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Summary 

Background  

Planning for the control of Plasmodium falciparum malaria at the population level demands 

models of malaria epidemiology that provide realistic quantitative prediction of likely 

epidemiological outcomes of a wide range of control strategies. This project applies 

mathematical modeling parameterized both generally and with site-specific field data to 

better understand transmission dynamics of malaria across sites with varying transmission 

intensity and seasonality, primarily the highlands of western Kenya and in the lowlands of 

Zambia's Southern Province. Simulation results explore possible epidemiological scenarios 

for malaria in the presence and absence of a mix of control interventions, and for different 

amounts and patterns of seasonality of transmission. Together with a cost effectiveness 

analysis, results form the basis of recommendations for control programs. 

Methods  

Individual-based stochastic models of malaria epidemiology were developed by the Swiss 

Tropical and Public Health Institute (Swiss TPH). To provide the site-specific parameters 

needed to fit the models to the study areas data on existing entomological, demographic, 

intervention deployment and health systems was gathered from field studies conducted by 

collaborating institutes and a literature review. Model simulations were run on an ensemble 

of models with multiple random seeds on the OpenMalaria simulator. Simulation outputs 

were compared to the observed data from the study areas in order to assess the validity of 

the model and a sensitivity analysis was conducted to address uncertainty. The model was 

then used to predict the impact of different combinations of malaria control interventions, 

and the impact of different seasonal transmission patterns, on impact measures.  

Results and Significance 

The models were able to simulate the transmission patterns of malaria in the study areas of 

western Kenyan highlands and Zambia lowlands and gain insight into the potential impact of 

malaria control interventions currently being un- or under- utilized in these areas.  Despite 

the ability of mathematical modeling to be used to translate between measures of malaria 
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transmission and indicators of disease burden in areas where sparse data renders evidence-

based programmatic decision-making challenging, these models remain largely inaccessible 

to program managers. Results from such models can provide public health officials with 

accurate estimates of transmission, by seasonal pattern, that are necessary for assessing and 

tailoring malaria control and elimination programs to specific settings.  
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1. Introduction 

 

1.1 Current status of malaria control and elimination and burden of disease 

Morbidity and mortality due to malaria has decreased significantly over the past decade. In fact, 

half of malaria endemic countries are on track to meet their target of a 75% reduction in malaria 

cases by 2015 compared to 2000 [1].  This progress can be attributed in large part due to the 

scale-up of commodities-based interventions such as vector control with long-lasting 

insecticide-treated bednets (LLINs), and highly effective malaria treatment in the form of 

Artimisinin combination therapies (ACTs), facilitated by a steep increase in global funding for 

malaria control over the same period [1]. As a result of the achievement of high LLIN coverage 

levels, many malaria endemic countries are focusing on the question of what is the next step in 

order to further drive down transmission and prevalence.  

Successful malaria control remains challenging due to the complex dynamics between 

the human stages of the Plasmodium falciparum parasite, the interaction of the Anopheles 

mosquito with the natural environment, and inequities in access to malaria prevention and 

treatment. These factors, coupled with lessons learned from the Global Malaria Eradication 

Program in the mid-20th century, make it clear that malaria control requires a holistic, context-

specific response with a strong surveillance component in order to be successful. While the 

threats of drug and insecticide resistance are important and identifying mitigation strategies 

critical, of greater short term concern is the gap between available financial resources and what 

is required for effective global malaria control. The Roll Back Malaria Partnership (RBM) 

estimates a gap of US$3.8 billion between 2013 and 2015 alone in order to ensure sufficient 

commodities to achieve universal coverage [2]. Without the certainty of sustaining the recently 

made gains in malaria control achieved by availability of vector control interventions, and with 

the goal of elimination in many minds, it is increasingly important to identify the most cost 

effective combination of malaria control intervention strategies for a given location.  
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1.2 Modeling approach: history and methodology 

Mathematical modeling was first applied to malaria at the turn of the 20th century with Sir 

Ronald Ross’ attempts to explain the dynamics of malaria prevalence [3]. This was accomplished 

with a model that focused on the changing densities of susceptible versus infected mosquitoes 

and susceptible versus infected human hosts and identified population thresholds for 

eliminating malaria rather than the need to eliminate the entire mosquito population in a given 

area [3]. By the 1950’s the concept of the basic reproduction number (R0) in terms of malaria 

(the average number of secondary cases produced by an infectious index case) was defined and 

applied by Macdonald [4], showing that an intervention to reduce the mosquito population (e.g. 

larviciding) has less of an impact on R0 compared to an intervention targeting a reduction in the 

biting rate (e.g. use of bed nets) and the mortality rate of adults. 

 By the end of the 20th century the goal of modeling of malaria evolved into bridging the 

gap between theoretical simulations and decision-making by giving malaria control program 

managers the tools they need to decide on the right mix of control interventions in their 

particular transmission context. Epidemiological, statistical, spatial, and mathematical models 

have not only attempted to predict areas at risk of malaria, but to describe morbidity, mortality, 

cost–effectiveness, and effectiveness of programs following the large-scale roll out of malaria 

control programs in sub-Saharan Africa[5] [6] [7] [8] [9] [10] [11] [12]. Improvements on the 

Ross and Macdonald models beginning with the Garki project in the 1970’s incorporate a latent 

period in the mosquito portion of the model as well as super-infection and acquired partial 

immunity in the human portion of the model improving the estimates of prevalence of 

infectious mosquitoes and age-specific patterns of infection [13] [5]. These models are 

population-based and deterministic where non-linear relationships between factors determine 

whether individuals and mosquitoes are susceptible, infected or infectious resulting in 

approximations of disease dynamics in large populations. While they continue to be useful in 

simulating malaria prevalence in endemic areas, these types of models are less useful for 

modeling heterogeneity of infection, super- infection, immunity, and rare events such as death 

[14]. 
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 More recently, the Swiss Tropical and Public Health Institute (Swiss TPH) developed 

stochastic individual-based models of malaria transmission that focus on simulation of infection 

in individuals and are able to simulate the impact (cost-effectiveness, clinical and 

epidemiological) of a range of intervention options for malaria control [15]. These models are 

part of the larger OpenMalaria project by a team from the Swiss TPH and the Liverpool School of 

Tropical Medicine (LSTM) with financial support from the Bill & Melinda Gates Foundation 

which makes the considerable code base written in C++ accessible to the end user through an 

online wiki. Users are able to carry out predictive simulations either via a downloadable stand-

alone program, via the BOINC volunteer computing platform and semi-automated experiment 

design and analysis, or via a GUI-driven job submission system capable of deploying simulations 

on different computer resources.  

 The OpenMalaria project makes use of a general platform for comparing, fitting, and 

evaluating different models of malaria epidemiology, health systems, economics, and malaria 

interventions, as well as analyzes the uncertainty associated with sets of model predictions. 

These individual-based models are able to combine the elements of simulations of acquired 

partial immunity in individuals based on their age, super-infection, and mortality, which proves 

difficult in deterministic models. They are also able to simulate seasonality of malaria in a way 

not done previously.  

 There remain a few disadvantages to this approach including the numerous simulations 

that need to be run in order to obtain useful predictions, the requirement of many more inputs 

than other models, the difficulty in checking the code and slow running speeds for simulations 

of large populations requiring the use of a volunteer network of computers, and fewer available 

tools to analyze the simulation outputs. Despite the drawbacks, the stochastic approach results 

in the incorporation of chance into predictions and more realistic predictions than deterministic 

models are able to provide. As areas on the fringes of the malaria map approach elimination 

these models can adequately simulate how and when interruption of transmission can be 

expected to occur.  

 



 1. Introduction 

 

4 
 

1.3 Application of OpenMalaria model 

Rationale and strategy for approach 

Evidence from a number of field trials has demonstrated the protective efficacy of malaria 

control interventions (i.e., LLINs, IRS, intermittent preventive treatment of pregnant women 

(IPTp) and infants (IPTi), use of timely diagnosis and correct treatment), providing the rationale 

for support of malaria control programs by the Global Fund for AIDS, TB and Malaria (GFATM), 

the President’s Malaria Initiative and other major funding partners.  Often overlooked, however, 

is the limited range of epidemiological environments in which these trials were conducted and 

the paucity of information on the impact of combinations of these interventions in areas of 

differing intensities of transmission. Moreover, the ability of malaria control program managers 

to make decisions about program design is limited by the difficulty of accurately measuring 

rates of malaria transmission and of monitoring the impact that interventions have on 

transmission. Such information is critical to enable malaria control professionals to decide on 

the optimal and most cost-effective malaria control strategies to use across the full range of 

transmission conditions.  

There currently exists a gap in quantifying transmission in areas without data on 

transmission as measured by the entomological inoculation rate (EIR). By understanding the 

relationships between malaria indices it becomes possible for models to simulate the likely 

range of values in areas of differing transmission intensity without data sources all of the key 

malaria indices. Several study areas are able to provide site-specific malaria transmission rates 

in low/unstable and moderate transmission settings as well as data on the impact of multiple 

years of malaria control interventions representing ideal settings for applying models of malaria 

transmission to translate results into evidence-based decision making for malaria control 

program managers. 

This project addresses the identified gaps by (i) calibrating different malaria indicators 

broadly across different patterns of seasonality to identify the best way of quantifying 

transmission for the purposes of specifying the seasonal patterns to drive the existing models, 

(ii) applying the Swiss TPH-developed individual-based stochastic models of malaria to malaria 
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transmission consortium (MTC) sites with transmission data to simulate the epidemiologic and 

economic impact of a range of malaria control strategies, and (iii) providing this information to 

the community of professionals who help make malaria control decisions both in the study 

areas and beyond. 

 

1.4 Collaborating partners and study areas 

Overview of the Malaria Transmission Consortium (MTC) 

The MTC was founded in 2007 in partnership with the University of Notre Dame, the Swiss TPH, 

the London School of Hygiene and Tropical Medicine (LSHTM), the Liverpool School of Tropical 

Medicine (LSTM), the Center for Disease Control and Prevention (CDC), the Ifakara Health 

Institute (IHI), and the Indonesia Malaria Control Program (IMCP) with funding from the Bill and 

Melinda Gates Foundation in response to calls for innovative and validated methods for 

monitoring and evaluating large-scale vector control interventions. The overall goal of MTC was 

to enable operational program managers to achieve optimal implementation of transmission-

reducing malaria control techniques by (i) developing meaningful measures of malaria 

transmission, (ii) assessing the effectiveness of various combinations of specific malaria control 

techniques under different epidemiological conditions, and (iii) assessing the actual effects on 

malaria control of some of the more widely observed biological phenomena like vector 

resistance to insecticides or different patterns of vector behavior. 

 The MTC strategy was to understand the dynamics of transmission across a range of 

epidemiological zones in order to (i) determine the value of simple field measures as predictors 

of this underlying dynamic system, (ii) assess the impact of specific interventions alone or in 

combination in these zones, and (iii) provide this information publicly to inform the 

development and implementation of malaria control programs. MTC worked in six nations on 

two continents with a wide range of epidemiologically distinct patterns of malaria transmission. 

MTC partner countries include Kenya, Tanzania, Zambia, and Indonesia, in addition to the 

Solomon Islands and Mali which joined the consortium in 2011.  
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 The role of the Swiss TPH within the consortium was to twofold. Firstly, to produce site-

specific stochastic simulation models of the dynamics of malaria, to validate these models by 

comparing predictions with observed data on impact (epidemiological and entomological), and 

to use them to predict the likely impact of intervention programs on entomological and 

epidemiological measures. Secondly, to use these same models to develop a system for 

predicting patterns and intensity of P. falciparum transmission in terms of the seasonal pattern 

of the EIR and its degree of heterogeneity.   

 Much of the work contained in this thesis builds on the MTC objectives described above, 

focusing on Rachuoyno South, a District in the former Nyanza Province in the highlands of 

western Kenya. This district lies on a “fringe” transmission area between Lake Victoria and the 

western highlands with altitudes from 1,400-1,600 meters above sea level. Due to the altitude 

and its associated temperature and rainfall the area supports low endemicity with marked 

seasonal variations in transmission and seasonal inter-annual variability [16] [17]. Recent 

evidence suggests the vector composition and biting behavior in the area has changed following 

sustained coverage of LLINs [18] shifting away from Anopheles gambiae and towards vectors 

biting outdoors and earlier in the evening [19]. The main control methods used today in the 

epidemic highland areas include mass-distribution of long-lasting insecticide-treated nets 

(LLINs), annual deployment of IRS using pyrethroids, and prompt and effective treatment of 

malaria using artemether-lumefantrine (AL) [20] [21].  

 Faced with potential change in vector population in this area of reduced transmission, 

and paired with recent entomological and epidemiological studies, a micro-simulation approach 

was useful at examining the effects of different intervention combinations. Experiment design 

and parameterization of the OpenMalaria model based on the context of Rachuonyo South 

District was conducted through collaboration with LSHTM and CDC/Kenya Medical Research 

Institute (KEMRI), which involved face to face meetings in London and a visit to Kenya which 

included a presentation to the MTC staff on how the modeling component fit in to the project 

goals, a workshop on parameterization and experiment design, and observation of the 

implementation of the 2011 entomological study and general operations of the study area.   
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Overview of MACEPA & Zambia 

The Malaria Control and Evaluation Partnership in Africa (MACEPA), a program at PATH, has 

partnered with national governments and ministries of health in sub-Saharan Africa to control 

malaria since 2005. In partnership with the Zambia National Malaria Control Centre (NMCC), the 

goal in Southern Province, Zambia is to reduce transmission through increased access to 

diagnostics and treatment, maintenance of high levels of coverage with LLINs and IRS, and a 

range of surveillance methods [22]. This lowland province borders Lake Kariba and with a 

population of approximately 250,000 individuals and features a wide range of transmission 

intensities up to 18.6 infectious bites per person per year [23]. Beginning in 2011 the NMCC is 

currently piloting a three year test and treat campaign to aid local communities in identifying 

the levels of malaria and to determine if rigorous community testing and treatment of 

individuals with positive tests results in marked reduction of community level malaria [24].  

Because AL is the first line treatment for malaria in Zambia in addition to being used as 

the drug of choice for this program, and because the trial design is unable to test all the possible 

options for roll out of this campaign, MACEPA staff in Atlanta, Washington, DC and Lusaka 

worked with the Swiss TPH and other modeling groups to assess the effectiveness of different 

operational strategies of the test and treat campaign. Simulation results and implications for the 

program were presented at the Zambia National Health Research Conference in Lusaka, Zambia 

in October 2013 and discussed with MACEPA program staff at a corresponding protocol 

development meeting for subsequent phases of the test and treat study design. 

 

1.5 Objectives and outline 

The goal of this project is to apply individual-based stochastic models of malaria to field sites so 

as to better understand transmission dynamics of malaria in different settings and to explore 

possible scenarios with different control interventions and strategies. This is accomplished 

through the following objectives: 
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 Investigate to what extent individual-based stochastic models can simulate the dynamics 

of malaria by applying OpenMalaria to the context discrete geographical areas, in each 

case adjusted to the measured patterns of transmission, and comparing predictions with 

data on impact collected from the different sites 

 Investigate the likely impact of the current and future potential intervention programs 

on entomological and epidemiological measures in the study areas by applying 

simulation results of different intervention combinations to a costing model in order to 

put the epidemiological impact in the context of longer-term implications for malaria 

control programs 

 Develop an alternative method of quantifying malaria transmission in areas with scarce 

data by simulating the relationships of malaria indicators across different levels of 

transmission and patterns of seasonality 

 

Chapter 2 is an opinion piece setting the stage for basing the thesis on transmission 

estimation. It outlines the argument for why estimating transmission is important in the current 

state of global malaria control and elimination, demonstrates the role mathematical modeling 

can play in estimating transmission and the contexts in which it can be most useful, and 

presents a research agenda to move this approach forward. Parameterization, validation and a 

sensitivity analysis of the OpenMalaria transmission model based on the context in Rachuonyo 

South District, an area of low, unstable malaria transmission in the highlands of western Kenya, 

forms the basis for the content of Chapter 3.  

Chapter 4 takes the validated site-specific parameterization described in Chapter 3 and 

applies the model to an experiment investigating different combinations and implementation 

strategies of malaria control interventions to determine which could have biggest impact on 

reducing malaria burden in the study area. An economic model is attached to simulation results 

providing a cost effectiveness analysis to make results more useful to malaria control program 

managers in western Kenya. The OpenMalaria transmission model is also applied to an 

additional site, the Zambia lowlands bordering Lake Kariba. To inform the ongoing development 

of a field trial, Chapter 5 describes a simulation experiment aimed at determining the 
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effectiveness of different operational strategies at delivering a test and treat campaign. Adding 

novel interventions including single low-dose Primaquine and Ivermectin are compared with the 

current ACT regimen, expanding the available options for human-based interventions in areas 

with high coverage of vector control interventions. 

Because of the challenges with traditional methods of estimating malaria transmission in 

areas where transmission is low presented in Chapter 3, the methods proposed in Chapter 2 are 

then applied to an experiment examining the simulated relationships between malaria 

indicators and across different patterns of seasonality. Chapter 6 proposes a method of 

estimating transmission based on these simulation results and discusses the impact of 

seasonality of transmission on findings. 

The final chapter places the experiments outlined in the previous thesis chapters in 

context, and summarizes limitations of and future research opportunities for OpenMalaria. It 

then discusses the current and potential future role of applied mathematical modeling for 

informing policy decisions, and the ways through which this role can be achieved by the malaria 

modeling community. 
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2.1 Abstract 

Evaluating the effectiveness of malaria control interventions on the basis of their impact on 

transmission is increasingly important as countries move from malaria control to pre-

elimination programs. Mathematical modeling can examine relationships between malaria 

indicators, allowing translation of easily measured data into measures of transmission, and 

addressing key concerns with traditional methods for quantifying transmission. Simulations 

show these indicators are statistically correlated, allowing direct comparison of malaria 

transmission using data collected using different methods across a range of transmission 

intensities and seasonal patterns. Results from such models can provide public health 

officials with accurate estimates of transmission, by seasonal pattern, that are necessary for 

assessing and tailoring malaria control and elimination programs to specific settings. 

 

2.2 From control to elimination: impact on measurement of malaria transmission 

Substantial scale up in intervention coverage over the past decade has resulted in large 

reductions in malaria burden [2], and many malaria programs are considering reorientation 

towards long-term goals of malaria elimination [3]. Such reorientation requires quantitative 

measures of malaria transmission, which becomes more difficult as an area approaches 

malaria elimination. At a time when resources for malaria prevention and research are 

becoming increasingly scarce on both global and local scales, mathematical modeling can 

assist malaria control decision-makers by examining the relationship between transmission 

and more routinely measured indicators for burden of disease, without time- and resource-

intense entomological surveys. In addition, models can efficiently explore the drivers behind 

observed relationships between malaria indicators, such as seasonality and heterogeneities 

in exposure. This method of estimating transmission can help malaria control decision-

makers identify when to change strategy for malaria control interventions.    

 

Overview of the use of models to estimate malaria transmission 

Although areas where malaria is endemic are typically divided into categories of 

transmission such as holo-, hyper-, meso-, and hypoendemic, there is no approach for 

quantifying transmission, either from mosquitoes to humans or vice versa, that is applicable 

everywhere [4-6]. Transmission of Plasmodium falciparum across years or locations often 

cannot be compared because of differing indicators or measurement methods.  
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Mathematical models of malaria have been implemented since the early 20th century 

[7, 8].  Continuing advances in computing power now enable individual-based stochastic 

models to describe seasonality of transmission and capture elements of malaria biology, 

such as acquired partial immunity, superinfection, and impact on mortality, which are 

challenging to include in deterministic models [9-12].  Both statistical and mathematical 

models help to explain and make predictions about the dynamics of malaria epidemiology 

and control. Several reviews examining the range of existing models of malaria transmission 

have been published in recent years [13-16], and fitting such models statistically to field data 

is essential if they are to be useful for large-scale prediction. 

However, there are always limitations to this approach. Models cannot fit perfectly 

to the multitude of observed field data owing to the small proportion of parasites, vectors, 

interventions, and types of acquired immunity in humans that models can cover out of the 

diversity that exists in the malaria-endemic world [17].In addition, it is unethical to explore 

directly the within-host and host-vector dynamics that influence prevalence of clinical 

disease and mortality.  Nevertheless, with proper validation, models still provide a rational 

means of understanding the effects of control interventions on malaria transmission and 

converting between different measures of transmission. 

 

Challenges of entomological measurement of malaria transmission 

Where annual parasite index data are unreliable, entomological measures of transmission 

collected through mosquito capture, such as the entomological inoculation rate (EIR ), are 

the most common measures of transmission.  Despite being widely used, measurement of 

EIR is practicable only in areas of high transmission [4]. 

In areas of low transmission, measuring EIR through entomological studies is not 

feasible because of the difficulty in identifying a sufficient number of sporozoite-positive 

mosquitoes during months without substantial transmission and in catching sufficient adult 

mosquitoes in areas where mosquito abundance is non-uniform [4]. In addition, mosquito 

collection is often implemented only during the rainy seasons that usher in peaks of malaria 

transmission, creating gaps in seasonal transmission data [6, 18]. 

However, this does not mean data on mosquito bionomics are not needed. In fact 

they are essential for planning which vector control interventions are applicable in particular 
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settings. For example, studies conducted in the Kilombero valley of rural Tanzania [19] show 

that, following increased use of insecticide-treated nets (ITNs), vector biting behavior shifted 

outdoors and earlier in the evening. With detailed entomological surveys malaria control 

professionals are able to use this information to tailor vector control interventions to the 

changing context of an area.  

 

Alternative measures of malaria transmission 

It is possible to measure malaria disease burden in a location through indicators such as case 

incidence, hospitalization, or mortality rate [17]. Nevertheless, these depend on the 

performance of the health system and on the immune status of the population, both of 

which are likely to change over the course of an intervention program, making them 

unsuitable for directly monitoring changes over a wide range of transmission intensities. 

These indicators are only indirectly related to transmission; therefore, more direct indicators 

must be employed for transmission measurement, or more elaborate methods are needed 

to translate these into measures of transmission.  

Alternative methods such as estimating EIR equivalents via seroconversion rates [20, 

21] or calculating force of infection (FOI) by combining information from prevalence and 

treatment rates [6] are suitable in low-transmission settings.  Serological measurements 

have been employed as an alternative method of measuring transmission [20-23]. This 

method has been shown to be preferable to entomological methods in areas of low 

transmission [24]; indeed, serological measurements are mainly useful for monitoring 

exposure when transmission is very low [25, 26].  However, serology is unable to provide an 

indication of seasonality of exposure unless estimates are calculated based on samples taken 

on a monthly basis. 

Frequently, the simplest measurable indicator is parasite prevalence derived from 

population-based household surveys. The rate of acquisition of new infections in a 

homogenous human population without superinfection is equal to the prevalence divided by 

the average duration of the infections; this provides a means of estimating FOI, a direct 

measure of transmission [27, 28].  For malaria, however, the same prevalence value can 

result from a wide range of FOI values [29], depending mainly on levels of heterogeneity in 

exposure and on treatment rates when transmission is low. In this situation a simple 
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approximation can be used to estimate FOI from data on prevalence and treatment rates [6, 

12, 28, 30]. This approach may be the best currently-available way to estimate transmission 

from routine data in moderately low-transmission settings

Despite the value of these non-entomological methods in areas of low transmission, 

they are not suitable in areas of high transmission. In areas of high transmission, individuals 

are more likely to be concurrently infected with more than one strain of P. falciparum [31], 

making it difficult to identify which infection results in a clinical episode or to measure FOI.  

 

Using modeling to determine transmission through other malaria indicators 

Most efforts towards a better understanding of the relationships between malaria indicators 

have focused on EIR. Many data compilations, statistical models, and some mathematical 

models have been created to estimate the relationship between EIR and prevalence [32-34], 

FOI [35, 36], seroconversion rate [20-23], uncomplicated disease [18, 37],  severe disease 

[18, 37, 38], and mortality [18, 39] with a reasonable degree of success. In addition, data 

have been collected to determine the relationship between prevalence and severe disease 

[38], prevalence and mortality [40], and severe disease and mortality [39], but there has 

been limited validation of current mathematical  models to these observed relationships.  

Models capturing relationships between indicators can in principle be used to 

address many concerns with available methods of quantifying transmission [5]. Measures 

can be superimposed onto each other to allow comparisons between transmission indicators 

estimated from one measure (e.g., age-prevalence) in one site to values estimated from 

another measure (e.g., EIR) elsewhere.  Such models can thus be used to simulate the likely 

range of values in areas of differing transmission intensity without access to data for key 

measures. Accordingly, in addition to the previously established malaria eradication research 

agenda for modeling (i.e., to understand the dynamics of control interventions) [13], 

mathematical modeling can also contribute towards understanding how various indicators of 

malaria transmission relate to each other, and help fill the gap between what can be 

measured from field studies and what is necessary for adequate planning of malaria control 

and elimination. 

 

2.3 The importance of seasonality: an example of application of the OpenMalaria 
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transmission model 

It is well known that malaria burden differs between age groups [29, 41, 42], yet there are 

numerous potential sources of heterogeneity in disease burden [43]; chief among them is 

seasonality in transmission. Seasonality of malaria can be broadly defined as the 

concentration of transmission within certain seasons.  A commonly used definition for 

seasonality is a threshold of the proportion of transmission that occurs within a certain 

number of consecutive months [44]. This is suitable for areas of high transmission, but a 

more precise definition is lacking.   

Many malaria studies have investigated the relationship between rainfall and one or 

more malaria indicators [42].  Similarly, many transmission models of P. falciparum that 

include seasonality have focused on the association between climatic factors, vector 

abundance, and transmission intensity [45-47]. Although the relationships between the 

indicators themselves in the presence of varying levels of seasonality have been shown to be 

important [18], they are less well understood. 

Simulations of a range of transmission intensities and seasonal patterns using the 

OpenMalaria modeling platform for a periodically forced difference equation model for 

malaria in mosquitoes [48], integrated with an ensemble of  individual-based stochastic 

simulation models for malaria in humans [1], suggest that with equal levels of average   

Figure 1.  Relationship between 
uncomplicated episodes and 
entomological inoculation rate 
(EIR). The estimated relationship 
between annual average EIR and 
annual average uncomplicated 
episodes per person (all ages) for 
hypothetical areas  with constant 
transmission (unbroken line) and 
with a high level of seasonality ( 
dashed line), fitted to simulation 
results using fractional polynomial 
regression.  Details of the models, 
seasonality profiles, and simulation 
methodology behind the fitted 
relationships can be found in Box 1. 
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Figure II. Simulated effect of 
seasonality on the relationship 
between EIR and parasite prevalence. 
Dots represent simulated results for 
annual average EIR by all-age parasite 
prevalence averaged over a 3 year 
period, with (blue) and without (grey) 
seasonality. Lines show the estimated 
relationships with (red dashed) and 
without (red unbroken) seasonality as 
described in Figure IA,B, fitted using 
fractional polynomial regression. 

Figure I. (A) Annual patterns of transmission with seasonality. Lines represent the annual patterns of 
transmission with a high degree of seasonality over a period of 12 months. Colors represent the range of values 
for annual average entomological inoculation rate (EIR) (2.5–49.4) used for these patterns. (B) Annual patterns 
of transmission without seasonality. Lines represent the annual patterns of transmission without seasonality 
(constant transmission) over a period of 12 months. Colors represent the range of values for annual average EIR 
(2.5–49.4) used for these patterns. 

Box 1. OpenMalaria simulations. Simulations referenced in this article employed stochastic simulation 
models of malaria as part of the OpenMalaria platform (see 
http://code.google.com/p/openmalaria/wiki/Start)  based on the simulation of infections in humans 
linked to a deterministic model of malaria transmission between in mosquitoes and humans and to 
models of interventions that are able to simulate the dynamics of malaria in a given population [1]. 
Scenarios were run for one human lifespan to induce an ‘equilibrium’ level of immunity in a population of 
100,000 individuals without exposure to malaria control interventions apart from an existing system of 
case management through the public sector, and repeated with multiple random seeds and an ensemble 
of 14 model variants [17] to address stochasticity and model uncertainty. Results represent simulated 
outputs for all ages averaged over 3 years for levels of annual average EIR ranging from 2.5 to 49.4 
infective bites per person per year, with (Figure IA) and without (Figure IB) seasonal variation. These and 
other mathematical models of malaria can be used to quantify relationships between transmission and 
other indicators of disease burden such as parasite prevalence, as demonstrated in Figure II. 

http://code.google.com/p/openmalaria/wiki/Start
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annual transmission the level of seasonality in a locality affects the relationship between 

transmission and other indicators (Figure 1). As seasonality increases, the effect of EIR on 

other indices increases (Figure 1; Box 1). There is greater stochasticity in simulation results 

for scenarios with a high level of seasonality compared to scenarios with a constant level of 

transmission (Box 1). 

These simulation results need further validation with field data, but they highlight the 

need for transmission data for multiple malaria indicators across areas with diverse seasonal 

patterns of transmission - such as the work done by Cairns et al. [42]  - as opposed to the 

traditional strategy for survey site selection only based on annual average levels of 

transmission [18]. In addition to estimating overall malaria burden, understanding the 

seasonal pattern of malaria transmission is important for planning control interventions, 

including timing the deployment of indoor residual spraying, intermittent preventive 

treatment, and vaccines. 

     

2.4 Limitations of model-based estimates of transmission  

One clear limitation to a model-based approach is that most parameters measuring malaria 

in humans, such as prevalence, show saturation at moderate to high EIRs.  Levels of 

heterogeneity in exposure can then be as important as the absolute value of the EIR in 

determining levels of infection or disease [29].   

Analysis of data from the Kenyan highlands makes it clear that patterns of 

heterogeneity in transmission dominate in low-transmission settings [49]. In addition, age-

patterns of malaria are also affected by spatiotemporal differences in exposure [50-52], 

acquisition of immunity [53], and other within-host dynamics [54] that become more 

important in high-transmission settings [29]. All these factors complicate relationships 

between different measures, but the sensitivity of prevalence estimates to exposure 

heterogeneity is greatest in low-transmission settings because at high levels of average 

exposure most of the population is likely to be infected. 

Models parameterized by fitting to field data can show non-monotonic patterns with 

modeled indicators, such as morbidity rates, rates of severe disease, or malaria-specific 

mortality, peaking at intermediate levels of transmission as a secondary consequence of 
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rapid acquisition of immunity in the highest-transmission areas [43].  This phenomenon was 

widely discussed in the 1990s when there was a concern because of the implication that ITNs 

should therefore not be used in high-transmission settings [55, 56].  No direct evidence from 

the field supported this concern [55, 57]. Recent experience suggests ITN programs will 

substantially reduce transmission in a wide range of settings [2], rendering reconsideration 

of control programs unnecessary; however, this phenomenon presents a serious barrier to 

estimating transmission levels from morbidity rates because the estimated transmission  for 

a given level of clinical disease may not be unique.    

 

2.5 Future perspectives: a proposed research agenda for the application of mathematical 

models of malaria transmission 

Obtaining accurate estimates of transmission, including seasonal patterns in addition to 

average transmission intensities, is critical for tailoring malaria control and elimination 

programs to specific country contexts. There is a need to validate simulation results with 

field data across a range of seasonal patterns in areas with data from a full year.  Comparing 

relationships between indicators for levels of seasonality will allow for a wider application of 

model results for decision-making.  

Another application of mathematical modeling is to examine countries approaching 

‘near-zero deaths’, one of the main objectives of Roll Back Malaria’s Global Malaria Action 

Plan (see http://www.rbm.who.int/gmap/index.html). Without an improvement of case-

management systems, the case-fatality rate per infection increases as transmission 

decreases (Figure 2) as a result of the increased probability of a clinical episode becoming 

severe due to reduced immunity at lower levels of transmission. This makes prompt and 

effective treatment the key to achieving near-zero deaths and further emphasizes the need 

for quality surveillance response as transmission is reduced. More empirical and theoretical 

analyses focused on optimizing surveillance-response systems will aid in accomplishing this 

goal [58].  

http://www.rbm.who.int/gmap/index.html


2.  Estimating malaria transmission through mathematical models 

23 
 

 

 

Further investigation of transmission heterogeneity existing in areas of low 

transmission will provide insight, enabling modelers to simulate elimination scenarios with 

greater accuracy [59]. In addition, models describing the dynamics of Plasmodium vivax 

malaria need to be developed and added to the existing simulation models of P. falciparum 

malaria [1, 10, 11, 60-62] for areas where both parasites are prevalent [63]. 

Properly-validated results from mathematical models can be compiled into a user-

friendly interactive tool that would allow malaria control professionals to enter available 

data on an indicator and obtain the range of likely results for others.  This will help detect 

changes of disease dynamics in a population and assist in the planning and assessment of 

the impact of malaria control interventions. With the call for more targeted and efficient use 

of increasingly scarce resources funding these life-saving interventions, such a tool would be 

useful. 

 

2.6 Concluding remarks 

Accurate measures of transmission are necessary for malaria elimination, yet at the same 

more difficult to collect as transmission is reduced. Measures of transmission cannot be 

standardized across all settings. In addition to statistical models, mathematical models 

provide a means of translating between measures of transmission and other indicators of 

disease burden, with the addition of exploring the impact of heterogeneities in exposure on 

Figure 2. Case fatality-rate 
increases as transmission 
decreases. Dots represent the 
simulated all-age number of 
direct malaria deaths per 1000 
infections by annual average 
entomological inoculation rate 
(EIR). The line shows the 
estimated relationship 
between the variables fitted 
using fractional polynomial 
regression. Details of the 
models, seasonality profiles, 
and simulation methodology 
behind the fitted relationships 
can be found in Box 1. 
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these relationships. The effect of seasonality on the relationships between malaria indicators 

is crucial and must be considered when designing surveys and analyzing data compilations. 

Mathematical modeling can contribute to evidence-based decision-making in the malaria 

control community by filling in knowledge gaps without substantial observational studies. 
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3.1 Abstract 

Background 

Models of Plasmodium falciparum malaria epidemiology that provide realistic quantitative 

predictions of likely epidemiological outcomes of existing vector control strategies have the 

potential to assist in planning for the control and elimination of malaria. This work investigates 

the applicability of mathematical modeling of malaria transmission dynamics in Rachuonyo 

South, a district with low, unstable transmission in the highlands of western Kenya.  

Methods 

Individual-based stochastic simulation models of malaria in humans and a deterministic model 

of malaria in mosquitoes as part of the OpenMalaria platform were parameterized to create a 

scenario for the study area based on data from ongoing field studies and available literature. 

The scenario was simulated for a period of two years with a population of 10,000 individuals 

and validated against malaria survey data from Rachuonyo South. Simulations were repeated 

with multiple random seeds and an ensemble of 14 model variants to address stochasticity and 

model uncertainty. A one-dimensional sensitivity analysis was conducted to address parameter 

uncertainty.  

Results 

The scenario was able to reproduce the seasonal pattern of the entomological inoculation rate 

(EIR) and patent infections observed in an all-age cohort of individuals sampled monthly for one 

year. Using an EIR estimated from serology to parameterize the scenario resulted in a closer fit 

to parasite prevalence than an EIR estimated using entomological methods. The scenario 

parameterization was most sensitive to changes in the timing and effectiveness of indoor 

residual spraying (IRS) and the method used to detect P. falciparum in humans. It was less 

sensitive than expected to changes in vector biting behaviour and climatic patterns.  
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Conclusions 

The OpenMalaria model of P. falciparum transmission can be used to simulate the impact of 

different combinations of current and potential control interventions to help plan malaria 

control in this low transmission setting. In this setting and for these scenarios, results were 

highly sensitive to transmission, vector exophagy, exophily and susceptibility to insecticide, and 

the detection method used for surveillance. The level of accuracy of the results will thus depend 

upon the precision of estimates for each. New methods for analysing and evaluating uncertainty 

in simulation results will enhance the usefulness of simulations for malaria control decision-

making. Improved measurement tools and increased primary data collection will enhance model 

parameterization and epidemiological monitoring. Further research is needed on the 

relationship between malaria indices to identify the best way to quantify transmission in low 

transmission settings. Measuring EIR through mosquito collection may not be the optimal way 

to estimate transmission intensity in areas with low, unstable transmission.   
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3.2 Background 

Rationale for work 

In order to make informed decisions for malaria control, programme managers require 

information on the optimal mix of intervention strategies tailored to specific transmission 

patterns of malaria [1-3]. This information is often unavailable due to the difficulty in measuring 

rates of malaria transmission and determining the impact of control interventions on 

transmission. While the efficacy of individual malaria control interventions in reducing 

morbidity and mortality in western Kenya has been demonstrated by field trials [4, 5], there 

have been fewer studies investigating the effects across a range of transmission intensities or 

for combinations of interventions [6, 7]. 

Since 2008, a number of epidemiological and entomological studies have been carried 

out in Rachuonyo South, Kenya, as part of the Malaria Transmission Consortium (MTC). The 

availability of data from these and other studies presents an opportunity for site-specific 

parameterization of models of malaria transmission. The results of these model simulations can 

be translated into evidence-based decision making for malaria control programme managers. 

This project applies individual-based stochastic models of malaria to MTC sites with 

transmission data to simulate the impact of a range of malaria control strategies. 

 Figure 1: Map of the study area. Map of a) Location and elevation of the study area in Rachuonyo South 
district; and b) Location of Nyanza Province in relation to Kenya 
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Study area 

Rachuonyo South district is situated in 

Nyanza province, bordering Lake 

Victoria in western Kenya (Figure 1) and 

encompasses an area of 930km2. The 

main MTC study site is located in the 

south west of the district and 

represents a highland “fringe” area 

(1,400-1,600 meters above sea level). 

Ethnicity in Rachuonyo South is 

predominantly the Luo ethnic group. 

Residents depend upon farming and 

cattle and goat herding for subsistence. 

Homesteads are distributed broadly 

across a rolling landscape intersected 

with small streams and rivers. Total 

annual rainfall in this area averages 1,200 mm per year (Figure 2) while average daily 

temperatures range from 17-27oC. The area is characterized by generally lo w malaria 

endemicity with marked seasonal and inter-annual variations in transmission [8, 9]. 

 The main malaria vectors in the highlands were previously recorded to be Anopheles 

gambiae sensu stricto, Anopheles arabiensis and Anopheles funestus [10, 11]. In recent years, 

there is evidence that An. gambiae s.s. is disappearing from lowlands Nyanza leaving An. 

arabiensis as the predominant species within the An. gambiae sensu lato complex [12] and An. 

funestus as the primary Plasmodium falciparum vector (Stevenson, personal communication). 

These changes are most likely due to intensive targeting of malaria control interventions, but 

climatic factors may also have played a role [12-14].  

 In western Kenya indoor residual spraying (IRS) campaigns were carried out in the Kericho 

district in the 1940s and Nandi district in the 1950s (using dichlorodiphenyltrichloroethane 

Figure 2: Seasonal patterns of rainfall, estimated EIR, and 
timing of IRS interventions. The rainfall pattern (solid line) 
collected by the weather station at Kogalo Primary School, 
Kowuor Location, Rachuonyo South that informed the 
estimated seasonal pattern of the EIR (dashed line) in 
Rachuonyo South district over the period June 2009 – June 
2010. The black-capped bars indicate the timing of the 2009 – 
2010 deployment of IRS in Rachuonyo South district. 
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(DDT) and dieldrin, respectively). It is thought that malaria transmission was largely eliminated 

from large portions of the highlands as a result [15, 16]. While epidemics re-emerged in the 

1980s [17, 18], it was not until after 2000 that routine, large-scale vector control interventions 

were introduced in these areas.  

 The main control methods used today in the epidemic highland areas include mass-

distribution of long-lasting insecticide-treated nets (LLINs), IRS with pyrethroids, and prompt 

and effective treatment of malaria [19] [20, 21]. Artemisinin-based combination therapy (ACT), 

specifically artemether-lumefantrine (AL) was adopted as the first line treatment drug in 2006 

following a decline in efficacy of sulphadoxine-pyrimethamine (SP) and amodiaquine, the 

previous first and second line treatments, respectively [19]. In 2006 and 2011 Rachuonyo South 

was included within the Kenyan national mass distribution LLIN campaign and distribution 

continues through antenatal clinics, child welfare clinics, and comprehensive care clinics for 

people living with HIV. Since 2005 Rachuonyo South has been targeted for universal coverage of 

IRS once per year in advance of the main transmission season. Different formulations of 

pyrethroid insecticide have been used over the years with lambdacyhalothrin (ICON) used in 

2009, alphacypermethrin (FENDONA) used in 2010, ICON again in 2011, and 2012 started with 

ICON and then switched to deltamethrin.  

 

3.3 Methods 

OpenMalaria transmission model 

A team at the Swiss Tropical and Public Health Institute (Swiss TPH) and Liverpool School of 

Tropical Medicine (LSTM) has developed stochastic simulation models of transmission of 

malaria based on the simulation of infection in individuals that are able to simulate the impact 

(cost-effectiveness, clinical, epidemiological and entomological) of numerous intervention 

strategies for malaria control [22-26]. These models form part of the OpenMalaria platform that 

makes the considerable code base written in C++ freely available online [27]. Users are able to 

carry out predictive simulations either via a downloadable stand-alone programme or via a 

volunteer grid computing resource and semi-automated experiment design and analysis 

platform capable of handling entire experiments of 10,000-100,000 scenarios.  
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Individual infections are simulated by stochastic series of parasite densities, which 

determine an individual’s morbidity and mortality risks as well as their infectiousness to vectors 

[22, 27]. The simulated infections are nested within simulations of individuals in human 

populations, and linked to a model of transmission of malaria between humans and mosquitoes 

and to models of interventions [22, 23, 27]. The transmission model is based on a periodically-

forced difference equation model for malaria mosquitoes feeding on, infecting and getting 

infected from a heterogeneous population of hosts [26]. These dynamics are calibrated by a 

seasonal pattern of EIR for each mosquito species assuming that in the absence of interventions 

EIR seasonality is fixed across years [26]. Simulations are run for one human life span to induce 

an “equilibrium” level of immunity in the population.  Subsequent dynamics are used to predict 

available malaria outcomes, such as patterns of infection in humans or patterns of disease by 

age and season, which can then be compared to field data. 

The details of the methods to build and parameterize the transmission model used in 

this project have been published elsewhere [22-26] and therefore are not covered in this paper. 

In this paper the model components described above are employed to an ensemble of 14 model 

variants for malaria in humans to address stochasticity and model uncertainty [25]. Simulations 

were repeated with multiple random seeds to address parameter uncertainty.  

 

Model parameterization 

The models included in the OpenMalaria platform were initially parameterized from published 

data from Namawala, Tanzania [22-28]; 61 data sets were used to optimize certain parameters 

[22-26]. To update the parameterization for the Rachuonyo South scenario, data collected as 

part of the MTC project in the study area was the first choice to use for the model parameters. 

A description of these studies and how they were used to parameterize the model can be found 

in Additional file 1. 

 

MTC field studies 

A number of field studies were carried out in Kisii and Rachuonyo South districts between 2009 
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and 2011 with the goal of establishing an evidence base to help malaria control programme 

managers monitor malaria transmission and implement and adjust malaria control 

interventions. Data from these studies are currently being analysed and will be described in 

detail in forthcoming publications.  For the purposes of the modelling work described in this 

paper, the datasets used are described in Table 1.  

Table 1. Use of datasets from MTC Field Studies 

Study Timeframe Study population Type and purpose of data used 

Community-based cohort May 2009 – 

June 2010 

3235 people of all ages 

above 6 months 

Monthly malaria prevalence for 

model validation, coverage levels of 

LLINs and IRS for model simulation 

Community-based cross 

sectional 

February 2009 2607 individuals 

Coverage levels of LLINs and IRS for 

district-level sensitivity analysis Community-based cross 

sectional 

July 2009 3587 individuals 

4 x 4 Latin square 

entomological 

2009 - 2010 8 households Vector species distribution for 

transmission model 

Pyrethrum spray catch 

entomological 

September 

2009 - present 

200 households Indoor vs. outdoor vector biting 

behavior in areas with or without 

indoor residual spraying and/or 

insecticide treated nets 

Weather station Continuous Kogalo Primary School, 

Kowuor Location, 

Rachuonyo South 

Seasonality of rainfall and 

temperature to adjust entomological 

parameters 

 

 Where data were not available from MTC surveys, parameter inputs were identified via a 

literature review of publications using the PubMed electronic database using the key words 

“Kenya, Nyanza, Rachuonyo, western Kenya, malaria, Plasmodium falciparum, transmission, 

antimalarials, artemether- lumfantrine, insecticide residual spraying, insecticide-treated nets, 

larviciding, intermittent preventive treatment, modelling, malaria incidence, treatment seeking, 

mosquito resting duration, extrinsic incubation period, Anopheles.” An internet review was also 

conducted on the websites for the Kenyan Ministry of Health, Division of Malaria Control, the 

National Bureaus of Statistics, and the National Demographic Health Surveys. The sources were 
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prioritized in the following strata in order of precedence: study area districts MTC data 

collection, study area districts existing literature, study area provincial data, national level data, 

existing model parameterization. Where more than one data source was found within any one 

stratum the study with the closest site characteristics or, where applicable, date of data 

collection closest to that of the MTC studies was used.  

 To determine the annual average EIR, the transmission parameter in the model, 

seroconversion rates using the MSP-1 antigen were estimated from the July 2009 cross-

sectional survey as described in Drakeley et al. 2005 [29] and derived EIR equivalents were 

calculated as described in Corran et al. 2007 [30]. The average monthly EIR values used to 

calibrate the seasonal pattern of transmission in the scenario were calculated by separating the 

annual average EIR from existing literature for a neighboring district into the monthly 

proportion of rainfall in Rachuonyo South recorded by the Kogalo weather station so that the 

peak malaria transmission month corresponded to one month later than the peak rainfall 

month (Figure 2). Because the annual average EIR is based on serology, the model incorporates 

the overall temperature and humidity effects but excludes the seasonality of these effects.  

 In practice, many of the entomological and health system parameters were based on data 

from elsewhere used in other modelling exercises [26-32] as they are thought to be fairly 

standard across anopheline species and anti-malarials. However, because several entomological 

parameters are sensitive to temperature, particularly the extrinsic incubation period (EIP) and 

mosquito resting duration [33, 34], these values were adjusted for each study area based on the 

average annual temperature collected by the Kogalo weather station. Also, the latest data from 

the study site challenges the assumption that vectors are normally predominantly endophilic 

and endophagic [35]. For the purposes of this experiment, emphasis was placed on overall 

vector biting behaviour rather than simulating individual species. This was due to the design of 

the entomological field studies for which results were available at the time of model 

parameterization that focused on indoor/outdoor species composition and trap evaluation 

rather than the biting behaviour within individual species. The efficacy of LLINs and IRS were 

adjusted to affect the indoor mosquitoes but not the outdoor mosquitoes and the proportion of 

bites on a human compared to other mammals was reduced for the outdoor mosquitoes.  
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 The monitoring measures serving as the outputs simulated by the model were chosen 

based on the indicators of malaria transmission measured by the field studies described above. 

 

Simulation 

Before the main simulation, the scenario was run for one human life span to ensure each 

simulated individual acquired the expected natural immunity for his or her age. The fitting of 

the dynamic EIR in the transmission model to the pre-intervention calibration EIR was done 

during the last five years of the life span simulation. A subpopulation was considered as a cohort 

and received mass drug administration (MDA) at the beginning of the main simulation, to 

“mimic” the MTC cohort study conditions, where participants were given a course of the first-

line malaria treatment upon enrollment into the study to clear any existing malaria parasites. 

Finally, the effect of interventions on epidemiological outcomes of malaria in the full population 

of the study area was simulated for two years.  

 

Validation and sensitivity analysis 

The project addresses uncertainty on three levels: stochasticity, model uncertainty, and 

parameter uncertainty. Each simulation was repeated by the OpenMalaria simulator on an 

ensemble of 14 model variants using ten random seeds in order to address model uncertainty 

and stochasticity. Results in the form of graphs from the ensemble of model variants were 

visually analysed and compared to observed data from the study areas using Stata (version 11; 

College Station, TX, USA). Further analysis of the scenario simulation and observed data for the 

selected impact measures was conducted using Stata. The proportion of simulation results 

falling within the 95% confidence intervals of the observed cohort data was measured in order 

to assess goodness of fit.  

 A sensitivity analysis to address parameter uncertainty was driven by results of the visual 

comparison of stochasticity. Elements of the model central to the epidemiology and control of 

malaria in this particular study area were identified based on whether there was uncertainty 

about parameter estimates and their potential impact on the composition and behaviour of 
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vectors, effectiveness of interventions, and population-level monitoring. These included 

effectiveness of IRS, indoor versus outdoor biting behaviour of the vectors, the detection limit 

of the survey method used for malaria in humans, annual average EIR, and climate and weather 

patterns affecting vector biology parasite development in the vector. Parameters were altered 

one at a time and results analysed by comparing the simulated number of cases per person per 

year for each scenario to those of the baseline parameterization.  

 

3.4 Results  

Model design and baseline scenario parameterization 

The following parameter estimates are based on currently unpublished data from the MTC 

studies described above in Table 1. The key entomological feature of the scenario involves one 

primary malaria vector that bites and rests outdoors 62% of the time. At the time of enrollment 

into the cohort, 30.3% of the cohort population slept under a net the previous night and 69.3% 

of survey households received IRS. The IRS deployment schedule happened yearly over a period 

of two months as described above in the Background section. The annual mean temperature in 

Rachuonyo South from 2009 to 2010 was recorded as 20.3 degrees Celsius, setting the estimate 

of the extrinsic incubation period of An. gambiae at 14 days and the resting duration 3 days. 

Malaria transmission is highly variable following two distinct rainy seasons. The EIR is unstable 

with a last recorded value from an entomological survey of 0.4 infectious bites per person per 

year [10]. This study was conducted in neighboring Kisii district before LLIN and IRS scale-up in 

2006. More recent results from the July 2009 MTC cross sectional study estimate an EIR of 1.5 

infectious bites per person per year based on serological data (Table 2). 

 

 

 

 



3. Simulation of malaria epidemiology and control in the highlands of western Kenya 

41 
 

Table 2. Malaria transmission parameter values* 

Month Average EIR Month Average EIR 

January 0.003 July 0.079 

February 
0.129 

 
August 

0 

March 0.261 September 0.152 

April 0.173 October 0.117 

May 0.123 November 0.104 

June 0.125 December 0.236 

Annual average EIR 1.5** 

*All values based on Shililu 1998[36], Ndenga 2006[10] and data from the Kogalo weather station unless 

otherwise noted 

**Annual average EIR based on seroconversion rates as described in Drakeley et al 2005[29] of samples from a 

cross sectional survey of 3,587 individuals of all ages conducted in the study area in June 2009. EIR equivalents 

were derived as described in Corran et al 2007[30]. 

 

 

Figure 3 Simulated seasonal transmission dynamics 
with and without interventions. Baseline model 
simulation of EIR on a population of 10,000 
individuals for two years using 10 random seeds for 
each of the 14 OpenMalaria model variants with 
(dark blue shaded area) and without (light blue 
shaded area) interventions in Rachuonyo South 
district. The daily EIR is calibrated from monthly 
EIR values that are smoothed out with a Fourier 
transform to only include an annual and biannual 
cycle as described in Chitnis et al. 2012 [26]. The 
shaded areas represent the range of results from 
the 140 simulations. 

Figure 4: District-level simulation of prevalence of 
detectable P. falciparum infections. Simulated 
number of P. falciparum infections as detected by 
a rapid diagnostic test (RDT) in a population of 
10,000 individuals. The simulation ran for two 
years using 10 random seeds for each of the 14 
OpenMalaria model variants. The center line 
shows the median value of the 140 simulations at 
each time point. The shaded area shows the 
interquartile range, and the two outside lines 
show the maximum and minimum value at each 
time point. 
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 For OpenMalaria to simulate dynamics 

of the study population, code was included in 

the scenario to select a cohort representing 

15% of the total population over one year old 

matching the cohort enrollment criteria, all of 

whom received a course of anti-malarials at 

the start of the survey period. The validation 

of the model uses the model outputs from 

only this cohort, while the remaining 

simulations represent the larger study area 

population of 10,000 individuals. The details of 

the values used to parameterize the model 

along with their sources can be found in 

Additional Files 2, 3, 4, 5, 6, 7.  

 

Simulation and validation  

OpenMalaria is able to simulate the seasonality 

and level of the EIR for the Rachuonyo South 

scenario with greater stochasticity in the peak 

months and in the scenario with observed 

interventions (Figure 3). Simulations show 

prevalence between 5.58% and 10.81% in 

Rachuonyo South’s peak transmission month 

and between 2.99% and 6.04% in the lowest 

transmission month (Figure 4).  

 The Figures 5a and 5b compare the 

simulation of P. falciparum prevalence in the population with observed data from the MTC 

cohort study conducted from June 2009 – June 2010 in Rachuonyo South District as detected by 

a rapid diagnostic test (RDT) using EIR values derived from entomological studies (0.4 infectious 

Figure 5 Model validation with observed cohort 
prevalence data. Simulated vs. observed proportion 
of a cohort of 1,655 individuals in Rachuonyo South 
District with detectable P. falciparum infection for 
EIR values derived from a) entomological studies (0.4 
infectious bites per person per year, seasonality 
from neighboring district; and b) serology (1.5 
infectious bites per person per year from one 
primary vector, seasonality from study site weather 
station). All simulations ran for three years for each 
of the 14 OpenMalaria model variants. The squares 
represent the mean number of patent infections 
observed in the cohort at each time point. The 
capped bars represent the upper and lower 95% 
confidence intervals of the observed mean. The 
shaded area represents the range of results from the 
140 simulations. The source of observed data is the 
MTC cohort study described in the Methods section. 
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bites per person per year, seasonality from neighboring district, Table 2) versus serology (1.5 

infectious bites per person per year, seasonality from study site weather station). The 

prevalence was especially high in June of 2010, possibly due to a combination of more rainfall 

than normal during the rainy season and rollout of IRS at a later month compared to the 

previous year. 

 While the model is able to predict the level of prevalence in both scenarios, using an EIR 

from serology and seasonality from weather station data represents a visually better fit with 

both level of overall and seasonal prevalence compared to using an EIR and seasonality from 

entomology. With a benchmark for comparing simulation results defined as the proportion of 

simulation runs falling within the 95% confidence intervals of the observed cohort data, the final 

scenario was able to improve both the number of months (six months with more than 30% of 

simulations runs predicted compared to three months, n=12) and the proportion of total 

simulation runs (29.9% vs. 14.6%, n=1,680).  

 

Sensitivity analysis 

Indoor residual spraying 

The two main malaria control measures in the study area are distribution of LLINs and IRS. 

While net use is assumed constant over the time frame of the simulation, IRS is a timed 

intervention that occurred between April and May of 2009 and June and July of 2010 (Figure 2). 

To simulate the impact of IRS effectiveness at killing and deterring vectors and the rate at which 

the insecticide decays on model predictions, scenarios were created to simulate very high and 

very low IRS effectiveness (Table 3). 
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Table 3. IRS scenario variables 

Variable Description Level 

IRS description IRS decay half-life Baseline: 4 months 

  Highly effective: 9 months 

  Insecticide resistance: 2 months 

 IRS deterrent effect Baseline: 0.1116 

  Highly effective: 0.8632125 

  Insecticide resistance: 0.1 

 IRS postprandial killing effect Baseline:  0.2772 

 Highly effective: 0.8 

  Insecticide resistance: 0.1 

  

 Compared to the baseline, increasing the duration and effectiveness of IRS had the 

effect of greatly reducing the simulated number of patent infections (Figure 6b). While 

prevalence is greatly reduced, transmission is never completely interrupted even in the scenario 

simulating highly effective IRS. 

 

Biting behaviour 

To study the effects of changes in vector diversity and biting behaviour, different scenarios of 

proportion of indoor vs. outdoor biting are considered. The baseline scenario assumes one 

primary vector species which bites outdoors 64% of the time and indoors 36% of the time. The 

experiment includes one scenario with increased exophagy with 74% of transmission occurring 

outdoors and 26% of transmission occurring indoors and a second scenario with transmission is 

split equally indoors and outdoors. This is modeled by reducing the effectiveness of vector 

control interventions.  

 

Table 4. Detection Limit scenario variables 

Variable Description Level 

Detection Limit Parasites per 

microliter 

PCR: 10 

 Skilled microscopy: 100 

 Baseline (RDT): 200 

  Low-quality diagnostic: 500 
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  The scenario in which the biting behaviour 

of a single vector species is altered and a greater 

proportion of EIR is due to indoor biting (increased 

from 36% to 50%) shows a reduction in prevalence 

(Figure 7c). This is because the indoor mosquitoes 

would be affected by the IRS campaigns conducted 

in April – May of the first year and June – July of the 

second year. The scenario with a greater proportion 

of transmission from outdoor biting shows a similar 

level of transmission during the low season but 

greater amplitude in peak months (Figure 7b). 

 

Survey detection limit 

To address the model’s sensitivity to the ability of a 

given test to detect a P. falciparum infection, an 

experiment was created to mimic the detection 

limits of polymerase chain reaction (PCR), skilled 

microscopy, and a low-quality diagnostic such as a 

poor-quality RDT or unskilled microscopy (Table 4).  

The number of simulated infections decreases with 

higher detection limits, as does the stochasticity of 

the predictions (Figure 8). This indicates a 

population that has a considerable proportion of 

infections occurring characterized by low 

parasitaemia.  

 

 

 

 

Figure 6: Sensitivity analysis of IRS effectiveness. 
Effect of b) highly effective IRS intervention with a 
half-life decay of 9 months and a killing effect of 
80% and c) ineffective IRS intervention with a half-
life decay of 2 months and a killing effect of 10% 
on the simulated number of P. falciparum 
infections as detected by RDT in a cohort of 
10,000 individuals in Rachuonyo South district 
compared to a) baseline model with half-life decay 
of 4 months and a killing effect of 27.72%. The 
simulation ran for two years using 10 random 
seeds for each of the 14 OpenMalaria model 
variants. The center line shows the median value 
of the 140 simulations at each time point. The 
shaded area shows the interquartile range, and 
the two outside lines show the maximum and 
minimum value at each time point. 
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Figure 8: Sensitivity analysis of detection limit of monitoring methods. Effect of changing the 
detection limit (number of parasites per microliter) at which the survey is able to detect P. 
falciparum infection on the simulated number of P. falciparum infections in a population of 
10,000 individuals for a) baseline model with a detection limit of 200, equivalent to RDT; b) 
detection limit of 40, equivalent to PCR; c) detection limit of 100, equivalent to skilled microscopy; 
and d) detection limit of 500, equivalent to a poor quality diagnostic. The simulation ran for two 
years using 10 seeds for each of the 14 OpenMalaria model variants. The center line shows the 
median value of the 140 simulations at each time point. The shaded area shows the interquartile 
range, and the two outside lines show the maximum and minimum value at each time point. 

 

Figure 7: Sensitivity analysis of biting behavior. Effect of changing biting behavior on the simulated number of 
P. falciparum infections as detected by RDT in a population of 10,000 individuals for a) baseline model with one 
primary vector species 64% exophagy and 36% endophagy, b) increased exophagy (74%) and c) equal exo- and 
endophagy. The simulation ran for two years using 10 seeds for each of the 14 OpenMalaria model variants. The 
center line shows the median value of the 140 simulations at each time point. The shaded area shows the 
interquartile range, and the two outside lines show the maximum and minimum value at each time point. 
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EIR and climatic patterns 

In order to account for differences in collection and calculation method as well as micro-

variations in EIR within the study area, an experiment was conducted with varying levels of the 

annual average EIR while keeping the seasonal pattern the same over the baseline. This includes 

a scenario with a low EIR value that was measured in an neighbouring district a slightly higher 

altitude before large-scale control programmes were implemented in 2006, two scenarios with 

medium EIR (one equal to double the recorded value and one equal to the recorded value in the 

neighboring lowland districts), and a larger EIR. OpenMalaria is able to simulate the scenarios 

with EIRs of 7 and 20 with less stochasticity than the scenarios with smaller EIRs.  

To examine model sensitivity to changes in the entomological parameters that could 

occur as a result of different climate patterns an experiment was created to simulate decreased 

rainfall, increased rainfall, decreased temperature, increased temperature, and two long rainy 

periods instead of the long and short rains the study area currently experiences. Compared to 

the baseline, simulating increased rainfall in the same seasonal pattern did not have as great an 

effect on number of patent infections as did the scenario which increased the short rainy season 

to match the longer rains. Simulating temperature changes by altering the extrinsic incubation 

period and resting duration did not have a visible impact on the predicted number of patent 

infections (Figure 9). 

 Figure 9 demonstrates the overall results of the one-way sensitivity analysis in relation 

to the baseline scenario for Rachuonyo South. 
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3.5 Discussion 

Validation and model analysis 

The scenario parameterized for Rachuonyo South district is able to replicate the overall level of 

prevalence in the given population for the majority of the months out of the year. However, the 

timing of the peak transmission month is delayed and the depth of the trough in November of 

the first year of simulations is not captured. Thus, the number of runs simulating the number of 

patent infections falling within the 95% confidence intervals (CIs) of the observed number of 

patent infections is lower than optimal. This could be due to several factors, such as inter-

annual variation in transmission in the study area.  

 A main challenge for transmission models is calibration and validation with data from 

the field. The OpenMalaria transmission model is calibrated primarily by the intensity of malaria 

transmission, or EIR, for each vector. There are several methods to measure EIR in the field, and 

the method used varies by location depending on the implementer of the study [37]. Usually the 

types of surveys necessary to quantify transmission are not done on a regular basis, and in low 

transmission settings where mosquito densities are low, the longitudinal studies required to 

estimate EIR are intensive and inherently expensive. Entomological studies with the aim of 

identifying sporozoite-positive mosquitoes, while important for monitoring vector biting 

behavior, are not suitable for developing a seasonality pattern for a given total EIR in this area 

of low, unstable transmission. Perhaps monthly or even weekly studies measuring mosquito 

Figure 9: Summary sensitivity analysis compared to 
baseline model. Summary statistics for the effect of 
changing key parameters on the simulated number 
of P. falciparum infections per person per year 
averaged across all model variants during the study 
period of the MTC cohort study (July 2009 – June 
2010) as detected by RDT in a population of 10,000 
individuals. The simulation ran for two years using 
10 seeds for each of the 14 OpenMalaria model 
variants. The circles represent the mean and the 
plus signs represent the minimum and maximum. 
The dotted line represents the baseline mean as a 
measure of comparison.   
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density and changes in vector biting behavior over one or multiple years would be a way of 

determining the seasonality pattern of transmission. Despite a clearer picture of overall annual 

transmission, serology is not able to characterize seasonality of transmission, and without a 

baseline is unable to give an indication of pre- vs. post- intervention exposure. Serology 

combined with a seasonality pattern from rainfall data offered a more accurate picture than 

entomological data alone. While this information can be approximated from weather station 

data and from remote sensing in areas lacking a weather station, a challenge is relating the 

amount and seasonality of transmission to the amount of rainfall as their relationship is not 

linear [38].  

 The method of evaluation used in this study was to analyse the number of simulation 

runs which fall within the 95% CIs of the observed data. There is not yet any consensus on how 

to evaluate uncertainty and goodness-of-fit for model ensembles [39]. The merits of different 

methods have been discussed for models used in meteorology, climate change and 

macroeconomics, but questions remain on whether model averaging is appropriate and how to 

quantify an acceptable level of stochasticity for basing programmatic decisions on model 

predictions [40]. A consensus should be achieved on these criteria if quantitative projections 

from such models are to become an integral part of the range of decision-making tools for 

malaria control. 

 

Implications of the sensitivity analysis 

The sensitivity analysis highlights the robustness of the OpenMalaria transmission model for 

simulating a range of entomological and epidemiological scenarios. The majority of the 

simulation results for extreme scenarios of the entomological and biological components of the 

model remain similar to the simulation results for the baseline scenario, suggesting that small 

changes in these parameters are unlikely to have a large impact on prevalence, while changes in 

EIR and effectiveness of IRS have a greater impact on the estimated prevalence in the study 

area (Figure 9). 
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IRS 

Pyrethroid resistance has already been documented in western Kenya and elsewhere and much 

depends on the effectiveness of these insecticides [41-43]. In the study area there are not yet 

reports of pyrethroid knockdown resistance (kdr) mutations due to the lack of presence of An. 

gambiae s.s., but there may be other resistance mechanisms present, for example metabolic 

resistance, given the high numbers of An. funestus in the study area. The results of the 

sensitivity analysis suggest that malaria incidence and prevalence are likely to increase as this 

resistance continues to rise. As noted in the background section, the Kenya DOMC has 

alternated deployment of different types of pyrethroid insecticides for different years. While 

this could potentially have the effect of discouraging resistance to any one formulation, until 

new insecticides are developed the continued use of only pyrethroids has the potential to 

encourage resistance. 

 

Biting behavior 

Initial results of entomological surveys (Cooke, personal communication) show evidence of a 

shift in the relative importance of outdoor biting compared to what has been observed in the 

neighbouring highland district in the past [10, 44]. It is unclear whether this is a behavioral 

change in response to high LLIN and IRS coverage or whether there have been alterations in 

overall species composition. For Rachuonyo South there are no baseline data to compare this 

to. Evidence from lowland districts within Nyanza indicate that both composition and biting 

behaviour of the malaria vectors has changed over the past five years, coinciding with a 

substantial scaling up of vector control interventions [12]. Entomological surveys conducted in 

2009 – 2011 (Stevenson, personal communication) show that An. arabiensis is now seen more 

frequently inside and outside dwellings than An. gambiae s.s., the previously-documented 

major vector in Kisii district [10, 44]. Preliminary data from the study sites also indicate that An. 

funestus or other species may be playing an ever increasingly important role on malaria 

transmission in the area [35]. 
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 The observed data more closely resemble the scenario with indoor/outdoor biting 

profile based on 2009 – 2011 data, which supports the hypothesis of a greater proportion of 

outdoor biting. If this is the case, there is a limit to the effectiveness of the current vector 

control interventions in Rachuonyo South (IRS and LLINs) at controlling P. falciparum because 

they target the shrinking proportion of the infective bites occurring indoors. While these 

interventions will still offer an important level of deterrency, interventions that have a killing 

effect on exophagic mosquitoes may be an appropriate addition to existing indoor interventions 

[45]. Larviciding, area repellents, and even interventions targeting the human-stage of the 

parasite could also be taken into consideration to complement existing methods. 

Implementation of a number of these methods is currently being piloted in Rachuonyo South 

(Bousema, personal communication). 

 

Survey detection limit 

The outcome simulated in this scenario is proportion of patent infections as measured by a 

Paracheck® rapid test kit manufactured by Orchid Biomedical Systems. The 2010 WHO malaria 

case management guidelines recommend treatment after parasite-based diagnosis [46]. Quality 

assurance measures for these tests are based on their ability to detect either 100 or 200 

parasites per microliter, not because of the limitations of the RDT technology but rather 

because of limited accuracy and error of expert microscopy, the “gold” standard in malaria 

diagnosis in the absence of PCR [47, 48]. In addition, there is evidence for changes in the 

accuracy of diagnosis by RDTs in the East African highlands both over time and across age 

groups [49]. 

The implication of the sensitivity of the model to a change in survey detection limit is 

that if RDTs used in surveys perform poorly, whether the result of low quality manufacturing or 

improper storage conditions or use, according to simulation results up to 50% of infected 

individuals would be misclassified. When put in a broader public health context, there are a 

number of scenarios applicable to the study area when decision-making can be affected by 

detection limit. These range from a health worker deciding to administer an anti-malarial drug 
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following malaria diagnosis in an individual, to country-wide planning in the public sector health 

system for estimating quantities of antimalarial drugs required for a given year, to deciding the 

appropriate time to change the vector control strategy if transmission is based on an estimate 

of prevalence.  

When approaching a situation where transmission is interrupted, attention must be paid 

to the type of screening strategy (active vs. passive case detection) and screening method used 

to detect the last remaining parasitaemia in the population. In these cases the higher presence 

of asymptomatic, sub-patent infections representing the infectious reservoir of parasites in the 

population indicates the PCR method would be preferable over a less sensitive method. While 

molecular diagnostic tools such as PCR and loop-mediated isothermal amplification (LAMP) are 

both able to detect infections at a much lower parasite density than microscopy or RDTs and 

may be appropriate in study settings, studies show these methods are not currently suitable for 

routine diagnosis at a community level [50, 51]. However, even the most sensitive PCR 

diagnostic does not detect all infections in a population.  If a large proportion of infections occur 

at a high parasite density the detection limit of the diagnostic would not be as important a 

consideration. This sensitivity analysis shows that observed prevalence depends on the method 

used for detection, a point relevant for study design and modelling alike.   

 

EIR and climatic patterns 

The sensitivity analysis results show that an increase in EIR corresponds to an increase in cases 

of malaria. The OpenMalaria transmission model is dependent on the length of the gonotrophic 

cycle of the vector, which is in turn affected by environmental changes. The mosquito resting 

duration and EIP both decrease as the ambient temperature decreases [33, 52, 53]. If the EIP 

duration decreases, a vector infected with P. falciparum becomes infectious more quickly. A 

shorter gonotrophic cycle means both increased biting frequency and increased daily mortality 

of the vector. The highlands of western Kenya have variable seasonal temperature and rainfall 

changes; for example, in the late 1990s the study area experienced a resurgence of malaria not 

seen for decades [54]. Simulation results indicate that changes in temperature resulting in a 
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change in EIP or resting duration and changes in the overall volume of rainfall resulting in a 

slight change in EIR are not likely to affect the impact of IRS deployment or result in a shift in P. 

falciparum prevalence in the population. In addition, there is preliminary evidence that in the 

study area increased relative humidity is associated with an increased number of anophelines 

(Cooke, personal communication). However, even taking into account the caveats for the 

relationship between malaria transmission and rainfall, changing the pattern of transmission to 

simulate the effect of an extension of the historically short rainy season to match the rainfall 

profile of the longer rainy season could result in greater amplitude of incidence in the peak 

months.  

 

Limitations 

Data 

Many parameters in the model remain from the initial Tanzanian model parameterization [55], 

for example the parameters for the mosquito feeding cycle (Additional File 1) and treatment-

seeking behaviour (Additional File 2), because there are not yet site-specific studies with this 

focus. While ample entomological data were collected in the study area, there was less available 

information on treatment-seeking behaviour and its consequences outside the public sector. 

Coartem® was given to all MTC cohort study participants to clear any prevalent P. 

falciparum parasitaemia making it possible to measure malaria incidence at each follow-up. The 

study excluded pregnant women from the cohort due to the limited data on use in pregnancy 

and contraindication in the 1st trimester pregnancy of artemether-lumefantrine [19], the active 

ingredients of Coartem®. Infection with P. falciparum during pregnancy has been shown to be 

associated with increased parasitaemia of the mother due to a weakened immune system as 

well as an increased likelihood of manifestation of clinical disease in addition to adverse effects 

on the fetus and newborn [56]. Although this is unlikely to have a major effect on transmission 

in the population as a whole, the patent infections and uncomplicated episodes in the age 

groups for women of childbearing age could be underestimated.  
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Model 

Since the OpenMalaria transmission model was developed to examine the effect of moderate to 

high transmission, it does not include a mechanism to account for inter-annual variation in EIR 

as driven by climatic factors. Thus, every year is treated as the same, which is not the case in the 

study area. In the western Kenyan highlands sharp increases in incidence occur every few years 

[54] and are likely to be driven by climate variability; the higher than usual transmission in the 

cohort following heavy rains during the time of the survey provides an example of such a sharp 

increase. As a result of the validation using one year’s data in this area of substantial year-to-

year variation, firm conclusions are unable to be drawn about the longer-term seasonal 

transmission in the population.    

Nyanza province has the highest prevalence of HIV in Kenya at 15.1% of the population 

[57, 58]. HIV infection increases an individual’s susceptibility to malaria infection and severity of 

clinical outcomes and decreases immunity [59, 60]. A limitation of the transmission model is 

that it does not account for the interaction between malaria and HIV.  

  The models analysed here do not explicitly take spatial associations into account. 

Variation in proximity to breeding sites could be a factor driving the difference in epidemic 

profile of the study area. The parameterizations used in this study do not take into account the 

rate of imported cases from lowland areas, as there is frequent travel between the highland Kisii 

and Nyamira districts and the lowland areas of Rachuonyo North, Nyando and Kisumu districts. 

Heterogeneity in availability to vectors and imported cases should be taken into account in 

future simulations of the study area.  

 

3.6 Conclusions 

Individual-based stochastic simulations of malaria can be used as a tool to assist decision 

making for malaria control programmes by testing assumptions about the seasonal pattern of 

transmission, vector diversity and behaviour, and intervention effectiveness in district-level 

settings. Efforts should be made to ensure models aiding in the understanding of site-specific 
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transmission dynamics are more accessible to programme managers. The sensitivity analysis 

shows that in order to simulate malaria in the Rachuonyo South highlands, attention must be 

paid to vector biting behaviour, their susceptibility to IRS, and the detection method used for 

human surveys. These features will have an impact on predicting the impact of interventions in 

areas with low and/or variable P. falciparum transmission. The sensitivity analysis also 

demonstrates the accuracy of the model and can lend confidence to end users of these results 

in informing control options. New methods and tools for analysing and evaluating simulation 

results will enhance the usefulness of simulations for malaria control decision-making. 

Measuring EIR through mosquito collection may not be the optimal way to define transmission 

in areas with low, unstable transmission. Further research into the relationship between 

different measures of malaria is needed to better quantify transmission in low transmission 

settings. 
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Additional File 1: Parameter values for the model of the mosquito feeding cycle 

 

Table S1: Parameter values for the model of the mosquito feeding cycle  

Parameter Value 

Initial proportion of vectors infected 0.078 

Initial proportion of vectors infectious 0.015[1] 

Extrinsic incubation period  14**[2-4] 

Human blood index 0.97[5] 

Proportion of mosquitoes host-seeking on the same day as oviposting 0.313 

Probability that the mosquito successfully bites chosen host 0.95 

Probability that the mosquito escapes host and finds a resting place after biting 0.95 

Probability of a mosquito successfully laying eggs given that it has rested 0.88 

Probability of mosquito successfully resting after finding a resting site 0.99 

Duration of the resting period of the vector 3[4, 6] 

Maximum proportion of day spent host-seeking by vector 0.33 

Probability that the mosquito survives the feeding cycle 0.623  

Probability that the mosquito successfully bites chosen non-human host 0.95 

Probability that the mosquito escapes non-human host and finds a resting place after biting 0.95 

Probability of mosquito successfully resting after finding a resting site 0.99 

Proportion of encounters on un-protected animals  

vs. protected animals 

1 

*Note: detailed description of parameters used in the entomological model can be found in Chitnis 2008[7] and 

Chitnis 2012[4]. All values based on Chitnis 2012[4] unless otherwise noted. 
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Additional File 2: Health system parameter values 

 

Table S2: Health system parameter values   

Parameter Value Source 

National guidelines for first line antimalarial Coartem  DOMC 2006[1] 

National guidelines for inpatient antimalarial Quinine DOMC 2006[1] 

National guidelines for second line antimalarial Quinine DOMC 2006[1] 

Initial cure rate in the absence of resistance, first line (%) 0.96 Juma 2008[2] 

Initial cure rate in the absence of resistance, inpatient (%) 0.998 Ross 2008[3] 

Initial cure rate in the absence of resistance, second line (%) 0.998 Ross 2008[3] 

Initial cure rate in the absence of resistance, self-treatment (%) 0.63 Ross 2008[3] 

Population complying to drug regimine, ACT (%) 0.892 Kabanywanyi 2010[4] 

Population complying to drug regimine, self-treatment (%) 0.85 Ross 2008[3] 

Effectiveness of treatment of non-compliers, first line (%) 0.8544 Fogg 2004[3] 

Effectiveness of treatment of non-compliers, self-treatment (%) 0 Ross 2008[3] 

Probability that a patient with newly incident uncomplicated disease seeks official care per timestep 0.04 Ross 2008[3] 

Probability that a patient with uncomplicated disease self-treats per timestep 0.0212 Sumba 2008[5] 

Probability that a patient with recurrence of uncomplicated disease seeks official care per timestep 0.04 Ross 2008[3] 

Probability that a patient with severe disease obtains appropriate care per timestep 0.48 Ross 2008[3] 

Probalility of sequelae in inpatients per timestep, for individuals under 5 years old 0.0132  Ross 2008[3] 

Probalility of sequelae in inpatients per timestep, for individuals over 5 years old 0.005 Ross 2008[3] 
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Additional File 3: Description of model demographic parameters  

Table S3: Description of model demographic parameters and source 

Age Group <1 1-4 5-9 
10-
14 

15-
19 

20-
24 

25-
29 

30-
34 

35-
39 

40-
44 

45-
49 

50-
54 

55-
59 

60-
64 

65-
69 

70-
74 

75-
79 

80-
84 

85+ 

Distribution 
(%)[1] 

2.6 13.1 15.2 13.8 10 8.6 702 6 4.7 4.1 3.5 2.9 2.2 1.9 1.3 1.1 0.6 1 0.1 

Distribution 
(#)* 

510 2,567 2,979 2,705 1,960 1,685 1,411 1,176 921 804 686 568 431 372 255 216 118 196 20 

Case Fatality 
Rate** 

<3 months: 0.09189 
3-8 months: 0.0810811 
9-17 months: 0.0648649 

18-30 months: 0.0689189 
2.5-3.5 years: 0.0675676 
3.5-4.5 years: 0.0297297 

4.5-7.5 years: 0.0459459 
7.5-12.5 years: 0.0945946 
12.5-14 years: 0.1243243 

  

          

*Proportion at national level applied to census total population of study area, 19,598 individuals 
**Deaths among hospitalized cases of severe malaria. Schellenberg, 1999[2] 
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Additional File 4: Vector control intervention effective length of protection parameter values 

 

Table S4: Vector control intervention effective length of protection parameter values* 

Parameter Mean Sigma L Function k 

ITN Hole Rate 0 0.8 - - - 

ITN Rip Rate 2.7 0.8 - - - 

ITN Initial Insecticide 1 0 - - - 

ITN Insecticide Decay 0 0 3[1] exponential[2] - 

ITN Attrition - - 15.57941 constant 18 

IRS Decay - - 0.33 exponential[2] - 

*Note: all values are based on Chitnis 2010[13] updated with the model described in Briët 2012[3] 

unless otherwise noted. 
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Additional File 5: Vector control intervention effectiveness parameter values 

 

Table S5: Vector control intervention effectiveness parameter values* 

Parameter Deterrency 

Preprandial Killing 

Effect 

Postprandial Killing 

Effect 

ITN Base Factor - 0 0 

ITN Hole Factor 1 0 0 

ITN Hole Scaling Factor 1 0 0 

ITN Insecticide Factor 8416 972 972 

ITN Insecticide Scaling Factor 0.001 0.001 0.001 

ITN Interaction Factor 1 0 0 

IRS Pyrethroid Insecticide 0.1116 0 0.2772 

*Note: all values are based on Chitnis 2010[1] updated with the model described in Briet 2012[2] unless 

otherwise noted. Please note that all figures for “IRS Pyrethroid Insecticide” in this table have been adjusted 

from their original levels to account for the proportion of exposure in the study area occurring outdoors. 

Unadjusted initial values for these parameters by species can be found in the sources noted above.  
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Additional File 6: Vector control intervention implementation parameter values 

 

Table S6: Vector control intervention implementation parameter values* 

Intervention Usage Target age (years) Timing Coverage 

ANC 1 0.0833[1] 0 0.8[1] 

Mass - - 0 0.3026 

IRS - - 

2009 April 

2010 June 0.693 

MDA - cohort 2009 June 0.15 

*Note: all values are based on MTC cohort data unless otherwise noted. 
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Additional File 7: Model parameterization source overview 

 

Table S7: Model parameterization source overview 

Total inputs 123 

Site-specific MTC data 12 (10%) 

Regional/national lit review 41 (33%) 

Previous model parameterization 70 (57%) 
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Additional File 8: Rachuonyo South baseline model parameterization, District-level 

 
<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<scenario xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" analysisNo="0" 
name="wurachFull2_494.xml,interventions:base,model:base,seed:1" schemaVersion="30" wuID="0" 
xsi:noNamespaceSchemaLocation="scenario_30.xsd"> 
  <demography maximumAgeYrs="90" name="Rachuonyo" popSize="100000"> 
    <ageGroup lowerbound="0"> 
      <group poppercent="2.6" upperbound="1"/> 
      <group poppercent="13.1" upperbound="5"/> 
      <group poppercent="15.2" upperbound="10"/> 
      <group poppercent="13.8" upperbound="15"/> 
      <group poppercent="10" upperbound="20"/> 
      <group poppercent="8.6" upperbound="25"/> 
      <group poppercent="7.2" upperbound="30"/> 
      <group poppercent="6" upperbound="35"/> 
      <group poppercent="4.7" upperbound="40"/> 
      <group poppercent="4.1" upperbound="45"/> 
      <group poppercent="3.5" upperbound="50"/> 
      <group poppercent="2.9" upperbound="55"/> 
      <group poppercent="2.2" upperbound="60"/> 
      <group poppercent="1.9" upperbound="65"/> 
      <group poppercent="1.3" upperbound="70"/> 
      <group poppercent="1.1" upperbound="75"/> 
      <group poppercent="0.6" upperbound="80"/> 
      <group poppercent="1" upperbound="85"/> 
      <group poppercent="0.1" upperbound="90"/> 
    </ageGroup> 
  </demography> 
  <monitoring cohortOnly="false" name="Monthly Surveys"> 
    <continuous duringInit="false" period="1"> 
      <option name="input EIR" value="false"/> 
      <option name="simulated EIR" value="true"/> 
      <option name="human infectiousness" value="false"/> 
      <option name="N_v0" value="false"/> 
      <option name="immunity h" value="false"/> 
      <option name="immunity Y" value="false"/> 
      <option name="hosts" value="false"/> 
      <option name="recent births" value="false"/> 
    </continuous> 
    <SurveyOptions> 
      <option name="nHost" value="true"/> 
      <option name="nPatent" value="true"/> 
      <option name="sumlogDens" value="false"/> 
      <option name="nTransmit" value="false"/> 
      <option name="nTreatments1" value="true"/> 
      <option name="nTreatments2" value="true"/> 
      <option name="nTreatments3" value="true"/> 
      <option name="nUncomp" value="true"/> 
      <option name="nSevere" value="true"/> 
      <option name="nSeq" value="true"/> 
      <option name="nHospitalDeaths" value="true"/> 
      <option name="nIndDeaths" value="true"/> 
      <option name="nDirDeaths" value="true"/> 
      <option name="nEPIVaccinations" value="false"/> 
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      <option name="nMassVaccinations" value="false"/> 
      <option name="nHospitalRecovs" value="true"/> 
      <option name="nHospitalSeqs" value="true"/> 
      <option name="annAvgK" value="false"/> 
      <option name="Vector_Nv0" value="false"/> 
      <option name="Vector_Nv" value="false"/> 
      <option name="Vector_Ov" value="false"/> 
      <option name="Vector_Sv" value="false"/> 
      <option name="nMassScreenings" value="true"/> 
      <option name="simulatedEIR" value="true"/> 
      <option name="nMassIRS" value="true"/> 
      <option name="nMDAs" value="true"/> 
      <option name="nMassITNs" value="true"/> 
      <option name="nAddedToCohort" value="true"/> 
      <option name="Clinical_RDTs" value="true"/> 
    </SurveyOptions> 
    <surveys detectionLimit="200"> 
      <surveyTime>730</surveyTime> 
      <surveyTime>736</surveyTime> 
      <surveyTime>742</surveyTime> 
      <surveyTime>748</surveyTime> 
      <surveyTime>754</surveyTime> 
      <surveyTime>760</surveyTime> 
      <surveyTime>766</surveyTime> 
      <surveyTime>772</surveyTime> 
      <surveyTime>778</surveyTime> 
      <surveyTime>784</surveyTime> 
      <surveyTime>790</surveyTime> 
      <surveyTime>796</surveyTime> 
      <surveyTime>803</surveyTime> 
      <surveyTime>809</surveyTime> 
      <surveyTime>815</surveyTime> 
      <surveyTime>821</surveyTime> 
      <surveyTime>827</surveyTime> 
      <surveyTime>833</surveyTime> 
      <surveyTime>839</surveyTime> 
      <surveyTime>845</surveyTime> 
      <surveyTime>851</surveyTime> 
      <surveyTime>857</surveyTime> 
      <surveyTime>863</surveyTime> 
      <surveyTime>869</surveyTime> 
      <surveyTime>876</surveyTime> 
      <surveyTime>882</surveyTime> 
      <surveyTime>888</surveyTime> 
      <surveyTime>894</surveyTime> 
      <surveyTime>900</surveyTime> 
      <surveyTime>906</surveyTime> 
      <surveyTime>912</surveyTime> 
      <surveyTime>918</surveyTime> 
      <surveyTime>924</surveyTime> 
      <surveyTime>930</surveyTime> 
      <surveyTime>936</surveyTime> 
      <surveyTime>942</surveyTime> 
      <surveyTime>949</surveyTime> 
      <surveyTime>955</surveyTime> 
      <surveyTime>961</surveyTime> 
      <surveyTime>967</surveyTime> 
      <surveyTime>973</surveyTime> 
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      <surveyTime>979</surveyTime> 
      <surveyTime>985</surveyTime> 
      <surveyTime>991</surveyTime> 
      <surveyTime>997</surveyTime> 
      <surveyTime>1003</surveyTime> 
      <surveyTime>1009</surveyTime> 
      <surveyTime>1015</surveyTime> 
      <surveyTime>1021</surveyTime> 
      <surveyTime>1027</surveyTime> 
      <surveyTime>1033</surveyTime> 
      <surveyTime>1039</surveyTime> 
      <surveyTime>1045</surveyTime> 
      <surveyTime>1051</surveyTime> 
      <surveyTime>1057</surveyTime> 
      <surveyTime>1063</surveyTime> 
      <surveyTime>1069</surveyTime> 
      <surveyTime>1075</surveyTime> 
      <surveyTime>1081</surveyTime> 
      <surveyTime>1087</surveyTime> 
    </surveys> 
    <ageGroup lowerbound="0"> 
      <group upperbound="1"/> 
      <group upperbound="5"/> 
      <group upperbound="15"/> 
      <group upperbound="99"/> 
    </ageGroup> 
  </monitoring> 
  <interventions name="Observed"> 
    <ITN name="LLIN test"> 
      <description> 
        <usage value="1"/> 
        <holeRate mean="1.8" sigma="0.8"/> 
        <ripRate mean="1.8" sigma="0.8"/> 
        <ripFactor value="0.2"/> 
        <initialInsecticide mu="68.4" sigma="0"/> 
        <insecticideDecay L="1.5" function="exponential" mu="-0.32" sigma="0.8"/> 
        <attritionOfNets L="20.7725" function="smooth-compact" k="18"/> 
        <anophelesParams mosquito="indoor" propActive="0.38"> 
          <deterrency holeFactor="0.5" holeScalingFactor="0.1" insecticideFactor="0.67" 
insecticideScalingFactor="0.05" interactionFactor="1.492537"/> 
          <preprandialKillingEffect baseFactor="0.09" holeFactor="0.57" holeScalingFactor="0.1" 
insecticideFactor="0.604" insecticideScalingFactor="0.05" interactionFactor="-0.424"/> 
          <postprandialKillingEffect baseFactor="0.1" holeFactor="0" holeScalingFactor="0.1" 
insecticideFactor="0.55" insecticideScalingFactor="0.1" interactionFactor="0"/> 
        </anophelesParams> 
      </description> 
      <continuous> 
        <deploy begin="670" coverage="0.8" targetAgeYrs="0.0833"/> 
      </continuous> 
      <timed> 
        <deploy coverage="0.5563" time="670"/> 
      </timed> 
    </ITN> 
    <IRS name="Pyreth"> 
      <description> 
        <decay L="0.33" function="exponential"/> 
        <anophelesParams mosquito="indoor"> 
          <deterrency value="0.1116"/> 
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          <preprandialKillingEffect value="0"/> 
          <postprandialKillingEffect value="0.2772"/> 
        </anophelesParams> 
      </description> 
      <timed> 
        <deploy coverage="0.058333" cumulativeWithMaxAge="36" time="749"/> 
        <deploy coverage="0.116667 " cumulativeWithMaxAge="36" time="750"/> 
        <deploy coverage="0.175" cumulativeWithMaxAge="36" time="751"/> 
        <deploy coverage="0.233333" cumulativeWithMaxAge="36" time="752"/> 
        <deploy coverage="0.2916667" cumulativeWithMaxAge="36" time="753"/> 
        <deploy coverage="0.35 " cumulativeWithMaxAge="36" time="754"/> 
        <deploy coverage="0.408333 " cumulativeWithMaxAge="36" time="755"/> 
        <deploy coverage="0.466667 " cumulativeWithMaxAge="36" time="756"/> 
        <deploy coverage="0.525" cumulativeWithMaxAge="36" time="757"/> 
        <deploy coverage="0.583333" cumulativeWithMaxAge="36" time="758"/> 
        <deploy coverage="0.641667 " cumulativeWithMaxAge="36" time="759"/> 
        <deploy coverage="0.7" cumulativeWithMaxAge="36" time="760"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="761"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="762"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="763"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="764"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="765"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="766"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="767"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="768"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="769"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="770"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="771"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="772"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="822"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="823"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="824"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="825"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="826"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="827"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="828"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="829"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="830"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="831"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="832"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="833"/> 
        <deploy coverage="0.058333" cumulativeWithMaxAge="36" time="834"/> 
        <deploy coverage="0.116667 " cumulativeWithMaxAge="36" time="835"/> 
        <deploy coverage="0.175" cumulativeWithMaxAge="36" time="836"/> 
        <deploy coverage="0.233333" cumulativeWithMaxAge="36" time="837"/> 
        <deploy coverage="0.2916667" cumulativeWithMaxAge="36" time="838"/> 
        <deploy coverage="0.35 " cumulativeWithMaxAge="36" time="839"/> 
        <deploy coverage="0.408333 " cumulativeWithMaxAge="36" time="840"/> 
        <deploy coverage="0.466667 " cumulativeWithMaxAge="36" time="841"/> 
        <deploy coverage="0.525" cumulativeWithMaxAge="36" time="842"/> 
        <deploy coverage="0.583333" cumulativeWithMaxAge="36" time="843"/> 
        <deploy coverage="0.641667 " cumulativeWithMaxAge="36" time="844"/> 
        <deploy coverage="0.7" cumulativeWithMaxAge="36" time="845"/> 
        <deploy coverage="0.058333" cumulativeWithMaxAge="36" time="895"/> 
        <deploy coverage="0.116667" cumulativeWithMaxAge="36" time="896"/> 
        <deploy coverage="0.175" cumulativeWithMaxAge="36" time="897"/> 
        <deploy coverage="0.233333" cumulativeWithMaxAge="36" time="898"/> 
        <deploy coverage="0.2916667" cumulativeWithMaxAge="36" time="899"/> 
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        <deploy coverage="0.35" cumulativeWithMaxAge="36" time="900"/> 
        <deploy coverage="0.408333" cumulativeWithMaxAge="36" time="901"/> 
        <deploy coverage="0.466667" cumulativeWithMaxAge="36" time="902"/> 
        <deploy coverage="0.525" cumulativeWithMaxAge="36" time="903"/> 
        <deploy coverage="0.583333" cumulativeWithMaxAge="36" time="904"/> 
        <deploy coverage="0.641667" cumulativeWithMaxAge="36" time="905"/> 
        <deploy coverage="0.7" cumulativeWithMaxAge="36" time="906"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="907"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="908"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="909"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="910"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="911"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="912"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="913"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="914"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="915"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="916"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="917"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="918"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="969"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="970"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="971"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="972"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="973"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="974"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="975"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="976"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="977"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="978"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="979"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="980"/> 
        <deploy coverage="0.058333" cumulativeWithMaxAge="36" time="981"/> 
        <deploy coverage="0.116667" cumulativeWithMaxAge="36" time="982"/> 
        <deploy coverage="0.175" cumulativeWithMaxAge="36" time="983"/> 
        <deploy coverage="0.233333" cumulativeWithMaxAge="36" time="984"/> 
        <deploy coverage="0.2916667" cumulativeWithMaxAge="36" time="985"/> 
        <deploy coverage="0.35" cumulativeWithMaxAge="36" time="986"/> 
        <deploy coverage="0.408333" cumulativeWithMaxAge="36" time="987"/> 
        <deploy coverage="0.466667" cumulativeWithMaxAge="36" time="988"/> 
        <deploy coverage="0.525" cumulativeWithMaxAge="36" time="989"/> 
        <deploy coverage="0.583333" cumulativeWithMaxAge="36" time="990"/> 
        <deploy coverage="0.641667" cumulativeWithMaxAge="36" time="991"/> 
        <deploy coverage="0.7" cumulativeWithMaxAge="36" time="992"/> 
        <deploy coverage="0.058333" cumulativeWithMaxAge="36" time="1042"/> 
        <deploy coverage="0.116667" cumulativeWithMaxAge="36" time="1043"/> 
        <deploy coverage="0.175" cumulativeWithMaxAge="36" time="1044"/> 
        <deploy coverage="0.233333" cumulativeWithMaxAge="36" time="1045"/> 
        <deploy coverage="0.2916667" cumulativeWithMaxAge="36" time="1046"/> 
        <deploy coverage="0.35" cumulativeWithMaxAge="36" time="1047"/> 
        <deploy coverage="0.408333" cumulativeWithMaxAge="36" time="1048"/> 
        <deploy coverage="0.466667" cumulativeWithMaxAge="36" time="1049"/> 
        <deploy coverage="0.525" cumulativeWithMaxAge="36" time="1050"/> 
        <deploy coverage="0.583333" cumulativeWithMaxAge="36" time="1051"/> 
        <deploy coverage="0.641667" cumulativeWithMaxAge="36" time="1052"/> 
        <deploy coverage="0.7" cumulativeWithMaxAge="36" time="1053"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="1054"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="1055"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="1056"/> 
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        <deploy coverage="0" cumulativeWithMaxAge="36" time="1057"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="1058"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="1059"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="1060"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="1061"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="1062"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="1063"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="1064"/> 
        <deploy coverage="0" cumulativeWithMaxAge="36" time="1065"/> 
      </timed> 
    </IRS> 
    <MDA> 
      <diagnostic> 
        <stochastic dens_50="50" specificity="0.942"/> 
      </diagnostic> 
      <timed> 
        <deploy cohort="true" coverage="0" time="756"/> 
        <deploy cohort="true" coverage="0" time="767"/> 
        <deploy cohort="true" coverage="0" time="780"/> 
        <deploy cohort="true" coverage="0" time="792"/> 
        <deploy cohort="true" coverage="0" time="805"/> 
        <deploy cohort="true" coverage="0" time="816"/> 
        <deploy cohort="true" coverage="0" time="829"/> 
        <deploy cohort="true" coverage="0" time="841"/> 
        <deploy cohort="true" coverage="0" time="853"/> 
        <deploy cohort="true" coverage="0" time="965"/> 
        <deploy cohort="true" coverage="0" time="878"/> 
        <deploy cohort="true" coverage="0" time="889"/> 
        <deploy cohort="true" coverage="0" time="902"/> 
        <deploy cohort="true" coverage="0" time="914"/> 
        <deploy cohort="true" coverage="0" time="927"/> 
        <deploy cohort="true" coverage="0" time="938"/> 
        <deploy cohort="true" coverage="0" time="951"/> 
        <deploy cohort="true" coverage="0" time="962"/> 
        <deploy cohort="true" coverage="0" time="974"/> 
        <deploy cohort="true" coverage="0" time="987"/> 
        <deploy cohort="true" coverage="0" time="1000"/> 
        <deploy cohort="true" coverage="0" time="1011"/> 
        <deploy cohort="true" coverage="0" time="1023"/> 
        <deploy cohort="true" coverage="0" time="1036"/> 
        <deploy cohort="true" coverage="0" time="1047"/> 
        <deploy cohort="true" coverage="0" time="1060"/> 
        <deploy cohort="true" coverage="0" time="1072"/> 
        <deploy cohort="true" coverage="0" time="1084"/> 
      </timed> 
    </MDA> 
    <cohort name="schools"> 
      <timed> 
        <deploy coverage="0.8" maxAge="11" minAge="5" time="0"/> 
        <deploy coverage="0.6" maxAge="18" minAge="11" time="1"/> 
      </timed> 
    </cohort> 
  </interventions> 
  <healthSystem> 
    <ImmediateOutcomes name="Kenya ACT"> 
      <drugRegimen firstLine="ACT" inpatient="QN" secondLine="QN"/> 
      <initialACR> 
        <ACT value="0.96"/> 
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        <QN value="0.998"/> 
        <selfTreatment value="0.63"/> 
      </initialACR> 
      <compliance> 
        <ACT value="0.892"/> 
        <selfTreatment value="0.85"/> 
      </compliance> 
      <nonCompliersEffective> 
        <ACT value="0.8544"/> 
        <selfTreatment value="0"/> 
      </nonCompliersEffective> 
      <pSeekOfficialCareUncomplicated1 value="0.04"/> 
      <pSelfTreatUncomplicated value="0.0212"/> 
      <pSeekOfficialCareUncomplicated2 value="0.04"/> 
      <pSeekOfficialCareSevere value="0.48"/> 
    </ImmediateOutcomes> 
    <CFR> 
      <group lowerbound="0" value="0.09189"/> 
      <group lowerbound="0.25" value="0.0810811"/> 
      <group lowerbound="0.75" value="0.0648649"/> 
      <group lowerbound="1.5" value="0.0689189"/> 
      <group lowerbound="2.5" value="0.0675676"/> 
      <group lowerbound="3.5" value="0.0297297"/> 
      <group lowerbound="4.5" value="0.0459459"/> 
      <group lowerbound="7.5" value="0.0945946"/> 
      <group lowerbound="12.5" value="0.1243243"/> 
      <group lowerbound="15" value="0.1378378"/> 
    </CFR> 
    <pSequelaeInpatient interpolation="none"> 
      <group lowerbound="0.0" value="0.0132"/> 
      <group lowerbound="5.0" value="0.005"/> 
    </pSequelaeInpatient> 
  </healthSystem> 
  <entomology mode="dynamic" name="Nyanza"> 
    <vector> 
      <anopheles mosquito="indoor" propInfected="0.078" propInfectious="0.015"> 
        <seasonality annualEIR="4.25" input="EIR"> 
          <monthlyValues smoothing="fourier"> 
            <value>0.001</value> 
            <value>0.4275</value> 
            <value>0.8625</value> 
            <value>0.57</value> 
            <value>0.405</value> 
            <value>0.4125</value> 
            <value>0.2625</value> 
            <value>0</value> 
            <value>0.5025</value> 
            <value>0.38625</value> 
            <value>0.345</value> 
            <value>0.78</value> 
          </monthlyValues> 
        </seasonality> 
        <mosq minInfectedThreshold="0.001"> 
          <mosqRestDuration value="3"/> 
          <extrinsicIncubationPeriod value="14"/> 
          <mosqLaidEggsSameDayProportion value="0.313"/> 
          <mosqSeekingDuration value="0.33"/> 
          <mosqSurvivalFeedingCycleProbability value="0.623"/> 
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          <availabilityVariance value="0"/> 
          <mosqProbBiting mean="0.95" variance="0"/> 
          <mosqProbFindRestSite mean="0.95" variance="0"/> 
          <mosqProbResting mean="0.99" variance="0"/> 
          <mosqProbOvipositing value="0.88"/> 
          <mosqHumanBloodIndex value="0.97"/> 
        </mosq> 
        <nonHumanHosts name="unprotectedAnimals"> 
          <mosqRelativeEntoAvailability value="1.0"/> 
          <mosqProbBiting value="0.95"/> 
          <mosqProbFindRestSite value="0.95"/> 
          <mosqProbResting value="0.99"/> 
        </nonHumanHosts> 
      </anopheles> 
      <nonHumanHosts name="unprotectedAnimals" number="1.0"/> 
    </vector> 
  </entomology> 
  <model> 
    <ModelOptions> 
      <option name="LOGNORMAL_MASS_ACTION" value="false"/> 
      <option name="NO_PRE_ERYTHROCYTIC" value="false"/> 
      <option name="MAX_DENS_CORRECTION" value="false"/> 
      <option name="COMORB_HET" value="false"/> 
      <option name="TREAT_HET" value="false"/> 
    </ModelOptions> 
    <clinical healthSystemMemory="6"/> 
    <human> 
      <availabilityToMosquitoes> 
        <group lowerbound="0.0" value="0.225940909648"/> 
        <group lowerbound="1.0" value="0.286173633441"/> 
        <group lowerbound="2.0" value="0.336898395722"/> 
        <group lowerbound="3.0" value="0.370989854675"/> 
        <group lowerbound="4.0" value="0.403114915112"/> 
        <group lowerbound="5.0" value="0.442585112522"/> 
        <group lowerbound="6.0" value="0.473839351511"/> 
        <group lowerbound="7.0" value="0.512630464378"/> 
        <group lowerbound="8.0" value="0.54487872702"/> 
        <group lowerbound="9.0" value="0.581527755812"/> 
        <group lowerbound="10.0" value="0.630257580698"/> 
        <group lowerbound="11.0" value="0.663063362714"/> 
        <group lowerbound="12.0" value="0.702417432755"/> 
        <group lowerbound="13.0" value="0.734605377277"/> 
        <group lowerbound="14.0" value="0.788908765653"/> 
        <group lowerbound="15.0" value="0.839587932303"/> 
        <group lowerbound="20.0" value="1.0"/> 
      </availabilityToMosquitoes> 
    </human> 
    <parameters interval="5" iseed="495" latentp="3"> 
      <parameter include="false" name="'-ln(1-Sinf)'" number="1" value="0.050736"/> 
      <parameter include="false" name="Estar" number="2" value="0.03247"/> 
      <parameter include="false" name="Simm" number="3" value="0.138161050830301"/> 
      <parameter include="false" name="Xstar_p" number="4" value="1514.385853233699891"/> 
      <parameter include="false" name="gamma_p" number="5" value="2.03692533424484"/> 
      <parameter include="false" name="sigma2i" number="6" value="10.173598698525799"/> 
      <parameter include="false" name="CumulativeYstar" number="7" value="35158523.31132510304451"/> 
      <parameter include="false" name="CumulativeHstar" number="8" value="97.334652723897705"/> 
      <parameter include="false" name="'-ln(1-alpha_m)'" number="9" value="2.33031045876193"/> 
      <parameter include="false" name="decay_m" number="10" value="2.53106547375805"/> 
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      <parameter include="false" name="sigma2_0" number="11" value="0.655747311168152"/> 
      <parameter include="false" name="Xstar_v" number="12" value="0.916181104713054"/> 
      <parameter include="false" name="Ystar2" number="13" value="6502.26335600001039"/> 
      <parameter include="false" name="alpha" number="14" value="142601.912520000012591"/> 
      <parameter include="false" name="Density bias (non Garki)" number="15" value="0.177378570987455"/> 
      <parameter include="false" name="        sigma2        " number="16" value="0.05"/> 
      <parameter include="false" name="log oddsr CF community" number="17" value="0.736202"/> 
      <parameter include="false" name="Indirect risk cofactor" number="18" value="0.018777338"/> 
      <parameter include="false" name="Non-malaria infant mortality" number="19" 
value="49.539046599999999"/> 
      <parameter include="false" name="Density bias (Garki)" number="20" value="4.79610772546704"/> 
      <parameter include="false" name="Severe Malaria Threshhold" number="21" 
value="784455.599999999976717"/> 
      <parameter include="false" name="Immunity Penalty" number="22" value="1"/> 
      <parameter include="false" name="Immune effector decay" number="23" value="0"/> 
      <parameter include="false" name="comorbidity intercept" number="24" value="0.0968"/> 
      <parameter include="false" name="Ystar half life" number="25" value="0.275437402"/> 
      <parameter include="false" name="Ystar1" number="26" value="0.596539864"/> 
      <parameter include="false" name="Asexual immunity decay" number="27" value="0"/> 
      <parameter include="false" name="Ystar0" number="28" value="296.302437899999973"/> 
      <parameter include="false" name="Idete multiplier" number="29" value="2.797523626"/> 
      <parameter include="false" name="critical age for comorbidity" number="30" value="0.117383"/> 
    </parameters> 
  </model> 
</scenario> 
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4.1 Abstract 

Introduction 

Tools that allow for in silico optimization of available malaria control strategies can assist the 

decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation 

modeling platform can be applied to simulate the impact of interventions singly and in combination 

as implemented in Rachuonyo South District, western Kenya, to support this goal.  

 

Methods 

Combinations of malaria interventions were simulated using a previously-published, validated model 

of malaria epidemiology and control in the study area. An economic model of the costs of case 

management and malaria control interventions in Kenya was applied to simulation results and cost-

effectiveness of each intervention combination compared to the corresponding simulated outputs of 

a scenario without interventions. Uncertainty was evaluated by varying health system and 

intervention delivery parameters.   

 

Results 

The intervention strategy with the greatest simulated health impact employed long lasting insecticide 

treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual 

spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school 

children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the 

current malaria control strategy in the study area of LLIN use of 56% and IRS coverage of 70% was the 

most cost effective at reducing disability-adjusted life years (DALYs) over a five year period.  

 

Conclusions 

All the simulated intervention combinations can be considered cost effective in the context of 

available resources for health in Kenya. Increasing coverage of vector control interventions has a 

larger simulated impact compared to adding IST to the current implementation strategy, suggesting 
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that transmission in the study area is not at a level to warrant replacing vector control to a school-

based screen and treat program. These results have the potential to assist malaria control program 

managers in the study area in adding new or changing the implementation of current interventions.  

 

4.2 Introduction 

Important progress has been made in the past decade in reducing malaria morbidity and mortality in 

Kenya, but it is not obvious which additional tools and strategies should be the next priority to 

include in the package of malaria control interventions in a given area to keep transmission levels 

low, especially given the threat of resistance of the parasite and vectors to antimalarial drugs and 

insecticides [1, 2].  Application of mathematical models for use in simulations of malaria 

epidemiology and control can help estimate the impact of interventions singly and in combination to 

support this goal. 

OpenMalaria, a stochastic simulation modeling platform [3], has previously been applied to 

Rachuonyo South District, Nyanza Province, Kenya in order to describe the epidemiology of malaria 

and control area and identify uncertainty in key parameters pertaining to the study area [4]. Results 

indicate that the OpenMalaria model, as parameterized for Rachuonyo South District, can be 

extended to simulate the epidemiologic and economic impact of combinations of a range of existing 

and potential future malaria control interventions, singly and in combination, implemented in the 

study area [4]. This study addresses the cost effectiveness of feasible malaria control interventions in 

Rachuonyo South District for a five year time horizon. 

 

Study area 

Rachuonyo South District in Homa Bay County of Nyanza Province, Kenya is a highland fringe area 

with altitude between 1,400 and 1,600 meters. Ethnicity is predominantly Luo and homesteads are 

distributed broadly across a rolling landscape intersected with small streams and rivers. The area is 

characterized by generally low malaria endemicity with marked seasonal and inter-annual variations 

in transmission [5, 6]. As a result of a 2009 survey, community level parasite prevalence was 

estimated to be 4.5% and transmission was measured with an entomological inoculation rate of 1.5 
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infectious bites per person per year [4], but subsequent surveys in the study area showed 

community-level parasite prevalence to be as high as 15.5% [7]. This is in the range of the reported 

2010 national average parasite prevalence of 12%, but low compared to prevalence in the 

neighboring lowland districts bordering Lake Kisumu that reach 38% in children under 15 [8]. Malaria 

transmission peaks twice each year following rainfall patterns with a long rainy season between 

March and June and a shorter season in October and November. Recent studies indicate that 

Plasmodium falciparum is transmitted not only by Anopheles funestus and An arabiensis, but also by 

another, as yet unidentified secondary vector with outdoor-active, early-biting behavior, potentially 

challenging the effectiveness of current vector control interventions targeting indoor biting 

mosquitoes [9].  

 The main malaria control methods are currently mass-distribution of LLINs, annual indoor 

residual spraying (IRS) with pyrethroids, and prompt and effective treatment [8, 10, 11]. Kenya’s 

health system relies heavily on user fees and other out-of-pocket payments, with exemptions for 

children under five, the poor, and special conditions and services such as malaria and tuberculosis,  in 

both the formal public and private sector [12]. The latter provides a substantial proportion of primary 

care services (31%) [13]. 

 Rachuonyo South is one of a number of field sites of the Malaria Transmission Consortium 

(MTC), a project with the goal of enabling operational program managers to achieve optimal 

implementation of transmission-reducing malaria control techniques. Active between 2009 and 2012, 

MTC surveys provided detailed entomological studies of species composition and biting behavior [9], 

transmission estimation and community evaluation of LLINs and IRS versus LLINs alone. To 

complement these studies, a trial to assess the effect of hotspot-targeted interventions in 

populations living both inside and outside hotspots has recently been implemented [14]. Targeted 

interventions of this trial included distribution of LLINs, IRS, larviciding and intermittent screening and 

treatment. 
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4.3 Methods 

Ethics approval 

The study proposal received ethics approval from the Ethical Review Committee (ERC) of the Kenya 

Medical Research Institute (KEMRI) Nairobi under proposal number SSC 2163, the London School of 

Hygiene & Tropical Medicine ethics committee (#6111), and from Centers for Disease Control and 

Prevention (with exempt status). 

OpenMalaria modelling platform 

A team at the Swiss Tropical and Public Health Institute (Swiss TPH) and Liverpool School of Tropical 

Medicine (LSTM) developed the OpenMalaria platform comprising stochastic simulation models of 

transmission of malaria based on the simulation of infection in individuals. These models are able to 

evaluate the impact (cost-effectiveness, clinical, epidemiological and entomological) of numerous 

intervention strategies for malaria control [3, 15-19]. The details of the methods to build and 

parameterize the transmission model used in this project have been published elsewhere [3, 15-19]. 

Briefly, individual infections in humans are simulated by stochastic series of parasite densities, which 

determine an individual’s morbidity and mortality risks as well as their infectiousness to vectors [3, 

15]. These simulated infections are linked to a model of transmission of malaria between humans and 

mosquitoes and to models of interventions [3, 15, 16].  

 

Model parameterization and experiment design  

The scenario describing the current intervention mix was parameterized using a previously-published  

model of malaria epidemiology and control in Rachuonyo South District, validated with observed data 

from the site-specific MTC studies described above [4]. Parameterization of this baseline scenario 

included the characteristics of vector composition and biting behavior, seasonality of transmission, 

treatment seeking behavior and existing malaria control interventions in the study area as described 

above.   
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Combinations of interventions for the experiment were chosen in collaboration with malaria 

control personnel in the study area to correspond to a 2011-2012 intervention evaluation trial [14]. 

LLIN use the previous night was simulated at the proportion observed in the population (56%) and an 

increased level (80%) with one mass distribution at the beginning of the study period. Proportion of 

houses receiving IRS with a pyrethroid was simulated at the proportion observed in the population 

(70%) and an increased level (90%). The implementation schedule for IRS was simulated at the 

observed once-yearly schedule of alternating start dates in April and then June, as well as consistent 

implementation starting in April, May, and June.  Intermittent screen and treatment of school aged 

children with Artemether lumefantrine (AL) was simulated at low (40%) and high (80%) coverage, and 

a frequency of either once (January, May and September) or twice (initial months plus March, July 

and November) per school term.  These combinations, as well as their coverage levels and 

implementation schedules, are described in Table 1. 

 

Model Implementation 

Each intervention strategy was simulated in a population of 100,000 individuals.  To simulate the 

status quo prior to interventions simulations were run for one human life span to induce an 

“equilibrium” level of immunity.  Forward simulations of each intervention combination were made 

using an ensemble of 14 model variants for malaria in humans to address model uncertainty [18], 

with each model variant repeated with five random seeds to address stochasticity. Each intervention 

combination was simulated for a period of five years assuming 28% of fevers receive an antimalarial 

[8]. Simulations were run over the malariacontrol.net volunteer computing platform 

(www.malariacontrol.net).  
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Estimating the cost of malaria case management and interventions 

Case management costing model 

Malaria case management costs were based on a societal perspective; direct costs to the health 

systems are considered, as well as direct expenditures associated with malaria episodes at the 

household level. Indirect costs, including productivity loss due to illness, were not accounted for. 

While the latter tend to dominate the economic cost of illness [20-23], including these in cost-

effectiveness analysis would result in double counting of intervention benefits [24-26]. 

Treatment costs are evaluated following a model of malaria case management developed 

for endemic settings and is described elsewhere [25]. Briefly, the entry point to the model is an 

acute malaria episode from where treatment seeking is described in terms of the formal and 

informal sector, and then by level of care compliance with the recommended first-line antimalarial, 

and further by type of treatment and adherence and drug quality of that treatment. Defined in this 

manner, the methodology captures patterns in health seeking behavior in a given setting that 

reflect the underlying health systems infrastructure, quality of health care delivery as well as 

individual preferences and beliefs about and understanding of clinical outcomes associated with the 

illness. The methodology to evaluate effectiveness of malaria service delivery using data from 

national surveys and literature is detailed elsewhere [27]. While the proportion of fevers in Kenya 

that access medical care is estimated at 61.8% based on demographic health and surveillance (DHS) 

data [28], effective coverage will be much lower due to poor adherence to drug regimen, intake of 

counterfeit antimalarials, and drug resistance [27]. 

On the provider side, cost per episode covers drugs, diagnosis, medical personnel, facility 

charges, and other consumables. In addition to the first-line antimalarial as per national malaria 

guidelines, a portion of uncomplicated cases were assigned to treatment with sulfadoxine 

pyrimethamine (SP) given evidence on moderate uptake of AL, the first line artimisinin combination 

therapy (ACT) in the study area [29, 30]. Drug costs associated with severe illness include 

intravenous and oral quinine with length of regimen varied by outcome. Kenya’s national policy of 

treating severe illness with intra venous (IV) artesunate had not been implemented at the time of 
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the study and was therefore not included in the costing model. For hospitalizations leading to 

recovery, costs included an initial dose of IV quinine, followed by three further days of IV quinine 

and four days oral quinine. For severe cases that develop into neurological sequelae, costs included 

an initial dose of IV quinine, followed by 4.5 days of further IV quinine treatment, and subsequent 

5.5 days of oral quinine therapy. Severe fatal events were assumed to occur within 48 hours of 

hospital admission and therefore involve only the initial loading dose of IV quinine and two more 

days of IV quinine treatment [31]. Drug costs were calculated according to age and weight 

appropriate regimens [22]. Cost of diagnosis with RDT were calculated proportionally to the fraction 

of fever cases tested. Facility, personnel, linens, consumables and other outpatient “hotel” charges 

were obtained from the WHO-CHOICE project [32]. Costs by facility type including health centers 

with beds, health centers with no beds, and hospital outpatient and inpatient departments were 

then matched with respective probability of seeking care at a given level estimated from the 2009 

Kenyan DHS survey [28]. The DHS patterns in health seeking behavior for febrile illness are likely 

representative of uncomplicated malaria in countries with high levels of transmission, and 

somewhat biased in countries with low EIR to the extent that mothers are able to differentiate 

malaria from other febrile illnesses and care for their children differently. For severe episodes 

treated in inpatient settings, facility charges were scaled to account for length of hospitalization: 4.5 

days for severe episodes that recover, 10 days for severe episodes that develop into neurological 

sequelae, and 2 days for terminal episodes [31]. Costs were inflated to 2012 using the average 

annual consumer price index (CPI) estimated over the 2008-2011 year period [33] and can be found 

in Text S1. 

Direct patient costs associated with a malaria episode include travel expenses to and from 

healthcare facility and other consumables (i.e. water, food, etc) and were based on the multi-

country literature review. Spending on consumables is generally considered negligible; only a few 

studies recorded these data with an average of $0.20 per visit [25, 34, 35]. For treatment outside of 

the formal sector including pharmacy, shop, and other sources of care based on self-diagnosis, it is 

assumed that patients do not incur any additional costs to purchase the drug because these 

providers are generally close to the patient’s home. Thus only drug costs were added for treatments 

in informal sector. 
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Both average and marginal health system costs were calculated for each outcome. The 

average cost includes all costs involved in delivering a health intervention, including the use of spare 

capacity or slack in the system, health care resources diverted from other uses, and existing health 

sector resources shared with other health programs. In the marginal analysis only costs of drugs, 

diagnosis, and patient spending per visit were considered, as broader savings to the health system 

including labour and capital costs would not be immediately affected by changes in consumption of 

medical services due to lower diseases burden achieved by control interventions [31, 36].  

A sensitivity analysis was conducted for the costs of test and cost per ACT dose by varying 

costs by -50%/+100%, and for proportion of fevers that access medical care by varying access -

/+50% (Table 2). 

 

 

Costing interventions 

A general approach for costing malaria interventions using secondary data was applied as outlined 

by Kolaczinski et al [37]. Current cost of commodities including LLINs, insecticide, and drugs were 

sourced from the Global Fund to Fight AIDS, Tuberculosis and Malaria Price and Quality Reporting 

Tool [38].  Costs associated with delivery of interventions and intervention mixes were estimated by 

reviewing Kenyan field trials predominately from around the study area as identified in a recent 

systematic review of costs of malaria interventions [39] (Table 3).  These non-tradable costs were 

expressed in Kenyan Shillings, inflated to 2012 via Kenyan GDP deflator [33], and converted into 

USD at reference year exchange rates [40]. Ingredient costs considered in the marginal analysis 

include commodities, training and distribution. A sensitivity analysis was conducted for the 

intervention costs by varying costs by -50%/+100% (Table 3). 
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Analysis 

Epidemiological outcomes 

The simulated effectiveness of malaria control interventions and intervention combinations was 

evaluated by calculating the mean and inter-quartile range (IQR) of all model variants and seeds for 

each intervention combination for the difference in disease burden over a five year period from the 

start of intervention deployment compared to the mean of the simulations of the base case 

scenario with no interventions other than the existing case management system. Outcomes 

evaluated include decrease in parasite prevalence, number of uncomplicated episodes, 

hospitalizations and deaths averted in the general population. In addition to indicators for severity 

of illness, the overall population burden averted in terms of disability adjusted life years (DALYs) is 

calculated by combining mortality and morbidity measures as described by Murray and Lopez [25, 

41]. Following standard methodology for cost effectiveness analysis presented by Drummond and 

colleagues [24], years of life lost to illness (YLLs) are calculated assuming age-specific life 

expectancies based on the life-table from Butajira, Ethiopia, with an average life expectancy of 46.6 

years at birth [42].  

 

Cost effectiveness calculation 



4. Modeling the cost effectiveness of malaria control interventions in the highlands of western 

Kenya 

91 
 

Estimates of effectiveness of control interventions and intervention mixes are combined with the 

added costs of implementing these control measures. Treatment cost savings, or the reduction in 

cost to the health system due to the reduction in cases seen by the system, achieved by 

implementing the control strategy, are used to offset implementation costs and thus cost 

effectiveness ratios are calculated based on net rather than total intervention costs.  

 The cost savings to the case management system and households (CM) associated with 

implementing each intervention combination (IC) instead of a scenario without interventions (NO) 

are computed as DCcmNO-DCcmIC, where DCcmNO are the direct costs (DC) of case management in the 

scenario without interventions and DCcmIC are the direct costs of case management in the case of 

each intervention combination. These cost savings are subtracted from the direct cost of 

implementing each intervention combination (DCint) to give a net intervention combination cost 

(NC) computed as follows: NC = DCint –(DCcmNO-DCcmIC). Cost effectiveness is evaluated in two ways. 

The first is by calculating the average cost effectiveness ratio (ACER), as the net cost (NC) of the 

intervention divided by the net effects (NE) of the intervention. The second is by calculating the 

incremental cost effectiveness ratio (ICER), which follows the same methodology for calculating the 

ACER, except the net costs and net effects of each intervention combination are calculated against 

the currently implemented strategy. 

Both marginal and average cost-effectiveness ratios over a five year reference period are 

reported to illustrate the likely short-term financial impact of the intervention, as well as the longer-

term impact associated with the intervention including structural changes in health care delivery in 

response to lower disease burden achieved by the program. Cost effectiveness ratios are reported 

without discounting of future costs and benefits due to the short implementation time frame of the 

study and the recommendation from the revised GBD study [43]. Cost effectiveness ratios are 

calculated for a range of policy relevant outcomes including cost per case, hospitalization, death, 

and DALYs averted. 
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4.4 Results 

Epidemiological outcomes 

Compared to an intervention scenario with no malaria control outside of routine case management, 

and after five years of implementation, unsurprisingly, the intervention combination with the 

highest levels of intervention coverage (includes LLIN use by 80% of the population, 90% of 

households covered by IRS with deployment starting in April, and IST of school children using AL 

with 80% coverage twice per term) had the best health outcomes (simulated reduction in all-age 

parasite prevalence (99%, IQR 99.1-99.3%), average averted cases of uncomplicated malaria per 

person (7.46, IQR 7.44-7.48), hospitalizations averted (thousands)(3.96, IQR 3.95, 3.98), deaths 

averted (1,541, IQR 1,535, 1,551), and DALYs averted (thousands) (77.6, IQR 77.3-78.2)) (Table 4).   

Simulation results indicate that increased coverage of vector control has a larger impact 

than adding an IST intervention to the current control strategy. However, adding the highest IST 

coverage and frequency to the current strategy could reduce parasite prevalence by an additional 

nine percentage points (Figure 1).  Despite high coverage levels of all interventions, the scenario 

with the largest simulated epidemiological impact only resulted in one fewer uncomplicated case 

per person over the course of five years compared to the level observed in the study area with the 

current strategy (Table 4). Changing the timing of IRS deployment did not result in a reduction in 

simulated parasite prevalence either at observed coverage levels or when coverage was increased 

to 90% (Table 4).   

Figure 1: Simulated reduction in all-age 
annual average parasite prevalence by 
intervention combination compared to a 
scenario with no intervention. White lines 
represent the simulated median value, blue 
boxes represent the inter-quartile range, 
and capped bars represent the upper and 
lower adjacent values for simulated results 
for each intervention combination using an 
ensemble of 14 model variants and five 
random seeds. Choice of intervention 
combinations is based on the criteria of 
simulated reduction in parasite prevalence 
greater than the strategy currently 
implemented in the study area. 
 



4. Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya 

93 
 



4. Modeling the cost effectiveness of malaria control interventions in the highlands of western 

Kenya 

94 
 

Despite moderate levels of self-reported LLIN 

use, simulations indicate LLINs, and not IRS, 

account for the majority of impact on parasite 

prevalence. Removing LLINs and continuing only 

with a higher level of IRS coverage resulted in a 

similar number of averted uncomplicated cases 

compared to the IST interventions (Table 4). With 

higher LLIN use, simulations indicate IRS adds 

only a limited additional benefit above that 

provided by the nets (Figure1, Figure 2c). 

 Depending on coverage level and 

frequency, without vector control interventions, 

simulations suggest IST could reduce annual 

average parasite prevalence in the population by 

9-22% (Table 4). In the absence of vector control 

interventions, when starting with the IST 40% 

coverage once per term scenario, and compared 

to a scenario with no interventions, keeping the 

same coverage and increasing doses to twice per 

term showed a similar reduction in parasite 

prevalence as keeping the same frequency and 

increasing IST coverage to 80% (Figure 2).  

 

Figure 2: Relationship between cost and simulated health impact. Simulated cumulative DALYs averted after five 
years compared to the no intervention scenario by net program costs for different implementation strategies of a) 
vector control interventions, b) intermittent screen and treat in school children, and c) combinations of 
interventions. Symbols represent the mean simulation results across 14 model variants and five random seeds. 
Horizontal capped bars represent range of simulated DALYs averted. Vertical capped bars represent range of 
simulated net program costs. Negative DALYs averted indicate simulated interventions that have a worse health 
outcome than the no intervention scenario. Negative net program costs indicate simulated interventions where 
the savings to the health system are greater than the delivery costs. 
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Costing 

Total delivery costs and net health system costs for 

implementing each intervention combination can 

be found in Table S1.  Program costs always 

exceeded savings in case management. The top 

contributor to uncertainty in the highest coverage 

intervention combination scenario was the cost 

per LLIN distributed, followed by cost per child 

screened, ACT cost, cost per person protected by 

IRS, and access to treatment (Figure 3). Because of 

a low proportion of fevers tested for malaria with 

an RDT (12%), test cost did not contribute greatly 

to overall uncertainty.  

 

Intervention combination cost effectiveness 

Five intervention combinations simulated more averted DALYs than the currently-implemented 

intervention combination (Table 4, Figure 4). All of these intervention combinations involve 

increasing coverage of LLINs, of IRS, or both, with the exception of one which adds IST to the 

current strategy (Table 4, Figure 4). However, none of these options were simulated to be more 

cost effective than the current strategy (Table 5).  All interventions can be considered very cost 

effective health interventions. The currently implemented intervention combination has a 

simulated ACER of 4.29 USD per DALY averted, but even the intervention combination with the 

highest cost per additional DALY averted (IST at 80% coverage twice per term, LLIN use 80%, IRS 

coverage 90%), has a simulated ACER of only 9.06 USD (Table 5).  

 

Figure 3. Sensitivity analysis.  Tornado diagram of the 
change in the ACER of an intervention with 80% LLIN use, 
90% IRS coverage, and 80% IST coverage twice per term 
in relation to variation in component costs. 
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Figure 4. Cost effectiveness planes. Simulated cumulative DALYs averted in a population of 100,000 individuals 
after five years compared to the no intervention scenario by net program costs for the intervention 
combinations with a better simulated health outcome than the currently implemented malaria control strategy, 
ranked in descending order of ACER. Black dots represent the mean simulation results across 14 model variants 
and five seeds. Circles represent the simulated DALYs averted by net program costs with different assumptions 
of input costs of the case management system and malaria control interventions in the study area represented in 
Table 2 and Table 3. Dark blue circles are within the inter-quartile range of simulated DALYs averted and the light 
blue circles are outside the range. Negative DALYs averted indicate simulated interventions that have a worse 
health outcome than the no intervention scenario. Negative net program costs indicate simulated interventions 
where the savings to the health system are greater than the delivery costs. Diagonal lines correspond to the 
ratios of mean (4.29 USD per DALY averted) ACER of the currently implemented intervention combination in the 
study area (LLIN use 56%, IRS coverage 70%). 
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4.5 Discussion 

Cost effectiveness analyses based on health outcomes simulated by transmission models can 

compare many more intervention effects than can static models or field trials. In these simulations, 

interventions simulate a decrease in vector population and a corresponding decrease in 

transmission that allows for mass community effects of interventions. In particular, such models can 

explore the effects of intervention scenarios by transmission level and coverage level whereas in 

single field studies all the effects of different interventions cannot be captured. 

 Increased coverage and use of vector control interventions has a larger simulated impact on 

all malaria indicators than adding IST to the currently implemented control strategy. There could be 

additional impact of IST programs not captured in this analysis, including improved school 

performance and decreased anemia [44]. While results from a cluster-randomized trial of once per 

term IST in school children in the south coast of Kenya at similar coverage levels did not show an 

impact on parasitaemia [45], effectiveness of the program will depend on baseline parasitaemia and 

results may be different in Rachuonyo South District. Results suggests that, at least at transmission 

levels comparable to those in the study area, it would not be warranted to take focus away from 

vector control in favor of a school-based IST program even at a deployment frequency of twice per 

term, assuming such a level exists where this would be advisable. The simulated screen and treat 

campaign in this study was limited to school children, and incorporating a focal- or mass screen and 

treat program in the community may have very different results. However, should Rachuonyo South 

District decide to implement an IST program, simulations indicate adding this intervention to the 

existing malaria control program could still be a cost-effective intervention with a mean simulated 

ICER of only 66 USD above the currently implemented strategy (Table 5).  

 Despite moderate observed use in the population, simulations show LLINs and not IRS 

account for the majority of impact on disease burden.  Changing the timing of IRS implementation 

did not have a large impact on parasite prevalence. This could be due to the simulation experiment 

design, which models implementation of IRS programs rolled out over a 60 day period culminating 

in the target proportion of individuals protected. Because the start date of implementation was 

varied by 30 days at a time, implementation could overlap enough to prevent observing a 
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substantial difference between scenarios. Rather than changing the timing or coverage of IRS, the 

study area may benefit from adding new vector control interventions, particularly those targeting 

exophagic and exophilic vectors. 

 

Limitations 

While interventions were chosen to correspond to those in the hotspot-targeted intervention study, 

simulated implementation was assumed for the whole population rather than target hot spots 

because OpenMalaria does not incorporate an explicit spatial element. Therefore results cannot be 

matched against intervention trial results for validation purposes. However, findings from this 

experiment can help put the trial results in the broader context of what could be expected from 

community-wide implementation of combinations of interventions. 

 While simulations of the scenarios describing the effects of the intervention combinations in 

reducing malaria burden account for uncertainty by employing an ensemble of 14 model variants 

and multiple random seeds, uncertainty in the costing model is limited to a one-way sensitivity 

analysis. A probabilistic sensitivity analysis exposing the model to changes in assumptions of inputs 

to the case management and intervention unit costs is being conducted for publication elsewhere, 

and will assist in clarifying the uncertainty inherent in these predictions. 

 Despite vector behavior in the study area favoring outdoor biting, IRS had a lower health 

impact than expected when simulated as a stand-alone intervention when compared to LLINs. The 

IRS model parameterization has deterrency and killing effects of half that of LLINs, due to simulated 

action only on post-prandial indoor resting mosquitoes, in contrast to the both pre- and post- 

prandial killing effect of LLINs. A model update will allow the effect of IRS to be simulated on both 

states of the mosquito feeding cycle, and the parameters for effectiveness of IRS should be updated 

based on experimental hut data. It is also worth noting the lower cost per sachet of insecticide 

assumed in the costing model compared to the average unit costs reported in the recently released 

UNITAID report on malaria vector control commodities [46], due to the economies of scale achieved 

through a multi-country procurement by the IRS implementing partner [47].  
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Implications of results for health systems 

Results of this experiment have the potential to assist malaria control program managers in the 

study area in deciding on adding new or changing the implementation of current interventions. All 

the simulated intervention combinations can be considered cost effective in the context of levels of 

health expenditure in Kenya. Malaria is the number six contributor to burden of disease in Kenya, 

both overall and in children under five [48]. The low cost per DALY averted by the malaria control 

interventions with a higher simulated number of DALYs averted than the current strategy 

represents a small portion of the total health expenditure per capita of 42 USD [13] and could be a 

cost effective option for reaching the country’s development strategies. In comparison with 

estimates from a recent systematic review on costs and cost effectiveness of malaria control 

interventions [39], these results are on the low end of the range of previous estimates. Similarly, 

compared to WHO-CHOICE estimates for the AFR-E region, while the simulated DALYs averted per 

year for the currently-implemented strategy are comparable to WHO estimates for 50% coverage of 

vector control interventions (14,296 simulated, 14,711 observed), the simulated cost per DALY 

averted are substantially lower than the regional averages when converted to 2012 USD (4.29 2012 

USD simulated, 50 2005 International Dollars (I$) observed) [49]. This puts malaria prevention 

interventions in the study area in the range of regional estimates for tuberculosis (6-15 2005 I$ per 

DALY averted [50] and HIV prevention communication (3-4 2005 I$ per DALY averted) [51]. 

Findings from this study indicate that there are several combinations of interventions that 

could result in a greater health impact per dollar spent than the currently implemented strategy.  

However, increasing LLIN use and IRS coverage and initiating a school-based IST program will 

require investment in several elements not included in this analysis. Firstly, the unit costs of scaling 

up or introducing some programs will vary by implementation strategy more than others. For 

example, the majority of the economic cost of the LLIN program implemented by training existing 

community organizations on distribution is represented by the marginal cost of procuring nets 

(Table 3). Therefore a change in strategy may not result in a large change in cost per net delivered 

due to increased or decreased non-commodity costs. The reverse is true for a school-based IST 
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program where marginal costs are under half the cost per child screened (Table 3), and could 

therefore be far more sensitive to changes in program design.  

Secondly, additional costs will be incurred by determining the appropriate strategy for 

achieving programmatic goals. Several scenarios in this experiment assume LLIN use of 80%, which 

is an ambitious target that will depend not only on universal coverage but a large behavior change 

communications component. Understanding of the behavioral determinants for why nets existing in 

households currently remain unused will be critical to achieving this goal. In addition to increased 

personnel and commodities, increasing coverage of IRS will require continued monitoring of 

insecticide resistance in the vector population, as well as understanding why households remain 

unsprayed, whether it is due to rejection by household members or the inability to logistically 

access hard to reach households. Implementing a school-based IST program as intensive as twice 

per school term over an extended period of time could result in a change in adherence rates as well 

as an increased risk of selecting for drug resistance, elements which may impact the effectiveness of 

the intervention if community acceptability is not assessed.   

Thirdly, the study does not allow for any economies or diseconomies of scale for the costs of 

commodities and program delivery, assuming costs will grow linearly with scale up. In practice this 

will likely not be the case; increasing intervention coverage from 70% to 80% may be more 

expensive than scaling up from 50% to 60%. 

Assessing the epidemiologic impact and cost effectiveness of different intervention 

combinations is a necessary element in considering a change of malaria control policy, but it is by no 

means the only criteria with which to base a recommendation for policy change. Changes in 

implementation, whether this includes new strategies to increase coverage and use of existing 

interventions or the addition of a new intervention, will have implications on acceptability by the 

individuals and communities receiving the interventions, the personnel involved in service delivery, 

the natural environment into which increased insecticides could be introduced, and the systems of 

surveillance and monitoring for indicators of malaria and other febrile illnesses, to name a few. 

Conducting a health impact assessment, drawing on existing frameworks [52, 53], may strengthen 

the success of any change in strategy. 
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Text S1: Costing the Kenya malaria case management system, interventions, and cost 
effectiveness 
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5.1 Summary 

Following scale-up of vector control interventions, preliminary results from the evaluation of 

a mass screen and treat (MSAT) program in Zambia’s Southern province suggest a benefit of 

MSAT using artemether-lumefantrine (AL) at reducing the malaria parasite prevalence. We 

use OpenMalaria, a discrete-time individual-based stochastic model of malaria, 

parameterized for Zambia’s Southern province, to simulate antimalarial administration for 

interruption of transmission in the study area. Simulations were run on scenarios created for 

a range of drug combinations, coverage levels, target age groups, distribution frequencies, 

and levels of transmission and evaluated based on the proportion of simulations runs 

leading to interruption of transmission. Simulations suggest MSAT with the use of an 

antimalarial drug with a longer prophylactic effect such as dihydroartemisinin-piperaquine 

(DHP) and MSAT with DHP combined with a drug with a gametocytal effect such as 

primaquine (PQ) will be only marginally more effective than the existing strategy of MSAT 

with AL. However, including a drug preventing transmission such as ivermectin in a mass 

drug administration (MDA) with DHP+PQ has the potential to further reduce transmission in 

the study area. Results suggest a high proportion of low density infections missed by RDT 

diagnosis that are treated and cleared with MDA. The optimal implementation strategy for 

treatment-based interventions will vary by background level of parasitaemia and coverage 

level, and success of any MSAT or MDA campaign will depend on sustained coverage of 

vector control interventions to ensure sustained gains in reduction of disease burden.  
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5.2 Background 

Malaria control is based on both preventing 

transmission and obtaining prompt and 

effective treatment of infection. Many 

countries have made significant progress in 

preventing malaria, focusing largely on 

vector control through long lasting 

insecticide-treated nets (LLINs) and indoor 

residual spraying (IRS) of insecticides. With 

reduced levels of transmission, 

supplementing vector control with mass 

administration of drugs that kill both 

malaria parasites and mosquitoes has the 

potential to interrupt transmission. In 

response to the need to plan next steps 

following a scale up of vector control 

interventions, the Zambia National Control 

Center in partnership with PATH MACEPA is conducting an evaluation of a malaria testing 

and treatment campaign in Southern province to contribute to a marked reduction of 

community level malaria. In addition to the existing implementation strategy of targeting all 

ages with three rounds of AL, an additional set of operational and chemotherapeutic options 

are currently under institutional review board review. These changes to the design include 

replacing AL with DHP which clears asexual blood stages of current infections and has a 

longer prophylactic period against future malaria infection [8], as well as use of PQ which has 

a strong gametocytocidal effect [9]. Ivermectin, which is toxic to mosquitoes that 

subsequently bite the human [10], is additionally being considered for future inclusion in the 

intervention. The goal of this report is to assess the effectiveness of changing the 

operational strategy of the malaria testing and treatment campaign as simulated by the 

OpenMalaria model.  

 

Figure 1: Schematic of the OpenMalaria transmission 

model [1-3] with positive feedback shown by solid 

lines and negative feedback by dashed lines. Emergent 

mosquitoes biting on humans with high parasite 

densities are more likely to become infected and 

subsequently infectious if they live long enough. They, 

in turn, can infect humans, leading to high parasite 

densities and the buildup of acquired immunity. 

Acquired immunity tends to moderate parasite 

densities, which can lead to clinical events, such as 

uncomplicated malaria, severe malaria, and death. 
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5.3 Methods 

Model 

The OpenMalaria modeling platform combines a stochastic individual-based simulation 

model for malaria in humans with a periodically-forced deterministic model for malaria in 

mosquitoes, shown in a simple schematic in Figure 1 [1-3]. The model includes multiple 

aspects of the dynamics of malaria in humans, including human demography, acquired 

immunity and superinfection [11, 12], variations in parasite densities and infectiousness to 

mosquitoes [13, 14], and the clinical effects of malaria [15-18], and has been fit to multiple 

field data sets. The model for malaria transmission in mosquitoes [19] includes multiple 

mosquito species, nonhuman hosts, and a periodically varying emergence rate [20]. The 

model platform consists of an ensemble of fourteen model variants with varying 

assumptions such as heterogeneity in exposure and decay of immunity to help quantify the 

effects of uncertainty in model formulation [21]. It has been used to investigate the effects 

of case management [22], vaccines [23-

26], intermittent preventive treatment 

[27], mass screen and treat [28] and 

vector control interventions [29-32] in 

reducing malaria transmission and 

disease.  

In each simulation, the human 

population is forced with a specified 

periodically-varying entomological 

inoculation rate (EIR), or infectious bites 

per person per year, for one human life 

span to build immunity in the human 

population. Following this warm-up period, the mosquito emergence rate that gives rise to 

the specified EIR was estimated. The human and mosquito models are then connected so 

that infections in the human population give rise to infections in the mosquito population 

Figure 2: Seasonal pattern of malaria transmission 
used to parameterize the baseline model for 
Southern Province. This pattern was repeated for 
each scenario for a range of six values of annual 
average EIR. 
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which in turn infect the human population and so on, such that the EIR varies dynamically in 

response to interventions. 

Model parameterization and validation 

A review of published literature and available data from field studies in the study area was 

conducted to identify a set of parameter values representing the demography, seasonal 

pattern of malaria transmission (Figure 2), entomology, existing malaria control 

interventions (Figure 3), and case management for Southern province in Zambia. Details of 

the baseline parameter values can be found in the Appendix. 

This baseline scenario was simulated on a population of 10,000 individuals over the 

time frame of the MSAT trial. Simulation results from the baseline scenario were validated 

against observed RDT positivity rates by facility catchment area following the scale up of an 

MSAT program using AL [5].  

Experiment design 

To investigate the effects of operational considerations and drug regimen on health 

outcomes, assuming the baseline MSAT implementation as illustrated in Figure 3, the 

following scenarios were included in the experiment and altered one at a time (baseline 

scenario underlined): 

i) three profiles of targeting based on age: all ages, children under five years1, and 

adults 25-49 years; 

                                                           
1 In this experiment, targeting of specific age groups leads to lower coverage of the overall population; the 
intervention affects only 40% of individuals in the targeted age groups.  

Baseline scenario assumptions 

 18% coverage of IRS  
 

 21.8% of under 5 fevers in the last two 
weeks accessing an antimalarial [4] 

 75% compliance to MSAT drug 
regimen 

 57.52% of population sleeping under an 
LLIN the previous night [4], out of 71.8% 
households owning at least one ITN  

 EIR: 80% from Anopheles arabiensis, 20% 
from An funestus [6, 7] 
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ii) four profiles of frequency of the three campaign rounds: eight weeks apart, four 

weeks apart, three weeks apart, and two weeks apart;  

iii) three profiles of coverage of the health facility catchment areas present in the study 

area: 40%, 72%, and 100%; 

iv) four profiles of drug combinations: MSAT with AL, MSAT with DHP, MSAT with DHP + 

PQ, and MDA with DHP + PQ + ivermectin.   

 

To analyze the sensitivity of the intervention to changes in model parameters for 

transmission and implementation,  and to account for model uncertainty and stochasticity, 

the following variations were applied to each of the scenarios described above: 

i) fourteen model variants, which vary in their assumptions about malaria 

epidemiology 

ii) three random seeds to account for the effects of stochasticity 

iii) six levels of pre-intervention entomological inoculation rate (EIR), at 1.5, 3, 9, 18, 26, 

and 36.6 infectious bites per person per year [7], with a rate of ten imported cases 

per 1,000 individuals in EIR values 9 and below 

 

Based on these additions, each scenario was run for a total of 252 different model runs. 

Scenarios were evaluated based on the proportion of simulations runs leading to 

Figure 3: Schematic of malaria control interventions existing in Southern province, Zambia from 2006-
2012 that served to inform the baseline scenario used for this experiment. 
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interruption of transmission defined as zero clinical cases (ZCC) in month three following the 

final intervention deployment [33, 34], and the simulated reduction in mean all-age mean 

parasite prevalence (MPP) compared to the baseline scenario.  

 

5.4 Results and discussion 

Validation 

The model was able to simulate the range of observed prevalence of health facility 

catchment areas at each of the three MSAT deployment rounds, in each of the three strata 

of parasite prevalence rate at the time of the December 2011 pilot survey (Figure 4).  

 

 

 

However, for the health facility catchment areas representing the highest parasite 

prevalence rate, no simulation runs estimated a prevalence rate of greater than 35% in the 

June/July intervention round, while during the same time period the observed prevalence 

rates reached as high as 48.2% (Figure 4) [5]. This effect of the simulated intervention having 

a greater impact than observed on areas of high prevalence could be due to the model 

assumptions that imported cases only factor in to scenarios with an EIR of 9 and below, with 

results indicating that even areas with higher prevalence could witness a proportion of cases 

resulting from imported infections.  

Figure 4: Validation of the baseline scenario parameterization. Simulated vs. observed 

effect of three rounds of MSAT using AL, by parasite prevalence at pilot conducted in 

December 2011 [5]. Black circles represent observed parasite all age prevalence rates in 

health facility catchment areas. Grey circles represent simulated parasite rates. 
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Implementation combinations 

Out of the 252 simulation runs for the baseline scenario, in the timestep corresponding to 

the third month following the final simulated MSAT round, 15% (n=38) showed ZCC. 37 of 

the 38 simulation runs predicting interruption of transmission were scenarios with parasite 

prevalence of <10% at the time of the December 2011 pilot survey, with only one in the 

category of parasite prevalence between 10% and 24%. 

 

Age groups 

Limiting implementation of MSAT to children under five or adults aged 25-49 does not show 

an improvement either in terms of ZCC (12% and 10%, respectively) (Figure 5) or in terms of 

reduction in MPP (-40% and -17%, respectively) compared to targeting all age groups (Figure 

6). Results of parasite prevalence rates presented at the recent Malaria Elimination 

Symposium at the Zambia National Health Research Conference showed a higher parasite 

prevalence rate among the 5-16 age group (Silumbe, personal communication). Based on 

these results it is clear that neither of these two age groups taken alone are principle drivers 

of transmission in the study area and therefore it is not surprising that this method of 

targeting did not have a greater impact than targeting the whole population. 

 

Coverage 

Figure 5: Proportion of simulations predicting zero clinical cases three months after intervention 
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Increasing MSAT coverage to 72% results in an additional 6% ZCC and a 23% reduction in 

MPP compared to the baseline, while 100% coverage more than doubled the number of 

simulation runs estimating interruption of transmission to 31%, and a 36% reduction in MPP 

compared to the baseline. These results indicate that subsequent rounds of MSAT 

conducted during the 2013 and 2014 dry season where 72% and 100% of health facility 

catchment areas targeted, respectively, will likely see a greater health impact than the first 

round of MSAT with 40% coverage. 

 

Frequency of implementation 

Shortening time between MSAT rounds has the potential to increase the effectiveness of the 

intervention. Cutting the interval between rounds in half to 30 days did not show an 

improvement over baseline (14% vs. 15% ZCC), likely the result of 30 days being too long to 

catch the end of the prophylactic period of AL. A 20 day interval was marginally more 

effective in interrupting transmission (18% vs. 15% ZCC) but not at reducing MPP (4% 

reduction compared to the baseline).  
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Figure 6: Simulated reduction in parasite prevalence in all ages compared to baseline scenario as 

measured in June 2013, the peak transmission month following MSAT implementation. 
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Interestingly, conducting the three rounds of MSAT 15 days apart resulted in the ZCC 

as increasing coverage to 72% (21% ZCC), but did not have as great an impact in parasite 

prevalence (10% reduction in MPP compared to the baseline scenario). This indicates that 

extending the prophylactic period by a shorter, more intense exposure to the antimalarials 

has more of an impact on transmission from mosquitoes to humans than to the overall 

parasite reservoir in the population.  

 

Drug combinations 

Despite the longer prophylactic period, MSAT with DHP did not perform better than AL at 

interrupting transmission or reducing MPP (both 15% ZCC, 4%). Adding PQ to the DHP 

regimen had a similar effect of interrupting transmission as shortening the interval between 

rounds to 20 days (18% ZCC) but had a larger effect on reducing MPP (14%). Conducting 

MDA with DHP + PQ + ivermectin had the largest impact of any combination of drugs or 

frequency of implementation with 27% ZCC and a 30% reduction in MPP over the baseline.  

 

Ivermectin halflife 

Varying the halflife of efficacy of Ivermectin between 4 days, 1 week, 2 weeks and 4 weeks 

did not result in a difference in reduction of parasite prevalence (26%-30%) or  interrupting 

transmission (23%-27% ZCC). One possible explanation for this lack of variation could be due 

to the life span of the vector and the parasite. Ivermectin with a short halflife could be most 

effective on newly-infected mosquitoes, while ivermectin with a long halflife could be most 

effective on newly-infectious mosquitoes, in both cases preventing onward transmission.  

 

Limitations 

In the OpenMalaria model, there is no inter-annual variation in seasonality in EIR. This 

assumption is of little consequence when simulating the impact of interventions, but it can 

have an impact when validating studies that attempt to simulate the dynamics of malaria in 

a given location over a period of multiple years.  

The OpenMalaria model does not explicitly take spatial associations into account. 

Variation in proximity to breeding sites could be a factor driving the difference in epidemic 
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profile of the study area. This can be captured by introducing heterogeneity in availability to 

mosquitoes in humans. However, targeting vector control interventions according to this 

availability cannot be modelled. Additionally, focal screen and treat (FSAT) programs, which 

may be an appropriate strategy in many settings, are not included in the portfolio of 

simulations. 

Validation results showing a larger simulated round-to-round MSAT impact than 

observed in health facility catchment areas with MPP of greater than 24% at time of the pilot 

survey suggest a level of imported cases existing in these higher transmission catchment 

areas. This will need to be taken into account in refining the parameterization of Southern 

Province for future simulation experiments. A longer time period of simulated MSAT/MDA 

implementation may also clarify the impact of the program. 

While the dosage level of ivermectin used in onchocerciasis control programs lasts 

approximately six days [35], increasing the dose used in an MDA program for malaria control 

may provide a longer duration of mosquito mortality [36]. To clarify these issues, conducting 

a comprehensive sensitivity analysis on the duration of effectiveness of ivermectin under 

different conditions will be an essential addition to this study, as will investigating the effect 

of different levels of compliance to the drug regimen. Additional focus needs to be placed on 

the effect of timing of ivermectin and parasite-vector dynamics to better apply appropriate 

targeting for inclusion of ivermectin in an MDA campaign. 

 

5.5 Implications for future MSAT implementation in Southern Province 

The optimal implementation strategy for MSAT/MDA in Southern Province will vary by 

background level of parasitaemia and coverage level, and success of the intervention 

depends on continued coverage of vector control interventions to ensure sustained gains in 

reduction of disease burden. Simulation results suggest a high proportion of low density 

infections missed by RDT diagnosis that are treated and cleared with MDA. Clarifying the 

relationship between sub-patent parasitaemia and transmission will be helpful to inform 

future program implementation. 
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Despite the marginal simulated initial benefit of switching to DHP, utilization of a 

different drug than the first line malaria treatment could have benefits for avoiding drug 

resistance that will only become clear after multiple years of implementation. While 

simulations with single low dose PQ also did not have a large effect at being added to a 

regimen of MSAT with DHP, this does not exclude PQ playing a role in malaria control and 

elimination. Integration of PQ into the first line treatment regimen for clinical cases or into 

active case detection or FSAT programs could be an effective use of the drug. Safety trials 

will need to be conducted and options for integrating a test for G6PD deficiency 

investigated. Strategies targeting Ivermectin have the potential to be a useful intervention in 

the study area. An additional benefit of ivermectin not reflected by simulation results may 

be to protect ACTs from additional resistance pressure due to mass treatment. If drug 

resistant parasites evolve in a person treated with ivermectin, ivermectin’s effect of killing 

vectors prevents onward transmission of those resistant parasites. Simulations aimed at 

identifying the optimal mix of dosage and operational strategy can further clarify the role of 

ivermectin. 
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Direction for future OpenMalaria simulations  

 Analysis of results stratified by level of parasite 
prevalence 

 Sensitivity analysis of compliance to drug 
regimen 

 Effectiveness and coverage levels for targeting 
children 5-15 with MSAT/MDA 

 Effectiveness of MSAT/MDA in the contexts of 
Western Kenya, Ethiopia and Senegal 

 

 

 Effectiveness of DHP, DHP+PQ, and 
DHP+PQ+ivermectin at different coverage 
levels and frequency of implementation 

 Cost effectiveness analysis to determine the 
net health benefits of different operational 
strategies 

 Simulated benefit of treating cattle with 
avermectin to target partially zoophagic 
vectors 
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Appendix: Baseline OpenMalaria parameterization for Southern Province, Zambia  

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<scenario xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" analysisNo="0" 
name="wuZambiaDrugCombosCoartem32_3019.xml,ages:base,coartem:coartem40,eir:9,model:base,timing:ba
se,seed:1" schemaVersion="32" wuID="0" xsi:noNamespaceSchemaLocation="scenario_current.xsd"> 
  <demography maximumAgeYrs="90" name="Zambia 2010 census_Southern province " popSize="10000"> 
    <ageGroup lowerbound="0"> 
      <group poppercent="3.6" upperbound="1"/> 
      <group poppercent="14.1" upperbound="5"/> 
      <group poppercent="14.8" upperbound="10"/> 
      <group poppercent="13.6" upperbound="15"/> 
      <group poppercent="11.4" upperbound="20"/> 
      <group poppercent="8.9" upperbound="25"/> 
      <group poppercent="8" upperbound="30"/> 
      <group poppercent="6.4" upperbound="35"/> 
      <group poppercent="5.2" upperbound="40"/> 
      <group poppercent="3.6" upperbound="45"/> 
      <group poppercent="2.8" upperbound="50"/> 
      <group poppercent="2.2" upperbound="55"/> 
      <group poppercent="1.5" upperbound="60"/> 
      <group poppercent="1.3" upperbound="65"/> 
      <group poppercent="0.9" upperbound="70"/> 
      <group poppercent="0.7" upperbound="75"/> 
      <group poppercent="0.5" upperbound="80"/> 
      <group poppercent="0.3" upperbound="85"/> 
      <group poppercent="0.1" upperbound="90"/> 
    </ageGroup> 
  </demography> 
  <monitoring name="MSAT"> 
    <continuous period="1"> 
      <option name="simulated EIR" value="true"/> 
      <option name="input EIR" value="true"/> 
    </continuous> 
    <SurveyOptions> 
      <option name="nHost" value="true"/> 
      <option name="nPatent" value="true"/> 
      <option name="nTreatments1" value="false"/> 
      <option name="nTreatments2" value="false"/> 
      <option name="nTreatments3" value="false"/> 
      <option name="nUncomp" value="true"/> 
      <option name="nSevere" value="true"/> 
      <option name="nSeq" value="false"/> 
      <option name="nHospitalDeaths" value="false"/> 
      <option name="nIndDeaths" value="false"/> 
      <option name="nDirDeaths" value="false"/> 
      <option name="nHospitalRecovs" value="false"/> 
      <option name="nHospitalSeqs" value="false"/> 
      <option name="nMassVaccinations" value="false"/> 
      <option name="nMassScreenings" value="true"/> 
      <option name="simulatedEIR" value="false"/> 
      <option name="nMassIRS" value="false"/> 
      <option name="nMDAs" value="true"/> 
      <option name="nMassITNs" value="false"/> 
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      <option name="nAddedToCohort" value="false"/> 
    </SurveyOptions> 
    <surveys detectionLimit="100"> 
            <surveyTime>7662</surveyTime> 
      <!-- Dec 2011 (MSAT pilot) --> 
      <surveyTime>7663</surveyTime> 
      <surveyTime>7664</surveyTime> 
      <surveyTime>7665</surveyTime> 
      <surveyTime>7666</surveyTime> 
      <surveyTime>7667</surveyTime> 
      <surveyTime>7668</surveyTime> 
      <!--Jan 2012 (IRS) --> 
      <surveyTime>7669</surveyTime> 
      <surveyTime>7670</surveyTime> 
      <surveyTime>7671</surveyTime> 
      <surveyTime>7672</surveyTime> 
      <surveyTime>7673</surveyTime> 
      <surveyTime>7674</surveyTime> 
      <surveyTime>7675</surveyTime> 
      <surveyTime>7676</surveyTime> 
      <surveyTime>7677</surveyTime> 
      <surveyTime>7678</surveyTime> 
      <surveyTime>7679</surveyTime> 
      <surveyTime>7680</surveyTime> 
      <surveyTime>7681</surveyTime> 
      <surveyTime>7682</surveyTime> 
      <surveyTime>7683</surveyTime> 
      <surveyTime>7684</surveyTime> 
      <surveyTime>7685</surveyTime> 
      <surveyTime>7686</surveyTime> 
      <surveyTime>7687</surveyTime> 
      <surveyTime>7688</surveyTime> 
      <surveyTime>7689</surveyTime> 
      <surveyTime>7690</surveyTime> 
      <surveyTime>7691</surveyTime> 
      <surveyTime>7692</surveyTime> 
      <surveyTime>7693</surveyTime> 
      <surveyTime>7694</surveyTime> 
      <surveyTime>7695</surveyTime> 
      <surveyTime>7696</surveyTime> 
      <surveyTime>7697</surveyTime> 
      <surveyTime>7698</surveyTime> 
      <!-- June 2012 (MSAT round 1, nets catch up) --> 
      <surveyTime>7699</surveyTime> 
      <surveyTime>7700</surveyTime> 
      <surveyTime>7701</surveyTime> 
      <surveyTime>7702</surveyTime> 
      <surveyTime>7703</surveyTime> 
      <surveyTime>7704</surveyTime> 
      <!-- July 2012 --> 
      <surveyTime>7705</surveyTime> 
      <surveyTime>7706</surveyTime> 
      <surveyTime>7707</surveyTime> 
      <surveyTime>7708</surveyTime> 
      <surveyTime>7709</surveyTime> 
      <surveyTime>7710</surveyTime> 
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      <!-- August 2012 --> 
      <surveyTime>7711</surveyTime> 
      <surveyTime>7712</surveyTime> 
      <surveyTime>7713</surveyTime> 
      <surveyTime>7714</surveyTime> 
      <surveyTime>7715</surveyTime> 
      <surveyTime>7716</surveyTime> 
      <!-- September 2012 --> 
      <surveyTime>7717</surveyTime> 
      <surveyTime>7718</surveyTime> 
      <surveyTime>7719</surveyTime> 
      <surveyTime>7720</surveyTime> 
      <surveyTime>7721</surveyTime> 
      <surveyTime>7722</surveyTime> 
      <!-- October 2012 --> 
      <surveyTime>7723</surveyTime> 
      <surveyTime>7724</surveyTime> 
      <surveyTime>7725</surveyTime> 
      <surveyTime>7726</surveyTime> 
      <surveyTime>7727</surveyTime> 
      <surveyTime>7728</surveyTime> 
      <!-- November 2012 --> 
      <surveyTime>7729</surveyTime> 
      <surveyTime>7730</surveyTime> 
      <surveyTime>7731</surveyTime> 
      <surveyTime>7732</surveyTime> 
      <surveyTime>7733</surveyTime> 
      <surveyTime>7734</surveyTime> 
      <!-- December 2012 --> 
      <surveyTime>7735</surveyTime> 
      <surveyTime>7736</surveyTime> 
      <surveyTime>7737</surveyTime> 
      <surveyTime>7738</surveyTime> 
      <surveyTime>7739</surveyTime> 
      <surveyTime>7740</surveyTime> 
      <!-- January 2013 --> 
      <surveyTime>7741</surveyTime> 
      <surveyTime>7742</surveyTime> 
      <surveyTime>7743</surveyTime> 
      <surveyTime>7744</surveyTime> 
      <surveyTime>7745</surveyTime> 
      <surveyTime>7746</surveyTime> 
      <surveyTime>7747</surveyTime> 
      <surveyTime>7748</surveyTime> 
      <surveyTime>7749</surveyTime> 
      <surveyTime>7750</surveyTime> 
      <surveyTime>7751</surveyTime> 
      <surveyTime>7752</surveyTime> 
      <surveyTime>7753</surveyTime> 
      <surveyTime>7754</surveyTime> 
      <surveyTime>7755</surveyTime> 
      <surveyTime>7756</surveyTime> 
      <surveyTime>7757</surveyTime> 
      <surveyTime>7758</surveyTime> 
      <surveyTime>7759</surveyTime> 
      <surveyTime>7760</surveyTime> 
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      <surveyTime>7761</surveyTime> 
      <surveyTime>7762</surveyTime> 
      <surveyTime>7763</surveyTime> 
      <surveyTime>7764</surveyTime> 
      <surveyTime>7765</surveyTime> 
      <surveyTime>7766</surveyTime> 
      <surveyTime>7767</surveyTime> 
      <surveyTime>7768</surveyTime> 
      <surveyTime>7769</surveyTime> 
      <surveyTime>7770</surveyTime> 
      <surveyTime>7771</surveyTime> 
      <surveyTime>7772</surveyTime> 
      <surveyTime>7773</surveyTime> 
      <surveyTime>7774</surveyTime> 
      <surveyTime>7775</surveyTime> 
      <surveyTime>7776</surveyTime> 
      <surveyTime>7777</surveyTime> 
      <surveyTime>7778</surveyTime> 
      <surveyTime>7779</surveyTime> 
      <surveyTime>7780</surveyTime> 
    </surveys> 
    <ageGroup lowerbound="0"> 
      <group upperbound="99"/> 
    </ageGroup> 
  </monitoring> 
  <interventions name="Full Set"> 
    <importedInfections> 
      <timed> 
        <rate time="0" value="10"/> 
      </timed> 
    </importedInfections> 
    <changeHS> 
      <timedDeployment time="7300"> 
        <ImmediateOutcomes name="Zambia ACT"> 
          <drugRegimen firstLine="ACT" inpatient="QN" secondLine="QN"/> 
          <initialACR> 
            <ACT value="1"/> 
            <QN value="0.998"/> 
            <selfTreatment value="0.761"/> 
          </initialACR> 
          <compliance> 
            <ACT value="0.81"/> 
            <selfTreatment value="0.394"/> 
          </compliance> 
          <nonCompliersEffective> 
            <ACT value="0.8544"/> 
            <selfTreatment value="0"/> 
          </nonCompliersEffective> 
          <pSeekOfficialCareUncomplicated1 value="0.065489"/> 
          <pSelfTreatUncomplicated value="0.015628"/> 
          <pSeekOfficialCareUncomplicated2 value="0.065489"/> 
          <pSeekOfficialCareSevere value="0.48"/> 
        </ImmediateOutcomes> 
        <CFR> 
          <group lowerbound="0" value="0.09189"/> 
          <group lowerbound="0.25" value="0.0810811"/> 
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          <group lowerbound="0.75" value="0.0648649"/> 
          <group lowerbound="1.5" value="0.0689189"/> 
          <group lowerbound="2.5" value="0.0675676"/> 
          <group lowerbound="3.5" value="0.0297297"/> 
          <group lowerbound="4.5" value="0.0459459"/> 
          <group lowerbound="7.5" value="0.0945946"/> 
          <group lowerbound="12.5" value="0.1243243"/> 
          <group lowerbound="15" value="0.1378378"/> 
        </CFR> 
        <pSequelaeInpatient interpolation="none"> 
          <group lowerbound="0.0" value="0.0132"/> 
          <group lowerbound="5.0" value="0.005"/> 
        </pSequelaeInpatient> 
      </timedDeployment> 
    </changeHS> 
    <human> 
      <effect id="Coartem"> 
        <MDA> 
          <diagnostic> 
            <stochastic dens_50="50" specificity="0.942"/> 
          </diagnostic> 
          <drugEffect> 
            <compliance nonCompliersMultiplier="0" pCompliance="0.75"/> 
            <compliersEffective> 
              <timestep pClearance="0.8"/> 
              <timestep pClearance="0.3"/> 
            </compliersEffective> 
          </drugEffect> 
        </MDA> 
      </effect> 
      <effect id="DHP_MSAT"> 
        <MDA> 
          <diagnostic> 
            <stochastic dens_50="50" specificity="0.942"/> 
          </diagnostic> 
          <drugEffect> 
            <compliance nonCompliersMultiplier="0" pCompliance="0.75"/> 
            <compliersEffective> 
              <timestep pClearance="0.8"/> 
              <timestep pClearance="0.5"/> 
              <timestep pClearance="0.3"/> 
              <timestep pClearance="0.1"/> 
            </compliersEffective> 
          </drugEffect> 
        </MDA> 
      </effect> 
      <effect id="DHP_MDA"> 
        <MDA> 
          <drugEffect> 
            <compliance nonCompliersMultiplier="0" pCompliance="0.75"/> 
            <compliersEffective> 
              <timestep pClearance="0.8"/> 
              <timestep pClearance="0.5"/> 
              <timestep pClearance="0.3"/> 
              <timestep pClearance="0.1"/> 
            </compliersEffective> 
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          </drugEffect> 
        </MDA> 
      </effect> 
      <effect id="Primaquine"> 
        <TBV> 
          <!-- Actual half-life of Primaquine is 8 hours. Use 2 days in order to accurately simulate gametocyte 
clearance --> 
          <decay L="0.005555556" function="exponential"/> 
          <efficacyB value="0.001"/> 
          <initialEfficacy value="1"/> 
        </TBV> 
      </effect> 
      <effect id="LLINs"> 
        <ITN> 
          <!-- 41.3% of total population reported sleeping under a net the previous night. Usage value below is 
scaled for the population who owns a net. --> 
          <usage value="0.5752"/> 
          <holeRate mean="1.8" sigma="0.8"/> 
          <ripRate mean="1.8" sigma="0.8"/> 
          <ripFactor value="0.2"/> 
          <initialInsecticide mu="68.4" sigma="0"/> 
          <insecticideDecay L="1.5" function="exponential" mu="-0.32" sigma="0.8"/> 
          <attritionOfNets L="20.7725" function="smooth-compact" k="18"/> 
          <anophelesParams mosquito="funestus" propActive="0.8887"> 
            <deterrency holeFactor="0.5" holeScalingFactor="0.1" insecticideFactor="0.67" 
insecticideScalingFactor="0.1" interactionFactor="1.492537"/> 
            <preprandialKillingEffect baseFactor="0.09" holeFactor="0.57" holeScalingFactor="0.1" 
insecticideFactor="0.604" insecticideScalingFactor="1" interactionFactor="-0.424"/> 
            <postprandialKillingEffect baseFactor="0.10" holeFactor="0" holeScalingFactor="0.1" 
insecticideFactor="0.55" insecticideScalingFactor="0.1" interactionFactor="0"/> 
          </anophelesParams> 
          <anophelesParams mosquito="arabiensis" propActive="0.8887"> 
            <deterrency holeFactor="0.5" holeScalingFactor="0.1" insecticideFactor="0.1" 
insecticideScalingFactor="0.1" interactionFactor="1.492537"/> 
            <preprandialKillingEffect baseFactor="0.09" holeFactor="0.57" holeScalingFactor="0.1" 
insecticideFactor="0.604" insecticideScalingFactor="0.1" interactionFactor="-0.424"/> 
            <postprandialKillingEffect baseFactor="0.10" holeFactor="0" holeScalingFactor="0.1" 
insecticideFactor="0.55" insecticideScalingFactor="0.1" interactionFactor="0"/> 
          </anophelesParams> 
        </ITN> 
      </effect> 
      <effect id="IRS"> 
        <GVI> 
          <decay L="0.333" function="exponential"/> 
          <anophelesParams mosquito="funestus" propActive="0.8887"> 
            <deterrency value="0.74"/> 
            <preprandialKillingEffect value="0"/> 
            <postprandialKillingEffect value="0.83"/> 
          </anophelesParams> 
          <anophelesParams mosquito="arabiensis" propActive="0.8887"> 
            <deterrency value="0.31"/> 
            <preprandialKillingEffect value="0"/> 
            <postprandialKillingEffect value="0.77"/> 
          </anophelesParams> 
        </GVI> 
      </effect> 
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      <effect id="Ivermectin"> 
        <GVI> 
          <decay L="0.08333" function="exponential"/> 
          <anophelesParams mosquito="funestus" propActive="1"> 
            <deterrency value="0"/> 
            <preprandialKillingEffect value="0"/> 
            <postprandialKillingEffect value="0.15"/> 
          </anophelesParams> 
          <anophelesParams mosquito="arabiensis" propActive="1"> 
            <deterrency value="0"/> 
            <preprandialKillingEffect value="0"/> 
            <postprandialKillingEffect value="0.15"/> 
          </anophelesParams> 
        </GVI> 
      </effect> 
      <effect id="cohort_5"> 
        <cohort/> 
      </effect> 
      <intervention name="Coartem"> 
        <effect id="Coartem"/> 
        <timed> 
          <deploy coverage="0.19" maxAge="99" minAge="0.5" time="7662"/> 
          <deploy coverage="0.4" maxAge="99" minAge="0.5" time="7698"/> 
          <deploy coverage="0.4" maxAge="99" minAge="0.5" time="7710"/> 
          <deploy coverage="0.4" maxAge="99" minAge="0.5" time="7722"/> 
        </timed> 
      </intervention> 
      <intervention name="DHP_MSAT"> 
        <effect id="DHP_MSAT"/> 
        <timed> 
          <deploy coverage="0" maxAge="99" minAge="0.5" time="7662"/> 
          <deploy coverage="0" maxAge="99" minAge="0.5" time="7698"/> 
          <deploy coverage="0" maxAge="99" minAge="0.5" time="7710"/> 
          <deploy coverage="0" maxAge="99" minAge="0.5" time="7722"/> 
        </timed> 
      </intervention> 
      <intervention name="DHP+Primaquine"> 
        <effect id="DHP_MSAT"/> 
        <effect id="Primaquine"/> 
        <timed> 
          <deploy coverage="0" maxAge="99" minAge="0.5" time="7662"/> 
          <deploy coverage="0" maxAge="99" minAge="0.5" time="7698"/> 
          <deploy coverage="0" maxAge="99" minAge="0.5" time="7710"/> 
          <deploy coverage="0" maxAge="99" minAge="0.5" time="7722"/> 
        </timed> 
      </intervention> 
      <intervention name="DHP+Primaquine+Ivermectin"> 
        <effect id="DHP_MDA"/> 
        <effect id="Primaquine"/> 
        <effect id="Ivermectin"/> 
        <timed> 
          <deploy coverage="0" maxAge="99" minAge="0.5" time="7662"/> 
          <deploy coverage="0" maxAge="99" minAge="0.5" time="7698"/> 
          <deploy coverage="0" maxAge="99" minAge="0.5" time="7710"/> 
          <deploy coverage="0" maxAge="99" minAge="0.5" time="7722"/> 
        </timed> 
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      </intervention> 
      <intervention> 
        <effect id="LLINs"/> 
        <timed> 
          <deploy coverage="0.718" time="7280"/> 
          <deploy coverage="0.3" time="7690"/> 
        </timed> 
      </intervention> 
      <intervention> 
        <effect id="IRS"/> 
        <timed> 
          <deploy coverage="0.18" time="7668"/> 
        </timed> 
      </intervention> 
      <!--  
     <intervention> 
            <effect id="cohort_5"/> 
            <timed> 
                <deploy coverage="1" maxAge="5" minAge="0.5" time="0"/> 
            </timed> 
     </intervention> 
     --> 
    </human> 
  </interventions> 
  <healthSystem> 
    <ImmediateOutcomes name="Zambia base"> 
      <drugRegimen firstLine="SP" inpatient="QN" secondLine="QN"/> 
      <initialACR> 
        <SP value="0.761"/> 
        <QN value="0.998"/> 
        <selfTreatment value="0.561"/> 
      </initialACR> 
      <compliance> 
        <SP value="0.8"/> 
        <selfTreatment value="0.394"/> 
      </compliance> 
      <nonCompliersEffective> 
        <SP value="0"/> 
        <selfTreatment value="0"/> 
      </nonCompliersEffective> 
      <pSeekOfficialCareUncomplicated1 value="0.04"/> 
      <pSelfTreatUncomplicated value="0.005"/> 
      <pSeekOfficialCareUncomplicated2 value="0.04"/> 
      <pSeekOfficialCareSevere value="0.48"/> 
    </ImmediateOutcomes> 
    <CFR> 
      <group lowerbound="0" value="0.09189"/> 
      <group lowerbound="0.25" value="0.0810811"/> 
      <group lowerbound="0.75" value="0.0648649"/> 
      <group lowerbound="1.5" value="0.0689189"/> 
      <group lowerbound="2.5" value="0.0675676"/> 
      <group lowerbound="3.5" value="0.0297297"/> 
      <group lowerbound="4.5" value="0.0459459"/> 
      <group lowerbound="7.5" value="0.0945946"/> 
      <group lowerbound="12.5" value="0.1243243"/> 
      <group lowerbound="15" value="0.1378378"/> 
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    </CFR> 
    <pSequelaeInpatient interpolation="none"> 
      <group lowerbound="0.0" value="0.0132"/> 
      <group lowerbound="5.0" value="0.005"/> 
    </pSequelaeInpatient> 
  </healthSystem> 
  <entomology mode="dynamic" name="Zambia Southern province" scaledAnnualEIR="9"> 
    <vector> 
      <anopheles mosquito="funestus" propInfected="0.078" propInfectious="0.015"> 
        <seasonality annualEIR="0.2" input="EIR"> 
          <monthlyValues smoothing="fourier"> 
            <value>0.00490971578200862</value> 
            <value>0.0171840052370302</value> 
            <value>0.228138126670667</value> 
            <value>0.647482406851781</value> 
            <value>0.102285745458513</value> 
            <value>0.0171840052370302</value> 
            <value>0.00490971578200862</value> 
            <value>0.001</value> 
            <value>0.001</value> 
            <value>0.001</value> 
            <value>0.001</value> 
            <value>0.001</value> 
          </monthlyValues> 
        </seasonality> 
        <mosq minInfectedThreshold="0.001"> 
          <mosqRestDuration value="2"/> 
          <extrinsicIncubationPeriod value="12"/> 
          <mosqLaidEggsSameDayProportion value="0.616"/> 
          <mosqSeekingDuration value="0.33"/> 
          <mosqSurvivalFeedingCycleProbability value="0.611"/> 
          <availabilityVariance value="0"/> 
          <mosqProbBiting mean="0.95" variance="0"/> 
          <mosqProbFindRestSite mean="0.95" variance="0"/> 
          <mosqProbResting mean="0.99" variance="0"/> 
          <mosqProbOvipositing value="0.88"/> 
          <mosqHumanBloodIndex value="0.963"/> 
        </mosq> 
        <nonHumanHosts name="unprotectedAnimals"> 
          <mosqRelativeEntoAvailability value="1.0"/> 
          <mosqProbBiting value="0.95"/> 
          <mosqProbFindRestSite value="0.95"/> 
          <mosqProbResting value="0.99"/> 
        </nonHumanHosts> 
      </anopheles> 
      <anopheles mosquito="arabiensis" propInfected="0.078" propInfectious="0.021"> 
        <seasonality annualEIR="0.8" input="EIR"> 
          <monthlyValues smoothing="fourier"> 
            <value>0.00490971578200862</value> 
            <value>0.0171840052370302</value> 
            <value>0.228138126670667</value> 
            <value>0.647482406851781</value> 
            <value>0.102285745458513</value> 
            <value>0.0171840052370302</value> 
            <value>0.00490971578200862</value> 
            <value>0.001</value> 
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            <value>0.001</value> 
            <value>0.001</value> 
            <value>0.001</value> 
            <value>0.001</value> 
          </monthlyValues> 
        </seasonality> 
        <mosq minInfectedThreshold="0.001"> 
          <mosqRestDuration value="2"/> 
          <extrinsicIncubationPeriod value="12"/> 
          <mosqLaidEggsSameDayProportion value="0.313"/> 
          <mosqSeekingDuration value="0.33"/> 
          <mosqSurvivalFeedingCycleProbability value="0.623"/> 
          <availabilityVariance value="0"/> 
          <mosqProbBiting mean="0.95" variance="0"/> 
          <mosqProbFindRestSite mean="0.95" variance="0"/> 
          <mosqProbResting mean="0.99" variance="0"/> 
          <mosqProbOvipositing value="0.88"/> 
          <mosqHumanBloodIndex value="0.97"/> 
        </mosq> 
        <nonHumanHosts name="unprotectedAnimals"> 
          <mosqRelativeEntoAvailability value="1.0"/> 
          <mosqProbBiting value="0.95"/> 
          <mosqProbFindRestSite value="0.95"/> 
          <mosqProbResting value="0.99"/> 
        </nonHumanHosts> 
      </anopheles> 
      <nonHumanHosts name="unprotectedAnimals" number="1.0"/> 
    </vector> 
  </entomology> 
  <model> 
    <ModelOptions> 
      <option name="LOGNORMAL_MASS_ACTION" value="false"/> 
      <option name="NO_PRE_ERYTHROCYTIC" value="false"/> 
      <option name="MAX_DENS_CORRECTION" value="true"/> 
      <option name="COMORB_HET" value="false"/> 
      <option name="TREAT_HET" value="true"/> 
      <option name="PROPHYLACTIC_DRUG_ACTION_MODEL" value="true"/> 
    </ModelOptions> 
    <clinical healthSystemMemory="6"/> 
    <human> 
      <availabilityToMosquitoes> 
        <group lowerbound="0.0" value="0.225940909648"/> 
        <group lowerbound="1.0" value="0.286173633441"/> 
        <group lowerbound="2.0" value="0.336898395722"/> 
        <group lowerbound="3.0" value="0.370989854675"/> 
        <group lowerbound="4.0" value="0.403114915112"/> 
        <group lowerbound="5.0" value="0.442585112522"/> 
        <group lowerbound="6.0" value="0.473839351511"/> 
        <group lowerbound="7.0" value="0.512630464378"/> 
        <group lowerbound="8.0" value="0.54487872702"/> 
        <group lowerbound="9.0" value="0.581527755812"/> 
        <group lowerbound="10.0" value="0.630257580698"/> 
        <group lowerbound="11.0" value="0.663063362714"/> 
        <group lowerbound="12.0" value="0.702417432755"/> 
        <group lowerbound="13.0" value="0.734605377277"/> 
        <group lowerbound="14.0" value="0.788908765653"/> 
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        <group lowerbound="15.0" value="0.839587932303"/> 
        <group lowerbound="20.0" value="1.0"/> 
      </availabilityToMosquitoes> 
    </human> 
    <parameters interval="5" iseed="3020" latentp="3"> 
      <parameter include="false" name="'-ln(1-Sinf)'" number="1" value="0.050736"/> 
      <parameter include="false" name="Estar" number="2" value="0.03247"/> 
      <parameter include="false" name="Simm" number="3" value="0.138161050830301"/> 
      <parameter include="false" name="Xstar_p" number="4" value="1514.385853233699891"/> 
      <parameter include="false" name="gamma_p" number="5" value="2.03692533424484"/> 
      <parameter include="false" name="sigma2i" number="6" value="10.173598698525799"/> 
      <parameter include="false" name="CumulativeYstar" number="7" value="35158523.31132510304451"/> 
      <parameter include="false" name="CumulativeHstar" number="8" value="97.334652723897705"/> 
      <parameter include="false" name="'-ln(1-alpha_m)'" number="9" value="2.33031045876193"/> 
      <parameter include="false" name="decay_m" number="10" value="2.53106547375805"/> 
      <parameter include="false" name="sigma2_0" number="11" value="0.655747311168152"/> 
      <parameter include="false" name="Xstar_v" number="12" value="0.916181104713054"/> 
      <parameter include="false" name="Ystar2" number="13" value="6502.26335600001039"/> 
      <parameter include="false" name="alpha" number="14" value="142601.912520000012591"/> 
      <parameter include="false" name="Density bias (non Garki)" number="15" value="0.177378570987455"/> 
      <parameter include="false" name="        sigma2        " number="16" value="0.05"/> 
      <parameter include="false" name="log oddsr CF community" number="17" value="0.736202"/> 
      <parameter include="false" name="Indirect risk cofactor" number="18" value="0.018777338"/> 
      <parameter include="false" name="Non-malaria infant mortality" number="19" 
value="49.539046599999999"/> 
      <parameter include="false" name="Density bias (Garki)" number="20" value="4.79610772546704"/> 
      <parameter include="false" name="Severe Malaria Threshhold" number="21" 
value="784455.599999999976717"/> 
      <parameter include="false" name="Immunity Penalty" number="22" value="1"/> 
      <parameter include="false" name="Immune effector decay" number="23" value="0"/> 
      <parameter include="false" name="comorbidity intercept" number="24" value="0.0968"/> 
      <parameter include="false" name="Ystar half life" number="25" value="0.275437402"/> 
      <parameter include="false" name="Ystar1" number="26" value="0.596539864"/> 
      <parameter include="false" name="Asexual immunity decay" number="27" value="0"/> 
      <parameter include="false" name="Ystar0" number="28" value="296.302437899999973"/> 
      <parameter include="false" name="Idete multiplier" number="29" value="2.797523626"/> 
      <parameter include="false" name="critical age for comorbidity" number="30" value="0.117383"/> 
    </parameters> 
  </model> 
</scenario> 
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6.1 Abstract  

 

Background 

Evaluating the effectiveness of malaria control interventions on the basis of their impact on 

transmission as well as impact on morbidity and mortality is becoming increasingly important as 

countries consider pre-elimination and elimination as well as disease control. Data on 

prevalence and transmission are traditionally obtained through resource-intense 

epidemiological and entomological surveys that become difficult as transmission decreases. This 

work employs mathematical modeling to examine the relationships between malaria indicators 

allowing more easily measured data, such as routine health systems data on case incidence, to 

be translated into measures of transmission and other malaria indicators. Simulations of 

scenarios with different levels of malaria transmission, patterns of seasonality and access to 

treatment were run with an ensemble of models of malaria epidemiology and within-host 

dynamics, as part of the OpenMalaria modeling platform. For a given seasonality profile, 

regression analysis mapped simulation results of malaria indicators, such as annual average 

entomological inoculation rate, prevalence, incidence of uncomplicated and severe episodes, 

and mortality, to an expected range of values of any of the other indicators. Results were 

validated by comparing simulated relationships between indicators with previously published 

data on these same indicators as observed in malaria endemic areas. These results allow for 

direct comparisons of malaria transmission intensity estimates made using data collected with 

different methods on different indicators.  They also address key concerns with traditional 

methods of quantifying transmission in areas of differing transmission intensity and sparse data. 

Although seasonality of transmission is often ignored in data compilations, the models suggest it 

can be critically important in determining the relationship between transmission and disease. 

Application of these models could help public health officials detect changes of disease 

dynamics in a population and plan and assess the impact of malaria control interventions. 
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6.2 Author summary 

While malaria is still a major public health problem in many parts of the world, control programs 

have greatly reduced the burden of disease in recent years and many countries are now 

considering the goal of elimination. Unfortunately, malaria transmission becomes more difficult 

to measure when it is low because traditional methods involve capturing mosquitoes; an 

expensive and time-consuming technique. To measure transmission in areas without adequate 

field data, we run simulations of a mathematical model of malaria over a range of transmission 

intensities and seasonal patterns to examine how different measurements of malaria 

(prevalence, clinical disease, and death) relate to each other, how they relate to transmission, 

and if the relationships are likely to vary by seasonal pattern of transmission. These simulated 

relationships allow us to translate easily measured data, such as clinical case incidence seen at 

health facilities, into estimates of transmission. This technique can help public health officials 

plan and assess the impact of malaria control interventions, even in areas without intense 

research activities. 

 

6.3 Introduction 

Evaluating the effectiveness of malaria control interventions on the basis of their impact on 

transmission is increasingly important as countries consider elimination as well as malaria 

control. However, direct measurement of transmission, such as by the entomological 

inoculation rate (EIR) (a measure of human exposure defined by the number of infective 

mosquito bites per human in a given time period), involves mosquito capture.  This is extremely 

labor-intensive, and is only reliable in high transmission areas and seasons [1]. In areas of low 

transmission, or during dry seasons, identifying a sufficient number of sporozoite-positive 

mosquitoes makes this exercise excessively time- and resource- intense, often precluding 

collection of a full year’s worth of data and making estimates of seasonality challenging. 

Alternatives are to estimate transmission rates from sero-conversion rates [2,3] or by 

calculating force of infection (FOI) from combining information on prevalence and treatment 

[4]. Estimating both the exposure to infectious mosquitoes and subsequent FOI from parasite 
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prevalence in areas of high transmission is difficult due to superinfection and immunity. 

Mathematical models are useful in examining relationships between malaria indicators, allowing 

translation of routine health center data into measures of transmission and addressing concerns 

with previously implemented methods of measuring transmission [5].  

Understanding the seasonal pattern of malaria transmission is important for planning 

control interventions, for example the timing of deploying indoor residual spraying (IRS) and 

seasonal malaria chemoprophylaxis (SMC) which are implemented ahead of the peak 

transmission months. Given the wide range of seasonal patterns combined with transmission 

intensities that exist in areas of the world with malaria transmission, and due in large part to the 

absence of robust field data, the effect of seasonality on the relationship between malaria 

indicators has not been studied in great detail. Attempts have been made to define [6, 7] and 

quantify [8] the relationship between seasonally varying covariates and transmission based on 

available studies on malaria transmission and disease burden, but results for the latter were 

only found to be reliable in areas of very high transmission (EIR > 100 infectious bites per person 

per year) [6].  

One approach for quantifying transmission in areas without EIR data is to use simulation 

models to analyze how different malaria indicators (parasite prevalence, prevalence of 

uncomplicated and severe episodes, mortality) relate to each other, and how they relate to 

transmission measured by EIR [5].   To validate such models, a straightforward approach would 

be to compare the simulated relationships between indicators to those observed in the field.  

However, when relationships between indicators differ in places with disparate patterns of 

seasonality, such an approach becomes challenging. This study uses simulation models to 

analyze whether relationships between malaria indicators are likely to vary by intensity and 

pattern of seasonality. Analysis of these simulation results can help identify the best way of 

quantifying transmission for the purposes of specifying the seasonal patterns to drive the 

existing models of Plasmodium falciparum dynamics. This in turn will assist in planning for 

malaria control by allowing for the selection of interventions tailored to the level of 
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transmission in a given location, and monitoring the effectiveness of those interventions by 

their impact on transmission.  

 

 

6.4 Methods 

OpenMalaria transmission model simulation 

This experiment utilizes an ensemble of simulation models of transmission of malaria developed 

by a team at the Swiss Tropical and Public Health Institute (Swiss TPH) and Liverpool School of 

Tropical Medicine. These models form part of the OpenMalaria platform that makes the 

considerable code base written in C++ accessible to the public through an online wiki [9]. Based 

on a stochastic series of parasite densities for individual infections, stochastic individual-based 

models of malaria in humans [10-12] are linked to a periodically-forced model of malaria in 

mosquitoes [13] in order to simulate the dynamics of malaria transmission and the impact of 

intervention strategies for malaria control. Details of the methods to create and parameterize 

the transmission model used in this project have been previously published [10-13] and 

therefore are not covered in this paper. Models are fitted to 10 objectives using 61 standard 

scenarios as described in Smith et al. 2008 [11]. The transmission model is calibrated by the 

seasonal pattern of the EIR with units of infectious bites per person per year. Simulations were 

run for one human life span to induce a stable level of immunity in the population. Each 

simulation was repeated on an ensemble of 14 model variants with varying assumptions on 

mass action, heterogeneity of exposure, decay of acquired immunity, co-morbidities, and access 

to treatment as described in Smith et al. 2012 [12] to address model uncertainty, with five 

random seeds to address stochasticity.  

 

Study design 

The overall objective of estimating transmission in areas without EIR data was addressed by 

applying the OpenMalaria modeling platform to simulate malaria with different levels of 

transmission and patterns of seasonality observed in malaria-affected locations, and deriving 
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outputs for all other malaria indicators. Table 1 describes the indicators chosen as simulation 

outputs that were evaluated in this study. Relationships between all indicators for the different 

values of EIR and different seasonality profiles were estimated from simulation results 

(described below) using Stata v12 (College Station, TX). For this process the indicators were 

calculated for the whole population, with the exception of the relationships involving mortality 

which were limited to children under five due to a lack of data in older age groups for validation 

purposes. 

 

 
 

Scenario Design 

The baseline scenario used in these experiments was based on a scenario previously 

parameterized for the Rachuonyo South district in the highlands of western Kenya [14]. The 

model assumes no interventions beyond standard case management through the health system 

as described in Tediosi et al. [15], a main vector of A. gambiae s.s., and artimisinin combination 

therapy (ACTs) as the first line antimalarial. Simulations were run on a population of 100,000 

individuals over three years with monthly surveys of malaria outcomes. 

 

Seasonality Index 

To quantify the “amount” of seasonality in a location a seasonality index (φ) was defined in 

order to describe the variations in transmission within one year in a given location. The 

methodology presented here is general and can be used for any measure of transmission, but 
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the example below is used with EIR.  

We let T denote the period (1 year) and let f (t) be a positive continuous periodic 

function that denotes transmission at time t, with f (t + T) = f (t) > 0 for all t ≥ 0. The mean level 

of transmission (over 1 year) is, 


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In a similar manner to the coefficient of variation in statistics, we define φ as the normalized 

square root of the integral of the squared difference between f(t) and its mean, 
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This seasonality index, φ, allows us to quantify the level of seasonality of transmission in a given 

location with one positive real number, differentiating between “amounts” of seasonality for 

transmission patterns with the same number of peaks. Because malarious areas in general have 

either one or two peak transmission seasons, there could be seasonality patterns in different 

locations that lead to the same seasonality index, φ. We therefore label the seasonality profile 

with both the seasonality index and the number of peaks. 

 

Seasonality profiles 

The simulations described here treat transmission in the absence of interventions as periodic 

with a one year period [13]. One scenario with a seasonality pattern of constant annual 

transmission (φ =0) and five scenarios with varying seasonal transmission patterns (φ =1, one 

peak; φ =1, two peaks; φ =0.5, two peaks; φ =1.5, one peak; φ =1.5, two peaks) were created, 

described in Table 2 and Figure 1. 
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These six patterns were chosen to represent the range of seasonal patterns of malaria 

transmission existing in the malaria endemic world, namely because there are usually not more 

than two peak transmission seasons. The seasonality profiles with φ =1.5 exhibit large variations 

in seasonality. For φ =1.5 with one peak, 86% of annual transmission is focused in the three 

peak transmission months, while for φ =1.5 with two peaks, the peak is narrower with 95% of 

annual transmission occurring in the three months of the higher peak. The results of what this 

means for prevalence and morbidity over one year can be found in Figure S1 in Text S1. 

Seasonality patterns were repeated for eleven values of annual average EIR from 0.5 to 365. 

Complete details of the methods 

behind the experiment creation can be 

found in Text S1. The relationships 

between malaria indicators were 

estimated using fractional polynomial 

regression as described in more detail 

in Text S2.  

 

Model validation 

In order to gauge the model’s ability to 

reproduce field data, a validation 

exercise was completed by comparing 

simulation results to data not used in 

Figure 1: Annual pattern of transmission, defined as the 
simulated daily EIR, for each seasonality profile as described 
by the seasonality index (φ, number of peaks). Unbroken red 
line represents (0,0). Brown dashed line represents (1,1). 
Orange dotted-dashed line represents (1,2). Green dotted line 
represents (1.5,1). Black dotted-dashed line represents (1.5,2). 
Blue dashed line represents (0.5,2) 
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the original process of model fitting from previously published studies. The relationships for 

validation, the datasets used and how they relate to model fitting are described in Table S1.  

While the annual average EIR in the scenarios used for estimating the relationships between 

malaria indicators were capped at a value of 81.4, scenarios for validation were simulated up to 

an average of 365 infectious bites per person per year. This tailors the analysis to low- to mid-

range values of annual average EIR where this tool will be the most applicable, while still allowing 

for a more comprehensive range of annual average EIRs that appear in the validation datasets.  

 

 

Figure 2: Relationship of parasite prevalence (a), uncomplicated episodes (b), severe episodes (c), and 
mortality (d) to annual average EIR by seasonality index (φ). Triangles represent simulated results. The 
lines show the estimated relationship between indicators from the simulation runs, fitted using fractional 
polynomial regression, for each pattern of seasonality as described by the seasonality index (φ, number of 
peaks) (Figure 1). Unbroken red line represents (0,0). Brown dashed line represents (1,1). Orange dotted-
dashed line represents (1,2). Green dotted line represents (2,1). Black dotted-dashed line represents (2,2). 
Blue dashed line represents (0.5,2). 

 



6. Seasonally dependent relationships between indicators of malaria transmission and disease 

provided by mathematical model simulations 

149 
 

 

6.5 Results 

Indicators as a function of entomological 

inoculation rate (EIR) 

When analyzing the relationship between EIR 

and other malaria indicators, the differences 

between seasonality profiles are greatest at 

moderate levels of EIR (Figure 2a-d). Results 

are similar between seasonality profiles at both 

ends of the EIR spectrum for uncomplicated 

and severe disease, but seasonality impacts the 

relationship with prevalence and mortality 

more at higher values of EIR (Figure 2a-d).  

The Beier et al. dataset, describing the 

relationship between EIR and parasite 

prevalence in children under five in sites 

across Africa, has been applied for a previous 

validation of the OpenMalaria model [16]. 

One site out of 31 as published separately 

was used to fit the model for incidence of 

asexual blood stage infection, as indicated in 

Table S1. Compared to the results presented 

in Beier et al. [17], simulation results are within the range of observed values for low and 

medium values of EIR, but predict a slightly lower prevalence in extremely high EIR settings, 

especially in a setting with no seasonality (Figure 3). Perhaps this is because observed results 

reach up to 1,000 infectious bites per person per year while the simulated scenarios were 

capped at 365. While the observed relationship is fitted as log-linear, the simulated relationship 

starts levelling off at an EIR of 100.  

 

Figure 3: The relationship between prevalence 
(defined as the maximum recorded parasite 
prevalence rate in any given age group) and EIR 
from Beier et. al [17] (3.1 a, 3.2 a-b) and 
OpenMalaria simulations (3.1 b, 3.2 d). In 3.1 the 
mean value is shown as a line inside the box, the 
25th to 75th percentile is shown by the box, and the 
range of values is shown by the lines outside the 
box. In 3.2 grey triangles represent simulation 
results without (light gray) and with (dark gray) 
seasonality as described by the seasonality index (φ, 
number of peaks) (Figure 1). The lines show the 
estimated relationships with seasonality (2,2) 
(dashed) and without seasonality (0,0) (unbroken) 
using fractional polynomial regression. Figures 3.1a 
and 3.2a-b have been reproduced from Beier et al. 
[17] with permission. 
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Figure 4. Relationship of uncomplicated episodes (a), severe episodes (b), and mortality (c) to parasite 
prevalence by seasonality index. Triangles represent simulated results. The lines show the estimated relationship 
between indicators from the simulation runs, fitted using fractional polynomial regression, for each pattern of 
seasonality as described by the seasonality index (φ, number of peaks) (Figure 1). Unbroken red line represents 
(0,0). Brown dashed line represents (1,1). Orange dotted-dashed line represents (1,2). Green dotted line 
represents (1.5,1). Black dotted-dashed line represents (1.5,2). Blue dashed line represents (0.5,2). 

 
 
 
 
 
 
 
 
Figure 5: Relationship between the proportion of 
paediatric severe malaria in children under 1 year (a) 
and children aged 5-9 years (b) and parasite 
prevalence in the 2-1- age group from Okiro et al, 
[18] (black circles) and OpenMalaria simulations 
(grey triangles). Triangles represent simulation results 
with (dark gray) and without (light gray) seasonality. 
Lines show the estimated relationships with (dashed) 
and without (unbroken) seasonality using fractional 
polynomial regression. 
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Indicators as a function of parasite prevalence 

The relationship between parasite prevalence and uncomplicated episodes is non-monotonic 

(Figure 4a) for all values of φ. It can be noted that the simulated relationship between parasite 

prevalence and severe disease shows more stochasticity than the other relationships with 

parasite prevalence in areas of lower prevalence (Figure 4b). This variation can be attributed to 

model uncertainty, in particular differing assumptions about access to treatment, rather than to 

the effect of seasonality. For uncomplicated disease, severe disease and mortality, the effect of 

seasonality is greater in areas of higher parasite prevalence; the variation increases once 

prevalence reaches 40% (Figure 4a-c).  

Compared to the results presented in Okiro et al. [18] the model is able to reproduce the 

general pattern of the relationship between severe pediatric malaria and prevalence in children 

aged 2-10 in children under 1 year as well as children aged 5-9, with the burden of malaria 

moving to older age groups as prevalence is reduced (Figure 5).  

Compared to the results presented in Korenromp et al. [19], which describes the 

relationship between parasite prevalence and both malaria-specific and all-cause mortality in 

children under 5, the model is able to capture the general pattern for the relationship between 

malaria- specific mortality in children under five for low and moderate prevalence settings 

(Figure 6).There appears to be variation across sites in the observed data that may be explained 

by the ability of verbal autopsy to capture indirect deaths due to malaria in different settings 

[20]. Nine sites (for which EIR estimates were available) out of the 28 sites included in the study 

were used to fit the model of direct malaria mortality in relation to EIR, as indicated in Table S1. 
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Figure 7. Relationship of severe episodes to 
uncomplicated episodes by seasonality 
index. Triangles represent simulated results. 
The lines show the estimated relationship 
between indicators from the simulation 
runs, fitted using fractional polynomial 
regression, for each pattern of seasonality 
as described by the seasonality index (φ, 
number of peaks) (Figure 1). Unbroken red 
line represents (0,0). Brown dashed line 
represents (1,1). Orange dotted-dashed line 
represents (1,2). Green dotted line 
represents (1.5,1). Black dotted-dashed line 
represents (1.5,2). Blue dashed line 
represents (0.5,2). 

Figure 6: Relationship between mortality in 
children under 5 and average all-age 
parasite prevalence as described in (black 
dots) Korenromp et. al [19] (black circles) 
and OpenMalaria simulations (triangles) for 
all deaths (light gray) and direct deaths only 
(dark gray). Lines show the simulation-based 
estimated relationships with seasonality 
(φ=1.5, 2 peaks) (dashed) and without 
seasonality (φ=0, 0 peaks) (unbroken) using 
fractional polynomial regression. The 
observed values from Korenromp et. al are 
results of verbal autopsy which do not 
specify direct malaria deaths as opposed to 
indirect malaria deaths. 
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Indicators as a function of uncomplicated episodes 

At lower numbers of uncomplicated episodes per person per year, seasonality does not play a 

role in the relationship with severe episodes  (Figure 7). The curves separate at levels above 

1.25 uncomplicated episodes per person per year with two-peak scenarios φ =1 and φ =1.5 

diverging from the other values of φ (Figure 7). The scatter plot of simulation results showed no 

discernible relationship between mortality and either uncomplicated or severe episodes, and 

are therefore not shown here. 

 

Age prevalence curves by indicator 

Age prevalence curves are validated by comparing simulation results to those presented in 

Carneiro et al, which report on the age distribution of children with clinical malaria, hospital 

admissions with malaria and malaria-diagnosed mortality for different categories of intensity 

and seasonality of malaria transmission identified from a systematic review epidemiological 

studies [6].   

It should be noted that there are differences in the classification of degree of seasonality 

between the observed and simulated data. Carneiro and colleagues describe settings with 

marked seasonality as those with greater than or equal to 75% of episodes concentrated less 

than or equal to 6 months of the year. In the OpenMalaria simulations, Marked seasonality is 

defined as the setting with φ =1.5. 

The reported estimated median ages and inter-quartile ranges (defined as the 50th 

percentile of the best-fitting distribution for each outcome and transmission scenario) from 

these fitted models for each level of transmission and level of seasonality are compared to 

estimates from fitted OpenMalaria simulation results to validate age prevalence curves of the 

malaria indicators mentioned above. In all cases, the results of the OpenMalaria simulations are 

comparable to the previously published results (Figure 9). 
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Figure 8: Median ages and inter-quartile range age prevalence curves in months of age by 
annual average EIR levels of <10 (a,d), 10-100 (b, e), and >100(c,f), and seasonality patterns 
(φ=1.5, 2 peaks (a-c) and φ=0, 0 peaks (d-f) for uncomplicated episodes, malaria 
hospitalizations, and mortality as observed in Carneiro et al. [6] (circles, unbroken lines) and 
simulated by the OpenMalaria model (triangles, dashed lines).   



6. Seasonally dependent relationships between indicators of malaria transmission and disease 

provided by mathematical model simulations 

155 
 

 

6.6 Discussion 

Due to the lack of understanding of the relationship between EIR and other malaria indicators 

based on challenges in measuring EIR from entomological studies, modeling is able to further 

define the relationships between indicators and help clarify details of what cannot measured 

from field studies but is nonetheless necessary knowledge about malaria indicators. This is of 

value for malaria control program managers because it provides insight on transmission without 

substantial field studies. These models can be used to simulate the likely range of values in 

areas without access to adequate field data.  

Empirical studies of the relationships between different malaria indicators are 

challenging because these relationships may in principle be affected by many, often poorly 

characterized, contextual factors, with the degree of seasonality being possibly one of the most 

important. The original fitting of the OpenMalaria model parameters to multiple field datasets 

used a standard pattern of seasonality of transmission from Namawala, Tanzania; effects of 

seasonality observed in these results are thus not an artifact of the fitting process. Simulations 

suggest that with equal levels of average annual transmission, the level of seasonality, i.e. 

whether malaria transmission is fairly constant over the course of a year versus peaks in certain 

months, affects the relationship between malaria indicators. An increase in the degree of 

seasonality has a greater impact on outcomes with moderate levels of EIR and prevalence. 

There is greater stochasticity in simulation results for scenarios with higher amplitude of the 

annual cycle compared to scenarios with a constant level of transmission.  

There have been previous attempts to create a measure for the seasonality of malaria 

transmission [21-23], mainly relying only on rainfall and/or vector abundance to describe the 

proportion of transmission occurring within a certain number of months. The approach to 

developing the seasonality index presented here is in response to the need to provide a 

quantitative metric for differences between seasonal patterns. Results indicate that this index 

does not distinguish well between patterns that have a different number of peaks (Figure 2); 

therefore the number of peaks should also be noted in any analysis of studies that employ this 
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index. Areas with seasonal malaria transmission typically have substantial variation in rainfall 

and transmission with numerous small peaks, but normally only have one or two main seasons. 

The total number of peaks can thus be assumed to be limited to a maximum of two.  

The difference in results for different patterns within the same seasonality index calls 

into question the assumptions behind the drivers of the relationships between malaria 

indicators. Scenarios with a higher degree of seasonality, regardless of number of peaks, return 

lower levels of prevalence, disease and mortality for a given level of transmission. An important 

driver is multiple concomitant events; when two illness episodes occur at the same time they 

are only considered as one, which may occur more frequently in high seasonality scenarios. At 

more mild patterns of seasonality, this phenomenon is only seen at higher levels of 

transmission. These results also potentially indicate an effect on acquisition of immunity in 

these settings, a consideration when modeling the relationship between transmission and the 

acquisition of immunity in a population. Several model variants differ in their assumptions 

about immunity [12], and while outside the scope of this paper, an important question for 

future investigation would be the impact of this aspect of the model variants and effect, if any, 

that occurs for different seasonal patterns of transmission. 

Results indicating the impact of seasonality on the relationship between malaria 

indicators is relevant to malaria epidemiology because, as has been described in Carneiro et al 

[6], areas with similarly high average annual prevalence result in less frequent cases of malaria 

in highly seasonal settings. A focused empirical analysis of this effect would be another welcome 

addition to the understanding of the subject. 

Access to treatment has the potential to impact the relationships between transmission 

and other malariological indicators such as severe disease and mortality. The higher the 

proportion of malaria cases that are treated with effective antimalarials the more the parasite 

reservoir in the human host population is suppressed, the fewer gametocytes are available, and 

the less likely it is that mosquitoes are infected. The authors are not aware of any empirical 

studies of the relationship between access to treatment and population-level health outcomes. 

However, work by Briët and Penny investigates the impact of access to treatment on the 
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OpenMalaria model [24]. The relationships between severe episodes and other indicators 

(Figures 2c, 4b, 7) may depend more on access to effective case management, indicated by the 

stochasticity in simulation results which is due to model uncertainty rather than the effect of 

seasonality. 

There are direct implications on control programs for the relationship between 

seasonality and the expected number of uncomplicated cases for a given level of parasite 

prevalence. Locations with poor monitoring and surveillance systems resulting from complex 

emergencies or insufficient reach of the public sector may have readily-available parasite 

prevalence data as a result of research activities. These results may impact how routine data 

from the case management system in these locations are able to be used to inform study design 

for the implementation of seasonality-dependent interventions such as IRS and SMC. 

Two sources mentioned in this model validation were also used in the original model 

fitting [12]. However, as indicated in the Results section and in Table S1, the relationships used 

here for validation were not the same relationships (Korenromp et al.) or subsets of data (Beier 

et al.) used for fitting. Although both help parameterise the model, because this process was 

independent to the relationships being validated, they can therefore be treated as available for 

validation. 

Each simulation result is a point in multidimensional space with each dimension 

corresponding to one malaria indicator. However, to determine the relationship between any 

two indicators, all simulation points are projected onto a two-dimensional space where the 

relationship is estimated through fractional polynomial regression. Due to this projection, when 

two indicators have a monotonically-increasing relationship with a third indicator, they may not 

necessarily have a monotonically-increasing relationship with each other. For example, while 

simulated parasite prevalence and mortality both increase with increasing annual average EIR, 

the same effect will not necessarily be seen on mortality in conditions of increasing prevalence. 

Similarly, the effects of seasonality appear to decrease as EIR increases, but increase as 

prevalence increases. 
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While the range of transmission levels and patterns represented in this study are 

designed to cover a large proportion of malaria endemic areas, there are areas with contexts 

that will fall outside the scope of this work. There remain areas with extremely high 

transmission beyond an annual average EIR of 81.4 at which this analysis is capped, but these 

programs are unlikely to be at a stage of malaria control to benefit from applying the methods 

described in this paper for fine-tuning malaria control interventions as vector control 

interventions can be effectively utilized to substantially reduce malaria transmission to 

moderate levels and transmission can be accurately measured with entomological methods.  

Simulated results were limited to annual average EIR values greater than 0.5. In very low 

transmission settings infections are sporadic and could be better captured with epidemic 

models. At very low annual average transmission rates malaria can be sustained by regular 

importation or the presence of hotspots.  The relationships between malaria indicators then 

depend critically on the degree of transmission heterogeneity and interactions between sub-

populations. In these settings, estimating transmission through using serology to estimate EIR or 

force of infection through may be more suitable. Although not currently available in the 

OpenMalaria transmission model, force of infection and serology will be important components 

to add to future versions to better simulate the current practice of measuring transmission at 

low values of EIR. With the inclusion of these indicators, the new model can be calibrated with 

data on incidence but validated with other indicators (i.e. prevalence or serology).  

Because of the strong effect of seasonality on the relationships between malaria 

indicators, it follows that obtaining accurate estimates of transmission across a range of 

seasonal patterns, not just transmission intensities, is critical for tailoring malaria control and 

elimination programs to specific country contexts. An accurate map describing seasonal 

patterns of transmission to attach to maps of transmission intensity and other indicators would 

be a useful tool. While obtaining this information may not be straightforward, there is a need 

for research studies designed with measuring not only transmission but also other malaria 

indicators to ensure the annual pattern of transmission is accounted for. Therefore, goals for 

reduction in transmission and burden of disease can be further tailored to specific sites. 
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The methods described here will be able to be compiled into a lookup tool that will allow 

malaria control professionals to enter the data they have on one index and see the range of 

likely results for other measures of malaria. In addition to estimates, an essential requirement 

would be providing a means to display uncertainty around simulation results. Examples of how 

this might be achieved are discussed in Text S3 and shown in Figures S2-S5 in Text S3. Such a 

tool could aid in the planning process of tailoring malaria control interventions to the 

appropriate level of transmission. 
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Table S1. Datasets used for model validation and their relationship to fitting of OpenMalaria parameters 

 

Source Relationship Dataset description Relationship to model fitting 

Beier et al. 

1999 [1] 

EIR and parasite 

prevalence 

Observed prevalence in children less than five years of age in 31 sites 

across Africa. EIR estimated by mosquito capture. 

One site as published separately 

[2] was used to fit the model for 

incidence of asexual blood stage 

infection [3]. 

Korenromp et 

al. 2003 [4] 

Mortality and 

parasite 

prevalence 

Malaria-specific and all-cause mortality rates as reported by verbal 

autopsy in children under five in 28 sites across Africa. Parasite 

prevalence among children under five years in the catchment 

population of the hospital. 

Nine sites (for which EIR 

estimates were available) were 

used to fit the model of direct 

malaria mortality in relation to 

EIR [5].  

Okiro et al. 

2009 [6] 

Severe disease 

and parasite 

prevalence 

Community derived parasite prevalence and the age and clinical 

presentation of paediatric malaria in children aged 0–9 years 

admitted to hospital in 13 hospitals across Africa. 

None 

Carneiro et al. 

2010 [7] 

Age-prevalence 

curves in 

patterns of 

differing 

seasonality 

Systematic review of age distribution in children under 10 for clinical 

malaria, hospital admissions with malaria, and malaria-diagnosed 

mortality, stratified by level and pattern of transmission. 

Some datasets were used for 

model fitting, but not explicitly 

considering seasonality of 

transmission. 



6. Seasonally dependent relationships between indicators of malaria transmission and disease 

provided by mathematical model simulations 

164 
 

 

References 
 
1. Beier JC, Killeen GF, Githure JI (1999) Short report: entomologic inoculation rates and 

Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg 61: 109-
113. 

2. Beier JC, Oster CN, Onyango FK, Bales JD, Sherwood JA, et al. (1994) Plasmodium 
falciparum incidence relative to entomologic inoculation rates at a site proposed for 
testing malaria vaccines in western Kenya. The American journal of tropical 
medicine and hygiene 50: 529-536. 

3. Maire N, Smith T, Ross A, Owusu-Agyei S, Dietz K, et al. (2006) A model for natural 
immunity to asexual blood stages of Plasmodium falciparum malaria in endemic 
areas. Am J Trop Med Hyg 75: 19-31. 

4. Korenromp EL, Williams BG, Gouws E, Dye C, Snow RW (2003) Measurement of trends in 
childhood malaria mortality in Africa: an assessment of progress toward targets 
based on verbal autopsy. Lancet Infect Dis 3: 349-358. 

5. Ross A, Maire N, Molineaux L, Smith T (2006) An epidemiologic model of severe 
morbidity and mortality caused by Plasmodium falciparum. Am J Trop Med Hyg 75: 
63-73. 

6. Okiro EA, Al-Taiar A, Reyburn H, Idro R, Berkley JA, et al. (2009) Age patterns of severe 
paediatric malaria and their relationship to Plasmodium falciparum transmission 
intensity. Malar J 8: 4. 

7. Carneiro I, Roca-Feltrer A, Griffin JT, Smith L, Tanner M, et al. (2010) Age-patterns of 
malaria vary with severity, transmission intensity and seasonality in sub-Saharan 
Africa: a systematic review and pooled analysis. PLoS One 5: e8988. 

 
 

 

 

 

 

 

 

 



6. Seasonally dependent relationships between indicators of malaria transmission and disease 

provided by mathematical model simulations 

165 
 

Text S1: Experiment creation 

 

Seasonality index 

In the OpenMalaria transmission model, daily EIR at each time point EIRd(t) based on a given 

annual average EIR is specified by five Fourier coefficients representing the cycle’s average (a0), 

annual cycle (a1, b1), and bi-annual cycle (a2, b2) as described by:  

 

)2sin()2cos()sin()cos( 22110)(
tbtatbtaa

d etEIR
 

 , 

where: 

T




2


,
 

and T=1 year. 

 

The values a1, b1, a2, b2 are picked to provide a given seasonal profile as described in Table S1.1. 

For a given annual average EIR, EIRa, a0 is  
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Parameterization of models of seasonality 

1. For simulations of no seasonality in transmission of malaria, values of a1=a2=b1=b2=0 

were assigned.  Simulations were run for the following values of annual average EIR: 

[0.5, 1, 1.5, 2.5, 4.1, 6.7, 11, 18.2, 30, 49.4, 81.4, 134.3, 221.4, 365]. 

2. For each annual average EIR, simulations were run for each of six patterns of seasonality 

(Table S1, Table 2 of the main manuscript).  Each of these was parameterized with a 

vector of Fourier coefficients calculated to give the chosen value ϕ [1,2].  The six 

patterns were selected so as to cover the range of seasonality patterns observed in 

malaria-endemic areas.  

 



6. Seasonally dependent relationships between indicators of malaria transmission and disease 

provided by mathematical model simulations 

166 
 

 

Table S2  

Seasonality pattern ID 0 1,1 1.5,1 1,2 0.5,2 1.5,2 

Seasonality index (ϕ) 0 1 1.5 1 0.5 1.5 

Number of peaks 0 1 1 2 2 2 

a1 0 1.76256 4.10688 0.836862 0.437636 2.05344 

a2 0 0 0 0.836862 0.437636 2.05344 

b1 0 0 0 0 0 0 

b2 0 0 0 0 0 0 

       

 

Figure S1. Relationship between parasite prevalence and uncomplicated episodes. 

Simulated annual pattern of parasite prevalence (unbroken line) and uncomplicated episodes (dashed line) for the 

seasonality pattern   =2, 2 peaks and an annual average EIR of 11. Lines represent the mean over all model 

variants and multiple random seeds.   
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Text S2: Methods fitted regression models for the relationships between malaria indicators 

 

Statistical model design and fit 

The relationships between malaria indicators were investigated by regression analysis using Stata v12 

(College Station, Texas).  Linear regression models were used for each relationship, based on better fit 

than Poisson or negative binomial models (as assessed using the Akaike information criteria (AIC)). Final 

models were fitted using the second-degree fractional polynomial method described in Royston et al. 

[1] and Sauerbrei et al. [2] where models are of the form: 

qp xxy 210    ,   

where x and y are the two malaria indicators being investigated, transformed as indicated in Table 1 of 

the manuscript and p and q are any of (-2, -1, -0.5, 0, 0.5, 1, 2, 3) with p ≠ q and x0 representing ln(x). 

 

In the case q=p: 

)ln(210 xxxy pp   .   
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Table S3. Fitted regression models for the relationships between malaria indicators, ϕ =0 

 

Variable to 
estimate* Input variable 

 Form Coefficient 95% CI 

EIR 

Parasite 
prevalence 

ẞ1 (X+2.68)3-9.07 0.41 0.39,0.44 

ẞ2 (X+2.68)3*ln(X+2.68)-6.67 -0.24 -0.26,-0.22 

ẞ0   1.65   

Mortality 

ẞ1 ln(X)-.91 -14.70 -16.76,-12.65 

ẞ2 X0.5-1.58 27.27 24.47,30.06 

ẞ0   1.75   

            

Parasite 
prevalence 

EIR 

ẞ1 (X+0.71)-2.61 1.21 1.18,1.24 

ẞ2 (X+0.71)2-6.83 -0.13 -0.13,-0.12 

ẞ0   -0.28   

Mortality 

ẞ1 X3-15.56 0.44 0.42,0.46 

ẞ2 X3*ln(X)-14.23 -0.28 -0.30,-0.27 

ẞ0   -0.47   

            

Uncomplicated 
episodes 

EIR 

ẞ1 (X+0.71)-2.61 0.79 0.77,0.82 

ẞ2 (X+0.71)*ln(X+0.71)-2.51 -0.39 -0.40,-0.37 

ẞ0   0.43   

Parasite 
prevalence 

ẞ1 (X+2.68)-2.09 0.92 0.87,0.97 

ẞ2 (X+2.68)2-4.35 -0.19 -0.20,-0.18 

ẞ0   0.37   

Severe episodes 

ẞ1 X3-20.02 0.32 0.25,0.38 

ẞ2 X3*ln(X)-20.00 -0.21 -0.26,-0.16 

ẞ0   0.24   

Mortality 

ẞ1 X2-6.23 0.96 0.91,1.01 

ẞ2 X2*ln(X)-5.70 -0.64 -0.68,-0.61 

ẞ0   0.41   

            

Severe episodes 

EIR 

ẞ1 (X+0.71)0.5-1.62 0.34 0.30,0.38 

ẞ2 (X+0.71)3-17.85 -0.004 -.004,-.003 

ẞ0   2.83   

Parasite 
prevalence 

ẞ1 (X+2.68)-2.09 0.28 0.22,0.35 

ẞ2 (X+2.68)2-4.35 -0.05 -0.07,-0.03 
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ẞ0   2.76   

Uncomplicated 
episodes 

ẞ1 (X+0.76)3-0.89 0.38 0.33,0.42 

ẞ2 (X+0.76)3*ln(X+0.76)+0.03 -0.59 -0.71,-0.47 

ẞ0   2.72   

Mortality 

ẞ1 ln(X)-.91 3.94 3.16,4.72 

ẞ2 X0.5-1.58 -4.86 -5.92,-3.79 

ẞ0   2.79   

            

Mortality 

EIR 

ẞ1 (X+0.71)-2.61 0.58 0.56,0.59 

ẞ2 (X+0.71)3-17.85 -0.01 -0.01,-.009 

ẞ0   2.67   

Parasite 
prevalence 

ẞ1 (X+2.68)2-4.35 0.43 0.41,0.46 

ẞ2 (X+2.68)2*ln(X+2.68)-3.20 -0.22 -0.24,-0.21 

ẞ0   2.52   

*Variables are defined and transformed as per Table 1 of the main manuscript. 
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Table S4. Fitted regression models for the relationships between malaria indicators, ϕ =2, 2 
peaks 
 

Variable to 
estimate* Input variable 

 Form Coefficient 95% CI 

EIR 

Parasite 
prevalence 

ẞ1 (X+2.84)3-6.351870522 0.60 0.57,0.63 

ẞ2 (X+2.84)3*ln(X+2.84)-3.91 -0.40 -0.42,-0.37 

ẞ0   1.77   

Mortality 

ẞ1 X-0.5-.66 64.17 57.09,71.26 

ẞ2 ln(X)-.84 28.63 26.13,31.14 

ẞ0   1.78   

            

Parasite 
prevalence 

EIR 

ẞ1 (X+0.71)-2.612658873 0.925 0.89,0.96 

ẞ2 (X+0.71)2-6.83 -0.08 -0.09,-.07 

ẞ0   -0.79   

Mortality 

ẞ1 X3-12.59 0.47 0.43,0.50 

ẞ2 X3*ln(X)-10.64 -0.31 -0.33,-0.28 

ẞ0   -0.92   

         

Uncomplicated 
episodes 

EIR 

ẞ1 (X+0.71)-2.61 0.70 0.67,0.73 

ẞ2 X*ln(X+0.71)-2.51 -0.32 -0.33,-0.30 

ẞ0   0.26   

Parasite 
prevalence 

ẞ1 (X+2.84)-1.85 0.76 0.73,0.79 

ẞ2 (X+2.84)3-6.35 -0.05 -0.05,-0.05 

ẞ0   0.26   

Severe episodes 

ẞ1 X3-18.30 0.33 0.26,0.41 

ẞ2 X3*ln(X)-17.74 -0.24 -0.29,-0.18 

ẞ0   0.11   

Mortality 

ẞ1 X-2.33 2.76 2.54,2.98 

ẞ2 X2-5.41 -0.52 -0.57,-0.47 

ẞ0   0.20   

            

Severe episodes 

EIR 

ẞ1 (X+0.71)-2.61 0.33 0.29,0.38 

ẞ2 (X+0.71)*ln(X)-2.51  -0.18 -0.20,-0.15 

ẞ0   2.74   

Parasite 
prevalence 

ẞ1 (X+2.84)2-3.43 0.20 0.17,0.23 

ẞ2 (X+2.84)2*ln(X+2.84)-2.11 -0.17 -0.19-0.14 
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ẞ0   2.73   

Uncomplicated 
episodes 

ẞ1 ln(X+0.81)+0.13 0.08 0.06,0.11 

ẞ2 (X+0.81)2-0.78 0.14 0.10,0.18 

ẞ0   2.64   

Mortality 

ẞ1 X0.5-1.53 9.36 7.30,11.41 

ẞ2 X0.5*ln(X)-1.29 -3.24 -3.99,-2.49 

ẞ0   2.70   

            

Mortality 

EIR 

ẞ1 (X+0.71)-2.61 0.57 0.55,0.59 

ẞ2 (X+0.71)2-6.83 -0.05 -0.06,-0.05 

ẞ0   2.46   

Parasite 
prevalence 

ẞ1 (X+2.84)2-3.43 0.48 0.46,0.51 

ẞ2 (X+2.84)2*ln(X+2.84)-2.11 -0.29 -0.31,-0.27 

ẞ0   2.39   

*Variables are defined and transformed as per Table 1 of the main manuscript. 
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Text S3. Model choice and presentation of simulation results  
When presenting results of stochastic simulation models, it is important not only to 

demonstrate the general trends, but to adequately express uncertainty inherent in 

stochastic simulations. Evaluating goodness of fit and uncertainty for simulation results of 

model ensembles remains a challenge [1], as does presentation of these results. There are 

numerous options for analysing and presenting simulation results, including aggregation 

into averages, ranges and standard deviations, elimination of poor-performing models, and 

weighting models based on their structure similarity or performance during the fitting 

process. The following examples represent analysis of simulation results from the 

OpenMalaria model ensemble of 14 model variants as described in Smith et. al [2]. 

In the context of this study the options relevant options include: 

1. As presented in the main manuscript, scatter plot range of results with the fitted 

regression model over all model variants of each pattern of seasonality (Figure S2) 

2. Shaded range of results with the median over all model variants of each pattern of 

seasonality (Figure S3) 

3. Shaded range of results with the median over all seeds for each model variant, for 

each pattern of seasonality (Figure S4) 

4. Shading range of results with the mean of all model variants and the fitted 

regression model over all model variants, for each pattern of seasonality (Figure 

S5) 

There are benefits to displaying results by model variant if the goal of analysis is to 

understand the effect differences in assumptions of model structure have on results. For 

example, model variants 670, 674 and 678 have different assumptions about susceptibility 

to co-morbidity and access to treatment [2], which may be of interest when examining the 

relationship between malaria mortality and EIR (Figure S4).  However, if model variants 

are not to be examined individually, there are benefits of displaying results of means or 

medians across all model variants as the overall uncertainty is more relevant to analysis of 

results than the uncertainty due to any one model variant.  

While a shaded area gives an easily-identifiable range of simulation results encompassing 

areas not explicitly simulated in the experiment, (Figure S3), a scatter plot is able to 

identify outliers in directions of both independent and dependent variables as well as give 
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an indication of the density of simulation results in a given area (Figure S2), more easily 

showing patterns in the overall results and how they relate to the summary smoothing 

functions. 

In the case of the relationship between mortality and EIR, the uncertainty in simulation 

results is due more to model variant than to pattern of seasonality, as can be ascertained by 

comparing Figure S3 and Figure S4. However, this is not the case for all relationships 

between indicators presented in this study.  

Fractional polynomial regression has the flexibility to fit the range of non-linear, non-

monotonic relationships seen between these indicators and has the advantage of being able 

to exclude predictions less than zero through the algorithms used by defining the origin. 

Despite criticisms about the fractional polynomial approach to model selection and 

potential inflation of type one error [3], choosing to present results of regression analysis 

allows a methodology for applying these equations to make predictions in areas outside the 

range of simulations, which means and medians of simulation results cannot. The fitted 

models will diverge from resembling the means for relationships that are increasingly non-

linear.  

 

 
 

 
 
 
 
 

Figure S2. Fitted regression models 
for each pattern of seasonality over 
scatter range of simulation results. 
Circles represent simulated results of the 
relationship between mortality and eir 
over 14 model variants, six random 
seeds and five patterns of seasonality. 
Lines represent, for each pattern of 
seasonality as described in Figure 1 and 
Table 2, the fractional polynomial 
regression model fitted over 14 model 
variants as described in Smith et. al [2] 
and five random seeds. Unbroken red 
line represents φ =0. Brown dashed line 
represents φ =1, one peak. Orange 
dotted-dashed line represents φ =1, two 
peaks. Green dotted line represents φ =2, 
one peak. Black dotted-dashed line 
represents φ =2, two peaks. Blue dashed 
line represents φ =0.5, two peaks. 
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Figure S3. Median of each pattern of 
seasonality over shaded range of 
simulation results. Shaded area 
represents range of simulated results of 
the relationship between mortality and EIR 
over 14 model variants, five random seeds 
and six patterns of seasonality. Lines 
represent, for each pattern of seasonality 
as described in Figure 1 and Table 2, the 

median of 14 model variants as described 
in Smith et. al [2] and five random seeds. 
Unbroken red line represents φ =0. Brown 
dashed line represents φ =1, one peak. 
Orange dotted-dashed line represents φ 
=1, two peaks. Green dotted line represents 
φ =2, one peak. Black dotted-dashed line 
represents φ =2, two peaks. Blue dashed 
line represents φ =0.5, two peaks. 

Figure S4. Median of each model variant over shaded range of simulation results, 
by pattern of seasonality. Shaded areas represent the range of simulated results of the 
relationship between mortality and eir over 14 model variants and five random seeds. 
Lines represent the median of each of the 14 model variants as described in Smith et. al 
[2] over five random seeds. Panels represent the patterns of seasonality as described in 
Figure 1 and Table 2. 
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Figure S5. Mean and fitted 
regression model over shaded 
range of simulation results, by 
pattern of seasonality. Shaded 
areas represent the range of 
simulated results of the 
relationship between mortality 
and EIR over 14 model variants 
and five random seeds. Black 
lines represent the mean of 14 
model variants as described in 
Smith et. al [2] and five random 
seeds. Green lines represent the 
fractional polynomial regression 
model fitted over 14 model 
variants and five random seeds. 
Panels represent the patterns of 
seasonality as described in 
Figure 1 and Table 2. 
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7. Discussion 

 

7.1 Summary 

The overall aim of this thesis was to applying individual-based stochastic models of malaria to 

field sites to better understand malaria transmission dynamics in these settings and to explore 

possible scenarios with different control interventions and strategies. This is demonstrated by 

the two main areas of application for infectious disease modeling presented in this thesis.  

The first application is to gain a better epidemiological understanding. This is achieved 

by examining the simulated relationships between malaria indicators in different intensities and 

patterns of seasonality, and by developing an alternative method of quantifying malaria 

transmission in areas with scarce data. The second application is to explore intervention 

effectiveness, which is achieved by simulating malaria dynamics in Rachuonyo South District, 

Kenya and in Southern Province, Zambia. After validating these results with observed data, the 

simulated impact of intervention combinations is investigated and, in the case of Rachuonyo 

South, attached to a costing model to put simulated results in the context of longer-term 

implications for malaria control programs.  

This discussion contextualizes these two approaches of applied modeling, and 

summarizes limitations and future research opportunities for OpenMalaria. Following this, it will 

discuss the current and potential future role of applied mathematical modeling for informing 

policy decisions, and the ways through which this role can be achieved by the malaria modeling 

community. 

 

Findings of site-specific simulations 

The studies in Chapters 3, 4 and 5 demonstrate the first comprehensive site-specific applications 

of OpenMalaria outside of the model development’s initial fitting process incorporating 

parameterization, sensitivity analysis, validation, estimation of new interventions, and a cost 

effectiveness analysis. 
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Results of the application of OpenMalaria for simulation of malaria epidemiology and 

control in Rachuonyo South District in the highlands of western Kenya indicate that estimating 

the annual pattern of EIR using entomological studies involving mosquito capture, while 

important for monitoring vector biting behaviour, may be unsuitable in areas of low, unstable 

transmission. Despite a trend in the District’s vectors towards outdoor, early evening biting, the 

sensitivity analysis in Chapter 3 of the site-specific parameterization indicates that small 

changes in entomological and biological components may be unlikely to have a large impact on 

prevalence in the study area. This finding is important for the study area to further understand 

the potential impact the changing vector composition and behavior may have [1, 2], and to 

highlight the potential limit to the effectiveness of current vector control interventions in 

Rachuonyo South at controlling indoor  Plasmodium falciparum transmission [3]. Continuous 

entomological monitoring will be essential in this area as use of pyrethoids continues.   

The cost effectiveness analysis in Chapter 4 is a helpful exercise for putting simulation 

results in the context of impact on the overall health sector. All of the simulated intervention 

combinations, which involved LLINs, IRS, and school-based intermittent screen and treat (IST), 

were shown to be cost effective given the substantial contribution of malaria to the burden of 

disease in Kenya and compared to the country’s per capita health spending of 42 USD [4]. 

Simulated results indicate that in the study area, scenarios involving increased coverage and use 

of vector control interventions are more cost effective than introducing a school-based IST 

program to the current strategy, which showed a very minor simulated epidemiological impact. 

While a cost-effectiveness analysis alone is not sufficient for decision-making for the optimal 

intervention mix in the study area, given the desire for innovative solutions for the next step in 

malaria control, this study helps to identify a negative study outcome (IST) that can be passed 

over in favor of interventions that may have a greater impact (increased LLIN use).  

Chapter 5 shows that there are operational strategies that could impact the health 

outcomes of the MSAT trial in Southern Province, Zambia. Increasing coverage of the 

intervention showed a greater simulated reduction in parasite prevalence than the current 

strategy, but targeting specific age groups and increasing the campaign frequency to anything 

longer than 15 days are unlikely to result in a greater impact than the current strategy. While 
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MSAT with Dihydroartimisinin-Piperaquine (DHP) + Primaquine, a combination with a long 

prophylactic effect and a gametocytal effect, did not have the desired simulated effect on 

transmission and disease burden, simulations indicate Ivermectin, an endectocide, could be a 

viable addition to MDA programs. Further investigation in trial settings is urgently needed on 

the halflife of effectiveness and the optimal dose of Ivermectin. Current dosage of Ivermectin is 

based on the MDA deployment for lymphatic filariasis and onchocerciasis control programs, and 

the optimal dose in terms of both safety and efficacy may be different for malaria control. 

Because the drug is broadly approved for mass distribution, the timeline for adoption of the 

drug for a new strategy has the potential to function on a shorter time frame than that of a new 

compound. Modeling has a clear role in this process for helping decide what to test and where 

in the field to do so. 

Given the results of the intervention combinations simulated in the contexts of the two 

study areas represented in this thesis, the question arises about whether there is a point where 

a shift to human-based interventions are warranted at the same time as a shift away from 

vector control. There are many reasons this may appear to be an attractive option given limited 

resources available for global malaria control and the threat of insecticide and drug resistance. 

The cost of malaria control per case averted will be higher in areas of low transmission 

compared to areas of higher transmission. Simulated results suggest LLINs are most cost 

effective at an annual average EIR of 4 [5], and the cost per case for identification and treatment 

increases as the number of cases decreases. Simulation results in Chapters 3-5 show that even 

in areas considered low transmission vector control continues to play an essential role in 

disease prevention. This finding supports the empirical evidence seen in of the resurgence of 

malaria following the cessation of IRS in Sri Lanka and other countries after the Global Malaria 

Eradication Program in the mid-20th century [6]. It is clear that sustaining vector control long 

into the elimination phase of any area will be essential.  

  

Findings of simulated relationships between malaria indicators for transmission estimation 

The Rachuonyo South District simulation experiment in Chapter 3 directly demonstrates the 

challenges with traditional methods of estimation of transmission described in Chapter 2. 
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Accurate measures of transmission are helpful in terms of monitoring, yet at the same time are 

more difficult to collect as transmission is reduced, and measures of transmission cannot be 

standardized across all settings.  

Results from an experiment simulating the relationship between malaria indicators and 

across different patterns of seasonality of transmission indicated that not only the amount but 

also the pattern of seasonality of transmission in a given place is important, particularly in 

settings with low to moderate transmission. The simulated impact of the amount and pattern of 

seasonality on relationships between malaria indicators shows the need for field trial design and 

analysis to consider variability, which is not currently the case in practice. Therefore further 

development of a seasonality index is required to take into account not only the level of 

seasonality but also the number of peaks. Further examination of the relationship between 

seasonality and acquisition of immunity could further clarify these results and shed light on the 

mechanisms driving the relationships between those indicators.  

This method of transmission estimation represents a contribution to the field by adding a 

new tool to fill the gap identified by site-specific micro-simulations in areas of low transmission. 

These results demonstrate how mathematical modeling can contribute to evidence-based 

decision-making in the malaria control community by filling in knowledge gaps, even in areas 

without substantial observational studies.  

 

Limitations of OpenMalaria 

Details of the methods for applying OpenMalaria to site-specific scenarios, and current options 

for running OpenMalaria software and an evaluation of their applicability are detailed in 

Appendix 1. There are technological limitations to the individual-based stochastic simulation 

approach including the large amount of computing resources required to run simulations and 

the limitation of available methods for experiment creation and analysis of results. Efforts to 

develop new and to update existing user interfaces for experiment creation and simulation have 

been challenged by the continuously-updated code base.  The OpenMalaria model requires a 

large number of data points as inputs, with a trend towards greater complexity as the model has 
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continued to develop over time. With any model, this represents a tradeoff. Adding additional 

detail to an already-complex set of models makes it more difficult to identify and understand 

the key drivers of results and potentially decreases the chance for broad use of and trust in 

model outputs.  

The OpenMalaria transmission model was developed to examine areas of moderate to 

high transmission, and does not include a mechanism to account for the inter-annual variation 

in EIR as driven by climatic factors common in areas of unstable transmission. Thus, every year is 

treated as the same, which is not the case in all study areas. Other stochastic models of malaria 

exist which are instead driven by vector ecology linked to rainfall, temperature and other 

climatic factors [7-9], with EIR limited to a model output rather than both an input and an 

output. In addition to the challenge of the non-linear relationship of the amount and seasonality 

of transmission to the amount of rainfall [8], this approach also fails to highlight the importance 

of the impact of the case management system and within-host dynamics. 

Analysis from site-specific simulations (Chapters 3-5) indicates that heterogeneities in 

transmission dominate in low transmission settings. The OpenMalaria model does not explicitly 

take spatial associations into account, making micro-simulations in areas of very low 

transmission challenging since variation in proximity to breeding sites can be a factor driving the 

difference in epidemic profile in many areas. This heterogeneity in availability to vectors, as well 

as the role of imported cases in malaria transmission, should be taken into account in future 

simulations of low transmission areas. On the other hand, dynamics in higher transmission 

settings are characterized by a different set of factors including heterogeneities in exposure, 

acquisition of immunity, and within host dynamics. OpenMalaria is well placed to answer 

questions about their role on malaria transmission and disease burden. Improved measurement 

tools and increased primary data collection will enhance model parameterization and 

epidemiological monitoring in all transmission settings. 

The endpoint evaluated by the experiment in Chapter 5 was interruption of 

transmission. For the purposes of this experiment, interruption of transmission was defined as 

scenarios with no clinical cases in the same point in time three months after the intervention. 
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The impact of these programs on interruption of transmission depends heavily upon how this 

endpoint is specified. For modeling purposes, this should be clarified in greater detail than is 

currently available from the WHO elimination framework and the malERA agenda [10, 11].  

It should be noted that there are important costs that cannot be accounted for in the 

type of cost-effectiveness analysis presented in Chapter 4. These include research costs, 

economies or diseconomies of scale, and any costs that may be incurred for technical assistance 

in LLIN distribution, for example from the Alliance for Malaria Prevention. A systems approach 

to investigating changing intervention strategy could help identify these and other areas outside 

the traditional case management system that incur costs, and can strengthen the chances for 

success of introducing a new intervention. During the literature review of previously-published 

costing studies of malaria control interventions, it was noted that many studies used different 

endpoints for evaluating costs of the same intervention. Moving forward, it would be helpful for 

costing of studies to employ a standard methodology, such as either cost per person protected 

or cost per net delivered LLINs. Until then, it will continue to be challenging to apply a standard 

cost-effectiveness analysis methodology across all potential settings. 

 

7.2 Future strategy for OpenMalaria simulations 

The opportunity for the greatest potential short term impact of OpenMalaria is for trial design 

and intervention evaluation, as described in Chapter 5. Starting with simulations of an 

intervention or combinations of interventions in a single site and validated with observed data, 

effects of an intervention can then be applied to different implementation strategies in an 

operational research approach, and even to other trial contexts under consideration.  A specific 

example includes expanding the experiment simulating MSAT and MDA strategies in Zambia to 

other potential study areas in Senegal, Ethiopia, and the western Kenyan lowlands, and even to 

epidemic settings in West Africa. There is a clear opportunity to combine these studies with a 

costing model, as in Chapter 4, and as with the country-specific evaluation of cost effectiveness 

of the RTS,S vaccine conducted with PATH Malaria Vaccine Initiative (MVI) [12, 13]. In addition 

to the strategy of Chapter 4 of simulating discrete combinations of interventions, another 
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possible strategy would be to simulate the incremental cost of scale up of interventions, such as 

the approach described in Crowell et. al [14]. 

Results of the studies described above demonstrate the ability of OpenMalaria to not 

only simulate the dynamics of malaria epidemiology and control, but to apply these dynamics to 

answer research questions to aid policy makers and program managers in survey design and 

programmatic decision-making. However, given the challenges in parameterizing and validating 

site-specific scenarios, it is natural to ask what is gained from this approach, and what should be 

the characteristics and limit of sites to be simulated, in comparison to focusing on broad-based 

simulations covering a theoretical context?  

It is tempting to identify the main factors impacting the relationship between 

transmission and disease burden, run simulations for a full-factorial experiment covering a 

plausible range for all of these factors, and base decisions on these results; caution should be 

taken with such an approach. The obvious factors to include are level of transmission, amount 

and pattern of seasonality, vector control coverage, access to treatment, insecticide and drug 

resistance, the proportion of indoor vs. outdoor transmission and heterogeneity in exposure. 

Several factors favor the site-specific approach to complement the more general experiments. 

Firstly, many studies are concentrated in areas with a high burden of malaria and are often 

conducted in the highest transmission months, leaving out areas of low transmission and dry 

season months. These omissions are especially relevant for studies on effectiveness of 

interventions. As such it will be challenging to link such an extremely large database of results 

with validated field data.  

Another benefit of the site-specific approach is that this application of OpenMalaria has 

acted as a catalyst for model development. For example, application of OpenMalaria to an 

MSAT intervention highlighted a limitation in the way interventions were previously described 

and deployed in the schema that prevented the field scenario from being adequately described, 

that may not have been identified in an experiment with general deployment of a theoretical 

trial. As a result of code changes, the flexibility of OpenMalaria increased allowing the platform 
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to be more responsive to requests for answers to questions driving study design and program 

implementation, and therefore more applicable to end users. 

 

7.3 The current status of applying modeling for decision-making  

While the field of mathematical modeling of malaria has continued to develop over the course 

of the past century, advances in model design and increased computing power in recent years 

have ushered in an increase in decision-making based on evidence from stochastic model 

outputs. This has been accompanied by an increase in investment in the technology and tools 

required to make this possible, for instance the Vector-Borne Disease Network (VecNet) [15] 

funded by The Bill and Melinda Gates Foundation (BMGF). How models are applied, and at what 

level decisions informed by models are made, will be influenced by the priorities and approach 

of the source of funding.  

It is difficult to quantify to what extent malaria control decisions are currently being 

made based on modeling. Donors, rather than national malaria control programs, may still be 

the main group applying modeling into decision-making in a systematic way, but this could be 

shifting. For example, the National Malaria Control Program of Tanzania has utilized NetCALC 

cost and coverage software (see http://www.networksmalaria.org/networks/netcalc) as an 

integral part of the creation of their LLIN keep up strategy by examining the effect of different 

coverage levels of LLINs under various distribution scenarios [16].  

The field has been naturally moving towards more collaboration between modeling 

groups, driven by the call for answers via multiple approaches to understand structural 

uncertainty. An example includes the collaboration between the Swiss TPH, Imperial College 

London (ICL), Intellectual Ventures (IV), and Glaxo-Smith Kline (GSK) following separate 

simulation exercises for cost-effectiveness of the RTS,S vaccine as commissioned by the GAVI 

Alliance through MVI [12]. Collaboration between independently-developed models at the point 

of predictions has many benefits, including a better understanding of the assumptions and 

simulation process, and communicating clear messages when models agree.  

http://www.networksmalaria.org/networks/netcalc
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In the broader field of applied modeling for infectious disease control, simulation results 

are now routinely used to detect and control epidemics such as influenza [17, 18], hoof and 

mouth disease [19], and, increasingly, hospital-acquired infections [20]. In terms of endemic 

diseases, modeling consortia have recently been created for a variety of infectious diseases 

including HIV (2011, see http://www.hivmodelling.org/), tuberculosis (2012, see http://tb-

mac.org/), and, most recently, neglected tropical diseases (NTDs) (2013, see 

http://www.ntdmodelling.org/). The TB and HIV consortia receive funding from the BMGF, and 

the NTD Consortium has also been invited by the BMGF to submit a proposal. These 

coordinating bodies present an opportunity both for strategic allocation of resources and for 

increased collaboration on research questions. It is unclear, given the number and scope of 

existing malaria models, and the investment in malaria research by the BMGF – PATH MVI alone 

has received a grant commitment of $456 million USD [21] - why malaria has not yet been 

added to this list. 

 

7.4 Proposed role for modeling in malaria control 

Malaria dynamics display a high degree of spatial and temporal heterogeneity, and appropriate 

tailoring of control programs impacts malaria control success. Mathematical models can play an 

important role in the development and evaluation of policies for control of a range of infectious 

diseases, inferring the values of parameters that cannot be evaluated experimentally or are too 

expensive to implement. The role for mathematical modeling of malaria control has been 

examined in terms of individual interventions [22] and in the elimination research agenda [23, 

24], and general guidelines for understanding and using models have been helpfully outlined 

[25]. However, the developers and end users of these models perhaps do not share the same 

understanding of the specific role for modeling decision-making in the current context of how 

decisions are made for research and program implementation. Clarifying this relationship and 

process will make it easier to tailor tools and design the level of flexibility of models to the 

intended end user, increasing the chance of success. 

Mathematical models should indeed be used to decide in advance which interventions 

to test in the field. Using models to work out exactly what to test would make it more likely that 

http://www.hivmodelling.org/
http://tb-mac.org/
http://tb-mac.org/
http://www.ntdmodelling.org/
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trials will lead to improvements in public health practice. A key role and opportunity for 

applying modeling to malaria control implementation is to help provide a quantitative 

demonstration of why an intervention may work in one context and not another to those 

involved in trial design and on the ground implementation. This should entail modeling realistic 

coverage and deployment options in settings comparable to those in the field to maximize the 

applicability of modeling exercises.  

Several specific thematic areas for prioritization can be identified through analysis in this 

thesis. Linking costing to simulation results, as described in Chapter 4, as has also been applied 

for vaccines and case management [26-28]. A cost effectiveness analysis of different operational 

strategies of MSAT simulations could clarify policy decisions, especially when involving new 

compounds. Simulating the effect of different target product profiles for development of novel 

vector control interventions targeting outdoor biting such as odor baited traps and 

endectocides, such as the analysis demonstrated in Killeen et. al [3, 29], could be helpful in 

settings such as Rachuonyo South District where vector biting behavior is shifting to outdoors 

and earlier in the evening. 

A particularly challenging application of mathematical models is their use to predict the 

success of elimination programs [24, 30], motivated by the lack of comprehensive data in many 

locations. Parameterizing transmission patterns in unstable, low transmission settings for 

application to stochasitc simulation models has been indicated as a priority by the Malaria 

Elimination Group [11], yet standardized methods of doing so have not yet been 

comprehensively proposed. This approach to elimination has demonstrated success with viral 

diseases, such as predicting the impact of vaccination and elimination scenarios for measles in 

Italy and elsewhere [31-33]. The challenge of simulating malaria elimination is much greater due 

to heterogeneity in transmission intensity leading to high-transmission foci that can remain 

undetected.  The minimum population size necessary for malaria to persist is unclear, but it is 

certainly much smaller than for diseases like measles, meaning parasites can circulate 

indefinitely within small foci.  It is essential for any elimination program to address this 

challenge.  
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Chapter 2 indicates that when approaching a situation where transmission is interrupted, 

attention must be paid to the type of screening strategy (active vs. passive case detection) and 

screening method used to detect the last remaining parasitaemia in the population. Without an 

improvement of case-management systems, the case-fatality rate per infection increases as 

transmission decreases. This makes prompt and effective treatment the key to achieving near-

zero deaths and further emphasizes the need for quality surveillance response as transmission is 

reduced. More empirical and theoretical analyses focused on optimizing surveillance–response 

systems will aid in accomplishing this goal. A spatially-explicit model would be preferable for 

this type of experiment, and with appropriate settings for imported infections and a clear 

operational definition of the end point, estimating probability of interruption of transmission is 

a useful application.   

 

Limitations of applied modeling  

It is difficult to place too much emphasis on the importance of communicating a) the most 

appropriate and constructive ways to apply simulation results, b) the underlying assumptions of 

both the models and the method of application of interventions, and c) the uncertainty in 

model predictions. A misunderstanding about the implications of a model’s predictions can lead 

to loss of confidence in model results, jeopardizing future collaboration.  

An illustration is the 2001 United Kingdom foot and mouth disease epidemic. Extensive 

culling policies informed by mathematical models were criticized, with claims that “use and 

abuse of mathematical models” led to the slaughter of far more animals than was necessary to 

control the epidemic [34]. In this case, difficulties in understanding the model assumptions and 

in interpreting the available data led to questioning of the role models can and should play in 

informing policy for control of any epidemic [19].  

Another is the recent MSAT trials. Modeling studies [35, 36] have shown that, even in 

favorable settings, MSAT programs must achieve very high coverage of the total population 

sustained at high frequency to result in a worthwhile impact on infection rates. The limited 

impact on infection predicted at operationally feasible frequency and coverage levels has now 
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been borne out by field trials in interventions targeting the whole community [37] and school-

aged children [38]. However, despite the substantial differences in the design of the trials in the 

field compared to those supported by the modeling studies, it was claimed that models failed to 

predict the disappointing trial results, casting doubt about the underlying assumptions of 

models [39]. This gave readers the incorrect impression that over-optimistic predictions from 

mathematical models were a driver behind the testing of an intervention that proved 

ineffective. In addition to demonstrating the importance of dialogue between modelers and 

field experts, this highlights the importance of understanding that the way interventions are 

deployed predict success just as much if not more so than the initial effect of the medicine, or 

insecticide.  

It bears repeating that no simulation, no matter how complex the interaction between 

its parts, reproduces exactly what happens in ‘real life.’ Models are only one aspect to providing 

advice, and must be combined with experimental investigation and the collection and analysis 

of epidemiological data. 

 

7.5 Communication and interaction with end users: tools, knowledge management and the 

way forward 

This thesis proposes several practical applications and areas for future simulation experiments 

to inform study design and analysis. However, a gap remains in describing how this ‘informing’ 

process is conducted beyond insisting on collaboration. In each case of model application 

presented in this thesis, there are individual connecting the modelers and the trial designers 

who understand both the realities of the field and the advantages of consulting models. The 

consultation process by no means happens organically, and there is little existing infrastructure 

to facilitate this interaction. There are pros and cons to this approach, for while it may be 

criticized for its current ad-hoc nature, it is still extremely helpful for both sides so that model 

potential and limitations can be communicated to implementers, and field realities can be 

communicated to modelers. 

A positive example of such interaction is highlighted by the process of creating the 

report in Chapter 5.  PATH/MACEPA and the Zambia National Malaria Control Center 
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collaborated with the modeling groups from IV, ICL, and the Swiss TPH to investigate the impact 

of different MSAT/MDA strategies in Southern Province, Zambia. While each group took a 

different approach to simulating combinations of drugs and implementation strategies, one 

clear shared message was shared: in the study area, adding Primaquine (PQ) to Coartem® or 

DHP did not show a substantial simulated impact on parasite prevalence. Because the modeling 

groups were all invited to present in a conference symposium and participate in the protocol 

development meeting, these messages were able to be incorporated into the next phase of the 

trial.  

It is also important to highlight the interaction with LSHTM for the Rachuonyo South 

OpenMalaria project where the simulation experiment was designed at the same time as the 

roll out of field trials and updated based on the changing contexts of both the models and the 

trials. This afforded not only continuous flow of results between the field experiments and the 

modeling, but also afforded an understanding of what is possible with the model, what inputs 

were necessary for model parameterization, and the presentation of simulation results that 

would be most helpful for the study area.    

This demonstrates how such collaboration can improve public health practice. Not only 

the creation, but also the application of mathematical modeling for infectious disease control is 

indeed better served through collaborations between epidemiologists, policy makers and 

experts from the field. In order to facilitate success and increase the frequency and quality of 

interactions, there is a need for flexible structures that connect modelers and users.  

Prioritizing the research questions pertinent to disease control and elimination that can 

be addressed by applied modeling will require understanding what different modeling groups 

are already doing to inform disease control programs, what researchers and program managers 

want from models and vice versa, providing a space for dialogue about the underlying 

assumptions of the models and the value of different modeling approaches, and providing a 

forum for fostering collaboration.  Who is responsible for doing so should be clarified. 

Implementation of interventions, at the ground level, is often removed from the 

dynamics of why, where and when an intervention would be effective. Publishing results in 
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technical journals is far from sufficient. As a first step, dissemination of examples of linkages 

between modeling and program design could be consolidated for reference. 

As mentioned above, the most important point is for modelers to clearly communicate 

uncertainty in terms of the range of possible results. A straightforward and non-technical 

presentation of results is often the most effective, but must describe uncertainty in forecasts to 

avoid over-stating confidence of model predictions. It is important to consistently and 

effectively communicate the spectrum of results and implications suggested by model 

simulations; this will avoid the temptation to focus on one element of model results that seems 

to confirm an expectation rather than placing the complete results in context.  This is not 

straightforward to present, but there are a number of ways communicating results could be 

made easier; examples of options for how to do so are described in Appendix 4 of Chapter 6.  

A priority should be made to ensure models that aid in the understanding of site-specific 

transmission dynamics are more accessible to malaria control decision makers. There has been 

a call to tailor models and the tools to use them to the end user. In the past, this lack of 

accessibility has acted as a barrier to achieving the goals of applying OpenMalaria to site-specific 

settings. Training occurred for new users in MTC sites on the model and the process of applying 

the models to sites using OpenMalariaTools in 2011 before the web-based portals were 

developed. While these efforts were ultimately unable to produce outputs beyond the stage of 

site parameterization, they were successful in increasing the visibility of and access to applied 

modeling within program implementation and research. There are a number of reasons why the 

training and collaborating efforts did not have the desired effects. These include competing 

demands from the full time jobs of the participants, frequent upgrades/updates of OpenMalaria 

(four within the timeframe of one year) resulting in changes to the xml structure and the type of 

inputs needed, lack of funding for software troubleshooting, and the difficulties inherent in 

technical training and support in disparate geographical locations.  

Tools need to be tailored to the various end users, reinforcing another reason to more 

strategically clarify the process of applied mathematical modeling of malaria and identify where 

to focus effort in this development. Efforts towards this goal include VecNet, which provides a 
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web-based interface for tools targeted at a range of users from students to program managers 

to modeling experts [15]. Teaching of applied modeling for decision-making can be integrated 

into any course on epidemiology and control and will help de-mystify this process for the next 

generation of public health professionals.  

The validation exercise conducted in Chapter 6 showing simulated relationships between 

indicators are comparable to previously published field data is important to lend confidence to 

model results. It would be helpful for future exercises to have a standard methodology for 

evaluation of validation exercises of model ensembles. Relatedly, there is not yet any consensus 

in the modelling community on how to evaluate uncertainty and goodness-of-fit for model 

ensembles [40]. The merits of different methods have been discussed for models used in 

meteorology, climate change and macroeconomics, but questions remain on whether model 

averaging is appropriate and how to quantify an acceptable level of stochasticity for basing 

programmatic decisions on model predictions [41]. A consensus should be achieved on these 

criteria if quantitative projections from such models are to become an integral part of the range 

of decision making tools for malaria control. New methods for analysing and evaluating 

uncertainty in simulation results as applied to model validation will enhance the usefulness of 

simulations for malaria control decision-making. 

While such a methodology for evaluation of validation exercises would be helpful, going 

so far as to prescribe the types of datasets that can and cannot be used is not advisable. This is 

due not only to the need to tailor validation exercises to the question being asked, but because 

the type and quality of datasets available will likely vary substantially from place to place. Here, 

retaining flexibility is important. 

Predictions of forecasting models in any field are improved over time as a result of the 

accumulation of inputs to inform model design and parameterization.  It is necessary to keep 

models up to date with new developments in the field through a continuous process of fitting 

models to new data as they become available and validating simulated results with observations 

from the field. This can only happen if funding for malaria research is continued and strategically 

applied.  
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Appendix 1: Commentary on the use and application of OpenMalaria 

The OpenMalaria model explicitly describes many of the parts of the P. falciparum life cycle as well 

as the dynamics that link together human and vector behavior, within-host dynamics, health 

system structure, and effectiveness and implementation of interventions, allowing for flexibility in 

options for application. However, the model can only be useful if users are given access and have 

confidence in results.  

 

1. Site-specific experiment design and scenario parameterization 

The OpenMalaria model requires a large number of data points as inputs, with a trend 

towards greater complexity as the model has continued to develop over time. For the exercise in 

parameterizing OpenMalaria to the context in Rachuonyo South District using schema version 26, 

operational in early-mid 2011, the total number of individual data inputs was 106. 9% of these 

(n=10) were provided by site-specific surveys over the relevant timeframe of the study, 47% 

(n=50) were acquired through a literature review of previously published national and regional 

data, and 44% (n=47) were kept from the original model parameterization based on rural 

Tanzania. This last category were generally cases where there were no other data available, i.e. 

vector biology, or where there were no site-specific data available, i.e. compliance of drug regimen 

in the case management system. For the most recent site-specific parameterization conducted for 

Southern Province, Zambia in mid-2013, changes in the model schema brought the total number 

of necessary inputs up to almost 200. In this case a much greater proportion of inputs were based 

on a literature review rather than the original model parameters.  

OpenMalaria is open source and designed to be used and applied by a range of users as an 

accessible tool for malaria control decision-makers. Accessibility in this case can mean interfacing 

directly with the models to run simulations independently or collaborating with the modeling 

groups at the Swiss TPH. No matter the process, a clear understanding of the type of 

information/data required for inputs is essential. For a user to piece apart the interaction between 

and effect of these parameters can only come with practice and time spent working with the 

model. It is difficult to initially tell which elements are crucial enough to require site specific inputs 
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and therefore worth the effort to track down for each location, and which will not impact the 

results enough to be tailored to each individual experiment. 

Out of the very long list of elements affecting the dynamics of malaria in a given locality, 

only a subset are truly essential in order to tailor the description of a scenario to that place. Major 

categories include transmission (the level, seasonal pattern, and proportion of transmission that 

occur indoors versus outdoors), case management system (effectiveness of antimalarial drugs, 

proportion of fevers seeking care), and malaria control interventions (coverage level, timing of 

implementation, and effectiveness). Specific inputs for a minimum set of input parameters, as well 

as their general availability, are proposed in Table A1.1. 

To assist in the collection of the site-specific data described in Table A1.1, a library of “pre-

parameterized” sections of code would be a useful tool for building scenarios. Sections of code 

could be compiled and applied to scenario design by users; for example, descriptions of the 

duration and effect of different insecticide formulations, behaviour and biology of individual or 

classes Anopheles vectors, and descriptions of health systems for different levels of access to care. 

The proposed set of necessary inputs described  Table A1.1 is specifically tailored to 

experiments such as those described in Chapters 3, 4 and 5 of this thesis which attempt to 

describe the context and dynamics of malaria epidemiology and control in a location, given a set of 

existing interventions. Another use of OpenMalaria, which was used extensively before the site-

specific approach, has been to describe a not specific geographical location, but rather to 

investigate an intervention or phenomenon given a standard set of assumptions about the 

remaining variables over a range of transmission settings. Examples include modelling vaccine 

effectiveness [1-4] and cost effectiveness [5, 6], the effectiveness and cost effectiveness of 

intermittent preventive treatment (IPT) of infants [7] and children [8], the ability of case 

management to prevent re-establishment of malaria after interruption of transmission [9], the 

cost effectiveness of mass screen and treat [10], the effects of pyrethroid resistance [11], changing 

vector behaviour [12], and the level of case management [13] on the effectiveness of LLINs, and 

comparing the effectiveness of vector control interventions [14]. These types of intervention-

specific studies require far more detailed input data found from reports of trials where they are 

available, rather than following the format described in Table A1.1.  
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Table A1.1. Proposed minimum input parameters necessary for site-specific application of OpenMalaria models. 

Input OpenMalaria parameter Potential sources 
Source availability 
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% of population complying to drug #1 compliance [name] value  Household surveys X   

 
Second most commonly-used antimalarial 
drug 

 
 DHS report 

 Household surveys 

 
X 

X  
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% of parasites cleared by drug #2 initialACR selfTreatment value  Clinical trials   X 

% of population complying to drug #2 compliance selfTreatment value  Household surveys X   

In
te

rv
en

ti
o

n
s 

% of population who owns an LLIN timed deploy coverage 
 DHS report 

 Malaria indicator survey (MIS) report 
 

 
X 

X 

% of population who slept under a LLIN the 
previous night 

usage value  DHS report   X 

Timing of LLIN distribution timed deploy time 
 National Malaria Control Program/ 

implementing partner documents 
  X 

% of infants receiving a LLIN through ANC continuous deploy coverage 
 DHS report 

 MIS report 
 

 
X 

X 

IRS insecticide formulation IRS name 
 National Malaria Control Program/ 

implementing partner documents 
  X 

Halflife of decay of insecticide decay L 
 Entomological studies measuring 

insecticide decay rate 
X   

Proportion of vectors killed by IRS during the 
resting stage 

postprandialKillingEffect value 
 Entomological studies measuring 24 hour 

mortality 
X   

Timing of IRS deployment timed deploy time 
 National Malaria Control Program/ 

implementing partner documents 
 X  

% of population covered by IRS timed deploy time 
 DHS report 

 MIS report 
 

 
X 

X 

% of population covered by MSAT/MDA 
timed deploy coverage (minAge 
maxAge) 

 Household surveys X   

Timing of MSAT/MDA deployment timed deploy time 
 National Malaria Control Program/ 

implementing partner documents 
X   

Minimum parasites per microlitre detectable 
by the diagnostic test used for screening 

diagnostic deterministic 
minDensity 

 WHO report: Malaria rapid diagnostic 
test performance 

  X 
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2. Model validation 

In addition to the two study areas described in this thesis, OpenMalaria has been parameterized for a 

number of other sites including Asembo Bay in the western Kenya lowlands, Dar es Salaam, Tanzania, 

several sites in Indonesia, Rafin Marke District in Nigeria, and Luangwa and Nyimba Provinces in 

Zambia (all unpublished). Out of these sites, only the western Kenyan lowlands site was able to be 

taken through the process of parameterization, validation and simulation of different interventions in 

order to investigate the impact of intermittent preventive therapy in school children at reducing 

parasite prevalence in children under five in response to a request from the Center for Disease 

Control and Prevention (CDC).  

The process of model validation involves comparing simulated data to what is known or can be 

estimated from in vivo or in vitro observation. This exercise of checking if the assumptions about the 

inputs translate to what is observed in practice is important for communicating confidence in model 

results when predictions are made outside the observed range. Examples of site specific validation 

can be found in Chapters 2, 5 and 6. The methodology for model validation, whether in a site-specific 

or general application, depends in large part on the question being asked of the overall experiment. 

The simulation outputs being compared to observed data must relate to those used to answer the 

research question in order for the exercise to be considered relevant.  For example, in an experiment 

aimed at reducing under-five mortality in a given location, conducting a validation using parasite 

prevalence is not as applicable as a validation of like to like with observed mortality in the site in 

question. In order to maximize the success and applicability of this exercise it is essential to identify 

the validation dataset at the beginning of the experiment design process. 

 

3. Tools and knowledge management  

There are currently a variety of options for creating experiments and running OpenMalaria depending 

on the needs and operating system of the user. Current options for running OpenMalaria and an 

evaluation of their applicability are described in Table A1.2. Investment of time and resources into 

further development of the currently available tools have for a time largely been limited awaiting the 

release of the VecNet infrastructure, a web-based interface for both basic and advanced users [15].  
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Table A1.2. Available methods for creating and submitting OpenMalaria simulation experiments 

Method Operating 
system  

Experiment 
creation? 

GUI? Internet 
connection 
required? 

Visualization 
of results? 

Target 
user 

Pros Cons 

OpenMalariaTools 
standalone 
software [16] 

Win32 
Linux 32-bit 

Yes Yes Only for 
download at 
initial 
installation 

Yes (through 
integration 
with 
LiveGraph 
software) 

Basic  Automatic schema 
translation 

 Includes basic 
scenario editor 

 Not consistently updated to 
the most recent 
OpenMalaria schema 
release 

 Limited technical assistance 
available 

Binary executable 
(compiled from 
source and run via 
command line) 

Win32 
OS X 
Linux 32/64-bit 

Yes  No No No Advanced  Can be used 
independently by 
user 

 Fast for testing 
integrity of 
scenarios on small 
population sizes 

 Requires knowledge of 
command line 

 Requires custom build 

 Run time limited by 
computing power of one 
machine 

Maia cluster at the 
University of Basel 

Win32 
OS X 
Linux 32/64-bit 

No Yes Yes No Advanced  Very fast  

 Can be used and 
monitored 
independently by 
user  

 Technical assistance 
available 

 Only available for Swiss TPH 
employees 

 Requires knowledge of 
command line 

BOINC [17] N/A No No Yes No Advanced  Able to handle very 
large experiments 

 Job submission requires 
monitoring by Swiss TPH 
engineers 

 Separate configuration for 
continuous outputs 

Notre Dame web 
portal [18] 

Win32 
OS X 
Linux 32/64-bit 

Limited Yes Yes No Basic 
Students 
Advanced 

 Good for teaching 

 Choice of 
submission to 
standalone server 
or  BOINC 

 Limited experiment 
creation (only full factorial 
experiments, no model 
ensemble or dependencies) 

 Can only handle 

VecNet portal [15] Win32 
OS X 
Linux 32/64-bit 

Yes Yes Yes Yes Basic 
Students 
Advanced 

 Both basic and 
advanced user 
options 

 Still undergoing Beta testing 

 No dependencies possible 
for experiment creation 
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This tool will allow the various types of stakeholders, including students, modelers 

and policy makers, to easily access software to design and run simulation experiments and 

to analyze results. 

The more recent experience of training students on the use and applications of 

OpenMalaria through the use of the Notre Dame web portal showed this tool to be user 

friendly and ideal both for highlighting the effects of individual elements of the vector life 

cycle and for highlighting the effects of and interactions between malaria control 

interventions. The second year of using the web-portal as a teaching tool will occur in the 

spring of 2014. 

The field of applied modeling draws together a wide range of disciplines, and finding 

individuals with both the interest and appropriate mix of skills can be a challenge, especially 

as it is an interdisciplinary medium without a clear training path. On the other hand, this is 

also a positive feature of the field because users can come from a variety of backgrounds, 

bringing a richness of perspective to the field. The background of an OpenMalaria user has 

the potential to be from a background in computer science, mathematics, statistics, 

epidemiology, public health, economics, entomology, and the list goes on. Specific skills 

include coding for data analysis software and command line, software installation and 

customization, vector control, field operations for program implementation, the role of 

public vs. private sector in access to care, the malaria parasite life cycle and epidemiology at 

different levels of transmission. This is a tall order in that many of the elements described 

above require steep learning curves, and the training experience demonstrates that site-

specific application requires a full time effort rather than an exercise to be conducted as a 

side project. To assist in the collection of the site-specific data described in Table A1.1, a 

library of “pre-parameterized” sections of code would be a useful tool in building scenarios.  

A strength of OpenMalaria is its open source status, designed to be used and applied 

by a range of users. If mathematical models of malaria are to become accessible to malaria 

control decision-makers, whether accessibility in this case means interfacing directly with 

the models to run simulations independently or collaborating with the modeling groups, a 

clear understanding of the type of information/data required for inputs is essential. For a 

user to piece apart the interaction between and effect of these parameters can only come 

with practice and time spent working with the model. It is difficult to tell which elements are 
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crucial enough to require site specific inputs and therefore worth the effort to track down 

for each location, and which will not impact the results enough to be tailored to each 

individual experiment. 

 

4. Suggested further model development and applications 

The OpenMalaria model is driven by EIR, a quantity that proves challenging to 

estimate not only in the present time as described in Chapter 2, but also historically. In order 

to simulate malaria in a given area using OpenMalaria, a pre-intervention EIR must be 

specified in order for the simulated population to acquire the appropriate level of immunity 

during the warm up period, after which observed malaria interventions are applied. 

Historical records of EIR are sparse and of varying quality [19], and when only a current value 

of EIR is available for a site, additional simulations are necessary before the main experiment 

is conducted. These extra simulations aim to estimate which pre-intervention EIR results in 

the observed EIR after interventions are applied, based on what is known about the 

implementation timing and coverage level. This methodology is problematic not only due to 

the extra time and computing resources it takes to estimate this parameter, but it makes an 

assumption that the input parameters for the effectiveness of the interventions are accurate 

and/or sufficient and acting as they should. This then makes it difficult to conceptually justify 

validating intervention effectiveness in such an experiment.  

An example of addressing heterogeneities is demonstrated by the differences in 

methodology for model parameterization for the study areas described in Chapters 3-5, 

which take different approaches to describing malaria transmission and burden in a 

particular geographic area. The case of western Kenyan highlands assumes a single value for 

annual average EIR applied to a district level of approximately 10,000 individuals. On the 

other hand, the experiment focusing on Southern Province Zambia assumes a range of 

exposure to transmission across the Province where the population is close to 250,000 

individuals and results are reported according to different categories of parasite prevalence.  

If OpenMalaria continues to inform study design, it would be helpful to have 

guidance on the methodology for parameterizing experiments in, and the implications for, 

analyzing simulation results for different administrative levels, whether that is at village, 

District, or Province level, in different categories of transmission. For example, the design of 
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an experiment simulating the population dynamics of a cohort of individuals as in western 

Kenya (Chapters 3-4) will be different than that of one for a cluster-randomized trial covering 

a much larger geographical areas as that in Zambia (Chapter 5). Much of this will depend on 

the degree of heterogeneity of exposure, the rate of imported infections, and population 

density in the area in question. In practice this understanding may develop after experience 

applying OpenMalaria to more study areas, but the flexibility of OpenMalaria to explicitly 

indicate the population size of an experiment should make the process straightforward. 

A short term gap in validation of OpenMalaria model elements, apart from 

assembling a larger number of site-specific validations of areas across a variety of 

transmission settings, is a more updated parameterization of the more recently developed 

model for IRS and LLIN implementation. Following the substantial scale up of vector control 

interventions after the creation of the Global Fund for AIDS, TB and Malaria (GFATM), there 

should now be a larger body of evidence with which to conduct the admittedly complex 

exercise of validating these updated parameterizations with observed data on the 

effectiveness of the interventions in a variety of field settings. 
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