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Summary 

Neurotensin (NT) is a regulatory peptide with a nanomolar affinity towards NT receptors, which are 

overexpressed by different types clinically relevant tumours (e.g. Ewing’ sarcoma, breast, colon and 

exocrine pancreatic cancer).[1-3] Regulatory peptides have been shown to be suitable vectors for the specific 

delivery of radioactivity to tumours for diagnostic and therapeutic applications in nuclear medicine.[4-5] 

Therefore, the binding sequence of Neurotensin, NT (8-13), is a promising vector for the development of 

peptidic radiotracers for tumour imaging and therapy. A potential drawback of this peptide vector is its 

instability in vivo as the result of rapid degradation by proteases. It has been shown that stabilization of a 

peptide against proteases can lead to an increased tumour uptake. However, classical peptide backbone 

modifications (e.g., N-methylation or reduction of the amide bond) were only partially successful in providing 

stabilized NT-analogues with improved tumour-targeting properties.[6-7] It has been suggested that 1,4-

disubstituted 1,2,3-triazoles might represent suitable trans-amide bond bioisosters, which are resistant to 

proteases.[8] To study the effect of 1,4-disubstituted 1,2,3-triazoles on NT (8-13) as amide bond mimics, we 

performed a ‘triazole scan’ of the amino acid sequence by which every backbone amide bond of the NT (8-

13) sequence is substituted with a 1,4-disubstituted 1,2,3-triazole. We herein wish to report the synthesis 

and biological evaluation of a series of novel, radiolabelled peptidomimetics of NT (8-13) with promising 

tumour-targeting properties. 

The peptide conjugates were synthesized on solid support by a combination of Fmoc-based solid phase 

peptide synthesis, diazo-transfer reaction and the Cu(I) catalysed azide-alkyne cycloaddition (CuAAC). The 

required α-amino alkynes for the CuAAC were successfully synthesized from the corresponding α-amino 

acids and their enantiomeric purity was verified. The peptides were then elongated N-terminally with a 

PEG4-spacer and conjugated to a DOTA-chelator. After HPLC-purification, the compounds were labelled 

with [177Lu]LuCl3 in high radiochemical yields and purities and evaluated in vitro. The in vitro evaluation 

included quantification of the internalisation of the peptide conjugates into NTR1 expressing HT-29 cells 

(colon adenocarcinoma) and determination of their receptor affinity and specificity. Additionally, 

measurements of the lipophilicity of the conjugates (log D) and their metabolic stability in human blood 

serum were performed. The NT (8-13) analogues with the most promising properties in vitro were further 

evaluated in vivo with nude mice bearing HT-29 xenografts.  

The focus of the first part of this thesis was on the investigation of the pharmacological influence of a spacer 

on a radiometallated DOTA-functionalized NT (8-13) sequence. A NT (8-13)-based peptide conjugate 

without a spacer to separate the chelator from the tumour-targeting peptide was compared side-by-side with 

two NT (8-13) peptide conjugates, each having a different spacer, one hydrophilic (tetraethylenglycol, 

PEG4) and one  lipophilic (6-aminohexanoic acid, Ahx). The compound with the PEG4-spacer exhibited the 

best properties in vitro and was thus selected as reference compound and starting point for future peptide 

conjugates. 

A ‘triazole scan’ of NT (8-13) yielded several triazole backbone-modified NT (8-13) analogues with 

interesting properties. It was found that a triazole modification was only tolerated between the N-terminal 

PEG4 spacer and Arg8 and in the position between Arg8 and Arg9. Substitution of these bonds yielded two 

single-triazole containing compounds as well as one bis-triazole analogue with nanomolar affinities towards 
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NTR1 and moderately improved metabolic stabilities (1st generation of triazole-containing NT (8-13) 

peptidomimetics). The central and C-terminal regions of NT (8-13) were not modifiable with a triazole 

without a complete loss of receptor affinity towards NTR1. These observations are in agreement with the 

results of other reported modification strategies for NT (8-13) (e.g. reduction of amide bonds or the use of β-

homo amino acids).[9-10] 

Further enhancement of the metabolic stability of the peptidomimetics of the first generation was achieved 

by the substitution of Ile12 of NT (8-13) with a Tle12. The triazole insertion was only introduced at the 

previously identified positions which tolerate the modification. The obtained compounds (2nd generation of 

triazole-containing NT (8-13) analogues) were evaluated in vitro and compared side-by-side to the 

reference compound DOTA-PEG4-[Tle12]NT (8-13). Our investigations revealed that the Ile12 to Tle12 residue 

switch led to a substantial improvement of the metabolic stability of the compounds, however a significant 

loss of receptor affinity was observed. Only DOTA-PEG4-[Arg8-ΨTz-Arg9][Tle12]NT (8-13) maintained a 

nanomolar affinity towards NTR1. 

The compounds with the most promising properties in vitro (retained nanomolar NTR1 affinity and improved 

metabolic stability) were selected for biodistribution studies in nude mice bearing HT-29 xenografts and 

compared side-by-side with the corresponding reference compounds of the first and second generation. 

The NT (8-13) analogues with a 1,4-disubstituted 1,2,3-triazole between Arg8 and Arg9 exhibited a 2-fold 

tumour uptake, in comparison to the reference compounds. Favourable fast blood clearance and a high 

tumour to organs ratio was observed for all the evaluated radiolabelled triazole-peptidomimetics. Compared 

to literature data we can report exceptionally good tumour to background ratios in general, especially for the 

tumour to kidney ratio. A high tumour to background ratio is beneficial for the potential application of 

peptidic radiopharmaceuticals as imaging or therapeutic agents. In general, no or little correlation between 

the in vitro behaviour (metabolic stability or receptor binding affinity) and the uptake of the conjugates in the 

HT-29 tumour in vivo could be observed, which demonstrates the necessity of preclinical evaluations of 

novel radiotracers.   

In summary, we report the first ‘triazole scan’ of the binding sequence of NT (8-13) and the synthesis and 

biological evaluation of novel radiolabelled triazole-peptidomimetics. The synthesis of the 1,2,3-triazole-

containing peptide conjugates (including CuAAC and diazo-transfer reaction) is fully compatible with solid 

phase synthesis and thus generally applicable to other regulators peptides of interest for medical 

applications. The substitution of amide bonds with 1,4-disubstitued 1,2,3-triazoles provided NT (8-13) 

peptidomimetics with improved tumour-targeting properties. The NT (8-13) analogues described in this 

thesis represent interesting candidates for the development of novel tumour-targeting probes with 

applications in nuclear medicine. 
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1. Introduction 

 

 Cancer 1.1

 

 

“Cancer is the uncontrolled growth and spread of cells. It can affect almost any part of the 

body. The growths often invade surrounding tissue and can metastasize to distant sites. 

Many cancers can be prevented by avoiding exposure to common risk factors, such as 

tobacco smoke. In addition, a significant proportion of cancers can be cured, by surgery, 

radiotherapy or chemotherapy, especially if they are detected early.” 

Definition of cancer of the World Health Organisation 

 

Cancer is one of the leading causes of death worldwide. 14 million new cases are diagnosed 

every year and 8.2 million cancer related deaths in the year 2012 alone corroborate that 

statement.[11] This number is expected to increase by 70% in the next two decades. In 2012, 

cancer was responsible for 14.7% of deaths worldwide, only preceded by cardiovascular 

diseases, with 31.4%. The number of deaths by cancer has increased since 2002 (Table 1). 

Among men, the most common cancer types are lung, prostate, colorectal, stomach and liver 

cancer, whereas among women it is breast, colorectal, lung, cervix and stomach cancer.[12]  

Table 1: The three most common causes of death worldwide, in 2012 and 2002.[12] 

Cause of Death 2012 (%) 2002 (%) 

Infectious and parasitic diseases 

Cardiovascular diseases 

Malignant tumours 

11.5 

31.4 

14.7 

16.8 

28.2 

12.1 

 

Cancer is the consequence of a failure of the mechanisms responsible for the growth and 

proliferation of cells. This failure can be caused by a genetic change due to the exposure to 

environmental factors such as chemicals, hormones and viruses or the choice of an 

unhealthy lifestyle (obesity, low fruit and vegetables intake, lack of physical activity, abuse of 

alcohol and tobacco or the practice of unsafe sex),[13] but also due to erroneous gene 

functions. There are three types of genes which can cause cancer: proto-oncogenes, tumour 

suppressor genes and caretaker genes. Among these, proto-oncogenes can promote the 
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excessive growth of cells, which can lead to the formation of malignant tumours. Tumour-

suppressor genes normally restrain the cell growth, but once deactivated an abnormal cell 

division can take place. Finally, caretaker genes are responsible for the integrity of the 

genome. If these caretaker genes are deactivated, the cell genome can undergo new 

mutations at an increased rate, which can affect the cell growth and therefore, cause 

cancer.[14]  

Given the high incidence of cancer among the global population, it is not a surprise that it has 

become one of the main subjects of worldwide pharmaceutical research efforts. These have 

provided healthcare with diagnostic tools such as tissue sampling (biopsy), blood tests, 

endoscopy, surgical exploration and imaging, as well as therapeutic approaches including 

surgery, chemotherapy, hormone therapy, immunotherapy, gene therapy and 

radiotherapy.[15] However, because of the large diversity of different tumours and cancer 

types, medicine is becoming increasingly personalized and consequently there is an ever 

growing need for the development of new diagnostic tools and efficient therapeutic methods. 

This work will be focused on radionuclide supported imaging and radioendotherapy. These 

are important tools in the diagnosis (imaging) and treatment of diverse types of cancer, as 

these techniques are non-invasive, highly sensitive and specific.  
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 Nuclear Medicine 1.2

 

1.2.1 General Introduction 

 

Nuclear Medicine, a medical speciality which uses the properties of unsealed, radioactive 

material for diagnostic and therapeutic purposes, allows in a non-invasive manner to 

examine abnormalities in the human body with high precision and sensitivity. The first clinical 

application of a radionuclide was described in 1936 by John H. Lawrence, who used 32P to 

treat leukaemia. Important breakthroughs include the discovery of 99mTc, the ‘work horse’ of 

nuclear medicine, in 1938, the development of the first cameras for nuclear imaging in the 

sixties, of the first gamma-camera in 1958 by Hal O. Anger and the first SPECT-camera 

(single photon emission computed tomography) in 1963 by David E. Kuhl and Roy Q. 

Edwards as well as 15 years later the introduction of PET technology (positron emission 

tomography). Since then, the development of new radiopharmaceuticals has been constantly 

ongoing[16] 

 

1.2.2 Radioactive Decay 

 

Nuclear medicine exploits the ability of some nuclei to emit ionizing radiation. There are three 

types of radiation, α-emission, β-emission and γ-emission. They are all distinct because of 

their range of action, their energy and the nature of the emission. 

During an α-decay a helium atom is released from the nucleus of an atom. As a 

consequence, the mass of the mother nuclide is reduced by two protons and two neutrons. 

Because of the charge and the high mass of the He-atom, the range of action of an α-emitter 

is low, with a penetration range of less than 100 µm in normal tissue. Because α-emission 

has a high LET (linear energy transfer; energy transferred by path length) it is used for 

therapeutic purposes. 

There are two types of β-decay: β-- and β+-radiation. On the one hand, neutron-rich nuclei 

one neutron can be converted into a proton and an electron (β--particle). This β--particle 

carries part of the released kinetic energy, whereas the rest of the energy is converted into a 

mass- and charge-free neutrino ν.  β--radiation has a deeper penetration range than α-

radiation, a lower LET, and can also be used for therapeutic applications. On the other hand, 

proton-rich nuclei can emit a positive charged electron (positron β+). After the emission, the 
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positron collides with an electron (annihilation), emitting two electromagnetic beams of 511 

keV each, with an exact angle of 180 °C. This type of radiation is used in PET technology.  

In a proton rich nucleus, EC (electron capture) can also take place. During this process, a 

proton captures an electron, resulting in the formation of a neutron and while radiation in 

form of X-rays or low energy electrons (Auger electrons) is emitted. Whereas the electrons 

emitted during a β--decay are the result of the decay of a nucleus, the Auger electrons 

originate after a relaxing event in the K- or L-shell of the atom. Auger electrons can be 

employed for therapeutic purposes. Thereby, the short range of Auger electron-emitting 

radionuclides requires their close proximity to the cell nucleus of the targeted tissue.[16-17] 

The third type of radiation is γ-radiation, an electromagnetic radiation, which is emitted after a 

previous α, β-, β+ or EC decay or from metastable radionuclides. Because of its long range of 

action, this type of radiation is detectable with cameras located outside the patient’s body. γ-

Radiation has a lower LET than α- and β--radiation, causing less damage to the exposed 

tissue and is therefore exclusively used as a diagnostic tool.[16-17] 

 

1.2.3 Radiobiology 

 

When applied as a radiopharmaceutical, the target of ionizing radiation is the DNA of the 

cancer cells. Direct ionization of DNA can cause lesions like single-strand breaks (SSB), 

double-strand breaks (DSB), multiple damaged sites (MDS) and cross-links of DNA-bases. 

These lesions can also be cause by the interaction of the DNA with free radicals, mostly 

hydroxyl radical originated in water (indirect ionization). Additionally, cells can be irradiated 

by neighbouring cells, containing a source of radiation (‘cross-fire’).[18]  

The first cellular response to the ionizing radiation is a delay of the cell division rate. The cell 

division delay depends on the cell cycle, as not all phases of the cell cycle are equally 

sensitive to radiation. After cell irradiation and DNA damage, several genes are activated to 

repair the DNA damage. If the repair of DNA is successful, the cell cycle is continued as 

normal. On the contrary, if the damages are irreparable, the cells undergo programmed cell 

death or apoptosis. DSB and MDS are examples for severe DNA-damages, difficult to repair.  

It has been reported that cells that are adjacent to irradiated cells but have not been 

irradiated themselves also show increased mutation rates and decreased survival rates 

(‘bystander effect’).[18] 
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The type and the severity of the DNA-lesions depend on the type and energy of the radiation. 

α-particles and Auger electrons have high ionization densities and can cause more damage 

to the DNA than β--particles (low ionisation density).  However, as the range of action of 

particles and Auger electrons is short, a homogeneous distribution of the radiolabelled 

pharmaceutical in the targeted tissue is important for an efficient therapy.[18] 
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 Imaging Methods 1.3

 

The essential advantage of nuclear imaging methods over other imaging modalities like CT 

(computed tomography) and MRI (magnetic resonance imaging) is their sensitivity. Whereas 

the strength of CT and MRI is the high spatial resolution of morphological information, 

nuclear imaging provides information about biochemical functions at a cellular level. Due to 

the high sensitivity of these methods, only a low concentration (10-12 M) of the administered 

radiopharmaceutical agent is required for imaging.[19] Undesired interactions between the 

examined molecular process and the imaging agent are thereby avoided. For comparison, 

the concentration of contrast agents used in CT and MRI is in the range of 10-2-10-6 M. In 

diagnostic nuclear medicine, two types of imaging methods are used, SPECT (single photon 

emission computed tomography) imaging and PET (positron emission tomography) imaging. 

γ-radiation is detected with a gamma-camera. This type of camera contains a detector, an 

amplifier, an analogue digital converter and a computer to evaluate the measured data. 

Figure 1 shows a schematic representation of the detector of a gamma-camera. The 

detector consists of a round or rectangular NaI(Tl) crystal as a scintillator, covered with 

photomultipliers, which converts the radiation particles into light. Additionally, a collimator is 

built in. A collimator improves the spatial resolution of the imaging by only permitting vertical 

radiation to pass through and producing a parallel beam of radiation. While there are different 

types of collimators (e.g. pin hole, converging and diverging collimators), parallel-hole 

collimators are the most common.[16-17] 

 

 

Figure 1: Schematic representation of the detector of a gamma-camera.[20] 

 

A gamma-camera with one detector is only able to produce two-dimensional images. In order 

to address this issue, the SPECT-camera (single photon emission computer tomography) 

was developed in 1963, five years after the first gamma-camera. A SPECT camera 
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possesses one or more gamma-camera heads and rotates around the patient. In doing so, it 

is able to provide three-dimensional information about the location of the emitting nuclide at 

an image resolution of 8-20 mm. 

A PET-camera is used for the detection of β+-radiation (positrons). PET technology is more 

precise and sensitive than SPECT technology. The principle behind PET is the annihilation 

event after the β+-decay, which produces two 511 keV gamma photons in opposite directions 

(Figure 2). The simultaneous detection of two photons in opposite directions (coincidence 

measurement) allows determining the location of the annihilation event with an accuracy of 

3-10 mm. This provides the basis for the higher spatial resolution of PET in comparison with 

SPECT.[16-17] 

 

 

Figure 2: Principle of PET technology.[21] 

 

Today, SPECT and PET are often combined with other imaging techniques like CT and more 

recently, with MRI (‘hybrid imaging’). CT and MRI are able to provide the morphological 

information with high resolution (< 1 mm), whereas SPECT and PET give information of the 

physiological and molecular aspect of the disease.[22] This so called hybrid or bimodal 

imaging techniques help to accurately localize lesions, tumours or malfunctions, and are a 

useful tool for the optimized and personalized treatments of diseases.  
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 Radiopharmaceuticals  1.4

 

1.4.1 General Introduction 

 

A radiopharmaceutical is a radionuclide-containing molecule with a diagnostic or therapeutic 

application in nuclear medicine. There are large numbers of radiopharmaceuticals able to 

target a manifold of biological functions or processes in the body. A radiopharmaceutical 

should accumulate specifically in the target organ or system, and show a fast clearance in 

the rest of the body, in order to guarantee a high quality of imaging and as little therapeutic 

side-effects as possible. Radiopharmaceuticals can be categorized in terms of their way of 

accumulation: those which accumulate by their chemical or physical properties and those 

with a specific molecular target. 

The majority of the radiopharmaceuticals follow an unspecific accumulation pathway through 

passive diffusion, ionic transport or adsorption effects. Examples for diagnostic 

radiopharmaceuticals with an unspecific accumulation in the body are the [15O]-H2O 

(determination of blood flow) or [14N]-NH3 (heart perfusion). [99mTc]-labelled phosphonates 

(e.g. methylendiphosphonate or dicarboxyphosphonate) are used for bone scintigraphies.  

As the selectivity of these radiopharmaceuticals is often insufficient, they frequently have to 

be applied directly on the lesion.[16] 

The second type of radiopharmaceuticals is distinguished by their specific accumulation in a 

particular system or organ. The target of such a radiopharmaceutical can be a metabolic 

system, an antigen, a receptor or a cell membrane. 

The labelling of the radiopharmaceutical can be performed with non-metallic or metallic 

radionuclides. Non-metallic radionuclides are bound covalently to the molecule. Examples of 

radiopharmaceuticals labelled with non-metallic isotopes are [18F]FDG (imaging of tumours 

with high glucose metabolism), [S-methyl-11C]Methionine (detection of cancers through 

amino acid transport systems) or [11C]Choline (marker for cell membranes). Examples for 

radiometal-labelled targeted radiopharmaceuticals are [111In]Zevalin, a radiolabelled anti-

CD20 antibody developed for the treatment of Non-Hodgkin lymphomas and DOTA-TOC, a 

somatostatin analogue that, in combination with different radionuclides (e.g. 68Ga, 90Y, 177Lu), 

is used for the diagnosis and treatment of neuroendocrine tumours.[16-17, 23] We are especially 

interested in the development of targeted radiopharmaceuticals labelled with a metallic 

radionuclide (chapter 1.4.3).  
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Each labelling strategy has its advantages and drawbacks. Due to their small atomic size, 

the introduction of non-metallic radionuclides like 18F or 11C does usually not dramatically 

alter the structure and properties of a molecular ligand, whereas labelling with metallic 

isotopes require the introduction of a chelator that can modify the biological properties of the 

molecule to label. However, labelling with non-metallic isotopes is often done in harsh 

reaction conditions, whereas chelation can be done in mild conditions compatible with 

delicate biomolecules such as peptides and antibodies. In addition, the fact that some 

chelators, such as DOTA, can host a wide variety of radiometals with different emissions 

makes them very attractive for both diagnostic as well as therapeutic applications, depending 

on the radiometal used (theranostics). 

The clinically relevant radionuclides for diagnostic and therapeutic applications are described 

in chapter 1.4.2.  
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1.4.2 Clinically Relevant Radionuclides 

 

The radionuclides for a specific application are selected depending on the type of radiation 

they emit, their half-life and their energy range.  

As mentioned above, for diagnostic purposes, γ- or β+-emitting radionuclides are required, 

due to the long range and low radiation energy of these kinds of radiation. Furthermore, the 

isotopes ideally have a short half-life, in the range of one to three hours (Table 2). The 

daughter nuclides resulting after the decay additionally should be non-toxic and non-

radioactive. 

Table 2: Selection of diagnostic radionuclides and their physical properties. 

Nuclide t1/2 Radiation Type (MeV) Particle max. Range Application 
11C[16] 20.4 min β

+ (0.511) 0.1- 0.5 mm PET 
13N[17] 10 min β

+ (0.511) 0.1- 0.5 mm PET 
15O[16] 2.0 min β

+ (0.511) 0.1- 0.5 mm PET 
18F[16] 110 min β

+ (0.511) 0.1- 0.5 mm PET 
64Cu[24] 13 h β

+ (0.511) 

β
- (0.579) 

0.1- 0.5 mm 

0.1- 0.3 mm 

PET 

Therapy 

67Ga[17] 78.3 h EC (0.093, 0.185, 0.3) 0.1- 0.3 mm SPECT 
68Ga[17] 67.6 min β

+ (0.511) < 1 µm PET 
99mTc[16] 6.0 h γ (0.141) - SPECT 
111In[16] 67 h EC (0.171, 0.245) < 1 µm SPECT 
123I[16] 13.2 h EC (0.160) < 1 µm SPECT 

 

In contrast, radionuclides emitting α- or β--radiation or Auger electrons are suitable for 

therapy (Table 3). Long-lived isotopes are preferred in order to increase the radiation dose in 

the targeted tissue (e.g. tumours). It has been determined that a range between 6 hours and 

7 days is ideal for therapeutic purposes.[25] Longer half-lives would have a negative impact on 

the patient due to excessive radiation exposure.[26] The maximal radiation dose applicable to 

a patient is limited by dose-limiting organs, e.g. the bone marrow, the kidneys and the 

gonads, which are particularly sensitive to radioactivity.  
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Table 3: Physical properties of a selection of radionuclides used in therapy. 

Nuclide t1/2 Radiation Type (MeV) Particle max. Range 
32P[27] 14.3 d β

- (1.71) 8.7 mm 
67Cu[27] 2.6 d β

- (0.54) 

γ (0.185) 

2.2 mm 

80mBr[28] 4.4 h Auger < 10 nm 
90Y[27] 2.7 d β

- (2.28) 12.0 mm 
105Rh[27] 1.5 d β

- (0.57) 

γ (0.320) 

2.4 mm 

111Ag[29] 7.5 d β
-  (1.03) 

γ (0.342) 

4.8 mm 

125I[28] 60.0 d Auger 10 nm 
131I[27] 8.0 d β

- (0.6) 

γ (0.364) 

2.4 mm 

149Pm 2.2 d β
- (1.07) 

γ (0.289) 

5.0 mm 

142Pr[27] 19.1 h β
- (2.16) 11.3 mm 

153Sm[16] 2.0 d β
- (0.8) 

γ (0.103) 

3.0 mm 

 

169Er[27] 9.5 d β
- (0.34) 1 mm 

177Lu[30] 6.7 d β
- (0.497) 

γ (0.208) 

2.3 mm 

186Re[27] 3.8 d β
- (1.08) 

γ (0.131) 

5.0 mm 

188Re[27] 17.0 h β
- (2.13) 

γ (0.155) 

11.0 mm 

198Au[27] 2.7 d β
- (0.96) 

γ (0.411) 

4.4 mm 

211At[31] 7.2 h α (6.8) 65 µm 
212Bi[31] 1.0 h α (7.8) 70 µm 

 

Therapeutic radionuclides which additionally emit γ-radiation can be used in ‘theranostics’. 

Examples of such theranostic radionuclides (177Lu or 186Re) are shown in Table 3. This new 

medical field combines diagnosis and therapy, using this type of radionuclides or by using 

the same radiopharmaceutical radiolabelled with different radionuclides for diagnosis and 

therapy. 
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 Lutetium-177 1.4.2.1

 

In this context, 177Lu, the isotope used for the experiments in this work is an isotope of 

particular interest. 177Lu is considered a very attractive radionuclide for PRRT (peptide 

receptor radionuclide therapy) due to its long half-life and a tissue penetration depth of the 

radiation of approximately 2.3 mm (Table 3). These are ideal characteristics for the treatment 

of small tumours and metastasis. Additionally, the simultaneous emission of γ-radiation offers 

the possibility to monitor the state of the disease by concurrent imaging of the lesions on a 

gamma-camera (theranostics).  

177Lu decays to the stable isotope 177Hf. The simplified decay scheme of 177Lu is shown 

Figure 3.  

 

Figure 3:  Simplified decay scheme for 177Lu. 

 

177Lu can be produced in a nuclear reactor via direct or indirect methods. On the one hand, 

during the so called direct nuclear reaction, a neutron is captured by 176Lu to afford 177Lu. The 

main disadvantage of this method is the generation of 177mLu (t1/2: 160 d) as an undesired, 

inseparable side-product. The long half-life of this radioisotope represents a drawback for 

medical applications, in terms of radiation protection as well as for the management of the 

resulting radioactive waste. On the other hand, the indirect method provides highly pure 
177Lu. 176Yb is irradiated with neutrons and in the subsequent neutron capture, 177Yb is 

produced, which then decays to 177Lu via β--decay.[32] Despite an additional purification step 

(removal of 177Yb), the major advantage of the indirect method is the generation of impurity 

free 177Lu (also called carrier-free or non-carrier added) with high specific activity. The 

nuclear reactions of the direct and indirect method of 177Lu production are shown in Figure 4. 
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Direct method:  176Lu(n,γ)177Lu 

Indirect method:  176Yb(n,γ)177Yb →177Lu 

Figure 4:  Nuclear reactions for the production of 177Lu. 

 

 

1.4.3 Radiometal-Labelled Targeted Radiopharmaceuticals 

 

The general structure of a radiometal-labelled targeted radiopharmaceutical is shown in 

Figure 5 and contains a vector (V) with a specific target (R) in the body, often a spacer (S), a 

radionuclide (M) and a chelator (C). Each of the components of a radiometal-based 

radiopharmaceutical can have an influence on the binding properties and the 

pharmacological behaviour of the molecule. [16-17]  

The vector, which is responsible for reaching the target in the body, can be a biomolecule 

(peptide or antibody) with the necessary chemical, biological and pharmacokinetic properties, 

whereas the target in the body can be an antigen, a cell membrane, a transport system or a 

receptor.[16-17]  

 

 

Figure 5:   Schematic representation of a radiometal labelled targeted radiopharmaceutical and its 
specific interaction with a molecular target. 

 

The spacer (S), not always necessary, is used as a link between the tracer and the 

chelate.[16, 33] The function of the chelator (C) is the connection of the radiometal to the 

vector. A metal-chelator complex must be thermodynamically and kinetically stable in order 

to avoid decomposition under physiological conditions. Most chelators can easily be 

functionalized into BFCAs (bifunctional chelating agents), in order to conjugate them to the 

desired biomolecule. There are two types of chelators, linear and macrocyclic. Linear 

chelators are based on the structure of diethylenetriaminepentaacetic acid (DTPA) and are 

known for their favourable coordination kinetics and radiolabelling efficacy. Their ability to 



Introduction 

14 
 

quantitatively bind to a radiometal in a short amount of time (~15 min) at room temperature is 

important for the labelling of heat sensitive molecules (e.g. antibodies) or when working with 

short lived isotopes.[34] Unfortunately, however, only a few radiometals form 

thermodynamically stable complexes with acyclic chelators. Therefore, macrocyclic chelators 

are preferentially used for the labelling with radiometals. Macrocyclic chelators have a similar 

thermodynamic stability as linear chelators, but they are more kinetically inert. They present 

pre-organized binding sites, so less entropic loss is encountered and the complexation is 

thermodynamically more favourable (macrocyclic effect). An disadvantage of the 

macrocycles is that the labelling conditions often require heating (60-100 °C) and longer 

reaction times (30-90 min), making them unsuitable for the labelling of heat-sensitive 

molecules.[34] 

The development of radiometal labelled specific targeted radiopharmaceuticals, also called 

“magic bullets”, commenced in the 1970s, when the first radiolabelled monoclonal antibody 

was tested in vivo in rats with human choriocarcinoma xenografts.[35] Rapidly, RIL 

(radioimmunolocalization imaging) and RIT (radioimmunotherapy) became the subject of a 

high number of research projects and publications. Although some of those radiolabelled 

antibodies reached clinical trials and have become commercially available, [36] they never 

fully succeeded and did not have a substantial clinical impact as the first radiolabelled MAbs 

(monoclonal antibodies) faced various problems:  

1) A low specific activity of the injected MAbs. The radiation delivered to the tumour was 

small, although the antibodies had long circulation times. 

2) The radiolabelled MAbs showed a high bone narrow toxicity due to the long 

circulation times. 

3) Formation of HAMA (human anti-mouse antibodies) was observed, with an impact on 

the administration limit.[37] 

 

Some of these problems faced by MAbs have subsequently been solved, for example the 

formation of HAMA has been reduced by the development of human or chimeric antibodies 

and the long circulation time has been reduced by the use of antibody fragments.[38]  

In the 1980s the first stabilized somatostatin analogues were developed and since then it has 

become clear that the use of regulatory peptides as radiolabelled carriers offer some 

advantages over antibodies. Due to their small size (8-20 amino acids), they have good 

tissue permeability and therefore rapid access to the tumour site. In contrary to antibodies, 

peptides can be synthesized and modified using simple organic chemistry methods and their 

production costs are lower. Additionally, labelling with different radionuclides, metallic and 

non-metallic, is easily achievable. They usually exhibit high affinities (nanomolar range) to 
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receptors overexpressed by tumours, possess no antigenicity and show rapid blood 

clearance. A drawback of regulatory peptides is their rapid degradation by peptidases, an 

issue which can be addressed by chemical modification of the structure of the peptides.[5]  

For all the reasons listed above, we are particularly interested in developing receptor-

targeting, peptide-based radiopharmaceuticals for the imaging and treatment of tumours. 

They will be extensively described in chapter 1.4.4. 

 

1.4.4  Radiometal Labelled Peptide-Based Radiopharmaceuticals for the 

Treatment of Tumours  

 

Regulatory peptides are peptides naturally present in the human body, where they play 

modulatory roles in different parts of the body like the brain, the gastrointestinal tract or in the 

endocrine, vascular or lymphoid system. The use of these naturally-occurring peptides as 

therapeutic and diagnostic agents may seem odd because of their presence and role in 

many physiological systems. Yet, it has been shown that numerous tumours overexpress the 

receptors of these peptides.[5] These receptors belong, in the majority of cases, to the family 

of G-protein-coupled receptor (GPCR).[39] Since the development of 123I-labelled tyr-3-

octreotide, the first somatostatin analogue for the localization of neuroendocrine tumours,[40] 

a large number of other regulatory peptides and their receptors have been investigated  

preclinically and clinically for the development of targeted radiopharmaceuticals for molecular 

imaging and peptide receptor radionuclide therapy (PRRT) (Table 4).  

The most investigated family of regulatory peptides are the derivatives of the somatotropin 

release-inhibiting factor (SRIF), also known as Somatostatin, which bind with high affinity to 

the family of Somatostatin (sst) receptors. Due to the overexpression of sst receptors 

(particularly sst receptor subtype 2) in neuroendocrine tumours (NET), several stabilized 

somatostatin analogues are currently being used in the clinic for the diagnosis and therapy of 

NET. An example of a somatostatin analogue is 111In-DTPA-octreotide (Octreoscan®), 

originally developed for the diagnosis of neuroendocrine tumours. Residue modifications and 

a change in the chelator of DTPA-octreotide led to the discovery of DOTATOC and 

DOTATATE, two radiopharmaceuticals with dramatically improved targeting properties 

thanks to their high selectivity towards Somatostatin receptor subtype 2.[41-43] 
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Table 4: Interesting receptors for molecular imaging and PRRT and their corresponding peptide- 
ligands. 

Target Receptor Peptide Tumour Type Clinical Status 

Somatostatin receptors 

(sst1-sst5)[41, 44-45] 

Somatostatin Neuroendocrine tumours, 

gastroenteropancreatic tumours, non-

Hodgkins’s lymphoma, small lung 

cancer 

Clinical 

application 

Gastrin-releasing peptide 

receptor 

(GRPR/BB2)[41, 45-46] 

Bombesin Prostate, breast, pancreas, gastric, 

small cell lung carcinoma, colorectal 

cancer 

Studies in 

patients 

Cholecystokinin B/ gastrin[41, 

45, 47] 

CCK/gastrin Medullary thyroid cancer, small lung 

cancer, gastrointestinal stromal 

cancer, stromal ovarian cancer, 

astrocytomas 

Studies in  

patients 

Glucagon-like peptide-1  

Receptor (GLP-1) [41, 45, 48] 

Exendin Insulinomas, gastrinomas, 

paragangliomas, medullary thyroid 

carcinomas 

Studies in  

patients 

αvβ3-integrin[41, 45, 49] RGD Brain, lung, ovary, breast, skin Studies in  

Patients 

Neurotensin receptor  

(NTR1)[41, 45, 50] 

Neurotensin Small lung cancer, Ewing’s sarcoma, 

breast, colon, exocrine pancreas, 

prostate 

Studies in  

patients 

Melanocortin 1 receptor 

(MC1R)[41, 45, 51] 

α-MSH Melanomas Studies in  

patients 

Neuropeptide 1 receptor 

(Y-1)[41, 45, 48] 

NPY Breast, prostate cancer Preclinical 

studies 

Vasoactive intestinal peptide 

(VPAC1)[41, 45, 52] 

VIP Breast, ovary, prostate, bladder, 

colon, oesophagus, brain 

 

Luteinizing hormone-

releasing hormone (LHRH-

R)[41, 53] 

LHRH Prostate, breast, endometrial and 

ovarian carcinomas 

Studies in 

patients 

Neurokinin 1 receptor  

(NK-1)[41] 

Substance P Glioblastoma, astrocytoma, 

medullary thyroid carcinoma, breast, 

blood vessels 

Studies in  

patients 

Chemokine receptor 4 

(CXCR4)[41] 

CXCT4 Lymphatic system, ling, breast, 

prostate 

Preclinical 

studies 

 

The subject of this thesis is the synthesis of new Neurotensin analogues. Neurotensin and its 

stabilized analogues described in literature will be extensively described in detail in chapter 

1.5. 
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1.4.5 Chelators for Peptide-Based Radiopharmaceuticals 

 

 Chelators for Technetium 1.4.5.1

 

99mTc is a radiometal of particular interest for nuclear medicine. 80% of the 

radiopharmaceuticals are 99mTc-based. Favourable physical properties like a half-life of 6.02 

h and energy of radiation of 141 keV, combined with economic aspects such as price and 

good availability are the reasons for the extensive use of this radionuclide. 99mTc is readily 

available from a 99Mo/99mTc-generator, from where 99mTc is eluted as 99mTcO4
- in a sterile 

saline solution. Most of the commercial radiopharmaceutical agents consist of 99mTc-

complexes with the oxidation states +V, but also +I, +III and +IV. As the oxidation state of 
99mTc in 99mTcO4

- is +VII, it needs to be reduced with reducing agents like Na2S2O4 and SnCl2 

to obtain the desired oxidation state. This reduction takes place in presence of the ligand 

needed for the complexation. As mentioned in chapter 1.4.1, bifunctional chelating agents 

(BFCAs) are used for the labelling of a peptide. A selection of BFCAs suitable for the 

labelling of 99mTc is shown in Table 5. 99mTc forms mainly  penta- or hexa-coordinated 

complexes with either a TcO3+ or a TcO2+ core.[41] For complexation of some of the ligands, 

one or more co-ligands, (donors like amines, hydroxyls or carboxylates), are needed for the 

completion of the coordination sphere. Another approach for the labelling with 99mTc is the 

use of the 99mTc(CO)3(H2O)3 (
99mTc-tricarbonyl core), where the metallic ion contains three 

tightly coordinated CO ligands and three water molecules, the latter of which can be readily 

replaced by mono-, bi- and tri-dentate ligand systems.[54]  
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Table 5: Selection of commonly used BFCAs for the labelling of peptides with 99mTc.[41, 55]
 

 

 

 

 Chelators for M3+ Radiometals  1.4.5.2

 

Besides 99mTc, there are a large number of other clinically relevant radionuclides, including 
111In, 90Y, 177Lu, 68Ga and 64Cu. The most important aspect of these radionuclides is the 

thermodynamic stability in vivo of the resulting complexes and their kinetic inertness under 

physiological conditions. The radiometal-chelator complex needs to be stable, in order to 

avoid competition with other chelators present in the body. Transchelation, the loss of the 

radiometal to a complexation agent naturally present in the body, like ferritin (metal storage) 

or transferrin and lactoferrin (metal transport), can lead to an uptake of radioactive material in 

non-targeted organs. This undesired accumulation of radioactivity can lead to a high 

background radiation, which compromises the quality of the imaging  as well as to a high 

radiation exposure of non-targeted tissue.[56] 

Most of these radionuclides, with the exception of 64Cu, form M3+ cations in aqueous 

solutions at physiological pH. 64Cu forms M2+ cations. All these radiometals are hard Lewis 

acids and therefore form stable complexes with chelators containing hard Lewis bases like 

carboxylates, amines, phosphonates or hydroxamates groups. A selection of chelators and 

their corresponding BFAs are shown in Table 6. 
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Table 6: M2+/3+ radiometals and their corresponding chelators and BFCAs.[41] 

Radiometal Chelators Bifunctional Chelators 

111
In 

 
 

111
In 

86/90
Y 

177
Lu 

67/68
Ga  

 
   

67/68
Ga 

111
In 

64/67
Cu 

  
64/67

Cu 

  

 

The most commonly used of these macrocyclic chelators is DOTA (1,4,7,10-

tetraazacylododecane-1,4,7,10-tetraacetic acid), which is applied for the labelling of 111In, 
90Y, 177Lu, 213Bi and 68Ga.[41] The hexadentate, chelator, NOTA (1,4,7-triazacyclononane-

1,4,7-triactetic acid) one of the first chelators investigated, is used for the labelling of isotopes 

with a smaller ionic radius, like 68Ga, because of its small cavity size. The in vivo stability and 

kinetic inertness of the complex of 68Ga with NOTA is superior to the one with DOTA, but due 

to differences in the physical properties (charge), the latter is still preferred for the labelling of 

some vectors. NOTA is also suitable for the labelling of 64Cu.[34] 

In some of the DOTA- and NOTA-based bifunctional chelating agents, one of the carboxylic 

acid arms of the macrocycle functionalized to an amide carbonyl group for bioconjugation. 

The amide carbonyl group is still able to coordinate the radionuclide, but weakly. To address 

this issue, DOTAGA and NODAGA have been developed, where an additional sidechain is 

used for the bioconjugation to the vector, retaining full denticity of the original chelator (Table 

6).[34]   
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Stable complexation of 64Cu is especially challenging as there are many copper chelating 

proteins (e.g. ceruloplasmin superoxide dismutase, metallothionein, copper transporters and 

chaperones) that potentially can displace the copper ion from the chelator.[57] Also, Cu(I) is 

known for its disproportion in vivo into Cu(II) and Cu(0). As a consequence, classical cyclen- 

and cyclam-based macrocycles such as DOTA and TETA (1,4,8,11-tetra-

azacyclotetradecane-1,4,8,11-tetraacetic acid), a chelator which has been exclusively 

investigated for the labelling of 64Cu, show signs of in vivo instability. For this reason new 

chelators with superior in vivo and kinetic stability, like NOTA and CB-TE2A have been 

developed. CB-TE2A is a crossbridged TETA-derivative and due to its superior stability in 

vivo, it has become one of the most used chelators for 64Cu.[34] 

As this work includes the complexation of 177Lu with DOTA, special attention is given to this 

radionuclide. The chemistry of 177Lu is similar to other lanthanide radiometals. The 

mechanism of complexation of lanthanides with DOTA is still unclear. In 2004 Moreau et 

al.[58] suggested that the complexation takes place in three steps. In the first step the Ln3+ 

metal is coordinated by the four carboxylate groups of DOTA, but the metal is still located in 

the plane above the cavity and is still coordinated to four H2O molecules (1, Figure 6). Step 

two includes the formation of two Ln3+-N bonds (2, Figure 6). During the last step, the metal 

is introduced into the cavity and the final two Ln3+-N bonds are formed (3, Figure 6). The 

final coordination number is 9, as one position is still occupied by a H2O molecule. This 

coordination mode seems to be typical for lanthanide metals, also for 177Lu. A crystal 

structure of a Lu3+-bound DOTA conforming this coordination geometry has been published 

by Bombiere and his co-workers in 1996.[59] 

 

 

Figure 6: The three intermediate complexation steps of the complexation of a Ln3+ metal with 
DOTA.[58] 
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 Neurotensin 1.5

 

1.5.1 General Introduction 

 

Neurotensin (NT) is a regulatory peptide localized in the peripheral tissues of mammals, 

mainly in the gastrointestinal tract. It was first isolated from bovine hypothalamic in 1973 by 

Carraway.[60] In 1976 it was isolated in bovine intestines as well as, in the same 

concentration, from bovine brain.[61] NT has also been isolated in canine, porcine and human 

gut.[62] NT is a tridecapeptide, with the sequence H-pGlu1-Leu2-Tyr3-Glu4-Asn5-Lys6-Pro7-

Arg8-Arg9-Pro10-Tyr11-Ile12-Leu13-OH.[63] The minimal binding sequence of NT is the N-

terminal hexapeptide NT (8-13), Arg8-Arg9-Pro10-Tyr11-Ile12-Leu13-OH.[64] Both NT and NT (8-

13) have a nanomolar affinity towards NTR1 (Neurotensin receptor 1). There are four 

subtypes of Neurotensin receptors, NTR1, NTR2, NTR3, and NTR4. The NTR family will be 

described in detail in chapter 1.5.2.  

Neurotensin has an extended role in many physiologic and pathologic processes. For 

example, in the gastrointestinal system, it reduces the gastric mobility and has a protective 

effect on gastrointestinal tissues.[65] Another example is in the central nervous system (CNS), 

where Neurotensin acts as a neurotransmitter and as a neuromodulator. It plays a central 

role in the modulation of the dopamine signalling, inhibiting the D2-receptors, which results in 

an increase of dopamine release.[66] The dopamine system is involved in CNS disorders like 

Parkinson’s disease, schizophrenia or drug abuse, [67-68] which makes Neurotensin a 

candidate for the drug development for such disorders. The involvement of the NT receptor 

NTR2 in pain modulation has been described in literature.[67, 69] 

In addition to these physiological roles, Neurotensin and its receptors are also suspected to 

participate in cancer growth. There are several studies describing the role of Neurotensin in 

the endocrine, autocrine and paracrine growth stimulation in pancreatic, colorectal, breast, 

lung, and prostate cancer.[70] The exact mechanism of how NT receptor activation works as a 

cell growth factor remains unclear, although several pathways have been proposed.[71-72] For 

example, Oleszewski et al. demonstrated that Neurotensin induces intra- and intercellular 

acidification in pancreatic carcinoma. Acidosis (accumulation of lactic acid in the extracellular 

space) due to tumour hypoxia is often observed in solid tumours and promotes the specific 

selection of malignant phenotypes and therefore the growth of the tumour.[73]  
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1.5.2 The Neurotensin Receptor Family 

 

The NT receptor family consists of four subtypes; NTR1, NTR2, NTR3 and NTR4. NTR1 and 

NTR2 belong to the family of G-protein-coupled receptors, with seven trans-membrane 

helices, whereas NTR3 is identical to the gp5/sortilin receptor and NTR4 is a yeast sorting 

receptor SorLA (sortilin related receptor). Since NTR4 was only recently isolated from the 

brain of bullfrogs in 2005, little is known about it do date.[74]  

Within the NT receptor family, the most important receptor subtype for medical applications 

(e.g. tumour targeting) is NTR1. It binds its ligands NT and NT (8-13) with an affinity in the 

subnanomolar range. NTR1 is expressed in the brain of rats and humans.[75-76] Additionally, it 

is specifically overexpressed on the cell membrane of numerous tumours such as ductal 

pancreatic adenocarcinoma,[1] Ewing’s sarcoma,[2] prostate,[77] colon,[78] small cell lung,[79] and 

breast cancer.[3] Thus, NTR1 is an appealing potential target for receptor-mediated molecular 

imaging and therapy. The human NTR1 is a 418 amino acid protein sharing 84% homology 

with the rat receptor. In 2012, White et al. published the first crystal structure of the NT-

bound receptor NTR1 (rat).[80] 

  

 

Figure 7: A) The NTR1 agonist binding pocket. B) Schematic drawing of NT (8-13) binding pocket.[80] 

 

White and his co-workers found interesting data about the binding of NT (8-13) to the binding 

pocket of the rat receptor. Overall, the peptide agonist binds to the rat NTR1 in an extended 

conformation, which is nearly perpendicular to the membrane plane, with the C-terminus 

oriented towards the receptor core. As shown in Figure 7, the C-terminal COOH group forms 

hydrogen bonds to Tyr146 and Arg327 of the receptor, which suggests that this COOH group 



Introduction 

23 
 

is essential for the binding of NT (8-13) to the receptor. Additionally, the carbonyl groups of 

the amide bonds between Ile12-Leu13 and Tyr11-Ile12 form hydrogen bonds to Tyr347 and 

Thr226, respectively and the sidechains of Tyr11 and Arg10 form additional hydrogen bonds to 

the binding pocket. This information is crucial for the development of new Neurotensin 

analogues because it provides insight on the type and the position of modifications which 

may be tolerated in Neurotensin. 

Of less importance is NTR2, which is localized mostly in the brains of mammals, especially in 

the olfactory system, the cerebral and cerebellar cortices and the hippocampus.[81] NT and 

NT (8-13) have a lower affinity (nanomolar) to NTR2 than to NTR1.[81-82] NTR2, however, can 

be selectively blocked by the NT antagonist SR48692 (a small organic molecule known to 

inhibit cell proliferation in small cell lung cancer) and it has a physiological role in pain 

modulation.[83]  

 

1.5.3 Development of Neurotensin Analogues 

 

Neurotensin has appealing properties for its use in the development of a peptide-based 

radiopharmaceutical for targeting NTR1-positive tumours. Despite these promising 

characteristics (high affinity towards NTR1, low molecular weight) like many regulatory 

peptides, it suffers from a low metabolic stability. 

The low metabolic stability of Neurotensin and of its minimal binding sequence NT (8-13) has 

been subject to investigation since the isolation of the peptide. The main cleavage sites were 

found to be at the Arg8-Arg9, Pro10-Tyr11 and Tyr11-Ile12 bonds. The Arg8-Arg9 bond is readily 

cleaved by the metalloendopeptidase 24.15. The Pro10-Tyr11 bond is susceptible to the 

metalloendopeptidase 24.16 and to a neutral endopeptidase. This latter endopeptidase, 

together with the angiotensin converting enzyme is also responsible for the degradation of 

the Tyr11-Ile12 bond (Figure 8).[84-85] 
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Figure 8: Schematic representation of Neurotensin (8-13) and its cleavage sites. 

 

The stabilization of the NT (8-13) sequence has been a major topic of Neurotensin research 

in the past years. Classical peptide stabilization approaches like carbonyl reduction,[9]N-

methylation of amide bonds,[6] amino acid substitution,[6, 86] and formation of multimeric 

analogues were only partially successful in providing stabilized NT-analogues with improved 

tumour-targeting properties.[87] To determine which amino acids are responsible for the 

biological behaviour of NT (8-13), several structure-activity relationship studies (SAR studies) 

of NT (8-13) have been described in literature. A detailed discussion about the results of 

these studies follows in chapter 1.5.3.1. Additionally, the influence of the chelator, the 

radionuclide and the spacer on NT (8-13) on its receptor binding affinity will be discussed in 

chapter 1.5.3.2.  

 

 Structure-Activity Relationship Studies of NT (8-13) 1.5.3.1

 

In 1991, Lugrin et al. published the systematic replacement of each of the five NT (8-13) 

amide bonds by reduced amide bonds.[9] These analogues, as well as NT (8-13) and 

[Lys8/9]NT (8-13) were tested for their receptor binding affinity (IC50) and their metabolic 

stability in rat brain homogenates. It was found that the reduction of amide bonds between 

residues Arg9-Pro10, Pro10-Tyr11, Tyr11-Ile12 and Ile12-Leu13 bonds led to a loss of affinity. Only 

the Arg8-Arg9 bond could be reduced without showing a dramatic loss of affinity toward its 

receptor. In addition, it was observed that the compounds H-[Ψ8,9] and H-[Ψ9,10] showed a 

significantly higher metabolic stability than the other analogues (Table 7).  
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Table 7: Reduced amide bond analogues of NT (8-13).[9]  

 Structure IC50 (nM)a 
Stability b 

(% after 1 h) 

NT (8-13) H-Arg-Arg-Pro-Tyr-Ile-Leu 0.14 ± 0.015 ~ 20 

H-[Lys8-9]NT (8-13) H-Lys-Lys-Pro-Tyr-Ile-Leu 0.16 ± 0.005 - 

H[Ψ 8,9] H-LysΨ(CH2NH)Lys-Pro-Tyr-Ile-Leu 0.15 ± 0.02 ~ 80 

H[Ψ 9,10] H-Arg-LysΨ(CH2NH)Pro-Tyr-Ile-Leu 473 ± 72 ~ 90 

H[Ψ 10,11] H-Arg-Arg-ProΨ(CH2NH)Tyr-Ile-Leu 27.5 ± 5.0 ~ 18 

H[Ψ 11,12] H-Arg-Arg-Pro-TyrΨ(CH2NH)Ile-Leu 477 ± 113 ~ 10 

H[Ψ 12,13] H-Arg-Arg-Pro-Tyr-IleΨ(CH2NH)Leu 283 ± 63 ~ 22 
a IC5O values were measured in new-born mouse brain homogenates. b Stabilities 
were measured in rat brain homogenates. 

 

Henry et al. published a complete ‘Alanine scan’ of the NT (8-13) sequence in 1993.[88] Tyr11 

and C-terminal Leu13 were described as the most critical positions for a side-chain 

modification since their substitution with an Ala residue led to a significant erosion of the 

binding affinity towards NTR1. Although also necessary for the binding, Arg8 and Pro10 were 

found to be the least critical residues. The peptides of the Ala-screening and their relative 

receptor binding affinities in comparison to NT (8-13) are shown in Table 8. 

Table 8: Ala-substituted analogues of NT (8-13) and their relative receptor binding affinities. 

 Structure Ki/1.8 x10-11M 

NT (8-13) Arg-Arg-Pro-Tyr-Ile-Leu 1 

[Ala8]NT (8-13) Ala-Arg-Pro-Tyr-Ile-Leu 14 

[Ala9]NT (8-13) Arg-Ala-Pro-Tyr-Ile-Leu 120 

[Ala10]NT (8-13) Arg-Arg-Ala-Tyr-Ile-Leu 50 

[Ala11]NT (8-13) Arg-Arg-Pro-Ala-Ile-Leu 6100 

[Ala12]NT (8-13) Arg-Arg-Pro-Tyr-Ala-Leu 250 

[Ala13]NT (8-13) Arg-Arg-Pro-Tyr-Ile-Ala 11000 

 

In an extensive study of the binding site of the NTR1 receptor, the group of Richelson[89] 

synthesized a series of amino acid substituted NT (8-13) analogues. They were able to 

successfully substitute Arg8 and Arg9 with Lys. Tyr11 could also be substituted, but only with 

an amino acid with an aromatic side-chain. As illustrated in Table 9, a loss of receptor affinity 

was observed when changing from an aromatic sidechain (Phe) to a non-aromatic sidechain 

(Cha; cyclohexylalanine). 
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Table 9:  NT (8-13) analogues with amino acid substitutions in position 8, 9 and 11 and their receptor 
binding affinities.[89] 

 Structure KD (nM)  

NT (8-13) Arg-Arg-Pro-Tyr-Ile-Leu-OH 0.14 ± 0.01 

[Lys8]NT (8-13) Lys-Arg-Pro-Tyr-Ile-Leu-OH 0.25 ± 0.02 

[Lys9]NT (8-13) Arg-Lys-Pro-Tyr-Ile-Leu-OH 1.69 ± 0.08 

[Lys8-9]NT (8-13) Lys-Lys-Pro-Tyr-Ile-Leu-OH 1.0 ± 0.2 

[Trp11]NT (8-13) Arg-Arg-Pro-Trp-Ile-Leu-OH 3.2 ± 0.3 

[Phe11]NT (8-13) Arg-Arg-Pro-Phe-Ile-Leu-OH 3.4 ± 0.2 

[Cha11]NT (8-13) Arg-Arg-Pro-Cha-Ile-Leu-OH 700 ± 100 

 

In 2008, the group of Gmeiner performed a complete ‘β-homo amino acid scan’ (Table 

10).[10] It was observed that the introduction of β-homo-amino acids in the NT (8-13) 

sequence led to new analogues with high affinities towards NTR1 receptor as well as the 

NTR2 receptor. Interestingly, the modification of the Ile12 position led to a loss of affinity for 

NTR1, but the affinity to NTR2 was preserved. With this observation, the group of Gmeiner 

was able to develop several NTR2 specific NT (8-13) analogues, applicable for example to 

pain therapy.[90-91] Gmeiner continued the studies on β-homo amino acid-substituted NT (8-

13) analogues in collaboration with Seebach, Reubi, Prante, and Rougeot, developing 

double β-homo amino acid substituted analogues with high affinities towards NTR1 and 

NTR2.[10, 92-93] 

Table 10:  Structures and receptor binding affinities of the β-homo amino acid-containing NT (8-13)    
analogues. 

 Structure Ki (nM)  

NTR1 

Ki (nM)  

NTR2 

NT (8-13) Arg-Arg-Pro-Tyr-Ile-Leu 0.23 ± 0.04 1.2 ± 0.2 

[β-hArg8]NT (8-13) β-hArg-Arg-Pro-Tyr-Ile-Leu-OH 0.130 ± 0.005 0.6 ± 0.1 

[β-hArg9]NT (8-13) Arg-β-hArg-Pro-Tyr-Ile-Leu-OH 2.3 ± 1.0 16 ± 2 

[β-hPro10]NT (8-13) Lys-Lys-β-hPro-Tyr-Ile-Leu-OH 47 ± 11 210 ± 46 

[β-hTyr11]NT (8-13) Arg-Arg-Pro-β-hTyr-Ile-Leu-OH 8.4 ± 0.3 44 ± 30 

[β-hIle12]NT (8-13) Arg-Arg-Pro-Tyr-β-hIle-Leu-OH 250 ± 26 5.4 ± 1.0 

[β-hLeu13]NT (8-13) Arg-Arg-Pro-Tyr-Ile-β-hLeu-OH 8.4 ± 1.9 25 ± 0  

 

The main conclusion after revision of the SAR studies performed on NT (8-13) is that the 

position 12 of the NT (8-13) sequence (Ile12) is the most critical to modify. Introduction of a 

backbone modification on this position or its substitution with an amino acid without side 

chains led to an abolishment of the receptor affinity towards NTR1 of the NT (8-13) 
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analogue. The other positions in NT (8-13) are less critical and can be modified without a 

dramatic loss of affinity. 

 

 Influence of Chelator, the Radionuclide and the Spacer 1.5.3.2

 

The functionalization of a peptide with a chelator and a spacer and the subsequent labelling 

with a radiometal represents a chemical modification in the structure of the peptide. It is 

therefore not surprising that these elements can have a substantial influence on the 

pharmacological properties (e.g. receptor binding affinity, metabolic stability or lipophilicity) of 

a peptide-based radiopharmaceutical.[94-95] 

Table 11:  Metallic radionuclides reported for the labelling of NT analogues and their corresponding 
chelators. 

Radionuclide Chelator Radionuclide Chelator 

99m
Tc 

 

(Nα-His)Ac[84, 96-98] 

 

111
In 

DTPA[99-100] 

 

N4
[101]

 

 

 DOTA[102] 

 

HYNIC[103] 

 

90
Y 

DOTA[102] 

 

MAG3
[103]

 

 

68
Ga 

DOTA[93, 102, 104] 

 

64
Cu 

TETA 
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Neurotensin analogues have been labelled with a variety of different radionuclides and have 

consequently been conjugated to many different chelators. In Table 11 the most commonly 

used radiometals for NT analogues are shown with their corresponding chelators. NT 

analogues have also been labelled with 18F, using 4([18F]Fluorobenzoyl or 18F-FDG as 

acylation agents.[105-106]  

 

 Influence of the Chelator 1.5.3.2.1

 

The influence of the chelator on the binding properties of NT (8-13) analogues has not been 

investigated systematically. Nonetheless, some information on the influence of combining a 

chelator to NT (8-13) can be obtained from literature data. Some examples are given in 

Table 12. Entries 1 and 2 show two examples of NT (8-13) analogues with and without a 

chelator. In both cases, the introduction of a chelator to a NT (8-13) analogue led to a loss in 

receptor affinity of a factor 10. The group of Gruaz-Gruyon selected two of the NT (8-13) 

analogues described by the group of Schubiger, NT-VI and NT-XI, and labelled them with 
111In, using DTPA as a chelator. In this case, no significant change in binding affinity towards 

NTR1 could be observed between (Nα-His)Ac and DTPA as a chelator (entries 3 and 4, 

Table 12).  

Table 12: Comparison of receptor binding affinities between pairs of peptide conjugates with different 
chelators.  

  Structure IC50 (nM)  

1 
NT (8-13)[100] Arg-Arg-Pro-Tyr-Ile-Leu-OH 1.6  

DTPA-NT (8-13)[100] DTPA-Arg-Arg-Pro-Tyr-Ile-Leu-OH 21.7 

2 
[natF]Glc-NT4[106] [natF]Glc-Tz-Lys-Lys-Pro-Tyr-Tle-Leu 16a 

[natGa]-DOTA-NT4[104] [natGa]-DOTA-Lys-Lys-Pro-Tyr-Tle-Leu 180a 

3 
NT-VI[84] 

(Nα-His)Ac-LysΨ(CH2NH)Arg-Pro-Tyr-Ile-Leu-OH 23 

DTPA -NT-VI[100] 
DTPA-LysΨ(CH2NH)Arg-Pro-Tyr-Ile-Leu-OH 14.7 

4 
NT-XI[6] 

(Nα-His)Ac-LysΨ(CH2NH)Arg-Pro-Tyr-Tle-Leu-OH 158 

DTPA -NT-XI[100] 
DTPA-LysΨ(CH2NH)Arg-Pro-Tyr-Tle-Leu-OH 101 

a Values are Ki (nM) values. 
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 Influence of the Radionuclide 1.5.3.2.2

 

The influence of the radionuclide on the receptor binding properties of a regulatory peptide is 

well documented.[107] For example, the group of Prante observed a difference on receptor 

affinity of a DOTA-NT (8-13) analogue with and without gallium (entry 1, Table 13).[104] In an 

another example, Alshoukr et al. studied the receptor affinities of an NT (8-13) analogue 

labelled with different metals, (entry 2, Table 13) and observed a higher receptor affinity 

towards NTR1 when labelling with natY rather than with natIn or natGa.[102] The inhibition 

experiments (IC50) were performed with cold metals (i.e. non-radioactive isotopes). The 

behaviour of the corresponding radiometal is very similar, and therefore it can be concluded 

that the choice of the radiometal can have the same influence on the receptor binding affinity 

of a radiopeptide. 

Table 13:  Influence of the radionuclide on the receptor binding affinity of NT (8-13) analogues. 

 Structure IC50 (nM)  

1
[104]

 
DOTA-Lys-Lys-Pro-Tyr-Tle-Leu 2300a 

[
nat

Ga]-DOTA-Lys-Lys-Pro-Tyr-Tle-Leu 180a 

2
[102]

 

[
nat

In]-DOTA-Pro(N-CH3)Arg-Arg-Pro-Tyr-Tle-Leu-OH 15 

[
nat

Ga]-DOTA-Pro(N-CH3)Arg-Arg-Pro-Tyr-Tle-Leu-OH 14 

[
nat

Y]-DOTA-Pro(N-CH3)Arg-Arg-Pro-Tyr-Tle-Leu-OH 5.6 
a Values are Ki (nM) values. 

 

The labelling of Neurotensin with 177Lu only has been published only once. The group of 

Gruia synthesized [177Lu]-DOTA-NT (for structure see chapter 1.5.1) and [177Lu]-DOTA-

SR48692 (for structure see chapter 1.6.1) and compared their therapeutic efficacy in vivo in 

murine Rs-1 hepatoma.[108] The usage of 177Lu is well documented for other radiopeptides,[109] 

and it has been applied for clinical purposes (DOTATOC).[110] 

 

 Influence of the Spacer 1.5.3.2.3

 

A spacer is used as a link between the tracer and the chelate. The influence of the spacer on 

a radiopeptide conjugate has been investigated for other regulatory peptides like Bombesin 

and it has been determined that the right choice of spacer is important for the 

pharmacological behaviour of a radiopeptide.[94-95] For Neurotensin, no systematic study of 

the influence of spacers has been published to date, but there is some evidence in the 

literature that a spacer strongly influences the biological properties of a NT analogue. As an 
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example, Alshoukr et al. published a comparison of peptides modified with an Ahx-spacer (6-

aminohexanoic acid).[100] The results of this study are summarized in Table 14. Entry 1 

shows the difference between DTPA-NT-VI and DTPA-Ahx-NT-VI, whereas entry 2 shows 

the difference between DTPA-NT-XI and DTPA-Ahx-NT-XI. The introduction of the Ahx-

spacer into DTPA-NT VI and DTPA-NT-XI led to a loss of receptor affinity towards NTR1 of 

the radiolabelled peptide conjugates. These results suggest that 6-aminohexanoic acid is not 

the spacer of choice for these conjugates. However, other more favourable spacers could be 

identified, that lead to conjugates with favourable properties. Therefore, the first part of this 

thesis includes the evaluation of different spacers for NT (8-13) optimising the 

pharmacological properties of NT (8-13) derivatives.[33] 

Table 14: Influence of an Ahx spacer on the binding affinities of NT (8-13) analogues. 

  Structure IC50 (nM)  

1 
DTPA -NT-VI[100] DTPA-LysΨ(CH2NH)Arg-Pro-Tyr-Ile-Leu-OH 14.7 

DTPA -Ahx-NT-VI[100] DTPA-Ahx-LysΨ(CH2NH)Arg-Pro-Tyr-Ile-Leu-OH 132 

2 

DTPA-NT-XI[100] DTPA-LysΨ(CH2NH)Arg-Pro-Tyr-Tle-Leu-OH 101 

In-DTPA-Ahx-NT-

XI[100] DTPA-Ahx-LysΨ(CH2NH)Arg-Pro-Tyr-Tle-Leu-OH 626 

 

 

1.5.4 State of the Art in the Development of Stabilized NT (8-13)-Based 

Radiotracers 

 

From the amide bond screening,[9] the ‘Ala scan”[88] and the ‘β-homo amino acid scan’,[10] 

described in chapter 1.5.3.1, it can be concluded that Ile12 is an important cleavage site of the 

NT (8-13) sequence, however this position is difficult to modify with backbone modifications 

or amino acid substitutions. The substitution of Ile12 with Tle12 (tert-leucine) has been 

described numerous times in literature.[86, 105] Bergmann et al.[105] reported the substitution of 

Ile12 with Tle12 in 2002 (entry 1, Table 15). The same year these results were confirmed by 

the groups of Schubiger and Bläuenstein (entries 2 and 3, Table 15) and a year later by the 

group of De Jong (entry 4, Table 15). All the groups observed a retained receptor affinity 

towards NTR1. Additionally, the metabolic degradation in serum of the Tle12-containing 

analogues was substantially decreased. Based on these observations, it can be concluded 

that a substitution of Ile12 with Tle12 appears to be beneficial for the stabilization of NT (8-13) 

and a good alternative to backbone modifications. 

 



Introduction 

31 
 

Table 15:  Structure, receptor binding affinities and serum stabilities of [Tle12]NT analogues. 

 Structure IC50
 (nM)a Stability (t1/2)

 

1 
[natFB]-Arg(CH2NH)Arg- Pro-Tyr-Ile-Leu-OH[105] 0.4 7% after 5 min c 

[natFB]-Arg(CH2NH)Arg- Pro-Tyr-Tle-Leu-OH[105] 0.3 Stable over 480 min c 

2 
[99mTc]-(Nα-His)Ac-Arg-Arg-Pro-Tyr-Ile-Leu-OH[84] 0.3 b 5.6 min d 

[99mTc]-(Nα-His)Ac-Arg-Arg-Pro-Tyr-Tle-Leu-OH[6] 0.2 b 4 h d 

3 
[99mTc]-(Nα-His)Ac-LysΨ(CH2NH)Arg-Pro-Tyr-Ile-Leu-OH[84] 0.5 b 8 min d 

[99mTc]-(Nα-His)Ac-LysΨ(CH2NH)Arg-Pro-Tyr-Tle-Leu-OH[6] 0.5 b 21 d d 

4 
DTPA-DLys-Pro-Phe(4-Gu)-Pro-Tyr-Ile-Leu-OH[86] 0.5 14.1 e 

DTPA-DLys-Pro- Phe(4-Gu)-Pro-Tyr-Tle-Leu-OH[86] 24.6 72.0 e 

a IC50 values were measured for the unlabelled peptide conjugates (competition assay with [125I]NT). b KD 
values. c Stabilities were measured in rat plasma. d Half-life measured in human serum at 37 °C.                   
e Percentage of intact peptide after 24h incubation in serum at 37 °C. 

 

Probably the most successful development of metabolically stable, high affinity NT (8-13) 

analogues was performed by the groups of Schubiger, Bläuenstein, and Tourwé by using a 

combination of both backbone and residue modifications (Table 16).[6, 84, 96, 98, 111]  

Table 16: Structures of 99mTc-labelled NT (8-13) analogues with their binding affinities and stabilities. 

 Structures KD (nM)  t1/2 
b 

NT-II[84] [99mTc]-(Nα-His)Ac-Arg-Arg-Pro-Tyr-Ile-Leu-OH 0.3 5.6 min 

NT-VI[84] [99mTc]-(Nα-His)Ac-LysΨ(CH2NH)Arg-Pro-Tyr-Ile-Leu-OH 0.5 8 min 

NT-XI[6] [99mTc]-(Nα-His)Ac-LysΨ(CH2NH)Arg-Pro-Tyr-Tle-Leu-OH 0.5 21 d 

NT-XII[98] [99mTc]-(Nα-His)Ac-Arg(N-CH3)Arg-Pro-Ty-Tle-Leu-OH 2.0 21 d 

NT-XVIII[98] [99mTc]-(Nα-His)Ac-Lys(shikimic)-Arg(N-CH3)Arg-Pro-Tyr-Tle-Leu-OH 4.5 21 d 

NT-XIX[112] [99mTc]-(Nα-His)Ac-Arg(N-CH3)Arg-Pro-Dmt-Tle-Leu-OH 15  28 d 

 

One of the first analogues, NT VI, was designed with an Arg8 to Lys8 switch and a reduced 

amide Lys8-Arg9 bond. This modification resulted in in a peptide conjugate with retained 

receptor affinity, but also low serum stability. The metabolic stability was then increased by 

the substitution of Ile12 with Tle12 giving peptide conjugate NT-XI. 99mTc-NT-XI was evaluated 

in four patients with ductal pancreatic adenocarcinomas in an initial clinical study.[7] Although 

a specific uptake in the patients’ tumours was obtained, unfortunately, a high non-specific 

kidney uptake was also observed. For this reason, peptide conjugates NT-XII, NT-XVIII and 

NT-XIX, with methylated Arg8-Arg9 bonds, were designed to reduce the kidney uptake. While 

this goal was achieved for NT-XIII and NT XVIII, the tumour uptake was also decreased.[98] 

NT-XI has been the only NT analogue evaluated in patients so far. [7] Thus, there is a need of 

new stabilization techniques which offer new stabilized NT (8-13) analogues with retained 

binding affinities towards NTR1 and improved tumour-targeting properties. 
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 Peptidomimetics 1.6

 

1.6.1 General Introduction 

 

A peptidomimetic is a compound designed to mimic a natural peptide in its biological 

functions. Peptidomimetics are used when certain characteristics of the original sequence 

need to be improved, for example, to overcome issues of metabolic instability or poor 

bioavailability. Also receptor affinity or receptor subtype selectivity can be substantially 

improved.[113] 

Peptidomimetics are classified as type I, II or III peptidomimetics. Type I peptidomimetic are 

peptide backbone mimetics, also called structural mimetics. These structures mimic the local 

conformation of the amide bond via amide bond isosters or amino acid surrogates. All the 

examples of NT (8-13) analogues described in chapter 1.5 are examples for this type of 

peptidomimetics. Figure 9 shows the structure of the original NT (8-13) sequence together 

with an example of type I peptidomimetic.[114] 

 

Original Peptide Type I Peptidomimetic

Arg-Arg-Pro-Tyr- Ile-Leu Lys-Ψ(CH2NH)Arg-Pro-Tyr-Tle-Leu
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Figure 9: Example of type I peptidomimetics of NT (8-13). 

 

Type II peptidomimetics, also called functional mimetics, are non-peptidic molecules with the 

ability to bind to the desired receptor. They do not fully mimic the structure of the original 

peptide but instead mimic its interactions with the binding pocket of the receptor, thus leading 

to a biological response.[114] Neurotensin antagonist SR48692 is an example of a type II 

peptidomimetic (Figure 10).[115]  
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Figure 10: Example of a type II peptidomimetic. 

 

Finally, type III peptidomimetics are scaffold-based peptides. This means that all the 

necessary functionalities of the original peptide needed for binding, are present on a non-

peptidic scaffold. [114, 116-117]. An elegant example is the thyrotropin releasing hormone (TRH) 

mimetic (Figure 11), where the peptidic backbone is replaced by a cyclohexane scaffold 

containing all the necessary functionalities for binding.[118]  

 

 

Figure 11: Example of a type III peptidomimetic. 

 

Type I peptidomimetic are the most interesting for us as we are interested in peptide bond 

isosters for the development of radiolabelled peptides with improved tumour-targeting 

properties. This type of type I peptidomimetics includes two types of modifications: backbone 

modifications and amino acid substitutions. Backbone alterations include modifications like 

N-methylation,[6] amide bond reduction,[9] bond extension by introduction of β-amino acids,[92] 

or isosteric replacements. Isosteric replacements can include the replacement of the α-

carbon of an amino acid by nitrogen (azapeptides),[119] or substitution of the nitrogen of the 

amide functionality by a heteroatom such as oxygen (depsipeptide)[120] or sulphur 

(thiodepsipetides).[120-121] Also, small heterocyclic structures like triazoles, thiazoles or 

oxazoles can act as amide bond isosters. [122-124] 
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The purpose of this thesis is the generation of radiolabelled peptidomimetics with a 1,4-1,2,3-

disubsituted triazole as amide bond bioisosters. For this reason, 1,2,3-triazoles, in their 

function as amide bond mimics, will be described in detail in chapter 1.6.2. 

 

1.6.2 Triazoles as Amide Bond Isosters for Peptides 

 

1,2,3-Triazoles are an interesting class of heterocycles in peptide and medicinal chemistry. 

Examples of small molecule drugs containing 1,2,3,-triazoles are tazobactam, a β-lactamase 

inhibitor or cephalosporin-derivatives, a class of orally active antibiotics.[125-127] 1,2,3-Triazoles 

have found applications in bioconjugation,[106, 128] as amino acid mimics (e.g. mimicking 

histidine),[129] in side chain modifications,[130] and have also been described as amide bond 

surrogates[131].  

1,4-Disustituted 1,2,3-triazoles and amide bonds have similar properties in terms of planarity, 

their strong dipole moment and similar H-bonding properties.[132-134] The focus of this work is 

on 1,4-disubstituted triazoles, but both 1,4-disubstituted 1,2,3-triazoles and 1,5-disubstituted 

1,2,3-triazoles have been proposed as amide bond mimics. As shown in Figure 12, 1,4-

disubstituted 1,2,3-triazoles are considered as trans-amide bond isosters and are exclusively 

accessible by CuAAC (copper catalysed azide-alkyne cyclization), whereas 1,5-disubstituted 

1,2,3-triazoles are cis-amide bond isosters and can be selectively synthetized via RuAAC 

(ruthenium catalysed azide-alkyne cyclization).[132] 

 

Figure 12: Comparison of 1,4- and 1,5-substituted triazoles as trans- and cis-amide bond mimics.[132] 

 

One of the first examples of a triazole-containing peptidomimetic was the synthesis of an 

analogue of Cyclo[Pro-Val-Pro-Tyr], a tyrosinase inhibitor isolated from L. helveticus. It is 

worth mentioning that several attempts of synthesising the cyclic tetrapeptide by classical 
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macrolactamisation methods were unsuccessful and cyclization could only be achieved 

through the use of CuAAC. Several analogues of these peptides, containing one or several 

triazoles as amide bond surrogates (e.g. Cyclo-[Pro-Val-(triazole)-Pro-Tyr]) were successfully 

synthesized via CuAAC, with full retention of their function as tyrosinase inhibitors.[135] In 

2009, Horne et al. published triazole-containing analogues of apidicin, a cyclic tetrapeptide 

acting as an inhibitor for HDAC (histone deacetylase). Interestingly, in this case the triazole-

containing analogue developed a different receptor subspecificity than the original 

peptide.[136] Davis et al. reported a triazole-containing analogue of sansalvamide A, a cyclic 

peptide functioning as an inhibitor of heat shock protein 90, with an additional cytotoxic effect 

on several cancer cell lines. Again, the triazole-containing peptidomimetic fully retained the 

cytotoxicity against the tested cell lines.[137] 

Another attractive feature of the use of triazoles as amide bond isosters is their stability 

towards enzymatic degradation. Our group was the first to report a systematic replacement 

of amide bonds by 1,4-disubstituted 1,2,3-triazoles in a short, linear, biologically active 

peptide.[138] The main goal of the project was the improvement of the tumour-targeting 

properties of a DOTA functionalized derivative of [Nle14]BBN (7-14) through the stabilization 

of the peptide moiety. [Nle14]BBN (7-14) is an analogue of the regulatory peptide Bombesin 

with high affinity towards the gastrin releasing peptide receptor, overexpressed in tumours 

like prostate or breast cancer.[46] The systematic replacement of each amide bond by 1,2,3-

triazoles in the peptide sequence (termed ‘triazole scan’) led to the identification of a series 

of radio-peptidomimetic with retained nanomolar receptor affinity and an up-to-fivefold 

improved serum stability (Figure 13). Compound 5 exhibited a 2-fold in vivo uptake in the 

tumour when compared to the unmodified [Nle14]BBN (7-14) sequence, probably as the result 

of its prolonged blood circulation time in vivo. The in vitro properties of the triazole-analogues 

of ‘triazole scan’ of BBN were superior to that of other reported peptide bond substitution 

strategies.[138-139]  

 

Figure 13:  New stabilized triazole-containing [Nle14]BBN-analogues with half-life in serum, cell 
internalisation and KD data in PC3 cells.[138] 

Compound Structure[a] 
half-life 

[hrs][b] 

% uptake 

after 4 h[c][e] 

KD
[e][f] 

[nM] 

1 (reference) [
177

Lu]DOTA-PEG4-Gln-Trp-Ala-Val-Gly-His-Leu-Nle-NH2 5 27.7 2.0 ± 0.6 

2 [
177

Lu]DOTA-PEG4-Gln-Trp-Ala-Val-Gly-His-Leu-Nleψ[Tz]-H 6 29.1 3.0 ± 0.5 

3 [
177

Lu]DOTA-PEG4-Gln-Trp-Ala-Val-Gly-His-Leuψ[Tz]Nle-NH2 60 0.2 n.d. 

4 [
177

Lu]DOTA-PEG4-Gln-Trp-Ala-Val-Gly-Hisψ[Tz]Leu-Nle-NH2 >100 n.o.[d] n.d. 

5 [
177

Lu]DOTA-PEG4-Gln-Trp-Ala-Val-Glyψ[Tz]His-Leu-Nle-NH2 17 28.3 3.1 ± 1.0 

6 [
177

Lu]DOTA-PEG4-Gln-Trp-Ala-Valψ[Tz]Gly-His-Leu-Nle-NH2 25 8.4 48.6 ± 11.5 

7 [
177

Lu]DOTA-PEG4-Gln-Trp-Alaψ[Tz]Val-Gly-His-Leu-Nle-NH2 16 24.5 5.9 ± 1.8 

8 [
177

Lu]DOTA-PEG4-Gln-Trpψ[Tz]Ala-Val-Gly-His-Leu-Nle-NH2 8 n.o.[d] n.d. 

9 [
177

Lu]DOTA-PEG4-Glnψ[Tz]Trp-Ala-Val-Gly-His-Leu-Nle-NH2 14 n.o.[d] n.d. 

10 [
177

Lu]DOTA-PEG
4
ψ[Tz]Gln-Trp-Ala-Val-Gly-His-Leu-Nle-NH2 5 0.5 n.d. 

 [a] ψ[Tz] represents the replacement of an amide bond by a 1,4-disubstituted [1,2,3]-triazole; [b] determined in blood serum at 
37 °C; [c] specific surface-bound and internalized ratio in % of administered dose normalized to 106 cells; [d] n.o. : not observed; 
no specific binding or internalization was detected at a peptide concentration of 2.5 pmol/well; [e] all the values are means of at 
least two experiments performed in triplicates; [f] determined by receptor saturation binding assay; n.d.: not determined. 
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This thesis represents an extension to ‘triazole scan’ methodology to NT (8-13). The 

peptidomimetics described contain 1,4-disubstituted 1,2,3-triazoles in their sequences. The 

1,2,3-triazoles were prepared on solid-phase by combination on Fmoc solid phase peptide 

chemistry, diazo-transfer and CuAAC. In the following chapters, details of the CuAAC 

synthesis (chapter 1.6.3) and of the synthesis of chiral azido acids (chapter 1.6.4) and chiral 

α-amino alkynes building blocks (chapter 1.6.5) will be described. 

 

1.6.3   The Chemistry of 1,4-Disubstituted 1,2,3-Triazoles 

 

The great advantage of 1,4-disubstituted 1,2,3-triazoles is their straightforward synthesis. 

They can be readily synthesized with high efficiency from terminal alkynes and azides via the 

CuAAC reaction.[140-141] The chemospecificity and efficiency of the reaction, paired with the 

fact that alkynes and azides are relatively inert in the absence of copper (I), makes the 

CuAAC a very attractive reaction in all fields of chemistry, particularly for bioconjugation 

applications. 

The Huisgen dipolar cycloaddition of alkynes and azides was discovered by Rolf Huisgen in 

the early 1960s.[142-143] However, the Huisgen dipolar cycloaddition requires elevated 

temperatures and usually results in a mixture of the 1,4- and 1,5-regioisomers. In 2002, the 

groups of Meldal[140] and Sharpless[141] simultaneously discovered the catalytic effect of Cu(I) 

on the Huisgen dipolar cycloaddition (CuAAC). The CuAAC reaction belongs to a class of 

reactions termed ‘click chemistry’, a terminology popularised by Sharpless and his co-

workers since 1999.[144-145] As stated by Sharpless ‘Click chemistry’ reactions must be 

‘modular, wide in scope, give very high yields, generate only inoffensive by-products that can 

be removed by nonchromatographic methods and be stereospecific (but not necessarily 

enantioselective)’.[145] CuAAC fulfils the majority of these criteria. The starting materials, 

alkynes and azides, are ready available, easy to install, relatively chemically inert and 

extremely stable under standard conditions. The reaction yields exclusively 1,4-disubstituted 

1,2,3-triazoles and can be performed in a wide variety of solvents (e.g. DMF, DMSO, tBuOH 

or H2O). Additionally, elevated temperatures are not required during the reaction and it is 

mostly unaffected by steric factors.[146] 

The Cu(I) source for the catalysis can be provided by Cu(II)-salts (e.g. copper(II)sulphate 

pentahydrate), which are then reduced in situ to Cu(I) with a reducing agent (e.g. sodium 

ascorbate). Alternatively, Cu(I) can be introduced directly to the reaction in form of Cu(I)-salts 

(e.g. CuBr) or Cu(I)-complexes (e.g. tetrakis(acetonitrile)copper(I) hexafluorophosphate).[147] 

Since Cu(I) is unstable in aqueous solutions and has a tendency to disproportionate into 
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Cu(0) and Cu(II), stabilizing ligands were soon developed after the initial description of the 

reaction. From a series of polytriazole-based ligands, TBTA (tris[1-benzyl-1H-1,2,3-triazol-4-

yl)methyl]amine) turned out to be the most effective one in most cases.[148] In aprotic 

solvents, the most common bases applied in this reaction are Hünig’s base or NEt3.
[147] 

The mechanism of the CuAAC is not yet fully understood. In 2013, Fokin performed 

crossover experiments with a 63Cu-enriched catalyst. This study gave evidence that the 

CuAAC mechanism involves a dinuclear copper intermediate. The presence of this dinuclear 

copper intermediate was verified with TOF-MS. The proposed catalytic model for the CuAAC 

with two copper atoms is shown in Scheme 1. 

 

Scheme 1: Catalytic cycle of the CuAAC reaction proposed by Fokin.[149]  

 

It is hypothesised that in the first step of the reaction, the alkyne undergoes a π-complex with 

the Cu-catalyst. The π-complexation with the Cu-catalyst lowers the pKa of the alkyne and a 

deprotonation of the alkyne occurs (in organic solvents a proton acceptor is required) and a 

Cu-acetylide is formed.[150] In the following step, the Cu-acetylide undergoes a π-

complexation with a second molecule of the Cu-catalyst, forming intermediate 4. The azide 

then coordinates to the dinuclear Cu-acetylide complex resulting in its activation towards 

nucleophilic attack. The N-3 of the azide can then attack the C-4 of the alkyne and a 

dinuclear Cu-triazole complex 5 is formed. Protonation of the triazole, followed by the release 

of the catalyst closes the catalytic cycle.[146, 150-151] 
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1.6.4 Preparation of α-Azido Acids 

  

Organic azides are energy-rich substances with a wide scope of applications, from medicinal 

chemistry (e.g. as protecting group for amines) to the development of explosive agents. 

Since the discovery of the CuAAC[140, 152] and the Staudinger ligation,[153] azides have 

regained the attention of the organic chemistry community.  Azides can be synthetized in 

different ways. One method is the introduction of a N3-group via nucleophilic substitution of a 

halogen or sulfonate precursor by an azide anion. The complication of this method is the 

inversion of the chiral centre during the reaction when the leaving group is attached to a 

chiral centre. Another method is the introduction of a N2-group to a primary amine, also 

called diazo-transfer. Diazo-transfer a very popular method and best suited for the synthesis 

of α-azido acids. Older methods include the diazotisation of a hydrazine and the cleavage of 

triazenes.[154] Reaction examples of each of these methods to generate azides are shown in 

Figure 14. 

 

 

Figure 14:   Examples of reactions for the preparation of azides. A) Substitution via SNAr-reaction.[155] 
B) Diazo-transfer.[156] C) Diazotisation.[157] D) Cleavage of triazenes.[158]   

 

The diazo-transfer reaction is the method of choice for the introduction of an azide into a 

molecule when racemization, epimerization or the inversion of a chiral centre are to be 

avoided. One of the most efficient diazo transfer reagents for the preparation of organic 
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azides from primary amines is trifluoromethanesulfonyl azide (TfN3), introduced by Cavender 

and Shiner in 1972.[159] The diazo-transfer reaction gained new attention in 1996, when Wang 

and co-workers discovered that the addition of substoichiometric amounts of metallic ions 

such as Cu(II) and Zn(II) salts, greatly increases the yields and the kinetics of the 

reaction.[160] However, TfN3 is reported to be explosive and having a poor shelf-life. For this 

reason it is generated in situ by the reaction of Tf2O with NaN3 (Scheme 2).  

 

 

Scheme 2: Diazo-transfer reaction by Wong: i) TfN3, CuSO4, K2CO3, H2O, MeOH, CH2Cl2. 

 

As an alternative to the explosive TfN3, Goddard-Borger and Stick published in 2007 the 

synthesis of imidazole-1-sulfonyl azide hydrochloride (6) (Scheme 3), an efficient and shelf-

stable diazo-transfer reagent in crystalline form.[161] Unlike TfN3, the imidazolylsulfonylazide is 

soluble in a wide range of solvents such as methanol or DMF and can easily be used for 

solid phase diazo-transfer, even in the absence of a metal catalyst.[162] Further alternatives of 

TfN3 include benzotriazol-1-yl-sulfonyl azide (7), developed in 2010 by the group of Steel,[163] 

(Scheme 3) as well as 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (8), reported 

in 2011 by the group of Okauchi.[164] Today imidazole-1-sulfonyl azide hydrochloride (6) has 

been established as the standard diazo-transfer reagent, as reagents (7) and (8) have been 

developed recently and there is still a lack of synthetic reports confirming their efficacy. 

 

 

Scheme 3:  Selection of diazo-transfer reagents: imidazole-1-sulfonyl azide hydrochloride (6), 
benzotriazol-1-yl-sulfonyl azide (7) and 2-azido-1,3-dimethylimidazolinium 
hexafluorophosphate (8). 
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The mechanism of the metal catalysed conversion of an amine into an azide proposed by 

Wong and co-workers is shown in Scheme 4 and involves a tetrazene intermediate 9. In 

recent mechanistic studies, the group of Samuelson further corroborated this proposed 

mechanism of the catalytic cycle performing experiments with 15N and 13C-enriched amino 

acids.[165] 

 

 

Scheme 4: Mechanism for copper assisted diazo-transfer as proposed by Wong.[166] 

 

However, the catalyst is not necessary a prerequisite for the reaction to occur, which is very 

useful for biological applications of the reaction, as heavy metals like copper are toxic for 

many biological systems.[162, 167] Therefore, there must be another reaction mechanism for 

the amine-azide transformation without a copper-catalyst. Thus, the group of Samuelson 

hypothesized that in the absence of a catalyst the amine attacks the terminal nitrogen of the 

azide forming  intermediate 10, which subsequently releases the azide 11 and the imidazole 

12 (Scheme 5). 

 

 

Scheme 5: Proposed mechanism for a catalyst free diazo-transfer.[165] 
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1.6.5 Synthesis of Chiral α-Amino Alkynes 

 

Terminal alkynes are widely used in organic chemistry, e.g. as substrates for the 

Sonogashira cross-coupling reaction,[168] the Grubbs olefin metathesis[169] or the synthesis of 

triazoles via CuAAC or RuAAC. 

For the synthesis of 1,4-disubsituted 1,2,3-triazoles as amide bond mimics in peptides chiral 

α-amino alkynes are needed. The easiest way to date for the synthesis of these compounds 

is starting from amino acid derivatives. Three reactions can be used: Corey-Fuchs reaction, 

Seyferth-Gilbert rearrangement or Colvin rearrangement. The starting materials for all three 

reactions are α-amino aldehydes, easily accessible from amino acids by a simple reduction. 

Historically, the Corey-Fuchs procedure was the first example.[170] In this reaction, somewhat 

reminiscent of the Wittig reaction, an aldehyde 13 is converted into a dibromoolefin 14, which 

then upon treatment with n-buthyllithium and aqueous workup results in a terminal alkyne 15 

(Scheme 6).  

 

 

Scheme 6: Corey-Fuchs synthetic route to terminal alkynes: i) PPH3, CBr4; ii) BuLi, iii) H2O.  

 

However, this procedure is not universal because the reaction conditions are not fully 

compatible with all amino acids, especially those bearing functional groups in their side 

chain. One disadvantage of the Corey-Fuchs method is the possible racemization of the α-

amino aldehyde due to the use of a strong base (BuLi). Other procedures such as the 

Seyferth-Gilbert homologation can be performed under much milder conditions. The 

Seyferth-Gilbert homologation converts aldehydes or ketones into terminal alkynes using 

dimethyldiazomethylphosphonate (Scheme 7). 
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Scheme 7: Seyferth-Gilbert homologation: i) t-BuOK, THF, -78 °C. 

 

The mechanism of the Seyferth-Gilbert homologation is shown in Scheme 8. After the 

nucleophilic attack of the deprotonated dimethyldiazomethylphosphonate on the carbonyl of 

the aldehyde or ketone, an oxophosphetane 16 is formed. A subsequent cyclo-elimination 

yields the diazo-intermediate 17. Alkyne 19 is formed after elimination of N2 and 

rearrangement of the formed carbene 18. 

 

 

Scheme 8: Mechanism of the Seyferth-Gilbert homologation. 

 

All the reactions described above require strictly anhydrous conditions, as well as the use of 

strong bases, which restricts the application to delicate substrates. The use of the Bestmann-

Ohira modification of the Seyferth-Gilbert approach allows the synthesis of the desired 

products under mild conditions, without the use of strong bases.[171] In 2004, Dickson et al., 

published a one-pot approach using the Bestmann-Ohira reagent to obtain terminal 

alkynes.[172] A Weinreb amide 20 is reduced with DIBAL-H to an aldehyde 21 which is then 

converted to an alkyne 22 using the Bestmann-Ohira reagent 23. The mechanism is similar 

to the Seyferth-Gilbert homologation (Scheme 9). The advantage of this approach is, in 

comparison to others, that the isolation of the aldehyde, which is prone to racemization, is 

not required. 
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Scheme 9:  One-pot approach for the synthesis of terminal alkynes: i) DIBAL-H, CH2Cl2, -78 °C; ii) 
Bestmann-Ohira reagent, MeOH, K2CO3, RT. 

 

This reaction is applicable to a wide scope of substrates. We are especially interested in 

amino acids as substrates, as they are easily transformed into Weinreb amides and therefore 

this method is perfectly suitable for the preparation of α-amino alkynes. The only drawback is 

the poor compatibility of K2CO3 with base-labile protecting groups like Fmoc. This issue can 

be solved, however, by the re-installation of the Fmoc-protecting group after the synthesis of 

the terminal alkyne.  

Finally, the Colvin rearrangement is an alternative to the above-described strategies 

(Scheme 10).[173] During this reaction, an aldehyde or a ketone reacts with 

trimethylsilyldiazomethane to afford an alkyne. The Colvin rearrangement follows a similar 

mechanism as the Seyferth-Gilbert homologation, but it requires lower temperatures and the 

use of a strong base.[174-176] 

 

 

Scheme 10: Colvin rearrangement: i) TMSC(Li)N2.  
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2. Objectives 

 

The development of tools for early diagnosis and efficient therapy is the key to a 

personalized treatment of cancer. Towards this goal, within nuclear medicine, targeting 

radiopeptides have a high potential for the imaging and treatment of tumours, because of 

their high sensitivity and low side-effects. Neurotensin in general and its binding sequence 

NT (8-13) (Arg8-Arg9-Pro10-Tyr11-Ile12-Leu13) in particular, are ideal candidates for the 

development of new targeted radiopharmaceuticals. NT (8-13) has a high affinity and 

specificity towards NTR1, a receptor which is overexpressed by colon, breast, pancreas and 

small cell lung cancer.[1-2, 77-79] However, the challenge associated with the use Neurotensin 

as a tumour-targeting vector is its rapid degradation by peptidases and proteases in vivo.[84] 

Because of the poor metabolic stability, a radiolabelled NT (8-13)-based conjugate is more 

often than not degraded before reaching the targeted tissue (tumour). Thus, an increased 

tumour uptake is expected to be achievable by stabilization of the NT (8-13) sequence 

against proteolysis. 

Several strategies for the stabilization of radiolabelled peptides have more or less 

successfully been applied to NT (8-13), such as reduction or methylation of amide bonds,[6, 9] 

amino acid substitution,[6, 86] or multimerisation.[87, 177] However, only one compound has so 

far reached a phase I clinical trial.[7] Thus, there is a need for new stabilization techniques 

which provide new metabolically stable NT (8-13) analogues with improved tumour-targeting 

properties. 

The aim of this project is the identification of radiolabelled NT (8-13) derivatives with 

improved properties for tumour targeting. This includes the systematic replacement of 

backbone amide bonds within the NT (8-13) sequence with 1,4-disubstituted triazoles 1,2,3-

triazoles (‘triazoles scan’). 1,4-disubstituted triazoles are known amide bond bioisosteres, 

whose incorporation into peptides can lead to proteolysis-resistant peptidomimetics, as the 

triazole moiety cannot be degraded by peptidases. This novel stabilisation strategy has 

already been successfully applied to the binding sequence of the peptide bombesin.[138]  

The presented thesis is divided into four main parts: 

1) In a first step the influence of a spacer between the peptidic part and the chelator 

within the structure of DOTA-substituted NT (8-3) analogues is investigated with the 

aim of improving the tumour-targeting properties of this kind of radiopharmaceuticals. 

In doing so, a NT (8-13)-based peptide conjugate, in which the chelator is directly 

attached to the binding sequence will be compared side-by-side with two NT (8-13) 

peptide conjugates, each having a different spacer, one hydrophilic 
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(tetraethylenglycol, PEG4) and one lipophilic (6-aminohexanoic acid, Ahx). After 

preparation of the peptide conjugates on solid phase, the three DOTA-X-NT (8-13) 

analogues (X: no spacer, PEG4 or Ahx) are radiolabelled with [177Lu]LuCl3 and 

evaluated in vitro. The in vitro evaluation includes quantification of the internalisation 

of the peptide conjugates into NTR1 expressing HT-29 cells (colon adenocarcinoma) 

and determination of the receptor affinities and specificities. Additionally, 

measurements of the lipophilicity of the conjugates (log D) and their metabolic 

stability in human serum are performed. The spacer with the best biological 

properties in these studies will be used for the ‘triazole scan’ work described below. 

 

2) In the second part of this thesis describes the synthesis and biological evaluation of 

the peptide conjugates of the ‘triazole scan’. Every backbone amide bond within the 

NT (8-13) sequence but the Arg9-Pro10 position will be substituted, one at the time, 

with a triazole, yielding six different triazole backbone-modified NT (8-13) analogues. 

If more than one amide bond can be substituted with a triazole without loss of 

receptor binding affinity, conjugates with multiple triazoles will also be synthesized 

and evaluated. All the peptides are attached N-terminally to a DOTA chelator via the 

optimal spacer identified in the first part of this thesis. After labelling with [177Lu]LuCl3, 

a full in vitro evaluation (see part 1) is performed. The incorporation of the triazole 

moieties into the peptides is achieved via solid phase copper (I) azide-alkyne 

cycloaddition (CuAAC) on solid support. The azide functionality is incorporated N-

terminally into the peptide directly on solid phase, whereas the α-amino alkynes are 

synthesized in solution and fully characterized.  

 

3) In the third part of the thesis, the investigation of a second generation of NT (8-13) 

triazole-peptides will be described. In this second generation of triazole-modified NT 

(8-13) analogues, amino acid substitutions within the NT (8-13) sequence will be 

examined as a means for further improvement of its metabolic stability in addition to 

the backbone modification (see part 2). More precisely, Ile12 will be substituted with 

Tle12, as this modification has been described in literature to have a positive effect on 

the metabolic stability of a NT (8-13) analogue.[6, 84, 86, 105] After the synthesis of the 

triazole-containing [Tle12]-NT (8-13) analogues, a full biological evaluation (see part 

1), is performed. 

 

4) The final part of this work describes the in vivo evaluation of the triazole backbone-

modified, 177Lu-labelled DOTA/NT (8-13) conjugates identified in parts 1-3 of this 

thesis. The in vivo evaluation includes biodistribution experiments in a mouse model 
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with an implanted NTR1 expressing HT-29 tumour xenograft. Based on the results of 

these biodistribution studies, in vivo SPECT-imaging will be performed with selected 

compounds. 

A schematic representation of the work described in this thesis is shown in Figure 15: 

 

 

Figure 15: Schematic representation of this study.
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3. Results and Discussion 

 

 Identification of a Suitable Spacer  3.1

 

The nature of a spacer moiety between a tumour-targeting vector (e.g. peptide) and a 

radiometal chelate (see chapter 1.5.3.2) is known to influence potentially the 

pharmacological properties of a radiometal-peptide conjugate. For example, the lipophilicity 

of a spacer moiety, or its absence, can change the properties of radiolabelled tracers.[94, 100, 

178-181]  Because no systematic evaluation of the effect of spacers has yet been described for 

radiometallated NT (8-13) analogues, we set out to investigate three different conjugates. In 

addition to a derivative without a spacer, two conjugates bearing different uncharged 

spacers, 6-aminohexanoic acid (Ahx) and tetraethylenglycol (PEG4) were examined. Both 

have been used successfully in radiometal-peptide conjugates and differ with respect to their 

lipophilicity.[94, 100, 182-183]  All three conjugates were functionalized with the universal 

macrocyclic chelator 1,4,7,10-tetrazacylododecane-1,4,7,10-tetraacetic acid (DOTA) and 

labelled with [177Lu]LuCl3. 
177Lu is a radiometal with a half-life of 6.9 days with β- and γ-

radiation and is therefore suitable for both diagnostic and therapeutic applications (see 

chapter 1.4.2.1). The structures of the NT (8-13) analogues AM-NT 1 (without a spacer), AM-

NT 2 (PEG4-spacer) and AM-NT 3 (Ahx-spacer) are shown in Figure 16. 

 

 

Figure 16: Structures of radiolabelled NT (8-13) conjugates [177
Lu]-AM-NT 1-3. 
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3.1.1 Synthesis of NT (8-13) Analogues AM-NT 1-3 

 

The three peptides (AM-NT 1-3) were synthesised manually on solid support (Fmoc-L-Leu-

PEG-PS resin), using standard Fmoc peptide chemistry (Scheme 11). Amino acids (Fmoc-

Ile-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Pro-OH and Fmoc-Arg(Pbf)-OH), were coupled in DMF 

(dimethylformamide), using HATU (1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-

b]pyridinium 3-oxid hexafluorophosphate) as a coupling reagent and Hünig’s base as a base. 

After the coupling, a Kaiser test was performed to verify the completion of the amide bond 

formation. 
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Scheme 11:   Example of the synthesis and radiolabelling of a NT (8-13)-based peptide conjugate 
(AM-NT 2). i) Fmoc-AA-OH, HATU, Hünig’s base, DMF, 2 h, RT. ii) 20% piperidine in 
DMF, 10 min, RT. iii) Fmoc-PEG4-CO2H or DOTA-(tris-tBu)3, HATU, Hünig’s base, DMF, 
2 h, RT; iv) TFA/H2O/PhOH/iPr3SiH, 6 h, RT; v) [177Lu]LuCl3, ammonium acetate buffer 
(pH 4.5), 30 min, 100 °C. 
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After completion of the amino acid sequence, the N-terminal Fmoc-protecting group was 

cleaved using 20% piperidine in DMF as reagent. The spacer and the chelator were installed 

using the same coupling conditions as for the coupling of amino acids, with Fmoc-PEG4-

CO2H or DOTA-(tris-tBu)3. Finally, the complete peptide conjugates were cleaved off the solid 

support under acidic conditions, purified via preparative HPLC and recovered by 

lyophilisation. The obtained compounds were characterized by means of analytical HPLC as 

well as high-resolution electron spray mass spectrometry (ESI-HRMS). All three conjugates 

were obtained in satisfactory yields and with high purity. Table 17 shows the structures of 

AM-NT 1-3 and their analytical data. 

Table 17: Structures of peptide conjugates AM-NT 1- 3 and their analytical data. 

 Structure MW 

(g/mol) 

ESI-HRMS 

[M+2H+]2+ 

Yield 

 (%) 

Purity 

 (%) 

AM-NT 1 DOTA-Arg-Arg-Pro-Tyr-Ile-Leu 1202.68 602.36 70 > 98 

AM-NT 2 DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu 1449.82 725.92 2 > 98 

AM-NT 3 DOTA-Ahx-Arg-Arg-Pro-Tyr-Ile-Leu 1315.76 439.59a 3 > 98 

a[M+3H+]3+. 

Subsequently, the DOTA-substituted peptide conjugates were labelled with [177Lu]LuCl3 in a 

buffered solution (ammonium acetate buffer, pH 5.0) at elevated temperature (30 min, 100 

°C). After labelling, the radiochemical yields and purities were determined by γ-HPLC (Table 

18). Due to the presence of the chelator, the peptide conjugates were handled only with 

plastic spoons or pipettes, in order to avoid contamination with other metals. The labellings 

were reproducible and failed only occasionally, likely because of the presence of metal 

impurities despite the precautions taken. High radiochemical purities and radiochemical 

yields were achieved. The structures of the radiolabelled peptide conjugates [177Lu]-AM-NT 

1-3 and their radiochemical yields are shown in Table 18. 

Table 18: Radiolabelled peptide conjugates [177
Lu]-AM-NT 1-3 and radiolabelling yields and purities 

achieved. 

 Structure 
Radiochemical 

Yield (%) 

Radiochemical 

Purity (%) 

[
177

Lu]-AM-NT 1 [177Lu]-DOTA-Arg-Arg-Pro-Tyr-Ile-Leu 

> 95 > 98 [
177

Lu]-AM-NT 2 [177Lu]-DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 3 [177Lu]-DOTA-Ahx-Arg-Arg-Pro-Tyr-Ile-Leu 

 

The specific activities (radioactivity per unit of mass of the compounds) of the radiolabelled 

peptide conjugates were chosen depending on the type of experiment planned. For cell 

internalisation and receptor binding affinity experiments, a low specific activity was sufficient 

(~ 6 MBq/nmol), whereas for serum stabilities and in vivo experiments a higher specific 
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activity was required (~ 21 MBq/nmol). Further details are described in the experimental 

section of this work. 

 

3.1.2 Biological Investigation of Peptide Conjugates [177Lu]-AM-NT 1-3  

 

A full investigation of the physico-chemical and biological properties (internalisation in HT-29 

cells, binding affinity and specificity towards NTR1, lipophilicity and metabolic stability) of the 

peptide conjugates [177Lu]-AM-NT 1-3 was performed. The results of these experiments are 

summarized in the Table 19. 

Table 19:  Summary of physico-chemical and biological properties of [177
Lu]-AM-NT 1-3. 

 
Internalisation 

after 4 h (%) KD (nM) Bmax (nM) Log D 
Stability 

t1/2 (min) 

[
177

Lu]-AM-NT 1 3.0 ± 0.2 14.9 ± 0.7 0.5 -2.5 6.1 

[
177

Lu]-AM-NT 2 7.3 ± 0.4 3.8 ± 0.9 0.4 -2.6 39.4 

[
177

Lu]-AM-NT 3 5.6 ± 0.4 3.4 ± 1.5 0.3 -2.3 10.0 

 

The cell internalisation properties of [177Lu]-AM-NT 1-3 were investigated using NTR1-

expressing HT-29 cells (human colon adenocarcinoma). HT-29 cells were seeded out the 

day prior to the experiment in six-well plates. On the day of the experiment, each 

radiolabelled conjugate was administered to the cells and was incubated in cell culture 

medium for 30, 60, 120 and 240 min. The medium was then removed and the cells were 

washed with PBS (free fraction). The peptide conjugate bound to the receptor was then 

released by washing with acidic glycine-NaCl buffer at pH 2.8 (bound fraction). Finally, the 

radiolabelled conjugate internalized in the cells was recovered by incubation with 1 M NaOH 

aqueous solution (internalized fraction). The different fractions were then measured on a 

gamma-counter. Blocking experiments to confirm the specificity of the cell internalisation 

were performed as a control in each experiment, by the addition of a 1000-fold excess of NT 

(8-13) to the cells. The non-specific uptake was always less than 0.3% of the total peptide 

conjugate incubated. The receptor bound fraction was always negligible (0.1-0.5% of total 

peptide conjugate incubated). Specific internalisation kinetics (total cell internalisation minus 

non-specific cell internalisation) are shown in Figure 17 for the examined compounds 

[177Lu]-AM-NT 1-3. 
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Figure 17: Cell internalisation results of [177
Lu]-AM-NT 1-3. 

 

The introduction of the PEG4-spacer led to the peptide conjugate with the highest 

internalisation rate, [177Lu]-AM-NT 2, followed by [177Lu]-AM-NT 3, the analogue with the 

Ahx-spacer and [177Lu]-AM-NT 1, without any spacer. The observed internalisation rates are 

in the range of values described in literature for related radiometallated NT derivatives.[98]  

To determine the receptor affinity of the three radiolabelled conjugates towards NTR1, 

receptor saturation experiments were performed, resulting in KD values measured in nM. The 

seeded cells were treated with each of the radiolabelled peptide conjugates in various 

concentrations (0.1-200 nM) and incubated in cell culture medium (1 h at 37 °C). After 

incubation, the medium was removed and the cells were washed. These fractions represent 

the free fraction. The bound fraction was obtained by lysis of the cells with 1 M NaOH. 

Blocking experiments to confirm binding specificity were performed by addition of a 1000-fold 

excess of NT (8-13) to the cells. The different fractions were measured with a gamma 

counter. The specific bound fraction was calculated as the result of the total bound fraction 

minus the non-specific bound fraction. After non-linear regression of the saturation curve, the 

KD and Bmax values were calculated. KD is, as an indication of receptor affinity, the equilibrium 

dissociation constant between the peptide conjugate and the receptor and Bmax is the 

maximum number of binding sites per 1 million cells. The saturation curves of [177Lu]-AM-NT 

1-3 are shown in Figure 18: 
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Figure 18: Results of receptor saturation experiments of [177
Lu]-AM-NT 1-3. 

 

The three peptide derivatives exhibited a high affinity towards the NTR1 receptor, in the low 

nanomolar range. However, the conjugates functionalized with a spacer moiety, [177Lu]-AM-

NT 2 and [177Lu]-AM-NT 3, exhibited more favourable KD values than the analogue without 

the spacer, [177Lu]-AM-NT 1. With a KD value of 14.9 ± 0.7 nM, the latter had almost a five 

times lower affinity to the NTR1 receptor than [177Lu]-AM-NT 2 and [177Lu]-AM-NT 3 with KD 

values of 3.8 ± 0.9 and 3.4 ± 1.5 nM, respectively. 

As the nature of the spacer can influence the lipophilicity of the peptide conjugates, log D 

values were also determined. Log D is the logarithm of the distribution coefficient of a 

molecule between in n-octanol and PBS (pH 7.4). Each radiolabelled peptide conjugate was 

added to a mixture of n-octanol/PBS (1:1), the mixture was shaken vigorously and then 

centrifuged. Then, samples of the n-octanol phase and of the PBS phase were withdrawn 

and analysed in a gamma counter. The lipophilicity of the three NT (8-13) analogues 

appeared not to be affected by the spacer. The peptide conjugates displayed log D values 

between -2.3 and -2.6, demonstrating an overall hydrophilic character of the peptide 

conjugates.  

Finally, the serum stabilities of [177Lu]-AM-NT 1-3 were evaluated. Fresh human serum (not 

older than a month; conserved at -20 °C) from healthy donors was used. The radiolabelled 

peptide conjugates were added to the serum and incubated at 37 °C. The incubation times 

were chosen based on preliminary experiments. At different time points, aliquots of serum 

were taken and the serum proteins were precipitated with ethanol. After several 

centrifugation and washing steps, the supernatant was diluted with H2O and analysed by γ-

HPLC. The final dilution with H2O turned out to be very important, otherwise, co-elution of the 

radiolabelled metabolites and the intact peptide conjugate was observed in the HPLC 

chromatogram. In Figure 19, two HPLC profiles of the same sample, one without dilution 

with water (A) and one with dilution with water (B) are shown. 
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Figure 19: A: γ-HPLC track of [177
Lu]-AM-NT 2 in serum, 5 min incubation, without dilution in water. B: 

γ-HPLC track of [177
Lu]-AM-NT 2 in serum, 5 min incubation, with dilution in water. 

 

[177Lu]-AM-NT 1-3 degraded rapidly in human serum. The half-lives of [177Lu]-AM-NT 1-3 

were calculated from the data shown in Figure 20, fitting the degradation curve with the 

equation A(t) = exp(-xt) (t1/2= x/ln2). The spacer-free compound showed a half-life of ca. 6 

min, compound [177Lu]-AM-NT 3, with the Ahx-spacer, displayed slightly more stable with a 

half-life of 10 min and [177Lu]-AM-NT 2, with the PEG4-spacer, was the most stable 

conjugate with a half-life of almost 40 min. Conjugate [177Lu]-AM-NT 1 was completely 

degraded after 30 min and [177Lu]-AM-NT 3 after 1 h. However, peptide conjugate [177Lu]-

AM-NT 2 was not degraded completely until 4 h of incubation. 
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Figure 20: Serum stabilities of [177
Lu]-AM-NT 1, [177

Lu]-AM-NT 2 and [177
Lu]-AM-NT 3. 

 

 

3.1.3 Discussion of the In Vitro Evaluation of [177Lu]-AM-NT 1-3 

 

The presence of a spacer moiety in DOTA-NT (8-13) seems to be favourable, as both 

[177Lu]-AM-NT 2 and [177Lu]-AM-NT 3 displayed higher internalisation rates and binding 

affinities towards NTR1 than the spacer-free parent compound [177Lu]-AM-NT 1. The 

observed receptor binding affinities are comparable to the values described in literature for 

related radiometallated NT derivatives.[84] 

Interestingly, the lipophilicity of the peptide conjugates seemed neither affected by the 

presence or absence of a spacer nor by its chemical composition. We can hypothesize that 

this is due to the intrinsic hydrophilicity of the peptide sequence and the presence of the 

large-sized hydrophilic metal complex. They all exhibited a hydrophilic character, a 

favourable characteristic for a radiometal-labelled peptide conjugate as the likelihood of an 

unspecific liver-accumulation in vivo due to hepatobiliary excretion is reduced.  

Whereas the receptor binding properties were unaffected by the nature of the spacer (PEG4 

or Ahx), the serum stability experiments revealed the superiority of the PEG4-spacer in terms 

of metabolic stability. Thus, compared to the analogue without a spacer, the introduction of a 

PEG4-spacer into the NT (8-13) conjugate was not only beneficial in terms of cell 

internalisation and an improved KD, but also increased substantially (by a factor 6) its 

metabolic stability. 

However, a literature survey suggested that the achieved stabilization of the NT (8-13) 

peptide conjugate by employing a spacer may not yet be sufficient for clinical applications. 

Thus, further stabilization of NT (8-13) by chemical modifications is the subject of the main 
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project of this thesis, for which [177Lu]-AM-NT 2 served as both a starting point and reference 

compound in terms of biological activity and metabolic stability. 
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 ‘Triazole Scan’ of NT (8-13) 3.2

 

After the identification of PEG4 as the most suitable spacer for DOTA-NT (8-13) conjugates, 

a series of triazole-containing NT (8-13) analogues were synthesized and evaluated 

biologically. Figure 21 shows all the positions that allow for the introduction of a 1,4-

disubstituted 1,2,3-triazole as an amide bond mimic. The position Arg9-Pro10 could not be 

modified because the secondary amine of the proline does not allow the introduction of an 

azide functionality. After identification of the amide bonds of NT (8-13) that can be replaced 

with a triazole without inducing a significant loss of the biological properties, conjugates with 

multiple triazoles were synthesized and evaluated. The synthesis of the building blocks and 

peptide conjugates as well as the challenges encountered during this work are discussed in 

detail in chapters 3.2.1, 3.2.2 and 3.2.3. 

 

 

Position Azide
 

Alkyne 

1 - Leu 

2 Leu Ile 

3 Ile Tyr 

4 Tyr Pro 

5 Arg Arg 

6 Arg PEG4 

Figure 21: Schematic representation of [177Lu]-DOTA-PEG4-NT (8-13) and all modifiable positions and 
a summary of the needed azide and alkyne building blocks. 
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3.2.1 Synthesis of Precursors 

 

 Synthesis of α-Azido Acids 3.2.1.1

 

The synthesis of the azides was originally planned to be performed in solution, by introducing 

an azide into commercially available amino acids via a diazo transfer reaction. The diazo 

transfer reagent required for this transformation, imidazole-1-sulfonyl azide hydrochloride (6), 

was synthesized following the protocol first described by Goddard-Borger and Stick.[184] The 

α-azido acids were then synthesized then according to the Scheme 12. 

 

H2N CO2H

R1 6

i, ii N3 CO2H

R1
HN N S

O

O

N3

Cl 6  

Scheme 12:   General synthesis approach for α-azido acids: i) imidazole-1-sulfonyl azide 
hydrochloride (6), K2CO3, CuSO4, MeOH, RT, 12 h. 

 

The benefit of this synthetic strategy lies on the retention of the chirality of the amino acid, 

the chemospecificity of the conversion and the mild reaction conditions. Despite these 

advantages, the use of this synthetic strategy failed to provide N3-Tyr(tBu)-OH. During these 

investigations, a paper by Löwik and co-workers was published which describes the 

feasibility of a diazo-transfer reaction on solid support. This prompted us to abandon solution 

phase synthesis and instead, perform the diazo-transfer reaction directly on solid support.[162] 

The preparation of α-azido peptides on solid phase does not require the presence of a metal 

catalyst (Scheme 13). 

 

Resin(AA)nNH2 Resin(AA)nN3

6

i  

Scheme 13: Schematic representation of the synthesis of azides on solid phase. i) imidazole-1-
sulfonyl azide hydrochloride (6), Hünig’s base, 1 h, RT. 

 

The solid phase synthesis of azides was very efficient and saved time and resources. The 

presence of the azides on the resin was confirmed after each synthesis with a colorimetric 
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test developed by Punna and Finn.[185] This test uses the Staudinger reaction to reduce the 

azides to amines, which can then be detected with the Kaiser test. Blue coloured beads 

reveal the presence of free amines when using the classical Kaiser test. Reddish coloured 

beads confirm the presence of azides on the solid phase (Scheme 14). In order to obtain a 

reliable result, the phosphine-solution was applied first to the resin beads and heated and 

then the Kaiser test was performed. 

 

R NH2

i, ii, iii

blue beads

R NH2

i, ii, iii

red beads

R N3

iv

Kaiser Test

Colometric Test for Azides

 

Scheme 14: Schematic representation of the Kaiser test and the colorimetric test for azides. i) KCN in 
aq. pyridine; ii) Ninhydrin in ethanol; iii) Phenol in ethanol; iv) PPH3 in ethanol, H2O. 

 

 

 Synthesis of α-Amino Alkynes 3.2.1.2

 

The required α-amino alkynes were synthetized by reduction of the corresponding Weinreb 

amide to an aldehyde, followed by a Seyferth-Gilbert homologation. The use of a mild base 

such as potassium carbonate or potassium tert-butoxide is necessary for the Seyferth-Gilbert 

homologation. However, the presence of such reagents also leads to partial or complete 

cleavage of the Fmoc protective group. Thus, two different synthetic strategies were 

developed. α-amino alkynes without acid-labile protective groups in their side-chains 

(isoleucine, proline and leucine) were synthesized starting from Boc-protected amino acids 

whereas α-amino alkynes with functional groups in the side chain (arginine and tyrosine) 

were synthesized from Fmoc-protected amino acids. Both strategies are explained in detail in 

chapters 3.2.1.2.1 and 3.2.1.2.3. 

Due to the formation of a substituted α-amino aldehyde intermediate, which is prone to 

racemization, the enantiomeric purity of the alkyne building blocks had to be verified in each 

case. This will be described in chapter 3.2.1.2.4. The structures of the alkynes used for the 
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synthesis of the triazole containing NT (8-13) analogues are summarized in Table 20, 

together with the obtained yields and their enantiomeric intactness. 

Table 20:  Structures of α-amino alkynes 29a-f with the corresponding yields and enantiomeric 
purities. 

 Structure Yield (%) Enantiomeric Purity 

29a
[186]

 

 

84 
No racemization 

observed 

29b
[187]

 

 
95 

No racemization 

observed 

29c 

 

51 
No racemization 

observed 

29d 

 

22 
No racemization 

observed 

29e
[188]

 

 

87 
No racemization 

observed 

29f
[138]

 

 

50 n.a. 

 

 

 Synthesis of α-Amino Alkynes without a Functional Group in the 3.2.1.2.1

Side-Chain  

 

For the synthesis of Fmoc-Ile-alkyne 29a and Fmoc-Pro-alkyne 29b, Boc-protected starting 

materials were chosen. Fmoc-Leu-alkyne 29e has previously been described.[131]  

Scheme 15 shows the synthetic pathway from amino acid starting materials 25 to the 

desired alkynes 29. The Boc-protected amino acids 25 were converted into Weinreb amides 

26 by the coupling of N,O-dimethylhydroxylamine 24. The Weinreb amides 26 were reduced 

with DIBAL-H to the aldehydes 27, which was then transformed in situ to Boc-alkyne 28 via 

Seyferth-Gilbert homologation using the Bestmann-Ohira reagent 23. Finally, the Boc-

protecting group was removed under acidic conditions and a Fmoc-protecting group was 

installed instead, giving alkynes 29a and 29b. 
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Scheme 15:   Synthetic pathway to α-amino alkynes without functional groups on the side-chain. i) 
BOP, Hünig’s base, CH2Cl2, 15 min, RT; ii) N,O-dimethylhydroxylamine 24, 15 h, RT; iii) 
DIBAL-H in toluene, CH2Cl2, 2 h, -78 °C; iv) Bestmann-Ohira reagent 23, K2CO3, 
anhydrous  MeOH, 15 h, 0 °C to RT; v) 30% TFA in CH2Cl2, 30 min, RT; vi) Fmoc-OSu, 
BOP, Hünig’s base, 2 h, RT. 

 

The conversion of Boc-Ile-OH 25a and Boc-Pro-OH 25b into their corresponding Weinreb 

amides 29a and 29b yielded pure products in high yields after flash chromatography. High 

yields in the subsequent reduction to the aldehydes 27a and 27b could be obtained when the 

reaction was carried out under anhydrous conditions, using fresh DIBAL-H in toluene. 

Completion of the reduction step was monitored through the use of an aldehyde-specific 

TLC-staining reagent (e.g. 2,4-dinitrophenylhydrazine). If the conversion to the aldehyde was 

not complete after 1 h, another equivalent DIBAL-H was added. After full consumption of the 

Weinreb amide, the reaction was allowed to warm up from -78 to 0 °C, before addition of the 

base. The addition of the base often resulted in the formation of a gel, depending on the ratio 

of DIBAL-H and the solvents used. This gel hindered the stirring of the reaction solution and 

had to be dispersed by ultrasonication and dilution with anhydrous solvents (MeOH/CH2Cl2), 

prior to the homologation. The addition of the Bestmann-Ohira reagent 23 was performed at 

0 °C, and the reaction mixture was allowed to warm up to room temperature overnight. To 

our surprise, reagent 23 could not be stored over long periods of time and underwent slow 

degradation, even upon storage under inert atmosphere at -20 °C. This unexpected 

degradation of the reagent 23 could be observed by TLC and might have been the cause for 

the low yields of the resulting alkynes observed at the beginning of the project. 

Both Fmoc-Ile-alkyne 29a and Fmoc-Pro-alkyne 29b were obtained in crystalline form, in 

high purities and moderate overall yields. Their enantiomeric purities were determined 

indirectly via the formation of pseudodipeptides by coupling with Fmoc-protected alanine, 

followed by NMR analysis of the diastereomeric purity of products obtained. No racemization 

was observed (see chapter 3.2.1.2.4). 
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 Synthesis of Fmoc-PEG4-alkyne 29f 3.2.1.2.2

 

A different approach was used for the synthesis of Fmoc-PEG4-alkyne 29f. The alkyne 

functionality was introduced into commercial Boc-PEG4-CO2H 31 via nucleophilic substitution 

using propargylbromide (30) (Scheme 16). Fmoc-PEG4-alkyne 29f was obtained in moderate 

yield and high purity. 
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Scheme 16:   Synthetic route to Fmoc-PEG4-alkyne 29f. i) Propargylbromide 30, NaH, THF, 12 h, RT; 
ii) 30% TFA in CH2Cl2, 30 min, RT; iii) Fmoc-OSu, Hünig’s base, 2 h, RT. 

 

 

 Synthesis of α-Amino Alkynes with a Functional Group in the  3.2.1.2.3

Side-chain 

 

For the synthesis of the amino acid derived α-amino alkynes with functional groups in the 

side-chain, Fmoc-protected amino acids were used as staring materials. Under the basic 

reaction conditions of the Seyferth-Gilbert homologation, a partial deprotection of the Fmoc-

group can take place. As a consequence, a mixture of Fmoc-protected and deprotected 

products is obtained (Scheme 17). This complication can be resolved by treatment of the 

crude reaction mixture with Fmoc-OSu, a simple procedure to obtain only the desired Fmoc-

protected α-amino alkyne product. Fmoc-Tyr(tBu)-alkyne 29c was obtained in high purity and 

moderate yields. 
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Scheme 17:   Synthetic pathway to α-amino alkynes with functional groups in the side-chain. i) BOP, 
Hünig’s base, CH2Cl2, 15 min, RT; ii) HOBt, EDC, N-methylmorpholine, 15 min, 0 °C; iii) 
N,O-dimethylhydroxylamine 24, 15 h, RT; iv) DIBAL-H in toluene, CH2Cl2, 2 h, -78 °C; v) 
Bestmann-Ohira reagent 23, K2CO3, MeOH, 15 h, RT; vi) Fmoc-OSu, Hünig’s base, 2 h, 
RT. 

 

The synthesis of the alkyne-derivative of arginine proved to be challenging. Following the 

procedure described above for Fmoc-Tyr(tBu)-alkyne 29c (Scheme 17) lactam 39 was 

obtained instead of the desired Weinreb amide 38. The formation of the cyclic side-product 

39 is most likely due to an intramolecular cyclization of the guanidine group of 37 once the 

carboxylic acid is activated towards nucleophilic attack under the reaction conditions. 

Attempted direct reduction of lactam 39 with DIBAL-H and treatment with the Bestmann-

Ohira reagent 23 did no afford alkyne 40, but hemi-aminal 41, a side-product which obviously 

did not react further to afford alkyne 40 (Scheme 18). Similar observations have been made 

by Ho and Ngu.[189] They reported the formation of a cyclic hemi-aminal when reducing an 

Mrt-protected arginine-S-benzyl thioester to the corresponding aldehyde. 

 

 

Scheme 18:   Synthesis of hemi-aminal 41. i) BOP, Hünig’s base, CH2Cl2, 15 min, RT; ii) N,O-
dimethylhydroxylamine 24, 15 h, RT; iii) DIBAL-H in toluene, CH2Cl2, 2 h, -78 °C; iv) 
Bestmann-Ohira reagent 23, K2CO3, MeOH, 15 h, RT. 
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In a further attempt to obtain the desired alkyne derivative of arginine, we employed Boc-

Arg(Pmc)-OH 42 as starting material. The synthetic pathway was identical as for Fmoc-Ile-

alkyne 29a and Fmoc-Pro-alkyne 29b (Scheme 19). 

 

 

Scheme 19: Proposed synthetic pathway to obtain Fmoc-Arg(Pmc)-alkyne 45. 

 

Because conversion of Boc-Arg(Pmc)-OH 42 to the Weinreb amide 43 under standard 

reaction conditions was unsuccessful, we studied the use of different bases and coupling 

reagents (Table 21). Only the combination of HATU and Hünig’s base afforded Weinreb 

amide 43, however only in low yield, while the corresponding lactam side-product was still 

the major product of the reaction. All other examined reaction conditions gave only the 

lactam. 

Unfortunately, the exposure of Boc-Arg(Pmc)-N(Me)OMe 43 to the Seyferth-Gilbert 

homologation reaction conditions did not result in detectable amounts of the desired alkyne 

44. This could be again the result of the formation of a hemi-aminal product as in the case of 

Pbf-protected Arg-derivative 41. 

Table 21: Optimization of the reaction conditions for the synthesis of Boc-Arg(Pmc)-N(Me)OMe. 

 
Coupling  

Reagent 
Base Reaction Time Temperature Observations 

Boc-Arg(Pmc)-OH BOP Hünig’s base 14 h RT 100% lactam 

Boc-Arg(Pmc)-OH BOP NEt3 14 h RT 100% lactam 

Boc-Arg(Pmc)-OH PyBOP Hünig’s base 14 h RT 100 lactam 

Boc-Arg(Pmc)-OH HATU Hünig’s base 14 h RT 
15% Weinreb amide 

85% lactam 

 

We thus resorted to an alternative approach for the preparation of arginine-alkyne 29d 

(Scheme 20). In 2011, Burgess reported the successful homologation of Boc-Arg(Boc)2-

OH.[117] The double protected guanidine side-chain of arginine is presumably less prone to 

reactions with electrophiles (e.g. in an intramolecular fashion), due to steric and electronic 

effects. 
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Thus, we studied the use of Fmoc-Arg(Boc)2-OH 46 as a substrate for the synthesis of 

alkyne 29d. Weinreb amide 47 was synthesized from Fmoc-Arg(Boc)2-OH 46, following the 

protocols from Burgess and co-workers.[117] HOBt and EDC were used as coupling reagents 

and N-methylmorpholine as base. The Weinreb amide 27 was formed with in a satisfying 

yield of approx. 40%. The formation of the corresponding lactam was still observed but only 

as a minor side-product.  

The reduction of the Weinreb amide 47 to the corresponding aldehyde and the subsequent 

homologation reaction proceeded straightforwardly, providing finally arginine derivative 29d. 

The desired compound was obtained as a colourless crystalline substance, in high purity and 

in sufficient amounts for the synthesis of the corresponding triazole-containing NT (8-13) 

analogues. 
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Scheme 20:   Synthesis of Fmoc-Arg(Boc)2-alkyne 29d. i) HOBt, EDC, CH2Cl2, 0 °C, 15 min; ii) N-
methylmorpholine, N,O-dimethylhydroxylamine 24, RT, 15 h; iii) DIBAL-H in toluene, 
CH2Cl2, -78 °C, 2 h; iv) Bestmann-Ohira reagent 23, K2CO3, MeOH, RT, 15 h. 

 

 

 Determination of the Enantiomeric Purity of α-Amino Alkynes 3.2.1.2.4

 

The enantiomeric purity of α-amino alkynes was determined by coupling with Fmoc-Ala-OH 

and the determination of the diastereomeric purity of the resulting pseudodipeptides by NMR 

(1H- and 13C-NMR). Scheme 21 shows the synthesis for the Ala-dipeptidoids 50. The Fmoc- 

or Boc-protected alkynes (28 or 29) were used as substrates. After cleavage of the Fmoc- or 

Boc-protecting groups of the amine functional group, respectively, the unprotected α-amino 

alkyne 48 was coupled to Fmoc-Ala-OH 49, using BOP and Hünig’s base. The products 

where then analysed with NMR spectroscopy. 
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Scheme 21:   Synthesis of Ala-dipeptides 50a-d: i) 20% TFA in CH2Cl2, RT, 30 min; ii) 20% piperidine 
in DMF, RT, 1 h;  iii) BOP; Hünig’s base; CH2Cl2, RT, 2 h. 

 

The desired compounds 50a-d were obtained in a straightforward manner in moderate to 

good yields after flash chromatography (Table 22). 

Table 22: Structures of dipeptides 50a-d with corresponding yields. 

 
Structure Yield (%) 

Diastereomeric 

Excess 

50a 

 

90 > 98 

50b 

 

30 > 98 

50c 

 

65 > 98 

50d 

 

65 > 98 

 

Racemization of the amino acid during the synthesis of a α-amino alkyne would result in the 

presence of diastereomers that can be distinguished by NMR. In particular, doubling of the 
1H-NMR signals of the Hα of the alkyne and of Hα’ of the alanine, the terminal alkyne proton 

and the methyl group of the Alanine was expected.[138] 
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In none of the cases reported herein was a doubling of the 1H-NMR signals of the dipeptides 

observed. Therefore it can be concluded, that no racemization occurred during the synthesis 

of the α-amino alkynes 29a-d, under the conditions described. This is in agreement with data 

previously reported by us and others,[172] which reports no sign of racemization during the 

homologation of several amino acids (Nle, Leu, Gly, Val, Ala, Trp and Gln), with the 

exception of histidine.[131] Figure 22 shows the NMR spectra of Fmoc-Ala-Ile-alkyne 50a, 

Fmoc-Ala-Tyr(tBu)-alkyne 50c and Fmoc-Ala-Arg(Boc)2-alkyne 50d and the corresponding 

Hα of the α-amino alkyne and alkyne signals. 

 

 

Figure 22: NMR spectra of Fmoc-Ala-Ile-alkyne 50a, Fmoc-Ala-Tyr(tBu)-alkyne 50c and Fmoc-Ala-
Arg(Boc)2-alkyne 50d, showing Hα and alkyne signals. 

 

Proline occurs naturally as a mixture of trans- and a cis-conformers around a Xaa-Pro amide 

bond (Xaa: amino acid). This was also observed in the NMR spectrum of the dipeptide 

Fmoc-Ala-Pro-alkyne 50b, where the Hαcis and the Hαtrans are both visible, in a ratio of 0.4 to 

0.6, which is in agreement with literature data.[190] The signal of the alkyne was not doubled, 
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but for Hα, both cis- and trans-signals were visible (Figure 23). In case of a racemization a 

set of four signals for the Hα of the α-amino alkyne would be expected. This was not the 

case and thus, also in this case, it can be concluded that no racemization has occurred 

during the synthesis of Fmoc-Pro-alkyne 29b. 

 

 

Figure 23: NMR spectrum of Fmoc-Ala-Pro-alkyne 50d, showing Hα and alkyne signals. 
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3.2.2 Synthesis of the First Generation of Triazole-Containing NT (8-13) 

Analogues  

 

The substitution of each amide bond, one at the time, of DOTA-PEG4-NT (8-13) conjugates 

with a triazole yielded six conjugates (AM-NT 4-9) bearing a single backbone modification. 

After identification of the amide bonds of NT (8-13) that can be replaced with a triazole 

without the loss of biological activity, a conjugate with multiple triazoles (AM-NT 10) was also 

prepared and evaluated (Table 23).  

The peptide conjugates AM-NT 4-10 were synthesized manually on solid phase via classical 

Fmoc-chemistry till the position of the triazole (see chapter 3.1.1). An example of the 

synthesis of a triazole-containing peptide conjugate is shown in Scheme 22. In order to 

introduce the triazole in the peptide backbone, the corresponding amino acid was 

deprotected with 20% piperidine in DMF and the resulting N-terminal amine was converted 

into an azide via a diazo-transfer reaction. The presence of the azides on the resin was 

confirmed with the colorimetric test for azides described in chapter 3.2.1.1. The triazole was 

obtained via copper catalysed azide alkyne cycloaddition (CuAAC) under anhydrous 

conditions. The corresponding α-amino alkyne, the copper (I) source ([(CH3CN)4Cu]PF6), the 

copper (I) ligand TBTA and the proton acceptor (Hünig’s base) were dissolved in DMF and 

added to the resin. After 12-16 h of vigorous stirring, the resin was extensively washed with a 

solution of 0.5% diethyldithiocarbamate in DMF to remove the copper (I) from the resin. 

Colorimetric azide test were performed to verify the completion of the reaction. If the azide 

test was positive (red beads) the CuAAC reaction was repeated. After the cycloaddition, the 

amino acid sequence was completed by standard Fmoc peptide chemistry. After attachment 

of the spacer and the chelator, the peptide conjugates were cleaved and purified via HPLC 

(see chapter 3.1.1). 
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Scheme 22:   Solid phase synthesis of a triazole-containing NT (8-13)-based peptide conjugate (AM-
NT 8). i) Fmoc-AA-OH, HATU, Hünig’s base, DMF, 2 h, RT. ii) 20% piperidine in DMF, 
10 min, RT. iii) imidazole-1-sulfonyl azide hydrochloride 1, Hünig’s base, DMF, 1 h, RT; 
iv) Fmoc-alkynes 7a-d, [Cu(CH3CN)4]PF6, Hünig’s base, DMF, 12 h, RT; v) Fmoc-PEG4-
OH or DOTA-(tris-tBu), HATU, Hünig’s base, DMF, 2 h, RT; vi) TFA/H2O/PhOH/iPr3SiH, 
6 h, RT. vii) [177Lu]LuCl3, ammonium acetate buffer (pH 4.5), 30 min, 100 °C. 

 

Conjugate AM-NT 4, with a C-terminal triazole, was synthesized on a different resin. The 

synthesis of peptide conjugate AM-NT 4, was performed on a Fmoc-protected Rink Amide 

MBHA LL resin. The resin was deprotected with 20% piperidine in DMF and the resulting free 

amine was converted into an azide via diazo transfer reaction. The CuAAC reaction to 
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introduce the triazole, followed by the coupling of the remaining amino acids, the spacer and 

the chelator DOTA was performed according to the protocol described in Scheme 22. 

Cleavage and purification of AM-NT 4 was performed as described in chapter 3.1.1. 

Peptide conjugates AM-NT 4-10 were obtained as highly pure compounds (verified by 

HPLC) and their mass was verified by ESI-HRMS (Table 23). 

Table 23: Summary of the peptide conjugates from the ‘triazole scan’ and their analytical information. 

 Structure MW 

(g/mol) 

ESI-HRMS 

[M+2H+]2+ 

Yield 

 (%) 

Purity 

 (%) 

AM-NT 2 

(1
st

 G Reference)
a 

DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu 1449.82 725.92 2 > 99 

AM-NT 4 DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu-Ψ[Tz]-H 1472.85 492.28b 11 > 99 

AM-NT 5 DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Ψ[Tz]-Leu 1473.83 738.92c 5 > 99 

AM-NT 6 DOTA-PEG4-Arg-Arg-Pro-Tyr-Ψ[Tz]-Ile-Leu 1473.83 737.92 32 > 99 

AM-NT 7 DOTA-PEG4-Arg-Arg-Pro-Ψ[Tz]-Tyr-Ile-Leu 1473.83 737.92 27 > 98 

AM-NT 8 DOTA-PEG4-Arg-Ψ[Tz]-Arg-Pro-Tyr-Ile-Leu 1473.83 737.92 14 > 99 

AM-NT 9 DOTA-PEG4-Ψ[Tz]-Arg-Arg-Pro-Tyr-Ile-Leu 1459.81 730.92 5 > 98 

AM-NT 10 DOTA-PEG4-Ψ[Tz]-Arg-Ψ[Tz]-Arg-Pro-Tyr-Ile-Leu 1483.83 742.92 2 > 99 
a 1st generation reference  b [M+3H+]3+.c ESI-MS, [M+2H+]2+. 

 

After the successful synthesis and purification of the NT (8-13) analogues, they were labelled 

with [177Lu]LuCl3, and their radiochemical purities and yields were determined via γ-HPLC 

(see chapter 3.1.1). Table 24 shows the radiolabelled structures of [177Lu]-AM-NT 4-10 and 

their radiochemical yields and purities. 

 

Table 24: Radiolabelled peptide conjugates [177
Lu]-AM-NT 4-10 and their radiolabelling purities. 

 Structure Radiochemical 

Yield (%) 

Radiochemical  

Purity (%) 

[
177

Lu]-AM-NT 4 [177Lu]-DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu-Ψ[Tz]-H 

> 95 > 98 

[
177

Lu]-AM-NT 5 [177Lu]-DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Ψ[Tz]-Leu 

[
177

Lu]-AM-NT 6 [177Lu]-DOTA-PEG4-Arg-Arg-Pro-Tyr-Ψ[Tz]-Ile-Leu 

[
177

Lu]-AM-NT 7 [177Lu]-DOTA-PEG4-Arg-Arg-Pro-Ψ[Tz]-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 8 [177Lu]-DOTA-PEG4-Arg-Ψ[Tz]-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 9 [177Lu]-DOTA-PEG4-Ψ[Tz]-Arg-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 10 [177Lu]-DOTA-PEG4-Ψ[Tz]-Arg-Ψ[Tz]-Arg-Pro-Tyr-Ile-Leu 

 

 



Results and Discussion 

73 
 

3.2.3 Biological Investigation of Peptide Conjugates [177Lu]-AM-NT 4-10 

 

The radiolabelled peptidomimetics [177Lu]-AM-NT 4-10 were biologically evaluated and 

compared side-by-side with reference compound [177Lu]-AM-NT 2 (see chapter 3.1). The cell 

internalisation in HT-29 cells and the receptor binding affinity and specificity to NTR1 of the 

compounds were measured. The lipophilicity as well as the stability in blood plasma was 

determined. For a detailed description of the biological essays see chapter 3.1.2. The results 

of the biological investigation of peptide conjugates [177Lu]-AM-NT 2-10 are summarized in 

Table 25. 

Table 25: Summary of biological and physico-chemical properties of [177
Lu]-AM-NT 2-10. 

 
Internalisation  

after 4 h (%) KD (nM) Bmax (nM) Log D 
Stability 

t1/2 (min) 

[
177

Lu]-AM-NT 2 

(1
st
 G. reference)

a
 

7.3 ± 0.4 3.8 ± 0.9 0.37 ± 0.02 -2.6 39.4 

[
177

Lu]-AM-NT 4 n.o. n.d. n.d. -3.2 69.7 

[
177

Lu]-AM-NT 5 n.o. n.d. n.d. -2.8 72.0 

[
177

Lu]-AM-NT 6 n.o. n.d. n.d. -3.2 164.0 

[
177

Lu]-AM-NT 7 n.o. n.d. n.d. -2.6 13.0 

[
177

Lu]-AM-NT 8 6.4 ± 1.2 8.7 ±1.7 0.90 ± 0.04 -2.8 64.9 

[
177

Lu]-AM-NT 9 9.4 ± 0.5 4.5 ±0.8 0.45 ± 0.01 -3.2 46.9 

[
177

Lu]-AM-NT 10 10.8 ± 0.4 4.6 ± 2.3 0.34 ± 0.03 -2.7 17.1 
a 1st generation reference 

The four peptide conjugates with a triazole substitution in the C-terminal region of NT (8-13), 

[177Lu]-AM-NT 4, 5, 6 and 7 did not show a specific cell internalisation into HT-29 cells 

(Figure 24). Less than 0.2% of the peptide conjugates were internalized into the cells after 4 

h of incubation. 
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Figure 24: Cell internalisation profile of NT (8-13) analogues [177
Lu]-AM-NT 4-7. 

Peptide conjugates [177Lu]-AM NT 8 and [177Lu]-AM NT 9, with a triazole located between 

the Arg8-Arg9 bond and between the N-terminal PEG4 spacer and Arg8, showed a similar 
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internalisation behaviour as the reference compound [177Lu]-AM-NT 2. While the internalized 

amount of [177Lu]-AM-NT 8 was slightly lower than that of the reference (6.4% vs 7.3%), 

[177Lu]-AM-NT-9 internalized 9.4%, an even higher amount than the reference [177Lu]-AM-

NT 2. [177Lu]-AM-NT 10, the peptide conjugate bearing a double-triazole modification on the 

Arg8-Arg9 bond and between the N-terminal PEG4 spacer and Arg8, both modifications sites 

of [177Lu]-AM-NT 8 and 9. Indeed, [177Lu]-AM-NT 10 showed the highest internalisation rate 

into HT-29 cells (10.8%), (Figure 25). 
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Figure 25: Cell internalisation profile of NT (8-13) analogues [177
Lu]-AM-NT 8-10, compared to 

reference compound [177
Lu]-AM-NT 2. 

The determination of the receptor binding affinities and the receptor specificities of [177Lu]-

AM-NT 8-10 was performed as described in chapter 3.1.2. The receptor binding affinities of 

analogues [177Lu]-AM-NT 3-7 were not determined, as no cell internalisation into HT-29 cells 

was observed, which indicates an abolished receptor affinity towards NTR1. 
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Figure 26:   Results of receptor saturation experiments of NT (8-13) analogues [177
Lu]-AM-NT 8-10, 

compared to reference compound [177
Lu]-AM-NT 2. [177

Lu]-AM-NT 9 was measured with 
one concentration less. 

 

Conjugates [177Lu]-AM-NT 8-10 exhibited a retained high receptor affinity towards the NTR1 

receptor. The observed values were similar for the reference peptide conjugate [177Lu]-AM-
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NT 2. While peptide conjugate [177Lu]-AM-NT 8 exhibited the lowest dissociation constant 

(8.7 ± 1.7 nM) of these four compounds, it was still in the nanomolar range. [177Lu]-AM-NT 9 

and [177Lu]-AM-NT 10 both had similar KD values in comparison with the reference [177Lu]-

AM-NT 2, 4.5 ± 0.8 and 4.6 ± 2.6 nM, respectively (Figure 26).  

Log D values between -2.6 and -3.2 were observed for of [177Lu]-AM-NT 4-10. These values 

are comparable to the value measured for the reference compound of [177Lu]-AM-NT 2 

(Table 25). 

The metabolic stabilities of the radiolabelled peptidomimetics AM-NT 4-10 were determined 

in human blood serum, as described in chapter 3.1.2. The conjugate with the Arg8-Ψ[Tz]-Arg9 

modification, [177Lu]-AM-NT 8, showed the most pronounced improvement of stability in 

comparison with the reference [177Lu]-AM-NT-2 (Figure 27). The half-life was calculated 

using a one-phase decay equation to fit the degradation curve (see chapter 3.1.2). The 

calculated half-life for [177Lu]-AM-NT 8 was 64.8 min, whereas for [177Lu]-AM-NT 2 it was 

39.4 min. [177Lu]-AM-NT 9, with a modification between the N-terminal PEG4 spacer and 

Arg8, only exhibited a half-life of 46.9 min. Surprisingly, peptide conjugate [177Lu]-AM-NT 10, 

with a double triazole-modification only had a half-life of 17.1 min. After 4 h of incubation in 

serum, a complete degradation of all the radiolabelled peptidomimetics [177Lu]-AM-NT 8-10 

was observed. 
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Figure 27: Serum stabilities of peptide conjugates [177
Lu]-AM-NT 2 and [177

Lu]-AM-NT 8-10. 

 

For the sake of complete data, the serum stabilities of the analogues that did not bind to 

NTR1, [177Lu]-AM-NT 4-7, were also measured. Most of these peptide conjugates, with 

exception of [177Lu]-AM-NT 7, exhibited an increased serum stability compared to the 

reference [177Lu]-AM-NT 2 (Figure 28). The half-life of [177Lu]-AM-NT 4 was 69.7 min, of 

[177Lu]-AM-NT 5, 72.0 min and of [177Lu]-AM-NT 6, 164.0 min. On the other hand, the half-
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life of [177Lu]-AM-NT 7 was only 13.0 min. Among the compounds investigated, only [177Lu]-

AM-NT 4-6 were still present in the blood serum (<10%) after 24 h of incubation.  
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Figure 28: Serum stabilities of peptide conjugates [177
Lu]-AM-NT 2 and [177

Lu]-AM-NT 4-7. 

 

3.2.4 Discussion of the In Vitro Investigation of [177Lu]-AM-NT 4-10 

 

The first ‘triazole scan’ of NT (8-13) successfully yielded six new triazole-containing NT (8-

13) analogues as well as one bis-triazole containing peptide conjugate. The hydrophilicity of 

the compounds was determined via log D experiments. Values between 2.6 and 3.2 

demonstrated the hydrophilic nature of the peptide conjugate. Cell internalisation studies of 

the analogues revealed that a triazole-modification was only tolerated between the N-

terminal PEG4 spacer and Arg8 and between the Arg8 and Arg9 residues. Compounds 

[177Lu]-AM-NT 4-7, with triazoles in the other possible positions, did not show any 

internalisation in HT-29 cells, which led to the conclusion that a triazole backbone 

modification was not tolerated in the central and C-terminal region of NT (8-13). In general, 

the C-terminal region of NT (8-13) has been reported in literature to be sensitive to chemical 

modifications, including backbone modifications (e.g. reduced amide bonds) as well as 

amino acid replacements.[9, 88] These observations also correlate well with the recently 

published crystal structure of NT (8-13) bound to the receptor NTR1, which rationalizes the 

necessity of a C-Terminal COOH-group, as this group forms hydrogen bonds to the amino 

acid residues Arg327 and Tyr146 in the binding pocket of the receptor.[80] This explains the 

loss of receptor affinity of compound [177Lu]-AM-NT 4, as the triazole is not able to engage in 

the same hydrogen bonds. Also the carbonyl groups of Ile12 and Tyr11 form hydrogen bonds 

to Tyr347 and Thr226 of the binding pocket of the receptor, respectively. This could explain 

the loss of receptor affinity of compounds [177Lu]-AM-NT 5 and [177Lu]-AM-NT 6.  
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The modification of the N-terminal region of NT (8-13) through amino acid substitutions or 

backbone engineering is considered less critical for the binding than the modifications on the 

C-terminus.[9, 88-89] It has been reported that the N-terminal region of NT (8-13) is not inserted 

entirely into the binding pocket of the NTR1 receptor upon binding.[80] This is in accordance 

with our observations, since [177Lu]-AM-NT 8 and [177Lu]-AM-NT 9 have been identified as 

the two compounds of the ‘triazole scan’ with a retained receptor affinity towards NTR1. The 

NT (8-13) analogues [177Lu]-AM-NT 8, [177Lu]-AM-NT 9 and [177Lu]-AM-NT 10 all exhibited 

similar internalisation rates and KD values comparable to the reference compound [177Lu]-

AM-NT 2. The observed values for cell internalisation and receptor affinity are in good 

agreement with the values described in literature for similar radiometal-labelled 

conjugates.[84, 98, 191] The stabilization gained through the introduction of triazoles was 

moderate. While the half-lives of [177Lu]-AM-NT 8 and 9, both analogues with a single 

triazole modification, were slightly superior to the half-life of the reference compound [177Lu]-

AM-NT 2, they still underwent a very fast metabolic degradation. Surprisingly, the 

introduction of two consecutive triazoles in the NT (8-13) sequence led to a reduced 

metabolic stability in comparison to the mono-triazole containing peptide conjugates [177Lu]-

AM-NT 8 and 9. This observation is difficult to explain, as it was expected that the bis-triazole 

compound [177Lu]-AM-NT 10 would be highly stabilized. The insertion of two consecutive 

triazoles into the sequence of NT (8-13) may result in a conformation of the peptide 

conjugate prone to degradation by the corresponding proteases. This phenomenon should 

be further investigated, for example with CD (circular dichroism) chromatography, molecular 

modelling or in vitro experiments with the NT (8-13) specific proteases.  

Even though the insertion of a triazole into the C-terminal region of NT (8-13) led to a 

diminished receptor affinity of the peptide conjugates [177Lu]-AM-NT 4-7, it increased their 

metabolic stabilities in most cases. This suggests that the introduction of a triazole as an 

amide bond mimic within the C-terminal region is important for stabilization at the expense, 

however, of an efficient receptor binding. The maximal stabilization was achieved on 

conjugate [177Lu]-AM-NT 6, with a triazole between Tyr11 and Ile12. Several radiolabelled NT 

(8-13) analogues have been described in literature, where the metabolic stability of the 

sequence was improved through the substitution of Ile12 with Tle.[6, 84, 86, 99, 192] 

The systematic substitution of the amide bonds in NT (8-13) with triazoles led to a first 

generation of triazole-based NT (8-13) peptidomimetics some of which with a specific 

receptor affinity towards NTR1. A moderate improvement of the half-life of the reference 

[177Lu]-AM-NT 2 (40 min) was achieved with compounds [177Lu]-AM-NT 8 (65 min) and 

[177Lu]-AM-NT 9 (47 min). However, half-lives of up to 20 days are reported for stabilized, 

radiolabelled NT (8-13) analogues, including the clinically tested NT XI.[6-7, 112] Thus, the 
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metabolic stability of the triazole-substituted NT (8-13) analogues [177Lu]-AM-NT 8 and 9 

may not be sufficient for future applications in nuclear imaging and therapy. For this reason, 

a second generation of triazole-based NT (8-13) peptidomimetics with improved metabolic 

stabilities was developed and evaluated (chapter 3.3) 
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 Synthesis and Biological Evaluation of a Second Generation of 3.3

Stabilized Triazole-Containing NT (8-13) Analogues 

 

3.3.1 Identification of a Suitable Amino Acid Substitution for NT (8-13) 

Analogues 

 

Several NT (8-13) analogues with a modified amino acid sequence have been described in 

the literature. For example, the exchange of Ile12 with Tle12 led to peptide conjugates with 

improved stabilities.[6, 86, 96, 105] Similarly, the replacement of Arg8 and Arg9 with Lys has also 

been reported by several groups, giving rise to several NT (8-13) analogues with promising 

properties in vivo.[84, 89, 106] Since such NT (8-13) analogues were reported with different 

radiometals and chelators, we first set out to investigate which of these modifications in the 

amino acid sequence of NT (8-13) was suited best for our [177Lu]/DOTA system. Thus, we 

prepared four NT (8-13) analogues, functionalized with DOTA via a N-terminal PEG4 spacer 

and investigated their properties in vitro. Again, [177Lu]-AM-NT 2 was used as a reference 

compound for comparison. The peptide conjugates were synthesized, purified and 

characterized as described in chapter 3.1.1. They were obtained in moderate to good yields 

and high purities (Table 26). 

Table 26: Structures and analytical data of AM-NT 2 and AM-NT 11-14. 

 Structure MW 

(g/mol) 

ESI-HRMS 

[M+2H+]2+ 

Yield 

 (%) 

Purity 

 (%) 

AM-NT 2 

(1
st

 G. Reference)
a 

DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu 1449.82 725.92 2 > 99 

AM-NT 11 DOTA-PEG4-Arg-Arg-Pro-Tyr-Tle-Leu 1449.82 725.92 30 > 99 

AM-NT 12 DOTA-PEG4-Arg-Lys-Pro-Tyr-Tle-Leu 1421.81 711.91 52 > 99 

AM-NT 13 DOTA-PEG4-Lys-Arg-Pro-Tyr-Tle-Leu 1421.81 711.91 58 > 99 

AM-NT 14 DOTA-PEG4-Lys-Lys-Pro-Tyr-Tle-Leu 1393.81 697.91 71 > 99 

 

The radiolabelling of the peptide conjugates AM-NT 11-14 was performed as described in 

chapter 3.1.1. Table 27 summarizes the sequences of the radiolabelled conjugates and their 

radiochemical yields and purities. 
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Table 27: Radiolabelled peptide conjugates [
177

Lu]-AM-NT 11-13 and their radiolabelling yield and 
purities. 

 Structure Radiochemical 

Yield (%) 

Radiochemical 

Purity (%) 

[
177

Lu]-AM-NT 11 [177Lu]-DOTA-PEG4-Arg-Arg-Pro-Tyr-Tle-Leu 

> 95 > 98 
[
177

Lu]-AM-NT 12 [177Lu]-DOTA-PEG4-Arg-Lys-Pro-Tyr-Tle-Leu 

[
177

Lu]-AM-NT 13 [177Lu]-DOTA-PEG4-Lys-Arg-Pro-Tyr-Tle-Leu 

[
177

Lu]-AM-NT 14 [177Lu]-DOTA-PEG4-Lys-Lys-Pro-Tyr-Tle-Leu 

 

 

 Biological Investigation of [177Lu]-AM-NT 11-14. 3.3.1.1

 

The radiolabelled peptidomimetics [177Lu]-AM-NT 11-14 were biologically evaluated and 

compared side-by-side with the reference compound [177Lu]-AM-NT 2. The cell 

internalisation in HT-29 cells, the receptor binding affinity and specificity to NTR1 of the 

compounds were measured, and the lipophilicity as well as the stability in blood serum were 

determined. For a detailed description of the biological essays, see chapter 3.1.2. The results 

of these biological investigations of peptide conjugates [177Lu]-AM-NT 11-14 are summarized 

in Table 28.  

Table 28: Biological and physico-chemical properties of [177
Lu]-AM-NT 2 and [177

Lu]-AM-NT 11-14. 

 
Internalisation (%) 

after 4 h KD (nM) Bmax (nM) Log D 
Stability 

% after 4 h 

[
177

Lu]-AM-NT 2 

(1
st

 G. Reference)
a 

7.3 ± 0.4 3.8 ± 0.9 0.37 ± 0.02 -2.6 0.9 

[
177

Lu]-AM-NT 11 1.3 ± 0.2 507 ± 114 1.6 ± 0.2 -2.2 70.6 

[
177

Lu]-AM-NT 12 0.23 ±0.02 >1000 n.d. -2.1 95.6 

[
177

Lu]-AM-NT 13 0.56 ± 0.02 >1000 n.d. -2.1 95.7 

[
177

Lu]-AM-NT 14 0.3 ± 0.01 246 ± 44 0.80 ± 0.06 -2.0 91.1 
a 1st generation reference 

The internalized fractions of the conjugates [177Lu]-AM-NT 11-14 were very small when 

compared to [177Lu]-AM-NT 2 as well as the peptide conjugates of the first generation of 

triazole-peptidomimetics (see chapter 3.2.3). The highest internalisation rate was observed 

for peptide conjugate [177Lu]-AM-NT 11, with 1.3% cell internalisation after 4 h of incubation. 

The peptide conjugates in which arginine was substituted with lysine internalized below 1.0% 

within 4 h of incubation (Figure 29).  
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Figure 29: Cell internalisation data of [177
Lu]-AM-NT 11-14. 

 

Performing KD experiments with radiolabelled NT (8-13) peptidomimetics that exhibit such a 

low receptor affinity represented a challenge. In order to obtain a saturation of the receptors, 

the concentration of the peptide conjugates was increased up to 800 nM, four times more 

than in the experimental setup used for the first generation of triazole-peptidomimetics. Even 

under these conditions, receptor saturation was barely reached. [177Lu]-AM-NT 11 exhibited 

a KD value of 504 ± 114 nM and [177Lu]-AM-NT 14, a value of 246 ± 44 nM. This means that 

both peptide conjugates had an receptor affinity towards the NTR 1 which was more than an 

order of magnitude lower than the receptor affinity of the reference [177Lu]-AM-NT 2. 

Nonetheless, both were still in the nanomolar range. [177Lu]-AM-NT 12 and [177Lu]-AM-NT 

13, the peptide conjugates with Lys residues instead of Arg exhibited KD values of over 1000 

nM, indicating abolished affinities towards NTR1 (Figure 30).  
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Figure 30: Results of the receptor saturation experiments of [177
Lu]-AM-NT 11-14. 

 

The log D values of the peptide conjugates [177Lu]-AM-NT 11-14 were determined as 

described in chapter 3.1.2. Very similar values between -2.0 and -2.2 were measured; 

comparable to the value obtained for the reference [177Lu]-AM-NT 2. 
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Serum stabilities were measured in fresh human serum. [177Lu]-AM-NT 11, with Tle12 

replacing Ile12, was considerably less stable than the others, with only ca. 4% intact 

conjugate after 24 h of incubation. The introduction of lysine as a substitute of Arg8 and Arg9 

led to a great improvement of the stabilities of the conjugates. Over 90% of the peptide 

conjugates [177Lu]-AM-NT 12-14 remained intact after 24 h of incubation (Figure 31). These 

conjugates were so stable that no full degradation of the sequence was observed, even after 

several days of incubation. As a consequence, only an approximation of half-lives was 

possible. To enable a comparison with other NT (8-13) analogues, the stability of the peptide 

conjugates was evaluated after 4 h incubation. Figure 31 shows the degradation of the 

peptide conjugates up to 24 h of incubation. 
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Figure 31: Serum stabilities of [177
Lu]-AM-NT 2 and [177

Lu]-AM-NT 11-14. 

 

 Discussion of the In Vitro Evaluation of [177Lu]-AM-NT 11-14 3.3.1.2

 

Four new NT (8-13) analogues were synthesised and fully evaluated in vitro. An Ile12 to Tle12 

switch was introduced in all four compounds. Additionally two mono-substituted and one di-

substituted Lys-derivatives of NT (8-13) were synthesized. A direct comparison of the 

influence of these amino acid substitutions on NT (8-13) analogues has not yet been 

reported and is important for future research. 

The results of the biological investigation were surprising, as all of the peptide conjugates 

showed very low internalisations into HT-29 cells. These findings cannot be compared to 

subject-specific literature, as cell internalisation data of NT (8-13) analogues is seldom 

published. Detailed internalisation data for NT (8-13) analogues with a Tle12 substitution was 

only published by the group of Schubiger.[98] The peptide analogues described in this 
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publication showed 5-10% internalisation into HT-29 cells after 4 h of incubation and a high 

nanomolar receptor affinity (see chapter 1.5.4). However, these NT (8-13) analogues were 

labelled with a different chelator and radiometal (99mTc) and were additionally modified using 

other stabilization strategies. A direct comparison with [177Lu]-AM-NT 11-14 is therefore not 

possible. 

The KD values correlated with the low cell internalisations of these compounds. The data of 

the receptor saturation assays allows the conclusion that the introduction of a Tle in position 

12 of the NT (8-13) sequence led to a loss of receptor affinity towards NTR1, when 

compared to the reference [177Lu]-AM-NT 2. Furthermore, the introduction of a single lysine 

in position 8 or 9 resulted in a complete loss of receptor affinity, whereas a double 

substitution of positions 8 and 9 with lysine provided a compound with somewhat retained 

receptor affinity. These observations are in contrast to the receptor binding affinity data 

published for mono- and di-substituted Lys-derivatives of NT (8-13). Mono- and di-substituted 

Lys derivatives of NT (8-13) are described in literature to have a high receptor affinity 

towards NTR1. However, KD values are only available for 99mTc-labelled NT analogues.[6, 84] 

For other cases no saturation binding but ligand competition experiments were performed 

and only Ki values derived from IC50 (ligand competition experiments) are reported. [85-86, 94, 103]  

The metabolic stabilities were dramatically increased by the amino acid substitutions, 

especially when a lysine was introduced to the sequence. Peptide conjugate [177Lu]-AM-NT 

11, with a single modification, was the least stable of the four tested, but compared to 

reference compound [177Lu]-AM-NT 2, its stability was substantially improved. 

In general, it can be concluded that the introduction of a Tle12 in the place of Ile12 led to 

compounds with great stability, but with a decreased cell internalisation and receptor affinity 

towards the NTR1 receptor, contrary to what is suggested by literature data.[6, 86, 98, 104-106, 112] 

The mono-substituted Lys-derivatives of NT (8-13) were not considered further because they 

did not retain a high receptor affinity towards NTR1, a requirement for the development of 

tumour-targeting radiopeptides. [177Lu]-AM-NT 11, was chosen for further optimization, 

because of its cell internalisation properties and its nanomolar receptor affinity towards 

NTR1.  
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3.3.2 Synthesis of the Second Generation of Triazole-Containing NT (8-13) 

Analogues  

 

The exchange of Ile with Tle in position 12 of NT (8-13) led to a significant improvement of 

the metabolic stabilities of NT (8-13) analogues while their receptor affinities as well as their 

specificities towards the NTR1 receptor were maintained. Based on the lead compound 

identified in the previous chapter 3.3.1, [177Lu]-AM-NT 11, we set out to further optimize the 

biological characteristics of the peptidic vector. Towards this end, the backbone amide bonds 

of [177Lu]-AM-NT 11 were replaced with 1,4-disubstituted 1,2,3-triazoles at the positions 

previously identified during the ‘triazole-scan’ of NT (8-13) (chapter 3.2), namely those 

between the N-terminal PEG4 spacer and Arg8 and between Arg8 and Arg9. Two mono- and 

one di-substituted peptide conjugates were synthesized and their biological evaluation was 

compared side by side to first generation reference [177Lu]-AM-NT 2 and second generation 

reference [177Lu]-AM-NT 11.  

The synthesis of the peptide conjugates of AM-NT 15-17 was performed as described in 

chapter 3.2.2. The three conjugates were obtained in moderate yields and in high purities. 

Table 29 shows the structures of AM-NT 15-17 and their analytical data. 

Table 29: Structure and analytical data of AM-NT 2, AM-NT 11 and AM-NT 15-17. 

 Structure 
MW 

(g/mol) 

ESI-HRMS 

[M+2H+]2+ 

Yield  

(%) 

Purity  

(%) 

AM-NT 2 

(1
st

 G. Reference)
a 

DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu 1449.82 725.92 2 > 99 

AM-NT 11 

(2
nd

 G. Reference)
b 

DOTA-PEG4-Arg-Arg-Pro-Tyr-Tle-Leu 1449.82 725.92 
30 > 99 

AM-NT 15 DOTA-PEG4-Arg-Ψ[Tz]-Arg-Pro-Tyr-Tle-Leu 1473.83 737.92 16 > 99 

AM-NT 16 DOTA-PEG4-Ψ[Tz]-Arg-Arg-Pro-Tyr-Tle-Leu 1459.81 730.91 16 > 98 

AM-NT 17 DOTA-PEG4-Ψ[Tz]-Arg-Ψ[Tz]-Arg-Pro-Tyr-Tle -Leu 1483.83 742.92 9 > 99 

a 1st generation reference. b 2nd generation reference. 

After the synthesis and purification, the peptide conjugates were successfully labelled with 

[177Lu]LuCl3, as described in chapter 3.1.1. Table 30 shows the structure of the radiolabelled 

NT (8-13) analogues as well as their radiochemical yields and purities. 

Table 30: Radiolabelled conjugates [
177

Lu]-AM-NT 2, [
177

Lu]-AM-NT 11 and [
177

Lu]-AM-NT 15-17 
and their radiolabelling yields and purities. 

 Structure 
Radiochemical 

Yield (%) 

Radiochemical 

Purity (%) 

[
177

Lu]-AM-NT 15 [177Lu]-DOTA-PEG4-Arg-Ψ[Tz]-Arg-Pro-Tyr-Tle-Leu 

> 95 > 98 [
177

Lu]-AM-NT 16 [177Lu]-DOTA-PEG4-Ψ[Tz]-Arg-Arg-Pro-Tyr-Tle-Leu 

[
177

Lu]-AM-NT 17 [177Lu]-DOTA-PEG4-Ψ[Tz]-Arg-Ψ[Tz]-Arg-Pro-Tyr-Tle-Leu 
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 Biological Investigation of the Second Generation of Triazole-3.3.2.1

Containing NT (8-13) Analogues 

 

The results of the evaluation of the biological behaviour as well as the physico-chemical 

properties of the triazole backbone modified NT (8-13) analogues [177Lu]-AM-NT 15-17 are 

shown in Table 31. For a comparison, the biological data of the first generation reference 

compound [177Lu]-AM-NT 2 and the second generation reference compound [177Lu]-AM-NT 

11 are also listed. 

Table 31: Biological properties of [177
Lu]-AM-NT 2, [177

Lu]-AM-NT 11 and [
177

Lu]-AM-NT 15-17. 

Name 
Internalisation 

after 4 h (%) 
KD (nM) Bmax (nM) Log D 

Stability 

% after 4 h 

[
177

Lu]-AM-NT 2 

(1
st

 G. Reference)
a 

7.3 ± 0.4 3.8 ± 0.9 0.37 ± 0.02 -2.6 0.9 

[
177

Lu]-AM-NT 11 

(2
nd

 G. Reference)
b 

1.3 ± 0.2 507 ± 114 1.6 ± 0.2 -2.2 70.6 

[
177

Lu]-AM-NT 15 2.1 ± 0.1 214 ± 45 n.d. -2.2 97.7 

[
177

Lu]-AM-NT 16 1.2 ± 0.2 >1000 n.d. -2.2 94.7 

[
177

Lu]-AM-NT 17 2.19 ± 0.01 >1000 n.d. -2.3 97.2 
a 1st generation reference. b 2nd generation reference. 

All the peptide conjugates showed a low internalisation profile (1.2-2.2%) when compared to 

the reference compound of the first generation of triazole-peptide conjugates, [177Lu]-AM-NT 

2. The cell internalisation of [177Lu]-AM-NT 15 and [177Lu]-AM-NT 17 into HT-29 cells was 

around 2.1% within 4 h of incubation, which was twice the internalisation rate of the 

reference compound of the second generation of triazole-peptides, [177Lu]-AM-NT 11. 

[177Lu]-AM-NT 16, the conjugate with the triazole modification between the N-terminal PEG4 

spacer and Arg8, internalized into HT-29 cells to a similar extent as the reference compound 

[177Lu]-AM-NT 11. [177Lu]-AM-NT 16 has therefore the lowest internalisation profile of the 

second generation peptide conjugates (Figure 32).  
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Figure 32: Cell internalisation data of [177
Lu]-AM-NT 2, [177

Lu]-AM-NT 11 and [
177

Lu]-AM-NT 15-17. 

 

The measurement of the lipophilicity (log D) of the compounds [177Lu]-AM-NT 15-17 showed 

values between -2.2 and -2.3, which suggests the hydrophilic nature of the peptide 

conjugates [177Lu]-AM-NT 15-17. These log D values were comparable to the ones 

measured for the reference compounds [177Lu]-AM-NT 2 and [177Lu]-AM-NT 11. 

Due to the low internalisation rates of NT (8-13) analogues [177Lu]-AM-NT 15-17, the 

determination of their receptor binding affinities by receptor saturation experiments was once 

more challenging. No receptor saturation was observed with the experimental conditions 

described in chapter 3.1.2. The concentration of the peptide conjugates had to be increased 

up to 800 nM for [177Lu]-AM-NT 15 and up to 3200 nM for conjugates [177Lu]-AM-NT 16 and 

[177Lu]-AM-NT 17. No receptor saturation was reached even under these extreme conditions 

and thus, the KD values of [177Lu]-AM-NT 16 and [177Lu]-AM-NT 17 were determined to be 

outside of the nanomolar range (> 1000 nM). Peptide conjugate [177Lu]-AM-NT 15 exhibited 

a low, but improved receptor binding affinity of 214 ± 45 nM, when compared to reference 

compound [177Lu]-AM-NT 11. The results of the binding saturation experiments for [177Lu]-

AM-NT 15-17 are shown in Figure 33.  
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Figure 33: Results of the receptor saturation experiments of [177
Lu]-AM-NT 11 and [

177
Lu]-AM-NT 15-

17.         
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Serum stabilities experiments were performed as described in chapter 3.1.2. As expected, 

the introduction of an Ile12 to Tle12 residue switch had a major impact on the metabolic 

stabilities of the compounds. Over 90% of the peptide conjugates [177Lu]-AM-NT 15-17 were 

still intact after 4 h of incubation. After 24 h of incubation, over 70% of the peptide conjugates 

were intact (Figure 34). In comparison, the reference compound of the first generation 

([177Lu]-AM-NT 2) was completely degraded after 4 h of incubation and the reference 

compound of the second generation ([177Lu]-AM-NT 11) was only 38% intact after 24 h of 

incubation. 
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Figure 34: Serum stabilities of [177
Lu]-AM-NT 11 and [

177
Lu]-AM-NT 15-17. 

 

 Discussion of the In Vitro Evaluation of [177Lu]-AM-NT 15-17 3.3.2.2

 

The second generation of triazole-containing NT (8-13) analogues was successfully 

synthesized and biologically evaluated. The in vitro evaluation was compared side by side 

with the reference compounds of the first generation, [177Lu]-AM-NT 2 and of the second 

generation, [177Lu]-AM-NT 11. 

The internalisation rates of the three NT (8-13) analogues [177Lu]-AM-NT 15-17 were low, in 

comparison to [177Lu]-AM-NT 2, but similar to the reference compound of the second 

generation, [177Lu]-AM-NT 11. 

The low internalisation rates of [177Lu]-AM-NT 15-17 were confirmed by the receptor 

saturation experiments. The receptor binding affinity was only preserved for [177Lu]-AM-NT 

15. Unfortunately, the introduction of tert-leucine led to an abolished receptor affinity towards 

the NTR1 receptor for the triazole-containing peptide conjugates [177Lu]-AM-NT 16 and 

[177Lu]-AM-NT 17.  
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Despite of the loss of affinity, a positive effect of the triazole on the metabolic stability of a NT 

(8-13) analogue was observed, in addition to the Ile12 to Tle12 residue switch. The reference 

peptide conjugate of the second generation of triazole-peptidomimetics, [177Lu]-AM-NT 11, 

remained 70% stable after 4 h of incubation in serum, whereas [177Lu]-AM-NT 15, [177Lu]-

AM-NT 16, and [177Lu]-AM-NT 17 remained stable 97%, 95% and 97%, respectively. After 

24 h, only 40% of the peptide conjugates [177Lu]-AM-NT 11 was still intact. The conjugates 

with a single triazole modification ([177Lu]-AM-NT 15 and [177Lu]-AM-NT 16) remained intact 

over 65%, whereas the bis-triazole analogue ([177Lu]-AM-NT 17) remained intact over 93%, 

suggesting that two triazoles substantially improved the stability of a [Tle12]NT (8-13) 

conjugate. The stabilities measured for these compounds are in good agreement with the 

stabilities published for [Tle12]NT (8-13) analogues, containing additional modifications on the 

C-terminus, like N-methylation.[100, 111] 

Thus, from the second generation of triazole-modified NT (8-13) analogues, [177Lu]-AM-NT 

15 was identified as a peptide conjugate with a retained nanomolar affinity towards the NTR1 

receptor and further improved metabolic stability. 

In summary, the in vitro evaluation of several novel 177Lu-labelled NT (8-13) peptidomimetics 

provided a set of novel radiolabelled peptide conjugates with promising properties. However, 

to draw definitive conclusions about the newly identified peptide conjugates, their in vivo 

behaviour needs to be studied. In chapter 3.4, the biodistributions of selected triazole-

containing NT (8-13) analogues of the first and the second generation will be discussed. 
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 In Vivo Evaluation 3.4

 

The compounds of the first and the second generation of triazole-backbone modified NT (8-

13) analogues with a retained receptor affinity towards NTR1 were evaluated in vivo. Peptide 

conjugates [177Lu]-AM-NT 2 (reference compound of the 1st generation) and [177Lu]-AM-NT 

11 (reference compound of 2nd generation) were also evaluated for comparison (Table 32). 

Nude Foxn 1nu mice were implanted with a HT-29 xenograft on the right shoulder and the 

tumour was allowed to grow for 8 days. On the day of the experiment, the mice received the 
177Lu-labelled NT (8-13) analogue (10 pmol, 0.5-0.7 MBq per mouse), via tail vein injection. 

The mice were sacrificed in groups of five, 1 h, 4 h and 24 h post injection. Blocking 

experiments were performed at 1 h p.i. by co-injection of an excess of NT (1-13) (60 

nmol/mouse). After the sacrifice of the mice, their organs were collected and the radioactivity 

accumulated in the organs was quantified in a gamma-counter. The tissue distribution data is 

presented as percentage of injected activity per gram of tissue (% ID/g). 

Table 32:  Triazole-backbone modified NT (8-13) analogues and reference compounds evaluated in 
vivo. 

Name Structure 

[
177

Lu]-AM-NT 2 

(1
st

 G. reference)
a 

[177Lu]-DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 8 [177Lu]-DOTA-PEG4-Arg-Ψ[Tz]-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 9 [177Lu]-DOTA-PEG4-Ψ[Tz]-Arg-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 10 [177Lu]-DOTA-PEG4-Ψ[Tz]-Arg-Ψ[Tz]-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 11 

(2
nd

 G reference)
b 

[177Lu]-DOTA-PEG4-Arg-Arg-Pro-Tyr-Tle-Leu 

[
177

Lu]-AM-NT 15 [177Lu]-DOTA-PEG4-Arg-Ψ[Tz]-Arg-Pro-Tyr-Tle-Leu 
a 1st generation reference. b 2nd generation reference. 

In general, the biodistribution profiles of the radiolabelled NT (8-13) analogues showed an 

increased accumulation of radioactivity in the NTR1 positive tumour, the intestine, the colon 

and the kidneys. The uptake in the gastrointestinal tract (NTR1-positive organs) and the 

tumour could be blocked with an excess of NT (1-13), which means that the uptake was 

specific and receptor-mediated. The unspecific uptake of radioactivity in the kidneys was the 

result of renal excretion, a commonly observed feature of radiolabelled peptide conjugates. 

All peptide conjugates were rapidly distributed in the body and showed a fast blood 

clearance. The unspecific uptake of the radiotracers in other organs and tissues was almost 

negligible (<0.3% ID/g). The low uptake in the liver indicated the absence of hepatobiliary 

excretion of the peptide conjugates and its metabolites. None of the radiolabelled conjugates 

was able to cross the brain-blood-barrier, as no uptake was observed in the receptor-positive 

brain.  
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The highest accumulation of radioactivity in the tumour, kidneys and gastrointestinal tract 

was observed at 1 h p.i. A washout of radioactivity from the organs at 4 h and 24 h p.i was 

observed for all the evaluated conjugates. The tumour uptake of the radiolabelled NT (8-13) 

analogues was generally low (< 2.2% ID/g). These values are in agreement with the in vivo 

data of related radiometallated NT (8-13) analogues described in literature.[84, 86, 93, 96, 100, 102, 

106, 112]  The low NTR1 receptor density on the tumour tissue could explain the low uptake of 

the radiolabelled conjugate,[5] but factors like the receptor affinity and the metabolic stability 

of the injected peptide conjugate may as well play a role. It should be noted that not only the 

absolute uptake of the radiotracer in the tumour is important, but also the ratio of uptake in 

the tumour to other organs. The higher the tumour to tissues ratio, the better is the potential 

of the investigated radioligand for diagnostic (better imaging quality) and therapeutic 

applications (dosimetry issues). Also, the radiation sensitive kidneys are usually the dose-

limiting organs with respect to peptidic radiopharmaceuticals and thus, particular attention is 

given in the following to the tumour to kidney ratios. 

For the reference compound of the first generation, [177Lu]-AM-NT 2, 1.1% of the total 

injected dose was accumulated in the tumour at 1 h p.i. (Figure 35). Almost a third of the 

activity was washed out of the tumour at 4 h p.i., and at 24 h p.i. only 0.5% ID/g was left. The 

radioactivity accumulated in the kidneys was in the same range as for the tumour. The 

washout from the kidney was slower, as after 24 h 0.7% ID/g remained. 

 

 

Figure 35: Biodistribution profile of analogue [177
Lu]-AM-NT 2. 

 

Peptide conjugate [177Lu]-AM-NT 8, with a single triazole at the Arg8-Arg9 position, showed a 

tumour uptake of 2.0% ID/g (1 h p.i.), which was twice as much as that for the reference 

[177Lu]-AM-NT 2. The uptake of radioactivity in the kidneys was also slightly increased. This 
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increase was in the same range as the increase in tumour uptake. At 24 h p.i., 50% of the 

accumulated radioactivity was washed out of the organs, while 1.0% ID/g remained in the 

tumour and 1.1% ID/g in the kidneys. The biodistribution of [177Lu]-AM-NT 8 is shown in 

Figure 36. 

 

Figure 36: Biodistribution profile of analogue [177
Lu]-AM-NT 8. 

 

The biodistribution profile of [177Lu]-AM-NT 9 was very interesting because of the low uptake 

of radioactivity in the receptor-positive gastrointestinal tract and in the kidneys (Figure 37). 

Although the tumour uptake (1.1% ID/g) was only in the range of the reference analogue 

[177Lu]-AM-NT 2, peptide conjugate [177Lu]-AM-NT 9 exhibited the best tumour to kidney 

ratio (at 1 h p.i.) of all the compounds tested (Figure 41).  

 

Figure 37: Biodistribution profile of analogue [177
Lu]-AM-NT 9. 

 

The peptide conjugate with multiple triazoles, [177Lu]-AM-NT 10, exhibited a relatively high 

tumour uptake of 1.9% ID/g (1 h p.i.), in comparison to reference compound [177Lu]-AM-NT 
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2. This was, in fact, a surprising result, because the metabolic stability of [177Lu]-AM-NT 10 

in human blood serum was quite low. The uptake of radioactivity in the kidneys was the 

same range as the tumour uptake. After 24 h, approx. 50% of the accumulated radioactivity 

was washed out of the kidneys, while 0.9% ID/g remained in the tumour and 1.2% ID/g in the 

kidneys. The biodistribution of [177Lu]-AM-NT 10 is shown in Figure 38. 

 

Figure 38: Biodistribution profile of analogue [177
Lu]-AM-NT 10. 

 

The reference compound of the second generation of triazole-peptidomimetics (with the Ile12 

to Tle12 residue switch), [177Lu]-AM-NT 11 displayed a similar biodistribution profile as the 

reference compound of the first generation [177Lu]-AM-NT 2 (Figure 39). The highest tumour 

uptake (1.0% ID/g) was observed 1 h p.i. Washout of the radioactivity was observed over 

time. In the contrary to the conjugates discussed so far, the kidney uptake was higher than 

the tumour uptake at all time points. 

 

Figure 39: Biodistribution profile of analogue [177
Lu]-AM-NT 11. 
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Peptide conjugate [177Lu]-AM-NT 15, a compound of the second generation, with a single 

triazole at the Arg8-Arg9 position, showed a tumour uptake of 2.3% ID/g at 1 h p.i., which was 

twice as much as that of the reference of the second generation [177Lu]-AM-NT 11. At 1 h 

p.i., the peptide conjugate exhibited a good tumour to kidney ratio of 1.4 (Figure 41). 

However, the radioligand was then rapidly washed out of the tumour (1.0% ID/g at 4 h p.i. 

and 24 h p.i.), whereas the renal excretion was slower. The biodistribution of [177Lu]-AM-NT 

15 is shown in Figure 40. 

 

Figure 40: Biodistribution profile of analogue [177
Lu]-AM-NT 15. 

 

An accumulation of a peptidic radiotracer in an organ or tissue other than the targeted is, as 

mentioned before, unfavourable because it decreases the tumour to background ratio, which 

is important for diagnostics as well as represents an unnecessary radiation dose for a 

patient, if applied as a therapeutic agent. Figure 41 shows the tumour to kidney ratios of all 

the evaluated radiolabelled peptide conjugates at every time-point. 

 

Figure 41: Tumour to kidney ratios at 1, 4 and 24 h p.i. of [177
Lu]-AM-NT 2, [177

Lu]-AM-NT 8, [177
Lu]-

AM-NT 9, [177
Lu]-AM-NT 10 and 

177
Lu-AM-NT 15. 
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A direct comparison of the uptakes (1, 4, 24 h p.i.) of the evaluated peptide conjugates in the 

tumour, the intestine and colon (receptor-positive tissues), the kidneys (dose-limiting organs) 

and the blood (to show blood clearance) are shown in Figures 42-44. At 1 h p.i., [177Lu]-AM-

NT 8, [177Lu]-AM-NT 10 and [177Lu]-AM-NT 15 exhibited a significantly increased tumour 

uptake when compared to the unmodified references [177Lu]-AM-NT 2 and [177Lu]-AM-NT 

11. Peptide conjugate [177Lu]-AM-NT 9, with a triazole between the N-terminal PEG4 spacer 

and Arg8, exhibited a lower tumour uptake in comparison to the other triazole-containing 

conjugates, but the best tumour to organs ratio (Figure 41), in particular a high tumour to 

kidney ratio at 1 h p.i (Figure 41).  

 

Figure 42: Comparison of the biodistribution profiles of [177
Lu]-AM-NT 2, [177

Lu]-AM-NT 8, [177
Lu]-

AM-NT 9, [177
Lu]-AM-NT 10 and [

177
Lu]-AM-NT 15 at 1 h p.i. 

 

At 4 h p.i., [177Lu]-AM-NT 8 had the highest tumour uptake, followed by the other Arg8-Ψ[Tz]-

Arg9-containing peptides, [177Lu]-AM-NT 10 and [177Lu]-AM-NT 15. All three peptidomimetics 

exhibited similar tumour to kidney ratios. [177Lu]-AM-NT 9 still had the best overall tumour to 

kidney ratio, even though its tumour uptake was reduced to 0.6% ID/g. 
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Figure 43: Comparison of the biodistribution profiles of [177
Lu]-AM-NT 2, [177

Lu]-AM-NT 8, [177
Lu]-

AM-NT 9, [177
Lu]-AM-NT 10 and [

177
Lu]-AM-NT 15, 4 h p.i. 

 

After 24 h, [177Lu]-AM-NT 8 and [177Lu]-AM-NT 15 (with Arg8-Ψ[Tz]-Arg9), had a similar 

tumour accumulation (Figure 44), as well as a comparable tumour to kidney ratio (Figure 

41). The only difference in the in vivo behaviour of the two substances was the higher 

accumulation of radioactivity of [177Lu]-AM-NT 15 in the intestine, which is unfavourable due 

to high tumour to background ratio. The accumulation of radioactivity of [177Lu]-AM-NT 9 in 

the HT-29 tumour was substantially reduced (under 0.5% ID/g) and the tumour to kidney 

ratio was then comparable to the one of [177Lu]-AM-NT 8 and [177Lu]-AM-NT 15. The tumour 

uptake as well as the tumour to kidney ratio of [177Lu]-AM-NT 10 were slightly inferior to the 

mono-substituted peptide conjugates.  

 

Figure 44: Comparison of the biodistribution profiles of [177
Lu]-AM-NT 2, [177

Lu]-AM-NT 8, [177
Lu]-

AM-NT 9, [177
Lu]-AM-NT 10 and [

177
Lu]-AM-NT 15, 24 h p.i. 
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From the biodistribution data of the radiolabelled NT (8-13) analogues evaluated in this study 

it can be concluded that a an amide-to-triazole exchange of the Arg8-Arg9 bond led to 

conjugates with an improved tumour uptake, when compared to reference compounds 

[177Lu]-AM-NT 2 (1st generation) and [177Lu]-AM-NT 11 (2nd generation). However, the Tle12 

substitution did not improve the tumour uptake of the second generation of triazole-

peptidomimetics, despite of the increased stability of these conjugates. 
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3.4.1 In Vivo Imaging 

 

 [177Lu]-AM-NT 8 (1st generation, Arg8-Ψ[Tz]-Arg9)and [177Lu]-AM-NT 11 (reference 2nd 

generation) were selected to perform first in vivo imaging experiments using a small animal 

SPECT/CT camera. Even though not all compounds of interest could be included in this 

preliminary imaging study, the obtained images illustrate the potential of NT (8-13)-based 

radiopeptides for tumour targeting.   

For the in vivo imaging experiments, the radiolabelled peptide conjugate (60 pmol/mouse, 13 

MBq) was injected via the tail vein into a mouse with a HT-29 xenograft on the right shoulder. 

The mouse was then measured 1 h p.i. on a small animal SPECT/CT camera.  

In the SPECT/CT-images of [177Lu]-AM-NT 11 (A) and [177Lu]-AM-NT 8 (B) in Figure 45, 

both the tumour and the kidneys are clearly visible. Little background radiation was observed 

in the images, confirming the fast clearance of the blood at 1 h p.i. determined in the 

biodistribution studies of the compounds (Figure 42). 

From this preliminary in vivo imaging study it can be concluded that NT (8-13)-based 

radiopeptides could represent suitable probes for in vivo imaging of NTR1-positive tumours, 

despite the relatively low uptake of radioactivity in the tumours.  

 

 

Figure 45: In vivo imaging. A: [177
Lu]-AM-NT 11, B: [

177
Lu]-AM-NT 8. 
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3.4.2 Discussion of the In Vivo Evaluation 

 

Reference compounds [177Lu]-AM-NT 2 (1st generation) and  [177Lu]-AM-NT 11 (2nd 

generation) as well as the triazole-containing conjugates [177Lu]-AM-NT 8, [177Lu]-AM-NT 9, 

[177Lu]-AM-NT 10, and [177Lu]-AM-NT 15, were evaluated in vivo because of their retained 

receptor affinities towards NTR1 and, in most cases, improved serum stabilities. A 

preliminary in vivo SPECT/CT imaging study was performed with [177Lu]-AM-NT 8 (Arg8-

Ψ[Tz]-Arg9) and [177Lu]-AM-NT 11 (reference 2nd generation).  

The values of tumour uptake of the evaluated radiopeptides were similar to the values 

reported in literature, yet they were on the lower end of the range, as uptakes of up to 6.3% 

ID/g 1 h p.i. have been reported for related radiometallated NT (8-13) analogues.[98] On the 

other hand, all the evaluated radioconjugates had low kidney uptakes, resulting in tumour to 

kidney ratios above average values published.[6, 84, 86, 93, 96, 100-102, 104, 106, 112] The high tumour to 

background ratio of reference compound [177Lu]-AM-NT 11 and [177Lu]-AM-NT 8 was 

confirmed by the results of the preliminary in vivo SPECT/CT imaging.  

Comparison of the biodistribution profiles of the references of the first and second generation 

of triazole-peptidomimetics [177Lu]-AM-NT 2 (Ile12) and [177Lu]-AM-NT 11 (Tle12) showed no 

significant difference, despite of their different receptor affinities and stabilities in human 

serum. A possible reason for these observations could be that the improved stability of 

[177Lu]-AM-NT 11 balances the loss of receptor affinity with respect to [177Lu]-AM-NT 2. 

 

Within the first generation of peptide conjugates with triazoles, [177Lu]-AM-NT 10, the 

conjugate with shortest half-life (t1/2= 17 min) and [177Lu]-AM-NT 8 (t1/2= 65 min) showed 

twice the tumour uptake of the reference [177Lu]-AM-NT 2 (t1/2= 46 min). Therefore, no 

correlation between the metabolic stability and the accumulation of the conjugates in the 

tumours was observed in this study. This may be a consequence of differences between the 

concentration and types of proteases in human and mouse blood. This issue could be 

examined by performing serum stabilities studies in vivo, an experiment which could not be 

performed during this thesis. Similarly, no correlation between the KD values of the peptide 

conjugates of the first generation of triazole-peptidomimetics and their tumour uptake in vivo 

was observed. An interesting behaviour was observed with compound [177Lu]-AM-NT 9, the 

conjugate with a triazole-modification situated between the N-terminal PEG4 spacer and the 

Arg8 residue. The tumour uptake of the radioconjugate was low, similar to the one of the 

reference compound [177Lu]-AM-NT 2, but the accumulation in the receptor positive organs 

(intestine and colon) and in the kidney was recognizably reduced. As a consequence, this 

conjugate exhibited a remarkably promising tumour to background ratio, especially the 
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tumour to kidney ratio at 1 h p.i. Comparable tumour to kidney ratios have only been 

observed for a NT (8-13) analogue by the group of Tourwé.[112] Despite its low tumour 

uptake, radiolabelled conjugate [177Lu]-AM-NT 9 could be a promising candidate for in vivo 

imaging applications. 

 

Within the second generation of triazole-peptidomimetics, [177Lu]-AM-NT 15 (with a Arg8-

Ψ[Tz]Arg9-modification), showed an improved tumour uptake (2-fold) when compared to the 

reference [177Lu]-AM-NT 11. [177Lu]-AM-NT 15 exhibited a superior receptor affinity as well 

as a higher metabolic stability than the reference [177Lu]-AM-NT 11. 

 

When comparing the tumour uptakes of [177Lu]-AM-NT 8 (1st generation, Ile12) and [177Lu]-

AM-NT 15 (2nd generation, Tle12), both with a 1,4-disubstituted 1,2,3-triazole at the Arg8-Arg9 

bond, no significant difference was observed. The metabolic stability of [177Lu]-AM-NT 15 

was substantially improved when compared to [177Lu]-AM-NT 8, but it exhibited a lower 

receptor binding affinity. However, this was not reflected in the in vivo studies. Again, a 

possible explanation is that the low receptor affinity of [177Lu]-AM-NT 15 was compensated 

by its higher metabolic stability. 

The tumour uptake in vivo of a radiopeptide can be affected by many different factors 

including the metabolic stability of the peptide conjugate, the receptor affinity of the conjugate 

towards the receptor expressed on the tumours or the rate of excretion of the compound. 

The receptor abundance on the targeted tissue may also play a role. Based on the 

observations made with the in vitro and biodistribution data of the triazole-containing 

conjugates described, it can be concluded that it is difficult to predict the in vivo behaviour of 

a substance based on in vitro data.  

In general, we can conclude that the evaluated triazole-containing radiopeptides in this study 

perform satisfactorily in vivo, with tumour uptakes comparable with published biodistribution 

data of related radiolabelled NT (8-13) analogues. Also, the herein reported new NT (8-13)-

based radioconjugates exhibited in general improved tumour to kidney ratios.  
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4. Conclusion and Outlook 

 

The goal of this thesis was the development of metabolically stabilized radiolabelled NT (8-

13) analogues with improved tumour-targeting properties. NT (8-13) is the minimal binding 

sequence of NT and has a high receptor affinity and specificity towards NTR1, a receptor 

overexpressed by tumours like breast, prostate, small cell lung, pancreatic and colon 

cancer.[1-3, 77-79]  NT (8-13) is therefore an interesting candidate for the development of new 

peptidic tumour-targeting radiotracers with potential applications in nuclear imaging and 

therapy. The major drawback of NT (8-13) is its low stability in blood. The enhancement of 

the metabolic stability of NT (8-13) has been studied by different classical peptide 

stabilization approaches such as N-methylation, reductions of the amide bonds or amino acid 

substitutions.[6, 9, 86, 112] However, the success of stabilized NT (8-13) analogues so far 

reported in preclinical and clinical evaluations has been only moderate. Therefore novel 

strategies for the optimization of NT (8-13)-derived radiopharmaceuticals are needed.  

In this work, the stabilization of the NT (8-13) sequence against proteases was investigated 

by using 1,4-disustituted 1,2,3-triazoles as proteolytically stable amide bond mimics and the 

introduction of an Ile12 to Tle12 residue switch. Within this thesis, the first systematic ‘triazole 

scan’ of NT (8-13) has been achieved. The structures of the peptide conjugates synthesized 

and studied are shown in Table 33 and the results of their biological evaluation in Table 34. 

The peptide conjugates were synthesized on solid support by a combination of Fmoc-based 

solid phase peptide synthesis (SPPS), diazo-transfer reaction and the Cu(I) catalysed azide-

alkyne cycloaddition (CuAAC). The required α-amino alkynes for the CuAAC were 

successfully synthesized from the corresponding α-amino acids and their enantiomeric 

purities were verified. The synthesis of the N-terminal azido-peptides via diazo-transfer 

reaction and the CuAAC on solid support were highly efficient. The peptides were elongated 

N-terminally with a PEG4 spacer and conjugated to a DOTA-chelator. After HPLC-

purification, the compounds were labelled with [177Lu]LuCl3 in high radiochemical yields and 

purities. 
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Table 33: Structures of radiolabelled NT (8-13) analogues investigated. 

 

a 1st generation reference. b 2nd generation reference. 

 

In the first part of the thesis, the influence of a spacer (PEG4 or Ahx) that separates the NT 

(8-13) from the chelator DOTA was studied. The insertion of a PEG4 spacer yielded a peptide 

conjugate ([177Lu]-AM-NT 2) with improved receptor binding properties in comparison to the 

corresponding conjugate without a spacer or an Ahx-spacer, respectively. Additionally, the 

PEG4-spacer was found to increase the metabolic stability of NT (8-13) by nearly an order of 

magnitude. [177Lu]-AM-NT 2 was subsequently selected as an internal reference compound 

for the triazole-peptidomimetics discussed below. 

 

In the second part of this thesis, a complete ‘triazole scan’ was performed on the NT (8-13) 

motif, including the individual substitution of every backbone amide bond (but Arg9-Pro10) 

with a 1,4-disustituted 1,2,3-triazole bioisostere. The use of a triazole as an amide bond 

mimic was tolerated in two positions of the amino acid sequence of NT (8-13), between the 

N-terminal PEG4 spacer and Arg8 and between the Arg8 and Arg9 residues. A substitution of 

both bonds was also possible without losing affinity towards the NTR1 receptor. The 

stabilities of triazole-containing, radiolabelled NT (8-13) peptidomimetics against proteases 

were improved by the introduction of the triazoles but not yet to a degree sufficient for clinical 

applications. The Arg8-Ψ[Tz]-Arg9 and the PEG4-Ψ[Tz]-Arg8 substitution yielded peptide 

conjugates with up to 1.5-fold increased metabolic stabilities, in comparison to the reference 

 Structure 

[
177

Lu]-AM-NT 1 [177Lu]-DOTA-Arg-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 2 

(1
st

 G. Reference)
a 

[177Lu]-DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 3 [177Lu]-DOTA-Ahx-Arg-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 4 [177Lu]-DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu-Ψ[Tz]-H 

[
177

Lu]-AM-NT 5 [177Lu]-DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Ψ[Tz]-Leu 

[
177

Lu]-AM-NT 6 [177Lu]-DOTA-PEG4-Arg-Arg-Pro-Tyr-Ψ[Tz]-Ile-Leu 

[
177

Lu]-AM-NT 7 [177Lu]-DOTA-PEG4-Arg-Arg-Pro-Ψ[Tz]-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 8 [177Lu]-DOTA-PEG4-Arg-Ψ[Tz]-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 9 [177Lu]-DOTA-PEG4-Ψ[Tz]-Arg-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 10 [177Lu]-DOTA-PEG4-Ψ[Tz]-Arg-Ψ[Tz]-Arg-Pro-Tyr-Ile-Leu 

[
177

Lu]-AM-NT 11 

(2
nd

 G. Reference)
b 

[177Lu]-DOTA-PEG4-Arg-Arg-Pro-Tyr-Tle-Leu 

[
177

Lu]-AM-NT 12 [177Lu]-DOTA-PEG4-Arg-Lys-Pro-Tyr-Tle-Leu 

[
177

Lu]-AM-NT 13 [177Lu]-DOTA-PEG4-Lys-Arg-Pro-Tyr-Tle-Leu 

[
177

Lu]-AM-NT 14 [177Lu]-DOTA-PEG4-Lys-Lys-Pro-Tyr-Tle-Leu 

[
177

Lu]-AM-NT 15 [177Lu]-DOTA-PEG4-Arg-Ψ[Tz]-Arg-Pro-Tyr-Tle -Leu 

[
177

Lu]-AM-NT 16 [177Lu]-DOTA-PEG4-Ψ[Tz]-Arg-Arg-Pro-Tyr-Tle -Leu 

[
177

Lu]-AM-NT 17 [177Lu]-DOTA-PEG4-Ψ[Tz]-Arg-Ψ[Tz]-Arg-Pro-Tyr-Tle -Leu 
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compound. The Arg8-Arg9 position has been described in literature as one of the main 

cleavage sites of the peptide, a finding that is supported by the results obtained in this 

work.[84] Surprisingly, the bis-triazole peptide conjugate [177Lu]-AM-NT 10, in which both 

previously identified bonds were substituted with a triazole, displayed a loss in metabolic 

stability. We have currently no explanation for this result but that the consecutive introduction 

of two triazoles in the amino acid sequence of NT (8-13) may have led to a conformation of 

the peptide conjugate prone to degradation by peptidases. 

The introduction of a triazole in any other position of NT (8-13) led to compounds with an 

abolished receptor binding affinity towards the NTR1 receptor, however some of these 

radiopeptides exhibited a remarkably high metabolic stability (improved up to 4-fold), in 

comparison to the reference compound (e.g. [177Lu]-AM-NT 6). These observations are in 

agreement with the results of other reported peptide stabilization strategies (e.g. the 

reduction of amide bonds or the employment of β-homo amino acids),[9-10] and revealed the 

necessity to combine our triazole stabilization approach with other methods (e.g. the 

substitution of Ile12 with Tle12).  

Table 34: Summary of the biological properties of radiolabelled NT (8-13) analogues. 

 
Internalisation 

after 4 h (%) 
KD (nM) Bmax (nM) Log D 

Stability 

after 4 h (%) 

[
177

Lu]-AM-NT 1 3.0 ± 0.2 14.9 ± 0.7 0.5 -2.5 0 

[
177

Lu]-AM-NT 2 

(1
st

 G. Reference)
a 

7.3 ± 0.4 3.8 ± 0.9 0.37 ± 0.02 -2.6 0.9 

[
177

Lu]-AM-NT3 5.6 ± 0.4 3.4 ± 1.5 0.3 -2.3 0 

[
177

Lu]-AM-NT 4 n.o. n.d. n.d. -3.2 2.5 

[
177

Lu]-AM-NT 5 n.o. n.d. n.d. -2.8 5.6 

[
177

Lu]-AM-NT 6 n.o. n.d. n.d. -3.2 10.2 

[
177

Lu]-AM-NT 7 n.o. n.d. n.d. -2.6 0 

[
177

Lu]-AM-NT 8 6.4 ± 1.2 8.7 ±1.7 0.90 ± 0.04 -2.8 6.5 

[
177

Lu]-AM-NT 9 9.4 ± 0.5 4.5 ±0.8 0.45 ± 0.01 -3.2 2.2 

[
177

Lu]-AM-NT 10 10.8 ± 0.4 4.6 ± 2.3 0.34 ± 0.03 -2.7 0 

[
177

Lu]-AM-NT 11 

(2
nd

 G Reference)
b 

1.3 ± 0.2 507 ± 114 1.6 ± 0.2 -2.2 70.6 

[
177

Lu]-AM-NT 12 0.23 ±0.02 >1000 n.d. -2.1 95.6 

[
177

Lu]-AM-NT 13 0.56 ± 0.02 >1000 n.d. -2.1 95.7 

[
177

Lu]-AM-NT 14 0.3 ± 0.01 246 ± 44 0.80 ± 0.06 -2.0 91.1 

[
177

Lu]-AM-NT 15 2.1 ± 0.1 214 ± 45 n.d. -2.2 97.7  

[
177

Lu]-AM-NT 16 1.2 ± 0.2 >1000 n.d. -2.2 94.7  

[
177

Lu]-AM-NT 17 2.19 ± 0.01 >1000 n.d. -2.3 97.2 
a 1st generation reference. b 2nd generation reference. 

In the third part of this work, the use of Tle and Lys as reported substitutes for Ile12 and Arg8/9, 

within the amino acid sequence of [177Lu]-DOTA-PEG4-NT (8-13) was investigated to improve 

further the stability of the peptidic vector. A direct comparison of the influence of these amino 
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acid substitutions on the pharmacological properties of the NT (8-13) motif has not yet been 

published. In general, the introduction of Tle12 led to a significantly reduced cell 

internalisation as well as receptor binding affinity of the radiolabelled conjugates, but resulted 

in increased metabolic stability. Similarly, the substitution of one of the Arg residues with Lys 

led to abolished receptor binding affinities of the radiopeptides, whereas the substitution of 

both Arg residues with Lys yielded a radiopeptide conjugate with a retained affinity towards 

NTR1 and improved stability against proteolytic degradation. [177Lu]-AM-NT 11, with Tle12, 

was selected as a reference compound for the second generation of triazole-containing 

peptidomimetics in which the previously identified positions for an amide-to-triazole 

exchange was investigated.  

 

Triazole-substituted NT (8-13) analogues bearing a Tle12 exhibited low cell internalisations 

into NTR1-positive HT-29 cells. All three triazole-peptidomimetics with a Tle12 substitution 

showed a significant loss of receptor affinities towards NTR1, with exception of the Arg8-

Ψ[Tz]-Arg9-peptide conjugate. These observations were not completely in agreement with 

literature data, as the substitution of Ile12 with Tle12 is reported to yield NT (8-13) analogues 

with high receptor affinities towards NTR1.[6, 104-105] On the other hand, all the peptide 

conjugates exhibited a significant improvement of stability when compared to the compounds 

of the first generation.  

Based on their promising properties in vitro, three peptide conjugates of the first generation 

and one of the second generation were selected for a full investigation in vivo in a side-by 

side comparison with their respective reference compounds. In vivo experiments of the 

radiolabelled NT (8-13) derivatives showed that the Arg8-Ψ[Tz]-Arg9 modification led to the 

radiolabelled peptidomimetics with the most interesting tumour-targeting properties ([177Lu]-

AM-NT 8, [177Lu]-AM-NT 10 and [177Lu]-AM-NT 15). The presence of this modification in the 

peptide conjugate was responsible for a 2-fold increased accumulation of radioactivity in the 

HT-29 xenograft of nude mice. The peptide conjugate with the triazole between the N-

terminal PEG4 spacer and Arg8 (([177Lu]-AM-NT 9) did no show an improved tumour uptake, 

but a very promising high tumour to background ratio (Table 35).  
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Table 35: Summary of biodistribution data of the NT (8-13) analogues evaluated in vivo 

 Tumour uptake (% ID/g) Tumour to kidney ratio 

1 h 4 h 24 h 1 h 4 h 24 h 

[
177

Lu]-AM-NT 2 

(1
st

 G. Reference)
a 1.1 ± 0.2 0.8 ± 0.2 0.5 ±  0.2 1.0 ± 0.5 0.6 ± 0.2 0.7 ± 0.4 

[
177

Lu]-AM-NT 8 2.0 ± 0.3 1.6 ± 0.5 1.0 ±  0.3 1.1 ± 0.4 0.8 ± 0.4 0.9 ± 0.4 

[
177

Lu]-AM-NT 9 1.0 ± 0.3 0.7 ± 0.1 0.42 ±  0.09 2.0 ± 0.9 1.3 ± 0.3 1.0 ± 0.4 

[
177

Lu]-AM-NT 10 1.9 ± 0.4 1.29 ± 0.09 0.9 ±  0.1 1.0 ± 0.3 0.8 ± 0.1 0.7 ± 0.1 

[
177

Lu]-AM-NT 11 

(2
nd

 G. Reference)
b 1.0 ± 0.3 0.7 ± 0.2 0.2 ±  0.1 0.8 ± 0.3 0.5 ± 0.3 0.5 ± 0.3 

[
177

Lu]-AM-NT 15 2.3 ± 0.6 1.1 ± 0.1 1.1 ±  0.1 1.4 ± 0.7 0.8 ± 0.2 0.9 ± 0.2 
a 1st generation reference. b 2nd generation reference. 

In general, it can be concluded that 1,4-disubstituted 1,2,3-triazoles as amide bonds isosters 

in NT (8-13) led to new radiolabelled peptidomimetics with a nanomolar receptor affinity 

towards NTR1 and a moderate improvement of the stability against proteases. Substitution of 

Ile12 with Tle12 significantly improved the metabolic stability of the radiopeptides, while a loss 

of receptor affinity was observed at the same time. Comparison to similar radiopeptides 

reported in literature was difficult, because of differences in the amino acid sequences, 

employed spacers, chelators and radiometals or due to different biological assays, (e.g. IC5o 

values from ligand competition experiments instead of binding saturation experiments).[6, 84, 86, 

93, 96, 100-102, 104, 106, 112] The hydrophilicity (log D) of the peptidomimetics was not much affected 

by the introduction of the triazole, as they all exhibited similar values. The hydrophilic 

character of the peptide conjugates is a favourable characteristic for a radiometal-labelled 

peptide conjugate as the likelihood of unspecific accumulation in the liver in vivo due to 

hepatobiliary excretion is reduced and a favourable fast renal clearance is expected. This is 

beneficial for the application of the radiopeptide conjugates as imaging agents because the 

background radiation is reduced, which results in higher imaging quality. For therapeutic 

applications, a high tumour to background ratio is also favourable, as an unnecessary 

radiation dose to the patient is avoided.  

It was observed that the tumour uptake of the radiopeptides evaluated in vivo did not 

correlate with the metabolic stability or the KD values determined in vitro. A possible 

explanation could be that the improved metabolic stability of some peptidomimetics balances 

the loss of receptor binding affinity and vice versa. This would explain that no significant 

difference in tumour uptake was observed between [177Lu]-AM-NT 8 (high receptor affinity, 

low stability) and [177Lu]-AM-NT 15 (low receptor affinity, high stability). This demonstrates 

that predictions of the in vivo behaviour of triazole-substituted NT (8-13) analogues must not 

be made based on their in vitro behaviour and underlines the importance of preclinical in vivo 

experiments. 
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In summary, we report the first ‘triazole scan’ of the binding sequence of NT (8-13) and the 

synthesis and biological evaluation of novel radiolabelled triazole-containing 

peptidomimetics. The synthesis of the peptide conjugates (including CuAAC and diazo-

transfer) was fully compatible with solid phase synthesis. This methodology is likely to find a 

broad application as a stabilization technique for other peptides of medicinal interest. The 

substitution of amide bonds with 1,4-disubstitued 1,2,3-triazoles provided NT (8-13) 

peptidomimetics with improved tumour-targeting properties in comparison to their reference 

compounds. The tumour uptake of the evaluated triazole-containing radiopeptidomimetics 

was somewhat low and one has to acknowledge that they are therefore not likely suitable for 

applications in endoradiotherapy. However, due to their high specificity and good tumour to 

background ratio, they are interesting candidates for the development of peptidic radiotracers 

for the molecular imaging of NTR1 positive tumours.  

Future research could include further investigations for a better understanding of the in vivo 

behaviour of some of the compounds. Despite seemingly poor internalisation properties and 

dissociation constants in the high nanomolar range, some of the radiolabelled 

peptidomimetics performed nevertheless satisfactorily in vivo. It would be interesting to 

characterize the pharmacological properties of these compounds by techniques different to 

the ones presented in this thesis, (e.g. ligand competition experiments, or studies with other 

NTR1-expressing cell lines such as WiDr cells or HT-29 and WiDr cell membrane 

preparations).[193] It is known that the metabolic stability of compounds can be different in 

human and mouse blood plasma due to differences in the expression and concentration of 

proteases.[194] Determination of the metabolic stability of the peptidomimetics in mouse serum 

ex vivo would thus be helpful to understand better why the increased stability did not 

correlate with the tumour uptakes. In addition, a significant difference can be expected 

between in vitro and in vivo experiments since proteases are not only present in the blood 

but also in organs such as the liver and the kidneys. A detailed in vivo imaging study (e.g. at 

different time points) would help to evaluate the suitability of the radioconjugates as imaging 

agents.  

Especially the bis-triazole compound [177Lu]-AM-NT 10, which exhibited an improved tumour 

uptake despite of its lack of metabolic stability, needs to be further evaluated. In vitro 

experiments with different proteases in combination with molecular modelling studies could 

provide further insights about the cleavage sites important for this specific compound.  

Further development of radiolabelled triazole-containing NT (8-13) analogues could include 

the exploration of other amino acid substitutions for Ile12 (e.g. tBuAla, cyclopentyl-alanine or 

cyclohexyl-alanine),[195] in combination with our amide-to-triazole exchange methodology. 

Also, the combination of reduced amide bonds with a triazole-modified NT (8-13) analogue 
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should be evaluated. Combinations of these different techniques could lead to novel triazole-

containing NT (8-13) analogues with further improved tumour-targeting properties. 

Alternatively, Gruaz-Guyon and co-workers have reported that longer fragments of 

Neurotensin, based on NT (6-13), had higher tumour uptakes.[100] Based on literature data, it 

is likely that an increased size of the tumour-targeting vector enhances the circulation time of 

the radiopeptide conjugate in the body and thus, its tumour uptake. This offers an additional 

possibility to improve the tumour-targeting properties of NT-based radiolabelled conjugates. 

An alternative to the structural optimization of a peptidic radiopharmaceutical is the co-

administration of a protease-inhibitor. In 2014, Nock et al. published a new approach for the 

stabilisation of peptide-based radiopharmaceuticals consisting of the co-administration of the 

radiotracers with an inhibitor of the metalloprotease NEP 24.10.[196] The application of this 

strategy to three classical radiopeptides resulted in an increased tumour uptake. [196] It could 

be interesting to combine our stabilisation approach with the injection of inhibitors 

responsible for the degradation of Neurotensin.  
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5. Experimental Procedures 

 

 Instruments and Chemicals 5.1

 

All reagents and solvents were purchased from commercial suppliers and were used without 

further purification. If not mentioned, all the reagents were purchased at Sigma Aldrich 

(Buchs, Switzerland). Rink amide LL resin, Fmoc-Leu preloaded Novasyn resin, HATU and 

amino acids were purchased at Novabiochem (Merck Millipore, Darmstadt, Germany) or 

Bachem (Bubendorf, Switzerland). DOTA (tris-tBu) was purchased from Chematech (Dijon, 

France). 1-(9H-fluoren-9-yl)-3-oxo-2,7,10,13,16-pentaoxa-4-azanonadecan-19-oic acid 

(Fmoc-PEG4-OH) was purchased from PolyPeptide laboratories (Strasbourg, France).  

Blocking agents NT (8-13) and NT (1-13) were purchased at Bachem (Bubendorf, 

Switzerland). 

[177Lu]LuCl3 in 0.05 M HCl was purchased either from IDB (Baarle-Nassau, Netherlands), ITG 

(München, Germany) or Perkin Elmer (Boston,USA).  

Human colorectal adenocarcinoma (HT-29) cells were obtained from American Type Culture 

Collection (ATCC, Manassas, USA), Dulbecco’s modified Eagle’s medium (DMEM, high 

glucose), containing 10% (v/v) fetal bovine serum (FBS Superior, OXOID, Pratteln, 

Switzerland), L-glutamine (200 mM), 100 IU mL-1 penicillin and 100 µg mL-1 streptomycin. 

Animals, female nude Foxn 1nu mice, were purchased either at Charles River (Wilmington, 

USA) or Harlan (Füllingsdorf, Switzerland). 

Analytical and preparative HPLC were carried out with systems from Bischoff 

Chromatography, equipped with a γ-1010 UV/Vis and an LB509 radioflow detector (Berthold 

Technologies, Bad Wildbad, Germany), using C18 reversed-phase columns from Macherey 

Nagel (Oensingen, Switzerland) Nucleodur C18 ISIS, 5 µm, 250 x 4.6 mm for analytics and 

Nucleodur C18 ISIS, 5 µm, 250 × 16.0 mm for purifications, using 0.1% TFA in H2O as 

solvent A and 0.1% TFA in MeCN as solvent B. 

Flash column chromatographies were carried out using Kieselgel C60 as the stationary 

phase and TLC were performed on precoated silica gel plates (0.25 mm thick, 60F 254, 

Merck, Germany). 

1H and 13C NMR spectra were recorded on Bruker DPX 400, DPX 500 and DPX 600 

instruments, at a constant temperature of 25 °C. The corresponding solvent signals were 
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used as internal standard. Chemical shifts are reported in parts per million (ppm) relative to 

tetramethylsilane (0.00 ppm). Values of the coupling constant, J, are given in Hertz (Hz); the 

lowing abbreviations are used in the experimental section for the description of 1H-NMR 

spectra: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublets (dd), 

broad singlet (bs), Cq (quaternary carbon), Ct (tertiary carbon) and Cs (secondary carbon). 

The chemical shifts of complex multiplets are given as the range of their occurrence. Further 

assignments were achieved by using two-dimensional NMR experiments when appropriate 

(COSY, NOESY, HMBC, HMQC). 

Optical rotations were measured at 20 °C with a Jasco P-2000 Polarimeter. High resolution 

mass spectrometry measurements were performed by ESI on a maXis 4G (Bruker, Billerica, 

USA) or by LC-ESI on an LTQ Orbitrap XL mass spectrometer (Thermo Scientific, Waltham, 

USA). Quantitative γ-counting was performed on a COBRA II auto-gamma system (Model 

5003, Packard Instruments, Meriden, USA). Lyophilisation of the peptide conjugates was 

performed on an Alpha 1-2 LD plus lyophilizer (Christ, Osterode am Harz, Germany). 

In vivo imaging was performed using a NanoSPECT/CT ® Plus In Vivo Animal Image 

scanner (BIOSCAN, Geneva, Switzerland; now Trifoil, Chatsworth, USA). The CT- and 

SPECT-scans were reconstructed with the software InVivoScope® 1.43 (BIOSCAN) and the 

reconstruction of the images was performed with the software HiSPECT Version 1.4.1876 

(Scivis GmbH, Göttingen, Germany). 

LRMS analyses were performed on an ESI Bruker Esquire 3000 plus.  
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 Organic Synthesis 5.2

 

5.2.1 General Procedures 

 

General Procedure A: Synthesis of Weinreb Amides[197] 

 

N
H

R1

OH

O

N
H

R1

N

O
OR2R2

R2= Boc/Fmoc  

 

The corresponding Fmoc- or Boc-protected amino acid (1 mmol) was dissolved in CH2Cl2 

(0.1 M) and DIPEA (435 µL, 2.5 mmol, 2.5 equiv.) and BOP (442 mg, 1 mmol, 1.0 equiv.) 

were added. The solution was stirred for 15 min. N,O-dimethylhydroxylamine (117 mg, 1.2 

mmol, 1.2 equiv.) was added and the reaction was stirred for 12-14 h at RT. The solution 

was washed with a 0.5 M HCl solution (3 x 50 mL), saturated NaHCO3 solution (3 x 5 mL) 

and NaCl solution (3 x 50 mL). The organic phase was dried over MgSO4, filtered and the 

solvent was removed in vacuo. The corresponding Weinreb amides were purified by silica 

gel column chromatography. 

 

General Procedure B: Synthesis of α-Amino Alkynes [172] 

B.1 Synthesis of α-Amino Alkynes from Boc-protected Weinreb Amides 

 

BocHN

R1

N

O
O BocHN

R1

 

 

Weinreb amide 26 (0.1 mmol) was placed under argon in a flame dried flask and dissolved in 

anhydrous CH2Cl2 (0.1 M). The solution was cooled to -78 °C (dry ice/diethyl ether bath). 1 M 

DIBAL-H in toluene (0.3 mL, 0.3 mmol, 3.0 equiv.) was added slowly. After 1 h of stirring, the 

reaction was checked for completion by TLC. If the reaction was not finished, 1 M DIBAL-H 
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in toluene (0.1 mL, 0.1 mmol, 1.0 equiv.) was added and the reaction was stirred again for 1 

h at -78 °C. After consumption of the starting material, the reaction was allowed to warm to -

10 °C (ice/NaCl bath) and the excess hydride was quenched by slow addition of anhydrous 

MeOH (1 mL). K2CO3 (414 mg, 0.3 mmol, 3.0 equiv.), dimethyl-(1-diazo-2-

oxopropyl)phosphonate (300 µL, 0.2 mmol, 2.0 equiv.) and anhydrous MeOH (1 mL) were 

added and the reaction mixture was stirred overnight at RT. A saturated solution of 

Rochelle’s salt was added and after 1 h of stirring at RT, the solution was diluted with water 

and CH2Cl2. The aqueous phase was extracted with CH2Cl2. The combined organic phases 

were dried over Na2SO4, filtered and the solvent was removed in vacuo. The corresponding 

alkyne was obtained after flash chromatography.  

 

B.2 Synthesis of α-Amino Alkynes from Fmoc-protected Weinreb Amides 

 

 

 

The corresponding Weinreb amide (0.1 mmol) was placed under argon in a flame dried flask 

and dissolved in anhydrous CH2Cl2 (0.1 M). The solution was cooled to -78 °C (dry ice/diethyl 

ether bath). 1 M DIBAL-H in toluene (0.3 mL, 0.3 mmol, 3.0 equiv.) was added slowly. After 1 

h of stirring, the reaction was checked for completion by TLC. If the reaction was not finished, 

1 M DIBAL-H in toluene (0.1 mL, 0.1 mmol, 1.0 equiv.) was added and the reaction was 

stirred again for 1 h at -78 °C. After consumption of the starting material, the reaction was 

allowed to warm to -10 °C (ice/NaCl bath) and the excess hydride was quenched by slow 

addition of anhydrous MeOH (1 mL). K2CO3 (414 mg, 0.3 mmol, 3.0 equiv.), dimethyl-(1-

diazo-2-oxopropyl)phosphonate (300 µL, 0.2 mmol, 2.0 equiv.) and MeOH (1 mL) were 

added and the reaction mixture was stirred overnight at RT. A saturated solution of 

Rochelle’s salt was added and after 1 h of stirring at RT, the solution was diluted with water 

and CH2Cl2. The aqueous phase was extracted with CH2Cl2 (3 x 30 mL). The combined 

organic phases were dried over Na2SO4, filtered and the solvent was removed in vacuo. If 

cleavage of the Fmoc protective group was observed on TLC, the crude mixture was 

dissolved in CH2Cl2 (1 mL) and DIPEA (2.5 equiv.) and Fmoc-OSu (2.0 equiv.) were added. 

The reaction was stirred overnight at RT. The reaction mixture was then diluted with CH2Cl2 

and brine. The aqueous phase was extracted with CH2Cl2 (3 x 30 mL). The combined organic 
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phases were dried over Na2SO4, filtered and the solvent was removed in vacuo. The 

corresponding alkyne was obtained after flash chromatography. 

 

General Procedure C: Synthesis of Dipeptides from α-Amino Alkynes 

 

C.1 Synthesis of Dipeptides from Boc-Protected α-Amino Alkynes 

 

 

 

The corresponding α-amino alkyne (1.0 equiv.) was dissolved in a solution of 

CH2Cl2/TFA/H2O (75:20:5) (1 M) and the reaction was stirred 15 min-1 h. After completion of 

the reaction, the solvent was removed under reduced pressure. Residual amounts of water 

and TFA were removed by co-evaporation with toluene. The residue was dissolved in CH2Cl2 

and Fmoc-Ala-OH (2.0 equiv.), BOP (2.0 equiv.) and DIPEA (5.0 equiv.) were added 

successively. The reaction was stirred 2 h at RT and monitored with TLC until completion. 

The solvent was removed from the crude mixture under reduced pressure and flash 

chromatography yielded the desired product. 

 

C.2: Synthesis of Dipeptides from Fmoc-Protected α-Amino Alkynes 

 

 

 

The corresponding alkyne (0.1 equiv.) was suspended in 25% piperidine in DMF (1 M) and 

the reaction was stirred for 15 min. Ice-cold H2O (1 x 1 mL) was added to the reaction 

mixture and extracted with EtOAc (3 x 10 mL). The combined organic fractions were dried 

over MgSO4, filtered and the solvent was removed in vacuo. The residue was dissolved in 

CH2Cl2 (0.1 M) and Fmoc-Ala-OH (2.0 equiv.), BOP (2.0 equiv.) and DIPEA (5.0 equiv.) were 

added successively. The reaction was monitored with TLC until completion. The solvent was 

removed from the crude mixture under reduced pressure and flash chromatography yielded 

the desired product. 
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Synthesis of Imidazole-1-sulfonyl Azide Hydrochloride (6) 

 

 

MW: 208.98 g/mol 

NaN3 (13.0 g, 0.2 mol, 1.0 equiv.) was suspended under argon in anhydrous MeOH (200 

mL). SO2Cl2 (16.1 mL, 0.2 mol, 1.0 equiv.) was slowly added at -10 °C (Ice/NaCl bath). 

Imidazole (25.9 g, 0.4 mol, 1.9 equiv.) was added to the ice-cold mixture and the reaction 

was stirred 12 h at RT. The suspension was quenched by addition of water and diluted with 

EtOAc. After washing of the solution with NaHCO3 (3 x 300 mL), the organic layer was dried 

over MgSO4 and the solvent was removed under reduced pressure. The obtained yellowish 

oil was dissolved in EtOH (80 mL) and cooled with ice. Ice-cold 1.25 M HCl in EtOH solution 

(180 mL) was added. A white precipitation was observed. The precipitate was filtered off and 

washed with EtOAc (3 x 30 mL). Compound 6 was obtained as white crystals (31.4g, 74%). 

1H-NMR (400 MHz, CDCl3): δ=14.60 (bs, 2H, -NH-), 9.12 (s, 1H, H-3), 7.68 (s, 2H, H-1, H-2) 

ppm 

13C-NMR (100 MHz, CDCl3): δ= 137.7, 134.1, 119.2 ppm 

The data was found to be identical as published.[161]  
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Synthesis of Boc-Ile-(NMe)OMe (26a) 

 

 

MW: 214.19 g/mol 

Compound 26a was obtained following general procedure A. Boc-Ile-OH 25a (1.5 g, 6.5 

mmol) was used as starting material. Flash chromatography (MeOH/CH2Cl2, gradient 5:95 to 

10:90) yielded compound 26a white crystals (1.3 g, 94%). 

1H-NMR (400 MHz, CDCl3): δ= 5.09 (d, 3JHH= 9.6 Hz, 1H, -NH-), 4.60 (m, 1H, Hα), 3.76 (s, 

3H, -OMe), 3.20 (s, 3H, -NMe), 1.71-168 (m, 1H, Hβ), 1.57-1.50 (m, 2H, Hγ), 1.42 (s, 9H, 

Boc) 0.90 (d, 3JHH= 6.8 Hz, 3H, Hγ’), 0.81 (t, 3JHH= 6.8 Hz, 3H, Hδ) ppm 

13C-NMR (100 MHz, CDCl3): δ= 173.3, 155.9, 79.5, 61.7, 54.3, 38.2, 32.0, 28.2, 24.4, 15.6, 

11.5 ppm  

The data was found to be identical as published.[116]  
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Synthesis of Boc-Pro-(NMe)OMe (26b) 

 

 

MW: 258.16 g/mol 

Compound 26b was synthesized following the general protocol A. Boc-Pro-OH 25a (1.5 g, 

6.7 mmol) was used as starting material. Flash chromatography (EtOAc/Hexane, 5:5) yielded 

compound 26b as white crystals (0.98 g, 57%). The compound was obtained as a mixture of 

conformers in a 1:0.9 ratio. 

1H-NMR (400 MHz, CDCl3): δ= Major conformer: 4.57 (m, 1H, Hα), 3.70 (s, 3H, -NMe), 3.58-

3.37 (m, 2H, Hδ), 3.17 (s, 3H, -OMe), 2.20-1.79 (m, 4H, Hγ, Hβ), 1.39 (s, 9H, Boc) ppm 

Minor conformer: 4.68 (m, 1H, 1.28, Hα), 3.75 (s, 3H, N-Me), 1.44 (s, 9H, -tBu) ppm 

13C-NMR (100 MHz, CDCl3): δ= 153.9, 79.7, 61.3, 56.8, 46.6, 32.5, 30.5, 28.44, 23.44 

ppm         

Minor conformer: 154.5, 79.4, 61.3, 56.6, 46.9, 32.3, 29.6, 28.6, 24.1 ppm 

One 13C signals was not observed due to overlapping signals. 

The data was found to be identical as published.[198] 
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Synthesis of Fmoc-Tyr(tBu)-(NMe)OMe (34c) 

 

 

MW: 502.25 g/mol 

Compound 34c was synthesized following the general protocol A. Fmoc-Tyr(tBu)-OH 33c 

(0.5 g, 1.7 mmol) was used as starting material. Flash chromatography (EtOAc/Hexane, 3:7, 

4:6, 5:5) yielded compound 34c as white crystals (0.5 g, 64%). 

1H-NMR (400 MHz, CDCl3): δ= 7.77 (d, 3JHH= 7.4 Hz, 2H, Fmoc), 7.57 (t, 3JHH= 7.5 Hz, 2H, 

Fmoc), 7.39 (t, 3JHH= 7.4 Hz, 2H, Fmoc), 7.30 (tt, 3JHH= 7.5 Hz, 4JHH= 1.2 Hz  2H, Fmoc), 7.16 

(d, 3JHH= 8.4 Hz, 2H, arom.), 6.83  (d, 3JHH= 8.4 Hz, 2H, arom.), 5.45  (d, 3JHH= 8.8 Hz, 1H,    -

NH-), 4.98  (dd, 3JHH= 13.6 Hz, 3JHH= 8.8 Hz, 1H, Hα), 4.53-4.20 (m, 2H, Fmoc), 4.16  (t, 
3JHH= 7.2 Hz, 1H, Fmoc), 3.62 (s, 3H, -OMe), 3.15 (s, 3H, -NMe), 3.03 (dd, 2JHH= 13.4 Hz, 
3JHH= 6.7 Hz, 1H, Hβ), 2.88 (dd, 2JHH= 13.4 Hz, 3JHH= 6.7 Hz, 1H, Hβ), 1.29 (s, 9H, -tBu) ppm 

13C-NMR (100 MHz, CDCl3): δ= 12.1, 155.9, 154.4, 144.0, 141.4, 131.3, 130.0, 127.8, 127.2, 

125.3, 124.3, 120.1, 78.5, 67.1, 61.6, 52.2, 47.3, 38.5, 32.2, 28.9 ppm 

The data was found to be identical as published.[199] 
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Synthesis of Fmoc-Arg(Boc)2-(NMe)OMe (34d) 

 

 

MW: 639.33 g/mol 

Fmoc-Arg(Boc)2-OH 33d (400 mg, 0.7 mmol, 1.0 equiv.) was dissolved in CH2Cl2 (3 mL) and 

HOBt (100 mg, 0.74 mmol, 1.1 equiv.) and EDC (154.1 mg, 0.8 mmol, 1.2 equiv.) were 

added. The reaction mixture was stirred at 0 °C for 15 min. N,O-dimethylhydroxylamine (47.1 

mg, 0.74 mmol, 1.1 equiv.) and N-methylmorpholine (89 µL, 0.8 mmol, 1.2 equiv.) were 

added and the reaction was stirred for 12 h. The solvent was then removed under vacuum 

and the resulting residue was partitioned between EtOAc and 1M HCl (aq.). The organic 

layer was separated and washed with 1M HCl (aq) (1 x 15 mL), NaHCO3 (1 x 15 mL) and 

brine (1 x 15 mL), and then dried over Mg2SO4. After filtration, the solvent was removed in 

vacuo and the residue was purified via flash chromatography (EtOAc/Hexane, 3:7) yielding 

compound 34d as white crystals (180 mg, 41%). 

[α]D
20= +3.6 (c=1.2, CHCl3) 

1H-NMR (500 MHz, CD3CN): δ= 11.65 (s, 1H, -NH-), 8.22 (s, 1H, -NH-), 7.84-7.82 (dd, 3JHH= 

7.5 Hz, 4JHH= 1.3 Hz, 2H, Fmoc), 7.69-7.65 (t, 3JHH= 7.5 Hz, 2H, Fmoc), 7.43-7.40 (t, 3JHH= 

7.5 Hz, 2H, Fmoc), 7.35-7.31 (tt, 3JHH= 7.5 Hz, 4JHH= 1.3 Hz, 2H, Fmoc),  5.98 (d, 3JHH= 9.0 

Hz, 1H, -NH-), 4.58 (m, 1H, Hα), 4.35-4.29 (m, 1H, Fmoc), 4.23 (t, 3JHH= 7.0 Hz, 2H, Fmoc), 

3.73 (s, 3H, -NMe), 3.37-3.31 (m, 2H, Hδ), 3.13 (s, 3H, -OMe), 1.71-1.54 (m, 4H, Hγ, Hβ), 

1.48 (s, 9H, Boc), 1.42 (s, 9H, Boc) ppm 

13C-NMR (100 MHz, CDCl3): δ= 164.7 (Cq), 157.2 (Cq), 153.9 (Cq), 145.1 (Cq), 142.1 (Cq), 

128.6 (Ct, Fmoc), 128.1 (Ct, Fmoc), 126.2 (Ct, Fmoc), 120.9 (Ct, Fmoc), 84.0 (Cq), 79.4 (Cq), 

67.1 (Cs, Fmoc), 51.9 (Cα), 48.0 (Ct,  Fmoc), 40.8 (Cδ), 29.7 (Cβ), 28.4 (Boc), 26.1 (Boc), 

26.1 (Cγ) ppm 

Four 13C signals were not observed due to overlapping signals. 

ESI-HRMS: [M+H]+ m/z calcd for C33H45N5O8: 639.3268, found: 640.3344. 
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Synthesis of Boc-Ile-alkyne (28a) 

 

 

MW: 211.16 g/mol 

Compound 28a was synthesized from compound 26b (100 mg, 0.4 mmol) following the 

general protocol B.1. Flash chromatography (EtOAc/Hexane, 2:98) yielded compound 28a 

as white crystals (60 mg, 79%). 

1H-NMR (400 MHz, CDCl3): δ= 4.76  (m, 1H, -NH-), 4.42 (m, 1H, Hα), 2.23 (d, 4JHH= 2.4 Hz, 

1H, alkyne), 1.68-160 (m, 1H, Hβ), 1.55-1.47 (m, H, Hγ), 1.44 (s, 9H, Boc), 1.28-1.17 (m, 1H, 

Hγ) 0.90 (m, 6H, Hδ, Hγ’) ppm 

13C-NMR (100 MHz, CDCl3): δ= 155.00, 81.8, 78.0, 72.0, 47.5, 39.4, 28.5, 26.2, 14.5, 11.7 

ppm 

The data was found to be identical as published.[200] 
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Synthesis of Boc-Pro-alkyne (28b) 

 

 

MW: 195.13 g/mol 

Compound 28b was synthesized from compound 26b (236 mg, 0.9 mmol) following the 

general protocol B.1. Flash chromatography (EtOAc/Hexane, 1:9) yielded compound 28b as 

white crystals (117 mg, 66%). 

1H-NMR (400 MHz, CDCl3): δ= 4.45 (m, 1H, Hα), 3.45-3.30 (m, 2H, Hδ), 2.20 (bs, 1H, 

alkyne), 2.06-1.88 (m, 4H, Hγ, Hβ), 1.46 (s, 9H, -tBu) ppm 

13C-NMR (100 MHz, CDCl3): δ= 154.0, 79.8, 69.4, 48.0, 45.5, 33.6, 28.5, 23.6 ppm 

One 13C signal was not observed due to overlapping signals. 

The data was found to be identical as published.[172] 
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Synthesis of Fmoc-Ile-alkyne (29a) 

 

 

MW: 333.17 g/mol 

Compound 28a (10 mg, 0.05 mmol, 1.0 equiv.) was suspended in solution of 

CH2Cl2/TFA/H2O (75:20:5) (0.5 mL) and was stirred for 1 h at RT. After completion of the 

reaction, the solvent was removed under reduced pressure and the residue was dissolved 

several times in toluene, which was then removed in vacuo, to remove the residues of H2O. 

The crude was dissolved in CH2Cl2 and Fmoc-OSu (23.8 mg, 0.07 mmol, 1.5 equiv.) and 

DIPEA (30 µL, 0.09 mmol, 4.0 equiv.) were added. The reaction was stirred for 2 h at RT. 

After removing the solvent under reduced pressure, the product was purified via flash 

chromatography (EtOAc/Hexane; 5:95). Compound 29a was obtained as white crystals (15.7 

mg, 84%). 

1H-NMR (500 MHz, CDCl3): δ= 7.76 (d, 3JHH= 7.5 Hz, 2H, Fmoc), 7.60 (d, 3JHH= 7.5 Hz, 2H, 

Fmoc), 7.40 (dd, 3JHH= 7.5 Hz, 4JHH= 0.7 Hz, 2H, Fmoc), 7.76 (td, 3JHH= 7.5 Hz, 4JHH= 0.7 Hz, 

2H, Fmoc),  4.99  (d, 3JHH= 7.5 Hz, 1H, -NH-), 4.49 (m, 1H, Hα), 4.42 (m, 2H, Fmoc), 4.42 (t, 
3JHH= 6.5 Hz, 1H, Fmoc), 2.27 (d, 4JHH= 2.5 Hz, 1H, alkyne), 1.70-166 (m, 1H, Hβ), 1.57-1.49 

(m, 1H, Hγ), 1.33-1.20 (m, 1H, Hγ) 0.98 (d, 3JHH= 6.5 Hz, 3H, Hγ’), 0.94 (t, 3JHH= 7.0 Hz, 3H, 

Hδ) ppm  

13C-NMR (100 MHz, CDCl3): δ= 143.8, 141.3, 127.7, 127.1, 125.0, 120.00, 119.98, 72.3, 

66.9, 47.9, 47.2, 39.1, 26.0, 14.4, 11.5 ppm 

One 13C signal was not observed due to overlapping signals. 

The data was found to be identical as published.[186] 
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Synthesis of Fmoc-Pro-alkyne (29b) 

 

 

MW: 317.14 g/mol 

Compound 28b (50 mg, 0.3 mmol, 1.0 equiv.) was suspended in solution of CH2Cl2/TFA/H2O 

(75:20:5) (0.5 mL) and was stirred for 1 h at RT. After completion of the reaction, the solvent 

was removed under reduced pressure and the residue was dissolved several times with 

toluene, which was then removed in vacuo, to remove the residues of H2O. The deprotected 

alkyne was dissolved in CH2Cl2 and Fmoc-OSu (129.6 mg, 0.4 mmol, 1.5 equiv.) and DIPEA 

(85.0 µL, 0.5 mmol, 2.0 equiv.) were added. The reaction was stirred for 2 h, at RT. After 

removing the solvent under reduced pressure, the product was purified via flash 

chromatography (EtOAc:Hexane: 2:8). Compound 29b was obtained as white crystals (79 

mg, 95%). 

1H-NMR (400 MHz, CDCl3): δ= 7.78 (d, 3JHH= 7.5 Hz, 2H, Fmoc), 7.74-7.60 (m, 2H, Fmoc), 

7.40 (td, 3JHH= 7.5 Hz, 4JHH= 1.0 Hz, 2H, Fmoc), 7.31 (td, 3JHH= 7.5 Hz, 4JHH= 1.0 Hz, 2H, 

Fmoc)  4.58-4.23 (m, 4H, Fmoc, Hα), 3.61-3.40 (m, 2H, Hδ), 2.28 (bs, 1H, alkyne), 2.16-1.96 

(m, 4H, Hγ, Hβ) ppm 

13C-NMR (100 MHz, CDCl3): δ= 154.7, 144.15, 144.2, 141.5, 127.8, 127.1, 125.3, 120.1, 

70.7, 67.5, 48.5, 47.5, 33.1 ppm 

Two 13C signals were not observed due to overlapping signals. 

The data was found to be identical as published.[187] 
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Synthesis of Fmoc-Tyr(tBu)-alkyne (29c) 

 

 

MW: 439.21 g/mol 

Compound 29c was synthesized from compound 34c (140 mg, 0.3 mmol, 1.0 equiv.) 

following the general protocol B.2. Flash chromatography, (EtOAc/Hexane, gradient 5:95 to 

8:92) yielded compound 29c as white crystals (62 mg, 51%). 

[α]D
20= -7.8 (c=0.6, CHCl3) 

1H-NMR (500 MHz, CDCl3): δ= 7.77 (dd, 3JHH= 7.5 Hz, 4JHH= 1.0  Hz, 2H, Fmoc), 7.57 (d, 
3JHH= 7.5 Hz, 2H, Fmoc), 7.40 (tq, 3JHH= 7.5 Hz, 4JHH= 1.0  Hz, 2H, Fmoc), 7.32 (td, 3JHH= 7.5 

Hz, 4JHH= 1.0 Hz  2H, Fmoc), 7.12 (d, 3JHH= 8.0 Hz, 2H, arom.), 6.92  (dt, 3JHH= 8.0 Hz, 4JHH= 

2.5  Hz, 2H, arom.), 4.94  (d, 3JHH= 9.0 Hz, 1H, -NH-), 4.72  (m, 1H, Hα), 4.47-4.36 (m, 2H, 

Fmoc), 4.21 (t, 3JHH= 7.5 Hz, 1H, Fmoc), 2.97-2.93 (m, 2H, Hβ), 2.31 (d, 4JHH= 2.0 Hz, 1H, 

alkyne), 1.33 (s, 9H, -tBu) ppm 

13C-NMR (100 MHz, CDCl3): δ= 154.6 (Cq), 143.9 (Cq), 141.5 (Cq), 130.4 (Fmoc), 127.9 

(Fmoc), 127.2 (Fmoc), 125.1 (arom.), 124.1 (Fmoc), 120.1 (arom.), 82.5 (Cq, alkyne), 78.5 

(Cq), 72.6 (alkyne), 67.0 (Fmoc), 47.3 (Fmoc), 44.4 (Cα), 40.9 (Cβ), 29.0 (tBu) ppm 

Two 13C signals were not observed due to overlapping signals (confirmed by 2D NMR). 

ESI-HRMS: [M+Na]+ m/z calcd for C29H29NO3: 439.2147, found: 462.2037 
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Synthesis of Fmoc-Arg(Boc)2-alkyne (29d) 

 

 

MW: 576.29 g/mol 

Compound 29d was synthesized from compound 34d (500 mg, 0.8 mmol, 1.0 equiv.) 

following the general protocol B.1. Two flash chromatographies, (EtOAc/Hexane, 3:7) and 

(MeOH/CH2Cl2, 0:100 to 5:95) yielded compound 29d as white crystals (100 mg, 22%). 

[α]D
20= -4.1 (c=0.5, CHCl3) 

1H-NMR (500 MHz, CD3CN): δ= 11.53 (s, 1H, -NH-), 8.21 (m, 1H, -NH-), 7.81 (dq, 3JHH= 7.5 

Hz, 4JHH= 1.0 Hz,  2H, Fmoc), 7.63  (t, 3JHH= 8.5 Hz, 2H, Fmoc), 7.40 (tt, 3JHH= 7.5 Hz, 4JHH= 

1.0 Hz,  2H, Fmoc), 7.31 (tt, 3JHH= 7.5 Hz, 4JHH= 1.0 Hz, 2H, Fmoc),  6.10 (d, 3JHH= 8.5 Hz, 

1H, -NH-), 4.37-4.32 (m, 3H, Fmoc, Hα), 4.21 (t, 3JHH= 7.5 Hz, 1H, Fmoc), 3.32-3.31 (m, 2H, 

Hδ), 2.54 (d, 4JHH= 2.0 Hz, 1H, alkyne) 1.65-1.61 (m, 4H, Hγ, Hβ), 1.47 (s, 9H, Boc), 1.41 (s, 

9H, Boc) ppm  

13C-NMR (100 MHz, CDCl3): δ= 164.6 (Cq), 157.2 (Cq), 153.9 (Cq), 145.1 (Cq), 128.6 (Ct, 

Fmoc), 128.0 (Ct, Fmoc), 126.1 (Ct, Fmoc), 120.9 (Ct, Fmoc), 83.9 (Cq, Boc), 79.4 (Cq, Boc), 

67.1 (Cs, Fmoc), 48.0 (Ct Fmoc) 43.5 (Cα), 40.7 (Cδ), 33.2 (Cβ), 28.4 (Boc), 28.1 (Boc), 26.3 

(Cγ) ppm 

Four 13C signals were not observed due to overlapping signals (confirmed by 2D NMR). 

ESI-HRMS: [M+H]+ m/z calcd for  C32H40N4O6: 576.2948, found: 577.3024 
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Synthesis of Fmoc-PEG4-alkyne (29f) 

 

 

 

MW: 453.22 g/mol 

 

tert-butyl (2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl)carbamate (Boc-PEG3-ethyl alcohol) 

(31) (500 mg, 1.7 mmol, 1.0 equiv.) was dissolved in anhydrous THF and NaH (27.6 mg, 2.0 

mmol, 1.15 equiv.) was added under argon. The mixture was stirred for 45 min. The reaction 

was cooled to 0 °C, and propargylbromide (280 µL, 2.6 mmol, 1.5 equiv.) was slowly added 

to the reaction mixture through a dropping funnel. After allowing the reaction stir for 12 h, the 

THF was removed in vacuo and the residue was dissolved in CH2Cl2 and washed with H2O 

(3 x 20 mL) and brine (3 X 20 mL). The combined organic phases were dried over Mg2SO4, 

filtered and the solvent was removed under reduced pressure. The resulting residue was 

dissolved in CH2Cl2 (2 mL) TFA was slowly added (1 mL). The cleavage of the Boc-group 

was monitored by TLC. After removal of the protective group, the solvent was removed in 

vacuo. The residue was then dissolved in toluene and the solvent was evaporated. The 

residue was dissolved in CH2Cl2 (3 mL) and DIPEA (350 µL, 3.0 mmol, 2.0 equiv.) and 

Fmoc-OSu (230 mg, 2.6 mmol, 1.5 equiv.) were added successively. The reaction was 

allowed to stir for 2 h at RT until completion of the reaction. The solvent of the crude mixture 

was evaporated in vacuo and the residue was purified via flash chromatography 

(EtOAc/Hexane; 4:6), yielding compound 29f as a colourless oil (231 mg, 50%). 

 
1H-NMR (400 MHz, DMSO-d6): δ= 7.89 (d, 3JHH= 7.6 Hz, 2H), 7.70 (d, 3JHH= 7.6 Hz, 2H), 7.42 

(t, 3JHH= 7.6 Hz, 2H), 7.33 (t, 3JHH= 7.6 Hz, 2H), 4.30 (d, 3JHH = 6.8 Hz, 2H), 4.21 (t, 3JHH= 6.8 

Hz, 1H), 4.13 (d, 3JHH= 3.2 Hz, 2H), 3.55-3.50 (m, 10H), 3.45 – 3.40 (m, 4H), 3.14 (dd, 3JHH= 

11.6, 5.8 Hz, 2H), 2.55 – 2.46 (m, 1H) ppm  

 

The data was found to be identical as published.[138] 

 

 

 

 



Experimental Procedures 
 
 

126 
 

Synthesis of (9H-fluoren-9-yl)methyl (2-oxo-1-(N-((2,2,4,6,7-pentamethyl-2,3-

dihydrobenzofuran-5-yl)sulfonyl)carbamimidoyl)piperidin-3-yl)carbamate (39) 

 

 

MW: 630.27 g/mol 

Compound 39 was synthesized following the general protocol A. Fmoc-Arg(Pbf)-OH 37 (1.5 

g, 2.3 mmol, 1.0 equiv.) was used as starting material. Flash chromatography 

(EtOAc/Hexane, 5:5) yielded compound 39 as white crystals (0.86 g, 82%). 

1H-NMR (500 MHz, CD3Cl3): δ= 9.41 (s, 1H, -NH-), 7.91 (bs, 1H, -NH-), 7.76 (d, 3JHH= 7.5 Hz, 

2H, Fmoc), 7.59 (t, 3JHH= 7.5 Hz,  2H, Fmoc), 7.40 (t, 3JHH= 7.5 Hz, 2H, Fmoc), 7.31 (td, 3JHH= 

7.5 Hz, 4JHH= 1.0 Hz, 2H, Fmoc), 5.53  (d, 3JHH= 7.0 Hz, 1H, -NH-), 4.58 (d, 3JHH= 13.5 Hz, 

1H, Hδ), 4.45-4.38 (m, 3H, Fmoc, Hα), 4.23 (t, 3JHH= 6.5 Hz, 1H, Fmoc), 4.41-3.37 (m, 1H, 

Hδ), 2.97 (s, 2H, Pbf), 2.58 (s, 3H, Pbf), 2.53 (s, 3H, Pbf), 2.11 (s, 3H, Pbf), 1.90-1.84 (m, 2H, 

Hβ or Hγ), 1.49-1.42 (m, 2H, Hβ or Hγ), 1.47 (s, 6H, Pbf) ppm 

13C-NMR (100 MHz, CDCl3): δ= 159. 4 (Cq), 154.0 (Cq), 143.9 (Cq), 141.5 (Cq), 139.0 (Cq), 

133.0 (Cq), 131.1 (Cq), 127.9 (Fmoc), 127.2 (Fmoc), 125.2 (Fmoc), 120.2 (Fmoc), 117.9 (Cq), 

86.8 (Cq), 67.4 (Fmoc), 52.8 (Cα), 47.2 (Fmoc),  43.3 (Pbf), 41.8 (Cδ), 28.7 (Pbf), 25.0 (Cβ or 

Cγ), 20.0 (Cβ/Cγ), 19.4 (Pbf), 18.1 (Pbf), 12.6 (Pbf) ppm 

Three 13C signals were not observed due to overlapping signals. 

ESI-MS: [M+H]+ m/z calcd for C34H38N4O6S: 630.27, found: 631.5 
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Synthesis of cyclic (9H-fluoren-9-yl)methyl (2-hydroxy-1-(N-((2,2,4,6,7-pentamethyl-2,3-

dihydrobenzofuran-5-yl)sulfonyl)carbamimidoyl)piperidin-3-yl)carbamate (41) 

 

 

MW: 632.27 g/mol 

Compound 41 was synthesised from compound 39, following the general protocol B.2. Flash 

chromatography (EtOAc:Hexane, 8:2) yielded compound 41 as white crystals. Yield was not 

determined. 

1H-NMR (500 MHz, CD3Cl3): δ= 7.75 (d, 3JHH= 7.5 Hz, 2H, Fmoc), 7.58 (d, 3JHH= 7.5 Hz,  2H, 

Fmoc), 7.39 (t, 3JHH= 7.5 Hz, 2H, Fmoc), 7.31-7.27 (m, 2H, Fmoc), 6.48 (bs, 2H, -NH-Pbf, -

OH), 5.70 (d, 3JHH= 6.5 Hz, 1H, Hβ’),  5.53  (d, 3JHH= 9.5 Hz, 1H, -NH-), 4.39-4.36 (m, 2H, 

Fmoc), 4.20 (t, 3JHH= 7.0 Hz, 1H, Fmoc), 3.68-6.63 (m, 1H, Hα), 3.47-3.44 (m, 1H, Hδ), 3.22-

3.17 (m, 1H, Hδ),  2.95 (s, 2H, Pbf), 2.55 (s, 3H, Pbf), 2.49 (s, 3H, Pbf), 2.10 (s, 3H, Pbf), 

1.83-1.79 (m, 2H, Hβ/Hγ), 1.67-1.57 (m, 2H, Hβ/Hγ), 1.45 (s, 6H, Pbf) ppm 

13C-NMR (100 MHz, CDCl3): δ= 127.7 (Fmoc), 127.1 (Fmoc), 125.1 (Fmoc), 120.0 (Fmoc), 

75.5 (Cβ’) 66.8 (Fmoc), 50.4 (Cα), 47.1 (Fmoc), 43.1 (Pbf), 39.2 (Cδ), 28.5 (Pbf), 24.7 (Cβ or 

Cγ), 23.7 (Cβ/Cγ), 19.1 (Pbf), 17.1 (Pbf), 12.4 (Pbf) ppm 

13C signals were obtained from 2D-NMR data. Cq signals were not visible. 

ESI-MS: [M+H]+ m/z calcd for C34H40N4O6S: 632.27, found: 633.5 
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Synthesis of Fmoc-Arg(Pmc)-O(NMe)OMe (43) 

 

 

MW: 583.3 g/mol 

Boc-Arg(Pmc)-OH 42 (2.5 g, 4.6 mmol, 1.0 equiv.) was dissolved in CH2Cl2 (45 mL) and 

HATU (1.7 g, 4.6 mmol, 1.0 equiv.) was added. The reaction mixture was stirred at RT for 15 

min. N,O-dimethylhydroxylamine (0.3 g, 5.0 mmol, 1.1 equiv.) and DIPEA (1.7 mL, 0.01 mol, 

2.2 equiv.) were added and the reaction was stirred for 12 h.  Flash chromatography 

(MeOH/CH2Cl2, 2:98) yielded compound 43 as white crystals (0.5 g, 18%). 

1H-NMR (400 MHz, CD3Cl3): δ= 6.22 (bs, 1H, -NH-), 6.04 (bs, 2H, -NH-), 5.46 (d, 3JHH= 9.2 

Hz, 1H, -NH-), 4.66 (m, 1H, Hα), 3.73 (s, 3H, Pmc), 3.72-3.70 (m, 1H, Hδ),  3.20 (s, 3H, N-

Me), 3.19-3.15 (m, 1H, Hδ), 2.62 (t, 3JHH= 6.8 Hz, 2H, Pmc), 2.59 (s, 3H, Pmc), 2.57 (s, 3H, 

Pmc), 2.10 (s, 3H, -OMe), 1.80 (t, 3JHH= 6.8 Hz, 2H, Pmc), 1.64-1.60 (m, 4H, Hβ/Hγ), 1.42 (s, 

9H, Boc), 1.47 (s, 6H, Pbf) ppm 

13C-NMR was not recorded. 
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Synthesis of Fmoc-Ala-Ile-alkyne (50a) 

 

MW: 404.21 g/mol 

Compound 50a was synthesized from compound 29a (10 mg, 0.05 mmol, 1.0 equiv.) 

following the general procedure C.1. Flash chromatography (EtOAc/Hexane, 4:6) yielded 

compound 50a as white crystals (18 mg, 90%). 

1H-NMR (500 MHz, CDCl3): δ= 7.76 (d, 3JHH= 7.5 Hz, 2H, Fmoc), 7.58 (m, 2H, Fmoc), 7.40 (t, 
3JHH= 7.5 Hz, 2H, Fmoc), 7.31 (td, 3JHH= 7.5 Hz, 4JHH= 1.5 Hz, 2H, Fmoc),  6.43 (d,  3JHH= 5.5 

Hz, 1H, -NH-Ala),  5.38  (d, 3JHH= 6.5 Hz, 1H, -NH-Ile), 4.73 (m, 1H, Hα), 4.9 (m, 2H, Fmoc), 

4.25 (m, 1H, Hα’),  4.41 (t, 3JHH= 7.0 Hz, 1H, Fmoc), 2.17 (d, 4JHH= 2.5 Hz, 1H, alkyne), 1.68-

163 (m, 1H, Hβ), 1.51-1.47 (m, 1H, Hγ), 1.39 (d, 3JHH= 6.5 Hz, 3H, Hβ’), 1.26-1.18 (m, 1H, Hγ) 

0.92 (d, 3JHH= 6.5 Hz, 3H, Hγ’), 0.90 (t, 3JHH= 7.5 Hz, 3H, Hδ) ppm 

13C-NMR (100 MHz, CDCl3): δ= 171.2 (Cq), 143.8 (Cq), 141.4 (Cq), 127.9 (Fmoc), 127.2 

(Fmoc), 125.2 (Fmoc), 120.2 (Fmoc), 81.1 (Cq), 72.4 (alkyne), 67.4 (Fmoc), 47.2 (Fmoc), 

46.2 (Cα), 39.0 (Cβ), 26.1 (Cγ), 14.5 (Cγ’), 11.6 (Cδ) ppm 

Three 13C signals were not observed due to overlapping signals (confirmed with 2D NMR). 

ESI-MS: [M+H]+ m/z calcd for  C25H28N2O3: 404.21, found: 405.3 
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Synthesis of Fmoc-Ala-Pro-alkyne (50b) 

 

 

 

MW: 388.18 g/mol 

Compound 50b was synthesized from compound 29b (20 mg, 0.11 mmol, 1.0 equiv.) 

following the general procedure C.1. Flash chromatography (EtOAc:Hexane, 3:7) yielded 

compound 50b as white crystals (13.5 mg, 30%). 

1H-NMR (500 MHz, DMSO-d6): δ= 7.89 (d, 3JHH= 7.5 Hz, 2H, Fmoc), 7.73 (d, 3JHH= 7.5 Hz, 

2H, Fmoc), 7.64 (d, 3JHH= 7.5 Hz, 1H, -NH-), 7.41 (t, 3JHH= 7.5 Hz, 2H, Fmoc), 7.33 (tt, 3JHH= 

7.5 Hz, 4JHH= 1.0 Hz, 2H, Fmoc)  4.70-4.68 (m, 0.24 Hcis, Hα), 4.61-4.58 (m, 0.62 Htrans, Hα), 

4.55-4.58 (m, 0.35 Hcis, Hα’), 4.28-4.18 (m, 3.45 Htrans, Fmoc, Hα’), 3.57-3.39 (m, 1.6Htrans, 

Hδ), 3.30-3.25 (m, 0.27Hcis, Hδ), 3.10 (d, 4JHH= 2.0 Hz, 1H, alkyne), 2.16-1.85 (m, 4H, Hγ, 

Hβ), 1.22 (d, 3JHH= 7.0 Hz, 1.2Hcis, Hβ’), 1.19 (d, 3JHH= 7.0 Hz, 1.9Htrans, Hβ’) ppm 

13C-NMR (100 MHz, DMSO-d6): δ= 170.4 (Cq), 155.6 (Cq), 143.7 (Cq), 140.6 (Cq), 127.5 

(Fmoc), 127.0 (Fmoc), 125.2 (Fmoc), 120.0 (Fmoc), 72.1 (alkyne), 65.5 (Fmoc), 47.8 (Fmoc 

or Cα’), 46.4 (Fmoc or Cα’) 45.0 (Cα), 45.5 (Cδ), 31.6 (Cβ), 24.5 (Cγ), 16.7 (Cβ’) ppm 

ESI-HRMS: [M+H]+ m/z calcd for  C24H24N2O3: 388.1787, found: 389.1863 
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Synthesis of Fmoc-Tyr(tBu)-alkyne (50c) 

 

 

MW: 510.25 g/mol 

Compound 50c was synthesized from compound 29c (20 mg, 0.04 mmol, 1.0 equiv.) 

following the general procedure C.2. Flash chromatography (EtOAc/Hexane; 3:7) yielded 

compound 50c as white crystals (13 mg, 65%). 

1H-NMR (500 MHz, CDCl3): δ= 7.77 (dd, 3JHH= 7.5 Hz, 4JHH= 1.0  Hz, 2H, Fmoc), 7.60 (d, 
3JHH= 7.5 Hz, 2H, Fmoc), 7.40 (t, 3JHH= 7.5 Hz, 2H, Fmoc), 7.32 (td, 3JHH= 7.5 Hz, 4JHH= 1.0 

Hz,  2H, Fmoc), 7.11 (dt, 3JHH= 8.5 Hz, 4JHH= 2.0 Hz, 2H, arom.), 6.88  (dt, 3JHH= 8.5 Hz, 
4JHH= 2.0  Hz, 2H, arom.), 5.34 (d,  3JHH= 8.0 Hz, 1H, -NH-Tyr), 4.94 (d, 3JHH= 8.0 Hz, 1H, -

NH-Ala), 4.95-4.90 (m,1H, Hα-Tyr), 4.43-4.36 (m, 2H, Fmoc), 4.22 (t, 3JHH= 7.0 Hz, 1H, 

Fmoc), 4.19 (m, 1H, Hα’), 2.95-2.87 (m, 2H, Hβ), 2.21 (d, 4JHH= 2.5 Hz, 1H, alkyne), 1.34 (d,  

3JHH= 7.0 Hz, 3H, Hβ’), 1.31 (s, 9H, -tBu) ppm 

13C-NMR (100 MHz, CDCl3): δ= 171.2 (Cq), 156.1 (Cq), 154.1 (Cq), 143.8 (Cq), 141.4 (Cq), 

130.3 (arom.), 128.0 (Fmoc), 127.2 (Fmoc), 125.2 (Fmoc), 125.2 (Cq), 124.1 (arom.), 120.2 

(Fmoc), 82.3 (Cq), 78.5 (Cq), 72.6 (alkyne), 67.3 (Fmoc), 50.5 (Cα’),  47.2 (Fmoc), 42.7 (Cα-

Tyr), 40.6 (Cβ), 29.0 (-tBu), 18.6 (-C β’) ppm 

ESI-MS: [M+H]+ m/z calcd for  C32H34N2O4: 510.3, found: 511.5 
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Synthesis of Fmoc-Arg(Boc)2-alkyne (50d) 

 

 

MW: 647.33 g/mol 

Compound 50d was synthesized from compound 29d (20 mg, 0.04 mmol, 1.0 equiv.), 

following the general procedure C.2. Flash chromatography (EtOAc/Hexane, 3:7) yielded 

compound 50d as white crystals (14.6 mg, 65%). 

1H-NMR (600 MHz, CD3CN): δ= 11.51 (s, 1H, -NH-), 8.19 (s, 1H, -NH-), 7.82 (d, 3JHH= 7.8 Hz,  

2H, Fmoc), 7.65 (d, 3JHH= 7.8 Hz, 2H, Fmoc), 7.41 (t, 3JHH= 7.8 Hz, 2H, Fmoc), 7.33 (tt, 3JHH= 

7.8 Hz, 4JHH= 1.2 Hz, 2H, Fmoc),  6.93 (d, 3JHH= 8.4 Hz, 1H, -NH-Arg), 5.94 (d, 3JHH= 7.8 Hz, 

1H, -NH-Ala), 4.65-4.61 (m, 1H, Hα), 4.33-4.31 (m, 2H, Fmoc), 4.22 (t, 3JHH= 6.9 Hz, 1H, 

Fmoc), 4.05-4.01 (m, 1H, Hα’),  3.31-3.29 (m, 2H, Hδ), 2.51 (d, 4JHH= 2.4 Hz, 1H, alkyne), 

1.68-1.60 (m, 4H, Hγ, Hβ), 1.44 (s, 9H, Boc), 1.41 (s, 9H, Boc), 1.26 (d, (d, 3JHH= 7.2 Hz, 3H, 

Hβ’) ppm 

13C-NMR (100 MHz, CDCl3): δ= 173.1 (Cq), 165.1 (Cq), 157.7 (Cq), 157.3 (Cq), 154.4 (Cq), 

145.6 (Cq), 142.6 (Cq), 129.2 (Fmoc), 128.6 (Fmoc), 126.7 (Fmoc), 121.5 (Fmoc), 84.62 

(alkyne), 84.4 (Cq, Boc), 79.9 (Cq, Boc), 72.6 (Cq), 67.7 (Cs, Fmoc), 52.0 (Cα’), 48.5 (Fmoc) 

41.9 (Cα), 41.3 (Cδ), 33.7 (Cβ), 28.9 (tBu, Boc), 28.6 (tBu, Boc), 26.6 (Cγ), 18.3 (Cβ’) ppm 

ESI-HRMS: [M+H]+ m/z calcd for  C35H45N5O7: 647.3319, found: 648.3319 
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 Synthesis of Peptides 5.3

 

5.3.1 General Procedures 

 

General Procedure D: Manual Solid Phase Peptide Synthesis 

Resin (Leu-preloaded PEG-PS or rink amide MBHA resin LL) (0.03 mmol) was swollen in 

DMF (3 x 3 mL) in a syringe fitted with a polypropylene frit and a teflon tap. The Fmoc-

protected amino acid (0.06 mmol, 2.0 equiv.), HATU (0.06 mmol, 2.0 equiv.) and DIPEA 

(0.15 mmol, 5.0 equiv.) were added to the resin and the suspension was shaken for 1.5 h at 

RT. The solvent was removed by filtration, and the resin was repeatedly washed with DMF 

and CH2Cl2. Completion of the reaction was checked by Kaiser test and repeated if 

necessary. Coupling of the spacers Fmoc-PEG4-OH and Fmoc-Ahx-OH and the chelator 

DOTA-(tris-tBu) was performed with the same reaction conditions. 

General Procedure E: Fmoc Deprotection on the Resin 

20% piperidine in DMF was added to the resin and was left to react for 3 min. The 

deprotection agent was then filtered off and this process was repeated three times. The resin 

was then washed thoroughly with DMF and CH2Cl2. 

General Procedure F: Introduction of the Azido Functionality on the N-Terminus of the 

Peptide on the Resin 

After Fmoc-cleavage to obtain the free N-terminal amine, imidazole-1-sulfonyl azide 

hydrochloride (6) (5.0 equiv.) and DIPEA (6.0 equiv.) were added in DMF to the resin. The 

suspension was shaken for 1 h at RT. The solvent was filtered off and the resin was washed 

with DMF and CH2Cl2. Completion of the reaction was checked with a Kaiser test and by the 

colorimetric test for solid-support azides developed by Punna and Finn.[185] 

General Procedure G: Solid Phase Copper Catalysed Cycloaddition (CuAAC) 

The resin functionalized N-terminally with an azide was swollen with anhydrous DMF. The 

corresponding Fmoc-protected α-amino alkyne (2.0 equiv.), DIPEA (1.0 equiv.), 

tetrakis(acetonitrile)copper(I) hexafluorophosphate (0.5 equiv.) and TBTA (0.5 equiv.) were 

added in anhydrous DMF. The suspension was shaken for 12-15 h at RT. The resin was 

then washed repeatedly with a solution of 0.5% diethyldithiocarbamate in DMF. Washing 

steps were repeated with DMF and CH2Cl2. Kaiser test and azide test were performed to 

check the completion of the reaction. 



Experimental Procedures 
 
 

134 
 

General Procedure H: Cleavage and Purification of the Peptide Conjugates 

After completion of the elongation of the amino acid sequence and the attachment of the 

spacer and the chelator, the conjugates were cleaved and deprotected by a standard 

treatment of 6 h with TFA/ H2O/TIS/ PhOH (87.5:5:2.5:2.5). The resin was filtered off and the 

cleavage mixture was removed by evaporation with a stream of argon. The crude peptide 

conjugate was then precipitated by addition of ice-cold diethyl ether (15 mL). After 

centrifugation and two washing steps with diethyl ether, the peptide conjugate was dissolved 

in H2O and MeCN and purified by preparative HPLC, using 0.1% TFA in H2O as solvent A 

and 0.1% TFA in MeCN as solvent B. 
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5.3.3 Synthesis of Peptide Conjugates 

 

Synthesis of DOTA-Arg-Arg-Pro-Tyr-Ile-Leu (AM-NT 1) 

 

 

MW: 1202.7 g/mol  

 

Peptide conjugate AM-NT 1 was prepared following procedures D, E and H using a Leu-

preloaded PEG-PS resin (0.03 mmol) and commercial DOTA-(tris-tBu), Fmoc-Arg(Pbf)-OH, 

Fmoc-Pro-OH, Fmoc-Tyr(tBu)-OH and Fmoc-Ile-OH. Preparative HPLC (80-70% A in B in 15 

min) yielded peptide conjugate AM-NT 1 in a high purity (>98%) as a white powder (25.3 mg, 

70%). 

Analytical HPLC: (90-50% A in B in 20 min), tr= 8.47 min.  

ESI-HRMS m/z [M+2H+]2+ calcd for C54H90N16O15: 1202.6772, theor. [M+2H+]2+: 602.3386, 

found: 602.3468 
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Synthesis of DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu (AM-NT 2) 

 

 

MW: 1449.8 g/mol 

 

Peptide conjugate AM-NT 2 was prepared following procedures D, E and H using a Leu-

preloaded PEG-PS resin (0.03 mmol) and commercial DOTA-(tris-tBu), Fmoc-PEG4-COOH, 

Fmoc-Arg(Pbf)-OH, Fmoc-Pro-OH, Fmoc-Tyr(tBu)-OH and Fmoc-Ile-OH. Purification of the 

by preparative HPLC (80-70% A in B in 15 min) yielded peptide conjugate AM-NT 2 in high 

purity (>98%), as a white powder (1 mg, 2%). 

Analytical HPLC: (90-50% A in B in 20 min), tr= 8.69 min. 

ESI-HRMS m/z [M+2H+]2+ calcd for C65H111N17O20: 1449.8191, theor. [M+2H+]2+: 725.9095, 

found: 725.9174   
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Synthesis of DOTA-Ahx-Arg-Arg-Pro-Tyr-Ile-Leu (AM-NT 3) 

 

 

MW: 1315.8 g/mol 

 

Peptide conjugate AM-NT 3 was prepared following procedures D, E and H using a Leu-

preloaded PEG-PS resin (0.03 mmol) and commercial DOTA-(tris-tBu), Fmoc-Ahx-OH, 

Fmoc-Arg(Pbf)-OH, Fmoc-Pro-OH, Fmoc-Tyr(tBu)-OH and Fmoc-Ile-OH. Purification by 

preparative HPLC (80-70% A in B in 15 min) and lyophilisation (74%), peptide conjugate AM-

NT 3 was obtained in high purity (> 98%) as a white powder (9.6 mg, 30%). 

Analytical HPLC: (90-50% A in B in 20 min), tr= 8.83 min. 

ESI- HRMS m/z [M+3H+]3+ calcd for C60H101N17O15: 1315.7612, theor. [M+3H+]3+: 439.5870, 

found: 439.5941 
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Synthesis of DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Leu-Ψ[Tz]-H (AM-NT 4) 

 

 

MW: 1472.8 g/mol 

 

Peptide conjugate AM-NT 4 was prepared following procedures D, E and H  using a rink 

amide MBHA resin LL (100-200 mesh) (0.03 mmol). After deprotection, the C-terminal 

triazole was formed following general procedures F and G, using Fmoc-Leu-alkyne 29e 

(kindly provided by Dr. I. Valverde). Commercially available Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, 

Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, Fmoc-PEG4-COOH and DOTA-(tris-tBu) were then 

couplet following general procedure D. Peptide conjugate AM-NT 4  was obtained in high 

purity (>99%) as a white powder after purification by preparative HPLC (80-60% A in B in 20 

min) (5.0 mg, 11%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 9.10 min.                   

ESI-HRMS m/z [M+3H+]3+ calcd for C66H112N20O18: 1472.8463, theor. [M+3H+]3+: 491.9487 

found: 492.2848 
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Synthesis of DOTA-PEG4-Arg-Arg-Pro-Tyr-Ile-Ψ[Tz]-Leu (AM-NT 5) 

 

 

MW: 1473.8 g/mol 

 

Peptide conjugate AM-NT 5 was prepared following procedures D, E, F, G and H using a 

Leu-preloaded PEG-PS resin (0.03 mmol) and commercial available Fmoc-Tyr(tBu)-OH, 

Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, Fmoc-PEG4-COOH and DOTA-(tris-tBu). Alkyne 29a was 

used as triazole precursor. The peptide conjugate was AM-NT 5 obtained as a white powder 

in high purity (> 99%) after purification by preparative HPLC (70-65% A in B in 20 min) (2.0 

mg, 5%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 10.14 min. 

ESI-MS m/z [M+2H+]2+ calcd for C66H111N19O19: 1473.8304, theor. [M+2H+]2+:737.9,       found: 

738.3 
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Synthesis of DOTA-PEG4-Arg-Arg-Pro-Tyr-Ψ[Tz]-Ile-Leu (AM-NT 6) 

 

 

MW: 1473.8 g/mol 

 

Peptide conjugate AM-NT 6 was prepared following procedures D, E, F, G and H using a 

Leu-preloaded PEG-PS resin (0.03 mmol) and commercial available Fmoc-Ile-OH, Fmoc-

Pro-OH, Fmoc-Arg(Pbf)-OH, Fmoc-PEG4-COOH and DOTA-(tris-tBu). Alkyne 29c was used 

as triazole precursor. Purification by preparative HPLC (80-70% A in B in 20 min) and yielded 

peptide conjugate AM-NT 6 in high purity (> 99%) as a white powder (14.0 mg, 32%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 9.46 min. 

ESI-HRMS m/z [M+2H+]2+ calcd for C66H111N19O19: 1473.8304, theor. [M+2H+]2+: 737.9152, 

found: 737.9226 
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Synthesis of DOTA-PEG4-Arg-Arg-Pro-Ψ[Tz]-Tyr-Ile-Leu (AM-NT 7) 

 

 

MW: 1473.8 g/mol 

 

Peptide conjugate AM-NT 7 was prepared following procedures D, E, F, G and H using a 

Leu-preloaded PEG-PS resin (0.03 mmol) and commercial available Fmoc-Ile-OH, Fmoc-

Tyr(tBu)-OH, Fmoc-Arg(Pbf)-OH, Fmoc-PEG4-COOH and DOTA-(tris-tBu). Alkyne 29b was 

used as triazole precursor. After purification by preparative HPLC (75-70% A in B in 16 min) 

peptide conjugate AM-NT 7 was obtained in high purity (> 98%) as a white powder (2.7 mg, 

27%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 9.73 min.  

ESI-HRMS m/z [M+2H+]2+ calcd for C66H111N19O19: 1473.8304, theor. [M+2H+]2+: 737.9152, 

found: 737.9232 
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Synthesis of DOTA-PEG4-Arg-Ψ[Tz]-Arg-Pro-Tyr-Ile-Leu (AM-NT 8) 

 

 

MW: 1473.8 g/mol 

 

Peptide conjugate AM-NT 8 was prepared following procedures D, E, F, G and H using a 

Leu-preloaded PEG-PS resin (0.03 mmol) and commercial available Fmoc-Ile-OH, Fmoc-

Tyr(tBu)-OH, Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, Fmoc-PEG4-COOH and DOTA-(tris-tBu). 

Alkyne 29d was used as triazole precursor. After purification by preparative HPLC (80-60% A 

in B in 20 min) peptide conjugate AM-NT 8 was obtained in high purity (> 99%) as a white 

powder (6.1 mg, 14%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 9.25 min.  

ESI-HRMS m/z [M+2H+]2+ calcd for C66H111N19O19: 1473.8304, theor. [M+2H+]2+: 737.9152, 

found: 737.9226 
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Synthesis of DOTA-PEG4-Ψ[Tz]-Arg-Arg-Pro-Tyr-Ile-Leu (AM-NT 9) 

 

 

MW: 1459.8 g/mol 

 

Peptide conjugate AM-NT 9 was prepared following procedures D, E, F, G and H using a 

Leu-preloaded PEG-PS resin (0.03 mmol) and commercial available Fmoc-Ile-OH, Fmoc-

Tyr(tBu)-OH, Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, and DOTA-(tris-tBu). Alkyne 29f was used 

as triazole precursor. Peptide conjugate AM-NT 9 was obtained as a highly pure (> 98%) 

white powder after purification by preparative HPLC (80-60% A in B in 20 min) (2.0 mg, 5%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 9.23 min. 

ESI-HRMS m/z [M+2H+]2+ calcd for C66H111N19O19: 1459.8147, theor. [M+2H+]2+: 730.9073, 

found: 730.9152 
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Synthesis of DOTA-PEG4-Ψ[Tz]-Arg-Ψ[Tz]-Arg-Pro-Tyr-Ile-Leu (AM-NT 10) 

 

 

MW: 1483.8 g/mol 

 

Peptide conjugate AM-NT 10 was prepared following procedures D, E, F, G and H using a 

Leu-preloaded PEG-PS resin (0.03 mmol) and commercial available Fmoc-Ile-OH, Fmoc-

Tyr(tBu)-OH, Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, Fmoc-PEG4-COOH and DOTA-(tris-tBu). 

Alkyne 29d and 29f were used as triazole precursors. After purification by preparative HPLC 

(80-60% A in B in 20 min) peptide conjugate AM-NT 10 was obtained in high purity (> 95%) 

as a white powder (1 mg, 2%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 9.38 min. 

ESI-HRMS m/z [M+2H+]2+ calcd for C66H109N21O18: 1483.8259, theor. [M+2H+]2+: 742.9130, 

found: 742.9211 
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Synthesis of DOTA-PEG4-Arg-Arg-Pro-Tyr-Tle-Leu (AM-NT 11) 

 

 

MW: 1449.8 g/mol 

 

Peptide conjugate AM-NT 11 was prepared following procedures D, E, and H using a Leu-

preloaded PEG-PS resin (0.03 mmol) and commercial available Fmoc-Tle-OH, Fmoc-

Tyr(tBu)-OH, Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, Fmoc-PEG4-COOH and DOTA-(tris-tBu). 

Peptide conjugate AM-NT 11 was obtained as a highly pure (> 99%) white powder after 

purification by preparative HPLC (80-60% A in B in 20 min) (13.0 mg, 30%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 9.00 min.  

ESI-HRMS m/z [M+2H+]2+ calcd for C65H111N17O20: 1449.8191, theor. [M+2H+]2+: 725.9096,  

found: 725.9172 
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Synthesis of DOTA-PEG4-Arg-Lys-Pro-Tyr-Tle-Leu (AM-NT 12) 

 

MW: 1421.8 g/mol 

 

Peptide conjugate AM-NT 12 was prepared following procedures D, E, and H using a Leu-

preloaded PEG-PS resin (0.03 mmol) and commercial available Fmoc-Tle-OH, Fmoc-

Tyr(tBu)-OH, Fmoc-Pro-OH, Fmoc-Lys(Boc)-OH, Fmoc-Arg(Pbf)-OH, Fmoc-PEG4-COOH 

and DOTA-(tris-tBu). Peptide conjugate AM-NT 12 was obtained in high purity (> 98%) as a 

white powder after purification by preparative HPLC (80-60% A in B in 20 min) (21.8 mg, 

52%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 8.76 min.  

ESI-HRMS m/z [M+2H+]2+ calcd for C65H111N15O20: 1421.8130, found: 711.9138 
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Synthesis of DOTA-PEG4-Lys-Arg-Pro-Tyr-Tle-Leu (AM-NT 13) 

 

MW: 1421.8 g/mol 

 

Peptide AM-NT 13 was prepared following procedures D, E, and H using a Leu-preloaded 

PEG-PS resin (0.03 mmol) and commercial available Fmoc-Tle-OH, Fmoc-Tyr(tBu)-OH, 

Fmoc-Pro-OH, Fmoc-Lys(Boc)-OH, Fmoc-Arg(Pbf)-OH, Fmoc-PEG4-COOH and DOTA-(tris-
tBu). Peptide conjugate AM-NT 13 was obtained in high purity (> 98%) as a white powder 

after purification by preparative HPLC (80-60% A in B in 20 min) (24.7 mg, 58%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 8.76 min.  

ESI-HRMS m/z [M+2H+]2+ calcd for C65H111N15O20: 1421.8130, found: 711.9138 
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Synthesis of DOTA-PEG4-Lys-Lys-Pro-Tyr-Tle-Leu (AM-NT 14) 

 

MW: 1393.8 g/mol 

 

Peptide conjugate AM-NT 14 was prepared following procedures D, E, and H using a Leu-

preloaded PEG-PS resin (0.03 mmol) and commercial available Fmoc-Tle-OH, Fmoc-

Tyr(tBu)-OH, Fmoc-Pro-OH, Fmoc-Lys(Boc)-OH, Fmoc-PEG4-COOH and DOTA-(tris-tBu). 

Peptide conjugate AM-NT 14 was obtained as a highly pure (> 99%) white powder after 

purification by preparative HPLC (80-60% A in B in 20 min) (29.8 mg, 71%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 8.50 min.  

ESI-HRMS m/z [M+2H+]2+ calcd for C65H111N13O20: 1393.8068, found: 697.9115 
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Synthesis of DOTA-PEG4-Arg-Ψ[Tz]-Arg-Pro-Tyr-Tle-Leu (AM-NT 15) 

 

 

MW: 1473.8 g/mol 

 

Peptide conjugate AM-NT 15 was prepared following procedures D, E, F, G and H using a 

Leu-preloaded PEG-PS resin (0.03 mmol) and commercial available Fmoc-Tle-OH, Fmoc-

Tyr(tBu)-OH, Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, Fmoc-PEG4-COOH and DOTA-(tris-tBu). 

Alkyne 29d was used as triazole precursor. Peptide conjugate AM-NT 15 was obtained in 

high purity (> 99%) as a white powder after purification by preparative HPLC (80-60% A in B 

in 20 min) (7.0 mg, 16%). 

Analytical HPLC: (90-50% H2O with 0.1% TFA in 15 min), tr= 10.13 min.  

ESI-HRMS m/z [M+2H+]2+ calcd for C65H111N17O20: 1473.8304, theor. [M+2H+]2+: 737.9152,  

found: 737.9232 
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Synthesis of DOTA-PEG4-Ψ[Tz]-Arg-Arg-Pro-Tyr-Tle-Leu (AM-NT 16) 

 

 

MW: 1459.8 g/mol 

 

Peptide conjugate AM-NT 16 was prepared following procedures D, E, F, G and H using a 

Leu-preloaded PEG-PS resin (0.03 mmol) and commercial available Fmoc-Tle-OH, Fmoc-

Tyr(tBu)-OH, Fmoc-Pro-OH, Fmoc-Arg(Pbf)-OH, and DOTA-(tris-tBu). Alkyne 29f was used 

as triazole precursor. Peptide conjugate AM-NT 16 was obtained in high purity (> 98%) as a 

white powder after purification by preparative HPLC (80-60% A in B in 20 min) (6.9 mg, 

16%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 10.18 min. 

ESI-HRMS m/z [M+2H+]2+ calcd for C65H111N17O20: 1459.8147, theor. [M+2H+]2+: 730.9074, 

found: 730.9145 
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Synthesis of DOTA-PEG4-Ψ[Tz]-Arg-Ψ[Tz]-Arg-Pro-Tyr-Tle-Leu (AM-NT 17)   

 

MW: 1483.8 g/mol 

 

Peptide conjugate AM-NT 17 was prepared following procedures D, E, F, G and H using a 

Leu-preloaded PEG-PS resin (0.03 mmol) and commercial available Fmoc-Tle-OH, Fmoc-

Tyr(tBu)-OH, Fmoc-Pro-OH, Fmoc-Arg(Pbf)-COOH, and DOTA-(tris-tBu). Alkynes 29d and 

29f were used as triazole precursors. After purification by preparative HPLC (80-60% A in B 

in 20 min) peptide conjugate AM-NT 17 was obtained in high purity (> 98%) as a white 

powder (3.8 mg, 9%). 

Analytical HPLC: (90-50% A in B in 15 min), tr= 10.47 min.  

ESI-HRMS m/z [M+2H+]2+ calcd for C66H109N21O18: 1483.8259, theor. [M+2H+]2+: 742.9130,  

found: 742.9207 
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 Radiolabelling 5.4

 

NT (8-13) derivatives 1-18 were radiolabelled with different specific activities depending on 

the experiment. Peptide conjugates were used as stock solutions of 1 mg/ mL in H2O. 

In Vitro Studies. 10 µg (6.9 nmol conjugate in 10 µL H2O) of analogues [177Lu]AM-NT 1-17 

were added to 150 µL NH4OAc buffer (0.4 M, pH 5.0). 37 MBq of [177Lu]LuCl3 were added 

and the mixture was heated for 30 min at 100 °C. After the quality control via γ-HPLC, 2 µL of 

a 0.3 mM natLuCl3 solution in H2O (6 nmol) were added and the mixture was heated again for 

30 min at 100 °C. The reaction solution was then diluted with a 0.9% NaCl solution giving a 

solution A with a final concentration of 1 nmol radiopeptide per mL. For cell internalisation 

experiments, a second solution B was prepared from solution A, by diluting 200 µL in 8 mL of 

saline solution, obtaining a final concentration of 2.5 pmol of radiopeptide per 100 µL. For 

receptor saturation experiments, solution A was used as stock solution for the preparation of 

the dilutions of different concentration. 

In Vivo Biodistribution Studies. 10 µg (6.9 nmol in 10 µL H2O) of analogues [177Lu]AM-NT 

2, 8, 9, 10, 11 and 15 were added to 150 µL NH4OAc buffer (0.4 M, pH 5.0). 150 MBq of 

[177Lu]LuCl3 was added and the mixture was heated for 30 min at 100 °C. Radiolabelling 

yields and purities were determined via γ-HPLC. For injection, the solution was diluted twice. 

In the first dilution C, 1% HSA in NaCl was added till reaching a final volume of 1 mL. Then 

0.9% NaCl in H2O was added reaching a final concentration of 1 nmol radiopeptide per mL. 

For the second dilution D, 200 µL of the first dilution C were added to 1.8 mL 0.9% NaCl in 

H2O (reaching a final volume of 2 mL) and 10 µL of Ca-DTPA were added. Each animal 

received 100 µL of this solution D (10 pmol radiolabelled radiopeptide, approx. 0.2 MBq). For 

the blocking solution E, 200 µL of the first dilution C, a 200 µL solution of NT (1-13) (1.2 nmol 

in 200 µL) and 10 µL of Ca-DTPA were diluted with 0.9% NaCl in H2O (reaching a final 

volume of 2 mL). For blocking experiments, each animal received 100 µL of solution E (10 

pmol radiolabelled radiopeptide, 60 nmol NT (1-13), approx. 0.2 MBq). 

In Vivo Imaging Studies. 1 µg (6.9 nmol conjugate in 1 µL H2O) of analogues 8 and 11 

were added to 100 µL NH4OAc buffer (0.4 M, pH 5.0). 150 MBq of a [177Lu]LuCl3 was added 

and the mixture was heated for 30 min at 100 °C. Radiolabelling yields and purities were 

determined via γ-HPLC. For injection, the solution was diluted twice. In the first dilution F, 70 

µL 1% HSA was added and 0.9% NaCl in H2O was added reaching a final volume of 690 µL 

(1 nmol/mL). For the second dilution G, 600 µL of the first dilution were added to 400 mL 

0.9% NaCl in H2O (reaching a final volume of 1 mL) and 10 µL of Ca-DTPA were added. 
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Each animal received 100 µL of this solution D (60 pmol peptide conjugate, approx. 13.0 

MBq). 

Serum Stabilities. 5 µg (3.5 nmol in 5 µL H2O) of analogues [177Lu]AM-NT 1-17 were added 

to 150 µL NH4OAc buffer (0.4 M, pH 5.0). 150 MBq of [177Lu]LuCl3 was added and the 

mixture was heated for 30 min at 100 °C. Radiolabelling yields and purities were determined 

via γ-HPLC. The reacting solution was diluted with 0.9% NaCl in H2O to a concentration of 1 

nmol radiopeptide per mL. This solution was the directly applied to 1 mL serum. 

All NT (8-13) analogues [177Lu]AM-NT 1-17 were obtained in radiochemical yields and 

purities of >95%. 

 

 In Vitro Evaluation 5.5

 

Stability Studies 

The radiolabelled peptide conjugates (30 pmol, 1nM in PBS, approx. 0.7 MBq) were 

incubated in fresh blood serum (1 mL) at 37 °C. At different time points (1, 5, 10, 20, 30, 40, 

60, 120, 240, 360 min, 24 h) aliquots (100 µL) were taken and the proteins were precipitated 

in 200 µL EtOH and centrifuged (5 min, 5000 rpm). The supernatant was again precipitated 

with 100 µL EtOH and centrifuged. The supernatant was diluted with H2O (1:2) and analysed 

with γ-HPLC. 

Log D Determination 

The lipophilicity of the radiolabelled conjugated was determined by the ‘shake-flask method’. 

The radiolabelled peptides (30 pmol, 1nM in PBS, approx. 0.2 MBq) were added to 1 mL of a 

mixture of n-octanol/PBS (1:1) and shaken vigorously for 1 min by vortex. After 

centrifugation, aliquots (100 µL) of both n-octanol and PBS phases were taken and analysed 

with a gamma-counter (n=5). 

 

Cell Culture 

Human colorectal adenocarcinoma (HT-29) cells were cultured at 37 °C and 5% CO2 in 

Dulbecco’s modified Eagle’s medium (DMEM, high glucose) containing 10% (v/v) fetal 

bovine serum, L-glutamine (200 mM), 100 IU mL-1 penicillin and 100 µg mL-1 streptomycin. 

The cells were subcultured weekly after detaching them with a commercial solution of 
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trypsin-EDTA (1:250) in PBS. For experiments, 8·105 cells/well were seeded out the night 

before, reaching a concentration of 1·106 cells/well on the day of the experiment. 

Cell Internalisation Experiments 

On the day prior to the experiment, HT-29 cells (1·106 cells/well) were placed in six-well 

plates with cell culture medium (1% FBS) and incubated overnight at 37 °C and 5% CO2 for 

allowing the cells to attach. On the day of the experiment, the medium was removed and 

fresh medium (1% FBS, 1.3 mL) was added. Radiolabelled conjugates [177Lu]-AM-NT 1-17 

(2.5 pmol per well, 2.5 pM solution in PBS, approx. 0.01 MBq) were added and the cells were 

incubated for different time points (30, 60, 120, 240 min) in triplicates to allow binding and 

internalisation. Nonspecific receptor binding and internalisation was determined by blocking 

experiments in the presence of a 1000-fold excess of NT (8-13) as a blocking agent (2.5 

nmol per well, 2.5 nM solution in H2O). After each time point, the supernatant was removed 

and the cells were washed twice with PBS (1 mL). The combined supernatants represent the 

free, unbound fraction of radioactivity. Receptor-bound radioactivity was determined by 

incubating the cells on ice twice for 5 min with an acidic glycine solution (1 mL; 100 nM NaCl, 

50 nM glycine, pH 2.8). The internalized fraction was isolated by lysis of the cells with 1M 

NaOH (1 mL) for 10 min at 37 °C and 5% CO2. The wells of the lysed cells were washed 

twice with 1 mL 1M NaOH. The radioactivity of the fractions were measured quantitatively in 

a gamma counter and calculated as a percentage of applied dosage. Data was fitted by non-

linear regression with GraphPad Prism 5.0 (n=2-3 in triplicate).  

 

Receptor Saturation Studies 

HT-29 cells in six-well plates were prepared as described above. In order to reach receptor 

saturation, the cells were incubated with increasing concentrations of the peptide conjugates 

[177Lu]-AM-NT 1-17 (0.1, 0.5, 1, 5, 10, 20, 50, 75, 100, 200, 400, 600, 800, 1600, 3200 nM). 

Non-specific binding was determined by blocking experiments using a 1000 fold excess of 

NT (8-13) solution (2.5 nmol/1 mL per well, corresponding to 2.5 µM). After incubation of 1 h 

at 37 °C and 5% CO2, the supernatant was removed and the cells were washed twice with 

PBS (1 mL per well). The combined supernatants represent the free, unbound radiopeptide 

fraction. In order to determine the receptor bound and internalized fraction, the cells were 

treated with 1 M NaOH (1 mL per well) for 10 min at 37 °C and washed twice with 1 M NaOH 

(1 mL per well). The free and the receptor bound fractions were measured in a gamma 

counter for quantification. Dissociation constants (KD) were calculated from the specific 

binding data by performing a non-linear regression using GraphPad Prism5 (n=2-3 in 

triplicate). 
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 In Vivo Evaluation 5.6

 

Biodistributions 

Biodistributions of compounds [177Lu]AM-NT 2, 8, 9, 10, 11 and 15  were performed with 

female nude Foxn 1nu mice (6-8 week old), bearing HT-29 colon carcinoma xenografts. For 

induction of the xenografts, HT-29 cells in a concentration of 7·106 cells/mouse were injected 

subcutaneously in the right shoulder and allowed to grow for 8 days.  

On the day of the experiment, the mouse received the 177Lu-labelled peptide analogues (10 

pmol/mouse, 0.5-0.7 MBq/mouse) into the tail vein. The mice were sacrificed at different 

times (1, 4, 24 h p.i.), and their organs (blood, heart, lungs, liver, spleen, pancreas, stomach, 

intestine, colon, adrenal, kidneys, muscle, bone, brain and tumour) were harvested by 

dissection. The radioactivity in the organs was determined by γ-counting. 3-5 animals were 

used per time point.  

For blocking experiments, a solution of NT (1-13) (60 nmol/mouse) was co-injected with the 

labelled compound. The animals were sacrificed at 1 h p.i., dissected and their organs were 

measured with a γ-counter. Tissue distribution data were calculated as percent injected 

activity per gram of tissue (% ID/g) (n=3-5). Statistical analysis was performed with Graphpad 

Prism 5. 

In Vivo Imaging  

For in vivo imaging, female nude Foxn 1nu mice (6-8 week old), bearing HT-29 colon 

carcinoma xenografts were used. The induction of the xenografts was identical to the 

described for biodistributions. On the day of the experiment, the mice received the 177Lu-

labelled peptide analogue (60 pmol/mouse, 13 MBq/mouse) into the tail vein. The mice were 

sacrificed 1 h p.i., and imaged on a SPECT/CT Bioscan imager for 12 h. 
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6. Appendix 

 

 NMR Spectra  6.1

Imidazole-1-sulfonyl Azide Hydrochloride (6) 
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Boc-Ile-N(Me)OMe (26a) 
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Boc-Pro-N(Me)OMe (24b) 
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Fmoc-Tyr(tBu)-N(Me)OMe (34c) 
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Fmoc-Arg(Boc)2-N(Me)OMe (34d) 
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Boc-Ile-alkyne (28a) 
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Boc-Pro-alkyne (28b) 
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Fmoc-Ile-alkyne (29a) 
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Fmoc-Pro-alkyne (29b) 
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Fmoc-Tyr(tBu)-alkyne (29c) 

 

 

 

 



  Appendix  

167 
 

Fmoc-Arg(Boc)2-alkyne (29d) 

 

 

 

 



Appendix 
 
 

168  
 

Fmoc-PEG4-alkyne (29f) 
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(9H-fluoren-9-yl)methyl (2-oxo-1-(N-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-

yl)sulfonyl)carbamimidoyl)piperidin-3-yl)carbamate 39 

 

 

 



Appendix 
 
 

170  
 

(9H-fluoren-9-yl)methyl (2-hydroxy-1-(N-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-

5-yl)sulfonyl)carbamimidoyl)piperidin-3-yl)carbamate 41 
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Fmoc-Arg(Pmc)-N(Me)OMe (43) 

 

Fmoc-Ala-Ile-alkyne (50a) 
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Fmoc-Ala-Pro-alkyne (50b) 
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Fmoc-Ala-Tyr(tBu)-alkyne (50c) 
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Fmoc-Ala-Arg(Boc)2-alkyne (50d) 
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 MS Data 6.3

Fmoc-Arg(Boc)2-N(Me)OMe (34d) 

 

 

 

Fmoc-Tyr(tBu)-alkyne (29c) 
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Fmoc-Arg(Boc)2-alkyne (29d) 

 

 

(9H-fluoren-9-yl)methyl (2-oxo-1-(N-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-

yl)sulfonyl)carbamimidoyl)piperidin-3-yl)carbamate 39 
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(9H-fluoren-9-yl)methyl (2-hydroxy-1-(N-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-

5-yl)sulfonyl)carbamimidoyl)piperidin-3-yl)carbamate 41 

 

 

Fmoc-Ala-Ile-alkyne (50a) 
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Fmoc-Ala-Pro-alkyne (50b) 
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Fmoc-Ala-Tyr(tBu-alkyne (50c) 
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Fmoc-Ala-Arg(Boc)2-alkyne (50d) 
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 Peptides 6.5

6.5.1 Analytical UV-chromatograms  

 

AM-NT 1 

Analytical HPLC profile: gradient 90-50% A in B in 20 min. 

 

 

AM-NT 2 

Analytical HPLC profile: gradient 90-50% A in B in 20 min. 

 

 

 

AM-NT 3 

Analytical HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 



  Appendix  

183 
 

AM-NT 4 

Analytical HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

AM-NT 5 

Analytical HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

AM-NT 6 

Analytical HPLC profile: gradient 90-50% A in B in 15 min. 
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AM-NT 7 

Analytical HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

AM-NT 8 

Analytical HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

AM-NT 9 

Analytical HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

 

AM-NT 10 
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Analytical HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

AM-NT 11 

Analytical HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

AM-NT 12 

Analytical HPLC profile: gradient 90-50% A in B in 15 min. 
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AM-NT 13 

Analytical HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

AM-NT 14 

Analytical HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

AM-NT 15 

Analytical HPLC profile: gradient 90-60% A in B in 15 min. 
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AM-NT 16 

Analytical HPLC profile: gradient 90-60% A in B in 15 min. 

 

 

 

AM-NT 17 

Analytical HPLC profile: gradient 90-60% A in B in 15 min. 
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6.5.2 γ-HPLC Chromatograms 

 

[177Lu]-AM-NT 1 

γ-HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

[177Lu]-AM-NT 2 

γ-HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

[177Lu]-AM-NT 3 

γ-HPLC profile: gradient 90-50% A in B in 15 min. 
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[177Lu]-AM-NT 4 

γ-HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

[177Lu]-AM-NT 5 

γ-HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

[177Lu]-AM-NT 6 

γ-HPLC profile: gradient 90-30% A in B in 19 min. 
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[177Lu]-AM-NT 7 

γ-HPLC profile: gradient 80-40% A in B in 15 min. 

 

 

 

[177Lu]-AM-NT 8 

γ-HPLC profile: gradient 90-50% A in B in 15 min. 

 

 

 

[177Lu]-AM-NT 9 

γ-HPLC profile: gradient 90-60% A in B in 15 min. 
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[177Lu]-AM-NT 10 

γ-HPLC profile: gradient 90-60% A in B in 15 min. 

 

 

 

[177Lu]-AM-NT 11 

γ-HPLC profile: gradient 90-60% A in B in 15 min. 

 

 

 

[177Lu]-AM-NT 12 

γ-HPLC profile: gradient 90-60% A in B in 15 min. 
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[177Lu]-AM-NT 13 

γ-HPLC profile: gradient 90-60% A in B in 15 min. 

 

 

[177Lu]-AM-NT 14 

γ-HPLC profile: gradient 90-60% A in B in 15 min. 

 

 

 

[177Lu]-AM-NT 15 

γ-HPLC profile: gradient 90-60% A in B in 15 min. 
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[177Lu]-AM-NT 16 

γ-HPLC profile: gradient 90-60% A in B in 15 min 

 

 

 

[177Lu]-AM-NT 17 

γ-HPLC profile: gradient 90-60% A in B in 15 min 
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6.5.3 MS Data 

 

AM-NT 1 
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AM-NT 2 
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AM-NT 3 
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AM-NT 4 
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AM-NT 5 
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AM-NT 6 
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AM-NT 7 
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AM-NT 8 
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AM-NT 9 
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AM-NT 10 

 

  



Appendix 
 
 

204  
 

AM-NT 11 
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AM-NT 12 
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AM-NT 13 

 

 

 

AM-NT 14 
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AM-NT 15 

 

 

 

 

 

 

 

 



Appendix 
 
 

208  
 

AM-NT 16 
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AM-NT 17 
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 Biodistribution Data 6.7

 

Biodistribution of [177Lu]-AM-NT 2 

 

Organ 1h 4h 24h Blocking 

blood 0.03 ± 0.01 0.004 ± 0.001 0.009 ± 0.006 0.02 ± 0.02 

heart 0.03 ± 0.01 0.02 ± 0.02 0.013 ± 0.008 0.022 ± 0.007 

Liver 0.07± 0.02 0.05 ± 0.03 0.027 ± 0.005 0.10 ± 0.03 

spleen 0.03 ± 0.02 0.037 ± 0.008 0.024 ± 0.008 0.05 ± 0.03 

lung 0.12 ± 0.05 0.040 ± 0.004 0.04 ± 0.02 0.07 ± 0.04 

kidney 1.2 ± 0.4 1.2 ± 0.1 0.6 ± 0.2 1.21 ± 0.04 

stomach 0.13 ± 0.04 0.11 ± 0.01 0.07 ±  0.02 0.04 ± 0.02 

intestine 0.9 ± 0.2 0.48 ± 0.02 0.5 ± 0.1 0.09 ± 0.07 

colon 0.4 ± 0.2 0.30 ± 0.03 0.2 ± 0.1 0.04 ± 0.02 

adrenal 0.11 ± 0.08 0.22 ± 0.05 0.3 ± 0.1 0.005 ± 0.008 

pancreas 0.10 ± 0.07 0.05 ± 0.02 0.3 ± 0.2 0.009 ± 0.006 

brain 0.010 ± 0.004 0.004 ± 0.002 0.005 ± 0.003 0.007 ± 0.003 

muscle 0.03 ± 0.02 0.02 ± 0.02 0.05 ± 0.02 0.007 ± 0.007 

bone 0.03 ± 0.01 0.02 ± 0.02 0.044 ± 0.008 0.021 ± 0.003 

HT-29 

tumour 
1.2 ± 0.2 0.7 ± 0.2 0.4 ±  0.1 0.2 ± 0.1 
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Biodistribution of [177Lu]-AM-NT 8 

 

Organ 1h 4h 24h Blocking 

blood 0.10 ± 0.04 0.005 ± 0.006 0.008 ± 0.003 0.2 ± 0.08 

heart 0.07 ± 0.02 0.02 ± 0.01 0.03 ± 0.01 0.08 ± 0.03 

Liver 0.11± 0.01 0.12 ± 0.03 0.07 ± 0.01 0.15 ± 0.03 

spleen 0.07 ± 0.02 0.06 ± 0.02 0.055 ± 0.007 0.10 ± 0.03 

lung 0.19 ± 0.05 0.05 ± 0.01 0.06 ± 0.01 0.28 ± 0.07 

kidney 1.8 ± 0.4 1.9 ± 0.2 1.1 ± 0.2 2.1 ± 0.4 

stomach 0.28 ± 0.07 0.16 ± 0.03 0.12 ±  0.02 0.168 ± 0.008 

intestine 1.1 ± 0.2 1.1 ± 0.2 0.7 ± 0.1 0.11 ± 0.07 

colon 0.4 ± 0.1 0.5 ± 0.1 0.28 ± 0.05 0.11 ± 0.05 

adrenal 0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.2 

pancreas 0.2 ± 0.2 0 ± 0 0.14 ± 0.05 0.09 ± 0.05 

brain 0.013 ± 0.004 0.005 ± 0.002 0.004 ± 0.002 0.016 ± 0.007 

muscle 0.02 ± 0.01 0.1 ± 0.1 0.04 ± 0.03 0.05 ± 0.04 

bone 0.09 ± 0.04 0.07 ± 0.08 0.10 ± 0.03 0.07 ± 0.04 

HT-29 

tumour 
2.0 ± 0.3 1.5 ± 0.5 1.0 ±  0.3 0.4 ± 0.1 
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Biodistribution of [177Lu]-AM-NT 9 

 

Organ 1h 4h 24h Blocking 

blood 0.02 ± 0.01 0 ± 0 0 ± 0 0.11 ± 0.03 

heart 0.012 ± 0.006 0 ± 0 0.008 ± 0.004 0.06 ± 0.02 

Liver 0.035 ± 0.008 0.032 ± 0.004 0.03 ± 0.01 0.10 ± 0.03 

spleen 0.017 ± 0.009 0.017 ± 0.006 0.021 ± 0.007 0.07 ± 0.01 

lung 0.05 ± 0.04 0.02 ± 0.02 0.01 ± 0.01 0.18 ± 0.04 

kidney 0.5 ± 0.1 0.55 ± 0.03 0.4 ± 0.1 1.6 ± 0.3 

stomach 0.10 ± 0.03 0.05 ± 0.02 0.038 ± 0.007 0.2 ± 0.1 

intestine 0.30 ± 0.06 0.3 ± 0.1 0.22 ± 0.04 0.10 ± 0.01 

colon 0.17 ± 0.03 0.17 ± 0.06 0.06 ± 0.04 0.15 ± 0.03 

adrenal 0.10 ± 0.08 0.04 ± 0.13 0.07 ± 0.05 0.2 ± 0.4 

pancreas 0 ± 0 0.02 ± 0.07 0 ± 0 0.01 ± 0.06 

brain 0.003 ± 0.004 0.0032 ± 0.0008 0.002 ± 0.002 0.012 ± 0.001 

muscle 0.006 ± 0.009 0 ± 0 0.007± 0.019 0.03 ± 0.02 

bone 0.05 ± 0.09 0.01 ± 0.01 0.01 ± 0.01 0.04 ± 0.03 

HT-29 

tumour 
1.1 ± 0.3 0.7 ± 0.1 0.45 ±  0.07 0.31 ± 0.04 
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Biodistribution of [177Lu]-AM-NT 10 

 

Organ 1h 4h 24h Blocking 

blood 0.11 ± 0.03 0.0001 ± 0.0003 0.0007 ± 0.0012 0.11 ± 0.04 

heart 0.06 ± 0.02 0.015 ± 0.001 0.009 ± 0.006 0.05 ± 0.02 

Liver 0.28 ± 0.05 0.17 ± 0.01 0.120 ± 0.007 0.28 ± 0.03 

spleen 0.078 ± 0.008 0.05 ± 0.01 0.05 ± 0.01 0.06 ± 0.01 

lung 0.21 ± 0.04 0.034 ± 0.008 0.03 ± 0.01 0.20 ± 0.01 

kidney 2.0 ± 0.2 1.7 ± 0.2  1.2 ± 0.1 1.8 ± 0.2 

stomach 0.5 ± 0.4 0.16 ± 0.02 0.11 ± 0.02 0.10 ± 0.01 

intestine 1.0 ± 0.2 1.1 ± 0.2 0.75 ± 0.08 0.04 ± 0.05 

colon 0.36 ± 0.07 0.3 ± 0.1 0.2± 0.1 0.07 ± 0.07 

adrenal 0.05 ± 0.06 0 0.01 ± 0.02 0 

pancreas 0.01 ± 0.01 0 0 0 

brain 0.011 ± 0.002 0.004 ± 0.003 0.002 ± 0.002 0.012 ± 0.008 

muscle 0.04 ± 0.04 0.02 ± 0.04 0.02 ± 0.02 0.03 ± 0.03 

bone 0.05 ± 0.03 0.01 ± 0.01 0.03 ± 0.03 0.02 ± 0.01 

HT-29 

tumour 
1.9 ± 0.4 1.29 ± 0.09 0.9 ±  0.1  0.40 ± 0.03 
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Biodistribution of [177Lu]-AM-NT 11 

 

Organ 1h 4h 24h Blocking 

blood 0.05 ± 0.03 0 ± 0 0 ± 0 0.10 ± 0.08 

heart 0.02 ± 0.02 0 ± 0 0 ± 0 0.03 ± 0.02 

Liver 0.08 ± 0.01 0.05 ± 0.01 0.018 ± 0.006 0.11 ± 0.05 

spleen 0.03 ± 0.01 0.024 ± 0.009 0 ± 0 0.05 ± 0.02 

lung 0.06 ± 0.03 0.03 ± 0.02 0.009 ± 0.014 0.13 ± 0.06 

kidney 1.3 ± 0.2 1.3 ± 0.4 0.5 ± 0.1 1.7 ± 0.6 

stomach 0.05 ± 0.02 0.01 ± 0.01 0 ± 0 0.06 ± 0.05 

intestine 0.26 ± 0.08 0.15 ± 0.08 0.05 ± 0.05 0.01 ± 0.06 

colon 0.2 ± 0.2 0.10 ± 0.07 0.0008 ± 0.0177 0 ± 0 

adrenal 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

pancreas 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

brain 0.002 ± 0.004 0.002 ± 0.004 0 ± 0 0.003 ± 0.008 

muscle 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

bone 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

HT-29 

tumour 
1.0 ± 0.3 0.7 ± 0.2 0.2 ±  0.1 0.33 ± 0.08 
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Biodistribution of [177Lu]-AM-NT 15 

 

Organ 1h 4h 24h Blocking 

blood 0.08 ± 0.02 0.006 ± 0.003 0.005 ± 0.001 0.04 ± 0.02 

heart 0.05 ± 0.01 0.012 ± 0.007 0.026 ± 0.005 0.03 ± 0.01 

Liver 0.12 ± 0.03 0.11 ± 0.02 0.10 ± 0.02 0.13 ± 0.03 

spleen 0.08 ± 0.02 0.056 ± 0.005 0.08 ± 0.02 0.076 ± 0.009 

lung 0.18 ± 0.04 0.04 ± 0.02 0.06 ± 0.01 0.144 ± 0.007 

kidney 1.6 ± 0.4 1.3 ± 0.2 1.2 ± 0.1 2.1 ± 0.7 

stomach 0.146 ± 0.009 0.08 ± 0.02 0.09 ± 0.01 0.1 ± 0.1 

intestine 1.2 ± 0.1 0.9 ± 0.2 1.1 ± 0.1 0.1 ± 0.1 

colon 0.33 ± 0.08 0.23 ± 0.05 0.22 ± 0.06 0.15 ± 0.02 

adrenal 0.2 ± 0.2 0.17 ± 0.04 0.3 ± 0.2 0.08 ± 0.16 

pancreas 0.13 ± 0.03 0.03 ± 0.32 0.24 ± 0.09 0.001 ± 0.018 

brain 0.012 ± 0.003 0.007 ± 0.003 0.005 ± 0.001 0.009 ± 0.003 

muscle 0.04 ± 0.02 0.04 ± 0.03 0.07 ± 0.01 0.035 ± 0.003 

bone 0.14 ± 0.04 0.07 ± 0.04 0.06 ± 0.02 0.5 ± 0.3 

HT-29 

tumour 
2.2 ± 0.6 1.1 ± 0.1 1.1 ±  0.1 0.60 ± 0.05 
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