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SUMMARY     	
	

	 i	

Summary 
 

„Cancer“ – this one term is used to name a large spectrum of different syndromes, 

ranging from the relatively indolent chronic lymphocytic leukemia to highly lethal cancer types 

such as glioblastoma multiforme with a median survival of about 15 months even when 

treated with upfront treatment schedules. Based on the notion that tumors critically rely on 

their own blood supply, targeting the tumor blood vasculature by anti-angiogenic therapeutics 

has been implemented as an important treatment modality for certain cancer types. 

 

Pancreatic neuroendocrine tumors (PNETs) are rare but represent a deadly disease 

when detected at a metastatic stage. Importantly, PNETs have proven to respond especially 

well to the anti-angiogenic compound sunitinib – however, not without a significant amount of 

side effects. To increase the treatment options for PNET patients, we performed a preclinical 

evaluation of nintedanib, a small-molecule anti-angiogenic tyrosine kinase inhibitor (TKI), in 

the Rip1Tag2 PNET mouse model. Our work revealed that nintedanib exerted a strong anti-

angiogenic and thus anti-tumor effect translating into improved animal survival. Based on our 

data we therefore suggest the clinical evaluation of nintedanib as a new treatment modality in 

PNET patient care.  

 
In contrast, numerous large clinical trials in breast cancer patients treated with 

compounds targeting tumor angiogenesis only resulted in improved progression-free survival 

(PFS) at best, without increasing overall survival (OS). This observation suggests the rapid 

establishment of therapy resistance. We therefore set out to investigate mechanisms of 

resistance to nintedanib and sunitinib in a murine syngeneic transplantation model of breast 

cancer. Similar to the clinical observations, targeting tumor angiogenesis in this mouse 

model resulted in the rapid development of resistance. Interestingly however, tumor re-

growth was occurring despite a sustained reduction of the number of tumor blood vessels (i.e. 

microvessel density; MVD) and increased hypoxia. Mechanistically, this tumor re-growth was 

enabled by the upregulation of glycolysis and the establishment of a metabolic symbiosis 

between hypoxic and normoxic tumor areas. Interestingly, similar mechanisms might be also 

responsible for re-growing tumors occasionally observed in nintedanib-treated Rip1Tag2 

mice. 

 
Taken together, our data provide a preclinical basis for the evaluation of nintedanib as 

a new treatment modality for PNET patients. Furthermore, we describe the upregulation of 

glycolysis as a mechanism how tumor cells can escape the action of anti-angiogenic 

therapies allowing them to survive and proliferate in a detrimental environment of low oxygen 

tension, acidic pH and nutrient deprivation.  
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1 General Introduction 
 
1.1 Systemic cancer therapy 
 
1.1.1 The past1 

At the end of the 19th and beginning of the 20th century, attempts to cure cancer were 

based on surgical resection. Before the area of anesthetics, aseptic procedures and 

antibiotics, these painful procedures were accompanied by high peri- and postoperative 

mortality. Motivated by local and distant recurrences, surgeons began to increase the 

amount of tissue being resected. A leading figure in the field of breast surgery at this time 

was William Stewart Halsted. His eagerness to cure a systemic disease “with the knife” 

resulted in a technique to surgically treat breast cancer patients, known as radical 

mastectomy, which involved the resection of bones, muscles and lymph nodes neighboring 

the affected breast [2]. Despite well-advanced surgical techniques, physicians sooner or later 

realized that only the resection of small and mobile tumors eventually cured the patients. The 

rest of the patients, which was a significant fraction, could not be saved even with the most 

aggressive surgery. The identical caveat was faced when radiotherapy was introduced into 

anti-cancer treatment strategies. Patients with localized tumors were cured, but not when the 

cancer had already systemically spread. Willy Meyer, a German surgeon who spent the 

second part of his career in New York and who developed the technique of radical 

mastectomy in parallel to Halsted, stated shortly before his death in 1932 that cancer would 

be a systemic disease [3].  

 

The concept of cancer as a systemic disease is older than maybe anticipated. More 

than two millennia ago, the Greek philosopher and physician Hippocrates established the 

theory of the balance of the four humors as being the basis for the state of the individual’s 

health. According to him, and later to Galen, cancer is caused by an excessive abundance of 

black bile. Since the excess of black bile would be a systemic problem, the simple extirpation 

of a tumor would therefore not cure the patient, Galen hypothesized [1]. It became apparent 

that a systemic disease needs a systemic treatment and cancer patients would most likely 

benefit from an adjuvant systemic treatment – unfortunately none of these substances were 

yet identified in the first half of the 20th century [1]. Shortly after the Second World War, the 

first two chemotherapeutic substances were tested in cancer patients. Nitrogen mustard gas 

injections resulted in transient responses in several malignancies of the hematopoietic 

system [4, 5]. Ironically, nitrogen mustard gas, used as chemical weapons in both World 

																																																								
1 The subchapter „the past“ is primarily based on the book from Siddharta Mukherjee “The Emperor of All 
Maladies: A Biography of Cancer” [1]. 
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Wars and has thus caused untold suffering to soldiers and civilians, represents one of the 

bases of systemic chemotherapy.  

 

Shortly thereafter, a pathologist named Sidney Farber reported cases of temporary 

remission in children suffering from childhood leukemia upon treatment with the antifolate 4-

aminopteroyl-glutamic acid (aminopterin) [6]. In the following years, the list of 

chemotherapeutic agents was continuously growing and to date many of these agents or 

derivatives of them are still in clinical use [1]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The first successful treatment for childhood leukemia. 
In 1948 Sidney Farber reported in The New England Journal of Medicine that some of his patients treated with 
aminopterin achieved temporary remission (adapted from [6]) 
 

1.1.2  Current systemic treatment modalities in oncology 

Modern evidence based systemic cancer therapy is complex and as such treatment 

guidelines are rapidly changing based on the myriad of clinical trials that are continually 

being published. Different treatment modalities administered via the systemic blood 

circulation are being combined with each other, are administered prior to (i.e. neoadjuvant), 

shortly after surgery (i.e. adjuvant) in a curative intention or are administered to prolong life 

span and reduce morbidity when there is no reasonable chance of cure (i.e. palliative) [7]. 

What adds additional layers of complexity are the rapidly changing (sub)classification 

systems by clustering tumors based on gene expression, the mutational landscape or 

chromosomal aberrations [8, 9]. This refined classification is splitting up tumors from a given 

organ, which were traditionally mainly classified based on histopathological criteria, into 

almost distinct cancer entities.  
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Despite the rapid development of innovative therapeutics, systemic cancer therapy is 

still heavily based on traditional chemotherapy [7]. Other than that, therapeutic antibodies 

have improved treatment of certain cancer types. The monoclonal antibody trastuzumab 

(Herceptin®) against HER2 leads to anti-proliferative effects but also antibody-dependent 

cytotoxicity against HER2 overexpressing tumor cells [10]. Trastuzumab, together with an 

antibody against CD20 (rituximab/MabThera®) in CD20+ lymphoma and the anti-angiogenic 

antibody neutralizing vascular endothelial growth factor (VEGF)-A (bevacizumab/Avastin®) 

are among the pioneers of this class of drugs [11]. Recently, antibodies were coupled with 

chemotherapeutic agents, called antibody-drug conjugates, to allow a more specific drug 

delivery. As an example, an antibody against CD30, which is expressed by Hodgkin 

lymphoma cells, was coupled to the cytostatic agent monomethyl auristatin E (brentuximab 

vedotin/Adcetris®) allowing this agent to specifically be delivered to lymphoma cells. 

Similarly, instead of chemotherapeutics, toxins or radioisotopes can also be linked to 

antibodies [12].  

 

Antibodies are also the backbone of another relatively new and highly promising 

strategy to boost the anti-cancer immune response mainly mediated by T cells, i.e. the so 

called “immune checkpoint inhibitors”. One unique feature of T cell mediated anti-tumor 

therapy lies in the tremendous variety of epitopes T cells can recognize. Calculations 

suggest that every individual possesses a repertoire of T cell receptors (TCR) against as 

many as 109 different epitopes, thereby being sufficiently armed to fight against intratumoral 

heterogeneity as well as recurring tumors [13]. As an example, the anti-cytotoxic T-

lymphocyte-associated protein (CTLA)-4 monoclonal antibody ipilimumab (Yervoy®) 

significantly improved the survival of melanoma patients with a significant fraction of long-

term survivors in phase III trials [14, 15]. CTLA-4 is upregulated by T cells upon activation to 

control and prevent an overshooting immune response [16]. Therefore, blocking CTLA-4 

“releases the break” and increases the T cell activation and subsequent proliferation. More 

recently, the immune checkpoint regulator PD-1 (on activated T cells) and its ligand PD-L1 

(on many cell types including tumor cells) became successful targets for anti-cancer therapy 
[17-19]. Interestingly, combining antibodies against PD-1 (nivolumab) and CTLA-4 

(ipilimumab) further increased the clinical benefit with a manageable safety profile [20, 21].  

 

Besides local radiotherapy, radioactive isotopes are systemically administered for 

certain indications. In the case of thyroid cancer, adjuvant iodine-131 treatment is used to 

ablate residual thyroid tissue and microscopic carcinoma lesions [22, 23].  

 



GENERAL INTRODUCTION 

	

	 4 

The growth of certain tumor subtypes of breast and prostate cancer critically depend 

on female and male sex hormones respectively. Breast cancers with ≥1% of cancer cells 

expressing estrogen receptors benefit from therapeutics interfering with estrogen signaling 

either via modulating the estrogen receptor such as with tamoxifen or via inhibiting estrogen 

production by the administration of aromatase inhibitors [7]. Men with prostate cancer, where 

treatment is indicated (low-risk localized disease can be left with watchful waiting) can benefit 

from androgen deprivation therapy [24].  

 

Most funding, research and publications are currently related to compounds targeting 

the cancer kinome [13, 25]. Since the present MD-PhD thesis is mainly based on kinase 

inhibitors, the following sections are dedicated to this class of cancer therapeutics – with a 

special emphasis on the anti-angiogenic tyrosine kinase inhibitor nintedanib. 

 

1.1.3 Targeted therapy by targeting the cancer kinome 

The human kinome encodes approximately 518 kinases that represent about 1.7% of 

all protein coding genes [26]. Protein kinases are enzymes able to catalyze the addition of an 

ATP-derived phosphate to the hydroxy-group of the amino acids serin, threonine and 

tyrosine. An integral component of the catalytically active kinase domain is the ATP-binding 

pocket (for a detailed description please see below). Kinases are essential for integrating 

extracellular and intracellular signals into a wide spectrum of meaningful cellular activities. 

Several kinases appear as interesting targets for cancer therapy (as well as in non-malignant 

diseases), since their functions have been shown to be essential for cancer cell survival, 

proliferation, migration and invasion [27].  

 

Since the first kinase inhibitor imatinib was approved by the Food and Drug 

Administration (FDA) in 2001 for the treatment of chronic myelogenous leukemia (CML), 27 

additional compounds have been added to this list (valid at time of writing, [25]). In addition, 

a tremendous amount of new inhibitors are in various stages of preclinical and clinical 

development. Most small-molecule kinase inhibitors inhibit the catalytic function of its target 

kinase by interfering with the normal function of the ATP-binding pocket. The usually well-

conserved kinase domains are characterized by an N-terminal lobe with a β-sheet secondary 

protein structure and a C-terminal lobe with an α-helical structure flanking a central ATP-

binding pocket. The access to the central ATP-binding pocket is controlled by a flexible 

activation loop containing the conserved amino acid sequence Asp-Phe-Gly (DFG) [25, 28].  

To date, most kinase inhibitors act in a reversible manner. ATP-competitive compounds can 

target the active conformation (type I inhibitors; e.g. sunitinib) or bind to and thus stabilize the 

inactive conformation of kinases (type II inhibitors; e.g. sorafenib, imatinib). Interestingly, 



GENERAL INTRODUCTION  

	

	 5	

targeting the inactive conformation facilitates the design of more selective inhibitors, since 

the inactive conformations of kinases display more structural heterogeneity than kinases in 

the active conformation [28]. A smaller group of compounds allosterically influences the 

kinase activity by binding outside of the ATP-binding pocket (e.g. CI-1040 inhibiting MEK1 

and MEK2). These inhibitors usually display a higher target selectivity compared to ATP-

competitive drugs due to their interaction with less conserved residues than are present 

inside the ATP-binding pocket [27]. Allosteric inhibitors either bind to an allosteric pocket 

neighboring the ATP-binding pocket (type III inhibitors) or to an allosteric site distant to the 

ATP-binding pocket (type IV inhibitors) [25]. 

 

In addition to reversible inhibitors, compounds are being developed, which irreversibly 

inhibit their target by forming covalent interactions usually with a cystein residue located in 

immediate vicinity to the important DFG sequence in the kinase activation loop. This covalent 

interaction prevents the access of ATP to the ATP-binding pocket [27]. With the exception of 

a lipid kinase inhibitor (idelalisib), all kinase inhibitors approved by the FDA are protein 

kinase inhibitors, most act in a reversible manner, their targets mainly belong to the tyrosine 

kinase group (i.e. tyrosine kinase inhibitors; TKI) and most are approved for the treatment of 

malignant diseases [25]. Notably, there is a certain redundancy regarding the kinases, which 

are currently targeted. This can be seen by the fact that 18 out of the 27 FDA approved 

compounds either have BCR-ABL, epidermal growth factor receptor (EGFR) or vascular 

endothelial growth factor receptors (VEGFRs) as one of their targets (Table 1).  

	

Name Targetsa Approved indications in Switzerlandb Key 
References 

Imantinib BCR-ABL, c-KIT 

Ph+ CML; Ph+ ALL; Hypereosinophilia 
syndrome; atypical MDS/MPS; aggressive 
systemic mastocytosis;GIST; 
dermatofibrosarcoma protuberans 

[29-31] 

Dasatinib BCR-ABL, SRC Ph+ CML (first or second-line); Ph+ ALL 
(second-line) [32, 33] 

Nilotinib BCR-ABL Ph+ CML (first or second-line) [34, 35] 

Bosutinib BCR-ABL, SRC Ph+ CML (second-line) [36, 37] 

Ponatinib BCR-ABL Ph+ CML and Ph+ ALL (with T315I 
mutation) [38, 39] 

Ruxolitinib JAK1/2 MPS [40-43] 

Tofacitinib JAK3 RA [44, 45] 

Gefitinib EGFR NSCLC (Adenocarcinoma, EGFR 
activating mutation) [46, 47] 
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Name Targetsa Approved indications in Switzerlandb Key 
References 

Erlotinib EGFR NSCLC (second-line; first-line with 
activating EGFR mutation)  [48-50] 

Lapatinib EGFR, ERBB2, ERBB4 Her2+ BC (after failure to trastuzumab) [51, 52] 

Vandetanib EGFR, VEGFR1-3, RET medullary thyroid carcinoma [53, 54] 

Afatinib EGFR, ERBB2, ERBB3, 
ERBB4 NSCLC (with activating EGFR mutation) [55, 56] 

Sorafenib 
VEGFR1-3, B-/C-RAF, 
p38α, c-KIT, PDGFRβ, 
FLT3 

HCC, RCC, thyroid carcinoma [57-60] 

Sunitinib 
PDGFRα/β, VEGFR1-3, 
c-KIT, FLT3, CSF-1R, 
RET 

GIST, RCC, PNET [61-64] 

Axitinib VEGFR1-3 RCC [65, 66] 

Regorafenib 

VEGFR1-3, TIE2, c-KIT, 
RET, RAF-1, BRAF, 
BRAFV66E, PDGFR, 
FGFR 

CRC, GIST [67-69] 

Nintedanib 
VEGFR1-3, FGFR1-3, 
PDGFRα/β, SRC, LCK, 
LYN, FLT3c 

IPFd [70-72] 

Lenvatinib VEGFR1-3, FGFR1-4, 
PDGFRα, RET, c-KIT thyroid carcinomad [73, 74] 

Pazopanib VEGFR1-3, PDGFRα/β, 
c-KIT 

RCC, soft tissue sarcoma [75-77] 

Crizotinib ALK, ROS1, MET NSCLC (ALK+) [78-80] 

Ceritinib ALK in clinical testing for NSCLC (ALK+) [81, 82] 

Cabozantinib MET, VEGFR2, TIE2, 
FLT3, RET, c-KIT, AXL unknown status [83, 84] 

Ibrutinib BTK mantle cell lymphoma, CLL [85-87] 

Vemurafenib mut BRAF (V600E/K) melanoma (V600 mutations) [88-91] 

Dabrafenib mut BRAF (V600E) melanoma (V600E mutation) [92] 

Trametinib MEK1/2 status unknown [93-95] 

Palbociclib CDK4/6 status unknown [96, 97] 

Idelalisib PI3K∂ B-CLL, follicular lymphoma [98-100] 
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Table 1. The status of FDA approved kinase inhibitors in Switzerland. 
FDA approved compounds inhibiting kinases and their current status in Switzerland for the treatment of malignant 
and non-malignant diseases are shown (valid at time of writing; adapted from [25]).  
a based on original articles cited in “Key References” and on of the Swiss Drug Reference Book [101] 
b based on the Swiss Drug Reference Book [101] 
c see Table 2 
d orphan drug indication [102]  
 

1.1.4 Nintedanib 

Nintedanib is a relatively new small-molecule anti-angiogenic TKI that warrants a 

more detailed desription since it was an integral part of this thesis. Nintedanib (formerly 

known as BIBF1120; brand names Ofev® in pneumology and Vargatef® in oncology) was 

developed and selected by Boehringer Ingelheim GmbH out of a panel of indolinone 

derivatives synthesized and screened for VEGFR-2 inhibition within the scope of a chemical 

lead optimization program. This 6-Methoxycarbonyl substituted indolinone was chosen out of 

a number of similar compounds because of its low-nanomolar inhibition of kinases implicated 

in angiogenesis (angiokines), i.e. VEGFRs 1-3, platelet-derived growth factor receptors 

(PDGFRs)-α and β as well as fibroblast growth factor receptors (FGFRs) 1-3. Importantly, it 

lacks significant inhibitory action (IC50 > 10µM) on a panel of other kinases, such as EGFR, 

HER2, CDKs and IGF1R, and therefore reduces the risk of potential adverse effects caused 

by off-target effects. In addition to the angiokines, nintedanib inhibits FLT-3 and SRC-family 

members (SRC, LCK, LYN) [70, 103] (Table 2). 

 

Cell-based assays revealed a half-maximal effective concentration (EC50) for 

nintedanib of 9nM for VEGF and 290nM for basic FGF (bFGF) stimulated human umbilical 

vein endothelial cell (HUVEC) proliferation, respectively [103]. It induced apoptosis in a dose-

dependent manner, accompanied by a reduction of phosphorylated AKT and MAPK [70]. In 

addition, probably due to its strong inhibitory effect on PDGFRβ, PDGFB-driven proliferation 

of bovine retinal pericytes (BRP) and human umbilical artery smooth muscle cells (HUASMC) 

was inhibited by nintedanib at an EC50 of 79 and 69 nM. These data highlight an important 

feature of nintedanib, i.e. its ability to target both endothelial cells and perivascular cells 

(pericytes, smooth muscle cells). This approach has been suggested to be superior to 

targeting endothelial cells alone [104]. In contrast, proliferation of several carcinoma cell lines 

was not inhibited at clinically meaningful concentrations (>3.5-4µM 2 [70]). Evidence for 

relevant direct anti-tumor cell effects are rare. Most cancer cell lines assessed in in vitro 

proliferation assays apparently did not depend on signals derived from kinases primarily 

targeted by nintedanib [70]. Notable exceptions were ALL cell lines with PAX5 translocations 

that have shown to be critically dependent on survival signals mediated by the SRC-kinase 

																																																								
2 Peak plasma concentrations do not exceed 1µM in mice when being treated with 50mg/kg daily [70, 103]. 
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family member LCK3 [105]. In addition, the colon carcinoma cell line LS174T displayed an 

half-maximal inhibitor concentration (IC50) of about 600nM in an in vitro MTT cell viability 

assay [106]. Recently, nintedanib was shown to exert anti-hepatocellular carcinoma (HCC) 

cell activity in vitro and in vivo independent of its anti-angiokinase activity but by directly 

activating SH2 domain-containing phosphatase 1 (SHP-1), which led to a reduction of 

pSTAT3 and consequently cell death [107]. 

 

Kinase IC50 (nmol/L) 

VEGFR-1 34 

VEGFR-2 21 

VEGFR-2 (mouse) 13 

VEGFR-3 13 

PDGFRα 59 

PDGFRβ 65 

FGFR-1 69 

FGFR-2 37 

FGFR-3 108 

FGFR-4 610 

FLT-3 26 

SRC 156 

LCK 16 

LYN 195 

TGFβRI (ALK5) 505 

 
Table 2: In vitro kinase inhibitory profile of nintedanib. 
The following kinases were inhibited at nintedanib concentrations >1µM: InsR, IGF1R, EGFR, HER2, CDK1, 
CDK2, CDK4GSK3B, ROCKII, DYRK1A, TGFβRII, PKCA, MAPK2ERK2, HGFR, MSK1, PDK1, CHK1, 
MAPKAPK2, SAPK2AP38, S6K1, SGK, CK1, CK2, PKA, SAPK2BP38B2, SAPK3P38G, JNK1A1, SAPK4P38D, 
PHK, PKBA, CSK, CDK2/CYCLINA, PRAK, PP2A (adapted from [70] and Meyer-Schaller et al., unpublished 
data). 
 

Comparing pharmacodynamic and pharmacokinetic studies in cells culture 

experiments and in mice has pointed towards interesting features of nintedanib. Whereas 

nintedanib is promptly metabolized by methylester cleavage to the metabolite BIBF1202 and 

is almost completely cleared from the plasma within 24 hours (single per os treatment with 

50mg/kg), target inhibition can be detected for at least 32 hours [70, 108]. Since co-crystal 

structure analysis suggested that nintedanib reversibly binds the ATP-binding pocket, the 

sustained target inhibition is most likely mediated by the metabolite BIBF1202 that inhibits 

VEGFR-2 phosphorylation in the low-nanomolar range [70]. 

  

																																																								
3 The SRC-kinase family member LCK represents a low-nanomolar target of nintedanib (Table 2; [70]). 
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In vivo preclinical studies aiming to determine the antitumor activity of nintedanib to 

date have mainly been based on xenograft transplantation assays of human cancer cell lines 

into heterotopic subcutaneous sites of immunodeficient mice. Tumor growth reduction was 

observed by nintedanib monotherapy in the following subcuatenous xenograft carcinoma 

models: FaDu (head and neck squamous cell), Caki-1 (renal cell), HT-29 (colon), SKOV-3 

(ovarian), PAC-120 (prostate); A549, Calu-6, H1993 (lung); HepG2 (hepatoblastoma), PLC5 

(HCC) and AsPC-1 (pancreatic) [70, 106, 107, 109, 110]. In addition, significant growth 

reduction achieved by nintedanib monotherapy was shown in orthotopic xenograft models 

with the pancreatic adenocarcinoma cell lines HPAF-II, MIA PaCa-2 and AsPC-1 [111]. 

Interstingly, despite a marked increase in hypoxia in the A549 xenograft model of lung 

cancer, nintedanib treatment did not induce an epithelial to mesenchymal transition (EMT). In 

contrast, the epithelial adherens junction protein E-cadherin was upregulated and the 

mesenchymal marker vimentin showed a trend towards lower expression in nintedanib-

treated tumors [111]. In line with this finding, the Thiery laboratory reported upregulation of E-

cadherin expression when the mesenchymal human ovarian cancer cell line SKOV3 was 

treated with nintedanib in vitro, albeit in micromolar concentrations [112]. Future work will 

have to elucidate if nintedanib’s promotion of an epithelial phenotype can be attributed to 

inhibition of FGFRs and PDGFRs, both of which are primary targets of nintedanib and 

previously implicated in EMT [113, 114]. Alternatively, this could also be due to inhibition of 

yet unknown targets of nintedanib. Unpublished data in our laboratory derived from an in 

vitro kinase assay suggest that nintedanib inhibits TGFβRI (ALK5) with an IC50 of 505nM 

(Meyer-Schaller et al., unpublished results). This finding is partially supported by cellular 

assays showing inhibitory effects of nintedanib on TGFβ signaling – although in the 

micromolar range [115]. Therefore, it has yet to be elucidated, whether inhibition of TGFβRI 

can be achieved by clinically relevant concentrations of nintedanib. 

 

Based on phase I clinical trials, the recommended nintedanib dose for subsequent 

phase II clinical trials for cancer patients was set to 200mg twice daily per os (p.o.), both for 

monotherapy and for combined schedules with the chemotherapeutic agents paclitaxel plus 

carboplatin, docetaxel or pemetrexed [116-119]. Importantly, the combination of nintedanib 

with chemotherapeutic agents was well tolerated and the chemotherapeutics could be 

administered at standard doses. In one study, nintedanib 150mg twice daily in combination 

with paclitaxel for the treatment of HER2-negative breast cancer was recommended [120]. 

The main dose-limiting side effect was the reversible elevation of liver enzymes. Other than 

that, nausea, vomiting and diarrhea were frequently observed. Interestingly though, 

nintedanib only rarely caused hypertension and skin abnormalities, both of which are two 

“classical” side effects of other anti-angiogenic compounds [119]. The etablished anti-
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angiogenic TKIs sunitinib and sorafenib in general lead to increased toxicity when co-

administered with chemotherapeutic agents resulting in the requirement of sub-standard 

dosing. In contrast, nintedanib seems to contain superior features, as it can be combined 

with chemotherapy at standard dosing [120-122]. In pharmacokinetic studies, nintedanib 

reached steady-state plasma levels after 8 days of twice daily administration. Peak plasma 

concentrations reached 67.6ng/ml (≈104nM), levels that should be sufficient to inhibit their 

primary targeted angiokine receptors ([70, 123] Table 2). Subsequent phase II clinical trials 

were conducted in different solid tumor types with nintedanib as monotherapy. A randomized, 

double-blind, placebo-controlled phase II clinical trial for recurrent ovarian cancer with 

nintedanib monotherapy directly adjoining a line of chemotherapy with the aim to prolong the 

time until progression, showed encouraging responses in a subgroup of patients [124]. 

Strikingly, one patient was treated with nintedanib maintenance therapy for more than 4.5 

years and was disease free at the time her case was published [125]. In late stage non-small 

cell lung cancer (NSCLC), nintedanib monotherapy led to tumor stabilization in 46% of the 

patients [126]. In contrast to the trials in ovarian and lung cancer, nintedanib monotherapy in 

patients with recurrent high-grade glioma, persistent or recurrent endometrial cancer and 

castration-resistant prostate cancer did not lead to a relevant response [127-130]. The 

encouraging activity of nintedanib in ovarian cancer and NSCLC led to subsequent phase III 

clinical trials. AGO-OVAR 12/LUME-OVAR 1 investigates the addition of nintedanib to a 

carboplatin and paclitaxel combination regimen and results will be available soon [131].  

In advanced NSCLC that recurred after a first line of platinum-based chemotherapy, 

nintedanib plus docetaxel versus docetaxel alone (LUME-Lung 1) significantly improved 

progression-free survival (PFS), whereas overall survival (OS) was only increased in NSCLC 

with adenocarcinoma histology [71]. In a second phase III clinical trial investigating the 

addition of nintedanib to pemetrexed versus pemetrexed alone in advanced NSCLC (LUME-

Lung 2) was stopped prematurely, because it appeared unlikely that the primary endpoint 

(PFS) could be met. However, despite the premature conclusion of the study, the following 

analyses showed that PFS was significantly increased by the addition of nintedanib [132]. 

 

Of note, nintedanib monotherapy displayed an encouraging result in a phase II clinical 

trial for the treatment of idiopathic pulmonary fibrosis (IPF), which was recently confirmed by 

a double blind, randomized, controlled phase III clinical trial [72, 133]. 

 

Taken together, nintedanib has shown promising results as monotherapy in early 

clinical trials in certain tumor types. In addition, the co-treatment with classical chemotherapy 

did not increase adverse events. Currently, nintedanib is approved by the FDA for IPF and in 

the European Union for the treatment of advanced NSCLC with adenocarcinoma histology 
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after first-line chemotherapy [134]. In the future, it will be interesting to see how nintedanib 

performs in cancer types that have been shown to be especially sensitive to anti-angiogenic 

therapies, such as pancreatic neuroendocrine tumors (PNETs), renal cell carcinoma (RCC) 

or HCC [59, 63, 64]. 

 
1.1.5 Excursus: A global perspective on cancer therapy 

A PhD thesis built around the preclinical validation of new compounds for targeted 

anti-cancer therapy, which upon potential approval by regulatory authorities will cost a certain 

amount of money, cannot stand without some brief thoughts about the global economic 

impact and accessibility of medical interventions to prevent and to treat cancer.  

 

Since the first clinical trials with the chemotherapeutic agents nitrogen mustard and 

antifolate over half a decade ago, the field of medical oncology has tremendously developed 
[1]. Much has been learned about the etiologies, molecular characteristics, intertumoral 

heterogeneity (cancer subtypes) and resistance mechanisms to conventional 

chemotherapeutic agents and newer targeted kinase inhibitors. The end of the tunnel in 

changing cancer from a deadly into a chronic or even curable disease might be in sight, one 

might think. This might be true for some cancers, as in the case of CML with the discovery of 

imatinib and second and third line treatments (dasatinib, nilotinib, bosutinib, ponatinib), which 

greatly increase the survival of CML patients [31, 33, 34, 36, 38]. It seems therefore contra-

intuitive, when Dr. Franco Cavalli, a Swiss politician, medical oncologist and former president 

of the Union for International Cancer Control (UICC) stated: „Current strategies to control 

cancer are demonstrably not working“ [135]. What he addressed with this statement was the 

increase of 40% of people dying of cancer worldwide since 1990 [135, 136]. Most of this 

increase takes place in low- and middle income countries because of three reasons: 

Economic development is paralleled by adaptation to western lifestyle with exaggerated 

calorie intake resulting in obesity, which is a well established risk factor for breast, prostate 

and colorectal cancer [137]. Secondly, the incidence of cancer types remain high that would 

potentially be preventable by screening or immunization: Papanicolau smear to detect 

cervical dysplasia; hepatitis B virus immunization eradicating one etiologic agent of 

hepatocellular carcinoma or immunization against human papillomavirus most likely 

preventing cervical, penile and anal carcinoma – to name just a few [135, 138]. Third, 

patients in low-income countries have a higher risk to die once diagnosed with cancer 

compared to western countries. One reason is the reduced access to effective treatments. In 

addition, inadequate access to diagnostics when first symptoms are present delays a proper 

diagnosis. Therefore, cancer patients in low-income countries often present with further 

advanced tumors than in high-income countries [136, 138].   
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What are the strategies advocated by the experts? The primary problem is obviously 

limited resources in developing countries. Since this will most likely not substantially change 

within a reasonable time frame, the primary aim has to be the usage of the existing 

resources as effectively as possible. Primary prevention (i.e. prevent a disease before it 

occurs) and secondary prevention (e.g. screening programs) have to be directed to the right 

population and have to be as cost-effective and targeted as possible. To our knowledge, 

many cancers are not preventable, neither in low-income countries nor with the most 

sophisticated screening techniques and expensive primary prevention campaigns of the 

western world. However, early detection of symptomatic cancers followed by appropriate 

treatments was mainly responsible for the reduction in cancer mortality in high-income 

countries. This approach can be translated to developing countries in the sense that health 

care professionals should receive better training in order to recognize cancer related 

symptoms earlier. This would facilitate diagnosis of tumors in early and possibly still curable 

stages. When it comes to treatment, it has been suggested that simple treatments with 

inexpensive chemotherapeutics would still be better than no treatment [138].  

 

Inaccessibility to cancer therapeutics is simply an obstacle in low- and maybe also 

middle-income countries - one could erroneously assume. Recent reports about drug 

shortage in the United States showed that even conventional chemotherapeutics can 

become limited in high-income countries. Essential generic chemotherapeutic agents such 

as cisplatin, etoposide or doxorubicin were repeatedly in short supply in the United States in 

2011 and before. Various reasons were responsible, including that after expiring of patents, 

pharmaceutical companies lose large parts of their financial incentive to continue producing 

these drugs because generic drugs contain smaller margins than patented drugs [139]. 

Probably influenced by the public awareness for the shortage of generic drugs, the 

“Preserving Access to Life Saving Medications Act” was implemented in the United States in 

2011. The consequence of this new act was that pharmaceutical companies have to inform 

the FDA if a prescription drug is going to be in short supply [140]. However, the problem of 

essential chemotherapeutic drug shortage still remains [139, 141]. The result of this shortage 

- also in Switzerland - is that generic chemotherapeutics are substituted with newer brand-

name drugs which are equally effective, but much more expensive. For example, the widely 

used chemotherapeutic agent doxorubicin can be replaced by liposomal doxorubicin that is 

48.2 times more expensive and paclitaxel can be replaced by abraxane (protein-bound 

paclitaxel) which is 18.7 times more expensive [142, 143].  

 

One day, molecular medicine might be able to provide curative solutions to most 

cancer patients. For the majority of the world’s population this does not help at all, since 
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people living in low-income countries do often not even benefit from simple screening and 

treatment regimens, simply because they do not have access or cannot afford it. In high-

income countries, the development of extremely expensive new compounds (mostly more 

than $5000 per month [144]), which are more and more being combined with each other, will 

sooner or later result in a financial burden, which cannot be covered by the general public 

anymore. It is extrapolated that direct annual costs in the United States for cancer patient 

care will rise from $104 billion to $173 billion between 2006 and 2020 [145]. On this way, if 

researchers and health care professionals stay away from discussions regarding health 

policies and leave it to people influenced by parties allowed to gain financial benefit from the 

diseases of other people, this curative solutions will only be available for those who can 

afford it, even in Switzerland as one of the richest countries in the world. 
 

 

1.2 Tumor angiogenesis 
 

1.2.1 Important ligand-receptor systems in angiogenesis 

Physiological and pathological angiogenesis are highly complex processes 

orchestrated by a variety of pro- and anti-angiogenic factors. In the following section, I will 

provide a brief overview over the characteristics of the VEGF/VEGFR, PDGF/PDGFR and 

FGF/FGFR family members. With differing selectivity, the receptors of these families 

represent the main anti-angiogenic targets of nintedanib and related anti-angiogenic TKIs 

such as sunitinib and sorafenib [60, 62, 103]. 

 

VEGFs and their receptors 

The VEGF family in mammals consists of VEGF-A, -B, -C, -D and placental growth 

factor (PlGF) [146]. Furthermore, the family is extended by the Orf virus-encoded VEGF-E, 

which exclusively acts via binding to VEGFR-2 [147]. In addition, the venom of a snake living 

in Southeast Asia, Trimeresurus flavoviridis, contains a VEGF-like protein (TfsvVEGF) that 

mainly induces vascular permeability [148].  

 

VEGF-A is considered to be the predominant angiogenic molecule of the VEGF family. 

Remarkably, both VEGFA alleles are required during embryonic development, as mice 

deficient for even only one allele of VEGFA die in utero4 [149, 150]. Several isoforms with the 

length of 121 to 206 amino acids are encoded by the VEGFA gene and are the products of 

																																																								
4 The phenomenon when the deletion of one allele is enough to lead to a phenotype differing from the wild-type 
situation is called „haploinsufficiency“.  
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alternative splicing. VEGF-A121, VEGF-A165 and VEGF-A189 are the most abundant isoforms5. 

In general, the length of the VEGF-A isoform correlates with its the ability to bind to heparan 

sulfate proteoglycans (HSPG). Consequently, VEGF-A165 can be found soluble and HSPG-

bound, whereas VEGF-A121 is freely diffusible [151]. VEGF-A binds to the tyrosine kinase 

receptors VEGFR-1 (VEGFR-1/FLT-1) and VEGFR-2 (FLK-1/KDR), representing two of the 

three VEGFRs. Since VEGFR-1 has a higher binding affinity to VEGF-A, but lower signaling 

capabilities than VEGFR-2, and a soluble VEGFR-1 isoform acts as VEGF-A-trap, VEGFR-1 

is considered to be a negative regulator of VEGF-A signaling in certain situations  [146, 152].  

 

VEGF-B and PlGF solely bind to VEGFR-1 and NRP-1. VEGF-B exerts important 

physiological functions in the heart and in other metabolically active tissues such as skeletal 

muscle and adipose tissue [153]. A role for VEGF-B in regulating fatty acid transport into 

endothelial cells has been shown [154]. PlGF displays highest expression in the placenta. 

VEGF-B and PlGF-deficient mice develop normally [153]. Mainly VEGF-C, but also VEGF-D 

promote lymphangiogenesis via signaling through VEGFR-3. Upon proteolytic processing, 

VEGF-C and D are capable of binding to VEGFR-2 as well. Interestingly, during 

embryogenesis and tumor angiogenesis, VEGFR-3 can also be found on blood vessel 

endothelial cells [155]. The neuropilins (NRP)-1 and 2 act as co-receptors for several VEGF 

family members, which bind with isoform-specific affinities [156]  
 

 

																																																								
5 The indicated isoform lengths apply to human VEGF-A isoforms as the lenght of the isoforms slightly vary 
among species 
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Figure 2. VEGF family members and their receptors. 
VEGF-A represents a central driver of physiological and pathological angiogenesis. Its pro-angiogenic signals are 
mainly transduced via VEGFR-2, as VEGFR-2 contains higher kinase activity compared to VEGFR-1. Soluble 
VEGFR-1 (sVEGFR-1) exerts anti-angiogenic activity by sequestering its ligands PlGF, VEGF-B and VEGF-A. 
VEGF-C and D primarily stimulate lymphangiogenesis through VEGFR-3. The VEGF co-receptors Nrp-1 and 2 
increase the binding between VEGFs and VEGFRs and thus stimulate VEGFR signaling (for further details see 
main text; modified from [157]). 
 

PDGFs and PDGF receptors 

Four genes encode the PDGF family members. Their products form five biologically 

active homo- or heterodimers (PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC, PDGF-DD)6. 

Two genes are encoding the two subunits of the PDGF tyrosine kinase receptors (PDGFRα 

and PDGFRβ). The assembly to homo- or heterodimeric receptors (PDGFRαα, PDGFRαβ or 

PDGFRββ) is determined by the affinity of each of the subunits present in the ligand. Notably, 

the PDGF-B subunit contains high affinity for both receptor subunits; hence PDGF-BB can 

bind and activate all three receptor dimers [158].  

 

PDGFs act on several mesenchymal cells such as fibroblasts. However regarding 

angiogenesis, their action on pericytes is of predominant interest. Mice deficient for Pdgfb die 

perinatally due to the impaired ability to recruit pericytes resulting in microaneurysms, 

hemorrhages and edema [159]. A similar phenotype has already earlier been observed in 

mice deficient for Pdgfrb [160]. The general view is that endothelial cells recruit PDGFRβ-

expressing pericyte progenitor cells by producing PDGF-B in order to stabilize newly formed 

blood vessels with a tight pericyte coverage [161]. 

 

FGFs and FGF receptors 

Of the 22 genes encoding FGF ligands, FGF1 (acidic FGF, aFGF) and FGF2 (basic 

FGF, bFGF) are thought to play a predominant role in angiogenesis [162]. In contrast to the 

tremendous number of FGF ligands, only 4 genes encoding FGF receptors are described 

(FGFR 1-4). Importantly however, FGFR 1-3 undergo extensive alternative splicing resulting 

in a panel of isoforms with differing specificity to FGF ligands. Endothelial cells have been 

reported to mainly express FGFR-1, rarely also FGFR-2, but lack the expression of FGFR-3 

and FGFR-4 [163]. Interestingly, a synergistic action of FGF-2 and VEGF-A has been 

observed [164, 165].  

 
 

 

																																																								
6 For the sake of simplicity, homodimeric ligands and receptors are described by PDGF-B instead of PDGF-BB for 
instance. However, the heterodimeric PDGF is written as PDGF-AB.  
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1.2.2 Historical overview  

Before the field of research on tumor angiogenesis was founded in the 1970’s and in 

the following decades heavily influenced by the Bostonian surgeon Judah Folkman, the 

research community was well aware that tumors contain blood vessels. However, the 

general assumption was that these blood vessels are a bystander effect caused by some 

non-specific inflammation [166]. In his seminal review published in The New England Journal 

of Medicine in 1971, Judah Folkman proposed that tumor cells and endothelial cells 

“constitute a highly integrated ecosystem” where the “mitotic index of the two cell populations 

may depend on each other” [167]. In this review, he further discussed recent results of his 

laboratory and proposed ideas which are largely still valid today: 1) tumors have to acquire 

new blood vessels in order to grow beyond the size of 2 to 3 mm (i.e. the angiogenic switch); 

2) tumor cells do so by secreting (a) diffusible factor(s) which stimulate endothelial cells to 

form new capillaries; 3) they identified and purified a factor from tumors (i.e. tumor 

angiogenesis factor, TAF) that is able to stimulate endothelial cell proliferation in vitro and in 

vivo without the evidence of accompanying inflammation; 4) anti-angiogenesis as a new anti-

tumor strategy to (i) prevent the outgrowth of yet unvascularized tumors, (ii) antibodies could 

be used to neutralize circulating pro-angiogenic factors such as TAF, (iii) anti-angiogenesis 

could synergize with cellular anti-tumor immunity; 5) the dependence of a certain tumor type 

on angiogenesis based on its capillary density could be used to stratify patients prior to anti-

angiogenesis therapy [167]. 

 

The first pro-angiogenic molecule to be purified and sequenced, bFGF, was already 

described in 1976 by Gospodarowicz and colleagues as a survival factor and mitogen for 

endothelial cells [168]. It was subsequently purified in 1984 by the Folkman laboratory 

followed by its sequencing 1985 by Esch et al. [169, 170]. In 1983, Donald Senger and 

Harold Dvorak identified and purified a factor from tumor ascites of laboratory animals, which 

induced permeability of vessels without causing damage to endothelial cells (vascular 

permeability factor; VPF). Remarkably, a part of this publication described how an antibody 

against VPF was able to abrogate its permeability inducing action [171]. Subsequent 

research identified VPF as being identical to VEGF-A [172]. It was first sequenced in 1989 in 

the Ferrara and Connolly laboratories and shortly thereafter by the Folkman laboratory as 

well [173-175]. In the following years, more pro-angiogenic, but also endogenous anti-

angiogenic factors, such as endostatin, thrombospondin-1 and angiostatin, have been 

identified and characterized [176].  
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1.2.3 Mechanisms of tumor angiogenesis 

Blood vessels provide tumor cells with oxygen and nutrients necessary for their 

proliferation and facilitate the removal of accumulating waste products. Tumors hijack 

programs that normally drive blood vessel formation under a variety of physiological 

conditions, e.g. embryonic development, wound healing, remodeling of the endometrium 

during the menstruation cycle, and placental growth during a pregnancy [177, 178]. Several 

mechanisms have been described to be involved in the vascularization of tumors (Figure 3) 
[179, 180]. The term angiogenesis refers to the formation of new vessels based on existing 

vessels and involves sprouting and non-sprouting angiogenesis (intussusception) [181]. 

 

Sprouting angiogenesis 

Sprouting angiogenesis represents most likely the prototypical mode how tumors 

acquire new blood vessels. Tumor cells residing in regions of insufficient oxygenation 

orchestrate a hypoxia program, which is built around the stabilization of the transcription 

factors hypoxia-inducible factor (HIF)-1 and 2. HIF-1, a dimer consisting of HIF-1α and HIF-

1β, stimulates the expression of a plethora of genes including angiogenic factors such as 

VEGF-A and various enzymes implicated in glycolysis. HIF-2 is formed by the dimerization of 

HIF-2α with HIF-1β and shares a number of target genes with HIF-1 such as VEGF-A, but 

not glycolysis enzymes [182]. VEGF-A, signaling via VEGFR-2 expressed by endothelial 

cells, is an important first trigger leading to endothelial cell activation of previously quiescent 

mature blood vessels. This includes the acquisition of migratory, invasive and proliferative 

endothelial cell-phenotypes and increased permeability of the endothelial layer [183]. In order 

to enable sprouting from existing blood vessels, the basement membrane (BM) lining the 

vessel wall and the underlining extracellular matrix (ECM) has to be degraded. This 

degradation is mainly mediated by increased abundance of proteases of the matrix 

metalloproteinase family (e.g. secreted MMP-2 and MMP-9, membrane-type MT1-

MMP/MMP-14), which are secreted by endothelial cells, tumor cells and other cells of the 

tumor microenvironment. Increased protease activity is also achieved by the downregulation 

of protease inhibitors [184-186]. Besides BM and ECM degradation providing physical space 

for endothelial sprouts, MMPs contain two additional angiogenesis modulating properties. 

Namely, the release of ECM- bound growth factors, such as bFGF or VEGF and the 

activation of latent transforming growth factor (TGF)-β, and the generation of endogenous 

angiogenesis inhibitors such as endostatin and angiostatin, representing cleavage products 

of the ECM components collagen XVIII and plasminogen, respectively [186]. As an example, 

the growth factor-releasing property of MMP-9 is responsible for the angiogenic switch in the 

Rip1Tag2 transgenic mouse model of neuroendocrine carcinoma of the pancreas (see 

below) by liberating ECM-bound VEGF-A, whereas VEGF-A expression is not differentially 
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regulated during the stepwise Rip1Tag2 tumorigenesis [184, 187]. Importantly, angiogenesis 

initiation seems to be less dependent on the expression levels of one single pro- or anti-

angiogenic factor but rather on the net balance between the sums of pro- and anti-

angiogenic factors [188]. 

 

Growing vascular sprouts are characterized by leading tip cells and a following cord 

of stalk cells. Tip cells are thought to mainly migrate and invade without substantial 

proliferation, whereas stalk cells represent the pool of proliferating cells. Tip versus stalk cell 

specification is mainly based on Notch signaling regulating VEGFR-2 expression: Delta-like 

ligand 4 (DLL4) expression is stimulated by VEGF-A in tip cells and reduces VEGFR-2 levels 

on neighboring stalk cells via its receptor NOTCH1, thus resulting in differential responses to 

VEGF-A gradients [189, 190]. In addition, a role of VEGFR-3 in sprouting angiogenesis has 

been demonstrated as tumor blood vessels express VEGFR-3 in addition to VEGFR-2 on 

filopodia of tip cells [191, 192]. Recently, the Augustin laboratory has proposed a role for 

angiopoietin-2 (ANG-2) in stimulating migration of TIE-2-low tip cells by binding to and 

signaling via integrins (classically, ANG-2 is a context dependent antagonist of the receptor 

TIE-2) [193]. In order to form mature vessels lined by the so-called phalanx cells, vascular 

sprouts have to fuse, form a lumen and to differentiate into a quiescent monolayer which is 

paralleled and influenced by the acquisition of a tight pericyte coverage at the abluminal 

surface [161, 194, 195]. Pericyte coverage is induced by endothelial cells, which express 

PDGF-B and thereby attract PDGFRβ-expressing pericytes. Attracted pericytes in turn 

promote growth arrest of endothelial cells and their differentiation into a quiescent state [196]. 

In addition to PDGF-B/PDGFRβ signaling, TGFβ, NOTCH, S1P and ANG/TIE-2 are part of 

the paracrine and juxtacrine crosstalk between endothelial cells and pericytes [161]. 

 

The aforementioned stepwise model of sprouting angiogenesis resulting in mature 

and perfused vessels with tight perivascular coverage mainly takes place during 

physiological angiogenesis. During tumor angiogenesis, similar pathways might be employed, 

however in a much more disorganized manner. Tumor blood vasculature is characterized by 

overshooting angiogenesis resulting in immature and leaky vessels with a significant fraction 

of non-perfused (non-patent) vessels [197, 198]. A more detailed description of the features 

of the abnormal tumor vasculature will be provided when discussing the concept of vessel 

normalization.  
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Figure 3. The different mechanisms of tumor angiogenesis. 
Tumors ensure their supply with essential factors delivered by the systemic circulation via several mechanisms: 
angiogenesis by sprouting, vasculogenesis by bone marrow-derived cells, intussusception (non-sprouting 
angiogenesis), vessel co-option, vascular/vasculogenic mimicry or tumor stem cell to endothelial cell 
differentiation (Figure adapted from [179]). 
 
 
Vasculogenesis 

Vasculogenesis, i.e. the de novo formation of vessels, is a well established process 

during embryogenesis leading to the first blood vessels in the embryo and the primary 

vascular plexus in the yolk sac [199]. Postnatal vasculogenesis has long thought to be 

absent. However, newer but controversial data suggest its contribution to the vascularization 

of tumors [181, 200]. Besides the pool of mature circulating endothelial cells (CEC), which 

are thought to be scaled off from existing blood vessels, a rare bone marrow-derived cell 

population, termed endothelial progenitor cells (EPC), circulates in the peripheral blood. 

EPCs can differentiate into mature endothelial cells and incorporate into the endothelial 

monolayer of blood vessels (i.e. vasculogenesis) [201]. The marker expression of EPCs is 

however not yet clearly defined. Immature EPCs seem to commonly express CD133, CD34 

and VEGFR-2, and the more they undergo differentiation, the more lineage-specific markers, 

such as CD31, CD146 and VE-cadherin, are expressed [201]. Nolan and colleagues have 

elegantly demonstrated that bone marrow-derived EPCs incorporate into the endothelium of 

sprouting neovessels preferentially in early phases of tumor angiogenesis by employing 

fluorescent tracing [202]. This and other reports, including the observation that EPC homing 

to tumors peaks after the administration of vascular disrupting agents [203], suggests to what 

extent vasculogenesis is implicated in the formation of the tumor vasculature is context 

dependent [203-207].  
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It is noteworthy that work in our laboratory has failed to indentify the incorporation of 

bone marrow-derived cells into the endothelial layer of tumor blood vessels in the Rip1Tag2 

transgenic mouse model. In contrast, bone marrow-derived cells from the myeloid lineage 

were found to incorporate into peritumoral lymphatic vessels and to express bona fide 

lymphatic endothelial cell markers such as LYVE-1 [208].  

 

Instussusception 

Intussusception (non-sprouting or splitting angiogenesis) is described as the 

mechanism by which new microvessels are formed by the insertion of transcapillary pillars 

into existing vessels and subsequent division into two “daughter vessels”. This phenomenon 

was first described by the Bernese anatomy professor Peter Burri [209-211]. Discovered in 

lung development, subsequent work has shown the occurrence of intussusceptive 

microvascular growth (IMG) of capillaries, small arteries and veins in other organs such as 

the kidney [212, 213]. The mechanisms inducing and regulating intussusception are not well 

understood. Increased blood flow and blood pressure, VEGF-A overexpression and direct 

actions of erythropoietin have been suggested to induce IMG in non-malignant experimental 

models [212, 214, 215]. Importantly, IMG has been observed in several mouse models of 

cancer, including the transgenic breast cancer model driven by the NeuT oncogene and in 

human melanoma tissues [213, 216, 217]. Interestingly, IMG could represent a mechanism 

of how tumors induce revascularization and thus escape anti-angiogenic therapy by 

switching from sprouting angiogenesis to IMG [218]. 

 

Vessel co-option 

Vessel co-option means the (ab)use of pre-existing host vessels. Vessel co-option 

represents a possibility how tumors, when occurring in well vascularized tissues, can start 

proliferating in a very early stage, even before the angiogenic switch occurs. Since by 

definition co-opted vessels do not multiply, initial tumor cell proliferation will only lead to 

tumor expansion until the diffusion distance for oxygen becomes limiting – unless the 

angiogenic switch occurs (Holash, Science99). Vessel co-option also seems to be important 

for metastatic colonization in lung and brain [219, 220].  

 

Vasculogenic mimicry 

Vasculogenic mimicry defines the process when tumor cells line the vascular lumen 

replacing endothelial cells, but without transdifferentiation into endothelial cells. First reported 

in 1999 in uveal melanoma by the Hendrix laboratory, the significance and even the 

existence of vasculogenic mimicry was immediately doubted [221, 222]. In the meanwhile, 
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numerous publications demonstrated vasculogenic mimicry in other solid cancer types and 

its presence was often correlated to poor prognosis [223, 224]. In a recent study by 

Wagenblast and colleagues, the potential of vasculogenic mimicry was greatest in 4T1 

murine breast cancer cell line subpopulations with the highest capacity to form distant 

metastasis. Mechanistically, the two endogenous anticoagulants SERPINE2 and SLPI 

enabled vasculogenic mimicry and thereby brought cancer cells into a optimal position for 

intravasation [225].  

 

It is clear that the controversy regarding the existence and significance of 

vasculogenic mimicry remains high.  In line with this, Karl Plate, Alexander Scholz and Daniel 

Dumont concluded in an article that in the case of glioblastoma multiforme, the significance 

of vasculogenic mimicry might be rather small, since, if existing at all, most blood vessel 

would still be lined with endothelial cells [180]. 
 

Transdifferentiation into endothelial cells 

  Tumor stem cell to endothelial cell differentiation describes a process whereby tumor 

cells – often with stem cell characteristics – transdifferentiate into cells with endothelial cell 

marker expression and function. The consequences of this process stand in sharp contrast to 

the literature precedent often stating that tumor-associated endothelial cells are genetically 

stable [226, 227]. Tumor to endothelial cell transdifferentiation has been heavily investigated 

in glioblastoma multiforme. In one report, a significant proportion glioblastoma-derived 

endothelial cells that expressed the endothelial cell marker CD105+ (ENDOGLIN) contained 

EGFR and chromosome 7 amplifications comparable to tumor cells, suggesting a tumor-

derived origin of these endothelial cells. These glioblastoma-derived endothelial cells were 

the progeny of a CD133+ cancer stem cell-like population [228]. In another set of 

experiments, more than half of the glioblastoma associated endothelial cells displayed the 

same genomic alterations that were found in the respective tumor cells [229]. Endothelial 

cells with the same genomic aberrations as in the respective tumor cells have also been 

discovered in neuroblastoma and lymphoma samples [230, 231]. In contrast to this, other 

groups failed to detect a relevant proportion of tumor cell-derived endothelial cells in 

glioblastoma samples [232, 233]. Similarly, recent evidence derived from lineage tracing 

experiments revealed a glioblastoma cell origin of a high proportion of tumor blood vessel 

associated pericytes but not of endothelial cells [234]. 

 

Bridging the concepts of vasculogenic mimicry and endothelial transdifferentiation, it 

has been hypothesized that vasculogenic mimicry might represent an incomplete step in 

differentiation along the way to cells expressing endothelial cell markers [229].  
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Taken together, several mechanisms how tumors ensure their supply with essentials 

delivered via the systemic circulation by the generation of vessels or vessel-like structures 

co-exist. However, their relative significance between different cancer types and subtypes 

and even within a certain tumor, and molecular mechanisms mediating these vascularization 

types have to be further investigated. In addition, what type of tumor vascularization is most 

affected by anti-angiogenic therapies has remained largely elusive. 

 

1.2.4 New avenues in angiogenesis research – the important role of endothelial cell 

metabolism 
 

In parallel to the renaissance of the tumor metabolism field, angiogenesis researcher 

became interested in the metabolism of endothelial cells. This parallel rapid evolution of the 

two “hot topics” culminated in a joint Keystone symposium in Whistler, Canada, in spring 

2014. Glycolysis is central to endothelial cell metabolism and only a small proportion of ATP 

is generated by oxidative phosphorylation. It has been shown that already quiescent 

endothelial cells lining mature vessels display a high glycolytic flux, which is approximately 

doubled when endothelial cells are activated [235]. VEGF-A promotes the tip cell phenotype 

and at the same time increases phospho-fructokinase-2/fructose-2,6-bisphosphatase 3 

(PFKFB3) levels, as does FGF-2. The product of the reaction catalyzed by PFKFB3, 

fructose-2,6-bisphosphate, strongly stimulates glycolytic flux via allosteric activation of 

phosphofructokinase-1 (PFK-1) [235]. Abrogating PFKFB3 levels in endothelial cells reduced 

microvessel sprouting in vitro and in vivo in a neonatal mouse retina assay by affecting both, 

migration of tip cells and proliferation of stalk cells. In line with this finding, overexpression of 

PFKFB3 increased endothelial cell sprouting by increasing sprout numbers and length. The 

migration phenotype can be explained by the observation that in PFKFB3-deficient 

endothelial cells lamellipodia formation was impaired, which is a critical structure for 

endothelial cell migration. Interestingly, PFKFB3 knockdown reduced, whereas 

overexpression increased the fitness to compete for the tip cell position in a mosaic spheroid 

assay. In addition to this genetic evidence, partial and transient inhibition of glycolysis by a 

small molecule inhibitor of PFKFB3, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), 

reduced vascular sprouting by affecting endothelial cell migration and proliferation [236].  

 

Recently, it was found that endothelial cell proliferation but not migration critically 

relies on carnitine palmitoyltransferase 1 (CPT1A), which is a rate-limiting enzyme of fatty 

acid oxidation because it transports long-chain fatty acids into the mitochondria and thereby 

supplies β-oxidation. Consistent with the notion that most ATP of endothelial cells is glucose 

derived, CPT1A knock-down did not affect cellular ATP levels. Instead, in isotope labeling 

studies, fatty acid-derived carbons could be retrieved in tricarboxylic acid (TCA) cycle 
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intermediates and TCA cycle-derived amino acids such as aspartate. The authors could 

finally link the proliferation defect upon CPT1A deficiency to a diminished de novo 

deoxyribonucleotide (dNTP) biosynthesis presumably via reducing the aspartate pool, which 

is a carbon source for dNTP synthesis [238]. 

 
Figure 4. Glycolysis controls vascular sprouting. 
Endothelial cell metabolism is heavily based on glycolysis, both in the quiescent and activated states. (A) 
PFKFB3 is highly expressed in endothelial tip cells and produces fructose-2,6-bisphosphate, which is a strong 
positive regulator of glycolysis. (B) PFKFB3 is inhibited by the small molecule 3PO. Therefore, 3PO is exerting 
anti-angiogenic effects (adapted from [237]). 
 

Taken together, it is relatively obvious that endothelial cells would adapt their 

metabolism during angiogenic sprouting. However, even though research on endothelial cell 

metabolism is still in its infancy, first hallmark papers suggested that endothelial cell 

metabolism does not appear to be simply a passive consequence of angiogenic processes, 

but can rather actually regulate them [239].  

 

 

1.3 Anti-angiogenic therapy 
 
1.3.1 Targeting tumor angiogenesis  

The first drug being identified with anti-angiogenic properties was interferon α/β [240]. 

In the subsequent years, a number of synthetic or endogenous angiogenesis inhibitors such 

as thalidomide, TNP-470 or thrombospondin-1 have been discovered – a substantial fraction 

of them in the Folkman laboratory [176]. Based on encouraging evidence derived from 

various preclinical experiments, the monoclonal anti-VEGF-A antibody bevacizumab 

(Avastin®) was introduced into the clinics as the first “pure”7 angiogenesis inhibitor and 

																																																								
7 it should be kept in mind that VEGF-A not only acts on endothelial cells, but also directly on e.g. certain cancer 
cells or cells of the hematopoietic system [241]. 
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received FDA approval in 2004 for the treatment of metastatic colorectal cancer in 

combination with chemotherapy [200, 242]. Since then, numerous clinical trials with various 

classes of angiogenesis inhibitors for the treatment of a number of different cancer types 

have been conducted. This is highlighted with the resulting 1489 hits (on 23.08.2015) when 

performing a search of clinical trials on Pubmed with the MeSH terms “angiogenesis” and 

“cancer”. Current FDA approved sensu stricto anti-angiogenic therapeutics either neutralize 

VEGF-A (e.g. bevacizumab, or the VEGF-trap aflibercept, which traps also VEGF-B and 

PlGF) or are tyrosine kinase inhibitors that block the signaling of all 3 VEGFRs and display 

differing selectivity to PDGFRs and FGFRs (e.g. sunitinib, sorafenib, axitinib, regorafenib, 

lenvatinib, pazobanib; Table 1) [243]. Considering the sheer amount of data, reviewing the 

preclinical and clinical data of anti-angiogenic therapy in cancer in general clearly lies beyond 

the scope of this thesis. Therefore, the following section is restricted to the two tumor entities 

mainly used in the present MD-PhD thesis, namely PNETs and breast cancer. In addition, I 

have restricted the discussion to strategies directly targeting the VEGF family and thus 

ignoring attemps of therapies with endogenous angiogenesis inhibitors such as endostatin, 

MMP-inhibiting agents or interfering with integrin function [244, 245]. 

 

Anti-angiogenic treatment of PNETs: preclinical and clinical aspects 

In 1985, the Rip1Tag2 PNET mouse model, one of the first transgenic mouse models 

of cancer (“oncomice”), was published by Douglas Hanahan [246, 247]. Rip1Tag2 transgenic 

mice express the oncogene simian virus 40 large T-antigen (SV40 Tag) under the control of 

the rat insulin promoter (Rip) and represent a prototypical multi-step model of hormone 

positive β-cell carcinogenesis (insulinoma) [248, 249]. Several other transgenic or 

transplantation PNET mouse models have subsequently been generated and characterized 

[250]. Nevertheless, most studies investigating tumor angiogenesis or evaluating anti-

angiogenic therapies in the context of PNETs have employed the Rip1Tag2 model, not least 

because of its dependence on angiogenesis and rapid and reproducible multistep 

carcinogenesis [251]. The angiogenesis-dependence of the Rip1Tag2 tumors quickly 

became evident when it was noted that the angiogenic switch occurring in hyperplastic islets 

preceded the progression into a neoplasia [249]. This was later supported by genetic 

evidence showing that the conditional knock-out of VEGF-A in β-cells of the pancreas 

prevented tumorigenesis to a large extent in a non-redundant manner [252]. Furthermore, 

anti-angiogenic compounds without direct anti-tumor cell effects significantly reduced tumor 

volumes [251, 253-255]. Conversely, the overexpression of the 165 amino acid isoform of 

VEGF-A under the control of the rat insulin promoter (Rip1-VEGFA165) in the Rip1Tag2 

model led to an earlier occurrence of the angiogenic switch, accelerated tumor development, 

and a shortened life span. This was likely due to early onset hypoglycemia, since metastases 
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were absent [256]. Overexpression of another VEGF-family member, PlGF1, showed anti-

angiogenic properties by reducing intratumoral microvessels (but not larger intratumoral 

vessels) and reduced tumor burden by forming low-angiogenic heterodimers with VEGF-A 

[257].  

 

In summary, the repetitively observed correlation between microvessel density and 

tumor volumes has demonstrated that tumor growth in the Rip1Tag2 model is extremely 

angiogenesis dependent. Because of this, it appears intuitive that anti-angiogenic therapy 

strongly inhibits tumor burden. But how predictive is this model for future successful 

therapeutic applications of compounds in the clinics? In fact, compounds successfully tested 

in the Rip1Tag2 model have proven to be highly active in PNET patients [258]. Although the 

tumor initiating viral oncogene is not present in human PNETs, SV40 large T antigen inhibits 

the tumor suppressor proteins p53 and retinoblastoma (RB), two tumor suppressor genes 

that often dysregulated in human PNETs [259, 260]. 

 

With an annual incidence of 0.32/100’000 in the United States (male 0.38/100’000, 

female 0.27/100’000), PNETs in humans are rare [261]. But this does not detract from their 

importance as a life threatening cancer entity. Whereas the majority of pancreatic tumors are 

affecting the exocrine pancreas (pancreatic ductal adenocarcinoma), PNETs account for a 

small minority of all pancreatic tumors [261]. Like other neuroendocrine tumors, NETs 

originating in the pancreas displayed an increased incidence over the last few decades. This 

is in part due to improved classification and diagnosis. However, a “true” increase in 

incidence cannot be excluded [262]. Although patients with localized disease have an 

excellent prognosis, metastatic disease displays a 5-year survival rate of only about 30-40% 

[263]. PNETs are treated with multiple modalities including surgery, somatostatin analogues, 

radiotherapy and conventional chemotherapy [264]. In addition, everolimus and sunitinib are 

indicated for the treatment of non-resectable well differentiated, advanced or metastatic 

PNETs [101]. To reiterate the predictive power of the Rip1Tag2 model for successful 

translation into clinics, it is useful to consider the examples of everolimus and sunitinib. In a 

phase III clinical trial, the mammalian/mechanistic target of rapamycin (mTOR) inhibitor 

everolimus increased PFS in PNET patients [265]. This was predicted by the successful 

treatment of the Rip1Tag2 model with rapamycin, the first mTOR inhibitor discovered, 

leading to a transient tumor stasis [266]. Unlike in the human clinical trial, whereby 

everolimus failed to increase OS, a single agent treatment with rapamycin in Rip1Tag2 mice 

increased survival. However, an initial response phase was rapidly followed by tumor 

regrowth [265, 266]. In the case of sunitinib, single agent treatment prolonged survival of 

Rip1Tag2 mice for about 7 weeks, which was translating into an OS benefit in PNET patients 
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[64, 267]. Regarding the encouraging response of PNET patients to sunitinib monotherapy, it 

seems that this heterogeneous group of cancers is especially sensitive to anti-angiogenic 

therapy [64]. Since sunitinib therapy has been accompanied by a number of side effects and 

PNET therapy often involves long-term treatments, it is mandatory to develop additional anti-

angiogenic compounds with similar anti-tumor actions but with a different or a reduced side-

effect profile [263]. To this end, pazopanib, a multi-TKI targeting similar to sunitinib blocking 

VEGFRs, PDGFRs and KIT [75] was evaluated in two separate phase II clinical trials. In one 

trial, pazopanib monotherapy resulted in encouraging disease control rate [268]. In the 

second trial, pazopanib was combined with octreotid, a somatostatin analog, and displayed 

objective responses in a proportion of PNET patients (but not in patients with carcinoid 

tumors) [269]. Last but not least, a phase III trial is planned in which pazopanib versus best 

supportive care in advanced PNET patients after failure to targeted therapies will be 

evaluated [269].  

 

Resistance to therapies targeting mainly the VEGF/VEGFR signaling axes can be 

mediated by compensatory FGF/FGFR mediated signaling. Therefore, TKI inhibiting FGFRs 

in addition to VEGFRs and PDGFRs might provide additional benefit (for details see section 

1.4.1 Ref [162, 270]). The group of Douglas Hanahan has therefore evaluated the anti-tumor 

action of brivanib, which blocks FGFRs in addition to VEGFRs and PDGFRs, in the 

Rip1Tag2 model. Consistent with the aforementioned hypothesis, brivanib increased mouse 

survival in a superior manner compared to sorafenib, which lacks FGFR-inhibiting activity 

[253]. Despite promising preclinical evidence, a clinical trial currently evaluating brivanib in 

PNET patients has not been initiated so far (webpage “clinicaltrials.gov” [271]).  

 

In summary, anti-angiogenic therapy appears to be a successful strategy for the 

treatment of NETs of pancreatic origin. The availability of similar anti-angiogenic TKIs with 

slight differences in the target spectrum and side-effect profile will hopefully improve 

personalized treatment regimens in the future.  

 

The significance of anti-angiogenic therapy in breast cancer: preclinical and clinical aspects 

Since breast cancers are highly prevalent, they represent a huge market for 

pharmaceutical companies. It is therefore not surprising that anti-angiogenic therapeutics 

have been and are still being busily tested (and marketed) for their efficacy in breast cancer 

patients. Preclinical assessments employing breast cancer xenograft models showed that 

interfering with the VEGF-A/VEGFR-2 axis resulted in encouraging repressive effects on 

MVD and tumor growth [272-274]. Similarly, sunitinib reduced primary tumor growth as a 

monotherapy in the MMTV-v-Ha-ras transgenic breast cancer mouse model and in a 
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carcinogenesis-induced breast cancer model in rats [275]. Furthermore, sunitinib in 

combination with various standard chemotherapeutic agents displayed synergistic effects on 

primary tumor growth and bone metastasis in the MX-1 and MDA-MB-435 human xenograft 

models, respectively [275]. In line with this, the small-molecule anti-angiogenic TKI 

vandetanib (which inhibits EGFR in addition to VEGFRs and RET) strongly reduced primary 

tumor growth of the triple-negative MDA-MB-231 human breast cancer cell line [53]. Based 

on these preclinical results, the evaluation of bevacizumab and sunitinib in breast cancer 

patients in large phase III clinical trial was optimistically awaited.   

 

Four large phase III clinical trials (GeparQuinto, CALGB 40603, NSABP B-40, 

ARTemis) investigating the addition of bevacizumab to standard chemotherapy regimens in 

the neoadjuvant setting have been published to date [276-279]. Neoadjuvant treatments aim 

to decrease the rate of complete axillary lymph node dissection and facilitate breast-

conserving surgery [280, 281]. In all four clinical trials, the addition of bevacizumab 

significantly increased the rate of complete pathological responses (cPR) compared to 

chemotherapy alone (Table 3; [276-279]). cPR has proven to be a valid surrogate endpoint 

for neoadjuvant clinical trials when evaluating chemotherapeutic agents [282]. However, the 

numerical increase in cPR was relatively small, and as such it has to be seen if this 

translates into longer breast cancer specific survival, disease-free survival (DFS) and OS 

when following up the patients. To date, data addressing this question is only available from 

the GeparQuinto study, which showed that the 3-year DFS and OS was not improved by the 

use of bevacizumab [283].  

 

study identifier absolute increase in pCR rate (%) References 

GeparQuinto (GBG44) 3.5 [279] 

NSABP B-27 6.3 [276] 

ARTemis 5 [277] 

CACGB 40603 11 [278] 

 
Table 3. Neoadjuvant treatment with bevacizumab in breast cancer. 
The four currently published phase III clinical trials evaluation the addition of bevacizumab to standard 
chemotherapy regimens in the neoadjuvant treatment setting are displayed. Indicated is the absolute increase of 
pCR  (in %) per study when bevacizumab was added. 
 

In the adjuvant setting (i.e. post-operative treatments to increase the rate of cured 

patients), the addition of bevacizumab failed to improve clinical outcome. In the BEATRICE 
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trial, invasive disease-free survival was not significantly improved in the patient cohort of 

triple-negative breast cancer receiving bevacizumab in addition to chemotherapy [284]. This 

negative result was rather surprising, since preclinical evidence pointed towards an important 

role of neovascularization in the outgrowth of micrometastases – the putative target in the 

adjuvant setting [285]. 

 

Bevacizumab in combination with chemotherapy had initially received FDA approval 

for first-line treatment of metastatic breast cancer based on the E2100 study. In this study, an 

increase in PFS of 5.9 months when patients were treated with paclitaxel in combination with 

bevacizumab compared to treatment with paclitaxel alone was reported. However, OS was 

not significantly changed [286]. The increase in PFS without OS benefit was a recurrent 

observation in numerous phase III trials evaluating the addition of bevacizumab to 

chemotherapy in metastatic breast cancer (Table 4 and references therein). In addition, the 

gain in PFS was smaller in the follow-up studies compared to the original E2100 study. 

Employing PFS survival as primary endpoint, as it was the case in all the bevacizumab trials 

in advanced breast cancer, was causing some controversy [287]. On the other hand, the 

alternative OS as primary endpoint, when evaluating first-line treatments in advanced breast 

cancer, is potentially confounded by crossing-over after progression8 (as in the case of the 

RIBBON-1 study [289]). An additional confounding could be caused by subsequent lines of 

treatment after progression, as metastatic breast cancer patients often receive up to six lines 

of chemotherapy [290]. Despite a tremendous amount of large phase III clinical trials mainly 

investigating the therapeutic efficacy of bevacizumab in advanced breast cancer, diverging 

conclusions were drawn by two important regulatory authorities, the FDA and the European 

Medicines Agency (EMA). Whereas the FDA retracted the approval for bevacizumab in 

HER2-negative metastatic breast cancer, it remains approved in Europe when administered 

in combination with paclitaxel or capecitabine [291, 292].  

 

Based on the finding that simultaneous targeting of pericytes in addition to endothelial 

cells might be superior to targeting endothelial cells only, sunitinib and sorafenib were 

evaluated as monotherapy or in combination with chemotherapy in breast cancer patients 

[104]. Disappointingly, second-line sunitinib single-agent therapy of advanced breast cancer 

as compared to capecitabine monotherapy was inferior with regards to PFS and no statistical 

significant difference in OS was observed [293]. Similarly, the addition of sunitinib to 

capecitabine or docetaxel displayed unchanged PFS and OS as compared to either 

chemotherapy alone [122, 288]. In another study, sunitinib plus paclitaxel was compared to 

bevacizumab plus paclitaxel as first-line therapy of metastatic breast cancer, clearly favoring 
																																																								
8	„crossing-over“ can be part of a study protocol and allows patients of the control arm to receive the 
investigational compound after progression. In this case, it does therefore not affect PFS [288].	
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bevacizumab over sunitinib based on PFS, 2-year survival rate and tolerability [294]. One 

potential influence regarding the failure of sunitinib in combination with chemotherapy was 

the increased rate of adverse events observed in several trials [122, 288, 294]. This led to 

deviation from the study protocol in a proportion of patients and it led to reduction of 

chemotherapy dosing already in the study protocol for the combination group as compared to 

the chemotherapy only group [288]. Sorafenib, an oral multi-target TKI, showed promising 

results by increasing PFS (but not OS) in two phase II clinical trials in combination with 

chemotherapy in advanced or metastatic breast cancer [121, 295]. At least one phase III 

clinical trial is ongoing evaluating the efficacy of adding sorafenib to capecitabine [296].  

 

Taken together, anti-angiogenic treatment approaches have largely failed to influence 

endpoints in large phase III clinical trials in a relevant manner with regards to a risk-cost-

benefit evaluation. Whereas bevacizumab in combination with chemotherapy slightly but 

significantly increased cPR in the neoadjuvant setting and PFS in metastatic disease, it did 

not influence OS in metastatic situation or invasive DFS in the adjuvant therapy situation. 

Sunitinib completely failed clinical evaluation in breast cancer and appeared to be even 

inferior to bevacizumab. These disillusioning notions stand in sharp contrast to promising 

data of derived from preclinical evaluation of several anti-angiogenic compounds [297, 298]. 

Mainly led by Robert Kerbel, attempts are ongoing to better model clinical situations in 

mouse cancer models in order to improve clinical translatability of new compounds in the 

future [299, 300]. 

 

A full chapter of this thesis is dedicated to discuss the potential reasons why anti-

angiogenic therapy of breast cancer displayed disappointing results. A special emphasis was 

laid on biological mechanisms of resistance to anti-angiogenic therapy, whereas reasons 

derived from clinical study designs were largely ignored since these aspects clearly lie 

beyond the scope of this thesis.  
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study identifier study design 
median PFS 
gain 
(months) 

ORR gain 
(%) 

OS gain 
(months) References 

E2100 Paclitaxel ± BEV (1st) 5.9 (5.5/ 5.6a) 15.7 n.s. [286, 301] 

AVADO Docetaxel ± BEV (1st) n.s./1.9b n.s./18b n.s. [302] 

RIBBON-1 Capecitabine or 
Tax/Anthra ± BEVe (1st)  2.9c/1.2d 11.8c/13.4d n.s. [294] 

E2100, AVADO, 
RIBBON-1f CHT ± BEV (1st) 2.5 17 n.s. [291] 

AVF2119 Capecitabine ± BEV 
(2nd+) n.s. 10.7 n.s. [303] 

RIBBON-2 CHTg ± BEV (2nd) 2.1 n.s. n.s. [304] 

AVAREL Docetaxel plus 
Trastuzumab ± BEV (1st) n.s./ 2.9h n.s. n.s. [305] 

LEA Endocrine therapyi ± BEV 
(1st) n.s. 19 n.s. [306] 

TANIA CHT ± BEV (2nd) after 
CHT + BEVk  2.1 n.s. immaturel [307] 

 
Table 4. Phase III clinical trials evaluating bevacizumab in advanced or metastatic breast cancer 
The clinical efficacy of bevacizumab (BEV) when added to chemotherapy (CHT) regimen in advanced or 
metastatic breast cancer is shown. If not a specific chemotherapeutic agent is indicated, several alternative 
chemotherapeutic agents have been used in the same study. ORR= objective response rate; n.s.= non-
significant; Tax= taxane; Anthra= anthracycline 
a independent review by independent review facility (IRF) and ECOG investigators (based on the criteria of the 
IRF), respectively 
b BEV 7.5mg/kg every 3 weeks / BEV 15mg/kg every 3 weeks 
c BEV in combination with capecitabine 
d BEV in combination with taxane/anthracycline 
e investigators were free to choose a taxane-based (Tax; nab-paclitaxel or docetaxel) or a anthracycline-based 
(Anthra; epirubicin or doxorubicin based combinations) chemotherapy 
f Metaanalysis 
g investigators free to choose CHT before randomization (capecitabine, taxane (paclitaxel, nab-paclitaxel, 
docetaxel), gemcitabine or vinorelbine 
h investigator assessed/ Independent Review-Committee 
i letrozole or fulvestrant 
k third-line therapy after progression was identical to the randomized second-line therapy (CHT ± BEV) 
l interim analysis of overall survival reavealed no relevant numerical difference 

 

1.3.2 Anti-angiogenesis extended 

Metronomic chemotherapy 

Metronomic chemotherapy is defined as “frequent administrations of chemotherapeutic drugs 

at doses significantly below the maximum tolerated dose (MTD) with no prolonged drug-free 

breaks” [308]. Whereas conventional chemotherapy is often administered at MTD and 

scheduled in intervals of 1-3 weeks, Browden et al. first reported that when treating mice 

bearing cyclophosphamide-resistant Lewis lung carcinoma more often (6 days vs. 21 days) 

and with lower doses of cyclophosphamide (170 mg/kg vs. 450 mg/kg) than in conventional 
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cytotoxic chemotherapy treatment regimens, it resulted in a superior anti-tumor effects [309]. 

With both treatment regimens, endothelial cell apoptosis occurred before secondary tumor 

cell apoptosis. The waves of apoptosis were found to be more frequent in the metronomic 

than with the conventional chemotherapy schedule leading to a sustained anti-angiogenic 

effect [309]. Similarly, continuous vinblastin administrations at doses below those known to 

cause direct anti-tumor cell effects inhibited angiogenesis and tumor growth in a 

neuroblastoma mouse model [310]. Interestingly, in both studies the addition of bona fide 

angiogenesis inhibitors to metronomic chemotherapy resulted in improved anti-tumor effects 
[309, 310]. 

 

It is well established that a number of frequently used chemotherapeutics induce 

endothelial cell and tumor cell apoptosis. However, the novelty in the metronomic treatment 

schedule was that tumor cells resistant to a certain agent would still be forced into apoptosis 

solely by the anti-angiogenic, cytotoxic effect on endothelial cells. In addition, more frequent 

dosing might lead to a sustained anti-angiogenic effect and the reduced doses would reduce 

drug-induced side effects [226, 309-311]. Since its first thorough description, the 

mechanistical knowledge behind the significant anti-tumor impact of metronomic 

chemotherapy treatment regimens has been extended from a pure anti-angiogenesis 

mediated effect to a mode with multiple targets [308]. Metronomic chemotherapy has shown 

positive effects on multiple levels of anti-tumor immunity [312], it reduced the frequency of 

cancer stem cell-like cells [313, 314], induced vessel normalization and thus increased tumor 

oxygenation [315, 316] and inhibited HIF-1 activity [317].  

 

Clinical experience about the efficacy of metronomic chemotherapy in patients – to 

the best of our knowledge – is so far restricted to encouraging data derived from phase II 

clinical trials, but several phase III trials are ongoing. In addition, clinical trials are underway 

or have already been completed that translate hypotheses derived from preclinical 

experiments by combining metronomic chemotherapeutics with radiotherapy, immunotherapy 

or targeted agents including bevacizumab, sorafenib and erlotinib into the clinic [308]. But 

again, large phase III trials will finally tell us how valid these hypotheses are. 

 

Metronomic chemotherapy regimens are low-cost and reduce the occurrence of drug-

related side effects. Therefore, it was hypothesized that this treatment mode could 

ameliorate treatment accessibility in low and middle income countries [318].    
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Vessel normalization 

The rational behind targeting the tumor vasculature was based on the assumption 

that tumors need to acquire new blood vessels to be able to grow beyond the size of 2-3mm 

[167]. Reducing MVD would therefore result in the starvation of the tumor and would thus 

induce tumor shrinkage or at least dormancy. An alternative phenomenon induced by anti-

angiogenic therapy has in the meantime been proposed by Rakesh Jain. He suggested that 

in certain circumstances “normalization” of the typically aberrant and disorganized tumor 

microvasculature would provide benefits to the patients [319].  

 

Tumor angiogenesis often “overshoots” and results in immature, dilated and 

hyperpermeable/leaky vessels leading to increased intratumoral fluid pressure and hypoxic 

areas. Increased intratumoral fluid pressure can diminish delivery of therapeutic compounds 

into the tumor. Therefore, a “mild” anti-angiogenic treatment could result in a transient 

window with a normalized vasculature and thus in improved delivery of chemotherapeutic 

agents and reduced hypoxia, possibly ameliorating radiation therapy [319, 320].  

 

Vessel normalization has been defined as the process when immature vessels are 

pruned, but the residual vessels become more mature. In contrast, “vessel blocking” means 

when besides immature also mature vessels are depleted [320].  The sole neutralization of 

VEGF-A by bevacizumab is thought to cause such a “vessel normalization window”. In 

contrast, TKIs like sunitinib, due to its additional targeting of pericyte coverage via inhibition 

of PDGFRβ, rather results in vessel blocking and therefore reduced perfusion with increased 

hypoxia, but without a significant normalization window [320, 321]. It is often hypothesized 

that vessel normalization would be the major cause for the beneficial outcome when adding 

bevacizumab to chemotherapy. In addition, it can explain why bevacizumab alone had no 

impact in clinical trials as single-agent therapy in solid tumors except in renal cell carcinoma 
[322, 323]. Furthermore, the disappointing results, when evaluating sunitinib in combination 

with chemotherapy in metastatic breast cancer, could be explained by the rapid blood vessel 

pruning without the establishment of a “normalization window”. Even when solely targeting 

the VEGF-A/VEGFR-2 signaling axis, vessels normalization does not seem to be indefinite, 

as a prolonged VEGFR-2 blockade eventually leads to extensive pruning of the transiently 

normalized vasculature [324]. Treatment of orthotopic human xenograft GBM mouse models 

with DC101, a blocking antibody against VEGFR-2, resulted in a normalization window in the 

first week after the first administration and was followed by the restoration of hypoxia [324]. 

  

In addition to approaches interfering with VEGF-A/VEGFR2 signaling, additional 

mechanisms worth mentioning have been described to induce tumor blood vessel 
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normalization [320]. Heterodeficiency in tumor endothelial cells of the prolyl hydroxylase 

domain protein 2 (PHD2), an oxygen sensor targeting HIFs for degradation in normoxia, 

induced normalization of the endothelial layer and vessel maturation [325]. The resulting 

increased perfusion and decreased interstitial fluid pressure resulted in improved 

chemotherapy delivery and synergistic anti-tumor effect [326]. Similarly, the anti-malaria drug 

chloroquine induced vessel normalization and thus enhanced chemotherapy delivery in 

tumor mouse models, independent of its known capacity to inhibit autophagy [327]. 

 

Some controversy regarding the vessel normalization hypothesis exists. In a report 

providing a time course of perfusion and oxygenation in the MDA-MB-231 xenograft mouse 

model, the Kerbel laboratory detected impaired vascular perfusion after 2 days when treating 

with DC101 [328]. Strikingly, the same authors have previously reported a synergism of 

combining DC101 with chemotherapy in the very same model [329]. Since a vessel 

normalization window was not detected at the time points investigated, the synergism 

observed was likely not dependent on vessel normalization [328]. In line with this, a single 

administration of bevacizumab impaired the perfusion of NSCLC tumors in patient as early 

as a 5 hours post-bevacizumab injection that was detected by positron emission tomography 

and the diffusible tracer [15O]H2O. In parallel, the net influx rate of radiolabeled [11C]docetaxel 

was decreased already at 5 hours post-bevacizumab injection and endured until at least day 

4 [330]. 

 

Besides improving drug delivery, vessel normalization is also thought to influence 

metastatic spread and anti-tumor immunity. Since metastatic cancer cells intravasate more 

easily into immature vessels, vessel normalization has also been shown to reduce metastatic 

spread [325]. Furthermore, an antibody against VEGF-A increased homing of adoptively 

transferred T cells into experimental tumors and displayed improved anti-tumor immunity 

[331]. In addition, single-agent bevacizumab therapy reduced neurological symptoms caused 

by glioblastoma associated edema probably due to a vessel normalizing effect [332]. 

 

The divergent reports in favor or against the vessel normalization hypothesis most 

likely reflect heterogeneity of different tumor subtypes in responding to different anti-

angiogenic approaches. Furthermore, the in depth knowledge about the kinetics of the 

normalization window might guide the proper scheduling of chemotherapies in relation to the 

infusion with bevacizumab to take advantage of this synergistic interaction. 
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1.4 Resistance to anti-angiogenic therapy 
 

“Resistance to cancer therapy” can be defined as the period, during which malignant 

lesions progress despite an ongoing appropriate therapy. More specifically, the term “evasive” 

resistance is used when the resistance phase was preceded by a transient phase of tumor 

regression or stasis. In contrast, “intrinsic” resistance describes the process when no signs of 

initial response could be detected. Technically though, to distinguish between evasive 

resistance with a short response phase versus intrinsic resistance with no response phase is 

challenging [333]. However, these simple phenotypic definitions underline complex 

mechanistic processes.  

 

Currently, existing concepts about resistance to anti-angiogenic approaches are 

mainly based on studies with drugs interfering with VEGF/VEGFR signaling and are based 

on mechanisms to re-assure oxygen and nutrient supply (Figure 5): Revascularization occurs 

after a transient phase of reduced MVD, mature vessels are intrinsically more resistant to 

VEGF inhibition and increasing pericyte coverage is an escape mechanism; or cancer cells 

emigrate from hypoxic areas into regions with secured blood supply, i.e. by migration to 

perivascular location with subsequent metastasis to distant organs [243].  

 

The following section gives an overview over the complexity of resistance to drugs 

that are mainly interfering with VEGF/VEGFR signaling, and of attempts how these escape 

mechanisms have already been targeted by combinatorial treatments. 

 

1.4.1 Revascularization 

Resistance to interference with the VEGF-A/VEGFR2 signaling axis was reported to 

occur on the level of endothelial cells, obviously the primary target of anti-angiogenic therapy. 

After an initial phase of tumor blood vessel pruning, leading to increased hypoxia and 

inhibition of tumor growth (mostly stasis rather than regression), tumor MVD was increased 

again to baseline levels [270, 333]. Mechanistically, the hypoxia-induced upregulation of 

alternative pro-angiogenic pathways in the tumor or the recruitment of pro-angiogenic growth 

factors providing bone marrow-derived cells (BMDCs) have been implicated in this mode of 

resistance [243, 333, 334].  
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Figure 5. Mechanisms of resistance to anti-angiogenic therapies. 
Traditional concepts are built around the notion that resistance to anti-angiogenic therapy is based on 
mechanisms aiming for the restoration of oxygen and nutrient supply. This is achieved by revascularization or by 
protecting existing vessels from the action of anti-angiogenic compounds by tight pericyte coverage. Alternatively, 
tumor cells utilize pre-existing vessels (vessel co-option) or migrate towards oxygen-rich perivascular location, 
which facilitates systemic dissemination. 

 

Revascularization and restoration of tumor growth upon prolonged blockade of 

VEGFR-2 by the monoclonal rat antibody DC101 in the Rip1Tag2 transgenic mouse model 

was attributed to a hypoxia-driven upregulation of various pro-angiogenic factors such as 

FGF-1, FGF-2, FGF-7, EphrinA1, EphrinB2 and ANG-1, thereby potentially providing 

alternative signals driving angiogenesis [270]. In metastatic CRC patients treated with the 

combination of chemotherapy and bevacizumab, FGF-2 levels rose shortly before and during 

the progression phase [335]. Consequently, tumor re-growth could be halted with the co-

administration of a FGF decoy receptor in addition to DC101 starting when tumors became 

resistant to DC101 treatment [270]. A similar result had previously been reported when a 

combined trapping of VEGF-A and FGF-1 by soluble forms of VEGFR-1 and FGFR-2 IIIb, 

respectively, resulted in a synergistic reduction of primary tumor growth of an allograft of a 

Rip1Tag2-derived β tumor cell line [162]9. Pharmacological proof of principle was obtained 

																																																								
9 The same adenoviral construct with an FGF-trap has been used in the study of Casanovas et al. [270]. The 
FGF-trap consisted of a soluble form of FGFR-2 IIIb which was stabilized by fusion to a mouse immunoglobulin 
heavy chain and trapped FGF-1, FGF-3, FGF-7 and FGF-10 [162]. 
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by the preclinical evaluation of the dual VEGFR/FGFR inhibitor brivanib in the Rip1Tag2 

model. A head-to-head comparison of DC101 and brivanib revealed suppression of tumor 

growth after 4 weeks of treatment with brivanib, whereas at this point considerable tumor 

regrowth in the DC101 treated animals was observed. Similarly, switching from sorafenib, a 

TKI inhibiting VEGFRs and PDGFRβ but not FGFRs, at the timepoint of treatment failure to 

brivanib, increased survival. Notably, at the end point of the survival trial, brivanib treated 

tumors did not show signs of revascularization [253].  

 

The observed correlation between upregulation of ANG-1 during resistance to 

VEGFR-2 blockade was subsequently investigated on a functional level. However, due to the 

context dependent action of angiopoietins many questions are only partially answered [270]. 

These questions are: is ANG-1 alone sufficient to promote revascularization during VEGF 

inhibition, or does it rather support the proangiogenic activity of other factors such as FGFs? 

What is the role of ANG-2, the context dependent antagonist of ANG-1, in revascularization 

during sustained VEGF inhibition?  

 

Tumor cell-specific overexpression of ANG-1 in the Rip1Tag2 model did neither 

influence tumor volume nor tumor vascularization [336]. In contrast, ANG-1 overexpression 

in a rat glioma model increased tumor vascularization and tumor growth [337]. In the context 

of anti-VEGF therapy, elevated levels of Ang-1 rendered tumor blood vessels largely 

intrinsically resistant to VEGF inhibition, reduced hypoxia and was involved in vessel 

normalization [324, 338]. In the process of revascularization during interference with VEGF 

signaling, the role of ANG-1 could therefore lie in directly promoting maturation and 

stabilization of new blood vessels induced by other pro-angiogenic factors. Alternatively, 

ANG-1 in this context could directly stimulate angiogenic sprouting.  

 

The main sources of ANG-2 are endothelial cells and its levels are increased in the 

tumor vasculature upon activating stimuli and by hypoxia. The role of ANG-2 in tumor 

angiogenesis and its impact on tumor growth is based on a plethora of contradictory 

literature [339]. As a “rule of thumb” it appears that ANG-2 destabilizes vessels and leads to 

regions in the vasculature with enhanced plasticity resulting in vessel sprouting when 

sufficient levels of other pro-angiogenic factors are present. Conversely, ANG-2 leads to 

vessel regression in situations of an insufficient net-amount of pro-angiogenic factors [340]. 

The recently reported role of a TIE-2-independent function of ANG-2 by stimulating tip cell 

migration and thus vascular sprouting added another layer of complexity [193]. Work by 

Brown and colleagues has shown that combined inhibition of ANG-2 and VEGF signaling in 

various xenograft models resulted in superior effects compared to either treatment alone. 
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Unfortunately, it was not reported if this effect was due to an additive reduction in MVD [340]. 

This was specifically addressed in publication by the groups of Donald McDonald and 

Michele De Palma, who demonstrated that inhibition of ANG-2 alone inhibited vessel 

sprouting but not regression. In contrast, the combined inhibition of ANG-2 and VEGF-A 

resulted both in inhibition of vascular sprouting and vessel regression. This was 

accompanied by an additive anti-tumor effect [341, 342]. Based on observations that 

combined blockade of ANG-2 together with VEGF-A could lead to an improved anti-tumor 

action, a bispecific antibody against ANG-2 and VEGF-A (ANG-2-VEGF CrossMab) was 

developed by Roche. It displayed superior inhibition of tumor growth over targeting either 

ANG-2 or VEGF-A alone and is currently in clinical evaluation [343]. Although the additional 

targeting of ANG-2 to VEGF-A has shown anti-angiogenic synergism when both treatments 

were initiated at the same time, formal proof is still missing demonstrating that ANG-2 

blockade can counteract revascularization when ANG-2 blocking starts after the initiation of 

anti-VEGF-A treatment. Actually, this experiment has been performed in the Rip1Tag2 model, 

when an anti-ANG-2 antibody combination therapy with DC101 was started after 1.5 weeks 

of DC101 monotherapy. Results showed a comparable tumor burden when initiating the 

treatment with both antibodies at the same time or when initiated sequentially. Unfortunately, 

the effects on MVD were not reported in this publication [342].  

 

In addition, VEGF-C, VEGF-D, PlGF and PDGF-C have been implicated in 

revascularization during anti-VEGF-A therapy [243, 344]. However, in the case of PlGF 

contradictory results exist [345-347]. 

 

Besides compensatory upregulation of pro-angiogenic factors in “tumor resident cells” 

upon anti-angiogenic therapy, pro-angiogenic factors can also be provided by recruited bone 

marrow-derived cells (BMDCs). A variety of myeloid cells with pro-angiogenic capabilities 

have been described [334]. CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs), a 

heterogeneous population composed of early myeloid cells, immature dendritic cells, 

monocytes and neutrophils [334]; TIE-2-expressing monocytes (TEMs) [348], T regulatory 

cells (Tregs) [349], plasmacytoid dendritic cells [350] and T helper type 17 (TH17) cells [351] 

have been reported to directly or indirectly promote angiogenesis. Some of these cell types 

promote VEGF-A-dependent, whereas others promote VEGF-A-independent angiogenesis. 

Mainly the latter group contains candidates that could mediate revascularization despite 

ongoing inhibition of VEGF signaling. The Ferrara lab has worked out an interesting cascade 

of events over the last decade. Tumor-infiltrating TH17 cells stimulate via IL-17A the 

production of granulocyte colony stimulating factor (G-CSF) in tumor-associated fibroblasts. 

G-CSF in turn acts systemically by stimulating the expression of the pro-angiogenic protein 
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Bv8 (prokineticin 2) in CD11b+Gr-1+ MDSCs in the bone marrow. Both, Bv8 and G-CSF, 

subsequently promote mobilization and homing of these cells to the tumor site where Bv8 

can induce revascularization independent of VEGF-A. In line with these findings, co-

administration of anti-VEGF-A and anti-Bv8 or anti-G-CSF antibodies exerted additive anti-

tumor effects [152, 347, 352, 353]. In clear cell RCC (ccRCC) xenograft models, resistance 

to sunitinib therapy was associated with enhanced MVD compared to sensitive tumors and 

was paralleled by increased interleukin (IL)-8 levels 10 . Interestingly, ccRCC patients 

intrinsically resistant to sunitinib displayed higher pre-treatment tumor IL-8 expression levels 

compared to responding patients. Consequently, combined anti-IL-8 and sunitinib treatment 

counteracted resistance development and suppressed revascularization [354]. 

 

1.4.2 Pericytes as bodyguards of endothelial cells 

Tumor microvessels do not respond uniformly to approaches targeting the VEGF-

A/VEGFR-2 axis [355]. Tight coverage by pericytes is a hallmark of mature blood vessels. 

Pericytes induce quiescence and promote survival of endothelial cells, and reduce the 

dependency on VEGF signaling. This notion led to the hypothesis that targeting pericytes by 

interfering with the PDGF-B/PDGFRβ signaling axis and thus counteracting the intimate 

contact between endothelial cells and pericytes would render the tumor vasculature more 

vulnerable to VEGF inhibition [333]. Indeed, Bergers and colleagues had previously 

demonstrated that combined targeting of VEGFRs and PDGFRs exerted superior anti-tumor 

effects by a stronger reduction of the functional tumor vasculature in established tumors, 

compared to targeting of VEGFRs alone. In this report, sole inhibition of PDGFRβ signaling 

by imatinib had no effect [104]. In contrast, the McDonald laboratory showed that 

neutralization of the PDGFRβ ligand PDGF-B was sufficient to induce regression of tumor 

blood vessels as a secondary effect following detachment of pericytes [356]. Not surprisingly, 

given the important role of pericytes in promoting the structural and functional integrity of 

tumor blood vessel endothelial cells, intact pericyte coverage was demonstrated to be a 

mediator of intrinsic resistance to VEGF pathway inhibition [357]. 

Of note, most anti-angiogenic small-molecule TKI used in the clinics (sunitinib, sorafenib, 

nitendanib, pazopanib) or in late-stage clinical development contain significant inhibitory 

action against PDGFRβ (Table 1). 

 

 

 

 

																																																								
10 In contrast to this model, survival studies with sunitinib in the Rip1Tag2 model did not reveal resistance based 
on revascularization [253]. 
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1.4.3 Migration to areas richer in oxygen 

Metastasis involves a cascade of multiple steps during which cancer cells leave the 

primary tumor and colonize distant organs (for a more detailed description of the metastasis 

cascade, see [358], section 5). In brief, cancer cells reach the systemic circulation either by 

different modes of active migration and invasion (EMT-derived mesenchymal or amoeboid 

single-cell migration or by collective migration) or by passive shedding. A fraction of the cells 

survive the harsh conditions in the blood stream and successfully leave the vasculature at 

distant sites. In well-vascularized tissues such as the lung and brain, arriving cancer cells 

can co-opt the preexisting vasculature for initial proliferation. Subsequently, the preexisting 

host vasculature regresses and causes tumor cell death, unless VEGF-A and ANG-2-

mediated angiogenesis11 provides the metastases with an own vasculature [219]. It was 

hypothesized that similar to the primary tumor, targeting the metastatic switch in metastases 

would induce dormancy by preventing colonization (i.e. the outgrowth from micro- to 

macrometastases) [188]. Indeed, a number of experimental evidence point towards an anti-

metastatic effect of anti-angiogenic therapy [359]. However, this optimistic picture is 

scrutinized since some years. In preclinical models of brain tumors, hypoxia caused by 

interfering with angiogenesis induced an infiltrative migration pattern towards and along 

preexisting blood vessels [267, 360, 361]. Supporting evidence comes from infiltrative 

perivascular growth of tumor cells observed in glioblastoma patients following treatment with 

bevacizumab	 [362]. In cancer models where the tumors arise outside of the central nervous 

system, increased local tumor invasiveness following anti-angiogenic therapy has been 

repeatedly demonstrated – including a number of publications involving the Rip1Tag2 mouse 

model [267, 363-365]. In line with the notion that local tumor invasiveness is a direct cause or 

at least a surrogate for the ability of a tumor to form distant metastases, several groups have 

demonstrated that anti-angiogenic therapies can also increase lymph node and distant 

metastasis [267, 358, 363-368]. However, whereas for TKIs such as sunitinib, which target 

multiple pro-angiogenic receptors, the pro-metastatic effect has been repeatedly observed, a 

controversy exists regarding the effects on metastasis of antibodies targeting the VEGF-

A/VEGFR-2 axis [267, 363-367]. Namely, Rigamonti and Singh et al. failed to detect 

increased local invasiveness and liver metastasis upon anti-VEGFR-2 and anti-VEGF-A 

treatments in Rip1Tag2 mice, respectively [342, 365]. These class-specific differences in the 

pro-metastatic effect raise interesting hypotheses regarding potential underlying mechanisms. 

   

It seems that the mechanistic basis for the pro-metastatic effect of certain anti-

angiogenic drugs in certain model systems is based on “passive” and “active” components 

(Figure 5). “Passive” drivers of metastasis involve effects of the drugs antagonizing an intact 

																																																								
11 this process can be seen as an angiogenic switch in metastases 
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vascular barrier, promoting both intravasation (by active migration or passive shedding) at 

primary tumor site and extravasation at metastatic site simply by means of reduced physical 

barriers. “Active” promoters of dissemination signify the gain of migratory/invasive properties 

induced by hypoxia-dependent and -independent mechanisms. As we will see below, 

experimental manipulation of metastasis models often affect both conceptual aspects, as 

increasing the vascular integrity is often accompanied by reduced hypoxia – a well described 

driver of cancer cell migration and invasion – and vice versa [369]. Therefore, the two 

aspects of passive and active promoters of metastasis cannot be discussed separately. 

 

Pericytes, the master regulators of vascular integrity, have shown to contain gate-

keeping functions for cancer cell dissemination. Interference with blood vessel pericyte 

coverage caused by reduced NCAM levels or by using knock-in mice lacking the ECM-

retention motif of PDGF-B, led to increased lymphatic and hematogenous metastasis in the 

Rip1Tag2 model [370]. Similarly, depletion of pericytes in established tumors (late-depletion) 

resulted in hypoxia, EMT and elevated metastatic dissemination [321]. The contrary was 

observed when pericytes were depleted shortly after tumor cell implantation (early-depletion). 

This difference was attributed to increased ANG-2 levels in the late-depletion setting leading 

to distorted vascular integrity, whereas the elevated ANG-1 levels present in the early-

depletion setting preserved an intact vessel structure and functionality limiting metastatic 

spread. Furthermore, anti-ANG-2 antibody treatment paralleling pericyte depletion in the late-

depletion setting reverted the pro-metastatic phenotype by increasing tight-junctions of 

endothelial cells resulting in reduced vessel leakiness, hypoxia and EMT [371].  This data 

highlight the putative therapeutic potential of a dual targeting of VEGF signaling and Ang-2 

neutralization, as discussed before [343]. In contrast, Fagiani and colleagues observed 

decreased pericyte coverage but failed to detect increased lymph node, lung or liver 

metastasis in Rip1Tag2 mice overexpressing ANG-2 in a β-cell specific manner [336]. 

 

Similar to intravasation, a distorted vascular barrier facilitates extravasation into the 

target organ. “Supra-therapeutic” dosing of sunitinib (120mg/kg) resulted in increased 

permeability of the lung vasculature in mice and enhanced cancer cell extravasation after 

pretreating the animals with this concentration of sunitinib. This translated into increased 

metastatic burden when a lung colonization assay was performed in sunitinib (120mg/kg) 

pretreated mice. However, pretreatment with lower sunitinib doses (40 and 60 mg/kg) did not 

affect lung metastasis [372]. These results may explain previous work from the Kerbel 

laboratory, which observed shortened survival of i.v. injected MDA-MD-231 (LM2 clone with 

lung tropism) cells after sunitinib pretreatment at 120mg/kg [367]. Paradoxially, in the same 
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experimental setting, a shorter survival was recently observed when the animals were 

pretreated with 60mg/kg [373].  

 

As pointed out before, reduced pericyte coverage not only facilitates metastatic 

dissemination by reducing physical restrains, but is also often paralleled by vessel leakiness 

and hypoxia [321]. Hypoxia induces HIF-driven transcriptional programs able to induce EMT 

and thus, the upregulation of a number of pro-metastatic genes such as protein-lysin-6-

oxidase (LOX), c-MET and AXL [374-376]. In addition, hypoxia induced by anti-angiogenic 

therapy enriched for cancer cells with stem cell-like phenotype and function [377]. 

Experimentally, administration of anti-angiogenic compounds with therapeutics targeting pro-

invasive escape pathways could counteract invasion and metastasis induced by anti-

angiogenic therapies. Co-therapy with c-MET inhibitors prevented increased local 

invasiveness, lymph node and distant metastasis induced by anti-angiogenic compounds in 

the Rip1Tag2 mouse model [364, 368]. Regarding this data, the small-molecule kinase 

inhibitior cabozantinib is of interest, since it displays inhibitory actions against VEGFR2, c-

MET and AXL and in contrast to sunitinib it did not enhance lung metastasis in a breast 

cancer xenograft model [84]. In addition to hypoxia-induced invasion programs, interesting 

work from the Bergers laboratory has recently demonstrated a hypoxia-independent 

mechanism of increased invasiveness upon anti-angiogenic therapy. In GBM mouse models, 

VEGF-A induced VEGFR-2 phosphorylation and recruited the phosphatase PTP1B to 

VEGFR-2/c-MET heterdimeric receptors expressed on cancer cells. PTP1B in turn inhibited 

hepatocyte growth factor (HGF) induced c-MET phosphorylation and downstream signaling. 

In this line, anti-angiogenic therapy interfering with the VEGF-A/VEGFR-2 pathway 

counteracted VEGFR-2 mediated c-MET inhibition and increased invasiveness along with 

the induction of an EMT-like process [378]. 

 

At last, despite the availability of an overwhelming amount of literature investigating a 

potential pro-invasive effect of anti-angiogenic therapies, data addressing this question in 

patients are limited. As pointed out before, in GBM patients this pro-invasive phenotype has 

been demonstrated [362]. Outside the CNS, however, pro-invasive effects in terms of 

accelerated tumor progression or reduced survival has not been observed when following up 

patients with RCC after sunitinib treatment [379]. Considering the plethora of contradictory 

results, research evaluating potential pro-invasive actions of this class of drugs should 

therefore accompany large clinical trials. This would potentially shed light on the relevance of 

these preclinical findings.  
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2 Aim of the study 
 

Targeting tumor angiogenesis has been shown to provide clinical benefit to patient 

with certain types of solid tumors. PNETs belong to a group of tumor types, which seems to 

respond remarkably well to anti-angiogenic therapeutics. Nevertheless, sunitinib, the current 

anti-angiogenic compound of choice for the treatment of advanced PNETs, induces a 

considerable rate of side effects. In addition, the combination of sunitinib with standard 

chemotherapy is often hampered due to adverse events leading to discontinuation of the 

treatment. In contrast, the relatively new anti-angiogenic TKI nintedanib showed high efficacy 

in xenograft transplantation models and a remarkable positive side effect profile, even when 

combined with chemotherapy. 

 

Whereas anti-angiogenic therapy in general increases PFS, OS benefits are only 

observed in a subset of tumor types. This observation suggests the development of 

mechanisms rendering tumors resistant to angiogenesis inhibition. A better understanding of 

these resistance mechanisms might lead to meaningful combination treatments and thus will 

eventually improve patient care in oncology.  

 

In my MD-PhD thesis, I have employed preclinical mouse models of PNET and breast 

cancer to: 

 

- In depth characterize nintedanib’s efficacy in vivo 

 

- Unravel mechanisms of resistance to nintedanib (and sunitinib) in vivo 

 

- Interfere with the identified resistance mechanisms by performing combination 

treatments together with nintedanib in vivo 
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3 Results 
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3.1.1 Abstract 

The Rip1Tag2 transgenic mouse model of β-cell carcinogenesis has been 

instrumental in studying various aspects of tumor angiogenesis and in investigating the 

response to anti-angiogenic therapeutics. Thereby, the in depth assessment of blood and 

lymphatic vessel phenotypes and functionality represent key experiments. In this chapter, we 

describe protocols to assess tumor blood vessel morphology (pericyte coverage), 

functionality (perfusion, leakiness and hypoxia), lymphatic tumor coverage and tumor cell 

proliferation and apoptosis based on immunofluorescence analysis.  

 

3.1.2 Introduction 

Generated in 1985, the Rip1Tag2 transgenic mouse model of PNETs has ever since 

served as a versatile tool to study various aspects of tumor angiogenesis. In this model, the 

oncogene simian virus 40 large T-antigen (Tag) is expressed under the control of the rat 

insulin promoter (Rip) leading to multifocal development of insulin-producing β-cell carcinoma 

(insulinoma) in the islets of Langerhans of the pancreas [246]. Whereas all β-cells present in 

the approximately 400 islets of Langerhans contain the property to express the Tag 

oncogene at birth, stochastically occurring additional genetic and epigenetic events are 

required for successful stepwise carcinogenesis. Such an event important for tumor 

progression is for example the acquired capability to express insulin-like growth factor 2 

(IGF2). Only about 1-2% of all islets eventually progress into highly vascularized solid tumors 

[248]. Finally, Rip1Tag2 mice start to die at around week 12 due to the tumors’ excessive 

production of insulin resulting in fatal hypoglycemia (see Notes 1 and 2, [380]).  

 

It became quickly apparent that primary tumor growth in the Rip1Tag2 mouse model 

is highly angiogenesis dependent. The acquisition of new blood vessels (i.e. the angiogenic 

switch) has been shown to be a critical event in order to progress from hyperplastic lesions to 

adenoma, which is a prerequisite for further development into invasive tumors (carcinoma) 

[249]. Furthermore, tumor growth was prevented in Rip1Tag2 mice with a β-cell specific 

deletion of the major pro-angiogenic molecule VEGF-A [252]. In the following years, the 

Rip1Tag2 model has revealed important insights into the functions of key angiogenesis-

mediators by their β-cell specific deletion or overexpression [184, 256, 257, 267, 336, 381, 

382]. In addition, this PNET mouse model has proven to be highly instrumental for preclinical 

validation of eligible compounds, which were subsequently successfully implemented into 

clinical practice [258].  
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Tumor angiogenesis is generally considered to be overshooting, resulting in abnormal 

vessels with poor pericyte coverage and a fenestrated endothelial monolayer resulting in 

leakiness and, thus, increased interstitial fluid pressure. Intriguingly, despite an abundance of 

pro-angiogenic factors, regional differences in blood vessel perfusion can result in hypoxic 

areas with low pH [320]. The delivery of chemotherapeutic agents to tumors is hampered 

because of hypo-perfused areas and increased interstitial fluid pressure caused by an 

abnormal vasculature. Vessel-normalizing interventions have been shown to increase 

chemotherapy availability in tumors [319, 325]. Key to the identification of quantitative and 

qualitative (i.e. vessel functionality) tumor blood vessel characteristics are methods based on 

immunofluorescence (IF) analysis.  

 

In the present chapter, we aim to provide a simple workflow for routine assessment of 

the most important parameters of tumor blood vessel characteristics. Analysis of blood 

vessel MVD (i.e. the number of CD31+ vessels per tumor area) provides quantitative insights 

into the extent of angiogenesis. This can be further complemented by injecting fluorescently 

labeled Lectin (typically Fluorescein/FITC or Texas Red) into the mice prior to euthanization 

to label the vessel lumen and to assess the percentage of actually patent (i.e. perfused) 

tumor blood vessels. Similarly, leaky vessels are identified by extravasation of FITC-labeled 

Dextran. Pericytes are perivascular cells sitting on the abluminal site of endothelial cells, 

sharing a common basement membrane and stabilizing the vessel tube. To date, a marker 

exclusively expressed by pericytes has not been identified [161]. However, the marker 

neuron-glia antigen 2 (NG2) known to be expressed by pericytes is commonly used in our 

laboratory to assess pericyte coverage of tumor blood vessels in the Rip1Tag2 model when 

combined with a staining for CD31 [380]. In contrast, staining for α-smooth muscle actin, a 

marker often used to visualize perivascular cells, in our hands only results in a strong 

staining around large blood vessels, but not capillaries. To estimate the consequences of an 

experimentally altered MVD on tumor oxygenation, the aforementioned characterization of 

the tumor vasculature can be complemented with the assessment of tumor hypoxia. 

Intraperitoneally (i.p.) injected pimonidazole hydrochloride (HCl) is chemically reduced in 

hypoxic areas, and  the resulting pimonidazole adducts can be visualized by IF staining.  

 

Lymphatic vessels represent an alternative route for metastatic spread in addition to 

tumor blood vessels. Indeed, employing the Rip1Tag2 mouse model, it has been shown that 

tumor cell specific overexpression of the lymphangiogenesis inducing VEGF-family member 

VEGF-C massively increased peritumoral lymphatic coverage and promoted lymph node 

metastasis [382]. Assessing peritumoral lymphatic coverage therefore provides insights into 

lymphangiogenesis-promoting or -inhibiting mechanisms (see Note 3).  
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The ultimate read out of most experimental manipulations in the Rip1Tag2 mouse 

model is the impact on tumor volumes (see Note 4). In parallel to this, analysis of 

proliferation by staining for phospho-histone H3 (pH3) and of apoptosis by staining for 

cleaved caspase 3 (cCasp3) can give first mechanistic insights into reasons underlying a 

potentially altered tumor burden. In addition, performing a combination staining for CD31 and 

cCasp3 reveals  the amount of dying endothelial cells. 

 

The methods presented in this chapter should allow a routine workflow as a basis for 

further morphological, biochemical and molecular biology experiments. 

 

3.1.3 Materials 

 
Rip1Tag2 mice 

Rip1Tag2 mice start to die at the age of 12 weeks. Due to this short survival, the 

mouse colony has to be constantly bred to prevent loss of the colony. Additionally, due to 

ethical reasons, only heterozygous transgenic males can be used for breedings. Rip1Tag2 

mice should be strictly kept in a C57Bl/6 background, since the genetic background of the 

mice significantly affects tumorigenesis [383]. Therefore, heterozygous transgenic males are 

bred with wild-type C57Bl/6 females. Both, heterozygous females and males are used for 

experiments. Although no striking gender-dependent phenotypic differences in terms of 

tumor development have been observed, it is recommended to stratify experimental groups 

based on sex. Genotyping is performed by employing the primers Tag1 

5’GGACAAACCACAACTAGAATGCAG and Tag2 5’CAGAGCAGAATTGTGGAGTGG. The 

resulting PCR product has a size of 449kb.  

 

Lectin or Dextran injection and mouse perfusion 

1. Fluorescein Lycopersicon Esculentum (Tomato) Lectin (FITC-Lectin), Vector 

Laboratories/ Reactolab (FL-1171), dilute in sterile PBS to 1mg/ml 

2. Dextran Fluorescein (FITC-Dextran), Life technologies, anionic, Lysine fixable, 

70’000MW, (D-1822), dilute in sterile PBS to 1.25mg/ml 

3. Pimonidazole Hypoxyprobe TM-1 Omni Kit, pimonidazole HCl plus rabbit antisera, 

(HP3-100 Kit), dilute in sterile PBS to 6mg/ml. 

4. Ethanol 70% spray 

5. Surgical scissors  

6. Forceps  

7. Insulin syringe, BD Micro-Fine, 29G (324824) 
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8. Anesthetic, according to the licensed compounds for terminal anesthesia (e.g. 

Pentobarbital) 

9. “Butterfly”, BD Valu-Set, 25G (387425) 

10. Syringe, 10ml 

11. PBS (sterile for diluting Lectin, Dextran and Pimonidazole; non-sterile for mouse 

perfusion and tissue processing) 

12. PBS/4% PFA 

 

Tissue fixation and cryopreservation 

1. PBS/4% PFA 

2. PBS/20% sucrose 

3. Optimal cutting tempterature (OCT) compound, Tissue-Tek (4583) 

4. Embedding Mold for frozen tissues 

5. Dry ice pellets  

6. Ethanol 100% 

 

Cryosectioning and immunofluorescence staining 

1. Cryotome 

2. Microscope slides 

3. Cover slips 

4. Liquid blocker, Super Pap Pen, Daido Sangyo Co., Ltd. Tokyo, Japan 

5. PBS (non-sterile) 

6. PBS/0.2% Triton X-100 

7. PBS/5% or 20% normal goat serum (ngs) 

8. DAPI 1:10’000, Sigma, D9542 

9. Dako Fluorescent Mounting Medium, Dako, S3023 (see Note 5) 

10. primary antibodies, dilution: 

CD31, rat, BD Pharmingen, 550274, 1:50 

Cleaved Caspase-3 (cCasp3), Cell Signaling, 9664, 1:50 

Insulin, guinea pig, Dako, A0564, 1:200 

LYVE-1, rabbit, RELIATech, 103-PA50S/0412P02-2, 1:200 

NG2, rabbit, Chemicon, AB5320, 1:100 

Phospho Histone H3 (pH3), rabbit, Millipore, 06-570, 1:200 

Pimonidazole, rabbit, Hypoxyprobe Inc., antibody included in “Pimonidazole 

Hypoxyprobe TM-1 Omni Kit“, 1:25 

SV40 Large T antigen, rabbit, Santa Cruz, sc-20800, 1:50 

11. Secondary antibodies, Alexa labeled, Molecular probes/Life technologies 
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3.1.4 Methods 

Injections, systemic perfusion and harvest of pancreas (see Note 6) 

1. Inject all animals with pimonidazole 60mg/kg (inject 100µl per 10g mouse body 

weight of a 6mg/ml solution) intraperitoneally 1-2 hours prior to euthanization (see 

Note 7).  

2. If the anesthetic licensed for terminal anesthesia provides fast narcosis, the 

intravenous (i.v.) injection of FITC-Lectin or FITC-Dextran can be performed in non-

anesthetized animals, followed by anesthesia (methods adapted from refs [325, 363, 

384]). 

3. For the injection with FITC-Lectin continue with step 3a, for FITC-Dextran with step 

3b.  

a. Inject 100µl of FITC-Lectin i.v. into the tail vein (=0.1mg/mouse, perfuse after 

10 minutes) 

b. Inject 200µl of FITC-Dextran i.v. into the tail vein (=0.25mg/mouse, perfuse 

after 5 minutes) 

4. For the perfusion, anaesthetize the mouse with ultra-deep (terminal) isoflurane 

anesthesia (see Note 8). Pin the extremities of the animal on a dissection pad, spray 

it with ETOH 70% and incise the skin and the underlying peritoneum with a horizontal 

cut immediately caudal of the costal arch using scissors. Now, the caudal surface of 

the diaphragm should be visible. Grab the processus xiphoideus with forceps and 

induce a pneumothorax by incision of the diaphragm. The resulting collapse of the 

lungs prevents them from damage potentially caused during the dissection procedure. 

Introduce the scissors carefully along the interior surface of the ribs in direction of the 

axilla and cut the ribs. Repeat this on the other side. Free the resulting flap containing 

the cut ribs and the sternum from remaining caudal attachments to the diaphragm, 

fold it and pin it over one of the shoulders on the surface. Now, a free look on the 

collapsed lungs and the heart should be possible. Introduce the needle of the butterfly 

into the left ventricle of the heart (due to the arterial blood it shows a lighter red color 

than the right ventricle) and cut into the right atrial auricle to open the circulation and 

provide an opening for the perfused solution (For the perfusion of FITC-Lectin 

injected animals continue with step 4a., for FITC-Dextran with step 4b.) 

a. Perfuse the FITC-Lectin injected animal slowly with 10ml ice-cold PBS/4% 

PFA for immediate fixation 

b. Perfuse the FITC-Dextran injected animals slowly first with 10ml ice-cold PBS 

to wash out the intravascular Dextran, immediately followed by the perfusion 

with 10ml ice-cold PBS/4% PFA for fixation (see Notes 9 and 10) 
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5. In order to dissect the pancreas (and other abdominal organs such as the liver), 

widen the existing abdominal incision to have free access to the abdominal organs. 

Move the intestine to the right side of the animal and identify the spleen. Pull the 

spleen carefully. This helps to identify the pancreas, which is the fatty tissue 

containing the reddish insulinoma and is connected via the ligamentum pancreato-

lienale to the spleen. Dissect the pancreas, rinse it briefly in PBS to get rid of blood, 

measure the diameter of the macroscopic tumors using a ruler and fix the tissue as 

soon as possible in cold PBS/4% PFA. Incubate the tissue in PBS/4% PFA for 2 

hours while rotating at 4°C, followed by over-night incubation at 4°C in PBS/20% 

sucrose. 

6. On the next day, prepare a bath with dry ice pellets covering the floor of a Styrofoam 

container and add Ethanol 100% (see Notes 11 and 12). Snap-freeze the tissues in 

optimal cutting temperature (OCT) freezing solution in the ethanol/ dry ice bath. Store 

samples at -80°C. 

 

Cryosectioning and IF staining 

1. Put frozen OCT blocks at -20°C (into cryotome or freezer) >30 min before starting 

sectioning (see Notes 13, 14 and 15). 

2. Cut 7-10µm thick sections (see Note 16). 

3. Let it dry for at least 30 minutes. 

4. Encircle the sections with a liquid blocker and let it dry for some additional minutes. 

5. Rehydrate in PBS 3 x 5 minutes (see Note 17). 

6. Permeabilize in PBS/0.2% Triton X-100 for 20 minutes. 

7. Wash in PBS 3 x 5 minutes. 

8. Block with blocking buffer (PBS/5% ngs) for 1 hour in a humid chamber. For stainings 

with the anti-cCasp3 antibody perform the blocking with PBS/20% ngs. 

9. Replace the blocking buffer with the desired antibodies diluted in blocking buffer. 

Incubate in a humid chamber over night at 4°C (see Note 18). 

10. On the next morning, wash the specimen 3x 5 minutes in PBS at room temperature 

11. Incubate for 1 hour at room temperature with secondary antibodies directed against 

the species of the corresponding primary antibodies and labeled with Alexa 

fluorochroms suitable for the filters of the fluorescence microscope available. 

12. Wash in PBS 3 x 5 minutes. 

13. Incubate with DAPI diluted 1:10’000 in PBS at room temperature for 10 minutes in a 

humid chamber. 

14. Wash in PBS 3 x 5 minutes. 
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15. Mount slides with cover slips using DAKO mounting medium (see Note 19). Avoid air 

bubbles. 

16. Let slides dry (in the dark) for some hours at room temperature. Then transfer them to 

4°C and analyze the slides within few days. 

17. We recommend acquiring the images using a 20x magnification. 

18. For image analysis we routinely employ ImageJ image processing and analysis 

software. 

 

3.1.5 Notes 

1. Although the Rip1Tag2 mice used in different laboratories around the globe stem 

from the same founder line, breeding in isolation over years has led to interesting 

phenotypic differences even when kept in a pure C57Bl/6 background. Notable 

differences in survival, lymph node and liver metastasis at baseline and upon anti-

angiogenic therapy, and the extent of intra- and peritumoral lymphangiogenesis can 

be detected when screening the literature [267, 342, 363-366, 368, 380]. 

2. Rip1Tag2 mouse survival can be extended by the administration of food pellets 

consisting of 60% glucose starting from the age of around 9 weeks. 

3. Insulinoma in the Rip1Tag2 model only rarely display intratumoral lymphatic vessels. 

Instead, they can be found at peritumoral location. Whereas peritumoral lymphatic 

vessels in Rip1Tag2 single transgenic mice only cover less than 10% of the tumor 

circumference, almost complete lymphatic coverage can be achieved by intercrossing 

Rip1Tag2 mice with Rip1-VEGF-C transgenic mice [380, 382]. 

4. Tumor volumes of macroscopic tumors (≥1mm diameter) are assessed by measuring 

the diameter of each tumor, calculate the volume assuming a spherical shape 

(volume = (4/3)*π*(diameter/2)^3) and summing up the resulting volumes per mouse. 

5. DAKO mounting medium can be replaced with Mowiol. 

6. Blood vessel perfusion and leakiness can in principle be analyzed in the same mouse 

by co-injecting FITC-Dextran and Texas-Red labeled Lectin. However, this reduces 

the possibilities of future IF co-stainings, since the “green” and the “red” channel are 

occupied in this setting. Additionally, please note that DAPI is always accompanying 

the stainings. Therefore, we usually split the mouse cohorts into 3 groups. All the 

animals receive an injection of pimonidazole, one-third of the animals FITC-Lectin or 

FITC-Dextran, respectively, and one-third pimonidazole only. Furthermore, tissues 

from the latter group can be conveniently used for RNA or protein isolation, since the 

pimonidazole injection alone does only require a (immediate) post-dissection fixation 

in PBS/4% PFA, but not a systemic PBS/4% PFA perfusion prior to organ dissection, 

as it is the case for FITC-Lectin and FITC-Dextran injected animals. 
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7. Pimonidazole HCl displays a half-life of about 0.25 h in mice. To avoid artifacts 

introduced by hypoxia/anoxia during the euthanization and dissection procedure, 

pimonidazole levels in the systemic circulation should therefore be sufficiently low at 

time of euthanization. Therefore, the manufacturer recommends to dissect the mice 

1-2 h (the chosen timepoint should be strictly kept for all the animals in the same 

experiment) after injection, using a fast euthanization technique (cervical dislocation 

rather than CO2 suffocation) [385]. 

8. In principle, mice could also be perfused shortly after death by CO2 suffocation. If 

mice are co-injected with pimonidazole however, CO2-suffocation should be avoided 

(see Note 7). In this case, any terminal anesthesia method licensed by the relevant 

veterinary office can be employed to obtain a humane perimortal perfusion. 

9. Changing from the syringe containing 10ml PBS to the 10ml syringe containing 

PBS/4% PFA should ideally be performed by a second assisting person. Like this, the 

needle can remain in the exact same position in the left ventricle preventing the 

creation of holes in the myocardium of the left ventricle that could reduce the 

perfusion quality. 

10. If the perfusion with PBS is incomplete, remaining intravascular FITC-Dextran can be 

distinguished from extravascular (i.e. leaking) FITC-Dextran by visualizing the blood 

vessels with a staining for the endothelial cell marker CD31. 

11. Styrofoam containers, which are often used to ship laboratory materials, can easily be 

recycled for the purpose of freezing tissues. Please make sure that you take a 

container that does not leak. 

12. To prevent vanishing of markings made on the embedding molds, use an alcohol 

resistant lab marker and fill the ethanol only to a level below the markings. 

13. Prevent prolonged handling of OCT blocks at room temperature because the OCT 

solution should not thaw. If rapid transfer from the -80°C freezer to the cryotome or -

20°C freezer is not possible, transport the OCT blocks cooled. 

14. Short term storage of OCT blocks at -20°C for a few days is possible, although not 

recommended. In addition, avoid leaving the OCT blocks in the cryotome over night, 

since some machines display temperature fluctuations. 

15. Protect sections from light throughout the whole experiment, especially if FITC-Lectin 

or FITC-Dextran ist present in the respective tissue. 

16. Since cutting sections of larger experiments containing numerous OCT blocks often 

takes some hours, the time the different sections are drying may vary. To account for 

potential “batch effects”, the order of the OCT blocks processed should not be 

according to the experimental groups, but random instead. 
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17. All washing and the permeabilization steps (if not otherwise indicated) can be 

performed by putting the sections as a batch in one container gently shaking on a 

tumbling table at room temperature. 

18. Alternatively to over night incubation with the primary antibodies, the incubation can 

also be shortened to 1 hour at room temperature in a humid chamber (do not forget to 

protect the specimen from light). 

19. Insulinoma can be easily distinguished from the surrounding exocrine pancreas 

based on the more dense distribution pattern of the DAPI stained nuclei. Pancreatic 

lymph nodes display a densely packed nuclei distribution pattern as well, but nuclei 

are more densely distributed and smaller than observed in insulinoma. However if 

required, tumor cells can be specifically visualized by staining for insulin or SV40 

Large T antigen. Importantly, it has been described that a subpopulation of 

insulinoma in the Rip1Tag2 mouse model lose insulin expression but remain positive 

for SV40 Large T antigen expression [386]. Therefore, SV40 Large T antigen appears 

to be a more sensitive marker to detect tumors (and metastases) in this model. On 

the other hand, the quality of the IF staining on cryosections for insulin is significantly 

better than that for SV40 Large T antigen. 
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3.2.1 Statement of Translational Relevance 

 Pancreatic neuroendocrine tumors are often diagnosed at an advanced stage and thus 

remain a deadly disease with restricted systemic treatment options. Nevertheless, this group 

of cancers in advanced stages has proven to be sensitive to the anti-angiogenic tyrosine 

kinase inhibitor sunitinib – yet with considerable side effects. On the other hand, the broad- 

spectrum anti-angiogenic tyrosine kinase inhibitor nintedanib has displayed an encouraging 

anti-cancer and safety profile in preclinical cancer models and in cancer patients. We have 

employed the Rip1Tag2 transgenic mouse model of hormone-positive neuroendocrine 

carcinoma of the pancreas to test the efficacy of nintedanib in treating insulinoma in a 

preclinical setting. This mouse model recapitulates multistage neuroendocrine 

carcinogenesis and the co-evolution of the tumor microenvironment with the tumor cells. 

Notably, it has been shown highly predictive in translating preclinical drug evaluation into 

successful clinical application, e.g. as demonstrated in the cases of sunitinib and mTOR 

inhibition. 

 

3.2.2 Abstract 

 PNETs represent a rare but challenging heterogeneous group of cancers with an 

increasing incidence over the last number of decades. Herein, we report an in depth 

evaluation of the new anti-angiogenic small-molecule TKI nintedanib in the preclinical 

Rip1Tag2 transgenic mouse model of neuroendocrine carcinoma of the pancreas 

(insulinoma). We have assessed the anti-angiogenic and anti-tumor activity of nintedanib, in 

comparison to other anti-angiogenic TKI, by treating Rip1Tag2 transgenic mice with different 

treatment schedules complemented with histopathological, cell biological and biochemical 

analyses. Prolonged nintedanib treatment of Rip1Tag2 mice has led to a strong suppression 

of angiogenesis, accompanied by a reduced tumor burden, which translated into a significant 

prolongation of survival. Despite nintedanib’s inhibitory action on perivascular cells, the blood 

vessels remaining after therapy displayed a considerably mature phenotype with tight 

perivascular cell coverage and preserved perfusion. Nintedanib treatment did not increase 

local tumor invasiveness or metastasis to the liver and pancreatic lymph nodes - a 

phenomenon which has been observed with anti-angiogenic treatments of Rip1Tag2 

transgenic mice in other laboratories. In contrast to the strong reduction in blood microvessel 

densities, nintedanib did not have any impact on tumor lymphangiogenesis. Based on our 

findings we propose the clinical evaluation of the anti-angiogenic drug nintedanib as a new 

treatment modality of PNET patients, notably in a direct comparison to already established 

therapeutic regimen such as sunitinib. 
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3.2.3 Introduction 

 PNETs, although representing a minority of pancreatic tumors, remain a therapy-

challenging heterogeneous group of tumors with increasing incidence over the last decades 

[262]. Whereas 45-60% of PNETs are non-functional, 40-55% produce a variety of hormones 

leading to different clinical presentations, e.g. hypoglycemic syndrome in the case of insulin-

producing PNETs (insulinoma) [264]. Aside from cytoreductive surgery, somatostatin analogs, 

peptide receptor-targeted radiotherapy and systemic chemotherapy, management of 

advanced PNETs involves targeted therapies, such as the mTOR inhibitor everolimus or the 

anti-angiogenic small-molecule tyrosine kinase inhibitor sunitinib [264]. In a phase III clinical 

trial, sunitinib was shown to be highly effective and significantly prolonged progression-free 

and overall survival of PNET patients. This study even had to be discontinued early, because 

of a significantly worse clinical outcome in the placebo group. However, a number of patients 

experienced treatment-related side effects, such as grade 3 or 4 hypertension and 

neutropenia in 10 and 12% of patients respectively [64]. Reducing adverse events is of 

particular importance in this cancer entity, since patients usually undergo long-term therapy 

and usually experience good quality of life even without treatment until late in the course of 

the disease [263]. 

 

 Despite the encouraging results derived from numerous preclinical studies, anti- 

angiogenic therapies targeting mainly the VEGF/VEGFR axis have widely failed to 

substantially increase patient survival in a large number of cancer types [297]. In mouse 

models, the upregulation of alternative pro-angiogenic factors, such as FGFs, PDGFs, Bv8 

and others, has been shown to mediate the resistance to blocking the VEGF-A/VEGFR-2 

axis. Hence, a simultaneous targeting of the VEGF and the FGF receptor families and other 

alternative signaling pathways may lead to an improved clinical outcome [162, 270, 333, 334]. 

Nintedanib (BIBF1120), a small-molecule kinase inhibitor that targets not only VEGFRs and 

PDGFRs but also FGFRs and c-SRC [70, 103], has recently been shown to yield significant 

anti-cancer effects in a variety of preclinical cancer models and in NSCLC patients [70, 71, 

110]. In a recent phase III clinical trial of nintedanib in NSCLC patients (LUME-Lung 1), the 

majority of side effects ascribed to nintedanib were of gastrointestinal origin (diarrhea, 

nausea, vomiting) and reversible elevations in liver enzymes. Hypertension and white blood 

cell alterations were not pronounced in the cohort treated with nintedanib plus standard 

chemotherapy versus the cohort treated with chemotherapy alone [71]. Moreover, treatment 

of IPF in a randomized, double-blind phase III trial has not resulted in any severe adverse 

effects [72]. 

  

 The apparent discrepancies between the efficacies of anti-angiogenic therapies in 
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preclinical models and in patients may be attributed to the altered stromal microenvironment 

that human tumor cells encounter in immunodeficient mice, frequently aggravated by an 

inadequate subcutaneous (heterotopic) implantation of cancer cells of other organs. 

Especially when evaluating drugs that mainly target the tumor microenvironment, as is the 

case with anti-angiogenic therapies, these artefacts might be of significant importance [70, 

298]. A solution to this problem is the use of transgenic animal models that stochastically 

develop endogenous tumors in a robust and reproducible manner. For example, the 

Rip1Tag2 transgenic PNET mouse model expresses the oncogenic SV40 Large T-antigen 

(Tag) under the control of the rat insulin promoter (Rip) and reproducibly elicits multi-stage 

tumorigenesis of the insulin-producing β-cells of the pancreas [246, 254]. The stochastic and 

stepwise development enables the tumor microenvironment to co-evolve with the cancer 

cells, thus recapitulating the patient situation. Indeed the RipTag2 transgenic model has 

proven a versatile and robust preclinical model that reliably mimics human insulinoma. For 

example, SV40 Tag binds and inactivates the retinoblastoma (RB) and the p53 tumor 

suppressor gene products, which are found dysregulated in a large subset of human PNETs 

as well (18, 19). Rip1Tag2 mice develop PNETs in a multistep fashion. Although SV40 

Large-T antigen serves as the initial oncogenic driver presumably in all β-cells present within 

the islets of Langerhans of the pancreas, stochastically occurring additional genetic 

alterations lead to hyperplastic lesions in only some of the islets. A proportion of these 

preneoplastic lesions further progress and induce the formation of new blood vessels 

(angiogenic switch). Only few of these angiogenic hyperplastic islands progress first to 

adenoma and subsequently become invasive (carcinoma) [259, 260]. The Rip1Tag2 

transgenic mouse model has been used for the testing of numerous experimental therapies 

and has been instrumental in predicting the successful application of novel therapies in 

clinical trials [258]. For example, preclinical results derived from combined anti-VEGFR and 

anti-PDGFRβ treatments of the Rip1Tag2 transgenic PNET mouse model have paved the 

way for the successful clinical application of sunitinib in PNET patients [64, 104, 267]. Finally, 

the use of Rip1Tag2 transgenic mice has led to the use of radio- labeled Exendin-IV to non-

invasively image insulinoma in patients, a method that is now in clinical use [387]. 

 

 Here, we report an in-depth preclinical characterization of nintedanib in the Rip1Tag2 

transgenic mouse model of neuroendocrine carcinoma of the pancreas. We report a strong 

anti-angiogenic response, which translates into significantly reduced tumor growth and 

prolonged survival. Despite a vast reduction in microvessel density upon extended 

nintedanib treatment, only a slight increase in tumor hypoxia is observed. In addition, the 

remaining tumor blood vessels displayed mature characteristics. Furthermore, we did not find 

increased local invasiveness or metastases in the liver and lymph nodes in any of 
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thetreatment regimens assessed. Based on the results we propose that nintedanib should be 

evaluated in clinical trials as a new treatment modality of PNET. 

 

3.2.4 Results 

3.2.4.1 Nintedanib efficiently reduces tumor burden and prolongs survival 

 We first investigated the gross effects of nintedanib on tumor growth in Rip1Tag2 

transgenic mice. Mice were stratified (in a 1:1 ratio) according to sex and age, and littermates 

were balanced between the nintedanib and the vehicle-treated control group and then 

treated with 50mg/kg nintedanib daily p.o. beginning at the age of 9 weeks for 3 weeks, a 

time period in which tumor angiogenesis and tumor growth are highly active [255]. 

Nintedanib- treated mice showed a strong reduction in the total tumor burden per mouse, as 

well as less macroscopically detectable tumors (Figure 1A, B). In addition, the few 

macroscopically detectable tumors in nintedanib-treated animals were white, in contrast to 

the red, highly vascularized appearance of the tumors in vehicle-treated control animals, 

indicating decreased vascularization (Figure 1C). Next we assessed whether this dramatic 

reduction of primary tumor growth translated into a prolongation of survival of Rip1Tag2, as it 

has been observed for sunitinib with this mouse model [267]. Treatment with nintedanib 

(50mg/kg, 1x/d, p.o.) or placebo was initiated at the age of 10 weeks and continued open 

end. Animals were euthanized before suffering of hypoglycemia, by fulfilling the termination 

criteria as described in Materials and Methods. We observed a significant (log-rank test, P < 

0.001) increase in the survival of the nintedanib-treated group (median survival 55 days on 

treatment) as compared to the vehicle-treated control group (median survival 24 days on 

treatment) (Figure 1D). Interestingly, tumors of nintedanib-treated animals displayed a white 

color even at the terminal stage (data not shown). Together, these results demonstrate an 

efficient anti- tumor effect of nintedanib in Rip1Tag2 mice by reducing primary tumor burden 

and significantly extending survival time. 

 

3.2.4.2 Reduced tumor blood vessel density correlates with increased tumor cell   

apoptosis 
 

 To determine the anti-angiogenic capabilities of nintedanib, we quantified MVD by IF 

staining with the endothelial cell marker CD31 on 3 weeks nintedanib and placebo-treated 

tumors. Nintedanib treatment significantly reduced MVD by more then 50 percent (Figure 2A). 
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Figure 1. Reduced tumor volume and improved survival upon nintedanib treatment of Rip1Tag2 
transgenic mice. 
(A, B) Shown are total tumor volumes (A) and number of macroscopically detectable tumors (B) per Rip1Tag2 
mouse treated for 3 weeks with nintedanib or vehicle control starting at the age of 9 weeks (pooled analysis of 3 
independent experiments). Vehicle: n=15 mice, nintedanib: n=20 mice. Statistical analysis by Mann-Whitney U 
test; ***, P < 0.001. (C) Tumor nodules (arrows) in the pancreas of nintedanib-treated mice are barely detectable, 
because they are less frequent and of whitish color as compared to more frequent and red-colored tumors in 
vehicle-treated Rip1Tag2 mice. Scale bar, 2mm. (D) Survival trial of nintedanib treatment starting at the age of 10 
weeks and 2 days. Median survival: vehicle group: 24 days on treatment, nintedanib group: 55 days on treatment. 
Vehicle n=16 mice, nintedanib n=15 mice. Log-rank test; P < 0.001. 
 

 Most anti-angiogenic drugs are known to mediate their anti-tumor activity by increasing 

apoptosis rather than inhibiting proliferation [255]. Consistently, cCasp3 IF staining revealed 

that the strong reduction of MVD was accompanied by an increase of tumor cell apoptosis in 

nintedanib-treated tumors as compared to controls (Figure 2B). This finding is supported by 

the increased levels of double-strand breaks as detected by TUNEL assay (Figure S1B) and 

the lack of a change in tumor cell proliferation as determined by pH3 staining (Figure S1C). 

These data suggest that the anti-tumor effect of nintedanib is mainly caused by increased 

tumor cell apoptosis triggered by the strong reduction of MVD. A direct effect of nintedanib 

on tumor cells is rather unlikely, since treatment of cultured insulinoma cells derived from 

Rip1Tag2 mice only reduced tumor cell numbers at high nintedanib concentrations (IC50 = 
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1.891µM) – levels that are not reached when treating mice daily with 50mg/kg [70, 103] 

(Figure S1D). 

 
Figure 2. Nintedanib reduces microvessel density and induces apoptosis. 
(A, B) Microvessel density (A) and apoptosis rate (B) of 3 weeks nintedanib-treated Rip1Tag2 tumors starting 
from 9 weeks of age were assessed by immunofluorescence staining for CD31 (green) and cCasp3 (red), 
respectively. Representative immunofluorescence pictures (20x magnification) are shown. Values were obtained 
by counting the number of vessels or apoptotic cells per area of each microscopic field of view. Bar graphs 
display means ± SEM and statistical analysis was performed using an unpaired Student t test. Vehicle: n=4 mice, 
nintedanib: n=7 mice. **, P < 0.01; ***, P < 0.001. Scale bars, 100µm. 
 

3.2.4.3 Nintedanib-treated tumor blood vessels display a mature phenotype 

 Nintedanib not only inhibits signaling of VEGFRs and FGFRs, both important receptor 

families for vascular sprouting and therefore neovessel formation, but also targets PDGFRs 

[103]. Endothelial cell-derived PDGF-B attracts perivascular cells by binding to PDGFRβ 

expressed by them, and perivascular cells subsequently cover the abluminal surface of the 

vessel tube to mediate vessel stability and functionality [161]. Interestingly, the targeting of 

the perivascular cell coverage in addition to inhibiting endothelial cell sprouting has led to a 

beneficial anti-tumor effect [104]. We thus examined the phenotype of the tumor blood 

vessels present after 3 weeks of nintedanib treatment.  
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Figure 3. Blood vessels resisting nintedanib treatment display a mature phenotype and retain their 
function.   
(A) Rip1Tag2 mice were treated with nintedanib for 3 weeks starting at 9 weeks of age. Representative images 
(20x magnification) of an immunofluorescence staining of pancreatic sections for tumor blood vessels (CD31, 
green), perivascular cells (NG2, red) and cell nuclei (DAPI, blue) are shown. Scale bars, 100µm. (B) 
Quantification and analysis of the relative localization of NG2+ perivascular cells to CD31+ blood vessels revealed 
in nintedanib-treated tumors a slightly reduced NG2+ perivascular cell-coverage of the remaining blood vessels. 
The percentage of perivascular cell-covered blood vessels are displayed per each field of view. Vehicle: n=4 mice, 
nintedanib: n=7 mice. Scale bars, 100µm. (C) Blood vessel patency was assessed by i.v. injection of Fluorescein-
labeled Lectin (green) and immunofluorescence co-staining for CD31 (red) and cell nuclei (DAPI, blue). CD31+ 

blood vessels without signs of Lectin signal were compared to the total number of vessels per field of view and 
displayed as mean ± SEM. Representative images (20x magnification) are shown as single channels in gray 
scale and merged. Arrowheads point towards blood vessels without perfusion. Scale bars, 100µm. (D) Blood 
vessel leakiness was analyzed by injecting Fluorescein labeled Dextran (70kDa) i.v. Quantification and 
representative immunofluorescence images of Fluorescein-labeled Dextran (70kDa; green) and CD31+ blood 
vessels (red) are shown. Cell nuclei are visualized by DAPI staining (blue). The bar graph indicates the number of 
Dextran-positive intratumoral leaky spots per tumor area. Data are displayed as mean ± SEM per field of view. 
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Arrows point towards intratumoral leaky spots and arrowheads towards leaky spots along the tumor border 
(quantification not shown). Vehicle: n=6 mice, nintedanib: n=7 mice. Scale bar, 100µm. Statistical analysis was 
performed using an unpaired Student t test (B-D); *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
 

 Perivascular cell coverage was assessed by staining for the perivascular cell marker 

NG2 [161]. Quantification of NG2 staining revealed that nintedanib strongly reduced the total 

number of NG2+ perivascular cells per field of view (Figure 3A, Figure S2A). Moreover, while 

in vehicle-treated control tumors almost all perivascular cells found attached to vessels, with 

the loss of MVD upon nintedanib treatment an increased fraction of perivascular cells is 

found without contact to vessels (Figure 3A, Figure S2B). Still, the few blood vessels in 

nintedanib-treated tumors appeared to be substantially covered by perivascular cells and 

displayed a mature phenotype (Figure 3A, B). We thus tested the functionality of the 

treatment-resisting blood vessels by intravenously injecting Fluorescein- labeled Lectin 

shortly before sacrificing the animals. While in the vehicle-treated tumors only a minority of 

blood vessels was non-functional (∼8%), nintedanib treatment further reduced the amount of 

non-functional vessels (∼4%) (Figure 3C). 

 

 One important hallmark of the aberrant phenotype of tumor blood vessels is the 

increased leakiness leading to increased interstitial fluid pressure and thus reduced 

intratumoral delivery of chemotherapeutic agents [198, 326]. We have assessed blood vessel 

leakiness by intravenously injecting Fluorescein-labeled Dextran (70kDa) into vehicle and 

nintedanib-treated animals. Leaky spots, i.e. Fluorescein-labeled Dextran in the abluminal 

compartment of blood vessels identified by CD31 staining, were mainly detected at the tumor 

border. The quantification of leaky spots at the tumor border did not reveal a significant 

difference between vehicle and nintedanib-treated mice (data not shown). Interestingly 

though, nintedanib treatment reduced the amount of leaky spots in the tumor center (Figure 

3D). Finally, we determined the consequences of the strong reduction in MVD observed in 

nintedanib-treated tumors on tumor oxygenation by pimonidazole staining. Three weeks of 

nintedanib treatment significantly increased the number of tumors with hypoxic areas and the 

hypoxic area fraction of hypoxic tumors (Figure S3A – C). However, approximately 85% of 

nintedanib-treated tumors did not display any signs of hypoxia, further indicating that 

nintedanib-resistant vessels are mature and fully functional. Tumor hypoxia has often been 

causally linked with the induction of local tumor invasiveness [267]. Interestingly therefore, 

hypoxia in nintendanib-treated insulinoma was often found close to clearly non-invasive 

tumor borders (Figure S3D). 

 

 In summary, nintedanib treatment leads to a strong reduction in the total amount of 

NG2+ perivascular cells. Importantly, the blood vessels that survive nintedanib treatment are 



RESULTS: NINTEDANIB IN RIP1TAG2 

	

	 64 

patent and, thus, the strong reduction in MVD causes hypoxia only in a minority of tumors. 

 

3.2.4.4 Tumor lymphangiogenesis is not affected by nintedanib treatment  

 In vitro kinase assays have shown that nintedanib inhibits VEGFR-3 at a concentration 

comparable to the concentration needed to inhibit VEGFR-2 signaling [70]. Although 

VEGFR-3 is expressed on blood vessel tip cells with substantial functions in blood vessel 

sprouting [191], its classical role is attributed to mediating lymphangiogenesis. Since the 

expression of VEGF-C, the cognate ligand of VEGFR-3, in tumor cells of 

Rip1Tag2;Rip1VEGF-C double-transgenic mice leads to increased tumor lymphangiogenesis 

and facilitates lymphogenic metastatic spreading, the inhibition of tumor lymphangiogenesis 

may represent an interesting therapeutic opportunity [382]. On the other hand, Sennino and 

colleagues reported that anti-angiogenic treatments of Rip1Tag2 mice increased tumor 

lymphangiogenesis and lymphatic metastasis [368]. 

 

 To assess whether nintedanib affects tumor lymphangiogenesis in Rip1Tag2 

transgenic mice, we first analyzed peritumoral lymphatic coverage of tumors of Rip1Tag2 

mice treated with nintedanib for 3 weeks. Insulinoma were identified by insulin positivity and 

lymphatic vessels were visualized by immunofluorescent staining against LYVE-1. 

Insulinoma of 12 weeks old Rip1Tag2 mice were only rarely covered by lymphatic vessels, 

and this coverage was not influenced by nintedanib treatment (Figure 4A). We then 

investigated whether nintedanib affected peritumoral lymphatic coverage in the highly 

lymphangiogenic tumors of Rip1Tag2;Rip1-VEGF-C mice. Surprisingly, nintedanib treatment 

did not reduce the high lymphatic coverage of tumors in these mice (Figure 4B). From these 

data we conclude that nintedanib does not affect tumor lymphangiogenesis in this mouse 

model. 
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Figure 4. Tumor lymphangiogenesis is not affected by nintedanib treatment.  
(A, B) The percentage of LYVE-1+ lymphatic endothelium (red, arrowheads) covering the perimeter of insulin-
positive β-cell tumors (insulin, green) stained by immunofluorescence was quantified in Rip1Tag2 (A) and 
Rip1Tag2;Rip1-VEGF-C (B) mice treated for 3 weeks with nintedanib or vehicle control starting at 9 weeks of age. 
DAPI staining visualizes cell nuclei (blue). Representative microphotographs are shown (10x magnification). Bar 
graphs represent mean lymphatic tumor coverage per tumor ± SEM. Statistical analysis was performed using an 
unpaired Student t test. A, Vehicle: n=4 mice, nintedanib: n=7 mice; B, n=3 mice for each group. Scale bars, 
100µm. 
 

3.2.4.5 Nintedanib does not induce tumor invasiveness and metastasis 

 Recent reports have suggested that anti-angiogenic substances, such as sunitinib, can 

increase local invasiveness and lymph node and liver metastasis in Rip1Tag2 transgenic 

mice and other mouse models of cancer, raising major concerns about the use of anti- 

angiogenic therapies in patients [267, 270, 364]. We therefore analyzed the effect of different 

nintedanib treatment regimens on local invasiveness and distant metastasis by histological 

grading of hematoxylin and eosin-stained pancreas sections (see Material and Methods and 

Figure S1A) [388]. In the 3-week nintedanib treatment regimen initiated at 9 weeks of age, 

we could neither detect a significant increase in the percentage of micro-invasive lesions 

(IC1) nor an increase in macro-invasive lesions (IC2) (Figure 5A). In addition, this treatment 

regimen did not lead to an increase in local lymph node and liver metastases as detected by 
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staining for SV40 T antigen, the oncogene expressed by β-tumor cells in Rip1Tag2 

transgenic mice (Figure 5B, C). Of note, in all of the mice analyzed, liver metastasis 

exceeding 10 cells per cross section were rarely observed and were restricted to a few mice 

(data not shown). To rule out a transient and reversible increase of local tumor invasiveness, 

we initiated treatment at around 9 weeks of age and analyzed pancreata after 5 days of 

nintedanib treatment. This treatment regimen was sufficient to reduce MVD and tumor 

volume at borderline significance, yet it also did not increase local tumor invasiveness 

(Figure S4A - C). 

 

Figure 5. Nintedanib and sunitinib do not induce tumor invasiveness and metastasis.  

(A) Tumors of Rip1Tag2 mice treated for 3 weeks with nintedanib or sunitinib in two separate experiments starting 
at 9 weeks of age were classified into any of the 3 categories as indicated by the percentages of the tumors 
inside the bar graphs and the numbers of total tumors per experimental group, which are displayed on top of the 
bars. Vehicle: n=6 mice, nintedanib: n=9 mice, data of two independent experiments was pooled. Control: n=10 
mice, sunitinib: n=11 mice. Statistical analysis was performed using Fisher’s exact test; *, P < 0.05. (B) Pancreatic 
lymph node metastases were analyzed in 23 vehicle-treated (10 mice) and 48 nintedanib-treated (14 mice), and 
in 4 control-treated (10 mice) and 14 sunitinib-treated (11 mice) lymph nodes. Fisher`s exact test; P = 0.6252 
(nintedanib treatment), p = 1 (sunitinib treatment). (C) Metastasis to the liver was analyzed on 9 histological liver 
sections per mouse of vehicle-treated (4 mice) and nintedanib-treated (7 mice), and in control-treated (10 mice) 
and sunitinib-treated (11 mice) mice. Mann Whitney U test. (D) Grading of tumor stages in Rip1Tag2 mice treated 
for 5 days with nintedanib or vehicle control initiated at 11 weeks of age. Vehicle: n=16 mice, nintedanib: n=18 
mice; pooled data of 3 independent experiments are shown.  
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 A meaningful assessment of a potential pro-metastatic effect of compounds prolonging 

overall survival in clinical trials is often hampered by the latency of metastasizing tumor cells. 

We therefore asked whether the survival benefit achieved by nintedanib treatment would be 

paralleled by increased liver metastasis when analyzing vehicle and nintedanib-treated 

groups at their endpoints. Although nintedanib treatment increased survival by more than 4 

weeks, the number of liver metastases per mouse was not increased compared to vehicle-

treated mice (Figure S5). 

 

 Since treatment with nintedanib for 3 weeks was initiated at an intermediate stage of 

tumorigenesis, the possibility remained that nintedanib treatment initiated at late stage of 

Rip1Tag2 tumorigenesis may instead increase local invasiveness. However, treatment with 

nintedanib for five days initiated at a late tumor stage (11 weeks of age) did not induce local 

invasiveness, while a substantial reduction in MVD with a significant reduction in tumor 

volume was observed (Figure 5D, Figure S6A, B). 

 

3.2.4.6 Sunitinib does not induce tumor invasion and metastasis 

 Although several publications have shown increased invasiveness and metastasis 

upon anti-angiogenic treatments in the Rip1Tag2 mouse model of PNET [267, 270, 364], this 

issue remains controversial, and solid data reporting similar findings in human clinical trials 

are lacking [379]. In particular, it is not known whether the pro-invasive phenotype observed 

in some preclinical cancer models can be attributed to inhibition of the VEGF-A/VEGFR-2 

axis alone, and is therefore applicable to all VEGF pathway inhibitors or whether it is a 

consequence of increased tumor hypoxia caused by multi-target tyrosine-kinase inhibitors 

such as sunitinib	 [267, 270, 364, 365]. To specifically address this question, we analyzed the 

local invasiveness of Rip1Tag2 tumors treated with the anti-angiogenic small molecule 

tyrosine-kinase inhibitor sunitinib, which has previously shown to be especially efficient in 

enhancing tumor invasiveness and metastasis in the Rip1Tag2 mouse model [267, 363]. 

Interestingly, although a 3-week sunitinib treatment effectively reduced MVD and primary 

tumor growth (Figure S6C, D), lymph node and liver metastasis were not increased (Figure 

5B, C). In contrast, sunitinib slightly reduced the rate of carcinoma classified as IC2 (Figure 

5A). Similarly, a 5-day sunitinib treatment at early stage of tumorigenesis reduced MVD and 

primary tumor volumes compared to control treated mice, but did not affect tumor 

invasiveness (Figure S4A- C). 

 

 

3.2.4.7 Blocking VEGFR 1-3 signaling does not induce local tumor invasiveness 

 To further characterize the general response patterns to different anti-antiogenic TKI in 
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Rip1Tag2 mice, we performed therapy studies with PTK787/ZK222584 (PTK/ZK) which 

mainly inhibits VEGFR 1-3 and PDGFR signaling (26). We treated Rip1Tag2 mice starting 

from 9 weeks of age with PTK/ZK (100mg/kg) for 3, 4, 5 or 6 weeks, whereas the control 

treatment group was treated for 3 weeks only, to avoid preterm death. Prolonged PTK/ZK 

treatment efficiently reduced MVD and had varying effects on tumor volumes (Figure S7A, B). 

Interestingly, we did not observe revascularization even in the 5 and 6 weeks treatment 

cohorts. None of the PTK/ZK treatment groups displayed any sign of increase local tumor 

invasiveness compared to the control cohort, even though the prolonged treatment provided 

additional time for the tumors to progress (Figure 6A). On the contrary, 3 and 6 weeks 

PTK/ZK treatment rather reduced the percentage of macro-invasive (IC2) lesions. Similar to 

the nintedanib treatment we assessed whether 5 days of PTK/ZK treatment initiated at late 

tumor stage (11 weeks of age) would increase tumor invasiveness. Although we could not 

detect any difference in the percentage of macro-invasive tumors between the PTK/ZK and 

the control treated cohort, there was a shift towards an increased percentage of micro-

invasive lesions in PTK/ZK treated mice (Figure 6B). To further follow up and validate these 

results, we analyzed the entrapment of amylase-positive cells of the exocrine pancreas 

within insulin-positive tumors by immunofluorescence staining as has been previously 

described [364]. Tumors entrapping amylase-positive cells are an indicator of macro-

invasiveness (Figure 6C). In concordance with the histological grading, 5 days PTK/ZK 

treatment initiated at late tumor stage (11 weeks of age) also did not significantly alter the 

percentage of tumors entrapping cells of the exocrine pancreas, despite strongly reducing 

MVD and tumor volume (Figure 6C, Figure S7C, D). PTK/ZK treatment initiated at an early 

tumor stage (9 weeks of age) for five days rather reduced local invasiveness (Figure S4C). In 

addition, treating Rip1Tag2;Rip1-VEGF-C mice with PTK/ZK for 3 weeks did also not 

increase local tumor invasiveness (Figure 6D). 

 

 Based on these data, we conclude that targeting tumor angiogenesis in Rip1Tag2 

transgenic mice by a variety of therapy regimen with the multi-kinase inhibitors nintedanib, 

sunitinib or PTK/ZK efficiently represses tumor angiogenesis, but does not increase the 

incidence of invasive tumors or metastasis. 
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Figure 6. Analysis of local tumor invasiveness upon various PTK/ZK treatment regimens.  
(A) Rip1Tag2 mice were treated for 3, 4, 5 and 6 weeks with PTK/ZK starting at 9 weeks of age or for 3 weeks 
with PEG as control group. PEG: n=5 mice, PTK/ZK: n=3-5 mice per group. Tumor stages were graded and 
quantified as described in Figure S1A. (B) Tumor grading of tumors of Rip1Tag2 mice treated with PTK/ZK for 5 
days between the age of 11 and 12 weeks. Tumor stages were graded as described in Figure S1A. N=5 mice per 
group. Data of 2 independent experiments were pooled. (C) The extent of insulin-positive tumors (red) entrapping 
α-amylase-positive cells of the exocrine pancreas (green) was quantified by immunofluorescence staining of the 
tumors of Rip1Tag mice treated for 5 days at 11 weeks of age as described in panel (B). Scale bar, 100µm.  (D) 
Rip1Tag2;Rip1-VEGF-C mice were treated with PTK/ZK for 3 weeks starting at 9 weeks of age, and tumor stages 
were graded as described in Figure S1A. PEG: n=7 mice, PTK/ZK: n=8 mice.  
Fisher’s exact test (A-D); *, P < 0.05; **, P < 0.01.  

	



RESULTS: NINTEDANIB IN RIP1TAG2 

	

	 70 

3.2.5 Discussion 

 Based on numerous promising results from preclinical cancer models, the strategy of 

targeting tumor blood vessels and thus reducing the amount of oxygen and nutrients 

available to tumors has been translated with great enthusiasm into clinical practice [389]. In 

clinical trials and routine therapy most anti-angiogenic substances have increased 

progression-free survival, yet they have failed to substantially prolong overall survival in a 

variety of solid tumor types [287, 297]. As an exception, treatment of patients with advanced 

PNET with the anti-angiogenic TKI sunitinib has raised the possibility that this group of 

cancer is particularly sensitive to anti-angiogenic therapy [64]. At the same time, this clinical 

trial reproduced the beneficial effect observed in preclinical experiments targeting both 

endothelial- and perivascular cells with sunitinib in the Rip1Tag2 mouse model of PNET [104, 

267]. These and other data have proven the Rip1Tag2 model highly predictive in translating 

findings from the bench to the bedside [258, 265, 266]. 

 

 In the present study, we have performed an in depth evaluation of the broad- spectrum 

anti-angiogenic small-molecule TKI nintedanib in the Rip1Tag2 preclinical mouse model of 

PNET. Nintedanib, which mainly inhibited VEGF, PDGF and FGF tyrosine kinase receptors 

and SRC non-receptor tyrosine kinase [70], exerted a strong anti-angiogenic effect in the 

Rip1Tag2 transgenic mouse model of neuroendocrine carcinoma of the pancreas which 

resulted in reduced tumor volumes and increased animal survival. Nintedanib extensively 

reduced microvessel density and tumor volume. Interestingly though, despite nintedanib’s 

inhibitory action on perivascular cells, the blood vessels that remained were mature, tightly 

covered by perivascular cells, well perfused and showed reduced intratumoral leakiness. 

Although the vasculature in the placebo-treated group was 

already well perfused and only rarely showed signs of intratumoral leakiness, prolonged (3 

week) nintedanib treatment led to further blood vessel normalization with only a marginal 

increase of tumor hypoxia. Since blood vessel normalization is associated with enhanced 

delivery of chemotherapeutic agents into tumors [198, 326], nintedanib should not only be 

further evaluated for its own anti-cancer effect but also for a potential synergistic function by 

enhancing the intratumoral delivery of anti-cancer agents. Nintedanib has been shown well 

tolerated in the treatment of IPF and cancer patients [71, 72] and, hence, it should be 

clinically tested on patients with PNET and other angiogenic cancer types in combination 

with conventional chemotherapy. In addition, nintedanib could be used when tumors become 

refractory to therapies targeting mainly the VEGF-A/VEGFR2 axis by FGF signaling-

mediated revascularization – as it has been previously shown for brivanib in the Rip1Tag2 

mouse model [253]. Brivanib is an anti-angiogenic TKI displaying a similar target spectrum 

as nintedanib; both compounds are inhibiting FGFR signaling in addition to VEGFR and 
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PDGFR signaling. 

 

 Surprisingly, nintedanib did not affect tumor lymphangiogenesis in Rip1Tag2 mice as 

well as in Rip1Tag2 mice in which tumor lymphangiogenesis was induced by tumor cell- 

specific expression of VEGF-C (Rip1Tag2;Rip1-VEGF-C double-transgenic mice). In 

concordance with these findings, we have previously shown that the anti-angiogenic TKI 

PTK/ZK, mainly blocking VEGFRs 1-3, was also not able to inhibit established and ongoing 

tumor lymphangiogenesis in the Rip1Tag2;Rip1-VEGF-C model despite a substantial 

reduction of VEGFR-3 phosphorylation [255]. These data indicate that VEGF-C-induced 

tumor lymphangiogenesis may eventually rely on factors other than VEGF-C and that 

pathways not targeted by nintedanib and PTK/ZK are at play. These observations warrant 

further investigations. 

 

 Previous work has raised concerns that anti-angiogenic therapy might increase tumor 

invasiveness and distant metastasis in the Rip1Tag2 model [267, 270, 363, 364, 366]. Some 

work attributed the invasiveness-promoting effect to a general feature of anti-angiogenic 

drugs [267, 364], presumably by inducing a hypoxia-driven EMT. In contrast and consistent 

with our findings, a recent report shows that nintedanib not only repressed primary tumor 

growth of xenotransplantated NSCLC and exocrine pancreas carcinoma by reducing vessel 

density, maturation and perfusion but also repressed metastatic dissemination [111]. 

Moreover, others have observed increased tumor aggressiveness only with drugs that in 

addition to the VEGF-A/VEGFR-2 axis also targeted perivascular cells, such as sunitinib 

[365]. To contribute to this important discussion, we not only analyzed potential changes in 

invasiveness induced by the broad spectrum TKI nintedanib and sunitinib, but also when 

angiogenesis was inhibited by mainly targeting VEGFRs and PDGFRs with PTK/ZK. In our 

Rip1Tag2 mice, nintedanib, sunitinib and PTK/ZK did not substantially increase local 

invasiveness, which stands in contrast to what has been reported by others [267, 270, 363-

366]. Supporting our findings is the fact that in cancer patients solid data is lacking that 

shows an increased invasiveness and metastasis induced by anti-angiogenic therapies, 

possibly with the exception of glioblastoma multiforme [390]. In addition, it has been shown 

that sunitinib treatment of metastatic renal cell carcinoma did not adversely alter the patients’ 

clinical outcome [379]. An alternative explanation for this apparent discrepancy has been 

discussed previously [365]: Rip1Tag2 mice have been bred in isolation between different 

laboratories for approximately two decades which may have led to genetic drifts resulting in 

altered susceptibilities to the induction of tumor invasion by anti-angiogenic therapies. The 

delineation of the mechanisms driving this discrepancy will be part of exciting future research 

which may lead to the discovery of novel factors and pathways determining the susceptibility 
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to cancer metastasis, induced by changes in the tumor microenvironment. 

 

In summary, our preclinical data together with the previous reports of successful 

clinical applications in patients strongly encourage the evaluation of nintedanib treatment as 

a novel therapeutic strategy in PNET patients with advanced disease. 

 

3.2.6 Materials and Methods 

Mice 

 The generation and characterization of Rip1Tag2 transgenic mice has been reported 

elsewhere (16). Mice were kept in a C57Bl/6 genetic background. Starting from week 9 of 

age, mice were fed with food pellets supplemented with 60% glucose (Provimi Kliba AG) to 

counteract detrimental hypoglycemia caused by excessive insulin production. All animal 

experiments were performed according to the guidelines and legislation of the Swiss Federal 

Veterinary Office (SFVO) and the Cantonal Veterinary Office, Basel-Stadt, Switzerland, 

under licence Nrs. 1878 and 1908. 

 

Therapy studies 

 Both female and male Rip1Tag2 transgenic mice were treated as indicated in the 

respective figure legends, starting from 9-10 weeks of age (early stage disease) or from 11 

weeks of age (late stage disease). PTK/ZK222584 (PTK/ZK; provided by Novartis Pharma) 

was dissolved in polyethylene glycol 300 (PEG300, Sigma) and administered daily by oral 

gavage at 100mg/kg body weight. Nintedanib (provided by Boehringer Ingelheim) was 

dissolved in Hydroxyethylcellulose Natrosol 0.5% (vehicle treatment; Boehringer Ingelheim) 

and administered daily by oral gavage at 50mg/kg body weight. Sunitinib L-malate (LC 

Laboratories) was formulated in carboxymethylcellulose vehicle as described elsewhere 

(control treatment; ref [267]) and administered daily by oral gavage at 40mg/kg body weight. 

Total tumor volume per mouse was extrapolated by measuring the diameter (d) of single 

macroscopic tumors, employing the formula Volume = 4/3*π*(d/2)3 and summing up the 

volumes of individual tumors per mouse. In the survival study, mice were euthanized by 

CO2-suffocation prior to death due to hypoglycemia, according to defined termination criteria. 

The termination criteria were based on an activity score (normal activity = score 0; 

wiggling/reduced activity = 2; still/hunchback/poor general condition = 3) and blood glucose 

levels (>2.1 mmol/l = score 0; 1.1-2.0 mmol/l = 1; 0.7-1.0 mmol/l = 2; <0.7 mmol/l = 3) 

measured using the blood glucose meter Contour® Next (Bayer). Mice were euthanized 

when reaching a total score of 4 or if presenting with score 3 in one of the two criteria. 
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Hypoxia and vessel functionality 

 To detect hypoxic tumor areas, pimonidazole HCl (Hypoxyprobe Omni Kits, 

Hypoxyprobe, Inc.) at 60mg/kg was injected intraperitoneally 2 hours prior to euthanizing the 

animals. Reduced pimonidazole in hypoxic tumor regions was visualized by 

immunofluorescence staining with a rabbit anti-pimonidazole antisera (Hypoxyprobe Omni 

Kits, Hypoxyprobe, Inc.). Leaky blood vessels were detected by injecting 250µg fluorescein 

labeled dextran (70kDa; Life technologies, D-1822) in 200µl PBS intravenously via the tail 

vein. After a circulation time of 5 minutes, terminally anaesthetized mice were first perfused 

via the left cardiac ventricle with phosphate-buffered saline (PBS) and subsequently with 

PBS/ 4% paraformaldehyde (PFA). For the detection of patent blood vessels, 100µg of 

fluorescein labeled lycopersicon esculentum (tomato) lectin (Vector Laboratories, GL-1171) 

was injected in 100µl PBS intravenously via the tail vein. After a circulation time of 4 minutes, 

terminally anaesthesized animals were perfused with PBS/4% PFA followed by PBS via the 

left cardiac ventricle. 

 

Tissue preparation for histology 

 For Hematoxilin & Eosin (H&E), immunohistochemistry (IHC) and immunofluorescence 

(IF) staining, organs (pancreas and liver) were isolated, fixed overnight in PBS/4% PFA at 

4°C, dehydrated with ethanol/xylene and subsequently embedded in paraffin. For IF 

stainings, pancreata were fixed during 2 hours in PBS/4%PFA and cryopreserved in 

PBS/20% sucrose overnight, both at 4°C. Pancreata were embedded, snap frozen in OCT 

freezing solution (Thermo Scientific) and stored at -80°C. Macroscopic images of whole 

dissected pancreata were acquired using a Nikon D5000 camera with AF-S Micro Nikkor 

105mm f/2.8D lens. 

 

Immunohistochemistry and metastasis analysis 

 For the detection of liver and lymph node metastases, 5µm thick PFA-fixed paraffin-

embedded liver and pancreas sections were deparaffinized and antigen-retrieval was 

performed in a pressure cooker (PrestigeMedical) in 10mM Na-Citrate buffer (pH 6.0). IHC 

stainings were conducted using Dako EnVision plus kit (Dako) according to the 

manufacturer’s advices. Metastatic tumor cells were indentified by staining with an antibody 

against SV40 Large T antigen (rabbit polyclonal IgG, Santa Cruz, sc-20800, 1:50 dilution) 

and were counterstained with hematoxylin before mounting with Cytoseal™ XYL (Thermo 

scientific). 9 serial liver sections per mouse were analyzed with each section 75µm apart. 

The whole liver was embedded to ensure a comprehensive analysis of all liver lobes. 

Intravascular metastases were excluded. Clearly SV40 Large T antigen positive parenchymal 
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single cells were included in the analysis. For the detection of pancreatic lymph node 

metastases, 1 section per lymph node was analyzed.  

 

 Double-strand DNA breaks associated with apoptotic and non-apoptotic cell death 

were visualized using a TUNEL assay (In Situ Cell Death Detection Kit, POD; Roche) 

according to the manufacturer`s recommendations, using Proteinase K pretreatment. The 

staining was developed with 3-amino-9-ethylcarbazole (AEC, Vector Labs) and briefly 

counterstained with hematoxylin. Light microscopy images were obtained with an AxioVert 

microscope (Leica Microsystems) or with a Zeiss Axio Observer (Zeiss). 

 

Immunofluorescence 

 8µm thick cryosections were dried for 30 minutes at room temperature (RT), 5 minutes 

rehydrated in PBS, permeabilized in PBS/0.1% Triton X-100 during 20 minutes and blocked 

with PBS/5% normal goat serum (NGS; Sigma). As an exception, cCasp3 stainings were 

blocked with PBS/20%NGS. All primary antibodies were diluted in PBS/5%NGS. The 

following antibodies and dilutions were used: rat anti-CD31 (BD Pharmingen, 550274, 1:50), 

rabbit anti-NG2 (Chemicon, AB5320, 1:100), guinea-pig anti-insulin (Dako, A0564, 1:200), 

rabbit anti-α-amylase (Sigma, A8273, 1:100), rabbit anti-cCasp3 (Cell Signaling, 9664, 1:50), 

rabbit anti-pH3 (Millipore, 06-570, 1:200), rabbit anti-LYVE-1 (RELIATech, 103-

PA50S/0412P02-2, 1:200). Positive staining was visualized by incubating the specimen 

during 1 hour with secondary antibodies against the respective species of the corresponding 

first antibody, labeled with either Alexa488, Alexa568 or Alexa633 (Molecular probes; 1:200 

in PBS/5%NGS). Nuclei were stained with DAPI (Sigma) and slides were mounted with Dako 

mounting medium (Dako). Fluorescence images were acquired with a Leica DMI 4000 or a 

Nikon Diaphot 300 microscope. 

 

 In Figure S4A, IF staining against CD31 was performed on 5µm thick PFA-fixed 

paraffin-embedded pancreata (PFFPE). The tissue was deparaffinized, rehydrated in PBS 

and antigen retrieval was performed with PBS/0.1% proteinase K (Fluka) for 20 minutes at 

37°C. Endogenous peroxidase was quenched with 3% H2O2, washed in PBS and blocked 

with PBS/5% NGS for 30 minutes at RT. Primary antibody incubation (rat anti-CD31; 

Bachem, T-2001, 1:50) and the subsequent staining procedure was performed as described 

for immunofluorescence staining. 

 

Histopathological grading 

 H&E stainings of 5µm thick, PFFPE pancreas sections was performed as described	
[391]. Histopathologic analysis, i.e. grading, was conducted on H&E stained paraffin sections 
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in a blinded manner. Grading was performed as previously described [388]. In brief, tumors 

were categorized into either non-invasive insulinoma with smooth tumor borders (adenoma), 

into tumors with no more than 1-2 microinvasions (IC1), or into macro-invasive carcinomas 

(IC2) including rare anaplastic carcinomas (Figure S1A). All tumors per experimental group 

were pooled and percentages of the respective grade are indicated. 

 

 2 x 104 primary insulinoma tumor cells/well were seeded in a 96-well plate 3 days (day 

-3) prior to the addition of nintedanib dissolved in DMSO at different concentrations (day 0). 

At day +2, nintedanib and medium was replaced. At day +4, cells were fixed with 4% 

PFA/PBS, blocked and permeabilized with 0.1% BSA and 0.1% Triton X-100/PBS. In order 

to identify intact cells, nuclei and the microtubule cytoskeleton were stained with Hoechst and 

a rat anti- tubulin (YL1/2) antibody (Santa Cruz, sc-53029, 1:1000) respectively, followed by 

the incubation with an anti-rabbit Alexa488 labeled secondary antibody (Molecular Probes; 

1:400). Images were acquired employing an Operetta High Content Imaging System 

(PerkinElmer; Objective 20xWD; non-confocal acquisition). 

 

Statistical methods 

 Data were analyzed and graphs were generated with GraphPad Prism 6 (GraphPad 

Prism Software Inc.) or R version 2.15.1 (The R Project for Statistical Computing). 
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3.2.7 Supplementary data 
 

Figure S1. Nintedanib increases tumor cell apoptosis yet does not affect tumor cell proliferation. 
(A) Representative microphotographs of hematoxylin and eosin stained sections of the various stages of tumor 
progression in Rip1Tag2 transgenic mice. Shown are sections of non-invasive adenoma with smooth tumor 
borders (Adenoma), microinvasive carcinoma with 1-2 invasive protrusions into the surrounding exocrine 
pancreas (dashed line) (IC1), and macro-invasive (dashed line; i) and anaplastic carcinoma (ii) (IC2). Scale bar, 
100µm. (B) The number of cells with double-strand DNA breaks indicating apoptotic and non-apoptotic cell death 
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was analyzed by Tunel assay. Representative microphotographs are shown, and the number of Tunel-positive 
cells per area and field of view was determined as mean ± SEM. N=2 mice per group. Scale bar, 50µm. *, P < 
0.05. (C) The number of dividing cells was determined by immunofluorescence staining of pH3. Representative 
microphotographs are shown, and pH3-positive cells per area and field of view were counted and displayed in a 
bar graph as mean ± SEM. Vehicle: n=4 mice, nintedanib: n=7 mice. Scale bar, 100µm. Statistical analysis was 
performed employing an unpaired Student t test (B, C). (D) Primary insulinoma tumor cells were treated for 4 
days with nintedanib in vitro. The number of intact cells/well was determined and displayed per nintedanib 
concentrations. 3 independent experiments in triplicates were performed and shown as mean ±SEM for each 
nintedanib concentration. Graphical representation was achieved calculating a non-linear regression of the 
normalized response allowing a variable slope over the logarithmic inhibitor concentration. IC50 = 1.891 x 10-6 M. 
 

 

 

 
 

 

 
 

 

 
 

 

Figure S2. Blood vessels resisting nintedanib-treatment display a mature phenotype and retain their 
function.  
(A, B) Quantification and analysis of the relative localization of NG2+ perivascular cells to CD31+ blood vessels 
revealed in nintedanib-treated tumors a reduction of total NG2+ perivascular cells per area (A) and an increased 
percentage of NG2+ perivascular cells not associated with blood vessels (B). Values are displayed as counts per 
area of each field of view. Statistical analysis was performed using an unpaired Student t test; ***, P < 0.001. 
Vehicle: n=4 mice, nintedanib: n=7 mice.  
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Figure S3. Nintedanib induces hypoxia in a proportion of tumors.  
(A) Representative immunofluorescence images of pimonidazole-positive area fractions of tumors representing 
tissue hypoxia. Scale bar, 100µm. (B, C) Quantification of the percentages of tumors with any signs of hypoxia 
compared to the total number of tumors per experimental group (B) and of the pimonidazole-positive (red) tumor 
area fractions of hypoxic tumors (C). Cell nuclei are visualized by DAPI staining (blue). Data are displayed as 
mean ± SEM. Vehicle: n=6 mice, nintedanib: n=7 mice. P-values were calculated using a Fisher’s exact (B) and 
an unpaired Student t test (C); *, P < 0.05. (D) A representative immunofluorescence image of a pimonidazole-
positive hypoxic area close to the non-invasive tumor border (dashed line) is shown. Scale bar, 100µm.  
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Figure S4. Nintedanib, PTK/ZK and sunitinib treatment reduce MVD and tumor volume and do not induce 
tumor invasiveness. 
(A, B) A 5-day nintedanib PTK/ZK or sunitinib-treatment was initiated in 9 weeks old Rip1Tag2 mice, and blood 
microvessel density, as determined by CD31 immunofluorescence staining per field of view (A), and tumor 
volumes (B) were quantified. N=5 mice per group. P-values were calculated employing an unpaired Student t test 
(A) and a Mann-Whitney U test (B) respectively; ***, P < 0.001. (C) Grading of tumor stages in Rip1Tag2 mice 
treated for 5 days with nintedanib, PTK/ZK, sunitinib or vehicle control initiated at 9 weeks of age (as described in 
panels B, C). N=5 mice per group. Fisher`s exact test; *, P < 0.05.  
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Figure S6. Nintedanib and sunitinib treatment reduce MVD and tumor volumes. 
(A - D) Rip1Tag2 mice were treated with nintedanib for 5 days starting at the age of 11 weeks (A, B) or with 
sunitinib for 3 weeks starting at the age of 9 weeks (C, D). Tumor microvessel density was determined by CD31 
immunofluorescence staining per field of view (A, C), and tumor volumes (B, D) were quantified. N=10 mice per 
group for (A). (B) pooled data of 5 independent experiments are displayed; vehicle: n=28 mice, nintedanib: n=30 
mice. (C, D) control: n=10 mice, sunitinib: n=11 mice. P-values were calculated by unpaired Student t test (A, C) 
or Mann-Whitney U test (B, D). *, P < 0.05; ***, P < 0.001. 
 

	

Figure S5. Prolonging survival by nintedanib does 
not increase liver metastasis. 
Mice were treated with nintedanib or vehicle control 
open end and euthanized before they succumbed to 
hypoglycemia or other tumor-related complications 
(survival trial). Livers were screened for metastasis by 
immunohistochemical staining for SV40 Large-T 
antigen. Nine sections per liver were analyzed. 
Vehicle: n=9 mice, nintedanib: n=8 mice. Statistical 
analysis was performed employing a Mann-Whitney U 
test.  
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Figure S7. PTK/ZK treatment reduces MVD and tumor volume. 
(A – D) 9 weeks old Rip1Tag2 mice were treated with PTK/ZK for 3-6 weeks (A, B) or for 5 days starting at the 
age of 11 weeks (C, D). Tumor microvessel densities were determined by CD31 immunofluorescence staining per 
area of each field of view and displayed as mean  ± SEM (A, C). Tumor volumes are represented in (B) and (D), 
respectively. (A, B) PEG: N=4 mice, PTK/ZK: N=3-5 mice per group. (C) one representative experiment is shown. 
(D) 3 independent experiments were pooled; PEG: N=10 mice, PTK/ZK: N=9 mice. Statistical analysis was 
performed using an unpaired Student t test (A, C) or Mann-Whitney U test (B, D). ***, P < 0.001. 
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3.3.1 Summary  

Despite the approval of several anti-angiogenic therapies, clinical results remain 

unsatisfactory, and transient benefits are followed by rapid tumor recurrence. Here, we 

demonstrate potent anti-angiogenic efficacy of the multi-kinase inhibitor nintedanib in a 

mouse model of breast cancer. However, after an initial regression, tumors resume growth in 

the absence of active tumor angiogenesis. Gene expression profiling of tumor cells reveals a 

metabolic reprogramming towards anaerobic glycolysis. Indeed, combinatorial treatment with 

a glycolysis inhibitor (3PO) or an mTOR inhibitor (rapamycin) efficiently inhibits tumor growth. 

Moreover, tumors establish metabolic symbiosis, illustrated by the differential expression of 

MCT1 and MCT4, monocarboxylate transporters active in lactate exchange in glycolytic 

tumors. Accordingly, ablation of MCT4 expression surmounts the adaptive resistance to anti-

angiogenic therapy. 

 

3.3.2 Significance 

Anti-angiogenic therapy has shown only limited success in breast cancer patients. 

Here we show that the inhibition of glycolysis or the ablation of MCT4, a lactate/H+ symporter 

associated with poor prognosis in triple-negative breast cancer patients, overcomes 

resistance to anti-angiogenic therapy in a mouse model of breast cancer. Hence, targeting 

metabolic symbiosis may be an attractive avenue to avoid resistance development to anti-

angiogenic therapy in patients. 

 

3.3.3 Introduction 

An imbalance between pro and anti-angiogenic factors inducing the formation of new 

blood vessels from a preexisting vasculature (angiogenesis) has been described as a 

hallmark of cancer [392]. It has been proposed that targeting angiogenesis might plausibly 

reduce intra-tumoral levels of oxygen and nutrients, resulting in tumor starvation and thus in 

reduced tumor growth [167], and anti-angiogenic therapies were rapidly translated with great 

expectations from preclinical cancer models to clinical practice [146, 393, 394]. For example, 

the discovery of VEGF-A and its receptors and their identification as a rate-limiting factors for 

normal and pathological angiogenesis has led to the development of bevacizumab (Avastin®), 

a humanized monoclonal antibody targeting VEGF-A [389, 393]. While some cancer types, 

such as colorectal [242], renal cell [63] and PNETs [64], have shown encouraging responses 

to this therapeutic strategy, numerous other cancer types, in particular breast cancer, seem 

to be poorly responsive to anti-angiogenic regimens. Indeed, metastatic breast cancer 

patients treated with standard chemotherapy plus bevacizumab have only benefited from 1-2 
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months of PFS, and the rapid onset of resistance evidently prevented any OS benefit [286, 

395, 396].  

 

These data underline the importance of deciphering the molecular mechanisms 

underlying intrinsic or adaptive resistance to anti-angiogenic therapy. When blocking the 

VEGF-A signaling axis in preclinical models, e.g. with bevacizumab, tumors escape by 

activating alternative pro-angiogenic signaling pathways including FGFs, PDGFs, 

Bv8/prokineticin, and IL-17 [162, 270, 333, 334, 351]. In order to counteract the activation of 

these alternative pro-angiogenic pathways, several multikinase inhibitors and other anti-

angiogenic drugs, targeting VEGF-dependent and independent pro-angiogenic signaling 

pathways, are currently in clinical use or in clinical trials. For example, sorafenib, a 

multikinase inhibitor targeting RAF, VEGFRs 1-3, PDGFRα and β, c-KIT and FLT-3, is 

currently used for the treatment of hepatocellular carcinoma, and sunitinib, blocking VEGFR 

1-3, PDGFRα/β, c-KIT and FLT-3, is employed for the treatment of renal cancer. Both 

therapies show significant anti-tumor efficacy in preclinical tumor models and in cancer 

patients; however, they also suffer from resistance development based on thus far unknown 

mechanisms [64, 267]. Transient benefits are rapidly followed by tumor recurrence, 

sometimes associated with drug resistance and heightened tumor invasiveness [243, 267, 

297, 298, 333].  

 

Nintedanib (formerly known as BIBF-1120) is an even wider-spectrum angiokinase 

inhibitor targeting VEGFR 1-3, PDGFα/β, and FGFRs (FGFR) 1-4, as well as FLT-3 and 

SRC family kinases [70]. Nintedanib has recently shown promising results in pre-clinical 

models of lung cancer, ductal adenocarcinoma of the pancreas and PNET [111, 397]. 

Furthermore, nintedanib has demonstrated excellent tolerance and potent activity in a phase 

I clinical trial in early HER2-negative breast cancer [120] and in a phase III study in 

combination with chemotherapy in NSCLC [71].  

 

We have therefore assessed the effects of nintedenab in mouse models of cancer. 

We report that tumors treated with nintedanib or sunitinib do not revascularize during the 

development of therapy resistance. Instead, the cells located in avascular areas escape the 

lack of oxygen by shifting their metabolism towards a hyperglycolytic state and by producing 

lactate, while the cells localized in the vicinity of blood vessels utilize the lactate for oxidative 

phosphorylation. The data establish metabolic symbiosis [398, 399] as an alternative route to 

develop resistance to anti-angiogenic therapy in mouse models of breast cancer and of 

insulinoma. Notably, interference with glycolysis or disruption of metabolic symbiosis 

reinstalls nintedanib’s efficacy in repressing tumor growth. 
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3.3.4 Results 

3.3.4.1 Py2T tumors develop evasive resistance to anti-angiogenic therapy 

Nintedanib is a potent angiogenesis inhibitor that represses endothelial cell 

proliferation and induces their apoptosis (EC50 < 10nM). However, its direct effect on tumor 

cells is rather limited [70]. A stable murine breast cancer cell line (Py2T) established from a 

breast tumor of an MMTV-PyMT transgenic mouse [400] displayed an EC50 of 8µM in vitro 

which is above the pharmacologically achievable concentration in mice [70, 103] (Figure 

S1A). To study the tumor suppressive efficacy of nintedanib in vivo, Py2T cells were 

orthotopically implanted into the mammary fat pad of immune-competent syngeneic FVB/N 

female mice. When the tumors reached a volume of 15-20 mm3, a tumor size where the 

angiogenic switch had already taken place (Figure S1B), daily treatment with nintedanib was 

initiated (50 mg/kg, p.o.). During the first week of treatment (short term treatment; ST), tumor 

volumes as well as tumor weights in nintedanib-treated animals were significantly reduced 

(Figure 1A, B). This nintedanib-responsive phase was associated with decreased cell 

proliferation and increased apoptosis (Figure 1C-F). However, beyond one week of treatment 

tumors escaped this therapeutic effect and showed an enhanced tumor growth with 

increased cell proliferation and reduced apoptosis, as observed after three weeks of 

treatment (long term treatment; LT) (Figure 1A, C-F). Together, the data indicate that Py2T 

breast cancer cells can escape nintedanib treatment despite its broad range of inhibitory 

activities. 

 

3.3.4.2 Evasive resistance is not associated with tumor revascularization 

Resistance to anti-angiogenic therapy has been reported to be associated with tumor 

revascularization. For example, VEGF inhibition leads to the activation of alternative pro-

angiogenic signaling pathways, such as the FGF/FGFR axis [270]. Because nintedanib 

inhibits the major pro-angiogenic pathways, we investigated whether angiogenesis had been 

reactivated in Py2T tumors, thereby escaping nintedanib treatment. Intriguingly, we did not 

observe any revascularization in the nintedanib-refractory tumors: microvessel density was 

found decreased both after ST and LT nintedanib regimen, indicating a potent and stable 

anti-angiogenic effect of nintedanib, even in a phase of drug-refractory exponential tumor 

growth (Figure 1A, 2A-C). Immunofluorescence co-staining for CD31 and cCasp3 revealed 

increased apoptosis in endothelial cells after ST and LT nintedanib treatment, demonstrating 

the sustained anti-angiogenic efficacy of nintedanib even after LT treatment (Figure 2D and 

Figure S2A).  
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Next, we asked whether the tumor growth response pattern and sustained 

suppression of angiogenesis were nintedanib-specific or rather reflected a common 

denominator of broad-spectrum anti-angiogenic TKI. To this end, we performed a head-to-

head comparison between nintedanib and sunitinib in the Py2T cell transplantation breast 

cancer model. Nintedanib and sunitinib-treated Py2T tumors displayed comparable tumor 

weights at the experimental endpoint as well as similar reductions in microvessel density 

after LT treatment (Figure S2B-D).  
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Figure 1. Evasive resistance to anti-angiogenic therapy with nintedanib in the Py2T transplantation 
mouse model of breast cancer. 
Py2T cells were implanted into the mammary fat pad of FVB/N mice, and treated with nintedanib (50mg/kg daily 
p.o.) or vehicle control from day 14 after tumor cell injection, when tumors were first palpable. (A) Primary tumor 
growth was monitored by assessing tumor volumes over the time of therapy. Values represent mean ± SEM. 
N=13 mice per group. (B) Tumor weights were determined after 7 days of nintedanib short-term (ST) treatment. 
N=6-8 mice per group. (C-F) Cell proliferation (C, D) and the incidence of apoptosis (E, F) were quantified by 
immunofluorescence staining for pH3 (red) and cCasp3 (red), respectively, of tumor sections from short-term (ST) 
and long-term (LT) vehicle or nintedanib-treated mice. Representative immunofluorescence microscopy pictures 
are shown in D and F. DAPI is used to visualize cell nuclei. Values represent the number of pH3 positive (C) and 
cCasp3 positive (E) cells per area of each microscopic field of view. N=5-8 mice per group. Statistical significance 
was calculated using Mann–Whitney U test. *, P < 0.05; ***, P < 0.001; ****, P < 0.0001. Scale bars, 50µm. 
 

We next assessed whether Py2T tumors compensate for the lack of blood vessels 

with increased pericyte coverage. Pericytes promote the maturation and stabilization of blood 

vessels through PDGFR signaling and thus influence the responsiveness to anti-angiogenic 

therapy [401]. Interestingly, despite its inhibitory activity on PDGFR signaling, nintedanib did 

not affect pericyte coverage of blood vessels resisting nintedanib treatment (Figure 2E and 

Figure S2E). However, the remaining blood vessels showed a significant reduction in their 

perfusion, as highlighted by the injection of fluorescence-labeled lectin (Figure 2F and Figure 

S2F). Consistent with decreased tumor perfusion, pimonidazole staining revealed a 

significant increase in tumor hypoxia not only in the ST-treated, nintedanib-responsive 

tumors but also in the LT-treated, nintedanib-resistant tumors (Figure 2G, H). These data 

demonstrate a potent anti-angiogenic activity of nintedanib and suggest a new mechanism of 

therapy resistance by which tumors escape anti-angiogenic therapy in the absence of any 

revascularization.  

 

3.3.4.3 Tumor cells become hyperglycolytic to survive hypoxia 

To investigate the molecular mechanisms underlying the resistance against 

nintedanib treatment, we isolated by flow cytometry endothelial and tumor cells from 

nintedanib-treated and untreated tumors at different time points of resistance development. 

To facilitate the isolation of tumor cells, Py2T cells were transduced with a retroviral construct 

expressing a truncated, non-functional form of murine CD8α [402]. A CD45-CD8α+ 

population could only be identified in Py2T-CD8α+ tumors and not in wild-type Py2T tumors 

(Figure S3A). After ST (1 week) and LT (3 weeks) treatment with nintedanib, CD45-CD8α+ 

tumor cells and CD45-CD8α-CD31+podoplanin- endothelial cells were sorted by flow 

cytometry (Figure S3B-D), and changes in gene expression were assessed by DNA 

oligonucleotide microarray analysis. Surprisingly, endothelial cell gene expression profiles 

between ST and LT nintedanib-treated tumors did not markedly differ, mainly reflecting 

endothelial cells undergoing apoptosis (data not shown).  
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In contrast, the gene expression analysis of isolated tumor cells revealed a marked 

difference between untreated and treated groups. Due to the small sample size in the 

treatment groups, no significant differences were found using the standard p-value cutoff < 

0.05 and fold change (FC) cutoff > 1.5. We therefore performed a less stringent set of 

analysis using no p-value cutoff combined with a range of FC cutoff values (FC = 1.2 to 1.7).  
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Figure 2. Tumor revascularization is not responsible for the resistance against nintedanib therapy in Py2T 
tumors. 
(A-C) Microvessel densities (A) and CD31-positive area fractions (B) were quantified in Py2T tumors from mice 
treated for 1 week (ST) or 3 weeks (LT) with vehicle or nintedanib. Representative images of 
immunofluoresecence stainings of tumor sections from ST and LT vehicle or nintedanib-treated mice with 
antibodies against CD31 are shown (C; green). DAPI was used to visualize cell nuclei. Scale bars, 50µm. (D) 
Quantification of endothelial cell apoptosis by immunofluorescence co-staining for cCasp3 and CD31 in tumors 
from ST and LT vehicle or nintedanib-treated mice. (E) Quantification of the percentage of CD31-positive blood 
vessels that were in contact with NG2-positive perivascular cells in Py2T tumors from ST and LT vehicle or 
nintedanib-treated mice. (F) The functionality of blood vessels was assessed by i.v. injection of FITC-Lectin into 
Py2T tumor-bearing mice following ST or LT vehicle or nintedanib-treatment. Patent, perfused blood vessels were 
identified by immunofluorescence staining for CD31 and detection of FITC-Lectin and quantified by counting of 
CD31 and lectin double-positive blood vessels. (G) Hypoxic areas were identified and quantified by 
immunofluorescence staining for pimonidazole adducts in Py2T tumors from ST and LT vehicle or nintedanib-
treated mice. (H) Representative pictures of the immunofluorescence co-staining for pimonidazole adducts (red) 
and CD31 (green) on histological sections of tumors from ST and LT vehicle or nintedanib-treated mice. DAPI 
staining visualizes cell nuclei. Scale bars, 100µm. Each dot represents the number of counts per area of 
microscopic field of view, and means are displayed. N = 6-8 mice per group. Statistical significance was 
calculated using Mann–Whitney U test. **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.  
 

The genes resulting from the comparison between LT nintedanib-treated and untreated 

tumor cells were subjected to KEGG-pathway analysis which showed an enrichment of 

metabolic pathways (Figure 3A and S3E), in particular glycolysis. Gene Set Enrichment 

Analysis (GSEA) [403] also showed an enrichment of glycolysis gene expression, especially 

when comparing the gene expression profiles of LT vs. untreated tumor cells, yet also when 

comparing ST vs. untreated tumor cells (Figure 3B). Glycolysis gene-enrichment also 

became evident when the gene expression profiles associated with a core set of glycolytic 

enzymes were visualized using a heat map. Indeed, hierarchical clustering almost perfectly 

clustered the three different treatment conditions (Figure 3C), and the mean expression of a 

core set of glycolytic enzymes was significantly upregulated between both LT and ST vs. 

untreated tumor cells (Figure 3D). The nearly significant difference between the ST and LT 

treatment groups, suggested that the increase in the expression of glycolytic enzymes was a 

gradual process already starting a few days after treatment initiation. Indeed, quantitative 

RT-PCR analysis confirmed the upregulated expression of most of the glycolytic enzymes 

assessed upon both ST and LT nintedanib treatment (Figure 3E, F). We suspect that the 

“nearly significant differences” observed in gene expression of tumor cells isolated from total 

tumors may be explained by heterogeneity in tumor cell phenotypes. 
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Figure 3. Py2T tumor cells become hyperglycolytic during nintedanib treatment. 
(A) Differential gene expression between flow cytometry-isolated LT nintedanib and vehicle-treated tumor cells 
was assessed using no p-value cutoff combined with a range of fold change cutoff values from 1.2-1.7. The 
resulting list of differentially expressed genes was subjected to KEGG pathway analysis. KEGG pathways 
appearing >2 are listed. (B) Gene set enrichment analysis (GSEA) between gene expression profiles of either ST 
or LT nintedanib and vehicle-treated tumor cells and a set of KEGG defined genes related to 
glycolysis/gluconeogenesis are shown. Shown are the normalized enrichment score (NES) and the FDR q-value. 
(C, D) A set of core glycolysis enzymes was used to perform hierarchical clustering (C) of gene expression 
profiles derived from LT and ST nintedanib and vehicle-treated controls and their median absolute expression 
values (log2) per experimental group (D) are shown. (E, F) Expression of different glycolysis-related transcripts in 
ST (E) and LT (F) nintedanib-treated tumors analyzed by quantitative RT-PCR. Data are normalized to vehicle-
treated tumors. Shown are mean ± SEM. N = 4 mice per group. Statistical significance was calculated using 
Mann–Whitney U test. n. s.: non significant; *, P < 0.05; **, P < 0.01. (G) Expression of different glycolysis genes 
in Py2T cells cultured in hypoxic conditions analyzed by quantitative RT-PCR. Data are normalized to cells 
cultured in normoxic conditions. Shown are means ± SEM. N = 4. Statistical significance was calculated using 
Student t test. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. (H) Representative microphotographs of 
immunofluorescence co-stainings for pimonidazole and Glut1 on histological sections of tumors from ST and LT 
vehicle or nintedanib-treated mice. DAPI is used to visualize cell nuclei. Scale bar, 100µm.  

 

Because nintedanib-treated tumors exhibited enhanced hypoxia compared to size-

matched vehicle-treated tumors (Figure 2G, H), we hypothesized that hypoxia could be a 

determinant of tumor cell heterogeneity and a direct inducer of the glycolytic shift. As 

expected, when compared with normoxic cultures, Py2T cells cultured for 3 days in hypoxic 

conditions (1% O2) exhibited a significantly increased expression of the ten glycolysis-related 

transcripts analyzed (Figure 3G). Consistent with this result, immunofluorescence 

microscopy analysis revealed an increased expression of the hypoxia-regulated glucose 

transporter Glut1 in the hypoxic areas of LT nintedanib-treated tumors (Figure 3H). 

  

Together, the data suggest a metabolic adaptation to anti-angiogenic therapy, in 

which hypoxic tumor cells shift to a hyperglycolytic state to survive and proliferate with 

reduced oxygen and nutrient supply.  

 

3.3.4.4 Glycolysis inhibition overcomes resistance to anti-angiogenic therapy 

Since nintedanib treatment promotes a metabolic shift towards glycolysis, we tested whether 

glycolysis inhibition might overcome the observed resistance to this anti-angiogenic therapy. 

mTOR, among many other cell growth-promoting functions, is a well-known inducer of 

glycolysis [404], and a previous study reported that the combination treatment of 

bevacizumab and BEZ235, a mTOR inhibitor, led to significant efficacy in a breast cancer 

model [405]. We here investigated the effect of the mTOR inhibitor rapamycin in combination 

with nintedanib. Indeed, rapamycin significantly delayed tumor growth by itself, yet showed 

an additive effect when used in combination with nintedanib (Figure S4A, B).  

 

The small molecule 3PO inhibits the glycolytic activator PFKFB3 in endothelial cells 

[236]. Its combined activity as a glycolysis and endothelial cell inhibitor made it a prime 
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compound to overcome glycolysis-induced resistance to anti-angiogenic therapy [237]. While 

single treatment with nintedanib significantly repressed tumor growth in Py2T-transplanted 

mice, single treatment with 3PO only marginally delayed it (Figure 4A, B). Notably, the 

combined treatment with nintedanib and 3PO showed an additive effect on tumor growth 

inhibition. Importantly, the additive effect achieved by combining nintedanib with 3PO was 

not mediated by an additive anti-angiogenic effect, since the microvessel densities between 

the nintedanib single and the nintedanib plus 3PO combination treatment were not 

significantly altered (Figure 4C). Collectively, these results suggest that the inhibition of 

glycolysis is one avenue of overcoming resistance to anti-angiogenic therapy with 

multikinase inhibitors. 

 

3.3.4.5 Targeting metabolic symbiosis delays resistance development 

Considering the highly glycolytic phenotype of nintedanib-treated tumor cells, we 

further analyzed lactate production in Py2T tumors. Unexpectedly, total lactate production 

was not increased in nintedanib-treated tumors compared to vehicle-treated tumors (Figure 

S5A). This observation may be explained by a fast metabolic utilization of lactate. The 

alternation between highly hypoxic, glycolytic areas and normoxic areas in the nintedanib-

treated tumors (Figure 3H), together with comparable levels of lactate between nintedanib 

and vehicle-treated tumors, suggests the establishment of lactate-based metabolic symbiosis 

[400]. In such symbiosis, hypoxic glycolytic cells use glucose to produce high levels of lactate 

that is rapidly exported through monocarboxylate transporter 4 (MCT4), mainly a lactate 

exporter. Oxidative cells located in perfused areas express MCT1, mainly a lactate importer, 

allowing them to take up lactate and directly fuel their Krebs cycle. Because these cells do 

not rely on glycolysis, glucose can bypass them and diffuse to hypoxic areas, where it is 

taken up by glycolytic cells expressing high levels of hypoxia-induced GLUT1 to produce 

lactate [399]. 
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We assessed the establishment of metabolic symbiosis during the development of 

resistance against nintedanib-mediated anti-angiogenic therapy in the Py2T transplantation 

model of breast cancer. Immunofluorescence staining for MCT1 and MCT4 demonstrated a 

diffuse baseline expression of MCT1 that stayed unchanged during nintedanib treatment, 

whereas MCT4 was highly expressed in non-vascularized areas of LT nintedanib-treated 

tumors and to a lesser extent in ST-treated tumors (Figure 5A and Figure S5B, C). Similar 

results were observed in sunitinib-treated tumors (Figure S5D).  

 

	

Figure 4: Combined treatment with nintedanib 
and 3PO significantly delays Py2T tumor 
growth. 
(A, B) Primary tumor growth over time (A) and 
tumor weights at the experimental end point (B) of 
mice treated with either vehicle or nintedanib (50 
mg/kg/day) in combination with 3PO 
(70mg/kg/day) or solvent are shown. 3PO 
treatment was initiated 8 days after the initiation of 
nintedanib treatment. In (A), data are displayed as 
mean tumor volumes ± SEM.            
(C) Quantification of microvessel densities by 
immunofluorescence staining for CD31 on 
histological tumor sections from long-term 
nintedanib and 3PO-treated mice. Values 
represent the number of counts per each area of 
microscopic field of view and means are 
displayed. N = 6-8 mice per group. Statistical 
significance was calculated using Mann–Whitney 
U test. *, P < 0.05; ***, P < 0.001; ****, P < 0.0001. 
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To determine whether the inhibition of metabolic symbiosis could overcome the 

development of resistance against anti-angiogenic therapy, we generated Py2T cell lines that 

were devoid of MCT4 by the expression of short hairpin RNAs against MCT4 (shMCT4 #1-5). 

Py2T shMct4 cell lines #1, #2, #4 and #5 displayed decreased MCT4 expression (also known 

as Solute carrier 16 a3; Slc16a3), notably when Py2T cells were cultured in hypoxic 

conditions (Figure S5E). shMCT4 #2 and shMCT4 #5 Py2T cell lines were selected for tumor 

transplantation experiments. The loss of MCT4 expression in shMCT4 significantly retarded 

tumor growth as compared to shCtrl cells, even in the absence of any nintedanib treatment 

(Figure 5B). Notably, treatment of shMCT4-transplanted mice with nintedanib led to an 

additive effect in repressing tumor growth kinetics and final tumor weights (Figure 5B and 

5C). However, after this further delay in tumor growth, shMCT4 tumors resumed growth. 

Immunofluorescence staining for CD31 did not reveal any increase in microvessel density in 

nintedanib-treated shMCT4 tumors, excluding an escape route by revascularization  (Figure 

5D). Instead, we observed an increase of MCT4 expression both at the protein and mRNA 

level in nintedanib-treated shMCT4 tumors, suggesting that cells with poor shRNA-mediated 

knockdown efficiency developed a selective growth advantage and elicited tumor recurrence 

(Figure S5F, G).  

 

To assess the generality of our findings, we analyzed microvessel densities and 

MCT4 expression in tumors of Rip1Tag2 transgenic mice that have been treated with 

nintedanib [380]. The Rip1Tag2 transgenic mouse model of pancreatic neuroendocrine 

carcinoma is highly sensitive to anti-angiogenic therapies. It has been instrumental for 

compound testing and their subsequent successful translation to the treatment of patients 

with PNETs [258]. In this experiment, nintedanib treatment was initiated at 10 weeks of age, 

which prolonged median survival from 24 days in control-treated animals to 55 days in 

nintedanib-treated animals. However, similar to the Py2T breast cancer model, Rip1Tag2 

mice also developed resistance to nintedanib therapy and did not display any 

revascularization in therapy-refractory tumors (Figure 5E). MCT4 expression in tumors was 

also only found after prolonged nintedanib treatment (Figure 5F). 
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Figure 5. Targeting metabolic symbiosis in combination with nintedanib treatment significantly delays 
tumor growth. 
(A) Representative pictures of combinatorial immunofluorescence staining for MCT1, MCT4 and CD31 on 
histological sections of tumors from mice treated with either vehicle or nintedanib (50 mg/kg/day) are shown, as 
indicated. DAPI was used to visualize cell nuclei. Scale bars, 100µm. (B, C) Primary tumor growth (B) and 
terminal tumor weights (C) of mice following orthotopic injection of Py2T shCtrl or Py2T shMCT4 #2 and #5 cell 
lines treated with either vehicle or nintedanib (50 mg/kg/day) have been quantified. The time points for animal 
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sacrifice were chosen for all three cell lines individually such that all the tumors of the corresponding vehicle-
treated groups were size matched.  In (B), mean ± SEM is depicted. (D) Quantification of microvessel densities by 
immunofluorescence staining for CD31 on Py2T shMCT4 tumors from LT vehicle or nintedanib-treated mice. N = 
6 mice per group. Statistical significance was calculated using Mann–Whitney U test. ****, P < 0.0001. (E, F) 
Shown are microvessel densities (E) and representative immunofluorescence stainings for MCT4 (F) in tumors of 
Rip1Tag2 transgenic mice treated for 3 weeks (LT) with nintedanib. DAPI was used to visualize cell nuclei. N = 8-
9 mice per group. Scale bars, 200µm. Statistical analysis was performed using unpaired Students t test (E). 
 

Taken together, these data show that anti-angiogenic resistance can occur via the 

establishment of metabolic symbiosis and that interfering with metabolic symbiosis can 

overcome resistance to anti-angiogenic therapy with a multikinase inhibitor. 

 

 

Figure 6. Targeting metabolic symbiosis overcomes resistance to anti-angiogenic therapy.  

Anti-angiogenic therapy induces hypoxia and reduces the supply of nutrients. In order to survive in this harsh 

environment, tumor cells shift their metabolism towards a hyperglycolytic state and establish metabolic symbiosis: 

tumor cells in hypoxic areas upregulate glycolysis, increase lactate production and export lactate via MCT4 to 

maintain their intracellular pH on a constant level. On the other hand, lactate is taken up by tumor cells in more 

oxygenated regions of the tumor and is directly fueling the citric acid cycle and thus oxidative phosphorylation. As 

a consequence, tumor cells in normoxic tumor regions reduce glucose consumption, which increases its diffusion 

distance. Reducing MCT4 expression levels (shMCT4) or inhibition of glycolysis (3PO) or mTOR signaling 

(rapamycin) disrupts this homeostatic interplay and decreases tumor growth. 

 

3.3.5 Discussion 

In this and in the accompanying paper by Hanahan and colleagues (Allen et al., 

submitted), we report the intriguing finding that a glycolytic shift underlies the development of 

resistance to anti-angiogenic therapy involving potent multi-kinase inhibitors. Notably, in 

response to the efficient repression of tumor angiogenesis, tumors compartmentalize into 

hypoxic regions at a distance from blood perfusion and into normoxic regions in the vicinity of 

mature and functional blood vessels. The hypoxic tumor cells exhibit high glucose uptake by 

the elevated expression of GLUT1 and they efficiently generate and export lactate by the 

high expression of the lactate exporter MCT4. Conversely, the normoxic tumor cells take up 

the lactate produced by the hypoxic tumor cells and oxygen from nearby blood vessels and 
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fuel both into oxidative phosphorylation (Figure 6). Such aspect of metabolic intra-tumoral 

heterogeneity is portrayed by the concept of metabolic symbiosis [399].  

 

Here, we have analyzed the efficacy of the angiokinase inhibitors nintedanib and 

sunitinib in a preclinical mouse model of breast cancer and in the Rip1Tag2 transgenic 

mouse model of insulinoma (pancreatic neuroendocrine cancer). Treatment of Py2T tumor-

bearing mice and of Rip1Tag2 mice with the angiogenesis inhibitors has lead to a significant 

therapeutic response, characterized by increased tumor and endothelial cell apoptosis, 

decreased tumor cell proliferation and reduced tumor size. However, despite nintedanib’s 

and sunitinib’s potent anti-angiogenic activities in the experiments reported here, the treated 

tumors rapidly escape the therapy. Evasive resistance to anti-angiogenic therapy has 

previously been reported to rely partially on the redundancy of pro-angiogenic growth factors 

leading to tumor revascularization [333, 334, 351]. Intriguingly, the nintedanib and sunitinib-

resistant tumors do not show any evidence of revascularization. Rather, with the reduction in 

tumor perfusion, hypoxia is increased in resistant tumors, and microarray gene expression 

analysis reveals a metabolic shift to glycolysis in the resistant tumor cells. Indeed, glycolysis 

and glucose transport-related genes are well known targets of hypoxia-induced cellular 

adaptations [406], and glycolysis induction has been recently described in response to 

VEGF-inhibitors [407, 408].  

 

The tumor cells’ shift to glycolysis as a mechanism underlying resistance against anti-

angiogenic therapy offers the opportunity of defeating therapy-resistance by interfering with 

glycolysis. Indeed, in this report and in the accompanying report by Hanahan and colleagues 

(Allen et al., submitted), combination therapy involving angiokinase inhibitors with rapamycin, 

an mTOR inhibitor that represses glycolysis [409], or 3PO, a glycolytic flux inhibitor [236, 

410] surmounts resistance to treatment. However, combination treatment of nintedanib with 

2-deoxyglucose, a competitive inhibitor of the production of glucose-6-phosphate from 

glucose [411], did not delay tumor growth, most likely due the fact that we have been unable 

to supply the very high concentrations of 2-deoxyglucose in tumors that would be 

pharmacologically active (data not shown). Dichloroacetate (DCA), a drug inhibiting pyruvate 

dehydrogenase kinase and thus promoting glucose oxidation over glycolysis by increasing 

the pyruvate flux into mitochondria [412], also has not shown any effect on tumor growth 

(data not shown). Hence, the pharmacological targeting of glycolysis in the context of anti-

angiogenic therapy may be more complex than anticipated.  

 

Along these lines, despite a clear hypoxia-response pattern to nintedanib therapy, 

high-throughput metabolomic analysis has failed to show any significant differences in the 
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central carbon metabolism between nintedanib LT and untreated tumors (data available upon 

request). In addition, surprisingly few metabolites are significantly changed between these 

two experimental conditions when considering the dramatic reduction in microvessel 

densities. Importantly though, the high throughput metabolomic analysis has not given critical 

information about metabolic flux, and flux analysis will be required to delineate the changes 

in metabolic pathways, when tumor cells are confronted with experimentally induced acute or 

chronic hypoxia. Notably, a recent investigation of metabolic changes in tumors after 

cessation of sunitinb or sorafenib therapy has revealed a metabolic shift to lipid synthesis, 

and blockade of lipidogenesis has inhibited tumor regrowth [413]. 

 

Regions with higher oxygen partial pressure metabolize lactate produced in hypoxic 

areas and thus increase the diffusion capacity of oxygen and glucose. Indeed, increased 

expression of MCT4 has been correlated with poor prognosis in melanoma and breast 

cancer [414, 415]. Accordingly, shRNA-mediated ablation of MCT4 expression in Py2T 

tumors treated with nintedanib show significantly delayed tumor growth. The critical function 

of MCT4 in metabolic symbiosis is also illustrated by the fact that a longer period of 

nintedanib treatment of shMCT4 knockdown tumors selected for outgrowth of revertant 

MCT4-expressing Py2T tumor cells. Our data therefore suggest that i) despite the broad 

range activities of the multi-kinase inhibitor nintedanib, tumors can still escape treatment; ii) 

nintedanib and sunitinib resistance does not occur via tumor revascularization but is induced 

by a metabolic shift towards hyperglycolysis and the establishment of metabolic symbiosis; 

iii) nintedanib and sunitinib treatment should be used in combination with 

glycolysis/metabolic symbiosis inhibitors for long-term efficacy (Figure 6). Notably, the very 

recent development of specific MCT4 inhibitors may open interesting therapeutic 

opportunities [416]. 

 

In conclusion, the data presented here and in the accompanying report by Hanahan 

and colleagues (Allen et al., submitted) underscore the variety of evasive responses to anti-

angiogenic and likely to other targeted therapies. The establishment of metabolic symbiosis 

adds not only another level of complexity but also a number of novel drugable targets to the 

design of combinatorial therapies. The results also emphasize the importance of intra-

tumoral heterogeneity as therapy response, in particular with regard to oxygen and nutrient 

availability. Such heterogeneity likely masks critical adaptation mechanisms when performing 

cross-sectional analysis without spatial resolution.  
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3.3.6 Experimental Procedures 

Mice 

FVB/N mice were kept and bred under specific pathogen-free (SPF) conditions. The 

generation and characterization of Rip1Tag2 transgenic mice has been described elsewhere 

[246]. All experiments were performed following the rules and legislations of the Cantonal 

Veterinary Office, Basel-Stadt, Switzerland and the Swiss Federal Veterinary Office (SFVO) 

under licence numbers 1878, 1907 and 1908. 

 

Cell lines and orthotopic tumor cell transplantation 

Py2T murine breast cancer cells were cultured as previously described [400]. 5x105 

cells were orthotopically injected into the mammary gland number 9 of 7-11 weeks old 

female FVB/N mice under isoflurane/oxygen anesthesia. Tumor length (l) and width (w) were 

assessed 3 times per week using a vernier caliper and tumor volume (V) was calculated 

using the formula V=0.543*l*w2. 

 

Therapy studies  

Treatment of Py2T tumor-bearing mice was initiated when tumors reached a 

measurable size (15-20mm3) to allow a thorough stratification into experimental groups with 

similar mean tumor volumes. Nintedanib (kindly provided by Boehringer Ingelheim) was 

formulated in 0.5% natrosol hydroxyethylcellulose (Boehringer Ingelheim) and administered 

daily at 50mg/kg body weight (BW) by oral gavage. Rip1Tag2 transgenic mice were treated 

with the same regimen from 10 weeks of age onwards [380]. Sunitinib L-malate (LC 

Laboratories) was administered at 40 mg/kg in carboxymethylcellulose daily by oral gavage 

as described [267]. 3PO (Axon Medchem, 2175) was dissolved in a 10% EtOH, 40% PEG, 

50% PBS solution and administered at 70mg/kg daily by i.p. injection. Treatment was 

initiated at day 8 of nintedanib treatment. Rapamycin was dissolved in 5% PEG 400, 4% 

EtOH, 5% Tween 20 and administrated at 2 mg/kg three times a week by i.p. injection. 

Animals of the experimental arms were euthanized by CO2 (or cervical dislocation for 

hypoxia studies), either time- or size matched to the control treatment. Primary tumors were 

dissected and processed for further analyses.  

 

Hypoxia and vessel functionality 

To assess functional blood vessel perfusion, 100µg of fluorescein-labeled 

Lycopersicon esculentum (tomato) lectin (Vector Laboratories, GL-1171) was injected into 

the tail vein. Two minutes later, mice were terminally anaesthetized and five minutes later 

perfused via the left cardiac ventricle first with cold 4% PFA and subsequently with cold PBS.  
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To identify hypoxic tumor areas, 60mg/kg pimonidazole-HCl (Hypoxyprobe Omni Kits, 

Hypoxyprobe, Inc.) dissolved in PBS was injected i.p. 1 hour before euthanizing the animals 

by cervical dislocation.  

 

Immunofluorescence microscopy 

Tumors were fixed in 4% PFA for 2 hours followed by overnight incubation in 20% 

sucrose to cryopreserve the tissue, both at 4°C. Then, tumors were snap frozen in Tissue-

Tek OCT compound (Thermo Scientific) and stored at -80°C. Eight µm thick tumor sections 

were cut, dried for 30 minutes, rehydrated with PBS, permeabilized with 0.2% Triton X-100 

for 20 minutes and blocked with 5% normal goat serum (NGS; Sigma-Aldrich) for 1 hour. As 

an exception, when performing stainings with anti-cCasp3 antibodies, blocking was 

performed using 20% NGS. When using a goat primary antibody, sections were blocked with 

5% bovine serum albumin. Subsequently, primary and secondary antibodies were diluted in 

blocking solution and incubated overnight and 1 hour, respectively, at 4°C. Images were 

acquired with a Leica DMI microscope. 

 

Antibodies used: rabbit anti- cCasp3 (Cell Signaling, 9664, 1:50), rat anti-CD31 (BD 

Pharmingen, 550274, 1:50), rabbit anti-NG2 (Chemicon, AB5320, 1:100), rabbit anti-pH3 

(Millipore, 06-570, 1:200), rabbit anti-pimonidazole (Hypoxyprobe, 1:25), goat anti-MCT1 

(Santa Cruz, sc-14917, 1:50), rabbit anti-MCT4 (Santa Cruz, sc-50329, 1:50), goat anti-

GLUT1 (Santa Cruz, sc-1605, 1:50).  Primary antibody binding was detected by incubating 

the histological sections with secondary antibodies directed against the respective species of 

the primary antibodies for 1 hour at room temperature, diluted 1:200 in blocking solution. 

Secondary antibodies were fluorescently tagged with Alexa 488, Alexa 568 or Alexa 633 

(Molecular probes). Subsequently, nuclei were stained with 4′,6-Diamidin-2-phenylindol 

(DAPI; Sigma-Aldrich; 1:10,000) followed by mounting the slides with Dako mounting 

medium (Dako).  

 

Flow cytometry 

Freshly dissected Py2T primary tumors were immediately minced into small pieces 

and digested for 30 minutes at 37°C on a bacterial shaker in DMEM (Sigma-Aldrich) 

supplemented with Nu-Serum Growth Medium Supplement (6%; Corning), DNase I (200 

µg/ml; Roche), Dispase II (1.2mg/ml; Roche) and Collagenase D (1.2mg/ml; Roche). To 

achieve a single cell suspension, the digested tissue was first passed through a 70µm and 

subsequently through a 40µm cell strainer (Corning). Cells were washed in FACS-buffer (5% 

fetal bovine serum in PBS; Sigma-Aldrich). Fc-receptors were blocked with an antibody 

against CD16/CD32 (BioLegend, 101302, 1:100) diluted in FACS-buffer for 30 minutes at 



RESULTS: RESISTANCE 

	

	 102 

4°C. Then, cells were incubated for 45 minutes on ice with the following antibodies: hamster 

anti-mouse podoplanin (Hybridoma supernatant clone 8.1.1, 1:10), anti-CD8α-FITC 

(BioLegend, 100705, 1:150), anti-CD31-APC (BioLegend, 102409, 1:200), anti-CD45-APC-

Cy7 (BioLegend, 103116, 1:500). Staining for podoplanin was achieved by subsequently 

incubating the cells for 30 minutes on ice with an anti-hamster PE-labeled secondary 

antibody (eBioscience, 12-4112-83, 1:200). Immediately before sorting with a FACSAriaII 

(BD Bioscience), cells were filtered through a 40µm mesh and propidium iodide (PI) was 

added to exclude dead cells. Tumor cells were sorted into FACS-buffer by gating on 

CD8α+/CD45- cells (Figure S3D). Endothelial cells were directly sorted into the lysis buffer of 

the Absolutely RNA Nanoprep Kit (Stratagene) by gating on CD31+/CD45-/Podoplanin- cells 

(Figure S3D).  

 

RNA isolation 

RNA of sorted endothelial cells was isolated using the Absolutely RNA Nanoprep Kit 

(Stratagene) following the manufacturer’s recommendations. RNA of sorted tumor cells was 

isolated using TRIzol® LS reagent (Ambion®) and RNA Easy Mini Kit (Qiagen). To isolate 

RNA from whole tumors, previously snap frozen tissues were homogenized in Tri Reagent 

(Sigma-Aldrich) using a POLYTRON® (Kinematica) and isolated following the manufacturer’s 

recommendations. 

 

Microarray analysis 

Total RNA preparations of flow cytometry-sorted tumor and endothelial cells were 

analyzed using an Agilent 2100 bioanalyzer. Target synthesis was performed using the 

following suite of kits provided by Nugen (San Carlos, USA): WT-Ovation Pico (Cat# 3300), 

WT-Ovation Exon (Cat# 2000) and FL-Ovation Biotin V2 (Cat# 4200). The hybridization 

cocktail (200µl) containing fragmented biotin-labeled target DNA at a final concentration of 

25ng/µl was transferred into Affymetrix GeneChip MoEx-1_0-st-v1 (Affymetrix Cat # 900187) 

and incubated at 45°C on a rotator in a hybridization oven 640 (Affymetrix) for 17 h at 60 rpm. 

The arrays were washed and stained on a Fluidics Station 450 (Affymetrix) by using the 

Hybridization Wash and Stain Kit (Affymetrix, Cat# 900720) and the Fluidics Procedure 

FS450_0001. The GeneChips were processed with an Affymetrix GeneChip® Scanner 3000 

7G (Affymetrix). DAT image files of the microarrays were generated using Affymetrix 

GeneChip Command Console (AGCC, version 0.0.0.676, Affymetrix). 
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Bioinformatical analysis 

All microarray data were preprocessed and analyzed using R (software environment 

for statistical computing and graphics) version 3.1.0 (2014-04-10) and packages provided by 

the Bioconductor package library. Raw Affymetrix CEL files were subjected to background 

correction and normalization using the Robust Multichip Average (RMA) algorithm (rma 

method, oligo package). Differential gene expression was determined using the limma 

package (Smyth et al., 2005) with and without a p-value cutoff of 0.05 and a range of fold-

change values (FC = 1.2 to 1.7). The results of differential gene expression were used to 

conduct pathway enrichment analysis provided by The Database for Annotation, 

Visualization and Integrated Discovery (DAVID) v6.7 [417, 418], with a particular focus on 

pathways defined in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. 

The background-corrected and normalized gene expression datasets associated with the 

placebo-treated (UT), 1 week-treated (ST), and 3 week-treated (LT) samples were subjected 

to Gene Set Enrichment Analysis (GSEA) using GSEA V2.1.0. Three sets of analyses were 

conducted: ST versus UT, LT versus UT and ST versus LT. In all cases the default run-time 

arguments were used except for the “Permute” parameter that was set to “gene_set” (in 

order to accommodate less than 7 samples per class). In addition, analyses were conducted 

against the “MoGene_1_0_st.chip” microarray annotation and the following gene set 

libraries: “c2.cp.kegg.v4.0.symbols.gmt” and “c2.cp.reactome.v4.0.symbols.gmt” [403, 419]. 

Heat maps were generated using the heatmap.2 method provided by the gplots package. 

Boxplots were generated using the default boxplot method provided in R and based on the 

median background corrected and normalized expression value for each gene with respect 

to all samples within each sample class (UT, ST and LT). Additional statistical analyses were 

also carried out using GraphPad Prism 6 (GraphPad Prism Software Inc.). 

 

Quantitative RT-PCR 

RNA was reverse transcribed using M-MLV reverse transcriptase (Promega) and 

quantitative PCR was performed using SYBR-green PCR MasterMix (Applied Biosystems) in 

a StepOne Plus PCR machine (Applied Biosystems). Fold change expression was 

determined by the comparative Ct method (∆∆Ct) normalized to 60S Ribosomal protein L19 

expression. Primers for quantitative PCR are listed in Table S1.  

 

Lactate assay 

Lactate concentration was determined on tumor lysate by using the L-Lactate Assay 

Kit from Abcam (ab65331) following the manufacturer’s recommendations.  
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Lentiviral infection 

Lentiviral plasmids containing short-hairpin RNAs #1-5 (shRNA) against mouse MCT4 

were purchased from Sigma-Aldrich (Mission Non-Targeting shRNA control vector: SHC002; 

shMCT4 #1: TRCN0000079653, shMCT4 #2: TRCN0000079654, shMCT4 #3: 

TRCN0000079655, shMCT4 #4: TRCN0000079656, shMCT4 #5 TRCN0000079657). In 

order to produce lentiviral particles, HEK293T cells were transfected with the shRNA 

containing plasmids, the helper vectors pMDL and pREV and the envelope encoding plasmid 

pVSV using FugeneHD. Virus containing supernatant was conditioned for 2 days, filtered 

through a 0.45µm filter, gently mixed with Lenti-X Concentrator (Clontech), and followed by 

an overnight incubation at 4°C and subsequent centrifugation the next day. The virus-

containing pellet was resuspended in fresh complete DMEM medium, 8ng/ml polybrene was 

added and Py2T cells were infected. Successfully transfected cells were selected by 

puromycin treatment (5µg/ml). Knockdown efficiency was determined by measuring hypoxia-

induced (96h, 1% O2) MCT4 mRNA expression by quantitative RT-PCR. 

 

Statistical analysis 

Data analysis and graph generation was performed using GraphPad Prism 6 

(GraphPad Prism Software Inc.). 
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3.3.7 Supplementary data 
 

 

 

 
 

 

Figure S1.	Nintedanib treatment of Py2T cells in vitro.  
(A) The inhibitory effect of increasing concentrations of nintedanib after 72 hours of treatment on Py2T tumor cell 
numbers has been determined by using an MTT assay in vitro. Data are shown as mean cell number normalized 
to control cells ± SD from three independent experiments. (B) Representative immunofluorescence 
microphograph showing CD31-positive blood vessels in a tumor with a volume of 15mm3 representing the time 
point at which treatments were generally initiated. DAPI was used to visualize cell nuclei. Scale bar, 50µm.  
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Figure S2. Nintedanib and sunitinib treatments demonstrate potent anti-angiogenic effects.  
(A- C) Py2T tumor-bearing mice were treated with nintendanib or sunitinib during 21 days, and mice were 
sacrificed at day 35 post tumor cell injection. Tumor weights at the experimental end point (A), microvessel 
densities (B) and CD31-positive area fractions per field of view (C) determined by immunofluorescence staining 
are shown. N = 3-6 mice per group. Statistical significance was calculated using Mann–Whitney U test. *, P < 
0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. (D) Endothelial cell apoptosis (CD31, green; cCasp3, red) is 
shown on representative immunofluorescence picture of a tumor from a 1 week (ST) nintedanib-treated mouse. 
DAPI was used to visualize cell nuclei. Scale bars, 20µm.(E) Blood vessel (CD31, red) coverage by perivascular 
cells (NG2, green) is shown on representative immunofluorescence pictures of tumors from ST and LT vehicle or 
nintedanib-treated mice. DAPI staining visualizes cell nuclei. Scale bars, 100µm. (F) Blood vessel (CD31, red) 
perfusion (lectin, green) is shown on representative immunofluorescence pictures of tumors from ST and LT 
vehicle or nintedanib-treated mice. DAPI was used to visualize cell nuclei. Scale bars, 100µm. 
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Figure S3. Flow cytometry cell sorting strategy. 
(A) Representative flow cytometric analysis of a wild-type Py2T tumor confirming the absence of a CD8α-positive 
CD45-negative cell population. Relative frequencies of gated populations are shown. (B) Schematic 
representation of the experimental setup. Py2T-CD8α cells were orthotopically injected into the mammary fat pad 
of FVB/N female mice. Two weeks later, after the angiogenic switch had occurred, nintedanib (50 mg/kg/day) 
treatment was initiated. One (ST) or three weeks (LT) after nintedanib initiation, corresponding ST and resistant 
LT-treated tumors, respectively, were harvested for cell isolation by flow cytometry. (C) Schematic representation 
of the flow cytometry sorting strategy. Cells from dissociated tumors were separated by flow cytometry: tumor 
cells were identified by gating on the CD45-CD8α+ population, whereas endothelial cells were identified by gating 
on CD45-CD8α-CD31+podoplanin- blood vessel endothelial cells. (D) Representative results of cell sorting by flow 
cytometry. Cells were first gated for forward scatter (FSC) and sideward scatter (SSC), and propidium iodide-
positive (PI) dead cells and cell doublets were excluded. Then, tumor cells were sorted by gating on the CD45-

CD8α+ population, whereas endothelial cells were sorted by gating on CD45-CD8α-CD31+podoplanin- blood 
vessel endothelial cells. (E) Differential gene expression between LT nintedanib and untreated tumor cells were 
assessed using no p-value cutoff combined with a range of fold change cutoff values from 1.2-1.7. KEGG 
pathway analysis was separately performed for each fold change cutoff and the rank and statistical analysis for 
the glycolysis pathway are displayed.  
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Figure S4.	 Targeting glucose metabolism with rapamycin in combination with nintedanib significantly 
delays resistance to anti-angiogenic therapy. 
(A) Primary Py2T tumor growth has been determined over time in mice treated with either vehicle or nintedanib 
(50 mg/kg/day) in combination with rapamycin (2 mg/kg, 3x/week; i.p.) or saline. Values indicated represent mean 
tumor volume ± SEM. (B) Tumor volumes at day 34 after Py2T tumor cell implantation injection are shown. N = 8 
mice per group. Statistical significance was calculated using Mann–Whitney U test. *, P < 0.05; **, P < 0.01; ***, P 
< 0.001. 
 

 

 

 

	



RESULTS: RESISTANCE 

	

	 109	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

	



RESULTS: RESISTANCE 

	

	 110 

Figure 5. MCT4 is critical for resistance development against anti-angiogenic therapy with nintedanib or 
sunitinib. 
(A) Lactate levels have been quantified in lysates of tumors from LT vehicle or nintedanib-treated mice, and are 
shown as mean ± SEM. N = 5 mice per group. Statistical significance was calculated using Mann–Whitney U test. 
n.s, non significant. (B, C) Quantification of MCT1 (A) and MCT4 (B) expression by immunofluorescence staining 
on histological tumor sections from ST and LT vehicle or nintedanib-treated mice is shown. Mean MCT4 positive 
area fractions per each field of view are shown.  N = 4 mice per group. (D) MCT4 expression in tumors derived 
from LT vehicle, nintedanib or sunitinib-treated mice was assessed by immunofluorescence staining. Values 
represent the MCT4-positive area fraction per each field of view. N = 5-6 mice per group. (E) Knockdown 
efficiency was determined by measuring the MCT4 mRNA expression of shCtrl or shMCT4 Py2T cells cultured in 
hypoxic or normoxic conditions by quantitative RT-PCR. Data are normalized to shCtrl Py2T cells cultured in 
normoxic conditions. (F) Quantification of MCT4 expression by immunofluorescence staining on histological 
sections from shCtrl or shMCT4 Py2T tumors treated either with nintedanib or vehicle is shown. Data displayed 
represents mean values per each field of view.  N = 6 mice per group. (G) MCT4 mRNA expression levels were 
analyzed by quantitative RT-PCR in shCtrl or shMCT4 Py2T tumors treated with either nintedanib or vehicle, and 
values are displayed as mean ± SEM. Data are normalized to shCtrl vehicle-treated tumors.  N = 3 mice per 
group. Statistical significance was calculated using Mann–Whitney U test. *, P < 0.05; **, P < 0.01; ****, P < 
0.0001. 
 

Primers for qRT-PCR 

Name Sequence (5’ - 3') 

Glut1 (Slc2a1) 
gaccctgcacctcattgg 

gatgctcagataggacatccaag 

Hexokinase 2 (Hk2) 
gctgaaggaagccattcg 

tcccaactgtgtcatttaccac 

Phosphofructokinase, platelet (Pfkp) 
gctatcggtgtcctgacca 

actttggcccccgtgtag 

Aldolase A (Aldoa) 
aaggaagaggttcctctaaagacc 

aatgcggtgagcgatgtc 

Triosephosphate isomerase 1 (Tpi1) 
ttcgagcaaaccaaggtcat 

ccggagcttctcgtgtactt 

Phosphoglycerate kinase 1 (Pgk1) 
gaagtcgagaatgcctgtgc 

ccggctcagctttaacctt 

Enolase 2 (Eno2) 
aacagcgttacttaggcaaagg 

ccaccacggagatacctgag 

Lactate dehydrogenase A (Ldha) 
ggcactgacgcagacaag 

tgatcacctcgtaggcactg 
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Pyruvate dehydrogenase kinase 1 (Pdk1) 
gttgaaacgtcccgtgct 

gcgtgatatgggcaatcc 

β-actin (Actb) 
ctaaggccaaccgtgaaaag 

accagaggcatacagggaca 

Monocarboxylate transporter 4 (Scl16a3)  
gctcacctcctcccttgtg 

ctcttcctcttcccgatgc 

60 ribosomal protein L19 (Rpl19) 
ctcgttgccggaaaaaca  

tcatccaggtcaccttctca  
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4 General conclusions and future plans 
 

The rationale behind targeting tumor angiogenesis is based on the hypothesis that 

tumor cells are “starved to death” when cutting their blood supply. Numerous preclinical and 

clinical studies have revealed a significant heterogeneous efficacy of anti-angiogenic 

therapies depending on the tumor type being treated. Whereas PNETs appear to be 

especially sensitive to this class of drugs, clinical trials in breast cancer patients largely 

resulted in negative results [64, 287]. In our preclinical studies, we were able to model a 

similar response pattern. Whereas nintedanib monotherapy increased the survival of PNET 

bearing Rip1Tag2 mice, nintedanib was able to delay primary tumor growth in breast cancer 

transplantation models (Py2T and 4T1) for only a few days. Although PNET and breast 

cancer models responded considerably different to nintedanib monotherapy, mechanisms of 

resistance might be surprisingly similar. In both tumor types, tumor regrowth (i.e. resistance) 

was not accompanied by revascularization and tumor cell proliferation was sustained in 

largely avascular tumor regions. These observations suggest a marked adaptability of tumor 

cells to a rapidly changing availability of oxygen and nutrients. We would like to term this 

capability with “metabolic plasticity”. In resistance to the anti-angiogenic TKI nintedanib, 

metabolic plasticity signifies the upregulation of anaerobic glycolysis. In oxygen poor 

situations, glycolysis serves as an important source of ATP. In rapidly proliferating cells 

however, glycolysis might primarily serve to provide metabolic intermediates in order to 

generate macromolecules. Furthermore, in hypoxia, instead of entering into the tricarboxylic 

acid (TCA) cycle, pyruvate is reduced to lactate in order to regenerate the cellular pool of 

reducing equivalents such as NAD+. Accumulating lactate has to be exported out of the cells 

for instance by MCT4	 [420]. Indeed, we found upregulation of MCT4 in nintedanib-resistant 

tumors of breast cancer and Rip1Tag2 mouse models. Importantly, the exported lactate 

generated in hypoxic areas might not represent a simple waste product, but might be used 

as a fuel for oxidative metabolism by nearby normoxic areas around remaining blood vessels 

(i.e. metabolic symbiosis). In summary, traditional models explaining resistance to anti-

angiogenic therapies are mainly based on mechanisms ensuring reoxygenation – either by 

revascularization or by migration to locations with higher oxygen saturation (see section 1.4, 

Figure 5). However, data shown in the present thesis suggest that tumor cells acquire 

mechanism in order to proliferate in largely avascular tumor areas. Termed metabolic 

plasticity, we would like to propose a novel paradigm how tumor cells sustain a reduction of 

the tumor vascularization by anti-angiogenic therapies (Figure 6).  

 

 Currently and in the future we are aiming to tackle this metabolic plasticity by 

combining nintedanib with compounds targeting the identified resistance mechanism. So far, 

we were able to show additive effects when combining nintedanib with 3PO or rapamycin, 
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both compounds inhibiting glycolysis. In addition, shRNA mediated knockdown of MCT4 

resulted in a marked delay of tumor growth and resistance to nintedanib. Since in this 

experiment resistant tumors were composed of cells escaping shRNA mediated knockdown, 

we are currently working on generating Py2T cells deficient for MCT4 employing 

CRISPR/Cas9 technology. Furthermore, we are in contact with a pharmaceutical company to 

obtain a novel inhibitor of MCT4. 

 
Figure 6. Mechanisms of resistance to anti-angiogenic therapy. 
Based on our data, we suggest that the traditional concepts how tumors escape the action of anti-angiogenic 
therapies should be complemented by the concept of “metabolic plasticity”. Tumors resistant to nintedanib 
treatment displayed a remarkable adaptability allowing them proliferate despite a sustained reduction of MVD and 
induction of hypoxia. Tumor cells survive these harsh conditions by upregulating glycolysis. Furthermore, lactate 
produced by glycolytic cells, can potentially be used by cells located in normoxic areas – a mechanism termed 
“metabolic symbiosis”.   
 

 Importantly, the knowledge obtained in the preclinical setting by others and us should 

be tested in patients. Obtaining repeated biopsies from patients before and at different time 

points during anti-angiogenic therapy would shed light into the question, which mechanism of 

resistance is actually predominant in the clinical “reality”. As our laboratory is part of a 

European Research Council (ERC) funded consortium (“MERiC” – Mechanisms of Evasive 

Resistance in Cancer) aiming to unravel mechanisms of resistance to sorafenib in HCC we 

will have the possibility to validate our findings in preclinical mouse models of HCC and HCC 

patients. 

 

 Besides addressing research questions where the ultimate goal is the translatability 

into clinics to improve cancer patient care, our model system might serve as an interesting 
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tool to study the impact of acute and chronic tumor hypoxia (i.e. short- and long term 

nintedanib treatment) on the dynamics of metabolism in tumor cells. By employing the 

recently established in vivo metabolic flux analysis, one might get exciting new insights into 

metabolic changes induced by altering the tumor microenvironment	[421]. 

 

Finally, we would like to close the circle and end with a visionary statement by Judah 

Folkman from 1971: “if anti-angiogenesis is not possible, or even the concept is wrong, the 

careful consequences may reveal something fundamental” [167]. Almost half a century later, 

we have seen that anti-angiogenesis is feasible. The concept is correct and provides a 

powerful therapeutic opportunity in certain cancer types, but clearly not in all. Nevertheless, 

anti-angiogenesis revealed fundamental insights into metabolic adaptations of cancer cells. 

Furthermore, it will provide a unique tool to study the consequences of causing acute and 

chronic hypoxia, and nutrient deprivation in tumors in the context of a living organism – a 

complexity that is impossible to model even with the most sophisticated in vitro approaches.  
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5.1 Abstract 

Although major progress has been achieved in treating breast cancer patients, 

metastatic breast cancer still remains a deadly disease. A full understanding of the process 

of systemic cancer cell dissemination is therefore critical to develop next generation 

therapies. A plethora of experimental data points towards a central role of an EMT in the 

multistep cascade of metastasis formation. However, in patients the data are based on 

correlative studies, which often, but not always, tie the expression of EMT markers to cancer 

invasion, metastasis and poor clinical outcome. Moreover, the notion that cancer cells are 

able to switch between different modes of migration asks for a thorough review of the actual 

relevance of EMT in cancer metastasis.  

 

 

5.2 Introduction 

The role of an EMT as a fundamental biological mechanism is well established in 

morphogenic processes of the developing embryo, in wound healing and in organ fibrosis 

[422-424]. In addition, an EMT is frequently called upon – including by us – as a favored 

explanation how tumor cells gain migratory and invasive properties in order to leave the 

primary tumor site, to disseminate throughout the body, and eventually form distant 

metastases [321, 425, 426]. In the prototypical multistep model of metastasis, the function of 

EMT is attributed to the initial events, when tumor cells lose their epithelial characteristics to 

leave the primary tumor, invade into neighboring tissue and enter the blood circulation 

(Figure 1). An EMT is also thought to support the survival of tumor cells in the blood stream 

and to promote extravasation at the distant metastatic site [427, 428]. Finally, mesenchymal 

tumor cells that have undergone an EMT appear to share a variety of hallmarks capabilities 

with experimentally defined cancer stem cells (CSC; for an in depth review of the link 

between EMT and CSC see references [422, 429]. Since mesenchymal carcinoma cells are 

thought to proliferate at reduced rates and since many carcinoma metastases display the 

same degree of differentiation as their primary tumors, it is thought that mesenchymal, 

invasive cancer cells undergo a mesenchymal to epithelial transition (MET) after 

extravasation in distant organs to form overt (macro)metastases [430], [431]. 

 

The highly complex process of EMT is busily studied at the molecular level. It appears 

that EMT (and potentially with it metastasis) does not rely on additional genetic alterations in 

the cancer cells. Rather complex regulatory circuits involving transcriptional and epigenetic 

control mediated by distinct “EMT” transcription factors, miRNAs and lncRNAs seem to 

govern an EMT [428, 432, 433]. Despite or because of the recent insights, it is worthwhile to 

take a step back and ask to what extent signs of an EMT are detected in primary tumors, 
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whether an EMT is actually required in the process of metastasis, and to discuss potential 

alternative models of cancer cell dissemination. Here, we focus on breast cancer, since this 

cancer type is frequently studied in metastasis research, mainly due to the availability of a 

variety of valuable transgenic and transplantation mouse models of metastatic breast cancer 

[434]. In addition, based on the recent molecular classifications of breast cancer subtypes 

and the identification of a claudin-low subtype exhibiting an EMT gene expression signature, 

breast cancer specifically qualifies to assess the role of EMT in the metastatic process [435].  

 
 

 

Figure 1. The potential involvement of EMT and MET in the metastatic cascade.  
Carcinoma cells reach the systemic circulation by collective invasion (1.) or single-cell migration of EMT-derived 
mesenchymal cells (2.) into the blood vessels. Alternatively, they can be passively shed (3.) into the blood stream. 
Circulating tumor cells (CTC), either single cells or CTC-clusters, are found to express predominantly a spectrum 
of epithelial markers (E), co-express epithelial and mesenchymal markers (E/M) or to express predominantly 
mesenchymal markers (M; 4.). CTCs are frequently covered by platelets, facilitating carcinoma cell extravasation. 
At distant organ sites, surviving CTCs are potentially extravasating similar to leukocytes by initial transient 
contacts, followed by firm adhesion to endothelial cells and subsequent diapedesis and active extravasation, 
although direct proof for this multistep mechanism is still lacking (5.). CTCs are also physically trapped due to size 
restriction in small vessels and initiate proliferation inside the vessel lumen (6.). In order to colonize, i.e. to grow 
from micro- to macrometastases, mesenchymal carcinoma cells may need to undergo an MET (7.). The 
hematogenous spread of breast cancer cells displays specific tropism to lung, brain, liver and bone. 
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5.3 EMT and its associated features 

Carcinomas, i.e. malignant cancers of epithelial origin, often retain - until a certain 

state of dedifferentiation - a sheet-like morphology with apico-basal polarity and intact tight 

and adherens junctions. A prototypical EMT of these cells involves a spectrum of processes 

having in common the loss of apico-basal polarity and the delocalization of tight and 

adherens junction proteins, such as E-cadherin, ZO-1, occludins, and claudins. At the same 

time, they assume a spindle-shaped, mesenchymal-like morphology with upregulated 

expression of mesenchymal markers, such as N-cadherin, fibronectin and vimentin, and 

increased migratory and invasive properties [436]. EMT can be easily induced in breast 

cancer cells in 2D in vitro culture, for example by TGFβ or the overexpression of EMT-

inducing transcription factors such as TWIST. In addition, EMT-associated migratory and 

invasive capacities can conveniently be studied in vitro by quantifying the efficiency of cells 

to migrate through porous membranes, either uncoated (for migration) or coated with a layer 

of extracellular matrix proteins (for invasion) [400, 437]. Although this reductionist approach 

has provided major mechanistic insights into the principles of EMT and cell invasion, the 

results cannot be simply extrapolated to the in vivo situation in animal models or in patients 

[438-441]. Studying EMT in vivo mostly relies on a retrospective, “snapshot” analysis of 

surrogate markers for cell migration and invasion and thus lacks critical information on the 

dynamic changes underlying an EMT process. Migration and invasion per se can only be 

visualized by technically challenging intra-vital life cell imaging techniques in 3D matrices and 

in living animals [442-444].  

 

 

5.4 Cell migration, invasion and intravasation 

5.4.1 Individual cell migration 

Tumor cells migrate either as single cells (individual migration) or as multicellular 

groups (collective migration) [445, 446]. The characteristics of a special type of cell migration, 

where cells are aligned in single-cell chains in so called “indian files”, will be presented below 

when discussing the relation of EMT to the lobular histopathologic subtype of breast cancer 

[440]. Individually migrating cells usually employ mesenchymal traits of migration with 

integrin-mediated cell-ECM adhesion dynamics characterized by the generation of high 

traction forces, the use of proteases for ECM cleavage and the formation of focal contacts at 

sites of integrin clustering [440]. As an alternative, cancer cells may “squeeze” through 

tissues by amoeboid migration, which is characterized by propulsive cytoplasmic forward 

flow, the lack of integrin-ECM contacts and the absence of proteolytic cleavage of the ECM. 

Notably, amoeboid migration is substantially faster than mesenchymal migration [447-449]. 
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In addition, a hybrid amoeboid/mesenchymal phenotype of cancer cells has been described 

[450]. In a seminal study, the Sixt laboratory has demonstrated that murine leukocytes, which 

usually utilize integrin-mediated contacts to move on 2D surfaces, do not depend on 

adhesion to the ECM via integrins when migrating through a 3D environment in an 

amoeboid-like fashion [451]. In line with this finding, blockade of integrin function induces a 

so-called mesenchymal to amoeboid transition (MAT) even in cancer cells of solid tumors 

[452, 453]. Cells induced to undergo an EMT by TGFβ also switch to a faster amoeboid 

migration mode in experimental conditions of high confinement and the absence of matrix 

adhesion [447]. Numerous MAT-inducing mechanisms have been identified in the past years, 

including inhibition of ECM-degrading proteases or of Rac1 activity, induction of RhoA 

activity, the forced expression of EphA2 or p27, and p53 deficiency [440, 454-459]. These 

reports may explain why anti-cancer therapies targeting protease or integrin functions have 

shown disappointing results in clinical trials [244, 459-461].  

 

A novel mechanism of cell extrusion has been recently proposed by which epithelial 

cells may leave the epithelial sheet [462]. In normal epithelial tissue homeostasis, dying cells 

are actively extruded apically into the lumen to preserve a tight barrier function. In contrast, 

oncogenic signaling in transformed cells leads to a basal extrusion of cancer cells. Since in 

some circumstances cancer cells can cross BM without proteolytic degradation, basally 

extruded cancer cells might not necessarily leave behind a BM defect [445, 462-465]. 

Whether a basal extrusion process plays a role in cancer cell dissemination and whether 

there is functional connection with an EMT will be part of exciting future research [462]. 

 

5.4.2 Collective cell migration 

Collective cell migration is characterized by the simultaneous movement of a group of 

cells with intact cell-cell interactions. Depending on their morphological appearance, these 

collectives can be classified into “clusters”, “strands”, “tubes” or “sheets” [466]. Collective cell 

migration is proposed to be a predominant mode of local cancer cell invasion especially in 

differentiated carcinoma [467]. Leader cells guide the multicellular aggregate by proteolytic 

degradation of the ECM in the front and by dragging the cells of the inner and trailing edge. 

Since the leader cells appear to play a dominant role in the movement of these collectives, 

their characteristics warrant attention – also in relation to EMT. Notably, the importance of a 

basal epithelial program in the invasive phenotype of locally invading breast cancer has been 

reported [467]. Leader cells express basal epithelial markers, such as cytokeratin 14 and p63, 

while lacking evidence for EMT-associated features, such as the loss of E-cadherin function 

or increased TWIST, SNAIL or vimentin expression. Although a complete EMT seems not 

obvious in cells leading collectively invading multicellular groups, this does not exclude a 
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sub-threshold level EMT or intermittent bursts of EMT, as earlier discussed by Friedl and 

colleagues [445]. In addition to the perception that collective migration is used by epithelial 

cancer cells, it is also employed by mesenchymal cancer cells [442, 468-470]. In 

mesenchymal cells, cell-cell contacts are mediated by N-cadherin, a cadherin family member 

characteristic of a mesenchymal cell phenotype [469, 471]. 

 

Similar to what has been described for plasticity of individually migrating cells, 

collectively migrating cells can eventually leave the group and continue their march 

individually, by either migrating in a mesenchymal or in an amoeboid mode – the latter is 

known as collective to amoeboid transition (CAT). Fibrosarcoma and melanoma cell lines 

preferentially use collective migration in 3D collagen densities (smaller ECM pore sizes), 

whereas lower collagen densities (bigger ECM pore sizes) induce the break-out of single 

cells [442], and blocking β1-integrin induces a CAT in primary melanoma explants [468]. 

 

5.4.3 Cancer cell intravasation 

Cancer cells can actively enter the systemic circulation employing the migration and 

invasion modes described above. However, one should be aware of the fact that cancer cells 

are passively shed into the blood stream at impressively high numbers [472-476]. In addition, 

not only “how” but also “where” cancer cells enter the blood circulation matters. Most 

investigations and deliberations on the mechanisms of cancer cell invasion, as individually or 

collectively migrating cells, are focusing on the invasive front, i.e. the zone of direct contact 

between the tumor cells and the surrounding desmoplastic stroma [477]. However, tumor 

cells can disseminate at the stage of carcinoma in situ as proposed by the parallel 

progression model possibly even before the occurrence of an angiogenic switch [478]. The 

significance of the invasive front might therefore primarily be a surrogate of the intrinsic 

invasive capacity of a tumor plus having a causal role in the loco-regional spread of cancer 

cells. On the other hand, tumors are highly vascularized and contain a “highway” of 

hematogenous spread inside the tumor mass. Indeed, intra-vital imaging has visualized the 

intravasation of tumor cells within the tumor mass [479]. Interestingly, an EMT drives the 

expression of a set of pro-angiogenic genes, partially explaining the enhanced tumor-

initiating capacity often associated with the EMT process [241, 480]. Based on these findings 

it appears that an EMT not only renders tumor cells more capable of migrating towards 

close-by blood vessels, but their pro-angiogenic activities may enable them to “path their own 

way” into the systemic circulation. 

 

The possibility of switching between different types of cell migration illustrates the 

large plasticity of cancer cells and the complexity of their therapeutic targeting. The 
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molecular mechanism underlying the different types of cancer cell migration, the conversion 

between these different types, the environmental factors promoting this transitions, and the 

characteristics of the subsets of cells of a given tumor that hold this plasticity still need to be 

further elucidated. The different modes of cell migration do not seem to be mutually exclusive 

for a given cell. In a “tuning model”, the mode of cell migration is characterized as a 

continuum and is the result of the integration of physical and biochemical influences of the 

tissue environment with the genetic and epigenetic makeup of a given cell [466]. Given the 

emerging picture of intra-tumoral heterogeneity in cancer [481, 482], it is likely that different 

areas within an individual tumor rely on distinct modes of cell migration and invasion.  

 

 

5.5 Does an EMT occur in primary tumors? 

Carcinomas often elicit a desmoplastic reaction with abundant mesenchymal stroma 

cells, such as cancer-associated fibroblasts, with predominantly pro-tumorigenic activities 

[483]. Conventional histopathological analysis can conveniently discriminate between 

epithelial cancer cells and fibroblasts with their prototypical spindle-shaped morphology. 

However, once epithelial cancer cells have converted to a mesenchymal morphology by an 

EMT, they are hardly distinguishable from stromal fibroblasts. Also the marker repertoire of 

cancer cells changes to a mesenchymal phenotype after undergoing an EMT and, thus, 

mesenchymal carcinoma cells remain indistinguishable from stromal fibroblasts by molecular 

or immunohistochemical analyses. Notably, the expression of cytokeratins or epithelial cell 

adhesion molecules such as EpCAM, which are routinely used to identify tumor cells of 

epithelial origin, is lost during an EMT [484]. In this context it also should be noted that, in 

contrast to early embryonic developmental processes, the concept of EMT in malignant 

tumor progression reflects a transition within the same lineage and does not signify a real 

conversion of cells of an epithelial lineage to a mesenchymal lineage – a distinction that has 

brought some controversy into the discussion about the existence of EMT in cancer [441, 

485].  

 

5.5.1 EMT in preclinical breast cancer mouse models 

Syngeneic and xenogeneic transplantation models of breast cancer cell lines in mice 

have been extensively used in order to establish a causal relationship between EMT and 

metastatic dissemination by interfering with critical mediators of EMT, including EMT-

inducing growth factor signaling or transcription factor activities [423]. Although 

transplantation models of primary cancer cells and established cancer cell lines offer 

important mechanistic insights into the metastatic cascade, there value is limited by the lack 

of a slow co-evolution of the implanted cancer cells with the host stroma. In the case of 
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xenografts, the differentiation state of the cells lines used, the lack of an intact immune 

response, and potential species incompatibilities of growth factor signaling may obscure the 

processes active in patients [299]. For example, the human breast cancer cell line MDA-MB-

231, a frequently used xenograft metastasis mouse model, stably displays mesenchymal 

traits at baseline, which limits the study of the dynamic processes of an EMT [486]. Hence, to 

delineate a possible causal role of EMT in breast cancer metastasis we will focus on data 

derived from transgenic mouse models of breast cancer.    

 

In transgenic mouse models of breast cancer, first lineage-tracing experiments have 

provided evidence that EMT exists in vivo. By genetically tagging tumor cells combined with 

immunofluorescence analysis of marker expression, Trimboli and colleagues identified 

carcinoma cells with a loss of E-cadherin and gain of fibronectin expression. Interestingly 

however, carcinoma cells with signs of EMT were only detected in a c-MYC-driven 

transgenic mouse model of breast cancer and not in the MMTV-PyMT and MMTV-Neu 

transgenic mouse models of breast cancer, which are two widely used models to study 

breast cancer metastasis [487]. In contrast, phospho-SMAD2 and phospho-SMAD3 have 

been identified in certain areas of MMTV-PyMT tumors as an indicator of active TGFβ 

signaling, yet the EMT marker status of these tumors has not been assessed [488, 489]. The 

conditional deletion of p53 in mammary epithelial cells of mice  (achieved by Cre 

recombinase expression under the control of the K14 or WAP promoters, respectively) 

provoked the formation of some tumors with carcinosarcomatous morphology, with 

heterogeneous expression for the luminal marker cytokeratin 8 and the basal marker 

cytokeratin 14, and with increased vimentin expression. Yet, despite the invasive phenotype 

of the tumors, distant metastasis is a rare event in these models [490, 491]. When CRIPTO-1, 

a member of the epidermal growth factor-CFC protein family, was conditionally 

overexpressed in mammary epithelial cells, tumors eventually developed with a latency of 

14-18 months in a proportion of multiparous mice. Whereas most lesions displayed a 

differentiated morphology classified as papillary adenocarcinomas, some tumors contained 

areas with an EMT phenotype (negative for E-cadherin and positive for N-cadherin, 

fibronectin, α-smooth muscle actin, vimentin, and SNAIL) [492]. Similarly, conditional 

overexpression in the adult mammary epithelium of the sine oculis homeobox 1 homolog 

(SIX1) homeoprotein led to tumors of a variety of different grades of differentiation [493]. A 

subset of the tumors displayed a sarcomatoid phenotype with the expression of markers 

suggestive of a complete EMT. In addition, 80% of the non-sarcomatoid tumors showed a 

partial EMT with areas of E-cadherin loss and nuclear β-catenin accumulation colocalizing 

with high expression of the Wnt target gene cyclin D1. 
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For a reality check as to whether transgenic mouse models of breast cancer faithfully 

recapitulate the patient situation, gene expression profiles of the model tumors have been 

compared to the gene expression of the various patient breast cancer subtypes (see also 

below). Whereas tumors of a variety of mouse models displayed a “luminal-like” gene 

expression profile (the majority of tumors from MMTV-PyMT, MMTV-Neu and WAP-Myc 

mice), a proportion of model tumors showed either strong expression of mesenchymal 

features or mixed expression of luminal, basal and mesenchymal signatures (tumors from 

Brca1fl/fl;TgMMTV-Cre;p53+/-, WAP-Myc, or DMBA-treated mice) [435].  

 

Taken together, there is convincing evidence that tumor cells bearing a mesenchymal 

phenotype exist in primary tumors of transgenic mouse models of breast cancer. To assess 

whether even rare cells with mesenchymal features, which are unable to significantly 

influence the global gene expression profile of the bulk of a tumor, are present in the 

metastatic mouse models of breast cancer, appropriate lineage-tracing experiments need to 

be performed. Such genetic fate mapping of tumor cells combined with immunofluorescence 

staining for mesenchymal markers has recently identified an EMT as a very early event in a 

pancreatic ductal adenocarcinoma mouse model [494].  

 

5.5.2 Mechanisms of EMT in mouse models of breast cancer 

It is important to note that any evidence for an EMT in a primary tumor does not 

necessarily allow the conclusion that an EMT is a prerequisite for the metastatic process. To 

this end, functional studies are needed in which “key EMT players” are genetically 

manipulated in transgenic mouse models of breast cancer. Subsequent characterization of 

changes in EMT marker expression in primary tumors and metastatic lesions, the 

assessment of primary tumor grade and local invasiveness as well as the metastatic burden 

(typically in the lung) reveals the functional roles of factors of interest in EMT and/or 

metastasis. Candidates to be assessed could be EMT-inducing cytokines, such as TGFβ, 

EGF, FGF, and HGF, hypoxia induced by rapid tumor growth or by the pharmacological 

inhibition of blood vessel angiogenesis (anti-angiogenic therapies), components important for 

cell-cell contact and cell polarity, and EMT-inducing transcription factors, such as TWIST, 

SNAIL1/2, and ZEB1/2 [423, 436]. Exciting insights have already been obtained by studying 

the tumor-promoting role of TGFβ and some of the transcription factors relevant for EMT 

(see below), yet further studies are needed to identify and distinguish between “simple” 

markers of an EMT in vivo and factors with non-redundant functions during an EMT. 

 

TGFβ, one of the best-studied EMT-inducing cytokines, is produced by both tumor 

cells and by a variety of cells of the tumor microenvironment. It exerts important effects on 



RELEVANCE OF EMT 

	

	 126 

several cell types within a tumor and by canonical, SMAD-dependent and non-canonical, 

SMAD-independent signaling modulates the expression of a variety of target genes to either 

exert tumor suppressive functions, such as induction of the cell cycle inhibitor p21 or 

repression of c-MYC, or tumor-promoting functions by inducing an EMT (for a detailed 

description of TGFβ signaling and its role in cancer see reference [495]. Consistent with this 

notion, MMTV promoter-driven mammary epithelial cell-specific expression of TGFβ in the 

MMTV-Neu model results in primary tumors with higher tumor grades and increased 

metastatic burden in the lungs. Interestingly, despite the TGFβ-mediated increased local 

invasiveness, primary tumors still express E-cadherin and do not upregulate the 

mesenchymal markers vimentin, alpha-SMA and fibronectin [496]. Similarly, overexpression 

of TGFβ in MMTV-PyMT transgenic mice at late stages of tumor development dramatically 

increases metastasis to the lungs [497]. In line with the pro-metastatic activities of TGFβ in 

the MMTV-Neu driven breast cancer mouse model, expression of a constitutive-active 

TGFβRI promotes the metastatic process, whereas expression of a dominant-negative 

TGFβRII inhibits lung metastasis [498, 499]. Notably, one of these studies has revealed an 

important role of TGFβ signaling for tumor cell extravasation rather than for primary tumor 

invasion and tumor cell intravasation [499].   

 

Encouraging data from a therapeutic point of view comes from experiments where 

neutralization of TGFβ by a soluble TGFβRII:Fc fusion trap has reduced the incidence of lung 

metastasis in MMTV-Neu and MMTV-PyMT mice [500]. Since the TGFβRII:Fc trap reduced 

the number of colony-forming circulating tumor cells (CTCs), the authors suggested a role for 

TGFβ in intravasation. Alternatively however, CTCs could also come from growing 

metastases, and the reduction in CTCs may simply reflect the lower metastatic burden. In 

contrast to these reports, the Moses laboratory has reported a metastasis-promoting effect 

when attenuating TGFβ signaling in the MMTV-PyMT and MMTV-Neu models by a tumor 

cell-specific deletion of TGFβRII or the expression of a dominant-negative TGFβRII, 

respectively [488, 501]. Mechanistically, abrogation of TGFβ signaling in the MMTV-PyMT 

model results in the recruitment of Gr1+CD11b+ MDSCs, which by secreting MMPs promote 

invasion of E-cadherin-positive tumor cells [502]. In TGFβ-attenuated MMTV-Neu tumors, 

increased VEGF-A expression provokes leaky vessels and potentially facilitates cancer cell 

intravasation [501]. Based on TGFβ’s context-dependent and highly complex impact on 

tumor cells and on cells of the tumor microenvironment, it is not surprising that manipulation 

of the different components of the TGFβ/TGFβR signaling axis leads to a wide range of 

sometimes contradictory effects on metastasis formation.  
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Employing the Rip1Tag2 transgenic mouse model of neuroendocrine carcinoma of 

the pancreas we have previously shown that abolition of E-cadherin (Cdh1)-mediated cell-

cell adhesions can be a trigger of tumor invasion and metastasis [503]. Derksen and co-

workers have recently reported that the concomitant genetic ablation of Cdh1 and Trp53 in 

mammary epithelial cells of the mouse induces the formation of invasive and metastatic 

lobular breast carcinomas which, however, do not display features of a complete EMT [490, 

491]. These data suggest that, although loss of E-cadherin is sufficient to induce local 

invasion and distant metastasis, it does not necessarily promote a complete EMT – in 

contrast to what is observed in cell culture experiments [504, 505]. A characteristic molecular 

event observed during an EMT is the transcriptional shut-off of the Cdh1 gene by EMT-

inducing transcriptional repressors, such as SNAIL1/2, TWIST1/2, and ZEB1/2 [436]. 

Accordingly, the inducible expression of TWIST1 and with it the induction of an EMT in the 

primary tumor site allows the dissemination of tumor cells to distant organs. However, 

metastatic outgrowth at the distant organs requires the loss of TWIST1 expression and a 

mesenchymal-to-epithelial transition (MET; see below; [506]. In a mouse model of invasive 

mammary carcinoma with doxycycline-inducible expression of a constitutive-active version of 

the Her2/Neu (NeuNT) oncogene, NeuNT-driven tumors completely regress after 

doxycycline withdrawal and oncogene expression shutdown, yet they display NeuNT-

independent recurrence after a latency of several months [507]. Whereas tumors occurring 

during the initial NeuNT-driven growth phase show extensive lung metastasis but retain an 

epithelial morphology, the recurring tumors display a SNAIL1-driven mesenchymal 

phenotype with downregulation of CK8 and E-cadherin and upregulation of vimentin and 

fibronectin expression. Indeed, the experimental manipulation of a variety of EMT-relevant 

genes, such as the genes encoding for SNAIL1/2, TWIST1/2, ZEB1/2, FOXC2, SOX4, 

TEAD2, LHX2, and others, results in a change in breast cancer cell invasion and 

dissemination and in metastasis formation, evidencing a link between EMT and the 

disseminating and tumor-initiating capabilities of carcinoma cells [384, 436, 508]. However, a 

formal proof that metastases are indeed initiated by cancer cells that have ever undergone 

an EMT is still lacking and will require sophisticated fate-mapping experiments in animal 

models. 

 

 

5.6 Extravasation, MET and colonization 

5.6.1 Extravasation 

Disseminating cancer cells, after having survived the harsh conditions of their travel 

through the blood stream, have in principle two possibilities how they can form a metastatic 

nodule in a distant organ: physical trapping in small capillaries of the target organ due to size 
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restriction and initial proliferation inside the vascular lumen and subsequent disruption of the 

vessel wall as the metastasis expands [509], or extravasation and subsequent proliferation in 

the extra-luminal compartment. While the former is difficult to address experimentally without 

sophisticated intra-vital imaging, the latter is supported by first experimental evidence: similar 

to the behavior of leukocytes when egressing from blood vessels at inflammatory sites by 

binding to selectins and subsequent firm adhesion via integrins (tethering, rolling), cancer 

cells are able to establish weak contacts with endothelial cells in vitro [510]. However, in vivo 

evidence for the existence of such initial weak contacts is still missing [511]. Stable contacts 

of tumor cells to endothelial cells seem to be mediated by adhesion molecules such as 

members of the integrin-family and CD44 and N-cadherin [511, 512]. Several of these 

molecules with important functions during transendothelial migration (TEM) are upregulated 

during an EMT. For example, increased N-cadherin expression and the loss of E-cadherin 

expression, the cadherin switch, is one hallmark of an EMT [471]. Moreover, EMT-induced 

integrins on cancer cells can interact with cell adhesion molecules (CAMs) expressed by 

endothelial cells. Finally, an EMT often leads to the upregulation of enzymes that modify 

carbohydrate moieties on selectin-binding glycoproteins. On one hand, CD44 isoforms with 

specific glycosylated residues have been described to mediate initial weak contacts by 

binding to E-selectin expressed by endothelial cells, whereas on the other hand CD44 plays 

an important role by mediating firm adhesion to endothelial cells [511]. Notably, human 

breast cancer cells that have undergone an EMT and resemble breast cancer stem cells are 

characterized by the expression of high levels of CD44 [513]. In addition, upregulation of 

TGFβ and VEGF-A by an EMT can enhance permeability of the capillary bed and thereby 

promote TEM [514, 515]. Hence, the pro-angiogenic phenotype of cancer cells acquired 

during an EMT does not only promote intravasation by creating a disorganized vessel 

network in the primary tumor but also may facilitate extravasation at distant sites. The 

extravasation process involves a crosstalk between the cancer cells and endothelial cells, 

and leukocytes, platelets and proteins of the coagulation cascade play supportive roles [427, 

516]. For example, platelets frequently embrace circulating tumor cells and, by releasing 

TGFβ, they induce an EMT of cancer cells inside the blood stream and thus increase their 

extravasation into the lung [427]. Amoeboid cell migration of cancer cells, on the other hand, 

has also been shown to promote TEM [517]. However, the spatial and temporal contribution 

of the mesenchymal vs. the amoeboid phenotype during the process of TEM and subsequent 

crossing of the underlining basement membrane during the process of cancer cell 

extravasation in vivo has to be further investigated. 
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5.6.2 MET and colonization 

If EMT plays an important role in metastasis formation, how comes that carcinoma 

metastases frequently display a similar degree of differentiation as the primary tumor [431]? 

One formal possibility has it that EMT is dispensable for intravasation, and cancer cells 

rather intravasate by collective migration of epithelial cell clusters or by passive shedding into 

the circulation, promoted by the disorganized and leaky vasculature present in the primary 

tumor [467, 518]. Another explanation is based on the notion that EMT is a transient/dynamic 

process conferring high plasticity to cancer cells. Thereby it has been postulated that EMT-

derived mesenchymal cells, which are thought to be slowly proliferating cells with cancer 

stem cell-like properties, are forced to undergo a MET to be able to initiate proliferation [431]. 

If so, what triggers an MET? Is it simply the lack of EMT-inducing factors in the inhospitable 

environment of metastatic target organs, or are distinct factors actively promoting MET?  

 

There is a plethora of experimental evidence, supporting the hypothesis that MET in 

the target organ is required for colonization. One of the earliest reports about the requirement 

for MET during metastatic outgrowth comes from experiments with a human bladder 

carcinoma cell line, which by serial passaging in mice gave rise to subclones with increased 

metastatic potential. Whereas the parental cell line displayed mesenchymal features, the 

higher metastatic subclones were of epithelial morphology and expressed epithelial markers. 

However, in contrast to these results by intracardial injection, when the cells were injected 

orthotopically and all steps of the metastasis cascade had to be successfully completed to 

form metastases, the mesenchymal parental cell line has shown higher metastatic potential 

than the epithelial subclones. These results raise the possibility that an EMT plays a critical 

role in the early steps and an MET in the late steps of the metastatic cascade. 

Mechanistically, MET can be promoted by increased FGFR-2 expression, interestingly by the 

mesenchymal-specific splice isoform FGFR-2IIIc [519]. In line with these findings, cells 

isolated from lung metastases of patient-derived breast cancer xenograft mice (PDX mice) of 

the basal-like subtype partially lose their aggressiveness compared to the parental tumor 

cells, accompanied by a more differentiated, MET-like status [520]. A requirement for MET in 

lung colonization has been further demonstrated by spatially restricting TWIST1 expression 

to the primary tumor site and preventing its expression during the lung colonization process 

[506] or by reducing the expression of the EMT-inducing transcription factor PRRX1 [521]. 

Along these lines, mesenchymal, E-cadherin-deficient breast cancer cells derived from the 

MMTV-Neu mouse model seed more lung metastases upon orthotopic mammary fat pad 

injection as compared to epithelial, E-cadherin-expressing cells. However, mesenchymal, E-

cadherin-deficient cells are less metastatic as compared to the epithelial cells when injected 

into the tail vein [480], again supporting a critical role of an EMT in the early and of an MET 
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in the late stages of metastasis formation. Although TGFβ is a well-characterized inducer of 

EMT, a recent report has proposed that TGFβ can also induce MET in mesenchymal cancer 

cells via induction of ID1, which in a dominant-negative manner inhibits TWIST1 activity and 

increases stem cell-like features of the cells [522]. The same publication proposes the 

existence of both epithelial and mesenchymal cancer cells with tumor-initiating properties. 

Indeed, two distinct populations of cancer cells in primary breast cancer patient samples 

have been identified: an epithelial cell population expressing the enzyme aldehyde 

dehydrogenase and a mesenchymal cell population characterized as CD44+ CD24- [523]. In 

contrast to the reports above underlining the importance of MET in metastatic colonization, 

recent work has demonstrated that a mesenchymal phenotype with increased β1 integrin and 

focal adhesion kinase (FAK) activity and increased filopodia formation promotes active lung 

colonization and metastatic outgrowth of breast cancer cells [510, 524].  Moreover, 

overexpression of a constitutive-active form of the EMT-inducing transcription factor TEAD2 

promotes rather than inhibits lung metastasis formation upon i.v. injection of murine breast 

cancer cells [508]. Apparently, the fine-tuned cell plasticity and the functional interplay 

between EMT in earlier stages and MET in the later stages of the metastatic cascade 

warrants further investigation. 

 

5.6.3 Evidence for EMT in human breast cancers 

Breast cancers do not represent a single cancer entity but instead summarize a broad 

spectrum of different malignant diseases of the breast. Several classification systems are 

employed in order to provide the optimal treatment regiment for breast cancer patients. 

Traditionally – and still of great value – breast cancers have been classified according to their 

morphologic appearance into several histological types. Secondly, immunohistochemical 

analysis of the estrogen- (ER), progesterone receptors (PR) as well as HER2 expression 

stratifies patients to anti-hormonal therapy and therapeutics targeting HER2. Since the 

beginning of this millennium, a new layer of classification has been achieved by the use of 

gene expression profiling [7, 525]. 

 

In the early days, pathologists have developed and employed a highly sophisticated 

classification system for malignant diseases of the breast based on cancer (cell) morphology. 

Most invasive breast cancer patients are diagnosed with invasive breast carcinoma of no 

special type (previously termed invasive ductal carcinoma) [526]. Two less frequently 

observed subtypes, which are interesting with regards to EMT, are invasive lobular 

carcinoma and metaplastic carcinoma. Invasive lobular carcinoma cells can migrate as so-

called “indian files”, which is regarded as a single-cell migration mode, although the cells are 

in close contact to each other at their front and rear [446]. One hallmark of invasive lobular 



RELEVANCE OF EMT 

	

	 131	

carcinoma is the mutation or reduced expression of E-cadherin. Interestingly, based on gene 

expression analysis, these tumors were highly prevalent in the luminal A subtype, which is 

usually characterized by its well-differentiated epithelial morphology [527]. These data, 

together with the results from the E-cadherin-deficient mouse models of lobular breast 

carcinoma discussed above [491], contradict the results from in vitro experiments 

demonstrating that a loss of E-cadherin function is sufficient to induce a complete EMT [480, 

505]. 

 

Metaplastic carcinomas represent - among others - tumors with mesenchymal 

phenotype and they are typically negative for ER, PR and HER2 expression (i.e. triple-

negative). For the nomenclature of the mesenchymal representatives of this subtypes, the 

terms carcinosarcoma and sarcomatoid carcinoma are often used as synonyms. Interestingly, 

metaplastic carcinomas are often classified as basal-like or claudin-low (identified based on 

an EMT-like gene expression signature, see below), they frequently carry mutations of 

TRP53 and generally respond less to chemotherapy than other triple-negative breast 

cancers [486, 528]. Regarding the etiology of their mesenchymal appearance, it is currently 

unclear if this is due to epigenetic (potentially reversible EMT) or genetic (irreversible EMT) 

alterations. Other than that, using the term of an EMT to describe the etiology of their 

mesenchymal morphology implies an epithelial cell as origin, a notion that currently lacks 

experimental support.  

 

The advent of gene expression profiling has revolutionized the classification systems 

of cancer in general and of breast cancer in particular and has revealed functional insights 

into the biological processes underlying breast cancer morphology. Based on gene 

expression profiling, invasive breast cancers were initially classified into the intrinsic 

subtypes luminal A, luminal B, HER2-enriched basal-like, and normal breast-like [525, 529]. 

Later on, these categories were extended by the claudin-low subtype, which with regard to 

EMT warrants further attention [435, 486].   

 

The claudin-low breast cancer subtype is characterized by the low expression of 

epithelial markers (E-cadherin, occludin, claudin 3, 4 and 7), luminal markers (cytokeratins 

18/19, GATA3), and the receptors ER, PR, HER2 (triple-negative). It is distinct from the 

closely related triple-negative, basal-like subtype – besides the enrichment of an EMT gene 

expression signature – by lower expression of proliferation genes [486]. On the other hand, 

claudin-low tumors display increased expression of genes involved in angiogenesis, cell 

migration, immune system response (i.e. CXCL12) and extracellular matrix (vimentin), to 

name but a few. Overall, the gene expression profile of claudin-low tumors suggests an EMT 
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phenotype with a significant amount of different infiltrating leukocytes [486]. Importantly, 

several studies have shown that tumors of the claudin-low, but not of the basal-like subtype, 

are enriched in cancer stem cell/tumor-initiating cell signatures, which is consistent with the 

finding that EMT and tumor-initiating properties are often shared [422, 486]. Regarding their 

histopathological appearance, of the tumors classifying as claudin-low most of them classify 

as invasive carcinomas not otherwise specified, while only a minority is characterized as 

metaplastic or medullary carcinoma [486].  

 

If EMT plays an essential role in the process of leaving the primary tumor and 

entering the systemic circulation, one would assume that the higher the percentage of cells 

with an EMT phenotype in the primary tumor is, the higher the likelihood of distant metastasis 

and shorter patient survival will be. However, an EMT signature does not predict breast 

cancer patient survival [530]. Moreover, claudin-low tumors do not show a worse prognosis 

than luminal B, HER2-enriched or basal-like - the other subtypes with poor prognosis [486]. 

These results are rather surprising, since it has been shown for many individual key EMT 

players, including FOXC1, SOX4, LXH2, PRRX1, and for a signature composed of TGFβ-

pathway components and downstream targets that their high expression correlates with poor 

clinical outcome [384, 425, 521, 530, 531]. An association between lung metastasis relapse 

and an enrichment of a TGFβ-response signature has only been found in ER- primary breast 

tumors but not in ER+ breast tumors, and this signature is not prognostic for metastatic 

relapse in the liver, bone and brain [515]. In contrast to the lack of prognostic impact on 

patient survival, several reports have linked tumors of the claudin-low subtype with 

resistance to chemotherapy, in concordance with the general assumption that cells with an 

EMT phenotype are intrinsically more refractory to chemotherapy [532]. Along these lines, a 

gene expression signature representing stromal cells or mesenchymal tumor cells has been 

associated with a poor response to neoadjuvant chemotherapy [533]. In addition, claudin-low 

tumors have shown to be less chemosensitive than basal-like tumors [486], and a 

pathological complete response has been negatively correlated with an EMT signature [530]. 

Intriguingly, the claudin-low and a cancer stem cell signature are enriched after neoadjuvant 

treatment with endocrine therapy or chemotherapy compared to pre-treatment conditions 

[534]. Taken together, it appears that the claudin-low signature per se is not an indicator of 

poor prognosis compared to other aggressive intrinsic breast cancer subtypes, but it seems 

to be predictive for inferior response to therapy.  

 

Many question remain. For example, similar to the case of metaplastic tumors 

discussed above, why do certain breast tumors display a mesenchymal gene expression 

profile? Is it due to genomic alterations resulting in an irreversible EMT or is it rather due to 
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less stable epigenetic marks or constant EMT-inducing signals of the surrounding tumor 

stroma? In addition, if the cell of origin of claudin-low tumors is found within the mammary 

stem cell compartment, the term EMT may be misleading, since the cell of origin never has 

achieved an epithelial differentiation [535, 536]. 

Global gene expression profiling of breast cancer samples has critically contributed to 

the understanding of inter-tumoral heterogeneity; it has provided important information about 

the predominant intrinsic breast cancer subtypes in the sample analyzed. However, it does 

not account for the potential co-existence of different tumor cell subpopulations – i.e. intra-

tumoral heterogeneity [486]. Apparently, industrious single cell analysis seems required to 

address the extent and quality of tumor heterogeneity in breast cancer. 

 

To potentially detect rare cancer cells with an EMT phenotype, immunostainings of 

tumor sections with antibodies against epithelial and mesenchymal markers have been 

performed. The technical hurdle to distinguish stromal cells from mesenchymal tumor cells in 

human tumors has recently been elegantly circumvented by performing RNA in situ 

hybridizations (RNA-ISH) on HER2-positive primary breast cancer patient samples 

concomitantly against HER2 - to identify tumor cells - and against a collection of 

mesenchymal markers [537]. This approach identified tumor cells expressing mesenchymal 

markers in these primary tumor samples. In the same study, by using dual-colorimetric RNA-

ISH against a pool of epithelial transcripts and a pool of mesenchymal transcripts, they 

identified biphenotypic cells co-expressing both epithelial and mesenchymal markers in 

primary breast cancer samples  – interestingly, not necessarily at the invasive front – and in 

draining lymph nodes. Strikingly, the highest percentage of epithelial and mesenchymal 

double-positive tumor cells is found in the triple-negative subtype known to display a 

particularly aggressive clinical course [537]. Similarly, it has been reported that cells co-

expressing epithelial and mesenchymal markers are predominantly observed in samples of 

claudin-low and basal-like tumors [486, 538]. These findings clearly show that “partial EMT” 

(i.e. the co-expression of epithelial and mesenchymal markers) can be observed by 

histopathological analysis of human breast cancer tissue. Hence, a complete EMT might not 

be a prerequisite for tumor cell dissemination, consistent with the observation that partial 

EMT represents a state with higher cell plasticity than a complete EMT [539]. Whether cells 

with a complete EMT can be identified within the bulk of cancer-associated fibroblasts 

(CAFs) within the tumor stroma remains unclear. While tumor cell-specific genetic alterations 

can be found in stromal cells of breast cancers [540, 541], clonal somatic genetic alterations 

have not been found in CAFs isolated from breast and ovarian cancer stroma [542]. 
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5.7 Lessons learned from circulating tumor cells (CTCs) 

The prototypical role of EMT in cancer progression is often described as the initial 

process of the metastasis cascade, i.e. the gain of migratory and invasive properties allowing 

cancer cells to leave the primary tumor, to invade into nearby blood vessels and to access 

the blood circulation – the “highway” of cancer cell dissemination. Hence, the analysis of 

CTCs in cancer patients might give indirect insights into the state tumor cells are in, when 

they have reached the blood stream, with the caveat that CTCs can also originate from 

existing metastases [500]. A growing body of evidence shows that the presence of CTCs in 

breast cancer patients is not only associated with poor prognosis, but it is also predictive for 

reduced therapy response. Indeed, CTCs expressing EMT markers, such as TWIST1 and 

vimentin, have been identified in breast cancer patients [543, 544]. One important caveat 

screening the literature about CTCs with an EMT phenotype is that the technically highly 

demanding analysis of CTCs is often biased towards the epithelial phenotype, since 

conventional CTC capture technologies have been frequently based on epithelial markers, 

such as EpCAM and cytokeratins, markers that are lost during a complete EMT [537, 545]. A 

growing panel of new microfluidic CTC-capture devices now allows the isolation of CTCs of 

the whole spectrum from “fully” epithelial to “fully” mesenchymal tumor cells [518, 537, 546]. 

Employing these devices, it has been found that the proportion of CTCs expressing various 

levels of mesenchymal markers is higher in more aggressive breast cancer subtypes and 

rises during failure of conventional chemotherapy and targeted agents [537]. The detection of 

CTCs expressing mesenchymal markers and its correlation with parameters of poor clinical 

outcome in breast cancer patients suggests therefore the importance of EMT in the 

intravasation process. Alternatively, EMT can also be induced after having reached the blood 

stream via EMT-inducing factors, such as TGFβ secreted, for example, by platelets that 

adhere to single-cell CTCs and CTC clusters [427, 518, 537]. This “outside of the primary 

tumor” induction of EMT may also be functionally important by preventing the CTCs from 

anoikis and from eradication by chemotherapy and also by supporting extravasation at the 

distant site. 

 

Although CTC clusters are long known to be important contributors to metastasis 

formation [472], it has recently been shown that in the breast cancer transplantation models 

CTC-clusters represent only around 2-5% of CTCs, yet are responsible for approximately 

half of the lung metastases. This data reveals a dramatically higher metastatic potential of 

CTC clusters compared to single-cell CTCs – at least in the lung, representing the first 

capillary bed breast cancer cells encounter when disseminating systemically. CTC clusters 

are mainly derived from oligoclonal aggregates from the primary tumor rather than being 

generated by intravascular aggregations or intravascular proliferation [518]. Interestingly, 
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CTC clusters can co-express epithelial and mesenchymal markers [537], raising the question 

by which mechanism these oligoclonal clumps have reached the systemic circulation: by 

collective cell migration or by passive shedding into the circulation in an epithelial state and 

subsequent (partial) EMT induced by platelet-derived TGFβ, or by induction of EMT within 

the primary tumor and passive shedding or collective migration of mesenchymal tumor cells 

into the blood stream? Certainly, the advances in CTC capturing technologies will not only 

provide important new insights into the biology of cancer cells “en route” from the primary 

tumor to distant sites [518], but also open new avenues for new strategies to interfere with 

metastasis formation [547]. 

 

 

5.8 Concluding remarks 

There is compelling evidence for the existence of carcinoma cells with a 

mesenchymal phenotype in human breast cancer as well as in mouse breast cancer models. 

Sophisticated lineage-tracing experiments as well as novel technologies in single cell 

analysis will further shed light into the question whether rare EMT-derived mesenchymal 

cells can be found in the tumor stroma. However, the simple presence of EMT in the primary 

tumor does not allow the conclusion that EMT is actually required for metastasis. The highly 

complex multistep metastasis cascade and the transient nature of EMT render it difficult to 

draw causal conclusions regarding the importance of EMT for metastasis formation in cancer 

patients. In addition, mesenchymal migration represents just one of multiple migration modes 

cancer cells can employ to leave tissue boundaries, and therapeutically interfering with 

mesenchymal migration might activate salvage pathways, such as MAT, or reactivate 

dormant, mesenchymally disseminated tumor cells by inducing an MET.  

 

The functional manipulation of key EMT players in breast cancer mouse models has 

provided clear evidence for a causal involvement of EMT-inducing or blocking factors in 

metastasis. Unfortunately, EMT marker analysis of the primary tumors derived from these 

functional experiments has been rarely reported, and whether EMT is indeed a prerequisite 

for metastasis formation remains to be resolved. In addition, the transient nature of EMT 

adds another layer of complexity to interpreting the data derived from these experiments. 

While temporal resolution can be achieved by the inducible expression or silencing of genes 

of interest, spatial resolution as performed by Tsai and co-workers is urgently needed as well 

[506].  

 

Despite the impressive progress in the past years, we still need to learn about the 

mechanisms underlying cancer metastasis in mice and men. Animal models that closely 
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recapitulate the patient situation and the careful design of meaningful clinical studies 

accompanied with cutting-edge translational research programs will be instrumental to 

transform cancer from a deadly into a chronic or even curable disease. 
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7. Abbreviations 
 
ALL  acute lymphoblastic leukemia 
ANG  angiopoietin 

BC  breast cancer 

BM  basement membrane 

BMDC  bone marrow-derived cells 

BRP  bovine retinal pericytes 

CAT  collective to amoeboid migration 

cCasp3 cleaved caspase 3 

CEC  circulating endothelial cell 

CK  cytokeratin 

CLL  chronic lymphocytic leukemia 

CML  chronic myeloid leukemia 

CPT1A carnitine palmitoyltransferase 1 

CRC  colorectal cancer 

CSC  cancer stem cell 

CTC  circulating tumor cell 

DAPI  4′,6-Diamidin-2-phenylindol 

DAVID  Database for Annotation, Visualization and Integrated Discovery 

DCA  dichloroacetate 

DFS  disease-free survival 

DLL4  delta-like ligand 4 

dNTP  deoxyribonucleotide 

EC50  half-maximal effective concentration 

ECM  extracellular matrix 

EGFR  epidermal growth factor receptor 

EMA  European Medicines Agency 

EMT  epithelial to mesenchymal transiton 

EPC  endothelial progenitor cell 

EpCAM epithelial cell adhesion molecule 

ER  estrogen receptor 

ERC  European Research Council 

FAK  focal adhesion kinase 

FC  fold change 

FDA  Food and Drug Administration 

FGF  fibroblast growth factor 
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FGFR  fibroblast growth factor receptor 

FITC  fluoresceinisothiocyanat 

FLK-1  fetal liver kinase-1 

FLT-1  fms-like tyrosine kinase 

FSC  forward scatter 

G-CSF  granulocyte colony stimulating factor 

GIST  gastrointestinal stroma tumor 

GSEA  gene set enrichment analysis 

HCC  hepatocellular carcinoma 

HGF  hepatocyte growth factor 

HIF  hypoxia-inducible factor 

HUASMC human umbilical artery smooth muscle cells 

HUVEC human umbilical vein endothelial cell 

IC50  half-maximal inhibitory concentration 

IF  immunofluorescence 

IGF  insulin-like growth factor 

IL  interleukin 

IMG  intussusceptive microvascular growth 

i.p.  intraperitoneal 

IPF  idiopathic pulmonary fibrosis 

i.v.  intravenous 

KEGG  Kyoto Encyclopedia of Genes and Genomes 

LOX  protein-lysin-6-oxidase 

LYVE-1 lymphatic vessel endothelial hyaluronan receptor-1 

MAT  mesenchymal to amoeboid transition 

MCT  monocarboxylate transporter 

MDS  myelodysplastic syndrome 

MDSC  myeloid-derived suppressor cell 

MeRIC  Mechanisms of Evasive Resistance in Cancer 

MET  mesenchymal to epithelial transition 

MMP  matrix metalloproteinase 

MMTV  mouse mammary tumor virus 

MPS  myeloproliferative syndrome 

MTD  maximum tolerated dose 

mTOR  mammalian/mechanistic target of rapamycin 

MVD  microvessel density 

NG2  neuron-glia antigen 2 
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NRP  neuropilin 

NSCLC non-small cell lung cancer 

PFK-1  phosphofructokinase-1 

PFKFB3 phospho-fructokinase-2/fructose-2,6-bisphosphatase 3 

PFS  progression-free survival 

PDGF  platelet-derived growth factor 

PDGFR platelet-derived growth factor receptor 

PDX  patient-derived xenograft 

pH3  phospho-histone H3 

PHD  prolyl hydroxylase domain protein 

PI  propidium iodide 

PlGF  placental growth factor 

PNET  pancreatic neuroendocrine tumor 

p.o.  per os 

PR  progesterone receptor 

PyMT  polyoma middle T 

RA  rheumatoid arthritis 

(cc)RCC (clear cell) renal cell carcinoma  

RMA  robust multichip average 

RT-PCR reverse transcription polymerase chain reaction 

SFVO  Swiss Federal Veterinary Office 

SPF  specific pathogen free 

SSC  side scatter 

TCA  tricarboxylic acid 

TEM  transendothelial migration 

TGFβ  transforming growth factor-β 

TIE tyrosine kinase with immunoglobulin-like and epidermal growth factor-like 

domain 

TKI  tyrosine kinase inhibitor 

UICC  Union for International Cancer Control 

VEGF  vascular endothelial growth factor  

VEGFR vascular endothelial growth factor receptor 

VPF  vascular permeability factor 

WAP  whey acidic protein 

2D; 3D  two-dimensional; three-dimensional 

3PO  3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one 
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8. Summary of the scientific and academic aspects of my thesis 
 

During my MD-PhD, I led a project aimed at the in depth characterization of 

nintedanib, which is a relatively new anti-angiogenic small molecule tyrosine kinase inhibitor, 

in the Rip1Tag2 mouse model of pancreatic neuroendocrine tumors. We recently published 

this work in “Clinical Cancer Research” [380]. In addition, together with Laura Pisarsky, we 

were investigating mechanisms of resistance to anti-angiogenic tyrosine kinase inhibitors 

(nintedanib, sunitinib) in a mouse model of breast cancer and in the Rip1Tag2 model. The 

manuscript of the latter project has been submitted for publication. Furthermore, I was 

involved in a project that identified an immature B-cell population serving as a surrogate 

marker in order to monitor tumor angiogenesis and response to anti-angiogenic compounds 

in several mouse models of cancer [548]. Subsequent to these research articles, I wrote a 

book chapter describing our routinely used tumor angiogenesis assays in the Rip1Tag2 

mouse model. This chapter will be part of an edition of the lab protocol series “Methods in 

Molecular Biology” on tumor angiogenesis assays. 

 

Furthermore, I am currently investigating the impact of a yet unpublished TKI of focal 

adhesion kinase (BI853520) on primary tumor growth and the metastatic cascade in several 

breast cancer mouse models. However, this project is not yet mature enough to be included 

in the present thesis. Lately, I was involved in the preclinical validation of Rho-Kinase 1 and 2 

(ROCK1/2) as a potential metastasis-inhibiting target (Meyer-Schaller et al., manuscript in 

preparation).  

 

Additionally, I have summarized the current knowledge about the relevance of EMT in 

the process of breast cancer metastasis published in a review in “FEBS Letters” [358]. Based 

on discussions I had during the preparation of this review, I have significantly contributed to 

the design and initiation of a new project in the Christofori laboratory, which aims to decipher 

the role of EMT in metastasis in different preclinical breast cancer metastasis mouse models 

involving sophisticated lineage-tracing and fate-mapping approaches.  

 

Last but not least, I was supervising three master students (2 medical and 1 biology 

student) and I was engaged in teaching of medical students at the Faculty of Medicine of the 

University of Basel: During four years, I was a tutor in “Problem oriented Tutorials”, gave 

students insights into biomedical research with animals in the context of laboratory visits 

during the “Wissenschaftsmonats” and I was giving workshops about “nutrition and cancer” 

on the “Thementag Ernährung”. 
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