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Abstract

Although global efforts in the past decade have halved the number of deaths due to malaria, there are still an
estimated 219 million cases of malaria a year, causing more than half a million deaths. In this forum article, we
asked experts working in malaria research and control to discuss the ways in which malaria might eventually be
eradicated. Their collective views highlight the challenges and opportunities, and explain how multi-factorial and
integrated processes could eventually make malaria eradication a reality.
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Introduction
Marcel Tanner (Fig. 1)
Malaria remains the most important parasitic disease,

being a major threat in the world and leading to some
600,000 deaths per year. These deaths are predominantly
caused by Plasmodium falciparum in African children
younger than five years old, widespread morbidity, and
an under-recognised burden of disease related to
Plasmodium vivax that puts 2.3 billion people at risk,
particularly in Asia [1]. In addition to the ethical rea-
sons, it is also the huge economic burden that calls for
global action to reduce and eliminate this intolerable
burden for the global benefit. Malaria is a disease of pov-
erty, and malaria control and elimination is a contribu-
tion to effective and sustained poverty alleviation.
When the paradigm shift from malaria control to malaria

eradication following declarations and plans at the Gates
Malaria Forum in October 2007 was re-launched and sup-
ported by the World Health Organization (WHO), not only
was a new era of slogan-based public and global health ac-
tion launched but shaken and stimulated by these declara-
tions, scientists and public health actors started to work
together in a much more coherent way. They did this by (1)
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developing integrated control and elimination programmes
tailored to a given endemic setting and (2) engaging actively
in the research and development (R&D) agenda required
for malaria eradication as set by the malERA-process [2].
They also recognised that malaria elimination and subse-
quently eradication cannot be achieved by the currently
existing tools, but require a continuous R&D process for
the development of new tools and approaches.
Every year, World Malaria Day forces us to look at where

we came from, where we are and what still needs to be
done. Joint action over the past decade has led to an im-
pressive impact: malaria infection rates have been cut in
half and 4.3 million lives have been saved. Fifty-five coun-
tries are on track to reach the World Health Assembly tar-
get of a 75 % reduction in their malaria burden by 2015 [3].
Although these huge gains are impressive, they remain fra-
gile if the momentum of the joint action cannot be main-
tained. Clearly, not keeping the momentum leads to the
resurgence of malaria, as we have experienced in numerous
previous elimination efforts at national or subnational level
(for example, see [4, 5]). It is in this context that the new,
jointly established Global Technical Strategy (GTS) by the
WHO Global Malaria Programme (GMP) was approved by
the World Health Assembly in 2015 [6]. Complementary to
this, the follow-up version of the Global Malaria Action
Plan [7, 8] by the Roll Back Malaria Partnership (RBM),
called Action and Investment to defeat Malaria 2016-2030
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Fig. 1 Marcel Tanner is Director emeritus of the Swiss Tropical &
Public Health Institute and Professor (chair) of Epidemiology and
Medical Parasitology, University of Basel. His research ranges
from basic research in cell biology and immunology on malaria,
schistosomiasis, trypanosomiasis and filariasis to epidemiological and
public health research. Research, teaching and health planning are
based on long term work in Africa and Asia
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(AIM) - for a malaria-free world, will also be launched in
2015 [8]. It is under the umbrella of these two guiding doc-
uments that the global health community, leaders and
decision-makers together with national programme man-
agers aim at keeping the momentum towards further suc-
cess and the goals as provided in the WHO/GTS and
RBM/AIM (Table 1):
It is in this spirit that the present Forum, with an im-

pressive set of authoritative view points and analyses,
addresses the key areas where our efforts in science and
public health actions are still required. First and fore-
most, it is important that we recognise that the majority
of the remaining burden and ongoing transmission is lo-
cated in the most neglected segments of the populations
in endemic areas. More lives could be saved by rigor-
ously increased access to tools, intervention packages
and health and social service provisions. These facts sug-
gest that all our interventions, integrated and tailored,
within any given health and social system ought to aim
at achieving equity effectiveness and not simply cost
effectiveness. Besides providing an operational concept
and target, equity effectiveness is also the ethical and
moral guiding principle to reach the ultimate aim of
eradication and an exceptional achievement in the his-
tory of mankind with enormous broad societal and de-
velopmental benefits for our globe. Consequently follows
the motto of the 2015 World Malaria Day reminding us
to “invest in the future – defeat malaria”.
Clearly, the achievements made so far are remarkable

and unprecedented. Looking ahead means now facing
the key challenges that remain:

1. The threatening, rapid development and spread of
resistance to drugs and insecticides and how we
detect, monitor, contain, counteract and possibly
eliminate parasites foci from foci where resistance
spreads.

2. Maintaining the momentum of drug, vaccine and
diagnostics R&D processes that can lead to new
tools, which are required to achieve elimination and
eradication.

3. Developing and validating effective approaches of
mass drug applications for different aims, ranging
from cutting transmission to containment of
resistance in different population groups and health
systems settings.

4. Understanding, developing and coherently
implementing health systems and community-
based approaches towards surveillance allowing
rapid, effective public health action with setting-
tailored response packages, i.e. the scientifically
grounded operationalisation of the concept of
surveillance-response.

5. Guidance through predictive modelling and on the
well-synthesised past experience on the effect and
costs of combining different interventions and tools
in national and subnational elimination efforts, i.e.
describing, analysing and modelling case-studies
with innovative approaches.

6. The slow progress in better understanding
Plasmodium vivax and thus understanding the
bases for new tools and strategies towards
P.vivax elimination, a prerequisite for the final
aim of eradication.

7. Continuous efforts towards capacity building for
scientists, public health specialists and decision-
makers to become and remain engaged in the
eradication agenda.

8. Assuring continuous, long-term investment in,
and funding of, malaria eradication efforts through
traditional and novel mechanisms as well as respective
domestic allocation.



Fig. 2 Brian Greenwood is an infectious disease physician who
worked and lived in West Africa for 30 years before joining the
London School of Hygiene & Tropical Medicine where he is now a
professor of tropical medicine. His main research interests are
malaria and epidemic meningitis. He has conducted research on
many aspects of malaria including its epidemiology, pathogenesis,
treatment and prevention and is currently contributing to the
evaluation of the leading candidate malaria vaccine RTS,S/AS01

Table 1 Joint WHO/GTS (5) and RBM/AIM (7) goals, milestones and targets (adapted from [5])

Goals Milestones Targets

2020 2025 2030

Reduce malaria mortality rates globally compared with 2015 ≥40 percent ≥75 percent ≥90 percent

Reduce malaria case incidence globally compared with 2015 ≥40 percent ≥75 percent ≥90 percent

Eliminate malaria from countries in which malaria was transmitted in 2015 At least 10 countries At least 20 countries At least 35 countries

Prevent re-establishment of malaria in all countries that are malaria-free Re-establishment prevented
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The contributions in this forum will address these key
challenges in more detail.
The WHO/GTS and RBM/AIM have now been

adapted to the changing global malaria situation to
provide the outlook for action until 2030. However,
there still remains the task of carefully and critically
refreshing the R&D agenda. It is fortunate that
MESA (Malaria Eradication Science Alliance) is cur-
rently preparing this crucial update to reach an even
more focused and coherent portfolio. This will be
tackled, in part, by the public and private sectors,
but mainly by various Product Development Partner-
ships (PDPs) such as Medicines for Malaria Venture
(MMV), Innovative Vector Control Consortium (IVCC),
Foundation for Innovative Diagnostics (FIND), Novartis
Institute for Tropical Diseases (NITD), Drugs for
Neglected Diseases Initiatives (DNDi), PATH’s Malaria
Vaccine Initiative (MVI) and the European Vaccines
Initiative (EVI) that all work in highly pragmatic, ef-
ficient processes across and with the private and
public sectors. In this respect, we can and must also
learn from the successes of the past, particularly the
last decade. The most remarkable impact was
achieved through a partnership approach that is not
only guided by collaborative arrangements but by a
true spirit and process of mutual learning for change.
Partnership stimulates innovation and public health
action, but has also been a main driver of effective
capacity building, leadership and health systems
strengthening.
Achieving the goals will require major and long-term

investments through established and innovative funding
schemes, as well as increased and sustained domestic
funding of the diseases endemic countries. The current
estimates indicate a need of some 6-8 billion USD/year
[6] depending on the different milestones (Table 1). Al-
though enormous and extremely challenging for all ad-
vocacy and fund raising actions, one should not forget
that the return of investment is massive. It was esti-
mated that for each dollar spent, up to 60 USD worth
of benefits can be gained for the overall well-being of a
society [8–10]. Therefore, advocacy and fund-raising at
all levels should be run against this promising back-
ground. It is in this spirit that we reflect on World
Malaria Day 2015: “Invest in the future – defeat
malaria”!
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The role of epidemiology in malaria elimination
Brian Greenwood (Fig. 2)
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Making a commitment to malaria elimination (inter-
ruption of all local transmission of the infection in a
country or region), especially if a firm time-line is given,
is a major step and one which should not be taken
lightly. Failure of the first malaria eradication campaign
(1955-1969) to achieve its objective led to 30 years of
neglect of malaria and this must not be allowed to hap-
pen again. A decision to target elimination in a country
or region is likely to be influenced by political and finan-
cial considerations as well as scientific ones. However, it
must be based on a sound knowledge of the epidemi-
ology of malaria in the area that is targeted for attack.
Information that is needed includes recent data on the
prevalence of malaria infection by age group, the propor-
tion of infections caused by individual malaria species,
the identity of the dominant mosquito vectors and their
behavior, and knowledge of any social activities in the
local population that would put specific groups especially
at risk. Information on patterns of drug and insecticide re-
sistance is also required to guide intervention strategies.
WHO provides guidelines on the milestones that should
be reached before embarking on elimination [11] but these
should be considered only as guidelines which may need to
be adapted to meet local circumstances.
Recent successes in malaria control have been

achieved mainly in areas of previously low transmission
in Asia and in regions on the margins of the malaria
heartland of central Africa. In many of these areas,
elimination of P. falciparum malaria is a now realistic
goal which is being pursued actively [12], and recently
the WHO made a courageous commitment to elimi-
nation of falciparum malaria in the Greater Mekong area
by 2030 in an attempt to eliminate artemisinin resistant
strains of P. falciparum [13]. Elimination of P. vivax will
be more difficult than elimination of P. falciparum be-
cause of the presence of persistent liver stage infections
(hypnozoites; the dormant form of the parasite respon-
sible for relapses; this aspect is discussed in a later sec-
tion of this forum article).
As the incidence of malaria in a particular region de-

clines, transmission usually becomes concentrated in
populations who are especially at risk (‘hot pops’) or in
geographically restricted areas (‘hot spots’). Examples of
‘hot pops’ are forest workers who camp out in areas
where forest vectors reside and artisanal miners who fre-
quently live under appalling conditions. ‘Hot spots’ may
be found when the presence of swamps or a persistent
water source supports breeding of vector mosquitoes
throughout the year. Epidemiological surveillance is
needed to detect ‘hot-pops’ and ‘hot-spots’ which can
then be targeted for enhanced malaria control [14]. This
can be achieved using either active or passive ap-
proaches. Establishment of an effective reporting system
of cases of clinical malaria, confirmed by microscopy or
a rapid diagnostic test (RDT; discussed later in this
article), in district health centres, as has been done in
Senegal and elsewhere, can provide a rapid means of de-
tecting ‘hot-spots’, provided that the reporting system is
accurate and speedy. Active case detection may be
needed for ‘hard-to-reach’ populations who do not at-
tend health facilities. Active case detection through for-
mal malaria surveys is demanding and expensive and
alternative, less demanding approaches are being ex-
plored such as surveys conducted in children attending
routine vaccination clinics, women attending ante-natal
clinics or school-children.
Until recently, it was widely accepted that in areas

of low malaria transmission, nearly all malaria infec-
tions caused symptoms which would bring the sub-
ject to the clinic. However, it is now apparent that
this is not the case and that in some low transmis-
sion areas many malaria infections are asymptomatic
or cause such minor symptoms that the subject does
not seek treatment [15]. Finding these asymptomatic
subjects is essential if transmission is to be stopped
as they are potentially infectious. Various approaches
have been used to do this, including focal screening
and treatment of communities considered to be at
special risk (FSAT) and mass screening of whole
populations (MSAT), but even the latter may miss
infected subjects who are away at the time of screen-
ing [16]. Detecting asymptomatic infections can be
difficult because many are present at only a low
density and cannot be detected by conventional RDTs
or microscopy. More sensitive tests, such as PCR and
the recently developed loop-mediated isothermal amplifi-
cation (LAMP) assay [17] which does not require a ther-
mocycler, are now being deployed increasingly for this
purpose.
If interruption of transmission is achieved, epi-

demiological surveillance must be sustained to ensure
that any introduced infections are detected rapidly
and treated. Thus, passive surveillance at hospitals
and health centres must be sustained after elimin-
ation and regular surveys may be required in popula-
tion groups or geographical areas known to be at
special risk. Finally, in some situations, for example,
on islands or in countries with few entry points,
screening of visitors from endemic areas can be
undertaken to prevent reintroduction of the infection;
however, this is difficult to sustain. Studies of the
parasite, its vector and its human host are essential
in guiding the direction of malaria elimination pro-
grammes and in guarding against re-introduction of
the infection after success has been achieved.
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Better diagnostic tests for malaria
elimination - luxury or necessity?
Christopher JM Whitty (Fig. 3) and Evelyn K Ansah
(Fig. 4)
Central to any elimination campaign in its later stages

is finding the remaining pockets of transmission, and
in its terminal strategies, finding the last few cases.
Most diseases targeted for elimination are either easy
to spot from their presentation, are chronic, or both;
malaria is neither. Initial case-finding is relatively
straightforward for smallpox, Guinea worm and polio.
Smallpox was sufficiently easy to spot, schoolchildren
became case-finders (sensitive) with specific confirm-
ation by experts. Other diseases where eradication is
considered, with varying degrees of reality, are chronic
(ongoing) making cross-sectional surveys a good way
of identifying new cases (e.g. leprosy, filariasis), or in-
volve seroconversion (Yaws). Finding the last cases of
malaria is more challenging because it is an acute
short-lived disease with non-specific symptoms (fever,
headache).
The debate around diagnosis for malaria elimination

sometimes implies that the major issue is obtaining
more sensitive diagnostic technology. Whilst improved
Fig. 3 Christopher JM Whitty is Professor of Public and International
Health at the London School of Hygiene & Tropical Medicine
(LSHTM), and Chief Scientific Advisor and Director of Research
at the UK Department for International Development (DFID). He
was previously director of the LSHTM Malaria Center and of the
ACT Consortium

Fig. 4 Evelyn Korkor Ansah is a Deputy Director of the Research and
Development Division of the Ghana Health Service, an adjunct
lecturer at the School of Public Health, University of Ghana and the
Chair of the Institutional Review Board of the Dodowa Health
Research Center. She is currently one of the two vice-chairs of the
Technical Review Panel of the Global Fund and a Steering Committee
Member of the ACT Consortium, London School of Hygiene & Tropical
Medicine. She has more than 15 years of experience in managing
District Health Services including extensive operational research
on malaria diagnosis
tests may be useful, they are not necessary for malaria
elimination in current low transmission settings. In
Europe, America and parts of Asia, during the first glo-
bal eradication campaign, elimination was achieved
when only microscopy was available. In areas where
malaria transmission has historically been very low it is
adequate to identify cases by passive case finding. With
a much lower immunity, most infected people will get a
fever relatively early in the disease and are likely to
present for clinical care. They are diagnosed with
current tests, acting as a sentinel that indicates on-going
transmission is occurring. This worked for initial malaria
elimination in Europe and to identify outbreaks when
imported malaria started onward transmission in, for ex-
ample, Greece or Italy where malaria-transmitting mos-
quitoes remain [18].
Current rapid diagnostic tests (RDTs) for malaria are

both sensitive and specific for clinical malaria [19],
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simple to use and cost-effective over a range of trans-
missions including where vivax is predominant [20]. Be-
fore trying to design better ones, we need to understand
the nature of the new diagnostic challenge [21], and start
with the public health problems, not the technical so-
lution. We identify three. The first, for which there is
currently no good technical solution, is identifying
asymptomatic people with hypnozoites of vivax or
ovale malaria (a rare parasite causing a relatively small
number of malaria cases) between clinical attacks.
Eliminating vivax will be more difficult than falcip-
arum malaria in low transmission settings because of
relapse; identifying hypnozoite carriers would be a
major advance.
The second is identifying pockets of high transmission

during the later pre-terminal phases of an elimination
campaign. The initial reduction in transmission at a
population level will lead to malaria transmission frag-
menting, with hotspots of transmission in a sea of much
lower, (eventually no) transmission. Will new technology
help here? Arguably, the major problem is that these
islands of transmission will be in areas where health
services are weak. Identifying incident cases is there-
fore likely to be difficult for operational reasons. Pas-
sive surveillance will need to concentrate on places
where marginalised people go for treatment. This is
usually the informal private sector where evidence of
the impact of improving diagnostics is currently lack-
ing, or peripheral health centres where there is good
evidence that RDTs can be used effectively [22]. Pro-
viding current diagnostic tools (RDTs) to the shops
where patients go and creating incentives for shop-
keepers to report may prove much more effective for
identifying hotspots than providing improved diagnos-
tic tools to the public sector.
Cross sectional surveys could identify hotspots but

given the short-lived nature of malaria infections, they
will only work if we have tests which identify recent past
as well as current infections. Whilst no serological tests
for recent (between two weeks and six months) malaria
have proved both sensitive and specific at an individ-
ual patient level, at a population level panels of sero-
logical markers have proved useful in identifying
pockets of high transmission [23]. Combining serology
with conventional microscopy in geospatial models has
the capacity to identify areas for action in elimination
efforts [14].
Once malaria transmission is very low, the third chal-

lenge is identifying the few remaining cases. Some argue
that more sensitive tests will help this, and certainly they
will do no harm. The current problem with over-
sensitive tests is that, in high-transmission areas where
low level parasite counts are common in asymptomatic
people, tests with detection levels below the current
cutoff of microscopy will identify large numbers of
people with parasites but whose clinical problem is not
malaria. More sensitive tests are therefore currently a
problem, not a solution, in most of Africa. In any coun-
try where elimination is a realistic prospect, it is very un-
likely large numbers of people will have low-level
asymptomatic parasitaemia, so the disadvantages of
more sensitive tests disappear.
We have, in the form of PCR, tests capable of detect-

ing malaria parasites at well below the threshold for mi-
croscopy or current RDTs including in pregnancy, an
important group for elimination [24]. Operationally,
however, PCR is not easy to use outside central labora-
tories. Developing more sensitive clinical field malaria
tests is however possible with current technology.
Whether more sensitive tests will make a significant

impact on malaria elimination is less clear. They will not
make much difference to passive case detection; by the
time people have symptoms, they usually have sufficient
parasites to be detected using current tests. The index of
suspicion of the person ordering the test for a febrile pa-
tient may need to be adjusted, not the test itself, and this
involves a complex interaction between patient and
healthcare worker [25]. For active case-finding cam-
paigns there is an argument that more sensitive tests will
detect people below the level of current parasite detec-
tion prior to their getting symptoms. What is not clear
is the size of the active case-finding campaign you would
have to have in order to make the number of extra mal-
aria cases detected have an appreciable impact on trans-
mission, but it is probably very large. Whether active
case-finding on this scale would be practical or cost-
effective is uncertain.
Elimination of malaria will require a different ap-

proach to malaria diagnosis. Serology-based strategies to
identify pockets of ongoing transmission by active case-
finding holds promise, but are only as good as the epi-
demiological sampling used. A near-elimination state
takes away the disadvantages of very sensitive clinical
malaria tests, but whether more sensitive tests would
make a significant difference on transmission is not as
clear as is sometimes implied. Much more important for
passive case-finding is increasing the likelihood that
symptomatic patients present for testing; that public and
private healthcare providers test for malaria at a time
the disease is rare; and that they report cases. Along
with this, there needs to be a systematic active approach
to identifying hotspots of transmission. Changing the
diagnostic and reporting framework and incentives is,
therefore, more likely to have an impact than just im-
proving tests.
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Antimalarial drug resistance undermining malarial
elimination
Ric N Price (Fig. 5)
Prompt diagnosis and administration of highly effect-

ive antimalarial treatment are key components of mal-
aria control programmes of the modern era. Over the
last century significant resources have been committed
to developing new, safer and more effective antimalarial
agents. However, each scientific advance has been
followed by the evolution of the parasite and the emer-
gence of drug resistance. As malarial control pro-
grammes succeed in reducing the parasite population,
the remaining parasites come under increasing selective
pressure from intensive drug use. Under such condi-
tions, spontaneous genetic mutations that allow the
parasite to survive in increasing concentrations of drug
provide a greater chance of survival and onward trans-
mission to a new host [26].
The early clinical manifestations of drug resistance

include slower clearance of the parasite biomass and
Fig. 5 Ric Price is an infectious disease physician, Professor of
Tropical Medicine at the University of Oxford, UK and Professor
of Global Health at the Menzies School of Health Research, in
Darwin, Australia. His research programme focuses on the
diagnosis, consequences and containment of multidrug resistant
malaria. He is head of the clinical module of the Worldwide
Antimalarial Resistance Network (WWARN) and co-Chairs the
Vivax Working Group of the Asia Pacific Malaria Elimination
Network (APMEN)
delayed fever resolution. Initially the peripheral para-
sitaemia may fall below the level of microscopic de-
tection, but if not completely eliminated from the
body, subsequent expansion of the parasite popula-
tion occurs as drug concentrations fall, giving rise to
recrudescent infections and clinical representation.
Recurrent infections are associated with a greater risk
of anaemia and gametocyte carriage. The latter leads
to increased transmission of the parasite which can
trigger malaria epidemics (Box 1). As resistant para-
sites become more predominant, recrudescence oc-
curs earlier and the initial parasite clearance takes
longer. Eventually high grade resistance results in in-
effective treatment, with a greater risk of severe com-
plications and death [27].
Chloroquine played a dominant role in reducing the

burden of malaria in the 20th century. However, within
15 years of its initial deployment the first evidence of
chloroquine resistance (CQR) began to appear. One of
the earliest documentations of CQR came from the
gem mines of Pailin in Cambodia. In this area, intense
malaria control efforts had included the addition of
chloroquine into table salt, thus creating an environ-
ment of high exposure of the parasite to sub thera-
peutic concentrations of drug, an ideal scenario for
selection of mutations required for drug resistance [28].
Molecular analyses suggest that the key genetic change
in the pfcrt gene has arisen spontaneously between five
to fifteen times. The resistant parasites then spread
along lines of human migration extending the resist-
ance to almost the entire malaria endemic globe (Fig. 6).
The subsequent sequential deployment of sulfadoxine-
pyrimethamine and mefloquine met with a similar fate;
indeed, resistance to these compounds emerged even
faster.
A pivotal advance in malaria therapeutics came with

the discovery of the antimalarial properties of the
Artemisia plant (Artemisia annua L. or A. annua) [29].
The artemisinin compounds are efficacious even against
multi drug resistant strains of malaria, and are associ-
ated with excellent tolerability and the ability to reduce
Box 1 Consequences of resistance

Greater economic impact

Delay in the initial therapeutic response

Recrudescent infections

More anaemia following repeated infections

Increased gametocyte carriage and transmission

Increased incidence of malaria

A greater frequency and severity of epidemics

Increased mortality



Fig. 6 History of chloroquine-resistant P. falciparum malaria. Reproduced with permission from Packard, New England Journal of Medicine 2014;
371:397-399 [28]. Data are from the WorldWide Antimalarial Resistance Network

Tanner et al. BMC Medicine  (2015) 13:167 Page 8 of 22
gametocyte carriage and thus transmission. However,
their rapid metabolism and elimination from the
body requires either prolonged treatment courses or
combination with longer acting partner drugs. The
latter approach has been used to develop artemisinin
combination therapies (ACT), which are now de-
ployed as first line treatment in more than 80 mal-
aria endemic countries.
In the last decade, malaria morbidity and mortality

have fallen greatly in many endemic areas. Whilst it
is hard to quantify the direct contributions to these
achievements, it is likely that the deployment of
highly effective ACTs has been a critical factor [30].
However, these successes are under threat from the
emergence of resistance to the artemisinin deriva-
tives. Early signs of reduced response to artemisinins
were first observed in Pailin and the Thai-Cambodian
border almost a decade ago. Meticulous prospective
clinical studies have defined delayed parasite clear-
ance as the main manifestation of artemisinin resist-
ance [31]. More recently, clinical and molecular
studies have demonstrated that delayed parasite
clearance times are correlated with mutations in the
kelch protein gene on chromosome 13 (kelch13) [32],
now present throughout mainland Southeast Asia
from southern Vietnam to central Myanmar [33, 34].
Reduction in artemisinin efficacy increases the drug
exposure of parasite populations to both components
of ACTs, facilitating resistance to the longer acting
partner drug. The latest victim of such evolutionary
pressure is piperaquine, with resistance recently con-
firmed in patients from an area in Cambodia where
artemisinin resistance is greatest [35]. Declining effi-
cacy of these vital combination therapies will eventu-
ally reverse the substantial recent gains in malaria
control. If resistant parasites spread into the Indian
subcontinent and on to Africa, this will have devas-
tating consequences for the most vulnerable popula-
tions at greatest risk of malaria.
In areas where the parasite populations are reduced to

extremely low levels, the remaining parasites will be the
hardest to kill, a phenomenon known as the “last man
standing” [26]. When antimalarial drugs are deployed
widely, resistance is inevitable, but its emergence and
spread can be mitigated by a variety of measures. On-
going research and development are crucial to identify
novel classes of drugs with different modes of action to
agents to which relevant mutations have already been se-
lected. The dosing strategy of new drug regimens must
be optimised to ensure killing of all parasites, maximis-
ing patient adherence to complete a full course of treat-
ment and minimising the exposure of the parasite to
subtherapeutic drug concentrations [36]. Poor quality
medicines both from substandard manufacturing pro-
cesses or counterfeit production need to be identified
and removed from the market [37]. Vigilance for the
emergence and spread of drug resistant parasites and de-
clining treatment efficacy is crucial. Geospatial and tem-
poral mapping of drug resistant data in real time will
assist researchers and policy makers to mobilise re-
sources efficiently to contain the resistant parasites early
or change treatment practices to more efficacious regi-
mens [34]. The greatest hope for containing newly emer-
ging drug resistant Plasmodia in low endemic settings is



Fig. 8 Lorenz von Seidlein has worked for 20 years on malaria
and other issues in global health. He worked in The Gambia
on the first evaluations of ACTs in sub-Saharan Africa, and has
managed several large vaccination projects. He is currently
coordinating a major effort to eliminate malaria from areas with
artemisinin resistance with the Mahidol Oxford Research unit In
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to eliminate these parasites at their source by scaling up
control efforts [38]. Radical approaches, such as large
scale screening and treatment of high risk populations
and mass drug distribution, are now being explored with
the hope of restricting artemisinin resistance to the
greater Mekong region, whilst alternative treatment regi-
mens can be developed. A pharmacopeia rich with anti-
malarial options and novel strategies to deploy them,
will help ensure that malaria control programmes stay
one step ahead of the parasite to achieve its ultimate
elimination.
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The role of mass drug administrations in malaria
elimination
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Bangkok, Thailand
The currently applied strategies towards malaria
elimination mainly consist of vector control and case
management. During the past century stringent im-
plementation of these approaches has eliminated the
disease in a number of countries ranging from
Australia through the USA and reduced malaria to
very low levels in many countries in Asia and Latin
America [39]. As long as malaria therapy is effica-
cious and vector control measures work, continued
and concerted efforts should slowly but steadily re-
duce further the burden of malaria. However, the
current emergence of antimalarial and insecticidal re-
sistance threatens to reverse these achievements in
malaria control and increases the demand for inter-
ventions accelerating malaria elimination.
As outlined in the previous section, parasite popu-

lations under antimalarial drug pressure harbouring
resistant parasites will select for the most resistant
parasites against those drugs, leading to a slow and
gradual emergence and spread of resistant malaria,
which can go unnoticed for years. The spread of
chloroquine resistance through sub-Saharan Africa
during the 1980s and 1990s did not attract attention
and ultimately resulted in dramatic increases in mal-
aria morbidity and mortality in vulnerable popula-
tions [40, 41]. Multidrug resistant malaria became an
increasingly urgent and extensive problem in the
1990s, and was only countered with the introduction
of a new group of highly potent antimalarials, the
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artemisinins. In all malaria endemic countries in the
world the first line treatment of falciparum malaria is
now combination therapy that includes artemisinin
derivatives (ACTs). The emergence and spread of ar-
temisinin resistance in the Greater Mekong Subregion
in Asia over the last decade [31, 33, 42] initially re-
sulted only in slower clearance of parasitaemia, but
now increasingly translates into high treatment failure
rates with ACTs because of concomitant partner drug
resistance.
Several candidates to replace artemisinin deriva-

tives are in the development pipeline but none is
near registration and licensing suggesting that a po-
tential first line antimalarial replacement is many
years away [43]. With the current spread of artemisi-
nin and partner drug resistance in Southeast Asia,
a resurgence of highly resistant falciparum malaria
is a feared and likely scenario. This emergency re-
quires an aggressive response aiming at malaria
elimination different from the currently employed
control measures.
One such novel approach is the targeted treatment

of a defined entire population, such as a village, af-
fected by resistant malaria. The main rationale for this
is that this approach addresses the asymptomatic
parasite reservoir, which is considered an important
contributor to transmission [44]. In addition, the post-
treatment prophylactic effect will prevent reinfection of
the individual for several weeks, dependent on the
pharmacokinetic-dynamic profile of the antimalarial
drug. It has become apparent that even in low trans-
mission areas, which is the setting of artemisinin resist-
ance, the asymptomatic parasite reservoir is substantial.
Parasite densities are usually low in asymptomatic in-
dividuals, and conventional diagnostic tests including
microscopy, rapid diagnostic tests, and PCR from filter
paper blood spots lack sufficient sensitivity to detect
these. Imwong and co-workers have demonstrated
that an increase of blood volume used with an ultra-
sensitive qPCR method results in substantially higher
detection rates [45]. The turnaround time of this test
is not sufficient to serve a focal or mass screening
and treat approach (FSAT or MSAT), whereas more
rapid diagnostics currently lack appropriate sensitiv-
ity. For this reason, an approach of targeted malaria
elimination is currently being trialled where the en-
tire population of a village or other group is treated
once malaria prevalence is shown to be substantial
using ultrasensitive detection methods. This pre-
sumptive antimalarial treatment of targeted popula-
tions has been given a range of names including
targeted malaria elimination (TME) and targeted
malaria treatment (TMT). The premise of this ap-
proach is to treat all parasitaemic persons in the
population with the aim of malaria elimination. The
intervention is designed to be used in a context of
well implemented malaria control measures, such as
early malaria diagnosis and treatment and vector
control.
Mass drug administrations have been successfully de-

ployed against several infectious diseases including
lymphatic filariasis. Mass administrations of antimalarial
drugs have probably been conducted since antimalarial
drugs became available. Perhaps the first documented
MDA was done in 1918 [46] and 182 reports of MDAs
have since been published, 32 of which complied with
the stringent criteria required to be included in a
Cochrane Review [47]. The review concluded that
“MDA appears to reduce substantially the initial risk of
malaria parasitaemia”.
The effectiveness of an MDA depends on the

therapeutic efficacy of the drug regimen, the cover-
age, and the chance of malaria reintroduction from
neighbouring endemic areas. The therapeutic efficacy
of the intervention depends on the drugs used and
the interval of their administration. The drugs should
be highly efficacious, persist at therapeutic levels for
prolonged periods and should also be be safe and af-
fordable. To minimize the drug pressure it is pre-
ferred that the regimen used for MDA differs from
the first line treatment in the same area. Current tri-
als (Table 2) use a full course of dihydroartemisinin/
piperaquine (DHA-P) and a single low dose of
primaquine is added to the drug combination to
abort gametocytaemia as quickly as possible [36, 48].
Alternative antimalarials such as artemether com-
bined with lumefantrine can be considered but this
partner drug has a shorter half-life and may be more
expensive [49]. To treat reinfections due to the sur-
vival of infected mosquitoes and re-importation of
falciparum malaria by untreated people mathematical
modelling indicates that a minimum of three “rounds”
of drug administrations is needed to ensure an impact
on transmission [50]. Preliminary data show that
DHA-P is effective in curing asymptomatic parasite
carriers, also in areas with established artemisinin
resistance.
Ensuring a full treatment course is essential for

minimising the risk of additional selection of more
resistant parasite populations. With no appropriate
alternative antimalarials currently available, there is
no real substitute to ACTs for TMT. The potential
hazard of increasing drug pressure with ACTs by
using a mass drug treatment approach on an already
resistant parasite population is well recognised,
but should be balanced against its contribution to
accelerated malaria elimination in this emergency
situation.



Table 2 Targeted malaria elimination studies in the greater Mekong Subregion Q2 2015

Country Start Drugs Rounds Endpoint Number of villages

Thai Myanmar border Phase 1 Q2 2013 DHA – piperaquine + PQa 3 Parasite prevalenceb 4

Thai Myanmar border Phase 2 Q4 2014 DHA – piperaquine + PQa 3 Parasite prevalenceb 300

Vietnam Q4 2013 DHA – piperaquine + PQa 3 Parasite prevalenceb 4

Cambodia - Battambang Q2 2015 DHA - piperaquine 3 Parasite prevalenceb 4

Cambodia - Preah Vihear Q2 2015 DHA - piperaquine 3 Parasite prevalenceb 8

Laos - Savannakhet Q1 2016 DHA – piperaquine + PQa 3 Parasite prevalenceb 4

Myanmar Q1 2015 DHA – piperaquine + PQa 3 Parasite prevalenceb 8

PQ piperaquine
aSingle low dose primaquine (15 mg)
bParasite prevalence determined by high volume ultra-sensitive qPCR
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The currently available drug regimens have a thera-
peutic efficacy well above 90 % but even a drug regi-
men which cures 99 % of the targeted people will
only result in 59 % effectiveness if only 60 % of the
targeted population participate. Thus, the coverage of
the target population is as important as the efficacy
of the drug regimen. The key to high coverage is the
engagement of the entire target population. Com-
pared with optimising drug regimens, much less is
known on how to boost community participation.
Each mass drug administration in the past has used
a variety of ways to engage and mobilise the target
population but the ways and means in which this
was done are usually poorly documented and evalu-
ated. Key elements in community engagement are
meetings with parts of or the whole target popula-
tion, house-to-house visits and the use of mass
media. Meetings with leaders and key decision
makers are critical in the informed consent process
as well as in community engagement. In our experi-
ence, the most important elements for community
engagement are house-to-house visits and face-to-
face discussions by trusted community members such
as village health workers. Pamphlets and banners
may serve as a useful reminder; the effectiveness of
mass media such as radio, television and miking
(town-criers) is unclear.
The rigorous evaluation of the effectiveness of

TMT as a tool for malaria elimination is difficult. Be-
cause of the natural fluctuation in transmission in-
tensity between calendar years, a before/after study
design is inappropriate, instead a cluster randomised
approach is needed to compare intervention with
control populations. The unit for intervention is the
village, but since villages are highly heterogeneous a
large number of villages (“clusters”) would have to be
randomised to provide a statistically meaningful in-
terpretation. In addition, reintroduction of malaria
from neighbouring areas is a vulnerability of the
approach, so that sufficiently large areas will have to
be covered for proper evaluation of its potential in
elimination.
To identify villages with a high parasite reservoir

(hotspots) the village population is tested by taking a
venous blood sample. More scalable approaches are
needed, for instance testing only a sample of the popu-
lation with a finger prick blood sample. Current re-
search suggests that within the village, falciparum
malaria is transmitted between all demographic strata
and geographic locations, so that targeting high risk
populations (hotpops) within a village for treatment
may not be sufficient.
In the context of the threat of untreatable falcip-

arum malaria in the near future, time for extensive
efficacy, effectiveness and implementation studies
using conventional trial designs is lacking. Part of
the evidence will have to come from a ‘learning by
doing’ approach, where moderate scale well defined
TMT projects are implemented in low transmission
areas with artemisinin resistant falciparum malaria,
and coverage, efficacy and safety are carefully re-
corded. The knowledge and experience thus gained
can be used to guide interventions and to model the
outcome in other settings.
Elimination of artemisinin resistant malaria implies

elimination of all falciparum malaria from the region
[26]. In this context targeted presumptive antimalar-
ial treatment of populations could prove to be a piv-
otal additional tool for malaria elimination. The
successful integration of TMT with vector control
measures, optimal case management, and perhaps a
protective vaccine in the future may well decide
whether malaria will be eliminated from many parts
of the world.
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Elimination of Plasmodium vivax malaria requires
new tools
J. Kevin Baird (Fig. 9)
Transmission of P. vivax occurs all across the endemic

tropics and extends into temperate zones such as the
Korean Peninsula [1]. A dormant stage of P.vivax, the
hypnozoite, separates this species from P. falciparum in
crucially important respects. Where both species occur,
P. vivax proves much more resilient in the face of
conventional methods of control and elimination.
Those tools – diagnosis, treatment of the acute at-
tack, and interventions against the mosquito vector –
have almost no impact on the hypnozoite. Infection
by the hypnozoite is silent and no technology can
diagnose it, and the mosquito has no role in attack
Fig. 9 J. Kevin Baird is Professor of Malariology at the Centre for
Tropical Medicine, Nuffield Department of Medicine, University of
Oxford. He has been Head of Unit at the Eijkman-Oxford Clinical
Research Unit within the Eijkman Institute for Molecular Biology
in Jakarta, Indonesia since 2007. Kevin serves on several advisory
groups and committees for the World Health Organization for the
prevention, treatment, and control of Plasmodium vivax malaria.
He and his Indonesian colleagues conduct laboratory- and
hospital-based research and clinical trials of interventions against
acute and endemic vivax malaria, especially those aimed at
attacking the hypnozoite reservoir of this parasite
stemming from the hypnozoite reservoir resident in
human communities.
In most endemic settings the hypnozoite reservoir

cannot be attacked due to inadequacy of the only drug
effective at doing so, primaquine. That problem is not
poor efficacy but exceedingly poor effectiveness driven
by a specific problem of toxicity. Administering prima-
quine in relatively small daily doses over 14 days miti-
gates the serious threat it poses to patients having an
inborn deficiency of glucose-6-phosphate dehydrogenase
(G6PDd). That condition is the most prevalent and di-
verse inherited human disorder, affecting over 400 mil-
lion people, most of them resident where malaria is
endemic [51]. This deceptively simple problem denies
patients access to primaquine therapy, be they G6PD
normal or deficient, because the diagnosis of G6PDd has
been beyond the reach of patients at the periphery of
healthcare delivery in the endemic rural tropics [52].
The blind administration of primaquine where close
clinical supervision cannot occur risks serious harm, but
withholding the treatment also does so. The threat of
hypnozoite infection without primaquine therapy, i.e.,
maturing to acute clinical attacks called relapses, is very
serious.
The likelihood, timing, and frequency of relapse in

P. vivax vary by region [53]. In Southeast Asia most
strains of P. vivax behave like the Chesson strain from
New Guinea. Relapses occur in almost all infections and
do so rapidly at about two-month intervals. Five or more
relapses may be typical for these strains, and as many as
twenty attacks in two years have been documented. The
incidence density of first relapse in groups of patients
not given primaquine approaches five per person year
[54, 55]. Among patients diagnosed and treated for acute
P. falciparum malaria in relatively low transmission
areas of Thailand, 50 % experienced an attack of P. vivax
by relapse within just two months [54]. That figure gives
a glimpse of the prevalence of hypnozoite infection in
endemic areas.
Despite long being regarded as benign, acute vivax

malaria often takes a pernicious course with conse-
quences including severe anaemia, respiratory distress,
liver and kidney dysfunction, seizures and coma, haem-
orrhage, and circulatory collapse [56]. In hospital-based
studies of patients suffering these complications, the risk
of death closely approximated that of patients suffering
the same caused by P. falciparum [56]. Patients lacking
access to primaquine therapy suffer repeated clinical at-
tacks with attendant risk of severe illness and death, in
addition to onward transmission of the infection. The
hypnozoite reservoir of P. vivax seriously threatens pa-
tients and communities.
Eliminating P. vivax transmission requires attacking

the hypnozoite reservoir. Primaquine is the only means
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of doing so, and haemolytic toxicity drives its inad-
equacy for this task. The average prevalence of G6PDd
in malaria endemic countries is 8 % [51], but the diffi-
culty of identifying that minority also denies the G6PD-
normal majority the enormous clinical and public health
benefits of primaquine therapy. In non-pregnant, G6PD-
normal patients, primaquine is an extraordinarily safe and
well-tolerated drug with superb efficacy despite six decades
of continuous use [54, 57]. Providing those patients routine
access to primaquine represents a crucial objective in
reaching for the elimination of vivax malaria. Achieving it
will require rolling out point-of-care diagnostic devices to
the periphery of healthcare delivery [58].
A promising new drug against hypnozoites, tafeno-

quine, is approaching availability [59]. Tafenoquine offers
the enormous advantage of good efficacy against relapse
with just a single dose, but it also suffers the problem of
haemolytic toxicity among G6PDd patients. The great
promise of tafenoquine emphasises the urgency of solv-
ing the problem of G6PD diagnosis that would otherwise
deny most patients access to the therapy.
Solving the G6PD diagnosis problem will nonetheless

leave many patients without treatment against relapse.
In addition to those found G6PD deficient, pregnant
women and infants also cannot receive primaquine, as
will likely be the case with tafenoquine. Further, very re-
cent studies suggest relatively common alleles of the
P450 cytochrome that metabolises primaquine to its ac-
tive form (2D6 isoenzyme) render the treatment wholly
or partially ineffective against relapse [60]. Strategies for
coping with the threat of relapse in these patients have
not been explored and will require the hard work of be-
ing conceived, evaluated, optimised, and validated prior
to any broad implementation. This will be especially
important for pregnant women and their foetuses
and infants, as they are particularly vulnerable to life
threatening complications associated with acute vivax
malaria [61].
The prospects for eliminating endemic P. vivax will be

very bright with the development and roll out of a rela-
tively modest suite of new tools: robust G6PD diagnos-
tics; a single dose therapy against relapse; and strategies
for managing patients lacking access to that treatment.
Putting these tools into the hands of the providers of
care for malaria patients would greatly accelerate the
elimination of this species. Doing so requires deliberate
effort in research and practical implementation on a glo-
bal scale.
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Progress towards vaccines for the prevention and
elimination of malaria
James G Beeson (Fig. 10) and Freya J.I. Fowkes (Fig. 11)
The need for an effective malaria vaccine to combat

the high global burden of malaria and achieve the long
term goal of elimination and eradication is paramount,
particularly in the era of emerging resistance to artemisi-
nins and vector control interventions. The broad objec-
tives of malaria vaccines are to reduce morbidity and
mortality and reduce the prevalence of infection in
populations and interrupt malaria transmission. Vaccines
are generally classified into three approaches: pre-
erythrocytic vaccines aim to prevent blood-stage infec-
tion; blood-stage vaccines aim to clear parasitaemia and
prevent clinical disease; and, transmission-blocking vac-
cines to prevent infection of mosquitoes and interrupt
malaria transmission in populations. There are merits in
each approach (Table 3), but there is a growing appreci-
ation that vaccines combining multiple targets and
stages will be required for achieving and sustaining elim-
ination. Vaccine development has largely focused on
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pre-erthrocytic and blood-stage vaccines of P. falcip-
arum with the focus of preventing morbidity and mor-
tality. However, the potential of transmission-blocking
vaccines in malaria elimination is increasingly being
recognised, as is the need for P. vivax vaccines.
RTS,S is the most advanced vaccine candidate and tar-

gets the pre-erythrocytic stage of P. falciparum. RTS,S
consists of a circumsporozoite protein construct fused
to hepatitis B surface antigen [62] formulated with a
new adjuvant, AS01 [63]. Vaccine efficacy of RTS,S (per-
protocol) in various Phase II trials in Africa, where the
primary endpoint was first or only clinical episode, was
modest ranging from 30-66 % in infants and young chil-
dren [64–68]. In 2009, a large multicentre Phase III trial
of RTS,S/AS01 at 11 sites in 7 sub-Saharan African
countries, involving 15,460 children (three vaccine
doses) was initiated. Efficacy at 12 months in children
5- to 17-months old was 56 % and 47 % for clinical
and severe malaria respectively [69] and was lower in
infants 6- to 12-weeks old when administered in con-
junction with Expanded Programme on Immunisation
(EPI) vaccines (31 % and 37 %, respectively) [70].
Waning vaccine efficacy was noted in Phase IIb trials

[66, 71, 72] and within 18 months of surveillance in
Phase III trials [69, 70, 73]. How immunity wanes over-
time is unclear, but RTS,S immunity may be mediated
by both vaccine-induced antibodies and cellular immune
responses [72, 74–78]; however, there is currently no im-
mune correlate to serve as a strong surrogate of vaccine
efficacy to assess longevity of vaccine efficacy. Other fac-
tors influencing efficacy are poorly understood. In Phase
III studies, there was variation in efficacy between study
sites, but it could not be clearly attributed to differences
in malaria transmission [73].
Data have recently been released on the efficacy of

RTS,S over extended follow-up (three to four years)
and on the effect of a booster dose at 20 months
[79]. Overall, there was significant vaccine efficacy,
and evidence of better efficacy in those who received
a booster. Importantly, children who did not receive
a booster dose had no significant efficacy against se-
vere malaria. In children 5- to 17-months old at en-
rolment, vaccine efficacy over four years was 36 %
(32 % for severe malaria episodes) in those who re-
ceived a booster, and 28 % in those who did not (no
efficacy against severe malaria). In infants 6- to 12-weeks
old followed for three years, efficacy was 26 % (18 %
for severe malaria) in those who received a booster,
and 18 % (10 % for severe malaria) in those who did
not. There was evidence of waning vaccine efficacy
during the follow-up period. The vaccine is currently being
evaluated by the European Medicines Agency; depending
on the outcome, the World Health Organization may
make the first malaria vaccine policy recommenda-
tions in late 2015.
A small number of other P. falciparum vaccine candi-

dates have progressed to phase II trials [80, 81]. How-
ever, achieving significant efficacy or potent and
sustained anti-malarial responses has been challenging.
Vaccines based on pre-erythrocytic targets (ME-TRAP),
inducing T-cell effector responses, and delivered using
prime-boost strategies showed promise in animal models
and human infection challenge models, but failed to
show any efficacy in phase II trials in African adults and
children [82]; different delivery platforms and regimens
are currently being investigated [83]. For blood-stage
vaccines, Phase I/II trials evaluating merozoite surface
protein (MSP)-2 [84], and apical membrane antigen 1
(AMA1) [85] showed some strain-specific efficacy
against malaria. These trials highlight an additional chal-
lenge; that of antigenic diversity of candidates and the
need for strategies to overcome vaccine escape [86–88].
Follow-up data from a MSP3 phase I vaccine trial



Table 3 The role for different vaccine approaches in preventing malaria infection, disease, and transmission

Vaccine objective Vaccine targets

Pre-erythrocytic Blood-stage Gametocytes and mosquito stages Combined Pre-E and BSV Combined: All stages

Protection against infection ++a +b −c +++ +++

Protection against disease ++ ++ - +++ +++

Reduce transmission ++ ?d ++ ++ +++

Legend to scoring : +, weak effect; ++ modest effect; +++, strong effect
aPre-erythrocytic vaccines have shown significant efficacy against symptomatic malaria and infection, but it has proved to be difficult to achieve a strong degree
of protection against infection
bBlood-stage vaccines primarily aim to prevent clinical illness and have generally only been weakly protective, on their own, against infection per se
cTransmission-blocking vaccines do not directly protect individuals from infection or disease
dBlood-stage vaccines may reduce transmission because they reduce parasite density [80], but this remains to be quantified
Abbreviations: Pre-E pre-erythrocytic, BSV blood-stage vaccines

Tanner et al. BMC Medicine  (2015) 13:167 Page 15 of 22
suggested significant efficacy [89]. Together, these data
provide promise that merozoite targets could form the
basis of effective vaccines, alone or in combination with
pre-erthrocytic targets, but also highlight the difficulties
in developing highly efficacious vaccines against malaria.
Several other vaccines have progressed to phase 1 trials.
These include merozoite targets (MSP2 bi-allelic vac-
cine, multi-allelic AMA1, MSP3-GLURP, EBA175,
SERA5), pre-erythrocytic antigens (CSP, CelTOS, LSA1)
and transmission-blocking candidates (Pfs25), as well
as multi-stage combinations [81]. Recent studies are
revealing other attractive vaccine candidates, such as
EBA and PfRh invasion ligands that play key roles in
host cell invasion [90] and are targets of human im-
munity [91, 92].
Transmission-blocking vaccines generally aim to in-

duce antibodies that will block mosquito infection. A
leading candidate is Pfs25, an antigen expressed by ooki-
netes in the mosquito midgut; Phase I trials report the
induction of antibodies that block transmission to mos-
quitoes in the laboratory [93]. Future requirements are
induction of more potent responses and demonstration
of transmission-blocking activity under field conditions,
as well as evaluation of other transmission-blocking tar-
gets such as Pfs230 and Pfs48/45 [94, 95]. An alternate
approach is to use whole attenuated P. falciparum. Re-
peated intra-venous inoculations with radiation-attenuated
sporozoites were recently shown to give a high level of effi-
cacy against experimental human infection [96]. Challenges
include addressing storage, delivery, and administration
routes for possible future implementation.
Currently only three P. vivax vaccine candidates

(PvDBP, PvCSP and Pvs25) have reached clinical tri-
als (Phase I) [97–99]); at present, no phase II field
trials of P. vivax vaccines have been published. This
may reflect the previous neglect of P. vivax, and
technical challenges such as maintaining P. vivax in
culture, and limited animal models of infection. P. vivax
Duffy-binding protein (PvDBP) is a leading vaccine
candidate because P. vivax invasion of erythrocytes is
largely dependent upon its interaction with the Duffy
blood-group antigen [100]. PvDBP induces antibody
responses in populations naturally exposed to P. vivax
[101] which may protect against high density P. vivax
infections [102]. The success of RTS,S, based on
PfCSP, suggests that vaccines based on PvCSP may
be an appropriate strategy. PvCSP vaccines have been
tested in immunogenicity trials [97, 98], but not yet
in phase II field trials. The Pvs25 transmission block-
ing vaccine candidate generated antibodies able to in-
hibit parasite development in mosquitoes in a phase
1 trial, but levels were considered too low for an ef-
fective vaccine [99]. Research into other P. vivax im-
mune targets has largely been focused on orthologues
of P. falciparum that elicit antibody responses includ-
ing PvAMA1, several PvMSPs (PvMSP1, PvMSP3α,
PvMSP-5 and PvMSP-9) and P. vivax reticulocyte
binding proteins (PvRBP1 and PvRBP2) [101]. Much
more research is needed to identify and prioritise
lead P. vivax candidates from pre-clinical studies into
clinical trials.
The increasing emphasis on achieving elimination of

malaria from numerous regions, and ultimately global
eradication, highlights the need for strongly efficacious
vaccines that protect against clinical disease and infec-
tion, and also prevent ongoing transmission in popula-
tions (Table 4). To achieve this will almost certainly
require multi-component vaccines that include mul-
tiple antigens from different life stages. The challenges
in achieving highly efficacious vaccines with single
antigen approaches also suggest that multi-antigen and
multi-stage vaccines will be required. Vaccines for the
Asia and Pacific regions would ideally protect against
P. falciparum and P. vivax. Vaccines with sustained ef-
ficacy over several years would also have tremendous
benefit. To facilitate elimination, vaccines will need to be
implemented in co-ordination with other malaria control
interventions. This may lead to synergistic effects for mal-
aria control, but will also maximise the use of limited re-
sources that are typical in malaria-endemic regions.



Table 4 Research priorities for the development of vaccines for
malaria eliminationa

Knowledge of human immunity

Identification of correlates of immunity for pre-erythrocytic, blood-stage,
and transmission-blocking vaccine candidatesb

Mechanisms of immunity: protection against infection and disease,
and transmission-blocking

How long-lasting immune responses and immunological memory are
generated through natural exposure

Influence of existing naturally-acquired immunity on responses to
vaccines and vaccine efficacyc

Quantify the significance of antigenic diversity and the potential for
vaccine escape

Vaccine antigens and combinations

Developing CSP-based vaccines, or other pre-erythrocytic vaccine
candidates, for greater efficacy against infectiond

Identification and prioritisation of blood-stage and transmission-blocking
vaccine candidates for inclusion in combination vaccines

Antigen combinations that induce high levels of immunity against
infection and disease, and strong transmission-blocking activitya

Combined P. falciparum and P. vivax vaccines

Vaccine approaches and technologies

Vaccine strategies or approaches to induce long-lasting immunitye

Adjuvants and delivery systems for induction of potent immune
responses

Antigen expression platforms optimised for production of multi-antigen
vaccinesf

Vaccine technologies to simplify the implementation of mass vaccination
(e.g. needle-free systems, reduced cold-chain requirements)

Integration of malaria antigens into existing childhood vaccinesg

Other

Tools to monitor vaccine coverage and predict protection

Understand the potential efficacy/impact of vaccines in different
transmission settings
aThe broad aims for malaria elimination vaccines would be vaccines with a
high level (>80 %) of efficacy against malaria infection and disease, and a
strong potential to reduce malaria transmission by preventing infection or
blocking transmission, or a combination of both.
bCorrelates of immunity would greatly facilitate prioritisation of antigens and
combinations for vaccine development, and aid the evaluation of vaccines in
clinical trials
cThere is some evidence that pre-existing naturally-acquired immunity influences
the protective efficacy of the RTS,S vaccine.
dThe RTS,S vaccine has established the potential of vaccines based on the
circumsporozoite protein (CSP), but efficacy may be improved by different
constructs, vaccine formulations, or additional antigens
eThe longevity of immune responses reported for RTS,S and other malaria
vaccines is shorter than many other licensed vaccines for other pathogens
fA single platform for the production of vaccine antigens would be an
advantage for achieving highly efficacious multi-antigen malaria vaccines
gWhile malaria vaccines could be given concurrently within the childhood EPI
programme, the inclusion of malaria antigens into existing childhood vaccines,
to be administered as a single product, would facilitate mass administration
and simplify EPI regimens
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While the efficacy of RTS,S is modest, and the future
effectiveness of RTS,S is yet to be established, the num-
ber of clinical cases averted by its implementation is
likely to be considerable given the global burden of mal-
aria. RTS,S may prove to be a valuable addition to mal-
aria control efforts. However, the future development of
more efficacious and long-lasting vaccines is likely to be
needed to achieve elimination from many countries and
regions. While the licensure of RTS,S will impact the
way vaccine trials are conducted, testing second gener-
ation vaccines will remain feasible and achievable [103].
Combination vaccines appear crucial to achieving long-
term objectives and there is still much to be done to pri-
oritise candidates and combinations, and advance the
most promising candidates into phase 2 trials.
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Effective prevention and control of insect borne
diseases, such as malaria, in theory result from the
integrated vector management (IVM) of the insects
that transmit the parasites. In practice, there are
two insecticide–based interventions, long-lasting in-
secticide impregnated bednets (LLINs) and indoor
residual spraying (IRS) with proven efficacy at scale,
as well as other interventions such as larval source
management with recommendations for more lim-
ited use. Most of the recent documented reduction
in transmission of malaria over the last decade can
be attributed to massive scale up efforts in LLIN
distribution and increased IRS, the latter predomin-
antly driven by the US-backed Presidents Malaria
Initiative (PMI) [104]. If we are to maintain this
level of progress and transition from control to
attempting to eradicate malaria, it is evident that
there will need to be further scaling up of vector
control, a recommendation that will be reflected in
the updated Global Malaria Action Plan to be
launched in 2015, projecting targets out to 2035.
However, rapidly increasing levels of insecticide re-
sistance, particularly in the two major African mal-
aria vectors Anopheles funestus and A. Gambiae
[105, 106], may seriously impact on these control
interventions. Pyrethroids are the only class of in-
secticides recommended for LLINs and two thirds of
IRS currently uses the same class. This over reliance
on one insecticide class has resulted in a dramatic
shift from almost no pyrethroid resistance in African
vectors in the 1990s, to low level (~10-fold) resist-
ance in the early 2000s in both vectors, to many
reported cases today of >100- or >1,000-fold resist-
ance [107].
Efforts are in place to address this problem. A product

development partnership, the Innovative Vector Control
(IVCC), was established in 2005 to stimulate and work
with industry to develop novel public health-specific
insecticides. There is now a healthy pipeline of new
chemistries screened in partnership with all the
major agrochemical companies, with a realistic ex-
pectation that we can bring three new insecticide
classes to market before 2025. It is essential, before
these new chemistries reach the market, that we
have international agreement on and adoption of
good insecticide resistance management programmes.
A start has been made on this with the publication
in 2013 of the Global Plan for Insecticide Resistance
Management in disease vectors (GPIRM). It is, however,
apparent that country programmes, non-governmental
organisations (NGOs) and donor agencies are all
struggling with the practical implementation of the
principles of GPIRM, particularly where insecticide
choice is already compromised by high levels of re-
sistance to multiple classes of insecticide and shifts
away from simple pyrethroid-based interventions
incur significantly increased cost. Major collaborative
work needs to be undertaken in this area, defining,
implementing and supporting evidence-based best
practice.
Extending the toolbox of effective scalable vector

control interventions is a high priority. Demonstration
of efficacy needs to be streamlined, so that we can dra-
matically truncate the 20+ years that it took to gener-
ate the evidence base for scaling of LLIN distribution.
Several programmes have been established to define
and test novel insect vector control paradigms. These
include the use of spatial repellents [108], Wolbachia-
based microbial control of pathogens in adult mosqui-
toes [109] and genetic manipulation of insect vector
populations [110]. There are a number of large scale
funding schemes supporting these activities and an
international panel, the Vector Control Advisory
Group, has been convened by WHO to work with
innovators to develop and assess the evidence to
support the mainstream introduction of promising
technologies.
While these new interventions hold promise and all

are entering small scale field trials, there is still a sig-
nificant body of evidence required to assess whether
any of these, in isolation or in combination with other
well established interventions, can be scaled up to im-
pact on transmission rates. Not all will be appropriate
for malaria control; the Wolbachia approach, being ap-
plicable only for Culicine mosquitoes may, however,
allow us to bring much needed new approaches to
dengue control. Genetic manipulation approaches are
starting to transition from the laboratory to proof of
concept small scale field studies, allowing initial as-
sessments of logistics, ease of application in resource
poor settings, cost and public acceptability. The results
of these trials will need to be independently scruti-
nised to determine whether the technologies are as yet
sufficiently robust to warrant transitioning into large
scale epidemiological impact trials. As novel public
health insecticides and new technologies that go be-
yond the use of conventional insecticides start to
emerge, an integrated vector management approach
that utilises all the tools in the vector control toolbox
will finally be possible to support the eradication
effort.
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Capacity building and leadership in malaria
endemic countries
Kevin Marsh (Fig. 13) and Faith Osier (Fig. 14)
The last 15 years have seen a remarkable galvanisation

of national and international efforts in malaria control
leading to striking reductions in malaria transmission,
case burden and mortality [3]. There is now an inter-
national consensus that local malaria elimination leading
to global eradication must be the explicit long term aim
of national and global efforts. Achieving this will require
major investments to strengthen capacity for both
research and the programmatic ability to deliver inter-
ventions. Whilst there are important ways in which re-
quirements for control differ from those for elimination
[111], we should remember control is a prerequisite for
Fig. 13 Kevin Marsh is a senior advisor at the African Academy of
Sciences and professor of tropical medicine at the University of
Oxford. Kevin has a particular interest in developing and strengthening
research capacity and scientific leadership in Africa and is currently
supporting the development of a new platform for the acceleration of
science in Africa through the African Academy of Sciences. He is chair
of the WHO Malaria Policy Advisory Committee and is a member of a
number of international advisory committees relating to malaria and to
global health research. Image reproduced with permission from the
Wellcome Trust

Fig. 14 Faith Osier is a Wellcome Trust Clinical Research Fellow and
an MRC/DfID African Research Leader based at the KEMRI-CGMR-C in
Kilifi, Kenya where she leads a group of African scientists. She is a
Visiting Professor of Immunology at the University of Oxford and the
Secretary General of the Federation of African Immunological
Societies (FAIS)
elimination and at the moment is the highest global pri-
ority. While the capacity required for both research and
programme implementation includes human resources,
infrastructure and management, we believe that an abso-
lute requirement is a major increase in long term invest-
ment to massively increase the size and skill sets of
professional cadres in malaria endemic countries and an
emphasis on building outstanding leadership.
One of the most important lessons from the global

polio eradication programme was the importance of
maintaining strong investment in research, even when
the tools are thought to be at hand. In the case of mal-
aria, this lesson is even more pertinent, as most experts
believe that even with maximal application of currently
available tools, it will not be possible to eliminate mal-
aria in many settings. Between 2008 and 2010 a wide
ranging international consultative effort defined prior-
ities in all areas of basic and enabling research necessary
for eradication [2]. Whilst it is important to identify key
innovations and interventions, an overarching need is
to increase the research capacity within endemic coun-
tries [112]. Malaria-specific research cannot be separated
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from the wider issues of harnessing science to tackle
developmental goals and it is important to realise the
scale of the challenges. Major industrialised economies
typically have researcher ratios in the order of 4,000 per
million of population [10]. Some malaria endemic coun-
tries particularly in South America and Asia are develop-
ing a strong research base but for most African endemic
countries, which represent 90 % of the world’s malaria
burden, the figures are often of the order of less than 50
per million, i.e. two log orders less than in resource rich
countries. Over the last fifteen years there has been sub-
stantial focused investment in building scientific capacity
for malaria research by a number of international fun-
ders including the Bill and Melinda Gates Foundation,
the US National Institutes of Health (NIH), the Wellcome
Trust, and the European & Developing Countries Clinical
Trials Partnership (EDCTP) among others. National in-
vestments in some malaria endemic countries also show
signs of improvement but much increased sustained invest-
ment is still needed.
Malaria control and subsequent elimination depend

absolutely on having well-organised, adequately staffed
and highly skilled workforces. Just as malaria specific re-
search cannot be considered in isolation, so malaria con-
trol cannot be separated from the broader issues facing
health service delivery. Again, the picture is often one of
a worrying underinvestment, with many of the highest
burden countries remaining well below any acceptable
minimum level [113, 114]. For instance, Africa has 24 %
of the global disease burden but only 3 % of the global
health workforce. This imbalance is reflected in the key
cadres necessary for effective malaria control. Vector
control activities account for around 60 % of global ex-
penditure on malaria control but a recent analysis points
to the massive gap in capacity on the ground [114]. A
similar situation applies across other key areas of expert-
ise and is consistently identified in Malaria Country
Programme Reviews across all WHO regions (K Mendis
and M Warsame personal communication). As with the
research gap, there are hopeful signs, especially in terms of
regional political commitment through organisations such
as the Asia Pacific Leaders Malaria Alliance (APLMA) and
the African Leaders Malaria Alliance (ALMA), but invest-
ment currently runs far below requirements.
Whilst investment is needed in all domains and for all

cadres, the single most important factor for developing
the necessary capacity in both research and program-
matic capacity is the fostering of strong leadership. As
well as formulating new strategies, effective leaders in-
spire others, advocate for political support and mobilise
the funding necessary to drive whole fields of endeavour.
It is often tempting to focus on technical fixes and the
possibility of circumventing deficits by time limited solu-
tions but whilst external financing and expertise will
continue to play a critical role, it is hard to see how
sustained control and elimination will be achieved in
any country that has not been through the process of
building its own capacity and leadership. Developing in-
fluential leadership in any area takes time, typically a
minimum of 10 to 15 years from primary qualification.
There is now considerable emerging experience of how
to do this [115] and the main limitation is funding. That
being the case, and malaria eradication being a long
term enterprise, what is needed is a serious large scale
investment by international, regional and national stake-
holders in building the leaders of the future for malaria
research, control and eradication.
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