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The type VI secretion systems (T6SS) are present in about a quarter of all Gram-

negative bacteria. Several key components of T6SS are evolutionarily related to

components of contractile nanomachines such as phages and R-type pyocins.

The T6SS assembly is initiated by formation of a membrane complex that binds

a phage-like baseplate with a sharp spike, and this is followed by polymeriz-

ation of a long rigid inner tube and an outer contractile sheath. Effectors are

preloaded onto the spike or into the tube during the assembly by various

mechanisms. Contraction of the sheath releases an unprecedented amount of

energy, which is used to thrust the spike and tube with the associated effectors

out of the effector cell and across membranes of both bacterial and eukaryotic

target cells. Subunits of the contracted sheath are recycled by T6SS-specific

unfoldase to allow for a new round of assembly. Live-cell imaging has

shown that the assembly is highly dynamic and its subcellular localization

is in certain bacteria regulated with a remarkable precision. Through the

action of effectors, T6SS has mainly been shown to contribute to pathogenicity

and competition between bacteria. This review summarizes the knowledge

that has contributed to our current understanding of T6SS mode of action.
1. Discovery of novel secretion system
Gram-negative bacteria use various secretion systems to deliver proteins from

the bacterial cytosol to the extracellular space or into target cells, and quite often

these systems are important virulence factors [1]. Indeed, the type VI secretion

system (T6SS) was discovered when Pukatzki et al. [2] used Dictyostelium
discoideum as a model organism to screen many isolates of Vibrio cholerae for

novel virulence factors. The screen identified non-O1, non-O139 V. cholerae strain

V52 that uses a conserved cluster of genes to resist a predation by amoebae. Similar

clusters of genes were previously identified as conserved in many other Gram-

negative bacteria but their function was not known [3]. Importantly, Pukatzki

et al. showed that the gene cluster is responsible for secretion of haemolysin-

corregulated protein (Hcp), which was previously identified as secreted by an

unknown mechanism [4], and three VgrG proteins one of which was previously

shown to contain toxic actin cross-linking domain [5]. Shortly after characteriza-

tion of T6SS in V. cholerae, one of the three T6SS clusters of Pseudomonas
aeruginosa was shown to secrete Hcp in vitro and because the Hcp was also

detected in the sputum of cystic fibrosis patients infected by P. aeruginosa it was

suggested that this system could be important for pathogenesis [6].

Transport of proteins across a barrier needs a source of energy and accord-

ingly the early analyses of T6SS cluster components identified two putative

ATPases, TssM (IcmF) and ClpV (TssH). Full-length TssM protein was shown

to be important for T6SS function in V. cholerae [2]; however, the early obser-

vation that the ATPase activity of TssM is dispensable for T6SS activity in

Edwardsiella tarda [7] indicated that ClpV could be the essential ATPase power-

ing the T6SS and TssM could play an important structural role. Indeed,

Mougous et al. [6] showed that localization of ClpV, detected by fluorescence

microscopy, correlates with T6SS activity and that its ATPase activity is necess-

ary for Hcp secretion. ClpV is similar to other AAA (ATPases Associated with
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diverse cellular Activities) proteins, like ClpB, and its ATPase

activity was previously also correlated with the ability of Sal-
monella typhimurium and Yersinia pseudotuberculosis cells to

enter epithelial cells [8]. Since ClpB and homologous AAA

proteins are known to unfold and thread substrates through

their pore, it seemed reasonable that ClpV could be involved

in pushing T6SS substrates across the cell membranes. Inter-

estingly, Hcp crystal structure suggested that stacks of Hcp

hexamers could form a channel for T6SS substrates [6].

Overall, these initial studies clearly showed that a conserved

gene cluster was responsible for protein secretion and virulence

by a mechanism distinct from previously described secretion

systems [2,6]. For details of the work that predated the

discovery of T6SS, see the reviews by Filloux et al. [9] and

Bingle et al. [10].

Discovery of T6SS triggered a wide range of follow up

research focused on answering the basic questions such as:

What is the molecular mechanism of type VI secretion?

How is T6SS regulated? What are the effectors that are

secreted by various organisms and what is their mode of

action? How important is T6SS during pathogenesis or in

the environment? Over a decade of research led by many lab-

oratories hugely improved our understanding of T6SS. Many

comprehensive reviews about different aspects of T6SS were

written recently, either with a broad view [11–13], or with a

focus on effectors [14,15] or on structural aspects [1,16–18].

Here, I will review the progress that has been made towards

understanding the molecular mechanism of protein secretion

by T6SS and discuss its unique mode of action.
2. Towards an ‘inverted phage tail’ model of
T6SS function

A model of T6SS mode of action changed fundamentally after

the discovery that many critical components of T6SS are struc-

turally and thus also potentially functionally homologous to

components of contractile phage tails. First, secreted VgrG

proteins were shown to be structural homologues of T4

phage spike complex gp5–gp27 [19,20]. Hcp protein was

shown to be a structural homologue of a phage tube protein

[19,21]. Moreover, structural modelling and predictions

suggested that gp25, a conserved component of T4 phage base-

plate, is homologous to an essential T6SS protein, TssE

[10,19,22]. Surprisingly, Bönemann et al. [23] showed that the

substrate of ClpV was a cytosolic protein VipB (TssC) and

not the secreted proteins Hcp and VgrG. The authors also

nicely showed that VipA (TssB) and VipB proteins assembled

into a tubular polymer that can be disassembled by ClpV in
vitro [23]. Even though the biological significance of this tubu-

lar structure was not immediately clear, Leiman et al. [19] noted

that its overall structure resembled T4 phage polysheath. Over-

all, these observations suggested that T6SS could function as an

inverted phage tail and use the contraction of a sheath-like

structure to drive the Hcp tube with associated VgrG-effector

spike out of the cells [19,24,25].

The first idea about overall structure and mode of action of

T6SS came from a study of T6SS in V. cholerae [26]. This study

was possible due to an enormous progress in electron

microscopy (EM) of bacterial ultrastructures in three dimensions

in their native state inside intact cells [27,28]. Whole cell cryo-

electron tomography showed that T6SS indeed resembles a

long phage tail attached to the cell envelope by a membrane
anchor. The tail was visualized in two conformations, extended

and contracted, which resembled the previously identified

VipA/VipB sheath [23,26]. The contracted sheath structures

were in general shorter, wider and apparently empty as opposed

to the extended structure that had an extra density inside, which

was suggested to be an Hcp tube [26]. The realization that the

extended structures span the whole bacterial cytosol initiated

fluorescence microscopy analysis of dynamics and subcellular

localization of T6SS assembly by imaging of VipA-GFP in live

cells. It was shown that T6SS sheath assembly in V. cholerae
takes about 20–30 s, then the sheath contracts to about half its

length in less than 5 ms and the contracted sheath is disas-

sembled over tens of seconds in a ClpV-dependent manner

[26]. Since then, the T6SS dynamics was described using live-

cell imaging in more detail in V. cholerae, P. aeruginosa and

Escherichia coli [29–31]. In summary, the description of an overall

structure and fast dynamics of the assembly showed that T6SS

has a fundamentally different mode of action from that of

other known secretion systems (figure 1).
3. Initiation and regulation of T6SS assembly
Live-cell fluorescence microscopy showed that the T6SS

sheath does not assemble in cells lacking critical T6SS com-

ponents [26,31], suggesting that the membrane anchoring

complex and a baseplate are necessary for initiation of tube

and sheath polymerization.

Recently, great progress has been made towards under-

standing of T6SS tail attachment to a bacterial cell envelope.

The minimal membrane complex is formed by the inner mem-

brane proteins TssL and TssM, which are homologues of type

IV secretion system components IcmF and DotU, and an

outer membrane lipoprotein TssJ [32–37]. TssM is anchored

into an inner membrane by three transmembrane segments

and interacts with TssL [36]. Furthermore, TssJ was shown to

form a complex with TssM and TssL [33,35]. The OmpA-like

extension domain of TssL, or in some organisms like E. coli an

additional accessory protein TagL, anchors the membrane

complex to the peptidoglycan [38]. Structures of TssL from

Francisella novicida, V. cholerae and E. coli [39–41], of TssJ from

P. aeruginosa, E. coli and Serratia marcescens [35,42,43] and partial

structure of E. coli TssM C-terminal domain alone or in a com-

plex with TssJ were solved, providing a very detailed picture of

the membrane complex assembly [34].

Importantly, the whole TssJLM complex of E. coli was

recently isolated and resolved at 12 Å resolution by EM, provid-

ing an unprecedented insight into the overall assembly [34]. The

complex has fivefold symmetry and is composed of 10 copies of

each component (TssM, L, J) with an overall mass of 1.7 MDa.

The complex forms a 30 nm high and 20 nm wide rocket

shaped structure that spans both inner and outer membranes

with only a narrow pore. The complex was proposed to

undergo conformational changes to accommodate the spike

with effectors and Hcp tube passing through [34]. Importantly,

functional N-terminal fusions of sfGFP to TssM and TssL loca-

lize into one or two static and stable foci on the cell periphery

and the T6SS sheath polymerizes from these stable complexes

repeatedly. Furthermore, TssJ was shown to be the nucleation

factor for the membrane complex assembly [34].

Functions of TssE, TssF, TssG, TssK and TssA proteins are

currently not well understood. These proteins could be

involved in formation of a baseplate connecting the T6SS

http://rstb.royalsocietypublishing.org/
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with the VgrG/PAAR spike and associated effectors from the cell to an extracellular space or across a target cell membrane. The contracted sheath is specifically
recognized by ClpV ATPase, which unfolds the subunits and thus recycles them for a new round of assembly of an extended sheath.
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tube and sheath to the membrane complex (figure 1). Indeed,

in E. coli, TssK was shown to interact with the membrane com-

plex protein TssL as well as with Hcp and VipB components of

the sheath [44] and, in S. marcescens, TssK was shown to interact

with TssF and TssG [45]. Because TssE and its phage homol-

ogues have a fold that is similar to the fold of the inner

domain of T6SS or phage sheath, it was suggested that TssE

could be directly binding the sheath [24,46,47].

As reviewed recently, the expression of T6SS gene clusters is

regulated by various environmental clues and many organisms

even have multiple independently regulated T6SS with different

functions [17,48,49]. However, from a structural point of view,

it is interesting that the T6SS assembly is regulated also post-

translationally in some organisms. For example, in the first of

the three T6SS clusters of P. aeruginosa (H1-T6SS), the accessory

protein TagH is phosphorylated by a cognate serine–threonine

kinase, PpkA, and dephosphorylated by a phosphatase, PppA

[50]. TagH is also phosphorylated in S. marcescens [51] but in

Agrobacterium tumefaciens T6SS assembly is regulated by phos-

phorylation of TssL [52,53]. In H1-T6SS of P. aeruginosa, PpkA

activation requires a periplasmic protein, TagR [54], which is

anchored to the outer membrane by an interaction with TagQ

[55]. Additionally, TagT and TagS were shown to form an
inner membrane complex with ATPase activity and act upstream

of PpkA [55]. Interestingly, in P. aeruginosa, the H1-T6SS can

be also activated independently of TagH phosphorylation by

inactivation of another accessory protein, TagF [56].

Live-cell imaging of H1-T6SS dynamics in P. aeruginosa
showed that the cells are able to initiate and subcellularly localize

the assembly of their T6SS in a response to T6SS activity of

a neighbouring sister cell with a remarkable spatial and tem-

poral precision [29]. Interestingly, it has been also shown that

P. aeruginosa kills T6SSþ organisms such as V. cholerae,
Acinetobacter baylyi or Burkholderia thailandensis better than their

T6SS2 mutants [57,58]. This phenotype called ‘duelling’ is regu-

lated by the TagQRST/PpkA signalling cascade [57], which can

also respond to mating-pair formation initiated by T4SS or to

membrane damage induced by polymyxin B [59]. Importantly,

the spatio-temporal regulation of the T6SS assembly allows

P. aeruginosa to preferentially attack T6SSþ cells even in a mix-

ture with T6SS2 cells and this is independent of the level of

T6SS expression in P. aeruginosa [57,59]. However, regulation

of expression level of H1-T6SS in response to lysis of kin cells

furthercontributes to an efficient use of T6SS in P. aeruginosa [60].

Overall, these studies suggest that a proper assembly and

structural changes of the membrane complex and baseplate

http://rstb.royalsocietypublishing.org/
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can be used for an efficient spatio-temporal regulation of T6SS

activity. This has an analogy in phages where the assembly of

a baseplate is required for tube and sheath polymerization

[25,61]. Interestingly, a change of the structure of the phage base-

plate initiates contraction of the sheath upon binding to the host

cell [25,62,63]. This suggests that contraction of the T6SS sheath

may also be triggered by structural changes in the baseplate and

possibly also in the membrane complex (figure 1).
 hing.org
Phil.Trans.R.Soc.B

370:20150021
4. Assembly of the tube and sheath
In phages, the fully assembled baseplate includes also the spike

complex, which initiates the assembly of a tail tube and an

extended sheath around it [24,64–66]. The integrity of VgrG/

PAAR spike complex was indeed shown to be essential for

T6SS function [2,31,67], and even though the Hcp tube assem-

bly has not been directly visualized yet, it has been shown that

Hcp tube and sheath polymerize by a mechanism similar to

phage [68].

Even before realization that Hcp is a structural homologue

of phage tube protein [19,21], it was proposed that Hcp could

form a conduit (channel) for T6SS effectors because Hcp of

P. aeruginosa was shown to form hexameric rings that were

stacked into a tube in a crystal lattice [6]. Indeed, introducing

cysteines to a surface between Hcp rings can lead to cross-link-

ing of Hcp into a tube in vitro [69,70]. Similarly, in E. coli, by

positioning cysteine on Hcp to probe various possible assem-

blies of Hcp rings, it was shown that Hcp rings assemble

head-to-tail in vivo and that this assembly is dependent on

the presence of T6SS components essential for tail assembly

[68]. It is important to note that in these studies cysteine

cross-links were designed for Hcp rings stacked one on top

of another (head to tail) without any helical twist [68–70].

T4 phage extended sheath assembly is kinetically driven by

interaction of sheath monomers with tube template [64,71]. In

T6SS, Hcp was shown to interact with the VipA component of

the T6SS sheath using a bacterial two hybrid system [68] and

the extended sheath does not assemble in the absence of Hcp

[31]. N-terminal negatively charged and C-terminal positively

charged residues on Hcp were shown to be important for Hcp

secretion in E. tarda [72]. Since these residues are on the surface

of the Hcp ring, they could be involved in Hcp–sheath

interaction. These experiments suggest that in an extended con-

formation Hcp rings interact with sheath subunits through

charge interactions similarly to interactions described recently

at the atomic level for R-type pyocin [46]. Importantly, an

atomic model of the T6SS sheath shows that its inner layer

has the same fold as the phage sheath, suggesting that the

tube–sheath interaction and the mechanism of assembly is

conserved between phage and T6SS [47]. Interestingly, in the

fully assembled extended tail of R-type pyocin, the inner

tube has the same helical parameters as the outer sheath [46].

It is not known if the length of the T6SS tail is regulated and

whether the assembly is terminated by a cap.
5. Powering the secretion by sheath contraction
The contraction of a sheath powers the secretion of effectors

and also puncturing of a target cell membrane by T6SS,

phage or R-type pyocin. A mechanism of T4 phage sheath con-

traction was first proposed based on the EM analysis of

extended, contracted and partially contracted T4 tails [73,74]
and further improved based on cryoEM analysis and partial

atomic structure of the gp18 sheath subunit [62,63,75].

Recently, an atomic model of an R-type pyocin particle was

solved in both extended and contracted states, and thus can

serve as a model for estimation of energy released during a con-

traction [46]. During contraction, rings of sheath collapse

sequentially to form a more compact structure that is stabilized

by newly formed charge interactions [46]. Energy gained

during the contraction of a pyocin sheath was estimated to be

12 kcal mol21 per subunit [46], which is about half of what

was previously measured for the twice as large T4 sheath [65].

To estimate how much energy is released during the con-

traction of the T6SS sheath, atomic models of both states,

including details of Hcp–sheath interaction in the extended

conformation, would be necessary. So far, only atomic models

for contracted states of sheath of V. cholerae and Francisella
tularensis are available [47,76]. Analysis of these atomic

models showed that the T6SS sheath is composed of three

domains. T6SS-specific domain 3 is on the surface of the

sheath and plays a role in the recycling by ClpV (see below).

In the inner two layers of T6SS sheath, subunits have the

same fold as the whole pyocin sheath subunit and individual

subunits are interconnected by a similar mesh of augmented

b-strands in the inner layer of the sheath polymer. This suggests

that a similar amount of energy could be released during a

contraction of pyocin and T6SS sheath [46,47,76].

Assuming that the energy gain per subunit is at least as

big for T6SS as it is for the R-type pyocin and that a 1 mm

long T6SS sheath is composed of approx. 1500 sheath sub-

units, the total energy gain from a single contraction could be

18 000 kcal mol21. Energy that is released by hydrolysis of one

ATP molecule is approx. 11.2 kcal mol21 depending on growth

conditions [77]. Therefore, one contraction event would release

energy equivalent to hydrolysis of 1600 molecules of ATP.

Since the contraction happens in less than 5 ms, to get a similar

power output would require an equivalent of at least 32 000 mol-

ecules of ClpX, which has a maximum ATPase rate of 10 s21 [78].

For comparison, a syringe-like injection mechanism of Tc toxins

of Photorhabdus luminescens was described at the atomic level and

it was predicted that during a transition of TcA from pre-pore to

pore about 20–66 kcal mol21 of energy is released [79,80].

The speed of substrate translocation is remarkable as well.

Since a sheath contracts to about 50% of its original length, an

average sheath of length of 1 mm moves the VgrG/PAAR/

effector payload at a speed of at least 100 mm s21. For compari-

son, kinesin moves at a rate of around 0.5 mm s21, depending

on the load, and consumes about one ATP molecule per

8 nm [81]. Moreover, in a phage and R-type pyocin, a tip of a

tube rotates as it leaves a baseplate [46,62]. Since it is approxi-

mately one turn per 100 nm for T4 phage tail [62], in the case of

T6SS we could predict up to 10 turns in less than 5 ms, in other

words up to 120 000 revolutions per minute.

Overall, it is quite clear that the amount of energy that is

released during T6SS sheath contraction and the speed at

which a payload moves and rotates is quite remarkable,

suggesting that T6SS has the potential to ‘drill’ large cargo

across membranes.
6. Recycling of T6SS sheath by ClpV
It is important to realize that at least in V. cholerae, sheath

unfolding by ClpV ATPase is not essential for T6SS activity.

http://rstb.royalsocietypublishing.org/
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It was shown that cells lacking ClpV are still capable of killing

E. coli in a T6SS-dependent manner and assemble similar

sheath structures as wild-type cells [26,82]. This is very likely

due to rapid cell growth and de novo synthesis of sheath com-

ponents because contracted sheath was not observed to extend

again or to disintegrate to individual subunits [26]. However,

to allow for successive rounds of assembly of T6SS tail in an

extended conformation, the contracted sheath has to be actively

disassembled by ClpV into individual subunits [23,29]. More-

over, ClpV also disassembles contracted sheaths that can form

from soluble subunits even in the absence of functional T6SS,

and thus increases the concentration of soluble subunits for

efficient sheath assembly [23,31].

ClpV has N-terminal and two AAA domains separated by

a middle domain and its primary sequence is about 35% iden-

tical to ClpB, which is involved in a disassembly of large

protein aggregates [8]. The N-terminal domain of ClpV, com-

posed of eight alpha helices, is structurally similar to those of

ClpA/B/C but contains a ClpV-specific N-terminal a-helix

involved in binding of VipB [83]. Co-crystal structure shows

that residues 15–28 of VipB are recognized by a hydrophobic

groove of the N-terminal domain of ClpV [83]. Point mutations

in the N-terminal domain of ClpV block binding of ClpV to

contracted sheath in vitro [83] and in vivo [29].

ClpV of V. cholerae forms hexameric rings in the presence

of ATP and those rings have higher affinity to VipA/VipB;

moreover, ClpV also binds preferentially to a polymeric

VipA/VipB structure [23,83]. After binding of VipA/VipB,

the VipB N-terminus is threaded through the pore of ClpV

while ATP is hydrolysed. Mutations in the pore were shown

to block sheath disassembly in vitro [23,83], and since the bind-

ing to the substrate is not blocked, the mutant ClpV colocalizes

with contracted sheaths in live cells [29]. It is however not clear

whether the full-length VipB is threaded through the ClpV or if

pulling on VipB leads to destabilization of the whole VipA/

VipB polymer and disassembly to subunits. The amount of

unfolding and length of the substrate has consequences for

energy that is needed for recycling of the contracted sheath.

Preferential binding of ClpV to polymeric structures

suggests that ClpV is not constantly refolding VipA/VipB

sheath subunits; however, since extended and contracted

sheaths are composed of the same subunits, ClpV has to specifi-

cally recognize only the contracted sheaths to allow for

extended sheath assembly. Indeed, high-speed live-cell imaging

of localization of both VipA and ClpV in V. cholerae revealed

that ClpV is dispersed in the cytosol in the presence of an

extended sheath; however, immediately after a contraction it

relocalizes to the contracted sheath [29]. After only few seconds,

a maximum binding between ClpV and the contracted sheath is

reached and the sheath starts to fall apart to smaller pieces in the

next tens of seconds [29]. This suggests that the surface of the

sheath changes during its contraction (figure 1).

The easiest explanation is that the N-terminal a-helix of

VipB is not accessible to ClpV on an extended sheath but is

exposed on the sheath surface after its contraction. Indeed,

recent medium-resolution structure [84] and also atomic

models of the contracted sheaths of V. cholerae and F. novicida
[47,76] provided the first data to support such a mechanism.

These structures clearly show that the T6SS sheath is composed

of three layers: the inner two layers are highly homologous to

the phage and R-type pyocin sheaths and the surface layer is

specific to T6SS sheaths. Importantly, the surface exposed

part of domain 3 is composed of three N-terminal a-helices
of VipB and two C-terminal a-helices of VipA [47,76]. An

extended T6SS sheath was modelled based on an extended

T4 phage sheath and this showed that domain 3 is likely to

be hidden between sheath strands on the extended sheath

and thus potentially inaccessible to ClpV binding [47,84]. It is

important to realize, however, that the exact localization and

structure of the N-terminus of VipB is unknown because it

was not resolved at a high enough resolution [47,76,84]. Alter-

natively, new interactions that are established on the contracted

sheath may induce destabilization of interactions between

a-helices in domain 3 and thus expose the N-terminus of

VipB for ClpV binding. Clearly, atomic models of T6SS tail in

both extended and contracted states and biophysical measure-

ments are necessary to fully understand the molecular

mechanism of sheath disassembly.

In some T6SS, such as H1-T6SS of P. aeruginosa, sheath recy-

cling is apparently more complicated. The structure of the

N-terminal domain of P. aeruginosa ClpV was found to be differ-

ent from that of V. cholerae ClpV. This change blocks binding of

the N-terminus of VipB by the ClpV N-terminal domain

suggesting a different mechanism of sheath recycling [85]. Inter-

estingly, an accessory protein HsiE1/TagJ, not essential for T6SS

function, was shown to bind to both the VipA N-terminus and

ClpV [85,86]. V. cholerae VipA N-terminus seems to be buried in

domain 2 of a sheath and thus is probably accessible only from

the end of the T6SS sheath but unlikely from the sheath surface

[47,84]. It was therefore suggested that ClpV–VipB interaction,

different from ClpV–VipB interaction in V. cholerae, leads to an

initial fragmentation of a contracted sheath and thus exposure of

free ends of the contracted sheaths, which in turn increases sub-

sequent recruitment of TagJ/ClpV for a complete disassembly

[85]. This mechanism could make the whole recycling process

more efficient because VipA is a smaller protein and its unfold-

ing might require less ATP. The process could be faster because

of simultaneous disassembly from ends and sides of sheath frag-

ments. This mechanism may be also important for preventing

aggregation of sheath monomers similarly to what was shown

for ClpV in V. cholerae [31]. It will be interesting to learn how dis-

assembly of an assembled extended sheath is prevented from

the exposed end.
7. Potential costs of T6SS secretion
Contracted sheath has its VipA/VipB rings about 2.1 nm apart

[47,84] and is formed from an extended sheath that is about

twice as long and usually stretches across the whole width of

a cell [26]. Therefore assuming a 1 mm long extended sheath,

the full width of an average sized bacterial cell, one sheath

structure is composed of approximately 250 rings and thus

about 1500 subunits of VipA and VipB. Since ClpV probably

works similarly to other AAA unfoldases, the cost for remodel-

ling of sheath could probably be separated into two parts:

(i) the cost of denaturation of sheath subunits and (ii) the cost

of translocation of the unfolded VipB protein through the

ClpV pore. The cost of denaturation varies hugely based on

local stability of the protein that is being unfolded and can be

as little as a few ATP molecules, up to hundreds of ATP mol-

ecules [78]. To minimize this cost, the VipA/VipB subunit

could be optimized for cooperative unfolding and low stability

of the region next the VipB N-terminus. The cost of polypeptide

translocation through the pore depends on the length of a sub-

strate and was estimated to be approximately one ATP per
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amino acid in the case of ClpXP translocating a denatured sub-

strate [78]. If indeed full-length VipB protein were to be

threaded through ClpV, up to 500 molecules of ATP could be

consumed per subunit and that could be as much as 750 000

molecules of ATP for a single sheath. However, it is possible

that it is not necessary to unfold the full-length VipB to disas-

semble a contracted sheath. As ClpV pulls on the VipB

N-terminus, the sheath polymer could be destabilized

and broken into individual subunits. The unfolding of VipB

could be then terminated by dissociation of ClpV from the

monomeric sheath subunit, thus saving ATP.

Another important cost comes from the fact that Hcp is a

structural component, which is secreted into the environment

in large quantities in many T6SSþ organisms. Hcp can

be detected as an abundant secreted protein in organisms

such as V. cholerae, A. baylyi, S. marcescens, P. aeruginosa and

E. tarda [2,6,7,67,87]. Because of the extensive structural and

functional homology between T6SS and contractile tails, it is

probably safe to assume that each ring of sheath interacts

with one ring of Hcp as it is in the R-type pyocin [46]. This

means that up to 700 molecules of Hcp are secreted out of

the cell every time a full-length sheath contracts. Assuming

only one contraction per 5 min and the molecular weight of

Hcp to be 18 kDa, then 109 cells (1 ml of OD 1 culture) will

secrete about 250 ng of Hcp into the supernatant in 1 h. This

seems to be a huge waste especially considering that only

three molecules of VgrG and one molecule of PAAR protein

are secreted during each secretion cycle [19,67]. As explained

below, the T6SS spike can be decorated by many different effec-

tors at the same time and some effectors bind into the lumen

of the Hcp ring [88] thus potentially increasing the overall

efficiency of T6SS.
8. Discovery of T6SS effectors
Many T6SS effectors were identified using mass spectrometry

analysis of supernatants of T6SSþ organisms. This led to

the initial discovery of VgrG in V. cholerae [2], Tse effectors in

P. aeruginosa [89], and many effectors of B. thailandensis [90],

S. marcescens [51] or V. parahaemolyticus [91]. Even though this

is a very straightforward and unbiased approach, it has its

own limitations. The biggest problem is that certain classes of

effectors, such as VgrG-associated proteins, are secreted at a

very low rate and thus the protein abundance in the super-

natant could be below the detection limit. Another problem

could be that some T6SS systems are tightly regulated and

trigger secretion in a response to an attack or environmental

clues [57–60].

An elegant approach to identify antibacterial effec-

tors was developed by Dong et al. [92] The principle of this

method is that T6SSþ organisms that secrete antibacterial

effectors use specific immunity proteins to block their

action during growth in close contact with sister cells. If an

immunity gene is disrupted by transposon mutagenesis,

such a mutant will be killed by its T6SSþ neighbours. Viabi-

lity of mutants in the presence or absence of active T6SS is

then scored using deep sequencing. Mapping these T6SS-

dependent immunity proteins helps to identify cognate

effectors that are usually located in the same operon [92].

This approach is, however, limited to effectors that have

exactly one cognate immunity protein targeted into the

periplasm of the effector cell.
Another interesting mass spectrometry method was

based on the fact that some Hcp-binding effectors are less

stable in the absence of Hcp [88,93]. An advantage of this

method is that proteins that are active in the cytosol or are

not necessarily toxic against bacteria can be detected, but

only in the case of their inherent instability in the absence

of Hcp [93].

Bioinformatics has proved to be a useful approach for

finding new effectors for various secretion systems including

T6SS [94]. Some T6SS effectors are part of characteristic gene

clusters or have certain physical properties such as pI or

size, which facilitates their identification [90]. Furthermore,

certain conserved domains are found present in T6SS effec-

tors, such as PAAR [67,95] or the MIX domain first found

in V. parahaemolyticus [91]. It is also now clear that many

effectors are located in the operons together with their

cognate VgrG, Hcp or PAAR proteins [88,96,97].
9. Mechanism of effector secretion
We can conceptually divide T6SS effectors based on various

criteria. For example, based on a target, we can divide effectors

into antibacterial, anti-eukaryotic or being active against both

targets as shown recently [98,99]. Not all T6SS substrates

need to be necessarily toxic to target cells. In Y. pseudotubercu-
losis, a T6SS substrate YezP was shown to bind to Zn2þ and

increase its acquisition, and thus helps the bacteria to survive

stress and host immunity during pathogenesis [100]. We can

also characterize the effectors based on their structure and

mechanism of secretion. Here, I will only briefly discuss the

mechanisms of effector secretion. For very comprehensive

recent reviews of T6SS effectors and their function refer to

Durand et al. [14] and Russell et al. [15].

The current model of how effectors are secreted out of the

cells is based on what we know about the overall structure

and dynamics of T6SS and also based on the structural and

functional homology to contractile phage tails (figure 1).

VgrGs were the first class of proteins shown to be secreted

out of T6SSþ cells [2]. VgrGs are structural homologues of

the phage spike complex and even though VgrG–Hcp inter-

action was only shown in A. tumefaciens [52], it is believed

that VgrG forms a trimer at the very end of an Hcp tube

[19,20]. The VgrG N-terminal domain forms a pseudo-dimer

that has a fold similar to Hcp dimer, and therefore VgrG

trimer docks nicely to Hcp hexamer [19].

The first discovered T6SS effector was so-called ‘evolved’

VgrG protein, with VgrG N-terminal domain and actin cross-

linking effector domain at the C-terminus [20]. Since then,

more VgrG fusion effectors were characterized, such as mem-

brane fusion mediating VgrG-5 of B. pseudomallei [101,102],

actin ADP-ribosylating VgrG1 of Aeromonas hydrophila [103],

or peptidoglycan hydrolysing VgrG-3 of V. cholerae [92,104].

Secretion of several effectors is dependent on a particular

VgrG, like TseL of V. cholerae or Tse5 and Tse6 of P. aeruginosa
[92,93]. Interestingly, chaperone proteins that load effectors

onto their cognate VgrGs but are not secreted were discov-

ered recently in V. cholerae [105,106]. Searching for these

conserved proteins led also to identification of genetically

linked effectors in A. hydrophila [105]. This mechanism

could provide another level of regulation since expression

of different chaperone proteins could lead to loading of

different combinations of effectors onto a spike.
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VgrG trimer is sharpened by a small PAAR protein, which

is a structural component essential for T6SS function. Similarly

to VgrG, PAAR proteins may bind or be fused to effectors [67].

For example, large Rhs-domain containing T6SS effectors of

S. marcescens, P. aeruginosa or Proteus mirabilis contain a

PAAR domain [93,107–109]. Importantly, a fully assembled

VgrG/PAAR spike is needed for proper T6SS function and

Hcp secretion [2,20,67]. Moreover, it seems that deletion of sev-

eral spike-associated effectors can also lead to a decrease of

T6SS activity [92]. This suggests that a certain mechanism con-

trols full assembly to prevent wasteful secretion of a spike that

lacks effectors.

Many structures of Hcp proteins are available and all Hcp

proteins form a hexameric ring with an inner diameter of

approximately 4 nm [6,70,72,110,111]. Interestingly, Hcp was

shown to have a chaperone-like activity and bind small effec-

tors in A. tumefaciens, E. tarda and P. aeruginosa [7,52,88,112].

Moreover, examples of Hcp with extension domains were

found as well [113]. Overall, it is becoming clear that the effec-

tors are loaded onto the extended T6SS during the assembly as

a fusion to or by an interaction with the secreted structural

components and then secreted all at once together with the

Hcp/VgrG/PAAR protein complex [67].

The example of P. aeruginosa H1-T6SS shows that different

substrates can be secreted by distinct mechanisms from the

same organisms [93]. It is, however, not clear whether the

same T6SS machine can indeed deliver multiple effectors in a

single contraction event or if multiple assemblies are required.

It is also not clear whether the Hcp tube is fully loaded with its

interacting effectors or if binding of effectors is only sparse.

Another unresolved question is where exactly the effectors

are located on the VgrG/PAAR spike and how large a cargo

can be loaded at once. Clearly, a sharp tip evolved to facilitate

membrane puncturing in both T6SS and phages [67,114].

Therefore, it seems unlikely that effectors are directly on the

tip of VgrG/PAAR and are more likely on the side of the

VgrG as is lysozyme on gp5 of the T4 phage spike [115].

Mechanical puncturing of a membrane to deliver large

folded hydrophilic effectors would be necessary and thus

there are probably certain physical limits to how large effec-

tors can be. On the other hand, Rhs are known to form a large

beta-stranded cage that encapsulates toxic molecules in an

unfolded state and can open to release then upon a signal

[80,116], and thus the fact that Rhs can be substrate of T6SS

shows that the size limits might be relatively high.

Interestingly, antibacterial effectors with both periplasmic

and cytosolic targets are secreted by T6SS [89,93,96]. Even

though Hcp tubes are presumably long enough to reach the

target cell cytosol [26], it is not clear how far into the bacterial

cell can the Hcp/VgrG/PAAR with the associated effectors

be delivered. There are several options: (i) all effectors are

delivered into the periplasm of the target cell and use separ-

ate mechanisms to cross the inner membrane, (ii) effectors are

delivered into the cytosol and then some are transported to

the periplasm, or (iii) physical properties of an effector dictate

in which compartment it dissociates from the tube or spike.

R-type pyocins of P. aeruginosa or Clostridium difficile can

punch a hole into a bacterial cell by a contraction of its tail

[117–119]. The stable inner tube that remains inserted in the

cell envelope creates a conduit for ions and ion leakage from

the bacterial cell then leads to the cell death [46]. This mechanism

is so potent that a single pyocin particle can kill a single bacterial

cell [120] and can be used to target various bacterial pathogens
and treat infections [121,122]. This is in contrast to T6SS where

the killing of target cells has so far been associated only with

functions of effectors that are being secreted by T6SS. This

suggests that the Hcp tube is probably not stable and mere punc-

turing of the target cells by T6SS is not lethal. Indeed, unlike in

phages or pyocins, the Hcp tube has not yet been detected as a

stable structure ejected from a contracted sheath. It is likely

that if the Hcp tube were stable, the T6SSþ cells would need a

mechanism to specifically remove the Hcp tube from their cell

envelope, for example by a specific cleavage, to allow quick

sealing of the membranes to prevent their own death.
10. Concluding remarks
Many secretion systems have evolved to deliver proteins from

bacterial cell cytosol to the extracellular space or across the

target cell membrane. These systems vary in structure and

mechanism of secretion and therefore also in the efficiency

of translocation. Energetics of the T6SS is particularly inter-

esting considering the fact that it seems as if only few

molecules of spike-associated effectors are secreted with

each contraction and since the T6SS seems relatively costly,

considering the loss of Hcp and potentially large consump-

tion of ATP during refolding of the contracted sheath. What

are really the benefits of the T6SS mode of action? Why is

T6SS used to secrete proteins? What are the main advantages

of this mechanism of secretion?

One advantage could be that in the case of effectors that are

preloaded into the Hcp tube, in one step, which can be accom-

plished in only a few tens of seconds, tens of various effectors

could be delivered into the target cell at once. The second

advantage is that a large amount of energy is potentially

released during the contraction and this could be necessary

for puncturing the target cell membranes. Delivery of folded

hydrophilic proteins across membranes requires breakage of

large amount of hydrophobic interactions between membrane

lipids. This problem can be solved by an evolution of a trans-

membrane domain that inserts amphipathic segments into

the membrane to create a hydrophilic conduit for the translo-

cated protein. However, such a mechanism has to adapt to

various membrane compositions and has potential limitations

on the fold of the translocated protein. In the case of T6SS, the

physical rupture of the target cell membrane might be enough

to push large substrates across without a need for a protein

dedicated to engage the membrane and potentially also

without a limit to the structure of the translocated protein.

This might be the reason why membrane translocation

by physical puncturing is conserved in many related systems:

R-type pyocins and phages targeting bacteria [24], but also

similar nanomachines targeting eukaryotes, such as antifeed-

ing prophage [123], metamorphosis-associated contractile

structures [124] or Photorhabdus virulence cassette [125]. There

is no doubt that further studies of dynamics, structure and func-

tion of these fascinating nanomachines will help us to fully

unravel their mode of action and unlock their potential use

for cargo delivery.
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