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Abstract

Docking and scoring are widely used in nowadays drug discovery process. Scoring

function is used as a fast method to estimate the docking results. In this thesis, a

regional-defined genetic algorithm approach is developed to optimize the force-field

based scoring function.

Human pregnane X receptor (PXR) is a nuclear receptor which is promiscuous in its

affinity for ligands such as bile acid, steroid hormones, fat-soluble vitamins, prescription

and herbal drugs, and environmental chemicals. In this thesis, the development and

validation of in silico three-dimensional models for the pregnane X receptors is presented.

These model aim at the screening of drug candidates for potential activity towards the

PXR.

Potential side effects and toxicity of anti-trypanosomiasic active compounds were

investigated using the VirtualToxLab. This technology identifies the binding mode of a

small-molecule compound toward a series of 16 target proteins (nuclear receptors,

cytochrome P450 enzymes, hERG, AhR) known or suspected to trigger adverse effects. The

kinetic stability of the identified hits are evaluated by molecular dynamics

simulations.
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Chapter 1

Introduction

1.1 Computer Simulation of Protein–Ligand interactions

Protein–ligand interactions play a central role in living cells. From G protein–coupled

signal transduction to nuclear–receptor inducing gene expression, from programming cell

death to embryo stem-cell differentiation. In the era of ever expanding biological

complexity, the interplay between structural, computational and chemical biology has

brought major scientific advances to modern biomedical research. The complexity of

interactions between a small-molecule ligand and its target protein, is often determined

by the flexibility of the protein-binding site and by the structural rearrangements that

occur upon binding. The forces that control protein behavior and their physical–chemical

origins are inferred from equilibrium binding-kinetic measurements or are computed

with molecular models. Calculated energies may be associated with physical and

chemical interactions ruling protein function and behavior. Although in silico models are

usually simplified and abstracted from the real world, computational techniques are

continually evolving so as to broaden the range of feasible applications, and the accuracy

of predictions and theoretical approaches are often supportive in guiding and interpreting

experiments.1
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1.1.1 Protein–Ligand Docking

During the docking process, different poses are generated by the search algorithm, which

ideally should sample the degrees of freedom of the protein–ligand complex not

necessarily exhaustive but adequately enough as to include the true binding modes. These

different poses are then evaluated and used to identify the true binding mode(s) for a

given ligand, and to estimate its binding affinity. Hence, a scoring function should not

only be able to ensure a distinction between different alternatives and ranking them

accordingly, but also to represent the thermodynamics of interaction of the protein–ligand

system accurately. Protein flexibility, water molecules and entropy are important factors

that influence docking.

Ligand Flexibility

Ligand conformational sampling is an essential step to generate a multi-conformer

dataset used in ligand sampling (e.g. Glide2). To reduce the complexity of conformational-

space sampling for the ligand and also to collect the binding poses more efficiently,

pharmacophore-based methods have been adopted to pre-align the ligand within the

binding site (e.g. Dolina3), with the underlying algorithm incorporating geometric and

chemical features based on known or computationally– identified template ligands.

Protein Flexibility

Protein flexibility, including side-chain reorientations and backbone motions, can signifi-

cantly modulate the geometry and characteristics of the ligand binding site.4 Due to the

high degrees of freedom, most of the strategies already implemented in protein–ligand

docking programs accounting for side-chain flexibility only, with the inclusion of

backbone flexibility would be computationally extremely demanding.5 Main strategies

including some level of protein flexibility into protein–ligand docking are: (1) soft docking,

allowing a certain overlap between receptor and ligand, limited to small scale

rearrangements associated to side-chain plasticity, without the corresponding backbone

adjustment. (e.g. Glide2); (2) side-chain flexibility, by either systematic exploring

side-chain rotamers or using a stochastic-searching method. (e.g. MedusaDock,6

Cheetah7, 8); (3) ensemble docking, implicitly introducing flexibility into protein–ligand
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docking involves the use of an ensemble of protein conformations (X-ray, NMR, molecular

dynamics, Monte Carlo) as a target for docking instead of a single structure (e.g.

AutoDock9); (4) induced-fit docking, consider both side-chain and backbone flexibility

(e.g. IFD,10 RosettaLigand11); (5) molecular-dynamics simulations, generating perturbed

ensembles, which represent ligand-induced binding-site flexibility in a robust

process.12

Water molecules

Water molecules on the interface of bimolecular complexes play an important role in

protein–ligand interactions13 (hydrophobic interactions, residual mobility, bridged

hydrogen bond, desolvation, dielectric properties). Active-site water molecules can be

considered as an aspect of target flexibility during docking. Properly accounting for

specific water molecules on the interface as well as for the general effect of solvation is a

vital aspect of docking. Rossato et al. developed an algorithm (AcquaAlta8) to match

predicted water positions (structural water molecules) with the Cambridge Structure

Database; Zheng et al. introduced wPMF14 (a knowledge-based method) to predict the

potential hydration sites of protein structure, Abel and Friesner et al. developed

WaterMap15 to identify hydration sites in binding pockets and to evaluate the favorability

of their displacement using an empirical formula based on the computed enthalpic and

entropic contributions, Hu et al. developed WATSite16 to identify hydration sites using a

MD trajectory, the thermodynamic profile of each hydration site is then estimated by

computing the enthalpy and entropy of the water molecule throughout the simulation.

Representation of bulk water is even more problematic than that of specific water

molecules, particularly for polar or charged systems.17 Docking with flexible (on/off)

water molecules (e.g. MolDock,18Cheetah7, 8) led to an improvement in pose

prediction.

Entropy

Entropic effects contribute substantially to the protein–ligand binding energy. They arise

from a variety of aspects including the reduction of the translational and rotational

degrees of freedom in the ligand, changes in the normal modes of protein vibration and of
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the ligand during binding, from the arrangement of water layers around the two entities

and even from protonation and deprotonation events. However, in most commonly used

computational applications that deal with protein complexes, including free energy

calculations, entropy is neglected altogether, or dramatic simplified such as counting the

number of ligand rotatable bonds as a factor of ligand entropy. In Cheetah,7, 8 the entropic

contribution is estimated from the different conformational flexibility in the bound and

unbound state.

Binding Modes—Exploration of the 4th dimension

Figure 1.1: 4D-binding of 17� -estradiol to the Pregnane X receptor

In general, a 3D structures of protein–ligand complex can provide a direct insight into the

interactions between a ligand and its target protein. However, it is hard to discriminate the

favorability of the binding poses. Biographics’ 4D viewer allows inspecting all identified

poses (potential binding modes) Boltzmann-weighted and at once.19 The poses are shown
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with a scaled intensity corresponding to the individual contribution to the binding energy

(cf. Boltzmann weight in the panel at right, figure 1.1). This method could provide a more

meaningful interaction diagram for binding-pose identification.

1.1.2 Scoring functions

Various classes of scoring functions are used for pose prediction and ligand ranking, which

can be classified as physics-based, knowledge-based, empirical-based and

descriptor-based methods.20

Physics-based scoring functions

Physics-based approaches the approximate binding free energy by combining

non-bonded energy terms of molecular-mechanics force fields, solvation energy, with or

without entropy.21 An example is MM-PBSA (Molecular Mechanics Poisson-Boltzmann

Surface Area).22, 23 In the MM-PBSA approach, a molecular-mechanics force field

represents the solute (receptor, ligand, and receptor-ligand complex), and the PB equation

represents the solvent molecules as a structureless dielectric continuum with ions

distributed in a mean-field manner according to the Boltzmann distribution. The

dielectric continuum treatment represents the solute as a low dielectric body, with a shape

defined by the atomic coordinates, radii, molecular surface, and its 3D spatial charge

distribution defined by the atomic coordinates and partial atomic charges. The non-polar

solvation is divided into two terms: the repulsive (cavity) and attractive (dispersion)

interactions, which corresponds to the creation of a cavity in water and the vdW

interactions between the non-polar molecule and the water molecules, respectively. The

polar solvation term describes the contribution to the free energy due to polarization of

the solvent environment by the solute. The implicit water model of PB solver neglecting

the degrees of freedom associated with each individual water and ion molecule. The main

equations for the MM-PBSA method are shown below, where G denotes the Gibbs free

energy:

�G =Gs o l v a t e d [C o mp l e x ]� (Gs o l v a t e d [R e c e p t o r ]+Gs o l v a t e d [Li g a nd ]) (1.1)

The free energies of each species are typically evaluated by the following relations, where

T is the temperature, S is the entropy, E is the potential energy, evaluated as the terms in
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molecular mechanics force field energy, used in place of the enthalpy:

Gs o l v a t e d =Gg a s +Gs o l v a t i o n �T S (1.2a)

Gg a s =Ei n t e r na l +Ee l e c +Ev d W (1.2b)

Ei n t e r na l =Eb o nd +Ea ng l e +Et o r s i o n (1.2c)

Gs o l v a t i o n =Es o l v,p o l a r +Es o l v,no np o l a r (1.2d)

The polar solvation energy is obtained by solving the PB equation:

r[✏(r)r�(r)] =�4⇡⇢(r)�4⇡�(r)
X

i

zi ci e x p (�zi�(r)/kB T ) (1.3)

where �(r) is the dielectric constant, �(r) is the electrostatic potential, �(r) is the solute

charge, �(r) is the Stern layer-masking function, zi is the charge of ion type i, ci is the bulk

number density of ion type i far from the solute, kB is the Boltzmann constant, and T is the

temperature; the summation is over all different ion types.

The adoption of the MM-PBSA methodology by the scientific community has resulted in

an increased number of publications including MM-PBSA results, yet it has also seen an

increase in the errors of the predicted binding affinities reported using this method with

respect to the experimentally measured binding affinities. One reason is a net difference

between a large desolvation penalty value and large electrostatic interaction energy could

be very small, but it is that difference strongly affects the binding affinity, a very accurate

determination is required to reduce the errors in the net difference, another reason is in

part to the significant number of parameters in the PB equation that are not optimized by

the end users. The dielectric-interface representation, the interior dielectric constant,

handling of internal cavities, bridged waters are key parameters et to perform a valid

MM-PBSA approach for protein-ligand interactions.24 Advanced methods by

incorporating QM/MM method within the binding pocket to optimize the geometry and

partial charges25 or by using a polarizable force field could give more insight into this

aspect at higher computing expense.

Knowledge-based potentials

Knowledge-based scoring functions are exclusively built from statistical analyses of

experimentally determined complex structures, based on the assumption that interatomic
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distances occurring more often than some average value should represent favorable

contacts, and vice versa.26 The development from atom-pairwise correlation to group

correlation (network motif, pharmacophore) and incorporation of extended

physical-meaning potentials has optimized this process since its origin. Such as

MotifScore,27 which introduced tally motifs of protein–ligand interaction networks

constructed from experimental structures, it captured frequently occurring protein–ligand

interactions by network motifs instead of pairwise interactions. Another effort captured

knowledge-vested pharmacophore to process a knowledge-guided scoring strategy.

Neudert and Klebe developed DSX,28 consisting of distance-dependent pair potentials,

novel torsion angle potentials and solvent-accessible surface-dependent potentials and

demonstrated good performance in pose prediction and ligand ranking. Zheng et al.14

presented orientation-dependent hydrogen potential. The preceding studies demonstrate

the potential of capturing experimental data for improvement of scoring outcomes,

compared with conventional functions. They also reveal the need for more consistent and

extensive evaluation and comparison.

Empirical scoring functions

The underlying idea of empirical scoring functions is that the binding free energy of a

non-covalent protein–ligand complex can be interpreted as a sum of localized, chemically

intuitive interactions. Such energy decompositions can be a useful tool to understand

binding phenomena. These average functional-group contributions can then be used to

estimate a protein-independent binding energy for a compound that can be compared to

experimental values. If the experimental value is approximately the same as or higher than

the calculated value, one can infer a good fit between receptor and ligand and essentially

all functional groups of the ligand are involved in protein interactions. If the experimental

energy is significantly lower, one can infer that the compound can not fully form its

potential interactions with the protein. Experimental binding affinities have also been

analyzed on a per atom basis in quest of the maximal binding affinity of non-covalent

ligands. Also referred to “empirical scoring functions”, on the other hand, are normally

used to compute the fitness of protein–ligand binding by summing up the contributions of

a number of individual terms, each representing an relevant energetic factor in

protein–ligand binding.29 The weights are assigned by regression technique by fitting
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predicted and experimentally determined affinities to a given set of training complexes

(Böhm and Stahl, 1999). For example, Glide Score:30

G S c o r e =0.05 ·v d W +0.15 ·C o ul +Li p o +H b o nd +M e t a l +R e w a r d s +R o t B +Si t e (1.4)

GScore designed with an emphasis on recognizing the diversity in protein binding sites by

rewarding or penalizing certain interaction patterns. Of particular interest is the

classification of hydrogen bonds into neutral–neutral, neutral–charged, and

charged–charged types and use of separate terms accounting for “hydrophobic enclosure”

in addition to consideration of hydrophobic contacts between protein and ligand. The

convenience of adding or removing individual terms also makes it possible to develop

customized scoring functions for certain molecular systems to achieve better

performance. On the other hand, adopting intuitive functional forms adds to the

empirical nature of these methods. Empirical scoring functions include only common

protein–ligand interaction patterns. Less common interaction patterns, despite being

strong and specific such as cation-�interaction, are usually ignored because they are not

significant in the regression analysis. Or, if a certain factor is not interpretable by human

in a straight- forward manner, such as entropic factors, it is not likely to be included either.

Thus, it is rather difficult, if not impossible, to establish a comprehensive and consistent

description of all possible factors in protein–ligand binding within the framework of an

empirical scoring function.

Machine-learning approaches

One of the postulated weaknesses of scoring resulting in poor affinity prediction, is the

assignment of a common set of weights to the individual functional terms and the

incorrect assumption that these weights are additive in their contribution to binding

affinity. Recent literature has seen an increase of attempts to overcome these

shortcomings by applying machine-learning and nonlinear-regression methods to the

derivation of scoring functions.17 (e.g. eSimDock,31 SFCcoreR F ,32 ID-Score33)

1.1.3 Quantitate Structure–Activity Relationships (QSAR)

QSAR attempt to describe and quantify the correlation between chemical structure and

biological activity. The foundation of quantitative correlations between chemical structure
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and biological effect is the entirely reasonable assumption that the differences in the

physicochemical properties are responsible for the relative potency of the interactions of

the drug with biological macromolecules. It is assumed in the first approximation that

these contribute additively to the affinity of an active substance on its receptor. The

concept of describing the biological activity of substances with mathematical models is

derived from this approach.34 Traditionally, the investigated substances interact with the

same biological target should come from a chemically uniform series and display the

same mode of action. With the advent of 3D-QSAR (CoMFA35), a rational model

representing the binding site could be generated by mapping physico-chemical properties

onto a surface or a grid surrounding the ligand molecules, superimposing in 3D space

(pharmacophore hypothesis), as such a model interacts with all ligands simultaneously, it

represents but an averaged surrogate; a fundamental shortcoming as receptor–ligand

adaptation (the specific alteration of protein conformations induced by the individual

ligand) which leads to different physico-chemical fields experienced by the individual

ligands, cannot be simulated with an averaged model. By introducing pseudo-receptor

concept,36 the Quasar methodology7, 37 developed by Vedani et al. is one of the few QSAR

approaches which accounts for ligand triggering induced-fit by specifically allowing for a

topological adaptation of the receptor surrogate to the individual ligand molecules,

solvation effects is also evaluated simultaneously.

1.1.4 VirtualToxLab

The VirtualToxLab38 (VTL) is an in silico tool for predicting the toxic potential (endocrine

and metabolic disruption, some aspects of carcinogenicity and cardiotoxicity) of drugs,

chemicals and natural products. The toxic potential of a given compound is computed by

simulation and quantification of the binding of a small molecule toward a series of 16

proteins known or suspected to trigger adverse effects. Those so-called “off targets”

currently include the androgen, aryl hydrocarbon, estrogen �, estrogen �, glucocorticoid,

liver X, mineralocorticoid, progesterone, thyroid �, thyroid � and peroxisome

proliferator-activated receptor � (PPAR�), potassium voltage-gated channel (hERG) as well

as the enzymes cytochrome CYP450 1A2, 2C9, 2D6 and 3A4.
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Figure 1.2: Pictorial flowchart of the VirtualToxLab19

The underlying technology to quantify the binding affinity (mixed-model QSAR), however,

meets its limitations when attempting to estimate the binding affinity of compounds

significantly different from those present in the training set as individual target proteins

are typically validated using only a few chemical classes (for which affinity data, preferably

determined at a single laboratory, are available). The identification of the binding mode

itself does not depend on any training data as the compounds are docked to the

three-dimensional structure of the target protein.

The binding affinity of a small molecule toward a macromolecular target may be

estimated by generating and quantifying its 4D ensemble both in aqueous solution and at

a target protein and computing the associated changes in the associated energies

therefrom. Here, the term “4D” refers to the consideration of all energetically feasible

poses (potential binding modes, i.e. different positions, orientations and conformations)

of the small molecule, weighted e.g. by a Boltzmann function.
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1.2 Pregnane X Receptor and Drug Metabolism

1.2.1 The Pregnane X receptor

The pregnane X receptor (PXR) is an orphan nuclear receptor expressed in mammalian liver,

intestine and brain capillaries. It plays a key role in the regulation of both drug metabolism

and efflux by inducing a network of genes, including those that encode cytochrome P450

enzymes (CYPs, particularly CYP3A4)39 and the multi-drug resistance gene ABCB1, which

encodes the P-glycoprotein.40 Together, these drug-detoxification proteins are responsible

for the elimination of more than 50% of all drugs.41

Figure 1.3: Drugs that bind and active PXR, coordinately induce cytochrome P450 isoform 3A4 (CYP-

3A4)-mediated drug metabolism and ABCB-1-P-glycoprotein-mediated drug efflux.

The PXR ligand-binding domain (LBD) is highly flexible and largely hydrophobic with five

polar residues capable of both donating and accepting hydrogen bonds. The ligand

binding cavity of PXR is lined with 28 amino acids, with an essentially elliptical shape.42

Because most proteins use shape to dictate specificity, the promiscuity of PXR appears to

be greatly assisted by it’s relatively shapeless binding pocket. Drug candidates that display

agonistic activity toward PXR might cause severe drug–drug interactions and should,

consequently, be removed from the drug-discovery pipeline. PXR has evolved to detect

structurally diverse compounds, resulting in promiscuous protein–ligand interactions.
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Due to the high flexibility of the PXR ligand-binding domain, there were only limited

successes with structure-based modeling approaches to predict PXR activators or

non-activators. Therefore, new theoretical approaches that can effectively characterize the

alterable interaction modes of PXR with its diverse ligands would be in need for solve this

problem.

1.2.2 Approaches in PXR modeling

Figure 1.4: Top left: the superposed crystal structures of the PXR-LBD, the apo structure is colored

in red(PDB ID 1ILG), the complex structures are colored in green (PDB ID: 1M13, 1NRL, 2O9I, 2QNV,

3R8D, 4NY9, 4XHD). The ligand represented as licorice. Top right: the binding pocket of PXR-LBD

with the promiscuity hydrophobic binding site (red lines) and hydrogen-bond acceptor site (red star)

highlighted. Bottom: Chemical structures solved by X-ray binding towards the PXR (PXR/estradiol

was obtained from the author, not available through the PDB).
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PXR has evolved to detect structurally diverse compounds (Figure 1.4), it shows

conformation-change tolerance towards ligand binding. Theoretical approaches that can

effectively characterize the alterable interaction modes of PXR with its diverse ligands are

needed for the analysis and investigation of molecular recognition. A study using

computational solvent mapping43 suggested that Phe288, Trp299 and Tyr306 play an

important role in forming hydrophobic interactions with ligands, and Gln285 is likewise

essential in forming hydrogen-bond interactions with ligands. A comprehensive study

using 3D, 4D and 5D-QSAR methods44 suggested that only a 5D method7 could display

some extend of success for predicting external test set of steroid compounds. Chen et. al.

used multiple binding mode-based quantitative structure-activity relationship

(MBMB-QSAR) method that characterizes the non-bonded interaction profile of human

PXR with its ligands in multiple binding modes. From the predicted models it has been

suggested that the hydrophobic forces and electrostatic interactions play an important

role in hPXR–ligand binding, while the steric factor contributes moderately to the

binding.45 Handa et. al. used MD simulations to sample the active protein conformation

for docking, combined with MM-GB/SA for binding free-energy calculation and found

good correlations,46 which further confirmed the importance of receptor flexibility.

1.2.3 mQSAR for PXR

Figure 1.5: Ligand scaffolds used for the PXR QSAR study
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In this work, affinities (EC50) for PXR binding molecules were selected from a series of

congeneric compounds and classified by chemical type.47–55 The binding modes for the

high affinity representatives in each class are generated by manual docking with Yeti as

well as automated docking with Cheetah and Schrödinger IFD and visually inspected and

identified; the others are docked by both pharmacophore-based pre-aligned docking and

Monte-Carlo metropolis sampling (software Alignator/ Dolina,3 Cheetah7, 8) based on the

identified templates. The underlying algorithm particularly allows for two aspects of

ligand–protein binding which would seem to be of utmost importance: 1. Simulation of

induced fit, i.e. allowing the protein to adapt its shape to the different orientations and

conformations of the small molecule during the search procedure and 2. Quantification of

solvent effects (ligand desolvation, solvent stripping). The minimization algorithm is

driven by a directional force field, which has been tailored for simulating hydrogen bonds

and metal-ligand interactions, including ligand polarization terms, and to allow for

dynamic solvation (switch off the water molecules occupying the ligand position in situ) of

the binding pocket as well as for the evaluation of hydrogen-bond and hydrophobic

saturation.7, 37 The poses were scored and weighted by means of the 4D viewer.

For the binding poses of the most high-affinity ligands in each class, the kinetic stability

and alternative binding modes are challenged by MD simulations. The binding modes of

the seed compounds were generated based on these confirmed templates. Next, all

energetically feasible binding modes were extracted and used as input for the mQSAR

software Quasar and Raptor.56(Figure 3.24)

Figure 1.6: PXR QSAR process
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1.3 Evaluation of the toxic potential of natural products with

anti-trypanosomal activity

1.3.1 Human African trypanosomiasis

Human African Trypanosomiasis (HAT, or “sleeping sickness”) is a fatal disease caused by

two distinct subspecies of T. brucei (T. b. gambiense and T. b. rhodesiense) transmitted by

the bite of the Tsetse fly (Glossina spp., family Glossinidae) in Africa.57 The clinical

manifestations of this disease depend on the stage of infection and also on the subspecies

of the parasite. After the bite of an infected fly, the parasite multiplies in the lymph and

blood, causing headaches, fever, malaise, weakness, weight loss, arthralgia, and eventually

vomiting and skin lesions. In the latter stages, the parasite crosses the blood-brain barrier,

migrates to the CNS and the cerebral spinal fluid, and causes severe neurological and

psychiatric disorders, leading to death. According to the WHO, around 60 million people

are at risk to contract the sleeping sickness, and T. b. gambiense accounts for more than

90% of the disease.

Figure 1.7: Lifecycle of the African trypanosome, image from CDC58
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According to the WHO, around 60 million people are at risk to contract the sleeping

sickness, and T. b. gambiense accounts for more than 90% of the disease, which is one of

the very few infectious diseases with a mortality rate of 100% if untreated. Currently four

drugs are registered for the treatment of sleeping sickness. It usually managed with a

combination of suramin (T. b. rhodesiense) and pentamidine (T. b. gambiense) for the first

stage of the disease, prior to CNS involvement, being easier to administer. Eflornithine (T.

b. gambiense) and melarsoprol (for both T. b.) are used in the latter stage of the disease

and must cross the blood-brain barrier to reach the parasite, being very toxic and

complicated to administer. Suramin, pentamidine, and melarsoprol have unknown

mechanism of action, while eflornithine inhibits the enzyme ornithine descaboxylase,

involved in the biosynthesis of polyamines required for cell growth. Although these drugs

provide the cure of the infection in some cases, they show serious side effects, such as

nausea, vomiting, fatigue, renal toxicity, neurological complications (suramin),

hypoglycemia (pentamidine), fever, infections, hypertension, diarrhea, and neutropenia

(eflornithine).

In the last decade, the screening of more than 700 new and existing nitro-heterocycles led

the DNDi to find the fexinidazole with potential to treat advanced-stage sleeping sickness.

It is the first new clinical drug candidate in 30 years and after preclinical studies entered as

oral treatment in human phase I studies in September 2009.

1.3.2 Natural products active for T. b. gambiense

Considering the severe disadvantages of the existing drugs, there is a clear and pressing

need for the development of safer and more effective drugs for the treatment of HAT. Many

natural products have been reported to show antitrypanocidal activity, including

flavonoids, xanthones, lignans, terpenes, and alkaloids. Hamburger et al. recently iden-

tified several classes of natural products with antitrypanosomal activity.59–67 These

compounds represent a diverse and challenging class of chemicals for in silico profiling

against adverse effects.
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Figure 1.8: representative natural-product scaffolds yield HAT activity

1.3.3 In silico toxic potential profiling by the VTL

The toxic potential of these compounds was estimated employing the VirtualToxLab,38

which simulates and quantifies the binding of a given compound against 16 target

proteins known or suspected to trigger adverse effects. As the technology is based solely

on thermodynamic considerations, the resulting protein–ligand complexes were

subsequently challenged by MD simulations employing AMBER,68 which allowed probing

the kinetic stability of the complexes. If stable, a potential side-effect is likely to occur and

the compound could be removed from evaluation pipeline in an early stage of drug

development.
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Chapter 2

Methods

2.1 4D scoring function development

The philosophy of our modeling efforts to quantify the changes in the free energy

associated with small–molecule binding to protein targets is a “mixed-model approach”

combined with multi-dimensional QSAR (mQSAR) based on a directional force field. In

this approach, feasible binding modes of the small molecule at the protein are sampled

using a Monte-Carlo search protocol at the three-dimensional structure of the

macromolecular target and comprised into a 4D data set. As the errors associated with

energy components extracted from such an entity are larger than the differences in free

energies of ligand binding between two related molecules. An afterwards re-scoring

process is needed to re-weight the energy components in order to fit binding energy to the

experimental data. Such a re-weighted receptor environment should be feasible to

generate a quasi-atomistic receptor model for binding affinity prediction.

For all binding modes identified by Cheetah (12 poses/ligand), the following quantities

were calculated: protein–ligand interaction energy, ligand desolvation energy, ligand

entropy and induced-fit energy (Eligand-receptor, Eligand desolvation, T�S and Einduced fit,

respectively). Therefrom the binding energy was calculated according to the

equation:

Eb i nd i ng =El i g a nd�r e c e p t o r �El i g a nd d e s o l v a t i o n �El i g a nd s t r a i n �T�S�Ei nd u c e d f i t

El i g a nd�r e c e p t o r =Ee l e c t r o s t a t i c +Ev a n d e r W a a l s +Eh y d r o g e n b o nd i ng +Ep o l a r i z a t i o n
(2.1)
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The ligand–protein interaction energy was calculated by the Yeti force field:
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For the 12 docking poses to each ligand, Cheetah records the per-residue interaction

energy (with both protein and explicit solvent) for each pose by electrostatic, van der

Waals, hydrogen-bond and polarization energy contributions as Eele, Evdw, Ehbd and Epol.

In order to optimize the parameters, current common trait in the free-energy functions

comprised a linear combination of terms/descriptors adopted from other scoring

functions or force field, with linear weighting coefficients derived by fitting to a training

set of complexes with known structure and affinity, such as gCOMBINE and NeoScore.

However, these protocols do not take alternative poses (multiple conformations) into

consideration for the ligands, which potentially oversimplified the binding process. In the

meanwhile, the interaction energy is mainly contributed by residues within the binding

pocket. Generally, the energy contribution from the protein residues could be

decomposed into van der Waals interaction, hydrogen bond, electrostatic interaction and

polarization energies. These fractions are equally weighted among residues and combined

to yield the protein–ligand binding energy, nevertheless, the local environments within

the binding pocket are not identical between amino acids. For example, a cooperative

hydrophobic effect contributes stronger than isolated ones, the less frequent side-chain

rotamers have a reduced contribution than more frequent rotamers. Weighting factors

should not be identical among different residues. In order to optimize the weighting

factors for each residue, coefficients of each residue-related component were optimized

by a genetic algorithm, the re-weighted sum combined with Eint was regarded as
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Eligand-receptor, the contribution of Eligand-receptor, �Gsolv and T�S were optimized by

multiple-linear regression. Furthermore, the QSAR model is a quasi-atomic surrogate

concreted in the binding site, the binding energy components are distance-dependent,

energy contribution by residues far from the binding site are neglected, so only

contributions of residues within the binding pocket are considered for the binding.

Figure 2.1: Region-defined interaction energy calculation

Genetic algorithms (GAs) are iterative optimization techniques inspired by the natural

evolutionary process associated with passing genetic material from parents to their

offspring. The basic idea is to randomly generate an initial population, whose members

(genes) are candidate solutions to the problem (here: a combination of coefficients for all
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energy components within the binding site), and evolve that population (crossover and

mutation) under appropriate selection pressure — a fitness function, to obtain a better

solution. The process starts by representing the search domain by chromosomes that can

be mutated and altered.

The least-squares fitting (used as the fitness function), a mathematical procedure for

finding the best-fitting curve to a given set of points by minimizing the sum of the squares

of the offsets, the coefficient �(4⇥1 matrix) for El i g�r e c , �Gs o l v , T�S and the slope, is

generated by:

� = (X T ·X )�1 ·X T ·E T
e x p (2.3)

X is a n⇥3 matrix, n stands for the number of ligands, 3 stands for the 3 energy components:

El i g�r e c ,�Gs o l v and T�S. Therein, the r 2 was represented by:

r 2=⌃(Ec a li
� Ēe x p )2/⌃(Ee x pi

� Ēe x p )2 (2.4)

Each gene was components by random numbers between 0.001 and 2.0. For each

optimization step, 1,000 genes were randomly generated and the r2 was calculate and

sorted. The top 50 genes were then selected for crossover. If the crossover operation yield

a better result, then the new gene was inherited, otherwise the original gene was kept for

the next selection round. Crossover and mutation were iteratively performed. If the r2

doesn’t yield better result for 10 iterations, the highest-deviation ligand was referred to as

an outlier and removed.
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2.2 QSAR model for the PXR

In order to predict the ligand binding affinity toward the PXR, a combination of methods

were used to generate the stable ligand binding poses, calculating the binding energies, as

well as fitting the results into a QSAR model. The modeling flowchart is illustrated in Figure

2.2:

Figure 2.2: The PXR modeling flowchart

2.2.1 Protein processing

PXR can bind various kinds of ligands. In order to consider the pre-organization or ligand

induced-fit effect within the binding pocket, multiple crystal structures were used to

enrich the side-chain rotamer library within the binding pocket explicitly. The

three-dimensional complex structures of the human pregnane X receptor ligand binding

domain (hPXR-LBD) were obtained from the Protein Data Bank, with one additional

complex (PXR/17�-estradiol,69 not yet deposited with the PDB) was kindly provided by

Prof. Redinbo (University of North Carolina), here referred to as PXE2. The PDB structures

employed in this project are listed in Table 2.1:
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PDB ID Ligand ID res(Å) Description

1M13 HYF 2.15 hPXR-LBD with hyperforin

1NRL SRL 2.00 hPXR-LBD in complex with SRC-1 and SR12813

2O9I 444 2.80 hPXR-LBD in complex with SRC-1 and T091317

3R8D PNU 2.80 hPXR-LBD with PNU-142721

4NY9 2Q4 2.80 hPXR-LBD with ligand 2Q4

4XHD 40U 2.40 hPXR-LBD with ligand 40U

PXE2 EST 2.65 hPXR-LBD with estradiol

Table 2.1: PDB structures used for PXR docking, SRC-1: steroid receptor coactivator-1

In general, all systems were pre-processed using Maestro’s Protein Preparation Wizard:

missing side chains were completed by Prime; the bond orders were automatically

assigned and hydrogens were added accordingly; alternative locations were removed by

comparing the positions with the other PDB structures; the ligand’s ionization and

tautomeric states were generated by Epik; the hydrogen-bond network were optimized on

the basis of neighboring partners by flip the alternative position of His, Gln and Asn as the

X-ray diffraction data for protein could not distinguish the atom type, the hydroxyl group

directions were also optimized accordingly; Finally two restraint minimization step were

performed to minimize the structure and remove strain: first by fix all the heavy atoms,

then by converging heavy atoms to an RMSD of 0.15 Å. All the crystal waters were included

in the process.

After the automatic optimization procedure, the system were further optimized by Yeti,

which features a directional hydrogen-bond force field to optimize the hydrogen bonds

(equation 2.2), a solvation protocol to solvate the hydrogen bond donor/acceptor site, as

well as various refinement protocols to optimize the side chain orientations

individually.

2.2.2 Docking protocol

The ligands were grouped by chemical classes and for each class the most active

compound was manually docked into the binding site and minimized with Yeti. The

minimization of the complex was performed over two steps: first, only the protein around
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the ligand (within a distance of 8 Å) was minimized, then the ligand and the protein within

the same zone were optimized. An automated pharmacophore-based, flexible-docking

procedure was performed with the packages (MacroModel, AMSOL, Aquarius,

Alignator/Dolina, Cheetah, BzScore) and analyzed with VTLViewer4D. The automated

docking protocol is illustrated in figure 2.3.

Figure 2.3: The pharmacophore-based, flexible-docking protocol

First the ligand was prepared and minimized with BioX, the solvated template

protein-ligand complex was generated first by orient solute the binding pocket (no ligand)

with Yeti, then added the template ligand back into the solvated protein. The ligand

conformation was sampled by MacroModel and the according solvation energy was

calculated by Aquarius, the ligand atom partial charges (CM1) were generated by AMSOL.

The charged-ligand conformations were then aligning to the template’s pharmacophores

in the binding pocket by Dolina and refined as well as sampled by Cheetah, including

dynamic solvation; at last the generated binding poses were sorted by the Boltzmann-

weighted binding energy and the generated 4D binding poses were employed

further.

In order to consider the main chain flexibility, as well as using an alternative docking

procedure, the induced-fit docking (IFD) protocol was also performed to generate putative

binding modes. To perform IFD designed by Schrödinger, all the water molecules were
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removed from the system. The extended sampling protocol was used which could

generate up to 80 poses using automatic docking settings, the IFD docking poses were

ranked by IFDscore, which accounts for both the protein–ligand interaction energy

(Coulomb term reweighed) and the system energy.

I F D s c o r e =P r i me _e ne r g y +9.057 ·G l i d e S c o r e +1.428 ·G l i d e _Ec o ul (2.5)

The more negative the IFDscore, the more favorable the binding. The top 15% docking

poses were visually analyzed by checking: 1. atom clash; 2. ligand intra-action; 3.

hydrophobic/hydrophilic saturation; 4. hydrogen bond with the key residues (Ser247,

Asn285, His324, His407, Arg410); 5. ⇡-⇡ stacking with the aromatic hydrophobic pore

(Phe288, Trp299, Tyr306). The confirmed poses were selected for MD simulations.

2.2.3 Molecular-Dynamics Simulations

To analyze the interactions between PXR and its ligands from a dynamic point of view,

molecular-dynamics simulations of protein–ligand complexes were performed. For

ligands no crystal structures are available in the PDB, the binding modes obtained by

manual docking as well as selected posed from automatic docking were both taken into

consideration. MD simulations and in particular the analysis of the trajectories allowed for

a more dynamic characterization of the protein–ligand interactions responsible for ligand

binding and to gain insight into the binding mode(s). The MD simulation flowchart:

Figure 2.4: The MD simulation equilibration and production flowchart

All MD simulations were performed using the AMBER12 package and corresponding
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all-atom potential function ff99SB-ILDN. The GAFF force field was used to model the

ligands, and the atomic partial charges were determined with Gaussian09 at the

RHF/6-31G* level and fitted by RESP. A 2 fs time step and a 9 Å cutoff value were used for

truncation of non-bonded interactions. Simulation structures were solvated in an

orthorhombic TIP3P water box with periodic boundary conditions at a minimum distance

of 10 Å in each dimension from the solute. Counter-ions (Na+ or Cl�) were added to

neutralize the systems. The particle-mesh Ewald (PME) summation method was adopted

to treat long-range electrostatic interactions. The SHAKE algorithm was used to constrain

all covalent bonds involving hydrogen atoms. Energy minimization was performed in two

stages, with each stage employing 250 steps of steepest decent followed by 750 steps of

conjugate gradient method using position restraints for the solute, the harmonic restraint

weight was set at 25 kcal/mol and 5 kcal/mol for the first and the subsequent

minimization step, respectively; following minimization, 40 ps of MD simulation was

performed to heat the system from 100K to 300K followed with 10 ps equilibration in a

NVT ensemble, the harmonic restraint weight was set at 5 kcal/mol; then the system was

switched to NPT ensemble and equilibrated for 50 ps; after the initial equilibration, the

system was changed back to NVT and equilibrated for another 6 stages (50 ps each) by

gradually reducing the restraint weight of solute from 5 kcal/mol to zero. The production

phase was performed at constant temperature (300K) and constant volume for at least 5.0

ns.

2.2.4 Trajectory analysis

For the MD trajectories, the ligand movement was recorded as the most important criteria

for binding stability. A stable binding mode should have smaller movement compared

with unstable ones during the simulations. Besides the geometric evaluation for

protein–ligand interactions, conserved binding free energy is another criteria for binding

stability. Hydrogen bond distances and angles, binding free energy contributions of

residues in the binding pocket were also recorded for binding-stability check, Based on the

results of trajectory analysis. The confirmed “stable” binding poses were used for

template-based docking of the remaining compounds in each class.
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2.2.5 QSAR studies: Quasar & Raptor

The software Quasar and Raptor were used to generate receptor models for the PXR. The

ligand alignment obtained from the MD-confirmed docking and template-based docking

results was used as input to build the QSAR model. The data set was split into a training

set, used to build the model, and test set, used to evaluate it, in such a way that a maximal

diversity of the training set with respect to binding affinity and chemical properties was

obtained. In order to achieve this goal, the compounds were grouped according to their

chemical class (i.e. sharing the same scaffold) and were ranked by affinity. For each group,

the most and the least active compound was assigned to the training set. From the

compounds remaining in the pool, compounds with different scaffolds and functionalities

were selected to be part of the training set in order to achieve maximal chemical diversity.

For the QSAR simulations, a 4:1 ratio for the training and test set.

In order to develop a model, the ligand alignment along with were added the experimental

binding affinities, the solvation energies, the entropy values and the internal strain as

calculated by MacroModel, were employed as input for the binding affinity.
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2.3 Toxic potential estimation by means of the VTL and MD

simulations

In the VirtualToxLab, the toxic potential of a compound is estimated by simulating and

quantifying its interactions towards a series of macromolecular targets at the molecular

level using automated flexible docking combined with 4D Boltzmann scoring.38 The

technical flowchart of VirtualToxLabT M is presented in Figure 2.5. For the

anti-trypanosomal compounds identified by Hamburger et al. and their metabolites, the

binding affinity towards the 16 targets were estimated by the automatic procedure.

Figure 2.5: The technical flowchart of VirtualToxLab19

In order to provide a reliable in silico affinity estimation, the identified high-affinity

docking poses generated by VTL were visually checked. For each identified high-affinity

pose, the kinetic stability was challenged by MD simulations with the AMBER12 package

(with a minimum of 5 ns production stage).
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Figure 2.6: VirtualToxLab: decision tree for the verification of a prediction (binding mode, affinity,

toxic potential). TP: toxic potential; MD: molecular-dynamics simulation, PP: physico-chemical

properties, ADME: adsorption, distribution, metabolism and elimination properties, consensus

scoring (CS) using other in silico approaches.19

34



Chapter 3

Results & Discussion

3.1 Scoring Function development

3.1.1 Flowchart of data processing

Figure 3.1: Left: per-residue binding energy for the whole dataset. Right: binding pocket.
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The r2 value obtained from multiple-linear regression was used as the fitness-function in

the optimization algorithm, which aims at minimizing the least-square deviation between

calculated and experimental binding affinities. The results are shown in fig. 3.2. The

androgen (r2=0.82), estrogen � (r2=0.79) and liver-X receptor (r2=0.68) yield the highest

agreement among the 16 target proteins. For the cytochrome P450 enzymes, CYP3A4

(r2=0.58) and CYP1A2 yield moderate r2=0.58), CYP2D6 and CYP2C9 are poorly fitted

(r2=0.02, 0.19). The latter may be due to the fact that the experimental Kr2 value spawns

only two orders of magnitude which is not truly discriminative. The aryl hydrocarbon

receptor, estrogen receptor �, mineralocorticoid receptor, progesterone receptor, the

hERG ion channel and PPAR� all yield moderate results (r2=0.49, 0.35, 0.49, 0.57 and 0.37),

while the glucocorticoid and thyroid receptor �/� (r2=0.32, 0.20, 0.23) did not fit well at

this point.
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Figure 3.2: Fitting results for the 16 target proteins. Experimental values are shown on the horizontal

axis, calculated values on the vertical axis. Dashed lines are drawn at a factor of 5.0 and 10.0 off the

experimental value.
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3.2 QSAR model development for the PXR

3.2.1 Binding-site analysis

All available X-ray crystal structures of the PXR share a similar backbone conformation.

For the structures with a bound small molecule and/or a co-factor, the main-chain C�

RMSD values are lower than 0.4 Å compared with the highest-resolution structure (1NRL,

resolution 2.0 Å). Consequently, employing a single backbone conformation should be

acceptable for the docking studies. On the other hand, the loop defined by Cys207–Val211

displays major deviations in position and further induces a drift in its adjacent �2 helix,

inside of which the backbone of Asp205 acts as hydrogen bond acceptor to 17�-estradiol

(the bound ligand in the PXE2 structure). This change impedes docking 17�-estradiol to

the PXR when using the protein coordinates of 1NRL. Alternatively, by adapting the �2

helix from PXE2 to 1NRL (fig. 3.3A) and followed with energy minimization, the optimized

structure could adopt similar binding modes for 17�-estradiol as well as most of the other

PXR ligands available in crystal structures by interactive docking with YetiX (fig. 3.4).

A

B

C

Figure 3.3: A: Hybrid structure of the PXR backbone. The 1NRL portion show in blue, the PXE2 part

in red. B and C: His407 act as hydrogen-bond donor (B) and acceptor (C).
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After optimizing the hydrogen-bond network by Maestro’s Protein Preparation Wizard and

the software YetiX: His168, His242, His359, His386 and His418 were protonated at the N�;

His327 and His336 were protonated at the N� according to the potential hydrogen bonds

with the local environment. In the binding pocket, His407 can act as both H-bond donor

(N�: 1M13, 1NRL) and H-bond acceptor (N�: 2O9I, 4NYL, 4XHD), therefore only the N� was

protonated (figs. 3.3B and 3.3C).

A B C

D E F

Figure 3.4: Superimposed ligands of the crystal structure (carbon atoms colored in pink) and

of the docked poses (carbon atoms colored in grey) with optimized structure. A: 17�-estradiol,

B: SRL12813, C: T091317, D: PNU142721, E: 2Q4 (N-(2R)-1-[(4S)-4-(4-chlorophenyl)-4-hydroxy-

3,3-dimethylpiperidin-1-yl]-3-methyl-1-oxobutan-2-yl-3-hydroxy-3-methylbutanamide), F: 40U

(N-(2R)-1-[(4S)-4-(4-chlorophenyl)-4-hydroxy-3,3-dimethylpiperidin-1-yl]-3-methyl-1-oxobutan-

2-yl-2- cyclopropylacetamide).

3.2.2 MD simulation for the PXR with ligands in the PDB

To analyze the interactions between the PXR and its ligands available in the PDB from a

dynamic point of view, and to profile the key residues within the binding pocket, MD

simulations of protein–ligand complexes followed with trajectory analysis were

performed. A total of four ligands were chosen to comprise representative subset of the

studied PXR complexes: 17�-estradiol, T091317, PNU142721 and 2Q4 (SRL12813 is not
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selected as there is no similar ligands with reported binding affinity to the PXR, 40U is not

selected because it is quite similar to 2Q4). As starting point for the MD studies, for each

ligand the binding mode obtained by manual docking with YetiX was considered. Details

of the simulation protocols are reported in the section 2.2.3, in addition, water molecules

which are important in the binding pocket were restrained during the equilibration

stage.

17�-estradiol

In the complex of 17�-estradiol with the PXR (fig. 3.4A), the hydroxyl group in D-ring

(fig. 3.5) engages two hydrogen bonds with the backbone-carbonyl group of Asp205 and

the side-chain of Arg410 respectively, the oxygen atom on the hydroxyl group of A-ring is

involved in a hydrogen bond with Ser247. Upon challenging the binding by 50.0 ns MD

simulation: the ligand RMSD remained within 1.5 Å throughout the simulation (fig. 3.6A),

the two hydrogen bonds of the ligand with Asp205 and Arg410 are partly retained, the

hydrogen bond between the oxygen atom on A-ring’s hydroxyl group and Ser247 was lost.

Instead, the hydrogen atom on the same hydroxyl group engaged a new hydrogen bond

with Ser247, and Ser247 was further stabilized by a hydrogen bond with Met243. The

MM-PBSA results indicate that the three hydrogen-bonding residues are the main

contributors for the binding free energy (fig. 3.6C). These findings suggest that the docking

pose is kinetically stable and Asp205, Arg410 and Ser247 are the key residues for the

binding.

Figure 3.5: Details of 17�-estradiol binding to the PXR. Left: docking pose; right: MD snapshot.
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Figure 3.6: A: Ligand RMSD 17�-estradiol to the PXR. B: Key-residue hydrogen bond distances for

17�-estradiol with the PXR. C: Binding-energy decomposition within the binding pocket and time-

resolved details for key amino-acid residues of the PXR binding with 17�-estradiol.

T091317

In the complex of T091317 with the PXR, the ligand’s hydroxyl group is stabilized by

engaging a hydrogen bond with His407, the sulfonyl group is stabilized by a hydrogen

bond with Gln285 (which is further stabilized by His327), the sulfonyl-benzyl group is

accommodated by the hydrophobic pocket formed by Phe288–Trp299–Tyr306. Upon

challenging the binding by a 50.0 ns MD simulation, the two hydrogen bonds are retained

in 85% of the time. The ligand RMSD is within 2.0 Å. The results suggest that the docking

pose is kinetically stable, Gln285 and His407 turned out to be key residues for the binding,

the Phe288–Trp299–Tyr306 pocket is important for hydrophobic interactions (especially

for ⇡-⇡ stacking).
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Figure 3.7: A: Details of T091317 binding to the PXR. Left: docking pose; right: the last MD frame. B:

Ligand RMSD. C: Key-residue hydrogen bond distances. D: Binding-energy decomposition within

the binding pocket and time-resolved details for key amino-acid residues.
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PNU142721

In the complex of PNU142721 with the PXR (fig. 3.7A): the furo[2,3-c]pyridine part features

hydrophobic interactions with the pocket Phe288–Trp299–Tyr306, the nitrogen atom on

the furo[2,3-c]pyridine part engages a hydrogen bond with Gln285. In contrast, there is no

specific interactions with the pyrimidine part, which contains higher b-factors in the PDB

and refers to weaker stabilization by the protein. After challenging the binding by 50.0 ns

MD simulation: the RMSD values of the furo[2,3-c]pyridine part retains within 1.5 Å

throughout the simulation (fig. 3.8B), the pyrimidin part rotated its direction and engaged

a second hydrogen bond with the backbone of Ser208. The hydrogen-bond distance

between the ligand and Gln285 is retained (fig. 3.9A), which is similar to T091317. The

MM-PBSA results suggest that Gln285, Met243, Phe288 and Tyr306 are the key

contributors for the binding free energy (fig. 3.9B).

A

B

Figure 3.8: A: details of PNU142721 binding to the PXR. Left: docking pose; right: MD snapshot. B:

ligand RMSD of PNU142721 to the PXR.
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Figure 3.9: A: key-residue hydrogen bond distances. B: binding-energy decomposition within the

binding pocket and time-resolved details for key amino-acid residues.

2Q4

In the complex of 2Q4 with the PXR, the hydroxyl group on the 6-membered ring engages

a hydrogen bond with His407, the carbonyl group linking to the 6-membered ring is

involved in another hydrogen bond with Gln285. After challenging the binding by 50.0 ns

MD simulation: the ligand RMSD is within 2.0 Å throughout the MD simulation, the two

hydrogen-bond distances are retained and His407 is the residue contributes most to the

binding free-energy. The docking pose is kinetically stable.
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Figure 3.10: A: Ligand RMSD of 2Q4 to the PXR. Left: docking pose; right: MD snapshot. B: Key-

residue hydrogen bond distances for 2Q4 with the PXR. C: Binding-energy decomposition within

the binding pocket and time-resolved details for key amino-acid residues of the PXR binding with

2Q4.
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3.2.3 Retrieval of the binding affinity data

The pharmacological data for the 101 PXR-binding compounds was obtained from multiple

sources. The experimental EC50 values range from 0.71 nM to 72.4 µM. The majority of

affinities, however, lies within two orders of magnitude (10-6–10-4M, fig. 3.11). EC50 values

were converted in Ki values for the binding-energy calculation.

Figure 3.11: Distribution of pEC50 values: 77% of the affinities cluster within two logarithmic units,

while the whole data set spans six orders of magnitude (0.71 nM–72.4 µM)

The ligands comprise seven different chemical classes (fig. 3.12), three of which (E, T, S)

have crystal structures deposited with the PDB.

Figure 3.12: Eight classes of compounds used in the QSAR study. All 101 structures are given in

Appendix A.
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3.2.4 Docking to the PXR

In order to obtain realistic binding mode(s) towards the PXR, a combination of protocols

was adopted for the docking process. First, the ligand binding modes from known

structures (in PDB) and their respect stable state after the MD simulation were used as

templates for derivative compounds to be docked interactively with YetiX. Then, the

remaining ligands were assigned to one class each and several automated docking

protocols (AutoDock/Cheetah, Schrödinger’s QPLD and IFD) were used to sample and

rank the potential binding modes, the ligand conformation compiled from the first step on

was used as boundary criteria for the selection of potential binding mode(s), relevant

hydrogen bonds and hydrophobic interactions with the Phe288–Trp299–Tyr306 pocket

were considered as key factors to select the most potentially correct binding mode(s).

Finally, the identified stable binding mode(s) of the representative compounds were used

as templates for their respect derivate ligands and interactive docked with YetiX.

Crystal structure-based docking

For compounds which contain derivative structures bound to the PXR in the PDB,

interactive template-based docking was performed, wherein the binding modes from both

the crystal structure and the MD simulations were employed as templates. Protein

structures with different bound ligands were superposed to the hybrid protein and its

side-chain residues within the binding pocket were interactively adjusted to adapt to the

very ligand in crystal structures or MD frames. For each ligand, the geometry was

optimized by MacroModel and atomic partial charges were calculated with AMSOL. The

ligands in each class were automatically superposed to their templates and interactively

docked to their respect optimized form of the hybrid protein (Symposar and YetiX).

E02–E11 share a common ring scaffold with E01 (17�-estradiol). The crystal structure and

MD/MM-PBSA results of the PXR-E01 complex suggest that key hydrogen-bonding

residues (Ser247, Arg410 and Asp205) are the main contributors for the binding (figs. 3.5

and 3.13A). Although the ring scaffold was slightly rotated, its position based on the

anchored hydroxyl group (by Asp205 and Arg410) in D-ring, the hydrogen bond between

Ser247 and hydroxyl group in A-ring were retained during the simulation. Superposition of

the docking results are shown in fig. 3.13B.
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Figure 3.13: A: binding mode of E01 (17�-estradiol) to the PXR in stereo view. The ligand has been

completed with hydrogens. The protein is represented as cartoon, key amini-acid residues and the

ligand as sticks. B: the Docking results for E01–E08. The carbon atoms of the ligands are colored in

green.

T02–T12 are derivative compounds of T01 (T091317). The template structure engages two

hydrogen bonds with Gln285 and His407, the sulfonyl-benzyl group is stabilized through
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the hydrophobic pocket formed by Phe288-Trp299-Tyr306. These interactions are retained

for all derivative compounds as shown in fig. 3.14.

A

B

Figure 3.14: A: binding mode of T01 (T091317) to the PXR in stereo view. The ligand has been

completed with hydrogens. The protein is represented as cartoon, key amini-acid residues and the

ligand as sticks. B: the Docking results for T01–T12. The carbon atoms of the ligands are colored in

green.
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Similarly to T091317, 2Q4 also features hydrogen-bond interactions with Gln285 and

His407, as well as hydrophobic interactions towards the Phe288-Trp299- Tyr306 pocket.

The superposed docking results of S02–S25 are shown in fig. 3.15.

A

B

Figure 3.15: A: binding mode of S01 (2Q4) to the PXR in stereo view. The ligand has been completed

with hydrogens. The protein is represented as cartoon, key amini-acid residues and the ligand as

sticks. B: the Docking results for S01–S25. The carbon atoms of the ligands are colored in green.
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Ensemble docking and MD simulation

For compounds lacking a similar ligand in the PDB bound to the PXR, automated docking

approaches (AutoDock/Cheetah, Schrödinger’s QPLD and IFD) were performed to sample

and rank the potential binding modes for the representative ligands in each class

(A01–A18, P01–P23, M01–M07, B01–B09). Then the ligand conformations compiled from

the first step on were used as boundary criteria for the selection of potential binding

mode(s), hydrogen bonds with crucial residues (Gln285, His407, Ser247, Asp205 and

Arg410) and hydrophobic interactions with the Phe288–Trp299–Tyr306 pocket were

considered as key factors to select the most realistic binding mode(s). The kinetic stability

for the selected binding modes was challenged by MD simulations. Finally, the identified

stable binding mode(s) of the representative compounds were used as templates for their

respect derivate ligands and interactively docked with YetiX.

A: Case Study 1 — Docking of 5�-androstan-3�-ol-17-one (steroid)

For the steroid compounds, the top-ranked poses as generated by Schrödinger’s IFD

mainly occupy the hydrophobic pocket defined by Phe288–Trp299–Tyr306. However,

17�-estradiol does not occupy this pocket (PXE2), it features hydrogen bonds with Asp205,

Ser247 and Arg410. Such interactions were not observed in any of the IFD poses. These

results suggest that although the IFD protocol trends to yield high-ranking order for

hydrophobic interactions, it is not truly suitable for generating and ranking poses in which

the hydrogen-bond interactions play a central role for the binding, such as steroids to the

PXR. On the other hand, the automatic docking protocol implemented in Cheetah, which

employs a directional force field, combined with a template-based alignment protocol,

showed a top-ranking order for the pose similar to the crystal structure. For example,

5�-androstan-3�-ol-17-one, which displays a appreciable binding affinity toward the PXR

(EC50=20.0nM), the top-ranked binding pose shows good agreement (RMS= ) compared

with its template 17�-estradiol. The androstan is stabilized by generating hydrogen bond

with Asp205 and Arg410. The kinetic stability of the binding pose was challenged by

means of a 10.0 ns MD simulation. The ligand remained in its original position and

orientation, and the hydrogen bonds with Gln285 and Asp205 were retained. As the

hydrophilic part in some of the ligands are missing, top-ranked docking poses with both

programs were accepted for template-based docking in order to consider both

hydrophobic interactions and hydrogen bonds.
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A Docking pose B The last MD frame

Figure 3.16: Ligand binding of 5�-androstan-3�-ol-17-one to the PXR.

A01–A04 contain a L-shaped ring conformation (ring A and ring B are linked in

cis-conformation) and two types of binding modes were identified from the docking

results (fig. 3.17). In the first type (fig. 3.17A), His407 and Arg410 could act as

hydrogen-bond donor for the ligands; In the second type (fig. 3.17B), the 3-hydroxyl group

is stabilized by engaging hydrogen bonds with Asp205 and Arg410, the 17-carbonyl group

engaged a hydrogen bond with Gln285.

A B

Figure 3.17: Docking results for A01–A04.

A05–A18 contain a flat 6-6-6-5 ring conformation (ring A and ring B are in
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trans-conformation) and mainly contain four types of binding modes depending on their

respect hydrophilic functional groups in each compound (fig. 3.18). The first and second

types (fig. 3.18 A and B) are similar to the two binding modes of 17�-estradiol, which

features hydrogen bonds towards Ser247, Asp205 and Arg410. The third and fourth types

contain only one hydrogen bond towards Ser247 and His410 respectively, unlike type A

and B, they also engage hydrophobic interactions towards the Phe288- Trp299-Tyr306

pocket.

A B

C D

Figure 3.18: Docking results for A05–A18.
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Ring A and ring B in P01–P08 are in cis conformation, two types of binding modes are

considered. Type A (fig. 3.19A) features hydrophobic interactions towards the

Phe288-Trp299-Tyr305 pocket and a hydrogen bond with His407; type B (fig. 3.19B) mainly

engages hydrogen bonds towards Gln285, Asp205 and Arg410. For P09–P23, ring A and

ring B are in trans-conformation, the binding modes are familiar with type A ligands

(fig. 3.19C and D), except that type D is less convergent than type B.

A B

C D

Figure 3.19: Docking results for P01–P23.
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B: Case Study 2 — Docking for M01

M01 is a high-affinity PXR agonist (EC50 =0.7 nM) which contains two aromatic ring, the

reported putative binding mode was generated by mimicking the binding mode of T091317

(PDB: 2O9I).49

Figure 3.20: A: ligand binding site of T091317, B: T091317 and M01. highlighted are the similar

fragments.

In the crystal structure, the benzyl-sulfonamide group was found binding to the

hydrophobic pocket Phe288–Trp299–Tyr306, forming face-face ⇡-⇡ stacking with Phe288

and T-shaped ⇡-⇡ stacking with Trp299. The sulfonyl group was further stabilized by

engaging a hydrogen bond with Gln285. However, the five methyl substituted aromatic

ring in M26 prevents a similar pose due to steric hindrance. Docking both by Cheetah and

IFD were performed to generate putative binding modes. Top-ranked poses in both

protocol were interactively inspected, four poses identified from Cheetah and three from

IFD were selected and the kinetic stability were challenge by MD simulations with the

AMBER package.

Ligand RMSD values were recorded for the 10 ns production-phase for each of the selected

poses (fig. 3.21). The Cheetah docking poses were all above 2 Å, which suggest that the

thermodynamic identified conformation is kinetically not stable. On the other hand, two
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poses generated by IFD yielded low RMSDs (around 1 Å), which indicate a higher kinetic

stability. For these two trajectories, a more detailed analysis was performed: the start/end

state conformations, key hydrogen-bond distances and per-residue binding energy were

recorded.

A

B

C

D

Figure 3.21: A and B: Ligand RMSD of MD simulation for PXR-M26 binding poses generated by

Cheetah (A) and IFD (B); C: H-bond distance of pose 1 (left) and pose 2 (right); D: Binding energy

decomposition by MM-PBSA of IFD pose 1 (left) and pose 2 (right).
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Figure 3.22: Binding modes before and after MD. (A) IFD pose 1 before MD, (B) IFD pose 1 after MD,

(C) IFD pose 2 before MD, (D) IFD pose 2 after MD.

Pose 1 and 2 share a common binding pattern toward the F288–W299-Y306 pocket, as well

as the hydrogen bonds to His327 and Gln285, this interaction pattern is conserved during

the 10 ns MD simulations. The benzimidazole ring in pose 2 is further stabilized by forming

hydrogen bond with His407, which locked the flexibility of the benzimidazole ring as in

pose 1 it is more flexible than pose 2. The IFD protocol performed better results for docking

ligands with aromatic/hydrophobic moieties. The empirical scoring function is trained for

pattern recognition, which has benefits for the recognition of ⇡-⇡ stacking. Binding modes

for the derivative compounds of M01 (M02–M09) were docked to the PXR based on the

stable IFD poses by interactive docking with Yeti.
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For S01–S07, Gln285 act as hydrogen-bond donor for the binding, The hydrophic pocket

Phe288–Trp299–Tyr306 could either engage hydrophobic interactions with the aromatic

ring or cyclobutane of the ligands, identified binding poses are shown in fig. 3.23. Finally,

top-ranked poses generated by Cheetah are also included as augment for the QSAR

study.

A B

C

Figure 3.23: Stereo view of three kinds of binding modes for S01–S07 to the PXR.
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3.2.5 Multidimensional QSAR for the PXR

The ligand data from the docking poses were combined as input for the quantitative

structure-activity relationship software Quasar, including ligand-specific information: its

free energy of ligand binding (�Gexp, converted from EC50 data), ligand-desolvation

energy, loss of entropy (T�S) upon ligand binding as well as the increase of ligand-internal

energy (strain) when binding from an aqueous environment to a hydrophobic receptor

typically hydrophobic in nature.

In the Quasar simulation, the model family of the PXR (fig. 3.24 and table 3.1) converged at

cross-validated r2 of 0.812 for the 73 training compounds leaving one third of the set out, and

yielded a predictive r2 of 0.854 for the 24 test ligands. The average deviation (rms) between

experimental and calculated affinities is of a factor of 2.0 for the training and 1.3 for the test

set. The maximal deviation in the prediction of binding affinities for a compound is of a

factor of 22.3 for training set and 4.7 for the test set, respectively.

When compared to the crystal structure of the PXR complexed with the two ligands, the

receptor surrogate generated by Quasar properly reproduces properties observed for the

amino-acid residues in the binding pocket: two hydrogen bond donors (big|yellow) are

located close to the position occupied by Ser247 and Arg410, and two hydrogen bond

acceptor (big|blue) are located close to the position occupied by Asn205 and Gln285.

Moreover, hydrophobic properties (gray and brown) populate great part of the surface,

correctly reflecting the hydrophobic character of the binding pocket.

To challenge the model, a second software (Raptor) — using the same ligand alignment

and selection — was applied to yield an r2 of 0.870 and a predictive r2 of 0.646. When

compared with Quasar, the Raptor simulation would only seem to yield a modest

predictive power. Considering the limited range of experimental activity (77% of

compounds cluster within two orders of magnitude), the compound’s chemical diversity

and the different literature source for the affinities, the Raptor model can be considered

acceptable in terms of quality.

A representation of the receptor surrogate with bound the compound 17�-estradiol and

T091317 is depicted in fig. 3.24.
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C D

Figure 3.24: A: Representation of the Quasar model of PXR surrogate (Quasar) with bound

compound 17�-estradiol and T091317(space-filling). The mapped quasi-atomistic properties are

sized|colored as follows: big|blue (H-bond donor), big|yellow (H-bond acceptor), middle|saddle

brown (hydrophobic, positively charged), middle|chocolate brown (hydrophobic, negatively

charged), tiny|grey (hydrophobic, neutral), tiny|blue (solvent water). B: Comparison of experimental

and predicted binding affinities of the training set (blue circles) and test set (red triangles) for the PXR

by Quasar. C: Raptor model of the PXR with bound 17�-estradiol and T091317. D: Comparison

of experimental and predicted binding affinities of the training set (blue circles) and test set (red

triangles) for the PXR by Raptor.
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Table 3.1: Summary of the Quasar and Raptor simulations for the 73 training and 24 test

compounds

Simulation r2 q2 rms. training max. training p2 rms. test max. test

Quasar 0.812 0.815 2.0 22.3 0.854 1.3 4.7

Raptor 0.870 n/a 0.9 3.9 0.646 3.8 16.8

r2: correlation coefficient, q2: cross-validated r2, p2: predictive r2; the rms and maximal

deviation from the experimental binding affinity is given as a factor (off) in Ki.
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3.3 In silico evaluation of anti-trypanosome natural

products

The binding of natural products, potentially active against the Human African Trypano-

somiasis (HAT), towards 16 off-targets was simulated and quantified by means of the

VirtualToxLab.38 For each of the binding affinities computed below 100 nM, a subsequent

5.0–10.0 ns MD simulation was performed to probe the kinetic stability of the

protein–ligand complex. Table 3.2 shows the selected compounds with their respective

targets. In the following section, the underlying binding modes and affinities are discussed

in detail.

Table 3.2: Active compounds towards selected targets as identified by the VirtualToxLab

Target Compound(s)

16 27 70 (S)-71

Androgen

receptor

72 85 91 93

97 98 100

Aryl

hydrocarbon

receptor

54
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Estrogen

receptor �

92 98

Glucocorticoid

receptor

(S)-71 85 88 89

Mineralocorti-

coid receptor

(R)-71 72 98

Progesterone

receptor

33 34 39 (S)-71

74 (R)-76 77 85

Thyroid

receptor �

85
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CYP450 2D6

37 80 88

3.3.1 Compounds active towards the androgen receptor

Eleven compounds were identified as active towards the AR by the VirtualToxLab, of

which two are sesquiterpene lactones 16 and 27 (with computed IC50 values of 31.4 nM

and 19.3 nM respectively); three are psoralen derivatives 70 (88.1 nM), (S)-71 (35.4 nM)

and 72 (25.7 nM); and three are paprazine derivatives 97 (22.9 nM), 98 (6.49 nM) and 100

(92.0 nM).

For 16 and 27: the docking poses contributing most to the binding affinity are quite

different (fig. 3.25). Although they both engage in hydrogen bonds with Asn705 and

Thr877, 16 donates its hydroxyl group from the 7-membered ring while 27 provides it from

its allyl-alcohol side chain—which is more flexible. In addition, 27 is further stabilized by

Met745 and Arg752. After challenging the docking (input structure: thermodynamic

lowest-energy pose) by means of 5 ns MD simulation each, the ligand movement was

analyzed by recording the RMSD of the heavy atoms on its rings. The position and

orientation of 16 became stable after 4 ns production run when its RMSD was fluctuated

around 0.5 Å, which indicating that the docking pose of 16 with the AR is unfavorable due

to ligand flexibility. In contrast hereto, the RMSD of 27 remained around 0.5 Å for the

whole production phase. The moderate movement during the equilibration stage is

probably due to receptor adaption (induced fit including the main chain) and interactions

with the surrounding water molecules.
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Figure 3.25: Top and middle: Details of the binding of 16 (top) and 27 (middle) to the AR. The ligands

are represented as licorice, key amino-acid residues as balls and sticks, hydrophobic residues within

the binding pocket as surface colored in yellow. Carbon, nitrogen, oxygen and hydrogen atoms are

colored in black, blue, red and white respectively. Bottom: Ligand RMSD during the MD simulation

for 16 (left) and 27 (right), negative values in the x-axis refer to the equilibration stage.

65



The binding energies were obtained by the MM-PBSA protocol (fig. 3.26). 16 lost its

hydrogen bond with Asn705 during the simulation while the interaction with Thr877 was

retained, the ligand is further stabilized mainly by the hydrophobic residues Leu704 and

Leu873. 27 lost its hydrogen bonds with Arg752 and Thr877, in contrast, the hydrogen

bonds with Asn705 or Met745 were retained, the ligand is further stabilized mainly by

Phe764, Met780 and Leu873.

A

B

Figure 3.26: Binding-energy decomposition within the binding pocket and time-resolved details for

key amino-acid residues with respect of 16 (a) and 27 (b) binding to the AR.
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For the psoralen derivatives—70, (S)-71 and 72: the docking poses contributing most to

the binding affinity are quite similar (fig. 3.27), which indicates that the interactions are

conservative in nature. Asn705 and Thr877 generated bridging hydrogen bonds to all three

ligands; 70 and 72 formed a third hydrogen bond with Gln711.

Figure 3.27: Details of the binding of 70 (top), (S)-71 (middle) and 72 (bottom) to the AR.
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The ligand RMSDs (of the ring heavy atoms) and the hydrogen-bond distances are shown

in fig. 3.28. The RMSDs remained below 1.5 Å within 8 ns of the production stage

compared with the initial frame for all the three ligands. The hydrogen bond between

(S)-71 and Gln711 became stable only after 5 ns, all the other hydrogen bonds remained

stable throughout the simulation (Gln711 could flip the symmetrically related HN21 and

HN22 during the MD simulation; consequently, the shorter of the two was recorded),

except for 70, which lost the interaction with Thr877 after 2 ns of the production

stage.

Figure 3.28: The ligand core RMSDs (aromatic ring atoms) are shown on the left panel, the hydrogen-

bond distances are shown on the right. The complexes of 70, (S)-71 and 72 with the AR are arranged

at the top, middle and bottom, respectively.

MM-PBSA energy (fig. 3.29): the free-energy contribution of Asn705 towards (S)-71 and 72

are retained; the free-energy contribution of Gln711 towards S)-71 and 73 are retained

throughout the MD simulation, while for 72 it is retained after 5ns production, which is in

agreement with the trends of hydrogen-bond distance; the free-energy contribution of

Thr877 towards all three ligands are retained throughout the simulation. In addition, 70 is
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further stabilized mainly by Leu704, Arg752 and Leu873 within the binding pocket; (S)-71

is further stabilized mainly by Leu704 and Met745; 72 is further stabilized mainly by

Leu704, Arg780 and Leu873.

A

B

C

Figure 3.29: Binding-energy decomposition within the binding pocket and time-resolved details for

key amino-acid residues with respect of 70 (a), (S)-71 (b) and 72 (c) binding to the AR.
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For the paprazine compounds—97, 98 and 100: the thermodynamic poses contributing

most to their respective affinity are displayed in fig. 3.30. They all feature hydrogen bonds

with Asn705 and Thr877; in addition, for the complex of the AR and 100, the amide group

is stabilized by Gln711.

Figure 3.30: Details of the binding of 97 (top), 98 (middle) and 100 (bottom) to the AR.
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The ligand RMSDs for 97 and 98 increased above 3.0 Å compared with their docking poses,

which means they would not be kinetically stable; for 100 the ligand RMSD remains within

1.5 Å compared with both the thermodynamic lowest-energy pose and the last MD frame

(fig. 3.31A). The hydrogen-bond distances of 100 with Asn705, Gln711 and Thr877 are

within 2.0 Å during most of the production stage, which implies that these three residues

continuously stabilize the ligand (fig. 3.31B). MM-PBSA calculation (fig. 3.31C) also

suggest the free-energy contributions of Asn705, Gln711 and Thr877 to 100 remains stable

during the whole simulation.

A

B

C

Figure 3.31: a: Ligand RMSDs of the AR with 97 (left), 98 (middle) and 100 (right). b: key-residue

hydrogen-bond distances for the complex of AR and 100. c: Binding-free energy contributions

within the binding pocket and time-resolved details for key amino-acid residues of the AR binding

with 100.
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The docking poses of 85 or 93 with the AR did not remain stable according to high ligand

RMSDs (fig. 3.32A); for 91, though the ligand RMSD was mainly below 1.5 Å, the hydrogen

bonds generated by 91 with Asn705 and Thr877 were not retained during the simulation,

instead the ligand formed an intra-molecular hydrogen bond, which does not contribute to

the binding affinity (fig. 3.32B).

A

B

Figure 3.32: a: Ligand RMSD of 85 (left), 91 (center) and 93 (right) with the AR; b: detail of the

docking mode of 91 (up) and the AR and the last MD frame (down).
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3.3.2 The only compound active towards the Aryl hydrocarbon

eceptor

Tanshinone IIA (54) was identified as the only compound active towards the AhR, with a

computed IC50 of 26 nM. The docking pose contributing most to the binding affinity (as

identified by the VirtualToxLab: thermodynamic solution) and the corresponding structure

toward the end of 5.0 ns MD simulation (kinetic solution) are shown in fig. 3.33.

Figure 3.33: Details of the binding of tanshinone IIA to the AhR as identified by the VirtualToxLab

(top) and the last MD frame (bottom).
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In the binding pocket, tanshinone IIA is accommodated by the hydrophobic residues Phe4,

Phe12, Pro14, Leu25, Leu32, Phe41, Ile42, Met57, Phe68, Leu70, Ala84 and Val98. The ligand

is further stabilized by engaging a hydrogen bond with the side-chain hydroxyl group of

Ser82, which was retained throughout the entire simulation period. An additional hydrogen

bond with the side-chain amide group of Gln100 surfaced after the equilibration step and

remained stable thereafter. The system turned out to be stable after 1.3 ns, where the RMSD

was reduced to 1 Å compared with the last MD frame. During the whole 5.0 ns production

phase, the ligand RMSD remained below 1.0 Å compared with the last frame, which suggests

that the equilibrated pose was stable during the whole production stage (fig. 3.34A). The

MM-PBSA results (fig. 3.34B) also confirmed the stable free-energy contributions of Ser82

and Gln100, and further suggest that Ile42 plays an important role for the binding.

A

B

Figure 3.34: a: Time-resolved details of ligand RMSD and key-residue hydrogen-bond distances

of 54 binding to the AhR. b: Binding-energy decomposition within the binding pocket and time-

resolved details for key amino-acid residues of the AhR binding with 54.
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3.3.3 Compounds active towards the estrogen receptor �

Abruquinone I (92) and moupinamide (98) were predicted to be active towards the ER�,

with computed IC50 of 78.2 nM and 24.8 nM respectively. After challenging the docking

poses contributing most to the affinities (as identified by the VirtualToxLab) by means of

10 ns MD simulations, abruquinone I slightly changed its binding while moupinamide

underwent a substantial movement as illustrated in fig. 3.35, indicating that the

thermodynamically identified docking pose of moupinamide is not favorable.

Figure 3.35: Ligand RMSD of 92 (left) and 98 (right) binding to the ER�.

For the docking pose of abruquinone I to the ER�, the ligand is stabilized by a hydrogen

bond with Glu305. The negatively charged Glu305 forms a salt bridge with the positively

charged Arg346. After the MD simulation, the ligand scaffold retains at its original shape.

The hydrogen-bond stabilization of the ligand shifted to the backbone of Leu339

(fig. 3.37A). As depicted in fig. 3.36, the hydrogen bond generated between the ligand and

the ER� was engaged in a conjugated switch between Glu305 and Leu339. The MM-PBSA

result also suggest Leu339 retains free-energy contribution to the binding towards

abruquinone I (fig. 3.37B).

Figure 3.36: Hydrogen bond distances of abruquinone I binding to the ER�.

75



A

B

Figure 3.37: a: Details of the binding of 92 to the ER� as identified by the VirtualToxLab (top) and

the last MD frame (bottom). b: Binding-energy decomposition within the binding pocket and time-

resolved details for key amino-acid residues of the ER� binding with 92.
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3.3.4 Compounds active towards the glucocorticoid receptor

S-71, 85, 88 and 89 were predicted to be active towards the GR, with computed IC50 of 45.8

nM, 68.1 nM, 19.7 nM and 87.2 nM respectively. For S-71, 85 and 88, the thermodynamic

poses contributing most to their respective affinity are displayed in fig. 3.39. They all

feature hydrogen bonds with Asn564 and Gln570, in addition, 85 and 88 are also stabilized

by engaging a hydrogen bond with Gln642. After challenging the docking by 10 ns MD

simulation, the RMSD of 89 increased to 4 Å compared with its starting pose, indicating a

large movement, while the other ligands remain stable throughout the production phase

and showed only a moderate movement during the equilibration stage (fig. 3.38A). The

hydrogen-bond distances between Asn564 and all three ligands are retained during the

simulation; only the hydrogen-bond distance between Gln570 and 88 is retained; for 88

and 89, the ligand is further continuously stabilized by Cys638 and Gln642 respectively

(fig. 3.38B).

A

B

Figure 3.38: a: Ligand RMSD of S-71 (top left), 85 (top right), 88 (bottom left) and 89 (bottom right)

binding to the GR. b: Time-series key-residue hydrogen-bond distances for S-71 (left), 85 (middle)

and 88 (right) binding to the GR.
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Figure 3.39: Details of the binding of S-71 (top), 85 (middle) and 88 (bottom) to the GR.
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The MM-PBSA results further suggest the agreement with the time-series hydrogen- bond

distance results (fig. 3.42): the free-energy contribution of Asn564 to all three ligands are

retained; the contribution of Gln570 is retained for 71 and 85; the contribution of Cys638 to

85 is retained after 5.0 ns and the contribution of Gln642 is retained for 88 throughout the

MD simulation.

A

B

C

Figure 3.40: Binding-energy decomposition within the binding pocket and time-resolved details for

key amino-acid residues with respect of (S)-71 (a), 85 (b) and 88 (c) binding to the GR.
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3.3.5 Compounds active towards the mineralocorticoid receptor

Figure 3.41: Top: Ligand RMSD of R-71, 72, and 98 with the MR; middle: details of the binding of

71S with the MR; bottom: details of the binding of 72 to the MR.

R-71, 72 and 98 are predicted to be active towards the MR, with computed IC50 of 73.4 nM,

84.8 nM and 15.0 nM respectively. After challenging the docking poses contributing most

to the affinities (as identified by the VirtualToxLab) by means of 10 ns MD simulations, the
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ligand RMSDs of R-71 and 72 remained below 1.5 Å, while the ligand RMSD of 98 increased

to 3 Å during the equilibration stage, indicating that the conformations of R-71 and 72 are

kinetically stable to the MR. The hydrogen bond distances between Gln776 with and the

ligands are retained during the simulation (fig. 3.42). MM-PBSA results further suggest that

the binding free energy of Gln776 is retained for both (R)-71 and 72.

A

B

C

Figure 3.42: a: Hydrogen-bond distance of Gln776 with (R)-71 (left) and 72 (right). b and c: Binding-

energy decomposition within the binding pocket and time-resolved details for key amino-acid

residues as respect of (R)-71 (b) and 72 (c) binding to the MR.
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3.3.6 Compounds active towards the progesterone receptor

33, 34, 39, (S)-71, 74, (R)-76, 77, and 85 are predicted to be active towards the PR, with

computed IC50 values of 3.69 nM, 19.7 nM, 35.0 nM, 98.6 nM, 69.2 nM, 56.2 nM, 27.3 nM

and 32.2 nM, respectively.

The docking poses of 33 and 34 contributing most to their respect binding affinities are

quite similar (fig. 3.43). 33 features hydrogen bonds with both Arg766 and Thr894 while 34

engages only a hydrogen bond with Arg766 only.

Figure 3.43: Details of the binding of 33 and 34 to the PR.

After challenging the binding by a 5.0 ns MD simulation: the ligand RMSDs are within 2.0

Å for both compounds (fig. 3.44A); the hydrogen-bond distances between Arg766 and the

two ligands are retained at approximately 2.4 Å, while the hydrogen-bond between Thr894
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and the ligands are not retained (fig. 3.44B). The MM-PBSA results (figs. 3.44C and 3.44D)

further suggest that Arg766 provides stable free-energy contributions for 33 and 34 during

the MD simulation.

A

B

C

D

Figure 3.44: a: Ligand RMSD of 33 and 34 to the PR. b: key-residue hydrogen-bond distances of

33 and 34 to the PR. c and d: Binding-energy decomposition within the binding pocket and time-

resolved details for key amino-acid residues of the PR binding with 33 (c) and 34 (d).
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39 is stabilized by engaging hydrogen bonds with Leu718, Gln725 and Cys891 while 85 is

stabilized by Gln776, Arg817 and Met852, respectively (fig. 3.45).

Figure 3.45: Details of the binding of 39 and 85 to the PR.

After challenging the binding by a 5.0 ns MD simulation: the ligand RMSDs are within 2.0 Å

for both ligands (fig. 3.46A); the hydrogen-bond distance between Leu718 and 39 is retained

at approximately 2.5 Å, the hydrogen-bond between Arg817 and 85 is kept at approximately

2.3 Å (fig. 3.46B), the other hydrogen bonds are not retained after MD simulation. MM-

PBSA results (figs. 3.46C and 3.46D) further suggest that Arg766 features an unfavorable��G

contribution for 33, the ��G fluctuation of Arg766 toward 85 is quite high, which suggests

that these two poses are less likely kinetically stable.
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B

C

D

Figure 3.46: a: Ligand RMSD of 39 and 85 to the PR. b: key-residue hydrogen-bond distances of

39 and 85 to the PR. c and d: Binding-energy decomposition within the binding pocket and time-

resolved details for key amino-acid residues of the PR binding with 39 (c) and 85 (d).
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For (S)-71, 74, (R)-76 and 77, the docking poses contributing most to the binding affinity

are quite similar, which indicates that the interactions are conservative in the nature. The

compounds are all stabilized by engaging a hydrogen bond with Arg766. After challenging

the binding by 5 ns of MD simulation: the ligand RMSDs are within 2.0 Å, and the hydrogen

bond is retained for all the poses.

A

B

Figure 3.47: a: Details of the binding of (S)-71 (top left), 74 (top right), (R)-76 (bottom left) and 77

(bottom right) to the PR. b: Ligand RMSD (left) and key-residue hydrogen-bond distances (right) to

the PR, from top to bottom: (S)-71, 74, (R)-76 and 77.
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The MM-PBSA results further suggest the free-energy contribution within the binding

pocket is similar for all the four ligands. Arg766 substantially contributes to the major ��G

throughout the MD simulation for all ligands. Furthermore, Leu718 is another major

contributor for ��G mainly due to hydrophobic interactions.

Figure 3.48: Binding-energy decomposition within the binding pocket and time-resolved details for

key amino-acid residues, from top to bottom: (S)-71, 74, (R)-76 and 77.
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3.3.7 The only compound active toward the thyroid receptor �

From the VirtualToxLab screening, alisol A (85) was identified as active towards the

TR� (computed IC50 value = 33.5 nM). The docking pose contributing most to the binding

affinity is shown in fig. 3.49. The hydrophobic skeleton (6-6-6-5 ring system) is stabilized

by the hydrophobic residues lining in the binding pocket. Alisol A is further stabilized by

engaging a hydrogen bond with Arg282.

Figure 3.49: Details of the binding of 85 to the TR� by the VirtualToxLab (top) and the last MD frame

(bottom).
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After challenging the binding by means of 5.0 ns MD simulation, the ligand RMSD is

within 2.0 Å compared with the first frame (fig. 3.50A). Aside from Arg282, the three

adjacent hydroxyl group further engaged stable hydrogen bonds with Arg306 and Asn331,

the bond distances are retained throughout the MD simulation (figs. 3.49 and 3.50B). The

MM-PBSA results (fig. 3.50C): Arg282, Arg316 and Asn332 would seem to be the major

contributors for the binding, as well as Met313 and His435 also yield favorable

contributions mainly due to hydrophobic interactions.

A

B

C

Figure 3.50: a: Ligand RMSD relative to the first and the last simulation frame. b: Hydrogen-bond

distances of Arg282, Lys306 and Asn331 with alisol A. c: Binding-energy decomposition within the

binding pocket and time-resolved details for key amino-acid residues for 85 to the TR�.
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3.3.8 Compounds active toward the Cytochrome P450 2D6

37, 80 and 88 were identified as active towards the CYP2D6, with computed IC50 values of

12.6 nM, 7.86 nM and 3.61 nM, respectively. The docking pose contributing most to the

binding affinity is shown in fig. 3.51.

Figure 3.51: Details of the binding of 37, 80 and 88 to the CYP2D6.
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Figure 3.52: Binding-energy decomposition within the binding pocket and time-resolved details for

key amino-acid residues for 37 (a), 80 (b) and 88 (c) to the CYP2D6.
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Chapter 4

Conclusions

Employing a genetic algorithm, a 4D scoring function based on a total of 1,288

compounds binding to 16 different proteins (enzymes, receptors, ion channels) has been

developed and compared against existing concepts. In the new function, the interaction

ligand–protein energies are decomposed into electrostatic, van der Waals, hydrogen

bonding and polarization components, which allows for a direct estimation of the

associated binding affinity. This algorithm can be employed in consensus-scoring mode

to existing concepts for the prediction of binding affinities based on three-dimensional

ligand–protein structures. Current limitations of the scoring function include larger

induced-fit movements and, if present, substantial entropic contribution of solvent

released upon ligand binding.

Using the Quasar software, a QSAR model for the pregnane X receptor (PXR) was

developed and validated. The binding modes of the individual compounds were either

obtained from a crystal structure or, when absent, identified by interactive docking,

followed by extensive molecular-dynamics simulations. These poses were subsequently

employed as templates for the flexible docking of 101 compounds (comprising eight

chemical classes) and the generation of the final model. It converged at a cross-validated

r2 of 0.812 (for 72 training compounds) and yielded a predictive r2 of 0.854 (for 29 test

compounds). Consensus scoring with the Raptor software yielded corresponding values of

0.870 and 0.646, respectively. This suggests that the models can be applied to predict the

binding affinity of novel drug candidates towards the PXR, which will be extremely

valuable in the early stages of the drug-discovery process. At the molecular level, residues
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Asn205, His247, Gln285, His407 and Arg410 would seem to play a key role for stabilizing

potential ligand molecules trough hydrogen bonds. Hydrophobic stabilization of the

ligand–protein complex, on the other hand, is mainly achieved through the residues

Phe288, Trp299 and Tyr306. Limitations of the models involve the applicability domain,

which does only include neutral species. The availability of high-quality experimental

data turned out to be a limiting factor for the choice of a larger dataset. The application of

interactive docking is not adequate for high-throughput screening, where automated

procedures are necessary. Further improvement of the automated docking process could

be achieved by implementation of knowledge-based rules. In summary, this model

represents a basis for a future extension of the VirtualToxLab — an in silico tool for

predicting side effects and toxicity of drugs, chemicals and natural compounds.

Potential side effects and toxicity of anti-trypanosomiasic active compounds were

investigated using the VirtualToxLab. This technology identifies the binding mode of a

small-molecule compound toward a series of 16 target proteins (nuclear receptors,

cytochrome P450 enzymes, hERG, AhR) known or suspected to trigger adverse effects. As

this technology provides thermodynamic information only, all relevant ligand–protein

complexes were challenged by subsequent molecular-dynamics simulations.

Sesquiterpene lactones showed a potential affinity toward the androgen, glucocorticoid

and the mineralocorticoid receptor. Tanshinone and its derivatives displayed an affinity

toward the aryl-hydrocarbon and the thyroid receptor �. Alisol A and its derivatives bind to

the androgen and the glucocorticoid receptor. Smyrniorin and its derivatives showed a

substantial affinity toward the glucocorticoid, mineralocorticoid and the progesterone

receptor. Isoflavan showed a high affinity toward the thyroid receptor �. This protocol

would seem to be a promising approach for probing the interactions of ligands with

relevant target proteins.
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Appendix A

Chemical structure of the PXR ligands

A.1 Chemical structures

A.1.1 Estratrienes (E01–E08)
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A.1.2 Androstans (A01–A18)
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A.1.3 Pregnanes (P01–P23)
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A.1.4 T091317 derivatives (T01–T12)

A.1.5 BMS-817399 derivatives (S01–S07)
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A.1.6 Benzenesulfonamide derivatives (M01–M09)

A.1.7 2-Aryl indoles (N01–N08)
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A.1.8 Substituted phenyl triazoles (G01–G16)
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Appendix B

Anti-trypanosomal compounds
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