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Summary 

Summary 

Cells generate a large repertoire of signaling pathways out of a limited set of proteins through 

their ability to activate specific signaling proteins in a subcellular region for a short amount of 

time. A common mechanism to activate signaling pathways represents the translocation of 

proteins from the cytosol to internal membranes or the inner leaflet of the plasma membrane, 

where they meet their substrates and initiate downstream signaling pathways.  

Chemical inducers of dimerization (CIDs) are powerful tools to manipulate proteins in a 

spatially and temporally confined region within the cell and to reproduce protein-protein and 

protein-membrane interactions, which trigger the activation of signaling pathways. These so-

called “chemical dimerizers” are small organic molecules, which bind simultaneously two 

specific dimerizing domains. In the presence of the dimerizer, two proteins fused to these 

dimerizing domains are brought into close proximity, which initiates a cellular effect linked to 

the interaction of the protein partners.  

We developed a new class of CIDs, based on an intracellular, covalent Halo- and SNAP-tag 

reactive dimerizer, called HaXS[1]. Its modular synthetic strategy enables the relatively simple 

introduction of novel functional groups into the core module linking the Halo- and the SNAP-

tag substrates in order to generate HaXS derivatives with novel features. Through the 

introduction of a photocleavable methylnitroveratryl (MeNV) group, we developed the first, 

cell-permeable photocleavable heterodimerizer, called MeNV-HaXS[2]. Excitation at 360 nm 

cleaves MeNV-HaXS and reverses the MeNV-HaXS-induced SNAP- and HaloTag dimer 

complex.  

HaXS unifies several important features, which are essential to mimic physiologic signaling 

pathways, such as the fast and selective induction of protein-protein interactions, the absent 

interferences with endogenous signaling pathways as well as the possibility to reverse an 

induced dimerization event. HaXS was successfully used to target tagged proteins to selected 

intracellular organelles such as endosomes, lysosomes, the plasma membrane, 

mitochondria, the nucleus and the actin skeleton, which can be exploited to study the function 

of a particular protein in different subcellular contexts. Furthermore, the manipulation of 

protein localizations can be used as a strategy to initiate signaling pathways at defined 

starting points and cellular locations. Through the HaXS-induced control of signaling protein 

localizations, which function upstream of the targeted signaling pathway, HaXS is able to 

selectively control the activation resp. inactivation of an isolated signal transduction branches 

in a complex signaling network. Additionally, the combination of chemical-induction and light-

induced reversion of MeNV-HaXS-induced dimers enables to inactivate any protein of interest 

through sequestering it away from its functional compartment, followed by an optically guided 

cleavage of the dimer complex, which releases the sequestered proteins and restores its 

function. Sine the release of anchored proteins occurs with high spatiotemporal precision (t < 
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1 sec, from single vesicles), this simple experimental setup enables to study translocation 

kinetics of trapped proteins back to their normal localization in live cells.  

To get further insights into the dimerization behavior of the HaXS CID or CIDs in general, we 

analyzed the chemical induced dimerization reactions with a modeling software called 

CellDesigner. We demonstrated how various parameters of a CID, such as the ratio of the 

rate constants of the dimerizing tags or the choice of the dimerizer concentration affects the 

speed as well as the efficiency of the dimer formation. This allows one to perform efficient 

dimerization experiments and to understand how parameters of a CID can be optimized to 

improve its dimerization performance.  

The most widely used CID system is based on rapamycin, which induces a tight binding 

between FKBP12 and the FKBP rapamycin domain (FRB) of mammalian target of rapamycin 

(mTORC1). The rapamycin CID profits from excellent kinetics, but the cross reactions with 

mTORC1 diminishes the utility to study cellular events involved in cell growth and 

metabolism. Analogs of rapamycin (so-called rapalogs), which only react with an engineered 

version of the FRB domain but not with the endogenous FRB domain of mTORC1, are 

developed to overcome the immunosuppressive properties of rapamycin while retaining their 

dimerization ability. The synthesis of rapalogs is challenging, since already minute rapamycin 

or rapamycin by-products impurities are sufficient to inhibit mTORC1. We successfully 

established a new protocol for the synthesis and purification of a C16 phenyl carbamate 

(pcRap) rapalog, which induces dimerization of FKBP and FRB fusion proteins without 

interfering with the mTORC1 pathway. 

Summing up, we provide three valid dimerizer molecules (HaXS8, MeNV-HaXS, pcRap) to 

the current toolbox of CIDs. Many important features necessary to reproduce physiological 

signaling pathways are unified in our CIDs and will enable to dissect many cellular signaling 

events. Furthermore, the combination of a HaXS CID with a rapamycin or rapalog based CID, 

enables the simultaneous and orthogonal control of two different proteins within a single cell 

and thus greatly improves the possibilities for cellular interrogations.
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Introduction 

1. Introduction 

Cells are composed of subcellular compartments and organelles, which together comprise a 

large dynamic system. Within these highly complex structures, cells organize synthesis, 

transport and activation of proteins. Protein translocation from one compartment to another 

allows different cellular compartments to communicate and exchange material, which is 

essential for the regulation of cellular functions. Furthermore, the biological activity of proteins 

is often restricted to a subcellular compartment and depending on their intracellular 

localization, proteins can have different functions. Cells are able to generate a large repertoire 

of signaling pathways out of a limited set of signaling proteins through their ability to activate 

specific signaling proteins in a subcellular region for a limited time.  

Overall, biological systems depend on precise spatial and temporal coordination of cellular 

events. The ability to precisely activate or inhibit a selected protein is essential to dissect 

complex signaling networks and the understanding of biological systems depends on tools 

that enable to manipulate a cellular process and to analyze the linked phenotypic response. 

Tools with the ability to specifically manipulate single protein activities with high 

spatiotemporal precisions and minimal off-target perturbations are required to study signal 

transduction pathways. Furthermore, the experimental perturbation should be easy to 

implement, predictable in its behavior and highly specific.  

Perturbation of the function of a selected protein can in principle occur at three levels: at the 

DNA level (e.g. through knockouts or overexpression of constitutively active or inactive 

mutants), at the RNA level (e.g. through RNAi) or directly at the protein level. Strategies to 

indirectly target the function of a protein via manipulating the underlying DNA or RNA, profit 

from high selectivity but suffer from a low temporal resolution as well as from potential 

compensation effects. Additionally, some mutations can cause lethality early in development, 

which hampers studies in adult organisms[3]. In contrast, chemical biological strategies to 

directly target proteins at posttranslational level occur with high spatiotemporal precision. The 

use of small, organic chemicals offers many advantages, as these chemicals can be used in 

a rapid, dose dependent and even reversible manner. However, the use of inhibitors or 

activators is mainly limited by the availability of specific molecules for the targeted protein, as 

most proteins do not have high-affinity small-molecule binding partners. A good alternative to 

directly modulate protein activities in a more modular approach is based on chemical inducers 

of dimerization (CIDs).  
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1.1 Manipulation of protein-protein interactions through chemical inducers of 
dimerization  

Schreiber, Crabtree and co-workers introduced the concept of CIDs more than 20 years ago. 

CID systems are based on small, organic molecules, which have the ability to bind two 

specific dimerizing domains simultaneously. In the presence of the dimerizer, two proteins of 

interest (POI), each fused to one of the two dimerizing domains are brought into close 

proximity. The induced proximity of two POIs results in an increased effective concentration of 

both proteins, which can physiologically interact and induce the biological effect linked to this 

interaction (Fig 1). 

 
Figure 1. Scheme describing the concept of CID. A small, organic molecule (show in red) enters the cell, where it 
specifically interacts with two dimerizing domains 1 and 2 (DD1 and DD2, shown in yellow and orange), which 
induces dimerization of two proteins of interests 1 and 2 (POIs) (shown in light and dark green) fused to the 
dimerizing domains. Induced proximity of the two POIs allows them to induce a biological effect. 
 

The nature of the dimerizer can vary from naturally occurring molecules that simultaneously 

bind two proteins (such as coumermycin[4], fusicoccin[5] or rapamycin) to naturally occurring 

molecules that induces a conformational change on a first protein, which then creates a 

binding surface for a second protein (such as S-(+)-abscisic acid[6] or gibberellin[7]). The 

majority of CIDs are based on synthetic, bi-functional molecules that consist of two protein 

substrates joined through a flexible linker (such as dexamethasone (DEX) conjugated to 

methotrexate (MTX) (DEX-MTX[8]) or to trimethoprim (TMP) (DEX-TMP [9]), TMP linked to a 

synthetic ligand of FKBP (SLF) (TMP-SLF[10]), benzylguanine (BG) linked to MTX (BG-

MTX[11]) and many more).  

In their original work, Schreiber and colleagues demonstrate how a small, synthetic molecule 

FK1012 could reproduce the ability of natural systems to use proximity as a way for 

activation[12]. Although FK1012 was often used to chemically induce proximity of proteins, its 

application is restricted to proteins whose function depends on self-dimerization, such as self-

association of plasma membrane receptors in the absence of extracellular ligands, which 

leads to the initiation of intracellular signaling pathways[12]. Since this original work in the early 

nineties, many novel dimerizer molecules have been developed (see Introduction, Chapter 
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1.3). In contrast to the homodimerizer FK1012, many CID systems are based on 

heterodimerizers, which recognize two different dimerizing domains and thus enables 

dimerization of two different proteins (Fig 2). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. Scheme describing concept of a homodimerizer and heterodimerizer. Homodimerizers recognize two 
identical dimerizing domains (DD1 and DD2) and induces dimerization of identical proteins, whereas 
heterodimerizers recognize two different dimerizing domains (DD1 and DD2) and induce dimerization of two different 
POIs.  
 

CIDs can be used to indirectly or directly control the activities of selected proteins. In the first 

approach, CIDs are used to indirectly control protein activities through the control of the 

abundance of a selected protein in the cell, either through inducing their expression or 

degradation. In the second approach, the function of a protein is directly affected either 

through an induced protein-protein interaction or the induced translocation of the targeted 

protein.  

Summing up, CID systems are versatile tools that can be used to control a wide range of 

cellular events, including transcriptional activation[13], pre-RNA splicing[14], translation 

initiation[15], post-translational modification such as glycosylation[16][17], induction of 

programmed cell death[18] or. However, since the clustering of cell surface receptors upon 

binding to extracellular growth factors and the subsequent recruitment of intracellular 

signaling proteins, which transfer informationʼs through a biological system, together with 

many more signaling events are controlled through dynamic protein-protein interactions, the 

CID strategy is of particular importance for investigations of signal transduction pathways as 

was e.g. shown in[1][19][20]. 

Indirect control of protein function through manipulating the protein abundance 

An important application of a CID system is the induced control of the transcription of a 

specific gene. This is achieved if a transcription factor is split into two domains, the DNA 

binding domain (DBD) and the activation domain (AD). The DBD is fused to one of the 

dimerizing domains, while the AD of the same transcription factor is fused to the second 

5



Introduction 

dimerizing domain. The presence of the CID results in the reconstitution of the transcription 

factor, resulting in the activation of genes under control of this specific transcription factor (Fig 

2)[17] [21]. CID-induced control of gene expression provides an elegant way to control protein 

levels. However, since transcription takes hours to occur, the temporal resolution of this 

strategy is limited.  

An alternative approach to control protein abundance in cells is the CID-induced degradation 

of a selected protein, so-called “chemical knockouts”. Most conditional protein degradation 

technologies take advantage of the ubiquitin-proteasome pathway, which is involved in the 

regulated proteolysis of intracellular proteins. The addition of several ubiquitin molecules is 

sufficient to target a protein to the proteasome, where it is degraded. CID-induced proximity of 

a POI to the E3 ubiquitin ligase causes ubiquitylation of the POI, followed by its targeting to 

the proteasome and degradation. Alternatively, CIDs can be used to directly target a POI to a 

subunit of the proteasome, where it is degraded, obviating the need for ubiquitylation. The 

Janse lab nicely demonstrated how the CID-induced dimerization of a POI and a component 

of the 26S proteasome (Rpn10) results in proximity of the POI with the proteasome, which is 

sufficient to induce its degradation[22]. In contrast to the control of protein expression, CID- 

induced degradation benefits from a higher temporal resolution. Unfortunately, this strategy is 

limited to proteins with access to the proteasome. Furthermore, the general robustness of this 

approach is limited and extensive construct optimization to achieve an efficient incorporation 

of the target protein into the degradation machinery is required[23]. In contrast to control 

protein abundance through the activation of the transcription machinery, the approach of CID- 

induced degradation does only affect the pool of overexpressed proteins fused to the 

dimerizing domain but not the endogenous protein levels, which could restrict the utility of this 

approach.  

Another strategy for the conditional degradation of proteins is based on small molecules that 

directly induce degradation of a selected protein and thus enable to directly manipulate the 

endogenous protein levels. However, these small molecules have to be designed for every 

single targeted protein, whereas the approach of the CID-induced degradation is more 

generalizable and profits from the modular approach of a dimerizer system.   
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Figure 2. Scheme describing CID-induced control of intracellular protein abundance. a) CID-regulated 
transcription. Dimerizing domain 1 (DD1) is fused to the DNA binding domain (DBD, yellow) and dimerizing domain 2 
(DD2) is fused to the activation domain (AD, orange). Addition of the CID initiates translocation of the DBD to the AD 
and reconstitutes the transcription factor. Recruitment of the endogenous transcription machinery (violet) to this 
transcription factor leads to the expression of the gene under control of the. b) CID-induced degradation. Dimerizing 
domain 1 (DD1) is fused to a selected protein (POI, yellow), whereas the dimerizing domain 2 (DD2) is fused to a 
component of the proteasome machinery (orange), which recruits the endogenous proteasome degradation 
machinery (violet). Presence of the CID results in the translocation of domain1-POI to the proteasome and induces 
degradation of the POI.  
 
In contrast to the manipulation of intracellular protein abundance, the CID strategy can be 

used to directly control the function of a selected protein. This direct approach profits from 

higher temporal and spatial resolution, which is especially important for the analysis of cellular 

processes occurring on short time scales, as true for many physiological signal transduction 

pathways. Direct activation of protein function is achieved through the induced interaction of 

two proteins that require the presence of each other for their function. A prominent example is 

the dimerization of transmembrane surface receptors such as fibroblast growth factor 

receptors 1 and 2 (FGFR 1 and 2)[24]. Another strategy relies on proteins that are split into two 

inactive fragments. If properly engineered, chemical induced dimerization of these two 

fragments enables the reconstitution of a functional protein[25]. Nonetheless, the most 

common application of a CID is to control the localization of proteins in the cells and to exploit 

the subcellular localization of proteins as a strategy to control their activities. 

CID induced control of subcellular localization as a strategy to control protein activity 

Since the biological activity of a protein is often restricted to a subcellular compartment, CID- 

induced translocation of a protein towards (Fig 3, left) or away (Fig 3, right) from its functional 

locality can be employed to either activate or abolish a cellular event. CID-induced 

translocation of a selected protein is achieved trough co-expression of an anchor unit and an 

effector unit. The anchor unit consists of one of the two dimerizing domains, which is 

anchored at a specific cellular localization, while the cytosolic effector unit contains the 
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second dimerizing domain fused to the POI. The presence of the dimerizer results in the 

translocation of the cytosolic POI to the anchor unit. Depending on whether the targeted 

subcellular compartment is a functional or a non-functional location for the POI, this approach 

can be employed as a localization-induced activation and inactivation of a selected protein. 

CID-induced activation of a POI through its translocation toward its functional compartment 

has been used to investigate various cellular events, such as intracellular calcium and cAMP 

signaling[26] as well as GPCR internalization[27]. 

 

 
Figure 3. CID controlled subcellular localization of proteins as a strategy to control protein activities. CID 
induces the translocation of previously cytosolic effector protein fused to dimerizing domain 1 (DD1, shown in yellow) 
to the mitochondrial anchor unit (non-functional compartment, orange) composed of dimerizing domain 2 (DD2) fused 
to the mitochondrial anchoring sequence or to plasma membrane anchor unit (functional compartment) composed of 
the dimerizing domain 2 (DD2) fused to the plasma membrane targeting sequence. Translocation to a functional 
versus a non-functional compartment results in activation versus inactivation of the effector protein. 
 

In the reverse approach, CID-induced translocation of a selected protein away from its 

functional location results in the inactivation of the selected protein. To keep it away from its 

functional compartment, the targeted protein is sequestered in a non-functional compartment. 

This conditional protein inactivation strategy occurs with high temporal precision provides an 

elegant way to dissect complex signaling networks. CID-induced inactivation of effector 

proteins through their mislocalization has been nicely demonstrated in yeast[28]. In this so-

called “anchor-away” technique, rapamycin was used to rapidly inactivate FRB-tagged 

nuclear proteins, through their removal from their functional place and sequestration in the 

cytoplasm through a FKBP-tagged anchor unit. Robinson and colleagues established a 

similar approach in mammalian cells, called “knock-sideway”. They demonstrated the rapid 

depletion (on a time-scale of seconds to minutes) of adaptor proteins from FKBP-tagged 

clathrin-coated vesicles by anchoring them via mitochondrial-tagged FRB domains to the 

mitochondrial surface in mammalian cells[29].  
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An alternative approach to rapidly induce inactivation of selected proteins through the 

sequestration of proteins away from their functional compartment is based on multimerizing 

and clustering of selected proteins, prevents them to work in their functional compartment and 

results in the reduced activity of these proteins[23].  

1.2 Most popular chemical inducer of dimerization is rapamycin  

The naturally occurring immunosuppressant rapamycin represents the most thoroughly 

studied and implemented chemical dimerizer molecule. Rapamycin mediates 

heterodimerization of the chaperone FKBP12 and the FRB domain of mTORC1. In this 

trimeric complex, rapamycin acts as dimerizer, and brings two POIs genetically fused to 

FKBP12 and FRB, respectively, in close proximity[30] [21]. As true for most naturally occurring 

compounds, rapamycin display excellent biophysical properties, such as high cell 

permeability and good water solubility. Additionally, rapamycin-induced dimerization of 

FKBP12 and FRB fusion proteins occurs with excellent kinetics[31]. Although rapamycin CID is 

a useful tool, which has been extensively used to study many signaling pathways, especially 

those involving lipid metabolizing enzymes[32] or small GTPases[33], it has to be considered 

that FKBP and FRB fusions proteins compete with endogenous FKBP12 and mTORC1 for 

rapamycin binding. Binding of FKBP12-rapamycin to the FRB domain of mTORC1, renders 

the mTORC1 complex enzymatically inactive. As mTORC1 is an important protein kinase 

involved in different signaling pathways controlling cell growth, proliferation as well as in the 

regulation of autophagy, the use of rapamycin may have unwanted side effects on the 

signaling network of the targeted cell and will eventually lead to cell-cycle arrest, which 

complicates in vivo investigations. However, as the experimental time is often shorter than the 

time of rapamycin to induce its potential toxic effect, the use of the rapamycin CID in cultured 

cells can still be justified. However, if longer experimental times are required or work in living 

animals is performed, it is advisable to use non-toxic rapamycin derivatives, known as 

rapalogs. 
 
Figure 4. Design of rapalogs using the “bump and hole” 
approach. Rapamycin binds to the endogenous FRB domain 
(FRB WT). The part of rapamycin that interacts with the FRB 
domain is equipped with a bulky substituent. This abolishes 
binding of the rapalog with the endogenous FRB domain. In 
order to restore binding capacity of the rapalog with the FRB 
domain, the heterologously expressed FRB domain contains a 
compensatory mutation (FRB mut) that enlarges its rapamycin-
binding pocket to accommodate the substituent. 
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Effect of rapamycin and rapamycin analogs (rapalogs) on cell function 

In order to minimize the problem with potential off-target effects of rapamycin, non-toxic 

rapamycin analogues (so-called rapalogs) have been designed using the  ʻbump-and-holeʼ 

approach [34] [35].  

The analysis of the crystal structure of the trimeric FKBP12-rapamycin-FRB complex revealed 

that the C16-methoxy group of the rapamycin core directly points toward the FRB domain[36]. 

Conclusively, derivatization of this methoxy group with bulkier substituents can alter the FRB-

binding affinity[37] and most currently available rapalogs are derivativized at this C16 position. 

The introduction of a bulky substituent at this position abolishes binding to the wild type FRB 

domain. To restore the dimerizing potency of this dubbed rapamycin, rapalogs are used in 

combination with an engineered version of FRB in which threonine at position 2098 is 

substituted by a leucine (T2098L). This mutation displays an enlarged rapamycin-binding 

pocket and this accommodates binding of the rapalogs with bulky substituents at the C16 

position (Fig 4). Consequently, these rapalogs should be devoid of inhibitory effects towards 

mTORC1, but still be able to dimerize fusions of FKBP12 and the mutated FRB domain 

(T2098L)[38]. The successful use of several rapalogs such as iRap and AP21967 (Fig 5, [2] 

and [3]) are reported[39]. The effect on mTORC1 kinase activity by these two rapalogs was 

evaluated through the determination of the IC50 values in HEK293 cells. Surprisingly, the 

results revealed that both rapalogs still inhibit mTORC1, either caused by impurities of 

rapamycin or rapamycin-byproducts, or an undefined spatial orientation of the bulky group at 

the C16 position (IC50 = 0.1 nM for rapamycin, IC50 = 5 nM for iRap and IC50 = 10 nM for 

AP29167)[40]. Further analysis by quantitative mass spectrometry revealed around 2.6% 

rapamycin contamination in the rapalog sample iRap[40]. These findings indicate that the 

synthesis and purification of rapalogs is very challenging, and already minor contaminations 

of rapamycin and rapamycin-byproducts (<<1%) dramatically affect the phosphoinositide 3-

kinase (PI3K)/mTOR axis.  

As true for all naturally occurring dimerizer molecules, derivatization of the rapamycin core 

can dramatically lower its cell permeability. The reduced cell permeability of the commercially 

available rapalog AP21967 (Clonetech) requires the use of 25 times higher concentrations of 

this rapalog than of rapamycin in order to induce comparable dimerization effects[41]. 

Furthermore, only limited positions of the rapamycin core can be functionalized (C16, C28, 

C40), which makes the generation of rapamycin derivatives with novel features challenging. 

 
Figure 5. Structure of rapamycin and 
two commonly used rapalogs.  
Structure of Rapamycin (Rap) [1], C16-(S)-
3-methylindole-rapamycin (iRap) [2] and 
C16-(S)-7-methylindole-rapamycin 
(AP21967) [3]. 
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Besides the challenge with the mTORC1 interference, the binding of rapamycin or rapalogs to 

members of the FKBP family has to be considered as well. FKBPs are widely expressed 

immunophilins, which are involved in mediating an immunosuppressive effect. It has been 

shown that FKBP12 ligands such as FK506 or rapamycin interfere with the cellular function of 

FKBP12 proteins and for example interfere with proper regulation of the calcium release[42]. 

Additionally, the nonproductive interactions between rapamycin and abundant endogenous 

mammalian FKBPs can sequester the added rapamycin or rapalog, and thus attenuate the 

dimerization performance of the rapamycin or rapalog CID, especially in cells with low 

endogenous levels of FKBP[43].  

1.3 Alternative chemical inducers of dimerization tools to control protein-
protein interactions 

The choice of an experimental strategy is generally a compromise between experimental 

requirements and available tools. Features such as specificity, robustness, reversibility, 

orthogonality and the control of cellular events with high temporal and spatial precision within 

the physiological context have to be counterbalanced with features such as simple handling 

and adaption to novel applications as well as low costs and the available equipment in the 

lab. Additionally, minimization of any off-targets is of high importance for all research tools 

used to perturb cellular processes.  

The characterization of new protein-ligand pairs has led to the development of a number of 

alternative CID systems that have been extensively used to modulate protein-protein 

interactions in living cells. An overview of properties of dimerizer molecules of alternative 

homo- and heterodimerizers is summarized in Table 1. For a detailed description of currently 

available CIDs and their applications I refer to following reviews[44].  

 
Table 1. Properties of alternative CID systems. From Erhart et al., 2013[1], Supplementary Figure S5. 
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Despite the great utility of these CIDs, none of them is without limitation. Either an expensive 

and complex multistep synthesis of the dimerizer itself or limited application in living animals 

due to unspecific binding profiles and/or affinities for endogenous proteins that lead to 

cytotoxic effects, restrict the use of some these CID systems to a number of limited 

applications. For example, the most commonly used CID is based on rapamycin, which is far 

from ideal due to its immunosuppressive properties. But its expediency and availability still 

make it the most often implemented CID.   

In summary, each CID offers its own advantages and has been involved in solving specific 

problems in cell biology and related fields. However, none of these systems unifies all 

essential features of an optimal research tool suitable to efficiently investigate physiological 

signaling pathways, such as the possibility to reversibly induce intracellular dimerization with 

excellent kinetics and without interfering with endogenous signaling pathways.  

Chemical development of an intracellular heterodimerizer: HaXS CID 

We developed an alternative CID system in our lab, called HaXS. HaXS consists of a core 

module, which links two highly specific self-labeling tags, the HaloTag- and SNAP-tag 

substrate. An iterative approach in which the core module was chemically modified 

succeeded in optimizing HaXS for high cell permeability and fast reactivity. In contrast to 

other CIDs such as the most commonly used rapamycin CID, HaXS does not interfere with 

endogenous signaling pathways. In contrast to the covalent CID based on S-CROSS, which 

only dimerizers previously interacting proteins[45], the HaXS CID is the first covalent dimerizer 

system, which can force proximity of previously non-interacting proteins. As true for all CIDs, 

the cloning effort is high and constructs containing the dimerizing domains need to be 

optimized for every single application. Since the formation of a covalent dimer complex allows 

simple quantification of the dimerization efficiency under denaturing conditions by immune-

blotting, the process of construct design and optimization is greatly facilitated. Additionally, 

the straightforward analysis of the dimerization efficiency with immune-blotting experiments, 

enables the direct correlation of the induced amount of dimerization with the cellular output. 

Furthermore, the HaXS system can be used orthogonally with other CIDs, which allows the 

combined use of the HaXS CID with one or even more CIDs in a single cell. This enables to 

simultaneously control various signaling molecules at several locations in a single cell and 

thus to investigate more sophisticated signaling networks. A detailed description of the 

development and proof-of-concept experiments demonstrating the activation of a PI3K as well 

as a proof-of-principle application of the orthogonal use of the HaXS CID with the rapamycin 

CID can be found in the Results (see Results, Chapter 3.1, HaXS8 manuscript).   

In contrast to naturally occurring dimerizer molecules, which are difficult to derivatize as 

already small changes of these naturally optimized molecules can have dramatic effects on 

their cell penetration performances, the core module of HaXS can be relatively easily 
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modified. This makes the HaXS dimerizer a good starting molecule for the development of 

further classes of dimerizers related to HaXS.  

1.4 Manipulation of protein dynamics with increased spatiotemporal 
precision 

The HaXS CID and other CID systems were successfully used to regulate a number of 

protein-protein interactions on a time scale of minutes to hours. However, as many signaling 

pathways in living cells typically occur on a timescale of seconds, it is impossible to mimic 

physiological signaling pathways with tools based on chemical molecules. The time required 

for the chemical dimerizer to penetrate the cell membrane limits their temporal resolution, 

whereas the spatial resolution is limited by the intracellular diffusion of the chemical dimerizer.  

In order to improve the spatiotemporal precision of methods involved in the control of protein 

activities, recent efforts lie in the development of tools, which use light instead of a chemical 

molecule as the regulatory trigger. In contrast to chemical molecules, delivery of light is 

immediate, which enable the manipulation of protein activities with high temporal resolution. 

Additionally, light can be applied on single cells or even subcellular regions of a cell and thus 

allow manipulating molecular events not only with high temporal but also with high spatial 

precision. Furthermore, light has few off targets and relatively low toxicity. The intensity of the 

light can be modulated, thus the intensity of intracellular events activated by light can be 

varied. These advantageous features of light as a stimulus for biological interrogation raised 

great interest in the development and use of light-inducible tools in the last years. 

Classic photo-caging approach to control protein dynamics 

In the field of chemical biology, the concept of regulating biological processes with light was 

introduced in the late seventies by the groups of Schläger and Hoffman. In a classic photo-

caging approach, chemical and enzymatic methods such as in vitro translation[46] or chemical 

ligation[47] are used for the site-specific incorporation of a caging group in vitro (reviewed in 

Mayer and Heckel, 2006[48]). The derivatization of proteins with these photolabile groups, 

keeps them in an inactive status until photo-excitation releases the caging group, which 

results in the formation of the “uncaged” biologically active compound[49]. However, the spatial 

resolution of light-induced activation is limited, since the photo-released module is freely 

diffusible in the cell. The irreversible nature of the photo-uncaging reaction further limits this 

approach to few applications (reviewed in Binschik et al., 2011[50]). Additionally, photocaging 

is limited to specific targets and a time-consuming case-by-case optimization is required for 

each protein that is brought under light control. Additionally, since the chemical modification 

occurs ex vivo, the caged proteins have to be re-introduced into cells (for example via 

permeabilized cells[51], via microinjection and electroporation[52]), which can be challenging 

and prevents the application of these approaches in living cells.  
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Genetically-encoded light-sensitive modules to control protein dynamics 

The combination of the specificity resulting from genetic manipulation together with the high 

spatiotemporal precision of light-induced control is a promising approach for the manipulation 

of protein dynamics within biological systems. Integration of genetically encoded light-

controlled modules, which do not depend on extracellular chemical modifications, is one of 

the biggest advances in the field of light-controlled tools. The modules contain a naturally 

occurring photosensitive protein that undergoes a conformational change upon activation by 

illumination with light at a defined wavelength. One approach to use these genetically 

encoded light-sensitive protein modules, is to put a single protein under light control by 

preparing fusion proteins between a single POI and a light-inducible module. This was nicely 

demonstrated for the light-gated control of the GTPase Rac[53]. However, direct fusion of a 

photo-activable group on a POI either via genetic or chemical incorporation requires time-

consuming case-by-case optimization.  

Optogenetic dimerizer systems 

In a more modular approach, cellular events are controlled indirectly through recruiting or 

sequestering POIs via a light-dependent control of protein-protein interactions. This approach 

obviates the need to optimize the caging of individual proteins. A nice demonstration of this 

approach is the light-gated localization of a Rac guanine nucleotide exchange factor (GEF) to 

the membrane, which leads to the activation of Rac and subsequent actin polymerization[54]. 

While these genetically encoded light-activated dimerization systems are versatile tools, 

which profit from fast dimerization[55,56] as well as from reversibility of the dimerization reaction 
[54-57], they all suffer from their own drawbacks as large photosensory protein tags[54][57], 

requirement of an exogenous co-factor[57],  unprecedented speed of dimerization[54], slow 

kinetics[57], formation of unwanted homodimers[55], limited localization differences in the 

illuminated versus dark state as well as sensitivity of accidental exposure to environmental 

light and a spectral overlap between wavelengths used for activation of a biological process 

and commonly used fluorescent reporter proteins such as GFP, CFP, YFP[55,56]. Additionally, 

a general restriction to all these light-inducible systems is the need of specialized 

microscopes and softwareʼs, which are necessary to spatially target the activatory light 

beam[53]. 

1.5 Steps toward an optimal dimerizer tool 

Although a wide variety of cellular events were successfully investigated with optogenetic 

dimerizer systems, the properties of the molecular components and the technologies of light 

delivery have to be improved to make these tools more accessible. In this context, a tool, 

which combines light-induction with a well-characterized dimerizer tool, which enables high 

spatiotemporal precision with a light sensitive tool that is based on a well-characterized 

chemical induced dimerization reaction will be advantageous. 
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Intracellular manipulation of the chemical dimerizer molecule  

Two strategies for the intracellular manipulation of the dimerizer in the commonly used 

rapamycin CID have been reported. The first is a photocleavable biotinylated rapamycin 

analog (cRb-A) that has been used to control the activity of small GTPases[58]. The biotin has 

a very high affinity to the protein streptavidin, which prevents the biotin-streptavidin conjugate 

from entering the cell. The need for the extracellular removal of the caging group to release 

rapamycin, which then can diffuse across the membrane, limits the application of this tool to 

investigations of POIs that are active at or very close to the plasma membrane. Karginov and 

colleagues present another photocaged rapamycin (pRap), which has to be used in 

combination with an engineered version of FKBP12 (iFKBP)[59]. From their published data it is 

difficult to conclude whether pRap is able to penetrate cells. Additionally, the possibility to 

induce dimerization in a subcellular region of the cell was not demonstrated, and the 

requirement to replace FKBP12 with iFKBP in existing constructs may hinder further 

applications. Additionally, in both approaches the caging group is located at the C40 position 

of the rapamycin core, which is the interaction site with FKBP12. Since rapamycin alone 

cannot bind to the FRB domain and only interacts with FRB if it has previously reacted with 

FKBP12, the uncaging reaction has to occur before rapamycin can react with a single protein 

domain. Conclusively, these approaches do not enable the intracellular manipulation of target 

proteins and rather produce a source of diffusible rapamycin.  

Williams and colleagues synthesized a photocleavable homodimeriser based on the FKBP-

FK506 CID[60]. This system nicely demonstrates the utility of photocleavable dimerizers. 

However, the relative long irradiation times required to induce photolysis as well as the fact 

that only homodimerization events can be controlled, limit the application of this CID. 

Reversibility of induced dimerization is required to mimic physiologic signaling events 

Various studies have shown the successful CID-induced activation signaling events with high 

temporal resolution and specificity, but most of the available CIDs are not reversible and thus 

are not suited for the investigation of processes that are regulated in a reversible manner. 

However, physiological signaling events such as phosphorylation and de-phosphorylation 

events as well as molecular switches of small GTPases are often transient by nature. 

Consequently, tools that enable to reverse an induced status are essential to mimic 

physiological signaling events.  

The dimerization of genetically encoded light-activated dimerization systems enable to control 

dimerization events in a reversible manner. The dimerization depends on a photoisomerizable 

chromophore, which undergoes a conformational change upon illumination with light at proper 

wavelength that relaxes back to its initial conformation in the dark. Thus the association and 

dissociation of the two dimerizing domains can be repeated, which would in principle enable 

to simulate oscillating signals, a well-known phenomenon in the phospholipid field[61] and 

many signal transduction events. The induction of the association of the two dimerizing 
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domains is generally fast for all of these systems, but the reversion of the process is slow and 

takes several minutes to hours[54][55-57]. Only with the system reported by Levskaya and 

colleagues the dimerization process can be reversed on a timescale of seconds. However, 

reversion is only achieved in the presence of a co-factor and upon illumination of light with a 

different wavelength than the one to induce association (750 nm versus 650 nm). The need 

for two different light sources makes this experimental setup less convenient and thus limits 

its applications. An overview of the most popular optogenetic dimerizer systems is 

summarized in Table 2.  

  FK1F / 
GIGANTEA PHYB / PIF CIB1 / CRY2 LOV2 / 

ePDKI 

Reference Yazawa et al. 
2009  

Levskaya et al. 
2009 

Kennedy et al. 
2010 

Strickland et al. 
2012  

Association 

Principle 

Optically 
switchable 

dimerizer systems 
based on 

conformational 
changes of LOV 

domain, blue light  
(450 nm) induces 

association of 
FKF1 and 

GIGANTEA 

Optically 
switchable 

systems based 
on conformational 

changes of 
phytochromes B, 
red light (650 nm) 

illumination to 
induce 

association of 
phytochrome B 

and PIF 

Optically 
switchable 

systems based 
on conformational 

changes of 
cryptochrome 2, 
blue light (458-
488 nm) induce 
dimerization of 
CIB1 and CRY2 

Optically 
switchable 

systems based 
on conformational 
changes based 

on LOV, blue light 
(< 500 nm) 

induce 
dimerization of 

LOV2 and ePDZl 

Kinetics Slow, 30 min, 
inefficient (30%) Fast, seconds Fast, seconds 

(100 ms) Fast, seconds 

Dissociation 

Principle 

In absence of 
activatory light: 
conformational 

relaxation of LOV 
domain leads to 
dissociation of 

FKF1 and 
GIGANTEA  

Illumination with 
infrared light (750 
nm) plus addition 

of a co-factor 
(PCB) induces 
dissociation of 
phytochrome B 

and PIF  

In absence of 
activatory light: 
conformational 

relaxation of 
cryptochrome 2 

leads to 
dissociation of 

CIB 1 and CRY1  

In absence of 
activatory light: 
conformational 

relaxation of LOV 
leads to 

dissociation of 
LOV2 and ePDZl  

Kinetics 
Slow, hours, 

almost 
irreversible 

Slow, hours, 
under 750 nm 

light: fast, 
seconds (with 
addition of co-

factor) 

Medium, 10 min Medium, 10 min 

Multiple 
rounds  Yes Yes Yes Yes 

Application 

Membrane 
recruitment of 
Rac induces 
lamellipodia 
formation, 

induction of 
transcription 

activation (Gal4 / 
VP16 ) 

Membrane 
recruitment of 

Rac GEFs results 
in cell protrusion  

Reconstitute 
activation of split 
protein fragments 

(Cre 
recombinase), 

activation of Gal4 
transcription 

activator system 

Control of yeast 
mating pathway: 

recruitment of 
Ste5 to PM and 
yeast polarity by 

Cdcd42 
recruitment to PM 

Table 2. Overview of optogenetic dimerizer systems. Properties of association and dissociation of the dimerizing 
modules of optogenetic dimerizer systems as well as an example of applications are listed. 
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In contrast to these reversible optogenetic dimerizer systems, in most available CID systems 

the induced dimerization is not reversible, either due to covalent (HaXS CID) or high affinity 

(rapamycin CID) interactions of the dimerizer with the respective dimerizing domains. 

Rapamycin interacts with FKBP and FRB with a high affinity (FKBP–rapamycin: Kd=0.2 nM, 

FKBP–rapamycin–FRB: Kd=12 nM[31], which makes the clearance of rapamycin from cells 

extremely slow. Neither extensive washout[62] nor an excess of a competitor[63] could reverse 

the rapamycin-induced dimerization on a biological relevant timescale.  

Last years several strategies were reported to implement reversibility in available CIDs, which 

enable to use these tools to reversibly control signaling events and thus to mimic 

physiological signaling pathways. A fungal CID (fusicoccin) dimerizes fusion proteins of two 

plant-derived domains, 14–3-3 and C terminus (CT) of the H+-ATPase PMA2. The induced 

dimerization was shown to be reversible upon extensive washing steps. However this takes 

several minutes and thus is not suitable to mimic physiological signaling events[64] (Fig 6a). 

Lin et al reported reversibility of a chemical induced signal through a dual translocation 

strategy. Two orthogonal CID systems were combined (rapamycin and gibberellin CID) and 

reversion of an induced activation from the primary CID is achieved through the sequestration 

of the whole dimerized complex away from its site of action by redirecting the entire complex 

to another subcellular location. This dual translocation strategy was used to turn Rac/PI3K-

dependent membrane ruffling on and off. As both of the used CID systems are irreversible, 

multiple rounds of recruitment and dissociation are not possible with this setup. Additionally, 

as certain proteins show activity at various membranes of organelles, this approach requires 

extensive control experiments to rule out the involvement of possible interfering activations 

and the sophisticated setup of combining two CID systems requires high effort in construct 

design and thus seems not to be convenient for many applications[63] (Fig 6b).   

The group of Carsten Schultz[65] introduced a novel reversible CID system. In a first step, the 

reversible chemical dimerizer (rCD1) dimerizes two standard protein tags, the SNAP-tag and 

FKBP12. In a second step, the induced dimerization can be reversed through the addition of a 

commercially available competing ligand (FK506). The induced dimerization can be reversed 

sufficiently fast to determine kinetics of lipid metabolizing in living cells (half-time of 

deactivation around 15 s). The induction of PI3K activity at the plasma membrane activity 

followed by its inactivation was demonstrated. However, even the reversion of the induced 

dimerization is fast, the induction of the dimerization itself is slow (Fig 6c). Another novel 

reversible dimerizer system based on the same principle was introduced in the same year. 

The dimerizer contains a synthetic ligand of FKBPʼ (SLFʼ) linked to trimethoprim (TMP). The 

SLFʼ moiety binds to the F36V mutant of FK506-binding protein (FKBP) and the TMP moiety 

binds to E. coli dihydrofolate reductase (eDHFR). SLFʼ-TMP-induced heterodimerization can 

be reversed upon addition of a high concentration (10 µM) of the competitor TMP. This setup 

allows one to control multiple rounds of dimerization and dissociation. Additionally, the CID 

induced activation cannot only be reversed, but through the combination of the SLFʼ-TMP CID 
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with the rapamycin CID, a POI can be translocated between two subcellular sites. If the 

competitor and rapamycin are added simultaneously, TMP replaces SLFʼ-TMP and allow 

rapamycin to induces the translocation of an FKBPʼ-tagged POI to a second anchoring unit 

containing the FRB domain (Fig 6d). Valuability of the system was demonstrated by reversibly 

targeting a constitutively active Rac1 mutant to the plasma membrane in live cells, which 

resulted in the rapid and reversible formation of lamellipodia. Unfortunately dimerization and 

reversion of dimerization-induced process is rather slow (> 10 min) and this tool is limited to 

application occurring on slower time scales[66]. 

In summary, these strategies to implement reversibility into CID systems have greatly 

enhanced the toolkit for controlling physiological signaling pathways. However, as all systems 

described suffer form disadvantages (see Table 3) such as inefficient washout effects, 

complicated experimental setups, slow dimerization and/or reversion of the induced 

dimerization, there is a need for a novel tool that allow to reversibly control dimerization 

events. 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 6. Scheme demonstrating four strategies to implement reversibility in CID systems. a) Fusicoccin 
dimerizes plant derived dimerizing domains 14-3-3 and CT. Extensive washout of the dimerizer leads reversion of the 
dimerization. b) Rapamycin induces dimerization between FKBP and FRB. Addition of gibberellin that induces 
dimerization between GID1 and GAI leads to translocation of the dimerized complex at the first anchoring unit (PM) 
toward a second anchoring unit (mitochondrium). c) rCD1 induces dimerization between FKBP and SNAP. Addition 
of the competitor FK506 replaces rCD1 and reverses dimerization. d) SLFʼ-TMP dimerizes FKBP and DHFR. Addition 
of the competitor TMP replaces SLFʼ-TMP and reverses the dimerization. 
In summary, three different strategies were used to implement reversibility to CID systems. The dual translocation 
strategy requires extensive cloning effort, which can be challenging for some applications. The washout of the 
dimerizer fusicoccin seems to be inefficient and dissociation proceeds at relatively slow rates, thus limiting this 
approach to investigations that occur on a slow time scale. More promising strategies are based on a competitor 
molecules, which replaces the dimerizer and thus reverse the induced dimerization. Replacement of the dimerizer 
SLFʼ-TMP with the competitor TMP takes several minutes, whereas the replacement of rCD1 with the competitor 
FK506 process within few seconds and thus enables to investigate physiological relevant signal inactivation events. 
However, as the induction of the dimerization in this CID is slow and takes several minutes (t > 20 min), application of 
rCD1 CID is limited.  
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  Fusioccin Dual 
translocation rCD1 SLF’-TMP 

Reference Skwarczynska et 
al. 2013  Lin et al. 2013  Feng et al. 2014  Liu et al. 2014  

Association 

Principle 

CID, fusicoccin 
induces 

dimerization of 
14–3-3 and CT 
(plant derived, 
engineered) 

Combination of 2 
orthogonal CIDS, 

rapamycin 
induces 

dimerization of 
FKBP and FRB  

CID, rCD1 induces 
dimerization of 

FKBP and SNAP-
tag 

CID, SLF’-TMP 
induces 

dimerization of 
FKBP’ and 

DHFR 

Kinetics Slow, 20 min Fast, seconds Slow, 20 min Slow, 20 min 

Dissociation 

Principle 
Extensive 

washing steps, 
washout of 
dimerizer 

Dual translocation 
of two orthogonal 
CIDs, (GA3-AM 
and rapamycin) 

Competitor FK506 
replaces dimerizer 

Competitor TMP 
replaces 
dimerizer 

Kinetics Slow, 15 min Slow, 30 min Fast, seconds Slow, 15 min 

Multiple 
rounds Yes No No Yes 

Application 

Modulate the 
subcellular 

localization of the 
transcriptional 
factor NF-κB to 

induce secretion 
of IL-8 

Activation and 
inactivation of 

Rac-/PI3K-
dependent 

membrane ruffling 

Activation and 
inactivation of PI3K 

allow the 
measurement of 

PIP3 turnover and 
downstream 

effectors 

Relocation of 
constitutively 

Rac to PM and 
mitochondrium, 
leads to rapid 
and reversible 

formation of 
lamellipodia 

Table 3. Overview of reversible CID systems. Properties of association and dissociation as well as examples of  
applications are listed in the table. 
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2. Aim of the thesis 

The topic of my thesis originated from the need of a tool that allows one to manipulate 

interactions of signaling proteins and to initiate activation of signaling pathways at defined 

starting points and cellular locations. Tools to force proximity of receptors and other signaling 

molecules with high spatiotemporal precision are required to modulate and investigate 

underlying signaling pathways. A promising approach to dynamically control protein 

dimerization and translocation is based on chemical inducers of dimerization (CIDs).  

The development of a novel CID based on a Halo- and SNAP-tag reactive dimerizer was an 

ongoing project in the Wymann lab. Although, HaXS was successfully used to control the 

activation of an isolated signaling transduction branch in a complex signaling network (see 

Results, Chapter 3.1, HaXS8 manuscript), the HaXS-induced dimerization is relatively slow 

(15 min) and dimerization efficiency is moderate, which limits the utility of the HaXS CID to 

reproduce physiologic signaling pathways that occur on short time scales. 

In order to expand the application range of the HaXS CID towards the study of fast cellular 

events, a first goal of my thesis project was to improve the speed of the dimerization of the 

HaXS CID (see Results, Chapter 3.3, Protocol Manuscript). A thorough analysis of the HaXS-

induced dimerization reactions was performed with a modeling software in order to 

understand how parameters of the HaXS CID or CIDs in general can be modulated to 

optimize speed resp. efficiency of the dimer formation and to optimize the experimental 

conditions to get best results with the HaXS CID.  

However, a tool based on chemical molecules will never be able to control cellular events on 

a time scale of seconds, as the time required for the chemical molecules to penetrate the cell 

membrane limits its temporal resolution. Additionally, the spatial resolution of a tool based on 

a chemical molecule is limited due to the intracellular diffusion of the chemical compound, 

which prevents the control of cellular events occurring in subcellular compartments. In 

contrast, light is an excellent regulatory trigger. Its delivery is immediate and can be applied 

on single cells or even subcellular regions, which enables the manipulation of protein 

dynamics with high temporal resolution.  

A second goal of this thesis project was the development of a cell-permeable CID that can be 

manipulated intracellularly by light, which will provide the possibility to manipulate protein 

dynamics with increased spatiotemporal precision. In order to profit form the well-

characterized dimerization reaction between Halo- and SNAP-tag fusion proteins, we set out 

to use the HaXS CID as a base for the development of a light-controllable CID. The modular 

synthetic strategy of HaXS8[1], allows the relatively simple introduction of functional groups 

into the core module of HaXS8, and thus enables the development of a photocleavable 

derivative of the HaXS dimerizer (see Results, Chapter 3.2. MeNV-HaXS manuscript). The 

integration of the photocleavable group into the HaXS dimerizer will additionally enable to 
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reversibly induce a dimerization event; an important prerequisite for the reproduction of 

physiological signaling pathways and to study signalling molecule turnovers. 

However, even we successfully improved the dimerization performance of the HaXS CID, the 

induced dimerization speed and efficiency cannot compete with the excellent dimerization 

kinetics of the rapamycin CID, which profits from high cell permeability of this naturally 

occurring dimerizer molecule as well as form the high rate constants of FKBP with rapamycin 

and of FKBP-rapamycin with FRB. However, the FKBP and FRB domains in the dimerizing 

constructs compete with the endogenous FKBP12 and mTORC1 for rapamycin binding. The 

binding of FKBP12-rapamycin to the endogenous FRB domain renders the mTORC1 

enzymatically inactive and can induce unwanted side effects on the regulation of cell growth, 

proliferation as well autophagy and thus limits the use of the rapamycin CID. To overcome the 

off-target effects of rapamycin, non-toxic rapamycin analogues (so-called rapalogs) were 

developed, which only bind a genetically engineered mutated version of the FRB, while 

binding to the wild type FRB domain is abolished. 

However, interference with mTORC1 due to minute rapamycin impurities or toxic by-products 

as well as a low cell penetration capacity of these rapalogs limits the utility of as-yet 

developed molecules. The third goal of this thesis project was the development of a rapalog 

CID, which does not interfere with mTORC1 signaling. Additionally, the introduction of the 

bulky substituent at the interface of rapamycin, which interacts with the FRB domain, should 

not dramatically affect cell penetration capacities of this rapalog to make sure that excellent 

dimerization behavior is retained. 
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3. Results 

Chapters 3.1 - 3.4 include all projects of this PhD thesis aiming at the development and 

optimization of heterodimerizer systems to manipulate signaling proteins with high 

spatiotemporal precision. Chapter 3.1 includes the published manuscript and supplementary 

information (excluding 1H NMR and 13C NMR spectra) of the HaXS8 CID. The next chapter 

3.2 contains the published manuscript and supplementary information (excluding 1H NMR and 
13C NMR and HRMS spectra) of the photocleavable dimerizer (MeNV-HaXS). Chapter 3.3 

includes a manuscript in preparation that describes a detailed protocol of the HaXS CID as 

wells as a thorough analysis of dimerization reactions induced by HaXS or CIDs in general. 

The last chapter 3.4 includes a manuscript in preparation describing the novel synthetic route 

and a purification protocol for a non-mTORC1 interfering rapalog, called pcRap. Additional 

informationʼs concerning the status of this manuscript are included.  
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SUMMARY

Cell activation initiated by receptor ligands or onco-
genes triggers complex and convoluted intracellular
signaling. Techniques initiating signals at defined
starting points and cellular locations are attractive
to elucidate the output of selected pathways. Here,
we present the development and validation of a
protein heterodimerization system based on small
molecules cross-linking fusion proteins derived
from HaloTags and SNAP-tags. Chemical dimerizers
of HaloTag and SNAP-tag (HaXS) show excellent
selectivity and have been optimized for intracellular
reactivity. HaXS force protein-protein interactions
and can translocate proteins to various cellular
compartments. Due to the covalent nature of the
HaloTag-HaXS-SNAP-tag complex, intracellular
dimerization can be easily monitored. First applica-
tions include protein targeting to cytoskeleton, to
the plasma membrane, to lysosomes, the initiation
of the PI3K/mTOR pathway, and multiplexed protein
complex formation in combination with the rapamy-
cin dimerization system.

INTRODUCTION

Chemical inducers of dimerization (CIDs) are powerful tools to

specifically control protein homo- and heterodimerization

(Corson et al., 2008). The most popular CID system currently

uses rapamycin to dimerize FKBP12 and the FRB domain of

mammalian target of rapamycin (mTOR), which results in the

formation of a stable trimeric complex (Crabtree and Schreiber,

1996). Although the system displays excellent kinetics (Banas-

zynski et al., 2005), cross-reactions with the nutrient sensor

mTOR complex 1 (TORC1) can occur. C16-derivatized rapa-

logs have been designed to interact only with mutated FRB

domains, but not with endogenous mTOR (Liberles et al.,

1997; Inoue et al., 2005; Edwards and Wandless, 2007). Using

rapamycin and rapamycin derivatives (dubbed rapalogs),

membrane translocation of lipid phosphatases was achieved

targeting the plasma membrane (Varnai et al., 2006) and endo-

somes (Fili et al., 2006), while Inoue and Meyer successfully

triggered PI3K activation by translocation (Inoue and Meyer,

2008). Minor contamination with rapamycin or rapamycin by-

products (<< 1%) can dramatically affect the PI3K/mTOR

axis, which renders the rapamycin system less suitable for

studies of growth control, immunity, and metabolism (Wulls-

chleger et al., 2006).

The natural product coumermycin is a homodimerizer linking

two amino-terminal subdomains of the B subunit of bacterial

DNA gyrase (GyrB) on each side of the molecule (Mohi et al.,

1998; O’Farrell et al., 1998). Several cellular signaling pathways

were successfully targeted with the coumermycin system (Farrar

et al., 1996; Mohi et al., 1998; Liu et al., 2000), but biological

applications remain limited to homodimerization processes.

CID based on dexamethasone (DEX) conjugated to metho-

trexate (MTX) or trimethoprim (TMP) have been introduced by

the Cornish lab and were successfully used in a yeast three-

hybrid system (Lin et al., 2000; Baker et al., 2002; Bronson

et al., 2008). Phytohormone abscisic acid (ABA) stress response

pathway proteins have recently been modified to control the

proximity of cellular proteins (Liang et al., 2011). The ABA-

induced CID system offers the advantage that it relies on binding

partners that have no endogenous counterparts, but so far no

rapid dimerization has been demonstrated. Furthermore, most

of the systems discussed in Corson et al., 2008, including the

ABA system, depend on reversible noncovalent interactions,

which render the quantification of successful dimerization

challenging.

The use of self-labeling technologies allows the covalent

incorporation of a wide range of modifications at specific protein

sites (Hinner and Johnsson, 2010). Mutants of the DNA repair

protein O6-alkylguanine-DNA-alkyltransferase (SNAP-tag and

CLIP-tag) transfer alkyl groups from their substrates, such as

O6-benzylguanine (BG; Keppler et al., 2003) and O6-benzylcyto-

sine (BC; Gautier et al., 2008), to a reactive Cys residue. Haloal-

kane dehalogenase (HaloTag) has been designed to covalently

bind to synthetic chloroalkane ligands (Los et al., 2008). Covalent

bond formation between these protein tags and their targeted

compounds is highly specific, occurs rapidly under physiological

conditions, and is essentially irreversible. Johnsson and co-

workers have developed hetero-bisfunctional BG-MTX heterodi-

merizers, which were successfully used to control transcription
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in yeast (Gendreizig et al., 2003). The same group produced a

SNAP-homodimerizer (CoDis; Lemercier et al., 2007) and

bivalent fluorescent substrate S-CROSS, linking SNAP- and

CLIP-tagged proteins (Gautier et al., 2009). Like for the covalent

homodimerizer xCrAsH, which targets tetracysteine tags (Rut-

kowska et al., 2011), S-CROSS links exclusively pre-associated

binding partners. Although xCrAsH is suited for intracellular

applications, S-CROSS reactivity has only been demonstrated

in cell lysates so far.

An alternative approach to control protein-protein interactions

locally is provided by genetically encoded light-inducible protein

dimerizing systems (Yazawa et al., 2009; Kennedy et al., 2010;

Idevall-Hagren et al., 2012; Strickland et al., 2012). They offer

an unprecedented speed of dimerization (Idevall-Hagren et al.,

2012). Large protein tags (e.g., FKF1 with 1173 amino acids

[Yazawa et al., 2009] or PhyB with 908 amino acids [Levskaya

et al., 2009]), and sensitivity to accidental exposure to green/

blue light, favor the application of these systems in imaging,

but obstruct biochemical investigation of triggered interactions.

Here, we show the development and applications of an alter-

native dimerization strategy based on a class of covalent chem-

ical cross-linkers fusing HaloTag and SNAP-tag substrates

(HaXS; Figure 1A; Figure S1 and Table S1 available online).

This tag combination profits from a high reaction rate of the

HaloTags and SNAP-tags with their respective substrates (Hin-

ner and Johnsson, 2010) and attains high selectivity inside

mammalian cells. The strategy unites efficient covalent protein

dimerization with optimized cell permeability in HaXS molecules

and provides a simple control and workup of CID-induced com-

plexes (Figure 1B).

RESULTS AND DISCUSSION

Intracellular cross-linkers need to combine tag reactivity and cell

permeability. Because tag reactivity has been optimized before,

the core module linking SNAP-tag and HaloTag substrates was

left as a point of attack to modify physicochemical properties

of HaXS molecules. A progressive chemical optimization of the

coremodule included the integration of groupsmodulating water

solubility and cell permeability, and of bulky or semirigid struc-

tures separating the two tag-reactive moieties (for schematics,

see Figure 1B).

Structural Analysis of Core Module Properties and
Improvement of Cell Permeability of HaXS Molecules
To explore the required length of alkyl and PEG elements be-

tween HaloTag and SNAP-tag substrates, compounds HaXS1

and HaXS2 (Figure 2A) were tested in cellular systems. In HeLa

cells transiently transfected with SNAP-GFP and Halo-GFP

fusion proteins, optimal HaXS1 or HaXS2 concentrations

(5 mM) yielded up to 40%–50% intracellular dimerization. The

elongation of the core module in HaXS2, as compared to

HaXS1, improved cross-linking at elevated concentrations and

incubation times (Figures 2B and 2C). The observation that

time-resolved dimerization curves of HaXS1 and HaXS2 match

initially (t < 1 hr, Figure 2C) and the fact that HaXS1 has a higher

cell permeability than HaXS2 as determined in a permeability

assay (see below) suggest that the faster diffusion rate of

HaXS1 could initially compensate its inferior reactivity

(compared to HaXS2), while the longer HaXS2 yields higher

dimerization efficiencies at later time points (at 4 hr > 50% for

HaXS2, 25% for HaXS1). The better cell permeability and inferior

dimerization capacity of HaXS1 also explains why high concen-

trations of HaXS1 (50 mM) counteracted the formation of hetero-

dimeric HaloTag-SNAP-tag complexes, most likely by masking

reactions generating increasing levels of monomeric, reacted

Halo- and SNAP-GPF species (Figure 2B), which was not

observed with high concentrations of HaXS2.

These results suggest that intracellular dimerization reaction is

best interpreted as a convolution of substrate/tag reactivity and

limited diffusion of the compounds into intracellular space. This

view is also supported by the extended time required to reach

relevant yields of intracellular dimerization with this first-genera-

tion HaXS molecules, as compared to previously reported single

sided reaction rates of HaloTag and SNAP-Tagwith their specific

substrates (3 3 106 M�1.s�1 and 3 3 104 M�1.s�1, respectively;
Hinner and Johnsson, 2010). These pilot studies with HaXS1 and

HaXS2 made it clear that a minimal core module size is crucial to

efficiently cross-link the Halo-GFP and SNAP-GFP fusion pro-

teins, and that cell permeability needs to be improved for faster

intracellular reactivity.
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Figure 1. Schematic Representation of Chemically Induced Dimer-

ization of Intracellular Proteins by HaXS Molecules

(A) HaloTag and SNAP-tag substrate moieties were integrated into bivalent

reactive cross-linking molecules (HaXS). The O6-benzylguanine function (red,

RS in subsequent figures) reacts with Cys145 in the SNAP-tag, while the

chloroalkane (blue, RH) links to Asp106 in the HaloTag.

(B) HaXS dimerizer molecules were rendered cell permeable by the integration

of specifically designed features into the core module (CoreM) of HaXS di-

merizers. Once HaXS enter cells, they heterodimerize exogenously expressed

proteins of interest (POIs) fused to SNAP- and HaloTags. In contrary to other

covalent chemical dimerizers, HaXS molecules link tagged proteins even if

they are not pre-associated (see Figure S1 and Table S1).
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Second-generation HaXS molecules were designed on the

basis of a HaXS2 scaffold aimed to maintain comparable core

module size and low molecular weight, while introducing fea-

tures to improve cell permeability. Along these lines, HaXS3

was designed to replace the central glycinemoiety with function-

alized amino acids, and to generate a HaXS library (Figure 3A).

Because fluorinated groups have been reported to modulate

physicochemical properties of molecules considerably (Böhm

et al., 2004), we produced alkylated and fluorinated analogs of

HaXS3 to integrate a lipophilic surface as an entry point into

cellular membranes. To further investigate the influence of

fluorine substitutions on cell penetration of HaXS3 derivatives,

fluorinated and nonfluorinated analogs were produced in paral-

lel: alkyl-analog HaXS4 and fluorinated HaXS5 were synthesized

by the exchange of the glycine moiety included in the HaXS3

core structure bymethylalanine or trifluoromethylalanine groups,

respectively. The phenyl-analogs HaXS6 and the corresponding

fluorinated HaXS7 were made according to the same strategy

from Fmoc-phenylalanine or Fmoc-pentafluorophenylalanine

(Figure 3A). HaXS3 has comparable intracellular dimerization

efficiency compared to first-generation HaXS molecules. The

simple alkyl chain introduced in HaXS4 led to a reduction of intra-

cellular dimerization as compared to HaXS3 and HaXS2, but the

trifluoromethylated HaXS5 rescued dimerization of Halo-GFP

and SNAP-GFP fusion protein back to 40%within 1 hr. The lipo-

philic nature of the phenyl group in HaXS6 and the pentafluoro-

phenyl group in HaXS7 improved cell penetration even further.

The nonfluorinated aryl derivative HaXS6 showed characteristics

matching those of the fluorinated HaXS5 molecule. Significant

progress in rate and efficiency in intracellular dimerization was

achieved with the pentafluorophenyl derivative HaXS7 (Figures

3B and 3C).

Based on results from the above HaXS series, a third-genera-

tion dimerizer was envisaged: assuming that HaXS molecules

are delivered inside cells via passive diffusion through cell mem-

branes, we next targeted a dimerizer with a lower molecular

weight, and thus synthesized a flat derivative of HaXS7. One of

the emerging strategies was to integrate the polyfluorophenyl

substituent from HaXS7 into the core module structure. HaXS8

was synthesized in six steps from tetrafluorohydroquinone,

tetraethylene glycol, BG-NH2, and 6-chloro-1-iodohexane

(Figure 4A) with a good overall yield (1 g produced in total; see

Supplemental Experimental Procedures available online). Addi-

tionally, minimization of core module flexibility aimed to prevent

steric clashes during the formation of the protein complex,

hereby allowing higher yields of Halo-GFP and SNAP-GFP

dimerization. Molecular modeling was performed to eliminate

the possibility that the designed molecules would link the Halo-

Tag and the SNAP-tag in a way to generate unfavorable steric

clashes between the two tags. As shown in Figure 4B, HaXS8

provided a fair amount of degrees of freedom to arrange the

HaloTag and the SNAP-tag proteins in the docked complex, sug-

gesting that HaXS8 provided sufficient core module size and

flexibility for optimal docking.
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Figure 2. Intracellular Heterodimerization Induced by First-Genera-

tion HaXS Molecules
(A) Abbreviated structure (for RS and RH see Figure 1) of the bisfunctional

HaloTag and SNAP-tag reactive molecules HaXS1 and HaXS2.

(B) HeLa cells transfectedwith expression constructs for SNAP-GFP andHalo-

GFP (see Supplemental Experimental Procedures) were exposed to HaXS1

and HaXS2 at the indicated concentrations for 1 hr at 37�C in complete cell

culture medium, before cells were lysed and proteins were subjected to SDS-

PAGE and immune-blotting for SNAP/HaloTag dimers using anti-GFP (pri-

mary) and fluorescently-labeled (secondary) antibodies to generate a readout

on an infrared imaging system.

(C) HeLa cells (cotransfected with SNAP-GFP and Halo-GFP as in (B) were

incubated with the indicated HaXS compound (5 mM), and lysed at the indi-

cated time for analysis of dimers as in (B). Quantifications of the concentration

and time-dependent heterodimerization are means ± SEM of three indepen-

dent experiments. Error bars were removed where smaller than the symbols

used. A detailed description of the synthesis of HaXS molecules can be found

in the Supplemental Experimental Procedures.
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In HeLa cells, intracellular dimerization of Halo-GFP and

SNAP-GFP fusion proteins reached > 65% with HaXS8, notably

already at 10-fold lower concentrations of the compound as

compared to HaXS2 and HaXS7 (Figure 4C). Differences be-

tween HaXS8 and earlier generation HaXS molecules became

even more prominent at lower concentrations, as HaXS8 dis-

played significant intracellular dimerization as low as 50 nM,

where none of the other HaXS molecules displayed significant

dimerization. Moreover, HaXS8 was capable of dimerizing >

50% of tagged proteins over a wide concentration range. This

exceeds values typically achieved for surface receptor/signaling

chain interactions by a factor of around 103, as receptors recruit

cytosolic components in the low percentage range (Deswal

et al., 2011).

To correlate cell permeability and the performance in intra-

cellular dimerization reactions directly, we performed a parallel

artificial membrane permeability assay (PAMPA; for a review

see Faller, 2008) with all HaXS molecules (Figure 4E). A cor-

relation between the obtained permeability values (Pe) and

the intracellular dimerization obtained for each HaXS com-

pound showed that cell permeability is indeed a key factor

for an efficient heterodimerization process in cells. HaXS1 is

the only outlier in this analysis, as the compound has the

lowest molecular weight contributing to improved membrane

permeability, but reduced coupling reactivity due to steric

constraints.

Protein Translocation to Selected Cellular
Compartments
Using HaXS8, we next aimed to target tagged proteins to spe-

cific locations inside living cells. As a first approach, tagged

fusion proteins of actin (SNAP-Actin) and GFP (Halo-GFP) were

co-expressed in NIH 3T3 cells. These cells form stress fibers,

which contain filamentous actin (F-actin), and can be visualized

with the F-actin stain rhodamine-phalloidin. Upon addition of

HaXS8, Halo-GFPwas translocated to stress fibers, and colocal-

izedwith rhodamine-phalloidin staining, whichwas confirmed by

image analysis of cross-linked Halo-GFP/SNAP-Actin com-

plexes (Figure 5A).

In parallel, HaXS8 controlled the translocation of fluorescent

fusion proteins from the cytoplasm to the plasma membrane in

MDCK epithelial cells: cytosolic red fluorescent protein (mono-

meric RFP; TagRFP) was expressed as HaloTag fusion protein

(Halo-RFP), and a membrane anchor was constructed fusing a

SNAP-tag, GFP, and the isoprenylation sequence from KRas4B

(the CAAX box), which targeted the resulting SNAP-GFP-CAAX

fusion protein exclusively to the plasma membrane. When

MDCK cells, expressing SNAP-GFP-CAAX and Halo-RFP,
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Figure 3. Intracellular Dimerization Triggered by Second-Generation HaXS Molecules—Influence of Concentration and Time of Exposure

(A) Abbreviated structures of fluorinated and nonfluorinated bisfunctional Halo- and SNAP-tag reactive molecules.

(B) HeLa cells co-expressing SNAP-GFP and Halo-GFP were exposed to the indicated amounts of HaXS compounds for 1 hr at 37�C (for details see Figure 2C

and Supplemental Experimental Procedures).

(C) HeLa cells expressing SNAP-GFP and Halo-GFP fusion proteins were incubated with 5 mM of the indicated HaXS molecules, before they were lysed at the

given times for detection of dimerization by immune-blotting (as in Figure 2C). Values represent the mean of three independent experiments ± SEM.

Chemistry & Biology

Intracellular Protein Heterodimerizers

552 Chemistry & Biology 20, 549–557, April 18, 2013 ª2013 Elsevier Ltd All rights reserved

26



were incubated with HaXS8, the initially cytosolic Halo-RFP pro-

tein was relocated to the plasma membrane (Figure 5B).

Chemical Induction of Intracellular Signaling
Protein/membrane interactions play a major role in the activation

of cellular signaling cascades in physiology and disease (Wy-

mann and Schneiter, 2008). Overactivation of phosphoinositide

3-kinase (PI3K) has gained much attention because it contrib-

utes to the promotion of cancer and inflammation (Cantley,

2002; Wymann and Marone, 2005; Zoncu et al., 2011; Wymann,

2012). Class IA PI3Ks are composed of a regulatory p85 and a

catalytic p110 kD subunit. The p85 subunit docks with two

src-homology 2 (SH2) domains to phosphorylated tyrosines on

activated growth factor receptors and drags the catalytic p110

subunit via a coiled-coil domain located between the two SH2

domains (dubbed inter-SH2, or iSH2; for structural schemes

see Wymann et al., 2003) to the membrane. PI3K then pro-

duces phosphatidylinositol(3,4,5)-trisphosphate [PtdIns(3,4,5)

P3], a lipid that serves as a plasma membrane docking site

for signaling enzymes containing pleckstrin homology (PH)

domains. Phosphoinositide-dependent kinase-1 (PDK1) and

protein kinase B (PKB/Akt) both contain PtdIns(3,4,5)P3-

binding PH domains. PDK1 directly phosphorylates PKB/Akt

on Thr308, while a secondary site on PKB/Akt (Ser473) is

phosphorylated by mTOR complex 2 (TORC2). When fully

activated, PKB/Akt takes a major role in the activation of

TORC1, and active TORC1 phosphorylates p70 S6 kinase

(p70S6K) on Thr389.

Rapamycin derivatives have been reported to boost a feed-

back leading to the amplification of PI3K signaling upstream of

TORC1 (O’Reilly et al., 2006), which provides a reason to validate

the HaXS strategy in the PI3K/mTOR pathway: a SNAP-GFP-

CAAX anchor in the plasma membrane (see above) served as

the docking site for a HaloTag protein fused to the inter-SH2

domain of p85 (Halo-iSH2-GFP; Figure 6A). The addition of

HaXS8 to HEK293 cells induced a rapid and efficient cross-link-

ing of the membrane anchor and the iSH2 construct, and trig-

gered the activation of the downstream targets PKB/Akt (as

monitored by Thr308 and Ser473 phosphorylation on PKB/Akt)

and mTOR (monitored by phosphorylation of T389 of p70 S6

kinase, p70S6K by TORC1). Although typical growth factor stim-

ulation also induces an activation of the MAPK pathway, HaXS8
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Figure 4. The Structurally Optimized Dimer-

izer HaXS8 in Comparison with the First-

and Second-Generation HaXS Compounds

(A) Chemical structure of the optimized bisfunc-

tional HaloTag and SNAP-tag reactive molecule

HaXS8.

(B) Modeled structure of a covalently linked

HaloTag-[reacted]HaXS8-SNAP-tag adduct. The

[reacted]HaXS8 molecule (elimination of guanine

and Cl�, see Figure 1) was linked to Cys145 in

the SNAP-tag (red) and to Asp106 in the

HaloTag (blue) crystal structures, before random-

ized structural starting points were put through

energy minimization (see Supplemental Experi-

mental Procedures). Depicted is a sample struc-

ture representing a tight fit between HaloTag

and SNAP-tag, which leaves the alkane chain

within the HaloTag entry tunnel in a relaxed

conformation.

(C) HeLa cells co-expressing SNAP-GFP and

Halo-GFP were incubated in complete medium

with HaXS8, HaXS7, or HaXS2 at the indicated

concentrations for 1 hr at 37�C before cell lysis

(see Figure 2C).

(D) HeLa cells as in (C) were exposed to 5 mM of

HaXS8, HaXS7, or HaXS2 for the indicated time,

before cells were lysed and probed for HaloTag

and SNAP-tag dimerization (all values are means

of three individual experiments ± SEM).

(E) All HaXS compounds presented here were

subjected to an artificial membrane permeability

assay (PAMPA; see Supplemental Experimental

Procedures) to assess cell permeability (ex-

pressed as Pe, [nm/s]). Pe was plotted logarithmi-

cally against the percentage of intracellular

dimerization achieved after a 15 min exposure

of HeLa cells (as in C) to the indicated HaXS

compounds at 5 mM (labeled 1–8; n = 3; mean ±

SEM).

Chemistry & Biology

Intracellular Protein Heterodimerizers

Chemistry & Biology 20, 549–557, April 18, 2013 ª2013 Elsevier Ltd All rights reserved 553

27



did not upregulate MAPK phosphorylation, demonstrating that

the system can be used to selectively induce isolated signal

transduction branches (Figure 6B).

Control experiments forcing the dimerization of a cytosolic

SNAP-GFP with the Halo-iSH2-GFP did not activate the PI3K/

mTOR pathway, illustrating that membrane proximity of the

iSH2/p110 PI3K complex was crucial to relay downstream sig-

nals. Moreover, HaXS8 did not interfere with mTOR signaling

induced by serum stimulation. Rapalog-based CID systems

can generate a distorted output in this system (see Figure S2

and Supplemental Experimental Procedures). Although HaXS8

does not yet match the dimerization rates attained with rapalog

CID systems, it offers the advantage that numerous connections

within the PI3K/mTOR pathway can be explored without interfer-

ence during long term stimulation.

Multiplexing Applications
It can also be envisaged that the HaXS dimerizers can be applied

orthogonally in conjunction with other CID systems, as this has

been elegantly demonstrated for the combination of rapamycin

and gibberellin analogs recently (Miyamoto et al., 2012). Such

combinations allow the construction and alignment of sophisti-

cated enzymatic reaction chains that can be utilized to probe

complex signaling pathways. A proof-of-concept approach

combining a pre-dimerization stepmediated by HaXS8, followed

by a rapamycin-induced translocation of the preformed Halo/

SNAP-tag complex to a lysosomal anchor protein containing

LAMP1 (LAMP-CFP-FRB), is shown in Figure 7. Successful

translocation of a cytosolic Halo-RFP fusion protein to lyso-

somes was only observed in the presence of HaXS8 and

rapamycin, as a FKBP-SNAP protein acted as a bridge from

Halo-RFP to the membrane anchor (see Figure 7B for a scheme

of the docked complexes). Although only two fluorescent pro-

teins (CFP and RFP) were used as cargo to monitor selective

translocation, up to three cargo proteins or enzymes can be

easily integrated into the setup.

As for other CID systems, tag fusions and probe constructs

need to be considered carefully when using HaXS8 molecules

to dimerize HaloTag and SNAP-tag fusion proteins. While non-

covalent CID assemblies can only be rated and modified by their

expected cellular output, covalent complexes can be easily

detected in the HaXS system, and success of dimerization can

be validated, and correlated with signal output and subcellular

targeting directly. In contrast to other covalent systems (see

S-CROSS and xCrAsH), HaXS8 can force dimerization of previ-

ously noninteracting proteins, and has been specifically opti-

mized for cellular permeability.

SIGNIFICANCE

The cell-permeable HaXS molecules promote a covalent

intracellular dimerization of HaloTag and SNAP-tagged

proteins of interest. The covalent and irreversible nature

of the reaction of the chemical dimerizer with HaloTag

and SNAP-tag allows easy monitoring of the dimerization

process even under denaturing conditions. The design

and chemical development of HaXS compounds focused

on the optimization of cellular availability and reactivity.

Although previously described covalent protein dimerizers

were used to confirm well-known protein-protein interac-

tions, HaXS molecules have the ability to force protein-

protein interactions. As shown here, forced protein

complex formation can also be exploited to promote pro-

tein translocation to different cellular compartments, and

to activate distinct cellular signaling pathways. In contrary

to the widely used rapalog CID systems, HaXS compounds

can be utilized to trigger PI3K/mTOR signaling pathways,

without interference with endogenous signaling molecules

and induction of feedback mechanisms. HaXS molecules

can be used in combination with other (noncovalent)

dimerization systems, and thus extend the possibilities to

devise multiplexing approaches, and to chemically control

the assembly of elaborate protein complexes and

signalosomes.
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Figure 5. Protein Translocation to Specific Cellular Compartments

(A) NIH 3T3 cells expressing SNAP-Actin and Halo-GFP (green) fusion proteins

were incubated with DMSO or 0.5 mM HaXS8 for 1 hr at 37�C. Rhodamine-

phalloidin was used to visualize F-actin in stress fibers (Actin, red). Trans-

location of GFP to the actin cytoskeleton was imaged by confocal microscopy

on live cells.

(B) MDCK cells expressing a SNAP-GFP-CAAX membrane anchor (green

[-CAAX is the polybasic isoprenylation sequence from KRas-4B]) and Halo-

RFP (red) fusion protein were incubated with DMSO or 0.5 mM HaXS8 in

complete medium for 40min at 37�C. Translocation of Halo-RFP to the plasma

membrane was imaged by confocal microscopy on live cells.
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EXPERIMENTAL PROCEDURES

Synthesis

Detailed synthetic procedures, materials and reagents, and characteriza-

tions for all compounds are described in the Supplemental Experimental

Procedures.

Protein Denaturation, Cell Lysis, and Immunoblotting

Cells were washed with ice cold PBS and lysed in a NP-40 lysis buffer (1%

NP-40, 20 mM Tris-HCl pH 8.0, 138 mM NaCl, 2.7 mM KCl, 5% glycerol,

40 mM NaF, 2 mM Na3VO4, 20 mM Leupeptin, 18 mM Pepstatin, 5 mM Apro-

tinin, 1 mM PMSF, 1 mM MgCl2, 1 mM CaCl2, 5 mM EDTA). Cell lysates were

cleared by centrifugation at 13,000 rpm for 15 min and proteins were dena-

tured by the addition of 53 sample buffer (312.5 mM Tris-HCl [pH 6.8], 10%

SDS, 25% b-mercaptoethanol, 50% glycerol, bromphenol blue) and boiling

for 6 min. Proteins were separated by SDS-PAGE, and transferred to Immo-

bilon PVDF membranes (Millipore). Mouse monoclonal antibody (mAb) to

pThr389-S6K, rabbit mAb to S6K1, mouse mAb to pSer473-PKB/Akt and

to pThr308-PKB/Akt (all from Cell Signaling Technology, Danvers), mouse

mAb to PKB (kind gift of E. Hirsch, Turin, Italy), mouse mAb to pMAPK

and rabbit mAb to MAPK (both from Sigma-Aldrich), mouse mAb to HA

(HA.11, Babco), and GFP (Roche Diagnostics) were used to detect proteins

by immunoblotting. Secondary antibodies were either labeled with Alexa

Fluor 680 (LI-COR) for detection on an Odyssey (LI-COR) infrared imaging

system, or were horseradish peroxidase (HRP)-conjugated goat antimouse

IgG and goat anti-rabbit IgG (Sigma) for visualization using enhanced

chemiluminescence (Millipore) detected by a CCD camera system (Fusion

Fx7, Vilber).

Cloning and Expression of Recombinant Proteins

The HaloTag7 coding sequence (Promega), SNAP-tag (pSS26m) coding

sequence (Covalys), iSH2 domain coding sequence (Addgene), actin coding

sequence (Clonetech), and EGFP coding sequence (Clonetech) were amplified

by PCR (Phusion polymerase, Finnzymes) and transferred to pcDNA3 (Invitro-

gen), pTagRFP-N1 (Evrogen; expression vector for amonomeric TagRFP, here

short RFP from sea anemone Entacmaea quadricolor [Merzlyak et al., 2007]),

pEGFP (Clonetech) with excised GFP or pEGFP-C3 (Clonetech) vectors for

expression. For recombinant protein production, Halo-EGFP and SNAP-

EGFP were cloned into pTriEx-4 (Novagen) and expressed as N-terminal

(His)6 fusion proteins, and purified on Ni2+-NTA beads (QIAGEN) according

to the manufacturer’s instructions.

To generate a Halo-FRB expression construct, CLIP was exchanged in a

CLIP-FRB plasmid (Gautier et al., 2009) by the Halo sequence. The Halo-

FRB and SNAP-FKBP (Gautier et al., 2009) cassettes were then transferred

into a pcDNA3 (Invitrogen) backbone containing an N-terminal HA-tag in the

multicloning site. The LAMP-CFP-FRB plasmid is described in (Komatsu

et al., 2010).

Cell Culture and Transfection

HeLa, HEK293, MDCK, and NIH 3T3 (originally from ATCC) were cultured in

complete Dulbeccos’s modified Eagle medium (DMEM) with 10% heat-inacti-

vated fetal calf serum (HIFCS), 2 mM L-glutamine (Gln), 1% penicillin-strepto-

mycin solution (PEST) at 37�C, and 5% CO2. Transfections were carried out

with JetPEI (Brunschwig) according to the manufacturer’s guidelines.

Cellular Heterodimerization and Biological Induction

One day after transfection of HeLa cells with expression constructs for SNAP-

GFP, SNAP-GFP-CAAX, Halo-RFP, Halo-GFP, LAMP-CFP-FRB, HA-SNAP-

FKBP, or SNAP-Actin, cells were exposed to HaXS dimerizers at the indicated

concentrations for indicated times at 37�C in fully supplemented complete

total PKB
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p110α

GFP

Endogenous p110α

Cytosolic p110α-
binding, tagged iSH2
domain

Figure 6. Activation of the PI3K/mTOR Pathway by Chemically

Induced Membrane Targeting

(A) Schematic representation of the translocation process recruiting a cyto-

solic iSH2 domain (derived from the PI3K regulatory PI3K subunit p85, see

text) fused to the HaloTag to a membrane anchored SNAP-tag using HaXS8.

PI3Ks activity at the membrane forms PtdIns(3,4,5)P3 [PI(3,4,5)P3] from PI(4,5)

P2, followed by specific activation of PI3K/PKB/mTOR pathway.

(B) HEK293 cells were cotransfected with SNAP-GFP-CAAX (from KRas4B)

and iSH2 fused to Halo-GFP. HEK293 cells expressing SNAP-GFP-CAAX and

iSH2-Halo-GFP were starved overnight, and exposed to DMSO or 0.5 mM

HaXS8 in complete medium for 40 min, before cell lysis and signaling pathway

analysis using the indicated phosphor-specific antibodies. Control experi-

ments included cytosolic SNAP-GFP constructs. SNAP/HaloTag dimers were

detected as described previously. Quantifications of signal intensities repre-

sent the mean of ± SEM of two independent experiments. HaXS8 does not

interfere with PI3K/mTOR signaling (see Figure S2).
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DMEMmedium. For immunoblot analysis, cells were lysed, and proteins were

separated by SDS-PAGE. SNAP-tag/HaloTag dimers were detected using

anti-GFP (primary) and fluorescently labeled (secondary) antibodies, and

measured on the Odyssey infrared imaging system. For microscopy trans-

fected cells were grown on 12 mm coverslips (Menzel), treated with DMSO

or HaXS8, washed twice with PBS, fixed with 4% p-formaldehyde (PFA) in

PBS, and mounted in Mowiol (Plüss-Stauffer) containing 1% propyl gallate

(Sigma-Aldrich). For staining of F-actin, cells were permeabilized in PBS, 1%

BSA, 0.1% Triton X-100, and incubated with rhodamine-phalloidin (Molecular

Probes).

For the studies of PI3K/mTOR signaling, HEK293 cells were cotransfected

with SNAP-GFP-CAAX and iSH2 fused to Halo-GFP. One day after transfec-

tion, cells were serum-starved overnight. After a 40 min exposure with

0.5 mM HaXS8 cells were lysed for the analysis of signal pathway induction,

and the formation of HaloTag/SNAP-tag dimers.

For live cell microscopy, transfected cells grown on coverslips were

mounted in life-microscopy chambers (Life Imaging Services) in a closed

confirmation with complete medium. Images were acquired on an Axiovert

200 M microscope (Zeiss) fitted with a Plan-Achromat 633/1.4 oil objective

and an Orca ER II camera (Hamamatsu), and operated by OpenLab software

(Perkin Elmer).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

two figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.chembiol.2013.03.010.
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1. Structures of Key Compounds Used in this Study 
 
 

 
 
 
 
 
2. Supplemental Experimental Procedures and Conditions 
 
 
Chemical synthesis and characterization 

Materials and reagents were of the highest commercially available grade, and used without 
further purification. Reactions were monitored by thin layer chromatography using Merck silica gel 60 
F254 plates. Compounds were visualized by UV, ceric ammonium molybdate (CAM), KMnO4 and 
ninhydrin. Flash chromatographies were performed using Merck silica gel 60, particle size 40 - 63 μm. 
1H, 19F and 13C NMR spectra were recorded on a Bruker AV-400 or a DRX-600 NMR spectrometer. 
Chemical shifts are reported in ppm using the solvent residue signals as reference. All solvents used 
for reactions were purchased as anhydrous grade from Fluka. Solvents for extractions, column 
chromatography and TLC were commercial grade. Mass spectra were recorded with a VG70-250 
(FAB), Finnigan MAT MS 312 (EI) or Finnigan MAT LCQ (ESI) spectrometer. High resolution mass 
spectra were recorded with a thermo Fisher Scientific LTQ Orbitrap XL, nanoelectrospray ion source. 
For spectral data see section 6. 
 
 
PAMPA 

Pe (expressed as nm/s) was determined with a parallel artificial membrane permeability assay 
(PAMPA; (Kansy et al., 1998) for a review see (Faller, 2008)). For each compound, measurements 
were performed in quadruplicate at pH 7.4 according to the manufacturers procedures (Pion, 
Billerica). Each well of a deep well plate was filled with 650 µl of pH-adjusted System Solution (Pion, 
P/N 110151). 150 µl of each well were transferred to an UV-plate and analyzed by UV-spectroscopy 
to determine the blank spectra. 2.5 µL of the according 2 mM compound stock solution in DMSO were 
added to the remaining System Solution in each well and mixed. To exclude precipitation, the optical 
density was measured at 650 nm, with 0.01 being the threshold value. Samples of 150 µL were 
transferred from the deep well plate to another UV-plate to determine the reference spectra. Further 
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200 µL were transferred to each well of the donor plate of the PAMPA sandwich. The filter 
membranes at the bottom of the acceptor plate were impregnated with 5 µL of GIT-0 Lipid Solution 
(Pion, P/N 110669) and 200 µL of Acceptor Sink Buffer (Pion, P/N 110139) were filled into each 
acceptor well. To start the experiment, the sandwich was assembled, then placed in the GutBoxTM 
and stirred for 30 minutes. To finish the assay, the sandwich was disassembled and 150 µL from each 
donor and acceptor well were transferred to UV-plates. Quantification was performed by both UV-
spectroscopy and LC-MS. logPe-values were calculated based on the LC-MS results and with the aid 
of the PAMPA Explorer Software (Pion, version 3.5). 
 
 
Statistical Analysis 

Statistical analysis was performed using GraphPad Prism v5. For Student’s t test (two sided, 
non-paired) at least 3 independent experiments were compared. Where differences are claimed, and 
not indicated otherwise, p was <0.01. 
 
 
Molecular modeling 

Starting points for the modeling process were generated from crystal structures of the Halo-
tag (Newman et al., 1999) and the SNAP-tag (Mollwitz et al., 2012). An initial manual docking of 
HaXS substrates was refined using the genetic algorithm application GOLD (Jones et al., 1997). 
Covalently linked HaXS substrates and protein structures were subsequently subjected to energy 
minimization using the program Yasara (Krieger et al., 2004). 
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3. Chemical Synthesis and Characterization of Compounds 
 
 
General procedure 1 (GP1) for peptide coupling with PYBOP. 

PYBOP (0.2 mmol) is added to a solution of carboxylic acid derivative (0.2 mmol) in DMF (2 
ml) at rt. The solution is stirred at rt for 2h. Then, amine substrate (0.2 mmol) and DIPEA (0. 2 mmol) 
are added and the solution is stirred at rt overnight. Then the crude mixture is poured onto water 
(70mL) and aqueous phase is extracted with AcOEt (2*50mL). The organic layer is washed with water 
(20mL), dried over sodium sulfate and evaporated under reduced pressure. Flash chromatography 
(FC) gives the desired compound. 
 
Synthesis of HaXS1. 
 

 
 

Reaction conditions: a) Methyl succinyl chloride, DIPEA, DMF, 65°C, 16h; b) 2 M NaOH, THF, rt, 1h; c) (1.) PYBOP, DMF, rt, 
3h, (2.) 2-(2-(6-chlorohexyloxy)ethoxy)ethanamine hydrochloride, DIPEA, rt, 16h. 
 
Scheme S1. Synthetic route to HaXS1. 
 
 
Preparation of methyl 4-(4-((2-amino-7H-purin-6-yloxy)methyl)benzylamino)-4-oxobutanoate (2) 

O6-aminomethylbenzylguanine (1) was prepared according to the literature.(Keppler et al., 
2003) According to GP1, starting from PYBOP (481 mg, 0.92 mmol), mono-methyl succinate (122 mg, 
0.92 mmol), O6-aminomethylbenzylguanine 1 (250 mg, 0.92 mmol) and DIPEA (159 µL, 0.92 mmol). 
The crude mixture was poured into water. The resulting precipitate was collected, washed with water 
and dried under vacuum to give compound 2 (340 mg, 96%); 1H NMR (400 MHz, DMSO-d6):  8.38 (t, 
J=5.5Hz, 1H), 7.79 (s, 1H), 7.42 (d, J=8.0Hz, 2H), 7.23 (d, J=8.0Hz, 2H), 6.55 (s, 2H), 5.43 (s, 2H), 
4.23 (d, J = 5.8Hz, 2H), 3.54 (s, 3H), 2.50 (t, J = 6.9Hz, 2H), 2.40 (t, J = 6.9Hz, 2H); 13C NMR (100.6 
MHz, DMSO-d6):  172.8, 170.6, 159.3, 155.4, 139.5, 138.9, 134.8, 128.5, 127.1, 66.9, 51.3, 41.8, 
29.7, 28.7; MS (FAB, NBA): m/z (%): 385 ([M+H]+, 100), 234 (26), 202 (16), 152 (43); HRMS 
C18H21N6O6 [M+H]+ calcd: 385.1619, found: 385.1614 
 

 
Preparation of 4-(4-((2-amino-7H-purin-6-yloxy)methyl)benzylamino)-4-oxobutanoic acid (3) 

A solution of compound 2 (410 mg, 1.07 mmol) in THF (12 mL) was stirred with NaOH (2 mL, 
1M) for 1 h at rt. THF was removed under reduce pressure and pH adjusted to 4.5 by slow addition of 
acetic acid. The resulting suspension was filtrated, the solid collected and dried under reduce 
pressure to yield the compound 3 which was used without further purification (300 mg, 76%); 1H NMR 
(400 MHz, DMSO-d6):  12.34 (bs, 1H), 8.39 (m, 1H), 7.84 (s, 1H), 7.44 (d, J = 7.8Hz, 2H), 7.27 (d, J 
= 7.8Hz, 2H), 6.29 (s, 2H), 5.46 (s, 2H), 4.27 (m, 2H), 2.48-2.37 m, 4H); 13C NMR (100.6 MHz, 
DMSO-d6):  174.0, 171.1, 159.7, 139.5, 135.2, 128.5, 127.2, 66.6, 41.9, 30.1, 29.2; MS (EI): m/z (%): 
393 ([M+Na]+, 100), 371 (84), 342 (15); HRMS C17H19N6O4 [M+H]+ calcd: 371.1462, found: 371.1462 
 

 
Preparation of HaXS1 

2-(2-(6-chlorohexyloxy)ethoxy)ethanamine hydrochloride was prepared according to the 
literature.(Los et al., 2008) According to GP1, starting from PYBOP (419 mg, 0.81 mmol), compound 
3 (300 mg, 0.81 mmmol), 2-(2-(6-chlorohexyloxy)ethoxy)ethanamine hydrochloride (209 mg, 0.81 
mmmol) and DIPEA (0.279 mL, 1.62 mmol). FC (CH2CI2/MeOH, 40:1 then 20:1) gave compound 
HaXS1 (210 mg, 47%). 1H NMR (400 MHz, CDCl3 + 10% CD3OD):  7.33 (d, J = 8.3Hz, 2H), 7.30 (s, 
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1H), 7.17 (d, J = 7.8Hz, 2H), 5.35 (s, 2H), 4.30 (s, 2H), 3.62 (m, 4H), 3.49 (m, 4H), 3.45-3.42 (m, 4H), 
3.38-3.34 (m, 2H), 3.31-3.27 (m, 2H), 2.50-2.43 (m, 4H), 1.71-1.64 (m, 2H), 1.55-1.48 (m, 2H), 1.40-
1.23 (m, 4H); 13C NMR (100.6 MHz, CDCl3 + 10% CD3OD):  173.0, 172.9, 159.5, 138.5, 135.0, 128.8, 
127.7, 71.3, 70.1, 69.1, 69.6, 68.1, 45.0, 43.2, 39.2, 32.4, 31.4, 31.3, 29.2, 26.6, 25.3; MS (FAB, 
NBA): m/z (%): 576 ([M+H]+, 100), 306 (54), 202 (44), 152 (94); HRMS C27H38N7O5ClNa [M+Na]+ 
calcd: 598.2515, found: 598.2509. 
 
 
Synthesis of HaXS2. 
 

 
 

Reaction conditions: a) (1.) NaH, THF, (2.) 6-chloro-1-iodohexane, rt, 16h; b) H2, Pd/C, MeOH, rt, 2h; c) (1.) PYBOP, DMF, rt, 
3h, (2.) 6, DIPEA, rt, 16h. 

 
Scheme S2. Synthetic route to HaXS2. 
 
 
Preparation of 1-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)-6-chlorohexane (5)  

Compound 4 was prepared according to the literature.(Rensen et al., 2004) Sodium hydride 
(60% in mineral oil, 914 mg, 22.8 mmol) was added portionwise to a solution of compound 4 (2 g, 
11.4 mmol) in THF/DMF (30mL/10mL) mixture at 0 °C. After stirring for 30 min, 6-chloro-1-iodohexane 
(2.6 mL, 17.1 mmol) was added at 0 °C. The mixture was stirred overnight at rt. The excess of sodium 
hydride was carefully quenched with saturated solution of NH4Cl (10mL) and the crude mixture was 
poured into water (200 mL) and extracted twice with AcOEt (50 mL). The combined organic phase 
were dried over Na2SO4 and concentrated under reduce pressure. FC (hexane/AcOEt 1:3 then 1:1) 
yielded compound 5 (1.5 g, 45%). 1H NMR (400 MHz, CDCl3) :  3.66-3.61 (m, 8H), 3.56-3.48 (m, 
2H), 3.50 (t, J = 6.6Hz, 2H), 3.43 (t, J = 6.6Hz, 2H), 3.36 (t, J = 5.1Hz, 2H), 1.78-1.71 (m, 2H), 1.60-
1.53 (m, 2H), 1.45-1.31 (m, 4H); 13C NMR (100.6 MHz, CDCl3):  71.6, 71.1, 71.1, 71.0, 70.5, 70.5, 
51.1, 45.4, 32.9, 30.0, 27.1, 25.8, MS (ESI-MS): m/z (%): 316 ([M+Na]+, 100); HRMS C12H24ClN3O3Na 
[M+Na]+ calcd: 316.1398, found: 316.1402. 
 

 
Preparation of 2-(2-(2-(6-chlorohexyloxy)ethoxy)ethoxy)ethanamine (6) 

To a solution of compound 5 (1.8 g, 6.1 mmol) in MeOH (20 mL) was added palladium on 
charcoal (120 mg). The resulting mixture was stirred at rt for 4h under H2 atmosphere. The crude 
mixture was filtrated over celite and concentrated under reduce pressure. FC (DCM/MeOH + 0.5% 
Et3N; 10:1 then 5:1) yielded compound 6 (1.2 g, 74%). 1H NMR (400 MHz, CDCl3) :  3.66-3.62 (m, 
6H), 3.59-3.57 (m, 2H), 3.49-3.51 (m, 4H), 3.46 (t, J = 6.6Hz, 2H), 2.88 (t, J = 6.6Hz, 2H), 1.93 (s, 
2H), 1.79-1.75 (m, 2H), 1.60-1.57 (m, 2H), 1.46-1.34 (m, 4H); 13C NMR (100.6 MHz, CDCl3):  71.6, 
71.1, 71.0, 70.9, 70.8, 70.5, 70.4, 45.4, 32.9, 29.8, 27.0, 25.8, MS (MALDI-TOF): m/z (%): 268 
([M+H]+, 100), 290 ([M+Na]+ 95) HRMS C12H27ClNO3 [M+H]+ calcd: 268.1674, found: 268.1675. 
 
 
Preparation of N1-(4-((2-amino-9H-purin-6-yloxy)methyl)benzyl)-N5-(2-(2-(2-(6-chlorohexyloxy)- 
ethoxy)ethoxy)ethyl)glutaramide HaXS2 

Compound 7 was prepared according to the literature.(Lemercier et al., 2007) According to 
GP1, starting from PYBOP (203 mg, 0.39 mmol), compound 7 (150 mg, 0.39 mmol), compound 6 
(104 mg, 0.39 mmol) and DIPEA (68 µL, 0.39 mmol).  FC (CH2CI2/MeOH, 10:1 then 7.5:1) gave 
compound HaXS2 (80 mg, 32%); 1H NMR (400MHz, CD3OD) : 7.85 (s, 1H), 7.47 (d, J=7.8 Hz, 2H), 
7.28 (d, J=7.8 Hz, 2H), 5.52 (s, 2H), 4.36 (s, 2H), 3.58-3.49 (m, 12H), 3.42 (t, J=6.6Hz, 2H), 3.5-3.30 
(m, 3H), 2.25 (m, 4H), 1.91 (m, 2H), 1.72 (m, 2H), 1.54 (m, 2H), 1.44-1.32 (m, 4H); 13C NMR (100.6 
MHz, CD3OD) : 174.5, 174.3, 160.6, 160.3, 139.0, 135.9, 128.7, 127.7, 117.7, 110.8, 71.1, 70.6, 
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70.5, 70.2, 70.1, 69.5, 67.6, 44.7, 42.9, 39.4, 35.1, 29.5, 26.7, 25.5, 22.2; MS (ESI-MS): m/z (%): 634 
([M+H]+, 100), 483 (20), 364 (20), 216 (30), 140 (45); HRMS C30H45ClN7O6 [M+H]+ calcd: 634.3114, 
found: 634.3125. 
 
Synthesis of HaXS3, HaXS4, HaXS5, HaXS6 and HaXS7. 
 

N

NN

N
H

O

NH2

H
N

NH2

O

HO
O

O
O

O
Cl

O

N

NN

N
H

O

NH2

H
N

N
H

O
O

O
O

Cl

O

O

a b

e

25

HO

O

NHFmoc

R

R

R

N

NN

N
H

O

NH2

H
N

NHFmoc

O

R

8 (R= H)
9 (R= CH2CF3)
10 (R= CH2C6F5)
11 (R= CH2CH3)
12 (R= CH2C6H5)

13 (R= H)
14 (R= CH2CF3)
15 (R= CH2C6F5)
16 (R= CH2CH3)
17 (R= CH2C6H5)

18 (R= H)
19 (R= CH2CF3)
20 (R= CH2C6F5)
21 (R= CH2CH3)
22 (R= CH2C6H5)

HO
O

O
O

OH HO
O

O
O

O
Cl

c

23

O

HO
O

O
O

O
Cl

24 y. 36% 25 y. 77%

d

HaXS3 (R= H)
HaXS5 (R= CH2CF3)
HaXS7 (R= CH2C6F5)
HaXS4 (R= CH2CH3)
HaXS6 (R= CH2C6H5)

y. 80%
y. 65%
y. 54%
y. 51%
y. 58%

y. 77%
y. 41%
y. 99%
y. 93%
y. 56%

y. 64%
y. 70%
y. 50%
y. 30%
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Reaction conditions: a) (1.) 8 or 9 or 10 or 11 or 12, PYBOP, DMF, rt, 3h, (2.) 1, DIPEA, rt, 16h; b) Diethylamine, DMF, rt, 3h; c) 
(1.) NaH, THF, (2.) 6-chloro-1-iodohexane, rt, 16h; d) Jones reagent, Acetone, rt, 2h; e) (1.) 25, PYBOP, DMF, rt, 3h, (2.) 18 or 
19 or 20 or 21 or 22, DIPEA, rt, 16h. 
 
Scheme S3. Synthetic route to HaXS3, HaXS4, HaXS5, HaXS6 and HaXS7. 
 
 
Preparation of (9H-fluoren-9-yl)methyl-2-(4-((2-amino-9H-purin-6-yloxy)methyl)benzylamino)-2-
oxoethylcarbamate (13) 

According to GP1, starting from PYBOP (289 mg, 0.55 mmol), Fmoc-Gly-OH 8 (165 mg, 0.55 
mmol), O6-aminomethylbenzylguanine (150 mg, 0.55 mmol) and DIPEA (57 µL, 0.55 mmol). FC 
(CH2CI2/MeOH, 20:1 then 10:1) gave compound 13 (246 mg, 80%). 1H NMR (400MHz, DMSO-d6) : 
8.32 (m, 1H), 7.86-7.80 (m, 5H), 7.43-7.38 (m, 4H), 7.36-7.26 (m, 4H), 6,91 (m, 1H), 6.29 (s, 2H), 6.25 
(s, 2H), 5.45 (s, 2H), 4.28 (m, 2H), 3.58 (m, 1H); 13C NMR (100.6  MHz, DMSO-d6) : 170.6, 160.5, 
158.5, 143.4, 140.3, 140.2, 138.3, 136.0, 129.8, 129.3, 128.2, 122.2, 120.9, 110.6, 67.4, 44.7, 42.7 
MS (ESI-MS): m/z (%): 550 ([M+H]+, 100), 281 (55); HRMS for C30H28N7O4 [M+H]+ calcd: 550.2197, 
found 550.2203. 
 
 
Preparation of (9H-fluoren-9-yl)methyl-1-(4-((2-amino-9H-purin-6-yloxy)methyl)benzylamino)-
4,4,4-trifluoro-1-oxobutan-2-ylcarbamate (14) 

According to GP1, starting from PYBOP (288 mg, 0.55 mmol), (R,S)-Fmoc-2-amino-4,4,4-
trifluoro-butyric acid 9 (210 mg, 0.55 mmol), O6-aminomethylbenzylguanine (150 mg, 0.55 mmol) and 
DIPEA (96 µL, 0.55 mmol). FC (CH2CI2/MeOH, 20:1 then 10:1) gave compound 14 (226 mg, 65%). 1H 
NMR (400MHz, CDCl3) : 12.42 (m, 1H), 8.65 (t, J = 6.1Hz , 1H), 7.86 (d, J = 7.2, 2H), 7.79 (m, 1H), 
7.68 (d, J = 7.7, 2H), 7.42-7.37 (m, 4H), 7.31-7.24 (m, 4H), 6.27 (s, 2H), 5.43 (s, 2H), 4.40-4.18 (m, 
5H), 3.26 (d, J= 5.5, 1H), 2.82 (m, 1H), 2.65 (m, 1H); 19F NMR (100.6 MHz, CDCl3) : -62.5; 13C NMR 
(100.6 MHz, CDCl3) : 170.5, 160.7, 160.5, 156.6, 156.1, 144.6, 144.5, 141.6, 139.7, 129.3, 128.5, 
128.1, 127.90 126.1, 126.1, 121.0, 114.4, 67.3, 66.7, 50.1, 49.5, 47.5, 43.1; MS (ESI-MS): m/z (%): 
632 ([M+H]+, 100), 281 (45); HRMS for C32H29F3N7O4 [M+H]+ calcd: 632.2228, found: 632.2235. 
 
 
Preparation of (S)-(9H-fluoren-9-yl)methyl-1-(4-((2-amino-9H-purin-6-yloxy)methyl)benzylamino) 
-1-oxo-3-(perfluorophenyl)propan-2-ylcarbamate (15) 

According to GP1, starting from PYBOP (96 mg, 0.19 mmol), (R,S)-Fmoc-2-amino-4,4,4-
trifluoro-butyric acid 10 (88 mg, 0.19 mmol), O6-aminomethylbenzylguanine (50 mg, 0.19 mmol) and 
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DIPEA (32 µL, 0.19 mmol). FC (CH2CI2/MeOH, 20:1 then 10:1) gave compound 15 (75 mg, 54%). 1H 
NMR (400MHz, DMSO-d6) : 12.43 (m, 1H), 8.35 (t, J=5.3 Hz, 1H), 7.86 (m, 2H), 7.79 (s, 1H), 7.70 
(m, 2H), 7.56 (t, J=6.1 Hz, 1H), 7.44-7.37 (m, 4H), 7.32-7.25 (m, 4H), 6.30 (s, 2H), 5.44 (s, 2H), 4.29 
(m, 4H), 4.28 (m, 1H), 3.65 (d, J=5.8 Hz, 2H); 19F NMR (100.6 MHz, DMSO-d6) : -68.80, -70.69, -
73.92; 13C NMR (100.6 MHz, DMSO-d6) : 170.0, 160.7, 160.5, 157.4, 156.1, 144.7, 141.6, 140.1, 
138.7, 136.2, 129.4, 128.5, 128.2, 128.0, 126.1, 121.0, 114.4, 67.4, 66.6, 47.5, 44.4, 42.8; MS (ESI-
MS): m/z (%): 730 ([M+H]+, 100), 280 (70), 258 (97); HRMS for C37H29F5N7O4 [M+H]+ calcd: 
730.2196, found: 730.2201. 
 
 
Preparation of (S)-(9H-fluoren-9-yl)methyl-1-(4-((2-amino-9H-purin-6-yloxy)methyl)benzyl 
amino)-1-oxobutan-2-ylcarbamate (16) 

According to GP1, starting from PYBOP (231 mg, 0.44 mmol), Fmoc-Abu-OH 11 (145 mg, 
0.44 mmol), O6-aminomethylbenzylguanine (120 mg, 0.44 mmol) and DIPEA (77 µL, 0.44 mmol). FC 
(CH2CI2/MeOH, 20:1 then 10:1) gave compound 16 (130 mg, 51%). 1H NMR (400MHz, DMSO-d6) : 
8.43 (t, J = 5.8 Hz, 1H), 7.86 (m, 3H), 7.72 (m, 2H), 7.50-7.37 (m, 4H), 7.38-7.25 (m, 4H), 6.28 (s, 
2H), 5.45 (s, 2H), 4.30-4.15 (m, 5H), 3.94 (m, 1H), 3.17 (d, J = 3.0 Hz, 1H), 1.69 (m, 1H), 1.58 (m, 
1H), 0.86 (t, J = 7.4 Hz, 3H); 13C NMR (100.6 MHz, DMSO-d6) : 173.2, 172.7, 160.5, 156.9, 144.8, 
144.7, 143.4, 141.6, 140.3, 140.2, 138.3, 136.1, 129.8, 129.4, 129.3, 128.5, 128.2, 128.1, 128.0, 
127.9, 126.2, 122.2, 120.9, 120.8, 110.6, 67.4, 66.4, 57.0, 49.5, 47.5, 26.2, 11.4; MS (ESI-MS): m/z 
(%): 578 ([M+H]+, 100), 281 (55); HRMS for C32H32N7O4 [M+H]+ calcd: 578.2510, found: 578.2520. 
 
 
Preparation of (S)-(9H-fluoren-9-yl)methyl-1-(4-((2-amino-9H-purin-6-yloxy)methyl)benzylamino) 
-1-oxo-3-phenylpropan-2-ylcarbamate (17) 

According to GP1, starting from PYBOP (96 mg, 0.19 mmol), Fmoc-Phe-OH 12 (72 mg, 0.19 
mmol), O6-aminomethylbenzylguanine (50 mg, 0.19 mmol) and DIPEA (32 µL, 0.19 mmol). FC 
(CH2CI2/MeOH, 20:1 then 10:1) gave compound 17 (70 mg, 58%). 1H NMR (400MHz, DMSO-d6) : 
12.42 (m, 1H), 8.55 (t, 1H, J = 5.5Hz), 7.86 (d, J = 7.5 Hz, 2H), 7.82 (s, 1H), 7.63-7.70 (m, 3H), 7.43-
7.38 (m, 4H), 7.31-7.16 (m, 8H), 6.31 (s, 2H), 5.47 (s, 2H), 4.34-4.27 (m, 3H), 4.21-4.11 (m, 3H), 3.02 
(dd, J = 4.5 Hz; 13.6 Hz, 1H), 3.02 (dd, J = 13.8 Hz; 10.6 Hz, 1H); 13C NMR (100.6 MHz, DMSO-d6) : 
172.2, 160.1, 159.9, 156.7, 155.8, 144.6, 141.5, 141.5, 140.2, 139.0, 135.6, 130.1, 130.0, 128.9, 
128.5, 128.1, 127.9, 127.1, 126.2, 126.1, 120.9, 68.1, 66.5, 57.2, 47.5, 42.8, 38.5; MS (ESI-MS): m/z 
(%): 640 ([M+H]+, 100), 281 (40); HRMS for C37H34N7O4 [M+H]+ calcd: 640.2667, found: 640.2673. 
 
 
General procedure 2 (GP2) for Fmoc deprotection with diethylamine. 

To a solution of Fmoc derivative (0.39 mmol) in DMF (2mL) is added diethylamine (200µL). 
The resulting mixture is stirred at rt for 1h. Then the crude mixture is poured onto water (70mL) and 
aqueous phase is extracted with AcOEt (2*50mL). The organic layer is washed with water (20mL), 
dried over sodium sulfate and evaporated under reduced pressure. Then, desired compound is 
purified by flash chromatography (FC) or precipitated in water. 
 
 
Preparation of 2-amino-N-(4-((2-amino-9H-purin-6-yloxy)methyl)benzyl)acetamide (18) 

According to GP2, starting from compound 13 (212 mg, 0.39 mmol) and diethylamine (200 
µL). FC (CH2CI2/MeOH with  Et3N (1%), 10:1 then 5:1) gives the desired compound 18 (96 mg, 77%). 
1H NMR (400MHz, DMSO-d6) : 8.32 (m, 1H), 7.81 (s, 1H), 7.42 (d, J=7.8 Hz, 2H), 7.26 (d, J=7.6 Hz, 
2H), 6.27 (s, 2H), 5.73 (s, 2H), 4.27 (m, 2H), 3.13 (m, 2H). 13C NMR (100.6 MHz, DMSO-d6) :160.5, 
140.3, 139.3, 136.1, 129.4, 128.2, 67.4, 45.6, 42.5. MS (ESI-MS): m/z (%): 328 ([M+H]+, 100), 177 
(25); HRMS for C15H18N7O2 [M+H]+ calcd: 328.1516, found: 328.1520. 
 
 
Preparation of (S)-2-amino-N-(4-((2-amino-9H-purin-6-yloxy)methyl)benzyl)-4,4,4-trifluoro-
butanamide (19) 

According to GP2, starting from compound 14 (226 mg, 0.36 mmol) and diethylamine (400 
µL). FC (CH2CI2/MeOH with Et3N (1%), 10:1 then 5:1) gives the desired compound 19 (60 mg, 41%). 
1H NMR (400MHz, DMSO-d6) : 12.39 (s, 1H), 8.58 (t, J=5.7 Hz, 1H), 7.78 (s, 1H), 7.42 (d, J=7.6 Hz, 
2H), 7.26 (d, J=8.1 Hz, 2H), 6.27 (s, 2H), 5.43 (s, 2H), 4.27 (d, J=5.8 Hz, 2H), 3.48 (dd, J =5.0 Hz, J 
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=7.6 Hz 1H), 2.67 (m, 1H), 2.34 (m, 1H); 19F NMR (100.6 MHz, DMSO-d6) : -61.73; 13C NMR (100.6 
MHz, DMSO-d6) : 173.8, 160.5, 140.0, 136.2, 129.4, 129.2, 128.2, 126.4, 67.9, 50.8, 49.5, 42.8, 
38.8. MS (ESI-MS): m/z (%): 410 ([M+H]+, 100), 259 (25), 242 (30); HRMS for C17H19F3N7O2 [M+H]+ 
calcd: 410.1547, found: 410.1549. 
 
 
Preparation of (S)-2-amino-N-(4-((2-amino-9H-purin-6-yloxy)methyl)benzyl)-3-(perfluorophenyl) 
propanamide (20) 

According to GP2, starting from compound 15 (71 mg, 0.1 mmol) and diethylamine (200 µL). 
FC (CH2CI2/MeOH with  Et3N (1%), 10:1 then 5:1) gives the desired compound 20 (49 mg, 99%). 1H 
NMR (400MHz, DMSO-d6) : 12.40 (s, 1H), 8.44 (m, 1H), 7.80 (s, 1H), 7.41 (d, J=7.8 Hz, 2H), 7.20 (d, 
J=8.1 Hz, 2H), 6.26 (s, 2H), 5.42 (s, 2H), 4.23 (m, 2H), 3.42 (m, 1H), 2.98 (dd, J=6.6 Hz, J=13.6 Hz 
1H), 2.81 (dd, J=7.9 Hz, J=13.4 Hz 1H); 19F NMR (100.6 MHz, DMSO-d6) : -141.7, -157.9, -163.4; 
13C NMR (100.6 MHz, DMSO-d6) : 173.8, 160.5, 160.5, 139.9, 136.2, 129.3, 128.2, 113.4, 67.6, 55.1, 
42.7, 29.0; MS (ESI-MS): m/z (%): 508 ([M+H]+, 100), HRMS for C22H19F5N7O2 [M+H]+ calcd: 
508.1515, found: 508.1516. 
 
 
Preparation of (S)-2-amino-N-(4-((2-amino-9H-purin-6-yloxy)methyl)benzyl)butanamide (21) 

According to GP2, starting from compound 16 (130 mg, 0.22 mmol) and diethylamine (400 
µL). The resulting mixture is precipitated in water (20mL), collected and dried under reduced vacuum 
to give the desired compound 21 (73 mg, 93%). 1H NMR (400MHz, CDCl3) : 8.36 (t, J=5.5 Hz, 1H,), 
7.84 (s, 1H), 7.45 (m, 2H), 7.28 (m, 2H), 6.29 (s, 2H), 5.46 (s, 2H), 4.30 (m, 2H), 3.13 (m, 1H), 1.59 
(m, 1H), 1.43 (m, 1H), 0.84 (t, J = 7.7, 3H). 13C NMR (100.6 MHz, CDCl3) : 175.8, 160.5, 140.4, 
136.0, 129.4, 128.1, 67.4, 56.9, 49.4, 42.5, 28.9, 11.0. MS (ESI-MS): m/z (%): 356 ([M+H]+, 100), 267 
(25); HRMS for C17H22N7O2 [M+H]+ calcd: 356.1829, found: 356.1841. 
 
 
Preparation of (S)-2-amino-N-(4-((2-amino-9H-purin-6-yloxy)methyl)benzyl)-3-phenyl 
propanamide (22) 

According to GP2, starting from compound 17 (188 mg, 0.29 mmol) and diethylamine (400 
µL). FC (CH2CI2/MeOH with Et3N (1%), 10:1 then 5:1) gives the desired compound 22 (68 mg, 56%). 
1H NMR (400MHz, DMSO-d6) : 8.39 (t, J = 6.2, 1H), 7.85 (s, 1H), 7.41 (d, J = 8.1, 2H), 7.26-7.14 (m, 
7H), 6.31 (s, 2H), 5.47 (s, 2H), 4.26 (m, 2H), 3.50 (dd, J=7.7Hz; J=13.6Hz, 1H), 2.94 (dd, J=5.7Hz; 
J=13.2Hz, 1H), 2.71 (dd, J=7.4 Hz, J=13.0 Hz, 1H); 13C NMR (100.6 MHz, DMSO-d6) : 174.8, 160.5, 
140.1, 139.3, 136.0, 130.2, 129.4, 129.00, 128.1, 127.0, 67.4, 57.1, 49.5, 42.6, 41.8. MS (ESI-MS): 
m/z (%): 418 ([M+H]+, 100), 267 (20), 209 (25); HRMS for C22H24N7O2 [M+H]+ calcd: 418.1986, found: 
418.1992. 
 
 
Preparation of 18-chloro-3,6,9,12-tetraoxaoctadecan-1-ol (24) 

Sodium hydride (60% in mineral oil, 2.46 g, 60 mmol) was added portionwise to a solution of 
tetraethyleneglycol 23 (10 g, 51.4 mmol) in THF (500mL) at 0 °C. After stirring for 30 min, 6-chloro-1-
iodohexane (8.6 mL, 56 mmol) was added at 0 °C. The mixture was stirred overnight at rt. The excess 
of sodium hydride was carefully quenched with a saturated solution of NH4Cl (10 mL). Then solvent 
was evaporated. The crude mixture was poured into water (500 mL) and extracted twice with AcOEt 
(100 mL). The combined organic phase were dried over Na2SO4 and concentrated under reduce 
pressure. The crude oil was purified by flash column chromatography (DCM/MeOH 30:1) to yield 
compound 24 (5.8 g, 36%). 1H NMR (400 MHz, CDCl3) :  3.7 (s, 1H), 3.63 (s, 2H), 3.58-3.50 (m, 14 
H) 3.45 (t, J = 6.8Hz, 2H), 3.38 (t, J = 6.8Hz, 2H), 2.79 (m, 1H), 1.73-1.66 (m, 2H), 1.56-1.49 (m, 2H), 
1.41-1.26 (m, 4H); 13C NMR (100.6 MHz, CDCl3):  73.1, 70.9, 70.8, 70.8, 70.4, 70.4, 61.9, 45.4, 32.9, 
29.6, 27.0, 25.7, MS (ESI-MS): m/z (%): 335 ([M+Na]+, 100), 299 (35); HRMS C14H29ClO5Na [M+Na]+ 
calcd: 335.1596, found: 335.1594. 
 
 
Preparation of 18-chloro-3,6,9,12-tetraoxaoctadecan-1-oic acid (25) 

To an ice cooled solution of the alcohol 24 (1.5 g, 4.7 mmol) in acetone (70 mL) was added 
dropwise a solution of Jone’s reagent (7.5 mL prepared according to the procedure described below). 
The solution was then stirred at rt for 4h. The crude mixture was poured into water (100 mL) and 
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extracted twice with AcOEt (2x50 mL). The combined organic phase were combined and washed with 
NaHCO3 solution. The aqueous phase was acidified to pH 1 with HCl (1M), and was extracted with 
AcOEt (3x50 mL). The combined organic phase were dried over Na2SO4 and concentrated under 
reduce pressure to yield compound 25 (1.2 g, 77%). 1H NMR (400 MHz, CDCl3) :  10.15 (s, 1H), 4.14 
(s, 2H), 3.73-3.71 (m, 2H), 3.66-3.60 (m, 8H) 3.57-3.55 (m, 2H), 3.49 (t, J = 6.6Hz, 2H), 3.44 (t, J = 
6.6Hz, 2H), 1.77-1.70 (m, 2H), 1.60-1.53 (m, 2H), 1.45-1.29 (m, 4H); 13C NMR (100.6 MHz, CDCl3):  
173.8, 71.7, 71.0, 70.9, 70.8, 70.8, 70.8, 70.5, 69.2, 45.4, 32.9, 29.7, 27.0, 25.7, MS (ESI-MS): m/z 
(%): 359 ([M+Na]+, 100), 313 (20); HRMS C14H27ClO6Na [M+Na]+ calcd: 349.1388, found: 349.1383. 
Preparation of Jones reagent: Concentrated H2SO4 (230 mL) was added under cooling with an ice 
bath to CrO3 (267 g, 2.67 mol) in H2O (400 mL). The cold solution is diluted with H2O up to 1 L to form 
the 8 N Jones reagent ready for use. 

 
 
Preparation of HaXS3 

According to GP1, starting from PYBOP (148 mg, 0.28 mmol), compound 18 (93 mg, 0.28 
mmol), compound 25 (93 mg, 0.28 mmol) and DIPEA (50 µL, 0.28 mmol).  FC (CH2CI2/MeOH, 20:1 
then 10:1) gave compound HaXS3 (117 mg, 64%). 1H NMR (400MHz, CD3OD+10%CDCl3) : 7.80 (s, 
1H), 7.42 (d, J=7.9 Hz, 2H), 7.26 (d, J=7.9 Hz, 2H), 5.48 (s, 2H), 4.38 (s, 2H), 4.03 (s, 2H), 3.95 (m, 
2H), 3.67-3.65 (m, 2H), 3.62-3.47 (m, 11H), 3.41-3.37 (m, 2H), 1.77-1.66 (m, 2H), 1.56-1.49 (m, 2H), 
1.42-1.24 (m, 4H); 13C NMR (100.6 MHz, CD3OD+10%CDCl3) :172.5, 170.3, 160.6, 138.7, 135.9, 
128.7, 127.7, 71.2, 71.0, 70.5, 70.4, 70.2, 70.1, 67.7, 44.8, 42.9, 42.2, 32.7, 29.5, 26.8, 25.5 MS (ESI-
MS): m/z (%): 636 ([M+H]+, 100), 404 (45); HRMS for C29H43ClN7O7 [M+H]+ calcd: 636.2907, found: 
636.2918. 
 
 
Preparation of HaXS5 

According to GP1, starting from PYBOP (33 mg, 0.06 mmol), compound 25 (21 mg, 0.06 
mmol), compound 19 (26 mg, 0.06 mmol) and DIPEA (12 µL, 0.06 mmol).  FC (CH2CI2/MeOH, 20:1 
then 10:1) gave compound HaXS5 (32 mg, 70%). 1H NMR (400MHz, CD3OD) : 7.83 (s, 1H), 7.42 (d, 
J=8.1 Hz, 2H), 7.26 (d, J=8.1 Hz, 2H), 5.50 (s, 2H), 4.82 (dd, J=4.0 Hz, J=9.6 Hz 1H), 4.37 (d, J=15.0 
Hz, 1H), 4.33 (d, J=15.0 Hz, 1H), 4.05 (d, J=15.7 Hz, 1H), 3.99 (d, J=15.7 Hz, 1H), 3.64-3.48 (m, 
12H), 3.38 (m, 2H), 2.88 (m, 1H), 2.70 (m, 1H), 1.70 (m, 2H), 1.51 (m, 2H), 1.43-1.29 (m, 4H). 19F 
NMR (100.6 MHz, CD3OD) : -65.10. 13C NMR (100.6 MHz, CD3OD) :171.9, 170.2, 160.6, 138.6, 
136.0, 128.7, 127.7, 127.6, 125.3, 71.1, 70.9, 70.5, 70.4, 70.4, 70.3, 70.2, 70.1, 67.6, 46.3, 44.7, 43.1, 
35.1, 32.7, 29.5, 26.7, 26.3 25.5. MS (ESI-MS): m/z (%): 718 ([M+H]+, 100), 258 (20); HRMS for 
C31H44ClF3N7O7 [M+H]+ calcd: 718.2937, found: 718.2939. 
 
 
Preparation of HaXS7 

According to GP1, starting from PYBOP (52 mg, 0.1 mmol), compound 25 (32 mg, 0.1 mmol), 
compound 20 (50 mg, 0.1 mmol) and DIPEA (17 µL, 0.1 mmol).  FC (CH2CI2/MeOH, 20:1 then 10:1) 
gave compound HaXS7 (40 mg, 50%). 1H NMR (400MHz, CD3OD) : 7.82 (s, 1H), 7.43 (d, J=7.8 Hz, 
2H), 7.23 (d, J=7.8 Hz, 2H), 5.50 (s, 2H), 4.74 (t, J=7.1.0 Hz, 1H), 4.34 (s, 2H), 3.97 (dd, J=15.7 Hz, 
J=15.7 Hz, 2H), 3.61 (s, 4H), 3.59-3.56 (m, 6H), 3.50 (m, 4H), 3.40 (m, 2H), 3;30 (m, 1H), 3.10 (m, 
1H), 1.67 (m, 2H), 1.51 (m, 2H), 1.43-1.29 (m, 4H). 19F NMR (100.6 MHz, CD3OD) : -143.3, -158.6, -
164.8; 13C NMR (100.6 MHz, CD3OD) : 171.6, 170.5, 160.6, 160.3, 147.2, 144.8, 144.7, 139.0, 
138.5, 136.1, 128.7, 127.9, 111.3, 71.1, 71.0, 70.5, 70.5, 70.5, 70.4, 70.1, 67.6, 52.0, 44.7, 43.0, 32.7, 
29.5, 26.7, 25.5, 25.4. MS (ESI-MS): m/z (%): 816 ([M+H]+, 100), 404 (20), 258 (35); HRMS for 
C36H44ClF5N7O7 [M+H]+ calcd: 816.2905, found: 816.2922. 
 
 
Preparation of HaXS4  

According to GP1, starting from PYBOP (107 mg, 0.20 mmol), compound 25 (67 mg, 0.20 
mmol), compound 21 (73 mg, 0.20 mmol) and DIPEA (36 µL, 0.20 mmol).  FC (CH2CI2/MeOH, 20:1 
then 10:1) gave compound HaXS4 (40 mg, 30%). 1H NMR (400MHz, CD3OD) : 7.83 (s, 1H), 7.45 (d, 
J=7.8 Hz, 2H), 7.27 d, J=7.8 Hz, 2H), 5.50 (s, 2H), 4.38 (s, 2H), 4.49 (dd, J=5.8 Hz; J=8.1 Hz, 1H), 
4.02 (s, 2H), 3.67-3.48 (m, 14H), 3.42 (m, 2H), 3.30 (m, 1H), 1.86 (m, 1H), 1.71 (m, 3H), 1.52 (m, 2H), 
1.45-1.30 (m, 4H), 0.94 (t, J=7.5, 3H); 13C NMR (100.6 MHz, CD3OD) : 172.8, 171.7, 160.7, 138.8, 
136.0, 128.7, 127.7, 71.1, 71.0, 70.5, 70.5, 70.5, 70.4, 70.1, 67.6, 54.8, 44.8, 42.8, 32.7, 29.5, 26.7, 
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25.7, 25.5, 9.7; MS (ESI-MS): m/z (%): 664 ([M+H]+, 100), 620 (20); HRMS for C31H47ClN7O7 [M+H]+ 
calcd: 664.3220, found: 664.3228. 
 
 
Preparation of HaXS6 

According to GP1, starting from PYBOP (81 mg, 0.16 mmol), compound 25 (51 mg, 0.16 
mmol), compound 22 (65 mg, 0.16 mmol) and DIPEA (27 µL, 0.16 mmol). FC (CH2CI2/MeOH, 20:1 
then 10:1) gave compound HaXS6 (69 mg, 59%). 1H NMR (400MHz, DMSO-d6) : 12.43 (s, 1H), 8.59 
(t, J=5.4, 1H), 7.81 (s, 1H), 7.70 (d, J=8.5 Hz, 2H), 7.43 (d, J=8.0 Hz, 2H), 7.25-7.16 (m, 7H), 6.30 (s, 
2H), 5.46 (s, 2H), 4.62 (m, 1H), 4.29 (m, 2H), 3.88 (d, J=15.3 Hz, 1H), 3.77 (d, J=15.5 Hz, 1H), 3.59 
(m, 2H), 3.52 (m, 10H), 3.36 (m, 3H), 3.17 (d, J=4.9, 1H), 3.03 (dd, J=5.0 Hz; J=13.6 Hz, 1H), 2.90 
(dd, J=9.1 Hz; J=13.6 Hz, 1H), 1.67 (m, 2H), 1.46 (m, 2H), 1.35 (m, 2H), 1.27 (m, 2H); 13C NMR 
(100.6 MHz, DMSO-d6) : 171.5, 169.8, 160.5, 139.8, 138.4, 136.1, 130.1, 130.1, 129.4, 128.9, 128.1, 
127.2, 71.0, 71.0, 70.7 70.6, 70.5, 70.4, 70.3, 67.3, 54.2, 49.5, 46.2, 42.8, 38.6, 32.9, 29.9, 27.0, 25.8; 
MS (ESI-MS): m/z (%): 726 ([M+H]+, 100), 428 (15); HRMS for C36H49ClN7O7 [M+H]+ calcd: 726.3377, 
found: 726.3384. 
 
 
Synthesis of HaXS8 
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Reaction conditions: a) PPh3, CBr4, THF, rt, ov.; b) K2CO3, tert-butyl bromoacetate, DMF, rt, 4h; c) K2CO3, compound 34, DMF, 
50°C, ov.;  d) TFA, CH2Cl2, rt, 1h; e) (1.) PYBOP, DMF, rt, 3h, (2.) 38, DIPEA, rt, 16h. 
 
Scheme S4. Synthetic route to HaXS8. 
 
 
Preparation of 1-bromo-18-chloro-3,6,9,12-tetraoxaoctadecane (26) 

To a solution of compound 24 (3.7 g, 11.9 mmol) in THF (80 mL) at 0°C are added 
portionwise triphenylphosphine (3.6 g, 13.6 mmol) and then, carbon tetrabromide (4.5 g, 13.6 mmol). 
The resulting mixture is stirred at rt overnight. Solvent is evaporated under reduced pressure and the 
crude oil is purified by flash column chromatography. FC (cyclohexane/AcOEt 3:1) gave compound 26 
(3.6 g, 81%). 1H NMR (400 MHz, CDCl3) :  3.80 (m, 2H), 3.68-3.62 (m, 10H), 3.59-3.46 (m, 8H), 1.77 
(m, 2H), 1.58 (m, 2H), 1.36-1.52 (m, 4H); 13C NMR (100.6 MHz, CDCl3):  72.3, 72.1, 71.6, 71.5, 71.5, 
71.5, 71.4, 71.1, 45.7, 33.7, 31.4, 30.5, 27.7, 26.5; MS (ESI-MS): m/z (%): 399.07 ([M+Na]+, 100); 
HRMS C14H28BrClO4Na [M+Na]+ calcd: 399.0752, found: 399.0746. 
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Preparation of tert-butyl 2-(2,3,5,6-tetrafluoro-4-hydroxyphenoxy)acetate (28) 
To a mixture of tetrafluorohydroquinone 27 (4 g, 22 mmol) and K2CO3 (3 g, 22 mmol) in DMF 

(100 mL) was added dropwise a solution of tert-butyl bromoacetate (3.2 mL, 22 mmol). The resulting 
mixture was stirred at rt for 4h. The crude mixture was poured into a saturated solution of NH4Cl (900 
mL) and extracted twice with AcOEt (200 mL). The combined organic phase were washed with NaCl 
solution, dried over Na2SO4 and concentrated under reduce pressure.  FC (cyclohexane/AcOEt 3:1) 
gave compound 28 (1.83 g, 28%). 1H NMR (400 MHz, DMSO-d6):  11.00 (s, 1H), 4.68 (s, 2H), 1.40 
(m, 9H); 13C NMR (100.6 MHz, DMSO-d6):  167.1, 81.8, 70.3, 27.6; 19F NMR (100.6 MHz, DMSO-d6) 
: -158.6, -162.4; MS (ESI-MS): m/z (%): 319.05 ([M+Na]+, 100); HRMS C12H12F4O4Na [M+Na]+ calcd: 
319.0564, found: 319.0571. 
 
 
Preparation of tert-butyl-2-(4-(18-chloro-3,6,9,12-tetraoxaoctadecyloxy)-2,3,5,6-tetrafluoro-
phenoxy)acetate (29) 

A mixture of compound 28 (1.29 g, 4.8 mmol), K2CO3 (603 mg, 4.8 mmol) and compound 26 
(1.64 g, 4.8 mmol) in DMF (5 mL) was stirred at rt overnight. The crude mixture was poured into a 
saturated solution of NH4Cl (100 mL) and extracted twice with AcOEt (150 mL). The combined 
organic phase were combined and washed with NaCl solution, dried over Na2SO4 and concentrated 
under reduce pressure. FC (cyclohexane/AcOEt 1:1) gave compound 29 (2.2 g, 85%). 1H NMR (400 
MHz, CD3OD) :  4.72 (s, 2H), 4.30 (m, 2H), 3.81 (m, 2H), 3.67-3.60 (m, 10H), 3.59-3.55 (m, 4H), 
3.50-3.45 (m, 2H), 1.76 (m, 2H), 1.57 (m, 2H), 1.48 (m, 9H), 1.35-1.53 (m, 4H); 13C NMR (100.6 MHz, 
CD3OD):  168.8, 83.6, 75.6, 72.1, 71.7, 71.6, 71.5, 71.5, 71.4, 71.2, 71.2, 71.1, 45.7, 33.7, 30.5, 
28.3, 27.7, 26.5; 19F NMR (100.6 MHz, CD3OD) : -161.3, -161.5; MS (ESI-MS): m/z (%): 613.21 
([M+Na]+, 100); HRMS C26H39F4ClO8Na [M+Na]+ calcd: 613.2162, found: 613.2167. 
 

 
Preparation of 2-(4-(18-chloro-3,6,9,12-tetraoxaoctadecyloxy)-2,3,5,6-tetrafluorophenoxy)acetic 
acid (30) 

To a solution of compound 29 (2.2g, 3.7 mmol) in DCM (5 mL) was added TFA (5 mL). The 
mixture was stirred at rt for 2h. Then, solvent was removed under reduce pressure. FC (DCM/MeOH 
20:1) gave compound 30 (1.75 g, 88%). 1H NMR (400 MHz, CD3OD) : ; 4.80 (s, 2H), 4.30 (m, 2H), 
3.81 (m, 2H), 3.65-3.59 (m, 10H), 3.59-3.55 (m, 4H), 3.47 (m, 2H), 1.76 (m, 2H), 1.58 (m, 2H), 1.35-
1.52 (m, 4H); 13C NMR (100.6 MHz, CD3OD):  171.3, 75.6, 72.1, 71.7, 71.6, 71.5, 71.4, 71.1, 70.6, 
45.7, 33.7, 30.5, 27.7, 26.5; 19F NMR (100.6 MHz, CD3OD) : -159.8, -160.0; MS (ESI-MS): m/z (%): 
535.17 ([M+H]+, 100); HRMS C22H32F4ClO8 [M+H]+ calcd: 535.1716, found: 535.1724. 
 
 
Preparation of HaXS8 

A mixture of compound 30 (1.35 g, 2.3 mmol), O6-aminomethylbenzylguanine 1 (626 mg, 2.3 
mmol), 1-hydroxybenzotriazole hydrate (313 mg, 2.3 mmol), N-(3-Dimethylaminopropyl)-N′-
ethylcarbodiimide hydrochloride (446 mg, 2.3 mmol) and DIPEA (404 µL, 2.3 mmol) in DMF (20 mL) 
was stirred at rt overnight. The crude mixture was poured onto water (150mL) and aqueous phase is 
extracted with AcOEt (2*80mL).  The combined organic phase were combined and washed with NaCl 
solution, dried over Na2SO4 and concentrated under reduce pressure. FC (CH2CI2/MeOH, 20:1 then 
10:1) gave HaXS8 (1.02 g, 56%). 1H NMR (400 MHz, CD3OD) :  7.85 (s, 1H), 7.50 (m, 2H), 7.31 (m, 
2H), 5.53 (s, 2H), 4.67 (s, 2H), 4.48 (s, 2H), 4.29 (m, 2H), 3.78 (m, 2H), 3.66-3.60 (m, 10H), 3.58 (m, 
4H), 3.47 (m, 2H), 1.74 (m, 2H), 1.54 (m, 2H), 1.31-1.48 (m, 4H); 13C NMR (100.6 MHz, CD3OD):  
169.8, 161.6, 139.6, 137.0, 129.7, 128.7, 75.7, 73.9, 72.1, 71.7, 71.6, 71.5, 71.1, 68.7, 45.7, 43.5, 
33.8, 30.6, 27.7, 26.5; 19F NMR (100.6 MHz, CD3OD) : -159.2, -159.6; MS (ESI-MS): m/z (%): 
787.28 ([M+H]+, 100); HRMS C35H44F4N6ClO8 [M+H]+ calcd: 787.2840, found: 787.2825. 

42



 

4. Supplemental Data 
 
 
 
 

Supplemental Figure S1, related to Figure 1 
and Figure 4. HeLa cells co-expressing HA-
SNAP-FKBP and HA-Halo-FRB were pretreated 
with either DMSO or 0.5 M rapamycin for 30 
min., before DMSO or 0.5 M HaXS8 were 
added for 60 min. Cells were subsequently 
analyzed for the intracellular formation of HA-
tagged Halo/SNAP-tag dimers using anti-HA 
antibodies. Dimers forced to form by HaXS8 in 
the absence of rapamycin were normalized to 
100% (Mean ± SEM, one tailed Student’s t-test, 
*p< 0.05, n = 3). 
 
This experiment demonstrates once more that 
HaXS8 is capable to force the proximity of 
previously non-interacting proteins. If the HA-
SNAP-FKBP and HA-Halo-FRB fusion proteins 
are pre-associated by the addition of rapamycin 
(to form a HA-SNAP-FKBP/rapamycin/HA-Halo-
FRB complex), before HaXS8 is added to link the 
Halo- and SNAP-tags covalently, a modest, but 
significant increase in dimerization was 
observed. 
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Supplemental Figure S2, related to Figure 6. 
HEK293 cells were incubated with DMSO, 0.5 
µM HaXS8, iRap (kindly provided by Tom 
Wandless, Stanford) or rapamycin for 1 h, before 
cells were lysed, and proteins were subjected to 
SDS-PAGE and immuno-blotting using 
antibodies detecting total p70S6K (S6K), and 
phosphorylated S6K (pS6K, T389 residue 
phosphorylated by TORC1). 
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5. Supplemental Table 1 – Properties of Substrates Used for Chemically Induced Dimerization 
 
Compound Biochemical 

monitoring 
of complex 

Cell  
permeant 

Intracellular dimerization* Estimated 

speed of 

dimerization 

Interference with endogenous 

signaling pathways 

Orthogonal use / applications 
y/n mode type 

Abscisic acid 
(ABA) 

no yes yes forced hetero; 
non-
covalent 

slow [<h], high 
concentrations 
required 

None reported, but toxic effects in 
vivo (Celik et al., 2007). 

Compatible with rapalogs; regulation of coupled transcription 
processes (Liang et al., 2011; Hathaway et al., 2012). 

CoDis (BG-BG) yes (yes) yes pre-
ass. 

homo; 
covalent 

slow [h] None reported. Tag substrates not 
expected to interfere with cellular 
signaling. 

Detection of existing protein-protein interactions (Lemercier et al., 
2007). 
 

Coumermycin no yes yes forced homo; 
non-
covalent 

fast [min] None reported. Translocation and activation of signaling molecules (Farrar et al., 
1996; Farrar et al., 2000). 

Dex-FK506 
 

no yes yes forced hetero; 
non-
covalent 

very slow 
[days ?] 

Not assessed in detail. Likely with 
nuclear receptors and FKBPs. 

Yeast three hybrid system (Licitra and Liu, 1996). 

Dexamethasone
-Methotrexate 
(Dex-Mtx) 

no yes yes forced hetero; 
non-
covalent 

very slow 
[days ?] 

Not assessed in detail. Likely with 
nuclear receptors. 

Transcription reporter systems and yeast complementation 
screens (Lin et al., 2000; Baker et al., 2002). 

Dexamethasone
-Trimethoprim 
(Dex-TMP) 

no yes yes forced hetero; 
non-
covalent 

very slow 
[days ?] 

Not assessed in detail. Likely with 
nuclear receptors. 

Transcription factor logics in a three hybrid system 
(Gallagher et al., 2007; Bronson et al., 2008). 

Gibberellic acid 
derivatives (e.g. 
GA3-AM) 

no yes yes forced hetero; 
non-
covalent 

very fast [s] Cellular acidification at elevated 
concentrations (Celik et al., 2007). 

Compatible with rapalog system; control of Jak/Stat signaling 
(Mohi et al., 1998; O'Farrell et al., 1998), and protein translocations 
(Miyamoto et al., 2012; Phua et al., 2012). 

HaXS8 yes yes yes forced hetero; 
covalent 

fast [min] None observed. Tag substrates 
not expected to interfere with 
cellular signaling. 

Forced protein translocation, activation of signaling pathways, 
orthogonal and multiplexed applications, compatible with rapalog 
system. Simple assessment of success of dimerization (Erhart et 
al., this work). 

Rapalogs no yes yes forced hetero; 
non-
covalent 

very fast [s] Interference with mTOR signaling, 
and FKBP-dependent pathways. 
Problems with low level rapamycin 
contamination. 

Rapid translocation of signaling molecules to membranes, 
successful depletion of lipid pools (Liberles et al., 1997; Inoue et 
al., 2005; Varnai et al., 2006; Edwards and Wandless, 2007). 
Orthogonal applications possible (Bayle et al., 2006; Inoue and 
Meyer, 2008). For a review see (Putyrski and Schultz, 2012). 

S-Cross 
(e.g. SC-Cy5) 

yes no no pre-
ass. 

hetero; 
covalent 

slow [h] Not expected, tag substrates not 
expected to interfere with cellular 
signaling. 

Detection of protein-protein interactions in cell lysates; integration 
of fluorescent tracer (Gautier et al., 2009).  

X-CrAsH yes yes yes pre-
ass. 

(homo); 
covalent 

slow [h] Redox state-dependent 
accumulation of FlAsH derivatives 
in mitochondria reported 
(Langhorst et al., 2006). 

Dimerisation of pre-associated partners (Rutkowska et al., 2011). 

* forced intracellular dimerization triggers complex formation of two previously non-associated protein partners, while pre-ass. points to dimerization of preformed complexes. Complex formation can 
be mediated by symmetric interactions (homo-dimerization) or asymmetric interactions (hetero-dimerization), and can be mediated by non-covalent binding or covalent reactions. 
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Abstract: Chemical inducers of dimerization (CIDs) have
been developed to orchestrate protein dimerization and
translocation. Here we present a novel photocleavable Halo-
Tag- and SNAP-tag-reactive CID (MeNV-HaXS) with excel-
lent selectivity and intracellular reactivity. Excitation at 360 nm
cleaves the methyl-6-nitroveratryl core of MeNV-HaXS.
MeNV-HaXS covalently links HaloTag- and SNAP-tag
fusion proteins, and enables targeting of selected membranes
and intracellular organelles. MeNV-HaXS-mediated translo-
cation has been validated for plasma membrane, late endo-
somes, lysosomes, Golgi, mitochondria, and the actin cytoske-
leton. Photocleavage of MeNV-HaXS liberates target proteins
and provides access to optical manipulation of protein
relocation with high spatiotemporal and subcellular precision.
MeNV-HaXS supports kinetic studies of protein dynamics and
the manipulation of subcellular enzyme activities, which is
exemplified for Golgi-targeted cargo and the assessment of
nuclear import kinetics.

Localization of signaling enzymes is key to controlling
protein and lipid kinase cascades in physiology and disease.[1]

Control of protein localization and enzyme activity by
illumination provides unique access to the manipulation of
biological processes in living cells with high spatiotemporal

precision. Caged small molecules and enzyme substrates have
been developed for a number of applications.[2]

Naturally occurring light-sensitive protein domains have
been used to design genetically encoded light-controlled
protein–protein interaction modules. These so-called optoge-
netic systems contain a photoisomerizable chromophore,
which undergoes a conformational change upon illumination
at a defined wavelength. Optogenetic systems have been used
to control the activation of single signaling proteins by protein
caging (light-inducible GTPase Rac),[3] or in a more modular
approach to indirectly manipulate cellular signaling, through
the light-dependent dimerization of two protein modules.[4]

Optogenetic light-activated dimerization systems are versa-
tile tools, but suffer from several drawbacks such as large
photosensory protein tags,[4, 5] the requirement of exogenous
cofactors,[4] slow kinetics,[5] formation of unwanted homo-
dimers,[6] and sensitivity to environmental light, and/or over-
lap with excitation wavelength of popular fluorescent
reporter proteins.[6, 7] Another approach to control protein
localization and enzyme activity are chemical inducers of
dimerization (CIDs)[8] and self-localizing ligands,[9] which
have been successfully used to manipulate signaling pathways
including phosphoinositide turnover,[10] and small GTPases.[11]

Presently, cell-permeable CIDs that can be efficiently
manipulated intracellularly have not been reported.[8] Some
spatial selectivity has been achieved with photocleavable,
biotinylated a-methylnitrobenzylrapamycin, which has been
used to control small GTPase activity.[12] This caged rapamy-
cin was targeted to an extracellular location by means of its
biotin moiety, required, however, extracellular photolytic
removal of the caging group before rapamycin was released to
diffuse across the cell membrane.[12] Another photocaged
rapamycin derivative is pRap.[13] Both of these noncovalent,
photocleavable CIDs provide a source of highly diffusible
dimerizer, limiting local target manipulation.

Here we present a novel photocleavable CID, which forms
a covalent link between HaloTag-[14] and SNAP-tag[15]-fused
proteins. The photocleavable methyl-6-nitroveratryl (MeNV)
group was introduced into the core module linking the
HaloTag-reactive chloroalkane ligand and the SNAP-tag-
reactive O6-benzylguanine, and the cell permeability of the
resulting CID molecule is retained (dubbed MeNV-HaXS;
Figure 1). The combination of chemical-induced dimerization
and the possibility of a subsequent light-induced reversal of
the protein–protein interaction combines the advantage of
a modular approach of genetically encodable tags with
a highly specific spatiotemporal control by light.

As depicted schematically in Figure 1, MeNV-HaXS
penetrates cells and induces the dimerization of HaloTag
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and SNAP-Tag fusion proteins to form a covalently stabilized
complex. Upon illumination (360 nm), the MeNV group
undergoes photolysis, which triggers the cleavage of the
protein dimer and the release of cargo proteins.

MeNV-HaXS was optimized to match the cell perme-
ability of the noncleavable dimerizer of HaloTag and SNAP-
tag fusion proteins called HaXS8.[16] Time-dependent dime-
rization of HaloTag-GFP and SNAP-tag-GFP fusion proteins
expressed in HeLa cells was studied in response to the
addition of MeNV-HaXS and HaXS8, and we found that
MeNV-HaXS and HaXS8 produced dimers at a similar rates.
Slight differences were measurable at earlier time points (t<
10 min, Figure 2a), which became insignificant after 15 min of
treatment. These slight differences may be explained by the
increased molecular weight and higher polarity of MeNV-
HaXS, resulting from the incorporation of the PEG6 element.
MeNV-HaXS-induced HaloTag-SNAP-tag dimers were
stable for > 5 h, and exposure to ambient light did not
affect the stability of dimers.

Due to the matched dimerization properties of MeNV-
HaXS and HaXS8, the noncleavable HaXS8 is a valuable
control compound to monitor the efficiency of photocleavage,
and to detect potential side effects exerted by UV irradiation.
The efficiency of the intracellular photocleavage of MeNV-
HaXS was tested in HeLa cells expressing HaloTag-GFP and
SNAP-tag-GFP fusion proteins. A HaloTag-SNAP-tag com-
plex preformed with MeNV-HaXS could be cleaved in bulk
by illumination with a 360 nm lamp (Blak-Ray, B-100A,
UVP). Quantification of protein dimers before and after

exposure to UV light revealed that MeNV-HaXS-induced
dimers were quantitatively cleaved after 10 min of illumina-
tion, whereas HaXS8-containing dimers remained intact
(Figure 2b).

MeNV-HaXS thus offers the possibility to trigger covalent
dimerization, and to subsequently release associated proteins
in a controlled way. This allows the manipulation of protein
localization, which can be exploited to mimic cellular signal-
ing events in a timed and localized fashion. Many signaling
events take place at defined intracellular locations. The
combination of a tagged anchor protein and MeNV-HaXS
exposure permits the depletion of tagged signaling enzymes
from their productive sites. Presently, MeNV-HaXS has been
validated for the targeting of tagged proteins to intracellular
organelles such as Golgi (Figure 3a), plasma membrane,
lysosomes, mitochondria, and the actin skeleton (Figure S2).

Targeted irradiation of MeNV-HaXS-anchored protein
complexes using a microscope equipped with an XY scanning
excitation laser for FRAP (fluorescence recovery after
photobleaching; 355 nm) indeed released tagged proteins
from the illuminated spots. HeLa cells were cotransfected
with cytosolic teal fluorescent (cyan) SNAP-tag fusion
protein (SNAP-mTFP1) and the Golgi anchor Halo-RFP-
Giantin, which was constructed by the fusion of a red
fluorescent protein (monomeric RFP; TagRFP) to a HaloTag
and a C-terminal Golgi-targeting motif derived from gian-
tin.[17]

Incubation with 5 mm of MeNV-HaXS or 5 mm of HaXS8
efficiently translocated cytosolic SNAP-mTFP1 to the cyto-
solic surface of the Golgi membrane (Figure 3a). After an
illumination pulse (8 � 5 ms at 355 nm) of a subset of Golgi-

Figure 1. A photocleavable, cell-permeable HaloTag- and SNAP-tag-
reactive CID with a methyl-6-nitroveratryl (MeNV) core was generated
(MeNV-HaXS). After cell entry, MeNV-HaXS dimerizes HaloTag- and
SNAP-tag-fused proteins of interest (POI). Illumination of MeNV-HaXS
(360 nm; e =4058m

�1 cm�1; quantum yield= 0.075) cleaves the link
between the POIs, and releases them from the covalent complex. For
the synthesis of MeNV-HaXS see the Supporting Information.

Figure 2. MeNV-HaXS induces the formation of intracellular dimers of
HaloTag and SNAP-tag fusion proteins, which are cleaved upon UV
illumination. a) HeLa cells transfected with expression constructs for
SNAP-tag-GFP (SNAP-GFP) and HaloTag-GFP (Halo-GFP) fusion pro-
teins were exposed to 5 mm MeNV-HaXS or 5 mm light-insensitive
HaXS8 for the indicated times in cell culture medium at 37 8C.
Subsequently, cells were lysed and proteins were subjected to SDS-
PAGE and immunoblotting. Tagged proteins were detected using anti-
GFP (primary) and horseradish peroxidase labeled (secondary) anti-
bodies, and chemiluminescence (means�SEM, n =3). b) HeLa cells
expressing SNAP-GFP and Halo-GFP as in (a) were incubated with
5 mm MeNV-HaXS or HaXS8 for 15 min. Cells were then washed and
submerged in phosphate-buffered saline (PBS) to remove unreacted
compounds, and illuminated with a high-intensity UV lamp (100 W,
5 cm distance) for 10 min. Analysis of dimerization products was
performed as in (a); values represent means�SEM, n =3; * indicates
p<0.05.
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derived vesicles, SNAP-mTFP1 was efficiently and selectively
released from illuminated, but not from the non-illuminated
vesicular compartments (Figure 3a,c). No significant loss of
fluorescence intensity was observed when the light-insensitive
HaXS8 was used to anchor SNAP-mTFP1 at Golgi mem-
branes (Figure 3b,c), confirming that the observed light-
triggered decrease in fluorescence of SNAP-mTFP1 tethered
with MeNV-HaXS results from the release, and not from the
photobleaching of SNAP-mTFP1 fluorescence. Moreover,
membrane-anchored SNAP-mTFP1 detaches rapidly from

membranes after a laser pulse (t< 1 s). This demonstrates that
MeNV-HaXS can be utilized to manipulate protein local-
ization with excellent subcellular precision on a timescale of
seconds.

As a scanning FRAP laser is not part of standard
fluorescence microscope equipment, we explored the possi-
bility of using global field of view illumination with standard
DAPI excitation filters (377� 25 nm; standard mercury
halide lamp) to induce the photocleavage of MeNV-HaXS-
induced protein complexes. We found that an illumination
time of < 20 s was sufficient to completely liberate SNAP-
mTFP1 from Golgi membranes (Figure 3 d,e). A correspond-
ing increase of mTFP1 fluorescence intensity in the cytoplasm
demonstrates that the light-induced fluorescence decrease of
SNAP-mTFP1 at vesicles results from the release and not
from global photobleaching of SNAP-mTFP1 fluorescence.

Although slower due to the limited excitation energy,
photocleavage using DAPI excitation filters on a conventional
fluorescence microscope greatly expands the range of appli-
cations offered by the MeNV-HaXS system.

In contrast to previously reported CIDs, MeNV-HaXS
can instantaneously release its cargo when illuminated. To
further evaluate this concept, a nuclear probe was forced to
dock on a Golgi anchor. Expressed alone in HeLa cells, the
nuclear localization sequence (NLS)-containing cyan fluores-
cent probe (NLS-CFP-SNAP) accumulated in the nucleus. In
the presence of co-expressed Golgi anchor (Giantin-RFP-
Halo) and added MeNV-HaXS, NLS-CFP-SNAP was trap-
ped at perinuclear sites on the Golgi (Figure 4a). Subsequent
irradiation of cells triggered the release of NLS-CFP-SNAP
from the Golgi to the cytosol within seconds (Figure 4b).
Nuclear import of liberated NLS-CFP-SNAP was delayed
(Figure 4b), reflecting nuclear import processes.[18] This
illustrates that photocleavage of MeNV-HaXS is rapidly
achieved, and permits the study of nuclear import kinetics in
real time in a simple experimental setup.

In summary, MeNV-HaXS is the first cell-permeant CID
giving rise to the formation of covalently linked and photo-

Figure 3. Translocation of cytosolic SNAP-mTFP1 proteins to the Golgi
followed by their release upon UV illumination. a,b) HeLa cells
expressing SNAP-mTFP1 and Halo-RFP-Giantin were exposed to
a) 5 mm MeNV-HaXS or b) 5 mm HaXS8 in cell culture medium for
15 min at 37 8C, both of which induced translocation of cytosolic
SNAP-mTFP1 to the Golgi. SNAP-mTFP1 intensity was monitored in
the indicated circular regions of interest by live-cell microscopy, before
and after illumination of a subcellular region within the cell (white,
dotted square) with a scanning FRAP laser (8 areas � 5 ms at
355 nm). c) Quantification of mTFP1 fluorescence intensity in selected
regions of interest (labeled circles) for SNAP-mTFP1 after addition of
MeNV-HaXS (circles) or HaXS8 (squares). Quantifications of mTFP1
intensity in illuminated areas (green curves) and non-illuminated Golgi
vesicles (black curve); values are means �SEM, n = 10, error bars not
shown when smaller than symbols. d) HeLa cells as in (a) were
exposed to 5 mm MeNV-HaXS and illuminated for 20 s using a standard
DAPI filter set on a conventional fluorescence microscope (t = 20 s,
377�25 nm). e) Quantification of mTFP1 fluorescence intensity in
selected regions of interest (circles) at Golgi-derived vesicles (v), and
in the cytoplasm (c) before and after illumination as described in (d);
values are means �SEM, n = 10, error omitted when smaller than
symbols; for more controls see Figure S3.
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cleavable protein complexes. Like other CID approaches, the
design of fusion proteins bearing interacting functional
protein domains must be carefully considered. The covalent
link formed by MeNV-HaXS simplifies monitoring and
validation of protein complexes greatly. MeNV-HaXS is
therefore a novel valuable tool that combines intracellular
protein dimerization with photocleavage triggered by a wave-
length compatible with widely used fluorescent reporter
proteins. The possibility to control protein localization by two
independent events can be exploited to sequester any protein
of interest away from its functional compartment. CID-
dependent trapping of enzymes to nonfunctional sites has
been established as an elegant approach to interrupt signaling
pathways.[19, 20] Optically guided cleavage of MeNV-HaXS can
release anchored proteins and restore their function. Many
more scenarios are possible, for example the deployment of
on-off-on and off-on-off protocols and the orthogonal use of
MeNV-HaXS with other CIDs. The choice between global
and local illumination triggering dissociation of the CID-
mediated complex opens a wide range of applications, such as
investigation of cell-compartment-associated signaling, and
the simulation of cell-wide physiological and pathological
signaling dynamics.
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1. Structures of key compounds used in this study 

 

 
 

MeNV-HaXS (top): 

1-(4-((24-chloro-3,6,9,12,15,18-hexaoxatetracosyl)oxy)-5-methoxy-2-nitrophenyl)ethyl (4-(((2-amino-

9H-purin-6-yl)oxy)methyl)benzyl)carbamate 

 

HaXS8 (bottom): 

N-(4-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)-2-(4-((18-chloro-3,6,9,12-tetraoxaoctadecyl)oxy)-

2,3,5,6-tetrafluorophenoxy)acetamide (see reference [16] in main text). 
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2. Supplementary experimental procedures and conditions 
 
Chemical synthesis and characterization 
 MeNV-HaXS was synthesized in 8 steps starting from acetovanillone, hexaethylene glycol, 
O6-aminomethylbenzylguanine and 6-chloro-1-iodohexane with good overall yield (>800 mg 
produced). To balance cell permeability and solubility in water, a PEG6 element was introduced. The 
methyl-6-nitroveratryl group (MeNV) was selected as a photocleavable group because it absorbs light 
at >360 nm. This minimizes cell damage, matches initiation of photocleavage to widely available 
excitation equipment and filters, and MeNV provides a sufficient quantum yield for intracellular 
photocleavage. Last but not least, intermediates and by-products emerging from the photolytic 
process do not interfere with living cells. The photophysical properties of MeNV-HaXS were 
determined in vitro as described below. MeNV-HaXS is not sensitive to ambient light, displays 
excellent cleavage efficiency at 360 nm with an absorption coefficient of 4058 M-1cm-1, and a quantum 
yield of 0.075. No special precautions concerning light exposure were required during synthesis. 
 
 Materials and reagents were of the highest commercially available grade and used without 
further purification. Reactions were monitored by thin layer chromatography (TLC) using Merck silica 
gel 60 F254 plates. Compounds were visualized by UV, ceric ammonium molybdate (CAM), KMnO4 
and ninhydrin. Flash chromatography was performed using Merck silica gel 60, particle size 40 - 63 
µm. 
 
 1H, 19F and 13C NMR spectra were recorded on a Bruker AV-400 or a DRX-600 NMR 
spectrometer. Chemical shifts are reported in ppm using the solvent residue signals as reference. All 
solvents used for reactions were purchased as anhydrous grade from Fluka. Solvents for extractions, 
flash chromatography and TLC were commercial grade. Mass spectra were recorded with a VG70-
250  (FAB), Finnigan MAT MS 312 (EI) or Finnigan MAT LCQ (ESI) spectrometer. High resolution 
mass spectra were recorded with a Thermo Fisher Scientific LTQ Orbitrap XL, nanoelectrospray ion 
source.  
 
Measurement of the absorption spectra 
 UV/Vis spectra of 10-5 M solution of MeNV-HaXS in DMSO was recorded on a Perkin Elmer 
Lambda 40 UV/Vis spectrometer using quartz standard absorption cells. The extinction coefficients 
were calculated for 360 nm. 
 
 The emission of the transilluminator lamps (RPR-3500 Å, RPR-3600 Å and RPR-4190 Å) was 
recorded with an AVA SPEC 2048 spectrometer. With the same spectrometer an absorption spectrum 
of the glass cover slip was recorded to verify that there is no absorbance in the irradiation 
wavelengths range. 
 
General procedure for the analysis of photolysis 
 The irradiated solution was transferred into an HPLC microvial and injected into an Aquity H-
Class UPLC system equipped with an ESI-SQD mass spectrometer. The photolysis yield was 
determined by integration of the Single Ion Monitoring (SIM) signal of the starting product. 
 
Protein denaturation, cell lysis and immune-blotting 
 Cells were washed with ice cold PBS and lysed in a NP-40 lysis buffer [1% NP-40, 20 mM 
Tris-HCl pH 8.0, 138 mM NaCl, 2.7 mM KCl, 5% glycerol, 40 mM NaF, 2 mM Na3VO4, 20 µM 
Leupeptin, 18 µM Pepstatin, 5 µM Aprotinin, 1 mM PMSF, 1 mM MgCl2, 1 mM CaCl2, 5 mM EDTA]. 
Cell lysates were cleared by centrifugation at 13’000 rpm for 15 min and proteins were denatured by 
the addition of 5x sample buffer [312.5 mM Tris-HCl (pH 6.8), 10% SDS, 25% β-mercaptoethanol, 
50% glycerol, bromphenol blue] and cooking for 6 min. Proteins were separated by SDS-PAGE and 
transferred to Immobilon PVDF membranes (Millipore). Mouse monoclonal antibody (mAb) to GFP 
(Roche Diagnostics) was used to detect GFP-fusion proteins. Secondary antibodies labeled with 
horseradish peroxidase (HRP-conjugated goat anti-mouse IgG) were visualized using enhanced 
chemiluminescence (Millipore) and a CCD camera (Fusion Fx7, Vilber). 
 
Cloning of expression constructs 
The HaloTag7 L273Y coding sequence (Promega) and SNAPf coding sequence (kind gift from K. 

Johnsson, Lausanne), mTFP1 (kind gift of O. Pertz, Basel), Golgi targeting sequence Giantin 
(kind gift from T. Inoue, Baltimore), LAMP1 (kind gift from T. Inoue, Baltimore), plasma 
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membrane targeting sequence CAAX (kind gift of J, Downward, London) and mTq (kind gift of 
J. Goedhart Amsterdam) were amplified by PCR (Phusion polymerase, Finnzymes).  

For HaloTag L273Y L273Y-GFP, HaloTag7 L273Y-RFP, and SNAPf-GFP expression constructs, 
HaloTag7 L273Y and SNAPf were transferred to pEGFP (Clonetech), or pTag-RFP-N1 
(Evrogen) expression vectors. 

SNAPf-mTFP1: GFP was exchanged in a SNAPf-GFP plasmid by the mTFP1 sequence. 
HaloTag7 L273Y-RFP-Giantin: the Giantin targeting sequence was introduced into the HaloTag7 

L273Y-RFP expression vector. 
NLS-CFP-SNAP: FKBP1x from the NLS-CFP-FKBP1x expression vector (kind gift from S. Hübner, 

Würzburg) was exchanged by the SNAPf sequence. 
HaloTag7 L273Y-RFP-Rheb15: HaloTag7 L273Y-RFP was amplified by PCR and fused to a Rheb15 

sequence to be inserted into the pTag-RFP-N1 backbone with RFP was excised. 
Halo-RFP-Rheb15: HA-Raptor was replaced by HaloTag7 L273Y-RFP in a HA-Raptor-Rheb15 

expression vector kindly obtained from Anna Melone. 
LAMP-RFP-HaloTag7 L273Y: the LAMP1 targeting sequence was inserted into the RFP-HaloTag7 

L273Y expression vector. 
Mito-SYFP-SNAPf: FRB was exchanged into a Mito-SYFP-FRB expression construct (kind gift of P. 

Scheiffele, Basel) by the SNAPf sequence. 
LifeAct-mTFP1-SNAPf: mTFP1 was fused to LifeAct by PCR, and inserted into the GFP-SNAPf 

expression construct (were GFP was excised). 
HaloTag7 L273Y-mTq: GFP was exchanged by the mTq sequence. 
 Maps and expression vector sequences can be obtained from the authors upon request. 
 
Statistical Analysis 
 Statistical analysis was performed with GraphPad Prism v6. For Student’s t test (two sided, 
non-paired with Welch correction, p < 0.05) ≥3 independent experiments were compared. 
 
Cell culture and transfection 
 HeLa cells (ATCC) were cultured in complete Dulbeccos’s modified Eagle medium (DMEM) 
with 10% heat-inactivated fetal calf serum (HIFCS), 2 mM L-glutamine (Gln), 1% penicillin-
streptomycin solution (PEST) at 37°C and 5% CO2. Transfections were carried out with JetPEI 
(Brunschwig) according to manufacturer’s guidelines. 
 
Cellular heterodimerization and intracellular cleavage 
 HeLa cells were grown in 6-well cell culture plates (Falcon), and were transfected with 
expression constructs for SNAP-GFP, Halo-GFP, Halo-RFP-Giantin, SNAP-mTFP1 or NLS-CFP-
SNAP. After 24 h, cells were exposed to MeNV-HaXS or HaXS8 dimerizer as described in complete 
cell culture medium (at 37°C). Before bulk photocleavage experiments, cells were washed twice in 1 x 
PBS after treatment with HaXS8 or MeNV-HaXS. Then 600 µl 1x PBS was added to each well, and 
the cell cells in the culture plate on ice was illuminated for 10 min with a high-intensity UV lamp (Blak-
Ray B-100A high intensity UV lamp; 100 Watt, 365 nm, UVP) at a distance of 5 cm. 
For Western Blot analysis, cells were lysed, and proteins were separated by SDS-PAGE. SNAP/Halo-
tag dimers were detected using anti-GFP (primary) and horseradish peroxidase (HRP)-conjugated 
(secondary) antibodies to visualize dimer formation using enhanced chemiluminescence (Millipore) 
and a CCD camera (Fusion Fx7, Vilber). 
 For live cell microscopy, transfected and MeNV-HaXS resp. HaXS8 treated cells grown on 12 
mm cover slips (Menzel) were mounted in Ludin chambers (Live Imaging Services) in the closed 
confirmation with complete cell culture medium without phenol red. Pictures were taken every 1 
seconds before illumination of the cells and every 1 sec for Figure 3 resp. every 15 sec for Figure 4. 
Images were acquired on a Leica Live Imaging Microscope fitted with a HCX Plan-Fluotar 63x/1.4 oil 
objective and a Photometrics CCD Camera CoolSnap HQ2 with Metamorph 7.1 software (Molecular 
devices). Cleavage in Fig. 3a and 3b and Fig. 4a was performed with a 50 mW FRAP scanning laser 
(UV-Diode Laser, 355 nm, 30 Hz). Single spots within the indicated region of interest where irradiated 
for the indicated times. For photocleavage experiments as shown in Fig. 3d, standard DAPI excitation 
filters were used on a Leica EL600 microscope (equipped with a mercury metal halide lamp; filter 
cube: ex: 377±25 nm, em: 447±30 nm, dichrioic mirror: 409 nm; 63x objective: 63xHCX Plan-Fluotar, 
NA: 1.25 [oil]). 
 Movies were assembled and analyzed with Fiji (ImageJA, 1.44b). In Figure 3a mTFP1 
fluorescence at vesicles was calculated according to the formula mTFP1 = F(mTFP1, vesicle) / 
F(RFP, whole cell) - F(mTFP1, cytoplasm) / F(RFP, whole cell) for every frame. In Figure 3b mTPF1 
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fluorescence in the cytoplasm was calculated according to the formula mTFP1 = F(mTFP1, vesicle) / 
F(RFP, whole cell). In Figure 4 CFP fluorescence at vesicles was calculated according to the formula 
CFP = F(CFP, vesicle) / F(RFP, whole cell) - F(CFP, cytoplasm) / F(RFP, whole cell) for every frame. 
Nuclear CFP fluorescence intensity was calculated according to the formula CFP = F(CFP, nucleus) / 
F(RFP, whole cell) for every image. To illustrate the fluorescence decrease from vesicles and to 
measure fluorescence increase in the cytoplasm or nucleus, mTFP1 or CFP fluorescence intensity 
was plotted over time. 
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3. Chemical synthesis and characterization of compounds 

 
 
Synthesis of MeNV-HaXS 
 
 

 
 
Reaction conditions: a) NaH, 6-chloro-1-iodohexane, THF/DMF, 0°C, 16 h; b) PPh3, CBr4, rt, 16 h; c) K2CO3, benzyl bromide, 
DMF, 80°C, 16 h; d) Acetic acid, acetic anhydride, HNO3, rt, 16 h; e) Acetic acid, HBr, 85°C, 1.5 h; f) K2CO3, 3, DMF, 60°C, 16 
h; g) NaBH4, MeOH/Dioxane, rt, 2 h; h) bis p-nitrophenyl carbonate, triethylamine, DMF, rt, 16 h; i) O6-
aminomethylbenzylguanine, 60°C, 6 h. 
 
Scheme S1. Synthetic route to MeNV-HaXS. 
 

 
Preparation of 24-chloro-3,6,9,12,15,18-hexaoxatetracosan-1-ol (2) 
 Hexaethyleneglycol (1) (2.1 mL, 8.4 mmol) was dissolved in a THF/DMF mixture (3:1). 
Sodium hydride (60% in mineral oil, 370 mg, 9.2 mmol) was added portionwise at 0 °C. After stirring 
for 30 min at rt, 6-chloro-1-iodohexane (6.4 mL, 8.4 mmol) was added dropwise at 0 °C. The mixture 
was stirred at rt for 16 h. The excess of sodium hydride was carefully quenched with water and the 
crude mixture was poured into water and extracted twice with AcOEt. The combined organic layers 
were dried over Na2SO4 and concentrated under reduced pressure. The crude oil was purified by 
flash chromatography (CH2Cl2/MeOH, 20:1) to yield compound 2 (5.3 g, 54%). 1H NMR (400 MHz, 
CD3OD): δ 3.66 - 3.61 (m, 18H), 3.58 – 3.54 (m, 6H), 3.47 (t, J = 6.80 Hz, 2H), 3.30 (m, 2H), 1.77 (m, 
2H), 1.58 (m, 2H), 1.50-1.38 (m, 4H); 13C NMR (100.6 MHz, CD3OD): δ 73.6, 72.1, 71.6, 71.5, 
71.5,71.4, 71.1, 62.2, 45.7, 33.7, 30.5, 27.7, 26.5.  
 
 
Preparation of 1-bromo-24-chloro-3,6,9,12,15,18-hexaoxatetracosane (3) 
 24-chloro-3,6,9,12,15,18-hexaoxatetracosan-1-ol 2 (950 mg, 2.37 mmol) was dissolved in 
THF. Triphenylphosphine (721 mg, 2.76 mmol) and carbon tetrabromide (900 mg, 2.76 mmol) were 
added portionwise at 0°C. The resulting mixture was stirred at rt for 16 h. The solvent is evaporated 
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under reduced pressure and the crude oil is purified by flash chromatography (cyclohexane/EtOAc, 
3:1) to yield compound 3 (800 mg, 73%). 1H NMR (400 MHz, CD3OD): δ 3.80 (t, J = 6.02 Hz, 2H), 
3.66-3.61 (m, 18H), 3.58-3.54 (m, 4H), 3.51 (t, J = 6.04 Hz, 2H), 3.48 (t, J = 6.52), 1.77 (m, 2H), 1.58 
(m, 2H), 1.36-1.52 (m, 4H); 13C NMR (100.6 MHz, CD3OD): δ 72.3, 72.1, 71.6, 71.4, 71.2, 45.7, 33.8, 
31.4, 30.6, 27.7, 26.5.  
 
 
Preparation of 1-(4-(benzyloxy)-3-methoxyphenyl)ethanone (5) 
 Acetovanillone (4) (5 g, 30.1 mmol) and benzylbromide (5.15 g, 30.1 mmol) were dissolved in 
50 mL DMF. K2CO3 (4.15 g, 30.1 mmol) was added and the mixture was stirred at 80°C for 16 h. The 
reaction was quenched with sat. NH4Cl (2 L) and extracted with AcOEt three times. The combined 
organic layers were dried over Na2SO4 and concentrated under reduced pressure. The resulting 
product 5 (6.5 g, 84%) was used without further purification. 1H NMR (400 MHz, CDCl3): δ 7.48 (d, J = 
2.01 Hz, 1H), 7.43 (dd, J = 8.26 Hz, 2.01 Hz, 1H), 7.36 (d, J = 7.23 Hz, 2H), 7.31 (td, J = 7.23 Hz, 
1.54 Hz, 2H), 7.25 (m, 2H), 6.82 (d, J = 8.26 Hz, 1H), 5.16 (s, 2H), 3.88 (s, 3H), 2.47 (s, 3H); 13C NMR 
(100.6 MHz, CDCl3): δ 196.9, 152.5, 149.6, 136.4, 130.8, 128.7, 128.1, 127.2, 123.1, 112.2, 110.5, 
70.8, 56.1, 26.2; HRMS C16H17O3 [M+H]+ calcd: 257.1172, found: 257.1166. 
 
 
Preparation of 1-(4-(benzyloxy)-5-methoxy-2-nitrophenyl)ethanone (6) 
 Nitric acid (1.4 mL, 69%) was added dropwise to a solution of o-benzylacetovanillone (5) (1.5 
g, 5.8 mmol) in acetic acid (4.9 mL) and acetic anhydride (1.4 mL) at 0°C. The mixture was stirred at 
rt overnight. The reaction was poured into ice water and extracted with AcOEt three times. The 
combined organic layers were washed with saturated NaHCO3, brine and dried over Na2SO4. The 
solvent was evaporated under reduced pressure and the crude product was purified by flash 
chromatography (cyclohexane/EtOAc 4:1) to yield the desired product 6 (718 mg, 40%). 1H NMR (400 
MHz, CDCl3) : δ 7.67 (s, 1H), 7.46-7.29- (m, 5H), 6.77 (s, 1H), 5.22 (s, 2H), 3.98 (s, 3H), 2.49 (s, 3H); 
13C NMR (100.6 MHz, CDCl3): δ 200.1, 154.6, 148.6, 138.3, 135.3, 133.1, 128.9, 128.6, 127.6, 108.8, 
71.4, 56.7, 30.4; HRMS C16H16O5N [M+H]+ calcd: 302.1023, found: 302.1017. 
 
Preparation of 1-(4-hydroxy-5-methoxy-2-nitrophenyl)ethanone (7) 
 6-Nitro-o-benzylacetovanillone (6) (4.3 g, 14.3 mmol) was dissolved in acetic acid (30 mL, 
99%), and heated to 85°C. HBr (15 mL, 48%) was added to the mixture and stirred for 1.5 h. The 
mixture was poured into ice water and extracted with AcOEt three times. The combined organic layers 
were washed with saturated NaHCO3, brine and dried over Na2SO4. The solvent was evaporated 
under reduced pressure. The crude product was purified by flash chromatography 
(cyclohexane/EtOAc, 2:1) to yield the desired compound 7 (1.1 g, 37%). 1H NMR (400 MHz, CDCl3): δ 
9.76 (s, 1H), 7.60 (s, 1H), 6.81 (s, 1H), 3.98 (s, 3H), 2.48 (s, 3H); 13C NMR (100.6 MHz, CDCl3): δ 
199.7, 152.3, 147.8, 138.8, 130.4, 110.8, 108.8, 56.2, 29.9; HRMS C9H10O5N [M+H]+ calcd: 212.0553, 
found: 212.0553. 
 
 
Preparation of 1-(4-((24-chloro-3,6,9,12,15,18-hexaoxatetracosyl)oxy)-5-methoxy-2-
nitrophenyl)ethanone (8) 
 o-Hydroxy-6-nitrovanillone (7) (455 mg, 2.2 mmol) and K2CO3 (297 mg, 2.2 mmol) were 
added to a solution of 3 (1.0 g, 2.2 mmol) in DMF (6 mL). The mixture was stirred at 60°C overnight. 
The reaction mixture was poured into a solution of sat. NH4Cl (150 mL) and extracted with EtOAc 
three times and dried over Na2SO4. The solvent was evaporated under reduced pressure and the 
crude product was purified by flash chromatography (cyclohexane/EtOAc, 1:3) to yield the desired 
product 8 (830 mg, 64%). 1H NMR (400 MHz, DMSO-d6): δ 7.69 (s, 1H), 6.76 (s, 1H), 4.28 (m, 2H), 
3.96 (s, 3H), 3.92 (m, 2H), 3.74 (m, 2H), 3.69 – 3.62 (m, 18H), 3.56 (m, 2H), 3.53 (t, J = 6.8 Hz, 2H), 
3.45 (t, J = 6.8 Hz, 2H), 2.50 (s, 3H), 1.77 (m, 2H), 1.59 (m, 2H), 1.49 – 1.34 (m, 4H); 13C NMR (100.6 
MHz, DMSO-d6): δ 200.1, 154.4, 149.0, 138.3, 133.0, 108.9, 108.7, 71.2, 71.0, 70.7, 70.6, 70.1, 69.4, 
69.3, 56.7, 53.6, 45.1, 32.6, 30.4, 29.5, 26.7, 25.5; HRMS C27H45ClNO11 [M+H]+ calcd: 594.2676, 
found: 594.2664. 
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Preparation of 1-(4-((24-chloro-3,6,9,12,15,18-hexaoxatetracosyl)oxy)-5-methoxy-2-
nitrophenyl)ethanol (9) 
 Compound 8 (675 mg, 1.1 mmol) was dissolved in MeOH/Dioxane mixture (7 mL / 7 mL). 
NaBH4 (51 mg, 2.0 mmol) was added portionwise at 0°C. The mixture was stirred at rt for 2 h. Then, 
the mixture was poured into water, neutralized with a 1 M solution of HCl and extracted with CH2Cl2 
three times. The combined organic layers were dried over Na2SO4 and the solvent was evaporated 
under reduced pressure. The crude product was purified by flash chromatography (CH2Cl2/MeOH, 
20:1) to yield compound 9 (568 mg, 84%). 1H NMR (400 MHz, DMSO-d6): δ 7.61 (s, 1H), 7.29 (s, 1H), 
5.53 (q, J = 6.3 Hz, 1H), 4.21 (m, 2H), 3.95 (s, 3H), 3.88 (m, 2H), 3.70 (m, 2H), 3.59 – 3.66 (m, 18H), 
3.55 (m, 2H), 3.51 (m, 2H), 3.43 (m, 2H), 2.50 (s, 3H), 1.75 (m, 2H), 1.57 (m, 2H), 1.52 (d, J = 6.3 Hz, 
3H), 1.32 – 1.46 (m, 4H); 13C NMR (100.6 MHz, DMSO-d6): δ 153.4, 146.3, 138.9, 138.1, 109.1, 
108.6, 70.2, 70.0, 69.8, 69.5, 68.8, 68.4, 66.4, 56.0, 54.9, 45.3, 32.0, 29.1, 26.1, 25.2, 25.0; HRMS 
C27H47ClNO11Na [M+Na]+ calcd: 619.2730, found: 619.2724. 
 
 
Preparation of 1-(4-((24-chloro-3,6,9,12,15,18-hexaoxatetracosyl)oxy)-5-methoxy-2-
nitrophenyl)ethyl (4-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)carbamate (MeNV-HaXS) 
 Compound 9 (829 mg, 1.4 mmol) was added slowly to a solution of bis p-nitrophenyl 
carbonate (423 mg, 1.4 mmol) in 10 mL of DMF at 0°C. Triethylamine (193 µl, 1.4 mmol) was added 
and the mixture was stirred at rt overnight. O6-aminomethylbenzylguanine (379 mg, 1.4 mmol) was 
added portionwise. The solution was stirred at 70°C for 6 h. The reaction was quenched with H2O and 
extracted with EtOAc three times. The combined organic layers were dried over Na2SO4 and the 
solvent was evaporated under reduced pressure. The crude product was purified by flash 
chromatography (CH2Cl2/MeOH, 20:1) to yield MeNV-HaXS (687 mg, 55%). 1H NMR (400 MHz, 
DMSO-d6): δ 7.66 (s, 1H), 7.43 (d, J = 7.9, 2H), 7.21 (d, J = 7.9, 2H), 7.14 (s, 1H), 6.28 (q, J = 6.5 Hz, 
1H), 5.51 (m, 2H), 4.14 – 4.31 (m, 5H), 3.80 – 3.86 (m, 6H), 3.68 – 3.70 (m, 2H), 3.50 – 3.64 (m, 
24H), 3.43 (t, J = 6.6 Hz, 2H), 1.69 – 1.74 (m, 2H), 1.59 (d, J = 6.5 Hz, 3H), 1.52 – 1.59 (m, 2H), 1.30 
– 1.46 (m, 4H); 13C NMR (100.6 MHz, DMSO-d6): δ 148.7, 141.0, 140.4, 129.7, 128.4, 110.8, 109.5, 
72.2, 71.8, 71.6, 71.5, 71.2, 70.7, 70.3, 70.1, 68.8, 56.9, 45.8, 45.1, 33.8, 30.6, 27.7, 26.5, 22.4; 
HRMS C41H59ClN7O13 [M+H]+ calcd: 892.3854, found: 892.3842. 
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4. Supplementary experiments and data 
 
Determination of the quantum yield of MeNV-HaXS at 360 nm: 
 The quantum yield (φ) of MeNV-HaXS was determined by dividing the reaction rate of the 
photolysis (r) by the number of photons entering the photoreactor per unit of time (quantum flow).  
 
     

φ=    !"#$%&'(  !"#$
!"#$%"&  !"#$  

     (1)	
  

 
Determination of the quantum flow of the Lumos 43A photoreactor: 
 Ferrioxalate actinometry was used to determine the quantum flow of the Lumos 43A 
photoreactor (LED 360 nm lamp). To this end, potassium ferrioxalate (147.5 mg, 0.34 mmol) was 
dissolved in 40 mL water. 40 mL of 1 N sulfuric acid were added and the solution was further diluted 
to 50 mL with water. 3 mL of this solution was pipetted into the absorption cell and irradiated for a 
given time. 2 mL of the irradiated solution was mixed with 2 mL of a 5.6 mM aqueous o-
phenanthroline solution and 1 mL of a sodium acetate buffer. As reference 2 mL of non-irradiated 
ferrioxalate solution was treated with 2 mL of a 5.6 mM aqueous o-phenanthroline solution and 1 mL 
of a sodium acetate buffer. The 2 solutions were stored for 1 hour in absolute darkness prior to 
measure the absorbance of the solutions at 510 nm (Figure S1 A). The quantum flow was calculated 
using equation (2). 

 

Quantum flow [Einstein/s]	
  =	
  
2

31

Vlt
VVA
⋅⋅⋅⋅

⋅⋅

εφ
	
   	
   	
   (2)	
  

	
  
A = absorbance of the irradiated solution at 510 nm V1 = irradiated volume (3 mL) 
t = irradiation time in seconds V2 = used volume of V1 (2 mL) 
φ = quantum yield at the irradiation wavelength (1.26 at 360 nm) V3 = end volume (20 mL) 
ε = extinction coefficient of the complex at 510 nm l = thickness of the cell (1 cm) 
(1.11·104 L/Mol/cm) 
 
 The dose of photon emitted by the lamp was determined and plotted against time (Figure S1 
B). The slope of the regression line, corresponding to the quantum flow of the Lumos 43A 
photoreactor is 1.33·10-8 E/s or 4.79·10-5 E/h. 
 
Determination of the photolysis rate of MeNV-HaXS: 
 3 mL of a 0.5 M of a MeNV-HaXS in a DMSO/water (1:10) solution were transferred into a 
standard absorbance cell and irradiated in the Lumos 43A photoreactor at 360 nm for 1, 2, 3.5 and 5 
minutes. The conversion was determined by UPLC-MS by integration of the absorption peak of 
MeNV-HaXS. Disappearance of the MeNV-HaXS was plotted as a function of the time (Figure S1 C). 
The slope of the regression line corresponds to the rate constant (k). The reaction rate was calculated 
using equation (3). The reaction rate was quantified as 6·10-8 mol/min. 

  
     r = k[A]      (3) 

 
 The reaction rate was quantified as 6·10-8 mol/min. Using equation (1) with the reaction rate 
6·10-8 mol/min and the quantum flow of 1.33·10-8 E/s, the photolysis quantum yield of MeNV-HaXS 
was calculated to be 0.075. 
  
Determination of the molar absorption coefficient of MeNV-HaXS at 360 nm 
 A 10-5 M solution of MeNV-HaXS in DMSO was recorded on a Perkin Elmer Lambda 40 
UV/Vis spectrometer using quartz standard absorption cells (l = 1cm) (Figure S1 D). The extinction 
coefficient at 360 nm was calculated using the Beer-Lambert law (4). 
 
     A = ε  . l  . c  	
        (4) 
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Figure S1: A) UV/Vis spectrum of ferrous o-phenanthroline complex formed after irradiation of 
Potassium ferrioxalate B) Dose of photons emitted by the lamp plotted against time to determine the 
quantum flow (E/s) of the Lumos 43A photoreactor (LED 360 nm lamp) C) Amount of MeNV-HaXS as 
determined with UPLC-MS plotted against time to determine the photolysis rate of MeNV-HaXS D) 
UV/Vis spectrum of MeNV-HaXS. 
 

60



Supporting Information, Zimmermann et al.   Page 11 of 24 

 
 
Figure S2: Cytosolic protein translocation to different cellular compartments: a) Giantin was used to 
target the Halo-RFP-Giantin to the Golgi, b) the CAAX box of K-Ras targeted SNAP-GFP-CAAX to 
the plasma membrane, c) Mito-SYFP-SNAP localized on mitochondria, d) the Rheb15-tagged Halo-
RFP-Rheb15 was localized on early and late endosomes, e) LAMP1 was on lysosomes, and f) LifeAct 
served as an anchor on the F-actin cytoskeleton. HeLa cells expressing the indicated organelle 
anchors and the indicated cytosolic cargo proteins were grown on 12 mm coverslips (Menzel), before 
they were incubated with MeNV-HAXS (37°C, 15 min), washed twice with PBS, and fixed with 4% p-
formaldehyde (PFA, in PBS), and mounted in Mowiol (Plüss-Stauffer) containing 1% propyl gallate 
(Sigma-Aldrich). Translocation of cytosolic Halo-RFP, Halo-mTq or Halo-RFP fusion proteins (cargo) 
to the respective anchors is documented. 
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Figure S3: Release of Golgi-trapped SNAP-mTFP1 protein after UV illumination. a) At t = –15 min, 
HeLa cells expressing SNAP-mTFP1 and Halo-RFP-Giantin were exposed to 5 µM HaXS8 (5 µM 
MeNV-HaXS see Figure 3, main part), which caused the translocation of cytosolic SNAP-mTFP1 to 
the Golgi (labeled as “before 377 nm”). SNAP-mTFP1 intensity was monitored within the indicated 
circular regions of interest by live cell microscopy. At t = 0 illumination with UV light using a standard 
DAPI filter set on a conventional fluorescence microscope (t = 20 sec, 377 ± 25 nm) was initiated for 
20 s, and cells are shown after illumination (after 377 nm). b) Quantification of mTFP1 fluorescence 
intensity of selected regions of interest (circles) at Golgi-derived vesicles (v) and in cytoplasm (c) 
before and after illumination as described in a) are shown (values represent means ± SEM, n = 10, 
error bars removed where smaller than symbols used). Curves obtained with MeNV-HaXS (see 
Figure 3) are shown in green. 
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Legends to movie files 
 
 

 
Movie S1: HeLa cells expressing SNAP-mTFP1 and Halo-RFP-Giantin (Golgi anchor) were exposed 
to 5 µM MeNV-HaXS (t = -15:00 min). MeNV-HaXS induced translocation of cytosolic SNAP-mTFP1 
to the Golgi as imaged by live cell microscopy is shown in Movie S1. UV illumination at t = 00:00 of a 
subset of vesicles with a scanning FRAP laser (area marked by white square, LASER) released 
anchored SNAP-mTFP1 into the cytosol. 
 
 

 
Movie S2: HeLa cells expressing SNAP-mTFP1 and Halo-RFP-Giantin were exposed to 5 µM MeNV-
HaXS. Illumination of cells starting at t = 00:00 (for 20s, DAPI excitation filter, see main text) released 
Golgi-anchored SNAP-mTFP1. 
 
 

 
Movie S3: HeLa cells expressing the nuclear NLS-CFP-SNAP probe and Halo-RFP-Giantin were 
exposed to 5 µM MeNV-HaXS. The MeNV-HaXS induced translocation of nuclear NLS-CFP-SNAP to 
the Golgi was monitored by live cell microscopy. Illumination of the cell body was initiated at t = 00:00 
(150 areas * 5 ms at 355 nm) using a scanning FRAP laser, leading to the immediate release of NLS-
CFP-SNAP from Golgi vesicles into the cytosol. The reimport into the nucleus displays slower kinetics 
due to processes controlled by the nuclear import machinery.  
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Photocleavable Chemical Inducer Of 
Dimerization To Manipulate Protein Dynamics 
With High Spatiotemporal Precision 

Mirjam Zimmermann, Ruben Cal, Viktor Hoffmann, Marketa Zvelebil, Edwin Constable, 

Florent Beaufils* and Matthias P. Wymann* 

 Abstract 

Chemical inducers of dimerization (CIDs) are popular tools to control protein localizations and 

activities. To combine the advantage of a modular dimerization system with the possibility to 

access protein manipulation with high spatiotemporal precision, we integrated a 

photocleavable methylnitroveratryl (MeNV) group into the core module of a well characterized 

SNAP- and HaloTag reactive dimerizer (HaXS8) and succeeded in the development of the 

first cell permeable and photocleavable heterodimerizer, called MeNV-HaXS. The 

combination of the fast MeNV-HaXS-induced dimerization of SNAP- and HaloTag fusion 

proteins with the immediate release of the covalent complex upon cleavage of MeNV-HaXS 

with 360 nm light, offers a wide variety of possible reaction schemes to manipulate protein 

dynamics.  

Here we present a detailed protocol of the MeNV-HaXS method that has been successfully 

used to control intracellular transport kinetics and to activate isolated signal transduction 

branches in complex signaling networks. Furthermore, we simulated the dimerization 

reactions of MeNV-HaXS with a modeling software, which revealed important insights into the 

dimerization behavior of MeNV-HaXS and CIDs in general. The predictions of simulated 

dimerization reactions under various conditions enable to perform efficient dimerization 

experiments and to understand how parameters can be modulated in order to optimize speed 

and efficiency of the dimer formation.  

Key words 

Chemical inducer of dimerization – photocleavable dimerizer – HaloTag – SNAP-tag – 

manipulation of protein dynamics with high spatiotemporal precision – simulation of 

dimerization reactions 

Introduction 

The biological activity of proteins is often restricted to a subcellular compartment and 

depending on their intracellular localizations, proteins can have different functions. The ability 
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of cells to activate specific signaling proteins in a subcellular region for a limited time, explains 

how cells are able to generate a large repertoire of signaling pathways out of a limited set of 

signaling proteins. A common mechanism to induce the activation of a signaling protein and 

its downstream signaling pathways represents the translocation of signaling proteins from the 

cytosol to internal membranes or the inner leaflet of the plasma membrane.  

Investigation of mechanisms lying beyond a cellular event depends on tools, which allow one 

to systematically perturb single proteins within a complex cellular system and to analyze the 

linked phenotypic response. A popular approach to control localization and activation of single 

proteins is based on chemical inducers of dimerization (CIDs). The simultaneously interaction 

of the dimerizer with two protein of interest (POIs) induces their proximity, which can be 

exploited to manipulate localization and activity of POIs and to modulate the function of 

associated cellular processes. CIDs are either used to induce dimerization of two POIs 

(integrated in effector unit 1 and 2) that require the presence of each other for their function. 

Examples for this so-called “mutual dimerization” approach are proteins that form cytosolic 

complexes or transmembrane surface receptors such as receptors from the PDGF[1] or FGF 

family[2]. Another common application of CIDs is the induced translocation of a POI 

(integrated in the effector unit) towards an anchor unit. The CID-induced translocation of a 

selected protein in this so-called “effector translocation” approach is achieved trough the co-

expression of an anchor unit, which determines the targeted subcellular localization, and an 

effector unit, which contains the POI. Presence of the dimerizer results in the translocation of 

the cytosolic POI in the effector unit towards the anchor unit.  

Development of the HaXS method 

Over the last years, various CIDs have been developed and successfully used to investigate 

diverse aspects of cell biology, such as intracellular calcium and cAMP signaling[2], T cell 

receptor activation[4], modulation of phospholipids on various intracellular membranes[5,6], 

activation of ERK signaling or induction of GPCR internalization[7]. For a nice overview of 

available CIDs we refer to following reviews[8][9].  

We developed an intracellular, covalent dimerizer of HaloTag- and SNAP-tag fusion proteins, 

called HaXS8[10]. The SNAP-tag is a small protein (20 kDa) derived from mammalian O6-

alkylguanine-DNA-alkyltransferase (AGT), which was modified in a way that it covalently 

attaches O6-benzylguanine derivatives to one of its cysteine residues (Cys145)[11]. The 

HaloTag (34 kDa) is based on a modified bacterial haloalkane dehalogenase designed to 

form a covalent bond with chloroalkanes[12]. HaXS8 induces protein-protein interactions and 

translocates proteins to various cellular compartments. Additionally, HaXS8 enables to initiate 

the PI3K/mTOR pathway and to induce multiplexed protein complex formation in combination 

with the rapamycin CID. The modular synthetic strategy of HaXS8, allows the relatively simple 

introduction of novel functional groups into the core module linking the Halo- and the SNAP-

tag substrate in order to generate dimerizers with novel features. Through substitution of the 
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tetrafluorohydroquinone group in HaXS8 with the photocleavable methylnitroveratryl- (MeNV-) 

group, we developed a new photocleavable CID called MeNV-HaXS,[13] which displays 

comparable intracellular dimerization properties as HaXS8. Excitation at 360 nm cleaves 

MeNV-HaXS and enables to reverse the induced dimerization of the SNAP- and HaloTag 

fusion proteins (see Scheme 1). 

In summary, MeNV-HaXS allows to control protein localizations by two independent events in 

a sequential manner that can be exploited for a wide range of experimental setups. 

Additionally, the combination of chemical-induction and light-induced cleavage of induced 

dimers combines the advantages of a modular approach of a genetically encodable dimerizer 

system with the possibility to manipulate protein dynamics with high spatiotemporal precision 

by light.  

Terminology. The expression HaXS comprises both Halo- and SNAP- reactive dimerizer 

molecules, the photocleavable MeNV-HaXS and the non-cleavable HaXS8. It is specified if 

only MeNV-HaXS or HaXS8 is addressed. 

 

Functional and non-functional reaction path of HaXS 

HaXS follows a non-directed reaction path, meaning that HaXS can either first react with the 

SNAP monomer resulting in the formation of a saturated SNAP-monomer (HaXS-SNAP) or 

with the Halo monomer resulting in the formation of a saturated Halo monomer (HaXS-Halo). 

Sequential incubation of recombinant SNAP- and HaloTag fusion proteins with HaXS, 

revealed that only HaXS dimerizers, which have first reacted with SNAP-tag proteins can 

induce efficient dimer formation through the further reaction with HaloTag proteins. In 

contrast, no dimer formation is observed, if HaXS has first reacted with the HaloTag (Fig 1a), 

suggesting that the reaction of saturated HaXS-Halo proteins with SNAP-tag proteins is 

inefficient. Comparison of two models with HaXS8 covalently linked to either the monomeric 

HaloTag only (Fig 1b, left) or simultaneously to the SNAP-tag and the HaloTag (Fig 1b, right) 

reveals a different configuration of HaXS8 depending on its protein environment (modeling 

performed by M. Zvelebil, London). If HaXS8 is only linked to the HaloTag, the dimerizer 

molecule gets incorporated into the channel and active side cavity of the HaloTag. We 

assume that this integrated HaXS8 molecule is obscured from its further reaction with the 

SNAP-tag and thus does not result in the formation of a dimer complex. This hypothesis is 

consistent with results from in vitro experiments, which revealed that HaXS-Halo does not 

react with SNAP-tag proteins (Fig 1a).  

Conclusively, only the reaction path in which HaXS first reacts with the SNAP monomer to 

form the saturated HaXS-SNAP monomer and the subsequent reaction with the unsaturated 

Halo monomer, results in an efficient dimer formation (functional reaction path), whereas the 

opposite reaction pathway results in the formation of saturated HaXS-Halo monomers that 

cannot further react with SNAP monomers (non-functional reaction path) (Fig 1c). The 

formation of these saturated HaXS-Halo monomers lower the dimerization efficiency of the 
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HaXS CID through limiting the amount of available free Halo monomers that can react with 

HaXS-SNAP monomers to form the dimer complex through the functional reaction path.  

 

Improve dimerization efficiency of HaXS CID 

The in vitro value for the rate constant of the SNAP-tag (SNAP26m) to its substrate O6-

benzylguanine is around 100 times lower than the one of the HaloTag (HT7) to its 

chloroalkane substrate[11,12]. Even these values were measured in vitro, we assumed that the 

intracellular reaction of the SNAP-tag with its substrate occurs slower than the one of the 

HaloTag to its substrate. Accordingly, we assumed that the intracellular reaction of HaXS with 

the HaloTag that follows the non-functional reaction pathway is faster than the reaction of 

HaXS with the SNAP-tag, which leads to efficient dimer formation. 

We hypothesized that increasing the reaction rate of the SNAP-tag and simultaneously 

decreasing the reaction rate of the HaloTag may improve the overall dimerization 

performance of HaXS dimerizers. To achieve this, we integrated a faster SNAP-tag combined 

with a slower HaloTag variant in the HaXS CID and expected that relative amount of HaXS 

dimerizers that follow the functional reaction path compared to the non-functional reaction 

path will be increased. 

To achieve a faster reaction of HaXS with the SNAP site, we replaced the SNAPtag 

(SNAP26m) by a faster SNAP variant, called SNAPf[14]. SNAPf shows an up to tenfold 

increase in its in vitro reactivity towards benzylguanine substrates compared to SNAP26m[14]. 

In addition to SNAP26m, which carries 19 amino acids substitutions and a C-terminal deletion 

compared to the wild type human DNA repair protein O6-alkylguanine-DNA alkyltransferase 

(hAGT), SNAPf carries ten extra mutations compared to SNAP26m[14] (Supplementary Figure 

1).  

To decrease the reaction rate of HaXS with the Halo site, we integrated a slower HaloTag 

variant. The analysis of a structure model of the HaloTag with the reacted HaloTag substrate 

revealed that a subset of amino acids (175, 176 and 273) has the most contact with the 

HaloTag substrate and thus seems to be critical for the reaction. During the optimization 

process of the nowadays commercially available HaloTag variant HT7 at Promega, small 

amino acids were integrated at position 175, 176 and 273 to achieve an opening up of the 

channel and the active side cavity of the HaloTag protein, which facilitated the entry of the 

HaloTag substrate into this tunnel. These improvements ultimately resulted in a faster 

reaction of the ligand with the HaloTag[15]. We speculated that amino acids with larger side 

chains at these critical positions 175, 176 and 273 will prevent fast and efficient ligand entry 

into the channel as well as an efficient interaction of the HaloTag ligand with the catalytic 

important amino acids at position 106 and 272 in the active side cavity, which decreases the 

reaction rate of the HaloTag.  

Indeed, the HaloTag containing the relatively big tyrosine at position 273 (Fig 2a, amino acid 

273 shown in orange, bottom) has a lower rate constant than the original HT7 with the 
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relatively small amino acid leucine at position 273 (Fig 2a, amino acid 273 shown in orange, 

top)[15]. The phenylalanine at position 272 is an important amino acid involved in the 

enzymatic reaction through stabilizing the covalent, alkyl-enzyme intermediate that forms 

between HaloTag and chloroalkanes[15]. It is hypothesized that the big side chain of tyrosine 

at position 273 induces a repositioning of adjacent side chains. The repositioning of the 

phenylalanine side chain (272) into the tunnel of the HaloTag requires its ~45° rotation to 

enable entry of the HaloTag substrate and to enable an efficient interaction of the HaloTag 

substrate with the catalytic important amino acids 106 and 272 (Fig 2a, catalytic important 

amino acids 106 and 272 are shown in yellow and red) and thus explains the lower rate 

constant of this HaloTag variant (HT7(L273Y))[15] (Fig 2b).  

From our studies with eight HaXS dimerizers (HaXS1 to HaXS8)[10] bearing different cell 

penetration capacities and substrate/tag reactivities we learnt that intracellular dimerization 

reaction of HaXS with SNAP-tag and HaloTag fusion proteins is best interpreted as a 

combination of substrate/tag reactivity and limited diffusion of the dimerizer into intracellular 

space. The fact that extended time (minutes) is required to reach relevant yields of 

intracellular dimers as compared to reported single sided reaction rates of the HaloTag (3.106 

M-1s-1) and SNAP-tag (3.104 M-1s-1) with their specific substrates[16], additionally supports the 

view that diffusion is an important limitation of the dimerization reaction. Since the diffusion 

force of HaXS from the extracellular space into the intracellular space is directly dependent on 

the extracellular concentration of HaXS, the extracellular HaXS concentration directly affects 

the dimerization efficiency. Thus, dimerization performance of the HaXS CID cannot only be 

improved through optimizing the combination of tag variants, but also through choosing the 

optimal dimerizer concentration.  

To confirm the hypothesis that dimerization performance of the HaXS CID can be improved 

through the use of a slower HaloTag in combination with a faster SNAP-tag and to find the 

optimal concentration to induce most efficient dimer formation, we incubated HeLa cells co-

expressing SNAPf-GFP and HT7(L273Y)-GFP (optimized tag combination) resp. SNAP26m-

GFP and HT7-GFP (standard tag combination) with an increasing concentration of HaXS (50 

nm to 100 µM) for 5 min before cells were lysed and dimer formation was analyzed by SDS-

PAGE and Western Blotting.  Quantification of dimerization efficiencies revealed that the 

optimized tag combination (Fig 2a, circles) dramatically increases the dimerization efficiency 

compared to the standard tag combination (Fig 2b, squares), confirming that the increased 

reaction rate of the HaXS with the SNAP site combined with the decreased reaction rate of 

HaXS with the Halo site improves the dimerization performance of the HaXS CID. 

Furthermore, the quantification reveals that a concentration of around 5 µM is optimal to 

induce most efficient dimer formation after a short (5 min) incubation with HaXS. An improved 

dimerization performance with the optimized tag combination is also observed if dimerization 

is induced with 0.5 µM HaXS for 15 min (Supplementary Figure 1d). 
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Simulation of HaXS-induced dimerization with CellDesigner 

 Validation of model with results from intracellular dimerization experiments  

We used CellDesigner 4.3, a software package that enables to simulate molecular 

interactions, to model the HaXS-induced dimerization reactions in order to improve the 

understanding of the dimerization behavior of the HaXS CID and CIDs in general. The 

graphical setup of the dimerization reactions and kinetic laws to simulate the HaXS-induced 

dimerization are shown (Supplementary Figure 2). The transport of HaXS into the intracellular 

space cells is described as diffusion across the membrane [Diff = PDiff * (Haloin - Haloout)], 

whereas reactions of HaXS with the SNAP resp. the HaloTag are described with mass-action 

kinetics that defines chemical reaction rates as a product of a rate constant and the 

concentrations of the reactants (Supplementary Figure 2b).  

Model 1 simulates the intracellular dimerization efficiency between SNAP and Halo monomers 

with the standard tag combination (SNAP26m and HT7). The value for the intracellular SNAP 

rate constant (kS,std) was set to 1800, and the Halo rate constant (kH, std) was set to 4500. The 

resulting ratio of the intracellular rate constants is 0.4 (rstd = kS, std / kH, std  = 0.4).  Model 2 

simulates the intracellular dimerization of SNAP and Halo monomers with the optimized tag 

combination (SNAPf, HT7(L273Y)). The intracellular rate constants of the faster SNAP (kS, opt) 

was increased by a factor of 10 and set to 18ʼ000, whereas rate constant of slower Halo (kH, 

opt) was decreased by a factor 5 and set to 900. The resulting ratio of the intracellular rate 

constants is 20 (ropt = kS, opt / kH, opt  = 20).  

To confirm the validity of Model 1 and Model 2, the simulated dimerization efficiencies were 

compared with experimental data received from intracellular analysis of dimerization 

efficiencies of SNAP- and HaloTag fusion proteins with the standard tag combination 

(SNAP26m, HT7) resp. with the optimized tag combination (SNAPf, HT7(L273Y)). The 

comparison of experimental and model data revealed a relatively good match of modeled and 

experimental dimerization efficiencies with both tag combinations (Fig 3a, compare black 

curve (circles) with red dots for optimized tag combination and black curve (squares) with blue 

dots for standard tag combination), suggesting that these models can be used to predict how 

parameters of the HaXS CID can be modulated in order to optimize speed and efficiency of 

dimer formation.  

 

Improve dimerization efficiency of HaXS CID through modulating kinetic parameters of SNAP- 

and HaloTag 

First, we analyzed whether the use of tag variants that display a higher ratio of their rate 

constants than ropt = 20 (as defined in Model 2) can further improve the dimerization 

performance of the HaXS CID (after 5 min HaXS incubation). 

The ratio of the rate constants ropt can be increased either through increasing the rate 

constant of SNAP (kS) or through decreasing the rate constant of Halo (kH). The correlation of 

the modeled dimerization efficiencies with an increasing ratio ropt, while keeping kS, opt 
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constant (kSNAP, opt = 18ʼ000) and varying the rate constant kH, opt (Fig 3b, vertical half filled 

circles) was analyzed separately from the correlation of the modeled dimerization efficiencies 

with an increasing ratio ropt, while keeping kH, opt constant (kH, opt = 900) and varying the rate 

constant kS, opt (Fig 3b, horizontal half filled circles). The analysis of the modeled curve with 

constant kS, opt revealed that an increased ratio ropt resulting from a decreasing rate constant 

kH, opt (kH, opt from 18ʼ000 to 900, vertical half filled circles) initially increased the dimerization 

efficiency, until kH, opt reached values lower than 900, after which dimerization efficiency is 

decreased. This is explained through the fact, that the rate constant of the Halo affects 

dimerization efficiency through two opposing mechanisms. First, a slower Halo decreases the 

amount of HaXS dimerizer that follows the non-functional reaction path, which results in less 

saturated and blocked Halo monomers and more free Halo monomers that are available to 

induce dimer formation through the reaction with saturated HaXS-SNAP monomers and thus 

results in increased dimerization efficiency. Second, at the same time a slower Halo 

negatively affects the overall dimerization performance as the lower rate constant kH, opt 

decreases the speed of the reaction of HaXS-SNAP with Halo. Consequently, a compromise 

between a decreased amount of blocked Halo monomers, which result in higher dimer 

formation due to more available free Halo monomers that can be integrated in the functional 

reaction pathway and a slower reaction of HaXS-SNAP with Halo, which results in slower 

dimer formation has to be found. The second possibility to increase the ratio ropt through 

keeping kH, opt constant (kH, opt = 900) and varying the rate constant kS, opt circumvents the 

problem of lowering the reaction speed of HaXS-SNAP with Halo through integration of a 

slower Halo and thus seems to be more promising for improving the overall dimerization 

performance of the HaXS CID. The analysis of the curve with the fixed Halo rate constant (kH, 

opt = 900, horizontal half filled circles), reveals that increasing the ratio ropt through increasing 

of kS, opt increases dimerization efficiency until a plateau is reached, after which further 

increase of kS, opt only result in very modest increase of the dimerization efficiency.  

We hypothesized that combinations of slower Halo variants (kH, opt < 900) together with faster 

SNAP variants (kS, opt > 18000), which allow more HaXS molecules to follow the functional 

reaction path and at the same time counteracts the effect of the slower reaction of Halo with 

SNAP-HaXS through the use of a faster SNAP, will improve the dimerization performance of 

the HaXS CID. However, the simulated dimerization efficiencies of various combinations of 

slower Halo variants with faster SNAP variants did not result in significantly increased 

dimerization efficiencies (modeling data not shown), suggesting that under the tested 

conditions (concentrations decreased to 0.5 µM, incubation time decreased to 1 min) a further 

improvement of the dimerization performance through modulation of kinetic parameters of 

SNAP- and HaloTags is not expected and that the limits of the HaXS CID are reached with 

the optimized tag variants. 
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Improve dimerization efficiency through preventing the incorporation of HaXS into monomeric 

HaloTag  

The reaction of the HaloTag with free HaXS dimerizer that has not previously reacted with the 

SNAP-tag, results in the incorporation of the whole molecule into the HaloTag channel, which 

prevents the completion of the dimer formation. This integrated HaXS in the HaloTag lowers 

the dimerization performance of the HaXS CID (Fig 1a). Next we analyzed whether the dimer 

formation of the HaXS CID could be improved through eliminating these masked HaXS in the 

HaloTag, which then enables HaXS to induce dimer formation through both reactions 

pathways. To prevent the integration of HaXS into the HaloTag, the amino acid 176, which 

directly lies in the HaloTag channel, could be substituted by a bulkier amino acid. We 

hypothesize that the resulting narrower channel could prevent the integration of the HaXS 

molecule into the channel and thus result in HaXS-Halo monomers that can further react with 

SNAP monomers. As for Fig 6b the correlations of modeled dimerization efficiencies with an 

increasing ratio of the rate constants ropt, either while keeping kH, opt constant (Fig 6c, left, 

horizontal half filled circles) while varying the rate constant of kS, opt or while keeping kS, opt 

constant (Fig 6c, right, vertical half filled circles) and varying the rate constant of kH, opt were 

analyzed separately. The analysis revealed that solving the problem with the non-functional 

reaction path, only increases the dimerization efficiency if the ratio ropt is below 20 (as defined 

in Model 2), whereas only little improvement of dimerization efficiencies are observed if the 

ratio of the rate constants ropt is higher than 20. Conclusively, we assume that preventing the 

integration of HaXS into the channel of the HaloTag, does not dramatically increase 

dimerization efficiency of the HaXS CID with the optimized tag combination presently 

integrated in the HaXS CID and under these tested conditions (2.5 µM HaXS for 5 min).  

 

Model effect of dimerizer concentration on dimerization efficiency 

As discussed above, not only substrate/tag reactivities, but also the diffusion of HaXS into the 

intracellular compartment affects the dimerization efficiency. Quantification of the intracellular 

dimerization efficiency revealed that maximum dimerization efficiency is only achieved with an 

optimal HaXS concentration (Fig 2b), whereas concentrations below or above the optimal 

concentration negatively affect the dimerization efficiency. We next modeled the influence of 

the HaXS concentration on the dimerization efficiency. The analysis revealed that dimer 

formation occurs slowly at concentrations below an optimal concentration (Fig 3d, left, yellow 

curves), likely due to the diffusion of the dimerizer into the intracellular space, which limits the 

dimerizer availability. In contrast, too high concentrations of the HaXS (Fig 3d, right, orange 

curves) result in a limited overall dimerization efficiency, likely due to the generation of a high 

number of saturated HaXS-SNAP- and HaXS-Halo monomers. These two models confirm the 

importance of determining the optimal dimerizer concentration at which the dimerization 

reaction is faster than the competing saturation reaction of the monomeric tags and at which 

dimer formation occurs sufficiently fast. 
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In summary, the relatively good fit of the cellular and model data suggest that the model (see 

Supplementary Information, HaXS_Model_CellDesigner.xml can be used for further 

predictions dealing with the performance of the HaXS CID or CIDs in general. 

Terminology. For the following text and figures, Halo and SNAP refers to the optimized tag 

combination, SNAPf with HT7(L273Y) and it is specifically indicated if the standard tag 

combination is addressed.  

Applications of the MeNV-HaXS method 

Signaling events operate at defined intracellular locations and depending on their cellular 

context, signaling proteins can have different functions. A prominent example is the activation 

of Ras proteins at the plasma membrane that induces membrane ruffling, while the activation 

of Ras at the Golgi has no effect on cell morphology[17].  We validated the HaXS CID to target 

tagged proteins to various intracellular localizations. HeLa cells co-expressing an effector unit 

and an anchor unit containing a targeting motif, which attaches this anchor unit to the 

cytoplasmic face of the targeted subcellular organelle or compartment were exposed to 

HaXS, which results in the HaXS-induced translocation of the effector unit towards the anchor 

unit. HeLa cells co-expressing the Golgi anchor unit Halo-RFP-Giantin, and the cytosolic 

effector unit SNAP-mTFP1 were treated with HaXS, which efficiently induced translocation of 

the effector unit from the cytoplasm towards the cytosolic surface of the Golgi membrane (Fig 

4a). Accordingly, HaXS-induced translocation of cytosolic effector units towards endosomes, 

lysosomes, the plasma membrane, mitochondria and the actin skeleton is shown (Fig 4b), 

demonstrating that HaXS-induced protein translocation enables to study the function of 

selected proteins in various subcellular compartments. Furthermore, HaXS-induced 

manipulation of protein localization can be used as strategy to activate or inactivate a 

signaling transduction branch through controlling the subcellular localization of a signaling 

protein, which functions upstream of the targeted signaling pathway. HaXS-induced 

translocation of a signaling protein away from their functional cellular compartment towards a 

non-functional compartment (Fig 5a, left) resulting in the inactivation of the downstream 

signaling pathway or vice versa, the translocation of a signaling protein away from a non-

functional cellular compartment towards a functional place (Fig 5a, right) resulting in the 

activation of the downstream signaling pathway, was validated as a proof-of-concept for the 

HaXS-induced manipulation of isolated signaling transduction branches in complex signaling 

networks, without affecting other signaling pathways.  

The constitutively active Ras GTPases (RasV12) leads to the activation of the downstream 

MAPK signaling pathway independent of growth factors and other upstream stimuli. The 

hypervariable region (HVR) at the C-terminus of Ras proteins determines their intracellular 

localization. Ras proteins display asymmetrically distributions over cellular membranes and a 

shuttle between endomembranes and the plasma membrane, where they regulate most 

important signaling functions. At steady state, H-Ras is strongly enriched at the plasma 
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membrane and endosomes[18]. Exposure of HaXS to HEK293 cells co-expressing HRasV12 

fused to a SNAP-tag, a GFP and a HA-tag together with a mitochondrial anchoring unit (Mito-

Halo2x) induced the translocation of correctly localized hyperactive SNAP-GFP-HA-HRasV12 

away from its place of function towards a non-functional compartment, resulting in the 

inactivation of the MAPK pathway as monitored by the decrease of MAPK phosphorylation 

(see Fig 5b, left). In the reverse approach, the dimerizer-induced activation of a signaling 

protein was demonstrated through the HaXS-induced translocation of p110α to the plasma 

membrane, which resulted in the activation of the PI3K pathway. HEK293 cells co-expressing 

SNAP-GFP-CAAX, which serves as plasma membrane anchor unit and a HaloTag protein 

fused to a GFP and the inter-SH2 domain of p85 of PI3K (Halo-iSH2-GFP) were exposed to 

HaXS resulting in a rapid and efficient translocation of Halo-iSH2-GFP to the plasma 

membrane. The inter-SH2 domain recruits the endogenous p110α domain to the plasma 

membrane, where p110α meets its substrate phosphatidylinositol(3,4,)P2 and converts it into 

phosphatidylinositol(3,4,5)-trisphosphate [PtdIns(3,4,5)P3], a lipid that serves as a plasma 

membrane docking site for downstream signaling enzymes. HaXS-induced translocation of 

p110α to the plasma membrane initiated the PI3K/mTOR pathway as monitored by Thr308 

and Ser473 phosphorylation on PKB[10] (see Fig 5b, right), whereas MAPK phosphorylation 

was not increased (data not shown)[10]. In summary, we demonstrated that the HaXS CID 

enables the selective manipulation of isolated signaling branches out of complex signal 

networks.  

The photocleavable MeNV-group in the dimerizer is efficiently cleaved upon exposure to UV 

light, which results in an instantaneously release of dimerized proteins. The combination of 

the chemical induced dimerization followed by the subsequent UV light-induced release of the 

formed dimers, can be exploited to sequester a POI to any organelle away from its place of 

function, followed by subsequent UV illumination of the formed dimer complex, which 

immediately releases the trapped POIs. This enables to investigate translocation kinetics and 

to analyze the associated cellular effects upon their translocation back to their functional 

compartment. HeLa cells co-expressing a CFP-SNAP fused to a nuclear localization 

sequence (NLS-CFP-SNAP) and DsRed-Halo fused to a nuclear export sequence (NES-

DsRed-Halo) were exposed to MeNV-HaXS. Before MeNV-HaXS treatment, NLS-CFP-SNAP 

shuttles between the nucleus and the cytoplasm. Upon its dimerization with NES-DsRed-Halo 

the formed dimer exceeds the size for passive nuclear import resulting in a retention NLS-

CFP-SNAP in the cytoplasm. UV-induced cleavage of the formed dimer complex results in the 

immediate release of NLS-CFP-SNAP, which enables the observation of the nuclear re-import 

kinetics in real time (Fig 6). In contrast to most kinetic studies of nuclear transports, which 

have been performed in vitro using permeabilized cell system, this simple experimental setup 

allows to study nuclear import rates in living cells.  

73



Results 

Comparison of the HaXS CID with other CIDs 

A wide variety of CIDs have been developed and were successfully used to investigate 

diverse aspects of cell biology. However, none of them works without limitations and the 

choice of the CID that suits best to your planned application is critical. Table 1 summarizes all 

advantageous features that are unified in the HaXS CID and alternative CIDs with the same 

feature are indicated. In the second row, examples of CIDs that display opposite features are 

listed.  

Advantageous features unified in 
HaXS CID 

Disadvantageous features of other 
CIDs 

Cell-permeable dimerizer Non-cell permeable dimerizer 

à Investigation of intracellular events 
à Investigation of extracellular events or in 

cell lysates 

Alternatives to HaXS CID: most CIDs Examples: S-CROSS[11] 

Induces covalent interaction Induces non-covalent interaction 

à Simple monitoring of dimerization 
efficiency under denaturing conditions 
(immune blot analysis)  
à Efficiently shortens time for construct 
optimization (most time consuming part of 
CID experiments)   

à Monitoring of dimerization efficiency 
only by analysis of microscopic 
translocation experiments or through a 
time-consuming analysis of expected 
cellular outputs 

Alternatives to HaXS CID: S-CROSS[11]  Examples: most CIDs 

Dimerization of freely diffusible proteins Dimerization only of pre-associated 
proteins 

à Induction of protein-protein interactions 
à No induction of protein-protein 
interactions, 
à Works as proximity sensor only  

Alternatives to HaXS CID: most CIDs  Examples: S-CROSS[11], CoDiS[19], X-
CrAsH[20] 

No interference with endogenous proteins Interference with endogenous proteins 

à No interference with process under 
investigation expected 
à Enables the investigation of cellular 
events without disturbance induced by the 
dimerizer 

à Disturbance of cellular events due to 
high affinities of dimerizer with endogenous 
proteins 
à Cytotoxic effects 
à Restricted use to a number of limited 
applications (e.g. short time treatment) 

Alternatives to HaXS CID: most CIDs Examples: rapamycin CID, some rapalog 
CIDs (iRap), ABA CID[21] 
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Fast dimerization on a timescale of second 
to minutes 

Slow dimerization on a timescale of 
minutes to hours  

à Allows analysis of cellular events 
occurring on a short timescale 

à Enables mimicking of slower cellular 
events only  

Alternatives to HaXS CID: rapamycin CID, 
gibberlin analogue GA3-AM CID[22]  Examples: ABA CID[21]  

Reversibility of MeNV-HaXS induced 
dimerization Non-reversible dimerization 

à Reversible control signaling events, 
enables to mimic physiological signaling 
pathways (e.g. phosphorylation)  
à Versatile experimental setups (such as 
re-inducible knock sideways) 

à No mimicking of reversible signaling 
events 

 Alternatives to HaXS CID:  
à Dual translocation strategy[23] 
(complicated construct setup) 
à Competitor of dimerizer[24][25] (slow 
dimerization and/or reversion of 
dimerization, > 10 min) 

 Examples: most CIDs, either due to 
covalent (S-CROSS) or high affinity 
(rapamycin) interactions of the dimerizer 
with the respective dimerizing domains 

 

Comparison of the HaXS CID with most popular CID based on rapamycin 

FKBP and FKBP-rapamycin-binding (FRB) domain of mammalian target of rapamycin 

(mTORC1) domains in the dimerizing constructs of the rapamycin CID compete with 

endogenous FKBP12 and mTORC1 for rapamycin binding. Binding of FKBP12-rapamycin to 

the FRB domain of mTORC1, renders the mTORC1 complex enzymatically inactive. 

Conclusively, the use of rapamycin can have unwanted side-effects on the regulation of cell 

growth, proliferation or autophagy, rendering the analysis of signaling pathways challenging. 

Additionally, feedback actions as the activation of PKB upon mTORC1 inhibition by 

rapamycin[26] can further complicate analysis of rapamycin-induced dimerization effects in 

living cells. However, the use of the rapamycin CID in cultured cells can still be justified, if the 

experimental time is shorter than the time required for rapamycin to induce its potential toxic 

effects. If longer experimental times are required or work in living animals is performed, it is 

advisable to use non-toxic rapamycin derivatives, known as rapalogs. Most rapalogs are 

derivatizised at the C16 position of the rapamycin core through the introduction of groups with 

bulkier substituents, which prevents the interaction with the wild type FRB domain of 

mTORC1[27], but enables to bind a modified FRB domain (FRB T2098L). However, 25 times 

higher concentrations of the commercially available rapalog (AP21967, Clonetech) than of 

rapamycin have to be used in order to achieve comparable dimerization efficiency[28], likely 
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due to the lowered cell penetration capacity of AP21967 resulting from the derivatization of 

the rapamycin core.  

In contrast, the HaloTag originates from a genetically modified derivative of a hydrolase 

protein of prokaryotic origin, thus endogenous activities are absent in mammalian cells. The 

SNAP-tag substrate is designed to interact with a mutated version of the human DNA repair 

protein O6 (hAGT), which prevents it from interacting with endogenous proteins. Conclusively, 

due to the tag choice in the HaXS CID no interference with endogenous signaling pathways is 

expected.  

Despite the cytotoxic properties of rapamycin, the rapamycin CID with its excellent binding 

kinetics is still the most widely implemented CID. The high rate constants of the rapamycin 

reaction with FKBP12 (ka = 5.8 × 106 M-1•sec-1[29]) and FKBP-rapamycin-binding to FRB (ka = 

1.7 × 106 M-1•sec-1[29]) allow rapamycin to induce dimerization between FKBP12 and FRB with 

excellent kinetics and efficiency. Additionally, as the penetration of rapamycin through cellular 

membranes is very fast, low concentrations (200 nM) are sufficient to induce fast and efficient 

dimerization of FKBP and FRB fusion proteins.  

Overall, the speed as well as the efficiency of HaXS-induced dimerization is lower compared 

to rapamycin-induced dimerization. Even though the amount of HaXS-induced dimerization 

exceeds values required for many applications, as for example for a surface receptor, which 

recruits cytosolic signaling molecules[30], some applications demand for a faster and more 

efficient dimerization, and the use of the rapamycin CID is recommended. In contrast to the 

HaXS CID, in which too high concentrations of the dimerizer prevent an efficient dimer 

formation (Fig 2b), increasing rapamycin concentrations result in an increasing amount of 

formed dimes until a plateau is reached and too high rapamycin concentration will never 

result in a lowered dimerization efficiency. This is explained by the directed reaction 

mechanism of rapamycin. Rapamycin can only bind to the FRB domain if it has previously 

reacted with FBKP12. The directed reaction path of rapamycin only allows the formation of 

saturated-FKBP monomers, but no saturated-FRB monomers. Too high amounts of saturated 

monomers in a CID are only problematic if both species of monomers can be saturated, which 

prevents them from dimerizing with each other and thus lower the dimerization efficiency 

(Supplementary Figure 3).  

Limitations of the HaXS method 

As true for all CID systems, the design of constructs bearing the dimerizing domains is time 

consuming and requires careful consideration and testing for every single application, which 

requires a certain time to be invested until constructs are ready before performing the actual 

HaXS dimerization experiment. Particularly, experiments in which HaXS is used to mimic a 

physiological interaction between two POIs (such as in the “mutual dimerization” approach) or 

a POI and a targeted organelle/membrane (such as in the “effector translocation” approach) 

are challenging and many constructs have to be tested until they are suited for a functional 
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interaction. Sterical constraints resulting from the presence of proteins at the targeted 

membrane or in the Halo- and SNAP-tag domain constructs can affect the functionality of the 

interaction. Less challenging is the design of constructs in the „effector translocation” 

approach used to inactivate proteins through their translocation away from their functional 

compartment, as there is no need to mimic a functional interaction. 

The endogenous version of the overexpressed POI that is targeted by the HaXS CID or any 

other CID in general can hamper the performance and analysis of the experimental outcome 

in some functional studies. For some applications it can be sufficient to overexpress the POI 

in the effector unit, which outcompetes the endogenous version of the POI. However, the high 

expression level of the effector unit can either have toxic effects on the cells or lead to a 

saturation of the anchor unit resulting in inconclusive results. In some application, the use of 

constitutively active mutants is sufficient to outcompete the effects of the endogenous POI. A 

more physiologic approach is to control a regulatory protein of the POI with the CID (such as 

putting the GAP or GEF of G proteins under HaXS control), which enables to indirectly control 

the endogenous levels of the POI. For some applications it can be important to deplete the 

endogenous version of the POI. One strategy relies on the knockdown of the endogenous 

POI through the transfection of a siRNA constructs against the endogenous POI while using a 

siRNA-resistant POI in the effector unit construct.  

Another limitation of the HaXS CID or any other CID in general results from unwanted 

background activation resulting from the access of effector units to the target prior to the 

HaXS treatment. The overexpressed effector units can have access to their functional 

compartments or to another effector units as a consequence of their free diffusion in the 

cytoplasm. This leads to an elevated background activity before chemical induction, which 

perturbs the cellular basal state. One strategy to restrict the free diffusion of the effector units 

in the cytosol is to trap them inside the nucleus until the dimerizer is applied. However, this 

strategy suffers from a slower onset of the dimerization-induced activation, as the effector unit 

first has to be exported from the nucleus[28]. Another strategy to circumvent the unwanted 

background activity without compromising the extent of induced activation was demonstrated 

in the lab of T. Inoue. They initially sequestered the POI to a non-functional organelle through 

exploiting a weak interaction between a membrane lipid and its binding protein; particularly 

they used the PH domain of a family of four-phosphate-adaptor proteins (FAPPs), which 

binds to phosphatidylinositol 4-phosphate (PI4P) lipid that is enriched at the trans-Golgis. As 

FAPP binds to PI(4)P with a dissociation constant of 230 nM, most of the  effectors units  

fused with the PH(FAPP) domain remain on the Golgi surface until the presence of the 

dimerizer rapamycin, which subsequently traps the effectors at the FRB anchor unit at the 

plasma membrane[29]. 

As seen in Figure 1a, the dimerization efficiency of recombinant Halo- and SNAP-tag fusion 

proteins is very low compared to the excellent intracellular dimerization efficiencies. 

Optimization of the buffer conditions (pH, salt concentrations, detergents, reducing agents) 
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dimerization efficiency of the HaXS CID. Thus, HaXS CID is not suitable for in vitro 

experiments. 

Furthermore, limited expression levels of one or both dimerizing constructs directly affect the 

outcome of the HaXS CID or CIDs in general. Thus, cell lines that are difficult to transfect are 

not recommended to use with the HaXS CID. 

Protocol overview  

The workflow of HaXS experiments is divided into 4 main steps (see STEP 1 to 4). To achieve 

optimal results four parameters of the HaXS CID need to be optimized: the design of the 

constructs containing the dimerizing domains (STEP 1), the cellular system (STEP 2), the 

MeNV-HaXS treatment (STEP 3) and the conditions to induce photocleavage of MeNV-HaXS-

dimers (STEP 4). In order to analyze the success of each single parameter, protocols for 

simple test experiments are described (see TEST EXPERIMENT 1 to 4). Furthermore, 

troubleshooting strategies to optimize each step are provided (see TROUBLESHOOTING 

TABLE).  

Comment. The photocleavable dimerizer MeNV-HaXS is only implemented in experiments, if 

induced-dimers are subsequently cleaved by UV light. To perform control experiments or the 

test experiments and for all applications with dimers that will not be cleaved, the light-

insensitive HaXS8 can be used.  

STEP 1. Creation of SNAP- and HaloTag expression constructs 

One constructs containing the SNAP-tag and a second constructs containing the HaloTag 

need to be designed. Depending on the targeted approach, either two effector units (“mutual 

dimerization”) or an effector unit and an anchor unit (“effector translocation”) are required. The 

anchor unit consists of one of the two dimerizing domains, a fluorescent reporter for the visual 

control of the localization of the anchor unit and to perform co-localization studies with the 

effector unit as well as an anchoring motif, which controls the localization of the anchor unit 

through the attachment to the cytoplasmic face of the targeted organelle. The effector unit 

consists of one of the two dimerizing domains (SNAP- or HaloTag protein), the POI as well as 

a fluorescent reporter to track the localization and the HaXS-induced translocation. 

 

Library of ready-to-use anchor units 

We designed a small library of ready-to-use plasmids encoding anchor units targeting various 

intracellular organelles such as the Golgi, endosomes, lysosomes, plasma membrane, 

mitochondrium, actin skeleton as well as subcellular compartments as the nucleus and space 

outside the nucleus (Fig 7). The Golgi targeting motif derived from Giantin (C-terminal 128 aa 

fragment of Giantin, 3131-3259) was used to target the Halo-RFP-Giantin to the Golgi[17], the 

last amino acids of Rheb1 (C-terminal 15 aa fragment of Rheb1, called Rheb15) were used to 

target early and late endosomes (Rheb15-Halo-RFP), the lysosomal-associated membrane 

protein (LAMP1) is used to target Halo-RFP-Lamp1 to the surface of lysosomes[17], the CAAX 
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box (polybasic isoprenylation sequence) of K-Ras4B targets SNAP-GFP-CAAX to the plasma 

membrane, the import signal of the yeast mitochondrial outer membrane protein Tom70p 

target Mito-SYFP-SNAP on mitochondria, the small peptide LifeAct (N terminal 17 aa 

fragment of actin binding protein Abp140, 1 - 17) serves as an anchor for the filamentous-

actin (F-actin) structures, CFP-SNAP equipped with a classical nuclear localization sequence 

(NLS) from SV40 T large antigen[33] (NLS-CFP-SNAP) is retained in the nuclear compartment 

whereas DsRed-Halo equipped with a nuclear export sequence (NES) from HIV I Rev is 

excluded from the nuclear compartment. An overview of these anchor units used in 

combination with the rapamycin or the HaXS CID system is shown in Table 2. 

 

Organelle Targeting motif Rapamycin 
CID HaXS CID Source 

Golgi 
128 aa C-terminal 
fragment of Giantin 
(3131 – 3259)[34] 

FRB-YFP-
Giantin 

Giantin-Halo-RFP 
[13] 

FRB-YFP-Giantin 
from Takanri 
Inoue, Stanford 

Lysosome 
Lysosomal-
associated 
membrane protein 1 
(LAMP1), (1-417) 

LAMP1-ECFP-
FRB [17] 

LAMP-RFP-
Halo[13]   

LAMP-CFP-FRB[10] 

LAMP1-ECFP-
FRB from 
Takanari Inoue, 
Standford 

Early 
endosomes 

15 aa C-terminal 
fragment of Rheb1, 
Rheb15[35] 

not used in 
combination 
with rapamycin 
CID 

Halo-RFP-
Rheb15[13] 

Rheb1 from Mike 
Hall, Basel 

Plasma 
membrane 

polybasic 
isoprenylation 
sequence from 
KRas-4B 

FRB-CAAX [6] 

Halo-GFP-
CAAX[13] 
SNAP-GFP-
CAAX[10] 

Labaratroy 
plasmid 
collection, 
Matthias Wymann, 
Basel 

Mitochondrium Tom20 (1-33)[28] Mito-YFP-FRB 
[28]  

Tom20-Halo, 
Tom20-Halo2x, 
Tom20-GFP-Halo, 
Tom20-GFP-
Halo2x, 
unpublished data, 
Mito-RFP-Halo[13] 

Tom20-Halo, 
Tom20-Halo2x, 
Tom20-GFP-Halo, 
Tom20-GFP-
Halo2x, all 
constructs from 
Dominik Buser, 
Basel, Mito-YFP-
FRB from 
Takanari Inoue, 
Standfors 

Actin skeleton 

LifeAct, 17 aa N-
terminal fragment of 
actin binding 
protein  
Abp140 (1-17)[36] 
Actin coding 
sequence  

not used  
LifeAct-mTFP1-
SNAP[13] SNAP-
actin[10] 

LifeAct and actin 
targeting 
sequences from 
Olivier Pertz, 
Basel 

Nucleus 
nuclear localization 
sequence (NLS) 
from SV40 T large 
antigen[33][37] 

NLS-CPF-
FKBP1x and 
NLS-GFP-
FKBP3x

[38] 
NLS-CPF-SNAP[13] 

NLS-CFP-FKBP 
from Stefan 
Hübner, 
Würzburg 
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Nuclear 
exclusion 

nuclear export 
sequence (NES) 
from HIV I Rev[39] 

NES-DsRed-
FKBP12[38] 

NES-DsRed-Halo, 
this study 

NES-DsRed-Halo 
from 
Stefan Hübner, 
Würzburg 

 

Sequester POIs at mitochondrium to inactivate them 

It has been demonstrated that the mitochondrium tolerates foreign proteins relatively well[40]. 

Additionally, the relatively large surface and the little involvement of the outer mitochondrial 

membrane in signaling events, makes the mitochondrium an optimal organelle to trap proteins 

away from their functional compartment in order to prevent them from interacting with their 

downstream signaling components. In contrast to genetic perturbation methods, rerouting to 

mitochondria is completed within minutes, thus these so-called knocksideways are around 3 

to 4 orders of magnitude faster than conventional knockdowns[28]. Additionally, since proteins 

are not inactivated through their destruction but through their removal from their place of 

function, these proteins can in principle be re-activated through the UV light-induced cleavage 

of MeNV-HaXS, which release the sequestered proteins and enables them to translocate 

back to their place of function. 

Box 1: Choice of optimal linker 

The choice of the linker used to join the different protein domains has an important impact on 

the behavior of the constructs. Direct fusion or too short and rigid linkers between two 

domains can lead to misfolding of the fusion proteins[41], impaired activity of the POI[42] or low 

expression levels[43]. Additionally, too short and rigid linkers can prevent efficient association 

of the anchor unit to the targeted organelle or prevent efficient dimerization between an 

anchor unit and effector unit or two effector units due to the missing flexibility required to 

enable an efficient dimerization between the SNAP- and HaloTag fusion proteins. The linkers 

between two domains must be long and flexible enough to guarantee the independent 

function of the two connected parts as well as to support dimerization efficiency of the anchor- 

and effector units. However, too long linkers in the anchor unit or in the effector unit can 

cause instability of the construct and can prevent a functional interaction of the POI in the 

effector unit with the targeted organelle. Good examples for flexible linkers are those 

composed of the small amino acids glycine and serine (e.g. (GGGGS)3
[44]or (G)8

[45]. The small 

size of these amino acids allow the linkers to be flexible, whereas the polarity and 

hydrophilicity allow the formation of hydrogen bonds with water molecules, which increases 

the stability of these linkers in aqueous solutions and prevents them from unfavorable 

interactions with the protein domains. Beside considering the length and flexibility, the linkers 

should not have an influence on the connected parts, thus amino acids, which do not interact 

with other amino acid residues are advisable to use. The linker with putative sites for 

modification (such as phosphorylation or glycosylation sites), too rigid geometry (such as 

prolines or bulky aromatics) and excessive charged amino acids should be avoided. Too 
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hydrophobic amino acids are not advisable to use as they can promote self-interaction in 

aqueous solution.  

STEP 2. Creation of cells co-expressing SNAP- and HaloTag expression constructs 

HaXS CID has been used in HeLa and HEK293 cells[10,13] as well as in MDCK epithelial and 

NIH 3T3 cells[10]. In principle any cells that can be transfected with the anchor and effector 

unit can be used to perform HaXS experiments. If a new cellular system is used, it is 

important to include control experiments in which the HaXS dimerizer is added to 

untransfected cells and to rule out effects of the dimerizer on the cell. Transient transfections 

were performed with JetPei (Brunschwig) according to manufactureʼs protocol.  

Alternatively, any other transfection reagents can be used to transfect the SNAP- and 

HaloTag expression constructs. 

Expression levels of anchor and effector units  

For all applications that do not require the possibility to vary and adapt the expression levels 

of the two plasmids (such as for the “mutual dimerization” approach), it is best to insert both 

ORFs encoding the SNAP- and HaloTag dimerizing units in a single, bi-cistronic plasmid. 

Expression from a single plasmid guarantees co-transfection of both units in all cells and 

equal expression levels of both units. In contrast, if two plasmids are transfected, some cells 

are co-transfected, whereas some cells only express one of the two plasmids and the relative 

amount of the two expressed proteins shows high cell-to-cell variation. This results in a high 

variability of the amount of induced dimers and the correlated cellular effect, which makes 

especially single-cell experiments difficult to analyze and compare. Additionally, if a single bi-

cistronic plasmid is used, in principle only a single fluorescent reporter has to be integrated to 

control expression levels, which simplifies construct design (Fig 8a, left).  

In contrast, in the “effector translocation” approach it is important to have the possibility to 

vary and adapt the expression levels of the anchor and effector unit in order to optimize the 

ratio of the anchor unit to the effector unit, which can be important to make sure that all 

effector units can be translocated towards the anchor unit. Particularly, in the approach of 

HaXS-induced inactivation of an effector unit, the incomplete integration of effector units 

would result in incomplete inactivation of the POI. Thus, for the “effector translocation” 

approach, two separate plasmids, one encoding for the anchor unit and the other for the 

effector is advisable to use, as expression levels of both plasmid can be varied and adapted 

to experimental requirements (Fig 8a, right). 

Single plasmid expressing both effector units  

Plasmids containing a “self-cleaving” T2A peptides, allow the bi-cistronic expression of two 

ORFs[46]. T2A peptide sequences are derived from viruses and are used to mediate protein 

cleavage through a ribosomal skip mechanism, which results in the expression of two 

separate proteins in equimolar amounts. Major advantages of the 2A system are the small 
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size of the peptide (54–174 bp) and the equal expression of both proteins. Additionally, the 

separation activity only depends on eukaryotic ribosomes, which are highly conserved among 

all eukaryotes and thus works efficiently in various cell types. To analyze performance of this 

T2A plasmid, HeLa cells expressing SNAP-GFP-T2A-Halo-GFP were exposed to HaXS 

before cells were lysed. Analysis revealed that expression level of SNAP-GFP-T2A-Halo-GFP 

is high and dimerization efficiency between SNAP-GFP and Halo-GFP is comparable to 

dimerization efficiency induced by cells co-expressing two separate plasmids (Fig 8b), 

demonstrating that the insertion of the T2A sequence does neither negatively influence 

expression level nor dimerization efficiency. Analysis of the ratio of monomers (amount of 

Halo-GFP monomers divided by the amount of SNAP-GFP monomers, in DMSO treated 

cells) reveals equal expression of both monomers (Fig 8b). A weak band slightly below the 

size of the dimer band is visible in DMSO control cells, likely representing uncleaved dimer. 

However, as the ratio of induced dimer to uncleaved dimer is very low (0.031 ± 0.027), no 

problems resulting from a background activation induced by this uncleaved dimer before 

HAXS treatment is expected. In order to make the cleavage more efficient, two T2A 

sequences were integrated in the bi-cistronic backbone system. However, expression level of 

this 2x T2A plasmid was very low and the ratio of the induced dimer to uncleaved dimer was 

not improved (data now shown, all experiment with T2A plasmids were performed by Sandra 

Dehn).  

Two separate plasmids to express anchor and effector units separately 

If the ratio of the expression level of both plasmids has to be variable, expression of two 

separate plasmids, each expressing one of the two SNAP- and HaloTag dimerizing units are 

advisable to use. In the “effector translocation” approach, complete integration of the effector 

unit into the formed dimer complex is important. To analyze the possibility to vary the ratio of 

anchor unit to effector unit expression levels, HeLa cells were transfected with equal amounts 

of Halo-GFP and SNAP-GFP DNA (first two lanes, see Fig 8c, top) and increasing amount of 

Halo-GFP DNAP with decreasing amount of SNAP-GFP DNA (lane 3 to 8, see Fig 8c, top). 

24 h later cells were exposed to HaXS, lysed and expression levels of SNAP-GFP and Halo-

GFP monomers was analyzed by immune blot. The DNA ratio used for the transfection is 

reflected in the protein expression level and thus the variation of DNA levels enables the 

adaption of expression levels of the anchor- and effector unit (Fig 8c, top). The percentage of 

non-incorporated SNAP-GFP monomers in the dimer complex upon HaXS treatment is shown 

in the quantification (Fig 8c, bottom). High ratios of Halo-GFP to SNAP-GFP result in a almost 

complete incorporation of SNAP-GFP in the dimer complex, which is for example important 

for the “effector translocation” approach used to inactivate a POI through its removal from its 

functional compartment.  
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STEP 3. HaXS treatment of cells co-expressing SNAP- and Halo expression constructs 

As discussed previously, the HaXS-induced dimerization is best interpreted as a combination 

of substrate/tag reactivity and diffusion of HaXS into intracellular space. Since the diffusion 

force directly correlates with extracellular concentration of HaXS, its obvious that maximum 

dimerization efficiency is only achieved at an optimal HaXS concentration. Intracellular 

dimerization experiments revealed that around 5 µM HaXS induces most efficient dimerization 

between SNAPf-GFP and HT7(L273Y)-GFP fusion proteins and is able to induce efficient 

dimerization within 5 min. However, the size and conformation of the anchor and effector unit 

can have an effect on the dimerization speed, and longer incubation times with HaXS could 

be necessary in order to achieve efficient dimerization. Thus, the optimal length of the HaXS 

incubation has to be determined empirically for every single combination of anchor and 

effector units. 

STEP 4. Cleavage of MeNV-HaXS-induced dimers  

As the photocleavage of MeNV-HaXS is induced with UV light, which can damage cells if the 

energy is too high, it is important to detect unwanted side effects exerted by UV irradiation. 

MeNV-HaXS was developed through the insertion of the photocleavable group methyl-6-

nitroveratryl (MeNV-) into the core module linking the HaloTag- and SNAP tag reactive groups 

in the light insensitive HaXS8 dimerizer[10]. As expected due to the very similar chemical setup 

of MeNV-HaXS and HaXS8, the comparison of their intracellular performance revealed very 

similar dimerization behavior of both molecules. Conclusively, the light insensitive HaXS8 

dimerizer is a valuable control compound to monitor potential side effects induced by UV 

illumination, while performing photo cleavage experiments with MeNV-HaXS. To exclude that 

UV light induce any MeNV-HaXS independent effects on cells, it is important to include the 

HaXS8 control in all experiments, especially if a new light source is used to induce cleavage. 

This allows for example to distinguish whether a detected light-induced loss of fluorescence 

results from the release of anchored proteins due to the cleavage of MeNV-HaXS or from 

photobleaching of the fluorescent protein.  

MeNV-HaXS is not sensitive to ambient light 

Last years various dimerization systems that are based on a genetically encoded, naturally 

occurring photosensitive that undergo a conformational change upon illumination with light at 

a defined wavelength proteins were developed and proved to be very useful tools with a wide 

variety of applications[47-49]. However, some of these optogenetic systems suffer from the 

drawback that they are sensitive to accidental exposure to environmental light and 

experiments have to be performed in dark, which makes performance of these experiments 

challenging. To investigate sensitivity of MeNV-HaXS to environmental light, stock solution of 

MeNV-HaXS, either in DMEM medium or in DMSO, were exposed to environmental light for 

the times indicated (Supplementary Figure 4a). HeLa cells co-expressing SNAP-GFP and 

Halo-GFP were then incubated with these light-exposed MeNV-HaXS dimerizers to induce 
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dimer formation. HaXS8 was used as control compound. Analysis of dimer formation reveals 

comparable dimerization efficiencies of light-exposed HaXS8 and MeNV-HaXS, suggesting 

that MeNV-HaXS is stable even after extensive exposure to environmental light 

(Supplementary Figure 4a), demonstrating that MeNV-HaXS is not sensitive to ambient light, 

thus no special precautions concerning light exposure during performance of experiments are 

required. 

Choice of fluorescent reporters in MeNV-HaXS system 

In three commonly used optogenetic dimerizer systems, blue light is induced to induce 

dimerization between FKF1 and GIGANTEA (GI)[49], between CIB1 (basic helix-loop-helix 

protein Arabidopsis) and CYR2 (cryptochrome 2)[47] or between AsLOLOV2 (LOV2 domain of 

Avena sativa phototropin 1) and the engineered PDZ domain (ePDZ)[48].  Thus a critical 

challenge in these systems is the choice of fluorescent reporters as many commonly used 

fluorescent proteins has a significant spectral overlap between the excitation wavelength for 

imaging and the wavelength used for the activation of the dimerization process. In contrast, 

the 360 nm light required to induce photocleavage of MeNV-HaXS is compatible with most 

fluorescent reporter proteins, thus little restriction concerning choice of fluorescent reporters 

exist.  

Light sources to induce cleavage of MeNV-HaXS in living cells  

General restrictions to light-inducible systems are the specialized microscopes and softwares, 

which are required to induce light-activated effects[50]. MeNV-HaXS offers the possibility to 

induce intracellular cleavage with different light sources, depending on available microscopic 

equipment and the targeted application. If cleavage has to be induced on single cells or 

subcellular region of cells with high temporal resolution, the use of microscopes equipped with 

an XY scanning excitation laser for FRAP (fluorescence recovery after photobleaching; 355 

nm) or a 405 nm laser line from a conventional confocal microscope can be used 

(Supplementary Figure 4b). If neither a scanning FRAP laser nor 405 nm laser from a 

confocal microscopes is available or if photocleavage has to be induced on a whole cell 

population, a global field of view illumination setup with standard DAPI excitation filters 

(377±25 nm; from a standard fluorescence microscope can be alternatively used to induce 

photocleavage and thus make the MeNV-HaXS system applicable to many labs, including 

them equipped with a standard fluorescence microscope only. As the energy from a 

fluorescence lamp is limited, the illumination time to achieve efficient cleavage has to be 

extended. However, an illumination time of t < 20 sec was shown to be sufficient to induce 

efficient photocleavage[13]. Depending on the strength of the laser or the intensity of the 

fluorescence lamp, the optimal time required to induce efficient photocleavage varies.  
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Detection of SNAP- and HaloTag fusion proteins 

Due to the covalent interaction of HaXS with the SNAP- and HaloTag proteins, the 

intracellular dimer formation of these covalent complexes can be easily monitored by immune 

blotting experiments. This allows the direct correlation of the amount of formed dimers with 

the induced cellular output. Additionally, since constructs have to be optimized for every 

single application, which is the most time consuming part while performing CID experiments, 

a fast and simple validation of dimerization efficiencies of newly designed constructs greatly 

simplifies and shortens the process of construct design, and thus cuts down the whole 

experimental time. In contrast, many CIDs (such as the rapamycin CID) are based on non-

covalent interactions, and thus render quantification of dimerization efficiency challenging, as 

the dimer formation can only be rated by their expected cellular output or by microscopic co-

localization analysis, which demand a challenging analysis strategy to achieve quantitative 

results. Antibodies for HaloTag and SNAP-tag domains are commercially available. Anti-

HaloTag® polyclonal Antibody (Promega, G9281) detects HaloTag fusion proteins in Western 

blot experiments with high sensitivity and specificity, whereas a relatively high background 

signal is observed while performing immune fluorescence experiments. Polyclonal Anti-

SNAP-tag® Antibody (NEB, P9310S) only works in Western blot experiments but not in 

immune fluorescence experiments. However, while performing Western Blot experiments only 

high concentrations (1:500) of the primary antibody result in detectable signals and signal to 

noise ratio is low (personal communication Dominik Buser, Basel). Alternatively, if these 

SNAP- and HaloTag antibodies are not available, alternative tags (e.g. myc, HA, or 

fluorescent reporters) can be put on the fusion proteins and antibodies against these tags can 

be used for the detection. For the detection of SNAP- and HaloTag proteins before they have 

reacted with the HaXS dimerizer, e.g. to control expression levels or to confirm subcellular 

localization of a tagged fusion protein, commercially available fluorescently labeled dyes (e.g. 

SNAP-Cell® TMR-Star (NEB, S9105S) for SNAP-tag; HaloTag® TMR Ligand TMR Halo for 

HaloTag (Promega, G8251)) can be used. 
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Materials 

Dimerizer molecules and solutes 
HaXS8 synthesized by Olivier Jacques and Florent Beaufils, stock solution in 

DMSO, chemical synthesis and characterization described in Erhart 
et al., 2013 

MeNV-HaXS synthesized by Viktor Hofmann, Ruben Cal and Florent Beaufils, 
stock solution in DMSO, chemical synthesis and characterization 
described in Zimmermann et al., 2014 

Dimethylsulfoxide (DMSO) (Sigma-Aldrich, cat. nr. 34869-100ML) 

Kits and enzymes 
Phusion DNA Polymerase (New England Biolabs, cat. nr. 300338) 
Bio-Rad Protein Assay (Bio-Rad, cat. nr. 500-0006) 
GenElute Gel Extraction Kit (Sigma Aldrich, cat. nr. NA1111-1KT) 
GenElute HP Endotoxin-Free Plasmid Maxiprep Kit (Sigma-Aldrich, cat. nr. NA0310) 
GenElute PCR Clean Up Kit (Sigma-Aldrich, cat. nr. NA1020-1KT) 
GenElute Plasmid Miniprep Kit (Sigma-Aldrich, cat. nr. PLN-350-1KT) 
Immobilion Western, Chemiluminescent HRP Substrate(Millipore, cat. nr. WBKLS0500) 
In-fusion Cloning Kit (Clonetech, cat. nr. 639649) 
JetPEI DNA transfection agent (Polyplus, cat. nr. 101B-10) 
Phusion DNA Polymerase and PCR buffer (New England Biolabs, cat. nr. 300338) 
Restriction endonucleases and NEB buffers (New England Biolabs) 

Solutions 
Standard lysis buffer 1 % NP-40, 20 mM Tris-HCl pH 8.0, 138 mM NaCl, 2.7 mM KCl, 5% 

glycerol, 40 mM NaF, 2 mM Na3VO4, 20μM Leupeptin, 18 μM 
Pepstatin, 5 μM Aprotinin, 1 mM PMSF, 1 mM MgCl2, 1 mM CaCl2, 5 
mM EDTA, 5%glycerol 

10 x electrode buffer (Tris-Glycine) 30.3 g Tris-HCl (250 mM Tris-HCl), 144.2 g glycine (1.92 M), 10 g 
SDS (1% SDS) 

10 x transfer buffer 250 mM Tris-HCl, 1.92 M glycine 
1x transfer buffer methanol added to a final concentration of 20% (v/v) 
3% paraformaldehyde (PFA) in PBS (20 ml) 18 ml ddH2O and 7.5 µl 1 M NaOH added to 600 mg PFA, stirring in 

a hot plate until PFA is dissolved, 2 ml 10 x PBS pH 6.55 added, 
mixed, cooled to 37°C and pH adjusted to pH 7.2) !CAUTION PFA is 
a known human carcinogen. It is toxic on inhalation. 

Media and supplements 
LB Miller 10 g NaCl, 5 g yeast extract, 10 g Bacto-Tryptone, 5 ml 1 M NaOH, 

filled up to 1 liter with ddH2O and sterilized by autoclaving. 
LB Miller agar LB Miller and 12.5 g agar, after autoclaving, medium cooled down to 

60°C, appropriate antibiotics added, plate poured and stored at 4 °C. 
1 liter SOC 20 g Bacto-Tryptone, 5 g yeast extract, 0.5 g NaCl, 2.5 ml 1 M KCl 

10 ml 1 M MgCl2, 200 µl 5 M NaOH, 980 ml ddH2O, sterilized by 
autoclaving, addition of 20 ml sterile 1 M glucose  

Ampicillin stock 100 mg/ml in ddH2O (complete solubilization achieved by 
adding NaOH), used for cultures at 100µg/ml 

Kanamycin stock 25 mg/ml in ddH2O, used for cultures at 25 µg/ml 
 

Mammalian cell culture media and supplements 
Appropriate cell line: HeLa and HEK293 cell line ATCC 
Dulbeccoʼs MEM (DMEM) (Sigma-Aldrich, cat. nr. 1-26F01) 
Dulbeccoʼs MEM (DMEM) without phenol red (Sigma-Aldrich, cat. nr. D 5921) 
Fetal calf serum (FCS) (Sigma-Aldrich, cat. nr. 10270) 
100 x L-Glutamine (200 mM) (Sigma-Aldrich, cat. nr. G7513-100ML) 
100 x Penicillin-Streptomycin solution (Sigma-Aldrich, cat. nr. 15140-122) 
10 x Trypsin-EDTA solution (Sigma-Aldrich, cat. nr. T4174-100ml) 

Equipment 
Live cell microscope Leica Live Imaging Microscope fitted with a HCX Plan-Fluotar 

63x/1.4 oil, objective and a Photometrics CCD Camera CoolSnap 
HQ2 with Metamorph 7.1 software (Molecular devices) 

Confocal microscope Zeiss Axiovert 200M fitted with a Plan- 63x/1.4 oil objective and SM 
510 Meta (Scanning Head) with LSM software 
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Software CellDesigner4.3 
 Metamorph 7.1 
 LSM 
 Fiji 1.44b 
 Prims 6.0f 

Procedure 

Step-by-step protocol of HaXS method (STEP 1 to STEP 4) 

STEP 1. Creation of SNAP- and HaloTag expression constructs lTIMING up to several 

weeks 

p CRITICAL STEP The engineering of constructs is a sustainable challenge for CIDs and 
extensive testing and optimization of the constructs for every single application is required, 
which is the most time consuming part of CID experiments 
1| Create expression constructs with SNAP- and HaloTag dimerizing domains 

(i)  Compile DNA sequences of expression constructs containing SNAP- and HaloTag 
domain: 

 “effector translocation” approach:  
   anchor unit: anchoring motif, SNAP- or HaloTag, fluorophore     
   effector unit: POI, SNAP- or HaloTag, fluorophore 
 “mutual dimerization” approach:  
   effector unit 1: POI1, SNAP- or HaloTag, fluorophore 
   effector unit 2: POI2, SNAP- or HaloTag, fluorophore 

Design of anchor unit 
-if available use a ready-to-use plasmid from anchor unit library (see Fig 7 and Table 2), 
if desired available for your anchor of interest (Golgi, endosomes, lysosomes, plasma 
membrane, mitochondrium, actin skeleton as well as the subcellular compartments 
outside and inside the nucleus) 
-if other organelles / subcellular compartments are targeted: design new anchor units by 
inserting a SNAP- resp. HaloTag dimerizing domain and fluorescent reporter into a 
functional plasmid containing the desired anchoring motif, while retaining the context of 
the targeting motif as good as possible (N- versus C-terminal-fusion, linkers between 
domain and targeting motif) 
Design of effector unit 
-design plasmid containing the POI, SNAP- resp. HaloTag dimerizing domain and 
fluorescent reporter, if available take construct containing the POI, insert SNAP- resp. 
HaloTag domain, keep original context of POI as good as possible possible (N- versus 
C-terminal-fusion, linkers between domain and targeting motif) 

(ii)  Amplify DNA fragments using PCR primers that contain 18 – 25 bases annealing to the 
5´ resp. 3´end of the gene fragment, add 15 bases homologous to sequences flanking 
the insertion site in the backbone to facility In-Fusion recombination. Alternatively, 
amplify DNA fragments with conventional cloning using restriction digest and T4 DNA 
Ligase 

(iii) Set up 50 µl reaction for each DNA fragment to be amplified by PCR 
 5x Phusion HF or GC buffer 10 µl 
 Template DNA (10 ng/µl) 1 µl 
 dNTPs (10 mM)  1 µl 
 Forward Primer (50 µM) 0.5 µl 
 Reverse Primer (50 µM) 0.5 µl 
 DMSO (optional, if GC > 60%) (1.5 µl) 
 Phusion DNA Polymerase 0.5 µl (final concentration of 1 Unit/50 µl PCR) 
 Nuclease-free water  fill up to 50µl 
(iv) Amplify DNA fragments using following PCR program on Trio Thermocycler (Biometra): 
 Initial denaturation of DNA  98°C  120 sec 
 Denaturation of DNA  98°C  10 sec 
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 Annealing    45-72°C 20 sec  
 Elongation    72°C  15 sec per 1 kb 
 30 cycles 
 Final elongation   72°C  10 min 
 Hold    4°C 
(v) Digest 2 µg of plasmid DNA with amount of Units of restriction enzymes and buffer 

(according to manufacturerʼs protocol) for 1 h at the appropriate temperature in a total 
volume of 20 µl. 

(vi) Analyze undigested PCR and digested backbone by agarose gel electrophoresis, gel 
purify with GenElute (Gel Extraction Kit Sigma Aldrich) 

(vii) Set up In-Fusion reaction in 10 µl according to manufacturerʼs protocol: 
     x µl digested backbone (10 – 200 ng)* 
     x µl DNA fragment  (50 – 200 ng)** 
     0.5  µl In-fusion reaction mix  
     fill up to 10 µl water 
 *<0.5 kb: 10-50 ng, 0.5 to 10 kb: 50-100 ng, >10 kb: 50-200 ng 
 **<10 kb: 50-100 ng, >10 kb: 50-200 ng 
 Incubate the reaction mix for 15 min at 50°C.  
(viii) Use 5 µl of In-Fusion reaction to transform CaCl2-competent E.coli cells (XL1 blue) and 

select for growth by plating on LB agar plates containing the appropriate antibiotics for 
selection (depending on the backbone plasmid). Incubate ON at 37°C. 

 PAUSE POINT: Plate can be stored at 4°C for several weeks, In-Fusion reaction mix 
can be stored indefinitively at -20°C. 

(ix) Pick several clones, isolate DNA using GenElute Plasmid Miniprep Kit (Sigma Aldrich) 
and verify clones by analytical restriction digestion and sequencing. 

à  Perform TEST EXPERIMENT 1 to verify localization and translocation of anchor and 
effector unit.  

 
STEP 2. Creation of cells co-expressing SNAP- and HaloTag expression constructs 
lTIMING  ~ 24 h 
p CRITICAL STEP Find the optimal ratio of expression levels of the anchor unit to effector 
unit, at which the effector unit can be completely integrated in the induced dimer, but at which 
its expression level still sufficient high to allow induction of its correlated cellular effect.  
2| Seed and transfect HeLa or HEK293 cells with SNAP- or HaloTag expression constructs, 
for microscopic analysis follow STEP 2A, for analysis in cell lysates follow STEP 2B. 
(A) Preparing cells for analysis in cell lysates 

(i)  Day 1. Trypsinize growing HEK293 or HeLa cells using trypsin-EDTA and count the cells 
using a hemocytometer 

(ii) Resuspend 8 Î106 HEK293 resp. 1.5 Î106 HeLa cells in a total volume of 2 ml DMEM 
medium 

(iii) Manually pipette cell suspension in each well of a 6-well plate (Falcon)  
 p CRITICAL STEP The number of plated cells is crucial that plated cells be attached, 

forming a monolayer and transfection efficiency is high (most efficient if 60-80% 
confluent at day of transfection) 

(ii)  Day 2. Transient transfection of SNAP- and HaloTag expression constructs with JetPei 
according to manufacturers protocol: 0.5 µg total DNA / well in 24-well plate, 2 µg total 
DNA / well in 6-well plate, use ratio of amount of DNA of both constructs according to 
desired expression levels 

(B) Preparing cells for microscopic analysis 
(i)  Day 1. Trypsinize HeLa cells using trypsin-EDTA and count the cells using a 

hemocytometer 
(ii) Resuspend 5 Î105 HeLa cells in a total volume of 300 µl pre-warmed Dulbeccosʼs 

modified Eagle medium (DMEM) with 10% heat-inactivated fetal calf serum (HIFCS), 2 
mM L-glutamine (Gln), 1% penicillinstreptomycin solution (PEST) 

(iii) Place 12 mm coverslips (Menzel) in 24-well plate (Falcon), to sterilize plate and coverslip 
irradiate plate with coverslips with UV light  

(iv) manually pipette cell suspension on coverslips in a 24-well plate and incubate the plate 
at 37°C, 5% CO2 
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 p CRITICAL STEP The number of plated cells is crucial and the plated cells should be 
attached and to form a monolayer. Transfection efficiency is most efficient if cells are 60-
80% confluent at day of transfection. 

(ii)  Day 2. Transient transfection of SNAP- and HaloTag expression constructs with JetPei 
according to manufacturerʼs protocol: 0.5 µg total DNA per well in 24-well plate, use ratio 
of amount of DNA of both constructs according to desired expression levels 

à  Perform TEST EXPERIMENT 2 to verify localization and translocation of anchor and 
effector unit  

Alternatively, use another cell line with suitable cell culture medium at appropriate 
temperature and suitable amount of cells. 
 
STEP 3. HaXS treatment of cells co-expressing SNAP- and Halo expression constructs 
3| Induce dimerization by incubating cells with HaXS dimerizer either following protocol for cell 
lysates (STEP 3A) or protocol for live cells (STEP 3B) 
(A) Perform experiment in cell lysates lTIMING ~ 60 min 

(i) Day 3. Dilute HaXS8 dimerizer (from 10 mM stocks in DMSO) in pre-warmed cell culture 
medium to an end concentration of 5 µM 

(ii)  Vortex medium with HaXS dimerizer 
(iii) Add 300 µl medium per well in 24-well and 900 µl per well in 6-well medium containing 

HaXS to the cells expressing the anchor and effector unit 
(iv) Swirl plate to mix 
(v) After suitable time of HaXS incubation at 37°C perform analysis or cleavage (STEP 4A)  

Alternatively, directly pipette DMSO stock solution of HaXS into wells with transfected cells. 
(B) Perform experiment in living cells lTIMING ~ 2- 3 h 

(i)  Day 3. Transfer coverslips with cells co-expressing SNAP- and HaloTag expression 
constructs to pre-warmed Ludin chamber (Life Imaging Services), closed configuration 

(ii) Carefully add 300 µl pre-warmed imaging medium (phenol red free DMEM cell culture 
medium) in Ludin chamber 

(iii) Attach tube and syringe at Ludin chamber and transfer Ludin chamber into Ludin 
chamber holder in microscope in the temperature incubation box 

(iv) Start imaging by live cell microscopy 
(v) Carefully add 300 µl of phenol red free cell culture medium containing 2x HaXS dimerizer 

concentration 
(vi) Image dimerization until complete, take picture every 1 to 15 sec depending on effect 

under investigation 
p CRITICAL STEP While working with a new cell line, the different cell penetration behavior 
of HaXS can have an effect on the optimal concentration and thus it is important to determine 
the optimal concentration at which HaXS induce most efficient dimerization (perform analog to 
TEST EXPERIMENT 3, but with concentration gradient (0.5 µM to 10 µM) instead of time 
course for HaXS incubation)  
 
STEP 4. Cleavage of MeNV-HaXS-induced dimers 
4| Induce cleavage of MeNV-HaXS dimers by illuminating cells or subcellular region of cells 
either following protocol for cell lysates (STEP 4 A) or protocol for live cells (STEP 4B) 
(A) Perform experiment in cell lysates lTIMING ~ 30 min 

(i) Day 3. Remove cell culture medium, wash cells twice with 1x PBS and submerge cells 
with 1x PBS 

(ii) Illuminate cells with UV lamp (Blak-Ray B-100A high intensity UV lamp; 100 Watt, 365 
nm) for 5 min, distance of lamp around 5 cm, keep cells on ice to prevent warming of 
cells 

(B) Perform experiment in living cells lTIMING ~ 2- 3 h 
(i)  Day 3. Start imaging of cells prepared until STEP 3B: 
for global photocleavage of whole cell population: 
(ii)  Select cells (field of view, suited to final experiment) 
(iii) Illuminate for appropriate time with light from mercury metal halide and standard DAPI 

excitation filters (ex: 377±25 nm, em: 447±30 nm) 
for high spatiotemporal precision: 
(ii)  Select single cell or subcellular region of a cell (region of interest, ROI) 
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(iii) Illuminate cells for appropriate time with:  
  -355 nm FRAP laser (diode laser, 50 mW, XY scanning excitation laser) 
  -405 nm laser (laser strength as medium intensity)  (UV diode) 

p CRITICAL STEP To exclude unbeneficial effects exerted by UV light during cleavage 
process, perform control experiment with light-insensitive dimerizer HaXS8 in parallel. 
p CRITICAL STEP Illumination time depends on laser strength, fluorescent lamp strength and 
the size of the illuminated region (ROI resp. field of view). 

Protocols for Analysis (A1 to A3) 

A1. Analysis of dimerization in fixed cells lTIMING  ~ 2-3 h 
(i)  Wash cells two times with 1 x PBS 
(ii) Pipette 300 µl of 3% PFA on cells per well 
(iii) Incubate for 10 minutes at 37°C 
(iv) Wash cells two times with 1x PBS 

PAUSE POINT Fixed cells can be stored in 1× PBS at 4 °C for up to few weeks, 
seal plate to prevent 1 x PBS to evaporate.   

(v) Pipette 5 µl of pre-warmed mounting medium (Mowiol) on the top of a microscope slide, 
use forceps to wash coverslips in ddH2O and to place the coverslips on top of the 
mounting medium in a way that the cells are in contact with the mounting medium and 
the microscope slide, allow slides to dry (for minimum 6 h at RT) before microscopic 
analysis  

 PAUSE POINT Fixed cells mounted on glass slides can be stores up to several 
months  

(vi) Microscopic analysis of localization or anchor and effector unit before and after 
dimerizer treatment. 

A2. Analysis of dimerization / cleavage in cell lysates lTIMING  ~ 24 h 
(i) Wash cells with ice cold 1x PBS 
(ii) Lyse cells with NP-40 lysis buffer [1% NP-40, 20 mM Tris-HCl pH 8.0, 138 mM NaCl, 2.7 

mM KCl, 5% glycerol, 40 mM NaF, 2 mM Na3VO4, 20 μM Leupeptin, 18 μM Pepstatin, 5 
μM Aprotinin, 1 mM PMSF, 1 mM MgCl2, 1 mM CaCl2, 5 mM EDTA] 

(iii) Clear cell lysates by centrifugation at 13,000 rpm for 15 min at 4°C 
(iv) Denaturate proteins with 5x sample buffer [312.5 mM Tris-HCl (pH 6.8), 10% SDS, 25% 

β-mercaptoethanol, 50% glycerol, bromphenol blue] and cooking for 6 min 
(v) Separate proteins by SDS-PAGE and transfer them on Immobilon PVDF membranes 

(Millipore) 
(vi) Use appropriate primary antibodies and secondary antibodies labeled with horseradish 

peroxidase (HRP-conjugated to visualize proteins using enhanced chemiluminescence 
(Millipore) and a CCD camera (Fusion Fx7, Vilber) 

(vii) For quantification: measure intensities of monomer and dimer bands using ImageJ/Fiji 
and calculate the dimerization efficiency with following formula, then compare 
dimerization efficiency before and after dimerizer treatment / cleavage of MeNV-HaXS-
induced dimers. 

 
 
A3. Analysis of dimerization / cleavage in live cells lTIMING  ~ 2-3 h 

(i) Assemble and analyze movies with (ImageJA, 1.44b) 
(ii) Calculate fluorescence of effector unit at selected ROIs (depending on application you 

plan to analyze): 
Feffector = Feffector, ROI1  
    Fanchor, whole cell, n=1  - Feffector, ROI2 / Fanchor, whole cell for every frame 
(iii) Plot increase of effector fluorescence over time to analyze change of fluorescence at the 

selected ROIs.  
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Protocol for TEST EXPERIMENTS (1 to 4) 

TEST EXPERIMENT 1. Verify localization and translocation of effector and anchor unit  
p CRITICAL STEP Test newly designed constructs in combination with a functional, 
characterized construct and optimized until they perform as expected, before two new 
designed constructs are used together. 
p CRITICAL STEP If a new anchor unit was designed perform double labeling experiment 
with confirmed markers for the targeted organelle / subcellular compartment to confirm correct 
localization of new anchor unit. 

(i)  Day 1. Seed cells as described in BASIC PROTOCOL STEP 2B 
(ii)  Day 2. Transient transfection as described in BASIC PROTOCOL STEP 2B 
(iii) Day 3. HaXS8 treatment as described in BASIC PROTOCOL STEP 3 
(iv) Analysis A1  

à If anchor unit localizes properly and if translocation of effector unit towards anchor unit is 
efficient: go on with STEP 2, otherwise âTROUBLESHOOTING (1) 
 
TEST EXPERIMENT 2. Verify and optimize expression levels and integration of 

monomers  
(i)  Day 1. Seed cells as described in BASIC PROTOCOL STEP 1  
(ii) Day 2. Transient transfection as described in BASIC PROTOCOL STEP 2B, use ratio of 

amount of DNA as desired for final experiment 
(iii) Day 3. HaXS8 treatment as described in BASIC PROTOCOL STEP 3 
(iv) Perform Analysis A1 or A3  

à If expression levels are as desired, if dimerization is efficient and if integration of 
monomers is efficient, go on with STEP 3, otherwise âTROUBLESHOOTING (2) 

 
TEST EXPERIMENT 3. Analyze and optimize MeNV-HaXS treatment conditions  

(i)  Day 1. Seed cells as described in BASIC PROTOCOL STEP 2A  
(ii)  Day 2. Transient transfection as described in BASIC PROTOCOL STEP 2A, use ratio of 

DNA  suited to optimized expression levels 
(iii) Day 3. HaXS8 treatment as described in BASIC PROTOCOL STEP 3: perform time 

course 
 of HaXS8 incubation: 5 min, 15 min, 30 min, 60 min 
(iv) perform Analysis A2. Determine shortest HaXS incubation time at which dimer 

formation is efficient  
à  If shortest HaXS incubation time at which dimerization is efficient suits to the 

requirements of final experiment, go on with Step 4, otherwise âTROUBLESHOOTING 
(3) 

 
TEST EXPERIMENT 4. Analyze and optimize MeNV-HaXS cleavage conditions 
(A) Optimize cleavage conditions in cell lysates  

(i) Prepare cells until STEP 3A from BASIC PROTOCOL, induce photocleavage with UV 
lamp, test time course of different illumination times (5 min, 10 min, 20 min)  

(ii) Perform Analysis A2 Determine shortest illumination time, at which MeNV-HaXS-
induced dimers are efficiently cleaved, while HaXS8-induced dimers are not cleaved  

à  If shortest illumination time at which dimers are efficiently cleaved suits to the 
requirements of final experiment, perform Final experiment, otherwise 
âTROUBLESHOOTING (3) 

(B) Optimize cleavage conditions in live cells  
(i)  Prepare cells until STEP 3B from BASIC PROTOCL, induce photocleavage with UV lamp 
(ii) Test time course of different illumination times with laser (0.5 sec, 1 sec, 2 sec) resp. 

light from mercury metal halide and standard DAPI excitation filters (ex: 377±25 nm, em: 
447±30 nm) (5 sec, 10 sec, 20 sec) at medium laser strength or fluorescence lamp 
strength 

(iii) Perform Analysis A3 Determine shortest illumination time, at which MeNV-HaXS-
induced dimers are efficiently cleaved, while HaXS8-induced dimers are not cleaved  

à  If MeNV-HaXS-induced dimers are efficiently cleaved, whereas HaXS8-induced dimers 
are not cleaved and if cleavage conditions are compatible with final experiment 
requirements, go on with Final experiment, otherwise âTROUBLESHOOTING (4) 
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Troubleshooting 

Troubleshooting advice can be found in Table 3. 
 
TROUBELSHOOTING TABLE 
STEP PROBLEM CAUSE SOLUTION 
1  Incorrect localization 

of anchor unit  
Suboptimal 
construct design of 
anchor unit  

-check context of anchoring motif (has to be retained as good as 
possible as in original plasmid containing the functional anchor 
motif) 
-change order of domains 
-modulate linker between anchoring motif and next domain 
(fluorophore or Halo- or SNAP-Tag) (see Box 3) 
-exchange of Halo- and SNAP-tag domain 
-if a GFP or any structurally related fluorophore is integrated in the 
middle of the construct, consider sterical constraints of domains 
fused simultaneously to the N- and C-terminus of GFP due to the 
very close localization of the N- and C-terminus of GFP in 3D space 
à include long linkers to provide enough flexibility (see Box 1)  

 Inefficient 
translocation of 
effector unit towards 
anchor unit 

Suboptimal onstruct 
design of effector 
unit and anchor unit  

-change order of domains 
-modulate linker between all domains (fluorophore or Halo- or 
SNAP-Tag) (see Box 3) 
-exchange of Halo- and SNAP-tag domain in anchor and effector 
unit 
-if a GFP or any structurally related fluorophore is integrated in the 
middle of the construct, consider sterical constraints of domains 
fused simultaneously to the N- and C-terminus of GFP due to the 
very close localization of the N- and C-terminus of GFP in 3D space 
à include long linkers to provide enough flexibility (see Box 1) 

 Inefficient 
translocation of 
effector unit towards 
anchor unit 

Effector unit has 
inflexible localization 
before HaXS 
treatment  

-analysis of POI integrated in effector unit (if it has a strong 
intracellular membrane localization modulate its targeting signal in 
order to get an effector unit that is translocatable upon HaXS 
treatment) 
 

2 Ratio of expression 
levels of monomers 
before HaXS 
treatment not as 
expected  

Expression of a 
suboptimal ratio of 
anchor and effector 
unit 

-vary the amount of DNA used for the transient transfection 
-use of bi-cistronic backbones based on  internal ribosome entry 
site (IRES) [51] in which the translation initiation efficiency of the two 
ORFs differs significantly: initiation region of the upstream gene is 
very efficient, whereas IRES sequence results in a very inefficient 
ribosome binding and translation initiation for the second ORF à if 
the anchor unit is put upstream of the IRES and the effector unit 
downstream of the IRES, a high ratio of anchor unit to effector unit 
expression level is expected 
-use strong resp. weak promoters, which lead to a lower or higher 
expression level (weak promoter: human ubiquitin C gene (UBC) 
promoter, weakest promoter in various cell types (e.g. around 50% 
weaker than CMV and EF-1a) [52] 
- modify cis regulatroy elements (CATA, TATA box) [53], which affect 
the frequency of transcription initiation and consequently the level of 
gene expression 
-modify Kozak sequence flanking the AUG initiator codon,  [54] 

 Inefficient integration 
of monomers in 
dimer complex 

Ratio of expressed 
effector unit to 
anchor unit is too 
high 

-express more anchor unit and less effector unit (vary amount of 
DNA or follow advice in previous box) 
 

3 Inefficient 
dimerization under 
conditions suited to 
final experiment 
(fixed incubation 
time) 

Too low 
concentration of 
dimerizer to induce 
dimerization 

-use higher dimerizer concentrations to induce faster formation of 
dimers, consider that too high concentration result in inefficient 
dimer formation à compromise between the need for fast versus 
efficient dimerization has to be found 
-if the adaption of HaXS concentration and incubation time suited to 
final experiments does not result in sufficient dimer formation or 
integration of monomers in the dimer complex, optimization of the 
construct design (Troubleshooting STEP 1)  
-if only the speed but not efficiency of dimer formation is important 
use high dimerizer concentrations, whereas lower concentrations 
are recommended if efficiency of dimer formation is important, 
whereas time for dimer formation is less important 

 Inefficient 
dimerization under 
conditions suited to 
final experiment 

Too little intracellular 
compound 
concentration (due 
to limited cell 
penetration capacity 
or too high activity of 
multidrug-resistance 
pumps (MDR) 

-if possible use another cell line, which display high cell permeability 
of the HaXS dimerizers (as e.g. HEK293, HeLa, NIH3T3, MDCK, 
…) 
-investigate effects of multidrug-resistance (MDR) pump inhibitors, 
since it is known that some cells pump out compounds and thus 
dramatically reduce intracellular dimerizer concentration 

3 Inefficient 
dimerization under 
conditions suited to 
final experiment 

Suboptimal 
dimerization 
efficiency 

-use higher dimerizer concentrations to induce faster formation of 
dimers, consider that too high concentration result in inefficient 
dimer formation (Fig 2) à compromise between the need for fast 
versus efficient dimerization has to be found 
-if the adaption of HaXS concentration and incubation time suited to 
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final experiments does not result in sufficient dimer formation or 
integration of monomers in the dimer complex, optimization of the 
construct design (Troubleshooting STEP 1)  
-if only the speed but not efficiency of dimer formation is important 
use high dimerizer concentrations, whereas lower concentrations 
are recommended if efficiency of dimer formation is important, 
whereas time for dimer formation is less important 

4 Inefficient cleavage 
of MeNV-HaXS-
induced dimers 

Too little energy 
used to induce 
cleavage 

-increase intensity of light used to induce photo-cleavage (laser 
strength, intensity of fluorescent lamp) 
-increase illumination time 
 

 Loss of fluorescence 
in control cells 
(HaXS8-induced 
dimerization) 

Too much energy 
used to induce 
cleavage 

-decrease intensity of light used to induce photo-cleavage (laser 
strength, intensity of fluorescent lamp) 
-decrease illumination time 
- 
 

 Cells dies Too much energy 
used to induce 
cleavage 

-decrease intensity of light used to induce photocleavage (laser 
strength, intensitiy of fluorescent lamp) 
-decrease illumination time 
-make less images 
-prepare new imaging medium (increase amount of FCS from 2% 
up to 10%, if compatible with amount of autofluorescence) 
 

Final 
experiment 

Not expected output Suboptimal 
construct design,  

if HaXS-induced dimerization under these optimized conditions 
(construct design, expression levels of anchor and effector unit and 
HaXS-incubation) cannot induce expected cellular effect, go back to 
TROUBLESHOOTING STEP1 (balance between shorter and less 
flexible linkers, which allow dimerization between the two units and 
possible functional interaction of the POI with targeted membrane 
or another POI has to be found)  

 

Timing 

Perform experiment in cell lysates: in total 4 days (without construct design) 

 STEP 1 Create SNAP- and HaloTag expression constructs: up to several weeks 

 STEP 2 Create cells co-expressing SNAP- and HaloTag expression constructs: 24 h   

 STEP 3 HaXS treatment: 60 min 

 STEP 4 Cleavage of dimers: 30 min 

 Analysis of dimerization and cleavage efficiency by immune blotting: 1 h 

Perform experiment in live cells: in total 4 days (without construct design) 

 STEP 1 Create SNAP- and HaloTag expression constructs: up to several weeks 

 STEP 2 Create cells co-expressing SNAP- and HaloTag expression constructs: 24 h   

 STEP 3 HaXS treatment: 2-3 h 

 STEP 4 Cleavage of dimers: 2-3 h 

Analysis of dimerization and cleavage efficiency by live cell microscopy and image 

analysis: 5-6 h 

 

Anticipated results 

By using this protocol, the localization of proteins can be manipulated with high 

spatiotemporal precision (see Fig 3), a branch of a signal network can be activate or 

inactivated (see Fig 4) or MeNV-HaXS anchored POIs can be released instantaneously upon 

UV illumination of the dimer complex, which can be exploited in an experimental setup   that 

allow to study intracellular transport kinetics of released proteins (see Fig 5).   
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Supplementary Information 

Generation of plasmids encoding anchor and effector unit 

Generation of anchor units Halo-RFP-Giantin, Halo-RFP-Rheb15, Mito-GFP-Halo, Halo-RFP-

LAMP1, LifeAct-mTFP1-SNAP, SNAP-GFP-CAAX and NLS-CFP-SNAP is described in[13]. 

Generation of HT7-GFP and SNAP26m-GFP is described in[10], generation of HT7(L273Y)-

GFP and SNAPf-GFP is described in[13]. 

For NES-DsRed-Halo: FRB from NES-DsRed-FRB expression vector (kind gift form S. 

Hübner, Würzburg) was exchanged by HT7(L273Y) sequence. Maps and expression vector 

sequences can be obtained from the authors upon request. 

Statistical Analysis 

Statistical analysis was performed with GraphPad Prism v6. For Studentʼs t test (two sided, 

non-paired with Welch correction, p < 0.05) ≥ two independent experiments were compared. 
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 Molecular modeling 

Starting values for the modeling are the crystal structures of the Halotag (Newman et al., 

1999) and the SNAP-tag (Mollwitz et al., 2012). A first manual docking of HaXS8 dimerizer 

was refined using the genetic algorithm application GOLD (Jones et al., 1997), before the 

linker HaXS dimerizer and protein structures were subjected to energy minimization using the 

program Yasara (Krieger et al., 2004). Modeling was performed by Marketa Zvelebil, London. 

Pymol software package was used to substitute amino acid leucine with tyrosine (L273Y) and 

to create illustration of the models  (for Fig 1 and 2a). VMD was used to create illustration of 

the models software (Supplementary Figure S1b). 
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Scheme 1. Principle of MeNV-HaXS induced dimerization of SNAP- and 
HaloTag fusion proteins followed by subsequent UV-induced reversion 
of dimer complex. A photocleavable, cell-permeable SNAP- and HaloTag 
reactive chemical inducer of dimerization (CID) with a methyl-6-nitroveratryl 
(MeNV) core (MeNV-HaXS) enters the cell. The O6-benzylguanine substrate 
(red) reacts with Cys145 in the SNAP-tag, while the chloroalkane (blue) reacts 
with Asp106 in the HaloTag, which results in dimerization of HaloTag- and 
SNAP-tag-fused proteins of interest (POI). Illumination of MeNV-HaXS (360 
nm; ε = 4058 M-1cm-1; quantum yield = 0.075) cleaves the link between the 
POIs, and releases them from the covalent complex.
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Figure 1_Reaction path of HaXS dimerizer
a) 

b) 
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Figure 1.  Reaction path of HaXS dimerizer. a) 5 µM HaXS was sequentially incu-
bated with recombinant SNAP-GFP and Halo-GFP fusion proteins (5 μM each) at 37°C 
(SH: HaXS is first incubated with SNAP-GFP, then with Halo-GFP, for time indicated, 
HS: vice versa) before proteins were denaturated and reduced (in sample buffer con-
taining SDS and β-mercaptoethanol), separated by SDS-PAGE and detected by 
Coomassie-Blue staining. b) Left: Modeled structure of a linked HaloTag-
[reacted]HaXS8-SNAP-tag dimer complex. [reacted]HaXS8 molecule was linked to 
Asp106 in the HaloTag (blue) and to Cys145 in the SNAP-tag (SNAP-tag not shown) 
crystal structure, before randomized structural starting points were put through energy 
minimization (see Supporting Information). Right: Modeled structure of HaloTag-
[reacted]HaXS8 monomer, same procedure but  [reacted]HaXS8 molecule was linked 
to HaloTag only (blue) before energy minimization (modeling performed by Marketa 
Zvelebil, London). c) Scheme showing the two possible reaction paths of the HaXS 
dimerizer. Only the reaction path in which HaXS first reacts with the SNAP-tag leads to 
efficient dimer formation (functional reaction path).  
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Figure 2_Improve Dimerization Efficiency of HaXS CID

b) 

Figure 2. Adaption of rate constants of SNAP- and Halo-Tag to improve 
dimerization efficiency. a) Illustration of crystallographic structure of reaction 
cavitiy of standard (HT7) and optimized (HT7L) HaloTag, (Dha, PDB 1BN6). In 
HT7L leucine at position 273 was substituted by a tyrosine (L273Y, shown orange). 
The amino acids 272 and 106 involved in the reaction with the HaloTag substrate 
are shown yellow and red.  b) HeLa cells co-expressing the optimized 
(SNAPf/HT7L273Y) or standard (SNAP26m/HT7) tag combination of SNAP-GFP 
and Halo-GFP were exposed to an increasing amount of HaXS (from 50 nM to 100 
μM, as indicated) in complete cell culture medium at 37°C. After 5 min cells were 
lysed and proteins were subjected to SDS-PAGE and immune-blotting. Tagged 
proteins were detected using anti-GFP (primary) and horseradish peroxidase 
labeled (secondary) antibodies, and chemiluminescence. Quantifications repre-
sent mean of ± SEM of at least three independent experiments. 
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 Figure 3_Model dimerization reactions of HaXS CID

a) 

d) 

c) 

Figure 3. Model dimerization reactions of HaXS CID.  a) Comparison of data obtained form model and 
intraceullar dimerization experiment from Fig 2b). b) Effect of increasing ratios of rate constants kS to kH is 
simulated. Graph showing correlation of dimerization efficiencies (5 min, 2.5 µM HaXS) with increasing 
ratios of rate constant  kS to kH. Rate constant of Halo is kept constant (kHalo = 900), while rate constant of 
SNAP was increased (vertical half filled circles) or rate constant of SNAP was kept constant (kSNAP= 
18000), while rate constant of Halo was decreased (horizontal half filled circles). Dimerization efficiency at 
which ratio  of rate constants kS to kH is 20 as defined in Model 2 is labelled in pink. c) Effect of blocked 
HaXS-Halo on dimerization efficiencies at different ratios kS to kH  is simluated. Graph showing correlation 
of dimerization efficiencies (5 min, 2.5 µM HaXS) with increasing ratios of rate constant  kS to kH. Rate con-
stant of Halo is kept constant (kHalo = 900), while rate constant of SNAP was increased (left) with one 
(horizontal half filled circles) or with two (empty circles) functional reaction paths. Rate constant of SNAP 
was kept constant (kSNAP= 18000), while rate constant of Halo was decreased (right) with one (vertical half 
filled circles) or with two (empty circles) functional reaction paths. Dimerization efficiency at which ratio  of 
rate constants kS to kH is 20 (is labelled in pink) d) Scheme describing influence of HaXS concentration on 
dimerization efficiency. Dimerization efficiency of concentrations below the optimal concentration (2.5 µM 
green curve) are limited through diffusion of HaXS into the cell (left, yellow curves). Dimerization efficiency 
of concentrations above the optimal concentration (2.5 µM, green curve) are limited through the amount of 
saturated monomers (right, orange curves).
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Figure 4_Protein targeting to selected intracellular organelles.

lysosome plasma membrane mitochondrium actin skeleton

Figure 4. Protein targeting to selected intracellular organelles. a) Scheme describing HaXS 
induced translocation of a cytosolic effector unit (SNAPf-mTFP1, green) to the Golgi anchor unit 
(Halo-RFP-Giantin, red). HeLa cells grown on 12 mm coverslips (Menzel) expressing an organelle 
anchor unit (first row) and a cytosolic effector unit (second row) were exposed to HaXS dimerizer, 
before cells were washed twice with PBS, fixed with 4% pformaldehyde (PFA, in PBS), and 
mounted in Mowiol (Plüss-Stauffer) containing 1% propyl gallate (Sigma-Aldrich). Translocation of 
cytosolic effecotr unit toward the Golgi is documented. b) Library of anchor units targeting 
endosomes, lysosomes, Golgi, plasma membrane, mitochondrium and the actin skeleton (first 
row). Pictures in second row show effector unit translocated toward the anchor unit upon addition 
of HaXS.  
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Figure 5. Control of protein localization as strategy to inter-
fere with the activation of signaling pathways. a) Scheme 
describing principle of HaXS-induced inactivation (left) and 
HaXS-induced activation (right) of a signaling protein through 
the translocation of the effector unit containing the signaling 
protein towards or away from its functional localization via 
dimerization with the anchor unit. b) HEK293 cells 
co-expressing the effector unit SNAP-GFP-HA-RasV12 and the 
anchor unit Mito-Halo2x were starved overnight (ON) and 
exposed to 0.5 µM HaXS for 30 min, before cells were lysed and 
proteins were subjected to SDS-PAGE and immunoblotting. 
Tagged proteins were detected using the indicated primary anti-
bodies and horseradish peroxidase labeled secondary antibod-
ies, and chemiluminescence. Quantifications of signal intensi-
ties represent the mean of ± SEM of two independent experi-
ments. c) HEK293 cells co-expressing a translocatable effector 
unit GFP-Halo-iSH2, with the inter–Src homology 2 (iSH2) 
domain from p85, which complexes in cells with endogenous PI 
3-kinase p110α and a plasma membrane anchor unit SNAP-
GFP-CAAX, were starved ON and exposed to 0.5 µM HaXS in 
complete medium for 40 min, before cells were lysed and PI3K / 
PKB pathway was analyzed using the indicated phosphor-
specific antibodies. Quantifications of signal intensities repre-
sent the mean ± SEM of two independent experiments. c) is 
adapted from Figure 6, Erhart et al., 2013.
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Figure 6_Intracelullar Transport Kinetics
a) b) 

Figure 6. Control translocation of effector units from one subcellular compartment to another sub-
cellular compartment. a) HeLa cells co-expressing NES-DsRed-Halo and NLS-CFP-SNAP were exposed 
to 5 µM MeNV-HaXS in cell-culture medium for 15 min at 37°C, which induced the cytoplasmic retention of 
NLS-CFP-SNAP. Upon illumination of the MeNV-HaXS dimer complex, NLS-CFP-SNAP is released and can 
translocated back into the nucleus. CFP fluorescence intensity was monitored in the indicated circular 
regions of interest (ROI) by live-cell microscopy, before and after illumination of the cell (white, dashed 
rectangle) with a scanning FRAP laser (355 nm). b) Quantification of CFP fluorescence intensity in selected 
ROIs (labeled circles) monitoring nuclear NLS-CFP-SNAP concentrations (green curve) before and after 
illumination of the cells are shown; values are means ± SEM, n=6 cells, error bars not shown where smaller 
than symbols used.
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and HaloTag expression 

constructs 
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MeNV-HaXS induced dimers

TEST EXPERIMENT 1 
Verify anchor and effector 

construct

yes Localization and
translocation ok?

no

no

no

no

Integration and
expression levels ok?

Compatible with final 
experiment?

Compatible with final 
experiment?

yes

yes

TROUBLESHOOTING 1 
Optimize construct design 

TROUBLESHOOTING 2 
Optimize ratio of expression 
levels of both monomers

TROUBLESHOOTING  3 
Optimize HaXS treatment 

(concentration / incubation 
time)

TROUBLESHOOTING  4 
Optimize cleavage 

conditions (illumination time, 
region, intensitiy)

STEP 5.
Final experiment

yes

TEST EXPERIMENT 2 
Verify expression levels and 

integration of monomers

TEST EXPERIMENT3 
Analyze HaXS incubation 

conditions

TEST EXPERIMENT4 
Analyze cleavage

conditions

Flowchart 1. Basic protocl of HaXS CID. Flowchart describing 
the strategic planning and optimization steps of the MeNV-HaXS 
CID. 
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Figure 7_Construct Design of Anchor and Effector unit

Figure 7. Design of anchor unit and optimal choice of linker. Scheme describing plasmids encoding anchor 
units targeting various organelles such as the endosomes, lysosomes, plasma membrane, mitochondrium, 
actin skeleton  and the Golgi as well as subcellular compartments as the nucleus and space outside the 
nucleus. Targeting sequence of each construct is shown in yellow and described in the text below. 
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Box1_Linker_Design

Box 1. Choice of optimal linker. Potential effects of too long or flexible and too short orrigid linkers on con-
struct performances are listed. Adivice on how to increase flexibility resp. rigidity of linkers is indicated. 

optimal linkertoo rigid, short too flexible, long

-instability of fusion protein
-inefficient interaction of POI with targeted membrane 

-impaired expression levels and misfolding
-impaired biological activity of POI in effector unit
-inefficient mebrane anchorage of anchor unit
-inefficient dimerization between anchor and effecotr unit (sterical clashes)

include small and polar AA (Ser, Thr, Lys, Glu)
e.g.(Gly-Gly-Gly-Gly-Ser)n or (Gly)n 

increase flexibility
 amino acids that adopt an α-helical structure, e.g.  (EAAAK)nA (n = 2–5) 

Pro-rich sequence, (XP)n, X = any AA, preferably Ala, Lys, or Glu

increase rigidity
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Figure 8_Construct Design of Anchor and Effector unit

Figure 8. Optimal expression levels of anchor and effector unit. a) Scheme describing two different 
backbone systems. Left: both ORFs are encoed from a single T2A-based plasmid. Right: Both ORF are 
encoded on separate plasmids. b) To determine the ratio of monomers HeLa cells expressing SNAP-GFP-
T2A-Halo-GFP were exposed to 0.5 µM HaXS in complete cell culture medium at 37 °C. After 60 min cells 
were lysed and proteins were subjected to SDS-PAGE and immune blotting. Tagged proteins were 
detected using primary anti-GFP and horseradish peroxidase labeled secondary antibodies, and chemilu-
minescence. Ratio of monomers was determined by dividing amount of Halo-GFP and SNAP-GFP in 
DMSO treated cells. Quantification represent mean ± SEM of three independent experiments. To determine 
ratio of uncleaved and induced dimers, the amount of uncleaved T2A-dimers in DMSO treated cells was 
divided by amount of induced dimer in HaXS treated cells. Mean ± SEM of three independent experiments 
was determined. c) HeLa cells co-expressing equal amount of DNA (1 µg each, lane 1 and 2) or different 
ratios of amount of DNA (1.25 µg Halo-GFP and 0.75 µg SNAP-GFP lane 3 and 4, 1.5 µg Halo-GFP and 
0.5 µg SNAP-GFP lane 5 and 6, 1.75 µg Halo-GFP and 0.25 µg SNAP-GFP lane 7 and 8) were exposed to 
5 µM HaXS in complete cell culture medium at 37°C. After 15 min cells were lysed and analyzed by immune 
blot analysis as described previously. Ratio of monomers was determined as described previously. To 
determine the percentage of non-incorporated SNAP-GFP monomers, the amount of monomeric SNAP-
GFP in HaXS treated cells was divided by the amount of SNAP-GFP in DMSO treated cells.   
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Figure S1. Sequence alignment of wild type human repair protein O6-alkylguanine-DNA alkyltransferase (hAGT), SNAP26m,
and SNAPf. The specific amino acid changes of the AGT mutants SNAP26m and SNAPf are depicted in boxes.
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Supplementary Figure 1. Optimized SNAP-tag (SNAPf) a) Amino acids substitutions from wild type 
human repair protein O6 -alkylguanine-DNA alkyltransferase (AGT) to SNAPf (orange) and from SNAP26m 
to SNAPf (yellow) In addition to SNAP26m, which carries 19 amino acids substitutions and a C-terminal 
deletion compared to the wild type human DNA repair protein O6-alkylguanine-DNA alkyltransferase 
(hAGT), SNAPf carries ten extra mutations compared to SNAP26m, Sun et al., 2011 . b) Model of crystal 
strutucture of SNAPf, indicated mutations introduced to get SNAPf out of AGT (red) and SNAPf out of 
SNAP26m (orange), PDB: 3L00. c) Sequence alignment of AGT, SNAP26m, and SNAPf. The specific 
amino acid changes of the AGT mutants SNAP26m and SNAPf are depicted in boxes (light green from 
AGT to SNAPf, dark green from SNAP26m to SNAPf). d)  HeLa cells co-expressing the standard or opti-
mized SNAP- and Halo-tag combination were exposed to 0.5 resp. 5 μM HaXS in complete cell culture 
medium for the time indicated at 37°C before cells were lysed and analzyed by Western Blot analysis as 
described previously. Quantifications represent the mean ± SEM of two independent experiments.
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Supplementary Figure 2. a) Model of HaXS dimerization was created using CellDesigner 4.3, 
a software package that enables modeling of molecular interactions. Graphical representation of 
the model editor is shown. b) Simulation control interface of Model 1 and Model 2 with start 
values Halo = 1 µM, SNAP = 1 µM and HaXSout = 5 µM is shown. Kinetic laws as well as rate 
constants and diffusion coefficient for for all reactions are indiciated. 
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Supplementary Figure 3. Directed versus non-directed reactino paths of CID. a) Scheme describing a 
dimerizer that follows a “directed” and a “non-directed” pathway. If the dimerizer can follow a  “directed” 
dimerization path (as for example rapamycin), the dimerizer can only bind to monomer 2 (dark red) if it has 
first reacted with monomer 1, whereas dimerizer that follows a “non-directed” pathway can either first react 
with monomer 1 (orange) or monomer 2 (dark red). b) In a “directed” CID (left): high dimerizer concentration 
result in up to 100% dimer formation, whereas in a “non-directed” CID (right), high concentration of the dimer-
izer never result in 100% of dimer formation, as the amount of saturated monomers is increasing and limiting 
the dimer formation. 
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Supplementary Figure 4_Intracellular cleavage efficiency
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Supplementary Figure 4. Photocleavage conditions of MeNV-
HaXS. a) HeLa cells co-expressing SNAP-GFP and Halo-GFP were 
exposed to 5 µM MeNV-HaXS or 5 µM HaXS8 which were previously 
exposed to environmental light for the indicated times. After 15 min 
cells were lysed and analyzed for induced SNAP/HaloTag dimers as 
described previously.  b) Scheme showing two possibilities to cleave 
MeNV-HaXS induced dimers: local illumination with a laser pulse (t < 
1 sec) to achieve high spatiotemporal precise cleavage or illumination 
with light from a fluorescence lamp and DAPI filter set (t < 20 sec) for 
global cleavage of MeNV-HaXS of whole cell population with less tem-
poral resolution.
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Introduction 

Rapamycin (1) binds with high affinity to the 12 kDa FK506 

binding protein (FKBP12). Once formed, this FKBP-rapamycin 

complex binds the FRB (FKBP12-rapamycin-binding) domain of 

mTOR (mammalian target of rapamycin), which is a major 

signaling hub controlling cell growth and proliferation.[1] Fusion 

proteins of FKBP12 and FRB can be conditionally dimerized by 

the addition of rapamycin, which makes this system a valuable tool 

to chemically dimerize proteins of interest.[2,3] As interference 

with endogenous mTOR complex 1 (TORC1) signaling leads 

to feedback loops affecting upstream events, such as 

phosphoinositide 3-kinase activation,[1,4,5] rapamycin analogs 

(so called rapalogs[6]) and alternative covalent dimerizers[7] have 

been designed.  

 

Chemical modifications at C16-methoxy group of rapamycin were 

reported to prevent cross-reaction with endogenous TORC1, and 

allow these rapalogs only to interact with FRB domains with a 

compensatory small side chain mutation (“the hole”) to 

accommodate binding of the “bump” in rapamycin.[6] Rapalogs 

devoid of wild type FRB domain-binding such as iRap (2) and 

AP21967 (3) bear  bulky substituents at the C16 position, and can 

be used in combination with mutated FRB proteins even in studies 

of growth control, immunity or metabolism.[8] Although various 

nucleophiles were introduced at the C16 position, no general 

method to introduce carbamates was published. 

 

Figure 1. Structure of Rapamycin (1), C16-(S)-3-methylindole-rapamycin 
(iRap; 2) and C16-(S)-7-methylindole-rapamycin (AP21967; 3). 

Here, we report the synthesis of C16-phenylcarbamate-rapamycin 

(pcRap) (4) using a modified Lewis acid-mediated substitution of 

the C16 position of rapamycin. A detailed optimization of the 

reaction procedure, as well as the investigation of the reaction 

mechanism is described: the scope of this reaction was also 

explored by the synthesis of C16-benzyl-, n-butyl-and tert-butyl 

carbamate-rapalogs, which were produced with excellent yields. 

Finally, protein translocation with the obtained (R)-pcRap and a 

FRBT2098L/ FKBP12 system has been successfully achieved without 

any interference with endogenous mTOR signaling.  

Results and Discussion 

Under acidic conditions, the C16-methoxy group of 

rapamycin undergoes a heterolytic cleavage, and the stabilized 

carbocation can be trapped with various nucleophiles.[6,8,9] 

Attempts to carry out the nucleophilic addition of phenyl 

carbamate (pc) to C16-rapamycin carbocation by using TFA (Table 

1, entry 1) and p-Toluenesulfonic acid (Table 1, entry 2), in 

CH2Cl2 at -40°C, gave an inseparable mixture of products 

containing only traces of pcRap (4). It is likely that pcRap, as well 

as pc itself, were not stable in the presence of protic acids such as 

TFA and p-TsOH. We next targeted the use of a Lewis acid to 

generate the carbocation at C16.[6] Addition of BF3-Et2O to a 

solution of Rap and pc, in CH2Cl2 at -40°C, produced the desired 

carbocation at C16, which was indicated by a dark-red color 

change. Although the active intermediate was observed, a new 
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mixture of inseparable products containing starting material, the 

product of methoxy-elimination[6] and traces of pcRap was formed 

(products identified by mass spectroscopy; Table 1, entry 3). The 

formation of the transient carbocation complex was not 

accomplished by using THF as a solvent (no color change was 

seen), but no degradation products were generated, and only 

starting material (rapamacin and pc) was recovered (Table 1, entry 

4). Addition of BF3-Et2O, at -40°C, to a solution of pc and Rap in 

CH2Cl2 (generation of the C16 carbocation), followed by the 

addition of an excess of THF, 5 minutes later, gave pcRap with a 

yield of  83% (diastereoselective ratio [d.r.] 52:48; Table 1, entry 

5). Polarity effects were investigated for this sequential 

transformation, and similar results were obtained using Et2O or 

dioxane as additives (Table 1, entry 6 and 7).  

Table 1. Optimization of Lewis Acid-Mediated Synthesis of pcRap. 

 

 

 

 

 

 

Entry Solvent Additive Acid Yield [%] 
C16 

(R)/(S) d.r. [f] 

1 CH2Cl2 - TFA[a] Traces - 

2 CH2Cl2 - p-TsOH[b] Traces - 

3 CH2Cl2 - BF3-Et2O
[c] Traces - 

4 THF - BF3-Et2O
[c] - - 

5 CH2Cl2
[d] THF[e] BF3-Et2O

[c] 83 52:48 

6 CH2Cl2
[d] Dioxane[e] BF3-Et2O

[c] 76 50:50 

7 CH2Cl2
[d] Et2O

[e] BF3-Et2O
[c] 79 50:50 

[a] pc (6 equiv.), TFA (10 equiv.); [b] pc (6 equiv.), p-TsOH (10 equiv.); 
[c] pc (6 equiv.), BF3-Et2O (4 equiv.); [d] 5 min.; [e] 20 min.; [f] d.r. 
diastereoselective ratio. 

The fact that the product is obtained as a racemate with respect to 

the configuration at C16, implies a SN1 reaction mechanism 

mediated by BF3. To support this assumption, low temperature 

NMR studies of the reaction mixture before adding the THF were 

performed. 1H-, 11B- and 19F-NMR spectra show the presence of an 

equilibrium between rapamycin and the BF3-coordinated 

rapamycin, as well as further BF3-containing species in slow 

exchange with each other. Monitoring the reaction between BF3-

Et2O and rapamycin in CD2Cl2 at – 30°C by 1H-NMR (Supporting 

information see Figure S1), yielded very broad spectra, indicating a 

dynamic equilibrium. The disappearance of the correlation peak for 

the methoxy group at C16 in the HMQC spectra (Supporting 

information Figure S1) clearly demonstrates that C16 is the most 

favorable coordination site for the reversible formation of a tight 

ion pair, while the other methoxy groups are less affected. An 

irreversible formation of the free or solvent separated carbocation 

can be ruled out, as no product is formed under these conditions. 

On the other hand, using THF as the sole solvent, this ion pair is 

also not formed, because the large excess of THF prevents the BF3 

from interacting with the methoxide at C16. In contrast, addition of 

THF as co-solvent leads to sufficient stabilisation of the 

carbocation, subsequent formation of a solvent separated ion pair 

and finally to a fast reaction with the nucleophile. The fact that 

CH2Cl2 and THF have similar dielectric constants indicates that the 

stabilisation of the carbocation is an effect of the coordinating 

ability of the co-solvent, rather than its polarity. This is further 

supported by the observation that the reaction is also possible using 

less polar co-solvents, such as diethyl ether. Kinetic data of the 

reaction has not been determined because the reaction mechanism 

was not the main target of this project. 

 

 

 

 

Figure 2. Proposed mechanism for the Lewis acid-mediated formation of 
pcRap. 

Once the optimal experimental conditions had been 

determined, the scope and generality of the reaction was next 

investigated with the introduction of representative carbamates. 

Using benzyl carbamate, C16-benzylcarbamate-Rap (7a) was 

synthesized in excellent yield (88%, Table 2, entry 1). Reaction 

with the lower electron-donating, and unhindered aliphatic n-butyl 

carbamate gave C16-n-butylcarbamate-Rap (7b) with a yield of 

73% (Table 2, entry 2). Interestingly, comparable results were still 

achieved with the acid sensitive, and sterically demanding tert-

butyl carbamate (compound 7c, 78% yield, Table 2, entry 3). We 

assume that compound 7c could be applied in extended selective 

modification of the rapamycin core via the C16-Boc-protected 

amine. 

Table 2. BF3-Et2O/THF-Mediated Synthesis of C16-carbamate-Rapalogs. 

 

 

 

 

 

Entry Carbamate R Product Yield [%] 
C16 

(R)/(S) ratio 

1 benzylcarbamate Bn 7a 88 51:49 

2 n-butylcarbamate nBu 7b 73 51:49 

3 tert-butylcarbamate tBu 7c 78 51:49 

Indicated carbamate (6 equiv.), CH2Cl2, -40°C, BF3-Et2O (4 equiv.), 5 min, 
THF, 20 min, -40°C. 
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On the basis of previous studies focusing on the development 

of rapalogs sparing endogenous mTOR,[6] each pcRap 

diastereoisomer might possess a stereospecific profile towards 

endogenous wild type and mutated FRBT2098L domains. The 

stereochemistry of (R)-pcRap and (S)-pcRap was thus confirmed 

by ROESY experiments (Figure 3). Correlations between the 

protons at the cyclic hemiacetal, at C15 and C16 as well as the NH 

proton of the carbamate function were used to determine the 

absolute configuration of the diastereoisomers. The most important 

ROE correlations that were used to determine the absolute 

configuration are shown in Figure 3. Only the (S)-configuration at 

C16 could explain the observed correlation between H16 and 

H13a, and without violating any of the other correlations. The 

latter correlation was not observed for the (R)- diastereoisomer. A 

detailed description of the assignment strategy of both 

diastereoisomers is given in the supporting information. 

 

Figure 3. (R)-pcRap (d.r. 51%), left, and (S)-pcRap (d.r. 49%), right. key 

ROESY correlations are indicated in red. 

 

Finally, a potential interference of pcRap isomers with endogenous 

TORC1, and their validation as tools for chemically-induced 

dimerization (CID), was investigated. To test for a potential 

interference of pcRap isomers with TORC1, the activation status of 

a kinase substrate of TORC1, the ribosomal protein S6 kinase 

(p70S6K) was monitored by analyzing the phosphorylation of 

Thr389 on p70S6K. Figure 4A demonstrates that exposure of HEK 

cells to rapamycin or (S)-pcRap leads to the inhibition of the 

phosphorylation of S6K1 on Thr389, whereas (R)-pcRap does not 

interfere with TORC1, as S6K1 phosphorylation is maintained 

(Figure 4A). Luengo et al.[6] have investigated the activity of 

selected (R)- and (S)-rapalog stereoisomers on mTOR-dependent 

T-cell responses. Due to co-eluting contaminations of rapamycin 

and rapamycin by-products along with the (S)-pcRap, it is 

presently not entirely clear if contaminants or (S)-pcRap impair 

mTOR activity. Using the biologically validated (R)-pcRap, we 

next targeted the translocation of a cytosolic fluorescent protein to 

the cell’s plasma membrane: a red fluorescent protein (monomeric 

RFP; TagRFP) fused to mutated FRB (FRBT2098L), was co-

expressed with FKBP12-GPF with a C-terminal isoprenylation 

sequence from KRas-4B (the KRas-4B CAAX box), which targets the 

resulting FKBP12-GFP-CAAX fusion protein exclusively to the 

plasma membrane. Upon addition of (R)-pcRap, the cytosolic 

mutated FRBT2098L–RFP was translocated to the plasma 

membrane after addition of (R)-pcRap (see Figure 4B). 

  

 
 
Figure 4. (A) HEK cells grown in fetal calf serum supplemented media 

were exposed to DMSO, rapamycin, (S)-pcRap and (R)-pcRap for 15 min at 

37°C, before cells were lysed and proteins were subjected to SDS-PAGE, 

and immune-blotting using antibodies against total p70S6K (total S6K), and 

phosphorylated p70S6K (pS6K, Thr389). Data represent means ± SEM, n=3; 

difference from DMSO control: ** indicates p<0.01; ns, not significant. (B) 
Hela cells expressing the FKBP12-GFP-CAAX membrane anchor [green (-

CAAX is the polybasic isoprenylation sequence from KRas-4B)] and 

FRBT2098L-RFP (red) fusion proteins were exposed to DMSO or 0.5 M 
(R)-pcRap for 15 min. at 37°C. Translocation of FRBT2098L-RFP to the 

plasma membrane was imaged by confocal microscopy in fixed cells. 

 

Conclusions 

We have successfully developed a facilitated access to C16-

carbamyl-rapalogs using mild reaction conditions. The mechanism 

of the addition of carbamates onto the C16-carbocation appears to 

involve the prior establishment of a tight rapamycin-BF3 ion pair 

(in a dynamic equilibrium). The addition of THF allows 

subsequently an irreversible formation of the desired rapalogs. The 

structures of the novel C16-rapamycin diastereomers were 

determined through NMR spectroscopic analysis. Additionally, we 

have demonstrated that phenyl carbamate substitution can abolish 

potential interferences with endogenous mTOR, and high-lighted 

(R)-pcRap as a powerful, non-toxic tool to chemically induce 

protein-protein interactions. 

Experimental Section  

General methods: Materials and reagents were of the highest 

commercially available grade and used without further purification. 

Reactions were monitored by thin layer chromatography using 

Merck silica gel 60 F254 plates. Compounds were visualized by 

UV and KMnO4. Flash chromatography was performed using 

Merck silica gel 60, particle size 40 - 63 μm and DCM/MeOH 

40:1). All NMR experiments were performed on a Bruker Avance 

III NMR spectrometer operating at 600.13 MHz, equipped with a 

z-axis pulsed field gradient broadband direct detection probe-head. 

Chemical shifts were referenced to residual solvent peaks and the 

temperature was calibrated using a methanol sample. NMR 

experiments for the assignment of the Rapalogs were performed at 

298 K and for the mechanistic study at 243 K. Phase-sensitive 

ROESY experiments as well as TOCSY experiments were 

performed with 2048 time points in F2 and 1024 time increments 

in the indirect dimension F1, which corresponds to acquisition 

times of 155 ms in F2 and 77 ms in F1.The Spinlock pulse for the 

ROESY experiment was set to 350 ms and the experiment times 

were between 3 and 18 hours. The mixing time for the TOCSY 

experiment was set to 200 ms and the experiment times were 

between 3 and 10 hours. All solvents used for reactions were 

purchased as anhydrous grade from Fluka. Solvents for extractions, 

column chromatography and TLC were commercial grade. Mass 

spectra were recorded with a VG70-250 (FAB), Finnigan MAT 

MS 312 (EI) or Finnigan MAT LCQ (ESI) spectrometer. High-

resolution mass spectra were recorded with a thermo Fisher 

Scientific LTQ Orbitrap XL, nanoelectrospray ion source.  

 

Analytical HPLC: HPLC analyses were carried out using a Dr. 

Maisch Reprosil 100 Si, 5 m 100 x 10 mm column. The 

instrument was equipped with an SPD-M20A diode array detector 

and an RF-10AXL fluorescence detector. 1 mg of the crude 

mixture was dissolved in 1 ml CH2Cl2. 50 µl of this standard 

solution was injected in the HPLC system. Samples were eluted 

using a 60-min linear gradient of 100:0 to 96:4 

(CH2Cl2:isopropanol) and a flow rate of 2 ml·min−1.  
 
Preparative HPLC: Preperative HPLC was performed with a Dr. 

Maisch Reprosil 100 Si, 5 m 250 x 40 mm column. 30 mg of the 

crude mixture was dissolved in 2 ml CH2Cl2 and injected into the 

HPLC system. Samples were eluted using a 100-min linear 
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gradient of 100:0 to 92:8 (CH2Cl2:isopropanol) and a flow rate of 

30 ml·min−1.  

 
General Procedure for the synthesis of C16-carbamyl rapalogs: 

Rapamycin (100 mg, 0.109 mmol) and the corresponding 

carbamate (0.656 mmol) were dissolved in 20 ml of CH2Cl2. The 

reaction mixture was cooled to -40°C and BF3-Et2O (57 l, 0.438 

mmol) was added. This solution was stirred for 5 min before 10 ml 

of THF was added. After 30 min stirring at -40°C, the reaction was 

quenched with a solution of sat. NaHCO3. The aqueous layers were 

extracted with ethyl acetate three times. The combined organic 

layers were dried over sodium sulfate and concentrated under 

reduced pressure. The crude mixture was analyzed by analytical 

HPLC. The crude mixture was redissolved in CH2Cl2 and cooled 

down to -40°C. BF3-Et2O (57 l, 0.438 mmol) were added and the 

mixture was stirred for 5 min, prior to THF addition. The mixture 

was stirred for 30 min at -40°C. The reaction was quenched with a 

solution of sat. NaHCO3 and the aqueous layer were extracted with 

ethyl acetate three times. The combined organic layers were dried 

over sodium sulfate and concentrated under reduced pressure. This 

reaction procedure was repeated 3-4 times until complete 

consumption of rapamycin (HPLC monitoring). Purification of the 

crude mixture was done by Flash chromatography and separation 

of the diastereomers was done by preparative HPLC. 

 

C16-phenyl carbamyl rapamycin, pcRap (4): Flash 

chromatography gave 92 mg as a mixture of two diastereomers 

(83% yield; 52:48 ratio). Diastereomers were separated with 

preparative HPLC. Mixture of diastereomers: ESI-MS m/z: 

1041.57, 999.56, 864.53, 685.44, 607.39, 551.33, 412.17, 351.25, 

279.02, 256.00, 189.96. HRMS for C57H82O14N2 [M-Na+]: calcd. 

1041.5658, found 1041.5664.  

(R)-pcRap: 1H NMR (600MHz, DMSO) : 7.87 (d, 3J = 7.8 Hz, 

1H, H52), 7.37 (dd, 3J = 6.8 Hz, 8.0 Hz, 2H, H56), 7.19 (t, 3J = 6.8 

Hz, 1H, H57), 7.09 (d, 3J = 8.0 Hz, 2H, H55), 6.40 (dd, 3J = 10.8 Hz, 

11.4 Hz, 1H, H19), 6.39 (s, 1H, OH10), 6.21 (dd, 3J = 11.4, 12.4 Hz, 

1H, H20), 6.13 (d, 3J = 10.6 Hz, 12.4 Hz, 1H, H21), 6.08 (d, 3J = 

10.8 Hz, 1H, H18), 5.52 (dd, 3J = 9.4 Hz, 12.4 Hz, 1H, H22), 5.24 (d, 
3J = 4.4 Hz, 1H, OH28), 5.22 (d, 3J = 9.8 Hz, 1H, H30), 5.10 (m, 1H, 

H34), 4.96 (d, 3J = 5.3 Hz, 1H, H2), 4.59 (d, 3J = 4.3 Hz, 1H, OH40), 

4.07 (m, 1H, H28), 4.02 (m, 1H, H16), 4.01 (m, 1H, H27), 3.95 (m, 

1H, H14), 3.57 (m, 1H, H6), 3.31 (m, 3H, H51), 3.27 (m, 1H, H31), 

3.18 (m, 3H, H50), 3.16 (m, 1H, H40), 3.06 (m, 1H, H6), 2.81 (m, 

1H, H39), 2.81 (m, 1H, H33), 2.44 (m, 1H, H33), 2.39 (m, 1H, H25), 

2.25 (m, 1H, H23), 2.16 (m, 1H, H3), 2.04 (m, 1H, H11), 1.91 (m, 

1H, H38), 1.84 (m, 1H, H15), 1.75 (m, 1H, H41), 1.74 (m, 3H, H47), 

1.72 (m, 3H, H44), 1.70 (m, 1H, H35), 1.67 (m, 1H, H4), 1.64 (m, 

1H, H13), 1.61 (m, 1H, H12), 1.60 (m, 1H, H3), 1.55 (m, 1H, H12), 

1.52 (m, 3H, H5, H15, H42), 1.40 (m, 1H, H24), 1.36 (m, 2H, H4, H5), 

1.31 (m, 1H, H13), 1.27 (m, 1H, H37), 1.17 (m, 1H, H41), 1.10 (m, 

1H, H36), 1.04 (m, 1H, H24), 0.99 (m, 3H, H45), 0.96 (m, 1H, H36), 

0.91 (m, 3H, H48), 0.85 (m, 1H, H42), 0.81 (m, 3H, H46), 0.80 (m, 

3H, H49), 0.76 (m, 3H, H43), 0.58 (m, 1H, H38). 
13C NMR: 210.2 

(C26), 208.0 (C32), 199.0 (C9), 169.4 (C1), 167.0 (C8), 153.8 (C53), 

151.1 (C54), 140.0 (C17), 138.4 (C22), 136.9 (C29), 131.8 (C20), 

130.4 (C21), 129.2 (C56), 127.6 (C19), 124.8 (C57), 124.6 (C30), 

123.6 (C18), 121.6 (C55), 99.0 (C10), 85.5 (C27), 83.8 (C39), 75.7 

(C28), 73.4 (C34), 73.2 (C40), 66.6 (C14), 56.9 (C50), 56.8 (C51), 53.7 

(C16), 51.2 (C2), 44.8 (C31), 43.9 (C6), 40.4 (C33), 39.9 (C25), 39.6 

(C24), 39.4 (C15), 38.3 (C36), 35.2 (C38), 34.7 (C11), 34.4 (C23), 33.5 

(C35), 32.9 (C41), 32.6 (C37), 31.3 (C13, C42), 26.6 (C3), 26.4 (C12), 

24.4 (C5), 21.5 (C45), 20.5 (C4), 16.0 (C48), 15.6 (C43), 15.2 (C44), 

15.0 (C49), 13.8 (C47), 12.9 (C46).  

(S)-pcRap: 1H NMR (600MHz, DMSO) : 8.07 (d, 3J = 8.8 Hz, 

1H, H52), 7.37 (dd, 3J = 7.38 Hz, 7.68 Hz, 2H, H56), 7.19 (t, 3J = 

7.38 Hz, 1H, H57), 7.07 (d, 3J = 7.68 Hz, 2H, H55), 6.51 (s, 1H, 

OH10), 6.36 (dd, 3J = 11.3 Hz, 13.1 Hz, 1H, H19), 6.20 (dd, 3J = 

10.8 Hz, 13.1 Hz, 1H, H20), 6. 12 (dd, 3J = 10.8 Hz, 13.1 Hz, 1H, 

H21), 6.05 (d, 3J = 10.9 Hz, 1H, H18), 5.48 (dd, 3J = 9.2 Hz, 13.1 Hz, 

1H, H22), 5.27 (d, 3J = 4.4 Hz, 1H, OH28), 5.10 (d, 3J = 10.0 Hz, 1H, 

H30), 4.99 (m, 1H, H34), 4.96 (d, 3J = 6.3 Hz, 1H, H2), 4.60 (m, 1H, 

OH40), 4.13 (m, 1H, H16), 4.01 (m, 1H, H28), 3.94 (m, 1H, H14), 

3.87 (d, 3J = 5.0 Hz, 1H, H27), 3.45 (m, 1H, H6), 3.33 (m, 1H, H31), 

3.32 (m, 3H, H51), 3.25 (m, 1H, H6), 3.17 (m, 1H, H40), 3.16 (m, 

3H, H50), 2.83 (m, 1H, H39), 2.76 (m, 1H, H33), 2.49 (m, 1H, H25), 

2.44 (m, 1H, H33), 2.22 (m, 1H, H23), 2.08 (m, 1H, H3), 2.05 (m, 

1H, H11), 1.96 (m, 1H, H15), 1.92 (m, 1H, H38), 1.82 (m, 1H, H13), 

1.75 (m, 6H, H41, H42, H44), 1.74 (m, 3H, H47), 1.70 (m, 1H, H35), 

1.67 (m, 1H, H4), 1.63 (m, 1H, H3), 1.58 (m, 1H, H5), 1.54 (m, 1H, 

H12), 1.52 (m, 1H, H12), 1.43 (m, 1H, H15), 1.41 (m, 2H, H4, H24), 

1.31 (m, 1H, H5), 1.28 (m, 1H, H37), 1.25 (m, 1H, H13), 1.18 (m, 

1H, H41), 1.07 (m, 1H, H36), 1.06 (m, 1H, H24), 0.98 (m, 3H, H45), 

0.97 (m, 1H, H36), 0.89 (m, 3H, H48), 0.86 (m, 1H, H42), 0.85 (m, 

3H, H46), 0.79 (m, 3H, H49), 0.76 (m, 3H, H43), 0.60 (m, 1H, H38). 
13C NMR: 210.9 (C26), 207.7 (C32), 198.9 (C9), 169.2 (C1), 166.8 

(C8), 154.2 (C53), 151.1 (C54), 138.9 (C22), 138.2 (C17), 132.0 (C20), 

130.4 (C21), 129.3 (C56), 127.3 (C19), 125.5 (C18), 124.9 (C57), 

125.3 (C30), 121.7 (C55), 99.0 (C10), 85.9 (C27), 83.8 (C39), 75.8 

(C28), 73.7 (C34), 73.2 (C40), 66.8 (C14), 57.1 (C50), 56.7 (C51), 54.9 

(C16), 50.6 (C2), 45.3 (C31), 43.4 (C6), 39.7 (C33), 39.6 (C24), 39.2 

(C25), 38.4 (C15, C36), 37.4 (C29), 35.4 (C38), 34.9 (C11, C23), 33.3 

(C35), 32.9 (C41), 32.6 (C37), 31.2 (C42), 29.6 (C13), 26.4 (C3), 26.2 

(C12), 24.4 (C5), 21.6 (C45), 20.4 (C4), 15.6 (C43), 15.5 (C48), 14.7 

(C49), 13.7 (C46), 13.2 (C47), 11.9 (C44). 

C16-benzyl carbamyl rapamycin (7a): Flash chromatography 

gave 99 mg as a mixture of two diastereomers (88% yield; 51:49 

ratio). Mixture of diastereomers: ESI-MS m/z: 1055.58, 1033.60, 

1015.59, 882.54, 864.52, 846.51, 814.49, 793.56, 663.45, 607.39, 

496.27, 411.17, 351.25, 309.2. HRMS for C57H82O14N2 [M]: calcd 

1033.5995, found 1033.5992. 

(R)-benzyl carbamyl rapamycin: 1H NMR (600MHz, DMSO) : 
1H NMR (600MHz, DMSO) : 7.45 (d, 3J = 7.7 Hz, 1H, H52), 7.38 

(m, 2H, H57), 7.35 (m, 1H, H58), 7.08 (m, 2H, H56), 6.37 (dd, 3J = 

10.8 Hz, 12.4 Hz, 1H, H19), 6.34 (s, 1H, OH10), 6.17 (dd, 3J = 10.8 

Hz, 12.4 Hz, 1H, H20), 6.13 (dd, 3J = 10.8 Hz, 12.0 Hz, 1H, H21), 

6.02 (d, 3J = 10.8 Hz, 1H, H18), 5.50 (dd, 3J = 8.8 Hz, 12.0 Hz, 1H, 

H22), 5.23 (m, 1H, OH28), 5.21 (m, 1H, H30), 5.08 (m, 1H, H34), 

5.01 (m, 2H, H54), 4.95 (d, 3J = 5.3 Hz, 1H, H2), 4.59 (d, 3J = 4.65 

Hz, 1H, OH40), 4.07 (m, 1H, H28), 3.95 (m, 1H, H16), 3.88 (m, 1H, 

H27), 3.85 (m, 1H, H14), 3.57 (m, 1H, H6), 3.30 (m, 3H, H51), 3.27 

(m, 1H, H31), 3.18 (m, 3H, H50), 3.15 (m, 1H, H40), 3.03 (m, 1H, 

H6), 2.82 (m, 1H, H39), 2.79 (m, 1H, H33), 2.50 (m, 2H, H33, H25), 

2.42 (m, 1H, H23), 2.15 (m, 1H, H3), 2.02 (m, 1H, H11), 1.90 (m, 

1H, H38), 1.76 (m, 1H, H41), 1.73 (m, 3H, H47), 1.72 (m, 1H, H15), 

1.69 (m, 1H, H35), 1.68 (m, 1H, H4), 1.65 (m, 3H, H44), 1.59 (m, 

1H, H3), 1.58 (m, 1H, H12), 1.56 (m, 2H, H13, H42), 1.52 (m, 1H, 

H12), 1.51 (m, 1H, H5), 1.40 (m, 2H, H15, H24), 1.39 (m, 1H, H5), 

1.38 (m, 1H, H4), 1.29 (m, 1H, H13), 1.27 (m, 1H, H41), 1.26 (m, 

1H, H37), 1.09 (m, 1H, H36), 1.03 (m, 1H, H24), 0.99 (m, 3H, H45), 

0.95 (m, 1H, H36), 0.90 (m, 3H, H48), 0.86 (m, 3H, H46), 0.85 (m, 

1H, H42), 0.79 (m, 3H, H49), 0.73 (m, 3H, H43), 0.57 (m, 1H, H38). 
13C NMR (400 MHz, DMSO) : 210.2 (C26), 207.9 (C32), 199.1 

(C9), 169.4 (C1), 167.0 (C8), 156.3 (C55), 155.7 (C53), 137.2 (C17), 

138.3 (C22), 137.2 (C29), 131.5 (C20), 130.4 (C21), 128.3 (C57), 

127.7 (C58), 127.6 (C19), 127.4 (C56), 124.4 (C30), 123.3 (C18), 99.0 

(C10), 85.9 (C27), 83.8 (C39), 75.8 (C28), 73.4 (C34), 73.2 (C40), 67.0 

(C14), 65.2 (C54), 56.9 (C50), 56.8 (C51), 53.7 (C16), 51.3 (C2), 44.9 

(C31), 43.8 (C6), 40.4 (C33), 39.9 (C25), 39.6 (C24), 39.5 (C15), 38.4 

(C36), 35.4 (C38), 34.7 (C11), 34.4 (C23), 33.5 (C35), 33.0 (C41), 32.6 

(C37), 31.8 (C13), 31.2 (C42), 26.4 (C3, C12), 24.5 (C5), 21.5 (C45), 

20.5 (C4), 16.0 (C48), 15.6 (C43), 15.0 (C49), 14.1 (C46), 14.0 (C47), 

12.0 (C44).  

(S)-benzyl carbamyl rapamycin: 1H NMR (600MHz, DMSO) : 

7.58 (d, 3J = 9.0 Hz, H52, 1H), 7.34 (m, 2H, H57), 7.32 (m, 1H, H58) 

7.07 (m, 2H, H56), 6.45 (s, 1H, OH10), 6.33 (dd, 3J = 10.8 Hz, 12.4 

Hz, 1H, H19), 6.19 (dd, 3J = 10.2 Hz, 12.4 Hz, 1H, H20), 6.12 (dd, 3J 

= 10.2 Hz, 12.8 Hz, 1H, H21), 6.01 (d, 3J = 10.8 Hz, 1H, H18), 5.49 

(dd, 3J = 8.8 Hz, 12.8 Hz, 1H, H22), 5.28 (m, 1H, OH28), 5.10 (m, 

1H, H30), 5.03 (m, 1H, H54), 4.98 (m, 1H, H34), 4.95 (d, 3J = 4.9 Hz, 

1H, H2), 4.59 (d, 3J = 4.38 Hz, 1H, OH40), 4.11 (m, 1H, H16), 4.01 
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(m, 1H, H28), 3.87 (m, 1H, H27), 3.86 (m, 1H, H14), 3.42 (m, 1H, 

H6), 3.32 (m, 4H, H31, H51), 3.21 (m, 1H, H6), 3.18 (m, 1H, H40), 

3.16 (m, 3H, H50), 2.83 (m, 1H, H39), 2.76 (m, 1H, H33), 2.50 (m, 

2H, H33, H25), 2.23 (m, 1H, H23), 2.08 (m, 1H, H3), 2.02 (m, 1H, 

H11), 1.92 (m, 1H, H38), 1.88 (m, 1H, H15), 1.76 (m, 1H, H41), 1.74 

(m, 3H, H47), 1.69 (m, 1H, H35), 1.68 (m, 3H, H44), 1.65 (m, 1H, 

H4), 1.62 (m, 1H, H3), 1.54 (m, 3H, H5, H12, H13), 1.53 (m, 1H, 

H42), 1.45 (m, 1H, H12), 1.39 (m, 1H, H4), 1.37 (m, 1H, H15), 1.36 

(m, 1H, H24), 1.31 (m, 1H, H5), 1.30 (m, 1H, H37), 1.26 (m, 2H, H13, 

H41), 1.12 (m, 1H, H36), 1.08 (m, 1H, H24), 0.99 (m, 3H, H45), 0.96 

(m, 1H, H36), 0.89 (m, 3H, H48), 0.86 (m, 1H, H42), 0.85 (m, 3H, 

H46), 0.79 (m, 3H, H49), 0.75 (m, 3H, H43), 0.60 (m, 1H, H38). 
13C-

NMR: 210.8 (C26), 207.7 (C32), 198.8 (C9), 169.2 (C1), 166.9 (C8), 

156.4 (C55), 155.6 (C53), 139.1 (C17), 138.7 (C22), 137.2 (C29), 

131.8 (C20), 130.5 (C21), 128.3 (C57), 127.7 (C58), 127.6 (C19), 

127.4 (C56), 125.1 (C30), 125.0 (C18), 98.8 (C10), 85.9 (C27), 83.9 

(C39), 75.9 (C28), 73.8 (C34), 73.3 (C40), 67.0 (C14), 65.2 (C54), 57.2 

(C50), 56.8 (C51), 53.4 (C16), 50.8 (C2), 45.4 (C31), 43.6 (C6), 39.7 

(C24), 39.6 (C33), 39.3 (C25), 38.7 (C15), 38.3 (C36) 35.5 (C38), 34.9 

(C11, C23), 33.4 (C35), 33.0 (C41), 32.8 (C37), 31.3 (C13, C42), 26.4 

(C3, C12), 24.5 (C5), 21.7 (C45), 20.5 (C4), 15.7 (C43), 15.5 (C48), 

14.9 (C49), 13.7 (C46), 13.4 (C47), 12.1 (C44).  

C16-butyl carbamyl rapamycin (7b): Flash chromatography 

gave 79 mg as a mixture of two diastereomers (73% yield; 51:49 

ratio). Mixture of diastereomers: ESI-MS m/z: 1141.83, 1097.80, 

1021.59, 979.59, 699.38, 619.44, 351.25, 279.02, 208.13. HRMS 

for C55H86O14N2 [M-Na+]: calcd. 1021.5971, found 1021.5945. 

(R)-butyl carbamyl rapamycin: 1H NMR (600MHz, DMSO) : 

7.43 (d, 3J = 7.8 Hz, 1H, H52), 6.36 (dd, 3J = 10.7 Hz, 12.3 Hz, 1H, 

H19), 6.34 (s, 1H, OH10), 6.17 (dd, 3J = 11.0 Hz , 12.3 Hz, 1H, H20), 

6.13 (dd, 3J = 11.0 Hz, 12.3 Hz, 1H, H21), 6.01 (d, 3J = 10.7 Hz, 1H, 

H18), 5.50 (dd, 3J = 9.8 Hz, 12.3 Hz, 1H, H22), 5.23 (d, 3J = 4.1 Hz, 

1H, OH28), 5.22 (d, 3J = 11.1 Hz, 1H, H30), 5.09 (m, 1H, H34), 4.95 

(d, 3J = 5.1 Hz, 1H, H2), 4.59 (d, 3J = 4.53 Hz, 1H, OH40), 4.07 (m, 

1H, H28), 4.03 (m, 1H, H27), 3.95 (m, 1H, H16), 3.93 (m, 2H, H54), 

3.86 (m, 1H, H14), 3.57 (m, 1H, H6), 3.30 (m, 3H, H51), 3.26 (m, 

1H, H31), 3.18 (m, 3H, H50), 3.16 (m, 1H, H40), 3.03 (m, 1H, H6), 

2.81 (m, 1H, H39), 2.78 (m, 1H, H33), 2.50 (m, 1H, H33), 2.35 (m, 

1H, H25), 2.25 (m, 1H, H23), 2.16 (m, 1H, H3), 2.02 (m, 1H, H11), 

1.91 (m, 1H, H38), 1.76 (m, 1H, H41), 1.73 (m, 3H, H47), 1.72 (m, 

3H, H15, H55), 1.69 (m, 1H, H35), 1.68 (m, 1H, H4), 1.67 (m, 3H, 

H44), 1.61 (m, 1H, H3), 1.57 (m, 1H, H13), 1.53 (m, 3H, H5, H12), 

1.52 (m, 3H, H42, H55), 1.45 (m, 1H, H15), 1.39 (m, 1H, H24), 1.38 

(m, 1H, H4), 1.37 (m, 1H, H5), 1.29 (m, 2H, H56), 1.26 (m, 1H, H37), 

1.25 (m, 1H, H13), 1.17 (m, 1H, H41), 1.09 (m, 1H, H36), 1.03 (m, 

1H, H24), 0.99 (m, 3H, H45), 0.95 (m, 1H, H36), 0.90 (m, 3H, H48), 

0.85 (m, 4H, H42, H57), 0.81 (m, 3H, H46), 0.80 (m, 3H, H49), 0.74 

(m, 3H, H43), 0.57 (m, 1H, H38). 
13C-NMR: 209.9 (C26), 207.8 (C32), 

198.8 (C9), 169.3 (C1), 167.0 (C8), 155.6 (C53), 140.4 (C17), 138.0 

(C22), 136.7 (C29), 130.2 (C21), 127.4 (C19), 124.1 (C30), 123.0 (C18), 

99.0 (C10), 85.2 (C27), 83.6 (C39), 75.5 (C28), 73.2 (C34), 73.0 (C40), 

66.8 (C14), 65.4 (C54), 56.6 (C50), 56.5 (C51), 53.5 (C16), 50.8 (C2), 

44.6 (C31), 43.6 (C6), 39.8 (C25), 39.6 (C33), 39.3 (C15, C24), 38.1 

(C36), 35.0 (C38), 34.4 (C11), 34.2 (C23), 33.2 (C35), 32.8 (C41), 32.7 

(C55), 32.4 (C37), 31.0 (C13, C42), 26.2 (C3, C12), 24.2 (C5), 22.3 

(C56), 21.3 (C45), 20.3 (C4), 15.8 (C48), 15.4 (C43), 15.0 (C44), 14.8 

(C49), 14.7 (C57), 13.7 (C47), 12.6 (C46).  

(S)-butyl carbamyl rapamycin: 1H NMR (600MHz, DMSO) : 

7.25 (d, 3J = 8.8 Hz, 1H, H52), 6.44 (s, 1H, OH10), 6.33 (dd, 3J = 

10.9 Hz, 12.4, 1H, H19), 6.19 (dd, 3J = 10.4 Hz, 12.4, 1H, H20), 

6.12 (dd, 3J = 10.4 Hz, 11.3 Hz, 1H, H21), 6.02 (d, 3J = 11.3 Hz, 1H, 

H18), 5.48 (dd, 3J = 9.5 Hz, 12.4 Hz, 1H, H22), 5.10 (s, 1H, OH28), 

5.09 (m, 1H, H30), 4.99 (m, 1H, H34), 4.96 (m, 1H, H2), 4.59 (d, 3J 

= 4.37 Hz, 1H, OH40), 4.10 (m, 1H, H16), 4.01 (d, 3J = 5.2 Hz, 1H, 

H28), 3.93 (m, 2H, H54), 3.88 (d, 3J = 5.2Hz, 1H, H27), 3.83 (M, 1H, 

H14), 3.44 (m, 1H, H6), 3.32 (m, 3H, H51), 3.31 (m, 1H, H31), 3.23 

(m, 1H, H6), 3.17 (m, 1H, H40), 3.14 (s, 3H, H50), 2.81 (m, 1H, H39), 

2.75 (m, 1H, H33), 2.49 (m, 1H, H25), 2.41 (m, 1H, H33), 2.22 (m, 

1H, H23), 2.09 (m, 1H, H3), 2.02 (m, 1H, H11), 1.91 (m, 1H, H38), 

1.88 (m, 1H, H15), 1.79 (m, 1H, H13), 1.76 (m, 2H, H4, H41), 1.74 

(m, 4H, H35, H47), 1.73 (m, 3H, H44), 1.55 (m, 1H, H5), 1.53 (m, 2H, 

H42, H3), 1.52 (m, 2H, H55), 1.47 (m, 1H, H12), 1.44 (m, 1H, H12), 

1.41 (m, 1H, H24), 1.34 (m, 1H, H15), 1.30 (m, 2H, H4, H5), 1.28 (m, 

1H, H37), 1.26 (m, 2H, H56), 1.24 (m, 1H, H13), 1.16 (m, 1H, H41), 

1.09 (m, 1H, H36), 1.06 (m, 1H, H24), 0.99 (m, 3H, H45), 0.96 (m, 

1H, H36), 0.89 (m, 3H, H48), 0.86 (m, 3H, H57), 0.85 (m, 1H, H42), 

0.84 (m, 3H, H46), 0.79 (m, 3H, H49), 0.75 (m, 3H, H43), 0.60 (m, 

1H, H38). 
13C-NMR: 210.8 (C26), 207.9 (C32), 198.8 (C9), 169.1 

(C1), 166.4 (C8), 155.5 (C53), 138.5 (C22), 137.5 (C17), 131.7 (C20), 

130.2 (C21), 127.1 (C19), 125.0 (C30), 124.9 (C18), 99.0 (C10), 85.5 

(C27), 83.6 (C39), 75.5 (C28), 73.5 (C34), 72.9 (C40), 67.0 (C14), 65.4 

(C54), 57.3 (C50), 56.8 (C16), 56.5 (C51), 50.4 (C2), 45.0 (C31), 43.2 

(C6), 39.5 (C25, C33), 39.3 (C24), 38.2 (C15, C36), 35.1 (C38), 34.6 

(C11, C23), 32.7 (C55), 32.6 (C35, C41), 31.2 (C42), 30.9 (C37), 29.6 

(C5), 28.7 (C13), 26.0 (C3, C55), 25.9 (C12), 22.3 (C56), 21.4 (C45), 

20.3 (C4), 15.4 (C43), 15.3 (C48), 14.7 (C57), 14.5 (C49), 13.5 (C46), 

13.0 (C44), 12.9 (C47). 

 

C16-tbutyl carbamyl rapamycin (7c): Flash chromatography 

gave 85 mg as a mixture of two diastereomers (78% yield; 51:49 

ratio). Mixture of diastereomers: ESI-MS m/z: 1021.60, 999.62, 

897.55, 879.54, 846.51, 412.17, 351.25. HRMS for C55H86O14N2 

[M-Na+]: calcd. 1021.5971, found 1021.5865. 

(R)-C16-tbutyl carbamyl rapamycin: 1H NMR (600MHz, 

DMSO) : 6.98 (d, 3J = 9.0 Hz, 1H, H52). 6.42 (s, 1H, OH10), 6.33 

(dd, 3J = 11.1 Hz, 12.4 Hz, 1H, H19), 6.18 (dd, 3J = 11.9 Hz, 12.4 

Hz, 1H, H20), 6.11 (dd, 3J = 11.9 Hz, 12.4 Hz, 1H, H21), 5.97 (d, 3J 

= 11.1 Hz, 1H, H18), 5.49 (dd, 3J = 9.1 Hz, 12.4 Hz, 1H, H22), 5.11 

(m, 2H, OH28, H30), 5.08 (m, 1H, H34), 4.95 (d, 3J = 4.9 Hz, 1H, 

H2), 4.52 (m, 1H, OH40), 4.08 (m, 1H, H16), 4.07 (m, 1H, H28), 4.05 

(m, 1H, H27), 3.83 (m, 1H, H14), 3.55 (m, 1H, H6), 3.31 (m, 3H, 

H51), 3.26 (m, 1H, H31), 3.18 (m, 3H, H50), 3.17 (m, 1H, H40), 3.00 

(m, 1H, H6), 2.81 (m, 1H, H39), 2.77 (m, 1H, H33), 2.50 (m, 1H, 

H25), 2.43 (m, 1H, H33), 2.23 (m, 1H, H23), 2.11 (m, 1H, H3), 1.92 

(m, 1H, H11), 1.91 (m, 1H, H38), 1.75 (m, 1H, H41), 1.74 (m, 3H, 

H47), 1.70 (m, 1H, H15), 1.69 (m, 1H, H35), 1.67 (m, 1H, H4), 1.66 

(m, 3H, H44), 1.60 (m, 1H, H3), 1.57 (m, 1H, H42), 1.52 (m, 1H, 

H12), 1.50 (m, 2H, H13, H5), 1.42 (m, 1H, H15), 1.40 (m, 2H, H24, 

H12), 1.37 (m, 5H, H5, H4, H55), 1.26 (m, 2H, H37, H13), 1.25 (m, 

1H, H41), 1.09 (m, 1H, H36), 1.03 (m, 1H, H24), 0.98 (m, 3H, H45), 

0.95 (m, 1H, H36), 0.90 (m, 3H, H48), 0.86 (m, 4H, H46, H42), 0.79 

(m, 3H, H49), 0.73 (m, 3H, H43), 0.59 (m, 1H, H38). 
13C-NMR: 

210.1 (C26), 207.7 (C32), 198.8 (C9), 169.2 (C1), 166.9 (C8), 155.0 

(C53), 139.1 (C17), 138.7 (C22), 137.2 (C29), 131.8 (C20), 130.5 (C21), 

127.6 (C19), 125.1 (C30), 125.0 (C18), 98.8 (C10), 85.4 (C27), 83.9 

(C39), 77.6 (C54), 75.9 (C28), 73.8 (C34), 73.3 (C40), 67.0 (C14), 57.2 

(C50), 56.8 (C51), 53.4 (C16), 50.8 (C2), 45.4 (C31), 43.6 (C6), 39.7 

(C24), 39.6 (C33), 39.3 (C25), 38.7 (C15), 38.4 (C36), 35.5 (C38), 34.9 

(C11, C23), 33.4 (C35), 33.0 (C41), 32.8 (C37), 31.3 (C13, C42), 28.3 

(C55), 26.4 (C3, C12), 24.5 (C5), 21.7 (C45), 20.5 (C4), 15.7 (C43), 

15.5 (C48), 14.9 (C49), 13.7 (C46), 13.4 (C47), 12.1 (C44). 

(S)-C16-tbutyl carbamyl rapamycin: 1H NMR (600MHz, 

DMSO) : 7.07 (d, 3J = 9.0 Hz, 1H, H52). 6.39 (s, 1H, OH10) 6.36 

(m, 1H, H19), 6.15 (m, 1H, H20), 6.12 (m, 12.4 Hz, 1H, H21), 5.99 

(m, 1H, H18), 5.51 (dd, 3J = 9.1 Hz, 12.4 Hz, 1H, H22), 5.22 (s, 1H, 

OH28), 5.20 (m, 1H, H30), 4.98 (m, 1H, H34), 4.95 (d, 3J = 5.60 Hz, 

1H, H2), 4.04 (m, 1H, H16), 4.02 (m, 1H, H27), 3.89 (m, 1H, H28), 

3.84 (m, 1H, H14), 3.44 (m, 1H, H6), 3.32 (m, 3H, H51), 3.30 (m, 

1H, H31), 3.20 (m, 1H, H6), 3.17 (m, 1H, H40), 3.15 (m, 3H, H50), 

2.83 (m, 1H, H39), 2.75 (m, 1H, H33), 2.50 (m, 1H, H25), 2.43 (m, 

1H, H33), 2.23 (m, 1H, H23), 2.11 (m, 1H, H3), 2.01 (m, 1H, H11), 

1.91 (m, 1H, H38), 1.83 (m, 1H, H15), 1.76 (m, 1H, H35), 1.74 (m, 

1H, H41), 1.73 (m, 3H, H47), 1.67 (m, 1H, H4), 1.66 (m, 3H, H44), 

1.55 (m, 2H, H5, H13), 1.54 (m, 1H, H12), 1.53 (m, 1H, H42), 1.52 

(m, 2H, H12), 1.51 (m, 1H, H3), 1.40 (m, 1H, H24), 1.39 (m, 1H, H4), 

1.37 (m, 9H, H55), 1.32 (m, 2H, H5, H15), 1.31 (m, 1H, H13), 1.28 

(m, 1H, H37), 1.18 (m, 1H, H41), 1.17 (m, 1H, H36), 1.06 (m, 1H, 

H24), 0.97 (m, 3H, H45), 0.89 (m, 3H, H48), 0.86 (m, 1H, H36), 0.85 

(m, 1H, H42), 0.83 (m, 3H, H46), 0.78 (m, 3H, H49), 0.74 (m, 3H, 

H43), 0.60 (m, 1H, H38). 
13C-NMR: 209.9 (C26), 207.9 (C32), 198.8 
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(C9), 169.5 (C1), 167.0 (C8), 155.2 (C53), 138.2 (C22), 137.8 (C29), 

136.8 (C17), 131.4 (C20), 130.5 (C21), 127.8 (C19), 124.4 (C30), 

123.1 (C18), 99.0 (C10), 85.4 (C27), 83.9 (C39), 77.7 (C54), 75.8 (C28), 

73.4 (C34), 73.2 (C40), 67.3 (C14), 56.9 (C50), 56.8 (C51), 53.7 (C16), 

51.3 (C2), 44.9 (C31), 43.7 (C6), 40.0 (C25), 39.8 (C15), 39.6 (C33), 

39.5 (C24), 38.7 (C36), 35.5 (C38), 35.4 (C11), 34.5 (C23), 33.5 (C35), 

33.0 (C41), 31.8 (C37), 31.3 (C42), 31.2 (C13), 28.3 (C55), 26.5 (C3, 

C12), 24.5 (C5), 21.6 (C45), 20.6 (C4), 16.0 (C48), 15.6 (C43), 15.1 

(C49), 14.1 (C47), 14.0 (C46), 12.1 (C44). 

 

Cell Cultuture and Transfection 

HeLa and HEK293 were cultured in complete Dulbeccos’s 

modified Eagle medium (DMEM) supplemented with 10% heat-

inactivated fetal calf serum (HIFCS), 2 mM L-glutamine (Gln), 

100 units/ml penicillin, 100 g/ml streptomycin (PEST), at 37°C, 

5% CO2. Transfections were carried out with JetPEITM (Polyplus-

transfection) using 2.5 g of total plasmid DNA, according to 

manufacturer’s guidelines. Materials and media for cell biology 

were from Sigma-Aldrich, where not indicated otherwise. 

 

Immune-blot Analysis and Cellular heterodimerization  

For immuno-blot analysis, HEK293 cells were exposed to DMSO, 

rapamycin, (S)-pcRap and (R)-pcRap for 15 min at 37°C, before 

cells were lysed, and proteins were separated by SDS-PAGE. The 

phosphorylation of p70S6K was analyzed using primary antibodies 

against total p70S6K (total S6K; New England Biolabs [NEB]) and 

phosphorylated p70S6K (pS6K, Thr389, NEB) and horseradish 

peroxidase (HRP)-coupled secondary goat anti-mouse or anti-

rabbit antibodies. Protein bands were visualized by enhanced 

chemiluminescence (ECL; Millipore). Statistical analysis was 

performed using GraphPad Prism 6.0c (Student’s t test; two sided, 

non-paired). For microscopy, HeLa cells grown on 12 mm cover 

slips (Menzel) were transfected with expression constructs for 

FKBP12-GFP-CAAX and mutated FRBT2098L-RFP fusion proteins. 

Cells were exposed to DMSO or rapalogs for 15 min at 37°C in 

fully supplemented, complete DMEM medium 24 h after 

transfection, were then washed twice with PBS, fixed with 4% p-

formaldehyde (PFA) in PBS, and mounted in Mowiol (Plüss-

Stauffer) containing 1% Propyl gallate. 

 

Supporting Information (see footnote on the first page of this 

article): Copies of the 
1
H, 

13
C, COSY, HMBC and HMQC NMR 

spectra and HRMS for all final products. 
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 Chemical Inducer of Dimerization 

Rapalogs are valuable tools to 

chemically induce dimerization of 

engineered proteins. A convenient 

synthesis of C16-carbamyl substituted 

rapalogs using sequential Lewis Acid 

activation-decomplexation of the C16-

methoxide provides a path to (R)-pcRap, 

a rapamycin derivative that does not 

interfere with endogenous target of 

rapamycin (TOR) signaling. 
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Results 

Comments to pcRap manuscript:  

The high cell permeability of rapamycin as well as the high rate constants of rapamycin with 

FKBP12[31] (ka = 5.8 × 106 M-1•sec-1) and FKBP12–rapamycin with the FRB domain of 

mammalian target of rapamycin[31] (mTORC1) (ka = 1.7 × 106 M-1•sec-1) allow rapamycin to 

induce dimerization between FKBP12 and FRB with excellent kinetics and efficiency.  

Speed as well as the efficiency of the HaXS-induced dimerization is lower compared to the 

rapamycin CID. Even the amount of HaXS-induced dimerization exceeds values required for 

many applications such as manipulation of surface receptor, which recruits cytosolic signaling 

molecules[67]; some applications require a faster and more efficient dimerization. However, as 

rapamycin interferes with endogenous signaling pathways, the utility of the rapamycin CID is 

limited for some applications.  

To overcome the effect of the rapamycin-induced mTORC1 inhibition, rapamycin analogs (so-

called rapalogs) were developed, in which the interface of rapamycin that interacts with the 

endogenous FRB domain is synthetically equipped with a bulky substituent in order to abolish 

binding to the wild type FRB domain. To restore the dimerizing potency of the rapalogs, a 

mutated FRB domain (Thr2098Leu), which displays a compensatory cavity that 

accommodates the binding of the bulky substituent is used in combination with these 

rapalogs. Overall, these rapalogs should be devoid of inhibitory effects towards mTORC1, but 

still be able to dimerize fusions of FKBP12 and the mutated FRB domain (Thr2098Leu)[38]. 

The successful use of several rapalogs such as iRap and AP21967 were reported[39]. 

However, we analyzed the activation status of mTORC1, through analyzing the 

phosphorylation status of an mTORC1 downstream substrate, the ribosomal protein S6 

kinase (S6K). Exposure of HEK283 cells with 0.5 µM iRap for 60 min, resulted in a clear 

downregulation of pS6K1 at Thr389 (as compared to the DMSO control), revealing that iRap 

interferes with mTORC1 (Fig 1). 

 
Figure 1. HEK293 cells were exposed to DMSO, 0.5 µM rapamycin resp. 0.5 
µM iRap in complete medium for 60 min at 37°C before cells were lysed and 
proteins were subjected to SDS-PAGE and immune blotting using antibodies 
against tubulin and phosphorylated S6K (pS6k1 Thr389). Experiment 
performed by Dominik Erhart. iRap  kindly received from Tom Wandless. 
 
 
 
 
 

 
Furthermore, the effect on mTORC1 kinase activity by iRap and another commonly used 

rapalog AP29167 was determined through the determination of the IC50 values in HEK293 

cells. Surprisingly, the results revealed that both rapalogs inhibit mTORC1 (IC50 = 0.1 nM for 

rapamycin, IC50 = 5 nM for iRap and IC50 = 10 nM for AP29167)[40], either due to impurities of 

rapamycin or rapamycin-byproducts, or an undefined spatial orientation of the bulky group at 

the C16 position.  
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Comments to pcRap manuscript:  

The high cell permeability of rapamycin as well as the high rate constants of rapamycin with 

FKBP12[31] (ka = 5.8 × 106 M-1•sec-1) and FKBP12–rapamycin with the FRB domain of 

mammalian target of rapamycin[31] (mTORC1) (ka = 1.7 × 106 M-1•sec-1) allow rapamycin to 

induce dimerization between FKBP12 and FRB with excellent kinetics and efficiency.  

Speed as well as the efficiency of the HaXS-induced dimerization is lower compared to the 

rapamycin CID. Even the amount of HaXS-induced dimerization exceeds values required for 

many applications such as manipulation of surface receptor, which recruits cytosolic signaling 

molecules[67]; some applications require a faster and more efficient dimerization. However, as 

rapamycin interferes with endogenous signaling pathways, the utility of the rapamycin CID is 

limited for some applications.  

To overcome the effect of the rapamycin-induced mTORC1 inhibition, rapamycin analogs (so-

called rapalogs) were developed, in which the interface of rapamycin that interacts with the 

endogenous FRB domain is synthetically equipped with a bulky substituent in order to abolish 

binding to the wild type FRB domain. To restore the dimerizing potency of the rapalogs, a 

mutated FRB domain (Thr2098Leu), which displays a compensatory cavity that 

accommodates the binding of the bulky substituent is used in combination with these 

rapalogs. Overall, these rapalogs should be devoid of inhibitory effects towards mTORC1, but 

still be able to dimerize fusions of FKBP12 and the mutated FRB domain (Thr2098Leu)[38]. 

The successful use of several rapalogs such as iRap and AP21967 were reported[39]. 

However, we analyzed the activation status of mTORC1, through analyzing the 

phosphorylation status of an mTORC1 downstream substrate, the ribosomal protein S6 

kinase (S6K). Exposure of HEK283 cells with 0.5 µM iRap for 60 min, resulted in a clear 

downregulation of pS6K1 at Thr389 (as compared to the DMSO control), revealing that iRap 

interferes with mTORC1 (Fig 1). 

 
Figure 1. HEK293 cells were exposed to DMSO, 0.5 µM rapamycin resp. 0.5 
µM iRap in complete medium for 60 min at 37°C before cells were lysed and 
proteins were subjected to SDS-PAGE and immune blotting using antibodies 
against tubulin and phosphorylated S6K (pS6k1 Thr389). Experiment 
performed by Dominik Erhart. iRap  kindly received from Tom Wandless. 
 
 
 
 
 

 
Furthermore, the effect on mTORC1 kinase activity by iRap and another commonly used 

rapalog AP29167 was determined through the determination of the IC50 values in HEK293 

cells. Surprisingly, the results revealed that both rapalogs inhibit mTORC1 (IC50 = 0.1 nM for 

rapamycin, IC50 = 5 nM for iRap and IC50 = 10 nM for AP29167)[40], either due to impurities of 

rapamycin or rapamycin-byproducts, or an undefined spatial orientation of the bulky group at 

the C16 position.  
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Overall, these data revealed once more that the synthesis and purification of rapalogs is very 

challenging. Already minor contaminations of rapamycin and rapamycin-byproducts (<<1%) 

can inhibit mTORC1 signaling. 

Aim of this project 

In collaboration with Ruben Cal we set out to generate a rapalog CID, which does not 

interfere with mTORC1 signaling and which dimerizes FKBP12 and FRB (Thr2098Leu) fusion 

proteins with excellent kinetics, comparable to the one of the rapamycin CID. Furthermore, 

the synthesized rapalog should be able to be derivatized with functional groups, such as with 

a photocleavable group resulting in a photoactivable rapalog or with a SNAP-tag resp. Halo-

Tag substrate resulting in a trimerizer molecule. 

Adapted protocol 

While repeating the synthesis and purification of (R)-pcRap (performed by Ruben Cal), the 

protocol was slightly changed than the one described in the manuscript. Purification by the 

preparative HPLC was performed with a 90-min linear gradient of 100:0 to 94:6 (CH2Cl2 : 

methanol) and a flow rate of 30 ml·min−1 and not with a 100-min linear gradient of 100:0 to 

92:8 (CH2Cl2:isopropanol) and a flow rate of 30 ml·min−1 as indicated in the manuscript. 

Further analysis by the analytical HPLC was performed with a linear gradient of 100:0 to 96:4 

(CH2Cl2 : methanol) and not with a linear gradient of 100:0 to 96:4  (CH2Cl2 : isopropanol) as 

indicated in the manuscript. Additionally, the established protocol for the purification of (R)-

pcRap is inefficient and need to be further optimized.  

Conclusion 

We successfully develop a novel synthetic route for a rapalog (pcRap), which efficiently 

induces dimerization between FKBP12 and FRB (Thr2098Leu)-fusion proteins while not 

interfering with mTORC1 signaling. Additionally, the (R)-pcRap CID can be used orthogonal 

with the HaXS CID, which enables to control two cellular events in parallel and thus to study 

more complex signaling pathways.  

However, a detailed characterization of (R)-pcRap is missing and further experiments for 

validation of (R)-pcRap are required, such as the determination of the (R)-pcRap stability in 

aqueous solution or a side-by-side comparison of dimerization kinetics of rapamycin and (R)-

pcRap. To determine in vitro rate constants of (R)-pcRap with FKBP and (R)-pcRap-FKBP 

with FRB, Biacore experiments could be performed, which allow measuring protein-protein 

and protein-small molecule interactions in real time. Intracellular dimerization kinetics should 

be compared with the one from rapamycin to get indications on how the introduction of the 

phenyl-carbamate on the rapamycin core affected the cell permeability and the dimerization 

behavior. Alternatively, a PAMPA (parallel artificial membrane permeability assay) could be 

performed in order to determine cell permeability constants of rapamycin and (R)-pcRap. 
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Furthermore, the described protocol for the synthesis and purification of (R)-pcRap is 

inefficient and needs to be optimized. 

The further derivatization of (R)-pcRap in order to develop novel variants of this rapalog such 

as fluorescent or photoactivable variants was not successful. The functionalization either at 

the C40 or C16 position of the pcRap core dramatically lowered the cell penetration abilities 

(data now shown). 

In summary, we developed an alternative CID with fast dimerization kinetics and most 

importantly, which does not interfere with endogenous mTORC1.  

Supplementary Information 

We performed the same experiment as described in the following manuscript (Fig 4a) but with 

increased incubation time of (R)-pcRap (30 min) to analyze whether a longer incubation of 

(R)-pcRap will affect mTORC1 in HEK293 cells. The analysis revealed that also under these 

tested conditions (30 min, 0.5 µM), (R)-pcRap does not interfere with mTORC1 (see Fig S1).  

Furthermore, we analyzed the effect of (R)-pcRap on mTORC1 in A2058 cells. We added (R)-

pcRap for 60 min with an increasing concentration (up to 5 µM) on A2058 cells. The 

phosphorylation status of the ribosomal S6 on Ser235/236 (pS6 S235/236) was analyzed by 

In-Cell Western experiments and revealed that (R)-pcRap does not interfere with mTORC1 

even after 60 min incubation with up to 5 µM (Fig S2). The IC50 value of (R)-pcRap was 

determined to be > 1 μM and the one of rapamycin 0.47 nM, a value comparable to values 

reported in the literature[68]. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure S1. HEK293 cells grown in fetal calf serum 
supplemented media were exposed to DMSO, 0.5 µM 
rapamycin, 0.5 µM (R)-pcRap for times indicated at 37°C, 
before cells were lysed and proteins were subjected to 
SDS-PAGE, and immune-blotting using antibodies against 
total p70S6K (total S6K), and phosphorylated p70S6K 
(pS6K, Thr389). Data represent means ± SEM, n=3; 
difference from DMSO control: ** indicates p<0.01; ns, not 
significant. 
 

 
Figure S2. A2058 cells were grown in 96-well in fetal calf 
serum supplemented media. 24 h later cells were exposed 
for 60 min to rapamycin resp. (R)-pcRap at concentrations 
indicated. Ribosomal S6 phosphorylation on Ser235/236 
(pS6 S235/236) was analyzed by In-Cell Western 
experiments. Data were analysed with GraphPad Prism, 
and represent means ± SEM, n=3. Experiment performed 
by Anna Melone.   
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4. Materials & Methods 

Materials 

AccuGel 29:1, ultra pure (40% acrylamide stock)  National Diagnostics 

Acetic acid      Scharlau 

Agarose      Sigma-Aldrich 

Albumin from bovine serum (BSA)   New England Biolabs 

Ammonium persulfate (APS)    Bio-Rad 

Ampicillin trihydrate     Fluka 

Aprotinin      Fluka 

Bromophenole blue sodium salt    Riedel-de Haen 

Calcium chloride (CaCl2 x 2H2O)    Fluka 

Deoxynucleotides (dNTPs)    Sigma-Aldrich 

Dimethylsulfoxide (DMSO)    Sigma-Aldrich 

DNA AluI marker (low range)    Fermentas 

DNA Lambda molecular weight marker (high range) LabForce 

T4 DNA ligase      NEB 

Ethanol, absolute, HPLC grade    Scharlau 

Ethidium bromide     Sigma-Aldrich 

Ethylene diamine tetraacetate (EDTA)   Fluka 

Fetal calf serum      Sigma-Aldrich 

D (+)-glucose-monohydrate    Fluka 

L-Glutamine, 200mM     Sigma-Aldrich 

Glycerol, anhydrous     Fluka 

Hoechst 33342      Juro Supply 

Hydrochloric acid (HCl)     Merck 

In-Fusion recombinase     Clonetech 

Isopropanol, analytical grade    Scharlau 

Kanamycin sulfate     Fluka 

Leupeptin      Alexis Corporation 

Magnesium chloride hexahydrate (MgCl x 6H2O)  Fluka 

β-mercaptoethanol     Sigma-Aldrich 

Methanol, HPLC grade     Scharlau 

Milk powder (non-fat)     Migros 

Molecular weight marker (14.4 – 167 kDa)  Sigma-Adrich 

Nonident P40 (NP-40)     Fluka 

Paraformaldehyde, powder, 95% pure   Sigma-Aldrich 

Penicillin-Streptomycin solution    Sigma-Aldrich 
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Pepstatin A      Alexis Corporation 

Phenylmethylsulfonylfluoride (PMSF)   Fluka 

Potassium chloride (KCl)    Fluka 

Potassium dihydrogen phosphate (KH2PO4)  Fluka 

Phusion DNA Polymerase    New England Biolabs 

Rapamycin      LC Laboratories 

Restriction enzymes     New England Biolabs 

Sodium azide (NaN3)     Sigma Aldrich 

Sodium chloride (NaCl)     Fluka 

Sodium dihydrogen phosphate dihygrate (Na2HPO4 x 2H2O)Fluka 

Sodium dodecyl sulfate (SDS)    Fluka 

Sodium fluoride (NaF)     Fluka 

Sodium hydroxide (NaOH)    Merck 

Sodium orthovandate (Na3VO3)    Fluka 

Sucrose      Sigma-Aldrich 

N,N,Nʼ,Nʼtetramethylenethylenediamine (TEMED) Bio-Rad 

Trizma Base (Tris)     Sigma-Aldrich 

Trypsin-EDTA solution (10 x)    Sigma-Aldrich 

Tween 20      Fluka 

Water, endotoxin-free     Sigma-Aldrich 

Dimerizer molecules 

HaXS8   synthesized by Olivier Jacques  

  and Florent Beaufils, stock solution 

  in DMSO, chemical synthesis and 

  characterization described in Erhart 

  et al., 2013  

MeNV-HaXS      synthesized by Viktor Hofmann,  

       Ruben Cal and Florent Beaufils, 

       stock solution in  DMSO, chemical 

       synthesis and characterization  

       described in Zimmermann et al., 

       2014  

Rapamycin       LC Laboratories 

pcRap       synthesized by Ruben Cal, stock 

       solution in DMSO, chemical  

       synthesis and characterization  

       described in pcRap manuscript (in 

       preparation) 
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Kits 

Bio-Rad Protein Assay     Bio-Rad 

GenElute Gel Extraction Kit    Sigma Aldrich 

GenElute HP Endotoxin-Free Plasmid Maxiprep Kit Sigma-Aldrich 

GenElute PCR Clean Up Kit    Sigma-Aldrich 

GenElute Plasmid Miniprep Kit    Sigma-Aldrich 

Immobilion Western, Chemiluminescent HRP   Substrate Millipore 

In-fusion Cloning Kit     Clonetech 

JetPEI DNA transfection agent    Polyplus 

Phusion DNA Polymerase and PCR buffer  New England Biolabs 

Restriction endonucleases and NEB buffers  New England Biolabs 

Buffers and solutions 

Blue juice (10x)      80% glycerol, 20% EDTA of 0.5 M 

       pH 8, 1  spatula Bromophenole blue, 

       1 spatula Xylene Cyanol FF 

Coomassie blue staining solution    0.1% Coomassie blue R-250, 50% 

       methanol, 7% acetic acid, 43%  

       ddH2O 

Coomaisse blue destaining solution   90% ethanol, 2% acetic acid, 8% 

       ddH2O 

10 x PBS (phosphate buffer saline)   28.4 g Na2HPO4 x 2H2O, 3.8 g  

       KH2PO4, 3.8 g KCl, 159 g NaCl, pH 

       adjusted to 7.4, filled up to 2 liter 

       with ddH2O, sterilized by autoclaving 

10 x TBS      24.4 g Trizma Base, 80 g NaCl, pH 

       adjusted to 7.6 with HCl, filled up to 

       1 liter with ddH2O 

1 x TBS-T      1 x TBS + 0.1% (v/v) Tween 20, 5 x 

Sample buffer      2.5 ml of 1.25 M Tris-HCl pH 6.8, 1 g 

       SDS, 2.5 ml β-mercaptoethanol, 5.8 

       ml of 87% glycerol, 5 mg  

       bromophenol blue, 35 ml ddH2O, 

       stirred until SDS and bromophenol 

       blue had dissolved and filled up to 

       50 ml with ddH2O 

1M Tris-HCl      121.14 g Tris, dissolved in 800 ml 

       ddH2O  and pH adjusted to 6.8 resp. 

       8.8 with HCl. Volume adjusted to 1 
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       liter with ddH2O. Sterilized by  

       autoclaving. 

Standard lysis buffer     20 mM Tris-HCl pH 8, 138 mM  

       NaCl, 2.7 mM KCl, 5% glycerol, 1% 

       NP-40, 10 x Leupeptin (2mM), 100 x 

       Pepstatin (1.8 mM), 100 x PMSF 

       (100 mM), 100 x Aprotinin (1mg/ml), 

       500 mM NaF, 100 mM Na3VO4 

10 x electrode buffer (Tris-Glycine)   30.3 g Tris-HCl (250 mM Tris-HCl), 

       144.2 g glycine (1.92 M), 10 g SDS 

       (1% SDS), filled up to 1 liter with 

       ddH2O (pH approx. 8.3) 

10 x transfer buffer     250 mM Tris-HCl, 1.92 M glycine, to 

       prepare 1 x transfer buffer, methanol 

       is added to a final concentration of 

       20% (v/v) 

50 x TAE (5 liters)     1.21 kg Trizma Base dissolved in 

       H2O, 500 ml 500 mM EDTA, pH 8 

       and 285.5 ml glacial acetic acid, 

       volume adjusted to 5 liters with  

       ddH2O 

10 x TE pH 7.5      100 mM Tris-HCl pH 7.5, 10 mM 

       EDTA pH 8 

3% paraformaldehyde (PFA) in PBS (20 ml)  18 ml ddH2O and 7.5 µl 1 M NaOH 

       added to 600 mg PFA, stirring on a 

       hot plate until PFA is dissolved, 2 ml 

       10 x PBS pH 6.55 added, mixed, 

       cooled to 37°C and pH adjusted to 

       pH 7.2 

Media and supplements 

LB Miller      10 g NaCl, 5 g yeast extract, 10 g 

       Bacto-Tryptone, 5 ml 1 M NaOH, 

       filled up to 1 liter with ddH2O and 

       sterilized by autoclaving. 

LB Miller agar      LB Miller and 12.5 g agar, after  

       autoclaving, medium cooled down to 

       60°C, appropriate antibiotics added, 

       plate poured and stored at 4°C 
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1 liter SOC      20 g Bacto-Tryptone, 5 g yeast  

       extract, 0.5 g NaCl, 2.5 ml 1 M KCl, 

       10 ml 1 M MgCl2, 200 µl 5 M NaOH, 

       980 ml ddH2O, sterilized by  

       autoclaving, 20 ml sterile 1 M  

       glucose added 

Ampicillin (1000 x)     dissolved 100 mg/ml in ddH2O  

       (1000x stock) 

Kanamycin (1000 x)     dissolved 25 mg/ml in ddH2O (1000x 

       stock) 

Mammalian cell culture media and supplements 

Dulbeccoʼs MEM (DMEM)    Sigma-Aldrich 

Dulbeccoʼs MEM (DMEM) without phenol red  Sigma-Aldrich 

Fetal calf serum (FCS)     Sigma-Aldrich 

100 x L-Glutamine (200 mM)    Sigma-Aldrich 

100 x Penicillin-Streptomycin solution   Sigma-Aldrich 

10 x Trypsin-EDTA solution    Sigma-Aldrich 
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Plasmids 

Name Plasmid Insert Constructor 

pcDNA3_SNAP26m-EGFP_p1417 pcDNA3 SNAP26m-GFP Dominik Erhart 
pEGFP-N3_HT7_p1445 pEGFP-N3 HT7-GFP Dominik Erhart 
pcDNA3_SNAPf-EGFP_1522 pcDNA3 SNAPf-GFP Mirjam Zimmermann 
pEGFP-N3_HT7 L273Y)-GFP_1560 pEGFP-N3 HT7(L273Y)-GFP Mirjam Zimmermann 
pEGFP-C1_GFP-HT7(L273Y)_1551 pEGFP-C1 GFP-HT7(L273Y) Mirjam Zimmermann 
pEGFP-C1_SNAPf_1525 pEGFP-C1 GFP-SNAPf Mirjam Zimmermann 
pEGFP-N3_HA-HT7(L273Y)_1566 pEGFP-N3 HA-HT7(L273Y) Sandra Dehn 
pcDNA3_HA-SNAPf_1567 pcDNA3 HA-SNAPf Sandra Dehn 
pcDNA3_SNAPf-GFP-T2A-
HT7(L273Y)-GFP_1568 

pcDNA3 SNAP-GFP-T2A-HT7(L273Y)-
GFP 

Sandra Dehn 

pcDNA3_SNAPf-GFP-2xT2A-HT7 
(L273Y)-GFP_1587 

pcDNA3 SNAP-GFP-2xT2A-
HT7(L273Y)-GFP 

Sandra Dehn 

pcDNA3_SNAPf-GFP-T2A_1601 pcDNA3 SNAP-GFP-T2A Sandra Dehn 
pcDNA3_SNAPf-GFP-T2A-HT7 
(L273Y)-RFP_1604 

pcDNA3 SNAP-GFP-T2A-HT7(L273Y)-
RFP 

Sandra Dehn 

pEGFP-C1_HT7(L273Y)-RFP-
Giantin_1590 

pEGFP-C1 HT7(L273Y)-RFP-Giantin Mirjam Zimmermann 

pcDNA3_SNAPf-GFP-T2A-Halo-RFP-
Giantin_1602 

pcDNA3 SNAP-GFP-T2A-HT7(L273Y)-
RFP-Giantin 

Sandra Dehn 

pC4EN-F1_SNAPf-GFP-NLS_1593 pC4EN-F1 SNAP-GFP-NLS Mirjam Zimmermann 
pcDNA3_NLS-GFP-SNAPf-T2A-Halo-
RFP 

pcDNA3 NLS-GFP-SNAP-T2A- 
HT7(L273Y)-RFP 

Sandra Dehn 

pC4-RHE_NES-DsRed-HT7(L273Y) pC4-RHE NES-DsRed-HT7(L273Y) Mirjam Zimmermann 
pC4EN-F1<SNAPf-GFP-NLS>_1398 pC4EN-F1 SNAP-GFP-NLS Mirjam Zimmermann 
pcDNA3<HT7(L273Y)-FRB>_1529 pcDNA3 HT7(L273Y)-FRB Mirjam Zimmermann 
pTagRFP<HT7(L273Y)-RFP-
Rheb15> 

pTagRFP HT7(L273Y)-RFP-Rheb15 Mirjam Zimmermann 

pEGFP-C1<LifeAct-mTFP-
SNAPf>_1547 

EGFP-C1 LifeAct-mTFP1-SNAPf Mirjam Zimmermann 

pCDNA3_SNAP26m-EGFP-
CAAX_p1418 
 

pcDNA3 SNAP26-GFP-CAAX Dominik Erhart 

pEGFP-C1_LAMP-RFP-
HT7(L273Y)_1588 

pEGPF-C1 LAMP-RPF-HT7(L273Y) Mirjam Zimmermann 

pEGFP-C1_Tom70-
HT7(L273Y)2x_1717 

pEGFP-C1 Tom70-HT7(L273Y)2x Dominik Buser 

pEGFP-C1_Tom70-GFP-
HT7(L273Y)_1718 

pEGFP-C1 Tom70-GFP-HT7(L273Y)2x Dominik Buser 

pEGFP-C2<SNAPf-GFP-HA-
HRasV12_1630 

pEGPF-C2 SNAPf-GFP-HA-HRasV12 Mirjam Zimmermann 

pCDNA3_2xFKBP12-eGFP-
CAAX_p1440 
 

pcDNA3 2xFKBP12-eGFP-CAAX Dominik Erhart 

pTagRFP_FRB T2098L_p1442 pTagRFP RFP-FRB T2098L Dominik Erhart 
pEGPF-N3<HT7 L273Y-TQ>_1615 pEGPF-N3 HT7 L273Y-TQ Mirjam Zimmermann 
pcDNA3_Mito-SYFP-
HT7(L273Y)_1698 

pcDNA3 Mito-SYFP-HT7(L273Y) Mirjam Zimmermann 

Plasmids, which are not listed here, are descried in the manuscripts Erhart et al., 2013 and Zimmermann et al., 2014. 

Antibodies 

Name Isotype Antigen Source Dilution 
anti-phospho p70 
S6 Kinase Thr389 
(1A5) #9206 

mouse, monoclonal 
IgG2a 

Phospho-p70 S6 
kinase Thr389 

Cell Signaling 
Technology 

Western blot 
(1:2000) 

anti-p70 S6 Kinase 
#9202 

rabbit, polyclonal S6K Cell Signaling 
Technology 

Western blot 
(1:2000) 

anti-phospho-Akt 
Ser473 (193H12) 
#4058 
 

rabbit, polyclonal  
 

Phospho-Akt/PKB 
Ser473 
 

Cell Signaling 
Technology 

Western blot 
(1:2000) 

anti-phospho-Akt 
Thr308 
(244F9)#4056 
 

rabbit, polyclonal  
 

Phospho-Akt/PKB 
Thr308 
 

Cell Signaling 
Technology 

Western blot 
(1:1000) 
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anti-PKB (19G7/C7)  
 

mouse, monoclonal  
 

PKB  
 

Gift from Emilio 
Hirsch 
University of Torino 
(Italy) 
 

Western blot 
(1:1000) 

anti-GFP (mixture of 
clones 7.1 and 13.1) 
 

mouse, monoclonal 
IgG1 
 

GFP  Roche  Western blot 
(1:5000) 

anti-α-tubulin 
(DM1A) #T9026 
 

mouse, monoclonal 
IgG1 
 

α-Tubulin  
 

Sigma  
 

Western blot 
(1:50ʼ000) 

anti-HA.11 (16B12) 
#MMs-101R 
 

mouse, monoclonal 
IgG1 
 

HA  
 

LucernaChem  
 

Western blot 
(1:5000) 
 

Anti pMAPK 
 

mouse, monoclonal   Rabbit IgG Promega 
 

Western blot 
(1:5000) 

Anti MAPK total 
 

rabbit, monoclonal  Mouse IgG  Promega 
 

Western blot 
(1:5000) 

anti-rabbit IgG 
peroxidase 
conjugate #A6154 
 

goat, polyclonal   Rabbit IgG Sigma  
 

Western blot 
(1:5000 

anti-mouse IgG 
peroxidase 
conjugate #A4416 
 

goat, polyclonal  Mouse IgG  Sigma  Western blot 
(1:5000) 

Molecular biological methods 

Agarose gel electrophoresis of DNA fragments 

0.7 to 2% agarose in 1x TAE buffer containing ethidium bromide (0.4 µg/ml) was heated up in 

the microwave and poured on a glass plate. An appropriate comb was inserted and gel was 

cooled down until gel was polymerized. DNA samples were diluted in 10x blue juice and run 

with a molecular size marker (Lambda DNA/EcoRI+HindIII Marker 3 for 0.7% and 1% gels 

and pBR322 DNA/AluI Marker 20, Fermentas for 2% gels). Electrophoresis was performed in 

1x TAE buffer at 70V in electrophoresis chambers (Werkstatt, Institute of Biochemistry 

Fribourg, Switzerland). 

Preparation of competent E.coli cells XL-1 Blue 

Bacteria were grown ON at 37°C on LB-Miller agar plate from which a single colony was 

picked and used to inoculate a pre-culture of 100 ml liquid LB-Miller medium. After incubation 

ON (37°C, 300 rpm) the pre-culture was used to inoculate 1 l LB-Miller medium (1:100 

dilution). The culture was incubated on the shaker until OD600 reached 0.6. The bacteria 

culture was placed for 20 minutes on ice and all the following steps were performed at 4°C. 

After centrifugation for 20 minutes at 3000 rpm (Sorvall RC6+, rotor SLA1500), the bacteria 

pellet was resuspended in 500 ml ice-cold 50 mM CaCl2. Solution is kept a few hours on ice 

while mixing occasionally. Then bacteria were pelleted for 15 minutes at 3000 rpm, and gently 

resuspended in 100 ml precooled 50 mM CaCl2/10% glycerol. Aliquots of 500 µl were 

prepared, flash frozen in liquid nitrogen and stored at -80°C until use. 
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Transformation of competent E.coli cells XL-1 Blue 

CaCl2-competent E.coli cells (XL-1 Blue) were thawed on ice for about 30 minutes. 5 to 7.5 µl 

of the ligation reaction were gently mixed with 100 µl competent bacteria in a sterile 

Eppendorf tube. After 20 min incubation on ice, bacteria were heat-shocked at 42°C for 45 

seconds on a Thermomixer.  After 5 min incubation on ice, 1 ml of 37°C prewarmed SOC 

medium was added to the bacteria and incubated at 37% (250 rpm) for 30-45 min for bacteria 

containing ampicillin resistance or for 40-60 min for kanamycin resistance. Following 

centrifugation (13k rpm, 1 min, RT), the bacteria pellet was resuspended in 100 µl LB-Miller 

medium and plated onto LB-Miller agar plates with the corresponding antibiotic. Plate was 

incubated at 37°C ON. Next day single colonies were picked from the plate and used for the 

inoculation of  liquid cultures.  

General cloning procedures 

Preparation of plasmid DNA 

Plasmid DNA from E.coli was prepared using commercially available kits from Sigma-Aldrich 

(Mini, Maxi) according to the manufactureʼs protocol.  

 

Isopropanol precipitation of DNA 

0.1 volumes of 3 M sodium acetate pH 5.2 and 0.7 volumes of isopropanol were added to 

plasmid DNA received from Maxi preparation in a 50 ml falcon tube. After mixing by inversion 

of the tube, DNA was pelleted by centrifugation (20ʼ000 x g at 4°C for 30 min), rinsed with 1.5 

ml 70% ethanol and centrifuged as before for another 30 min. Pellet was dried at the air until 

it turned white. Then DNA pellet was dissolved in 1x TE buffer. 

 

Restriction enzyme digest 

For analytical purposes 0.5 µg plasmid DNA was digested with 5 Units of restriction enzyme 

for 1 hour at the appropriate temperature in a total volume of 20 µl. For preparative purposes 

2 µg of plasmid DNA or 35 µl of the PCR product was digested with 10 Units of restriction 

enzymes for 1 hour at the appropriate temperature in a total volume of 20 µl.  

 

Ligation of DNA fragments into vectors with T4 DNA ligase 

Ligation of DNA fragments was performed with T4 DNA ligase in a total volume 15 µl. The 

molar ratio of vector and insert was 1:2 up to 1:6 for single insertions and 1:6 for multiple 

insertions. Following reaction setup was used: 

  x µl vector (50-100 ng) 

  x µl insert 

  1.5 µl 10x T4 ligation buffer 

  0.5 µl T4 DNA ligase (400 U/µl) 

Filled up to 15 µl with ddH2O 
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The ligation mixture was incubated for 1-2 hour at RT or ON at 4°C. 5 to 7.5  µl of ligation 

reaction was transformed into CaCl2-competent E.coli. 

 

Insertion of fragments into vector with In-fusion recombinase 

Recombination of DNA fragment and backbone with homologous regions was performed with 

In-fusion recombinase (Clonetech) according to manufacturerʼs protocol. 

Following reaction setup was used: 

 2 µl vector 

 2 µl insert 

 1 µl In-fusion reaction mix 

 5 µl water 

The recombination mixture was incubated for 15 min at 50°C. 5 µl was transformed into 

CaCl2-competent E.coli. 

 

Polymerase Chain Reaction (PCR) 

PCR was performed with the Phusion High-Fidelity Polymerase. The following reaction setup 

was prepared on ice and mixed gently: 

 5x Phusion HF or GC buffer 10 µl 

 MgCl2 (20 mM)   3 µl 

 Template DNA (10 ng/µl) 1 µl 

 dNTPs (10 mM)   1 µl 

 Forward Primer (50 µM)  0.5 µl 

 Reverse Primer (50 µM)  0.5 µl 

 DMSO (optional, if GC > 60%) (1.5 µl) 

 Phusion DNA Polymerase 0.5 µl (final concentration of 1 Unit/50 µl PCR) 

 Nuclease-free water  filled up to 50µl 

PCR was performed on the Professional Trio Thermocycler (Biometra) using the following 

protocol: 

 Initial denaturation of DNA 98°C  120 sec 

 Denaturation of DNA  98°C  10 sec 

 Annealing   45-72°C 20 sec (depending on the sequence) 

 Elongation   72°C  15 sec per 1 kb 

 30 cycles 

 Final elongation   72°C  10 min 

 Cooling    4°C  indefinitively 

After performing the PCR reaction, the product was analyzed by gel electrophoresis. 
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Recombinant protein production 

For recombinant protein production His-eGFP-HT7, His-eGFP-SNAP, His-HT7(L273Y), His-

SNAPf, Halo-eGFP and SNAP-eGFP ORFs were cloned into pTriEx-4 (Novagen) and 

expressed as N-terminal (His)6 fusion proteins, and purified on Ni2+-NTA beads (QIAGEN) 

according to the manufacturerʼs instructions. 

Cell culture methods 

Adherent cell culture (HeLa, HEK293) 

HeLa cells resp. HEK293 cells were cultured with complete DMEM medium (DMEM medium 

supplemented with 10% FCS, 2 mM L-glutamine and 100 U/ml penicillin/streptomycin) at 

37°C in an atmosphere of 5% CO2. The cells were splitted every 2 to 3 days when confluence 

reached 80-90%. 

 

Thawing and freezing of cells 

Frozen cells from the liquid nitrogen tank were thawed in the 37°C water bath before cells 

were resuspended in 10 ml pre-warmed cell culture medium and centrifuged (5 min, 900 rpm, 

RT). The pellet was resuspended with pre-warmed cell culture medium and transferred into a 

cell culture flask. Trypsinized cells were pelleted (5 min, 900 rpm, RT) and resuspended in 

freezing medium (10% DMSO in FCS) at a minimal density of 5-10 x106 cells/ml, transferred 

into 2 ml cryotubes (Nunc) and placed into a freezing container (Nalgene) for 24 hours at -

80°C. The 100% isopropyl alcohol in the freezing container ensures a constant cooling rate of 

1°C/min. Frozen cells are then transferred to the liquid nitrogen tank for long-term storage. 

 

Transfection of cells with JetPei 

Transfection of adherent cells was performed using JetPEITM (Brunschwig) according to the 

manufacturerʼs guidelines. For optimal transfection efficiency cells should be about 50-60% 

confluent.  

Following number of cells were seeded 24 h before transfection was performed:  

 
Culture vessel Number of adherent cells / well Volume of medium per well 
24-well 50 000 Hela 1 ml 
6-well 300 000 – 500 000 HEK293 

100 000 – 300 000 Hela 
2 ml 

 

Preparation of the transfection solutions: 
 DNA solution JetPEI solution 
Culture vessel Amount of DNA 

(µg) 
Volume of 150 

mM NaCl (µl) 
Volume of JetPEI reagent (µl) Volume of 

150mM NaCl (µl) 
24-well 0.5 50 1 50 
6-well 2 50 3 50 
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The DNA solution and the JetPEI solution were gently vortexed for 10 sec. Then JetPEI 

solution was added to the DNA solution, vortexed again for 10 sec. After incubation for 20-30 

min at RT the mixture was added drop-wise onto the cells.  

Biochemical methods 

Intracellular heterodimerization with HaXS8 resp. MeNV-HaXS 

HEK293 resp. HeLa cells co-expressing constructs containing the dimerizing domains were 

exposed to HaXS8 resp. MeNV-HaXS dimerizer stock solutions in DMSO (at concentrations 

from 0.05 µM to 50 µM) for 5 to 60 min at 37°C. DMSO was used as negative control.  

Protein Denaturation, Cell Lysis, and Immune-blotting 

All working steps were performed with pre-cooled reagents and on ice. HEK293 resp. Hela 

cells were washed with ice cold PBS and lysed in a NP-40 lysis buffer (standard lysis buffer 

supplemented with 1% NP-40, 40 mM NaF, 2 mM Na3VO4, 20 mM Leupeptin, 18 mM 

Pepstatin, 5 mM Aprotinin, 1 mM PMSF, 1 mM MgCl2, 1 mM CaCl2). Cell lysates were 

cleared by centrifugation at 13,000 rpm for 15 min. Protein concentration was determined 

using Bradford. Then proteins were denatured by the addition of 5x sample buffer and boiling 

for 6 min at 96°C.  

Protein separation by SDS PAGE gels 

SDS page gels were placed into a Hoefer SE250 Mighty Small II complete electrophoresis 

unit. 10-15 µg proteins were loaded. Three µl of MWM SDS-PAGE marker (Molecular Weight 

Mixture, 14.4 – 167 kDa, Sigma-Aldrich) was loaded per gel. The gels were run at 220 V and 

20 mA per gel for about 60 minutes. 

Equal amounts of proteins were loaded on gels and separated by SDS-PAGE before they 

were transferred to Immobilon PVDF membranes (Millipore). Primary antibodies were used to 

detect proteins by immune-blotting. Secondary antibodies were labeled with horseradish 

peroxidase (HRP)-conjugated goat anti mouse IgG and goat anti-rabbit IgG (Sigma) for 

visualization using enhanced chemiluminescence (Millipore) detected by a CCD camera 

system (Fusion Fx7, Vilber). 

Determination of protein concentrations with Bradford 

Bradford reagent (Bio-Rad) was diluted 1:5 in ddH2O. 1 ml diluted Bradford reagent was 

mixed with 2 µl cell lysate, mixed and incubated for 5 minutes at RT. Absorbance was 

measured in semi-micro cuvettes (1.6 ml, Greiner Bio-One) at 595 nm with a 

spectrophotometer (BioPhotometer, Eppendorf). 
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SDS polyacrylamide gel electrophoresis 

The concentration of the acrylamide in the separating gel was chosen according to the size of 

the proteins to be analyzed. Preparation of 10 gels (8 x 10 x 0.75 cm) was performed in a 

multicasting cassette (Mighty Small SE2000): 
 Separating gel (total 75 ml) Stacking gel (total 30 ml) 
 

7.5% 10% 
Gradient gel 

5% 5% 15% 
Acrylamide Stock (40%) 14.1 ml 18.8 ml 3.1 ml 9.4 ml 4.8 ml 
Distilled H2O 44.9 ml 40.2 ml 16.5 ml 8.3 ml 21.6 ml 
Tris-HCl pH 8.8 15 ml 15 ml 5 ml 5 ml - 
Tris-HCl pH 6.8 - - - - 3 ml 
Sucrose    3.7 g  
10% SDS 750 µl 750 µl 250 µl 250 µl 300 µl 
10% APS 250 µl 250 µl 83.3 µl 83.3 µl 102 µl 
TEMED 37.5 µl 37.5 µl 12.5 µl 12.5 µl 30 µl 

 

SDS, APS and TEMED was added directly before pouring the gels. The separating gel 

solution was prepared first, poured and overlaid with isopropanol. After about 30 minutes the 

separating gel is polymerized. Isopropanol was removed and the gel rinsed with ddH2O. Then 

the stacking gel was prepared, poured on top of the separating gel and 10 resp. 15-slot 

combs were inserted. 

For the preparation of gradient gels, two different solutions for the separating gel were 

prepared (see Table 5). Both solutions were poured simultaneously and mixed by using a 

gradient forming apparatus (Pharmacia). 

Semi-dry-transfer and western blotting 

A PVDF membrane (Immobilion P PVDF membrane, cut 9 x 6.5 cm, Millipore) was activated 

in 100% methanol before soaked together with Whatman papers (cut 9 x 6.5 cm, Macherey & 

Nagel) in 1x Transfer Buffer (25 mM Tris, 192 mM Glycine, 20% methanol, pH 8.3). To 

perform the transfer a sandwich (three Whatman papers, PVDF membrane, gel, three 

Whatman papers) was assembled in a semi dry blotter (Witec AG). The transfer was 

performed at 40 V, 30 W and 65 mA per gel for 75 minutes. After blockage of the membrane 

in 5% milk in TBS-Tween (TBST, 0.1% Tween) for 30 minutes at RT, the membrane was 

incubated with the primary antibody diluted in 5% milk in TBST for 1-2 hours at RT or ON at 

4°C. After three washing steps of 5 minutes in TBST, the membrane was incubated with the 

secondary HRP-coupled antibody (diluted 1:5000 in 5% milk TBST) for 1 hour at RT and 

washed again three times for 5 min. For detection of the horseradish-labeled secondary 

antibodies, the membrane was incubated with 2 ml chemiluminescent HRP substrate 

(Horseradish peroxidase, Immobilion Western, Millipore). The detection was performed with 

the Fusion FX7TM imaging system (analysis software FUSION CAPT). The images were 

processed with Photoshop ImageJ and Canvas11. The quantification was performed using 

ImageJ or the FUSION CAPT software. 
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Microscopy 

Plating and preparation of cells 

For fluorescence microscopy using a laser scanning confocal microscope (Axiovert 200M and 

laser scanning module LSM510 Meta Zeiss), HeLa cells were seeded on 12 mm coverslip in 

24 well plates with 1 ml complete DMEM medium. After 24 hours cells were transfected as 

described before. 

For microscopy using the Operetta HCS microscope, HeLa cells were seeded in 6-well plates, 

transfected and after 24 hours transferred in 96–well plates. Twenty-four hours later cells 

were treated with the heterodimerizer HaXS8 (0.5-1.0 µg/µl) for 15-60 minutes at 37°C or with 

DMSO as negative control. 

Cell fixation 

Cells were washed two times with 1 x PBS and incubated with 3% PFA for 10 minutes at 

37°C. To visualize nuclei, cells were treated with 1 µM Hoechst for 15 min at RT. Afterwards, 

cells were washed two times with 1x PBS and mounted with 37°C pre-warmed Mowiol on 

glass slides (for confocal microscopy) or stored in 1 x PBS (for Operetta microscopy). 

Fluorescence microscopy 

All microscopy pictures were taken with the confocal microscope Axiovert 200M using 40 x, 

63 x or 100 x objectives with oil and operated using LSM510 software (Zeiss). The images 

were processed with ImageJ and assembled with Canvas11. 

To quantify the transfection efficiency microscopy pictures were taken with the Operetta HCS 

Microscope, operated using Harmony and analyzed with Columbus software. 

Microscopic analysis of HaXS-induced dimerization  

See Results part, Protocol Manuscript, STEP 3A (for induction of dimerization in cell lysates) 

or STEP 3B (for induction of dimerization in live cells) 

Microscopic analysis of UV light-induced cleavage of MeNV-HaXS dimers  

See Results part, Protocol Manuscript, STEP 4A (for induction of cleavage in cell lysates) or 

STEP 4B (for induction of cleavage in live cells). 
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5. Discussion 

The understanding of biological systems highly depends on tools available to manipulate 

cellular processes and to assay phenotypic responses. Nowadays, a huge variety of 

molecular techniques are available and intensive research results in successive technological 

advances, which enables interrogation of biological systems under study with increasing 

precision while minimizing off-target perturbations.   

A fundamental way to investigate the role of a protein is to increase or decrease its function 

and observe the response on the cellular system. In principle, each step in the conversion of 

a gene into a protein can be targeted. Genetic techniques targeting DNA (such as site-

specific genome editing or site directed mutations) are robust and specific but suffer from the 

disadvantage of a slow onset of the induced effect as well as from potential compensation 

effects due to redundant pathways. Control over RNA stability through RNAi is faster and 

easier to implement, but the efficiency of knockdowns and the possibility of off-target effects 

limit the utility of this approach[69]. Direct targeting of proteins via small, cell-permeable 

inhibitors or activators offers many advantages. The chemical molecules act rapidly, can be 

applied tunably and additionally can reversibly bind a protein target. However, this approach 

is mainly limited by potential off-target effects[70][71], as well as the availability of specific 

molecules for the protein under study as most proteins do not have high-affinity small-

molecule binding partners. 

A promising strategy is to implement a dimerization system with small molecules in a single 

approach. This combination enables to profit from the specificity and modularity of genetically 

encoded dimerizing domains with the speed of chemical molecule-based approaches[72]. A 

successful example of this strategy is based on small molecules that simultaneously bind two 

protein domains and thereby induces their proximity. These so-called chemical inducers of 

dimerization (CIDs) are powerful tools to manipulate protein localizations in living cells with 

high spatiotemporal precision. Over the last years many different CIDs were developed and 

have successfully been used to control a wide range of cellular events, including various 

signal transduction pathways such as the Ras singaling pathway in T cells[73] or the activation 

of the Raf-1 kinase[74], gene transcription[13], post-translational modification[16], subcellular 

localization of proteins[75] and many more. Each CID system has its own limitations and the 

choice of the CID that suits best to your applications requirements is critical.  

New class of CID based on Halo- and SNAP-tag reactive dimerizers 

We developed a new class of chemical dimerizers based on Halo- and SNAP-tag reactive 

heterodimerizer, called HaXS. The cell-permeable HaXS molecules efficiently induce 

intracellular dimerization of Halo- and SNAP-tagged fusion proteins with high specificity and 

without interfering with endogenous signaling molecules and inducing feedback mechanisms. 

This enables to investigate cellular systems without considering toxic effects induced by the 

136



Discussion 

heterodimerizer molecule, as for example necessary while using the rapamycin CID. 

Rapamycin does not only bind FKBP12 and FRB fusions proteins in the dimerizing 

constructs, but also endogenous FKBP12 and mTORC1. This can induce unwanted side 

effects on the regulation of cell growth, proliferation as well as autophagy[76], rendering the 

interpretation of resulting phenotypes challenging.  

Besides the fast and efficient HaXS-induced dimerization, which does not interfere with 

endogenous signaling pathways, the HaXS CID offers another advantage. The covalent 

reaction of the chemical dimerizer with Halo- and SNAP-tag fusion proteins enables the 

simple monitoring of the dimerization efficiency under denaturing conditions through 

performing immune blots. The most time consuming part while performing experiments with 

the HaXS CID or CIDs in general is the design of new fusion proteins bearing the dimerizing 

domains, which needs careful consideration and optimization for every single application. The 

possibility for a fast evaluation of the dimerization behavior of newly designed constructs 

greatly simplifies analysis and optimization of constructs and cuts down the overall 

experiment time of the CID experiments. In contrast, the dimerization efficiency of CIDs based 

on non-covalent interactions can only be analyzed by microscopic translocation experiments 

or through a time-consuming analysis of expected cellular outputs. To our knowledge, HaXS 

is the only covalent CID that is able to able to link freely diffusible proteins in cells, whereas 

another covalent CID (S-CROSS[45]), only links pre-associated dimerizing proteins in cell 

lysates. 

 Light as regulatory trigger to enable manipulation of protein dynamics with high 
spatiotemporal precision 

Although CIDs are extensively used to study various signaling events, the cellular uptake of 

the chemical molecule limits the spatial and temporal resolution of these tools. In contrast, 

light is an excellent regulatory trigger. Its delivery is immediate and can be applied with high 

spatiotemporal precision. Extensive constructs testing and time-intensive case-by-case 

optimization is required to put single proteins under light control either via genetically or 

chemical incorporation of a light-sensitive module. The indirect control of protein activities 

through a light-induced control of protein localizations with a dimerizer system is a more 

modular approach and the dimerizing domains can be fused to various target proteins. 

Genetically-encoded light-induced (optogenetic) dimerization systems have promising 

features, but existing tools still have limitations such as large protein tags[54][57], requirement of 

an exogenous co-factor[57], slow kinetics[57], sensitivity of accidental exposure to 

environmental light as well as the spectral overlap between activating light and fluorescent 

reporter[55],[56].   

 

Photolabile groups to investigate cellular systems 
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Nitrobenzyl- and coumarinyl-4-methyl derivatives represent both classes of photolabile groups 

suitable to be integrated in biological tools. Photolabile groups involved in studying cellular 

events require the ability to be excited at light at wavelengths higher than 300 nm in order to 

prevent cell damage, have to display a high quantum yield and undergo an efficient photolysis 

reaction. Additionally, the intermediates and products formed during the photolysis reactions 

cannot be cytotoxic or absorb the emitted light[77]. The coumarinyl-4-methyl derivatives are 

especially promising, as this class of photolabile groups display higher extinction coefficients 

and absorption maxima compared to the nitrobenzyl derivatives[77]. Furthermore, coumarinyl-

4-methyl derivatives are suited for two-photon excitation (> 700 nm), and thus enables to 

induce excitation of this group under less toxic conditions.   

Modular synthetic strategy of HaXS enable generation of HaXS derivatives with novel 

features  

The chemical setup of the HaXS dimerizer is modular and the core module linking the Halo-

tag and SNAP-tag substrate building blocks are prepared separately. This enables the 

relatively simple generation of HaXS derivatives with novel properties, through modifying or 

substituting the core module of HaXS with functional groups with novel features. Through the 

substitution of the core module with the photocleavable methyl-6-nitroveratryl (MeNV) group, 

we successfully generated a photocleavable HaXS dimerizer with excellent intracellular 

dimerization kinetics[2]. Furthermore, we developed an alternative photocleavable dimerizer 

based on a coumarin derivative through substituting the core module of HaXS with a 7-

alkoxycoumarinyl-4-methylhydroxyl- group to generate HCM-HaXS. The intracellular 

dimerization and cleavage conditions are comparable to the MeNV-HaXS dimerizer (data now 

shown). Its applicability for two-photon cleavage is under investigation. 

Summing up, the success of the modular synthetic strategy of the HaXS dimerizer is 

exemplified by the successful generation of these two photocleavable dimerizers, which both 

retained the excellent intracellular dimerization kinetics of the starting molecule HaXS8, 

demonstrating that modifications and substitution of the core module of HaXS8 does not 

dramatically affect the intracellular penetration capabilities of the dimerizers.  

In contrast, the chemical derivatization of naturally occurring molecules such as the 

introduction of novel functional groups (for example fluorescent or photoactivable groups) is 

very challenging and already small modifications can dramatically lower their cell penetration 

capabilities. In the most popular CID based on rapamycin, only few positions of the rapamycin 

core (C16, C28, C40) can be functionalized and already additions of small groups at these 

positions can dramatically affect the cell permeability of rapamycin. In this context, rapamycin 

is a less versatile tool than the HaXS CID as the generation of rapamycin derivatives with 

novel functions is very challenging. 
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MeNV-HaXS is a valuable alternative CID, which unifies many advantageous features 

With the development of a photocleavable MeNV-HaXS, we provide a novel tool that 

combines the advantages of a modular system of a CID with the ability to control protein 

dynamics with high spatiotemporal precision by light. The combination of chemical-induction 

and light-induced reversion of the induced dimerization offers the possibility to use MeNV-

HaXS for many different reaction schemes, such as the dimerizer-induced rerouting and 

sequestering of proteins away from their normal site of action, which results in their 

inactivation, analog to the so-called “knocksideway” approach described by Robinson and 

colleagues[29]. In contrast to traditional gene perturbation techniques like gene knockouts and 

knockdowns, the effects of the “knocksideways” occur on a faster timescales. Additionally, 

since proteins are not inactivated through their destruction but through their removal from 

their place of function, these proteins can in principle be re-activated. The use of the 

photocleavable MeNV-HaXS in this conditional protein inactivation approach enables to 

reactivate the inactivated proteins through releasing of trapped proteins upon cleavage of the 

MeNV-HaXS-dimers as well as to observe translocation kinetics of trapped proteins back to 

their normal localization. 

In most present available CIDs, the induced dimerization is not reversible, either due to 

covalent (as in the HaXS8 CID) or high affinity (as in the rapamycin CID) interactions of the 

dimerizer with the respective dimerizing domains. Current strategies to implement reversibility 

in available CIDs are not very promising. Either a sophisticated experimental setup of 

combining two CIDs (Dual translocation strategy[63]), which requires a high effort for the 

construct design or slow dimerization (> 10 min) and/or reversion of the induced dimers (> 10 

min) through replacing the dimerizer molecules with competitor molecules (rCD1[65], TMP[66]), 

limit the applications of these reversible CIDs.  

In contrast, MeNV-HaXS-induced dimer complexes of HaloTag and SNAP-Tag fusion proteins 

can be efficiently cleaved by UV light, which results in the immediate reversion of induced 

dimers or release of anchored proteins.  This enables to control a defined time-window of an 

activated status with a clear switch-on and switch-off point and thus to reversibly control 

signaling events and to adjust the duration of an induced signaling event or a cellular 

response, which are important prerequisites to reproduce physiological cellular events.  

Furthermore, the big choice of light sources that can be used to induce photocleavage of 

MeNV-HaXS (fluorescent lamp, 355 nm FRAP lasers, 405 nm laser or a bulk UV lamp) 

makes the MeNV-HaXS system applicable to many labs. Additionally, the choice between 

global and local illumination opens a wide range of applications, such as the study of 

subcellular compartment-associated signaling and the simulation of cell-wide signaling 

dynamics. Furthermore, since there is no spectral overlap between the excitation wavelength 

(355 nm) and the imaging of commonly used fluorescent reporters, most available fluorescent 

proteins can be integrated in the MeNV-HaXS CID. In contrast, some optogenetic dimerizer 

systems require blue light to induce dimerization[55-57], which dramatically limits the choice of 
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fluorescent reporters compatible with these systems. Furthermore, MeNV-HaXS-induced 

dimers are stable over a long time (tested up to 8 h) and not affected through exposures to 

ambient light, thus there is no need to perform experiments in dark, as it is the case while 

performing experiments with some of the optogenetic dimerizer system[57]. Due to the short 

illumination required to induce cleavage of MeNV-HaXS, no phototoxic effects on cells are 

expected. However, to exclude any off-target effects induced by UV light, the light-insensitive 

HaXS8, which displays comparable intracellular dimerization properties as MeNV-HaXS, can 

be used as internal control. 

Simulation of HaXS-induced dimerization reaction reveals important features of the HaXS 

CID and CIDs in general 

Besides these advantages of the HaXS CID, the non-directed reaction mechanism as well as 

the fact that only the reaction pathway in which HaXS first reacts with the HaloTag protein 

yields in efficient dimer formation limits the overall dimerization performance of the HaXS CID. 

However, the simulation of HaXS-induced dimerization reactions under various conditions, 

revealed important insights into the mechanism of the HaXS CID and CIDs in general. 

Through increasing the ratio of the SNAP-tag rate constant to the HaloTag rate constant and 

through defining the optimal HaXS concentration, the dimerization performance of the HaXS 

CID can be dramatically improved. In this context, we demonstrated that depending on the 

targeted application, the use of a slower variant of the commercially available HaloTag (HT7), 

can results in better outcomes than HT7, which was optimized for fast ligand labeling. 

We investigated various strategies to prevent the integration of HaXS into the HaloTag 

channel, which blocks its further reaction with the SNAP-tag and thus results in a non-

functional reaction pathway of the HaXS CID. None of the analyzed approaches, such as the 

generation of caged HaloTag substrates, increasing the length of the chloroalkyl chain of the 

HaloTag substrate or the integration of a more rigid core module in the dimerizer (data not 

shown), could increase the reaction efficiency of saturated HaloTags (HaXS-Halo) with 

SNAP-tags. However, simulation of the HaXS-induced dimerization reactions revealed that 

irrespective of the fact that only one reaction pathway results in efficient dimer formation, 

these optimized tag variant combination (HT7(L273Y) and SNAPf) enables a very high 

dimerization efficiency of the HaXS CID under our tested conditions. 

Alternative CIDs to expand toolbox of existing dimerization systems 

In summary, all CIDs offer their own advantages and the choice of the method that suits best 

to your planned application is critical. As true for all CIDs, the optimization of the systems to 

each single application is necessary. The application of efficient optimization strategies of the 

HaXS CID, such as the simple evaluation of construct performance, choice between two 

background systems to insert the two POIs that will yield in desired expression levels of the 

monomers as well as the choice of different light sources to induce cleavage, enables to 

improve and optimally adjust performance of the HaXS CID to various targeted application. 

140



Discussion 

Summing up, the three dimerizer molecules (HaXS8, MeNV-HaXS, pcRap) definitively 

contribute important additions to the available toolbox of CIDs. We unified many important 

features, which are necessary to reproduce physiological signaling pathways in our CIDs. 

Due to the orthogonal dimerizing domains of the HaXS and pcRap CID, these systems can be 

used simultaneously to control multiple proteins in a single cell and thus greatly improves the 

possible complexity for cellular interrogations. 
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