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Summary 
 
Mandel and Métais first reported the discovery of extracellular nucleic acids in human 

blood plasma in 1948 [1]. However, little attention was drawn to the findings until 1966, 

when Tan et al demonstrated that the high levels of circulating DNA present in patients 

with system lupus erythematosus (SLE) [2]. Further studies showed that increased 

concentrations of DNA in the plasma could be detected in cancer patients [3].  In 1989, 

Stroun et al suggested that the circulating DNA in cancer patients contains the 

characteristics of tumor DNA [4]. This important suggestion was shown to be correct in 

the following studies  [5, 6].  Those studies showed that plasma DNA could be used for 

tumor detection and monitoring.  

In 1997 Lo et al demonstrated the presence of fetal DNA in the plasma of pregnant 

women by the detection of Y-chromosomal sequences [7]. Quantitative analysis has 

shown that relative concentration of fetal DNA in maternal plasma is much higher than 

that of fetal DNA in the cellular fraction. The finding suggested that fetal DNA in 

maternal plasma would be a very valuable material for noninvasive prenatal diagnosis. 

This approach was first successfully applied to detect Y-chromosome specific sequences 

from women who were carrying a male fetus. Using quantitative real-time PCR assay, 

abnormally high concentrations of circulating fetal DNA in maternal plasma has been 

observed from those women who were suffering from preeclampsia [8,9], preterm labor 

[10], idiopathic polyhydramnios [11] ,  as well as those who were carrying a aneuploid 

fetus [12, 13]. These results showed that measuring the circulating fetal DNA could serve 

as a screening tool for pregnancy-associated disorders. Later study showed that fetal 

gender determination using cell free DNA in maternal circulation could be used as a pre-
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test for inherited X-linked condition [14]. The first sex-independent marker is the 

paternally inherited RhD gene and this detection is already in use for clinical diagnosis of 

fetal RhD genotype in Europe [15,16]. Using polymorphic DNA markers, abnormal 

paternally inherited fetal DNA, such as chromosomal translocations [17] and 

trinucleotide repeated expansions of the dystrophia myotonica protein kinase (DMPK) 

gene [18], has correctly been determined from maternal plasma. Subsequently, fetal 

paternally inherited single gene mutations in maternal circulation have been detected by 

PCR combined restriction enzyme assay [19-22] (paper2). Recently, such mutations have 

successfully been detected by mass spectrometry-based assay [23].  Even though many 

researchers have been trying to understand the biochemical and molecular aspects of 

circulating fetal DNA, to date, those issues have not been completely understood. 

However, much progress has been made. For example, studies indicated that placenta is 

the main tissue origin of circulating fetal DNA [24].  Recently, Chan et al, and we too, 

have demonstrated that the fetal DNA in maternal circulation exists as small fragments 

[25], (paper1). Our results showed that the paternally inherited DNA polymorphisms 

were more easily detected in the enriched fetal DNA from maternal plasma. Furthermore, 

the presence or absence of paternally inherited single gene mutations can be detected 

from such size-selected circulating fetal DNA (paper 3). This enrichment of circulating 

fetal DNA could overcome the limitation caused by high background maternal DNA. 

Recently, donor-derived DNA, as well as tumor-specific gene could be detected in the 

urine of kidney transplant recipients and some kinds of cancer patients, respectively [26], 

(paper5). Analysis of the urinary DNA indicated that it might serve as a monitoring and 

prognostic marker for cancer treatment or kidney graft rejection. 
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Biochemical aspects of circulating nucleic acids  

Although the presence of circulating DNA in individuals has been a well-established 

phenomenon, its molecular and biological aspects are still in an early phase of 

investigation. It is very important to study these issues and to seek the answers to some 

fundamental questions regarding the nature of circulating nucleic acids.  

 

1. Origin of plasma DNA 

Some studies have been done to try to understand the sources of plasma DNA. In the 

following, two possible mechanisms will be discussed. In the first one, apoptosis has 

been considered to play an important role in the release of DNA into the bloodstream. 

Apoptosis is the most common form of cell death throughout the whole of life [27, 28]. 

During cell apoptosis, a set of caspases is activated, leading to the cleavage of the 

chromatin into mutilple oligo and mononucleosomes.  Nucleosomes in human plasma 

have been detected by immunoassay [29,30]. The fragmentation of genomic DNA due to 

the nucleosomal cleavage is a major characteristics of apoptosis and such a DNA 

laddering can be observed by agarose gel electrophoresis [31, 32]. We used Southern blot 

analysis of total circulatory plasma DNA from healthy individuals and pregnant women 

with highly repetitive Alu sequence. Our results confirmed that circulating DNA presents 

typical apoptotic characteristics, displaying a ladder obtained by nucleosomal cleavage 

(paper 1).  

The second mechanism considered was that some types of nucleated cells shed DNA into 

circulation. The early report that described the release of DNA from activated 

lymphocytes was by Rogers JC and colleagues [33]. They found that the cultured 
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lymphocytes in the presence of phytohemagglutinin or antigen excreted DNA into the 

medium. That DNA is released as a consequences of terminal differentiation should also 

be considered since final stages of differentiation of erythrocytes, keratinocytes, and lens 

crystalline cells are accompanied by chromatin cleavage and extrusion of nuclear 

material from the cells [34- 36]. A recent report provides evidence for the haematopoitic 

origin of cell free DNA in healthy individuals [37].  Lui et al quantified Y-chromosomal 

sequences in the plasma and serum of patients receiving sex-mismatched bone-marrow 

transplants, and found that circulating DNA was predominantly of donor origin. We also 

observed that a proportion of the circulatory DNA has a very large molecular size, larger 

than 10 kb by southern blot analysis (paper 1). We suppose that these large circulatory 

DNA species could be derived from the erythropoietic system because the DNA isolated 

from terminally differentiating erythroblasts exhibited similar characteristics. 

(unpublished data from our group). 

Furthermore, necrosis might also play a role in the generation of plasma DNA. Jahr and 

colleagues used established murine models for the induction of liver cell necrosis [38]. 

After 4 hours induction, the levels of plasma DNA were dramatically increased. 

However, necrotic cell death is limited in a healthy body. Thus, necrotic cell death cannot 

be responsible for a significant part of plasma DNA in healthy individuals. During 

pregnancy, whether necrosis takes place or how much the plasma DNA levels would be 

affected are unknown. 
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2. Plasma DNA Chimerism 

Plasma DNA chimerism is a novel concept since the foreign genetic material, for instance 

tumor-derived DNA or fetal-derived DNA, has been discovered in the circulation of 

some individuals. This concept is adapted from the originally well-established concept of 

cellular chimerism, in which cells with genetic differences can be found in the host 

circulation [39, 40]. 

To date, several types of plasma DNA chimerism have been found in human circulation. 

Besides those mentioned above, namely tumor-derived DNA and fetal-derived DNA, 

donor-derived DNA that exists in the plasma from the liver or kidney transplantation 

patients was reported in 1998 [41]. Another type of plasma DNA chimerism is virus-

derived DNA in human plasma. Viral DNA has been shown to be detectable in the 

circulation of patients suffering from nasopharyngeal carcinoma (NPC) [42], lymphoma 

[43], head and neck tumors [44] and cervical carcinoma [45]. The circulating Epstein-

Barr virus (EBV) DNA is well established as a tumor marker in the clinical management 

of NPC patients [46].  Recently, the circulating plasmodium falciparum DNA has been 

for the first time detected in the plasma of patients suffering from malaria [47]. 

The findings of plasma DNA chimerism are extremely important in clinical applications 

since it can be used as diagnostic, monitoring and prognostic markers.  

The concept of DNA chimerism has further been developed to look for urinary DNA in 

the urine of bladder cancer or kidney transplant patients [48,49], (paper 5). The analysis 

of urinary DNA has indicated that it may serve as a non-invasive marker for monitoring 

and predicting the treatment and process of cancer or kidney graft rejection.  
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3. Fetal DNA in maternal plasma  
 

Although intact fetal cells have been found in maternal circulation for several decades, 

the rarity (1 in 106) and the sophisticated procedures limited their utility in clinic. The 

discovery of fetal DNA in maternal circulation has opened the avenue for non-invasive 

prenatal diagnosis since fetal DNA is more abundant than fetal cells, and the diagnosis 

can be easily and rapidly carried out. 

 

 3.1 Origin of fetal DNA in maternal plasma 

No studies have conclusively addressed this question. Much evidence has shown that the 

placenta may be a major source of the fetal genetic material released into maternal 

circulation [24]. The levels of circulating fetal DNA increased in the plasma of women 

with advanced gestation age [50, 51] or preeclampsia [8, 9]. Correspondingly, it has been 

observed that placenta apoptosis increases significantly as pregnancy progresses and in 

preeclampsia  [52], suggesting that the presence of circulating fetal DNA is the result of 

cell death in the placenta. In the study of women who underwent assisted reproduction, 

the fetal DNA was found in maternal serum even before fetal circulation was established. 

This strongly implies that the source of circulating fetal DNA is most likely from 

trophoblasts [53].  

Haematopoietic cells were considered to be a reasonable candidate for the source of 

circulating fetal DNA because a variety of fetal cell types circulate in maternal blood 

[54]. Some studies have shown that a large number of fetal nucleated erythrocytes in 

maternal circulation undergo apoptosis  [55, 56].  It is hypothesized that the circulating 

fetal DNA may result from the interaction between apoptotic cells and the maternal 
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immune system. However, since intact fetal cells are rare in maternal blood (0.0035-

0.008%) [54], it is unlikely that this small number of fetal cells accounts for such a high 

level of fetal DNA in maternal circulation (2.33-11.4%) [51].  

In addition, other potential sources have also been proposed. For example, the direct feto-

maternal transfer of DNA molecules via placenta or membranes [57]. 

 

3.2 The size distribution of fetal DNA in maternal plasma 
 

We used southern blot analysis with highly repeated Alu probe to hybridize total plasma 

DNA (paper 1). Our results have shown that the size distribution pattern of total maternal 

plasma DNA presented apoptotic characteristics. To study the size distribution of fetal 

DNA in maternal circulation, we used a combination of size-separation on agarose gel 

electrohporesis and highly sensitive real time PCR assay to analyze the plasma DNA 

molecules. We surprisingly found that the fetal DNA comprised small fragments of a size 

of less than 300bp. On the other hand, most maternally derived molecules were 

considerably larger than 500bp.  

Our results are remarkably similar to those reported by Chan et al. They used two panels 

of quantitative PCR assays [25]. One amplified the leptin genes, which represent the size 

distribution of total maternal DNA, with the amplicon ranging in sizes from 105 to 798 

bp. The other amplified the SRY genes, which represent the size distribution of fetal 

DNA in maternal plasma, with the amplicon ranging in sizes from 107 to 524 bp. Their 

results showed that a median of more than 90% of the fetal-derived DNA molecules was 

less than 313bp in length.  
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Chan et al and our results support the hypothesis that fetal DNA is derived from the 

placenta, whereas the vast proportion of maternal circulating DNA is of hemopoietic 

origin [24, 37]. 

It is known that the concentrations of circulating fetal DNA in healthy maternal plasma 

has a mean of 3.4% and 6.2% of the total plasma DNA in early and late pregnancy, 

respectively [51]. The discovery of the size distribution of circulating fetal DNA provides 

the possibility to enrich fetal DNA from maternal plasma. After such enrichment, the 

concentration of circulating fetal DNA has a mean of 28.4% and 68.7% of the total 

plasma DNA in early and late pregnancy, respectively (paper 1). 

 

3.3 Clearance of fetal DNA from maternal plasma:   
 

Clearance of fetal DNA from maternal plasma after delivery in healthy pregnant women 

has been shown to be very rapid and much more rapid than the clearance of fetal 

nucleated cells [58, 59].  Lo et al showed that the mean half-life for fetal DNA was 

estimated to be 16.3 min (range 4-30min) [60].  Most of the women studied had 

undetectable levels of circulating fetal DNA by 2 hour postpartum.  

Potential mechanisms for clearance of circulating fetal DNA include plasma nuclease, 

hepatic clearance, and degradation via its interaction with maternal cells.  

To study the role of plasma nuclease in the clearance of fetal DNA from maternal plasma, 

Lo et al digested the maternal blood samples with plasma nuclease at 37°C for 2 hours 

[60]. Their results showed that three samples had plasma fetal DNA concentration >90% 

of pre-incubation values. The remaining seven subjects’ samples had concentrations 

within a range of 31-74% of the values before incubation. These data indicated that 
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plasma nuclease plays only a partial role in the removal of circulating fetal DNA. 

However, since it was an in vitro study, it could not completely explain the predominance 

in vivo. 

Another possible mechanism for clearance of circulating fetal DNA is that circulating 

fetal DNA is removed by detoxification organs, such as the liver. Studies in experimental 

animals have shown that circulating DNA is rapidly removed by the liver [61]. Gauthier 

et al investigated the clearance of the circulating mononucleosomes in mice [62]. Their 

study showed that 71.0 to 84.7% of nucleosomes removed from circulation were 

localized in the liver. 

Alternatively, the maternally immunologic system, for instance, spleen, and lymphocytes 

in maternal circulation, is involved in the removal of circulating DNA. Because the fetal 

DNA exists in maternal circulation as a foreign material, it is reasonable that maternal 

immunological system takes out the “ trash”.  It is known that degenerating apoptotic and 

necrotic cells in vivo are efficiently taken up by macrophages  [63]. 

 

4. Conflicting findings concerning fetal DNA in maternal urine 
 

Could circulating fetal DNA cross the kidney barrier and be secreted into maternal urine? 

Botezatu and colleagues first time reported that highly repetitive male-specific DNA 

sequences (DYZ1) could be detected in the urine of pregnant women who were carrying 

a male fetus (7-10 weeks) by the use of a nest-PCR analysis [64]. They could detect 

urinary fetal DNA in 8 of 10 samples. And no false positive results were reported. Their 

studies further indicated that the DNA present in the urine had a size of less than 200bp. 
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The second report, by Al-Yatama et al, examined urine samples from 80 pregnant women 

between 7 and 40 week’s gestation [65]. They were able to detect Y chromosome-

specific sequences in 38% of the urine samples from women carrying a male fetus. There 

was no significant difference in the detection between different trimesters in women 

bearing a male fetus. However, for the 25 women bearing a female fetus, three (12%) and 

one (4%) showed false-positive results in plasma and urine, respectively. 

In our experiments we were not able to reproduce these results, even though we 

examined specific pregnancy-related disorders, in which condition the levels of 

circulatory fetal DNA are significantly elevated and renal function is known to be 

affected (paper 4). (see page 46-49) 

Botezatu et al’s studies also reported that purified DNA (0.1-0.5µg/animal) was injected 

into mice and that approximately 0.06% of the injected DNA was detected in the urine of 

the animals [64]. However, those observations were based on the clearance of the 

purified DNA in animal models, whereas we know that plasma DNA is usually 

associated with protein (for example, Histone).  Moreover, the concentration of injected 

DNA in mice was higher than that of fetal DNA in maternal plasma. Those studies could 

not explain the phenomenon of the clearance of fetal DNA from maternal circulation, 

occurring in pregnant women’s bodies.  

 

5. Urinary DNA as a marker for renal transplantation 
 

Urinary DNA chimerism has been described in kidney transplant recipients in that donor-

derived cell-free DNA was detected in the recipient’s urine [49, 66, 67].  Zhang et al 

detected the donor-derived DNA from the urine of females who received male kidney 
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transplantation by real time PCR assay with Y-chromosomal specific sequences [49]. The 

results of quantitative analysis indicated that urinary DNA might serve as a new maker to 

monitor kidney transplant engraftment because the concentrations of urinary DNA 

increased under conditions of graft rejection and decreased to basal values after 

immunosuppressive treatment.  

A caveat of these studies was that they relied on sex-disparate donor-recipient conditions: 

because the PCR assays used were specific for the Y chromosome, cell-free DNA from 

the donor kidney could be detected only in the urine of female recipients who had 

received a male kidney. 

To address the question of whether kidney donor-derived DNA sequences could be 

detected in the urine of transplant recipients by using sex-independent markers, we tested 

for the presence of donor-specific STR loci and donor-derived GSTM1 (glutathione S-

transferase M1) gene in the urine for cases in which the donor and recipient were either 

of the same sex or the donor was female and the recipient was male (paper 5). Our results 

indicated that mircosatellite markers and DNA polymorphisms would be potentially 

alternative markers for the quantification of urinary DNA in kidney transplant recipients 

(see page 49-51). 
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Clinical diagnostic aspects of circulating nucleic acids 
 

Since fetal DNA has been found in maternal circulation, its clinical applications have 

mainly focused on the quantification of fetal DNA sequences.  Its increase is related to 

many pregnancy-associated disorders.  However, there is a limitation since only 

pregnancies with male fetuses can be detected because the method relies on the detection 

of Y chromosomal specific sequences, which are absent from maternal plasma. Other 

paternally inherited fetal gene sequences, such as the RhD gene, DNA polymorphisms 

and single gene mutations, have been subsequently reported.  

 

1. Circulating fetal DNA in screening  
 
The quantification of circulating fetal DNA can be used as a tool for screening 

pregnancy-related disorders. A current focus is its use as a maternal plasma marker in 

early pregnancy for fetus chromosomal aneuploidies.  Several groups have observed that 

the fetal DNA levels in the plasma of pregnant women carrying a fetus affected by 

trisomy 21 were higher, compared with unaffected pregnancies by the use of real-time 

PCR analysis [12, 68]. The levels of circulating fetal DNA were also reported to increase 

in pregnancies complicated by pre-eclampsia and polyhydramnios [8,11,69,70]. Increased 

levels of circulating fetal DNA in maternal plasma may also be a marker for pre-term 

delivery [10].  However, this approach, which depends on quantification of the fetal Y 

chromosome-specific sequences, cannot distinguish one pregnancy-related disorder from 

another. Moreover, only pregnancies with male fetuses can be analyzed.  

Furthermore, fetal gender determination can also be used as a “pre-test” to determine 

whether invasive prenatal diagnosis should be performed on a fetus having a risk of an X-
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linked recessive disorder [14]. If the fetus is shown to be female, any invasive prenatal 

diagnosis is unnecessary, thus, avoiding risk of fetal loss.   

 

2. Detection of paternally inherited RhD gene  
 
The first successful detection of non-Y chromosomal fetal-derived gene sequences in 

maternal circulation was the Rhesus D gene [15].  The Rh blood group system is the most 

polymorphic of the human blood groups and of wide interest in clinical medicine because 

of its incompatibilities, such as hemolytic disease of the new-born (HDN) and 

autoimmune disease. Approximately 15% of Caucasian pregnancies are still potentially at 

the risk of severe HDN [71]. 

To date, the feasibility of fetal Rhesus D genotyping from maternal plasma and serum has 

been reported in several studies [15,16,72,73]. The analysis of fetal DNA from maternal 

plasma is at present reproducible enough to become a routine diagnostic test for the non-

invasive prenatal diagnosis of fetal Rhesus D genotyping, especially in Europe [16]. 

The prediction of paternal RhD genotyping is very useful for counseling a couple in 

future pregnancy since there is only 50% of chance that the pregnancy is affected if the 

father has heterozygous RhD gene. We precisely determined paternal Rhesus D zygotsity 

by real-time PCR assay (paper 6).  

 

3. Detection of paternally inherited DNA polymorphisms: 
 

The success in the detection of fetal Y-chromosomal and RhD DNA sequences in 

maternal plasma opens up the possibility that this approach may also be used to detect 

other paternally inherited DNA sequences in maternal plasma. Tang et al reported the 
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detection of paternally inherited X chromosomal microsatellite polymorphisms from 

maternal plasma (74). Their data indicated that in cases in which the fetus possessed an 

allele that was not present in the mother, this approach could achieve sensitivity of 5/10 

(50%) at the second trimester and of 14/15 (93%) at the third trimester of gestation. 

Similar data also have been reported by Pertl et al [75].  They used multiplex fluorescent 

PCR to detect fetal-specific alleles in the maternal plasma samples. 12 samples were 

collected close to term, 4 of which having experienced infrequent, light contractions. 

Their results showed that the paternally inherited fetal alleles were detected in 84% of 

informative short tandem repeats and missed in 16%. Compared with TaqMan real time 

PCR, the low sensitivity is due to the fact that since the microsatellite PCR system 

amplified both fetal and maternal sequences, the latter masks the amplification of the 

paternally inherited allele. However, those samples which were detected were older than 

the second trimester of gestational age. Thus, this approach is not clinically useful for 

early prenatal diagnosis.  

Recently we discovered that the majority of fetal DNA fragments in maternal plasma is 

of a small size of less than 300bp (paper 1). This discovery indicated that circulating fetal 

DNA could be selectively enriched by size separation.  We examined paternally inherited 

DNA polymorphisms from such size-fractionated circulating DNA by using highly 

polymorphic STR sequences on chromosome 21. Our results indicated that paternally 

inherited fetal DNA polymorphisms were more easily detected from size-selected 

circulating DNA in contrast to detection from total circulating DNA. These results 

suggest that this non-invasive approach could potentially be applied to detect fetal 

aneupoildies.  
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4. Detection of Paternally inherited single gene mutations: 
 

The first detection of a paternally inherited disease –causing mutation in maternal plasma 

was reported by Amicucci et al who were able to detect a trinucleotide repeat expansion 

in the dystrophia myotonic protein kinase (DMPK) gene in maternal plasma DNA [76]. 

After that, several reports have showed that the paternally inherited single gene mutations 

in maternal plasma could be detected by using PCR or nested PCR combined with 

restriction enzyme digestion. Saito et al reported the detection of a single point mutation 

in the plasma of a woman carrying a fetus suspected of having achondroplasia [19]. 

Gonzalez-Gonzalez et al detected a cystic fibrosis mutation in fetal DNA from maternal 

plasma [21].  Fucharoen et al detected fetal hemoglobin E gene mutation in the plasma of 

Thai pregnant women [20].  However, the method of PCR combined restriction digestion 

is relatively insensitive.  Moreover, all the reports above were based on one or only a few 

cases of clinical samples. 

Chiu et al employed mutation-specific real time PCR analysis to exclude β-thalassemia  

major caused by a four base deletion on the β-globin gene [77].  However, the deletion of 

the 4 bases of codon41/42 mutation (-CTTT) makes the detection possible by this simple 

strategy. They also tried to detect other 3 single-point mutations by the same method. 

However, reliable discrimination of the fetal mutant from the background maternal DNA 

was not achieved (their unpublished observations).  More recently, Ding and Chiu et al 

developed a mass spectrometry-based system for the detection of the presence or absence 

of the paternal β-globin gene mutations in circulating nucleic acids [23]. Even though this 

method is more accurate and sensitive, the results are based on a very small population of 

only 5 pertinent cases. Furthermore, the method requires very sophisticated and 
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expensive equipment that is not readily available to the vast majority of diagnostic or 

research laboratories. 

Recently, we discovered that the masked fetal polymorphic loci were easily detected 

from the size-selected circulating fetal DNA. We were curious as to whether such a 

selection was suitable for the detection of paternally inherited fetal single gene mutations. 

We examined a fetal point mutation in the fibroblast growth factor receptor 3 gene 

(FGFR3), which causes Achondroplasia, and paternally inherited β-globin gene 

mutations, which cause β-thalassemia, from the size-selected circulating fetal DNA 

(papers 2,3). Our study indicated that fetal genetic traits involving point mutations can be 

detected from the analysis of size-fractionated circulating fetal DNA having a size of less 

than approximately 300bp.  

 

5. β- thalassemia 
 

The thalassemia are, worldwide, the commonest monogenetic diseases in Man, causing a 

major public health problem, especially in the Mediterranean area, the Middle East, the 

Indian subcontinent, tropical Africa and in a line stretching from southern China through 

Thailand and the Malay peninsula to the island populations of the Pacific. They are also 

common in countries in which there has been immigration from these high-frequency 

populations.  

β-thalassemia is caused by mutations in the β-globin gene. To date, over 200 mutations of 

β-thalassemia have been described. The following figure illustrates the global distribution 

of the β-thalassemia mutations [78] (Figure 1). 
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 Fig 1.The global distribution of the β-thalassaemia mutations                          

 

β-globin gene is a structural gene found in a cluster with the other β like genes on the 

short arm of chromosome 11and it has 3 exons and 2 introns [79].  Most mutations that 

cause of β-thalassemia are due to point mutations in functionally important regions of the 

β-globin gene, others include deletions or addition of nucleotides. The following figure 

illustrates the classes of mutations that underlie β-thalassemia [78]. These abnormalities 

of β-globin gene lead to a defect in the synthesis of one or more of the globin polypeptide 

chains of hemoglobin. As a result, the erythrocytes are characterized by decreased 

intracellular hemoglobin content (hypochromia) and small size (microcytosis).  
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 Fig 2. 1,2,3 are exons indicated in red. IVS1, IVS2 are intron. PR, promoter; C, CAP site; I, initiation 

codon; NS, nonsense; FS, frameshift; SPL, splicing. 

 

Considering that at least 150,000 lethally affected homozygous thalassemia are born 

annually, prenatal diagnosis of β-thalassemia is extremely important, especially for some 

areas where a high incidence of β-thalassemia trait is present; for instance, in certain 

Greek islands and some villages of Sardinia, the incidence reaches 20 to 30% [79].  

Moreover, the cost and difficulties of required treatment (especially blood transfusions 

and the complications arising from these) will be a major burden even in the Western 

countries, but particularly in the developing countries in which the disease is endemic.  

An important step in the prevention of cases of severe β-thalassemia is the exclusion of 

homozygous and compound heterozygous pregnancy. A couple having two affected 

heterozygotes should be aware that they have a 25% chance of having a severely affected 

homozygous or compound heterozygous child.  

At present, clinical prenatal diagnosis of β-thalassemia is mainly based on molecular 

diagnosis. The DNA-based methods were mentioned in the following table [80]. The 

source of DNA may be amniotic fluid cells, chorionic villi or fetal blood sampling. These 

invasive methods cause at least 1% of abnormal pregnancies. Development of 

noninvasive prenatal diagnosis is urgent needed.   
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Table 1: The methods of diagnosis of β-thalassemia 

 

Two non-invasive sources could be considered for prenatal diagnosis. One is the isolation 

of fetal cells, specifically erythroblasts, from the blood of pregnant women. Di Naro et al 

used a novel step density gradient for the enrichment of fetal erythroblasts from maternal 
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blood, and adapted PCR analysis of individually isolated fetal cells for prenatal diagnosis 

of the fetal β-globin genotype in pregnancies at risk for β-thalassemia [81]. They 

analyzed 4 samples, in each of these cases, five cells were isolated and the fetal genotype 

was correctly determined. Cheung et al in 1996 successfully identified the fetal genotype 

in two pregnancies at risk for sickle cell anaemia and β-thalassemia by analysis of fetal 

cells in maternal blood using the similar strategies [82].  

Compared with the analysis of fetal nucleated cells in the maternal blood, maternal 

plasma DNA analysis has the advantage of being more abundant, and can be rapidly and 

reliably carried out for a large number of samples. By examining paternally inherited 

fetal gene mutations, the risk for a compound heterozygous pregnancy can be excluded. 

So far several strategies have been developed for prenatal exclusion of β-thalassemia 

major by using maternal plasma DNA, as discussed above (see pages 20-21). 

In brief, using maternal plasma DNA for non-invasive prenatal diagnosis of β-

thalassemia is very promising for the future. Suitable procedures, which are rapid, 

accurate, simple and easy to be popularized, are being sought, especially for developing 

and under-developed countries. 

 

6. Achondroplasia  
 

Achondroplasia (ACH), the most common genetic form of dwarfism, is inherited as an 

autonomic dominant trait with 100% penetrance. The estimated frequency of ACH is 1 in 

26,000, with at least 80% of cases being sporadic [83-85].  

The clinical features of Achondroplasia include rhizomelic dwarfism, relative 

marocephaly, exaggerated lumbar lordosis, and other typical skeletal abnormalities [85]. 
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With linkage analysis, Achondroplasia gene was genetically mapped to 4p16.3, distal to 

Hunting’s disease (HD) [86, 87].  Further studies showed Achondroplasia was caused by 

the mutations in the fibroblast growth factor receptor 3gene (FGFR3). There are 2 single 

gene changes in FGFR3 that can explain the disease. More than 98% of all 

Achondroplasia patients have the same missense mutation in the transmembrane domain 

of FGFR3, a G-A transition at nucleotide 1138. Most remaining mutations are a G-C 

transversion at the same nucleotide [88].  Both mutations result in the substitution of an 

arginine for a glysine at position 380 (G380R) of the mature protein.  

Achondroplasia can be diagnosed by characteristic clinical and radiographic findings in 

most affected individuals. In individuals who may be too young to diagnose with 

certainty or in individuals with atypical findings, molecular genetic testing can be used to 

detect a mutation in the FGFR3 gene. 

Because Achondroplasia arises as a spontaneous mutation, absolute prevention is not 

possible. However, genetic counseling is helpful for “ high-risk pregnancy”, in which one 

or both parents have achondroplasia. Then the fetus has a 50% risk of having 

abonormality if one of the parents has achondroplasia. When both parents have 

Achondroplasia, the chance of their offspring of having Achondroplasia is 75%, and of 

having homozygous Achondroplasia is 25%.  

For a high-risk pregnancy, routine prenatal ultrasound examination may identify short 

fetal limbs. Usually such ultrasonographic findings are not apparent until the third 

trimester. Thus, fetal genotyping is necessary. The detection of fetal FGFR3 gene 

mutation from maternal circulation is a non-invasive early diagnosis for 

Achrondronplasia.  
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Aim:  
 

The aim of the present study was to understand the biochemical aspects of plasma DNA 

and cell-free fetal DNA, as well as to investigate the size distribution of fetal DNA in 

maternal circulation. The clinical applications for non-invasive prenatal diagnosis using 

size selection of fetal DNA from maternal plasma, especially in the aspect of detection of 

paternally inherited single gene mutations, were explored.  

The study was also explored to investigate the clinical applications of urinary DNA for 

prenatal diagnosis, as well as on seeking sex-independent markers in urinary DNA for 

monitoring kidney transplant engraftment.  

Knowledge of paternal RhD zygosity is important for consulting RhD negative pregnant 

women about the risk of HDN (hemolytic disease of the newborn). The aim of this study 

was mainly focused on the detection paternal RhD zygosity by real-time PCR assay. 
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The size of fetal DNA in maternal plasma and detection of paternally inherited point 

mutations by size selection of fetal DNA in maternal plasma   (papers 1, 2, 3) 

The studies of the plasma DNA from cancer patients have indicated that the plasma DNA 

displays apoptotic characteristics [30, 31]. We were curious as to whether maternal 

plasma DNA also displayed such features. We used Southern blot analysis of total 

circulating plasma DNA with the ubiquitous, highly repetitive Alu sequence. The results 

showed that oligonucleosomal fragments, which are the major characteristics of 

apoptosis, could be detected. The smallest size was approximately 180 bp, accompanied 

by DNA fragments two, three, or four times this size. There were also high molecular 

weight DNA fragments, larger than 10kb detected (Figure3). Such a DNA pattern was 

also present in plasma samples from non-pregnant female blood and from cord blood. 

Our results supported the hypothesis that plasma DNA derives from apoptosis, in that we 

could readily discern oligonucleosomally cleaved fragments by Southern blot analysis. 

Furthermore, the large circulatory DNA species (>10kb) could be derived from the 

erythropoietic system because the DNA isolated from terminally differentiating 

erythroblasts exhibited similar characteristics (unpublished data from our group). 

                                                                                                                                                                        

                                                                                                                                                  

                                                                                                            Figure 3:  Sounthern blot analysis of plasma DNA. 

1.plasma from cord blood 

2.plasma from pregnant woman (GA: 13wks). 

3.plasma from non-pregnant female control                          

 



 38

The next question that we asked was, what is the size distribution of circulating fetal 

DNA in maternal plasma? For this analysis, we size-separated circulating DNA from 

pregnant women carrying a male fetus on agarose gel electrophoresis. Real-time PCR 

was carried out for the analysis of the proportions of fetal DNA and maternal DNA by 

quantification of the SRY gene on the Y-chromosome and of the GAPDH gene in size-

fractionated fragments, respectively. Surprisingly, we found that most of the circulating 

fetal DNA consisted of fragments of less than 300bp, very little or no fetal DNA having a 

molecular size of more than 0.5kb. On the other hand, maternally-derived sequences were 

considerably larger than 0.5kb. Our results showed that in the early pregnancy, the 

percentage of enriched fetal DNA was 11.6-56.6 % (mean 28.4%) compared to 0.032-

11.9 % (mean 3.4%) of non-enriched, whereas in the third trimester, the percentage of 

enriched fetal DNA was 22.2-87.1% (mean 68.7 %) compared to 2.33-11.4% (mean 

6.2%) of non-enriched [51] (Figure4). Thus, circulating fetal DNA from maternal plasma 

can be enriched by size-selection of fragments. 

 

     A                                                                     B 

                

  Figure 4 . Size distribution of circulating fetal DNA in maternal plasma.        A) 6 samples were taken at 

early pregnancy (median gestational age: 13 +2 wks);        B)  8 samples were taken at third trimester close 

to term (median gestational age: 34+4 wks). 
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By size-selection of circulating fetal DNA, we examined whether paternally inherited 

DNA polymorphisms could be detected in the maternal plasma samples. We used highly 

polymorphic STR sequences on chromosome 21 for the analysis. Our results showed that 

the paternally inherited STR allele was barely detectable in the total plasma DNA but was 

clearly present in the DNA fraction with a fragment size of less than 300bp both in 

samples from early pregnancies (mean gestational age: 13+3wks) and from third 

trimester (mean gestational age: 34+4wks) (Figure 5). This feature is very important 

because the analysis of such highly polymorphic markers can be very useful for the 

determination of fetal aneuploidies. 

  

    A                            B                                C                             D 

                                            

 

Figure 5.  The example of STR analysis for a plasma sample from a mother carrying a fetus with trisomy 

21 (gestational age: 13+6wks, STR marker: D21S1432).       A) Maternal genotype;    B) Fetal genotype;         

C) Analysis of total plasma DNA,  paternally inherited allele 137bp not detectable;   D) Analysis of plasma 

DNA with a size of less than 300bp, paternally inherited allele easily detected. 

 

Another important aspect of our discovery is that it aids in the examination of paternally 

inherited single gene mutations, because these analyses should no longer be hindered by a 

large excess of maternal DNA sequences in the circulation.  
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In this regard, we first examined paternally-inherited FGFR3 (Fibroblast Growth Factor 

Receptor 3) mutation (G-A), which causes Achondroplasia, from maternal plasma [88]. 

Due to the FGFR3 mutation at 1138 creates a unique SfcI restriction site, we used the 

touchdown PCR to amplify the enriched fetal DNA, followed by digestion of the 

amplicon with SfcI enzyme. The digested fragments were visualized on 6% 

polyacrylamide gel with SYBR Green staining. Our results indicated that this approach 

permits a more precise detection of the fetal mutation allele, compared with conventional 

analysis of total plasma circulating DNA (Figure 6). 

 

                  

 

Figure 6.  Restriction analysis of the PCR products on 6.0% polyacrylamid gel containing SYBRGreen.  1: 

Maternal DNA (undigested).  2: Maternal DNA (digested with SfcI). 3: Paternal DNA (undigested). 4: 

Paternal DNA (digested with SfcI). 5: Total circulatory DNA in maternal plasma (undigested).  6: Total 

circulatory DNA in maternal plasma (digested with SfcI). 7: Size-fractionated circulatory DNA in maternal 

plasma (undigested). 8: Size-fractionated circulatory DNA in maternal plasma (digested with SfcI). 

 

We next examined the paternally inherited fetal point mutations in the β-globin gene, 

which cause β-thalassemia, from maternal plasma. This examination can exclude the risk 

for compound heterozygous pregnancies. Four common β-thalassemia point mutations: 

IVSI-1, IVSI-6, IVSI-110 and codon39, were detected from 32 clinical samples taken at 
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10-12 weeks of pregnancy (mean gestational age: 10+5wks). These samples were 

detected in a blind test and chosen on the basis that the father was a carrier for one of the 

4 mutations described above, and the mother had been genotyped to carry another β-

globin gene mutation. Circulating fetal DNA was enriched by size-fractionation and 

subjected to PCR with a Peptide nucleic acid  (PNA) clamping. PNA sequences for 

maternal allele blocks the amplification of the normal maternal sequences. Thus, only 

mutant allele was amplified. The paternal mutant allele was then detected by allele-

specific real time PCR, which was monitoring with SYBR Green Dye. We used a ∆CT 

system, whereby the amplification of the normal wild-type allele (CTN) was subtracted 

from that of the mutant allele (CTM), to discriminate the mutant allele from the normal 

allele. By the use of this ∆CT (M-N) analysis, we observed a clear cutoff area 

distinguishing the mutant DNA and wild type DNA (paper 3, Figure 7). This analysis 

also showed that we would be able to detect the mutant allele in conditions when it only 

presented 6% of the total DNA in the sample. 

 

  

Fig 7. Example from Codon 39 mutation. Clear 

discrimination of the wild-type allele from the 

mutant allele, diluted in wild type DNA. Wild-type 

alleles are indicated by (   ) and mutant alleles 

diluted in wild type are indicated  by  (     ). 
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For the clinical samples, the results were confirmed by CVS (chorionic villus sampling) 

test. One sample was excluded due to a lack of diagnostic result. Two were flagged as 

uncertain because the input DNA was too low to give reliable results. The presence or 

absence of the paternal mutant allele was correctly determined with more than 96.6% 

(28/29) accuracy. In comparison, the simultaneous assessment of total plasma DNA 

samples, without size-fractionation, resulted in almost 50% of the cases of paternally 

inherited allele being incorrectly evaluated. 

 

       

   

Figure 8. Scatter blot of the real-time PCR analysis for the IVSI-1, IVSI-6, IVSI-110 and Codon 39 

mutations. The samples were clearly separated into two groups: the upper group was wild type allele, and 

the lower group was mutant allele. 
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The advantage of being able to detect paternally inherited mutant allele in maternal 

circulation is that their absence can be used to exclude pregnancies at risk for compound 

heterozygous, such as β thalassemia, thereby avoiding an invasive prenatal diagnostic 

procedure.  The approach that we developed for the detection of low amount single gene 

mutations in wild-type background is relatively simple and could be used for routine 

clinical laboratories. 

The studies also indicated that the size-fractionation of circulating DNA is very useful for 

non-invasive prenatal determination of fetal point mutations, as well as fetal 

aneuploidies. The enriched circulating fetal DNA might, in the near future, be useful for 

non-invasive prenatal determination of fetal genetic traits in clinic.  

 

Urinary DNA is not a marker for prenatal diagnosis, but a marker for renal 

transplantation  (papers 4, 5) 

Studies have suggested that circulating fetal DNA is cleared very rapidly from maternal 

plasma [60].  Recently, two reports of particular interest have shown that fetal DNA 

could be detected in maternal urine [64, 65]. To the contrary, we were not able to 

reproduce these results (paper 4). 

 In the first of the reports, Botezatu and colleagues examined the urine samples from 

women immediately before the termination of first-trimester pregnancies (7-10wks). The 

second report, Al-Yatama et al examined urine samples from pregnant women between 7 

and 40 wks gestation. In our report, we chose the samples close to term, in which the 

amount of cell free fetal DNA in maternal plasma is at a maximum [51], as well as 2 

samples affected by pre-eclampsia-associated HELLP (hemolysis, elevated liver 
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enzymes, and low platelets) syndrome, in which condition the cell-free DNA in maternal 

plasma is significantly elevated [8, 70].  In the two cases, the cell-free fetal DNA in 

maternal plasma was as approximately 20-30 folds greater than normal controls (Table 

2). If the circulating fetal DNA was cleared by kidney, it is expected that its presence in 

urine would be increased.  

 

Table 2: Levels of total and fetal cell-free DNA in maternal plasma and urine 
 

Subject 

Total cell-free DNA 

 in maternal plasma 

Cell-free fetal DNA 

 in maternal plasma  

Total cell-free DNA 

 in maternal urine 

Cell-free fetal DNA  

in maternal urine 

C1      15,867.2   215.8 12,561.6 0.0 

C2      27,046.3   224.7 19,443.2 0.0 

C3         7986.6       0.0    9898.2 0.0 

P1    358,463.1 6683.1 11,214.2 0.0 

P2 9,528,103.1 4088.7 11,256.1 0.0 

C = pregnant women with normal outcome; P = pregnancy affected by HELLP syndrome. 

Values are indicated as genome equivalents/mL urine 

C3 gave birth to a girl; hence, no fetal DNA was detectable in maternal plasma  
 

Botezatu et al used the Guanidine/Promega Wizard Resin methods for extracting urine 

DNA, instead of commercial DNA extraction kits. They emphasized that commercial 

DNA extraction kits can lead to the loss of the low-molecular weight DNA during the 

DNA isolation step. To address this issue, we compared the efficacy of DNA extraction 

method that we used, namely High pure PCR templates Purification kit (Roche), to that 

of the other two methods used by Botezatu et al and by Al-Yatama et al, respectively, by 

quantifying the levels of total DNA with real time PCR assay specific for the GAPDH 

gene. The results showed that the total levels of urinary cell-free DNA were significantly 
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greater using the method we had chosen. Furthermore, we isolated plasma DNA with 

Roche column for 1% agarose gel electrophoresis and subsequent southern blot analysis. 

We could observe the small DNA fragments about 180bp either on the agarose gel or on 

the blot hybridized with Alu sequences (Figure 3). Thus it is unlikely that our failure to 

detect any fetal DNA in maternal urine resulted from the incorrectness of the plasma 

DNA isolation.  

One further possibility for the discrepancy between our data and that of Botezatu et al is 

that they detected the highly repetitive Y-chromosomal target-DYZ1, with repeats up to 

5000 times per male cell in maternal urine by nested PCR assay. Using such highly 

repetitive sequences is very prone to contamination. Furthermore, if fetal DNA in 

maternal urine can only be detected by such an approach, then it is of limited value, as 

most genes of interest clinically exist as single-copy genes. Of interest is that Al-Yatame 

et al detected a single-copy gene on Y-chromosome by nested PCR assay. However, the 

sensitivity for detection of fetal DNA in maternal urine was only 38%. Such a low 

sensitivity, compared to > 95% of examining plasma fetal DNA, is not good enough for 

clinical diagnosis. 

The exact mechanisms of plasma fetal DNA clearance have remained incompletely 

understood. Botezatu and colleagues’s studies supposed the hypothesis that kidney play a 

role in the clearance of plasma fetal DNA. However, our data, especially those from the 

analysis of samples affected by HELLP syndrome strongly denied the hypothesis made 

by Botezatu et al. As we know, the kidneys of pregnant women affected by HELLP 

syndrome are damaged, as determined by the presence of elevated levels of urinary 

albumin. Despite increase of renal permeability and of cell-free fetal DNA in maternal 
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plasma, the cell-free fetal DNA was not able to be detected in maternal urine, more 

interestedly, the total urinary DNA from those samples was not elevated compared to the 

controls (Table2). Lau et al showed that in pre-eclampsia, cell-free fetal DNA had an 

increase in half-life of almost 2 hours compared with approximately 15 minutes in 

normal control pregnancies [89].  Our data and those of Lau et al directly argue against 

the potential role of the kidney in the clearance of cell-free DNA from maternal plasma. 

The reason for this is that under the conditions of increased renal permeability, cell-free 

DNA displays a decreased rate of clearance from the maternal circulation.  

That the inability to detect fetal DNA in maternal urine indicated that the fetal DNA in 

maternal circulation is removed by other mechanisms such as by the liver. Because the 

liver is affected under the conditions of pre-eclampsia and especially HELLP syndrome, 

it is expected that the rate of removal be reduced, thereby leading to greater accumulation 

of these molecules in the peripheral circulation as described by Lau and colleagues. 

Alternatively, there are other mechanisms that maybe involve in the clearance of plasma 

fetal DNA. (more discussion see part : clearance of circulating fetal DNA) 

After renal transplantation, quantitative analysis of urinary donor-derived DNA has 

indicated that it may serve as a new marker to monitor kidney engraftment. However, the 

quantitative analysis of donor-derived DNA in the recipient’s urine by real-time PCR 

assay relies on the analysis of the Y chromosome specific gene in the cases in which 

female recipient had received male kidney. We examined the donor-derived DNA in 

recipient’s urine by analysis of donor-derived microsatellite markers (STR) in those cases 

in which the donor and the recipient were either of the same sex or the donor was female 
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and the recipient male. Our results showed that donor-specific STR alleles could be 

detected in all 5 cases (Figure 8).  

 

A                                            B                                              C  

            

  Figure 8:Capillary electropherograms of D21S1432 microsatellite amplicons as detected with use of the    

ABI 310 automated sequencer.    A).donor genotype;   B) recipient genotype;  C) recipient urine. 

 

We next examined the genetic polymorphisms in the glutathione S-transferase M1 

(GSTM1) gene and angiotensin-converting enzyme (ACE) [90].  We were able to obtain 

an informative case in which the GSTM1 gene was present in the donor and was absent 

from the recipient. Our quantitative analysis of this sample indicated that the donor-

derived DNA in the recipient’s urine was very high immediately after transplantation, 

and decreased dramatically by day 7 (The patient with successful transplantation). The 

concentration of total cell-free urinary DNA by analysis of the GAPHD gene presented a 

similar curve pattern. The result also indicated that almost the entire cell-free DNA in the 

recipient urine was donor-derived (Figure9).  

Our and others data indicated that measuring urinary DNA is a non-invasive diagnosis for 

monitoring graft rejection. Microsatellite assay is a good alternative detection. However, 

the caveat of this analysis is labor consuming and cannot be used for precise 

quantification. The polymorphic GSTM1 gene and ACE gene are new alternative 
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markers for real time PCR assay. The limited usefulness of the two genes is only ~50% 

of the population does not posses the locus and the informative pairs of donor-recipient 

for this locus would have the donor possessing the GSTM1 gene and the recipient 

possessing the null allele.  In the future, the new markers for PCR-based assays will need 

to be developed to guarantee effective analysis for all donor-recipient constellations.  

 

                            

Fig 9. Changes in the concentrations of 

GSTM1 gene and GAPDH gene after 

transplantation. 

 

 

 

 
Determination of paternal RhD zygosity using real-time PCR assay (paper 6) 
  
For the pregnancies of sensitive RhD-negative women, it is important to know the 

paternal RhD genotype because the knowledge of the paternal RhD zygosity situation is 

essential for counseling a couple about the risk of HDN (hemolytic disease of the 

newborn) in future pregnancies. 56% of Rh-positive Caucasian individuals are 

heterozygous at D locus [91].  The father, heterozygous at RhD locus, has a 50% chance 

of producing a RhD-positive fetus, whereas homozygous produces only a RhD-positive 

fetus.  

Recent development of the real-time PCR technique has shown that it is sufficiently 

sensitive to detect differences in gene dosage even as low as 3:2. To test the possibility 

that the real-time PCR could be used to determine the paternal RhD genotype, we 
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examined 39 samples obtained from males who had been serologically typed to be RhD. 

We designed two multiplex real-time quantitative PCR assays to simultaneously detect 

the RhD gene in relation to the SRY sequence and the GAPDH sequence, respectively. In 

theory, the ratio of RhD/SRY from a homozygous father is 2:1 and the ratio of 

RhD/GAPDH is 2:2. On the other hand, the ratio of RhD/ SRY from a heterozygous 

father is 1:1 and the ratio of RhD/ GAPDH is 1:2. Thus, The RhD zygosity was 

determined by calculating the RhD gene relative dosage. Our study showed two assays, 

which were in complete concordance (Figure 10). In the sample cohort of 39 samples we 

determined that 26 (66%) were heterozygous for the RhD gene and 13(34%) were 

homozygous.   

 

         

  

  Figure 10.  Box-plot showing the discrimination of RhD zygosity by real time PCR.    A). The RhD gene 

has been examined in comparison with the SRY gene.      B). The RhD gene has been examined in 

comparison with the GAPDH gene. 

 

The prediction of paternal RhD genotype is very useful in conjunction with the maternal 

plasma fetal DNA-based test for fetal RhD status, for better prevention and management 

of hemolytic disease of the newborn. 
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Although our data do indicate that real-time PCR assay can potentially be used for the 

determination of RhD zygosity, we caution against the premature clinical use of this 

technology, since the efficacy has not yet been determined in large scale studies, nor is it 

yet known how they may be influenced by the RhD polymorphisms prevalent in many 

ethic populations.  
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Conclusions: 
 

Maternal plasma DNA displays apoptotic characteristics, and circulating fetal DNA 

exists in maternal plasma as small fragments of less than 300bp. The latter feature 

provides a method to enrich circulating fetal DNA from maternal circulation. Such a 

selection permits easier to detect paternally inherited DNA polymorphisms and fetal 

single gene mutations from maternal plasma.  

Cell-free fetal DNA is not readily detected in maternal urine, even under conditions 

known to increase kidney permeability. The result showed that circulating fetal DNA is 

not cleared by kidney. Thus, urine DNA is not a marker for prenatal diagnosis. However, 

the quantitative analysis of urinary DNA indicated that it can server as a marker for 

monitoring and prognosticating the graft rejection of renal transplantation.  

Real-time PCR can be used for discrimination of paternal RhD zygosity, which is an 

alternative non-invasive risk-free manner to predict fetal RhD genotype.  
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Future directions: 
 

A long-term goal of all obstetricians and gynecologists is the development of simple, 

rapid, accurate, non-invasive tests for prenatal diagnosis.  There is no doubt that fetal 

genetic material in maternal circulation is the first target for this purpose. 

Although there are many exciting aspects that have been well covered in this research 

field, especially diagnostic applications, some issues about circulating DNA remain to be 

elucidated. For example, the tissue sources of the circulating DNA, their mechanisms of 

production and metabolism, and the functional role of the fetal DNA in the maternal 

circulation. 

To date, the quantification of the fetal DNA in maternal circulation depends mainly on 

gender dependent marker, namely Y chromosome–specific sequences. That is limited to 

only male fetuses. Therefore, gender independent markers need to be developed. 

Furthermore, only paternally inherited alleles could be detected in maternal circulation. It 

is technically difficult to identify the fetal origin of maternally inherited alleles because 

of maternal DNA background. For example, the detection of paternally inherited β-globin 

gene mutations in maternal circulation can only exclude heterozygous β thalassemia 

major. Techniques need to be developed to determine the fetal genotype in those 

instances where both partners are carriers for the same disease allele. Matrix-assisted 

laser desorption ionization time-of-flight (MALDI-TOP) mass spectrometry would be a 

good solution for those cases [92]. 

Our discovery that circulating fetal DNA exists in maternal plasma as small fragments 

would speed the non-invasive prenatal diagnosis by the size-selection of circulating fetal 

DNA. However, more tests and a large number of samples are needed to be done to 
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confirm its use in clinical applications. The enrichment methods of circulating fetal DNA 

should be updated to look for more efficient and more rapid procedures.  

More recently, increased awareness has been paid to the existence of fetal RNA in the 

plasma of pregnant women. Those studies indicated that fetal-derived mRNA might be 

used as gender independent markers that provide a suitable screening tool for pregnancy- 

associated disorders. However, a significant amount of work remains in selecting the 

specific fetal-derived markers as well as the selection of appropriate samples handling 

and detection methods due to the instability of the target molecules and variable 

efficiencies of the reverse transcription step.  With the rapid advancements being made in 

molecular techniques, plasma RNA has the potential to transform molecular diagnosis in 

the near future. 
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Circulating Erythroblasts in Maternal Blood Are Not
Elevated Before Onset of Preterm Labor

Irene Hoesli, MD, Milan Danek, MD, Dexin Lin, Ying Li, Sinuhe Hahn, PhD, and
Wolfgang Holzgreve, MD

OBJECTIVE: Preterm labor has recently been reported to be
associated with an increased release of cell free fetal de-
oxyribonucleic acid (DNA) into the maternal circulation.
We have previously observed increases in both fetal cell
traffic and cell free fetal DNA in preeclamptic pregnancies.
In this study, we investigated whether fetal cell traffic is also
disturbed in pregnancies with preterm labor.

METHODS: In a case-control study, we examined 47 preg-
nancies complicated by preterm contractions that occurred
between 20 and 34 weeks’ gestation and an equal number
of matched controls. Erythroblasts were enriched for by
magnetic cell sorting and enumerated. These values were
then correlated with subsequent pregnancy outcome.

RESULTS: In the study group 16 patients delivered prema-
turely (subgroup A). The other 31 (subgroup B) delivered
at term, as did all those in the control group. No significant
difference was noted in erythroblast numbers between
either one of the subgroups and the controls.

CONCLUSION: Contrary to the reported increased levels of
free fetal DNA in maternal serum, erythroblasts in mater-
nal blood are not elevated significantly in pregnancies with
threatened premature labor or in those that deliver pre-
term. (Obstet Gynecol 2002;100:992–6. © 2002 by The
American College of Obstetricians and Gynecologists.)

Research into the use of fetal cells (specifically, erythro-
blasts) enriched from the maternal circulation as a non-
invasive method for prenatal diagnosis has yielded some
interesting new insights into pathologic conditions of
pregnancy.1,2 Our group made the novel observation
that significant elevations in fetal cell traffic into the
maternal periphery occur in pregnancies affected by
preeclampsia.3 In a large-scale prospective study,4 we
showed that this disturbance occurs as early as 20 weeks’
gestation in pregnancies at risk for preeclampsia. Similar
observations have been made in independent studies.5 In
addition, increases in fetal-maternal cell traffic have been

noted in a pregnancy with polyhydramnios6 and in
pregnancies with certain fetal aneuploidies. It is currently
unclear if fetal cell traffic is elevated in pregnancies with
growth-retarded fetuses, because of conflicting reports in
the literature.4,7,8

A recent observation that has received much attention
in this field is that of cell free fetal deoxyribonucleic acid
(DNA) in maternal plasma or serum.9 As the analysis of
this material is relatively facile by polymerase chain
reaction (PCR), it has been shown that it can be readily
used for the analysis of certain fetal genetic traits, such as
fetal sex and rhesus D status in pregnancies with a rhesus
constellation.1,10 The development of real-time PCR
methods has permitted the accurate quantitation of this
acellular fetal genetic material.1 By the use of this tech-
nology, we and others have shown that cell free fetal DNA
levels are elevated in a manner analogous to fetal cells in
pregnancies affected by preeclampsia11,12 and hydramnios6

and in pregnancy with trisomy 21 fetuses.13,14

Of particular interest is a recent report made by Leung
et al,15 who found that pregnancies at risk for preterm
labor were associated with elevated levels of cell free fetal
DNA. In this report it was proposed that these elevations
in cell free fetal DNA concentrations might be able to
distinguish between true and false preterm labor. Be-
cause prematurity is one of the major unresolved prob-
lems in perinatal medicine,16 the ability to distinguish
between true and false labor would be of considerable
obstetric benefit. To evaluate this phenomenon more
closely, we have investigated whether fetal cell traffic is
altered in a manner similar to that of the reported release
of cell free DNA in pregnancies with threatened prema-
turity.15 Previous studies from our group using both
PCR and fluorescent in situ hybridization (FISH)3,6,17

have indicated that a significant proportion of the eryth-
roblasts in maternal blood are of fetal origin. Therefore,
in this study we made no attempt to distinguish between
the two groups, but have solely used erythroblasts iden-
tified by morphology as a marker of fetal-maternal cell
traffic.
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MATERIALS AND METHODS

We conducted a case-control study with approval from
our institutional review committee. Pregnant women
with singleton pregnancies between 20 and 34 weeks’
gestation, who were admitted to our university’s depart-
ment of obstetrics and gynecology because of preterm
contractions, were asked to participate in the study. The
gestational age was confirmed by first-trimester ultra-
sound in all cases. Preterm contractions were defined as
four or more contractions every 20 minutes according to
the Canadian preterm labor investigators’ group.18 We
excluded pregnancies with known fetal malformations as
well as those who received in utero–administered glu-
cocorticoid application for lung maturation. An equal
number of control patients matched for gestational age
were included at the time of blood sampling on a one to
one basis. Control patients were recruited from our
ambulatory care service. They all belonged to a low-risk
group and all delivered at term (more than 37 � 0 weeks’
gestation). In all cases we obtained written informed
consent before blood sampling. In all patients, cultures
for bacterial vaginosis, Ureaplasma urealyticum, and group
B streptococcus were performed.

For the enrichment of fetal erythroblasts, 20 mL of
heparinized venous blood was collected. All samples
were analyzed using our well-established protocol,
whose performance we have previously validat-
ed.3,4,6,19 Analytic protocol included a single 1077
Ficol density gradient (Sigma, St. Louis, MO) and
separation with magnetic cell sorting (Milteny Biotec,
Bergisch Gladbach, Germany) using anti–CD 71 con-
jugated with magnetic microbeads (Milteny Biotec).
The positively enriched cell fraction was transferred
on to glass slides by cytocentrifugation (Shandon,
Frankfurt, Germany), and the number of erythro-
blasts was enumerated after May Grünwald staining
(Sigma) using an Axioscope light microscope (Carl
Zeiss, Jena, Germany). All blood samples were pro-
cessed immediately or stored at room temperature up
to a maximum delay of 24 hours. Analysis of erythro-
blast numbers was carried out without the knowledge
of the outcome of the pregnancy.

To determine the size of the study, a power analysis
was performed based on the results published by Leung
et al,15 which indicated that we needed to examine 34
patients and an equal number of controls for a power of
80% and a significance of .05. The variance of the
number of fetal cells in maternal blood was taken from
our previous findings.20 The data were analyzed using
the SPSS statistics software package for Windows (SPSS
Inc., Chicago, IL).

RESULTS

The maternal characteristics and gestational ages at de-
livery are summarized in Table 1. Of the study group, 16
pregnant women delivered prematurely (subgroup A),
whereas 31 delivered at term (subgroup B). Table 2
summarizes the data of all 16 patients who delivered
preterm, including the various and overlapping risks for
prematurity and the number of erythroblasts. All the
pregnant women in the control cohort delivered healthy,
normal babies at term. In the study group we recorded
six cases with vaginal bleeding, three instances of prema-
ture rupture of membranes, and four deliveries of
growth-retarded fetuses. Twenty instances of infections
(positive culture for bacterial vaginosis, Ureaplasma urea-
lyticum, and/or group B streptococcus) occurred in the
study group and four similar instances in the control
group. No patients developed preeclampsia. Four pa-
tients in the study group had polyhydramnios, and two
of them delivered preterm. Erythroblasts were elevated
in maternal blood of nine patients who delivered preterm
and in one patient who delivered at term. No patients in
the control group developed polyhydramnios.

Our study on erythroblast numbers indicated that no
significant difference was discernible between the study
group and control group, regardless of whether prema-
ture contractions were associated with preterm delivery
(Table 3 and Figure 1).

Table 1. Pregnancy Characteristics

Study group
(n � 47)

Control group
(n � 47) P

Age (y; mean � SD) 29.91 � 4.63 29.11 � 6.55 .491*
GA at time of blood

sampling
(mean � SD)

27.9 � 3.9 27.7 � 3.9 .853*

GA at delivery
(mean � SD)

36.2 � 5.0 40.3 � 1.1 �.001*

Preterm labor [n (%)] 47 (100) 0 �.001†

Preterm delivery [n (%)] 16 (34) 0 �.001†

Delivery at term [n (%)] 31 (66) 47 (100)
Vaginal bleeding [n (%)]‡ 6 (12.8) 0 .026†

Preterm rupture of
membranes [n (%)]‡

3 (6.4) 0 .242†

IUGR (�5th percentile)
[n (%)]‡

4 (8.5) 1 (2.13) .361†

Infections (GBS, BV,
Ureaplasma urealyticum
[n (%)]‡

20 (42.55) 4 (8.5) .003†

SD � standard deviation; GA � gestational age; IUGR � intrauterine
growth restriction; GBS � group B streptococcus; BV � bacterial
vaginosis.

* Unpaired t test.
† Fisher exact test.
‡ Overlapping possible.
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DISCUSSION

Previous studies have shown that certain pregnancy-
related pathologies such as preeclampsia are associated
with an increased traffic of fetal cells into the maternal
periphery.3,4 Recent studies using real-time PCR have
also indicated that the release of cell free DNA is affected
in a similar manner.21

Because increments in cell free fetal DNA have re-
cently been reported to precede the onset of true preterm
labor,15 we have examined whether the traffic of fetal
cells is affected in a similar manner. In our study we
examined a cohort of 47 pregnant women hospitalized at
our institution with premature contractions, of whom 16
delivered their newborns prematurely and 31 at term. A
control cohort of 47 gestationally matched controls was
examined at the same time. Our enumeration of en-
riched erythroblasts from these samples indicated that
there was no significant difference between any of the

groups. Because we have previously shown that almost
half the erythroblasts in the maternal circulation are of
fetal origin, both by FISH3 and single-cell PCR,17 the
total number of enriched erythroblasts can be used as a
reliable marker for fetal cell traffic.

From our results two conclusions can be drawn:

1. Preterm contractions are not associated with an in-
creased traffic of fetal cells into the maternal periph-
ery.

2. Fetal cell traffic is not elevated in those pregnancies
with subsequent premature delivery.

These data imply that the placenta provides a relatively
impermeable barrier because gross physiologic pres-
sures, such as those that occur during contractions, do
not lead to an increased influx of fetal cells into the
maternal periphery. They also indicate that the placental

Table 2. Specific Data on the 16 Preterm Patients

Patient
No.

GA at time of
blood collection

GA at
delivery NRBCs

Vaginal
bleeding (3) PROM (1) IUGR (2)

Vaginal
infection (7)

1 20 21 12 � � � �
2 20 24 0 � � � �
3 25 36 3 � � � �
4 27 29 0 � � � �
5 25 26 0 � � � �
6 26 33 0 � � � �
7 27 35 10 � � � �
8 28 34 34 � � � �
9 30 30 23 � � � �

10 30 34 0 � � � �
11 32 34 0 � � � �
12 32 37 0 � � � �
13 32 36 6 � � � �
14 34 34 6 � � � �
15 34 37 12 � � � �
16 34 35 3 � � � �

NRBC � nucleated red blood cell; PROM � premature rupture of membranes. Other abbreviations as in Table 1.

Table 3. Numbers of Enriched Erythroblasts in the Study Group With Preterm Delivery (Subgroup A), the Study Group With
Term Delivery (Subgroup B), and With the Matched Control Group

Study group

Control group
(n � 47) P

Subgroup A
(n � 16)

Subgroup B
(n � 31)

Median no. of erythroblasts (range) 2* 1† 2*† .6*‡

(0–24) (0–74) (0–29) .8†‡

Blood sampling to delivery interval
(mean � SD) (d)

25.13 (� 2.06)* 57.11 (� 34.76)† 86.46 (� 24.0)*† .001*‡

.09†‡

GA at delivery (mean � SD) 30.88 � 5.07* 39.64 � 1.32† 40.45 � 1.21*† .001*‡

.7†‡

Abbreviations as in Table 1.
P values for the two sections of the study group are shown relative to the control cohort.
*‡ Unpaired t test: subgroup A vs control group.
†‡ Unpaired t test: subgroup B vs control group.
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changes leading to preterm delivery are not such that
they lead to an increase in fetal-maternal cell traffic.

Consequently, a notable feature of our study is that
our data concerning fetal cell traffic do not parallel those
of Leung and colleagues15 regarding the release of cell
free fetal DNA in pregnancies with preterm labor. Cur-
rently the relationship between these two parameters is
unclear because the main source of cell free fetal DNA
appears to be the placenta, whereas fetal cell traffic
occurs when a few rare fetal hemopoietic cells actually
traverse the placenta. Indeed, studies from our labora-
tory have indicated that there is no significant correlation
between the levels of cell free fetal DNA and fetal cell
numbers in normal or preeclamptic pregnancies.22 This
suggests that these two phenomena may occur indepen-
dently of each other. Consequently, it is possible that
certain conditions, such as preeclampsia, are associated
with a placental lesion leading to both the increased
release of cell free fetal DNA and an influx of fetal cells
into the maternal periphery. On the other hand, in
preterm labor it appears that only the release of cell free
fetal DNA but not fetal cell traffic is affected. It will be of
interest to examine cell free fetal DNA levels in the
described study group and to compare these to fetal cell
levels, as this will indicate the relationship between these

two parameters. A further consequence of our findings is
that alterations in fetal cell traffic do not have predictive
value in determining pregnancies at risk for premature
delivery in contrast to pregnancies at risk for preeclamp-
sia.4

Increased levels of fetal DNA in the maternal periph-
ery without increased fetal-maternal cell traffic, however,
could mean that some degree of increased cellular apop-
tosis or necrosis in the placenta may precede premature
labor.
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Determination of RHD zygosity 
using real-time quantitative PCR
Ying Li, Bernhard Zimmermann, Xiao Yan Zhong, Aunrag Kumar Gupta, Wolfgang Holzgreve, 
Sinuhe Hahn

Laboratory for Prenatal Medicine, University Women’s Hospital / Department of Research, 
University of Basel, Switzerland

The determination of RHD zygosity has until
recently been a tedious procedure and is usually
inferred from the serotype, family history and/
or complex PCR-based RFLP assays [1–3]. To
address this issue, two recent publications have
shown that quantitative PCR assays can be used to
accurately genotype the predominant Caucasian
RHD locus. In the first instance, Chiu and col-
leagues determined RHD zygosity using a real-
time Taqman PCR assay in which the dosage of the
RHD gene was compared with a control locus,
namely the albumin gene [4]. In the second ap-
proach, described by Pertl and colleagues, a quan-
titative fluorescent PCR assay compared the
dosage of the RHD gene to that of the related
RhCE gene locus [5]. A further development of the
real-time PCR approach by our group has shown
that this technology is sufficiently sensitive to de-
tect even smaller differences in gene dosage,
namely those which occur in foetal aneuploidies,
in which instance only a 50% increase in gene copy
number occurs and not 100% as is the case for the
RHD gene [6].

Since it is only of interest to determine the
RHD genotype of the male partner (the mother by
definition being RHd), we were curious as to
whether a real-time Taqman PCR assay we had
previously developed for another purpose, non-in-
vasive risk-free determination of foetal RHD sta-

tus and sex from maternal plasma [7], could be used
for the determination of RHD zygosity. 

The Taqman® real-time PCR assay centres
upon the detection of a fluorescent signal gener-
ated from the cleavage of a target sequence specific
probe by the Taq polymerase during each cycle of
the PCR reaction [8]. As this signal is directly pro-
portional to the PCR product being amplified, it
permits very precise quantitation of the amount of
initial input template. This is ascertained from the
so-called threshold cycle, also termed the CT value,
the point where the exponential phase of the am-
plification curve crosses a defined threshold line.
As this CT value is a reflection of the number of
PCR cycles required to reach this threshold, the
lower the CT value is, the higher is the concentra-
tion of input target template.

By using a real-time PCR assay in which two
genetic loci are amplified simultaneously in a mul-
tiplex reaction, it is possible to determine the
relative ratio of these two loci by subtracting their
respective CT-values, e.g.: 

∆ CT = CT (target A) – CT (target B) = 
CT (RHD) – CT (SRY)

Since 1 cycle entails a doubling of the PCR
product, the ratio of RHD: SRY = 2-( ∆ CT)

Hence, if both the RHD and SRY genes are
present with the same gene dosage, e.g. 1 copy
(heterozygous RHD/RHd), the difference in

At present RHD incompatibility is still an ob-
stetric problem despite prophylactic treatment. A
very welcome recent technical advance has now
made it possible to determine the foetal RHD sta-
tus in a non-invasive risk-free manner using cell
free foetal DNA in maternal plasma. In some cases,
however, where there is a high risk that the foetus
may be affected by HDN (haemolytic disease of
the newborn), it may be of interest to determine
whether the father is hetero- or homozygous for
the RHD gene, since in the former instance there
is only a 50% chance that the pregnancy is affected.

It has recently been shown that quantitative PCR
assays, in particular real-time Taqman PCR, can be
used to determine the RHD gene dosage, and also
to determine foetal aneuploidies. We demonstrate
that the same real-time Taqman PCR assay we had
previously developed for non-invasive analysis of
the foetal RHD gene and the foetal Y chromosome
from maternal plasma can be used to determine the
paternal RHD genotype. 

Key words: RHD; paternal genotype; prenatal
diagnosis; real-time PCR
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threshold cycle number (∆ CT) will be 0 cycles,
whereas if 2 copies of the RHD gene are present
(homozygous RHD/RHD) the difference in
threshold cycle number (∆ CT) will be 1 cycle. It
should be noted that these are theoretical values
and that slight differences are bound to occur due
to minor variations in the PCR assay, especially if
one reaction proceeds with slightly greater effi-
ciency than the other. 

These minor deviations are bound to occur
even if considerable care has been taken to opti-
mise the paired PCR reactions in such a manner
that no significant difference is discernible be-
tween their efficiencies, as measured by the slope
of the PCR assays [4, 6]. 

Precautions which need to be taken in order to
obtain a correct result include the use of multiplex
PCR reactions whereby both target gene se-
quences are analysed simultaneously in the same
reaction vessel, as well as the inclusion of geno-
typically defined samples in each analysis [4, 6, 9].

By using such precautions it has previously
been shown by Chiu and colleagues [4] that real-
time PCR can be used to determine the paternal
RHD genotype. More recently we have shown that
real-time PCR can also be used to detect more
subtle increments in gene dosage (only 50%), such
as those occurring in foetal trisomies [6]. 

To test the possibility that the real-time PCR
assay we had previously developed for analysis of
the foetal RHD and SRY genes in maternal plasma
[7] could be used to determine the paternal RHD

genotype, we examined 39 DNA samples obtained
from males who had been serologically typed to be
RHD (Swiss Red Cross Blood Bank, Basel,
Switzerland). To confirm the accuracy of our assay
we also determined RHD zygosity in these sam-
ples using a modification of the real-time PCR de-
scribed by Chiu and colleagues [4]. In our investi-
gation the dosage of the RHD gene was compared
to another control locus, which in our case was the
GAPDH (glyceraldehyde 3-phosphate dehydro-
genase) gene and not the albumin gene. The rea-
son for this modification was that we have previ-
ously described the use of the Taqman real-time
PCR assay for this GAPDH control locus in a
number of studies, using either cell free DNA 
[7, 10] or genomic DNA [6]. In our analysis, all
samples were run in triplicate.

The results of our analysis indicated that the
samples in our investigation clustered into two
specific groups, one having a median of almost 0
and the other of approximately 1 (see Figure 1A).

To ascertain the genotype of these two groups
we also tested our samples using a modification of
the assay described by Chiu and colleagues [4],
whereby we compared the dosage of the RhD gene
with that of the GAPDH gene [6]. Here we would
expect an opposite pattern, as the GAPDH gene is
normally present in 2 copies, i.e. the RHD/RHD
genotype should yield a ∆ CT value of 0, whereas
the RHD/RHd genotype should differ by 1 cycle
from the CT value for the GAPDH reference. In
this analysis we again found that the samples

Figure 1

Box-plot showing the discernment of RHD zygosity 
by real-time PCR. In Figure 1A, the RHD gene has been
examined in comparison with the SRY gene. In Figure 1B,
the RHD gene has been examined in comparison with the
GAPDH gene. The lines inside the boxes indicate the 
median value, whereas the upper and lower limits of the
boxes represent the 75th and 25th percentiles respectively.
The upper and lower horizontal bars indicate the 90th and
10th percentiles respectively. Outliers are indicated by
open circles. The X axis indicates the RHD genotype de-
termined, whereas the Y axis indicates the pertinent ∆ CT

values. No overlap was observed between the two geno-
typic groups. The cut-off values are indicated by stippled
lines.

A

B



Determination of RHD zygosity using real-time quantitative PCR 444

clearly clustered into two groups, one with a
median ∆ CT value of approximately –0.5 and the
other a median ∆ CT value of approximately 0.5 (see
figure 1B). It is of interest that a 100% concor-
dance was observed between the 2 groups of sam-
ples in both assays. 

Interpretation of the results, however, is not as
straightforward as it would seem, due to a signifi-
cant deviation from the expected ∆ CT values. In
this manner, even though the expected ∆ CT values
in the first SRY:RHD assay would be –1 for the
RHD/RHD genotype and 0 for the RhD/Rhd
genotype, it is apparent that the PCR reaction for
the SRY gene has proceeded with slightly better
efficiency than that for the RHD gene. Conse-
quently the expected RHD:SRY ∆ CT value in the
case of the RHD/RHD genotype has shifted up
from the theoretical value of –1 to almost 0, whilst
that for the RHD/RHd genotype has similarly also
been shifted up by 1 cycle from the theoretical
value of 0 to almost 1. 

In an analogous manner the GAPDH PCR re-
action has proceeded slightly more efficiently than
that for the RHD gene, resulting in a shift in the
expected RHD:GAPDH ∆ CT value. In this case
the ∆ CT value for the homozygous RHD/RHD
genotype has shifted down by almost half a cycle
from the theoretical value of 0 to almost –0.5.
Equally, that for the heterozygous RHD/RHd
genotype has been shifted down by 0.5 cycles from
the theoretical value of 1 to almost 0.5. 

We have previously indicated that to counter
these unwanted shifts it is possible to use ∆∆ CT

values, whereby the CT value of the sample being
analysed is compared to a mean CT value com-
prised of the analysis of a large number of samples
of known genotype [6, 9]. Furthermore, these
drifts in ∆ CT values stress the importance of in-
cluding samples of known genotype in each analy-
sis, to counter inter-run variations [4, 6, 9]. It is also
imperative to analyse the samples in a multiplex
manner whereby both target genes are analysed
simultaneously in the same reaction vessel, and not
to attempt this type of analysis by comparing the
assessed gene dosage against a standard curve [4,
6, 9].

An important feature that is evident from our
analysis is that the two groups can be segregated
with 100% accuracy by the use of particular cut-
off values. With regard to the RHD/SRY assay, we
determined that a cut-off ∆ CT (CT RHD – CT SRY)
value of 0.5 could be used to distinguish between
the heterozygous (RHD/RHd) and homozygous
(RHD/RHD ) genotypes, in that the values for the
RHD/RHd genotype had ∆ CT values which clus-
tered around 1, while RHD/RHD genotype had
∆ CT values which clustered around 0 (Figure 1A).
No overlap between the two groups was found to
occur.

Similarly, for the RHD/GAPDH assay, a ∆ CT

(CT RHD – CT GAPDH) cut-off value of 0.0 could

be used to distinguish the homozygous RHD/
RHD genotype form the heterozygous RHD/
RHd one. In this test the heterozygous (RHD/
RHd ) genotypes have ∆ CT values above 0.0, while
the homozygous (RHD/RHD ) genotype had ∆ CT

values below 0.0 (Figure 1B). Once again, no over-
lap between the two groups was found.

As explained previously, the reason for the dif-
ference in the ∆ CT cut-off values between these
two assays is that for the RHD/GAPDH assay the
RHD gene is compared with both alleles of the
GAPDH gene on chromosome 12, whereas for the
RHD/SRY assay, the dosage of the RHD gene is
compared to the single SRY allele on the Y chro-
mosome. 

The validity of our analysis is underscored by
our subsequent examination of 3 samples known
to be from RHD heterozygous males, in which
case we were able to determine the correct geno-
type in a blinded manner (data not shown).

In the sample cohort of 39 samples we deter-
mined that 26 (66%) were heterozygous for the
RHD gene (RHD/RHD) and 13 (34%) were ho-
mozygous (RHD/RHD). Once again there was
complete concordance between the 2 assays. Al-
though the expected frequency of RHD hetero-
zygosity would be 56% [1], it is probable that 
our results are slightly skewed by the small num-
ber of cases examined.

Although our data obtained by the use of two
independent real-time PCR assays do serve to in-
dicate that this technology can potentially be used
for the determination of RHD zygosity, we have
also shown that the employment assays and their
subsequent analysis require considerable experi-
ence if a correct diagnostic outcome is to be
achieved. Furthermore, the data also emphasise
the importance of running genotypically well de-
fined control samples in parallel with the sample
being analysed, as the theoretically expected ∆ CT

values cannot be used. Our study also indicates the
usefulness of running two independent analyses in
parallel as a potential safeguard against erroneous
results, a feature we have also observed previously
when attempting to discern foetal trisomies by the
use of real-time PCR [6, 9].

Despite these promising results we caution
against the premature clinical use of these assays,
since their efficacy has not yet been determined in
large scale studies, nor is it yet known how they
may be influenced by the RHD polymorphisms
[1–3] prevalent in many ethnic populations. 
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Inability to Detect Cell Free Fetal DNA in the
Urine of Normal Pregnant Women nor in Those

Affected by Preeclampsia Associated
HELLP Syndrome

Ying Li, MSc, Xiao Yan Zhong, MD, Anjeung Kang, MD, Carolyn Troeger, MD,
Wolfgang Holzgreve, MD, and Sinuhe Hahn, PhD

OBJECTIVE: Recent reports have indicated that cell-free fetal DNA can be detected in the urine of
pregnant women. We attempted to reproduce those data.
METHODS: Urine samples were collected from 18 normal pregnant women (11 with a male fetus).
Urinary DNA was examined by Y-chromosome-specific nested polymerase chain reaction (PCR) or
real-time PCR. Samples were also examined from two pregnancies complicated by HELLP (hemolysis,
elevated liver enzymes, and low platelets) syndrome, which had very high levels of cell-free fetal DNA in
the maternal plasma. To validate our data, a quantitative comparison of different DNA extraction procedures
used in the previous reports was performed.
RESULTS: In no instance were we able to detect any fetal DNA in maternal urine, although copious
quantities of cell-free fetal DNA were present in the maternal plasma of those pregnancies affected by
HELLP syndrome. Our quantitative analysis of the various extraction procedures used indicated that the
commercial column elution method we used was comparable, if not superior, to the noncommercial methods
used in previous reports.
CONCLUSION: Our data strongly suggest that cell-free fetal DNA is not readily detectable in maternal
urine, even under conditions known to increase kidney permeability. ( J Soc Gynecol Investig 2003;10:
503–8) Copyright © 2003 by the Society for Gynecologic Investigation.

KEY WORDS: Fetal DNA, maternal urine, PCR, prenatal diagnosis, preeclampsia,
HELLP syndrome.

C urrently two main approaches have emerged for
noninvasive risk-free detection of fetal genetic traits,
namely, the enrichment and isolation of fetal cells

from the maternal circulation or the analysis of extracellular
fetal DNA in maternal plasma or serum.1,2 Recent reports have
indicated that cell-free fetal DNA may be detected by poly-
merase chain reaction (PCR) in maternal urine, thereby raising
hopes of a noninvasive method for prenatal diagnosis.3,4

In the first of these reports, Botezatu and colleagues3 at-
tempted to address an important issue regarding the very short
half-life of cell-free DNA in the peripheral circulation.5 They
hypothesized that cell-free DNA may be cleared by the kid-
ney. In their studies they examined urine samples obtained

from women immediately before the termination of first-
trimester pregnancies, in whom they were able to detect
Y-chromosome-specific sequences in eight of ten cases with a
male fetus. No false-positive results were observed in any of
the nine control cases, who were pregnant with female fetuses.
Their studies further indicated that the DNA present in the
urine had a size of less than 200 bp.

The second report, by Al-Yatama and colleagues,4 exam-
ined urine samples from 80 pregnant women. In their study
using a nested PCR assay they were able to detect Y-chro-
mosome-specific sequences in 38% of the urine samples from
women carrying a male fetus. One false-positive result was
recorded.

Encouraged by those reports, we attempted to confirm
those data. In our study, we examined urine samples from
normal healthy pregnancies, as well as two cases affected by
preeclampsia-associated HELLP (hemolysis, elevated liver en-
zymes, and low platelets) syndrome. The reason for examining
this specific pregnancy-related disorder is that we and others
have previously observed that the levels of circulatory fetal
DNA are significantly elevated in such conditions.6–8 Further-
more, renal function is known to be affected in such affected

From the Laboratory for Prenatal Medicine, University Women’s Hospital/Depart-
ment of Biomedical Research, University of Basel, Basel, Switzerland.

This work was supported in part by Swiss National Science Foundation grant number
3200-3200-055614.98/1 and National Institutes of Health (USA) contract number
N01-HD-4-3202.

Preliminary data from this study were presented at the Second Conference on Circu-
lation Nucleic Acids in Serum and Plasma (CNAPS), Hong Kong, February 20–21, 2001,
and have been published in the conference proceedings (reference 18).

Address correspondence and reprint requests to: Sinuhe Hahn, Laboratory for Prenatal
Medicine, University Women’s Hospital/Department of Biomedical Research Spital-
strasse 21, CH 4031 Basel, Switzerland. E-mail: shahn@uhbs.ch

Copyright © 2003 by the Society for Gynecologic Investigation. 1071-5576/03/$30.00
Published by Elsevier Inc. doi:10.1016/S1071-5576(03)00155-2



pregnancies, evidenced by the enhanced presence of protein in
the urine.9 Hence, it is to be expected that, if cell-free DNA
is cleared by the kidney, its presence in urine may be enhanced
under conditions of preeclampsia or the therewith associated
HELLP syndrome.

MATERIALS AND METHODS
Sample Collection

This study was approved by the Cantonal Institutional Review
Board of Basel, Switzerland. Informed consent was requested
in all instances. We chose to examine pregnancies close to
term, as it has been shown that the amount of cell-free fetal
DNA in maternal plasma is then at a maximum.5 Urine sam-
ples were carefully collected from 20 pregnant women; 18 of
them delivered normal healthy babies and had an unremark-
able pregnancy history, the other two pregnant women had
manifest HELLP syndrome. This was defined by blood pres-
sure over 160/110 mm Hg on at least two occasions, protein-
uria of at least 5 g on a 24-hour urine collection, hemolysis
(total bilirubin � 1.2 or lactate dehydrogenase � 600 IU/L),
elevated liver enzymes (aspartate aminotransferase � 70 IU/L)
and low platelets (�100,000 platelets/dL), unremitting head-
ache, nausea, visual impairment, and right upper quadrant
pain. Both fetuses were delivered prematurely (28 weeks and
32 � 6 weeks) and had growth retardation, with fetal weights
at delivery of 840 g and 1250 g.

To examine the efficacy of the different DNA extraction
procedures, samples (n � 12) were collected from healthy
nonpregnant volunteers.

Sample Processing
The urine samples were collected in standard Sarstedt
Monovette tubes (Sarstedt, Sevelen, Switzerland) used for the
collection of blood samples. These tubes contained 1.6 mg
potassium ethylenediamine tetraacetic acid (KEDTA)/mL to-
tal volume, as the presence of this chelating agent may aid in
the stabilization of cell-free urinary DNA by inactivating any
nucleases present. The same tubes were used for the collection
of maternal blood samples, thereby reducing the margin of
error which could be caused by inappropriate sample collec-
tion. Urine samples were centrifuged at 1200 � g for 10 minutes.
The supernatant was recentrifuged at 3000 � g for 10 minutes to
ensure that it was cell free. The cell-free urine was aliquoted
and stored at �20C.

DNA was extracted using High Pure PCR Templates Pu-
rification Kit (Roche, Basel, Switzerland) according to the
manufacturer’s protocol. An 800-�L cell-free urine sample
was used for DNA extraction. The DNA was eluted with 50
�L of elution buffer. The DNA was then either analyzed by a
highly sensitive nested PCR assay or real-time PCR. We have
used this approach for the successful analysis of cell-free fetal
DNA in maternal plasma and transplant-derived cell-free
DNA in the urine of kidney transplant recipients.

To compare the three different extraction protocols, we split
each urine sample in three parts. For the method used by

Botezatu and colleagues,3 cell-free DNA was extracted from
2.5 mL of the cell-free urine sample using 3.75 mL of 6 M
guanidine isothiocyanate (Invitrogen Life-Technologies/
GIBCO-BRL, Basel, Switzerland), 400 �L of a commercial
DNA binding resin, and coupled column technology (Wizard
Minipreps DNA Purification Resin; Promega, Madison, WI)
as described by those authors.3 The DNA was eluted with 50
�L of sterile distilled water and then analyzed by real-time
PCR.7 We also examined the method used by Al-Yatama and
colleagues,4 where again the 2.5-mL cell-free portion of the
paired urine sample was used. In this method, the DNA from
the 2.5-mL cell-free urine aliquot was extracted using 1.5 mL
of a solution containing 6M guanidine isothiocyanate (Invitro-
gen), 13 mM ethylenediamenetetra-acetic acid (EDTA) (Sig-
ma-Aldrich, St. Louis, MO), 0.5% sodium N-lauryl-sarcosine
(Sigma-Aldrich), 10 �g glycogen (Sigma-Aldrich), and 26 mM
Tris-HCl (pH 8.0) (Sigma-Aldrich). This mixture was incu-
bated at 60C for 10 minutes, after which the DNA was
precipitated by addition of 4 mL isopropanol (Sigma-Aldrich)
and incubated at �20C for 15 minutes. After high-speed
centrifugation (12,000 � g for 15 minutes), the pellet was
carefully washed with 70% ethanol and resuspended in 50 �L
TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0). Finally, 50 �L
2% Chelex-100 (Sigma-Aldrich) was added to remove
inhibitors.

Nested and Real-Time PCR
A multiplex PCR was performed to amplify the �-globin and
SRY genes simultaneously. This assay has been described in
detail previously, where we have used it both for the analysis
of single cells and well as cell-free fetal DNA in the maternal
circulation.10,12,13 Briefly, the 50-�L PCR amplification mix
contained 5 �L of template DNA, 25 pM of each external
primer pair, 1.5 mM magnesium chloride, 300 nM dNTPs,
and 2 IU Taq polymerase (Promega). Amplification was done
using a hot start at 95C for 5 minutes and 30 subsequent cycles
of 95C for 30 seconds, 55C for 30 seconds, and 72C for
1 minute. For the nested PCR, a 1-�L aliquot of the external
PCR product was transferred to a second 20-�L PCR reaction
mix containing 10 pM of the nested internal primer pairs, 1.5
mM magnesium chloride, 300 nM dNTPs, and 2 IU Taq
polymerase (Promega). The amplification was carried out as
described above. The PCR products were analyzed on a 2%
agarose gel.

Real-time PCR specific for the SRY and GAPDH (glyc-
eraldehyde-3-phosphate dehydrogenase) genes was carried out
using a Perkin Elmer Applied Biosystems 7700 Sequence De-
tector (Taqman; Perkin Elmer Applied Biosystems, Boston,
MA) and conditions previously established in our laboratory
for the analysis of cell-free fetal DNA in maternal plasma.7 In
brief, the 25-�L amplification reaction mixture consisted of 2
�L of template DNA, 300 nM of each primer, 150 nM of
dual-labeled Taqman probe, 12.5 �L TaqMan Universal PCR
Master Mix, 3.5 mM magnesium chloride, 100 mM dNTPs,
0.025 U AmpliTaq Gold, and 0.01 U Amp Erase (Perkin-
Elmer). The following conditions were used for the PCR
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amplification: an initial incubation at 50C for 2 minutes and at
95C for 10 minutes, followed by 40 cycles of 60C for 1 minute
and 95C for 15 seconds. Each sample was analyzed in triplicate.
The concentration of the DNA template was determined from
a standard curve, which was included in each real-time PCR
analysis.

RESULTS
In our initial set of experiments we obtained 15 urine samples
from women with normal pregnancies. Eight of these women
were pregnant with singleton male fetuses. Extracellular DNA
was extracted from these samples using commercial column
technology, which we previously found to be effective for
isolating cell-free fetal DNA from maternal plasma.7,10,11 In
this study we made extensive use of commercial column
technology marketed by Roche; however, we previously ob-
tained analogous results with technology marketed by
Qiagen.10,11

For the analysis of these urine samples we used a highly
sensitive nested PCR assay specific for the SRY gene on the Y
chromosome, which we had previously shown to be suitable
for the analysis of single fetal cells and cell-free fetal DNA in
maternal plasma.10,12,13 Despite the sensitivity of this assay, we
were not able to detect any Y-chromosome-specific sequences
in the maternal urine samples from those pregnancies bearing
male fetuses (Figure 1). No false-positive results were recorded
in the pregnancies with female fetuses. DNA was present in all
of these samples, which was evident from the results obtained
using a PCR assay specific for the ubiquitous �-globin gene
(Figure 1).

Our data were therefore in disagreement with the reports of
Botezatu et al3 and Al-Yatama et al.4 One possibility for this
discrepancy could be the use of different DNA isolation pro-
cedures. In this regard, the procedure used by Botezatu and
colleagues involved a denaturing step with guanidinium iso-

thiocyanate, followed by adsorption of the DNA on commer-
cial column technology (Wizard column; Promega).3 Al-
Yatama and colleagues also used a guanidinium isothiocyanate
step, followed by conventional precipitation of the DNA using
isopropanol.4

For this reason, we investigated whether these two protocols
were more effective than the method we had chosen, and
could thereby account for the discrepancy in the results we had
obtained. Consequently, we compared the efficacy of the three
methods on the same urine samples (n � 12), by quantifying
the levels of total free DNA as determined by real-time PCR
specific for the ubiquitous GAPDH gene.7 Surprisingly, these
experiments indicated that the total levels of cell-free DNA
obtained were significantly greater using the method we had
chosen (Figure 2 and Table 1). It is, therefore, unlikely that our
failure to detect any fetal DNA in maternal urine resulted from
a technical deficit.

We and others have previously reported that circulatory
fetal DNA concentrations are elevated in maternal plasma in
pregnancies affected by preeclampsia6,7 and especially HELLP
syndrome.7,8 Therefore, we also examined urine samples from
two such patients. As controls, we examined urine and mater-
nal plasma samples from three normal healthy pregnant

Figure 1. Analysis of total cell-free DNA and male fetal DNA in
maternal urine by multiplex nested PCR. Total cell-free DNA was
detected by a PCR assay for the ubiquitous �-globin gene (G). Male
fetal DNA was detected by an assay specific for the SRY gene on the
Y chromosome (Y). M � 25-bp DNA ladder molecular weight
marker (Invitrogen). G � �-globin PCR product (240 bp); Y �
SRY gene PCR product (133 bp). Samples 1 and 2 � amplification
of urine samples from pregnant women carrying a male fetus. No
Y-chromosome-specific DNA was detectable. Sample 3 � positive
control from male genomic DNA, in which both globin- and SRY-
specific signals were detected. Sample 4 � negative control from
female genomic DNA, in which only the globin-specific amplicon
was detected.

Figure 2. Box plot illustrating the levels of total cell-free DNA
obtained from the same urine samples using three different extraction
methods. The concentration of total cell-free DNA was quantified
using real-time PCR for the GAPDH gene. The median and range
values are indicated in Table 1. The lowest, second lowest, middle,
second highest, and highest box points represent the 10th, 25th,
median, 75th, and 90th percentiles, respectively. Extreme outliers
have been excluded from the graphical representation to aid clarity.
Although the median DNA concentration obtained by the Roche
column technology (G1) appears to be the highest, no significant
difference was noted when compared with the two other methods
(G2 and G3, Botezatu et al3 and Al-Yatama et al4).

Table 1. Comparison of the Three DNA Extraction Methods
Tested on the Same 12 Urine Samples Using Real-Time PCR for
the GAPDH Gene

Method Median Range

Roche column technology7 832.5 0–16, 238.4
Botezatu et al3 177.3 0–16, 057.2
Al-Yatama et al4 154.2 0–21, 369.6

Values are genome equivalents/mL of urine.
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women. Two of them delivered a healthy boy, the other a girl.
We examined both the level of cell-free fetal DNA in the
maternal plasma and that in maternal urine. This study found
that the concentration of cell-free fetal DNA in the maternal
plasma was indeed highly elevated in pregnancies affected by
the preeclampsia-associated HELLP syndrome (4088 copies
and 6683 copies/mL plasma, respectively), compared with
slightly over 200 copies/mL of maternal plasma detected in the
control pregnancies (Table 2). No male fetal DNA, however,
was detected in the maternal urine of any of these samples
tested.

DISCUSSION
Recent reports have indicated that cell-free fetal DNA may be
detectable in the urine of pregnant women, thereby opening
up the possibility for a noninvasive method of prenatal analysis
of fetal genetic traits.3,4 In our experiments we were not able
to reproduce these results, although we took considerable
precautions to ensure that we were not mislead by a technical
deficit. These precautions included the use of two different
PCR approaches, a highly sensitive nested PCR assay that we
have successfully used for the analysis of single cells,12,13 as well
as a robust real-time PCR assay, which we have used for
highly reproducible analysis of cell-free fetal DNA in maternal
plasma.8,11,13

We have also made a quantitative comparison of the various
DNA extraction protocols used, to ensure that we had ex-
tracted a comparable amount of cell-free DNA by our proce-
dure. This study found that the method we had chosen was
comparable, if not superior, to the other methods used. Al-
though it can be argued that the Roche column we used is not
as efficient for the absorption of small DNA molecules as the
Promega Wizard column, we nevertheless feel confident that
our results are correct, as we have used these columns on
several hundred occasions for the analysis of cell-free fetal
DNA in maternal plasma, most of which is in the form of small
nucleosome-associated fragments.14 By using a real-time PCR
assay we were also able to determine that our amplification of
DNA templates obtained by all three DNA extraction methods
tested proceeded with equal efficiency, as we did not observe
any significant alterations in the respective amplification pro-
files (data not shown). It is, therefore, unlikely that toxic
guanidinium isothiocyanate compounds hindered the PCR
analysis.

Furthermore, in a separate series of studies, we and others
have shown that the Roche column DNA extraction method
and PCR assays described above can be used successfully to
analyze cell-free kidney transplant-derived DNA in the urine
of kidney transplant recipients.17–19

One further possibility for the discrepancy between our data
and that of Botezatu and colleagues3 is that they used the
DYZ1 highly repetitive sequence (3000–5000 reiterated cop-
ies). Our reason for not using this approach is that PCR assays
for such highly repetitive sequences are very prone to contam-
ination. Furthermore, if fetal DNA in maternal urine can only
be detected by such an approach, then it is of limited value, as
most genes of interest clinically exist as single copy genes. Of
interest is that Al-Yatama and colleagues4 performed a nested
PCR assay for a single-copy gene previously described by Lo
and colleagues.15 Apart from the low sensitivity this group
attained in their analysis of cell-free fetal DNA in maternal
urine samples, the specificity of their assay, however, has to be
questioned because, for their analysis of circulatory fetal DNA
in maternal plasma, they obtained a specificity of only 88%,
which is significantly lower than that which we and others
have achieved using real-time PCR (sensitivity � 95%; spec-
ificity 100%).2

Our data, however, not only challenge the premise that
cell-free fetal DNA can be detected in maternal urine, but they
also question the hypothesis made by Botezatu and colleagues
that the short half-life of this material in the circulation can in
part be accounted for by its clearance by the kidney.3 This
aspect is most evident from our data regarding the samples
analyzed from pregnancies affected by HELLP syndrome, in
which discernible damage to the kidneys was evident, as de-
termined by the presence of elevated levels of urinary albumin.
Yet, despite this evidence of increased renal permeability and
the presence of copious amounts of circulatory fetal DNA in
the maternal plasma (approximately 20- to 30-fold greater than
in the controls), we were in both instances not able to detect
any cell-free fetal DNA in these maternal urine samples.

A further interesting aspect of our data is that once again we
observed that the total levels of cell-free DNA, which are
representative of the levels of cell-free maternal DNA are
dramatically elevated in pregnancies affected by HELLP syn-
drome compared with the control group (again approximately
30-fold), thereby confirming earlier observations.7,8 In these
two patients, however, no increase in the total levels of cell-

Table 2. Levels of Total and Fetal Cell-Free DNA in Maternal Plasma and Urine

Subject
Total cell-free DNA
in maternal plasma*

Cell-free fetal DNA
in maternal plasma*

Total cell-free DNA
in maternal urine

Cell-free fetal DNA
in maternal urine

C1 15, 867.2 215.8 12, 561.6 0.0
C2 27, 046.3 224.7 19, 443.2 0.0
C3† 7986.6 0.0 9898.2 0.0
P1 359, 463.1 6683.1 11, 214.2 0.0
P2 9, 528, 103.1 4088.7 11, 256.1 0.0

C � pregnant women with normal outcome; P � pregnancy affected by HELLP syndrome.
Values are indicated as genome equivalents/mL urine.
* Total cell free DNA was measured using a real-time PCR assay for the GAPDH gene, and cell free fetal DNA was detected using a assay specific for the Y chromosome.
† C3 gave birth to a baby girl; hence, no male fetal DNA was detectable in maternal plasma.
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free DNA were noted in their urine. Indeed, the cell-free
urinary DNA levels were of the same order as those recorded
in the control group.

Hence, these combined data regarding cell-free fetal and
maternal plasma DNA suggest that neither of these cell-free
DNA species is removed from the maternal circulation by the
kidney. These data, however, do not address the origin of
urinary cell-free DNA. This pertinent question has been ex-
plored most extensively by the use of kidney transplant recip-
ients.17–19 In those studies, it has been observed that most, if
not all, of the cell-free DNA in the urine is derived from the
donor kidney.18,19 A further pertinent observation we made
during these studies on kidney-transplant recipients was that
the levels of transplant-derived cell-free DNA in recipient
plasma did not correlate with the corresponding levels in
recipient urine.18 Because the cell-free DNA in the plasma
does not appear to be transported by the kidney into the urine,
this result implies that there are two different sources for these
discrete cell-free DNA species: circulatory cell-free DNA in
the plasma is derived from cells in direct contact with the
blood, whereas urinary cell-free DNA is derived from cells in
contact with the urinary system. This hypothesis is supported
by a recent report indicating that almost all of the cell-free
DNA in the circulation is derived from the hemopoietic
system itself20 and that the solid organs make only a small
contribution to the total amount of circulatory cell-free
DNA.21

Our data, furthermore, complement a recent report made
by Lo and colleagues,15 in which they found that clearance of
cell-free fetal DNA from the maternal circulation was signifi-
cantly reduced in pregnancies affected by preeclampsia. Lau
and colleagues16 showed that in preeclampsia, circulatory fetal
DNA had an increase in half-life of almost 2 hours compared
with approximately 15 minutes in normal control pregnancies.
Therefore, our data and those of Lo et al15 directly argue
against the potential role of the kidney in the clearance of
cell-free fetal DNA from the maternal circulation. The reason
for this is that under conditions of increased renal permeability,
evident from the entry of large protein molecules into the
urine, cell-free DNA displays a decreased rate of clearance
from the maternal circulation. From our data this is evident by
the increased accumulation of both cell-free fetal and maternal
DNA species in the plasma of the two patients with HELLP
syndrome. If the premise of Botezatu and colleagues were
correct, one would expect to see increased clearance of cell-
free DNA from the maternal circulation by the urinary system
under conditions of preeclampsia and HELLP syndrome, and
as such one would expect a reduction in the levels of these two
species in the maternal circulation. Because neither of these
events appears to occur, ie, increased clearance from the pe-
riphery or increased presence of fetal and maternal cell-free
DNA in maternal urine under conditions of increased renal
permeability, it is highly unlikely that the kidney plays a role in
the removal of cell-free DNA from the peripheral circulation.

The pertinent question that now remains to be addressed is
how cell-free DNA is cleared from the circulation. Without

delving too deeply into speculation, it is likely that the cell-free
DNA is removed by detoxification organs, such as the liver.
Because the liver is affected under conditions of preeclampsia
and especially HELLP syndrome, it is to be expected that the
rate of removal is reduced, thereby leading to greater accumu-
lation of these molecules in the peripheral circulation as de-
scribed by Lau and colleagues.16 Alternatively, it is possible that
circulatory cell-free DNA is absorbed and removed by the
endothelium or even by circulating blood cells, because these
cells are in constant contact with this material. The endothe-
lium as well as the maternal immune system are also affected in
preeclampsia, so one would again expect that these alterations
could be associated with a decreased rate of clearance. It is
clear, however, that further studies will be necessary to clarify
this important aspect of circulatory cell-free DNA physiology.

In summary, our current investigations strongly suggest that
cell-free fetal DNA is not present in maternal urine and rather
that the observations made in the two previous reports may
have been the result of spurious contaminants detected by the
use of highly repetitive sequences or nested PCR protocols
without adequate precautions.
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stable, showing a relative decrease in cholesteryl ester FAs
and increase in phospholipid FAs. In both cholesteryl
esters and phospholipids, very-long-chain n-6 FAs and
n-3 FAs were the most reliable and stable. Eicosapenta-
enoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-
3), both n-3FAs of marine origin, were highly reliable in
all fat fractions (Table 1). Although the proportion of n-3
PUFAs was lower in cholesteryl esters than in erythrocyte
membrane phospholipids (2.8% vs 9.4%), the variability
was larger in cholesteryl esters than in erythrocyte mem-
brane phospholipids (SD, 1.7% vs 1.4%).

Mailing blood samples offers a cost-effective approach
and enables the study of large numbers of samples (13 ). In
practice, blood specimens can be sampled by phleboto-
mists at individuals’ homes without the need for strict
preanalytic procedures (i.e., direct centrifugation, separa-
tion, dispensing, and freezing). This approach ensures
lower numbers of missing values, high comparability of
groups, and thereby, a high internal validity of the study.
We also tested whether direct centrifugation of SST tubes
provided extra advantages, which was not the case.

Although the systematic error for some of these ana-
lytes (glucose, lipids, and C-reactive protein) was statisti-
cally significant, the degree of error was small (�3%),
which is in accordance with studies that found a high
stability during storage (2–8). EDTA-plasma cholesteryl
esters, serum cholesteryl esters, and phospholipids in
EDTA-erythrocyte membranes yielded similar reliability
coefficients. Major FAs and their composites were found
to be especially reliable, but saturated FAs and minor FAs
that constitute �1% of total FAs were less so. The CVs in
the present study (�4–5%) were small when balanced
first against the intra- and interassay measurement errors
(�2–5%) and second against the within-person variability
of FAs over time (�9%) (14, 15). Essential n-6 and n-3
PUFAs were especially reliable, both in EDTA plasma and
serum and, to a somewhat lesser extent, in erythrocyte-
membrane phospholipids. These FAs are not synthesized
endogenously, but their circulating concentrations de-
pend on the amounts in foods and reflect dietary intake
well (16, 17).

We conclude that after a delay of 1 or 2 days in blood
processing, glucose, lipids, C-reactive protein, and indi-
vidual FAs adequately rank individuals according to
baseline values. These analytes are generally stable after
next-working-day mail delivery at room temperature; this
procedure may therefore be suitable for many epidemio-
logic investigations. For the FA composition, use of EDTA
plasma is the most practical and reliable, whereas for
glucose, lipids, and C-reactive protein, plasma and serum
are equivalent. Mailing blood samples offers a cost-
effective approach for risk factor assessment with accept-
able stability and reliability.

We thank Janette de Goede, Lucy Okma, and P. van de
Bovenkamp (deceased August 11, 2002) for sample collec-
tion and laboratory management. The research was
funded by the Netherlands Heart Foundation (NHS) as
part of a grant for the Alpha Omega Trial (Grant 510.017).
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Detection of Donor-specific DNA Polymorphisms in the
Urine of Renal Transplant Recipients, Ying Li,1 Deirdré
Hahn,2 Xiao Yan Zhong,1 Peter D. Thomson,2 Wolfgang
Holzgreve,1 and Sinuhe Hahn1* (1 University Women’s Hos-
pital/Department of Research, University of Basel, CH
4031 Basel, Switzerland; 2 Division of Paediatric Nephrol-
ogy, University of the Witwatersrand and Johannesburg
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spondence to this author at: Laboratory for Prenatal
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Research, Schanzenstrasse 46, CH 4031 Basel, Switzer-
land; fax 41-61-325-9399, e-mail shahn@unbs.ch)

Recently, a novel form of chimerism, termed urinary
DNA chimerism, has been described in kidney transplant
recipients in that cell-free DNA from the donor kidney
was detected in the recipient’s urine (1 ). Quantitative
analysis of this urinary donor-derived DNA has indicated
that it may serve as a new marker to monitor kidney
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transplant engraftment because increased concentrations
were present under conditions of graft rejection, which
decreased to basal values after immunosuppressive treat-
ment (2 ). A caveat of these studies was that they relied on
sex-disparate donor–recipient conditions: because the
PCR assays used were specific for the Y chromosome,
cell-free DNA from the donor kidney could be detected
only in the urine of female recipients who had received
male kidneys (1, 2).

We examined whether other kidney donor-derived
DNA sequences could be detected in the urine of trans-
plant recipients, using PCR assays specific for highly
polymorphic short tandem repeat (STR) loci, also termed
microsatellite markers. Previous examinations using such
polymorphic genetic loci have shown that they can be
used for differentiating female fetal cells from maternal
ones (3, 4 ) or for the gender-independent detection of
cell-free fetal DNA in maternal plasma (5, 6). For this
purpose, we tested for the presence of donor-specific STR
loci in the urine of cases in which the donor and recipient
were either of the same sex or the donor was female and
the recipient was male.

For our study, which was approved by our respective
ethics review boards, five cases involving living-donor
(four related and one unrelated) transplants were en-
rolled.

Blood samples from both the recipient and donor were
obtained before the transplantation, and spontaneous
urine samples were obtained from the previously anuric
recipients post transplantation. Because there is some
tentative evidence that DNA in urine can be stabilized by
the presence of the chelating agent EDTA (7 ), the urine
samples were collected and shipped in standard
Monovette tubes (Sarstedt) used for the collection of
blood samples (containing 1.6 mg of potassium
EDTA/mL of total volume).

Whole-blood DNA and cell-free urinary DNA were
extracted with use of the High Pure PCR Template
reagent set (Roche), according to the manufacturer’s in-
structions.

The donor–recipient pairs were first genotyped using
100 ng of total genomic DNA to monitor microsatellite
markers on chromosome 21 in a fluorescent PCR assay
established previously in our laboratory (3 ):

D21S11: forward, 5	-TAT GTG AGT CAA TTC CCC
AAG TGA-3	; reverse, 5	-GTT GTA TTA GTC AAT
GTT CTC CAG-3	

D21S1432: forward, 5	-CTT AGA GGG ACA GAA CTA
ATA GGC-3	; reverse, 5	-AGC CTA TTG TGG GTT
TGT GA-3	

D21S1435: forward, 5	-CCC TCT CAA TTG TTT GTC
TAC C-3	; reverse, 5	-GCA AGA GAT TTC AGT
GCC AT-3	

D21S1440: forward, 5	-GAG TTT GAA AAT AAA GTG
TTC TGC-3	; reverse, 5	-CCC CAC CCC TTT TAG
TTT TA-3	

The D21S11 and D21S1435 forward primers were 5	-
labeled with the fluorescent dyes carboxyfluorescein

(FAM) and 2,7-dimethyloxy-4,5-dichloro-6-carboxyfluo-
rescein (HEX), whereas the D21S1432 and D21S1440 re-
verse primers were 5	-labeled with tetrachlorofluorescein
(TET) and HEX, respectively. All primers were obtained
form Microsynth Incorporated. This step allowed us to
determine which of the STR loci on chromosome 21 were
informative, in that a particular STR allele present in the
donor genome was absent from that of the recipient. We
should then be able to determine whether we could detect
this donor-specific informative STR allele in the urine of
the transplant recipient.

Because the concentration of cell-free DNA in urine was
previously found to be very low (2 ), this material was
examined by use of a seminested PCR assay we have used
previously for the analysis of single cells (3 ). In this assay
the following external seminested primers were used:

D21S11 (forward): 5	-GGG ACT TTT CTC AGT CTC
CAT A-3	

D21S1432 (forward): 5	-TTC TAA AAG AAA TCA
AAA TGA TGC-3	

D21S1435 (forward): 5	-TTG ACA TTC TTC TGT AAG
GAA GAG-3	

D21S1440 (reverse): 5	-ATG TGT GAT TGC CAG CCT
CTG-3	

Table 1. Microsatellite analysis of donor–recipient pairs
and recipient urine.

Case STR locus

Allele size, bp

Donor Recipient Urine

1 D21S11 216 216 216
220 220

242 242
D21S1432 140 140 140

148 148
152 152

2 D21S11 216 216
220 220 220

248
D21S1435 172 172 172

176 176
184 184

3 D21S11 220 220
228 228 228

238
D21S1435 172 172

176 176 176
180

4 D21S11 238 238
242 242 242

D21S1432 140 140 140
148 148

5 D21S1435 168 168
172 172

176 176 176
D21S1440 154 154

164 164
172 172 172
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In brief, PCR amplification was performed in a total
volume of 30 �L containing 100 ng of template DNA, 200
nM deoxynucleotide triphosphates, 10 pM each of the
primers, 3.5 mM MgCl2, and 1.5 U of AmpliTaq Gold
(Applied Biosystems Inc.). After denaturation at 95 °C for
10 min, PCR was performed for 25 cycles at 95 °C for 30 s,
55 °C for 30 s, and 72 °C for 45 s, with a final extension
step at 72 °C for 7 min. For the urine samples, 1 �L of the
PCR amplicon was used as template for a subsequent
seminested PCR amplification. This nested PCR was
performed as above except that the annealing tempera-
ture was increased to 58 °C. After amplification, the PCR
products were analyzed by capillary electrophoresis on a
ABI 310 gene analyzer (Applied Biosystems) equipped
with GeneScan software (Applied Biosystems). Fluores-
cently labeled GeneScan 500 molecular weight markers
were included in each run.

Our analysis of these STR loci showed that informative
allelic differences could be obtained in each of the cases
studied (Table 1). These were then used to study the
corresponding urine samples. Subsequent analysis
showed that donor-specific STR alleles could be detected
in each case examined (Table 1 and Fig. 1). In general, the
recipient urine samples contained both recipient- and
donor-derived STR sequences (e.g., cases 1, 2, and 5) in
that informative donor and recipient alleles could be
detected in these samples. In one recipient (case 3),
donor-derived sequences appeared to dominate in that
the informative recipient allele was lacking. In case 4, the
recipient was homozygous for both of the STR markers
tested. In the urine of this patient, however, the unique
donor-derived STR allele as well as the allele common to
both donor and recipient were detectable for both the STR
markers examined.

Because our investigation used a nested PCR assay in
which a post-linear amplification phase amplicon was
reamplified, no statement concerning the relative quanti-
ties of the donor and recipient cell-free DNA species is
possible. For this reason, we examined two genetic poly-
morphisms in the glutathione S-transferase M1 (GSTM1)
and angiotensin-converting enzyme (ACE) genes, recently
described for the quantitative analysis of fetomaternal cell
traffic and transfer of cell-free DNA (8 ). Unfortunately, in
our study, we were able to obtain an informative constel-
lation only in a solitary instance for only one of these loci,
i.e., the GSTM1 gene, in which instance the gene was
absent from the recipient. Of interest is that this case
involved the transplantation of a kidney from an unre-
lated donor. Our analysis of this sample indicated that the
recipient’s urine contained �77 000 copies of cell-free
donor-derived DNA/mL immediately post transplanta-
tion, which decreased to slightly more than 100 cop-
ies/mL of urine by day 7. The concentration of total
cell-free DNA was initially determined to be �92 000
copies/mL of recipient urine, which decreased to 560
copies/mL of urine by day 7, based on a real-time PCR
assay for the GAPDH gene (9 ). This analysis indicated
that almost all of the cell-free DNA in the recipient urine
was donor-derived, a feature that is in good accord with
previous reports (1, 2).

The limited usefulness of the polymorphic ACE and
GSTM1 loci in our study could be a reflection of the rather
small study size (only five cases). Nevertheless, it does
indicate that assays for other markers will need be devel-
oped in the future to guarantee effective analysis of all
donor–recipient constellations. Because we were readily
able to detect informative donor-derived STR alleles in all
of the samples tested, our results do suggest that it should

Fig. 1. Capillary electropherograms of D21S1432 microsatellite ampli-
cons as detected with use of the ABI 310 automated sequencer.
(A), donor genotype; (B), recipient genotype; (C), recipient urine.
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be possible to detect other polymorphic markers more
amenable to quantification by real-time PCR.
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The determination of cortisol in saliva has become popu-
lar for human research on stress reactions (1–5). Depend-
ing on the sensitivity and reliability of the assays used, the
required sample volume varies between 0.025 and 2 mL of
saliva (6–8). Infants and toddlers, however, often pro-
duce only small amounts of saliva and are usually sam-
pled by swabbing the mouth with cotton dental rolls (5 )
or commercial cotton swabs (Salivette; Sarstedt Inc.) (9 ),
or by pipettes or alternative devices that aspirate saliva
from the floor of the mouth (10–13). Cotton rolls must
either be centrifuged to obtain saliva (9 ) or be placed in
the barrel of a syringe (needleless), from which the saliva
is expressed into a vial by compression of the plunger (5 ).
With these procedures, saliva remaining in the swabs is
thus lost for analysis. When we tested seven different
types of cotton rolls, we found that, depending on the
individual type, 135–450 �L of saliva could not be centri-
fuged from the rolls.

Oral stimulants (such as presweetened Kool-Aid crys-
tals) can increase saliva production, but they affect the

concentration of cortisol (14 ). Finally, in the case of
Salivettes, the material covering the cotton swab is hard
and makes sampling unpleasant.

In this report, we present a new method that uses soft
cotton swabs without hard covering material and solvent
extraction of cortisol from saliva in the cotton.

Saliva was collected from volunteers in the laboratory
and from infants and toddlers participating in studies on
cortisol and behavior. Volunteers and the parents of the
infants gave informed consent. These studies had been
approved by the Medical Ethical Committee of the Uni-
versity Medical Center Utrecht. After collection, either
direct or with use of cotton rolls, the samples were stored
in closed containers at �20 °C for periods of up to several
weeks. We placed 4-cm cotton rolls with a diameter of 8
mm (article no. 900-2005; Henri Schein) individually in
disposable 5-mL syringes (PE 
 PP; Becton Dickinson),
closed the syringes with a small plastic cap, and weighed
them. For the saliva collection, the cotton roll was taken
out of the syringe and the child’s mouth was swabbed by
introducing one end of the cotton roll into the buccal
cavity. The experimenter moved the roll in the child’s
mouth, trying to induce sucking. To obtain as much saliva
as possible, after 1–2 min, the experimenter took the roll
out of the child’s mouth, turned it around, and introduced
the dry end into the child’s mouth. After an additional 1–2
min, the cotton roll was put back in the syringe. The
syringe was stored in the dark at �18 to �20 °C and later
transported to the laboratory where it was once again
weighed. The increase in weight was caused by the
amount of saliva on the cotton, 1 mg being equivalent to
1 �L of saliva.

When the volume of saliva was 50–250 �L, cortisol was
extracted from the cotton by opening the syringe at both
sides and rinsing the cotton roll in the syringe with 1 mL
of 960 mL/L ethanol, followed by centrifugation of the
syringe at 1500g for 5 min. The resulting liquid was
evaporated, and when the volume of saliva was �0.1 mL
or the volume was equivalent to the volume of saliva
collected, the residue was dissolved in 100 �L of 0.01
mol/L phosphate-buffered saline (pH 7.0) containing 2
g/L bovine serum albumin. After the solution had stood
for at least 15 min with repeated mixing with a vortex-
mixer, 25 �L was used for the measurement of cortisol by
RIA (15 ).

Direct measurements of cortisol in saliva required 25
�L of saliva. The detection limit of the direct assay was 0.5
nmol/L; the within-assay imprecision (CV) was 4% at 10
nmol/L (n � 10), and the between-assay CV was 9% at 4
nmol/L (n � 69) and 5% at 10 nmol/L (n � 69).

Over an experimental range of 2–20 nmol/L cortisol,
concentrations measured after extraction were highly
comparable to those measured directly. At the lowest
volumes, the imprecision of the measurements increased,
but the concentrations with and without extraction did
not differ significantly: with solvent extraction they were
117% (22%), 98% (12%), and 107% (11%) of the values
measured directly for volumes of 50, 100, and 200 �L,
respectively (n � 24 at each volume).
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Size Separation of Circulatory DNA in Maternal
Plasma Permits Ready Detection of

Fetal DNA Polymorphisms
Ying Li, Bernhard Zimmermann, Corinne Rusterholz, Anjeung Kang,

Wolfgang Holzgreve, and Sinuhe Hahn*

Background: Analysis of fetal DNA in maternal plasma
has recently been introduced as a new method for
noninvasive prenatal diagnosis, particularly for the
analysis of fetal genetic traits, which are absent from the
maternal genome, e.g., RHD or Y-chromosome-specific
sequences. To date, the analysis of other fetal genetic
traits has been more problematic because of the over-
whelming presence of maternal DNA sequences in the
circulation. We examined whether different biochemical
properties can be discerned between fetal and maternal
circulatory DNA.
Methods: Plasma DNA was examined by agarose gel
electrophoresis. The fractions of fetal and maternal
DNA in size-fractionated fragments were assayed by
real-time PCR. The determination of paternally and
maternally inherited fetal genetic traits was examined
by use of highly polymorphic chromosome-21-specific
microsatellite markers.
Results: Size fractionation of circulatory DNA indicated
that the major portion of cell-free fetal DNA had an
approximate molecular size of <0.3 kb, whereas mater-
nally derived sequences were, on average, considerably
larger than 1 kb. Analysis of size-fractionated DNA
(<0.3 kb) from maternal plasma samples facilitated the
ready detection of paternally and maternally inherited
microsatellite markers.
Conclusions: Circulatory fetal DNA can be enriched by
size selection of fragment sizes less than �0.3kb. Such

selection permits easier analysis of both paternally and
maternally inherited DNA polymorphisms.
© 2004 American Association for Clinical Chemistry

Since its discovery in 1997 by Lo et al. (1 ), circulatory fetal
DNA in maternal plasma or serum has rapidly emerged
as the prime focus for the development of risk-free
methods for prenatal diagnosis of fetal genetic traits (2, 3).
Indeed, because of the relative abundance of this fetal
genetic material, which is present in concentrations sev-
eral orders of magnitude higher than those of trafficking
fetal cells (4 ), the determination of fetal genetic loci that
are totally absent from the maternal genome is relatively
easy. Consequently, the analysis of circulatory fetal DNA
in maternal plasma is already being offered clinically by
several centers to determine fetal RHD status in pregnan-
cies with a Rhesus constellation or fetal sex by the
detection of Y-chromosome-specific sequences in preg-
nancies at risk for an X-linked disorder (e.g., hemophilia,
fragile X syndrome) (3 ).

Quantitative analysis of this new-found fetal analyte
by real-time PCR strategies has also indicated that the
concentrations of circulatory fetal DNA are increased in a
variety of pregnancy-related pathologies, including pre-
eclampsia (5, 6), preterm labor (7, 8), and hyperemesis
gravidarum (8 ), and in pregnancies with fetal aneu-
ploidies, most notably trisomy 21 (9, 10). These studies
have suggested that fetal DNA concentrations may serve
as a new screening marker for such pregnancy-related
anomalies (11 ).

A caveat of current investigations is that the over-
whelming amount of circulatory DNA in the maternal
circulation is of maternal origin (�90%) (4 ), which has
rendered the differentiation of more subtle genetic differ-
ences between mother and child considerably more diffi-
cult (2, 3). This is generally true for Mendelian genetic
disorders involving point mutations (12 ) or those in-
stances where both parents are carriers for the same
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disease allele, as well as for the examination of DNA
polymorphisms (13, 14) that could be used for the deter-
mination of fetal ploidy (15 ). Consequently, few reports
exist regarding the successful use of circulatory fetal DNA
for such applications (12, 16–18).

To date, few studies have addressed the biochemical
properties of circulatory fetal DNA (19, 20). In the most
recent of these, Chan et al. (20 ) used differently sized PCR
amplicons to discern the respective size distributions of
circulatory fetal and maternal DNA species; their results
indicated that fetal DNA molecules are generally smaller
than comparable maternal ones. Because this approach
permitted a precise delineation of only rather small DNA
species (�800 bp), we have examined this aspect, using a
combination of agarose gel electrophoresis, Southern blot-
ting, and real-time PCR, because this would permit an
analysis of large DNA molecules (�10 to 20 kb). Our
studies have shown that circulatory DNA has apoptotic
characteristics, displaying a typical ladder obtained by
nucleosomal cleavage. We also observed that circulatory
fetal DNA is generally of a smaller size than maternally
derived cell-free DNA fragments, in good agreement with
recent observations (20 ). By exploiting this observation,
we have shown that even a simple strategy, such as size
separation using conventional agarose gel electrophoresis
and subsequent PCR analysis (21 ), can lead to the selec-
tive enrichment of circulatory fetal DNA sequences. These
in turn can be used for the determination of DNA
polymorphisms that are masked by maternal sequences in
the native plasma sample.

Materials and Methods
southern blot analysis
Plasma sample collection. After receiving approval by the
Cantonal Institutional Review Board of Basel, Switzer-
land, we obtained 18 mL of peripheral blood from preg-
nant women who had given written informed consent.
EDTA (Movovette tubes; Sarstedt) was used as anticoag-
ulant. The blood samples were first cleared by centrifu-
gation at 1600g for 10 min, after which the plasma was
subjected to a second centrifugation step at 16 000g for 10
min. Plasma was immediately used for DNA extraction in
each analysis.

Southern hybridization. Circulatory DNA was extracted
from �7–10 mL of maternal plasma (gestational age,
11–17 weeks) and 18 mL of cord blood plasma by a
conventional phenol–chloroform procedure, with a slight
modification in that the plasma sample was first treated
with a chaotropic guanidinium isothiocyanate solution to
denature any nucleases (Qiagen) (22 ). As a control, we
used plasma from nonpregnant women.

The extracted DNA was separated on a 1.0% agarose
gel. A 100-bp ladder and HindIII-digested Lambda phage
DNA were used to estimate molecular size (New England
Biolabs). The DNA was transferred to nylon membranes

(Roche) with 20� standard saline citrate by a standard
capillary transfer method (22 ).

Transferred DNA was detected with the Roche® DIG
labeling and detection system, according to the manufac-
turer’s instructions (Roche) (23 ). The highly repetitive Alu
sequence was used as a hybridization probe and was
directly digoxigenin-labeled by a PCR process using the
PCR DIG Probe Synthesis Kit (Roche). The primer for the
Alu sequence was as follows: 5�-ATC TCG GCT CAC
TGC AA-3�. Prehybridization was carried out at 42 °C in
DIG Easy Hyb solution (Roche). Hybridization was per-
formed at 42 °C overnight, after which the membrane was
washed at high stringency and incubated with the chemi-
luminescent alkaline phosphatase substrate (CSPD) ac-
cording to the manufacturer’s instructions. The resulting
blot was exposed on x-ray film.

determination of size distribution of
circulatory fetal-derived dna in maternal
plasma
Preparation of circulatory DNA. Plasma samples were pre-
pared as described above. Peripheral blood was collected
from pregnant women carrying a singleton male fetus. Six
samples were obtained early in pregnancy (median ges-
tational age, 13 � 2 weeks), and eight samples were
collected in the third trimester (median gestational age,
34 � 4 weeks). Blood from three nonpregnant women and
three healthy males was used as controls. Routinely, 5–7
mL of plasma was used for DNA extraction, which was
performed with a combination of the Roche High Pure
Template DNA Purification Kit (Roche) and a custom-
made vacuum pump for the isolation of circulatory
plasma DNA. In brief, as described in the manufacturer’s
instructions, the plasma sample was incubated with bind-
ing buffer and proteinase K at 70 °C for 10 min, after
which the required volume of isopropanol was added and
the sample was passed through the Roche column under
reduced pressure. The column was then washed with
inhibitor removal buffer and twice with wash buffer,
respectively, as recommended by the manufacturer. The
column-bound circulatory DNA was eluted in 40 �L of
elution buffer.

Gel electrophoresis and isolation of circulatory DNA fragments.
The total circulatory DNA was subjected to agarose gel
electrophoresis on a 1.0% agarose gel (Invitrogen) con-
taining 0.5 mg/L ethidium bromide (Sigma). Size markers
were a 100-bp ladder and HindIII-digested Lambda phage
DNA (New England Biolabs). Electrophoresis was carried
out at 80 V for 1 h. Each lane of the gel containing
circulatory DNA was then cut with a sterile scalpel blade
into six discrete sections, with the molecular weight
markers used as a guide. The sizes of the fragments in the
sections, based on the molecular weight markers, were
0.09–0.3, 0.3–0.5, 0.5–1.0, 1.0–1.5, 1.5–23, and �23 kb.
Because the location of the 23-kb marker is imprecise in
1% gels, we used it only as a rough guide to estimate the
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size of DNA fragments larger than 10 kb. The circulatory
DNA was extracted from the agarose sections with a
QIAEX®II Gel Extraction Kit (Qiagen) and eluted in 40 �L
of sterile 10 mmol/L Tris-HCl (pH 8.0). Procedures to
prevent contamination were used during these experi-
ments, including ultraviolet irradiation of the gel tray and
tank, use of fresh buffers with each electrophoretic run,
use of plasma samples from women carrying female
fetuses (n � 2), and examination of blank gel slices (n �
14) in parallel with each analysis. In no instance were any
false-positive results recorded.

Determination of the proportion of circulatory fetal and total
DNA. The relative proportions of fetal and total circula-
tory DNA eluted from the individual agarose gel sections
were determined by use of a well-established TaqMan®

real-time PCR assay for the SRY gene on the Y chromo-
some and the ubiquitous glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) gene (6 ). The only modifications
were that a new-generation Perkin-Elmer Applied Biosys-
tems 7000 Sequence Detector was used and that minor
groove binding probes were used instead of the previous
6-carboxytetramethylrhodamine-conjugated probes (Ap-
plied Biosystems). The PCR reactions were carried out in
a final reaction volume of 25 �L, which consisted of 6 �L
of eluted DNA, 300 nM each primer, 150 nM each probe,

and 2� TaqMan Universal PCR Master Mix (Applied
Biosystems). PCR was carried out with an initial incuba-
tion at 50 °C for 2 min to activate uracil-N-glycosylase,
followed by incubation at 95 °C for 10 min and 40 cycles
of 95 °C for 15 s and 60 °C for 1 min. This analysis
permitted determination of the total amount of DNA
present in each fraction, by use of the GAPDH-specific
assay, and the fraction that was fetal, by use of the
SRY-specific assay. The relative proportions of each were
expressed as percentages.

detection of highly polymorphic
microsatellite markers
Sample preparation. We collected 18 mL of maternal blood
from three third-trimester pregnancies and collected cord
blood subsequent to delivery. After plasma separation by
high-speed centrifugation, the buffy coat was collected,
washed with phosphate-buffered saline, and used for the
preparation of maternal genomic DNA. Fetal genomic
DNA was prepared similarly from the cord blood sample.
To verify that this same approach can be used to examine
clinically relevant samples, we examined four samples
taken early in pregnancy (median gestational age, 13 � 5
weeks). In this instance the fetal genotype was deter-
mined from archived amniocyte or chorionic villus cul-
tures. One of these samples was obtained from a trisomy
21 fetus.

Fluorescent PCR analysis of highly polymorphic microsatellite
markers. We used the same standardized fluorescent PCR
assay for highly polymorphic short tandem repeat (STR)

Fig. 1. Southern blot analysis of plasma circulatory DNA, using a highly
repetitive Alu probe.
Lane 1, plasma from cord blood; lane 2, maternal plasma (13 weeks of
gestation); lane 3, plasma from nonpregnant woman.

Table 1. Size distribution of total and fetal circulatory DNA
in third-trimester maternal plasma samples.a

Size of DNA
fraction, kb

Median (range)

Size distribution
of total DNA,b %

Size distribution
of fetal DNA,c %

Proportion of fetal
DNA per fraction,d %

�0.3 22.4 70.0 68.7
(15.7–26.7) (51.0–82.3) (22.2–87.1)

0.3–0.5 28.4 24.3 15.4
(15.7–35.2) (13.8–31.6) (6.4–31.4)

0.5–1.0 23.0 3.8 2.6 (0.0–7.8)
(15.0–26.8) (0.0–17.4)

1.0–1.5 7.5 0.0 (0.0–8.7) 0.0
(2.2–11.4)

1.5–23 21.1 0.0 0.0
(10.3–35.7)

a Six samples were analyzed in this study. Median gestational age was 34 �

4 weeks.
b Size distribution of total circulatory DNA was determined by a real-time PCR

assay for the GAPDH gene. The values are indicative of the percentage of total
DNA in each fraction examined.

c Size distribution of circulatory fetal DNA as determined by a real-time PCR
assay for the SRY gene. These values are indicative of the percentage of fetal
DNA with regard to the total amount of fetal DNA in each fraction examined.

d The proportion of fetal DNA indicates the percentage of fetal DNA in each of
the examined fractions with regard to the total amount of circulatory DNA in that
fraction.
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markers on chromosome 21 that we used previously for
our analysis of urinary DNA (24 ). The fetal and maternal
genomic DNA sources were used to determine which STR
markers on chromosome 21 were informative. These
informative STR markers were then used for the detection
of paternally and maternally inherited fetal alleles in total
maternal plasma circulatory DNA as well as in size-
separated circulatory DNA fractions. The low-molecular-
weight circulatory DNA fraction was prepared as de-
scribed above.

Because the concentration of circulatory DNA after size
fractionation was very low, we used a seminested PCR
assay as described previously (24 ). The PCR products
were analyzed by capillary electrophoresis on an ABI 310
gene analyzer (Applied Biosystems). For samples taken
early in pregnancy, in which the concentration of circula-
tory fetal DNA has been shown to be lower than at term,
our investigation showed that the PCR procedure had to
be modified to obtain optimum results. For this reason,

Fig. 2. Size distribution of circulatory DNA in maternal plasma samples
obtained early in pregnancy.
Six samples were analyzed in this study. The fractions sizes are as described in
the legend for Fig. 2. Median gestational age was 13 � 2 weeks. (A), proportion
of total circulatory DNA as determined with a real-time PCR assay for the GAPDH
gene. This plot indicates the percentage of total DNA in each fraction examined.
(B), proportion of circulatory fetal DNA relative to the total amount of circulatory
fetal DNA. (C), proportion of fetal DNA as determined with a real-time PCR assay
for the SRY gene. This plot indicates the proportion of fetal DNA in each of the
examined fractions with regard to the total amount of circulatory DNA in that
fraction.

Table 2. Size distribution of total and fetal circulatory DNA
in maternal plasma samples obtained early in pregnancy.a

Size of DNA
fraction, kb

Median (range)

Size distribution
of total DNA, %

Size distribution
of fetal DNA, %

Proportion of fetal
DNA per fraction, %

�0.3 26.9 85.5 28.4
(12.7–41.3) (67.8–100.0) (11.6–56.6)

0.3–0.5 29.1 11.7 4.0
(26.1–54.4) (0.0–15.5) (0.0–13.5)

0.5–1.0 28.5 1.2 0.4 (0.0–5.2)
(14.5–25.9) (0.0–16.8)

1.0–1.5 8.2 0.0 0.0
(4.5–12.1)

1.5–23 8.6 0.0 0.0
(7.6–23.7)

a Eight samples were analyzed in this study. Median gestational age was 13 �

2 weeks. Size distributions of total circulatory DNA, circulatory fetal DNA, and
the proportion of fetal DNA were determined as described in the footnotes for
Table 1.
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we used a “touch-down” PCR method instead of our
conventional seminested PCR method described above. In
this procedure, a total of 50 cycles were run, using PCR
reactions containing 3 �L of 10� buffer, 3.5 mM MgCl2,
160 �M deoxynucleotide triphosphates, 0.1 �M each of
forward and reverse primers (24 ) (one primer of each set
was fluorescent labeled), 1U of AmpliTaq Gold polymer-
ase, and 3 �L of DNA in a final volume of 30 �L. After
incubation at 95 °C for 10 min, 10 cycles (95 °C for 15 s,
65 °C for 15 s, 72 °C for 30 s) of thermal cycling were
carried out in which the annealing temperature was
decreased by 1 °C/cycle. This was then followed by 40
cycles of 95 °C for 15 s, 56 °C for 15 s, and 72 °C for 30 s.
The PCR was terminated after an extension phase at 72 °C
for 7 min. As described above, the PCR products were
analyzed by capillary electrophoresis on an ABI 310 gene
analyzer (24 ).

Results
Circulatory DNA has been proposed to exhibit apoptotic
hallmarks such as oligonucleosomal laddering and nu-
cleosome association (25, 26). In our initial investigation,
we attempted to determine whether circulatory DNA in
pregnant women also displayed such characteristics. For

this examination we used Southern blot analysis of total
circulatory plasma DNA that had been subjected to aga-
rose gel electrophoresis. The analysis of such blots with
the ubiquitous highly repetitive Alu sequence indicated
that oligonucleosomal fragments could indeed be de-
tected and were present in all three of the plasma sources
examined: maternal blood, nonpregnant female control
blood, and cord blood (Fig. 1). This examination also
indicated that a substantial proportion of the circulatory
DNA had a molecular size �10 or even �23 kb (Fig. 1).
The presence of such high-molecular-weight DNA species
cannot be attributed to the plasma sample being contam-
inated by maternal cells because we took extreme care to
obtain cell-free plasma samples. It is of interest that these
high-molecular-weight DNA molecules are quite similar
to the very large ones we observed in terminally differ-
entiated erythroblasts before enucleation (S. Hristoskova
et al., manuscript in preparation).

Unfortunately, we were not able to determine the
characteristics of circulatory fetal DNA in the samples
obtained from pregnant women because the concentra-
tions of fetal DNA were too low to be detectable even
when we used a very high copy probe (DYS14) specific for
the Y chromosome.

Fig. 3. Size distribution of circulatory DNA in third-trimester maternal
plasma.
The fraction sizes are as follows: fraction 1, �300 bp; fraction 2, 0.3–0.5 kb;
fraction 3, 0.5–1.0 kb; fraction 4, 1.0–1.5 kb; fraction 5, 1.5–23 kb; fraction 6,
�23 kb. Box plots indicate median value (line inside box) and 75th and 25th
percentiles (limits of box). Upper and lower horizontal bars indicate 10th and
90th percentiles, respectively. Outliers are indicated by �. Eight samples were
analyzed in this study. Median gestational age was 34 � 4 weeks. (A), proportion
of total circulatory DNA as determined with a real-time PCR assay for the GAPDH
gene. This plot indicates the percentage of total DNA in each fraction examined.
(B), proportion of fetal DNA as determined with a real-time PCR assay for the SRY
gene. This plot indicates the proportion of fetal DNA in each of the examined
fractions with regard to the total amount of circulatory DNA in that fraction. (C),
proportion of circulatory fetal DNA relative to the total amount of circulatory fetal
DNA.
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Because we were, however, able to detect circulatory
apoptotic DNA fragments in our Southern blot analysis,
we used an alternative strategy to determine whether
circulatory fetal DNA displayed a similar pattern. For this
analysis, we used an approach that had previously been
used successfully for the characterization of rare linear
extrachromosomal DNA species (21 ). In this procedure,
the circulatory DNA was first subjected to agarose gel
electrophoresis, after which individual gel fragments con-
taining the size-fractionated DNA were examined by
PCR. For our examination, after electrophoresis the aga-
rose gel was cut into six discrete sections containing
fragments with approximate sizes of �0.3, 0.3–0.5, 0.5–
1.0, 1.0–1.5, 1.5–23.0, and �23 kb. Once the circulatory
DNA was extracted from these gel fragments, the propor-

tions of fetal and maternal DNA in these fractions were
then determined by well-established real-time PCR assays
for the SRY locus on the Y chromosome and the ubiqui-
tous GAPDH gene (6 ). To ensure that we were not being
misled by any PCR artifacts, we included several proce-
dures to prevent contamination in our study, including
use of plasma samples from women pregnant with female
fetuses (n � 2) and the parallel examination of blank gel
slices in each analysis (n � 14). No false-positive results
were recorded in any of these instances.

Our examination of plasma samples from third-trimes-
ter pregnancies with a male fetus indicated that the vast
proportion of circulatory fetal DNA, as detected by the
SRY-specific PCR assay, had an approximate molecular
size �300 bp (Table 1 and Fig. 2), with very little or no

Fig. 4. Size distribution of circulatory DNA in plasma samples from healthy nonpregnant women or healthy males.
Three samples per group were analyzed in this study. The fractions sizes are as described in the legend for Fig. 2. (A), proportion of total circulatory DNA in each fraction
examined in samples obtained from nonpregnant women. (B), proportion of total circulatory DNA in each fraction examined in samples obtained from healthy male
volunteers.

Fig. 5. Detection of both paternally and maternally
inherited highly polymorphic microsatellite markers
in size-fractionated circulatory DNA.
In this analysis a maternal plasma taken near term was
used. Shown are capillary electropherograms of D21S11
alleles. (A), maternal genomic DNA. Two maternal alleles
with sizes of 232 and 234 bp were detected. (B), fetal
genomic DNA. The paternally inherited allele with a size of
228 bp and the maternally inherited allele with a size of 232
bp were detected. (C), total circulatory DNA. The predomi-
nant alleles detected were those of the mother (D21S11
alleles with sizes of 232 and 234 bp). (D), size-fractionated
circulatory DNA with a size �300 bp. Three D21S11 alleles
with sizes of 228, 232, and 234 bp were detected.
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fetal DNA having a molecular size �1 kb. On the other
hand, maternally derived sequences, as determined by the
GAPDH-specific PCR assay, were estimated to be larger
than 0.5–1.0 kb and included molecular-weight species
larger than 10–20 kb. A similar pattern for both fetal and
maternal circulatory DNA was also observed in plasma
samples obtained early in the second trimester of preg-
nancy (Table 2 and Fig. 3).

With regard to the size distribution of total circulatory
DNA, we determined that the pattern we had observed in
pregnant women was very similar to that observed in
samples taken from nonpregnant women as well as
healthy male volunteers (Fig. 4). In none of these analyses
were we able to detect large amounts of DNA with a
molecular size greater than that indicated by the 23-kb
molecular weight marker, in contrast to what we ob-
served in our Southern blot analysis (Fig. 1). The reason
for this anomaly may be that these large fragments are not
easily eluted from the agarose gel under the conditions
we are using, unlike in the Southern blotting, where the
DNA is first treated with alkali to generate the small
fragments required for efficient capillary transfer.

Our data also indicated that selective enrichment of
circulatory fetal DNA sequences may be possible by
examination of DNA fragments with a size less than �300
bp. Our next step, therefore, was to determine whether
such size-dependent separation would facilitate the deter-
mination of more subtle fetal genetic traits.

For this purpose we examined whether both paternally
and maternally inherited DNA polymorphisms could be
discerned from such size-fractionated circulatory DNA.
For our analysis we used highly polymorphic STR se-
quences on chromosome 21, which have previously been
demonstrated to be suitable for the reliable distinction of
mother and child (24 ). To test the feasibility of this
approach, we first examined samples taken close to term
because they would contain the maximum concentrations
of circulatory fetal DNA and because it was possible to
obtain the fetal genotype, a prerequisite for such studies,
from a cord blood sample after birth. In this manner, we
could select easily discernible polymorphic markers be-
tween mother (Fig. 5A) and fetus (Fig. 5B).

In this analysis, the benefits of selectively enriching for
circulatory fetal DNA species became readily apparent in
that the paternally inherited STR allele (with a size of 228
bp) was barely detectable in the total plasma extracted
DNA (Fig. 5C) but was clearly present in the DNA
fraction with a size �300 bp (Fig. 5D). Furthermore, the
method could not differentiate the maternally inherited
STR allele (with a size of 232 bp) from the predominantly
maternal pattern obtained from the analysis of total
plasma extracted DNA (Fig. 5C). This fetal allele, how-
ever, was detected in the analysis of the DNA fraction
with a size �300 bp (Fig. 5D) because the peak for that
STR allele had a much larger area than either the pater-
nally inherited fetal allele (228 bp) or the solitary maternal
allele (234 bp). This indicates that both fetal and maternal

loci are contributing to the presence of this particular PCR
product. Similar results were obtained in the analysis of
the DNA fraction with a size of 300–500 bp, although the
results in this instance were less evident than those
obtained with the smaller DNA fraction (�300 bp; data
not shown). The reproducibility of this approach was
verified in the analysis of two additional samples, which
were analyzed at a several different polymorphic loci; we
obtained similar results for these samples (Table 3).

To determine whether this approach could also be
applied to clinically relevant samples, we examined four
samples taken early in the second trimester of pregnancy.
In these analyses the fetal genotype was determined from
archived amniocyte or chorionic villus cultures. One of
these samples was from a fetus affected by Down syn-
drome (trisomy 21). This was evident from our microsat-
ellite analysis for the D21S1432 marker, in which three
equivalent peaks with sizes of 133, 137, and 141 bp,
respectively, were detected (Fig. 6B), implying that the
fetus had inherited a copy of each of the two maternal
chromosomes 21 in addition to the paternally inherited
chromosome 21. In our analysis of the total circulatory
cell-free DNA in the maternal plasma sample, only the

Table 3. Detection of paternally and maternally inherited
fetal highly polymorphic microsatellite markers in size-
fractionated circulatory DNA obtained from maternal

plasma samples taken close to term.a

Case no.
(D21 locus)

Method of sample
preparationb

Maternal
alleles

detected
Fetal alleles

detected

1 (D21S11) Maternal genomic DNA 232/234
Fetal genomic DNA 228/232
Total plasma DNA 232/234 Not detectable
Plasma DNA �300 bp 232/234 228/232

1 (D21S1435) Maternal genomic DNA 172/180
Fetal genomic DNA 172/176
Total plasma DNA 172/180 176c

Plasma DNA �300 bp 172/180 172/176
2 (D21S1270) Maternal genomic DNA 184/188

Fetal genomic DNA 180/184
Total plasma DNA 184/188 Not detectable
Plasma DNA �300 bp 184/188 180/184

2 (D21S1432) Maternal genomic DNA 138/152
Fetal genomic DNA 134/138
Total plasma DNA 138/152 134c

Plasma DNA �300 bp 138/152 134/138
3 (D21S1435) Maternal genomic DNA 168/176

Fetal genomic DNA 168/172
Total plasma DNA 168/176 172c

Plasma DNA �300 bp 168/176 168/172
a Three samples were analyzed in this study.
b Genomic DNA was prepared directly from maternal or fetal lymphocytes.

“Total plasma DNA” indicates analysis of circulatory DNA extracted from an
nonfractionated DNA samples, whereas “Plasma DNA �300 bp” indicates
analysis of a discrete fraction of circulatory DNA that had been size-fractionated
by gel electrophoresis.

c Minimal detection of paternally inherited allele.
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two maternal markers were readily detected (133 and 141
bp; Fig. 6C), whereas our analysis of size-fractionated
DNA with an approximate size of �300 bp facilitated the
ready detection of the paternally inherited 137-bp marker
(Fig. 6D). We observed a similar feature when we exam-
ined this sample for a different microsatellite marker,
D21S1270 (Table 4). In this instance, it was not possible to
determine whether the maternally inherited polymor-
phisms could be detected because the fetus had the same
pattern as the mother for both loci. In the three other
cases, which had a normal karyotype, we were in all three
cases readily able to detect the paternally inherited poly-
morphic locus in the size-fractionated DNA sample (Table
4). However, in only one instance could we discern the
presence of the maternally inherited locus (Table 4, case
3). In case 2, this was not possible because the mother was
homozygous for the locus interrogated, whereas in the
other cases [case 2 (D21S1435) and case 4 (D21S1440)], the
maternal locus that had not been inherited by the fetus
appeared to have been preferentially amplified (Table 4).

Discussion
Our investigation supports the current hypothesis that
circulatory DNA has apoptotic attributes (25, 26) in that
we could readily discern oligonucleosomally cleaved
fragments by Southern blot analysis. Our analysis also
indicated that a substantial proportion of the circulatory
DNA has a very large molecular size (�20 kb). Indepen-
dent investigations in our laboratory indicated that these
large circulatory DNA species may be derived from the

erythropoietic system, in that DNA isolated from termi-
nally differentiating erythroblasts exhibited similar char-
acteristics (S. Hristoskova et al., manuscript in prepara-
tion). It is currently unclear whether these large DNA
molecules are subsequently cleaved into smaller oligonu-
cleosomal fragments in the maternal plasma or whether
the smaller fragments we detected are derived from
another source.

Using an approach that had previously been used to
examine rare linear extrachromosomal DNA species (21 ),
in which DNA size-fractionated by gel electrophoresis
was subsequently extracted and analyzed by PCR, we
made the surprising finding that a large discrepancy
existed in the size of circulatory fetal and maternal DNA
species. In this regard our study indicated that fetal DNA
molecules predominantly have an approximate size �300
bp, whereas most maternally derived DNA molecules are
considerably larger than this. The fact that no large
circulatory fetal DNA species were detected (i.e., �20 kb)
implies that the mechanism contributing to the formation
of the large maternally derived DNA species is not
involved in the liberation of circulatory fetal DNA. The
explanation for this difference could be that circulatory
fetal DNA appears to be exclusively derived from the
placenta (27 ), whereas the vast proportion of normal
maternal circulatory DNA is of hemopoietic origin (28 ).

With regard to the size distribution of circulatory
maternal and fetal DNA species, our results are remark-
ably similar to those reported recently by Chan et al. (20 ),
who also observed that fetal cell DNA molecules were

Fig. 6. Analysis of highly polymorphic microsatellite
markers in the plasma of a mother carrying a fetus
with trisomy 21.
In this analysis we used an early second-trimester maternal
plasma sample. Shown are capillary electropherograms of
D21S1432 alleles. (A), maternal genomic DNA. Two mater-
nal alleles with sizes of 133 and 141 bp were detected. (B),
fetal genomic DNA. The paternally inherited allele (137 bp)
and both of the inherited maternal alleles (133 and 141 bp)
were detected. (C), total circulatory DNA. The predominant
alleles detected were those of the mother (D21S1432
alleles; 133 and 141 bp). (D), size-fractionated circulatory
DNA with a size �300 bp. The paternal D21S1432 allele,
with a size of 137 bp, was readily detected.
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generally smaller than those of maternal origin. For their
study, they made use of differently sized PCR amplicons
ranging in size from 105 to 798 bp to determine the size of
predominantly maternally derived DNA molecules, and
amplicons of 107–524 bp to examine circulatory fetal DNA
molecules. Although their approach permitted a much
more precise delineation of the size distribution of circu-
latory DNA molecules within this given range, they were
not able to demonstrate the existence of very large (�10 to
20 kb) maternal circulatory DNA species, as our analysis
could.

Another important point that the study of Chan et al.
(20 ) did not address, and which has been the major focus
of our study, is that this observation permits the develop-
ment of a strategy facilitating the selective enrichment of
circulatory fetal DNA sequences. The exploitation of this
approach in turn permits the determination of highly
polymorphic fetal genetic traits not discernible from the
analysis of total extracted plasma circulatory DNA. In
this manner we were able to detect the presence of both

paternally and maternally inherited STR markers in size-
separated circulatory DNA fractions, which was not pos-
sible when the same analysis was attempted on unfrac-
tionated samples (13, 14). Our study does, however,
indicate that the method we have chosen for this proof-
of-concept study is too imprecise and inefficient to be
used for potential clinical applications. This became clear
in our analysis of paternally and maternally inherited
polymorphic markers; we could not determine the precise
proportion that the fetal markers contribute to the ana-
lyzed pattern. This feature is very important because
numerous clinical studies have clearly shown that the
analysis of such highly polymorphic STR markers can be
very useful for the determination of fetal ploidy (15 ).
Hence, if our approach using size fractionation were
optimal, it should be feasible to determine fetal chromo-
somal anomalies directly from maternal plasma. Because
in our study we were not able to determine fetal ploidy
from the size-fractionated DNA sample for the one case
with a trisomy 21 fetus (Fig. 6 and Table 4), we believe
that this application will have to await developments that
permit better separation of maternal and fetal DNA
species. It is, however, possible that even in its current
form, our approach could be used for the noninvasive
determination of paternity.

Another important aspect of our observation is that it
may in future aid in the examination of Mendelian
disorders, particularly those involving point mutations,
because these analyses should no longer be hindered by
the large excess of maternal DNA sequences in the
circulation (2, 3). Indeed, the use of quantitative assays
may make it possible to determine the fetal genotype in
those instances where both partners are carriers for the
same disease allele.

In summary, our findings showed that circulatory fetal
DNA molecules are generally of a smaller size than
comparable maternally derived sequences and that selec-
tive enrichment of fetal DNA sequences can be achieved
by size-dependent separation. This latter feature permits
the detection of fetal genetic traits not detectable in total
plasma circulatory DNA. For clinical applications, more
efficacious separation modes will need to be developed
that facilitate better differentiation and recovery of fetal
and maternal circulatory DNA species.

We thanks Drs. Monika Schiesser (University Women’s
Hospital) and Friedel Wenzel (Medical Genetics, Univer-
sity of Basel, Basel, Switzerland) for the generous provi-
sion of archived culture samples.
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MONOGENIC DISORDERS

frequently involve point
mutations. This single
nucleotide exchange

makes the analysis of point mutations
more complex as stringent assays need
to be established that permit a clear dis-
tinction between normal and mutant al-
leles. The prenatal diagnosis of this mul-
titude of hereditary genetic disorders
currently relies on invasive proce-
dures,1 such as amniocentesis or cho-
rionic villous sampling, which are as-
sociated with a small but significant risk
of fetal loss.2,3 To avoid this procedure-
related risk, several strategies have been
considered for noninvasive assess-
ment of fetal genetic traits, including
the isolation of rare fetal cells from the
maternal circulation and the analysis of
circulatory fetal DNA in maternal
plasma.1,4-6

Although proof-of-principle studies
have indicated that the analysis of iso-
lated fetal cells by single-cell polymer-
ase chain reaction (PCR) can be used for
the noninvasive prenatal diagnosis of he-
moglobinopathies,7,8 this strategy is too
complex, labor intensive, and not suf-
ficiently efficient for routine clinical set-
tings. The analysis of fetal genetic traits

by the analysis of cell-free fetal DNA in
maternal plasma has proven to be re-
markably reliable for the assessment of
fetal loci absent from the maternal ge-
nome, such as Y-chromosome–specific
sequences or the RhD gene in pregnant
women who are Rh-negative, espe-
cially in European medical centers.1,4
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Context Currently, fetal point mutations cannot be reliably analyzed from circula-
tory fetal DNA in maternal plasma, due to the predominance of maternal DNA se-
quences. However, analysis of circulatory fetal DNA sequences in maternal plasma have
been shown to selectively enrich for fetal DNA molecules on the basis of a smaller
molecular size than maternal DNA.

Objective To examine the prenatal analysis of 4 common �-thalassemia point mu-
tations: IVSI-1, IVSI-6, IVSI-110, and codon 39.

Design, Setting, and Patients A total of 32 maternal blood samples were col-
lected at 10 to 12 weeks of gestation (mean, 10.7 weeks) between February 15,
2003, and February 25, 2004, in Bari, Italy, from women with risk for �-thalassemia
in their newborns immediately prior to chorionic villous sampling. Samples in which
the father and mother did not carry the same mutation were examined. Circulatory
DNA was size-fractionated by gel electrophoresis and polymerase chain reaction
(PCR) amplified with a peptide-nucleic-acid clamp, which suppresses amplification of
the normal maternal allele. Presence of the paternal mutant allele was detected by
allele-specific real-time PCR.

Main Outcome Measure Detection of paternally inherited �-globin gene point
mutations.

Results Presence or absence of the paternal mutant allele was correctly determined
in 6 (86%) of 7 cases with the IVSI-1 mutation, 4 (100%) of 4 with the IVSI-6 muta-
tion, 5 (100%) of 5 with the IVSI-110 mutation, and 13 (81%) of 16 with the codon
39 mutation. One false-positive test result was scored for the IVSI-1 mutation. Two
cases with the codon 39 mutation were classified as uncertain and 1 case was
excluded due to lack of a diagnostic test result at the time of analysis. These results
yielded an overall sensitivity of 100% and specificity of 93.8%, with classified cases
removed.

Conclusion Our recently described technique of the size-fractionation of circula-
tory DNA in maternal plasma may be potentially useful for the noninvasive prenatal
determination of fetal point mutations.
JAMA. 2005;293:843-849 www.jama.com
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This approach, however, is unsuitable
for the analysis of fetal loci that do not
differ largely from the maternal alleles,
due to the vast predominance of cell-
free maternal DNA in the maternal
samples.9 As such, the analysis of fetal
point mutations has been restricted to
single-case articles.10,11

It has recently been shown that cir-
culatory fetal DNA sequences are gen-
erally smaller (�300 base pairs [bp])
than comparable circulatory maternal
DNA species (�500 bp).12,13 By exploit-
ing this observation, we have previ-
ously shown that this phenomenon can
be used to selectively enrich for fetal
DNA molecules, which permitted the de-
tection of otherwise masked highly poly-
morphic fetal microsatellite markers.12

We examined whether this approach
will permit the detection of fetal point
mutations. The advantage of such a de-
velopment is that it would permit the de-
tection of paternal mutations, which
could be used to determine which preg-
nancies are at risk for a compound het-
erozygous genetic disorder. We have fo-
cused on one of the most common
monogenic disorders, �-thalassemia, and
have examined 4 point mutations, which
occur with high frequency in the Medi-
terranean population.14,15

METHODS
Sample Collection and Processing

Following ethical approval from both
participating institutions’ review boards
and written informed consent from all
participants, blood samples were ob-
tained from 32 pregnant women with
risk for �-thalassemia in their new-
borns between February 15, 2003, and
February 25, 2004, in Bari, Italy. No one
refused to participate and all women
were self-declared white (southern Ital-
ian origin). Approximately 18-mL ma-
ternal blood samples were collected into
two 9-mL EDTA blood collection tubes
(Sarstedt, Sevelen, Switzerland) at 10 to
12 weeks of gestation (mean, 10.7
weeks; median, 11.2 weeks) before cho-
rionic villous sampling. Initially, 21
samples were sent as whole blood by
overnight commercial express courier
service. Because of concern that this 24-

hour delay before processing of the ma-
ternal plasma sample might be detri-
mental, the remaining 11 samples were
processed directly on-site in Bari, Italy,
and the plasma was shipped frozen to
Basel, Switzerland.

All samples were sent coded and ex-
amined to Basel in a blinded manner.
None of the samples examined have been
used in any prior investigations. Plasma
was prepared from the maternal blood
samples by high-speed centrifugation as
described previously and stored at –70°C
before analysis.12 In addition, the fro-
zen plasma samples shipped from Bari
were again subjected to high-speed cen-
trifugation (16000g for 10 minutes) be-
fore analysis.16 We focused exclusively
on samples in which the father was a car-
rier for 1 of the 4 following �-globin gene
mutations (IVSI-1, IVSI-6, IVSI-110, and
codon 39) and the mother had been
genotyped tocarryanother �-globingene
mutation.

The chorionic villus sampling sample
was obtained by transabdominal punc-
ture with a 23-gauge needle under ul-
trasonic guidance. The samples were
processed and analyzed at the diagnos-
tic laboratory at the University of Bari,
using an allele refractory mutation sys-
tem and PCR procedure, followed by
combined reverse dot blot analysis.7,8

Circulatory DNA Extraction
and Size-Fractionation

Circulatory DNA was extracted from 5-
to 10-mL maternal plasma using com-
mercial column technology (Roche
High Pure Template DNA Purifica-
tion Kit; Roche, Basel, Switzerland) in
combination with a vacuum pump.12

After extraction, the DNA was sepa-
rated by agarose gel (1%) electropho-
resis (Invitrogen, Basel, Switzerland),
and the gel fraction containing circu-
latory DNA with a size of approxi-
mately 300 bp was carefully excised.
The DNA was extracted from this gel
slice by using an extraction kit (QI-
AEX II Gel Extraction Kit; Qiagen,
Basel, Switzerland) and eluted into a fi-
nal volume of 40-µL sterile 10-mM tris-
hydrochloric acid, pH 8.0 (Roche).12

Strict anticontamination procedures

were used throughout the procedure,
including the analysis of on average 2
blank gel slices per samples exam-
ined, which were all negative.

PCR Amplification Using a
Peptide-Nucleic-Acid Clamp

Peptide-nucleic-acids (PNAs) bind with
very high affinity to specific DNA se-
quences (eg, to a wild-type or mutant al-
lele), which may differ by as little as a
single-base change.17 These molecules
can be used when examining DNA
samples that contain a mixture of wild-
type and mutant alleles to suppress the
specific amplification of either allele.17

In this manner, the mutant or wild-
type allele can be selected specifically
from a mixture of both alleles. We used
a PNA sequence specific for the mater-
nal normal allele to suppress amplifica-
tion of the wild-type maternal allele,
thereby enriching for the presence of pa-
ternally inherited mutant sequences. The
PCR/PNA clamping reactions were per-
formed in a total volume of 30 µL, con-
sisting of 8-µL size-separated circula-
tory DNA, 1 � buffer with 3.5-mM
magnesium, 0.2-mM dNTPs (nucleo-
tides), 0.13-µM of each primer (all the
primers used in this study were synthe-
sized by Microsynth, Basel, Switzer-
land, and high performance liquid chro-
matography [HPLC] purified), and
0.6-U TaqGold DNA polymerase (Ap-
plied Biosystems, Rotkreuz, Switzer-
land), using the following PNA probe
concentrations (Applied Biosystems):
0.67-µM for the IVSI-1 mutation, 0.5-µM
for IVSI-6 mutation, 1-µM for IVSI-110
mutation, and 1-µM for codon 39 mu-
tation. The detailed primer sequences
and PCR/PNA clamping reactions are
shown in TABLE 1. The clamping reac-
tion was performed in a thermal cycler
(Mastercycler, Eppendorf, Hamburg,
Germany).

Allele-Specific Real-Time PCR

Following the PCR/PNA clamping step,
the presence of the mutant paternal al-
lele was detected by a real-time allele-
specific PCR reaction, which was per-
formed on a sequence detector (Perkin
Elmer Applied Biosystems 7000 Se-
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quence Detector, Applied Biosys-
tems). A total of 1 µL of the PCR clamp-
ing product was amplified in duplicate
in a final reaction volume of 25 µL con-
taining 160 nM of each primer, and a
mixed solution (1X SYBR Green Mas-
ter Mix, Applied Biosystems). The
specificity of each of the allele-specific
assays for the 4 �-globin gene muta-
tions was optimized by evaluating a se-
ries of conditions concerning buffers
composition (magnesium ions), tem-
perature and length of PCR amplifica-
tion cycles, as well as use of different
oligonucleotide primers.18

These experiments were performed
on artificial mixtures of mutant DNA
diluted into wild-type DNA. The final
conditions are listed in Table 1. For the
real-time PCR analysis, the mixed so-
lution (1X SYBR Green Master Mix) was
used to monitor the PCR reaction. The
quantitative process used by real-time
PCR makes use of a defined threshold
value, which is determined by the cross-
ing of a defined threshold by the accu-
mulated PCR product,19 which is
termed the threshold value or CT. This
value can be used for the accurate de-
termination of the exact amount on spe-
cific input template DNA, by compari-

son with a standard curve. To measure
the quantitative differences between 2
genetic loci (eg, wild-type and mu-
tant), the difference between the re-
spective CT values (�CT) can be used.20

We used this �CT system to deter-
mine the ratio of wild-type to mutant,
whereby the extent of the amplifica-
tion of the normal wild-type allele
(CTN) was subtracted from that of the
mutant allele (CTM).

By the use of this �CT(M-N) ap-
proach, we observed a clear discrimi-
nation of normal wild-type DNA
samples from those samples heterozy-
gous for the mutant allele, even with
experimental conditions in which the
mutant allele constituted less than 10%
of the total DNA examined. This analy-
sis also permitted us to assign arbi-
trary �CT(M-N) cut-off areas for the 4 al-
lele-specific PCR assays; the normal
allele yielding higher and the mutant
allele yielding lower values (FIGURE).

Statistical Analysis

The �2 test was used to evaluate whether
a significant difference existed be-
tween the results obtained by the analy-
sis of size-fractionated circulating DNA
and by the analysis of total-circulatory

DNA. The analysis was performed by
using Stata version 8.0 (StataCorp LP,
Lausanne, Switzerland). P�.05 was
considered statistically significant.

RESULTS
The laboratory components of the study
were performed from October 1, 2003,
through May 30, 2004, in Basel, Swit-
zerland. Four distinct point muta-
tions of the �-globin gene—IVSI-1
(n=7), IVSI-6 (n=4), IVSI-110 (n=5),
and codon 39 (n=16)—were exam-
ined. For each of these mutations, an
allele-specific real-time PCR assay was
developed. In the case of the codon 39
mutation, the development of an allele-
specific assay was more complex due
to the number of repetitive sequences
in the vicinity of the mutation, which
initially hindered the specificity of the
PCR amplification.

Because we were concerned that cir-
culatory fetal DNA sequences may still
be outnumbered by maternal DNA se-
quences, even after selective enrich-
ment on the basis of size, an addi-
tional PCR step was used before the
allele-specific PCR assay to ensure that
the presence of mutant fetal alleles
could be detected in a mixture of mu-

Table 1. Oligonucleotide Sequences and PCR Conditions

Mutation

PNA Clamping Allele-Specific Real-Time PCR

Primers and PNA Probes
Conditions of
PNA Clamping Primers

Conditions of
Allele-Specific Real-Time PCR

IVSI-1 F-primer: GTG AAC GTG GAT
GAA GTT GGT

R-primer: TCT CCT TAA ACC
TGT CTT GTA ACC TTC TAT

PNA probe: OO-GAT ACC AAC
CTG CCC

Denatured at 95°C for 10 min,
followed by 25 cycles of
95°C for 15 s, 70°C for 1
min, 60°C for 15 s, 72°C for
30 s, final extension at 72°C
for 5 min

F-primer: GTG AAC GTG GAT
GAA GTT GGT

IVSI-1/N: TTA AAC CTG TCT
TGT AAC CTT GAT ACG AAC

IVSI-1/M: TTA AAC CTG TCT
TGT AAC CTT GAT ACG AAT

Incubated at 95°C for 10 min,
followed by 40 cycles of
95°C for 15 s, 63.5°C for
15 s, 72°C for 30 s

IVSI-6 F-primer: GTG AAC GTG GAT
GAA GTT GGT

R-primer: CTT AAA CCT GTC
TTG TAA CCT TGA

PNA probe: OO-GAT ACC AAC
CTG CCC

Denatured at 95°C for 10 min,
followed by 25 cycles of
95°C for 15 s, 70°C for 1
min, 60°C for 15 s, 72°C for
30 s, final extension at 72°C
for 5 min

F-primer: GTG AAC GTG GAT
GAA GTT GGT

IVSI-6/N: CT TAA ACC TGT CTT
GTA ACC TTC ATA

IVSI-6/M: CT TAA ACC TGT CTT
GTA ACC TTC ATG

Incubated at 95°C for 10 min,
followed by 40 cycles of
95°C for 15 s, 62.5°C for
15 s, 72°C for 30 s

IVSI-110 F-primer: ACT CTT GGG TTT
CTG ATA GGC ACT

R-primer: CAG CCT AAG GGT
GGG AAA ATA G

PNA probe: OO-TAG ACC AAT
AGG C

Denatured at 95°C for 10 min,
followed by 25 cycles of
95°C for 15 s, 71°C for 1
min, 62°C for 15 s, 72°C for
30 s, final extension at 72°C
for 5 min

F-primer: ACT CTT GGG TTT
CTG ATA GGC ACT

IVSI-110/N: CAG CCT AAG GGT
GGG AAA ATA CAC C

IVSI-110/M: CAG CCT AAG GGT
GGG AAA ATA CAC T

Incubated at 95°C for 10 min,
followed by 40 cycles of
95°C for 15 s, 59.5°C for
15 s, 72°C for 30 s

Codon 39 F-primer: CTC TGC CTA TTG
GTC TAT TTT CCC

R-primer: ATC CCC AAA GGA
CTC AAA GAA CC

PNA probe: OO-ACC TCT GGG
TCC A

Denatured at 95°C for 10 min,
followed by 25 cycles of
95°C for 15 s, 72°C for 1
min, 63°C for 15 s, 72°C for
30 s, final extension at 72°C
for 5 min

F-primer: CTC TGC CTA TTG
GTC TAT TTT CCC

Codon 39/N: ATC CCC AAA
GGA CTC AAA GAA CCT GTG

Codon 39/M: ATC CCC AAA
GGA CTC AAA GAA CCT GTA

Incubated at 95°C for 10 min,
followed by 40 cycles of
95°C for 15 s, 61.5°C for
15 s, 72°C for 30 s

Abbreviations: M, mutant allele; N, wild-type allele; OO, ethylene glycol linker; PCR, polymerase chain reaction; PNA, peptide-nucleic-acid.
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Improved prenatal detection of a fetal point mutation for
achondroplasia by the use of size-fractionated circulatory
DNA in maternal plasma—case report
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Introduction The efficacious analysis of fetal loci involving point mutations from circulatory fetal DNA in
maternal plasma is hindered by the preponderance of maternal DNA. It has recently been shown that the size
difference between fetal and maternal DNA species can be used for the selective enrichment of circulatory
fetal DNA in maternal plasma. We have now tested this approach for the detection of a fetal point mutation
in the fibroblast growth factor receptor 3 (FGFR3) gene that causes achondroplasia.

Methods Circulatory DNA was extracted from maternal plasma and size-fractionated by agarose gel
electrophoresis. The fraction with a size less than 300 bp was examined by a touchdown PCR assay specific
for the FGFR3 gene, and the mutation was identified by SfcI restriction analysis.

Result Our analysis indicated that although the fetal mutation was discernible in the analysis of total plasma
DNA, the result using size-fractionated DNA was much more evident.

Conclusion The enrichment of circulatory fetal DNA in maternal plasma by size-fractionation facilitates the
detection of subtle feto-maternal genetic differences, such as those involving point mutations. This approach
can easily be extended for the non-invasive prenatal determination of other fetal loci. (190) Copyright  2004
John Wiley & Sons, Ltd.

KEY WORDS: prenatal diagnosis; point mutation; fetal DNA; maternal plasma

INTRODUCTION

The discovery of circulatory fetal DNA in maternal
plasma has opened a new avenue for non-invasive
prenatal diagnosis and has readily been seized upon for
the risk-free assessment of fetal loci absent from the
maternal genome (Lo et al., 1997). As such, it is already
used clinically for the determination of fetal Rhesus D
status in Rhd mothers with a positive partner or for fetal
sex determination in pregnancies at risk for X-linked
disorders (Faas et al., 1998; Lo et al., 1998; Zhong
et al., 2000; Costa et al., 2002; Rijnders et al., 2004).

Since only a small percentage of the total circulatory
DNA in maternal plasma is of fetal origin (approxi-
mately 3–5%), the analysis of more subtle feto-maternal
genetic differences, such as Mendelian disorders involv-
ing point mutations is more complex, as they are masked
by the preponderance of maternal sequences (Hahn and
Holzgreve, 2002).

It has recently been shown that the major proportion
of circulatory fetal DNA fragments is of a smaller size
than corresponding maternal ones (Chan et al., 2004; Li
et al., 2004). It has also been shown that by selecting
fragments with a size of less than 300 bp a selective

*Correspondence to: Dr S. Hahn, Laboratory for Prenatal Medi-
cine, University Women’s Hospital/Department of Research, Spi-
talstrasse 21, CH 4031 Basel, Switzerland. E-mail: shahn@uhbs.ch

enrichment of fetal DNA can be achieved and that this
will facilitate the detection of otherwise masked fetal
polymorphic loci (Li et al., 2004).

We have now examined whether this approach can
be used for the detection of fetal loci involving single
point mutations, using achondroplasia as a model case.
Achondroplasia (ACH) is the most common genetic
form of dwarfism, and is caused by dominant mutations
in the fibroblast growth factor receptor 3 (FGFR3)
gene. More than 90% of ACH patients have the same
mutation in the transmembrane domain of FGFR 3, a
G-A transition at nucleotide 1138 (G380R mutation)
(Shiang et al., 1994).

In our study, circulatory fetal DNA sequences were
enriched by size-separation and examined by a combi-
nation of touchdown polymerase chain reaction (PCR)
and restriction enzyme analysis. Our analysis indicates
that this approach permits a more precise detection of
the fetal G380R mutant allele than conventional analysis
of total plasma circulatory DNA.

METHODS AND MATERIALS

Patient

Our patient is a healthy parous woman, with a gesta-
tional age of 343

7 weeks. Her husband and her previous

Copyright  2004 John Wiley & Sons, Ltd. Received: 29 June 2004
Revised: 18 August 2004

Accepted: 21 August 2004
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child have ACH. Amniocentesis had been performed at
16 weeks because of maternal age (38 years). The par-
ents requested simultaneous analysis for achondroplasia
so as to prepare for the eventual birth of an affected
child and also because in the previous pregnancy mid-
trimester ultrasonography had not identified the fetal
condition. The second fetus had a normal karyotype, but
was also affected by ACH.

Sample processing

Eighteen millilitre peripheral blood, using EDTA as an
anti-coagulant, was obtained from the mother (34 +
3 weeks) and simultaneously from the father, who is
affected with ACH caused by the G380R mutation. This
study was approved by our Institutional Review Boards,
and informed consent was obtained prior to venipunc-
ture. Following transport by overnight express courier,
the plasma was separated by an initial centrifugation at
1600 g for 10 min, and a further one at 16 000 g for
10 min. The plasma and the buffy coat were then stored
at −70 ◦C.

DNA isolation and size fraction

Circulatory DNA was extracted from 7-mL maternal
plasma using the Roche  High Pure Template DNA
Purification Kit (Roche, Switzerland), in combination
with a custom-made vacuum pump (Li et al., 2004).
Maternal and paternal DNA were extracted from the
respective buffy coats.

The extracted DNA was fractionated by agarose gel
electrophoresis (1% agarose gel containing 0.5 ug/mL
ethidium bromide (Sigma, USA)). Using 100-bp ladder
DNA (New England Biolabs, USA) as a guide, a gel
slice containing DNA fragments with an approximate
size of 100–300-bp fragments was excised using a
sterile scalpel blade. DNA was eluted from the agarose
section using QIAEX II Gel Extraction Kit (Qiagene,
Switzerland) (Li et al., 2004).

Touchdown PCR and restriction digestion

The small amount of template DNA necessitated the
use of a high number of amplification cycles (n = 57)
for the amplification of the target DNA. As conven-
tional PCR assay would under these conditions have
led to erroneous amplification, we used a touchdown
PCR protocol, as this leads to a greater specificity by
reducing the amount of mispriming associated with high
cycle numbers (Don et al., 1991). This is achieved by
using a temperature gradient in the first few cycles (in
our instance, seven cycles), until the optimal primer-
annealing conditions are attained. This is then followed
by a conventional PCR amplification for the remaining
number of cycles.

For our touchdown PCR amplification, a total of
57 cycles were performed, using a PCR reaction mix
containing 5 uL of 10× buffer; 3.5 mM MgCl2; 160 µM
dNTPs; 0.1 µM each of forward and reverse primers

(Microsynth, Switzerland), 0.75U of AmpliTaq Gold
polymerase (Perkin Elmer, USA) and 5 uL of DNA in
a total volume of 50 uL. After incubation at 95 ◦C for
10 min, a temperature gradient was carried out for the
seven cycles (95 ◦C for 15 s, 65 ◦C for 15 s, 72 ◦C for
30 s), whereby the annealing temperature was decreased
1 ◦C every cycle. This was then followed by a further 50
cycles of 95 ◦C for 15 s, 58 ◦C for 15 s, and 72 ◦C for
30 s. The PCR was terminated with an extension phase
at 72 ◦C for 7 min. The PCR product was purified using
a MinElut kit (Qiagene).

The purified PCR product (15 uL) was digested with
SfcI (New England BioLabs, USA) at 37 ◦C overnight.
Digested fragments were separated by polyacrylamide
gel (6%) and the products were visualised by staining
with SYBRGreen (Molecular Probes, The Netherlands).

RESULTS

The FGFR 3 mutation at 1138 (G-A) creates a unique
SfcI restriction site, which permits the 164-bp amplicon
to be digested to yield two fragments having sizes of
109 bp and 55 bp respectively (Shiang et al., 1994).
Our analysis indicates that the mother has two normal
copies of the FGFR3 gene, as the 164-bp amplicon was
not digested by the SfcI restriction enzyme (Figure 1,
lane 2). The father, on the other hand, is heterozygous
for this mutation, as determined by the presence of a
normal FGFR 3 allele and a mutant ACH allele, in
that both the normal 164-bp amplicon and the digested
mutant 109-bp fragment is detected (Figure 1, lane 4). In
our analysis the 55-bp fragment was not discernible, as
it could not be adequately resolved. In our examination
of circulatory fetal DNA, we determine that while the
109-bp ACH mutant fragment could be detected in the
analysis of total circulatory DNA (Figure 1, lane 6), this
was far more obvious in the analysis performed on size-
fractionated DNA (Figure 1, lane 8).

Figure 1—PCR amplification and restriction analysis of PCR products
for the achondroplasia mutation of the FGFR3 gene. Lane 1: Maternal
DNA (undigested). Detection of 166 bp fragments. Lane 2: Maternal
DNA (digested with SfcI). Lane 3: Paternal DNA (undigested). Lane
4: Paternal DNA (digested with SfcI). Detection of 166 bp and
109-bp fragments. Lane 5: Total circulatory DNA in maternal plasma
(undigested). Lane 6: Total circulatory DNA in maternal plasma
(digested with SfcI). Lane 7: Size-fractionated circulatory DNA in
maternal plasma (undigested). Lane 8: Size-fractionated circulatory
DNA in maternal plasma (digested with SfcI)

Copyright  2004 John Wiley & Sons, Ltd. Prenat Diagn 2004; 24: 896–898.



898 Y. LI ET AL.

DISCUSSION

The vast excess of circulatory maternal DNA sequences
hinders the reliable analysis of fetal loci from circu-
latory fetal DNA in maternal plasma, especially when
examining point mutations or small genomic differences.
Recent findings have shown that circulatory fetal DNA
molecules in maternal plasma predominantly have a size
of less than 300–500 bp, whereas the majority of cir-
culatory maternal DNA molecules are larger than this
(Chan et al., 2004; Li et al., 2004). This feature can
be exploited to facilitate a selective enrichment of cir-
culatory fetal DNA sequences, thereby permitting the
detection of otherwise masked fetal genetic traits (Li
et al., 2004).

To test this approach, we examined a pregnancy at
risk for ACH. Our data indicate that the presence of the
mutant fetal allele could be more readily detected in the
circulatory DNA fraction, which had been subjected to
size-separation when compared to the analysis of total
circulatory DNA. This is the second case report on non-
invasive prenatal diagnosis of fetal achondroplasia by
the use of circulatory fetal DNA in maternal plasma
(Satio et al., 2000). Our present study indicates that
the enrichment of fetal DNA by size-fractionation is
a significant step forward towards the more optimal
detection of fetal sequences, differing only discretely
from the maternal background.

In this context, the use of mass spectrometry for the
examination of paternally inherited fetal genetic loci
in maternal plasma has very recently been reported
(Ding et al., 2004). In this study, point mutations for
β-thalassaemia as well as associated–single nucleotide
polymorphisms (SNPs) could be reliably detected from
maternal plasma samples. The immediate advantage of
this approach is that it can be used on total plasma
cell-free DNA and does not require any additional
processing, such as size-fractionation. Furthermore, it is
amenable to high-throughput automated analysis. The
disadvantage of this new approach is that it requires
very sophisticated and expensive equipment, not readily
available to the vast majority of diagnostic or research
laboratories.

Our approach on the other hand, while somewhat
more labour intensive and unsophisticated, does not

require any specialised equipment and as such can be
readily implemented in any standard routine diagnos-
tic or research laboratory. Hence, under these circum-
stances, the size-fractionation approach may be particu-
larly useful for the prenatal analysis of other Mendelian
disorders, which cannot be performed reliably on total
circulatory DNA in maternal plasma.
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