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Summary

It was Richard Feynman who first proposed, in 1982, the far-reaching
concept of a ”quantum computer”—a device more powerful than clas-
sical computers. The idea of a quantum computer is to employ the fas-
cinating and often counterintuitive laws of quantum mechanics to pro-
cess information. It is far from obvious that the proposed concept of
a quantum computer is more powerful than its classical counterpart, it
was only in 1994 when Peter Shor theoretically demonstrated the exis-
tence of a quantum algorithm for factorizing integers into prime factors
that runs in polynomial time unlike its classical counterpart which works
in sub-exponential time. The factorization of integers into prime factors
is the basis of asymmetric cryptography. These early theoretical results
lunched an immense interest of the scientific community. Already dur-
ing ’90s, the first proposals for the physical implementation of quantum
computation emerged. Ever since, many experimental groups around
the world pursued different physical implementations of quantum bits
(qubits). The first decade of the new century saw a steady improvement
in the control and decoherence time (the time over which the informa-
tion carried by the qubit is lost) for various qubits by many orders of
magnitude. The natural next step in this context is to answer the ques-
tion of how to scale the system up to include many qubits and thus build
a quantum computer? One of the main parts of this thesis addresses ex-
actly this question, namely the question of architecture and scalability of
future quantum computer.

Among various different physical realizations of qubits, the idea of
using electron spins trapped in electrostatic semiconductor quantum dots
as the building blocks of a quantum computer (the so-called spin qubits),
put forward by Daniel Loss and David DiVincenzo in 1997, triggered
tremendous interest in scientific community. Nevertheless, the imple-
mentation of the original Loss-DiVincenzo proposal posed a considerable
technical challenge. It used quantum tunneling between qubits to enable
their communication with each other, and thus required that the qubits to
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be placed very close to each other. This requirement not only leaves little
space for the placement of the vast amount of gates and wirings needed
to define the electrostatic quantum dots, but also makes it challenging to
control the local magnetic field needed for single-qubit operations. For
these reasons, no system with more than a couple of spin qubits has been
successfully implemented thus far. In the first part of this thesis, we leap
over this long-standing problem with an entirely different strategy of us-
ing metallic floating gates or ferromagnets to couple together qubits that
are separated over a long distance. Our scheme works for any type of
spin qubits, including the qubits based on nitrogen-vacancy center (NV-
center) in diamond and technologically very important silicon qubits.

The main topic of this thesis is related to quantum computer. Still,
quite unexpectedly, some of the ideas we employed in order to tackle
the problem of quantum computer scalability can be utilized in a com-
pletely different field of research, namely, in the field of magnetic field
sensing. Qubit are not only a necessary ingredient of quantum computer
but they also provide a way to measure very accurately magnetic fields.
The magnetometer build upon the qubit based on NV-center, so-called
NV-magnetometer, emerged in recent years as most sensitive magnetic
moment sensor. These magnetometers are able to detect about hundred
nuclear spins within a minute of acquisition time. In the second part of
this thesis, we propose an entirely novel experimental realization of NV-
magnetometers which increases present NV-center sensitivities by four
orders of magnitude at room temperature. This unprecedented amplifi-
cation of sensitivity will render magnetometers capable of detecting in-
dividual nuclear spins. This amplification is achieved by introducing a
ferromagnetic particle between the nuclear spin that needs to be detected
and the NV-magnetometer. Our setup, in contrast to existing schemes,
is particularly advantageous because, due to the large amplification of
sensitivity, the nuclear spin need not lie within a few nanometers of the
surface but rather can be detectable at a distance of 30 nm. With these
novelties, our scheme provides chemically sensitive spin detection un-
der ambient conditions allowing nanoscale resolution of nuclear mag-
netic moments in biological systems—the holy grail of nuclear magnetic
resonance.

In the last part of the thesis we focus our attention to a new direction
in quantum computer implementation that deals with topological quan-
tum computer introduced by Alexei Kitaev in 1997; in this approach the
idea is to use quasiparticles with ”fractional” statistics and to perform
the single- and two-qubit gates by merely exchanging these quasiparti-
cles. Additionally, information in this system is stored non-locally thus
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it mitigates the problem of decoherence caused by local noise from the
environment. Majorana fermions are one of the most well known ex-
amples of such excitations. We analyze transport signatures of different
topological states in one-dimensional systems, like Majorana fermions
and fractionally charged states. We envision an Aharonov-Bohm setup
wherein conductance measurement provides a clear signature of pres-
ence of fractionally charged fermionic states, since oscillations with dou-
ble period emerge in this case. Additionally, we propose a very sim-
ple setup that enables existence of degenerate mid-gap states, so-called
Tamm-Shockley states that are characterized by fractional charge and
discuss possible ways of detecting these states experimentally.
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CHAPTER 1
Introduction

In this section we introduce several concepts that are used as a starting
point for the work presented in this thesis. Since the main part of the
thesis deals with physical implementations of quantum computer and
quantum bits (qubits) we start by reviewing Loss-DiVincenzo proposal
and DiVincenzo criteria, see Sec. 1.1. We then describe another imple-
mentation of qubits using defects in diamond. Even tough the term qubit
is mainly used in context of quantum computing, it can also be a power-
ful tool to for magnetic field sensing as described in Sec. 1.2. Finally in
Sec. 1.3, we turn our attention to a new paradigm of quantum computa-
tion by introducing the basic concepts needed to understand advantages
of topological quantum computation.

1.1 The “Loss-DiVincenzo” proposal
The first proposals for the physical implementation of quantum com-
putation appeared in the ’90s. Among those, the idea of using elec-
tron spins trapped in lateral electrostatic semiconductor quantum dots
as the building blocks of a quantum computer, put forward by Daniel
Loss and David DiVincenzo in 1997 [1], emerged as the most propitious
one [2, 3, 4]. In order to define a lateral quantum dot, one starts with
two-dimensional electron gas (2DEG) that is confined between two semi-
conductor sheets such as GaAs and InAs. Once the 2DEG is defined, one
places gates on top of the two-sheet structure (see Fig. 1.1) and applies
voltage in order to define an electrostatic well that will trap a single elec-
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Scheme of the Loss-DiVincenzo proposal. The yellow gates
on the top that give rise to an electrostatic potential that defines wells
(quantum dots) as well as control the tunneling between the wells. The
black arrows denote electron’s spin degree of freedom.

tron. Since a single electron is spatially separated from the rest of the
2DEG, its spin can be used to define a two-level system, i.e., a qubit.

In order for a qubit to be used as a building block of a quantum com-
puter, it has to satisfy the stringent requirements know as DiVincenzo
criteria [5], that can be summarized as follows:

• Reliable initialization in a predefined state of the qubit

• Coherent quantum control of a single qubit (single-qubit gates) and
controlled entangling interaction between the pairs of adjacent qubits
(two-qubit gates)

• The coherent superposition of the two states of the qubit has to be
longer lived than the single- and two-qubit operation times

• Possibility to readout the qubit state within the time shorter than
the qubit relaxation time

• Scalability, i.e., the possibility to scale up the number of qubits

Figure 1.1 illustrates the Loss-DiVincenzo proposal. Each qubit is en-
coded in the spin (arrow) of an electron that is trapped in a lateral quan-
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tum dot. Formally, the two basis states of the qubit are defined as

|0〉 = | ↑〉 and |1〉 = | ↓〉 , (1.1)

with | ↑〉 and | ↓〉 being the two states of the electron spin with opposite
spin projection along the certain axis defined by an externally applied
magnetic field. A general qubit state is then an arbitrary superposition
of the basis states

|ψ〉 = α|0〉+ β|1〉 , (1.2)

with |α|2 + |β|2 = 1.
We now clarify why Loss-DiVincenzo proposal satisfies most of Di-

Vincenzo criteria. The qubit initialization can be achieved by externally
applying magnetic field Bz along z-axis (the choice of axis is arbitrary),
which causes the | ↑〉 and | ↓〉 states of the qubit to split up with energy
difference EZ = ~µBgBz, with Landé factor g = −0.44 for GaAs and
µB being the Bohr magneton. Assuming that the applied magnetic field
is big enough |EZ | � kBT (kB is Boltzmann constant), the initialization
is achieved by waiting for electron spins to reach their thermodynamic
equilibrium.1

Next, the single-qubit gates can be performed by applying AC mag-
netic field in xy-plane. When the frequency of the applied AC magnetic
field matches the qubit Zeeman splitting, it will cause the transitions that
are periodic in time between the two qubit states—so-called Rabi oscilla-
tions. By varying the duration of applied AC magnetic field any single-
qubit gate can be achieved. This scheme is know as electron spin reso-
nance (ESR). It is worth noting at this point that one needs in principle
to apply AC magnetic field locally on the qubit which is experimentally
very challenging task. An alternative approach is to use spatially vary-
ing g-factor—the qubit we want to address is pulled into a layer with
higher g-factor thus only this qubit satisfies the resonant condition with
the applied AC field. Additionally, making use of spin-orbit interac-
tion allows an all-electrical implementation of single-qubit gates. Fur-
thermore, the two-qubit gates can be performed by using the exchange
coupling between the neighbouring spins, where the strength of this in-
teraction can be tuned electrically by adjusting the gate voltage that con-
trols the barrier height between two neighbouring potential wells. The
time-dependent interaction Hamiltonian is of Heisenberg type

1In this scheme, the initialization time is given by the qubit relaxation time and
therefore it is slow. We note that there exist fast initialization schemes.
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H12 = J(t)S1 · S2 , (1.3)

and it was demonstrated [1] that this type of interaction is enough to
produce entanglement between the interacting qubits.

Finally, it is possible to readout spin state of the qubit by converting
spin state into charge state and using quantum point contact to detect
charge [6].

The scalability of Loss-DiVincenzo proposal is experimentally very
challenging, since—with present day technology—there is hardly enough
space to place the large amount of metallic gates and wires needed to de-
fine and to address the spin qubits. A promising strategy to meet this
challenge is to implement long-range interactions between the qubits
which allows the quantum dots to be moved apart and to create space
for the wirings.

In this thesis we extend Loss-DiVincenzo proposal such that the scal-
ability requirement is satisfied. We achieve this by proposing a long-
range electrostatic interaction between the qubits mediated via a dog-
bone shaped floating metallic gate. In order for the scheme to work, the
spin degree of freedom has to be coupled to charge which is achieved
through the spin orbit interaction (SOI). Furthermore, we argue that in-
clusion of a floating gate does not induce detrimental source of decoher-
ence since the system already contains the gates that define the quan-
tum dots. We construct explicitly a controlled-NOT (CNOT) two-qubit
gate and obtain the operation time of a few tens of nanoseconds for
GaAs quantum dots—significantly below the typical coherence time of
the quantum dot defined qubit. Thus the extended Loss-DiVincenzo pro-
posal satisfies all DiVincenzo criteria. The details of our proposal can be
found in Chapter 3.

Certain semiconductors have very weak or practically no SOI (for
e.g. silicon, a technologically very important material). In such mate-
rials the previously described electrostatic coupler would yield too small
coupling. In order to provide a scheme that would mediate a long-range
interaction also in this kind of material, we propose a setup that consist
of a dog-bone shaped ferromagnet (FM). Herein, no SOI is needed since
the qubit spin degree of freedom is directly coupled to the FM spins via
dipolar interaction. This scheme applied to semiconductor lateral quan-
tum dots is described in Chapter 5.
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1A

orbital excited
states (3E)

orbital ground
states (3A)ESR

Figure 1.2: Schematic energy level diagram of a single nitrogen vacancy
(NV) center in diamond. The levels shown here lie within the band gap
of the diamond. The red arrow denotes the fluorescence that NV-center
emits when off-resonantly excited with green laser (green arrows). Once
the states |±1〉 of the NV-center orbital ground state are off-resonantly ex-
cited, they decay nonradiately through 1A singlet state to |0〉 (orange ar-
rows). This enable NV-center to be optically initialized and also readout
of the spin state. One can drive the transitions between |0〉 and |±1〉with
help of electron spin resonance ESR (blue arrow). The NV-center zero-
field splitting in the orbital ground state is denoted by ∆ ∼ 2.87 GHz.

1.2 Qubits based on nitrogen-vacancy centers
The nitrogen-vacancy (NV) center is one of many possible point defects
in diamond. A diamond is an insulator (depending on the diamond type,
it can be also a semiconductor) with a band gap of 5.5 eV. One typically
uses a pure diamond (i.e. type II) that has little if any nitrogen impu-
rities. The NV-center consists of substitutional nitrogen impurity with
a vacancy at its nearest neighbour lattice site. There are two types for
NV-center defects that have different charge, a neutral one denoted by
NV0 and a negatively charged one denoted by NV−. In this thesis we
will only consider NV− centers and for simplicity we denote them by
NV throughout the thesis.

The energy level diagram of a negatively charged NV-center is illus-
trated in Fig. 1.2. The orbital part of the NV-center electronic state has
C3V symmetry, thus the states can be labeled by the irreducible represen-
tations ofC3V symmetry group (A and E). The orbital ground state has 3A
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symmetry, which means that the orbital part has A symmetry (i.e. it is in-
variant under C3V group operations) and there are 3 states with different
spin projections. Even in the absence of an externally applied magnetic
field, the ground state |0〉 and the excited states | ± 1〉 are split by energy
∆—so-called zero-field splitting, while the states | ± 1〉 are degenerate.
This crystal field splitting quantized the spin projection along the N-V
symmetry axis. Since the energy difference between |0〉 and | ± 1〉 states
lies in microwave region, one can drive transition between these states
(i.e. Rabi oscillations) with microwave radiation.

There are several optical properties of the NV-centers that make them
very attractive for various applications in the field of quantum informa-
tion processing; here we mention the most important ones. Firstly, the
orbital ground states of the NV-center can be off-resonantly excited with
a green laser. If the NV-center was initially in |0〉 state, then due to selec-
tion rules, it decays back to |0〉 state with emission of an photon (photo-
luminescence). On the other hand, if the initial state of the NV-center is
| ± 1〉, then the predominant channel for the relaxation is through nonra-
diant decay via metastable singlet state (1A, see Fig. 1.2) into the |0〉 state.
Thus we see that the NV-center can be initialized into |0〉 state by simply
shining the green laser onto it. Furthermore, by detecting the photons
from spin-dependent photoluminescence, we can determine the state of
the NV-center, i.e., perform the readout of the NV-center state; if the NV-
center was initially in |0〉 photon is detected, otherwise no photon is de-
tected. This readout scheme is limited by photon detection efficiency
and photon shot noise. We stress that quite remarkably both initializa-
tion and the readout2 can be performed at room temperature. We note
herein that the described spin-dependent fluorescence readout scheme
is spoiled when there is a component of an externally applied magnetic
field that is perpendicular to the N-V axis. Namely, such a magnetic field
component mixes |0〉 and | ± 1〉 states which in turn affects the above
mentioned selection rules. In practice, perpendicular magnetic field up
to 10 mT can be tolerated [9].

When an external magnetic field is applied along the N-V symmetry
axis, the | ± 1〉 states split and one can use |0〉 and | − 1〉 states to de-
fine a qubit. We already mentioned that such a qubit can be readout and
initialized optically at room temperature. Additionally, one can also per-

2At low temperature it is also possible to perform a resonant single-shot readout [7].
At room temperature a single-shot readout is still possible with help of a nuclear spin
in vicinity of the NV-center [8].
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form single-qubit gates by using microwave drive (ESR) [10]. Probably
one of the most remarkable features of the NV-centers is their long co-
herence time even at room temperature, T ∗2 ≈ 20µs and T2 ≈ 1.8ms [11].
We see that the qubit defined by two states of a NV-center satisfies al-
most all of DiVincenzo criteria. The only ingredient missing in order to
use NV-center as a building block of a quantum computer is the possi-
bility to perform two-qubit gates, i.e., possibility of having a controlled
interaction between the NV-centers. We note that two-qubit gates on NV-
centers have been experimentally demonstrated [12], but unfortunately
this scheme is not scalable. In this thesis we tackle this important prob-
lem by proposing a way to mediate a controlled long-range coupling
between two NV-centers. The proposed coupling is mediated by vir-
tual magnons, a virtual excitations that propagate through a dog-bone
shaped ferromagnet that is placed between the two NV-centers that need
to be coupled. The details of our scheme are presented in Chapter 4.

Scanning magnetometry with a single NV-center

In this section we explain why qubits are useful not only in the context
of quantum computation and quantum information processing, but also
provide possibility of very accurate magnetic field sensing by making
use of Ramsey type measurements. We focus here on NV-centers, but
any long-lived qubit can be used instead.

We start by initializing the NV-center in the state |0〉. Then, a π/2
pulse is applied to the NV-center which leaves it in a superposition state
(|0〉 + |1〉)/

√
2, then we wait for the NV-center to accumulate the phase

during the interrogation time t, this phase is proportional the magnetic
field component along the N-V axis BNV. After the interrogation time
t has passed, the NV-center is in the state (|0〉 + eiϕNV |1〉)/

√
2, where

ϕNV = γBNVt. Finally, another π/2 pulse is applied to the NV-center
which transfers the phase difference between the |0〉 and |1〉 states into
the occupation of these two states, which is given by following probabil-
ity distribution

p(n|ϕNV(t)) =
1

2

(
1 + n cos(ϕNV(t))e−〈(δϕNV(t))2〉

)
. (1.4)

Here, n = ±1 are the two possible outcomes when the state of the NV-
center is measured. We also included dephasing in the NV-center via
term 〈(δϕNV(t))2〉 that describes the fluctuations of the accumulated phase
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due to NV-center environment, where 〈 · · · 〉 is the expectation value in
the Gibbs state. Because the accumulated phase itself depends on BNV,
a measurement of the NV-center is a measurement of BNV. The variance
in the measured value of the NV-center can be reduced by repeating the
measurement.

Typically NV-center dephasing can be described by 〈(δϕNV(t))2〉 =
(t/T2)2, where T2 is the NV-center dephasing time mentioned earlier.3

From Eq. 1.4 we see immediately that the interrogation time should not
exceed the dephasing time of the NV-center, and the bigger the inter-
rogation time the bigger the phase accumulated thus more precise the
measurement of the magnetic field. From this reasoning it is clear why
NV-centers are good magnetometers—they are unique qubits with such
a long dephasing time at room temperature. Additional advantage of
NV-magnetometers stems from the fact that they are point defects which
allows for very small sample-to-probe separation (see Fig. 1.3) unlike for
e.g. superconducting quantum interference device (SQUID) magnetome-
ters.

The best NV-magnetometers allow for sensitivities4 up to a few nT/Hz
1
2

at room temperature [13, 14, 15, 16, 17, 18] and sub-nanometer spatial
resolution, permitting three-dimensional imaging of nanostructures [14].
Although impressive, current state-of-the-art technology [19] is unable to
detect a single nuclear spin; achieving such sensitivity would revolution-
ize magnetic imaging in chemical and biological systems by facilitating
atomic resolution of molecules.

In this thesis, we propose an entirely novel experimental realization
of NV-magnetometers which increases present NV-center sensitivities by
four orders of magnitude at room temperature. This unprecedented am-
plification of sensitivity will enable magnetometers capable of detecting
individual nuclear spins. This amplification is achieved by introducing
a ferromagnetic particle between the nuclear spin that needs to be de-
tected, and the NV-magnetometer. When excited on resonance by the
driven nuclear spin, the macroscopic ferromagnetic spin begins to pre-
cess which, in turn, amplifies the magnetic field felt by the NV-center.
By resonantly addressing the nuclear spin and using a ferromagnetic res-
onator as a lever, our setup, in contrast to existing schemes, is particu-
larly advantageous because, due to the large amplification of sensitiv-

3For DC magnetometry the relevant time is T ∗2 rather than T2.
4Sensitivity S of a magnetometer is a quantity that gives the smallest magnetic field

S/
√
ta that can be sensed for a given acquisition time ta.
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diamond tip
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single NV-center spin

scattered photons

biomolecule containing
spins

Figure 1.3: Schematic of scanning NV-magnetometry. The NV-center is
placed on an atomic force microscopy probe that is used to scan over
the sample in order to get spatial image of the magnetic field from the
sample. The green laser is used for off-resonant excitation of the NV-
center. The fluorescence photons are depicted by red arrows.

ity, the nuclear spin need not lie within a few nanometers of the surface
but rather can be detectable at a distance of 30 nm. With these novel-
ties, our scheme provides chemically sensitive spin detection needed for
nanoscale nuclear magnetic resonance (NMR) on biological tissue under
ambient conditions—the holy grail of NMR. The details of our proposal
are presented in Chapter 7.

1.3 Topological quantum computation by
anyons

So far we have discussed several possible physical implementations of
quantum computer. The common property of all the mentioned propos-
als is that the single- and two-qubit gates are typically performed by ap-
plying microwave pulses on the qubit and by controlling the pulse du-
ration. Any imperfections in pulse sequence applied leads to an error in
the gates. It is possible to correct for these error only if the errors of a
gate operations are not too big, i.e., there exist a threshold above which
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A
B1 2

Figure 1.4: The path 1 cannot be continuously deformed into path 2
within two-dimensional space, since path 1 contains point A whereas
path 2 does not. On the other had, in three-dimensions two paths are
topologically equivalent.

it is no longer possible to do error correction. The value of the error
threshold depends on the error correction scheme employed; the surface
code error correction—the most powerful fault-tolerant quantum-error-
correction scheme known, has an exceptionally large error threshold of
1.1% [20, 21].

Yet there is another approach to quantum computer implementation,
so-called topological quantum computer—a theoretical concept that ex-
ploits quasiparticle excitations, living in two-dimensional (2D) space, call-
ed anyons. Anyons are excitations with “fractional” statistics, the term
was coined by Wilzceck [22], see also Ref. [23]. It can be easily seen that
the quasiparticle statistic in three dimensions must be either bosonic or
fermionic. Namely, two exchanges of the quasiparticles makes a loop,
and in three-dimensions closed loop is equivalent to a point. Thus as a
result of two consecutive exchanges the wavefunction of the quasiparti-
cles under the consideration has to be unchanged. This argument leaves
only two possibilities for the phase that the wavefunction acquires after a
single exchange, the phase can be either 0 or π corresponding to bosonic
or fermionic statistics, respectively. Since in 2D space, the closed loop in
not necessarily equivalent to a point (see Fig. 1.4), we conclude that the
aforementioned argument does not hold. Therefore, excitations in 2D
space can acquire arbitrary phase factor eiϕ under the exchange—these
excitations are called abelian anyons. The excitations in 2D space can have
even more complicated exchange statistics. Let us consider three anyons
labeled 1, 2, and 3. The most general way to describe the result of the ex-
change 1↔ 2 is by 2×2 unitary matrix U12 that acts in the space spanned
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by the particles 1 and 2. Similarly, the exchange 2 ↔ 3 corresponds to
the unitary matrix U23. These matrices generally do not mutually com-
mute, i.e. [U12, U23] 6= 0, which explains the adjective non-abelian used to
describe these anyons. It is important to note that the form of unitary
matrices Uij does not depend on the exact shape of the path used for the
exchange but only on the topology of the path, hence the name topologi-
cal quantum computation. Thus local errors induced by the environment
during the exchange process do not cause errors in the resulting state.
Additionally, the space used for the computation has to be degenerate
since the braiding of the particles cannot change the energy of the initial
state. From here we immediately see the potential use of these anyonic
excitations, the quantum gates can be performed by merely performing
braiding of certain anyons. Unfortunately, it is not always possible to ob-
tain the universal set of quantum gates5 in topologically protected man-
ner described above. An example of anyon is Majorana fermion (MFs)
described below that allows for error-free implementation only of cer-
tain gates from universal set of quantum gates.

When it comes to physical implementation of a topological quantum
computer, the study of MFs that emerge as end-states in various solid-
state systems has recently attracted a lot of attention [24, 25, 26, 27, 28,
29, 30]. These theoretical efforts motivated the experimental quest for
MFs, since they required quite simple ingredients—superconductivity,
spin-orbit interaction and magnetic fields. This quest in turn gave rise
to lot of controversy over whether MFs are actually observed in the re-
cent experiments [31, 32, 33] or not. In the Chapter 10 of this thesis we
contribute to clarification of some of these controversies by analyzing the
transport signatures of MFs in a realistic model that corresponds well to
the setup used in Ref. [31].

In Chapter 9 we introduce a simple model that allows for mid-gap
end-states that are characterised by fractional charge. Further research
showed that this model can be extended in order to support phases with
MFs and a complementary phase characterized by fractionally charged
fermions (FF) [34]. These FF can exhibit non-Abelian braiding statis-
tics [35], but they exist both with and without superconductivity. In
Chapter 11 we analyze the transport signatures of FF and discuss the

5One example of the universal set of quantum gates is the set consisting of
Hadamard gate, a phase rotation gate and the controlled-NOT gate. By repeated ap-
plication of these gates, where the number of steps scales at most polynomially with
the desired accuracy, one can reach any desired state within the Hilbert space of the
quantum computer memory within desired accuracy.
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possible detection schemes that bare relevance for designing future ex-
periments.



Part I

Long-Range Indirect Interaction
of Spins Qubits
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CHAPTER 2
Introduction

Quantum coherence and entanglement lie at the heart of quantum in-
formation processing. One of the basic requirements for implementing
quantum computing is to generate, control, and measure entanglement
in a given quantum system. This is a rather challenging task, as it re-
quires to overcome several obstacles, the most important one being de-
coherence processes. These negative effects have their origin in the un-
avoidable coupling of the quantum systems to the environment they are
residing in.

A guiding principle in the search for a good system to encode qubits is
the smaller the system the more coherence, or, more precisely, the fewer
degrees of freedom the weaker the coupling to the environment. Simul-
taneously, one needs to be able to coherently manipulate the individual
quantum objects, which is more efficient for larger systems. This imme-
diately forces us to compromise between manipulation and decoherence
requirements.

Following this principle, among the most promising candidates for
encoding a qubit we find atomistic two-level systems, such as NV-centers
and silicon-based spin qubits [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47].
The latter are composed of nuclear (electron) spins of phosphorus atoms
in a silicon nanostructure. They have very long T2 times of 60ms [48]
for nuclei and of 200µs for electrons [49]. Recently, high fidelity single
qubit gates and readout have been demonstrated experimentally [49].
Nitrogen-vacancy centers [50] in diamond have also been demonstrated
experimentally to be very stable with long decoherence times of T ∗2 ≈
20µs and T2 ≈ 1.8ms [11]. Both types of spin qubits have the additional

14



CHAPTER 2. INTRODUCTION 15

advantage that noise due to surrounding nuclear spins can be avoided
by isotopically purifying the material.

Unfortunately, it is hardly possible to make these spin qubits inter-
act with each other in a controlled and scalable fashion. They are very
localized and their position in the host material is given and cannot be
adjusted easily. Therefore, if during their production two qubits turn
out to lie close to each other they will always be coupled, while if they
are well-isolated from each other they will never interact. It is thus of
high interest to propose a scheme to couple such atomistic qubits in a
way that allows a high degree of control. While there have been various
proposals over the last years in order to couple spin qubits over large dis-
tances [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62], none of these methods
apply straightforwardly to atomisitc qubits such as silicon-based qubits
and N-V centers.

Alternative successful candidates for encoding a qubit are an elec-
tron spin localized in a semiconductor quantum dot, gate-defined or self-
assembled, or a singlet-triplet qubit with two electrons in a double quan-
tum well [4, 63]. These natural two-level systems are very long-lived (re-
laxation time T1 ∼ 1s [64], and decoherence time T2 > 200µs [65]), they
can be controlled efficiently by both electric and magnetic fields [66, 67,
68], and, eventually, may be scaled into a large network. It has been ex-
perimentally demonstrated that qubit-qubit couplings can be generated
and controlled efficiently for these systems [61].

A large-scale quantum computer must be capable of reaching a sys-
tem size of thousands of qubits, in particular to accommodate the over-
head for quantum error correction [69]. This poses serious architectural
challenges for the exchange-based quantum dot scheme [1], since—with
present day technology—there is hardly enough space to place the large
amount of metallic gates and wires needed to define and to address the
spin qubits. A promising strategy to meet this challenge is to implement
long-range interactions between the qubits which allows the quantum
dots to be moved apart and to create space for the wirings. Based on
such a design we propose a quantum computer architecture that con-
sists of a two-dimensional lattice of spin-qubits, with nearest neighbor
(and beyond) qubit-qubit interaction. Such an architecture provides the
platform to implement the surface code–the most powerful fault-tolerant
quantum error correction scheme known with an exceptionally large er-
ror threshold of 1.1% [70, 20].

To achieve such long-range interactions we propose a mechanism for
entangling spin qubits in quantum dots (QDs) based on floating gates
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and spin-orbit interaction. The actual system we analyze is composed of
two double-QDs which are not tunnel coupled. The number of electrons
in each double-QD can be controlled efficiently by tuning the potential
on the nearby gates. Moreover, the electrons can be moved from the
left to the right dot within each double-QD by applying strong bias volt-
age. Thus, full control over the double-QD is possible by only electrical
means. The double-QDs are separated by a large distance compared to
their own size so that they can interact only capacitively. An electromag-
netic cavity [52, 53] can be used to create a long-range qubit-qubit cou-
pling [58, 71]. Here we consider the classical limit thereof, i.e., a metallic
floating gate [72, 73, 74, 75, 59] suspended over the two double-QDs, or
a shared 2DEG lead between the qubits. The strength of the coupling
mediated by this gate depends on its geometry, as well as on the position
and orientation of the double-QDs underneath the gate. Finally, we show
that spin-qubits based on spins-1/2 [1] and on singlet-triplet states [63]
can be coupled, and thus hybrid systems can be formed that combine the
advantages of both spin-qubit types.

We propose additional mechanism of long-range coherent interaction
also in the absence of any spin-orbit interaction, thus enabling the cou-
pling between any kind of spin qubits. The idea is to use the dipolar cou-
pling of spin qubits to the spins of a dogbone-shaped ferromagnet. We
show that coupling strengths of about 10−8eV are achievable between
spin qubits separated by a distance of about 1µm. Our scheme is demon-
strated to be applicable to singlet-triplet qubits as well. Furthermore, we
explicitly construct the required sequences to implement a CNOT gate
and estimate the corresponding operation times. The additional deco-
herence induced by the coupling to the ferromagnet is studied and we
find a regime where fluctuations are under control and no significant ad-
ditional decoherence is introduced. A particularly promising application
of our proposal is to atomistic spin-qubits such as silicon-based qubits
and NV-centers in diamond to which previous coupling schemes do not
apply.
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Long-Distance Spin-Spin

Coupling via Floating Gates

Adapted from:
Luka Trifunovic, Oliver Dial, Mircea Trif, James R. Wootton, Rediet Abebe,

Amir Yacoby, and Daniel Loss
“Long-Distance Spin-Spin Coupling via Floating Gates”,

Phys. Rev. X 2, 011006 (2012)

The electron spin is a natural two level system that allows a qubit to be
encoded. When localized in a gate defined quantum dot, the electron spin
provides a promising platform for a future functional quantum computer.
The essential ingredient of any quantum computer is entanglement—for the
case of electron spin qubits considered here—commonly achieved via the
exchange interaction. Nevertheless, there is an immense challenge as to how
to scale the system up to include many qubits. Here we propose a novel
architecture of a large scale quantum computer based on a realization of
long-distance quantum gates between electron spins localized in quantum
dots. The crucial ingredients of such a long-distance coupling are floating
metallic gates that mediate electrostatic coupling over large distances. We
show, both analytically and numerically, that distant electron spins in an
array of quantum dots can be coupled selectively, with coupling strengths
that are larger than the electron spin decay and with switching times on the
order of nanoseconds.
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3.1 Electrostatics of the floating gate
The Coulomb interaction and spin-orbit interaction (SOI) enable cou-
pling between spin-qubits of different QD systems in the complete ab-
sence of tunneling [56, 57, 76, 77]. However, the Coulomb interaction
is screened at large distances by electrons of the 2DEG and of the metal
gates. Thus, the long-distance coupling between two spin-qubits is not
feasible via direct Coulomb interaction. However, by exploiting long-
range electrostatic forces, it was demonstrated experimentally [72, 74]
that QDs can be coupled and controlled capacitively via floating metallic
gates over long distances. The optimal geometric design of such float-
ing gates should be such that the induced charge stays as close as pos-
sible to the nearest QDs, and does not spread out uniformly over the
entire gate surface. In other words, the dominant contributions to the
total gate-capacitance should come from the gate-regions that are near
the QDs. To achieve a strong qubit-qubit coupling there is one more re-
quirement: the electric field induced on one QD needs to be sensitive to
the changes of the charge distribution of the other QD. Thus, the charge
gradient, (∂qind/∂r)r=0, needs to be large, where r is the position-vector
of the point charge with the respect to the center of the respective QD.
To fulfill these requirements we assume the floating gates consist of two
metallic discs of radius R joined by a thin wire of length L.

Let us now investigate the optimal design by modeling the electro-
statics of the floating gates. The electron charge in the QD induces an
image charge of opposite sign on the nearby disc (ellipsoid), see Fig. 3.1.
By virtue of the gate voltage being floating with respect to the ground, the
excess charge is predominantly distributed on the distant metallic ellip-
soid, thus producing an electric field acting on the second QD. In order to
carry out the quantitative analysis of the electrostatic coupling, we make
use of the expression for an induced charge on the grounded ellipsoidal
conductor in the field of a point charge [78]. Electrostatic considerations
imply that the coupling (gradient) is enhanced by implementing a flat-
disc design of the gate. Thus, in what follows, we set the disc height to
zero; to reach this regime in practice one only has to ensure that the disc
height be much smaller than its radius. The expression for the induced
charge (in the units of the electron charge) is then given by [78]

qind(r) =
2

π
arcsin(R/ξr), (3.1)

where R is the radius of the disc, and a0 is the distance between the QD
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Figure 3.1: Model system consisting of two identical double-QDs in the
xy-plane and the floating gate between them. The gate consists of two
metallic discs of radius R connected by a thin wire of length L. Each
double-QD can accommodate one or two electrons, defining the corre-
sponding qubit. Absence of tunneling between the separate double-QD
is assumed; the purely electrostatic interaction between the electrons in
the double-QDs leads to an effective qubit-qubit coupling. For the spin-
1/2 qubit the coupling depends sensitively on the orientation of the mag-
netic field B. Here a0 is the in-plane distance between a QD and the cor-
responding disc center, while d is vertical distance between the QD and
the gate.

and the ellipsoid centers (see Fig. 3.1). The ellipsoidal coordinate ξr is
given by

2ξ2
r = R2 + d2 + |a0 + r|2 (3.2)

+
√

(R2 + d2 + |a0 + r|2)2 − 4R2|a0 + r|2.

We emphasize that the induced charge depends only on the coordinate
ξr of the external charge, as is readily seen from Eq. (3.1). This is one
of the crucial points for the experimental realization of the qubit-qubit
coupling. Thus, positioning the QD below the gate as in previous se-
tups [72] is not useful for the qubit-qubit proposed considered here, since
∂qind/∂r ≈ 0. This fact, however, can be exploited to turn on and off the
effective coupling between the qubits. Alternatively, one can use a switch
that interrupts the charge displacement current through the floating gate
and thus disables the build-up of charge gradients at the other disc.

Figure 3.2 depicts both the induced charged qind, as well as the charge
variation ∂qind/∂r as a function of the horizontal distance a0 between the
center of the QD and the center of the gate. We see that for very small
vertical distances d � R the variation of the induced charge peaks at
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a0 ≈ R, reaching values as high as unity for d = 0.1R, and falls down
quickly for a0 larger or smaller than R. As mentioned above, this could
be used as an efficient switching mechanism. However, as d increases
to higher values, comparable to the disc radius R, the charge variation
∂qind/∂r flattens out over a wide range of in-plane distances a0. This
means that for larger depths d & λ of the quantum dot the switching
mechanism turns out to be rather inefficient, even though the magnitude
of the coupling is only weakly reduced (∂qind/∂r ≈ 0.3 for r ≈ R and
d = 0.5R). Nevertheless, the gates confining the QDs, as well as the
2DEG itself could lead to screening of the interaction between the QD
and the floating gate, allowing for an improved switching even in this
case.

Finally, by utilizing the expression for the electrostatic potential of
a charged thin disc [78] we arrive at the expression for the electrostatic
coupling

V (r1, r2) =
παq
κ

e2qind(r1)qind(r2)

R
, (3.3)

where κ is the dielectric constant, αq = Cd
Cw+2Cd

is the charge distribution
factor of the gate, and Cd and Cw are the capacitances of the discs and
wire, respectively (see Appendix 3.A). We mention that Eq. (3.3) is de-
rived in the limit when the floating gate is immersed in the dielectric,
and it provides a lower bound for V (r1, r2) in the realistic case when the
floating gate sits on top of the dielectric.

3.2 Qubit-qubit coupling
Next, we consider the coupling between qubits. These can be for either
single- or double-QDs. The two-qubit system with the floating gate is
well described by the Hamiltonian

H = V +
∑

i=1,2

H i
qubit , (3.4)

where V describes the electrostatic coupling between the distant charges
in the qubits and is given by Eq. (3.3), and H i

qubit stands for either the
single-QD or double-QD Hamiltonian [79, 57]

HQD =H0 +HZ +HSO, (3.5)
HDQD =J S1 · S2 +H1

Z +H2
Z . (3.6)



CHAPTER 3. LONG-DISTANCE SPIN-SPIN COUPLING VIA
FLOATING GATES 21

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

 0  0.5  1  1.5  2

a
0
/R

q
in

d
/e

(a)

d=0.1R

d=0.5R

d=R

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

a
0
/R

(∂
q

in
d
/∂
r)

×
(R
/e
)

(b) d=0.1R

d=0.5R

d=R

Figure 3.2: (a) The dependence of the induced charge, qind, and (b) of the
derivative of the induced charge, ∂qind/∂r, on a0 at r = 0, i.e. the in-plane
distance from the center of the cylindrical gate to the center of the QD.
We plot these two quantities for several vertical distances d between the
QD and the gate: d/R = 0.1, 0.5, 1, corresponding to the full, dashed
and dotted lines, resp..
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Here, H0 = p2
i /2m

∗+m∗(ω2
xx

2
i +ω2

yy
2
i )/2 is the energy of an electron in dot

i described by a harmonic confinement potential, m∗ being the effective
mass and ~ωx,y the corresponding single-particle level spacings. For a
single-QD HZ = gµBB ·σ/2, stands for the Zeeman coupling, with σ the
Pauli matrix for the spin-1/2, and both Rashba and Dresselhaus spin-
orbit interactions

HSO = α(pxσy − pyσx) + β(−pxσx + pyσy), (3.7)

where α (β) is the Rashba (Dresselhauss) spin-orbit interaction strength.
The double-QD is described by an effective Heisenberg model [79], see
Eq. (3.6), with Si being the spin in the double-QD. In what follows we
assume the floating gate to be aligned along the x-axis, see Fig. 3.1.

Singly occupied double-QDs

We start by considering two single-QD qubits. Let us first give a physical
description of the qubit-qubit coupling. The purely electrostatic coupling
between the QDs involves only the charge degrees of freedom of the elec-
trons. Within each QD the spin degree of freedom is then coupled to the
one of the charge via spin-orbit interaction. Hence, we expect the effec-
tive spin-spin coupling to be second order in the SOI and first order in
the electrostatic interaction. In fact, one has also to assume Zeeman split-
ting to be present on at least one QD in order to remove the van Vleck
cancellation [80, 81]. Such a cancellation occurs due to linearity in the
momentum of the SOI—for the SOI cubic in momentum (as for e.g. the
self-assembled QDs), one obtains a spin-spin coupling even in the ab-
sence of magnetic fields1.

Proceeding to a quantitative description, we assume the spin-orbit
strength to be small compared to the QD confinement energies ~ωx,y. Fol-
lowing Refs. [81, 57], we apply a unitary Schrieffer-Wolff transformation
to remove the first order SOI terms. The resulting Hamiltonian has de-
coupled spin and orbital degrees of freedom (to second order in SOI),
with the effective qubit-qubit coupling (see Appendix 3.A), with

HS−S = J12(σ1 · γ)(σ2 · γ) (3.8)

J12 =
m∗ω2

x,12E
2
Z

2(ω2
x − E2

Z)2
, (3.9)

1We have checked that for the SOI given by σxp
3
x, the spin-spin coupling of the

form Jxx = −(5π3/2)m3α2α3
qα

3
c(∂qind/∂x)6ω6

x is obtained in the absence of the mag-
netic field.
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where γ = (β cos 2γ,−α−β sin 2γ, 0); γ being the angle between the crys-
tallographic axes of the 2DEG and the xyz-coordinate system defined in
Fig. 3.1. Here we assumed for simplicity that the magnetic field is per-
pendicular to the 2DEG substrate, with EZ = gµBB the corresponding
Zeeman energy (assumed also the same for both dots). However, neither
the orientation nor the possible difference in the Zeeman splittings in the
two dots affect the functionality of our scheme (see Appendix 3.A for the
most general coupling case). We mention that the spin-spin interaction
in Eq. (3.8) is of Ising type, which, together with single qubit gates forms
a set of universal gates (see below).

All information about the floating gate coupling is embodied in the
quantity

ω2
x,12 = παqαC

(
∂qind
∂x̃

)2

r=0

ω2
x, (3.10)

where αC = e2/(κR~ωx), and x̃ = x/λ (λ is the QD size).2 Remarkably,
the coupling has only a weak dependence on the wire length L—through
the capacitance ratio αq.

Next, we give estimates for the qubit-qubit coupling for GaAs and
InAs QDs. Taking the spin-orbit strength for GaAs semiconductors λ '
0.1λSO (λSO = ~/(m∗α)), and assuming EZ1 ' EZ2 ≡ EZ ' 0.5~ωx (B =
2T and ~ωx ' 1meV ), we obtain Hs−s ' αqαC(∂qind/∂x̃)2

r=0 × 10−7eV .
The electrostatic coupling strongly depends (like d−2) on the vertical dis-
tance between the gate and the QDs. Typically, d ' λ, and one obtains
using Eq. (3.1) maximal coupling Hs−s ' 10−11 − 10−10eV (for R = 1.6λ,
L = 10µm, and Rw = 30nm leading to αq = 0.02; a0 = 1.9λ). Although,
it is experimentally challenging to decrease d to a value of about 10nm,
the gain would be a significantly stronger coupling 10−9 − 10−8eV (for
R = 0.17λ and a0 = 0.2λ). Moreover, if a semiconductor with larger
spin-orbit coupling is used—such as InAs (λ/λSO ' 1)—the coupling is
increased by two orders of magnitude compared to GaAs, reaching the
µeV -regime. Quite remarkably, these values almost reach within the ex-
change strengths range, Jexc ∼ 10−100µeV (10−100ps), occurring in typ-
ical GaAs double quantum dots [1, 82]. Actually, for realistic devices—as
presented in the Sec. 3.5—the coupling is almost two orders of magni-
tude larger then the estimates presented herein, and thus operation times
are well below the decoherence times for QD. This discrepancy is not

2It is interesting to note that the derived coupling, Eq. (3.8), is independent of the
orbital states of the QDs, and thus, insensitive to the fluctuations of a QD electron charge
distribution.
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very surprising and it is mainly due to our conservative treatment of the
dielectric, and the sensitivity of the electric field gradient to geometry of
the surrounding gates.

Hybrid spin-qubits

A number of different spin-based qubits in quantum dots have been in-
vestigated over the years [83], each with its own advantages and chal-
lenges. The most prominent ones are spin-1/2 and singlet-triplet spin
qubits. Here, we show that these qubits can be cross-coupled to each
other and thus hybrid spin-qubits can be formed which open up the pos-
sibility to take advantage of the ’best of both worlds’.

We model the hybrid system by a single- and a double-QD qubit, de-
scribed by Eqs. (3.5) and (3.6), respectively. The single-QD and the float-
ing gate act as an electric field, leading to the change in the splitting be-
tween the logical states of the double-QD spin-qubit, J → J + x̃eδJ̃ [79],
with xe = x̃eλ being the x-coordinate of the electron in the single-QD and

δJ̃ =
3

sinh(2l̃)

ω2
x,12

l̃ω2
D

ε . (3.11)

Here, ωD is the confinement energy in the DQD, l̃ is the distance between
the double-QD minima measured in units of a QD size λ. The previous
formula is valid for the regime ε & ωD.

In order to decouple spin and orbital degrees of freedom, we again
employ a Schrieffer-Wolff transformation and obtain the hybrid coupling
in lowest order (see Appendix 3.B)

Hhybrid =
3µg δJ̃(γ ×B) · σ

4(ω2
x − E2

Z1)λ
τz . (3.12)

Here, τz is a Pauli matrix acting in the pseudo-spin space spanned by
the logical states of the singlet-triplet qubit. It should be noted that the
sign of this coupling can be manipulated by changing the sign of the de-

tuning voltage ε. As an estimate, we can write Hhybrid '
(
ωx,12

ωx

)2
EZ
ωD

aB
λSO

ε.
Assuming the parameters cited in the previous section for the GaAs-QDs
we obtain the estimate HS−s ' 10−10 − 10−9eV . Reducing the distance d
or using InAs-QDs we can gain one order of magnitude more in the cou-
pling.



CHAPTER 3. LONG-DISTANCE SPIN-SPIN COUPLING VIA
FLOATING GATES 25

Doubly occupied double-QDs

To complete our discussion about the qubit-qubit couplings, we now con-
sider two double-QDs coupled via the floating gate. As already noted,
owing to the different charge distributions of the logical states in the
double-QD, the SOI term is not needed for the qubit-qubit coupling [76].
Certainly, the SOI exists in double-QDs but its effect on the ST splitting
can be neglected [84]. Below only a rough estimate of the coupling is
provided, while the detailed analysis can be found in Ref. [76].

We assume both double-QDs to be strongly detuned, thereupon the
singlet logic state is almost entirely localized on the lower potential well
of the double-QD. The electrostatic energy difference between the singlet-
singlet and triplet-triplet system configurations gives the rough estimate
of the qubit-qubit coupling, HS−S ' V (R,R)−V (R+ l, R+ l). Taking the
distance between the double-QD minima l ' R and the same GaAs pa-
rameters as before, we finally obtain the estimate HS−S ' 10−5− 10−6eV .
As can be seen from Fig. 3.2, reducing d to 10nm increases the coupling
five times.

3.3 Scalable Architecture
One central issue in quantum computing is scalability, meaning that the
basic operations such as initialization, readout, single- and two-qubit
gates should not depend on the total number of qubits. In particular,
this enables the implementation of fault-tolerant quantum error correc-
tion [69], such as surface codes where error thresholds are as large as
1.1% [70, 20].

To this end, the architecture of the qubit system becomes of central
importance [85]. Making use of the electrostatic long-distance gates pre-
sented above, we now discuss two illustrative examples for such scalable
architectures.

Design with floating metal gates

In the first design we propose here, the metallic gates above the 2DEG
are utilized for qubit-qubit coupling, while the switching of the coupling
is achieved by moving the QDs (see Fig. 3.3). Only the coupling be-
tween adjacent QDs is possible in this design. Without this constraint,
the induced charge due to nearby QDs would be spread over the whole
system, resulting in an insufficient qubit-qubit coupling.
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The actual virtue of the setup is its experimental feasibility, as sug-
gested by recent experiments [72, 74]. However, as explained in Sec. II,
a minor but crucial difference here is that the qubit-qubit coupling de-
pends not on the charge itself but rather on its gradient, in contrast to
earlier designs [72, 74]. This requires the dots to be positioned off the
disc-center.

In order to complete our quantum computer design, we have to equip
our system with a fast switch. The discussion in Sec. II is relevant
therefore, because the coupling can be turned off (on) by moving a QD
away (towards) the corresponding floating gate, see Fig. 3.2. The spatial
change of the quantum dot induces an electric response in the metallic
floating gate on a time scale roughly given by the elastic mean free time
(at low temperatures). This is the time it takes to reach the new electronic
equilibrium configuration that minimizes the electrostatic energy. Since
for a typical metal this time is on the order of tens of femtoseconds, this
response time poses no limitations, being much faster than the effective
switching times obtained in the previous sections.

All-in-2DEG design

We now consider a setup where are all elements of the qubit-network, in-
cluding the floating connector gates, are implemented in the 2DEG itself.
This will allow us to extend the above design in an essential way, namely
to implement a switching mechanism inside the connectors themselves
which is potentially fast and efficient (with a large on/off ratio). There
are two attractive features coming with such a design. First, the qubit-
qubit coupling is now controlled by the connector switch only, while the
quantum dots with the spin-qubits can be left fixed, thereby reducing
the source of gate errors. Second, this design allows for coupling be-
yond nearest neighbor qubits, which is beneficial for the error threshold
in fault-tolerant quantum error correction schemes [85].

The proposed network is shown in Fig. 3.4 where the floating gates
are formed within the 2DEG in form of discs connected by quantum
wires. The discs themselves can be considered as large quantum dots
containing many electrons (∼ 50 − 100) so that (quantum) fluctuations
are negligibly small. Parts of the network are then connected or discon-
nected by locally depleting these wires with the help of a standard quan-
tum point contact [82]. This suppresses the displacement of charges very
quickly and efficiently. The electrostatics of such semiconductor gates is
essentially the same as the previously discussed metallic one. Indeed, the



CHAPTER 3. LONG-DISTANCE SPIN-SPIN COUPLING VIA
FLOATING GATES 27

Figure 3.3: Quantum computer architecture using metallic floating gates
on top of a 2DEG. The electrostatic long-range coupling is confined to
adjacent qubits. Turning on (off) the qubit-qubit interaction is achieved
by moving a qubit close to (away from) the corresponding metal disc.
This architecture allows for parallel switching.

number of electrons in the 2DEG-defined network can be fixed, thus the
gate behaves as floating. Again, the minimal switching time is limited
roughly by the elastic mean free time (at low temperatures), which for a
typical GaAs 2DEG is on the order of tens of picoseconds.

The single spin control required for completing the universal set of
gates in our proposal can be implemented in both setups through ESR [86],
or purely electrically via EDSR [87, 88, 89], which is more convenient
for our electrostatic scheme. The time scales achieved are on the or-
der of 50 ns, much shorter than the spin relaxation and decoherence
times [87, 88, 89].
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Figure 3.4: All-in-2DEG design: the qubits and the floating connector
gates are all implemented within the same 2DEG. The spin-qubits (green
arrow) are confined to double quantum dots (small yellow double circles)
and are at a fixed position with maximum coupling strength to the float-
ing gate (big disc) (see Fig. 3.2). The network consists of quantum chan-
nels (lines) that enable the electrostatic coupling between discs (large cir-
cles) so that two individual qubits at or beyond nearest neighbor sites can
be selectively coupled to each other. In the figure shown are four pairs
of particular discs that are connected by quantum channels (full lines),
while the remaining discs (red) are disconnected from the network (in-
terrupted red lines) The discs can be considered as large quantum dots
containing many electrons. The quantum wires can be efficiently discon-
nected (interrupted lines) by depleting the single-channel with a metallic
top gate (not shown). This architecture allows for parallel switching.
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Design based on 1D nanowire quantum dots

The floating gate architecture efficiency is strongly dependent on the
strength of the SOI experienced by the electrons in the QDs, which have
to be large enough to overcome the spin decoherence rates. InAs nano-
wires are such strong SOI materials, with strengths larger by an order
of magnitude than in GaAs 2DEG [90]. Moreover, the electron spins in
QDs created in these nanowires show long coherence times [89] and can
be controlled (electrically) on times scales comparable to those found for
the electron spin manipulation in GaAs gate defined QDs [89].

In Fig. 3.5 we show a sketch of an architecture based on nanowires
containing single or double QDs. Typical examples for such wires are
InAs [90, 89] or Ge/Si [75, 91] nanowires, Carbon nanotubes [74, 92, 93,
94], etc. The default position of a QD is chosen so that the coupling to
any of the surrounding gates is minimal. Neighboring QDs in the same
nanowire are coupled by a vertical metal gate, while QDs in adjacent
nanowires by a horizontal metal gate. The electron in a given QD can
be selectively coupled to only two of the surrounding gates by moving
it (via the gates that confine the electrons) in regions where the electric
field gradient for the induced charge is maximum on these two ’active’
gates, while negligible for the others two ’passive’ gates. The other QD
partner in the coupling is moved towards one of the ’active’ gates thus
resulting in a qubit-qubit coupling. Note that there are in total three ’ac-
tive’ gates, but only one of them is shared by both QDs, thus allowing
selective coupling of any nearest neighbor pair in the network.

The spin coupling mechanism as well as the 2D geometry are similar
to the previous 2DEG GaAs QDs designs, showing the great flexibility of
the floating gate architecture. As before, the spin-qubits can be manipu-
lated purely electrically, via the same gates that confine the QDs [89]. We
mention also that the gate geometry (dog-bone like) shown in Fig. 3.5 is
not optimized to achieve the best switching ratio, more asymmetric gate
geometries possibly leading to better results.

Spin qubit decoherence and relaxation

Decoherence and relaxation are ones of the main obstacles to overcome in
building a quantum computer. The main source of qubit decay in typical
GaAs quantum dots comes from nuclear spins and phonons (via spin
orbit interaction), and has been studied in great detail theoretically and
experimentally, see e.g. Ref. [95]. The longest relaxation and decoherence
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Figure 3.5: Architecture based on nanowire QDs coupled by metallic
gates. The spin qubits are confined to QDs (black dots) on nanowi-
res. The nanowires form a parallel array (vertical black lines). The cou-
pling between neighboring spin-qubits is enabled by floating metal gates
(white) positioned either parallel to the wires thus coupling QDs created
in the same wire, or perpendicular to the wires thus coupling QDs cre-
ated in adjacent nanowires. By using external gates (not shown) to move
the dots along the nanowires (shaded colors) it is then possible to selec-
tively couple one particular QD to only two surrounding gates (’active’
gates; green and yellow). The other QD partner couple to one of these
’active’ gates also (green), thus resulting in a selective coupling of the
desired nearest neighbor pair.

times measured are about T1 ∼ 1s [64] and T2 ∼ 270µs [65], respectively.
Exactly the same qubit decay mechanisms also apply here, except one
new source coming from the Nyquist noise of the floating metallic gates.
However, this problem has been studied in great detail in Ref. [96] and no
major impact on the decoherence time was found. Even if Nyquist noise
were a problem, it could be further reduced by using superconducting
gates in lieu of normal metal ones.
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3.4 Implementation of two-qubit gates
Since the Hamiltonian of Eq. (3.8) is entangling, it can be used to imple-
ment two-qubit gates. Here we consider the CNOT gate, widely used
in schemes for quantum computation [70, 20]. The Hamiltonian for two
single-QD qubits interacting via the floating gate is the sum of HS−S and
the Zeeman terms. The strength of the latter in comparison to the for-
mer allows us to approximate the Hamiltonian by H ′ = J12|γ|2(σ1

xσ
2
x +

σ1
yσ

2
y)/2 + Ez(σ

1
z + σ2

z)/2, for which qubit-qubit interaction and Zeeman
terms commute. The CNOT gate, C, may then be realized with the fol-
lowing sequences,

C =
√
σ1
z

√
σ2
xH1ei(σ

1
z+σ2

z)Ezte−iH
′t

σ1
x e

i(σ1
z+σ2

z)Ezte−iH
′t σ1

xH1, (3.13)

C =
√
σ1
z

√
σ2
xH1 σ2

x e
−iH′t/2 σ1

xσ
2
x e
−iH′t/2

σ2
x e
−iH′t/2 σ1

xσ
2
x e
−iH′t/2H1 (3.14)

where t = π/(4J12|γx|2) and H denotes the single qubit Hadamard rota-
tion. These sequences require two and four applications of the floating
gate, respectively. More details on their construction can be found in Ap-
pendix 3.C. The time t is the bottleneck process in the sequence, and so
the time taken to implement the gates will be on the order of this value.
For a realistic value of J12|γ|2 = 10µeV , this gives a time of around a
nanosecond.

Since H ′ is only an approximation of the total Hamiltonian, these se-
quences will yield approximate CNOTs. Their success can be character-
ized by the fidelity which depends only on the relative strengths of the
parameters. For a realistic device we can expect the Zeeman terms to
be an order of magnitude stronger than the qubit-qubit coupling. The
above sequences then yield fidelities of 99.33% and 99.91% respectively.
For realistic parameters, with the Zeeman terms an order of magnitude
stronger than the qubit-qubit coupling, the above sequences yield fideli-
ties of 99.33% and 99.91% respectively. For two orders of magnitude be-
tween the Zeeman terms and qubit-qubit coupling the approximation
improves, giving fidelities of 99.993% and 99.998%, respectively. These
are all well above the fidelity of 99.17%, corresponding to the threshold
for noisy CNOTs in the surface code [20]. Hence, despite the difference
in error models, we can be confident that the gates of our scheme are
equally useful for quantum computation.
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3.5 Numeric Modeling of Realistic Devices
In the previous sections, a number of practical concerns related to the
construction of working devices were neglected; most notably, the exis-
tence of the metallic gates used to define the quantum dots themselves
and the presence of undepleted 2DEG outside of the quantum dots. These
have finite capacitances to the coupler, shunting away some of the charge
that would otherwise contribute to the inter-qubit interaction. To con-
firm that substantial couplings can still be attained at large distances
with these limitations, we have performed numeric simulations of de-
vices with realistic geometries similar to currently in-use ST spin qubits.
A typical simulated geometry is included in Fig. 3.6. The gate and het-
erostructure design is identical to a functional device currently being
characterized, and the boundaries of the 2DEG and placement of the elec-
trons within the dot are estimates guided by experimentally measured
parameters. Each quantum dot is modeled as a fixed charge metallic disc
50 nm in diameter within the 2DEG. While unsophisticated, this suffices
to estimate the practicality of this scheme.

We define the coupling between two ST qubits as the change in de-
tuning in one ST qubit induced by the transfer of a full electron from one
dot to the other dot in a second ST qubit. For our reference ST qubit de-
sign with the two qubits physically adjacent to each other and no coupler
(680 nm center-to-center), we calculate a coupling of 20µeV. As the qubits
are separated, the coupling vanishes rapidly as the 2DEG in between the
qubits screens the electric field; it is reduced by an order of magnitude if
the dots are separated by an additional 250 nm. This rapid falloff makes
the gate density needed for large scale integration of these qubits prob-
lematic.

Addition of a floating metallic coupler of the type described herein
increases the coupling at zero separation to 70µeV and allows the qubits
to be separated by more than 6µm before the coupling drops to the level
seen for two directly adjacent qubits. We can further improve upon this
coupling by etching the device in the vicinity of the coupler, reducing
the shunt capacitance of the coupler to the grounded 2DEG between the
devices.

For the case of single spins this metallic coupler is modified to place
the quantum dots at the edges of the coupler rather than under the discs.
We define the coupling in this case as the electric field in V/m induced
on one qubit in response to 1nm of motion of the electron on the other
qubit. We continue to find substantial couplings even at large separa-
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Figure 3.6: Numeric simulation confirm the efficacy of the design for S-T
qubits; addition of a metallic coupler (crosses) increases coupling more
than 3-fold for closely spaced dots, and greatly extends the range of the
coupling. (a) The simulated device with a separation of 1 µm and an
etched coupler. 2DEG underneath the shaded region is treated as de-
pleted, while red circles show the locations of the individual quantum
dots within the simulation. (b) Coupling strength as a function of sep-
aration for the ST qubits in free space (smooth curve), qubits including
leads and 2DEG but without a coupler (red +), including a metallic cou-
pler (black crosses), and additionally etching a trench around the coupler
to deplete the 2DEG underneath (blue squares). Inset: Electrostatic po-
tential (color scale) at the sample surface shows the impact of the coupler
on a device with a 1 µm separation.
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Figure 3.7: Simulations of single-spin qubits show appreciable coupling
strengths, even over distances of several microns. While the metallic cou-
pler design of Fig. 3.6 modified to place the quantum dots at the edges
of the couplers is effective (black crosses in b), an all-in-2DEG design
where one of the leads of the qubit acts as a coupler (red region in a) pro-
vides dramatically enhanced coupling (solid red lines in b). The coupler
is deactivated by a metallic top gate (black hatched region in a), mod-
eled by removing the hatched section of the coupler. Doing so reduces
inter-qubit coupling by over an order of magnitude (dashed red lines in
b).
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tions (Fig. 3.7). However, in this case we find we can further improve
couplings by moving to the all-in-2DEG design where one of the leads
of the quantum dot is used as the coupler (Fig. 3.7 a). Using the lead in
this fashion should be harmless; no current is driven into the lead during
qubit manipulations. The lead (colored region) is modeled as a metallic
strip at the level of the 2DEG. Due to the close proximity of the lead to
the qubit as well as the sharp electric field gradients near the point of
the lead, we find strongly enhanced coupling for this lead coupler over
the floating metallic coupler for single spin qubits. By depleting part of
the lead coupler using a metallic top gate (yellow region), it is possible
to selectively turn this coupling on and off. The reduction in coupling
in the off state is more than an order of magnitude, and can be further
improved by increasing the size of the depleted region.

3.6 Conclusions
We proposed and analyzed an experimentally feasible setup for imple-
menting quantum gates in an array of spin qubits localized in gate-defined
quantum dots based on the interplay of the Coulomb repulsion between
the electrons, SOI and externally applied magnetic fields. As opposed to
the current schemes based on direct exchange, here there is no need for
electron tunneling between the quantum dots, thus bringing the scheme
within experimental reach based only on current spin-qubit technology.

We showed, both analytically and numerically, that using either metal-
lic floating gates in the shape of a dog-bone, or the 2DEG itself acting as
a metallic gate, long-range spin-spin coupling is achieved, with coupling
strengths exceeding the spin decay rates. Moreover, the coupling can be
selectively switched on and off between any pairs of qubits by only lo-
cal qubit manipulation, allowing entangling quantum gates such as the
CNOT to be performed accurately and efficiently. The two-dimensional
architecture based on the design provides a platform for implementing
the powerful surface code.

The electrostatic scheme proposed here is a step forward towards
an efficient implementation of gates also between hybrid qubits, like ST
qubit, hole-spin qubits, or even superconducting qubits. This opens up
new avenues for a future working hybrid quantum computer based not
on one, but several types of qubits.
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3.A SPIN-SPIN COUPLING - singly occupied
double-dots

In this section we derive explicitly the effective spin-spin coupling. The
spin-orbit interaction (SOI) HamiltonianHSO is assumed to be small com-
pared to both the orbital Hamiltonian H0 + V and the Zeeman coupling
HZ , so that we can treat it in perturbation theory. The method of choice
for the perturbation theory is based on the Schrieffer-Wolff (SW) transfor-
mation, following Refs. [81, 57]. This method is very suitable for deriving
effective Hamiltonians, as we aim at herein. We first perform a unitary
transformation on the full Hamiltonian, i.e. H → eSHe−S ≡ HSW , with S
an anti-unitary operator so that we get

HSW = Hd +HSO + [S,Hd +HSO] (3.15)

+
1

2
[S, [S,Hd +HSO]] + . . . ,

where Hd = H0 + V + HZ . We look for the transformation S so that
this diagonalizes the full Hamiltonian H in the basis of Hd. In leading
order in HSO, we choose S so that [S,H0 + V + HZ ] = −(1 − P)HSO,
with the projector operator P satisfying PA =

∑
En=Em

Anm|m〉〈n|, ∀A,
i.e. it projects onto the diagonal part of the Hamiltonian Hd. Keeping
the lowest order terms in α and β in the SW transformation, we are left
with the effective interaction Hamiltonian HSW that contains the desired
spin-spin coupling in the basis of Hd

HSW = Hd −
1

2
P [S,HSO], (3.16)

where S = (1 − P)L−1
d HSO, with Ld being the Liouvillian superoperator

(LdA = [Hd, A],∀A).
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Figure 3.8: The misalignment angle α of the two QDs (yellow), defined
with respect to the metallic floating gate (orange).

Next we find the explicit expression for the spin-spin coupling due
to the second-order term in SOI in Eq. (3.16), i.e. U ≡ 1

2
[S,HSO]. We

make use of the explicit time-dependent (integral) representation of the

Liouvillian L−1
d = −i

∞∫
0

dtei(Ld+iη)t and arrive at

U = − i
2

∫ ∞

0

dte−ηt[HSO(t), HSO], (3.17)

where HSO(t) = eiLdtHn = eiHdtHne
−iHdt, and η → 0+ ensures the con-

vergence of the time integration. Heisenberg operators, σi(t) and pi(t),
are needed in order to calculate U . The former is easy to obtain σi(t) =

Σ̂i(t)σi, with Σ̂i(t) given by

(Σ̂i)mn(t) = δmnl
2
i cos

EZit

2~
+ 2(li)m(li)n sin2 EZit

4~

−εnmk(li)k sin
EZnt

2~
, (3.18)

with li = Bi/B. The calculation of pi(t) consists of solving the system of
ordinary differential equations (ODEs)

d

dt
pi(t) = −m∗ω2

0ri(t)−
∂

∂ri
V (r1(t), r2(t)), (3.19)

d

dt
ri(t) = pi(t)/m

∗. (3.20)

In order to solve this system we expand the electrostatic potential,
given in Eq. (3.3), around the minima to second order in ri(t). The system
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of ODEs now reads

d2

dt2

(
p1(t)
p2(t)

)
= −Ω̂

(
p1(t)
p2(t)

)
, (3.21)

Ω̂ =




ω2
x 0

0 ω2
y

Ω̂12

Ω̂†12

ω2
x 0

0 ω2
y


 . (3.22)

In this approximation only termsO(r2
i ) are retained—this is valid for low

lying levels. We ignore the renormalization of the frequencies (ωx and
ωy) because it gives higher order (in the Coulomb energy) contribution
to the effective spin-spin coupling. The coupling between the QDs (Ω̂12)
is given by

(Ω̂12)ij =παqαC

(
∂qind
∂r̃i

)(
∂qind
∂r̃j

)
ωiωj, (3.23)

(∂qind/∂ri)r=0 =
2R
√
ξ2

0 −R2ai
πξ2

0(2ξ2
0 − a2

0 −R2 − d2)
, (3.24)

where αq = Cd/(Cd + Cw), αC = e2/(κR~ωx), and r̃i = ri/λi (λi is the QD
size along the i-th direction). ai are the vectors that define the position of
the QDs with respect to the nearby disc center, see Fig. 3.8. Note that the
expressions for the disc (Cd) and wire (Cw) capacitances, resp. are given
by

Cd = 2R/π, (3.25)

Cw =
L

2 ln (L/Rw)
, (3.26)

where R is the radius of the disk, Rw is the radius of the wire and L is the
length of the wire.

In order to obtain the solution of Eq. (3.22), we note that even a slight
ellipticity (|ω2

x − ω2
y| � max[(Ω̂12)2

xy, (Ω̂12)2
yx]) of the QDs causes the mo-

tion in the x- and y-direction to be decoupled. Having in mind that
(Ω̂12)2

yx,xy/ω
2
x,y ∼ 10−3 − 10−4, we conclude that such a ellipticity is un-

avoidable in realistic experimental devices. Thus, we put off-diagonal
elements of the Ω̂12 matrix to zero and obtain the solutions

pi1,2(t) = ±pia cos(ωi+t) + pis cos(ωi−t)∓ (3.27)

∓m∗riaωi+ sin(ωi+t)−m∗risωi− sin(ωi−t),
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herein the notation rs,a = (r1 ± r2)/2, ps,a = (p1 ± p2)/2 and ω± =(√
ω2
x ± (Ω̂12)2

xx,
√
ω2
y ± (Ω̂12)2

yy

)
has been introduced. In the previous

formula, a superscript of a vector denotes the corresponding component
of the vector.

Next, the obtained solutions are inserted into Eq. (3.17). Finally, after
performing the integration over time one obtains the effective spin-spin
coupling for arbitrary orientation of the magnetic field

Hs−s =
∑

i=x,y

m∗ω2
i,12E

2
Z1(l1 × (l1 × γi)) · σ1(σ2 · γi)

4(ω2
x − E2

Z1)(ω2
x − E2

Z2)

+1↔ 2, (3.28)

where γx = (β cos 2γ,−α − β cos 2γ, 0), γy = (α − β sin 2γ,−β cos 2γ, 0),
and li = Bi/B. For simplicity of notation, γx is referred to as γ in the
main text.

Few remarks should be made herein for the result in Eq. (3.28). First
of all, from Eq. (3.24) we see that Ω̂12 ∝ a1⊗a2, accordingly, the two terms
in the sum of Eq. (3.28) are proportional to cosα1 cosα2 and sinα1 sinα2—
the angles αi are being depicted in Fig. 3.8. When only Rashba SOI is
present in the material, the coefficients in front of the two terms are equal
and the coupling is proportional to a1 ·a2. This gives yet another efficient
switching mechanism thereby, when the QDs are rotated in such a way
that the two vectors are orthogonal (a1 · a2 = 0).3

3.B SPIN-SPIN COUPLING - the hybrid
system

We start from the Hamiltonian of the system and then apply the Schrieffer-
Wolff transformation to remove the first order SOI term (present only in
the single QD). The electrostatic potential V is again expanded around
the minimum

V (re, r1, r2) = V (re, r1) + V (re, r2) (3.29)

≈ m∗
∑

i=e,1,2

(δω2
xx

2
i + δω2

yy
2
i )

+m∗ω2
x,12xe(x1 + x2),

3coupling is zero up to the small terms O
(

(Ω̂12)2xy,yx/|ω2
x − ω2

y|
)
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where re, r1, and r2 are the coordinates with respect to the local minima
for the electron in the single QD, and the two electrons in the DQD, re-
spectively. The terms under the sum only renormalize the frequencies,
we do not take them into account, they give only higher order (in the
Coulomb energy) contributions to the final results. The last term acts as
an electric field on the DQD; as has been shown in the Ref. [79], this leads
to a change in the exchange splitting between the singlet and triplet states
in the DQD.

H = H0 +HZ +HSO + δJ̃x̃eS1 · S2, (3.30)

where δJ̃ is given by

δJ̃ =
3

sinh(2l̃2)

ω2
x,12

l̃ω2
D

ε. (3.31)

ωD is the confinement energy in the DQD, l̃ is the distance between the
DQD minima measured in units of a QD size. We assumed that the de-
tuning ε is applied to the DQD in order to get the coupling linear in elec-
trostatic coupling.

The Schrieffer-Wolff transformation S is given by the following ex-
pression S = (L0 + LZ + LH)−1HSO. Similarly to the previous section, in
order to find the inverse Liouvillian we have to solve the system of ODEs

d

dt
pe,x(t) = −m∗ω2

xxe(t)−m∗J̃S1 · S2, (3.32)

d

dt
pe,y(t) = −m∗ω2

yye(t), (3.33)

d

dt
re(t) = pe(t)/m

∗. (3.34)

The solution is easily obtained

pxe(t) = pxe cos(ωxt) (3.35)

−m∗
(
xeωx +

J̃

m∗ωxλ
S1 · S2

)
sin(ωxt),

pye(t) = pye cos(ωyt)−m∗yeωy sin(ωyt). (3.36)
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After integration over time, the S transformation is obtained

−iS =
∑

i=x,y

m∗re,i (µ
2g2(B · γi)(B · σ)− 4ω2

i γi · σ)

8(ω2
i − E2

Z)

+
µg(B × σ) · γipe,i

4(ω2
i − E2

Z)
(3.37)

+
µ2g2(B · γx)(B · σ)− 4ω2

xγx · σ
8ω2

x(ω
2
x − E2

Z)λ
δJ̃S1 · S2,

The coupling is contained in the [S,HZ + δJ̃x̃eS1 · S2] term

HS−s =
3µg δJ̃(γx ×B) · σ

4(ω2
x − E2

Z)λ
(S1 · S2). (3.38)

By rewriting the last equation in the pseudo-spin space the generaliza-
tion for Eq. (3.12) for arbitrary magnetic field orientation is obtained.

3.C Implementation of two-qubit gates
Two qubits interacting via the floating gate evolve according to the Hamil-
tonian H = HS−S +EZ(σ1

z + σ2
z), the sum of the qubit-qubit coupling and

Zeeman term. In general these contributions do not commute, making
it difficult to use the evolution to implement standard entangling gates.
However, when the field is perpendicular to the 2DEG substrate, HS−S
takes the form of Eq. (3.8) which can be decomposed into two terms as
follows,

HS−S = J12(Γ1 − iΓ2σ
1
z)(σ

1
xσ

2
x − σ1

yσ
2
y)/2

+ J12|γx|2(σ1
xσ

2
x + σ1

yσ
2
y)/2. (3.39)

Here Γ1 = ((γx)
2
x−(γx)

2
y) and Γ2 = (γx)x(γx)y. The first of these two terms

anticommutes with the Zeeman term, whereas the second commutes. As
such, when EZ � J12|γx|2, HS−S can be approximated by the second
term alone,

HS−S ≈ H ′S−S =
J12|γx|2

2
(σ1

xσ
2
x + σ1

yσ
2
y), (3.40)

H ≈ H ′ = H ′S−S + Ez(σ
1
z + σ2

z)/2. (3.41)

With this approximation, the coupling and Zeeman terms in H ′ now
commute.
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We consider the implementation of the gate
√
σxσx = exp(−iσ1

xσ
2
xπ/4),

which is locally equivalent to a CNOT. The Hamiltonian H ′ already con-
tains a σ1

xσ
2
x term, so implementation of the

√
σxσx gate requires only that

the effects of the other terms be removed by appropriate local rotations.
Two possible sequences that can be used to achieve this are,

√
σxσx = ei(σ

1
z+σ2

z)Ezte−iH
′t

σ1
xe
i(σ1

z+σ2
z)Ezte−iH

′tσ1
x, (3.42)√

σxσx = σ2
x e
−iH′t/2 σ1

xσ
2
x e
−iH′t/2

σ2
x e
−iH′t/2 σ1

xσ
2
x e
−iH′t/2, (3.43)

where t = π/(4J12|γ|2). The first sequence requires two applications of
the qubit-qubit coupling, whereas the second requires four. The main dif-
ference is that the former removes the effects of the field through the ap-
plication of corresponding z-rotations after each application ofH ′, where
the latter uses x-rotations to negate the sign of the field terms and addi-
tional applications of H ′ to cancel them out. The former is therefore sim-
pler to implement, however the latter method will also cancel terms not
taken into account in the approximation.

Once the
√
σxσx has been implemented using either of the above se-

quences, the CNOT gate, C, may be applied using the appropriate local
rotations,

C =
√
σ1
z

√
σ2
xH1 √σxσx H1. (3.44)

HereH denotes the single qubit Hadamard rotation.
Since H ′ is an approximation of H , the above sequences will yield

approximate CNOTs, C ′, when used with the full Hamiltonian. The
success of the sequences therefore depends on the fidelity of the gates,
F (C ′). Ideally this would be defined using a minimization over all pos-
sible states of two qubits. However, to characterize the fidelity of an im-
perfect CNOT it is sufficient to consider the following four logical states
of two qubits: |+, 0〉, |+, 1〉, |−, 0〉, and |−, 1〉. These are product states
which, when acted upon by a perfect CNOT, become the four maximally
entangled Bell states |Φ+〉, |Ψ+〉, |Φ−〉, and |Ψ−〉, respectively. As such, the
fidelity of an imperfect CNOT may be defined,

F (C ′) = min
i∈{+,−},j∈{0,1}

|〈i, j|C†C ′|i, j〉|2. (3.45)

The choice of basis used here ensures that F (C ′) gives a good characteri-
zation of the properties ofC ′ in comparison to a perfect CNOT, especially
for the required task of generating entanglement.
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In a realistic parameter regime it can be expected that (γx)x and (γx)y
will be of the same order, and the qubit-qubit coupling will be a few
orders of magnitude less than the Zeeman terms. To get a rough idea of
what fidelities can be achieved in such cases using the schemes proposed,
we average over 104 samples for which (γx)y is randomly assigned values
between (γx)x/2 and 3(γx)x/2 according to the uniform distribution, and
J12(γx)x/EZ = 0.1. This yields values of 99.33% and 99.91% for the se-
quences of Eq. (3.42) and Eq. (3.43), respectively. For J12(γx)x/EZ = 0.01
these improve, becoming 99.993% and 99.998%, respectively.

To compare these values to the thresholds found in schemes for quan-
tum computation, we must first note that imperfect CNOTs in these cases
are usually modelled by the perfect implementation of the gate followed
by depolarizing noise at a certain probability. It is known that such noisy
CNOTs can be used for quantum computation in the surface code if the
depolarizing probability is less than 1.1% [20]. This corresponds to a fi-
delity, according to the definition above, of 99.17%. The fidelities that
may be achieved in the schemes proposed here are well above this value
and hence, though they do not correspond to the same noise model, we
can expect these gates to be equally suitable for fault-tolerant quantum
computation.



CHAPTER 4
Long-Distance Entanglement of

Spin-Qubits via Ferromagnet

Adapted from:
Luka Trifunovic, Fabio L. Pedrocchi, and Daniel Loss,

“Long-Distance Entanglement of Spin-Qubits via Ferromagnet”,
Phys. Rev. X 3, 041023 (2013)

We propose a mechanism of coherent coupling between distant spin qubits
interacting dipolarly with a ferromagnet. We derive an effective two-spin
interaction Hamiltonian and find a regime where dynamics is coherent.
Finally, we present a sequence for the implementation of the entangling
CNOT gate and estimate the corresponding operation time to be a few tens
of nanoseconds. A particularly promising application of our proposal is to
atomistic spin-qubits such as silicon-based qubits and NV-centers in dia-
mond to which existing coupling schemes do not apply.

4.1 Model
The system we consider consists of two spin-1

2
qubits coupled dipolarly

to the ferromagnet
H = Hσ +HF +HI, (4.1)

where HF is for the moment unspecified Hamiltonian of the dog-bone
shaped ferromagnet that is assumed to be polarized along the x-axis. We

44
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first assume that the qubits are also polarized along the x-axis, Hσ =∑
i=1,2

∆i

2
σxi , while the ferromagnet disc axes are along z, see Fig. 4.1. The

magnetic dipole coupling between the ferromagnet and the spin-qubits
can be written as

HI =
µ0µbµ

4πa3

∑

i=1,2

∫
drSxr

[(
3iA′i,r

2
+

3C ′′i,r
4

)
σ+
i + h.c.

+
1

2

(
Bi,r − 3C ′i,r

)
σxi

]

+S+
r

[(
3

8
C ′i,r −

3i

2
A′′i,r +

3

8
Bi,r

)
σ+
i

−1

8

(
Bi,r − 3C ′i,r

)
σ−i +

(
3C ′′i,r

4
+

3iA′i,r
2

)
σxi

]

+h.c, (4.2)

where Ar, Br, Cr are given by

Ar =
1

a3

rzr+

r5
, (4.3)

Cr =
1

a3

(r+)2

r5
, (4.4)

Br =
1

a3

1

r3

(
2− 3r+r−

r2

)
, (4.5)

with S±r = Syr± iSzr , σ± = σy± iσz, and lattice constant a. Here we denote
the real part of a complex number with prime and the imaginary part
with double prime. The operatorSr describes the spin of the ferromagnet
at the position r.

Next, we release the assumptions about the mutual orientation of the
disc axes, the axes of polarization of the ferromagnet, and the direction of
the qubits splitting and assume that these can take arbitrary directions.
Now the interaction Hamiltonian reads

HI =
µ0µbµ

4πa3

∑

i=1,2

∫
drS z̃r

[
ai,rσ

z
i + bi,rσ

+
i + h.c.

]
+

S+̃
r

[
ci,rσ

z
i + di,rσ

+
i + ei,rσ

−
i

]
+ h.c, (4.6)

where Sr has quantization axis along z̃ and σr along z. The coordinate
systems (x, y, z) for the qubit σ and (x̃, ỹ, z̃) for the ferromagnet can be
different. The expressions of the coefficients in Eq. (4.6) are now more
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Figure 4.1: The schematics of the ferromagnetic coupler setup. The or-
ange dog-bone shape denotes the ferromagnet that is coupled via mag-
netic dipole interaction to spins of nearby quantum dots (red sphere with
green arrow). The ferromagnet is assumed to be a monodomain and its
magnetization is denoted by blue arrows (M ) that can take arbitrary ori-
entation. L is the length of the quasi-1D ferromagnetic channel that is
approximately equal to the distance between the qubits. The shape of
the ferromagnetic coupler is chosen such that it enables strong coupling
to the spin-qubits while maintaining the spatially slowly decaying 1D
susceptibility between the two discs.

complicated, nevertheless it is important to note that the integrals of
these coefficients are experimentally accessible. The qubits can be used
to measure the stray field of the ferromagnet which is given by Bs =
(b′i, b

′′
i , ai), where {ai, . . . , ei} = µ0µ

4πa3

∫
dr{ai, . . . , ei}r. In order to measure

the remaining coefficients, one needs to apply the magnetic field exter-
nally in order to polarize sequentially the ferromagnet along the two per-
pendicular directions to the ferromagnet easy axis. The coefficients are
obtained then by measuring again the stray fields (with the aid of the
qubits) which now are given by (d′+e′, d′′−e′′, c′) and (d′′+e′′, d′−e′, c′′).
Furthermore, all the results that we are going to obtain for the qubit-qubit
coupling as well as for the decoherence time will depend only on the in-
tegrals of the coefficients, i.e., on {ai, . . . , ei} rather than {ai, . . . , ei}r. We
point out that the stray field Bs induces a splitting on the qubits that is
incorporated into Hσ.

Coherent coupling

We proceed to derive the effective qubit-qubit coupling by performing
a Schrieffer-Wolff (SW) transformation [97]. We assume that the exci-
tations in the ferromagnet are gapped due to some magnetic anisotropy
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(e.g. shape-anisotropy) or externally applied magnetic field, with the gap
being denoted by ∆F (for FMR dependence on externally applied mag-
netic field see Kittel [98]). This is important because when the qubit
splitting ∆ is below FMR frequency, flipping the qubit spin cannot ex-
cite magnons in the ferromagnet, thus there are only virtual magnons ex-
cited via coupling to the qubits—otherwise such a coupling would lead
to strong decoherence in the qubits. Due to presence of the gap in the
ferromagnet, its transversal susceptibility χ⊥(ω, r) decays exponentially
below FMR (ω < ∆F ) with the characteristic length lF ∝ 1/

√
∆F − ω,

thus we take into account only terms with ω ∼ ∆F , see Eqs. (4.72) and
(4.74) in Appendix 4.B. Straightforward application of lowest order SW
transformation accompanied by tracing out the degrees of freedom of the
ferromagnet yields the effective qubit-qubit coupling Hamiltonian

Heff = Hσ + χ1D
⊥ (∆1, L)e1σ

−
1 (c2σ

z
2 + d2σ

+
2 + e2σ

−
2 )†+

1↔ 2 + h.c., (4.7)

where χ1D
⊥ is the transverse susceptibility (i.e. transverse to the z̃ direc-

tion) of a quasi-1D ferromagnet, since we assumed a dog-bone shaped
ferromagnet. We have neglected the longitudinal susceptibility χ‖ since
it is suppressed by temperature. It can be seen from the above expres-
sion that in order to obtain a sizable coupling between the qubits we
have to tune both the qubits close to resonance, ∆i ∼ ∆F (see Sec. 4.1).
This can be achieved by applying an external magnetic field. Since the
g-factor of the ferromagnet is generally not the same as the g-factor of
the qubit, it is possible to tune the system on resonance with an exter-
nal homogeneous magnetic field. The fine tuning can then be achieved
by applying locally a small external magnetic field from a coil. The on-
resonance requirement offers an elegant way to switch on/off the cou-
pling between the qubits. The idea is to tune the qubit splitting close
to resonance for switching on the mediated interaction and to tune it off
resonance to switch off the mediated interaction.

The expression for the transverse susceptibility of a ferromagnet is
given in Eq. (4.74) of Appendix 4.B assuming HF to be of Heisenberg
type. The derivation given therein relays on the fact that dispersion of
low-laying ferromagnetic excitations (i.e. spin waves) is quadratic [99].
Note that for very long wave lengths (bigger than a micron) the excita-
tions are so-called dipolar spin waves with dispersion very different from
quadratic one and dependent on concrete boundary conditions [100].
Since we are considering ferromagnets with dimensions not exceeding
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micron, the relevant excitations are exchange spin waves with quadratic
dispersion which is practically independent of specific boundary condi-
tions [100]. We note here that the FMR can increase toward the edges of
the sample [101], in this case one should use ferromagnetic coupler with
lateral dimensions bigger than the one quoted in Sec. 4.3 in order to have
a middle region with nearly spatially independent FMR.

Special care has to be taken for the validity of the perturbation theory
employed herein, since we are working close to FMR, i.e., ∆ − ∆F has
to be small but still much larger than the coupling of a qubit to an indi-
vidual spin of the ferromagnet. For the perturbation theory to be valid
we require the tilt of each ferromagnet spin to be sufficiently small (i.e.
〈S±r 〉 � 1). The tilt of the central spin of the ferromagnetic disk can be
estimated by the integral over the dogbone disk D

〈S±r 〉 =

∫

D

χ⊥(r)B⊥(r)dr , (4.8)

where B⊥(r) is the perpendicular (to the magnetization direction) com-
ponent of the field produced at position r by the qubit. Using cylindrical
coordinates we then obtain

〈S±r 〉 ∼
µ0µ

2
B

2a

∫ R

0

ρdρ
1

(ρ2 + h2)3/2

S

Dρ
, (4.9)

where S
Dρ

is the spatial decay of the transversal susceptibility and 1
(ρ2+h2)3/2

is the decay of the dipolar field causing the perturbation of the ferromag-
net. For our choice of parameters, we obtain a tilt 〈S±r 〉 < 10−7 � 1. Even
though each spin is just slightly tilted, we obtain a sizable coupling due
to big number of spins involved in mediating the coupling.

For the sake of completeness, in Appendix 4.D we present a detailed
discussion of the effective coupling mediated by the dog-bone when the
qubits are exchange coupled to the ferromagnet which requires a tunnel
coupling between spin qubit and ferromagnet.

Implementation of two-qubit gates

Two qubits interacting via the ferromagnet evolve according to the Hamil-
tonian Heff , see Eq. (4.7). The Hamiltonian is therefore the sum of Zee-
man terms and qubit-qubit interaction. These terms, by and large, do not
commute, making it difficult to use the evolution to implement standard
entangling gates. In order to obtain sizable coupling we need to assume



CHAPTER 4. LONG-DISTANCE ENTANGLEMENT OF SPIN-QUBITS
VIA FERROMAGNET 49

that the two qubits are on-resonance with each other, ∆1 ' ∆2. Now
Hσ acts only in the subspace spanned by {| ↑, ↑〉, | ↓, ↓〉} and the Zee-
man splitting of the qubits is much larger than the effective qubit-qubit
coupling, we can neglect the effect of Heff in this part of the subspace
and approximate it by its projection in the space spanned by the vectors
{| ↑, ↓〉, | ↓, ↑〉}

H ′eff = Hσ + α(σx1σ
x
2 − σy1σy2) + β(σx1σ

y
2 + σy1σ

x
2 ), (4.10)

where α = −8Re(e1e
∗
2) and β = −4Re(d1e

∗
2 + d2e

∗
1). Within this approxi-

mation, the coupling in H ′eff and the Zeeman terms now commute. From
here we readily see that the stray field components, ai, bi, as well as the
coefficient ci do not determine the operation time of the two qubit gates—
the operation time depends only on di and ei. To proceed we perform a
rotation on the second qubit around the z-axis by an angle tan θ = β/α
and arrive at the Hamiltonian

H ′eff = Hσ +
√
α2 + β2(σx1 σ̃

x
2 − σy1 σ̃y2). (4.11)

We consider the implementation of the iSWAP gate

UiSWAP = ei(σ
x
1 σ̃

x
2 +σy1 σ̃

y
2 )π/4, (4.12)

which can be used to implement the CNOT gate [102]. The Hamiltonian
H ′ can be transformed to the desired form by changing the sign of σx1 σ̃x2
term. This is achieved with the following sequence [103]

UiSWAP = σy1e
iHσte−iH

′
eff tσy1 , (4.13)

where t = π/(4
√
α2 + β2). When iSWAP is available, the CNOT gate can

be constructed in the standard way [104]

UCNOT = e−i
π
4
σz1ei

π
4
σx2 ei

π
4
σz2UiSWAP e

−iπ
4
σx1UiSWAP e

iπ
4
σz2 . (4.14)

Since H ′eff is an approximation of Heff , the above sequence will yield
approximate CNOT, U ′CNOT , when used with the full the Hamiltonian.
The success of the sequences therefore depends on the fidelity of the
gates, F (U ′CNOT ). Ideally this would be defined using a minimization
over all possible states of two qubits. However, to characterize the fi-
delity of an imperfect CNOT it is sufficient to consider the following four
logical states of two qubits [60]: |+, ↑〉, |+, ↓〉, |−, ↑〉, and |−, ↓〉. These are
product states which, when acted upon by a perfect CNOT, become the
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four maximally entangled Bell states |Φ+〉, |Ψ+〉, |Φ−〉, and |Ψ−〉, respec-
tively. As such, the fidelity of an imperfect CNOT may be defined,

F (U ′CNOT ) = min
i∈{+,−},j∈{0,1}

|〈i, j|U †CNOTU ′CNOT |i, j〉|2. (4.15)

The choice of basis used here ensures that F (U ′CNOT ) gives a good char-
acterization of the properties of U ′CNOT in comparison to a perfect CNOT,
especially for the required task of generating entanglement. For realis-
tic parameters, with the Zeeman terms two order of magnitude stronger
than the qubit-qubit coupling, the above sequence yields fidelity for the
CNOT gate of 99.976%.

To compare these values to the thresholds found in schemes for quan-
tum computation, we must first note that imperfect CNOTs in these cases
are usually modeled by the perfect implementation of the gate followed
by depolarizing noise at a certain probability. It is known that such noisy
CNOTs can be used for quantum computation in the surface code if the
depolarizing probability is less than 1.1% [20]. This corresponds to a fi-
delity, according to the definition above, of 99.17%. The fidelities that
may be achieved in the schemes proposed here are well above this value
and hence, though they do not correspond to the same noise model, we
can expect these gates to be equally suitable for fault-tolerant quantum
computation.

4.2 Decoherence
In this section we study the dynamics of a single qubit coupled to the fer-
romagnet. In particular we want to answer the question whether the two-
qubit dynamics studied in the previous section is coherent, i.e., whether
the decoherence time solely due to the dipolar coupling to the ferromag-
net is larger than the qubit operation time.

A ferromagnet has two types of fluctuations—longitudinal and trans-
verse ones. The longitudinal noise stems from fluctuations of the longitu-
dinal S z̃ component (we recall that the ferromagnet is polarized along z̃),
while the transverse one is related to fluctuations of S±̃. In what follows
we study these two noise sources separately. The general noise model
that describes both types of noise is then given by

H = HF +
∆

2
σz + σz ⊗X + σ+ ⊗ Y + h.c., (4.16)
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where the ferromagnet operators X (Y ) with zero expectation value cou-
ple longitudinally (transversally) to the qubit. The noise model given in
Eq. (4.16) leads to the following relaxation and decoherence times within
Born-Markov approximation [105]

T−1
1 = SY (ω = ∆), (4.17)

T−1
2 =

1

2
T−1

1 + SX(ω = 0), (4.18)

where we defined the fluctuation power spectrum of an operator A in
the following way, SA(ω) =

∫
dte−iωt{A†(t), A(0)}. In order to obtain

expression for the decoherence times we need a specific model for the
ferromagnet Hamiltonian, herein taken to be a gapped Heisenberg model
HF = −J∑〈r,r′〉 Sr ·Sr′ + ∆F

∑
r S

z
r , J being the exchange coupling and

∆F the excitation gap.

Longitudinal noise

The power spectrum of longitudinal fluctuations is given by the follow-
ing expression for ω � T (see Appendix 4.C and in particular Eq. (4.85))

S3D
‖ (ω) =

α
√
βω

2β2D3
e−β∆F coth(βω/2), (4.19)

while for ω � T (see Appendix 4.C, Eq. (4.87))

S3D
‖ (ω) =

ln(1 + nk=0)

16πβD3
ω coth(βω/2), (4.20)

where D = 2JS. We study transverse (Y ) and longitudinal (X) coupling
separately. In the case of longitudinal coupling we solve the problem
exactly while we treat the transverse coupling within the framework of
perturbation theory.

Transverse coupling to longitudinal noise

The part of the Hamiltonian that describes transverse coupling to the
longitudinal noise reads

H = HF + σ+ ⊗
∫
drb1,rS

z̃
r + h.c. (4.21)
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Using Eq. (4.18) and the inequality

S3D
‖ (ω, r) ≤ S3D

‖ (ω, r = 0),

we obtain the relaxation time

T−1
1 =

∫
drdr′b1,rb1,r′S

3D
‖ (∆, r − r′)

≤
∫
drdr′b1,rb1,r′S

3D
‖ (∆, r = 0)

= b2
1S

3D
‖ (∆), (4.22)

where expression for S3D
‖ (∆) is given in Eq. (4.19) since ∆ � T . The

above expression readily shows that relaxation time can be tailored arbi-
trarily small by choosing the ratio T/∆F sufficiently small.

Longitudinal coupling to longitudinal noise

Here we consider only longitudinal coupling to longitudinal noise thus
the Hamiltonian reads

H = HF + σz ⊗ V + ε σz , (4.23)

with ε the qubit splitting and V =
∫
dra1,rS

z̃
r . To simplify the problem

further [106], we substitute S z̃r → Sx̃r since the latter is linear in magnon
operators while the former is quadratic. When the final formula for the
decoherence time is obtained we substitute back the power spectrum of
S z̃r instead of Sx̃r .

In order to study decoherence we have to calculate the following
quantity [106]

〈σ−(t)〉 = eiεt/~〈σ−(0)〉× (4.24)

×
〈
T̃ exp

(
i

∫ t

0

V dt′
)
T exp

(
i

∫ t

0

V dt′
)〉

,

with (T̃ ) T the (anti-) time ordering operator. The average in the above
expression can be evaluated using a cluster expansion [107] and since the
perturbation V is linear in the bosonic operators, only the second order
cluster contributes. Therefore, the final exact result for the time-evolution
of σ−(t) reads

〈σ−(t)〉 = eiεt/~〈σ−(0)〉e− 1
2

∫ t
0

∫ t
0 S(t2−t1)dt1dt2 , (4.25)
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where S(t) = 〈[V (t), V (0)]+〉. After performing the Fourier transforma-
tion we obtain

〈σ−(t)〉 = eiεt/~〈σ−(0)〉× (4.26)

× exp

(
−1

2

∫
dω

2π
S(ω)

sin2(ωt/2)

(ω/2)2

)
.

Note that this expression is of exactly the same form as the one for a
classical Gaussian noise [108]. Now we substitute back Sx̃r → S z̃r

〈σ−(t)〉 = eiεt/~〈σ−(0)〉 ×

× exp

(
−1

2

∫
dω

2π

∫
drdr′a1,ra1,r′S

3D
‖ (ω, r − r′)sin2(ωt/2)

(ω/2)2

)
.

(4.27)

For long times t� ~/T the dynamics is of the form

〈σ−(t)〉 ∼ e−a
2
1T

2 ln(1+nk=0)t/(8πD3)+i∆t, (4.28)

where we have used the inequality S3D
‖ (ω, r) ≤ S3D

‖ (ω, r = 0). Thus,
this type of decoherence can be suppressed by choosing the ratio T/∆F

sufficiently small.

Transverse noise

The power spectrum of transverse fluctuations of the ferromagnet van-
ishes for ω < ∆F (see Eqs. (4.75) and (4.73) in Appendix 4.B),

S3D
⊥ (ω) = 0 , ω < ∆F , (4.29)

S3D
⊥ (ω) =

S
√
ω −∆F

D3/2
coth(βω/2), ω > ∆F . (4.30)

Since the transverse fluctuations are gapped and the precession frequency
of the qubits is below the gap, this noise source does not contribute in the
second order (Born approximation) because only virtual magnons can be
excited. In this section we choose the quantization axes such that qubit
splitting is along the z-axis, while the ferromagnet is polarized along the
x-axis (see Fig. 4.1), this is done solely for simplicity and all the conclu-
sions are also valid for the most general case. The Hamiltonian of the
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coupled system is of the form Eq. (4.16) with operators X (Y )

X =
i

2

∫
drcr(S+

r − S−r ), (4.31)

Y + =− i

8

∫
dr(arS

+
r + brS

−
r ), (4.32)

with S±r = Syr ± iSzr and the definitions

ar = Br + 3Cr − 6Ar, (4.33)
br = Br + 3Cr + 6Ar, (4.34)
cr = Br − 3A′′r, (4.35)

where Ar, Br, Cr are given by Eqs. (5.24)-(5.26). To proceed further we
perform the SW transformation on the Hamiltonian given by Eq. (4.16).
We ignore the Lamb and Stark shifts and obtain the effective Hamiltonian

H = HF +
∆

2
σz + σz ⊗ X̃2 + σ+ ⊗ Ỹ −2 + σ− ⊗ Ỹ +

2 , (4.36)

where

X̃2 = X2 − 〈X2〉, (4.37)

Ỹ ±2 = Y ±2 − 〈Y ±2 〉, (4.38)

with the following notation

X2 = 4(Y +
∆ Y

− + Y +Y −∆ ), (4.39)
Y +

2 = 2(Y +
∆ X −X0Y

+), (4.40)

Xω =
i

2

∫
drr′χ⊥(ω, r − r′)cr(S+

r′ − S−r′), (4.41)

Y +
ω = − i

8

∫
drr′χ⊥(ω, r − r′)(arS+

r′ + brS
−
r′). (4.42)

The model given by Eq. (4.16) yields the following expressions for the
relaxation and decoherence times

T−1
1 = SỸ −2 (ω = ∆), (4.43)

T−1
2 =

1

2
T−1

1 + SX̃2
(ω = 0). (4.44)
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After a lengthy calculation we obtain the following expressions for T1

and T2 (see Appendix 4.E for a detailed derivation)

T−1
1 ≤B

4S2∆2
F

2D3

(
1

∆F

+
1

∆F −∆

)2

f

(
∆

∆F

, β∆F

)
, (4.45)

T−1
2 ≤B

4S2∆2
F

4D3

(
1

∆F

+
1

∆F −∆

)2

f

(
∆

∆F

, β∆F

)
+

B4S2∆2
F

2D3(∆F −∆)2
f (0, β∆F ) , (4.46)

with the function f(x, y) defined as follows

f(x, y) =

∫ ∞

1+x

dz

√
z − 1

eyz − 1

√
z − x− 1

ey(z−x) − 1
. (4.47)

It is important to note that f(x, y) ∝ e−y, i.e., we obtain, as for the
longitudinal noise, that the effect of transverse fluctuations can be sup-
pressed by choosing the temperature much smaller than the excitation
gap of the ferromagnet. As anticipated, Eq. (4.46) shows that the trans-
verse noise becomes more important as the resonance is approached (∆ ∼
∆F ).

4.3 Estimates
In this section we give numerical estimates for the coherent coupling me-
diated by the ferromagnet and the associated decoherence times. These
estimates are valid for both silicon-based and NV-center qubits.

Let us assume that the qubits lie close to the disc axis at a distance
h = 25nm below the disc and that the ferromagnet has in-plane po-
larization (along x-axis), the thickness of the disk is 20nm, its radius
50nm, and the lattice constant 4Å. In this case the stray field reaches
values up to 10mT and this is not detrimental since NV-centers can tol-
erate such small fields perpendicular to the polarization axis; stronger
magnetic fields would destroy the ability to manipulate NV-centers op-
tically [9]. For these cases and when the qubit splitting is brought close
to resonance, ∆F − ∆ ≈ 10−2µeV , we obtain operation times on the or-
der of tens of nanoseconds when the qubits are separated by a distance
of about 1µm. The decoherence times T2 depend strongly on the ratio
kBT/∆F and the additional decoherence source can be made negligible
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if this ratio is sufficiently small. For a magnon gap ∆F = 100µeV and
a temperature T = 0.1K, we obtain decoherence times solely due to
the coupling to the ferromagnet that are much bigger than the operation
times and the typical decoherence times of the qubits.

4.4 Conclusions
We propose a scheme to coherently couple two atomistic qubits sepa-
rated over distances on the order of a micron. We present a sequence
for the implementation of the entangling CNOT gate and obtain opera-
tion times on the order of a few tens of nanoseconds. We show that there
is a regime where all fluctuations of the ferromagnet are under control
and the induced decoherence is non-detrimental: this is achieved when
the temperature is smaller than the excitation gap of the ferromagnet.
The main novel aspect of our proposal is its applicability to the techno-
logically very important silicon qubits and NV-centers to which previous
coupling methods do not apply.
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4.A Holstein-Primakoff transformation
For the sake of completeness we derive in this Appendix explicit expres-
sions for the different spin-spin correlators used in this work

Cαβ(ω, q) = 〈Sαq (ω)Sβ−q(0)〉 . (4.48)

For this purpose, we make use of a Holstein-Primakoff transforma-
tion

Szi = −S + ni, S
−
i =
√

2S

√
1− ni

2S
ai, and

S+
i =

(
S−i
)†
, (4.49)
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in the limit ni � 2S, with ai satisfying bosonic commutation relations
and ni = a†iai [109]. The creation operators a†i and annihilation operators
ai satisfy bosonic commutation relations and the associated particles are
called magnons. The corresponding Fourier transforms are straightfor-
wardly defined as a†q = 1√

N

∑
i e
−iq·Riai. In harmonic approximation, the

Heisenberg Hamiltonian HF reads

HF ≈
∑

q

εqa
†
qaq , (4.50)

where εq = ωq + ∆F = 4JS[3 − (cos(qx) + cos(qy) + cos(qz))] + ∆F is the
spectrum for a cubic lattice with lattice constant a = 1 and the gap ∆F is
induced by the external magnetic field or anisotropy of the ferromagnet.

4.B Transverse correlators 〈S+
q (t)S

−
−q(0)〉

Let us now define the Fourier transforms in the harmonic approximation

S+
q =

1√
N

∑

i

e−iqriS+
i =

√
2S√
N

∑

i

e−iqria†i =
√

2Sa†−q ,

S−−q =
1√
N

∑

i

eiqriS−i =

√
2S√
N

∑

i

eiqriai =
√

2Sa−q . (4.51)

From this it directly follows that

C+−(t, q) = 〈S+
q (t)S−−q(0)〉

= 2S〈a†−q(t)a−q〉 = 2Seiεqtnq , (4.52)

with εq ≈ Dq2 + ∆F in the harmonic approximation.
The Fourier transform is then simply given by

C+−(ω, q) =
1√
2π

∫ ∞

−∞
dte−iωtC+−(t, q)

=
1√
2π

∫ ∞

−∞
dtei(εq−ω)t

︸ ︷︷ ︸√
2πδ(εq−ω)

2Snq

=
√

2π2Sδ(εq − ω)
1

eβω − 1
. (4.53)
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The corresponding correlator in real space is then simply given by (q :=
|q|)

C+−(ω, r) =
1

(2π)3/2

∫
dqeiqrC+−(ω, q) (4.54)

=

√
2π

(2π)3/2
2S

1

eβω − 1

∫
dqδ(Dq2 + ∆F − ω)eiqr

=
2S

eβω − 1

∫ 1

−1

∫ ∞

0

dqdxq2δ(Dq2 + ∆F − ω)eiqrx

=
4S

r

1

eβω − 1

∫ ∞

0

dqqδ(Dq2 + ∆F − ω) sin(qr) .

Let us now perform the following substitution

y = Dq2, (4.55)

which gives for ω > ∆F

C+−(ω, r) =
4S/r

2D(eβω − 1)

∫ ∞

0

dyδ(y + ∆F − ω)×

× sin

(√
y

D
r

)
(4.56)

=
2S

D

1

eβω − 1

sin(
√

(ω −∆F )/Dr)

r
.

We remark that
C+−(ω, r) = 0, ω < ∆F . (4.57)

We note the diverging behavior of the above correlation function for
∆F = 0 and ω → 0, namely

1

eβω − 1

sin
(√

ω
D
r
)

r
→ 1√

Dβ

1√
ω
. (4.58)

Similarly, it is now easy to calculate the corresponding commutators and
anticommutators. Let us define

S⊥(t, q) :=
1

2
{S+

q (t), S−−q(0)} . (4.59)

It is then straightforward to show that

S⊥(t, q) = Seiεqt(1 + 2nq) , (4.60)
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and therefore

S⊥(ω, q) =
S√
2π

∫ ∞

−∞
ei(εq−ω)t(1 + 2nq)

= S
√

2πδ(εq − ω)

(
1 + 2

1

eβω − 1

)
. (4.61)

Following essentially the same steps as the one performed above, we
obtain the 3D real space anticommutator for ω > ∆F

S3D
⊥ (ω, q) = S coth(βω/2)× (4.62)

×
∫ 1

−1

∫ ∞

0

dxdqq2eiqrxδ(εq − ω)

=
S

D
coth(βω/2)

sin(
√

(ω −∆F )/Dr)

r
.

(4.63)

Let us now finally calculate the transverse susceptibility defined as

χ⊥(t, q) = −iθ(t)[S+
q (t), S−−q(0)] . (4.64)

As before, in the harmonic approximation, one finds

χ⊥(t, q) = iθ(t)2Seiεqt . (4.65)

In the frequency domain, we then have

χ⊥(ω, q) =
2iS√

2π

∫ ∞

0

dtei(εq−ω)t−ηt (4.66)

= − 2S√
2π

1

εq − ω + iη
,

and thus in the small q expansion

χ⊥(ω, q) = − 2S√
2π

1

Dq2 + ∆F − ω + iη
. (4.67)

In real space, for the three-dimensional case, we obtain

χ3D
⊥ (ω, r) = − 2S√

2π

2π

(2π)3/2

∫ ∞

0

∫ 1

−1

dxdqq2 1

Dq2 + ∆F − ω + iη
eiqrx

= − 4S√
2π

2π

(2π)3/2

1

r

∫ ∞

0

dqq
1

Dq2 + ∆F − ω + iη
sin(qr) .(4.68)
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Making use of the Plemelj formula we obtain for ω > ∆F

χ3D
⊥ (ω, r) = − 2S√

2π

2π

(2π)3/2

1

r

∫ ∞

−∞
dqq

1

Dq2 + ∆F − ω + iη
sin(qr)

= − 2S√
2π

2π

(2π)3/2

1

r
P

∫ ∞

−∞
dq

q

Dq2 + ∆F − ω
sin(qr)

+i
2S√
2π

2π2

(2π)3/2

1

r

∫ ∞

−∞
dqqδ(Dq2 + ∆F − ω) sin(qr)

= − S
D

cos(r
√

(ω −∆F )/D)

r
+ i

S

2D

sin(
√

(ω −∆F )/Dr)

r
.

(4.69)

It is worth pointing out that the imaginary part of the susceptibility van-
ishes,

χ3D
⊥ (ω, r)′′ = 0, ω < ∆F , (4.70)

and therefore the susceptibility is purely real and takes the form of a
Yukawa potential

χ3D
⊥ (ω, r) = − S

D

e−r/lF

r
, ω < ∆F , (4.71)

where

lF =

√
D

∆F − ω
. (4.72)

Note also that the imaginary part of the transverse susceptibility satisfies
the well-know fluctuation-dissipation theorem

S3D
⊥ (ω, r) = coth(βω/2)χ3D

⊥ (ω, r)′′ . (4.73)

In three dimensions the susceptibility decay as 1/r, where r is mea-
sured in lattice constants. For distances of order of 1µm this leads to four
orders of magnitude reduction.

For quasi one-dimensional ferromagnets such a reduction is absent
and the transverse susceptibility reads

χ1D
⊥ (ω, r) = − S

D
lF e
−r/lF , ω < ∆F , (4.74)

where lF is defined as above and the imaginary part vanishes as above,
i.e.,

χ1D
⊥ (ω, r)′′ = 0, ω < ∆F . (4.75)
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Similarly for ω > ∆F we have

χ1D
⊥ (ω, r) = S

sin
(√

(ω −∆F )/Dr
)

√
D(ω −∆F )

, (4.76)

and

χ1D
⊥ (ω, r)′′ =

S

2D

√
D

ω −∆F

cos
(√

(ω −∆F )/Dr
)
. (4.77)

4.C Longitudinal correlators 〈Szq(t)Sz−q(0)〉
The longitudinal susceptibility reads

χ‖(t, q) = −iθ(t)[Szq(t), Sz−q(0)] (4.78)

= −θ(t) 1

N

∑

q′,q′′

eit(εq′−εq′+q)〈[a†q′aq′+q, a
†
q′′aq′′−q]〉 .

Applying Wick’s theorem and performing a Fourier transform, we obtain
the susceptibility in frequency domain

χ‖(ω, q) = − 1

N

∑

k

nk − nk+q

ω − εk+q + εk + iη
, (4.79)

where nk is the magnon occupation number given by the Bose-Einstein
distribution

nk =
1

eβεk − 1
, (4.80)

where εk is again the magnon spectrum (εk = ωk + ∆F ≈ Dk2 + ∆F for
small k). Note that the longitudinal susceptibility is proportional to 1/S,
due to the fact that εk − εk+q = ωk − ωk+q ∝ S.

Since we are interested in the decoherence processes caused by the
longitudinal fluctuations, we calculate the imaginary part of χ‖(ω, q) that
is related to the fluctuations via the fluctuation-dissipation theorem. Per-
forming a small q expansion and assuming without loss of generality
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ω > 0, we obtain for the imaginary part

χ3D
‖ (ω, q)′′ =

π

(2π)3

∫
dk(nk − nk+q)δ(ωk − ωk+q + ω)

=
1

4π

∫ ∞

0

dkk2

∫ 1

−1

dx

(
1

eβ(∆F+Dk2) − 1
− 1

eβ(ω+∆F+Dk2) − 1

)
×

×δ(ω −Dq2 − 2Dkqx)

=
1

4π

∫ ∞

0

dkk2

∫ 1

−1

dx

(
1

eβ(∆F+Dk2) − 1
− 1

eβ(ω+∆F+Dk2) − 1

)
×

×δ
(
k − ω −Dq2

2Dqx

) ∣∣∣∣
1

2Dqx

∣∣∣∣

=
1

4π

∫ 1

−1

dx

∣∣∣∣
1

2Dqx

∣∣∣∣
(
ω −Dq2

2Dqx

)2

θ

(
ω −Dq2

2Dqx

)
×

×


 1

e
β

(
∆F+D

(
ω−Dq2
2Dqx

)2
)
− 1

− 1

e
β

(
ω+∆F+D

(
ω−Dq2
2Dqx

)2
)
− 1




=
1

4π

∫ 1

0

dx
1

2Dqx

(
ω −Dq2

2Dqx

)2

×

 1

e
β

(
∆F+D

(
ω−Dq2
2Dqx

)2
)
− 1

− 1

e
β

(
ω+∆F+D

(
ω−Dq2
2Dqx

)2
)
− 1


 . (4.81)

Next, since we are interested in the regime where ω � T (and thus βω �
1), we have nk � nk+q. Furthermore, we approximate the distribution
function nk = e−β(∆F+ωk)

1−e−β∆F +βωk
(this is valid when βωk � 1) and arrive at the

following expression

χ3D
‖ (ω, q)′′ =

1

4π

∫ 1

0

dx
1

2Dqx

(
ω −Dq2

2Dqx

)2
e
−β
(

∆F+D

(
ω−Dq2
2Dqx

)2
)

1− e−β∆F + βD
(
ω−Dq2

2Dqx

)2

= −e
1−e−β∆F−β∆F

4βD2q
Ei

(
e−β∆F +

1

4

(
−4− βDq2 + 2βω − βω2

Dq2

))
,

(4.82)

where Ei(z) is the exponential integral function. We also need the the real
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space representation obtained after inverse Fourier transformation,

χ3D
‖ (ω, r)′′ =

√
2

π

1

r

∫ ∞

0

dqqχ3D
‖ (ω, q)′′ sin(qr) . (4.83)

In order to perform the above integral we note that the imaginary part
of the longitudinal susceptibility, given by Eq. (4.82), is peaked around
q =

√
ω/D with the width of the peak (1/

√
βD) much smaller than its

position in the regime we are working in (ω � T ). For r = 0, the integra-
tion over q can be then performed approximately and yields the follow-
ing expression

χ3D
‖ (ω, r = 0)′′ =

√
πe−e

−β∆F−3β∆F /2

2β2D3

(
ee
−β∆F +β∆F /2

− e√π
√
eβ∆F − 1 (4.84)

× Erfc(e−β∆F /2
√
eβ∆F − 1)

)√
βω ,

where Erfc(z) denotes the complementary error function. It is readily
observed from the above expression that the longitudinal fluctuations
are exponentially suppressed by the gap. Assuming that ∆F � T , we
obtain the following simplified expression

χ3D
‖ (ω, r = 0)′′ =

√
π − eπErfc(1)

2β2D3
e−β∆F

√
βω . (4.85)

We observe that, since J(ω) = χ‖(ω, r)′′, the longitudinal noise of the
ferromagnet is—as the transverse one—sub-ohmic [105].

It is interesting to obtain the behavior of the longitudinal susceptibil-
ity in the opposite limit, when βω � 1. In this limit, the difference of the
two Boltzmann factors in Eq. (4.81) can be expanded to the lowest order
in the small quantity βω,

χ3D
‖ (ω, q)′′ =

∫ 1

0

dx
1

8πDqx

(
ω −Dq2

2Dqx

)2

×

βω

ch

(
β∆F + βD

(
ω−Dq2

2Dqx

)2
)
− 1

=
ω

16πD2q

(
e
β∆F+

β(ω−Dq2)2

4Dq2 − 1

) . (4.86)
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In order to calculate the Fourier transform to real space, we note that for
ω � ∆F the denominator of the above expression depends only weakly
on ω, thus we ignore this dependence and obtain the Fourier transform
for r = 0

χ3D
‖ (ω)′′ =

ln(1 + nk=0)

16πβD3
ω. (4.87)

The above formula shows that the longitudinal noise of a ferromagnet
at high temperatures (βω � 1) behaves as ohmic rather than sub-ohmic
bath.

Next we calculate the longitudinal fluctuations for the case of a quasi-
one-dimensional ferromagnet (∆F � T ) and obtain

χ1D
‖ (ω, r = 0)′′ =

1

4π

∫ ∞

−∞
dk

∫ ∞

−∞
dq

(
1

eβ(∆F+Dk2) − 1

− 1

eβ(ω+∆F+Dk2) − 1

)
δ(ω −Dq2 − 2Dkq)

=

∫ ∞

−∞
dk

e−βDk
2

1− e−β∆F + βDk2

1

D
√
k2 + ω/D

=
γ

D
√
βω

e−β∆F , (4.88)

where γ is a numerical factor of order unity.
Note that S‖(ω, r) is defined through the fluctuation dissipation theo-

rem as
S‖(ω, r) = coth(βω/2)χ‖(ω, r)′′ . (4.89)

4.D Exchange coupling to the ferromagnet
Exchange coupling

The Hamiltonian we consider is of the following form

H = HF +Hσ + A
∑

i

σi · Sri , (4.90)

where A is the exchange coupling constant between the qubit spins and
the ferromagnet. The ferromagnet is assumed to be below the Curie
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temperature with the magnetization pointing along the out-of-plane z-
direction. The qubit Hamiltonian is assumed to be without splitting ini-
tially, that is H(0)

σ = 0. Nevertheless, since the ferromagnet is in the or-
dered phase, there exists a first order effect due to coupling to the fer-
romagnet which gives rise to the term of the form A

∑
i σ

z
i 〈Szri〉. Such

a splitting is undesirable if one is interested in coherent interaction—we
remedy this by coupling the spins to another ferromagnet, albeit with
anti-parallel magnetization. Since we allow for some misalignment be-
tween orientation of the magnetization of the two ferromagnets, the final
Hamiltonian for the qubits in the spin space after taking into account the
first order corrections due to coupling to the ferromagnet reads

Hσ =
1

2
∆
∑

i

σxi . (4.91)

The splitting in the x-direction of the qubit (or equivalently along the y-
direction) is beneficial since it reduces decoherence due to longitudinal
noise of the ferromagnet: the effect of such noise spectrum can signifi-
cantly influence decoherence times for the case of no splitting of the qubit
because the longitudinal noise is gapless.

Coherent coupling

We proceed with the derivation of an effective two-spin interaction Hamil-
tonian for A � J by employing a perturbative Schrieffer-Wolff transfor-
mation [97] up to the second order

Heff = Hσ +
A2

8
χ⊥(∆)(2σy1σ

y
2 + σz1σ

x
2 + σx1σ

z
2) , (4.92)

where we introduced the notation χ⊥(ω) = χ⊥(ω, L) (L = |r2 − r1|) and
χ⊥(ω, r) is the transverse real space spin susceptibility of the ferromag-
net. Note that we have neglected χ3D

⊥ (−∆) and χ3D
⊥ (0) in comparison to

χ1D
⊥ (∆), as well as the longitudinal susceptibility χ‖ since it is smaller by

factor of 1/S compared to the transverse one and it is suppressed by tem-
perature. The real space transverse susceptibility of the 3D ferromagnet
is given by

χ3D
⊥ (ω, r) = − S

D

e−r/lF

r
, ω < ∆F , (4.93)

where ∆F is the gap induced via applied external magnetic field or due

to internal anisotropy of the ferromagnet, lF =
√

D
∆F−ω

and D = 2JS.
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In what follows, we assume that the external gap is always larger than
the qubit splitting, ∆ < ∆F , as this ensures that the transverse noise is
not contributing to decoherence in second order since transverse noise is
related to the vanishing imaginary part of the transverse susceptibility,
χ⊥(ω)′′ = 0 (ω < ∆F ). The spatial dependence of the effective two spin
coupling given by Eq. (4.93) is of Yukawa type due to presence of the
external gap. If we assume a realistic tunnel coupling to the ferromag-
net of 100µeV [110, 111], the Curie temperature of 550K [as for example
for yttrium iron garnet (YIG)] and a gap of ∆F = 100µeV, and the qubit
splitting close to the resonance ∆F −∆ = 3× 10−3µeV (corresponding to
a magnetic field of about B = 60µT) we obtain for the qubit-qubit cou-
pling strength a value on the order of 4 × 10−11 eV for a lattice constant
of about 4Å. This coupling strength gives rise to the operation times of
50µs—significantly below the relaxation and decoherence times of the
spin qubit, T1 = 1s [64] and T2 > 200µs [65] respectively. Furthermore,
the error threshold—defined as the ratio between the two-qubit gate op-
eration time to the decoherence time—we obtain with such an operation
time is about 10−2, which is good enough for implementing the surface
code error correction [21]. Here we used T2 instead of T ∗2 since spin-echo
can be performed together with two-qubit gates [112]. Alternatively, the
decoherence time of GaAs qubits can be increased without spin-echo by
narrowing the state of the nuclear spins [113, 114].

The dimensionality of the ferromagnet plays an important role—if
we assume 10nm width of the trench where the ferromagnet is placed,
then, for energies below 0.1meV, the ferromagnet behaves as quasi one-
dimensional (1D). In this case we obtain

χ1D
⊥ (ω, r) = − S

D
lF e
−r/lF , ω < ∆F , (4.94)

wherefrom it is evident that at distances r . lF the susceptibility of a
quasi-1D ferromagnet is practically constant in contrast to the 3D case,
where a 1/r decay is obtained, see Eq. (4.93). Additionally, we require
lF . D/(AS) = 2J/A for the perturbation theory to be valid. Thus, for
the same parameters as above, but without the need to tune very close to
the resonance (we set herein ∆F − ∆ = 0.5µeV, corresponding to about
B = 10mT) a coupling strength of 10−8eV is obtained.

For 1D case there is yet another rather promising possibility—to use
magnetic semiconductors [115]. These materials are characterized by a
particularly low Curie temperature of 30K or below [115], and the dis-
tance between the ions that are magnetically ordered via RKKY interac-
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tion is about 10 − 100nm. Such a large lattice constant is very beneficial
for the long range coupling—if we take the lattice constant to be 10nm,
the coupling to the ferromagnet A = 15µeV and the qubit splitting close
to resonance (∆F − ∆ = 0.5µeV, corresponding to about B = 10mT),
the qubit-qubit coupling becomes of the order of 1µeV. Such a coupling
strength in turn leads to an error threshold on the order of 10−8. There-
fore, even the standard error correction protocol can be used in this case.

Derivation of the effective Hamiltonian (exchange coupling)

Here we give a detailed derivation of the qubit-qubit effective Hamilto-
nian. As stated above, the total Hamiltonian of the system reads

H = HF +Hσ + A
∑

i

(
1

2
(σ+

i S
−
ri

+ σ−i S
+
ri

) + σzi S
z
ri

)
, (4.95)

where we identify the main part as H0 = HF + Hσ and the small pertur-
bation as the exchange coupling V = A

∑
i σi · Sri . The Hamiltonian of

the ferromagnet reads HF = −J∑〈r,r′〉 Sr · Sr′ , while the Hamiltonian
for the two distant qubits is Hσ = ∆

2

∑
i=1,2 σ

x
i .

The second order effective Hamiltonian [97] is given byH(2)
eff = H0+U ,

where
U = − i

2
lim
η→0+

∫ ∞

0

dte−ηt[V (t), V ] , (4.96)

where V (t) = eiH0tV e−iH0t.
We have

σ+
i (t) =

1 + cos(∆t)

2
σ+
i +

1− cos(∆t)

2
σ−i − i sin(∆t)σzi , (4.97)

and σ−i (t) = σ+
i (t)†.

Recalling that the zz susceptibility can be neglected and that only the
transverse susceptibility contributes, we obtain the following result from
Eq. (4.96), U = lim

η→0+

∫∞
0
dte−ηt

∑
ij Uij

Uij =− iA2

8

(
[σ−i (t)S+

ri
(t), σ+

j S
−
rj

] + h.c.
)

=− iA2

8

(
σ−i (t)σ+

j [S+
ri

(t), S−rj ] + h.c.
)

(4.98)
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Finally, by rewriting cos(∆t) = ei∆t+e−i∆t

2
, sin(∆t) = ei∆t−e−i∆t

2i
, and using

the definition of the real space transverse spin susceptibility

χ⊥(ω, ri − rj) = −i lim
η→0+

∫ ∞

0

dte−(iω+η)t[S+
ri

(t), S−rj ] , (4.99)

we obtain by inserting Eq. (4.97) into Eq. (4.98)

U =
A2

8

∑

ij

(
χ⊥(0)

2
+
χ⊥(∆) + χ⊥(−∆)

4

)
σ−i σ

+
j

+
A2

8

∑

ij

(
χ⊥(0)

2
− χ⊥(∆) + χ⊥(−∆)

4

)
σ+
i σ

+
j

−A
2

8

∑

ij

χ⊥(∆)− χ⊥(−∆)

2
σzi σ

+
j + h.c. (4.100)

Since the decay length of the susceptibility χ(ω, r) is large only close to
the resonance, ∆F ∼ ∆, we can simplify the above equation by neglecting
χ(−∆, r) and χ(0, r) in comparison to χ(∆, r) which is assumed to be
close to the resonance. Within this approximation we arrive at Eq. (4.92)
of the main text.

4.E Fourth order contributions to decoherence
In this section we determine the effect of the transverse noise in the low-
est non-vanishing order due to coupling dipolarly to the ferromagnet.
Here we choose quantizations axes such that the qubit splitting is along
the z-axis, while the ferromagnet is polarized along x-axis. The Hamilto-
nian of the coupled system reads

H = HF +
∆

2
σz + σz ⊗X + σ+ ⊗ Y − + σ− ⊗ Y +, (4.101)

where the operator X (Y ) that couples longitudinally (transversally) to
the qubit is linear in the transverse operators of the ferromagnet

X =
i

2

∫
drcr(S+

r − S−r ), (4.102)

Y + =− i

8

∫
dr(arS

+
r + brS

−
r ), (4.103)
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with S±r = Syr ± iSzr and the definitions of the coefficients

ar = Br + 3Cr − 6Ar, (4.104)
br = Br + 3Cr + 6Ar, (4.105)
cr = Br − 3A′′r, (4.106)

Ar =
1

a3

rzr+

r5
, (4.107)

Cr =
1

a3

(r+)2

r5
, (4.108)

Br =
1

a3

1

r3

(
2− 3r+r−

r2

)
. (4.109)

To proceed further we perform the SW transformation on the Hamilto-
nian given by Eq. (4.101). We ignore the Lamb and Stark shifts and obtain
the effective Hamiltonian

H = HF +
∆

2
σz + σz ⊗ X̃2 + σ+ ⊗ Ỹ −2 + σ− ⊗ Ỹ +

2 , (4.110)

where

X̃2 = X2 − 〈X2〉, (4.111)

Ỹ ±2 = Y ±2 − 〈Y ±2 〉, (4.112)

with the following notation

X2 = 4(Y +
∆ Y

− + Y +Y −∆ ), (4.113)
Y +

2 = 2(Y +
∆ X −X0Y

+), (4.114)

Xω =
i

2

∫
drr′χ⊥(ω, r − r′)cr(S+

r′ − S−r′), (4.115)

Y +
ω = − i

8

∫
drr′χ⊥(ω, r − r′)(arS+

r′ + brS
−
r′), (4.116)

The model given by Eq. (4.110) yields the following expressions for
the relaxation and decoherence times

T−1
1 = SỸ −2 (ω = ∆), (4.117)

T−1
2 =

1

2
T−1

1 + SX̃2
(ω = 0), (4.118)

where, again, SA(ω) =
∫
dte−iωt{A†(t), A(0)}.
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After a lengthly calculation we obtain the expressions for SX̃2
(ω = 0)

and SỸ −2 (ω = ∆),

SX̃2
(0) =

1

128

∫
dνdr1r2r3r4r5r6C

−+(ν, r3 − r4)C+−(−ν, r1 − r2)×
(4.119)

((ar5a
∗
r3

+ br3b
∗
r1

)(ar4a
∗
r2

+ br6b
∗
r4

)χ⊥(∆, r1 − r5)χ⊥(∆, r2 − r6)+

(ar4a
∗
r2

+ br5b
∗
r4

)(ar1a
∗
r3

+ br6b
∗
r1

)χ⊥(∆, r2 − r5)χ⊥(∆, r3 − r6)+

(ar6a
∗
r2

+ br2b
∗
r4

)(ar5a
∗
r3

+ br3b
∗
r1

)χ⊥(∆, r1 − r5)χ⊥(∆, r4 − r6)+

(ar6a
∗
r2

+ br2b
∗
r4

)(ar1a
∗
r3

+ br5b
∗
r1

)χ⊥(∆, r3 − r5)χ⊥(∆, r4 − r6)) ,

SỸ −2 (∆) =
1

64

∫
dνdr1r2r3r4r5r6C

−+(ν, r3 − r4)C+−(∆− ν, r1 − r2)×
(4.120)

(cr3cr6(ar4b
∗
r1

+ ar5b
∗
r4

)χ⊥(0, r2 − r6)χ⊥(∆, r1 − r5)

− cr3cr6(ar5a
∗
r2

+ br2b
∗
r1

)χ⊥(0, r4 − r6)χ⊥(∆, r1 − r5)−
cr4cr6(ar1a

∗
r2

+ br5b
∗
r1

)χ⊥(0, r3 − r6)χ⊥(∆, r2 − r5)

+ cr1cr6(br5a
∗
r2

+ br2a
∗
r3

)χ⊥(0, r4 − r6)χ⊥(∆, r3 − r5)+

cr4cr5(br3a
∗
r2

+ br6a
∗
r3

)χ⊥(0, r1 − r5)χ⊥(∆, r2 − r6)

+ cr3cr4(ar5a
∗
r2

+ br6b
∗
r1

)χ⊥(∆, r1 − r5)χ⊥(∆, r2 − r6)−
cr1cr5(ar4a

∗
r3

+ br6b
∗
r4

)χ⊥(0, r2 − r5)χ⊥(∆, r3 − r6)

− cr1cr4(br6a
∗
r2

+ br5a
∗
r3

)χ⊥(∆, r2 − r5)χ⊥(∆, r3 − r6)−
cr2cr5(ar6a

∗
r3

+ br3b
∗
r4

)χ⊥(0, r1 − r5)χ⊥(∆, r4 − r6)

+ cr2cr5(ar6b
∗
r1

+ ar1b
∗
r4

)χ⊥(0, r3 − r5)χ⊥(∆, r4 − r6)−
cr2cr3(ar6b

∗
r1

+ ar5b
∗
r4

)χ⊥(∆, r1 − r5)χ⊥(∆, r4 − r6)

+ cr1cr2(ar6a
∗
r3

+ br5b
∗
r4

)χ⊥(∆, r3 − r5)χ⊥(∆, r4 − r6)+

cr5cr6(ar4a
∗
r3

+ br3b
∗
r4

)χ⊥(0, r1 − r5)χ⊥(0, r2 − r6)

− cr5cr6(ar4b
∗
r1

+ ar1b
∗
r4

)χ⊥(0, r2 − r5)χ⊥(0, r3 − r6)−
cr5cr6(br3a

∗
r2

+ br2a
∗
r3

)χ⊥(0, r1 − r5)χ⊥(0, r4 − r6)

+ cr5cr6(ar1a
∗
r2

+ br2b
∗
r1

)χ⊥(0, r3 − r5)χ⊥(0, r4 − r6)).

In order to obtain the lower bound of relaxation and decoherence time,
we consider the ferromagnet to be in shape of infinite plane. Further-
more, we are not aiming at performing an exact evaluation of the inte-
grals in Eqs. (4.120)-(4.121), but rather at finding the lower bound for the
relaxation and decoherence times. To this end we note that |C+−(ω, r −
r′)| ≤ |C+−(ω, r = 0)| and arrive at the following inequalities



CHAPTER 4. LONG-DISTANCE ENTANGLEMENT OF SPIN-QUBITS
VIA FERROMAGNET 71

SX̃2
(0) ≤ B4

8(∆F −∆)2

∫ ∞

∆F

dνC+−(ν)2, (4.121)

SỸ −2 (∆) ≤ B4

8

(
1

∆F

+
1

∆F −∆

)2

×
∫ ∞

∆F+∆

dνC+−(ν)C+−(ν −∆), (4.122)

where we used notation B =
∫
drBr. Finally we arrive at the expression

for the lower bound of the relaxation and decoherence times

T−1
1 ≤B

4S2∆2
F

2D3

(
1

∆F

+
1

∆F −∆

)2

f

(
∆

∆F

, β∆F

)
, (4.123)

T−1
2 ≤B

4S2∆2
F

4D3

(
1

∆F

+
1

∆F −∆

)2

f

(
∆

∆F

, β∆F

)
+

B4S2∆2
F

2D3(∆F −∆)2
f (0, β∆F ) . (4.124)

with the function f(x, y) defined as follows

f(x, y) =

∫ ∞

1+x

dz

√
z − 1

eyz − 1

√
z − x− 1

ey(z−x) − 1
. (4.125)

Assuming the same parameters as in the main text, we obtain deco-
herence times of about 0.5 hours, while the relaxation time is on the or-
der of 1000 hours. It is worth noting that this result depends sensitively
on the ratio ∆F/T , thus if we assume a temperature of 4K, we obtain
T1 ≥ 200µs and T2 ≥ 30µs.
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“Long-Range Interaction of Singlet-Triplet Qubits via Ferromagnets”,
ArXiv: 1305.2451 (2013).

We propose a mechanism of a long-range coherent interaction between two
singlet-triplet qubits dipolarly coupled to a dogbone-shaped ferromagnet.
An effective qubit-qubit interaction Hamiltonian is derived and the cou-
pling strength is estimated. Furthermore we derive the effective coupling
between two spin-1/2 qubits that are coupled via dipolar interaction to the
ferromagnet and that lie at arbitrary positions and deduce the optimal po-
sitioning. We consider hybrid systems consisting of spin-1/2 and ST qubits
and derive the effective Hamiltonian for this case. We then show that op-
eration times vary between 1MHz and 100MHz and give explicit estimates
for GaAs, Silicon, and NV-center based spin qubits. Finally, we explicitly
construct the required sequences to implement a CNOT gate. The result-
ing quantum computing architecture retains all the single qubit gates and
measurement aspects of earlier approaches, but allows qubit spacing at dis-
tances of order 1µm for two-qubit gates, achievable with current semicon-
ductor technology.
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5.1 Ferromagnet
We denote by Sr the spins (of size S) of the ferromagnet at site r on a
cubic lattice and σi stands for the spin-1/2 qubit spins. The ferromagnet
Hamiltonian we consider is of the following form

HF = −J
∑

〈r,r′〉

Sr · Sr′ + ∆F

∑

r

Szr, (5.1)

with J > 0 and ∆F = µB, where B is externally applied magnetic field
(see Fig. 5.1) and µ is the magnetic moment of the ferromagnet spin. The
above Hamiltonian is the three-dimensional (3D) Heisenberg model with
the sum restricted to nearest-neighbor sites 〈r, r′〉. The ferromagnet is
assumed to be monodomain and below the Curie temperature with the
magnetization pointing along the z-direction.

We would like to stress at this point that even though herein we an-
alyze a specific model for the ferromagnet (Heisenberg model), all our
conclusions rely only on the generic features of the ferromagnet suscep-
tibility, i.e., its long-range nature. Furthermore, the gap in the magnon
spectrum can originate also from anisotropy. The presence of the gap is
an important feature since it suppresses the fluctuations, albeit the sus-
ceptibility is cut-off after some characteristic length given by the gap and
the frequency at which the ferromagnet is probed.

5.2 Coupling between ST-qubits
The Hamiltonian we consider is of the following form

H = HF +Hτ +HI , (5.2)

where Hτ is Hamiltonian of the two ST-qubits [63, 116] and HI is the
dipolar coupling between the ferromagnet and the ST-qubits (see below).

Singlet-triplet qubit Hamiltonian

A Singlet-Triplet (ST) qubit is a system that consists of two electrons con-
fined in a double quantum well. Herein we assume that the wells are
steep enough so that we can consider only one lowest orbital level of
each well. Following Ref. [84], we consider also the spin space of the two
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Figure 5.1: Model system consisting of two identical double-QDs in the
xy-plane and the dogbone-shaped coupler. The dogbone coupler con-
sists of two ferromagnetic disks of radius R0 connected by a thin ferro-
magnetic wire of length L. Each double-QD can accommodate one (two)
electrons, defining the spin-1/2 (ST-) qubit. Absence of tunneling be-
tween the separate double-QD is assumed. Here RL (RR) is the in-plane
distance between the left (right) well and the corresponding disk cen-
ter, while h is vertical distance between the QD and the gate. The red
arrow on top of the ferromagnet denote the orientation of its magnetiza-
tion which is assumed to be monodomain.

electrons and write down the total of six basis states

|(2, 0)S〉 = c†L↑c
†
L↓|0〉,

|(0, 2)S〉 = c†R↑c
†
R↓|0〉,

|(1, 1)S〉 =
1√
2

(
c†L↑c

†
R↓ − c†L↓c†R↑

)
|0〉,

|T+〉 = c†L↑c
†
R↑|0〉, (5.3)

|T0〉 =
1√
2

(
c†L↑c

†
R↓ + c†L↓c

†
R↑

)
|0〉,

|T−〉 = c†L↓c
†
R↓|0〉,

where c†L (c†R) creates an electron in the Wannier state ΦL (ΦR). The Wan-
nier states are ΦL,R = 1√

1−2sg+g2
(ϕ1,2 − gϕ2,1), where

s = 〈ϕ1|ϕ2〉 = exp[− (a/aB)2]
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is the overlap of the harmonic oscillator ground state wave functions of
the two wells, aB =

√
~/mω0 is the Bohr radius of a single quantum dot,

~ω0 is the single-particle level spacing, and 2a = l is the interdot distance.
The mixing factor of the Wannier states is g = (1−

√
1− s2)/s. Using

these six basis states we can represent the Hamiltonian of the ST-qubits

H0 =

(
HSS 0

0 HTT,0

)
. (5.4)

In writing the above equation we have neglected the spin-orbit interac-
tion (SOI), thus there are no matrix elements coupling the singlet and
triplet blocks. The effect of SOI in ST-qubit was studied in Ref. [84] and
no major influence on the qubit spectra was found.

The two qubit states are |T0〉 and, in the absence of SOI, the linear
combination of the singlet states |S〉 = α|(2, 0)S〉+ β|(1, 1)S〉+ γ|(0, 2)S〉,
where the coefficients α, β, γ depend on the detuning ε between the two
quantum wells. In particular, when ε = 0 we have |S〉 = |(1, 1)S〉. In
what follows, we always consider Hamiltonians only in the qubit sub-
space, thus the Hamiltonian of two ST-qubits reads

Hτ = −∆

2

∑

i=1,2

τ zi , (5.5)

where τx,y,z are the Pauli matrices acting in the space spanned by vectors
{|S〉, |T0〉} and ∆ is the ST-qubit splitting.

Dipolar coupling to ST-qubit

In this section we derive the dipolar coupling between the ferromagnet
and the ST-qubit. To this end we first project the Zeeman coupling to the
ST-qubit system on the two-dimensional qubit subspace

HZ = g∗µB (BL · SL +BR · SR) , (5.6)

where BL (BR) is the magnetic field in the left (right) quantum well,
SiL,R = (σi)ss′c

†
L,R,scL,R,s′ and g∗ is the effective Landé factor. After pro-

jecting on the qubit space we obtain

HZ = g∗µB(Bz
L −Bz

R)τx. (5.7)

With this result we are ready to write down the ferromagnet/ST-qubit
interaction Hamiltonian

HI =
∑

i=1,2

g∗µ0µB

(
B̂z

L(i)− B̂z
R(i)
)
τxi , (5.8)
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where index i enumerates ST-qubits, and the magnetic field from the fer-
romagnet can be express through the integral over the ferromagnet

B̂z
L,R(i) =

µ0µ

4πa3

∫
dr(i)L,R

1

r(i)3
L,R
× (5.9)

(
Szr(i)L,R

−
3(Sr(i)L,R · r(i)L,R)r(i)zL,R

r(i)2
L,R

)
,

where the coordinate system for r(i)L (r(i)R) is positioned in left (right)
quantum well of the i-th qubit.

Effective coupling between two ST-qubits

Given the total Hamitonian, Eq. (5.2), we can easily derive the effective
qubit-qubit coupling with help of Schrieffer-Wolff transformation

Heff = Hτ − lim
ν→0+

i

2

∫ ∞

0

dte−νt [HI(t), HI ] , (5.10)

with HI(t) = eiHτ tHIe
−iHτ t.

We assume that the radius of the two disks is much smaller than the
distance between their centers (R0 � L). Within this assumption we can
take for the susceptibility between two points at opposite disks the same
as the 1D susceptibility. Next we take only on-resonance susceptibility
and make use of the expression τx(∆) = 1

2
(τx + iτ y), where τx(ω) is the

Fourier transform of τx(t) = eiHτ tτxe−iHτ t. We define the transverse sus-
ceptibility in the standard way

χ⊥(ω, ri − rj) = −i lim
η→0+

∫ ∞

0

dte(−iω−η)t[S+
ri

(t), S−rj ]. (5.11)

The longitudinal susceptibility, defined via

χ‖(ω, ri − rj) = −i lim
η→0+

∫ ∞

0

dte(−iω−η)t[Szri(t), S
z
rj

], (5.12)

can be neglected compared to the transverse one because the former is
smaller by a factor 1/S and is proportional to the magnon occupation
number. Therefore the longitudinal susceptibility vanishes at zero tem-
perature, while the is not the case for the transverse susceptibility. We
arrive finally at the following expression

Heff = Hτ +
9

4
Bχ1D
⊥ (∆, L)τx1 τ

x
2 , (5.13)



CHAPTER 5. LONG-RANGE INTERACTION OF SPIN-QUBITS VIA
FERROMAGNETS 77

where B = (µ0µ)2(g∗µB)2(A1
L − A1

R)(A2
L − A2

R)/16π2a6, χ1D
⊥ is given in

Eq. (4.74) and

AiL,R =

∫
dr(i)L,R

r(i)−L,Rr(i)
z
L,R

r(i)5
L,R

. (5.14)

Assuming the dogbone shape of the ferromagnet in the above integral

Figure 5.2: Plot of aAiL,R/d defined through Eq. (5.14) as function ofRi/R0

for different values of h. We see that the value of aAiL,R/d is bigger when
the ST-qubit is closer to the disk of the dogbone as expected. Further-
more, by placing the right dot at distance R0 of the disk axis and the
left dot on the disk axis, we obtain the strongest value for the effective
coupling between the two ST-qubits, see Eq. (5.13).

and integration only over the adjacent disk, we obtain

AiL,R =
2ihd

a




2Ri
L,RR0

(
F (acsc(wiL,R), wiL,R

2
)−K(wiL,R

2
)
)

3Ri
L,R

(
(Ri

L,R −R0)2 + h2
)√

(Ri
L,R +R0)2 + h2

+
uiL,RE(wiL,R

2
)− uiL,RE(acsc(wiL,R), wiL,R

2
)

3Ri
L,R

(
(Ri

L,R −R0)2 + h2
)√

(Ri
L,R +R0)2 + h2


 , (5.15)

where R0 is the disk radius, Ri
L,R is the distance from the adjacent disk

axis to the left or right quantum well of the i-th qubit, acsc(x) is the in-
verse cosecant; F (x, y), K(x) and E(x, y) are the corresponding elliptic
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integrals. Furthermore, we introduced the notation uiL,R = Ri
L,R

2
+R2

0 +h2

and wiL,R =

√
1− 4RiL,RR0

(RiL,R+R0)2+h2 , where h is the distance in the z-direction

between the ST-qubit plane and the adjacent disk bottom and d is the
disk thickness, see Fig. 5.1.

Figure 5.2 illustrates the dependence of the AiL,R integrals on the po-
sition of the quantum wells. Since the coupling constant is given by the
difference of this integrals for left and right quantum well, we conclude
that the strongest coupling is obtained if one quantum well of the ST-
qubit is positioned below the disk center and the other exactly below the
edge. Furthermore, when h � R0 the value of the integral is strongly
peaked around R ∼ R0 and this can be exploited as yet another switch-
ing mechanism—moving one quantum well away from the edge of the
disk.

Sequence for CNOT gate

Two qubits interacting via the ferromagnet evolve according to the Hamil-
tonian Heff , see Eq. (5.13). The Hamiltonian is therefore the sum of Zee-
man terms and qubit-qubit interaction. These terms do not commute,
making it difficult to use the evolution to implement standard entan-
gling gates. Nevertheless, since Hτ acts only in the subspace spanned
by {| ↑↑〉, | ↓↓〉} and ∆ � J12 = 9Bχ⊥(∆)/4, we can neglect the effect of
Heff in this part of the space and approximate it by its projection in the
space spanned by vectors {| ↑↓〉, | ↓↑〉}

H ′eff = Hτ + J12(τx1 τ
x
2 + τ y1 τ

y
2 ). (5.16)

Within this approximation, the coupling in H ′eff and Zeeman terms now
commute.

We consider the implementation of the iSWAP gate [103]

UiSWAP = e−i(τ
x
1 τ

x
2 +τy1 τ

y
2 )3π/4,

which can be used to implement the CNOT gate:

UiSWAP = eiHτ te−iH
′
eff t, (5.17)

where t = 3π/(4J12). When iSWAP is available, the CNOT gate can be
constructed in the standard way [104]

UCNOT = e−i
π
4
τz1 ei

π
4
τx2 ei

π
4
τz2UiSWAP e

−iπ
4
τx1 UiSWAP e

iπ
4
τz2 . (5.18)
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Since H ′eff is an approximation of Heff , the above sequence will yield
approximate CNOT, U ′CNOT , when used with the full Hamiltonian. The
success of the sequences therefore depends on the fidelity of the gates,
F (U ′CNOT ). Ideally this would be defined using a minimization over all
possible states of two qubits. However, to characterize the fidelity of
an imperfect CNOT it is sufficient to consider the following four logical
states of two qubits [60]: |+, 0〉, |+, 1〉, |−, 0〉, and |−, 1〉. These are prod-
uct states which, when acted upon by a perfect CNOT, become the four
maximally entangled Bell states |Φ+〉, |Ψ+〉, |Φ−〉, and |Ψ−〉, respectively.
As such, the fidelity of an imperfect CNOT may be defined,

F (U ′CNOT ) = min
i∈{+,−},j∈{0,1}

|〈i, j|U †CNOTU ′CNOT |i, j〉|2. (5.19)

The choice of basis used here ensures that F (U ′CNOT ) gives a good char-
acterization of the properties of U ′CNOT in comparison to a perfect CNOT,
especially for the required task of generating entanglement. For realis-
tic parameters, with the Zeeman terms two order of magnitude stronger
than the qubit-qubit coupling, the above sequence yields fidelity for the
CNOT gate of 99.976%.

To compare these values to the thresholds found in schemes for quan-
tum computation, we must first note that imperfect CNOT’s in these
cases are usually modelled by the perfect implementation of the gate fol-
lowed by depolarizing noise at a certain probability. It is known that such
noisy CNOT’s can be used for quantum computation in the surface code
if the depolarizing probability is less than 1.1% [20]. This corresponds to
a fidelity, according to the definition above, of 99.17%. The fidelities that
may be achieved in the schemes proposed here are well above this value
and hence, though they do not correspond to the same noise model, we
can expect these gates to be equally suitable for fault-tolerant quantum
computation.

5.3 Coupling between spin-1/2 qubits
In this section we study the coupling of two spin-1/2 quantum dots via
interaction with a dog-bone shaped ferromagnet. The Hamiltonian has
again the form as in Eq. (5.2) and we allow for splittings of the spin-1/2
qubits both along x and z direction,

Hσ =
∆x

2

∑

i=1,2

σxi +
∆z

2

∑

i=1,2

σzi , (5.20)
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where σi are the Pauli operators of the ith spin-1/2 quantum dot. Hamil-
tonian (5.20) is a generalized version of the Hamiltonian [60], where we
considered splitting along x only. We present here a detailed derivation
of the effective coupling between two quantum dots located at an arbi-
trary position with respect to the dogbone shaped ferromagnet, i.e., con-
trary to Ref. [60] we do not assume that the quantum dots are positioned
at a highly symmetric point but consider the most general case. This
allows us to determine the optimal positioning of the qubit in order to
achieve the strongest coupling between the qubits.

The dipolar coupling between the ferromagnet and the spin-1/2 qubits
is given by

HI =
∑

i,r

g∗µ0µBµ

4πr3

(
σi · Sr −

3(σi · r)(Sr · r)

r2

)
, (5.21)

where µD is the magnetic moment of the spin-1/2 qubit. The explicit
expressions for the time evolution of the Pauli operators in Heisenberg
picture is

σ+
i (t) = − 1

∆2
(i∆ cos(∆t/2)−∆z sin(∆t/2))2σ+

i

− ∆2
x

2∆2
(cos(t∆)− 1)σ−i

+
∆x

∆2
(∆z −∆z cos(t∆)− i∆ sin(t∆))σzi ,

σzi (t) =
∆x

2∆2
(∆z −∆z cos(t∆)− i∆ sin(t∆))σ+

i

+
∆x

2∆2
(∆z −∆z cos(t∆) + i∆ sin(t∆))σ−i

+
∆2
z + ∆2

x cos(t∆)

∆2
σzi , (5.22)

where we introduced the notation ∆ =
√

∆2
x + ∆2

z. We also assume
that ∆ < ∆F such that the susceptibility χ⊥(∆, r) is purely real—thus
the transverse noise is gapped. By replacing the above expressions in
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Eq. (5.10), we obtain the effective qubit-qubit coupling

Heff = Hσ +
(g∗µ0µBµ)2

16π2a6
(
9

8
A∗1A2χ

1D
⊥ (∆)σz1(∆)σz2

+
3

16
(3A2C

∗
1χ

1D
⊥ (∆)−B1A

∗
2χ

1D
⊥ (∆))σ+

1 (∆)σz2

+
3

16
(3A1C

∗
2χ

1D
⊥ (∆)−B2A

∗
1χ

1D
⊥ (∆))σz1(∆)σ+

2

+
1

32
(B1B2χ

1D
⊥ (∆) + 9C1C

∗
2χ

1D
⊥ (∆))σ−1 (∆)σ+

2

− 3

32
(B1C2χ

1D
⊥ (∆) +B2C1χ

1D
⊥ (∆))σ−1 (∆)σ−2

+ h.c.) + 1↔ 2 , (5.23)

where we have denoted χ1D
⊥ (∆) = χ1D

⊥ (∆, L) and introduced the follow-

Figure 5.3: Plot of aBi/d defined in Eq. (5.26) as function of Ri/R0 for
different values of h. The value of the integral increases in general by
decreasing the value of h.
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Figure 5.4: Plot of aCi/d defined in Eq. (5.25) as function of Ri/R0 for
different values of h. The value of the integral is peaked around Ri ∼ R0

and it increases in general by decreasing the value of h.

ing notation for the integrals

Ai =

∫
dri

rzi r
+
i

r5
i

, (5.24)

Ci =

∫
dri

(r+
i )2

r5
i

, (5.25)

Bi =

∫
dri

1

r3
i

(
2− 3r+

i r
−
i

r2
i

)
, (5.26)

with the coordinate origin for ri at the i-th qubit and the integration goes
over the adjacent disk. We also defined the Fourier transforms of the time
evolution of Pauli matrices σ(t) = eiHσtσe−iHσt as

σ+
i (∆) = − 1

∆2

(
−∆2

4
+

∆z∆

2
− ∆2

z

4

)
σ+
i

+
∆x

∆2

(
−∆z

2
+

∆

2

)
σzi −

∆2
x

4∆2
σ−i ,

and

σzi (∆) =
∆x

2∆2

(
−∆z

2
+

∆

2

)
σ+
i +

∆x

2∆2

(
−∆z

2
− ∆

2

)
σ−i

+
∆2
x

2∆2
σzi . (5.27)
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By assuming a dogbone-shaped ferromagnet and integrating only over
the adjacent disk as above, we obtain Ai given in Eq. (5.15) with Ri

L,R

replaced by Ri since there is now only one spin-1/2 qubit below each
disk of the dogbone. The remaining integrals yield the following results

Bi = −2d

3a




(
R4
i + 3R2

i (h2 −R2
0) + (R2

0 + h2)
2
)
E (1− w2

i )

R2
i ((Ri −R0)2 + h2)

√
(Ri +R0)2 + h2

,

−((Ri −R0)2 + h2) (R2
i + 2 (R2

0 + h2))K (1− w2
i )

R2
i ((Ri −R0)2 + h2)

√
(Ri +R0)2 + h2

)

Ci =
2d

a

((Ri −R0)2 + h2)K (1− w2
i )− 2 (R2

i −R2
0 + h2)E (1− w2

i )

((Ri −R0)2 + h2)
√

(Ri +R0)2 + h2
,

(5.28)

where wi =
√

1− 4RiR0

(Ri+R0)2+h2 , R0 is the radius of each disk, Ri is the dis-
tance of the i-th qubit to the adjacent dog bone axis, and R0 and h are
defined as in Sec. 5.2. In deriving Eq. (5.23) we took again only ‘on-
resonance’ terms into account (i.e. we neglected χ1D

⊥ (0) and χ1D
⊥ (−∆)).

Furthermore we assumed, as above, that the susceptibility between two
points on different disks of the dogbone is well approximated by the 1D
transverse susceptibility. In the limit where each quantum dot lies on the
vertical axis going through the center of each cylinder of the dogbone,
the axial symmetry leads to A1 = A2 = C1 = C2 = 0, B1 = B2 = B, and
with ∆z = 0 we recover the result

Heff = Hσ +
(g∗µ0µBµ)2

16 π2a6

B2

32
χ1D
⊥ (∆)(2σy1σ

y
2 + σz1σ

x
2 + σx1σ

z
2) (5.29)

derived in Ref. [60]. The analysis carried out herein assumes arbitrary po-
sitioning of the qubit and allow us to determine the optimal positioning
for the strongest coupling. To this end, we analyze integrals Ai, Bi, Ci,
see Figs. 5.2-5.4. It is readily observed that the coupling strength in-
creases as the vertical distance between the qubit and coupler plane, h,
decreases. Additionally, we observe that the strongest coupling strength
is obtained when the qubit is positioned below the edge of the adjacent
disk.

The derived coupling is valid for any dogbone-like shape of the fer-
romagnet, i.e., it is not crucial to assume disk shape.
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Sequence for CNOT gate

The effective Hamiltonian derived in previous section, Eq. (5.23), can be
re-expressed in the following form

Heff =
(g∗µ0µBµ)2

16π2a6
χ1D
⊥ (∆, L)σT1 · Ĥ · σ2 +

1

2
∆ · (σ1 + σ2), (5.30)

with ∆ = (∆x, 0,∆z)
T and Ĥ being the symmetric matrix with all entries

being non-zero. The question now arises how to construct the CNOT
gate sequence for such a general Hamiltonian. We tackle this problem by
taking first the quantization axis to be along the total magnetic field act-
ing on the two qubits and denote by σ̃i Pauli matrix vector with respect
to this new quantization axis. The Hamiltonian now reads

Heff =
(g∗µ0µBµ)2

16π2a6
χ1D
⊥ (∆, L) σ̃T1 · ˆ̃H · σ̃2 +

1

2
∆(σ̃z1 + σ̃z2), (5.31)

where the components of the matrix ˆ̃H are given in Appendix 5.A.
We proceed further along the lines presented in Sec. 5.2, i.e., we project

the rotated Hamiltonian, Eq. (5.31), on the subspace spanned by vectors
{|↑̃↓̃〉, |↓̃↑̃〉}. This procedure yields the following result

H ′eff = J̃12(σ̃x1 σ̃
x
2 + σ̃y1 σ̃

y
2) + ∆(σ̃z1 + σ̃z2), (5.32)

J̃12 = (µ0g∗µBµ)2

(4π)2a6

χ1D
⊥ (∆,L)

32
Ã12. The dimensionless constant Ã12 is defined

through the following expression

Ã12 =
∆x

2 (36A1A2 + (B1 + 3C1) (B2 + 3C2))

16∆2

+
6∆x∆z (A2 (B1 − 3C1) + A1 (B2 − 3C2))

16∆2

+
2∆z (B1B2 + 9C1C2) (∆ + ∆z)

16∆2
. (5.33)

The projected Hamiltonian in Eq. (5.32) is identical to the one already
considered in Sec. 5.2, Eq. (5.16). Thus the CNOT gate sequence can be
obtained in exactly same way, namely via Eqs. (5.17) and (5.18).

Similar to the previously studied case of ST-qubits, the CNOT gate
sequence described in this section is only approximate one. For realis-
tic parameters, with the Zeeman terms two order of magnitude stronger
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Figure 5.5: Plot of Ã12 defined in Eq. (5.33) as function of Ri/R0 for dif-
ferent values of h, assuming R1 = R2 and ∆x = 10∆z. The value of the
integral is peaked around Ri ∼ R0 and it increases in general by decreas-
ing the value of h.

than the qubit-qubit coupling, this approximate sequence yields fidelity
for the CNOT gate similar to the one previously found in Sec. 5.2.

We now use Eq. (5.33) to determine the optimal positioning of the
qubits in order to obtain shortest possible gate operation times. If we
assume that the qubit splitting is predominantly along the x-axis (∆x �
∆z), we obtain the behavior illustrated in Fig. 5.5. We conclude that for
all values of h the optimal positioning is below the edge of the adjacent
disk. It is interesting to note that when h� R0 one can obtain more than
two orders of magnitude enhancement compared to the positioning pre-
viously studied in Ref. [60]. In the opposite limit, ∆x � ∆z, we observe
behavior illustrated in Fig. 5.6. When also h � R0 we recover the same
optimal positioning as before—below the edge of the disk, while when
h ∼ R0, positioning the qubit anywhere below the disk yields approxi-
mately same coupling strength.

5.4 Coupling between spin-1/2 and ST-qubits
In the previous sections we have considered the coupling of both spin-
1/2 and ST qubits individually. Since each setup has its own advantages
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Figure 5.6: Plot of Ã12 defined in Eq. (5.33) as function of Ri/R0 for dif-
ferent values of h, assuming R1 = R2 and ∆x = 0.1∆z. The value of the
integral is peaked around Ri ∼ R0 only for h � R0 and it increases in
general by decreasing the value of h.

and challenges, it is interesting to show these qubits can be cross-coupled
to each other and thus that hybrid spin-qubits can be formed. This opens
up the possibility to take advantage of the ’best of both worlds.

The Hamiltonian of such a hybrid system reads

H = HF +Hσ +Hτ +HI , (5.34)

where the first three term on left-hand side are given by omitting the
summation over i in Eqns. (5.1), (5.20) and (5.5), respectively. The inter-
action term HI has the following form

HI =
∑

r

g∗µ0µBµ

4πr3

(
σ · Sr −

3(σ · r)(Sr · r)

r2

)

+ g∗µB

(
B̂z

L − B̂z
R

)
τxi , (5.35)

with B̂L,R being given in Eq. (5.9) when index i is omitted. Continuing
along the lines of the previous sections, we perform the second order SW
transformation and obtain the effective coupling between the qubits
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Heff =
3(µ0g

∗µB µ)2

256π2a6
χ1D
⊥ (∆) (Re[3A(AL − AR)∗]τxσz(∆)

+ (C∗(AL − AR)− 3B(AL − AR)∗)τxσ+(∆) + h.c
)

+ {σi(∆)→ σi, τx → τx(∆)}, (5.36)

where AL,R and A are calculated in Eq. (5.15), while B and C are given in
Eq. (5.28).

Similarly as in the previous sections, we find that the optimal cou-
pling for the hybrid case is obtained when the spin-1/2 qubit is posi-
tioned below the edge of one of the two discs while one quantum well of
the ST-qubit is positioned below the other disc center with the other well
being below the disc edge.

5.5 Validity of the effective Hamiltonian
We discuss herein the validity of the effective Hamiltonian derived in
Sec. 5.2 and Sec. 5.3.

Special care has to be taken for the validity of the perturbation theory
employed herein, since we are working close to resonance, i.e., ∆ − ∆F

has to be small but still much larger than the coupling of a qubit to an
individual spin of the ferromagnet. For the perturbation theory to be
valid we also require the tilt of each ferromagnet spin to be sufficiently
small (i.e. 〈S±r 〉 � 1). The tilt of the central spin of the ferromagnetic disk
can be estimated by the integral over the dogbone disk D

〈S±r 〉 =

∫

D

χ⊥(r)B⊥(r) . (5.37)

Using cylindrical coordinates we then obtain

〈S±r 〉 ∼
µ0µ

2
B

2a

∫ R

0

ρdρ
1

(ρ2 + h2)3/2

S

Dρ
, (5.38)

where S
Dρ

is the spatial decay of the transversal susceptibility and 1
(ρ2+h2)3/2

is the decay of the dipolar field causing the perturbation of the ferromag-
net. Even though each spin is just slightly tilted, we obtain a sizable
coupling due to big number of spins involved in mediating the coupling.
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5.6 Switching mechanisms
In this section we briefly discuss possible switching on/off mechanisms.
These include changing the splitting of the qubits and moving them spa-
tially. The former mechanism is based on the dependence of the suscepti-
bility decay length on frequency [60] see Eq. (4.74,). It is enough to detune
the qubit splitting by less then a percent to switch the qubit-qubit cou-
pling effectively off. This is particularly feasible for the ST-qubits where
qubit splitting can be controlled by all electrical means. Furthermore, the
ST-qubits coupling can be switched off also by rotating them such that
AL = AR, see Eq. (5.14).

The spin-1/2 qubits can be switched either by detuning its splitting
off-resonance with the magnon gap ∆F or by moving them away from
the dogbone disk, see Figs. 5.5-5.6.

5.7 Coupling strengths and operation times
In Tables 5.1 and 5.2 we present a summary of the effective coupling
strengths and operation times that can be obtained in the proposed setup.
We assume that the qubits are separated by a distance of 1µm and we give
the remaining parameters in the table captions.

The column captions correspond to four experimentally relevant se-
tups considered in this work (GaAs ST and spin-1/2 quantum dots, silicon-
based quantum dots, and NV-centers). The row captions denote respec-
tively the vertical distance h between the qubit and the disk of the fer-
romagnet, the difference between the qubit splitting ∆ and the internal
splitting ∆F of the ferromagnet (given in units of energy and in units
of magnetic field), the obtained effective qubit-qubit interaction, and the
corresponding operation time.

The operation times obtained in Tables 5.1 and 5.2 are significantly
below the relaxation and decoherence times of the corresponding qubits.
Indeed, for GaAs quantum dots T1 = 1s (see Ref. [64]), and T2 > 200µs
(see Ref. [65]), respectively. Here we compare to T2 instead of T ∗2 since
spin-echo can be performed together with two-qubit gates [112]. Alter-
natively, the T ∗2 of GaAs qubits can be increased without spin-echo by
narrowing the state of the nuclear spins [113, 114].

For silicon-based qubits decoherence time up to T2 ≈ 200µs is achiev-
able [48] Finally decoherence times of T ∗2 . ≈ 20µs and T2 ≈ 1.8ms have
been obtained for N-V centers in diamond [11].
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Table 5.1: The parameters used to obtain the numbers below are: Landé
factor of the ferromagnet gF = 2; disk radius R0 = 50nm; disk thickness
d = 20nm ; Curie temperature T = 550K and thus exchange coupling
J/kB ≈ 824K; lattice constant of the ferromagent a = 4Å. We consider
the case ∆x � ∆z.

GaAs ST QD GaAs ST QD GaAs spin-1/2 QD
∆x � ∆z |g∗| = 0.4 |g∗| = 0.4 |g∗| = 0.4

Distance h 50nm 50nm 50nm
Splitting ∆F −∆ 1µeV (43.2mT ) 0.5µeV (21.6mT ) 10−2 µeV (0.4mT )

Coupling strength (CS) 1.4× 10−9 eV 1.4× 10−8 2× 10−10 eV
Operation time (OS) 470ns 47ns 3.3µs

∆x � ∆z Silicon-based QD NV-center
Distance h 25nm 5nm

Splitting ∆F −∆ 10−2 µeV (0.1mT ) 10−1 µeV (0.9mT )
Coupling Strength (CS) 2.4× 10−8 eV 1.8× 10−8 eV

Operation Time (OT) 27.4ns 36.6ns

Table 5.2: We use the same parameters as in Table 5.1 but consider the
case ∆x � ∆z.

GaAs spin-1/2 QD Silicon-based QD NV-center
∆x � ∆z |g∗| = 0.4 |g∗| = 2 |g∗| = 2

Distance h 50nm 25nm 5nm
Splitting ∆F −∆ 10−2 µeV (0.4mT ) 10−2 µeV (0.1mT ) 10−1 µeV (0.9mT )

Coupling strength 1.2× 10−10 eV 1.8× 10−8 eV 3.6× 10−8 eV
Operation time 5.5µs 36.6ns 18.3ns

In Table 5.3, we summarize the obtained coupling strengths and op-
eration times obtained when a ST-qubit is cross coupled with a spin-1/2
qubit.

We have verified that the tilting of the ferromagnet spins given in
Eq. (5.38) remains small. The biggest tilt we obtain (for h = 5nm) is
〈S±r 〉 ≈ 10−7 � 1. Thus all the result are within the range of validity of
the perturbation theory.
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Table 5.3: We use the same parameters as in Table 5.1 and choose the
splitting ∆F − ∆ = 10−2 µeV for the ST-qubit (the splitting of the other
qubit is taken from Table 5.1) to determine the coupling strengths and
operation times achieved in the hybrid case. The column caption of the
table labels GaAs ST-QD, while the row captions label the three other
qubit systems, considered in this work, to which it can be hybridized.
The left panel corresponds to the case ∆x � ∆z while the right panel
corresponds to ∆x � ∆z.

∆x � ∆z GaAs ST QD
Coupling strength Operation time

GaAs spin-1/2 QD 1.7× 10−9 eV 387ns
Silicon-based QD 1.8× 10−8 eV 36.6ns

NV-center 1.6× 10−8 eV 41.1ns

∆x � ∆z GaAs ST QD
Coupling strength Operation time

GaAs spin-1/2 QD 1.3× 10−9 eV 506ns
Silicon-based QD 1.6× 10−8 eV 41.1ns

NV-center 2.2× 10−8 eV 29.9ns ns

5.8 Conclusions
We have proposed and studied a model that allows coherent coupling of
distant spin qubits. The idea is to introduce a piece of ferromagnetic ma-
terial between qubits to which they couple dipolarly. A dogbone shape
of the ferromagnet is the best compromise since it allows both strong
coupling of the qubits to the ferromagnet and long-distance coupling be-
cause of its slowly decaying 1D spin-spin susceptibility. We have derived
an effective Hamiltonian for the qubits in the most general case where
the qubits are positioned arbitrarily with respect to the dogbone. We
have calculated the optimal position for the effective qubit-qubit cou-
pling to be strongest and estimated it. For both the singlet-triplet (ST)
and spin-1/2 qubits, interaction strengths of 10−2µeV can be achieved.
Since decoherence effects induced by the coupling to the ferromagnet
are negligible [60], we obtain error thresholds of about 10−4 for ST-qubits
and for spin-1/2 qubits. In both cases this is good enough to implement
the surface code error correction [21]. Finally, for both types of qubits
we have explicitly constructed the sequence to implement a CNOT gate
achievable with a fidelity of more than 99.9%
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Our analysis is general and is not restricted to any special types of
qubits as long as they couple dipolarly to the ferromagnet. Furthermore,
the only relevant quantity of the coupler is its spin-spin susceptibility.
Hence, our analysis is valid for any kind of coupler (and not just a ferro-
magnet) that has a sufficiently slowly decaying susceptibility.

This quantum computing architecture retains all the single qubit gates
and measurement aspects of earlier approaches, but allows qubit spacing
at distances of order 1 µm for two- qubit gates, achievable with the state-
of-the-art semiconductor technology.
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5.A Rotated Hamiltonian for CNOT gate

Here we give the general form of the matrix ˆ̃
H entering Eq. (5.31).

H̃12 =
3∆z∆

−
z (C ′′2 (−6∆xA

′
1 +B1∆−z + 3C ′1∆+

z ) + 2∆xA
′′
1(B2 + 3C ′2))

32∆3

6∆z∆
−
z C
′′
1 (B2∆−z − 3C ′2∆+

z ) + 3∆xi (12A2∆∆xA
∗
1 − 12A1∆∆xA

∗
2)

64∆3

+
∆x (−4∆xA

′
1(B2 + 3C2) + 4A1B2∆x + ∆−z (3C1C

∗
2 + 2i(B1C

′′
2 +B2C

′′
1 )))

64∆3

+
3∆xi (12A1∆2

xC
′
2 + 3C∗1∆−z (2A2∆− C2∆x) + (2B1∆A′′2∆−z + 3iC1∆A∗2∆−z ))

64∆3
,

(5.39)
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H̃13 =
2 (∆z

z(B2∆x(B1 − 3C ′1)− 3B1(2∆zA
′
2 + ∆xC

′
2))− 6B2∆2

xA
′
1)

64∆2

+
9∆xC

∗
2(2A1∆x + C1∆− C1∆z) + 9C∗1∆−z (2A2∆z + C2∆x)

64∆2

+
18∆xA

∗
1(2A2∆z + C2∆x) + 18∆zA

∗
2(2A1∆x + C1∆− C1∆z)

64∆2
,

(5.40)

H̃23 =
3i (2i(∆x(∆

−
z (B1C

′′
2 +B2C

′′
1 ) + 2iB2∆xA

′
1) + 2iB1∆zA

′
2∆−z ))

64∆2

+
12i (A1B2∆2

x + A2B1∆z∆
−
z ) + 9i∆xC

∗
2(2A1∆x − C1∆ + C1∆z)

64∆2

+
3i (6∆zA

∗
2(−2A1∆x − C1∆ + C1∆z)− 6∆xA

∗
1(C2∆x − 2A2∆z))

64∆2

+
3i (3C∗1∆−z (2A2∆z + C2∆x))

64∆2
, (5.41)

H̃11 =
2(6B2∆x∆zA

′
1 −∆−z (6B1∆xA

′
2 +B2∆z(B1 − 3C ′1)− 3B1∆zC

′
2))

32∆2

+
18∆xA

∗
2(2A1∆x + C1∆− C1∆z)− 9C∗1∆−z (C2∆z − 2A2∆x)

32∆2

+
18∆xA

∗
1(2A2∆x − C2∆z) + 9∆zC

∗
2(−2A1∆x − C1∆ + C1∆z)

32∆2
,

(5.42)

H̃22 = −9C∗2(2A1∆x − C1∆ + C1∆z) + 18C2∆xA
∗
1 + 9C2C

∗
1∆−z

32∆2

+
2(6B2∆xA

′
1 + ∆−z (B1(B2 + 3C ′2) + 3B2C

′
1))

32∆2
, (5.43)

H̃33 = 0 , (5.44)

and the rest of the components H̃ij are obtain from H̃ji by exchanging
i↔ j.
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CHAPTER 6
Introduction

Magnetic resonance techniques not only provide powerful imaging tools
that have revolutionized medicine, but they have a wide spectrum of ap-
plications in other fields of science like biology, chemistry, neuroscience,
and physics [117, 118]. In order to resolve structures on the nanome-
ter scale and thus image individual molecules, however, one needs to
go beyond conventional magnetometric techniques. In particular, stan-
dard nuclear magnetic resonance (NMR) and magnetic resonance imag-
ing (MRI) experiments detect magnetic fields through the current in-
duced inside a coil according to Faraday’s law; unfortunately induction-
based detection is not sensitive enough to allow resolution in the sub-
micrometer regime [119].

Over the last years, a lot of experimental effort has been put into
improving magnetic detection schemes. At present, Hall-sensors and
SQUID sensors are among the most sensitive magnetic field detectors [120,
121]. Furthermore, a great deal of success has been achieved with mag-
netic resonance force microscopy, where the force between a magnetic
tip and the magnetic moment under investigation is exploited to de-
tect single electron-spins, achieving a resolution of a few cubic nanome-
ters [122, 123, 124]. On the other hand, the very low temperatures that are
required in such schemes represent a considerable drawback to imaging
systems in many biological environments.

NV-center spins also provide very good candidates for magnetome-
try, boosting sensitivities up to a few nT/

√
Hz at room temperature [13,

14, 15, 16, 17, 18] and sub-nanometer spatial resolution, permitting three-
dimensional imaging of nanostructures [14]. These results are realizable
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due to the amazingly long decoherence times of NV-centers at room tem-
perature and the ability to noninvasively engineer an NV-magnetometer
very close to the magnetic sample. Although impressive, current state-of-
the-art technology [19] is unable to detect a single nuclear spin; achieving
such sensitivity would revolutionize magnetic imaging in chemical and
biological systems by facilitating atomic resolution of molecules.

In this work, we propose an experimental realization of NV-magne-
tometers which could increase present NV-center sensitivities by four or-
ders magnitude at room temperature; this unprecedented amplification
of sensitivity forecasts magnetometers capable of detecting individual
nuclear spins. This can be achieved by introducing a ferromagnetic par-
ticle between the spin that needs to be detected, which henceforth we
call a qubit,1 and the NV-magnetometer. When excited on resonance
by the driven qubit, the macroscopic ferromagnetic spin begins to pre-
cess which, in turn, amplifies the magnetic field felt by the NV-center.
By resonantly addressing the qubit and using a ferromagnetic resonator
as a lever, our setup, in contrast to existing schemes, is particularly ad-
vantageous because, due to the large amplification of sensitivity, the nu-
clear spin need not lie within a few nanometers of the surface [125] but
rather can be detectable at a distance of 30 nm, and, while related exist-
ing schemes rely on the quantum nature of a mediator spin [126], our pro-
posal is fully classical. With these novelties, our scheme provides chemi-
cally sensitive spin detection.

1We emphasize that we denote the target magnetic moment by ’qubit’ solely for
the purpose of convenience in nomenclature and that our scheme does not rely on the
quantum nature of the magnetic moment we aim to measure.
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Magnetic resonance techniques not only provide powerful imaging tools
that have revolutionized medicine, but they have a wide spectrum of ap-
plications in other fields of science like biology, chemistry, neuroscience,
and physics. However, current state-of-the-art magnetometers are unable
to detect a single nuclear spin unless the tip-to-sample separation is made
sufficiently small. Here, we demonstrate theoretically that by placing a fer-
romagnetic particle between a nitrogen-vacancy (NV) magnetometer and a
target spin, the magnetometer sensitivity is improved dramatically. Using
materials and techniques already experimentally available, our proposed
setup is sensitive enough to detect a single nuclear spin within ten millisec-
onds of data acquisition at room temperature. The sensitivity is practically
unchanged when the ferromagnet surface to the target spin separation is
smaller than the ferromagnet lateral dimensions; typically about a tenth of
a micron. This scheme further benefits when used for NV ensemble mea-
surements, enhancing sensitivity by an additional three orders of magni-
tude. Our proposal opens the door for nanoscale nuclear magnetic reso-
nance (NMR) on biological material under ambient conditions.

7.1 Setup
The standard experimental setup, yielding the most accurate NV-magne-
tometers [14]), consists of an NV-center near the target qubit and two dis-
tinct microwave sources that independently control the NV-center and
qubit so that double electron-electron (electron-nuclear) resonance, DEER
(DENR), can be performed. We extend this setup by including a macro-
spin ferromagnetic particle (FM) between the NV-magnetometer and the
qubit we want to measure, see Fig. 7.1. A recent experiment [127, 128]
demonstrates that there is no significant quenching of the NV-center pho-
toluminescence in the presence of the FM. On the other hand, due to the
stray field of the FM, the qubit energy-splitting, and therefore the fre-
quency (ωs) at which the qubit responds resonantly, is strongly modified;
one needs first to characterize the FM stray field in order to be able to con-
trol the qubit by, in our case, applying π-pulses.1 Treating the ferromag-
net as a single classical spin, the Hamiltonian of this system is [130, 131]

H =KV (1−m2
z) +MFV bmz − µsns(t) · BFm, (7.1)

1Instead of performing the qubit control resonantly, one can make use of ‘adiabatic
passage’ [129] wherein triangular pulses are applied in lieu of square pulses. In such
a setup, knowledge of the exact value of the qubit Zeeman splitting, and therefore the
FM stray field, is not needed.
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where m is the normalized magnetization of the FM, MF the satura-
tion magnetization of the FM, and V its volume. We assume uniaxial
anisotropy in the FM with the anisotropy constant, K > 0, composed of
both shape and crystalline anisotropy, with an easy axis along z. An ex-
ternal magnetic field b is applied along the z axis. The magnetic moment
of the qubit is µs andns(t) is its polarization at time t. The 3×3-matrix BF
is defined as (BF )ij = Bj

F (rs)·ei, whereBj
F (rs) is the stray field produced

by the FM at the position of the qubit, rs, when the FM is polarized along
the j-axis for j = x, y, or z. The Hamiltonian of the qubit is not explic-
itly written as its polarization is completely determined by the externally
applied static and time-dependent microwave field and the stray field of
the FM. For example, in equilibrium the ground state of the qubit is po-
larized along the total static field acting on it ns = (b ± Bz

F )/|b ± Bz
F |

when mz = ±1. Although in the following we take V small enough to
approximate the FM as a monodomain, our analysis and therefore our
results are amenable to including the effects of magnetic texture.

Using two independent microwave sources we apply a train of π-
pulses first to the qubit and subsequently a Carr-Purcell-Meiboom-Gill
(CPMG) pulse sequence [132, 133] to the NV-center, see Fig. 7.2. As
the qubit is pulsed it will drive the FM at the frequency of the pulse
sequence π/τ , τ being the time between the application of two subse-
quent π-pulses. When π/τ is close to the ferromagnetic resonance (FMR)
frequency, ωF , the response of the FM becomes large and one obtains a
large amplification of the magnetic field felt by the NV-center. The pulses
are applied to the qubit only until the FM reaches steady state preces-
sion. We also allow for a possible time offset, ξ, between the pulse se-
quences applied to the qubit and the NV-center, see Fig. 7.2. Here, ξ may
be chosen to compensate for the phase difference between the driving
of the qubit and the response of the FM, thus maximizing the sensitivity
of our magnetometry scheme. Since the microwave field applied to the
qubit is a sequence of π-pulses, the polarization is simplyns(t) = nsfτ (t),
where fτ (t) may take the values ±1 according to the pulse sequence. It
is worth noting that even though we excite the FMR with the inhomo-
geneous dipolar field of the qubit, only the lowest Kittel mode is excited
since for a small FM higher modes are separated by an energy gap that
exceeds the perturbation amplitude. Therefore the macrospin approxi-
mation used in Eq. (7.1) is justified.
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Figure 7.1: Panel a) shows a detailed illustration of the setup consid-
ered. The abbreviation “FM” denotes the ferromagnetic particle that is
placed on top of the diamond surface that contains the NV-center (red)
which is used as magnetometer. Close to the top surface of the FM lies
the qubit (black) we want to measure. The setup also includes separate
microwave (MW) controls of the qubit (black) and NV-center (red) with
resonance frequencies ωs and ωNV, respectively. The ferromagnetic reso-
nance frequency ωF is assumed to be different from both ωs and ωNV. The
NV-center is read out optically with a green laser. A slightly modified
version of the setup with the NV-center and the FM on a tip is illustrated
in panel b); for simplicity we have omitted the two driving fields in this
panel.
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7.2 Proposed magnetometer sensitivity
We now consider our particular scenario wherein a FM is introduced at
a distance d from the qubit and h from the NV-center (Fig. 7.1). In this
case, both the accumulated phase and the dephasing of the NV-center
are modified by the presence of the FM. Because the sensitivity of our
magnetometry scheme crucially depends on the series of pulses applied
to the NV-center and qubit, here we detail the pulse sequence, see Fig. 7.2.
First we apply, on the qubit only,N ′ π-pulses separated by a time interval
τ , for a total time of t′ = N ′τ—during this time the FM reaches steady
state precession. Next we initialize the NV-center in state |0〉, which takes
time tp that is on the order of few hundreds of nanoseconds. Then, a π/2
pulse is applied to the NV-center allowing it to accumulate the phase
from the FM tilt stray field. Consequently, a series of N π-pulses are
applied to both the NV-center and qubit for a total interrogation time
ti = Nτ . Finally we apply to the NV-center a π/2-pulse which is, in
general, along an axis in the plane orthogonal to the NV-center axis and
different from the first π/2-pulse by an angle θ. The probability that the
NV-center occupies the state |0〉 or |1〉 after the pulse sequence is now a
function of the accumulated phase ϕNV(ti)

p(n|ϕNV(ti)) =
1

2

(
1 + n cos(ϕNV(ti) + θ)e−〈(δϕNV(ti))

2〉
)
. (7.2)

Here, n = ±1 are the two possible outcomes when the state of the NV-
center is measured, 〈(δϕNV(ti))

2〉 is the dephasing of the NV-center, and
〈 · · · 〉 is the expectation value in the Gibbs state. Because the accumulated
phase itself depends on the value of the qubit magnetic moment µs, a
measurement of the NV-center is a measurement of µs. The variance in
the measured value of the NV-center can be reduced by repeating the
measurementN times (Fig. 7.2). Because typically t′ � N ti and therefore
t′ + N ti ≈ N ti, the total measurement time is marginally prolonged by
the initial pulse sequence that initialized the tilt of the FM.

Given Eq. (7.2), one may show quite generally that the sensitivity of
the NV-magnetometer is given by

S =
1

R
√
η

min
ti

[
e〈(δϕNV(ti))

2〉√ti + tp
|∂ϕNV(ti)/∂µs|

]
, (7.3)

which defines the minimum detectable magnetic field for a given total
measurement time. Here, R, the measurement contrast, is the relative
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Time

Figure 7.2: The pulse sequence that we apply to the qubit (black) and
to the NV-center spin (red). The pulse sequence fτ (t) that consists of N
(N is even) is applied to both spins, with the time offset ξ, during the
interrogation time ti = Nτ . The measurement is repeated N times until
the desired precision is achieved, as illustrated on the bottom panel. The
sequence section denoted by “FM init” with duration t′ = N ′τ is the time
during which the precession of the FM is being developed. We assume
that the frequencies ωs, ωNV, and ωF are all sufficiently different from
each other. The green laser is applied to the NV-center for initialization
(polarization) and read-out. The total measurement time is t′+N ti ≈ N ti.

difference in detected signal depending on spin-projection of the NV-
center spin, and η is the detection efficiency which takes into account
that many measurements have to be performed in order to detect a pho-
ton [134]. A detailed derivation of Eq. (7.3) can be found in Supple-
mentary Information, Sec. II. The sensitivity is small (i.e., ‘good’) when
the NV-center dephasing is small while the accumulated phase is large.
When the qubit is directly coupled to the NV-center (without the FM) the
dephasing time of the NV-center is given by T2 ∼ 200 µs [135, 136] so that
〈(δϕNV(ti))

2〉 = (ti/T2)2.
As we show in Supplementary Information, Sec. IV, given the pulse

sequence described above, when Γt′ � 1 and Γti � 1, where Γ is the
linewidth of the ferromagnet, there is a resonant response of the FM while
the NV-center picks up non-resonant noise. As such, the ratio of the de-
phasing to the accumulated phase of the qubit is minimized thereby opti-
mizing the sensitivity. We henceforth take Γt′ � 1� Γti in the remainder



CHAPTER 7. HIGH-EFFICIENCY RESONANT AMPLIFICATION OF
WEAK MAGNETIC FIELDS FOR SINGLE SPIN MAGNETOMETRY102

of the text.
The accumulated phase is formally

ϕNV(ti) = γNV

∫ ti

0

BNV(t′′)fτ (t
′′)dt′′ , (7.4)

where γNV is the gyromagnetic ratio of the NV. BNV ≡
∣∣B−F,NV · nNV

∣∣
where B±F,NV = Bx

F (rNV) ± iBy
F (rNV) [B±F,s = Bx

F (rs) ± iBy
F (rs)] is a

complex combination of the magnetic stray-field for the FM polarization
along the x and y axes at the position of the NV-center (qubit), rNV (rs),
and nNV is the NV-center polarization axis. We note that B±F,NV · nNV

(B±F,s · ns) is the FM-NV (FM-qubit) coupling constant.
Within the linear response regime and using the pulse sequence de-

scribed above and optimally choosing ξ, the expression for the phase ac-
cumulated by the NV-center when τ = (2k + 1)π/ωF , 2 for k = 0, 1, . . .,
is

ϕNV(ti) =
4µsγγNV|B+

F,s · ns||B−F,NV · nNV|
π2(2k + 1)2MFV Γ

ti , (7.5)

where γ is the gyromagnetic ratio of the FM. k is defined such that the
resonantly driven FM undergoes 2k+1 half-periods between consecutive
π-pulses applied to the NV-center. In the optimal case we have k = 0 so
that τ is half the period of precession of the ferromagnet. The details
of the derivation of Eq. 7.5 can by found in Supplementary Information,
Sec. IV. It is readily observed from the above equation that ϕNV(ti) ∼
1/Γ which is proportional to the AC magnetic susceptibility of the FM
on resonance; thus we indeed obtain a resonant response as anticipated.
Even though the phase ϕNV accumulated due to the FM tilt is large, the
angle of the FM tilt is small (∼ 10−3 if the qubit is a nuclear spin) because
MFV � µs. Therefore, we can neglect the effects of the backaction of the
FM tilt on the qubit, because the stray field modulation induced by the
tilt is small compared to the qubit Rabi amplitude and far detuned from
the qubit Larmor precession frequency (i.e. ωF 6= ωs). Thus, the qubit is
polarized along the total field ns = (Bz

F +b)/|Bz
F +b|; the scalar product

B+
F,s · ns is nonzero only if the stray field of the FM tilt has a component

along ns at the position of the qubit, see Fig. 7.3. We address the optimal
geometry and position of the qubit relative to the FM in Methods, Sec. 7.5.

2The Fourier transform of the CPMG pulse sequence has peaks at frequencies (2k+
1)π/τ
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Figure 7.3: Contour plot of the quantity |B+·ns|/|B+| in the xy-plane that
is 2 nm above the upper face of the cube. We assume the FM cube (orange
square) has a side length of L = 15 nm. The values of the stray fields are
obtained from OOMMF micromagnetic simulations, taking into account
the demagnetizing field.

The relevant dephasing is the maximum of the inherent dephasing
of the NV-center, (ti/T2)2, and the dephasing due to the coupling to the
FM [132],

β(ti, τ) = γ2
NV

∫ ti

0

dsS(s)

∫ ti−s

0

dt′′fτ (t
′′)fτ (t

′′ + s). (7.6)

Here S(s) = 〈BNV(s)BNV(0)〉 is the autocorrelation function of the FM
noise. Again taking τ = (2k + 1)π/ωF , we show in Supplementary Infor-
mation, Sec. IV B that

β(ti, τ) =
4γγ2

NV|B+
F,NV · nNV|2kBT

π2(2k + 1)2MFV ωF
t2i ≡ (ti/T

′
2)2 , (7.7)

where T ′2 (T2) is the decoherence time of the NV-center caused by the FM.
Because β(ti, τ) ∼ 1/ωF ∼ S(ω = 0), the NV-center indeed accumulates
non-resonant noise.

The value of the NV-center decoherence rate when the FM volume is
chosen as small as possible (see Eq. 7.9) becomes T ′2

−1 ∼ γNV|B+
F,NV ·nNV|.
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Furthermore, since the optimal interrogation time is ti ∼ T ′2, we obtain
that for typical values of the FM stray field we are in the limit ti � tp.
After substituting 〈(δϕNV(ti))

2〉 = β(ti, τ) and ϕNV(ti) from Eq. (7.5) and
Eq. (7.7) into Eq. (7.3) and performing the minimization over the interro-
gation time in Eq. (7.3), we find the sensitivity SA of our magnetometry
scheme

SA =
1

R
√
η

πe
1
2 (2k + 1)MFV Γ√

2γ|B+
F,s · ns|

√
γkBTtp
MFV ωF

. (7.8)

The best sensitivity is obtained when one half-period of the FM oscilla-
tion occurs over the timescale τ , i.e., k = 0. In practice, experimental
limitations, such as limitations to the qubit Rabi frequency, bound τ and
therefore k from below. Thus, in order to achieve the resonance, one has
to use k � 0 (at the expense of sensitivity) or to tune the FMR frequency
as described in the following subsection. We note that since the sensitiv-
ity in Eq. 7.8 scales as SA ∼ Γ, using low loss FM materials like Yttrium
Iron Garnet (YIG) is crucial for achieving high sensitivities.

A few comments are in order regarding the obtained expression for
the sensitivity in Eq. 7.8. First, we note that SA is completely indepen-
dent of the FM-NV coupling constant |B±F,NV ·nNV|—this behavior holds
as long as the stray field at position of the NV is not too weak, since other-
wise a weak FM-NV coupling leads to long T ′2 and thus we are no longer
in the limit ti � tp and thus Eq. 7.8 is no longer valid. Therefore, SA de-
pends only on d but not on h (see Fig. 7.1). Having a magnetometer with
the sensitivity that is independent of the NV positioning 3 is particularly
advantageous for NV ensemble measurements since we can place many
NV-centers that would all have the same sensitivity (though different op-
timal interrogation times) and thus obtain significant improvement of the
total sensitivity. Finally, SA depends on the FM-qubit coupling constant
and therefore depends on d. But herein, rather than having a sensitivity
that has cubic dependence on the tip-to-sample separation, we have only
weak dependence on d since the FM stray field is not changed much as
long as d � L ≡ V 1/3 (see Methods, Sec. 7.5). The spatial resolution of
our scheme does not differ from the standard NV-magnetometry resolu-
tion [14]. In practice the spatial resolution for detection of an isolated spin
is determined by the ratio between the magnetic field gradient and the
target qubit linewidth. In the case of interacting spins there is a broaden-
ing caused by homonuclear dipolar interaction, thus the techniques such

3We stress that this statement is true only in region of space near the FM where
T ′2 � tp, i.e., where the FM stray field is bigger that the threshold value Bth ∼ 1 Gauss.
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as magic angle spinning (MAS) should be used [137]. Since MAS is usu-
ally performed by spinning the sample in a static magnetic field which
is impractical for our scheme, one can use rotating magnetic fields [138]
instead, with the frequency different from ωNV , ωF and ωs for performing
MAS.

While the electron spin in a NV-center can be driven at GHz frequen-
cies [139, 140], the same driving field for a proton spin would yield Rabi
frequency in the MHz range. Thus, the FMR frequency needs to be tuned
to meet the resonance critieria. The method to achieve such a tuning is
described in Methods, Sec. 7.5. The idea is to use the metastable state
of the FM which has frequency that can be lowered by applying an ex-
ternal magnetic field, see Fig. 7.4. In order for the FM to remain in the
metastable state during the measurement time, the FM volume must sat-
isfy

V &
γkBT

MFω
+
F

| lnα|, (7.9)

In case of minimal volume, the sensitivity reads

SA =
1

R
√
η

π(2k + 1)α
√
e| lnα|tpkBT√

2|B+
F,s · ns|

. (7.10)

As noted earlier, the sensitivity of our scheme does not depend on
the FM-NV coupling constant. Thus, we can take advantage of this fact
to obtain an improvement of sensitivity by a factor of

√
NNV, when NNV

NV-centers are used for the detection. We present a detailed discussion
in Sec. 7.5 of the Methods.

Estimates

In this section we give estimates for the sensitivity SA for two cases: with
and without tuning of the FMR frequency (to MHz range). We also pro-
vide the estimates for the case when an NV ensemble is used for the mea-
surement. For all the estimates provided in the following, we assume
room temperature and that the FM material is YIG, so that α ∼ 10−5,
µ0MF = 0.185 T, and K/MF = 60 mT [141]. For simplicity but without
loss of generality, we assume that the FM has the shape of a cube for the
estimates given below. For a cube and in the macrospin approximation
there is no contribution from shape anisotropy.

If we tune the FMR frequency to MHz range the minimum FM vol-
ume V according to Eq. (7.9) corresponds to a cube with side L = 210 nm.



CHAPTER 7. HIGH-EFFICIENCY RESONANT AMPLIFICATION OF
WEAK MAGNETIC FIELDS FOR SINGLE SPIN MAGNETOMETRY106

Figure 7.4: The FM energy when an external field b/ba = 0.2 is applied,
i.e., the first two terms from the right-hand side of Eq. (7.1) of the main
text, as a function of θ, where mz = cos θ. The metastable state at θ = 0
has smaller FMR frequency compared to the case with no external field.
The tunneling time τ+ from the metastable state has to be longer than the
measurement time. We note that E+

B = MFV (ba − b).

We note that since ti � tp � τ (see Fig. 7.2) one essentially performs DC
magnetometry with the NV. Furthermore, SA being weakly dependent
on d for d � L means that we can increase the “FM surface”-to-“target
spin” separation up to values of hundred nanometers practically with-
out decreasing the sensitivity SA. Taking tp ∼ 300 ns and estimating
R
√
η [13], we obtain SA = 0.13µN/

√
Hz, where µN is the nuclear magne-

ton. Thus, our magnetometry scheme can detect a single nuclear spin
within ten milliseconds of data acquisition at room temperature. For
comparison, standard NV-magnetometry setups with the state-of-the-
art magnetic field sensitivity [142] S = 4.3 nT/

√
Hz needs a ∼100 times

smaller tip-to-sample separation [143, 144] of 2.5 nm in order to achieve
the same magnetic moment sensitivity.

For the electron spin, the minimal FM volume V according to Eq. (7.9)
corresponds to a cube with side L = 21 nm in this case. Using the same
parameters as in the previous paragraph we obtain SA = 0.32µN/

√
Hz.

Typical values of the stray fields at the position of the qubit and NV-
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center in the limit d, h� L for YIG are on the order of a few hundreds of
Gauss. The presence of a magnetic field perpendicular to the NV-center
axis can significantly limit the read-out fidelity of the NV-center, it was
found that fields up to 100 Gauss can be tolerated [9]. Since the sensitivity
SA does not depend on the FM-NV coupling constant, the NV should be
placed in the region where the stray fieldBF,NV is less than 100 Gauss but
bigger than the threshold value Bth, i.e., 1 Gauss < BF,NV < 100 Gauss.
For |B±F,NV · nNV| ∼ 10 Gauss, the decoherence time of the NV is T ′2 ∼
100 ns [see Eq. (7.7)], which is also the value of the optimal interroga-
tion time. Thus, because the signal amplification in our scheme far ex-
ceeds the effect of the additional decoherence it induces, even shallow
NV-centers [136, 135] or dense ensembles of NV-centers [134] with rela-
tively short decoherence time can be used and significantly outperform
long-lived NV-centers (without the FM).

Finally, we give the estimates for the case of the FMR tuned to the
MHz range and for measurements with ensembles of NV-centers. As
experimentally demonstrated [145], NV ensembles with a separation of
about 10 nm between neighboring NV-centers can be achieved. Such
NV ensembles have T ∗2 ∼ 100 ns, but this property, as noted in the pre-
vious paragraph, does not affect the sensitivity of our scheme. We can
distribute the NV-centers in the volume where the stray field satisfies
BF,NV > Bth and such a volume can be estimated to be a cube with side
length of 1 µm. Therefore, NNV ∼ 106 which yields an unprecedented
sensitivity of S̃A = 0.13× 10−3µN/

√
Hz.

7.3 Conclusions
We have proposed and analyzed, both analytically and numerically, a
modification of a standard NV-magnetometry setup that yields a signifi-
cant improvement of NV-magnetometer sensitivity—the obtained sensi-
tivity is practically unchanged as long as the ferromagnet surface to the
target spin separation is smaller than the ferromagnet lateral dimensions
which is typically about a tenth of a micron. Our scheme is based on a
ferromagnetic particle, placed in close proximity to a sensing NV-center
spin. The qubit spin to be detected is then used to resonantly drive the
large macrospin of the FM giving rise to a strong, amplified stray field
acting on the NV-magnetometer. Compared to the existing schemes that
use the quantum nature of an intermediate spin for improving sensitiv-
ity [126], we stress that our scheme is fully classical and thus should be
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easily realizable at room temperature—all the ingredients of our scheme
are already demonstrated in separate experiments [139, 140, 14, 146, 128,
127, 147].

The magnetometric scheme including a ferromagnetic particle pro-
posed here is a step forward to a more accurate magnetic field measure-
ment. In particular, it enables the detection of a single nuclear spin at dis-
tances that are noninvasive to the system under study. Therefore, the pro-
posed room temperature magnetometry scheme opens up new venues
for future analyses of previously inaccessible biological and chemical
systems.
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7.5 Methods

Tuning the FMR frequency

It has been demonstrated experimentally [139, 140] that the electron spin
of NV-centers can be coherently driven at GHz frequency. For a proton
spin, however, the same drive would yield Rabi oscillations in the MHz
range. Because typical FMR frequencies are in GHz range, ωF needs to be
reduced in order for the proton Rabi frequency to be on resonance with
the FMR.

One way to decrease ωF is to apply an external magnetic field antipar-
allel to m [148], whereby there is a metastable state when b < ba, with
ba = K/MF the FM (crystalline and shape) anisotropy field. In Fig. 7.4,
we plot the energy of the FM as a function of angle θ of the magnetization
with respect to the easy axis, according to Eq. (7.1) of the main text. It is
straightforward to show that the FMR frequency in the metastable state is
ω+
F = γ(ba− b). On the other hand, the ferromagnet will relax to the ther-

mal state on a timescale τ+ given by the Arrhenius law τ+ = τ0e
E+
B/kBT ,

where τ0 ∼ 1/ω+
F is the attempt time. We can insure that the FM is ini-

tialized in the metastable state by first measuring the direction of the
magnetization, applying an external magnetic field b antiparallel to m
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and checking subsequently that the FM magnetization direction is un-
changed, which can be done under hundred picoseconds [149, 150, 151].

In order for the ferromagnet to remain in the metastable state while
the measurement is being performed, we require τ+ � 1/Γ. Indeed, the
total measurement time T should be larger than the FMR initialization
time t′ � 1/Γ, and smaller than Arrhenius’ timescale τ+ & T , see Fig. 7.2
in the main text. Thus, if we want to tune ω+

F to a certain value and work
at room temperature, the Arrhenius law suggests that the FM volume
must satisfy

V &
γkBT

MFω
+
F

| lnα|, (7.11)

in order for the metastable state lifetime to be bigger than the measure-
ment time. Here α = Γ/ω+

F is the Gilbert damping of the FM. Substituting
Eq. (7.9) for the minimal volume into Eq. (7.8) of the main text we obtain

SA =
1

R
√
η

π(2k + 1)α
√
e| lnα|tpkBT√

2|B+
F,s · ns|

(7.12)

Compared to the sensitivity in Eq. (7.8) of the main text, the above ex-
pression is independent of the FMR frequency ωF and the FM volume V .
Thus, irrespective of the choice of the frequency we work at, the same
value for the sensitivity SA is obtained. Furthermore, the only depen-
dence on the volume is incorporated in the stray fields but, as shown
in Sec. 7.5, this dependence is weak in the limit d � L. The volume
in Eq. (7.9) is implicitly bounded from above in order to remain in the
regime where the macrospin approximation is valid.

An alternative setup to achieve resonance between the qubit and FM
is to place the NV-center and the FM on a cantilever [152] with reso-
nance frequency in the GHz range. By driving the cantilever, we alleviate
the necessity of driving the qubit at FMR frequency as the qubit field is
modulated by the oscillations of the cantilever. Since the dipolar field of
the qubit decays rapidly with distance, the modulation of the qubit field
achieved in this scheme is almost as big as when the qubit is driven via
a microwave field (the previously described scheme for which the sensi-
tivity estimates are given). Therefore, we conclude that the estimates for
the sensitivity SA given in Sec. 7.2 still hold in that case.
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FM geometry and demagnetizing fields

In the absence of an external magnetic field, the qubit aligns along the
stray field direction of the FM, while the FM spins are aligned along the
easy axis. Because MFV � µs, the FM tilt induced by the qubit is negli-
gible. Therefore, the qubit will align along the direction of the stray field
produced by the FM. However, for most geometries of the FM and po-
sitions of the qubit, the FM-qubit coupling constant is almost zero, i.e.
|B+

F,s · ns| ∼ Bx,y
F,s ·Bz

F,s ∼ 0, and therefore the sensitivity is bad S−1
A ∼ 0.

In the following discussion, we consider our ferromagnet to be a cube
of side L, but our conclusions can be straightforwardly generalized to
other geometries. To gain insight into the direction and strength of the
stray field, we use the well-known analogy between the stray field of a
homogeneously magnetized body and an electric field produced by sur-
face charges. Specifically, we may consider the surfaces of the cube to
have charge density ∼MF m · s, where s is the vector normal to the sur-
face of the cube. Therefore, when the position of the qubit is very close
to the center of the FM surface which is perpendicular to the polariza-
tion direction (here assumed along z-axis), Bz

F,s points along the z-axis.
Similarly, Bx

F,s and By
F,s are almost aligned with the x and y axes close

to the surface, respectively. Therefore, in these positions, Bx,y
F,s ·Bz

F,s ∼ 0.
However, this is not true near the edges of the ferromagnet. Therefore, in
order to obtain a sensitive magnetometer, one needs, first, a ferromagnet
with edges and, second, to position the qubit close to the edges. One may
show analytically and numerically (see Fig. 7.3) that |B+ · ns|/|B+| close
to the edges is about an order of magnitude bigger than close to the face
center and that it has local maxima close to the cube’s corners.

In evaluating Bx,y,z
F,s , we assume that the FM is homogeneously mag-

netized as, in cubic geometry, one can find an analytical formula for the
stray field in this case (see Supplementary Information, Sec. V). How-
ever, it is important to note that due to demagnetizing fields (arising
from dipole-dipole interactions in the FM), the FM ground-state is not
homogeneous but rather “flowerlike” [153]. Specifically, the canting of
the spins close to the edges is more pronounced [154], which modifies
the FM stray field close to the edges. To account for the effects of the de-
magnetizing fields, we perform micromagnetic simulations in OOMMF. 4

In Fig. 7.3 we plot |B+ · ns|/|B+| in the xy-plane that is 2 nm above the
upper face of the cube. We find that the inclusion of demagnetizing fields
changes our value of Bx,y,z

F,s by only ∼ 1% as compared to the uniformly
4The code is available at http://math.nist.gov/oommf
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magnetized cube. Therefore, we expect the analytical expression for the
stray field to be valid for our choice of parameters.

Because the sensitivity SA depends on d only through the stray field at
the position of the qubit, herein we detail this dependence and show that
the sensitivity of our magnetometry scheme is practically unchanged as
d is varied. The stray field close to the cube edge (in comparison to L) is
equivalent to the electric field of a set of infinite line charges. Therefore,
there is a logarithmic dependence of the stray field on the distance to the
edge, d, of the cube in units of L so that the sensitivity SA is only weakly
dependent on d.

NV ensemble measurements

As noted earlier, the sensitivity of our scheme SA does not depend on
the FM-NV coupling constant. Such behavior of the sensitivity is in stark
contrast to the cubic dependence on the tip-to-sample separation of typ-
ical NV-magnetometer sensitivity. This property of SA is very useful if
we want to perform the measurements with an ensemble of NV-centers
since all of them would have the same sensitivity irrespective of the ac-
tual value of the FM-NV coupling constant. Thus, we obtain an improve-
ment of sensitivity by a factor of

√
NNV, where NNV is the number of NV-

centers in the ensemble. In our scheme NNV is the maximum number of
NV-centers that we can place in the region of space around the FM where
the stray field value is above the threshold Bth.

As the FM volume is increased, the sensitivity is decreased as SA ∼√
V see Eq. 7.8. Nevertheless, in case of an NV ensemble measurement,

increasing V leads to an increase of NNV V . Thus, for ensemble mea-
surements our scheme does not loose sensitivity when the FM volume is
increased, but rather the sensitivity is logarithmically improved due to
increasing the FM-qubit coupling constant. The possibility of having a
large FM without loss of sensitivity is important since it can be experi-
mentally more feasible to work with micron-sized FMs.

7.A Cramer-Rao Bound
For the sake of completeness, we review here the proof of the Cramer-
Rao bound,

〈(δµ̂s)2〉 ≥ 1/F (µs), (7.13)
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that we use to derive the sensitivity expression in Eq. (7.3) of the main
text.

The Fisher information of the parameter estimator µ̂s is given by

F (µs) = −
∑

n=±1

p(n|µs)
∂2 ln(p(n|µs))

∂µ2
s

. (7.14)

The Cramer-Rao bound follows from the trivial identity

0 =
∑

n1

· · ·
∑

nN

p(n1|µs) . . . p(nN |µs)∆µ̂s, (7.15)

where ∆µ̂s = µ̂s(n1, . . . , nN ) − 〈µ̂s〉. Taking the derivative of this iden-
tity with respect to µs and using the fact that the estimator µ̂s does not
depend explicitly on µs, we obtain

∑

n1

· · ·
∑

nN

p(n1|µs) . . . p(nN |µs)
(
N∑

k=1

∂ ln p(nk|µs)
∂µs

)
∆µ̂s =

d〈µ̂s〉
dµs

. (7.16)

Furthermore, for the unbiased estimator, 〈µ̂s〉 = µs and thus the right-
hand side of Eq. (7.16) is equal to 1. Finally, applying the Schwarz in-
equality, cov(X, Y )2 ≥ var(X)var(Y ), to the above equation yields the
Cramer-Rao bound, Eq. (7.13).

7.B Sensitivity of an NV-center
The variance of any estimator µ̂s of the unknown parameter µs satisfies
the Cramer-Rao inequality Eq. (7.13). Using the probability distribution
from Eq. (7.2) of the main text, we obtain

F (µs) =
(∂ϕNV(ti)/∂µs)

2 sin2(ϕNV(ti) + θ)

e2〈(δϕNV(ti))2〉 − cos2(ϕNV(ti) + θ)
. (7.17)

Thus, a bigger Fisher information F (µs) leads to a more accurate value
of the estimator µ̂s.

For DC magnetometry we typically have ϕNV(ti) = γNV(B0 + B)ti ≡
ti/T

′ and 〈(δϕNV(ti))
2〉 = ti/T

∗
2 , where γNVB0 = 2.87GHz is the zero-field

splitting of the NV-center and T ∗2 is typically on the order of a few mi-
croseconds. The field we want to measure is B = µ0µs/(4πd

3), with d
the distance between the qubit and the NV-center. Consider the scenario
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T ′ � T2 which is valid for DC magnetometry. In such a situation, one
may choose an interrogation time maximizing sin2[ϕNV(ti) + θ] and min-
imizing cos2[ϕNV(ti) + θ] in Eq. (7.17). This is independent of the angle
θ which we set to zero without loss of generality. Thus instead of maxi-
mizing the Fisher information from Eq. (7.17), we need only to maximize
its envelope function,

F̃ (µs) = (∂ϕNV(ti)/∂µs)
2e−2〈(δϕNV(ti))

2〉 . (7.18)

Repeating the measurement N = T/(tp + ti) times (tp is the initializa-
tion time) reduces the variance by a factor 1/N . The Cramer-Rao bound
(7.13) then leads to 〈(δµ̂s)2〉 ≥ 1

NF (µs)
. The minimal value of the magnetic

moment µ̃s(ti, T ) (that can be resolved within measurement time T and
interrogation time ti) is determined by the one for which the mean value
is equal to its standard deviation,

µ̃s(ti, T ) =
1√
NF (µ̃s)

. (7.19)

We finally obtain the sensitivity

S =
1

R
√
η

min
ti

[
e〈(δϕNV(ti))

2〉√ti + tp
|∂ϕNV(ti)/∂µs|

]
. (7.20)

As mentioned in the main text, R is the measurement contrast and η is
the detection efficiency; [134] these quantities take into account that the
measurement has to be performed many times in order to detect a pho-
ton.

The situation for AC magnetometry is different, here

ϕNV(ti) = λγNVBti ≡ ti/T
′, (7.21)

while we still have 〈(δϕNV(ti))
2〉 = ti/T2. (Note that the constant of pro-

portionality λ depends on the specific pulse sequence applied.) In typical
situations, the AC magnetic field is small and T ′ � T2. In such sce-
nario, and for vanishing angle θ, the accumulated phase will never reach
a value of π/2 and one needs to maximize the Fisher information (7.17),
not only its envelope. In this limit, we obtain a very different expres-
sion for the sensitivity, and, in particular, the expression is in units of
“magnetic moment”/Hz

1
4 (see Sec. 7.C). Fortunately, such result can be

improved: one may take a nonzero value of the angle θ such that the ex-
pression ϕNV(ti) + θ = π/2 within the interrogation time. In this case, the
sensitivity takes the form (7.20), improving the sensitivity.
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7.C AC sensitivity for θ = 0

The goal of this appendix is to derive the expression for the AC sensitiv-
ity when the angle θ between the two π/2-pulses, applied at the begin-
ning and at the end of the sequence, is zero. This calculation is presented
for the sake of completeness, however, this is not the expression we use
to derive sensitivity of our magnetometry scheme. As mentioned in the
main text, for AC magnetometry we have

ϕNV(ti) ∝ γNVBti ≡ ti/T
′, (7.22)

〈(δϕNV(ti))
2〉 = ti/T2, (7.23)

where the constant of proportionality depends on the specific pulse se-
quence applied. It is important to note that here only the AC field com-
ponent that matches the frequency of the pulse sequence contributes (i.e.,
there is no contribution from B0). When the magnitude of the AC driv-
ing field is small, we are in the limit of T ′ � T2. As noted above, in this
regime the accumulated phase ϕNV(ti) will not reach the value of π/2
and thus the full Fisher information needs to be maximized. Namely, we
maximize

F (µs) =
(∂ϕNV(ti)/∂µs)

2 sin2(ϕNV(ti) + θ)

e2〈(δϕNV(ti))2〉 − cos2(ϕNV(ti) + θ)
. (7.24)

Therefore,

√
〈(δµ̂s)2〉 ≥

√
e2〈(δϕNV(ti))2〉 − cos2(ϕNV(ti))

√
tp + ti√

T | sin(ϕNV(ti))∂ϕNV(ti)/∂µs|
. (7.25)

In contrast to the result obtained [126] [which is similar to the one ob-
tained in Eq. (7.18)], the Fisher information in Eq. (7.25) depends on the
estimation parameter µs. The minimal value of the magnetic moment
µ̃s(ti, T ) (that can be resolved within measurement time T and interro-
gation time ti) is again determined as the one for which the mean value
is equal to its standard deviation, Eq. (7.19). Therefore, using the fact
that ϕNV(ti) depends linearly on µs and that for typical interrogation time
ϕNV(ti) � 1 and assuming tp � ti, we find an approximate solution to
Eq. (7.19). Minimizing over the interrogation time, we obtain

µ̃s(T ) ≡ min
ti

[µ̃s(ti, T )] (7.26)

= min
ti

[
(e2〈(δϕNV(ti))

2〉 − 1)
1
4

|∂ϕNV(ti)/∂µs|

(
ti
T

) 1
4

]
.
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Now, if we remove the dependence on the total measurement time from
the above expression, we obtain the quantity that describes the magnetic
moment sensitivity in units of “magnetic moment”/Hz

1
4 , i.e.,

S =
1

R
√
η

min
ti

[
(e2〈(δϕNV(ti))

2〉 − 1)
1
4 t

1
4
i

|∂ϕNV(ti)/∂µs|

]
. (7.27)

7.D Calculation of ϕNV (ti) and β(ti, τ )

The goal of this appendix is to give a detailed derivation of Eqs. (7.5)
and (7.7) of the main text that are central to our work. The former de-
scribes the phase accumulated by the NV-magnetometer, while the latter
the variance of this accumulated phase.

Within linear response, the accumulated phase is

ϕNV(ti) =
µsγγNV

MFV
Re
[
iXξ(ti, t

′)
(
B+
F,s · ns

) (
B−F,NV · nNV

)]
, (7.28)

where ξ (|ξ| ≤ τ ) is the time offset between the CPMG pulse sequence ap-
plied to the qubit and the NV-center. We have introduced the following
notation,

Xξ(ti, t
′) =

∫ t′

0

dse−Ωs

∫ ti

0

dt′′fτ (t
′′)fτ (t

′′ − s− ξ) + e−Ωt′
∫ ti

0

dse−Ωspτ (s, t; ξ)

≡X̃ξ(ti, t
′) + e−Ωt′Yξ(ti), (7.29)

with Ω = iωF + Γ and pτ (s, ti; ξ) =
∫ ti−s

0
dt′′fτ (t

′′ − ξ)fτ (t
′′ + s). After

performing the integral in Eq. (7.29) and using ti = Nτ , t′ = N ′τ , we
obtain
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X̃ξ(Nτ,N
′τ) = e−Ωξ

[
X̃ξ=0(Nτ,N ′τ)

− (1− e−Ωt′)
Ωτ − 2 + e−Ωξ(2 + 2Ωξ − Ωτ)

Ω2
N

]
, (7.30)

X̃ξ=0(Nτ,N ′τ) =
(1− e−N ′Ωτ )N(2 + eΩτ (Ωτ − 2) + Ωτ)

Ω2(1 + eΩτ )
,

(7.31)

Yξ=0(Nτ) = − 4sh4(Ωτ/4)

Ω2ch2(Ωτ/2)
+

2 + Ωτ + (Ωτ − 2)eΩτ

Ω2(1 + eΩτ )
N

+
(eΩτ/2 − 1)4

Ω2(1 + eΩτ )2
e−NΩτ . (7.32)

Since we want the qubit to perturb the ferromagnet within a narrow fre-
quency window around the FMR (i.e., narrower than the FMR linewidth
Γ), we require that Γt′ � 1. In this limit, the expression for Xξ(ti, t

′) is
significantly simplified

Xξ(Nτ,N
′τ) = e−Ωξ

[
X̃ξ=0(Nτ,N ′τ)− Ωτ − 2 + e−Ωξ(2 + 2Ωξ − Ωτ)

Ω2
N

]
,

X̃ξ=0(Nτ,N ′τ) ≈ Xξ=0(Nτ) ≡ N(2 + eΩτ (Ωτ − 2) + Ωτ)

Ω2(1 + eΩτ )
. (7.33)

The expression for dephasing can be obtained from [132]

β(ti, τ) = γ2
NV

∫ ti

0

ds〈BNV(s)BNV(0)〉pτ (s, ti; ξ = 0). (7.34)

Furthermore,

〈BNV(t)BNV(0)〉 = |B+
F,NV · nNV|2Re[〈m+(t)m−(0)〉]. (7.35)

In the limit MFV (ba ± b) � kBT (ba = K/MF is the anisotropy field) one
obtains the following expression for the fluctuations of the ferromagnet,

〈m+(t)m−(0)〉 =
2kBT

MFV (ba ± b)
e−iωF t−Γ|t|. (7.36)

Combining equations (7.34-7.36) we finally obtain

β(Nτ, τ) =
2γ2

NV|B+
F,NV · nNV|2kBT

MFV (ba ± b)
Y ′ξ=0(Nτ). (7.37)
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On-resonance case τ = (2k + 1)π/ωF

The Fourier transform of the CPMG sequence depicted in Fig. 7.2 has
peaks at frequencies (2k + 1)π/τ . Thus we have a resonant behavior
whenever this frequency matches ωF . Assuming Γt′ � 1 and ωF �
(2k + 1)Γ leads to the following expression for Xξ(ti), namely

Xξ(N) =

[
− 4N

(2k + 1)πΓωF
+ i

((2k + 1)2π2 − 8)N

(2k + 1)πω2
F

]
e−iψ, (7.38)

where ψ = ωF ξ. Assuming ωF � (2k+ 1)2π2Γ, we can neglect the second
term in the bracket in Eq. (7.38) and obtain the expression for the phase
accumulated by the NV-center during the interrogation time ti,

ϕNV(ti) =
4µsγγNVIm

[
e−iψ(B+

F,s · ns)(B−F,NV · nNV)
]

π2(2k + 1)2MFV Γ
ti . (7.39)

Next, we choose the time offset ξ (i.e., ψ) such that ϕNV(ti) in the above
equation is maximized

ψ = arg
[
(B+

F,s · ns)(B−F,NV · nNV)
]

(7.40)

we obtain

ϕNV(ti) =
4µsγγNV|B+

F,s · ns||B−F,NV · nNV|
π2(2k + 1)2MFV Γ

ti . (7.41)

Assuming that the optimal interrogation time satisfies Γti � 1, we arrive
at the following expression for Y ′ξ=0(ti), namely

Y ′ξ=0(N) =
2N

ω3
F

[(
(2k + 1)π − 4(−1)k

)
Γ +NωF

]

∼ 2N2

ω2
F

. (7.42)

The above expression yields the following variance of the phase accumu-
lated by the NV-center

β(ti, τ) =
4γγ2

NV|B+
F,NV · nNV|2kBT

π2(2k + 1)2MFV ωF
t2i . (7.43)
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Green Laser readout

MW( NV)

MW( s)

Time

polarization

Time

Figure 7.5: One obvious choice for the pulse sequence applied to the
qubit (black) and the NV-center spin (red) that does not yield good mag-
netometer sensitivity. The pulse sequence fτ (t) that consists of 2N pulses
is applied to both spins, with the time offset ξ, during the interrogation
time t. The measurement is repeated N times until the desired preci-
sion is achieved, as illustrated on the bottom panel. We assume that the
frequencies ωs, ωNV, and ωF are all different.

Pulse sequence applied: a matter of timescales

Here we elucidate the importance of the different duration of the pulse
sequences applied to the qubit and the NV-center. We analyze what hap-
pens to the sensitivity of our scheme when both the pulse sequences
have the same duration, see Fig. 7.5. Performing the Fourier transform
of Eq. (7.34), one obtains

β(ti, τ) =γ2
NV|B+

F,NV · nNV|2
∫
dω

2π
〈m−(t)m+(0)〉ω

F (ωti)

ω2

≈γ2
NV|B+

F,NV · nNV|2〈m−(t)m+(0)〉ωF
∫
dω

2π

F (ωti)

ω2

=γ2
NV|B+

F,NV · nNV|2〈m−(t)m+(0)〉ωF ti
≡ti/T ′2 . (7.44)

Here the subscript ωF refers to the Fourier transform evaluated at fre-
quency ωF . We assume that the filter function F (ωti) is centered around
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the frequency ωF (on-resonance case) and that it is much narrower than
the FMR linewidth, i.e., Γti � 1—this is exactly the opposite limit from
the one assumed to arrive at Eq. (7.7). The accumulated phase is given in
Eq. (7.5), and thus the magnetic moment sensitivity in this case reads

S̃A =
1

R
√
η

π2

4i |B+
F,s · ns|

√
〈m−(t)m+(0)〉ωF

χ⊥(ωF )
, (7.45)

where χ⊥(ω) = γ/ [MFV (ωF − ω + iΓ)]. The above expression does not
yields good sensitivity, since we do not only excite the FM resonantly
but also the NV-center picks up the resonant noise. If we rewrite Eq. (7.7)
in the form β(ti, τ) ≡ (ti/T

′′
2 )2, we can understand that the decoherence

times in the two considered limits differ from each other by many orders
of magnitude, namely

T ′′2
T ′2

=
Γ

πγNV|B+
F,NV · nNV|

√
MFV ωF
γkBT

� 1. (7.46)

7.E Stray field from a uniformly magnetized
cuboid

In this section we review the analytical formulas giving the stray field
of a uniformly magnetized cuboid of side lengths Lx, Ly, and Lz, see
Fig. 7.7. As mentioned in the main text, the magnetic field B(r) at a point
r = (x, y, z) outside of the cuboid can be calculated from the expression
for the electric field originating from charges uniformly distributed on
the surfaces of the cuboid perpendicular to the magnetization [155, 156],
see Fig. 7.7. For the sake of simplicity, we assume that the magnetization
direction points either along x, y, or z. The expression for the stray field
is then

Bδ(r) =
µ0MF

4π

∫ Lα

0

dα

∫ Lβ

0

dβ

{
r− rαβδ
|r− rαβδ |3

− r− rαβ
δ̄

|r− rαβ
δ̄
|3

}
(7.47)

for δ = x, y, z. Here, α and β are the directions perpendicular to δ, i.e.,
rαβx = (Lx, α, β), rαβy = (α,Ly, β), and rαβz = (α, β, Lz), and rαβ

δ̄
= rαβδ |Lδ=0.
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Figure 7.6: Plot of the stray field components normalized to the magnetic
saturation: Bz

x(x, y, z = 16 nm)/(µ0MF ), Bz
y(x, y, z = 16 nm)/(µ0MF ), and

Bz
z (x, y, z = 16 nm)/(µ0MF ) for a cube of side length L = 15 nm. Because

the origin of our coordinate system is at the center of the cube, this is a
plot of the stray field at a distance of 1 nm from the upper surface of the
cube.

The integrals in Eq. (7.47) can be evaluated analytically [155, 156].
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F,s k z :direction of stray field close to the surface
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Figure 7.7: Schematic representation of the ferromagnetic particle polar-
ized along the z axis. The stray field produced by a uniformly magne-
tized cube can be calculated by adding the electric field produced from
the negatively charged bottom plane to the electric field produced by the
positively charged upper plane. Close to the surfaces and away from the
edges, the stray field points mostly along z. Only close to the edges the
transverse components become significant.

When the cuboid is magnetized along z, one obtains

Bx
x(x, y, z) =

µ0MF

4π
{f(x, y, z)− f(x, y − Ly, z)

−f(x− Lx, y, z) + f(x− Lx, y − Ly, z)}
(7.48)

Bx
y (x, y, z) =

µ0MF

4π
{f(y, x, z)− f(y − Ly, x, z)

−f(y, x− Lx, z) + f(y − Ly, x− Lx, z)}
(7.49)

Bx
z (x, y, z) =

µ0MF

4π
{g(x, y, Lz, z)− g(x, y − Ly, Lz, z)

−g(x− Lx, y, Lz, z) + g(x− Lx, y − Ly, Lz, z)
−g(x, y, 0, z) + g(x, y − Ly, 0, z)
+g(x− Lx, y, 0, z)− g(x− Lx, y − Ly, 0, z)} . (7.50)



CHAPTER 7. HIGH-EFFICIENCY RESONANT AMPLIFICATION OF
WEAK MAGNETIC FIELDS FOR SINGLE SPIN MAGNETOMETRY122

Here

f(a, b, z) = log

(√
a2 + (z − Lz)2(b+

√
a2 + b2 + z2)√

a2 + z2(b+
√
a2 + b2 + (z − Lz)2)

)
,

(7.51)

g(a, b, c, z) = arctan

(
a b

(z − c)
√
a2 + b2 + (z − c)2

)
. (7.52)

The analytical expressions for By,z(r) are found similarly.
For the sake of illustration, we plot in Fig. 7.6 the three components

of Bz as function of x and y for a cube of size L = Lx = Ly = Lz = 15 nm
at a distance of 1 nm above the upper face.



Part III

End states in one-dimensional
systems
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CHAPTER 8
Introduction

Over the last decades a number of proposals have been made for solid-
state implementations of a quantum computer. Among these, electron
spins in GaAs quantum dots [1, 82] are most promising candidates with
unusually long coherence times [157]. Such dots contain typically many
levels which are filled according to Hund’s rule. Thus, the condition for
a spin-qubit, which requires the presence of only a single unpaired elec-
tron, becomes challenging [82], and the scalability of such an approach is
still an open problem. Herein we propose a simple setup, involving pe-
riodically modulated gates on top of a quantum wire, which eventually
results in an effective double dot system. Due to the spatial modulation
of the gate voltage the energy spectrum of the quantum wire acquires
a charge density wave (CDW) gap. Recently, similarly modulated se-
tups have been discussed with focus on metal-insulator transitions [158]
and transport properties in an infinite-wire superlattice [159]. Here, we
show that the modulated quantum wire supports localized, fractionally
charged states at each end of the wire, known as Tamm-Shockley bound
states [160, 161], with their energies lying inside the gap. These end
wave-functions are well protected from the continuum and can host sta-
ble spin-qubits.

The previously described fractionally charged end-states are related
to the field of topological quantum computing that has emerged in re-
cent years as a promising alternative to standard quantum computing
schemes (such as previously described spin-qubit based quantum com-
puting). The main difference in this approach to quantum computing
as compared to other schemes is that some of the universal quantum
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gates are performed by braiding topological excitations in the solid state
systems, thus this approach provides, in principle, an error-free imple-
mentation of some of the universal quantum gates. Within this field
of research, the study of Majorana fermions (MFs) that emerge as end-
states in various solid-state systems has recently attracted a lot of at-
tention [24, 25, 26, 27, 28, 29, 30]. In particular, the possibility of real-
izing them as zero-energy states localized at the end of one-dimensional
systems—so-called Majorana end states (MES).

It was shown that the scheme to induce the fractional Tamm-Shockley
bound states can be modified by assuming the simultaneous presence
of Rashba spin-orbit interaction (SOI) and uniform and spatially peri-
odic magnetic field which produce gapped phases with a rich phase di-
agram, including a reentrance behavior of MFs and a complementary
phase characterized by fractionally charged fermions (FF) [34]. Similarly
to MFs, these fractional fermion states can exhibit non-Abelian braiding
statistics [35], but they exist both with and without superconductivity.

We first consider one-dimensional discrete and continuum models
and find a number of remarkable features for the end states resulting
from the CDW modulation. In particular, using exact numerical diag-
onalization of the discrete open chain we analyze the stability of these
states in the presence of a random potential and find that for weak disor-
der the end states remain stable. For the continuum model we consider a
periodically modulated potential of the form ∆0 cos(kCDWx + ϑ), where
∆0 is the strength of the potential, kCDW the CDW vector, and ϑ a con-
stant phase. For ϑ = π/2, the CDW phase supports zero energy bound
states which are remarkably robust to position dependent fluctuations in
∆0. We also show that for ϑ = π/2 the model maps to the Jackiw-Rebbi
model for massive Dirac fermions with midgap bound states [162]. We
treat interactions via fermionic and bosonic techniques and find that they
primarily renormalize the gap and decrease the localization length. We
consider end states in a ring-geometry by connecting them directly via
tunnel junction. The Aharanov-Bohm oscillation in such rings exhibits
an unusual 4π periodicity, providing a striking signature of the existence
of end states. Finally, we show that the two opposite end states serve as
effective double quantum dot which can be used to implement quantum
computing gates for spin-qubits.

Next, we analyze the experimental signature of MFs in transport se-
tups. The experimental search [31, 32, 33] of MFs predicted to occur in
condensed matter systems is challenging due to the fact that MFs are
characterized by zero coupling to electromagnetic fields. Only an indi-
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rect identification is possible, in particular via a zero-bias conductance
peak (ZBP) [163, 164]. However, such features are not an unambiguous
demonstration of MFs. The same ZBPs can be induced by different mech-
anisms, including the Kondo effect [165], Andreev bound states [166],
weak antilocalization and reflectionless tunneling [167].

A typical experimental setup [31, 32, 33] consists of a semiconduct-
ing nanowire with Rashba spin-orbit interaction (SOI) deposited on or
coated with a bulk s-wave superconductor (S) on one end and contacted
through a tunnel barrier by a normal lead, on the other end. Part of the
nanowire is in a superconducting state induced by proximity effect.

The transition to the topological phase controlled by a magnetic field
B is accompanied by a closing and reopening of the excitation gap [25,
26, 27, 28, 29, 30]. The topological phase persists for all B-fields above a
critical Bc in a one-band model, while it could have a finite upper crit-
ical field in a multiband model, where bands cross at large fields and
hybridization of MFs takes place. However, in experiments one typically
explores regimes where only one band undergoes a transition [31, 32, 33].
For a topological section of finite length L?, the MFs at each end with lo-
calization length ξM depending on B can overlap, leading to splitting of
the ZBP at strong B-fields.

The experiments [31, 32, 33] show features which are partially consis-
tent with the existence of MFs. However, quantitative agreement with the
theory is still missing. To fill in this gap, we perform numerical calcula-
tions of the two-terminal conductance G in a hybrid structure, referred
to as NSS′ setup which closely models the experiment. Here, G is cal-
culated within the standard scattering theory [168], with the help of the
recursive Green’s function techniques [169]. This allows us to model a
complex structure close to experiment that is not amenable to analytical
approaches.1

To be specific, we focus on InSb nanowires [31, 32] and we use as a
primary reference the experiment [31]. Nonidealities such as multiple
occupied subbands, disorder, finite width of electrostatic barriers, finite
coherence lengths, and nonzero temperature are taken into account.

Our study reveals important features not emphasized so far. For this,
the presence of the bulk superconductor turns out to be decisive. We
summarize here our main findings. In our NSS′ setup, the gap-edge con-

1Note that the SW region is not grounded in typical experiments while the mean-
field formalism adopted here implies this assumption. Such difference can be accounted
for through a modified formula for the conductance, and leads to small corrections [168,
170].
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ductance peak decreases in intensity for increasing B, a feature that is
also not captured by simpler models. Further, in some regimes the clos-
ing of the gap becomes visible in the conductance, while it does not in an
NS setup. We find oscillations of the ZBP as a function of B and explain
their origin. We argue that disorder is unlikely to be the explanation of
the observed ZBPs. Further, we show that the tunnel barrier plays an
important role for the visibility of peaks. Finally, according to our results
the experimental dI/dV behavior seems to point to a SOI strength larger
than the one reported.

Finally, we study the transport and noise characteristics of FFs that
have not been investigated so far, i.e., we address the question of finding
transport signatures related to FFs in non-superconducting Rashba NWs,
which we regard as one of the most promising setups for the observation
of FFs.

To carry out our analysis, we consider the NW contacted by two nor-
mal (N) leads at its two ends. We find that the FF phase is identified in a
distinctive way by a series of features in the conductance behavior of the
junction. The fractional charge of the bound states, however, cannot be
directly demonstrated by standard two-terminal measurements.



CHAPTER 9
Localized end states in density
modulated quantum wires and

rings

Adapted from:
Suhas Gangadharaiah, Luka Trifunovic, and Daniel Loss

“Localized end states in density modulated quantum wires and rings”,
Phys. Rev. Lett. 108, 136803 (2012)

We study finite quantum wires and rings in the presence of a charge density
wave gap induced by a periodic modulation of the chemical potential. We
show that the Tamm-Shockley bound states emerging at the ends of the wire
are stable against weak disorder and interactions, for discrete open chains
and for continuum systems. The low-energy physics can be mapped onto
the Jackiw-Rebbi equations describing massive Dirac fermions and bound
end states. We treat interactions via the continuum model and show that
they increase the charge gap and further localize the end states. In an
Aharonov-Bohm ring with weak link, the bound states give rise to an un-
usual 4π-peridodicity in the spectrum and persistent current as function of
an external flux. The electrons placed in the two localized states on the op-
posite ends of the wire can interact via exchange interactions and this setup
can be used as a double quantum dot hosting spin-qubits.
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Figure 9.1: The figure shows a quantum wire (black) of length L with
negatively charged gates (blue) forming a superlattice potential. Due to
the induced charge density modulation a bound state at each wire end
can emerge.

9.1 Lattice model
The typical lattice model for 1D spin-less fermions in the presence of
CDW modulation is described by 1

H = −t
N−1∑

j=1

[
c†j+1cj + h.c.

]
+ ∆

N∑

j=1

cos
[
2kCDW ja+ ϑ

]
c†jcj, (9.1)

where cj is a fermion operator at the site j, N is the total number of lat-
tice sites, t > 0 is the hopping integral, ∆ > 0 the CDW gap, kCDW the
CDW wave-vector, a the lattice constant and ϑ is an arbitrary phase. The
energy spectrum under the constraint of open boundary conditions is
obtained by exact numerical diagonalization and we find that the crite-
rion for the existence of bound states depends on the sign of the poten-
tial at the beginning and end sites. For illustrative purposes we have
considered kCDW = π/4a and ϑ = π/2, this choice corresponds to neg-
ative potential at the initial two sites with the overall profile given by
∆
∑N

j=1 cos
[
jπ/2 + π/2

]
≡ ∆(−1, 0, 1, 0,−1, ...). If the phase of the po-

tential is chosen such that one end of the wire has positive whereas the
other end has negative potential then only one end state is obtained.
On the other hand, for a reflection symmetric potential profile about
the center of a long wire (with both ends having negative potential),
there will be two degenerate mid-gap states, ψR and ψL, localized at the
right and left boundaries resp., being the well-known Tamm-Shockley
states [160, 161]. Fig. 9.2(a) shows the spectrum of an 320 site chain. Re-
ducing the wire length causes exponentially small splitting in the ener-
gies of the bound states, with the new states described by the symmetric

1For simplicity we omit here the spin indexes, since the ↑ and ↓ spin channels are
independent and this leads only to an additional degeneracy.



CHAPTER 9. LOCALIZED END STATES IN DENSITY MODULATED
QUANTUM WIRES AND RINGS 130

70 80 90 100

−11

−10

−9

−8

E/t

(a)

0 100 200 300
−0.4

−0.2

0

0.2

0.4

N

(b)

N

Figure 9.2: (a) The part of the spectra around the gap of the Hamiltonian
given by Eq. (9.1), obtained by exact diagonalization. The red bars de-
note two almost degenerate bound (midgap) states. We have chosen for
the parameters t = 7, ∆ = 0.8, and N = 320. (b) One of two bound states.
Plotted here is ψ+ = ψL + ψR, where ψL,R are states localized at the left
(right) end of the wire.

and anti-symmetric combination of ψR and ψL. We obtain the bound
states to be in the middle of the gap only when ϑ = π/2 and t� ∆.

9.2 Disorder effects
For realistic systems, some degree of random disorder is unavoidable. To
study this effect in our lattice model, we add a random on-site potential∑

i Vic
†
ici. Here, Vi is taken according to a Gaussian distribution with zero

mean and standard deviation γ. Fig. 9.3 depicts the linear dependence of
the root-mean-square

√
σ[Ei] of the i-th energy level (i = 1 . . . N , i.e., for

all energy levels) on the standard deviation of the random disorder po-
tential 2. Since the slopes of the bound states are less than 1, we conclude
that the end states remain gapped even for disorder strengths compara-
ble to the gap (∆). As γ is increased, Anderson localization sets in. We
also observe as γ is increased that the end states begin to mix with other
(spatially) nearby localized states, thus effectively causing the end states
to be more delocalized. Additionally, it is readily observed from Fig. 9.3
that the end states are more affected by disorder compared to all the con-

2We note that a Kolmogorov-Smirnov test shows that the eigenenergies are not nor-
mally distributed.
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Figure 9.3: The dependence of the root-mean-square value
√
σ[Ei] of the

i-th energy level (i = 1 . . . N , i.e., for all energy levels) on the standard
deviation of the random disorder potential.

tinuum states. The ratio thereof depends on ξ/L, since this difference is
coming from the spatial localization of the end states. For a weak disor-
der, the aforementioned dependence is linear, while for a strong disorder
the dependence becomes more complicated due to the emergence of An-
derson localization.

So far we have considered a particular realization of the lattice model.
We next consider the continuum case, this limit describes the low-energy
physics of a large class of one-dimensional lattice models with CDW (or
superlattice) modulation. Recently, there has been intense activity on ex-
otic quantum matter, such as Majorana fermions (chargeless) [171, 172,
173, 174, 175, 176, 177, 178, 179, 180, 181] and massless Weyl fermions [182,
183] among others. Here, we will show that our setup allows for the
realization of the Jackiw-Rebbi Hamiltonian [162], describing a massive
Dirac fermion of charge 1/2 as end state.
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9.3 Continuum model
We consider a quantum wire in the presence of a gate-induced potential
with periodicity λCDW = 2π/kCDW . For carrier densities smaller than the
intraband energy gap only the lowest subband is occupied. The physics
of the fermion mode Ψσ (σ =↑, ↓ is the spin index) in the lowest sub-
band is described in terms of the slowly varying right Rσ(x) and left
Lσ(x) parts and is expressed as Ψσ(x) = Rσ(x)eikF x + Lσ(x)e−ikF x. For
an open wire, the boundary condition Ψσ(x = 0) = 0 imposes the con-
straint [184, 185], Rσ(x) = −Lσ(−x). Thus, the Hamiltonian can be ex-
pressed in terms of right movers only.

The non-interacting Hamiltonian can be written as a sum of two parts,
H0 = H

(1)
0 +H

(2)
0 , where the kinetic part can be expressed in terms of only

the right moving fermions (the original range [0, L] now becomes [−L,L])
and is given by (summation on the spin indices is assumed)

H
(1)
0 = −ivF

∫ L

−L
dxR†σ(x)∂xRσ(x) (9.2)

and the CDW term by

H
(2)
0 = ∆0

∫ L

0

dx cos(2kCDWx+ ϑ)Ψ†σ(x)Ψσ(x), (9.3)

with ϑ being a constant phase factor. Thus

H0 = (1/2)

∫ L

−L
dxR†σH0Rσ, (9.4)

where Rσ(x) = [Rσ(x),Rσ(−x)]T and the Hamiltonian density H0 for
each spin is the same and given by

H0 = −ivF τz∂x +m1(x)τx +m2(x)τy, (9.5)

where

m1(x) = − cos[2δkx+ ϑsgn(x)]∆0/2,

m2(x) = sin[2δkx+ ϑsgn(x)]∆0/2, (9.6)

and δk = kCDW − kF . If δk = 0 and the charge-density wave vanishes
at the boundary, i.e., ϑ = π/2, then it is easy to verify that H0 satisfies
the ‘chiral symmetry’ [186] PH0 = −H0P (P is a complex conjugation
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operator). Moreover, the eigenvalue equation (H0ψσ = εψσ) of the chiral
symmetricH0 is related to the Jackiw-Rebbi equation describing massive
fermions, 3

HJRψJR = [τz∂x +msgn(x)]ψJR = ετxψ
JR, (9.7)

via the transformation, ψJR = U−1τyψ and HJR = U−1H0τyU , where
U = exp(iτ · n̂2π/3) and n̂ = (̂i + ĵ + k̂)/

√
3. Here, τx,y,z denote Pauli

matrices acting on the spinor Rσ(x). Solving the eigenvalue equation
for L � vF/∆0 one obtains exponentially decaying bound states ψσ ∼
exp[−(∆0/2vF )x] and ψσ ∼ exp[−(∆0/2vF )(L − x)] at x = 0 and x = L.
Away from the chiral symmetry point (ϑ 6= π/2) bound states still exist
as long as sinϑ > 0, with the eigenstates given by

ψσ ∼ exp[−i(∆0 exp[−iϑ]/2vF )x] (9.8)
ψσ ∼ exp[−i(∆0 exp[−iϑ]/2vF )(L− x)]. (9.9)

For infinite wires the eigenvalues are degenerate and given by

ε = −∆0 cos(ϑ)/2. (9.10)

However, finite length introduces overlap between the end states leading
to an exponentially small splitting in the energy (see below and Fig. 9.4).

In a realistic quantum wire the gap ∆(x) and the phase ϑ(x) will in-
variably be position dependent. Assuming this dependence to be weak,
the correction in lowest order in δ(x)/∆0 � 1 is given by,

δε = − ∆0

4vF

∫ ∞

0

dxδ(x) sin 2ϑ(x)e−∆0 sin[ϑ0]x/vF , (9.11)

where 〈δ(x)〉 = 0 and 〈ϑ(x)〉 = 〈ϑ0 + δϑ(x)〉 = ϑ0, and they both vary
slowly on the Fermi wavelength λF = 2π/kF . Thus, δε � ∆0, and the
bound states remain stable to weak perturbations.

9.4 Interaction effects
In the following, we consider the effect of repulsive interactions on the
end states. For simplicity, we consider spinless fermions with kF = kCDW

3The fractional charge 1/2 of the end states are seen only in the continuum
model [162] but not in the lattice model. This difference is coming from subtracting
an infinite Fermi sea when passing to the continuum model.
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and ϑ = π/2. As usual in 1D, the interactions can be split into forward
and back scattering parts. The former

HF = πvFg4

∫ L

0

dx(:JRJR: + :JLJL:), (9.12)

where JR = R†(x)R(x) and JL = L†(x)L(x), is responsible for the veloc-
ity renormalization [187], v = vF (1+g4). On the other hand, the backscat-
tering part given by

HB = πvFg2

∫ L

0

dx:JLJR:, (9.13)

renormalizes the gap at the lowest order in interaction. The mean-field
gap ∆̃(x) ∝ g2vF 〈R(x)R†(−x)〉 adds to the externally induced gap

m2(x) = sgn(x)∆0/2. (9.14)

We note that similar to m2(x), ∆(0+) = −∆(0−). This can be seen by
invoking the boundary condition, R(x) = −L(−x), and by expressing
R(x) = exp(i

√
4πφR) and L(x) = exp(−i

√
4πφL) in terms of the bosonic

fields φR(x) and φL(x) which themselves satisfy [185]
√

4πφR(0) = −
√

4πφL(0) + π. (9.15)

Thus, for weak interactions the bound states retain the same form as for
the non-interacting case but with renormalized velocity and gap. To esti-
mate the gap size we evaluate the self-energy, Σ̂, using the unperturbed
Green’s function for an infinite wire, G0(iω, k) = (iω−vFkτz−∆0τy/2)−1.
In leading order, the gap renormalizes to

(∆0/2)[1 + (g2/4) ln[min(Λ, vFL
−1)/∆0]], (9.16)

where Λ is the band width. Thus, the localization length, given by ξ =
(2vF/∆0){1 + g4 − (g2/4) ln[vF/L∆0]}, reduces with interaction. In other
words, due to the repulsive interaction between the continuum and the
end states, the latter states get squeezed.

The renormalization of the gap can be more rigorously analyzed via
bosonization. Using standard procedures [188], we obtain the following
form for the bosonic Lagrangian

L(x, t) =
∑

ν=c,s

[ 1

2vνKν

(∂tφν)
2 − vν

2Kν

(∂xφν)
2
]

(9.17)

+
vF

2πa2

∑

η=↑,↓

yη sin[
√

4πφη − 2δkx− ϑ],
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where the subscripts c, s refer to charge and spin, resp. The ∂xφc/s field
describes the charge/spin density fluctuations and θc/s is the conjugated
field, and φ↑,↓ = (φc ± φs)/

√
2. The Luttinger liquid parameters Kc/s

and velocities vc/s encode interactions, and y↑,↓ = a∆0/vF . The sine term
denotes the coupling of up and down spin fermions with the external po-
tential. As before, we assume δk = 0. In general, there are two additional
terms: one of them arises due to backscattering between opposite spin
electrons and is given by cos(

√
8πφs), and the other, cos(4

√
πφc − 4kFx),

describes the Umklapp scattering. However, both can be neglected as
the two operators flow to zero under a renormalization group (RG) treat-
ment.

The scaling dimensions of sin(
√

4πφ↑,↓), d↑,↓ = (Kc + Ks)/2 ≈ 1, in-
dicate that near commensurability (δkvF/∆0 � 1) the sine terms are
strongly relevant. The parameters y↑,↓ have an identical flow [so as to
preserve the SU(2) symmetry, this also implies Ks = 1] towards the
strong coupling regime and yields an effective localization length ξ ∼
a(a∆0/vF )2/(Kc−3) for the bound state. Thus as before the role of the in-
teractions is to reinforce the externally induced gap. We note that under
RG additional terms of the type ∂iφc∂iφs (where i = x, τ ) are generated,
however, they are marginal and leave the essential physics unaltered.

9.5 Detection
A viable approach for detecting the energy splitting between the bound
states is through persistent current measurements. For this the wire should
be in a ring geometry so that the end states are connected together via
a tunnel junction and also large enough such that the energy splitting
between the bound states is small yet the overlap of the localized wave-
functions remain non-zero. Such a set-up can enclose magnetic flux Φ in-
ducing Aharonov-Bohm (AB) oscillations in a mesoscopic (phase-coherent)
regime. Next consider a single electron placed in one of the bound states.
The effective Hamiltonian for the spinless fermion in terms of the orthog-
onal symmetric, |+〉, and anti-symmetric, |−〉, states can thus be written
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a

b

c

Figure 9.4: (a) Quantum wire (black) in an Aharonov-Bohm-ring geome-
try with negatively charged gates (blue). The bound states are localized
on either side of the weak link (grey) of strength t0. The energy (b) and
persistent current j = −∂F/∂Φ (c) dependence on the flux Φ/Φ0 are plot-
ted with the solid curves for the effective model (Eq. (9.18)) and with the
dashed curves for the lattice model (Eq. (9.1)). The parameters for the red
and blue solid curves correspond to δ/t0 = 2.2 and (ε+ +ε−)/t0 = 6.2, and
for the green curve to δ/t0 = 2.0 and (ε+ + ε−)/t0 = 6.0 (see Eq. (9.19)).
While for the dashed curves the parameters are ∆/t0 = 3.85 (red and
blue) and ∆/t0 = 4.54 (green). The ratio ∆/t = 0.5 and N = 50 is the
same for all three dashed curves. Here, t0 is chosen such that we have
a degeneracy at Φ/Φ0 = 2π. Assuming only the lower bound state is
filled, the persistent current shows an unusual 4π-periodicity as function
of Φ/Φ0.
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as 4

H =
∑

η=±

[
εη + ηt0 cos

( Φ

Φ0

)]
|η〉〈η|+ it0 sin

( Φ

Φ0

)

×
[
|−〉〈+| − |+〉〈−|

]
, (9.18)

where Φ0 = h/e is the flux quantum, ε+ (ε−) the energy of the symmetric
(anti-symmetric) mode, and the tunneling across the weak link is associ-
ated with a factor νt0 exp(iµΦ/Φ0), where ν, µ = ±1 and t0 the tunneling
amplitude. For (anti-) clockwise tunneling we have µ = +(−), while the
sign of ν depends on the relative sign between the wave-functions across
the weak link. The energy eigenvalues are

ε1/2 =
1

2

(
ε− + ε+ ±

√
4t20 + δ2 − 4t0δ cos[Φ/Φ0]

)
, (9.19)

where δ = |ε+− ε−|. At Φ/Φ0 = 2π the separation between the two eigen-
values is minimal and given by |2t0 − δ|. For large separations, the en-
ergy levels exhibit the usual 2π dependence on the flux Φ/Φ0. In contrast,
for a flux sweep-rate ω larger than |2t0 − δ| a scenario emerges wherein
an electron placed in one of the levels can jump to the second level and
come back to the original one after a second 2π phase, thus exhibiting
an unusual 4π-periodicity in the persistent current, j = −∂F/∂Φ, where
F is the free energy [189]. By independently varying t0 and ω the split-
ting δ can be estimated. For typical values t0 ∼ δ ∼ 10µeV we estimate
j ∼ 0.1nA, which is of measurable size [190, 191]. For the observation,
the phase-coherence length Lφ of the ring needs to exceed L. For GaAs
rings, we note that Lφ & µm for sub-Kelvin temperatures [190, 191].

The effective model, Eq. (9.18), does not take into account the contri-
bution arising from the filled Fermi sea of continuum states. However,
when the number of continuum states below the gap is even—the states
come in pairs with mutually canceling contributions to the current. On
the other hand, when this number is odd, the topmost filled continuum
state contributes to the current. Nevertheless, the amplitude of the per-
sistent current, due to the end and continuum states, scale differently
with the lattice length N—the latter behaves like 1/N , while the former
like δ ∼ e−ξ/Na. Thus, for chains with N � 1 and ∆ ∼ ~vF/Na, the
persistent current will be dominated by the end states and our effective

4For simplicity we omit here the spin indexes, since the ↑ and ↓ spin channels are
independent and this leads only to an additional degeneracy
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description fully applies. The dashed curves in Fig. 9.4 include contri-
butions from the bound states as well as the filled Fermi sea. Indeed we
have confirmed that the contributions from the continuum states are two
orders of magnitude less compared to those from the bound states. Fi-
nally, for the spinfull case, the amplitude of j simply doubles, whereas
the periodicity remains unchanged.

9.6 Effective quantum dot
Similar to the discrete quantum dot states, the presence of spinful, CDW-
induced, localized states in the quantum wire opens up an intriguing
possibility for the realization of a quantum computer device. These states
are well separated from the continuum and can be filled by tuning the
chemical potential to the end state level. We note that these ‘quantum
dots’ contain automatically only one orbital level, and no individual gates
are needed to tune them into a single electron regime. Due to incomplete
screening there will be half-filling, i.e., only one state on either end will
be filled. This is simply because once one of the energy levels on either
end is filled, to fill the remaining two levels requires additional energy to
overcome the Coulomb repulsion. The physics of the half-filled state is
described by the usual Hubbard model, H = −t∑σ=↑,↓(c

†
σ,Rcσ,L + h.c.) +

U
∑

i=L,R n↑,in↓,i, where t is the tunneling amplitude and U is the onsite
repulsion. For the energy hierarchy ∆ � U � t the effective Hamilto-
nian acquires the Heisenberg form, H = JSR · SL, where J = 4t2/U .
The effective exchange coupling J can be controlled by changing the
gate potential which determines the overlap between the left and right
end modes and hence the tunneling amplitude t. We note that for weak
overlap, t is small and U large making the J to be small, whereas for
strong overlap the opposite is true. 5 By switching on and off the ex-
change constant in an appropriate sequence, the essential operations of
the quantum dot, both the ‘swap’ and ‘square-root-of-swap’ operations
can be performed, which, together with two single spin-qubit operations,
enables the fundamental XOR gate [1].

Finite overlap between the right and the left end states can be ensured
if their localization length ξ is on the order of the wire length L. This
restriction yields an estimate for the strength of the periodically modu-
lated external voltage, ∆0 ∼ Λ(a/L)(3−Kc)/2, where Λ ∼ vF/a is the band

5We note that because of the gap between the bound state and the continuum,
Kondo physics does not play a role.
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width. A GaAs quantum wire with length L ∼ 1µm with approximately
10 − 20 gates requires a Fermi wave-length λF ∼ 50nm. And with the
parameters [192], Λ ∼ 0.2eV, Kc = 0.8, and lattice spacing a ≈ 5Å, we
obtain ∆0 ∼ 0.04meV. Thus, the upper bound for temperatures are in the
achievable range of a few hundred milli-Kelvin.

9.7 Conclusions
We have shown that a CDW gap in a quantum wire can lead to bound
states at the ends of the wire which are stable against weak disorder
and interactions. They map to massive Dirac fermions desrcibed by the
Jackiw-Rebbi model. In an AB-ring, the bound states lead to an unusual
4π-periodicity in the persistent current. Finally, the two opposite end
states serve as effective double quantum dot which can be used to imple-
ment quantum computing gates for spin-qubits.
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Realistic transport modeling for a

superconducting nanowire with
Majorana fermions
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“Realistic transport modeling for a superconducting nanowire with Majorana
fermions”,

Phys. Rev. B 87, 024515 (2013)

Motivated by recent experiments searching for Majorana fermions (MFs) in
hybrid semiconducting-superconducting nanostructures, we consider a re-
alistic tight-binding model and analyze its transport behavior numerically.
In particular, we take into account the presence of a superconducting con-
tact, used in real experiments to extract the current, which is usually not in-
cluded in theoretical calculations. We show that important features emerge
that are absent in simpler models, such as the shift in energy of the prox-
imity gap signal, and the enhanced visibility of the topological gap for in-
creased spin-orbit interaction. We find oscillations of the zero bias peak as
a function of the magnetic field and study them analytically. We argue that
many of the experimentally observed features hint at an actual spin-orbit in-
teraction larger than the one typically assumed. However, even taking into
account all the known ingredients of the experiments and exploring many
parameter regimes for MFs, we are not able to reach full agreement with the
reported data. Thus, a different physical origin for the observed zero-bias
peak cannot be excluded.
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10.1 Model
We consider a two-dimensional rectangular nanowire of length L along
the x̂ direction and lateral extension W in the ŷ direction. All the plots
presented in this manuscript refer to 4-subband wires (W = 4), but we
have conducted similar simulations for W = 1, 2, 8 as well, noting only
quantitative changes in the relative strength of the different dI/dV fea-
tures (besides the known peculiarity of the one-band case, where some
features are absent).

N SW SNW

Figure 10.1: The schematics of the NSS′ geometry setup we consider in
this work (top panel). The nanowire (gray) is connected on the left to
a semi-infinite normal lead (N, blue) and on the right to a semi-infinite
bulk s-wave superconducting lead (S, green). It consists of a normal sec-
tion (NW, gray), where a potential barrier U(x) (black) is created, and a
proximity-induced superconducting nanowire section (SW, gray). We al-
low for static disorder w(x, y) (red crosses) in the nanowire. The spatial
dependence of the parameters entering the Hamiltonian in Eq. (10.1) is
qualitatively depicted in the bottom panel.

The tight-binding Hamiltonian (lattice constant a) describing the dif-
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ferent sections of the setup has the form

H =
∑

m,d

c†m+d,α

[
−tδαβ − iᾱm(x̂ · d)σyαβ

]
cm,β

+
∑

m

c†m,α

[
(εm − µ0)δαβ −

gm
2
µBBxσ

x
αβ

]
cm,β

+
∑

m

∆m

(
c†m,↑c

†
m,↓ + H.c.

)
, (10.1)

where t = ~2/(2ma2) is the hopping amplitude (set to 1 and taken as
an energy unit) and ᾱ is the spin-flip hopping amplitude, related to the
physical SOI parameter by ᾱ = α/2a and to the SOI energy byEso = ᾱ2/t.
Here and in the remainder of the paper we are neglecting transverse spin-
orbit coupling, but we have checked that the introduction of a small fi-
nite transverse SOI is not affecting qualitatively our results. We made the
assignment t = 10 meV, which corresponds to taking a ' 15 nm, and re-
alistic sizes (∼ µm) are then amenable to reasonable computations. The
sums run over all lattice sites m and nearest neighbors (m + d). Im-
plicit summation over repeated spin indices is assumed. The constant
µ0 is chosen to set the common chemical potential to the zero-field bot-
tom of the topmost band and depends on the number of subbands (i.e.
on W ). Further, εm = −µm + Um + wm accounts for local variations of
the chemical potential, for the tunnel-barrier potential Um, and includes
an on-site random potential wm which models Anderson disorder. The
tunnel barrier has a Gaussian profile with height U0 and width λ. The ex-
ternal magnetic fieldB points along the nanowire axis (x̂) and induces a
Zeeman splitting 2VZ = gmµBB. Finally, ∆ is the pairing amplitude and
can either account for the native superconductivity in the bulk s-wave
superconducting lead (∆0) or for the proximity-induced pairing in the
nanowire (∆?), as exemplified in Fig. 10.1. All the above quantities are
taken to be site-dependent along the x̂ direction (except wm, which is
taken to be completely random), so that we can model different parts of
the setup. The normal lead is characterized by

ᾱ = 0, µ ' −µ0 (i.e. metallic regime),

g = 2, wm = 0, ∆m = 0. (10.2)

The nanowire is characterized by finite ᾱ = ᾱR, chemical potential µ ' 0
close to the bottom of the topmost band, g = 50 appropriate for InSb
nanowires, and ∆m varying from 0 in the normal section to ∆? in the
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proximized section. The nanowire is adiabatically connected to a metallic
superconducting lead with

ᾱ = 0, µ ' −µ0,

g = 2, wm = 0, ∆m = ∆0 ≥ ∆?. (10.3)

In a simpler model the nanowire is semi-infinite, without external su-
perconductor, referred to as NS geometry. This corresponds to taking
the superconducting lead to be identical to the nanowire, with a single
pairing amplitude ∆?. In such a configuration, the second MF is always
moved to infinity, and the ZBP is locked to zero for all B > Bc, whereby
the topological transition occurs at the “bulk” critical field (gµB/2)Bc =√

∆2
? + µ2 [25, 26, 27, 28, 29, 30]. We will sometimes switch to this NS

configuration in order to connect with previous studies [193, 194, 195,
196, 197, 198, 199, 200] and to understand the effect of the bulk supercon-
ductor.

In the actual experiments, and in a fully microscopic theoretical sim-
ulation, the nanowire has zero pairing everywhere, and the effective gap
∆? is generated by the coupling to the bulk superconductor. Usually one
can forget about the superconductor and work with a wire with given ∆?.
However, in the considered setup the bulk S is still playing a role, since
current is extracted through it, and it is therefore substantially modifying
the dI/dV behavior (not simply by singling out the Andreev reflection
contribution of an NS calculation). It would be different in the case of
transport across a proximity wire placed on a superconductor that is not
used as a contact (NSN geometry).

Our setup aims exactly at taking this fact into account: The proximity
effect is included in an effective fashion (not microscopically), but we do
have two different pairing regions that electrons have to cross. Still, with
the sequential geometry of Fig. 10.1 we are slightly simplifying here the
experimental setup [31, 32, 33], where the nanowire is side-contacted, or
top-contacted, and the current does not follow a straight path.

First we note that the value of the SOI α in the experiments is not
known [201], since the only available measurements have been performed
in a different setup, where the SOI was likely modified. Similarly, the
proximity pairing amplitude is not directly accessible, and one can only
deduce it from the dI/dV behavior. Thus, it becomes interesting and
even necessary to consider regimes with different SOI strengths, or dif-
ferent proximity pairing amplitudes.
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Figure 10.2: Effect of larger SOI strength, clean case. We plot here the
differential conductance dI/dV evaluated as a function of bias voltage V
and Zeeman energy VZ. Panels (a) and (b) refer to the NS configuration,
while (c) and (d) refer to the NSS′ setup. The parameters used here cor-
respond to: ∆? = 250 µeV, ∆0 = 2.1 meV (only NSS′), µ0 = −3.8 meV,
U0 = 45 meV, λ = 1 nm (narrow barrier), LN = 0, L? = 3 µm (only NSS′)
and µ = 0, which corresponds to a bulk critical V c

Z = ∆?. For the case
of InSb, the plotted range VZ = 0 − 6∆? corresponds to B = 0 − 1 T.
Temperature is set to T = 75 mK. α = 0.2 eV·Å(left column). α = 0.8
eV·Å(right column). Larger SOI yields a slower closing of the kF-gap
∆kF

(B), in both configurations, where kF is the Fermi momentum. No-
tice that in the NSS′ case the kF-gap signal decreases in intensity as the
magnetic field is increased.

10.2 Discussion
The first important point we want to make is that by assuming that the
actual SOI is larger than the reported one (e.g., α = 0.2 eV·Å, or Eso =
50 µeV [31]), one can get a substantial improvement in the calculated
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dI/dV behavior, with features more similar to experiments [31, 32, 33].
In other words, the measured data suggest a stronger SOI. In particular,
we observe the following facts.
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Figure 10.3: Effect of larger SOI strength on disorder, NSS′ case. The
parameter values are the same as in Fig. 10.2. In addition, a realistic
disorder wm ∈ [−3, 3] meV (corresponding to a mean free path `mfp ' 150
nm [201]) is included over the entire nanowire length L ' 2.5 µm. We do
not average over disorder configurations. (a) α = 0.2 eV·Å. (b) α = 0.8
eV·Å. In the weak SOI regime, the disorder lowers or destroys the gap
relative to lower subbands, bringing many supra-gap states down, close
to the Fermi level, where they cluster in some cases into a finite-extension
ZBP, like in panel (a). Such clustering is, however, removed for stronger
SOI [201], see panel (b).

(1) Under the assumption that the measured ZBP [31, 32, 33] arises
from MFs, we conclude that µ ' 0 in the topological section, since the
ZBP emerges already at small B, 1

2
gµBB ' ∆? for g = 50.



CHAPTER 10. REALISTIC TRANSPORT MODELING FOR A
SUPERCONDUCTING NANOWIRE WITH MAJORANA FERMIONS146

However, such a small µ, together with the reported SOI values [31],
would generate a rapid closing of the kF-gap ∆kF

as a function of B. This
is indeed what we find in our transport calculations for µ ' 0, α = 0.2
eV·Å, both in the NS and NSS′ setup, see Figs. 10.2(a) and 10.2(c), respec-
tively. Note that in the NS case the ZBP stays at zero for all fields, whereas
in the NSS′ case the ZBP exhibits an oscillating splitting (see below). In
the same figure we show that a stronger SOI gives a better agreement
with the measured ∆kF

(B), both in the NS setup [194], see panel (b), and
in the NSS′ setup, shown in panel (d). Note that this latter SOI effect,
which answers the issue raised in point (iv) above, is independent of the
nature of the observed ZBP.

As already observed elsewhere [196], the considered regime of µ ' 0
is characterized by an invisible gap closing, probably due to pretransition
wave functions which are delocalized throughout the wire, with little
weight close to the probed edges. At finite temperature we observe this
behavior both in the NS and in the NSS′ setups. On can thus state that
issue (i) has been settled.

(2) When realistic Anderson disorder is included in the model, the
closing of the gap becomes visible again even in the µ ' 0 regime [197,
201, 198], reintroducing a discrepancy with experiments [31, 32, 33]. Dis-
order in a nanowire with weak SOI causes a number of subgap states to
appear, some of which cluster around zero energy and possibly give rise
to a nontopological ZBP, more markedly for finite µ [201]. Such states
are coming from other subbands, for which the effective minigap gets re-
duced in the presence of disorder. This is substantiated by the fact that
the ZBP in Fig. 10.3(a) has a conductance peak larger than 2e2/h, imply-
ing that it cannot come from the Andreev signal of a single band. For
stronger SOI, the effect of disorder gets suppressed, and fewer subgap
states are observed (see Fig. 10.3), more compatibly with the experimen-
tal evidence [31, 32, 33]. Due to the same mechanism, also the strong ZBP
feature of Fig. 10.3(a) disappears, though. Thus, disorder is unlikely to
explain the ZBP structure observed in experiments.

(3) As a consequence of the finite length of the topological section (L?)
and of theB dependence of kF, we observe that the ZBP splitting exhibits
oscillations of increasing amplitude as B is swept, see Fig. 10.4(a) [203].
To explain this, we recall that in the weak-SOI limit the MF wave function
has an exponentially decaying envelope with localization length ξM and
a fast-oscillating part ∼ sin(kFx) [202]. If the magnetic field exceeds a
critical value B∗∗c = B∗∗c (α,L?) (see Fig. 10.5), the two end-MFs overlap
and split away from zero energy. Since ξM increases withB [25, 26, 27, 28,
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Figure 10.4: Same parameters as in Fig. 10.2, without disorder and at T =
0. Only the wire length is slightly smaller, L? = 2.2µm. (a) α = 0.2 eV·Å.
Note the oscillations of the ZBP, for explanations see text. (b) α = 0.8
eV·Å. For larger SOI, the oscillations become visible at higher magnetic
field (B∗∗c increases), and with large enough SOI strength the gap closing
becomes partially visible, even for the considered case of µ ' 0, while it
is not visible in an NS setup with the same parameters. The dI/dV peaks
coming from the gap-closing have, however, very small width and they
get washed out by realistic temperatures.

29, 30, 202], so does the splitting. However, if kFL? becomes an integer
multiple of π as a function of B, the ZBP splitting returns to zero, leading
to oscillations with a period given by

δ(VZ/∆?) =
π~
L?∆?

√
2VZ

m
=
πa

L?

√
tVZ

∆?

, (10.4)

wherem is the band mass and a the lattice constant. Using parameter val-
ues corresponding to Fig. 10.4, t/∆? = 40, L?/a = 200, we obtain quan-
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Figure 10.5: Schematic dependence of the MF localization length ξM on
magnetic field B. According to the theory for a one-band semi-infinite
nanowire [30, 29], a MF emerges when the magnetic field exceeds a crit-
ical value Bc = 2

√
∆2
? + µ2/gµB, and the system goes from the non-

topological (gray) to the topological (yellow) regime. However, for a
nanowire of finite length L?, due to overlap of the MFs from each end,
the additional approximate condition for the observation of a MF is ξM <
L?/2 . Considering typical dependences of ξM on magnetic field [202],
we predict that the MF should be observed for B∗c < B < B∗∗c , where the
critical fields B∗c and B∗∗c are defined through ξM(B∗c ) ≈ ξM(B∗∗c ) ≈ L?/2
(cf. Fig. 10.4).

titative agreement with the simulated ZBP oscillations. Since the critical
field B∗∗c increases with SOI [202], the ZBP splitting and related oscilla-
tions occur at larger fields. In other words, the presence or absence of the
oscillations in a given range of magnetic field values is determined by
the strength α of the SOI and by the ratio ξM(α)/L?. The former fixes the
form of the MF wave function, the latter determines whether the two MF
bound states are overlapping in a significant way or not. This explains
why in Fig. 10.4(b), where strong SOI has been adopted, oscillations are
starting at higher B (barely visible).

Note that these oscillations are quite robust against temperature ef-
fects, see Fig. 10.2(c). Such behavior of the ZBP is quite remarkable and
provides an additional possible signature to identify MFs experimentally.
One can argue at this point that the absence of oscillations in the experi-
mentally observed ZBPs [31, 33] represents an additional hint for strong
SOI.

We note in passing that in the NSS′ setup the SOI affects the visibility
of the gap closing, see Fig. 10.4. Again, one can explain this behavior by
invoking the changing spatial profile of the wave functions close to the
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Figure 10.6: Dependence of the conductance behavior on the normal-
region length LN. Panels (a)-(d) correspond to LN = 0, 0.3, 0.6, 1.5µm,
respectively. The other parameters are chosen as in Fig. 10.2, apart from:
λ = 20 nm, L? = 3 µm, α = 0.4 eV·Å, wm ∈ [−1.2, 1.2] meV (`mfp ' 1µm).
Temperature is set to T = 75 mK, as before. Note the evolution of the
proximity peak towards lower energies and the appearance of a second
peak at the largest values of LN [panel (d)].
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Figure 10.7: Role of the tunnel barrier U(x). The parameters are cho-
sen as in the previous figures, different curves refer to different magnetic
field values, ranging from 0 to 6∆? = 1.5 meV (= 1 T for g = 50), in
steps of 0.2 ∆?. Here we kept T = 0 in order to show the effect of the
barrier smoothness alone. a) Gaussian tunnel barrier with width λ = 1
nm (essentially, a δ-function). The Majorana-induced ZBP is fully visible,
with maximal weight dI/dV = 2e2/h at the largest magnetic fields. The
closing of the gap is, however, nearly absent. b) Same system, but with
λ = 50 nm, a value closer to the experimental situation. Gap-closing and
ZBP are completely absent (the adopted energy resolution δE is much
smaller than the realistic kBT ).

wire edge for different SOI values, together with the finite length of the
wire. The same effect is not manifested in the case of the NS setup (infi-
nite wire length).

Next we address further issues that have received less attention in the
literature so far.
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(4) The position of the proximity gap ∆kF
(B = 0) as observed in the

dI/dV curves is in general different from ∆? inserted in the Hamilto-
nian, Eq. (10.1). This observation is important, since it means that de-
ducing the proximity gap from the conductance curves is not a correct
procedure [31, 33]. Such an energy shift can be due to the presence of
a normal section of finite length LN between tunnel barrier and NS in-
terface. More precisely, the observed peak moves to lower bias voltages
for larger LN. By increasing LN, one can move the conductance peak
deeper inside the gap and eventually even introduce additional peaks
when LN & ξ = ~vF/(π∆?), similarly to the case of McMillan-Rowell
resonances [204]. This behavior is summarized in Fig. 10.6. Alterna-
tively, in the NSS′ configuration the peak corresponding to ∆? itself can
be viewed as a subgap resonance of the larger gap ∆0, and its position
can be changed by varying the distance L? of the N-S interface from the
S-S′ interface. In this case, the peak moves to larger energies for decreas-
ing L?, see, e.g., Fig. 10.2(c) and 10.2(d), and Fig. 10.4, where the dI/dV
peak is above ∆? due to the finite wire length [compare with Figs. 10.2(a)
and 10.2(b)].

(5) In both NS and NSS′ configurations, the tunnel barrier plays an
important role — it determines the transmission of each transport chan-
nel, which in turn sets the width of the subgap resonances [204] (with-
out changing their height). Introduction of temperature smears the res-
onances while preserving their weight, which implies a reduction of the
height in correspondence to the barrier-induced reduction of the width.
This explains the very small value of the ZBP in experiments, and an-
swers to issue (iii). If the resonance width becomes smaller than the
temperature, the resonance is essentially invisible [201]. Consequently, if
the barrier is wide enough, no subgap features are present in the dI/dV
curve. If the tunnel barrier is chosen to be sharp (like in many analytical
and numerical calculations), all the states present in the nanowire could
become visible. However, that is not a realistic choice, since a typical bar-
rier in experiments has a characteristic width of∼ 50 nm. For such values
we already observe a momentum filtering [194], leading in some cases to
a complete disappearance of MF signatures, see Fig. 10.7. Again, intro-
ducing disorder can make the aforementioned subgap features reappear.
Therefore, it is the combined effect of barrier shape, SOI, and disorder
strength that determines the final visibility of MFs.
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10.3 Conclusions
In summary, by numerically simulating a more realistic setup than be-
fore, we have obtained new features in the transport that are similar to
the ones observed in experiments. However, even after considerable ef-
fort, we do not reproduce all such features in a single configuration, and
we still lack a satisfactory agreement with experiments. In particular, the
exact shape of the measured ZBP is not very compatible with the picture
of MFs that form and then split as a function of magnetic field. Thus,
either the theoretical model is still incomplete, or a different physical ori-
gin for the observed ZBP [31, 32, 33] is to be considered. More precisely,
from our findings it seems possible that in the experiments the MF fea-
tures are essentially invisible and the observed ZBP is coming from some
different coexisting phenomenon, like Kondo effect, which seems indeed
to yield a similar behavior in some situations [205].
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CHAPTER 11
Transport signatures of fractional

Fermions in Rashba nanowires

Adapted from:
Diego Rainis, Arijit Saha, Jelena Klinovaja, Luka Trifunovic, and Daniel Loss

“Towards a realistic transport modeling in a superconducting nanowire with Majorana
fermions”,

Phys. Rev. Lett. 112, 196803 (2014)

We theoretically study transport through a semiconducting Rashba
nanowire (NW) in the presence of uniform and spatially modulated mag-
netic fields. The system is fully gapped, and the interplay between the
spin orbit interaction and the magnetic fields leads to fractionally charged
fermion (FF) bound states of Jackiw-Rebbi type at each end of the nanowire.
We investigate the transport and noise behavior of a N/NW/N system,
where the wire is contacted by two normal leads (N), and we look for pos-
sible signatures that could help in the experimental detection of such states.
We find that the differential conductance and the shot noise exhibit a sub-
gap structure which fully reveals the presence of the FF state. Alternatively,
another confirmation of the presence of the FFs is provided by a conduc-
tance measurement in an Aharonov-Bohm (AB) setup, where the FFs are
responsible for double-periodic oscillations. Our predictions can be tested
in InSb/InAs nanowires and are within reach of the present technology.
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11.1 Model
We consider a semiconducting NW of length L along the x̂ direction,
in the presence of long the ẑ direction and a magnetic field that in-
cludes a uniform (B) and a spatially periodic component (Bn). The NW
continuum Hamiltonian is given by H0 = 1

2

∫
dxΨ†(x)H0Ψ(x), where

Ψ = (Ψ↑,Ψ↓)
T, Ψσ(x) is the annihilation operator for a spin-σ electron

at position x. The Hamiltonian density is of the form

H0 = −~2∂2
x/2m− µ− iασz∂x , (11.1)

with m the electron band mass, α the oefficient, and µ the chemical po-
tential. The spectrum ofH0 consists of two parabolas centered at the SOI
momenta ±kso = ±mα/~2. The magnetic field leads to the Zeeman term

Hz = gµB[B +Bn(x)] · σ /2 , (11.2)

where g is the Landé g-factor and µB the Bohr magneton. Chosen along
the x̂ direction,B opens a gap ∆z = gµBB/2 at k = 0. The oscillating field
Bn(x) is oriented along ŷ, Bn = ŷBn sin(4ksox + θ) (but other equivalent
configurations are possible [34]). It couples the two exterior branches of
the spectrum, and opens up a gap ∆n = gµBBn/4. Such a field can be
generated externally, by an array of nanomagnets placed in proximity
to the wire [206, 207, 208], or internally, e.g., by the hyperfine field of
ordered nuclear spins inside the nanowire [209].

In our analysis, we are assuming that the nergy εso = mα2/2~2 is
the largest energy scale in the NW. In this strong-egime, we follow the
procedure described in Refs. [210, 202], which allows us to linearize H0

around k = 0 (“interior branch”) and k = ±2kso (“exterior branches”).
For µ = 0, one obtains the spectrum around k = 0 and k = ±2kso as
E2
m = (αk)2 + ∆2

m , with ∆m = ∆z,∆n for m = i, e. In such situation the
system is fully gapped, with no propagating modes at subgap energies,
|E| < min{∆z,∆n}. However, there can be localized edge states, FFs, in
the gap [34]. For example, in a semi-infinite geometry there is one bound
state, localized at the nanowire end, with energy

EFF =
∆z∆n sin θ√

∆2
z + ∆2

n − 2∆z∆n cos θ
. (11.3)

The angle θ encodes the boundary condition for the oscillating field at
the nanowire edge. The FF state exists only if the following relation is
satisfied: cos θ < min{∆z,∆n}/max{∆z,∆n} ≤ 1, see Fig. 11.1.
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Figure 11.1: Energies EFF(θ) and E ′FF(θ′) of the left (full lines) and right
(dashed lines) FF bound state, for L → ∞, for different gap values, as
evaluated from the analytical result Eq. (11.3). The angle θ′ describes the
right-end boundary condition for Bn and is given by θ + 4ksoL. Here
we chose symmetric boundary conditions θ′ = θ + nπ, in which case
the two FF energies vanish for θ = π, merging into the continuum at
E = min{∆z,∆n}, in correspondence of θ̄ = θ̄(∆z/∆n).

The non-interacting, spin-degenerate left and right leads (l =L,R)
are described by the Hamiltonian density Hl = −~2∂2

x/2m − µl . At
each lead/wire interface we insert a barrier, modeled with a δ-function
in the wave-function-matching analysis and with a rectangular-shaped
potential in the tight-binding (TB) calculations. In the latter, more re-
alistic case, one observes that if the barrier between NW and N sec-
tions is high enough the FFs are localized entirely in the NW section,
see Figs. 11.2c)-d), and the spectra of NW and N section are decoupled,
as in Fig. 11.2a). However, if the barrier is reduced, the left FF wave func-
tion (WF) can leak out in the N region and hybridize with the local WFs,
see Figs. 11.2e)-f) and the red spectrum in Fig. 11.2b).

11.2 Method
To study the transport through the semiconducting NW of length L we
employ an S-matrix formalism [211, 212, 213, 214], where we match WFs
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Figure 11.2: Tight-binding numerical results for a nanowire with a
normal/fractional-fermion (N/FF) junction, with FF bound states in the
FF phase. ∆z = 0.2tx and ∆n = 0.1tx (tx hopping parameter). The rotat-
ing field Bn is present only in the FF section of length LT, with LT = 3LN

and LN = 100. At the N-FF interface there is a rectangular barrier of
width Lb = LT/50, and height V = 5tx (left column) or V = tx (right col-
umn). a)-b): TB energy spectrum En(θ). Inside the bulk gap, delimited
by continuum states (black dots), there are two FF bound states, localized
at the left (red dots) and right end (blue dots). In addition, there are states
localized in the N section (cyan dots). c)-f): Probability densities |ψσ(x)|2
of the left FF state at θ = 0.6π [c),d)] and θ = 0.1π [e),f)]. If the barrier
is high, the FF is completely localized in the FF section [c),d)], and, as a
result, the FF spectrum shows no hybridization [a)] and is fully consis-
tent with Eq. (11.3). For lower barrier, the left FF leaks out in the normal
section [e),f)] and gets hybridized with the N-region subgap states [b)].
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and associated probability currents [215, 216, 217] at each wire/lead in-
terface to find the differential conductance and the shot noise in the pres-
ence of the FFs state. Depending on the choice of the spin-polarization
axis in the leads, one observes different types of behavior in the spin-
resolved transport coefficients Sσσ′ . With the given configuration of SOI
and magnetic fields, the most natural choice (provided by the eigen-
basis of t†t) is to work with y-polarized electrons. We then consider in-
coming plane-wave WFs with wave vector kl =

√
2m(µl + E)/~2, and a

nanowire WF that in the strong-imit reads ψNW = aψ+
i +bψ−i +cψ+

e +dψ−e ,
where ψ±i/e are the four solutions (internal/external branches, right/left
movers) at energy E, given by

ψ±i (x) =




[
E ±

√
E2 −∆2

z

]

∆z

, 1


 e±ikzx, (11.4)

ψ±e (x) =



eiθ
[
E ∓

√
E2 −∆2

n

]

∆n

e−2iksox, e2iksox


 e±iknx,

where ~kz =
√
E2 −∆2

z/α and ~kn =
√
E2 −∆2

n/α are the momenta
at energy E associated to internal and external branches [34]. The def-
initions for kz and kn apply both above and below the gap, where they
become purely imaginary and describe evanescent modes, whose linear
combination gives rise to our FF bound states.

11.3 Results
Here we present the results of our numerical analysis on transport through
the SOI-coupled NW. For finite wire length, the two FF end states have a
finite overlap, determined by their localization length(s)

ξz,n(E) ' ~α/
√

∆2
z,n − E2. (11.5)

For long wires, L � ξz, ξn, the two FF states are well decoupled, and
each of them has an energy approximately given by the semi-infinite wire
result Eq. (11.3), see Fig. 11.1.

In Fig. 11.3, which contains the main result of this paper, we show
that the transport behavior in the long-wire regime nicely follows the
spectrum EFF(θ), provided a suitable parameter configuration is chosen.
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More precisely, in order to probe in transport the unperturbed wire spec-
trum one needs, as usual, to operate in the tunnel regime, i.e., to have
small wire-leads coupling. This is usually implemented by adding a
strong potential barrier at the N/NW interfaces. However, this method
has the drawback of yielding bound state energies shifted to lower val-
ues, proportionally to the wire-lead coupling, see Figs. 11.3a) and 11.3b).
There is another method which allows one to make the bound state sig-
nature visible, without the need of introducing a potential barrier at the
interfaces. It amounts to choosing very different Fermi energies (and
hence different kF’s) in the wire and in the leads (or in different portions
of the wire). The momentum mismatch has then a filtering effect, and the
intrinsic properties of the wire are probed without altering theE(θ) spec-
tra (the level broadening is of course still present, decreasing for larger
momentum mismatches), see Figs. 11.3c) and 11.3d). We stress that it is
necessary to tune µl in order to make the bound state signatures visible
in dI/dV . For a generic value of µl the momentum filtering acts either
ineffectively or too effectively, erasing also the signature of the FF bound
state.

In Fig. 11.3 we also show the behavior of the spin-flip reflection co-
efficient R↑↓ as a function of energy and angle θ, in panels b) and d).
One immediately notices that R↑↓ exhibits a striking and evident signa-
ture of the left bound state, with a peak that almost perfectly traces its
spectrum EFF(θ). Quite intuitively, no influence of the right bound state
appears in the behavior of R↑↓, apart from at energies very close to the
gap, where ξz,n increase significantly, and from the anticrossing at small
energies, where the two branches hybridize and R↑↓ ' 0 (consistent with
the fact that at those points T↑ is enhanced to 1). Therefore, if one is able
to perform spin-polarized measurements yielding both R↑↑ and R↑↓, one
should obtain a clear signature of the FF bound state when its energy
(jointly set by ∆z,∆n, θ) is matched by the applied bias. The additional
possibility of tuning θ (i.e. by shifting the FF section of the wire) would
grant the access to the full EFF(θ) behavior, an even stronger confirma-
tion for the presence of the FF bound states.

Further experimental identification of the FFs is possible via noise
measurements. We have calculated the shot noise S ∝ tr

(
r†rt†t

)
and

the Fano factor F ∝ S/I , both for spin-polarized and spin-unpolarized
transport, and shown that they indeed carry signatures of the FFs, as ar-
gued in the Supplementary Material.
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Figure 11.3: The coefficients T↑ = T↑↑ + T↑↓ [a) and c)] and R↑↓ [b) and
d)] are plotted in the E-θ plane, as evaluated in two different regimes.
Panels a) and b) refer to the high-barrier (λ1=λ2=10α), small-µl limit (kl '
kso/2). Panels c) and d) are instead obtained in the zero-barrier, large-µl
limit (kl ' 100kso), which yields an equivalent degree of decoupling, but
does not shift the bound state spectra, as highlighted by the white dotted
lines, which correspond to Eq. (11.3). The other parameter values are
∆z = εso/10, ∆n = εso/5, L ' 3ξz(0).
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Aharonov-Bohm effect

As anticipated above, all the described transport signatures give indirect
evidence for FFs that only stem from their peculiar energy position be-
havior within the gap.

In order to obtain a more robust and elegant demonstration of the
presence of the FFs we envision an Aharonov-Bohm setup, as depicted
in Fig. 11.4. When the energy of incoming electrons matches the energy of
the overlapping FFs, a new dependence of the conductance on an applied
flux Φ having a double period arises. This effect appears due to presence
of the degenerate FFs that enable interference between the paths that en-
close half flux. We performed numerical tight-binding calculations, by
using the Kwant code [218], and obtained the two-terminal conductance
G(Φ, V ) as function of Φ and voltage V . Its Fourier transform with re-
spect to Φ, G(ν, V ), shows the presence of the doubled periodicity (ad-
ditional peaks at ν = 1/2, 3/2, ...) only when V matches the midgap en-
ergy of the FFs, see Fig. 11.5. In the Supplementary Material, besides the
description of the adopted tight-binding framework, we present a sim-
ple analytical model that shows how the presence of the two degenerate
FF bound states induces 4π-periodic oscillations as a function of Φ in
G(Φ, V ). Thus, measurement of G(Φ, V ) would yield a clear evidence of
the fractional charge nature of the subgap states in the proposed system.

11.4 Experimental feasibility
The transport measurements we propose are within reach of present ex-
perimental techniques. Given that the most challenging ingredient is the
creation of a strong enough spatially modulated field, and the need to
use large-g-factor semiconductors in order to achieve sizable Zeeman
couplings, we are proposing to use large-g-factor InAs (|g| ' 15), In-
GaAs (|g| ' 12), and InSb wires (|g| ' 51), or less standard materials,
like InSb1−xNx and GaAs1−xNx, with g-factors of several hundreds [219].
Moreover, our setup can exhibit effects due to strain, confinement, and
interactions, which are known to significantly modify g [220, 221, 222,
223, 224, 225]. Taking typical magnetic fields generated by nanomagnets,
Bn ' 50 mT [208], we obtain for InSb ∆n ' 40 µeV, corresponding to
' 0.5 K. It is convenient to choose similar values also for B, so that the
two gaps are comparable and the bound state can be observed for a large
range of θ (see Fig. 11.1), whose exact value in a measurement can be
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Figure 11.4: Aharonov-Bohm setup where the NW (pink, light gray) host-
ing a FF at each end connects the two arms of the AB ring (blue, black).
When µ lies within the NW gap, only standard AB oscillations in the
conductance G(Φ) as function of flux Φ (generated by a perpendicular
magnetic field B0) appear, whereas when resonance with the degener-
ate FFs is reached, G exhibits new oscillations with doubled period, see
Fig. 11.5

not easy to control. As explained above, the tuning of µ in the wire is
achieved via an underlying gate, while the tunnel barriers are created by
gate fingers or by the wire-lead interfaces themselves. The nergy in InSb
wires is ' 50 µeV, so that the above numbers would indeed place the ex-
periment in the strong-egime. Corresponding estimates for ξz(0) give us
' 0.5 µm, and thus an optimal wire length of L ' 1.5 µm. Finally, the re-
quirement that Bn couples the ±2kso branches translates into having the
nanomagnets separated by 2π/4kso ' 300 nm.

11.5 Conclusions
We have studied the transport properties of a Rashba NW that, under
appropriate conditions, supports subgap FF states bound to the wire
ends. We have shown that there are regimes where conductance and
shot noise measurements reveal the FF presence. The fractional charge
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Figure 11.5: The dependence of the conductance G(ν, V ) (in arbitrary
units) on frequency ν (conjugate to Φ/Φ0) of the AB-oscillations and ap-
plied voltage V for the AB-ring shown in Fig. 11.4. For V within the gap
of the wire (white dashed lines), the doubled periodicity (giving rise to
additional conductance peaks at ν = 1/2, 3/2, ...) is observed only when V
matches the energy of the midgap FFs.

of the FF bound states can be further confirmed by an Aharonov-Bohm
experiment exhibiting double-periodic conductance oscillations.
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M. P. Hanson, and A. C. Gossard, “Electrical control of spin relax-
ation in a quantum dot,” Phys. Rev. Lett., vol. 100, p. 046803, Jan.
2008.

[65] H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky,
and A. Yacoby, “Dephasing time of gaas electron-spin qubits cou-
pled to a nuclear bath exceeding 200µs,” Nat. Phys., vol. 7, no. 2,
pp. 109–113, 2011.

[66] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D.
Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent
manipulation of coupled electron spins in semiconductor quantum
dots,” Science, vol. 309, no. 5744, pp. 2180–2184, 2005.

[67] F. H. L. Koppens, K. C. Nowack, and L. M. K. Vandersypen, “Spin
echo of a single electron spin in a quantum dot,” Phys. Rev. Lett.,
vol. 100, p. 236802, Jun 2008.

[68] R. Brunner, Y.-S. Shin, T. Obata, M. Pioro-Ladrière, T. Kubo,
K. Yoshida, T. Taniyama, Y. Tokura, and S. Tarucha, “Two-qubit
gate of combined single-spin rotation and interdot spin exchange
in a double quantum dot,” Phys. Rev. Lett., vol. 107, p. 146801, 2011.



BIBLIOGRAPHY 170

[69] A. M. Childs, H. L. Haselgrove, and M. A. Nielsen, “Lower bounds
on the complexity of simulating quantum gates,” Phys. Rev. A,
vol. 68, p. 052311, 2003.

[70] R. Raussendorf and J. Harrington, “Fault-tolerant quantum com-
putation with high threshold in two dimensions,” Phys. Rev. Lett.,
vol. 98, p. 190504, 2007.

[71] M. Trif, F. Troiani, D. Stepanenko, and D. Loss, “Spin-electric cou-
pling in molecular magnets,” Phys. Rev. Lett., vol. 101, p. 217201,
Nov 2008.

[72] I. H. Chan, R. M. Westervelt, K. D. Maranowski, and A. C. Gossard,
“Strongly capacitively coupled quantum dots,” Appl. Phys. Lett.,
vol. 80, no. 10, p. 1818, 2002.

[73] I. Chan, P. Fallahi, R. Westervelt, K. Maranowski, and A. Gossard,
“Capacitively coupled quantum dots as a single-electron switch,”
Physica E, vol. 17, no. 0, pp. 584 – 588, 2003.

[74] F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen, “Coupling of
spin and orbital motion of electrons in carbon nanotubes,” Nature,
vol. 452, pp. 448–452, Mar. 2008.

[75] Y. Hu, H. O. H. Churchill, D. J. Reilly, J. Xiang, C. M. Lieber, and
C. M. Marcus, “A ge/si heterostructure nanowire-based double
quantum dot with integrated charge sensor,” Nat. Nanotech., vol. 2,
p. 622, 2007.

[76] D. Stepanenko and G. Burkard, “Quantum gates between capaci-
tively coupled double quantum dot two-spin qubits,” Phys. Rev. B,
vol. 75, p. 085324, Feb. 2007.

[77] A. C. Johnson, J. R. Petta, J. M. Taylor, A. Yacoby, M. D. Lukin, C. M.
Marcus, M. P. Hanson, and A. C. Gossard, “Triplet-singlet spin
relaxation via nuclei in a double quantum dot,” Nature, vol. 435,
no. 7044, pp. 925–928, 2005.

[78] J. Sten, “Ellipsoidal harmonics and their application in electrostat-
ics,” J. Electrostatics, vol. 64, pp. 647–654, Sept. 2006.

[79] G. Burkard, D. Loss, and D. P. DiVincenzo, “Coupled quantum
dots as quantum gates,” Phys. Rev. B, vol. 59, p. 2070, Jan. 1999.



BIBLIOGRAPHY 171

[80] J. H. Van Vleck, “Paramagnetic relaxation times for titanium and
chrome alum,” Phys. Rev., vol. 57, pp. 426–447, Mar 1940.

[81] V. N. Golovach, A. Khaetskii, and D. Loss, “Phonon-induced de-
cay of the electron spin in quantum dots,” Phys. Rev. Lett., vol. 93,
p. 016601, Jun 2004.

[82] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K.
Vandersypen, “Spins in few-electron quantum dots,” Rev. Mod.
Phys., vol. 79, p. 1217, Oct. 2007.

[83] R. Zak, B. Rothlisberger, S. Chesi, and D. Loss, “Quantum com-
puting with electron pins in quantum dots,” Riv. Nuovo Cimento,
vol. 33, pp. 345–399, June 2010.

[84] D. Stepanenko, M. Rudner, B. I. Halperin, and D. Loss, “Singlet-
triplet splitting in double quantum dots due to spin-orbit and hy-
perfine interactions,” Phys. Rev. B, vol. 85, p. 075416, Feb 2012.

[85] D. P. DiVincenzo, “Fault-tolerant architectures for superconducting
qubits,” Phys. Scr., vol. T137, p. 014020, 2009.

[86] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C.
Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vander-
sypen, “Driven coherent oscillations of a single electron spin in a
quantum dot,” Nature, vol. 442, p. 766, 2006.

[87] V. N. Golovach, M. Borhani, and D. Loss, “Electric-dipole-induced
spin resonance in quantum dots,” Phys. Rev. B, vol. 74, p. 165319,
2006.

[88] K. C. Nowack, F. H. L. Koppens, Y. V. Nazarov, and L. M. K. Van-
dersypen, “Coherent control of a single electron spin with electric
fields,” Science, vol. 318, p. 1430, 2007.

[89] S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers, and L. P. Kouwen-
hoven, “Spin-orbit qubit in a semiconductor nanowire,” Nature,
vol. 468, p. 1084, 2011.

[90] C. Fasth, F. A., L. Samuleson, V. N. Golovach, and D. Loss, “Direct
measurement of the spin-orbit interaction in a two-electron inas
nanowire quantum dot,” Phys. Rev. Lett., vol. 98, p. 266801, 2007.



BIBLIOGRAPHY 172

[91] C. Kloeffel, M. Trif, and D. Loss, “Strong spin-orbit interaction
and helical hole states in ge/si nanowires,” Phys. Rev. B, vol. 84,
p. 195314, Nov 2011.

[92] D. V. Bulaev, B. Trauzettel, and D. Loss, “Spin-orbit interaction
and anomalous spin relaxation in carbon nanotube quantum dots,”
Phys. Rev. B, vol. 77, p. 235301, 2008.

[93] H. O. H. Churchill, A. J. Bestwick, J. W. Harlow, J. Kuemmeth,
D. Marcos, C. H. Stwertka, S. K. Watson, and C. M. Marcus, “Elec-
tron–nuclear interaction in 13c nanotube double quantum dots,”
Nat. Phys., vol. 5, p. 321, 2009.

[94] J. Klinovaja, M. J. Schmidt, B. Braunecker, and D. Loss, “Helical
modes in carbon nanotubes generated by strong electric fields,”
Phys. Rev. Lett., vol. 106, p. 156809, 2011.

[95] J. Fischer and D. Loss, “Dealing with decoherence,” Science,
vol. 324, no. 5932, pp. 1277–1278, 2009.

[96] F. Marquardt and V. A. Abalmassov, “Spin relaxation in a quantum
dot due to nyquist noise,” Phys. Rev. B, vol. 71, p. 165325, Apr. 2005.

[97] S. Bravyi, D. DiVincenzo, and D. Loss, “Schrieffer-wolff transfor-
mation for quantum many-body systems,” Ann. Phys., vol. 326,
no. 10, pp. 2793 – 2826, 2011.

[98] C. Kittel, “On the theory of ferromagnetic resonance absorption,”
Phys. Rev., vol. 73, pp. 155–161, Jan 1948.

[99] H. Watanabe and H. Murayama, “Unified description of nambu-
goldstone bosons without lorentz invariance,” Phys. Rev. Lett.,
vol. 108, p. 251602, Jun 2012.

[100] M. Sparks, “Ferromagnetic resonance in thin films. i. theory of
normal-mode frequencies,” Phys. Rev. B, vol. 1, pp. 3831–3856, May
1970.

[101] I. Lee, Y. Obukhov, G. Xiang, A. Hauser, F. Yang, P. Banerjee,
D. V. Pelekhov, and P. C. Hammel, “Nanoscale scanning probe
ferromagnetic resonance imaging using localized modes,” Nature,
vol. 466, no. 7308, pp. 845–848, 2010.



BIBLIOGRAPHY 173

[102] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quan-
tum Information. Cambridge University Press, 1 ed., Jan. 2004.

[103] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo,
D. Loss, M. Sherwin, and A. Small, “Quantum information pro-
cessing using quantum dot spins and cavity qed,” Phys. Rev. Lett.,
vol. 83, pp. 4204–4207, Nov 1999.

[104] T. Tanamoto, K. Maruyama, Y. X. Liu, X. Hu, and F. Nori, “Efficient
purification protocols using iSWAP gates in solid-state qubits,”
Phys. Rev. A, vol. 78, p. 062313, Dec 2008.

[105] D. P. DiVincenzo and D. Loss, “Rigorous born approximation and
beyond for the spin-boson model,” Phys. Rev. B, vol. 71, p. 035318,
Jan. 2005.

[106] Y. Makhlin and A. Shnirman, “Dephasing of solid-state qubits at
optimal points,” Phys. Rev. Lett., vol. 92, p. 178301, Apr. 2004.

[107] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of
Quantum Field Theory in Statistical Physics. Dover, 1975.

[108] Y. Makhlin, G. Schön, and A. Shnirman, “Dissipative effects in
josephson qubits,” Chem. Phys., vol. 296, pp. 315–324, Jan. 2004.

[109] W. Nolting and A. Ramakanth, Quantum Theory of Magnetism.
Springer, 2009.

[110] J. Hauptmann, J. Paaske, and P. Lindelof, “Electric-field-controlled
spin reversal in a quantum dot with ferromagnetic contacts,” Nat.
Phys., vol. 4, no. 5, pp. 373–376, 2008.

[111] L. Hofstetter, A. Geresdi, M. Aagesen, J. Nygård, C. Schönenberger,
and S. Csonka, “Ferromagnetic proximity effect in a
ferromagnet˘quantum-dot˘superconductor device,” Phys. Rev.
Lett., vol. 104, p. 246804, Jun 2010.

[112] K. Khodjasteh and L. Viola, “Dynamically error-corrected gates
for universal quantum computation,” Phys. Rev. Lett., vol. 102,
p. 080501, Feb 2009.

[113] X. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon,
and L. J. Sham, “Optically controlled locking of the nuclear field



BIBLIOGRAPHY 174

via coherent dark-state spectroscopy,” Nature, vol. 459, no. 7250,
pp. 1105–1109, 2009.

[114] I. T. Vink, K. C. Nowack, F. H. L. Koppens, J. Danon, Y. V. Nazarov,
and L. M. K. Vandersypen, “Locking electron spins into magnetic
resonance by electron-nuclear feedback,” Nat. Phys., vol. 5, no. 10,
pp. 764–768, 2009.

[115] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl,
Y. Ohno, and K. Ohtani, “Electric-field control of ferromagnetism,”
Nature, vol. 408, no. 6815, pp. 944–946, 2000.

[116] J. Klinovaja, D. Stepanenko, B. I. Halperin, and D. Loss, “Exchange-
based cnot gates for singlet-triplet qubits with spin-orbit interac-
tion,” Phys. Rev. B, vol. 86, p. 085423, Aug 2012.

[117] R. Ernst, G. Bodenhausen, and A. Wokaun, Nuclear Magnetic Reso-
nance in One and Two Dimensions. Oxford: Oxford Univ. Press, 1987.

[118] P. Hemmer, “Toward molecular-scale mri,” Science, vol. 339,
no. 6119, pp. 529–530, 2013.

[119] J. A. Sidles, “Noninductive detection of singleproton magnetic res-
onance,” Applied Physics Letters, vol. 58, no. 24, pp. 2854–2856, 1991.

[120] E. Ramsden, Hall-Effect Sensors, Second Edition: Theory and Applica-
tion. Amsterdam ; Boston: Newnes, 2 edition ed., Mar. 2006.

[121] M. E. Huber, N. C. Koshnick, H. Bluhm, L. J. Archuleta, T. Azua,
P. G. Björnsson, B. W. Gardner, S. T. Halloran, E. A. Lucero, and
K. A. Moler, “Gradiometric micro-squid susceptometer for scan-
ning measurements of mesoscopic samples,” Rev. Sci. Instrum.,
vol. 79, no. 5, 2008.

[122] C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Ru-
gar, “Nanoscale magnetic resonance imaging,” Proc. Natl Acad. Sci.
USA, vol. 106, no. 5, pp. 1313–1317, 2009.

[123] M. Poggio and C. L. Degen, “Force-detected nuclear magnetic res-
onance: recent advances and future challenges,” Nanotechnology,
vol. 21, no. 34, p. 342001, 2010.



BIBLIOGRAPHY 175

[124] P. Peddibhotla, F. Xue, H. I. T. Hauge, S. Assali, E. P. A. M. Bakkers,
and M. Poggio, “Harnessing nuclear spin polarization fluctuations
in a semiconductor nanowire,” Nat Phys, vol. 9, no. 10, pp. 631–635,
2013.

[125] M. Loretz, S. Pezzagna, J. Meijer, and C. L. Degen, “Nanoscale
nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy
sensor,” App. Phys. Lett., vol. 104, no. 3, 2014.

[126] M. Schaffry, E. M. Gauger, J. J. L. Morton, and S. C. Benjamin, “Pro-
posed spin amplification for magnetic sensors employing crystal
defects,” Phys. Rev. Lett., vol. 107, p. 207210, Nov. 2011.

[127] T. van der Sar, F. Casola, R. Walsworth, and A. Yacoby,
“Nanometre-scale probing of spin waves using single electron
spins,” arXiv:1410.6423, Oct. 2014.

[128] C. S. Wolfe, V. P. Bhallamudi, H. L. Wang, C. H. Du, S. Manuilov,
R. M. Teeling-Smith, A. J. Berger, R. Adur, F. Y. Yang, and P. C.
Hammel, “Off-resonant manipulation of spins in diamond via pre-
cessing magnetization of a proximal ferromagnet,” Phys. Rev. B,
vol. 89, p. 180406, May 2014.

[129] G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A
quantum memory intrinsic to single nitrogen-vacancy centres in
diamond,” Nat. Phys, vol. 7, no. 10, pp. 789–793, 2011.

[130] E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hys-
teresis in heterogeneous alloys,” Phil. Trans. R. Soc. A, vol. 240,
no. 826, pp. 599–642, 1948.

[131] L. Trifunovic, F. L. Pedrocchi, and D. Loss, “Long-distance en-
tanglement of spin qubits via ferromagnet,” Phys. Rev. X, vol. 3,
p. 041023, Dec 2013.
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