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Abstract
The advent of next generation sequencing (NGS) technologies has revolutionized the field of

molecular biology by providing a wealth of sequence data. “Transcriptomics”, which aims to

identify and annotate the complete set of RNA molecules transcribed from a genome, is one

of the main applications of these high-throughput methods. Special attention has been paid

in determining the exact position of the 5’ ends of RNA transcripts, the transcription start sites

(TSSs), and subsequently in identifying the regulatory motifs that are ultimately responsible

for governing gene expression. Recently, a novel experimental approach termed dRNA-seq

has emerged which enables TSS identification in prokaryotic genomes at a genome-wide

scale. While the experimental procedure has reached a point of maturity, the computational

downstream analysis of dRNA-seq data is still in its infancy. Analysis of dRNA-seq data

was previously done manually, a tedious task that is prone to errors and biases. In order

to automate this process we developed a computational tool for accurate and systematic

analysis of dRNA-seq data to identify the TSSs genome-wide. In particular, we used a Bayesian

framework for TSS calling and a Hidden Markov Model to infer the canonical motifs in the

promoter regions of TSSs in order to further capture TSSs that show low evidence of expression.

In a second contribution, we exploited the power of next generation sequencing to identify and

characterize the expression and processing mechanisms of snoRNAs. SnoRNAs are a particular

class of non-protein coding RNAs whose main function is post-transcriptional modification of

other non-protein coding RNAs. SnoRNAs carry out their function as part of ribonucleoprotein

complexes (RNPs). In order to gain insights into these protein-RNA interactions, we used a

technique called PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and

Immunoprecipitation) that allows the identification of protein-RNA contacts at nucleotide

resolution. Using PAR-CLIP data, we were able to demonstrate that snoRNAs undergo precise

processing and that many loci in the human genome generate snoRNA-like transcripts whose

evolutionary conservation and expression are considerably lower than currently catalogued

snoRNAs. Finally, we set out to use small RNA-seq data from the ENCODE project to construct

a comprehensive catalog of genomic loci that give rise to snoRNAs. In addition we expanded

the current catalog of human snoRNAs and studied the plasticity of snoRNA expression

across different cell types. Our analysis confirmed prior observations that several snoRNAs

show cell type specific expression, mainly in neurons. A more striking observation was that

snoRNA expression appears to be strongly dysregulated in cancers which could lead to the

identification of novel biomarkers.
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Zusammenfassung
Das Aufkommen von “Next Generation Sequencing”-Technologien (NGS) hat das Gebiet der

Molekularbiologie revolutioniert. Die enorme Fülle an Sequenzdaten, die mittels dieser Tech-

nologien geliefert werden kann. Das Forschungsgebiet der “Transcriptomics”, welches sich

zum Ziel setzt alle RNA-Moleküle welche von einem Genom transkribiert werden zu identifi-

zieren und zu annotieren, ist eine der Hauptanwendungen von NGS. Besonderes Augenmerk

wurde dabei bisher auf die exakte Bestimmung der 5’-Enden und Transkriptionsstartstel-

len (TSS) von RNA-Transkripten gelegt, sowie auf der Identifizierung von regulatorischen

Motiven die eine Rolle bei der Regulierung der Genexpression spielen. Seit kurzem liegt

zwar mit dem sogenannten dRNA-seq ein experimenteller Ansatz vor, mit dem sich TSS

auch in prokaryotischen Genomen bestimmen lassen. Aber auch wenn sich entsprechende

Experimente nun routinemässig durchführen lassen, steckt die nachgeschaltete, computer-

gestützte Analyse von dRNA-seq-Daten noch in ihren Anfängen. Erhobene Daten wurden

vormals manuell ausgerwertet - ein aufwändiger Prozess der anfällig ist für Fehler und Ver-

zerrungen bzw. Voreingenommenheiten. Um den Prozess der Ermittlung von bakteriellen

TSS zu automatiseren, haben wir ein Programm zur präzisen und systematischen Auswer-

tung von dRNA-seq-Daten entwickelt. Dieses verwendet einerseits ein Bayes-Verfahren zur

Bestimmung von TSS. Andererseits kommt ein Hidden-Markov-Modell zur Herleitung von ka-

nonischen Motiven in den Promoterregionen von TSS zum Einsatz, wodurch sich auch selten

verwendete TSS bestimmen lassen. In einem zweiten Projekt haben wir die Stärken von NGS

zur Katalogisierung von snoRNAs ausgenutzt. Neben der Identifizierung noch nicht bekannter

Spezies stand dabei auch die Charakterisierung von snoRNAs im Hinblick auf Expression

und Prozessierungsmechanismen im Vordergrund. SnoRNAs sind eine bestimmte Klasse von

“nicht-kodierenden” RNAs (d.h. RNA-Moleküle die nicht als Blaupause für die Synthese von

Proteinen dienen), deren Hauptfuntion in der post-transkriptionellen Modifizierung ande-

rer “nicht-kodierender” RNAs besteht. Um ihre Aufgabe auszuführen, lagerns sich snoRNAs

mit einer Reihe bestimmter Proteine zu RNA-Protein-Komplexen zusammen. Um Einblicke

in diese Protein-RNA-Wechselwirkungen zu gewinnen, haben wir die Methode PAR-CLIP

(Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation) ange-

wandt, welche die punktgenaue Bestimmung von Protein-RNA-Kontaktstellen ermöglicht.

Mittels PAR-CLIP konnten wir aufzeigen dass die Prozessierung von snoRNAs präzise abläuft

und dass viele Stellen des menschlichen Genoms snoRNA-ähnliche Transkripte generiert,

deren Expression und Grad an evolutionärer Konservierung deutlich geringer sind als die

bereits katalogisierter, herkömmlicher snoRNAs. Schliesslich haben wir Sequenzierungsdaten
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Zusammenfassung

kurzer RNA-Moleküle aus dem ENCODE-Projekt herangezogen, um eine umfassende Karte

all der genomischen Regionen zu erstellen, welche Erbinformationen für die Synthese von

snoRNAs tragen. So konnten wir den bestehenden snoRNA-Katalog deutlich erweitern und

zusätzlich die Plastizität der Expression von snoRNAs in unterschiedlichen Zelltypen studie-

ren. Anhand dieser Analyse konnten wir zeigen, dass snoRNAs - besonders in Nervenzellen -

Zelltyp-spezifische Expressionsmuster aufweisen. Auffällig war ausserdem das unterschied-

liche Expressionsmuster von snoRNAs in Krebszelllinien im Vergleich zu normalen Zellen.

Dies veranlasste uns eine Reihe von snoRNAs zu identifizieren, deren Expression sich im

besonderen Masse von der in gesunden Zellen unterschied und welche somit möglicherweise

in naher Zukunft als “Biomarker” in der Krebsdiagnostik oder -therapie eingesetzt werden

könnten.
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Chapter 1. Introduction

1.1 Thesis Outline

In the first chapter a brief and general introduction is given for the basic concepts behind the

work presented in individual chapters. We thus describe the NGS technology, its history and

applications. We also compare different platforms and discuss the downstream data analysis

steps. In the next part we elucidate concepts that we use in Chapter 2 such as dRNA-seq

protocol, Bayesian models and Hidden Markov Models. We conclude the introduction with a

discussion of the methods that are used to map RNA-protein interactions such as the non-

coding RNAs, the PAR-CLIP method, and the ENCODE project. Chapter 2 is the published

paper where we have described our computational tool called “TSSer” which is designed to

identify transcription start sites in prokaryotic genomes based on dRNA-seq data. Chapter 3 is

the published paper in which we used the PAR-CLIP method to gain insights into snoRNAs

biogenesis and processing. Chapter 4 is the draft of a manuscript in which we describe how

we used the ENCODE data to expand the catalog of human snoRNAs and understand the

plasticity of their expression across different cell types. The manuscript will be submitted

shortly. In Chapter 5 we conclude our work and discuss the future directions.

1.2 High Throughput Sequencing

1.2.1 Next Generation Sequencing as an Essential Tool in Molecular Biology To-
day

In the realm of molecular biology “sequence” is defined as the exact order in which nucleotide

bases appear in a DNA or RNA molecule or amino acids in a polypeptide. The order of

nucleotides in a DNA molecule carries necessary information which serves as a prints for

synthesis of proteins which are the fundamental components of all living cells and are respon-

sible for diverse range of functions in the cell. Hence determining the order of bases in a DNA

or RNA molecule is a crucial step towards understanding molecular functions. Furthermore

identifying the sequence of DNA or RNA molecules to which specific DNA and RNA binding

proteins bind enables us to understand molecular interactions and their consequences within

cells. Novel sequencing technologies enabled the sequencing of enormous amounts of DNA

or RNA molecules providing an unprecedented opportunity to study the genomes of a vast

number of species at a level of detail that has not been matched in terms of costs and efficiency

by any technique before. A big boost in the development of sequencing technologies came

after the initial assembly of the human genome in 2001 [89, 157] . Sanger sequencing was the

sequencing choice at the time of this huge project (International Human Genome Sequencing).

Subsequently, the demand for a high-throughput, fast and low cost sequencing technology

rapidly increased. Sanger sequencing is considered as the first-generation technology while

the high-throughput sequencing technologies which emerged afterwards and were order of

magnitudes faster and cheaper compared to Sanger sequencing are referred to as “second-

generation” or “next-generation sequencing” (NGS) [87, 139] . NGS allows sequencing to

be done in parallel, allowing to sequence a multitude of DNA / RNA molecules at the same
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1.2. High Throughput Sequencing

time. The low-cost production of large volumes of sequence data from NGS - currently up

to one billion short reads per instrument run - is its main advantage over conventional DNA

sequencing methods. This however, is achieved at the price of somewhat lower quality and

read length [42, 128, 133]

1.2.2 Applications of NGS technology

High-throughput sequencing provided by NGS revolutionized the field of biology in the past

decade by supporting a wide range of applications in molecular biology, evolutionary biology,

functional genomics, metagenomics, microbiome research and medicine [118, 13, 126, 114,

159, 1, 41] . As mentioned above, transcriptomics - determining the sequence and abundance

of different RNA species such as mRNAs, small and long non-coding RNAs - is one of the major

applications of NGS[163] . Prior to NGS methods, measurements of gene expression were

obtained with microarrays. The principle behind these was hybridization of DNA derived from

cellular RNAs to predefined synthetic array of oligonucleotides. In contrast to microarrays,

NGS does not require prior knowledge of the molecules that are to be quantified and there is

no need for an organism-specific design. NGS has also improved the sensitivity, accuracy and

dynamic range of gene expression analysis studies[129, 40].

An approach for determining the sequence specificity of DNA- and RNA-binding proteins con-

sists in immunoprecipitation (IP) of the protein of interest with specific antibodies followed by

the identification of the nucleic acids to which the protein binds. This can also be performed

using NGS technology. IP followed by high-throughput sequencing allows the identification of

genome-wide binding profiles of DNA-binding proteins (with Chromatin immunoprecipita-

tion or ChIP-seq)[134, 121], genome-wide DNA methylation sites (methyl-seq) and DNase I

hypersensitive sites (DNase-seq) [170, 9]. These, in turn, inform about the dynamics and regu-

lation of gene expression. NGS has also been utilized to investigate RNA-protein interactions.

Various variant methods have been proposed, that go by the names of CLIP-seq or HITS-CLIP,

PAR-CLIP and iCLIP [55, 27, 68]. Other applications of NGS include finding genetic variants via

resequencing the targeted regions of interest, de novo assemblies of bacterial genomes with

low expenditure and high quality and identifying and classifying the spectrum of species that

co-inhabit specific environments via metagenomics studies [123, 115, 33, 50, 82, 109, 112].

1.2.3 NGS platforms

Although available NGS technologies vary in the sequencing biochemistry, the workflow is

quite similar and consists of the following steps : library preparation (isolating DNA or RNA

molecules followed by random fragmentation of DNA and ligation of adaptors), template

amplification (using polymerase chain reaction (PCR)), sequencing and imaging. These are

followed by the computational analysis of the image data that leads to base calling and then the

genome alignment of the resulting reads. The 454 from Roche, Solexa Genome Analyzer from

Illumina and SOLiD from applied Biosystems were among the first NGS platforms that were

broadly used in high-throughput studies. These platforms differ in many aspects including

3



Chapter 1. Introduction

inherent biases, accuracy, read length, sequencing depth, cost per run, initial infrastructure

cost and bioinformatics tools to analyze their output data. These differences lead to each

technology being used for specific suites of application. 454 from Roche outperformed initially

the other technologies in terms of speed (few hours per run) and read length. Therefore,

454 was primarily used in applications where read length was the determining factor such

as metagenomics or de novo genome ass embly. SOLiD had the highest accuracy, with ap-

plications in genome sequencing, transcriptomics research and targeted sequencing. The

Illumina technology offered the cheapest sequencing method and the highest throughput. It

has the capacity to handle sequencing of multiple libraries in a single instrument run using

multiplexing technique and it is very versatile. It is used for a wide range of applications from

the sequencing of bacterial DNA for genome assembly in microbiology studies to ChIP-seq in

applications involving large genomes. PGM is a newer technology from Ion Torrent. It offers

small instrument size as well as low cost, commonly used in identify microbial pathogens and

whole genome sequencing of bacterial genomes [101, 6, 42, 107, 139, 2, 116, 119, 108, 115].

With the SMRT (Single Molecule Real-Time Sequencing) technology from Pacific Biosciences

the third generation sequencing platforms has arrived. Sequencing in real time and elimi-

nating the PCR amplification step are two major features of SMRT. It also produces much

longer reads (average read length is 1300 bp) compared to any second generation method.

Eliminating the PCR amplification step leads to lower sample preparation time and reduces

biases and artifacts caused by amplification. However, these advantages come at the cost of

lower throughput compared to second generation methods as well as relatively high error rates

which make the computational analysis considerably more challenging [127, 84].This method

is quite popular in microbiology studies, resequencing, as well as determination of isoforms in

complex organisms[132]. NGS is rapidly improving in terms of quality, speed and cost and has

become the method of choice in large-scale sequencing studies [123, 115, 33, 50, 82, 109, 112].

A big challenge today is to efficiently store and computa of these enormous volumes of data

produced by high-throughput methods. In the next section we briefly talk about general steps

that are involved in the analysis of NGS data.

1.2.4 Analyzing NGS data

Because NGS technologies are diverse and evolving rapidly, the bioinformatic analysis of the

resulting data, including base-calling, sequence quality assessment, alignment of reads to a

reference genome and de novo assembly evolves accordingly and it is therefore challenging.

Base-calling is the process of inferring the individual nucleobases (A,C,G,T) from fluorescence

intensity signals, yielding the actual sequences. There are variety of base-calling programs

which mostly differ in their statistical framework and the way they report quality scores for the

reads. The common way to report uncertainty of each base is using “Phred score” which is

proportion to the negative of the log probability that the base call is erroneous. A comparison

of common base-calling algorithms can be found in recent reviews [92, 138]. Sequence quality

assessment methods are relevant not only for the basic analysis of the sequenced reads but

also for identifying single nucleotide polymorphisms (SNPs). A main bioinformatic challenge

4



1.3. The general framework of identifying transcriptional start sites

in dealing with NGS data is alignment (or mapping) of the reads to a reference genome.

Although tools like BLAST and BLAT have been used for a relatively long time, they do not

scale to the size of the data sets that come out of deep sequencing studies [113, 77, 4]. Thus,

a new series of alignment tools have been developed recently. They differ in terms of speed,

space and memory usage, the way they handle insertions/deletions and in the capacity to

perform spliced alignment. The most widely used programs for the alignment of short reads

to the genome are Bowtie [91, 90], BWA citeLi2009-ve,Lam2009-ys, segemehl [65] and STAR

[34]. However, many other alignment programs are available such as SOAP [96, 100], GMAP

and GSNAP [172, 171], Bfast [66], subread[97], CUSHAW [101], GEM [106, 46],ZOOM [99],

GNUMAP [23], Maq [93], and Top Hat [152]. The accuracy, speed and general performance of

these programs has been assessed recently [94, 130, 135, 47, 48]. Depending on the nature of

the data, different types of analyses are performed following the mapping step. Normalization

is a necessary step, while differential gene expression analysis or peak calling are specific to

individual applications.

1.3 The general framework of identifying transcriptional start sites

1.3.1 dRNA-seq (differential RNA sequencing)

One of the main challenges in transcriptomics was to determine the exact locus on the genome

where transcription initiates. Genome-wide studies of transcription start sites (TSS) were ini-

tially carried out in eukaryotes using a method known as cap analysis gene expression (CAGE)

[58, 88, 30, 141]. Because prokaryotic RNAs lack a 5’ cap structure, feature which is exploited

in CAGE, the capture of TSSs in prokaryotes required the development of another technique,

which came in the form of differential RNA sequencing (dRNA-seq). Limited-scope methods

that have been used previously to identify TSSs of individual genes were 5’ rapid amplification

of clone ends (RACE), primer extension and S1 protection [14, 151, 12, 7, 160]. Here we briefly

introduce the dRNA-seq method and its application in microbial transcriptomics studies.

General-purpose RNA-seq approaches can not distinguish between primary transcripts (RNAs

with triphosphate at their 5’ ends) and processed fragments (RNAs with monophosphate or

hydroxyl group at their 5’ ends). Thus, to obtain bacterial TSSs, the 5’ end of transcripts that

carry triphosphates needed to be captured [24]. The RNA-seq approach specifically depletes

processed fragments, thereby enriching primary transcripts. Upon treatment of the sample

with a 5’ phosphate-dependent exonuclease (TEX), an enzyme that specifically degrades

transcripts having a 5’ monophosphate, processed fragments as well as the vast majority of

ribosomal RNAs (rRNA) and transfer RNAs (tRNAs) that have monophosphates at their 5’ ends,

are specifically degraded [137].

The new approach is called dRNA-seq (differential RNA-sequencing) and is based on compar-

ing two cDNA libraries obtained from TEX-treated and untreated samples. The RNA obtained

from bacterial cells maintained in a specific condition is divided into two parts: one half is

treated with TEX enzyme which specifically degrades 5’ monophosphate (denoted as 5’P)

RNAs and the other half is left untreated, leading to the capture of both 5’ triphosphate (de-

5



Chapter 1. Introduction
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Figure 1.1 – Schematic view of dRNA-seq protocol

noted as 5’PPP) and 5’p RNAs. Then tobacco acid pyrophosphatase (TAP) is used to convert

5’PPP ends into 5’P to allow the ligation of RNA linkers. A poly(A) tail is then added to the RNA,

the cDNA is then synthesized, amplified using PCR and is sequenced with high-throughput

methods.

dRNA-seq was used for the time to determine the primary transcriptome of the gastric

pathogen Helicobacter pylori in 2010 [136] . Since then, the dRNA-seq approach was uti-

lized for transcriptome analysis of several organisms including several bacterial and a couple

of archeal species [150, 117, 85, 175, 131, 158, 168, 161, 173, 35]. dRNA-seq enables identi-

fication of TSSs at single nucleotide resolution on a genome-wide scale and its application

demonstrated that many small RNAs coding for short peptides, small non-coding RNAs and

antisense transcription near TSS site [142, 136, 67, 26]are transcribed in bacteria. Identify-

ing the exact position of TSSs is also an essential step towards investigating gene regulatory

networks because it allows the focused search for transcription regulatory motifs which are

present in promoter region. Accurate TSS mapping further enables the study of of 5’ untrans-

lated regions (5’ UTR), which are important for translation regulation in bacteria [144]. 5’ UTRs

usually carry a ribosome binding site (RBS) - known as the Shine-Dalgarno (SD) sequence

(AGGAGG) which is generally located around 8 bases upstream of the start codon - where the

ribosome binds to initiate protein synthesis from mRNA [105, 19]. Genes that are leaderless

and are translated via different mechanisms are also known[16, 25]

Illumina, 454 and SOLID sequencing have all been used to map bacterial TSSs genome-wide,

though Illumina is the most popular platform [2, 42, 108, 124, 156]. For TSS identification and

gene expression analysis the sequencing depth is the determining factor.

1.3.2 dRNA-seq data analysis

TSS annotation based on dRNA-seq data used to be a tedious task starting from visualizing the

read profiles in a genome browser followed by manual inspection to look for any enrichment

pattern of the expressed reads in TEX + (TEX treated) versus TEX - (untreated) samples. This

procedure is not only laborious but also prone to errors, and thus not practical for the analysis

of multiple samples and large data sets. An automated method to analyze dRNA-seq data was

therefore in demand among experimental microbiologists. To fill this gap we have developed

6



1.3. The general framework of identifying transcriptional start sites

the “TSSer” tool which enables identification of TSSs genome-wide in prokaryotic organisms

systematically and in a precise way [72]. In Chapter 2 we describe our model in detail. TSSer

turns out to be one of the automated methods for dRNA-seq data analysis that have been

developed in the past couple of years. Other computational tools for dRNA-seq data analysis

were developed more or less at the same time as TSSer [5, 35, 62]. These methods use statistical

functions (e.g. Poisson distribution) to model the expression profile of reads in a defined

window length [5] or considering multiple genome alignment of different strains combined

with a simple peak calling strategy (lacking a statistical model)[35, 62]. Multiple genome

alignment of different strains is not directly related to TSS identification based on dRNA-seq

data and in fact can be used as a separate source of information to be used in conjunction with

any TSS finding tool for the determination of TSSs. A rigorous benchmarking of these methods

is a difficult task as an exact definition of a real TSS is not in hand. For TSSs which are highly

expressed and show clear enrichment almost all these methods can capture them easily but the

difference arises for TSSs which exhibit low expression and are not significantly enriched. To

overcome this problem TSSer models the underlying distribution of read counts in a Bayesian

framework in order to subsequently calculate the enrichment in a probabilistic manner. The

HMM trained over bona fide TSSs also helps to recover majority of TSSs which are missed

in the first round due to exhibiting low expression evidence. In Chapter 2 we have shown

that TSSer achieves high consistency in TSS identification compared to manual approach and

it can also detect as many TSSs which could not be captured by manual inspection of read

profiles. All these methods are based on some user-defined cut-offs on their parameters and

still need supervision to some extent but they facilitate TSS calling to a great extent compared

to manual annotation.

1.3.3 Basics of Bayesian analysis

In TSSer we use notions of Bayesian probability theory, and we therefore give a brief intro-

duction to these notions here. In what is called orthodox or frequentist statistics, one aims

to zoom on to the correct model of the data by testing various possible models. These are

denoted as “hypotheses” (H) and the data is denoted by D. To evaluate the model usually a

quantity called p-value is calculated which is basically the probability of obtaining a result at

least as extreme as the one that is actually observed, assuming that the “null hypothesis” (also

known as counter-hypothesis) is true. lf the p-value is lower than a given significance level

(e.g. P (D|Hnull ) < 0.05) then the null hypothesis is rejected and the alternative hypothesis is

accepted. The most important point about p-value calculation or more generally the orthodox

paradigm is that, p-value does not give us the probability of hypothesis or in other words

P (D|H) 6= P (H |D). In contrast, the Bayesian approach allows one to assign probabilities to

hypotheses, empowers one to treat the model parameters as random variables and allows to

infer the posterior probability of a model based on a given data i.e. calculating P (H |D):

P (H |D) = P (H)P (D|H)∑
H P (H)P (D|H)

7



Chapter 1. Introduction

where P (H |D) is called the “posterior probability” of the model given the data. P (D|H ) = L(H )

is the likelihood function or probability of the data given the model and P(H) is the prior

probability of the model before seeing the data which is usually assumed to be uninformative

in case we know nothing about the model ab initio. The denominator is called marginal

likelihood and is actually a normalizing factor for the density of posterior probability. The

density of posterior probability is proportional to the likelihood times the prior [70].

In the Bayesian approach the probability of a model can be precisely calculated by integrating

(or summing in case of dealing with discrete variables) over all possible values of parameters.

Bayesian probability provides a framework for model selection - by simply calculating the

probability of each model given the data - and parameter estimation - choosing the parameters

set which maximizes the probability of the data - in a logical way. In chapter 2 we have used

the Bayesian analysis to infer the posterior probability distribution of 5’ ends of transcripts

based on the observed counts and consequently we used this posterior probability to calculate

the enrichment of 5’ ends in dRNA-seq data.

1.3.4 Hidden Markov Models

A Hidden Markov Model (HMM) is a general probabilistic model to assign probability dis-

tributions to a sequence of observations [49]. HMM is a commonly used tool for modeling

DNA and proteins sequences In the field of computational biology [36]. HMM is composed of

two main components, a set of states and a set of symbols that are emitted from each state.

HMM is in principle a sequence generator, it emits symbols as it passes through its states.

Transitions from one state to another are associated with defined transition probabilities and

in each state of HMM one symbol is emitted based on the defined emission probabilities for

that state. It is called a “Markov model” because the sequence of underlying states have the

“Markovian property” i.e. the next state is determined merely based on the current state and

is not dependent on previous states that the HMM has passed through. It is called “Hidden”

because usually the underlying sequence of states is not known and has to be inferred from the

observed sequence of emitted symbols. In modeling sequence data, the emission probabilities

simply define the base composition that we expect to see in that state. For example if we

would like to model a state corresponding to an “A/T” rich region then the symbols “A” and

“T” are emitted with higher probabilities compared to symbols “C” and “G”. A schematic view

of a HMM which can distinguish between A/T rich and C/G rich regions in a sequence is

illustrated in Figure 2.

The probability of a sequence given the model is calculated by multiplying all emission and

transition probabilities along the path which has generated that sequence (as this product

is usually a small number, it is common to work with the logarithm of this product). If a

sequence can be produced from alternative paths then the sum of probabilities over these

paths gives one the probability of observing the sequence. To calculated this sum, algorithms

known as “Forward and Backward” have been developed which enable efficient calculation

of this sum using dynamic programming techniques. If we are interested to infer the most

probable state path which generates the observed sequence we can use another dynamic

8
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P(A)=0.1 

P(T)=0.1

P(C)=0.4

P(G)=0.4
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Figure 1.2 – A simple Hidden Markov Model with two states to distinguish between C/G rich
and A/T rich regions in a sequence

programming-based algorithm called “Viterbi” [29]. There is another algorithm known as

“posterior decoding” which finds the most probable state from which a given symbol in the

sequence is emitted. Posterior decoding is based on a mixture of Forward and Backward

algorithms. Another interesting problem regarding HMM is to estimate the parameters of

the model based on a set of observed sequences. This can be achieved by using expectation

maximization algorithms [31]. These algorithms usually start with some initial parameter set

and then calculate the probability of the model based on the observed sequences (calculating

likelihood). Then they update the parameters and keep on repeating these two steps until

converging the likelihood values. These algorithms are discussed in detail in [36].

An application of Hidden Markov Models in computational biology first introduced in late

1980 for analysis of DNA sequences[22] and later for prediction of protein structures [146, 165].

Since then Hidden Markov Models have been used in different areas of bioinformatics such

as sequence alignment [86, 10, 38, 143, 103], protein structural modeling and homology

detection[37, 75, 76] and gene finding [15, 11, 83, 3]. In summary HMM has proved itself as a

powerful tool to analyse the sequence data in the field of molecular biology.

In Chapter 2 we have designed a Hidden Markov Model to detect promoter regions in bacterial

genomes. HMM states are corresponding to the consensus elements of bacterial promoters

such as -35 and -10 motifs, spacer and discriminator regions [57]. The model was trained

over a set of bona fide promoters and then the trained model (fitted transition probabilities

and emission probabilities) was used to predict the putative promoter regions in the bacterial

genome and assigning probability values to each putative promoter site in the genome. This

model proved to be efficient in identifying the promoters which show low expression evidence

due to condition specificity of their expression or do not exhibit sufficient enrichment due to

inefficiency of the dRNA-seq experiment.

9



Chapter 1. Introduction

1.4 Genome-wide identification of non-coding RNAs and their in-

teraction partners

1.4.1 Non-coding RNAs

Non-coding RNAs (ncRNAs) form a heterogeneous class of RNA molecules that do not encode

information for protein production. Thus, they are not translated into proteins, but rather per-

form other cellular functions, being involved in a variety of processes including transcription,

chromatin remodeling, RNA splicing and editing and translation[39, 21, 111].Dysregulated ex-

pression of non-coding RNAs has been observed in several diseases including cancer [95, 147],

Alzheimer’s disease [45] and Prader–Willi syndrome [17] [74].Highly abundant RNAs that

are involved in translation and protein synthesis such as transfer RNAs (tRNAs) and riboso-

mal RNAs (rRNAs) constitute a big fraction of the total expressed non-coding RNAs. Other

important sub-groups of non-coding RNAs are the microRNAs (miRNAs) [59],the Piwi protein-

interacting RNAs (piRNAs) [162, 164]and small interfering RNA (siRNAs)[43],that are involved

in gene regulation, long non-coding RNAs (lncRNAs) [79], long intergenic non-coding RNAs

(lincRNAs) [102], and antisense RNAs (asRNAs) [122]. Some non-coding RNAs guide the post-

transcriptional modification of other RNA species. These include the small nuclear RNAs

(snRNAs) that are involved in pre-mRNA splicing [154], the small nucleolar RNAs that primar-

ily guide methylation and pseudo-uridylation of ribosomal RNAs (snoRNAs) [81], the small

Cajal body specific RNA (scaRNA) [28] and telomerase RNA component (TERC)[149] . Most

ncRNAs exert their function within RNA-protein complexes (ribonucleoprotein or RNP) such

as ribosomal RNAs in the ribosome, snoRNAs in the snoRNPs, miRNAs in RNA-induced silenc-

ing complex, snRNAs in snRNPs and telomerase RNAs in telomerase. The different classes of

non-coding RNAs and their corresponding functions have been surveyed in a recent review

[18]. Non-coding RNAs also appear to be good biomarkers for diseases and cell differentiation

states [104, 166, 20]. Therefore the expression profiling of non-coding RNAs is a crucial step

towards understanding their regulatory functions. High-throughput sequencing technolo-

gies have also contributed to an improved understanding of the biogenesis and functions of

non-coding RNAs in the recent years. Part of the work that was carried out for this thesis has

focused on the snoRNA subset of non-coding RNAs. In Chapter 4 we describe our analysis of

the large data set generated by the ENCODE project towards the discovery, characterization

and expression profiling of snoRNAs.

1.4.2 The ENCODE project

The ENCODE project (ENCyclopedia of DNA elements) was launched by National Human

Genome Research Institute (NHGRI) to harness the power of next generation sequencing

methods towards characterization of all functional elements in the human genome[148]. A

large international consortium of scientists from around the globe applied state of the art

experimental and computational approaches to build a comprehensive catalog of functional

elements that are encoded in human genome including protein-coding and non-coding

10
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genes, transcriptional regulatory regions (promoters, enhancers, silencers), along with their

associated chromatin states and DNA methylation patterns [44, 148]. A future aim of the

ENCODE project is to provide accurate annotations of transcription start sites, introns and

exon boundaries, and 3’ polyadenylation sites, thereby expanding our understanding of RNA

processing and alternative splicing. ENCODE generated high-throughput data for a range of

normal and malignant cell types, as well as for different subcellular compartments such as

nucleus or cytosol. From each subcellular compartment, both long (> 200) and short (<200)

RNAs were sequenced. This data set thereby provided the opportunity to identify various

types of non-coding RNAs such as miRNAs and snoRNAs.[148]. UCSC ENCODE genome

browser and the ENSEMBL browser made the annotation of functional elements discovered

by ENCODE project available to the general scientific community.

1.4.3 CLIP-based methods unravel protein-RNA interactions

Identifying the interactions of proteins with DNA or RNA molecules is essential for our un-

derstanding of the networks which govern gene expression in individual cell types. The

high-throughput experimental methods that have been developed to capture the DNA or

RNA targets of individual proteins of interest are based on crosslinking the proteins to DNA

using UV light and then immunoprecipitating the protein (together with its bound target

sequences) with a specific antibody (Immunoprecipitation or “IP”). NGS technologies pro-

vided the necessary throughput to explore DNA/RNA-protein interactions at a genome-wide

scale. ChIP-seq (Chromatin immunoprecipitation followed by high-throughput sequencing)

was one of the first applications that used the above-mentioned principles [155, 73]. After

successful application of this method in genome-wide studies mainly to find the binding sites

of transcription factors (TFs) - the main class of regulators of gene expression on transcription

level - scientists set out to apply this method to characterize binding specificity of various

RNA-binding proteins. This led to the so-called “CLIP” (cross-linking immunoprecipitation)

methods [71, 27]. CLIP-based protocols such as HITS-CLIP (High-throughput sequencing of

RNA isolated by crosslinking immunoprecipitation), iCLIP (individual-nucleotide resolution

Cross-Linking and ImmunoPrecipitation) and PAR-CLIP (Photoactivatable-Ribonucleoside-

Enhanced Crosslinking Immunoprecipitation) are used for genome-wide identification of

the target sites of a particular protein on RNA molecules [174, 27, 98, 145, 68, 54]. These

methods can also be applied to identify the target RNAs whose interaction with a specific

protein is guided by other non-coding RNAs. For instance, PAR-CLIP was applied successfully

to identify the target sites of miRNA as well as snoRNAs by crosslinking of Argonaute complex

and snoRNP core proteins, respectively [54, 55, 56, 80]. CLIP-based methods are making a

great impact on our knowledge of post-transcriptional regulation, revealing for example, how

vast the RNA-mediated interaction networks are [8]. In Chapter 3 we describe how we have

utilized the PAR-CLIP method to immunoprecipitate the core proteins of snoRNP complexes

as well as the Argonaute protein in order to investigate snoRNA processing [80]
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ABSTRACT

Motivation: Accurate identification of transcription start sites (TSSs) is

an essential step in the analysis of transcription regulatory networks. In

higher eukaryotes, the capped analysis of gene expression technology

enabled comprehensive annotation of TSSs in genomes such as those

of mice and humans. In bacteria, an equivalent approach, termed

differential RNA sequencing (dRNA-seq), has recently been proposed,

but the application of this approach to a large number of genomes is

hindered by the paucity of computational analysis methods. With few

exceptions, when the method has been used, annotation of TSSs has

been largely done manually.

Results: In this work, we present a computational method called

‘TSSer’ that enables the automatic inference of TSSs from dRNA-

seq data. The method rests on a probabilistic framework for identifying

both genomic positions that are preferentially enriched in the dRNA-

seq data as well as preferentially captured relative to neighboring

genomic regions. Evaluating our approach for TSS calling on several

publicly available datasets, we find that TSSer achieves high consist-

ency with the curated lists of annotated TSSs, but identifies many

additional TSSs. Therefore, TSSer can accelerate genome-wide iden-

tification of TSSs in bacterial genomes and can aid in further charac-

terization of bacterial transcription regulatory networks.

Availability: TSSer is freely available under GPL license at http://www.

clipz.unibas.ch/TSSer/index.php

Contact: mihaela.zavolan@unibas.ch

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Identification of transcription start sites (TSSs) is a key step in

the study of transcription regulatory networks. It enables iden-

tification of promoter regions, and thereby the focused search for

binding sites of transcription factors. Although for species such

as mouse and human, methods to capture TSSs have been

developed410 years ago (Shiraki et al., 2003), owing to differ-

ences in messenger RNA (mRNA) processing, these methods

cannot be applied to bacteria. Recently, however, a method for

genome-wide identification of bacterial TSSs has been proposed

(Sharma et al., 2010). The method, called differential RNA

sequencing (dRNA-seq), uses the 50 mono-phosphate-dependent

terminator exonuclease (TEX) that specifically degrades

50 mono-phosphorylated RNA species such as processed RNA,

mature ribosomal RNAs and transfer RNAs, whereas primary

mRNA transcripts that carry a 50 triphosphate remain intact.

This approach results in an enrichment of primary transcripts,

allowing TSSs to be identified by comparison of the TEX-treated

samples to control untreated ones. As an automated computa-

tional method to identify TSSs based on dRNA-seq data has not

been available, TSS annotation based on dRNA-seq data

required substantial effort on the part of the curators. The aim

of our work was to develop an automated analysis method to

support future analyses of dRNA-seq data. We here introduce a

rigorous computational method that enables identification of a

large proportion of bona fide TSSs with relative ease. The

method is based on quantifying 50 enrichment of TSSs and

also the significance of their expression relative to nearby puta-

tive TSSs. Benchmarking our method on several recently pub-

lished datasets, we find that the identified TSSs are in good

agreement with those annotated manually, and that a relatively

large number of additional TSSs that also have the expected

transcription regulatory signals are identified. TSSer is freely

available at http://www.clipz.unibas.ch/TSSer/index.php.

2 APPROACH

The input to TSSer is dRNA-seq data, consisting of one or more

pairs of TSS-enriched (TEX-treated) and TSS-not-enriched sam-

ples. There are two main criteria that we use to define TSSs. The

first criterion stems from the obvious expectation that TSSs are

enriched in the TEX-treated compared with the TEX-untreated

samples (Sharma et al., 2010). To quantify the enrichment, we

explored two methods. In one approach we calculated, for each

genomic position, a ‘z-score’ of the observed number of reads in

the TEX-treated sample compared with number of reads in

the TEX-untreated sample. The second method aims to take

advantage of the information from multiple replicates: we use

a Bayesian framework to quantify the probability that a genomic

position is overrepresented across a number of TEX-treated sam-

ples. The second main criterion that we use to pinpoint reliable

TSSs rests on the observation that in bacteria, the majority of

genes have a single TSS (Cho et al., 2009). Thus, we expect that

in a specific sample, for each transcribed gene, there will typically

be one main TSS, as opposed to multiple TSSs in relatively close

vicinity. In other words, bona fide TSSs should exhibit a ‘local

enrichment’ in reads compared with neighboring genomic

positions. We will now describe the computation of different

measures of TSS enrichment.*To whom correspondence should be addressed.
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3 METHODS

3.1 Quantifying 50 enrichment in a TEX-treated compared

with a TEX-untreated sample

In preparing the dRNA-seq sample, one captures mRNAs from bacterial

cells and sequences their 50-ends. The capture of the mRNAs could be

viewed as a sampling process that gives rise to hypergeometrically distrib-

uted counts of reads from individual positions in the genome. However,

given that the number of reads originating at a given genomic position is

small relative to the total number of obtained reads, we can approximate

the hypergeometric distribution by a binomial distribution. That is, if the

total number of reads in the sample is N, and the fraction f of these cor-

responds to a given TSS of interest, then the probability to observe the TSS

represented by n of the N reads in the sample follows a binomial

distribution:

Pðnjf,NÞ ¼
N
n

� �
fnð1� fÞN�n

Letting fþ and f� denote the frequency of reads derived from a given

genomic position in the TEX-treated (TSS-enriched) and TEX-untreated

(non-enriched) samples, respectively, what we would like to determine is

the enrichment defined as follows:

Pðfþ4f�jnþ,Nþ, n�,N�Þ ¼ Pðfþ � f�40jnþ,Nþ, n�,N�Þ:

We do not know the underlying frequencies fþ and f�. Rather, we

approximate the probability of enrichment based on observed counts as

explained in the Supplementary Material. With x being the observed

frequency of reads derived from a given position (i.e. xþ ¼
nþ
Nþ

and

x� ¼
n�
N�

for the TEX-enriched and not enriched samples, respectively),

the probability that a genomic position has a higher expression in the

TEX-treated compared with the untreated sample is given by the follow-

ing equation:

Pðfþ � f�40jnþ,Nþ, n�,N�Þ ¼ �ð
xþ � x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþð1�xþÞ
Nþ

þ
x�ð1�x�Þ

N�

q Þ

where � is the cumulative of Gaussian distribution (error function).

In case of having multiple paired samples, the average value of �ðtÞ for

a given genomic position would quantify the 50 enrichment probability.

We call this measure ‘z-score’. Alternatively, when we have replicates

of paired (TEX-treated and untreated) samples, we can calculate the

50 enrichment �s for each pair separately:

�s ¼ h
fþ
f�
i

Assuming that �s follows a normal distribution with mean � and variance

�2, we can calculate the probability that a TSS is enriched across a panel

of k replicate paired samples:

P �41j�ð Þ ¼

R1
1 ð

1
ð����Þ

2
þ�2�
Þ
k�1
2 d�R1

0 ð
1

ð����Þ
2
þ�2�
Þ
k�1
2 d�

where � ¼ ð�1, �2, :::, �kÞ and �� and �� are mean and variance of �,

respectively, and k is the number of replicates (details of the derivation

are given in the Supplementary Material).

3.2 Quantifying local enrichment

To quantify the local enrichment of a putative TSS, we examine the

frequencies of sequenced reads in a region of length 2l centered on the

putative TSS (½x� l,xþ l�). That is, we define the local enrichment L as

follows:

L ¼

P
i2½x�l, xþl�, nþ, i�nþ,x

nþ, iP
j2½x�l, xþl� nþ, j

ð1Þ

where nþ, i is number of reads derived from position i in the TEX-treated

sample. The value of L would be 1 for the position with maximum ex-

pression in the interval, corresponding to a perfect local enrichment.

When replicates are available, we compute the average local enrichment

over these samples. We chose l such that it covers typical 50 UTR lengths

and intergenic regions, i.e. 300 nt. This value is of course somewhat ar-

bitrary, but we found that it allows a good selection of TSSs in practice.

3.3 Identification of TSSs

To identify TSSs, we compute these measures based on all available sam-

ples. Because we observed that the precision of start sites is not perfect

but there are small variations in the position used to initiate transcription,

we also apply single linkage clustering to select the representative among

closely spaced (up to 10nt) TSSs. We then select the parameters that give

us the maximum number of annotated genes being associated with TSSs,

restricting the total number of predicted TSSs to be in within a narrow

range, �50% of the number of annotated genes in the genome.

4 EVALUATION OF THE TSS IDENTIFICATION
METHOD

To evaluate our method and verify its accuracy, we applied it to

several recently published datasets [Helicobacter pylori,
Salmonella enterica serovar Typhimurium (Kröger et al., 2012)

and Chlamydia pneumoniae (Albrecht et al., 2009)] for which a
mixture of computational analysis and manual curation was used

to annotate TSSs. We here present an in-depth analysis of the
TSS identification approaches for H.pylori. Similar analyses for
the other species are given in the Supplementary Tables S4–S6.

In the H.pylori genome, our method identified 2366 TSSs. Of
these, 1306 (55%) TSSs are in the reference set of 1893 curated

TSSs reported by Sharma et al., 2010, which we refer to them as
‘Common’ TSSs. Thus, 69% of the curated sites are included in

our TSS list. A number of reasons contributed to our method
failing to identify another 31% curated TSSs, which we refer to
them as ‘Reference only’.

� In our approach, we only use reads that were at least 18 nt in
length and mapped with at most 10% error to the genome.

This selection appears to have led to the loss of 187 (32%) of
the 587 curated TSSs in the mapping process, before apply-
ing the TSSer inference.

� The majority of the curated sites that we did not retrieve

appear to have been supported by a small number of reads.
Two hundred twenty-six (38%) of the 587 curated TSSs that

we did not identify were supported by less than a single read
per 100 000 on average and we required that a TSS is

supported by at least 1 read (see Fig. 1a).

� Finally, 174 (30% of the curated TSSs that we did not re-
trieve) did not pass our enrichment criteria (see Fig.1c).

Accepting these TSSs as putative TSSs would have to be
accompanied by the inclusion of many false positives.

In summary, 70% of the manually curated TSSs that are not in
the ‘TSSer’ prediction set were not lost due to TSSer scoring but
rather before because they had little evidence of expression, even

though we mapped 70.43% of the reads to the genome, com-
pared with 80.86% in the original analysis (Sharma et al., 2010).

Only 30% of the TSSs that were in the reference list were not
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present in the TSSer list because they did not satisfy our criteria

for enrichment in reads. Further investigating the features [en-

richment values, distance to start codon (TLS) and presence of

transcriptional signals (see Supplementary Material)] of these

TSSs that we did not identify, we found that a large proportion

are likely to be bona fide TSSs, i.e. false negatives of our method.
On the other hand, we identified an even larger number of

TSSs (1060) that were not present in the curated list. We refer

to these as ‘TSSer only’. Of these, 198 TSSs correspond to 142

genes that were not present in the reference list. Of the remaining

862 TSSs that are only identified by our method, 287 TSSs are

‘Antisense’ TSSs, 58 TSSs are ‘Orphan’ and 379 TSSs are alter-

native TSSs for genes that did have at least one annotated TSS in

the reference set (the definition of these categories is given in

Section 2.3 of Supplementary Material). These TSSs share the

properties of TSSs jointly identified by our method and the

manual curation (Fig. 1), indicating that they are also bona

fide TSSs. To further support the TSSs that were identified by

TSSer and were missing in the reference list, we compared these

TSSs with the ‘Common’ category and also ‘Reference only’

category in the following aspects:

� Average normalized expression (Fig. 1a): ‘TSSer only’ TSSs

have almost the same expression distribution as TSSs in

‘Reference only’ category and both have lower expression

compared with the TSSs in the ‘Common’ set. This indicates

that TSSs with high expression are equally well identified by

the two methods, and that the difference between methods

manifests itself at the level of TSSs with low expression.

� TSS to TLS distance: Figure 1b shows that TSSer identifies

putative TSSs that are closer, on average, to the translation

start, compared with the TSSs that were manually curated.

The proportion of internal TSS identified by TSSer is also

higher and it remains to be determined what proportion of

these represents bona fide transcription initiation starts.

� Enrichment values: Figure 1c shows that TSSs identified by

TSSer only have strong 5’ and local enrichment, whereas

those that are present in the ‘Reference only’ set have low

local enrichment. This indicates that these sites are located

in neighborhoods that give comparable initiation at spurious

sites and thus these sites would be difficult to identify simply

based on their expression parameters.

� Strength of transcriptional signals: Figure 1d shows that

TSSs identified by TSSer share transcriptional signals such

as the �10 box with the other categories of sites. The overall

weaker sequence bias may indicate that a larger proportion

of ‘TSSer only’ sites are false positives, consistent with the

higher proportion of sites that TSSer identified downstream

of start codons (Fig. 1a). To further investigate the tran-

scription regulatory signals, we also implemented a hidden

Markov model (HMM) that we trained on the ‘Common’

sites to find transcription regulatory motifs. We then applied

this model to the sequences from each individual subset (see

Supplementary Material for details). The results from

the HMM further confirm that a large proportion of the

‘TSSer only’ sites have similar scores to the sites in the

other two categories, indicating that TSSer captures a sub-

stantial number of bona fide TSSs that were not captured

during manual curation.

5 DISCUSSION

Deep sequencing has truly revolutionized molecular biology. It

enabled not only the assembly of the genomes of thousands of

species, but also annotation of transcribed regions in these gen-

omes and the generation of a variety of maps for DNA-binding

factors, non-coding RNAs and RNA-binding factors. High-

throughput studies revealed that not only eukaryotic but also

Fig. 1. Properties of TSSs that were present only in the reference list

(left), both in the reference and the TSSer list (middle) or only in the

TSSer list (right). (a) Box plot of averaged normalized expression (the

boxes are drawn from the first to the third quantile and the median is

shown with the red line). (b) Box plot of the displacement distribution

relative to the start codon. (c) Scatterplots of 50 versus local enrichment

(both shown as percentage). (d) Sequence logos indicating the position-

dependent (50 ! 30 direction) frequencies of nucleotides upstream of the

TSS (datasets are shown from top to bottom rather than from left to

right)
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prokaryotic genomes are more complex than initially thought. In

particular, bacterial genomes encode relatively large numbers of

non-coding RNAs with regulatory functions (Waters and Storz,

2009) and antisense transcripts (Georg and Hess, 2011). Such

transcripts are of particular interest because they are frequently

produced in response to and contribute to the adaptation to

specific stimuli (Repoila and Darfeuille, 2009). The availability

of a large number of bacterial genomes further enables identifi-

cation of regulatory elements through comparative genomics-

based approaches (Arnold et al., 2012). However, these methods

benefit from accurate annotation of TSSs that enables a focused

search for transcription factor binding sites. Although the data

supporting TSS identification can be obtained with relative ease

(Sharma et al., 2010), the annotation of TSSs has so far been

carried out manually, which is tedious and likely leads to an

incomplete set of TSSs. Only recently, as our manuscript was

in the review process, methods for automated annotation of

TSSs based on dRNA-seq data started to emerge (Dugar et al.,

2013) (see also http://www.tbi.univie.ac.at/newpapers/pdfs/TBI-

p-2013-4.pdf). The method that we propose here is meant to

provide a starting point into the process of TSS curation.

Because it uses dRNA-Seq data, it is clear that only TSSs from

which there is active transcription during the experiment can be

annotated. As we have determined in the benchmark against the

H.pylori, there remain TSSs for which the expression evidence is

poor, yet have the properties of bona fide TSSs. Additional sam-

ples, covering conditions in which these TSSs are expected to be

expressed are necessary to identify them. Alternatively, they can

be brought in during the process of manual curation.

Nonetheless, the advantage of an unbiased automated method

such as the one we propose here is that it allows the discovery of

TSSs that may not be expected or easily evaluated such as those

of antisense transcripts, alternative TSSs and TSSs correspond-

ing to novel genes. Furthermore, this method can provide an

initial set of high-confidence TSSs that can be used to train

more complex models of transcription regulation, which could

be used to iteratively identify additional TSSs, that may be sup-

ported by a small number of reads. To illustrate this point, we

here used an HMM, which we trained on high-confidence TSSs

from the ‘Common’ category, to provide an additional list of

putative TSSs that appear to have appropriate transcription

regulatory signals but that were not captured with high abun-

dance or enrichment in the experiment (Supplementary

Table S8). Thirty-six percent of the TSSs that were only present

in the reference annotation are part of this list. More sophisti-

cated versions of this approach could be used toward compre-

hensive annotation of TSSs in bacterial genomes. Finally, the

method can be applied to other systems in which genomic

regions give rise to an increased number of transcripts in specific

conditions.

6 CONCLUSION

We have proposed an approach for genome-wide identification

of TSSs in bacteria, which uses dRNA-Seq data to quantify the

50 and local enrichment in reads at putative TSSs and their cor-

responding significance. The method is implemented in an auto-

mated pipeline, which we applied to several recently published

dRNA-Seq datasets. A thorough benchmarking of the TSSs pro-

posed by our method relative to manual curation indicates that

the method performs well in identifying known TSSs and is able

to further detect novel TSSs that have the expected properties of

bona fide TSS. Thus, our method should enable rapid identifica-

tion of TSSs in bacterial genomes starting from dRNA-Seq data.
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1 Read mapping and count normalization
We used in our study two pairs of cDNA libraries (TEX-untreated/treated) obtained from Helicobac-
ter pylori cells in mid-log phase (ML-/+) or exposed to acid stress (AS-/+). These were the primary
samples which were used for the initial annotation of TSSs in the H.pylori genome[1]. We obtained
the raw data from the NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra), acces-
sion number SRA010186.
The raw data for Chlamydia and Salmonella can be obtained from the following links:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24999
http://bioinf.gen.tcd.ie/~sathesh/Seqs/

Initial inspection of data sets generated with the dRNA-seq method revealed that a large pro-
portion of sequences had trailing A nucleotides or nucleotides that could not be accurately called.
Thus, we included in our processing procedure a ’cleaning step’, in which we removed the adaptor
sequence as well as trailing polyAs and polyNs (N - nucleotides that could not be accurately called).
Because reads with long low complexity regions remained, we decided to map the sequences using
the local sequence alignment program BLAST [2]. Then, for the inference of TSSs with TSSer we
only considered sequences that had at least 18 nucleotides from the 5’ end that were aligned to the
genome, with at least 90% identity and at no more than 2 loci. In counting the reads associated with
individual genomic loci, we weighted each read with 1

number of loci , thus assuming that the read could
have come from any of the loci to which it mapped equally well.

1
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Supplementary Table 1: Mapping statistics for Helicobacter pylori samples: AS and ML stand for
’acid stress’ and ’mid-log phase or control growth’ respectively. + and − represent TEX-treated and
TEX-untreated samples

Sample Name Total reads Mapped reads Percent mapped Percent mapped uniquely Structural RNA content
AS+ 540133 344332 63.75% 62.38% 47.77%
AS- 427455 307962 72.04% 63.47% 43.65%
ML+ 528169 366775 69.44% 44.75% 66.00%
ML- 528373 406581 76.95% 27.67% 84.83%

A second observation that we made when initially inspecting the data was that the relative fraction
of structural RNAs (i.e. ribosomal RNAs and tRNAs) differs dramatically between samples (see Sup-
plementary Table 1 for the Helicobacter samples [1]), in a way that does not appear to be systematic.
The terminator exonuclease degrades RNAs that have a 5’ monophosphate group, but not those that
have 5 tri-phosphate or hydroxyl. Structural RNAs such as rRNAs and tRNAs are processed (from
polycistronic transcripts in the first case, by RNase P in the second case), have 5’-monophosphates
and are therefore substrates of TEX. mRNAs, with 5-triphosphates, are not. We would thus expect
then that TEX-treated samples are depleted in structural RNAs compared to the untreated samples,
but that is not what we observed. We thus normalize the read counts to the total number of reads
that map to regions other than those annotated as structural RNAs. To compare the read counts
between samples we calculated the normalized count for each start site (the position to which the 5’
end of a read maps) and whenever we use the term ’normalized expression’ we mean relative to the
total number of reads that do not map to regions annotated as structural RNAs.

2 TSS identification
We used two main criteria to automatically identify TSSs genome-wide. The first was that the putative
TSS should have relatively more reads in the TEX-treated sample compared to the untreated one.
We call this criterion 5’ enrichment and we quantify it via two different methods, to account for the
possibility that the data includes or not replicates. In a first approach we quantify the 5’ enrichment
of particular genomic position in the TEX-treated compared to the untreated samples through the
’z-score’. In the second approach, we compute a probability that a genomic position is enriched across
all multiple replicates of pairs of TEX-treated and untreated samples. The second criterion that we
used to distinguish bona fide TSSs from background is based on the expectation that a real TSS
is represented in a TEX-treated sample at a higher level compared to other genomic positions in
relatively close vicinity. We call this criterion ’local enrichment’. Below we describe the computation
of these quantities.

2.1 Computation of the 5’ enrichment
2.1.1 z-score

The distribution of the number of reads associated with a specific TSS, which are derived from the
mRNAs that were transcribed from that TSS, should follow a hypergeometric distribution. Because
the number of reads associated with a given TSS is very small relative to the total number of reads,
we approximate this hypergeometric distribution by a binomial distribution. Thus, assuming that a
fraction f of the total number of mRNAs originates from a specific TSS, the probability to observe n
reads from this TSS in a sample of N reads is given by

P (n|f,N) =
(
N

n

)
fn(1− f)N−n, (1)
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The mean and variance in the number of reads are given by 〈n〉 = Nf and V ar(n) = Nf(1 − f),
respectively. Applying Bayes’ theorem, we obtain the posterior probability for f ,

P (f |n,N) = (N + 1)
(
N

n

)
fn(1− f)N−n, (2)

with mean 〈f〉 = n+1
N+1 and variance V ar(f) = (n+1)(n+2)

(N+2)(N+3) . Having the posterior probability distribu-
tion for f we can define the enrichment at a particular genomic position as

P (f+ > f−|n+, N+, n−, N−) (3)

We can write this equation in these two different forms, namely

P (f+ > f−|n+, N+, n−, N−) = P (f+ − f− > 0|n+, N+, n−, N−) ,

or
P (f+ > f−|n+, N+, n−, N−) = P

(
f+
f−

> 1|n+, N+, n−, N−

)
.

For the first form,

P (f+ − f− > 0|n+, N+, n−, N−) =
∫ 1

0
∫ 1
f− P (f+, f−|n+, N+, n−, N−) df+df−

=
∫ 1

0
∫ 1
f− P (f+|n+, N+)P (f−|n−, N−) df+df−

(4)

Substituting Eq.2, the enrichment probability takes the form of an integral of an ’incomplete Beta
function’ which we cannot solve analytically.

∫ 1

0

∫ 1

f−
(N+ + 1)

(
N+
n+

)
f+

n+(1− f+)N+−n+(N− + 1)
(
N−
n−

)
f−n−(1− f−)N−−n−df+df−. (5)

However, we can derive a Gaussian approximation as follows. Let us write the log-likelihood

log (P (f |n,N)) = G(f).

Expanding around the peak, which occurs at a = n
N , we have

G(f) = G(a) + ∂G

∂f
|f=a

(f − a)
1! + ∂2G

∂f2 |f=a
(f − a)2

2! + . . . (6)

Considering that at the peak ∂G
∂f = 0, we have

G(f) = G(a) + ∂2G

∂f2 |f=a
(f − a)2

2! + . . . (7)

and

P (f |n,N) = eG(f)

= e
G(a)+ ∂2G

∂f2 |f=a
(f−a)2

2!

= eG(a)e
∂2G
∂f2 |f=a

(f−a)2
2 .
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We now calculate ∂2G
∂f2 |f= n

N
:

∂2G

∂f2 = ∂2log[P (f |n,N)]
∂f2

=
∂ ∂log[P (f |n,N)]

∂f

∂f

=
∂
∂log[(N+1)(Nn)fn(1−f)N−n]

∂f

∂f

=
∂
∂[log(N+1)+log (Nn)+log fn+log(1−f)N−n]

∂f

∂f

=
∂
∂[log(N+1)+log (Nn)+n log f+(N−n) log(1−f)]

∂f

∂f

=
∂[nf − N−n

(1−f) ]
∂f

= − n

f2 + N − n
(1− f)2

whose value at f = n
N is given by:

− n

f2 + N − n
(1− f)2 |f= n

N
= − n

( nN )2 + N − n
(1− n

N )2

= −N
2(N − 2n)
n(N − n)

=≈ − N3

n(N − n) .

Thus, letting µf = n
N and σ2

f = n(N−n)
N3 , we have that

P (f |n,N) ≈ eG(a)e
∂2G
∂f2 |f=a

(f−a)2
2

≈ eG(a)e
− (f−µf )2

2σ2
f

≈ N ( n
N
,
n(N − n)

N3 )

Thus, we find that we can approximate P (f |n,N) as a Gaussian. We can now derive a closed form
for P (f+ − f−|n+, N+, n−, N−) as it is the difference of two independent Gaussian distributions:

P (f+ − f−|n+, N+, n−, N−) ≈ N (x+ − x−,
x+(1− x+)

N+
+ x−(1− x−)

N−
) (8)

with x = n
N being the proportion of reads associated with the putative TSS. Moreover, P (f+ −

f−|n+, N+, n−, N−) is essentially the probability distribution of the standard score

P (f+ − f−|n+, N+, n−, N−) ≈ φ( x+ − x−√
x+(1−x+)

N+
+ x−(1−x−)

N−

) (9)

which we use to quantify the enrichment of the TSS in the TEX-treated compared to TEX-untreated
sample.
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2.1.2 λ-score

When we have multiple paired samples we can calculate the 5’ enrichment for each genomic position
in each TEX-treated compared to untreated sample and then evaluate the posterior probability that
the mean of this distribution is greater than 1. Let us call λs the ratio of the normalized number of
reads associated with a TSS in the TEX-treated compared to the untreated sample.

Assuming that the enrichment ratios λs have a Gaussian distribution across replicates (with mean
and standard deviation µ and σ, respectively) we can calculate the posterior probability of the mean of
this distribution being greater than one, which would correspond to the putative TSS being enriched,
taking into account the evidence from all the pairs of TEX-treated and untreated samples. That is,
the probability of the data, meaning the vector λ = (λ1, λ2, ..., λn) is given by

P (λ|µ, σ) =
n∏

s=1

1
σ
√

2π
e
−(λs−µ)2

2σ2

Applying Bayes’ theorem, we have that

P (µ, σ|λ) = cP (λ|µ, σ) = c

( 1
σ
√

2π

)n
e−

1
2σ2
∑n

s=1(λs−µ)2
(10)

with c a constant.
The values of µ and σ that maximize P (µ, σ|λ) can be derived by solving ∂P (µ,σ|λ)

∂µ = 0 and ∂P (µ,σ|λ)
∂σ = 0

respectively, and are

µ∗ = 〈λs〉 (11)
σ2
∗ = 〈(λs − 〈λs〉)2〉 (12)

To calculate P (µ > 1|λ) we must first determine the posterior probability of µ which we do by
integrating over σ in Eq. 10:

P (µ|λ) =
∫ ∞

0
P (µ, σ|λ)dσ

=
∫ ∞

0
c

( 1
σ
√

2π

)n
e−

1
2σ2
∑n

s=1(λs−µ)2
dσ

= c(2π)−
n
2

∫ ∞

0

( 1
σ

)n
e
−cµ
2σ2 dσ,

with cµ = ∑n
s=1(λs − µ)2. Performing the integral of the Gamma function we obtain

P (µ|λ) = c(2π)−
n
2

[
2
n−3

2 cµ
1−n

2 Γ
(
n− 1

2

)]

= kcµ
1−n

2 (13)

where k = c2−3
2 π−

n
2 Γ(n−1

2 ) is a constant.
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Now we can calculate P (µ > µ0|λ) given Eq. 13 as follows:

P (µ > µ0|λ) =
∫ ∞

µ0
P (µ|λ)dµ

=
∫ ∞

µ0
kcµ

1−n
2 dµ

= k

∫ ∞

µ0
(
n∑

s=1
(λs − µ)2)

1−n
2

dµ

= k

∫ ∞

µ0
[
n∑

s=1
(λ2
s − 2µλs + µ2)]

1−n
2

dµ

= k

∫ ∞

µ0
[n

n∑

s=1

(λ2
s − 2µλs + µ2)

n
]

1−n
2

dµ

= kn

∫ ∞

µ0
[〈λ2

s〉 − 2µ〈λs〉+ µ2]
1−n

2 dµ

= kn

∫ ∞

µ0
[〈λ2

s〉 − 〈λs〉2 + 〈λs〉2 − 2µ〈λs〉+ µ2]
1−n

2 dµ

= kn

∫ ∞

µ0
[σ2
∗ + (µ− µ∗)2]

1−n
2 dµ

Thus,

P (µ > µ0|λ) = K

∫ ∞

µ0
[σ2
∗ + (µ− µ∗)2]

1−n
2 dµ (14)

where K is a constant which can be calculated from the constraint that

P (µ > 0|λ) = K

∫ ∞

0
[σ2
∗ + (µ− µ∗)2]

1−n
2 dµ = 1 (15)

Therefore K = 1∫∞
0 [σ2∗+(µ−µ∗)2]

1−n
2 dµ

and considering Eq. 14 we will have

P (µ > µ0|λ) =
∫∞
µ0

[σ2
∗ + (µ− µ∗)2]

1−n
2 dµ

∫∞
0 [σ2∗ + (µ− µ∗)2]

1−n
2 dµ

(16)

Finally, the quantity in which we are interested:

P (µ > 1|λ) =
∫∞

1 ( 1
(µ−µ∗)2+σ2∗

)
n−1

2 dµ

∫∞
0 ( 1

(µ−µ∗)2+σ2∗
)
n−1

2 dµ
(17)

The expression depends on the enrichment factors λ. Rather than using the maximum likelihood
values of f+ and f−, we compute the expected value of the ratio of these two frequencies. This can be
shown to take the value

λs = 〈f+
f−
〉

=
n++1
N++2
n−

N−+1

which can be approximated as λs = x+
x−

, with x+ = n+
N+

and x− = n−
N−

.
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2.2 Single linkage clustering
Observing that many of the well-represented TSSs were associated with reads that started at closely-
spaced positions, we applied single-linkage clustering to the set of putative TSSs before generating our
list of high-confidence TSSs. The selected distance for clustering should be large enough to cluster
the putative start sites in close vicinity of each other which are results of imprecise transcription
initiation and should be small enough not to cluster alternative transcription start sites. Here we used
10 nucleotides as the single-linkage clustering distance. From a single-linkage cluster we reported the
site with the highest average expression in the TEX-treated samples.

2.3 Generating the list of high-confidence TSSs
To define a list of high-confidence TSSs, we selected cut-off values for our parameters that allowed
inclusion of most annotated genes while keeping the total number of TSSs close to total number of
annotated genes ( 0.5× number of genes < total TSS < 1.5× number of genes). For the Helicobacter
genome, this selection corresponded to values of 50% minimum local and 5’ enrichment and 1.0 for
average normalized expression. A list of different cut-off values for the TSSer parameters and their
associated number of identified TSSs is given in Supplementary Table 7. We obtained a total of 2366
predicted TSSs, classified as follows:

Supplementary Table 2: Representation of various types of TSSs in the Helicobacter pylori dRNA-seq
data

Total number of TSSs Primary Antisense Internal Orphan
2366 984 751 602 129

The annotated TSSs were grouped hierarchically into one of these four categories according to
their relative position to the closest annotated gene. Primary TSSs are defined to be those within a
distance of ≤ 300 nucleotides upstream of an annotated open reading frame (ORF) or up to ≤ 100
nucleotides downstream from the start codon. Antisense TSSs are those situated inside or within
≤ 100 nucleotides of an annotated ORF on the opposite strand. Internal TSSs are defined to be those
within an annotated ORF on the sense strand. Finally, orphan TSSs are those that have no annotated
ORF in close proximity.

3 Evaluation of the TSS identification method
To evaluate the accuracy of our TSS identification method, we benchmarked it against the manually-
constructed TSS map of Helicobacter pylori. After removing TSSs corresponding to structural RNAs,
1893 manually curated TSSs remained. We referred to these as the ’Reference’ set. Considering two
TSSs which are at most 5 nucleotides away from each other as shared, we found that 1306 (69%) of the
TSSs on the reference list are also identified by our method. The other 31% of TSSs in the reference
list were not present in our list. On the other hand, we identified 1060 TSSs that were not present in
the reference set.

We defined the following categories of TSSs:

• Those only present on the reference list (587 TSSs), which we refer to as ’Reference only’.

• Those identified both by our method and also through manual curation (1306 TSSs). We refer
to this set as the ’Common’ set.

• Those identified only by our method (1060 TSSs), to which we refer as ’TSSer only’.
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We then compared the properties of these categories of TSSs. The results, summarized in Figure 1
of the main manuscript, indicate that TSSer indeed identifies a large number of TSSs that are not
present in the reference list, yet whose properties are very similar to those of high-confidence TSSs.
Namely, panel (a) of the figure indicates that TSSs that were only identified by TSSer have higher
expression compared to those that were only on the reference list, panel (b) indicates that they are
located closer to the translation start, and panel (c) indicates that TSSs identified by TSSer have
stronger enrichment (particularly local enrichment) compared to TSSs which are only present in the
reference set.

For Helicobacter, the number of dRNA-seq samples was rather large, covering a few conditions
with distinct expression patterns. Other data sets are typically smaller, so we would not expect to
get a total number of TSSs that is in the range of the number of genes. Nonetheless, enrichment
thresholds of 40 to 60 percent appear to give good results on data from at least two other species, as
summarized below.

Supplementary Table 3: Information related to investigated organisms

Helicobacter Salmonella Chlamydia
5’ enrichment cut-off 50% 50% 50%

Local enrichment cut-off 50% 50% 60%
Normalized expression cut-off 1.0 1.0 1.0
Single-linkage distance (nt) 10 10 10

Total identified TSSs 2366 1574 1234
Common TSSs 1306 826 262
Reference only 587 992 272
TSSer only 1060 748 972

3.1 Hidden Markov Model of transcription regulatory elements
To uncover additional evidence for the putative TSSs identified by our method being bona fide TSS,
we modeled the transcriptional signals that are known to be present upstream of the TSS in bacteria.
In particular, bacterial transcription appears to be dependent on motifs that are located at 35 and
10 nucleotides upstream of the TSS, which are called ’-35 box’ and ’Pribnow box’ motifs [3]. We
thus trained a Hidden Markov Model (HMM) with the structure shown in Supplementary Figure 1(b)
on the set of common TSSs and applied this model to all putative TSSs, either generated by our
method or present on the reference list, to compute the posterior score for each sequence upstream
of a putative TSS. To train the HMM we applied the Baum-Welch algorithm and to calculate the
probability of each sequence we used the Forward algorithm (see ref.[4] chapter 3). The results are
summarized in Supplementary Figure 2. As is apparent from Supplementary Figure 1(c), the Pribnow
box motif is very clear but the -35 motif is not, in line with the results reported by Sharma et al.
[1]. Nonetheless, the HMM captures the A/T-rich bias of the region upstream of the Pribnow box,
as reported by Sharma et al. [1]. The "TSSer only" category is almost twice the size and more
heterogeneous than the "Reference only" category (Supplementary Figure 1(b)). If we select the 587
TSSs with the highest HMM score (the same number as contained in the "Reference only" data set),
these TSSs are very similar to those in the "Reference only" set (Supplementary Figure 3). This
suggests that TSSer identifies a large number of bona fide TSSs that were not present in the reference.
It further suggests a strategy to refine the TSS list. Namely, one could use the sites with the most clear
5’ and local enrichment to abstract a model of the transcription regulatory signals, and then apply this
model to putative TSSs that are less clear in the expression data to construct a more comprehensive
TSS annotation. We used the HMM posterior score as a measure of the strength of transcriptional
signals. From the putative start sites that had at least one mapped read in at least one of the TEX+

but did not pass our initial criteria for expression or enrichment, we found an additional 1992 that
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had a posterior score at least as high as the average of the "Common" set. These TSSs are listed in
Supplementary Table 8, and they include a further 211 TSSs from "Reference Only" category.

(a)

(b)

(c)

Supplementary Figure 1: (a) DNA elements and RNA polymerase modules that contribute to promoter
recognition by σ70 [3] (b) Structure of the Hidden Markov Model to detect transcription regulatory
signals. In each of ’-35 box’ and ’Pribnow box’ states six nucleotides are emitted according to prob-
abilities which can be summarized in weight matrices associated with these states, and in the other
states only mono-nucleotides are emitted.(c) Illustration of HMM trained on the "Common" set of
TSSs

Supplementary Figure 2: Distribution of sequence scores for each TSS category calculated based on
trained HMM.
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(a)

(b)

Supplementary Figure 3: Properties of TSSs that were present only in the reference list (left panels),
both in the reference and the TSSer list (middle panels), or the top ones from the TSSer only category
(right panels). (a). Box plots representing HMM posterior score distributions for each category.
(b). Sequence logos indicating the position-dependent (5’→3’ direction) frequencies of nucleotides
upstream of the TSS (data sets are shown from top to bottom ("Reference only", "Common", "TSSer
only") rather than from left to right).
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Abstract

Background: In recent years, a variety of small RNAs derived from other RNAs with well-known functions such as
tRNAs and snoRNAs, have been identified. The functional relevance of these RNAs is largely unknown. To gain
insight into the complexity of snoRNA processing and the functional relevance of snoRNA-derived small RNAs, we
sequence long and short RNAs, small RNAs that co-precipitate with the Argonaute 2 protein and RNA fragments
obtained in photoreactive nucleotide-enhanced crosslinking and immunoprecipitation (PAR-CLIP) of core snoRNA-
associated proteins.

Results: Analysis of these data sets reveals that many loci in the human genome reproducibly give rise to C/D
box-like snoRNAs, whose expression and evolutionary conservation are typically less pronounced relative to the
snoRNAs that are currently cataloged. We further find that virtually all C/D box snoRNAs are specifically processed
inside the regions of terminal complementarity, retaining in the mature form only 4-5 nucleotides upstream of the
C box and 2-5 nucleotides downstream of the D box. Sequencing of the total and Argonaute 2-associated
populations of small RNAs reveals that despite their cellular abundance, C/D box-derived small RNAs are not
efficiently incorporated into the Ago2 protein.

Conclusions: We conclude that the human genome encodes a large number of snoRNAs that are processed
along the canonical pathway and expressed at relatively low levels. Generation of snoRNA-derived processing
products with alternative, particularly miRNA-like, functions appears to be uncommon.

Background
Small nucleolar RNAs (snoRNAs) are a specific class of
small non-protein coding RNAs that are best known for
their function as guides of modifications (2’-O-methylation
and pseudouridylation) of other non-protein coding RNAs
such as ribosomal, small nuclear and transfer RNAs
(rRNAs, snRNAs and tRNAs, respectively) [1-3]. Based on
sequence and structural features, snoRNAs are divided
into two classes. C/D box snoRNAs share the consensus C
(RUGAUGA, R = A or G) and D (CUGA) box motifs,
which are brought into close proximity by short regions of
complementarity between the snoRNA 5’ and 3’ ends [4,5]
and are bound by the four core proteins of the small ribo-
nucleoprotein complex (snoRNP), namely 15.5K, NOP56,

NOP58 and Fibrillarin (FBL) [6-8] during snoRNA
maturation. Fibrillarin is the methyltransferase that cata-
lyzes the 2’-O-methylation of the ribose in target RNAs
[9]. Most C/D box snoRNAs also contain additional con-
served C’ and D’ motifs located in the central region of the
snoRNA. The other class of snoRNAs is defined by a dou-
ble-hairpin structure with two single-stranded H (ANA-
NNA, N = A, C, G or U) and ACA box domains [10], and
are therefore called H/ACA box snoRNAs. They associate
with four conserved proteins, Dyskerin (DKC1), Nhp2,
Nop10 and Gar1, to form snoRNPs that are functionally
active in pseudouridylation. Although all four H/ACA pro-
teins are necessary for efficient pseudouridylation [10], it is
Dyskerin that provides the pseudouridine synthase activity
[11]. While H/ACA and C/D box snoRNAs accumulate in
the nucleolus, some snoRNAs reside in the nucleoplasmic
Cajal bodies (CBs) where they guide modifications of
snRNAs [2] and are called small Cajal body-specific RNAs
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(scaRNAs). In addition to the typical H/ACA snoRNA fea-
tures, vertebrate H/ACA box scaRNAs carry a CB localiza-
tion signal called CAB box (UGAG) in the loop of their 5’
and/or 3’ hairpins [12].
Immediately upstream of the D box and/or the D’ box,

C/D box snoRNAs contain 10 to 21 nucleotide-long
antisense elements that are complementary to sites in
their target RNAs [13-15]. The nucleotide in the target
RNA that is complementary to the fifth nucleotide
upstream from the D/D’ box of the snoRNA is targeted
for 2’-O-methylation by the snoRNP [14,15]. H/ACA
box snoRNAs contain two antisense elements termed
pseudouridylation pockets, located in the 5’ and 3’ hair-
pin domains of the snoRNA [16,17]. Substrate uridines
are selected through base-pairing interactions between
the pseudouridylation pocket and target RNA sequences
that flank the targeted uridine.
Deep-sequencing studies revealed a surprising diver-

sity of small RNAs derived from non-coding RNAs
(ncRNAs) known as small derived RNAs (sdRNAs) with
well-established functions such as tRNAs [18,19], Y RNAs
[20], vault RNAs [21], ribosomal RNAs [22], spliceosomal
RNAs [23] and snoRNAs [24-26]. In fact, the profile of
sequenced reads observed for some of these small RNA
species are very characteristic and have even been used for
ncRNA gene finding based on sequencing data [27,28].
The majority of C/D box and H/ACA snoRNAs seems to
be extensively processed, producing stable small RNAs
from the termini of the mature snoRNA [29] and the pro-
cessing pattern is conserved across cell types [30]. Thus, it
appears that snoRNAs are versatile molecules that give
rise to snoRNA-derived miRNAs [24,31], other small
RNAs [25,29] or longer processing fragments [32].
To gain insight into the complexity of snoRNA proces-

sing and the functional relevance of the derived sdRNAs,
we undertook a comprehensive characterization of pro-
ducts generated from snoRNA loci, combining high-
throughput sequencing of long and short RNA fragments
with photoactivatable-ribonucleoside-enhanced cross-
linking and immunoprecipitation (PAR-CLIP) of core
snoRNA-associated proteins and with data from Argo-
naute 2 (Ago2) immunoprecipitation sequencing (IP-seq)
experiments. We found that many loci in the human gen-
ome can give rise to C/D box-like snoRNAs. Among
the novel snoRNAs that we identified are very short
sequences, extending little beyond the C and D boxes,
which are essential for the binding of core snoRNA pro-
teins. Compared to the snoRNAs that are already known,
the novel snoRNA candidates exhibit a lower level of
evolutionary conservation and a lower expression level.
These findings indicate that the C/D box snoRNA struc-
ture evolves relatively easily and that C/D box snoRNA-
like molecules are produced from many more genomic
loci than are currently annotated. We further found that

C/D box snoRNAs are very specifically processed inside
the regions of terminal complementarity, retaining in the
mature form only four to five nucleotides upstream of
the C box and two to five nucleotides downstream of the
D box. Sequencing of the small RNA population as well
as of the small RNAs isolated after Ago2 immunoprecipi-
tation revealed that despite their cellular abundance, C/D
box-derived small RNAs are not efficiently incorporated
into the Ago2 protein. Our extensive data thus indicate
that, contrary to previous suggestions [25,33], snoRNA-
derived small RNAs that carry out non-canonical, parti-
cularly miRNA-like, functions are rare.

Results
PAR-CLIP of C/D box and H/ACA box snoRNP core
proteins identifies their RNA binding partners
To investigate the RNA population comprehensively that
associates with both C/D box and H/ACA box small
nucleolar ribonucleoproteins we performed PAR-CLIP as
previously described [34] with antibodies against the endo-
genous Fibrillarin (FBL), NOP58 and Dyskerin (DKC1)
proteins, in HEK293 cells (for details see Materials and
methods). For NOP56 we used a stable cell line expressing
FLAG-tagged NOP56 and anti-FLAG antibodies. Because
we recently found that the choice of the ribonuclease and
reaction conditions influences the set of binding sites
obtained through cross-linking and immunoprecipitation
(CLIP) [35], we also generated a Fibrillarin PAR-CLIP
library employing partial digestion with micrococcal
nuclease (MNase) instead of RNase T1. PAR-CLIP
libraries were sequenced on Illumina sequencers, mapped
and annotated through the CLIPZ web server [36]. The
obtained libraries were comparable to those from previous
PAR-CLIP studies in terms of size, rates of mapping to
genome and proportion of cross-link-indicative T®C
mutations (Table 1). The DKC1 PAR-CLIP library shows
a lower frequency of T®C mutations compared to all
other libraries, but T®C mutations were still the most
frequent in this library as well (data not shown).
Compared to the libraries that we previously generated

for HuR and Ago2 [35], two proteins whose primary targets
are mRNAs, we found that snoRNAs, rRNAs and snRNAs
were strongly enriched in PAR-CLIP libraries generated for
the snoRNP core proteins (Table 1). The fact that not only
snoRNAs but also the primary targets of snoRNAs, namely
ribosomal RNAs and small nuclear RNAs, are enriched in
these samples suggests that like Ago2 cross-linking, which
captures both miRNAs and their targets [34,35], cross-link-
ing of core snoRNPs efficiently captures both snoRNAs and
targets. To quantify the specificity of our PAR-CLIP
libraries, we intersected the 200 clusters with the highest
read density per nucleotide from each library with curated
snoRNA gene annotations based on snoRNA-LBME-db
[37] (Table 2). Currently, snoRNA-LBME-db lists about
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153 human C/D box snoRNA loci and 108 human H/ACA
box snoRNA loci that are known to be ubiquitously
expressed. For each of the C/D box specific PAR-CLIP
libraries, more than 100 of the top 200 clusters could be
assigned to C/D box snoRNAs indicating the specificity of
our CLIP experiments and the broad coverage of the
snoRNA genes by the sequencing reads obtained from
HEK293 cells. The Dyskerin PAR-CLIP data set showed
a weaker enrichment in snoRNAs compared to the data
sets for the core C/D box-specific proteins, with 57% of all
known H/ACA box snoRNAs being represented among the
200 top-ranking clusters. scaRNAs were detected in both
H/ACA box and C/D box specific libraries, as expected
because many scaRNAs have both C/D box and H/ACA
box elements. Finally, minor fractions of H/ACA box snoR-
NAs were also found in PAR-CLIP libraries of the C/D
box-specific proteins, and vice versa. This could be caused
by the close spatial arrangement of snoRNPs on the target
molecule, or could indicate that H/ACA box snoRNAs
and C/D box snoRNAs guide modifications on each other.

Binding patterns of core proteins on snoRNAs
As mentioned in the introduction, both C/D box and H/
ACA box snoRNAs carry very specific functional sequence
and structure elements, which are recognized by the
snoRNP core proteins. We thus asked whether different
C/D box core proteins have distinct preferences in binding
different regions of the C/D box snoRNAs. Figure 1A
depicts PAR-CLIP read profiles along selected snoRNA
genes (profiles for all scaRNA and snoRNA genes are in
Additional file 1). Both C/D box core proteins as well as
the H/ACA box specific Dyskerin bind to SCARNA6,
which has a hybrid structure composed of both C/D box
and H/ACA box elements. However, while the CLIP reads
from the Fibrillarin, NOP56 and NOP58 samples cover
the C and D box motifs, Dyskerin was preferentially cross-
linked to the H-box motif and to the 5’ end of the first H/
ACA box stem. For the C/D box snoRNAs, different
snoRNA core proteins gave very similar cross-linking pat-
terns (Figure 1B), which we quantified through the corre-
lation coefficient between read densities obtained along

Table 1 Summary of CLIPZ mapping statistics and annotation categories for PAR-CLIP samples.

Feature FBL FBL
(MNase)

NOP56 NOP58
rep A

NOP58
rep B

DKC1 Ago2
rep A

HuR
rep A

Mapping rate 60.47% 73.3% 26.6% 41.4% 46.6% 47.5% 67.9% 72.4%

Library size 3,755,090 7,396,138 2,789,209 3,678,032 3,798,895 7,727,966 5,899,130 5,491,479

T®C mutations among all observed
mutations

64.8% 57.7% 48.6% 67.9% 73.0% 19.7% 55.8% 58.8%

snoRNAs 33.79% 31.55% 29.95% 39.05% 44.10% 13.13% 0.18% 0.01%

snRNAs 20.87% 33.17% 15.45% 22.36% 25.60% 10.18% 0.28% 0.02%

rRNAs 18.64% 13.83% 8.12% 7.42% 7.16% 15.53% 1.07% 0.17%

mRNAs 14.47% 11.61% 22.27% 19.42% 15.14% 17.40% 50.07% 47.87%

Repeats 6.42% 1.60% 15.51% 6.08% 3.36% 18.39% 11.29% 42.08%

tRNAs 1.57% 2.67% 2.44% 0.99% 0.57% 5.10% 0.75% 0.14%

miRNAs 0.07% 0.18% 0.02% 0.01% 0.01% 0.05% 20.41% 00.00%

Other Categories 2.74% 3.66% 3.01% 2.98% 2.78% 2.80% 3.86% 1.99%

No annotation 1.43% 1.74% 3.21% 1.69% 1.27% 17.43% 12.10% 7.71%

Ago2: Argonaute 2; DKC1: Dyskerin; FBL: Fibrillarin; miRNA: micro RNA; MNase: micrococcal nuclease; PAR-CLIP: photoactivatable-ribonucleoside-enhanced
cross-linking and immunoprecipitation; rRNA: ribosomal RNA; snoRNA: small nucleolar RNA; snRNA: small nuclear RNA; tRNA: transfer RNA

Table 2 Annotation summary of the top 200 clusters inferred from PAR-CLIP experiments with snoRNA core proteins.

PAR-CLIP library C/D box snoRNAs H/ACA box snoRNAs scaRNAs mRNA exons Other

FBL 123 (61.5%) 9 (4.5%) 10 (5.0%) 5 (2.5%) 53 (26.5%)

FBL (MNase) 106 (53.0%) 16 (8.0%) 10 (5.0%) 26 (13.0%) 42 (21.0%)

NOP56 115 (57.5%) 28 (14.0%) 15 (7.5%) 2 (1.0%) 40 (20.0%)

NOP58 rep A 114 (57.0%) 14 (7.0%) 10 (5.0%) 9 (4.5%) 52 (26.0%)

NOP58 rep B 125 (62.5%) 4 (2.0%) 10 (5.0%) 9 (4.5%) 52 (26.0%)

DKC1 11 (5.5%) 62 (32.0%) 18 (9.0%) 7 (3.5%) 102 (51.0%)

Ago2 rep A 0 (0.0%) 0 (0.0%) 1 (0.5%) 59 (29.5%) 140 (70.0%)

HuR rep A 0 (0.0%) 0 (0.0%) 0 (0.0%) 117 (58.5%) 83 (41.5%)

Ago2: Argonaute 2; DKC1: Dyskerin; FBL: Fibrillarin; MNase: micrococcal nuclease; PAR-CLIP: photoactivatable-ribonucleoside-enhanced cross-linking and
immunoprecipitation; scaRNA: small Cajal body-specific RNA; snoRNA: small nucleolar RNA;
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Figure 1 Summary of PAR-CLIP data of snoRNP core proteins. (A) Profiles of sequencing reads obtained from PAR-CLIP experiments for selected
snoRNAs. Black bars in the profiles indicate the number of T®C mutations observed in PAR-CLIP reads at a particular nucleotide. (B) Similarity of
binding profiles of core proteins that associate with C/D box snoRNAs. (C) Comparison of protein binding profiles as inferred from RNase T1-treated
and MNase-treated PAR-CLIP samples. (D, E) Preferential binding of Fibrillarin to box elements as inferred from PAR-CLIP samples prepared with T1 (D)
and MNase ribonucleases (E). (F) Comparison of binding preferences at D’/D box elements and guide regions for snoRNAs with and without a known
target. (G) Analysis of binding preferences of Dyskerin for H/ACA box snoRNA-specific elements. D, E, F and G show the cumulative distributions of
CLIP read coverage z-scores for nucleotides located in various regions of the snoRNA relative to the overall coverage of the snoRNA. CLIP: cross-linking
and immunoprecipitation; MNase: micrococcal nuclease; PAR-CLIP: photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation;
snoRNA: small nucleolar RNA; snoRNP: small nucleolar ribonucleoprotein.
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individual snoRNAs in pairs of samples. Comparing
NOP58 to Fibrillarin and NOP56 we found that 109 (78%)
and 111 (80%) snoRNA genes had a correlation coefficient
of at least 0.9. To put this in perspective, between biologi-
cal replicates of NOP58, 130 out of 139 snoRNAs investi-
gated have a correlation coefficient of at least 0.9. This
indicates that Fibrillarin, NOP56 and NOP58 form a tight
complex that contacts the snoRNA. As noticed before,
however [35], the nuclease treatment has a strong influence
on the relative number of tags obtained from different
positions along a snoRNA (Figure 1C). Only 19 snoRNA
genes (14%) show a correlation ≥ 0.90 in their tag profiles
obtained with RNase T1- and MNase-treated Fibrillarin
PAR-CLIP samples, reflecting the fact that T1 nuclease is
more efficient and generates a more biased position-depen-
dent distribution of reads than MNase (Figure 1A). Figures
1D and Figure 1E summarize these results, showing that
nucleotides in D’ boxes are most frequently cross-linked,
followed by nucleotides in the C’ and C boxes, and then by
nucleotides in the D box and in the rest of the snoRNA.
MNase treatment in particular results in very poor cover-
age of the D box. On the other hand, we observed gene-
specific differences in the binding of the core proteins. For
example, SNORD20 only shows a peak of CLIP reads at
the D box, SNORD30 only at the C box, while SNORD76
has peaks at both C and D boxes (Figure 1A).
We further asked whether the binding pattern of Fibril-

larin reflected in the abundance of CLIP reads differs
between guide regions of the snoRNAs that have a target
annotated in snoRNA-LBME-db and orphan guide
regions. For guide regions, we took the nine nucleotides
upstream of the D and D’ boxes and as a reference we
compared the coverage of the D and D’ boxes themselves
(Figure 1F). We found that guide regions with a known
target and their associated D/D’ boxes generally have a
higher coverage compared to those that are orphan (70%
compared to 40% positive z-scores of the average coverage
per position in the guide region relative to the entire
snoRNA, Figure 1G). This could indicate that the binding
to the target renders the snoRNA-core protein complex
more accessible to cross-linking.
For H/ACA box snoRNAs we found that Dyskerin

strongly prefers the H box nucleotides (Figure 1G), which
in 70% of the snoRNAs have a positive z-score for cover-
age compared to the entire snoRNA. This is expected
because these snoRNAs are highly structured, with most
nucleotides being engaged in base pairs in the two hairpin
stems and a few nucleotides are free to interact with the
proteins.

Identification of novel snoRNA genes from PAR-CLIP and
small RNA sequencing
We screened the top 500 clusters from each PAR-CLIP
library that did not overlap with known ncRNAs, mRNAs

or repeat elements for potentially novel snoRNA genes.
To identify H/ACA box genes we employed the SnoRe-
port program [38], while for C/D box snoRNA detection
we applied a custom approach searching for a C box motif
(RUGAUGA, R = A or G; allowing one mismatch) at the
5’ end and a D box motif (MUGA, M = A or C) at the 3’
end, requiring that a terminal stem of at least four canoni-
cal base pairs can be formed by the nucleotides flanking
the C and D boxes. We combined these computational
screens with isolation and sequencing of the 20 to 200
nucleotide RNA fraction from HEK293 cells, which pro-
vides evidence for expression of the predicted snoRNAs.
Requiring a minimal average coverage per nucleotide of at
least 1 tag per million (TPM) in least one type-specific
CLIP library as well as in the small RNA-seq library, we
identified 77 and 20 putative C/D and H/ACA box snoR-
NAs, respectively (Additional files 2 and 3). We addition-
ally screened 14 distinct small RNA sequence libraries
from the recently released ENCODE data [39] and found
that more than 75% of our putative C/D box snoRNAs
were detected in at least one cell type other than HEK293
(see Additional file 4). We further tested the expression of
the 20 most abundantly sequenced candidate snoRNAs by
Northern blotting (see Additional file 5). Nine of the
twenty candidates were also detectable in this assay, while
an additional nine C/D box snoRNAs are supported by
the ENCODE data (see Additional file 4).
To determine whether the candidates we identified as

described are entirely novel snoRNA genes or so far unde-
scribed homologs of known snoRNAs, we performed a
BLAST search against the snoRNA genes from snoRNA-
LBME-db (requiring an E-value ≤ 10-3). We further com-
pared the loci of the putative snoRNAs with the snoRNA
annotation available in ENSEMBL release 65 [40], which is
based on automatic annotation with sequence/structure
models available in the Rfam database [41]. Out of the 20
H/ACA box snoRNA candidates, 18 show sequence or
structural homology to known snoRNAs, while candidates
ZL4 (annotated as nc053 in [42], but not classified as a
snoRNA by the authors) and ZL36 appear to be novel
H/ACA box snoRNAs without a known homolog.
The homology search additionally revealed that ZL4 is
conserved until Xenopus tropicalis.
Of the 77 C/D box snoRNAs, only seven showed

sequence homology to known C/D box snoRNA genes,
but in one case (ZL1) the homology consisted solely of a
long GU-rich region. The evolutionary conservation of
the guide regions of five of these snoRNAs (ZL11, ZL109,
ZL126, ZL127 and ZL132) suggests that they target the
same nucleotides on ribosomal RNA as their homologs.
A sixth snoRNA, ZL142, appears to be a human homolog
of the GGN68 snoRNA of chickens [43,44]. An additional
comparison with the results of another large snoRNA
analysis [45], revealed that ZL2 and ZL107 have been
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previously described as SNORD41B and Z39, respectively.
In order to further characterize the 69 potentially novel
C/D box snoRNAs (including ZL1, which only had homol-
ogy with a known snoRNA in a GU-rich region), we first
asked whether their C and D boxes are evolutionarily con-
served (Additional file 1). To this end, we computed their
average position-wise phastCons scores [46], which we
obtained from the UCSC genome browser. Five candidates
including ZL1 showed an average phastCons score per
nucleotide higher than 0.25 for C and D box nucleotides.
A comprehensive homology search of vertebrate genomes
allowed us to trace the evolutionary origin of these snoR-
NAs and to annotate C’ and D’ boxes as well as putative
guide regions based on sequence conservation. ZL1 is
highly conserved in vertebrates including Petromyzon
marinus, while for ZL5, ZL6, ZL8 and ZL24 we were not
able to retrieve any homologs outside of mammals.
The remaining C/D box snoRNAs show overall weak

conservation in mammals and in primates (Additional
file 1). The C’ and D’ box elements of these snoRNAs,
which are typically more variable in sequence, were parti-
cularly difficult to annotate without supporting evidence
from evolutionary conservation. Because it is not clear
that these snoRNAs have a C-D’-C’-D box architecture,
we refer to them as C/D box-like. The small RNA
sequence data indicates that these C/D box-like snoRNAs
are only weakly expressed (Additional file 6). Interest-
ingly, while the shortest C/D box snoRNA that has been
characterized so far is SNORD49B, which has 48 nucleo-
tides, 23 of our C/D box-like snoRNAs are even shorter.
Figure 2 depicts PAR-CLIP tags and small RNA-seq
reads for four of these snoRNAs which we called mini-
snoRNAs. ZL77 is among the shortest, with 27 nucleotides
in length, and only 7 nucleotides available as a potential
guide region between the C and D boxes, while ZL49 and

ZL103 are slightly longer (14 and 15 nucleotides between
the C and D boxes). Another mini-snoRNA, ZL63, gener-
ated a considerable number of reads in all the CLIP
libraries as well as in the RNA sequence data.
Our screen could further identify a snoRNA with mixed
C/D box and H/ACA box structure. SCARNA21, a com-
putationally predicted H/ACA box snoRNA [47], is sur-
rounded by conserved C and D box elements enclosed by
a terminal stem structure (Additional file 7). Northern
blot analysis revealed that the prevalent form in the cells is
the one that contains the C/D box elements and not the
short form, which would be the single H/ACA box
snoRNA.

Target prediction for newly identified snoRNA genes
To gain insight into the function of the novel snoRNAs
that we identified, we sought to determine whether they
have canonical targets. We employed the programs
RNAsnoop and PLEXY to predict targets of H/ACA box
and C/D box snoRNAs, respectively [48,49]. As potential
target sequences we considered ribosomal and spliceoso-
mal RNAs obtained from snoRNA-LBME-db. Indeed, for
the highly conserved C/D box snoRNAs ZL1, ZL5 and
ZL6 (which share the guide region), as well as for the
H/ACA box snoRNA ZL4, we could identify canonical
targets (Figure 3). ZL1 and ZL4 are both predicted to
guide modifications on the U2 snRNA, 2’-O-methylation
of U47 and pseudouridylation of U15, respectively. The
pseudouridylation of U2 snRNA at U15 has already been
described, but the guiding snoRNA was not known [50].
With primer extension assays we could further validate
the U47 modification (see Additional File 8). SnRNA
modifications are known to occur in Cajal bodies. Con-
sistent with ZL4 H/ACA box snoRNA being a scaRNA
that is recruited to Cajal bodies, is the presence of the

Figure 2 Small RNA-seq and PAR-CLIP reads mapping to mini-snoRNAs. Mini-snoRNAs ZL77, ZL49, ZL103 and ZL63 are shown. Black bars in
the panels corresponding to PAR-CLIP libraries indicate the number of T®C mutations observed at individual nucleotides. CLIP: cross-linking and
immunoprecipitation; PAR-CLIP: photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation; snoRNA: small nucleolar RNA.
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CAB box motif (UGAG), known to mediate this trans-
port [12], in the hairpin loops. For the C/D box snoRNA
ZL1 targeting U2 snRNA we could not identify an
H/ACA box-like structural domain with a CAB box.
Interestingly, however, this snoRNA candidate contains a
long GU repeat, a feature shared by SCARNA9, the only
Cajal body-associated snoRNA that lacks H/ACA and
CAB boxes. This suggests that the GU element serves as
an import signal into Cajal bodies. For ZL5/6, the pre-
dicted modification site on the 28S rRNA is in fact a
known modification site for which the guide was so far
unknown. We could not predict a target for the newly
identified C/D box domain of SCARNA21.
We were especially interested to find out whether the

non-conserved C/D box-like snoRNAs and in particular
the mini-snoRNAs, could guide 2’-O-methylations. To this
end, we took a simple approach searching for 8-mer
Watson-Crick complementarity between the putative
guide regions upstream of the D boxes to ribosomal and
spliceosomal RNAs. We did indeed identify seven putative
interaction sites, but none of these are known modification
sites (Additional file 2). Thus, the targets of these C/D
box-like snoRNAs remain to be identified.

Non-canonical RNA partners of core snoRNA proteins
Although snoRNAs are best known for guiding modifica-
tions of rRNAs, snRNAs and tRNAs [1-3], some evidence
has emerged for the involvement of full-length mature
snoRNAs also in other biological processes such as alter-
native splicing [51]. To investigate this possibility, we
searched our PAR-CLIP data sets for RNAs that were
abundantly cross-linked, yet not known to associate with
the core snoRNA proteins. In contrast to the HuR PAR-
CLIP that we performed before [35], the PAR-CLIP
experiments conducted with C/D box snoRNP core pro-
teins repeatedly identified several non-coding RNAs
including vault RNA 1-2, 7SK RNA and 7SL RNA as well
as H/ACA box snoRNAs. Similarly, in the Dyskerin
PAR-CLIP we observed cross-linking of several C/D box
snoRNAs.

We performed primer extension experiments to deter-
mine potential sites for 2’-O-methyl and pseudouridine
modification in prominent ncRNAs such as 7SK RNA,
7SL RNA and vault RNA 1-2 (see Additional file 9 for pri-
mer extension assays and Additional file 10 for a catalog
of identified modifications sites and target predictions).
Indeed, we found that all three of these RNA species carry
modifications. Vault RNA 1-2 contains four 2’-O-methyl
sites, 7SK RNA carries at least six 2’-O-methyl sites and
one pseudouridylation site, and 7SL RNA contains several
sites of pseudouridylation. Additionally, we sought to
determine whether C/D box and H/ACA box snoRNAs
guide modifications on each other. We thus performed 2’-
O-methylation primer extension assays on SNORA61 and
pseudouridylation assays on SNORD16 and SNORD35A.
We found that SNORA61 potentially carries one 2’-O-
methylation, while SNORD16 and SNORD35A carry two
and six pseudouridylated residues, respectively. To identify
C/D box snoRNAs that could guide the observed 2’-O-
methylations, we searched for 8-mer complementarity
upstream of D and D’ boxes of C/D box and C/D box-like
snoRNAs, but we did not find sequences complementary
to the modification sites. To predict guiding H/ACA box
snoRNAs we employed the program RNAsnoop using
stringent filtering criteria. We identified potential guiding
H/ACA box snoRNAs for 7SK RNA residue Ψ250 and
7SL RNA residue Ψ226.
Previous studies reported that snoRNAs may function in

alternative splicing [32,51] and we also repeatedly observed
cross-linking of C/D box core proteins to regions that are
annotated as exons of protein coding genes. To determine
whether these mRNA regions are targeted by snoRNAs, we
selected, from the top 1,000 clusters located in mRNA
exons in NOP58 libraries, the 157 that were present in
both NOP58 replicates and a third CLIP library with at
least 10 TPM per nucleotide (Additional file 11). We iden-
tified complementarities to the 8-mer guide regions of
snoRNAs in 79 of these clusters. In contrast, in shuffled
CLIPed regions we only found 60 complementarities to
snoRNA guide regions (average of 100 simulations on

Figure 3 Predicted structure of hybrids between novel snoRNAs and target RNAs. The snoRNAs are given at the top of each panel
together with the symbol of the host gene in which the snoRNA resides (in parentheses). The targets are indicated at the bottom of the panels.
rRNA: ribosomal RNA; snoRNA: small nucleolar RNA; snRNA: small nuclear RNA
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shuffled sequences). Thus, the mRNA sequences that we
isolated in the CLIP experiments are consistent with the
possibility that snoRNAs act as guides in some steps of
mRNA processing.

snoRNA processing patterns
It has become apparent that many ncRNAs such as
tRNAs, snRNAs, rRNAs and snoRNAs are extensively
processed into small, stable RNA fragments originating
mainly from the termini of the mature ncRNA [29],
which in some cases are incorporated in the Argonaute
proteins to function as microRNAs [24]. To identify
snoRNA-derived small RNAs that could potentially act
as miRNAs comprehensively, we isolated and sequenced
the RNA fraction of 18 to 30 nucleotides from HEK293
cells. Small RNAs derived from C/D box snoRNAs con-
stitute about 1.7% of the small RNA pool in this size
range in HEK293 cells (Table 3). Consistent with the
results of Li and colleagues [29], we found that most of
the 513,339 reads overlapping with C/D box snoRNA
genes originate from the 5’ or 3’ ends (38.7% and 46.0%,
respectively). Visual inspection of the alignment of these
reads to the snoRNAs revealed, however, that start and
end positions of the reads do not generally coincide
with the annotated snoRNA termini, which were
inferred based on the characteristic C/D box snoRNA
terminal stem (Figure 4A). Instead, the reads that we
obtained indicate specific trimming that generates sharp
5’ ends for 5’-end-derived reads and sharp 3’ ends for
3’-end-derived reads. To determine whether this trim-
ming may occur in the process of generating small
RNAs from mature C/D box snoRNAs, we isolated
small RNAs of length 20 to 200 nucleotides that pre-
sumably included the full-length, mature snoRNAs
(average C/D box snoRNA length is 70 to 90 nucleo-
tides) and performed a 150-cycle sequencing run. Figure
4A depicts the alignment of reads obtained in the small
RNA fraction and the reads obtained in the 150-cycle
sequencing run for three selected C/D box snoRNAs.
Strikingly, the sharp ends of C/D box snoRNA-derived

small RNAs coincide with the 5’ and 3’ ends of the
mature form. More generally, we found that for 84% and
70% of the top 50 expressed C/D box snoRNAs, the most
prominent start and end positions, respectively, obtained
from long sequencing reads coincided with the most pro-
minent start and end positions obtained from small RNA
sequencing. This suggests that the observed trimming of
the terminal closing stem occurs during the excision of
the snoRNA from the intron and is not specific to the
processing of the mature snoRNA form into smaller frag-
ments. Furthermore, we found that it is the distance to
the C or D boxes that seems to determine the observed
ends of the snoRNAs rather than the length of the term-
inal closing stem (Figure 4B). The 5’ end is sharply
defined four to five nucleotides upstream of the C box,
while the 3’ end is more variably located two to five
nucleotides downstream of the D box. In most cases this
will leave mature C/D box snoRNAs with a terminal 5’
overhang compared to the 3’ end. This suggests that,
similar to other small RNAs [52,53], snoRNAs are
trimmed presumably by exonucleases, to boundaries that
are determined by the proteins with which these small
RNAs are complexed.
Small RNAs derived from C/D box snoRNA termini

appear to be abundant in the cells, and can be incorpo-
rated into Argonaute proteins to act as miRNAs [31]. To
determine the relative participation of various small RNA
classes in the Argonaute-dependent gene silencing, we
immunopurified Ago2 from HeLa cells and sequenced
the associated small RNA fraction. We found that, as
expected, miRNAs constitute the most abundant RNA
class that associates with Ago2 (approximately 90%),
while C/D box snoRNAs account only for 0.005% of the
IP-seq reads (Table 3). Assuming that overall proportions
of small RNAs derived from tRNAs and snoRNAs are
fairly constant across cell types, we can estimate the effi-
ciency with which small RNAs (from the total small RNA
pool) are incorporated in the Argonaute proteins. We
found, for example, that although small RNAs derived
from tRNAs are 5.6 times more abundant than C/D box

Table 3 Functional annotation of sequencing reads obtained in sRNA sequencing and HeLa Ago2 IP sequencing.

RNA class HEK293 sRNA sequencing (18 to
30 nucleotides)

HeLa Ago2 immunoprecipitation sequencing
(asynchronous cells)

HeLa Ago2 immunoprecipitation
sequencing (mitotic cells)

microRNAs 18.304% 89.750% 82.237%

tRNAs 9.694% 0.204% 0.298%

snRNAs 5.275% 0.029% 0.071%

C/D box
snoRNAs

1.751% 0.005% 0.054%

H/ACA box
snoRNAs

0.318% 0.026% 0.046%

No
annotation

64.658% 9.985% 17.293%

Ago2: Argonaute 2; IP: immunoprecipitation; snRNA: small nuclear RNA; snoRNA: small nucleolar RNA; sRNA: small RNA; tRNA: transfer RNA
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derived snoRNAs, tRNA fragments are 40 times more
abundant in the Ago2-associated fraction. Thus, tRNA-
derived small RNAs appear to be more efficiently incor-
porated in Ago2 than C/D box snoRNA fragments. This

is consistent with observations that tRNAs are cleaved by
nucleases such as Angiogenin and even Dicer to generate
processing fragments that are active in translation regula-
tion [54,55]. Similarly, small RNAs derived from H/ACA

Figure 4 Terminal processing of C/D box snoRNAs. (A) Profiles of sequencing reads obtained from two small RNA seq libraries for three
selected C/D box snoRNAs (SNORD8, SNORD21 and SNORD29). Upper: sdRNA sequencing, 18 to 30 nucleotides. Lower: sRNA sequencing, 20 to
200 nucleotides. Secondary structure annotation of the terminal closing stem is given on the top of the figure, while the locations of C and D
motifs are shown on the bottom. (B) Detailed analysis of terminal stem processing for C/D box snoRNA expressed in HEK293 cells. The y-axis
indicates individual nucleotides, with their specific identity for the nucleotides in C/D boxes and position relative to the boxes for the flanking
nucleotides. Each column corresponds to a snoRNA, whose identity is shown at the top of the panel. Grey boxes indicate nucleotides that are
predicted to be paired in the terminal stem. The size of black boxes is proportional to the number of sRNA sequencing reads that start (5’ end)
or end (3’ end) at a particular nucleotide. See Additional File 16 for analysis of all C/D box snoRNAs expressed in HEK293 cells. sdRNA: small
derived RNA; snoRNA: small nucleolar RNA; sRNA: small RNA
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box snoRNAs are 5.5 times less abundant than small
RNAs derived from C/D box snoRNAs in the total RNA
fraction, but are 5.2 times more efficiently picked up by
Ago2. The H/ACA box snoRNA SCARNA15, which has
been shown to be processed into smaller fragments that
act as microRNAs [24], is represented in this library with
3,636 reads, 29% of all reads mapped to H/ACA box
snoRNA loci (see Additional file 12 for a full listing of all
snoRNAs). The C/D box snoRNA with the highest num-
ber of reads in the Ago2 IP library is SNORD1A with
1,140 reads, but the majority of C/D box snoRNAs are
represented by less than 50 reads.
Of all categories of small RNAs, C/D box snoRNA

fragments are those that show the strongest nuclear
retention, and are found in the cytoplasm with only low
frequency [56]. Thus, this physical separation could
account for the low frequency of association between C/
D box snoRNA-derived RNAs and Ago2. We therefore
wondered whether the association of this abundant class
of RNA fragments with Ago2 increases in the mitotic
phase of the cell cycle, when the nuclear membrane is
dissolved. We collected HeLa cells that were in the
mitotic phase through mitotic shake off, immunopuri-
fied Ago2 and again sequenced the Ago2-associated
small RNA fraction. We found that, indeed, the relative
abundance of C/D box-derived fragments in Argonaute
increased in this condition (Table 3), to 0.054% relative
to 0.005%. Nonetheless, these results indicate that C/D
box snoRNAs do not generally carry out miRNA-like
functions, and that the number of H/ACA box snoRNAs
with a dual function is very limited.

Discussion
To gain insight into the processing of snoRNAs and the
functions of snoRNA-derived small RNAs, we performed
PAR-CLIP experiments with snoRNP core proteins. Ana-
lysis of PAR-CLIP reads showed that C/D box core pro-
teins Fibrillarin, NOP56 and NOP58 have a very similar
binding pattern, overlapping with the box elements.
Excluding snoRNA families SNORD113 to SNORD116,
which are multi-copy families and do not have guide
complementarity to rRNAs or snRNAs, snoRNA-LBME-
db currently lists 153 C/D box snoRNAs, of which 40
and 78 have a guide region targeting a known modifica-
tion at the D box and D’ box, respectively. Evolutionary
conservation profiles of the remaining putative guide
regions suggest that most of them are not functional. In
support of this concept, our analysis revealed that C/D
box core proteins cross-linked more effectively to guide
regions that are known to have a target compared to
orphan guide regions.
Combining computational prediction with data from

small RNA sequencing and PAR-CLIP we identified novel
C/D and H/ACA box snoRNAs, and assigned guiding

snoRNAs to several modifications on rRNAs and snRNAs
that were previously described as orphans. In addition to
these bona fide snoRNAs, we uncovered a group of C/D
box-like snoRNAs that only have a C and a D box as
opposed to the common C-D’-C’-D architecture. These
C/D box-like snoRNAs are only weakly conserved and
most of them are expressed at low levels. The unusual
architecture and the weak evolutionary conservation are
likely reasons why these RNA species have not been uncov-
ered by computational ncRNA gene finders [57]. Some of
the identified C/D box-like snoRNAs are extremely short,
one being only 27 nucleotides in length, leaving hardly
enough space for a guide region. The requirements for C/D
box snoRNA biogenesis appear to be simply the presence
of C and D boxes and a short region of complementarity
flanking these boxes, leading probably to the production of
many snoRNA-like molecules as the C/D box core proteins
scan intronic regions of pre-mRNAs. An interesting lead to
follow in further investigating the potential function of the
C/D box-like snoRNAs originating in the introns of many
genes comes from a recent study conducted in Drosophila,
in which Schubert and colleagues showed that snoRNAs
are required for maintenance of higher-order structures of
chromatin accessibility [58].
In our PAR-CLIP experiments we also repeatedly cross-

linked ncRNAs that are not usual snoRNA targets. We
observed H/ACA box snoRNAs in PAR-CLIP experiments
targeting the C/D box core proteins. Vice versa, we found
C/D box snoRNAs in the PAR-CLIP targeting Dyskerin,
which is an essential component of H/ACA box snoRNPs.
Primer extension assays indicated that these snoRNAs
carry modifications that would be expected from the pro-
tein complexes to which they were cross-linked, but we
were, in general, not able to identify snoRNAs that could
guide these modifications. One drawback may be that in
the case of the 2’-O-methyl primer extension assays we
cannot be sure that it was indeed a 2’-O-methyl modifica-
tion as opposed to any other nucleoside modification that
caused the stoppage of the reverse transcriptase. However,
we can be fairly certain that we identified bona fide pseu-
douridylation sites. Particularly, in the case of SNORD35A
we were able to identify five putative pseudouridylated
residues but no convincing guiding sequence in a known
H/ACA box snoRNA. This suggests either that even more
snoRNAs remain to be identified or that these pseudouri-
dylations are caused by a protein-only mechanism not
requiring guidance by H/ACA box snoRNAs.
The processing patterns of snoRNAs have raised sub-

stantial interest and some controversy in recent years
[30,32,59]. We strikingly found that snoRNA excision
out of the intron follows a well-defined pattern leaving
mature snoRNAs with four to five nucleotides upstream
of the C box, and two to five nucleotides downstream of
the D box, irrespective of the length of the terminal
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closing stem. Our data support the observations of Darzacq
and Kiss [5] that the terminal stem serves to bring the
C and D box elements into close proximity so as to be
more easily recognized by snoRNP proteins, which then
protect the snoRNA from further trimming by the exo-
some, but may not be needed for the functional, mature
snoRNA. This implies that the core proteins actively pro-
tect and stabilize the maturing snoRNA.
We further quantified the abundance of snoRNA-

derived small RNAs in HEK293 cells, and consistent with
other studies [29], we found that small RNAs derived from
the ends of C/D box snoRNAs are indeed abundant.
However, we did not find evidence that these sdRNAs effi-
ciently associate with Ago2 to act as microRNAs, even in
conditions when the accessibility of these sdRNAs to
Ago2 should be higher, such as in mitotic cells. We thus
conclude that a microRNA-like function of snoRNA-
derived small RNAs is an exception rather than a rule.
Most of the sdRNAs from C/D box snoRNAs originate
from the termini of mature snoRNAs, and hence carry C
and D box motifs. It might be that snoRNA core proteins
are still attached to these fragments, protect them from
total degradation, sequester them in the nucleus and
prevent these sdRNAs from being loaded into Ago2.
Deep-sequencing-based studies revealed a very complex

landscape of transcription and processing of RNAs. The
non-canonical products identified initially in such studies
raises the question of additional, yet unknown, functions
of molecules that have been studied for many years. What
has become apparent more recently, however, is that deep
sequencing allows us to construct a very detailed picture
of the kinetics of processing various classes of RNAs and
of their interactions with proteins that protect them from
degradation. Intersection of many data sets such as those
generated in our study will eventually reveal kinetic and
regulatory aspects of cellular processes at a fine level of
detail.

Materials and methods
PAR-CLIP experiments
PAR-CLIP was performed with HEK293 Flp-In cells
(Invitrogen). Cells were grown in thirty 15-cm cell culture
plates per experiment to approximately 80% confluency.
At 12 h before harvest, 4-thiouridine (Sigma) was added to
the cells to a final concentration of 100 µM. PAR-CLIP
was carried out as described previously [34]. For immuno-
precipitation, antibodies were coupled to protein-A or
protein-G Dynabeads (Invitrogen). Antibodies used against
endogenous proteins were a-NOP58 (sc-23705 from
Santa Cruz Biotechnology), a-Dyskerin H-300 (sc-48794,
Santa Cruz Biotechnology), a-Dyskerin C-15 (sc-26982,
Santa Cruz Biotechnology) and a-Fibrillarin AFB01 mono-
clonal antibody line 72B9, lot 011 (from Cytoskeleton,
Inc, AFB01). The a-Ago2 (11A9) monoclonal antibody

was a gift from Gunter Meister. For PAR-CLIP with
NOP56 we used a HEK293 cell line with a stably inte-
grated FLAG-NOP56 fusion gene and IP was done with
monoclonal a-FLAG antibody M2 from Sigma. For one
Fibrillarin targeted PAR-CLIP the immunoprecipitated
complexes were treated with micrococcal nuclease
(MNase, from New England Biolabs) for 5 min at 37°C
[35]. After SDS-PAGE, gels were blotted onto nitrocellu-
lose membranes to reduce the background from free
RNAs [60]. The PAR-CLIP libraries were prepared as
described in Additional file 13 and submitted to deep
sequencing on an Illumina HiSeq 2000.
The reads obtained from PAR-CLIP experiments were

mapped to the human genome (hg19 assembly from
UCSC, February 2009) and annotated with the CLIPZ ser-
ver [36]. Reads marked with the CLIPZ annotation cate-
gories ‘fungal’, ‘bacterial,’ or ‘vector’ were discarded and
only reads that mapped uniquely to the genome were used
in the analyses. The library size was scaled to 1,000,000 for
all samples to obtain a normalized expression value
(tags per million).

Small RNA sequencing
Small RNA sequencing libraries were prepared from size-
selected RNAs of 18 to 30 nucleotides (sdRNA sequen-
cing) and 20 to 200 nucleotides (sRNA sequencing).
HEK293 total RNA was extracted and treated with DNase.
Next, 20 units of T4 polynucleotide kinase and 2 µl of
[g-32P] ATP (10 µCi/µl) were used to radiolabel 10 µg of
RNA at the 5’-ends. The RNA was separated together with
a radiolabeled 20-nucleotide ladder on a 12% polyacryla-
mide gel, the bands corresponding to 18 to 30 nucleotides
(for sdRNA sequencing libraries) or 20 to 200 nucleotides
(for sRNA sequencing libraries) were excised, the RNA
was extracted overnight in a 0.4-M NaCl solution and
finally precipitated with ethanol. Small RNA libraries were
prepared according to a published protocol [61] and
sequenced on an Illumina HiSeq 2000 instrument, for 36
(sdRNA sequencing) and 150 cycles (sRNA sequenicng
library). Adaptor removal was done with the CLIPZ server,
and the mapping to the human genome was then done
with the Segemehl software (v. 0.1.3) with parameters ‘-D
1 -A 90’ [62]. The Gene Expression Omnibus (GEO)
accession number for the PAR-CLIP and sRNA-seq data
is GSE43666.

Identification of novel C/D snoRNAs and H/ACA snoRNAs
from PAR-CLIP and small RNA sequencing data
For each PAR-CLIP library we inferred binding regions
of the proteins of interest by clustering reads whose cor-
responding loci were at most 25 nucleotides apart. To
annotate known snoRNA and scaRNA genes we first
retrieved sequences from the snoRNA-LBME-db [37],
mapped them to the human genome (a list of motif and
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secondary structure annotated snoRNAs is available in
Additional file 13). The 500 binding regions that accumu-
lated the highest number of reads in each individual CLIP
library, but did not overlap with known snoRNA or
scaRNA genes, ncRNA genes or repeat elements, were
screened for novel snoRNA candidates. We used SnoRe-
port [38] to detect H/ACA box snoRNAs, while for detec-
tion of C/D box snoRNAs we searched for protein-
binding regions that contained motifs corresponding to
the C box (RTGATGA; allowing one mismatch) and to
the two most common D box motifs (CTGA and ATGA).
Sequences that contained both a C box and a D box motif
were extended by ten nucleotides in order to search for a
terminal closing stem. If a compact closing stem com-
posed of at least four canonical base pairs with at least two
G-C/C-G base pairs was found, the sequence was consid-
ered a snoRNA candidate. To evaluate the specificity of
our C/D box snoRNA gene finding approach, we applied
the same procedure to two types of clusters of PAR-CLIP
reads from the NOP58 rep A sample both extended by 25
nucleotides on each side. First were the top 100 clusters
(defined in terms of the number of reads associated with
the cluster) that overlapped with C/D box snoRNA anno-
tation, which served as a positive control. In this set, our
program reported 80 sequences as putative snoRNAs. The
second type of cluster contained the top 100 clusters that
overlap with mRNA exon annotation. These should not
contain snoRNAs, and indeed, we only obtained five puta-
tive C/D box snoRNAs candidates. Similarly low numbers
of snoRNA candidates were obtained from randomized
sequences (not shown). Altogether, these tests indicated
that our method has very good specificity. In contrast,
the number of predictions we obtained from CLIPed
clusters without a known annotation was 11 for the top
100 such clusters.
Candidates that showed expression of at least 1 TPM

per nucleotide in the 20 to 200 nucleotides small RNA
sequencing run (only uniquely mapped reads that covered
at least 50% of the candidate snoRNA sequence were con-
sidered), and had at least 1 TPM per nucleotide in at least
one of the type-specific CLIP libraries were considered
putative snoRNAs. They were consecutively numbered,
and named as ‘ZL#’. To further validate the newly found
snoRNAs, we searched for evidence of expression in
recently published small RNA-seq libraries from the
ENCODE project [39]. Files with the genome coordinates
of mapped reads (BAM files) were obtained from the
ENCODE data coordination center at UCSC [63] and
uniquely mapping reads were used for the analysis. In
addition, we selected the 20 candidate C/D box snoRNAs
with the highest read count in our data for validation by
Northern blotting (see Additional file 13 for details on the
experiment). To evaluate the evolutionary conservation of
the putative snoRNAs, we carried out a homology search

against the vertebrate genomes available in the UCSC gen-
ome browser. Once an initial set of homologs was identi-
fied, we built sequence/structure models and continued
to search for more distant homologs with the Infernal
software [64].

Detection of 2’-O-ribose-methylated and
pseudouridylated residues
To identify 2’-O-methylated residues we used a reverse
transcriptase-based method coupled with polyacrylamide
gel analysis as described in [65]. The method is based on
the observation that cDNA synthesis is noticeably impaired
in the presence of a 2’-O-methyl when deoxynucleotide tri-
phosphate fragments (dNTPs) are limiting [65,66], giving
rise to a characteristic pattern of gel banding immediately
preceding the 2’-O-methyls, with strong bands at low
dNTP concentrations (0.004 mM) [66], becoming weaker
with increasing concentrations of dNTPs.
To map pseudouridines in candidate RNAs we used a

method that relies on chemical modification of RNA
bases with N-cyclohexyl-N’-b (4-methyl morpholinium)
-ethylcarbodiimide (CMC) [67]. The method involves
carbodiimide adduct formation with U, G and pseudour-
idine followed by mild alkali treatment, which removes
the adduct from U and G but not from the N-3 of pseu-
douridine. This modification results in the blockage of
reverse transcription one residue 3’ of the pseudouridine
on the sequencing gel. For a detailed description of
assays used to map 2’-O-methyls and pseudouridines
see Additional file 13. As a proof of principle, we first
applied these assays to the spliceosomal RNA U6, which
is known to carry 2’-O-methylated and pseudouridyli-
dated residues. In addition to the well-documented sites,
we also observed novel 2’-O-methyl sites that have not
been previously reported so far (Additional file 14).
To predict C/D box snoRNAs that could guide 2’-O-

methylation, we searched for 8-mer complementarity
(only canonical base pairs allowed) to regions immediately
or one nucleotide upstream of the D and D’ boxes of C/D
box and C/D box-like snoRNAs. To predict H/ACA box
snoRNAs that could guide pseudouridylations, we used
the program RNAsnoop [48]. We first determined for
each H/ACA snoRNA stem an energy cutoff value by run-
ning simulations on 1,000 random sequences of length
100. Only if an RNAsnoop prediction had an energy value
lower than 90% of the random sequences, and at least
three canonical base pairs on each side of the binding
pocket, did we consider it as a hit.

Ago2 immunoprecipitation sequencing of asynchronous
and mitotic cells
Mitotic cells were collected using mitotic shake-off [68,69],
a technique based on the observation that cells become
rounded and more easily detachable from the culture
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vessel as they progress into metaphase during mitosis [70].
Details of the experimental setup are given in Additional
file 13. To be able to confirm microscopically that we col-
lected mitotic cells we used HeLa cells with the human
histone H2B gene fused to green fluorescent protein (see
Additional file 15).
Ago2 was immunoprecipitated from mitotic and asyn-

chronous cells; the Ago2-associated RNAs were extracted
and used to prepare cDNA libraries as described above
[61], which were then submitted to deep sequencing.
Adaptor removal was with the CLIPZ server, and reads
were then mapped with Segemehl as described above. In
the analysis of small RNA libraries (Ago2-IP and HEK293
sdRNA sequencing (18 to 30 nucleotides)), we considered
both uniquely and multi-mapping reads that were anno-
tated based on their mapping to genes in one of the fol-
lowing categories: tRNAs (from the UCSC Table Browser),
microRNAs (from mirBase) and snRNAs (from ENSEMBL
release 59), C/D box snoRNAs and H/ACA box snoRNAs
(curated data set from this work).

Additional material

Additional file 1: Profiles of PAR-CLIPs reads obtained with various
core snoRNP proteins for snoRNAs and scaRNAs. The proteins and
normalized read counts are shown on the y-axis. The snoRNA and
location of boxes are shown at the bottom. Red bars in the profiles
indicate the number of T®C mutations observed at individual
nucleotides in the PAR-CLIP reads.

Additional file 2: List of novel C/D box, C/D box-like snoRNAs and
mini-snoRNAs obtained in this study.

Additional file 3: List of novel H/ACA snoRNAs or homologs of
known snoRNAs (indicated in the ‘BLAST hits’ column) that were
obtained in this study.

Additional file 4: RNA-seq read profiles from selected ENCODE
small RNA-seq samples along the novel C/D box and H/ACA box
snoRNA loci identified in our study.

Additional file 5: Northern blots for selected novel C/D box
snoRNAs. Among the 20 most abundantly expressed (in the small RNA-
seq data) novel C/D box snoRNAs we could confirm the presence of ZL1,
ZL2, ZL8, ZL11, ZL63, ZL107, ZL116, ZL126 and ZL127 by Northern
blotting.

Additional file 6: Expression of C/D box and C/D box-like snoRNAs
in our small RNA-seq run (20 to 200 nucleotides; sequenced 150
cycles). Only reads that cover at least 50% of the snoRNA locus were
considered.

Additional file 7: SCARNA21 has a C/D box H/ACA box hybrid
structure. (A) Screenshot from the UCSC genome browser showing
conserved C and D box elements. (B) Northern blot probing for H/ACA
box structure only (left) and for the hybrid structure (right).

Additional file 8: Primer extension assays for U2 snRNA. Primer
extension assay reveals a 2’-O-methyl modification site for nucleotide
U47.

Additional file 9: Primer extension assays for non-canonical snoRNA
targets. Primer extension runs reveal 2’-O-methyl (A-C) and
pseudouridine (D-G) modification sites in several non-canonical RNAs. (A)
SNORA61: G50. (B) VTRNA1-2: G30, U31, C33, A34. (C) 7SK RNA: C137,
G139, C141, G148, C150, G151. (D) SNORD16: U52, U55. (E) SNORD35A:
U26, U31, U37, U43, U45, U51. (F) 7SK RNA: U250. (G) 7SL RNA: U226,
U233, U236, U266, U273.

Additional file 10: Summary of nucleotide modifications detected
by primer extension assays and predicted guide snoRNA-target
interactions.

Additional file 11: Analysis of PAR-CLIP clusters overlapping with
mRNA exon annotation. Shown are genome coordinates, host
transcript and exon identifier, the number of C and D boxes predicted
within the genomic region, snoRNAs to whose guide regions these
mRNA fragments are complementary and the number of (normalized)
reads obtained from the regions in various PAR-CLIP libraries.

Additional file 12: Detailed list of reads mapping to snoRNA loci in
Ago2 IP-seq libraries.

Additional file 13: Supplementary materials and methods. Detailed
information about the experimental methods (PAR-CLIP library
preparation, Northern blotting, primer extension assays, mitotic shake-off
and Ago2 immunoprecipitation and sequencing). In addition, the
annotated C/D and H/ACA snoRNAs used in this study are listed.

Additional file 14: Primer extension assays on spliceosomal RNA U6.
(A) Primer extension assay on spliceosomal RNA U6 detected
documented 2’-O-methylation as well as potentially novel 2’-O-
methylation sites. (B) Primer extension assay detected documented
pseudouridine sites in U6. CTRL indicates the untreated sample, +CMC
the sample treated with 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide
metho-p-toluenesulfonate (CMC).

Additional file 15: Asynchronous and mitotic GFP-tagged HeLa cells.
Green fluorescent protein appears in green and cell boundaries in
orange. (A) In an asynchronous cell culture only a few cells are in the
mitotic phase, which can be seen from the condensed chromatin and
the rounded cell morphology. (B) Cell obtained with mitotic shake-off.
The procedure enriches for round cells containing condensed chromatin.

Additional file 16: Extended version of Figure 4B showing all
snoRNA genes expressed in HEK293 cells.
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Abstract 
 
Small nucleolar RNAs (snoRNAs) are a class of non­coding RNAs that guide the post­transcriptional                           
processing of other non­coding RNAs, mostly ribosomal RNAs. Recently, snoRNAs have been                       
implicated in several other processes ranging from microRNA­like silencing to alternative splicing. A                         
comprehensive catalog of these molecules, their processing products and expression profiles is essential                         
for studying their functions. Here we have constructed an up­to­date catalog of human snoRNAs by                             
combining data from various databases with de novo prediction and extensive literature review to                           
provide curated genomic coordinates for the mature snoRNAs. By analysing small RNA­seq data from                           
the ENCODE project we characterize the plasticity of snoRNA gene expression as well as their                             
processing patterns. Finally, we identify snoRNAs whose expression is most strongly and reproducibly                         
dysregulated in cancer cell lines.  
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Introduction 
 
SnoRNAs are a specific class of small (from 60 to ­­ with a few exceptions ­­160 nucleotides)                                 
non­protein coding RNAs that are best known for guiding post­transcriptional modification of other                         
non­protein coding RNAs such as ribosomal, small nuclear and transfer RNAs (rRNAs, snRNAs and                           
tRNAs, respectively) 1–6. Based on defined sequence motifs and secondary structure elements,                       
snoRNAs are classified as either C/D box or H/ACA box. The two classes guide 2'­O­methylation and                               
pseudouridylation of nucleotides on the target molecules, respectively. In C/D box snoRNAs the C box                             
(RUGAUGA, R = A or G) and D box (CUGA) are brought into close proximity when the 5’ and 3’                                       
ends of the snoRNA form a stem structure 7,8. Most C/D box snoRNAs have additional, less conserved,                                 
C and D box motifs in the central region of the snoRNA which are termed C’ and D’ boxes. To carry                                         
out their function snoRNAs form ribonucleoprotein (RNP) complexes with the 15.5K, NOP56, NOP58,                         
and fibrillarin proteins 9,10. In these complexes, fibrillarin catalyses the 2'­O­methylation of the ribose                           
in target RNAs 11. The nucleotide undergoing the modification is determined by the complementarity to                             
the 10 to 21 nucleotides (nt) guide region that is located upstream of the D or D’ box. The fifth                                       
nucleotide upstream of the D/D’ box will undergo the 2’­O­methylation 12–14.  
 
H/ACA box snoRNAs adopt a well defined secondary structure consisting of two hairpins that are                             
joined by a single­stranded region termed the H box (ANANNA, N = A, C, G or U) and further have an                                         
ACA box (AYA, Y = C or U) motif at the 3’ end 15,16. Similar to C/D box snoRNAs, H/ACA snoRNAs                                         
form RNP complexes with a set of four proteins, Dyskerin, Nhp2, Nop10 and Gar1. This RNP is active                                   
in pseudouridylation, with Dyskerin acting as the pseudouridine synthase 17. Target recognition by                         
H/ACA box snoRNAs also involves RNA­RNA interactions, of the single­stranded region in the                         
snoRNA hairpin structures with the target RNA 18,19. 
 
Canonical snoRNAs accumulate in the nucleolus, the primary site of ribosome synthesis, where they                           
carry out their functions. ScaRNAs (small Cajal body­specific RNAs) are a specific subset of snoRNAs                             
that guide modifications of spliceosomal RNAs and hence are found specifically enriched in Cajal                           
bodies, the primary site of spliceosomal RNAs biogenesis 2. The import of snoRNAs into Cajal bodies                               
requires the presence of special sequence motifs. H/ACA box snoRNAs have the CAB boxes (UGAG)                             
located in the hairpin loops of the two stem structures 20, while the import of C/D box snoRNAs seems                                     
to be dependent on a long UG dinucleotide repeat element 21. There is evidence that both motifs are                                   
recognized by WDR79 which facilitates transport to Cajal bodies 21,22. Beyond these snoRNAs with                           
canonical structures some long scaRNAs with hybrid structures that are able to function in both                             
methylation and pseudouridylation have been characterized 2,23. Moreover, the primate specific Alu                       
repeat elements can give rise to H/ACA box like snoRNAs termed AluACA RNAs that also seem to                                 
accumulate in Cajal bodies 24.  
 
Interestingly, it appears that snoRNAs can guide other types of RNA processing, beyond methylation                           
and pseudouridylation (see ref. 25 for a recent review). For example, SNORD22, SNORD14, SNORD3                           
and SNORD118 are involved in the processing of ribosomal RNA precursors 26. Even though these                             
RNA molecules have C and D box motifs, it seems that they do not show terminal end trimming C/D                                     
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box snoRNAs are usually subject to 27. This likely suggests that these snoRNAs are in complex with                                 
additional proteins that assist in executing their function and prevent the usual C/D box specific                             
trimming. Some evidence suggests that the brain­specific C/D box SNORD115 family regulates the                         
alternative splicing of the serotonin receptor 5­HT(2C) mRNA 28,29. Many C/D box as well as H/ACA                               
box snoRNAs seem to undergo some kind of processing, yielding smaller fragments whose function                           
remains elusive 27,30. SCARNA15 provides a well documented example of an H/ACA box snoRNA that                             
has a microRNA­like function 31. Whether this function can be more generally carried out by other                               
snoRNAs remains unknown. To add to the complexity of this class of RNAs, recent high­throughput                             
sequencing­based studies identified C/D box­like snoRNAs as short as 27 nucleotides 27, that barely                           
could host an antisense region, and as long as a few thousand nucleotides. The latter have been termed                                   
long non­coding snoRNAs (sno­lncRNAs) 32. A summary of the currently known snoRNA classes is                           
shown in Figure 1. 
 
Despite a few recent genome­wide surveys for detection of novel snoRNAs, recent studies 21,27 have                             
clearly demonstrated that our catalog of human snoRNA loci is far from complete. The data resources                               
on snoRNAs 33,34 that have become standard in the field have either ceased to exist or to be updated.                                     
Furthermore, the focus of the research community has moved towards characterization of snoRNA                         
genes in species other than human 35–39. A recent attempt to improve the accuracy of snoRNA gene                                 
annotation 40 clearly demonstrates that a well designed, uniform analysis strategy is needed in trying to                               
expand the catalog of snoRNAs while maintaining annotation accuracy. Here we sought to fill these                             
gaps by providing an up­to­date catalog of snoRNA loci in the human genome, their processing                             
patterns and expression profiles across tissues. 
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Figure 1. Schematic overview of different structural snoRNA classes. (A) Canonical C/D box snoRNAs have a C box                                   
and D box motif located close to the terminal stem, and additional boxes termed C’ and D’ box internally. Canonical                                       
H/ACA box snoRNAs are composed to two stem structures with an internal H box motif and an ACA box motif a the                                           
3’ end.  
(B) SnoRNAs that execute their function in Cajal bodies additionally have specific import motifs termed CAB box in                                   
the case of H/ACA box snoRNAs, or a G/U rich sequence in the case of C/D box snoRNAs. (C) Several hybrid                                         
snoRNAs that consist of both a C/D box and an H/ACA box domain have been identified. Recent studies, have also                                       
uncovered extremely short C/D box like snoRNAs (D) as well as long noncoding RNAs with snoRNA ends that cover                                     
several hundred nucleotides (E,F). 
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Results 
 

Curation of known snoRNA gene loci 
 
In contrast to other types of molecules such as mRNAs or microRNAs, fewer studies attempted to                               
sequence the full complement of mature human snoRNAs. Thus, the annotation of human snoRNA                           
genes frequently started from computational predictions. Especially in the case of C/D box snoRNAs a                             
consistent procedure for defining the 5’ and 3’ ends of their mature forms is lacking, and different                                 
pragmatic definitions such as the longest terminal stem, the longest evolutionarily conserved terminal                         
stem, or the experimentally determined ends were used in different studies. However, the sequencing                           
data that we obtained in a recent study indicated C/D box snoRNAs undergo uniform trimming at both                                 
the 5’ and the 3’ end 27, irrespective of the length of the terminal stem. In this work we use this                                         
observation to provide a unified catalog of mature human snoRNAs, with their 5’ and 3’ ends defined                                 
based on their coverage in small RNA sequencing data sets.  
 
We retrieved 272 C/D box snoRNA, 108 H/ACA box snoRNA and 24 scaRNA that are currently                               
annotated by the HUGO Gene Nomenclature Committee (HGNC) and mapped them to the human                           
genome (hg19). We further obtained the genomic coordinates of small RNA sequencing reads from 114                             
data sets that were generated by the ENCODE consortium 41. Intersecting the loci of sequenced small                               
RNAs with those of the known snoRNAs, we identified, for each known snoRNA, the 5’ and 3’ ends                                   
that were most represented among the small RNA sequencing (sRNA­seq) reads (see Methods for                           
details). As reported previously 27,4227’ the ends of C/D box snoRNAs undergo precise processing: the 5’                               
end is located 4­5 nt upstream of the C box motif and 3’ end is located up to 5 nt downstream of the D                                               
box motif. The same processing pattern is also observed here based on curated coordinates (see                             
Supplementary Figure S1). The curated loci of the known, mature snoRNAs, are compiled in                           
Supplementary File 1. For some snoRNAs e.g. SCARNA21, SNORD11B, or SNORA58 the sequence                         
inferred from the small RNA sequencing data differed considerably from the sequence that is current                             
deposited in HUGO. Supplementary File 2 shows a visualization of snoRNA loci including the HUGO                             
sequence, the sRNA­seq read profile along these loci and the 5’ and 3’ ends that were inferred based on                                     
the sRNA­seq data.  
 

An updated catalog of human snoRNA genes 
 
To provide an up­to­date catalog of human snoRNAs, we integrated data from several sources,                           
including a de novo genome­wide search. Our strategy is outlined in Figure 2. Specifically, we                             
collected snoRNAs from the recently published literature, from RFAM­based predictions that were                       
generated by the GENCODE consortium 43, from deepbase 44, and from our in­house snoRNA database                             
at the University of Leipzig. To these we added genome­wide de novo predictions obtained with the                               
following workflow, which is summarized schematically in Figure 2: Starting from genomic regions                         
that gave rise to at least 5 reads in the entire sRNA­seq data set generated by the ENCODE consortium,                                     
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we extracted regions extending 20 nt upstream and 100 nt downstream of the start and end of the read                                     
cluster respectively. We used the snoReport 45 and snoSeeker 46 software to carry out snoRNA gene                               
predictions. Additionally, we searched for cases in which degenerate C box and D box motifs with at                                 
most 100 length define potential C/D box­like snoRNA transcripts 27 (see Materials andMethods for a                               
detailed description of the algorithm). We consolidate these initial candidates to a non­redundant set of                             
putative snoRNA loci, excluding those that overlapped with repeat­annotated genomic regions. To                       
generate a high­confidence set of snoRNA loci, we defined a set of strict rules to identify snoRNA                                 
candidates whose expression as mature forms was strongly supported by the sRNA­seq data (see                           
Materials and Methods). This analysis yielded over 200 human snoRNAs that are currently not covered                             
by the human gene annotation (Table 1 and Supplementary File 1). Finally, we used the the Infernal                                 
software and Rfam sequence­structure models to identify candidates which have relatively close                       
homologs among the already known snoRNAs. We assigned each snoRNA to the family with the                             
closest homology that had a p­value lower than 10­6. Table 1 summarizes these findings.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Outline of the snoRNA annotation strategy used in this 
study. We combined de novo search on ENCODE sRNA­seq 
expressed regions with snoRNA genes and predictions from various 
databases as well as extensive literature review. Finally, all 
candidate sequences were checked for a supportive sRNA­seq read 
pattern to identify high confidence, currently not annotated snoRNA 
genes. 

 
 
 
Table 1. Overview of the snoRNAs identified in this study. Numbers in parentheses indicate snoRNAs without close 
homologs among the already annotated snoRNAs from the RFAM database 64,65. 
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  HUGO annotation  Currently not 
annotated 

Total 

C/D box snoRNAs  272  119 (77)  391 

C/D box­like snoRNAs  ­  93 (92)  93 

H/ACA snoRNAs  108  54 (12)  162 

scaRNAs  24  2 (0)  26 

 

Expression profiling of human snoRNAs  
 
The plasticity of snoRNA expression across cell types has been relatively poorly studied, although                           
changes in snoRNA expression have been observed in cancers 47. Because the ENCODE consortium                           
profiled noncoding RNA expression over a diverse set of normal and malignant cell types we analyzed                               
the tissue specificity of expression of the snoRNAs in our catalog. We found that both H/ACA box and                                   
the C/D box snoRNA pools are dominated by a few abundantly expressed snoRNAs (Figure 3A). In                               
particular, 21 and 18 C/D box and H/ACA box snoRNAs account for more than 80% of sRNA­seq                                 
reads captured for the respective snoRNA class. Of these abundantly expressed snoRNAs, only two of                             
the C/D box family (SNORD83A and SNORD64) and only four of the H/ACA family (SNORA73B,                             
SNORA11, SNORA73A and SNORA51) do not have well confirmed target sites on ribosomal RNAs.                           
This indicates that abundantly expressed snoRNAs are essential for ribosome biogenesis. Consistently,                       
these snoRNAs also show little variation in expression across cell types (Fig. 3B,C denoted by red                               
stars; high resolution versions of these figures including gene names can be found in Supplementary                             
Figure S2). On the other hand, some snoRNAs, belonging to both the C/D box and the H/ACA box                                   
class, do exhibit cell type­specific expression. The vast majority of these are expressed in neuronal cell                               
types and include the well known, neuronal specific orphan SNORD115 and SNORD116 families 28,48,49                           
as well as snoRNAs with canonical ribosomal targets such as SNORD100 and SNORD33. The orphan                             
H/ACA box SNORA35, which is known to be expressed in neurons 50, has the strongest cell type                                 
specificity among the H/ACA box snoRNAs. However, H/ACA box snoRNAs with canonical                       
ribosomal targets such as SNORA54 or SNORA22 also show a cell type specific bias of expression. A                                 
comprehensive listing of snoRNAs that show cell type specific expression can be found in Table 2.  
 
Furthermore, we performed hierarchical clustering of a subset of sRNA­seq samples that have been                           
generated from decapped (tobacco acid phosphatase (TAP)­treated) RNAs isolated from whole cells                       
(Supplementary Figure S3), and found a striking separation of normal and malignant cell lines with                             
several snoRNAs being differentially expressed in all cancer cell lines compared to cells of                           
non­malignant origin. This is consistent with the results of prior studies that identified snoRNAs as                             
putative cancer biomarkers 51–55. It also parallels a recent finding that a specific set of tRNAs undergoes                                 
increased expression in cancers, with possible consequences on the translational efficiency in these                         
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cells56. To facilitate further investigations into these cancer­associated snoRNAs we compiled the list of                           
snoRNAs with the most significant differential expression in cancer cell lines (Table3 and Table 4).                             
Finally, cells of neuronal origin have a snoRNA expression profile that stands out from those other cell                                 
types, due to the relatively large number of neuron­specific snoRNAs. Other cell types show more                             
similar profiles, although the mammary gland and hematopoietic cell types tend to cluster closer                           
together, as do the muscle and adipose tissue. The remaining cell types (melanocytes, fibroblasts,                           
osteoblasts, chondrocytes and placental tissue) form one big cluster with no clear boundaries. 
(see supplementary Figures S3 and S4).
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Figure 3. Expression profiling of snoRNA genes in ENCODE sRNA­seq data. (A) The pool of human snoRNA genes                                   
is dominated by a few abundantly expressed snoRNA genes. (B) Evaluation of tissue specific expression of snoRNA                                 
genes. The top panel show values for C/D box snoRNAs, while the bottom panel does for H/ACA box snoRNAs. The                                       
higher the specificity score is the more biased the expression to a specific tissue or cell type is. MFOCP is an acronym                                           
for melanocytes, fibroblasts, osteoblasts, chondrocytes and placental tissue. 
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Limited evidence of tissue­specificity of snoRNA­derived fragments 
 
Several previous studies described snoRNA­derived fragments and suggested that, with some                     
exceptions, the pattern of processing is conserved across snoRNAs and tissues 30,57. Furthermore,                         
various groups proposed that snoRNA­derived fragments may have non­canonical functions 30,31,48,58–63.                     
We asked whether the relative proportion of short (less than 40 nt) snoRNA­derived fragments differs                             
between snoRNAs and whether it differs across cell types (see Materials and Methods) for a given                               
snoRNA. We observed that the majority of C/D box snoRNAs (75%) are found predominantly as                             
mature forms in the data. That is, the proportion of processing products is <50% of the reads associated                                   
with the snoRNA. The cumulative distribution of this proportion is shown in Supplementary Figure S5.                             
Furthermore, we found only minor differences in this proportion across the tissues where the snoRNAs                             
are expressed. Notable exceptions are the SNORD115, 116, 113 and 114 families . A group of snoRNA                                 
comprising SNORD50, SNORD19, SNORD32B, SNORD123, SNORD111, SNORD72, SNORD93,               
SNORD23 and SNORD85, gives rise to > 90% processed fragments, yet we did not find evidence that                                 
these snoRNAs are processed into shorter forms in a cell type­dependent manner (Supplementary File                           
S3 and Supplementary Figure S6).   

Conclusions 
 
The wide availability of deep sequencing technologies has prompted thorough investigations into the                         
processing and expression patterns of all types of RNAmolecules, including those with relatively well                             
characterized functions such as the snoRNAs. In turn, the improved understanding of these molecules’                           
biogenesis enables their identification in large­scale data sets with increased accuracy. Among the                         
small RNAs, snoRNAs have a relatively long history, going back to the late 1960’s (Maxwell and                               
Fournier 1995). A comprehensive database of human C/D box and H/ACA box snoRNAs has been                             
constructed (https://www­snorna.biotoul.fr/) 34, but unfortunately, this database has not been updated                     
since deep sequencing studies started to uncover additional snoRNA molecules. Furthermore, the                       
number of novel snoRNAs that emerged from these recent studies varies widely, and there is some                               
controversy concerning the criteria that were used in defining the snoRNAs.   
 
Here we combined known sequence and structure properties of snoRNAs with recently uncovered                         
patterns of processing and with expression evidence to generate an updated catalog of human C/D box                               
and H/ACA box snoRNAs. Our analysis suggests that although many genomic regions may give rise to                               
RNAs that are processed by the snoRNA­processing machinery and even bind the core proteins of the                               
snoRNP complex, as has been observed before 27, only a relatively small number (hundreds) of these                               
molecules are expressed at a level that is comparable to other well­characterized snoRNAs. 
Finally, our analysis indicates that snoRNA expression is not “static”, but can undergo some dynamics.                             
Although it has been long known that neurons specifically express a large number of snoRNAs, here                               
we found a striking difference in snoRNA expression between normal and malignant cells. Whether                           
changes in snoRNA expression are reflected in the processing of the target molecules such as rRNAs                               
and whether this has a consequence for the mRNA translation are very interesting questions that remain                               
to be investigated in the future. Our study facilitates these studies by providing a catalog of snoRNAs                                 
and the associated rRNA modifications that could then be studied in a targeted manner. 

55



Materials and Methods 

Curation of mature forms of known snoRNA genes 
 
A list of snoRNA genes currently annotated by HGNC was obtained from www.genenames.org                         
(3.3.2014) and the corresponding sequence entries were retrieved from the NCBI Nucleotide database                         
via accession numbers as identifiers. Retrieved sequences were then mapped to the hg19 human                           
genome with BLAT to infer their genomic loci. To annotate the genomic coordinates of mature                             
snoRNA genes, we took advantage of the massive sRNA­seq data produced by the ENCODE                           
Consortium 41. We retrieved the BAM files containing the genomic loci of the reads from 114                               
sRNA­seq data sets (read length of 101 nt) from the UCSC ENCODE analysis hub                           
(http://genome.ucsc.edu/ENCODE).  
 
To select reads that could support mature snoRNA genes, we used the following criteria: First, we                               
required that either the sRNA­seq read covers at least 75% of a snoRNA gene or the sRNA­seq read                                   
was longer than 90 nt (and the snoRNA gene was presumably too long to be covered by sRNA­seq                                   
reads). Second, we required that the first and last genomic positions where the sRNA­seq read mapped                               
were at most 5 nt away from the start and end position of the annotated snoRNA gene to which the read                                         
mapped. After thus identifying sRNA­seq reads associated with individual snoRNA genes, we                       
redefined the boundaries of the mature snoRNA forms as the positions where most of the sRNA­reads                               
associated with the locus started or ended, respectively. For snoRNA loci with too few sRNA­seq                             
supporting reads, we manually curated the genomic coordinates of the mature forms based on the                             
sRNA­seq reads profile (see Supplementary file 1). To further validate this procedure, we examined the                             
distance between the 5’ and 3’ ends and the C and D box motifs, respectively. We found that, as shown                                       
before in ref. 27, the 5’ end of C/D box snoRNA was located 4­5 nt upstream of the C box motif, and                                           
the 3’ end at most 5 nt downstream of the D box motif. In turn, we used this information as another                                         
indication for curating the 5’ and 3’ end coordinates of the mature snoRNAs for which the sRNA­seq                                 
data did not sufficiently or completely covered the loci. Annotated snoRNA with a coverage of less                               
than 100 reads (corresponding to 0.0087 TPM) are SNORD 113­1,113­2, 116­28, 114­7,                       
115­45,115­47, 108, 114­2, 56B, 114­8, 114­30, 116­10 and SNORA29. It is worth noting that the                             
majority of these come from large, repetitive families. 

Identification of predicted snoRNAs with supporting expression data from the 
ENCODE project 
 
To uncover additional snoRNA genes that have supporting expression evidence, we first collected                         
predictions of two computational tools, snoSeeker 46 and snoReport 45, that have been specifically                           
designed to predict snoRNA genes. To that end, we restricted the search space to genomic regions that                                 
were supported by at least five reads in the combined set of sRNA­seq samples and extended these loci                                   
by 20 nt from the 5’ end and 100 nt from the 3’ end. The predictions of snoSeeker and snoReport were                                         
pooled and candidate snoRNAs genes overlapping with already annotated snoRNA genes were                       
removed. This step yielded 820,835 putative C/D box snoRNA loci and 316,076 H/ACA box snoRNA                             
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loci.  
 
Because the sequence and structure constraints on snoRNAs appear to be weaker compared to, for                             
example, tRNAs, we expect a higher false­positive rate of prediction for snoRNAs compared to tRNAs.                             
Here we used the observation that C/D box snoRNAs undergo precise processing which leaves only 4­5                               
nt upstream of the C box, and 2­5 nt downstream of the D box 27 to further validate the C/D box                                         
snoRNA prediction. Small RNA­seq reads that mapped to C/D box snoRNA loci were considered                           
‘supportive’ of a snoRNA mature form if the 5’ end of the read was located 4­5 nt upstream of the                                       
inferred C box and the 3’ end of the read was located 2­5 nt downstream of the D box. For C/D box                                           
snoRNA genes with a predicted length of more than 100 nt, we could only enforce that the 5’ end is                                       
processed as expected, but we required that the sRNA­seq reads cover at least 75% of the length of the                                     
predicted snoRNA gene or are at least 90 nt in length. For H/ACA box snoRNAs, a read was labelled                                     
as supportive if the 5’ end of the read was located +/­ 5 nt around the predicted 5’ end of the snoRNA                                           
locus, and the read either covered at least 75% of the length of the snoRNA locus or was at least 90 nt                                           
in length. 8,000 predicted C/D box snoRNAs and 7,772 predicted H/ACA box snoRNAs had at least                               
one supportive read, but only 121 and 114, respectively, remained when we required at least 1000                               
supportive reads (corresponding to 0.087 TPM) in the entire data set. In the next step, candidate                               
snoRNA loci were filtered for redundancy and loci overlapping with predictions obtained from                         
deepBase, Leipzig, and GENCODE were removed. Finally, we removed candidate loci where more                         
than 25% of the loci overlapped with repeat annotation and discarded those that did not have support by                                   
uniquely mapped reads. In the end, our de novo prediction yielded 12 and 74 H/ACA box and C/D box                                     
snoRNA loci, respectively. These putative snoRNAs can be found in Supplementary File 1, under “de                             
novo” category. 
 
In previous work 27, we found that core snoRNP proteins bind snoRNA­like RNAs, that we not reported                                 
in snoRNA databases. To capture these cases, we carried out a genome­wide scan for C/D box                               
snoRNA­like molecules that are supported by sRNA­seq evidence. We started from genomic regions                         
defined by a degenerate C box (“TGATGA”, “TGGTGA”, “TGATGT”, “TGATGC” or “TGTTGA”)                       
and a D box (C|ATGA) separated by 10­90 nts. Applying the same filtering steps as we did for the                                     
predictions generated by snoReport/snoSeeker (see above) we identified 93 CD­box like candidates that                         
have at least 1000 supportive reads in the sRNA­seq data. These can be found under the                               
“snoRNA­like” category in the Supplementary File 1. 

Analysis of the expression profiles of known snoRNA genes and snoRNA­derived 
fragment based on ENCODE  
 
The expression level of a given snoRNA in a sample was calculated based on the total number of reads                                     
(uniquely and multi­mapping) from that sample that overlapped with the snoRNA locus. The                         
normalization of read counts was done relative to the total number of reads obtained in the sample. The                                   
ENCODE project generated sRNA­seq samples from a range of cell types, both normal and malignant,                             
as well as from distinct sub­cellular compartments (“Cell”, “Cytosol”, “Chromatin”, “Nucleus” and                       
“Nucleolus”). Furthermore, to capture various types of small RNAs, the RNAwas subjected to various                             
treatments (tobacco acid phosphatase (“TAP”) to remove cap structures, calf intestinal phosphatase and                         
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TAP (”CIP­TAP”) to further remove 5’ and 3’ phosphates, as well as left untreated “No treatment”)).                               
Based on the calculated expression values of each snoRNA in each sample we carried out hierarchical                               
clustering of the snoRNAs expression profiles as well as the samples based on the similarity in their                                 
corresponding snoRNA expression profiles. The results are shown in Supplementary Figure S7 for C/D                           
and H/ACA box snoRNAs. Because samples that were prepared similarly and were generated from the                             
same cellular compartment tended to cluster together for the expression analysis across cell types we                             
used samples that were obtained from the same cellular compartment (“cell”) and with the same                             
treatment (“TAP”), as these covered the largest variety of cell types. Furthermore, we normalized the                             
reads relative to the total expression of snoRNAs in the given sample, excluding other types of                               
molecules. Because snoRNAs tend to form families of closely related sequences, we also grouped                           
snoRNAs that were more than 80% identical over their entire length. Supplementary File S4 contains                             
the list of snoRNAs and their corresponding cluster representatives. The expression level of a cluster                             
representative was defined as the average expression level of all snoRNAs associated with that cluster.                             
When replicates were available, we further averaged expression over replicates as well. Given the                           
normalized expression levels thus calculated, we evaluated the specificity of expression or of                         
processing of individual snoRNAs as follows. To quantify the specificity of expression, we first                           
computed the relative frequency of each snoRNA in a given sample. Then we calculated a specificity                               
score defined as  

(p , , ., )  log(n) log(p )S 1 p2 . pn =   −   ∑
n

i=1
pi  i    

where is the normalized frequency of the snoRNA in sample i . The specificity score is maximal  pi                                  
when the snoRNA is expressed in a single sample and minimal when the relative frequency of the                                 
snoRNA is the same across all samples.  
 
snoRNAs dysregulated in cancer 
 
To directly compare snoRNA expression between normal and malignant cells, we averaged the                         
snoRNA expression separately over normal and malignant cell types. The ratio of these quantities gives                             
us the fold­change of expression between normal and malignant cells.  
 
Expression profiling of snoRNA­derived fragments 
 
To determine whether processed fragments are generated in a cell type­specific manner, we first                           
separated the reads into those that correspond to the mature snoRNA and to shorter processed products.                               
Because the sRNA­seq samples should in principle contain only full­length RNAs and based on the                             
length distribution of snoRNAs (Supplementary Figure S8), we chose a maximum length of 40 nt for a                                 
read to be considered as corresponding to a processed RNA. This is consistent with the length of                                 
snoRNA­derived fragments that was reported before 27,30,57,58. Next, we calculated the proportion of                         
processed reads among all reads associated with the snoRNA. Finally, we calculated a specificity score                             
of snoRNA expression or of processing across tissues as described above for the specificity of snoRNA                               
expression. 
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Table 2. Summary of snoRNAs with a highly cell type­specific expression (specificity score > 0.6). 
MFOCP stands for melanocytes, fibroblasts, osteoblasts, chondrocytes and placental tissue. 
 

SnoRNA name  Cells in which it is expressed  Associated samples 

SNORD115 family, 
SNORD116 family, 

SNORD100, SNORD109, 
SNORD107, SNORD29 

Neurons  H1_neurons 

SNORD33, SNORD81, 
SNORD105, SNORD68, 
SNORD11, SNORD36A, 
SNORD102, SNORD111, 
SNORD12B, SNORD30, 

SNORD69, SNORD32A (2), 
SNORD12, SNORD22, 

SNORD50A, SNORD11B, 
SNORD55, SNORD105B 

Neurons and lymphoblastoid 
cells   

H1_neurons, GM12878 

SNORD11B  Neurons and pericytes  H1_neurons, HPC_PL 

SNORD112  MFOCP  HCH 

SNORD113­8 (7)  MFOCP  hMSC­BM 

SNORD114­22 (28)  MFOCP  HPIEpC 

SNORD7  Neurons and Endothelial cells  H1_neurons, HAoEC 

SNORD46, SNORD42A  Mammary gland and 
lymphoblastoid cells 

HMEpC and GM12878 

SNORD125, SNORD85, 
SNORD91A 

hematopoietic, neurons and 
lymphoblastoid cells 

CD34+, H1_neuron, GM12878 

SNORA35, SNORA36B (3)  Neurons  H1_neurons 

SNORA54, SNORA22, 
SNORA16A (2), SNORA48, 
SNORA63, SNORA14B(2), 

SNORA5A 

Neurons and lymphoblastoid 
cells  

H1_neurons, GM12878 

SNORA47  Neurons, hematopoietic and 
lymphoblastoid cells 

H1_neurons, CD34+, 
GM12878 
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SNORA55  Neurons and pericytes  H1_neurons, HPC_PL 

 
 
Table 3. SnoRNAs whose expression differs substantially (more than 5­fold) and significantly 
(p­­value < 0.0005 in the t­test) between malignant and normal cells. 
 

snoRNA name  Fold change (log2) 
(malignant vs normal 
cells 

p­value (two sample 
t­test) 

Expression (total reads 
across the 114 
samples) 

SNORD10  ­3.79  1e­14  29256584 

SNORD105B  ­3.60  1.5e­5  610940 

SNORD76  ­3.57  1.7e­10  85151249 

SNORD79  ­3.32  1.1e­6  53384564 

SNORD65  ­3.07  2.8e­13  175648163 

SNORD123  ­3.07  5e­4  73633 

SNORD80  ­3.05  2e­6  4859473 

SNORD29  ­2.96  7e­10  3519100 

SNORD58A  ­2.94  2e­6  1797396 

SNORD21  ­2.74  2e­8  21310926 

SNORD107  ­2.56  6e­5  32073 

SNORD15B  ­2.56  9e­9  7858324 

SNORD119  ­2.32  6e­7  18167463 

SNORA68  ­4.10  2e­12  8591178 

SNORA8  ­3.51  1.3e­6  1674927 

SNORA34  ­3.42  4.7e­9  3559104 

SNORA62  ­3.36  8e­9  17837817 

SNORA44  ­3.10  5e­12  10314585 
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SNORA20  ­2.68  3e­5  1280339 

SNORA57  ­2.66  2e­10  1857248 

SNORA23  ­2.63  2e­8  1262349 

SNORA43  ­2.54  1e­9  3794469 

SNORA49  ­2.49  8e­6  1770801 

SNORA14B  ­2.41  1e­5  398365 

SNORA74B  ­2.38  5e­5  6202921 

SNORA60  ­2.35  1e­7  77417 

 
 
Table 4. snoRNAs dysregulated in different cancer types based on their expression profiles in 
cancerous versus normal cell lines (references are cited in case the snoRNA is found dysregulated in 
recent cancer studies ) 
 

  Regulation  Comment  Reference 

SNORA47  Strongly 
downregulated 

All cancer 
types 

53 

SNORA78  Strongly 
downregulated 

Brain 
Cancer 

53 

SNORA59A  Strongly 
downregulated 

 
Brain and 
Breast 
Cancer 

66 

SNORA22  Extremely 
downregulated 

Lung 
Cancer 

 

SNORA55  Extremely 
downregulated 

Brain 
Cancer 

 

SNORA68  Extremely 
downregulated 

All cancer 
types 

53 

SNORA60 (SNORA71 cluster)  downregulated  All cancer 
types 

53 
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SNORA44, SNORA61  downregulated  All cancer 
types 

 

SNORA62,SNORA12,SNORA52, 
SNORA14B, SNORA38B, SNORA84, 

SNORA17 

downregulated  Lung 
Cancer 

 

SNORA25  downregulated  Breast 
Cancer 

 

SNORA70 cluster  downregulated   
All cancer 
types 

53,66 

SNORA57, SNORA34, SNORA8, 
SNORA43, SNORA67 

downregulated  All cancer 
types 

 

SNORA76  downregulated  Lung 
Cancer 

53 
 

SNORA49  Extremely 
downregulated 

Lung 
Cancer 

 

SNORA20 , SNORA24, SNORA23, 
SNORA77, SNORA39 ,SNORA11 

downregulated  Breast 
Cancer 

 

SNORA18, SNORA53, SNORA74B  downregulated  Brain 
Cancer 

 

SNORA50, SNORA32, SNORA36B, 
SNORA69, SNORA41 

Over­expressed  All cancer 
types 

 

SNORA21, SNORA64  Over­expressed  All cancer 
types 

53 

SNORA74A, SNORA73, SNORA19, 
SNORA4 

Over­expressed  Lung 
Cancer 

 

 

  Regulation  Comment  Reference 

SNORD58A, SNORD107, 
SNORD109A, SNORD116­26 (4), 
SNORD116­3 (23), SNORD64, 

SNORD69 

extremely 
downregulated 

Breast cancer   
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SNORD29  extremely 
downregulated 

Brain cancer   

SNORD28, SNORD80, SNORD10  downregulated  All  cancer 
types 

(SNORD10 
resides on 
ELF4A1 
intron) 

53 

SNORD112, SNORD113­8 (7), 
SNORD114­22 (28), 

SNORD123 

extremely 
downregulated 

All cancer 
types 
(MEG3 
harbors a 
couple of 
snoRNAs, 
including 

SNORD112, 
SNORD113, 

and 
SNORD114 
and tumor 
suppressor 
miRNAs) 

53,67,68,6947,66 
 

SNORD76, SNORD83B,SNORD65  downregulated  All cancer 
types 

70, 
51 
 

SNORD127, SNORD119, SNORD21, 
snord49B,SNORD9, SNORD126, 

SNORD105B,SNORD65 
SNORD87,SNORD58C,SNORD15B, 
SNORD12C, SNORD79, SNORD44 

downregulated  All cancer 
types 

 

SNORD110  downregulated  Lung cancer  51 
 

SNORD117, SNORD103, SNORD46, 
SNORD42A, SNORD71 

downregulated  Lung cancer   
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SNORD33  Over­expresse
d 

Lung cancer  70 
 

SNORD66, SNORD32A (2), 
SNORD18B (3),SNORD38A, 
SNORD50B, SNORD96A (2), 

SNORD74, SNORD36B, SNORD24, 
SNORD104, 

Over­expresse
d 

All cancer 
types 

51,70,71,  51,  51,72–74, 
51,53,51,75,75 

 
 
 

SNORD111B, SNORD85, 
SNORD62A(2), SNORD14E, 
SNORD18B (3), SNORD121B, 
SNORD14A(2), SNORD4A, 

SNORD15A, SNORD1B, SNORD77, 
SNORD101, SNORD63 SNORD91B, 
SNORD2, SNORD25, SNORD75 

 

Over­expresse
d 

All cancer 
types 

 

SNORD90, SNORD36A  Over­expresse
d 

Brain cancer   

SNORD32A (2), SNORD27, SNORD30, 
SNORD59B, SNORD91A, SNORD86, 
SNORD1A, SNORD1C,  SNORD93, 
SNORD55, SNORD72, SNORD22, 
SNORD100, SNORD4B, SNORD92, 

SNORD49A, SNORD118 

Over­expresse
d 

Lung cancer   

SNORD38B, SNORD104, SNORD24  Over­expresse
d 

Breast Cancer   
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Chapter 5. Discussion

High-throughput sequencing has revolutionized the field of molecular biology. The number

of applications as well as the efficiency of the technology in terms of accuracy, cost and speed

is rapidly increasing. Among these applications, RNA-seq revealed evidence of pervasive

transcription across the genome [69] which prompted a revision of the previously held belief

that the human genome consists to a large extent of junk DNA [120]. Whether these resulting

transcripts are functional or simply result from stochasticity in the activity of the transcrip-

tional machinery (i.e. they represent transcriptional noise) is still an open question.

Over the past decade various classes of non-coding RNAs have been identified and their func-

tions have been elucidated to a great extent [110]. It has been shown that many non-protein

coding transcripts play important roles in diverse set of cellular processes[39, 111, 169]. Thus,

many groups started to combine computational and experimental methods in an effort of to

uncover functionally important non-coding RNAs. These studies have considered different

criteria such as transcription regulatory sequence motifs, secondary structure, conserva-

tion across species and any evidence of expression (from RNA-seq, CAGE, SAGE, EST, etc)

[64, 63, 125, 167, 153, 52, 53, 51, 148]. Finding non-coding RNAs is more challenging compared

to protein-coding genes as they do not have a extended informative coding regions, their

function being rather determined mostly by their structure. This makes the development of

de novo non-coding RNA prediction algorithms more challenging. Nonetheless, the great

interest that non-coding RNAs raised in the past few years resulted in a great improvement in

the approaches for their identification. Next generation sequencing technologies enabled gen-

eration of vast volumes of sequences, including the genomes and transcriptomes of multiple

species [148], thereby providing the material for comparative genomics approaches that could

be used towards non-coding RNA identification as well.

In this work we used the NGS data to identify primary transcripts in prokaryotes and to identify

novel snoRNAs in the human genome [72, 80]. In a first study we developed a mathematical

model for the analysis of dRNA-seq data for identification of TSSs in bacterial genomes. Evi-

dence from NGS has shown that the genome of prokaryotes is more complex than initially

thought. Our proposed model quantifies the enrichment of a putative start site in TEX+ versus

TEX- samples as well as the dominance in expression of that site relative to nearby genomic

positions. The enrichment is modeled using a Bayesian probabilistic framework based on

calculating the posterior probability of the underlying read count distribution. We have im-

plemented this model using python and bash scripts as a pipeline which is publicly available

and in principle can be applied to any dRNA-seq data to identify putative TSSs genome wide.

Based on a set of high confidence TSSs that we derived with the above-mentioned method we

trained a hidden markov model representing the consensus motifs as well as the sequence

content of promoters in the species that we analyzed. We then applied this model to find

additional TSSs that our TSSer model did not initially identify because their expression in

the analyzed samples was too low. Alternatively, the issue of sensitivity could be addressed

experimentally, by generating dRNA-seq from multiple conditions. An improved annotation

of TSSs has consequences for the identification of transcription regulatory motifs and of gene

expression regulatory networks, identification of 5’UTRs and characterization of translation

regulatory elements therein, finding novel regulatory RNAs.Quantification of expression driven
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by individual TSSs has additional application such as general analysis of gene expression and

identification of transcription factors that drive gene expression in specific conditions.

The HMM that we developed is only a first step towards prediction of bacterial promoters.

An improved de novo predictor may take into account the binding motifs of different sigma

factors that help recruit the polymerase at transcription start sites in specific conditions, acti-

vator and repressor elements, spacing between the conserved motifs, AT richness of the given

genome, distance to start codon as well as other factors that are characteristic to prokaryotic

gene promoters. These models can be trained and tested based on the initial set of high

confidence TSSs generated by TSSer. DRNA-seq is able to capture the 5’ ends of transcripts.

However, to determine the full-length bacterial transcripts, a method for mapping transcript

3’ ends in prokaryotic systems is still needed. In eukaryotic systems, 3’ end sequencing is

a method of choice to identify 3’ ends of transcripts but a counterpart method in prokary-

otes is missing [140, 32]. In the second contribution, PAR-CLIP data was utilized to identify

RNAs that associate with snoRNP core proteins. This study aimed to characterize in depth

the processing of snoRNAs and snoRNA-derived fragments as well as finding their potential

targets. We identified novel snoRNAs which could reproducibly be detected in PAR-CLIP data

from different snoRNP associated proteins. We also demonstrated that stem-loops in C/D

box snoRNAs undergo precise processing that leaves 4-5 nt upstream of the C box and up to

5 nt downstream of the D box. We later confirmed this processing pattern in the ENCODE

data as well. We additionally found short C/D box snoRNAs (up to 28 nt) which lack C’ and

D’ motifs but can still be incorporated into snoRNP complexes. Finally, we observed that

snoRNA-derived fragments were mostly produced from snoRNA ends.

Although PAR-CLIP method has been successfully applied in several genome scale studies

(such as genome-wide identification of miRNA targets [55, 56]to investigate the RNA-protein

interaction, this method suffers from some drawbacks which must be improved in future.

One is that the method is complex and thereby susceptible to various biases. For example,

the RNase treatment that is applied during sample preparation can bias the set of identified

RNAs. To identify the snoRNA targets, in this contribution we trained a biophysical model

similar to one that was developed in our group for the prediction of miRNA-target interactions

[78], on known snoRNA-rRNA interactions. Because the training data was very limited, we

think that there is much room left for improving this model. One possible direction that

could be pursued in the future is to use instead of a limited number of known snoRNA-rRNA

interactions data from crosslinking and sequencing of hybrids (CLASH) experiments [60, 61].

These experiments aim to generate and capture chimeric reads that result from the ligation

of hybrids that form between snoRNAs and their corresponding targets. Such methods have

been used successfully to identify microRNA targets and there is great potential in applying

them to finally determine the targets of the so-called orphan snoRNAs, which so far do not

have any identified target.

In the third contribution we screened ENCODE expressed regions to find snoRNA genes in the

human genome, hence expanding the current catalogue of known snoRNAs. The extensive

amount of data provided by ENCODE project created the opportunity to validate the genomic

elements (e.g. coding and non-coding transcripts) which were predicted by de novo algo-

73
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rithms. These algorithms usually have high false positive rate, hence the need for curation

and experimental validation. In our contribution, small RNA sequencing data obtained by the

ENCODE consortium from different cell types and tissues were used to identify novel snoRNAs

and subsequently curating the coordinates of currently annotated snoRNAs as well as of novel

ones. In this study the previous observation (based on PAR-CLIP-data) that C/D box mature

snoRNAs undergo precise processing pattern was replicated using ENCODE data. Expression

profiling of snoRNAs across a range of different tissues led to finding sample specific snoR-

NAs and also snoRNAs whose expression is dysregulated in cancer. snoRNA expression also

exhibits apparent separation between normal and malignant cell types which emphasizes

the potential role of snoRNAs as novel cancer biomarkers. We further investigated the ex-

pression pattern of snoRNA-derived fragment and found no evidence of tissue specificity in

their processing across different cell types.But the functional role of this fragments compared

to long form snoRNA remains to be investigated. As in this study the distinction between

snoRNA expression profiles across different tissues (especially in neurons) was observed, it

propounds the question that what would be the role of this snoRNAs in developmental stages

and differentiation. This is an interesting question which remains to be answered in future

studies. Identification of the targets of orphan snoRNAs as well as the novel ones is also a

challenge which must be elucidated in future. In summary this work can serve as a reference

resource for future research in snoRNA and cancer studies.
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Supplementary Figure S2 (A). Barplot of specificity score of C/D box snoRNAs expression along
with the total expression values across samples
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Supplementary Figure S3 (A). Hierarchical clustering of a subset of sRNA-seq samples that have
been generated from decapped (tobacco acid phosphatase (TAP)-treated) RNAs isolated from whole
cells. The snoRNA clusters which are dysregulated in cancer are highlited
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Supplementary Figure S3 (B). Hierarchical clustering of a subset of sRNA-seq samples that have
been generated from decapped (tobacco acid phosphatase (TAP)-treated) RNAs isolated from whole
cells. The snoRNA clusters which are dysregulated in cancer are highlited
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Supplementary Figure S4. Hierarchical clustering of snoRNA expression profiles based on tissue
types (excluding cancerous cell types). MFOCP stands for melanocytes, fibroblasts, osteoblasts,
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specially for C/D box class of snoRNAs

8

85



SNORA73A

SNORA25

SNORA44

SNORA61

SNORA62

SNORA70

SNORA45

SNORA71D

SNORA41

SNORA64

SNORA4

SNORA21

SNORA77

SNORA11D

SNORA11E

SNORA74A

SNORA33

SNORA81

SNORA31

SNORA46

SNORA18

SNORA75

SNORA20

SNORA24

SNORA30

SNORA6

SNORA10

SNORA17

SNORA65

SNORA72

SNORA49

SNORA57

SNORA71A

SNORA8

SNORA23

SNORA67

SNORA43

SNORA28

SNORA76

SNORA51

SNORA3

SNORA71B

SNORA68

SNORA73B

SNORA74B

SNORA2A

SNORA34

SNORA35

SNORA70D

SNORA70E

SNORA70G

SNORA70C

SNORA70F

SNORA16B

SNORA29

SNORA69

SNORA58

SNORA1

SNORA19

SNORA27

SNORA79

SNORA7B

SNORA36A

SNORA36C

SNORA32

SNORA40

SNORA50

SNORA42

SNORA66

SNORA26

SNORA2B

SNORA13

SNORA53

SNORA12

SNORA36B

SNORA39

SNORA37

SNORA80

SNORA7A

SNORA80B

SNORA9

SNORA52

SNORA5A

SNORA48

SNORA63

SNORA16A

SNORA14B

SNORA38

SNORA56

SNORA11B

SNORA38B

SNORA5C

SNORA84

SNORA11

SNORA54

SNORA14A

SNORA60

SNORA11C

SNORA78

SNORA5B

SNORA59A

SNORA59B

SNORA22

SNORA47

SNORA15

SNORA55

SNORA70B

SNORA71C

X
10

2_
IM

R
90

_n
uc

le
us

_1
x1

01
_N

on
e_

2

X
09

6_
IM

R
90

_c
yt

os
ol

_1
x1

01
_N

on
e_

2

X
10

4_
IM

R
90

_n
uc

le
us

_1
x1

01
_C

IP
.T

A
P

_2

X
10

3_
IM

R
90

_n
uc

le
us

_1
x1

01
_C

IP
.T

A
P

_1

X
09

5_
IM

R
90

_c
yt

os
ol

_1
x1

01
_N

on
e_

1

X
10

1_
IM

R
90

_n
uc

le
us

_1
x1

01
_N

on
e_

1

X
12

7_
M

C
F.

7_
cy

to
so

l_
1x

10
1_

N
on

e_
3

X
12

9_
M

C
F.

7_
cy

to
so

l_
1x

10
1_

TA
P

.O
nl

y_
3

X
16

1_
S

K
.N

.S
H

_c
yt

os
ol

_1
x1

01
_T

A
P

.O
nl

y_
3

X
09

7_
IM

R
90

_c
yt

os
ol

_1
x1

01
_C

IP
.T

A
P

_1

X
15

7_
S

K
.N

.S
H

_c
yt

os
ol

_1
x1

01
_N

on
e_

3

X
09

8_
IM

R
90

_c
yt

os
ol

_1
x1

01
_C

IP
.T

A
P

_2

X
15

8_
S

K
.N

.S
H

_c
yt

os
ol

_1
x1

01
_N

on
e_

4

X
08

9_
IM

R
90

_c
el

l_
1x

10
1_

N
on

e_
1

X
09

0_
IM

R
90

_c
el

l_
1x

10
1_

N
on

e_
2

X
09

1_
IM

R
90

_c
el

l_
1x

10
1_

C
IP

.T
A

P
_1

X
09

2_
IM

R
90

_c
el

l_
1x

10
1_

C
IP

.T
A

P
_2

X
00

1_
A

54
9_

ce
ll_

1x
10

1_
N

on
e_

3

X
00

2_
A

54
9_

ce
ll_

1x
10

1_
N

on
e_

4

X
12

1_
M

C
F.

7_
ce

ll_
1x

10
1_

C
IP

.T
A

P
_3

X
12

2_
M

C
F.

7_
ce

ll_
1x

10
1_

C
IP

.T
A

P
_4

X
15

1_
S

K
.N

.S
H

_c
el

l_
1x

10
1_

N
on

e_
3

X
15

4_
S

K
.N

.S
H

_c
el

l_
1x

10
1_

C
IP

.T
A

P
_4

X
15

5_
S

K
.N

.S
H

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
3

X
12

6_
M

C
F.

7_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
2

X
09

3_
IM

R
90

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
1

X
09

4_
IM

R
90

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
2

X
16

2_
S

K
.N

.S
H

_c
yt

os
ol

_1
x1

01
_T

A
P

.O
nl

y_
4

X
09

9_
IM

R
90

_c
yt

os
ol

_1
x1

01
_T

A
P

.O
nl

y_
1

X
10

0_
IM

R
90

_c
yt

os
ol

_1
x1

01
_T

A
P

.O
nl

y_
2

X
00

9_
A

54
9_

cy
to

so
l_

1x
10

1_
N

on
e_

3

X
01

0_
A

54
9_

cy
to

so
l_

1x
10

1_
N

on
e_

4

X
01

3_
A

54
9_

cy
to

so
l_

1x
10

1_
TA

P
.O

nl
y_

3

X
01

4_
A

54
9_

cy
to

so
l_

1x
10

1_
TA

P
.O

nl
y_

4

X
00

6_
A

54
9_

ce
ll_

1x
10

1_
TA

P
.O

nl
y_

1

X
00

8_
A

54
9_

ce
ll_

1x
10

1_
TA

P
.O

nl
y_

2

X
13

0_
M

C
F.

7_
cy

to
so

l_
1x

10
1_

TA
P

.O
nl

y_
4

X
15

2_
S

K
.N

.S
H

_c
el

l_
1x

10
1_

N
on

e_
4

X
12

4_
M

C
F.

7_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
1

X
12

0_
M

C
F.

7_
ce

ll_
1x

10
1_

N
on

e_
4

X
11

9_
M

C
F.

7_
ce

ll_
1x

10
1_

N
on

e_
3

X
12

8_
M

C
F.

7_
cy

to
so

l_
1x

10
1_

N
on

e_
4

X
01

1_
A

54
9_

cy
to

so
l_

1x
10

1_
C

IP
.T

A
P

_3

X
15

9_
S

K
.N

.S
H

_c
yt

os
ol

_1
x1

01
_C

IP
.T

A
P

_3

X
16

0_
S

K
.N

.S
H

_c
yt

os
ol

_1
x1

01
_C

IP
.T

A
P

_4

X
00

4_
A

54
9_

ce
ll_

1x
10

1_
C

IP
.T

A
P

_4

X
01

8_
A

54
9_

nu
cl

eu
s_

1x
10

1_
C

IP
.T

A
P

_4

X
15

3_
S

K
.N

.S
H

_c
el

l_
1x

10
1_

C
IP

.T
A

P
_3

X
15

6_
S

K
.N

.S
H

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
4

X
03

0_
G

M
12

87
8_

ch
ro

m
at

in
_1

x1
01

_T
A

P
.O

nl
y_

3

X
03

1_
G

M
12

87
8_

ch
ro

m
at

in
_1

x1
01

_T
A

P
.O

nl
y_

4

X
03

4_
G

M
12

87
8_

nu
cl

eo
lu

s_
1x

10
1_

TA
P

.O
nl

y_
3

X
03

5_
G

M
12

87
8_

nu
cl

eo
lu

s_
1x

10
1_

TA
P

.O
nl

y_
4

X
04

2_
H

1.
ne

ur
on

s_
ce

ll_
1x

10
1_

N
on

e_
1

X
04

6_
H

1.
ne

ur
on

s_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
1

X
04

3_
H

1.
ne

ur
on

s_
ce

ll_
1x

10
1_

N
on

e_
2

X
04

7_
H

1.
ne

ur
on

s_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
2

X
04

4_
H

1.
ne

ur
on

s_
ce

ll_
1x

10
1_

C
IP

.T
A

P
_1

X
04

5_
H

1.
ne

ur
on

s_
ce

ll_
1x

10
1_

C
IP

.T
A

P
_2

X
07

8_
H

P
C

.P
L_

ce
ll_

1x
10

1_
TA

P
.O

nl
y_

2

X
06

8_
H

M
E

pC
_c

el
l_

1x
10

1_
TA

P
.O

nl
y_

1

X
07

1_
hM

S
C

.B
M

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
1

X
07

2_
hM

S
C

.B
M

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
2

X
16

3_
S

K
.N

.S
H

_n
uc

le
us

_1
x1

01
_N

on
e_

3

X
16

4_
S

K
.N

.S
H

_n
uc

le
us

_1
x1

01
_N

on
e_

4

X
16

8_
S

K
.N

.S
H

_n
uc

le
us

_1
x1

01
_T

A
P

.O
nl

y_
4

X
10

6_
IM

R
90

_n
uc

le
us

_1
x1

01
_T

A
P

.O
nl

y_
2

X
10

5_
IM

R
90

_n
uc

le
us

_1
x1

01
_T

A
P

.O
nl

y_
1

X
16

7_
S

K
.N

.S
H

_n
uc

le
us

_1
x1

01
_T

A
P

.O
nl

y_
3

X
13

3_
M

C
F.

7_
nu

cl
eu

s_
1x

10
1_

TA
P

.O
nl

y_
3

X
13

4_
M

C
F.

7_
nu

cl
eu

s_
1x

10
1_

TA
P

.O
nl

y_
4

X
01

9_
A

54
9_

nu
cl

eu
s_

1x
10

1_
TA

P
.O

nl
y_

3

X
02

0_
A

54
9_

nu
cl

eu
s_

1x
10

1_
TA

P
.O

nl
y_

4

X
01

2_
A

54
9_

cy
to

so
l_

1x
10

1_
C

IP
.T

A
P

_4

X
01

7_
A

54
9_

nu
cl

eu
s_

1x
10

1_
C

IP
.T

A
P

_3

X
16

5_
S

K
.N

.S
H

_n
uc

le
us

_1
x1

01
_C

IP
.T

A
P

_3

X
16

6_
S

K
.N

.S
H

_n
uc

le
us

_1
x1

01
_C

IP
.T

A
P

_4

X
00

3_
A

54
9_

ce
ll_

1x
10

1_
C

IP
.T

A
P

_3

X
01

5_
A

54
9_

nu
cl

eu
s_

1x
10

1_
N

on
e_

3

X
01

6_
A

54
9_

nu
cl

eu
s_

1x
10

1_
N

on
e_

4

X
05

0_
H

A
oE

C
_c

el
l_

1x
10

1_
TA

P
.O

nl
y_

1

X
08

7_
H

W
P

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
1

X
15

0_
S

kM
C

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
1

X
13

8_
N

H
D

F_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
1

X
07

5_
H

O
B

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
2

X
07

3_
hM

S
C

.U
C

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
1

X
07

4_
hM

S
C

.U
C

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
2

X
14

7_
N

H
E

M
M

2_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
1

X
08

5_
H

V
M

F_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
1

X
08

6_
H

V
M

F_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
2

X
05

2_
H

C
H

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
1

X
05

3_
H

C
H

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
2

X
06

6_
H

FD
P

C
_c

el
l_

1x
10

1_
TA

P
.O

nl
y_

2

X
06

7_
H

FD
P

C
_c

el
l_

1x
10

1_
TA

P
.O

nl
y_

1

X
06

9_
hM

S
C

.A
T_

ce
ll_

1x
10

1_
TA

P
.O

nl
y_

1

X
07

0_
hM

S
C

.A
T_

ce
ll_

1x
10

1_
TA

P
.O

nl
y_

2

X
02

7_
C

D
34

._
M

ob
ili

ze
d_

ce
ll_

1x
10

1_
TA

P
.O

nl
y_

1

X
04

8_
H

A
oA

F_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
2

X
04

9_
H

A
oA

F_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
1

X
07

6_
H

O
B

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
1

X
07

9_
H

P
IE

pC
_c

el
l_

1x
10

1_
TA

P
.O

nl
y_

1

X
08

0_
H

P
IE

pC
_c

el
l_

1x
10

1_
TA

P
.O

nl
y_

2

X
08

8_
H

W
P

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
2

X
13

7_
N

H
D

F_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
2

X
13

1_
M

C
F.

7_
nu

cl
eu

s_
1x

10
1_

N
on

e_
3

X
13

2_
M

C
F.

7_
nu

cl
eu

s_
1x

10
1_

N
on

e_
4

X
05

1_
H

A
oE

C
_c

el
l_

1x
10

1_
TA

P
.O

nl
y_

2

X
08

1_
H

S
aV

E
C

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
1

X
08

2_
H

S
aV

E
C

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
2

X
14

5_
N

H
E

M
fM

2_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
1

X
14

6_
N

H
E

M
fM

2_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
2

X
14

8_
N

H
E

M
M

2_
ce

ll_
1x

10
1_

TA
P

.O
nl

y_
2

X
07

7_
H

P
C

.P
L_

ce
ll_

1x
10

1_
TA

P
.O

nl
y_

1

X
14

9_
S

kM
C

_c
el

l_
1x

10
1_

TA
P

.O
nl

y_
2

0

2

4

6

8

10

12

14

Nucleolus and chromatin
Nucleus
Cytosol
Cell
Cancer
Normal

Cytosol
Cell
Cancer
Normal

H/ACA

Supplementary Figure S7 (B). Hierarchical clustering of all sRNA-seq samples that have been
used in this study based on their H/ACA box snoRNAs expression profiles.

9

Appendix A. Supplementary material of Chapter 4

86



0 20 40 60 80 100

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

0 20 40 60 80 100

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

2.
0e

+0
8

Read Length Read Length

Read length distribution for C/D box snoRNAs Read length distribution for H/ACA box snoRNAs
R

e
a
d

 C
o
u

n
t

R
e
a
d

 C
o
u

n
t

Supplementary Figure S8. Read length distribution for the reads which mapped to snoRNAs loci

10

87





Bibliography

[1] C Alexander Valencia, M Ali Pervaiz, Ammar Husami, Yaping Qian, and Kejian Zhang.

Application of Next-Generation-Sequencing to the diagnosis of genetic disorders: A brief

overview. In Next Generation Sequencing Technologies in Medical Genetics, Springer-

Briefs in Genetics, pages 35–43. Springer New York, 1 January 2013.

[2] C Alexander Valencia, M Ali Pervaiz, Ammar Husami, Yaping Qian, and Kejian Zhang. A

survey of Next-Generation-Sequencing technologies. In Next Generation Sequencing

Technologies in Medical Genetics, SpringerBriefs in Genetics, pages 13–24. Springer New

York, 1 January 2013.

[3] Marina Alexandersson, Simon Cawley, and Lior Pachter. SLAM: cross-species gene

finding and alignment with a generalized pair hidden markov model. Genome Res.,

13(3):496–502, March 2003.

[4] S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic local alignment search

tool. J. Mol. Biol., 215(3):403–410, 5 October 1990.

[5] Fabian Amman, Michael T Wolfinger, Ronny Lorenz, Ivo L Hofacker, Peter F Stadler, and

Sven Findeiß. TSSAR: TSS annotation regime for dRNA-seq data. BMC Bioinformatics,

15:89, 27 March 2014.

[6] Wilhelm J Ansorge. Next-generation DNA sequencing techniques. N. Biotechnol.,

25(4):195–203, April 2009.

[7] L Argaman, R Hershberg, J Vogel, G Bejerano, E G Wagner, H Margalit, and S Altuvia.

Novel small RNA-encoding genes in the intergenic regions of escherichia coli. Curr.

Biol., 11(12):941–950, 26 June 2001.

[8] Manuel Ascano, Markus Hafner, Pavol Cekan, Stefanie Gerstberger, and Thomas Tuschl.

Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip.

Rev. RNA, 3(2):159–177, March 2012.

[9] El Mustapha Bahassi and Peter J Stambrook. Next-generation sequencing technologies:

breaking the sound barrier of human genetics. Mutagenesis, 29(5):303–310, September

2014.

89



Bibliography

[10] P Baldi, Y Chauvin, T Hunkapiller, and M A McClure. Hidden markov models of bio-

logical primary sequence information. Proc. Natl. Acad. Sci. U. S. A., 91(3):1059–1063,

1 February 1994.

[11] S Batzoglou, L Pachter, J P Mesirov, B Berger, and E S Lander. Human and mouse

gene structure: comparative analysis and application to exon prediction. Genome Res.,

10(7):950–958, July 2000.

[12] B A Bensing, B J Meyer, and G M Dunny. Sensitive detection of bacterial transcrip-

tion initiation sites and differentiation from RNA processing sites in the pheromone-

induced plasmid transfer system of enterococcus faecalis. Proc. Natl. Acad. Sci. U. S. A.,

93(15):7794–7799, 23 July 1996.

[13] Eva C Berglund, Anna Kiialainen, and Ann-Christine Syv‘̀anen. Next-generation se-

quencing technologies and applications for human genetic history and forensics. Inves-

tig. Genet., 2:23, 24 November 2011.

[14] A J Berk and P A Sharp. Sizing and mapping of early adenovirus mRNAs by gel elec-

trophoresis of S1 endonuclease-digested hybrids. Cell, 12(3):721–732, November 1977.

[15] C Burge and S Karlin. Prediction of complete gene structures in human genomic DNA.

J. Mol. Biol., 268(1):78–94, 25 April 1997.

[16] Konstantin Byrgazov, Oliver Vesper, and Isabella Moll. Ribosome heterogeneity: another

level of complexity in bacterial translation regulation. Curr. Opin. Microbiol., 16(2):133–

139, April 2013.

[17] Jérôme Cavaillé, Hervé Seitz, Martina Paulsen, Anne C Ferguson-Smith, and Jean-Pierre

Bachellerie. Identification of tandemly-repeated C/D snoRNA genes at the imprinted

human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome

region. Hum. Mol. Genet., 11(13):1527–1538, 15 June 2002.

[18] Thomas R Cech and Joan A Steitz. The noncoding RNA revolution-trashing old rules to

forge new ones. Cell, 157(1):77–94, 27 March 2014.

[19] H Chen, M Bjerknes, R Kumar, and E Jay. Determination of the optimal aligned spac-

ing between the Shine-Dalgarno sequence and the translation initiation codon of es-

cherichia coli mRNAs. Nucleic Acids Res., 22(23):4953–4957, 25 November 1994.

[20] Wen-Dan Chen and Xiao-Feng Zhu. Small nucleolar RNAs (snoRNAs) as potential non-

invasive biomarkers for early cancer detection. Chin. J. Cancer, 32(2):99–101, February

2013.

[21] L D Chong, L B Ray, and N R Gough. Coding and noncoding RNA: An expanding RNA

world. Sci. Signal., 2002(133), 2002.

[22] G A Churchill. Stochastic models for heterogeneous DNA sequences. Bull. Math. Biol.,

51(1):79–94, 1989.

90



Bibliography

[23] Nathan L Clement, Quinn Snell, Mark J Clement, Peter C Hollenhorst, Jahnvi Purwar,

Barbara J Graves, Bradley R Cairns, and W Evan Johnson. The GNUMAP algorithm:

unbiased probabilistic mapping of oligonucleotides from next-generation sequencing.

Bioinformatics, 26(1):38–45, 1 January 2010.

[24] C Condon. Molecular Biology of RNA Processing and Decay in Prokaryotes. PMBT-

S/Progress in Molecular Biology and Translational Science Series. Elsevier Science, 2009.

[25] Teresa Cortes, Olga T Schubert, Graham Rose, Kristine B Arnvig, Iñaki Comas, Ruedi

Aebersold, and Douglas B Young. Genome-wide mapping of transcriptional start sites

defines an extensive leaderless transcriptome in mycobacterium tuberculosis. Cell Rep.,

5(4):1121–1131, 27 November 2013.

[26] Nicholas J Croucher and Nicholas R Thomson. Studying bacterial transcriptomes using

RNA-seq. Curr. Opin. Microbiol., 13(5):619–624, October 2010.

[27] Robert B Darnell. HITS-CLIP: panoramic views of protein-RNA regulation in living cells.

Wiley Interdiscip. Rev. RNA, 1(2):266–286, September 2010.

[28] Xavier Darzacq, Beáta E Jády, Céline Verheggen, Arnold M Kiss, Edouard Bertrand, and

Tamás Kiss. Cajal body-specific small nuclear RNAs: a novel class of 2’-o-methylation

and pseudouridylation guide RNAs. EMBO J., 21(11):2746–2756, 3 June 2002.

[29] G David Forney, Jr. The viterbi algorithm: A personal history. 6 April 2005.

[30] Michiel de Hoon and Yoshihide Hayashizaki. Deep cap analysis gene expression (CAGE):

genome-wide identification of promoters, quantification of their expression, and net-

work inference. Biotechniques, 44(5):627–8, 630, 632, April 2008.

[31] A P Dempster, N M Laird, and D B Rubin. Maximum likelihood from incomplete data

via the EM algorithm. J. R. Stat. Soc. Series B Stat. Methodol., 39(1):1–38, 1 January 1977.

[32] Adnan Derti, Philip Garrett-Engele, Kenzie D Macisaac, Richard C Stevens, Shreedharan

Sriram, Ronghua Chen, Carol A Rohl, Jason M Johnson, and Tomas Babak. A quantitative

atlas of polyadenylation in five mammals. Genome Res., 22(6):1173–1183, June 2012.

[33] Julia M Di Bella, Yige Bao, Gregory B Gloor, Jeremy P Burton, and Gregor Reid. High

throughput sequencing methods and analysis for microbiome research. J. Microbiol.

Methods, 95(3):401–414, December 2013.

[34] Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali

Jha, Philippe Batut, Mark Chaisson, and Thomas R Gingeras. STAR: ultrafast universal

RNA-seq aligner. Bioinformatics, 29(1):15–21, 1 January 2013.

[35] Gaurav Dugar, Alexander Herbig, Konrad U F‘̀orstner, Nadja Heidrich, Richard Reinhardt,

Kay Nieselt, and Cynthia M Sharma. High-resolution transcriptome maps reveal strain-

specific regulatory features of multiple campylobacter jejuni isolates. PLoS Genet.,

9(5):e1003495, May 2013.

91



Bibliography

[36] R Durbin. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic

Acids. Cambridge University Press, 1998.

[37] S R Eddy. Profile hidden markov models. Bioinformatics, 14(9):755–763, 1998.

[38] S R Eddy, G Mitchison, and R Durbin. Maximum discrimination hidden markov models

of sequence consensus. J. Comput. Biol., 2(1):9–23, 1995.

[39] Sean R Eddy. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet.,

2(12):919–929, 1 December 2001.

[40] C Edeki. Comparative study of microarray and next generation sequencing technologies.

IJCSMC, 2012.

[41] Ashley N Egan, Jessica Schlueter, and David M Spooner. Applications of next-generation

sequencing in plant biology. Am. J. Bot., 99(2):175–185, February 2012.

[42] Sara El-Metwally, Osama M Ouda, and Mohamed Helmy. Next-Generation sequencing

platforms. In Next Generation Sequencing Technologies and Challenges in Sequence

Assembly, SpringerBriefs in Systems Biology, pages 37–44. Springer New York, 1 January

2014.

[43] S M Elbashir, J Harborth, W Lendeckel, A Yalcin, K Weber, and T Tuschl. Duplexes of

21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,

411(6836):494–498, 24 May 2001.

[44] ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA elements) project.

Science, 306(5696):636–640, 22 October 2004.

[45] Mohammad Ali Faghihi, Farzaneh Modarresi, Ahmad M Khalil, Douglas E Wood, Bar-

bara G Sahagan, Todd E Morgan, Caleb E Finch, Georges St Laurent, 3rd, Paul J Kenny,

and Claes Wahlestedt. Expression of a noncoding RNA is elevated in alzheimer’s disease

and drives rapid feed-forward regulation of beta-secretase. Nat. Med., 14(7):723–730,

July 2008.

[46] Gregory G Faust and Ira M Hall. GEM: crystal-clear DNA alignment. Nat. Methods,

9(12):1159–1161, December 2012.

[47] Paul Flicek and Ewan Birney. Sense from sequence reads: methods for alignment and

assembly. Nat. Methods, 6(11 Suppl):S6–S12, November 2009.

[48] Nuno A Fonseca, Johan Rung, Alvis Brazma, and John C Marioni. Tools for mapping

high-throughput sequencing data. Bioinformatics, 28(24):3169–3177, 15 December

2012.

[49] Zoubin Ghahramani. AN INTRODUCTION TO HIDDEN MARKOV MODELS AND

BAYESIAN NETWORKS. Int. J. Pattern Recognit Artif Intell., 15(01):9–42, 2001.

92



Bibliography

[50] Ayman Grada and Kate Weinbrecht. Next-generation sequencing: methodology and

application. J. Invest. Dermatol., 133(8):e11, August 2013.

[51] Sam Griffiths-Jones. Annotating noncoding RNA genes. Annu. Rev. Genomics Hum.

Genet., 8:279–298, 2007.

[52] Sam Griffiths-Jones, Alex Bateman, Mhairi Marshall, Ajay Khanna, and Sean R Eddy.

Rfam: an RNA family database. Nucleic Acids Res., 31(1):439–441, 1 January 2003.

[53] Sam Griffiths-Jones, Simon Moxon, Mhairi Marshall, Ajay Khanna, Sean R Eddy, and

Alex Bateman. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids

Res., 33(Database issue):D121–4, 1 January 2005.

[54] Markus Hafner, Markus Landthaler, Lukas Burger, Mohsen Khorshid, Jean Hausser,

Philipp Berninger, Andrea Rothballer, Manuel Ascano, Anna-Carina Jungkamp, Mathias

Munschauer, Alexander Ulrich, Greg S Wardle, Scott Dewell, Mihaela Zavolan, and

Thomas Tuschl. PAR-CliP–a method to identify transcriptome-wide the binding sites of

RNA binding proteins. J. Vis. Exp., (41), 2 July 2010.

[55] Markus Hafner, Markus Landthaler, Lukas Burger, Mohsen Khorshid, Jean Hausser,

Philipp Berninger, Andrea Rothballer, Manuel Ascano, Jr., Anna-Carina Jungkamp, Math-

ias Munschauer, Alexander Ulrich, Greg S Wardle, Scott Dewell, Mihaela Zavolan, and

Thomas Tuschl. Transcriptome-wide identification of RNA-Binding protein and Mi-

croRNA target sites by PAR-CLIP. Cell, 141(1):129–141, 2 April 2010.

[56] Markus Hafner, Steve Lianoglou, Thomas Tuschl, and Doron Betel. Genome-wide

identification of miRNA targets by PAR-CLIP. Methods, 58(2):94–105, October 2012.

[57] Shanil P Haugen, Wilma Ross, and Richard L Gourse. Advances in bacterial promoter

recognition and its control by factors that do not bind DNA. Nat. Rev. Microbiol.,

6(7):507–519, July 2008.

[58] Y Hayashizaki. Cap analysis gene expression (CAGE). In Cap-Analysis Gene Expression

(CAGE), chapter 1, pages 1–5.

[59] Lin He and Gregory J Hannon. MicroRNAs: small RNAs with a big role in gene regulation.

Nat. Rev. Genet., 5(7):522–531, July 2004.

[60] Aleksandra Helwak, Grzegorz Kudla, Tatiana Dudnakova, and David Tollervey. Mapping

the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell,

153(3):654–665, 25 April 2013.

[61] Aleksandra Helwak and David Tollervey. Mapping the miRNA interactome by cross-

linking ligation and sequencing of hybrids (CLASH). Nat. Protoc., 9(3):711–728, March

2014.

93



Bibliography

[62] Alexander Herbig, Cynthia Sharma, and Kay Nieselt. Automated transcription start

site prediction for comparative transcriptomics using the SuperGenome. EMBnet j.,

19(A):19, 8 April 2013.

[63] I Hofacker and P F Stadler. RNAz 2.0: improved noncoding RNA detection. Pac. Symp.

Biocomput., 2010.

[64] I L Hofacker, B Priwitzer, and P F Stadler. Prediction of locally stable RNA secondary

structures for genome-wide surveys. Bioinformatics, 20(2):186–190, 22 January 2004.

[65] Steve Hoffmann, Christian Otto, Stefan Kurtz, Cynthia M Sharma, Philipp Khaitovich,

J̀‘org Vogel, Peter F Stadler, and J̀‘org Hackerm’́uller. Fast mapping of short sequences

with mismatches, insertions and deletions using index structures. PLoS Comput. Biol.,

5(9):e1000502, September 2009.

[66] N Homer. Bfast: Blat-like fast accurate search tool. 2009.

[67] Zhi-Wei Hou, Yun Wang, Hong Gao, and Sheng-Wei Hou. The principle of dRNA-seq

and its applications in prokaryotic transcriptome analyses. Hereditas, 35(8):983–991,

30 September 2013.

[68] Ina Huppertz, Jan Attig, Andrea D’Ambrogio, Laura E Easton, Christopher R Sibley,

Yoichiro Sugimoto, Mojca Tajnik, Julian K‘̀onig, and Jernej Ule. iCLIP: Protein-RNA

interactions at nucleotide resolution. Methods, 65(3):274–287, February 2014.

[69] Alain Jacquier. The complex eukaryotic transcriptome: unexpected pervasive transcrip-

tion and novel small RNAs. Nat. Rev. Genet., 10(12):833–844, December 2009.

[70] E T Jaynes and G L Bretthorst. Probability Theory: The Logic of Science. Cambridge

University Press, 2003.

[71] Kirk B Jensen and Robert B Darnell. CLIP: crosslinking and immunoprecipitation of in

vivo RNA targets of RNA-binding proteins. Methods Mol. Biol., 488:85–98, 2008.

[72] Hadi Jorjani and Mihaela Zavolan. TSSer: an automated method to identify transcription

start sites in prokaryotic genomes from differential RNA sequencing data. Bioinformat-

ics, 30(7):971–974, 1 April 2014.

[73] Raja Jothi, Suresh Cuddapah, Artem Barski, Kairong Cui, and Keji Zhao. Genome-wide

identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids

Res., 36(16):5221–5231, 1 September 2008.

[74] Beena Kadakkuzha. Role of noncoding RNAs in diseases. RNA & DISEASE, 1(1), 21 Octo-

ber 2014.

[75] K Karplus, C Barrett, M Cline, M Diekhans, L Grate, and R Hughey. Predicting protein

structure using only sequence information. Proteins, Suppl 3:121–125, 1999.

94



Bibliography

[76] K Karplus, K Sj̀‘olander, C Barrett, M Cline, D Haussler, R Hughey, L Holm, and C Sander.

Predicting protein structure using hidden markov models. Proteins, Suppl 1:134–139,

1997.

[77] W James Kent. BLAT-The BLAST-Like alignment tool. Genome Res., 12(4):656–664,

1 April 2002.

[78] Mohsen Khorshid, Jean Hausser, Mihaela Zavolan, and Erik van Nimwegen. A biophysi-

cal miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat.

Methods, 10(3):253–255, March 2013.

[79] Eun-Deok Kim and Sibum Sung. Long noncoding RNA: unveiling hidden layer of gene

regulatory networks. Trends Plant Sci., 17(1):16–21, January 2012.

[80] Shivendra Kishore, Andreas R Gruber, Dominik J Jedlinski, Afzal P Syed, Hadi Jorjani,

and Mihaela Zavolan. Insights into snoRNA biogenesis and processing from PAR-CLIP of

snoRNA core proteins and small RNA sequencing. Genome Biol., 14(5):R45, 9 September

2013.

[81] T Kiss. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs.

EMBO J., 20(14):3617–3622, 16 July 2001.

[82] Jan O Korbel, Alexander Eckehart Urban, Jason P Affourtit, Brian Godwin, Fabian Gru-

bert, Jan Fredrik Simons, Philip M Kim, Dean Palejev, Nicholas J Carriero, Lei Du, Bruce E

Taillon, Zhoutao Chen, Andrea Tanzer, A C Eugenia Saunders, Jianxiang Chi, Fengtang

Yang, Nigel P Carter, Matthew E Hurles, Sherman M Weissman, Timothy T Harkins,

Mark B Gerstein, Michael Egholm, and Michael Snyder. Paired-end mapping reveals

extensive structural variation in the human genome. Science, 318(5849):420–426, 19 Oc-

tober 2007.

[83] I Korf, P Flicek, D Duan, and M R Brent. Integrating genomic homology into gene

structure prediction. Bioinformatics, 17 Suppl 1:S140–8, 2001.

[84] J Korlach and P Biosciences. Understanding accuracy in SMRT® sequencing. hpc-

cisj.pacb.com.

[85] Carsten Kr̀‘oger, Shane C Dillon, Andrew D S Cameron, Kai Papenfort, Sathesh K

Sivasankaran, Karsten Hokamp, Yanjie Chao, Alexandra Sittka, Magali Hébrard, Kristian

H’́andler, Aoife Colgan, Pimlapas Leekitcharoenphon, Gemma C Langridge, Amanda J

Lohan, Brendan Loftus, Sacha Lucchini, David W Ussery, Charles J Dorman, Nicholas R

Thomson, J̀‘org Vogel, and Jay C D Hinton. The transcriptional landscape and small

RNAs of salmonella enterica serovar typhimurium. Proc. Natl. Acad. Sci. U. S. A.,

109(20):E1277–86, 15 May 2012.

[86] Anders Krogh, Michael Brown, I Saira Mian, Kimmen Sj̀‘olander, and David Haussler.

Hidden markov models in computational biology: Applications to protein modeling. J.

Mol. Biol., 235(5):1501–1531, 3 February 1994.

95



Bibliography

[87] Chee-Seng Ku, Yudi Pawitan, Mengchu Wu, Dimitrios H Roukos, and David N Cooper.

The evolution of High-Throughput sequencing technologies: From sanger to Single-

Molecule sequencing. In Next Generation Sequencing in Cancer Research, pages 1–30.

Springer New York, 1 January 2013.

[88] Junpei Kurosawa, Hiromi Nishiyori, and Yoshihide Hayashizaki. Deep cap analysis of

gene expression. Methods Mol. Biol., 687:147–163, 2011.

[89] E S Lander, L M Linton, B Birren, C Nusbaum, M C Zody, J Baldwin, K Devon, K De-

war, M Doyle, W FitzHugh, R Funke, D Gage, K Harris, A Heaford, J Howland, L Kann,

J Lehoczky, R LeVine, P McEwan, K McKernan, J Meldrim, J P Mesirov, C Miranda,

W Morris, J Naylor, C Raymond, M Rosetti, R Santos, A Sheridan, C Sougnez, N Stange-

Thomann, N Stojanovic, A Subramanian, D Wyman, J Rogers, J Sulston, R Ainscough,

S Beck, D Bentley, J Burton, C Clee, N Carter, A Coulson, R Deadman, P Deloukas, A Dun-

ham, I Dunham, R Durbin, L French, D Grafham, S Gregory, T Hubbard, S Humphray,

A Hunt, M Jones, C Lloyd, A McMurray, L Matthews, S Mercer, S Milne, J C Mullikin,

A Mungall, R Plumb, M Ross, R Shownkeen, S Sims, R H Waterston, R K Wilson, L W

Hillier, J D McPherson, M A Marra, E R Mardis, L A Fulton, A T Chinwalla, K H Pepin, W R

Gish, S L Chissoe, M C Wendl, K D Delehaunty, T L Miner, A Delehaunty, J B Kramer, L L

Cook, R S Fulton, D L Johnson, P J Minx, S W Clifton, T Hawkins, E Branscomb, P Predki,

P Richardson, S Wenning, T Slezak, N Doggett, J F Cheng, A Olsen, S Lucas, C Elkin,

E Uberbacher, M Frazier, R A Gibbs, D M Muzny, S E Scherer, J B Bouck, E J Sodergren,

K C Worley, C M Rives, J H Gorrell, M L Metzker, S L Naylor, R S Kucherlapati, D L Nelson,

G M Weinstock, Y Sakaki, A Fujiyama, M Hattori, T Yada, A Toyoda, T Itoh, C Kawagoe,

H Watanabe, Y Totoki, T Taylor, J Weissenbach, R Heilig, W Saurin, F Artiguenave, P Brot-

tier, T Bruls, E Pelletier, C Robert, P Wincker, D R Smith, L Doucette-Stamm, M Ruben-

field, K Weinstock, H M Lee, J Dubois, A Rosenthal, M Platzer, G Nyakatura, S Taudien,

A Rump, H Yang, J Yu, J Wang, G Huang, J Gu, L Hood, L Rowen, A Madan, S Qin, R W

Davis, N A Federspiel, A P Abola, M J Proctor, R M Myers, J Schmutz, M Dickson, J Grim-

wood, D R Cox, M V Olson, R Kaul, C Raymond, N Shimizu, K Kawasaki, S Minoshima,

G A Evans, M Athanasiou, R Schultz, B A Roe, F Chen, H Pan, J Ramser, H Lehrach, R Rein-

hardt, W R McCombie, M de la Bastide, N Dedhia, H Bl̀‘ocker, K Hornischer, G Nordsiek,

R Agarwala, L Aravind, J A Bailey, A Bateman, S Batzoglou, E Birney, P Bork, D G Brown,

C B Burge, L Cerutti, H C Chen, D Church, M Clamp, R R Copley, T Doerks, S R Eddy, E E

Eichler, T S Furey, J Galagan, J G Gilbert, C Harmon, Y Hayashizaki, D Haussler, H Herm-

jakob, K Hokamp, W Jang, L S Johnson, T A Jones, S Kasif, A Kaspryzk, S Kennedy, W J

Kent, P Kitts, E V Koonin, I Korf, D Kulp, D Lancet, T M Lowe, A McLysaght, T Mikkelsen,

J V Moran, N Mulder, V J Pollara, C P Ponting, G Schuler, J Schultz, G Slater, A F Smit,

E Stupka, J Szustakowski, D Thierry-Mieg, J Thierry-Mieg, L Wagner, J Wallis, R Wheeler,

A Williams, Y I Wolf, K H Wolfe, S P Yang, R F Yeh, F Collins, M S Guyer, J Peterson,

A Felsenfeld, K A Wetterstrand, A Patrinos, M J Morgan, P de Jong, J J Catanese, K Osoe-

gawa, H Shizuya, S Choi, Y J Chen, J Szustakowki, and International Human Genome

96



Bibliography

Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature,

409(6822):860–921, 15 February 2001.

[90] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2. Nat.

Methods, 9(4):357–359, April 2012.

[91] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol.,

10(3):R25, 4 March 2009.

[92] Christian Ledergerber and Christophe Dessimoz. Base-calling for next-generation

sequencing platforms. Brief. Bioinform., 12(5):489–497, September 2011.

[93] H Li, J Ruan, and R Durbin. Maq: mapping and assembly with qualities. Version 0.6,

2008.

[94] Heng Li and Nils Homer. A survey of sequence alignment algorithms for next-generation

sequencing. Brief. Bioinform., 11(5):473–483, September 2010.

[95] Pei-Fei Li, Sheng-Can Chen, Tian Xia, Xiao-Ming Jiang, Yong-Fu Shao, Bing-Xiu Xiao,

and Jun-Ming Guo. Non-coding RNAs and gastric cancer. World J. Gastroenterol.,

20(18):5411–5419, 14 May 2014.

[96] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kristiansen, and

Jun Wang. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics,

25(15):1966–1967, 1 August 2009.

[97] Yang Liao, Gordon K Smyth, and Wei Shi. The subread aligner: fast, accurate and

scalable read mapping by seed-and-vote. Nucleic Acids Res., 41(10):e108, 1 May 2013.

[98] Donny D Licatalosi, Aldo Mele, John J Fak, Jernej Ule, Melis Kayikci, Sung Wook Chi,

Tyson A Clark, Anthony C Schweitzer, John E Blume, Xuning Wang, Jennifer C Darnell,

and Robert B Darnell. HITS-CLIP yields genome-wide insights into brain alternative

RNA processing. Nature, 456(7221):464–469, 27 November 2008.

[99] Hao Lin, Zefeng Zhang, Michael Q Zhang, Bin Ma, and Ming Li. ZOOM! zillions of oligos

mapped. Bioinformatics, 24(21):2431–2437, 1 November 2008.

[100] Chi-Man Liu, Thomas Wong, Edward Wu, Ruibang Luo, Siu-Ming Yiu, Yingrui Li,

Bingqiang Wang, Chang Yu, Xiaowen Chu, Kaiyong Zhao, Ruiqiang Li, and Tak-Wah Lam.

SOAP3: ultra-fast GPU-based parallel alignment tool for short reads. Bioinformatics,

28(6):878–879, 15 March 2012.

[101] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. CUSHAW: a CUDA compatible

short read aligner to large genomes based on the Burrows-Wheeler transform. Bioinfor-

matics, 28(14):1830–1837, 15 July 2012.

97



Bibliography

[102] Sabine Loewer, Moran N Cabili, Mitchell Guttman, Yuin-Han Loh, Kelly Thomas,

In Hyun Park, Manuel Garber, Matthew Curran, Tamer Onder, Suneet Agarwal, Philip D

Manos, Sumon Datta, Eric S Lander, Thorsten M Schlaeger, George Q Daley, and John L

Rinn. Large intergenic non-coding RNA-RoR modulates reprogramming of human

induced pluripotent stem cells. Nat. Genet., 42(12):1113–1117, December 2010.

[103] Ari L‘̀oytynoja and Michel C Milinkovitch. A hidden markov model for progressive

multiple alignment. Bioinformatics, 19(12):1505–1513, 12 August 2003.

[104] Jun Lu, Gad Getz, Eric A Miska, Ezequiel Alvarez-Saavedra, Justin Lamb, David Peck, Ale-

jandro Sweet-Cordero, Benjamin L Ebert, Raymond H Mak, Adolfo A Ferrando, James R

Downing, Tyler Jacks, H Robert Horvitz, and Todd R Golub. MicroRNA expression

profiles classify human cancers. Nature, 435(7043):834–838, 9 June 2005.

[105] Jiong Ma, Allan Campbell, and Samuel Karlin. Correlations between Shine-Dalgarno

sequences and gene features such as predicted expression levels and operon structures.

J. Bacteriol., 184(20):5733–5745, October 2002.

[106] Santiago Marco-Sola, Michael Sammeth, Roderic Guigó, and Paolo Ribeca. The GEM

mapper: fast, accurate and versatile alignment by filtration. Nat. Methods, 9(12):1185–

1188, December 2012.

[107] Elaine R Mardis. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum.

Genet., 9:387–402, 2008.

[108] Elaine R Mardis. Next-generation sequencing platforms. Annu. Rev. Anal. Chem., 6:287–

303, 2013.

[109] Samuel Marguerat, Brian T Wilhelm, and J́’urg B‘̀ahler. Next-generation sequencing:

applications beyond genomes. Biochem. Soc. Trans., 36(5):1091, 1 October 2008.

[110] A Gregory Matera, Rebecca M Terns, and Michael P Terns. Non-coding RNAs: lessons

from the small nuclear and small nucleolar RNAs. Nat. Rev. Mol. Cell Biol., 8(3):209–220,

March 2007.

[111] John S Mattick and Igor V Makunin. Non-coding RNA. Hum. Mol. Genet., 15(suppl

1):R17–R29, 15 April 2006.

[112] Giuseppe Matullo, Cornelia Di Gaetano, and Simonetta Guarrera. Next generation

sequencing and rare genetic variants: from human population studies to medical

genetics. Environ. Mol. Mutagen., 54(7):518–532, August 2013.

[113] Scott McGinnis and Thomas L Madden. BLAST: at the core of a powerful and diverse set

of sequence analysis tools. Nucleic Acids Res., 32(Web Server issue):W20–5, 1 July 2004.

[114] John D McPherson. Clinical application of DNA sequencing: Sanger and Next-

Generation platforms. In Molecular Testing in Cancer, pages 81–85. Springer New

York, 1 January 2014.

98



Bibliography

[115] M L Metzker. Sequencing technologies-the next generation. Nat. Rev. Genet., 2009.

[116] Riten Mitra, Ryan Gill, Susmita Datta, and Somnath Datta. Statistical analyses of next

generation sequencing data: An overview. In Statistical Analysis of Next Generation Se-

quencing Data, Frontiers in Probability and the Statistical Sciences, pages 1–24. Springer

International Publishing, 1 January 2014.

[117] Jan Mitschke, Jens Georg, Ingeborg Scholz, Cynthia M Sharma, Dennis Dienst, Jens

Bantscheff, Bj̀‘orn Voss, Claudia Steglich, Annegret Wilde, J́’org Vogel, and Wolfgang R

Hess. An experimentally anchored map of transcriptional start sites in the model

cyanobacterium synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. U. S. A., 108(5):2124–

2129, 1 February 2011.

[118] Olena Morozova and Marco A Marra. Applications of next-generation sequencing

technologies in functional genomics. Genomics, 92(5):255–264, November 2008.

[119] Samuel Myllykangas, Jason Buenrostro, and Hanlee P Ji. Overview of sequencing tech-

nology platforms. In Bioinformatics for High Throughput Sequencing, pages 11–25.

Springer New York, 1 January 2012.

[120] S Ohno. So much“ junk” DNA in our genome. Brookhaven Symp. Biol., 1972.

[121] Peter J Park. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev.

Genet., 10(10):669–680, October 2009.

[122] Vicent Pelechano and Lars M Steinmetz. Gene regulation by antisense transcription.

Nat. Rev. Genet., 14(12):880–893, December 2013.

[123] Joseph F Petrosino, Sarah Highlander, Ruth Ann Luna, Richard A Gibbs, and James

Versalovic. Metagenomic pyrosequencing and microbial identification. Clin. Chem.,

55(5):856–866, May 2009.

[124] Michael A Quail, Miriam Smith, Paul Coupland, Thomas D Otto, Simon R Harris,

Thomas R Connor, Anna Bertoni, Harold P Swerdlow, and Yong Gu. A tale of three

next generation sequencing platforms: comparison of ion torrent, pacific biosciences

and illumina MiSeq sequencers. BMC Genomics, 13:341, 24 July 2012.

[125] E Rivas and S R Eddy. Noncoding RNA gene detection using comparative sequence

analysis. BMC Bioinformatics, 2:8, 10 October 2001.

[126] Jason M Rizzo and Michael J Buck. Key principles and clinical applications of “next-

generation” DNA sequencing. Cancer Prev. Res., 5(7):887–900, July 2012.

[127] Richard J Roberts, Mauricio O Carneiro, and Michael C Schatz. The advantages of SMRT

sequencing. Genome Biol., 14(7):405, 3 July 2013.

[128] Yu-Hui Rogers and J Craig Venter. Genomics: massively parallel sequencing. Nature,

437(7057):326–327, 15 September 2005.

99



Bibliography

[129] Seong Woon Roh, Guy C J Abell, Kyoung-Ho Kim, Young-Do Nam, and Jin-Woo Bae.

Comparing microarrays and next-generation sequencing technologies for microbial

ecology research. Trends Biotechnol., 28(6):291–299, June 2010.

[130] Matthew Ruffalo, Thomas LaFramboise, and Mehmet Koyut̀‘urk. Comparative anal-

ysis of algorithms for next-generation sequencing read alignment. Bioinformatics,

27(20):2790–2796, 15 October 2011.

[131] Cornelius Schmidtke, Sven Findeiss, Cynthia M Sharma, Juliane Kuhfuss, Steve Hoff-

mann, J̀‘org Vogel, Peter F Stadler, and Ulla Bonas. Genome-wide transcriptome analysis

of the plant pathogen xanthomonas identifies sRNAs with putative virulence functions.

Nucleic Acids Res., 40(5):2020–2031, March 2012.

[132] Dietmar Schreiner, Thi-Minh Nguyen, Giancarlo Russo, Steffen Heber, Andrea Patrig-

nani, Erik Ahrné, and Peter Scheiffele. Targeted combinatorial alternative splicing

generates brain Region-Specific repertoires of neurexins. Neuron, 1 October 2014.

[133] Stephan C Schuster. Next-generation sequencing transforms today’s biology. Nat.

Methods, 5(1):16–18, January 2008.

[134] Anjali Shah. Chromatin immunoprecipitation sequencing (ChIP-Seq) on the SOLiD™

system. Nat. Methods, 6(4), 1 April 2009.

[135] Jing Shang, Fei Zhu, Wanwipa Vongsangnak, Yifei Tang, Wenyu Zhang, and Bairong

Shen. Evaluation and comparison of multiple aligners for next-generation sequencing

data analysis. Biomed Res. Int., 2014:309650, 23 March 2014.

[136] Cynthia M Sharma, Steve Hoffmann, Fabien Darfeuille, Jérémy Reignier, Sven Findeiss,

Alexandra Sittka, Sandrine Chabas, Kristin Reiche, J́’org Hackerm‘̀uller, Richard Rein-

hardt, Peter F Stadler, and J̀‘org Vogel. The primary transcriptome of the major human

pathogen helicobacter pylori. Nature, 464(7286):250–255, 11 March 2010.

[137] Cynthia M Sharma and J̀‘org Vogel. Differential RNA-seq: the approach behind and the

biological insight gained. Curr. Opin. Microbiol., 19:97–105, June 2014.

[138] Mona A Sheikh and Yaniv Erlich. Base-Calling for bioinformaticians. In Bioinformatics

for High Throughput Sequencing, pages 67–83. Springer New York, 1 January 2012.

[139] Jay Shendure and Hanlee Ji. Next-generation DNA sequencing. Nat. Biotechnol.,

26(10):1135–1145, October 2008.

[140] Peter J Shepard, Eun-A Choi, Jente Lu, Lisa A Flanagan, Klemens J Hertel, and Yongsheng

Shi. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq.

RNA, 17(4):761–772, April 2011.

[141] Toshiyuki Shiraki, Shinji Kondo, Shintaro Katayama, Kazunori Waki, Takeya Kasukawa,

Hideya Kawaji, Rimantas Kodzius, Akira Watahiki, Mari Nakamura, Takahiro Arakawa,

100



Bibliography

Shiro Fukuda, Daisuke Sasaki, Anna Podhajska, Matthias Harbers, Jun Kawai, Piero

Carninci, and Yoshihide Hayashizaki. Cap analysis gene expression for high-throughput

analysis of transcriptional starting point and identification of promoter usage. Proc.

Natl. Acad. Sci. U. S. A., 100(26):15776–15781, 23 December 2003.

[142] Navjot Singh and Joseph T Wade. Identification of regulatory RNA in bacterial genomes

by genome-scale mapping of transcription start sites. Methods Mol. Biol., 1103:1–10,

2014.

[143] L Smith, L Yeganova, and W J Wilbur. Hidden markov models and optimized sequence

alignments. Comput. Biol. Chem., 27(1):77–84, February 2003.

[144] Rotem Sorek and Pascale Cossart. Prokaryotic transcriptomics: a new view on regulation,

physiology and pathogenicity. Nat. Rev. Genet., 11(1):9–16, January 2010.

[145] Jessica Spitzer, Markus Hafner, Markus Landthaler, Manuel Ascano, Thalia Farazi, Greg

Wardle, Jeff Nusbaum, Mohsen Khorshid, Lukas Burger, Mihaela Zavolan, and Thomas

Tuschl. PAR-CLIP (photoactivatable Ribonucleoside-Enhanced crosslinking and im-

munoprecipitation): a step-by-step protocol to the transcriptome-wide identification of

binding sites of RNA-binding proteins. Methods Enzymol., 539:113–161, 2014.

[146] C M Stultz, J V White, and T F Smith. Structural analysis based on state-space modeling.

Protein Sci., 2(3):305–314, March 1993.

[147] H Su, T Xu, S Ganapathy, M Shadfan, M Long, T H-M Huang, I Thompson, and Z-M Yuan.

Elevated snoRNA biogenesis is essential in breast cancer. Oncogene, 33(11):1348–1358,

13 March 2014.

[148] The ENCODE Project Consortium. A user’s guide to the encyclopedia of DNA elements

(ENCODE). PLoS Biol., 9(4):e1001046, 19 April 2011.

[149] Carla A Theimer and Juli Feigon. Structure and function of telomerase RNA. Curr. Opin.

Struct. Biol., 16(3):307–318, June 2006.

[150] Maureen K Thomason, Thorsten Bischler, Sara K Eisenbart, Konrad U F‘̀orstner, Aixia

Zhang, Alexander Herbig, Kay Nieselt, Cynthia M Sharma, and Gisela Storz. Global

transcriptional start site mapping using dRNA-seq reveals novel antisense RNAs in

escherichia coli. J. Bacteriol., 29 September 2014.

[151] J A Thompson, M F Radonovich, and N P Salzman. Characterization of the 5’-terminal

structure of simian virus 40 early mRNA’s. J. Virol., 31(2):437–446, August 1979.

[152] Cole Trapnell, Lior Pachter, and Steven L Salzberg. TopHat: discovering splice junctions

with RNA-Seq. Bioinformatics, 25(9):1105–1111, 1 May 2009.

[153] Andrew V Uzilov, Joshua M Keegan, and David H Mathews. Detection of non-coding

RNAs on the basis of predicted secondary structure formation free energy change. BMC

Bioinformatics, 7:173, 27 March 2006.

101



Bibliography

[154] Saba Valadkhan and Lalith S Gunawardane. Role of small nuclear RNAs in eukaryotic

gene expression. Essays Biochem., 54:79–90, 2013.

[155] Anton Valouev, David S Johnson, Andreas Sundquist, Catherine Medina, Elizabeth

Anton, Serafim Batzoglou, Richard M Myers, and Arend Sidow. Genome-wide analysis of

transcription factor binding sites based on ChIP-Seq data. Nat. Methods, 5(9):829–834,

September 2008.

[156] Arnoud H M van Vliet. Next generation sequencing of microbial transcriptomes: chal-

lenges and opportunities. FEMS Microbiol. Lett., 302(1):1–7, January 2010.

[157] J C Venter, M D Adams, E W Myers, P W Li, R J Mural, G G Sutton, H O Smith, M Yandell,

C A Evans, R A Holt, J D Gocayne, P Amanatides, R M Ballew, D H Huson, J R Wortman,

Q Zhang, C D Kodira, X H Zheng, L Chen, M Skupski, G Subramanian, P D Thomas,

J Zhang, G L Gabor Miklos, C Nelson, S Broder, A G Clark, J Nadeau, V A McKusick,

N Zinder, A J Levine, R J Roberts, M Simon, C Slayman, M Hunkapiller, R Bolanos,

A Delcher, I Dew, D Fasulo, M Flanigan, L Florea, A Halpern, S Hannenhalli, S Kravitz,

S Levy, C Mobarry, K Reinert, K Remington, J Abu-Threideh, E Beasley, K Biddick,

V Bonazzi, R Brandon, M Cargill, I Chandramouliswaran, R Charlab, K Chaturvedi,

Z Deng, V Di Francesco, P Dunn, K Eilbeck, C Evangelista, A E Gabrielian, W Gan,

W Ge, F Gong, Z Gu, P Guan, T J Heiman, M E Higgins, R R Ji, Z Ke, K A Ketchum,

Z Lai, Y Lei, Z Li, J Li, Y Liang, X Lin, F Lu, G V Merkulov, N Milshina, H M Moore, A K

Naik, V A Narayan, B Neelam, D Nusskern, D B Rusch, S Salzberg, W Shao, B Shue,

J Sun, Z Wang, A Wang, X Wang, J Wang, M Wei, R Wides, C Xiao, C Yan, A Yao, J Ye,

M Zhan, W Zhang, H Zhang, Q Zhao, L Zheng, F Zhong, W Zhong, S Zhu, S Zhao,

D Gilbert, S Baumhueter, G Spier, C Carter, A Cravchik, T Woodage, F Ali, H An, A Awe,

D Baldwin, H Baden, M Barnstead, I Barrow, K Beeson, D Busam, A Carver, A Center,

M L Cheng, L Curry, S Danaher, L Davenport, R Desilets, S Dietz, K Dodson, L Doup,

S Ferriera, N Garg, A Gluecksmann, B Hart, J Haynes, C Haynes, C Heiner, S Hladun,

D Hostin, J Houck, T Howland, C Ibegwam, J Johnson, F Kalush, L Kline, S Koduru,

A Love, F Mann, D May, S McCawley, T McIntosh, I McMullen, M Moy, L Moy, B Murphy,

K Nelson, C Pfannkoch, E Pratts, V Puri, H Qureshi, M Reardon, R Rodriguez, Y H

Rogers, D Romblad, B Ruhfel, R Scott, C Sitter, M Smallwood, E Stewart, R Strong,

E Suh, R Thomas, N N Tint, S Tse, C Vech, G Wang, J Wetter, S Williams, M Williams,

S Windsor, E Winn-Deen, K Wolfe, J Zaveri, K Zaveri, J F Abril, R Guigó, M J Campbell, K V

Sjolander, B Karlak, A Kejariwal, H Mi, B Lazareva, T Hatton, A Narechania, K Diemer,

A Muruganujan, N Guo, S Sato, V Bafna, S Istrail, R Lippert, R Schwartz, B Walenz,

S Yooseph, D Allen, A Basu, J Baxendale, L Blick, M Caminha, J Carnes-Stine, P Caulk,

Y H Chiang, M Coyne, C Dahlke, A Mays, M Dombroski, M Donnelly, D Ely, S Esparham,

C Fosler, H Gire, S Glanowski, K Glasser, A Glodek, M Gorokhov, K Graham, B Gropman,

M Harris, J Heil, S Henderson, J Hoover, D Jennings, C Jordan, J Jordan, J Kasha, L Kagan,

C Kraft, A Levitsky, M Lewis, X Liu, J Lopez, D Ma, W Majoros, J McDaniel, S Murphy,

M Newman, T Nguyen, N Nguyen, M Nodell, S Pan, J Peck, M Peterson, W Rowe,

102



Bibliography

R Sanders, J Scott, M Simpson, T Smith, A Sprague, T Stockwell, R Turner, E Venter,

M Wang, M Wen, D Wu, M Wu, A Xia, A Zandieh, and X Zhu. The sequence of the human

genome. Science, 291(5507):1304–1351, 16 February 2001.

[158] Michael-Paul Vockenhuber, Cynthia M Sharma, Michaela G Statt, Denis Schmidt, Zhen-

jiang Xu, Sascha Dietrich, Heiko Liesegang, David H Mathews, and Beatrix Suess. Deep

sequencing-based identification of small non-coding RNAs in streptomyces coelicolor.

RNA Biol., 8(3):468–477, May 2011.

[159] Karl V Voelkerding, Shale A Dames, and Jacob D Durtschi. Next-generation sequencing:

from basic research to diagnostics. Clin. Chem., 55(4):641–658, April 2009.

[160] J̀‘org Vogel, Verena Bartels, Thean Hock Tang, Gennady Churakov, Jacoba G Slagter-

J́’ager, Alexander H‘̀uttenhofer, and E Gerhart H Wagner. RNomics in escherichia coli

detects new sRNA species and indicates parallel transcriptional output in bacteria.

Nucleic Acids Res., 31(22):6435–6443, 15 November 2003.

[161] J T Wade. Where to begin? mapping transcription start sites genome-wide in escherichia

coli. J. Bacteriol., 20 October 2014.

[162] F Wahid, T Khan, K Hwang, and Y Kim. Piwi-interacting RNAs (piRNAs) in animals: The

story so far. Afr. J. Biotechnol., 8(17), 29 November 2010.

[163] Zhong Wang, Mark Gerstein, and Michael Snyder. RNA-Seq: a revolutionary tool for

transcriptomics. Nat. Rev. Genet., 10(1):57–63, January 2009.

[164] Toshiaki Watanabe and Haifan Lin. Posttranscriptional regulation of gene expression by

piwi proteins and piRNAs. Mol. Cell, 56(1):18–27, 2 October 2014.

[165] J V White, C M Stultz, and T F Smith. Protein classification by stochastic modeling and

optimal filtering of amino-acid sequences. Math. Biosci., 119(1):35–75, January 1994.

[166] Erno Wienholds, Wigard P Kloosterman, Eric Miska, Ezequiel Alvarez-Saavedra, Eugene

Berezikov, Ewart de Bruijn, H Robert Horvitz, Sakari Kauppinen, and Ronald H A Plasterk.

MicroRNA expression in zebrafish embryonic development. Science, 309(5732):310–311,

8 July 2005.

[167] Sebastian Will, Kristin Reiche, Ivo L Hofacker, Peter F Stadler, and Rolf Backofen. Infer-

ring noncoding RNA families and classes by means of genome-scale structure-based

clustering. PLoS Comput. Biol., 3(4):e65, 13 April 2007.

[168] Ina Wilms, Aaron Overl̀‘oper, Minou Nowrousian, Cynthia M Sharma, and Franz Nar-

berhaus. Deep sequencing uncovers numerous small RNAs on all four replicons of the

plant pathogen agrobacterium tumefaciens. RNA Biol., 9(4):446–457, April 2012.

[169] J E Wilusz. Noncoding RNA. In Brenner’s Encyclopedia of Genetics, pages 84–86. Elsevier,

2013.

103



Bibliography

[170] Barbara Wold and Richard M Myers. Sequence census methods for functional genomics.

Nat. Methods, 5(1):19–21, 19 December 2007.

[171] Thomas D Wu and Serban Nacu. Fast and SNP-tolerant detection of complex variants

and splicing in short reads. Bioinformatics, 26(7):873–881, 1 April 2010.

[172] Thomas D Wu and Colin K Watanabe. GMAP: a genomic mapping and alignment

program for mRNA and EST sequences. Bioinformatics, 21(9):1859–1875, 1 May 2005.

[173] Omri Wurtzel, Rajat Sapra, Feng Chen, Yiwen Zhu, Blake A Simmons, and Rotem Sorek.

A single-base resolution map of an archaeal transcriptome. Genome Res., 20(1):133–141,

January 2010.

[174] Chengguo Yao, Lingjie Weng, and Yongsheng Shi. Global protein-RNA interaction

mapping at single nucleotide resolution by iCLIP-seq. Methods Mol. Biol., 1126:399–410,

2014.

[175] Petya Zhelyazkova, Cynthia M Sharma, Konrad U F‘̀orstner, Karsten Liere, J́’org Vogel,

and Thomas B‘̀orner. The primary transcriptome of barley chloroplasts: numerous

noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase.

Plant Cell, 24(1):123–136, January 2012.

104



Hadi Jorjani 
Personal C.V.

Hadi Jorjani
Davidsbodenstrasse 42
4056 Basel
Switzerland

Phone: (+41) 7878-32758
Email: hadi.jorjani@unibas.ch
           h.jorjani@gmail.com

Personal Information

First Name: Hadi
Last Name: Jorjani
Birth Date: April 16th, 1986
Gender: Male
Marital Status: Married
Nationality: Iranian

Education

January 2011 – December 2014

Ph.D in Bioinformatics

Thesis: Computational analysis of next generation sequencing data: from transcription start sites 
in bacteria to human non-coding RNA

Supervised by Prof. Mihaela Zavolan
Department of Bioinformatics, Biozentrum, University of Basel, Switzerland

September 2008 – August 2010

M.Sc in Computer Engineering - Algorithms and Computations

Thesis: Transcriptional regulatory network analysis of histone post–translational modifications in 
computational epigenetics

Supervised by Prof.  Ali Moeini
Department of Electrical and Computer Engineering, University of Tehran, Iran

September 2004 – August 2008

B.Sc in Computer Engineering 

Thesis: Extraction of learning styles in an Intelligent tutoring system

Supervised by: Dr. Hasan Seydrazi
Department of Electrical and Computer Engineering, University of Tehran, Iran

September 2000 - June 2004 

Diploma in Mathematics and Physics 
National Organization for Development of Exceptional Talents, Gorgan, Iran

1

105



Publications

• Jorjani, H. & Zavolan, M. TSSer: an automated method to identify transcription start 
sites in prokaryotic genomes from differential RNA sequencing data. Bioinformatics 30, 
971–974 (2014).

• Kishore, S. et al. Insights into snoRNA biogenesis and processing from PAR-CLIP of 
snoRNA core proteins and small RNA sequencing. Genome Biol. 14, R45 (2013).

• Jorjani, H. et al. An updated human snoRNAome. RNA Biol. To be submitted.

Research Interests 

• Algorithms design. Machine learning, Bayesian data analysis
• Graph theory, Linear algebra, Combinatorics
• Stochastic modeling, Dynamical systems

Teaching Experience

Computational systems biology 
Teaching Assistant
University of Basel, Department of Bioinformatics
Spring 2013

Skills
Programming Languages: C, C++, Java, Python, R, MATLAB

Languages:
Farsi: Native
English: fluent
German: basic

Honors and Awards

• Top student in sub-discipline of Information technology, 2008
• GPA qualified for studying M.Sc. at University of Tehran without entrance exam among
all computer engineering students, 2008
• Bronze medal of 21th national mathematics olympiad, young scholars club, Tehran,
Iran,  2003
• 9 th Place, National graduate entrance examination of Azad university in artificial 
intelligence field, 2008
• Top 0.1% of the nationwide university entrance exam, with nearly 500,000 participants, 
2004

References 

Prof. Dr.  Mihaela Zavolan 

Department of Bioinformatics, University of Basel
E-mail: mihaela.zavolan@unibas.ch
Tel: +41 61 267 15 77

106


	Acknowledgements
	Abstract (English/Deutsch)
	Introduction
	Thesis Outline
	High Throughput Sequencing
	Next Generation Sequencing as an Essential Tool in Molecular Biology Today
	Applications of NGS technology
	NGS platforms
	Analyzing NGS data

	The general framework of identifying transcriptional start sites
	dRNA-seq (differential RNA sequencing)
	dRNA-seq data analysis
	Basics of Bayesian analysis
	Hidden Markov Models

	Genome-wide identification of non-coding RNAs and their interaction partners
	Non-coding RNAs
	The ENCODE project
	CLIP-based methods unravel protein-RNA interactions


	TSSer: A Computational tool to analyze dRNA-seq data
	Insights into snoRNA biogenesis and processing
	An updated human snoRNAome
	Discussion
	Appendices
	Supplementary material of Chapter 4
	Bibliography
	Curriculum Vitae

