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                                                                                                                                            Summary 

Summary:  
    Protease Nexin-1 (PN-1), a 43 KDa glycoprotein, is known as a serpin (serine 

protease inhibitor) regulating extracellular proteolytic activity. It strongly inhibits the 

activity of several serine proteases such as thrombin, tissue plasminogen activator (tPA), 

urokinase-type plasminogen activator (uPA), trypsin and plasmin. Consequently it 

contributes to tissue homeostasis by inhibiting serine proteases upon formation of high 

molecular weight complexes that are actively removed from the extracellular space. The 

internalization of the PN-1 protease complexes is mediated by low-density lipoprotein 

receptor related protein1 (LRP1) and LRP1’s co-receptor heparan sulfate proteoglycan 

(HSPG). 

    In this thesis, the mechanism and the consequence of free PN-1 internalization were 

examined. In cortical primary neuronal cultures prepared from PN-1 reporter mice, 

endogenous PN-1 was taken up by the neurons that did not expressed PN-1. 

Internalization of exogenous PN-1 was also studied in both wild type and LRP1-/- mouse 

embryonic fibroblasts (MEF). It displayed concentration- and time-dependence, and the 

kinetics of PN-1 uptake in LRP1-/- MEF cells was slower than that of wild type MEF cells. 

Receptor associated protein (RAP) interfered with PN-1 uptake in wild type but not in 

LRP1 -/- MEF cells. These data suggested that an alternative receptor mediates PN-1 

uptake in the absence of LRP1. We identified syndecan-1, a member of HSPG family to 

be the receptor mediating PN-1 uptake in LRP1 -/- MEF cells. The following 

experimental evidences supported this conclusion. First, PN-1 uptake was sensitive to 

Genistein and β-cyclodextrin, both known to block syndecan-1 mediated endocytosis. 

Second, PN-1 uptake was increased by over-expression of full-length syndecan-1 and 

decreased by RNA interference targeting this proteoglycan. Furthermore, over-

expression of truncated syndecan-1 lacking its intracellular domain did not influence PN-

1 uptake in LRP1 -/- MEF cells. These results demonstrated that syndecan-1 especially 

the intracellular domain of its core protein was required for syndecan-1-mediated PN-1 

internalization in the absence of LRP1.  

    We also explored the role of PN-1 in signaling transduction and cell migration. PN-1 

activated PKA by binding to LRP1.  More importantly, in the absence of LRP1, PN-1 

stimulated Ras-Raf-MEK-ERK signaling pathway, and enhanced cell migration. The 

involvement of ERK signaling in PN-1 induced migration was substantiated by the fact 

that MEK inhibitor U0126 inhibited this migration. As downstream effector of ERK 

signaling, Rac1 was activated by PN-1, resulting in lamellipodia formation and increased 
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                                                                                                                                            Summary 

migration in LRP1-/- MEF cell. We further demonstrated that PN-1’s function on cell 

migration is coupled to syndecan-1, because anti-syndecan-1 antibody inhibited cell 

migration induced by PN-1. Moreover, an enhanced interaction between PN-1 and 

syndecan-1, by over-expression of either PN-1 or syndecan-1 in LRP1-/- MEF cells, 

increased cell migration.  

    We further identified the upstream of this signaling pathway. We found that both anti-

integrin β3 and anti-uPA receptor (uPAR) antibodies inhibited PN-1 enhanced migration 

in LRP1-/- MEF cell. We were also able to co-immunoprecipitate PN-1 and syndecan-1 

with integrin β3. Since it is know that both uPAR and syndecan-1 are the upstream of 

integrin αvβ3 signaling, taken all these together, we concluded that PN-1 stimulated 

ERK signaling influencing cell migration went through integrin via interaction either with 

syndecan-1 or uPAR. 
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                                                                                                                                        Introduction 

1  Introduction     
 
    Mammalian cells are able to take up substances by invaginating the plasma 

membrane, this process can catch membrane bound and soluble components. 

Endocytosis takes up large amount of the plasma membrane and is balanced by the 

recycling of membrane components to the plasma membrane by exocytosis. 

Endocytosis can be subdivided into the categories of phagocytosis, pinocytosis and 

receptor-mediated endocytosis. Phagocytosis takes up large particles and bacterial cells; 

it depends on actin polymerization during particle ingestion. Pinocytosis continuously 

takes up small amount of extracellular fluids, which requires either clathrin or caveolin. 

Receptor-mediated endocytosis internalizes cell surface proteins along with extracellular 

factors, including virus, toxins, nutrients, antigens and antibodies, growth factors and 

hormones via clathrin-coated pits (CCPs), the clathrin-independent pathway or caveolae.  

    Endocytosis is a precisely regulated physiological process, which begins with the 

invagination of small regions of the plasma membrane that ultimately form intracellular 

vesicles. These internalized vesicles may shuttle back to the plasma membrane to 

recycle the membrane components or they may be targeted for degradation [O'Bryan et 

al., 2001]. Endocytosis has long been known to affect receptor density on the cell 

surface. Recent studies have further demonstrated that it plays a key role in receptor-

mediated signal transduction through clathrin- and caveolin-dependent processes. In 

some cases, blockade of these processes attenuates, or even prevents, signal 

transduction [Liu et al., 2003] 

    Cell surface signaling receptors, such as G-protein coupled receptors (GPCRs) or 

receptor tyrosine kinases (RTKs), are activated upon binding of their ligands. These 

activated receptors can be internalized by endocytic receptors, a phenomenon to 

regulate the desensitization of signaling receptors. However, signaling transduction also 

regulates the endocytic efficiency. For instance, upon epidermal growth factor (EGF) 

stimulation, EGF receptor signaling causes rapid phosphorylation of the clathrin heavy 

chain leading to increased recruitment of clathrin to the membrane [Wilde et al., 1999].  

It also activates Rab5a, a regulatory GTPase that plays an essential role in endocytosis 

[Barbieri et al., 2000], thereby promoting the endocytosis of EGF and EGF receptor 

themselves. Thus RTKs initiate specific signaling cascades, possibly at the plasma 

membrane, to enhance endocytosis.   

 10



                                                                                                                                        Introduction 

1.1 Clathrin-mediated endocytosis and signal transduction 
 
    Clathrin-dependent endocytosis begins with the assembly of CCPs, which are 

composed of the basic building blocks of clathrin and the adaptor-binding protein 2 

complex [Smythe et al., 1992]. Once recruited to the plasma membrane, clathrin forms 

the characteristic lattice network composed of the three-legged triskelia. These triskelia 

assemble into stable oligomeric complexes that induce curvature in the plasma 

membrane, and lead to the formation of CCPs [Crowther et al., 1981]. In the presence of 

accessory factors, the CCPs progress to form clathrin coated vesicles (CCVs), a step 

that requires the GTPase activity of dynamin to promote the fission of membranes, 

thereby releasing the CCVs [Herskovits et al., 1993;Sever et al., 1999]. The resulting 

CCVs then undergo a process of uncoating in which clathrin is removed from the 

vesicles. The uncoated vesicles are then targeted for several possible fates including 

fusion with the endosomal compartment, followed by degradation or recycling back to 

the cell surface.  

Clathrin-mediated endocytosis is the internalization mechanism for a wide range of 

functional ligands, including constitutively recycled receptors such as the low-density 

lipoprotein related protein1 (LRP1) and the urokinase-type plasminogen activator 

receptor (uPAR), ion channels, GPCRs and RTKs, cell adhesion molecules, and 

synaptic vesicle membranes. When signaling occurs on the endocytic pathway, on one 

hand, endocytosis is the mechanism to desensitize activated signaling receptors. On the 

other hand, CCPs function as nucleation sites for the organization of signaling 

complexes on the plasma membrane. Thus the endocytic vesicles provide convenient 

cellular structures for distribution of signaling protein complexes and for signaling 

propagation. For example, when RTKs activate extracellular signal-regulated kinase 

(ERK), activated RTKs recruit Grb2 and mSos to the plasma membrane, which in turn 

rapidly translocate to CCPs, and activate membrane associated Ras, following by the 

signaling transduction from Ras through Raf-1, MEK to ERK.  Over-expression of mutant 

dynamin, which specifically blocks endocytic vesicles trafficking, inhibits the ERK 

activation [Vieira et al., 1996], strongly suggesting that endocytosis is required for 

signaling propagation from RTKs to activated ERKs.  
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1.2 Caveolae-mediated endocytosis and signal transduction 
 
    Caveolae are flask-shaped invaginations present in the plasma membrane of many 

cell types, which are insoluble in nonionic detergents at 4°C. However, their composition, 

appearance and function are cell-type dependent. Caveolae are coated primarily by 

caveolin [Rothberg et al., 1992], which is essential for the formation and stability of 

caveolae [Fra et al., 1995]. In addition to caveolin, caveolae are known to contain 

dynamin, a GTPase localized to the neck of flask-shaped caveolae indentations, and is 

likely involved in pinching off the caveolae vesicles from plasma membrane [Henley et 

al., 1998;Oh et al., 1998]. Caveolae are also rich in cholesterol and sphingolipids [Brown 

et al., 1998;Simons et al., 2000], which are, in fact, important for the formation and 

stability of caveolae as well [Rothberg et al., 1992]. Recent work has confirmed that 

caveolae are directly involved in the internalization of numerous ligands including 

membrane components, toxins, viruses and bacteria [Pelkmans et al., 2002]. The 

mechanism of internalization via caveolae and the intracellular pathways activated 

subsequently are just starting to emerge. 

    One of the major hypothetic functions of caveolae is that they appear to serve as 

signaling platform by recruiting a wide range of signaling molecules, such as LRP1, 

growth factor receptors (e.g. platelet-derived growth factor (PDGF) receptor) [Boucher et 

al., 2002], GPCRs, non-receptor tyrosine kinases (e.g. Src), non-receptor Ser/Thr 

kinases (e.g. PKA) and the signaling adaptor proteins (e.g. Shc, Grb2) [Williams et al., 

2004]. The interactions occur in the scaffolding domain of caveolin [Li et al., 1996;Couet 

et al., 1997;Williams et al., 2004]. Caveolin seems to inhibit down stream signaling of 

many of these proteins, the most notable of which is Src tyrosine kinase [Razani et al., 

2002].  Furthermore, caveolin has been shown to block signaling from EGF receptor to 

MAP kinase thereby inhibiting cell proliferation [Engelman et al., 1998], however the 

inhibitory mechanism still remains unknown.  

1.3 Low-density lipoprotein receptor family 
  
    Low-density lipoprotein (LDL) receptor (LDLR) gene family represents a group of very 

important transmembrane receptors, which mediate numerous ligands endocytosis and 

modulate signaling transduction.  It consists of seven core members of cell surface 

protein, including the LDLR, the very low-density lipoprotein (VLDL) receptor (VLDLR), 

the apolipoprotein E receptor-2 (apoER2), LRP1, the structurally most similar LRP1b 
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and megalin (LRP2), and the multiple epidermal growth factor repeat containing protein7 

(MEGF7). In addition, LRP3, 4, 5, 6 are also included in this family although they share 

much less structural similarity with the core members.    

1.3.1 Structure of LDLR family 
 
    The receptors in this family contain an extracellular domain, which is various in size, 

but unique in the arrangement of the same structural motifs. The most significant feature 

of their extracellular domain is that a β-propeller domain is always followed the ligand 

binding repeats. This domain contains YWTD-motif and is flanked by EGF-like repeats, 

which are essential for the pH-dependent release of ligands in endosomes [Davis et al., 

1987] (Fig. 1a). A single transmembrane domain connects the extracellular domain with 

the cytoplasmic domain, which displays little sequence similarity between family 

members. All core members of this family contain one or more arginine-proline-x-

tyrosine (NPxY) motifs in the intracellular domain, which serves as an endocytosis 

signaling. However, they contain a various number of ligand-binding repeats in their 

extracellular domain, allowing for a large and diverse ligand-binding potential.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig

 

 

 

 

. 1 Gene family of LDL receptor (adapted from Howell and Herz 2001)
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    Other more distantly related receptors, like LRP3 and LRP4, share little homology with 

classic receptors apart from the ligand-binding repeats, and both lack the NPxY 

endocytosis signals (Fig. 1b). Another subgroup of receptors, such as LRP5 and LRP6, 

has a similar organization of extracellular domain as the core members, except that the 

YWTD and the EGF repeats are amino-terminal to the ligand-binding repeats, which 

immediately precede the plasma membrane. Their intracellular domains also lack NPxY 

motifs (Fig.1c) [Howell and Herz, 2001].  

    The first family member to be identified was the LDLR, which plays a central role in 

lipid metabolism and cholesterol homeostasis by mediating the cellular uptake of 

cholesterol-rich LDL particles [Chen et al., 1990]. Because other family members also 

bind to lipoproteins, the receptors have been considered to be included in the regulation 

of cellular and systemic lipoprotein metabolism.  

1.3.2 Functions of LDLR family 
 
    The dogma that the LDLR family functions predominantly, if not exclusively, in lipid 

and lipoprotein metabolism has been challenged by recent findings that several 

members of this family function in signaling processes. They physically or functionally 

interact with other classes of cell surface proteins or intracellular adaptor proteins, 

indicating a remarkable functional complexity (Table 1) [May et al., 2003] 
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Table 1   Mammalian members of LDLR family  (adapted from May et al, 2003) 

Receptor Expression  Biological Function  Intracellular interact proteins 

LRP1 Expressed by a wild range of cell 
types and tissues, such as  

Endocytosis of a broad range of 
ligands, including protease/protease 
inhibitor complexes, signaling 

 
PSD-95, Dab1 JIP1/2, Fe65, Shc 

 Hepatocytes Chylomicron remnant receptor  
 Neurons Synaptic function?  
 Trophoblasts, embryonic tissues Embryonic development  
LRP1b Restricted expression pattern 

(central nervous system) Unknown Unknown 

Megalin 
Apical plasma membrane of 
absorptive and secretory epithelia, 
for example, renal proximal tubule 

Vitamin and nutrient supply of 
tissues in the developing and adult 
organism: calcium homeostasis, 
recovery of excreted low molecular 
weight proteins and vitamin 
D/vitamin D binding protein 
complexes 

ANKRA, dab1/2, MegBP, JIP1/2, 
EB-1, Glu1-BP (=semCAP-1), 
NHE3, CAPON, MAGI-1 

 Thyroid and parathyroid gland Uptake and transcytosis of 
thyroglobulin: PTH internalization  

 

Developmental expression: 
endometrium during implantation, 
placental cytotrophoblast, 
trophoectoderm, visceral yolk sac, 
neuroectoderm 

Supply of nutrients, vitamin and lipid 
homeostasis, signaling?  

VLDLR 
Developing and adult brain, heart 
and endothelial cells, adipose 
tissue. 

Neuronal migration: synaptic 
transmission Unknown Dab1 

ApoER2 Developing and adult brain Neuronal migration: synaptic 
transmission Dab1, JIP1/2, PSD-95 

 Testis Male fertility?  

LDLR 
Ubiquitous, for example, 
hepatocytes, macrophages, central 
nervous system 

Cholesterol homeostasis ARH 

MEGF7 Restricted expression pattern: 
embryogenesis, adult CNS Unknown Unknown 

 

1.3.2.1 LDLR family-dependent endocytosis 
 
    As indicated in Table 2, LDLR family members internalize broad range of ligands, 

executing diverse functions, from lipoproteins metabolism to proteases and their inhibitor 

complexes clearance, vitamin metabolism and signaling transduction as well. The LDLR 

family-mediated ligand internalization comprises three distinct phases: binding of the 

ligands to the receptor; followed by internalization via CCPs and releasing of the ligands 

as a result of a pH drop in the endosomes; recycling of the receptor to the cell surface 

and degradation of the ligands [Brown et al., 1986]. A unique feature, also shared by all 

family members, is that the interactions between the ligands and the receptors can be 

antagonized by a 39-KDa receptor associated protein (RAP), which functions 

intracellularly as a molecular chaperone, by facilitating receptor folding and by 

preventing premature ligand interaction with the receptor during their trafficking within 
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the early secretory pathway [Warshawsky et al., 1994;Bu, 1998]. Since RAP shows 

rather high affinity to all members of LDLR family, it is commonly used as an antagonist 

to study LDLRs-mediated endocytosis [Strickland et al., 1995] 

 
Table 2    Examples of ligands for the LDLR-related proteins (adapted from Howell 2001) 

Ligand classes and examples LDLR VLDLR ApoE R2 LRP1 Megalin LRP5 LRP6

Lipoproteins containing        
ApoE + + + + +   
ApoB 100 +    +   
lipases  +  + +   

Carrier Proteins        
DBP     +   
RBP     +   

Proteases and inhibitor complexes        
PA    + +   
α2M    +    
PAI-1  +  + +   

Signaling proteins        
Reln  + +     
Wnt      (?) + 
TSP-1   +   +       

α2M,α2 -macroglobulin; ApoB, apolipoprotein B; PA, plasminogen activator; PAI-1, plasminogen activator inhibitor-1; RBP, 
retinol-binding protein;TSP-1, Thrombospondin-1 and LRP1b are not listed because their binding properties are unknown 

 

1.3.2.1.1 Lipoprotein and lipid metabolism  
 
    Lipoproteins are characterized by an insoluble core of cholesteryl ester and 

triglyceride surrounded by a shell of amphipathic phospholipids and specialized protein 

called apolipoprotein (Fig. 2). The main function of lipoproteins is to transport lipid in an 

aqueous environment [Wasan et al., 1998;Chung et al., 2004]  

 

 

 

 

 

 
    

Phospholipid

Triglyceride 
Cholesteryl ester 

Cholesterol 

Apolipoprotein 

Fig. 2 The lipoprotein particle consists
of cholesterol and triglycerides with an
apolipoprotein embedded in a
phospholipid monolayer (adapted from
Chung and Wasan, 2004). 
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Lipoproteins differ in their content of proteins and lipids, and are classified based on 

their density into five main categories: chylomicrons, VLDLs, intermediate density 

lipoproteins, LDLs and high-density lipoproteins (Table 3).  

 

Table 3 Density, size, physical composition and function of human plasma lipoproteins  
(adapted from Chung and Wasan, 2004)     

Characteristics Chylomicrons Very low-density 
lipoproteins 

Intermediate 
density lipoproteins

Low-density 
lipoproteins 

High-density 
lipoproteins 

Abbreviations  VLDL IDL LDL HDL 
Density (g/ml) < 0.95 0.95 - 1.006 1.006 - 1.019 1.019 - 1.063 1.063 - 1.210 
Diameter (nm) 75 - 1200 30 - 80 25 - 35 18 - 25 12-May 
Composition (%dry wt.)     
Proteins 1 - 2 8 19 22 47 
Triglycerides 86 55 23 6 4 
cholesterol 5 19 23 6 4 
Phospholipid 7 18 20 22 30 
Apoproteins A1, A2    A1, A2 
 B-48 B-100 B-100 B-100  
 C1, C2, C3 C1, C2, C3 C1, C2, C3  C1, C2, C3 
 E E E   

Main function 

Transport of 
exogenous 
triglyceride and 
cholesterol 

Transport of 
endogenous 
triglyceride 

Transport of 
endogenous 
cholesterol 

Cholesterol 
transport to all 
tissues 

Reverse 
cholesterol 
transport 

 
    Chylomicrons contain cholesterol and triacylglycerols from food, which are repacked 

with apolipoproteins and additional lipids in enterocytes. Subsequently they are secreted 

into circulation, acquiring cholesteryl ester, apoE and apoC, which facilitate 

reorganization by lipoprotein lipase (LpL). As a result, chylomicrons become rapidly 

hydrolyzed, releasing free fatty acid, mono- and diglycerides, and free cholesterol, which 

are absorbed by neighboring tissues for energy production and storage. The residual 

particles, known as apoE-rich chylomicron remnants, are taken up by the liver via LRP1 

[Salter et al., 1988;Wasan et al., 1998].  

    VLDLs are the major transporters of endogenous triacylglycerol from the liver to 

extrahepatic tissue. Both endogenous and exogenous lipids are assembled with 

lipoproteins, mainly apoB-100, into VLDL particles. In blood, as for chylomicrons, VLDLs 

acquire cholesteryl ester, apoE and apoC and are then hydrolyzed by LpL, releasing free 

fatty acids and VLDL remnants. The latter, which are relatively rich in apoB-100, can be 

removed from circulation by LDLR or LRP1 on hepatocytes [Salter et al., 1988;Wasan et 
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al., 1998]. The VLDL remnants can also be further catabolized by hepatic lipase to form 

cholesteryl ester-rich LDL particles [Salter et al., 1988].  

    LDLs are the main carriers of cholesterol to peripheral tissues for sustaining, for 

instance steroid production and membrane synthesis. ApoB-100 is essential for 

recognition of the LDL particles by their receptors and subsequent internalization. They 

are then degraded in lysosomes, releasing lipids into the cytoplasm for cell use [Brown 

et al., 1986;Salter et al., 1988].  

1.3.2.1.2 LDLR family-mediated lipoprotein and lipid metabolism 
 
    Cholesterol homeostasis is maintained by a complex feedback mechanism, in which 

LDL-derived cholesterol suppresses the intracellular cholesterol and LDLR biosynthesis 

to prevent further cellular cholesterol overloading. However mammalian cells can 

synthesize cholesterol in absence of lipoproteins. Thus a constant level of cholesterol is 

maintained within the cells. When LDL is available, most cells primarily use the LDLR to 

import LDL cholesterol. Clinically, the most important effect of LDLR deficiency is 

hypercholesterolemia in the circulation that accelerates development of atherosclerosis, 

due to a disturbed balance between extracellular and intracellular cholesterol pools 

[Goldstein et al., 1985].  

    VLDLR displays high affinity to apoE [Takahashi et al., 1992;Takahashi et al., 1996]. It 

has been shown to mediate the uptake of chylomicron remnants in vitro [Niemeier et al., 

1996], and to reverse hypercholesterolemia in LDLR knock-out mice [Kobayashi et al., 

1996;Kozarsky et al., 1996]. These results demonstrate that the VLDLR is competent in 

binding and internalization of apoE-containing lipoproteins, indicating that VLDLR plays 

a significant role in the metabolism of triglyceride-rich lipoproteins. In VLDLR and LDLR 

double knock-out mice, a significant increase in serum triglyceride level was detected 

under high fat diet; and these mice were protected from obesity via a significant 

reduction in whole-body free fatty acid uptake under a high fat and calorie diet 

[Goudriaan et al., 2001]. Taken together, VLDLR seems to be a part of machinery 

transporting triglycerides or free fatty acid to peripheral cells. 

    LRP1 is produced at high levels in hepatocytes in the liver, where it mediates the 

uptake of chylomicron remnants, the lipoproteins that shuttle dietary lipids from the 

intestine to the liver [Willnow et al., 1994c;Gliemann, 1998]. LRP1 also binds the 

lipoprotein lipases that are directly involved in the generation of the remnant lipoproteins 

from triglyceride-rich chylomicrons [Beisiegel et al., 1991].   
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1.3.2.2 LDLR family-independent endocytosis 
 
    It was first shown 20 years ago that clearance of remnant lipoproteins by liver was 

partly mediated through a LDLR-independent pathway [Kita et al., 1982;Rubinsztein et 

al., 1990;Ishibashi et al., 1994]. In fact the LDLR-independent pathway mediated about 

one-third of LDL removal from plasma in normal humans and all removal in patients 

homozygous for receptor-negative familial hypercholesterolemia [Goldstein et al., 

1977;Kesaniemi et al., 1983]. As suggested by studies carried out in different 

laboratories HSPG are the potential receptors for hepatic and arterial catabolism of 

artherogenic lipoproteins [Williams et al., 1992;Fernandez-Borja et al., 1996;Al Haideri et 

al., 1997;Seo et al., 1997;Llorente-Cortes et al., 2002;Boyanovsky et al., 2005].  

1.3.2.3 LDLR family-mediated signal transduction 

1.3.2.3.1 VLDLR and ApoER2 function in Reelin signaling pathway 
 
    Reelin is a large extracellular protein, which is predominantly synthesized and 

secreted in the cerebral cortex by the Caja-Retzius cells of the marginal zone, the most 

outer layer of the developing cortex [D'Arcangelo et al., 1995;Ogawa et al., 1995]. Reelin 

signaling pathway regulates the cortical layering and positioning of neurons during 

development [Miyata et al., 1997]. In reeler mice, in which the gene encoding Reelin is 

defective, the disorganized cortex is approximately inverted. The disordered cortex 

appears with early-born neurons occupying abnormal superficial positions and later-born 

neuron adopting abnormal deep positions [Caviness, Jr. et al., 1973].  

    The cytoplasmic adaptor protein, Disable-1, has been shown to function down-stream 

of the Reelin signaling pathway [Sheldon et al., 1997;Rice et al., 1998;Howell et al., 

1999]. Disable-1 deficient mice develop a phenotype which is identical to that of reeler 

mice [Howell et al., 1997;Sheldon et al., 1997]. The link between extracellular Reelin and 

intracellular Disable-1 was not clear until it has been reported that mice lacking both 

VLDLR and ApoER2 precisely mimic the phenotype of those with Reelin or Disable-1 

deficiency [Trommsdorff et al., 1999]. In light with these observations, the NPxY motif of 

these two receptors has been shown to interact with the phosphotyrosine binding 

domain of Disable-1 by the yeast two-hybrid system [Gotthardt et al., 2000]. Furthermore, 

binding of Reelin to its receptors induces phosphorylation of Disable-1, this effect is 

abolished by RAP or by apoE, which in turn block the binding of Reelin to the receptors 

[D'Arcangelo et al., 1999;Hiesberger et al., 1999]. These findings demonstrate that 
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Reelin acts, via VLDLR and apoER2, to induce phosphorylation of Disable-1. The 

mechanism by which Reelin signaling is influencing neuronal migration is not yet well 

defined. However it is known that Reelin-receptor interaction activates Src family kinases, 

such as Src and Fyn, which phosphorylate Dab1 [Arnaud et al., 2003;Bock et al., 2003]. 

The down stream of Dab1 has just been identified recently as CrkII, an intracellular 

adaptor protein, which has been shown to regulate cell migration through Rac protein 

[Chen et al., 2004]. 

1.3.2.3.2 LRP function in Wnt signaling pathway 
 
    The Wnt family of secreted molecules functions in cell-fate determination and 

morphogenesis during development [Wodarz et al., 1998]. The interaction between 

canonical Wnts and their receptors, the Frizzled family members, results in dissociation 

of axin-1, GSK3β and β-catenin complex, thereby reducing the phosphorylation of β-

catenin.  Unphosphorylated β-catenin is stabilized and forms complexes with the 

TCF/LEF transcription factors, inducing specific transcriptional activation of target genes. 

LRP6 null mice have characteristics that closely match the phenotypes of many Wnt 

mutants, such as Wnt 1, Wnt3a and Wnt7a. For instance, loss of LRP6 results in 

truncation of the axial skeleton, deletion of the caudal midbrain and limbs patterning 

defects. However, LRP6 mutants do not display the entire mutations characteristic of 

Wnt mutants [Hussain et al., 1999], suggesting a requirement for another co-receptor in 

Wnt signaling. 

    The genetic experiments conducted in Xenopus embryos show that injection of either 

LRP5 or LRP6, in combination with Wnt5a, activates Wnt-Frizzled signaling, induces 

Wnt-responsive genes, the dorsal axis duplication, and neural crest cell formation 

[Tamai et al., 2000]. The LDLR fail to substitute for these LRPs. In vitro experiments also 

show that LRP6 complexes with Frizzled only when Wnt is present, and LRP6 is able to 

form complex with Wnt as well [Hussain et al., 1999]. These discoveries demonstrate 

that LRP5 and 6 interact with Frizzled functioning as Wnt co-receptor.  However, LRP1 

has been shown to sequester Frizzled1 and disrupt the receptor/co-receptor complex 

formation, leading to the repression of the canonical Wnt signaling. However, this 

inhibitory effect is not related to its endocytic function [Zilberberg et al., 2004]. 

1.3.2.3.3 LRP2 (Megalin) function in signaling transduction 
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Megalin (LRP2) is highly expressed in proximal tubules of the kidney, where it plays 

an important role in vitamin and iron homeostasis. Megalin mediates the tubular uptake 

of the complex of vitamin and their carrier proteins such as retinol-binding protein, 

vitamin D-binding protein, transcobalamin, and transferrin [Moestrup et al., 2001]. This 

re-absorption mechanism reduces the loss of these vital substances in the urine. 

 Megalin also regulates calcium homeostasis through parathyroid hormone, which 

mobilizes calcium and counter-regulates low calcium level. The binding of this hormone 

to its receptor transduces signal through activation of adenylate cyclase and increases 

product of cAMP. Megalin competes directly with the receptor of parathyroid hormone for 

hormone binding and endocytosis, thus down regulates the receptor activity [Nykjaer et 

al., 2002]. 

    In addition Megalin binds the extracellular molecule Sonic hedgehog (Shh), and 

regulates Shh signaling. It has been proposed that megalin internalizes a complex of 

Shh and its receptor Patched, thereby releasing Patched-mediated inhibition of the Shh 

signaling receptor Smoothened and activating Shh signaling pathway [McCarthy et al., 

2002]. Megalin deficiency leads to a subsequent loss of Shh expression in the ventral 

forebrain, consequently the ventrally derived oligodendroglial and interneuronal cell 

populations are lost in the forebrain [Spoelgen et al., 2005].  

    Megalin is also believed to functionally interact with intracellular proteins through 

adaptors that bind to the receptor tail and regulate its endocytic and signal transducing 

activities. For example, it has been shown that the intracellular tail of megalin interacts 

with megalin-binding protein, which is an intracellular adaptor protein. The latter interacts 

with several transcriptional regulators including SKI-interacting protein. This suggests 

that megalin directly participates in transcriptional regulation through controlled 

sequestration or release of transcription factor via megalin-binding protein [Petersen et 

al., 2003]. 

    Megalin binds to various other intracellular adaptor molecules with role in protein 

kinase signaling and protein trafficking [May et al., 2003], including c-Jun N-terminal 

kinase interacting protein 1 and 2 [Gotthardt et al., 2000], and disable-2  [Oleinikov et al., 

2000], suggesting that megalin plays a regulatory role in signaling transduction.  

1.3.2.4 LRP1-mediated endocytosis and signal transduction 
 
    LRP1 is synthesized as a single chain molecule, and processed by furin into a 515 

KDa α chain, and an 85 KDa β chain that contains the transmembrane and the 
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intracellular domains [Herz et al., 1990]. The α and β subunits remain non-covalently 

associated on the cell surface.  

1.3.2.4.1 LRP1-mediated endocytosis: ligand families and their binding sites 
 
    LRP1 recognizes at least 30 different ligands that represent several families of 

proteins (Table 4). These include lipoproteins, proteases, protease-inhibitor complexes, 

ECM proteins, bacterial viruses and various intracellular proteins [Herz et al., 

2001;Strickland et al., 2003].  
 
Table 4 Ligands that bind to the extracellular domain of LRP1 (adapted from Herz and Strickland, 2001;Strickland 

and Ranganathan, 2003) 

Lipoproteins and lipid metabolism 

apolipoprotein E  
Hepatic lipase lipoprotein Lipid metabolism and cholesterol homeostasis 
Lipoprotein lipase 
Sphingolipid activator protein 
Proteases and cofactors 
uPA   Cell migration, wound healing 
tPA   Fibrinolysis, signaling function in brain  
MMP-9 
MMP-13   Angiogenesis, metastasis 
TSP-2/MMP-2 
Factor IXa 
Factor VIII  Blood coagulation 
Protease-inhibitor complexes 
α2M-protease complexes Pan-protease inhibitors, infection 
PZP-protease complexes 
uPA:PAI-1  Regulate uPA/tPA activity 
tPA:PAI-1 
Thrombin:PAI-1 
Thrombin:ATIII 
Thrombin:HCII 
Thrombin: PN-1 
Elastase:α1-AT  Regulate neutrophil elastase 
C1s:C1q inhibitor  Regulate C1s activity 
TFPI: TFPI-VIIa complex Regulate blood clotting  
APP (KPI isoforms)  Alzheimer disease 
Matrix proteins 
Fibronectin 
Thrombospondin-1  TGF-β activation, matrix-cell interactions 
Thrombospondin-2  Collagen assembly, matrix-cell interaction 
Intracellular proteins 
HSP-96   Chaperon 
RAP   Chaperon 
HIV Tat protein  transcriptional activation 
Calreticulin 
Growth factors 
PDGF   Regulate of signal transduction 
Midkine 
Connective tissue growth factor 
Other molecules 
Complement C3  Infection 
Lactoferrin  Antibacterial 
Rhinovirus 
Pseudomonas exotoxin A  
Circumsporozoite protein 
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The ligand recognition sites within LRP1 have been studied by testing the ability to 

mediate ligand internalization either by each of these single repeats or by fusing various 

clusters of ligand binding repeats. These studies have yielded some important insights 

into the ligand recognition properties of LRP1. The major ligand binding sites are located 

in clusters II and IV; most ligands bind equally to clusters II and IV; no other ligands 

besides RAP have been shown to bind to clusters III (Fig. 3) [Willnow et al., 

1994b;Springer, 1998;Herz et al., 2001].  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Domain organization of LRP1. LRP1 contains four ligand-binding clusters with different

affinity for distinct ligands as described in the text (adapted from Strickland and Ranganthan,

2003).  

1.3.2.4.2 Interactions between LRP1 and intracellular adaptor proteins 
 
    Not only does the extracellular domain of LRP1 bind a multitude of biologically diverse 

ligands, but there is now also an increasing number of cytoplasmic proteins that have 

been found to interact with the intracellular domain of LRP1 (Table 5) [Herz et al., 

2001;Su et al., 2002;Petersen et al., 2004].  
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Table 5 Adapter and scaffold proteins that bind to the intracellular domain of LRP1 (adapted from Herz and 

Strickland, 2001, Su et al. 2003, Petersen et al., 2004) 

Cytoplasmic ligands Implied function 
 
Diasble-1 (Dab-1) Activation of Src family kinases, neuronal migration 
FE65 App processing, actin remodeling  
SEMCAP-1 Axon guidance, vesicular transport 
JIP1 Regulation of MAPK and SAPK, including JNK 
JIP2 
PSD-95 Scaffolding protein of the postsynaptic density, coupling to NMDA 

receptors 
Talin-like protein Coupling to actin cytoskeleton 
OMP25 Mitochondrial transport 
CAPON  Regulation of nitric oxide synthase 
PIP4,5 kinase-like protein Regulation of inositol signaling 
ICAP1 Integrin-mediated signaling? 
Shc Ras activation 
GULP/CED-6 clearance of apoptotic cells 
MafB hindbrain development  

 

1.3.2.4.3 Potential role of LRP1 in Alzheimer disease 
 
    LRP1 also serves as a receptor mediating the clearance of proteins associated with 

Alzheimer’s disease, such as amyloid precursor protein (APP), apoE and α2M [Beisiegel 

et al., 1989;Kristensen et al., 1990;Strickland et al., 1990;Hussain et al., 1991;Kounnas 

et al., 1996]. Single APP gene gives rise to many isoforms due to alternative RNA 

splicing, among which APP770, 751 and 695 are the major isoforms in the brain. These 

isoforms are transmembrane proteins; they can be cleaved within their extracellular 

domain. APP 770 and 751, which contain the Kunitz proteinase inhibitor (KPI) domain, 

have been shown to be internalized by LRP1 [Kounnas et al., 1995], whereas APP695, 

lacking this domain, is a poor ligand to LRP1 but believed to be the major source of 

amyloid β-peptide (Aβ) in brain [Kang et al., 1990;Wertkin et al., 1993]. Once 

synthesized, APP is processed by two different proteolytic pathways, leading either to 

the cell surface exposure or to the extracellular space releasing. The amyloidogenic 

pathway of APP processing, and Aβ production can take place intracellularly in the 

secretory compartments, or following internalization of cell surface APP by the endocytic 

pathway [Koo et al., 1994;Cook et al., 1997;Hartmann et al., 1997;Skovronsky et al., 

1998]. Most of studies are focused on the interaction between LRP1 and APP 770 or 

751 to elucidate the role of LRP1 in Alzheimer’s disease. 

LRP1 plays dual role in the process of Alzheimer’s disease. LRP1 can increase Aβ 

level, which is generated in endosomal compartments upon internalization of cell surface 

APP by LRP1 [Ulery et al., 2000]. On the opposite, LRP1 also decreases Aβ level by two 
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different mechanisms. It mediates the degradation of Aβ in complex with apoE or α2M 

[Kang et al., 2000;Shibata et al., 2000]. It also interacts with KPI domain of APP751 

therefore favors both APP751 internalization and degradation [Kounnas et al., 

1995;Knauer et al., 1996]. However the latter mechanism was challenged by the recent 

observation by Pietrzik et al. They reported that LRP1 regulated different steps of APP 

processing, including APP secretion, internalization and Aβ production independent of 

KPI domain of APP. This function involves the interaction between intracellular adaptor 

protein FE65 and the cytoplasmic domain of LRP1 [Pietrzik et al., 2002]. Based on these 

observations, these authors proposed that the interaction between LRP1 and KPI 

domain of APP might play a role in signaling transduction rather than in endocytosis.  

1.3.2.4.4 LRP1 function in neurotransmission 

best models for investigating cellular and 

m

sminogen activator (tPA) has been shown to contribute to activity 

de

 of NMDA 

receptor and modulation of the calcium influx. tPA cleaves NR1 subunit of NMDA 

 
Long term potentiation (LTP) is one of the 

olecular mechanisms involved in the strength and stability of synaptic connections, 

thus approaching issues in the formation and storage of memory [Nicoll et al., 1995]. 

LTP has two distinct phases: early and late-phase LTP. In contract to the early-phase 

LTP, the late-phase LTP requires gene transcription, new protein synthesis, activity of 

cAMP-dependent protein kinase A (PKA) [Nguyen et al., 1994;Schuman, 1997]. It is also 

known that the induction of LTP requires a calcium influx through NMDA receptor 

[Malenka, 1991].  

Tissue-type pla

pendent synaptic plasticity in the hippocampus and cerebellum, and LTP is 

significantly decreased in mice lacking tPA [Carmeliet et al., 1994;Frey et al., 

1996;Huang et al., 1996]. One mechanism has been proposed that tPA may modulate 

intracellular signaling events such as calcium influx and PKA activation [Zhuo et al., 

2000]. As LRP1 is the major receptor binding tPA in hippocampal neurons, the role of 

LRP1 in LTP was worth exploring. In fact, binding of tPA to LRP1 enhances the activity 

of PKA, a key player in later-phase LTP [Roberson et al., 1996;Abel et al., 1997]. 

Moreover, RAP blocks the enhancing synaptic potentiation induced by exogenous tPA in 

hippocampal slices prepared from tPA knockout mice [Zhuo et al., 2000]. So the 

interaction between tPA and LRP1 is likely to initiate intracellular signal transduction, 

including an increase in PKA activity, which in turn regulates late-phase LTP. 

    In the same context, it is intriguing that LRP1 is implicated in the activation
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receptor causing an increase in the sensitivity to NMDA receptor agonists [Nicole et al., 

2001]. Second, α2M, associated with neuronal LRP1, alters NMDA receptor-mediated 

Ca 2+ influx [Bacskai et al., 2000;Qiu et al., 2002]. This interaction is likely to occur via 

the multivalent scaffold protein PSD-95, because PSD-95 associates with NMDA 

receptor as well as with the cytoplasmic domain of LRP1 [Gotthardt et al., 2000]. The 

Ca2+ influx due to LRP1-mediated activation of NMDA receptor channels may provide a 

mechanism of altering local synaptic plasticity. 

1.3.2.4.5 Role of LRP1 in cell adhesion and mig
 

ration 

    LRP1 contributes to the regulation of cell adhesion and migration due to its function 

y

lex [Nykjaer et al., 1992], and fibronectin 

ced vascular smooth muscle cell (SMC) 

m

on endoc tosis and signaling transduction.  

    LRP1 mediates the internalization of cell surface uPAR [Conese et al., 1995],  uPA-

plasminogen activator inhibitor (PAI) comp

[Salicioni et al., 2002], all of which play an important role in cell adhesion and migration. 

Consequently LRP1 regulates cell surface concentration of these proteins and the cell 

signaling they are triggering. In mouse embryonic fibroblasts and HT 1080 fibrosarcoma 

cells, loss of LRP1 expression results in increased uPA accumulation in the medium, 

increased uPAR on the cell surface, and increased cell migration on vitronectin [Weaver 

et al., 1997;Webb et al., 2000]. Furthermore, LRP1 deficient mouse embryonic 

fibroblasts display higher Rac1 activity, shown to be the consequence of accumulated 

uPAR on the cell surface [Ma et al., 2002]. LRP1 also suppresses cell signaling to ERK 

by binding free uPA, thus decreasing the free uPA available to interact with uPAR [Webb 

et al., 2000]. In vivo LRP1 is weakly detected in prostates with adenocarcinomas and 

undifferentiated carcinomas, whereas a significantly higher level of uPAR expression is 

observed. This indicates an inverse relationship between the expression of LRP1 and 

the increased activation of plasminogen activators detected in cancers [Gilardoni et al., 

2003]. Hence LRP1 provides an indirect mechanism to regulate migration related cell 

signaling by controlling the concentrations of cell surface ligands and receptors, but not 

by participating in the actual signaling events.  

LRP1 also regulates PDGF signaling and its effect on migration, which requires both 

endocytic and signaling functions.  PGDF-indu

igration and proliferation is a critical step during the formation of atherosclerotic lesions 

[Ross, 1993]. The role of LRP1 in SMC migration is supported by the observations that 

RAP and anti-LRP1 antibody inhibit SMC migration, and that apoE, inhibits both PDGF 
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stimulated proliferation and migration in SMC. The latter effect requires the apoE 

association with LRP1, as apoE does not affect SMC proliferation and migration when 

LRP1 is absent, indicating that endocytic function of LPR1 is involved [Swertfeger et al., 

2002].  

    Recently it has been reported that LRP1 mediates cell adhesion by co-operating with 

other adhesion molecules. It promotes integrin β1 maturation and transport to the cell 

endocytosis and signal transduction 

g 

ansducing functions. The interesting question would be: how is this regulated? To 

an

LR

surface [Salicioni et al., 2004]. It co-localizes with integrin αMβ2, and down-regulation of 

LRP1 expression abrogates the integrin β2 mediated cells adhesion, indicating 

cooperation between these two molecules [Spijkers et al., 2005]. LRP1 also functions as 

co-receptor for membrane-anchored receptor, like calreticulin, which directs focal 

adhesion disassembly. Blockage of LRP1 activity results in dysfunctional focal adhesion 

disassembly and cell adhesion [Orr et al., 2003]. 

1.3.2.4.6 Phosphorylation of LRP1: regulation of 
 

As discussed in the previous section, LRP1 executes both endocytic and signalin

tr

swer this question, many studies are focused on the phosphorylation of the 

intracellular domain of LRP1. LRP1 can be phosphorylated on tyrosine residues [Barnes 

et al., 2001], which provide a docking site for adapter proteins, such as Shc containing 

phosphotyrosine binding domain or a carboxyl-terminal Src homology domain. These 

adapter proteins are involved in signaling cascades induced by protein tyrosine kinases.  

In this context LRP1 tyrosine phosphorylation has shown great importance in PDGF-

initiated signaling. It is known that PDGFBB induces the tyrosine phosphorylation of 

P1 on the second NPxY motif in the cytoplasmic tail; this effect requires PDGF 

receptor-β, Src tyrosine kinase and PI3 kinase [Boucher et al., 2002;Loukinova et al., 

2002]. Mice lacking LRP1 in vascular SMC under LDLR-/- background display 

hypersusceptibility to develop atherosclerosis, accompany by hyperactivation of PDGF 

pathway, over-expression of PDGF, and an increase of phospho-PDGF receptor. It has 

been proposed that in the absence of LRP1, PDGF binds to its own receptor PDGF 

receptor-β and activate signaling cascades leading to SMC proliferation and migration 

(Fig. 4A). In the presence of LRP1 and apoE, PDGF binds to both LRP1 and PDGF 

receptor-β leading to the tyrosine phosphorylation of NPxY motif in the cytoplasmic tail of 

LRP1, which is blocked by apoE. Thus really justifies here unphosphorylated LRP1 
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functions as endocytic receptor to reduce the extracellular PDGFBB by endocytosis and 

degradation, preventing PDGF-dependent vascular SMC migration and proliferation (Fig. 

4B). In the presence of LRP1 but absence of apoE, LRP1 undergoes tyrosine 

phosphorylation upon PDGFBB stimulation, phosphorylated LRP1 interacts with Shc 

adaptor protein and favors to the development of atherosclerotic lesion (Fig. 4C) 

[Boucher et al., 2003]. 

 

 

the
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 Fig. 4 Model for regulation of PDGF signaling and suppression of atherosclerosis by

 functional switch of LRP1. (adapted from Boucher 2004).  
 

 

The example described above indicates that the regulation of LRP1 function involves 

 amino acid specific phosphorylation of LRP1 in its cytoplasmic domain, especially 

thin the NPxY motifs. LRP1 has also been shown to be phosphorylated in its 

toplasmic domain at serine 73 and serine 76 by cAMP dependent, serine/threonine 

ecific protein kinase PKA. Inhibition of PKA activity leads to a decrease of LRP1 

osphorylation and LRP1-mediated endocytosis, so does the mutation on site serine 76 
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of LRP1 [Li et al., 2001]. It was thus proposed that serine phosphorylation regulates 

LRP1-mediated internalization, whereas tyrosine phosphorylation is involved in signal 

transduction. 

    However, in a more recent finding, LRP1 was shown to be phosphorylated on serine, 

threonine and tyrosine residues within its cytoplasmic domain by PKCα. Interestingly 

paran sulfate proteoglycan  
 

 one or more glycosaminoglycans (GAG), 

hich generally either fill the extracellular space or attach to the cell surface. They can 

ulfation and epimerization during synthesis in the 

ulfate (CS), dermatan sulfate and keratan sulfate (Fig. 

4) [Prydz et al., 2000]. However, proteoglycans appear primarily attached with HS side 

mutations of these serine and threonine residues lead to inhibition of phosphorylation of 

LRP1, and to more rapid internalization rate. This result reveals that phosphorylation 

reduces the association of LRP1 with adapter proteins of the endocytic machinery, such 

as Disable-1. Furthermore it has been shown that serine and threonine phosphorylation 

is necessary for the interaction of LRP1 with Shc, and increases the interaction of LRP1 

with other adapter proteins, such as Disable-1 and CED-6/GULP [Ranganathan et al., 

2004]. It is likely that the state of LRP1 phosphorylation on serine and threonine residues 

not only regulates its endocytic function, but also influences the phosphorylation of 

tyrosine residues, thus as well regulating its impact on signal transduction. Therefore the 

functional switch of LRP1 seems to be far more complicated than it was originally 

thought. 

1.4 He

    Proteoglycans are proteins substituted with

w

be present as membrane-bound or glycosylphosphatidylinositol (GPI)-linked to the cell 

membrane [Iozzo, 1998;Bernfield et al., 1999]. They act as tissue organizers, influencing 

cell growth and the maturation of specialized tissues. They play a role as biological filters 

and modulate growth factor activities, regulate collagen fibrillogenesis and skin tensile 

strength. They also affect tumor cell growth and invasion, influence corneal transparency 

and neurite outgrowth [Iozzo, 1998].  

    The GAG chains consist of long, unbranched, highly negatively charged, repeated 

disaccharides that are modified by s

Golgi. They are covalently attached to a core protein through a short polysaccharide 

linker. GAGs are extremely well conserved structures, indicating specific, essential roles 

in biology [Williams et al., 1997].  

    There are four classes of GAGs that attach to proteoglycan core proteins: heparan 

sulfate (HS)/heparin, chondroitin s
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chains, the most ubiquitous cell surface GAG, recognized as heparan sulfate 

proteoglycan (HSPG). 
 

 

 

 

 

 

 

Fig. 5 Structure of different GAG chains attached to the HSPG core proteins. The red

dotted rectangles marks different sulfation positions in each GAG (adapted from Prydz

2000).  
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    HSPG family comprises primarily two subfamilies of proteins: the transmembrane 

syndecans and the GPI-linked glypicans. Other cell surface core proteins, including 

betaglycans and CD44s, have HS chains attached to their extracellular domains, but HS 

chains attaching to these HSPGs have been thought to have a less important role in the 

interactions with ligands [Kramer et al., 2003]. There are also matrix HSPGs, like 

perlecan and agrin, which are secreted and present in the basement membrane [Iozzo, 

1998].  

   Cell surface HSPGs provide highly complex and sophisticated systems to control 

interactions of ECM components and soluble ligands with the cell surface. They bind to 

extracellular proteins and form signaling complexes with receptors, therefore regulating 

their occupancy and response. They also immobilize proteins on the cell surface and 

mediate protein internalization. The outcome of these interactions depends on whether 

the ligand is soluble (i.e. growth factor, cytokine) or insoluble (i.e. ECM components), 

whether it also interacts with a signaling receptor, or binds to the HS chains or the core 

proteins only [Bernfield et al., 1999].  

    Binding of cell surface HSPGs to insoluble ligands, such as ECM components, 

immobilizes HSPGs at the membrane and enables them to interact with actin 

cytoskeleton, thus mediating the cell-cell and cell-matrix adhesion. For instance, they 

interact with fibronectin or integrin to mediate focal adhesion formation and cell 

spreading [Midwood et al., 2004;Beauvais et al., 2004a]. The pattern and timing of 

HSPGs expression are correlated with the requirement of ECM accumulation or the 

interaction with ECM at or during specific development stages [Sutherland et al., 1991]. 

Cell surface HSPGs also act as the co-receptors for soluble ligands like FGF, presenting 

FGFs at sufficiently high concentration to its receptors, hence regulating FGF signaling 

and the relevant downstream events such as angiogenesis, wound healing or tissue 

development [Nugent et al., 2000]. In addition, cell surface HSPGs act as internalization 

receptor, regulating the concentration of cell surface receptors or ligands and providing a 

secondary signaling to the cells. Even the shed ectodomain of HSPGs contributes to 

regulation of ligands activities and the corresponding cell responses [Bernfield et al., 

1999].  

    Most known HSPG functions depend on the interactions between HS chains and their 

protein ligands. Cell surface HS chains bind to numerous proteins in cellular 

microenvironment, such as morphogens (e.g. Shh, Wnts), ECM proteins (e.g. fibronectin, 

vitronectin and laminin), tissue remodeling factors (e.g. uPA PAI-1 and PN-1), growth 
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factors (e.g. EGF, FGF), cell adhesion molecules (e.g. N-CAM), lipoproteins (e.g. apoB, 

apoE), lipoprotein lipases, chemokines and cytokines [Bernfield et al., 1999] among 

other extracellular constituents. The core proteins of HSPGs were considered as much 

less important for HSPG functions. Nonetheless, Drosophila, Zebra fish, Xenopus and 

mouse lacking a specific HSPG core protein show a phenotype, even though other core 

proteins are present, indicating a functional specificity that is required, and this can not 

be compensated during distinct developmental stages [Kramer et al., 2003]. 

    Cell surface HSPGs can be regulated in at least two different ways. All syndecans can 

be shed from cell surface [Kim et al., 1994;Spring et al., 1994], an event converting the 

HSPG from an activator to a potent inhibitor [Lopez-Casillas et al., 1994;Kato et al., 

1998]. Localization of HSPG to restricted regions of the cell surface is another 

mechanism to regulate and focalize HSPG function [Kramer et al., 2003].  

1.4.1 Syndecan family 
 
    In vertebrates the mammalian syndecan family counts four transmembrane proteins 

carrying HS and CS chains. Syndecans are expressed in a cell and tissue specific 

manner during development; their expression is also modified pathologically [Bernfield et 

al., 1992]. Every mammalian cell expresses at least one type of syndecan. Syndecan-1 

is expressed predominantly in epithelial and mesenchymal tissues, syndecan-2 in cells 

of mesenchymal origin, neuronal and epithelial cells, syndecan-3 almost exclusively in 

neuronal and musculoskeletal tissue, whereas syndecan-4 is found in virtually every cell 

type [Couchman, 2003]. 

    Each syndecan has an extracellular domain with attachment sites for three to five HS 

or CS chains, a single-span transmembrane domain, and a short intracellular domain.  

The extracellular domain bears little primary sequence homology, yet all can be 

proteolyticly cleaved at a site near the transmembrane domain. The transmembrane and 

cytoplasmic domains are highly homologous, except for a short variable region in the 

center of the cytoplasmic domain (Fig. 6) [Rapraeger, 2001]. HS is predominantly 

attached to syndecans, typically positioned near the amino terminus, allowing 

interactions with a large number of proteins as described in previous section. The role of 

CS chains is less clear. A recent study suggested that, in syndecan-1 and syndecan-4, 

CS chains cooperate with HS chains in the binding of growth factors or laminin 

[Okamoto et al., 2003;Deepa et al., 2004]. 
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    The syndecans modulate the interaction between cells and their environment. They 

participate in multiple cell behaviors such as growth, adhesion, migration, differentiation, 

and apoptosis, hence playing essential roles in embryonic development, tumorigenesis 

and angiogenesis. Their functions depend not only on molecular interactions between 

syndecan core proteins and cytoskeletal or signaling molecules, but also on binding 

specificities of their HS chains to extracellular ligands. 

1.4.1.1 HS synthesis: generating specific HS binding sites 
 

The fine structures of HS chains begin with the generation of a tetrasaccharide 

(xylose-galactose-galactose-glucuronic acid) that is covalently attached to serine 

residues within the core proteins. This tetrasaccharide serves as the connection for all 

four GAG classes. In the case of HS, N-acetylglucosamine and glucuronic acid are 

sequentially added in an alternating fashion to generate the disaccharide repeat. The 

disaccharide chain can be modified in different ways, including sulfation at the N, 3-O or 

6-O position of the N-acetylglucosamine, deacetylation of the glucosamine, 

epimerization of glucuronic acid to iduronic acid, and sulfation at the 2-O position of 

uronic acid. The combination of these six modifications lead to an extraordinary level of 

chemical diversity in the pattern of sulfation within HS, which in turn determines the 

ligand binding specificity.  

The specific binding affinity of HS chains is determined by the pattern of 

sulfotransferases expressed within the Golgi. In the Golgi, domains of HS chains with 

binding specificity are generated by regulating the transition of GAG substrates through 

distinct combination of sulfotransferase isoforms [Zako et al., 2003]. It has recently been 

shown that the amino acid sequence of HS attachment side in the core protein may also 

play a role in determining HS binding specificity [Nedvetzki et al., 2003]. Consequently 

when HSPG is transported from the Golgi to the cell surface; the final HS chain has 

domains of contiguous disaccharides containing N-sulfation, O-sulfation and unmodified 

domains. In general, specific ligand binding site is either a rare sulfation like 3-O 

sulfation of glucosamine, like for antithrombin III, or a specific sulfation pattern like 2-O, 

6-O and N-sulfation, which are organized into a specific binding domain for FGF-1 and 

FGFR-1 [Wu et al., 2003].  

    HS chains serve as a multi-functional regulator of protein activities through different 

mechanisms. For instance, they serve to simultaneously bind both proteases and 

cognate inhibitors, such as thrombin and PN-1, thus bringing them together in an 
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appropriate orientation to accelerate the inhibitory interaction [Scott et al., 1985;Gettins, 

2002]. Alternatively they bind to protease inhibitors and induce their conformational 

change, therefore enhancing the interaction between protease inhibitors and proteases, 

as for antithrombin III and thrombin or Factor Xa [Olson et al., 1992;Gettins, 2002]. As 

described before, they also act as co-receptor for FGFR signaling pathway, increasing 

cell surface localization and concentration of FGF [Turnbull et al., 2001]. 

1.4.1.2 Syndecan core proteins 
 

Syndecan core proteins contain at least six functional domains (Fig. 6). The 

extracellular domain is among the most rapidly diverging vertebrate proteins with the 

exception of their regions for HS attachment. The transmembrane domain is relatively 

stable, only a few amino acids being different among the vertebrate syndecan 

sequences. This domain contains the regions for interaction with the other membrane 

proteins and for localization to distinct membrane compartments. The cytoplasmic 

domain contains two conserved regions, a membrane proximal common region (C1) 

containing a serine and a tyrosine, and a C-terminal common region (C2). These two 

regions are separated by a region (V) with various length and composition. The C1 

domain is thought to be involved in syndecan dimerization (all syndecans probably exist 

as homodimers and high-order oligomers) and in binding of intracellular proteins, such 

as Src kinase, tubulin and ezrin  [Kinnunen et al., 1998;Granes et al., 2000;Granes et al., 

2003].  The C2 domain with EFYA motif is the binding site for PDZ containing proteins 

[Bernfield et al., 1999;Beauvais et al., 2004b].  
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Fig. 6 Functional domains of syndecan core protein, (adapted from Beauvais and

Rapraeger, 2004) 

1.4.1.3 HSPGs-mediated internalization 

1.4.1.3.1 HSPGs function in lipoprotein metabolism as co-receptor 
 
    Early work indicated that lipoprotein lipase (LpL) could bridge between lipoproteins 

and endothelia HSPGs, thereby mediating cell surface attachment of the particles 

[ROBINSON, 1963]. Later on, this LpL bridge effect was shown to enhance not only the 

binding but also the internalization and degradation of chylomicrons, VLDL and protein-

free emulsions [Eisenberg et al., 1992;Rumsey et al., 1992;Williams et al., 1992;Mulder 

et al., 1993]. Additional bridge molecules have been found, including apoE and hepatic 

lipase [Ji et al., 1993;Ji et al., 1994a]. Because lipoproteins enriched in LpL, apoE and 
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hepatic lipase can bind LDLR family members, it was proposed that HSPG-bound 

ligands are not internalized directly by the HSPGs, but first required a transfer to the 

LDLR family members, thus HSPGs function as co-receptor, which facilitate the 

internalization by their high capacity of ligand binding. 

1.4.1.3.2 HSPGs-mediated ligand internalization  
 
    HSPGs also mediate LDLR- and LRP1-independent internalization of lipoproteins and 

lipoprotein lipases [Williams et al., 1992;Fernandez-Borja et al., 1996;Al Haideri et al., 

1997;Seo et al., 1997;Llorente-Cortes et al., 2002]. Among those syndecan-1 and 

perlecan have been identified as independent endocytic receptor in lipoprotein 

metabolism [Fuki et al., 1997;Fuki et al., 2000a].  

Syndecan-1 can directly mediate lipoprotein catabolism. This event is characterized 

as an endocytic process triggered by syndecan-1 clustering upon ligand binding, 

involving lipid rafts, requiring tyrosine kinase activity to phosphorylate its cytoplasmic 

domain, and the association with actin microfilaments. The kinetics of this endocytosis is 

significantly slower (with t ½=1h) than that of the LDLR family-mediated internalization 

[Fuki et al., 1997;Fuki et al., 2000b].  

This LDLR-independent pathway of lipoprotein catabolism substantially contributes to 

the following: 1) chylomicron remnant catabolism in the absence of LDLR [Ishibashi et 

al., 1994;Mortimer et al., 1995]; 2) LDL clearance, about one-third of which is LDLR-

independent in normal human [Goldstein et al., 1977;Kesaniemi et al., 1983]; and 3) 

arterial lesion development, which is accelerated in the absence of LDLR. Several in 

vivo studies have implicated HSPG-mediated catabolism of lipoproteins. Poor binding of 

apoE mutants to HS but not to LDLR or LRP1, has been correlated with dominantly 

inherited forms of type III hyperlipodemia [Ji et al., 1994b;Mann et al., 1995]. Destruction 

of hepatic HS side chains in vivo impairs chylomicron clearance [Ji et al., 1995;Mortimer 

et al., 1995;Windler et al., 1996]. The clearance of large postprandial remnants appears 

particularly HS-dependent and LDLR-independent [Windler et al., 1996].  

1.4.1.4 Regulation of cytoskeletal organization by syndecans 
 
    The extracellular matrix (ECM), in cooperation with growth factors and cytokines, 

provides cells with a variety of key signals in different physiological and pathological 

processes, such as proliferation, migration, adhesion, differentiation, and death 
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[Giancotti et al., 1999].  In particular, the ECM regulates cell morphology through specific 

plasma membrane receptors triggering signaling events to reorganize cytoskeleton and 

generate cell polarity. HSPGs have been shown to cooperate with integrins and to 

regulate cell shape and cytoskeleton assembly [Kusano et al., 2000;Kusano et al., 2004]. 

The interaction between HSPGs and ECM or growth factors is not only mediated by the 

HS chains but also by the core proteins [Bernfield et al., 1999].  

1.4.1.4.1 Syndecans in signaling transduction and cytoskeleton organization 
 
    Several recent studies supported that syndecan-1 is directly involved in signal 

transduction instead of being just a co-receptor modulating cellular signaling. Syndecans 

have been shown to interact with syntenin, a PDZ protein binding to the EFYA motif of 

the cytoplasmic domain of syndecan [Grootjans et al., 1997]. Syntenin is localized at cell 

adhesion sites and microfilaments, and found to form complex with syndecan-1, E-

cadherin, β-catenin at cell-cell contacts. This suggests that it functions as an adaptor to 

couple syndecan to cytoskeletal proteins or cytosolic downstream signaling effectors 

[Zimmermann et al., 2001]. Furthermore, it has been shown that integrin αvβ3 and 

syndecan-1 are functionally coupled. The integrin αvβ3 needs syndecan-1 to become 

activated and to mediate signals required for cell spreading on vitronectin in human 

mammary carcinoma. The coupling of syndecan-1 to integrin αvβ3 requires the 

engagement of syndecan-1 ectodomain [Beauvais et al., 2003;Beauvais et al., 2004a]. 

This integrin has been associated with ERK signaling in NIH 3T3 fibroblasts [Roberts et 

al., 2003]. Interestingly syndecan-2 and 4 as well as a truncated syndecan-1 ectodomain 

have been reported to influence ERK signaling [Viklund et al., 2002;Utani et al., 

2003;Chen et al., 2005;Rauch et al., 2005].  

    Intensive studies have been carried out to further explore the role of HS chains or 

syndecan core protein in cytoskeleton rearrangement. Ectopic expression of syndecan-1 

enables the syndecan-1 deficient Raji-S1 cells to bind and spread on thrombospodin or 

fibronectin. This effect is not affected by HS removal or by truncation of cytoplasmic 

domain of syndecan-1 [Lebakken et al., 1996]. Furthermore, the truncation of the 

syndecan-1 extracellular domain does not affect the initial lamellipodial extension in Raji-

S1 cells, but it does inhibit the active membrane ruffling that is necessary for cell 

polarization. [McQuade et al., 2003]. This suggests that the ectodomain of syndecan-1 
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has important functions in dynamic cytoskeletal rearrangements, which are independent 

of, but most likely supplemented by its attached HS chains.  

    Similar to the observations made in Raji-S1 cells, ectopic expression of syndecan-1 in 

Schwann cells enhances cell spreading on fibronectin and laminin, reorganization of 

microfilaments, and focal adhesion formation. Syndecan-1 transiently colocalizes with 

actin filaments only during cell spreading. Interestingly this effect also requires a 12 

amino acid segment within its cytoplasmic domain, especially the tyrosine residue in this 

region [Carey et al., 1996].       

    It has been shown that syndecan-1 stimulates Cos-7 cells spreading, fascin spike 

assembly, and extensive protrusive lateral ruffling on thrombospodin-1. The presence of 

GAG chains at Ser45 or Ser47 of the extracellular domain is required for syndecan-1- 

mediated cell membrane spreading, whereas the V and C2 regions of the cytoplasmic 

domain are crucial for spreading and fascin structures formation [Adams et al., 2001]. 

Fascin spike assembly depends on the maintenance of a pool of the non-phosphorylated 

fascin and the regulation of Rac and Cdc42 small GTPase activities [Adams et al., 2000]. 

This suggests that syndecan-1 regulates the phosphorylation of fascin, and possible 

small GTPase activity.  Taken together, these data indicate that the role of HS chains 

and core protein in syndecan-1 mediated-cell spreading is cell-type specific.  

The other members of syndecan family also regulate signal transduction and actin 

cytoskeleton in various cell types. Syndecan-2 is specifically localized on the actin-rich 

dendritic spines [Halpain, 2000] and promotes the morphological maturation of spine, 

which requires the PDZ binding motif and the phosphorylation of syndecan-2 by EphB2 

receptor tyrosine kinase [Ethell et al., 2001]. Syndecan-2 induces filopodia by a Cdc42-

mediated mechanism in fibroblasts [Granes et al., 1999], regulates focal adhesion and 

stress fiber formation in carcinoma cells [Munesue et al., 2002]. Syndecan-4 induces 

focal adhesion and stress fiber formation in fibroblasts [Saoncella et al., 1999;Woods et 

al., 2000]. The molecular mechanism by which syndecan-4 influences both morphology 

and migration requires its cytoplasmic domain [Longley et al., 1999;Tumova et al., 2000]. 

In connection to these functions, syndecan-4 is involved in direct transmembrane 

signaling events, such as the activation of PKCα [Oh et al., 1997] which phosphorylates 

its cytoplasmic domain [Horowitz et al., 1998a;Horowitz et al., 1998b], the interaction 

with PDZ protein [Grootjans et al., 1997], the phosphorylation of focal adhesion kinase, 

and the activation of Rho proteins [Saoncella et al., 1999;Wilcox-Adelman et al., 2002].  
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1.4.1.4.2 Syndecans in tumor metastasis 
 
    Syndecans mediate cell adhesion and control the activities of factors influencing cell 

growth and motility; they play a critical role in regulating the metastasis behavior of 

tumor cells by promoting tight cell-cell and cell-ECM adhesion.  

In this context syndecan-1 is the most widely studied among all the HSPG family 

members. Syndecan-1 is highly expressed at the basolateral surface of epithelial cells 

where it is thought to interact with actin cytoskeleton and to modulate cell adhesion and 

growth factor signaling [Rapraeger et al., 1986;Sanderson et al., 1988;Kim et al., 1994]. 

Syndecan-1 expression level at cell surface is correlated with metastasis potential and 

with survival in a range of epithelia tumors [Inki et al., 1994;Matsumoto et al., 

1997;Nackaerts et al., 1997;Kumar-Singh et al., 1998;Stanley et al., 1999]. Loss of 

syndecan-1 expression induces epithelial-mesenchymal transformation, anchorage-

independent growth and increasing motility [Leppa et al., 1991;Leppa et al., 1992;Kato et 

al., 1995], which is associated with the loss of E-cadherin expression, indicating they are 

working in concert [Day et al., 1999]. Over-expression of syndecan-1 in transformed 

S115 cells, in which loss of epithelial morphology is due to syndecan-1 down regulation, 

restores their epithelial morphology and growth characteristics [Leppa et al., 1992]. 

Ectopic expression of syndecan-1 in syndecan-1 deficient myeloma cells has the striking 

effect of reducing invasion; this effect requires its extracellular domain [Liu et al., 1998]. 

The invasion regulatory domain is further identified as 26 amino acids starting of the 

transmembrane domain. Importantly, this domain is functionally specific because its 

mutation does not affect syndecan-1-mediated cell binding to collagen, syndecan-1-

mediated cell spreading, or targeting syndecan-1 to specific cell surface domains 

[Langford et al., 2005]. These data indicate that syndecan-1 is required for maintaining 

epithelial morphology and behavior, and that the loss of syndecan-1 expression or 

function may be a prerequisite for tumor cell invasion.  

    However, in contrast to the general notions that syndecan-1 may be an inhibitor of 

carcinogenesis; syndecan-1 also demonstrates tumor promoter function. For instance, 

mammary gland-specific expressed Wnt-1 leads to the tumorigenesis in wild type mice 

but not in the syndecan-1 deficient mice [Alexander et al., 2000]. Enhanced syndecan-1 

expression has been observed in pancreatic, gastric and breast carcinomas, and this 

over-expression correlates with tumor aggressiveness and poor clinical prognosis 

[Stanley et al., 1999;Conejo et al., 2000;Wiksten et al., 2001;Burbach et al., 
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2003;Barbareschi et al., 2003]. This duality in the role of syndecan-1 in tumorigenesis 

may reflect tissue or tumor stage specific function. 

    Both syndecan-2 and syndecan-4 are up regulated in different tumors [Roskams et al., 

1998;Park et al., 2002;Gulyas et al., 2003]. Syndecan-2 over-expression in colon 

carcinoma induces a rounded adhesion phenotype and piling-up of cells in culture [Park 

et al., 2002;Kim et al., 2003], which also correlates with an invasive phenotype 

[Contreras et al., 2001]. Syndecan-2 has also been implicated in fibronectin assembly, 

focal adhesion formation and migration. Reduced syndecan-2 expression leads to failure 

of focal adhesion and stress fibers formation on fibronectin in a rat Lewis lung carcinoma 

derived cell line. Increasing the expression of syndecan-2 in this cell line can restore 

their ability to assemble focal adhesion [Kusano et al., 2000;Munesue et al., 2002], 

indicating that syndecan-2 plays a role in the signaling that relays adhesion to fibronectin 

into cytoskeletal events.  

1.5 Serine protease inhibitors  

1.5.1 Serine protease 
 
    Serine proteases comprise almost one third of all proteases found in the nature. This 

mechanistic class of enzymes is originally identified by the presence of three residues, 

aspartate, histidine and serine in their catalytic sites. This catalytic site can be found in at 

least four different structural contexts, thus defining four clans of serine proteases as 

chymotrypsin, subtilisin, carboxypeptidase Y and the Clp protease.  

    Serine proteases such as thrombin, tPA, uPA and plasmin belong to the chymotrypsin 

–like serine protease. Because of their abilities to cleave a wide range of substrates, 

they are involved in many critical physiological processes including digestion, 

hemostasis [Neurath, 1984], reproduction [Barros et al., 1996], and immune response 

[Sim et al., 2000]. The sequential activation cascades of serine proteases appear to be 

involved in developmental events [LeMosy et al., 1999], tissue remodeling [Van den 

Steen et al., 2001] and would healing [Li et al., 2003]. Furthermore, they also interact, 

either dependently or independently of their proteolytic activity, with ECM or 

transmembrane proteins such as vitronectin or intergrin, thus playing important roles in 

signal transduction which in turn regulate cell proliferation, differentiation [Selvarajan et 

al., 2001], apoptosis [Johnson, 2000], adhesion, and migration [Reuning et al., 1998]. 
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1.5.2 Extracellular serine proteases and their receptors in cell migration  
 

Cell migration plays a crucial role in a wide range of biological processes, such as 

embryogenesis during development, immune response during inflammation, wound 

healing in adult organism, and metastasis in tumorigenesis.  A five-step model of cell 

migration in three dimensions has been established. First of all, cells undergo 

polarization and become asymmetric in order to convert intracellularly generated forces 

into net cell body translocation. In the meantime, extension of cell membrane occurs in 

the cell front and forms structures identified as lamellipodia or filopodia, which are driven 

by actin polymerization. Second, stable attachments are formed at the leading edges of 

lamellipodia and filopodia, which are regulated by cdc42, Rac and Rho. Third, cell 

surface proteases become concentrated for cleavage of ECM and basement membrane 

components, allowing cell movement. Fourth, cell contraction generated by myosin 

enables the cell body translocation. Fifth, the adhesion sites in the rear of the cell are 

released and the cell moves forward [Lauffenburger et al., 1996;Friedl et al., 2003]. 

    An early observation describing that cancer cells continuously dissolve plasma clots in 

culture, indicates the connection between increase proteolytic activity and cancer 

[Pollanen et al., 1991]. In fact, following the evidence that much higher amount of uPA is 

expressed in transformed cells [Unkeless et al., 1974], and that high levels of uPA and 

uPAR are relevant to poor prognosis, the proteolytic degradation by uPA or plasmin is 

thought to facilitate tumor cell migration through the basement membrane and interstitial 

connecting tissues. Therefore it is a surprise that the high level of PAI-1 is used as a 

marker for poor prognosis in certain cancers [Schmitt et al., 1997]. The most intensive 

studies on the mechanism by which serine proteases and their inhibitors regulate cell 

adhesion and migration have been carried out in the uPA, uPAR and PAI-1 system. It 

has been shown that uPA-uPAR complex promotes migration in different cell types 

[Gudewicz et al., 1987;Fibbi et al., 1988;Del Rosso et al., 1990], in a way which is 

independent of uPA proteolytic activity. However, uPA-uPAR complex-induced signaling 

requires other transmembrane and scaffold proteins for signal transduction and 

consequent migration events, because uPAR is only a GPI-anchored protein without 

intracellular domain.  

    uPAR functions as receptor for both uPA and vitronectin at distinct binding sites 

[Ploug et al., 1991;Wei et al., 1994;Kanse et al., 1996]. Association of uPAR to 

immobilized vitronectin activates Rac 1, a small GTPase, which controls events involved 
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in cytoskeleton remodeling and migration [Kjoller, 2002;Ma et al., 2002]. uPAR is 

localized in lipid rafts, focal contacts, and at the leading edge of lamellipodia in migrating 

cells [Pollanen et al., 1988;Estreicher et al., 1990;Stahl et al., 1995]. It assembles a 

cascade of extracellular proteases which degrade ECM proteins and facilitate 

penetration of tissue boundaries [Dano et al., 1985]. Upon binding of paracrine or 

autocrine uPA, uPAR also triggers multiple signaling pathways, including the Ras-ERK 

pathway, which control cell growth, apoptosis, and cell migration [Ossowski et al., 

2000;Webb et al., 2000;Kjoller, 2002]. ERK and its down stream effectors, such as 

myosin light chain kinase (MLCK), are responsible for the increase in cell migration 

[Nguyen et al., 1999;Webb et al., 2000].      

1.5.3 Serine protease inhibtor-Serpin family  
 
    Serpins form a superfamily of proteins, most of which inhibit serine proteases. 

However serpins that either inhibit cysteine proteases or even lack any protease 

inhibitory activity have also been identified [Gettins, 2002]. In fact, the membership of 

this family is based on the presence of a single domain consisting of three β-sheets and 

eight to nine α-helices, and on the functional properties that result from the special 

structure of this single domain (Fig. 7).  
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Fig. 7 Front and back stereoviews of a typical serpin. β-sheet A, B, and C are shown in red,

blue, and green respectively. The eight α-helices are labeled A through H. RCL: reaction

center loop (adapted from Gettins, 2002). 

 

 

 

 

 

1.5.3.1 Serpin inhibitory mechanism and activity regulation 
 
    Serpins serve as suicide substrates to target proteases and form an irreversible and 

covalent inhibitory complex. The structures of cleaved form of inhibitory serpins have all 

shown remarkable expansion of β-sheet A, through the insertion of the cleaved reactive 

center loop as the fifth strand of the sheet, and changing the environment of the reactive 

center loop from complete solvent-exposed to mostly buried (Fig. 8A,B). The inhibitory 

mechanism includes the following steps, 1) formation of an initial non-covalent complex, 

EI, 2) attacking of the active site serine on the peptide bond of the serpin to form 

intermediate, 3) cleavage of the peptide bond to give a covalent acyl ester intermediate 

EI’ with release of the first product, the free amino group, 4) insertion of the reaction 

center loop into β-sheet A, translocation of protease and committing the second 

intermediate to kinetic trapping, E-I*, 5) departure of the second product E+I*. There is 

an alternative branching pathway at step 4, for the protease to complete the substrate 

reaction and leave the cleaved serpin behind (Fig. 8C).  
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 Fig. 8 Comparison of the different conformational states of serpins, the reactive center loop

is shown in blue, and the remainder of β-sheet is in red (A, B). Branched pathway

mechanism of serpins as suicide substrate inhibitor, as described in the text (C). (adapted

from Gettins, 2002) 

     

 

     

 

    The activities of serpins can be regulated by different mechanisms. For instance, 

several serpins found in the blood coagulation and fibrinolysis systems, such as PAI-1 

and protease nexin-1 (PN-1) are activated by binding to heparin or other GAGs. The 

resulting enhancement in the inhibition rate can reach several thousand folds, 

suggesting an important role for such activation in site-specific regulation. Another 

example is the regulation of PAI-1 activity by vitronectin. In this case, PAI-vitronectin 

complex shows much higher inhibitory efficiency and longer half-life. This regulation is 

physiologically significant since the PAI-1 binding site in vitronectin is close to that of 

integrin, both tPA and thrombin can spare vitronectin from complex with PAI-1, so that 

vitronectin is available for integrin interaction, which in turn regulates cell migration 

[Gettins, 2002]. 

1.5.3.2 Clearance of serpin-protease complexes 
 
    A number of studies have addressed the fate of serpin-protease complexes. Their 

half-life time in the circulation is shown to be much shorter than that of the native or the 

cleaved serpins [Ohlsson et al., 1976;Mast et al., 1991], suggesting such rapid removal 

from circulation is mediated by receptors present on the cell surface.  Studies carried out 
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further revealed that LRP1 is the main receptor responsible for the serpin-protease 

complexes clearance [Nykjaer et al., 1992;Kounnas et al., 1996]. Nevertheless, in most 

of the cases, the co-receptor of LRP1, such as HSPG or uPAR, plays an important role 

in LRP1-mediated internalization [Knauer et al., 1997b;Crisp et al., 2000].  

1.5.3.3 Protease Nexin-1 
 
    Protease nexin-1 (PN-1) is a 43 KDa glycoprotein of the serpin superfamily [Sommer 

et al., 1987]. It was first molecularly identified as a protein preventing neurite outgrowth 

in neuroblastoma cells [Gloor et al., 1986]. It binds and potently inhibits several serine 

proteases, including thrombin, tPA [Baker et al., 1980], uPA, trypsin [Stone et al., 1987], 

and Factor XIa [Knauer et al., 2000]. The affinity of PN-1 for thrombin can be 

dramatically increased upon binding to heparin [Scott et al., 1985].  

    In vivo PN-1 has a very complex spatial and temporal expression pattern in 

developing cartilage, lung, skin, urogenital tract, and central and peripheral nervous 

system, indicating it has tissue and cells type specific functions during development 

[Mansuy et al., 1993]. In vitro, PN-1 is secreted by many different cell types, including 

fibroblasts, astrocytes, glioma [Guenther et al., 1985], neuroblastoma [Vaughan et al., 

1993], astrocytoma [Kasza et al., 2001], and primary Schwann cells [Bleuel et al., 1995]. 

Following its secretion, PN-1 associates with the ECM by binding to cell surface heparan 

sulfate [Herndon et al., 1999], vitronectin [Rovelli et al., 1990], and collagen type IV 

[Donovan et al., 1994].  

    PN-1 expression can be modulated in response to pathological states. Both in vitro 

and in vivo studies have shown that PN-1 expression is either increased [Meier et al., 

1989;Bleuel et al., 1995] or decreased [Niclou et al., 1998] following injuries at different 

never. PN-1 is also up-regulated upon lesion in the substantia nigra [Scotti et al., 1994], 

and in Alzheimer’s diseases [Vaughan et al., 1994;Choi et al., 1995]. Moreover PN-1 has 

been shown to be over-expressed in metastatic tumor cells, and to improve the 

transplanted tumor cells migration through an yet unidentified mechanism [Buchholz et 

al., 2003].  

    The inhibitory complexes with serine proteases form by PN-1 and its targeted 

proteases and such complexes are actively removed from the extracellular environment 

upon internalization via LRP1 [Knauer et al., 1997b;Crisp et al., 2000;Knauer et al., 

2000]. In this respect, the level of free PN-1 in fibroblast-conditioned media reaches 

steady state within 48h due to a constant secretion and uptake in a free form by the cells 
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[Howard et al., 1986], suggesting that PN-1 can be removed from ECM. Similarly, the 

active form of neuroserpin, which does not bind to LRP1 directly, has been shown to be 

internalized by cultured cortical neurons via LRP1 and an unidentified cofactor 

[Makarova et al., 2003]. 

    The clearance of PN-1-protease complexes starts with their binding to cell surface 

heparan sulfates. The complexes are concentrated and transferred to LRP1, followed by 

their internalization and degradation. A lysine-rich heparin-binding site found in PN-1 

between residues 71 and 86, is required for heparin-mediated inhibitory acceleration 

[Stone et al., 1994]. This PN-1 domain is also required in the initial binding of the 

complex with either thrombin or uPA to the cell surface in the LRP1-mediated 

internalization [Knauer et al., 1997a;Crisp et al., 2000]. Furthermore the PN1-uPA 

complex must specifically bind to endosomal heparins at pH 5.5 to be retained and 

sorted to lysosomes [Crisp et al., 2000]. Another region of PN-1, defined by residues 47-

58 close to heparin-binding domain at, functions as LRP1 interacting domain [Knauer et 

al., 1997a]. An adjacent His-Asp pair within this domain, which is critical for the LRP1-

mediated internalization of PN-1 thrombin complexes [Knauer et al., 1999]. Interestingly 

this LRP1-interacting domain is not required in LRP-mediated clearance of PN-1-uPA 

complex [Crisp et al., 2000]. It has been proposed that the basic residues of various 

ligands binding to LDLR family members are involve the interaction with the acidic 

regions in the ligand binding domain of the receptors [Lalazar et al., 1988;Nielsen et al., 

1996;Rodenburg et al., 1998;Stefansson et al., 1998].  

1.5.3.4 Serpins in cell adhesion and tumor invasion 
 

    The uPA, uPAR and PAI-1 are identified players in cell adhesion [Ciambrone et al., 

1990;Nusrat et al., 1991]. PAI-1 disturbs vitronectin-dependent adhesion by complexing 

with vitronectin while retaining its inhibitory activity [Salonen et al., 1989;Ciambrone et al., 

1990;Ciambrone et al., 1992]. PAI-1 has also been proposed to reduce adherence by 

increasing PAI-1-uPA turnover; an event definitely requires its inhibitory activity [Waltz et 

al., 1993]. It is further demonstrated that PAI-1 inhibits uPA-vitronectin-dependent cell 

adhesion by interrupting the interaction between uPA and vitronectin through uPAR [Wei 

et al., 1994;Kanse et al., 1996]. As the PAI-1 and uPAR binding sites on vitronectin are 

not identical but overlapping, PAI-1, which has higher affinity to vitronectin, can compete 

for uPAR binding to vitronectin [Deng et al., 1996]. The picture becomes even more 

complicated with the finding that the PAI-1 binding site on vitronectin also overlaps with 
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that for integrin, suggesting that PAI-1 also regulates integrin-mediated cell adhesion 

and signaling [Waltz et al., 1993;Stefansson et al., 1996]. In summary, PAI-1 detaches 

cells by disturbing either uPAR-vitronectin or integrin-vitronectin interaction, and the 

presence of uPA is required in both cases.  Finally, PAI-1 is not the only player, which 

may interact with integrin in this system as uPAR co-localizes with different integrin 

subunits and consequently modifies integrin functions [Myohanen et al., 1993;Wei et al., 

1996]. In addition, the impact of these uPA-PAI-1 [Waltz et al., 1993] and uPAR-uPA-

PAI-1-integrin complexes [Czekay et al., 2001;Czekay et al., 2003] in cell-adhesive 

events can be regulated by LRP1-mediated endocytosis. 

Similarly to PAI-1, PN-1 binds to vitronectin with high affinity [Rovelli et al., 1990]. In 

the presence of active uPA, PN-1 increases the association between vitronectin and 

uPAR. Through this mechanism PN-1 stimulates uPAR-dependent cell adhesion to 

vitronectin, when PN-1 and uPAR accumulate and co-localize at the interface between 

the cells and the matrix. However, in contrast to PAI-1, PN-1 does not influence 

vitronectin binding to integrins or integrin-mediated cell adhesion [Kanse et al., 2004]. 

PN-1 has been shown to be up regulated in highly metastatic pancreatic tumors cell 

lines. PN-1 over-expression greatly enhances the local invasion of the xenograft tumors. 

It is correlated with a massive increase in ECM production, such as type I collagen, 

fibronectin and laminin. Moreover, the invasive PN-1-expressing cells tend to adopt a 

spindle-shaped morphology and strongly express the mesenchymal marker vimentin 

[Buchholz et al., 2003]. Taken together, these results indicate that serpins can have 

additional adhesive functions by differentially influencing the impact of some signal 

transduction pathways mediating cell adhesion, migration, and tumor invasion. 
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Fig. 9 Schematic model for PA-1 or PN-1 interaction with integrin and vitronectin. A) Integrin binds to the

RDG sequence of vitronectin. B) uPAR (-uPA complex) binds to the somatomedin B (SomB) domain of

vitronectin. PAI-1 forms complex with uPA triggering the internalization of uPA-uPAR; thereby interrupt

the interaction of uPAR and vitronectin. In contrast, PN-1 increases the association between uPAR and

vitronectin. C) uPAR (-uPA complex) binds to integrin and promotes cell adhesion and migration. D) PAI-

1 also recognizes the SomB domain of vitronectin, therefore PAI-1 can inhibit integrin-vitronectin

interaction as well. PAI-1 also forms complex with uPA triggering internalization of uPA-uPAR (adapted

from Myöhänen H and Vaheri A, 2004) [Myohanen and Vaheri, 2004]. 
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2 Aim and course of this work      
 

    Protease Nexin-1 (PN-1) is known as a serpin regulating extracellular proteolytic 

activity upon formation of inhibitory complexes with serine proteases. Such complexes 

are actively removed from the extracellular environment by internalization via LRP1. It 

has been reported that the level of active PN-1 in fibroblast-conditioned media reaches 

steady state due to a constant secretion and uptake in a free form by the cell. Removal 

of active form of PN-1 could be a mechanism to increase the local proteolytic activity that 

is required for proper biological functions. 

 

    In this thesis work, I explored (1) the possibility that active form of PN-1 is internalized; 

(2) whether this internalization depends on LRP1; (3) the type of cell surface receptor 

involved in case of an LRP1-independent internalization; (4) the mechanisms and the 

consequences of an interaction between PN-1 and distinct cell surface receptors. 

 

To address these questions, I first examined whether the cells could take up the 

endogenous PN-1. For this purpose I prepared primary cortical neuronal culture from 

previously generated PN-1 reporter mouse (PN-1 KI mouse), with a bi-cistronic construct 

containing a HA-tagged PN-1 and the β-galactosidase marker gene inserted in the locus 

of PN-1. Thus I was able to distinguish neurons that synthesize, secret and take up PN-1 

from those only internalizing it. I observed that PN-1 was taken up by neurons that did 

not express PN-1, and that LRP1 ligand RAP did not block this uptake. I further 

investigated whether PN-1 was taken up in an active form or in a complexed form, and 

whether this PN-1 internalization was LRP1 dependent or not. I used LRP1-/- and wild 

type MEF cells to show that both forms of exogenous PN-1 are taken up. The 

internalization of PN-1 was mediated predominantly by LRP1 in wild type MEF cells, 

because it was blocked by RAP or an inhibitory peptide known to interfere LRP1-PN-1 

interaction. In contrast in MEF cells lacking LRP1, PN-1 internalization was not 

influenced by any of these inhibitors, indicating an alternative pathway of PN-1 

endocytosis.  

I then identified the receptor responsible for PN-1 internalization in the absence of 

LRP1. By comparing the kinetics and inhibitor sensitivity of PN-1 internalization in wild 

type and LRP1-/- MEF cells, I found out that the properties of PN-1 endocytosis in LRP1-
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/- MEF were similar to those described for syndecan-1-mediated endocytosis. I then 

asked whether change of syndecan-1 expression level would influence PN-1 uptake? 

And how it would be influenced under different genetic background of LPR1? Therefore I 

tried to increase or reduce syndecan-1 expression level in MEF cells by over-expressing 

full-length syndecan-1 or by using siRNA. I observed, only in LRP1-/- MEF cells, that 

PN-1 uptake was strongly influenced by the changes of syndecan-1 expression. I also 

provided evidence that the intracellular domain of syndecan-1 was required for active 

PN-1 internalization. 

 

    To characterize the consequences of PN-1 interaction with distinct cell surface 

receptors, I investigated its effect on signal transduction and on cell behavior. In wild 

type MEF cells, PN-1 activated PKA upon binding to LRP1, whereas it activated ERK 

signaling in LRP1-/- MEF cells upon interaction with syndecan-1. These findings 

triggered my interest to explore the potent role of PN-1 in a signal transduction related 

event such as cell migration. In LRP1-/- MEF cells, PN-1 activated Rac1 and induced 

lamellipodia formation, thereby increasing cell migration. This finding also raised the 

question how PN-1 signaling was propagated? To further investigate this issue, I 

evaluated whether functional blocking antibodies against uPAR, syndecan-1, and 

integrin β3, which are possible upstream effectors of ERK signaling, could inhibit PN-1-

induced cell migration. Each of these three antibodies could antagonize PN-1 stimulation 

at cell migration. I was also able to co-immunoprecipitate integrin β3 with PN-1 and 

syndecan-1. These results suggested that PN-1 interacted with either uPAR or 

syndecan-1 or both to activate integrin αvβ3 signaling and its down stream effectors, 

such as ERK and Rac1 to enhance cell migration. 
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3 Materials and Methods 

3.1 Materials 
 
Recombinant PN-1 was synthesized and purified in our laboratory [Sommer et al., 1989]. 

Thrombin was purified from human plasma and characterized as described 

[Stone et al., 1986]. Wild type and LRP1 deficient mouse embryonic fibroblasts (MEF) 

have been characterized before [Willnow et al., 1994a]. GST- receptor associated 

protein (RAP) [Herz et al., 1991] was a kind gift from Dr. Michael Etzerodt (Department 

of Molecular and Structural Biology, University of Aarhus, Denmark). Peptide 960 (P960), 
corresponding to the residues Pro47-Ile 58 in the domain of PN-1 considered to interact 

with LRP1, and the scrambled control peptide 965 (P965) were synthesized as 

described [Knauer et al., 1997a]. Plasmids expressing dominant negative H-RasN17 

were a kind present from Dr. Yoshikuni Nagamine (Friedrich Miescher Institute, Basel, 

Switzerland) [El Shemerly et al., 1997]. 

3.2 Methods 
 

Cell culture: Both MEF cells were grown and maintained in Dulbecco's modified Eagle's 

medium (DMEM) supplemented with 10% fetal calf serum (FCS) in a humidified 

atmosphere of 5% CO2 at 37°C. 

 

Primary cortical neuronal culture: Primary neurons were cultured on glass cover slips. 

Cover slips were cleaned by HNO3 (1:6 diluted) for 10min, washed with lots of water 

followed by rinsing with methanol once, and finally sterilized at 160°C for 2h. Sterile 

cover slips were coated with 1 mg/ml poly-L-lysine (in borate buffer) at 37°C overnight 

and rinsed with sterile water. Method for preparing cortical neuronal culture has been 

described previously [Bartlett et al., 1984]. In brief, cortexes were dissected from the 

mice embryonic brains at E16-18 in HBSS buffer (10 ml 10x Hank’s BSS, 1 ml 1M 

HEPES PH 7.3 (GIBCO), 89 ml H2O), followed by trypsin treatment (1:10 diluted trypsin-

EDTA, (Sigma Cat No. 25300-054)) at 37°C for 15min. Cell suspensions were prepared 

in HBSS buffer by tituation using a fire-polished Pasteur pipette. Dissociated cells were 

plated on cover slips in HC-MEM (500 ml 1x MEM (GIBCO), supplemented with 15 ml 

20% glucose and 10% horse serum). After allowing cells to adhere for 1.5-2h, neurons 

attached to cover slips were transferred to a new dish with B-27 medium (50 ml 
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Neurobasal medium, 1 ml B-27 supplement (GIBCO), 0.125 ml 25 mM L-Glutamine). 

The culture was maintained by changing fresh B-27 medium every five days. 

 

β-galactosidase cytochemistry: Primary neurons cultured on poly-L-lysine coated cover 

slips were fixed in 4% paraformaldehyde (PFA) in PBS (Ca2+, Mg2+ free) at room 

temperature for 15min then washed with PBS (Ca2+, Mg2+ free) 3 x 10min. Neurons were 

incubated in staining solution containing 0.5 mg/ml 5-bromo-4-chloro-3-indolyl-b-D-

galactopyranoside (X-gal) (Roche), 2 mM MgCl2, 5 mM potassium ferricyanide, and 5 

mM potassium ferrocyanide in PBS (Ca2+, Mg2+ free) at 37°C overnight. 

 

Immunocytochemistry of HA tagged PN-1: Primary neurons prepared from PN-1 knock-

in mice were fixed in 4% PFA plus 15% picric acid in PBS (Ca2+, Mg2+ free) at room 

temperature for 15 min and washed with PBS (Ca2+, Mg2+ free) three times for 10min 

each. Fixed cells were permeabilized in the working buffer (PBS (Ca2+, Mg2+ free) plus 

0.2% triton X-100) at room temperature for 15min followed by blocking in the blocking 

buffer (3% BSA in the working buffer) at room temperature for 30min. Cells were 

incubated with anti-HA antibody (Roche, clone 12CA5), diluted 1:200 in blocking buffer 

at room temperature for 2 h, washed in the working buffer and followed by secondary 

antibody incubation. 

 

Preparation and purification of thrombin-PN-1 complex:  Thrombin and recombinant PN-

1 (rPN-1) (1:5 ratio) were mixed in assay buffer, which contained 66 mM Tris-HCl, pH8.0, 

133 mM NaCl and 0.13% polyethyleneglycol 6000, and incubated at 37°C for 1h. 

Thrombin-PN-1 complex was purified by FPLC (Superdex 75, 2.0 x 25 cm, flow rate 0.5 

ml per minute) (Amersham Pharmacia). Eluant fractions were collected by indicated 

molecular weight. 

 

Uptake experiments: MEF cells were plated 24h before the experiment and grown to 80-

90% confluence. Cells were washed twice with pre-warmed PBS (Ca2+, Mg2+ free) and 

incubated for 3h at 37°C in serum-free DMEM medium (SFM), supplemented with 0.1 

mg/ml stripped BSA, 16 µg/ml putresine, 12.5 ng/ml progesterone (Sigma) and 1:5000 

diluted supplement (Sigma, Cat. No.1-1884). After pre-incubation in SFM, cells were 

washed once with SFM followed by incubation at 37°C for 3h in fresh SFM with either 

300 ng/ml active rPN-1 or purified thrombin-PN-1 complex (thrombin 300 ng/ml). Cells 
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were also incubated with rPN-1 in the presence of different inhibitors at different 

concentrations described as following: 50 nM RAP, 25 µg/ml P965 and P960, 200 µM 

chloroquine [Takayama et al., 2005]; 100 µM serine protease inhibitor 4-(2-

aminoethyl)benzenesulfonyl fluoride (AEBSF), and its analogous 4-(2-aminoethyl)-

benzenesulfonamide (AEBS) (Sigma) [Makarova et al., 2003]; 300 µM Genistein, 10 mM 

β-cyclodextrin, 25 µM N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide 

dihydrochloride (H89) or 1 µM phenylarsine oxide (PAO) (Sigma). A 30min pre-

incubation with the last four inhibitors preceded the addition of rPN-1. The sub-cellular 

fractions were prepared as described [Ito et al., 1997] with slight modification. Briefly, 

cells were washed six times with ice-cold PBS and scraped in PBS. Cell suspension was 

centrifuged (200 × g) at 4°C for 5min. Cell pellets were solubilized in 100 µl lysis buffer, 

which contains 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.2 M sucrose, 2 mM EDTA, 2 

mM EGTA and protease inhibitor cocktail (Roche). Cell lysates were centrifuged (10,000 

× g) at 4°C for 10min. An additional centrifugation at 100,000 × g at 4°C for 1h was 

performed to safely remove the plasma membrane fraction. The resulting supernatant 

containing low-density microsomals (LDM) and cytosolic fractions was used to monitor 

internalized PN-1 [Shisheva et al., 1994;Shisheva et al., 2001]. The pellets, resuspended 

in the same buffer, contained the plasma membrane bound PN-1. 

 

Binding experiments: MEF cells were cultured as for the uptake experiments except that 

the plates were coated with 1% gelatin (Sigma). After pre-incubation in SFM, cells were 

incubated with 300 ng/ml active rPN-1 in fresh SFM in the presence or absence of 1 

mg/ml heparin (Sigma), 250 nM RAP, or combination of both at 4°C for 2h. The level of 

PN-1 binding to the cell surface was determined by immunoblotting of plasma 

membrane fractions. 
 

Immunoblotting: Samples from the uptake experiments were separated by 10% SDS-

PAGE under either reducing or non-reducing conditions [Laemmli, 1970]. For the latter, 

the samples were incubated overnight at 4°C in buffer containing only 0.4% SDS and  no 

β-mercaptoethanol. Certain amount of protein was loaded per lane, proteins were 

transferred to PVDF membrane (Millipore) and probed overnight at 4°C by monoclonal 

antibody against rPN-1 (4B3) [Meier et al., 1989], diluted 1:2000 in blocking buffer 

containing 3% skim milk powder in PBS with 0.2% tween 20. The results were quantified 

by Image Master Total Lab (Amersham Pharmacia Biotech). The amount of PN-1 or PN-
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1 complex internalized under different conditions was normalized to the percentage of 

that in LRP1+/+MEF cells. 

 

Immunocytochemistry for PN-1: After the PN-1 uptake experiments, cells were fixed and 

immunostained with 4B3 antibody as described [Bleuel et al., 1995]. 

 

Semi-quantitative PCR: Total RNA from MEF cells was extracted by RNeasy Kit 

(Qiagen), followed by single step transcription and amplification by SuperScript one-step 

RT-PCR kit (Invitrogen Life Technologies). Primers were designed to amplify 300-400 bp 

fragments of syndecans. Syndecan-1: sense 5’CTC CCG CAA ATT GTG GCT G3’, 

antisense 5’TGG GCT GTG GTG ACT CTG A3’. Syndecan-2: sense 5’TGG ATC CTG 

CTC ACC TTG G3’, antisense 5’TTT TAT AGC AGG GCC CAG CT3’. Syndecan-3: 

sense 5’CAA TGA GAA CTT CGA GAG GC3’, antisense 5’CAG GTG CTG TGG CCA 

TAG T3’. Syndecan-4: sense 5’CGG AGA GTC GAT TCG AGA G3’, antisense 5’TGC 

CAA GAC CTC AGT TCT CT3’. The PCR was done for 25,30 and 35 cycles and 

products were tested on 2% agarose gel. The relative mRNA level of actin was tested as 

a loading control. 

  

Syndecan-1 assay: Cells were washed twice with ice-cold 0.5 mM EDTA-PBS and 

incubated with 1.5 ml of 20 µg/ml TPCK-treated trypsin (Sigma) in the same buffer for 

15min on ice. Soybean trypsin inhibitor (Sigma) was then added to 100 µg/ml. After 

scraping, cell suspensions were centrifuged (200 × g) at 4°C for 5min. Cell pellets were 

solubilized in NP-40 buffer on ice for 30min, and centrifuged (10,000 × g) at 4°C for 

10min. The protein content of the lysates was determined using the DC-protein assay kit 

(Bio-Rad). After normalization to the same amount of protein, the supernatants 

containing the ectodomain of syndecan-1 were digested at 37°C for 3h by 10 mU/ml 

heparinase III and 20 mU/ml chondroitinase ABC (Sigma); fresh enzymes were added 

after the first 2h of incubation. Following digestion, the samples were applied on SDS-

PAGE (4-15% gradient gel, Bio-Rad) under reducing conditions and transferred to PVDF 

membrane (Millipore). The membrane was probed by anti-syndecan-1 antibody (BD 

Biosciences Pharmingen) as described [Park et al., 2000]. 

 

Expression plasmids of syndecan-1 and transfection: The cDNA of full-length murine 

syndecan-1 (Genebank accession NM_011519) was amplified by SuperScript one-step 
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RT-PCR kit. The PCR product was subcloned into the Eco RI and Xba I sites of 

pcDNA3.1 (+) (Invitrogen Life Technologies). To generate a syndecan-1 mutant 

containing only nine amino acids in the cytoplasmic domain, the 34-base new C-terminal 

anti-sense primer 5’GCT CTA GAG CTC AGC TGC CTT CGT CCT TCT TCT T 3’ was 

used with the regular N-terminal sense primer. The PCR product was subcloned in the 

same vector. Both expression constructs were confirmed by sequencing. The expression 

plasmids were linearized by Bgl II and transfected into MEF cells by Nucleofector MEF1 

kit combined with program T20 (AMAXA, Köln, Germany) following the manufacturer’s 

instructions. After transfection cells were cultured in presence of G418 sulfate (GIBCO) 

to select stable transfected clones for further experiments. 

 

siRNAs design, synthesis and transfection:  Two different siRNAs were chosen within 

the syndecan-1 gene (GenBank accession NM_011519), targeting nucleotides 566-586 

and 755-775 of syndecan-1 mRNA sequence. Both siRNA sequences were BLAST 

searched against all mouse sequences in GenBank, no significant homology (>15 

contiguous nucleotides of identity) was found. siRNAs were synthesized and annealed 

by Qiagen and delivered to MEF cells by Nucleofector kit. siRNAs of syndecan-1 were 

transfected either separately or together. 24h after transfection, cells were trypsinized as 

described above to collect cell surface syndecan-1, total RNA was extracted from the 

cell pellets by RNeasy kit. Only the siRNA targeting nucleotides 566-586 coming from 

the coding region of syndecan-1 ectodomain reduced syndecan-1 level in both MEF 

cells, consequently the siRNA targeting nucleotide 755-775 coming from the coding 

region of the transmembrane domain was used as negative control. 

 

Quantitative RT-PCR: Total RNA extracted following siRNA transfection was reversely 

transcribed using AMV rev. transcriptase kit (Promega). Quantitative PCR was 

performed on ABI Prism7000 by using SYRB green I master mix (Applied Biosystems). 

Several pairs of primers for syndecan-1 were tested by comparing the dissociation 

curves and those that did not produce primer dimer peak were chosen (forward 5’ CCA 

CTT CTC TGG CTC TGG CAC A 3’, reverse 5’ AAC AGC CAC ACG TCC TTC CAA 3’). 

The primers for β-actin were used as described [Giulietti et al., 2001]. The level of mRNA 

encoding syndecan-1 was normalized relative to β-actin mRNA level. 
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PKA activity measurement: MEF cells were plated and cultured as described for uptake 

experiments. After overnight incubation in SFM, fresh SFM containing 300 ng/ml active 

rPN1 with or without 50 nM RAP was added at 37°C for 10min. PKA activity was 

measured with Pep Tag Non-radioactive cAMP-Dependent Protein Kinase Assay Kit 

(Promega), following the manufacture’s instructions. The results were quantified by 

Image Master Total Lab (Amersham Pharmacia Biotech). 

 

Activation of ERK signaling pathway: MEF cells were plated in 6 well plates and kept in 

DMEM supplemented with 10% FCS until confluency. Before the experiment, the cells 

were washed three times with pre-warmed PBS (Ca2+, Mg2+ free), and then switched to 

SFM for 30min. After this pre-incubation, the medium was changed to fresh SFM 

containing 300 ng/ml active rPN-1 alone or in presence of 10 mM β-cyclodextrin.  After 

different incubation periods, cells were washed three times with ice-cold PBS and 

solubilized with NP-40 buffer, containing proteases inhibitor cocktail (Roche) and 1% 

phosphatase inhibitor cocktail I and II (Sigma). Cell lysates were kept on ice for 30min 

before centrifugation at 10,000 × g at 4°C for 10min. SDS PAGE was performed with 

20µg of total protein per lane. The samples were probed against the anti-ERK1/2 

phospho-specific antibody (Biosource International, Camarillo, CA). To further identify 

the upstream effector of ERK signaling activated by PN-1, we transfected LRP1-/- MEF 

cells with plasmids expressing dominant negative RasN17. Empty vector was used as 

control. 24h after transfection, cells were treated in the same way as described above; in 

this case incubation time with PN-1 was 20min. Over-expression of H-RasN17 was 

detected on immunoblot by anti-c-H-Ras antibody (Merk Bioscience Ltd., Nottinham, UK). 

For the immunoblot quantification, the phosphorylation level of ERK was normalized to 

the percentage of that in empty vector transfected LRP1-/-MEF cells without PN-1 

stimulation. 

 

In vitro wound healing assay: MEFs cells were plated at 15x104 cells per well in 6 well 

plates, and kept in DMEM supplemented with 10% FCS until confluency. Monolayer of 

cells was wounded by scratching with a 200 µl plastic pipette tip; detached cells were 

washed away with pre-warmed PBS (Ca2+, Mg2+ free). Cells were incubated in SFM for 

30min, and then switched to fresh SFM containing 300 ng/ml rPN-1 alone or in the 

presence of MEK inhibitor U0126 at 10 µM or anti-uPAR antibody at 10 µg/ml. At various 

time points, cell migration was visualized by a reverse microscope and photographed for 

 56



                                                                                                                       Materials and Methods  

migration into denuded space. In each photograph, the distance between two opposing 

lead edges of cellular migration was measured at three evenly spaced intervals manually 

[Weaver et al., 1997].  

 

Migration assay: MEF cells were cultured in DMEM supplemented with 10% FCS for 24h 

before starting the experiments. Migration assay was performed in modified Boyden 

chambers with 8 µm polycarbonate filters (Costar Cooperation) coated with vitronectin 

10 µg/ml (Sigma) at 37°C for 2h on the bottom side and then blocked with 2 mg/ml BSA 

at 37°C for 1h. Cells were plated at a density of 5.0 x 104 per chamber in SFM, in the 

presence or absence of 300 ng/ml active rPN-1 in the top chamber. Plated cells were 

allowed to migration for 4h with SFM in the lower chamber. Non-migrating cells on the 

upper side of the filter were removed by cotton swab, the migrating cells adhering to the 

bottom side of the filter were fixed in 4% PFA at room temperature for 15min and stained 

with 0.1% crystal violet (in water) for 30min. The number of stained cells in each well 

was counted under inverted microscope. In the migration inhibitory experiments, LRP1-/- 

MEF cells were pre-incubated with blocking antibodies against integrin β3 (Biolegend), 

syndecan-1 (BD Biosciences Pharmingen) and uPAR (Research and Diagnose system) 

at 10 µg/ml in SFM, 37°C for 30min before plating in the top chambers.  

 

Rac1 activation: Cells were cultured and incubated with rPN-1 as described for in vitro 

wound healing assay. Rac/ Cdc42 assay kit contains fragments corresponding to 

residues 67-150 of p21-activated kinase fused to GST and coupled to glutathione-

agarose, which binds activated Rac1 specifically (Upstate Biotechnology). Following 

incubation with rPN-1, cell lysates were prepared and analyzed following the 

manufacturer’s instructions. 

 

Cell morphology: MEF cells were maintained in DMEM supplemented with 10% FCS for 

24h. Cells were suspended and plated in 4-well cell culture chamber (Nalge Nunc 

International) at 2.0 x 104 cells per well in SFM with or without 300 ng/ml rPN-1 at 37°C 

for 1h. At the end of incubation, cells were washed, fixed and blocked according to the 

protocol described above for immunocytostaining. For actin staining, Alexa Fluro488 

phalloidin (Molecular Probes), diluted 1:60 in the blocking buffer was incubated with cells 

at room temperature for 20min, cells were washed with PBS (Ca2+, Mg2+ free) to remove 

excess phalloidin. 
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Adhesion assay: 96 well plate was coated with vitronectin 10 µg/ml (Sigma) at 37°C for 

2h, and rinsed with PBS (Ca2+, Mg2+ free) 3 x 10min. Unspecific binding sites were 

blocked by 1% BAS in DMEM at 37°C for 1h. Cells were trypsinized at room temperature 

for 1min, followed by incubation with 0.1 mg/ml soybean trypsin inhibitor in PBS (Ca2+, 

Mg2+ free) at 37°C for 1min to quench trypsin activity. 5000 cells per well were plated in 

SFM, and allowed to attach at 37°C for 45min. Non-attached cells were removed by 

washing with pre-warm DMEM 2 x 5min. The attached cells were fixed in 2% 

glutaraldehyde in PBS (Ca2+, Mg2+ free) at room temperature for 15min, washed with 

PBS (Ca2+, Mg2+ free) 3 x 10min. After washing, cells were stained with 0.5% crystal 

violet in 20% ethanol at room temperature for 30min. To quantify the result, the staining 

was dissolved by 500 µl of 10% acitic acid per well for 5min and measured the optical 

density at 590nm. 

 

Immunoprecipitation: LRP1-/- MEF cells were plated and incubated with 300 ng/ml 

active rPN-1 as described for PN-1 uptake experiment. Afterwards, cell lysates were 

prepared and immunoprecipitated by using anti-integrin β1 (MB1.2, CHEMICON) or anti-

integrin β3 (clone 2C9.G2, Biolegend) antibodies, as described previously [Roberts et al., 

2003]. PN-1 was detected by immunoblotting as described for uptake experiments. 

Alternatively, cells were transfected with plasmid encoding the full-length syndecan-1. 

24h later, these cells were incubated with rPN-1 and processed as described above. 

Syndecan-1 was detected by immunoblotting following the same protocol described in 

syndecan-1 assay. After stripping the immunoblot, 4B3 antibody was applied to detect 

PN-1. 
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4 Results 

4.1 PN-1 uptake in cortical primary neuronal culture 
 

    To investigate PN-1 uptake, we prepared cortical neuronal primary culture from PN-1 

knock-in mice (Fig. 10A), in which a construct of HA-tagged PN-1-IRES-LacZ was 

inserted in the PN-1 locus, allowing us to monitor PN-1 transcription following the 

expression of β-galactosidase; and to detect PN-1 protein level by HA 

immunocytostaining [Kvajo et al., 2004]. In this cortical primary neuronal culture we 

observed that only a small population of cortical neurons were expressing PN-1, 

indicated by both β-galactosidase (X-gal) and HA positive immunocytostaining (Fig. 10B 

left panels). However PN-1 non-expressing neurons could take it up from adjacent 

neurons expressing PN-1, indicated by β-galactosidase negative and HA positive 

immunocytostaining (Fig. 10B left panels). These observations suggested both the 

secretion and the uptake of PN-1 was secreted and taken up in this culture model. This 

result matched with earlier observations made in our lab, that exogenous GFP-PN1 was 

taken up in different cell types, including hippocampal neurons and HepG2 cells (Seiler 

F. and Albrecht H., unpublished data). The uptake of endogenous PN-1 was not blocked 

upon incubation with RAP; a well-known antagonistic ligand for LRP1 mediated 

endocytosis, at a concentration up to 500 nM for 72h (Fig. 10B, right panels). These data 

suggested that endogenous PN-1 could be taken up in an LRP1-independent manner, 

although it was not clear yet, whether PN-1 was taken up in an active or/and complexed 

form. 
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ig 10. Endogenous PN-1 uptake in cortical neurons from PN-1 KI mice. (A) Schematic 
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F
representation of the HA-PN-1 genomic locus with relevant restriction sites. (B) In cortical 

neuronal primary culture, HA-PN-1 was taken up by the neurons that did not express HA-PN-1, 

showing HA positive (left, top panel, asterisk) but X-gal negative (left panels, asterisk) staining. In 

primary neurons incubated with RAP 500 nM, 37°C for 72h, the uptake of HA-PN-1 (right panels, 

asterisk) was maintained the same as in the control neurons (left panels, arrow head). Pictures 

were taken at 40x magnificence (arrow head: neurons expressing PN-1, asterisk: neurons 

internalizing PN-1). 
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4.2 Both active and complexed PN-1 is internalized in both LRP1-
dependent and independent pathways 

 

To further investigate the mechanism of PN-1 internalization, we performed PN-1 

uptake experiments in LRP1-/- and wild type MEF cells examining the intracellular levels 

of PN-1 by immunocytochemistry and immunoblotting. Upon permeabilization, 

immunostained PN-1 appeared as punctas in cytoplasm in both LRP1-/- and wild type 

MEF cells under normal fluorescence microscope (Fig. 11A, top panels). We also used 

confocal microscopy, instead of non-permeabilized immunostaining, to confirm the 

internalization of PN-1. PN-1 staining was observed throughout the scanned layers (Fig. 

11A, bottom panels), suggesting that PN-1 could be taken up in both LRP1-dependent 

and independent pathways. To confirm this result and to better quantify the PN-1 uptake 

in MEF cells, we evaluated the internalization of active PN-1 and purified thrombin-PN-1 

complex by immunoblotting following SDS-PAGE of intracellular PN-1 under reducing 

conditions. Upon incubation with active PN-1, the internalized PN-1 appeared as single 

43 KDa band, otherwise as single band with slightly smaller molecular weight at around 

40 KDa upon incubation with rPN-1-thrombin complex (Fig. 11B). This 40 KDa form of 

PN-1 on immunoblot represents the cleaved form of PN-1 following dissociation from the 

complex with serine protease [Nick et al., 1990]. There was no significant difference 

between the internalization of active PN-1 and PN-1-thrombin complex observed in 

either LRP1-/- or wild type MEF cells. These data indicated that not only complexed but 

also active PN-1 could be internalized in both LRP1-dependent and independent 

pathways.  

Since this is the first time that active PN-1 internalization was observed, we carried 

out three additional experiments to exclude any possible artifact. The first one was to 

confirm that the active PN-1 detected on immunoblot is not dissociated from a serine 

protease complex. It has been reported that PN-1-serine protease complex is SDS-

resistant [Baker et al., 1980]. Therefore PN-1 complex can be detected on immunoblot 

under non-reducing conditions, if rPN-1 is only taken up in a complex form, we should 

not be able to detect 43 KDa form of PN-1 under non-reducing conditions. Thus PN-1 

uptake experiments were performed with both types of MEF cells and the internalized 

PN-1 was examined on immunoblot under non-reducing conditions. We could only 

detect the 43-KDa PN-1 band from cells incubated with free PN-1. Upon exposure to 

thrombin-PN-1 complex, the 40 KDa form of PN-1 was not detected anymore, as the 
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complex did not dissociate under the non-reducing conditions [Travis et al., 1983] (Fig. 

11C). Since the available antibody poorly recognizes PN-1 complex, PN-1 complex was 

not detected neither. Thus, we concluded that the PN-1 detected at 43 KDa was taken 

up in the active form.  In the second experiment, serine proteases activity was blocked 

by AEBSF to prevent PN-1 to form a complex with any serine protease. Under such 

conditions uptake of active PN-1 in both MEF cells was still detected, suggesting that 

PN-1 uptake is independent of any serine protease activity (Fig. 11D). A third experiment 

was performed to exclude the possible mixing of plasma membrane bound PN-1 and 

internalized PN-1 during ultra-centrifugation (see Methods). We incubated rPN-1 with 

both MEF cell lines at 4°C and active PN-1 was detected exclusively in the plasma 

membrane fractions by immunoblotting, this ruling out a cross contamination  (Fig. 11E).  

    We further analyzed the fate of internalized PN-1. In both types of MEF cells, 

overnight incubation of rPN-1 with 200 µM leupeptin combined with pepstatin A, or 

chloroquine, a weak base that inhibits lysosomal proteolysis, led to an increased 

intracellular accumulation of 43-KDa PN-1, indicating that active PN-1 was degraded in 

lysosomes (Fig. 11F,G). The PN-1 uptake in LRP1-/- MEF cells demonstrated by 

immunocytostaining and immunoblot analysis suggested that in the absence of LRP1 

another endocytic receptor mediates the internalization of PN-1.  
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Fig. 11 PN-1 internalization in LRP-/- and wild type mouse embryonic fibroblasts.  (A) MEF 

cells were incubated with 300 ng/ml rPN-1 at 37°C for 3h. Cells were fixed and immunostained as 

described in Materials and Methods. PN-1 appeared as punctas in the cytoplasm in both LRP1-/- 

and wild type MEF cells (A, top panels). The confocal scanning pictures through the whole cell 

body confirmed this pattern of PN-1 staining (A, bottom panels). Pictures were taken at 40x 

magnificence. (B) Internalization of 300 ng/ml rPN-1 or thrombin-rPN-1 complex (thrombin 300 

ng/ml) in MEF cells was analyzed by immunoblotting under reducing conditions. Both active and 

complexed PN-1 were taken up in LRP1-/- and wild type MEF cells, with active PN-1 migrating at 

a slightly higher molecular weight than PN-1 dissociated from the complex. Quantification of 

these results indicated lower level of either PN-1 or PN-1-thrombin complex internalized in the 

cells devoid of LRP1 (data: mean ± SE, white bar: PN-1-thrombin complex, black bar: active PN-

1). (C) Under non-reducing conditions, active PN-1 uptake was still detectable, but not in the case 

of complexed PN-1. (D) Serine protease inhibitor did not interfere with PN-1 uptake, indicating 

that active PN-1 uptake was not requiring any serine protease activity (data: mean ± SE, white 

bar: active PN-1, black bar: active PN-1 with AEBSF, grey bar: active PN-1 with AEBS). (E) 

Immunoblotting on PN-1 showed that PN-1 could only be detected in the plasma membrane 

fraction when the cells were incubated with rPN-1 at 4°C. (F) Overnight incubation with rPN-1 in 

presence of the lysosomal inhibitors leupeptin combined with pepstatin A lead to intracellular PN-

1 accumulation. (G) Chloroquine showed the same effect as leupeptin and pepstatin A on PN-1 

uptake. 
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4.3 Properties of PN-1 uptake in LRP1-/- and wild type MEF cells 
 

    In the next experiment, we compared the efficiency of PN-1 uptake in both types of 

MEF cells to reveal the differences between the endocytic pathways involved. The PN-1 

internalization showed a time-dependent fashion in both types of MEF cells. It is 

noticeable that in LRP1-/- MEF cells the PN-1 uptake was less prominent and showed a 

slower kinetic (t1/2 around 45min) than in wild type MEF cells (t1/2 around 15min) (Fig. 

12A,B). The PN-1 internalization also displayed a concentration-dependent fashion in 

both types of MEF cells (Fig. 12C). We observed that in LRP1-/- MEF cells PN-1 uptake 

was less efficient at given concentrations than in wild type MEF cell. Taken together, 

these results suggested that the receptor contributing to PN-1 uptake in LRP1-/- MEF 

cells has different properties.  

In this context we tested whether RAP and peptide 960 (P960) could interfere PN-1 

uptake in LRP1-/- MEF cells. RAP, among all the ligands, has the highest affinity to 

members of LDLR family including LRP1, whereas P960 represents the PN-1 domain 

binding to LRP1. Both are putative inhibitors which interfere with LRP1 endocytic 

pathway by preventing the PN-1-thrombin complex binding to LRP1 [Knauer et al., 

1997a]. The scrambled peptide P965 with the same amino acids content as P960 was 

used as control. Both RAP and P960 reduced PN-1 uptake in wild type MEF cells up to 

about 90%, but did not affect PN-1 uptake in LRP1-/- MEF cells (Fig. 12D). These data 

not only further confirmed an LRP1-independent uptake of PN-1, but also indicated that 

in the absence of LRP1 the receptor mediating PN-1 internalization was not from the 

LDLR family.  
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ig. 12 Properties of PN-1 uptake in LRP1-/- and wild type MEF cells.  (A) Both types of MEF 
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F
cells were incubated with 300 ng/ml rPN-1 at different time points. The intracellular PN-1 levels 

were detected by immunoblotting.  (B) Semi-quantification and densitometry plotting of PN-1 

internalization. In LRP1-/- MEF cells (triangle) showed kinetic parameter (t1/2 45min) different from 

wild type MEF cells  (square) (t1/2 15min) (Data represents one experiment out of three individual 

experiments). (C) MEF cells were incubated at 37°C for 3h with rPN-1 at different concentrations 

as indicated and the intracellular PN-1 levels were detected by immunoblotting. (D) MEF cells 

were incubated with 300 ng/ml rPN-1 at 37°C for 3h in presence or absence of 50 µM RAP, 25 

µg/ml control peptide (P965), or antagonist peptide 960 (P960) respectively. PN-1 uptake was 

inhibited in wild type but not in LRP1-/- MEF cells.  
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4.4 HSPGs are involved in PN-1 uptake in LRP1-/- MEF cells  
 

The next step was to identify the endocytic receptor, which mediated both active PN-1 

and PN-1 complex internalization in LRP1-/- MEF cells. It is well known that binding of 

PN-1-protease complex to cell surface heparan sulfate is the initial step of its 

internalization. Thus free heparin antagonizes ligand binding to the cell surface [Howard 

et al., 1987]. To test whether this was also the case for active PN-1 uptake, rPN-1 was 

added to MEF cells at 4°C in the presence of soluble heparin. Membrane-bound PN-1 

levels were determined in the plasma membrane fractions by immunoblot analysis. 

Heparin strongly reduced most of the PN-1 binding to the cell surface in both MEF cell 

lines (Fig. 13A). In addition, the interactions with HSPGs has been shown to impede 

ligand binding to LRP1 [Wilsie et al., 2003], the effect of RAP was evaluated in presence 

or absence of heparin. In this case rPN-1 was added to MEF cells at 4°C in the presence 

of soluble heparin, RAP or both. Membrane-bound PN-1 levels were determined in the 

plasma membrane fraction. In presence of RAP, PN-1 binding was reduced by about 

30%, and abolished by the combination of RAP and heparin in both wild type and LRP1-

/- MEF cells (Fig. 13B,C). This suggested that the initial binding step of active PN-1 also 

required heparan sulfate on the cell surface of LRP1-/- MEF cells. 

    Cell surface heparan sulfate is mainly associated with HSPGs of two families, 

syndecans and glypicans [Bernfield et al., 1999]. HSPG has been shown to mediate 

LDLR or LRP1-independent lipoprotein metabolism [Williams et al., 1992;Fernandez-

Borja et al., 1996;Al Haideri et al., 1997;Seo et al., 1997;Llorente-Cortes et al., 2002], 

among which syndecan-1 and perlecan have been identified as independent endocytic 

receptors [Fuki et al., 1997;Fuki et al., 2000a]. Being different from LRP1-mediated 

endocytosis, syndecan-1-mediated endocytosis is triggered by ligand binding and 

clustering. It involves detergent-insoluble membrane rafts instead of clathrin–coated pits 

[Fuki et al., 2000b]. It requires intact actin microfilaments and tyrosine kinase activity, 

which in turn phosphorylates the intracellular domain of syndecan-1 [Fuki et al., 1997], 

thus facilitating the endocytosis. Ligands are processed with t1/2 of approximately 1 hour 

by this pathway [Fuki et al., 1997;Fuki et al., 2000b], which is obviously slower than in 

the endocytosis mediated by LDLR family members. Consequently, we examined 

whether PN-1 uptake in LRP1-/- MEF cells was mediated by syndecan-1. We used 

chemicals, known to interfere with syndecan-1-mediated endocytosis to test whether 
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they could block PN-1 uptake in MEF cells. Two sets of inhibitors were used: (1) 

Genistein, a general tyrosine kinase inhibitor, and β-cyclodextrin, which depletes 

cholesterol and disrupts membrane rafts, have been shown to inhibit syndecan-1-

mediated endocytosis [Fuki et al., 1997;Fuki et al., 2000b], (2) H89, an inhibitor of PKA, 

and PAO, a tyrosine phosphatase inhibitor, which interfere with LRP1-mediated 

internalization via clathrin-coated pits [Goretzki et al., 1997]. Both Genistein and β-

cyclodextrin nearly abolished PN-1 uptake only in LRP1-/- MEF cells. In contrast, H89 

and PAO reduced PN-1 uptake only in wild type MEF cells, with H89 showing a much 

stronger inhibitory effect.  In LRP1-/- MEF cells, H89 increased PN-1 uptake whereas 

PAO showed no effect (Fig. 13D). These data suggested that syndecan-1, possibly 

together with an alternative carrier, could function as a receptor mediating PN-1 uptake 

in LRP1-/- MEF cells. 
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Fig. 13 Heparan sulfate proteoglycans are involved in PN-1 binding and internalization in 
LRP1-/- MEF cells. (A) Cells were incubated with 300 ng/ml rPN-1 in absence or presence of 1 

mg/ml heparin at 4°C for 2h. Immunoblot analysis of the plasma membrane fraction showed that 

soluble heparin inhibited PN-1 binding to cell surface in both LRP1-/- and wild type MEF cells 

indicating that the heparin binding site of PN-1 is also required for PN-1 processing in MEF cells. 

(B, C) Cells were incubated with rPN-1 in the absence or presence of 250 nM RAP or 

combination of RAP and 1 mg/ml heparin at 4°C for 2h. Immunoblot analysis of the plasma 

membrane fraction showed that soluble heparin combined with RAP completely blocked PN-1 

binding to cell surface in both LRP1-/- and wild type cells, whereas RAP reduced only 30% of PN-

1 binding (data: mean ± SE, black bar: active PN-1 as control, white bar: active PN-1 with RAP, 

grey bar: active PN-1 with RAP and heparin). (D) Both types of cells were also incubated with 300 

ng/ml rPN-1 alone or in presence of 300 µM Genistein (Geni), 10 mM β-cyclodextrin (Cyclo), 25 

µM H89 and 1 µM PAO respectively at 37°C for 3h. Immunoblot analysis of cell lysates showed 

that Genistein and β-cyclodextrin inhibited PN-1 uptake only in LRP1-/- MEF cells. In contrast, 

H89 and PAO reduced PN-1 uptake only in wild type MEF cells, with H89 showing much stronger 

inhibitory effect.  In LRP1-/- MEF cells, H89 increased PN-1 uptake whereas PAO show no effect.   
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4.5 Syndecan-1 plays a predominant role in PN-1 uptake in LRP1-/- 
MEF cells 

 

    As syndecan-1 was indicated to be important in PN-1 uptake in the absence of LRP1, 

we further evaluated its contribution to this event in MEF cells. Syndecan-1 is the only 

cell surface HSPG known to be expressed during early mouse embryonic development 

[Bernfield et al., 1999]. Our results from semi-quantitative PCR also showed that 

syndecan-1 and –4 were the most abundant syndecans expressed in MEF cells (Fig. 

14A,B). Nevertheless, there is no indication that syndecan-4 is involved in any endocytic 

pathway; we therefore mainly focused on exploring the role of syndecan-1 in PN-1 

internalization. The idea was to exam whether modifying syndecan-1 expression level 

could influence PN-1 internalization. Therefore the full-length syndecan-1 was over-

expressed in both types of MEF cells (Fig. 14C). This led to more PN-1 uptake only in 

LRP1-/- MEF cells (Fig. 14D). On the other hand, over-expression of full-length 

syndecan-1 could not facilitate PN-1 uptake in wild type MEF cells (Fig. 14D), 

suggesting that in this case LRP1 was the predominant receptor. 

    It is known that the association of the cytoplasmic domain of syndecan-1 to the 

cytoskeleton upon ligand-triggered clustering represents an important step in syndecan-

1-mediated endocytosis. In addition, tyrosine kinase activity is required for endocytosis, 

suggesting that the phosphorylation of the very conserved tyrosine residues within 

cytoplasmic domain of syndecan-1 can be important for endocytosis [Fuki et al., 1997]. It 

is also known that either deletion of the C-terminal 23 amino acids or the point mutation 

of tyrosine residues within this domain abolishes syndecan-1 association with 

microfilaments [Carey et al., 1996]. The truncated syndecan-1, which retains only nine 

amino acids of the cytoplasmic domain (DNsyn1), was therefore over-expressed (Fig. 

14C). This did not alter PN-1 uptake in either MEF cell lines (Fig. 14D). These results 

suggested that the intracellular domain of syndecan-1 was also required for the PN-1 

uptake in LRP1-/- MEF cells. Therefore we considered that syndecan-1 not only 

provided its heparin sulfate side chains as a docking site for PN-1 binding to the cell 

surface but also, actually more importantly, interacted with PN-1 via its core protein, 

especially its intracellular domain, for PN-1 internalization. To better address the 

functional contribution of syndecan-1 to PN-1 internalization, siRNA was applied to 

transiently knock down its expression level (Fig. 14F,G). Decrease of syndecan-1 levels 

resulted in a significant reduction of PN-1 uptake in LRP1-/- MEF cells, whereas it 
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remained without effect in wild type MEF cells (Fig. 14H). Taken together, these data 

demonstrated that syndecan-1 played a predominant role in PN-1 uptake in LRP1-/- 

MEF cells.  
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Fig. 14 Syndecan-1 mediated PN-1 internalization in LRP1-/- MEF cells. (A, B) The mRNA 

levels of members of syndecan family were measured in MEF cells by semi-quantitative RT-PCR, 

taking actin as control. (C) Both types of MEF cells were transfected with plasmids encoding 

either full-length (Syn1) or truncated syndecan-1 lacking 23-amino acids of its C-terminal 

(DNsyn1). Stable clones were selected and the levels of syndecan-1 in the derived cell lines 

confirmed by immunoblotting. (D) Uptake of rPN-1 was increased significantly in LRP1-/- MEF 

cells over-expressing full-length syndecan-1, but was only barely changed in LRP1-/- MEF cells 

over-expressing truncated syndecan-1. The over-expressed syndecans did not significantly affect 

PN-1 internalization in wild type cells (data: mean ± SE). (E, F) Both types of MEF cells were also 

transiently transfected with siRNA targeting syndecan-1. 24h later changes in syndecan-1 mRNA 

and protein levels were confirmed by real time PCR (data: mean ± SE) and immunoblotting. (G) 

After siRNA transfection, lower level of syndecan-1 led to a significant decrease in rPN-1 uptake 

only in LRP1-/- MEF cells (data: mean ± SE). 
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4.6 PN-1 activates the ERK signaling pathway in LRP1-/- MEF cells 

 
    It has been shown that PKA is activated upon apoE binding to LRP1 [Zhu et al., 2003]. 

Consequently it is worth investigating the signaling pathway activated by the interactions 

between PN-1 and distinct cell surface receptors, such as LRP1 and syndecan-1. As 

expected, in wild type MEF cells, PN-1 activated PKA and this effect was abolished by 

RAP (Fig. 15A).  In LRP1-/- MEF cells, PKA activity was reduced upon incubation with 

either RAP or PN-1; and in the presence of both ligands PKA level was not changed (Fig. 

15A). The cross talk between PKA and MAP kinase signaling, which regulates cell 

proliferation and migration, is well established [Bornfeldt et al., 1999;Stork et al., 2002]. 

The presence of phospho-ERK was therefore monitored to further evaluate downstream 

effects of PN-1 uptake in the absence of LRP1. As described, phosphorylation of ERK 

increased with time after serum deprivation in LRP1-/- MEF cells [Ma et al., 2002], we 

set up controls for each time point when testing for PN-1’s effect on activation of ERK 

signaling. Upon incubation with rPN-1, increased levels of phosphorylated ERK were 

detected in LRP1-/-, but not in wild type MEF cells (Fig. 15B). Co-incubation of rPN-1 

with β-cyclodextrin, which blocked PN-1 internalization through syndecan-1, abolished 

ERK activation triggered by PN-1 (Fig. 15C). These results indicated that PN-1 activated 

the ERK signaling pathway in the absence of LRP1, an effect that may be mediated by 

interaction with syndecan-1.  

    To identify the upstream of ERK signaling, we over expressed the dominant negative 

H-Ras (RasN17) [El Shemerly et al., 1997] in LRP1-/- MEF cells. PN-1 significantly 

increased phospho-MEK and phospho-ERK in LRP1-/- MEF cells transfected with empty 

vectors, but this increased phosphorylation of MEK and ERK was largely reduced by 

over-expression of dominant negative Ras (Fig. 15D). These data indicated that PN-1 

actually activated ERK signaling through Ras-Raf-MEK pathway. 
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Fig. 15 PN-1 activates different cell signaling pathways upon interaction with distinct cell 
surface receptors. (A) Both type of MEF cells were plated at the same density as for uptake 

experiments and pre-incubated overnight in SFM before incubation with 300 ng/ml active PN1 in 

presence or absence of 50 nM RAP, at 37°C for 10min. A three-fold increase of PKA activity was 

detected and effectively blocked by RAP in LRP1+/+ MEF cells (black bars). The level of PKA 

activity in LRP1-/- MEF cells was reduced by incubation with PN-1 or RAP alone, also by PN-1 

combined with RAP, but it remained unchanged between PN-1 and PN-1 combined with RAP 

(white bars). (B) MEF cells were cultured until confluence and switched to SFM fro 30min before 

applying PN-1. After incubation with 300 ng/ml active PN1 at 37°C for 10, 20 and 30min, a 

transient increase of phospho-ERK was detected in LRP1-/- but not in LRP1+/+ MEF cells. (C) In 

the presence of 10 mM β-cyclodextrin that interfered with syndecan-1-mediated internalization, 

the effect of PN-1 was abolished. (D, E) Over-expression of dominant negative Ras (RasN17) in 

LRP1-/- MEF cells also abolished ERK phosphorylation induced by PN-1, as showed by 

immunoblotting and quantification thereof (data: mean ± SE, white bar: control, black bar: active 

PN-1).   
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4.7 PN-1 increases LRP1-/- MEF cell migration by activating ERK and 
its downstream effector Rac1 

 

The migration behavior of LRP1-/- MEF cells has been well studied. Loss of LRP1 

expression in MEF cells leads to uPA accumulation in the medium, uPAR accretion on 

the cell surface, and to Rac1 activation, thus stimulating cell migration [Weaver et al., 

1997]. The underlying mechanisms were partially elucidated. It is known that uPA-uPAR 

interaction activates ERK and its downstream MLCK [Nguyen et al., 1999]. LRP1 

suppresses uPA-uPAR-mediated signaling to ERK by binding free uPA, thus decreasing 

the free uPA available to interact with uPAR [Weaver et al., 1997]. Consequently lose 

LRP1 expression promotes MEF cell migration. Two major reasons justify exploring the 

function of PN-1 on cell migration. First, PN-1 has been reported to be up regulated in 

metastatic tumors and to increase local tumor invasion [Buchholz et al., 2003]. Second, 

in our working model, PN-1 activated ERK signaling, which is obviously important for 

MEF cell migration. In the in vitro wound healing experiments, PN-1 increased LRP1-/- 

MEF cell migration by nearly 2 fold, but it had no effect on wild type MEF cells (Fig. 16A). 

To confirm that PN-1’s function on migration is due to its ability to activate ERK signaling, 

we examined the effect of a MEK inhibitor on PN-1-induced cell migration. U0126, which 

inhibits both active and inactive MEK, antagonized the PN-1-stimulated migration in 

LRP1-/- MEF cells (Fig.15B). To identify the upstream effector of signaling pathway 

activated by PN-1, we coincubated LRP1-/- MEF cells with PN-1 and anti-uPAR antibody, 

which is functionally blocking ligand binding to uPAR. This antibody abolished PN-1 

induced migration as well (Fig 15C). We then further studied the downstream effectors of 

ERK signaling activated by PN-1, which consequently promotes cell migration. Upon 

PN-1 incubation in LRP1-/- MEF cells, we observed promoted lamellipodia formation; 

and this was due to the activation of small GTPase Rac1, already known to regulate 

such morphological changes in migrating cells (Fig. 16D,E).  
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Fig. 16 PN-1 increases LRP-/- MEF cell migration by activation of Rac1. (A) MEFs cells were 

cultured in presence of 10% FCS until confluency. Monolayer was wounded and incubated in 

SFM containing 300 ng/ml rPN-1 37°C for 4h. Cell migration into denuded space was recorded 

and plotted. PN-1 increases LRP1-/- but not the wild type MEF cell migration. (B, C) LRP1-/- MEF 

cells were culture under the same conditions as describe above, and incubated with 300 ng/ml 

rPN-1 in the presence or the absence of either 10 µM U0126 or 10 µg/ml anti-uPAR antibody. 

Cell migration into denuded space was recorded and plotted. Both U0126 and anti-uPAR 

abolished PN-1 induced migration of LRP1-/- MEF cells. (D) LRP1-/- MEF cells were plated in 4-

well cell culture chamber at 2.0 x 104 cells per well in SFM with or without 300 ng/ml rPN-1 at 

37°C for 1h and stained by phalloidin for cytoskeleton. PN-1 induced lamellipodia formation in 

LRP1-/- MEF cells. (E) LRP1-/- MEF cells were cultured and wounded under the same conditions 

as described above. Afterwards cells were incubated with or without 300 ng/ml PN-1 at 37°C for 

1h; activated Rac1 was pull down by GST-fused p21-activated kinase. PN-1 activated Rac1 in 

LRP1-/- MEF cells.  
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4.8 Enhanced interaction between PN-1 and syndecan-1 promotes 
LRP1-/- MEF cell migration. 

  
Previous results showed that 1) β-cyclodextrin inhibited PN-1 internalization mediated by 

syndecan-1. 2) it also blocked the activation of phospho-ERK induced by PN-1. Based 

on these observations, we hypothesized that the interaction between PN-1 and 

syndecan-1 was involved in the activation of ERK signaling in LRP1-/- MEF cells. Thus 

enhanced interaction between PN-1 and syndecan-1 would activate ERK signaling and 

increase cell migration. To test this hypothesis, we designed two experiments to 

enhance PN-1 and syndecan-1 interaction. The first one was to over-express syndecan-

1, the transmembrane receptor for PN-1 in LRP1-/- MEF cells, and to incubate such cells 

with rPN-1 during the migration process. The second one was to over-express PN-1, 

and to test ERK phosphorylation level and the corresponding migration behavior of such 

cells. Upon PN-1 incubation, LRP1-/- MEF cells over-expressing syndecan-1 (Fig. 17A) 

showed a significant 3-fold increase in cell migration on vitronectin (Fig. 17C). Compared 

to the control cells, MEF cells over-expressing PN-1 showed a constitutively higher level 

of phospho-ERK (Fig. 17B) and a nearly 2-fold enhancement in cell migration on 

vitronectin (Fig. 17C). 
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Fig. 17 Enhanced interaction between PN-1 and syndecan-1 activates ERK signaling and 
increases LRP1-/- MEF cell migration (A) Over-expression of syndecan-1 in LRP1-/-MEF cells 

was confirmed by immunoblotting  (B) Over-expression of PN-1 in LRP1-/-MEF cells (top panels) 

constitutively activated ERK signaling (bottom panels). (C) Cell migration was tested in modified 

Boyden chamber with vitronectin-coated filter and with SFM in both top and bottom chambers. 

LRP1-/- MEF cells were allowed to migrate at 37°C for 4h. Cell migration was increased either by 

over-expression of PN-1 or by over-expression of syndecan-1 and incubation with rPN-1. 
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4.9 PN-1 and syndecan-1 are coimmunoprecipitated with integrin β3 
 
Given the previous results, one could conclude that in LRP1-/- MEF cells, the interaction 

between PN-1 and syndecan-1 activated ERK signaling and its downstream effector 

Rac1 promoting cell migration on vitronectin. It was then justified to explore the 

molecular mechanisms underlying this signaling transduction. Syndecan-1 is known to 

regulate the activity of integrin αvβ3 and to mediate cell spreading and migration 

requiring signaling by integrin αvβ3 in human carcinoma cells [Beauvais et al., 

2003;Beauvais et al., 2004a]. Furthermore, ERK has been shown to be downstream of 

integrin signaling [Wary et al., 1996;Roberts et al., 2003]. So one can consider that PN-1 

participates syndecan-1-integrin machinery and activates ERK through integrin signaling, 

thus mediating cell migration. To validate this hypothesis, we first tested whether 

functional blocking antibodies against syndecan-1, integrin β3 or uPAR, which is known 

to be involved in integrin αvβ3 signaling [Adachi et al., 2001], would inhibit the migration 

triggered by PN-1 in LRP1-/- MEF cells. Cells were pre-treated with antibodies before 

incubation with rPN-1 in the migration or adhesion assays. Each of these three 

antibodies showed inhibitory effects on both migration and adhesion mediated by PN-1 

(Fig. 18A,B). Secondly we tested whether PN-1 and integrin β3 formed complexes in 

LRP1-/- MEF cells. Following incubation with PN-1 immunoprecipitation was performed 

using specific antibody against integrin β3. The detection of integrin β3 on immunoblot of 

the immunoprecipitates demonstrated the specificity of the antibody (Fig. 18C). PN-1 

was also detected in the same immunoprecipitates (Fig. 18D). As control, we used the 

same samples to perform immunoprecipitation with anti-integrin β1 antibody. Only 

integrin β1 but not PN-1 was detected after such immunoprecipitation (Fig. 18E, F). To 

better support our working hypothesis, syndecan-1 was over-expressed in LRP1-/- MEF 

cells, which were then incubated with PN-1. The analysis of the immunoprecipitates 

using specific antibody against integrin β3 revealed syndecan-1 and PN-1 in the same 

blot (Fig. 18G, H). Taken together, we concluded that PN-1 specifically interacts with 

syndecan-1 and integrin β3. 
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Fig. 18 PN-1 and syndecan-1 are coimmunoprecipitated with integrin β3 in LRP1-/- MEF 

cells. (A, B) Antibodies against integrin β3, syndecan-1 or uPAR inhibited PN-1-stimulated LRP1-

/- MEF cell migration and adhesion on vitronectin (asterisk indicates the statistical significance, 

p<0.05). (C) Integrin β3 was detected in the samples, which were immunoprecipitated using anti-

integrin β3 antibodies. (D) LRP1-/- MEF cells were incubated with 300 ng/ml active PN-1 at 37°C, 

for 1h. Upon immunoprecipitation using anti-integrin β3 antibodies, PN-1 was detected only in the 

samples from the cells, which had been incubated with PN-1. (E, F) In the control experiments, 

samples were immunoprecipitated using anti-integrin β1 antibodies. Integrin β1 was detected 

after immunoprecipitation, but PN-1 was not detected. (G, H) Full-length syndecan-1 was over-

expressed in LRP1-/- MEF cells, and such cells were incubated with 300 ng/ml active PN-1 at 

37°C for 1h. Both syndecan-1 and PN-1 were detected on the same blot after 

immunoprecipitation using anti-integrin β3 antibodies. 
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5 Discussion and Outlook 

     
    Extracellular proteolysis plays an important role in cell-cell contacts and cell-ECM 

interactions. Serine proteases form an important subclass of extracellular proteases, and 

their proteolytic activity is delicately controlled by the serine protease inhibitors. Our 

experimental results show that active, free PN-1 is also internalized by cells. In addition, 

we provide evidence that depending on the receptor involved, different signaling 

pathways are activated, leading to distinct cellular responses to an environmental 

challenge. Serine protease inhibitors are vital then not only for the control of extracellular 

proteolysis, but also for sensing and providing information about the extracellular space 

to the cell via its receptors. 

 

It is commonly accepted that PN-1 binds to its target proteases such as thrombin, uPA, 

and tPA forming complexes, and that these complexes bind to HSPG, are subsequently 

internalized through LRP1 and degraded [Knauer et al., 1997b;Crisp et al., 2000]. In this 

established model of PN-1 complexes interaction with LRP1, it is assumed that active 

PN-1 cannot bind to the receptor although the receptor recognizes a specific PN-1 

moiety within PN-1-protease complexes [Low et al., 1981]. The formation of PN-1-

protease complexes leads to a conformational change of PN-1 and this is a prerequisite 

for binding to the endocytic receptor. However, active PN-1 internalization has been 

observed in fibroblast cell culture. Howard et al have reported that the levels of 

endogenous free PN-1 in fibroblast-conditioned media reach steady state within 48 h 

due to a constant secretion and removal in a free form by cells [Howard et al., 1986]. 

Unpublished observations made in our lab also showed that PN-1 could be internalized 

in different cell types, including HepG2 cells and primary hippocampal neurons (Seiler F. 

and Albrecht H., unpublished data). In our experimental results, active PN-1 is taken up 

via either LRP1-dependent or -independent endocytic pathway. Nevertheless, in the 

presence of LRP1, active PN-1 uptake was less efficient than that of the PN-1-thrombin 

complex (Fig. 11B). This result accords with the above hypothesis that formation of PN-1 

complexes leads to the conformational change of PN-1, which facilitates the recognition 

or binding to the endocytic receptor, such as LRP1. Interestingly, in the absence of 

LRP1, uptake of active PN-1 is the same as that of PN-1-thrombin complex (Fig. 11B), 
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indicating that the conformational change is not always necessary for internalization of 

PN-1 or PN-1 complexes. 

 

In both wild type and LRP1-/- MEF cells, cell surface binding is blocked by heparin and 

reduced by RAP (Fig. 13 A,B,C). These results confirm the requirement of the heparin 

binding site of PN-1 for the interaction with the cell surface [Howard et al., 1987;Herndon 

et al., 1999]. They are however in contrast to the report that RAP increases VLDL 

binding to HSPG in LDLR deficient cells [Wilsie et al., 2003]. This implies that RAP does 

not interact solely with ligand binding to LRPs. Consequently, our data is rather in line 

with the proposal that RAP may also interact with HSPG core proteins [Vassiliou et al., 

1994], thus altering the conformation of the heparan sulfate side chains, which in turn 

changes the affinity to different ligands.   

     

    PN-1 internalization is inhibited in the wild type but not in LRP1-/- cells by both RAP 

and a peptide corresponding to the domain of PN-1 considered to interact with LRP1 

(Fig. 12D). These results indicate that HSPG could take over, at least partially, the 

endocytic function of LRP1. However the potent RAP inhibition detected in wild type 

cells after 3h of incubation seems to indicate that HSPG does not substitute for LRP1 

function in such cells. A possible explanation for this phenomenon could be that wild 

type cells would need time to switch to an HSPG–dependent mechanism. Such a delay 

has been reported for VLDL internalization. In the presence of RAP, LRP1-dependent 

internalization is reduced after 5.5h while an increased HSPG-dependent internalization 

is detected by 16h [Wilsie et al., 2003]. In line with this proposal, activation of ERK 

pathway is not detected upon 15min incubation of wild type cells in presence of rPN-1, 

RAP or both (results not shown). The mechanism, by which cells switch from LRP1 to 

HSPG to mediate endocytosis requires further study. 

 

    Endocytosis is an important mechanism by which cells interpret or respond to their 

environment, receiving the extracellular information and translating it into a specific 

biological function. This mechanism also initiates the clearance of serine proteases 

complexed to their inhibitors, thus providing the accurate cell surface proteolysis 

required by cells. Cell surface proteolysis is an important mechanism for generating 

biologically active proteins that mediate a range of cellular functions and contribute to 

biological processes such as migration and invasion. Our observation that active PN-1 is 
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also internalized indicates that the active inhibitor can be removed from the extracellular 

environment. This mechanism could function to regulate local extracellular proteolytic 

activity. Similarly the active form of neuroserpin has been reported to be internalized, but 

through an LRP1-dependent mechanism that requires an additional co-factor [Makarova 

et al., 2003]. Obviously, other mechanisms influencing PN-1 expression and availability 

may also be important for determining the local level of the inhibitor. This may represent 

a mechanism of short-term proteolytic regulation, as opposed to long-term, resulting 

from protein expression changes in response to prolonged challenges.  Examples of this 

include the down regulation of PN-1 expression by incubation with thrombin for more 

than 18h in aortic smooth muscle cells, or the up regulation of PN-1 expression in 

pathological situations such as hypertension [Bouton et al., 2003;Richard et al., 2004]. 

Furthermore, active PN-1 interaction with cell surface receptors could also be important 

for its function in signaling transduction. We observed that in cortical or cerebellar 

primary neuronal culture, there was only a small population of neurons expressing PN-1, 

but some non-expressing neurons took it up from the vicinity (Fig. 10B). In cerebellar 

primary neuronal culture, PN-1 was shown to compete with Shh for LRP1 binding, 

thereby regulating Shh-mediated cell proliferation during cerebellum development 

(Vaillant C., et al, 2006, submitted). In LRP1-/- MEF cells, exogenous PN-1 activates 

Ras-MEK-ERK signaling by interaction with syndecan-1 and promotes lamellipodia 

formation and cell migration (Fig. 15,16).  

 
Endocytosis is mediated by different cell surface receptors. These receptors can share 

the same ligand, or one receptor can mediate the internalization of distinct ligands, such 

as members of LDLR family [Nykjaer et al., 2002].  We have showed here, that in 

addition to the described internalization of complexed PN-1 [Knauer et al., 1997b], active 

PN-1 can be endocytosed as well by LRP1-dependent mechanism (Fig. 11A,B). We also 

have identified syndecan-1 as an alternative receptor for the internalization of active PN-

1 in LRP1-/- cells (Fig. 13,14). The contribution of other HSPG family members cannot 

be excluded since this study was not carried out under syndecan-1 knockout conditions.  

 

It has been known for more than 20 years that there is clearance of remnant 

lipoproteins by liver, which is mediated partly through an LDLR-independent pathway 

[Kita et al., 1982;Rubinsztein et al., 1990;Ishibashi et al., 1994]. The LDLR-independent 

pathway mediates about one-third of LDL removal from plasma in normal humans and 
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all removal in patients homozygous for receptor-negative familial hypercholesterolemia 

[Goldstein et al., 1977;Kesaniemi et al., 1983]. As shown by studies carried out in 

different laboratories, LRP1 and HSPG are the probable receptors for hepatic and 

arterial catabolism of atherogenic lipoprotein [Fernandez-Borja et al., 1996;Al Haideri et 

al., 1997;Seo et al., 1997;Llorente-Cortes et al., 2002]. All these observations indicate a 

functional correlation and/or overlapping between LRP1 and HSPG in vivo.  Furthermore, 

there is also difference between these two classes of receptors in term of endocytic 

function. In LRP1-mediated endocytosis, HSPG or another co-receptor must present 

their ligands to cell surface LRP1 because LRP1 cannot capture a ligand by itself 

[Knauer et al., 1997b;Crisp et al., 2000]. It is proposed that HSPG-induced changes in 

conformation lead to a higher affinity of these ligands to LRP1. In contrast, HSPG is 

sufficient to bind, internalize, and deliver ligands to lysosomes [Williams et al., 1997]. 

HSPG shows better affinity to and higher capacity for the ligands as well; because 

HSPG is more abundant than most cell receptors and heparan sulfate (HS) side chains 

can bind more than one ligand at one time. However, the kinetics of HSPG-mediated 

internalization is lower than for LRP1. In part it is because LRP1 has a much fast 

turnover than HSPG. Hence it is likely that the relative roles of these two mechanisms 

will depend on the ligand affinity, and on the specific expression pattern of LRP1 and 

HSPG in different cell types. In the latter case, it also depends on the HS side chain 

structure and specific HSPG core protein. In this study, LRP1 shows a predominant role 

over syndecan-1 in endocytic function, because changes of syndecan-1 expression level 

cannot interfere with PN-1 internalization in wild type MEF cells (Fig. 14D,G). Down-

regulation of syndecan-1 could be compensated by other cell surface HSPGs, whereas 

up-regulation of syndecan-1 does not benefit PN-1 uptake either. This indicates that 

LRP1 is the rate-limiting factor in LRP1-dependent internalization. It also implicates that 

in the presence of LRP1 other unidentified factors may be required to activate syndecan-

1-mediated endocytosis. However, in wild type MEF cells as already discussed, 

syndecan-1 did not respond even when LRP1 pathway was blocked by RAP or peptide 

960 (Fig. 12D). The decision made by the cells seems to be more complicated than 

simply switching from one to the other pathway, because different modes of endocytosis 

would also lead to regulation of signaling transduction, to which endocytosis is coupled.  

 

    It is known that the level of LRP1 is not necessarily the same in vivo, especially under 

pathological situation or during the progressing of different diseases. Low levels of LRP1 
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expression have been correlated with aging, prostate cancer and Alzheimer’s disease 

[Field et al., 2000;Kang et al., 2000;Gilardoni et al., 2003]. Thus, the importance of our 

findings resides in the identification of the alternative function of syndecan-1 as a 

receptor that could compensate for low level or absence of LRP1 and that may trigger 

different cell responses by the same ligand.  Although the nature of the cross talk 

between these two types of receptors remains unknown, it has been reported that 

syndecan-1 synthesis is increased in cells with impaired clathrin-dependent endocytosis 

[Llorente et al., 2001], implying that compensatory mechanisms exist for low LRP1 level.  

 

    Besides their endocytic function, such alternative endocytic pathways could also be 

important for associated signaling functions [McPherson et al., 2001]. The signaling 

complexes are recruited to the vicinity of endocytic machinery and delivered to specific 

subcellular compartments, thus regulating cell surface receptor activity. As has been 

shown for the binding of apo E to LRP1 [Zhu et al., 2003], we observed that interaction 

between PN-1 and LRP1 caused PKA activation (Fig. 15A). Li et al reported that a PKA-

mediated phosphorylation of the intracellular domain of LRP1 leaded to an increase of 

LRP1-mediated internalization [Li et al., 2001]. Therefore we consider that PKA 

activation induced by PN-1 is a kind of positive feedback mechanism to increase 

internalization efficiency. This could also explain the higher efficiency on the uptake of 

PN-1 or PN-1 complex in the presence of LRP1 (Fig. 11A,B). Surprisingly, we have 

found that PN-1 activates ERK signaling pathway only in LRP1-/- MEF cells (Fig. 15B). 

Blockade of PN-1 uptake, by β-cyclodextrin-mediated disruption of intact lipid rafts, 

abolished this ERK activation (Fig. 15C). This implies that PN-1 and syndecan-1 

interaction achieves a different signal transduction outcome depending on the presence 

of LRP1. Although the mechanism behind the coupling of syndecan-1-mediated 

endocytosis and signal transduction is still unknown, the observation that PN-1 activates 

ERK signaling in LRP1 -/- MEF cells can be of crucial importance. The cross talk 

between PKA and ERK signaling is extremely complicated. Briefly, PKA can either 

positively or negatively regulate ERK signaling through several specific mechanisms, 

which all involve the regulation of phosphorylation of Raf. More importantly, the outcome 

of this cross talk is highly cell-type specific [Stork et al., 2002]. It has been reported that 

in MEF cells, PKA activates Src and its downstream effecter Rap1, which in turn blocks 

Ras activation of Raf-1 [Schmitt et al., 2002]. Our results indicate that this interference 

can be abolished in the absence of LRP1, therefore the impact on ERK signaling caused 
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by the interaction of PN-1 and syndecan-1 is enhanced and triggers distinct and different 

cellular responses. The selective or balanced activation of these two signaling pathways 

depends on the respective levels of LRP1 and syndecan-1 available on the cell surface 

at any given physiological or pathological situation [Day et al., 1999;Hsueh et al., 1999]. 

Such a mechanism may alter cellular responses in different cell types over a wide range.  

 

The finding that PN-1 activates Ras-MEK-ERK signaling pathway in the absence of 

LRP1 is very interesting, although PN-1 is not the first member of serpin family that is 

reported to be involved in signal transduction. It is well known that serine protease 

including uPA, their receptor such as uPAR, and their inhibitor such as PAI-1 are 

involved in signal transduction, which in turn regulate tumor growth, invasion, and 

angiogenesis [Durand et al., 2004].  tPA has recently reported as a potent activator of 

PDGF-CC [Fredriksson et al., 2004]. Taken together, serine proteases and their cognate 

inhibitors play an important role in signal transduction, which is rather different from their 

classic role in proteolysis regulation. This may lead us to a new understanding of PN-1 

function on cell behavior, for example cell migration, which is mediated by such signaling 

transduction. We observed that in LRP1-/- MEF cells, PN-1-induced ERK activation was 

blocked by β-cyclodextrin, a reagent that inhibits syndecan-1 mediated PN-1 

internalization (Fig. 15). This observation actually raises the question, whether 

syndecan-1 would play a role in ERK signaling activated by PN-1? If so, what the 

underlying mechanism would be? It has been reported recently that syndecan-1 

regulates integrin αvβ3 activity and mediates cell spreading and migration, which require 

integrin αvβ3 signaling in human carcinoma cells [Beauvais et al., 2003;Beauvais et al., 

2004a]. Coincidentally, both PN-1 and syndecan-1 are up-regulated in pancreatic tumor, 

and PN-1 promotes local invasion of pancreatic tumor cells [Conejo et al., 

2000;Buchholz et al., 2003]. It will be interesting to identify other co-factors of PN-1 in 

this signaling pathway, and investigate how the interactions between PN-1 and co-

factors would possibly influence the migration of certain types of cells.  

 

     It was even more exciting when we observed that, in the absence of LRP1, PN-1 

promoted cell migration by activation of ERK signaling (Fig. 16B). We also showed that 

pre-incubation of cells with antibodies against uPAR, syndecan-1, and integrin β3 can 

block PN-1-enhanced migration (Fig. 16C,18A). Moreover, we coimmunoprecipitated 

PN-1, syndecan-1, and integrin β3 (Fig. 18 G,H). Taken together, we propose a working 
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model of the mechanism by which PN-1 promotes cell migration (Fig. 19). In this model 

Integrin αvβ3 is the central player in this pathway, PN-1 may activate ERK signaling 

either via interaction with uPA-uPAR system or via with syndecan-1. This could further 

activate the downstream effectors of integrin Rac1 and MLCK in this case, both of which 

have been shown play an important role in cell migration. 
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Fig. 19 Model for PN-1 involvement in both uPA-uPAR-initiated and syndecan-1-
dependent activation of integrin.  Active PN-1 interacts with uPA, leading to uPAR

conformation change, and activation of integrin αvβ3 and its downstream Ras-ERK signaling.

Alternatively, PN-1 ligation with HS chains (or the ectodomain) of syndecan-1 promotes

syndecan-1 coupling to integrin and activates integrin-mediated signaling. Activation of both

pathways results in cell migration either through MLCK or through Rac1. 
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    There are many published data suggesting that serine proteases/receptors such as 

uPA/uPAR, together with their inhibitors (serpins), are organizers of cell-ECM contacts. 

They cover the full range of activities required to promote and disrupt cell attachment 

sites, therefore influencing cell migration and invasion. They play significant roles in 

these events by modulating proteolysis, destroying the ECM, or by mediating cell-ECM 

interaction and activating cell signaling. Moreover, they interact with ECM molecules, like 

vitronectin, and cell surface adhesion receptor, like integrin to execute these functions. 

Thus the coordinated expression and activation of adhesion receptors and of cell-

associated serine proteases are required to enable the cells to adhere, to migrate, and 

to invade surrounding tissues. 

     

The uPA-uPAR system is central to a spectrum of biological processes including 

fibrinoloysis, inflammation, atherosclerotic plaque formation, and matrix remodeling 

during wound healing, tumor invasion, angiogenesis, and metastasis. Binding of uPA to 

uPAR initiates a proteolytic cascade that results in the conversion of plasminogen to 

plasmin. Plasmin, through its own proteolytic function, degrades a range of extracellular 

basement membrane components and activates others proteases such as the 

metalloproteinases, which also degrade ECM proteins. Independent of its catalytic 

activity, uPA is involved in cell signaling through uPAR. The interactions between uPAR 

and cell surface/ECM molecules modulate cell-ECM adhesion, an indispensable 

requirement to establish the ‘grip’, which is necessary for the invading cell to progress 

within a tissue. Over-expression of uPA or uPAR is a feature of tumor malignancy, and is 
correlated with tumor progression and metastasis. In contrast, inhibition of expression of 

these components leads to a reduction in the invasive and metastatic capacity of many 

tumors. Unexpectedly, not only uPA but also PAI-1 is up-regulated in various tumors and 

considered to be a strong negative prognostic marker in different cancers [Rakic et al., 

2003;Noel et al., 2004]. 

 

Degradation of connective tissues is thought to be a necessary step to allow 

malignant cells to invade locally, enter the lymphatic or blood circulation, and 

metastasize. The serine protease system (mainly uPA, uPAR) is one of the major 

systems that are believed to degrade pericellular ECM. They provide the cell surface 

with necessary enzymatic activity, which can activate the pro-enzyme form of the ECM 

degradation proteases. This induces directly or indirectly the formation of a provisional 
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matrix, which scaffolds the leading edge of the invading cells. In this sense we would 

expect that PN-1, by inhibiting serine proteases activities, would inhibit cell migration. 

 

    However, it is well known that PN-1 inhibits catalytic activity of uPA in the presence of 

ECM molecule such as collagen type IV [Crisp et al., 2002], therefore it may contribute 

to determine a stable ECM and favor the maintenance of the adhesion sites required for 

cell adhesion and spreading. It also increases association between uPAR and vitronectin 

in the presence of active uPA, stimulates uPAR-dependent cell adhesion but does not 

influence vitronectin binding to integrin or intergrin-mediated cell adhesion. This effect of 

PN-1 is concentration-dependent [Kanse et al., 2004]. PN-1-uPA complex can be 

internalized via uPAR and LRP1, during which process uPAR is recycled to the cell 

surface [Conese et al., 1995]. Thus PN-1 could also disrupt cell adhesion by interfering 

with the cell surface uPAR pool, which in turn will change the ratio between engaged 

and free vitronectin and/or integrin. Changes in these ratio could influence the effect of 

cell detachment mediated by serpin [Czekay et al., 2003].  It is likely that PN-1 plays 

dual roles namely promoting or destabilizing adhere in cell adhesion, which may depend 

on the local availabilities of different factors, including PN-1 itself.  

     

Cell migration is intrinsically linked to adhesiveness. Cells require attachment sites in 

ECM to assemble their cytoskeleton and to initiate membrane protrusions important to 

migration. However, cell-ECM contact sites cannot be too avid, otherwise the cells would 

be unable to detach and move.  

 

Apart from their abilities to degrade ECM, uPA and uPAR are involved in signal 

transduction from the extracellular environment to the intracellular compartments, which 

influences the cell responsiveness to the extracellular stimuli. In some cell types uPAR 

localizes in caveolae, which contain clusters of signaling molecules and scaffolding 

proteins. Alternatively, uPAR can also be found at the leading edge of cells advancing 

toward a chemotactic stimulus, or at focal contacts of invasive cells, usually in 

association with molecules of the ECM, integrins, signaling factors, and cytoskeletal 

elements. These types of co-localizations situate uPAR to play a central role in the 

activation of integrins and signaling cascades, which in turn induce cytoskeleton 

reorganization and benefit cell migration. 
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    The uPAR-integrin signaling pathway has been established.  uPAR interacts with 

integrin αvβ3, activates integrin-mediated Ras-ERK signaling pathway by the adaptor 

protein Shc [Wary et al., 1996;Adachi et al., 2001]. It has been proposed that one of the 

downstream effectors of Ras-ERK is MLCK, which upon activation phosphorylates the 

myosin light chain of actin, thereby initiating cytoskeleton contraction and cell migration 

in an integrin- and matrix-dependent fashion [Adachi et al., 2001]. Another downstream 

effector of ERK signaling is Rac1. Upon activation (probably through PI3K) it enables 

changes of the cell cytoskeleton, induces lamellipodia formation and promotes cell 

migration as well [Adachi et al., 2001]. The activation of uPAR-integrin signaling may or 

may not need uPA or uPA complex binding to the receptor. Nevertheless, serine 

proteases and serpins such as uPA and PN-1 play dual roles in this signaling cascade, 

either by binding and changing the conformation of uPAR, which is required to initiate 

uPAR signaling [Ossowski et al., 2000] , or by initiating uPAR internalization via LRP1 to 

reduce uPAR on the cell surface. The outcome of this regulation may be cell type 

specific. In the case of LRP1-/- MEF cells, where uPAR accumulates on the cell surface 

[Weaver et al., 1997], we would expect PN-1 to facilitate signal transduction. Indeed this 

is what we observed, namely the activation of Ras-ERK signaling, activation of Rac1 and 

lamellipodia formation, and consequently increase of cell migration (Fig. 16). 

Furthermore we observed that a pre-incubation LRP1-/- MEF cells with anti-uPAR 

antibody abolishes PN-1 induced-cell migration on vitronectin (Fig. 16C, 18A). Taken 

together, we conclude that PN-1 activates the Ras-ERK signaling pathway and promotes 

cell migration via uPAR-mediated signaling in LRP1-/- MEF cells. 

 

However, this may not be the only way that PN-1 is able to promote cell migration. 

PN-1 interacts with syndecan-1, which is involved in regulation of integrin activity, 

integrin-mediated cell spreading, and migration. It has been reported that the 

ectodomain of syndecan-1 and integrin αvβ3 are functionally coupled, and that the 

integrin is dependent on syndecan-1 to become activated and to mediate signals 

required for carcinoma cell spreading and migration [Beauvais et al., 2003;Beauvais et 

al., 2004a]. It is not yet clear how this functional coupling happens, whether it is via a 

signaling pathway or via a direct interaction between these two receptors. Nevertheless, 

we have evidence that PN-1 could play a role in the syndecan-1-integrin αvβ3 machinery. 

First of all, we have shown that in LRP1-/- MEF cells, migration is increased either by 

over-expression of PN-1 or by over-expression of syndecan-1 followed by incubation 
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with PN-1 (Fig. 17). This suggests that an enhancement of PN-1 and syndecan-1 

interaction increases cell migration. Second, the pretreatment of MEF cells with either 

anti-integrin β3 or anti-syndecan-1 antibodies blocks PN-1-enhanced cell migration. 

Third, syndecan-1 and PN-1 are co-immunoprecipitated specifically with integrin β3, but 

not with integrin β1 (Fig. 18D,F).  Beauvais et al. have reported an important feature of 

syndecan-1 and integrin coupling required to regulate integrin activity. It is that 

syndecan-1 has to be engaged to a ligand, such as vitronectin, and this engagement 

requires the HS side chains of syndecan-1. In the light of this observation, active PN-1 

interaction with syndecan-1 via HS side chains may provide the prerequisite ligation of 

syndecan-1-dependent integrin activation, and the subsequent signaling transduction.  

 

In addition, the interaction of PN-1 and HS side chains of syndecan-1 may have 

further consequences. It is well known heparin increases the affinity between PN-1 and 

serine proteases. Therefore, the PN-1-uPA complex, facilitated by the presence of 

syndecan-1, especially its HS side chains, could actively promote uPAR-mediated 

signaling as well. In summary, PN-1 may be involved in regulation of integrin-mediated 

signaling through either uPAR or syndecan-1, or both. This would position PN-1 (-uPA 

complex) a cross-talking point for these two pathways. In either case, PN-1 may or may 

not need to be in complex with a serine protease, such as uPA to exert its functions.  

 

In conclusion, the data described here provide the first experimental evidence that not 

only complexed but also active PN-1 is internalized by MEF cells. This event is mediated 

by both LRP1-dependent and LRP1-independent pathways. We have identified 

syndecan-1, a member of the heparan sulfate proteoglycan family as the receptor 

mediating internalization of free PN-1 in LRP1-deficient MEF cells. We have also shown 

that, in contrast to LRP1-mediated internalization that triggers the PKA pathway, PN-1 

interaction with syndecan-1 activates Ras-Raf-MEK-ERK signaling cascades. This effect 

is abolished by β-cyclodextrin, which blocks active PN-1 internalization only in LRP1 

deficient MEF cells. As a consequence of the activation of Ras-ERK signaling, PN-1 

activates downstream effectors of ERK signaling such as Rac1 and induces 

cytoskeleton reorganization, therefore promoting LRP1-/- MEF cell migration on 

vitronectin. Interestingly, this effect is blocked by different antibodies against integrin β3, 

syndecan-1, and uPAR. In addition, syndecan-1 and PN-1 are specifically co-

immunoprecipitated with integrin β3 indicating that integrin could be upstream of PN-1-
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activated ERK signaling, which is activated by PN-1. PN-1 interacts with either uPAR or 

syndecan-1, or both of them to activate integrin β3 and its downstream signaling 

including Rac1 and/or MLCK. Taken together, these findings show that serpins serve 

additional physiological functions, besides their roles as protease inhibitors, by 

differentially modulating specific cellular signaling pathways, and consequently 

regulating cell migration, which could be important in cancer development.  

 

    As shown in Fig.19, PN-1 interacts with cell surface proteins and receptors, such as 

uPA-uPAR and syndecan-1 thereby activating signal transduction pathways, which have 

been implicated in regulating tumor growth, invasion and angiogenesis [Durand et al., 

2004]. Clearly it is important to further investigate the role of PN-1 in tumorigenesis. We 

would like to continue in vitro experiments to provide further evidence for the interaction 

between PN-1 and uPAR and on the regulation of integrin αvβ3 activity, and in vivo 

experiments to investigate functions of PN-1 in tumor formation and metastasis. We 

would like to inject breast tumorigenetic cells, showing significant difference in PN-1 

expression and invasive behavior, into PN-1 deficient mice. This may provide us insight 

into the importance of a PN-1 expressing environment for different steps of 

tumorigenesis. Additionally, we will modify PN-1 expression level in these cells, and 

inject them as well into a PN-1 deficient background. We will be able to find out, for 

instance, if PN-1 over-expression changes the metastatic feature of PN-1 negative cells, 

and at which specific steps in metastasis it happens. We also hope to answer the 

question if over-expression of PN-1 leads to cellular invasion into blood or lung, to the 

microproliferation, and to changes in the sensitivity of these tumor cells to oxidative 

stress or resistance to apoptosis. 
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