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2 ABSTRACT 

In Switzerland and Germany up to a half of the first-line regimens include 

protease inhibitors (PIs) [1, 2]. Although in the Swiss HIV Cohort Study (SHCS) 

most patients under antiretroviral therapy (ART) have suppressed viral loads [3], 

every third patient is or has been affected by drug resistances [4] which are one of 

major causes for therapy failure. 

HIV resistance against PIs is typically characterized by the accumulation of 

structural alterations in the viral protease (PR). However, a number of cases of 

clinical therapy failure under PI-containing regimes have been reported, where 

genotypic resistance testing did not reveal sufficient explanation from information 

on the PR and regimen compliance [5, 6]. And certain alterations in the natural 

substrate of the PR, Gag polyprotein, have been associated with the development 

of PI resistance [7-13]. Nevertheless, until today most algorithms evaluating PI 

resistances take solely the protease gene itself into account. 

In the SHCS protease inhibitor use and successful treatment are monitored 

regularly for all patients and every newly enrolled patient receives a genotypic 

resistance test. We used in vivo cross-sectional sequence data from SHCS patients 

to scrutinize PI resistance mutational pathways across Gag and PR. Roles of 

certain mutations as well as of their interactions were investigated. 

Here we demonstrate that roughly every fifth of the SHCS patients carries 

resistance mutations in Gag. And since Gag is not considered by the current 

genotyping systems the overall level of PI resistance for these patients is 

underestimated. We report novel Gag mutations of potential clinical relevance and 

provide additional details on known resistance mutational patterns. Additionally 

our data support a new potential role of p6 alterations in PI resistance mediated by 

its phosphorylation. Taken together, our results suggest the relevance of Gag 

sequence information for the routine genotyping of PI-treated patients of the 

SHCS.  
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3 INTRODUCTION 

3.1 Human Immunodeficiency Virus 

3.1.1 Structure 

HIV virions have a spherical morphology typical for most retroviruses 

(Figure 1), and the particle diameter is around 130 nm [14]. The external proteins 

gp120 are non-covalently associated with the transmembrane proteins gp41. Both 

gp120 and gp41 carry polysaccharide modifications. They are functionally active 

as trimeric complexes and responsible for target cell attachment and fusion. 

Observed numbers of such complexes vary between 4 and 35 [15], but more recent 

publications report 10 complexes per particle [16]. They tend to cluster in the 

mature viral particles but seem to be located randomly in the immature virions 

[17]. Gp41 proteins penetrate the membranous viral envelope, which originates 

from the cytoplasmic membrane of the host cell, and inside the membrane reach 

for the matrix proteins that cover the conical capsid of the virus. The contact 

between the envelope and the matrix trimeric proteins is provided by amino-

terminally attached myristic acid residues [18]. Details about the contact between 

envelope proteins and matrix proteins is still under discussion [19]. Mature matrix 

proteins then form a lattice-like layer, which, at budding, becomes responsible for 

the shape of the virion. 

The central core of the structure is represented by the conical (the shape is 

characteristic of the genus Lentivirus) capsid. It is built of matured capsid protein 

oligomers and protects two single-stranded RNA molecules. The RNA strands are 

associated with nucleocapsid proteins but neither possess covalent link between 

them nor exhibit any base-pair contact. HIV virions also include: Additional 

cellular components such as cyclophilin A bound to the capsid, actin, APOBEC3G, 

tRNA [20] and 7SL RNA [21]; essential virus-encoded enzymes, in according with 

features of the lifecycle: reverse transcriptase, integrase and protease; accessory 

proteins and factors, i.e. Tat, Vif, Vpr, Nef. 
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Figure 1. Structure of a mature HIV virion. Illustration by Th. 

Splettstoesser [22]. 
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3.1.2 Genome organization 

 

The HIV-1 genome is comprised of two linear plus-ssRNA molecules, both 

5’-capped and 3’-polyadenylated, matching the key properties of eukaryotic 

mRNA. Each molecule is typically 9-10 kb in size and contains (Figure 2): Three 

genes encoding for viral structural proteins typical for all Retroviridae: gag, pol 

and env; two genes encoding for regulatory elements: tat and rev; four genes 

encoding for accessory regulatory proteins: vpr, vif, nef and vpu. 

Encoded by the gag gene (corresponds to Gag protein, “group-specific 

antigen”) are: matrix (MA / p17), capsid (CA / p24), spacer protein 1 (SP1 / p2), 

nucleocapsid (NC / p7), spacer protein 2 (SP2 / p1), and the p6 protein. Encoded 

by pol gene (corresponds to Pol protein, polymerase) are: protease (PR), reverse 

transcriptase (RT / p51), RNase H (p15), integrase (IN / p31) and transframe p6 

protein. Envelope glycoproteins gp120 and gp41 are encoded by env gene and are 

synthesized as the protein precursor gp160. 

Regulatory elements are responsible for transactivation while accessory 

proteins represent virulence factors [23]. Both 5’ and 3’ ends of the sequence 

harbor key elements necessary for reverse transcription and consequent integration 

of the viral DNA into the host chromosome: R (“redundant”) is the fragment of 

identical sequence and orientation at the 3’ and 5’ termini; U5 (“unique”) is located 

at the 5’ terminus and is required for the correct integration process; PB is site 

responsible for the attachment of the 3’ end of a Lys-tRNA molecule; Leader 

region with splice donor site; a polypurine tract is required for the initiation of the 

second strand DNA synthesis during reverse transcription; U3 region, which is a 

U5 analog but is positioned at the 3’ terminus of the LTR and is followed by the R 

fragment. The complete Long terminal repeat (LTR) which regulates the gene 

expression is formed during reverse transcription of U3, R and U5 and represents 

the 3’ and 5’ ends only of the reversely transcribed genome.  
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Figure 2. HIV-1 genome organization. Open reading frames are shown as rectangles. The gene start, indicated by the 

small number in the upper left corner of each rectangle records the position of the a in the ATG start codon for that gene, while 

the number in the lower right records the last position of the stop codon. For pol, the start is taken to be the first T in the sequence 

TTTTTTAG, which forms part of the stem loop that potentiates ribosomal slippage on the RNA and a resulting -1 frameshift and 

the translation of the Gag-Pol polyprotein. The tat and rev spliced exons are shown as shaded rectangles. Illustration from Los 

Alamos HIV Database [24]. 
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3.1.3 Replication cycle 

 

In order to initiate a new infection, the mature HIV viral particle has to 

attach to the target cell of T-cells or macrophages (Figure 3). This happens through 

the primary receptor CD4 as well as chemokine co-receptors CCR5 and CxCR4. 

Preferred co-receptor determines viral tropism with CxCR4 generally 

corresponding to T-cell-line tropic viruses (lymphotropic / X4 / “TCL”-tropic) and 

CCR5 – to the viruses replicating in macrophages (R5 / “M”-tropic). From the 

viral side, attachment is mediated by the envelope protein complexes. Their 

interaction with above-mentioned cellular receptors and conformational 

rearrangements allow entry of the virus capsid into the cell through the fusion 

between the viral envelope and cell membrane. This may reduce the effects of 

ART by allowing new infections to happen independently of production of 

infectious viral particles [25-28]. 

At this stage the viral capsid has to partially disassemble so reverse 

transcription process can be initiated in the cytoplasm. DNA is synthesized on the 

RNA matrix with the help of Lys-tRNA annealing to PB as a primer. Then this 

DNA binds to the U5 and R region of the RNA. RNase H removes U5 and R 

region of the RNA. Then the primer relocates to the 3’ end of the viral genome 

which allows the extension of the first strand cDNA. After majority of viral RNA 

is degraded by RNase H the leftovers prime the synthesis of the second strand. The 

relocation happens when the two strands hybridize with their PB sequences which 

allows the extension for both of them. 

Still bound to the viral components, dsDNA is then transported as a 

preintegration complex into the nucleus through the nuclear pores. Vpr, MA and 

cellular nuclear import factors are the key players at the stage. IN generates a 5’ 

end overhang at both LTR by digesting a dinucleotide from the both 3’ ends of the 

dsDNA. The enzyme also inserts a cut at a random site of the host DNA with 

overhangs at 5’ termini. The 3’ ends of the viral DNA genome then bind covalently 

to the 5’ ends of the host DNA via phosphodiester bonds after which viral 5’ 
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overhangs can be removed and single-stranded gaps are repaired by cellular 

systems. DNA ligases finish the process by adding missing covalent links. 

After the first full-length mRNA is transcribed from the integrated provirus 

and spliced, Tat protein is translated and transcription rate of viral mRNAs is 

dramatically increased. This is explained by Tat being imported into the nucleus 

and binding to the TAR elements at the 5’ termini of viral mRNAs. It has a 

stabilising effect and allows for efficient elongation. Variously spliced and 

unspliced mRNAs allow for production of (Figure 4): Tat, Rev and Nef; Vif, Vpr, 

Vpu and envelope proteins; structural and enzymatic viral components. Full-length 

unspliced mRNA are simultaneously used as viral genomes to be packaged into the 

particles. 

Envelope proteins are initially translated as gp160 on the endoplasmatic 

reticulum. Then during the transport through the Golgi complex to the surface of 

infected cell gp160 is cleaved by cellular proteases into gp120 and gp41. 

Fusogenic activity of their complexes on the cell surface allows the virus to infect 

neighbouring cells in particle-independent manner. 

Products of gag and pol genes are initially translated as Gag and Gag-Pol 

polyproteins on cytoplasmic ribosomes. Then the polyproteins are myristoylated at 

their p17 end and transported to the place of particle assembly, which is the 

cytoplasmic membrane in case of T-cells but can be intracellular membranes in the 

case of macrophages and monocytes. Gag and Gag-Pol polyproteins and their 

domains orchestrate the assembly and packaging of all components of the viral 

particle [29] which allows subsequent budding. 

PR as a domain of Gag-Pol protein initiates autocatalytic process to excise 

itself. After that it produces cleavages at a number of fixed sites across the Gag and 

Gag-Pol polyproteins in order to transform precursor proteins into the proteins that 

build up the mature viral particle. This occurs when a particle is liberated from the 

host cell, and this step is necessary for the structural rearrangements that lead to the 

morphology of infectious virion. 

The roles HIV proteins are summarized in the Table 1.
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Figure 3. Scheme of the HIV replication cycle. Viral and cell components are labelled in italics, processes in plain text, 

and processes that can be inhibited by current antiretrovirals are boxed. MA, red; NC, green; p6, orange; Env, purple; viral RNA, 

cyan; viral cDNA, brown. Illustration by Tedbury and Freed [30]. 
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Figure 4. HIV-1 splicing patterns. The genomic organization of the proviral DNA and the location of protein coding 

sequences are indicated. The dashed lines connect the major splice donor to a downstream splice acceptor. Adapted from Fields, 

Knipe and Howley [31]. 
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Table 1. HIV proteins and their respective roles. Adapted from Votteler 

and Schubert [32]. 

Protein  

class 
Gene Product 

Processed 

product 
Role 

Structural 

gag 
Gag  

polyprotein 

MA, CA, SP1, NC, 

SP2, P6 
Virion assembly 

pol 
Gag-Pol  

polyprotein 

TF P6, PR, RT, 

RNase H, IN 
Genome replication 

env gp160 gp120, gp41 Attachment and entry 

Regulatory 

tat Tat Tat 
Positive regulator of LTR 

transcription 

rev Rev Rev 
Regulator of viral gene 

expression: splicing and transport 

Accessory 

nef Nef Nef 

Downregulation of CD3, CD4 and 

MHC-1, signalling and T-cell 

activation, apoptosis, infectivity 

enhancement 

vpr Vpr Vpr 

Virus associated membrane 

transduction, nuclear import of 

preintegration complex, 

differentiation, cell cycle arrest 

and apoptosis, regulation of 

glucocorticoid receptor 

vif Vif Vif 

Infectivity factor: suppression of 

antiviral activity of APOBEC3G 

(cytitine deaminase) 

vpu Vpu Vpu 

Augmentation of virus release, 

CD4 degradation, inhibition of 

NF-κB activation 
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3.1.4 History, diversity and classification 

 

First clinical observations of the acquired immune deficiency syndrome 

(AIDS) were made in1981 in USA among an MSM cohort patients suffering from 

opportunistic infections [33]. And already in 1983 HIV was discovered as a 

causative infectious agent of AIDS by the two independent groups of Luc 

Montagnier and Robert Gallo [34, 35]. Several years passed before the term “HIV” 

was commonly accepted. 

HIV belongs to the family Retroviridae, subfamily Orthoretrovirinae, 

genus Lentivirus. One of its characteristics is its high genetic variability that results 

from three major reasons: missing proofreading activity of the RT, that leads to 

high mutation rate (3x10
-5

 per nucleotide base per cycle of replication); copy-

choice recombination due to the ability of RT to switch between 2 RNA templates 

of a viral particle, which are not necessarily of identical sequence (2-20 events per 

genome per replication cycle); fast replication cycle (10
10

 virions a day) [36-38]. 

These factors along with the genome size of HIV allow multiple alterations at 

every nucleotide position every day. This is the basis of the observed vast viral 

diversity along with a rapid selection towards resistance under ART. 

Two types of HIV have been described: more virulent and infective HIV-1 

that causes most of the HIV infections and its less transmissive counterpart HIV-2 

mostly observed in West Africa region [39, 40].  

HIV-1 originated from Africa as a result of zoonotic transmissions of its 

phylogenetic “relative” SIV to humans. Natural SIV hosts, different simian 

species, generally do not develop disease upon infection. SIVcpz is considered to 

be the direct ancestor of HIV-1; this virus can cause AIDS-like symptoms in 

chimpanzees [41]. Sequence difference up to 30% allows classification of HIV-1 

onto three major groups: M (major), O (outlier) and N (new / non-major) [42]. 

Group M isolates represent most of all cases of HIV infection. In this group several 

subtypes (or clades) have been identified: A, B, C, D, F, H, J and K [43]. They 

have different prevalence over geographic regions, and subtypes B and C are the 
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most frequent in the M group. Recombinant circulating forms (CRFs) have been 

also described and are the result of co-infection with the viral variants of different 

subtypes. 

HIV-2 is phylogenetically distant from HIV-1: sequence difference can be 

as high as 40%. It is thought to have originated from SIVsmm that 

asymptomatically infects West-African sooty mangabey monkeys. This group can 

also be subdivided into subtypes: from A to H. 

Since the discovery of the pathogen causing AIDS both basic and clinical 

research advanced extremely. Today one can effectively diagnose HIV infection 

and suppress viral replication using ART; HIV itself and the process of its 

pathogenesis are well understood [44, 45]. There has been also a major progress in 

decreasing HIV transmission, particularly mother-to child transmission [46]. 

There are three main avenues along which the healthcare community is 

now moving towards the goal of ending the HIV pandemic [47]: Complete and 

comprehensive global implementation of available treatment and prevention tools; 

research on elimination of the virus in patients or control of infection not 

dependent on lifelong ART; development of novel potent prevention tools that 

could complement and enhance the ones available currently. 

Yet by the end of 2013 around 39 million people globally have died from 

HIV-related causes, and HIV infection continues to be one of the major unsolved 

global health problems as there is still no cure for the currently 35 million people 

living with it and for around 2 million newly infected (figure from 2013 [48]). In 

20 years from 1990 to 2010 it went up in global ranks for causes of disability-

adjusted life years from 33rd to 5th place [49, 50]. 
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3.1.5 Infection, pathogenesis and clinical features 

 

The clinical course of the disease is summarised in Figure 5 and generally 

divided into three phases: primary infection, latency (chronic infection) and AIDS. 

Infection is carried out by mature HIV particles or virus-infected cells [25-

27]. They get into the vaginal or intestinal mucosa and into the bloodstream 

through sexual contact or injuries. HIV initial targets are Langerhans cells of the 

skin, dendritic cells and macrophages. The latter ones allow the virus to establish 

reservoirs for long-term persistence. T lymphocytes are usually considered to be 

inoculated later. Infected cells travel through the lymphatic vessels and 

bloodstream. Lymph nodes with their dendritic cells represent a viral reservoir 

where monocytes, macrophages and primary T lymphocytes get infected. 

Macrophages also allow transportation of virus to the brain and other organs and 

infection of other cell types like astrocytes and endothelial cells. 

Only one third of all HIV infections are described to manifest with the 

typical flu-like symptoms, unspecific rash and swollen lymph nodes in the first 

phase or “primary infection” several weeks after exposure; most cases are 

clinically unapparent. Up to 10
6
-10

8
 viral genome copies per millilitre of blood can 

be detected with quantitative PCR method at this stage. CD4 cell level drops below 

500 cells per microliter of blood, and the CD4/CD8 ratio shifts below 0.5. Duration 

of several initial months is characteristic for this phase. Chronically unapparent 

infection or clinical latency may characterize a very prolonged (for up to more than 

two decades) phase often with no or mild observable symptoms: fever, weight loss, 

diarrhoea, fatigue and coughing may occur. One to three months post infection 

HIV-specific antibodies and T-lymphocytes can be detected. Viral load goes down 

often to only several thousand genome equivalents per millilitre of peripheral 

blood. Spleen, tonsils and Peyer patches are also the sites of viral replication 

during the stage. Viral proliferation occurs but still under control by the immune 

defence. 
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When CD4 cell level decline cannot be compensated by the differentiation 

of the bone marrow progenitor cells anymore, the control is lost. Damage to the 

CD4 cell population leads to the failure of associated immunological functions; 

CD8 lymphocytes are not indirectly activated anymore. HIV genetic variability 

also complicates immune recognition due to the alteration of epitopes. The 

immune system malfunction allows the development of opportunistic infections. 

The time when the CD4 cell count falls below 200 cells per µL of blood is the 

onset of clinical AIDS symptoms accompanied by fever, nocturnal sweating, 

swollen lymph nodes, weight loss and sometimes neurological problems. 

There are several reasons for the loss of CD4 cells: Direct elimination by 

viral replication through necrotic pathway [51], mostly affects CD4 T 

lymphocytes; apoptotic processes induced by Tat expression, by cytokines and 

chemokines generated by infected macrophages and monocytes, and by gp120-

antibody complexes bound to the uninfected cells; elimination by cytotoxic CD8 

lymphocytes.
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Figure 5. Clinical progression of HIV infection. The black curve represents 

the time course of the number of CD4 cells per microliter of blood; the red curve 

shows the number of viral genome copies per millilitre of blood. The time axis 

includes the first few weeks of infection up to a period of more than 10 years. 

Figure by Modrow et al. [52]. 
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3.2 Gag, protease and protease inhibitor resistance 

3.2.1 Gag structure and function 

 

Initially recognized as a simple scaffold protein forming the viral particle, 

Gag has been shown to perform multiple functions in the HIV lifecycle and to be 

involved in multiple interactions with both cellular and viral components. 

Therefore today it is considered to be an emerging therapy target. 

Gag or Pr55
Gag

 (Figure 6) and Gag-Pol polyproteins are translated from the 

full-length RNA which serves as both the genome to be included into assembling 

viral particles [53]. Gag and Gag-Pol are produced at a rate of approximately 20:1. 

This is facilitated by the ribosomal slippery site in a uridine-rich region of the 

mRNA corresponding to the transframe p6 fragment [54]. In case of a frame-shift 

most of p6 is left out and PR, RT, RNase H and IN sequences are translated. Once 

Gag and Gag-Pol have been produced in the cytoplasm of a host cell they are 

guided by MA to the cholesterol-rich microdomains of plasma membrain [55, 56].  

And such behaviour of MA is driven by its membrane-binding domain which 

includes an N-terminal covalently attached myristic acid and a basic region [18, 

57-59].  

Then binding of viral genomic RNA with NC domain of Gag renders Gag 

multimerization and assembly of the immature viral particle [60, 61]. The RNA 

association occurs via the overall positive charge of the NC Gag domain. And the 

specificity for the viral genomic RNA results from a direct interaction of the RNA 

packaging signal with two extremely conserved zinc finger motifs within the viral 

NC [61, 62]. 

CA as a part of Gag polyprotein is responsible for intermolecular 

interactions facilitating Gag multimerization and particle assembly [63]. The C-

terminal domain (CTD) of CA containing a well-conserved major homology 

region is essential for this assembly process [64, 65]. The N-terminal domain 

(NTD) of CA carrying a proline-rich loop binds cyclophilins, in particular 

cyclophilin A [66]. It has been suggested that cyclophilin A binding to the capsid 
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core protects HIV-1 from being recognized by the cellular innate immune response 

[67]. 

Then glycosylated trimers of the Env glycoproteins (3 x gp120 + 3 x gp41) 

are incorporated into the immature Gag carcase through interaction of gp41 with 

MA [19, 68, 69]. Their origin is described in details elsewhere [19]. 

Further particle budding and release depends on the membrane scission 

which is also mediated by Gag. The p6 fraction of Gag contains two so-called late 

domains necessary for the recruitment of endosomal sorting complexes required 

for transport (ESCRTs: ESCRT-0, I, II, and III) to perform the scission. Normal 

functions of ESCRTs are discussed elsewhere [70, 71]. One of the late domains is 

Pro-Thr-Ala-Pro (PTAP) motif that binds directly to the ESCRT-I component 

Tsg101. Another late domain, Tyr-Pro-Xn-Leu sequence (YPXnL, where X may 

be any residue, and n = 1–4 amino acids) interacts with ESCRT-associated factor 

ALIX. The main late domain is PTAP motif [72-74], but YPXnL motif is 

indispensable for HIV-1 replication in some cell types [75]. 

Gag and Gag-Pol cleavage is performed by the PR resulting in the release 

of mature Gag and Gag-Pol derived proteins: MA, CA, SP1, NC, SP2, p6, PR, RT, 

RNase H, IN. This triggers viral particle maturation which happens during or 

shortly after the release of immature virion [63]. Maturation enhances the 

fusogenic potential of Env protein complexes [76, 77] and allows formation of MA 

lattice and mature CA conical core [16, 63]. MA forms hexamers of trimers so that 

the MA trimers orient themselves on top of the underlying hexameric lattice 

formed by CA [78]. Certain mutations in MA can completely block the 

incorporation of HIV-1 Env. Such block of Env incorporation can be rescued by 

truncations and alterations in the cytoplasmic tail of gp41 or by heterologous short-

tailed Env glycoproteins. Efficiency of incorporation of the truncated HIV-1 Env 

depends on the cell type studied [79, 80]. Additional mutations at the MA trimer 

interface could compensate some of MA mutations that cause Env incorporation 

block. So MA trimer formation is suggested to play an important role in Env 

incorporation [81]. 
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The structure of the hexagonal CA core is sealed with seven CA pentamers 

at the wide end and five - at the narrow end. Both CA hexamers and pentamers are 

formed based on NTD-NTD and intermolecular NTD-CTD interactions. At the 

same time CTD-CTD interactions allow the formation of the broad hexamer lattice 

[82]. Alterations of CA amino acid sequence have been shown to affect capsid core 

stability and influences virus infectivity [83]. Such rearrangements can be clearly 

seen on the pictures from electron microscopy of immature versus mature virions 

(Figure 7). Mature viral particles at this stage are finally ready to infect target cells 

and initiate another round of infection. 

Gag derivatives additionally play an important role in post-entry events. So 

NC also functions as a nucleic acid chaperone which promotes reverse 

transcription and downstream stages of the viral lifecycle [60]. 

A further role of CA is its participation in processes of reverse transcription 

along with MA [84, 85]. CA interacts both with cellular transportins and nuclear 

pore components (karyopherin TNPO3, nuclear pore proteins Nup153 and 

Nup358) to control the nuclear import of pre-integration complex [86-88]. In line 

with this CA is considered to be a factor allowing lentiviral infection of non-

dividing cells [89]. Cyclosporin A prevents the binding of cyclophilins to CA. This 

impairs HIV-1 replication [66, 90]. It has been suggested that by blocking the 

binding of cyclophilin A or Nup358 to CA, cyclosporin A can “unmask” the viral 

core, allowing it to be recognized by restriction factors [91] or other components of 

the host innate immune response [67]. 

A role of p6 as a Gag domain relevant for post-entry events is the 

recruitment of the HIV-1 accessory protein Vpr into a virion with the help of a 

specific binding sequence. Vpr impacts viral replication and pathogenesis. It 

participates in guiding of pre-integration complex to a nuclear pore and subsequent 

nuclear transport [92, 93]. 

As for the spacer peptides of Gag, they regulate kinetics of Gag processing. 

SP1 in addition forms part of the sequence following the C-terminus of CA which 

is crucial for Gag-Gag interactions at the particle assembly stage [94-96]. 
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Figure 6. Schematic drawing of HIV-1 Gag indicating major functional motifs. The myristic acid and highly basic region 

of MA mediate membrane interactions of Gag. Residues in MA that have been shown to affect Env incorporation are indicated 

with dashed vertical lines. CA is divided into N-terminal and C-terminal domains, NTD and CTD, respectively. The NTD 

promotes pentamer formation, while the CTD, which also contains the major homology region, is required for CA dimerization 

and multimerization. NC contributes to Gag assembly by binding nucleic acid, typically the viral genome, via its zinc finger 

motifs, leading to long-range Gag multimerization. The p6 contains the late domains PTAP and YPXL, which bind TSG101 and 

ALIX, respectively, thereby recruiting the ESCRT machinery to facilitate virus budding from the cell membrane. MA, red; CA, 

blue; NC, green; p6, orange. Spacer peptides SP1 and SP2 are indicated, as is the approximate length of the Gag precursor (500 

amino acids). By Tedbury and Freed [30]. 
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Figure 7. Effects of maturation. Transition between the immature, not 

infectious, and mature, infectious, state is initiated by the viral protease cleavages. 

Nothing new enters the viral particle at this stage, only rearrangements take place. 

Spherical shell of Gag and Gag-Pol polyproteins is converted into well-

differentiated structures of infectious virion. Illustration was kindly provided by 

Th. Klimkait. 
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3.2.2 HIV-1 protease 

 

The HIV-1 protease is critical for the viral life cycle. It initiates maturation 

of produced viral particles as described above. The natural substrates of PR are the 

Gag and Gag-Pol polyproteins that provide the virus with the key structural and 

enzymatic components. The HIV-1 protease functions as a homodimer. It is a 

retroviral aspartyl proteinase [97] with the active center including aspartic acid 25, 

threonine 26 and glycine 27 [98-102]. Though PR is a small protein and carries out 

critical function in viral maturation and infectivity, it possesses notable plasticity, 

and polymorphisms have been observed in one-third of its 99 amino acids [103, 

104]. Three functional domains can be identified in the PR structure: active site 

cleft, two flaps above it and a dimerization interface [105]. 

HIV-1 PR possesses some activity already as a domain of Gag-Pol 

polyprotein. However such PR dimers are unstable and much less active than the 

released, excised form of protease. This is because embedded PR adopts the proper 

conformation only for short periods of time [106-108]. Initial intramolecular 

cleavage events are: SP1/NC then internal transframe protein cleavage site and 

transframe protein / PR cleavage site [108-111]. Now, liberated from one side, PR 

can gain proper conformation and therefore stability and catalytic activity[112]. 

Now cleaving becomes intermolecular and the PR monomers are completely 

liberated from the Gag-Pol precursor [113, 114]. 

When the N-terminus of the PR is bound it cannot cut intermolecularly 

[111], therefore Gag processing occurs subsequently to PR dimer maturation. The 

process of cleavage is highly specific and temporally and spatially regulated 

(Figure 8, Figure 9). However, PR needs to be somewhat promiscuous as it 

recognizes 12 Phe-Pro and Tyr-Pro containing cleavage sites (none of which is 

efficiently cleaved by mammalian proteases) with their individual sequences [54, 

115-117] (Table 2).  The order of cleavage is determined by the relative processing 

rates of individual cleavage sites. The “fastest” cleavage site SP1/NC is processed 
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400 more effectively than the “slowest” cleavage sites CA/SP1 and NC/SP2 [118-

121]. And processing efficiency of each individual cleavage site is thought to 

depend in a complex way on its amino acid sequence, time of accessibility to the 

active center of the protease, formed shape, conformation of surrounding protein 

and contextual cues [96, 122, 123]. 

 

Table 2. HIV-1 M-group PR cleavage site decapeptides. TFP – transframe 

protein. 

 Site  P5  P4  P3  P2  P1 ✄   P1'  P2'  P3'  P4'  P5'

 MA/CA V S Q N Y / P I V Q N 

 CA/p2 K A R V L / A E A M S 

 p2/NC T S A I M / M Q R G N 

 NC/p1 E R Q A N / F L G K I 

p1/p6
gag

  R P G N F / L Q S R P 

 NC/TFP E R Q A N / F L R E N 

TFP/p6  
pol

E D L A F / L Q G K A 

p6
pol

 /PR V S F N F / P Q V T C 

 PR/RTp51 C T L N F / P I S P I 

 RT/RTp66 G A E T F / Y V D G A 

 RTp66/INT I R K V L / F L D G I 

 Nef A A C A W / L E A Q E 
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Figure 8. Gag polyprotein processing via ordered cleavages by PR. The 

order indicated at the top of the figure by the numbers over the cleavage sites is 

determined partly by the intrinsic processing rate of each cleavage recognition 

sequence and partly by preceding cleavages at neighboring sites. By Salzwedel, 

Martin and Sakalian [124]. 

 

 

Figure 9. A model representation of the step-wise processing of HIV-1 

Gag by the HIV-1 protease. Gag, comprising MA (blue), CA (green), SP1 (light 

green), NC (red), SP2 (tan), and p6 (gray), is extended in a radial orientation from 

the membrane (gold), as is Gag-Pro-Pol, which contains the viral enzymes PR 

(brown), RT (blue–gray), and IN (purple). By Potempa et al. [125]. 
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3.2.3 Maturation inhibitors 

 

There are two principle ways to block Gag and Gag-Pol cleavage by the PR 

and therefore prevent initiation of the maturation stage of viral lifecycle: to target 

the enzyme or the substrate. The former option is carried out by the protease 

inhibitors while the latter one – by maturation inhibitors. 

Maturation inhibitors disrupt Gag cleavage. The currently only drug of the 

class, bevirimat, binds to and blocks the CA/SP1 cleavage site from being accessed 

by PR. Even if it occurs in an incomplete fashion, such a disruption causes the 

accumulation of a p25 precursor (see Figure 8) and loss of infectivity [126, 127]. 

Bevirimat, a derivative of betulinic acid (isolated from Syzygium claviflorum), was 

the first (and by now the only) compound of the class, which reached phase IIb 

clinical trials. It causes aberrant virion morphology and replication defects [128]. 

The compound proved to be safe with only mild and rare side effects such as 

headaches and throat discomfort [124, 129]. However, a large fraction (roughly 

half) of patients carried viruses with amino acid polymorphisms at the bevirimat 

binding site (SP1 residues 6–8 / Gag residues 369-371) that rendered the virus less 

susceptible to the drug [130, 131]. Some of the resistance mutations revealed 

subtype-specific consensus. Work on bevirimat as a potential therapeutic agent was 

discontinued due to the high prevalence of resistance-conferring polymorphisms 

[132-134]. Furthermore, it became obvious that only liquid formulation provided 

adequate drug levels, and such formulation is undesirable for commercial 

development. 

Another chemically unrelated molecule, PF-46396, demonstrated similar 

anti-HIV effects mediated by a related mechanism applied to the same cleavage 

site. Its development encountered the same problem of resistance mutations 

clustering in the CA/SP1 junction region [135, 136]. 
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3.2.4 Protease inhibitors 

 

Since PR is indispensable for the HIV viability it represents extremely 

attractive and well-studied drug target. The substrate-mimicking compounds of the 

protease inhibitor class bind to the PR enzyme and, in contrast to maturation 

inhibitors, therefore block any stage of Gag and Gag-Pol processing. Nine PIs were 

approved for the treatment of HIV infection: saquinavir, ritonavir, indinavir, 

nelfinavir, amprenavir, lopinavir, atazanavir, tipranavir and darunavir (Figure 10). 

Low doses of ritonavir were used for boosting (to slow down metabolism of the 

drugs making up a regimen backbone).  

The development of PI enabled the dual class triple combination therapy 

that became known as highly active antiretroviral therapy (HAART) [103, 137, 

138]. All PIs except TPV are essentially analogues of the transition state of a 

natural PR substrate [139, 140]. They mimic a cleavage site recognized by the PR, 

but instead of natural and hydrolysable P1-P1’ amide chemical bond they carry 

non-hydrolyzable transition state isosteres [141]. PI possesses special and distinct 

features compared to the compounds of other classes. One feature of PI is their 

cooperative inhibition of PR:  Minor reductions in drug concentration or 

effectiveness cause nonlinear decreases in inhibition [125, 142-144]. This results in 

the steeper slopes of inhibition curves. A second feature is pleiotropic effect of the 

compound of the class (Figure 11): PIs are able to interfere with viral function at 

multiple stages of the viral lifecycle [145] (fusion [76, 77, 145, 146], reverse 

transcription [147, 148], nuclear import and integration [145]). The ability of PI to 

affect fusion might be mediated by HIV Env proteins. Since uncleaved Gag is 

stably linked to Env trimers [149] block of maturation prevents mobility and 

formation of a single cluster of Env molecules on the surface [17] which results in 

reduction of infectivity and fusogenic potential [76, 77, 146]. Several studies find 

the link between fusion and PR inhibition to be cell-type dependent [145] and co-

receptor dependent[146]. PI is suggested to also affect the reverse transcription 

process in two ways: by decreasing RT activity and by interfering with the 
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assembly of the ribonucleoprotein (RNA and NC) and therefore a reverse-

transcription complex. A simple way of PI control over initiating RT activity is by 

trapping RT in a precursor form where its activity has been estimated to be much 

lower [150, 151]. And the assembly of reverse transcription complex has been 

shown to depend heavily on the sequence of proteolytic processing of Gag and 

Gag-Pol polyproteins [119, 120, 152, 153]. In addition, normal assembly of a 

reverse transcription complex has been shown to be disrupted by the accumulation 

of intermediates of Gag processing [127, 154, 155]. 

As of nuclear import and integration, there are also several ways suggested 

that allow PI interference. The most obvious is trapping IN, CA [89, 156, 157], NC 

[158, 159] and MA as components of pre-integration complex within the 

precursors [85, 160-163]. However, in such a case the virus would not even make 

it through the reverse transcription. It is currently suggested that PI could affect 

CA assembly in such a way as to allow reverse transcription to occur, but then 

compromise its ability to facilitate nuclear import [125]. Another option is the 

interference with NC functions via its precursors. It has been reported that certain 

alterations of Gag C-terminal domain amino acid sequence block processing at the 

SP2/p6 site but still allow reverse transcription to occur [164]. Wrong timing of 

SP2/p6 cleavage could enable the CA cone to assemble before condensation of the 

core producing a reverse transcription-competent, but nuclear import-defective 

virus [125]. 

A third feature of PI that extends beyond their pleiotropic effects is the 

consequence of targeting the active site of the PR itself. Because PI mimic the 

transition state of the natural substrate of PR using their characteristic hydroxyl 

group the enzyme lowers the free energy of activation for the reaction [165]. While 

binding affinity of PR to its natural substrates are in the µM to mM range [166], PI 

bind the wild-type PR in the nM to pM range [167-171], so there are several orders 

of magnitude difference. Therefore PI are considered to be relatively potent drug 

class (Figure 12). 
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Figure 10. Chemical structures of the nine HIV-1 protease inhibitors approved for clinical use. Peptidomimetic protease 

inhibitors are characterized by a hydroxyethylene core. TPV, non-peptidomimetic protease inhibitor is characterized by a 

dihydropyrone ring. By Ali et al. [172]. 
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Figure 11. Contribution of the inhibitory effect of PIs on each step of viral 

life cycle to the overall inhibitory effect at Cmax. The linear dose-response curves 

of PIs at entry, reverse transcription, and post–reverse transcription steps were 

extrapolated to predict the inhibition of each step at Cmax. By Rabi et al. [145]. 
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Figure 12. Comparison of the inhibitory constants for each inhibitor from four of the antiretroviral drug classes: protease 

inhibitors (PI), non-nucleoside reverse transcriptase inhibitors (NNRTI), nucleoside reverse transcriptase inhibitors (NRTI), and 

integrase strand transfer inhibitors (INSTI). By Potempa et al. [125].  
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3.2.5  Protease inhibitor resistance 

 

High genetic variability of HIV allows it to develop resistances against 

antiretroviral therapies applied. In patients the virus develops a number of 

genetically distinct viral variants, referred to as a viral quasispecies [173]. The pool 

of quasispecies representing viral population in a patient is capable of evolving and 

responding to different selection pressures such as immune response and therapy 

applied. 

The number of HIV variants that produces infectious progeny is relatively 

small [174-176]. Only 0.1%-1% of viral particles per generation is thought to be 

capable of carrying out new infection [177-182]. One of the reasons is the same 

mechanisms of genetic variability: make the virus to produce a high fraction of 

“dead” viruses carrying deleterious mutations. The number of resistance-associated 

mutations necessary to confer virological failure is defined as the barrier to 

resistance development [103]. But there are also other factors that have to be taken 

into account: baseline variability (groups and subtypes) and impact of the 

mutations on viral replication capacity. 

Resistance against protease inhibitors has been observed and documented.  

This stepwise process often starts with substitutions that directly or indirectly alter 

the structure of the substrate-binding cleft of PR [183-185]. And the general 

tendency of the process is to widen the catalytic cleft for the enzyme. Due to such 

enlargement inhibitors lose affinity and drug susceptibility of the mutated virus is 

reduced. On the other hand and for the same reason the binding of the natural 

substrate may similarly be impaired which can lead to losses of viral replication 

capacity or fitness [8, 186-188]. Such a process is particularly apparent for the 

main (“primary”) mutations. These are major or primary resistance mutations in 

protease. They tend to be selected first, located in the critical functional regions of 

PR, capable of reducing protease inhibitor susceptibility individually and 

extremely rare occurring in untreated isolates [104, 189, 190]. Other PR mutations 

are classified as secondary resistance mutations in protease, and in general, they 
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tend to emerge later and do not confer resistance effects by themselves in vitro. 

They are, however, capable of improving fitness of the viruses carrying primary 

resistance mutations and cooperatively enhance the degree of resistance. 

Secondary resistance mutations are usually located outside the critical functional 

regions of PR and can be observed in untreated isolates [186-188, 191].  

There are mutations specific to certain drugs (D30N - NFV, I50L - ATV), 

however cross-resistances are very common (positions: 10, 46, 54, 82, 84 and 90) 

[104, 190]. The summary primary PI resistance mutations at 15 protease codons 

and secondary resistance mutations at 19 protease codons were summarized in 

Figure 13 [189]. 

It has been recently demonstrated that a second locus can be responsible for 

the resistance against protease inhibitors and for the compensation of resistance-

associated fitness loss. Mutations in Gag located in or close to protease recognition 

sequences are more commonly found in treated viruses. They are thought to be an 

adaptation of the virus to the altered substrate-binding cleft of the mutant drug-

resistant viral protease [7, 191, 192].  
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Figure 13. Three-dimensional structure of HIV PR dimer depicting the 

primary (major) and secondary (minor) mutations associated with resistance to 

protease inhibitors. Illustration by Johnson et al. [189]. Mutated residues are 

represented with their Cα atoms (spheres) and colored red and blue for major and 

minor mutations, respectively. Active site aspartates and DRV bound to the active 

site are represented in sticks. The figure was generated using the structure of 

highly mutated patient derived HIV PR [193] (PDB code 3GGU, 

doi:10.1128/JVI.00451-09) and program PyMol [194-196]. Depicted mutations do 

not occur all together in the same isolate, this is a synopsis. 
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3.2.6 Impact of Gag mutations on protease inhibitor resistance 

 

In previous studies a number of both cleavage site and non-cleavage site 

mutations in Gag had been described to correlate with therapy failure [197-200]. 

These gag mutations have been described to associate with specific drug resistance 

profiles in the protease such as I437T/V with L76V [201], A431V with L24I-

V82A-I54V, L449F-R452S-P453L with D30N-I84V, or P453L with I84V-L90M 

[202]. Moreover, Gag mutations can directly impact on PI susceptibility. This has 

been described for mutations immediately at cleavage sites but also at non-

cleavage site positions; they have been reported to occur individually or in 

combination with further mutations; they appear in conjunction or complete 

absence of (enhancing) major resistance mutations in protease [10-13]. 

Mechanistically, alterations in Gag can restore the replication capacity of 

the affected virus, which could have been compromised by non-favorable protease 

mutations [192, 199, 203, 204]; certain Gag mutants may also retain such a 

replication advantages in the complete absence of protease inhibitor pressure [205]. 

On the molecular level Gag cleavage site mutations can exert their effect by 

affecting the processing rates of Gag cleavage sites [206], whereas non-cleavage 

site mutations could rather act indirectly through conformational changes of the 

polyprotein [13, 205]. Another likely mechanism affects functions of the mature 

cleaved Gag proteins [205].  
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4 RATIONALE AND AIMS OF THE STUDY 

 

During the last two decades an extended arsenal of highly selective and 

potent antiretroviral drugs has become available. This turned HIV infection into a 

long-term manageable chronic condition. Moreover, the recent publication of the 

WHO goals 90-90-90 aims at controlling by the year 2020 HIV replication in 73% 

of all people infected by HIV on a global scale. Today on the Northern hemisphere 

diagnosis of HIV infection and drug availability with successful long-term 

suppression of viral replication are most common. Yet, there continues to be a 

major discrepancy for lower income regions, where older drugs with massive side 

effects are still in use, or where stock-outs contribute to unavoidable therapy 

interruption.  Although HIV and the processes of its pathogenesis appear well 

understood [44, 45] mechanisms of viral escape seem to persist or even become 

more challenging among patients who are on therapy for very long [207-209]. 

Initially PIs were mainly used as part of second-line regimens. Today, 

however, up to 50% of the first-line regimens in Germany and Switzerland include 

PIs [1, 2], a number that further increases for second line regimens and beyond. 

And although in the SHCS most patients under ART have suppressed viral loads 

[3], every third patient is or has been affected by drug resistances [4]. Along with 

mal-compliance to a treatment regimen the development of viral drug resistances 

represents a key cause for therapy failure. 

The detailed knowledge of HIV drug resistance mechanisms is 

indispensable for the development of robust and cost effective suppression 

strategies. Phenotypic drug resistance testing allows in vitro evaluation of possibly 

mutated virus population from a patient. Although it deals with a direct 

measurement of drug susceptibility and is particularly suitable to assess complex 

resistance patterns like coexisting quasispecies or the presence of minority variants 

today’s standard of care is genotyping as a cheaper and more rapid approach. 

Genotyping utilizes previously obtained phenotypic information on numerous 

clinical samples and on engineered viruses paired with their underlying sequences. 
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Systems designed to interpret genotypic data and predict the therapy response take 

into account not only the presence of single resistance-associated mutations but 

also information on interactions between them [210, 211]. This is why it is crucial 

to document in details the role of as many therapy-associated mutations as possible 

and to investigate statistical, temporal and causal links between them adjusting for 

the role of natural HIV variation as well. Mechanistically, the resistance of HIV 

enzymes to certain substrate analogues is typically characterized by structural 

alterations in the viral target protein directly at the inhibitor binding site. But in 

addition to that, the viral protease offers an alternative route for the development of 

resistance – through the natural substrates of the enzyme. Earlier studies have 

shown that alterations near the protease recognition sites in Gag (“cleavage sites”) 

can accompany or are responsible for viral drug resistance. Such an alternative 

escape route of HIV was demonstrated by the viral response to the maturation 

inhibitor bevirimat, where specific modifications in the p2 motif QVT of Gag 

[134] were responsible for inhibitor failure [10, 212]. 

A number of cases of clinical therapy failure under PI-containing regimes 

have been reported, where genotypic resistance testing did not reveal sufficient 

explanation from information on the protease gene [5, 6]. Nevertheless, until today 

most algorithms evaluating PI resistances take solely the PR itself into account. 

Meanwhile, also certain Gag mutations have been associated with the development 

of PI resistance, either by statistical analysis [11, 205, 213] or in studies analyzing 

patient-derived samples after PI exposure and failure and genotyping [7-13] or 

assessing viral replication [192, 199, 203, 204]. Further details on the role of Gag 

in protease inhibitor resistance and on the mutational patterns observed in Gag-PR 

might provide an additional argument to consider the inclusion of the gag gene for 

genotyping, particularly when complex PI resistance is suspected. 
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Therefore in this study we pursued the following aims: 

1) Assess the clinical and diagnostic importance of Gag mutations; 

2) Describe Gag resistance mutations and their patterns in the HIV-1 

isolates from patients in the SHCS; 

3) Scrutinize the phenotypic impact of observed mutations. 
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5 MATERIALS AND METHODS 

5.1 Analytical part 

5.1.1 Sequences and treatment information 

 

Plasma samples were collected between 2004 and 2012 from patients in 

two centers of the Swiss HIV cohort study: Basel (n = 2022) and Zurich (n = 773). 

The ViroSeq HIV-1 Genotyping System (Abbott Molecular, Illonois, USA) 

was used for Sanger sequencing of the HIV-1 pol region in the routine diagnostics 

setting of an accredited laboratory. Pol sequences were assembled and edited using 

the ViroSeq Genotyping software v2.5 (Abbott Molecular). For details on the 

sequencing procedure, see [214]. 

The F-primer, integral part of the system, produces a read that extends in 

reverse orientation from protease into the C-terminal gag region. Although not 

accessible with the standard ViroSeq software, this information was manually 

extracted from the raw sequencing data in the form of .ab1 files and analyzed to 

obtain Gag C-terminal sequences, which are disregarded in the standard setting. F-

primer read chromatograms were processed with DNA Baser software (Heracle 

BioSoft SRL). The software performed base calling, base quality assessment, 

automatic ambiguity correction, homopolymer error correction and low quality end 

trimming. Default software settings for low quality reads were applied. Resulting 

nucleotide sequences were reverse-complemented, codon-aligned to subtype B 

consensus reference sequences [104, 190] and translated in the Gag and Pol 

reading frames using RegaDB Sequence analysis Tools [215] and Stanford HIVdb 

Program [104, 190], correspondingly. Amino acid substitutions were listed. 

Codons with more than 4 possible translations as well as preliminary stop codons 

were flagged and were excluded from statistical processing. Sequences with two or 

more adjacent flagged codons were trimmed to remove these and all the upstream 

codons. Different substitutions at the same single amino acid position were treated 

independently. We used the list and definitions of the Stanford HIV resistance 
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database for primary and secondary PI resistance mutations in the protease gene 

[104, 190]. 

Sequence information on protease and the C-terminal Gag region was 

paired with the corresponding patient treatment history. Treatment information 

came from the records on the order forms, on which the indication for resistance 

test is provided. Also the status of treatment history is categorized for each drug as 

“current” “previously” or “never”. Every sample with a status “current” or 

“previously” for at least one protease inhibitor was considered protease inhibitor 

treatment experienced (further referred to as TE; n = 515).  Indications of category 

“never” were rarely used. As a consequence, there was no explicit statement that a 

specific TE patient was never treated with any other protease inhibitor than those 

marked as “current” or “previously”. As another consequence, there were 

complications with assigning samples to the protease inhibitor treatment naïve 

category, so we compared the blood collection date for every sample with the FDA 

approval dates of protease inhibitors. In case the former date was prior to the latter 

date for a given sample and protease inhibitor, treatment status was switched to 

“never”. The group of protease inhibitor treatment naïve samples included those 

samples with the status “current” or “previously” for none of protease inhibitors 

(further referred to as TN, n = 825). 

 

5.1.2 Statistical analysis 

 

Data analysis was performed using R language [216]. Statistical 

associations were assessed using Fisher’s exact test with a significance level of 

0.95. Prevalence of Gag and protease mutations in the viral sequences of TE 

patients versus TN patients was assessed. We defined and analyzed these distinct 

types of mutations: Primary PI resistance mutations in protease; Secondary PI 

resistance mutations in protease; Other protease mutations; Treatment associated 

Gag mutations. Comparisons were performed for subtype B viruses (n = 890; of 
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those TE n = 369, TN n = 521). Processing and classification of our sequences are 

summarized in Figure 14. 

 

5.1.3 Pairwise associations between mutations 

 

Fisher’s exact test was used to evaluate possible statistical associations 

between amino acid mutations. We selected significance level of 0.95 as critical 

cutoff. Obtained associations were visualized in heat-map fashioned correlation 

graph. Only mutations and mutational pairs occurring in more than 1% of total TE 

samples were included. 

 

5.1.4 Construction of mutagenetic trees 

 

Implementation of mtreemix software by Beerenwinkel et al. [217, 218] in 

R language was performed by Bogojeska et al. [219]. Resulting Rtreemix package 

allows modeling multiple paths of ordered accumulation of genetic changes from 

cross-sectional data. Assuming mutations occurred are permanent, it estimates 

local maximum likelihood mutagenetic tree using a combination of graph-

theoretical method with an expectation-maximization approach. These models 

have been successfully used to scrutinize HIV resistance development 

characterized by ordered accumulation of resistance mutations in the viral genome 

under drug pressure [220]. 

To estimate stability of fit models we performed 1000 rounds of 

bootstrapping and selected tree branches by the number of bootstraps they were 

supported with. 

 

5.1.5 Learning Bayesian network 

 

We used Bayesian networks in order to model the role of mutations 

observed along with their interactions. R package pcalg [221, 222] implements this 



43 
 

probabilistic model describing statistical independencies between multiple 

variables [223]. We approached our dataset using two pairs of algorithms. FCI 

(Fast Causal Inference) algorithm [224, 225] paired to GBC (Generalized 

Backdoor Criterion) algorithm [226] were used to strictly approach our 

observational data with the assumption that it contains some hidden or selection 

variables. Alternative pair included PC (Peter-Clark) [225] and IDA (Intervention 

calculus when DAG is Absent) [227] algorithms with more relaxed assumption 

that our data contains no hidden and selection variable. Constructed models are 

visualized with directed acyclic graphs in which dependencies can be represented 

with edges. Applied algorithms extract the network capable of explaining a 

maximum of statistical correlations between the variables in the data using 

minimum edges. Binary representations of amino acid sequences labelled with a 

parameter for PI exposure were fed to the program.  

 

 

Figure 14. Processing and classification of the sequences obtained. TE – 

protease inhibitor treatment experienced, TN – protease inhibitor treatment naïve, 

stB – subtype B. 
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5.2 Experimental part - materials 

5.2.1 Chemicals 

   

CHEMICAL  SUPPLIER 

   

PCR   

dNTPs (dATP, dCTP, dGTP, dTTP), 10mM  Sigma 

PfuUltra II Fusion HS DNA Polymerase  Agilent 

PfuUltra II Reaction Buffer, 10x  Agilent 

   

Gel electrophoresis   

Agarose  Cambrex 

TBE buffer, 10x  Amresco 

Ethidium bromide solution (10mg/ml)  Sigma 

1kb DNA ladder (1µg/µL)   Invitrogen 

100bp DNA ladder (1µg/µL)  Invitrogen 

   

DNA isolation and purification   

NucleoSpin® Plasmid / Plasmid (NoLid)  Macherey-Nagel 

NucleoSpin® Gel and PCR Clean-up  Macherey-Nagel 

   

Bacterial Culture, Competent Cells Preparation   

Bacto Agar (dehydrated)  Becton-Dickinson 

Bacto Tryptone (dehydrated)  Becton-Dickinson 

Bacto Yeast Extract (dehydrated)  Becton-Dickinson 

NaCl  Fluka 

Ampicillin (sodium salt)    Sigma 

Glycerol (87%)   Fluka 

CaCl2 dihydrate    Fluka 
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One Shot® TOP10 cells  Invitrogen 

HB101 cells  Promega 

   

Cloning   

BamHI  New England Biolabs 

XmaI  New England Biolabs 

Hind III  New England Biolabs 

BssHII  New England Biolabs 

Digestion buffers, 10x  New England Biolabs 

Bovine Serum Albumin (BSA), 10x  New England Biolabs 

Alkaline Phosphatase, Calf Intestinal (CIP)  New England Biolabs 

Quick Ligation Kit  New England Biolabs 

   

Sequencing   

BigDye® Terminator v3.1 Cycle Sequencing   Applied Biosystems 

BigDye® v1.1/3.1 Sequencing Buffer (5X)  Applied Biosystems 

   

Cell culture   

DMEM High Glucose (4.5g/L) with Stable Glutamine  BioConcept 

RPMI 1640, with 25mM HEPES (w/o L-Glutamine)  BioConcept 

L-Glutamine, 200mM (100x), liquid  Gibco 

jetPRIME® transfection reagent  
Polyplus 

Transfection 

jetPRIME® buffer  
Polyplus 

Transfection 

Fetal Bovine Serum (Heat Inactivated)  Gibco 

Trypsine/EDTA (w/o Ca2+/Mg2+)  Gibco 

D-PBS (1x), liquid (w/o Ca2+/Mg2+)  Gibco 

Trypan Blue Stain, 0.4%   Gibco 
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Pen/Strep  BioConcept 

   

Virus Inactivation and Cells Fixation   

Formaldehyde (36.5%)  Fluka 

Glutaraldehyde (25%)  Fluka 

   

ONPG assay   

Buffer Z   NA 

Buffer H   NA 

o-Nitrophenyl-β-D-Galactopyranoside (ONPG)  Amresco 

β-Mercaptoethanol (100%)  Fluka 

   

Antiretrovirals   

Atazanavir  Bristol-Myers Squibb 

Darunavir  Tibotec 

Indinavir  Abbott Laboratories 

Lopinavir  Abbott Laboratories 

Nelfinavir  Abbott Laboratories 

Saquinavir  Abbott Laboratories 

Amprenavir  Abbott Laboratories 

Efavirenz  Abbott Laboratories 

T-20  Abbott Laboratories 

Dimethyl sulfoxide (DMSO)   Riedel-de Haën 

   

General chemicals   

Ethanol (100%)   Fluka 

Sodium hypochlorite (10%)  Fluka 

Dismozon  Bode Chemie 
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5.2.2 Cell lines 

  

CELL LINE DESCRIPTION SOURCE 

HeLa Human adherent transfection cell line 

Prof. Dr. 

Thomas 

Klimkait 

  

293T Human semi-adherent transfection cell line 

  

SxR5 

HeLa – derived reporter cell line. Contains 

integrated plasmid with an HIV-1 LTR driving 

bacterial LacZ gene. Expresses CD4 receptor as 

well as CXCR4 and CCR5 co-receptors. 

 

5.2.3 Plasmids 

 

PLASMID DESCRIPTION SOURCE 

pNL 4-3 

Provirus derived from NY5 (5’) and LAV (3’) 

HIV-1 isolates, cloned into pUC18 into the PvuII 

site (size: 14,877bp) [228] 

Dr. 

Malcolm 

Martin 

(NIH)  

   

pNL-NF 
pNL 4-3 truncated in the flanking regions (cut 

with NaeI and FspI) 

Prof. Dr. 

Thomas 

Klimkait 

   

pNotI5-BX 
Cloning cassette containing: BssHII, NotI/1141, 

BamHI/2424 and XmaI/2796 

Prof. Dr. 

Thomas 

Klimkait 
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All mutants of interest were generated using the pNL-NF scaffold by 

overlap-PCR. Then generated and properly prepared Gag-PR inserts were ligated 

into the accordingly prepared cloning cassette pNotI5-BX. 

The pNL-NF plasmid represents a shorter version of pNL4-3, the wild-type 

reference of an HIV-1 B subtype virus, in which the human flanking sequence had 

been reduced to a minimum. PNotI5-BX is a pNL-NF based cloning cassette for 

Gag and PR. The two restriction sites BssHII and XmaI of pNotI5-BX allowed the 

direct insertion of the mutated Gag-PR fragment. Since all plasmids contain as 

backbone the pUC18 plasmid, they can readily be amplified in E. coli and confer 

ampicillin resistance upon transformation. 
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5.2.4 Mutants 

 

Mutations of interest were identified using analytical approach and introduced into standardized pNL-NF backbone using 

the overlap mutagenesis method. Amino acid substitutions were codon-optimized. 

Protein Mutation Wild-type Substitution 
Nucleotide  

position 
Nucleotide change 

Number of  

nucleotide 

changes  

Human  

codon 

usage 

Gag T427D T (Threonine) D (Aspartic Acid) 2068-2070 ACT->GAT 2 21.8 

Gag R429I R (Arginine) I (Isoleucine) 2074-2076 AGA->ATC 2 20.8 

Gag A431V A (Alanine) V (Valine) 2080-2082 GCT->GTG 2 28.1 

Gag I437V I (Isoleucine) V (Valine) 2098-2100 ATC->GTG 2 28.1 

Gag Y441Q H (Histidine) Q (Glutamine) 2110-2112 CAC->CAG 1 34.2 

Gag L449P L (Leucine) P (Proline) 2134-2136 CTT->CCT 1 17.5 

Gag L449V L (Leucine) V (Valine) 2134-2136 CTT->GTG 2 28.1 

Gag S451H S (Serine) H (Histidine) 2140-2142 AGC->CAC 2 15.1 

Gag S451N S (Serine) N (Asparagine) 2140-2142 AGC->AAC 2 19.1 

Gag R452S R (Arginine) S (Serine) 2143-2145 AGA->AGC 1 19.5 

Gag P453L P (Proline) L (Leucine) 2146-2148 CCA->CTG 2 39.6 

PR I47V I (Isoleucine) V (Valine) 2391-2393 ATA->GTG 2 28.1 

PR I54V I (Isoleucine) V (Valine) 2412-2414 ATC->GTG 2 28.1 

PR V82A V (Valine) A (Alanine) 2496-2498 GTC->GCC 1 27.7 
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5.2.5 Primers 

 

All primers were named according to their 5’ end position preceded by an “F” for forward or an “R” for reverse primers. 

This notation allows calculating directly the size of a fragment from the name of primers. 

 

Name Purpose Sequence 5'-3' Basic Tm, °C 

 

“Border” primers for site-directed mutagenesis 
F-707L BssHII RS TGAAGCGCGCACRGCAAGAGGCGAG 64.2-65.9 

R-2598 XmaI RS CCATCCCGGGCTTTAATTTTACTGG 57.7 

 

Mutagenesis primers 

F-2061-T427D T427D AGA TTG TGA TGA GAG ACA GGC TA 53.5 

R-2083-T427D T427D TAG CCT GTC TCT CAT CAC AAT CT 53.5 

F-2062-R429I R429I GAT TGT ACT GAG ATC CAG GCT AAT 54 

R-2085-R429I R429I ATT AGC CTG GAT CTC AGT ACA ATC 54 

F-2074 A431V AGACAGGTGAATTTTTTAGGGAAGA 52.8 

R-2094 A431V CCCTAAAAAATTCACCTGTCTCTCAGTACAA 59.1 

F-2084M I437V ATTTTTTAGGGAAGGTGTGGCCTTCC 58 

R-2105 I437V GGCCACACCTTCCCTAAAAAATTAGCCTGT 61.6 

F-2099-Y441Q Y441Q TC TGG CCT TCC CAG AAG GGA A 56.3 

R-2119-Y441Q Y441Q TTC CCT TCT GGG AAG GCC AGA 56.3 

F-2128 L449P AATTTTCCTCAGAGCAGACCAGAGC 57.7 

R-2142 L449P GCTCTGAGGAAAATTCCCTGGCCTT 59.3 

F-2128-L449V L449V AATTTTGTGCAGAGCAGACCAGAGC 57.7 



51 
 

R-2142-L449V L449V GCTCTGCACAAAATTCCCTGGCCTT 59.3 

F-2131-S451H S451H TTT CTT CAG CAC AGA CCA GAG 52.4 

R-2151-S451H S451H CTC TGG TCT GTG CTG AAG AAA 52.4 

F-2131-S451N S451N TTT CTT CAG AAC AGA CCA GAG CCA 55.7 

R-2154-S451N S451N TGG CTC TGG TCT GTT CTG AAG AAA 55.7 

F-2137-R452S R452S CAGAGCAGCCCAGAGCCAACAGCCC 65.9 

R-2158-R452S R452S CTGTTGGCTCTGGGCTGCTCTGAAGAAAA 62.9 

F-2140 P453L AGC AGA CTG GAG CCA ACA GCC C 64.2 (60.4) 

R-2158 P453L C TGT TGG CTC CAG TCT GCT CTG AAG AAA A 57.7 (61.5) 

F-2383-I47V I47V CAA AAA TGG TGG GGG GAA TTG GA 55.3 

R-2405-I47V I47V TCC AAT TCC CCC CAC CAT TTT TG 55.3 

F-2404 I54V GAGGTTTTGTGAAAGTAAGACAGTATGATC 57.5 

R-2424 I54V GTCTTACTTTCACAAAACCTCCAATTCCCC 60.3 

F-2483 V82A AGGACCTACACCTGCCAACATAATTG 58 

R-2504 V82A TATGTTGGCAGGTGTAGGTCCTACTAATAC 60.3 

 

Sequencing primers 

F-620 BssHII region GGA AAA TCT CTA GCA GTG GCG 54.4 

F-1400 Gag region CCA TCA ATG AGG AAG CTG CAG 54.4 

F-1985 Gag-Pol region TTA AGT GTT TCA AYT GTG GCA ARG AAG G 55.5-58.5 

F-2084 XmaI region ATT TTT TAG GGA AGA TCT GGC 48.5 
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5.3 Experimental part – methods 

5.3.1 Overlap PCR 

 

PCR-reactions were typically performed in a 50 µL volume. Primer stocks 

were stored at -20C at a concentration of 100 µM. Working primer solutions were 

prepared at 10 µM. For each reaction 2µL of each primer are used, corresponding 

to 20pmol (final concentration of 400nM). The amount of DNA template ranged 

from 10 to 50 ng. Additionally 1.25 µL of 10mM dNTPs, 5 µL of 10x polymerase 

reaction buffer and 1 µL of polymerase were added. The volume then was filled up 

to 50 µL with autoclaved mQ water. 

A standard amplification cycle is set up as it follows (in total 30 cycles): 

 

Step Time Temperature, C  

Denaturation 2’ 98  

Denaturation 20’’ 98 

30 cycles Annealing 20’’ Primer Tm – 5°C 

Elongation 30’’-60’’ 72 

Elongation 3’’ 72  

Pause - 4  

 

The annealing temperature was selected according to the primer pair used. 

The extension time was adjusted according to the fragment amplified. Reactions 

were set up on ice to prevent unspecific primer annealing to the template. 

The first step of overlap PCR included to parallel reactions on the same 

template in different tubes (Figure 15). One reaction used forward flanking and 

reverse mutagenic primer, another – forward mutagenic and reverse flanking 

primer. Mutagenic primers were designed so that they overlap on at least half of 

their annealing site length and introduce the same nucleotide changes from the 

selected template. 
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The second step included a single PCR reaction with purified products of 

the first step as a template and flanking primers (Figure 16). 

 

 

 

Figure 15. First step of the mutagenesis by overlap extension PCR. Primer 

2 and Primer 3 – are flanking primers. Mutated primer 1a and mutated primer 1b – 

are the primers introducing desired mutations. Black bold mark indicated 

nucleotide difference introduced. Blue and red colors indicate template target 

regions for the two independent reactions at this stage. Green lines indicate 

products of the reaction while green dots visualize elongation of the primer on a 

given template. Illustration by Alessio Cremonesi [229].   
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Figure 16. Second step of the mutagenesis by overlap extension PCR. 

Black bold marks indicate the nucleotide difference introduced. Green lines 

indicate products of the reaction while green dots visualize elongation of the 

primer on a given template. Illustration by Alessio Cremonesi [229]. 

 

5.3.2 Bacterial culture 

 

LB medium with ampicillin: 5g NaCl, 10g Bacto Tryptone, and 7g Bacto 

Yeast Extract are dissolved in 1L milliQ H2O and autoclaved. When the solution is 

at room temperature, 1mL ampicillin (200mg/mL) is added: final antibiotic 

concentration is 200µg/mL. 

LB agar plates with ampicillin: 2.5g NaCl, 5g Bacto Tryptone, 3.5g Bacto 

Yeast Extract, and 6g Bacto Agar are dissolved in 0.5L milliQ H2O and 

autoclaved. After cooling down the solution, 0.5mL ampicillin (200mg/mL) are 

added: final antibiotic concentration is 200µg/mL. Approximately 20mL medium 

are poured in each Petri dish. 

 

5.3.3 Preparation of competent bacterial cells 

 

Both HB101 and One Shot® TOP10 competent cells are AmpS and contain 

a recA mutation, which prevents undesirable recombination events. In addition, 

One Shot® TOP10 bacteria have an endA mutation that prevents carry-over of 

nucleases. Both cells are chemically competent. 
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Cells are plated on LB agar w/o ampicillin and incubated over night at 

37°C. The next day one single colony is inoculated in 5mL LB medium and 

incubated overnight on a shaker. From the overnight culture, 5mL are transferred 

into 1L LB medium and let grown till OD260 of 0.2-0.5.Afterwards cells are 

transferred in 50mL tubes and put immediately on ice for 10’. Centrifugation is 

done at 4°C for 20’ (2,500rpm). Supernatant is removed and cells are resuspended 

in 25mL ice cold 100mM CaCl2 and centrifuged under the same conditions as 

before. After resuspending cells in 10mL ice cold 100mM CaCl2, they are put on 

ice for 30’ and then centrifuged. Following supernatant removal, cells are well 

mixed in 50mL ice cold 100mM CaCl2 with 10% glycerol and aliquoted into PCR 

tubes, which are stored at -80°C. Bacteria are plated on LB agar with and w/o 

ampicillin to check for contaminations and concentration; moreover a 

transformation test with 10ng pNL-NF is done to check their transformation 

efficiency. 

 

5.3.4 Plasmid DNA purification 

 

DNA plasmid extraction is performed with Macherey-Nagel kit according 

to the enclosed protocol. For a miniprep, the starting amount of LB culture is 4 

mL, for a midiprep 100mL, and for a maxiprep 250mL. The DNA content is 

quantified by UV spectrometry at 260nm using NanoDrop® ND-1000. Typically 

A260/A280 and A260/A230 ratios (for DNA 1.8 and 1.8-2.2, respectively) are 

monitored to estimate DNA purity. 

 

5.3.5 Gel extraction 

 

PCR products and prepared vector fragments (backbones and inserts) are 

extracted from agarose gel with Macherey-Nagel kit according to the enclosed 

protocol. The DNA concentration is normally not measured by UV spectrometry at 

260nm, since the measurement is not very reproducible, due to low yield. At low 



56 
 

concentrations this measurement has a qualitative rather than quantitative 

character. 

 

5.3.6 Vector preparation 

 

Typically 2-4 µg of DNA were digested using 1-5 overdigestion as in 20 or 

50 µl reaction as recommended by the enzyme manuals. High enzyme and glycerol 

(>5% v/v) concentrations can cause star activity and were therefore avoided. In 

case enzymes had different optimal temperatures they were added to the reaction 

mix and incubated sequentially for an hour each. Afterwards 1 µl of CIP 

phosphatase is added to remove 5´ phosphates from the cut plasmid, which 

prevents vector re-circularization. The reaction is incubated for 30’ at 37°C. Then 

the sample was run in agarose gel and the band of expected size was excised and 

gel-purified. 

 

5.3.7 Cloning and transformation 

 

All inserts were digested for 1 hour with the appropriate combination of 

restriction enzymes at optimal conditions according to the enclosed manuals. The 

enzymes were heat-inactivated. The theoretical molar ratio between insert and 

vector should be approximately 3:1. Nevertheless, better results were obtained with 

higher ratios. In general 50-70ng of vector were used together with 2µL insert at 5-

10ng/µL. An equivalent volume of 2x Quick ligation buffer was added and the 

reaction is incubated at 25°C for 20’. A negative control containing the vector 

alone is always performed to estimate the background of vector self-ligation.  

Afterwards, 100µL of fresh thawed competent cells (either HB101 or One 

Shot® TOP10) were added to the ligation mix and the tubes are incubated on ice 

for 30’ (bacteria were resuspended only few times to avoid mechanical lysis). 

Bacteria were heat-shocked at 42°C for 1’’ and put back on ice for 10’. Depending 

on the aim of the experiment, bacteria are either put in liquid LB medium or plated 
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on LB agar. On one side, if a mixture of different inserts is cloned and has to be 

preserved, bacteria were incubated in 4mL liquid LB medium with ampicillin and 

incubated overnight at 37°C on a rocking platform. On the other side, if single 

clones had to be isolated after heat-shock, bacteria were plated on LB agar plates 

containing ampicillin and incubated overnight at 37°C. The next day colonies were 

picked up and grown in liquid culture. 

 

5.3.8 Restriction digestion 

 

Usually 1µL of plasmid DNA preparation (approximately 300ng/µL) was 

digested with 0.3U of each enzyme, 1µL of appropriate buffer 10x, 1µL of BSA 

10x, and H2O up to total volume of 20µL. The reactions were incubated at 

appropriate temperatures for 1 hour. Subsequently samples were run on agarose gel 

and obtained restrictions patterns were compared to the ones expected. 

 

5.3.9 DNA sequencing 

 

Sequencing was performed in-house using Applied Biosystems 3130 

Genetic Analyzer and the corresponding sequencing kit. Sequencing primers were 

purified through HPLC by the manufacturer. Sequencing reaction mix included: 

 

5x Sequencing Buffer 3.0 µL 

1mM primer 3.0 µL 

5x Big Dye Terminator v3.1 1.5 µL 

Sample 200-600 ng, typically 1.0 µL 

mQ H2O Up to 20 µL 

 

The PCR cycling is set up as follows: 
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Step Time Temperature, C  

Denaturation 5’ 95  

Denaturation 30’’ 95 

40 cycles Annealing 10’’ 55 

Elongation 4’ 60 

Pause - 4  

 

For subsequent purification 96 well filtration plates were used. They were 

filled with Sephadex and 300 µL mQ H2O per well. Sephadex was let to swell for 

three hours at room temperature. Afterwards excess water was removed by 

centrifugation, and samples loaded on the filtration plate. During subsequent 

centrifugation samples were collected in 96 well sequencing plate and loaded to 

the sequencer.  

 

5.3.10  Cell culture 

 

Hela and SxR5 are adherent cells and 293T are semi-adherent cells. They 

were grown in DMEM High Glucose (4.5g/L). All cells were split three times a 

week. Before splitting, cells were examined by microscopy to check for confluence 

and possible contamination. For passaging medium was removed and cells were 

washed with PBS w/o Ca
2+

 and Mg
2+

, and trypsinized with trypsin-EDTA. After 

incubation at 37C for 5’ cells normally detached, were resuspended in DMEM 

and counted. Appropriate numbers of cells were resuspended in a flask with fresh 

medium. The cells were maintained until passage 20, before a new aliquot was 

thawed. 

All three cell lines are stored in 1mL aliquots at -196°C (liquid nitrogen). 

They are thawed gently but at the same time quickly since cells are in a freezing 

solution containing 10% DMSO. Freshly thawed cells are added to culture 

medium, centrifuged, resuspended and finally incubated at 37C and 7% CO2 in 

fresh medium. 
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5.3.11  Preparation of antiretrovirals 

  

Drug stocks were prepared from pills and then were diluted in two formats, 

either 6 or 10 concentrations depending on the experiment. Drugs were diluted 

according to their solubility in polar solvents. Moreover, each drug has its own 

range of concentrations depending on the IC50 value, in order to accurately 

extrapolate the inhibition curve. 

 

5.3.12  deCIPhR 

  

The HIV drug resistance phenotyping assay applied in the study was the 

deCIPhR system (dual enhancement of cell infection to phenotype resistance) [230, 

231] as available through Th. Klimkait. It represents a proprietary assay of 

InPheno AG, permitting viral replication during assessment. Briefly (Figure 17), 

each proviral DNA is transfected into a human epitheloid cell line (HeLa or 293T) 

using a transfecting agent (jetPrime) leading to production of fully infectious HIV-

1 particles. Cell-to-cell spread and replication of recombinant viruses is allowed 

for a period of four days in the absence or presence of specific drugs by co-culture 

with a reporter cell line (SxR5) expressing CD4 and both chemokine receptors 

CXCR4 and CCR5. In addition, the genome of this cell line contains the HIV-1 

Long terminal repeat (LTR) fused upstream of the bacterial reporter gene LacZ 

coding for β-Galactosidase. Therefore in these cells, the activity of β -

Galactosidase is proportional to the extent of viral replication. In the final step of 

the process, the cells are lysed to incubation with a chromogenic substrate for β -

Galactosidase, ortho-nitrophenyl-galactopyranoside (ONPG). 

In a sterile 2 mL tube, 1 μg of plasmid DNA (e.g., pNL4-3 or derivatives) 

are added to 100 μL of jetPRIME® buffer and mix by vortexing. The 2μL of 

jetPRIME® reagent are added on top and vortexing is performed. The solution is 

incubated at room temperature for 10’. A master mix is prepared for several 
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transfections. HeLa or 293T cells are harvested by trypsinization, counted, and an 

aliquot of 0.25 x106 cells in 500 μL of complete DMEM is set aside for each 

transfection. At the end of the incubation period, the cell aliquot is added to the 

transfection mix and the 2mL tube is returned to a 37°C cell incubator. 

In a 96-well microtiter plate (96-w MTP) 10 μL of a 20x dilution of the test 

drug(s) (in cDMEM/DMSO) are added. In plate format positive and negative 

controls i.e., wells containing a reference inhibitor (e.g., 300 nM Efavirenz = 0% 

readout) or diluent (= 100% readout), are always included. SxR5 cells are 

harvested and counted (BSL2 cell culture lab). Then transfected cells are mixed 

with 1.1x10
6
 SxR5 cells in 42 mL of fresh medium. After that 190 μL of the mix 

are distributed to each well of two 96-w MTP with drug dilutions. Plates are 

returned into the incubator for 4 days (BSL3). 

Then β-galactosidase development is performed: 96-well tissue culture 

plates are removed out of cell culture incubator and culture media is aspirated. 

Then 10 μL of Glo Lysis Buffer is added per well. Plates are cleaned with bleach 

from outside and on the inner surface of the lid and transferred to the main lab. 

Eighty μL of ONPG solution are dispensed into each well. The plates are read 

using reader set at 405nm wavelength. The optimal maximal absorbance is at least 

0.4 to 0.8. The data obtained is analyzed using an Excel spreadsheet template with 

XLFit as add-in. In this template, raw data (absorbance at 405 nm) are converted 

into percent inhibition using the following formula: InhX = 100 – (((ReadoutX – 

Readout0%) / (Readout100% - Readout0%)) x 100), where: InhX – percent of 

inhibition; ReadoutX - absorbance of well containing substance ‘X’; Readout0% - 

absorbance average of 6 wells containing cells incubated in reference inhibitor 

(e.g., 300 nM Efavirenz); Readout100% - absorbance average of 6 wells 

containing cells incubated in diluent. Averages of all triplicates are then computed 

and XLFit determines EC50 and generates a graph plotting percent of inhibition as 

a function of concentration. 
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Figure 17. Principle of dual-enhancement of Cell-Infection for 

Phenotyping Resistance (deCIPhR). Illustration was kindly provided by Th. 

Klimkait [230, 231]. 
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6 RESULTS 

6.1 Prevalence of protease inhibitor resistance in protease 

 

In order to validate our analytical approach we examined in a first step the 

prevalence of well-established PI resistance mutations for therapy-experienced 

(TE) and therapy-naïve (TN) samples. Among the collection of TE viruses 24.9% 

carried any kind of primary resistance mutations in the protease gene. This is in a 

good agreement with published data from Germany, reporting 30% (473 / 1586; 

p>0.05) [232] of resistance-associated changes. Eight primary resistance mutations 

were found to be significantly overrepresented in the TE over TN group: D30N, 

V32I, M46L/I, I54V, V82A, I84V, and L90M. In line with previous reports [233, 

234], the frequency of none of these primary PI resistance mutations individually 

exceeded 4% in the TN group. 

Also nine secondary PI resistance mutations in protease were found to 

significantly associate with the TE group of samples: L10F/I, L33F, Q58E, L63P, 

A71V/I, 73S, and N88D. For most of the secondary PI resistance mutations the 

frequency did not exceed 10% in TN group. Only the known polymorphism L63P 

occurred, as seen before, in 51.3% [104, 190, 235, 236], and the alterations A71V 

and L10I were identified in 12.9% and 10.7% of TN samples. Frequencies of these 

two mutations among TN patients of the SHCS have been reported to be 8.9% (108 

/ 1208; p>0.05) and 9.7% (118 / 1281; p<0.05)  [236]. 

 

6.2 Correlation between PI exposure and Gag mutations 

 

We assessed the prevalence of Gag mutations that have previously been 

reported to associate with PI-exposure or -resistance. Among the TE samples in 

our study 84.2% carried at least one of 48 known Gag mutations. Verheyen et al. 

reported the rate of known Gag mutations to be as high as 65.3% [202], but 

considered solely cleavage site mutations at p7/p1 and p1/p6. 
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Also other correlates of PI treatment with Gag changes were verified in the 

Swiss dataset: A431V (8.2%; OR=3.4), I437V (6.5%; OR=3.2), P453L (13.1%; 

OR=2.3), I479I (64.4%; OR=1.34). However, only for mutations A431V, I437V 

and P453L a phenotypic proof of PI resistance by in vitro mutagenesis has been 

published [10, 192, 237]. Among all analyzed TE sequences in our data set 17.9% 

carried at least one of the latter three mutations compared to the significantly lower 

number of 8.3% of the TN samples in the set. These figures are overall in 

agreement with the 19.1% (43 / 225; p>0.05) for TE and 12.1% for TN samples 

reported by Verheyen et al., [202] (33 / 275; p>0.05). 

When assessing the association of those mutations with primary resistances 

in protease, only mutation A431V was found to correlate in the vast majority of 

cases (93.8%). Mutations P453L and I437V occurred along with primary PI 

resistances in 60.5% and 42.9%, respectively, and only 26.4% of those samples 

with I479I carried any known protease resistance mutation.  

Like secondary PI resistance mutations in protease, several Gag alterations 

have been described in phenotypic in vitro experiments as being capable of 

compensating for fitness loss and of cooperatively decreasing PI susceptibility 

when they occurred in combination with primary PI resistance mutations [10-13]. 

We therefore assessed novel gag mutations emerging during PI exposure: 

Mutations T427D/N (10.4% vs 3.9% in TN; OR=2.9) and E467V/K (3.6% vs 0.8% 

in TN; OR=4.8) associated specifically with PI treatment. In addition, a link to the 

exposure to certain drugs could be demonstrated for these alterations: T427D/N to 

LPV (13.2%; OR=3.1), E467K to NFV (3.8%; OR=3.5), Q474H to DRV (5%; 

OR=3.5), and Y484P to DRV (5%; OR=5.3). With respect to combined Gag-

mutations the occurrence of mutation Q474H correlated with the emergence of 

T427N (13.3%; OR=24.4) in our dataset. 
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6.3 Gag alterations in p2 and p7 

 

For a subset of samples from Basel the analyses yielded longer gag 

sequences, which cover also the p24/p2 cleavage site. Among these TE samples 

two novel alterations were identified to be of potential relevance: A360S/P (7% = 

6/86 vs 1.2% = 3/255; OR=6.3) and Q369L (8.1% = 7/86 vs 1.6% = 4/255; 

OR=5.5). Additionally, we found Q369L to be associated with other, established 

correlates of PI exposure: K418R (42.9%; OR=5.8), I437V (28.6%; OR=10.9) and 

P453T (42.9%: OR=15.0). 

 

6.4 PI usage at the study centres 

 

In the group of TE samples the respective frequencies of certain PIs were 

assessed. Three compounds were significantly more often applied in the Basel 

center (BS): NFV (60% vs 28.8% in ZH; OR=3.7), SQV (35.1% vs 12.5%; 

OR=3.8), IDV (54.1% vs 23.9%; OR=3.7). In contrast, Zurich (ZH) patients had 

been significantly more often exposed to ATV (36.4% vs 23.2% in BS; OR=0.5) 

and DRV (39.2% vs 8.3%; OR<0.1). This significant difference in the use of 

certain PI strongly hints differences in the choice of treatment regimens between 

the two centers, but it is likely that this also reflects differences in the average year 

of sampling since ATV and particularly DRV reflect more recent drugs than IDV 

or SQV. 

 

6.5 Pairwise association of Gag and protease mutations in the group of TE 

sequences 

 

In the TE sample group we observed links between 11 amino acid positions 

in Gag C-terminal region and 18 – in PR (Figure 18). In total we observed 188 

associations between certain amino acid substitutions. And not surprisingly, the 
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most interconnected were residues in PR which resulted in the hottest region on the 

correlation heat map (Figure 19). 

An absolute majority of protease resistances exhibited strong well-

described positive interconnections with other alterations in protease. And even 

among other primary resistances L90M, M46I, V82A and I54V stood out with 24, 

20, 19 and 18 observed significant links correspondingly. 

The secondary PI resistance mutations in protease A71V and L33F were 

the most interconnected in their class with 19 significant associations for each of 

them. While most of their links were confounded with protease region, key Gag 

resistance mutations P453L and A431V were their only correlates in Gag.  

Located at the p7/p1 and p1/p6 cleavage sites, these two mutations were the 

most interconnected of all Gag alterations with 18 significant correlations for each. 

Polymorphic L449P had 3 connections with mutations at the same p1/p6 cleavage 

site: S451G, P453T and P453L. I479I (previously reported to be PI-selected [203]) 

had as the only association the mutation of E468G. 

Novel correlates of PI exposure observed were almost not interconnected. 

Their links were limited exclusively with other alterations in Gag. T427D/N was 

linked to E467V/K, Q474H and Y484P. For E467V/K we report association with 

T427D/N, S451G and P453L. Associated together, both Q474H and Y484P were 

linked to T427D/N and S451N. 
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Figure 18. Arch diagram of covariation between Gag and protease. The 

line between two nodes indicates a covariation of corresponding residues. Node 

sizes are proportional to the degree of interconnection of a given residue. Red color 

indicates positions at which primary resistance mutations in protease have been 

described; yellow – secondary resistance mutations in protease; green – known 

Gag resistance- or treatment-associated mutations; black – newly identified 

treatment-associated mutations in Gag. 
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Figure 19. Heat map representing pairwise correlations in the Gag-PR 

region considered. Alterations were ordered according to their positions. Red 

labels indicate primary PI resistance mutations in protease; orange labels – 

secondary PI resistance mutations in protease; green labels – established correlates 

of PI exposure in Gag; black labels – novel correlates of PI exposure in Gag. Only 

significant associations were presented with colored squares. Alterations with no 

significant correlations were excluded. Odds ratios (OR) were plotted in 

logarithmic scale. 
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6.6 Patterns and predicted order of accumulation of mutations 

 

We investigated clusters of mutations occurring among TE samples in a 

more detailed way. Multiple paths of ordered accumulation of genetic changes 

were modelled using random tree mixture approach. Those with the best bootstrap 

support and topology well corresponding to the observed pairwise associations 

were visualized as mutagenetic trees presented in Figure 20 and Figure 21. 

The first model (Figure 20) explained up to 68% of observed sequence 

variants. Up to 38% of samples corresponded to the unordered model of 

accumulation of Gag and protease alterations or to the models that could not be 

robustly identified from our dataset. Second tree (Figure 21) was estimated to 

cover up to 56% of observed sequence variability leaving up to 50% for unordered 

or not observed mutational pathways.  

Newly identified correlates of PI exposure in Gag were incorporated by the 

algorithm into the mutational pathways along with primary and secondary PI 

resistance mutations in protease and established treatment-associated alterations in 

Gag. Both trees obtained demonstrated the tendency of resistance-related 

mutations in protease to prime the occurrence of Gag alterations. 

 

6.7 Bayesian networks analysis 

 

We approached our data with two different pairs of algorithms to infer 

Bayesian networks. One, stricter, suggested our data contained hidden and 

selection variables while another, more relaxed, suggested the opposite. 

Nevertheless, an inferred background association skeleton was identical in both 

cases. Fourteen identified edges just supported observed pairwise associations 

among primary resistance mutations in protease (Figure 19) but did not provide 

any additional data on top of it.   

We expected treatment exposure parameter to be directly linked to and 

identified as the cause for the presence of primary PI resistance mutations in 
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protease. Secondary PI resistance mutations in protease and established Gag 

resistances were expected to link to the PI exposure through the primary resistance 

mutations in protease.  In contrast to our expectations, we could not observe direct 

causal links between the PI exposure and primary resistance mutations in protease. 
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Figure 20. First mutagenetic tree illustrating mutational pathways for Gag 

and PR mutations observed in the dataset. Green boxes represent known treatment- 

and resistance-associated mutations in Gag, black – novel treatment-associated 

mutations in Gag, red and yellow – primary and secondary resistance mutations in 

protease correspondingly. Arrows indicate order of appearance. Simultaneous 

evolution along different pathways is possible, but a mutation can only occur in a 

sample, if all its predecessors (as seen from the root) were also present. First two 

numbers next to an arrow represent 95% confidence interval for the conditional 

probability of occurrence of the next respective genetic event. Third number 

indicates bootstrap support of a given element. Only tree structure supported by at 

least 500 out of 1000 bootstraps was taken into account. Dashed line indicates a 

branch with no support from the analysis of pairwise associations. From 62% to 

68% of samples fit in the ordered accumulation model while the rest (32% - 38%) 

can be explained by an unordered appearance or other, not observed, pathways. 
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Figure 21. Second mutagenetic tree illustrating mutational pathways for 

Gag and PR mutations observed in the dataset. Green boxes represent known 

treatment- and resistance-associated mutations in Gag, black – novel treatment-

associated mutations in Gag, red and yellow – primary and secondary resistance 

mutations in protease correspondingly. Arrows indicate order of appearance. 

Simultaneous evolution along different pathways is possible, but a mutation can 

only occur in a sample, if all its predecessors (as seen from the root) were also 

present. First two numbers next to an arrow represent 95% confidence interval for 

the conditional probability of occurrence of the next respective genetic event. 

Third number indicates bootstrap support of a given element. Only tree structure 

supported by at least 500 out of 1000 bootstraps was taken into account. Dashed 

line indicates a branch with the bootstrap support below selected cutoff with no 

support from the analysis of pairwise associations. From 50% to 56% of samples 

fit in the ordered accumulation model while the rest (44% - 50%) can be explained 

by an unordered appearance or other, not observed, pathways. 
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6.8  Selected phenotypes 

 

We developed, verified by sequencing and phenotypically tested in 

duplicates several single-point mutants, double-mutants and broader combinations. 

Mutations in Gag A431V, I437V, L449V, L449P, S451N, S451H, R452S, P453L 

and mutations in PR I47V, I54V, V82A were selected as known resistance 

associated alterations. Mutation T427D was statistically identified to be associated 

to PI treatment. And alterations R429I and Y441Q showed tendency for 

overrepresentation in TE group. 

In our experiments none of single mutants demonstrated any significant 

difference in PI susceptibility; however, we observed a decrease of viral fitness 

(Table 3). For none of emerging double mutants of interest an increase in drug 

resistance could be shown but rather a further fitness decrease: L449P-P453L – 

81%, S451N-I47V – 59%, T427D-I54V – 37%. The first pair observed in our 

dataset had been discussed by Verheyn et al. [202]. The second and third pairs 

demonstrated association tendency in our dataset. Additionally, covariation of 

S451N and I47V was also supported by the structural proximity and presence of 

electrostatic contact between them (Figure 22). 

Though tested mutations accumulated in PI treated sample group they did 

not confer any detectable resistance but rather decreased fitness. Our suggestion 

was that this might be due to the absence of necessary background alterations 

which might reveal the effects and functionality of selected mutations. Therefore 

we analyzed PR mutant L10I-M46I-I54V-A71V-V82A developed and 

characterized by Alessio Cremonesi as LPV (fold change IC50 2.4) and IDV (fold 

change 2.5) resistant and unfit [229] versus its Gag T427D, A431V, S451N and 

R452S derivatives. R452S has been described as potential Gag resistance and is 

particularly interesting due to its association with DRV and structural effects [238-

240]. Every clone demonstrated expected LPV and IDV resistance (Figure 23), 

susceptibility of other PI tested were not affected. Mutant PR L10I-M46I-I54V-
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A71V-V82A was 46% fit while addition of T427D, S451N or R452S increased the 

fitness up to 72-82%. In contrast, A431V decreased fitness down to 23%. 

 

Table 3. Fitness summary on single mutants that showed no resistance in 

phenotyping tests. 

Mutant 
Fitness compared 

 to pNL-NF, % 
 Mutant 

Fitness compared 

 to pNL-NF, % 

Gag_T427D 60  Gag_S451N 86 

Gag_R429I 47  Gag_S451H 77 

Gag_A431V 52  Gag_R452S 100 

Gag_I437V 57  Gag_P453L 75 

Gag_Y441Q 91  PR_I47V 75 

Gag_L449V 48  PR_I54V 90 

Gag_L449P 60  PR_V82A 25 
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Figure 22. Structural aspect of the interaction between residues 47 in PR and 451 in Gag (in purple). HIV-1 protease 

dimer (cartoon representation) with a decapeptide of its natural substrate p1/p6 Gag (stick representation). PDB ID: 1MT9. 

Flexible PR flaps are in yellow. Yellow dotted lines represent electrostatic contacts. When residue PR 47 has been mutated to 

obtain resistance electrostatic contact with residue Gag 451 and therefore optimal substrate accommodation in the PR substrate 

binding cleft might be lost. But when residue Gag 451 mutates accordingly electrostatic contact is restored. Therefore processing 

efficiency of the cleavage site is restored as well. 
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Figure 23. Phenotypes of the mutants with resistant PR in combination 

with Gag alterations. On the graphs percent of inhibition is represented with 

vertical axis and drug concentration in nM – with horizontal axis. Blue line – 

mutant, red line – pNL-NF reference.   
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7 DISCUSSION 

7.1 Validity of the chosen analytical approach 

 

This study is the first in the SHCS to systematically investigate the possible 

role of HIV-1 Gag mutations during PI treatment and for the emergence of viral 

drug resistance. The pilot steps of our analysis validated the analytical approach 

selected as the observed rates of primary and secondary resistances in the viral 

protease matched with previously published data well. The only slight difference 

was observed for secondary resistances A71V and L10I, which, based on previous 

data, were more prevalent than expected in TN samples in the SHCS data set. 

These two natural polymorphisms have not been attributed to failures on certain 

protease inhibitors [236] but were rather associated with unspecific cooperative 

decrease of PI susceptibility in vitro [104, 190]. So the difference is rather 

explained by reported natural geographical variability in prevalence of mutations 

and by sampling than peculiarities of treatment regimens [104, 190, 241, 242].  

These results confirm the validity of the statistical methods used in this study. 

 

7.2 Frequency of established Gag resistance mutations in the SHCS 

 

The frequencies of resistance-relevant known Gag mutations in the TE set 

of SHCS samples were in a good agreement with a report by Malet et al. [212], 

stating that at the variable positions at the p2/NC cleavage site alone 91% of PI-

exposed subtype B viruses exhibited at least one mutation. That supports our 

observations being true tendencies rather than method of region-specific artifacts. 

The occurrence of mutations I437V, P453L and I479I among the TE samples in 

the absence of accompanying primary protease mutations could indicate several 

mechanistic roles: They could either have an independent role in resistance or they 

might prime as initial steps mutations in PR or they could cooperate with 

secondary protease mutations. Of interest, P453L has been described up to here to 

confer resistance only when primary protease mutations in protease had emerged 
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[192]. And for I479I no phenotypic proof in a standardized background is 

available. This leaves I437V to as the most likely candidate to contribute to the 

failure of PI-containing regimens in the absence of primary resistances. In a 

standardized in vitro background it decreased the susceptibilities of LPV, TPV, 

ATV, and APV [10]. In 17.9% of all TE samples the Gag region carried mutations 

capable of decreasing PI susceptibility alone or in combination with PR 

resistances. Yet, the Gag region is not taken into account by routine genotyping. 

Therefore the overall level of PI resistance might be underestimated. 

 

7.3 Beyond established Gag resistances 

 

Most of the currently known mutations in Gag that have been associated 

with PI resistance reside in or near the p7/p1 and p1/p6 cleavage sites. Our study 

set out to complement this information by including the entire C-terminal region of 

Gag available from our dataset. Several mutations were newly associated with PI 

exposure. They were mainly located at functionally critical points of the Gag 

polyprotein. Both positions A360 and Q369 are well conserved among M-group 

isolates of HIV-1. Alterations at position 360 affect p24/p2 cleavage and have been 

reported to influence virion assembly and release [243]. Residue 369 belongs to the 

bevirimat binding sequence and is required for proper virion formation and 

maturation in vitro, a step that is dependent on the conformation of p2 (SP1) [94]. 

The folding of this short spacer peptide is likely to be strongly affected by the 

observed substitution exchanging the hydrophilic glutamine with the rather 

hydrophobic leucine. Furthermore, the association of Q369L with other known 

resistance-related alterations in Gag such as K418R, I437V, and P453T, as 

observed here, underlines its potential critical role and lends support to the claim 

that Gag mutations may depend on the background sequence of the respective 

isolate. 

The polar but uncharged T427 as the HIV-1 M-group consensus is neutral 

hydrophobic. Hence a change to asparagine or aspartic acid strongly increases the 
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hydrophilicity at this position, and such a drastic alteration in the immediate 

vicinity of a viral PR cleavage site is likely to affect processing efficiency. 

Additionally, alteration T427N has been previously recognized as a CTL escape 

mutation affecting viral replication capacity [244]. 

Of interest, p6 contains several predicted ERK-2 phosphorylation sites, i.e. 

at T456, S462, T469, T471, S473, Y484 and S499 [245], and the incorporation of 

ERK-2 into the HIV particle is thought to regulate the L-domain function of p6 

[246]. One of possible ways to regulate mono-ubiquitination is via 

phosphorylation, and it has been suggested that cellular kinases regulate 

ubiquitination and thereby the structure of p6 [245]. Structure and conformation of 

p6 are critical for maintaining its hydrophobic interface. Most p6 functions are 

suggested to occur under hydrophobic conditions near the cytoplasmic membrane 

[247]. It is therefore interesting to note that the newly described mutations 

E467V/K, 474H and Y484P in this study were located in this crucial p6 protein, 

right in the center of the phosphorylation motifs and L-domains. 

Gag amino acid 467 marks another potentially critical conserved position. 

It resides between a proline-rich region, responsible for interaction with TSG101, 

and an ALIX interaction motif. Additionally, the site is flanked by Vpr binding 

sequences. Glutamic acid at this position is the inter-subtype consensus. Therefore 

the observed change to valine would switch the character from hydrophilic to 

hydrophobic, while lysine would reverse the negative charge in the wild type to 

positive. It is currently not known what the precise contact points in the reaction 

partners are, but it is likely that either one of these drastic mutations would have 

implications for the protein-protein interaction. 

Mutation Q474L has been described to occur during the acquisition of PI 

resistance. Alone, without any accompanying alterations, it was deleterious to viral 

replication. However, with the simultaneous introduction of corresponding Gag 

cleavage-site mutations the phenotype could be rescued [203]. In line with this 

Q474Q/L has also been linked in a subtype-dependent manner to the known PI 

resistance via P453L/T [248]. In addition, the P453L/T mutation has been 
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associated with a loss of an ERK-2 phosphorylation site at T471 [248]. In our 

SHCS dataset the mutation Q474H correlated with the T427N change in 13.3% of 

cases (OR=24.4), which supports a direct connection of the p6 phosphorylation 

motifs with the sequence surrounding the p7/p1 cleavage site. As histidine can 

serve as substrate for mammalian protein kinases the mutation Q474H might 

immediately be linked to a shift of the phosphorylation event at residue T471. 

In the subtype B consensus amino acid Y484 belongs to the ALIX 

recognition motif, a site involved in the function of particle budding. Various 

alterations in the sequence of residues 482-484 have been described to affect ALIX 

binding as well as the accumulation of the Gag processing intermediates p41 and 

p25 [249, 250]. This observation highlights a connection between the p6 protein 

and the processing efficiency at the cleavage sites for p17/p24 and p24/p2. 

Additionally, residues 483 and 484 have been demonstrated to be subtype-

dependently selected CTL epitopes [251]. Moreover, the mutation L483M has 

been reported to be selected in vitro in the presence of DRV [252]. 

In line with previous studies [203, 248, 253] our data support a new role of 

p6 alterations: its phosphorylation and folding are likely to affect the efficiency of 

Gag cleavage site processing and could hence directly associate with viral fitness 

and even PI susceptibility. P6 alterations have been linked to the mutations 

affecting p17/ p24, p24/p2 and p1/p6 [203, 248-250, 253] cleavage site processing 

efficiency and we report novel connection between p6 and p7/p1 cleavage site. 

Additionally we demonstrate a potential link of PI-associated p6 mutations to 

phosphorylation of the protein.  Our data thereby indicate a key role of positions 

360, 369, 427, 467, 474, and 484. 

While mutations such as I437V have been reported to behave like primary 

protease mutations [10, 237], most other isolated Gag mutations do not confer 

resistance on their own but may rather act as amplifiers similarly to minor PI 

resistance mutations [254]. Therefore, in line with Doyon et al. [7], we speculate 

that  some Gag mutations may perform a “fine tuning” function for HIV carrying 

protease mutations e.g. with a significant fitness cost. This is in agreement with 
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Zhang et al. [255] who found them to be common and important for viral 

adaptation pathways resembling secondary protease mutations [13]. For every 

clinically evolved virus the overall sequence of Gag and Gag-Pol is crucial for 

fully assessing the role of Gag mutations in a given virus isolate [13], where both 

assembly of mature virion proteins and polyprotein cleavage are coordinated by the 

balance of the processing rate between cleavage sites. Being relatively fragile, this 

balance limits variability of cleavage site sequences and therefore possibilities of 

compensation for resistance-associated fitness loss [119, 256]. And our results 

serve as an additional argument to support background-dependent role of Gag 

mutations. 

 

7.4 Mutational patterns 

 

Mutations in HIV-1 protease responsible for the development of resistance 

against protease inhibitors are known to form certain patterns. These patterns are 

dictated by epistatic interactions between them in terms of synergistic impact on 

drug susceptibility or compensation for resistance-associated fitness loss [104, 

190]. However, Gag mutations have been identified as a second mechanism 

contributing to the decrease of PI susceptibility [197-201]. And their functionality 

crucially depends on the background sequence [13]. So this study is the first 

attempt to investigate Gag mutational clusters occurring in the isolates from SHCS 

patients. 

 Pairwise associations between the Gag and PR mutations observed in our 

dataset confirmed PR as the most interconnected region. Primary resistances 

L90M, M46I, V82A and I54V confirmed their major role in resistance and 

networking status [257-259] by showing the highest number of significant 

associations in PR. Secondary resistances in protease also demonstrated numerous 

significant associations. One of them, L33F, is a fitness-compensating alteration 

which decreases HIV susceptibility to several PI in the presence of various primary 

resistance mutations [104, 190, 260, 261].  L33F may be an important “crossroad” 
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for different resistance pathways. Such a role of L33F is supported by its direct 

contact with protease substrate / inhibitor binding residues, just like in case of 

L10I, I54LV and L90M [193]. Another secondary PI resistance mutation in 

protease A71V is located on the outer face of the protease dimer, but still was as 

interconnected as L33F and linked to the same established correlates of PI 

resistance in Gag A431V and P453L. This allows us to speculate that frequently 

observed secondary resistances represent one of the “bridges” that connect Gag 

and PR resistance patterns. We could not identify any significant link of novel PI-

associated alterations in Gag to primary resistances in PR. 

The next step was to analyze Gag-PR mutational landscape with a more 

sophisticated approach – random tree mixture models. High percentage of samples 

falling in either of proposed ordered models of accumulation of mutations with the 

bootstrap support numbers suggest that trees obtained describe interactions 

between the considered alterations within the selected patterns stably and 

comprehensively enough. Due to relatively low number of sequences included into 

the analysis we could not strictly identify the transition rates between the genetic 

events considered. But the first steps of the mutational pathways observed tended 

to represent a bottleneck, possibly related to fitness costs of further mutations. 

Bayesian network inference has demonstrated its utility in the analysis of 

HIV resistance against PI [262, 263], but it could not provide any additional data 

for our analysis. It just confirmed some of identified pairwise associations between 

the primary resistance mutations in protease. The most likely reason is that our 

dataset was not large enough to provide the algorithm with a necessary signal to 

robustly dissect the system with potentially high number of confounding effects 

and complex interactions. 

The backbone of the pattern involving Gag resistance mutation A431V and 

PR resistance mutations M46I/L, I54V and V82A observed in the current study has 

been reported by Verheyen et al. in the cohort of patients in Germany [202]. 

However, pattern reported here was broader and was primed by secondary 

resistance mutations at position 10 in PR. Additionally, A431V and I54V 
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represented rather final stages of the pattern development. By the PR mutations 

A71T/V/I the above-mentioned mutational cluster was linked to the pattern 

involving the p1/p6 cleavage site alterations P453TL and S451G/N, and which 

further involved D30N-N88D pair. In contrast to previous observations [202] 

L90M and I84V represented a branch alternative to P453T/L. For the third group 

of mutations we could not produce a reliable mutagenetic tree. This cluster seems 

to be rather isolated and includes Gag resistance I437V, major PI resistance L90M 

and three secondary mutations L10I, Q58E and G73T. In addition we show that 

resistance patterns are not limited with well-established and best-known primary 

resistances in PR and cleavage site alterations in Gag. Novel Gag mutations were 

included in the mutagenetic trees along with established Gag resistances that 

supports their potential importance in the context of PI resistance. Primary 

resistance mutations in protease seemed to initiate the development of resistance 

pattern. Then secondary resistances followed accompanied by the Gag alterations. 

L63P and L33F along with T427D/N, E467V/K, E468G, Q474H and Y484P were 

incorporated by the identified resistance patterns. 

Suggested mutational patterns identified have already found a confirmation 

for their functionality. Kolli et al. analytically demonstrated their effects: 

Mutations at position 431 decreased IDV and LPV susceptibility in the presence of 

V82A. And in the presence of L90M, mutations at positions 431 and 453 decreased 

HIV susceptibility to every PI. However, in every case enhanced resistance came 

at a cost of reduced fitness. At the same time number of secondary resistances in 

protease positively correlated with the presence of Gag alterations [240]. A431V 

[264] and I437V [10] have been shown to confer PI resistance in the absence of 

primary resistance mutations, but we could not observe such an effect in our 

experiments. We could not detect previously reported resistance effects of single 

primary resistance mutations in protease I47V, I54V and V82A as well [104, 190]. 

This discrepancy to existing data might be explained by the difference between the 

phenotyping approaches. Nijhuis et al. [10] compared phenotypic drug 

susceptibility of Gag mutant K436E-I437V in multiple-cycle MTT assay and 
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single-cycle PhenoSense assay. So for every PI tested MTT assay gave IC50 fold 

change higher than that by PhenoSense (up to 2 times). In the current study and 

previous [229] deCIPhR measured the resistance effect of primary PR mutations 

I54V and L90M lower than PhenoSense (susceptible versus resistant) [104, 190]. 

Usage of heterologous envelope in an assay may increase infectivity and help the 

virus to pass by some of the lifecycle stages blocked by PI [145, 265-267]. Signal 

reading methods have their impact dependent on sensitivity and inherent 

preciseness. Cell lines utilized influence the development of HIV infection as well 

through the cellular factors involved in the interactions with the virus [79, 80]. 

In an attempt to make the effects of Gag alterations visible we continued 

with a more complex resistance in PR L10I-M46I-I54V-A71V-V82A which has 

demonstrated measurable resistance with our assay [229]. In the resistance 

background of PR L10I-M46I-I54V-A71V-V82A we could measure fitness-

compensating effects of T427D, S451N and R452S. This is the first phenotypic 

characteristic produced for S451N and R452S previously recognized as resistance-

associated. In addition to that we confirmed the importance of T427D alteration. 

Such results make sense from the clinical and molecular point of view. On the first 

place virus accumulates resistances in PR which allow it to survive the drug 

pressure but diminish the fitness. Then (and this is supported by the mutagenetic 

trees constructed: Figure 20, Figure 21) Gag mutations occur that change Gag 

accordingly to the structure of resistant PR in order to compensate for the fitness 

loss. However, such mutated Gag might not fit well with the wild-type PR that 

would result in low fitness which we observed in our experiments in case of 

isolated Gag mutations. The structural basis for this interplay between Gag and PR 

mutations is illustrated in Figure 22. 
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Initial steps to collect and structure comprehensive data on Gag region 

alterations have already been implemented [58, 59], which may help improvement 

of current genotypic algorithms. And this study provides additional details on the 

development and interplay of Gag and PR resistance patters. 

 

7.5 Center dependence of the choice of PI-containing therapies 

 

When analyzing the relative rates of use of certain PIs for the two Swiss 

centers in this study, we noted that samples from center BS were generally 

associated with a higher exposure to NFV, SQV, and IDV. On the other hand, for 

the ZH samples ATV and DRV were more often applied. It is conceivable that one 

center might have provided to the database a higher fraction of data for patients 

with successful viral suppression and with a lower need for a new therapy change, 

thereby remaining longer on a previous drug regimen. Alternatively, since both 

centers follow Swiss treatment guidelines with their timely updates, and as both 

centers have a regular exchange among treating physicians, it is very likely that 

these differences of more conservative data set originating from BS reflect a 

sampling effect, i.e. that a larger fraction of the analyzed sequence entities stems 

from an earlier period within the time of analysis. Indeed, the analysis date of ZH 

samples was on average significantly later than for BS samples, p<0.05. The fact 

that during the period from 2004 to 2012 in ZH center 1625 patients were recruited 

versus 527 in BS also supports this point of view [268].  
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8 CONCLUSIONS 

 

This study confirms for the Swiss HIV Cohort previously published data 

from other European settings on the relevance of Gag mutations in the context of 

PI resistance. We demonstrate that 17.9% of SHCS patients carry resistance 

mutations in Gag. And since Gag is not considered by the current genotyping 

systems the overall level of PI resistance for these patients is underestimated. 

We report novel Gag mutations which accumulate in PI-treated samples 

and reside in functionally important regions of Gag. They correlated with 

previously reported resistance patterns in Gag and PR. Some of them were capable 

of increasing viral fitness in the context of resistant PR. 

The role of PI resistance mutations in Gag and PR critically depends on the 

background viral sequence. We show that secondary PI resistance mutations also 

contribute to the development of certain resistance patterns. 

Additionally our data support a new role of p6 alterations: its 

phosphorylation and folding are likely to affect the efficiency of Gag cleavage site 

processing and could hence directly associate with viral fitness and even PI 

susceptibility.  

Taken together, our data suggests the relevance of Gag sequence 

information for the routine genotyping of PI-treated patients of the SHCS.  



86 
 

9 OUTLOOK 

 

We identified novel Gag mutations A360S/P, Q369L, T427D/N, E467V/K, 

Q474H and Y484P as potentially resistance-relevant. However, of those 

alterations, we managed to characterize phenotypically only T427D mutant alone 

and in combination with PR resistances. Phenotyping experiments on the rest of 

these alterations would help to reveal their true role. They should be tested alone 

and in combination with resistant PR. Alternative approach would be reversion of 

the mutations of interest in relevant patient viruses. In this case the impact of a 

given mutation can be observed in its naturally developed backbone. Recently Dr. 

Doris Chibo from HIV Characterisation Laboratory in Doherty Institute, 

Melbourne reported 6 cases when patients were failing PI-containing therapy 

without any sufficient resistances in PR and with controlled regimen compliance. 

She kindly agreed to share corresponding Gag-PR fragments. It would be 

interesting to see if these failures could be explained by Gag alterations and if we 

could find any of our novel Gag mutations involved here. 

Different phenotyping protocols could be compared for the evaluation of 

the most frequently observed resistance patterns across Gag and PR. Nijhuis et al. 

[10] compared phenotypic drug susceptibility of Gag mutant K436E-I437V in 

multiple-cycle MTT assay and single-cycle PhenoSense assay. So for every PI 

tested MTT assay gave IC50 fold change higher than that by PhenoSense (up to 2 

times). Additionally, in the current study and previous [229] deCIPhR measured 

the resistance effect of primary PR mutations I54V and L90M lower than 

PhenoSense (susceptible versus resistant) [104, 190]. Presence of heterologous 

envelope may increase infectivity and help the virus to pass by some of the 

lifecycle stages blocked by PI [145, 265-267]. Signal reading methods have their 

impact dependent on sensitivity and inherent preciseness. Cell lines utilized 

influence the development of HIV infection as well through the cellular factors 

involved in the interactions with the virus [79, 80]. 
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In this study we concentrated our attention on subtype B isolates because 

the number of samples of other individual subtypes did not allow enough statistical 

power for the analysis even to confirm the status of primary PI resistance 

mutations in protease. In order to investigate subtype-specific aspects of Gag and 

PR resistance patterns one might try to build up a larger dataset of samples of a 

certain subtype by collecting them from different cohorts in comparable settings. 

An issue here is that different centers may use different genotyping systems that do 

not necessarily allow the extraction of Gag sequence information.     
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