations, such as impaired climbing fibre synapse elimination and 

hampered dendritic self-avoidance, while the age-dependent motor phenotype of RAPuKO mice 

seemed to be driven by Purkinje cell degeneration that finally led to apoptosis and a loss of these 

neurons. Vice versa, no signs for deficient climbing fibre elimination or Purkinje cell loss could be 

Page 4 



Nico Angliker                                                                                                                              Summary 

detected for RAPuKO or RIPuKO mice, respectively. (IV) mTORC1 and mTORC2 ablation in 

Purkinje cells both affected neuron morphology in a similar manner, which included multiple primary 

dendrites and a reduction of the neuron size, yet, last was more pronounced for raptor-deficient cells. 

Altogether, both mTORC1 and mTORC2 ablation in Purkinje cells had a pronounced, yet 

distinct, effect on these neurons and the mouse behaviour, unlike in other tissues where inactivation of 

mTORC2 has been reported to result in a minor phenotype in comparison to mTORC1 ablation 

(Bentzinger et al., 2008; Godel et al., 2011).  

While ablation of mTORC1 and mTORC2 in Purkinje cells resulted in mostly distinct 

phenotypes, we found that sustained mTORC1 activation in these neurons by a TSC1 knockout 

(TSCPuKO) caused a phenotype that was similar to the one of RAPuKO mice. In both RAPuKO and 

TSCPuKO mice an age-dependent loss of Purkinje cells due to apoptosis was observed, which was 

paralleled by reactive gliosis. Moreover, in both cases Purkinje cell apoptosis was preceded by signs 

of neurodegeneration in form of axonal swellings that accumulated neurofilaments. Also in terms of 

behaviour similar phenotypes were observed since both knockout mice showed reduced social interest 

(Tsai et al., 2012). These behavioural phenotypes support the growing notion that the cerebellum is 

important for non-motor related functions (Schmahmann et al., 2007; Wang et al., 2014) and that 

mTORC1 plays a role therein. TSC1 knockout in Purkinje cells has been reported to cause also 

repetitive behaviour in mice in addition to abnormal social behaviour and therefore it has been 

suggested that these mice show an autism-like phenotype (Tsai et al., 2012). 

 

In summary, this study provides in vivo data for the importance of mTORC1 and mTORC2 in 

developing and adult Purkinje neurons. We find that both complexes are crucial for Purkinje cells, yet, 

in mostly distinct manners. This finding is in line with the model that mTORC1 and mTORC2 largely 

feed separate downstream effectors, although they share many molecular components. The knowledge 

of the function of mTORC1 and mTORC2 in adult neurons is important for the development of 

treatment options that target the mTOR pathway. This work clearly suggests that such drugs need to 

be highly selective for the different complexes. Moreover, this work highlights that a complete 

inhibition of mTORC1 may have detrimental effects on the survival of neurons and that this may also 

precipitate autism-like pathologies. 
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2. Abbreviations 
 

Aβ    amyloid β 

ADP    adenosine diphosphate 

Akt/PKB   protein kinase B 

ALS     amyotrophic lateral sclerosis  

AMP    adenosine monophosphate 

AMPA    α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid  

AMPK    5’AMP-activated protein kinase 

Arc    activity-regulated cytoskeleton-associated protein 

ASD     autism spectrum disorders 

ATF4    activating transcription factor 4  

ATG7/13/14   autophagy-related protein 7/13/14 

ATP    adenosine triphosphate  

BDNF    brain-derived neurotrophic factor 

CamKII   calcium/calmodulin-dependent protein kinase type II  

CAD    carbamoyl-phosphate synthetase 2, aspartate transcarbamylase,  

    dihydroorotase 

Car8    carbonic anhydrase 8 

Cav2.1    P/Q voltage-dependent calcium channel 

CA1/3    cornu ammonis area 1/3 

CC3    cleaved caspase-3  

CF    climbing fibre 

C57/BL6    C57 black 6 

DAP1    death-associated protein 1 

DCN    deep cerebellar nucleus/nuclei 

DEPTOR   DEP domain-containing mTOR-interacting protein 

DG    diacylglycerol 

DNA    deoxyribonucleic acid 

eEF2k     elongation factor 2 kinase  

EGF    epidermal growth factor 

EGL     external granule layer  

eIF4A/B/C/D/E   eukaryotic translation initiation factor 4A/B/C/D/E  

E-LTP    early-LTP 

EPSC    excitatory postsynaptic current 

ER    endoplasmatic reticulum 

Erk    extracellular-signal related kinase 
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E0, 1, 2, 3…   embryonic day 0, 1, 2, 3… 

Fbw8    F-box/WD repeat-containing protein 8 

FIP200    focal adhesion kinase family-interacting protein of 200 kDa 

FJB     Fluoro-Jade B 

fMRI    functional magnetic resonance imaging 

Fmr1    fragile X mental retardation 1 

FMRP    fragile X mental retardation protein 

FoxO1/3a   forkhead box O1/3a 

GABA    gamma-aminobutyric acid 

GABAAR   GABAA receptor 

GABARAP    GABAAR associated protein  

GAD65    glutamic acid decarboxylase 65 kDa 

GAP    GTPase-activating protein 

GAP-43    growth associated protein 43 

GCL    granule cell layer 

GEF    guanine nucleotide exchange factor  

GFAP    glial fibrillary acidic protein 

GluR2    glutamate receptor 2 

GlyR    glycine receptor  

Grb10    growth factor receptor-bound protein 10 

GRIP     glutamate receptor-interacting protein  

GSK3α/β   glycogen synthase kinase 3α/β 

GTP    guanosine triphosphate 

HFS     high frequency stimulation  

HIF1α    hypoxia inducible factor 1α 

HM     helix motif  

IGF1    insulin-like growth factor 1 

IGL     internal granular layer  

IP3    inositol 1,4,5-trisphosphate  

IPSCs     inhibitory postsynaptic currents 

IRS1    insulin receptor substrate 1  

L    lateral  

L-LTP    late-LTP 

LTD    long-term depression  

LTP    long-term potentiation 

M    medial 

MAM     mitochondria-associated ER membrane 
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MAPK    mitogen-activated protein kinase 

MAP1B   microtubule-associated protein 1B 

MARCKS   myristoylated alanine-rich C-kinase substrate 

mEPSC/mIPSC   miniature excitatory/inhibitory postsynaptic currents  

mGluRs   metabotropic glutamate receptors 

ML    molecular layer 

MLIs     molecular layer interneurons 

mLST8    mammalian lethal with SEC13 protein 8 

MPTP    1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

mRNA    messenger ribonucleic acid 

mSin1    mammalian stress-activated MAP kinase-interacting protein 1 

mTOR    mammalian target of rapamycin 

mTORC1/mTORC2  mammalian TOR complex 1/2  

NDRG1    N-myc downstream regulated 1 

Nedd4-2 neural precursor cell expressed developmentally down-regulated gene 

4-like 

NET     norepinephrine transporter 

NMDA    N-methyl-D-aspartate  

PA    phosphatidic acid 

PCL    Purkinje cell layer 

PDK1    phosphoinositide-dependent kinase-1 

PF    parallel fibre 

PGC1α    PPARγ coactivator 1α  

PICK1    protein-interacting with C kinase 1 

PIKE    PI3K enhancer 

PIKK    phosphatidylinositol-3-kinase-related kinase 

PI3K    phosphatidylinositol-3-kinase 

PI(3)P     phosphatidylinositol-3-phosphate  

PI(3,4,5)P3   phosphatidylinositol-3,4,5-triphosphate 

PKC    protein kinase C 

PLCβ4    phospholipase C β4 

PLD1    phospholipase D1  

PPARγ    peroxisome proliferator-activated receptor γ 

PP1/2A/2B   protein phosphatase 1/2A/2B  

PRAS40   proline-rich Akt substrate 40 kDa 

protor1/2   protein observed with rictor 1/2 

PTEN    phosphatase and tensin homolog 
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P0, 1, 2, 3…   postnatal day 0, 1, 2, 3… 

RAbKO   raptor brain knockout 

Rac1    ras-related C3 botulinum toxin substrate 1 

Ras    rat sarcoma 

raptor    regulatory-associated protein of mTOR 

RAPuKO   raptor Purkinje cell knockout 

REDD1    regulated in development and DNA damage response 1 

Rheb    ras homolog enriched in brain 

rictor    rapamycin-insensitive companion of mTOR 

RIPuKO   rictor Purkinje cell knockout 

RL    rhombic lip 

RNA    ribonucleic acid 

Rsk    ribosomal S6 kinase 

RTKs     receptor tyrosine kinases 

RT-PCR   reverse transcription polymerase chain reaction 

SGK1    serum-and glucocorticoid-induced protein kinase 1 

SREBP    sterol regulatory element-binding protein 

STAT3    signal transducer and activator of transcription 3 

STEP    striatal-enriched protein tyrosine phosphatase 

S6    ribosomal protein S6 

S6K1    S6 kinase 1 

TBC1D7    TBC1 (TRE2–BUB2–CDC16) domain family member 7 

TFEB    transcription factor EB 

Tiam1     T-cell lymphoma invasion and metastasis-inducing protein 1 

TM     turn motif 

TOR    target of rapamycin 

TOR1/2   target of rapamycin 1/2  

TSC1/2    tuberous sclerosis complex 1/2  

TSCPuKO   TSC1 Purkinje cell knockout 

UBCs     unipolar brush cells  

ULK1    unc-51-like kinase 1  

UPR     unfolded protein response  

v-ATPase    vacuolar H+-ATPase  

VGCC    voltage-gated calcium channel  

VZ    ventricular zone 

WIPI2    WD repeat domain phosphoinositide-interacting protein 2 

WM    white matter 
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YY1     Ying Yang 1 

4E-BP1/2   elF4E-binding protein 1/2 

5’TOP mRNA   5’ terminal oligopyrimidine tract containing mRNA 
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3. Introduction 
 

In 1991 the research group of Michael N. Hall discovered in a genetic screen two genes that render 

yeast sensitive to the immunosuppressive and cytostatic compound rapamycin (Heitman et al., 1991). 

The genes identified back then were named after their targeting compound, target of rapamycin 1 

(TOR1) and 2 (TOR2). Soon after this discovery, TOR was cloned, purified and characterized in 

mammalian cells that possess only one TOR ortholog, referred to as mammalian TOR (mTOR) 

(Brown et al., 1994; Chiu et al., 1994; Sabatini et al., 1994; Sabers et al., 1995). More than two 

decades after this discovery, a wealth of evidence has accumulated that ascribes (m)TOR a crucial and 

conserved role in cell growth, i.e. accumulation of mass, of eukaryotes (Wullschleger et al., 2006). 

Nowadays, mTOR related research is a lively and competitive field given the functions and properties 

of mTOR that turned out to be relevant for various pathological conditions, thereby offering potential 

venues for disease treatments (Laplante & Sabatini, 2012). The list of diseases mTOR has been linked 

to is long and includes cancer, various metabolic diseases such as obesity, fatty liver disease, insulin 

resistance and diabetes, neurodegenerative diseases like Parkinson’s, Alzheimer’s, or Huntington’s 

disease and also mental disorders, including schizophrenia or autism spectrum disorders (ASD) 

(Dazert & Hall, 2011; Lipton & Sahin, 2014). 

 

mTOR belongs to the family of phosphatidylinositol-3-kinase-(PI3K)-related kinases (PIKK) as it 

contains a carboxy-terminal serine/threonine kinase similar to the lipid kinase PI3K (Keith & 

Schreiber, 1995). Together with other proteins mTOR associates to two different complexes that are 

referred to as mTOR complex 1 (mTORC1) or 2 (mTORC2). These two complexes overlap to some 

part in their protein composition, such as the mLST8 and DEPTOR protein and the Tti1/Tel2 complex. 

Other proteins are specific for either of them; raptor and PRAS40 are only found at mTORC1 while 

rictor, mSin1 and protor1/2 are specific for mTORC2 (Fig. 1). As consequence of their different 

composition, mTORC1 and mTORC2 have distinct properties and downstream targets (Wullschleger 

et al., 2006; Laplante & Sabatini, 2012). For example, mTORC1 is sensitive to acute treatment with 

the compound rapamycin while mTORC2 is only affected by a prolonged treatment with this 

compound (Sarbassov et al., 2006). This difference in rapamycin sensitivity and the fact that 

mTORC1 inactivation generally results in a more severe phenotype than mTORC2 ablation 

(Bentzinger et al., 2008; Kumar et al., 2008; Cybulski et al., 2009; Godel et al., 2011) may explain 

why the mTORC1 signalling is better characterized than the one of mTORC2 as described below. 
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3.1. The mTORC1 pathway 
 

mTORC1 is known to contribute to cell growth by promoting anabolic processes, such as protein, lipid 

and nucleotide synthesis. In parallel, mTORC1 diminishes catabolic processes by inhibiting autophagy 

and lysosome biogenesis (Shimobayashi & Hall, 2014). All these processes are regulated by mTORC1 

in response to various stimuli and signals that impinge on this complex, including growth factors, 

amino acids, stress, energy status and oxygen as depicted in figure 1. The following two sections 

summarize the downstream targets and upstream regulators of mTORC1. 

 

 
Figure 1: Overview on the mTOR signalling network with focus on mTORC1 (adapted from (Huang & 
Fingar, 2014)). Growth factor stimulation results in mTORC1 activation either via the PI3K-Akt or 
Ras/MAPK/Erk/Rsk axis that both converge on the TSC complex. mTORC1 also senses amino acid availability 
via Rag GTPases and, via the AMPK-TSC complex axis, integrates cues of the energy level. In turn, mTORC1 
has the power to influence various processes needed for cell growth and proliferation, such as protein, lipid and 
nucleotide synthesis as well as mitochondrial biogenesis. 
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3.1.1. Downstream targets and effects of mTORC1 
 

A great body of evidence supports the role of mTORC1 in protein synthesis. The best studied targets 

via which mTORC1 controls protein synthesis are the S6 kinase 1 (S6K1) and the elF4E-binding 

protein 1 (4E-BP1). mTORC1 directly phosphorylates and activates S6K1, which in turn increases 

ribosome biogenesis via the ribosomal protein S6 and, hence, ultimately promotes protein synthesis 

(Chauvin et al., 2014) (Fig. 1). Additionally, S6K1 activity increases translational initiation and 

elongation by targeting various other factors, for example the elongation factor 2 kinase (eEF2k) 

(Wang et al., 2001; Laplante & Sabatini, 2012). Phosphorylation of 4E-BP1 by mTORC1 also 

promotes synthesis of proteins by releasing inhibition on the eukaryotic translation initiation factor 4E 

(eIF4E). This enables eIF4E to assemble with the eIF4F complex that is needed to initiate translation 

of mRNAs at the 5’ cap structure that is possessed by most of the mRNAs (Ma & Blenis, 2009). Next 

to its influence on global mRNA translation, mTORC1 seems to be particularly important for the 

translation of 5’TOP mRNAs, a subset of mRNAs that encode for components of the translation 

machinery (Hsieh et al., 2012). Recently, it has been suggested that this is controlled by mTORC1 via 

the 4E-BP axis (Thoreen et al., 2012). Altogether, mTORC1 plays a key role in protein synthesis, 

which classically is considered the major pathway by which this complex contributes to cell growth.  

More recent findings indicate that mTORC1 regulates additional processes that are necessary for 

cellular growth, such as lipid and nucleotide synthesis. mTORC1 has been shown to regulate lipid 

synthesis by activating the transcription factors SREBPs that are key regulators of lipogenic genes 

(Porstmann et al., 2008). SREBPs have been reported to be indirectly targeted by mTORC1 either via 

activation of S6K (Duvel et al., 2010) or inhibition of Lipin-1 (Peterson et al., 2011) that have a 

positive or negative influence on activation of SREBPs, respectively. Through SREBPs mTORC1 also 

manages to upregulate expression of genes that are involved in the pentose phosphate pathway, which 

in turn generates ribose for the synthesis of purine and pyrimidine nucleotides that are needed to 

produce DNA and RNA (Duvel et al., 2010). Additionally, mTORC1 stimulates de novo pyrimidine 

synthesis via CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase) 

that is phosphorylated and activated by S6K1 (Robitaille et al., 2013).  

Anabolic processes controlled by mTORC1 consume energy and, hence, it is not surprising that 

mTORC1 also positively regulates ATP production and promotes mitochondrial activity (Schieke et 

al., 2006). mTORC1 contributes to the biogenesis of mitochondria by promoting mitochondrial gene 

expression (Cunningham et al., 2007). Cunningham and colleagues suggest that mTORC1 controls 

expression of mitochondrial genes by stimulating association of the transcription factor Ying Yang 1 

(YY1) with the PPARγ coactivator 1α (PGC1α).  

Next to the anabolic contributions of mTORC1 to cell growth, the same complex is capable of 

inhibiting catabolic processes to prevent a loss of cell mass. Most importantly, mTORC1 is a key 

regulator of autophagy, a multistep process that allows to degrade organelles and macromolecules to 

recover amino acids and other metabolites under starving conditions or to remove damaged and toxic 

Page 13 



Nico Angliker                                                                                                                          Introduction 

cell material (Green & Levine, 2014). Autophagy results in the formation of double-membrane 

structures called autophagosomes that contain cargo to be degraded. Subsequently, autophagosomes 

fuse with lysosomes to form autolysosomes 

in which the content is finally degraded (Fig. 

2). mTORC1 is a negative regulator of 

autophagy and intervenes at different points 

in this process (Dunlop & Tee, 2014).  

First and foremost, mTORC1 has been shown 

to block induction of autophagy by directly 

phosphorylating and inhibiting ULK1 of the 

preinitiation complex that contains ATG13 

and FIP200 next to ULK1 (Kim et al., 2011; 

Wirth et al., 2013). mTORC1 also 

phosphorylates ATG14 of the “initiation 

complex” that is activated by the 

“preinitiation complex” upon autophagy 

induction. The “initiation complex” contains 

the class III PI3K VPS34 that generates 

phosphatidylinositol-3-phosphate (PI(3)P) 

that is essential for the formation of 

autophagosomes. Phosphorylation of ATG14 

by mTORC1 results in an inhibition of PI(3)P 

production by this complex (Yuan et al., 2013). Moreover, mTORC1 negatively regulates autophagy 

via other autophagy-related proteins, such as DAP1 (death-associated protein 1), a suppressor of 

autophagy, (Koren et al., 2010) and WIPI2 (WD repeat domain phosphoinositide-interacting protein 

2) that seems to be important for autophagosome formation (Hsu et al., 2011). Growing evidence 

indicates that mTORC1 controls autophagy also in an indirect manner by influencing biogenesis of 

lysosomes via a transcription factor termed TFEB that regulates various genes important for lysosomal 

function. TFEB is directly phosphorylated by mTORC1 at Ser142, which has been suggested to 

prevent nuclear translocation and, hence, negatively affect lysosome biogenesis. In line with this 

suggestion, pharmacological inhibition of mTORC1 as well as starving conditions have been observed 

to cause nuclear translocation of TFEB and to promote lysosome biogenesis (Martina et al., 2012; 

Settembre et al., 2012).  

 

 

  

 

Figure 2: Autophagy and its dependence on 
mTORC1 (adapted from (Dunlop & Tee, 2014)). In 
autophagy, organelles and macromolecules are packed 
in double-membrane structures called autophagosomes 
that subsequently fuse with lysosomes to form 
autolysosomes in which the content is degraded. 
TORC1 inhibits initiation of autophagy by directly 
phosphorylating ULK1 of the “preinitiation complex”.  
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3.1.2. Activation and negative feedback looping of mTORC1  
 

mTORC1 is responsive to growth factors but also integrates various cues that indicate the nutrient, 

energy or stress level of a cell. Insulin and IGF1 are classical examples of growth factors that result in 

mTORC1 activation via the 

PI3K-PDK1-Akt pathway 

that is considered the major 

pathway by which growth 

factors trigger mTORC1 

(Fig. 3) (Sengupta et al., 

2010). Binding of insulin to 

its tyrosine kinase receptor 

causes a recruitment of IRS1 

(insulin receptor substrate 1) 

to the receptor that goes 

along with a subsequent 

activation of the 

phosphatidylinositol-3-

kinase (PI3K). The 

PI(3,4,5)P3 generated by 

PI3K recruits Akt to the 

plasma membrane where 

Akt becomes activated by phosphorylation at Thr308 by the phosphoinositide-dependent kinase-1 

(PDK1) (Alessi et al., 1996; Alessi et al., 1997; Dangelmaier et al., 2014). Finally, activated Akt 

promotes mTORC1 activation by phosphorylating and inhibiting PRAS40, an mTORC1 inhibitor 

(Sancak et al., 2007; Vander Haar et al., 2007), and by suppressing the TSC complex that excerpts an 

inhibitory effect on mTORC1 as well. Akt phosphorylates TSC2 at several residues, which results in 

an inhibition of the TSC complex that consists of TSC1 (hamartin), TSC2 (tuberin) and TBC1D7 

(TBC1 (TRE2–BUB2–CDC16) domain family member 7) (Inoki et al., 2002; Manning et al., 2002; 

Tee et al., 2002; Dibble et al., 2012). The TSC complex is a key upstream regulator of mTORC1 and 

not only responds to growth factors that signal via PI3K-Akt-PDK1 but also to such ones that signal 

via Ras/MAPK/Erk/Rsk, like the epidermal growth factor (EGF) (Mendoza et al., 2011). Erk (Ma et 

al., 2005) and Rsk (Roux et al., 2004) both target TSC2 at sites that differ from each other (and largely 

the ones of Akt) (Dibble & Manning, 2013) but have in common that they cause an inhibition of the 

TSC complex in their phosphorylated state (Fig. 3). Next to this indirect effect via the TSC complex, 

Erk and Rsk have more recently been shown to directly phosphorylate mTORC1 at raptor, which also 

promotes mTORC1 activity (Carriere et al., 2008; Carriere et al., 2011).  

 

Figure 3: Activation of mTORC1 by growth factors (adapted from 
(Dibble & Manning, 2013)). Growth factors triggering receptor tyrosine 
kinases (RTKs) can activate mTORC1 via the PI3K-Akt or Ras/Erk/Rsk 
axis. In both cases this leads to an inhibition of the TSC complex by a 
phosphorylation of TSC2, which releases inhibition on mTORC1 and 
causes its activation. TSC2 is phosphorylated by Akt, Erk and Rsk at sites 
that largely differ from each other. 
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The TSC complex influences mTORC1 activity by acting as a GTPase-activating protein (GAP) for 

the small GTPase Rheb that is crucial for activation of mTORC1 by all upstream pathways (Tee et al., 

2003; Dibble & Manning, 2013). Consequently, inhibition of the TSC complex increases activated, 

GTP-loaded Rheb that activates mTORC1. Although Rheb binds mTORC1 directly, the mechanism of 

activation is unknown (Long et al., 2005). Rheb may activate mTORC1 by binding phospholipase D1 

(PLD1) and promoting its activity (Sun et al., 2008). PLD1 generates phosphatidic acid (PA), which is 

required for activation of mTORC1 (Fang et al., 2001; Yoon et al., 2011).  

Growth factor activation of mTORC1 fails in the absence of amino acids, which demonstrates that 

amino acid sensing of mTORC1 dominates over its stimulation by growth factors (Hara et al., 1998). 

Lysosomes turned out to be a crucial platform for amino acid sensing of mTORC1 as well as for 

integration of growth factor signalling. Amino acid stimulation results in a translocation of mTORC1 

from the cytosol to the surface of lysosomes where mTORC1 binds Rag proteins that are small 

GTPases like Rheb (Sancak et al., 2008; Sancak et al., 2010) (Fig. 4).  

 

 
 

Two subtypes of Rag proteins exist, RagA/B and RagC/D, that form heterodimers (RagA/B-RagC/D). 

The interaction of RagA/B-RagC/D with mTORC1 is determined by the nucleotide-binding state of 

the Rag proteins (Sancak et al., 2008). mTORC1 binds heterodimers consisting of GTP-bound 

 

Figure 4: Model for amino acid sensing of mTORC1 at the lysosome (adapted from (Dibble & 
Manning, 2013)). In the presence of amino acids, the ragulator complex that is anchored at the lysosome and 
is a GEF becomes active and promotes the generation of RagA/BGTP-RagC/DGDP, which in turn recruits 
mTORC1 to the lysosome. The availability of amino acids seems to be conveyed to the ragulator complex by 
the v-ATPase that undergoes an amino acid-induced conformational change. At the lysosome mTORC1 
comes in contact with Rheb that integrates signals of growth factors and enables activation of mTORC1.  
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RagA/B and GDP-bound RagC/D (RagA/BGTP-RagC/DGDP) but not RagA/BGDP-RagC/DGTP. The 

circumstance that the RagA/BGTP-RagC/DGDP heterodimers are formed only when sufficient amino 

acids are available, while the RagA/BGDP-RagC/DGTP heterodimer represents starving conditions, 

allows mTORC1 to sense amino acid availability. The nucleotide switch of Rag heterodimers in 

response to amino acids is conducted by the ragulator complex that is a guanine nucleotide exchange 

factor (GEF) and also anchors Rags to lysosomal membranes (Sancak et al., 2010; Bar-Peled et al., 

2012) (Fig. 4). It has been suggested that the ragulator complex senses intralysosomal amino acids by 

interacting with the membrane-spanning vacuolar H+-ATPase (v-ATPase) that can undergo an amino 

acid-induced conformational change (Zoncu et al., 2011). However, the relevance of intralysosomal 

amino acids for the recruitment of mTORC1 to lysosomes is currently unclear.  

On the lysosomal surface also the essential upstream activator of mTORC1, Rheb, is present (Sancak 

et al., 2010). Consequently, an amino acid-dependent recruitment of mTORC1 to the lysosome 

establishes a contact with Rheb and thereby allows activation of mTORC1. Altogether, this model is 

in agreement with the observed dominance of amino acid signalling over growth factor signalling to 

mTORC1. In brief, a lack of amino acids prevents the recruitment of mTORC1 to the lysosomes 

where it might become activated by Rheb.  

Since anabolic processes promoted by mTORC1 consume energy, it is important that mTORC1 is fed 

with information about the energy level of a cell. mTORC1 is downstream of AMPK, a master 

regulator of cellular energy metabolism, that becomes activated when the AMP/ATP and ADP/ATP 

ratios increase as a consequence of reduced ATP levels. Various factors may affect ATP levels of a 

cell, including glucose deprivation, hypoxia, or inhibition of glycolysis and/or mitochondrial function 

(Hardie et al., 2012). Activated AMPK reduces mTORC1 activity either in an indirect manner by 

increasing activity of TSC2 via phosphorylation at Ser1345 (Inoki et al., 2003) or by directly 

inhibiting mTORC1 via phosphorylation of raptor at Ser792 (Gwinn et al., 2008). In response to 

hypoxia, mTORC1 activity is not only diminished by AMPK but also via a transcriptional program. 

Under low oxygen conditions the transcription factor hypoxia inducible factor 1α (HIF1α, that is 

degraded in the presence of oxygen) is stabilized and promotes expression of REDD1 (regulated in 

development and DNA damage responses 1). In a yet poorly understood mechanism REDD1 causes 

inhibition of mTORC1 via the TSC complex (Brugarolas et al., 2004; DeYoung et al., 2008; Vega-

Rubin-de-Celis et al., 2010). REDD1-mediated mTORC1 inhibition is also observed under other stress 

situations, such as accumulation of misfolded proteins and endoplasmatic reticulum stress that may 

result from impaired protein maturation or aberrantly high protein synthesis. Such conditions result in 

an unfolded protein response (UPR) that causes an upregulation of REDD1 via the ATF4 transcription 

factor (Jin et al., 2009; Whitney et al., 2009). Finally, also genotoxic stress and DNA damage act as 

stress factors on mTORC1 and inhibit its activity. Genotoxic stress stabilizes p53 that is a transcription 

factor not only for REDD1 (Ellisen et al., 2002; Ben Sahra et al., 2011) but also sestrins that repress 

mTORC1 via activation of AMPK (Budanov & Karin, 2008).  
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In order to limit its signal duration and amplitude the mTORC1 signalling pathway possesses negative 

feedback mechanisms. mTORC1 (Tzatsos, 2009) as well as its downstream target S6K1 (Um et al., 

2004; Harrington et al., 2005) both phosphorylate IRS1, thereby inducing its degradation and, hence, 

reduce PI3K signalling that occurs upstream of mTORC1. In agreement with this negative feedback 

loop model, inactivation or constitutive activation of mTORC1 has been shown to cause increased or 

decreased PI3K signalling, respectively (Bentzinger et al., 2008; Romanino et al., 2011; Castets et al., 

2013; Cloetta et al., 2013). For example, conditional ablation of mTORC1 in muscle increases Akt 

activity and the phosphorylation of the glycogen synthase kinase 3 (GSK3), an Akt downstream target 

(Bentzinger et al., 2008; Romanino et al., 2011). In addition to this well characterized negative 

feedback mechanism, mTORC1 activity may also diminish its upstream stimulation by directly 

phosphorylating and stabilizing Grb10. Grb10 is a growth factor receptor-bound adaptor that upon 

phosphorylation by mTORC1 attenuates PI3K as well as MAPK/Erk signalling (Yu et al., 2011).  

 

  

Page 18 



Nico Angliker                                                                                                                          Introduction 

3.2. The mTORC2 pathway 
 

In comparison to mTORC1 much less is known about mTORC2. Yet, this does not implicate that 

mTORC2 is less interesting than mTORC1 as also mTORC2 contributes to disease relevant functions 

of mTOR as outlined below. 

 

3.2.1. Downstream targets and effects of mTORC2 
 

mTORC2 phosphorylates and activates several members of the AGC kinase family, including Akt, 

serum- and glucocorticoid-induced protein kinase 1 (SGK1) and protein kinase C (PKC) (Fig. 5). 

AGC kinases are phosphorylated by mTORC2 in their helix motif (HM) and/or turn motif (TM), 

which allosterically 

influences the catalytic 

activation of these kinases 

by PDK1 (Cybulski & 

Hall, 2009; Oh & Jacinto, 

2011). For example, Akt 

is phosphorylated by 

PDK1 in the activation 

loop site at residue Thr308 

that is essential for the 

activation of Akt, while 

mTORC2-mediated 

phosphorylation of Akt at 

Ser473 in the HM 

(Sarbassov et al., 2005) 

has been suggested to 

further boost its activity 

and permit substrate 

specificity (Alessi et al., 

1996; Guertin et al., 2006; Jacinto et al., 2006; Cybulski & Hall, 2009). In line with the suggestion of 

substrate specificity, disruption of the mTORC2 complex and the concomitant reduced 

phosphorylation of Akt at Ser473 differently affects phosphorylation of Akt substrates. In mouse 

embryonic fibroblast cells lacking mTORC2, Akt targets like FoxO1/3a have been reported to be 

affected by mTORC2 inactivation, while phosphorylation of other Akt targets like GSK3 and TSC2 is 

normal (Guertin et al., 2006; Jacinto et al., 2006). Given the normal phosphorylation of TSC2 upon 

mTORC2 inactivation, it is currently believed that mTORC2 function is not needed for mTORC1 

 

Figure 5: Downstream signalling of mTORC2 (adapted from (Oh & 
Jacinto, 2011)). mTORC2 phosphorylates members of the AGC kinase 
family like Akt, PKC and SGK1 and thereby contributes to various cellular 
processes.  
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activity (Bentzinger et al., 2008; Thomanetz et al., 2013). Consistently, liver specific ablation of 

mTORC2 does not change mTORC1 activity, yet, affects GSK3, FoxO and SREBP1c signalling 

(Hagiwara et al., 2012). Last is known to be a master regulator of lipogenic genes as described above 

and is also regulated by Akt and, hence, mTORC2 seems to stimultate lipogenesis as well (Yecies et 

al., 2011).  

The mTORC2 downstream target Akt is involved in various cellular processes like metabolism, 

proliferation, growth and cell death regulation. Due to its role in these processes Akt has been linked 

to cancer (Fresno Vara et al., 2004; Martini et al., 2014). In a prostate cancer mouse model, induced 

by deletion of PTEN, which results in increased PI3K signalling and, hence, Akt activation, tumor 

development is dependent on mTORC2, most likely due to the positive effect of mTORC2 on Akt 

phosphorylation. This finding ascribes mTORC2 a role in cancer (Guertin et al., 2009; Sparks & 

Guertin, 2010).  

PKCs targeted by mTORC2 are other proteins involved in a multiplicity of cellular functions, such as 

proliferation, differentiation, survival and motility (Griner & Kazanietz, 2007). PKC is a family of 

proteins and is subdivided in classical (c)PKC (α, β and γ), novel (n)PKCs (δ, ε, η and θ) and atypical 

(a)PKCs (protein kinase Mζ, and ι/λ). Phosphorylation of cPKC and nPKC in their HM and TM 

requires mTORC2 (Sarbassov et al., 2004; Facchinetti et al., 2008; Ikenoue et al., 2008; Lee et al., 

2010). mTORC2-mediated phosphorylation of PKCα and β in the TM occurs in a co-translational 

manner and increases maturation and stability of PKCs (Facchinetti et al., 2008; Ikenoue et al., 2008). 

Concordantly, mTORC2 ablation has been reported to result in reduced protein levels of classical and 

novel PKCs (Ikenoue et al., 2008; Thomanetz et al., 2013). 

By controlling PKCs, mTORC2 has been suggested to regulate actin cytoskeleton rearrangement 

(Sarbassov et al., 2004; Larsson, 2006; Thomanetz et al., 2013). Moreover, mTORC2 may affect actin 

cytoskeleton via other effectors like paxilin and Rac1 (Jacinto et al., 2004). Rac1 has been reported to 

bind mTOR directly and associates with both mTORC2 as well as mTORC1 upon stimulation with 

growth factors (Saci et al., 2011). In addition, mTORC2 interacts with Tiam1, a Rac1-specific GEF, 

giving mTORC2 a tool to regulate Rac1 activity and consequently influence actin cytoskeleton 

(Huang et al., 2013).  

Last but not least, mTORC2 is critical for the activation of SGK1 that is stimulated in response to 

osmotic stress and growth factors and, in turn, controls ion transport and growth (Garcia-Martinez & 

Alessi, 2008). Downstream targets of SGK1 include NDRG1 as well as the ubiquitin ligase Nedd4-2 

(Lu et al., 2010). Last plays a central role in sodium transport (Debonneville et al., 2001) while the 

precise function of NDRG1 is elusive (Melotte et al., 2010). 
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3.2.2. Activation and negative feedback looping of mTORC2  
 

To date, activation of mTORC2 is not well understood. mTORC2 seems to be insensitive to nutrients 

but well responsive to growth factors, such as insulin (Sarbassov et al., 2004; Sarbassov et al., 2005; 

Garcia-Martinez & Alessi, 2008; Huang et al., 2008; Laplante & Sabatini, 2012). As summarized 

below, several publications describe growth factor-mediated effects on the subcellular localization of 

mTORC2 or its interaction with other proteins. However, the mechanisms that link PI3K signalling to 

mTORC2 activation remain unclear. mTORC2 associates with the TSC complex, which, in contrary to 

mTORC1, positively regulates mTORC2 activation that occurs in a manner independent of the GAP 

function of the TSC complex (Huang et al., 2008). Recent results indicate that growth factor-mediated 

activation of mTORC2 is dependent on its association with ribosomes (Zinzalla et al., 2011). This 

association with ribosomes is in line with the finding that mTORC2 regulates PKC phosphorylation 

and also phosphorylation of Akt at Thr450 in a co-translational manner, which in both cases increases 

folding and stability of these proteins (Facchinetti et al., 2008; Ikenoue et al., 2008; Oh et al., 2010). 

Growth factor stimulation has also been shown to stimulate localization of mTORC2 to a subdomain 

of the endoplasmatic recticulum (ER) called MAM (mitochondria-associated ER membrane) that 

physically connects to mitochondria. MAM is important for the transfer of lipids and calcium between 

ER and mitochondria and thereby controls mitochondrial metabolism and apoptosis (Rizzuto et al., 

1998; Csordas et al., 1999). mTORC2 ablation and concomitant altered Akt signalling diminishes the 

integrity of MAM and ultimately affects mitochondrial metabolism and cell survival (Betz et al., 

2013). Furthermore, the association of both mTORC1 and mTORC2 with Rac1 is dependent on 

growth factors. It has been suggested that Rac1 might serve as a point of convergence to co-regulate 

mTORC1 and mTORC2 upon growth factor stimulation (Saci et al., 2011). 

In analogy to mTORC1 signalling, also the mTORC2 pathway is furnished with negative feedback 

mechanisms. mTORC2 activity leads to the stabilization of the ubiquitin ligase subunit Fbw8 that 

mediates the degradation of IRS1 and, hence, limits upstream PI3K signalling (Kim et al., 2012). 

Upon growth factor stimulation mTORC2 may also get negative feedback input from the mTORC1 

downstream target S6K1. For example, S6K1 can directly phosphorylate rictor at Thr1135, which 

reduces mTORC2 signalling (Dibble et al., 2009; Boulbes et al., 2010; Julien et al., 2010; Treins et 

al., 2010). Additionally, S6K1 has been shown to directly phosphorylate mSin1, a core protein of 

mTORC2, thereby disrupting mTORC2 function (Liu et al., 2013; Xie & Proud, 2013).  
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3.3. mTOR signalling in the brain 
 

Development of the brain is a highly complex process that includes growth and proliferation processes 

that need to be tightly regulated. Because mTOR signalling plays a key role in such processes, this 

pathway turned out to be crucial for brain development and has also been linked to 

neurodevelopmental disorders. mTOR is not only crucial in the developing but also in the adult brain 

that is a highly plastic organ constantly shaping synaptic connectivity, which requires protein synthesis 

and also other mTOR-dependent processes. Moreover, the mTOR pathway controls cellular 

mechanisms, for example autophagy, that are essential for a cell to respond to stress situations. 

Probably due to such features, mTOR signalling is also found to be involved in age-related 

neurodegenerative diseases. The following chapters summarize the most relevant contributions of 

mTOR signalling in the developing and adult brain under normal and pathological conditions. 

 

3.3.1. The role of mTOR signalling in brain development 
 

Genetic ablation of mTORC1 specifically in neural progenitor cells clearly impairs embryonic brain 

development and results in perinatal death of mice. The impaired brain development manifests in a 

microcephaly that is the consequence of a reduction of the cell size and number. Reduced cell 

proliferation and increased apoptosis contribute to the diminished cell number (Cloetta et al., 2013). 

Similar results have recently been published for mice that have mTOR itself conditionally knocked out 

by the same driver (Ka et al., 2014). Ablation of mTORC1 in the developing brain also affects 

gliogenesis, which is paralleled by a reduction of the phosphorylation of the transcription factor 

STAT3 that is important for differentiation of glia cells (Bonni et al., 1997; Yokogami et al., 2000). 

Not only ablation but also constitutive activation of mTORC1 upon inactivation of the TSC complex 

has been shown to impair brain development. In contrary to mTORC1 ablation, disruption of the TSC 

complex causes megalencephaly that is paralleled by an increase in cell size and proliferation as well 

as impaired neuronal and glial differentiation (Anderl et al., 2011; Magri et al., 2011; Carson et al., 

2012; Magri et al., 2013). Also conditional ablation of the TSC complex in neural progenitors results 

in neonatal death (Anderl et al., 2011). On the other hand, inactivation of mTORC2 in neural 

progenitors results in a milder phenotype and does not affect mouse viability but causes aberrant brain 

development and a reduction of the brain size. Last seems to be mainly the consequence of a reduction 

in cell size since no signs for apoptosis or altered proliferation are detected (Thomanetz et al., 2013). 

Overlapping results have been reported for mice that have mTORC2 conditionally ablated in dorsal 

neural progenitor cells. Also this leads to smaller neurons and a reduction of the brain size (Carson et 

al., 2013). Altogether, the data gained from all these brain-specific knockout mice demonstrate that 

both mTORC1 and mTORC2 are crucial for proper development of the brain. Below the contributions 

of mTORC1 and mTORC2 to different aspects of neuronal development are further highlighted.  
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During brain development neurons start to form synaptic connections with each other, which enables 

communication between them and finally leads to the generation of neural circuits. Neurons receive 

synaptic input in their dendritic parts that are elaborately structured in many neurons. The 

establishment of the dendritic tree is a developmental process that depends on both mTORC1 and 

mTORC2. Knockdown of either mTORC1 or mTORC2 in cultured hippocampal neurons impairs the 

development of the dendritic tree and diminishes dendritic arborisation (Urbanska et al., 2012). In 

neuronal cultures, the brain-derived neurotrophic factor (BDNF), a potent mTORC1 activator, 

enhances dendritic arborisation. Consistently, this positive effect of BDNF on dendritic arborisation is 

sensitive to rapamycin treatment (Jaworski et al., 2005). Not only increased activation of mTORC1 

upon BDNF treatment but also upon removal of negative regulators of mTORC1, TSC1 or PTEN, 

increases dendritic length and the number of branch points in hippocampal cultures (Jaworski et al., 

2005; Weston et al., 2014). Effects of sustained mTORC1 activation on dendrite morphology are also 

seen in vivo. Conditional TSC1 knockout in dorsal neural progenitor cells for example results in 

neurons with thickened dendritic arbors (Meikle et al., 2007) as well as abnormal dendrite orientation 

(Meikle et al., 2008). While in vivo effects of mTORC1 deficiency on dendrite morphology have not 

yet been demonstrated, the dendritic morphology of pyramidal hippocampal neurons and Purkinje 

cells is altered in mice that have mTORC2 ablated in neural progenitors (Thomanetz et al., 2013).  

mTOR signalling is also important for the parts of the dendrite where neurons receive excitatory 

synaptic input, the spines (Kumar et al., 2005; Tavazoie et al., 2005; Tsai et al., 2012). Spine 

formation and elimination/pruning is a dynamic process that occurs in the brain throughout life. At 

early ages in life spine formation exceeds pruning, which results in an excessive production of 

excitatory synapses that is important for the establishment of neural circuits. In course of development 

spine pruning takes over, which is important for neural circuit maturation. Most recently, it has been 

shown that heterozygous loss of TSC2 and the resulting increased mTORC1 activity impairs postnatal, 

developmental spine elimination/pruning, which results in increased spine density at later time points 

(Tang et al., 2014). Tang and colleagues suggest that these defects in spine pruning depend on 

mTORC1-mediated blockade of autophagy (see section 3.1.1). In line with these findings, TSC1 

knockout in Purkinje cells causes aberrant autophagic flux (Di Nardo et al., 2014) in these neurons and 

increases their spine density (Tsai et al., 2012). Not only mTORC1 but also mTORC2 is important for 

spines since a conditional rictor knockout in CA1 hippocampal neurons has been shown to reduce the 

spine density of these neurons (Huang et al., 2013). However, the reduced spine density seen in this 

mouse model is most likely not caused by developmental defects since rictor knockout occurs only 

several days after birth. Huang and colleagues suggest that mTORC2 may affect spines by regulating 

actin cytoskeleton as further outlined in section 3.3.2.  

Neurons transmit signals to other neurons via axons. Axons start to extend from the somata during 

neuronal development and are guided to their targets by molecules that act as attractive or repulsive 

cues. There is evidence that axon guidance depends on mTORC1. For example, semaphorin-3A that 
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acts as repulsive signal on growth cones of Xenopus retinal neurons has been shown to cause 

phosphorylation of the mTORC1 downstream target 4E-BP1 in growth cones. Consistently, 

semaphorin-3A induced growth cone collapse was prevented in the presence of the mTORC1 inhibitor 

rapamycin (Campbell & Holt, 2001). Axonal guidance of retinal ganglion cells is dependent on 

ephrin-Eph signalling, which has been shown to converge on mTORC1 via the MAPK-TSC2-

mTORC1 axis. In line with this finding, aberrant retinogeniculate projections are observed in mice that 

are haploinsufficient for TSC2, which indicates that axonal guidance in these mice is impaired (Nie et 

al., 2010).  

 

3.3.2. The role of mTOR signalling in the plasticity of excitatory synapses  
 

It is fundamentally believed that neurons process and store information in the brain by modulating 

synaptic connections that they form with other neurons in the context of neural circuits. These 

connections can be structurally modified by regulating the number or size of synapses or in a more 

functional manner by changing the synaptic strength and efficiency. Synaptic plasticity can be 

simulated and measured by electrophysiological recordings. The electrophysiological correlates for 

synaptic strengthening or weakening are long-term potentiation (LTP) or long-term depression (LTD), 

respectively (Martin et al., 2000). Much knowledge about synaptic plasticity has been gained from 

studying the excitatory CA3-CA1 synapses formed in the hippocampus. High frequency stimulation 

(HFS) of these synapses results in high postsynaptic calcium levels and a calcium/calmodulin-

dependent protein kinase type II (CamKII)-mediated postsynaptic upregulation of glutamatergic 

AMPA receptors on the surface, ultimately leading to a potentiation of these synapses (LTP). Low 

frequency stimulation, in turn, results in moderate postsynaptic calcium influx and a subsequent 

protein phosphatase 1 (PP1)–mediated endocytosis of AMPA receptors and consequently a weakening 

of the synaptic strength (LTD) (Xia & Storm, 2005) (Fig. 6). Throughout the brain different forms of 

LTP and LTD are observed and have been shown to depend on NMDA receptors, metabotropic 

glutamate receptors (mGluRs), dopaminergic receptors and BDNF, all of which influence mTOR 

function (Hoeffer & Klann, 2010). For LTP it is also distinguished between early and late forms of 

LTP, abbreviated as E-LTP and L-LTP, respectively. The stimulation paradigm applied in 

electrophysiological recording determines the form of LTP at the CA3-CA1 synapses. A single train 

of HFS triggers an E-LTP while several repetitions thereof cause an L-LTP. While an E-LTP lasts for 

about 1-2 hours and mostly bases on post translational modifications (Roberson et al., 1996), an L-

LTP lasts up to several hours and needs de novo protein synthesis and at a certain point also the 

initiation of transcriptional programs (Reymann & Frey, 2007). Because long durable forms of 

synaptic plasticity are dependent on protein synthesis, they have been linked to mTORC1 quite a while 

ago (Tang & Schuman, 2002) (Fig. 6). For example, the maintenance of L-LTP is sensitive to 

rapamycin treatment (Tang et al., 2002). Moreover, a knockout of the translational repressor and 
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mTORC1 downstream target 4E-BP2 impairs LTP by rendering E-LTP to an L-LTP, likely by 

increasing initiation of protein translation (Banko et al., 2005). As the mTORC1 downstream targets 

4E-BP and eIF4E are both found at postsynaptic parts (Tang et al., 2002) and since polyribosomes 

redistribute into activated spines upon L-LTP (Ostroff et al., 2002; Bourne et al., 2007), it is thought 

that mTORC1 controls protein translation in a local manner in the dendrite without the requirement for 

transcription in the soma (Costa-Mattioli et al., 2009). In agreement with this notion, NMDA-PI3K-

mediated activation of S6K occurs throughout the dendrites but not in the cell bodies of CA1 neurons 

in hippocampal slices (Cammalleri et al., 2003).  

 

 
Figure 6: A model of the involvement of mTOR signalling in synaptic plasticity (adapted from (Graber et 
al., 2013)). Both, mTORC1 and mTORC2 are essential for L-LTP since they regulate local protein synthesis or 
actin cytoskeletal rearrangement, respectively. mTORC1 may also regulate the translation of mRNAs coding for 
proteins that are important for LTD. 
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Not only mTORC1 but also mTORC2 is important for the maintenance of L-LTP as this has recently 

been shown (Huang et al., 2013). Postnatal genetic inactivation of mTORC2 in the forebrain affects L-

LTP of hippocampal CA3-CA1 synapses, which is paralleled by impaired actin polymerisation in CA1 

neurons. In the presence of jasplakinolide, a stabilizer of newly formed actin filaments, these L-LTP 

deficits could be rescued, which demonstrated that the capability of mTORC2 to regulate actin 

cytoskeleton is crucial for L-LTP maintenance (Fig. 6).  

Next to LTP, also LTD depends on mTOR signalling. mGluR-dependent forms of LTD are sensitive 

to PI3K inhibitors and rapamycin and, hence, rely on the PI3K-Akt-mTORC1 signalling cascade (Hou 

& Klann, 2004; Collingridge et al., 2010; Luscher & Huber, 2010). Similar to LTP, also mGluR-LTD 

requires protein synthesis and this in a rapid and most likely local manner (Huber et al., 2000). 

Proteins synthesized upon mGluR signalling are for example Arc (Park et al., 2008), STEP (Zhang et 

al., 2008) and MAP1B (Davidkova & Carroll, 2007), all of which are involved in AMPA receptor 

internalization, a process essential for LTD. mTORC1 may contribute to mGluR-LTD by controlling 

protein synthesis. This notion is supported by the finding that mGluR-LTD is increased in mice 

deficient of the mTORC1 downstream target 4E-BP2 that is a negative regulator of protein synthesis 

(Banko et al., 2006). Congruently, transgenic mice with increased levels of eIF4E also reveal 

enhanced mGluR-LTD, which is paralleled by elevated levels of protein synthesis (Santini et al., 

2013). 

 

3.3.3. A role of mTOR signalling in excitatory/inhibitory synaptic balance? 
 

As described above, there is a plethora of evidence supporting the role of mTOR signalling at 

excitatory synapses, yet, whether this pathway also plays a role at inhibitory synapses is currently less 

well understood. More than two decades ago, mTOR was shown to physically interact with gephyrin, 

an important postsynaptic scaffolding protein at inhibitory synapses (Sabatini et al., 1999; Tyagarajan 

& Fritschy, 2014). This finding has recently been confirmed by another group in cultured hippocampal 

neurons (Wuchter et al., 2012). Furthermore, Wuchter and colleagues find that the density of gehyrin 

clusters in these cultures is sensitive to rapamycin treatment. Another study identified by a 

phosphoproteomic approach gephyrin residue Ser200 to be rapamycin-sensitive (Demirkan et al., 

2011).  

Given a possible role of mTOR at inhibitory synapses in addition to its well described function at 

excitatory synapses, it has been hypothesized that this signalling pathway might be crucial for the 

balance of excitatory and inhibitory synaptic transmission. This hypothesis has recently been 

strengthened by the finding that TSC1 knockout in hippocampal CA1 pyramidal neurons indeed 

causes an excitatory/inhibitory synaptic imbalance by weakening the inhibitory input. As 

consequence, these mice show hippocampal hyperexcitability and are prone to seizures (Bateup et al., 

2013). Additionally, knockout of the mTORC1 downstream target 4E-BP2 also causes an increased 
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ratio of excitatory to inhibitory synaptic input (Gkogkas et al., 2013). Interestingly, knockout of 4E-

BP2 increases the translation of neuroligins that are postsynaptic adhesion molecules important for 

synapse formation. Several neuroligin isoforms exist that differ in their distribution amongst excitatory 

and inhibitory synapses (Levinson & El-Husseini, 2005; Krueger et al., 2012). Deficiency of 4E-BP2 

enhances translation of neuroligin isoforms that are found at excitatory synapses but also such ones 

present at inhibitory synapses, supporting the notion that the mTOR signalling pathway may influence 

both inhibitory and excitatory synaptic transmission, thereby controlling the excitation/inhibition 

balance (Levinson & El-Husseini, 2005; Gkogkas et al., 2013). 

 

3.3.4. mTOR in brain pathologies 
 

3.3.4.1. Neurodevelopmental disorders 
 

Tuberous sclerosis. Heterozygous loss of TSC1 or TSC2 due to genetic mutations causes a multi-organ 

disorder called Tuberous sclerosis. Due to its genetic basis Tuberous sclerosis affects the development 

of the brain and results in neurological symptoms, such as intellectual disability, epilepsy and ASD 

(Curatolo et al., 2008) (Fig. 7). Last are characterized by social deficits, impaired communication as 

well as stereotyped and repetitive behaviour (Miles, 2011). Tuberous sclerosis mouse models 

generated by heterozygous deletion or mutation of the TSC1 or TSC2 gene recapitulate aspects of 

these neurological symptoms and reveal learning and memory deficits (Goorden et al., 2007), aberrant 

social behaviour as well as repetitive behaviour (Young et al., 2010; Chevere-Torres et al., 2012; Tsai 

et al., 2012; Tang et al., 2014). Several of these behavioural deficits can be rescued by rapamycin 

treatment of these mice, demonstrating that they are dependent on mTORC1. Heterozygous loss of 

TSC1 or TSC2 in mice increases the spine density (Tsai et al., 2012; Tang et al., 2014), a phenomenon 

that is also observed with ASD (Hutsler & Zhang, 2010). Recently, it has been suggested that this is 

due to mTORC1-mediated inhibition of autophagy which impairs spine elimination/pruning (see 

section 3.3.1). Hence, some of the Tuberous sclerosis symptoms may base on defective spine 

elimination (Tang et al., 2014). Furthermore, there is evidence that an imbalance of synaptic excitation 

and inhibition occurs upon loss of the TSC complex, which has been hypothesized to underlie ASD 

(see also section 3.3.3) (Bourgeron, 2009; Bateup et al., 2013).  

  

Page 27 



Nico Angliker                                                                                                                          Introduction 

Fragile X. Another genetic disease that shares 

some similarities with Tuberous sclerosis is the 

Fragile X syndrome that manifests in cognitive 

deficits and ASD (Martin & Huntsman, 2012). 

The Fragile X syndrome is associated with the 

silencing of the Fmr1 gene that codes for 

FMRP, an RNA-binding protein that represses 

the translation of several mRNAs (Brown et al., 

2001). Consequently, a lack of FMRP increases 

the synthesis of specific proteins. FMRP is 

located in dendrites and spines (Weiler et al., 

1997) and regulates for example the translation 

of mRNAs that are important for synaptic 

plasticity, such as Arc or CamKII (Zalfa et al., 

2003). Deregulated synthesis of plasticity 

related proteins may serve as an explanation for 

the increased mGluR-LTD observed in Fmr1 

knockout mice (Bear et al., 2004). Fmr1 

knockout mice phenocopy behavioural aspects 

seen with Fragile X patients, including learning 

and memory deficits, behavioural rigidity and 

susceptibility to seizures (Kooy et al., 1996; D'Hooge et al., 1997; Musumeci et al., 2000). 

Fragile X syndrome is linked to mTOR signalling because Fmr1 knockout mice reveal increased 

mTORC1 signalling possibly due to elevated levels of the PI3K enhancer (PIKE, a predicted FMRP 

target), which triggers PI3K-Akt signalling that converges on mTORC1 (Sharma et al., 2010). 

Additionally, the mTORC1 downstream target S6K1 phosphorylates and controls mRNA binding 

activity of FMRP (Narayanan et al., 2008), which adds more complexity to the role of mTORC1 in the 

Fragile X syndrome (see also Fig. 6).  

 

3.3.4.2. Psychiatric diseases 
 

Depression. Depression is a mental disorder characterized by sadness, anhedonia, fatigue, insomnia, 

abnormal appetite and difficulties in concentrating (Krishnan & Nestler, 2008). Treatment of 

depressive patients with low doses of the NMDA receptor antagonist ketamine is found to alleviate 

depression (Berman et al., 2000; Zarate et al., 2006). Interestingly, ketamine treatment transiently 

increases mTORC1 signalling. Moreover, in the presence of rapamycin the antidepressant effect of 

ketamine gets lost (Li et al., 2010), which ascribes mTORC1 an important role in the treatment of 

 

Figure 7: mTORC1 and neurodevelopmental 
disorders (adapted from (Lipton & Sahin, 2014)). 
Loss of upstream negative regulators of mTORC1, 
like TSC1/2 or PTEN, or excessive mTORC1 
stimulation by environmental factors increases 
protein synthesis and affects other cellular processes, 
which impairs brain development and results in 
clinical symptoms.  
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depressions using ketamine. Given the positive effect of NMDA receptor activation on mTORC1 

activity (see section 3.3.2), it is counterintuitive to find that the NMDA receptor antagonist ketamine 

increases mTORC1 signalling and, hence, it is questionable whether mTORC1 stimulation is a direct 

downstream effect of the antagonized NMDA receptor.  

 

Schizophrenia. Schizophrenia is a severe mental disorder that manifests in delusions, hallucinations, 

unclear and confuse thinking and behaviour (Fanous & Kendler, 2008). Genetic forms of 

schizophrenia have been linked to mutations in the Akt1 gene and also biochemical analysis of post-

mortem brain samples of schizophrenic patients revealed a downregulation of Akt protein levels 

(Emamian et al., 2004; Zhao et al., 2006). In line with other evidence (Kalkman, 2006), these findings 

ascribe Akt a crucial role in this neuropsychiatric disorder. Although mTORC1 is downstream of Akt, 

its involvement in schizophrenia remains uncharacterized. On the other hand, mTORC2 that notably 

phosphorylates and co-translationally stabilizes Akt (see section 3.2.2) has been reported to be 

relevant for schizophrenia. Whole brain inactivation of mTORC2 results in mice with sensorimotor 

gating deficits, a hallmark for schizophrenia (Siuta et al., 2010; van den Buuse, 2010). mTORC2 

ablation in the brain decreases phosphorylation of Akt at Ser473, which is paralleled by, and probably 

causes, an increase in the surface expression of the norepinephrine transporter (NET). Suita and 

colleagues suggest that the increased NET surface expression may result in enhanced dopamine uptake 

in noradrenergic neurons where it is converted to norepinephrine, which in turn may explain the 

cortical hypodopaminergia seen in mTORC2-deficient brains. Aberrant dopamine levels in the cortex 

are thought to contribute to certain aspects of schizophrenia, for example negative symptoms that 

include deficits in normal thought processes or emotional responses (Davis et al., 1991; Howes & 

Kapur, 2009).  

 

3.3.4.3. Neurodegenerative diseases 
 

Alzheimer. Alzheimer is a neurodegenerative disease that results in dementia and is characterized by 

plaques of amyloid β (Aβ) aggregates and the presence of tau tangles (Benilova et al., 2012). Studies 

examining Alzheimer-diseased brains have reported enhanced mTORC1 signalling in these brains (An 

et al., 2003; Li et al., 2004; Griffin et al., 2005; Li et al., 2005). Additional studies positively correlate 

activity of the mTORC1 downstream target S6K1 with the phosphorylation and expression of Tau (An 

et al., 2003; Pei & Hugon, 2008). Hence, it has been hypothesized that augmented mTORC1 activity 

might contribute to Alzheimer’s disease by increasing levels of toxic proteins like Tau (Fig. 8). 

Recently, it has been suggested that regulation of autophagy by mTORC1 is relevant for this disease 

(see section 3.1.1). In a mouse model of Alzheimer’s disease, rapamycin was found to increase 

autophagy and reduce Aβ and rescue memory impairment (Spilman et al., 2010). 
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Currently, mTORC1 regulation in 

Alzheimer’s disease is controversially 

discussed (Swiech et al., 2008). Unlike 

observed in samples of human diseased 

brains, mTORC1 signalling has been reported 

to be decreased in an Alzheimer’s disease 

mouse model (Lafay-Chebassier et al., 2005; 

Ma et al., 2010). Also, expression of Aβ, the 

major pathogenic agent of Alzheimer’s 

disease, causes a downregulation of 

mTORC1 signalling in neuroblastoma cells 

(Lafay-Chebassier et al., 2005). Given this 

heterogeneous picture of mTORC1 regulation 

in different models of this disease, it is 

difficult to analyse how mTORC1 is involved 

in Alzheimer’s disease. 

 

Parkinson. Patients suffering from 

Parkinson’s disease show motor symptoms 

like tremor, rigidity and bradykinesia, which 

is the consequence of a progressive loss dopamine producing neurons in the substantia nigra pars 

compacta (Parkinson, 2002). Postmortem studies of the substantia nigra of Parkinson’s disease 

patients revealed an increased expression of the stress response protein REDD1 that is a negative 

regulator of mTORC1 (see section 3.1.2). Moreover, it has been demonstrated that REDD1 is 

upregulated in cellular models upon treatment with Parkinson inducing agents and a knockdown of 

REDD1 protects against cell death in these cellular Parkinson’s disease models (Malagelada et al., 

2006; Malagelada et al., 2008). Based on these findings, it has been suggested that REDD1-mediated 

downregulation of mTORC1 activity accounts for neurodegeneration in Parkinson’s disease. 

Unexpectedly, a subsequent study of the same research group showed that rapamycin treatment has a 

beneficial effect on the survival of dopaminergic neurons in the substantia nigra of a Parkinson’s 

disease mouse model (Malagelada et al., 2010). The same study also showed that translation of 

REDD1 depends on mTORC1 as it is sensitive to rapamycin treatment, which may explain the 

positive effect of rapamycin on the survival of dopaminergic neurons in Parkinson’s disease. 

However, taken together these findings anticipate a complex role of mTORC1 signalling in the 

pathology of Parkinson’s disease.  

As described for Alzheimer’s, also in Parkinson’s disease mTORC1-regulated autophagy seems to be 

disease relevant. In an in vitro model for degenerating dopaminergic neurons, rapamycin treatment 

 
Figure 8: mTORC1 and neurodegenerative diseases 
(adapted from (Lipton & Sahin, 2014)). mTORC1 
signalling is changed in the listed neurodegenerative 
disorders. The figure provides a model how mTORC1 may be 
involved in these disorders. Most strikingly, impaired 
autophagy is associated with many neurodegenerative 
disorders.  
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reduced apoptosis. Interestingly, this anti-apoptotic effect of rapamycin was abolished when 

autophagy was blocked, which indicates that rapamycin might excerpt its positive on survival by 

inducing autophagy (Pan et al., 2009). Moreover, α-synuclein that is found to be mutated in inherited 

forms of Parkinson’s disease can be degraded by autophagy (Webb et al., 2003). Accumulation and 

aggregation of α-synuclein is a hallmark of Parkinson’s disease (Kahle et al., 2002) and rapamycin 

has been shown to increase clearance of α-synuclein, offering a possible venue for a therapeutic 

approach in Parkinson’s disease (Webb et al., 2003; Spencer et al., 2009) (Fig. 8).  

 

Huntington. Huntington’s disease is a genetic disease caused by an expansion of CAG trinucleotide 

repeats in the huntingtin gene, which results in a huntingtin protein with an abnormally long 

polyglutamine tract at the N-terminus (MacDonald et al., 1993). Polyglutamine extended huntingtin 

proteins tend to aggregate, thereby forming intracellular inclusions, and cause neuronal dysfunction 

and neurodegeneration in a yet poorly understood manner. Dysfunction and degeneration of neurons is 

paralleled by symptoms like cognitive deficits and involuntary movements (Davies et al., 1997; 

Walker, 2007). mTOR is sequestered by the intracellular aggregates seen in brain tissue of 

Huntington’s disease patients and mouse models of this disease. This sequestration is paralleled by 

reduced mTORC1 signalling evidenced by decreased phosphorylation of 4E-BP1 and increased 

autophagy (Ravikumar et al., 2004). Last is probably a mechanism that helps to protect the cell from 

toxic effects of the mutant huntingtin. Indeed, the huntingtin protein can be degraded by autophagy 

(Ravikumar et al., 2002) and an application of rapamycin before disease onset in a Huntington’s 

disease mouse model reduces the number of intracellular inclusions and ameliorates behavioural 

deficits seen with these mice (Ravikumar et al., 2004). Next to its stimulating effect on autophagy, 

rapamycin treatment may convey its protective effect also by reducing the protein synthesis, thereby 

diminishing the production of the pathogenic huntingtin mutant protein (King et al., 2008) (Fig. 8). 
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3.4. The cerebellum and Purkinje cells 
 

This section provides an introduction to the anatomy, development and functions of the cerebellum 

with a strong focus on Purkinje cells that are considered as key neurons of the cerebellum. A summary 

on the current knowledge about the role of mTOR signalling in Purkinje cells is also included in this 

section and precedes the chapter that finally defines the aim of this thesis.  

 

3.4.1. Anatomy of the cerebellum  
 

The cerebellum is a part of the hindbrain and is positioned dorsal to the pons and the medulla and is 

connected to the rest of the central nervous system via large fibre bundles called the cerebellar 

peduncles. Along its mediolateral axis, the cerebellum is divided into four different regions that 

include the flocculus/paraflocculus 

that are localized most laterally, 

followed by the hemisphere, the 

paravermis and the vermis (Fig. 9). 

Parasagittal cerebellar sections 

reveal that the cerebellum is foliated 

and consists of ten lobes that are 

numbered from the anterior to the 

nodular part (Voogd & Glickstein, 

1998; Sillitoe & Joyner, 2007). The 

basic architecture of the lobes is the 

same throughout the cerebellum and 

consists of different layers (Fig. 9 

and 10). The core of the lobe is 

composed of white matter (WM) that 

is flanked by the granule cell layer 

(GCL). On top of the GCL, a 

monolayer of Purkinje cell somata is 

found, called the Purkinje cell layer 

(PCL), that is followed by the most 

outward molecular layer (ML). 

Together, these three layers make up 

the cerebellar cortex (Welker, 1990). 

The granule cell layer consists 

mainly of numerous excitatory granule neurons but it also contains unipolar brush cells (UBCs) and 

 

Figure 9: Anatomy of the cerebllum. A, Dorsal view on the 
cerebellum that is divided along the mediolateral axis into 
different regions: vermis, paravermis, hemisphere, 
flocculus/paraflocculus (adapted from (White & Sillitoe, 2013)). 
B, Haematoxylin eosin staining of a parasagittal slice of the 
cerebellum of a C57/BL6 mouse. The cerebellar cortex is 
foliated and consists of different lobes that are labelled with 
roman numbers. Each lobe consists of the indicated layers 
(adapted from (Sillitoe & Joyner, 2007)).  
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inhibitory neurons, such as the Golgi and Lugaro cells (Fig. 10) (Mugnaini et al., 1997; White & 

Sillitoe, 2013). As mentioned above, the Purkinje cell layer primarily consists of aligned Purkinje cell 

somata, yet, in the same layer also somata of Bergmann glia and candelabrum cells are found (Laine & 

Axelrad, 1994; Voogd & Glickstein, 1998). The molecular layer is largely made up by dendritic trees 

of Purkinje cells, axons of granule cells (the so called parallel fibres) and fibres of Bergmann glia. In 

addition, the molecular layer hosts inhibitory neurons like the basket and stellate cells (Voogd & 

Glickstein, 1998; White & Sillitoe, 2013). 

 

3.4.2. The major cerebellar circuits 
 

The inhibitory Purkinje cells are 

considered the principal neurons of the 

cerebellar cortex since they provide its 

sole output by projecting to the deep 

cerebellar nuclei (DCN) and the 

vestibular nuclei as described further 

below (Fig. 10). Purkinje cells 

integrate signals from various inputs. 

Excitatory input is provided to 

Purkinje cells via two different 

sources, the climbing fibres and 

parallel fibres that convey signals of 

the inferior olive or the mossy fibre 

relay system, respectively (Fig. 11) 

(Sillitoe & Joyner, 2007). The inferior 

olive neurons are located in the 

medulla oblongata of the brainstem 

and project axons, called climbing fibres, to the cerebellum that terminate at the Purkinje cells by 

wiring their dendritic tree. An axon of the inferior olive provides in average climbing fibres for six to 

seven Purkinje cells that are located in the same sagittal plane (Sugihara et al., 2001; Sugihara, 2006). 

An adult Purkinje cell is typically innervated by only one climbing fibre that provides strong 

excitatory input and causes a profound depolarization when activated (Hashimoto et al., 2009b).  

On the other hand, each Purkinje cell forms synaptic connections with about 100’000 parallel fibres 

that are axons of excitatory granule cells. Axons of granule cells ascend from the GCL to the ML 

where they bifurcate and run in a perpendicular manner to the planar and parasagittally oriented 

dendritic trees of Purkinje cells. Consequently, a single parallel fibre connects to multiple Purkinje 

cells (Fig. 10 and 11). Granule cells, in turn, receive input from mossy fibres that transmit signals from 

 

Figure 10: Cellular composition of the cerebellum (adapted 
from (Sillitoe & Joyner, 2007)). ML: molecular layer; PCL: 
Purkinje cell layer; GCL: granule cell layer; WM: whiter 
matter; M: medial; L: lateral. 
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many different regions of the brain (vestibular nuclei, external cuneate nucleus, pontine nuclei; last 

provide input from the cerebral cortex) and spinal cord to the cerebellum (Voogd & Glickstein, 1998; 

Sillitoe & Joyner, 2007).  

Parallel fibres of granule cells also form 

synaptic connections with inhibitory 

interneurons, such as Golgi, stellate and 

basket cells. Stellate and basket cells, 

that are also summarized as molecular 

layer interneurons (MLIs), project to the 

somata or dendritic parts of Purkinje 

cells, respectively (Fig. 11). Because 

parallel fibres innervate both Purkinje 

cells and MLIs, last can limit the 

excitatory input of parallel fibre synapses 

onto Purkinje cells by a feed-forward 

inhibition (Mittmann et al., 2005). 

Moreover, MLIs excerpt lateral 

inhibition by projecting to Purkinje cells 

located in the same sagittal plane (Cohen 

& Yarom, 2000). Together, these means 

allow the MLIs to increase the temporal 

precision of Purkinje cell action potentials and sharpen the Purkinje cell output. On the other hand, the 

Golgi cells in the granule cell layer can regulate excitatory input of the mossy fibres (D'Angelo et al., 

2013) (Fig. 11).  

In summary, Purkinje cells integrate input from various sources and subsequently convey the 

processed information to the DCN and vestibular nuclei. These structures control the final output of 

the cerebellum and project to the brainstem and via the thalamus to the premotor and motor cortex, 

thereby allowing the cerebellum to excerpt its well known role in motor control as described in the 

following section (Voogd & Glickstein, 1998; Purves et al., 2008).  

 

3.4.3. The role of the cerebellum in normal and pathological conditions 
 

Already decades ago, lesion studies in various animal models revealed that in the absence of the 

cerebellum compound movements, such as walking, can be performed, yet, in an imprecise and unsure 

manner. Further studies led to the suggestion that the basic program for compound movements may 

come from the cerebral cortex while the cerebellum is needed to modify and refine it and, hence, the 

cerebellum is important for movement control (Allen & Tsukahara, 1974; Fetz, 1993; Purves et al., 

 

Figure 11: Synaptic connections of the neurons in the 
cerebellum (adapted from (Wang & Zoghbi, 2001)).  
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2008). Prominent signs of cerebellar damage are for example impaired balance and gait alterations 

(Morton & Bastian, 2004) but also disturbed motor learning (Glickstein & Yeo, 1990; Raymond et al., 

1996). Given these crucial functions for motor behaviour, the cerebellum is linked to motor diseases.  

Ataxia is a general term for a lack of voluntary coordination of muscle movements and can have 

various reasons, such as alcoholism, multiple sclerosis, stroke or metabolic diseases. However, the 

most common form of ataxia is cerebellar ataxia, which includes genetic diseases like spinocerebellar 

ataxias, Friedrich’s ataxia or Fragile X associated ataxia/tremor syndrome (Durr, 2010; Klockgether, 

2010). Cerebellar ataxia is typically paralleled by neurodegeneration, in particular by Purkinje cell 

degeneration (Burright et al., 1995; Hamilton et al., 1996; Serra et al., 2006; Reeber et al., 2013) that 

causes or at least contributes to the concomitant motor deficits (Liu et al., 2009). Recent studies have 

demonstrated that Purkinje cell loss in ataxia mouse models is preceded by alterations of 

electrophysiological properties of Purkinje cells, which is paralleled by ataxic phenotypes as well, yet, 

moderate ones (Shakkottai et al., 2011; Hansen et al., 2013).  

Dystonia is another movement disorder in which the cerebellum is involved. Dystonia is characterized 

by involuntary, sustained muscle contractions that cause abnormal postures and repetitive movements 

(Hallett, 2009). Purkinje cells of rodent models for dystonia show aberrant firing patterns in 

electrophysiological recordings (LeDoux, 2011). Interestingly, a Purkinje cell-specific knockout of the 

P/Q voltage-dependent calcium channel (Cav2.1) has been shown to be sufficient to trigger dystonic 

movements, further underlying the crucial role of these neurons in dystonia (Raike et al., 2013).  

Cerebellar lesions in humans are also found to be paralleled by emotional disturbances and/or 

cognitive deficits, which led to the notion that the cerebellum is relevant for non-motor functions and 

might be involved in neuropsychiatric and neurodevelopmental disorders (Schmahmann et al., 2007; 

Stoodley et al., 2012; Reeber et al., 2013). Growing evidence ascribes the cerebellum a role in ASD 

(Wang et al., 2014). For example, abnormal cerebellar activation is detected in ASD patients in fMRI 

studies (Allen et al., 2004). Moreover, the number of Purkinje cells is reduced in post-mortem 

cerebellae of ASD patients (Bauman & Kemper, 2005; Whitney et al., 2008; Fatemi et al., 2012). 

Autistic individuals also show defects in multisensory learning tasks that require the cerebellum 

(Wang et al., 2014). A classical sensory-motor learning task that crucially depends on the cerebellum 

is the eye-blink conditioning (Raymond et al., 1996). An airpuff given to the cornea (unconditioned 

stimulus) evokes an eye-blink response. If this teaching stimulus is preceded by a neutral (conditional) 

stimulus, such as a tone, the organism starts to associate these two stimuli and after several repetitions 

the pure presentation of the conditioned stimulus is sufficient to evoke an eye-blinking. The teaching 

stimulus is conveyed to the cerebellum via the inferior olive that projects climbing fibres to the 

cerebellum while the conditioned stimulus reaches the cerebellum via the mossy fibre-parallel fibre 

axis.  
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Synaptic plasticity events occurring at the 

parallel fibre-Purkinje cell synapses are 

thought to underlie such sensory-motor 

learning as discussed in section 3.4.5. 

Abnormal eye-blink conditioning is observed 

in autistic patients (Sears et al., 1994; Smit et 

al., 2008; Tobia & Woodruff-Pak, 2009; 

Oristaglio et al., 2013) as well as mouse 

models of Fragile X (Koekkoek et al., 2005).  

How the cerebellum may contribute to non-

motor functions of the cerebellum is currently 

poorly understood. However, it is assumed that 

the cerebellar connections to the thalamus and 

cortex (see section 3.4.2 and Fig. 12) may be 

crucial for these functions (Strick et al., 2009; 

Wang et al., 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 12: Cerebello-thalamo-cortical loop in the 
human brain (adapted from (Wang et al., 2014)). Due 
to its connectivity to the thalamus and cortex the 
cerebellum may influence also non-motor functions next 
to its well described role in motor control.  
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3.4.4. Purkinje cell development 
 

In mice, the cerebellum starts to develop at embryonic day 9 (E9) from the dorsal rhombomere 1 of the 

developing hindbrain (Sillitoe & Joyner, 2007; 

Martinez et al., 2013). Cerebellar cells derive from 

two germinal matrices in the developing 

cerebellum, the ventricular zone (VZ) and the 

rhombic lip (RL) that generate basically inhibitory 

or excitatory neurons, respectively (Wingate & 

Hatten, 1999; Butts et al., 2011) (Fig. 13). Already 

between E10-13 the first cerebellar neurons become 

postmiotic starting with excitatory neurons of the 

cerebellar nuclei closely followed by inhibitory 

Purkinje cells (Miale & Sidman, 1961; Pierce, 

1975). Postmitotic Purkinje cells that are detected 

by gene expression at about E14 (Oberdick et al., 

1993; Hatten & Heintz, 1995; Morales & Hatten, 

2006; Miyata et al., 2010) subsequently undergo 

migration (Fig. 13). This migration apparently is 

guided by radial glia cells (Edwards et al., 1990; 

Morales & Hatten, 2006) and occurs in a radial 

manner around the already formed DCN. Purkinje 

cell migration is paralleled by axogenesis as they 

leave axons behind in their target zone, the DCN 

(Sillitoe et al., 2009; Miyata et al., 2010). Previous 

to the formation of the Purkinje cell monolayer that 

is established at postnatal day 4/5 (P4/5) (Altman, 

1972; Kapfhammer, 2004) a multilayer of Purkinje 

cells is formed below the external granule layer 

(EGL).  

The EGL is established by granule cell precursors that derive from the rhombic lip and migrate over 

the outer surface of the cerebellum (Fig. 13). First postmitotic cells can be identified in the EGL at P0 

(Fujita, 1967). The EGL can be subdivided in two distinct zones, an outer proliferative and inner 

premigratory zone. Cells in the premigratory zone grow processes that finally become parallel fibres. 

Once the parallel fibre projections have reached an optimal length, the granule cell somata descend 

vertically beneath the Purkinje cell layer to form the internal granular layer (IGL). First functional 

parallel fibre-Purkinje cell synapses can be detected at P6 and by P14 most of the granule cell somata 

are located in the IGL (Scelfo & Strata, 2005).  

 

Figure 13: Development of the cerebellum 
(adapted from (Martinez et al., 2013)). The 
left column depicts a schematic illustration of 
the cerebellar development. Each row indicates 
a different time point during development. The 
right column shows in situ hybridization 
analysis of the cerebellum at the indicated time 
points using probes against the Purkinje cell 
marker calbindin.  
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A big part of the Purkinje cell development occurs postnatally. At birth the Purkinje cells are polarized 

as they possess an axon and a 

single, smooth dendrite. This 

state of Purkinje cell is referred 

to as “fusiform” (Sotelo, 2004) 

(Fig. 14). During the first 

postnatal week the polarization 

of the fusiform becomes 

reduced as additional dendritic 

processes arise from the somata 

in any direction. These first 

postnatal days do not include a 

strong net growth of the dendritic tree but are characterized by an extensive remodelling of these 

dendritic processes (Kapfhammer, 2004). In contrary to the dendritic tree, the somata of Purkinje cells 

expand during this first period of postnatal Purkinje cell development. By about P10, the number of 

primary dendrites is reduced to a single one, which is followed by a rapid dendritic growth and 

branching that lasts up to P15 (Sotelo & Dusart, 2009). During this phase also the plane orientation of 

the dendritic tree is achieved. In a third phase, an additional slow growth of the Purkinje cell dendritic 

tree, as well as a refinement thereof, is observed and at the end of the third postnatal week the Purkinje 

cell development is largely completed (Hendelman & Aggerwal, 1980; Sotelo & Dusart, 2009).  

In course of postnatal Purkinje cell development not only their morphology but also synaptic input is 

shaped. Importantly, the mono innervation of Purkinje cells by climbing fibres is established in 

parallel to dendritogenesis. Axonal projections of the inferior olive form first contacts with Purkinje 

cells at E19 (Wassef et al., 1992; Morara et al., 2001). At P2 multiple olivo-cerebellar axons, that at 

this age not yet have the typical climbing fibre morphology, are located at somata of the Purkinje cells. 

This stage is referred to as the “creeper stage” (Chedotal & Sotelo, 1993) (Fig. 15). 

Electrophysiological recordings detect functional olivo-cerebellar synapses onto Purkinje cells at 

around P3 (Crepel, 1971; Woodward et al., 1971) and confirm that they are innervated by multiple 

climbing fibres (four or even more) of similar synaptic strength (Crepel et al., 1976; Hashimoto & 

Kano, 2005). In the time period between P3 and P7, a single climbing fibre becomes selectively 

strengthened, which is assumed to occur upon synaptic competition, but still weaker climbing fibres 

are present (Hashimoto & Kano, 2003; Hashimoto et al., 2009a). Morphologically, the climbing fibres 

form a nest-like structure on the lower part of the Purkinje cell somata between P5 and P9 and 

therefore this stage is referred to as the “pericellular nest stage” (Hashimoto & Kano, 2013) (Fig.15). 

Although by P6 a main primary dendrite starts to build, which is paralleled by a retraction of surplus 

perisomatic processes, climbing fibres do not start to translocate to dendritic parts at this point but 

reside at the Purkinje cell somata until about P9. Somatodendritic translocation of the climbing fibres 

 

Figure 14: Development of Purkinje cells (adapted from (Sotelo, 
2004)). Morphology of rat Purkinje cells at different time points during 
postnatal development. 
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only starts at the “capuchon stage” (P8-9) that follows the “pericellular nest stage”. At the beginning 

of this climbing fibre translocation Purkinje cells are still innervated by surplus climbing fibres. 

Amongst these multiple climbing fibres only the strongest one translocates to the dendrite. In course of 

the somatodendritic translocation (Hashimoto et al., 2009a; Carrillo et al., 2013) surplus climbing 

fibres are eliminated, which occurs in two phases, an early (P8-11) and a late phase (P12-17) (Crepel 

et al., 1981; Hashimoto et al., 2009b) (Fig. 15). While the early phase of climbing fibre elimination is 

mechanistically poorly understood, the processes underlying late phase climbing fibre elimination are 

better characterized (Hashimoto & Kano, 2013). Last has been shown to depend on the parallel fibre 

input of granule cells. For example, pharmacological interruption of the mossy fibre-mediated 

stimulation of parallel fibres during P15-P16 impairs proper climbing fibre elimination (Kakizawa et 

al., 2000). Parallel fibre input can activate mGluR1 (Finch & Augustine, 1998; Takechi et al., 1998). 

Since a knockout of mGluR1, or any member of its signalling cascade (Gαq, PLCβ4 or PKCγ), causes 

multiple climbing fibre innervation in adult mice, it has been suggested that parallel fibre-mediated 

mGluR1 activation is 

essential for proper late 

phase climbing fibre 

elimination. Notably, all 

these knockout mice also 

show motor coordination 

deficits, indicating that 

mono climbing fibre 

innervation of Purkinje 

cells is important for 

normal motor behaviour of 

adult mice (Chen et al., 

1995; Kano et al., 1995; 

Kano et al., 1997; 

Offermanns et al., 1997; Kano et al., 1998; Ichise et al., 2000; Kano et al., 2008). 

 

 

 

 

 

 

 

 

 

 

Figure 15: Climbing fibre elimination during postnatal Purkinje cell 
development (adapted from (Hashimoto & Kano, 2013)). The Purkinje 
cell is depicted in green while the innervating climbing fiber(s) are 
illustrated in blue. Climbing fibres (CF) are refined in four different phases 
during postnatal Purkinje cell development. 
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3.4.5. Synaptic plasticity of Purkinje cells 
 

As described in section 3.3.2., synaptic connections between neurons are of plastic nature. 

Hippocampal synapses show bidirectional synaptic plasticity that bases on a kinase/phosphatase 

switch, which in turn is guided by postsynaptic levels of calcium e.g. a strong postsynaptic calcium 

influx activates CamKII and promotes LTP while a prolonged modest rise of postsynaptic calcium 

initiates LTD via PP1 (Yang et al., 1999; Munton et al., 2004). Also for the parallel fibre (PF)-

Purkinje cell synapses calcium-dependent bidirectional plasticity is observed although in an “inverse” 

manner. LTP at the PF-Purkinje cell synapses can be induced by low frequency stimulation of PF 

synapses, which only moderately increases postsynaptic calcium levels (Lev-Ram et al., 2002; 

Coesmans et al., 2004). Via calmodulin the transient postsynaptic calcium increase activates protein 

phosphatase 2B (PP2B) that is essential for this form of LTP (Schonewille et al., 2010). Also the 

protein phosphatases PP1 and PP2A, but not the kinases CamKII and PKC, are involved in PF-

Purkinje cell synapse LTP (Belmeguenai & Hansel, 2005; Kakegawa & Yuzaki, 2005; Hansel et al., 

2006; Schonewille et al., 2010).  

The bidirectional plasticity of the PF-Purkinje cell synapses has nicely been demonstrated by 

Coesmans and colleagues who have 

shown that climbing fibre activity 

can reverse the PF-Purkinje cell 

synapse LTP into LTD (Coesmans 

et al., 2004). Climbing fibre 

stimulation and the concomitant 

strong depolarization of Purkinje 

cells causes calcium influx via 

voltage-gated calcium channels 

(VGCCs) in the plasma membrane. 

This, in conjunction with 

stimulation of afferent parallel 

fibres weakens the strength of the 

PF-Purkinje cell synapses by 

causing an internalization of the 

AMPA receptors (Fig. 16) (Ito & 

Kano, 1982; Matsuda et al., 2000; 

Wang & Linden, 2000; Linden, 

2001). Combined activation of 

climbing fibre and PF synapses not only opens VGCCs but also stimulates AMPA and mGluR1 

receptors, which results in the generation of diacylglycerol (DG) and inositol 1,4,5-trisphosphate (IP3) 

due to mGluR1-mediated activation of phospholipase C. The generated IP3 additionally increases 

 

Figure 16: Model for parallel fiber-Purkinje cell synapse LTD 
(adapted from (Hirano, 2013)). Simultaneous stimulation of 
parallel fiber and climbing fiber synapses results in a strong 
calcium influx and internalization of AMPAR at the parallel 
fiber synapses. AMPAR: AMPA receptor; mGluR1: metabotropic 
glutamate receptor 1; Gq: Gq protein; PLC: phospholipase C; DG: 
diacylglycerol; PKC: protein kinase C; IP3: inositol 1,4,5-
trisphosphate; IP3R: IP3 receptor; VGCC: voltage-gated calcium 
channel; ER: endoplasmic reticulum. 
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cytosolic calcium by releasing it from the endoplasmatic reticulum, which results in large postsynaptic 

calcium signals ( >10 µM (Wang et al., 2000)). Under these conditions (strongly elevated calcium 

levels and generated DG) PKCα as well as CamKII become activated, both of which have been shown 

to be essential for PF-Purkinje cell synapse LTD (Leitges et al., 2004; Hansel et al., 2006; Tsuruno & 

Hirano, 2007; van Woerden et al., 2009). While the role of CamKII in this form of LTD is poorly 

understood, PKCα seems to be important for AMPA receptor internalization by phosphorylating the 

GluR2 subunit of AMPA receptors (Chung et al., 2003). Phosphorylation of GluR2 at Ser880 by 

PKCα regulates the clustering of the AMPA receptors by reducing their binding to glutamate receptor-

interacting proteins (GRIP) (Matsuda et al., 1999), thereby facilitating an interaction with the protein-

interacting with C kinase 1 (PICK1) that promotes clathrin-mediated endocytosis of AMPA receptor 

(Wang & Linden, 2000; Xia et al., 2000).  

PF-Purkinje cell synapse LTD has been proposed to be the cellular correlate for motor learning (see 

also section 3.4.3.) (Marr, 1969; Albus, 1971). In line with this theory, motor learning deficits have 

been shown to positively correlate with defective cerebellar LTD (Aiba et al., 1994; De Zeeuw et al., 

1998; Hirano, 2006). However, other studies have challenged the same theory more recently since they 

report normal motor learning despite impaired LTD (Welsh et al., 2005; Schonewille et al., 2011). 

Therefore, the relevance of PF-LTD for motor learning is currently controversially discussed. Other 

evidence indicates that motor learning depends on LTP of PF-Purkinje cell synapses. For example, 

Purkinje cell-specific knockout of PP2B impairs both LTP and motor learning while it does not affect 

LTD (Schonewille et al., 2010).  

Synaptic plasticity is not only observed for the excitatory parallel fibre synapses but also for inhibitory 

synapses formed by the molecular layer interneurons (MLIs, see section 3.4.2.) with Purkinje cells. 

Climbing fibre stimulation of Purkinje cells can cause a calcium-dependent potentiation of the 

amplitude of spontaneous inhibitory postsynaptic currents (IPSCs). This form of synaptic plasticity is 

referred to as rebound potentiation (Kano et al., 1992; Kano et al., 1996; Kawaguchi & Hirano, 2002). 

An upregulation of GABAA receptor (GABAAR) activity in Purkinje cells is underlying rebound 

potentiation, which depends on CamKII activity (Kano et al., 1996; Kawaguchi & Hirano, 2007; 

Kitagawa et al., 2009). CamKII may influence GABAAR by directly phosphorylating their β and γ2 

subunits (Moss & Smart, 1996; Houston et al., 2009) and/or by causing a conformational change of 

the GABAAR associated protein (GABARAP) that binds the γ2 subunit of GABAAR (Wang et al., 

1999; Kawaguchi & Hirano, 2007). While the role of CamKII-mediated phosphorylation of β and γ2 

subunits in rebound potentiation is elusive, the binding of GABAAR to GABARAP is needed for 

induction of rebound potentiation (Kawaguchi & Hirano, 2007). Based on the analysis of inhibitory 

synapse plasticity of other brain regions, it has been speculated that GABARAP might induce rebound 

potentiation by supporting the transport of GABAAR to the cell membrane (Marsden et al., 2007; 

Hirano & Kawaguchi, 2014). Alternatively, GABARAP might affect the channel conductance or open 

time of GABAAR (Everitt et al., 2004; Luu et al., 2006).  

Page 41 



Nico Angliker                                                                                                                          Introduction 

Recent evidence demonstrates that transgenic mice with defective rebound potentiation show motor 

learning deficits, indicating that climbing fibre-dependent plasticity of GABAergic synapses of 

Purkinje cells is important for cerebellar motor learning (Tanaka et al., 2013; Hirano & Kawaguchi, 

2014). 

 

3.4.6. mTOR signalling in Purkinje cells 
 

According to the Allen Brain Atlas, the genes encoding for mTOR, raptor or rictor are all expressed in 

Purkinje cells (Lein et al., 2007). Properly controlled activation of mTORC1 in Purkinje cells has 

recently been demonstrated to be essential for their survival since a conditional knockout of TSC1 or 

TSC2 in Purkinje cells results in an age-dependent loss of these neurons by apoptosis. Previous to 

their death, knockout Purkinje cells reveal enlarged somata with signs of endoplasmatic reticulum and 

oxidative stress (Reith et al., 2011; Tsai et al., 2012). The age-dependent loss of Purkinje cells upon 

knockout of either TSC1 or TSC2 is paralleled by motor coordination deficits (Tsai et al., 2012; Reith 

et al., 2013). Treatment of Purkinje cell-specific TSC1 or TSC2 knockout mice with rapamycin 

largely rescues Purkinje cell degeneration and the accompanying motor coordination deficits, 

demonstrating the mTORC1-dependence of these phenotypes (Reith et al., 2011; Tsai et al., 2012). 

Interestingly, disruption of the TSC complex in Purkinje cells is sufficient to cause autistic-like 

phenotypes in mice, including repetitive behaviour and social abnormalities (Tsai et al., 2012; Reith et 

al., 2013). Also these phenotypes are sensitive to rapamycin treatment. These findings support the role 

of the cerebellum, in particular the Purkinje cells, in non-motor functions of the brain and ascribe 

mTORC1 an important role therein (see section 3.4.3.). The fact that a heterozygous loss of TSC1 in 

Purkinje cells does not result in apoptosis but still causes autistic-like deficits indicates that other 

reasons than Purkinje cell loss account for this kind of behavioural phenotype (Tsai et al., 2012). 

Electrophysiological recordings did not reveal significant changes of the synaptic input of TSC1-

knockout Purkinje cells although on the morphological level the spine density of these neurons is 

significantly increased. However, the intrinsic excitability of heterozygous TSC1-knockout Purkinje 

cells, that notably have a normal soma size, is reduced (Tsai et al., 2012). Tsai and colleagues suggest 

that this reduced Purkinje cell excitability may underlie the autistic-like behaviour of these conditional 

knockout mice by changing the Purkinje cell firing rate, which ultimately may affect the cerebellar 

output. Although this is a possible scenario, mTORC1-dependent mechanisms in Purkinje cells 

contributing to autistic-like deficits clearly need further investigation.  

In addition to mTORC1, also mTORC2 seems to be crucial for Purkinje cells. Ablation of mTORC2 in 

neural progenitor cells results in a striking cerebellar phenotype, including morphological changes of 

Purkinje cells and ataxic motor behaviour. Purkinje cells of these knockout mice show a reduction in 

the soma size and often possess more than a single primary dendrite. Moreover, the excitatory and 

inhibitory synaptic input of these Purkinje cells is reduced (Thomanetz et al., 2013). 
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4. Aim of this thesis  
 

The overall goal of this study was to analyse and compare the roles of mTORC1 and mTORC2 in 

Purkinje cells by conditionally knocking out the genes encoding for raptor or rictor, respectively. For 

this purpose, mice possessing floxed Rptor or Rictor genes (Bentzinger et al., 2008) were crossed with 

mice that express the Cre-recombinase under the L7/Pcp-2 promoter whose activity is restricted to 

Purkinje cells and retinal cells (Saito et al., 2005). L7/Pcp-2-driven knockout has been reported to start 

at about E18 and, hence, affects the postnatal development of Purkinje cells (Saito et al., 2005). In a 

first step, this experimental approach was used to analyse whether the strong Purkinje cell phenotype 

observed in mice that have rictor conditionally knocked out in neural progenitor cells is cell 

autonomous in terms of morphology and synaptic input. In further steps, the effect of the Purkinje cell-

specific rictor knockout on the mouse behaviour was addressed and mTORC2-dependent mechanisms 

underlying behavioural phenotypes were explored. In parallel, the same procedure was conducted with 

Purkinje cell-specific raptor knockout mice. This allowed us to directly compare and dissect roles of 

mTORC1 and mTORC2 in Purkinje cells. By knocking out raptor exclusively in Purkinje cells, we 

also aimed for a way to study the importance of mTORC1 in neurons of adult mice, which had been 

impossible to achieve with mice that have raptor knocked out in neural progenitor cells due to the 

perinatal death of these mice.  

As outlined in section 3.3.3., mTOR signalling may not only be important for excitatory but also 

inhibitory synapses, however, only limited knowledge is currently available on this topic. Because 

Purkinje cells receive ubiquitous inhibitory input by stellate and basket neurons, the Purkinje cell-

specific mouse lines described above were used to study the impact of mTORC1 and mTORC2 

ablation on GABAergic synapses, which was performed in collaboration with the group of Jean-Marc 

Fritschy.  
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5. Results 
 

5.1. Publication 1: Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size 

and neuron morphology. Thomanetz, V.*, Angliker, N.*, Cloetta, D., Lustenberger, R.M., 

Schweighauser, M., Oliveri, F., Suzuki, N. & Ruegg, M.A. (2013) J Cell Biol, 201(2): 293-308.  

*Equal contributions 

 

Contributions: 

The phenotype of mice that have mTORC2 conditionally ablated in the entire brain using a nestin-Cre 

driver was mainly analysed by Venus Thomanetz. The Purkinje cell-specific rictor knockout mice 

were used to confirm that the Purkinje cell phenotype seen in the whole brain rictor knockout mice can 

be recapitulated in terms of morphology and synaptic input. This publication also contains a validation 

of the L7/Pcp-2 promoter-driven knockout of rictor in Purkinje cells.  

 

 

5.2. Publication 2: mTORC1 and mTORC2 have largely distinct functions in Purkinje cells. Angliker, 

N., Burri, M., Zaichuk, M., Fritschy, J.M. and Rüegg, M.A. Manuscript submitted. 

 

Contributions: 

This publication describes the phenotype of mice that have rictor or raptor knocked out specifically in 

Purkinje cells. Michael Burri contributed to the analysis of Purkinje cell survival and degeneration and 

was involved in footprint analysis of these mice. Mariana Zaichuk performed the 

immunohistochemical analysis of the GABAergic input of raptor-knockout Purkinje cells.  
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Introduction
Mammalian target of rapamycin (mTOR) is a highly conserved 
serine/threonine protein kinase that controls cell and organismal 
growth induced by growth factors and nutrients (Wullschleger 
et al., 2006; Laplante and Sabatini, 2012). mTOR assembles 
into two distinct, multi-protein complexes, called mTOR com-
plex 1 (mTORC1) and mTORC2, which can be distinguished by 
their associated proteins and their sensitivity to inhibition by the 
immunosuppressive drug rapamycin. Whereas rapamycin inhib-
its mTORC1 acutely, mTORC2 is not inhibited. However, more 
recent data indicate that prolonged treatment with rapamycin 
also inhibits mTORC2 (Sarbassov et al., 2006). Thus, some of 
the effects observed by the application of rapamycin might be 
mediated by mTORC2. Indeed, insulin resistance in patients that 
undergo long-term treatment with rapamycin (Cole et al., 2008) 
has recently been shown to be likely due to inhibition of mTORC2 
and not of mTORC1 (Lamming et al., 2012). Thus, the only 

possibility to clearly distinguish between the function of mTORC1 
and mTORC2 in vivo is the generation of mice that selectively 
lack components that are essential for the function of either 
mTORC1 or mTORC2.

One of the essential and unique components of mTORC1 
is the protein raptor (regulatory associated protein of mTOR; Kim 
et al., 2002), whereas the protein rictor (rapamycin-insensitive 
companion of mTOR) is essential and unique for mTORC2 
(Jacinto et al., 2004; Sarbassov et al., 2004). Several lines of 
evidence indicate that mTORC1 is mainly responsible for cell 
growth and proliferation in response to growth factors, nutri-
ents, or stress, and the two main downstream targets of mTORC1, 
p70S6 kinase (S6K) and elongation factor 4E binding protein 
(4E-BP), are key regulators of cap-dependent protein translation 
(Wullschleger et al., 2006; Laplante and Sabatini, 2012). In con-
trast, the function of mTORC2 is much less well defined, but 
experiments in yeast and in cultured mammalian cells have in-
dicated a role of mTORC2 in the regulation of the actin cyto-
skeleton (Loewith et al., 2002; Jacinto et al., 2004; Sarbassov 
et al., 2004). mTORC2 also controls phosphorylation of the 
hydrophobic motif of Akt/protein kinase B (Akt/PKB), protein 

The mammalian target of rapamycin (mTOR) as-
sembles into two distinct multi-protein complexes 
called mTORC1 and mTORC2. Whereas mTORC1 

is known to regulate cell and organismal growth, the role 
of mTORC2 is less understood. We describe two mouse 
lines that are devoid of the mTORC2 component rictor in 
the entire central nervous system or in Purkinje cells. In 
both lines neurons were smaller and their morphology 
and function were strongly affected. The phenotypes were 
accompanied by loss of activation of Akt, PKC, and SGK1 

without effects on mTORC1 activity. The striking decrease 
in the activation and expression of several PKC isoforms, 
the subsequent loss of activation of GAP-43 and MARCKS, 
and the established role of PKCs in spinocerebellar ataxia 
and in shaping the actin cytoskeleton strongly suggest that 
the morphological deficits observed in rictor-deficient neu-
rons are mediated by PKCs. Together our experiments 
show that mTORC2 has a particularly important role in 
the brain and that it affects size, morphology, and func-
tion of neurons.
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or Purkinje cells affects size and neuron morphology
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cerebellar Purkinje cells, the cell type with highest rictor ex-
pression in the brain (Shiota et al., 2006). We show that deletion 
of rictor in the entire CNS causes a strong phenotype that in-
cludes severe microcephaly starting at birth and impairment of 
motor function. Rictor-deficient neurons are smaller and have 
altered neurite organization. Both the changes in neuron size 
and neurite morphology are also observed in mice lacking rictor 
solely in Purkinje cells. Importantly, the morphological changes 
correlate with the substantial loss of several PKC isoforms 
and the decrease in phosphorylation of PKC-downstream tar-
gets growth-associated protein-43 (GAP-43) and myristoylated  
alanine-rich protein kinase C substrate (MARCKS), and they are  
in agreement with the established role of PKC in the morphol-
ogy of Purkinje cell neurons. In addition, mutations in PKC cause 
spinocerebellar ataxia (Chen et al., 2003; Seki et al., 2011), which 
resembles the motor phenotype of our knockout mice. Thus, our 
work shows that mTORC2 plays an important role in the brain 
and that its function in Purkinje cells is cell autonomous.

Results
Germline deletion of rictor in mice causes growth arrest and 
subsequent death between embryonic day 10.5 and 11.5 (Guertin 
et al., 2006; Shiota et al., 2006). Rictor mRNA is expressed ubiq-
uitously with highest expression in neurons of the adult hippo-
campus and cerebellum (Shiota et al., 2006; Lein et al., 2007). 
To circumvent embryonic lethality and to study the role of rictor 
in the brain, we set out to conditionally delete rictor using the 
Cre/loxP system (Fig.1 A). To do this, we crossed mice homo-
zygous for the rictor alleles, in which exons 4 and 5 are flanked 
by loxP sites (Bentzinger et al., 2008), with mice expressing Cre 
under the control of the CNS-specific nestin promoter and en-
hancer (Tronche et al., 1999). This Cre mouse has been shown 
to induce recombination in all neural tube–derived cells around 
embryonic day 10.5 (Graus-Porta et al., 2001). After several 
crosses, we eventually obtained mice that were homozygous for 
the floxed rictor alleles and expressed nestin-Cre (abbreviated 
herein RibKO [for rictor brain knockout] mice). As controls, 
littermates were used that either did not express nestin-Cre (and 
carried the floxed rictor alleles) or that were Cre-positive but 
carried only one targeted rictor allele. Successful recombina-
tion of the floxed alleles was tested by PCR using primers P1 
and P2 (Fig. 1 A) and a nestin-Cre–specific primer set. In genomic 
DNA isolated from brain, successful recombination was detected 
in RibKO mice and in mice heterozygous for the floxed rictor 
allele and positive for nestin-Cre (Fig. 1 A). In contrast, no re-
combination was seen in control littermates that did not express 
Cre. These data show that our strategy indeed led to the deletion 
of exon 4 and 5 in the rictor gene. This deletion introduces a 
frameshift and causes a premature stop of translation.

RibKO mice were born in a Mendelian ratio and could not 
be distinguished from their littermate controls at birth (unpub-
lished data). After a few weeks, RibKO mice developed a rather 
strong motor phenotype that included a waddling gait (unpub-
lished data), hindlimb clasping upon tail suspension (Fig. 1 B), and 
a decreased latency to fall off an accelerating rotarod (Fig. 1 C). 
The brains of RibKO mice were smaller (Fig. 1 D) and weighed 

kinase C (PKC), and the serum- and glucocorticoid-induced ki-
nase 1 (SGK1), which are all members of the AGC kinase family 
(Sarbassov et al., 2005; Facchinetti et al., 2008; García-Martínez 
and Alessi, 2008; Ikenoue et al., 2008).

Germline deletion of rictor in mice causes embryonic death 
(Guertin et al., 2006; Shiota et al., 2006), whereas tissue-specific 
deletion of rictor often results in only minor phenotypes. This is 
the case in skeletal muscle (Bentzinger et al., 2008; Kumar et al., 
2008), adipose tissue (Cybulski et al., 2009), or kidney (Gödel 
et al., 2011). Importantly, in none of those conditional knockout 
mice have changes in the actin organization been observed. The 
rather weak phenotypes caused by rictor deletion are in stark 
contrast to the severe phenotypes observed upon deletion of rptor 
(gene encoding raptor) in the same tissues (Bentzinger et al., 
2008; Polak et al., 2008; Gödel et al., 2011). Interestingly, double 
knockout of both rptor and rictor aggravate the phenotypes in 
kidney (Gödel et al., 2011) but not in skeletal muscle (Bentzinger 
et al., 2008). Moreover, skeletal muscle–specific deletion of mTOR 
largely resembles the phenotype of mice lacking raptor (Risson 
et al., 2009). These results therefore indicate that most of the 
known functions of mTOR in several tissues are carried by 
mTORC1 and that there are significant differences in the impor-
tance of mTORC1 and mTORC2 between tissues.

In the nervous system, mTOR has mainly been implicated 
in protein synthesis–dependent control of synaptic plasticity in 
learning and memory (Richter and Klann, 2009). More recently, 
mTOR has been suggested to be deregulated in developmental 
brain disorders and in neurodegenerative diseases (Crino, 2011). 
Interestingly, tuberous sclerosis (TSC) patients who suffer from 
a benign brain tumor caused by mutations in TSC1 or TSC2, 
which encode proteins that form the main upstream inhibitor com-
plex of mTORC1, frequently also show autism spectrum disorder-
like symptoms (Ehninger and Silva, 2011). Thus, the evidence is 
strong that mTOR signaling is also important in the nervous 
system. The finding that deletion of the two mTORC1 down-
stream targets S6K or 4E-BP, and that treatment of mice or rats 
with rapamycin also affects learning and memory, has resulted 
in the concept that mTOR in the brain mainly acts via mTORC1 
and not mTORC2. Only very recent work has suggested roles of 
mTORC2 in the regulation of dopaminergic neurons in the adult 
brain (Siuta et al., 2010; Mazei-Robison et al., 2011). Both of 
those reports base their findings on the known role of Akt in 
schizophrenia and morphine-induced addiction, respectively. 
As mTORC2 has been shown to induce phosphorylation of Akt 
at Ser473 (Sarbassov et al., 2005), loss of mTORC2 may thus 
affect the Akt pathway in dopaminergic neurons. Although these 
conclusions are reasonable, deletion of rictor in other species 
and in other tissues has not revealed strong phenotypes that are 
based on diminished Akt signaling (Hietakangas and Cohen, 
2007; Bentzinger et al., 2008; Cybulski et al., 2009; Gödel et al., 
2011). In addition, phosphorylation of Akt at Ser473 is still high 
in mice deficient for mTOR in skeletal muscle (Risson et al., 
2009), indicating that mTORC2 is not essential for the phos-
phorylation of Akt at Ser473.

We now report on the phenotype of two distinct mouse 
models where rictor was conditionally deleted either in the en-
tire developing central nervous system (CNS) or selectively in 
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difference between RibKO and control brains is larger than the 
difference in body weight in the adult. These results suggest a 
direct role of mTORC2 in the control of brain size. RibKO mice 
also show a strong motor phenotype, indicating that neuronal 
connectivity in some brain regions might be impaired.

Cells are smaller in rictor-deficient brains
To determine the reasons for the difference in brain size of RibKO 
mice, we first investigated the proliferation capacity of stem/
progenitor cells. To this end, primary neurospheres isolated from 
newborn pups were cultured for 4 d, followed by trypsinization 
and resuspension into single cells. The secondary neurospheres 
were then cultured for another 6 d. The size of the secondary neu-
rospheres from RibKO mice was the same as those isolated from 
controls (Fig. 2 A) and the number of BrdU-positive cells, when 
labeled for 24 h before analysis, was indistinguishable (Fig. 2 B). 
These results indicate that proliferation of stem/progenitor cells 

40% less than those from littermate controls (Fig. 1 E). Although 
less striking than in the adult, the brains of newborn RibKO mice 
were already significantly lighter (Fig. 1 F). In contrast to brain, 
the total body weight of newborn RibKO mice was still the same 
as in controls, but RibKO mice did not gain weight like controls 
so that they became significantly lighter after one week and re-
mained lighter throughout adulthood (Fig. 1 G). Nevertheless, 
the brains of the RibKO remained significantly and dispropor-
tionally lighter (Fig. 1 H). Mid-saggital sections of cresyl violet–
stained brains showed that the effect on brain size was rather 
uniform and affected all brain regions (Fig. 1 I). This unifor-
mity in the size difference was further confirmed by measuring 
the relative volume of different brain regions using cresyl violet–
stained coronal paraffin sections (Fig. 1 J). In contrast to the brain 
proper, the ventricles were not smaller in RibKO mice (Fig. 1 J). 
These data thus show that deletion of rictor results in a smaller 
brain, which already manifests at birth. Moreover, the weight 

Figure 1.  Rictor knockout in brain causes microcephaly. 
(A) Schematic representation of the alleles in the rictor 
gene targeted for nestin-Cre–mediated recombination. 
PCR primers P1 to P3 are indicated. Right: PCR using 
genomic DNA from toe lysate of control (ctrl), RibKO, 
and heterozygous (het) mice to detect the wild-type (wt), 
the floxed allele (loxP), and Cre. PCR using brain tissue 
(CNS) and primers P1 and P3 shows successful recom-
bination. (B) Representative images of a control and a 
RibKO mouse during tail suspension in the clasping test. 
(C) Average time until control (black bar) or RibKO mice 
(gray) fell off the rotarod that accelerated from 5 to 30 rpm 
during 2 min. (D) Photograph of brains from adult control 
and RibKO mice. (E and F) Quantification of the relative 
brain weight of adult and newborn (P0) mice. Data repre-
sent mean ± SEM with n = 7 (adult, control); n = 6 (adult, 
RibKO); n = 26 (P0, control); and n = 7 (P0, RibKO). 
(G) Body weight of control and RibKO mice at different 
postnatal ages. Data represent mean ± SEM with n = 13 
(P0, control); n = 8 (P0, RibKO); n = 8 (P7, control); n = 5 
(P7, RibKO); n = 10 (10 wk, control); and n = 13 (10 wk, 
RibKO). (H) Brain weight relative to body weight in the  
adult. Data represent mean ± SEM with n = 7 (control) 
and n = 6 (RibKO). (I) Cresyl violet staining of mid-sagittal  
sections of brains from adult RibKO and control mice.  
(J) Quantification of the volumes of several brain regions 
from 1-yr-old mice. Data represent mean ± SEM with n = 3 
mice for each genotype. Black bars denote controls, light 
gray bars denote RibKO mice. Statistical analysis used 
Student’s t test: ***, P < 0.001; **, P < 0.01; *, P < 0.05. 
n.s., nonsignificant; P ≥ 0.05. Bars: (D) 1 cm; (I) 1 mm.
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in RibKO mice is not affected. Likewise, despite the reduced 
brain weight, the number of cells in brains isolated from new-
born RibKO mice was not significantly different from controls 
(Fig. 2 C). In contrast, the number of cells was lower in adult 
RibKO mice (Fig. 2 D). The difference in cell number at the 
adult stage seemed not to be due to increased apoptosis, as the 
number of cleaved caspase3-positive cells did not differ between 
the cortex of RibKO and control mice (Fig. S1 A). The number 
of caspase3-positive cells was, however, rather low and the data 
varied substantially between animals, which does not allow to 
exclude the possibility that RibKO mice might be more affected 
by apoptosis.

To assess whether cell size might cause the difference in 
brain size, we next stained sagittal sections with antibodies di-
rected against the neuron-specific antigen NeuN. These anti-
bodies strongly stain the nuclei and more weakly the cytoplasm 
of neurons. As shown in Fig. 2 E, the density of neurons in the 
retrosplenial and visual cortex of 9-wk-old RibKO mice was more 
than 1.5 times higher than in controls. This difference in neuron 
density was already clearly detected in postnatal day (P7) RibKO 
mice (Fig. S1 B). These data therefore show that loss of rictor in 
the brain affects neuron density but not proliferation of cells.

To get a more detailed view on the effect on neuron size 
in RibKO mice, we next reconstructed the shape of single hippo-
campal neurons using Golgi staining. Examination of pyrami-
dal neurons in the CA1 region (Fig. 3 A) and quantification of 
their size by the tracing of single neurons using a Neurolucida 
camera revealed that the mean total dendritic length of both  
the apical and basal dendrites was reduced by 15% (Fig. 3 B). 
This effect could be reproduced in cultured hippocampal neurons 
that were isolated from P0 brains, transfected with GFP-expression 
constructs at day in vitro (DIV) 7 (to visualize individual neu-
rons), and examined at DIV 14 (Fig. 3 C). Quantification revealed 

Figure 2.  Changes in cell density in rictor-
deficient brains. (A) Brightfield images of sec-
ondary neurospheres isolated from P0 mice, 
split into single cells after 4–5 d in culture and 
grown for another 6 d (left), and quantification 
of the neurosphere diameter (right). Data rep-
resent mean ± SEM from n = 613 spheres 
(control) and n = 583 spheres (RibKO); n = 5 
mice for each genotype. (B) Cross sections at 
the mid-region of neurospheres, stained with 
antibodies to BrdU (red) and with Hoechst 
(blue). Neurospheres were labeled with BrdU 
for 24 h. Quantification of the number of BrdU-
labeled cells (right). Data represent mean ± 
SEM from n = 3 mice per genotype. (C and D) 
Quantification of the total number of cells in 
the brains of P0 and adult mice using isotro-
pic fractionation. Data represent mean ± SEM 
from n = 3 mice per genotype. (E) Picture of 
cortex sections of adult control and RibKO 
mice stained with antibodies to NeuN (left) 
and quantification of neuron density (right). 
Data represent mean ± SEM from n = 36 
areas (control) and n = 3 mice (control), and  
n = 58 areas and n = 4 RibKO mice. Black 
bars denote controls, light gray bars denote 
RibKO mice. Statistical analysis used Student’s 
t test: **, P < 0.01. n.s., nonsignificant; P ≥ 
0.05. Bars (A, B, and E) 100 µm.

Figure 3.  Rictor regulates neuron size. (A) Cross sections of hippocampus 
after Golgi impregnation. The white bar indicates the length of CA1 pyra-
midal dendrites. (B) Quantification of the mean length of Neurolucida-
reconstructed apical and basal dendrites. Data represent mean ± SEM from 
n = 38 control neurons, n = 32 RibKO neurons derived from 4 different 
mice of each genotype. (C) Dissociated hippocampal neurons derived from 
P0 mice, transfected with GFP after 7 d, and grown for 14 d. (D) Mean 
soma size of hippocampal neurons from dissociated cultures at DIV 14. 
Data represent mean ± SD from n = 6 mice per genotype. (E) Sholl analysis 
of hippocampal neurons at DIV 14. Data represent mean ± SD from n = 6  
mice per genotype. Black bars denote control, light gray bars denote 
RibKO mice. Statistical analysis used Student’s t test: ***, P < 0.001;  
**, P < 0.01. Bars: (A) 200 µm; (C) 50 µm.
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Neurolucida drawing in Fig. 4 A). Quantification of the size of 
the Purkinje cells showed a significant decrease in soma size 
(Fig. 4 B) and a decrease in the length and the volume covered by 
single dendrites (Fig. 4, C and D). Examination of the Purkinje 
cell dendrites at high magnification revealed that the thickness 
of the dendrites was often irregular, fluctuating from very thin 
to rather thick (swollen) regions (Fig. 4 E, arrows). Thus, dele-
tion of rictor causes multiple changes in Purkinje cells that af-
fect the size of the somata and of the dendrites and increases the 
number of primary dendrites.

To examine whether any of the structural changes could 
already be observed at early stages of development, we examined 
the cerebella at P7. In the first postnatal week, Purkinje cells mi-
grate into the periphery and start to align in a monolayer. At that 
stage, most cells have formed one primary dendrite, which spreads 
out perpendicularly to the pial surface into the molecular layer 
where it forms numerous side branches (Kapfhammer, 2004). This 
alignment and spreading of the primary dendrites was well visi-
ble in control mice (Fig. 4 F), whereas the dendrites of Purkinje 
cells in RibKO mice appeared swollen (arrows) and several 

that the soma size of RibKO neurons was only  70% of con-
trol neurons (Fig. 3 D) and Sholl analysis at DIV 14 showed a 
highly significant decrease in the complexity of the neurites 
(Fig. 3 E). These experiments thus indicate that changes in neu-
ron size in RibKO mice are rather a consequence of cell-intrinsic 
changes than of alterations in the surroundings (e.g., changes in 
glial cells).

Cerebellar phenotype of RibKO mice
Rictor expression is highest in Purkinje cells of the cerebellum 
(Shiota et al., 2006) and RibKO mice show an ataxia-like phe-
notype (Fig. 1, B and C). To see whether loss of rictor would 
affect Purkinje cells, we next analyzed single cells from Golgi-
stained preparations (Fig. 4 A). Reconstruction of cells by trac-
ing them using a Neurolucida camera revealed several distinct 
structural alterations. One of the most striking differences be-
tween Purkinje cells from RibKO and control mice was an  
increase in the number of primary dendrites. Whereas control 
neurons always had one primary dendrite, Purkinje cells from 
RibKO mice often contained two to six primary dendrites (see 

Figure 4.  Rictor is involved in the regulation 
of Purkinje cell size and shape. (A) Golgi-stained 
Purkinje cells from adult control and RibKO 
mice (left) and reconstruction of a Purkinje 
cell using Neurolucida. Primary dendrites are 
indicated by different colors. Examples of a  
dendritic tree with little or no higher order 
branches are depicted in purple and orange. 
(B) Quantification of Purkinje cell soma size. 
The cell soma perimeter was measured in sec-
tions stained with antibodies to calbindin. Data 
represent mean ± SEM from n = 4 mice per 
genotype. (C) Quantification of the mean Pur-
kinje cell dendrite length and (D) the mean 
dendrite volume in Neurolucida-reconstructed 
cells. Data represent mean ± SEM from n = 4 
mice per genotype. (E) High magnification pic-
ture of Purkinje cell terminals of Golgi-stained 
preparations. Purkinje cell dendrites are often 
deformed (black arrows) and appear to have 
fewer spine-like structures. (F) Neurons of P7 
stained with antibodies to calbindin. White ar-
rows mark misshaped dendritic trees in RibKO 
mice. (G) Purkinje cells in organotypic cerebel-
lar slice cultures derived from P0 mice and 
cultured for 14 d, stained with antibodies to 
calbindin. (H) Quantification of the soma size 
of Purkinje cells in organotypic cultures. Data 
represent mean ± SEM from n = 4 (control) and 
n = 3 RibKO mice. Black bars denote control, 
light gray bars denote RibKO mice. Statistical 
analysis used Student’s t test: ***, P < 0.001; 
**, P < 0.01; *, P < 0.05. PC, Purkinje cell; 
ML, molecular layer. Bars: (A and G) 50 µm; 
(F) 20 µm; (E) 10 µm.
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and the cells seemed more densely packed than in control mice. 
Moreover, in some regions, changes in the structure of the lobules 
could be detected. The cerebellar hemisphere was even more af-
fected than the cerebellar vermis. There, both the simple lobule 
(Sim) and the Ansiform cruciform lobule 1 (ANcr1) were not 
properly formed and appeared to be fused so that they could not 
be distinguished as separate lobules (Fig. 5 D). Thus, deletion of 
rictor caused structural changes in the cerebellar morphology. As 
RibKO mice also show changes in motor behavior, the morpholog
ical alterations of the cerebellum might underlie these defects.

Synaptic defects in RibKO mice
The structural changes in the Purkinje cells of RibKO mice sug-
gested that synaptic connectivity might also be affected. To test 
this, we visualized the Purkinje cells with antibodies to calbin-
din and the presynaptic terminals of the climbing fibers, which 
synapse onto Purkinje cells, with antibodies to the vesicular glu-
tamate transporter protein 2 (vGLUT2; Fremeau et al., 2001; 
Hisano et al., 2002). The density of vGLUT2-positive puncta in 
the molecular layer was decreased in RibKO mice (Fig. 6 A). 
The number of synaptic inputs from parallel fibers onto Purkinje 
cells was estimated by Western blot analysis using antibodies 
against the vesicular glutamate transporter vGLUT1, which is en-
riched in parallel fiber synapses (Fremeau et al., 2001; Hisano 
et al., 2002). Compared with control lysates, vGLUT1-like 
immunoreactivity was reduced to less than 80% in RibKO mice 
(Fig. 6 B). These results therefore indicate that both excitatory 
inputs onto Purkinje cells are altered in RibKO mice.

To test for functional differences, we next measured min-
iature excitatory postsynaptic currents (mEPSCs) and miniature 

primary dendrites emerged from the cell bodies (Fig. 4 F). The 
aberrant Purkinje cell morphology was also reproduced in slice 
cultures derived from newborn mice and cultured for 14 d. There, 
the somata of RibKO Purkinje cells were significantly smaller 
(Fig. 4, G and H). As Purkinje cells in culture retain several pri-
mary dendrites because of the lack of climbing fiber innervation 
(Kapfhammer, 2004), the difference in the number of primary 
dendrites between RibKO and control mice could not be seen. 
In summary, these results show that RibKO mice display pro-
nounced structural changes in their Purkinje cells, the most promi-
nent ones being changes in dendritogenesis and overall cell size.

The changes in Purkinje cell size and shape in RibKO mice 
observed at early postnatal stages suggested to us that mTORC2 
might also be involved in cerebellar development and matura-
tion. It is known that mice with defects in Purkinje cells may 
develop simplified lobule patterns (Sidman et al., 1962; Wetts 
and Herrup, 1982). Moreover, the structure of the cerebellar 
lobes is highly conserved and aberrations in their morphology 
often correlate with defects in motor behavior (Sillitoe and Joyner, 
2007). To test whether this would also be the case in RibKO 
mice, we analyzed the overall structure of the cerebellum. At 
birth (P0), the cerebellum only consists of the 5 cardinal lobes, 
which will then develop into 10 mature lobules within the fol-
lowing 21 d (Larsell, 1952). In cerebella of newborn RibKO 
mice, lobule formation was unchanged (Fig. 5 A). At P7, cerebel-
lar defects became clearly visible as the cerebella were smaller 
and the structure of lobules III to VII of the cerebellar vermis in 
RibKO mice already deviated from that of control mice (Fig. 5 B). 
In 8–10-wk-old RibKO mice, the size of the cerebellum was 
strongly decreased (Fig. 5 C) and most lobules appeared shortened 

Figure 5.  Rictor deficiency leads to foliation defects in the cerebellum. (A) Cresyl violet staining of cerebella from P0 control and RibKO mice. (B) Cresyl 
violet–stained, mid-sagittal sections of P7 cerebella from control and RibKO mice. (C) Sagittal sections of cerebellar vermis from adult control and RibKO 
mice stained with cresyl violet. (D) Sagittal sections of the lateral cerebellar lobules of adult control and RibKO mice. Foliation defects are marked by red 
inserts. Fpl, posterolateral fissure; fsec, secondary fissure; fppd, prepyramidal fissure; fpr, primary fissure; fprc, precentral fissure. Vermal lobules are num-
bered from I to X. Lateral lobules: Ancr, Ansiform cruciform lobule; COPY, Copula pyramidis; Fl, Flocculus; PRM, paramedian lobule; Sim, simple lobule. 
Bars: (A and B) 250 µm; (C and D) 1 mm.
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the cerebellum of RibKO mice is strongly affected, suggesting 
that these synaptic changes might be the basis for the ataxia-like 
phenotype of RibKO mice.

Biochemical analysis of RibKO mice
Our findings that deletion of rictor results in a microcephalic 
phenotype and a decrease in the size of neurons is rather un-
expected, as such an effect has not been documented in other tis-
sue upon rictor deletion. In stark contrast, deletion of mTORC1 
has strong effects on organ and cell size (Russell et al., 2011). 
To investigate whether mTORC1 signaling was also affected in 
the RibKO mice and to unravel the molecular mechanisms that 
underlie the different aspects of the phenotype in RibKO mice, 

inhibitory postsynaptic currents (mIPSCs) in single Purkinje cells 
using the patch-clamp technique. As expected from the histo-
logical assessment, the inter-event interval of the mEPSCs was 
strongly increased in Purkinje cells from RibKO mice, which 
resulted in the lowering of the mEPSC frequency by about half 
(Fig. 6 C). In addition, the amplitude of the mEPSCs was re-
duced in RibKO mice as seen by the leftward shift in the cumu-
lative probability curve and the decrease of the mean mEPSC 
amplitude (Fig. 6 D). Recordings of the inhibitory synaptic input 
revealed that both the frequency and the amplitude of mIPSCs 
were reduced in RibKO mice to an extent that was quite similar 
to that observed for the mEPSCs (Fig. 6, E and F). In summary, 
these results show that synaptic connectivity of Purkinje cells in 

Figure 6.  Synaptic functions are altered in Purkinje cells of RibKO mice. (A) Confocal image of cerebellar vermal lobule III of adult control and RibKO 
mice stained with antibodies to calbindin to visualize Purkinje cells (PC, red) and antibodies to vGLUT2 for climbing fiber terminals (green). ML, molecular 
layer. (B) Western blot analysis of vGLUT1 in cerebellar lysates of control and RibKO mice and corresponding quantification of the mean gray values. 
-Actin was used as loading control. Data represent mean ± SEM from n = 6 control and n = 7 RibKO mice. (C and D) Miniature excitatory postsynaptic 
currents (mEPSCs) and (E and F) miniature inhibitory postsynaptic currents (mIPSCs) recorded from Purkinje cells in acute sagittal slices of 25-d-old control 
and RibKO mice. Data represent mean ± SEM from n = 4 control and n = 3 RibKO mice. Black bars/lines are from control; gray bars/lines are from RibKO 
mice. Statistical analysis used Student’s t test: **, P < 0.01. Bar, 20 µm.
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Figure 7.  Biochemical analysis of RibKO mice indicates altered activation of AGC kinases but not of mTORC1. (A–C) Western blot analysis of brain lysates 
from P7 and adult control and RibKO mice. -Tubulin, GAPDH, -actin, or pan-actin were used as loading controls. Some loading controls are intentionally 
shown more than once because experimental data were derived from the same SDS gel. (A) Detection of the phosphorylation levels of proteins involved in 
mTORC1 and mTORC2 signaling. Please note that phosphorylation levels of mTOR at Ser2481 and Ser2448 in adult mice showed a substantial variation. 
The P-mTOR(S2481) and P-mTOR(S2448) bands shown are representative for the averaged band intensities of all tested mice (see Table 1). (B) Phosphorylation 
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levels of the well-known downstream substrates GAP-43 and 
MARCKS were much lower in RibKO mice than in controls 
(Fig. 7 C; Table 1). In conclusion, this biochemical analysis in-
dicates that the growth defect in RibKO mice is a consequence 
of changes in downstream substrates of mTORC2 and not by 
affecting mTORC1 signaling. In addition, loss of rictor leads to 
the profound loss of several PKC isoforms in the brain, which 
has not been reported for other tissues.

Purkinje cell–specific deletion of rictor
As RibKO mice lack rictor in all cells of the CNS, this animal 
model cannot answer if the observed phenotypes were the conse-
quence of cell-autonomous function of mTORC2 or a consequence 
of altered cell–cell communication. To address this question, we 
crossed floxed rictor mice with mice in which the Cre recombi-
nase was knocked-in into the L7/Pcp-2 locus (Fig. 8 A; Saito 
et al., 2005). L7/Pcp-2-Cre mice start to express the Cre recom-
binase during late embryogenesis and its expression is restricted 
to Purkinje cells in a mosaic pattern (Saito et al., 2005). Off-
spring that was heterozygous for L7/Pcp-2-Cre and homozygous 
for the floxed rictor allele (called RiPuKOCre/+ for rictor Purkinje 
cell knockout) were born in a Mendelian ratio and mice could 
not be distinguished from their control littermates. Successful 
recombination of the floxed alleles in Purkinje cells was indi-
cated by the significant loss of rictor and of PKC from cerebellar 
lysates of adult RiPuKOCre/+ mice (Fig. 8 B). Staining of sagittal 
cerebellar sections of adult RiPuKOCre/+ mice with antibodies to 
calbindin and PKC revealed that 1/3 of the cells were nega-
tive for PKC (Fig. 8 C; Fig. S3 A). The proportion of PKC-
negative Purkinje cells increased to 3/4 when mice were made 
homozygous for the L7/Pcp-2-Cre allele (Fig. S3 A). In contrast, 
Purkinje cells from mice lacking L7/Pcp-2-Cre were all PKC 
positive (Fig. 8 C; Fig. S3 A). These results indicate that Cre 
expression in Purkinje cells is indeed mosaic and that an in-
crease in gene dosage for the Cre recombinase results in a higher 
rate of excision of the floxed alleles.

To assure that PKC-negative Purkinje cells were indeed 
deficient for rictor, single Purkinje cells were labeled with biocy-
tin during whole-cell patch clamping and the mRNA was analyzed 
by single-cell RT-PCR (Sucher et al., 2000). The biocytin-labeled 
Purkinje cells were then stained with antibodies to PKC and 
staining results were compared with those from single-cell RT-
PCR. As shown in Fig. S3 B, out of the nine cells analyzed all 
the PKC-negative cells also expressed rictor transcripts lack-
ing exons 4 and 5 (Fig. S3 B). There was one cell that was still 
positive for PKC even though only mRNA for the recombined 
rictor locus was amplified (Fig. S3 B; cell #7). These experi-
ments show that all the PKC-negative Purkinje cells are defi-
cient for rictor, whereas the majority of the PKC-positive cells 
are rictor positive.

Morphological analysis of Purkinje cells from RiPuKOCre/+ and  
RiPuKOCre/Cre mice showed that the somata of the PKC-negative 

we analyzed brain lysates of P7 and adult mice using Western 
blot analysis. As expected from nestin-Cre–mediated recombi-
nation that affects all precursor cells of the CNS (Tronche et al., 
1999; Graus-Porta et al., 2001), rictor protein could not be de-
tected in brain lysates from adult RibKO mice and was signifi-
cantly reduced in P7 RibKO brain lysates (Fig. 7 A; see Table 1 
for quantification). The loss of rictor did not affect the levels of 
mTOR but abrogated phosphorylation of mTOR at the mTORC2-
specific residue Ser2481 (Fig. 7 A; Table 1). Importantly, all the 
phosphorylation sites indicative of mTORC1 signaling were not 
altered in RibKO mice. These included phosphorylation of mTOR 
at Ser2448, of S6K and its substrate S6, and of 4E-BP and its sub-
strate elongation initiation factor 4E (eIF4E). In addition, phos-
phorylation of tuberous sclerosis complex 2 (TSC2), a downstream 
target of Akt and upstream inhibitor of mTORC1, was also not 
altered (Fig. 7 A; Table 1). These results indicate that inactivation 
of mTORC2 in the developing and adult brain does not affect 
mTORC1 activity and thus suggests that an mTORC1-independent 
mechanism is responsible for the microcephaly in RibKO mice.

Previous work has shown that mTORC2 affects phosphory
lation of AGC kinases including Akt (Sarbassov et al., 2005), 
SGK1 (García-Martínez and Alessi, 2008), and PKC (Facchinetti 
et al., 2008; Ikenoue et al., 2008). Although the protein levels of 
Akt were not changed in comparison to control mice, phosphory-
lation at Ser473 was strongly diminished in RibKO mice (Fig. 7 B; 
Table 1). Phosphorylation of Akt at Thr308 was reduced in RibKO 
mice but reached significance only in the adult brain. However, 
activation of the Akt downstream targets FoxO1 and GSK3- was 
unchanged (Fig. 7 B; Table 1). These results indicate that Akt 
activation toward the mTORC1, the GSK3-, and the FoxO1 
branch was not altered in RibKO mice despite the lower levels 
of phosphorylation at Ser473. Activation of SGK1, as indicated 
by the phosphorylation of its downstream substrate, N-myc down-
stream regulated gene 1 (NDRG1), was decreased in the adult but 
not in the brains of P7 RibKO mice (Fig. 7 B; Table 1).

As mTORC2 was also shown to regulate phosphorylation 
and thereby protein levels of certain isoforms of PKC (Facchinetti 
et al., 2008; Ikenoue et al., 2008), we also tested brain lysates of 
RibKO mice for changes in PKC. There are at least nine differ-
ent isoforms that are grouped into three classes based on their 
structural and enzymatic properties. These include the conven-
tional isoforms (PKC, -, and -), the novel isoforms (PKC, -, 
and -), and the atypical isoforms (PKC, -, -, and -). The 
conventional PKC isoforms are activated by phosphorylation and 
second messengers (elevated Ca2+ concentrations and diacyl
glycerol [DAG]), whereas the novel isoforms are regulated only 
by DAG and phosphorylation (Ohno and Nishizuka, 2002). In 
P7 and adult RibKO mice, phosphorylation and protein levels 
of all three conventional PKCs and the novel PKC was strongly 
decreased (Fig. 7 C; Fig. S2; Table 1). In contrast, the atypical 
isoform PKC was not affected (Fig. 7 C; Table 1). The strong de-
crease in PKCs had functional consequences, as phosphorylation 

of mTORC2 targets Akt and SGK1 and downstream targets. (C) Western blot analysis of several PKC isoforms and the PKC targets GAP-43 and MARCKS. 
Levels of MARCKS showed considerable variations in adult mice. The shown bands are representative for the averaged band intensities of all tested mice 
(see Table 1). (D) Schematic view of the signaling mechanisms up- and downstream of mTORC1 and mTORC2.
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(Fig. 9, A and B) and no change in the amplitude (Fig. 9 C). In 
contrast, the mIPSC frequency in control Purkinje cells was 
the same as in PKC-negative and PKC-positive Purkinje cells 
in RiPuKOCre/Cre mice. However, PKC-negative cells from 
RiPuKOCre/Cre mice showed a reduction in the mIPSC amplitude 
compared with PKC-positive cells from RiPuKOCre/Cre or from 
control mice (Fig. 9, E and F). The reduction in mEPSC fre-
quency indicates that RiPuKOCre/Cre mice have fewer functional 
excitatory synapses, whereas the reduction in mIPSC ampli-
tude points to a reduction in the number or the functionality 
of inhibitory receptors at the Purkinje cell membrane. Thus, in 
contrast to RibKO mice where all parameters of the mEPSCs 
and mIPSCs are diminished, RiPuKOCre/Cre mice show changes 
only in mEPSC frequency and in the mIPSC amplitude. These 
results therefore suggest that presynaptic input onto Purkinje 
cells might in addition be affected in RibKO mice because of 
the broad expression of nestin-Cre. In conclusion, specific elim-
ination of mTORC2-associated protein rictor in Purkinje cells 
using L7/Pcp-2-Cre results in the reiteration of several pheno-
typic distortions observed in RibKO mice, including the reduc-
tion of cell size, the change in cell morphology, and in synaptic 
function. Thus, those common phenotypes are based on a 
cell-autonomous function of mTORC2.

cells were significantly smaller than those of Purkinje cells 
in control mice (Fig. 8, D and E). Importantly, PKC-positive 
Purkinje cells were also significantly bigger than the PKC-
negative cells in the RiPuKOCre/+ mice (Fig. 8 E). In addition, the 
average diameter of the primary dendrites of PKC-negative 
Purkinje cells in the RiPuKOCre/+ mice was significantly smaller 
than in cells from control mice (Fig. 8 F), and PKC-negative 
Purkinje cells in RiPuKOCre/Cre mice formed in more than 30% 
of the cases two or more primary dendrites (Fig. 8, D and G). 
Rictor-deficient (i.e., PKC-negative) Purkinje cells that were 
isolated from RiPuKOCre/Cre mice and were cultured for 14 d in 
organotypic slices also displayed aberrations in axon structure 
compared with PKC-positive neurons (Fig. 8 H). In particular, 
the diameter of the axons was significantly diminished in the 
PKC-negative but not the PKC-positive Purkinje cells (Fig. 8 I). 
Thus, selective elimination of rictor in Purkinje cells causes 
multiple morphological changes that affect cell size and neu-
rite morphology.

To test whether these morphological changes of the PKC-
negative Purkinje cells from RiPuKOCre/Cre mice also affected 
synaptic properties, we measured mEPSCs and mIPSCs in 
acute cerebellar slices from 6-wk-old mice. The single-cell re-
cordings revealed a strong decrease in the mEPSC frequency 

Table 1.  Quantification of Western blot analyses

Antibody target P7 brain Adult brain

 Control RibKO Control RibKO

rictor 100 ± 8.1 13.7 ± 2.4*** 100 ± 24 n.d.
mTOR 100 ± 10.5 108.5 ± 7.9 100 ± 31 64.9 ± 7.5
P-mTOR (Ser2481) 100 ± 2.8 21.2 ± 5*** 100 ± 25.2 2.7 ± 2.2**
P-mTOR (Ser2448) 100 ± 7 96.5 ± 12.3 100 ± 20.7 79 ± 21
S6K 100 ± 12.2 93.6 ± 8.2 100 ± 8.8 91.4 ± 5.8
PS6K (Thr389) 100 ± 8.3 116.5 ± 5.9 100 ± 5.2 85.6± 9.2
S6 100 ± 9.1 107.2 ± 13.8 100 ± 6.1 169.3 ± 29.4
P-S6 (Ser235/236) 100 ± 6.2 83.2 ± 3.3 100 ± 10 105.2 ± 17.5
P-4E-BP (Thr37/46) 100 ± 8.3 94 ± 7.6 100 ± 11 179.7 ± 37.2
P-eIF4E (Ser209) 100 ± 13 84.6 ± 3.1 100 ± 10 107.0 ± 13.8
P-TSC2 (Thr1462) 100 ± 9.8 177.5 ± 45.6 100 ± 22 80.2 ± 22.4
Akt 100 ± 10.5 127.6 ± 17.3 100 ± 4.7 99.4 ± 6.1
P-Akt (Ser473) 100 ± 10 3.9 ± 0.9*** 100 ± 12 18.3 ± 4.8***
P-Akt (Thr308) 100 ± 7 52 ± 17 100 ± 15 36.9 ± 8.1**
P-FoxO1 (Ser256) 100 ± 15.7 141.1 ± 13.3 100 ± 9.3 164.6 ± 26.7
GSK3- 100 ± 5.0 101.5 ± 5.5 100 ± 5.1 97.1 ± 4.7
P-GSK3- (Ser9) 100 ± 11.7 115.8 ± 12.4 100 ± 17 103.7 ± 5.1
NDRG1 100 ± 19.8 115.3 ± 6.5 100 ± 5.4 94.2 ± 7.9
P-NDRG1 (T346) 100 ± 13.7 92 ± 15.9 100 ± 3.8 52.4 ± 7.3***
PKC 100 ± 6.8 55.8 ± 3.4*** 100 ± 23.8 2.6 ± 1.7***
PKC2 100 ± 7.0 78.6 ± 3.7* 100 ± 11.4 3.7 ± 0.4***
PKC 100 ± 6.2 58.5 ± 2.1*** 100 ± 6.6 7.4 ± 1.8***
PKC 100 ± 12 17.7 ± 2.8*** 100 ± 22.9 15.5 ± 5*
PKC 100 ± 17.1 106 ± 11.9 100 ± 14.6 60.0 ± 7.8
GAP-43 100 ± 1.2 105 ± 5.8 100 ± 5 99.9 ± 6.6
P-GAP-43 (Ser41) 100 ± 13.1 22.4 ± 3.9** 100 ± 27 19.5 ± 4.7**
MARCKS 100 ± 2.3 94.2 ± 3.4 100 ± 22 109.7 ± 3
P-MARCKS 100 ± 8.8 n.d. 100 ± 25 n.d.

Quantification of protein and phosphorylation levels of proteins shown in Fig. 7. Percentage given represents the relative intensity of the protein bands as detected 
by Western blot analysis from control and RibKO mice. Equal amount of protein was loaded and immunodetection of -tubulin, GAPDH, -actin, or pan-actin served 
as loading control. Amount of each protein listed was normalized to loading control. All values obtained in controls were set to 100%. Data represent mean ± SEM 
from n ≥ 3–15 mice for each genotype. n.d., not detected. Student’s t test: ***, P < 0.001; **, P < 0.01; *, P < 0.05.
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Figure 8.  The role of rictor on cell size and cell morphology is cell-autonomous. (A) Schematic representation of the genetic organization of mice homozygous 
for the targeted rictor alleles and mice expressing Cre-recombinase from the L7/Pcp-2 locus. Please note the localization of the primers used to detect 
rictor recombination in single-cell PCR (see Fig. S3). (B) Western blot analysis of cerebellar lysates from adult control and RiPuKOCre/+ mice for rictor and 
PKC (left) and quantification of their mean gray value (normalized to -actin; right). Values for rictor and PKC in controls (ctrl) were set to 100% (black 
bar). Gray bars represent values for rictor and PKC in RiPuKOCre/+ mice. Data represent mean ± SEM from n = 5 mice per genotype. (C) Cross section of 
cerebella stained with antibodies to calbindin (red) and PKC (green). PKC staining is lost in some, but not all Purkinje cells in RiPuKOCre/+ mice because 
of the mosaic recombination of the rictor allele (see Fig. S3). Some of the PKC-negative cells have several primary dendrites, are misaligned, and diverge 
from the perpendicular plain (white arrow). (D) Immunostaining for PKC (red) of biocytin-filled (green) Purkinje cells from control or RiPuKOCre/Cre mice. 
Purkinje cells that are negative for PKC often have more than one primary dendrite (white arrows). (E) Quantification of the Purkinje cell soma size in 
control mice (black bar), in PKC-positive cells (dark gray), and in PKC-negative cells (light gray) from RiPuKOCre/+ mice. Data represent mean ± SEM from 
n = 3 mice for each genotype. (F) Quantification of the Purkinje dendrite diameter in control (black) and PKC-negative cells in RiPuKOCre/+ mice (gray). 
Data represent mean ± SEM from n = 3 mice. (G) Quantification of the number of primary dendrites in biocytin-filled Purkinje cells of control (black) and 
of PKC-negative cells from RiPuKOCre/Cre mice (gray). Numbers derive from n = 38 cells of a total of 5 control mice, and from n = 42 cells of a total of  
7 RiPuKOCre/Cre mice. (H) Cerebellar slice cultures isolated from RiPuKOCre/Cre mice and stained for calbindin and PKC. The white arrows indicate axons. 
The inset shows a high magnification picture of those axons. (I) Quantification of the Purkinje axon diameter in cerebellar slice cultures isolated from control 
mice (black), and PKC-positive (dark gray), and PKC-negative cells (gray) isolated from RiPuKOCre/Cre mice. Data represent mean ± SEM from n = 5 mice 
for each genotype. Statistical analysis used Student’s t test (B and F) or one-way Anova followed by Tukey’s test (E and I): ***, P < 0.001; **, P < 0.01; 
*, P < 0.05. n.s., nonsignificant; P ≥ 0.05. Bars: (H, inset) 10 µm; (C, H, and inset in D) 25 µm; (D) 50 µm.
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Discussion
Germline deletion of rictor in mice causes their death around 
embryonic day 10.5 to 11.5 (Guertin et al., 2006; Shiota et al., 
2006). Here we show that deletion of rictor in brain precursor 
cells does not cause early death, indicating that the embryonic 
lethality in whole-body rictor knockout mice is not due to brain 
abnormalities. We find that RibKO mice have a smaller brain 
and that this is mainly caused by a reduction in cell size. More-
over, we find a strong phenotype in Purkinje cells that affects 
the morphology and connectivity of those neurons, both features 
that might contribute to the motor deficits. Interestingly, a re-
cent publication where exon 3 of rictor was deleted using the 
same nestin-Cre mice linked the phenotype to schizophrenia by 
demonstrating that the knockout mice were impaired in pre-
pulse inhibition without changes in gross motor function (Siuta 
et al., 2010). Although this paper reports an interesting aspect of 
mTORC2 function, the use of the same nestin promoter to drive 
expression of Cre resulted in our hands in a severe phenotype 
that affected motor behavior and all basic synaptic functions 
(mEPSCs and mIPSCs) and that did not allow us to test the mice 
in more elaborated behavioral tasks. We cannot explain the dif-
ference between the phenotypes of the two mouse models; one 
possibility might be that the targeting of exon 3 (Siuta et al., 
2010), instead of both exons 4 and 5 (this paper) results in only 
a partial loss of rictor.

Figure 9.  Altered synaptic properties in Purkinje cells of RiPuKOCre/Cre 
mice. (A and B) Electrophysiological recording of the mean mEPSC fre-
quency in control (black) and PKC-negative Purkinje cells of RiPuKOCre/Cre 
mice (gray) and (C) the mean mEPSC amplitude in those mice. Data rep-
resent mean ± SEM from n = 19 neurons from 5 different control mice 
and n = 19 cells from 8 different RiPuKOCre/Cre mice. (D–F) Measurement 
of the mean frequency (D) and the mean amplitude (E and F) of mIPSCs 
in Purkinje cells from control mice (black), PKC-positive (dark gray), and 
PKC-negative (light gray) cells from RiPuKOCre/Cre mice. Data represent 
mean ± SEM from n = 21 cells from 4 different control mice; n = 25 PKC-
positive cells from 5 RiPuKOCre/Cre mice; and n = 7 PKC-negative cells 
from a total of 3 RiPuKOCre/Cre mice. Statistical analysis used Student’s t test 
(A and C) or one-way Anova followed by Tukey’s test (D and E): **, P < 
0.01; *, P < 0.05.

mTORC2 affects cell size
Rictor has been removed in several other organs including skel-
etal muscle (Bentzinger et al., 2008; Kumar et al., 2008), adipose 
tissue (Cybulski et al., 2009), and kidney (Gödel et al., 2011). In 
all those tissues, the phenotype is rather weak and does not af-
fect organ size. Our work now provides strong evidence that 
deletion of mTORC2 in the entire CNS resulted in a phenotype 
that was already evident at birth and that affected brain size. 
This size difference was also seen upon deletion of rictor in 
Purkinje cells, indicating that this function is cell-autonomous. 
Recent evidence indicates that the morphine-induced decrease 
in the size of dopaminergic neurons in the ventral tegmental area 
also involves mTORC2 and that this cell-autonomous effect is 
rapamycin insensitive (i.e., mTORC1 independent; Mazei-
Robison et al., 2011).

Similar size effects in the brain have been reported in mice 
lacking Akt3/PKB, which is the main Akt isoform expressed 
in the brain (Easton et al., 2005; Tschopp et al., 2005). Although 
RibKO mice show a strong reduction in the phosphorylation of 
Akt at Ser473 and some reduction in phosphorylation at Thr308, 
our biochemical analysis of the mTOR pathway indicates that 
the growth defect is not based on changes in mTORC1 signaling, 
as its two downstream targets 4E-BP and S6K and phosphoryla-
tion of mTOR at its mTORC1 site Ser2448 were not affected. 
Although rictor deletion does not affect growth in most tissues, 
such an effect has been described in Drosophila (Hietakangas 
and Cohen, 2007) and in tumors induced by inactivation of the 
tumor suppressor PTEN (Guertin et al., 2009). Like in our work, 
signaling to mTORC1 was not affected and under normal con-
ditions, and thus low PI3K signaling, the effect of rictor inactiva-
tion on cell growth was rather small or not detectable (Hietakangas 
and Cohen, 2007; Guertin et al., 2009). The observed microceph-
aly in the RibKO mice and the reduced cell size in RiPuKO mice 
might thus be the result of a highly active PI3K pathway in cells 
of the brain. However, we cannot exclude that the additional 
downstream targets of mTORC2, such as SGK1 and PKC iso-
forms, also contribute to the size difference. Such alternative 
explanations are particularly important as our biochemical analy
sis did not reveal changes in the activation of the two Akt tar-
gets FoxO1 and GSK3-.

mTORC2 affects neuron morphology
Besides the effect of rictor deletion on cell size, we also observed 
a striking difference in neurite morphology. The most obvious 
difference to control mice, which was observed in both RibKO 
and RiPuKO mice, was an increase in the number of primary 
dendrites in Purkinje cells. Although both SGK1 and Akt have 
also been implicated in neurite growth (Read and Gorman, 2009), 
there is no direct evidence for their involvement in the shaping 
of neurites in Purkinje cells. We therefore hypothesize that those 
morphological changes are rather due to the loss of PKC isoforms 
in RibKO and RiPuKO mice. As shown previously, mTORC2 
is required for the phosphorylation of some PKC isoforms at 
the turn motif site (Facchinetti et al., 2008; Ikenoue et al., 2008). 
This phosphorylation is important for the stability of the protein 
as nonphosphorylated forms are rapidly degraded by the protea-
some pathway (Facchinetti et al., 2008; Ikenoue et al., 2008). 
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Materials and methods
Generation of mice
Mice, homozygous for an allele containing LoxP sites flanking exon 4 and 
5 of the rictor gene were crossed with nestin-Cre transgenic mice (B6.Cg-
Tg(Nes-cre)1Kln/J; The Jackson Laboratory). These mice were then crossed 
with homozygously floxed rictor mice (rictorfl/fl) to obtain RibKO mice 
(rictorfl/fl; Tg(Nes-cre). Littermates that either lacked Cre (rictorfl/fl) or were 
heterozygous for the floxed allele (rictorfl/+; Tg(Nes-cre)) were used as con-
trols. Purkinje cell–specific knockouts (RiPuKO mice) were obtained by 
crossing mice where Cre was knocked into the L7/Pcp-2 locus (Saito et al., 
2005) with rictorfl/fl mice. Further crossing yielded mice that carried two 
floxed rictor alleles and were heterozygous or homozygous for L7/Pcp-2-Cre 
and are referred to as RiPuKOCre/+ or RiPuKOCre/Cre, respectively. Control mice 
for RiPuKOCre/+ mice were (rictorfl/fl; L7/Pcp-2+/+). Controls for RiPuKOCre/Cre 
mice were (rictorfl/+; L7/Pcp-2Cre/Cre). Genotyping was performed by PCR 
on DNA isolated from toe using specific primers for the floxed region, the 
Cre transgenes, or the recombined alleles as described elsewhere (Bentzinger 
et al., 2008).

Tissue homogenization and Western blot analysis
Brains were dissected, transferred to protein lysate buffer (50 mM Tris-HCl, 
pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100 supplemented with 
EDTA-free protease inhibitor cocktail tablets [Roche], and phosphatase in-
hibitor tablets PhosSTOP [Roche]), and homogenized with a glass/Teflon 
homogenizer using 10 strokes at 800 rpm. The homogenate was centri-
fuged at 13,600 g for 15 min at 4°C. Cleared lysates were then used to 
determine total protein amount (BCA Protein Assay; Thermo Fisher Scien-
tific). After dilution with 4× SDS sample buffer, equal protein amounts were 
loaded onto SDS gels.

Antibodies
Rabbit polyclonal antibodies were as follows: P-PKC (Ser657), PKC, 
and P-GAP-43 (Ser41) from Santa Cruz Biotechnology, Inc.; P-FoxO1 
(Ser256), P-mTOR (Ser2448), P-mTOR (Ser2481), Akt, P-Akt (Thr308), 
P-GSK-3 (Ser9), mTOR, PKC, S6 ribosomal protein, P-S6 ribosomal pro-
tein (Ser235/236), P-S6 kinase(Thr389), S6K, NDRG1, P-NDRG1 (Thr346), 
P-4E-BP (Thr37/46), P-eIF4E (Ser209), cleaved caspase3, P-MARCKS 
(Ser152/156), and PKC from Cell Signaling Technology; and P-PKC2 
(Thr641) and P-PKC (Ser729) from Abcam. Rabbit monoclonal antibodies 
were as follows: PKC, -actin, P-Akt (Ser473), GSK-3, P-Tuberin (Thr1462), 
and Rictor from Cell Signaling Technology; and PKC2 from Abcam. Mouse 
monoclonal antibodies were as follows: -tubulin from BD, Calbindin D-28K 
from Swant, GAP-43 from Invitrogen, NeuN from EMD Millipore, and 
MARCKS from Abcam. Guinea pig polyclonal antibodies were as follows: 
vGLUT1 and vGLUT2 from Synaptic Systems. Rat monoclonal antibodies 
were as follows: anti-BrdU from AbD Serotec.

Histology and immunohistochemistry
Mice were anesthetized with a lethal dose of Pentobarbital (300 mg/kg) 
and transcardially perfused with 4% PFA. Brains were removed and tissue 
processed with a Shandon Pathcenter and embedded in paraffin (Merck). 
Paraffin blocks were cut with a microtome into 3–5-µm-thick sagittal or coro-
nal sections. Antigen retrieval was performed before immunostaining by 
boiling the sections in sodium citrate buffer (10 mM sodium citrate and 
0.05% Tween 20, pH 6) for 20 min. Sections were rinsed twice in PBS, 
blocked with blocking buffer (5% BSA in PBS, and 0.2% Triton X-100) for  
30 min, and incubated with primary antibody overnight at 4°C. Samples 
were washed three times with PBS and then stained with appropriate fluores-
cently labeled, secondary antibodies for 1 h at room temperature. Samples 
were mounted with Kaiser’s glycerol gelatin (Merck). General histology on 
sections was performed using cresyl violet. Immunohistochemically stained 
sections were examined with a fluorescence microscope (model DM5000B; 
Leica) and a 10× objective (HC PL Apo, NA 0.4; Leica), a 20× objective  
(PL Fluotar, NA 0.5; Leica), a 40× objective (HCX Plan APO, NA 0.75; 
Leica), or a 63× objective (HCX PL APO, NA 1.32; Leica). Pictures were 
captured with a digital camera (F-View; Soft Imaging System) and analySIS 
software (Soft Imaging System). In some experiments, sections were imaged 
with the SPE confocal laser scanning microscope (model DMI4000B; Leica) 
using an ACS APO 40× objective (NA 1.15) or an ACS APO 63× objective 
(NA 1.3) at a resolution of 1024 × 1024 pixels. Pictures were captured 
using the built-in digital camera and software. Image analysis was performed 
using Imaris (Bitplane AG) or Adobe Photoshop CS5.

Golgi staining was performed by incubating freshly perfused mouse 
brains in Golgi solution (5% potassium dichromate, 5% potassium chromate, 

Our findings that several PKC isoforms are almost undetectable 
in brain lysates of adult RibKO mice are strong in vivo support 
for the importance of mTORC2 in stabilizing PKCs. Mutations 
in PKC cause spinocerebellar ataxia (SCA) type 14 (Chen et al., 
2003) and as of today, more than 20 causative mutations have been 
described (Seki et al., 2011). Interestingly, some of the pheno-
types described for Purkinje cells expressing those PKC mu-
tants are similar to those observed in RibKO and RiPuKO mice. 
Most of the PKC mutations act in an autosomal-dominant way 
and it is not clear whether the ataxia is due to a dominant effect 
or the consequence of a loss of function of those mutants.

We also found that the two PKC substrates GAP-43 and 
MARCKS were not phosphorylated in RibKO mice. Whereas 
GAP-43 is well known to affect axon growth and terminal sprout-
ing (Benowitz and Routtenberg, 1997), MARCKS affects den-
dritic branching (Li et al., 2008) and the morphology and density 
of postsynaptic spines (Calabrese and Halpain, 2005). Interest-
ingly, the function of MARCKS is modulated by PKC-dependent 
phosphorylation. Thus, the resemblance of the phenotypes from 
PKC, GAP-43, and MARCKS mutants with those in RibKO 
or RiPuKO mice indicates that mTORC2 affects neuron mor-
phology via the PKC pathway. The fact that only some aspects 
of the rictor-deficient phenotype are also observed in PKC- or 
PKC-deficient Purkinje cells (Metzger, 2010) suggests that a 
knockout of individual PKC isoforms might be compensated by 
other isoforms.

Synaptic function
Another interesting result of our work is that synaptic function is 
also influenced by the deletion of rictor from the mouse brain. 
Because of the very severe morphological changes in the cerebel-
lum of the RibKO mice, it is not that surprising to detect changes 
in the function of both excitatory and inhibitory synapses. The 
reduction in the frequency and the amplitude of the mEPSCs 
also correlated well with the observed changes in synaptic mark-
ers. More importantly, we also observed significant changes of 
synaptic function in the RiPuKO mice and those changes were 
restricted to Purkinje cells that were negative for PKC (i.e., de-
ficient for rictor). While the amplitude of the mEPSCs was not 
changed in RiPuKO mice, mEPSC frequency was only 50% 
of that in control cells. In contrast, the frequency of the mIPSCs 
was like in controls but the amplitude was significantly smaller. 
The finding that a Purkinje cell–specific elimination of rictor dif-
ferentially affected both excitatory and inhibitory synapses sug-
gests a role of mTORC2 in synaptic homeostasis. Interestingly, 
homeostatic adaptation of synapses is discussed as a mechanism 
that contributes to the overall changes upon sustained exposure 
to morphine, and mTORC2 has been implicated in this process 
(Mazei-Robison et al., 2011).

In summary, our data show that mTORC2 has an important 
function in neurons and thus the removal of rictor from brain re-
sults in a considerably more severe phenotype than its inactiva-
tion in other tissues. Although our results on nestin-Cre–mediated 
rictor deletion suggest that mTORC2 might have similar functions 
in different neurons, it will be important in the future to analyze 
other neuron-specific rictor knockout models for the contribution 
of mTORC2 to specific psychiatric and neurological diseases.
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Wierenga et al. (2008). In brief, after the recording, slices were fixed over-
night at 4°C in 4% PFA dissolved in PBS. After extensive washing in PBS, 
slices were permeabilized and blocked for 24 h at 4°C in blocking solution 
(10% FBS in PBS, containing 0.4% Triton X-100) on a shaker. Anti-PKC 
antibody was applied overnight at 4°C in blocking solution (5% FBS in PBS, 
containing 0.4% Triton X-100) on a shaker. After extensive washing with 
PBS, appropriate secondary antibodies were applied. Acute slices were 
mounted in Kaiser’s glycerol gelatin with the patched side facing up. Stained 
slices were analyzed by confocal microscopy as described above using 
the 40× objective.

Single-cell RT-PCR
Purkinje cells were cell patch-clamped for 10–20 min using silanized patch 
pipettes filled with 7 µl of intracellular solution that contained biocytin as 
described above. After whole-cell recording, cytosol was harvested by as-
piration and expelled into a PCR tube containing rRNasin (Promega), random 
hexamer primers, and dNTP (final concentrations are indicated below). 
The mixture was incubated for 5 min at 65°C and then chilled on ice be-
fore adding further components. mRNA was reverse transcribed in a 20-µl 
reaction volume containing 100 ng random hexamer primers, 0.5 mM 
dNTPs, 40 U rRNasin, 5 mM dithiothreitol, and 10 U SuperScript III re-
verse transcription (Invitrogen) in 1× “first strand buffer” (5× buffer: 0.25 M 
Tris-HCl, pH 8.3 at 25°C, 375 mM KCl, and 15 mM MgCI2). The reaction 
mixture was incubated for 45 min at 50°C, followed by inactivation at 
70°C for 15 min. 2 µl of the stopped reaction mixture were used as  
input cDNA for the subsequent nested two-step PCR, which was performed 
with the primer pairs P3–P4 for the first and P1–P2 for the second PCR, 
respectively. 35 cycles were performed for each PCR. The primer se-
quences are P1: 5-GCCAAATTGCAAGGAGTATCA-3; P2: 5-TGAGTT
GGCCACAGAACTAGG-3; P3: 5-CTGACCCGAGAACCTTCTGA-3; 
P4: 5-TTCCTGAAGCCCATCATTTC-3. The primer pair P1–P2 results in 
an amplicon of 365 bp or 172 bp in case of the wild-type or the recom-
bined allele, respectively.

Tissue cultures
Neurospheres were isolated from newborn (P0) mice. Pups were decapi-
tated, and brains were removed and transferred into ice-cold Hank’s buff-
ered salt solution (HBSS; Invitrogen). Meninges were carefully removed 
under the dissection microscope and one brain half was transferred into 
freshly prepared neurosphere medium (NM) consisting of DMEM-F12 
(1:1), supplemented with 1% penicillin/streptomycin, 0.2 mg/ml glutamine, 
2% B27, 2 µg/ml heparin, 20 ng/ml EGF, and 10 ng/ml FGF2. The brain 
was carefully homogenized and plated on a 6-cm dish containing 4 ml 
NM and maintained in an incubator (36.5°C, 5% CO2). After 4–5 d the 
neurospheres were trypinized, dissociated into single cell suspension, and 
the resulting secondary neurospheres were cultured for 6 d. 24 h before 
fixation, 10 µM BrdU was added to the medium. Neurospheres were fixed 
with 4% PFA and imaged at low magnification to determine the diameter of 
the neurospheres. To assess the number of the BrdU-positive cells, neurospheres 
were embedded in cryoprotective material, cut into 12-µm-thick sections, 
and immunostained with antibodies to BrdU. The number of BrdU-positive 
cells per sphere was counted and normalized to the sphere diameter.

Organotypic cerebellar slices were cultured as described elsewhere 
(Boukhtouche et al., 2006). In brief, P0 brains were dissected and trans-
ferred into ice-cold Gey’s balanced salt solution. Meninges were carefully 
removed and cerebella dissected. With a tissue chopper (McIIwain), 350-µm-
thick sagittal slices were cut and transferred into fresh Gey’s solution. Slices 
were cultured on 0.4-µm membranes in 1 ml culture medium (50% basal 
medium with Earl’s salts, 25% HBSS, 25% horse serum, 1 mM glutamine, 
and 5 mg/ml glucose) for 14 d. Culture medium was changed every 2–3 d.

Cultures of dissociated hippocampal neurons were prepared as fol-
lows: brains of P0 mice were dissected and transferred into ice-cold HBSS. 
Hippocampi were removed, trypsinized for 15 min, and dissociated. Cells 
were plated onto poly-l-lysine–coated coverslips at a density of 90,000 
cells per well in a 24-well plate. Neurons were grown for 14 d. After 7 d, 
neurons were transfected with constructs encoding GFP under the synapsin 
promoter using Lipofectamine. After 14 d, cultures were fixed with 4% PFA 
in PBS containing 120 mM sucrose, washed in PBS, and embedded with 
Kaiser’s glycerol gelatin.

Mouse behavior
For hindlimb clasping assessment, 1-yr-old mice were lifted by the tail and 
held over the cage for up to 2 min. Clasping was scored when mice crossed 
hindlimbs for more than 3 s. The rotarod test was performed by placing 
10-wk-old mice on a rod that accelerated from 5 rpm to 30 rpm in 2 min. 
Latency to fall off the rod was measured.

and 5% mercuric chloride dissolved in H2O) for 6 wk. The solution was 
changed every 2–3 days. Brains were subsequently dehydrated in 50, 70, 
90, and 100% ethanol, each step for several days and then transferred to 
2, 4, and 8% Celloidin solution. For embedding, 8% Celloidin was evapo-
rated to 16%, hardened to a block, and cut with a vibratome into 200-µm 
sagittal sections. The sections were transferred onto gelatinized slides and 
stained first in ammonium hydroxide (14%) for 30 min followed by Kodak 
fix solution for 30 min. The sections were then dehydrated in 50, 70, 90, 
and 100% ethanol followed by 15 min in CXA solution (1:1:1 chloroform/
xylol/ethanol) and embedded with Merckoglas (Merck). Microscopy was 
performed with a light microscope (model DM RB, Leica) using bright-field 
optics and 10, 20, or 40× objectives (PL Fluotar, NA 0.3–0.7; Leica). Pic-
tures were captured with a digital camera (model DFC 420; Leica) and the 
appropriate software.

Quantification
Quantification of cell numbers used the method of isotropic fractionation as 
described elsewhere (Herculano-Houzel and Lent, 2005). In brief, brains 
were fixed for 3–30 d in 4% PFA and then mechanically dissociated with 
a glass/Teflon homogenizer in 40 mM sodium citrate and 1% Triton X-100. 
The homogenate was centrifuged for 10 min at 4,000 g and the superna-
tant was carefully removed. The pellet containing the nuclei was resus-
pended in 10 ml PBS containing 1% Hoechst dye. After sufficient agitation 
to achieve isotropy, 5-µl aliquots were removed and the number of nuclei 
was counted in a hemocytometer using a fluorescence microscope. Quan-
tification of Golgi-stained neurons was performed by Neurolucida recon-
struction and analysis with Neurolucida software. Volumetric quantification 
of brain areas was performed on cresyl violet–stained, 25-µm coronal par-
affin sections. The arbitrary area of microscopic pictures taken at 2.5× was 
analyzed with Analysis software. Analysis of cell density was performed 
on sagittal, NeuN-stained, 5-µm-thick paraffin sections in the retrosplenial 
and visual cortex. Sholl analysis of dissociated hippocampal neurons was 
performed with Analysis software by counting the number of neurite cross-
ings starting from the soma in a defined distance of 25 µm up to 125 µm. 
Quantification of Western blot protein band intensity was performed with 
the ImageJ program (National Institutes of Health). Quantification of the 
mean dendrite diameter of Purkinje cells was performed in sagittal, calbin-
din-stained cerebellar sections by measuring the dendrite diameter within 
the primary dendrite from the soma up to the first node. Apoptotic cells 
were quantified by staining P7 cortical sections with antibodies to cleaved 
caspase3. Cells were distinguished from blood vessels by counterstaining 
with Hoechst and the number of caspase3-positive cells per 1,000 cells 
(identified by Hoechst staining) was determined.

Statistical analysis
Statistical significance was assessed with the Student’s t test or one-way 
Anova. Differences were considered to be statistically significant if the 
P value was less than 0.05. Quantitative data are presented as means ± 
SEM as indicated in the figure legends.

Electrophysiology
Mice were deeply sedated with isoflurane. After decapitation, the brain 
was rapidly removed and immediately transferred into ice-cold, oxygen-
ated (95% O2, 5% CO2), low calcium artificial cerebrospinal fluid (ACSF) 
containing 119 mM NaCl, 1 mM NaH2PO4, 2.5 mM KCl, 0.125 mM CaCl2, 
3.3 mM MgCl2, 11 mM d-glucose, and 26.2 mM NaHCO3. Cerebella 
were cut with a vibratome into 250-µm sagittal sections in low calcium 
ACSF. Slices were transferred to oxygenated ACSF containing 119 mM 
NaCl, 1 mM NaH2PO4, 2.5 mM KCl, 2.5 mM CaCl2, 1.3 mM MgCl2,  
11 mM d-glucose, and 26.2 mM NaHCO3, incubated for 30 min at 34°C, 
and subsequently retained for at least 30 min at room temperature in oxy-
genated ACSF before recording. Miniature events were recorded using an 
Axopatch Multiclamp 700B amplifier (Molecular Devices) and borosilicate 
glass pipettes (4–6 mΩ) filled with intracellular solution (135 mM CsMeSO4, 
8 mM NaCl, 10 mM Hepes, 0.5 mM EGTA, 4 mM Mg-ATP, 0.3 mM 
Na-GTP, and 5 mM lidocaine-N-ethylbromide). For mEPSC recording, the 
holding potential was set to 70 mV. For mIPSC recording, the holding 
potential was set to 0 mV. In both conditions, the postsynaptic current was 
recorded for 10 min in the presence of 0.5 µM tetrodotoxin (TTX). Traces 
were further analyzed with the Mini Analysis Program v6 (Synaptosoft).

Biocytin labeling of single Purkinje cells
Biocytin was dissolved in the intracellular solution at a concentration of  
3 mg/ml by sonication at 4°C. The orientation of the acute slice was 
noted for the whole-cell recordings. Staining procedure was adapted from 
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Figure S1.  Rictor deficiency does not increase apoptosis and affects the size of neurons. (A) Quantification of the number of caspase3-positive cells in the 
cortex of P7 control and RibKO mice. The mean number of caspase-positive cells per 1,000 cells did not differ between control and RibKO mice. Data rep-
resent mean ± SEM; n = 3 mice and 13 sections (ctrl); n = 4 mice and 15 sections (RibKO). (B) Representative pictures of cortical sections of P7 control 
and RibKO mice stained with antibodies against NeuN. Note that the cortex is smaller and the cell density is increased in RibKO mice. Bar, 100 µm.

Figure S2.  Phosphorylation of several PKC isoforms is diminished in RibKO mice. Western blot analysis of adult brain lysate from control and RibKO mice 
for phosphorylated PKC, PKC2, and PKC.
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Figure S3.  PKC immunoreactivity is indicative of the rictor deletion in Purkinje cells. (A) Immunostaining of sagittal cerebellar sections from control, RiPu-
KOCre/+, and RiPuKOCre/Cre mice for calbindin and PKC. Note that the number of PKC-negative cells increases with higher Cre expression from 34% in 
RiPuKOCre/+ cerebella to 74% in RiPuKOCre/Cre mice. (B) PCR of reverse-transcribed cDNA from RNA isolated from single Purkinje cells of RiPuKOCre/Cre mice 
and immunostaining of the corresponding biocytin-filled cells with antibodies to PKC. Single-cell PCR was performed in duplicates (a and b). Bars: (A) 200 
µm; (B) 50 µm (25 µm in insets).
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ABSTRACT 

The mammalian target of rapamycin (mTOR) is a key regulator of cellular growth and associates with 

other proteins to two different multi-protein complexes, called mTORC1 and mTORC2. Dysregulation 

of mTORC1 signalling in brain is implicated in neuropathological conditions, such as autism spectrum 

or neurodegenerative disorders. Accordingly, allosteric mTOR inhibitors are currently in clinical trials 

for the treatment of such disorders. Here, we ablated either mTORC1 or mTORC2 conditionally in 

Purkinje cells of the cerebellum to dissect their role in the development, function and survival of these 

neurons. We find that the two mouse models are largely different from each other by phenotype and 

cellular responses. Inactivation of mTORC2 but not mTORC1 led to motor coordination deficits at an 

early age. This phenotype correlated with developmental deficits in climbing fibre elimination and 

impaired dendritic self-avoidance in mTORC2-deficient Purkinje cells. In contrast, inactivation of 

mTORC1 but not mTORC2 affected social interest of the mice and caused a progressive loss of 

Purkinje cells due to apoptosis. This loss was paralleled by age-dependent motor deficits. Comparison 

of mTORC1-deficient Purkinje cells with those deficient for the mTORC1 inhibitor TSC1 revealed a 

striking overlap in Purkinje cell degeneration and death, which included neurofilamentopathy and 

reactive gliosis. Altogether, our study reveals distinct roles of mTORC1 and mTORC2 in Purkinje 

cells for the behaviour of mice and the survival of targeted neurons. Our study also highlights a 

convergence between the phenotypes of Purkinje cells lacking mTORC1 activity and those expressing 

constitutively active mTORC1 due to TSC1 deficiency.   



INTRODUCTION  

In mammalian cells, the serine/threonine protein kinase mTOR assembles into two multi-protein 

complexes, called mTORC1 and mTORC2. The composition of these two complexes overlaps for 

some proteins but differs for others such as raptor or rictor, which are essential for the function of 

mTORC1 and mTORC2, respectively (Laplante and Sabatini, 2012). mTORC1 integrates various 

signals from growth factors, energy status or amino acid availability and as output promotes protein 

synthesis, contributes to lipogenesis and inhibits autophagy (Shimobayashi and Hall, 2014). In line 

with these functions, mTORC1 was found to be essential for cell growth and proliferation. Activation 

of mTORC2 is less well understood, but it is well established that this complex phosphorylates and 

activates members of the AGC kinase family, including Akt, SGK1 and PKCs, which ascribes this 

complex a role in cell survival/metabolism and actin cytoskeletal organization (Oh and Jacinto, 2011). 

As previously described, whole brain raptor knockout mice die perinatally (Cloetta et al., 2013) while 

the corresponding rictor knockout mice are viable but ataxic and show a pronounced Purkinje cell 

phenotype (Thomanetz et al., 2013). To prevent perinatal lethality of raptor depletion in the brain and 

to further analyse the importance of mTOR signalling in Purkinje cells, we generated conditional 

knockout mice in which Rptor or Rictor was knocked out exclusively in this subpopulation of neurons. 

This allowed us to analyse and dissect the roles of mTORC1 and mTORC2 in developing and adult 

Purkinje cells and to investigate the resulting effect on mouse behaviour. Purkinje cells provide the 

only output of the cerebellar cortex and growing evidence indicates that the cerebellum is not only 

essential for motor control but may also be involved in other behavioural aspects, such as social 

behaviour, and therefore has been linked to neurodevelopmental disorders (Schmahmann et al., 2007; 

Wang et al., 2014). This notion has recently been supported by the finding that Purkinje cell-specific 

loss of TSC1, which results in mTORC1 activation, induced autistic-like behaviour in mice (Tsai et 

al., 2012).  

 We find that ablation of either mTORC1 or mTORC2 in Purkinje cells is sufficient to impair 

motor control but the motor phenotypes differ in the time of onset and have distinct origins. Motor 

deficits in the rictor knockout mice correlate with developmental deficits in climbing fibre elimination 

and impaired dendritic self-avoidance whereas the age-dependent motor phenotype of raptor knockout 



mice is paralleled by neurodegeneration in form of a neurofilamentopathy and a progressive loss of 

Purkinje cells due to apoptosis. Neurofilamentopathy and Purkinje cell apoptosis is also seen in mice 

in which TSC1 was deleted in Purkinje cells. Hence, the cellular response to inactivation and 

activation of mTORC1 in Purkinje cells surprisingly converges. This is further corroborated by the 

finding that ablation of mTORC1, but not mTORC2, in Purkinje cells impairs social behaviour of 

mice, as this is also seen with TSC1 Purkinje cell knockout mice (Tsai et al., 2012). In summary, our 

findings highlight that mTORC1 and mTORC2 signalling pathways play fundamental and distinct 

roles in Purkinje cells.  



MATERIALS AND METHODS 

Mouse strains. All animal procedures complied with Swiss animal experimental regulations. Mice 

expressing the Cre recombinase under the endogenous L7/Pcp-2 promoter (L7/Pcp-2Cre/+) (Saito et al., 

2005) were crossed with mice carrying floxed alleles coding for raptor (Rptorloxp/loxp), rictor 

(Rictorloxp/loxp) (Bentzinger et al., 2008) or TSC1 (Tsc1loxp/loxp) (Kwiatkowski et al., 2002) to obtain the 

following mouse lines: L7/Pcp-2Cre/Cre; Rptorloxp/loxp, L7/Pcp-2Cre/Cre; Rictorloxp/loxp and L7/Pcp-2Cre/Cre; 

Tsc1loxp/loxp that were called RAPuKO, RIPuKO or TSCPuKO, respectively. As control mice, 

littermates of the following genotype L7/Pcp-2Cre/Cre; Rptorloxp/+, L7/Pcp-2Cre/Cre; Rictorloxp/+ and 

L7/Pcp-2Cre/Cre; Tsc1loxp/+ were used for RAPuKO, RIPuKO or TSCPuKO, respectively. To label cells 

undergoing Cre-mediated recombination, a Rosa26 locus-targeted EGFP reporter carrying a loxp stop 

cassette between the promoter and the coding sequence (R26-EGFPT/+ (Tchorz et al., 2012)) was 

crossed into the RIPuKO background. The resulting knockout mice of the following genotype L7/Pcp-

2Cre/Cre; Rictorloxp/loxp; R26-EGFPT/+ are referred to as RIPuKO GFP and littermates of the L7/Pcp-

2Cre/Cre; Rictorloxp/+; R26-EGFPT/+ genotype were used as controls. For the conditional knockout of 

Rptor in neural progenitors (RAbKO), mice previously described were used (Cloetta et al., 2013). 

Genotyping of the mice used toe tissue and was done as described elsewhere (Kwiatkowski et al., 

2002; Cloetta et al., 2013; Thomanetz et al., 2013). The L7/Pcp-2Cre/? locus was detected using primers 

Fw 5' TGTGGCTGATGATCCGAATA and Bw 5' GCTTGCATGATCTCCGGTAT resulting in an 

amplicon of 249 bp. L7/Pcp-2Cre/Cre mice were identified using primers Fw 5’ 

GAAGGCTTCTTCAACCTGCT and Bw 5’ ATATCCATGAGATTGTCCAT, resulting in the 

absence of a 292 bp. To detect EGFP knocked-in at the Rosa26 locus a nested PCR was performed 

using primers Fw 5’ TGATATTGCTGAAGAGCTTGGCGGC and Bw 5’ 

TGTGTGTATTCCTGGCTATCC for the first PCR (35 cycles) and Fw 5’ 

AGCGCATCGCCTTCTATCGCC and Bw 5’ TGATGTGTAGACCAGGCTGG for the second PCR 

(25 cycles) resulting in an amplicon of 253 bp.  

 Antibodies. β-Tubulin (Mouse, BD Pharmingen, #556321, 1:500), CAR8 (Goat, Watanabe lab 

(Patrizi et al., 2008), 1:5000), calbindin D28k (Guinea pig, Synaptic Systems, #214 004, 1:500), 

calbindin D-28k (Mouse, Swant, #300, 1:2500), cleaved caspase-3 (Asp175) (Rabbit, Cell Signaling, 



#9661, 1:300), cytochrome c clone 6H2.B4 (Mouse, BD Pharmingen, #556432, 1:100), glial fibrillary 

acidic protein (GFAP) clone CA5 (Mouse, Millipore, #MAB360, 1:100), GABAA α1 subunit (Guinea 

pig, (Fritschy et al., 2006), 1:5000), GAD65 (Monoclonal GAD-6, DSHB, Iowa, 1:1000), GSK3α 

(Rabbit, Cell Signaling, #9338, 1:1000), GSK3β (Rabbit, Cell Signaling, #9315, 1:1000), phospho-

GSK3α/β (Ser21/9) (Rabbit, Cell Signaling, #9331, 1:1000), neurofilament H (Rabbit, Millipore, 

#AB1989, 1:200), phosphorylated neurofilaments (Mouse, Covance, #SMI-31P, 1:1000), phospho-S6 

ribosomal protein (Ser235/236) (Rabbit, Cell Signaling, #2211, 1:100), PKCγ (Rabbit, Santa Cruz, 

#sc-211; 1:100), synaptophysin (Rabbit, GeneTex, #GTX100865, 1:100), fluorescein (DTAF) 

Streptavidin (Jackson ImmunoResearch, #016-010-084, 1:300), Cy3-Streptavidin (Jackson 

ImmunoResearch, #016-160-084, 1:1000) 

 Tissue homogenization and Western blot analysis. Brains were dissected, transferred to protein 

lysate buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100 supplemented 

with EDTA-free protease inhibitor cocktail tablets (Roche), and phosphatase inhibitor tablets 

PhosSTOP (Roche)), and homogenized with a glass/Teflon homogenizer using 10 strokes at 800 rpm. 

The homogenate was centrifuged at 13,600 g for 15 min at 4°C. Cleared lysates were used to 

determine total protein amount (BCA Protein Assay; Thermo Fisher Scientific). After dilution with 5x 

SDS sample buffer, equal protein amounts were loaded onto SDS gels. 

 Immunohistochemistry. Mice were deeply sedated with isoflurane. After decapitation, the brain 

was rapidly removed and immediately transferred into ice-cold, oxygenated (95% O2, 5% CO2), 

standard artificial cerebrospinal fluid (ACSF) containing (in mM) 119 NaCl, 1 NaH2PO4, 2.5 KCl, 2.5 

CaCl2, 1.3 MgCl2, 11 D-glucose and 26.2 NaHCO3. 250-µm-thick sagittal sections of cerebella were 

cut with a Leica VT1200S vibratome and transferred to oxygenated standard ACSF at room 

temperature and allowed to recover for about 30 min. Sections were fixed in 2-3 ml 4% 

paraformaldehyde (PFA) in PBS for at least 20 minutes and subsequently 3 times rinsed for 20 min 

with PBS. Slices were then stored overnight or longer at 4°C in 30% (w/v) sucrose in 0.1 M sodium 

phosphate buffer pH 7.4. The cryoprotected slices were then re-sliced as previously described 

(Schneider Gasser et al., 2006). In brief, the slices were shortly rinsed in ice-cold PBS and then 

mounted on a pre-cut frozen block of O.C.T. (optimal cutting temperature compound) and stored for 

http://www.jacksonimmuno.com/Catalog/catpages/streptav.asp
http://www.jacksonimmuno.com/Catalog/catpages/streptav.asp
http://www.jacksonimmuno.com/Catalog/catpages/streptav.asp


30 min at -20°C. 15-µm-thick cryosections were made with a Leica CM1950 cryostat with a 

cryochamber and object head temperature of -20°C and -12°C, respectively, and subsequently stored 

at -20°C. Cryosections were thawed for about 2 min at 37°C and then incubated with blocking buffer 

(10% fetal bovine serum (FBS) and 0.2% Triton X-100 in PBS) for 1 h at room temperature. The 

primary antibodies were applied in blocking buffer overnight at 4°C and after washing in PBS (3 x 10 

min), the corresponding secondary antibodies were added for 1 h at room temperature in blocking 

buffer. After washing in PBS (3 x 10 min), the slides were drained and coverslipped using Kaiser’s 

glycerol gelatine (Merck, #1.09242.0100). 

 For GABAA α1 stainings, mice were deeply anesthetized with pentobarbital (Nembutal, 50 

mg/kg, i.p.) followed by transcardiac perfusion with ice-cold standard ACSF at a flow rate of 10–15 

ml/min (Notter et al., 2014). The brains were extracted immediately after the perfusion and postfixed 

in ice-cold 4% PFA in 0.15 M sodium phosphate buffer, pH 7.4 for 90 min. Tissue was then 

cryoprotected with 30% sucrose in PBS (w/v). Coronal sections (thickness 40 µm) were cut from 

frozen blocks with a sliding microtome (Microm Heidelberg, HM 400). Sections were collected in 

PBS and stored at -20°C in anti-freeze solution (15% glucose and 30% ethylene glycol in 50 mM 

sodium phosphate buffer, pH 7.4) prior use. Free-floating sections were incubated overnight at 4°C 

with primary antibodies and for 30 minutes at room temperature with secondary antibodies in Tris-

HCl buffer, pH 7.4, containing 2% normal goat (or donkey) serum and 0.2% Triton X-100.  

 Fluoro-Jade B staining. Cryosections were thawed and dried at room temperature. The sections 

were first incubated for 5 min with 1% sodium hydroxide in 80% ethanol and then for 2 min with 70% 

ethanol for rehydration. The slides were transferred to 0.06% potassium permanganate for 10 min. 

Subsequently, they were rinsed for 2 min with ddH2O and incubated with the staining solution for 20 

min in the dark. The staining solution contained 2 μg/ml Fluoro-Jade B (FJB; Merck Millipore, 

#AG310) and 2 μg/ml Hoechst 33342 in 0.1% acetic acid. The slides were then washed three times 1 

min in ddH2O, drained and dried at 50°C. The dried slides were cleared in xylene for at least 1 min, 

drained and coverslipped using D.P.X. mounting medium (Sigma, #3176116). 

 Staining of biocytin-labelled Purkinje cells in acute slices. Purkinje cells were labelled with 

biocytin by the cell patch clamp method using intracellular solutions containing 3 mg/ml biocytin. The 



orientation of the acute slice was noted for the whole cell recordings. The staining procedure was 

adapted from (Wierenga et al., 2008). In brief, after the recording, slices were fixed overnight at 4°C 

in 4% PFA dissolved in PBS. Slices were extensively rinsed with PBS and subsequently incubated for 

24 h at 4°C in blocking solution (10% FBS in PBS, containing 0.4% Triton X-100) on a shaker. The 

primary antibody was applied overnight at 4°C in blocking solution (5% FBS in PBS; 0.4% Triton X-

100) on a shaker. After extensive washing with PBS, appropriate secondary antibodies were applied 

overnight at 4°C in blocking solution. Acute slices were mounted in Kaiser's glycerol gelatine with the 

patched side facing up. Stained slices were analysed by confocal microscopy.  

 Image acquisition. Fluorescence pictures were taken using a Leica 5000B microscope with a 10x 

(NA 0.4) or 20x (NA 0.5) objective in combination with the software AnalySIS (Soft Imaging 

System). Confocal pictures were taken using the Leica TCS SPE confocal system with a 20x (NA 0.7), 

40x (NA 1.15), 63x (NA 1.3) or 100x (NA 1.47) oil immersion objective or with a Zeiss LSM 710 

microscope with a 63x lens (NA 1.4). For GFAP stainings whole automated multiple image 

acquisitions were made with the Olympus IX81 using a 10x objective (NA 0.3).  

 Quantification. For image analysis and processing, ImageJ was used. All analyses were done on 

sagittal sections of the cerebellar vermis. To analyse Purkinje cell density and soma size, fluorescence 

pictures of calbindin stainings taken from the cerebellar lobes 4&5 using a 10x objective were used. 

Purkinje cell density was determined by dividing the number of Purkinje cells by the length of the 

analysed Purkinje cell layer segment and is indicated in cells per mm. Data of RIPuKO, RIPuKO GFP 

and corresponding control mice were pooled. For Purkinje cell soma size analysis, only somata were 

included where the primary dendrite was clearly visible. For each mouse, the mean Purkinje cell 

density and soma size of n ≥ 3 cerebellar slices was determined.  

 Quantification of apoptotic cells, axonal swellings or FJB patches was done by counting their 

appearance in the entire cerebellar slice (n ≥ 3 slices per mouse). For each mouse, the cerebellar slices 

were binned according to the number of observed events on the entire slice and finally the fraction of 

slices assigned to each bin was calculated. Apoptotic cells were positive for cleaved caspase-3 and 

showed a pyknotic nucleus. Calbindin staining was used to quantify axonal swellings of Purkinje cells 

in the granule cell layer.  



 The area covered by the dendritic tree of Purkinje cells was determined by merging z-stacks of 

confocal images (taken with 20x or 40x objectives) from biocytin-labeled Purkinje cells that were 

detected by Fluorescein (DTAF) Streptavidin in acute slices. The entire dendritic tree was encircled by 

connecting the most apical points of the dendritic branches and the covered area was determined. 

Purkinje cell dendrite self-crossings were quantified on confocal pictures taken with a 63x objective 

from re-sliced (15 µm thick), biocytin-labelled Purkinje cells of RIPuKO GFP or corresponding 

control mice that were stained with Cy3-Streptavidin. Merged z-stacks of confocal pictures taken from 

randomly chosen regions of spiny distal branches of biocytin-labelled cells were analysed for self-

crossings. The number of dendritic self-crossings was normalized to the analysed area and the 

normalized values of RIPuKO GFP mice were then set in relation to the ones of control mice. The 

experimenter was blinded to the mouse genotype. GABAA α1 subunit clusters and GAD65-positive 

terminals were quantified based on threshold segmentation using self-written macros for ImageJ and 

Excel. Statistical analysis (one-way ANOVA) was performed in Prism Graphpad software and with a 

Kolmogorov-Smirnov test. 

 Electrophysiology. Sagittal cerebellar slices were prepared as described above in low calcium 

ACSF containing (in mM) 119 NaCl, 1 NaH2PO4, 2.5 KCl, 0.125 CaCl2, 3.3 MgCl2, 11 D-glucose and 

26.2 NaHCO3. Slices were then transferred for 30 min to 34°C-warm, oxygenated standard ACSF and 

subsequently stored in oxygenated standard ACSF at room temperature until they were used. Whole 

cell recordings were taken at room temperature using an Axon MultiClamp 700A or 700B amplifier 

(Molecular Devices) and borosilicate glass pipettes (2-4 MΩ). The following internal solutions (all 

containing 3 mg/ml biocytin) were used for the different recordings: for mEPSCs and mIPSC (in mM) 

135 Cs-methanesulfonate, 8 NaCl, 10 HEPES, 0.5 EGTA, 4 Mg-ATP, 0.3 Na-GTP, 5 Lidocaine-N-

ethyl bromide, pH 7.25; for climbing fibre stimulation (in mM) 150 CsCl, 1.5 mM MgCl2, 10 HEPES, 

0.1 EGTA, 2 Mg-ATP, 0.4 Na-GTP, 5 Lidocaine-N-ethyl bromide, pH 7.3; for LTD recordings (in 

mM) 65 Cs-methanesulfonate, 65 K-gluconate, 10 KCl, 1 MgCl2, 20 HEPES, 0.4 EGTA, 4 Na2-ATP, 

1 mM Na2-GTP, 5 sucrose, pH 7.3. mEPSCs and mIPSCs were recorded at a holding potential of -70 

mV or 0 mV, respectively, in the presence of 0.5 µM TTX for 10 minutes using the pClamp system 

(Molecular Devices, version 10.2). Traces were further analysed with the Mini Analysis Program v6 



(Synaptosoft). Climbing fibre innervation was analysed by placing a patch pipette (2 MΩ), filled with 

standard ACSF, in the granule cell layer in the vicinity of the patched Purkinje cell. Two current 

pulses (0.1 ms, paired-pulse interval: 62.5 or 100 ms) generated by a stable IS4 stimulator (SC-

Devices) were applied every 20 s. The stimulation pipette was moved in the granule cell layer until the 

climbing fibre response (CF-EPSC) could be elicited with minimal stimulation intensity. The holding 

potential was set at -10 mV to inactivate voltage-gated conductances and to reduce the driving force. 

The stimulation intensity was reduced until all synaptic responses disappeared and was progressively 

increased again. The climbing fibre response as a function of the stimulation intensity was analysed 

and only events showing paired-pulse depression as well as a clear threshold were included for 

analysis. The number of innervating climbing fibres was estimated from the number of discrete CF-

EPSC steps. Climbing fibre recordings were made and analysed using the pClamp system. For 

climbing fibre analysis, 4-week-old RIPuKO and 12-week-old RIPuKO GFP mice and corresponding 

littermate control mice were used. 

 For LTD recordings, acute cerebellar slices were perfused with standard ACSF containing 100 

µM picrotoxin (Sigma #P1675) and a patch pipette (2 MΩ) filled with perfusion solution was placed 

in the molecular layer in the vicinity of the voltage-clamped Purkinje cell. Parallel fibre (PF) responses 

were elicited by applying two current pulses using a stable IS4 stimulator (0.2 ms, paired-pulse 

interval: 100 ms) every 10 s while the cell was held at -60 mV. The stimulation intensity was chosen 

to obtain a PF-EPSC response of approximately 200 pA. A baseline was recorded for at least 10 min 

and when judged stable, LTD was induced by increasing the holding potential from -60 to +20 mV for 

500 ms in conjunction with a single PF stimulus, which was repeated 30 times at a frequency of 1 Hz. 

Access resistance was measured every 10 s and recordings were discarded if it changed by more than 

20% from the initial value. LTD was recorded and analysed using IGOR Pro software (WaveMetrics). 

For all types of electrophysiological recordings, biocytin-labelled Purkinje cells were subsequently 

analysed by immunohistochemistry as described above to confirm recombination of the targeted 

alleles in the recorded cell.  

 Behavioural assays. Mice were housed in a standard colony room with a 12:12 light:dark cycle 

and food and water was provided ad libitum. For behavioural tests, mice were transferred to a separate 



room at least 1 h prior to the experiment for adaptation. Tests were performed at the same time of day 

and the experimenter was blinded to the mouse genotype. 

 Balance beam test. For the balance beam test, a 70-cm-long, wooden beam, which was covered 

with masking tape, was horizontally connected to a dark box. The entire system was elevated to 

preventing mice to jump off. The starting area was brightly illuminated to motivate the mice to move 

towards the dark target box. The number of slips of the hind legs was counted. Mice were given 2 

training sessions prior to the test session, each session consisted of 3 runs. During the training 

sessions, the diameter of the beam was gradually decreased. 4 to 8-week-old, female RIPuKO and 9 to 

11-week-old, male RAPuKO mice and corresponding littermate controls were tested on a 1.1-cm-thick 

beam. For 14 to 20-week-old, female RIPuKO and 29 to 41-week-old, male RAPuKO mice and the 

corresponding littermate controls, the diameter of the beam was 1.3 cm. For each mouse, the mean 

number of slips from three runs was calculated.  

 Footprint analysis. Paws of the mice were painted with nontoxic paint (forepaws in red, hindpaws 

in black). Mice were placed into an acrylic glass corridor of 1 m length and 8 cm width. The corridor 

was lined with white paper. The starting point was brightly illuminated to motivate the mouse to walk 

towards the dark box placed at the end of the corridor. For analysis, ten steps during which the mouse 

walked continuously and did not touch the wall were selected. The paper stripes were scanned, the 

coordinates of the footprints were evaluated using ImageJ and the mean gait width of the ten steps was 

calculated for each mouse. Female RIPuKO and male RAPuKO mice and corresponding littermate 

control mice of the indicated age were used for the footprint analysis. 

 Olfactory habituation/dishabituation. Olfactory habituation/dishabituation tests were performed 

as previously described (Yang and Crawley, 2009; Silverman et al., 2010). 9 to 11-week-old male 

RAPuKO mice and 13 to 26-week-old RIPuKO and RIPuKO GFP mice and corresponding littermate 

control mice were used. In brief, mice were accommodated to a fresh cage with a clean and dry cotton 

tipped swab (cotton tip 2 cm over the cage ground) suspended from the cage lid for 30 min. After this 

acclimation period, odours were presented for 2 min in intervals of 1 min and the time of interest of 

the mouse in the cotton swab was measured. Interest was scored if the nose of the mouse was within 2 

cm of the cotton tip. Odours were presented twice or three times to analyse olfactory habituation. The 



order of presented odours was water, water, banana, banana, social odour 1, social odour 1, social 

odour 1, social odour 2, social odour 2, social odour 2. For the water and banana odours, 100 µl of 

ddH2O or isoamyl acetate (Sigma #W205532) diluted 1:1500 in ddH2O were dripped onto the cotton 

tip. Social odours were obtained by wiping the cotton tipped swab in a zig-zag pattern across the 

bottom surface of a cage that had been used by 3-4 age-matched, unfamiliar male mice of the same 

strain (C57BL/6) for 7 days. Results of RIPuKO and RIPuKO GFP mice and the corresponding 

control mice were pooled. Raw data were cleaned from statistical outliers by GraphPad prism software 

(ROUT method; Q = 0.1%) prior to statistical analysis.  

 Statistics. All data are presented as mean ± SEM. An unpaired Student’s t-test or a one- or two-

way ANOVA followed by a Tukey’s or a Bonferroni’s post hoc test was used to analyse data for 

statistical significance. A probability of 0.05 was taken as the level of statistical significance.  



RESULTS 

 

Motor deficits and social behaviour of RAPuKO and RIPuKO mice 

Purkinje cell-specific ablation of mTORC1 or mTORC2 was achieved by crossing L7/Pcp-2-Cre mice 

(Saito et al., 2005) with Rptorloxp/loxp or Rictorloxp/loxp mice (Bentzinger et al., 2008) as previously 

described (Thomanetz et al., 2013). The resulting mouse lines are called RAPuKO or RIPuKO (for 

raptor- or rictor Purkinje cell knockout). L7/Pcp-2-driven Cre expression starts at embryonic day 17.5 

(E17.5) (Saito et al., 2005) and thus targeted alleles will be deleted during the development, including 

the establishment of the dendritic tree and of synapses, and the maintenance of Purkinje cells 

(Watanabe and Kano, 2011).  

 As Purkinje cells provide the sole output of the cerebellar cortex and are known to be essential for 

motor control, we first analysed how raptor and rictor depletion in these neurons would affect motor 

coordination. For this reason, RAPuKO and RIPuKO mice were tested on a balance beam and the 

number of hind leg slips was quantified. In RIPuKO mice, the number of slips was significantly 

increased compared to control littermates independent of the age of the mice (Fig. 1A). In contrast, 

young RAPuKO mice did not show any motor coordination deficits, whereas a significant deficit was 

noted at the age of 29-41 weeks (Fig. 1B). In addition to the early-onset coordination deficits, RIPuKO 

mice showed an increase in the gait width of their hind legs (Fig. 1C), whereas RAPuKO mice did not 

show any change in gait (Fig. 1D). Thus, mTORC2 deficiency in Purkinje cells results in early deficits 

in motor coordination whereas inactivation of mTORC1 seemed to affect this behaviour only at a 

rather high age. 

 Recent reports have indicated that Purkinje cell-specific depletion of TSC1, which results in 

sustained activation of mTORC1, causes autism spectrum disorder-like changes in mice that 

manifested by altered social behaviour (Tsai et al., 2012). To evaluate whether a similar phenotype 

could also be noted in mice deficient for mTORC1, we tested RAPuKO mice in an olfactory 

habituation/dishabituation test. To rule out that motor deficits interfere with this test, we used young 

mice. While RAPuKO mice spent the same time sniffing non-social odours as control mice, the 

interest in social odours was significantly reduced (Fig. 1F). As depletion of TSC1 also affects 



mTORC2 signalling (Goto et al., 2011; Carson et al., 2012), we also tested RIPuKO mice in the same 

behavioural paradigm. However, no significant difference in the interest in either non-social or social 

odours was observed (Fig. 1E). These data indicate that mTORC1 and mTORC2 have different 

functions in Purkinje cells as the phenotypes in motor coordination and social interest are distinct. 

 

Morphology and synaptic alterations in Purkinje cells of RAPuKO mice 

Expression of Cre under the control of the L7/Pcp-2 promoter has been shown to be mosaic in 

Purkinje cells (Saito et al., 2005). Similarly, we have previously shown that rictor was depleted in only 

75% of the Purkinje cells in RIPuKO mice and that lack of expression of PKCγ is a reliable marker for 

successful removal of rictor (Thomanetz et al., 2013). To test whether a similar mosaic pattern was 

observed in RAPuKO mice, we stained sagittal sections of the cerebellum for the phosphorylated form 

of S6 (pS6), which is activated by mTORC1 (Wullschleger et al., 2006). Thus, lack of pS6 can be seen 

as an indicator of successful depletion of raptor. In young, 3 to 11-week-old RAPuKO mice, 49 ± 5% 

(mean ± SEM; n = 19 mice) of the Purkinje cells were negative for pS6 (pS6(-)) while all Purkinje 

cells of control mice were pS6-positive (pS6(+)) (Fig. 2A). Consistent with the important role of 

mTORC1 in controlling cell size, pS6(-) Purkinje cells were by 40-50% smaller in RAPuKO mice 

compared to Purkinje cells of age-matched control mice (Fig. 2B). In addition, a small but significant 

increase in the soma size of the non-recombined, pS6(+) Purkinje cells in older RAPuKO mice could 

be observed (Fig. 2B). Besides the difference in soma size, ~40% of raptor-depleted Purkinje cells of 

4-6-week-old RAPuKO mice contained multiple primary dendrites (Fig. 2C and D) while ~90% of 

Purkinje cells in control mice contained only one primary dendrite. Multiple primary dendrites with a 

similar frequency like in RAPuKO mice have also been observed in RIPuKO mice (Thomanetz et al., 

2013). Moreover, the area covered by the dendritic tree of raptor-knockout Purkinje cells was 

significantly decreased by 42 ± 3% (mean ± SEM; Student’s t-test; p < 0.001; n ≥ 36 cells of n = 7 

mice). Thus, raptor depletion in Purkinje cells results in rather severe, morphological changes in 

Purkinje cells, similar, but even more severe, to what we reported in RIPuKO mice (Thomanetz et al., 

2013). 



 To test whether those morphological alterations also affected synapse function, we next examined 

miniature excitatory and inhibitory postsynaptic currents (mEPSC and mIPSC, respectively). We pre-

identified the raptor-deficient Purkinje cells in the electrophysiological set-up by their reduced soma 

size and confirmed their identity by filling the recorded cells with biocytin via the recording pipette for 

a postfixation analysis. While there was no difference in the mEPSCs of raptor-deficient Purkinje cells 

at the age of 6 weeks compared to cells in control mice (Fig. 3A - C), a pronounced reduction in the 

frequency of mIPSCs (Fig. 3D and E), but not the amplitude (Fig. 3D and F), was observed. By 

quantitative immunohistochemistry using antibodies against the α1 subunit of GABAA receptors, we 

also found that the mean number of GABAA α1 clusters on the soma of pS6(-) Purkinje cells was 

reduced by 43% (Fig. 3G and I) while the density of the GABAA α1 clusters in the molecular layer 

was not changed (Fig. 3H and J). Together, these data indicate a lowering of the number of inhibitory 

synapses formed by raptor-deficient Purkinje cells. 

 Raptor deficiency also affected the size of GABAergic synapses but this effect differed between 

the soma and the molecular layer. While the size of GABAA α1 clusters on the somata of raptor-

deficient Purkinje cells was increased (Fig. 3K), the size of GAD65/GABAA α1-positive clusters in the 

molecular layer was smaller (Fig. 3L). The fact that the size differences are opposite between the soma 

and the dendrites of the raptor-deficient neurons may explain why we could not detect any alteration in 

the amplitude of the mIPSCs. In summary, these data combined indicate a misbalance between the 

inhibitory and the excitatory input in Purkinje neurons that are deficient of raptor. Such a misbalance, 

in turn, might contribute to the behavioural deficit in social interest of RAPuKO mice. Noteworthy, 

rictor knockout in Purkinje cells affects both excitatory and inhibitory synaptic properties as 

previously described (Thomanetz et al., 2013). 

 

Multiple climbing fibre innervation accounts for ataxia of RIPuKO mice  

Rictor knockout in Purkinje cells is paralleled by a striking down regulation of PKCγ (Thomanetz et 

al., 2013), the major PKC isoform expressed by these neurons (Barmack et al., 2000). Mice with a 

conventional knockout of PKCγ show impaired motor coordination (Chen et al., 1995). This motor 

coordination deficit is paralleled by multiple innervation of Purkinje cells by climbing fibres (CF) 



(Kano et al., 1995). As RIPuKO mice have a motor coordination phenotype, we analysed CF 

innervation in RIPuKO mice. In a first set of experiments, we analysed 4-week-old mice, as this is one 

week after finalization of developmental elimination of surplus CFs in wild-type mice (Hashimoto and 

Kano, 2013). CF innervation was tested by whole-cell recordings of EPSCs in Purkinje cells in 

response to electrical stimulation of CFs. Stimulation of CFs in cerebellar slices obtained from control 

mice evoked EPSCs whose amplitude developed in an “all or nothing” manner thus reflecting single 

CF innervation of Purkinje cells (Fig. 4A and D). Similar stimulation parameters applied to rictor-

deficient Purkinje cells resulted in multiple discrete steps in ~40% of the analysed neurons indicating 

innervation by multiple CFs (Fig. 4B and D). To rule out that the multiple CF innervation was simply 

due to a delay in CF elimination, we also measured CF-EPSC responses in 12-week-old RIPuKO 

mice. The percentage of knockout cells showing multiple discrete steps in CF-EPSC responses was 

very similar to those in the younger mice (Fig. 4C and D), indicating that multiple CF innervation of 

rictor-knockout Purkinje cells persists throughout adulthood. Hence, multiple CF innervation, like in 

PKCγ knockout mice, might be responsible for the motor deficits observed in RIPuKO mice. In 

contrast, 4-week-old RAPuKO mice did not show multiple CF innervation (Fig. 4E – G).  

 Another cellular correlate that has been implicated in altered motor behaviour is a failure to 

undergo cerebellar long-term depression (LTD) (Kano et al., 2008; Hirano, 2013). Cerebellar LTD is 

induced by a simultaneous stimulation of the parallel fibre (PF) and CF synapses, which leads to a 

profound depolarization of the Purkinje cell and a weakening of the PF synapse. Because rictor-

deficient Purkinje cells are frequently innervated by multiple CFs, LTD was induced by directly 

depolarizing the voltage-clamped Purkinje cell via the recording electrode and simultaneously 

stimulating the PFs as depicted (Fig. 4H) (Kakegawa et al., 2011). Application of this protocol led to a 

~20% reduction of the PF-EPSC in both control and rictor-deficient Purkinje cells after 30 minutes 

(Fig. 4I - K), showing that cerebellar LTD is normal in RIPuKO mice.  

 Another phenomenon that has been correlated with impairment of gait and motor coordination is 

an increased number of dendritic self-crossings of Purkinje cells, which has been suggested to result 

from defective dendritic self-avoidance (Gibson et al., 2014). Purkinje cells deficient of γ-

protocadherins, a class of molecules that acts via the mTORC2 target PKC (Garrett et al., 2012), show 



impaired dendritic self-avoidance (Lefebvre et al., 2012). Thus, we also analysed dendritic self-

avoidance in 12-week-old RIPuKO mice by re-slicing biocytin-labelled Purkinje cells and staining 

them for Cy3-streptavidin and PKCγ. Confocal microscopy analysis of randomly selected regions of 

spiny distal branches of the dendritic tree (Fig. 4L and M) revealed a significant increase in the 

number of dendritic self-crossings in rictor-knockout Purkinje cells (Fig. 4N). Hence, loss of 

mTORC2 in Purkinje cells also decreases dendritic self-avoidance. Thus, in summary, a failure in CF 

synapse elimination and hampered self-avoidance of dendrites might be the basis of the motor 

coordination phenotype of RIPuKO mice. Interestingly, both of those cellular phenomena have 

previously been linked to dysregulation of the mTORC2 target PKC. 

 

Age-dependent loss of Purkinje cells in RAPuKO but not RIPuKO mice due to apoptosis 

As described above, the motor coordination phenotype of RIPuKO mice was observed at an early age 

whereas the motor coordination deficits of RAPuKO mice were only observed at a higher age. This 

together with the previous finding that ablation of mTORC1 causes increased apoptosis of neurons 

(Cloetta et al., 2013), led us to hypothesize that death of Purkinje cells might underlie the age-

dependent motor deficits of RAPuKO mice. To test this, we counted the number of Purkinje cells in 

RAPuKO and RIPuKO mice in the course of mouse ageing. While the density of the Purkinje cells 

remained the same in RIPuKO mice (Fig. 5A and B), it significantly decreased in RAPuKO mice after 

the age of 11 weeks (Fig. 5C and D). To investigate whether cell loss was due to apoptosis, cells were 

stained for cleaved caspase-3 (CC3), a well know apoptosis marker (Gown and Willingham, 2002). 

No CC3-positive Purkinje cells were found in 6-week-old RAPuKO mice (data not shown) but many 

positive cells could be detected at the age of 11 weeks (Fig. 5E and F). Those cells also showed signs 

of a condensed and fragmented nucleus in the Hoechst staining (Fig. 5E), which is an additional 

characteristic of apoptosis (Robertson et al., 2000). The apoptotic events were also accompanied by 

the appearance of GFAP-positive fibres in the molecular layer (Fig. 5G and H). The localization of the 

GFAP-positive fibres and their palisade-like arrangement (Fig. 5H) suggested that these were 

Bergmann glia cells that are known to be closely associated with Purkinje cells (Yamada and 

Watanabe, 2002). An increase of GFAP-positive fibres is a hallmark of reactive astrogliosis that can 



be a consequence of neurodegeneration (Pekny and Nilsson, 2005). Thus, at a higher age, Purkinje 

cells in RAPuKO mice are lost because of apoptosis. Most probably, the age-dependent loss of 

Purkinje cells underlies the motor coordination deficits that are visible in old RAPuKO mice.  

 

Neurofilamentopathy upon ablation or sustained activation of mTORC1 in Purkinje cells 

To further investigate the cause of cell death in RAPuKO mice, we next stained for degenerating 

neurons using Fluoro-Jade B (FJB), as this compound specifically stains degenerating neurons 

(Schmued and Hopkins, 2000). FJB-positive puncta were visible in the molecular and Purkinje cell 

layer of 6 and 11-week-old RAPuKO but not control mice (Fig. 6A and B), indicating that 

neurodegeneration precedes the apoptosis in raptor-knockout Purkinje cells. Also signs of dendritic 

atrophy and beading could be detected in biocytin-labelled, raptor-deficient Purkinje cells of 6-week-

old mice (Fig. 6C). Additionally, we often detected swellings of axons proximal to raptor-deficient 

Purkinje cell somata whereas such swellings were only very rarely observed in control mice (Fig. 6D - 

H). Such swellings are thought to be an early sign of axonal degeneration and have been reported to 

frequently contain organelles or cargo proteins, such as mitochondria, synaptic vesicles and 

neurofilaments (Ching et al., 1999; Louis et al., 2009; Watanabe et al., 2010; Yang et al., 2013). In 

accordance, 84.8 ± 0.7% (mean ± SEM; n = 390 swellings of n = 4 mice) of the axonal swellings in 

RAPuKO mice were strongly positive for neurofilament heavy (neurofilament H) and 81.2 ± 5% 

(mean ± SEM; n = 196 swellings of n = 4 mice) were positive for the phospho-neurofilament epitope 

(SMI31) (Fig. 6E). In contrast, the swellings did not show any accumulation of mitochondria (Fig. 6F) 

or synaptic vesicles (Fig. 6G). Neurofilaments are known to undergo axonal transport and there is 

evidence that this is regulated by phosphorylation in the C-terminal KSP repeats (reviewed in (Shea et 

al., 2009; Holmgren et al., 2012)) and glycogen synthase kinase 3 (GSK3) has been shown to 

phosphorylate neurofilament H at the KSP repeats (Bajaj and Miller, 1997). Because phosphorylation 

of GSK3α/β at residue Ser21/9 is downstream of Akt (Cross et al., 1995) and because changes in 

mTORC1 activity also affect activation of Akt (Bentzinger et al., 2008), we examined phosphorylation 

of GSK3 in mice that lack raptor in all brain cells (Cloetta et al., 2013). In those mice, phosphorylation 

of GSK3 was strongly increased (Fig. 6I and J), indicating that aberrant GSK3 signalling might be the 



cause of the axonal accumulation of neurofilaments in raptor-knockout Purkinje cells. Similar 

proximal axonal swellings have also been reported in mice deficient for TSC1 in Purkinje cells (Tsai 

et al., 2012). Because TSC1 knockout in brain tissue is known to affect GSK3 signalling (Meikle et 

al., 2008), we hypothesized that the swollen axons of TSC1 knockout in Purkinje cells might also 

contain neurofilaments. Indeed, axonal swellings in 11-week-old TSC1 Purkinje cell knockout 

(TSCPuKO) mice were in 78.5 ± 3% (mean ± SEM; n = 266 swellings of n = 4 mice) and 79.6 ± 2% 

(mean ± SEM; n = 276 swellings of n = 4 mice) of the cases clearly positive for neurofilament H (Fig. 

7A) and phosphorylated neurofilament, respectively (Fig. 7B). TSC1-knockout Purkinje cells not only 

show signs of axonal degradation but finally also undergo apoptosis as previously reported (Tsai et al., 

2012). Consistently, we identified apoptotic Purkinje cells and a lowered Purkinje cell density in 11-

week-old TSCPuKO mice (data not shown). Like in RAPuKO mice, Purkinje cell 

degeneration/apoptosis in TSCPuKO mice was paralleled by reactive Bergmann glia that manifested 

in palisade-like, GFAP-positive structures in the molecular layer (Fig. 7C). Altogether, both ablation 

and sustained activation of mTORC1 in Purkinje cells results in a neurofilamentopathy, accompanied 

by the accumulation of neurofilaments in the axonal swellings proximal to the soma of Purkinje cells, 

and causes Purkinje cell death by apoptosis.   



DISCUSSION 

Here we describe the phenotypes of mice that lack mTORC1 or mTORC2 in developing and adult 

Purkinje cells. While some of the phenotypes, such as the changes in cell morphology, are shared 

between RAPuKO and RIPuKO mice, most of them differ between the two mouse models. 

Phenotypes that are exclusive for the RAPuKO mice are (i) the reduced social interest and (ii) the 

progressive loss of Purkinje cells that starts at the age of 11 weeks. Phenotypes exclusive to RIPuKO 

mice are (i) the early changes in motor coordination and the gait alterations and (ii) the impairment of 

CF synapse elimination. Thus, our work provides strong evidence that mTORC1 and mTORC2 have 

only a few common but many very distinct functions in Purkinje neurons although they share many of 

the molecular components including mTOR.  

 

A role of mTORC1 for the morphology of Purkinje cells 

Given the important role of mTORC1 for cell growth (Wullschleger et al., 2006), our observation that 

raptor-deficient Purkinje cells have smaller cell somata and a smaller dendritic tree is not surprising. 

The size difference was seen already at a rather early age of 3 weeks and persisted throughout 

adulthood. Thus, raptor-deficient Purkinje cells seem to never reach the size of wild-type neurons. The 

observed change of the dendritic tree in raptor-deficient Purkinje cells and in particular the presence of 

several primary dendrites was, however, not expected. The development of the Purkinje cell dendrites 

occurs mainly in the first three postnatal weeks. Purkinje cells transiently express multiple primary 

dendrites around birth and all but one are subsequently eliminated within the first two weeks. Later, 

the final size of the dendritic tree is established by a rapid and a slow growth phase (Sotelo and Dusart, 

2009). While the detailed molecular mechanisms involved in this developmental reshaping of the 

dendrites are not well established, several pathways have been shown to affect similar processes. For 

example, the PI3K-Akt-GSK3 pathway is well known to affect neuronal polarity (Arimura and 

Kaibuchi, 2007) and inhibition of GSK3 by phosphorylation increases the number of primary 

dendrites in cultured neurons (Naska et al., 2006). Finally, brain-selective deletion of the PI3K-Akt 

inhibitor PTEN results in the formation of ectopic dendrites in neurons, which correlates with 

increased phosphorylation of Akt and GSK3 (Kwon et al., 2006). Inactivation of mTORC1 by raptor 



depletion increases Akt signalling (Cloetta et al., 2013) because the inhibitory feedback loop via S6K 

is dampened (Um et al., 2004). Thus, increased GSK3 inhibition because of Akt-mediated 

phosphorylation in raptor-deficient Purkinje neurons may cause the multiple primary dendrites.  

 Interestingly, Purkinje cells deficient for rictor have also several primary dendrites (Thomanetz et 

al., 2013). Despite the similar phenotype to the RAPuKO mice, the underlying mechanism in RIPuKO 

mice is more likely based on abnormal PKC signalling including the dysregulation of its downstream 

targets MARCKS and GAP-43, as previously commented (Angliker and Ruegg, 2013). Consistent 

with this PKC-mediated mechanism, rictor-deficient Purkinje cells also exhibit extensive self-

crossings of spiny distal dendritic branches. A very similar phenotype was also observed in mice 

deficient for γ-protocadherins, which also affect PKC signalling and its downstream target MARCKS 

(Garrett et al., 2012; Lefebvre et al., 2012).  

 

Effect of mTORC1 and mTORC2 on synaptic connectivity 

Purkinje cells from RIPuKO mice are innervated by multiple climbing fibres throughout adulthood 

and there is no change in LTD. Multiple CF innervation in the absence of disturbed LTD is also 

evident in PKCγ knockout mice (Chen et al., 1995). PKCγ has been suggested to be crucial for the late 

phase of climbing fibre elimination that lasts from P12-17 (Hashimoto and Kano, 2013). During this 

late phase, climbing fibre elimination is driven by parallel fibre synaptic input (Kakizawa et al., 2000) 

and the underlying postsynaptic mGluR1 signalling via Gαq, PLCβ4 and PKCγ (Chen et al., 1995; 

Kano et al., 1995; Offermanns et al., 1997; Kano et al., 1998; Ichise et al., 2000). Concordantly, 

Purkinje cells in mice deficient for members of this signalling cascade are innervated by multiple 

climbing fibres and all these knockout mice also show motor deficits. Thus, the motor coordination 

deficit in the RIPuKO mice correlates with the pronounced loss of PKCγ (Thomanetz et al., 2013), 

suggesting that perturbed PKC signalling is the molecular basis of this phenotype. 

 While CF innervation and mEPSC recordings were normal in RAPuKO mice, analysis of the 

mIPSCs indicated a reduction in the number of functional inhibitory synapses. Consistent with the 

electrophysiological recordings, the number of perisomatic GABAA α1 clusters was also reduced in 

raptor-deficient Purkinje cells when measured by immunohistochemistry. Raptor knockout also 



affected the size of GABAA α1 clusters but the effect depended on the subcellular localization. While 

GABAA α1 cluster size was increased on the somata of Purkinje cells, it was decreased in the 

dendrites (i.e. the molecular layer). In rats, the size of GABAA α1 clusters on the soma of Purkinje 

cells has been shown to become reduced during the first three postnatal weeks while the size of 

GABAA α1 clusters in the molecular layer is increased (Viltono et al., 2008). As GABAA α1 cluster 

size is increased on the soma of knockout cells but decreased in the molecular layer in 6-week-old 

RAPuKO mice, it is possible that these changes are a consequence of impaired postnatal development 

of GABAergic synapses.  

 

Convergent phenotypes of sustained activation or inactivation of mTORC1 in Purkinje cells 

Another interesting aspect of our work is the rather similar phenotypes of RAPuKO and TSCPuKO 

mice although the immediate downstream signalling is the opposite. For example, both mouse models 

show a strong accumulation of neurofilaments in axonal swellings and a progressive loss of Purkinje 

cells due to apoptosis, which is paralleled by reactive gliosis. We also provide evidence that aberrant 

GSK3 signalling may underlie this convergence in the neurofilamentopathy as phosphorylation of 

GSK3 is strongly increased in RAbKO mice and GSK3 signalling is also altered in mice deficient for 

TSC1 in the brain (Meikle et al., 2008). GSK3 phosphorylates neurofilaments at the E-segment 

(Sasaki et al., 2002; Sasaki et al., 2009) and KSP repeats (Bajaj and Miller, 1997). While 

phosphorylation of KSP repeats is crucial for various functions including axonal transport (Shea et al., 

2009; Holmgren et al., 2012), the E-segment has been suggested to affect the conformation of the C-

terminal KSP repeats (Sasaki et al., 2009). Thus, differential modification of the neurofilaments in the 

RAPuKO and TSCPuKO mice by GSK3 may result in a similar functional effect.  

 Besides the similarity in the neurodegenerative phenotype, RAPuKO and TSCPuKO mice also 

share behavioural similarities. Like in TSCPuKO mice (Tsai et al., 2012), the social interest of 

RAPuKO mice was reduced at young age, when the Purkinje cell density was unaffected. Alterations 

in inhibitory synaptic input and in dendritic morphology in the RAPuKO mice discussed above might 

underlie this abnormal social behaviour. A similar convergence of the phenotypes has been observed 

in mice deficient for raptor or TSC1 in skeletal muscle. In both cases the genetic manipulations result 



in myopathies that are characterized by vacuoles (Bentzinger et al., 2008; Castets et al., 2013). In 

skeletal muscle, changes in autophagy flux, although at different steps of the process, might underlie 

this convergence. In summary, our findings demonstrate that both, sustained activation and inhibition 

of mTORC1 in Purkinje cells, affect non-motor related functions of the cerebellum and, at later time 

points, the survival of these neurons. Consequently, our data advice caution in treating brain disorders 

with rapamycin or other mTORC1 inhibitors, as has recently been suggested (Santini and Klann, 2011; 

Costa-Mattioli and Monteggia, 2013). 
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Figure 1: Behavioural assessment of RIPuKO and RAPuKO mice. A and B, Balance beam tests of 

RIPuKO (A) and RAPuKO (B) mice and their respective control littermates at different ages. The 

number of hind leg slips per meter was measured as a readout of ataxia. For each group n ≥ 8 mice 

were tested. C and D, Footprint pattern analysis of RIPuKO (C) and RAPuKO (D) mice and their 

control mice (n ≥ 7 mice for each group) of the indicated age. The steps of the hind and front paws are 

indicated in black and red, respectively. Hind limb gait width (W) was measured as indicated in (C). E 

and F, Olfactory habituation/dishabituation test with n ≥ 12 male RIPuKO or RAPuKO mice and 

corresponding control mice. Non-social and social odours were presented to the mice on a cotton swab 

in 2 and 3 repetitions as indicated. Bars represent mean ± SEM. Data of (A – D) were analysed by a 

Student’s t-test and for (E – F) a two-way ANOVA, Bonferroni’s post hoc analysis was used. p-

values: ** p < 0.01; * p < 0.05; ns p ≥ 0.05. Scale bar: 10 cm. 

  



 

Figure 2. Morphology of Purkinje cells is altered in RAPuKO mice. A, Sagittal cerebellar slices of 

6-week-old RAPuKO mice and corresponding control mice were co-stained for calbindin (red) and 

pS6 (green). All the calbindin-positive neurons are also pS6-positive (yellow) in control mice (left) 

whereas most Purkinje cells are pS6-negative in RAPuKO mice (right). B, Average soma area of 

Purkinje cells of control mice (black bars) and pS6-positive (yellow) or pS6-negative (red) Purkinje 

cells in RAPuKO mice of different age. Data represent Purkinje cell somata of lobes IV&V of n ≥ 3 

mice for each time point and genotype. C, Purkinje cells of 4-6-week-old RAPuKO or control mice (n 

≥ 8) were labelled with biocytin by the whole-cell patch clamp technique and detected by FITC-

streptavidin after a fixation of the entire acute slice. Pictures in (C) represent merged z-stacks of 

confocal microscopy pictures. D, Quantification of the number of primary dendrites originating from a 

Purkinje cell soma. Bars in (B) represent mean ± SEM. Statistical analysis in (B) used one-way 

ANOVA with Tukey’s post hoc analysis. p-values: *** p < 0.001; ** p < 0.01; * p < 0.05; ns p ≥ 0.05. 

Scale bars: 200 µm (A), 50 µm (C). 

  



 

Figure 3. Inhibitory synaptic input is altered in raptor-knockout Purkinje cells. A, Sample traces 

of mEPSC recordings taken from Purkinje cells of 6-week-old control or RAPuKO mice. B and C, 

Quantification of mEPSC frequency (B) and amplitude (C) recorded from 5 RAPuKO (red) and 4 



control (black) mice. Mean values and cumulative distributions of recordings from 12 raptor-deficient 

(red) and 14 control (black) Purkinje cells are shown. D, mIPSC sample traces of Purkinje cells of 6-

week-old control or RAPuKO mice. E and F, Quantification of mIPSC frequency (E) and amplitude 

(F) recorded from 3 RAPuKO (red) and 3 control (black) mice. Mean values and cumulative 

distributions of recordings from 14 raptor-deficient (red) and 16 control (black) Purkinje cells are 

shown. G, Sagittal cerebellar sections of 6-week-old RAPuKO or control mice stained with antibodies 

to the α1 subunit of GABAA receptors (red). Co-staining against Car8 (green) and pS6 (blue) was used 

to identify Purkinje cell somata and to confirm raptor deficiency, respectively. Merged z-stacks of 

confocal microscopy pictures are shown. H, Staining of the molecular layer of the same mice used in 

(G) for GABAA α1 (red), GAD65 (green; stains GABAergic presynaptic terminals) and for pS6 (blue). 

I and K, Analysis of the perisomatic GABAA α1 subunit clusters shown in (G). (I) shows the average 

number of GABAA α1 subunit clusters at the soma of pS6-negative Purkinje cells (n ≥ 5 per mouse) of 

RAPuKO mice (n = 6) or Purkinje cells (n ≥ 10 per mouse) of control mice (n = 6). (K) shows the 

quantification of the GABAA α1 subunit cluster size at these somata. J and L, Quantification of the 

mean density (J) or size (L) of the clusters positive for GAD65, for the GABAA α1 subunit (α1) and 

for both (GAD65 + α1), detected in the molecular layer of control (black) or RAPuKO (red) mice (n ≥ 

4 per genotype). Bars represent mean ± SEM. Data in B, C, E, F and I - L were analysed by a 

Student’s t-test. p-values: *** p < 0.001; ** p < 0.01; ns p ≥ 0.05. Scale bars: 10 µm (G) and 20 µm 

(H). 

  



 

Figure 4. Rictor-knockout Purkinje cells are innervated by multiple CFs, show impairment in 

dendritic self-avoidance but show normal LTD. A - C, Paired current pulses in the granule cell layer 

were used to elicit CF-EPSC responses in Purkinje cells. Stimulation intensity was continuously 

increased and the size of the postsynaptic response was recorded. In control mice (A), the CF-EPSC 

response occurred in an “all or nothing” manner and did not change by further increasing the 

stimulation intensity, indicating mono CF innervation of the Purkinje cell. In 4-week-old RIPuKO (B) 

or 12-week-old RIPuKO mice (C), CF-EPSC responses revealed 2 or 3 discrete steps in response to 

increasing stimulation intensity, indicating multiple innervation by CFs. D, Percentage of the Purkinje 

cells showing the indicated number of discrete CF-EPSC steps of 4 or 12-week-old RIPuKO or 

corresponding control mice. The indicated numbers of Purkinje cells were analysed from n ≥ 4 mice 

for each genotype and age. E - G, Analysis of climbing fibre innervation of Purkinje cells of 4-week-



old RAPuKO or control mice (n ≥ 4) using the same experimental approach as described in (A - D). H, 

Stimulation paradigm to elicit cerebellar LTD by repetitive stimulation of afferent parallel fibres and 

simultaneous depolarization of the voltage-clamped Purkinje cell to 20 mV for 500 ms. I and J, 

Sample traces of PF-EPSCs recorded in Purkinje cells of a 7-week-old control (I) or RIPuKO mouse 

(J) before and 30 minutes after LTD induction. K, Fold change of the PF-EPSC amplitude monitored 

in 6 control and 11 rictor-deficient Purkinje cells over 40 minutes after LTD induction (n ≥ 3 

individual mice of each genotype). There is no difference between control- and rictor-deficient 

neurons. L and M, Confocal microscopy pictures (merged z-stacks) of spiny distal dendritic branches 

of biocytin-labelled Purkinje cells of 12-week-old control or RIPuKO mice. Acute slices containing 

the labelled cells were re-sliced and stained with Cy3-streptdavidin (red) and an anti-PKCγ antibody 

(blue) to detect the labelled cells and to confirm the mTORC2 ablation, respectively, as previously 

described (Thomanetz et al., 2013). The number of dendritic self-crossings (white arrows) was 

counted. N, Relative number of dendritic self-crossings detected in RIPuKO mice expressed as 

percentage of dendritic self-crossings detected in control mice. n ≥ 30 Purkinje cells of RIPuKO or 

corresponding control mice (n = 4 for each genotype) were analysed. Data in (K and N) represent 

mean ± SEM. Data of (N) were analysed by a Student’s t-test. p-values: *** p < 0.001. Scale bars: 25 

µm (L and M). 

  



 

Figure 5. Depletion of raptor, but not rictor causes age-dependent loss of Purkinje cells due to 

apoptosis. A, Sagittal cerebellar slices of 86-week-old RIPuKO mice and corresponding control mice 

were co-stained for calbindin (red) and PKCγ (green) to confirm mTORC2 ablation in Purkinje cells. 

Calbindin staining was used to determine Purkinje cell density in the cerebellar lobes IV&V of 

RIPuKO and control mice. B, Purkinje cell density determined for RIPuKO and corresponding control 

mice in course of ageing. For each indicated age and genotype n ≥ 3 mice were analysed with n ≥ 3 

cerebellar slices per mouse. C and D, Staining for calbindin (red) and pS6 (green) to analyse Purkinje 

cell density and mTORC1 ablation in 41-week-old RAPuKO and control mice. Purkinje cell density in 

course of mouse ageing was monitored as described in (A and B). E, Confocal pictures (merged z-



stacks) of an apoptotic Purkinje cell detected by a co-staining of a cerebellar slice of an 11-week-old 

RAPuKO mouse using Hoechst and antibodies against calbindin and CC3. F, The fraction of 

cerebellar slices containing the indicated numbers of CC3-positive Purkinje cells were determined for 

RAPuKO or control mice (n = 4 mice per genotype). G, GFAP staining of a sagittal cerebellar slice of 

an 11-week-old RAPuKO or control mouse. Similar findings were made with additional RAPuKO and 

control mice of the same age (n = 3 mice per genotype). The inset highlights increased GFAP 

expression in form of palisade-like structures in RAPuKO mice (white arrow). IV - X indicate the 

numbers of the cerebellar lobes. H, Cerebellar section of an 11-week-old RAPuKO mouse co-stained 

against GFAP, PKCγ and mouse-IgG followed by confocal microscopy analysis (merged z-stacks). 

PKCγ labels Purkinje cells while mouse-IgG stains blood vessels which helps to differentiate between 

GFAP staining and blood vessels that are also seen in the insets of (G). Bars represent mean ± SEM. 

Data of (B, D and F) were analysed by a Student’s t-test. p-values: *** p < 0.001; ** p < 0.01; ns p ≥ 

0.05. Scale bars: 200 µm (A and C), 20 µm (E), 1 mm (G), 100 µm (inset of G), 50 µm (H). PCL: 

Purkinje cell layer; ML: molecular layer; GCL: granule cell layer.  

  



 

Figure 6. Raptor-deficient Purkinje cells show dendritic degeneration and axonal swellings that 

accumulate neurofilaments. A, Example of Fluoro-Jade B (FJB) puncta seen in the molecular layer 

(white arrow) and in the Purkinje cell layer (yellow arrow) of RAPuKO mice. For quantification 

shown in (B), accumulation of FJB-positive puncta were counted as one FJB patch (encircled with the 

dashed, pink line). B, Fraction of cerebellar slices of 6 and 11-week-old RAPuKO or control mice (n = 

3 for each age and genotype) that contain 0; 1-5; 6-10 or > 10 FJB patches. C, Confocal picture 

(merged z-stacks) of a biocytin-labelled Purkinje cell of a 6-week-old RAPuKO mouse that shows 



signs of atrophy and beadings (white arrows), indicative of dendritic degeneration. D – G, Confocal 

pictures of sagittal cerebellar slices of 11-week-old RAPuKO mice stained for calbindin and for 

neurofilament H (D), phosphorylated neurofilaments (SMI31) (E), cytochrome c (F), or synaptophysin 

(G). Axonal swelling (white arrows) contained neurofilament H and phosphorylated forms of 

neurofilaments (SMI31-positive) but were devoid of cytochrome c and synaptophysin. H, Relative 

proportion of cerebellar sections of 6 and 11-week-old RAPuKO or control mice (n = 3 mice per age 

and genotype) that reveal 0; 1-5 or > 5 axonal swellings proximal to the Purkinje cell somata as shown 

in (D - G). I, Western blot analysis of total brain lysates derived from embryonic day 19.5 mice 

depleted of raptor as previously described (Cloetta et al., 2013). Lysates were probed with a phospho-

specific antibody recognizing P-Ser21 on GSK3α and P-Ser9 in GSK3β (top) and antibodies 

recognizing the total protein. Antibodies to β-Tubulin were used as loading control. J, Quantification 

of Western blot signals shown in (I) relative to the intensities in control mice (n = 5 per genotype). 

Bars represent mean ± SEM. Data in (B, H and J) were analysed by a Student’s t-test. p-values: *** p 

< 0.001; ** p < 0.01; * p < 0.05. Scale bars: 100 µm (A), 50 µm (C) and 25 µm (D – G). PCL: 

Purkinje cell layer; ML: molecular layer; GCL: granule cell layer. 

  



 

Figure 7. Depletion of TSC1 in Purkinje cells results in the accumulation of neurofilaments in 

axons and in reactive gliosis. A and B, Sagittal cerebellar slices of 11-week-old TSCPuKO mice 

were stained with anti-calbindin and anti-neurofilament H (A) or SMI31 antibodies (B). Like in 

RAPuKO mice, axonal swellings (white arrows) that are positive for neurofilament H and 

phosphorylated neurofilaments (SMI31-positive) are detected in TSC1-deficient Purkinje cells. C, 

Sagittal cerebellar slices of 11-week-old TSCPuKO or control mice stained for GFAP. The white 

arrow indicates reactive gliosis that manifests as palisade-like, GFAP-positive structures in the 

molecular layer of TSCPuKO but not control mice (n = 3 mice per genotype). Scale bars: 50 µm (A 

and B), 1 mm (C), 100 µm (inset of C). PCL: Purkinje cell layer; ML: molecular layer; GCL: granule 

cell layer. I to VIII designate numbers of the cerebellar lobes. 
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6. General discussion and outlook 
 

The findings presented in this study demonstrate that both mTORC1 and mTORC2 are crucial for 

Purkinje cells, yet, in mostly distinct manners since an inactivation of either of them in Purkinje cells 

results in phenotypes that mainly diverge. Below, the phenotypes seen with RAPuKO and RIPuKO 

mice are briefly summarized and further discussed on a behavioural, cellular and molecular level. 

 

Behaviour. On the behavioural level, both RAPuKO and RIPuKO mice showed motor coordination 

deficits but these deficits had different temporal onsets. The motor coordination deficits of RIPuKO 

mice could be detected at any tested age and correlated with multiple climbing fibre innervation and 

increased dendritic self-crossings of knockout Purkinje cells. Both phenomena have been linked to 

motor deficits (Chen et al., 1995; Kano et al., 1995; Offermanns et al., 1997; Kano et al., 1998; Ichise 

et al., 2000; Gibson et al., 2014) and most likely have a developmental origin, which explains the fact 

that RIPuKO mice showed motor deficits already at a young age. On the other hand, motor 

coordination deficits of RAPuKO mice coincided with an age-dependent loss of Purkinje cells and, 

hence, were detected only with old, but not young mice. At the age when motor coordination deficits 

were detected for RAPuKO mice, their Purkinje cell density is supposed to be reduced by about 40% 

based on an extrapolation from immunohistochemistry data gained from knockout mice of a similar 

age. This rather substantial loss of Purkinje cells seems to cause only mild motor coordination deficits 

since RAPuKO mice performed only mildly worse on the balance beam than control mice and did not 

show alterations of the footprint pattern. Apparently, motor control excerpted by the cerebellum is 

rather robust to a loss of Purkinje cells, which is in line with the observations of another research 

group (Ko et al., 2005).  

Distinct behavioural phenotypes were also detected for RAPuKO and RIPuKO mice regarding 

the social interest measured in the olfactory habituation/dishabituation test. While RIPuKO mice 

showed normal interest in social odours, the interest of RAPuKO mice therein was reduced. Last was 

detected at an age when Purkinje cell density was unchanged in RAPuKO mice. Similar to mice that 

have TSC1 heterozygously knocked out in Purkinje cells (see section 3.4.6.) there are most likely 

other reasons than a Purkinje cell loss for this aberrant social behaviour (Tsai et al., 2012). We 

hypothesize that the strong impact of raptor knockout on the inhibitory synaptic input of Purkinje 

cells, evidenced by electrophysiological recordings and immunohistochemical analysis, might 

contribute to this behavioural deficit. Because the mEPSCs recorded from raptor-knockout Purkinje 

cells did not reveal alterations, we think that the ratio of excitatory/inhibitory synaptic input of these 

neurons might be increased. An analysis of the ratio of evoked EPSCs and IPSCs might provide 

further insight if this is indeed the case. EPSCs and IPSCs can be evoked by stimulating parallel fibres 

that generate not only an excitatory stimulation of Purkinje cells via the parallel fibre synapses but also 

an inhibitory stimulation via the MLIs that are connected to parallel fibres as well (see section 3.4.2.). 
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Using this approach, only a trend for a reduction of the excitatory/inhibitory ratio was observed with 

TSC1-knockout Purkinje cells (Tsai et al., 2012). Solid evidence for an involvement of mTORC1 in 

the maintenance of the excitatory/inhibitory balance has recently been reported from mice that have 

TSC1 knocked out in the hippocampus (see section 3.3.3) (Bateup et al., 2013). 

Although a direct comparison is not possible, a knockout of TSC1 in Purkinje cells seems to 

reduce the interest of mice in social odours in a more pronounced manner than the one of raptor (Tsai 

et al., 2012). While Tsai and colleagues do not indicate the precise percentage of Purkinje cells 

affected by the L7/Pcp-2-driven knockout (but seems to affect the majority of the Purkinje cells based 

on the shown pictures), we found that in average 50% of the Purkinje cells of RAPuKO mice had 

mTORC1 ablated. Using the same Cre driver, a higher knockout frequency (75%) was achieved in 

RIPuKO mice, which indicates that the knockout frequency may depend on the targeted locus, 

however, the reason for this discrepancy is unsolved. The severity of behavioural phenotypes most 

likely correlates with the percentage of knockout Purkinje cells and, hence, the reduction of the social 

interest of RAPuKO mice might become even more pronounced if the knockout frequency were 

higher. In addition to social abnormalities, TSC1 Purkinje cell knockout mice also revealed repetitive 

behaviour, which led to the conclusion that these mice display an autistic-like phenotype (Tsai et al., 

2012). Whether RAPuKO mice are also bound to repetitive behaviour needs to be further investigated. 

Using a marble burying test as a readout for repetitive behaviour, no signs for such a phenotype could 

be detected for RAPuKO mice in preliminary testings (data not shown).  

Altogether, the behavioural data presented in this study show that ablation of either mTORC1 

or mTORC2 specifically in Purkinje cells results in measurable behavioural deficits, which underlines 

the importance of both complexes for cerebellar functions. The importance of mTOR signalling for 

cerebellar functions is also supported by the notion that most of the brain disorders that are linked to 

mTOR (see section 3.3.4.) also reveal a cerebellar component. Tuberous sclerosis patients show 

cerebellar abnormalities that positively correlate with the severity of the comorbid ASD (Weber et al., 

2000; Asano et al., 2001; Eluvathingal et al., 2006; Ertan et al., 2010) and, as described above, 

Purkinje cell-specific TSC1 knockout in mice is sufficient to recapitulate hallmarks of ASD. Patients 

suffering from the Fragile X syndrome show cerebellar learning deficits that manifest in abnormal 

eye-blink conditioning (Smit et al., 2008; Tobia & Woodruff-Pak, 2009), which notably is also seen 

with mice that have Fmr1 conditionally knocked out specifically in Purkinje cells (Koekkoek et al., 

2005). Fragile X is caused by expansion of CGG trinucleotide repeats in the Fmr1 gene, which 

ultimately silences this gene. Fragile X syndrome occurs beyond a threshold of 200 repeats. Motor 

deficits are not only seen with Fragile X patients but also with humans that carry Fmr1 

“premutations”. Carriers of Fmr1 “premutations” in the range between 55-200 CGG repeats are prone 

to develop age-dependent motor deficits that are summarized as Fragile X associated ataxia/tremor 

syndrome (Jacquemont et al., 2007; Hall & O'Keefe J, 2012). Cerebellar abnormalities and motor 

symptoms are also documented for schizophrenia (Andreasen & Pierson, 2008; Walther & Strik, 2012; 
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Parker et al., 2014), which includes for example a reduction in the volume of the anterior cerebellar 

vermis (Weinberger et al., 1980; Nopoulos et al., 1999) and a decrease of the size and number of 

Purkinje cells (Reyes & Gordon, 1981; Tran et al., 1998; Maloku et al., 2010). Furthermore, also the 

neurodegenerative Parkinson’s and Huntington’s diseases reveal alterations in the cerebellum. 

Although the hallmark of Parkinson’s disease is a loss of dopaminergic neurons in the substantia nigra, 

a recent review outlines that the cerebellum may also substantially contribute to symptoms of this 

disease (Wu & Hallett, 2013). Functional and structural changes are detected in the cerebellum in 

Parkinson’s disease and a treatment of mice with the Parkinson inducing agent MPTP causes a loss of 

Purkinje cells (Takada et al., 1993). However, the role of the cerebellum in Parkinson’s disease is 

unknown and it is not clear whether it excerpts a pathological or rather a compensating effect in this 

disease as discussed by Wu and Hallett (Wu & Hallett, 2013). In Huntington’s disease patients, as well 

as in mouse models of this disease, a reduction of the Purkinje cell density is seen (Rodda, 1981; Jeste 

et al., 1984; Turmaine et al., 2000; Dougherty et al., 2013). Single cell RT-PCR indicates 

transcriptional changes in Purkinje cells of Huntington’s disease mouse models (Euler et al., 2012) 

and also the firing rate of Purkinje cells is altered (Dougherty et al., 2013).  

 

Cellular. Purkinje cells deficient of either mTORC1 or mTORC2 showed morphological alterations 

that resembled each other and included multiple primary dendrites and a reduction of the overall 

neuron size. Last was more pronounced for mTORC1-deficient cells. Additionally, we found that 

mTORC2 ablation in Purkinje cells increased the number of self-crossings of dendritic branches. We 

think that most, if not even all, of these morphological changes originate from developmental deficits 

as this is further described in the commentary attached in the appendix and in the discussion of 

publication 2.  

Self-crossings of dendritic branches can be prevented by a process called dendritic self-

avoidance, which helps a neuron to minimize redundant input (Grueber & Sagasti, 2010). 

Additionally, this process allows to reduce the gaps between the dendritic branches and therefore 

enables a neuron to maximize the receptive field coverage. An impairment of dendritic self-avoidance, 

as this is seen with rictor-deficient Purkinje cells, will result in an imperfect definition of the receptive 

field of these neurons, which in turn may affect motor circuit function and thereby cause motor deficits 

as this has recently been suggested (Gibson et al., 2014). 

Developmental deficits in climbing fibre elimination observed with rictor-knockout Purkinje 

cells have been linked to motor coordination deficits as well (see above). But how may the resulting 

multiple climbing fibre innervation of Purkinje cells impair motor coordination? To understand how 

this cellular phenomenon may alter the motor behaviour, first the modular setup of the cerebellum has 

to be explained. Along the mediolateral axis, the cerebellar cortex is divided in several longitudinal 

zones that become visible upon expression analysis of several genes, for example zebrin II (Brochu et 

al., 1990). The longitudinal zones are also defined by a mediolateral organization of Purkinje cell 

Page 106 



Nico Angliker                                                                                           General discussion and outlook 

projections in the DCN (Apps & Hawkes, 2009). Furthermore, the olivocerebellar climbing fibre 

projections are topographically arranged in a mediolateral manner. Consequently, these longitudinal 

zones are thought to reflect “modules” of Purkinje cell efferents and olivocerebellar climbing fibre 

afferents that together form discrete complexes (Apps & Hawkes, 2009). Longitudinal zones of 

different cerebellar regions seem to be important for distinct cerebellar functions. Modules in the 

paravermis are for example important for limb movements and spinal reflexes (Pijpers et al., 2008) 

while modules in the flocculus control compensatory eye movements (Schonewille et al., 2006). 

Longitudinal zones can be further subdivided in “microzones”. Climbing fibres that convey signals 

from a similar receptive field of a certain part of the body innervate Purkinje cell groups that are 

located in a narrow stripe (100-300 um), termed microzone, within a broader longitudinal zone (1 

mm). On the other hand, Purkinje cells of a microzone project to a small group of neurons in the DCN. 

These microzones seem to be the basic operational unit of the cerebellar cortex (Garwicz et al., 1998; 

Apps & Hawkes, 2009). Mono climbing fibre innervation most likely is essential for proper 

establishment of such microzones as it assures that a Purkinje cell receives error signals by only one 

subgroup of olivary neurons. In case of multiple climbing fibre innervation, the setup of microzones 

may become impaired as certain Purkinje cells respond to not only one but several subgroups of 

olivary neurons. An impairment of these microzones diminishes the coherence of neural activity in the 

cerebellum, which ultimately may affect the motor control excerpted by this part of the brain.  

Developmental climbing fibre elimination in raptor-knockout Purkinje cells was not defective, 

yet, we hypothesize that their altered inhibitory synaptic input is due to impaired postnatal GABAergic 

synaptogenesis. During postnatal Purkinje cell development the number of GABAA α1 clusters at the 

soma increases, which is paralleled by a reduction of the cluster size (Viltono et al., 2008). The 

finding that the absolute number of GABAA α1 clusters at the soma of raptor-knockout Purkinje cells 

was reduced in 6-week-old mice, while their size was increased, indicated that the GABAergic 

synaptogenesis might be impaired. However, to further support this hypothesis, GABAA α1 clusters in 

younger mice have to be analysed to more closely monitor the development of GABAergic synapses 

of raptor-knockout Purkinje cells.  

In contrary to mTORC1-deficient Purkinje cells, no alterations of GABAA α1 clusters could 

be detected for rictor-knockout Purkinje cells (personal communication with the Fritschy laboratory). 

Yet, a staining against the synapse adhesion molecule neuroligin 2 that is specific for GABAergic 

synapses and important for their formation (Varoqueaux et al., 2004; Poulopoulos et al., 2009) 

indicated that the size, but not number, of the neuroligin 2 clusters in the molecular layer of rictor 

Purkinje cell knockout mice was reduced (personal communication with the Fritschy laboratory). In 

line with these immunohistochemistry data, we observed a reduction of the strength, but not number, 

of functional inhibitory synapses of rictor-knockout Purkinje cells. Notably, reduced inhibitory 

synaptic transmission has also been reported for mice that have the postsynaptic neuroligin 2 protein 
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knocked out, underlining the importance of this protein for functional inhibitory synapses 

(Poulopoulos et al., 2009). How mTORC2 connects to neurolign 2 needs to be further investigated.  

The reduced strength of inhibitory synapses of rictor-knockout Purkinje cells detected by 

electrophysiological recordings might also be the consequence of impaired GABAergic synaptic 

plasticity. As described in section 3.4.5., the strength of inhibitory synapses can be augmented in 

Purkinje cells by a process called rebound potentiation. In mice that have the β2 subunit of GABAAR 

ablated rebound potentiation was absent (personal communication with the laboratory of Trevor 

Smart). Interestingly, this subunit is known to be phosphorylated by the mTORC2 downstream targets 

Akt (Wang et al., 2003) and PKC (McDonald & Moss, 1997) and, hence, it is possible that ablation of 

mTORC2 in Purkinje cells impairs rebound potentiation and consequently reduces the strength of 

inhibitory synapses in these neurons. For example, phosphorylation of the β2 subunit by Akt is known 

to increase the number of GABAAR in the plasma membrane (Wang et al., 2003). Therefore, it might 

be worth to analyse rebound potentiation in rictor-knockout Purkinje cells. Also in terms of cerebellar 

functions this might be interesting to investigate, since rebound potentiation has been shown to be 

relevant for motor behaviour (Tanaka et al., 2013) that notably is altered in RIPuKO mice.  

In summary, our electrophysiological and immunohistochemistry data point out that both 

mTORC1 and mTORC2 are important for inhibitory synapses, yet, in a different manner since 

different phenotypes were observed in these readouts for the RAPuKO and RIPuKO mice. Further 

experiments are needed to study more precisely how mTORC1 and mTORC2 contribute to different 

aspects, such as development and plasticity of inhibitory synapses in Purkinje cells. Because altered 

GABAergic functions are seen in different neurodevelopmental and psychiatric diseases like 

depression, schizophrenia, epilepsy and ASD (Fritschy & Panzanelli, 2014) that all share a link to 

mTOR signalling (see section 3.3.4), a better understanding of this pathway at GABAergic synapses 

may be very helpful and open new venues for a treatment of such disorders.  

Probably the most striking difference between raptor and rictor-knockout Purkinje cells was 

that a knockout of first affected the survival while second did not. Raptor-knockout Purkinje cells 

survived at least up to a mouse age of 6 weeks but subsequently became apoptotic, which resulted in a 

progressive Purkinje cell loss. What may cause the death of raptor-knockout Purkinje cells? Apoptosis 

of raptor-knockout Purkinje cells was preceded by signs of neurodegeneration, such as swollen axons 

or dendritic beading (Yang et al., 2013). The swollen axons accumulated neurofilaments, a 

phenomenon that is also observed with neurodegenerative diseases for example amyotrophic lateral 

sclerosis (ALS) (Al-Chalabi & Miller, 2003). In ALS it has been hypothesized that such neurofilament 

accumulations may play a pathological role by impairing the axonal transport, thereby causing a 

“strangulation” of the motorneurons (Julien, 2001). However, it is rather unlikely that impaired axonal 

transport causes apoptosis in Purkinje cells since these neurons survive up to a year upon axotomy 

(Dusart & Sotelo, 1994; Morel et al., 2002).  
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It has recently been shown that Purkinje cells are vulnerable to impaired autophagy since a 

conditional knockout of the autophagy-related protein ATG7 in these neurons affects their survival 

(Komatsu et al., 2007). Indications of aberrant autophagic flux in form of accumulated autophagic 

organelles are observed in Purkinje cells that have TSC1 knocked out (Di Nardo et al., 2014). As 

mentioned above, TSC1-knockout Purkinje cells undergo apoptosis (Tsai et al., 2012) and it is 

possible that impaired autophagy contributes to, or even causes, the death of these neurons. In line 

with the inhibitory effect of mTORC1 on the initiation of autophagy (see section 3.1.1.), autophagic 

flux is impaired in mice that have TSC1 conditionally knocked out in muscle tissue. Interestingly, a 

raptor knockout in the same tissue impairs autophagy as well (Castets et al., 2013). Ablation of 

mTORC1 has been suggested to impair autophagy by disrupting the negative feedback loop on IRS1, 

which results in an increased activation of Akt. Increased Akt activity, in turn, seems to suppress 

expression of different genes involved in autophagy by augmenting inhibition on the transcription 

factors FoxO. Consequently, mTORC1 ablation in muscle impairs autophagic flux by downregulating 

genes important for autophagy, such as cathepsin L or beclin1 (Castets et al., 2013). It is under current 

investigation how mTORC1 ablation affects autophagy in the brain, and in particular in Purkinje cells. 

If autophagic flux was impaired in raptor-knockout Purkinje cells, this might be a possible cause for 

their death.  

 

Molecular. The distinct behavioural and cellular phenotypes of RAPuKO and RIPuKO mice fit with 

the model that mTORC1 and mTORC2 largely feed separate signalling pathways. Although the data 

presented in this study are of descriptive nature and do not allow causal links of cellular and/or 

behavioural phenotypes with molecular mechanisms, some phenotypes observed for raptor or rictor-

knockout Purkinje cells may be associated with certain mTORC1 or mTORC2 downstream targets, 

respectively.  

For example, the multiple climbing fibre innervation of rictor-knockout Purkinje cells most 

likely is the consequence of the concomitant strong PKCγ downregulation in these cells since a 

conventional knockout of PKCγ has been reported to result in similar climbing fibre elimination 

deficits of Purkinje cells (Kano et al., 1995). Also the impaired dendritic self-avoidance of mTORC2-

deficient Purkinje cells may depend on disturbed PKC signalling in these neurons since a Purkinje 

cell-specific knockout of γ-protocadherins, a class of proteins that act via PKC as well, results in a 

similar phenotype (Garrett et al., 2012; Lefebvre et al., 2012). In contrast, PF-Purkinje cell synapse 

LTD a phenomenon that also depends on PKC, in particular PKCα (De Zeeuw et al., 1998; Saito & 

Shirai, 2002; Leitges et al., 2004), was not affected by the rictor knockout. Given the striking effect of 

whole brain mTORC2 ablation on the protein levels of all classical PKCs, this was an unexpected 

finding. However, currently we do not know how mTORC2 ablation in Purkinje cells affects other 

PKC isoforms than PKCγ, such as PKCα. Moreover, it is possible that PKC isoforms compensate for 

the loss of each other regarding certain functions. Purkinje cells express mainly the PKC isoforms γ 
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and δ (Barmack et al., 2000). The protein level of last has recently been found to be only mildly 

reduced (21%) in mTORC2-deficient brains (data not shown). Hence, PKCδ might be a candidate to 

compensate for a possible loss of other isoforms in Purkinje cells and consequently enable a normal 

LTD in rictor-knockout Purkinje cells. 

Whole brain rictor knockout also affected the mTORC2 downstream target Akt by decreasing 

its phosphorylation at Ser473 and Thr308 strongly or moderately, respectively. Yet, the consequences 

for the Akt downstream signalling did not seem to be very strong since no changes in phosphorylation 

of GSK3β and FoxO1 could be detected in these mice. On the other hand, the effect of mTORC2 

ablation in brain on the PKC branch seemed to be more pronounced as the phosphorylation of the 

PKC downstream targets GAP-43 and MARCKS were significantly reduced.  

In agreement with the notion of distinct signalling of mTORC1 and mTORC2, raptor-

knockout Purkinje cells did not show obvious alterations of PKCγ levels (Fig. 5H of publication 2). 

Moreover, raptor knockout in neural progenitors resulted in an increased phosphorylation of Akt due 

to disruption of the negative feedback loop on IRS1 (Cloetta et al., 2013), while Akt phosphorylation 

was decreased in the corresponding rictor-knockout mice as described above. In raptor, but not rictor-

knockout brains, alterations in Akt downstream signalling were observed in form of an increased 

phosphorylation of GSK3α/β at Ser21/9 and FoxO3a at Thr32 (data for last is not shown). 

Phosphorylation of GSK3 at these residues inhibits GSK3 activity (Cross et al., 1995). Although the 

phosphorylation state of GSK3 has not yet been analysed in raptor-knockout Purkinje cells, we 

speculate that some of the observed phenotypes seen with these knockout Purkinje cells may depend 

on increased inhibition of GSK3. Aberrant GSK3 signalling may contribute to the neurofilament 

accumulation in axonal swellings that were found proximal to raptor-knockout Purkinje cell somata, 

possibly by deregulating the axonal transport of neurofilaments (Bajaj & Miller, 1997; Holmgren et 

al., 2012). Also the multiple primary dendrites of raptor-knockout Purkinje cells may depend on 

increased inhibition of GSK3, given the role of this kinase in neuronal polarization (Hur & Zhou, 

2010). Moreover, it is possible that aberrant GSK3 signalling may contribute to the increased GABAA 

α1 cluster size at the somata of raptor-knockout Purkinje cells. As described above, the cluster size of 

GABAA α1 at the Purkinje cell soma is reduced in course of the postnatal development of these 

neurons. This process coincides with the loss of gephyrin from the soma (Viltono et al., 2008). 

Gephyrin is a scaffolding protein at inhibitory synapses where it anchors and thereby clusters glycine 

receptors (GlyR) and GABAΑR (Essrich et al., 1998; Feng et al., 1998; Fritschy et al., 2008; 

Tyagarajan & Fritschy, 2014). Postsynaptic clustering of gephyrin, in turn, is mainly regulated via 

phosphorylation of this protein (Tyagarajan & Fritschy, 2014). Gephyrin is phosphorylated by GSK3β 

at residue Ser270 and a mutation at this site from serine to alanine, which prevents phosphorylation, 

causes supernumary gephyrin clusters. Similarly, increased gephyrin clustering is seen in vitro and in 

vivo upon exposure to lithium chloride that is an inhibitor of GSK3β (Tyagarajan et al., 2011). 

Because raptor knockout in brain resulted in an increased GSK3 inhibition, we hypothesized that in 
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raptor-knockout neurons gephyrin clustering might be increased as well. Indeed, preliminary data of 

the laboratory of Jean-Marc Fritschy indicated that gephyrin clusters were still present at the soma of 

post developmental raptor-knockout Purkinje cells while they were mostly absent at the soma of 

control Purkinje cells (personal communication with the Fritschy laboratory). On the one hand, this 

preliminary finding supports the notion of a developmental deficit of GABAergic synaptogenesis upon 

raptor ablation in Purkinje cells. On the other hand, it offers a hint how raptor knockout might impair 

GABAergic synaptogenesis of these neurons. The current hypothesis is that the increased inhibition of 

GSK3 upon mTORC1 ablation prevents the developmental loss of gephyrin clusters from the Purkinje 

cell soma by promoting gephyrin clustering. The defective elimination of gephyrin clusters from the 

soma, in turn, may affect the clustering of GABAAR and cause the increased GABAA α1 cluster size 

that is seen at the soma of raptor-knockout Purkinje cells.  
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8. Appendix 
 

8.1. Publication 3: In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in 

neurons Angliker, N. and Rüegg, M.A. (2013) Bioarchitecture, 3(4):113-8. 

 

This publication is a commentary on publication 2 (see section 5) and further outlines how mTORC2 

ablation in Purkinje cells may affect their morphology. 
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The mammalian target of rapamycin 
(mTOR) assembles into two distinct 

multi-protein complexes called mTORC1 
and mTORC2. While mTORC1 controls 
the signaling pathways important for 
cell growth, the physiological function 
of mTORC2 is only partially known. 
Here we comment on recent work on 
gene-targeted mice lacking mTORC2 in 
the cerebellum or the hippocampus that 
provided strong evidence that mTORC2 
plays an important role in neuron mor-
phology and synapse function. We dis-
cuss that this phenotype might be based 
on the perturbed regulation of the actin 
cytoskeleton and the lack of activation 
of several PKC isoforms. The fact that 
PKC isoforms and their targets have 
been implicated in neurological disease 
including spinocerebellar ataxia and that 
they have been shown to affect learning 
and memory, suggests that aberration of 
mTORC2 signaling might be involved in 
diseases of the brain.

Introduction

mTOR is a serine/threonine kinase 
that functions within two distinct protein 
complexes that are referred to as mTOR 
complex 1 (mTORC1) and mTOR 
complex 2 (mTORC2). Differences in 
protein composition assign these two 
complexes specific functions. There are 
shared components, such as mTOR itself, 
mLST8, DEPTOR and the Tti1/Tel2 
complex, but also some that are complex-
specific. For mTORC1 this is raptor and 
PRAS40 and for mTORC2 rictor, mSin1 
and Protor1/2.1 The best described func-
tion of mTOR is its role in cell growth, 

In vivo evidence for mTORC2-mediated actin cytoskeleton  
rearrangement in neurons

Nico Angliker and Markus A Rüegg*
Biozentrum; University of Basel; Basel, Switzerland

metabolism and aging, functions that all 
can be inhibited by the name-giving drug 
rapamycin, a macrolide isolated from a 
soil sample of Easter Island. Rapamycin 
and its derivatives, called rapalogs, are 
FDA approved as immunosuppressants 
after allograft transplantation, as anti-
restenosis drugs in stents and for the 
treatment of some cancers.2 Current 
evidence suggests that the rapalogs act 
mainly via inhibiting mTORC1. In meta-
zoans, mTORC1 is activated by growth 
factor signaling and, like in protozoans, 
by nutrients and the energy status of a 
cell. The main targets of mTORC1 are 
S6K and 4E-BP, which both control 
protein synthesis. Another important 
function of mTORC1 is the control of 
autophagy, a process that is essential to 
clean cells from unfolded proteins, non-
functional organelles and to overcome 
the lack of nutrients during starvation.3 
In summary, mTORC1 appears to be 
the main hub that controls cell growth 
and metabolism, which also explains its 
involvement in cancer. Recent evidence 
suggests a role of mTORC1 in diseases 
of the central nervous system, such as 
Alzheimer disease, autism spectrum dis-
orders or epilepsy.4-7

In contrast to mTORC1, the role of 
mTORC2 has been studied much less 
and thus its function is not well defined. 
Rapamycin does not inhibit mTORC2 
acutely although long-term treatment 
affects mTORC2 function.8 Activation 
of mTORC2 involves its PI3K-dependent 
association with ribosomes.9 Compared 
with mTORC1, the number of down-
stream targets of mTORC2 is much lower 
but includes several members of the AGC 
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to share some function because both are 
highly hydrophilic and associate with 
plasma membranes via palmityolation 
and myristoylation, respectively, and are 
therefore frequently summed up as GAP-
43-like proteins. In their dephosphory-
lated form, GAP-43 and MARCKS bind 
to PI(4,5)P2 and are associated with lipid 
raft-like structures of the plasma mem-
brane.22 Phosphorylation of GAP-43 or 
MARCKS by classical or novel PKC iso-
forms results in their detachment from 
the plasma membrane. As a consequence, 
the levels of PI(4,5)P2 are decreased.22,23 
Thus, the phosphorylation state of GAP-
43 and MARCKS may directly affect 
the levels of PI(4,5)P2 in neurons and 
changes in PI(4,5)P2 have been impli-
cated in the regulation of the actin cyto-
skeleton.24 Adducins are a family of three 
related genes, which encode for either 
α-, β- or γ-adducin. All of them pos-
sess an N-terminal head domain, a neck 
domain, and a C-terminal tail domain 
that includes a conserved 22 amino acid 
MARCKS-related domain, which is nec-
essary for actin binding. Adducins form 
tetramers composed of either α/β- or 
α/β-heterodimers and cap the fast grow-
ing end of the actin filaments (F-actin) 
to recruit spectrin to those actin fila-
ments. Phosphorylation of adducin by 
PKC within the C-terminal MARCKS-
related domain reduces F-actin-capping 
and thereby promotes free-barbed ends 
that are prone to polymerization/depoly-
merization.25 Thus, adducins affect actin 
cytoskeleton dynamics and this activity 
is regulated by PKC.

Purkinje Cell Development and 
the Role of PKC Signaling

Purkinje cell development in rodents 
largely occurs between P0 and P21 and 
can roughly be split into three phases.26 
At P0, Purkinje cells have small somata 
with multiple dendrites that are orga-
nized in a multipolar manner. In a first 
growth phase (P0 to ~P9), the somata 
of the Purkinje cells are enlarged and all 
but one primary dendrite are eliminated. 
This first phase is followed by the stage 
of rapid growth of the dendritic tree and 
a third phase of rather slow dendritic 
growth. Excessive neurite outgrowth 

notably, Purkinje cells of the cerebellum, 
which are characterized by expressing 
only one primary dendrite, contained 
up to six such primary dendrites. The 
changes in dendrite number were a cell-
autonomous effect of rictor depletion 
as multiple primary dendrites were also 
observed when rictor was depleted selec-
tively in Purkinje cells. The particularly 
strong changes in the morphology of the 
Purkinje cells were accompanied by an 
ataxia-like motor phenotype, consistent 
with the view that Purkinje cells, which 
provide the sole output of the cerebellum, 
are important for motor coordination.20

The molecular mechanisms involved 
in the neuronal phenotype observed in 
the rictor depleted brain were analyzed 
biochemically. Of all the bona fide tar-
gets of mTORC2, the most pronounced 
changes were observed in the PKC fam-
ily of proteins. In rictor-deficient brain 
lysates, the phosphorylation and protein 
level of all classical PKCs (i.e., PKCα, 
-β and -γ) and the novel PKC isozyme, 
PKCε, were strongly reduced. In addi-
tion, phosphorylation of the PKC sub-
strates GAP-43 and MARCKS, which 
are known to be important for the reg-
ulation of the actin cytoskeleton was 
diminished. Such a pronounced effect 
of mTORC2 ablation on the PKC path-
way has so far not been reported in any 
other tissue. Interestingly, another group 
also reported on changes in the actin 
cytoskeleton of neurons in mice where 
rictor was conditionally deleted in the 
hippocampus.19 Those authors did not 
investigate PKC signaling but provided 
evidence that rictor depletion affected 
the Tiam1-Rac1-PAK-cofilin pathway. 
In summary, both studies provided first 
in vivo evidence that depletion of rictor 
specifically affects the actin cytoskeleton 
in neurons. This is in stark contrast to 
studies in other organs where little or 
no cytoskeletal disturbances have been 
described.

PKC Signaling and Its  
Downstream Substrates

Among the best-studied PKC sub-
strates in the brain are GAP-43, 
MARCKS, fascin and adducins.21 GAP-
43 and MARCKS have been proposed 

kinase family, among them Akt, PKC and 
SGK1. Some of these effectors, in partic-
ular Akt, are involved in the regulation 
of cell survival and apoptosis, suggest-
ing that mTORC2 might also contribute 
to cancerogenesis.10 Evidence obtained 
in yeast and in cultured mammalian 
cells in addition indicates a function of 
mTORC2 in the regulation of the actin 
cytoskeleton.11-13 However, major changes 
in cell shape and the cytoskeleton were 
not observed in tissue-specific deletion 
of rictor in skeletal muscle, adipocytes, 
liver or kidney.14-17 Only the recent dele-
tion of rictor in the central nervous sys-
tem revealed a role of mTORC2 for the 
shape of neurons18 and for synaptic plas-
ticity, an adaptive response of synapses to 
changes in activity.19 Both of these func-
tions involve the rearrangement of the 
actin cytoskeleton. In this commentary, 
we will briefly summarize those data and 
then discuss our view of how mTORC2 
might regulate actin dynamics to shape 
neurons during development and of how 
this activity may contribute to synaptic 
plasticity in the adult.

mTORC2 Regulates Actin  
Cytoskeletal Rearrangements  

in Vivo

In recent work, we conditionally 
deleted rictor in the developing and the 
adult central nervous system by using 
mice that express Cre under the control 
of the nestin or the Purkinje cell-specific 
L7/Pcp-2 promoter. The two major find-
ings of this work were that the brain was 
smaller and that the morphology of neu-
rons was strongly affected.18 The micro-
cephaly was a consequence of a reduction 
in neuron size but not number, which in 
turn resulted in an increased cell density. 
Interestingly, despite lower levels of phos-
phorylation of the mTORC2 target Akt, 
the microcephaly was not accompanied 
by alterations in any of the downstream 
targets of Akt; in particular, no changes 
in the mTORC1 targets S6K and 4E-BP 
were seen. Thus, mTORC2 appears 
to affect neuron size independently of 
mTORC1.

Changes in neuronal morphology 
encompassed the number, the length 
and the thickness of the neurites. Most 
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hyperphosphorylation of MARCKS 
has been shown to contribute to the 
strongly reduced dendritic arborization 
observed upon forebrain-specific dele-
tion of the gene cluster encoding the 
γ-protocadherins.37 Reduction of den-
dritic arborization by knockdown of 
MARCKS or overexpression of a “dom-
inant-negative” (e.g., phosphomimetic) 
form of MARCKS was also reported in 
cultured hippocampal neurons.38 These 
results argue that the loss of phosphory-
lation of MARCKS in rictor-depleted 
neurons would result in exuberant den-
dritic branching. Indeed, rictor-knockout 
Purkinje cells show an increased number 
of primary dendrites.18

The Role of PKC and Its  
Downstream Substrates in  

Synaptic Plasticity

Changes in neuronal activity are 
known to affect neural circuits and cur-
rent evidence suggests that such changes 
are the basis of learning and memory. 
On the cellular level, it is well estab-
lished that neuronal activity can cause 
the weakening or strengthening of exist-
ing synapses and trigger the formation or 
elimination of synapses. Depending on 
the frequency of presynaptic neuronal 
activity (i.e., release of neurotransmitter) 

fascin is highly expressed in the develop-
ing brain but cannot be detected anymore 
in adult Purkinje cells.32,33 In the adult 
brain, fascin seems rather to be expressed 
in non-neuronal cells and there is evi-
dence that its expression correlates with 
morphology, invasiveness and motility of 
glioma cells.34 Finally, expression of α- 
and β-adducin is widespread in the brain 
while expression of γ-adducin is high-
est in the hippocampus and in Purkinje 
cells of the cerebellum.35,36 Interestingly, 
phosphorylation of adducin is also sig-
nificantly diminished in the brain of ric-
tor-deficient mice (Angliker and Rüegg, 
unpublished observation). Thus, the 
expression pattern of the PKC substrates 
in the cerebellum suggests that rictor, by 
controlling PKC phosphorylation and 
protein levels, may act in Purkinje cells 
through MARCKS and adducins but not 
via GAP-43 or fascin.

The change in the phosphorylation 
state of MARCKS and adducin in ric-
tor knockout mice will shift the equilib-
rium between membrane/actin-bound 
and the cytosolic form of MARCKS 
and adducin toward membrane and the 
actin-bound form, respectively (Fig. 1). 
A shift in the relative amount of phos-
phorylated MARCKS has been impli-
cated in dendrite morphology. For 
example, hyperactivity of PKC and thus 

or improper dendrite retraction during 
the first developmental stage may result 
in Purkinje cells with multiple primary 
dendrites.

As mentioned above, rictor-deficient 
Purkinje cells have too many primary 
dendrites. As PKC isoforms are strongly 
de-regulated in rictor knockout brains, 
the question arises whether these mor-
phological changes might be based on 
alterations in PKC signaling. Indeed, 
there is evidence that PKC activity 
affects Purkinje cell development and 
function. For example, mutations in the 
gene coding for PKCγ, whose expression 
is strongly reduced in rictor-deficient 
brain, cause spinocerebellar ataxia 14 
(SCA14).27 Although the exact molecu-
lar mechanisms involved in the ontog-
eny of SCA14 are not well understood, 
experiments in organotypic slice cultures 
of the cerebellum indicate that PKC is 
important for dendrite morphology of 
Purkinje cells.28-30 Purkinje cells also 
express high levels of mRNA encoding 
the PKC substrate MARCKS both dur-
ing development and in the adult. In 
contrast, transcripts for GAP-43 are low 
in Purkinje cells at both stages,31 suggest-
ing that GAP-43 is unlikely to be the 
main effector responsible for the changes 
observed in the cerebellum of the ric-
tor-deficient brains. The PKC substrate 

Figure 1. Model for the regulation of actin cytoskeletal dynamics by mTORC2. Activation of PKC by mTORC2 results in a phosphorylation of GAP-43-like 
proteins, MARCKS and GAP-43, which dissociate from PI(4,5)P2 rafts and make PI(4,5)P2 accessible for other actin cytoskeletal regulating proteins or 
hydrolysis. In parallel, PKC causes free-barbed actin filament ends by phosphorylating adducin which promotes actin dynamics. Association of mTORC2 
with Tiam1 and the regulation of its downstream targets may also contribute to actin filament stabilization. In this model, mTORC2 affects depolymeriza-
tion and polymerization of actin at different sites by controlling PKC- and Tiam1-signaling.
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perturbation of their function may affect 
both parts of the synapse. A presynaptic 
effect seems indeed to dominate over the 
postsynaptic effect in Drosophila, where 
it has been shown that the presynaptic 
expression of adducin (also called Hts) 
is sufficient to rescue the morphological 
changes at the neuromuscular junction of 
adducin-deficient flies.50 These studies are 
very strong evidence that adducins can 
affect actin dynamics and thereby influ-
ence synaptic plasticity. Thus, many of 
the phenotypes observed in mice that are 
deficient for rictor in neurons might be 
based on the changes in PKC signaling.

Conclusion

We propose that actin cytoskeleton 
regulation by mTORC2 occurs in a 
canonical manner, for example via PKC 
activation and their downstream targets 
like GAP-43, MARCKS or adducin. To 
satisfy the demands of the brain for func-
tional and anatomical plasticity, it might 
express not only a subset of mTORC2 
downstream targets that regulate actin 
dynamics but a rather large panel of 
them, thereby possibly generating some 
redundancy, which in turn also might 
guarantee stability. The last notion is also 
reflected in the suggestion that GAP-43-
like proteins possibly compensate the 
knockout of each other. However, usage 
of different mTORC2 downstream tar-
gets likely also varies among different 
brain regions and during brain develop-
ment, dependent on their temporal and 
spatial expression profiles. In general, 
ablation of rictor in the brain seems to 
cause dysregulation of several proteins 
involved in actin cytoskeleton rearrange-
ment and hence result in strong morpho-
logical changes. Additionally, the brain 
is an optimal organ to detect morpho-
logical alterations on the cellular level 
since neurons show elaborate growth and 
branching of neurites.
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In the hippocampus, one can dis-
tinguish an early phase-LTP (E-LTP), 
which is based on changing the conduc-
tance or number of ion channels in the 
postsynaptic membrane and a late form, 
called L-LTP, which requires new protein 
synthesis and involves structural changes 
of the synapses. Recent work by Huang 
and colleagues (2013) provided strong 
evidence that rictor is required for L-LTP. 
The paper very nicely shows that rictor 
regulates actin polymerization, which is 
well known to affect synaptic plasticity, 
and that the defect in L-LTP results in 
a learning deficit in the mutant mice. 
Importantly, both the deficit in L-LTP 
and the impairment in learning are res-
cued by the application of jasplakinolide, 
which directly promotes actin polymer-
ization.19 While Huang and colleagues 
provide evidence that the phenotype 
might be based on the rictor function 
to affect phosphorylation of Akt and on 
its regulatory function on the Tiam1-
Rac1 pathway, changes in PKC signaling 
might also contribute to the phenotype as 
outlined below.

In particular, the PKC downstream 
target β-adducin has been implicated in 
synaptic plasticity in the hippocampus 
as mice deficient for β-adducin show 
an impairment in CA3-CA1 LTP and 
LTD and deficits in spatial learning.47,48 
Noteworthy, these knockout mice also 
show motor coordination deficits, which 
manifest in a decreased latency to fall off 
a rotating rod. When β-adducin knock-
out mice are exposed to an enriched 
environment, a stimulus that increases 
synapse formation and turnover, synapses 
still disassemble but fail to be reformed, 
which is paralleled by deficits in aug-
mented hippocampus-dependent learn-
ing. Enhanced enrichment upregulates 
phosphorylation of β-adducin in a PKC-
sensitive manner and PKC activity was 
found to be crucial for the disassembly 
of synapses upon enrichement, a process 
that is essential for augmented learning 
as well. Altogether, these findings dem-
onstrate the importance of β-adducin 
and its PKC-mediated phosphorylation 
for hippocampal synaptic plasticity that 
underlies augmented learning.49 It should 
be noted that adducins are expressed both 
pre- and postsynaptically suggesting that 

and the synchrony with the postsynap-
tic elements, synapses are strengthened 
(long-term potentiation; LTP) or weak-
ened (long-term depression; LTD).

For example, the parallel fiber syn-
apses of a Purkinje cell become depressed 
when stimulated in conjunction with 
a postsynaptic depolarization of the 
Purkinje cell via the innervating climb-
ing fiber. PKC isoforms have been shown 
to be essential for this form of cerebellar 
LTD. This has been demonstrated using 
pharmacological inhibitors or activators 
of PKC and also by Purkinje cell-specific 
expression of a peptidic PKC inhibi-
tor.39,40 Surprisingly, a knockout of PKCγ, 
the major PKC isoform in Purkinje cells, 
does not affect cerebellar LTD41 but more 
recent evidence indicates that PKCα is 
the essential isoform for this kind of syn-
aptic plasticity.42 Although Purkinje cells 
of PKCγ knockout mice reveal normal 
cerebellar LTD, they fail to reduce the 
number of climbing fibers to a single one 
during their development, which results 
in adult Purkinje cells innervated by 
multiple climbing fibers.43 Interestingly, 
climbing fiber synapse elimination is 
also compromised in mice in which ric-
tor is specifically depleted in Purkinje 
cells (Angliker and Rüegg, unpublished 
observation). Thus, this provides addi-
tional evidence that the neuronal pheno-
type observed in rictor-deficient neurons 
might be based on changes in PKC 
signaling.

Probably the best characterized form 
of LTP is generated between neurons of 
CA3 and CA1 region of the hippocam-
pus upon high frequency stimulation 
of the Schaffer collaterals. The use of 
PKC inhibitors and activators has pro-
vided solid evidence for the notion that 
PKC isoforms also contribute to syn-
aptic plasticity in the hippocampus.44 
Furthermore, there is evidence that 
PKC activation and expression is lost in 
transgenic mouse models that reiterate 
the memory loss observed in Alzheimer 
disease. Importantly, treatment of those 
mice with the PKC activator bryostatin-1 
or DCP-LA prevents the loss of mem-
ory.45 In line with this finding, the same 
activators have been reported to promote 
LTP in hippocampal slices.46



www.landesbioscience.com	 BioArchitecture	 117

27.	 Chen DH, Brkanac Z, Verlinde CL, Tan XJ, Bylenok 
L, Nochlin D, Matsushita M, Lipe H, Wolff J, 
Fernandez M, et al. Missense mutations in the regu-
latory domain of PKC gamma: a new mechanism for 
dominant nonepisodic cerebellar ataxia. Am J Hum 
Genet 2003; 72:839-49; PMID:12644968; http://
dx.doi.org/10.1086/373883

28.	 Metzger F. Molecular and cellular control of dendrite 
maturation during brain development. Curr Mol 
Pharmacol 2010; 3:1-11; PMID:20030626

29.	 Gundlfinger A, Kapfhammer JP, Kruse F, Leitges 
M, Metzger F. Different regulation of Purkinje cell 
dendritic development in cerebellar slice cultures 
by protein kinase Calpha and -beta. J Neurobiol 
2003; 57:95-109; PMID:12973831; http://dx.doi.
org/10.1002/neu.10259

30.	 Schrenk K, Kapfhammer JP, Metzger F. Altered den-
dritic development of cerebellar Purkinje cells in slice 
cultures from protein kinase Cgamma-deficient mice. 
Neuroscience 2002; 110:675-89; PMID:11934475; 
http://dx.doi.org/10.1016/S0306-4522(01)00559-0

31.	 Higo N, Oishi T, Yamashita A, Matsuda K, Hayashi 
M. Cell type- and region-specific expression of 
protein kinase C-substrate mRNAs in the cere-
bellum of the macaque monkey. J Comp Neurol 
2003; 467:135-49; PMID:14595765; http://dx.doi.
org/10.1002/cne.10850

32.	 De Arcangelis A, Georges-Labouesse E, Adams 
JC. Expression of fascin-1, the gene encoding the 
actin-bundling protein fascin-1, during mouse 
embryogenesis. Gene Expr Patterns 2004; 4:637-
43; PMID:15465486; http://dx.doi.org/10.1016/j.
modgep.2004.04.012

33.	 Zhang FR, Tao LH, Shen ZY, Lv Z, Xu LY, Li 
EM. Fascin expression in human embryonic, fetal, 
and normal adult tissue. J Histochem Cytochem 
2008; 56:193-9; PMID:17998567; http://dx.doi.
org/10.1369/jhc.7A7353.2007

34.	 Hwang JH, Smith CA, Salhia B, Rutka JT. The 
role of fascin in the migration and invasiveness of 
malignant glioma cells. Neoplasia 2008; 10:149-
59; PMID:18283337; http://dx.doi.org/10.1593/
neo.07909

35.	 Seidel B, Zuschratter W, Wex H, Garner CC, 
Gundelfinger ED. Spatial and sub-cellular local-
ization of the membrane cytoskeleton-associated 
protein alpha-adducin in the rat brain. Brain Res 
1995; 700:13-24; PMID:8624703; http://dx.doi.
org/10.1016/0006-8993(95)00962-P

36.	 Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger 
A, Bernard A, Boe AF, Boguski MS, Brockway KS, 
Byrnes EJ, et al. Genome-wide atlas of gene expres-
sion in the adult mouse brain. Nature 2007; 445:168-
76; PMID:17151600; http://dx.doi.org/10.1038/
nature05453

37.	 Garrett AM, Schreiner D, Lobas MA, Weiner JA. 
γ-protocadherins control cortical dendrite arbori-
zation by regulating the activity of a FAK/PKC/
MARCKS signaling pathway. Neuron 2012; 74:269-
76; PMID:22542181; http://dx.doi.org/10.1016/j.
neuron.2012.01.028

38.	 Li H, Chen G, Zhou B, Duan S. Actin filament 
assembly by myristoylated alanine-rich C kinase 
substrate-phosphatidylinositol-4,5-diphosphate sig-
naling is critical for dendrite branching. Mol Biol 
Cell 2008; 19:4804-13; PMID:18799624; http://
dx.doi.org/10.1091/mbc.E08-03-0294

39.	 De Zeeuw CI, Hansel C, Bian F, Koekkoek SK, van 
Alphen AM, Linden DJ, Oberdick J. Expression of 
a protein kinase C inhibitor in Purkinje cells blocks 
cerebellar LTD and adaptation of the vestibulo-ocular 
reflex. Neuron 1998; 20:495-508; PMID:9539124; 
http://dx.doi.org/10.1016/S0896-6273(00)80990-3

40.	 Saito N, Shirai Y. Protein kinase C gamma (PKC 
gamma): function of neuron specific isotype. J 
Biochem 2002; 132:683-7; PMID:12417016; http://
dx.doi.org/10.1093/oxfordjournals.jbchem.a003274

13.	 Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek 
RR, Erdjument-Bromage H, Tempst P, Sabatini DM. 
Rictor, a novel binding partner of mTOR, defines 
a rapamycin-insensitive and raptor-independent 
pathway that regulates the cytoskeleton. Curr Biol 
2004; 14:1296-302; PMID:15268862; http://dx.doi.
org/10.1016/j.cub.2004.06.054

14.	 Bentzinger CF, Romanino K, Cloëtta D, Lin S, 
Mascarenhas JB, Oliveri F, Xia J, Casanova E, Costa 
CF, Brink M, et al. Skeletal muscle-specific abla-
tion of raptor, but not of rictor, causes metabolic 
changes and results in muscle dystrophy. Cell Metab 
2008; 8:411-24; PMID:19046572; http://dx.doi.
org/10.1016/j.cmet.2008.10.002

15.	 Cybulski N, Polak P, Auwerx J, Rüegg MA, Hall 
MN. mTOR complex 2 in adipose tissue negatively 
controls whole-body growth. Proc Natl Acad Sci U 
S A 2009; 106:9902-7; PMID:19497867; http://
dx.doi.org/10.1073/pnas.0811321106

16.	 Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich 
S, Lu S, Debreczeni-Mór A, Lindenmeyer MT, 
Rastaldi MP, Hartleben G, et al. Role of mTOR 
in podocyte function and diabetic nephropathy in 
humans and mice. J Clin Invest 2011; 121:2197-
209; PMID:21606591; http://dx.doi.org/10.1172/
JCI44774

17.	 Hagiwara A, Cornu M, Cybulski N, Polak P, Betz 
C, Trapani F, Terracciano L, Heim MH, Rüegg MA, 
Hall MN. Hepatic mTORC2 activates glycolysis and 
lipogenesis through Akt, glucokinase, and SREBP1c. 
Cell Metab 2012; 15:725-38; PMID:22521878; 
http://dx.doi.org/10.1016/j.cmet.2012.03.015

18.	 Thomanetz V, Angliker N, Cloëtta D, Lustenberger 
RM, Schweighauser M, Oliveri F, Suzuki N, Rüegg 
MA. Ablation of the mTORC2 component rictor 
in brain or Purkinje cells affects size and neu-
ron morphology. J Cell Biol 2013; 201:293-308; 
PMID:23569215; http://dx.doi.org/10.1083/
jcb.201205030

19.	 Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L, 
Galiano M, Krnjević K, Roman G, Costa-Mattioli 
M. mTORC2 controls actin polymerization required 
for consolidation of long-term memory. Nat Neurosci 
2013; 16:441-8; PMID:23455608; http://dx.doi.
org/10.1038/nn.3351

20.	 Seidel K, Siswanto S, Brunt ER, den Dunnen W, 
Korf HW, Rüb U. Brain pathology of spinocer-
ebellar ataxias. Acta Neuropathol 2012; 124:1-21; 
PMID:22684686; http://dx.doi.org/10.1007/
s00401-012-1000-x

21.	 Larsson C. Protein kinase C and the regulation of 
the actin cytoskeleton. Cell Signal 2006; 18:276-
84; PMID:16109477; http://dx.doi.org/10.1016/j.
cellsig.2005.07.010

22.	 Laux T, Fukami K, Thelen M, Golub T, Frey D, 
Caroni P. GAP43, MARCKS, and CAP23 modu-
late PI(4,5)P(2) at plasmalemmal rafts, and regu-
late cell cortex actin dynamics through a com-
mon mechanism. J Cell Biol 2000; 149:1455-72; 
PMID:10871285; http://dx.doi.org/10.1083/
jcb.149.7.1455

23.	 Caroni P. New EMBO members’ review: actin 
cytoskeleton regulation through modulation 
of PI(4,5)P(2) rafts. EMBO J 2001; 20:4332-6; 
PMID:11500359; http://dx.doi.org/10.1093/
emboj/20.16.4332

24.	 Janmey PA, Lindberg U. Cytoskeletal regulation: 
rich in lipids. Nat Rev Mol Cell Biol 2004; 5:658-
66; PMID:15366709; http://dx.doi.org/10.1038/
nrm1434

25.	 Matsuoka Y, Li X, Bennett V. Adducin: struc-
ture, function and regulation. Cell Mol Life Sci 
2000; 57:884-95; PMID:10950304; http://dx.doi.
org/10.1007/PL00000731

26.	 McKay BE, Turner RW. Physiological and morpho-
logical development of the rat cerebellar Purkinje 
cell. J Physiol 2005; 567:829-50; PMID:16002452; 
http://dx.doi.org/10.1113/jphysiol.2005.089383

manuscript. This work was supported by 
a Sinergia grant from the Swiss National 
Science Foundation and by funds 
from the Cantons of Basel-Stadt and 
Basel-Landschaft.

References
1.	 Laplante M, Sabatini DM. mTOR Signaling. 

Cold Spring Harb Perspect Biol 2012; 4:4; 
PMID:22129599; http://dx.doi.org/10.1101/cshper-
spect.a011593

2.	 Benjamin D, Colombi M, Moroni C, Hall MN. 
Rapamycin passes the torch: a new generation of 
mTOR inhibitors. Nat Rev Drug Discov 2011; 
10:868-80; PMID:22037041; http://dx.doi.
org/10.1038/nrd3531

3.	 Choi AM, Ryter SW, Levine B. Autophagy in human 
health and disease. N Engl J Med 2013; 368:1845-
6; PMID:23656658; http://dx.doi.org/10.1056/
NEJMra1205406

4.	 Ehninger D, Silva AJ. Rapamycin for treating 
Tuberous sclerosis and Autism spectrum disorders. 
Trends Mol Med 2011; 17:78-87; PMID:21115397; 
http://dx.doi.org/10.1016/j.molmed.2010.10.002

5.	 Santini E, Klann E. Dysregulated mTORC1-Depen-
dent Translational Control: From Brain Disorders 
to Psychoactive Drugs. Front Behav Neurosci 2011; 
5:76; PMID:22073033; http://dx.doi.org/10.3389/
fnbeh.2011.00076

6.	 Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski 
AR, Leech JM, Steinberg J, Crawley JN, Regehr WG, 
Sahin M. Autistic-like behaviour and cerebellar dys-
function in Purkinje cell Tsc1 mutant mice. Nature 
2012; 488:647-51; PMID:22763451; http://dx.doi.
org/10.1038/nature11310

7.	 Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, 
Kornacker K, Sabatini BL. Excitatory/inhibitory 
synaptic imbalance leads to hippocampal hyperexcit-
ability in mouse models of tuberous sclerosis. Neuron 
2013; 78:510-22; PMID:23664616; http://dx.doi.
org/10.1016/j.neuron.2013.03.017

8.	 Sarbassov DD, Ali SM, Sengupta S, Sheen JH, 
Hsu PP, Bagley AF, Markhard AL, Sabatini DM. 
Prolonged rapamycin treatment inhibits mTORC2 
assembly and Akt/PKB. Mol Cell 2006; 22:159-68; 
PMID:16603397; http://dx.doi.org/10.1016/j.mol-
cel.2006.03.029

9.	 Zinzalla V, Stracka D, Oppliger W, Hall MN. 
Activation of mTORC2 by association with the 
ribosome. Cell 2011; 144:757-68; PMID:21376236; 
http://dx.doi.org/10.1016/j.cell.2011.02.014

10.	 Guertin DA, Stevens DM, Saitoh M, Kinkel S, 
Crosby K, Sheen JH, Mullholland DJ, Magnuson 
MA, Wu H, Sabatini DM. mTOR complex 2 
is required for the development of prostate can-
cer induced by Pten loss in mice. Cancer Cell 
2009; 15:148-59; PMID:19185849; http://dx.doi.
org/10.1016/j.ccr.2008.12.017

11.	 Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, 
Hall A, Hall MN. Mammalian TOR complex 2 con-
trols the actin cytoskeleton and is rapamycin insensi-
tive. Nat Cell Biol 2004; 6:1122-8; PMID:15467718; 
http://dx.doi.org/10.1038/ncb1183

12.	 Loewith R, Jacinto E, Wullschleger S, Lorberg 
A, Crespo JL, Bonenfant D, Oppliger W, Jenoe 
P, Hall MN. Two TOR complexes, only one of 
which is rapamycin sensitive, have distinct roles in 
cell growth control. Mol Cell 2002; 10:457-68; 
PMID:12408816; http://dx.doi.org/10.1016/S1097-
2765(02)00636-6



118	 BioArchitecture	 Volume 3 Issue 4

48.	 Rabenstein RL, Addy NA, Caldarone BJ, Asaka 
Y, Gruenbaum LM, Peters LL, Gilligan DM, 
Fitzsimonds RM, Picciotto MR. Impaired synap-
tic plasticity and learning in mice lacking beta-
adducin, an actin-regulating protein. J Neurosci 
2005; 25:2138-45; PMID:15728854; http://dx.doi.
org/10.1523/JNEUROSCI.3530-04.2005

49.	 Bednarek E, Caroni P. β-Adducin is required for 
stable assembly of new synapses and improved 
memory upon environmental enrichment. Neuron 
2011; 69:1132-46; PMID:21435558; http://dx.doi.
org/10.1016/j.neuron.2011.02.034

50.	 Pielage J, Bulat V, Zuchero JB, Fetter RD, Davis GW. 
Hts/Adducin controls synaptic elaboration and elimi-
nation. Neuron 2011; 69:1114-31; PMID:21435557; 
http://dx.doi.org/10.1016/j.neuron.2011.02.007

45.	 Hongpaisan J, Sun MK, Alkon DL. PKC ε activation 
prevents synaptic loss, Aβ elevation, and cognitive 
deficits in Alzheimer’s disease transgenic mice. J 
Neurosci 2011; 31:630-43; PMID:21228172; http://
dx.doi.org/10.1523/JNEUROSCI.5209-10.2011

46.	 Kim H, Han SH, Quan HY, Jung YJ, An J, Kang 
P, Park JB, Yoon BJ, Seol GH, Min SS. Bryostatin-1 
promotes long-term potentiation via activation of 
PKCα and PKCε in the hippocampus. Neuroscience 
2012; 226:348-55; PMID:22986161; http://dx.doi.
org/10.1016/j.neuroscience.2012.08.055

47.	 Porro F, Rosato-Siri M, Leone E, Costessi L, Iaconcig 
A, Tongiorgi E, Muro AF. beta-adducin (Add2) KO 
mice show synaptic plasticity, motor coordination 
and behavioral deficits accompanied by changes 
in the expression and phosphorylation levels of the 
alpha- and gamma-adducin subunits. Genes Brain 
Behav 2010; 9:84-96; PMID:19900187; http://
dx.doi.org/10.1111/j.1601-183X.2009.00537.x

41.	 Chen C, Kano M, Abeliovich A, Chen L, Bao S, 
Kim JJ, Hashimoto K, Thompson RF, Tonegawa 
S. Impaired motor coordination correlates with 
persistent multiple climbing fiber innervation in 
PKC gamma mutant mice. Cell 1995; 83:1233-42; 
PMID:8548809; http://dx.doi.org/10.1016/0092-
8674(95)90148-5

42.	 Leitges M, Kovac J, Plomann M, Linden DJ. A 
unique PDZ ligand in PKCalpha confers induction 
of cerebellar long-term synaptic depression. Neuron 
2004; 44:585-94; PMID:15541307; http://dx.doi.
org/10.1016/j.neuron.2004.10.024

43.	 Kano M, Hashimoto K, Chen C, Abeliovich A, Aiba 
A, Kurihara H, Watanabe M, Inoue Y, Tonegawa 
S. Impaired synapse elimination during cerebellar 
development in PKC gamma mutant mice. Cell 
1995; 83:1223-31; PMID:8548808; http://dx.doi.
org/10.1016/0092-8674(95)90147-7

44.	 Sossin WS. Isoform specificity of protein kinase Cs 
in synaptic plasticity. Learn Mem 2007; 14:236-
46; PMID:17404386; http://dx.doi.org/10.1101/
lm.469707



Nico Angliker                                                                                                              Acknowledgements 

9. Acknowledgements 
 

I would like to thank Markus Rüegg for giving me the opportunity to do my PhD in his laboratory. I 

always appreciated his honesty and sharp way of thinking, which helped me a lot in my scientific and 

personal development. Moreover, I enjoyed the freedom he conferred in exploring my ideas.  

 

The project I was working on was financially supported by a Sinergia grant of the Swiss National 

Science Foundation to Jean-Marc Fritschy and Markus Rüegg. I would to thank Jean-Marc Fritschy 

and his group, in particular Mariana Zaichuk, for the fruitful and nice collaboration. 

 

I am very happy to have spent four very pleasant years in the Rüegg lab where I made acquaintance 

with various people who I appreciated very much. Therefore, I would like to thank all the former and 

current members of this lab including: Shuo Lin, Dimitri Cloetta, Klaas Romanino, Alexander Kriz, 

Venus Thomanetz, Regula Lustenberger, Manuel Schweighauser, Anny Schäfer, Barbara Kupr, 

Nathalie Rion, David Hollinger, Lionel Tintignac, Maitea Guridi Ormazabal, Perrine Castets, Pankaj 

Sharad Shende, Marco Kaiser, Mathieu Rajalu, Geraldine Maier, Gian Moor, Filippo Oliveri, Sarina 

Meinen, Diana Flores Dominguez, Kathrin Chojnowska, Manuela Von Arx and Jny Wittker. 

 

Most of all, I enjoyed the time sitting and working next to Judith Reinhard to whom I am very grateful 

for her mental and intellectual support and the pleasant lunch breaks, 3 o’clock coffees and 6 o’clock 

darvidas! 

 

Many thanks also go to Michael Burri who was master student in our laboratory and made very 

valuable contributions to the story presented in this thesis. 

 

During my PhD I could count on electrophysiological support from the laboratories of Bernhard 

Bettler and Kaspar E. Vogt. I would like to thank them and the following members of theirs labs 

including Riad Seddik, Audrée Pinard, Enrique Pérez-Garci, Julien Gaudias and Sylvia Willadt. 

 

Regarding behavioural experiments I would like to thank Stéphane Baudouin and Harald Witte for 

their help.  

 

Moreover, I thank all the people working in the animal facility for taking care of the mice needed for 

this project. 

 

I would like to thank Bernhard Bettler for accepting to be co-referee of this thesis and Martin Spiess 

for chairing the exam. 

Page 152 



Nico Angliker                                                                                                              Acknowledgements 

 

Finally, I would like to thank my parents and my two brothers for their unconditional love and 

support. The nice walks and hikes, including discussions, on weekends were always a perfect source 

of recreation to me.  

 

Last but not least I am grateful to my band members, Sean Frank Claassen, Nicolas Brügger, Thomas 

Firmin, Samuel Moser and Fabian von Allmen for the good time and for their tolerance when I 

neglected the musical part of my life at the expense of my lab life.  

 

Page 153 


	1. Summary
	2. Abbreviations
	3. Introduction
	3.1. The mTORC1 pathway
	3.1.1. Downstream targets and effects of mTORC1
	3.1.2. Activation and negative feedback looping of mTORC1

	3.2. The mTORC2 pathway
	3.2.1. Downstream targets and effects of mTORC2
	3.2.2. Activation and negative feedback looping of mTORC2

	3.3. mTOR signalling in the brain
	3.3.1. The role of mTOR signalling in brain development
	3.3.2. The role of mTOR signalling in the plasticity of excitatory synapses
	3.3.3. A role of mTOR signalling in excitatory/inhibitory synaptic balance?
	3.3.4. mTOR in brain pathologies
	3.3.4.1. Neurodevelopmental disorders
	3.3.4.2. Psychiatric diseases
	3.3.4.3. Neurodegenerative diseases


	3.4. The cerebellum and Purkinje cells
	3.4.1. Anatomy of the cerebellum
	3.4.2. The major cerebellar circuits
	3.4.3. The role of the cerebellum in normal and pathological conditions
	3.4.4. Purkinje cell development
	3.4.5. Synaptic plasticity of Purkinje cells
	3.4.6. mTOR signalling in Purkinje cells


	4. Aim of this thesis
	5. Results
	6. General discussion and outlook
	7. References
	8. Appendix
	9. Acknowledgements

