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Abstract

The potential energy surface of multi-atomic systems encodes important aspects such as

thermodynamic and dynamic properties or the equilibrium geometries. Collections of low-

energy minima and the reaction pathways that connect the minima with each other can be

key elements in the study of potential energy surfaces and their properties. The extension of

the minima hopping (MH) global optimization method to the minima hopping guided path

search method (MHGPS) forms the heart of this thesis. MHGPS is a MH based approach for

finding complex reaction pathways that connect the local minima in an efficient, automatized

and unbiased fashion. Also, in this context, novel stabilized quasi-Newton local optimizers for

the computation of minima and saddle points are developed. These optimizers are designed

for robustness to the noisy forces delivered by density functional codes. Using benchmarks,

the MHGPS method as well as the stabilized quasi-Newton optimizers are found to compare

favorably with existing algorithms. Using the MHGPS method, novel results are presented

for previously extensively studied Lennard-Jones clusters. Besides that, an ab-initio structure

prediction study using the MH global optimization method is presented for the neutral and

anionic gold clusters with 26 atoms. Finally, computationally efficient methods for a qualitative

characterization of potential energy surfaces are discussed. In this context, MHGPS is applied

at the density functional level of theory to the potential energy surface of Si20.
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Introduction

Important aspects such as thermodynamic and dynamic properties or equilibrium confor-

mations of multi-atomic systems like clusters, molecules or surfaces, are encoded in their

potential energy surface (PES).1–4 In the past years, computer aided global optimization or,

more accurately, the automatized sampling of low-energy equilibrium geometries, has become

a hot topic in the materials science community. To this end, powerful global optimization

methods such as several genetic algorithms5–9, basin hopping10–12, the activation relaxation

technique13–17 and minima hopping (MH)9,18–20 have been developed during the last three

decades. However, when restricted to only the geometries and relative potential energies of

the minima, the finite temperature and dynamic behavior of a system is not accessible and

important questions of significant physical and chemical interest must remain unanswered:

Is the identified potential energy global minimum actually observable in an experiment, or

are there reasons to believe that other minima are entropically favored? Are there multiple

kinetically stable states? What are the detailed atomistic mechanisms of a certain process? The

key to answer these and similar questions lies in the detailed knowledge of the characteristics

of a PES. Beyond the mere knowledge of the global minimum and additional local minima,

the reaction pathways that connect these minima with each other are key elements needed to

answer the aforementioned questions.

In principle, reactive processes are described by dynamical trajectories as can be obtained

from molecular dynamics (MD) simulations. Even at ab-initio level of theory pure MD simu-

lations can be used to study the reaction dynamics.21–25 However, pure MD simulations are

limited by the femto-second time scale of the fastest atomic motions. This is particullarily

problematic for the purpose of observing reaction pathways that constitute rare events in MD

simulations. Driven by this problem, new dynamical approaches like metadynamics, tem-

perature accelerated dynamics or transition path sampling were developed in the past.26–29

However, these methods can be challenging to use in practice. Despite their improvements

over MD, the sampling of dynamic reaction pathways is still very demanding computationally

and, for more complex PESs, can be beyond computational feasibility.30 Furthermore, some

of these improved dynamic methods rely on the definition of a reaction coordinate or on an

order parameter. In particular, chosing proper reaction coordinates is non-trivial and the

1



Introduction

outcome of free energy calculations and atomistic details of chemical reactions depends on

their definition.31,32

Most notably the work of Wales and co-workers demonstrated that a detailed collection of

energetically low-lying minima, transition states and the information which transition state

is connected to which minima can form a basic element needed for answering the above

posed questions.1–4,32–40 In the past, several eigenvector following approaches, including

an extension of the above mentioned activation relaxation technique, or discrete analogues

of the transition path sampling method were exploited for the purpose of sampling these

stationary points.2,3,15–17,35,39,41 Even though many difficulties inherent to the before men-

tioned dynamical methods can be circumenvented within this coarse grained perception of a

PES, the thorough and systematic sampling of all relevant minima, transition states and their

connectivity remains a very challenging task. Even today, (semi-)empirical descriptions of

the PES are frequently required for this purpose.42–45 At more sophisticated levels of theory,

like density functional theory (DFT), the study of reactive processes within this approach is

often restricted to the computation of a very limited number of transitions, starting at one

or a pair of carefully hand-selected initial atomic conformations.46–48 For these purposes,

variants of the nudged elastic band method or the (improved) dimer method are frequently

used.49–60 However, this non-automatized and highly selective approach based on human

intuition and previously gathered experience can be suboptimal. Unforeseen phenomena

might be missed, and the computational probing of reactive processes can be bounded by

human-time limitations instead of available computer time. With the aim to alleviate these

restrictions, minima hopping guided path search (MHGPS) was developed in the course of this

thesis. MHGPS is a MH based method for the efficient, automatized and unbiased sampling of

complex reaction pathways, which are defined by a sequence of minima and all the transition

states connecting them. In the following, a chronological summary of the research conducted

for this thesis is given.

The work for this thesis started with the exploration of the PES of neutral and anionic Au26

clusters using the MH global optimization method at the DFT level of theory.61 The com-

putational results suggested that multiple isomers should be observable experimentally. In

close collaboration with two research groups in the United States of America, this prediction

was confirmed for Au−
26. Moreover, three specific, computationally predicted, geometries

could reasonably explain the experimentally measured photoelectron spectra. Additionally, to

obtain a rough estimate on the kinetics of the anionic system, a database consisting of minima,

transition states and the information, which transition state is connected to which minima

was computed at the DFT level of theory. The obtained data allowed to predict Au−
26 to exhibit

structural fluxionality.

At the time of the study of these gold clusters no method at the DFT level of theory was available

to the author for the sampling of complex reaction pathways in a completely automatized,

efficient and unbiased fashion and, at the same time, not being prone to getting stuck in some

part of a PES. For this reason, the database had to be created in a manual approach. The
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experience gained by this manual sampling made clear that the present computer resources

can be sufficient for generating databases of useful sizes at ab-initio level. Driven by this

experience and the knowledge of the usefulness of such a method to the communities of

computational physics, chemistry and biology, the above mentioned MHGPS was developed.

Using Lennard-Jones benchmark systems, it was found that, compared to other methods,

MHGPS is superior in finding lowest-barrier reaction pathways on complex PESs.62 In a first

application, novel results could be produced for the 75-atom and 102-atom Lennard-Jones

systems, despite the fact that these systems already had been studied extensively before.2,39,63

Motivated by these results, the coupling of the MHGPS code to the BigDFT package was begun.

However, it quickly became clear that the transition state optimization method that was used

within the MHGPS code for the study of the Lennard Jones clusters was not efficient enough

for simulations at the DFT level of theory. The demand for highly efficient optimizers, that are

robust with respect to the noisy forces delivered by DFT codes, resulted in the development of

a technique that allows the extraction of significant curvature information from noisy PESs.64

This technique was used to construct both a stabilized quasi-Newton minimization method

and a stabilized quasi-Newton saddle finding approach. With the help of benchmarks, both

the minimizer and the saddle finding approach were demonstrated to be superior to existing

methods.

With the novel stabilized quasi-newton optimizers at hand, it was possible to finish the

coupling of the MHGPS method to the BigDFT code. Both the stabilized quasi-Newton

optimizers and the MHGPS method are distributed along with the BigDFT suite under the

GNU General Public License and can be downloaded free of charge from the BigDFT website.65

Besides the work for the MHGPS method, the author of this thesis also contributed to the

development of distance-energy plots, a method that allows the efficient discrimination

between glass-like and structure seeker PESs. Based on an empirical approach, it also was

found that data from MH runs can be post-processed to obtain a first impression on the

qualitative character of a PES. In practice this is useful, as it allows deciding if a certain system

might be interesting enough for probing the characteristics of its PES more rigorously by

means of the MHGPS code.

The thesis is structured as follows. Probing the characteristics of the PES is the central topic

being studied, therefore, in Chap. 1 an introductory overview of the most important concepts

related to the PES is given. After discussing relevant related work in the field of local optimizers,

the development of the novel stabilized quasi-Newton minimizer and saddle search technique

is described in Chap. 2. The MHGPS method is presented in Chap. 3, after having introduced

relevant work in the field of reaction pathway search. The study of the gold clusters is detailed

in Chap. 4. Finally, Chap. 5 is devoted to the discussion of the efficient post-processing of MH

data for the purpose of obtaining a first impression on the characteristics of a PES.

Most of this thesis has been published in peer reviewed journals. The quasi-Newton opti-

mizers and the MHGPS method have been separately published in the Journal of Chemical

3
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Physics.62,64 The study on the gold clusters has been published in ACS Nano,61 whereas the

distance-energy plots have been published in Physical Review Letters.66
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1 The Potential Energy Surface

The potential energy of an N -atomic system is given by a real valued function

E (R1, . . . ,RN ) :R3N 7→R. (1.1)

Here the vectors {Ri }i=1,...,N represent the positions of the atomic nuclei. The energy E (R1, . . . ,RN )

can be looked at as a surface embedded in a 3N +1 dimensional space and, therefore, it is

commonly denoted as potential energy surface (PES) or potential energy landscape.3,67 The

concept of a potential energy describing the interaction of atomic nuclei is ultimately based

upon the Born Oppenheimer approximation for which a brief review is given in Sec. 1.2.1.

Detailed knowledge of the PES topology allows the prediction of the equilibrium confor-

mations, thermodynamic and dynamic properties of multiatomic systems, like for example

clusters, molecules or bulk.3,68–70 For that reason, structure prediction and the investigation

of chemical reactions are fundamentally based on the study of the PES. As a consequence, the

development of novel methods that allow efficient exploration of the PES is a vivid research

area.

1.1 Features, Properties and Important Details

A model PES that only depends on two conformational coordinates is visualized in Fig. 1.1. As

is apparent from this figure, the PES can be thought of as a mountain landscape. The minima

and mountain passes of this energy landscape are landmark points with notable physical

significance. The forces F ∈R3N on all the atoms are given by the negative gradient of the PES

F =−∇E . The most interesting sites of PESs are stationary points, that is, points at which the

forces vanish. The local stability at such points is determined by the eigenvalues of the Hessian

matrix. At a local minimum, the Hessian matrix is positive definite, which is equivalent to the

condition that the curvatures into all directions are positive. This means, at a local minimum,

the energy rises for small displacements into arbitrary directions and, therefore, (meta) stable

structures can straightforwardly be identified with local minima. The lowest minimum of

all local minima, also denoted as the global minimum, is considered to be the ground state

5
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Figure 1.1: A model energy surface (six-hump camel back function71) depending on two
conformational coordinates. Highlighted are landmark features of the energy surface that
have important physical significance. Local minima correspond to (meta)stable states, first
order saddle points can be identified with transition states of chemical reactions. Steepest
descent pathways leading away from transitions states (blue lines) correspond to the reaction
pathways.

structure of a system at vanishing temperatures. This assumption is originated in Anfinsen’s

thermodynamic hypothesis,68 which, in a nutshell, states that the conformation of a protein

is given by the structure that minimizes the free energy. Indeed, in particular in the research

related to proteins and other biomolecules, often a free energy surface is used. However, for

other multiatomic systems it is difficult, and in many cases virtually impossible, to define

an unambiguous free energy surface, because a suitable definition of collective coordinates

frequently is unclear. In the hope that the global free energy minimum is also a low energy

minimum of the potential energy, one, therefore, commonly restores to the study of the PES.

For each minimum on a PES a catchment basin (CB) can be defined as the set of points from

which steepest descent pathways (see Sec. 2.1.1) converge to this minimum.72 The transition

states are located on the borders that separate the different CBs. By introducing a threshold

energy, the catchment basins can be grouped into sets of basins whose minima are mutually

accessible without ever exceeding the threshold energy. These mutually accessible sets are

6
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Figure 1.2: A one dimensional model energy surface visualizing the concept of catchment
basins (CB) and superbasins. The catchment basins are labeled with their respective number
and they are colored alternatingly in black and red. The two different superbasins for the given
threshold energy are highlighted by a blue and yellow background, respectively. The threshold
energy itself is given by the dashed horizontal line.

denoted as superbasins.73 Furthermore, a superbasin is denoted as a funnel, if the lowest

minimum of the superbasin can be reached by never exceeding a barrier that is significantly

larger than the average energy differences of the minima in this superbasin.3,18 A visualization

of these concepts is given in Fig. 1.2. In fact, the idea of partitioning a PES into mutually

accessible regions for a given set of different threshold energies can be used to visualize PESs

of arbitrary dimensions. This is the basis of the disconnectivity graphs introduced by Becker

and Karplus (see Sec. 1.4).73

Finding the global minimum of a PES is a formidable task. One reason can be found in the fact,

that even for moderately sized atomic systems, the number of local minima is enormously

large. Although there is no strict rule that would tell the exact number of local minima for a

given system, it is possible to give an estimate for this number. A simple argument was given

by Stillinger and Weber.70 Here, this argument is reiterated in the formulation of Doye and

Wales.74 One considers an atomic system that consists of m subsystems. Each subsystem has

N atoms. The system is assumed to be large enough, such that each subsystem, independently

from all the other subsystems, can be located in a local minimum. Then, the number of

minima nmin must fulfill the equation

nmin(mN ) = nmin(N )m , (1.2)

7
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which, for some system-depended constant α, is solved by

nmin(N ) = exp(αN ). (1.3)

However, not only a large number of local minima can render global minimum searches to

be difficult, also the topology of the PES is an important factor. Wales et al. demonstrated

in a series of publications,33–35 that PESs with several energetically low lying regions sep-

arated by high potential energy barriers can pose severe problems to global optimization

methods. Probably the most prominent example for such a case is LJ38, a system consisting

of 38 particles interacting via the Lennard-Jones potential.35 The same is true for the PESs of

glass like systems, that have no well defined lowest local minima but posses a multitude of

energetically very similar minima that are separated by a large variety of energetically very

different barriers.36 Binary Lennard-Jones systems of certain sizes are prime examples for

such glass-like systems.4,66

The trajectory of a chemical reaction that interconverts two local minima can be described as

a minimum energy path (MEP). A MEP is a path on the PES for which the gradients at all its

points are locally parallel to the path itself. At its energetically highest points, the MEP will

pass through stationary points, the mountain passes, at which the Hessian has n negative

eigenvalues. Such stationary points are named saddle points of index n. Murrel and Laidler

argued75 that if two minima are connected by a saddle point of index greater than one, then

there must exist a lower energy path that involves only saddle points of index one. Their

argument, commonly known as Murrel-Laidler-Theorem, can be understood if one realizes

that an index n saddle can be regarded as a maximum in the subspace spanned by the Hessian

eigenvectors belonging to the n negative eigenvalues. In such a case, any displacement in this

subspace will lower the energy (the curvature in this subspace is negative in any direction) and,

therefore, it is possible to surmount the index n saddle by a lower energy path. However, their

argument implies the assumption of the existence of a Taylor expansion of the PES in terms of

the Hessian eigenvectors at the index n saddle.75,76 Indeed, Wales and Berry showed that there

exist pathological cases in which the Murrel-Laidler-Theorem is not applicable, because, for

example, a second derivative of such a Taylor expansion is not well defined. In such cases the

highest energy point on the lowest energy path connecting two minima is not necessarily an

index one saddle.76 Nevertheless, these cases seem to be rare enough, such that by virtue of the

Murrel-Laidler-Theorem, transition states are commonly defined to be saddle points of index

one. At a transition state the potential energy is at a maximum with respect to the direction of

the Hessian eigenvector corresponding to the negative eigenvalue and at a minimum with

respect to all other directions. Therefore, a MEP can be mapped out by stepping away from the

transition state in positive and negative direction of the Hessian eigenvector corresponding

to the negative eigenvalue, followed by steepest descent iterations with small step sizes (see

Sec. 2.1.1).3,77,78 Examples for such MEPs are given by the blue pathways shown in Fig. 1.1.

One must note that the interconversion between minima is a dynamical process and, therefore,

8
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a system is not constrained to move exclusively along the MEP. However due to Boltzmann’s

distribution there is an exponential preference towards low energy configurations and, in

this sense, the MEP is a reasonable mathematical model. Indeed, already in 1976, Pechukas

stated: “There is no dynamical significance to a path of steepest descent. It is a convenient

mathematical device to get from high ground, around the transition state, to low ground where

the stable molecules are.”79

The connectivity of a PES is defined by a sequence of minima and transition states connected

by a MEP. Two minima are considered to be neighbored (or directly connected) if there exist

MEPs between them that only cross one intermediate transition state. The connectivity of a

PES can, therefore, be established by sampling all minima, transition states and computing

the information which minima are connected by which transition states. For PESs that are

expensive to evaluate with respect to the computing time, an explicit tracing of the steepest

descent pathways is frequently computationally not feasible. Therefore, one often establishes

the connectivity by following pathways defined by, for example, quasi-Newton optimizers, or

other advanced minimization techniques.17,37,40,80,81 Energy minimized and steepest descent

pathways usually connect the same minima.3 Consequently, if one is interested in the connec-

tivity, but not in the details of the MEP itself, it is often sufficient to approximate the MEP by

an energy minimized pathway.3

Finding all the transition states in the relevant low energy region of a PES usually is even more

demanding than global optimization. For one, converging to a transition state is in general

more difficult and computationally more expensive than a minimization (see Chap. 2), for

another, the number of transition states on a PES is even larger than the number of local

minima. The latter has been discussed by Doye and Wales.74 Here, their argument, which

is based on the same idea as the above estimation of the number of minima, is reproduced.

Again, a system consisting of m subsystems, each with N atoms, is considered. If the system

is large enough, it is reasonable to assume that a transition state can form in one subsystem,

while all other subsystems reside in local minima. For the number of transition states nts this

gives the equation

nts(mN ) = mnmin(N )m−1nts(N ), (1.4)

which is solved by

nts(N ) ∝ N exp(αN ) . (1.5)

Under free boundary conditions, the potential energy of a multi-atom system is invariant

under overall translations and rotations (assuming the absence of any external potential). The

translational invariances cause three eigenvalues of the Hessian matrix to be zero. In Ref. [3]

it is shown that the three corresponding eigenvectors tx , ty and tz have the form of overall

9



Chapter 1. The Potential Energy Surface

translations in the x−, y− and z−direction:

tx ∝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

1

0

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ty ∝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

1

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, tz ∝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

0

1
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.6)

At a stationary point (x1, y1, z1, x2, y2, z2, . . . ) the Hessian of a free molecule has three addi-

tional eigenvectors ρx , ρy and ρz with vanishing eigenvalues (two for a linear molecule) that

correspond to overall rotations around the x−, y− and z−axis:3

ρx ∝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

z1

−y1

0

z2

−y2
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ρy ∝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1

0

−x1

z2

0

−x2
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ρz ∝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−y1

x1

0

−y2

x2

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.7)

There are various applications that need movements along overall translations and rotations

to be eliminated. For example, in (thermostated) molecular dynamics simulations, numerical

integration artifacts and periodically rescaling of velocities transfers energy from higher fre-

quency modes to the overall translational and rotational degrees of freedom.82 The Minima

Hopping18 global optimization method, uses (softened) random velocities as escape directions

from a local minimum in a short molecular dynamics simulation. If naively generated, these

random directions contain components corresponding to overall translations and overall

rotations. Movements along those directions are not of interest for the purpose of global

minimization. Another example is the saddle finding method described in Sec. 2.3.6. This

method makes use of the fact that a direction of minimal curvature on the PES can be found by

minimizing the directional curvature function. This is done with the help of finite differences.

Contamination of these small finite difference displacements with translations or rotations

can slow down convergence towards the direction of minimal curvature. Therefore, in Appx. A

several methods for the elimination of overall translations and rotations are discussed.

1.2 Computation of Potential Energy Surfaces

As outlined in the previous chapter, the PES is a potential that describes the interactions

of the atomic nuclei. In the framework of the Born-Oppenheimer-Approximation83, such

10



1.2. Computation of Potential Energy Surfaces

a potential arises from an approximate decoupling of the electronic and nuclear degrees of

freedom. The potential is given by the eigenvalues of an electronic Schrödinger equation,

which in most cases has to be solved numerically. With respect to computational cost and

accuracy of the results, one of the most efficient methods to solve the electronic problem

is the density functional theory (DFT). At the expense of drastic accuracy losses, but at the

gain of several orders of magnitudes of faster computation, the PES can also be modeled by

means of classical empirical approximations, so called force fields. The focus of this thesis is

the exploration and probing of topological features of PESs. The PES is thus the fundamental

object being studied and as such it seems appropriate to outline its calculation, even though

the calculation itself is not central to this work. In this section, a brief overview on important

theories for the computation of the PES is given.

1.2.1 The Born-Oppenheimer-Approximation

In atomic units, the molecular Schrödinger equation reads

[TN +TE +VEE +VEN +VNN]  
:=H

Ψ
(
{ri } ,

{
R j

})= EΨ
(
{ri } ,

{
R j

})
, (1.8)

where the {ri } are the coordinates of all N electrons and the {R j } represent the coordinates of

all Nat nuclei. The Hamilton operator is a sum of the operators of the nuclear kinetic energy,

the electronic kinetic energy, the electronic Coulomb repulsion, the Coulomb attraction of the

electrons and nuclei and the nuclear Coulomb repulsion:

TN =−
Nat∑
i=1

1

2Mi
∇2

Ri
(1.9)

TE =−
N∑

i=1

1

2
∇2

ri
, (1.10)

VEE = 1

2

N∑
i=1

N∑
j=1

i ̸= j

1

|ri − r j |
, (1.11)

VEN =−
N∑
i

Nat∑
j

Z j

|ri −R j |
, (1.12)

VNN = 1

2

Nat∑
i=1

Nat∑
j=1

i ̸= j

Zi Z j

|Ri −R j |
. (1.13)

Here Mi is the mass of nucleus i and Zi is the atomic number of the i−th nucleus. By

neglecting the nuclear kinetic energy, an electronic Hamiltonian He is defined:

He = [TE +VEE +VEN +VNN] . (1.14)

11



Chapter 1. The Potential Energy Surface

The corresponding Schrödinger equation reads

Heϕk
(
{ri } ,

{
R j

})= E e
k ({Ri })ϕk

(
{ri } ,

{
R j

})
. (1.15)

The electronic Hamiltonian He parametrically depends on the nuclear coordinates and so

do its eigenvalues E e
k ({Ri }). Because He is hermitian, its eigenstates ϕk

(
{ri } ,

{
R j

})
form a

complete (orthonormal) set and any function depending on the electronic coordinates can

be expanded in terms of them. In particular, this is true for the electronic dependence of the

eigenstatesΨ
(
{ri } ,

{
R j

})
of the complete molecular Schrödinger equation in Eq. 1.8.

{
R j

}
:

Ψ
(
{ri } ,

{
R j

})=∑
k
Φk

({
R j

})
ϕk

(
{ri } ,

{
R j

})
. (1.16)

TheΦ
({

R j
})

k are the expansion coefficients that depend on the nucleon coordinates. In the

following, it is shown that these expansion coefficients can be interpreted as nuclear wave

functions. To do so, Eq. 1.16 is inserted into Eq. 1.8. Using the product rule

∇2
Ri
Φk

({
R j

})
ϕk

(
{ri } ,

{
R j

})=ϕk
(
{ri } ,

{
R j

})∇2
Ri
Φk

({
R j

})
(1.17)

+2∇RiΦk
({

R j
})∇Riϕk

(
{ri } ,

{
R j

})
+Φk

({
R j

})∇2
Ri
ϕk

(
{ri } ,

{
R j

})
and the orthonormality of the electronic eigenstates, one obtains:

E e
l Φl −

Nat∑
i=1

1

2Mi
∇2

Ri
Φl +

∑
k
Λlk = EΦl , (1.18)

where

Λlk :=
Nat∑
i=1

−1

2Mi
(Alk +Blk ) . (1.19)

are the so-called non-adiabatic coupling terms. Here, the Al k and Blk terms are defined by:

Alk := 2
∫
ϕl∇Riϕk d N r∇RiΦk (1.20)

Blk :=Φk

∫
ϕl∇2

Ri
ϕk d N r. (1.21)

Now, because the masses of the nuclei are at least three orders of magnitude larger than that of

an electron and the electronic wave functions can be assumed to vary only slowly compared

to the nuclear wave functions, the non-adiabatic coupling Λl k terms are neglected.84 This

transforms Eq. 1.18 into Schrödinger equations for the nucleonic wave functionsΦl , in which

the electronic energies E e
l ({Ri }) act as a potential for the nuclei:

−
Nat∑
i=1

1

2Mi
∇2

Ri
Φl +E e

l

(
{R j }

)
Φl = EΦl , (1.22)
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1.2. Computation of Potential Energy Surfaces

It is exactly these E e
l

(
{R j }

)
that define the PESs introduced above. Care must be taken, if two

electronic surfaces are separated by a small energy gap. To see this, the commutator of the

nuclear gradient with the electronic Hamiltonian is considered:∫
ϕl

[∇Ri , He
]
ϕk d N r = (

E e
k −E e

l

)∫
ϕl∇Riϕk d N r (1.23)

=
∫
ϕl

(∇Ri He
)
ϕk d N r. (1.24)

The last line is just a number (depending on the nuclear positions) and, therefore, the coupling

of different electronic states depends inversely on the gap between the electronic surfaces.85

All the methods outlined or developed in this thesis assume electronic excitations to be

negligible and, therefore, operate on the ground state PES E e
0

(
{R j }

)
. The corresponding

electronic problem is assumed to be solved. In fact, due to the high dimensionality of the

electronic wave functions this problem is quite a difficult one and the basis of several research

areas. Numerous methods like Configuration Interaction, which in its simplest form reduces

to Hartree Fock, Coupled Cluster, Møller-Plesset perturbation theory, Quantum Monte Carlo

or Density Functional theory have been developed to solve the electronic problem.86–88 Due

to its favorable balance between accuracy and computational cost, the Density Functional

Theory is probably one of the most used approaches. In the following section, a short review

of this theory is given.

1.2.2 Density Functional Theory

The electronic problem reads

(TE +VEE +VEN)  
H e ′

ϕ j ({xi }) = ε jϕ j ({xi }) . (1.25)

Here, the constant energy shift introduced by VNN has been transferred from the electronic

Hamiltonian H e to the eigenvalue ε j . The corresponding shift has been emphasized by using

a prime at the electronic Hamiltonian H e ′ in Eq. 1.25. However, for simplicity, the prime will

be omitted from now on and H e is written instead of H e ′. Additionally, the spin-dependency

is introduced via the collective variables xi that represent the continuous spatial coordinates ri

and the discrete spin coordinates si . The parametric dependence on the nuclear coordinates

has been omitted in the above equation. Henceforth, in agreement with common practice,

integrals like
∫

d si will be understood as a summation over the spin coordinates.

In principle, the ground state of the electronic problem could be found by searching for the

wave function that minimizes the expectation value of the energy

E [Ψ] := 〈Ψ|H e |Ψ〉
〈Ψ|Ψ〉 . (1.26)
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Chapter 1. The Potential Energy Surface

However, in terms of the 3N dimensional wave functions (considering the spatial part), such

a minimization is computationally not feasible. For example, a simple discretization of the

wave function into K points for each degree of freedom results in a memory requirement that

scales like K 3N . Even for moderately sized systems, the required amount of memory is not

available on even the largest existing computers.

To circumvent this problem, one could try to express the energy as a functional depending on

the electron density ρ(r)*

ρ(r) = N
∫

. . .
∫
|Ψ (x1, . . . ,xN )|2ds1dx2dx3 . . .dxN , (1.27)

which gives the probability ρ (r)dr to find an electron in a volume element dr = d xd yd z

around r. This way, the variational problem of Eq. 1.26 could be recast into a minimization

over densities which is a problem depending on just three degrees of freedom. Indeed, already

in 1927, this idea was followed by Thomas and Fermi who developed the Thomas-Fermi-

Method.89,90 However, mainly due to the difficulties that exist with expressing the exact kinetic

energy as an explicit functional of the electron density, the Thomas-Fermi-Method is not very

accurate. Furthermore, the rigorous mathematical footing of replacing the wave function

by the electron density was not established until 1964, when the two famous theorems of

Hohenberg and Kohn had been published. The two theorems read:91

Theorem 1 (The Density as Basic Variable). The external potential VEN is a unique functional

of the ground state electron density ρ0 (r), apart from a trivial additive constant.

Theorem 2 (The Variational Principle). Define for a given external potential the energy func-

tional

E
[
ρ
]

:=
∫

VEN (r)ρ (r)dr+F
[
ρ
]

, (1.28)

where F
[
ρ
]

is a universal functional independent of the external potential and thus applicable

to any many-electron system and ρ is the ground state density of some external potential.† Let

E0 be the ground-state energy of H e . Then, for any density ρ̃ (r) in the domain of E [ρ] such

that94 ρ̃ (r) ≥ 0 and
∫
ρ̃ (r)dr = N ,

E0 ≤ E
[
ρ̃
]

. (1.29)

For the proof of the theorems, it is first noted that the solution of the Schrödinger equation

defines a surjective map A from the set of external potentials {VEN,i } (that are assumed to

be mutually different by more than a constant) to the set of corresponding ground state

wave functions {ϕ0,i }. These ground state functions are assumed to be non-degenerate. Via

1.27, a second surjective map B from these ground state wave functions to the set of their

*Normalized wave functions are assumed.
†Levy and Lieb84,92,93 extended the definition of the universal functional by showing that it can be defined for

any electron density ρ(r), which can be derived from a N -electron wavefunction.
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1.2. Computation of Potential Energy Surfaces

corresponding electron densities is defined. To show that A is also injective, it is assumed that

two different external potentials VEN,i and VEN, j with VEN,i −VEN, j ̸= c for some constant c lead

to the same ground state wave functions ϕ0,i =ϕ0, j . Then

H e
i ϕ0,i −H e

j ϕ0, j = εiϕ0,i −ε jϕ0, j (1.30)

⇒
(
H e

i −H e
j

)
ϕ0,i =

(
εi −ε j

)
ϕ0,i . (1.31)

However, this contradicts the assumption of VEN,i−VEN, j ̸= c and, therefore, A is also injective.95

For the injectiveness of the map B , the proof of Hohenberg and Kohn91 is reproduced in the

following. One assumes two different (non-degenerate) ground state functions ϕ0,i and ϕ0, j ,

corresponding to external potentials VEN,i and VEN, j , to produce the same ground state density

ρ0. Then by virtue of the variational principle

ε0,i = 〈ϕ0,i |H e
i |ϕ0,i 〉 (1.32)

< 〈ϕ0, j |H e
i |ϕ0, j 〉 (1.33)

= 〈ϕ0, j |H e
j +VEN,i −VEN, j |ϕ0, j 〉 (1.34)

= ε0, j +〈ϕ0, j |VEN,i −VEN, j |ϕ0, j 〉 (1.35)

= ε0, j +
∫
ρ0 (r)

[
VEN,i (r)−VEN, j (r)

]
dr. (1.36)

The same arguments apply if i and j are interchanged and thus

ε0, j < ε0,i −
∫
ρ0 (r)

[
VEN,i (r)−VEN, j (r)

]
dr. (1.37)

Adding Eq. 1.36 to Eq. 1.37 leads to the contradiction ε0,i +ε0, j < ε0, j +ε0,i . Hence, A and B are

both surjective and injective and, therefore, there exists a unique one-to-one map between

the ground state density ρ0 and the external potential VEN. Thereby, all wave functions are

determined by the ground state density and all properties of the system can be written as

a functional of ground state densities that are obtained by the solution of the Schrödinger

equation. In particular, this is true for the total energy expectation value

E
[
ρ0

]= TE
[
ρ0

]+EEE
[
ρ0

]  
:=F [ρ0]

+
∫

VEN (r)ρ0 (r)dr. (1.38)

From this, the variational principle of Theorem 2 follows as a direct consequence of the

one-to-one relation between the ground state density and the ground state wave function.

The Kohn-Sham Ansatz

Following the Hohenberg-Kohn theorems, the ground state density of a many-electron system

and, with it, all its properties, can be found by minimizing the energy functional of Eq. 1.28.

However, the exact form of the universal functional F [ρ0] is unknown. Furthermore, explicit
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Chapter 1. The Potential Energy Surface

functionals of the density for the kinetic energy and the non-classical parts of the electron-

electron interaction are unknown.84 By introducing an auxiliary system of non-interacting

electrons, Kohn and Sham circumvented these problems in their seminal work of 1965.96 This

non-interacting system is characterized by a Slater determinant comprised of Kohn-Sham

orbitals φi . This system is assumed to have exactly the same ground state density as the

interacting system of Eq. 1.25. Then, the total energy functional of Eq. 1.28 can be rewritten

as:95

E
[
ρ
]= TS

[
ρ
]+EH

[
ρ
]+EEN

[
ρ
]+EXC

[
ρ
]

, (1.39)

where

TS
[
ρ
]

:=−1

2

∑
i ,s

〈φi |∇2|φi 〉 , (1.40)

EH
[
ρ
]

:= 1

2

∫ ∫
ρ(r)ρ(r′)
|r− r′| drdr′, (1.41)

EEN
[
ρ
]

:=
∫

VEN (r)ρ (r)dr, (1.42)

EXC
[
ρ
]

:= TE
[
ρ
]−TS

[
ρ
]+EEE

[
ρ
]−EH

[
ρ
]

, (1.43)

ρ (r) :=
∑
i ,s
|φi (r, s)|2. (1.44)

Here, TS is the kinetic energy of a non-interacting system. Via the Kohn-Sham orbitals it is an

implicit functional of the electron density. The Hartree energy EH is the classical Coulomb

interaction energy of the electron density interacting with itself. The exchange correlation

functional EXC serves as a container for everything that is unknown and that cannot be treated

rigorously. For example, the independent-particle kinetic energy TS
[
ρ
]

is not the exact kinetic

energy of the interacting system. However, its correction to the exact kinetic energy of the

interacting system, which is stowed away in EXC, is usually small.95 Similar considerations

apply to the non-classical electron-electron interaction that cannot be represented by the

Hartree energy.

Varying Eq. 1.39 with respect to a φ∗
i under the constraint of normalized orbitals yields, after a

unitary transformation of the orbitals, Schrödinger-like Kohn-Sham differential equations for

the Kohn-Sham orbitals94 (
−1

2
∇2 +ν (r)

)
φi = ϵiφi , (1.45)

where the Kohn-Sham potential ν (r) is given by

ν (r) :=VE N (r)+
∫

ρ(r′)
|r− r′|dr′+ δEXC

[
ρ (r)

]
δρ (r)  

:=VXC(ρ(r))

. (1.46)
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Solving Eq. 1.45 gives, via the Kohn-Sham orbitals, the electron density:

ρ (r) =
∑
i ,s
|φi (r, s)|2. (1.47)

However, the left-hand side operator of Eq. 1.45 depends on the density and, therefore, the

problem has to be solved self-consistently.

What remains to discuss is how to approximate the exchange-correlation functional EXC. In

Eq. 1.39, the independent electron kinetic energy TS and the long-range Hartree energy EH

have been separated from the exchange-correlation functional EXC, which allows to approxi-

mate EXC as a local functional of the density.84

In case of the local density approximation (LDA), the exchange correlation energy is written as

(neglecting spin polarization)

E LDA
XC

[
ρ
]= ∫

ρ (r)ϵhom
XC

(
ρ (r)

)
dr, (1.48)

where ϵhom
XC is the exchange and correlation energy per electron of a homogeneous electron

gas with density ρ.96 It can be split in a sum corresponding to contributions of exchange and

correlation ϵhom
XC

(
ρ (r)

)= ϵhom
X

(
ρ (r)

)+ϵhom
C

(
ρ (r)

)
.97 An expression for the exchange part ϵhom

X

of the homogeneous electron gas is analytically known and the correlation part ϵhom
C of the

homogeneous electron gas was fitted to highly accurate quantum Monte Carlo results.98–102

The LDA exchange-correlation functional works best for slowly varying electron densities.84

A more accurate description, in particular for systems with a more rapidly varying electron

density, is available with the exchange-correlation functionals of the generalized gradient

approximation (GGA) family. Here, the exchange correlation density also depends on the

magnitude of the electron density gradient |∇ρ|:103–105

E GGA
XC

[
ρ
]= ∫

ρ (r)ϵhom
XC

(
ρ

(
r, |∇ρ|))dr. (1.49)

By additionally incorporating the kinetic energy density (meta-GGA functionals),97 or by

mixing a portion of the exact Hartree Fock exchange with exchange correlation contributions

from GGA and / or LDA (hybrid functionals)106–108 even more accurate exchange correlation

functionals can be obtained.

1.3 Force Fields

The Kohn-Sham DFT discussed in the previous chapter provides an excellent compromise

between computational efficiency and physical accuracy. For example, nowadays unbiased

and systematic searches for the most stable atomic configuration or the systematic search for

a reaction pathway is possible at DFT level for reasonably sized system. Nevertheless, DFT

simulations that go beyond a few hundred atoms quickly become computationally intractable,
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Chapter 1. The Potential Energy Surface

especially, if more than only a few energy and force evaluations have to be performed. At

the loss of accuracy, one can restore to significantly faster methods such as semi-empirical

tight-binding methods or even to the completely empirical force fields. Force fields are

analytic parametrizations of PESs, which are fitted to experimental data or to the results

of very accurate quantum mechanical calculations. As a consequence of their empirical or

semi-empirical foundation, force fields and tight-binding methods are not available for many

materials. Furthermore, it was demonstrated for silicon that, in particular, force fields exhibit

numerous spurious local minima that do not exist at the DFT level of theory.109 Also the

energetic ordering of the local minima can change dramatically if going from force field level

to more accurate descriptions of the PES.110 Therefore, in the case of structure or reaction

pathway prediction the usefulness of force fields is limited.

Nonetheless, force fields were essential for the present work, because energy and force evalua-

tions based on force fields are several orders of magnitudes faster than their DFT counterparts.

Furthermore, force field based interactions can feature significant properties of real systems

such as frustration or, as in biomolecules, the concurrent existence of tiny and large force

constants. Therefore, force fields are ideal testing grounds for novel atomistic methods.

There exists a whole zoo of different force fields. In most cases, each force field is tinkered to a

specific system or class of systems. It is beyond the scope of this thesis to give a broad review

of the existing force fields and, therefore, only force fields that were used in the present work

are mentioned in the following.

Presumably one of the simplest force fields is the Lennard-Jones (LJ) potential111,112

ELJ = 4
∑
i< j

ϵi , j

{(
σi , j

ri , j

)12

−
(
σi , j

ri , j

)6}
, (1.50)

here ϵi , j defines the pair-well depth, 21/6σi , j is the pair-well equilibrium distance and ri , j the

distance between the atoms i and j . In this thesis, the energy and distance parameters are

understood to be independent of the particles indices if it is spoken of the LJ potential and in

these cases energies and distances are reported in units of ϵ and σ. In Chap. 5 the binary LJ

(BLJ) potential is used. Here A and B type particles exist and the ϵi , j and σi , j can take on three

different values, depending on whether they are related to a A− A, B −B or A−B interaction.

The van der Waals interaction of noble gases is reasonably described by the LJ potential and

various parameters can be found in the literature.113–117

A slightly more complex function, the Born-Mayer-Huggins-Tosi-Fumi potential (BMHTF),118–123

can be used to describe the ionic interactions in alkali halides:

EBMHTF =
∑
i< j

ci , j b exp

[
σi +σ j − ri , j

ρ

]
− Ci , j

r 6
i , j

+ Di , j

r 8
i , j

− Zi Z j

ri , j
, (1.51)

where b is the same for all salts and ci , j are Pauling’s numerical parameters.123,124 The lengths
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scale σi and σ j , the hardness parameters ρ, the dipole-dipole coefficients Ci , j and the dipole-

quadrupole coefficients Di , j are adjustable parameters depending on the system. Zi and Z j

are the ionic charges.

For most systems, the potential energy is a function that depends on more than just pair-

wise distances. Indeed, besides bond-stretchings, many chemical force fields include bond-

bending and torsional terms. A good example for a force field that contains all the common

terms is the Assisted Model Building with Energy Refinement (AMBER) force field that is widely

used for biomolecules:125,126

EAMBER =
∑

bond
Kr (r − req)2 +

∑
angles

Kθ(θ−θeq)2 (1.52)

+
∑

torsional

∑
n

Vn

2
[1+cos(nφ−γ)]+

∑
i< j

[
Ai , j

r 12
r, j

− Bi , j

r 6
i , j

+ Zi Z j

ϵri , j

]
.

The first two terms describe harmonic approximations to the bond-stretchings and bond-

bendings. Kr and Kθ are the corresponding force constants and the equilibrium bond dis-

tances and bond angles are given by req and θeq , respectively. The torsional rotations in the

third term are expanded in terms of short Fourier series and the last term accounts for the van

der Waals interaction and electrostatic Coulomb energies, including a dielectric constant ϵ

that allows for implicit non-vacuum environments.

For technologically important materials, such as silicon or carbon, there also exist force fields

that allow for bond breaking or changes in hybridization. Neither bonds between atoms nor

hybridization angles have to be specified explicitly. However, they typically exist only for

systems that consist of only a single type of atoms. One of the best available force fields for

silicon is the Lenosky force field.127,128 Both the Lenosky as well as the AMBER force field were

used for the benchmarks in Chap. 2.

1.4 Disconnectivity Graphs

Disconnectivity graphs introduced by Becker and Karplus73 and frequently used and illustrated

by Wales et al.1,3,40,129 can be used to visualize multidimensional PESs. They, therefore, allow

to obtain a rough, intuitive insight into dynamic properties. In this section, the theory of

disconnectivity graphs is briefly recapitulated.

Disconnectivity graphs illustrate which minima are connected by reaction pathways where

the energy never exceeds a given threshold energy. Such mutually accessible regions are called

’superbasins’.40 The number of superbasins depends on the threshold energy. The vertical

axis of a disconnectivity graph is partitioned into a predefined and freely chosen number

of equidistant energy threshold levels Ei , such that Ei+1 > Ei . At each threshold energy it is

analyzed which minima form which superbasins. The superbasins are represented by nodes

on the graph and are arranged along the horizontal axis that corresponds to their threshold
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Figure 1.3: This figure shows the construction of a disconnectivity graph (red tree-like graph)
for a one-dimensional model energy landscape. The energy thresholds are visualized by the
horizontal black dashed lines.

energy. Two nodes at energy levels Ei+1 and Ei are connected with a line, if they belong to the

same superbasin at the higher energy Ei+1. Finally, all the single minima at the bottoms of the

superbasins are represented separately by drawing lines down to their respective energies. The

horizontal position of the nodes and minima is arbitrary. Typically there are too many minima

to visualize, hence only the lowest n minima are usually plotted. Nevertheless, all minima

and transition states contained in the underlying stationary point database contribute to the

superbasin and barrier analysis. At the examples of the one-dimensional model potential

energy landscape that already was used in Fig. 1.2, the construction of a disconnectivity graph

is visualized in Fig. 1.3.

The plots of all disconnectivity graphs in this thesis were generated using the disconnectionDPS129

software.
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2 Local Optimization*

Stationary points are the most interesting and most important points of potential energy

surfaces (PESs). The relative energies of local minima and their associated configuration

space volumes determine thermodynamic equilibrium properties.3 According to transition

state theory, dynamical properties can be deduced from the energies and the connectivity of

minima and transition states.130 Therefore, the efficient determination of stationary points of

PESs is of great interest to the communities of computational chemistry, physics, and biology.

Clearly, optimization and, in particular, minimization problems are present in virtually any

field. This explains why the development and mathematical characterization of iterative

optimization techniques are important and longstanding research topics, which resulted in a

number of highly sophisticated methods like, for example, conjugate gradient (CG),131, the

fast inertial relaxation engine (FIRE)132 or quasi-Newton methods like the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm133–136 and its limited memory variant (L-BFGS).137,138

Since for a quadratic function Newton’s method is guaranteed to converge within a single

iteration, it is not surprising that the BFGS and L-BFGS algorithms belong to the most efficient

methods for minimizations of atomic systems.3

Atomic interactions are bounded from below. Therefore, in practice, descent directions are

safe routes towards close-by local minima. Furthermore, the curvature at a minimum is

positive in all directions. This means, all directions can be treated on the same footing during

a minimization. The situation is different for saddle point optimizations. A saddle point is

a stationary point at which the PES is at a maximum with respect to one or more particular

directions, and at a minimum with respect to all other directions. Close to a saddle point, it is,

therefore, not possible to treat all directions on the same footing. Instead, one has to single

out the directions that have to be maximized. Furthermore, far away from a saddle point it is

usually impossible to tell which search direction guarantees to finally end up in a saddle point.

Therefore, saddle point optimizations typically are more demanding and significantly less

reliable than minimizations. Saddle point finding algorithms can be roughly classified into

*Parts of this chapter have been published in B. Schaefer, S. A. Ghasemi, S. Roy, and S. Goedecker, “Stabilized
Quasi-Newton Optimization of Noisy Potential Energy Surfaces”, The Journal of Chemical Physics 142, 034112
(2015). Reprinted with permission. Copyright 2015 by the American Institute of Physics.
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Chapter 2. Local Optimization

single-ended and double-ended methods. Single-ended methods like the dimer method55–58

or Wales’ hybrid eigenvector following49,50 start their search for a saddle point at some location

on the PES, whereas double-ended methods find one or multiple saddle points between two

given structures, which, in most cases, are local minima. Most single ended searches exploit

in some way the idea of following the lowest eigenvector of the Hessian matrix, an idea that

dates back to a 1971 publication of Crippen and Scheraga.139 This rough idea of how to find

a saddle point gives ample scope for the actual realization of such a method. Consequently,

there are large performance differences between different eigenvector following methods, as

is demonstrated in Sec .2.3.7.

In this chapter, first an overview of existing methods for finding minima and saddle points is

given. Finally, in Sec. 2.3, a novel stabilized quasi-Newton method suitable for finding minima

and saddle points on noisy PESs is presented and benchmarked.64

2.1 Local Minimization

2.1.1 Steepest Descent

As has been outlined in Chap. 1, the PES of an N -atomic system is a map E : R3N 7→ R that

assigns to each atomic configuration R a potential energy. Probably the most obvious approach

to minimize the energy of a given point Ri on the PES is by going a small step into the

direction of greatest descent, which is given by the negative gradient −∇E
(
Ri

)
at this point.

The iterations of the steepest descent method are given by

Ri+1 = Ri −αi∇E
(
Ri

)
, (2.1)

where the positive real number αi is denoted as the “step size”. The step size αi must be

chosen such that the energy decreases in all steps. The optimal step size can be found by

means of a line search, that is, by minimizing the function ε (αi ) = E
(
Ri −αi∇E

(
Ri

))
). In

most cases this cannot be done analytically and, therefore, an iterative method has to be used.

However, such iterative line searches require several energy evaluations, which frequently is

computationally not efficient, in particular, if the evaluation of the PES is computationally

expensive. In this case, reasonable step sizes can be found by an energy or gradient feedback.

In the case of the energy feedback, α is slightly increased (for example by 5%) if the energy

decreases. If the energy increases, the step size is at least twice as large as the optimal step size

(assuming a quadratic function). Therefore, the stepsize should be decreased by a factor of
1
2 . For the gradient feedback, the basic idea is that consecutive gradients should point into

similar directions, if the step size is not too large. Therefore, the step size is slightly increased

if the angle between consecutive gradients is smaller than, for example, 60°. Otherwise, the

step size is reduced by a factor of 1
2 . In any case, the initial step size should be chosen as the

inverse of the largest eigenvalue.

The steepest descent method is straight forward to implement and, in combination with
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2.1. Local Minimization

conservative step sizes, usually more reliable than other, more advanced, methods.140 Unfortu-

nately, steepest descent becomes very inefficient if the optimization problem is ill-conditioned,

that is, if the spectrum of the Hessian matrix spans a range of several orders of magnitude.

The problem is that the number of iterations needed by the steepest descent method scales

linearly with the condition number κ in the quadratic region of a function. The condition

number is defined as the ratio of the largest to the smallest Hessian eigenvalue.141 The poor

efficiency of the steepest descent method is intuitively accessible. When assuming a quadratic

form (see Fig. 2.1), the gradients at points on the principal axis are collinear to the principal

axis. This means, the optimal step size for points on the principal axis is simply the inverse

of the corresponding Hessian eigenvalue (cf. Sec. 2.1.2). For points that are not located on

a principal axis, one has to be conservative and the step size has to be chosen as the inverse

of the largest Hessian eigenvalue. For ill-conditioned problems this conservative step size

will be much too small for directions corresponding to small Hessian eigenvalues and the

steepest descent method tends to approach the minimum in excessive “zigzag” moves (see

Fig. 2.1). The problem of ill-conditioning can be alleviated by transforming the coordinates

such that, in the best case, all the curvatures equalize after the transformation. For this, a

linear coordinate transformation R = AS, defined by an invertible 3N ×3N square matrix A, is

considered.142,143 The gradient of the coordinate transformed PES Ẽ (S) = E (AS) is given by

∇SẼ = AT ∇RE . (2.2)

In the new coordinates, the steepest descent method looks like

Si+1 = Si − AT ∇RE . (2.3)

Going back to the old coordinates, one obtains

Ri+1 = Ri − A AT  
:=P

∇RE , (2.4)

where P is commonly denoted as the preconditioning matrix.144 The optimal preconditioning

matrix corresponds to a coordinate transformation that leads to a condition number κ= 1. As

will be seen in Sec. 2.1.2, the optimal preconditioning matrix for an exactly quadratic function

is given by the inverse Hessian.
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Figure 2.1: Sequence of steepest descent iterates using optimal step sizes on a two-
dimensional quadratic model function. The condition number for this model function is
κ= 50. The “zigzag” pattern is characteristic of the steepest descent method.
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Figure 2.2: Trajectories for the steepest descent (red) and Newton’s method (yellow) in the limit
of small step sizes on a non-quadratic model PES. On a perfectly quadratic PES, the trajectory
of Newton’s method would be transformed to a straight line.
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2.1. Local Minimization

2.1.2 Newton’s and Quasi-Newton’s Method

For the derivation of Newton’s Method, it is assumed that a second order expansion of the PES

E (R) about a point Ri is possible:

E (R) ≈ E
(
Ri

)
+

[
R−Ri

]T
∇E

(
Ri

)
+ 1

2

[
R−Ri

]T
HRi

[
R−Ri

]
(2.5)

∇E (R) ≈∇E
(
Ri

)
+HRi

[
R−Ri

]
. (2.6)

Here, HRi is the Hessian of the PES evaluated at Ri . If R is a stationary point, the left-hand side

gradient of Eq. 2.6 vanishes and Newton’s method for minimization follows:

Ri+1 = Ri −H−1
Ri ∇E

(
Ri

)
(2.7)

In the previous equation R was renamed to Ri+1 in order to emphasize the iterative character

of Newton’s Method for non-quadratic PESs. For a quadratic form, the expansion in Eq. 2.5

and Eq. 2.6 is exact and Eq. 2.7 will solve the minimization problem in a single step. This is

equivalent to the perfectly preconditioned steepest descent mentioned at the end of Sec. 2.1.1.

Care must be taken when starting the minimization in a region in that the Hessian is not

positive definite. In these cases, the step direction defined in Eq. 2.7 is not a descent direction

and, if the current region is too steep, the displacements |Ri+1 −Ri | may become too large.

The introduced instabilities can be eliminated by replacing the Hessian eigenvalues with their

absolute value and by explicitly limiting the maximum displacement.

Fig. 2.2 displays the trajectories of Newton’s method and of the steepest descent approach

on a non-quadratic model PES in the limit of small step sizes. Newton’s method tends to

take the more direct route towards the minimum, which in case of a perfectly quadratic PES

were a straight line. Methods exploiting the step directions defined by Eq. 2.7 often converge

superlinearly, or even quadratically.141

In practice, it is in many cases either impossible to calculate an analytic Hessian or it is too

time consuming to compute it numerically at every iteration by means of finite differences.

Therefore, quasi-Newton methods use an approximation to the exact Hessian that is computa-

tionally less demanding. Using a constant multiple of the identity matrix as an approximation

to the Hessian results in the simple steepest descent method of Sec. 2.1.1. In most cases, such

a choice is a very poor approximation to the true Hessian. However, improved approximations

can be generated from local curvature information which is contained in the history of the

last nhist displacements and gradient differences

∆Ri = Ri −Ri−1, (2.8)

∆gi =∇E
(
Ri

)
−∇E

(
Ri−1

)
, (2.9)
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where i = 1. . .nhist. Probably the most prominent example for such a quasi-Newton method is

the Broyden-Fletcher-Goldfarb-Shanno method, outlined in the following section.

The Broyden-Fletcher-Goldfarb-Shanno Method

The Broyden-Fletcher-Goldfarb-Shanno133–136 (BFGS) method is one of the most used141 and

one of the most efficient minimization methods.132,137,145,146 In this approach, the iterations

look very similar to those of Newton’s method:

Ri+1 = Ri −αi B−1
i ∇E

(
Ri

)
. (2.10)

Here, B−1
i is an approximation to the inverse Hessian H−1

Ri of Eq. 2.7. One of the fundamental

ideas of the BFGS method is to build the approximation successively by means of additive

updates Ui , instead of computing it from scratch at each iteration:

B−1
i = B−1

i−1 +Ui . (2.11)

Formulas for the updates Ui can be obtained by requiring the B−1
i to be positive definite and

symmetric

B−1
i = (

B−1
i

)T
, (2.12)

and to fulfill the secant equation (cf. Eq. 2.6)141

B−1
i

(
∇E

(
Ri+1

)
−∇E

(
Ri

))
= Ri+1 −Ri . (2.13)

It is this secant equation, that provides finite difference curvature information for the approxi-

mate Hessian. Both the symmetry condition, as well as the secant equation are fulfilled by

the exact Hessian, which makes it natural to require them for the approximate Hessians, too.

Additionally, to obtain a unique formula for Ui , one must require that B−1
i+1 is, in some sense,

close to B−1
i . If the distance between two matrices is defined by a weighted Frobenius norm

|| · ||F,w , the following BFGS update formula can be obtained by minimizing ||B−1 −B−1
i ||F,w

with respect to B−1 and subject to the constraints given by Eq. 2.12 and Eq. 2.13:133–136,141

Ui =
(
ρi∆Ri (∆gi )T − I d

)
B−1

i ρi∆gi (∆Ri )T −ρi∆Ri (∆gi )T B−1
i +ρi∆Ri (∆Ri )T , (2.14)

where ρi := 1/
(
(∆gi )T∆Ri

)
. The ∆Ri and ∆gi have been defined in Eq. 2.8 and Eq. 2.9. The

initial approximation to the Hessian matrix can be set to a multiple of the identity matrix.

The BFGS algorithm needs to store and manipulate the complete Hessian approximation,

which can become prohibitive for systems with a huge number of atoms and a PES that is

computationally inexpensive to evaluate. To circumvent this problem, there exists L-BFGS, a

limited memory variant of the BFGS algorithm.137,138,141 The basic idea of L-BFGS is to store
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2.1. Local Minimization

a history consisting of only the last nhist displacements ∆Ri and gradient differences ∆gi .

From this history the approximation to the current Hessian can be obtained by a recursive

procedure. L-BFGS is equivalent to BFGS if the number of the current iteration is smaller than

nhist, assuming consistent choices of the initial approximate Hessians.141

Although the size of the approximate BFGS Hessian is not significant with respect to the

computing time for the problems considered in this thesis, the L-BFGS and not the BFGS

algorithm has been used. This was done, because there exists an excellent implementation that

is available from Nocedal’s website,147 which already was included in the BigDFT code.148,149

For non-convex functions, it is important for the step size αi of Eq. 2.10 to be determined by a

line search based on conditions like the Wolfe or strong Wolfe conditions, which guarantee

updates such that each approximate Hessian is positive definite.141 However, the experience

was made that this line search is problematic when there is a relatively large amount of com-

putational noise on the forces.64 Instabilities and inefficiencies of BFGS applied to noisy PESs

or problems related to the line search have been reported by others, too.132,140,150,151 Recently,

the fast inertial relaxation engine has become popular in the field of ab-initio structure predic-

tion. Although not as efficient as the BFGS method, it was reported to be robust with respect

to computational noise.132

2.1.3 Fast Inertial Relaxation Engine

Typically, steepest descent based minimizers are very stable, but not very efficient. On the

other hand, the quasi-Newton methods that have been available so far are efficient, but, at

times, are instable if energies and forces are inconsistent with each other. Recently, Bitzek

et al. developed the fast inertial relaxation engine (FIRE), that combines efficiency with

robustness.132 FIRE is not a quasi-Newton Method, but belongs to the class of damped MD

optimizers.152,153 The idea is appealingly simple. On a hill, at an initial position with non-

zero slope, a (frictionless) ball with zero initial velocity is released to roll downwards. If, at

some time, the ball starts to roll upwards, it is stopped and immediately released again. This

procedure can be repeated until the ball has arrived at a local minimum. In general the ball’s

velocity does not point into the direction of steepest descent. However, if it could actively steer

to a direction steeper than the direction given by the current velocity, the convergence to a

minimum might be more efficient. The equations of motions for such a steered motion is

given by132

d

d t
v(t ) = F(t )

m
−γ(t )|v(t )|(v̂(t )− F̂(t )

)
. (2.15)

Here, v(t) = d
d t R(t) is the velocity and F(t) are the forces acting on all the particles. Hats

indicate normalized vectors.

By adding a small number of additional lines of code, any MD algorithm can be modified to

obtain the FIRE algorithm. In Fig. 2.3 a pseudocode for the fire algorithm is given. The param-

27



Chapter 2. Local Optimization

FIRE

1. initialize variables i t ← 0; ∆t ←∆t0; α←αstart; v ← 0;

2. repeat
3. i t ← i t +1;

4. Using any MD integrator, calculate R, F =−∇E(R) and v;

5. compute power P = F ·v;

6. modify velocities v ← (1−α)v+αF̂|v|;
7. if P ≤ 0 then
8. freeze system v ← 0;

9. decrease time step ∆t ←∆t fdec;

10. reset damping factor α←αstart;

11. i tcut ← i t ;

12. else if P > 0 and i t − i tcut > Nmin then
13. increase time step ∆t ← min(∆t finc,∆tmax);

14. decrease damping factor α←α fα;

15. endif
16. until convergence.

Figure 2.3: Pseudocode of the FIRE algorithm as described in Ref. [132]. The vectors R, v and
F are elements of R3N . Values for parameters that usually do not need any adjustments are
Nmin = 5, finc = 1.1, fdec = 0.5, αstart = 0.1, fα = 0.99. The maximum time step ∆tmax is system
dependent. Bitzek et al. suggest to set ∆tmax ≈ 10∆tMD, where ∆tMD is a typical time step used
in the MD simulation part.132

eter α used in the pseudocode is defined by α := γ∆t . It can be seen from the discretization of

Eq. 2.15 given in Fig. 2.3 that the damping term in Eq. 2.15 can be looked at as a mixing of the

velocities with the forces (steepest descent directions).

It is intuitively clear that MD-type optimizers should be noise tolerant, since the inertia

introduced by the simulation of Newton’s equations of motion smoothens the erratic “bumps”

introduced by noisy forces. In fact, similar damped MD based optimizers have been known

before the advent of FIRE.152,153

Often, FIRE is more efficient than other advanced, but more complicated algorithms, like for

example the conjugate gradient method.132 However, already in the original publication it was

demonstrated by means of benchmarks that FIRE is inferior to the (L-)BFGS method.132 This

was the motivation of the development of the noise tolerant quasi-Newton approach, which is

described in Sec. 2.3.
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2.2. Mode Following Methods for Optimization of Saddle Points

2.2 Mode Following Methods for Optimization of Saddle Points

A first order saddle point is a stationary point with one negative eigenvalue. That is, it is a max-

imum along the direction of the Hessian eigenvector corresponding to the lowest eigenvalue

and a minimum in all other directions. For convenience, the Hessian eigenvector correspond-

ing to the lowest eigenvalue will henceforth be denoted as minimum mode. With this in mind,

the basic working principle of mode following methods49,55,154 is obvious. Starting at a given

point on the PES, saddle points are found by iteratively translating the point along a modified

force F† = F−2(F · d̂min)d̂min. Here, d̂min is the minimum mode. In this modified force, the

force component that is parallel to the minimum mode is simply flipped. Therefore, the energy

is maximized along the minimum mode and minimized in all other directions and it is clear

that this procedure should converged to a saddle point, at least, if it is started close enough to

a saddle point.

2.2.1 Dimer Method

The dimer method is a mode following method that was first described in a 1999 publication

by Henkelman and Jónsson.55 In the subsequent decade it was significantly improved by

contributions of Olsen et al.56, Heyden et al.57 and Kästner and Sherwood.58 This section

begins with an outline on how the original version of the dimer method implements the above

mentioned mode following idea and it concludes with a review of the significant improvements

that have been made by the just mentioned authors.

The central object in the dimer method is a system consisting of two images R1 and R2. The

images are two close-by points on the PES with corresponding energies E1, E2 and forces F1,

F2. They are separated from their midpoint R0 by a distance ∆R, such that R1 := R0 +∆RN̂

and R2 := R0 −∆RN̂, where the normalized vector N̂ defines the dimer axis. The dimer energy

is defined as the sum of the image energies E = E1 +E2. In the original version of the dimer

method, the energies and forces at the midpoint are not explicitly calculated, but they are

interpolated by F0 = (F1 +F2)/2 and

E0 =
E

2
+ ∆R

4
(F1 −F2) · N̂, (2.16)

which is derived from a central difference approximation to the curvature

C ≈ (F1 −F2)N̂

2∆R
(2.17)

≈ E −2E0

(∆R)2 . (2.18)

In order to find the direction of minimal curvature, the dimer energy E is minimized by rotating

the dimer around its midpoint. As is apparent from Eq. 2.18, this is equivalent to minimizing
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the curvature function C . A rotational force F⊥, which is acting on R1, is defined by

F⊥ := F⊥
1 −F⊥

2 , (2.19)

where F⊥
i := Fi − (Fi · N̂)N̂ for i = 1,2. The dimer energy is minimal, if the rotational force

vanishes. In the dimer method, E is not minimized by iteratively displacing R1 along the

rotational force (and rescaling the distance to the dimer center), but it is done in a sophisticated

two-step procedure that consists of fixing the plane of the rotation and determining the

amount of the rotation by a modified Newton method.

The plane of the rotation is defined to be spanned by the dimer axis N̂ and a normalized vector

Θ̂ that is orthogonal to the dimer axis. In a steepest descent scheme, Θ̂ is chosen to be parallel

to the rotational force F⊥. In fact, the steepest descent approach is not very efficient and,

already in the original publication, Θ̂ is determined within a conjugate gradient scheme.55

After having fixed the plane of rotation, the angle of the rotation needs to be determined. To

do so, Henkelman quadratically expanded the dimer energy in terms of the normal modes of

the potential energy within the plane of rotation and obtained an expression for the dimer

energy as a function of the rotational angle θ:55

E(θ) = 2E0 + c1 cos(2(θ−θ0))+ c2, (2.20)

where c1 and c2 are some unknown constants depending on the curvature with respect to

the normal modes in the rotational plane. Computing the ratio of the first F = −E ′(θ) =
A sin[2(θ− θ0)] and second derivative F ′ = −E ′′(θ) = 2A cos[2(θ− θ0)] of the dimer energy,

allows the determination of the zero of F without knowing the constant A. This results in the

following θmin that minimizes the dimer energy within the rotational plane55–57

θmin = θ0 =−1

2
arctan

(
F

F ′

)
− δϕ

2
, (2.21)

where in the simulation F and F ′ are evaluated by means of gradient calculations at a dimer

configuration that is rotated by δϕ. Specific formulas for F and F ′ can be found in Refs. [56,

57]. Within one step, the dimer is not necessarily converged to the minimum mode. Therefore,

several rotational steps might have to be repeated until the dimer is converged.58

So far, only the (approximate) minimum mode has been determined. Now, the dimer needs to

be moved into the direction of a saddle point. This is done by translating the dimer along a

modified force F†

F† =
⎧⎨⎩−(F0 · N̂)N̂ if CN > 0

F0 −2(F0 · N̂)N̂ if CN < 0.
(2.22)

The step size for the translation is given by the absolute value of the inverse curvature along

the direction defined by F†, which is computed by finite differences, for which additional force

evaluations are necessary (the forces at both ends of the final rotated dimer have not yet been
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computed). Although the step length is determined in a Newton fashion, this is not true for the

step direction, which, in the original dimer implementation, is found by means of a conjugate

gradient scheme. To conclude, at least six force evaluations have to be performed for each

dimer cycle.57

In later versions, the efficiency of the dimer method has been improved by computing Eq. 2.18

by means of a forward finite difference, which saves two force evaluations per rotation step.56,57

Furthermore, Heyden et al.57 realized that a more accurate parametrization of E (θ) is possible

by means of a short Fourier series, which results in a more accurate estimate for θmin and

Kästner introduced the usage of the L-BFGS algorithm for the dimer rotation and translation.58

It was this latest and improved version of the dimer method that has been used for the

benchmarks described in Sec. 2.3.7.

A Stabilized Dimer Method

In Chap. 3 the eigenvector following exploration (EFE) method2,35 is used for exploring the

energy landscape and sampling the connectivity between minima and saddle points. The

idea is to escape from a minimum to many different saddle points by following different

eigenmodes of the Hessian. As is argued in Appx. C, the only local minimum of Eq. 2.18

corresponds to the minimum mode of the Hessian. All other Hessian eigenvectors represent

saddle points, with the consequence that many gradient based optimizers are unstable at

these points. As soon as the search mode deviates from the exact eigenmode, which inevitably

happens during an actual simulation due to the finite optimization step size, there is a strong

tendency to converge to the lowest mode. This is a significant problem if the systematic

following of many different modes is desired.

To overcome this problem, Mohr suggested62 to use the direct inversion of iterative subspace

(DIIS)155 method for the rotation of the dimer. In this scheme, the −αF⊥
i of the dimer method

are used as the residual vectors, required for the construction of the DIIS matrix. Here, α is

some positive constant, the integer i denotes the iteration number and F⊥ is given by Eq. 2.19.

The DIIS scheme has the tendency to converge to close-by stationary points16 and, therefore,

will not converge to the lowest mode, but rather to the mode that has the largest overlap with

the previous dimer orientation. In this sense, the dimer method is stabilized and can be used

to systematically follow different modes out of a local minimum.

Fig. 2.4 compares the DIIS stabilized dimer rotation to a steepest descent based variant. It can

be clearly seen that the stabilized dimer method reliably attaches to one mode, whereas the

steepest descent based approach exhibits a sudden switch to a lower mode (around iteration

17).

Finally, also the stabilized dimer method should converge to a first order saddle point. There-

fore, at some point the dimer rotation must be allowed to converge to the minimum mode. In

the implementation that was used for the EFE method, this was done as soon as the second
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Figure 2.4: A visualization of how using DIIS for the dimer rotations helps to stay on a given
mode. Panel (a) visualizes data obtained by using DIIS, panel (b) shows data obtained by using
steepest descent. The small black dots are the ten lowest eigenvalues of the Hessian at each
step of a trajectory starting at a local minimum, whereas the large red dots are the curvature
along the search direction. The DIIS procedure in panel (a) stays in general on the mode that
has the largest overlap with the dimer direction, and thus stays on the initial mode for quite a
long time. In contrast to this, the steepest descent procedure in panel (b) becomes unstable as
soon as the 9th and 10th mode cross and switches to a low curvature mode, as a consequence.
Reprinted with permission from Ref. [62]. Copyright 2014 by the American Institute of Physics.
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2.2. Mode Following Methods for Optimization of Saddle Points

derivative of the energy with respect to the iteration number became negative. At this point,

the lowest mode is determined by using the Lanczos method,156 as presented in Ref. [56]. Of

course, any other method that does not converge to a saddle point of the curvature function

(Eq. 2.18) could be used.

2.2.2 Bar-Saddle

As already explained in the introduction to this chapter, finding saddle points is much more

difficult than finding minima. As a consequence, saddle finding techniques tend to suffer

from a comparatively high failure rate. An attempt to increase the reliability of saddle finding

methods was undertaken by Amsler which resulted in the bar-saddle method.62 At the time of

its development, it was the most reliable and most efficient method available to the author.

Consequently, the initial implementation of the minima hopping guided path search (MHGPS)

approach, presented in Sec. 3.5, was based on the Bar-Saddle method. Later, the usage of

bar-saddle within MHGPS was superseded by the stabilized quasi-Newton saddle (SQNS)

search method presented in Sec. 2.3.6. The description of bar-saddle in this chapter follows

the outline given in Ref. [62].

The fundamental idea of bar-saddle is a solid, horizontal bar placed at a point that is higher

in energy than a close-by saddle point. Such a bar would roll towards the saddle point, if its

point of contact with the PES is kept at the bar’s center. This is in contrast to a ball that, at the

presence of friction, would roll towards a local minimum.

Formally, the bar-saddle method is similar to the dimer method,55 it is, however, based on a

different usage paradigm. By means of a simple linear interpolation in Cartesian coordinates,

an initial path is generated, from which the highest energy configuration is taken. The highest

energy configuration along this path is found by means of Brent’s algorithm,157 and is used

as starting configuration for the bar-saddle method. Later, the author of this thesis replaced

the linear interpolation by the freezing string method with Cartesian interpolation to avoid

atomic clashes.158 It was this latter version that was used in Sec. 3.5.

Just like the dimer of the dimer method, the bar is defined by two points RA and RB on

the PES. Both points are assumed to be in close vicinity to each other and their separation

– the length of the bar – is denoted as h = ||RA −RB ||. Starting at a suitable high-energy

configuration, the bar is displaced such that the maximum energy along the bar is at its center

and such that the energy at the bar’s center is minimized with respect to all other directions

that are perpendicular to the bar. To do so, the forces at both bar ends are decomposed into

a component parallel to the bar F∥
i = (

Fi · ĥ
)

ĥ and a component perpendicular to the bar

F⊥
i = Fi −F∥

i . Here ĥ := (RA −RB )/h is the unit vector in bar direction and i = A,B . At every

iteration, the energies and forces at both bar ends must be evaluated. Both, the energy and
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the force in bar direction at the bar center are computed by means of a cubic interpolation

Eh/2 =
1

8
(4E A +4EB + ( fB − f A)h), (2.23)

F∥
h/2 =

6E A −6EB − ( f A + fB )h

4h
ĥ, (2.24)

where fi = Fi · ĥ. This interpolated parallel force is used to flip the corresponding force

component. That is, the translational forces acting on both bar ends are defined as FTrans
A =

FTrans
B = F⊥

h/2 −2F∥
h/2.

The rotational forces acting on both bar ends are defined by FRot
A = 1

2 (F⊥
A −F⊥

B ) and FRot
B =

1
2 (F⊥

B −F⊥
A ). Like in the dimer method, these rotational forces approximately align the bar with

the minimum mode.

In contrast to the bar-saddle approach, the dimer method estimates both the parallel and

perpendicular components of the translational force by the arithmetic mean of the forces

at the dimer endpoints. The force responsible for the rotation only acts on one endpoint in

case of the dimer method and the rotation is implemented by using the parametrization of a

circle in a 2-dimensional plane (cf. Eq. 2.20). In principle, the dimer is rotated in a single step

by an angle that is estimated by means of a modified one-dimensional Newton method (cf.

Eq. 2.21).55,62

Finally, in a steepest descent approach, the bar ends are displaced by αFTrans
i +βFRot

i , where

α > 0 and β > 0 define the translational and rotational step sizes. Because a finite sized

rotational step size is used, it is necessary to rescale the bar length after each iteration such

that |RNew
B −RNew

A | != h. To increase the efficiency, the step sizes α and β can be adjusted by

means of a simple energy or gradient feedback. In the actual implementation, the steepest

descent moves only have been used within the first few iterations, after which the BFGS

method has been used for the translational part of the displacement. It should be noted that

the bar-saddle method will also converge to a saddle point if the initial configuration is lower

in energy than the saddle point, albeit at the cost of efficiency.

2.3 Stabilized Quasi-Newton Optimization†

If the PES can be computed with an accuracy on the order of the machine precision, the

above mentioned L-BFGS algorithm usually works very well. In practice, however, computing

the PES at this high precision is not possible for physically accurate but computationally

demanding levels of theory, like, for example, density functional theory (DFT). At DFT level,

this is due to the finitely spaced integration grids and self consistency cycles that have to be

stopped at small, but non-vanishing thresholds. Therefore, optimization algorithms that are

†The research presented in this section has been published in B. Schaefer, S. A. Ghasemi, S. Roy, and S.
Goedecker, “Stabilized Quasi-Newton Optimization of Noisy Potential Energy Surfaces”, The Journal of Chemical
Physics 142, 034112 (2015). Reprinted with permission. Copyright 2015 by the American Institute of Physics.
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2.3. Stabilized Quasi-Newton Optimization

used at these accurate levels of theory must not only be computationally efficient but also

tolerant of noise in forces and energies.

In this chapter a technique is presented that allows the extraction of curvature information

from noisy PESs. It is explained how to use this technique for the construction of a stabi-

lized quasi-Newton minimizer (SQNM) and a stabilized quasi-Newton saddle (SQNS) finding

method. With the help of benchmarks, both optimizers are demonstrated to be robust and

efficient. The comparison of SQNM to L-BFGS and FIRE and the comparison of SQNS to

the improved dimer method55,58 mentioned in Sec. 2.2.1 reveals that SQNM and SQNS are

superior to their existing alternatives.

2.3.1 Significant Subspace in Noisy Optimization Problems

In noisy optimization problems, the noisy components of the gradients can lead to displace-

ment components that correspond to erratic movements on the PES. Consequently, curvature

information that comes from the subspace spanned by these displacement components must

not be used for the construction of an approximate Hessian. In contrast to this, the non-noisy

gradient components promote locally systematic net-movements, which do not tend to cancel

each other. In this sense, the displacement components that correspond to these well defined

net-movements span a significant subspace from which meaningful curvature information

can be extracted and used for building an approximate Hessian.

The situation is depicted in Fig. 2.5 where the red solid vectors represent the history of normal-

ized displacements and the blue dashed vectors constitute a basis of the significant subspace.

All the red solid vectors in Fig. 2.5a point into similar directions. Therefore, curvature informa-

tion should only be extracted from a one-dimensional subspace, as, for example, is given by

the blue dashed vector. Displacement components perpendicular to this blue dashed vector

come from the noise in the gradients. In contrast to Fig. 2.5a, Fig. 2.5b shows a displacement

that points into a considerably different direction than all the other displacements. For this

reason, significant curvature information can be extracted from the full two-dimensional

space.

To define the significant subspace more rigorously, first the set of normalized displacements is

introduced (cf. Eq. 2.8)

∆̂R
i

:= ∆Ri

|∆Ri |
, (2.25)

where i = 1. . .nhist. With
∑

k |ωk |2 = 1, linear combinations w of the normalized displacements

are defined as:

w :=
nhist∑
k=1

ωk∆̂R
k

, (2.26)
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Figure 2.5: Illustrated are significant subspaces spanned by the displacements in a model
atomic coordinate space. Only from the significant subspace, it is meaningful to extract
curvature information. The red solid arrows simulate displacements made under the influence
of noisy forces. The blue dashed arrows show significant subspaces from which it is meaningful
to extract curvature information. Panel (a) shows a case in which the significant subspace is
only one-dimensional. Panel (b) shows an example in which curvature information can be
extracted from the full 2-dimensional space. The significant subspaces that are shown here
were computed by using the method outlined in Sec. 2.3.1. Reprinted with permission from
Ref. [64]. Copyright 2015 by the American Institute of Physics.

Furthermore, a real symmetric overlap matrix S is defined as

Skl := ∆̂R
k · ∆̂R

l
. (2.27)

It can be seen from,

w ·w =ωT Sω, (2.28)

that |w| is made stationary by coefficient vectorsωi that are eigenvectors of the overlap matrix.

In particular, the longest and shortest vectors that can be generated by linear combinations

with normalized coefficient vectors ω correspond to those eigenvectors of the overlap ma-

trix that have the largest and smallest eigenvalues. As motivated above, the shortest linear

combinations of the normalized displacements correspond to noise.

From now on, let theωi be eigenvectors of (Skl ) and let λi be the corresponding eigenvalues.

With the orthonormal

∼
∆̂R

i
:= 1√

λi

nhist∑
k=1

ωi
k∆̂R

k
, (2.29)
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the significant subspace S is finally defined as

S := span

({ ∼
∆̂R

i
⏐⏐⏐⏐λi /max

j

{
λ j

}> ϵ})
, (2.30)

where 0 ≤ ϵ≤ 1. In all applications presented in this chapter, ϵ= 10−4 has proven to work well.

Henceforth, the dimension of S will be denoted as ndim. By construction it is guaranteed that

ndim ≤ 3N . It should be noted that at each iteration of the optimization algorithms that are to

be introduced below, the significant subspace and its dimension ndim can change. The history

length nhist usually lies between 5 and 20.

The above procedure is analogous to Löwdins canonical orthogonalization,159–161 which is

used in the electronic structure community to remove linear dependencies from chemical

basis sets.

2.3.2 Obtaining Curvature Information on the Significant Subspace

A projection
∼
H of the Hessian H onto S is defined as

∼
H := PHP

=
∑
i j

Hi j

∼
∆̂R

i
( ∼
∆̂R

j
)T

, (2.31)

where for all
∼
∆̂R

i∈S

P :=
ndim∑
i=1

∼
∆̂R

i
( ∼
∆̂R

i
)T

(2.32)

and

Hi j :=
( ∼
∆̂R

i
)T

H
∼
∆̂R

j
. (2.33)

Using Eq. 2.6 and Eq. 2.9 and defining

∼
∆gi := 1√

λi

nhist∑
k=1

ωi
k

|∆Rk |
∆gk , (2.34)

where i = 1. . .ndim, an approximation for each matrix element Hi j is obtained:

Hi j ≈
∼
∆gi ·

∼
∆̂R

j
. (2.35)
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In practice, Hi j is explicitly symmetrized to avoid asymmetries introduced by anharmonic

effects:

Hi j ≈
1

2

( ∼
∆gi ·

∼
∆̂R

j + ∼
∆g j ·

∼
∆̂R

i
)

. (2.36)

Because the projection P is the identity operator on S, the curvature C (d̂) on the PES along a

normalized d̂ ∈S is given by

C (d̂) = d̂
T ∼

H d̂. (2.37)

Given the normalized eigenvectors vi and corresponding eigenvalues κi of the ndim ×ndim

Matrix
(
Hi j

)
, the normalized eigenvectors

∼
v

i ∈S of
∼
H with eigenvalues κi can be written as

∼
v

i =
ndim∑
k=1

vi
k

∼
∆̂R

k
, (2.38)

where vi
k is the k-th element of vi . As can be seen from Eq. 2.37, the κi give the curvatures of

the PES along the directions
∼
v

i
.

2.3.3 Using Curvature Information on the Significant Subspace for Precondition-
ing ∇E

The gradient ∇E can be decomposed into a component lying in S and a component lying in

its orthogonal complement:

∇E =∇ES+∇E⊥, (2.39)

where ∇ES := P ′∇E , ∇E⊥ := (I −P ′)∇E and P ′ :=∑
i
∼
v

i (∼
v

i )T
. In this section it is motivated how

the κi can be used to precondition ∇ES. Furthermore, it is explained how ∇E⊥ can be scaled

appropriately with the help of a feedback that is based on the angle between two consecutive

gradients.

Let the Hessian H at the current point of the PES be non-singular and let νi and Vi be its

eigenvalues and normalized eigenvectors. In Newton’s Method (Eq. 2.7), the gradients are

conditioned by the inverse Hessian. For the significant subspace component ∇ES it follows:

H−1∇ES =
3N∑
i=1

ndim∑
j=1

⎡⎣⎛⎝∇E ·∼v j

νi

⎞⎠(∼
v

j ·Vi
)

Vi

⎤⎦ (2.40)

As outlined in the previous section, the curvature κ j along
∼
v

j
is known. Therefore, at a first

thought, Eq. 2.40 suggests to simply replace νi with κ j where i = 1. . .3N and j = 1. . .ndim.

Indeed, if the optimization was restricted to the subspace S this choice would be appropriate.
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However, with respect to the complete domain of the PES, there is a risk to underestimate the

curvature νi if the overlap Oi j := ∼
v

j ·Vi is non-vanishing.

In particular, if Oi j is far from being negligible, underestimating the curvature νi can be

particularly problematic because coordinate changes in the direction of Vi might be too large.

This can render convergence difficult to obtain in practice.

Therefore, νi in Eq. 2.40 is replaced by

κ′j :=
√
κ2

j + r 2
j , (2.41)

where r j is chosen in analogy to the residue of Weinstein’s Criterion162,163 as

r j :=
⏐⏐⏐H

∼
v

j −
(
(
∼
v

j
)T H

∼
v

j )∼
v

j ⏐⏐⏐ . (2.42)

Using Eqn. 2.34, Eqn. 2.37 and Eqn. 2.38, this residue can be approximated by

r j ≈
⏐⏐⏐⏐⏐ndim∑

k=1

[
v j

k

∼
∆gk

]
−κ j

∼
v

j
⏐⏐⏐⏐⏐ . (2.43)

With this choice for κ′j , the preconditioned gradient ∇E P
S is finally given by:

∇E P
S :=

ndim∑
j=1

⎛⎝∇E ·∼v j

κ′j

⎞⎠∼
v

j
. (2.44)

Clearly, the residue r j can only alleviate the problem of curvature underestimation, but

it does not rigorously guarantee that every single νi is estimated appropriately. However,

in practice this choice works very well. The reason for this can be seen from Fig. 2.6. In

Fig. 2.6a, a histogram of the quality and safety measure qi j :=
√
κ2

j + r 2
j −νi is shown. If

qi j < 0, the curvature νi is underestimated, if qi j ≈ 0 the curvature νi is well estimated and

finally, if qi j > 0, the curvature is overestimated. Overestimation leads to too small step sizes

and, therefore, to a more stable algorithm, albeit at the cost of a performance loss. Critical

underestimation of the curvature (qi j ≪ 0) is rare. Fig. 2.6b shows the averages of the overlap

Oi j in the corresponding bins. If, on average,
∼
v

j
has a large overlap with Vi , the curvature

along Vi is estimated accurately (histogram in Fig. 2.6a peaks at qi j ≈ 0).

What remains to be discussed is how the gradient component ∇E⊥ should be scaled. By con-

struction, ∇E⊥ lies in the subspace for which no curvature information is available. Therefore,

this gradient component is treated by a simple steepest descent approach that adjusts the step

size α> 0 at each iteration. For the minimizer that is outlined in Sec. 2.3.5, the adjustment

is based on the angle between the complete gradient ∇E and the preconditioned gradient

∇E P. If the cosine of this intermediate angle is larger than 0.2, α is increased by a factor of 1.1,

otherwise α is decreased by a factor of 0.85. For the saddle search algorithm the feedback is

slightly different and will be explained in Sec. 2.3.6. The exact numbers for the scaling factors
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Figure 2.6: Panel a) is a histogram of qi j :=
√
κ2

j + r 2
j −νi for i = 1. . .3N and j = 1. . .ndim. qi j

is a measure for the quality of the estimation of the eigenvalue νi of the exact Hessian. Panel b)
shows the bin-averaged overlap Oi j . The frequency of severe curvature underestimation drops
quickly in the region qi j < 0. The histogram in panel a) peaks in the region of good estimation
(qi j ≈ 0) which coincidences with the region of large overlap Oi j , shown in panel b). The
data for this figure come from 100 minimizations of a Si20 system described by the Lenosky-
Silicon127,128 force field. Reprinted with permission from Ref. [64]. Copyright 2015 by the
American Institute of Physics.

were determined heuristically. The only constraints are that the scaling factors must increase

the step size if the complete gradient and the preconditioned gradient point into similar

directions and decrease the step size otherwise. Based on experience, the above choices offer

a good efficiency.

In conclusion, the total preconditioned gradient ∇E P is given by

∇E P :=∇E P
S+α∇E⊥ (2.45)

Sec. 2.3.4 explains how this preconditioned gradient can be further improved for biomolecules.

The preconditioned subspace gradient ∇E P
S was obtained under the assumption of a quadratic

PES. However, if the gradients at the current iteration are large, this assumption is probably

not satisfied. Displacing along ∇E P
S in these cases can reduce the stability of the optimization.

Hence, if the |∇E | exceeds a certain threshold, it can be useful to set the dimension of S to

zero for a certain number of iterations. This means that ∇E⊥ =∇E and, therefore, ∇E P =α∇E .

In that case, α is also adjusted according to the above described gradient feedback. As this

fallback to steepest descent is intended as a last and final fallback, it should have the ability
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to deal with arbitrarily large forces. Therefore, it is also checked that α∇E does not displace

some atom by more than a user-defined trust radius. However, based on experience, this

fallback is not necessary in most cases. Indeed, all the benchmarks presented in Sec. 2.3.7

were performed without this fallback.

2.3.4 Additional Efficiency for Biomolecules

Many large molecules like biomolecules or polymers are floppy systems in which the largest

and smallest curvatures can be very different from each other. Steepest descent optimizers

are very inefficient for these ill-conditioned systems, because the high curvature directions

force to use step sizes that are far too small for an efficient optimization in the directions of

small curvatures. Put more formally, the optimization is inefficient for those systems, because

the condition number, which is the fraction of largest and smallest curvature, is large.164 For

biomolecules, the high-curvature directions usually correspond to bond stretchings, that

is, movements along inter-atomic displacement vectors of bonded atoms. For the current

purpose two atoms are regarded to be bonded if their inter-atomic distance is smaller than or

equal to 1.2 times the sum of their covalent radii. For i = 1. . . N , let ri ∈R3 be the coordinate

vector of the i-th atom. For a system with nbond bonds a bond vector bm ∈R3N , m = 1. . .nbond

is defined for each bond

bm :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∼
b

m,1

∼
b

m,2

...
∼
b

m,N

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (2.46)

Here the
∼
b

m,k
∈R3, k = 1. . . N are defined as

∼
b

m,i
:=−

∼
b

m, j
:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r j − ri , if atoms i and j are

bonded by the m-th bond,

0, otherwise.

(2.47)

The bm are sparse vectors with six non-zero elements.

The total gradient ∇E is separated into its bond-stretching components ∇Estr and all the

remaining components ∇Er:

∇E =∇Estr +∇Er. (2.48)

Let cm ∈R be coefficients that allow the bond-stretching components to be expanded in terms
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of the bond vectors

∇Estr :=
nbond∑
m=1

cmbm . (2.49)

Using definition Eq. 2.49, left-multiplying Eq. 2.48 with a bond vector bn and requiring the ∇Er

to be orthogonal to all the bond vectors, the following linear system of equations is obtained,

which determines the coefficients cm and, with it, the bond stretching gradient defined in

Eq. 2.49:

bn ·∇E =
∑
m

cmbn ·bm . (2.50)

For the optimization of a biomolecule, the bond-stretching components are minimized in a

simple steepest descent fashion. The atoms are displaced by −αs∇Estr. The bond-stretching

step size αs is a positive number, which is adjusted in each iteration of the optimization

by simply counting the number of projections bm · ∇E that have not changed signs since

the last iteration. If more than two thirds of the signs of the projections have remained

unchanged, the bond-stretching step size αs is increased by 10 percent. Otherwise, αs is

decreased by a factor of 1/1.1. The non-bond-stretching gradients ∇Er are preconditioned

using the stabilized quasi-Newton approach presented in Secs. 2.3.1 to 2.3.3. It is important to

note that in Secs. 2.3.1 to 2.3.3 all ∇E have to be replaced by ∇Er when using this biomolecule

preconditioner. In particular, this is also true for the gradient feedbacks that are described in

Secs. 2.3.3 and 2.3.6.

2.3.5 Finding Minima – The SQNM method

The pseudocode in Fig. 2.7 demonstrates how the above presented techniques can be as-

sembled into an efficient and stabilized quasi-Newton minimizer (SQNM). The pseudocode

contains 4 parameters explicitly. αstart and αs,start are initial step sizes that scale ∇E⊥ and

∇Estr, respectively. m is the maximum length of the history list from which the significant

subspace S is constructed. Ethresh is an energy-threshold that is used to determine whether a

minimization step is accepted or not. It should be adapted to the noise level of the energies

and forces. The history list is discarded if the energy increases, because an increase in energy

is an indication for inaccurate curvature information. In this case, the dimension of the signifi-

cant subspace is considered to be zero. Furthermore, line 17 implicitly contains the parameter

ϵ, which is described in Sec. 2.3.1. The optimization is considered to be converged if the norm

of the gradient is smaller than a certain threshold value. Of course, other force criteria, like for

example using the maximum force component instead of the force norm, are possible.
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2.3. Stabilized Quasi-Newton Optimization

SQNM

1. α←αstart; αs ←αs,start;

2. accepted ← true;

3. k ← 1;

4. Initialize Rk with coordinates;

5. Ek ← E(Rk );

6. repeat
7. if optimizing biomolecule then
8. if accepted then
9. Compute ∇Estr for Rk , as outlined in Sec. 2.3.4;

10. Adjust αs based on the feedback described in Sec. 2.3.4;

11. gk ←∇E(Rk )−∇Estr;

12. Rk ← Rk −αs∇Estr;

13. end if
14. else
15. gk ←∇E(Rk );

16. end if
17. Based on the {g j ,R j } j≤k in the history list, compute the preconditioned gradient

∇E P as outlined in Secs. 2.3.1 to 2.3.4;

18. Rk+1 ← Rk −∇E P;

19. if E(Rk+1) > Ek +Ethresh and α>αstart/10 then
20. accepted ← false;

21. Remove {g j ,R j } j<k from the history list;

22. α←α/2;

23. else
24. accepted ← true;

25. Ek+1 ← E(Rk+1);

26. Adjust α based on the gradient feedback described in Sec. 2.3.3;

27. if k > m then
28. Remove Rk−m and gk−m from storage;

29. end if
30. k ← k +1;

31. end if
32. until convergence.

Figure 2.7: Pseudocode of the SQNM algorithm. Reprinted with permission from Ref. [64].
Copyright 2015 by the American Institute of Physics.
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SQNS

1. α′ ←α′
start; α

′
s ←α′

s,start;

2. l ← 1;

3. Initialize Rl with coordinates;

4. repeat
5. if recompute minimum mode then

6. Use algorithm of Sec. 2.3.5 and obtain a normalized minimum d̂min of C (d)
at Rl , use the previously computed minimum mode as input;

7. end if
8. if optimizing biomolecule then
9. Compute ∇Estr for Rl , as outlined in Sec. 2.3.4;

10. Adjust α′
s based on the feedback described in Sec. 2.3.4;

11. s ←α′
s∇Estr;

12. gl ←∇E(Rl )−∇Estr;

13. Rl ← Rl −s+2
(
s · d̂min

)
d̂min;

14. Check for trust radius condition as described in Sec. 2.3.6. Rescale, if needed;

15. else
16. gl ←∇E(Rl );

17. end if
18. Based on the {g j ,R j } j≤l in the history list, compute the preconditioned gradient

∇E P as outlined in Secs. 2.3.1 to 2.3.4;

19. Rl+1 ← Rl −∇E P +2
(∇E P · d̂min

)
d̂min;

20. Check for trust radius condition and for fragmentation as described in Sec. 2.3.6.
Rescale and fix fragmentation, if needed;

21. Adjust α′ based on the gradient feedback described in Sec. 2.3.6;

22. if l > m′ then
23. Remove Rl−m′ and gl−m′ from the history list;

24. end if
25. l ← l +1;

26. until convergence.

Figure 2.8: Pseudocode of the SQNS algorithm. Reprinted with permission from Ref. [64].
Copyright 2015 by the American Institute of Physics.
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2.3. Stabilized Quasi-Newton Optimization

2.3.6 Finding Saddle Points – The SQNS Method

In this section a stabilized quasi-Newton saddle finding method (SQNS) is described, which is

based on the same principles as the minimizer in the previous section. SQNS belongs to the

class of the minimum mode following methods.49,55,154

In the SQNS scheme, the minimum mode of the Hessian is found by minimizing the curvature

function c :R3N 7→R

C (d) = dT Hd

dT d

≈ ∆g ·∆R

h2 , (2.51)

where along with h ≪ 1 the following definitions have been used: ∆R := h d
|d| and ∆g :=

∇E(R+∆R)−∇E(R). The vector R is the position at which the Hessian H is evaluated. For

the minimization of C (d), the algorithm described in Sec. 2.3.5 is used, where the energy as

objective function is replaced by C (d). In the pseudocode given in Fig. 2.8, the here discussed

minimization is done at line 6. Under the constraint of normalization, the gradient ∇C (d)||d|=1

is given by

∇C (d)||d|=1 = 2(Hd−C (d)d)

≈ 2

(
∆g

h
−

(
∆g ·∆R

h3

)
∆R

)
. (2.52)

Blindly using the biomolecule preconditioner of Sec. 2.3.4 for the minimization of C (d) would

mean that the gradient of Eq. 2.52 was projected on the bond vectors of d. The bond vector as

defined in Sec. 2.3.4 has no meaning for d. Therefore, Eq. 2.52 instead is projected onto the

bond vectors of R+∆R.

At a stationary point, systems with free boundary conditions have six vanishing eigenvalues.

The respective eigenvectors correspond to overall translations and rotations.3 Instead of

directly using Eq. 2.52 for the minimization of the curvature of those systems, it is advantageous

to remove the translations and rotations from ∆R and ∇C (d)||d|=1 in Eq. 2.52.3,165,166 Different

methods for this purpose are discussed in Appx. A.

The convergence criterion for the minimization of C (d) has a large influence on the total

number of energy and force evaluations needed to obtain overall convergence of the saddle

point search. It, therefore, must be chosen carefully. The minimum mode is usually not

computed at every iteration, but only if one of the following conditions is fulfilled:

1. at the first iteration of the optimization

2. if the integrated length of the optimization path connecting the current point in coordi-

nate space and the point at which the minimum mode has been calculated previously

exceeds a given threshold value rrecomp
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3. if the curvature along the minimum mode is positive and the curvature has not been

recomputed for at least nrecomp iterations

4. if the curvature along the minimum mode is positive and the norm of the gradient falls

below the convergence criterion

5. at convergence (optional)

In the pseudocode, these conditions are checked in line 5. Among these conditions, condition

no. 2 is, with respect to the performance, the most important one. The number of energy and

gradient evaluations needed for converging to a saddle point can be strongly reduced if a good

value for rrecomp is chosen. Condition 3 and 4 can be omitted for most cases. However, for

some cases they can offer a slight reduction in the number of energy and gradient evaluations.

For example for the alanine dipeptide system used in Sec. 2.3.7, these two conditions offered a

performance gain of almost 10%. Although possible, nrecomp is usually not tuned, but typically

nrecomp = 10 is used. Condition 5 can be made optional in an actual implementation. This

condition is used if very accurate directions of the minimum mode at the saddle point are

needed. In this case, this last minimum mode computation can also be performed at a tighter

convergence criterion. Additional energy and gradient computations can be saved by using the

previously computed minimum mode as the starting mode for a new curvature minimization.

As stated above, a saddle point is found by maximizing along the minimum mode and minimiz-

ing in all other directions. This is done by inverting the preconditioned gradient component

that is parallel to the minimum mode. This is done at line 19 of the pseudocode in Fig. 2.8. For

the case of biomolecules, the component of the bond-stretching gradient that is parallel to the

minimum mode is also inverted (line 13). As already mentioned in Sec. 2.3.3, the feedback

that adjusts the step size of ∇E⊥ is slightly different in case of the saddle finding method. Let

d̂min be the normalized direction of the minimum mode. Then, in contrast to minimizations,

the step size that is used to scale ∇E⊥ is not based on the angle between the complete ∇E and

∇E P, but only on the angle between ∇E − (∇E · d̂min
)

d̂min and ∇E P − (∇E P · d̂min
)

d̂min. These

are the components that are responsible for the minimization in directions that are not the

minimum mode direction. Otherwise, the gradient feedback is absolutely identical to that

described in Sec. 2.3.3.

A saddle point can be higher in energy than the configuration at which the optimization is

started at. Therefore, in contrast to a minimization, it is not reasonable to discard the history,

if the energy increases. As a replacement for this safeguard, a simple trust radius approach

is used in which no atom must be moved by more than a predefined trust radius rtrust. A

displacement exceeding this trust radius is simply rescaled. If the curvature is positive and

the norm of the gradient is below the convergence criterion, the displacements that do not

come from bond-stretchings are rescaled as well. The displacement is rescaled such that the

displacement of the atom that moved furthest is finally given by rtrust. This avoids arbitrarily

small steps close to minima.
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2.3. Stabilized Quasi-Newton Optimization

On very rare occasions, it was observed for some cluster systems that over the course of several

iterations a few atoms sometimes detach from the main cluster. To avoid this problem, the

main fragment is identified and all neighboring fragments are moved towards the nearest

atom of the main fragment.

In Fig. 2.8, the pseudocode for SQNS is given. It contains three parameters explicitly. α′
start

and α′
s,start are initial step sizes that scale ∇E⊥ and ∇Estr, respectively. m′ is the maximum

length of the history list from which the significant subspace is constructed. The path-length

threshold rthresh that determines the recomputation frequency of the minimum mode is

implicitly contained in line 5. Lines 14 and 21 imply the trust radius rtrust. Besides all the

parameters that are needed for the minimizer of Sec. 2.3.5, line 6 additionally implies the finite

difference step size h that is used to compute the curvature and its gradient. Line 18 implicitly

contains the parameter ϵ, which is described in Sec. 2.3.1

The optimization is considered to be converged if the curvature along the minimum mode is

negative and if the norm of the gradient is smaller than a certain threshold.

2.3.7 Benchmarks and Comparisons

Minimizers

In this section, the performance of the new SQNM method is compared to the performance

of the FIRE and L-BFGS minimizers. The conjugate gradient method is not included in this

benchmark, because FIRE has previously been shown to be significantly more efficient than

CG.132 Both FIRE and L-BFGS belong to the best optimizers in their class. With regard to

the required number of energy and force evaluation, L-BFGS is one of the best minimizers

available for the optimization of atomic systems. With respect to noise tolerance, the same is

true for FIRE. Although more efficient than FIRE, L-BFGS tends to fail if there are inconsistent

forces and energies due to computational noise.132 Such inconsistencies are unavoidable in

electronic structure calculations like for example DFT.

For Si20 clusters and the alanine dipeptide biomolecule, benchmarks were performed both

at DFT and force field level. For L-BFGS the reference implementation of Nocedal137,138 has

been used, which is available from his website.147 The author is not aware of any reference

implementation of FIRE. However, FIRE is straightforward to implement and thus an own

code was used. For the benchmarks of the minimizers at DFT level, all codes were coupled

to the BigDFT electronic structure code.148,149 For the benchmarks at force field level, the

Assisted Model Building with Energy Refinement (AMBER) force field in the ff99SB variant as

implemented in AMBER Tools126 and the Lenosky Silicon force field were used.127,128

For alanine dipeptide and Si20, test sets were generated by running MD simulations at force

field level. At force field level each test set contains 1000 structures that were taken from the

MD trajectories. Subsets containing 100 of these force field structures were used as benchmark
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2.3. Stabilized Quasi-Newton Optimization

systems at DFT level. For each method, the parameters were tuned at force field level for

a subset of 100 configurations. Identical parameters were used both at force field and DFT

level. The Si20 system was considered to be converged as soon as the norm of the force fell

below 1.0×10−4 Hartree/Bohr. Even if far away from a stationary point, relatively small forces

can arise in alanine dipeptide. Therefore, a much tighter convergence criterion of 1.0×10−5

Hartree/Bohr had to be chosen for this system.

Table 2.1 gives the benchmark results. In addition to the average number of energy and force

calls 〈nef〉, also the average integrated path length of the optimization path 〈r 〉 is given. 〈r 〉 is

computed by summing all the distances between structures for which consecutive energy and

force evaluations were performed.

There is no guarantee that minimizations that are started at the same configuration will

converge to the identical minimum. Therefore, Table 2.1 gives averages for both, the subset of

runs that all converged to identical minima and averages over all runs, regardless of whether

the final minima were identical, or not. Identical configurations were identified by using the

recently developed s-overlap fingerprints,167 which are briefly recapitulated in Appx. B.

In all benchmarks, FIRE is clearly inferior to L-BFGS and SQNM. With respect to the average

number of energy and force evaluations, the L-BFGS method is slightly more efficient than the

new SQNM minimizer. However, 〈r 〉 of L-BFGS is 1.6 to 2.6 times larger than the corresponding

values of the SQNM method. On average, this means that L-BFGS displaces the atoms more

violently than SQNM. In DFT calculations, the wave function of the previous optimization

step can be used as input wave function for the current iteration. Roughly speaking, the less

the positions of the atoms have changed, the better this input guess usually is. Therefore, less

wave function optimizations are needed for convergence. To quantify this, the average number

of wave function optimization iterations 〈nwoi〉 needed for a minimization of the PES is given

in Table 2.1. As a consequence of the smaller displacements in the SQNM method, the L-BFGS

and the SQNM method roughly need the same number of wave function optimizations for

converging to a minimum of the PES.

The L-BFGS minimizer needed less energy and force evaluations at force field level than at

DFT level. It was verified that this is not due to the noise at DFT level, but a consequence of

the different natures of both PESs. The force field PES is not a noiseless variant of the DFT PES,

but a rather inaccurate approximation to it. In particular this means that the frequencies of

the force field are different from the frequencies of the DFT energy surface and, therefore, the

same is true for the condition numbers. For this reason, one cannot expect to obtain the same

number of energy and force evaluations at force field and DFT level.

The L-BFGS minimizer proved to be unreliable at DFT level. For example, 30% of all Si20

minimizations failed to converge. In contrast to this, all SQNM runs successfully converged to

a minimum. The convergence failures of the L-BFGS method are in general caused by failures

of the line minimizations in the final part of the optimization where a large fraction of the

forces consists of noise.
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Saddle Finding Methods

The SQNS method was compared to an improved version56–58 of the dimer method55 as

described in Ref. [58] and as implemented in the EON code.168 A short review of the (improved)

dimer method is also given in Sec. 2.2.1.

The same force fields as for the minimization benchmarks were used. For the DFT calculations,

SQNS was coupled to the BigDFT code. The EON code offers an interface to the Vienna Ab-

initio Simulation Package (VASP),169–173 which consequently was used.

The same test sets as for the minimizer benchmarks were used. In particular, this means that

the starting configurations are not close to a saddle point and, therefore, these test sets are

comparatively difficult tests for saddle finding methods. Again, parameters were only tuned

for a subset of 100 configurations at force field level. With exception to the finite difference

step size that is needed to calculate the curvature and its gradient, the identical parameters

were used at force field and DFT level. Because of noise, the finite difference step size must be

chosen larger at DFT level. The same force norm convergence criteria as for the minimization

benchmarks were used. In all SQNS optimizations the minimum mode was recalculated at

convergence (condition 5 of Sec. 2.3.6).

The test results are given in Table 2.2. In contrast to the minimization benchmarks, no averages

for the number of wave function optimization iterations are given, because the two saddle

finding methods were coupled to two different electronic structure codes. Therefore, the

number of wave function optimizations is not comparable.

In particular, in case of the Si20 system, both methods converged only seldom to the same

saddle points and, therefore, the statistical significance of the corresponding numbers given in

Table 2.2 is limited. However, averages over large sets could be made in the case of convergence

to an arbitrary saddle point.

In the considered cases, the dimer method needed between 1.4 and 7.6 times more energy and

force evaluations than the new SQNS method. In particular, for alanine dipeptide, the SQNS

approach was far superior to the dimer method. Due to its inefficiency, it was impossible to

obtain a significant number of saddle points for alanine dipeptide at DFT level when using the

dimer method. For this reason, only benchmark results for the SQNS method are given for

alanine dipeptide at DFT level.

2.3.8 Conclusion

Optimizations of atomic structures belong to the most important routine tasks in fields like

computational physics, chemistry, or biology. Although the energies and forces given by

computationally demanding methods like DFT are physically accurate, they are contaminated

by noise. The computational noise comes from the underlying integration grids and from

self-consistency cycles that are stopped at non-vanishing thresholds. The availability of
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optimization methods that are not only efficient but also noise-tolerant is, therefore, of great

importance. In this section, a technique to extract significant curvature information from

noisy PESs was presented. The technique was used to create a minimization algorithm (SQNM)

and a saddle finding algorithm (SQNS). SQNM and SQNS were demonstrated to be superior to

existing efficient and well established methods.

Until now, the SQNM and the SQNS optimizers have been used over a period of several months.

During this time, they have performed tens of thousands of optimizations without failure at

the DFT level. Because of their robustness with respect to computational noise and due to

their efficiency, they have replaced the default optimizers that have previously been used in

minima hopping18,110 and minima hopping guided path search62 runs.

Implementations of the minimizer and the saddle search method are made available via the

BigDFT electronic structure package. The code is distributed under the GNU General Public

License and can be downloaded free of charge from the BigDFT website.65
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3 Finding Reaction Pathways*

The exploration of potential energy landscapes requires two important aspects to be consid-

ered. On the one hand, the geometries of low-energy states, including the global minimum,

are of large interest. On the other hand, processes like protein folding, catalysis, chemical

reactions in solutions and surfaces or the formation of stable phases in solids often force the

reacting systems to undergo rarely occurring and complex transformations between long-lived

states. Actively stabilizing or destabilizing long-lived states by inhibiting or promoting reaction

pathways responsible for certain events allows the synthesization of new materials or sub-

stances with specifically tailored properties.174–176 Unfortunately, the sole knowledge of the

global minimum and a collection of local minima as obtained by global optimization methods

provides not enough information for the target-oriented design of processes that influence

reaction pathways in a desired way. Instead, an accurate knowledge of the atomistic details

of reaction pathways is needed. For this reason, in addition to local minima, also transition

states and the information which minima are connected by which transition states are of

great importance. As soon as this data is available, various methods like the master equation

approach, the discrete path formulation of discrete path sampling or kinetic monte carlo

allow to compute dynamic properties.3,38–40 Using graph-theoretic methods it is possible to

extract reaction pathways from databases containing the just mentioned data. Since pathways

with energetically high barriers have a vanishingly small contribution to properties like rate

constants, it is important not to investigate just any pathways but to sample preferably those

that have low overall barriers.

When exclusively used, methods like the nudged elastic band method or the splined saddle

method,177,178 are not suitable to systematically search for low-barrier reaction pathways, since

they only find some minimum-energy pathway, but not necessarily a low-barrier pathway.

Furthermore these methods often fail to find a connection between distant minima.179 The

problem of finding reaction pathways is similar to the problem of global minimization. Just

*Parts of this chapter have been published in B. Schaefer, S. Mohr, M. Amsler, and S. Goedecker, “Minima
Hopping Guided Path Search: An Efficient Method for Finding Complex Chemical Reaction Pathways”, The Journal
of Chemical Physics 140, 214102 (2014). Reprinted with permission. Copyright 2014 by the American Institute of
Physics.
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Chapter 3. Finding Reaction Pathways

like a local minimization method is, in general, not sufficient for finding a global minimum,

methods like nudged elastic band are not sufficient for the systematic search for low-barrier

pathways. Nevertheless, reaction pathways can be partitioned into a sequence of stationary

point crossings and, therefore, those “local” pathway or other local saddle point finding

methods constitute important building blocks of algorithms that search for (energetically low)

reaction pathways. In contrast, the present chapter focuses on the introduction of a novel

reaction pathway finding scheme, named the minima hopping guided path search (MHGPS)

algorithm (see Sec. 3.5). Based on the MH global optimization method, it allows the efficient

sampling of low-barrier reaction pathways on complex potential energy surfaces (PESs), which

is demonstrated in Sec. 3.5.1 with the help of benchmarks and comparisons to alternative

approaches. Using MHGPS, the energy landscapes of LJ75 and LJ102 were mapped out. Despite

numerous published investigations of the Lennard-Jones clusters, MHGPS was able to find

many pathways that are significantly lower in energy and shorter with respect to the integrated

path length and number of intermediate transition states than previously known pathways for

LJ75.2 For LJ102 a third, previously unknown and energetically low-lying funnel was located. At

the bottom of this funnel, a new structural motif is located. The pathways that were found

between both lowest minima of LJ102 are also significantly shorter in terms of the number of

intermediate transition states and in terms of the integrated path length when compared to

previously presented pathways.63

The MHGPS method has been published in Ref. [62] and this chapter is a reorganized, partially

rewritten, and extended version of this publication. Before introducing the MHGPS method

itself, the chapter starts with shortly mentioning the basic terminology and then proceeds

with a review of relevant alternative reaction pathway finding methods: First, the eigenvector

following exploration (EFE) approach2,35 is outlined, which is followed by transition path

sampling (TPS)26,27,180–184 and the very recently published stochastic surface walking based

reaction sampling (SSW-RS).185 EFE was explicitly used in the benchmark section for the

comparison with MHGPS and, therefore, is recapitulated in this chapter. It was possible to

straight forwardly compare TSP to MHGPS, since TSP previously had been applied to one of

the test systems used in the benchmarks. SSW-RS is included in the review, because it uses

ideas very similar to those exploited in the MHGPS approach. However, it should be noted

that MHGPS was published several months before the SSW-RS method.

3.1 Terminology and Basic Methods

In this chapter, the usual definition of a transition state being a first order saddle point of

the PES is used.3 Steepest descent paths connect transition states to two stationary points,

which in most cases are local minima. The “connectivity” of a PES is defined by these steepest

descent path, though often a connectivity defined by more advanced energy minimization

schemes, like quasi-Newton methods, is possible.3 The terminology of Wales3,38,39 is adapted

and sequences of minima and transition states connected by steepest descent paths are

denoted as “discrete paths”. A collection of local minima, transition states and the information
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which transition states connect which minima is called a “stationary point database”.3,38,39

Building stationary point databases requires the identification or distinction of atomic config-

urations with or from each other. For this purpose the recently developed fingerprints which

are based on the eigenvalues of a s-orbital overlap matrix were used.167 A brief recapitulation

of these fingerprints can be found in Appx. B. For the calculation of the fingerprints, the half

of the LJ equilibrium distance (21/6 σ
2 ) was used as the covalent radius of the LJ atoms. Two

conformers were considered to be identical if their energy difference were smaller than 10−5ϵ

and their fingerprint distance less than 2×10−4.

Extracting from a stationary point database all lowest-barrier paths with the least number

of intermediate transition states between two given minima poses a problem that is closely

related to the so called shortest-widest186 path problem. This can be solved by applying a mod-

ified Dijkstra’s algorithm187 twice.186 In the first step the modified Dijkstra’s algorithm searches

for all paths that connect both minima with the lowest possible energy barrier Ebarr;lowest. The

stationary point database then is truncated by removing all transition states with energies

higher than Ebarr;lowest. Next, Dijkstra’s algorithm passes through the truncated database and

searches for the path with the smallest possible number of intermediate transition states.

It must be emphasized that, similar to most of the commonly used global optimization algo-

rithms, the methods described below do not rigorously guarantee the finding of an optimal

solution of the reaction path problem. That is, all presented structures and lowest-barrier path-

ways should be denoted as “putative lowest structures” or “putative lowest-barrier pathways”.

However, for convenience, sometimes the word “putative” is omitted.

3.2 The Eigenvector Following Exploration Method

In Ref. [35] Doye et al. presented an algorithm that allows mode following techniques to be

used for the exploration of the potential energy landscape. Based on the method used for the

transition state search, the potential energy landscape exploration method of Ref. [35] will be

denoted as the eigenvector following exploration (EFE) method.

The walker of the EFE method starts at a local minimum Mcurr and follows the Hessian

eigenvector with the lowest non-vanishing eigenvalue until a transition state is found. Then,

the connectivity of the transition state is established by computing the steepest descent

pathways to the two neighboring minima. If the transition state is connected to at least one

minimum that already is in the database, the transition state and the connected minima are

added to the database. Of course, only new configurations that are not yet recorded are added.

The connectivity computation results in one of the following cases.

1. If the current minimum Mcurr is connected to the transition state and if the other

minimum Mother is lower in energy than the current minimum, the move is accepted:

Mcurr ← Mother
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2. If the current minimum Mcurr is connected to the transition state and if the other

minimum Mother is higher in energy than the current minimum, the move is rejected:

Mcurr is kept unchanged.

3. If the current minimum is not connected to the transition state, the move is rejected:

Mcurr is kept unchanged.

Next, a new transition state search is initiated from Mcurr. This is done by either following the

negative direction of the previously followed mode (at this minimum), or if this already has

been done, by following the direction of the eigenvector belonging to the next higher Hessian

eigenvalue. For each minimum, only a maximum number nmax ≤ 6N −12 of transition state

searches is performed (N is the number of atoms, free boundary conditions are assumed). If

nmax is exceeded for the current minimum, no new transition state searches are initiated from

this minimum and the algorithm jumps to the lowest-energy known minimum for which the

maximum number of transition state searches have not been accomplished yet. The whole

procedure is repeated until a certain number of minima or transition states is found.

Conventional methods for computing Hessian eigenvectors that are based on an iterative

minimization of the curvature tend to converge to the lowest Hessian eigenvector only. There-

fore, deterministic methods using mode following approaches based on these conventional

eigenvector computation methods run into the risk of being non-ergodic, because the number

of available escape directions away from a local minimum is very limited. In Sec. 2.2.1, a

stabilized mode following technique was discussed, which reliably allows the convergence to

the nearest Hessian eigenvector. This overcomes the problem of converging only to the lowest

eigenvector and, therefore, can be used to follow with a greater reliability the full number of

6N −12 mode following search directions available in a N -atomic system (free boundary con-

ditions assumed). Consequently, it was the stabilized mode following technique of Sec. 2.2.1

that was used for the current implementation of the EFE method.

As part of the MHGPS benchmarks in Sec. 3.5.1, the efficiency of the EFE method was re-

examined. Although the stabilized mode following method alleviates the problem of pref-

erentially escaping from a minimum along just the lowest Hessian eigenvector, the results

are similar to those that were found by others in previous investigations.2,15 In general the

efficiency of the EFE method is far from being optimal and occasionally EFE fails to find

lowest-barrier pathways, even for moderately sized systems like LJ38. In retrospect, this result

is not very surprising. For example, it has been shown for LJ13 that at least 911 structurally

distinct transition states are connected to the global minimum – a number that is much larger

than the 66 mode following search directions that are maximally available in this system.2

3.3 Stochastic Surface Walking Based Reaction Sampling

At the time this thesis was written, the SSW-RS185 method introduced by Zhang and Liu

probably was the latest development in the field of reaction pathway finding. It appeared
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after the publication of the MHGPS approach, which was developed by the author of this

thesis and which is discussed in Sec. 3.5. In fact, the SSW-RS method is very similar in spirit

to the MHGPS approach. The basic idea of MHGPS is to use a global optimization scheme

as a guide through the energy landscape and then to use a selection of the emerging minima

as input for a saddle finding scheme that is able to connect two given minima by a discrete

path. MHGPS is based on MH and the particular advantages of this approach are described in

Sec. 3.5. In contrast to MHGPS, SSW-RS is based on the stochastic surface walking188 (SSW)

global optimization scheme.

First, the SSW method generates an unsoftened vector which is a mixture of a random vector

and a vector consisting of the bond directions of two randomly chosen atoms. Then, using a

constrained softening procedure,189 the high frequency modes are removed from this unsoft-

ened vector and a softened, normalized escape direction Nn is obtained. A similar softening

of an initial velocity is done in the MH algorithm. The SSW method leaves a catchment basin

of a minimum by displacing the current configuration by a distance d s along Nn , followed by

a relaxation on a biased PES Vb that, in the i -th escape step, is given by

Vb =Vreal +
i∑

n=1
hn exp

[
−

(
(R−Rn−1) ·Nn

)2

2d s2

]
, (3.1)

where the hn and d s are the height and width of the Gaussian bias. By going back to the biased

softening of the escape direction, this escape procedure is repeated until a given number of

escape iterations are performed. After this, the bias potential is removed and the structure is

relaxed on the real potential Vreal. The new structure is accepted with probability

Pr =
⎧⎨⎩0 if reaction occurs,

1 otherwise.
(3.2)

Zhang and Liu suggested to compare the bond matrix and the chirality of the new and current

minimum for deciding whether a reaction has taken place.188

With probability P = (1−Pr)Pmc, where Pmc is the usual Metropolis monte carlo acceptance

criterion that is also used in MHGPS, an approximate input path is generated between the

current and the new minimum. If the highest energy along this approximate path is below a

predefined threshold value, the exact transition state and the minimum energy pathway is

computed. For generating the approximate input path, SSW-RS uses the double-ended surface

walking method190 and for refining the initial guess for the transition state, the single-ended

constrained Broyden dimer method is used.191

By virtue of Eq. 3.2, both a reactant and product region is defined. As a consequence of this

acceptance criterion, the SSW-RS walker only explores the reactant region and discrete paths

are only computed to configurations that are behind the border separating the reactant and

the product regions.
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In general, it seems difficult to find descriptors that accurately distinguish arbitrary reactant

and product states. In fact, this is a problem very similar to defining order parameters, a

problem that is known to be far from trivial. In many cases the definition of order parameters

is ambiguous and probably even impossible if there is only limited experience for a given

system. Furthermore for systems in which the reaction has to pass through a third phase to go

from the reactant to the product state, it seems not to be possible to find a reaction pathway

in a single SSW-RS run.

So far, to the knowledge of the author, the SSW-RS method has been applied to reactions

containing only a single intermediate transition state.185

3.4 Transition Path Sampling

In contrast to the other methods described in this chapter, transition path sampling26,27,180–184

(TPS) does not explicitly compute pathways that lead through minima and transition states,

but it samples dynamical pathways by generalizing importance sampling to path space. By

doing so, TPS focuses on reactive pathways, which, by definition, are paths that connect two

given states A and B . By not computing stationary points on the PES, TPS is fundamentally

different from the other algorithms described in this chapter. However, precisely because TPS

does not require any, potentially expensive, optimizations of stationary points, it is particularly

interesting to see if TPS can offer performance advantages over the other methods. The

purpose of this section is not to give an in-depth discussion of TPS, but to explain the basic

ideas and to briefly discuss its performance for a system that also was used in the benchmarks

of Sec 3.5.1.

In TPS a pathway Z (τ) := {z0, z∆t , z2∆t , . . . , zτ} is defined as an ordered sequence of states in

phase space. This sequence can be looked at as snapshots of a trajectory that is given by the

time evolution of length τ of a physical system. The path space points zi∆t are called time

slices and the ∆t denote the length of the time separation of consecutive time slices. Time

slices are elements of the phase space and thus represent space and momentum coordinates.

Usually, it is assumed that the time slices constitute a Markov chain, that is, the probability

to move from zi∆t to z(i+1)∆t only depends on zi∆t , but not on earlier time slices. Thus, the

probability P [z(τ)] to observe such a path z(τ) is given by26,27,180–184

P [z(τ)] = ρ(zo)
τ/∆t−1∏

i=0
p(zi∆t 7→ z(i+1)∆t ), (3.3)

where ρ(zo) is the probability distribution of the initial time slice, for example a Boltzmann

distribution. The detailed form of the transition probability p(zi∆t 7→ z(i+1)∆t ) depends on the

actual type of the dynamics that is used for propagating the system, like Brownian, Newtonian,

Monte Carlo or Langevin dynamics.181,192 TPS focuses on sampling the rare event transitions,

for which reason the probability function in Eq. 3.3 has to be augmented by indicator functions

hA(z0) and hB (zτ) that confine both path ends to the regions A and B , respectively. The
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indicator function for region A is defined as

hA(z0) =
⎧⎨⎩1 if z0 ∈ A,

0 otherwise.
(3.4)

A similar definition applies for hB (zτ). Given these indicator functions, the transition paths

are sampled according to the following probability distribution

P AB [z(τ)] = hA(z0)P [z(τ)]hB (zτ)

Q AB (τ)
, (3.5)

where, Q AB (τ) is the normalization factor of the distribution. Eq. 3.5 defines the transition path

ensemble, which can be sampled by using the Metropolis algorithm.181,192 In the Metropolis

algorithm new pathways have to be generated and accepted or rejected according to the

Metropolis rule.193 In particular, by virtue of the above indicator functions, pathways that not

start in A and not end in B are always rejected.

The efficiency of TPS strongly depends on the details of the generation of new pathways.

A combination of so called shooting and shifting moves have been reported to belong to

the most effective pathway generation schemes.192,194 In a shooting move, a new pathway

is generated by randomly drawing from a uniform probability distribution a time slice of

the present pathway and perturbing its momentum by means of an isotropically distributed

random variable. The equations of motions (e.g. Newtonian) are then integrated backwards

and forward in time, until the time slots 0 and τ are reached. A forward shifting move consists

of removing a certain length n∆t from the beginning of the path and integrating the equations

of motions for the same time n∆t , starting at the end of the path. The trajectory length n∆t

is drawn from a probability distribution. Backward shifting moves are done in an analogous

way, by removing a certain path length from the path end and integrating a new path segment,

starting at the beginning of the path and integrating backward in time. Mainly in the transi-

tion region new pathways generated by shifting moves are very similar to the old pathways.

However, shifting moves are reported to improve convergence of averages computed from

the path ensemble.192 In contrast to the shifting move, the shooting moves ensure an ergodic

sampling of the transition path ensemble.192 The details of these moves and their acceptance

or rejection can be found in several TPS review articles.31,180,181,192,194,195

It is important to note that free energies and reaction rates cannot straightforwardly be

obtained from a simple TPS simulation.31,192,196 TPS simulations are used for finding pathways

between A and B ,192 whereas free energies and reaction rates need additional computation.

For these additional calculations, however, the TPS framework in combination with umbrella

sampling can be used. In these umbrella sampling simulations, the whole range of the order

parameter λ(x), which is used to distinguish the regions A and B , is divided into overlapping

intervals. Then, for each interval, a separate transition path sampling run has to be performed,

for which reason the reaction rate and free energy calculations are more expensive than

straight forward TPS simulations.26,27 The reason why free energies and reactions rates cannot
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be obtained from straightforward TPS is the following. The points along the paths in the

transition path ensemble are not distributed according to the equilibrium distribution ρ,

because the indicator functions hA and hB introduce a bias of the path probability such that

low probability configurations with respect to ρ are favored if they lie on pathways that must

be traversed when going from A to B .192,196

Already in 1998, TPS was used to study rearrangement processes in small, two-dimensional

Lennard Jones (LJ) clusters.27 However, to the best of the knowledge of the author of this

thesis, it was not before 2007 that results for more complicated three dimensional Lennard

Jones cluster, like LJ38, appeared in the literature.30 It was reported by Miller and Predescu,30

that TPS with shooting and shifting moves becomes trapped in the high-energy structures of

LJ38 and cannot find the basins of stability. They thus developed a double-ended transition

path sampling method, named sliding and sampling, which did find pathways between both

funnels.30 However, for LJ38 the main drawbacks of their method are the non-ergodicity of

their simulation and the high computational cost of 105 CPU hours. Unfortunately, it was

reported that even this improved technique could not identify the lowest known reaction

pathways connecting the two energetically lowest structures of the LJ38 system, even though

the sampled transition pathways were quenched to obtain minimum energy pathways.

It remains to be mentioned that it can be difficult to apply TPS to systems for which no previ-

ously obtained experience is available. The reason is that an order parameter is needed that

must be able to discriminate between the A and B states. In particular, the order parameter

must allow to define the A and B states such that they form disjoint sets.31,180,194 Furthermore,

an initial path connecting A and B is needed and it was reported in Ref. [192] that no univer-

sally applicable procedure is available for TPS that would be suitable for generating initial

trajectories. Nevertheless, pathways generated by the other methods described in this chapter

could be used for seeding TPS simulations. In particular qualitative connectivity databases,

which are introduced in Sec. 5.2, may offer promising starting points for constructing initial

pathways.

3.5 Minima Hopping Guided Path Search†

Searching for reaction pathways and the exploration of the connectivity of energy landscapes

requires an algorithm that moves efficiently inside one funnel and between several funnels.

An algorithm that has proven its efficiency in exploring the low energy regions of potential

energy landscapes is the MH global optimization method.9,18,19,110,197,198 The success of MH

relies in large parts on the MD-type moves and on an energy feedback which satisfies the

explosion condition.18,199 The MD moves assure that only physically realizable structures are

explored and, by means of energy conservation, only low-energy barriers are surmounted in

†The research presented in this section has been published in B. Schaefer, S. Mohr, M. Amsler, and S. Goedecker,
“Minima Hopping Guided Path Search: An Efficient Method for Finding Complex Chemical Reaction Pathways”,
The Journal of Chemical Physics 140, 214102 (2014). Reprinted with permission. Copyright 2014 by the American
Institute of Physics.
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unexplored regions of the PES. In well explored regions the explosion condition rigorously

guarantees an exponential increase of the kinetic energy. Therefore, in contrast to many other

PES exploration methods, MH is able to escape automatically from any funnel, irrespective

of its depth. In general, the MD trajectories of MH are short and, therefore, one can expect

consecutive minima along the MH trajectory to be structurally similar to and well aligned with

each other. This significantly simplifies the process of finding intermediate transition states

without the need of an explicit and computationally expensive optimization of the geomet-

ric and permutational structural alignment.167 In conclusion, MH explores PESs efficiently,

without the risk of becoming trapped. Moreover, MH generates consecutive minima that are

particularly suitable for the input of methods that are intended to find transition states located

between the input minima. It, therefore, seems natural to combine the capabilities of MH

with a method that connects two given minima by a series of transition states to a minima

hopping guided path search (MHGPS) technique.

MH, and with it MHGPS, starts at some local minimum and tries to escape from its catch-

ment basin by following a short, random and soft mode biased MD trajectory at the end

of which a local geometry optimization is performed. The softening procedure has been

described previously9 and it has been demonstrated that following softened escape directions

preferentially leads over low energy barriers.200 The escape trials are repeated until MHGPS

successfully escapes from the catchment basin of the current minimum. In order to avoid

becoming trapped in the current catchment basin, the kinetic energy is increased by a factor

βs > 1 after each failed escape trial. When MHGPS successfully escapes to a different mini-

mum it either decreases the kinetic energy by a factor βn < 1 or increases it by a factor βo > 1,

depending on whether the new minimum has been visited before or not. This introduces a

feedback which promotes cooling down in unexplored regions and heating up in well explored

regions of the potential energy landscape and thus ensures that the algorithm quickly samples

the bottom of a funnel and at the same time does not become trapped in it.

Based on a Metropolis-like193 criterion it is decided in the MHGPS scheme whether the current

minimum Mcurr and the new minimum M should be connected by a discrete path. If the

energy of the new minimum E is lower than the energy Ecurr of the current minimum, a

connection attempt is always made. If its energy is higher than the energy of the current

minimum, an attempt is made with a probability of

exp

(
−E −Ecurr

Ediff

)
. (3.6)

The parameter Ediff resembles the energy kBT of an ordinary Metropolis simulation. However,

in contrast to an ordinary Metropolis simulation, Ediff constantly is adjusted. If the decision is

made to connect Mcurr and M , Ediff is decreased by a factor αa < 1, otherwise it is increased by

a factor αr > 1. The connections are made by recursively applying bar-saddle and following

approximate steepest descent paths from emerging intermediate transition states. Establish-

ing the connection between the two bar-saddle input minima Mcurr and M in a recursive or

iterative fashion is essential, because there is no guarantee that the two minima Mcurr and M
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can be connected with each other by exactly one transition state. Hence, during a connection,

intermediate transition states can appear that might not be connected to one or to both of the

two input minima. In such a case the minima to which the intermediate transition states are

connected also have to be connected to the corresponding bar-saddle input minima in order

to obtain a discrete path that properly connects Mcurr and M .

After connecting Mcurr and M by a discrete path, the new minimum becomes the current

one and the algorithm starts a new MD trajectory at this minimum. The whole procedure is

stopped as soon as a given number of distinct minima or transition sates are identified.

Fig. 3.1 shows a flow chart of the MHGPS approach. The above explained procedure of itera-

tively connecting two minima is visualized in the left-hand side of this figure. The desirable

consequences for the MHGPS approach of the softening procedure and of the energy con-

servation in the MD moves are described in panels (A) to (C) on the right-hand side of this

figure.

In all MHGPS simulations presented in this chapter the standard MH parameters (βs =βo =
1/βn = αr = 1/αa = 1.05) were used.9,199 However, if βs > 1 and as long as the remaining

parameters fulfill the explosion condition

log(αr)

log
(
α−1

a
) ≥ log

(
β−1

n

)
log

(
βo

) , (3.7)

the efficiency of the MH based exploration of the PES is not very dependent on the detailed

values of these parameters.199 The explosion condition follows from requesting that the net-

kinetic energy should rise if the algorithm begins to reject all new minima and only accepts

previously visited minima. The rise in kinetic energy assures the escape from well explored

regions of the PES. For the sake of being self-contained, a reiteration of the derivation of the

explosion condition can be found in Appx. D.

MHGPS is not limited to using bar-saddle for the purpose of connecting minima. In principle

any saddle search method that can find transition states between two given minima, like

for example the Nudged Elastic Band method51–54 or the Splined Saddle method177,178 can

be used. During the development of MHGPS, it was decided to use the bar-saddle method,

because this was the most reliable implementation of a saddle finding method that was

available to the author at this time. As of the writing of this thesis, bar-saddle has been

replaced by a combination of the freezing string method158 and the SQNS saddle finding

method introduced in Sec. 2.3.6. By selecting the highest energy node along the freezing string

path, a well educated guess for the transition state is obtained, which then is tightly converged

to the exact transition state using the SQNS method. Bar-saddle was replaced to achieve a

better efficiency and stability at ab-initio level. SQNS was not used for the initial version of

MHGPS described in this chapter, because SQNS was developed after the advent of MHGPS.
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3.5.1 Benchmarks and Applications

In all sampling approaches used below, the connectivity between transition states and minima

was determined by stepping away from a transition state by adding to and subtracting from

the transition state one-100th of the normalized Hessian eigenvector that corresponds to the

negative curvature. Then, from the thus obtained points, Euler’s method with a maximum

step size of 10−2σ was started, in order to approximate steepest descent paths. The Euler

integrator was stopped, as soon as it entered the quadratic region surrounding a minimum.

In this Euler integration scheme steps were rejected and the step size was decreased if either

the angle between the gradients of two successive steps was larger than 60 degree or if the

energy increased. Inside the quadratic region the Euler method was replaced by the fast

inertial relaxation engine (FIRE)132 in order to speed up the geometry optimization. For

the FIRE integrator itself, it is not of any relevance whether it operates inside the quadratic

region or not. However, compared to non-quadratic regions it seems less likely that inside the

quadratic region the FIRE method will converge to a different minimum than Euler’s method.

Because dynamic properties computed from stationary point databases are unlikely to depend

strongly on whether the connectivity of the potential energy landscape is established by using

approximate steepest descent paths or paths from advanced minimization algorithms3,40 like

for example FIRE or BFGS,133–136,201 the time used for relaxations to local minima could have

shortened significantly when omitting the Euler integration and using advanced minimization

algorithms throughout. However, because a new reaction pathway search method (MHGPS)

is benchmarked and applied, the conservative Euler integration approach was used in order

to sample connectivity information that is in accordance with the connectivity defined by

the widely accepted intrinsic reaction coordinate.77 Although no results based on FIRE-only

minimization are reported, the differences of pathways obtained from FIRE-only and Euler

integration plus FIRE optimization were compared. Only small changes in the number of

intermediate transition states could be observed. In all cases the energetically lowest transition

state between two states found by FIRE-only runs was identical to the lowest transition state

found by connections established by approximate steepest descent paths.

Benchmarks

In contrast to global minimum searches, a performance analysis of stationary point database

generation algorithms is not straightforward since there is no obvious stopping criterion. One

possible stopping criterion can be defined by checking whether a putative lowest-barrier

pathway between two minima has been found. Because of the computational cost of Dijkstra’s

algorithm, this check is not feasible if it has to be performed between every pair of minima

for a given system. Therefore, a suitable test system should contain two outstanding and

well defined minima for which pathways that connect them can be examined. The global

minimum of LJ38 is located inside a small funnel containing fcc-like structures, the second-

lowest minimum of LJ38 is contained inside a comparatively large icosahedral funnel. Both

funnels are separated by a high energy barrier.2,35 Furthermore, the number of atoms in LJ38
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Table 3.1: Results of performance test for LJ38. Av-
erages for 〈nts,diff〉 and 〈nts〉 are taken over 1000−nf

independent and successful runs.

Method nev
1 〈nts,diff〉2 〈nts〉3 nE

4 nf
5

MHGPS n/a 9267 14580 3464 0
EFE 10 64611 168688 3384 24
EFE 25 72977 192097 3508 8
EFE 40 91313 268422 3492 1

1 Number of lowest eigenvectors along which transition states
were searched in positive and negative direction

2 Average number of distinct transition states needed to be found
before identifying a lowest-barrier pathway.

3 Average number of transition states computations needed be-
fore identifying a lowest-barrier pathway.

4 Number of totally performed energy evaluations divided by
the number of totally performed transition state computations.
The number of energy evaluations include the evaluations used
for transition state searches, minimizations, softening and MD
(if applicable).

5 Number of runs in which lowest-barrier pathways could not be
found before identifying 5×105 distinct minima.

is small enough to perform a sufficient number of runs within a feasible amount of time.

Therefore, LJ38 possesses all properties of a suitable benchmark system.

Table 3.1 shows the results of a performance test based on 1000 independent runs for LJ38.

Each run was started using a random non-fcc structure as input geometry and, depending

on what happened earlier, was either stopped as soon as the putative lowest-barrier pathway

between the global minimum and the second lowest local minimum of LJ38 was identified, or

if 5×105 distinct local minima were found. For all methods and all runs the same convergence

criteria for the stationary points were used.

EFE needed roughly between a factor of 12 to 18 more transition state computations than the

MHGPS method before encountering a lowest-barrier pathway of LJ38. Because the number of

energy evaluations per transition state computation nE are similar for both methods, similar

factors are obtained when measuring the computational cost in terms of energy evaluations.

For the EFE method, a small number of runs were observed that failed to find a lowest-barrier

pathway at all. Since the number of failure runs decreased with increasing number of followed

mode directions, these failures can be explained by the limited number of search directions

available to the EFE method. Assuming free boundary conditions, the EFE method can follow

at maximum 6N −12 directions per minimum for a N -atom system. However, as already

mentioned in Sec. 3.2, the number of transition states connected to a minimum can exceed

the number of 6N −12 directions by far. For example it is known that the global minimum of

LJ13 is surrounded by 535 local minima which are connected to the global minimum by 911

transition states.2 It is, therefore, possible to miss stationary points that potentially lie on the
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lowest-barrier pathway. This general restriction of the EFE-method and similar deterministic

mode following methods has been mentioned before by Malek and Mousseau.15

The average number of distinct transition states 〈nts,diff〉 divided by the average number of

computed transition states 〈nts〉 was between 66% and 87% larger for the MHGPS method

than corresponding ratios of the EFE method.

The average CPU time required before MHGPS identified the lowest-barrier pathways between

both lowest structures of LJ38 was measured to be roughly 8 minutes (on a single core of an

Intel Xeon E5-2665 CPU clocked at 2.40GHz). This timing should be compared to the 105

CPU hours that were required for the sliding and sampling computations reported in Ref. [30].

These timings differ by several orders of magnitude and, therefore, allow to give a rough

idea on the performance differences between the different methods. They are particularly

noteworthy when noting that Ref. [30] only presents pathways that are higher in energy than

the known lowest-barrier pathway. As well as MHGPS, the EFE method is also several orders

of magnitudes faster than sliding and sampling. On average, EFE needed just under 3 CPU

hours to find the lowest barrier path for LJ38 (nev = 10, average taken over successful runs). As

the CPU time depends very strongly on the computer hardware and the implementation of an

algorithm, one should compare methods that do not exhibit such a distinct timing difference

by using more suitable quantities like, for example, those given in Table 3.1.

Fig. 3.2 shows the histories of all transition state energies of two typical MHGPS (panel (a))

and EFE (panel (b)) runs that were performed for the LJ38 system. Both runs were started

at non-fcc structures and thus are residing inside the large icosahedral funnel during the

first transition state computations. Fig. 3.2 illustrates the distinct transition state sampling

behavior of both methods. In the very beginning, the EFE method is able to sample low-energy

transition states. However, with an increasing number of totally sampled transition states, the

energies of the lowest transition states that are being sampled rises as well. This means, the

EFE-method explores the energy landscape in a bottom-up fashion. In conjunction with the

limited number of search directions per minimum, this is a severe problem, in particular for

multi-funnel systems. As can be seen from Fig. 3.2, in the beginning of the sampling procedure

the bottom-up sampling forces a very detailed exploration of the icosahedral funnel. The EFE

method is, therefore, not able to escape from the icosahedral to the fcc funnel until roughly

5000 transition states were computed. In very long runs, the same bottom-up sampling of the

EFE method will lead at some point to the computation of transition states that almost entirely

have energies above the highest barrier along the lowest-barrier pathway (energies above the

bold, dashed and black line in Fig. 3.2). If the lowest-barrier pathway could not be found until

this critical point, it is very unlikely that the EFE method will find it later. In contrast to the

EFE method, the MHGPS method escapes from the icosahedral to the fcc funnel very quickly

and regularly switches back and forth between both funnels. Because MHGPS does not strictly

avoid previously visited low energy configurations, it does not suffer from the consequences

of a strict bottom-up sampling. MHGPS is always able to go down to previously explored low

energy configurations, however the history based energy feedback of MH takes care that well
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Figure 3.2: Scatter plots showing all computed transition state energies in chronological order.
The shown data belongs to typical MHGPS and EFE runs for the LJ38 two-funnel system.
Panel (a) shows MHGPS data, panel (B) displays EFE data. Transition states belonging to
the fcc funnel are represented by red • and transition states belonging to the icosahedral
funnel are represented by blue +. The green × represent all remaining transition states. If a
transition state is visited for the first time, the respective data point is dark-colored, otherwise
it is light-colored. The bold dashed line located at an energy of roughly −169.709ϵ represents
the highest barrier along the lowest-barrier pathway connecting the two energetically lowest
minima of LJ38. An interpretation of this figure is given in the text of Sec. 3.5.1. Reprinted with
permission from Ref. [62]. Copyright 2014 by the American Institute of Physics.
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explored regions are left quickly. Therefore, as illustrated in Fig. 3.2, MHGPS is able to sample

transition states from the whole energy range at any stage of the sampling procedure.

For the 75-atom Lennard Jones system a similar behavior as for LJ38 was found. Starting at the

second lowest minimum of LJ75, which is located in an icosahedral funnel, MHGPS and EFE

test runs were preformed. The runs were stopped as soon as 275,000 transition states were

computed. Within this amount of computed transition states, the present implementation of

the EFE method showed not to be able to leave the icosahedral funnel, whereas the MHGPS

method could switch between both LJ75 funnels multiple times.

For the LJ55 cluster, which is a strong structure seeker,2 a short test runs was performed too.

Despite its structure seeker character there exist two non-icosahedral minima which lie be-

hind comparatively high barriers.2,49,202 The test run of each method was started at the same

arbitrarily chosen high energetic local minimum (-270.302962 ϵ) and was stopped as soon as

30,000 transition state computations were performed. The overall appearance of the discon-

nectivity graph containing the lowest 700 minima generated from EFE-sampling is equivalent

to the graph presented in Ref. [2], however, in this test run, the present implementation of

the EFE method could not identify the lower one of the two non-icosahedral minima. The

other of the two mentioned non-icosahedral minima could be found by the EFE method,

however the barrier connecting it to the global minimum funnel was significantly larger than

the barrier found in Ref. [2]. In contrast, the disconnectivity graph containing the lowest 700

minima generated from the MHGPS run contained all important features of the LJ55 potential

energy landscape, including both of the above mentioned non-icosahedral minima. The

barriers connecting the two non-icosahedral minima to the global minimum funnel were also

reproduced in accordance with the barriers of the disconnectivity graph presented in Ref. [2].

Application of MHGPS to LJ75 and LJ102

Due to its advantages presented in Sec. 3.5.1, MHGPS was applied to the PESs of LJ75 and

LJ102. Concerning the task of sampling relevant stationary points, in particular LJ75 is known

to be a very difficult system. This can be explained by the frustration of its PES and the large

geometrical differences of both structures located at the bottoms of the two major funnels.2

For each system, 10 independent runs were started at the global minimum structures. For

every run different random seeds were used. A run was stopped, as soon as 2×106 distinct

local minima were found. For the analysis of the PESs, the stationary point databases resulting

from all runs were merged into a single database for each system. For LJ75 this procedure

resulted in a stationary point database containing roughly 12.0×106 distinct transition states

connecting 7.0×106 distinct local minima. In case of LJ102, a database containing roughly

10.9×106 distinct transition states, connecting 7.5×106 distinct local minima was obtained by

this procedure. The disconnectivity graphs of both system are shown in Fig. 3.3. Fig. 3.4 and

Fig. 3.5 show plots of the energy along the reaction pathways in dependence of the integrated

path length S which is defined by the arc length of the steepest descent reaction path in the
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Figure 3.4: Pathways found by MHGPS that connect the bottom-structures of both LJ75 funnels
(configurations a.2 and a.1 of Fig. 3.3). The dashed horizontal lines indicate the highest
energy along the previously known lowest-barrier pathway.2 Panels (a), (b) and (c) show three
alternative putative lowest-barrier pathways. Panels (d), (e) and (f) show pathways that have
been obtained by successively removing the highest energy transition state along the lowest-
barrier pathway from the stationary point database [panels (d) and (e)] or from a preliminary
test run [panel (f)]. They only have slightly higher barriers than the pathways of panels (a) to
(c) and thus show that there exist a variety of pathways lying energetically between the lowest
MHGPS results and the previously presented2 lowest-barrier pathways for LJ75. Reprinted
with permission from Ref. [62]. Copyright 2014 by the American Institute of Physics.
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3N -dimensional coordinate space.50 Numerically the integrated path length is computed by

summing up all the lengths |∆R| of all steepest descent steps:

S =
∑

steps
|∆R| . (3.8)

In addition to the conservative combination of Euler’s method and FIRE mentioned in

Sec. 3.1, all new pathways explicitly reported (Figs. 3.4 and 3.5) were double-checked in

a post-processing step. In order to obtain quasi-exact intrinsic reaction pathways, steepest de-

scent paths were recomputed exclusively using Euler’s method with a maximum displacement

of 10−6σ in each integration step. Before this steepest descent relaxation the structures were

pushed away from the transition state one-10,000th of the normalized eigenvector belonging

to the negative Hessian eigenvalue.

For LJ75 the highest barriers along the lowest-barrier pathways connecting the two major fun-

nels that were found by MHGPS are significantly lower in energy than those of the previously

known lowest-barrier pathways. Fig. 3.3a shows the MHGPS generated disconnectivity graph

for LJ75. Using Dijkstra’s algorithm as outlined in Sec. 3.1, roughly 20,000 pathways, all having

the same highest-barrier energies of 7.51ϵ and 6.30ϵ and the same number of 51 intermediate

transition states, were identified. Compared to this, the previously known lowest-barrier

pathway has significantly higher highest-barrier energies of 8.69ϵ and 7.48ϵ and possesses 65

intermediate transition states.2 In order to illustrate typical differences between alternative

lowest-barrier pathways, Fig. 3.4a, Fig. 3.4b and Fig. 3.4c explicitly show the steepest descent

reaction paths of three lowest-barrier pathways. In order to check whether there might exist

further pathways, which are energetically in-between the previously known lowest-barrier

pathway and the putative lowest-barrier pathways found by MHGPS, the highest energy tran-

sition states along the lowest-barrier pathways were successively removed from the stationary

point database, and Dijkstra’s algorithm was applied. Pathways resulting from this removal are

shown in Fig. 3.4d and Fig. 3.4e. For the pathway shown in Fig. 3.4d the barriers are 7.52ϵ and

6.31ϵ, for the pathway of Fig. 3.4e the barriers are 7.54ϵ and 6.33ϵ. They are only slightly higher

in energy than the highest barriers along the putative lowest-barrier pathway. This suggests

that there exists a whole range of pathways that are energetically between the putative lowest

pathways presented in this study and the previously known lowest pathway. This conjecture

seems to be substantiated by the pathway shown in Fig. 3.4f. This pathway was found in a

preliminary single-run test in which only roughly 6×105 distinct local minima and roughly

9×105 distinct transition states were sampled. The highest barriers along this pathway are

7.78ϵ and 6.57ϵ.

As shown in Fig. 3.3b, MHGPS found a previously unknown funnel for LJ102.63 An illustration

of the bottom structure of this funnel is given in Fig. 3.6. The new bottom structure possesses

icosahedral elements and its surface is dominated by buckled hexagonal patches. Its has an

energy of −568.388773ϵ.
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Figure 3.5: Putative lowest-barrier pathways that were found by MHGPS for LJ102. Panel (a)
shows a putative lowest-barrier pathway connecting the putative global minimum (config-
uration b.1 of Fig. 3.3) to structure b.3 of Fig. 3.3. A lowest-barrier pathway connecting the
second-lowest minimum of LJ102 (configuration b.2 of Fig. 3.3) and configuration b.3 of Fig. 3.3
is shown in panel (b). The parts of the reaction pathways shown in panel (a) and (b) that
coincide with each other are highlighted by using dashed lines. Panel (c) shows a putative
lowest-barrier pathway connecting the second-lowest configuration of LJ102 (configuration
b.2 of Fig. 3.3) to the putative global minimum (configuration b.1 of Fig. 3.3). Reprinted with
permission from Ref. [62]. Copyright 2014 by the American Institute of Physics.

b.1) b.2) b.3)

Figure 3.6: Bottom structures of the three major funnels of LJ102. The labeling of the illus-
trations corresponds to the labeling of Fig. 3.3b. Reprinted with permission from Ref. [62].
Copyright 2014 by the American Institute of Physics.
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Lowest-barrier pathways connecting the new structure to the global minimum and to the

second lowest minimum are shown in Fig. 3.5a and Fig. 3.5b. The lowest-barrier pathways

connecting this new structure and the global minimum contain 40 intermediate transition

states and the highest barriers are 7.97σ and 7.89σ. The highest barriers of the lowest-barrier

pathways that connect the second lowest minimum to the bottom of the new funnel are 7.97σ

and 7.00σ. These pathways contain 53 intermediate transition states.

Furthermore, MHGPS could confirm the energy of the highest barrier along the putative

lowest-barrier pathway connecting the global minimum to the second lowest minimum.63

However, both in terms of the number of intermediate transition states and in terms of

the integrated path length, the pathway found by MHGPS is significantly shorter than the

previously known pathway. It contains only 16 intermediate transition states compared to 30

transition states contained in the pathway published earlier.63 The integrated path length is

roughly 11σ shorter (difference of paths length was estimated on the basis of the plot given in

Ref. [63]).

3.5.2 Conclusion

MH is a practical guide for the search of low-barrier reaction pathways, because it uses short

MD moves for the exploration of PESs and an energy feedback that satisfies the explosion

condition18,199. As a consequence of the short MD moves, consecutive minima along the MH

trajectory are structurally not too different from each other and thus are well suited as input

structures for methods that can find transition states between two given input geometries.

Furthermore, energy conservation assures that the maximum barrier energy between two

consecutive minima is bounded from above. The explosion condition assures that the MH

guide does not get stuck in deep funnels. As a consequence, MHGPS must perform computa-

tionally expensive transition states computations only between minima that are particularly

promising for the purpose of finding energetically low barriers and between minima that are

promising for the exploration of the potential energy landscape. MHGPS needs no human

intuition and its MH based exploration of the PES is completely unbiased. It, therefore, does

not fail to explore unforeseen and unexpected features of potential energy landscapes. In com-

parison to the EFE mode following approach, MHGPS detects a significantly larger number of

distinct transition states when performing the same number of transition state computations.

MHGPS reduces the cost of sampling stationary points and their connectivity information by

over one order of magnitude compared to the EFE mode following approach. In contrast to

other methods, MHGPS could successfully find the lowest-barrier pathways of LJ38 in all tests.

The efficiency of the novel MHGPS scheme is also confirmed by new results that were found

for LJ75 and LJ102, systems that previously have been thoroughly examined for more than a

decade.
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4 Isomerism and Structural Fluxionality
in the Au26 and Au−

26 Nanoclusters*

Since bulk gold is the most inert metal one could expect gold clusters to show no or only

negligible chemical activity.203,204 However, compared to bulk gold, the chemistry of gold

nanoparticles is dramatically different, leading to promising and valuable properties for

nanosciences like nanoelectronics, nanobiology and nanocatalysis.205–210 In order to under-

stand nanogold related processes, size-selected gold clusters have been the focus of both

theoretical and experimental investigations.198,204,205,211–240 In particular, joint photoelectron

spectroscopy and theoretical studies have elucidated the structures of anionic gold clusters

over a wide size-range.204,221,225,235 For example, Au−
20 has been found to exhibit a tetrahedral

pyramidal geometry221 and molecular dynamics (MD) simulations of Au−
34 suggest this clus-

ter to have a fluxional shell which could promise chemisorption.204 Recently, Au−
36 to Au−

38

were shown to exhibit core-shell structures with a four-atom tetrahedral core.240 Despite the

successful previous work on gold clusters,225,235,240 no theoretically predicted structure of

Au−
26 has been experimentally confirmed so far. In order to close this gap the results of a joint

theoretical and experimental photoelectron spectroscopy study on this missing cluster are

outlined in this chapter.

Using the Minima Hopping9,18,110 (MH) method, the author of this thesis carried out the struc-

ture prediction computer experiments and identified new global minimum candidates for

both the neutral and anion systems. Members of the group of Prof. Xiao Cheng Zeng simulated

the photoelectron spectra of energetically low-lying Au−
26 clusters. The photoelectron spec-

troscopy experiment and the interpretation of the experimental spectrum was performed by

Prof. Lai-Sheng Wang’s group. The comparison between the theoretical and the experimental

results for Au−
26 is used to identify energetically low-lying nanostructures that most probably

exist in the experiment.

*The research presented in this chapter has been published in B. Schaefer, R. Pal, N. S. Khetrapal, M. Amsler,
A. Sadeghi, V. Blum, X. C. Zeng, S. Goedecker, and L. Wang, “Isomerism and Structural Fluxionality in the Au26
and Au−

26 Nanoclusters”, ACS Nano 8, 7413 (2014). Reprinted with permission. Copyright 2014 by the American
Chemical Society.
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For the anionic system also a disconnectivity graph73 is presented, which is based on a

database of connected minima and transition states that were computed at the density func-

tional level of theory (DFT). The construction of this database was performed by the author of

this thesis. This database is complete enough to allow the prediction of chemical activity at

finite temperatures. To the knowledge of the author, this is the first time that such a local map

of the energy landscape has been computed completely at the DFT level of theory. At the time

of the research for this chapter, the MHGPS method of Sec. 3.5 had not existed yet. Therefore,

the topology of the potential energy surface (PES) had to be established in a non-automatized

approach that is outlined below. However, this work forms the starting point of the develop-

ment of the MHGPS method, as well as of the remaining research that was conducted for this

thesis.

4.1 Methods

4.1.1 Global Optimization of Au26 and Au−
26

For global minimization of the PES the Minima Hopping (MH) method9,18,110 coupled to the

BigDFT code148 was utilized. Within this thesis, the MH method already has been introduced

in Sec. 3.5 as part of the MHGPS scheme and it is referred to this section for a description of

MH. The global optimization was performed completely at the DFT level which has shown

to be more efficient for the present system size than performing a global minimum search

on a force field or other less accurate methods and post-relaxing an energetically low lying

subset of configurations using DFT methods.110 For all local geometry optimizations a com-

bination of conjugate gradient131 and modified Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm133–136 as implemented in the BigDFT code was used.

In order to predict the putative global minimum of the Au26 and Au−
26 potential energy land-

scapes, the computations were split into several steps. As the first step MH runs were per-

formed on the energy landscape of the neutral Au26 cluster, using both the local density

approximation (LDA)86,96 and the Perdew-Burke-Ernzerhof (PBE)105 functionals in combina-

tion with the corresponding relativistic and norm-conserving Hartwigsen-Goedecker-Hutter

(HGH) semi-core pseudopotentials.241,242 For each functional several separate runs with differ-

ent starting configurations were performed. A selection of the initial configurations is shown

in Fig. 4.1. The starting configurations were constructed manually or are from previous work,

such as the tubular structure (Fig. 4.1c) which once was proposed to be the global minimum of

Au26.243 The BigDFT code uses a systematic wavelet basis set. The corresponding grid spacing

as well as the spatial extension of the basis function were chosen such that a rotation of a

whole cluster in the R3-space changed the energy by less than 10−4 Hartree. For all MH runs,

geometry optimizations were stopped as soon as 20% of the force consisted of computational

noise. On average this happened when the largest force acting on any atom in a cluster was

approximately 5×10−5 Hartree/Bohr in case of the LDA functional and 3×10−4 Hartree/Bohr

for PBE.
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a) b)

c) d)

Figure 4.1: Representatives of the structural motifs. Isomer (a) represents the core-shell
structure with a single internal atom, isomer (b) the empty cage, isomer (c) the high-symmetry
tubular structure and isomer (d) the hexagonal motif. These isomers also constitute a selection
of starting configurations used for different Minima Hopping runs. Members of each motif
may not necessarily be element of the same point group as the sown representatives, but rather
most configurations belong to the low-symmetry C1 point group. Reprinted with permission
from Ref. [61]. Copyright 2014 by the American Chemical Society.

In the second step the minima of the LDA runs were post-relaxed while using the PBE func-

tional and vice versa. Again parameters were used that result in an energy accuracy better than

10−4 Hartree and the largest force acting on any atom of approximately 5×10−5 Hartree/Bohr

(LDA) and 3× 10−4 Hartree/Bohr (PBE). The sets consisting of local minima from all the

different runs were then merged. During this merge it was taken care to remove duplicate

configurations. Two sets of local minima were formed: one from LDA and the other from

PBE calculations. Both sets were relaxed a last time by treating the configurations as singly

charged anions using both, LDA and PBE functionals. Again, configurational duplicates that

emerged in this relaxation process were removed. The parameters for the relaxations of the

anions were chosen such that the energy changed by less than 10−4 Hartree when rotating

the configurations and the geometry optimizations were stopped as soon as 33% of the force

consisted of noise. For both functionals this happened when the largest force on any atom

was approximately 5× 10−5 Hartree/Bohr. In order to assess the accuracy of the BigDFT

pseudopotential calculations, the energetic ordering of several relaxed configurations were

compared with results obtained by means of the FHI-aims code.244 The basis set used in the

FHI-aims calculations was the extremely well converged ’tier 2’244 level with a large confine-

ment radius (onset: 6 Å). Energies agreed within less than 3 meV per atom showing that the

pseudopotentials in the BigDFT calculations were highly accurate.

In total, the above procedure resulted in roughly 900 distinct local minima for each of the four

sets.
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4.1.2 Computation of Transition States

If bond-breaking takes place, it is well known that the energies of transition states from

DFT calculations using conventional exchange-correlation functionals are usually of poor

quality.245–247 For transitions involving only minor changes in the number of bonds, it has

been argued by Zupan et al.248 that there is little difference between GGA and LDA barriers

and thus both GGA and LDA should perform equally well in this case. Ghasemi et al.109

confirmed this by comparing the transition state energies of Si8 resulting from LDA, PBE

and B3LYP calculations to diffusion Monte Carlo calculations. They found that PBE and

B3LYP are outperformed by the LDA functional. This result was explained by the fact that in

contrast to the atoms of transition states of conventional chemical reactions those of Si8 are in

a similar environment as the atoms of local minima. As a consequence the transition states

of Si8 are difficult to distinguish from local minimum configurations by visual inspection.

They concluded that DFT self interaction errors are expected to cancel to a large degree and

highly inhomogeneous environments with large density gradients are not relevant for the

calculation of the transitions states of the Si8 cluster. For the current Au−
26 cluster, the situation

is similar. In most cases only a local rearrangement of atoms takes place when going over

a transition state from one minimum to another. On basis of visual inspection, it is almost

impossible to distinguish a local minimum from a transition state. Additionally, in contrast to

the PBE functional, the LDA functional is able to predict the experimentally observed Au−
26

structures as low-energy minima and the LDA energies correlate very well with the energies

obtained from the highly accurate, but computationally more demanding, M06 meta-hybrid

functional (see Table 4.1).249 Furthermore LDA is believed to describe the gold metallic bonds

better than the PBE functional.250 For fcc gold it was shown that properties like the lattice

constant, phonon dispersion and the equation of state are reproduced more accurately by the

LDA functional than by PBE.251–254 For these reasons, the LDA functional is expected to give

reasonable transition state energies for the Au−
26 system. Therefore, this functional was used

for the transition state search.

The transition state search was performed for Au−
26 using the bar-saddle method.62 This

method efficiently identifies transition states located in between two input configurations.

The transition state search was started in the vicinity of the experimentally identified Au−
26

clusters. The initial input configurations were chosen by searching among all found local

minima for structures that are close to the experimentally identified structures. As a distance

measure the permutationally optimized root-mean-square displacement (RMSD) was used,

which is briefly recapitulated in Appx. B.167 The transition states found in this way do not

need to be connected directly to the input minima, so if required, the transition state search

had to be repeated recursively until the two input minima were connected. In order to

decide whether two minima are directly connected to a transition state, a small step in the

forward and backward direction of the negative mode at the transition state followed by a

local geometry optimization was performed. The minima and transition states that emerged

during the above connection attempts form a stationary point database which is visualized as

a disconnectivity graph73 using the disconnectionDPS129 software. For minima which seemed
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to lie behind high energy barriers, permutationally optimized RMSDs to all the other minima

in the stationary point database were computed and connection attempts to the closest

structures were performed. This procedure was iterated until 264 transition states connecting

118 minima were found. Due to the high computational cost of computing transition states, it

was not possible to compute a significantly larger stationary point database. The size of the

database is not large enough to ensure that the lowest lying paths among all of its minima

have been found. However, for the purpose of finding upper bounds on the energy along

transition paths, a fully converged disconnectivity graph is not necessary. Furthermore, during

the addition of the last 50 transition states to the stationary point database, the disconnectivity

graph did not show any significant changes.

On average, the relaxation of a transition state was stopped as soon as the largest component

of the force acting on any atom was approximately 2×10−4 Hartree/Bohr.

4.1.3 Computation of Photoelectron Spectra

The electronic density of states (DOS) for several by the MH algorithm generated low-lying

isomers of Au−
26 (typically within ∼ 1.0eV of the lowest-energy isomer) were computed by

members of the group of Prof. Xiao Cheng Zeng and were compared with the experimental

photoelectron spectra. Single-point energy calculations of these low-lying structures were

performed at the PBE0/CRENBL level of theory with the inclusion of spin-orbit (SO) effects

as implemented in the NWChem 6.1.1 package.255 Previous reports have shown that the

inclusion of the SO-effects yields almost quantitative agreement between the experimental

photoelectron spectra and computed DOS for gold clusters of various sizes and shapes.235

The first vertical detachment energies (VDEs) of each isomer were calculated as the difference

between the energies of the anionic and the corresponding neutral species at the anion

geometry. The binding energies of the deeper occupied orbitals of the anion were added to

the first VDE to approximate higher binding energy features. Each computed peak was fitted

with Gaussian functions of 0.06 eV width to yield a computed photoelectron spectrum, which

was used for the comparison with the experimental spectra of Au−
26.

4.1.4 Experimental Methods

The photoelectron spectroscopy experiment described in this section was performed by the

group of Prof. Lai-Sheng Wang. They used a magnetic-bottle apparatus equipped with a laser

vaporization supersonic cluster source and a time-of-flight mass analyzer.256 A pulsed laser

beam was focused onto a pure gold disk target, generating a plasma containing gold atoms.

Simultaneously, a pulse of high-pressure helium carrier gas was delivered to the nozzle, with

the effect of cooling the plasma and initiating the nucleation. It was previously show by Akola

et al.,257 that by carefully controlling the residence time of the clusters in the nozzle, relatively

cold and equilibrated clusters can be produced from the laser vaporization supersonic cluster

source. The cooling effects have been confirmed recently by the observation of van der
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Waals complexes of gold cluster anions with Ar or O2.229,230,258 In the present study, relatively

cold Au−
26 clusters were produced using a helium carrier gas seeded with 5% Ar. In addition,

Prof. Wang’s group was able to produce even colder Au−
26 complexed with Ar atoms, ArnAu−

26

(n = 1,2). The Au−
26 and ArnAu−

26 clusters were selected by a mass gate and decelerated before

being photo-detached by a 193 nm laser beam from an ArF excimer laser. Photoelectrons were

collected with a magnetic bottle at nearly 100% efficiency in a 3.5-m-long electron flight tube

for kinetic energy analyses. The photoelectron kinetic energies were calibrated by the known

spectrum of Au− and subtracted from the photon energy to obtain the here reported electron

binding energy spectra. The electron energy resolution was ∆E/E ≈ 2.5% (i.e., 25 meV for 1 eV

electrons).

4.2 Results and Discussions

4.2.1 Energy Landscape and Exchange-Correlation Functionals

Fig. 4.2 and Fig. 4.3 show the energy spectra of local minima that were found during the MH

runs within 0.55 eV of the respective global minima. By means of visual inspection, four struc-

tural motifs were identified: empty cages, cages filled with a single atom, the tubular cage and

hexagonal cages. The neutral and anionic systems possess the same motifs. Representatives

for each motif can be found in Fig. 4.1. As can bee seen from the energy spectra, different

functionals yield different energetic ordering for the structural motifs.

In the case of the anionic system a closer look at this circumstance was taken. Fig. 4.4a

shows the energies of the five lowest-energy configurations of each motif as obtained by the

PBE functional. Additionally, each configuration was relaxed using the LDA functional and

the energies of corresponding configurations have been connected by lines. In case of the

tubular motif only one representative could be identified and consequently only this single

tube structure is shown. Fig. 4.4a shows a significant energetic reordering of the motifs using

different functionals. The LDA functional favors filled cages, whereas according to the PBE

functional the same motif possesses a much higher energy. Fig. 4.4b shows a more detailed

plot of the energetic reordering of 25 configurations within the filled cage motif. Although

both functionals produce a different energetic ordering, the overall ordering is conserved

within the filled cage motif. This is in strong contrast to the energetic reordering of motifs.

In Fig. 4.5 the potential energies of the identified local minima are plotted versus the permuta-

tionally optimized RMSD.167 Both quantities are measured with reference to the respective

putative global minimum. In particular when compared to systems like for example C60 or

B16N16, the here investigated Au26 and Au−
26 possess a vast number of structurally diverse min-

ima within a small energy window above the putative global minimum.66,260 This can also be

seen from the energy spectra given in the Fig. 4.2 and Fig. 4.3. Using a Rosato-Guillopé-Legrand

potential, Bao et al.198 previously found similar results for large gold clusters. Considering the

predictions of structurally different minima within a small energy range above the ground
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Figure 4.2: Energy spectra of the neu-
tral Au26 based on the LDA and PBE func-
tional. Shown are all minima with en-
ergy ≤ 0.55 eV. Depicted isomers are high-
lighted using black lines in the spectra
and when neglecting minor changes in
the bond length they are identical to their
respective geometric counterparts of the
other functional. Isomers (a), (b), (c) and
(e), (f), (g) are the energetically lowest
representatives that could be found for
each of their structural motifs. Isomer
(a) [(g)] is a filled cage. According to the
LDA functional this filled cage is the puta-
tive global minimum. The PBE functional
predicts isomer (e) [(b)], an empty cage,
to be the putative global minimum. Iso-
mers (d) [(h)] (pyramid) and (i) (tube) are
previously claimed global minima243,259

of the neutral Au26 cluster. The position
of the tubular structure in the LDA spec-
trum is outside of the shown energy range.
Reprinted with permission from Ref. [61].
Copyright 2014 by the American Chemical
Society.

Figure 4.3: Same as Fig. 4.2 but for the
Au−

26 cluster. The computed photoelectron
spectra of the isomers (b), (c) and (d) [(m),
(n) and (o)] can explain the experimentally
measured photoelectron spectrum very
well (see below). Isomers (a), (e), (f), (g)
and (i), (j), (k), (l) are the energetically low-
est representatives that could be found for
each of their structural motifs. Isomers
(a) and (e) [(l) and (j)] are the energeti-
cally lowest singly filled cage and hexag-
onal structures, respectively. Isomers (g)
and (k) are the lowest empty cage struc-
tures; geometrically they are not identical.
Isomers (f) [(i)] (tube) and (h) (pyramid)
correspond to previously claimed global
minima243,259 of the neutral Au26 cluster.
The position of the pyramidal structure in
the PBE spectrum is outside of the shown
energy range. Reprinted with permission
from Ref. [61]. Copyright 2014 by the Amer-
ican Chemical Society.
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Figure 4.4: Energetic reordering of the Au−
26 minima using the PBE and LDA functionals. PBE

and LDA energies of identical isomers are connected by lines. A significant reordering of motifs
can be observed (a), whereas the overall energetic ordering within one motif is conserved
(b). The energies in panel (a) are shifted with respect to the putative global minimum of each
functional whereas in panel (b) the energies are shifted such that the energy of the lowest-
energy filled cage isomer is zeroed. Reprinted with permission from Ref. [61]. Copyright 2014
by the American Chemical Society.

state by the two different exchange-correlation functionals and the Rosato-Guillopé-Legrand

potential, it is conceivable that multiple isomers can also be observed experimentally. In-

deed, numerous isomeric forms have been observed for some small gold cluster anions

previously.233–236,258 In the case of Au−
10, at least three low-lying isomers were observed experi-

mentally beside the global minimum.258

The vast number of structurally diverse minima that can be found in a comparably small

energy range above the putative global minimum in conjunction with an exchange-correlation-

functional dependent energetic ordering of different structural motifs make Au26 and Au−
26

demanding systems for structure prediction: On the one hand one cannot be sure to use

the right exchange-correlation functional, on the other hand, more than one minimum may

contribute to experimental results. Thus, when trying to identify configurations observed in

experiment, it is advisable to introduce different structural motifs, if possible. Attention then

should be focused on the first few energetically lowest configurations of each motif, instead of

only the lowest energy structures. The complexity of the Au−
26 cluster was the major reason

why it was omitted in previous joint experimental and theoretical studies of medium-sized

gold clusters.225,235
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Figure 4.5: Potential energy versus permutationally optimized RMSD167, both measured with
respect to the corresponding calculated lowest energy configuration. The upper plots show
data for the neutral Au26 cluster using LDA (a) and PBE (b) functionals. The lower plots show
data for the Au−

26 anion using LDA (c) and PBE (d) functionals.Reprinted with permission from
Ref. [61]. Copyright 2014 by the American Chemical Society.

4.2.2 Computationally Predicted Low-Energy Configurations

Neutral Cluster

Next to the energy spectra of the neutral Au26 system (Fig. 4.2) several specific configurations

are visualized. Configurations (d) [(h)] (pyramidal structure) and (i) (tubular structure) have

previously been proposed to be the global minimum243,259 of Au26. According to the LDA

functional the tubular structure is also a local minimum. However its energy (∼ 904 meV)

is outside the energy range of Fig. 4.2. The pyramidal structure can be obtained from the

Au20 global minimum pyramid221 by adding six atoms to one face of the Au20 pyramid.259

As shown by both the LDA and the PBE exchange correlation functional, a large number

of configurations that are significantly lower in energy than the pyramidal configuration

were found, even though the LDA and PBE functionals predict different sets of low-energy

configurations. Among the 12 energetically lowest LDA configurations (≲ 278 meV) only

filled cages consisting of a single core atom surrounded by a 25-atom shell can be found. In

contrast to this, empty cages and hexagonal structures are found among the energetically

lowest structures of the PBE calculations.

The putative global minimum based on LDA calculations (Fig. 4.2a) possesses C2v symmetry

and can be obtained from the pyramidal Au26 structure by removing the leftmost, uppermost

and lowermost (with respect to the illustration given in Fig. 4.2d) corner atoms of the Au20

pyramidal part and attaching them to the right side of the illustration in Fig. 4.2d. Another

illustration of this isomer is given by Fig. 4.1a. Only two further configurations (filled cages

having C1 and C2 symmetry) were found in the energy region ≤ 200 meV.

The global minimum predicted by the PBE functional (Fig. 4.2e) is a C2v empty cage and can be
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constructed from configuration (a) [or (g)] of Fig. 4.2 by removing the core atom and attaching

it to the lowermost part of Fig. 4.2a. Fig. 4.1b shows this configuration from a different angle.

In the region below 200 meV the PBE spectrum is considerably denser compared to the LDA

spectrum. The first low-lying isomer (Fig. 4.2f) is only 13 meV above the putative global

PBE minimum. This structure is an isomer of the hexagonal motif with Cs symmetry. It is

structurally considerably different from the putative global PBE minimum.

As mentioned above, not only the putative global minima (configurations (a) and (e) of Fig. 4.2)

should be taken into consideration when trying to identify the isomers experimentally. Instead,

the first few energetically lowest configurations of each of the motifs should be compared with

future experimental results. Hence, the coordinates of all configurations that can be found

within 150 meV above the energetically lowest representative of each motif (but not less than

5 isomers) are provided in Appx. E. The structures given in Appx. E are sorted in ascending

order with respect to their energy. For the sake of completeness, also the pyramidal and the

tubular structure are given in Appx. E.

Singly Charged Anion Cluster

Just as in the neutral case, the PBE and LDA functionals predict low-energy configurations

that belong to different structural motifs for the anionic Au−
26 cluster (Fig. 4.3).

At the LDA level, only cages filled with a single atom are competing for the global minimum.

The first non-filled cage (Fig. 4.3e) can be found at an energy of 273 meV. This isomer is of

C1 symmetry, but the hexagonal motif still can be recognized. The filled cage LDA global

minimum (Fig. 4.3a) also possesses C1 symmetry.

The energetically lowest configuration predicted by the PBE functional is the tubular structure

(isomer Fig. 4.3i) with D6d symmetry. The first low-lying isomer (Fig. 4.3j) is identical to isomer

(e) at the LDA level with only minor changes in bond lengths. In the energy region above the

two low-lying isomers and below 232 meV, only empty cages and hexagonal structures are

found. The putative global minimum at the LDA level (Fig. 4.3a) is approximately 232 meV

higher in energy at the PBE level (Fig. 4.3l). Nevertheless, it is still the energetically lowest filled

cage that was found.

As will be discussed in detail in the subsequent sections, the computed photoelectron spectra

of the structures (b), (c) and (d) [(m),(n) and (o)] match very well with the experimentally

observed photoelectron spectra. According to the LDA energy ordering, structure (b) is the

third isomer, (c) is the fourth isomer and (d) is the eighteenth isomer above the LDA global

minimum. Henceforth these structures will be denoted as isomer 3, isomer 4 and isomer 18.

The coordinates of the three identified structures are given in Appx. F.

In order to further assess the low-energy nature of isomers 3, 4 and 18 and the small energy

window they can be found in, the energies of low-lying LDA isomers were re-evaluated at

the SO-PBE0/CRENBL and M06/cc-pVDZ levels of theory as implemented in the NWChem
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Iso. A B C Iso. A B C
1 0.00 0.08 0.00 17 0.16 0.26 0.19
2 0.01 0.15 0.07 18 0.16 0.32 0.14
3 0.02 0.00 0.01 19 0.16 0.20 0.17
4 0.05 0.14 0.15 20 0.17 0.26 0.20
5 0.07 0.33 0.22 65 0.27 0.17 0.35
6 0.08 0.29 0.16 74 0.29 0.21 0.21
7 0.08 0.19 0.06 84 0.31 0.16 0.37
8 0.09 0.26 0.15 101 0.34 0.18 0.37
9 0.12 0.17 0.08 106 0.34 0.32 –

10 0.12 0.17 0.21 126 0.37 0.24 0.42
11 0.12 0.09 0.08 129 0.37 0.23 0.43
12 0.13 0.32 0.26 175 0.43 0.44 –
13 0.14 0.23 0.18 178 0.44 0.34 –
14 0.14 0.19 0.13 185 0.44 0.35 –
15 0.14 0.05 0.22 187 0.44 0.41 –
16 0.15 0.31 0.24

Table 4.1: Relative energies (in eV) of Au−
26 isomers of all the motifs. The columns labeled

with ‘Iso.’ give the isomer number, which follows the LDA ranking of Fig. 4.3. Column A
shows LDA energies of geometries relaxed at the LDA level (same as in Fig. 4.3), column B
shows SO-PBE0/CRENBL energies of geometries relaxed at the LDA level and column C shows
M06/cc-pVDZ energies of geometries relaxed at the M06/cc-pVDZ level.

6.1.1 package.255 The PBE0 functional (hybrid GGA107) and the M06 functional (meta-hybrid

GGA249) are from higher rungs on ‘Jacob’s ladder’261 than the LDA and PBE functionals and

thus are expected to give a good energy ranking. In particular the M06 and M06-L functionals

have previously been shown to be accurate for gold clusters.262,263 Table 4.1 shows the PBE0

and M06 energies in eV of the low-lying isomers together with their LDA energies (isomers

1-20 being core-shell structures with a single internal atom, isomers 65, 84, 101, 106, 126 being

hexagonal, isomer 74 being tubular, and isomers 129, 175, 178, 185, 187 being empty cages).

The LDA energies are identical to those shown in Fig. 4.3. The relative energies of the core-shell

isomers 3 and 4 are consistently found to be very low (within 0.15 eV) at all three levels of

calculation. The energy of isomer 18 was found to be ∼0.3 eV at PBE0, but ∼0.14 eV using the

M06 functional which corresponds well with the ∼0.16 eV predicted by the LDA functional.

The relative energy of the previously proposed tubular isomer 74 was consistently found to

be more than 0.2 eV higher than the putative global minimum. Furthermore the predictions

for the energetic ordering of the different motifs at the LDA, PBE0 and M06 levels of theory

are found to be in good agreement with each other. It is worth to emphasize that the PBE

functional, which usually gives better atomization energies than the LDA functional, is not

able to identify the correct structural motif.
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4.2.3 Experimental Photoelectron Spectra

The experimental photoelectron spectrum of Au−
26 is shown in Fig. 4.6a (magenta color). Nu-

merous well-resolved photoelectron bands are observed below ∼5.4 eV binding energies,

which should come mainly from Au6s orbitals, whereas the more intense and almost continu-

ous features above 5.4 eV should be due to the 5d band, according to previous photoelectron

spectroscopy studies.225,235,264 Neutral Au26 is expected to be closed shell with a gap between

its highest occupied (HOMO) and lowest unoccupied (LUMO) orbitals. The X band with a

VDE of 3.46±0.03 eV should correspond to electron detachment from the extra electron in

Au−
26 that occupies the LUMO. The X’ band with a VDE of 3.75±0.03 eV should correspond to

electron detachment from the HOMO. However, the intensity of the X’ band is comparable to

that of band X and it seems too low to be from the HOMO. Instead, the X” band with a VDE

of 4.04±0.03 eV appears to be the HOMO, suggesting that the X’ band should come from a

different isomer of Au−
26 populated in the cluster beam.

Experimental evidence for this conjecture is provided by the photoelectron spectrum of the

Ar-tagged van der Waals complex ArAu−
26 (black curve in Fig. 4.6a), which should be in a colder

condition than the bare Au−
26. If normalized to the X band, the relative intensity of the X’ band

and in fact all the higher binding energy bands seem to decrease under cold conditions. Also

the photoelectron spectrum of Ar2Au−
26 was measured (not shown), which is similar to that of

ArAu−
26. This change of relative intensity between the X and X’ bands suggests that they come

from two different isomers; and the X’ should come from a slightly higher free energy isomer

so that its relative intensity is reduced at lower temperatures. Hence, the higher binding energy

bands must be a mixture of detachment features from the two isomers. As will be seen below

in comparison with the simulated DOS, bands X”, A”, and B” also have contributions from a

third isomer, whose first VDE contributes to band X”. The presence of at least three isomers

experimentally for Au−
26 is consistent with the high density of low-lying isomers predicted

computationally, making it an extremely challenging system to interpret.

4.2.4 Simulated Photoelectron Spectra of Low-Energy Isomers and Comparison
with Experimental Spectrum

For each motif of Au−
26, the photoelectron spectra of several low-lying LDA geometries were

simulated at the PBE0/CRENBL level of theory, including spin-orbit (SO) effects. At present

there exists no mathematical rigorous and systematic method that would allow to quantify the

similarity of two spectra and, therefore, the best-matching spectra had to be chosen among

all possible matches based on visual inspection and experience. As described above, there is

concrete evidence for the existence of multiple isomers in the experimental spectra. Indeed,

it was found that no single isomer could fit all the observed features of the photoelectron

spectra. As shown in Fig. 4.6b, the combination of isomer 3 (blue), isomer 4 (green), and

isomer 18 (red) was found to reasonably reproduce the experimental spectrum. Isomer 4 gives

a very low first VDE of 3.2 eV, which is in good agreement with band X, but lower by ∼0.2 eV
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Figure 4.6: a) Experimental photoelectron spectra of Au−
26 (magenta) and ArAu−

26 (black) at
193 nm (6.424 eV) photon energy; b) simulated photoelectroni spectra from three isomers
(3,4 and 18), that best match the experimental spectra; c) structures of the three isomers (all
having core-shell structures with a single internal atom) and their relative energies (in eV)
calculated at the M06/cc-pVDZ level of theory. The energies are shifted with respect to the
computationally lowest-energy isomer at the M06/cc-pVDZ level of theory (see Table 4.1).
Isomer 3 is identical to Fig.4.3b, isomer 4 is identical to Fig. 4.3c and isomer 18 is identical to
Fig. 4.3d. Reprinted with permission from Ref. [61]. Copyright 2014 by the American Chemical
Society.

relative to the observed VDE of 3.46 eV. This difference is within the error of the calculated

VDEs that were observed in previous studies.225,233–236 The second band of isomer 4 is around

3.8 eV, giving rise to a HOMO-LUMO gap of ∼0.6 eV, similar to the gap between bands X” and

X, suggesting isomer 4 contributes to band X”. Higher binding energy features from isomer 4

are all overlapped with detachment features from other isomers. The first VDE of isomer 3 is

at ∼3.55 eV, in good agreement with that of band X’, but again lower than the experimental

VDE of band X’ by ∼0.2 eV. The third band of isomer 3 gives a VDE of ∼4 eV, giving rise to
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an energy difference of ∼0.5 eV between this third and the first band. This energy difference

is in close agreement with the gap between bands A’ and X’. It is noticed that the X” band

is quite strong and it cannot be fully accounted for by the second detachment band from

isomer 3 and isomer 4 alone. Isomer 18 was found to give a high first VDE at ∼3.8 eV, which

is lower than the observed VDE of band X” by ∼0.2 eV and could be a major contributor to

this band. In fact, the second and third detachment transitions of isomer 18 are in good

agreement with bands A” and B”. Hence, only with the three isomers a good interpretation of

the observed photoelectron spectra for Au−
26 can be obtained. The temperature dependence of

the photoelectron spectra suggests that isomer 4, which corresponds to band X, should be the

lowest in free energy, whereas isomers 3 and 18 should be slightly higher in free energy because

the relative intensities of their bands decreased when the cluster was colder. Theoretically

(see Table 4.1) isomer 3 is predicted to be slightly lower in potential energy than isomer 4.

However due to low-temperature entropy effects and inaccuracies introduced by the exchange-

correlation functional, a perfect one-to-one match between the experimentally observed (low

temperature) free energy ordering and the theoretically computed (zero temperature) potential

energy ordering cannot be expected.

4.2.5 Fluxional Character of Au−
26

In order to estimate the transition rate out of a minimum across a transition state along a single

reaction path, Eyring’s transition state theory130 can be used. In this theory the transition

rate kmt at temperature T out of a minimum m with energy Em over a transition state t with

energy Et is given by

kmt =
(

kB T

h

)(
qt

qm

)
exp

(
−Et −Em

kB T

)
,

where qt is the partition function of the transition state for coordinates normal to the reaction

coordinate, qm is the partition function of the minimum, kB is the Boltzmann constant and h

is Planck’s constant. For the calculation of the following rates, it was assumed that the ratio of

the partition functions in the above formula can be neglected since rough order-of-magnitude

estimates are sufficient for the present purpose. At room temperature the transition rate across

a barrier with an energy of 0.33 eV measured with respect to the corresponding minimum is

roughly on the order of 107s−1 and across a barrier of 0.13 eV roughly on the order of 1010s−1.

At a temperature of 200 K the transition rate across the same barriers are roughly on the order

of 104s−1 and 109s−1, respectively.

Fig. 4.7 shows a disconnectivity graph of Au−
26. Two of the experimentally matched structures

(isomer 3 and 18) are located in one of two different funnels which merge in Fig. 4.7 at the low

energy of 0.33 eV. Due to only limited data available for this graph, the existence of transition

states which may merge these funnels at lower energies cannot be ruled out. Nevertheless,

the transition states shown give an upper bound on the energetic height of existing transition

pathways and thus allow to estimate whether transitions out of a minimum can be observed

on experimental time scales.
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Figure 4.7: Disconnectivity graph of Au−
26 computed at the LDA level of theory. Energies are

measured with respect to the putative global minimum (LDA). Reprinted with permission
from Ref. [61]. Copyright 2014 by the American Chemical Society.

All the minima contained in the two funnels mentioned above can be interconverted into

each other by crossing barriers not higher than 0.33 eV. For isomers 3 and 18 there even exist

reaction paths to other minima with barriers lower than 0.13 eV. One, therefore, might expect

that, in addition to isomers 3, 4 and 18, further isomers could exist in experiments. Indeed,

this possibility cannot be excluded, as features of additional isomers might be buried under

the strong peaks of the photoelectron spectra of isomers 3, 4 and 18.

All structures in the stationary point database used to generate Fig. 4.7 are core-shell structures

with a single internal atom and thus mainly atoms located in the shells of these structures are

taking part in the just mentioned transitions. In this sense the shell of Au−
26 flows around the

core atom and the cluster can be considered to be fluxional. In a previous204 study it has been

reasoned by means of a MD simulation that Au−
34 is fluxional too. The fluxional property of

clusters may promote catalytic, in particular chemisorptional, activities.204
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4.3 Conclusion

Based on a thorough ab-initio exploration of the energy landscapes of Au26 and Au−
26, it was

found that these systems possess a variety of structurally different but energetically similar

minima. Many of the found structures are significantly lower in energy than previously sug-

gested global minimum candidates, showing the importance of an unbiased global minimum

search. Based on the analysis of the energy landscape and energetic reordering between

the LDA and PBE functional a set of new configurations for Au26 could be proposed. The

configurations in this set are intended to be compared with future experimental results. Com-

pared to systems with experimentally observable unique ground states,260 both gold systems

possess a large number of metastable structures within a small energy window above their

computational putative global minima. Therefore, it is likely that a number of isomers can be

found to co-exist experimentally. By comparing the simulated photoelectron spectra of a wide

variety of isomers of Au−
26 with the experimental photoelectron spectra at different conditions,

it was possible to identify three structures which can reasonably explain the experimental

data. On the basis of a transition state search it was concluded that Au−
26 may be a fluxional

cluster system.
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5 Computationally Inexpensive
Post-Processing of Minima Hopping Data
for a Qualitative Characterization of Po-
tential Energy Surfaces*

As already has been stated several times, thermodynamic and kinetic properties of multi-

atomic systems are encoded in the topology of their potential energy surfaces (PES). For

example, the folding of a protein into its native state seems to be impossible based on the

sheer abundance of conformational possibilities (Levinthal’s paradox).265 However, assuming

a steep, funnel-like shape of the PES introduces driving forces that necessarily lead the system

towards its stable configuration, independent of its initial denaturated structure.266 In contrast,

multi funnel PES can explain why a certain system might be observed in a metastable state

and glass formation can be identified with trapping in some disordered state.3 Accurately

assessing the shape of a PES usually requires not only the computation of local minima, but

also the network of possible transitions and the corresponding energy barriers.

There exists various methods such as transition path sampling (TPS),26,27,180–184 discrete path

sampling (DPS),38,39 stochastic surface walking based reaction sampling (SSW-RS),185 or the

minima hopping guided path sampling (MHGPS) approach,18,62,64 that allow the rigorous

sampling of reactive processes, some of which even at sophisticated levels of theory, like at the

density functional level. Nevertheless, these methods are computationally very demanding,

typically even more costly than the already challenging global optimization problem.

Therefore, computationally lightweight methods that allow to receive at least a qualitative

impression of a PES are of high interest. To this end distance-energy (DE) plots that allow

to distinguish glassy from non-glassy systems have been introduced recently.66 In a DE plot

*The distance-energy plots that are briefly recapitulated in the introduction to this chapter have been published
in S. De, B. Schaefer, A. Sadeghi, M. Sicher, D. G. Kanhere, and S. Goedecker, “Relation between the Dynamics of
Glassy Clusters and Characteristic Features of their Energy Landscape”, Physical Review Letters 112, 083401 (2014)
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Figure 5.1: DE plots (left-hand side) and disconnectivity graphs (right-hand side) for BLJ
clusters with 45 and 55 atoms. The BLJ-parameters for the BLJ45 and BLJ55 clusters are
ϵAB = ϵA A = ϵBB = 0.25,σA A = 1.0,σBB = 1.3,σAB = 1.15 and ϵA A = 0.25,ϵBB = 0.125,ϵAB =
0.275,σA A = 1.0,σBB = 0.88,σAB = 0.80, respectively. For the disconnectivity graphs the
energy is given in units of ϵA A and two sets, each of roughly 500,000 saddle points, along with
the minima they connect were used for their respective construction. For the DE-plots only the
5,000 lowest minima were considered. For BLJ systems, a covalent radius is not well defined.
Therefore, the following slightly modified overlap matrix had to be used for the calculation of
the eigenvalues that define the structural fingerprints: Oi j := exp(−r 2

i , j /(2σ2
i , j )), where ri , j is

the distance between atom i and j and σi , j is the parameter of the Lennard-Jones potential.
The solid lines in the DE plots show least-square fits of linear functions to the two data sets.
Their slope is a measure for the average driving force towards the ground state. Reprinted with
permission from Ref. [66]. Copyright 2014 by the American Physical Society.

the (atomization) energies per atom of metastable configurations are measured relatively

to the global minimum and they are plotted versus their configurational distance to the

global minimum. The recently proposed structural fingerprints, which are based on the

overlap matrix of Gaussian type orbitals, can be used for measuring the configurational

distances, if a covalent radius is well defined for all atomic species in a given system.66,167

Those fingerprints are briefly recapitulated in Appx. B. Even on demanding levels of theory

like DFT, it is computationally feasible to produce DE plots, because only the geometries and

energies of a few hundred local minima, including the global minimum, are needed. The

underlying idea of DE plots is the following. A strong driving force towards the global minimum

can be expected if the global minimum is geometrically and energetically well defined. In

other words, if both the energetic and structural distances from the global minimum to all

other metastable minima are large, a system can be expected to exhibit a fast relaxation time

towards its global minimum and, therefore, it can be considered to be a non-glassy system.

On the other hand, glassy systems have a large number of energetically very similar minima
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that are separated by barriers of various heights.36 For this reason there is no strong driving

force towards the global minimum. In DE plots, this small driving force is reflected by the

existence of low energy minima, having both small and large structural distances to the global

minimum. Fig. 5.1 displays DE plots and disconnectivity graphs for two binary Lennard-Jones

(BLJ) systems having 45 atoms (13 of type A and 32 of type B) and 55 atoms (13 of type A and

42 of type B). Both from the DE plots and the disconnectivity graphs it is evident that BLJ45 is

a non-glassy system and BLJ55 is a glassy system.

In contrast to the disconnectivity graphs of Becker and Karplus,3,73 DE plots contain different

and complementary information. DE plots focus on the relation of metastable configurations

to the global minimum and display the density of the structures both with respect to energies

and with respect to configurational distances. This allows the deduction of a measure for the

driving force towards the global minimum, which is made clear by the least-square fits to the

two data sets of the DE plot in Fig. 5.1. However, DE plots give no relation between two arbitrary

minima and, therefore, cannot display topological information beyond the driving force

towards the global minimum. This is a consequence of the very modest requirements of DE

plots: only energies and geometries of the global minimum and a few hundred local minima

are needed. There is no need for transition state energies or the information, which minima are

connected with each other by only one intermediate transition state. However, in this chapter

it will be demonstrated that, based only on the data obtained during conventional MH runs, an

approximation to this connectivity information is available. Furthermore, it will be discussed

that an empirical guess for the transition state energies can be obtained, which is based solely

on fingerprint distances of local minima. The combination of the approximate connectivity

information and the guess for the transition state energies allow to generate a new type of

disconnectivity graph that shows a remarkable resemblance to disconnectivity graphs which

are based on exact transition state energies and exact connectivity information. However, as

will be discussed below, it is hoped to find a method for estimating transition state energies that

is based on less empirical grounds. Nevertheless, already the empirical method presented in

this chapter turned out to be astonishingly useful. The post-processing of the MH data for the

generation of DE plots, for the extraction of the approximate connectivity information and for

the computation of the transition state energy guess can conveniently be performed on a single

core of a standard personal computer within a negligible amount of wall-clock time. Therefore,

DE plots and the method presented below give a useful and very economical impression of

the characteristics of a PES. They can serve as a valuable aid for making a decision if investing

the computer time that is required for building a rigorous network of transitions and their

corresponding barrier energies is worthwhile and expedient with respect to a certain research

goal, or not. Furthermore, they provide a qualitative idea on the kinetics and thermodynamics

of a system. Moreover, the method presented below will be demonstrated to be a promising

tool for isolating physically reasonable intermediate metastable structures of complicated

reactions, which, for example, might be used for generating initial pathways that are needed

in methods like TPS or its discrete variant, DPS.
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Figure 5.2: Density plot of the energy differences of pairs of minima versus their RMSD
distance. The shown data sets consists of roughly 2900 minima pairs. Each pair of minima
is connected by only one intermediate transition state. The structures, energies and the
connectivity of the stationary points were determined at the DFT level of theory (PBE exchange
correlation functional) by using the MHGPS method coupled to the BigDFT code.62,64,148,149

The shown density was obtained from the corresponding scattered data by means of a Gaussian
kernel density estimate as implemented in Python’s scipy library. The red bold line shows the
same data, but averaged within 25 bins along the RMSD axis. Only bins that contain at least
5% of the number of data points of the bin with the most data points are shown.

5.1 Correlating Transition State Energies with Structural Differences

Often the energies of two structurally similar minima are very close to each other, whereas the

energy differences between structurally very different minima can be large. Nevertheless, it is

clear that structurally very different minima can have very similar energies, as well. In other

words, it is expected that for small structural differences the probability to find large energy

differences is small, whereas for large structural differences, both, small and large energy

differences between two adjacent minima are likely. Indeed, this expectation is supported by

the data shown in Fig. 5.2. For the neutral silicon cluster consisting of 20 atoms, this figure

shows the density of the distribution of energy differences of minima pairs plotted versus

the corresponding chirally and permutationally optimized RMSD distance.167 All minima

pairs used for this plot are separated by only one intermediate transition state. It is seen from

this plot, that for small RMSD values the density of the data points vanishes for large energy

differences, whereas for larger RMSD values, there is a significant density, both for small and

large energy differences. Because the variance in the energy differences is larger for increasing

RMSD values, also the average values of the energy differences rises, as is shown by the binned

average of the energy differences (red line).

Except for degenerate rearrangements, the barrier energy of every transition state can be
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Figure 5.3: Parabola model for the transition state energy. For increasing structural differences
of both minima the transition state energy is rising. Here this is illustrated by shifting the
minimum of the solid blue parabola from a to a′. The sifted parabola is visualized by a blue
dashed line.

measured with respect to the lower or the higher energy minimum to which the transition

state is connected to. In contrast to the distribution of the energy differences of neighboring

minima in an energy difference versus RMSD plot, it can be expected that there is a stronger

correlation in a plot of the uphill (larger) barriers versus the RMSD. Intuitively, this partially

should result from a combination of the fact that the absolute values of the energy differences

of two neighboring minima are a lower bound for the uphill barriers and the assumption that

the average downhill barrier energy should rise if the distance between the minima increases.

Therefore, already due to this effect, the probability to find small uphill barriers between

structurally very different minima should be expected to be small.

In order to analyze this idea more rigorously, a simple parabola model of the PES, as illus-

trated in Fig. 5.3, is used. In fact, similar parabola models can be used for the explanation

of the Bell-Evans-Polanyi principle (a linear model is sufficient, though), the Marcus equa-

tion, Hammond’s postulate and the relationship of low-curvature directions with low barrier

energies.19,161,200,267–270 The first and the latter of the just mentioned effects are used in the

escape phase of MH and are illustrated in the right-hand side of Fig. 3.1 of Sec. 3.5. In such a

parabola model, the transition state is given by the intercept (ξ,E (ξ)) of both parabolas. From

Fig. 5.3 it is evident that the barrier energies should rise with increasing distances between the

minima.

Here both parabolas are assumed to have the same curvature k (“force constant”), and their

minimum values are shifted by an amount of ϵ. The structural distance of both minima

is denoted as a. Consequently, the transition state ξ and its corresponding uphill barrier

Eu = E(ξ) is given by

ξ= a

2
+ ϵ

2ak
, (5.1)

Eu = k
( a

2
+ ϵ

2ak

)2
. (5.2)
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Figure 5.4: Same as Fig. 5.2 but for model uphill barrier energies instead of energy differences
of minima. Panel a) shows the distribution of uphill barriers plotted versus the configura-
tional distance of directly neighboring minima, as obtained by the deterministic model of
Eq. 5.2. Panel b) shows the same distribution when using the stochastic model defined by the
probability density of Eq. 5.4. Both plots use the same pairs of minima that also were used for
Fig. 5.2.

For each pair of minima, this model is applied to the data of Fig. 5.2 and the result is visualized

in Fig. 5.4a (k = 0.08Ha/Å2). In contrast to the energy differences of the minima in Fig. 5.2, this

model predicts a clear correlation between the structural difference (RMSD) of two directly

neighboring minima and the energy of the corresponding uphill barrier.

However, in real systems, the strict validity of Eq. 5.2 should not be expected. Similar to the

Bell-Evans-Polanyi principle, the present relationship is expected to be fulfilled more likely in

an average sense.19 In an attempt to obtain a plot of the barrier distributions that might be

closer to reality, the model of Eq. 5.2 is modified in the following. Given the energy difference ϵ

of a pair of minima, the uphill barrier is written as

Eu = ϵ+Ed, (5.3)

where Ed is the downhill barrier. The energy difference ϵ of the minima can be regarded as

the exactly known part of the uphill barrier. Using Eq. 5.2 and a Gaussian distribution, the

downhill barrier Ed is drawn from the distribution

ρ(Ed) ∝
⎧⎨⎩

1
σ
p

2π
exp

(
− (Ed−µ)2

2σ2

)
if Ed ≥ 0,

0 otherwise.
(5.4)

Here the mean is given by µ := k
( a

2 + ϵ
2am

)2 −ϵ (cf. Eq. 5.2) and the standard deviation of the

Gaussian part is assumed to be σ := 1
2µ. Clearly, there is no evidence that the uphill barrier
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energies actually follow this distribution, but, in the spirit of a thought experiment, the present

attempt is used to speculate on how the real uphill barrier distribution might look like. Setting

k = 0.08Ha/Å2 and drawing for every pair of minima of the data shown in Fig. 5.2 an energy

from the distribution given by Eq. 5.4 results into a data set that is visualized in Fig. 5.4b. As is

evident from this figure, despite the stochastic noise introduced by Eq. 5.4, there still is a good

correlation between the RMSD and the uphill barrier.

It remains to be verified if the energies of real (computed) uphill barriers between structurally

very different minima also tend to be larger than the energies of the uphill barriers between

structurally similar minima. If there is a breakdown in this hypothesis, it is expected that

no correlation of the type shown in Fig. 5.4 is seen. For this verification, transition states

and their directly connected minima were computed for Si20 and Au−
26 at the DFT level of

theory as implemented in the BigDFT code and for (NaCl)32 and (NaCl)29 using the Born-

Mayer-Huggins-Tosi-Fumi118–122 (BMHTF) force field. For Si20 the PBE105 functional was

used, whereas for Au−
26 the LDA86,96 functional was used and in case of the BMHTF force

field the parameters of Ref. [123] were chosen. Furthermore, transition states and the directly

connected neighbors were computed for the Lennard-Jones111,112 clusters of sizes 19, 38 and

55. Except for Au−
26, the geometries and energies of the minima, as well as their connectivity,

were established using the MHGPS method as implemented in the BigDFT suite. In the case

of Au−
26 the data was taken from Chap. 4 and it is referred to this chapter for a description of

its computation. The density plots of the uphill barrier energies versus the RMSD are given

in Fig. 5.5. As can be seen from this figure, there is indeed a good correlation between the

structural difference (RMSD) and the uphill barrier.

Though the permutationally optimized RMSD is a very natural measure for structural differ-

ences, it is very time consuming to compute, which often makes it impracticable to use. For

example, the computation of the roughly 58,000 RMSDs for the LJ55 plot in Fig. 5.5 took about

14 hours (wall clock time), despite using 150 cores in parallel. Of course, actual wall clock

times depend very strongly on the underlying hardware. Nevertheless, this example illustrates

that computing large numbers of RMSDs can be problematic in practice. Therefore, the plots

of Fig. 5.5 have been repeated using s- and p-orbital fingerprint distances instead of RMSDs

and are shown in Fig. 5.6. Again, a correlation between the structural difference measured by

the s- and p-orbital fingerprint distance and the uphill barrier energy can be observed. Using

s- and p-orbital based fingerprint distances as a measure for structural differences, the LJ55

plot in Fig. 5.6 took on the order of minutes on a single core, which is a striking advantage over

the RMSD and makes it much more useful in practice. Plots from fingerprint distances using

only s-type orbitals have a very similar appearance and are given in Fig. 5.7.

Finally, a short comment seems to be appropriate on why in the present chapter it is almost

exclusively focused on the uphill barriers. After all, as can be seen from Eqs. 5.2 and 5.3, the

same dependence of the downhill barriers on the structural distance as for the uphill barriers

is predicted, except for a constant energy shift that is given by the energy difference of both

minima. This, however, does not imply that necessarily a similar correlation as for the uphill
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Figure 5.5: Gaussian kernel density estimates of the uphill barrier energies versus the (permu-
tationally and chirally optimized) RMSD distance of minima pairs that are separated by only
one intermediate transition state. If two minima are connected by more than one intermedi-
ate transition state, only the transition state with the lowest energy was included in the data
sets used for these plots. The plot for Au−

26 was obtained from only 259 transition states. It,
therefore, is possible to show every single data point for Au−

26, which allows to demonstrate
the soundness of the Gaussian kernel density estimate. The plot for Si20 was generated from
roughly 3,000 transition states and the plots for the systems described by force fields were
obtained from roughly 50,000 to 70,000 transition states.
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Figure 5.5 (Continued.)
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Figure 5.6: Same as Fig. 5.5, but using s- and p-orbital fingerprint distances instead of the
permutationally optimized RMSD. Plots from fingerprint distances using only s-type orbitals
have a very similar appearance and are given in Fig. 5.7. The red lines are graphs of Eq. 5.6 and
are discussed in Sec. 5.2.
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Figure 5.6 (Continued.)
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Figure 5.7: Same as Fig. 5.6 but using only s-orbital based fingerprint distances.
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Figure 5.7 (Continued.)

103



Chapter 5. Computationally Inexpensive Post-Processing of Minima Hopping Data for a
Qualitative Characterization of Potential Energy Surfaces

0.00 0.02 0.04 0.06

Fingerprint Distance

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
ow

n
h

il
lB

ar
ri

er
E

n
er

gy
[H

ar
tr

ee
]

Si20: DFT barriers

0

400

800

1200

1600

2000

2400

2800

3200

Figure 5.8: Gaussian kernel density estimates and binned averages of the downhill barrier
energies of Si20 versus the structural distance measured by s- and p-orbital based fingerprints
of minima pairs that are separated by only one intermediate transition state.

barriers must be observed for the downhill barriers. The reason is, that even though two

minima might be far apart from each other, the downhill barrier can be vanishingly small if, in

return, the energy difference between the two minima is comparatively large. Indeed, plotting

the downhill barrier versus the structural difference results in a distribution that looks very

similar to the distribution of the energy differences of the minima. As an example, such a plot

is given in Fig. 5.8 for the Si20 system.

5.2 Generating Rough Overviews of Potential Energy Surfaces

In this section, a preliminary and empirical method suitable to generate qualitative connec-

tivity databases is presented. This method is based on post-processing data obtained from

one or several MH runs. Once MH runs are done, the computational cost of this method is

independent of the underlying level of theory that was used for the MH runs. On a single core

of a standard office computer, this method allows the generation of qualitative connectivity

databases within a negligible amount of wall clock time, even if the qualitative connectivity

databases shall describe PESs that are defined by computationally demanding methods, like

for example DFT. To introduce this novel method, first the term “qualitative connectivity

database” is defined. A qualitative connectivity database is understood to contain three types

of information. First, it contains all local minima visited during a certain number of MH

runs. Second, it contains the information which minima were visited consecutively by the

MH walkers and finally, also a qualitative measure for the energy needed to interconvert the

consecutively visited minima is part of a qualitative connectivity database. Furthermore, a

pair of minima visited consecutively by the MH walker will be denoted as “transition pair”.
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Figure 5.9: Shown for the LJ55 system is the relative frequency of the number of intermediate
transition states needed by the MHGPS approach as implemented in the BigDFT-suite to
connect pairs of consecutively accepted minima. The data set consists of more than 20,000
connection attempts that were stopped if the connection could not be established within 30
transition state computations.

In contrast to such a qualitative connectivity database, the stationary point database outlined

in Chap. 3 and previously defined by Wales3,38,39 contain minima, transition states and the

information to which minima the transition states are connected by minimum energy or

energy minimized pathways. Thus, a qualitative connectivity database can be seen as an

approximation to a stationary point database. The connectivity information is approximated

by the information which minima were visited consecutively by the MH walker. This is

a reasonable approximation, because the MH walkers explore the PES by means of short

MD trajectories that, at most times, have relatively moderate initial kinetic energies. As a

consequence, the geometries of transition pair members typically are very similar to each other,

a circumstance that is also used in the MHGPS scheme discussed in Sec. 3.5. Quantitative

evidence for the validity of this connectivity approximation is given in Fig. 5.9. In this figure,

the relative frequency of the number of intermediate transition states needed by the MHGPS

method to connect pairs of consecutively accepted minima is given. These numbers constitute

an upper bound to the minimum number of intermediate transition states located in between

two consecutively accepted minima. It can be seen from this figure that the majority of

consecutively accepted minima can be connected with each other by no more than two

intermediate transition states.

What remains to be discussed is, how an educated guess for the energy, which is needed to

interconvert the minima of a transition pair, can be obtained. Before describing the actual

method for obtaining such a guess, a different approach is discussed. From a theoretical

point of view, it would be very satisfying if Eq. 5.2 could be used to obtain a guess for the

transition state energy. Indeed, using a suitable value for the force constant k, it turned out to

be possible to generate disconnectivity graphs of similar quality as those based on the method
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that is presented below. However, so far, it was only possible to choose good values for k, if the

correct appearance of the disconnectivity graph was known. Unfortunately, a procedure that is

able to reliably determine the force constant and that is able to give disconnectivity graphs of

similar quality as those based on the method outlined below has yet to be found. In fact, using

inappropriate values for k can produce completely misleading disconnectivity graphs. In

contrast to this, in all tested cases, the approach discussed below produced qualitatively very

reasonable disconnectivity graphs. The following empirical method only uses the geometries

and energies of transition pairs to obtain a guess for the transition state energy. Nevertheless,

MH is gathering much more information on the PES, for example by means of the softening

procedure, the MD trajectories or the relaxation trajectories. Therefore, the possibility to

develop a method that can extract suitable quantities from these data such that Eq. 5.2, or a

similar model, could reliably be used for obtaining a measure for transition states energies

seems conceivable. For this reason, it is hoped that further research effort will render this

information accessible for the usage of generating rough characterizations of PESs.

The remainder of this section focuses on describing the empirical method that, so far, was

able to produce the best qualitative guess for the transition state energies. In this approach

the energy difference of the two minima of a transition pair is compared to the average energy

difference of minima of transition pairs that are separated by a similar structural fingerprint

distance. If the energy difference is larger than the average value at this fingerprint distance,

the uphill barrier of a transition pair is estimated as the absolute value of the energy difference

of the two transition pair members. Otherwise, the uphill barrier is estimated as the average

absolute value of energy differences at this fingerprint distance. In practice, this is done by

plotting the absolute values of the energy differences of the minima of each transition pair

versus their fingerprint distance and computing binned averages of this data. A continuous

function describing this binned average is obtained by means of a fitting procedure. Of course,

this approach does not give a quantitative estimate of the energy of each single barrier, but

it is intended to reproduce the energy scale and roughly the average trend in uphill barrier

energies that was discussed in the previous section. More explicitly, assuming the minima

energies of a transition pair to be E1 and E2 with E1 ≤ E2, the absolute energy Et needed to

interconvert the two minima is estimated as

Et := max(E1 +Eu(a), E2) , (5.5)

where the max-function returns the larger of its two arguments and the uphill barrier energy

Eu is a function of the s-only or s- and p-overlap fingerprint distance a. Eu is defined as

Eu(a) :=αexp(−β|a +γ|δ), (5.6)

where the parameters α, β, γ and δ are obtained by a fit to the binned averages of the energy

differences of the minima of transition pairs. The fitting function given in Eq. 5.6 is a heuristic

and pragmatic choice that turned out to work well in all tested cases. Of course, other func-

tions can be chosen, if they reasonably reproduce the binned averages and, thereby, reproduce
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Figure 5.10: Fit of Eu as defined in Eq. 5.6 to the binned averages of the energy differences
of (NaCl)32 transition pairs, as modeled by the BMHTF force field, versus their structural
difference measured by the overlap matrix fingerprint distance using s- and p-type orbitals. 25
bins were used for grouping the roughly 28.000 data points. Of those 25 bins, only those that
contain at least 5% of the data points of the bin with the most data points are shown and were
used for the fit. The values of the fitting parameters are α= 0.2449 Ha, β= 0.0128, γ= 0.0445
and δ=−2.0159.

the energy scale and the average tendency of increasing barrier heights for increasing struc-

tural differences. The fitting itself is performed with the help of the nonlinear least-squares

Marquardt-Levenberg algorithm as implemented in the gnuplot code.271–273 Of course, other

fitting methods can be used, because Eu is only required to provide a continuous function of

the qualitative trends for the uphill barrier energies. A plot exemplifying such a fit is given in

Fig. 5.10 for the case of (NaCl)32.

It turned out that by using Eq. 5.5 for obtaining transition state energy guesses, it is possible

to produce disconnectivity graphs that reasonably reflect the characteristics of a PES. Before

presenting these disconnectivity graphs, it is appropriate to discuss why the reasonable

performance of Eq. 5.5 should present no mystery. To see this, first it is realized that Eq. 5.5

splits up the transition pairs into two sets.

In the first set, the uphill barrier of a transition pair is guessed by means of Eq. 5.6. In Fig. 5.6,

the fitting function Eq. 5.6 is plotted on top of the uphill barrier distributions of Si20, (NaCl)29,

(NaCl)23, LJ19, LJ38 and LJ55. From these plots it is evident that the binned average of the

absolute values of the energy differences of transition pair minima is a reasonable guess for

the uphill barrier energy. Eq. 5.6 prevents the assignment of low transition state energies

to transition pairs with structurally very different minima and, therefore, is in agreement

with the results of Sec. 5.1. This agreement is essential for an acceptable reproduction of

the characteristics of a PES. Otherwise, as will be seen from the disconnectivity graphs that

are presented below, superbasins are likely to be merged, which can result into a completely

misleading appearance of a PES. Furthermore it can be seen from Fig. 5.6 that the uphill barrier
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energy which is assigned to a transition pair corresponds in most cases to a not completely

unlikely uphill barrier energy at a given structural distance. As was demonstrated by Fig. 5.9,

the minima of many transition pairs are separated by only one intermediate transition state

and it is clear that the trend of increasing uphill barrier energies with increasing structural

distances that was described in Sec. 5.1 can be applied to these transition pairs. However,

there is no strict guarantee for the minima of a transition pair to be in a close neighborhood

to each other. Despite this fact, it is still the same trend that is used to obtain a guess for

the barrier energies of those transition pairs. At a first glance, this might be surprising since

two structurally very different minima, which only can be interconverted into each other by

crossing many intermediate transition states, might very well be separated by a low overall

barrier. For example, this can be the case if the pairwise structural distances of all intermediate

minima are small. Using a measure for the transition state energies that is based on the

correlation discussed in Sec. 5.1, a high barrier energy will be assigned to the direct transition

between such minima. However, this is not a disadvantage, but rather a desirable effect.

Typically, the analysis of a qualitative connectivity database will focus on low energy pathways.

In such an analysis, the direct interconversion of those far apart minima is disfavored due

to the high energy that is assigned to their direct interconversion. In contrast, low barrier

energies are properly assigned to the pathway that leads over the large number of pairwise

structurally similar minima, which allows for its identification.

In the second set, the uphill barriers of transition pairs are approximated by the energy of the

energetically higher minimum. For transitions with downhill barriers that are small compared

to the uphill barrier, this is a sufficient approximation. However, if the energy difference be-

tween two minima is small and their structural difference large, this approximation is not only

quantitatively, but also qualitatively very inaccurate. Fortunately, Eq. 5.6 rigorously prevents

the latter transition pairs from being included into this second set. This second set only con-

tains transition pairs with above-average energy differences with respect to a given structural

distance. Therefore, for those transition pairs for which a significant underestimation of the

transition state energy endangers a reasonable reproduction of the overall PES characteristics

in a disconnectivity graph, the uphill barriers are not estimated by the energy difference of the

involved minima.

Fig. 5.11 displays disconnectivity graphs for Si20, (NaCl)29, (NaCl)32, LJ19, LJ38 and LJ55. As

above, the PES of Si20 was computed at the DFT level of theory as implemented in the BigDFT

code (PBE exchange correlation functional). For the sodium chloride clusters, again the

BMHTF force field was used. No disconnectivity graphs are presented for Au−
26 because only

the local minima, but not the complete minima hopping history, were archived from the MH

runs that were performed in the course of the work presented in Chap. 4. The panel labels of

Fig. 5.11 follow the scheme (x.n), where “x” is one of a, b, c, d, e or f and represents the system

(a=Si20, b=(NaCl)29, c=(NaCl)32, d=LJ19, e=LJ38 and f=LJ55) and n runs from one to three. Dis-

connectivity graphs in the panels (x.1) and (x.2) (the left and middle column of Fig. 5.11) are

based on qualitative connectivity databases, where for the (x.1) panels the barrier energies

were set to the energy of the higher minimum and for the (x.2) panels the barrier energies were
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Figure 5.11: Disconnectivity graphs for Si20 (panels (a.n)), (NaCl)29 (panels (b.n)), (NaCl)32

(panels (c.n)), LJ19 (panels (d.n)), LJ38 (panels (e.n)) and LJ55 (panels (f.n)). The graphs in
panels (x.1) and (x.2) are based on qualitative connectivity databases. For the (x.1) panels, the
barriers were eliminated, whereas the approximations to the barrier energies described in
Sec. 5.2 were used for the (x.2) panels. Reference graphs based on stationary point databases
that were sampled by the MHGPS approach are shown in the rightmost column (panels (x.3)).
The energy scale is in Hartree (Si20, (NaCl)29, (NaCl)32) and in Lennard-Jones units (LJ19, LJ38,
LJ55). 109
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Figure 5.11 (Continued.)
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approximated by Eq. 5.5 and the above described fitting procedure. The (x.2) disconnectivity

graphs will also be denoted as “fingerprint disconnectivity graphs”. For the center column of

Fig. 5.11, fingerprint distances based on s- and p-orbitals were used. Disconnectivity graphs

in the rightmost column of Fig. 5.11 (panels (x.3)) are based on stationary point databases

that were generated by means of the MHGPS approach of Sec. 3.5. These standard discon-

nectivity graphs are considered as the reference for the present purpose. For each system,

all three disconnectivity graphs show the same number of minima, however, not necessarily

the identical minima. This is, because the stationary point databases are usually much more

detailed, because they were thoroughly sampled by the MHGPS approach in order to gen-

erate exact reference disconnectivity graphs. In the following, rough sizes of the underlying

databases are given in the format [n;m]sys, where n indicates the number of transition pairs

in case of qualitative connectivity databases and the number of transition states in case of the

stationary point databases that were used for the standard graphs. The number of distinct

minima is indicated by m and the system is indicated by the subscript. Qualitative connectivity

databases: [7,000;5,000]Si20 , [82,000;71,000](NaCl)29 , [28,000;25,000](NaCl)32 , [1,800;1,100]LJ19 ,

[87,000;64,000]LJ38 , and [35,000;33,000]LJ55 . Stationary point databases: [3,400;2,000]Si20 ,

[200,000;171,000](NaCl)29 , [68,000;61,000](NaCl)32 , [65,000;14,000]LJ19 , [68,000;45,000]LJ38 , and

[59,000;49,000]LJ55 .

Even if only using the connectivity as provided by the qualitative connectivity database, but

eliminating all barriers, the double-funnel landscape of Si20 is clearly visible (Fig. 5.11a.1),

nevertheless, the appearance of the disconnectivity graph is improved by using the fitting

procedure for approximating transition state energies (Fig. 5.11a.2). It should be pointed

out that MHGPS (Fig. 5.11a.3) found the energy landscape of Si20 to have a distinct double-

funnel character. This finding is not essential for demonstrating the viability of qualitative

connectivity databases, but to the best of the knowledge of the author this is, in itself, a

previously unreported result. Though, for Si20, the most important feature of the system is

already visible in the (a.1) panel, the same is not true for the remaining systems. Except for

Si20, completely eliminating the barriers results in disconnectivity graphs that correspond to

extreme structure seekers and the true topology of the PESs is not visible in the (x.1) panels. In

contrast to this, the fingerprint disconnectivity graphs in the (x.2) panels exhibit a remarkable

resemblance to the standard disconnectivity graphs shown in the (x.3) panels of Fig. 5.11.

The fingerprint disconnectivity graphs based on s- and p-orbital fingerprints are slightly

more similar to the standard disconnectivity graphs than those based only on s-orbitals and

shown in Fig. 5.12. Nevertheless, also the fingerprint disconnectivity graphs based on the

s-only fingerprints provide a striking resemblance to the standard disconnectivity graphs, in

particular if taken into account that generating fingerprint based disconnectivity graphs is a

quasi-free lunch post-processing of MH data.

Besides for generating disconnectivity graphs and qualitatively judging the kinetics and ther-

modynamics of PESs, qualitative connectivity databases can also be used to extract well

aligned sequences of minima that can be hoped to lie on a low-energy pathway between
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Figure 5.12: Same as Fig. 5.11 but using s-overlap fingerprints for the disconnectivity graphs
in the center column.
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Figure 5.12 (Continued.)
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Figure 5.13: Two energy minimized pathways connecting the two lowest minima of Si20 (DFT,
PBE). The pathway in panel (a) was obtained by extracting a sequence of minima from the
qualitative connectivity database and using this sequence of minima as input for the MHGPS62

code. Panel (b) shows a pathway that was extracted from a stationary point database sampled
by entirely unbiased MHGPS runs (as described in Sec. 3.5). The shown pathways are SQNM64

trajectories obtained by relaxations from the transition states after stepping away a small
distance in positive and negative direction of the negative eigenmode. The transition states
in the MHGPS runs were tightly converged by means of the SQNS64 method. The red arrows
indicate the highest energy transition states along the pathways. In both pathways, the highest
energy transition states are identical.

two given states. Such minima sequences are of great importance, because they provide

promising starting points for generating initial pathways that are needed for methods like TPS

or its discrete variant, DPS.26,27,38,39,180–184 For non-trivial reactions involving large structural

changes such a generation of initial pathways is in itself a very difficult task and no generally

applicable solution seems to exist, so far.192 Isolating a suitable sequence of minima from a

qualitative connectivity database can be done by applying a modified Dijkstra’s algorithm

which in a first round searches for a path that minimizes the maximum barrier at any of its

transitions and in a second round minimizes with respect to the number of intermediate

transitions (already mentioned and used in Sec. 3.1). Of course, the thus isolated pathways

are not necessarily complete in the sense that it might not be possible to connect the two

minima of a transition pair by only one single intermediate transition state. However, the

isolated sequence of minima represents minima that were visited in consecutive order by an

MH walker. Therefore, they are suitable for getting connected by the MHGPS code (instead of

the usual sequence of accepted MH configurations).

For the Si20 system a sequence of minima between the putative global minimum and the

putative second lowest minimum was extracted from the qualitative connectivity database. For

this sequence of minima, all intermediate transition states and further emerging intermediate

minima were determined by means of the MHGPS code as implemented in the BigDFT suite.

114



5.2. Generating Rough Overviews of Potential Energy Surfaces

A pathway given by the trajectories of the SQNM energy minimizer64 is shown in Fig. 5.13a.

This pathway consists of 27 intermediate transition states. Fig. 5.13b shows a lowest barrier

pathway that was extracted from the stationary point database which was sampled by means of

unbiased MHGPS runs and already used for the standard disconnectivity graphs in Fig. 5.11a.3.

The pathway in Fig. 5.13b consists of 20 intermediate transition states. Remarkably, both

paths exhibit the same highest energy transition state which is highlighted by the red arrows

in Fig. 5.13. Still, the path extracted from the stationary point database (Fig. 5.13b) is shorter

than the path in Fig. 5.13a, both in terms of the integrated path length and in terms of the

number of intermediate transition states.

Of course, there is no guarantee that extracting a sequence of minima from a qualitative

connectivity database and connecting these minima by searching intermediate transition

states will result in a pathway that has the same highest barrier as the pathway with the lowest

highest barrier that is contained in a thoroughly sampled stationary point database. However,

computer experiments performed for the LJ38 cluster indicate that physically reasonable path-

ways can be extracted from qualitative connectivity databases. Using the modified Dijkstra’s

algorithm, a sequence of minima was extracted from the complete qualitative connectivity

database for LJ38. By successively removing the highest energy transition along the lowest

barrier pathway from the qualitative connectivity database, this process was repeated four

more times. In this way, five different sequences of minima were obtained. Again, for each

sequence, missing intermediate minima and transition states were added by means of the

MHGPS code. This procedure resulted in four pathways with non-identical highest barriers,

which are shown in Fig. 5.14. The dashed line at an energy of −169.708 LJ units indicates the

highest barrier along the lowest-known barrier pathway.2,35 The highest barriers along the

pathways in Fig. 5.14 are not much higher than this lowest-known barrier.†

†For example, in the case of argon 1 LJ energy unit corresponds to roughly 10 meV.114–116
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Figure 5.14: Energy minimized pathways connecting the two lowest minima of LJ38. The
pathway in panel (a) was obtained by extracting a sequence of minima from the complete
qualitative connectivity database. Panels (b), (c) and (d) show pathways that were obtained by
successively removing the highest energy transition along the lowest-barrier pathway from
the qualitative connectivity database. Using the sequences of the extracted minima as input
for the MHGPS62 method, complete pathways were reconstructed. The SQNS64 and SQNM64

methods were used for converging to transition states and relaxing to the connected minima.

116



5.3. Conclusion

5.3 Conclusion

Based on a set of qualitatively different systems that exhibit covalent, metallic or ionic bonds, it

was found that uphill barrier energies of transition states between directly connected minima

tend to increase with increasing structural differences of the two minima. Based on this insight

it also turned out that post-processing MH data at a negligible computational cost allows

to obtain qualitative topological information on PESs that is stored in so called qualitative

connectivity databases. These qualitative connectivity databases can be used for generating

fingerprint disconnectivity graphs that allow to obtain a qualitative idea on thermodynamic

and kinetic properties of a system of interest. Besides allowing to asses system properties

without the need of a computational expensive explicit sampling of transition states and

the assessment of the PES’s connectivity based on minimum energy or energy minimized

pathways, this method also serves as a valuable tool in terms of deciding if a certain multi-

atomic system may exhibit desired properties in advance of investing significant resources for

assessing theses properties more rigorously.
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Using the minima hopping global optimization method at the density functional (DFT) level of

theory, new low-energy structures for neutral Au26 and its anion were found. The local-density

and a generalized gradient approximation of the exchange-correlation functional predicted

different structural motifs. A vast number of isomers within a small energy range above the

respective putative global minima were observed with each exchange-correlation functional.

Photoelectron spectroscopy of Au−
26 under different experimental conditions revealed defini-

tive evidence of the presence of multiple isomers, consistent with the theoretical predictions.

Comparison between the experimental and simulated photoelectron spectra suggested that

the photoelectron spectra of Au−
26 contain a mixture of three isomers, all of which are low-

symmetry core-shell-type clusters with a single internal gold atom. A disconnectivity graph for

Au−
26 was presented that was computed completely at the DFT level. The transition states used

to build this disconnectivity graph were complete enough to predict Au−
26 to have a possible

fluxional shell, which can facilitate the understanding of its catalytic activity.

Motivated by the work on the disconnectivity graph for Au−
26, the minima hopping guided

path search (MHGPS) method was developed. Based on minima hopping (MH), MHGPS uses

physically realizable molecular dynamics (MD) moves in combination with an energy feedback

that guarantees the escape from any potential energy funnel. The energy conservation in the

MD moves limits the heights of crossed potential energy barriers. Furthermore, the MD moves

are short and, as a consequence, the consecutively accepted minima are structurally similar to

each other. Therefore, consecutively accepted minima along the MH trajectory are particularly

suitable as input structures for methods capable of finding transition states between two

minima. Within the MHGPS code, the required iterative search for all the intermediate

transition states between two consecutively accepted minima is fully automatized. The

MHGPS approach does not rely on human intuition and PESs are probed in a completely

unbiased fashion. MHGPS, therefore, does not fail to explore unforeseen and unexpected

features of PESs. For Lennard-Jones benchmark systems, MHGPS was compared to transition

path sampling (TPS) and a further previously known approach for the exploration of potential

energy landscapes that is based on deterministic eigenvector following (EFE). Compared to

these methods, MHGPS reduces the cost of finding complex reaction pathways by over one
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order of magnitude. Furthermore, in contrast to TPS and EFE, MHGPS could successfully

find the lowest-barrier pathways of LJ38 in all tests. When performing the same number of

transition state computations, the MHGPS method was observed to detect a significantly

larger number of distinct transition states than the EFE method. In a first application, MHGPS

was used to study the 75-atom and 102-atom Lennard-Jones systems. For the 75-atom system

new pathways were found with highest barrier energies that are significantly lower than the

highest energy along any previously published lowest-barrier pathway. Furthermore, many of

these pathways contain a smaller number of intermediate transition states than the previously

published lowest-barrier pathway. In case of the 102-atom system, MHGPS found a previously

unknown and energetically low-lying funnel.

In its core, MHGPS relies on the efficient and reliable computation of stationary points. For

this purpose, a novel stabilized quasi-Newton minimization (SQNM) method and a stabilized

quasi-Newton saddle finding approach (SQNS) were developed. Both optimizers are based on

a technique that allows to obtain significant curvature information from noisy potential energy

surfaces (PESs). These new optimizers replaced their initially used counterparts in the MHGPS

code. The minimizer and the saddle finding method were compared to well established

alternative methods, both at force field and DFT level of theory. In these benchmarks, the

dimer saddle finding method55–58 required between 1.4 and 7.6 times more energy and force

evaluations for converging to a saddle point than the novel SQNS method. With respect to

the number of wave function optimization iterations needed in DFT computations, the novel

minimizer has demonstrated to be comparable in efficiency to the L-BFGS137,138 method,

however, without suffering from instabilities on noisy PESs – an issue the L-BFGS method is

known to be prone to.132

Using binary Lennard-Jones clusters, it was argued that the relation between structural dis-

tances as given by fingerprint distances and energy differences, both measured between local

minima and the global minimum of a system, can be used to discriminate glass-like from

non-glassy PESs. Furthermore, it was found that uphill barrier energies of transition states

between directly connected minima tend to increase with increasing structural differences

of the two minima. At force field and DFT level of theory, this finding was demonstrated for

different systems exhibiting covalent, metallic or ionic bonds. Based on an empirical post-

processing approach of MH data, this insight can be exploited to obtain qualitative topological

information on PESs that is consolidated in so called qualitative connectivity databases. From

these databases, novel fingerprint disconnectivity graphs can be generated, which give a first

qualitative insight into the thermodynamic and kinetic properties of a system. In the context

of validating this empirical approach, the MHGPS method was applied to the PES of Si20 at

the DFT level of theory to generate a reference database of minima, transition states and the

information, which transition states are connected to which minima.

In retrospect, the MHGPS method and the stabilized quasi-Newton optimizers are possibly

the most important achievments of this thesis. Currently, the MHGPS method is used at the

DFT level of theory for probing the effects of system size and charge on the character of PESs
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of cluster systems. With the presentation of the DFT disconnectivity graph of Si20 in Sec. 5.2,

a first, partial result of this MHGPS study was already mentioned within the scope of this

thesis, albeit only as a side note in the context of demonstrating the viability of the qualitative

connectivity databases. Nevertheless, already the PES of Si20 is in itself an interesting and

novel result. To the knowledge of the author, such an extreme double-funnel landscape has

not been reported before at the DFT level of theory.

Hitherto MHGPS turned out to work well for the purpose of finding low-energy reaction

pathways on PESs. It, therefore, is planned to extend its application to the investigation of

reactive processes on surfaces. The MHGPS approach seems to be mainly limited by the

available computer resources. For this reason, methods akin to those in Chap. 5 that allow the

qualitative prediction of the characteristics of a PES are in the focus of further research. Such

methods can allow to use the MHGPS code in a more target-oriented fashion.
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A Eliminating Translational and Rotational
Modes

In the following, techniques to eliminate overall translations and rotations from a given vector

v are shortly outlined. In favor of the usage of a common physical terminology, v ∈ R3N is

considered to be a velocity vector of an N -atom system. The presented techniques, however,

are not limited to velocities only, but can be applied to any vector that is used to displace

atomic coordinates. Furthermore, all atoms are assumed to have unit mass.

The normalized translations t̂i := ti /|ti |, i = x, y, z (see Eq. 1.6) are orthonormal and a vector v′

without any translational contributions can be obtained from v by projecting out the transla-

tional components. Under the assumption of unit masses, this is equivalent to subtracting the

center of mass velocity from every atomic velocity:

v′ = v−
∑

i={x,y,z}
(v · t̂i )t̂i . (A.1)

The elimination of the rotational components with respect to the center of mass can also be

achieved by simple projections, however, the vectors corresponding to overall rotations of

Eq. 1.7 first have to be orthonormalized by a suitable orthonormalization scheme. The posi-

tions R = (r1, . . . ,rN ) of all N atoms, and with it the rotation vectors ρi , i = x, y, z, are assumed

to be expressed with respect to the center of mass. Gram-Schmidt orthonormalization274,275
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yields three orthonormal vectors ρ̂i , i = x, y, z that span the rotational subspace:

ρ̂x := ρx

|ρx |
(A.2)

ρ̃y :=ρy −
(
ρy · ρ̂x

)
ρ̂x

ρ̂y :=
ρ̃y

|ρ̃y |
(A.3)

ρ̃z :=ρz −
(
ρz · ρ̂x

)
ρ̂x −

(
ρz · ρ̂y

)
ρ̂y

ρ̂z := ρ̃z

|ρ̃z |
. (A.4)

A velocity vector v′′ without any rotational components can be obtained from v′ by a simple

projection:

v′′ := v′−
∑

i={x,y,z}
(v′ · ρ̂i )ρ̂i . (A.5)

For linear molecules, care must be taken during the normalization of above equations as some

rotational vectors can vanish and consequently must not be normalized.

Another technique for the elimination of rotational components not depending on the explicit

knowledge of the rotation vectors ρi is inspired by the classical mechanics of rigid bodies.

Again assuming unit masses for all atoms, the angular momentum is given by

L =
N∑

i=1
ri ×vi (A.6)

= Iω, (A.7)

where I is the real symmetric inertia tensor andω the angular velocity. The tangential velocity

vt ,i of atom i is given by vt ,i =ω× ri = (I−1L)× ri . With that, one obtains the velocity v′′i of

atom i , from which the rotational (tangential) components are eliminated:

v′′i = v′i −
(
I−1L

)× ri (A.8)

For linear molecules, the inertia tensor is not invertible due to vanishing principal moments of

inertia (eigenvalues of the inertia tensor). Therefore, in practice, this idea can be implemented

by going to the principal axes frame which is defined by the eigenvectors l j , j = 1, . . . ,3 of the

inertia tensor. In the principal axes frame, the tangential velocity of the i−th atom can be
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written as

vt ,i =
3∑

j=1
ω j l j × ri

=
3∑

j=1
ω j ω̃ j ,i , (A.9)

where the ω j are expansion coefficients of the angular velocity with respect to the principal

axes of inertia and ω̃ j ,i := l j × ri . The rotational components of v′ are now given by the

projection of v′ onto the subspace spanned by the ω̃ j := (
ω̃ j ,1, . . . ,ω̃ j ,N

)
that correspond to the

non-vanishing principal moments of inertia.
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B Measuring Structural Differences

Probably the most natural way to asses the structural difference of two N -atom configurations

RA = (RA
1 , . . . ,RA

N ) and RB = (RB
1 , . . . ,RB

N ) is to shift and rotate the two geometries and to per-

mute the indices of their atoms such that their root-mean-square displacement (RMSD) is

minimal. In more rigorous mathematical terms this means:167

RMSD(RA ,RB ) := 1p
N

min
P,U

∥R1 −U R2P∥, (B.1)

where it was implied that the {RA
i }i=1,...,N and {RA

i }i=1,...,N are measured with respect to their

respective centroids. In the above formula, P and U are a N ×N permutation and rotation

matrix, respectively. There exist efficient methods to solve both the rotational and the per-

mutational problem separately from each other. For example, Kabsch’s algorithm or a more

recent quaternions based approach can be used to find the optimal rotation.276,277 The per-

mutational assignment problem can be solved in polynomial time by means of the Hungarian

algorithm.278,279 However, the rotational and the permutational problem are not independent

of each other. In order to find the optimal rotation, the optimal permutation has to be known

and vice versa. In particular, this is a problem if RA and RB represent geometrically distinct

atomic configurations. Recently, Sadeghi et al. approached this problem in a Monte Carlo

fashion.167 Unfortunately, the practicality of this Monte Carlo method is limited, because the

time to find the optimal RMSD scales exponentially with the number of permutable atoms.167

Motivated by this, Sadeghi introduced167 configurational fingerprints which are given by the

eigenvalues of an overlap matrix

Oi j :=
∫
Φl

i (r)Φl′
j (r)dr. (B.2)

TheΦi are Gaussian type orbitals centered on the atom at position ri

Φl
i (r) ∝ (x −xi )lx (y − yi )ly (z − zi )lz exp(−αi∥r− ri∥2), (B.3)

where l = (lx , ly , lz ) is a multi-index indicating the angular momentum L = lx + ly + lz . Depend-

ing on the value of L, the orbitals are classified as s-type orbitals (L = 0), p-type orbitals (L = 1),
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d-type orbitals (L = 2), and so on. The orbital widthαi is usually chosen inversely proportional

to the covalent radius of the atom species on which the orbital is centered on. The set of

sorted overlap matrix eigenvalues for a given cluster can be considered to form a vector which

defines the fingerprint of the configuration. The structural difference between two clusters is

given by the root mean square of the difference vector between the two fingerprint vectors

and throughout this thesis, this distance measure is denoted as “fingerprint distance”. Be-

sides being invariant under translations, rotations and reflections of the configuration, these

fingerprints are also invariant under permutation of the atomic indices. In contrast to the

RMSD, the overlap-matrix based fingerprints are computationally cheap and turned out to be

reliable for distinguishing distinct geometrical configurations.167 For this reason, in addition to

comparing energies, these fingerprints are used in the minima hopping guided path sampling

approach (see Sec. 3.5) for identifying identical configurations. Furthermore, in Chap. 5 it is

demonstrated that these fingerprints can be used to obtain an educated empirical guess for

the amount of energy that is needed for the interconversion of two atomic configurations.
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C Stability of Hessian Eigenvectors*

The curvature along an arbitrary vector d, evaluated at the position x0, is defined as

Cx0 (d) = dT Hx0 d

dT d
, (C.1)

where Hx0 is the Hessian at x0. If d was an eigenvector vi of Hx0 , Cx0 (d) would give the

corresponding eigenvalue λi . Under the constraint of normalization, the gradient ∇C (d)||d|=1

is given by

∇C (d)||d|=1 = 2(Hd−C (d)d) . (C.2)

For the case that d is an eigenvector, Eq. C.2 vanishes, which shows that the eigenmodes are

stationary points of Cx0 (d).

What remains to be shown is that among all these stationary directions, only the lowest mode

is a local minimum and, with it, also is the global minimum. As a consequence, rotating a

slightly misaligned dimer according to its rotational force will lead back to this mode. The

eigenvectors vi of the real symmetric Hessian Hx0 constitute an orthonormal basis, which

allows to expand an arbitrary direction d in terms of the eigenvectors. That is, d = ∑
i ci vi ,

where the coefficients ci are assumed to fulfill the normalization condition
∑

i c2
i = 1. Inserting

this into Eq. (C.1) and using the orthonormality of the eigenvectors gives

Cx0 (d) =
∑

i
c2

i λi = c2
l λl + c2

mλm + c2
nλn +

∑
i∉{l ,m,n}

c2
i λi . (C.3)

There are three cases to consider:

• m corresponds to the lowest eigenvalue: Eq.(C.3) is minimal for the set {cl = 0,cm =

*The proof presented in this appendix has been published in B. Schaefer, S. Mohr, M. Amsler, and S. Goedecker,
“Minima Hopping Guided Path Search: An Efficient Method for Finding Complex Chemical Reaction Pathways”,
The Journal of Chemical Physics 140, 214102 (2014). Reprinted with permission. Copyright 2014 by the American
Institute of Physics.
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Appendix C. Stability of Hessian Eigenvectors

1,cn = 0,ci = 0}, proving that the lowest mode corresponds to a minimum.

• m corresponds to the highest eigenvalue: Eq.(C.3) is maximal for the set {cl = 0,cm =
1,cn = 0,ci = 0}, proving that the highest mode corresponds to a maximum.

• m corresponds neither to the lowest nor to the highest eigenvalue: Without loss of

generality, it is assumed that λl < λm < λn . Then, for some ϵ in (0,1], the coefficients

{cl = ϵ,cm = 1−ϵ,cn = 0,ci = 0} result in C <λm , whereas {cl = 0,cm = 1−ϵ,cn = ϵ,ci = 0}

results in C > λm . Therefore, all the modes that do not correspond to the lowest or

highest Hessian eigenvalue are saddle points of C (d).

132



D The Explosion Condition of Minima Hop-
ping

Suitably choosing the MH parameters guarantees increasing (exploding) kinetic energies if

the MH walker is stuck in some region of a PES. The explosion condition has previously been

described in Ref. [199]. For the sake of being self-contained, the explosion condition is restated

here.

At some time during a MH run, there are No,a old (previously visited) minima that were

accepted and No,r old minima which were rejected. In total, the number of old (revisited) and

new minima is given by No = No,a+No,r and Nn = Nn,a+Nn,r, respectively. Similar, the number

of accepted and rejected minima can be counted as Na = No,a +Nn,a and Nr = No,r +Nn,r. The

number of same minima is denoted as Ns. This count is increased if MH did not escape from a

local minimum. For the defintion of the parameters that are used in the following, it is referred

to Sec. 3.5.

MH is stuck in some region of the PES if Nn,a = No,r = 0. In order to escape from such a region,

the kinetic energy is required to increase on average. That is

β
Ns
s β

No
o β

Nn
n =βNs

s β
No,a
o β

Nn,r
n

!> 1. (D.1)

Because βs > 1, this is equivalent to

β
No,a
o β

Nn,r
n

!≥ 1. (D.2)

Taking the logarithm of this expression, and rearranging it, it can be seen that the requirement

for an increasing kinetic energy is fulfilled, if

No,a

Nn,r
≥ log

(
β−1

n

)
log

(
βo

) (D.3)

An expression for No,a/Nn,r is obtained by requiring the Ediff parameter to be unchanged on
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Appendix D. The Explosion Condition of Minima Hopping

average, such that

αNaαNr =αNo,aαNn,r != 1. (D.4)

Taking the logarithm and rearranging gives

No,a

Nn,r
= log(αr)

log
(
α−1

a
) . (D.5)

Inserting Eq. D.5 into Eq. D.3 results in the explosion condition18,199

log(αr)

log
(
α−1

a
) ≥ log

(
β−1

n

)
log

(
βo

) . (D.6)
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E Coordinates of Au26

In this section the coordinates of neutral Au26 isomers are given in the xyz file format. All

configurations that were found within 150 meV above the energetically lowest representative

of each motif are provided (but not less than 5 isomers). All energies are given with respect to

the putative global minimum of the respective exchange-correlation functional.

E.1 Empty Cage Motif

26
Distances in Angstroem, Energy = 0.0000000E+00 eV (PBE)
Au 5.43416485940463900E+00 -1.30820851574064645E-01 3.07031566513054432E+00
Au 1.19601847768324276E+00 1.98360205681964152E+00 4.22337019757839549E+00
Au 1.40986642993954714E+00 4.73942283165761058E+00 3.40582930167778386E+00
Au 8.15524709731595543E+00 3.40668890768290211E+00 6.33133345802549563E+00
Au 4.59197853661036337E+00 9.31104370501192768E+00 3.75138474184709203E+00
Au 6.07281420512988390E+00 6.92197918168196580E+00 3.78221421253049872E+00
Au 7.15067912291870655E+00 4.35413077739716670E+00 3.85550488328099261E+00
Au 5.39118737035853002E+00 3.58001897777619593E+00 6.13884882312034375E+00
Au -8.50922049298030586E-02 3.95870346496983938E+00 5.68259797611678774E+00
Au 1.36831770695561472E+00 6.31409049066508210E+00 5.81488463647088683E+00
Au 4.17905398327460542E+00 6.08205702753458688E+00 6.23297893998823582E+00
Au 5.76314305994313614E+00 8.38434548271423807E+00 6.19258828449657894E+00
Au 7.02784024239244420E+00 5.93596400535223534E+00 6.25978154341935866E+00
Au 2.94306590309192018E+00 8.57424837825023545E+00 5.97308728025667968E+00
Au 6.86482110390249822E+00 1.60583984373257826E+00 4.66795029314177601E+00
Au 4.01061009299372984E+00 1.70007757883290411E+00 4.62242245363340132E+00
Au 3.10818319701098433E+00 5.44145611914982918E+00 1.31849485097409413E+00
Au 2.64960321250207187E+00 2.73927113102565745E+00 1.91583030982887004E+00
Au 2.61079227674886694E+00 5.83263550332723396E-02 2.84710260874503884E+00
Au 4.26013255606487462E+00 8.24583367105470866E-01 6.40099442825281861E-01
Au 5.90064549972512076E+00 2.51892526227417113E+00 2.16936226510935848E+00
Au 5.91082181072272927E+00 5.25137973695907334E+00 1.53477427644385034E+00
Au 4.66870491871206816E+00 7.73120413635495041E+00 1.45212705031705069E+00
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Appendix E. Coordinates of Au26

Au 2.82488793515485614E+00 7.13801011017448683E+00 3.53105012558937004E+00
Au 2.67410211977667389E+00 3.76059446137904141E+00 5.92584914448715949E+00
Au 4.50141818659673820E+00 3.50581565203903178E+00 -9.52520350349348593E-02
26
Distances in Angstroem, Energy = 6.5276168E-02 eV (PBE)
Au 5.27520961918036324E+00 9.02078163866275456E-02 2.74737822171102719E+00
Au 1.03426276792996785E+00 2.07638601378783472E+00 4.04286529274401563E+00
Au 1.28117938326206859E+00 4.94135821656471741E+00 3.45732379304528115E+00
Au 5.17297423365279840E+00 3.50165236480569275E+00 6.18041314404905151E+00
Au 4.57966454798976041E+00 8.14320346969584641E+00 1.92948010097338152E+00
Au 5.73576505307295381E+00 7.09003365715735256E+00 4.19927084294479691E+00
Au 6.97388376707249602E+00 4.48386682511379853E+00 4.01119383839647092E+00
Au 7.94126649897080927E+00 3.30399811652228248E+00 6.35158160170398745E+00
Au -2.86920049949901557E-01 3.97046679035574135E+00 5.55123410885771307E+00
Au 1.17857997284418636E+00 6.30582834515779211E+00 5.97311962621155157E+00
Au 3.96792850309718270E+00 5.99530506193701296E+00 6.46796296327830600E+00
Au 5.53965302415805816E+00 8.30975725882239757E+00 6.66368453836374108E+00
Au 6.81498507728282732E+00 5.84938363414489348E+00 6.52112397550045042E+00
Au 2.78226477619275414E+00 8.53469478995902442E+00 6.38799487479000039E+00
Au 6.65035394935837232E+00 1.62544608558926340E+00 4.58679131540571294E+00
Au 3.81679862235614076E+00 1.74849369420668355E+00 4.48103412974860404E+00
Au 2.93481606379375926E+00 5.83597806969939370E+00 1.50601107604389561E+00
Au 2.58014260235815129E+00 3.07146687339183133E+00 1.85159354773325746E+00
Au 2.46866039232921208E+00 3.15871318781987376E-01 2.47101231268071109E+00
Au 4.17381933790209203E+00 1.27706882790208853E+00 3.70799693460154456E-01
Au 5.71094469709809882E+00 2.82158130709159893E+00 2.16369304030955423E+00
Au 5.86889921641795453E+00 5.59803444820707696E+00 1.80020211824473719E+00
Au 4.69007063015315495E+00 6.67504290223566876E+00 -4.90623006422629737E-01
Au 2.86277035390330381E+00 7.31603508653740242E+00 3.91866453862428932E+00
Au 2.45727524767964889E+00 3.72059406325793285E+00 5.91920500549482753E+00
Au 4.43849008189483207E+00 3.95335596268916856E+00 -1.24094693880901427E-01
26
Distances in Angstroem, Energy = 6.5624722E-02 eV (PBE)
Au 2.66300212209412579E-01 3.49676414641646494E+00 -5.26074888062340817E-01
Au 1.95016966383986667E+00 -2.36293980201290665E+00 6.04139055692967220E-01
Au -5.21204276080870166E-01 3.25625733523804239E+00 -3.26524647143550029E+00
Au 2.38309119662458047E+00 -2.04975376424255940E+00 3.42765167138110538E+00
Au 1.94174914988092673E+00 2.06565724655522232E+00 -2.18227582482543436E+00
Au 3.26988901225287842E-01 -3.62075940038696187E+00 2.54939009883093171E+00
Au -2.27343154270093573E+00 1.55679267413446420E+00 -1.82684210750328524E+00
Au 1.43934779719211581E+00 6.03894072342694099E-01 3.03871139867165851E+00
Au -2.19903334011001528E+00 4.37936321222577440E+00 -1.40841131847676349E+00
Au 3.62739703278095416E+00 -3.52106056994654915E-01 1.61462048751376552E+00
Au -1.85311784901716470E+00 -1.20296248909452097E+00 -1.77107341439279442E+00
Au 2.31141080787720582E-01 2.94638841578587174E+00 2.22145506244491342E+00
Au 2.38532291179296552E+00 -2.74151103314812239E-01 -3.77162617372460929E+00
Au -2.08895570503318684E+00 -4.63966437011247645E+00 1.76716508023365582E+00
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E.1. Empty Cage Motif

Au 1.29301628967945326E+00 2.06391254043667249E+00 -4.90491015943872455E+00
Au -1.92256111588097495E-01 -1.31730200975632261E+00 4.19693799649448085E+00
Au -3.24350969993907945E-01 3.66140319729547581E-01 -3.38357662853163310E+00
Au -2.10193644813209524E+00 -1.92559686969325572E+00 2.33637325386763539E+00
Au -5.80978978350223496E-01 -3.18090380022996921E+00 -1.22899700165601089E-01
Au -2.14028724119682012E+00 2.61869760428421827E+00 7.70886071684569019E-01
Au 2.15024337452561110E+00 1.78756638906523313E+00 5.54702668371094054E-01
Au -3.33176831770724524E+00 -2.77509440413922182E+00 -3.70773208248248096E-02
Au 9.01027649082863258E-01 -1.84061583643687765E+00 -1.97521939867208207E+00
Au -1.37495037145696530E+00 7.12940154978004226E-01 2.68691892307249836E+00
Au 3.04048020563833843E+00 -3.10953034995387845E-01 -1.06833782135902311E+00
Au -2.95400431390054763E+00 -1.57116978845482668E-03 4.74619459158206303E-01
26
Distances in Angstroem, Energy = 7.5209165E-02 eV (PBE)
Au 2.55306520697520412E-01 3.70599046346539085E+00 -5.81419247718630294E-01
Au 1.95868677677599368E+00 -2.71728561520994871E+00 5.14849491965996275E-01
Au -4.93368339696986347E-01 3.22184868175997341E+00 -3.27217356819045779E+00
Au 2.76238180713224102E+00 -2.91537968352065491E+00 3.25559813059196301E+00
Au 1.87483460290900550E+00 2.01155717778987508E+00 -2.05248505283172689E+00
Au 2.90793830496546335E-01 -3.85987230280062654E+00 2.52131234794888126E+00
Au -2.34729654838311452E+00 1.54031780040431276E+00 -1.90087907377504428E+00
Au 1.49764600819946070E+00 1.39699745716942547E+00 3.44621732661040570E+00
Au -2.27121848360098078E+00 4.38133075977659558E+00 -1.53819586174112444E+00
Au 2.87837450379523441E+00 -4.69550526035662164E-01 1.93015437557813274E+00
Au -1.89018218393222481E+00 -1.23288758036186752E+00 -1.76143187924093936E+00
Au 6.70523130885457702E-02 3.37377239356389858E+00 2.17264495214005393E+00
Au 2.43645081135596131E+00 -3.36627724707101117E-01 -3.59244366301802387E+00
Au -2.20951496540796910E+00 -4.58532664690006886E+00 1.77719433133955795E+00
Au 1.36087143173155911E+00 1.99792145468034521E+00 -4.81877236379890395E+00
Au 5.68165909707810890E-01 -1.21876116198506868E+00 3.49777249821636538E+00
Au -2.81146221143801389E-01 3.09620294336145185E-01 -3.30468927884424035E+00
Au -1.82193439372043797E+00 -1.83925870049319684E+00 2.25388871138020752E+00
Au -6.87975290882382295E-01 -3.26069079336202661E+00 -1.58484339384954376E-01
Au -2.14346269046517346E+00 2.67363569054306049E+00 6.56169514930322384E-01
Au 1.95708024073076547E+00 1.89677470300091500E+00 6.94217362396770787E-01
Au -3.43379975871940690E+00 -2.67879294938306334E+00 5.11712077773152224E-02
Au 8.51018172834248077E-01 -1.92447417340192040E+00 -1.94441593901157206E+00
Au -1.07608707155084637E+00 7.95425095365354329E-01 2.47087781959943431E+00
Au 2.81566813290929296E+00 -3.17135495062076112E-01 -8.03780211843018288E-01
Au -2.91834511486883663E+00 5.08513813617895161E-02 4.87102408928017205E-01
26
Distances in Angstroem, Energy = 1.0048964E-01 eV (PBE)
Au 1.02010471202190622E+00 -2.60214991722898503E+00 3.43981419259943411E-01
Au -4.37909847822083353E+00 -2.59927358929813801E+00 -8.17899973030075889E-01
Au -3.33122579565301891E+00 -6.53348113805671121E-02 -7.18633864725083948E-01
Au 1.43462956016743776E-01 2.49381429110173958E+00 1.26975259664379769E+00
Au -7.14313407944772716E-01 2.79797567395874047E+00 -3.25497861544230949E+00
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Au 3.25855416984652813E+00 9.67135307948087553E-01 1.74801230908370409E-01
Au 3.76606613265701595E+00 -1.81160460192659700E+00 3.71447433117360670E-01
Au 1.44048229633313407E+00 1.87266874218833679E+00 -1.65960685204662983E+00
Au -2.44337189181408743E+00 -4.30414610089033312E-01 4.00456855386849853E+00
Au -2.13374628643069419E+00 9.57940285061563590E-01 1.63535839422865714E+00
Au 1.92281812901573507E-01 4.22986705246353001E+00 -1.00092795564231651E+00
Au 1.91996966869006780E+00 -7.90868832156471857E-01 2.29642012958611241E+00
Au 2.46873997803622602E+00 1.94424643246484052E+00 2.77279956975393915E+00
Au 4.57069511947588403E+00 1.02684992025840367E-02 2.38682905104611143E+00
Au 1.34509682106245532E-02 8.49589638146341697E-01 3.56847912310312854E+00
Au 2.73657318310955855E+00 -3.46047605077928777E+00 -1.64715618894460825E+00
Au -1.66926606563279867E+00 -2.60113684508751541E+00 -2.43503847647814742E-01
Au -2.87656363111696312E+00 9.74743357292860213E-01 -3.24361912599567814E+00
Au -2.47635209606681439E+00 -1.82301554744496519E+00 -2.84054592350056234E+00
Au 1.27586569749839007E-01 -2.76237973344331289E+00 -2.41153594046996522E+00
Au 2.11920733831373020E+00 -7.71868616019832365E-01 -1.75146117445937510E+00
Au -7.06420446630314780E-01 -1.60970540863913003E+00 2.20587300319860669E+00
Au 2.53183963776477405E+00 3.62654942112999068E+00 4.67162678109399376E-01
Au -1.74217808439185062E+00 2.16476199172329276E+00 -7.84846259189189488E-01
Au -3.51001202789153011E+00 -1.56642274953564775E+00 1.67344862307091513E+00
Au -3.26466331333514437E-01 5.09062034858507977E-03 -2.79620608479964927E+00
26
Distances in Angstroem, Energy = 1.1623052E-01 eV (PBE)
Au -4.46311953142227547E-01 2.79445451197255812E+00 -1.76091720788761541E+00
Au 1.43417430348525876E+00 -2.36818141591355724E+00 1.42925147889884530E-01
Au -1.45884153397282978E+00 8.60346274256625132E-01 -3.51648331261373004E+00
Au 8.22399605498648545E-01 -2.42612791202700118E+00 2.95351595134002576E+00
Au 1.82202555036084357E+00 4.22543152150794299E+00 -2.59884405368868920E+00
Au -9.12773856112434667E-01 -3.55304881649481885E+00 1.13455832386341360E+00
Au -2.85557543525104718E+00 -1.22859808324235886E+00 -2.43329635502163599E+00
Au 2.01309840938236118E+00 1.30505775390631351E+00 2.01507084278694526E+00
Au -2.31576337666778009E+00 1.02267127362836074E+00 -8.19549593723873704E-01
Au 3.21681686018348767E+00 -1.30636137871087388E+00 1.96949097773479709E+00
Au -7.93276975230411407E-01 -1.94898452069108052E+00 -4.16801135205265361E+00
Au -3.28817851250436055E-01 1.11608968165618960E+00 3.49983372042308849E+00
Au 2.09923024047383810E+00 1.40507057143305270E+00 -2.70283217624115268E+00
Au -1.94365345551977775E+00 -1.79446417891915422E+00 2.97165014328848676E+00
Au 3.19280399192898412E-01 2.77826584071330229E+00 -4.47531596512888541E+00
Au 2.01749518245635695E+00 -2.95150591069201995E-01 4.28424051499200242E+00
Au 8.94338686914291081E-01 7.59640951011467114E-02 -4.86693844739695081E+00
Au -4.04615396983645181E-01 -1.14303980940943672E+00 5.21753551849233066E+00
Au -7.48257401153543888E-01 -2.82691988177655551E+00 -1.50441152997480687E+00
Au -4.63254038856678541E-01 2.20401229835384216E+00 9.58409736130942380E-01
Au 1.98849552531391760E+00 2.83272691405218779E+00 -2.31625928341882614E-01
Au -2.65326314961444432E+00 -1.53680608259449381E+00 2.84661591752299992E-01
Au 1.39848483741398089E+00 -1.29296114173742249E+00 -2.45876069569671696E+00
Au -2.75752797206611966E+00 2.73694867334427827E-01 4.62089893093525284E+00
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E.2. Hexagonal Motif

Au 2.73269303112588391E+00 5.28727102354859327E-02 -3.99213985462511078E-01
Au -2.67660023598011021E+00 7.73985498434844987E-01 1.88340920360178288E+00

E.2 Hexagonal Motif

26
Distances in Angstroem, Energy = 1.2700530E-02 eV (PBE)
Au -2.10314118070867506E+00 2.26246862416336603E+00 -1.73390104224853542E-01
Au 2.23560178532152820E+00 -2.20466080476837334E+00 2.52558387079152902E-01
Au -1.73173810591087451E+00 1.92084906454161497E+00 -2.93062590850149540E+00
Au 2.60142792455703109E+00 -1.97056769849316216E+00 3.06776147476097716E+00
Au 1.73927957947748651E-01 3.30188655002771636E+00 -1.34781510807657967E+00
Au 1.88402694568414499E-02 -2.46963569750807643E+00 1.91526547822076143E+00
Au -2.67020486357786835E+00 -4.79244752196907764E-01 -1.48624602892950608E+00
Au 2.77563315419794954E+00 4.30856035378147539E-01 1.49841159863500972E+00
Au -4.29399711658548178E+00 1.79320852881651915E+00 -1.92035838440410789E+00
Au 4.80389255938720261E+00 -1.61625868910317316E+00 1.50880118769214899E+00
Au -6.39430294321788439E-01 -7.81995761809776035E-01 -3.30464027877166444E+00
Au 5.35452740479728906E-01 1.16664600644480990E-01 3.14074491185640525E+00
Au 3.75250317152397628E+00 8.26251035508069220E-01 -3.24828140096216655E+00
Au -4.31264091417514095E+00 -5.20424213950007708E-01 3.01589558210538033E+00
Au -7.46879956610735585E-01 1.11905953933412672E+00 -5.34347903221021525E+00
Au 5.50557852824115512E-01 -2.08470983005516919E+00 4.84078966346958683E+00
Au 1.10604023695302378E+00 1.58189851555781291E+00 -3.40053279215517490E+00
Au -1.87193931693037618E+00 -1.42613960079934965E+00 3.80851803703843306E+00
Au -3.48577747403386429E-01 -1.84131534434391098E+00 -7.62164784790470562E-01
Au 3.78991180748539269E-01 1.79074038046893524E+00 9.91492184885689909E-01
Au 2.39916629206679133E+00 1.71548945798645813E+00 -9.18220472932802845E-01
Au -2.48493658461913203E+00 -1.62858565848829695E+00 1.03271287108253218E+00
Au 1.87274820764361105E+00 -1.03137387123511082E+00 -2.23808878417507184E+00
Au -1.97573765022917858E+00 1.00836575707971199E+00 2.28677536017729199E+00
Au 4.26371358949271073E+00 -4.25809399829830904E-01 -8.52266582729062305E-01
Au -4.28927319152817788E+00 6.12983233074178457E-01 5.66382925859821085E-01
26
Distances in Angstroem, Energy = 1.0541089E-01 eV (PBE)
Au 8.09299944352710732E+00 1.08915652470951541E+00 4.84108125516215182E+00
Au 9.10604953485304058E+00 3.54140886739901362E+00 5.50578198542168895E+00
Au 5.45008437155171510E+00 5.99685068119414044E+00 5.26456838407565986E+00
Au 4.94222291540018510E+00 3.21096679612040026E+00 1.92311188455950388E+00
Au 4.58277366486767246E+00 2.61386531646252962E+00 7.92493573952917263E+00
Au 1.40364597655666845E+00 -8.22176783076169926E-01 6.80316946974811376E+00
Au 8.13988490269054665E+00 5.85385965834441535E+00 4.30806765654522739E+00
Au 7.47669646254081766E+00 2.47680313011917574E+00 7.51275733915509836E+00
Au 1.64327442176602689E+00 3.32080241903616846E+00 4.23418945038517602E+00
Au 2.20710900109086738E+00 1.90872989571679352E+00 6.62646708781601834E+00
Au 3.03074756309675120E-01 1.94251183902402746E+00 2.16332382076150420E+00
Au 3.56236126001028142E+00 -1.49478166973307069E-01 5.07906210038586448E+00
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Appendix E. Coordinates of Au26

Au 2.19370435833961430E+00 3.77028439437585794E+00 1.41793405020285967E+00
Au 5.03509263741601565E+00 5.31903598553586221E+00 8.01713892844983000E+00
Au 3.02581308844482511E+00 1.32632234878559352E+00 2.73517882677616386E+00
Au 6.12379330894792417E+00 5.75613640129463988E+00 2.49350561273197435E+00
Au 4.07763753745966095E+00 5.64124704342515937E+00 6.89010060333060226E-01
Au 3.45919669611950154E+00 5.31106623689785096E+00 3.45663514374169445E+00
Au 3.73123534484300379E+00 -1.08384614927334269E-01 8.02797312851852318E+00
Au 8.49803112052368359E-01 5.53777596852822795E-01 4.48268037315854873E+00
Au 7.53109880719996294E+00 5.20277998425564991E+00 6.97920914917446034E+00
Au 5.57810703757822335E+00 1.19661379486484964E+00 3.72193501731900467E+00
Au 3.38989629278731730E+00 4.33261217786055752E+00 6.06289095567320313E+00
Au 6.17198943909909481E+00 6.77045573413470825E-01 9.13725257894995480E+00
Au 5.95712112733713628E+00 3.40198734177378614E-01 6.35892121614032657E+00
Au 7.35851430120983707E+00 3.30632208511038383E+00 3.26944518528531125E+00
26
Distances in Angstroem, Energy = 1.0678305E-01 eV (PBE)
Au -2.23419643671283019E+00 2.20826779647641080E+00 -2.96029662125061710E-01
Au 2.23414011787022915E+00 -2.20840266619023007E+00 2.95944413718548627E-01
Au -2.53517771692891980E+00 1.81442971139867337E+00 -3.12213010836283500E+00
Au 2.53524303094004955E+00 -1.81456975270871590E+00 3.12218982672172629E+00
Au -1.66796744460772257E-02 2.48676168342740400E+00 -1.94023055939347810E+00
Au 1.65751723628196172E-02 -2.48679938662712852E+00 1.94014065867375463E+00
Au -2.75027768602491030E+00 -5.12574796709129865E-01 -1.46433788453818781E+00
Au 2.75031222570140477E+00 5.12396545012904214E-01 1.46425871622260062E+00
Au -4.78636039943838565E+00 1.66377141165546227E+00 -1.67990888577790964E+00
Au 4.78631204812979583E+00 -1.66367147354872835E+00 1.67984903970581478E+00
Au -5.25904308829192813E-01 -2.35441687085249124E-01 -3.10084763044676492E+00
Au 5.25933440584760770E-01 2.35248945199778958E-01 3.10079257292040333E+00
Au 4.27974297176518981E+00 5.83224741598997398E-01 -3.13947448944533170E+00
Au -4.27959259970075934E+00 -5.82460752410723037E-01 3.13977772223401219E+00
Au -5.31884452513812223E-01 2.11504789896737000E+00 -4.87412695577317923E+00
Au 5.31830431192404252E-01 -2.11532008736430388E+00 4.87403345579882519E+00
Au 1.79139928653097513E+00 1.30638850399113404E+00 -3.81500345636292648E+00
Au -1.79145987237906601E+00 -1.30648713874859146E+00 3.81499975938436275E+00
Au -3.18261986733422042E-01 -1.69887128194880943E+00 -7.29080176723343798E-01
Au 3.18212865122961486E-01 1.69881943041657513E+00 7.29066233039262990E-01
Au 2.47636026313790625E+00 1.65271552890583817E+00 -1.05098754944040618E+00
Au -2.47639310205930485E+00 -1.65259558944150320E+00 1.05108777953702481E+00
Au 1.97061448620512114E+00 -1.06688758361574298E+00 -2.22025145368308419E+00
Au -1.97060273051235746E+00 1.06703426936787937E+00 2.22038117945720526E+00
Au 4.32896180404013720E+00 -5.12313419237095058E-01 -6.95239699612273609E-01
Au -4.32884717730475899E+00 5.12289149217528883E-01 6.95127154271256376E-01
26
Distances in Angstroem, Energy = 1.0891814E-01 eV (PBE)
Au 8.24336046637321296E+00 1.51051513991974917E+00 4.27707639360196623E+00
Au 7.96228876556518728E+00 2.59163278557710308E+00 6.78713792862220178E+00
Au 5.56191699980282461E+00 5.88245548417216568E+00 5.29225972088569119E+00
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E.2. Hexagonal Motif

Au 4.76447963553319287E+00 3.27928298183874700E+00 1.65554771065084072E+00
Au 4.35311744416859803E+00 2.78959111922706215E+00 8.15558148630735502E+00
Au 1.84010610093197879E+00 -1.01717850288208811E+00 6.64772338275746488E+00
Au 7.84758695963953823E+00 4.34471022613823621E+00 4.49665195576406340E+00
Au 6.88568429794523951E+00 3.69925217632400161E+00 9.07885499042147970E+00
Au 1.66440677699209405E+00 3.30135139463040339E+00 4.27714084647878057E+00
Au 2.30820714252346182E+00 1.82886442899682300E+00 6.60287647034625635E+00
Au 3.01312651511291496E-01 1.92154298297197457E+00 2.22659764568263618E+00
Au 3.77978420302027196E+00 -4.07541556033438196E-02 4.90167451651160668E+00
Au 2.04490178035909986E+00 3.95073234818764663E+00 1.50537307889834171E+00
Au 5.00807946015526628E+00 5.52182192200479705E+00 8.02553727328628952E+00
Au 3.00243104293972651E+00 1.37231768342500393E+00 2.61994672590219579E+00
Au 6.19867400611374730E+00 5.57914617331483154E+00 2.59686161899466894E+00
Au 4.04575373698978069E+00 5.83394434016485430E+00 8.38706041514466039E-01
Au 3.48649688780419442E+00 5.31169697587181044E+00 3.54915638990155591E+00
Au 4.15365737182737238E+00 -2.68234762590074012E-02 7.76655100157737532E+00
Au 9.80911637522452029E-01 4.74289833313211839E-01 4.46988229420928818E+00
Au 7.70032412199086824E+00 5.37110141956508169E+00 6.99295673214434377E+00
Au 5.65646136800145527E+00 1.23763541385376818E+00 3.33763611078870515E+00
Au 3.32376355101209819E+00 4.39833414851939519E+00 6.14441086017887361E+00
Au 6.51433863575808214E+00 1.01019390004635934E+00 8.72386244650984821E+00
Au 6.29833517590776815E+00 4.76192043418319388E-01 5.97146322368112514E+00
Au 7.46679957960978324E+00 3.00650913326241342E+00 2.09475955438267292E+00
26
Distances in Angstroem, Energy = 1.0999619E-01 eV (PBE)
Au -2.38993162112784052E+00 2.11570198138998089E+00 -3.00033289706185147E-01
Au 1.72937987437526441E+00 -3.48567669561502358E+00 -3.21064322616955056E-01
Au -2.44628709737998085E+00 1.85984995038605194E+00 -3.16306071245078702E+00
Au 2.92121176713778885E+00 -1.91810490523834698E+00 1.80528401276262684E+00
Au -1.09494667345945273E-02 2.42139714109519932E+00 -1.72845424429381289E+00
Au 1.59656293755953305E-01 -2.57289145229552574E+00 1.75754628541376712E+00
Au -2.71899241953298221E+00 -4.85791071703885580E-01 -1.45842788074121832E+00
Au 2.30340633510167869E+00 8.71374121688292758E-01 2.19905596574281548E+00
Au -4.76553287048729146E+00 1.41725656294472291E+00 -1.78188323718651231E+00
Au 4.46754490085447120E+00 1.71730296659642789E-01 6.92298663701328532E-01
Au -4.28252568882909801E-01 -1.35485261628145143E-01 -3.04311390764770806E+00
Au 7.92857884179851563E-02 1.32131059549460717E+00 3.71494194525901777E+00
Au 4.28600760702728945E+00 2.47188404659546473E-01 -2.11694470299761361E+00
Au -4.02875111627220228E+00 -8.51144268885639765E-01 3.22292511611067489E+00
Au -1.31304748518893066E-01 2.31936958127028658E+00 -4.57734330777994991E+00
Au 1.36784388178621996E+00 -1.23012674233308150E+00 3.91974972297522539E+00
Au 2.06481827182410171E+00 1.26841052081163119E+00 -3.33270428863851320E+00
Au -1.37047834854246386E+00 -1.26530346031026686E+00 3.75049722498551841E+00
Au -4.95328515618458365E-01 -1.97736933779579616E+00 -9.20736508422217215E-01
Au 6.96840617303499527E-02 2.06599586968388937E+00 1.01345724196935727E+00
Au 2.36230809840996780E+00 1.60819383752171863E+00 -5.02125119323471703E-01
Au -2.36878865747529632E+00 -1.66629378584112464E+00 1.08077051298647864E+00
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Appendix E. Coordinates of Au26

Au 1.88424809031554186E+00 -1.32710142036030865E+00 -2.17271108419813386E+00
Au -2.22446220317960641E+00 1.08632707908358817E+00 2.26686410227420687E+00
Au 4.11843914419511670E+00 -2.16759150124659339E+00 -7.24682088852542372E-01
Au -4.43477448117918627E+00 3.08773960564606931E-01 7.19893900674620557E-01
26
Distances in Angstroem, Energy = 1.2240064E-01 eV (PBE)
Au -2.31579152710879743E+00 2.17356605686846205E+00 -2.91437775549621469E-01
Au 2.13507120713556153E+00 -2.69329160598603279E+00 1.53973717022866302E-01
Au -2.47887131722596754E+00 1.80744762054931951E+00 -3.16395304018374990E+00
Au 2.68235765606789700E+00 -1.41751084869645094E+00 2.63836444111614110E+00
Au -8.17207444539967860E-03 2.48608327980930399E+00 -1.82640053425450621E+00
Au 7.12153136010589966E-02 -2.46958754422450388E+00 1.90165893842318789E+00
Au -2.71458776781659639E+00 -4.39529509701558185E-01 -1.43000024371800238E+00
Au 2.63974025373378884E+00 1.44189618523785534E+00 2.04368898593259019E+00
Au -4.75887215863513813E+00 1.77688146256970003E+00 -1.69743968791767985E+00
Au 3.95499976347855808E+00 -3.25290411668582802E-01 4.48800706410212136E-01
Au -4.26081660579460730E-01 -1.71128398466472820E-01 -3.01427666663330340E+00
Au 4.34976404312000853E-01 2.89405898652175642E-01 3.17875019614703724E+00
Au 4.29572821918349312E+00 3.22838548443172779E-01 -2.29003569190481038E+00
Au -4.19663429815464895E+00 -7.18932491012644448E-01 3.15115235528474580E+00
Au -2.38798725015040431E-01 2.18015850443594861E+00 -4.67585977433323130E+00
Au 8.89655443086519560E-01 -2.11913193418960466E+00 4.59724078624249088E+00
Au 2.02746559867423448E+00 1.27687698230755808E+00 -3.47094228877387190E+00
Au -1.69469039737665805E+00 -1.47020914339944397E+00 3.88060351944341786E+00
Au -3.81637749133999615E-01 -1.83211600701115263E+00 -7.76194921869931442E-01
Au 1.51577616436927631E-01 1.91220180561624353E+00 8.96923472244160358E-01
Au 2.44437493417137031E+00 1.79484336170449943E+00 -7.13164891828547809E-01
Au -2.44385060323573144E+00 -1.63877111146178267E+00 1.07342096666612230E+00
Au 1.93881721674934471E+00 -1.31626387711445525E+00 -2.24347245416651431E+00
Au -2.06843700126858687E+00 9.71523203082855558E-01 2.26978819617815875E+00
Au 4.45111078611367272E+00 -2.30127523505765907E+00 -1.33429127335168984E+00
Au -4.39066513274838677E+00 4.79315208713232577E-01 6.93102963374319425E-01

E.3 Filled Cage Motif

26
Distances in Angstroem, Energy = 1.3818823E-01 eV (PBE)
Au 5.43919397585806319E+00 -9.09072390477962261E-02 3.07383675954036617E+00
Au 1.20538895604917395E+00 1.98540494023659209E+00 4.23092866931243172E+00
Au 1.37945053643191851E+00 4.73767778828612673E+00 3.39601308609042007E+00
Au 4.23270072297214561E+00 4.49585637938876026E+00 3.74985391305335236E+00
Au 4.60255885908325268E+00 9.27834825429571630E+00 3.73996573488387263E+00
Au 6.11952253518413691E+00 6.90546639777303639E+00 3.77067604636169840E+00
Au 7.13749765103959533E+00 4.29201571188662712E+00 3.99919535136850657E+00
Au 5.48359878320219263E+00 3.53430608819617387E+00 6.24841462764796240E+00
Au -1.18688021314297065E-01 3.97387347813617930E+00 5.63692730248423324E+00
Au 1.37423925359669519E+00 6.30275684735076513E+00 5.81681545961678470E+00
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E.3. Filled Cage Motif

Au 4.17126904784159258E+00 6.05016764596717227E+00 6.37084785793531783E+00
Au 5.76842608321427708E+00 8.34399932691616897E+00 6.16846696503272174E+00
Au 7.00643606018410559E+00 5.85566083936124393E+00 6.30469447548372397E+00
Au 2.93825066109078081E+00 8.54194453928390196E+00 5.92823719363573076E+00
Au 6.84197181018285860E+00 1.62545707157525299E+00 4.75800423596938948E+00
Au 3.99967890750286115E+00 1.63120705222569784E+00 4.74880654007239400E+00
Au 3.07281840954632646E+00 5.47439998381009119E+00 1.21269742526785218E+00
Au 2.61340733480417242E+00 2.74903573658335532E+00 1.85269084732242906E+00
Au 2.61003948746321379E+00 1.07714944669662804E-01 2.82719499609169400E+00
Au 4.27669937724136240E+00 8.46553672163660065E-01 6.42247991495396797E-01
Au 5.94801616450523518E+00 2.52424440420352214E+00 2.16426121540817196E+00
Au 5.94156767225599403E+00 5.25633517950567786E+00 1.49971477231261652E+00
Au 4.66835699177035401E+00 7.73784203696781514E+00 1.42269706641563998E+00
Au 2.78636254701597696E+00 7.16103275280472662E+00 3.47629902909223665E+00
Au 2.64249722763541550E+00 3.72335839607612584E+00 6.03158954132910008E+00
Au 4.50247723637978314E+00 3.51135959684998467E+00 -1.32161016073419374E-01
26
Distances in Angstroem, Energy = 1.5479731E-01 eV (PBE)
Au 1.06166250330384027E+00 -2.62079375929920610E+00 3.84563917589047621E-01
Au -4.16960552998869627E+00 -1.42628350318094288E+00 -1.21510870777389290E+00
Au -2.69601851074639054E+00 8.55175912714511322E-01 -5.74564886004856223E-01
Au 1.23907331700258250E-01 1.86268880171613527E-01 2.31394845199284105E-01
Au -1.44786993735539715E+00 2.46090280370205194E+00 -2.70536994992434510E+00
Au 3.03215844306558280E+00 1.12442903275808304E+00 2.18622924721711520E-01
Au 3.78536605337528220E+00 -1.62056077515893726E+00 4.26913997464257455E-01
Au 1.22786644937059441E+00 1.88881712540487801E+00 -1.80566758012409889E+00
Au -2.52134293268816290E+00 -5.89044643884301666E-01 4.01810165002210606E+00
Au -1.85739837799904328E+00 1.22334003851526307E+00 2.06211189307264098E+00
Au 2.79440771427906520E-01 4.45153849522025968E+00 -1.74026301467272693E+00
Au 1.94716105028035980E+00 -8.41094564861450400E-01 2.45596766027286062E+00
Au 2.22503858256358411E+00 1.96896516731071602E+00 2.80860310900914500E+00
Au 4.48381034796091260E+00 2.29694691200973855E-01 2.38252468279062102E+00
Au 1.27635281490802333E-01 5.59391319021807498E-01 3.95942337327056926E+00
Au 2.88607640549208089E+00 -3.37981405821277914E+00 -1.55506599323676364E+00
Au -1.62264401421404370E+00 -2.29339109841832034E+00 -3.91359186100996848E-01
Au -3.16322994989830120E+00 3.85282089798667016E-01 -3.28773824992083208E+00
Au -2.28454383416204010E+00 -2.30752125018667842E+00 -3.13816859369456491E+00
Au 2.97644423023066873E-01 -2.92864789986837026E+00 -2.41176991380153050E+00
Au 2.10552746669161328E+00 -7.31119642936737923E-01 -1.76219255357905524E+00
Au -7.41364307053838267E-01 -1.67499063516824553E+00 2.24678502046667239E+00
Au 1.77365641876907465E+00 3.54315150264510370E+00 5.64006222252514733E-01
Au -9.37824826752506779E-01 2.88620992760723594E+00 1.64187957389331229E-01
Au -3.45616522794617920E+00 -1.15910625228123565E+00 1.43380839733417642E+00
Au -4.58944079709587005E-01 -1.90798902612957261E-01 -2.76974702201971512E+00
26
Distances in Angstroem, Energy = 1.8819427E-01 eV (PBE)
Au 4.58839423795187606E+00 1.16587354946236441E-01 3.43964748857297398E+00
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Appendix E. Coordinates of Au26

Au 6.06941422176019429E+00 5.08111604301120856E+00 7.36545288879871585E+00
Au 4.46771492106012413E+00 2.49152025183535475E+00 5.25404623875071142E+00
Au 1.80445250129742618E+00 3.77343506992184352E+00 1.91602928776510395E+00
Au 7.60837613077039521E+00 3.48316197654822446E+00 9.02855407698907975E+00
Au 4.17728287796594167E+00 -1.73388991820453775E+00 5.57214403658835611E+00
Au 1.27275152079288145E+00 5.02327306322657918E+00 6.57974256584609041E+00
Au 7.35904487221297998E+00 2.75490247561186186E+00 6.31878775962718109E+00
Au 1.56708882130169047E+00 3.02354215978769458E+00 4.61620612881713388E+00
Au 4.94256784569084040E+00 2.78387189970126192E+00 8.71334163062946132E+00
Au 2.34041828602114954E+00 4.81773362231163182E-01 5.39621415872778964E+00
Au 6.06765390182845454E+00 -1.69242449846084564E+00 7.58712206921175358E+00
Au 1.67657030564239662E+00 5.73827111066363127E+00 3.90111852499823986E+00
Au 6.34122701799514399E+00 4.75317987368553219E+00 4.60030149747488259E+00
Au 1.97847558919570576E+00 1.07081221623481770E+00 2.57586168376158753E+00
Au 6.73002044155653056E+00 2.08135899092227650E+00 3.64165517404169536E+00
Au 4.14927312677172822E+00 5.22034934602065981E+00 2.88926070390163225E+00
Au 6.57813589455982406E+00 4.20080957835287006E+00 1.87502261742089993E+00
Au 6.94230329075823693E+00 8.13878172654778131E-01 8.43342258350076435E+00
Au 2.29325630050166973E+00 -1.52908729940469001E+00 3.50356974428903412E+00
Au 3.90232355210446702E+00 5.59333222977753053E+00 5.66907784254396763E+00
Au 4.35310290148040924E+00 2.50938603005535832E+00 2.09851442235968744E+00
Au 3.38120498906185984E+00 5.02855354971932922E+00 8.40260684653488532E+00
Au 2.52010146371607879E+00 2.60727698004965314E+00 7.27039208307751750E+00
Au 4.21271146984396783E+00 3.90330405368356614E-01 7.53426921199546307E+00
Au 6.42271927469699477E+00 1.94905408207465297E-01 5.61407885828795994E+00
26
Distances in Angstroem, Energy = 1.9882961E-01 eV (PBE)
Au 5.33458331836968291E+00 -2.44704885041589423E-02 2.81923968262955604E+00
Au 1.17542500234568648E+00 2.08058505958248663E+00 4.19475610710120517E+00
Au 1.42765095122868702E+00 4.88636253461964820E+00 3.60725705030393540E+00
Au 4.30721350338613451E+00 4.49965468711803851E+00 3.88289641398296981E+00
Au 4.88397734223305235E+00 7.92858495642216266E+00 1.98373641747560159E+00
Au 4.93641825112136878E+00 9.13500979956547710E+00 4.39546329568375871E+00
Au 7.18288317898935613E+00 4.20930768553946066E+00 4.11492045198787793E+00
Au 5.50360468520353319E+00 3.32979331787880994E+00 6.27042020572064018E+00
Au -9.19817829479320642E-02 3.99925217331493199E+00 5.73982960542534926E+00
Au 1.47123876133029841E+00 6.25918923444814279E+00 6.15992056114839848E+00
Au 4.27987169281986635E+00 5.87176951389584101E+00 6.57419916918743574E+00
Au 5.93175830678587079E+00 8.08887742693065448E+00 6.77599656387986293E+00
Au 7.06453625354797943E+00 5.61464237832813318E+00 6.47291068099721301E+00
Au 3.11534130375505924E+00 8.42999154202798451E+00 6.46387897486036422E+00
Au 6.77553122632107385E+00 1.46138330431023711E+00 4.67504428631983160E+00
Au 3.95309497735679871E+00 1.56359481978274184E+00 4.69456177921374351E+00
Au 3.09777880329346722E+00 5.71129042202417381E+00 1.55093596529286781E+00
Au 2.49543818002057405E+00 2.97301364339748675E+00 1.81405575407057373E+00
Au 2.50264106857106317E+00 2.89153763429172317E-01 2.62181479611503665E+00
Au 4.18179331947829169E+00 1.14200753314530412E+00 5.13798872565100817E-01
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E.3. Filled Cage Motif

Au 5.95335931345012970E+00 2.62334807904201162E+00 2.14324334167566866E+00
Au 6.12882001424035128E+00 5.37929392581197696E+00 1.85614418909405265E+00
Au 4.88751678213512530E+00 6.49882782603121800E+00 -4.05432417156858016E-01
Au 3.01860087975246572E+00 7.20021380277449907E+00 3.95463938561243644E+00
Au 2.66665302751066990E+00 3.61105608934781142E+00 6.12596406566955221E+00
Au 4.45999000970124904E+00 3.79337796973563135E+00 -6.12791988559719114E-02
26
Distances in Angstroem, Energy = 2.1746228E-01 eV (PBE)
Au 1.47028154248345899E+00 -9.79565150276169971E-01 -2.28530120006551218E+00
Au -1.77377596874137700E+00 -4.10991425351817075E+00 -4.35174910298080697E-01
Au -2.19227861473195151E+00 -1.74153178367178585E+00 9.80651808608419384E-01
Au -2.85605079848826815E+00 4.07096885051261570E-01 -8.49783093079631957E-01
Au -2.85709599876897091E-01 5.11129204488240596E+00 2.24706167778917387E-01
Au 2.08716784319218140E+00 1.86163987144919685E+00 -2.38671969317928667E+00
Au 1.82085018393644726E+00 -1.63670861057361305E+00 1.79972451846575576E+00
Au -1.93980524497726958E-01 -3.60126541130372813E+00 1.87565217505144233E+00
Au -5.64585213868113556E-01 -1.20068647789864791E+00 3.24528498198477555E+00
Au -2.02234071485006117E+00 8.84644112603621635E-01 1.90435281233314546E+00
Au -5.31614212469872505E-01 3.34564690014392685E+00 2.37226336804413140E+00
Au 1.19140635420836905E+00 2.76407159340715092E+00 1.30030762422628315E-01
Au 2.78110399135061304E+00 4.65716891791576826E-01 1.40685220496392482E-01
Au 1.18592081035704222E+00 1.02495474348090676E+00 2.38732013281066946E+00
Au -7.33003764518936562E-01 1.37160688737416026E+00 4.32651721408974588E+00
Au 8.59479559158993212E-01 -3.38074113795438258E+00 -8.24156363747376997E-01
Au -2.72050013151867009E+00 2.60920664229577515E+00 -2.67221871713625925E+00
Au -6.08688879770629576E-01 8.52615782494299590E-01 -2.73576401024827387E+00
Au -3.75343305224586743E+00 -2.16226762176472942E+00 -1.32780493569801661E+00
Au -1.14071779638112858E+00 -1.80303868344005136E+00 -2.02327640236003337E+00
Au 2.50130258766427271E+00 -4.23629185552000553E+00 1.24512162983901575E+00
Au 4.07236288223132714E+00 -9.36707908119543270E-02 -2.23759667841482868E+00
Au -6.63258237280175827E-02 3.62235503176580709E+00 -2.23506028784861943E+00
Au -1.88241283040144669E+00 2.88138752183738500E+00 -7.50564231850338465E-02
Au -4.33412387084088913E-02 -3.42506836798617883E-04 1.42075409505251094E-02
Au 3.39888341025522012E+00 -2.25621062502400749E+00 -5.58605617609090221E-01
26
Distances in Angstroem, Energy = 2.4209993E-01 eV (PBE)
Au -1.84978698923934148E+00 2.15487611673442681E+00 9.97521815119864597E-01
Au 1.06997398034283542E+00 -3.88564502673302137E+00 -1.20354131098797046E+00
Au -9.43381389582412466E-01 2.53899398609135241E-01 -2.74377550939663539E+00
Au 2.19588557958833119E+00 -2.07854299259963948E+00 6.98119510451084557E-01
Au -5.60733389331829146E-01 2.94678513127318409E+00 -3.55064001073730573E+00
Au 4.93232391092111977E-01 -1.02134602115394713E+00 2.67774213140328454E+00
Au -2.97253965899616190E+00 -4.45554735699113913E-01 -8.91599341478565899E-01
Au 8.83709781642890824E-01 1.88373166482676102E+00 1.68239140542448795E+00
Au -2.57557854306842282E+00 2.40648761144636447E+00 -1.73794480846381494E+00
Au 3.92843473603034310E+00 -8.14157568227600464E-02 -2.53336127910531506E+00
Au -1.22063878895226097E+00 -2.40662028958019869E+00 -1.72431968641975852E+00
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Appendix E. Coordinates of Au26

Au 1.49848041388510778E+00 1.11087699685479957E+00 4.26146458493167479E+00
Au 1.95536675719763825E-01 2.50095889701227536E+00 -9.31105238686888437E-01
Au -1.17533802040336033E+00 1.15838540468030193E+00 3.57181514647790221E+00
Au 1.36315905481260957E+00 -1.34041987738492518E+00 -2.45649242140240176E+00
Au 3.09540445533902364E+00 1.15330570219817852E-01 2.22232424395727746E+00
Au 2.61876935267126409E+00 1.16728765197891859E+00 -4.12714620496254625E-01
Au -2.23133992016556304E+00 -1.09769045671009380E+00 1.90674391840882085E+00
Au -5.31479347969354365E-01 -3.01954843430837849E+00 8.93571884973819119E-01
Au -4.46618997611546931E+00 1.76964711648139361E+00 9.62243957219532653E-02
Au 4.62636987193921723E+00 -7.01674752120170941E-01 9.61295263334333017E-02
Au -3.76284811555256793E+00 1.14225175383867383E+00 2.77076558308616727E+00
Au 3.62085362850710846E+00 -2.77563079760638054E+00 -1.61231448531970045E+00
Au -1.16724879210588176E-01 -2.60708053632643821E-01 -3.42589360551767072E-02
Au 1.68280704438761841E+00 1.37457074752348851E+00 -3.12815717901367663E+00
Au -4.86603794737102469E+00 -8.70291867128505259E-01 1.08541068127397455E+00
26
Distances in Angstroem, Energy = 2.5292878E-01 eV (PBE)
Au 6.05691769212369380E+00 3.03946154861430284E-01 2.35541587839740796E+00
Au 1.14547746868672584E-01 3.12554386032443432E+00 5.62346050247536411E+00
Au 1.46102888390888541E+00 4.43753837559010478E+00 3.62978869407203986E+00
Au 4.10998148544132480E+00 9.21814341453299591E+00 4.97905482418781364E+00
Au 4.31940942539037209E+00 8.24623793892214429E+00 2.40654454123494510E+00
Au 5.89341855794961322E+00 7.11979230335358260E+00 4.51248631901197950E+00
Au 7.14561182042624665E+00 4.60935578379289712E+00 4.34775137323982719E+00
Au 5.60810648521449373E+00 3.10698412383861067E+00 6.21599605018254575E+00
Au 3.21551552761373971E+00 2.28914714737318087E-01 2.07921456408138638E+00
Au 1.60112342956128262E+00 5.39267604984952964E+00 6.39219128249286950E+00
Au 3.60638769329285314E+00 7.10406606815595953E+00 6.92027368516767094E+00
Au 6.01044955556358929E+00 8.41363862745401114E+00 7.00461064473164274E+00
Au 6.27536754778870609E+00 5.66043322332164589E+00 6.84861782559748900E+00
Au 2.66522243679423587E+00 6.92721488609729352E+00 4.31030008284588906E+00
Au 7.31704963944227416E+00 1.84551959816090672E+00 4.34431453251031563E+00
Au 4.43915523406048340E+00 1.37459319409737124E+00 4.34363450376833171E+00
Au 2.94843131065976438E+00 5.78822387079856426E+00 1.72736026082037974E+00
Au 2.86177555408209239E+00 2.96980054959276041E+00 1.66281493671498115E+00
Au 1.55302114552300674E+00 1.57906965578757164E+00 3.76595541508200959E+00
Au 4.80671143633445475E+00 1.58435721535147600E+00 1.70354074489156543E-01
Au 6.29142088288993673E+00 3.10854220293164296E+00 2.06417616025974171E+00
Au 5.97452229941879143E+00 5.88023476598287420E+00 2.02975339189133352E+00
Au 4.56813591023428334E+00 7.07390121653304238E+00 -1.02504089788763880E-01
Au 4.30167906066082306E+00 4.45082721354358579E+00 3.97721743201638267E+00
Au 2.88214780699496975E+00 2.92760431588528425E+00 5.99009648047050280E+00
Au 4.74809563176117333E+00 4.31064906650323820E+00 -2.23994359530160676E-02
26
Distances in Angstroem, Energy = 2.5772540E-01 eV (PBE)
Au 6.81079367174662487E+00 7.78108300175294199E-01 6.16987374215972917E+00
Au 8.41305118466434365E+00 1.52389689453556643E+00 8.32687763828192296E+00
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E.3. Filled Cage Motif

Au 4.14995250514385372E+00 2.30768443935633538E+00 5.04634564923246032E+00
Au 3.37340314123080054E+00 5.32772176614206305E+00 5.33069468831117632E+00
Au 4.33670618512835215E+00 3.23156262551571016E+00 9.60032080242886465E+00
Au 2.80362606178279217E+00 -1.29602299354168005E+00 4.68905063260144317E+00
Au 3.29621653170006468E+00 3.83584572928639433E+00 7.88970013327175757E-01
Au 6.69046377533781911E+00 3.62621350848396418E+00 8.17028384322819434E+00
Au 1.56348200494709211E+00 8.17682564748401619E-01 3.35458278540027077E+00
Au 2.61970018709783226E+00 3.38660264486512474E+00 7.30040422711085846E+00
Au 8.14847027134080304E-01 3.11287386168860936E+00 2.03395950839285211E+00
Au 4.37507307083675379E+00 -3.74462609415336600E-01 6.77321103448120798E+00
Au 1.45894783672128803E+00 3.31209725329031546E+00 4.72067482766622692E+00
Au 6.07904643649841603E+00 4.58818959262143355E+00 5.53765952449445820E+00
Au 2.31941360134946128E+00 1.22897382467733829E+00 6.13776968737546724E-01
Au 6.73170863114976736E+00 2.41465535327527281E+00 3.84181435696426288E+00
Au 2.13678412878650370E+00 5.40467978944584537E+00 2.87028422891586477E+00
Au 4.70862051620857791E+00 1.75199895805387351E+00 2.02017187494371653E+00
Au 5.74696695152574666E+00 9.35789152661834156E-01 8.83021816276704286E+00
Au 3.47058392746989997E+00 -8.33391434640158524E-01 2.01833314343869707E+00
Au 4.80405270185090938E+00 4.38600593739165934E+00 3.04897600678356318E+00
Au 5.29671758575335261E+00 -1.37832001112836611E-01 4.04845360677917565E+00
Au 4.58130780387414038E+00 5.34509035657532738E+00 7.81749503900538478E+00
Au 1.87113058616804429E+00 9.15622090631036056E-01 6.17040929274116579E+00
Au 2.93974224102220649E+00 1.00341895351272647E+00 8.76223637633824382E+00
Au 8.41836872782027612E+00 3.07770605253478857E+00 5.94917072952009907E+00
26
Distances in Angstroem, Energy = 2.5874108E-01 eV (PBE)
Au -1.34319829032882287E+00 2.37107371182792281E+00 -6.65891899564554968E-01
Au 1.39681089473148945E+00 -2.85259146014788678E+00 -9.62633857710792129E-01
Au -1.87439034478928113E+00 1.04627143170902515E+00 -3.15403518362848789E+00
Au 2.44201943776236963E+00 -1.47888049923148368E+00 1.25927099168799961E+00
Au 7.52874811024168977E-01 1.76147841098596869E+00 -2.36855429154695019E+00
Au 7.34519194514315132E-01 -3.84365650658532942E+00 1.52373763134965934E+00
Au -2.67192026739857402E+00 -3.21442815649656155E-01 -6.88021500433718014E-01
Au 1.65016802732789358E+00 8.68513335544934262E-01 2.76803861008554275E+00
Au -3.96262670936536798E+00 1.97392201658170729E+00 -1.61582428051811511E+00
Au 3.63992375234375531E+00 1.05160186240857212E+00 9.00587468149390169E-01
Au -6.59136556425868325E-01 -1.43938776952903313E+00 -2.35045039380315091E+00
Au -5.49316115529617233E-01 6.19526496630017687E-01 4.49081782833988807E+00
Au 3.42079401949249462E+00 2.24422352327645180E+00 -1.58779171445672684E+00
Au -3.04379915920822164E+00 1.56704337963669005E+00 3.78071072046264378E+00
Au 2.33323808937105942E-01 3.96523872443222472E-02 -4.58233032730024714E+00
Au 2.87960026523984836E-01 -1.55503807827716867E+00 3.04266591638923112E+00
Au 2.86928413502940582E+00 7.58651146054259429E-01 -3.84376883038992245E+00
Au -1.84212998302253061E+00 -3.31618297745187141E+00 2.79559416788685189E+00
Au -1.26619670676259166E+00 -2.50266368521280391E+00 1.86278311474467578E-01
Au -8.45724835228390481E-01 1.99263941004678036E+00 2.06191279986164000E+00
Au 1.33398758216531599E+00 2.51467320052645604E+00 3.48377586893082403E-01
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Appendix E. Coordinates of Au26

Au -2.33496077795398449E+00 -6.49979217412091970E-01 2.23502518224248670E+00
Au 1.91755909049512074E+00 -1.89677044739116396E+00 -3.47597908178274251E+00
Au 1.62385927357118709E-01 -5.05141611479633726E-02 1.15885371184719185E-01
Au 3.09883833707908796E+00 -6.11373648862069574E-01 -1.31293548816419481E+00
Au -3.54704929877041186E+00 1.70921095442549276E+00 1.09931426329201165E+00
26
Distances in Angstroem, Energy = 2.7306527E-01 eV (PBE)
Au -4.23909683869863108E-01 2.56995149765127096E+00 1.36977413880812637E+00
Au 1.17657529737181865E+00 -3.96482559704932935E+00 -1.09092774669520232E+00
Au -9.87346249211224825E-01 1.05058823687447581E-01 -2.81877517119238119E+00
Au 1.51088875544028789E+00 -2.16636907222653985E+00 9.48254033417379349E-01
Au -6.97645544035581877E-01 2.74827241105334075E+00 -3.51555818870353187E+00
Au -8.42318310074884447E-01 -1.54956888217056665E+00 2.38017655111663240E+00
Au -3.24400396844681183E+00 -2.88082923694458148E-01 -1.19342092131556843E+00
Au 2.42636963492469437E+00 2.61206048929402623E+00 1.18609034042620243E+00
Au -1.89586261458725480E+00 2.21649179794247164E+00 -1.07558653245197577E+00
Au 3.88893269825302079E+00 -1.53753674887071007E-01 -2.55917519909754221E+00
Au -1.15322558925050767E+00 -2.21946733523313577E+00 -1.34499871538518700E+00
Au 1.10771770547911652E+00 2.59548408405595010E+00 3.68557002690492075E+00
Au 8.48680306340188984E-01 2.81008638844228464E+00 -1.13774724593579335E+00
Au -1.15417898288327403E+00 9.35295215875005859E-01 3.67999132541959773E+00
Au 1.33273219838741741E+00 -1.41886898089597602E+00 -2.41801351644493234E+00
Au 1.38270600586731618E+00 1.84654969753420578E-01 2.42906383335187970E+00
Au 3.58723645239797140E+00 2.35955564616685853E+00 -1.35232099795582794E+00
Au -3.09218440017559937E+00 -2.37139641577364646E+00 9.01116606376502816E-01
Au -8.17478333411778446E-01 -3.88606556770573164E+00 8.27667835849541178E-01
Au -2.78222660333356275E+00 1.10588304586119568E+00 1.26690216675483813E+00
Au 3.01343226472256731E+00 5.41170229720098622E-02 1.04126256985726043E-01
Au -3.33554771736961886E+00 -7.31059955670741446E-01 3.27337185431070665E+00
Au 3.56718821914267892E+00 -2.45506664518832318E+00 -1.06462830659838681E+00
Au -2.86244686019452160E-02 1.14101997873262265E-01 -7.69457129261068434E-02
Au 1.65986098431215878E+00 1.22888465033994954E+00 -3.34638683459150510E+00
Au -5.04776805738748369E+00 -4.35372990473152144E-01 9.42380119572222119E-01
26
Distances in Angstroem, Energy = 2.7441049E-01 eV (PBE)
Au -1.86506931574139068E+00 1.94510010809694611E+00 -1.33087227929535246E+00
Au 2.33461497775765581E-01 7.43133298708543388E-01 -2.74808526965412891E+00
Au 4.15111491849256264E+00 -1.26295659725255383E+00 -2.10124348287445928E+00
Au 3.25799166441670707E+00 -2.66725650978861184E+00 1.20791226312274610E-01
Au -2.38813667513574829E-01 -1.79385865925885524E+00 -3.90672244334981666E+00
Au -1.96195785811220613E+00 -7.77702506654165182E-01 -1.85693709562980724E+00
Au -5.59557082331735067E-01 -1.68389851462181883E+00 2.76202133047057297E+00
Au 2.02725000775003394E+00 -9.55605360977369589E-01 1.95508326131861021E+00
Au 1.97558650523506341E+00 1.69316671942949593E+00 8.78445287089787863E-01
Au 3.02083627089387519E-01 1.02179489938413637E+00 3.07954756185730316E+00
Au -2.56902361828637327E+00 1.61325768952211934E+00 2.95221560151030893E+00
Au -1.53653194350035771E+00 -6.49705161477441978E-02 4.84071638849408181E+00
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E.3. Filled Cage Motif

Au -5.34312218212760759E-01 2.87306497247232562E+00 1.19980587165906627E+00
Au 4.11825431500299910E+00 4.92475684054934013E-02 3.77019886894442269E-01
Au -1.05740574005843002E+00 -3.38548318564785999E+00 -1.74223689462286613E+00
Au -2.27929058700476972E+00 -2.34187840093413113E+00 5.37875360067233355E-01
Au -3.22235508175592411E+00 3.23518465300664526E-01 5.32481021857742820E-01
Au -3.31492231769077961E+00 3.17758628769293550E+00 8.52300481266700438E-01
Au -1.47366654431892452E+00 4.61354423522165291E+00 -7.64022998525791475E-01
Au 8.24824542532261229E-01 3.07345896516990980E+00 -1.31505814776806051E+00
Au 2.83802032095447521E+00 1.22850873314352182E+00 -1.84789828466987149E+00
Au 5.29033897709455969E-01 -2.86186582075765461E+00 4.67702132367324275E-01
Au 1.69600477387688997E+00 -2.75393541288826693E+00 -2.13022604078667044E+00
Au -3.33874216762038678E+00 -1.18377694491919927E+00 2.84884035572549843E+00
Au -2.86476341362245035E-01 3.01613319089147139E-02 3.13632837454449642E-01
Au 2.28449841267372733E+00 -6.52354844608651785E-01 -3.97517566716921955E+00
26
Distances in Angstroem, Energy = 2.7688857E-01 eV (PBE)
Au -3.35278563463926371E-01 2.59595123103884307E+00 7.97980475032137870E-01
Au 1.29401921016437393E+00 -3.92709783299800774E+00 -8.56463562756654584E-01
Au -1.07851995941802725E+00 -1.69890405116991883E-01 -2.98377449826665453E+00
Au 2.61543229361871443E+00 -1.66546454846853353E+00 9.09878108706213690E-02
Au 1.81080484507503275E-01 2.22134669403098917E+00 -2.00252358824433907E+00
Au -1.11335203507531633E+00 -1.00602794384368233E+00 3.14949386589211455E+00
Au -3.42853638258855797E+00 -9.64404227595890839E-01 -1.75711573450127578E+00
Au 2.07516034856209464E+00 2.58506749794925428E+00 2.21759947290167014E+00
Au -2.25176626390587264E+00 1.34948152862088566E+00 -7.78221134438368600E-01
Au 3.59140509731828361E+00 -3.22915426034292408E-01 -2.37044010934625593E+00
Au -1.13717631918627005E+00 -2.57365460266096013E+00 -1.38834829257610815E+00
Au -1.53416683918688984E-01 1.69612055572781384E+00 3.53583495976468365E+00
Au 1.98838827005947638E+00 3.66693539016360504E+00 -3.72801773811370474E-01
Au -2.42978323454784606E+00 8.24124933698122453E-01 4.77525330096985634E+00
Au 1.22003536392640788E+00 -1.85359415047292875E+00 -2.78448347936424367E+00
Au 1.46097486347530103E+00 -1.80244859037465038E-01 2.16943363690758639E+00
Au 2.97747429999999191E+00 2.35494187596218385E+00 -2.60018337446290104E+00
Au -2.58673651144562822E+00 -1.74654217463854233E+00 8.69590610631646332E-01
Au 7.22101424685888671E-02 -2.55718832911685645E+00 1.23018599605448764E+00
Au -2.57880634049344248E+00 1.56229202840034032E+00 2.02523636003789154E+00
Au 2.94092794776425093E+00 1.06175790719488039E+00 -5.42642676533197903E-03
Au -3.98569587495658340E+00 -6.62122742464598235E-01 3.02047767275591239E+00
Au 3.69629073184276580E+00 -3.05198916862809666E+00 -2.06368411202278912E+00
Au 1.72756345917505549E-01 -1.42313163956080291E-01 -3.61764504048745161E-01
Au 1.35845110120355361E+00 6.24635135978001799E-01 -4.01064411265576837E+00
Au -4.56553833182864999E+00 2.80794796267929581E-01 4.53800541442397232E-01
26
Distances in Angstroem, Energy = 2.7763545E-01 eV (PBE)
Au 8.11221431987851815E+00 3.43594114905721870E+00 6.31916499376400420E+00
Au 1.28013939561456924E+00 1.93881532212792651E+00 4.15724343117617501E+00
Au 1.36423361589516756E+00 4.71962283325932308E+00 3.38279725646823248E+00
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Appendix E. Coordinates of Au26

Au 4.24882971757014172E+00 4.54469996352215233E+00 3.74670141066344486E+00
Au 4.58635903837970993E+00 9.38719790403565568E+00 3.69817685510103100E+00
Au 6.03573200271250077E+00 6.93929676804379358E+00 3.81564580427173805E+00
Au 7.15044250534037928E+00 4.32381086545637139E+00 3.87220999366284957E+00
Au 5.33777346594667446E+00 3.51661832753245118E+00 6.24028394682458298E+00
Au -1.11173011235809777E-01 4.00544665358057905E+00 5.62096262870973185E+00
Au 1.33401636826343961E+00 6.35552925422612525E+00 5.83884266990358736E+00
Au 4.13213186308035763E+00 6.09284794859735346E+00 6.30362588642767996E+00
Au 5.80701700984426594E+00 8.39445861551361183E+00 6.25743279176438083E+00
Au 6.97886853648589334E+00 5.96111782905778131E+00 6.31889569445707888E+00
Au 2.82187566578165949E+00 8.60487046635887864E+00 5.99576478234949128E+00
Au 6.72039373905088677E+00 1.56713637684439289E+00 4.61860203875806530E+00
Au 3.98658280180961100E+00 1.56038168300738334E+00 4.40123357358694278E+00
Au 2.96801263355964728E+00 5.43136111447979708E+00 1.28893202347388613E+00
Au 2.81398666342903203E+00 2.51162560189448003E+00 1.95371798116229622E+00
Au 4.48166338426438404E+00 1.07755141011084348E+01 6.05151783005048394E+00
Au 4.73935829514952722E+00 6.16644440798249160E+00 -7.16197513797235175E-01
Au 5.67632615892508419E+00 2.31468472147018112E+00 2.19497084130928499E+00
Au 6.03125150549285927E+00 5.22114073458663608E+00 1.54743586530440380E+00
Au 4.66457763586735652E+00 7.83745270506058400E+00 1.48644443959603478E+00
Au 2.81483924585764367E+00 7.16020015143819055E+00 3.54205743220528291E+00
Au 2.62110657581578810E+00 3.70454451365248660E+00 6.00479561130738571E+00
Au 4.49029496722075994E+00 3.36778228810571756E+00 -4.35109185008728250E-02
26
Distances in Angstroem, Energy = 2.7799505E-01 eV (PBE)
Au 9.44337405568231425E+00 1.20205049581101275E+00 5.17594983762346761E+00
Au 7.65028206771318331E+00 3.22324034426945838E+00 5.70142705329320698E+00
Au 3.53827377848394686E+00 6.86817362077664395E+00 6.48695921313967006E+00
Au 2.99567974353176192E+00 2.36184535277734442E+00 2.23278812780167568E+00
Au 5.76002935126751314E+00 2.85155634940508840E+00 7.81919206543418355E+00
Au 4.16917366468293871E+00 3.30533014165587780E-01 3.79050687289440136E+00
Au 4.10364021417040625E+00 5.84131864031264314E+00 3.94401735156327993E+00
Au 5.63055937063349532E+00 4.43714926802048770E-01 9.19502170465518276E+00
Au 1.69921556394546025E+00 5.11437892466864330E+00 5.37108521615060219E+00
Au 3.19831426372304861E+00 1.60763849140684933E+00 8.39041491956239760E+00
Au 9.68151403459989734E-01 2.79976874949269661E+00 4.23462264614741191E+00
Au 4.92272318060681702E+00 2.04256845674298804E-01 6.52119176372248965E+00
Au 1.89833803372754550E+00 4.89197880351019432E+00 2.55031610771828010E+00
Au 3.40310126644662292E+00 4.28568606870352031E+00 7.55226858544771407E+00
Au 1.44457136152663179E+00 2.55924118055064487E-01 3.23755358712160835E+00
Au 7.22732240448061525E+00 4.01362599311838952E+00 8.84466907991326656E-01
Au 4.53486110860756142E+00 4.58926499611543548E+00 1.45617097496443026E+00
Au 8.46779831402846916E+00 2.59653964262985992E+00 2.95634654653269324E+00
Au 7.64017184227436275E+00 7.53450361869736795E-01 7.26864397127939998E+00
Au 6.84054772852756265E+00 6.74082651161739155E-01 4.44973122764125062E+00
Au 5.69759797166480908E+00 5.14279781941715619E+00 6.15650011591202340E+00
Au 5.75083697354464274E+00 2.05914428309277264E+00 2.19299918945080208E+00
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E.3. Filled Cage Motif

Au 4.85051075516881980E+00 2.76805674959330394E+00 4.96386550369059343E+00
Au 2.30341797516695701E+00 8.01949073393788514E-01 5.84487890519119890E+00
Au 1.02353340871576060E+00 2.94045261648783862E+00 7.06762382889686247E+00
Au 6.59360970477677633E+00 4.70756793369201265E+00 3.49794696641898062E+00
26
Distances in Angstroem, Energy = 2.8256243E-01 eV (PBE)
Au 1.01408616797445692E+01 1.86003937816816123E+00 5.38133215276272470E+00
Au 8.18052916228369575E+00 3.58850354095763002E+00 6.31575002616668968E+00
Au 3.34873774374319222E+00 6.22186219953392516E+00 6.27485235987649936E+00
Au 2.68637835605974784E+00 1.11419255136802020E+00 1.74578672553180581E+00
Au 5.95474697003408071E+00 2.41221775245105219E+00 7.64270355120371825E+00
Au 3.07234789460425306E+00 4.00462283709397737E-01 4.44180780989218604E+00
Au 4.85071674934952934E+00 5.60944892189743083E+00 3.97033392301849419E+00
Au 5.99399574102204991E+00 -3.62339646567508611E-01 8.11936109673783157E+00
Au 2.09060690240300229E+00 5.16505920145668451E+00 3.97975930906910547E+00
Au 3.66314219243709660E+00 7.94375394041056393E-01 7.16169677040317332E+00
Au -2.17806500655635282E-01 3.61538833560173334E+00 4.49177819772000753E+00
Au 5.73384298501224521E+00 8.62916647654226460E-02 5.32435209286109945E+00
Au 1.08043271959061848E+00 3.41473752311652667E+00 2.06766941892038947E+00
Au 3.38949193720133746E+00 3.63509117649136781E+00 7.39352402387119056E+00
Au 5.02860689292863539E-01 1.08361266322039906E+00 3.58430267556803717E+00
Au 6.56383186826248810E+00 3.67307994539357585E+00 2.79392234349869018E+00
Au 3.83278850665366377E+00 3.64044643496994036E+00 2.29080707799180239E+00
Au 9.25026452271742272E+00 3.75637419316647581E+00 3.56981456738433200E+00
Au 8.11017168427417445E+00 7.81792940596563346E-01 6.82125645751193765E+00
Au 7.78083656901508558E+00 1.36786103594384589E+00 3.90325203450189662E+00
Au 5.79860135543078759E+00 4.99268725623267073E+00 6.63600187116419793E+00
Au 5.25955404773166890E+00 1.13105365955294968E+00 2.72088529822816483E+00
Au 4.71107547859636266E+00 2.80711129153992234E+00 4.98795377658234518E+00
Au 1.43178469650394891E+00 2.02719232727452869E+00 6.09410868732908906E+00
Au 9.63578036467484300E-01 4.81118703186381946E+00 6.63509967959861058E+00
Au 7.58226351878210636E+00 5.70126780965731417E+00 4.59437726285130932E+00
26
Distances in Angstroem, Energy = 2.8751312E-01 eV (PBE)
Au -1.38177376561936938E+00 2.38665805331166103E+00 -5.43977593789062408E-01
Au 1.77743629928350488E+00 -3.42674696350476671E+00 -2.55097377566838701E-01
Au -2.00864042617693972E+00 1.64311113432672928E+00 -3.25736904284103490E+00
Au 2.19994579744999452E+00 -1.30653381782002809E+00 1.57569521227459308E+00
Au 6.92910955700985265E-01 1.97768300771601213E+00 -2.38295058445184527E+00
Au 4.18971934486553777E-03 -3.19946387360711215E+00 1.79446617907650641E+00
Au -2.51016712547380072E+00 -3.28243564781490860E-01 -1.21785702944383711E+00
Au 1.85928920588133240E+00 1.25692530419713866E+00 2.89724426740603969E+00
Au -4.01818107626367382E+00 2.01358575232833736E+00 -1.37390660770045270E+00
Au 3.62557153067842730E+00 1.03133560738628383E+00 8.42517417683357195E-01
Au -4.39822914848483293E-01 -7.38908717083039623E-01 -3.06339537301182263E+00
Au -2.44319641223297773E-01 1.45193687575839170E+00 4.77534815549740621E+00
Au 3.38889706947827340E+00 1.75322563810550758E+00 -1.82041729009222553E+00
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Appendix E. Coordinates of Au26

Au -2.45281289919629364E+00 1.35040640546700147E-01 3.58443205222917438E+00
Au 1.10079857459871852E-01 1.19907674952483978E+00 -5.00059564466888506E+00
Au 2.27564615545031268E-01 -9.64520931501260725E-01 3.49826972842672568E+00
Au 2.27188021276069962E+00 -3.76695830417629676E-02 -3.68440690241991664E+00
Au -1.95975156904146597E+00 -2.65130253788502968E+00 3.75615609820827689E+00
Au -7.40886344703516886E-01 -2.57091098312919852E+00 -9.52093280221590010E-01
Au -7.81991234291605664E-01 1.88067943800731596E+00 2.10548746990701297E+00
Au 1.35719323867879349E+00 2.48427425640712851E+00 3.00655393697865425E-01
Au -2.18098545642947705E+00 -1.48149169690736238E+00 1.27033312171288948E+00
Au 1.55616953315621065E+00 -2.64451321783358706E+00 -2.90277913448740099E+00
Au 1.35460179544269671E-01 -4.82587439080439315E-02 -1.87906173459008799E-02
Au 2.89989411198504143E+00 -9.36554347268747200E-01 -1.09218501900731502E+00
Au -3.38714987367931908E+00 1.12158652065544651E+00 1.16521640092829326E+00
26
Distances in Angstroem, Energy = 1.9958403E-01 eV (LDA)
Au 4.89347371459862401E+00 2.02025766961481584E-01 3.34684634391953262E+00
Au 5.47346598053022881E-01 1.95042147039090952E+00 3.28316501337488509E+00
Au 1.38944389020614212E+00 4.59874350646250196E+00 3.22004932430861768E+00
Au 4.10164183097555046E+00 4.47915319787718413E+00 3.80577345279889201E+00
Au 4.39104505462375361E+00 9.18703839171328163E+00 3.65392083750509356E+00
Au 6.00268900590591326E+00 6.98170060493913081E+00 3.77729048434015136E+00
Au 6.84820806882923971E+00 4.42540644421182972E+00 4.22288677372903365E+00
Au 6.29966729694650152E+00 3.97511142878296297E+00 6.87236497785042211E+00
Au 9.63309661278587748E-01 3.27115513733306207E+00 5.58179491671625971E+00
Au 1.99721103242974962E+00 5.72513017610031127E+00 5.71644240554468031E+00
Au 4.58321594266850685E+00 6.10197953845923191E+00 6.54109221417770659E+00
Au 5.72644086461314217E+00 8.54602605836850593E+00 5.97047737587922445E+00
Au 7.29568900515981422E+00 6.36389332219911363E+00 6.16587449032929147E+00
Au 3.00808350493493659E+00 8.20816879799263610E+00 5.82427297640645047E+00
Au 5.58306333861882020E+00 2.09214824563800539E+00 5.12484425717940439E+00
Au 2.93516213624018230E+00 1.61799395041569150E+00 4.60843314601362675E+00
Au 3.18627247611852171E+00 5.38060743287588394E+00 1.19451043673389035E+00
Au 2.61698904079784977E+00 2.76872531857060311E+00 1.60718604755905692E+00
Au 2.34097410780954407E+00 1.75576188803412969E-01 2.33632269300941697E+00
Au 4.43901906766398113E+00 9.26360629920075729E-01 7.29627093430043172E-01
Au 5.82721810477523938E+00 2.60878071672504985E+00 2.42102853390616124E+00
Au 5.93702272524770969E+00 5.26190115832554373E+00 1.68963086989270406E+00
Au 4.61419893573014317E+00 7.64201051769452988E+00 1.45288468109283198E+00
Au 2.73160685491787625E+00 6.99874681357476458E+00 3.37706900199412985E+00
Au 3.59954527490882725E+00 3.56334546373096162E+00 6.39813516206218846E+00
Au 4.78520073668510548E+00 3.50296154739943555E+00 1.69925773971705725E-02

E.4 Tubular Motif

26
Distances in Angstroem, Energy = 3.7159014E-01 eV (PBE)
Au 2.51972105296473536E+00 2.91686346380690065E+00 8.15933112150204742E+00
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E.4. Tubular Motif

Au 2.63829883304897894E+00 3.07968848223424674E+00 3.47660351179517046E-01
Au 4.96512562926476964E+00 1.56269540850703348E+00 7.82832323208775005E+00
Au 2.56746011601124025E+00 1.32495088095332669E-01 7.75940717856060314E+00
Au 1.28772319473077684E-01 1.49263618297623823E+00 7.75017329975244174E+00
Au 8.60371859092177171E-02 4.28401175310095006E+00 7.80703352274470586E+00
Au 2.48249232633657124E+00 5.71713397171217519E+00 7.87150590251413540E+00
Au 4.92116053332116543E+00 4.35473389729322768E+00 7.88083887010439721E+00
Au 4.06262857766016694E+00 6.73396974475972576E-01 6.61547732129404542E-01
Au 3.99597695598539415E+00 5.50839530567352309E+00 7.62780245520379263E-01
Au 1.20231569675996486E+00 5.46659875772509363E+00 7.19209494892919632E-01
Au -1.62422669169606460E-01 3.02914298973883378E+00 6.49221732844273980E-01
Au 1.27242711353073434E+00 6.35362062052132526E-01 6.21519651154691211E-01
Au 5.42628058832064664E+00 3.10843651628851214E+00 7.35848954393287680E-01
Au 3.94452529134270424E+00 5.44603575066997259E+00 5.50005188580272364E+00
Au 5.41104206081420624E+00 3.01023553112308084E+00 5.47348363227564327E+00
Au 4.01805502468391218E+00 5.36083838593157780E-01 5.40108273024220509E+00
Au 1.17694196774465842E+00 4.88586604455542972E-01 5.35555685332955456E+00
Au -2.80859722220558161E-01 2.92940798301130778E+00 5.38520024729251379E+00
Au 1.10198960885374575E+00 5.41386974974923163E+00 5.45497544912711518E+00
Au 2.63920820113723131E+00 1.80762758797672202E-01 3.02080807813984897E+00
Au 5.08310519135489614E+00 1.63058527848066337E+00 3.08861019936547887E+00
Au 5.03722663301441997E+00 4.47203303504301175E+00 3.14706072270051695E+00
Au 2.55717047860255553E+00 5.85857409397358087E+00 3.13697996537152424E+00
Au 1.19100946861189258E-01 4.40006681726595161E+00 3.07065455275395571E+00
Au 1.51149058393947183E-01 1.55927970515668091E+00 3.01281439421843089E+00
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F Coordinates of Au−
26

In this section the coordinates of the isomers for which the computed photoeletron spectra

yield a good match with the experimental photoelectron spectra are given in the xyz file

format.

F.1 Isomer 3

26
isomer 3, distances in Angstroem (LDA-Geometry)
Au 8.56390007473861914E+00 1.62813118597455753E+00 3.84506264722230595E+00
Au 7.52979683230909291E+00 3.61538281507366221E+00 5.51783586113459901E+00
Au 2.85997906184454775E+00 6.17406817842427014E+00 6.68529792208702922E+00
Au 3.93558816482195928E+00 1.98320570700093279E+00 2.43570266613816999E+00
Au 5.95362997777755609E+00 2.72728732899271575E+00 7.54977648580234639E+00
Au 3.46719761444288643E+00 1.16619807625252384E-01 4.56858100675232937E+00
Au 4.28613558147161822E+00 6.87726001742204396E+00 4.51575465339584792E+00
Au 6.23438324546289557E+00 1.83983467930523392E-01 8.43265257065652918E+00
Au 1.90360882346215132E+00 5.54272118205560727E+00 4.17360250679909939E+00
Au 3.89103844881442473E+00 8.78985411941761718E-01 7.21049032959466452E+00
Au 1.56205299977200313E-01 3.41430447715891727E+00 4.21877053316152040E+00
Au 5.68008003334728606E+00 -7.53842709450097126E-01 5.90677845311759953E+00
Au 1.85116786515310539E+00 3.72499073955051285E+00 2.13876431500338970E+00
Au 3.31661237365390926E+00 3.57269994756447007E+00 7.42763163436437424E+00
Au 1.43657372828245533E+00 1.24087234757609455E+00 3.21620736946902941E+00
Au 6.43236137740602487E+00 3.08608574091134313E+00 2.75838552597992637E+00
Au 4.22198370976999016E+00 4.70577676278272072E+00 2.90996353646191253E+00
Au 8.83379997882074619E+00 4.24557988608681569E+00 3.22816634050113516E+00
Au 7.85018331346632792E+00 1.06820247054917616E+00 6.44834014190638971E+00
Au 8.04412258312049566E+00 -9.10652067820296285E-01 4.58905686093019938E+00
Au 5.34506046260942558E+00 5.09675812216348056E+00 6.31289258162645073E+00
Au 5.98947645023099895E+00 5.02952070417775343E-01 3.50865712877924674E+00
Au 4.71046439372265713E+00 2.65508207862393464E+00 5.02980509494596006E+00
Au 1.76718106634718386E+00 1.88759898781572910E+00 5.86751162536211446E+00
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26

Au 8.74571922037037930E-01 4.39649028434815659E+00 6.56096303463436836E+00
Au 6.62053312346721423E+00 5.66845262568273256E+00 3.88583836441861052E+00

F.2 Isomer 4

26
isomer 4, distances in Angstroem (LDA-Geometry)
Au 5.38462062383746165E+00 6.87071251529801086E-02 3.08488386989383434E+00
Au 1.23924742408907695E+00 2.03813094396562056E+00 4.23489726203083894E+00
Au 1.44020641051322928E+00 4.71984179543080717E+00 3.44100790040505222E+00
Au 4.23653948604446473E+00 4.49516471653930516E+00 3.74533957785136185E+00
Au 4.59065079903130258E+00 9.11103041552364878E+00 3.75879907237170796E+00
Au 6.28634818765099901E+00 6.93659620232828278E+00 3.70436381540503401E+00
Au 7.08301348821806975E+00 4.31727992871775790E+00 3.94251918234840559E+00
Au 5.42043094000065562E+00 3.56917250238682504E+00 6.15537773382419662E+00
Au -4.18522025302283177E-02 3.98508543664259740E+00 5.60031242118994310E+00
Au 1.40280962362958883E+00 6.25969759858646846E+00 5.78483071847732511E+00
Au 4.13671837102026529E+00 5.99830183267298533E+00 6.34780145255364392E+00
Au 5.70176559362258306E+00 8.21711537178995499E+00 6.07617318655689242E+00
Au 6.88768609790032205E+00 5.81435552055627358E+00 6.19366228278825481E+00
Au 2.95503053321028242E+00 8.42939235829805966E+00 5.87749577453457128E+00
Au 6.72931308034893405E+00 1.73789749474130728E+00 4.69696196041840075E+00
Au 3.96898937946083574E+00 1.68166578380588949E+00 4.77022534179680680E+00
Au 3.10064969217627473E+00 5.43531181488001280E+00 1.31772376235887467E+00
Au 2.58998123572877281E+00 2.79061429315253351E+00 1.89528667013679897E+00
Au 2.63666133593633578E+00 2.23921165131357763E-01 2.86515329882660374E+00
Au 4.27307170339855968E+00 9.62538660179732330E-01 7.67572810132032934E-01
Au 6.11465072707510693E+00 2.53445491238267140E+00 2.08851167472807919E+00
Au 5.94867713080938199E+00 5.22971904289193468E+00 1.57705589925054745E+00
Au 4.65442954466400405E+00 7.61090129948944405E+00 1.53642201828652336E+00
Au 2.76312273565879440E+00 7.10330085529342270E+00 3.48327484032691670E+00
Au 2.64504789756137004E+00 3.75068807436583995E+00 5.95322968675589514E+00
Au 4.49592853094340938E+00 3.53422585509427600E+00 4.00337867514279980E-02

F.3 Isomer 18

26
isomer 18, distances in Angstroem (LDA-Geometry)
Au 5.24024699637489988E-01 1.78022707359568577E+00 -3.38028719003049893E+00
Au 1.37705324340677282E+00 3.66060789941122477E+00 -1.64885228994592348E+00
Au 2.16808203069707561E+00 1.06385430165422523E+00 -1.29308608924425528E+00
Au 1.16902995289582590E+00 -3.45556296108731242E+00 -2.40848854379831190E+00
Au -1.15087190118835814E+00 -2.25542394157155712E+00 -1.57624381170290251E+00
Au -1.53502746620485131E+00 3.58908899800555570E-01 -2.33366274053112210E+00
Au 9.13949953606714854E-02 -1.75878096140044404E-01 3.90543141715241904E-02
Au 8.91833967336320366E-01 -4.05569499199379191E+00 2.11022447411338598E+00
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F.3. Isomer 18

Au 2.56569532334106443E+00 1.11700826017554128E-01 1.32949018401557528E+00
Au 8.78303571059449895E-01 1.20417762690235497E+00 3.16123953394850332E+00
Au -1.08401660095107766E+00 2.70554296144324979E+00 2.06914463188249487E+00
Au -1.44098858973818422E+00 -1.73626406320385313E-02 2.39927113882867138E+00
Au -2.93395661428852872E-01 4.57991232352976674E+00 2.14449299022703987E-01
Au 2.51822094696784182E+00 -1.59741594349177096E+00 -8.21584223913149336E-01
Au 3.11890450850427170E+00 -2.47279002022756567E+00 1.78735585699738464E+00
Au -2.71507173197165352E+00 -6.08231852836758624E-01 -1.49384695606041423E-02
Au -3.50894031271358964E+00 1.50203735854508258E+00 1.52171858098811952E+00
Au -2.83284839608949568E+00 3.81498953566238264E+00 2.73042641699039190E-01
Au -3.56452300617550577E+00 1.68989663215910313E+00 -1.19545625578935866E+00
Au -1.34271219381925166E+00 3.10817871364175780E+00 -1.92739018384635785E+00
Au 1.40262078528042977E+00 2.56696150998901551E+00 8.62383641780024801E-01
Au 2.44796584676877282E+00 -4.20806931936364048E+00 -1.49443683727887272E-01
Au -2.79134320383089107E-01 -4.50218122392749898E+00 -3.11816071111768067E-01
Au -1.13130924464269778E+00 -2.46300285124460627E+00 1.25219494236252138E+00
Au 8.64621462243715611E-01 -1.48171911041906967E+00 2.96534494370778079E+00
Au 8.61087465912502070E-01 -8.53669668404558046E-01 -2.92365781752549880E+00

157





Bibliography

[1] D. J. Wales, M. A. Miller, and T. R. Walsh, “Archetypal Energy Landscapes”, Nature 394,

758 (1998).

[2] J. P. K. Doye, M. A. Miller, and D. J. Wales, “Evolution of the Potential Energy Surface

with Size for Lennard-Jones Clusters”, The Journal of Chemical Physics 111, 8417

(1999).

[3] D. Wales, Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cam-

bridge University Press, Cambridge, 2003).

[4] W. J. Wales, “Decoding the Energy Landscape: Extracting Structure, Dynamics and

Thermodynamics”, Philosophical Transactions of the Royal Society of London A 370,

2877 (2012).

[5] J. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence (MIT Press, Cambridge,

Massachusetts, 1992).

[6] S. M. Woodley, P. D. Battle, J. D. Gale, and C. Richard A. Catlow, “The Prediction of

Inorganic Crystal Structures Using a Genetic Algorithm and Energy Minimisation”,

Physical Chemistry Chemical Physics 1, 2535 (1999).

[7] V. E. Bazterra, M. B. Ferraro, and J. C. Facelli, “Modified Genetic Algorithm to Model

Crystal Structures. I. Benzene, Naphthalene and Anthracene”, The Journal of Chemical

Physics 116, 5984 (2002).

[8] A. R. Oganov and C. W. Glass, “Crystal Structure Prediction Using Ab Initio Evolutionary

Techniques: Principles and Applications”, The Journal of Chemical Physics 124, 244704

(2006).

[9] S. E. Schönborn, S. Goedecker, S. Roy, and A. R. Oganov, “The Performance of Minima

Hopping and Evolutionary Algorithms for Cluster Structure Prediction”, The Journal of

Chemical Physics 130, 144108 (2009).

159



Bibliography

[10] Z. Li and H. A. Scheraga, “Monte Carlo-Minimization Approach to the Multiple-Minima

Problem in Protein Folding”, Proceedings of the National Academy of Sciences 84,

6611 (1987).

[11] C. Baysal and H. Meirovitch, “New Conformational Search Method Based on Local

Torsional Deformations for Cyclic Molecules, Loops in Proteins, and Dense Polymer

Systems”, The Journal of Chemical Physics 105, 7868 (1996).

[12] D. J. Wales and J. P. K. Doye, “Global Optimization by Basin-Hopping and the Lowest

Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms”, Journal of

Physical Chemistry A 101, 5111 (1997).

[13] G. T. Barkema and N. Mousseau, “Event-Based Relaxation of Continuous Disordered

Systems”, Physical Review Letters 77, 4358 (1996).

[14] N. Mousseau and G. T. Barkema, “Traveling Through Potential Energy Landscapes of

Disordered Materials: The Activation-Relaxation Technique”, Physical Review E 57,

2419 (1998).

[15] R. Malek and N. Mousseau, “Dynamics of Lennard-Jones Clusters: A Characterization

of The Activation-Relaxation Technique”, Physical Review E 62, 7723 (2000).

[16] E. Machado-Charry, L. K. Béland, D. Caliste, L. Genovese, T. Deutsch, N. Mousseau,

and P. Pochet, “Optimized Energy Landscape Exploration Using the Ab Initio Based

Activation-Relaxation Technique”, The Journal of Chemical Physics 135, 34102 (2011).

[17] N. Mousseau, L. K. Béland, P. Brommer, J.-F. Joly, F. El-Mellouhi, E. Machado-Charry,

M.-C. Marinica, and P. Pochet, “The Activation-Relaxation Technique: ART Nouveau

and Kinetic ART”, Journal of Atomic and Molecular Physics 2012, 925278 (2012).

[18] S. Goedecker, “Minima Hopping: An Efficient Search Method for the Global Mini-

mum of the Potential Energy Surface of Complex Molecular Systems”, The Journal of

Chemical Physics 120, 9911 (2004).

[19] S. Roy, S. Goedecker, and V. Hellmann, “Bell-Evans-Polanyi Principle for Molecular

Dynamics Trajectories and its Implications for Global Optimization”, Physical Review

E 77, 056707 (2008).

[20] M. Amsler and S. Goedecker, “Crystal Structure Prediction Using the Minima Hopping

Method”, The Journal of Chemical Physics 133, 224104 (2010).

[21] A. Groß, “Reactions at Surfaces Studied by Ab Initio Dynamics Calculations”, Surface

Science Reports 32, 291 (1998).

[22] T. C. Berkelbach, H. Lee, and M. E. Tuckerman, “Concerted Hydrogen-Bond Dynamics

in the Transport Mechanism of the Hydrated Proton: A First-Principles Molecular

Dynamics Study”, Physical Review Letters 103, 238302 (2009).

[23] A. Groß, “Ab Initio Molecular Dynamics Simulations of the Adsorption of H2 on Palla-

dium Surfaces”, ChemPhysChem 11, 1374 (2010).

160



Bibliography

[24] J. K. Clark II and S. J. Paddison, “Ab Initio Molecular Dynamics Simulations of Water

and an Excess Proton in Water Confined in Carbon Nanotubes”, Physical Chemistry

Chemical Physics 16, 17756 (2014).

[25] A. Groß, “Ab Initio Molecular Dynamics Simulations of the O2/Pt(111) Interaction”,

Catalysis Today, (2015).

[26] C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler, “Transition Path Sampling and

the Calculation of Rate Constants”, The Journal of Chemical Physics 108, 1964 (1998).

[27] C. Dellago, P. G. Bolhuis, and D. Chandler, “Efficient Transition Path Sampling: Applica-

tion to Lennard-Jones Cluster Rearrangements”, The Journal of Chemical Physics 108,

9236 (1998).

[28] M. R. Sørensen and A. F. Voter, “Temperature-Accelerated Dynamics for Simulation of

Infrequent Events”, The Journal of Chemical Physics 112, 9599 (2000).

[29] A. Laio and M. Parrinello, “Escaping Free-Energy Minima”, Proceedings of the National

Academy of Sciences 99, 12562 (2002).

[30] T. F. Miller and C. Predescu, “Sampling Diffusive Transition Paths”, The Journal of

Chemical Physics 126, 144102 (2007).

[31] C. Dellago and P. Bolhuis, “Transition Path Sampling and Other Advanced Simulation

Techniques for Rare Events”, in Advanced Computer Simulation Approaches for Soft

Matter Sciences III, Vol. 221, edited by C. Holm and K. Kremer, Advances in Polymer

Science (Springer Berlin Heidelberg, 2009), pp. 167–233.

[32] D. J. Wales, “Perspective: Insight Into Reaction Coordinates and Dynamics from the

Potential Energy Landscape”, The Journal of Chemical Physics 142, 130901 (2015).

[33] J. P. K. Doye and D. J. Wales, “On Potential Energy Surfaces and Relaxation to the Global

Minimum”, The Journal of Chemical Physics 105, 8428 (1996).

[34] K. D. Ball, R. S. Berry, R. E. Kunz, F.-Y. Li, A. Proykova, and D. J. Wales, “From Topogra-

phies to Dynamics on Multidimensional Potential Energy Surfaces of Atomic Clusters”,

Science 271, 963 (1996).

[35] J. P. K. Doye, M. A. Miller, and D. J. Wales, “The Double-Funnel Energy Landscape of the

38-Atom Lennard-Jones Cluster”, The Journal of Chemical Physics 110, 6896 (1999).

[36] T. F. Middleton and D. J. Wales, “Energy Landscapes of Some Model Glass Formers”,

Physical Review B 64, 024205 (2001).

[37] P. N. Mortenson, D. A. Evans, and D. J. Wales, “Energy Landscapes of Model Polyala-

nines”, The Journal of Chemical Physics 117, 1363 (2002).

[38] D. J. Wales, “Discrete Path Sampling”, Molecular Physics 100, 3285 (2002).

[39] D. J. Wales, “Some Further Applications of Discrete Path Sampling to Cluster Isomer-

ization”, Molecular Physics 102, 891 (2004).

[40] D. J. Wales, “Energy Landscapes: Calculating Pathways and Rates”, International Re-

views in Physical Chemistry 25, 237 (2006).

161



Bibliography

[41] J. Doye and D. Wales, “Surveying a Potential Energy Surface by Eigenvector-Following”,

Zeitschrift für Physik D Atoms, Molecules and Clusters 40, 194 (1997).

[42] M.-C. Marinica, F. Willaime, and J.-P. Crocombette, “Irradiation-Induced Formation of

Nanocrystallites with C 15 Laves Phase Structure in bcc Iron”, Physical Review Letters

108, 025501 (2012).

[43] F. Calvo, A. Fortunelli, F. Negreiros, and D. J. Wales, “Communication: Kinetics of

Chemical Ordering in Ag-Au and Ag-Ni Nanoalloys”, The Journal of Chemical Physics

139, 111102 (2013).

[44] M. T. Oakley and R. L. Johnston, “Exploring the Energy Landscapes of Cyclic Tetrapep-

tides with Discrete Path Sampling”, Journal of Chemical Theory and Computation 9,

650 (2013).

[45] L. V. Smeeton, J. D. Farrell, M. T. Oakley, D. J. Wales, and R. L. Johnston, “Structures

and Energy Landscapes of Hydrated Sulfate Clusters”, Journal of Chemical Theory and

Computation 11, 2377 (2015).

[46] A. Alavi, P. Hu, T. Deutsch, P. L. Silvestrelli, and J. Hutter, “CO Oxidation on Pt(111): An

Ab Initio Density Functional Theory Study”, Physical Review Letters 80, 3650 (1998).

[47] Y. Xia, B. Zhang, J. Ye, Q. Ge, and Z. Zhang, “Acetone-Assisted Oxygen Vacancy Diffusion

on TiO2(110)”, The Journal of Physical Chemistry Letters 3, 2970 (2012).

[48] G. Zhou, D.-W. Wang, L.-C. Yin, N. Li, F. Li, and H. Cheng, “Oxygen Bridges between

NiO Nanosheets and Graphene for Improvement of Lithium Storage”, ACS Nano 6,

3214 (2012).

[49] D. J. Wales, “Locating Stationary Points for Clusters in Cartesian Coordinates”, Journal

of the Chemical Society, Faraday Transactions 89, 1305 (1993).

[50] D. J. Wales, “Rearrangements of 55-Atom Lennard-Jones and (C60)55 Clusters”, The

Journal of Chemical Physics 101, 3750 (1994).

[51] G. Mills and H. Jónsson, “Quantum and Thermal Effects in H2 Dissociative Adsorption:

Evaluation of Free Energy Barriers in Multidimensional Quantum Systems”, Physical

Review Letters 72, 1124 (1994).

[52] G. Mills, H. Jónsson, and G. K. Schenter, “Reversible Work Transition State Theory :

Application to Dissociative Adsorption of Hydrogen”, Surface Science 324, 305 (1995).

[53] G. Henkelman and H. Jónsson, “Improved Tangent Estimate in the Nudged Elastic

Band Method for Finding Minimum Energy Paths and Saddle Points”, The Journal of

Chemical Physics 113, 9978 (2000).

[54] G. Henkelman, B. P. Uberuaga, and H. Jónsson, “A Climbing Image Nudged Elastic

Band Method for Finding Saddle Points and Minimum Energy Paths”, The Journal of

Chemical Physics 113, 9901 (2000).

[55] G. Henkelman and H. Jónsson, “A Dimer Method for Finding Saddle Points on High

Dimensional Potential Surfaces Using Only First Derivatives”, The Journal of Chemical

Physics 111, 7010 (1999).

162



Bibliography

[56] R. A. Olsen, G. J. Kroes, G. Henkelman, A. Arnaldsson, and H. Jónsson, “Comparison of

Methods for Finding Saddle Points without Knowledge of the Final States”, The Journal

of Chemical Physics 121, 9776 (2004).

[57] A. Heyden, A. T. Bell, and F. J. Keil, “Efficient Methods for Finding Transition States in

Chemical Reactions: Comparison of Improved Dimer Method and Partitioned Rational

Function Optimization Method”, The Journal of Chemical Physics 123, 224101 (2005).

[58] J. Kästner and P. Sherwood, “Superlinearly Converging Dimer Method for Transition

State Search”, The Journal of Chemical Physics 128, 014106 (2008).

[59] S. Sakong, C. Mosch, A. Lozano, H. F. Busnengo, and A. Groß, “Lowering Energy Barriers

in Surface Reactions through Concerted Reaction Mechanisms”, ChemPhysChem 13,

3467 (2012).

[60] Y.-F. Li, U. Aschauer, J. Chen, and A. Selloni, “Adsorption and Reactions of O2 on

Anatase TiO2”, Accounts of Chemical Research 47, 3361 (2014).

[61] B. Schaefer, R. Pal, N. S. Khetrapal, M. Amsler, A. Sadeghi, V. Blum, X. C. Zeng, S.

Goedecker, and L. Wang, “Isomerism and Structural Fluxionality in the Au26 and Au−
26

Nanoclusters”, ACS Nano 8, 7413 (2014).

[62] B. Schaefer, S. Mohr, M. Amsler, and S. Goedecker, “Minima Hopping Guided Path

Search: An Efficient Method for Finding Complex Chemical Reaction Pathways”, The

Journal of Chemical Physics 140, 214102 (2014).

[63] J. P. K. Doye, “Physical Perspectives on the Global Optimization of Atomic Clusters”, in

Global Optimization – Scientific and Engineering Case Studies, edited by J. D. Pintér

(Springer, 2006), pp. 103–139.

[64] B. Schaefer, S. A. Ghasemi, S. Roy, and S. Goedecker, “Stabilized Quasi-Newton Op-

timization of Noisy Potential Energy Surfaces”, The Journal of Chemical Physics 142,

034112 (2015).

[65] See http://bigdft.org for source codes of SQNM, SQNS and MHGPS.

[66] S. De, B. Schaefer, A. Sadeghi, M. Sicher, D. G. Kanhere, and S. Goedecker, “Relation

between the Dynamics of Glassy Clusters and Characteristic Features of their Energy

Landscape”, Physical Review Letters 112, 083401 (2014).

[67] H. Eyring, “The Energy of Activation for Bimolecular Reactions Involving Hydrogen

and the Halogens, According to the Quantum Mechanics”, Journal of the American

Chemical Society 53, 2537 (1931).

[68] C. B. Anfinsen, “Principles that Govern the Folding of Protein Chains”, Science 181,

223 (1973).

[69] F. H. Stillinger and T. A. Weber, “Structural Aspects of the Melting Transition”, in

Proceedings of the Tenth Mexican Winter Meeting on Statistical Mechanics, Vol. 159

(1981).

[70] F. H. Stillinger and T. A. Weber, “Hidden Structure in Liquids”, Physical Review A 25,

978 (1982).

163

http://bigdft.org


Bibliography

[71] L. Dixon and G. Szegö, “The Global Optimization Problem: An Introduction”, in To-

wards global optimisation 2 (North-Holland Pub. Co., 1978).

[72] P. G. Mezey, “Catchment Region Partitioning of Energy Hypersurfaces, I”, Theoretica

Chimica Acta 58, 309 (1981).

[73] O. M. Becker and M. Karplus, “The Topology of Multidimensional Potential Energy

Surfaces: Theory and Application to Peptide Structure and Kinetics”, The Journal of

Chemical Physics 106, 1495 (1997).

[74] J. P. K. Doye and D. J. Wales, “Saddle Points and Dynamics of Lennard-Jones Clusters,

Solids, and Supercooled Liquids”, The Journal of Chemical Physics 116, 3777 (2002).

[75] J. N. Murrell and K. J. Laidler, “Symmetries of Activated Complexes”, Trans. Faraday

Soc. 64, 371 (1968).

[76] D. J. Wales and R. S. Berry, “Limitations of the Murrell-Laidler Theorem”, Journal of

the Chemical Society, Faraday Transactions 88, 543 (1992).

[77] K. Fukui, “Formulation of the Reaction Coordinate”, The Journal of Physical Chemistry

74, 4161 (1970).

[78] W. Quapp and D. Heidrich, “Analysis of the Concept of Minimum Energy Path on the

Potential Energy Surface of Chemically Reacting Systems”, Theoretica Chimica Acta

66, 245 (1984).

[79] P. Pechukas, “On Simple Saddle Points of a Potential Surface, the Conservation of

Nuclear Symmetry Along Paths of Steepest Descent, and the Symmetry of Transition

States”, The Journal of Chemical Physics 64, 1516 (1976).

[80] Y. Kumeda, D. J. Wales, and L. J. Munro, “Transition States and Rearrangement Mecha-

nisms from Hybrid Eigenvector-Following and Density Functional Theory.: Application

to C10H10 and Defect Migration in Crystalline Silicon”, Chemical Physics Letters 341,

185 (2001).

[81] D. A. Evans and D. J. Wales, “The Free Energy Landscape and Dynamics of Met-

Enkephalin”, The Journal of Chemical Physics 119, 9947 (2003).

[82] S. C. Harvey, R. K.-Z. Tan, and T. E. Cheatham, “The Flying Ice Cube: Velocity Rescal-

ing in Molecular Dynamics Leads to Violation of Energy Equipartition”, Journal of

Computational Chemistry 19, 726 (1998).

[83] M. Born and R. Oppenheimer, “Zur Quantentheorie der Molekeln”, Annalen der Physik

389, 457 (1927).

[84] R. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge Univer-

sity Press, Cambridge, 2004).

[85] G. A. Worth and L. S. Cederbaum, “Beyond Born-Oppenheimer: Molecular Dynamics

Through a Conical Intersection”, Annual Review of Physical Chemistry 55, 127 (2004).

[86] R. G. P. Weitao and Yang, Density-Functional Theory of Atoms and Molecules (Oxford

University Press, Oxford, 1994).

164



Bibliography

[87] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory (Dover Publications, Mineola N.Y., 2012).

[88] M. P. Nightingale and C. J. Umrigar, Quantum Monte Carlo Methods in Physics and

Chemistry (Springer, Berlin, 1998).

[89] L. H. Thomas, “The Calculation of Atomic Fields”, Mathematical Proceedings of the

Cambridge Philosophical Society 23, 542 (1927).

[90] E. Fermi, “Un Metodo Statistico per la Determinazione di alcune Prioprietà dell’Atomo”,

Rendicondi Accademia Nazionale de Lincei 6, 602 (1927).

[91] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas”, Physical Review 136, B864

(1964).

[92] M. Levy, “Universal Variational Functionals of Electron Densities, First-Order Density

Matrices, and Natural Spin-Orbitals and Solution of the V-Representability Problem”,

Proceedings of the National Academy of Sciences 76, 6062 (1979).

[93] E. E. Lieb, “Density Functionals for Coulomb Systems”, International Journal of Quan-

tum Chemistry 24, 243 (1983).

[94] R. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, International

Series of Monographs on Chemistry (Oxford University Press, USA, Oxford, 1989).

[95] E. Engel and R. Dreizler, Density Functional Theory: An Advanced Course, Theoretical

and Mathematical Physics (Springer, Berlin, 2011).

[96] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correla-

tion Effects”, Physical Review 140, A1133 (1965).

[97] R. Peverati and D. G. Truhlar, “Quest for a Universal Density Functional: The Accu-

racy of Density Functionals Across a Broad Spectrum of Databases in Chemistry and

Physics”, Philosophical Transactions of the Royal Society of London A 372, 20120476

(2014).

[98] D. M. Ceperley and B. J. Alder, “Ground State of the Electron Gas by a Stochastic

Method”, Physical Review Letters 45, 566 (1980).

[99] S. H. Vosko, L. Wilk, and M. Nusair, “Accurate Spin-Dependent Electron Liquid Cor-

relation Energies for Local Spin Density Calculations: A Critical Analysis”, Canadian

Journal of Physics 58, 1200 (1980).

[100] J. P. Perdew and A. Zunger, “Self-Interaction Correction to Density-Functional Approxi-

mations for Many-Electron Systems”, Physical Review B 23, 5048 (1981).

[101] L. A. Cole and J. P. Perdew, “Calculated Electron Affinities of the Elements”, Physical

Review A 25, 1265 (1982).

[102] J. P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron-

Gas Correlation Energy”, Physical Review B 45, 13244 (1992).

[103] A. D. Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymp-

totic Behavior”, Physical Review A 38, 3098 (1988).

165



Bibliography

[104] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and

C. Fiolhais, “Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized

Gradient Approximation for Exchange and Correlation”, Physical Review B 46, 6671

(1992).

[105] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made

Simple”, Physical Review Letters 77, 3865 (1996).

[106] A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange”,

The Journal of Chemical Physics 98, 5648 (1993).

[107] J. P. Perdew, M. Ernzerhof, and K. Burke, “Rationale for Mixing Exact Exchange with

Density Functional Approximations”, The Journal of Chemical Physics 105, 9982 (1996).

[108] J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid Functionals Based on a Screened

Coulomb Potential”, The Journal of Chemical Physics 118, 8207 (2003).

[109] S. A. Ghasemi, M. Amsler, R. G. Hennig, S. Roy, S. Goedecker, T. Lenosky, C. J. Umrigar,

L. Genovese, T. Morishita, and K. Nishio, “Energy Landscape of Silicon Systems and Its

Description by Force Fields, Tight Binding Schemes, Density Functional Methods, and

Quantum Monte Carlo Methods”, Physical Review B 81, 214107 (2010).

[110] S. Goedecker, W. Hellmann, and T. Lenosky, “Global Minimum Determination of

the Born-Oppenheimer Surface within Density Functional Theory”, Physical Review

Letters 95, 055501 (2005).

[111] J. E. Jones, “On the Determination of Molecular Fields. II. From the Equation of State

of a Gas”, Proceedings of the Royal Society of London A 106, 463 (1924).

[112] J. E. Jones and A. E. Ingham, “On the Calculation of Certain Crystal Potential Constants,

and on the Cubic Crystal of Least Potential Energy”, Proceedings of the Royal Society

of London A 107, 636 (1925).

[113] E. Whalley and W. G. Schneider, “Intermolecular Potentials of Argon, Krypton, and

Xenon”, The Journal of Chemical Physics 23, 1644 (1955).

[114] A. Rahman, “Correlations in the Motion of Atoms in Liquid Argon”, Physical Review

136, A405 (1964).

[115] L. Rowley, D. Nicholson, and N. Parsonage, “Monte Carlo Grand Canonical Ensemble

Calculation in a Gas-Liquid Transition Region For 12-6 Argon”, Journal of Computa-

tional Physics 17, 401 (1975).

[116] J. A. White, “Lennard-Jones as a Model for Argon and Test of Extended Renormalization

Group Calculations”, The Journal of Chemical Physics 111, 9352 (1999).

[117] O. Talu and A. L. Myers, “Reference Potentials for Adsorption of Helium, Argon, Methane,

and Krypton in High-Silica Zeolites”, Colloids and Surfaces A: Physicochemical and

Engineering Aspects 187-188, 83 (2001).

[118] M. Born and J. Mayer, “Zur Gittertheorie der Ionenkristalle”, Zeitschrift für Physik 75,

1 (1932).

166



Bibliography

[119] J. E. Mayer, “Dispersion and Polarizability and the van der Waals Potential in the Alkali

Halides”, The Journal of Chemical Physics 1, 270 (1933).

[120] M. L. Huggins and J. E. Mayer, “Interatomic Distances in Crystals of the Alkali Halides”,

The Journal of Chemical Physics 1, 643 (1933).

[121] F. Fumi and M. Tosi, “Ionic Sizes and Born Repulsive Parameters in the NaCl-Type

Alkali Halides-I: The Huggins-Mayer and Pauling Forms”, Journal of Physics and Chem-

istry of Solids 25, 31 (1964).

[122] M. Tosi and F. Fumi, “Ionic Sizes and Born Repulsive Parameters in the NaCl-Type

Alkali Halides-II: The Generalized Huggins-Mayer Form”, Journal of Physics and Chem-

istry of Solids 25, 45 (1964).

[123] D. J. Adams and I. R. McDonald, “Rigid-Ion Models of the Interionic Potential in the

Alkali Halides”, Journal of Physics C: Solid State Physics 8, 2198 (1975).

[124] L. Pauling, “The Influence of Relative Ionic Sizes on the Properties of Ionic Com-

pounds”, Journal of the American Chemical Society 50, 1036 (1928).

[125] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C.

Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A Second Generation Force Field

for the Simulation of Proteins, Nucleic Acids, and Organic Molecules”, Journal of the

American Chemical Society 117, 5179 (1995).

[126] D. Case, V. Babin, J. Berryman, R. Betz, Q. Cai, D. Cerutti, T. Cheatham, III, T. Darden, R.

Duke, H. Gohlke, A. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry,

A. Kovalenko, T. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K. Merz, F. Paesani, D. Roe,

A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra, C. Simmerling, W. Smith, J. Swails,

R. Walker, J. Wang, R. Wolf, X. Wu, and P. Kollman, AMBER 14 (University of California,

San Francisco, 2014).

[127] T. J. Lenosky, B. Sadigh, E. Alonso, V. V. Bulatov, T. D. d. l. Rubia, J. Kim, A. F. Voter, and

J. D. Kress, “Highly Optimized Empirical Potential Model of Silicon”, Modelling and

Simulation in Materials Science and Engineering 8, 825 (2000).

[128] S. Goedecker, “Optimization and Parallelization of a Force Field for Silicon Using

OpenMP”, Computer Physics Communications 148, 124 (2002).

[129] M. Miller, D. Wales, and V. de Souza, disconnectionDPS (Fortran program to generate

disconnectivity graphs from stationary point databases, http://www-wales.ch.cam.ac.

uk/software.html).

[130] H. Eyring, “The Activated Complex in Chemical Reactions”, The Journal of Chemical

Physics 3, 107 (1935).

[131] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for Solving Linear

Systems”, Journal of Research of the National Bureau of Standards 49, 409 (1952).

[132] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch, “Structural Relaxation

Made Simple”, Phys. Rev. Lett. 97, 170201 (2006).

167

http://www-wales.ch.cam.ac.uk/software.html
http://www-wales.ch.cam.ac.uk/software.html


Bibliography

[133] C. G. Broyden, “The Convergence of a Class of Double-Rank Minimization Algorithms

1. General Considerations”, IMA Journal of Applied Mathematics 6, 76 (1970).

[134] R. Fletcher, “A New Approach to Variable Metric Algorithms”, The Computer Journal

13, 317 (1970).

[135] D. Goldfarb, “A Family of Variable-Metric Methods Derived by Variational Means”,

Mathematics of Computation 24, 23 (1970).

[136] D. F. Shanno, “Conditioning of Quasi-Newton Methods for Function Minimization”,

Mathematics of Computation 24, 647 (1970).

[137] J. Nocedal, “Updating Quasi-Newton Matrices with Limited Storage”, Mathematics of

Computation 35, 773 (1980).

[138] D. C. Liu and J. Nocedal, “On the Limited Memory BFGS Method for Large Scale

Optimization”, Mathematical Programming 45, 503 (1989).

[139] G. Crippen and H. Scheraga, “Minimization of Polypeptide Energy: XI. The Method of

Gentlest Ascent”, Archives of Biochemistry and Biophysics 144, 462 (1971).

[140] D. Asenjo, J. D. Stevenson, D. J. Wales, and D. Frenkel, “Visualizing Basins of Attraction

for Different Minimization Algorithms”, The Journal of Physical Chemistry B 117, 12717

(2013).

[141] J. Nocedal and S. Wright, Numerical Optimization, Springer Series in Operations Re-

search and Financial Engineering (Springer, Berlin, 2006).

[142] A. J. Shepherd, Second-Order Methods for Neural Networks: Fast and Reliable Training

Methods for Multi-Layer Perceptrons (Springer, Berlin, 2012).

[143] R. Fletcher, Practical Methods of Optimization (John Wiley & Sons, New York, 2013).

[144] E. Haber, Computational Methods in Geophysical Electromagnetics, Mathematics in

Industry (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2014).

[145] L. Nazareth, “A Relationship between the BFGS and Conjugate Gradient Algorithms

and its Implications for new Algorithms”, SIAM Journal on Numerical Analysis 16, 794

(1979).

[146] S. T. Chill, J. Stevenson, V. Ruehle, C. Shang, P. Xiao, J. D. Farrell, D. J. Wales, and

G. Henkelman, “Benchmarks for Characterization of Minima, Transition States, and

Pathways in Atomic, Molecular, and Condensed Matter Systems”, Journal of Chemical

Theory and Computation 10, 5476 (2014).

[147] See http://users.iems.northwestern.edu/~nocedal/lbfgs.html for an implementation

of L-BFGS.

[148] L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S. A. Ghasemi, A. Willand, D. Caliste,

O. Zilberberg, M. Rayson, A. Bergman, and et al., “Daubechies Wavelets as a Basis Set

for Density Functional Pseudopotential Calculations”, The Journal of Chemical Physics

129, 014109 (2008).

168

http://users.iems.northwestern.edu/~nocedal/lbfgs.html


Bibliography

[149] S. Mohr, L. E. Ratcliff, P. Boulanger, L. Genovese, D. Caliste, T. Deutsch, and S. Goedecker,

“Daubechies Wavelets for Linear Scaling Density Functional Theory”, The Journal of

Chemical Physics 140, 204110 (2014).

[150] J. Tao, “Catalytic Activity Trends of CO Oxidation – A DFT Study”, PhD thesis (Technical

University of Denmark (DTU), 2011).

[151] M. K. Amsler, “Crystal Structure Prediction Based on Density Functional Theory”,

PhD thesis (University of Basel, 2011).

[152] F. Tassone, F. Mauri, and R. Car, “Acceleration Schemes for Ab Initio Molecular-Dynamics

Simulations and Electronic-Structure Calculations”, Physical Review B 50, 10561 (1994).

[153] M. Probert, “Improved Algorithm for Geometry Optimisation Using Damped Molecular

Dynamics”, Journal of Computational Physics 191, 130 (2003).

[154] C. J. Cerjan, “On Finding Transition States”, The Journal of Chemical Physics 75, 2800

(1981).

[155] P. Pulay, “Convergence Acceleration of Iterative Sequences. The Case of SCF Iteration”,

Chemical Physics Letters 73, 393 (1980).

[156] C. Lanczos, Applied Analysis, Dover Books on Mathematics (Dover Publications, Mine-

ola N.Y., 1988).

[157] R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, Englewood

Cliffs, N.J, 1972).

[158] A. Behn, P. M. Zimmerman, A. T. Bell, and M. Head-Gordon, “Efficient Exploration of

Reaction Paths via a Freezing String Method”, The Journal of Chemical Physics 135,

224108 (2011).

[159] P. Löwdin, “Quantum Theory of Cohesive Properties of Solids”, Advances in Physics 5,

1 (1956).

[160] I. Mayer, Simple Theorems, Proofs, and Derivations in Quantum Chemistry (Springer,

New York, 2003).

[161] F. Jensen, Introduction to Computational Chemistry (John Wiley & Sons, New York,

2007).

[162] D. Weinstein, “Modified Ritz Method”, Proceedings of the National Academy of Sci-

ences 20, 529 (1934).

[163] Y. Suzuki and K. Varga, Stochastic Variational Approach to Quantum-Mechanical Few-

Body Problems (Springer, Berlin, 1998).

[164] S. Goedecker, F. Lancon, and T. Deutsch, “Linear Scaling Relaxation of the Atomic

Positions in Nanostructures”, Physical Review B 64, 161102 (2001).

[165] M. Page and J. W. McIver, “On Evaluating the Reaction Path Hamiltonian”, The Journal

of Chemical Physics 88, 922 (1988).

169



Bibliography

[166] G. Mills and K. W. Jacobsen, “Nudged Elastic Band Method for Finding Minimum

Energy Paths of Transitions”, in Classical and quantum dynamics in condensed phase

simulations, edited by G. C. B. J. Berne and D. F. Coker (World Scientific, 1998), pp. 385–

404.

[167] A. Sadeghi, S. A. Ghasemi, B. Schaefer, S. Mohr, M. A. Lill, and S. Goedecker, “Metrics

for Measuring Distances in Configuration Spaces”, The Journal of Chemical Physics

139, 184118 (2013).

[168] S. T. Chill, M. Welborn, R. Terrell, L. Zhang, J.-C. Berthet, A. Pedersen, H. Jónsson, and

G. Henkelman, “EON: Software for Long Time Simulations of Atomic Scale Systems”,

Modelling and Simulation in Materials Science and Engineering 22, 055002 (2014).

[169] G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics for Liquid Metals”, Physical

Review B 47, 558 (1993).

[170] G. Kresse and J. Hafner, “Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-

Amorphous-Semiconductor Transition in Germanium”, Physical Review B 49, 14251

(1994).

[171] G. Kresse and J. Furthmüller, “Efficiency of Ab-Initio Total Energy Calculations for

Metals and Semiconductors Using a Plane-Wave Basis Set”, Computational Materials

Science 6, 15 (1996).

[172] G. Kresse, “Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a

Plane-Wave Basis Set”, Physical Review B 54, 11169 (1996).

[173] G. Kresse, “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method”,

Physical Review B 59, 1758 (1999).

[174] Z. Wang, L. L. Daemen, Y. Zhao, C. S. Zha, R. T. Downs, X. Wang, Z. L. Wang, and R. J.

Hemley, “Morphology-Tuned Wurtzite-Rype ZnS Nanobelts”, Nature Materials 4, 922

(2005).

[175] C. R. Hickenboth, J. S. Moore, S. R. White, N. R. Sottos, J. Baudry, and S. R. Wilson,

“Biasing Reaction Pathways with Mechanical Force”, Nature 446, 423 (2007).

[176] M. Moura, L. Broadbelt, and K. Tyo, “Computational Tools for Guided Discovery and

Engineering of Metabolic Pathways”, in Systems metabolic engineering, Vol. 985, edited

by H. S. Alper, Methods in Molecular Biology (Humana Press, 2013), pp. 123–147.

[177] R. Granot and R. Baer, “A Spline for Your Saddle”, The Journal of Chemical Physics 128,

184111 (2008).

[178] S. A. Ghasemi and S. Goedecker, “An Enhanced Splined Saddle Method”, The Journal

of Chemical Physics 135, 014108 (2011).

[179] E. F. Koslover and D. J. Wales, “Comparison of Double-Ended Transition State Search

Methods”, The Journal of Chemical Physics 127, 134102 (2007).

[180] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, “Transition Path Sampling:

Throwing Ropes Over Rough Mountain Passes, in the Dark”, Annual Review of Physical

Chemistry 53, 291 (2002).

170



Bibliography

[181] C. Dellago, P. G. Bolhuis, and P. L. Geissler, “Transition Path Sampling”, in Advances in

chemical physics (John Wiley & Sons, Inc., 2003), pp. 1–78.

[182] M. Grünwald, C. Dellago, and P. L. Geissler, “Precision Shooting: Sampling Long Transi-

tion Pathways”, The Journal of Chemical Physics 129, 194101 (2008).

[183] M. Grünwald and C. Dellago, “Nucleation and Growth in Structural Transformations

of Nanocrystals”, Nano Letters 9, 2099 (2009).

[184] W. Lechner, C. Dellago, and P. G. Bolhuis, “Role of the Prestructured Surface Cloud in

Crystal Nucleation”, Physical Review Letters 106, 085701 (2011).

[185] X.-J. Zhang and Z. Liu, “Reaction Sampling and Reactivity Prediction Using The Stochas-

tic Surface Walking Method”, Physical Chemistry Chemical Physics 17, 2757 (2015).

[186] M. Qingming and P. Steenkiste, “On Path Selection for Traffic with Bandwidth Guaran-

tees”, in Proceedings 1997, International Conference on Network Protocols, edited by

M. Ammar and U. Shankar (1997), pp. 191–202.

[187] E. Dijkstra, “A Note on Two Problems in Connexion With Graphs”, Numer. Math. 1,

269 (1959).

[188] C. Shang and Z. Liu, “Stochastic Surface Walking Method for Structure Prediction and

Pathway Searching”, Journal of Chemical Theory and Computation 9, 1838 (2013).

[189] C. Shang and Z. Liu, “Constrained Broyden Dimer Method with Bias Potential for

Exploring Potential Energy Surface of Multistep Reaction Process”, Journal of Chemical

Theory and Computation 8, 2215 (2012).

[190] X.-J. Zhang, C. Shang, and Z. Liu, “Double-Ended Surface Walking Method for Pathway

Building and Transition State Location of Complex Reactions”, Journal of Chemical

Theory and Computation 9, 5745 (2013).

[191] C. Shang and Z. Liu, “Constrained Broyden Minimization Combined with the Dimer

Method for Locating Transition State of Complex Reactions”, Journal of Chemical

Theory and Computation 6, 1136 (2010).

[192] C. Dellago, “Transition Path Sampling and the Calculation of Free Energies”, in Free

energy calculations, Vol. 86, edited by C. Chipot and A. Pohorille, Springer Series in

Chemical Physics (Springer Berlin Heidelberg, 2007), pp. 249–276.

[193] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation

of State Calculations by Fast Computing Machines”, The Journal of Chemical Physics

21, 1087 (1953).

[194] C. Dellago, P. Bolhuis, and P. Geissler, “Transition Path Sampling Methods”, in Com-

puter Simulations in Condensed Matter Systems: From Materials to Chemical Biology

Volume 1, Vol. 703, edited by M. Ferrario, G. Ciccotti, and K. Binder, Lecture Notes in

Physics (Springer Berlin Heidelberg, 2006), pp. 349–391.

[195] P. G. Bolhuis, C. Dellago, P. L. Geissler, and D. Chandler, “Transition Path Sampling:

Throwing Ropes Over Mountains in the Dark”, Journal of Physics: Condensed Matter

12, A147 (2000).

171



Bibliography

[196] M. Grünwald, S. Jungblut, and C. Dellago, “Transition Path Sampling of Phase Transitions–

Nucleation and Growth in Materials Hard and Soft”, in Hierarchical methods for dy-

namics in complex molecular systems, Vol. 10, edited by J. Grotendorst, G. Sutmann,

G. Gompper, and D. Marx (Forschungszentrum Jülich, 2012).

[197] W. Hellmann, R. G. Hennig, S. Goedecker, C. J. Umrigar, B. Delley, and T. Lenosky,

“Questioning the Existence of a Unique Ground-State Structure for Si Clusters”, Physical

Review B 75, 085411 (2007).

[198] K. Bao, S. Goedecker, K. Koga, F. Lançon, and A. Neelov, “Structure of Large Gold Clus-

ters Obtained by Global Optimization Using the Minima Hopping Method”, Physical

Review B 79, 041405 (2009).

[199] S. Goedecker, “Global Optimization with the Minima Hopping Method”, in Modern

methods of crystal structure prediction, edited by A. R. Oganov (Wiley-VCH, 2011),

pp. 131–145.

[200] M. Sicher, S. Mohr, and S. Goedecker, “Efficient Moves for Global Geometry Opti-

mization Methods and their Application to Binary Systems”, The Journal of Chemical

Physics 134, 044106 (2011).

[201] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in For-

tran: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge,

1992).

[202] M. D. Wolf and U. Landman, “Genetic Algorithms for Structural Cluster Optimization”,

Journal of Physical Chemistry A 102, 6129 (1998).

[203] B. Hammer and J. K. Norskov, “Why Gold is the Noblest of All the Metals”, Nature 376,

238 (1995).

[204] X. Gu, S. Bulusu, X. Li, X. Zeng, J. Li, X. Gong, and L. S. Wang, “Au−
34: A Fluxional

Core-Shell Cluster”, Journal of Physical Chemistry C 111, 8228 (2007).

[205] A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. N. Barnett, and U.

Landman, “When Gold is Not Noble: Nanoscale Gold Catalysts”, Journal of Physical

Chemistry A 103, 9573 (1999).

[206] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-Based Method for

Rationally Assembling Nanoparticles into Macroscopic Materials”, Nature 382, 607

(1996).

[207] A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, and

P. G. Schultz, “Organization of ’Nanocrystal Molecules’ Using DNA”, Nature 382, 609

(1996).

[208] S. Chen, “Gold Nanoelectrodes of Varied Size: Transition to Molecule-Like Charging”,

Science 280, 2098 (1998).

[209] P. Pyykkö, “Theoretical Chemistry of Gold”, Angewandte Chemie. International Edition

in English 43, 4412 (2004).

172



Bibliography

[210] M. Haruta, “Size- and Support-Dependency in the Catalysis of Gold”, Catalysis Today

36, 153 (1997).

[211] C. Cleveland, U. Landman, T. Schaaff, M. Shafigullin, P. Stephens, and R. Whetten,

“Structural Evolution of Smaller Gold Nanocrystals: The Truncated Decahedral Motif”,

Physical Review Letters 79, 1873 (1997).

[212] I. Garzón, K. Michaelian, M. Beltrán, A. Posada-Amarillas, P. Ordejón, E. Artacho, D.

Sánchez-Portal, and J. Soler, “Lowest Energy Structures of Gold Nanoclusters”, Physical

Review Letters 81, 1600 (1998).

[213] G. Bravo-Pérez, I. Garzón, and O. Novaro, “Ab Initio Study of Small Gold Clusters”,

Journal of Molecular Structure: THEOCHEM 493, 225 (1999).

[214] H. Häkkinen and U. Landman, “Gold Clusters (AuN , 2 ≤ N ≤ 10) and their Anions”,

Physical Review B 62, R2287 (2000).

[215] F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M. Kappes, “The

Structures of Small Gold Cluster Anions as Determined by a Combination of Ion

Mobility Measurements and Density Functional Calculations”, The Journal of Chemical

Physics 117, 6982 (2002).

[216] S. Gilb, P. Weis, F. Furche, R. Ahlrichs, and M. M. Kappes, “Structures of Small Gold

Cluster Cations (Au+
n , n < 14): Ion Mobility Measurements Versus Density Functional

Calculations”, The Journal of Chemical Physics 116, 4094 (2002).

[217] B. Yoon, H. Häkkinen, and U. Landman, “Interaction of O2 with Gold Clusters: Molecu-

lar and Dissociative Adsorption”, Journal of Physical Chemistry A 107, 4066 (2003).

[218] H. Häkkinen, B. Yoon, U. Landman, X. Li, H. Zhai, and L. S. Wang, “On the Electronic

and Atomic Structures of Small Au−
N (N = 4−14) Clusters: A Photoelectron Spectroscopy

and Density-Functional Study”, Journal of Physical Chemistry A 107, 6168 (2003).

[219] H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, and U. Landman, “Structural, Electronic,

and Impurity-Doping Effects in Nanoscale Chemistry: Supported Gold Nanoclusters”,

Angewandte Chemie. International Edition in English 42, 1297 (2003).

[220] H. M. Lee, M. Ge, B. R. Sahu, P. Tarakeshwar, and K. S. Kim, “Geometrical and Electronic

Structures of Gold, Silver, and Gold-Silver Binary Clusters: Origins of Ductility of Gold

and Gold-Silver Alloy Formation”, The Journal of Physical Chemistry B 107, 9994

(2003).

[221] J. Li, X. Li, H. Zhai, and L. S. Wang, “Au20: A Tetrahedral Cluster”, Science 299, 864

(2003).

[222] E. Fernández, J. Soler, I. Garzón, and L. Balbás, “Trends in the Structure and Bonding

of Noble Metal Clusters”, Physical Review B 70, 165403 (2004).

[223] M. Neumaier, F. Weigend, O. Hampe, and M. M. Kappes, “Binding Energies of CO on

Gold Cluster Cations Au+
n (n = 1−65): A Radiative Association Kinetics Study”, The

Journal of Chemical Physics 122, 104702 (2005).

173



Bibliography

[224] A. Lechtken, D. Schooss, J. R. Stairs, M. N. Blom, F. Furche, N. Morgner, O. Kostko, B.

von Issendorff, and M. M. Kappes, “Au−
34: A Chiral Gold Cluster?”, Angewandte Chemie.

International Edition in English 46, 2944 (2007).

[225] S. Bulusu, X. Li, L. S. Wang, and X. C. Zeng, “Structural Transitions from Pyramidal

to Fused Planar to Tubular to Core/Shell Compact in Gold Clusters: Au−
n (n = 21-25)”,

Journal of Physical Chemistry C 111, 4190 (2007).

[226] A. F. Jalbout, F. F. Contreras-Torres, L. A. Pérez, and I. L. Garzón, “Low-Symmetry

Structures of AuZ
32 (Z = +1, 0, -1) Clusters”, Journal of Physical Chemistry A 112, 353

(2008).

[227] I. E. Santizo, F. Hidalgo, L. A. Pérez, C. Noguez, and I. L. Garzón, “Intrinsic Chirality in

Bare Gold Nanoclusters: The Au−
34 Case”, Journal of Physical Chemistry C 112, 17533

(2008).

[228] M. Johansson, A. Lechtken, D. Schooss, M. Kappes, and F. Furche, “2D-3D Transition

of Gold Cluster Anions Resolved”, Physical Review A 77, 053202 (2008).

[229] W. Huang and L. S. Wang, “Probing the 2D to 3D Structural Transition in Gold Cluster

Anions Using Argon Tagging”, Physical Review Letters 102, 153401 (2009).

[230] W. Huang, S. Bulusu, R. Pal, X. C. Zeng, and L. S. Wang, “Structural Transition of Gold

Nanoclusters: From the Golden Cage to the Golden Pyramid”, ACS Nano 3, 1225 (2009).

[231] A. Lechtken, C. Neiss, M. M. Kappes, and D. Schooss, “Structure Determination of

Gold Clusters by Trapped Ion Electron Diffraction: Au−
14 −Au−

19”, Physical Chemistry

Chemical Physics 11, 4344 (2009).

[232] D. Schooss, P. Weis, O. Hampe, and M. M. Kappes, “Determining the Size-Dependent

Structure of Ligand-Free Gold-Cluster Ions”, Philosophical Transactions of the Royal

Society of London A 368, 1211 (2010).

[233] L. Wang, R. Pal, W. Huang, X. C. Zeng, and L. S. Wang, “Observation of Earlier Two-

to-Three Dimensional Structural Transition in Gold Cluster Anions by Isoelectronic

Substitution: MAu−
n (n = 8− 11; M=Ag,Cu)”, The Journal of Chemical Physics 132,

114306 (2010).

[234] W. Huang, R. Pal, L. Wang, X. C. Zeng, and L. S. Wang, “Isomer Identification and

Resolution in Small Gold Clusters”, The Journal of Chemical Physics 132, 054305

(2010).

[235] N. Shao, W. Huang, Y. Gao, L. Wang, X. Li, L. S. Wang, and X. C. Zeng, “Probing the

Structural Evolution of Medium-Sized Gold Clusters: Au−
n (n = 27−35)”, Journal of the

American Chemical Society 132, 6596 (2010).

[236] R. Pal, L. Wang, W. Huang, L. S. Wang, and X. C. Zeng, “Structure Evolution of Gold

Cluster Anions between the Planar and Cage Structures by Isoelectronic Substitution:

Au−
n (n = 13−15) and MAu−

n (n = 12−14; M = Ag, Cu)”, The Journal of Chemical Physics

134, 054306 (2011).

174



Bibliography

[237] L. Wang and L. S. Wang, “Probing the Electronic Properties and Structural Evolution of

Anionic Gold Clusters in the Gas Phase”, Nanoscale 4, 4038 (2012).

[238] I. León, Z. Yang, and L. S. Wang, “High Resolution Photoelectron Imaging of Au−
2 ”, The

Journal of Chemical Physics 138, 184304 (2013).

[239] Z. Yang, I. León, and L. S. Wang, “Communication: Vibrational Spectroscopy of Au4

from High Resolution Photoelectron Imaging”, The Journal of Chemical Physics 139,

021106 (2013).

[240] N. Shao, W. Huang, W. Mei, L. S. Wang, Q. Wu, and X. C. Zeng, “Structural Evolution

of Medium-Sized Gold Clusters Au−
n (n =36, 37, 38): Appearance of Bulk-Like Face

Centered Cubic Fragment”, Journal of Physical Chemistry C 118, 6887 (2014).

[241] C. Hartwigsen, S. Goedecker, and J. Hutter, “Relativistic Separable Dual-Space Gaussian

Pseudopotentials From H to Rn”, Physical Review B 58, 3641 (1998).

[242] M. Krack, “Pseudopotentials for H to Kr Optimized for Gradient-Corrected Exchange-

Correlation Functionals”, Theoretical Chemistry Accounts 114, 145 (2005).

[243] W. Fa and J. Dong, “Possible Ground-State Structure of Au26: A Highly Symmetric

Tubelike Cage”, The Journal of Chemical Physics 124, 114310 (2006).

[244] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler,

“Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals”, Computer

Physics Communications 180, 2175 (2009).

[245] Y. Zhao, N. González-García, and D. G. Truhlar, “Benchmark Database of Barrier Heights

for Heavy Atom Transfer, Nucleophilic Substitution, Association, and Unimolecular

Reactions and its Use to Test Theoretical Methods”, Journal of Physical Chemistry A

109, 2012 (2005).

[246] S. Andersson and M. Grüning, “Performance of Density Functionals for Calculating

Barrier Heights of Chemical Reactions Relevant to Astrophysics”, Journal of Physical

Chemistry A 108, 7621 (2004).

[247] M. Grüning, O. V. Gritsenko, and E. J. Baerends, “Improved Description of Chemical

Barriers with Generalized Gradient Approximations (GGAs) and Meta-GGAs”, Journal

of Physical Chemistry A 108, 4459 (2004).

[248] A. Zupan, K. Burke, M. Ernzerhof, and J. P. Perdew, “Distributions and Averages of

Electron Density Parameters: Explaining the Effects of Gradient Corrections”, The

Journal of Chemical Physics 106, 10184 (1997).

[249] Y. Zhao and D. G. Truhlar, “The M06 Suite of Density Functionals for Main Group

Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States,

and Transition Elements: Two New Functionals and Systematic Testing of Four M06-

Class Functionals and 12 Other Functionals”, Theoretical Chemistry Accounts 120, 215

(2007).

[250] G. Barcaro and A. Fortunelli, “Structure and Diffusion of Small Ag and Au Clusters on

the Regular MgO (100) Surface”, New J. Phys. 9, 22 (2007).

175



Bibliography

[251] A. Dal Corso, A. Pasquarello, and A. Baldereschi, “Density-Functional Perturbation

Theory for Lattice Dynamics with Ultrasoft Pseudopotentials”, Physical Review B 56,

R11369 (1997).

[252] P. Haas, F. Tran, and P. Blaha, “Calculation of the Lattice Constant of Solids with Semilo-

cal Functionals”, Physical Review B 79, 85104 (2009).

[253] A. Dal Corso, “Ab Initio Phonon Dispersions of Transition and Noble Metals: Effects of

the Exchange and Correlation Functional”, Journal of Physics: Condensed Matter 25,

145401 (2013).

[254] T. T. Järvi, A. Kuronen, M. Hakala, K. Nordlund, A. C. van Duin, W. A. Goddard, and

T. Jacob, “Development of a ReaxFF Description for Gold”, European Physical Journal

B: Condensed Matter Physics 66, 75 (2008).

[255] M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. Van Dam, D. Wang,

J. Nieplocha, E. Apra, T. Windus, and W. de Jong, “NWChem: A Comprehensive and

Scalable Open-Source Solution for Large Scale Molecular Simulations”, Computer

Physics Communications 181, 1477 (2010).

[256] L. S. Wang, H. S. Cheng, and J. Fan, “Photoelectron Spectroscopy of Size-Selected

Transition Metal Clusters: Fe−n , n = 3−24”, The Journal of Chemical Physics 102, 9480

(1995).

[257] J. Akola, M. Manninen, H. Häkkinen, U. Landman, X. Li, and L. S. Wang, “Photoelectron

Spectra of Aluminum Cluster Anions: Temperature Effects and Ab Initio Simulations”,

Physical Review B 60, R11297 (1999).

[258] W. Huang and L. S. Wang, “Au−
10: Isomerism and Structure-Dependent O2 reactivity”,

Physical Chemistry Chemical Physics 11, 2663 (2009).

[259] D. Tian and J. Zhao, “Competition Among fcc-Like, Double-Layered Flat, Tubular Cage,

and Close-Packed Structural Motifs for Medium-Sized Aun (n = 21− 28) Clusters”,

Journal of Physical Chemistry A 112, 3141 (2008).

[260] S. De, A. Willand, M. Amsler, P. Pochet, L. Genovese, and S. Goedecker, “Energy Land-

scape of Fullerene Materials: A Comparison of Boron to Boron Nitride and Carbon”,

Physical Review Letters 106, 225502 (2011).

[261] J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, and G. I. Csonka,

“Prescription for the Design and Selection of Density Functional Approximations: More

Constraint Satisfaction with Fewer Fits”, The Journal of Chemical Physics 123, 062201

(2005).

[262] L. Ferrighi, B. Hammer, and G. K. H. Madsen, “2D-3D Transition for Cationic and

Anionic Gold Clusters: A Kinetic Energy Density Functional Study”, Journal of the

American Chemical Society 131, 10605 (2009).

[263] M. Mantina, R. Valero, and D. G. Truhlar, “Validation Study of the Ability of Density

Functionals to Predict the Planar-to-Three-Dimensional Structural Transition in An-

ionic Gold Clusters”, The Journal of Chemical Physics 131, 064706 (2009).

176



Bibliography

[264] K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky, and R. E. Smalley, “Ultraviolet Photo-

electron Spectra of Coinage Metal Clusters”, The Journal of Chemical Physics 96, 3319

(1992).

[265] C. Levinthal, “How to Fold Graciously”, in Mössbauer Spectroscopy in Biological Sys-

tems: Proceedings of a Meeting held at Allerton House, Monticello, Illinois, edited by

P. Debrunner, J. C. M. Tsibris, and E. Münck (1969), pp. 22–24.

[266] K. A. Dill and H. S. Chan, “From Levinthal to Pathways to Funnels”, Nature Structural

Biology 4, 10 (1997).

[267] R. P. Bell, “The Theory of Reactions Involving Proton Transfers”, Proceedings of the

Royal Society of London A 154, 414 (1936).

[268] M. G. Evans and M. Polanyi, “Further Considerations on the Thermodynamics of

Chemical Equilibria and Reaction Rates”, Trans. Faraday Soc. 32, 1333 (1936).

[269] G. S. Hammond, “A Correlation of Reaction Rates”, Journal of the American Chemical

Society 77, 334 (1955).

[270] R. A. Marcus, “Theoretical Relations Among Rate Constants, Barriers, and Brønsted

Slopes of Chemical Reactions”, The Journal of Physical Chemistry 72, 891 (1968).

[271] K. Levenberg, “A Method for the Solution of Certain Non-linear Problems in Least

Squares”, Quarterly of Applied Mathematics II, 164 (1944).

[272] D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters”,

Journal of the Society for Industrial and Applied Mathematics 11, 431 (1963).

[273] T. Williams, C. Kelley, and many others, Gnuplot 4.6: An Interactive Plotting Program,

http://gnuplot.sourceforge.net, 2014.

[274] G. Jorgen Pedersen, “Über die Entwickelung Reeller Funktionen in Reihen Mittelst der

Methode der Kleinsten Quadrate”, Journal für die reine und angewandte Mathematik

94, 41 (1883).

[275] S. Erhard, “Zur Theorie der Linearen und Nichtlinearen Integralgleichungen. I. Teil:

Entwicklung Willkürlicher Funktionen Nach Systemen Vorgeschriebener”, Mathema-

tische Annalen 63, 433 (1907).

[276] W. Kabsch, “A Discussion of the Solution for the Best Rotation to Relate Two Sets of

Vectors”, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical

and General Crystallography 34, 827 (1978).

[277] E. A. Coutsias, C. Seok, and K. A. Dill, “Using Quaternions to Calculate RMSD”, Journal

of Computational Chemistry 25, 1849 (2004).

[278] H. W. Kuhn, “The Hungarian Method for the Assignment Problem”, Naval Research

Logistics Quarterly 2, 83 (1955).

[279] H. W. Kuhn, “Variants of the Hungarian Method for Assignment Problems”, Naval

Research Logistics Quarterly 3, 253 (1956).

177

http://gnuplot.sourceforge.net

	Acknowledgements
	Abstract
	Introduction
	The Potential Energy Surface
	Features, Properties and Important Details
	Computation of Potential Energy Surfaces
	Force Fields
	Disconnectivity Graphs

	Local Optimization
	Local Minimization
	Mode Following Methods for Optimization of Saddle Points
	Stabilized Quasi-Newton Optimization

	Finding Reaction Pathways
	Terminology and Basic Methods
	The Eigenvector Following Exploration Method
	Stochastic Surface Walking Based Reaction Sampling
	Transition Path Sampling
	Minima Hopping Guided Path Search

	Isomerism and Structural Fluxionality in the Au26 and Au26- Nanoclusters
	Methods
	Results and Discussions
	Conclusion

	Computationally Inexpensive Post-Processing of Minima Hopping Data for a Qualitative Characterization of Potential Energy Surfaces
	Correlating Transition State Energies with Structural Differences
	Generating Rough Overviews of Potential Energy Surfaces
	Conclusion

	Conclusion and Outlook
	Eliminating Translational and Rotational Modes
	Measuring Structural Differences
	Stability of Hessian Eigenvectors
	The Explosion Condition of Minima Hopping
	Coordinates of Au26
	Empty Cage Motif
	Hexagonal Motif
	Filled Cage Motif
	Tubular Motif

	Coordinates of Au26-
	Isomer 3
	Isomer 4
	Isomer 18

	Bibliography

