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Science is built up with facts, as a house is with stones.

But a collection of facts is no more a science than a heap of stones is a house.

(Henri Poincaré)
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Summary

Malaria is a mosquito-borne infectious disease caused by parasitic protozoans of the genus

Plasmodium and transmitted to humans via the bites of infected female Anopheles mos-

quitoes. Although progress has been seen in the last decade in the fight against the disease,

malaria remains one of the major cause of morbidity and mortality in large areas of the

developing world, especially sub-Saharan Africa. The main victims are children under five

years of age. The observed reductions are going hand in hand with impressive increases

in international funding for malaria prevention, control, and elimination, which have led

to tremendous expansion in implementing national malaria control programs (NMCPs).

Common interventions include indoor residual spraying (IRS), the use of insecticide treated

nets (ITN) and environmental measures such as larval control. Specific targets have been

set during the last decade. The Millennium Development Goal (MDG) 6 aims to halve

malaria incidence by 2015 as compared to 1990 and to achieve universal ITN coverage and

treatment with appropriate antimalarial drugs. In 2010, the Global Malaria Action Plan

(GMAP), created by the Roll Back Malaria (RBM) Partnership, called for rapid scaling-up

to achieve universal coverage with some form of vector control.

Transmission of malaria depends on the distribution and abundance of mosquitoes,

which are sensitive to environmental and climatic conditions, such as temperature, rainfall,

vegetation and land use. Geostatistical models can be used to estimate the environment-

disease relation at fixed locations over a continuous study area, and predict the burden of

malaria at places where data on transmission are not available. Data are correlated in space

because common exposures of the disease influence malaria transmission similarly in neigh-

boring areas. Geostatistical models take into account spatial correlation by introducing

location-specific random effects. Bayesian model formulation is a natural and convenient

choice for model fit via the implementation of Markov chain Monte Carlo (MCMC).

This thesis develops novel statistical methodology for (i) producing accurate disease

v



burden estimation (malaria parasitemia risk and number of infected) at high spatial res-

olution and (ii) assessing the coverage and effectiveness of vector control interventions.

Produced maps and estimates make a significant contribution to the monitoring and eval-

uation of the progress toward the targets of disease reduction and intervention coverage

scaling-up.

Contemporary information on malaria prevalence for this work was provided mostly by

Malaria Indicator Surveys (MIS) and Demographic Health Surveys (DHS) with malaria

modules. MIS are nationally representative surveys developed by RBM that collect para-

sitaemia data on children below the age of 5 years and are usually carried out during high

malaria transmission seasons. Historical data were extracted from the Mapping Malaria

Risk in Africa (MARA) database, that contains over 10,000 geographically positioned sur-

veys from gray or published literature across all sub-Saharan Africa. Malaria confirmed

cases data were gathered by the Health Management Information System (HMIS) in Zam-

bia.

In Chapter 2, Bayesian geostatistical Zero-Inflated Binomial (ZIB) models were de-

veloped to produce spatially explicit parasitaemia risk estimates and number of infected

children below the age of 5 years in Senegal. Geostatistical ZIB models were able to ac-

count for the large number of zero-prevalence survey locations (70%) in the Senegalese

MIS 2008 dataset. Model validation confirmed that the ZIB model had a better predictive

ability than the standard Binomial analogue. Bayesian variable selection methods were

incorporated within a geostatistical framework in order to choose the best set of environ-

mental and climatic covariates associated with the parasitaemia risk. Several ITN coverage

indicators were calculated to assess the effectiveness of interventions.

Chapter 3 explores different modelling specifications of zero-altered models and suggests

model formulations in a geostatistical setting. In particular, the work addresses the problem

of selecting variables and assessing the need of incorporating a spatial structure in the

modelling of the mixing probability and the non-degenerate distribution. Specific prior

distributions for spatial process selection based on non-zero random effects variances are

proposed and analyzed through a set of simulated data. The proposed approach was applied

to obtain simultaneous estimation of suitability of malaria transmission and of conditional

risk in Senegal. The renewed interest in malaria eradication suggests that more sparse

data will be produced from parasitological as well as entomological surveys.

The impact of environmental predictors on malaria risk is commonly modeled as a linear

effect, constant throughout the study area. However, more flexible functional forms, such
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as piece-wise linear or splines may be required to capture non-linear relationships between

the predictors and malaria risk. The area under study is often large, covered by different

regions, (e.g. ecological zones) and the relationship between the disease and its risk factors

may not be constant across the area. Furthermore, the spatial correlation is likely to

vary not only as a function of distance but also of their geographic position. Chapter 4

develops Bayesian spatial variable selection methods with spike-and-slab prior structure

that allow the choice of different predictors and their functional forms in non-stationary

geostatistical models for mapping disease survey data. Penalized spline effects are re-

parameterized as mixed effects terms and their selection is based on non-zero random effects

variance identification. Spatially varying weights are proposed to achieve smoothness across

irregularly shaped regions. These methods are applied on the analysis of data from the

Mali DHS to obtain spatially explicit estimates of the disease burden in the country.

Few studies have linked malaria survey data with Remote Sensing (RS)-derived land

cover/use (LC) variables. Chapter 5 assesses the effect of the spatial resolution of RS-

derived environmental variables on malaria risk estimation in Mozambique. A proximity

measure to define LC variables to be included as covariate in a geostatistical model for

malaria risk is proposed and applied to the Mozambican DHS dataset in 2011. The model

was validated using a LC layer at 5 m resolution produced by MALAREO, a Seventh

Framework Programme (FP7) funded project which covered part of Mozambique during

2010-2012, and freely available Remote sensing sources. The predictive performance was

compared.

When prevalence estimation relies on the compilation of historical data, surveys are

commonly heterogeneous in season and sampled population (age groups). In Chapter 6, age

and time heterogeneity between surveys is addressed by proposing a general formulation

that couples spatial statistical models and mathematical transmission models allowing

uncertainty incorporation. The proposed methodology is applied to obtain age/season-

specific high resolution disease risk estimates in Zambia.

By 2013, six African countries had completed two rounds of MIS: Angola, Liberia,

Mozambique, Rwanda, Senegal, and Tanzania. In Chapter 7, a spatio-temporal analysis

was performed to estimate changes in malaria parasitemia risk across these countries.

Additionally, the coverage and effectiveness of control measures (i.e., ITN and IRS) was

quantified at national and subnational level in reducing malaria risk, after taking into

account climatic factors. The analysis was performed with a Bayesian geostatistical model

and spatially varying coefficients to study disease/interventions associations. Bayesian
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variable selection procedures were developed to select the most relevant ITN measure in

reducing malaria risk and spatial kriging over the study area was performed to produce

intervention coverage maps. For the first time, smooth maps of probability of decrease in

parasitemia were produced.

The methods described throughout this thesis may not be applied directly from field

practitioners or NMCP personnel, since they require specialized knowledge. However, we

are currently working on the implementation of the models with entirely free softwares

and user-friendly interfaces to be distributed to the NMCPs and facilitate their work in

monitoring and evaluating the progress in the fight of the disease.
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Zusammenfassung

Malaria ist eine durch Mücken übertragene, ansteckende Krankheit, welche durch para-

sitäre Protozoen der Gattung Plasmodium ausgelöst und durch den Biss infizierter weib-

licher Anopheles Mücken auf Menschen übertragen wird. Trotz des Fortschritts im Kampf

gegen die Krankheit während der letzten Jahrzehnte bleibt Malaria eine der Hauptur-

sachen für Morbidität und Mortalität in groen Teilen der Entwicklungsländer, insbesondere

in Subsahara-Afrika. Kinder im Alter von unter fünf Jahren sind am meisten gefährdet.

Beobachtete Rückgänge gehen einher mit einem beträchtlichen Anstieg der internationalen

finanziellen Mittel für Malaria-Prävention, -Kontrolle und Eliminierung, welcher wiederum

zu einer enormen Verbreitung der Implementierung nationaler Malaria-Kontrollprogrammen

(NMCPs) fhrte. Interventionen umfassen üblicherweise das Versprühen von Insektiziden

in Innenräumen (IRS), die Verwendung von mit Insektiziden behandelten Netzen (ITN)

und Umweltmanahmen wie zum Beispiel der Kontrolle der Larven. Im letzten Jahrzehnt

wurden spezielle Ziele festgelegt. Das Millenium-Entwicklungsziel (MDG) 6 strebt an, die

Malaria-Inzidenz bis 2015 zu halbieren (im Vergleich zu 1990) und eine universelle Verbre-

itung von ITN und die Behandlung mit geeigneten Malariamedikamenten zu realisieren.

Im Jahre 2010 rief der Global Malaria Action Plan (GMAP), ins Leben gerufen durch

die Roll Back Malaria (RBM) Partnership, zu einer raschen Intensivierung aus, um eine

universelle Abdeckung und einer Form der Vektorkontrolle zu ermöglichen.

Die Übertragung von Malaria hängt sowohl von der Verteilung als auch von der Häufigkeit

der Mücken ab. Jene reagieren empfindlich hinsichtlich der Umwelt- und Klimabedingun-

gen wie beispielsweise Temperatur, Niederschlag, Vegetation und Bodennutzung. Mittels

geostatistischer Modelle kann die Beziehung zwischen der Umgebung und der Krankheit

an fixen Lokalisierungen über ein stetiges Untersuchungsgebiet hinweg geschätzt werden.

Des Weiteren ermöglicht diese Methode die Prognose der durch Malaria bedingten Last an

Orten, für welche keine Daten bezüglich der Übertragung verfügbar sind. Die Daten sind

räumlich korreliert, da benachbarte Gebiete denselben Risikofaktoren ausgesetzt sind und
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somit der Einfluss auf die Übertragung von Malaria ähnlich ist. Geostatistische Modelle

berücksichtigen räumliche Korrelation durch die Einführung von ortsabhängigen Random-

Effekten. Die Modellformulierung nach Bayes ist eine natürliche und praktische Wahl

hinsichtlich der Modellanpassung durch Implementierung von Markov chain Monte Carlo

(MCMC).

Diese Arbeit entwickelt neuartige statistische Methodologien (i) zur genauen Schätzung

der Krankheitslast (Malaria Parasitämie-Risiko und Anzahl der infizierten Personen) bei

einer hohen räumlichen Auflösung und (ii) zur Abschätzung der Abdeckung und Effek-

tivität von Interventionen zur Vektorkontrolle. Erstellte Karten und Schätzungen stellen

einen wesentlichen Beitrag zur Überwachung und Evaluierung des Fortschritts zur Er-

reichung des Ziels, dem Rückgang der Krankheit und dem Ausbau der Abdeckung der

Interventionen, dar.

Aktuelle Informationen bezüglich der Malaria-Prävalenz wurden zum gröten Teil von

Malaria Indicator Surveys (MIS) und Demographic Health Surveys (DHS) mit Malaria

Modulen für diese Arbeit zur Verfügung gestellt. MIS sind national repräsentative Umfra-

gen, welche von RBM entwickelt wurden und in dessen Rahmen Parasitämie-Daten über

Kinder unter 5 Jahren gesammelt werden. Die Studien werden üblicherweise während Pe-

rioden durchgeführt, in denen eine hohe Malariaübertragungsrate gegeben ist. Historische

Daten wurden von der Mapping Malaria Risk in Africa (MARA) Datenbank extrahiert.

Diese Quelle umfasst Daten aus grauer oder veröffentlichter Literatur aus über 10,000 ge-

ographisch positionierter Erhebungen quer durch Subsahara-Afrika. Daten über bestätigte

Malariafälle wurden vom Health Management Information System (HMIS) in Sambia be-

zogen.

In Kapitel 2 wurden Bayes’sche geostatistische zero-inflated binomiale (ZIB) Mod-

elle entwickelt, um Schätzungen für das räumlich-explizite Parasitämie-Risiko zu erstellen

und die Anzahl der infizierten Kinder unter 5 Jahren in Senegal zu bestimmen. Eine

Vielzahl der Erhebungsstandorte des senegalesischen MIS 2008 Datensatzes wiesen eine

Prävalenz gleich null auf (70%), welche durch die geostatistischen ZIB Modelle berück-

sichtigt werden konnte. Modellvalidierung bestätigte, dass das ZIB Model eine bessere

Vorhersagefähigkeit aufwies als das Standard-binomiale Gegenstück. Bayes’sche Methoden

zur Variablenauswahl wurden in einen geostatistischen Rahmen integriert, um die optimale

Auswahl an Umwelt- und Klimakovariaten zu finden, welche mit dem Parasitämie-Risiko

assoziiert sind. Verschiedene Indikatoren hinsichtlich der Verbreitung der ITN wurden

berechnet, um die Effektivität der Interventionen zu ermitteln.
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Kapitel 3 untersucht unterschiedliche Modellspezifizierungen von zero-altered Modellen

und legt eine Modellformulierung innerhalb eines geostatistischen Rahmens nahe. Ins-

besondere wird das Problem der Variablenauswahl und Bewertung des Bedarfs der Berück-

sichtigung einer räumlichen Struktur innerhalb der Modellierung der Mixing-

Wahrscheinlichkeit und der nicht-ausgearteten Verteilung behandelt. Es werden spezielle

A-priori Verteilungen für die Abschätzung des räumlichen Prozesses, welche auf nicht-null

Random-Effekt-Varianzen basieren, vorgestellt und anhand simulierter Daten analysiert.

Der entwickelte Ansatz wurde angewandt, um eine simultane Schätzung der Angemessen-

heit der Malariaübertragung und dem bedingten Risiko in Senegal zu ermöglichen. Das

wiederbelebte Interesse an der Auslöschung von Malaria suggeriert, dass weitere spärliche

Datensätze durch sowohl parasitologische als auch entomologische Erhebungen erstellt wer-

den.

Der Einfluss der Umweltprädiktoren bezüglich des Malariarisikos wird üblicherweise als

linearer Effekt modelliert, welcher als konstant (über das Studiengebiet hinweg) angenom-

men wird. Jedoch bedarf es möglicherweise flexibleren funktionalen Formen wie zum

Beispiel stückweis linear oder Splines, um die nicht-lineare Beziehung zwischen Prädik-

toren und Malariarisiko zu erfassen. Das Untersuchungsgebiet ist häufig gro und wird

durch unterschiedliche Regionen abgedeckt (zum Beispiel ökologische Zonen), wodurch

die Relation zwischen der Krankheit und dessen Risikofaktoren nicht konstant über das

Gebiet hinweg ist. Des Weiteren ist es wahrscheinlich, dass die räumliche Korrelation

nicht nur als eine Funktion des Abstands sondern auch hinsichtlich der geographischen

Lage variiert. In Kapitel 4 wurden Bayes’sche Methoden räumlicher Variablenauswahl en-

twickelt, die eine spike-and-slab A-priori Struktur definieren. Hierdurch wird die Auswahl

verschiedener Prädiktoren und deren funktionaler Form in nicht-stationären geostatis-

chen Modellen ermöglicht, welche ihre Anwendung in der Kartierung von Erhebungsdaten

über Krankheiten finden. Penalisierte Spline Effekte wurden als gemischte Effektterme

umparametrisiert und deren Auswahl basiert auf nicht-null Random-Effekt Varianziden-

tifizierung. Räumlich variierende Gewichte werden vorgestellt, um smoothness über un-

regelmäig geformte Regionen zu ermöglichen. Diese Methoden wurden auf die Daten des

Mali DHS angewandt, um räumlich explizite Schätzungen der Krankheitslast in dem Land

zu erhalten.

Es existieren wenige Studien, die Erhebungsdaten über Malaria mit Variablen bezüglich

der Bodenfläche/-nutzung (LC), welche durch Fernerkundung (Remote Sensing (RS)) er-

stellt wurden, verknüpfen. Kapitel 5 ermittelt den Effekt der räumlichen Auflösung der

xi



RS-erstellten Umweltvariablen bezüglich der Schätzung des Malariarisikos in Mosambik.

Es wird ein Näherungsma präsentiert, welches definiert, ob eine LC-Variable als Kovariate

in ein geostatistisches Model eingefügt wird. Diese Methodik wird im Anschluss auf den

Mali DHS Datensatz aus dem Jahre 2011 angewandt. Modellvalidierung wurde mittels

frei verfügbaren RS-Quellen und LC-Oberflächen mit einer 5 m Auflösung durchgeführt.

Jene Oberflächen wurden von MALAREO, einem Seventh Framework Programme (FP7)

finanzierten Projekt, welches Teile von Mosambik im Jahre 2010-2012 umfasst, erstellt.

Die Vorhersagefähigkeit wurde verglichen.

Sofern die Schätzung der Prävalenz auf Zusammenstellung historischer Daten basiert,

sind die Erhebungen für gewöhnlich heterogen bezüglich der Periode und der ausgewählten

Bevölkerung (Altersgruppen). Kapitel 6 beschäftigt sich mit der alters- und zeitlich bed-

ingten Heterogenität zwischen Erhebungen, indem eine allgemeine Formulierung erläutert

wird, welche räumliche statistische Modelle und mathematische Übertragungsmodelle unter

Berücksichtigung von Unsicherheit verbindet. Die beschriebene Methodik wird angewandt,

um hoch aufgelöste Schätzungen des alters-/periodenspezifischen Krankheitsrisikos in Sam-

bia zu ermitteln.

Bis zum Jahre 2013 hatten sechs afrikanische Länder zwei MIS-Durchgänge

vervollständigt: Angola, Liberia, Mosambik, Ruanda, Senegal und Tansania. In Kapitel

7 wurde eine raum-zeitliche Analyse zur Schätzung von Veränderungen im Parasitämie-

Risiko (Malaria) in den genannten Ländern durchgefhrt. Zusätzlich wurde die Abdeckung

und Effektivität der Kontrollmanahmen (zum Beispiel ITN und IRS) sowohl auf nationaler

als auch auf subnationaler Ebene hinsichtlich der Verringerung des Malariarisikos quan-

tifiziert. Hierzu wurden klimatische Faktoren berücksichtigt. Die Analyse wurde anhand

eines Bayes’schen geostatistischen Models durchgeführt, welches räumlich variierende Ko-

effizienten beinhaltete, um die Assoziationen zwischen Krankheit und Interventionen zu

untersuchen. Bayes’sche Verfahren zur Variablenauswahl wurden entwickelt, um den rel-

evantesten Indikator in Bezug auf die ITN Abdeckung (hinsichtlich der Reduzierung des

Malariarisikos) zu selektieren. Darüber hinaus wurde die räumliche Kriging-Methode über

das gesamte Untersuchungsgebiet angewandt, um Karten der Interventionsverbreitung zu

erstellen. Zum ersten Mal wurden smooth Karten über die Wahrscheinlichkeit des Rück-

gangs der Parasitämie erstellt.

Die in dieser Thesis beschriebenen Methoden können möglicherweise nicht direkt von

Feldarbeitern oder NMCP Personal angewandt werden, da Fachwissen erforderlich ist.

Momentan arbeiten wir an der Implementierung der Modelle innerhalb einer kostenlosen
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Software und benutzerfreundlichen Oberfläche, welche unter den NMCPs verbreitet wird

und somit die Arbeit im Bereich der Überwachung und Evaluierung des Fortschritts im

Kampf gegen die Krankheit untersttzt und erleichtert wird.
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2 Chapter 1. Introduction

1.1 Malaria disease and burden

Malaria is a preventable and treatable mosquito-borne disease, whose main victims are

children under five years of age in Africa. According to the latest World Health Organi-

zation (WHO) estimates, there were about 219 million cases of malaria in 2010 and an

estimated 660 000 deaths. Africa is the most affected continent: about 90% of all malaria

deaths occur there. The six highest burden countries in the WHO African region (in order

of estimated number of cases) are: Nigeria, Democratic Republic of the Congo, United Re-

public of Tanzania, Uganda, Mozambique and Côte d’Ivoire. These six countries account

for an estimated 103 million (47%) of malaria cases. In South East Asia, the second most

affected region in the world, India has the highest malaria burden (with an estimated 24

million cases per year), followed by Indonesia and Myanmar (WHO, 2012).

Figure 1.1: Global malaria distribution map: total population at risk. Map created with
the Global Malaria Mapper. http://www.worldmalariareport.org/.
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1.1.1 Malaria life cycle

The natural ecology of malaria involves malaria parasites, protozoa of the genus Plasmo-

dium (P. falciparum, P. vivax, P. ovale, and P. malariae) and two types of hosts: humans

and Anopheles mosquitoes. During a blood meal, a malaria-infected female Anopheles

mosquito inoculates sporozoites into the human host. There, the parasites grow and mul-

tiply first in the liver cells and then in the red cells of the blood. In the blood, successive

broods of parasites grow inside the red cells and destroy them, releasing daughter parasites

(merozoites) that continue the cycle by invading other red cells. The blood stage parasites

are those that cause the symptoms of malaria. When certain forms of blood stage parasites

(gametocytes) are picked up by a female Anopheles mosquito during a blood meal, they

start another, different cycle of growth and multiplication in the mosquito. After 10-18

days, the parasites are found (as sporozoites) in the mosquito’s salivary glands. When the

Anopheles mosquito takes a blood meal on another human, the sporozoites are injected

with the mosquito’s saliva and start another human infection when they parasitize the

liver cells. Thus, the mosquito carries the disease from one human to another (acting as

vector).

Figure 1.2: Life cycle of the malaria parasite.
Source: http://www.niaid.nih.gov.

Differently from the human host, the

mosquito vector does not suffer from the

presence of the parasites. There are 430

Anopheles species, of which around 70 are

malaria vectors, but only 40 of these are

thought to be of major public health impor-

tance (Bruce-Chwatt et al., 1980). Among

these, the An. gambiae complex and An.

funesus are the primary malaria vectors in

Africa. An. gambiae s.s. and An. arabien-

sis are the most widely distributed species

of the An. gambiae complex in sub-Saharan

Africa. Although these sibling species are

morphologically indistinguishable, they ex-

hibit different behavioral attributes. An.

gambiae s.s. is predominant in humid areas, prefers feeding on humans (anthropophilic)

and rests mainly indoors. On the other hand, An. arabiensis is more tolerant in the drier

savanna regions, it often feeds on animals (zoophilic) and rests outdoors. Both species
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breed in temporary habitats such as pools, puddles, rice fields. An. funesus prefers per-

manent water bodies with vegetation such as swamps and marshes, feeds both indoors and

outdoors, mainly on humans and rests indoors.

1.1.2 Malariometric indices

In 1950s WHO suggested using the spleen rates (percent of children with enlarged spleen)

as a proxy of malaria endemicity. Based on both the parasite and spleen rates, malaria

endemicity has been classified as hypoendemic, mesoendemic, hyperendemic and holoen-

demic.

The parasite rate (i.e., prevalence) of human infections within a community is the

most commonly used measure of malaria endemicity. Information on malaria prevalence

is collected through community-based surveys by computing the percentage of individuals

with malaria parasites, determined by Rapid Diagnstic test (RDT) or by analyzing thick

or thin blood films on microscope slides. Malaria prevalence of the same population may

vary in time, depending on the seasonality and stability of the disease.

Malaria incidence is a direct measure of the amount of malaria transmission because

it represents the number of new malaria cases diagnosed during a given time interval in

relation to the unit of population in which they occur. In some settings in sub-Saharan

Africa is not possible to perform laboratory confirmation of malaria diagnoses, therefore

incidence of fever is used as a proxy for incidence of malaria. However, the introduction

of RDTs in health facilities as well as the ongoing commitment to strengthen the Health

Management Information Systems (HMIS), has led to an improvement in the data quality

and allowed availability of more reliable incidence data (Cibulskis et al., 2011).

The force of infection, i.e., the rate at which susceptible individuals become infected

by malaria parasite, has long been proposed as an alternative measure of transmission,

and different approaches to measuring it have been proposed, e.g. malaria parasite con-

version rates in infants. With the wide acceptance of molecular approaches to malaria

epidemiology, more precise measures can now be generated by genotyping individual par-

asite infections because natural superinfections can be monitored (Mueller et al., 2012).

Entomological inoculation rate (EIR) is the most used measure for assessing malaria

transmission intensity. It represents the number of infective mosquito bites an individual is

likely to be exposed to over a defined period of time, usually one year. EIR is expressed as

the product of the anopheline mosquito density, the average number of mosquitoes biting

each person in one day and the proportion of infective mosquitoes (sporozoite rate). The
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product of the first two measures is known as human biting rate and is assessed using

techniques like human bite catch, pyrethrum spray collection and light trap catch. The

sporozoite rate is determined by dissection and examination of mosquito salivary glands or

by the enzyme-linked immunosorbent assay (ELISA), a technique with high sensitivity and

species specificity. Measurements of EIRs during longitudinal studies provides information

on seasonal variations in transmission.

A measure of malaria transmission potential is the basic reproductive number R0,

defined as the average number of cases that a parasitemia infected individual is able to

generate in an uninfected population.

1.1.3 Environmental determinants of malaria transmission

Malaria transmission is strongly influenced by climatic conditions which determine the

abundance and seasonal dynamics of the Anopheles vector.

The amount and duration of malaria transmission is influenced by the ability of par-

asite and mosquito vector to co-exist long enough to enable transmission to occur. The

distribution and abundance of the parasite and mosquitoes population are sensitive to en-

vironmental factors like temperature, rainfall, humidity, presence of water and vegetation.

Rainfall is one of the major factors influencing malaria transmission. It provides breed-

ing sites for mosquitoes to lay their eggs, increasing the vector population and it increases

humidity, improving mosquitoes survival rate. When humidity is below 60% the longevity

of mosquitoes is drastically reduced. Mosquitoes are usually found in areas with annual

average rainfall between 1100 mm and 7400 mm. However, excessive rain can have the

opposite effect, by impeding the development of mosquito eggs or larvae, by flushing out

many larvae and pupae out of the pools or by decreasing the temperatures, which can stop

malaria transmission in areas at high altitudes.

Temperature plays an important role in the distribution of malaria transmission by

influencing both the parasite and the vector. In particular, it has an effect on the survival of

the parasite in the Anopheles mosquito. Optimum conditions for the extrinsic development

of malaria parasite are between 25◦C and 30◦C, but as the temperature decreases, the

number of days necessary to complete the extrinsic phase increases. At temperatures below

16◦C the sporogonic cycle stops. For the vector, temperature affects the development rate

of mosquito larvae and the survival rate of adult mosquitoes. Mosquitoes generally develop

faster and feed earlier in their life cycle and at a higher frequency in warmer conditions.

Development from egg to adult may occur in 7 days at 31◦C, but takes about 20 days
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at 20◦C. In particular, water temperature influences larval development rates whereas air

temperature determines adult longevity as well as the rate of parasite development within

the adult mosquito (Garske et al., 2013).

Vegetation, as a result of rainfall and temperature, and the amount of green vegetation

are important factors in determining mosquito abundance by providing feeding provisions

and protection from climatic condition but also by affecting the presence or absence of the

human hosts and therefore the availability of blood meals.

Land cover and land uses changes may influence the main determinants of the abun-

dance and longevity of mosquitoes (Patz et al., 2005). Land cover concerns the physical

material observed at the earth surface (natural factors such as forests, water bodies and

bare rock) and land use is about anthropogenic elements (such as agriculture, irrigation,

deforestation, urbanization and movements of populations) (Stefani et al., 2013).

1.1.4 Social determinants of malaria transmission

The relationship between poverty and malaria has long been recognized but its paths are

multiple and complex. Recent studies suggest that causality works both ways, trapping

communities in reinforcing cycles of poverty and disease (Sachs and Malaney, 2002). While

malaria hits the poorest, those least able to afford preventative measures and medical treat-

ment, simultaneously it affects the health and economic growth of nations and individuals.

It has been estimated (WHO, 2009) that malaria is costing Africa about 12 billion a year in

economic output, including direct and indirect costs as well as public expenditures. Malaria

accounts for 3.3% of all disability-adjusted life years (DALYs) (Murray et al., 2013).

Maternal education plays an important role in malaria parasitemia in children (Siri and

Lutz, 2012) and it is, in turn, intimately connected with economic conditions.

It has been reccomended (Tusting et al., 2013) to consider social and economical de-

velopment as the main malaria control strategy. At the same time, malaria control should

be seen as a poverty reduction strategy.

1.1.5 Control interventions and targets

The past decade has seen decreases in malaria in sub Saharan Africa. These reductions are

going hand in hand with impressive increases in international funding for malaria preven-

tion, control, and elimination, which have led to tremendous expansion in implementing

national malaria control programs (NMCPs) (Alonso and Tanner, 2013).
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Figure 1.3: MDGs. Source: http://www.un.

org/millenniumgoals.

Control measures are directed at each

component involved in the malaria trans-

mission cycle: the human host, the parasite

and the mosquito vector.

Vector control remains, in general, the

most effective tool to prevent and control

malaria transmission. The principal objec-

tive of vector control is to reduce malaria

morbidity and mortality by reducing the

levels of transmission. Common measures include indoor residual spraying (IRS), the

use of insecticide treated nets (ITN) and environmental measures such as, in some specific

settings, larval control. Applications of these techniques, alone or in combination, reduce

human-mosquito contact, vector abundance and vector infectivity.

Other actions taken by the NMPCs concern the confirming malaria diagnosis through

microscopy or RDTs for every suspected case; timely treatment with artemisinin-based

combination therapies (ACTs) (O’Meara et al., 2010) and chemoprevention for the most

vulnerable populations (pregnant women and infants). In particular, intermittent preven-

tive treatment (IPT) with sulfadoxine-pyrimethamine for pregnant women living in high

transmission areas and intermittent preventive treatment with sulfadoxine-pyrimethamine

for infants living in high-transmission areas of Africa, alongside routine vaccinations. In

2012, WHO recommended Seasonal Malaria Chemoprevention (SMC) as an additional ma-

laria prevention strategy for areas of the Sahel sub-Region of Africa. The strategy involves

the administration of monthly courses of amodiaquine plus sulfadoxine-pyrimethamine to

all children under 5 years of age during the high transmission season.

The Millennium Development Goal (MDG) 6 (UN, 2012a) aims to halve malaria inci-

dence by 2015 as compared to 1990 and to achieve universal ITN coverage and treatment

with appropriate antimalarial drugs. However, reducing malaria burden contributes signifi-

cantly to the attainment of the MDG 4 target of reducing under-five mortality by two-thirds

by 2015 and also to MDGs related to poverty reduction, education, and maternal health.

Renewed interest in malaria elimination and eradication has led to the definition of new

targets in the last decade. In 2008, the Global Malaria Action Plan (GMAP), created by the

Roll Back Malaria (RBM) Partnership (Roll Back Malaria, 2008), advocated reducing ma-

laria cases by 75% (from 2000 levels) and malaria deaths to near zero, by 2015. Since 2007,
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WHO has recommended universal coverage with ITNs (preferably long lasting insecticide-

treated nets (LLINs)), rather than a pre-determined number of nets per household or

exclusively targeting household members at high risk, i.e., pregnant women and children

under five years of age (WHO, 2009). In 2010, the GMAP (Roll Back Malaria, 2008)

called for rapid scaling-up to achieve universal coverage with some form of vector control.

Figure 1.4: World War II poster. Source: U.S.
National Archives and Records Administration.

Control interventions together with bet-

ter case management and education have

delivered positive results. Eleven African

countries have reported a decrease of at

least 50% in malaria cases between 2000

and 2009. By 2009, the annual number of

malaria deaths had fallen by 20% in com-

parison with the beginning of the millen-

nium. In 2010, Morocco and Turkmenistan

were certified by WHO as having elimi-

nated malaria. However, such strong pres-

sure on vector and parasite populations has

led to the selection and spread of resistant

strains of mosquitoes and malaria parasites,

respectively. Mosquito resistance to at least

one of all four classes of insecticide available

for malaria control has been identified in 64

countries around the world. Antimalarial

drug resistance is a major concern for the global effort to control malaria: P. falciparum

resistance to artemisinins has been detected in four countries in South East Asia and will

probably spread globally. ACTs remain highly effective in almost all settings, as long as

the partner drug in the combination is locally effective.

1.2 Spatial epidemiology of malaria

All phases of control and monitoring activities starting form the planning, over to the

implementation and coordination phase, and even evaluation of interventions, especially in

resource-constrained settings, require an accurate geographic estimation of the disease risk.

The study of the spatial epidemiology of malaria has made advances over the past years
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and provided useful information for control programs. In this section, we review the data

sources, tools and statistical modelling techniques for spatio-temporal analysis of malaria

transmission indices.

1.2.1 Malaria data sources

The first database collecting information on malaria prevalence across sub-Saharan

Africa compiled by the “Mapping Malaria Risk in Africa” (MARA/ARMA) project (Craig

et al., 1999). The MARA database (http://www.mara-database.org/) contains malaria

prevalence data collected over 10, 000 geographically positioned surveys from gray or pub-

lished literature across the whole continent. The project was initiated in 1996 to provide

comprehensive, empirical an accurate atlas of malaria risk for sub-Saharan Africa. How-

ever, maps from historical data may not reflect the current malaria situation at a given

location, which could be influenced by control measures. On the other hand, historical

data are useful for looking at temporal changes of the malaria situation. The malaria atlas

project (MAP) (Guerra et al., 2007) is currently assembling historical as well as contem-

porary malaria data with corresponding geo-references. The major drawback of these type

of data is their heterogeneity in season and age since they are collected during different

seasons and include distinct (or sometimes not specified) age groups of the population. In

addition, the data are sparse in time and space.

In order to provide standard and reliable information as well as to coordinate global

efforts to fight malaria, RBM developed the Malaria Indicator Surveys (MIS). MIS are

nationally representative surveys that collect both national and regional (or provincial)

data from a representative sample of respondents. Surveys include measurement of malaria

parasites and anemia among household members most at risk: children under five years

and pregnant women; since 2000 they collect information about ITN ownership and use,

IRS of insecticides, prompt and effective treatment of fever in young children, and the

prevention of malaria in pregnant women. MIS are usually carried out during high malaria

transmission seasons. These nationally representative household surveys represent the most

precise benchmark of progress toward internationally agreed upon targets. Geo-reference

is available at cluster (group of households of variable size) level. Sometimes MIS are

conducted within Demographic and Health Surveys (DHS).

Malaria incidence data can be geo-referenced (collected at health facilities or resi-

dences), or aggregated over areal units (e.g., health districts). The quality and use of

these data depend on the country surveillance system and presence of RDTs to confirm
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suspected cases. Ongoing efforts to strengthen the HMIS have contributed to the increased

availability and reliability of such data. Countries that have limited access to confirmation

of cases, would report clinical malaria incidence, e.g. patients who are suspected to have

malaria based on clinical signs and symptoms. In area with low malaria risk, like many

countries in South-East Asia, such information may be not too biased since it is unlikely

for people in the community to tolerate the parasite without being sick.

Entomological data provide direct measures of malaria transmission via estimates of

EIR, sporozoite rates and other vector-related parameters. However, the data collection

methods are not standardized, therefore the estimated transmission parameters could differ

widely, depending on the techniques used. In regions with low malaria transmission the

number of mosquitoes (infected mosquitoes) is very low, so the sampling error will be

large. Because continuous collections of mosquitoes over a long period of time is difficult,

the entomological data are usually derived from short/medium-term studies over small

areas.

The most comprehensive database on entomological data was compiled by the Malaria

Transmission Intensity and Mortality burden across Africa (MTIMBA) project, initiated

in 2002 by the international network for the Demographic Evaluation of populations and

Their Health in Developing countries (INDEPTH). The MTIMBA project provided reliable

and standard entomological information that contributed to a better understanding of

the links between malaria transmission intensity and mortality. MTIMBA was a multi-

centre study that involved 18-malaria endemic sites in Africa collecting comprehensive

disaggregated data at household or individual level on all-cause mortality and malaria

transmission intensity (Kasasa et al., 2013; Amek et al., 2012).

1.2.2 Geographical information systems and remote sensing data

The study of malaria spatial epidemiology has benefited from the significant progress in the

development of Geographic Information System (GIS), computerized systems capable of

collecting, storing, handling, analyzing and displaying all forms of geographically referenced

information, usually achieved by Global Positioning System (GPS).

Advances in earth observation (EO) via remote sensing (RS) technologies, have led to

the development of high spatial resolution products. The growing availability of RS data,

some of them accessible free of charge via the Internet, played a crucial role in determining

the environmental predictors of malaria transmission (Ceccato et al., 2005).

RS data and spatial statistics have been used for mapping malariometric indices as



1.2 Spatial epidemiology of malaria 11

presence and persistence of vectors’ breeding sites, larval densities, EIR as well as malaria

prevalence, morbidity and mortality in the human (Machault et al., 2011).

The readily available up-to-date information on environmental variables pertinent to

malaria transmission over large and remote regions makes RS a useful source of information

for identification of pockets of transmission and epidemic early warning systems (EWS). RS

can assist malaria control and elimination programs, through the development of spatial

decision support systems enabling accurate and timely resource allocation (Clements et al.,

2013).

1.2.3 Statistical models for spatial data

Exploratory spatial analysis such as variogram estimation (Cressie, 1993), Moran’s I (Moran,

1950) and Gray’s C (Geary, 1954) statistics, depending on the type of data, can be per-

formed using cartographic representations in GIS.

Statistical models enable the identification of significant predictors of malaria trans-

mission building an outcome-predictor relationship and can provide estimates of disease

risk at unobserved locations. Locations in close proximity are characterized by similar

infection risks due to shared spatial exposures. Unobserved spatially distributed exposures

introduce spatial correlation to the data. Standard statistical modelling approaches are not

appropriate for analysing spatially clustered data since they assume independence between

locations. Accounting for spatial dependence can lead to better inference and predictions,

and more accurate estimates of the variability of estimates. Spatial models introduce ran-

dom effect parameters at each observed location or region to take into account potential

spatial correlation.

When outcome data are geo-referenced, the more appropriate analysis is performed

via geostatistical models (Diggle et al., 1998). An underlying spatial Gaussian process

(GP) is assumed whose spatial covariance is commonly modelled as a function of distance

between locations. Geostatistical models are often based on two common assumptions

which are second order stationarity and isotropy. Second order stationarity implies that

the mean of the process is constant and the covariance function depends on the spatial

vector distance between two locations. When the covariance function only depends on

the Euclidean distance between two locations, the process is called isotropic. The spatial

covariance of a stationary and isotropic spatial process could be modeled using parametric

functions of Euclidean distances. The Matérn covariance is the most commonly used family

of parametric covariance functions. After fitting to data, geostatistical models are used for



12 Chapter 1. Introduction

spatial prediction (kriging) at unobserved locations.

When malaria data are aggregated over areal units, they usually consist of counts or

rates. The focus of the analysis is to identify spatial patterns or trends and to assess

association between malaria data and environmental factors that vary gradually over ge-

ographical regions. A Gaussian Markov random field (GMRF) is specified through full

conditional distributions based on the Markov property in space. A GMRF introduces

spatial associations in the model through the specification of neighborhoods based on the

arrangement of the regions in a graphical representation. For example, two areas can be

considered neighbors if they are within some specified distance of one another or they share

a common boundary. The weights assigned to each neighborhood are determined in several

ways. Common weight functions are binary functions with value 1 if two sites are neighbors

and 0 otherwise, and scaled weights which are standardized by the row sum. The most

popular choice is represented by conditional autoregressive (CAR) models (Besag et al.,

1991).

Links and approximations between GP and GMRF have been showed in the work by

Rue and Tjelmeland (2002).

1.2.4 Inference and software

Spatial models can be specified in a Bayesian framework by simply extending the concept

of hierarchical structure, allowing to account for similarities based on the neighbourhood or

on the distance, for area-level or point-reference data, respectively. Bayesian hierarchical

models have become powerful methods in modeling spatial data due to development of

simulation techniques like Markov chain Monte Carlo (MCMC) (Gelfand and Smith, 1990).

These methods are employed to derive empirical approximation of the posterior distribution

of parameters. Well-known methods include: Metropolis-Hastings algorithm (Metropolis

et al., 1953; Hastings, 1970), the Gibbs sampler algorithm (Gelfand and Smith, 1990) and

reversible Jump MCMC (Green, 1995). MCMC methods, have become widespread for

Bayesian computation thanks to the wide popularity of the BUGS software (Lunn et al.,

2009) in its different releases of WinBUGS, OpenBUGS and JAGS Plummer (2003).

However, particularly in these cases, the main challenge in Bayesian statistics resides

in the computational aspects. While extremely flexible and able to deal with virtually

any type of data and model MCMC methods involve computationally and time-intensive

simulations to obtain the posterior distribution for the parameters. Consequently, the

complexity of the model and the database dimension often remain fundamental issues.
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The Integrated Nested Laplace Approximation (INLA, Rue et al. (2009)) approach

has been recently developed as a computationally efficient alternative to MCMC. INLA is

designed for latent Gaussian models, a very wide and flexible class of models ranging from

(generalized) linear mixed to spatial and spatio-temporal models. For this reason, INLA

can be successfully used in a great variety of applications also thanks to the availability of

an R package named R-INLA (Martino and Rue, 2010).

Furthermore, INLA can be combined with the Stochastic Partial Differential Equation

(SPDE) approach proposed by Lindgren et al. (2011) in order to implement spatial and

spatio-temporal models for point-reference data.

1.2.5 Spatial modelling of malariometric indices

Lysenko and Semashko (1968) produced the first global malaria endemicity map combining

data from historical documents and maps of several malariometric indices with expert

opinion and simple climatic/geographical iso-lines. Malaria endemicity maps at national

level were produced in the 50s (De Meillon, 1951; Nelson, 1959) although they made limited

use of empirical evidence and they did not capture the spatial and temporal heterogeneity

of malaria transmission.

The first in using a spatial statistical approach were the works by Kleinschmidt et al.

(2000) and Kleinschmidt et al. (2001): malaria risk was mapped in Mali and West Africa,

respectively, by fitting a standard regression model and applying classical kriging on the

model residuals. A Bayesian statistical approach for the spatial epidemiology of malaria

was used for the first time by Diggle et al. (2002) who fitted a geostatistical model on

malaria survey data from The Gambia but did not provide a risk map. Gemperli et al.

(2006a) and Gemperli et al. (2006b) developed Bayesian geostatistical models for mapping

malaria risk in West Africa and Mali, respectively, using historical survey data extracted

from the MARA database. They made use of the Garki transmission model to adjust

for heterogeneous age groups. Sogoba et al. (2007) fitted Bayesian geostatistical models

to identify the environmental determinants of the relative frequencies of An. gambiae

s.s. and An. arabiensis mosquitoes species and to produce smooth maps of their spatial

distribution in Mali. Gosoniu et al. (2006) and Gosoniu et al. (2009) developed Bayesian

non-stationary models for malaria mapping in Mali and West Africa, respectively, using

historical data extracted from the MARA database.

A global Plasmodium falciparum endemicity map depicting malaria levels in 2007 was

produced by Hay et al. (2009) and the situation in 2010 was shown in Gething et al. (2011).
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A global Plasmodium vivax endemicity map was presented for the first time in the work

by Gething et al. (2012).Contemporary risk maps were produced on national levels using

MIS and DHS with malaria module data in Zambia (Riedel et al., 2010), Angola (Gosoniu

et al., 2010), Tanzania (Gosoniu et al., 2012) and Senegal (Giardina et al., 2012).

A Bayesian approach was adopted also to map malaria vector densities in a single village

in Tanzania (Smith et al., 1995), malaria incidence rates in KwaZulu-Natal (Kleinschmidt

and Sharp, 2001), South Africa, and to study malaria seasonality in Zimbabwe (Mabaso

et al., 2005). Bayesian geostatistical models were developed to analyse data collected

within the MTIMBA project: Amek et al. (2012) used zero-inflated models for the analysis

of sparse malaria sporozoite rate data, (Kasasa et al., 2013) studied malaria transmission

patterns in Navrongo and Rumisha (2013) modelled the seasonal and spatial variation of

malaria transmission in relation to mortality.

1.2.6 Challenges in methodology

Several methodological issues arise from the spatial modelling of malaria prevalence data.

Some of them are i) model formulation, variable selection and model choice for zero-inflated

distributions, ii) analysis of non-stationary non-Gaussian geostatistical data, iii) modeling

the non-linear effect of environmental/climatic factors on malaria risk, iv) dealing with

misaligned data and v) spatially varying coefficients, vi) modeling prevalence from survey

with heterogeneity factors, e.g. age and seasonality.

Sparse geostatistical data are likely to arise from parasitological surveys as well as ento-

mological studies. The renewed interests in malaria elimination intensified malaria control

activities and has led to a drastic decrease in the number of cases in some areas. This is

mainly due to vector control strategies such as ITN and IRS. The factors leading to the

onset/end of transmission in a specific area may differ from the ones causing an increase or

decrease in malaria risk. Accurate spatially explicit estimates of transmission suitability

as well as conditional number of infected represent an essential tool in the efforts towards

elimination. Thus, each explanatory variable can have an effect on either or both (i) the

probability of observing an (extra-) zero and (ii) the magnitude of the outcome. However,

most studies employing zero-inflated models do not assess model specification and include

either all or a specific subset of the potential explanatory variables in both equations.

Furthermore, spatial dependence is commonly introduced via Gaussian processes but it is

often ignored in the selection of explanatory variables, which can influence model formu-

lation. Literature on variable selection methods for both zero-inflated and geostatistical
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models is limited. To our knowledge, only Jochmann (2009) proposed a Stochastic Search

Variable selection (SSVS) approach in zero-inflated count data and Scheel et al. (2013)

defined Bayesian variable selection techniques in spatial Poisson hurdle models for areal

data.

Most applications of geostatistical models assume that the spatial correlation is a func-

tion of the distance and independent of locations, that is, the spatial process is stationary.

This hypothesis is not appropriate when malaria data are analyzed since local character-

istics influence the spatial structure differently at various locations. A review of methods

used for constructing non-stationary spatial processes can be found in Sampson (2010).

These methods range ranging from spatial deformation models (Sampson and Guttorp,

1992) to spatial processes decomposition in terms of empirical orthogonal functions (Ny-

chka et al., 2002) and process convolution models (Higdon, 1998). Smoothing and kernel-

based methods (Fuentes, 2001) model non-stationarity as spatially weighted combinations

of stationary spatial covariance functions. This approach was applied by Banerjee et al.

(2004) to model house prices in California and by Gosoniu et al. (2009) to produce a smooth

malaria risk map in West Africa. In the latter, the relation between climate factors and

malaria risk was modelled separately in each ecological zone by penalized B-splines.

The relation between malaria transmission and climate is complex and often non-linear.

However, in most applications, the impact of the predictors is modelled as a linear effect,

constant throughout the study area. However, alternative functional forms, such as piece-

wise linear or splines may be more suitable to capture the relationships between the covari-

ates and the response. Furthermore, the study area is often large and may contain different

ecological zones which may influence the effect of the predictors on the disease outcome.

In large areas the underlying spatial structure that models the geographical dependence

among neighboring locations, may vary leading to non-stationarity. Therefore, a flexible

model specification is required to enable choosing different predictors as well as different

functional forms in each zone, while modelling a non-stationary spatial process.

Repeated MISs do not include always the same clusters. In the anaylsis of temporal

trends the spatial misalignement between the different surveys has to be taken into account.

Furthermore, when assessing the effectiveness of interventions, different endemicity levels

can confound the relationship between parasitaemia and intervention coverages. Therefore,

spatially varying coefficients modelling the impact of interventions may be required.

Malaria is seasonal and age dependent, therefore it is important when modeling survey

data to account for seasonality and adjust for age. This task becomes challenging when
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analyzing historical field survey data because they were collected in different seasons and

at non-standardized and overlapping age groups of the population. Previous work on

modeling heterogeneity in geo-referenced surveys for malaria mapping (Gemperli et al.,

2006b; Gosoniu, 2008; Hay et al., 2009) were based on a 2-step procedure to (i) obtain age-

correction factors and (ii) separately fit age-adjusted prevalence estimates in a geostatistical

model, ignoring adjustment uncertainty. Moreover, the heterogeneity due to the different

survey periods was not considered.

1.3 Objectives of the thesis

The overarching goals of this thesis are to develop methods for producing accurate dis-

ease burden estimation (malaria parasitemia risk and number of infected) at high spa-

tial resolution and assessing the effectiveness of vector control interventions. The specific

methodological objectives are:

i. Comparison of different model formulations and development of variable/random effect

selection for zero-inflated data (Chapter 2 and Chapter 3);

ii. Modeling non-stationary non-gaussian geostatistical data (Chapter 4);

iii. Development of variable selection methods in non-stationary models that allow the

choice between different functional forms (Chapter 4);

iv. Modelling malaria risk using RS-derived environmental covariates at very high resolu-

tion (Chapter 5);

v. Modelling age and season heterogeneity in the estimation of prevalence from historical

survey data (Chapter 6);

vi. Development of geostatistical models for misaligned spatial data and spatially varying

effects (Chapter 7).

The above mentioned methodological development were applied on MIS and DHS data,

survey data extracted from the MARA database and confirmed incidence data provided

by the HMIS to:

I. Produce smooth maps of malaria risk (Chapter 2) and suitability index (Chapter 3)

in Senegal (MIS 2008) and select environmental predictors (Chapter 2 and Chapter

3) and intervention coverage indicators (Chapter 2);

II. Produce smooth maps of malaria risk in Mali (DHS 2010) (Chapter 4);
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III. Select environmental predictors of malaria transmission and identifying their func-

tional form in the three ecological zones in the analysis of the Malian DHS 2010

(Chapter 4);

IV. Produce spatially explicit estimates of risk and number of infected in Mozambique

(DHS 2011) assessing the impact of very high resolution data (Chapter 5);

V. Produce age and seasonality adjusted malaria risk maps from heterogeneous malaria

survey data (MARA and MIS 2006) in Zambia (Chapter 6);

VI. Estimate spatial and temporal trends, ITN and IRS coverage and effectiveness of

interventions in six countries (two rounds of MISs in Angola, Liberia, Mozambique,

Rwanda, Senegal and Tanzania) (Chapter 7).
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Abstract

The Research Center for Human Development in Dakar (CRDH) with the technical as-

sistance of ICF Macro and the National Malaria Control Programme (NMCP) conducted

in 2008/2009 the Senegal Malaria Indicator Survey (SMIS), the first nationally represen-

tative household survey collecting parasitological data and malaria-related indicators. In

this paper, we present spatially explicit parasitaemia risk estimates and number of infected

children below 5 years. Geostatistical Zero-Inflated Binomial models (ZIB) were developed

to take into account the large number of zero-prevalence survey locations (70%) in the data.

Bayesian variable selection methods were incorporated within a geostatistical framework

in order to choose the best set of environmental and climatic covariates associated with

the parasitaemia risk. Model validation confirmed that the ZIB model had a better pre-

dictive ability than the standard Binomial analogue. Markov chain Monte Carlo (MCMC)

methods were used for inference. Several insecticide treated nets (ITN) coverage indicators

were calculated to assess the effectiveness of interventions. After adjusting for climatic and

socio-economic factors, the presence of at least one ITN per every two household members

and living in urban areas reduced the odds of parasitaemia by 86% and 81% respectively.

Posterior estimates of the ORs related to the wealth index show a decreasing trend with

the quintiles. Infection odds appear to be increasing with age. The population-adjusted

prevalence ranges from 0.12% in Thillé-Boubacar to 13.1% in Dabo. Tambacounda has

the highest population-adjusted predicted prevalence (8.08%) whereas the region with the

highest estimated number of infected children under the age of 5 years is Kolda (13940).

The contemporary map and estimates of malaria burden identify the priority areas for fu-

ture control interventions and provide baseline information for monitoring and evaluation.

Zero-Inflated formulations are more appropriate in modeling sparse geostatistical survey

data, expected to arise more frequently as malaria research is focused on elimination.
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2.1 Introduction

More than two hundred million cases of malaria were estimated worldwide in 2008 and the

majority (85%) was in African countries. Malaria accounted for 850 thousand deaths in

the same year, 89% of which occurred in Africa. Over 85% of deaths were in children under

five years of age (WHO, 2009). Senegal is one of the 45 countries in Africa where malaria

is endemic and represents the leading cause of morbidity and hospital mortality (WHO,

2008). The main parasite transmitted by anopheline mosquitoes is Plasmodium falciparum

and transmission occurs seasonally in the entire country, from June to November. Rapid

diagnostic tests (RDTs) have been provided free of charge since 2007. Two years later,

almost 86% of suspected malarial fever cases were screened with an RDT (Thiam et al.,

2011). Malaria incidence in children under five decreased from 400 000 suspected cases in

2006 to 30 000 confirmed cases in 2009 (Global Partnership to Roll Back Malaria, 2010).

Routine surveillance provides some evidence that the number of malaria inpatient cases

and deaths during the same period are decreasing. However, these estimates must be

interpreted with caution since they are affected by poor reporting, introduction of RDTs

as well as changes in case definition (WHO, 2009). Furthermore, the lack of nationally

representative surveys makes these estimates unreliable. Almost all malaria surveys in

Senegal were carried out in five parts of the country: Dakar and its suburbs, specific

areas around the Senegal River, Fatick region and Niakhar province. Few studies have

been conducted in the rest of the country, particularly in the regions of Tambacounda and

Casamance.

The Senegal Malaria Indicator Survey (SMIS) is the second nationally representative

household survey focusing on malaria-related indicators and the first that collected par-

asitological data. The survey was supported by the National Malaria Control Program

(NMCP) and carried out between November 2008 and January 2009 by the Research Cen-

ter for Human Development in Dakar (CRDH) with the technical assistance of ICF Macro

and funding from the President’s Malaria Initiative (PMI). Malaria control interventions

have been implemented in the country recently. The SMIS collected information on in-

terventions such as ownership and use of insecticide treated nets (ITNs) or long lasting

impregnated nets (LLINs) as well as intermittent preventive treatment for pregnant women

(IPTp). ITN coverage, measured by ownership of at least one mosquito net per household,

reached 82% in 2010 (Global Partnership to Roll Back Malaria, 2010). In 2006, Artemisin-

based combination therapies (ACTs) were introduced and they were made freely available

in 2010. However, indoor residual spraying (IRS) has not been implemented as a routine
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intervention in the country. During the SMIS only three districts had introduced IRS as a

mean of malaria control and therefore no related information was collected in the survey.

The number of districts using IRS increased to six in 2010.

A national contemporary map of malaria distribution is an essential tool in order to

prioritize control interventions in areas with higher burden and to achieve a better resource

allocation and health management. Several maps presenting the distribution of malaria risk

in Senegal have been generated over the last few years as part of mapping efforts covering

larger areas. A West Africa malaria risk map (Gemperli et al., 2006a) was obtained using

Bayesian geostatistical models on entomological inoculation rate estimates produced by

applying the Garki transmission model (Dietz et al., 1974) on historical survey data from

the MARA database (MARA/ARMA, 1998). An updated malaria risk map for West Africa

was estimated using geostatistical models on MARA survey data considering a different

effect of environmental factors on malaria depending on the ecological zones (Gosoniu

et al., 2009). A Senegal malaria risk map was also embedded in a worldwide map based on

historical survey data and geostatistical models (Hay et al., 2009). All these efforts made

use of old and heterogeneous survey data, collected over different seasons, diagnostic tools

and overlapping age groups across locations.

Common exposures such as environmental or climatic conditions as well as socio-

economic status influence the transmission of malaria similarly in neighboring regions intro-

ducing spatial correlation. Geostatistical models including location-specific random effects

were employed to model spatial correlation as a function of the distance between sampled

locations. The data consisted of a large number of locations with zero prevalence; therefore

the commonly used Binomial distribution may underestimate the zero-prevalence proba-

bility. Zero-Inflated Binomial (ZIB) models provide a flexible way to address this problem

(Hall, 2000). ZIB models for prevalence data have not been applied before in the context of

geostatistical modelling of infectious disease data. To our knowledge, the only application

is in the modeling of sparse malaria entomological data (Amek et al., 2011). Zero-Inflated

Poisson/Negative Binomial models have been formulated for geostatistical count data (i.e.

mapping isopod nest burrows (Agarwal et al., 2002) and child HIV/TB mortality (Musenge

et al., 2011)), however applications are rather limited.

In this paper, we provide spatially explicit burden estimates of malaria in Senegal using

the SMIS data and Bayesian geostatistical Zero-Inflated Binomial models based on variable

selection methods for spatial data.
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2.2 Materials and Methods

2.2.1 Country Profile

Senegal is located in Western Africa, facing the North Atlantic Ocean between Guinea-

Bissau and Mauritania. Its borders run south of the Casamance River and along the

Senegal River respectively. The Gambia penetrates more than 320 km into the country,

from the Atlantic coast to the centre along the Gambia River which bisects Senegal’s

territory. Northern Senegal is characterized by a Sahelian ecological zone with semiarid

grasslands and acacia savannas. Malaria is unstable hypoendemic and immunity is acquired

later in life. A Sudano-Sahelian zone in the centre of the country is dominated by a flat

wooded savanna with very few prominent topographical features. Malaria is endemic in

this area and immunity is acquired around the age of ten. The southern part of Senegal

is occupied by a Sudano-Guinean ecological zone, with annual rainfall exceeding 800 mm.

Malaria is hyperendemic and immunity is acquired in the first five years of life. The urban

malaria burden is concentrated in the cities of Dakar, Rufisque, Kaolack and Saint-Louis

where the anopheles vector density is very low. The high transmission season in Senegal

occurs mainly between July and October. However, in the Senegal River delta area, there

are two annual peaks of the disease caused by river flooding: one in the rainy and the other

in the dry season.

2.2.2 Ethical statement

Participation in the survey was voluntary and written informed consent was obtained in the

local language before questionnaire administration and blood collection for parasitaemia

and anemia testing. Individuals were told about the general purpose of the survey, possible

risks and benefits of the survey and those presenting malaria parasites and/or anaemia

were treated. The survey protocol was submitted to and approved by the Ethical Review

Committee at the National Malaria Control Program and the Institutional Review Board

(IRB) of Macro International.

2.2.3 Malaria Data (SMIS 2008-2009)

A nationally representative random sample of 320 clusters and 9600 households was selected

through a stratified two-stage sampling procedure. The clusters were the census units

(CU) used by the National Agency for Statistics and Demography (ANSD) in the census

carried out in 2002 (Recensement Genéral de la Population et de l’Habitat, RGPH-2002).

However, in the three regions of Kaolack, Kolda and Saint-Louis, the health districts served
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as sampling clusters. At the first sampling stage, 320 clusters were drawn with probability

proportional to the number of households in each cluster. The sampling procedure was

stratified by the area type (urban/rural) of the clusters: 67.5% of the selected ones were

in rural areas and 32.5% in urban areas. At the second sampling stage 30 households

were selected randomly from each cluster. Rural areas are slightly overrepresented due

to over-sampling in the three regions of Kaolack, Kolda and Saint-Louis. Geographical

information is available at cluster level. As part of the final sampling, one every third

village was randomly selected and every child between 6 and 59 months of age was tested for

parasitaemia. Two tests were performed, RDT and blood smear test (Centre de Recherche

pour le Développement Humain (Sénégal) et ICF Macro, 2009). This study is based on

the results of microscopic examination since thick blood smear test is considered as the

gold standard (Wongsrichanalai et al., 2007).

2.2.4 Malaria predictors

Three sets of malaria predictors were considered in the study, namely environmental and

climatic proxies, socio-economic factors and malaria intervention measures. The envi-

ronmental and climatic variables were extracted from remote sensing sources. Decadal

rainfall data were downloaded via the Africa Data Dissemination Service (ADDS). Weekly

day/night land surface temperature (LST) and biweekly normalized difference vegetation

index (NDVI) data were obtained from Moderate Resolution Imaging Spectroradiometer

(MODIS). Permanent rivers and lakes were extracted from Health Mapper. The shortest

Euclidean distance between the centroid of each pixel and the closest water body was calcu-

lated in ArcGIS version 9.1 (ESRI; Redlands, CA, USA). Altitude data were obtained from

an interpolated digital elevation model (DEM) developed by the U.S. Geological Survey -

Earth Resources Observation and Science (USGS EROS) Data Center. The geographical

distributions of the environmental factors are displayed in Figure 2.1. Data on the rural

extents in Senegal are provided by the Global Rural-Urban Mapping Project (GRUMP).

According to the UN definition for Senegal, agglomerations with more than 10 000 inhabi-

tants were considered as urban (UN, 2006). The above data were available at 1km2 spatial

resolution, with the exception of rainfall which has a resolution of 8km2.

Socioeconomic disparities were measured by a wealth index, included in the SMIS data

and calculated by a weighted sum of household assets. The weights were estimated through

principal components analysis (Rutstein and Johnson, 2011). ITN related information in

the SMIS was used to calculate the following ITN coverage indicators (Thwing et al., 2011;
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Kilian et al., 2010): i) a binary variable reporting whether the child has a bed net for

sleeping; ii) the proportion of children under the age of 5 years reported to have slept

under an ITN the night before the survey visit; iii) the total number of nets per household

(irrespective of the number of household members); iv) a binary indicator representing

the availability of at least one ITN per every two household members and v) at least one

ITN per every two children under the age of 5 years in the household. Human population

data estimates for the year 2010 were obtained from the Gridded Population of the World

version 3 (GPWv3) database at 1km2 spatial resolution. These data were used to convert

spatially explicit parasitaemia risk estimates into number of infected children under the

age of 5 years. The total number of children under 5 years of age was obtained from the

International Data Base of the U.S. Census Bureau, Population Division for the year 2010.

2.2.5 Bayesian geostatistical modeling

Let Yi and Ni be the number of infected with malaria parasites and the number of screened

children under the age of 5 years at location si (i.e. cluster centroid) respectively. Yi is

typically assumed to arise from a Binomial distribution, Yi ∼ Bin(Ni, pi) where pi indicates

the probability of parasitaemia at si. However, in the presence of excessive number of zeros,

a Binomial model may be inadequate to estimate the zero-prevalence probability and to

identify relevant covariates related to the outcome. To take into account the sparsity of the

data, a Zero-Inflated Binomial (ZIB) model Yi ∼ ZIB(Ni, pi, θi) was fitted and compared

to the standard Binomial analogue. A ZIB model assumes two sources of zeros: θi%

(mixing probabilities) of the zeros are structural, not random and the remaining (1− θi)%
arise with a frequency defined by a Binomial distribution, see equation (2.1)

Yi | pi, θi ∼

 0

Bin(Ni, pi)

with probability θi

with probability (1− θi)
(2.1)

In the above formulation, pi does not have a direct interpretation of parasitaemia risk

since it is influenced by the proportion of structural zeros.

The relation between pi and the vector of k associated predictors

Xi = (Xi1, Xi2, ..., Xik)
T observed at location si is modeled via the equation logit(pi) =

Xiβ + ωi + φi, where βi = (β1, β2, ..., βk) is the regression coefficient vector, ωi and φi are

location-dependent random effects. Spatial dependence is introduced by assuming that the

random effects φ = (φ1, φ2, ..., φn) are distributed according to a MVN distribution with
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mean 0 and covariance matrix Σ where each element σij is defined by an exponential para-

metric function of the distance dij between two locations sj and si, i.e. σij = σ2
φexp(−ρdij).

The parameter σ2
φ represents the spatial variation and ρ is the parameter controlling the

rate of correlation decay with increasing distance. In the case of exponential correlation

function, 3/ρ can be used to calculate the distance above which spatial correlation is neg-

ligible, known as range. Any remaining non-spatial variation is estimated by the random

effects ωi, assumed independent and normally distributed with mean 0 and variance σ2
ω.

Bayesian variable selection approaches were employed using the above geostatistical

models to choose the best set of predictors. In particular, three variable selection methods,

namely Gibbs variable selection (GVS) by Dellaportas et al. (2002), Stochastic Search

Variable Selection (SSVS) by George and McCulloch (1993) and the variable selection

sampler of Kuo and Mallick (1998) (KM) were compared. The best set of covariates was

indicated by the model with the highest posterior probability. Details of the geostatistical

variable selection methods are given in the Appendix.

The model includes over 330 parameters. To enable model fit and prediction a Bayesian

formulation and MCMC estimation was adopted. To complete model specification, prior

distributions were assigned to the parameters. An inverse-gamma prior was assumed for

the variance and a gamma distribution for the spatial decay parameter ρ. The priors for

the regression coefficients were non-informative Gaussian distributions with mean 0 and

variance 100. Covariates were standardized in order to acquire better correlation properties

and reduce MCMC computational time (Gelfand et al., 1995).

Bayesian kriging was employed to predict the parasitaemia risk at unsampled locations

and produce a parasitaemia risk map at high spatial resolution (Diggle et al., 1998). A

regular grid of 4 km2 resolution covering the whole country was created, resulting in around

60 000 pixels. Predictions were based on a geostatistical model using only environmen-

tal/climatic factors since data on malaria interventions or socio-economic status are not

available at high resolution scale for the whole country. Therefore, a two stage geostatisti-

cal variable selection approach was applied. In the first stage, only climatic predictors were

included to identify the best prediction model. In the second stage, geostatistical variable

selection was carried out to select among the five ITN coverage indicators defined above.

The models were adjusted for age, wealth index and the climatic predictors determined

during the first stage.

The predictive model was validated on a test subset of the data. In particular, a ran-

domly selected sample of 269 locations (85% of the data locations) was used as a training
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set for model fit. The predictive performance of the model was assessed by calculating

the proportion of observed prevalence data at the remaining 15% of (test) locations, cor-

rectly estimated within Highest Posterior Density Intervals (HPDI) of probability coverage

ranging from 50 to 100% (Gosoniu et al., 2006). The above validation procedure was

also used to compare the ZIB model with its Binomial analogue. The number of malaria

infected children under five years of age was estimated at pixel level by multiplying the

geostatistical model-based risk estimates with the total number of children under the age

of 5 years provided by the International Data Base of the U.S. Census Bureau, Population

Division for the year 2010. The previous values were added to calculate the total infected

children under the age of 5 years at district level. Subsequently, dividing by the number

of children under the age of 5 years living in the district, population-adjusted estimates of

parasitaemia risk were obtained.

Fortran 95 (Compaq Visual Fortran Professional 6.6.0) and standard numerical vari-

ables (NAG, The Numerical Algorithms Group Ltd.) were used to implement the MCMC

code. OpenBUGS (Lunn et al., 2009) was also employed in the model fit.

2.3 Results

A total of 4138 children between 6 and 59 months of age from 320 clusters were tested

for parasitaemia with both RDT and blood smear test. The overall observed malaria

prevalence was 6.74%. The number of children under the age of 5 years tested with both

Rapid Diagnostic Test and blood smear test was 3960. Almost 12.05% of the children

under the age of 5 years tested with RDT were found positives. The percentage of children

under the age of 5 years that were positives to both tests was 5.44%. Due to the observed

discordance between the diagnostic tools, the standard microscopy test was considered in

the analysis (Wongsrichanalai et al., 2007).

A large number of survey locations (around 70%) had zero prevalence. No children

under the age of 5 years were tested in two clusters of Saint-Louis region and one cluster in

Kaolack, thus reducing the actual number of GPS coordinates to 317. Figure 2.2 shows that

the lowest malaria prevalence in the country was recorded in Saint-Louis (0%), followed

by the regions of Dakar (1.72%) and Louga (1.43%).

Posterior model probabilities obtained from MCMC runs of 100 000 iterations using

the GVS are presented in Table 2.1. Similar results were obtained with the other two

variable selection methods, SSVS and KM. As shown in the table, the set of covariates

that defined the Binomial as well as the ZIB geostatistical models with the highest posterior
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Figure 2.1: Environmental and climatic factors. Distance to water bodies, Rainfall, NDVI
(Normalized Differenced Vegetation Index), Night and Day LST (Land Surface Temperature)
and altitude at 4 km2 resolution in Senegal. Regional boundaries are overlaid.

Table 2.1: Posterior model probabilities obtained using Gibbs Variable Selection (First
stage). The shaded line indicates the selected model used to predict the malaria risk.

Model Environmental variables Binomial ZIB

1. Night LST, NDVI 2.46% 2.52%

2.
Night LST, NDVI, area
type

72.21% 74.28%

3.
Night LST, Rainfall, NDVI,
area type

12.13% 13.23%

4. others 13.2% 9.97%



2.3 Results 29

Figure 2.2: Prevalence at survey locations. Prevalence reported in the 317 locations of the
SMIS 2008. Regional boundaries are overlaid.

probabilities consisted of night LST, NDVI and area type (urban/rural). The predictive

performance of the selected models is shown in Figure 2.3. The proportion of test locations

falling into the 50-95% HPDIs was constantly higher under the ZIB model. Furthermore,

the latter model estimated narrower HPDIs. Based on the above results, the ZIB was

adopted to predict the parasitaemia risk at high spatial resolution and to assess the effects

of interventions on the infection risk.

Geostatistical ZIB model parameter estimates are given in Table 2.3. Model I includes

only climatic covariates. The posterior estimate of the OR indicates a positive association

between NDVI, night LST and parasitaemia, however the corresponding 95% credible

intervals include one. Living in urban areas reduces the parasitaemia odds by 81% (95%

BCI: 55%-93%). Raw data summaries estimate a parasitaemia prevalence of 1.3% in urban

compared to the 8.47% in rural areas. The range parameter suggests that spatial correlation

is present up to a distance of 2.4° which is equivalent to 265km (1°=111.12km). The

spatial variance (σ2
φ = 2.49) was around 5 times higher than the non-spatial one (σ2

ω =

0.52) indicating high geographical variation. Model based predictions, obtained through

Bayesian kriging over a grid of around 60 000 pixels of 2km x 2km spatial resolution are

depicted in Figure 2.4. The plotted values correspond to the medians of the pixel-specific
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Figure 2.3: Model comparison and validation. Percentage of test locations with malaria
prevalence falling in the highest posterior density intervals (HPDI) predicted from Binomial
and Zero-Inflated Binomial models (bars). Lines indicate the corresponding HPDI length.

posterior predictive distributions. Low values of parasitaemia prevalence are concentrated

in the northern Senegal, particularly in the region of Saint-Louis, Louga and Matam.

Malaria risk increases in some areas of central Senegal and reaches the highest values in

the southern Kolda and eastern Tambacounda where the predicted risk was 10.66% and

9.45%, respectively. Another high-risk area is located in the centre of Kaolak region with

an estimated prevalence of 5.6%.

The predicted number of malaria infected children under the age of 5 years is displayed

in Figure 2.5 and the estimates of population-adjusted prevalence obtained at the smallest

administrative level (arrondissement) are summarized in Table 2.4. Kriging enabled the

estimation of parasitaemia prevalence in areas where no survey locations were selected by

the sampling procedure. For instance, the population-adjusted prevalence is 0.61% in the

arrondissement of Barkedji, Louga region and 9.54% in Keniaba, Tambacounda region.

The total number of infected children under the age of 5 years in the country below the

age of five was estimated to be around 48 thousand. The map of the estimated number

of children under the age of 5 years infected with malaria and the predicted parasitaemia

prevalence show very different patterns, because of the population density, higher in the

urban regions of Dakar and Saint-Louis.

Geostatistical variable selection among the five different ITN coverage indicators (Table

2.2) showed that having at least one available ITN per every two household members was

most related with the parasitaemia risk after adjusting for climatic/environmental factors,

age and wealth index. The posterior probability of the model was around 34% indicating
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Figure 2.4: Predicted parasitaemia risk map. Predicted parasitaemia risk in children less
than 5 years of age at 4 km2 resolution in Senegal. Regional boundaries are overlaid.

Figure 2.5: Estimated number of malaria infected children <5 years. The smooth map
depicts the estimated number of malaria infected children less than 5 years of age at 4 km2

resolution in Senegal. Regional boundaries are overlaid.
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Table 2.2: Posterior model probabilities obtained using Gibbs Variable Selection (Second
stage). The shaded line indicates the selected ITN coverage indicator.

Model ITN coverage indicators Posterior Probabilities

1. None 25.20%

2.
Ownership of 1 ITN per 2
household members

34.00%

3.

Child has ITN for sleeping,
ownership of 1 ITN per ev-
ery 2 household members,
n. of ITNs per household

7.80%

4. others 33.0%

that the model was chosen 34% of the times among the 25 = 32 possible models including

all combinations of the five coverage indicators. Estimates of the posterior distribution

of the parameters are given in Table 2.3 (Model II). Living in a household with at least

one ITN per every two members was found to have a protective effect on parasitaemia,

reducing the odds by 86% (95% BCI: 30%-97%). This result was also seen in the raw

data summaries as shown by the second column of Table 2.3. The observed parasitaemia

risk in the two categories, i.e. “less than one ITN” and “at least one ITN per every two

members” was 6.84% and 1.41% respectively. Posterior estimates of the ORs related to

the wealth index show a decreasing trend with the quintiles. The second quintile (very

poor) had an OR of 0.77 (95% BCI: 0.57-1.03) whereas the last one (least poor) was 0.09,

(95% BCI: 0.01-0.26). A similar pattern was presented in the prevalence calculated from

the raw data. The highest (13.75%) and lowest (0.65%) infection risk were observed in the

most and least poor group, respectively. Infection odds appear to be increasing with age.

For instance, the OR is 1.2 (95% BCI: 0.70-2.43) in children 1-2 years old and 2.77, (95%

BCI: 1.44-5.21) in children 4-5 years old. Observed parasitaemia prevalence was the lowest

in infants (3%) reaching 8.11% in children 4-5 years old.
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Table 2.3: Association of parasitaemia risk with environmental/climatic factors, socio-
economic status and malaria interventions resulting from raw data summaries and geostatis-
tical Zero-Inflated Binomial models.

Variable Raw Data Geostatistical model Ia Geostatistical model IIb

Prevalence OR 95% BCIc OR 95% BCIc

Night LST 1.16 (0.66, 1.86) 0.83 (0.53, 1.26)
NDVI 1.48 (0.88, 2.48) 0.91 (0.61, 1.83)
Area type

Rural 8.47% 1 1

Urban 1.30% 0.19 (0.07, 0.45) 0.43 (0.16, 1.06)

Wealth Indexd

Most poor 13.75% 1

Very poor 6.51% 0.77 (0.57, 1.03)
Poor 1.51% 0.22 (0.08, 0.51)
Less poor 0.96% 0.12 (0.05, 0.41)
Least poor 0.65% 0.09 (0.01, 0.26)

Age

0-1 3% 1

1-2 4.54% 1.20 (0.70, 2.43)
2-3 8.07% 2.93 (1.62, 5.33)
3-4 7.95% 2.96 (1.66, 5.74)
4-5 8.11% 2.77 (1.44, 5.21)

ITNse

< 1 6.84% 1
≥ 1 1.41% 0.14 (0.03, 0.7)

Spatial param.
Post.
Median

95% CIc
Post.
Median

95% CIc

σ2
φ 2.49 (1.07, 6.41) 3.04 (2.22, 4.02)
σ2
ω 0.52 (0.25, 1.03) 0.35 (0.15, 0.73)

rangef 2.40 (1.11, 2.98) 1.689 (0.003, 2.93)

Mix. prob.

θ 0.29 (0.19, 0.39) 0.35 (0.24, 0.46)

aModel I includes only environmental/climatic factors. bModel II includes ITN coverage, children’s age
and wealth index. cBayesian Credible intervals. dHousehold wealth index eNumber of available ITNs per
every two household members. fThe range parameter (degrees), defined as 3/ρ indicates the distance
above which the spatial correlation becomes negligible.
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0%
18

0.08%
S

a
in

t-L
o
u

is
P

o
d

o
r

T
h

illé-B
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èn
e

0%
72

0.23%
T

h
iès

T
iva

ou
an

e
P

am
b

al
27.78%

34
0.43%

Z
ig

u
in

ch
o
r

B
ig

n
on

a
S

in
d

ian
6.25%

102
0.88%

Z
ig

u
in

ch
o
r

B
ig

n
on

a
T

en
d

ou
ck

0%
52

0.55%
Z

ig
u

in
ch

o
r

B
ig

n
on

a
T

en
gh

ory
3.33%

49
0.36%

Z
ig

u
in

ch
o
r

O
u

ssou
y
e

L
ou

d
ia-O

u
oloff

0%
8

0.29%
Z

ig
u

in
ch

o
r

Z
ig

u
in

ch
or

N
iagu

is
–

6
0.34%

Z
ig

u
in

ch
o
r

Z
ig

u
in

ch
or

N
iassia

1.25%
87

0.2%
Z

ig
u

in
ch

o
r

B
ig

n
on

a
D

iou
lou

lou
6.25%

30
0.43%

aO
b

served
P

reva
len

ce.
bE

stim
a
ted

n
u

m
b

er
of

In
fected

ch
ild

ren
u

n
d

er
5

yea
rs

o
f

a
g
e. cP

o
p

u
la

tion
-ad

ju
sted

estim
ated

p
revalen

ce.



2.4 Discussion 35

2.4 Discussion

This study estimated the number of infected children under the age of 5 years at different

geographical scales in Senegal and produced the first parasitaemia risk map in the country

using contemporary data collected under the nationally representative malaria survey of

2008/2009. Geostatistical Zero-Inflated Binomial models were developed and Bayesian

variable selection methods for spatially correlated data were employed to build a predictive

model and assess the effectiveness of the ITN intervention adjusting for climatic and socio-

economic confounders.

A large number of zeros was observed when modeling the number of infected children

under the age of 5 years, probably due to the fact that the survey was carried out at the

beginning of the dry season, when transmission starts to decrease. To address the issue of

sparsity a ZIB model was derived. Model validation revealed that the ZIB model had higher

predictive ability than the Binomial analogue suggesting that, when a large number of zeros

occurs in the data, a ZIB model should be considered. Since malaria research is focused

on elimination and eradication of the disease, it is expected that forthcoming surveys will

include a large number of locations with zero prevalence and the ZIB models would provide

a suitable alternative to the standard Binomial ones for geostatistical modeling.

Geostatistical variable selection is an important topic in malaria mapping. The predic-

tive ability of a model depends on the covariates included in the multivariate regression

setting. Modeling approaches in malaria mapping treat selection of predictors separately

than the geostatistical model fit. Variable selection is often based on regression models

that ignore spatial correlation, leading to wrong estimates of covariates effects and their

significance. Geostatistical variable selection not only identifies the best set of predictors

but builds parsimonious models with the best predictive ability (Gosoniu and Vounatsou,

2011). In addition, it can be used to avoid overfitting due to the inclusion of unnecessary

predictors or random effects. In this work, we have employed three Bayesian variable se-

lection methods within a geostatistical model formulation. The climatic model with the

highest posterior probability selected by the three methods included the following combina-

tion of covariates: night LST, NDVI and area type. Altitude in Senegal presents very little

variation throughout the country therefore it was not considered as a potential predictor

of malaria transmission in the variable selection procedure.

As mentioned above, maps showing the distribution of malaria risk in Senegal can be

found in Gemperli et al. (2006a); Gosoniu et al. (2009) and Hay et al. (2009) as part

of efforts in mapping malaria risk at regional and continental level using historical data.
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Nevertheless, compilations of historical data obtained from surveys, heterogeneous in the

age groups involved and the seasons considered, require methods for standardizing risk

estimates into a common scale for mapping purposes. Different statistical methods have

been employed; the work by Gemperli and colleagues (Gemperli et al., 2006a), for instance,

made use of the Garki transmission model to take into account the heterogeneity in the

surveys. The model developed by Pull and Grab (1974) was instead employed by the

MAP project (Hay et al., 2009), standardizing age-groups to produce a world map of

Plasmodium falciparum malaria endemicity. The parasitaemia risk map presented in this

paper, has been estimated from a contemporary survey and shows similar patterns to the

one obtained from previous efforts (Gemperli et al., 2006a), especially in the Southern

and Eastern part of Senegal, at the border with Mali where the risk is higher. However,

Gemperli et al. (2006a) predicted a lower risk in the Central part of the country and higher

in the urban areas of Dakar and Saint-Louis, as well as throughout the Sahelian region. In

terms of absolute values, those results are uniformly higher than the current ones, due to

the fact that the SMIS was carried out at the beginning of the low transmission season.

The predicted pattern of malaria produced by the more recent work by Gosoniu et al.

(2009) is more consistent with the map we generated, however the absolute values are still

far from our estimates. The map of Senegal from the MAP project (Hay et al., 2009) does

not show any relevant variations or geographical differences in the intensity of malaria risk

throughout the country. For logistic reasons the survey took place at the start of the dry

season, thus projections from our model are likely to underestimate the burden during the

highest transmission season.

Furthermore, the differences between observed and population adjusted risk estimates

are mainly due to low prevalence observed in highly populated areas. The urban area of

Dakar, for example, is the most populated one, and the majority of surveys were carried

out in that area although the parasitaemia risk is very low.

Geostatistical variable selection enabled the assessment of the effect on parastaemia risk

of different ITN coverage indicators after taking into account climatic factors and socio-

economic disparities. Recent work by Thwing et al. (2011) and Kilian et al. (2010) proposed

a number of ITN coverage measures related to the ownership and use of nets at individual

or household level. Five indicators have been assessed in the study and only one suggested

a reduction in malaria risk with increasing coverage. This may explain the lack of relation

between ITN coverage and malaria risk in similar analyses of MIS data. The Senegal data

revealed that the presence of at least one ITN per every two household members reduced
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the odds of parasitaemia by 86%. In a recent analysis in Tanzania (Gosoniu et al., 2012),

ownership of at least one ITN was the only indicator assessed, showing no protective effect.

On the other hand, the analysis of Zambia MIS 2005 (Riedel et al., 2010) measured ITN

coverage by the ownership of at least one bednet per household and found a preventive

effect on malaria risk. Gosoniu et al. (2010) reported a reduction in risk for areas having at

least 0.2 ITNs per person, a measure similar to the one presented in this paper. Different

indicators of ITN coverage were considered in a spatial analysis of the Liberia MIS data

(Gosoniu and Vounatsou, 2011), however none of them was associated with a reduction in

the infection risk. The model does not include some known risk factors for malaria such

as maternal education, proximity to health services as this information was not readily

available from the MIS data. It is however interesting to collect this data and include

them in future MIS analyses aiming to assess ITN effects on parasitaemia.

This study found that the malaria risk in children less than five years old increases with

age. Infants had the lowest risk. The risk rises especially after the age of two and levels

off in older children. Similar results were observed in other low endemic settings.

All the results presented in the paper are based on the estimation of parasitaemia

prevalence using the blood smear test. Malaria prevalence estimated using the RTDs was

almost twice as high as the one based on the microscopy results. This confirms earlier

findings suggesting that RDTs might present a large number of false positives when used

in field conditions probably due to high temperatures during storage and transport as well

as poor training on RDTs use.

In the model formulation, a linear relation between the parasitaemia odds and the

environmental covariates was assumed. Geostatistical variable selection could be used

to determine the best functional form that describes the above relation. Furthermore, a

stationary geostatistical model was fitted assuming that spatial correlation depends only

on the distance between locations irrespective of the locations themselves. This assumption

may not be true when there are unobserved factors, such as health system performance,

that vary across the country. The relation between climatic predictors and malaria may

differ as well among the ecological zones.

Future control interventions can be planned and implemented by decision-makers ac-

cording to the priority of the areas. A better resource allocation and health management

can be achieved by monitoring the impact of prevention and control activities. The pro-

duced map and estimates generated in this study can be considered as baseline for com-

parisons with future national surveys to evaluate the effectiveness and progress of on-going



38 Chapter 2. Estimating the burden of malaria in Senegal

intervention programmes as well as the changes of the parasitaemia risk over space and

time.

2.5 Appendix

Bayesian Geostatistical variable selection methods

Given a vector of potential regressors X = (X1,X2, ...,Xk)
T , we aim at selecting the

”best” subset X∗ = (X∗1,X
∗
2, ...,X

∗
q)
T q < k to model the standard Binomial component

pi of the Zero-Inflated model. To this purpose, the geostatistical model was modified to

let the MCMC scheme choose among the 2k models: an auxiliary indicator variable gi was

introduced, where gi = 1 indicates presence and gi = 0 indicates absence of covariate j in

the model. The prior that was used for the indicator gj is gj ∼ Bernoulli(1/2), i.e. the

probability of inclusion in the model for each variable is 0.5.

The three different formulations of Bayesian Variable selection strategies in Geostatis-

tical models implemented in the work are described and compared below.

Gibbs Variable Selection

The method relies on a linear predictor defined by the equation

logit(pi) =
k∑
j=1

gjXijβj + ωi + φi (2.2)

where gj is the indicator defined in the previous paragraph. A mixture of independent

normal distributions βj ∼ N(0, σ2
j ) + (1 − gj)N(µj, τ

2
j ), j = 1, 2, ..., k was used as a prior

for the coefficients where σ2
j is the prior variance when the j-th term is included in the

model and µj and τ 2
j re the mean and the variance respectively used when the j-th term

is not included in the model (pseudoprior).

Kuo & Mallick

The most straightforward method for variable selection has been proposed by Kuo and

Mallick (1998). The method assumes that the indicators and the covariates effects are

a priori independent, i.e. f(βj, gj) = f(βj)f(gj), j = 1, 2, ..., k. It is easy to implement

and requires only the specification of the prior distribution for the regression coefficients,

usually assumed to be non informative Gaussian . The relation between the predictors and

the outcome is given by equation (2.2), as for the Gibbs Variable Selection method.
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Stochastic Search Variable Selection

The SSVS method is slightly different since the parameter vector retains its full dimension

k of all potential covariates under all models. It assumes a prior distribution for the coeffi-

cients composed by a mixture of Normal distribution βj ∼ N(0, σ2
j ) + (1− gj)N(0, l−2

j τ 2
j ),

j = 1, 2, ..., k where lj is specified in order to ensure that the coefficient βj is close to 0

when gj = 0, i.e. the j-th variable is not included in the model. In particular, the linear

predictor is given by equation logit(pi) =
∑k

j=1 Xijβj + ωi + φi.

For a comprehensive review of these methods, see O’Hara and Sillanpää (2009) while

a simplified version for practitioners could be found in Gosoniu and Vounatsou (2011).
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Abstract

This paper explores different modelling specifications of zero-altered models and suggests

model formulations in a geostatistical setting. In particular, the work addresses the prob-

lem of selecting variables and assessing the need of incorporating a spatial structure to be

included in the modelling of the mixing probability and the non-degenerate distribution.

Specific prior distributions for spatial process selection based on non-zero random effects

variances are proposed and analyzed. The methods are illustrated on simulated and real

data. The application uses data from the national malaria survey in Senegal which re-

ported zero prevalence at over 70% of sampled locations. The median probability models

are compared in terms of their predictive ability. The proposed approach allows the simul-

taneous estimation of suitability of malaria transmission and of conditional risk and it can

be applied to other environmentally-driven diseases.
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3.1 Introduction

Survey data with excess zeros arise frequently in many disciplines. A natural approach to

model such data is to put an additional point mass at zero; the resulting zero-modified dis-

tributions include zero-inflated and hurdle models. Zero-inflated models (Lambert, 1992)

are defined as two-component mixtures of a point mass at zero with a standard distribu-

tion allowing two types of zeros: ”structural” that arise from the point mass at zero and

”chance” zeros modelled by the standard distribution. Hurdle models combine a point

mass at zero with a truncated distribution for the non zero values (Mullahy, 1986) treating

zeros and non-zeros separately.

Increasingly, data collected in surveys are geo-referenced. This additional information

allows the incorporation of spatial dependence in regression models and the study of rel-

evant geographical patterns. Agarwal et al. (2002) introduced spatial random effects to

model areal count data with excess zeros in a zero-inflated Poisson model. Rathbun and

Fei (2006) proposed a zero-inflated Poisson model in which the excess zeros are generated

by a spatial probit model. Fernandes et al. (2009) modeled zero-inflated spatio-temporal

processes for both continuous and discrete responses. Finley et al. (2011) formulated a

geostatistical hurdle model for continuous responses applied to forest variables and Recta

et al. (2012) illustrated a hurdle geostatistical model for count data. Following a similar

approach, Neelon et al. (2013) developed a hurdle Poisson model for areal count data.

Amek et al. (2011), Musenge et al. (2011), Giardina et al. (2012) and Kasasa et al. (2013)

showed applications of geostatistical zero-inflated Binomial and Poisson models to the epi-

demiology of HIV/AIDS, Tuberculosis and Malaria.

The probability of zeros (or excess zeros) is commonly modeled via an appropriate

link function (e.g. logit or probit). A (generalized) linear model with a suitable link

function is used to model the rest of the data. Thus, each explanatory variable can have

an effect on either or both (i) the probability of observing an (extra-) zero and (ii) the

magnitude of the outcome. However, most studies employing zero-inflated models do

not assess model specification and include either all or a specific subset of the potential

explanatory variables in both equations. Furthermore, spatial dependence is commonly

introduced via Gaussian processes but it is often ignored in the selection of explanatory

variables, which can influence model formulation.

Literature on variable selection methods for both zero-inflated and geostatistical models

is limited. To our knowledge, only Jochmann (2009) proposed a Stochastic Search Variable

selection (SSVS) approach in zero-inflated count data and Scheel et al. (2013) defined
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Bayesian variable selection techniques in spatial Poisson hurdle models for areal data.

Bayesian variable selection methods for geostatistical data with application to malaria

and neglected tropical diseases are presented in Giardina et al. (2012), Chammartin et al.

(2013a,b,c) and Giardina et al. (2013b).

In general, zero-inflated models for unbounded count data have been widely studied

while less has been done on zero-inflated Binomial models.

The data that motivated this work are frequently observed in the field of malaria

epidemiology: sparse geostatistical data are likely to arise from parasitological surveys

as well as entomological studies. The renewed interests in malaria elimination intensified

malaria control activities and has led to a drastic decrease in the number of cases in some

areas. This is mainly due to vector control strategies such as Insecticide Treated Nets and

Indoor Residual Spraying. Unfortunately, accurate measures of intervention coverages and

use are not available (and sometimes not reliable). However, they are likely to be spatially

structured due to the distribution process or socio-economic factors. Their impact on

disease reduction or elimination varies also in space, due to the so-called “community

effect”, although difficult to quantify. Furthermore, the factors leading to the onset/end of

transmission in a specific area may differ from the ones causing an increase or decrease in

malaria risk. Identifying risk factors for a disease provides guidance for policy making and

prevention programming. Accurate spatially explicit estimates of transmission suitability

as well as conditional number of infected represent an essential tool in the efforts towards

elimination.

In this paper, we explore different specifications of zero-altered models for geostatistical

data and propose Bayesian variable selection methods to allow the choice of both fixed and

random effects in modelling the probability of (extra-) zeros as well as the rest of the

data. Model performance was assessed by evaluating the predictive ability of the median

probability model (Barbieri and Berger, 2004). The proposed methodology is illustrated

through simulated datasets and applied to the analysis of the National Malaria survey

in Senegal of 2008 which showed no parasitaemia in over 70% of the observed locations

(Giardina et al., 2012).
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3.2 Methods

3.2.1 Geostatistical Zero-Inflated Binomial Model

Geo-referenced prevalence survey data Y (s) are commonly modelled via a Binomial dis-

tribution with parameter N(s) and θ(s) where s = 1, . . . , n indexes locations s ∈ S ⊂ R2

, N(s) indicates the total number of observations and θ(s) the probability of success at

location s . However, in some cases the observed data results in a larger number of zeros

than expected under the Binomial distributional assumptions. Two alternative specifica-

tions of discrete mixture models have been proposed for zero-altered data: zero-inflated

and hurdle models. The zero-inflated distribution is defined as a two-component mixture

model combining a standard non degenerate distribution with a point mass at zero, i.e.:

Y (s)|p(s), θ(s), N(s) ∼

{
0 with probability p(s)

π(y(s)|θ(s), N(s)) with probability 1− p(s)

The likelihood can be written as:

f(y(s)|p(s), θ(s), N(s)) =

{
p(s) + (1− p(s))π(0|θ(s), N(s)), y(s) = 0

(1− p(s))π(k|θ(s), N(s)), y(s) = k, k = 1, . . . , N(s)

(3.1)

where π(·) is the Binomial distribution and p(·), 0 ≤ p(·) ≤ 1 is the mixing probability. In

practice, zero-inflated models allow two sources of zeros: one is the implicit Bernoulli trial

associated to the parameter p(s) and the other is through the Binomial distribution.

The hurdle Binomial model is a two-component mixture model consisting of a point

mass at zero and a truncated Binomial for the nonzero observations:

f(y(s)|p∗(s), θ(s)) =

{
p∗(s), y(s) = 0

(1− p∗(s))π∗(k|θ(s)), y(s) = k, k = 1, . . . , N(s)
(3.2)

where π∗ denotes the truncated Binomial distribution (i.e. P (y(s) = k|k ≥ 0, θ(s)) =
(N(s)

k )θ(s)k(1−θ(s))N(s)−k

1−(1−θ(s))N(s) ). Hurdle models can always be re-written as zero-inflated models

replacing p∗(s) = p(s) + (1− p(s))(1− θ(s))N(s) in Equations (3.1) and (3.2).
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In geostatistical models is common to introduce covariates and spatial random effects

through appropriate link functions:

f(p(s)) = Z′(s)α+ ω1(s)

g(θ(s)) = X′(s)β + ω2(s)
(3.3)

where f and g are commonly taken as the logit link function, X = (Xi, . . . , Xm) and

Z = (Zi, . . . , Zn) are collection of predictors linked to the outcome throught the vector of

coefficients β = (β1, β2, . . . βm) and α = (α1, α2, . . . αn), respectively. In equation (3.3),

Ω1 = {ω1(s)}s∈S is a stationary Gaussian spatial processes with mean 0 and variance-

covariance matrix Σ1 = σ2
1R(||s− s′||; ρ1, ν) and R(·) is a valid correlation function of the

Euclidean distance ||s − s′|| between sites s and s′, smoothing parameter ν, and ρ1 > 0

that controls the rate of correlation decay between observations as distance increases. The

Matérn family describes most of the correlation functions used in geostatistical models:

R(||s− s′||; ρ, ν) =
1

2ν−1Γ(ν)
(ρ||s− s′||)νKν(ρ||s− s′||) (3.4)

where Kν is the modified Bessel function.

The distribution of Ω2 = {ω2(s)}s∈S is defined conditionally on Ω1, i.e., Ω2|Ω1 ∼
N(kΩ1,Σ2) where Σ2 can be written as σ2

2R(||s−s′||; ρ2, ν) with a different decay parameter

ρ2. The conditional speficification of spatial processes distributions as described above, cor-

responds to the definition of a linear model of coregionalization, as shown by Schmidt and

Gelfand (2003). In fact, the bivariate process Ω = (Ω1,Ω2) can be written as Ω(s) = Ψv(s)

where Ψ =

(
σ1 0

kσ1 σ2

)
and v1(s) and v2(s) are mean 0 spatial processes with variance 1

and correlation functions R(||s−s′||; ρ1, ν) and R(||s−s′||; ρ2, ν), respectively. The result-

ing covariance structure for the bivariate process Ω is ΣΩ =
∑2

j=1 R(||s − s′||; ρj, ν)⊗ Tj
where Tj = ψjψ

′
j and ψj represents the j-th column vector of matrix Ψ. Since T = ΨΨ′ is

a covariance matrix, a natural approach would be to assign Wishart prior to it. However,

the equivalence of the conditional specification allows to work with the parametrization

(k, σ1, σ2) with a Normal prior on k. Computational advantages as well as limitations of the

conditional approach can be found in Gelfand et al. (2004b). Modelling a bivariate spatial

process induces correlation between the Bernoulli and (truncated) Binomial components

of the model. As shown by Neelon et al. (2013), addressing this source of correlation can

improve inferences on model parameters.
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A common approach in fitting the above models is to consider X = Z, i.e. to include

the same set of covariates for both p = {p(s)} ∀s ∈ S and θ = {θ(s)} that may cause

problems due to over-fitting of the model. Another approach is to assume a constant

p(·) across the space, i.e. p(s) = const ∀s ∈ S and perform a regression on θ only.

However, each explanatory variable can have an effect on either or both (i) the probability

of observing a zero (or extra-zero) and (ii) the magnitude of the outcome. Therefore,

we propose a Bayesian variable selection method that allows each regressor to be either

included in or excluded from each of the two equations.

We assume a Normal mixture of inverse gamma distributions as priors for the SSVS

scheme. We build the auxiliary variables γi and δi to indicate presence or absence of the

covariate Xi in the first and second equation of (3.3) respectively and assign a Normal

prior to the coefficients βi and αi, that is

βi|γi, τ 2 ∼ N(0, γiτ
2) and αi|δi, τ 2 ∼ N(0, δiτ

2) (3.5)

where τ 2|a, b ∼ Γ−1(aτ , bτ ). In particular, the indicators γi and δi are specified as follows:

γi|q ∼ qI1(γi) + (1− q)Iv0(γi) and δi|q ∼ qI1(δi) + (1− q)Iv0(δi)

where v0 is some very small positive constant and the prior probability of inclusion for

variable Xi is q ∼ Beta(aq, bq). This prior specification defines a continuous bimodal

distribution on the hypervariance of βi and αi with a spike at v0, that shrinks the coefficients

that are not relevant for the model, and a right continuous tail (slab) to identify non-zero

parameters. In particular, if γi = 1 the covariate effect βi is estimated by assuming a

Normal prior distribution with mean 0 and variance τ 2, otherwise γi = v0 and βi is shrunk

towards 0, therefore the predictor Xi is not included in the second term of the regression.

The two spatial processes represent additional sources of heterogeneity in the data. We

allow the model to choose the inclusion/exclusion of the geostatistical random effects by

testing the associated variance components. In the proposed variable selection strategy,

setting σi = 0 is equivalent to dropping the i-th spatial random effect from the model.

Following the approach of Wagner and Duller (2012) we can apply data augmentation,

and write Ωi = ±
√
σ2
iN(0,Ri) and treat the standard deviation of the spatial process as a

covariate effect assigning σi a spike and slab prior as in (3.5). The predictive distribution

can be used to obtain the outcome Y at a set of unobserved locations s0 utilising posterior

samples of the parameters β, α,ΣY (through σ2
1, σ

2
2, ρ1, ρ2,k), e.g., in the case of the hurdle
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model:

∫
p(y(s0)|ω(s0), x(s0), z(s0), α, β)p(ω(s0)|σ2

1, ρ1, σ
2
2, ρ2)p(α, β, σ2

1, σ
2
2, ρ1, ρ2|Y, T )

dαdβdσ2
1dσ2

2dρ1dρ2 (3.6)

p(Y (s0) = k|θ(s0), p(s0)) =

0 if T (s0) = 0

(N(s0)
k )θ(s0)k(1−θ(s0))(N(s0)−k)

1−(1−θ(s0))N(s0)
if T (s0) = 1

T (s0) ∼ Bernoulli(p(s0))

p(s0) = f−1(Z′(s0)α+ ω1(s0))

θ(s0) = g−1(X′(s0)β + ω2(s0))

where ω1(s0) and ω2(s0) are the two components of the spatial bivariate process Ω(·)
evaluated in s0 that has distribution p(Ω(s0)) ∼ N(C(s0, s)Σ−1

Ω Ω, C(s0, s0)− C(s0, s)Σ−1
Ω

C(s0, s)′) where C(s0, s) and and C(s0, s0) are the covariance matrices that consider the

distance between observed and new locations and within new locations respectively.

3.3 Results

3.3.1 Simulation study

To evaluate the performance of the methods, we consider a series of synthetic datasets. We

simulated a spatial zero-inflated Binomial process at 10000 pixels on a regular square grid

[0, 5]x[0, 5] to reproduce the large study areas that are common in many epidemiological

applications. The process was generated via a zero-inflated likelihood (Equations (3.1)

and (3.3)) with number of trials N = 50. With these assumptions, the probability of

a “random” zero is very low, and p∗ approaches p, (see Figure 3.3 in the Appendix for

details).

The covariance functions of the underlying Gaussian processes were chosen to be expo-

nential (parameter ν = 1/2 in Equation (3.4)) with different values of variances and decay

parameters as shown in Table 3.1. In the entire simulation study the two spatial pro-

cesses were simulated independently, i.e. k = 0. For each model 20 different datasets were

simulated under the two different scenarios (high or moderate zero inflation probability).
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Table 3.1: Models and parameter values used to simulate the zero-inflated data. For each
model 20 datasets were generated.

Model Variance
Decay parameter

Frequency of zeros
(high/moderate)

1. Binomial σ2
1 = 3 ρ1 = 2

0.74/0.37
Zero-inflation σ2

2 = 1 ρ2 = 2
2. Binomial σ2

1 = 1 ρ1 = 2
0.72/0.42

Zero-inflation σ2
2 = 3 ρ2 = 2

3. Binomial σ2
1 = 1 ρ1 = 1.5

0.73/0.36
Zero-inflation σ2

2 = 1 ρ2 = 2.5
4. Binomial σ2

1 = 1 ρ1 = 1.5
0.71/0.41

Zero-inflation σ2
2 = 3 ρ2 = 2.5

A set of 5 potential regressors were generated as independent standard Normal vari-

ates. Only three of them, namely X1, X2 and X3 contributed in generating the Binomial

regression part with coefficients β1, β2, and β3, respectively. The zero inflation probability

was simulated to depend on covariates X3 and X4 with coefficients β3 and β4, respectively.

Since the outcome variable is spatially structured, in many applications it is likely that

observed and/or unobserved predictors present spatial structure as well. For this reason,

one of the covariates (X3) was simulated from the same Gaussian process that generated

the positive counts. In both regression components an intercept was included and fixed

at β0 = 0.5 and α0 = −0.3, respectively. Variable X5 did not have an influence on any of

the regression terms but it was included as a potential regressor in the variable selection

procedure. The coefficients were chosen adequately to produce scenarios with moderate or

high zero-inflation. Figure 3.1 shows a realization from Model I as defined in Table 3.1.

A subset of 200 data were randomly sampled after stratifying for the proportion of

zeros/non-zeros and analyzed using zero-inflated and Hurdle models with variable selection.

An independent Gamma prior distribution was assigned to each decay parameter ρi cen-

tered on a value corresponding to a spatial range of the half of the maximum inter-location

distance. The hyperparemeters used for the variable selection priors were v0 = 0.00025,

aτ = 5 and bτ = 25, aq = bq = 1.

The models were run in JAGS (Plummer, 2003) for 100000 iterations with a burn-in of

1000. Convergence was monitored via examining trace plots as well as the Geweke diagnos-

tic implemented in the package CODA (Plummer et al., 2006). In general, hurdle models

took longer to reach convergence. Results of the variable selection are shown in Tables 3.2

and 3.3 in the case of ”moderate” zero-inflation together with the true coefficients values.
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Figure 3.1: Two realizations of the spatial zero-inflated Binomial process (Model 1).

Results concerning variable selection for high zero-inflation are shown in the Appendix.

Tables 3.2 and 3.3 report the average probability of selection over the 20 datasets for each

of the predictor in the Binomial as well as in the zeros part under the zero-inflated and

Hurdle models respectively.

Predictors in the Binomial part were in general better identified by the Hurdle model

while in the zero (or extra-zero) part the probability of inclusion of the true covariates was

only slightly higher. The zero-inflated model performed weakly in identifying covariates

in common between the Binomial process and the extra-zeros (see X3 in Table 3.2 and

3.3). The presence of a spatial residual structure was almost always well identified by the

Hurdle model, while sometimes missed by the zero-inflated one. A big variance in the

generated Gaussian spatial process modeling the residuals (σ2 = 3) frequently resulted

in lower selection probabilities for the predictors to be included in the mean structure.

Zero-inflated models performed slightly better in the presence of lower percentage of zeros.

For small effects (i.e. α4 = 0.2, Tables in the Appendix) the inclusion probability was on

average smaller.

Although the zero-inflated Binomial model was not always able to identify the true

model generating the data, we were interested in quantifying the effect of model “mis-

specification” on the ability of predicting counts at new locations. In particular, we ran-

domly selected 50 locations (test set) from the original process generating the data and we
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Table 3.2: Posterior inclusion probabilities of predictors and spatial processes estimated
from the zero-inflated Binomial model. Estimates are averaged over 20 datasets

Model 1 Model 2 Model 3 Model 4
Variable (Bimomial) mean (sd) mean (sd) mean (sd) mean (sd)
X1 (β1 = 1.2) 0.62(0.29) 0.72(0.23) 0.95(0.15) 0.73(0.21)
X2 (β2 = −2) 0.58(0.23) 0.61(0.15) 0.63(0.15) 0.62(0.15)
X3 (β3 = 0.8) 0.49(0.21) 0.48(0.22) 0.66(0.15) 0.46(0.17)
X4 0.03(0.07) 0.12(0.09) 0.22(0.10) 0.15(0.09)
X5 0.78(0.19) 0.55(0.21) 0.32(0.31) 0.59(0.23)
Ω1 1.00(0.00) 0.88(0.21) 0.95(0.18) 0.89(0.20)
Variable (Zeros)
X1 0.12(0.18) 0.10(0.11) 0.09(0.05) 0.11(0.12)
X2 0.22(0.21) 0.18(0.15) 0.22(0.20) 0.19(0.15)
X3 (α3 = −0.8) 0.41 (0.35) 0.55(0.32) 0.75(0.24) 0.51(0.21)
X4 (α4 = 1.5) 0.56 (0.21) 0.61(0.23) 0.93(0.11) 0.59(0.28)
X5 0.19(0.12) 0.15(0.11) 0.17(0.09) 0.15(0.11)
Ω2 0.32(0.29) 0.52(0.27) 0.41(0.33) 0.53(0.34)

Table 3.3: Posterior inclusion probabilities of predictors and spatial processes estimated
from the Hurdle Binomial model. Estimates are averaged over 20 datasets.

Model 1 Model 2 Model 3 Model 4
Variable (Trunc.Binomial) mean (sd) mean (sd) mean (sd) mean (sd)
X1 (β1 = 1.2) 0.98 (0.10) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
X2 (β2 = −2) 0.92(0.12) 0.96(0.13) 0.92(0.10) 0.96(0.11)
X3 (β3 = 0.8) 0.84(0.15) 0.89(0.15) 0.90(0.09) 0.90(0.10)
X4 0.10(0.12) 0.07(0.04) 0.05(0.03) 0.07(0.03)
X5 0.11(0.10) 0.12(0.10) 0.18(0.12) 0.13(0.11)
Ω1 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
Variable (Zeros)
X1 0.12(0.09) 0.10(0.10) 0.07(0.05) 0.09(0.04)
X2 0.11(0.10) 0.12(0.09) 0.12(0.08) 0.11(0.09)
X3 (α3 = −0.8) 0.55(0.21) 0.61(0.19) 0.79(0.18) 0.62(0.21)
X4 (α4 = 0.2) 0.51(0.21) 0.54(0.32) 0.63(0.33) 0.54(0.31)
X5 0.12(0.10) 0.13(0.08) 0.09(0.07) 0.15(0.12)
Ω2 0.98(0.09) 1.00(0.00) 0.99(0.09) 1.00(0.00)

simulated from the predictive distribution of the median probability model. The latter is

defined as the model that includes variables with estimated posterior selection probabilities

higher than 0.5. The median probability model has been shown to have the best predictive

ability by Barbieri and Berger (2004). Results of model predictive accuracy are expressed

in terms of expected log predictive density (Gelman et al., 2013) and shown in Table 3.4
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Table 3.4: Predictive ability: Hurdle vs zero-inflated Binomial model.

Predictive log-score
Model Model 1 Model 2 Model 3 Model 4

mean (sd) mean (sd) mean (sd) mean (sd)
Hurdle model -225.1(34.00) -227.1(35.23) -226.1(34.15) -228.2(35.68)
Zero-inflated model -305.1(51.24) -295.3(52.96) -299.3(59.24) -305.2(52.26)

which reports the mean and standard deviation over the 20 selected median probability

models. The hurdle models performed better on average in all the scenarios.

3.3.2 Application to Senegal National Malaria Survey 2008

The methods described above were applied to the spatial analysis of the National Malaria

Survey carried out in Senegal in 2008 which included a total of 9600 randomly selected

households over 320 locations. Geographical information is available at cluster (set of

households) level. Children between 6 and 59 months of age were tested for malaria. A

large number of survey locations (70%) reported zero-prevalence.

Malaria is known to be an environmentally driven disease because the life cycle of the

main vector (Anopheles mosquitoes species) is highly dependent on factors like the amount

of precipitation, the distance to the water bodies among others.

The environmental/climatic variables used as potential explanatory variables were ex-

tracted from remote sensing sources. Dekadal rainfall data were downloaded from the

Africa Data Dissemination Service; weekly day/night land surface temperature (LST) and

biweekly normalized difference vegetation index (NDVI) data were obtained from Mod-

erate Resolution Imaging Spectroradiometer. Permanent rivers and lakes were extracted

from ArcGIS layers and the shortest Euclidean distance between the centroid of each pixel

and the closest water body was calculated in ArcGIS version 10.0. Altitude data were

obtained from an interpolated digital elevation model developed by the U.S. Geological

Survey - Earth Resources Observation and Science Data Center. Data on the rural ex-

tents in Senegal are obtained by Afripop (Linard et al., 2012) which provides estimated

population surfaces across Africa. According to the United Nations definition for Senegal,

agglomerations with more than 10000 inhabitants were considered as urban. The above

data were available at 1 km spatial resolution, with the exception of rainfall which has a

resolution of 8 km.

The Hurdle model with the proposed variable selection was applied on this dataset to

identify predictors that influenced the suitability of transmission (probability of zeros) and
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the number of infected in each location in the area. The priors employed are the same

specified in the description of the simulation study.

The model was run in JAGS for 100000 iterations with a burn-in of 1000 and a thinning

of 10. Table 3.5 shows the posterior inclusion probability for each predictor.

Table 3.5: Posterior inclusion probabilities of predictors and spatial processes estimated by
the Bayesian variable selection method using the Hurdle Binomial model for the analysis of
malaria prevalence data in Senegal.

Variable (Trunc.Binomial) P(γi = 1)
Rainfall 0.58
Vegetation Index 0.82
Night Temperature 0.52
Day Temperature 0.12
Area type (Urban=1) 0.23
Elevation 0.08
Distance to water bodies 0.12
Ω1 0.92
Variable (Zeros) P(δi = 1)
Rainfall 0.88
Vegetation Index 0.21
Night temperature 0.25
Day temperature 0.65
Area type (Urban=1) 0.92
Elevation 0.42
Distance to water bodies 0.35
Ω2 0.84

Environmental covariates show different selection probabilities in the two parts of the

model. The cumulative precipitation during the year of the survey, the average NDVI and

the average night LST were selected with a probability higher than 0.5 in the positive part

of the model and therefore included in the model used for fitting the data. Precipitation,

area type and day LST were chosen with a probability higher than 0.5 as predictors for the

presence/absence of malaria (suitability index). In this application, the median probabil-

ity model coincided with the model showing the highest posterior probability. Risk factor

estimates as well as posterior estimates of the spatial parameters are presented in Table

3.6. Precipitation and NDVI were positively associated with the positive part of the model

(number of malaria infected children); area type, day temperature and precipitation were

important predictors of the suitability for transmission. In fact, economic development and

urban type activities make cities and big agglomerations a less favourable environment for
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Figure 3.2: Predicted number of infected and suitability index in Senegal. Results obtained
with the median probability model obtained via the Bayesian variable selection procedure
applied on the geostatistical Binomial Hurdle model formulation.

vectors reproduction and survival as compared to rural areas. Very high temperatures and

excessive rainfall can destroy potential breeding sites and impede transmission. The esti-

mated correlation between the spatial processes is negative, suggesting that the variability

in the intensity of the disease decreases with increasing spatial variability in the suitability

for transmission. It is worth noting that the decay parameter ρ2 and the spatial variance

σ2 are obtained using the conditional specification. The same model was used to predict

suitability as well as the number of infected children at unobserved locations throughout

the study area at a spatial resolution of 2 km (Figure 3.2). A common denominator of 30

children was chosen for the prediction of the malaria infected children.

Table 3.6: Binomial geostatistical hurdle model with the highest posterior probability:
estimated effect of the selected environmental variables and spatial parameters estimates.

Model Component Parameter Median 95%CI
Trunc. Binomial const. -2.95 (-3.32,-2.45)

Rainfall 0.15 (0.07,0.25)
Vegetation Index 0.47 (0.32,0.81)

Night Temperature 0.65 (-0.11,0.85)
Zeros const. -3.21 (-3.85,-2.55)

Rainfall -2.32 (-2.60,-2.08)
Day Temperature 1.32 (0.84,1.88)

Area type (Urban=1) 2.72 (1.54,3.11)
Spatial parameters ρ1 2.21 (1.42,3.65)

ρ2 3.41 (2.10,4.52)
σ2

1 1.97 (1.45,2.66)
σ2

2 0.74 (0.52,1.20)
corr(Ω1,Ω2) -0.49 (-0.63,-0.19)
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3.4 Concluding remarks

We have assessed model specification of zero-inflated geostatistical Binomial data and pro-

posed model formulation via variable selection methods. It has been shown (Hoeting et al.,

2006b) that for geostatistical models it is essential to evaluate and assess spatial structure

together with covariates effects. Furthermore, the inclusion of all potential covariates in

the zeros and non-zeros regression parts may lead to over-parameterization. Therefore, we

have proposed a variable selection approach that allows the selection of relevant predictors

jointly with spatial structures in both the Bernoulli part of the model and the positive

part. Through a large set of simulated examples, we found that the hurdle model showed

higher ability to select the true model used to generate the data, probably because of

poor identifiability of the spatial zero-inflated models. Furthermore, this parameterization

allows for simpler interpretation of covariate effects especially with the choice of the logit

link function (i.e., the exponentiated coefficients are odds ratios).

Our simulation results showed that model mis-specification arisen from variable selec-

tion reduces the predictive ability.

In the area of malaria epidemiology, the probability of a zero can be interpreted as

disease transmission suitability, and the conditional mean of the counts represents the

mean number of cases given that suitable conditions for transmission exist. Our application

showed that different factors affected the number of infected children and the suitability

of transmission for the disease. Spatial structure was present in both parts of the model.

The hurdle model allowed the estimation of both the spatial processes associated with the

Binomial (malaria risk) and the distribution of zeros (transmission suitability). The maps

depicting the risk of being infected and the transmission suitability are useful tools for

identifying priority areas for disease control. The focus on malaria elimination as well as

on other parasitic disease suggests that more and more datasets with high percentage of

zeros will be generated in the future.
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3.5 Appendix

The zero-inflated Binomial model and the Hurdle model are linked by the relation: p∗ =

p + (1 − p)(1 − θ)N where p∗ represents the total probability of zeros, p is the mixing

probability (zero-inflation), θ is the Binomial parameter and N is the number of trials.

With the purpose of exploring the contribution of the Binomial part in the generation of

zeros we have considered 3 different scenarios and plotted the relationship between (i) p and

N for varying values of θ = 0.1, 0.2, 0.3, 0.4, 0.5 when the total probability of zeros is fixed

to 0.4, 0.5, 0.7, 0.8 (ii) p and θ for varying values of N = 5, 10, 20, 50 and the same total

probability of zeros and (iii) p and p∗ for varying values of N = 5, 10, 20, 50 when θ is fixed

to 0.1, 0.2, 0.3, 0.4. We can observe how for increasing values of θ or N a higher number of

zeros is generated by the degenerate distribution and therefore the total probability of zeros

p∗ can be safely approximated by the mixing probability p. Therefore, in our simulation

study we choose N = 50.
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Figure 3.3: Relationship between Binomial distribution number of trials (N), Binomial
distribution parameter (θ), mixing probability (p) and total probability of zeros (p∗).
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Abstract

Geostatistical models applied in epidemiology aim to identify the main determinants of

a disease and predict disease outcome measures (e.g. risk, incidence, mortality) at unob-

served locations. The impact of the predictors is commonly modelled as a linear effect,

constant throughout the study area. However, more flexible functional forms may be re-

quired to capture non-linear relationships between the covariates and the response. When

the area of interest is large and covered by different regions, (e.g. ecological zones) the

relationship between the disease and its risk factors may not be constant across the area.

Furthermore, the spatial correlation is likely to vary not only as a function of distance but

also of geographic position. In this work, we develop Bayesian spatial variable selection

methods with spike-and-slab prior structure that allow the choice of different predictors

and their functional forms in non-stationary geostatistical models for mapping disease sur-

vey data. Non linear functional forms are expressed as piece-wise constant or smooth

terms (splines). Penalized spline effects are re-parameterized as mixed effects terms and

their selection is based on non-zero random effects variance identification. Spatially vary-

ing weights are proposed to achieve smoothness across irregularly shaped regions. Markov

chain Monte Carlo (MCMC) simulation is used for estimation and inference. Multiplica-

tive parameter expansion methods are employed to allow mixing of the chains in selecting

batches of coefficients that model non-linearity. The methods are illustrated by analysing

recent national malaria survey data from Mali to obtain spatially explicit estimates of the

disease burden in the country.
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4.1 Introduction

Geostatistical models are used to analyze data collected at a discrete set of locations

(geo-referenced data) within a continuous domain (Cressie, 1993). They have been widely

applied to problems ranging from geology and ecology to epidemiology and public health

(Gelfand et al., 2004a). Applications in epidemiology are mainly concerned with relating

disease data to a set of predictors (i.e. environmental or climatic variables) with the aim

of determining the main risk factors and predicting disease outcome measures (e.g. risk,

incidence, mortality) at unobserved locations (Lawson, 2013). The Bayesian formulation

of linear and generalized linear geostatistical models has been introduced by Diggle et al.

(1998).

Bayesian geostatistical models have been widely used in mapping parasitic diseases

such as malaria risk (Gemperli and Vounatsou, 2006; Gosoniu et al., 2006; Hay and Snow,

2006; Giardina et al., 2012; Noor et al., 2014), schistosomiasis risk (Raso et al., 2006b;

Clements et al., 2008; Wang et al., 2008), filarial worm risk infection (Diggle et al., 2007;

Crainiceanu et al., 2008), hookworm infection (Raso et al., 2006a; Chammartin et al.,

2013b), and helminths co-infections (Pullan et al., 2008; Schur et al., 2011). Disease maps

can be used to identify possible clusters, to define and monitor epidemics or provide baseline

risk estimates at high spatial resolution. They represent an essential tool to guide disease

control programs in planning targeted interventions and in evaluating their effectiveness.

Recent developments in satellite-based remote sensing (RS) for environmental monitoring

and geographical information system (GIS) have further boosted research in this area

(Bauwens et al., 2011).

In most epidemiological applications, the impact of the predictors is modelled as a linear

effect, constant throughout the study area. However, more flexible functional forms, are

often more suitable to capture the relationships between the covariates and the response.

Larges study areas can often be partitioned in different ecological zones which influence

the effect of the predictors on the disease outcome. In large areas the underlying spatial

structure that models the geographical dependence among neighboring locations, may vary

also according to the geographic position. Therefore, a flexible model specification is

required to enable choosing different predictors as well as different functional forms in each

zone, while modelling a non-stationary spatial process.

Bayesian statistical methods for choosing an appropriate subset of covariates among
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many potential predictors have received increasing attention in recent years. A compre-

hensive review of the most commonly used methods can be found in O’Hara and Sil-

lanpää (2009). Chen and Dunson (2003) and Kinney and Dunson (2007) studied both

fixed and random effects selection in linear and logistic models. Tüchler (2008) and Wag-

ner and Duller (2012) proposed an approach that links Bayesian variable selection methods

to random effects’ variance selection by a re-parametrization of the random effects. Less

work has been done on functional form selection methods including non-linear effects:

only recently Scheipl et al. (2012) proposed a stochastic search based approach employing

a modified spike and slab mixture prior for the coefficients and Bové et al. (2012) developed

an extension of the classical Zellner’s g-prior (hyper-g priors) to identify the presence of a

variable and its spline transformation in generalized additive models. Curtis et al. (2014)

provides a review of variable selection methods for additive models.

The literature on variable selection for spatial data is limited. Typically, spatial cor-

relation is ignored in the selection of explanatory variables, influencing model selection as

well as parameter estimation (Hoeting et al., 2006a). In the work by Smith and Fahrmeir

(2007) an Ising prior is used to allow dependence among variable inclusion probabilities at

neighboring locations for linear regression models defined on a regular lattice. A similar

approach is adopted by Scheel et al. (2013) studying the effect of climate change on the

insurance industry at local geographic scale (municipalities). Reich et al. (2010) proposed

a stochastic search approach to select covariates with constant or spatially varying effects

(Gelfand et al., 2003).

A review of methods used for constructing non-stationary spatial processes can be

found in Sampson (2010). These methods range ranging from spatial deformation models

(Sampson and Guttorp, 1992) to spatial processes decomposition in terms of empirical

orthogonal functions (Nychka et al., 2002) and process convolution models (Higdon, 1998).

Smoothing and kernel-based methods (Fuentes, 2001) model non-stationarity as spatially

weighted combinations of stationary spatial covariance functions. This approach was ap-

plied by Banerjee et al. (2004) to model house prices in California and by Gosoniu et al.

(2009) in malaria risk mapping in West Africa. In the latter, the relation between climate

factors and malaria risk was modelled separately in each ecological zone by penalized B-

splines. In this paper, we extend the work by Gosoniu et al. (2009) by developing Bayesian

non-stationary geostatistical models that choose among different functional forms allowing

variations across partitions of the area of interest. Furthermore, spatially varying weights

are proposed to take into account irregularly shaped partitions of the study area. The
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application that motivated the work comes from the area of malaria epidemiology. Over

the last few years, national malaria surveys have been carried out routinely in several coun-

tries in Sub-Saharan Africa with the aim of monitoring and evaluating progress in disease

control.

The paper is structured as follows: Section 4.2 describes the problem and the data used,

Section 4.3 introduces variable selection methods for functional forms in non-stationary

geostatistical models. Section 4.4 presents the results of the proposed methodology applied

to a national malaria prevalence survey in Mali. Validation results compare predictions

of the model determined by the developed methods to those obtained with a full B-spline

model (Gosoniu et al., 2009) and with the same model with stationary covariance matrix.

Section 4.5 provides concluding remarks and suggests further lines of research and areas of

application.

4.2 Background

Malaria transmission is strongly influenced by climatic conditions which determine the

abundance and seasonal dynamics of the Anopheles mosquito vector. The amount and

duration of malaria transmission is influenced by the ability of parasite and mosquito

vector to co-exist long enough to enable transmission to occur. The distribution and

abundance of the parasite and mosquitoes population are sensitive to environmental factors

like temperature, rainfall, humidity, presence of water and vegetation. Environmental

factors affect the biological cycle of both vector and parasite allowing or interrupting the

different development stages and therefore favoring or inhibiting transmission. Usually,

Anopheles do not fly more than 2km but in certain circumstances they can fly up to 5km.

The distance mosquitoes fly is determined largely by the environment: if suitable hosts

and breeding places are nearby, mosquitoes do not to disperse far, but if one or more are

more distant, greater dispersal may be necessary (Schlagenhauf-Lawlor, 2008).

Mali is divided into five ecological zones based on Food and Agriculture Organization

(FAO) methodology (FAO, 2000): the Sahara desert, the South Saharan zone, the Sahelian

zone, the central delta of the Niger river and the west Sudannian region, as shown in Figure

4.1. The northern part of Mali is occupied by the Sahara desert which is a hyper-arid

zone with scarce water and precipitation; the first Sub-Saharan zone presents steppe and

woodlands and it is as well an arid and desertic zone. These two regions do not represent a

favorable environment for the malaria vector. The Sahelian zone is mainly characterized by

acacia savanna; it is arid with rainfall between 250 and 550 mm. The central region of the
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Figure 4.1: Ecological zones in Mali. FAO. Global Forest Resources Assessment 2000.
www.fao.org/forestry/fra/2000/report/en/.

Niger delta presents similar characteristics in terms of rainfall but it is mainly constituted

by flooded savanna. The Sudan zone, in the South-West of the country, is a semi-arid to

sub-humid region with abundant rainfall (between 550 and 1100 mm).

4.2.1 National Malaria survey in Mali

A Demographic and Health Survey (DHS) was carried out in Mali between August and

October 2010 by the National Malaria Control Program in collaboration with Macro In-

ternational and the Malaria Research and Training Center in Bamako. The information

collected in the survey consists of geo-referenced data with parasitaemia measurements

(malaria test positivity) among 1788 children below the age of five years (Ministère de la

Santé, Programme National de Lutte contre le Paludisme, INFO-STAT, ICF Macro, 2010).

4.2.2 Environmental predictors

RS and GIS have emerged as methods for exploring environmental factors potentially

associated with malaria outcomes. With the purpose of deriving explanatory variables for

our application, we have collated environmental and climatic data provided by satellite

images. Vegetation measures such as Normalized Difference Vegetation Index (NDVI)
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and Enhanced Vegetation Index (EVI), as well as temperatures proxies (night/day land

surface temperature) were obtained from Moderate Resolution Imaging Spectroradiometer

(MODIS) at 1km spatial resolution for the year 2010. Dekadal rainfall data were extracted

at 8km resolution via Africa Data Dissemination Service (ADDS) and aggregated over

a year previous to the survey time. Water bodies were identified using the world water

bodies layer provided by the ArcGIS website. The shortest Euclidean distance between

the locations and the water bodies was calculated in ArcGIS version 10.0 (ESRI, 2011).

Altitude data were obtained from an interpolated digital elevation model by the U.S.

Geological Survey - Earth Resources Observation and Science Data Center at a spatial

resolution of 1km. Information on area type (rural/urban) was provided by the Global

Rural-Urban Mapping Project (GRUMP) website and population density data by the

Afripop project (Tatem et al., 2007).

All environmental and climatic data have been associated to observed locations with

the shortest Euclidean distance from the layers.

4.3 Models

Let N(s) be the number of individuals screened for parasitaemia at location s, s = 1, . . . ,m,

Y (s) be the number of those tested positives, and x(s) = (x1(s), x2(s), . . . , xp(s))
T be the

vector of p potential predictors observed at location s. We assume that Y (s) arises from a

Binomial distribution:

Y (s)|π(s), N(s) ∼ Binomial(π(s), N(s)) ∀s = 1, . . . ,m sites

and the probability π(s) of being infected at location s is modelled through an additive

logistic regression,

log

(
π(s)

1− π(s)

)
= µ(s) + ω(s) (4.1)

where µ(·) represents the mean structure and ω(·) models the spatial correlation through

Gaussian processes. The mean structure takes the general form:

µ(s) = β0 +

p∑
i=1

J∑
j=1

K∑
k=1

fijk(xi(s), βijk)

where fijk(·) indicates each one of the J possible functional forms that relate the observed

variable Xi to the disease risk π(s) in ecological zone k via the coefficients βijk and β0 is a
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common intercept term.

We model non-stationarity in the spatial process through a mixture of stationary spatial

processes smoothing at the borders between the zones through the definition of distance-

dependent weights, as in Gosoniu et al. (2009). A stationary spatial process φk is defined

as φk ∼ N(0,Σk) ∀k = 1, . . . , K ecological zone where (Σk)ss′ = σ2
kcorr(||s − s′||; ρk, ν)

and corr is a parametric function of the Euclidean distance ||s−s′|| between sites s and s′.

The Matern family describes most of the correlation function used in geostatistical models:

corr(||s− s′||; ρk, ν) =
1

2ν−1Γ(ν)
(ρk||s− s′||)νKν(ρk||s− s′||)

where Kν is a modified Bessel function with smoothing parameter ν, while ρk > 0 controls

the rate of correlation decay between observations as distance increases. The choice ν =

1/2 leads to the commonly used exponential correlation function, i.e. corr(||s − s′||) =

exp (−ρk||s− s′||) .

A non-stationary spatial process ω is generated as a weighted sum of the above defined

spatial processes as follows: ω ∼ N(0,
K∑
k=1

AkΣkAk) where Ak is a diagonal matrix with

(Ak)ss = ask. The weights ask are chosen as decreasing functions of the Euclidean distance

between location s and ”knots” of the subregion k. The ”knots” are selected over a grid

covering the entire region in order to take into account the irregularly shaped subregions.

Further details on the choice of the weights are given in Section 4.3.2.

4.3.1 Mean structure selection

We describe a Bayesian variable selection procedure to choose an appropriate subset of

potential covariates for malaria risk and determine whether a linear, piecewise constant

or a smoother functional form is required to model the effect of the respective covariates,

allowing them to vary across ecological zones. For each variable Xi in ecological zone k,

we consider the following four scenarios: (i) there is no relationship between Xi and the

infection probability π; there is a relationship that can be described by (ii) linear, (iii)

piecewise constant or (iv) smooth functions.

The variable selection approach is defined by the following hierarchy:

α = (α1, . . . , α4)T

pk|α = (p1k, . . . , p4k)
T ∼ Dir(4,α) ∀k = 1, . . . , K
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where pk follows a Dirichlet distribution of concentration hyperparameters α. Each ele-

ment pjk, j = 1, . . . , 4 corresponds to the selection probability of the different functional

forms (1=linear, 2=piecewise constant, 3=smooth, 4=none) in region k. For each predictor

i in region k a categorical variable cik can be defined to indicate the different functional

forms, with probability mass function p(cik|pk) =
4∏
j=1

p
δj(cik)
jk where δj(·) denotes the Dirac

delta function evaluated at j. We build the auxiliary variables γijk to indicate presence or

absence of the j functional form of covariate Xi in region k

γijk = δj(cik) + ε0(1− δj(cik)) ∀j = 1, . . . , 3

and we assign a Normal prior to the coefficients βijk, that is

βijk|γijk, τ 2
ij ∼ N(0, γijkτ

2
ij)

τ 2
ij|a, b ∼ IG(a, b)

where ε0 is some very small positive constant and the variance τ 2
ij is sampled from an

Inverse Gamma (IG) with shape parameter a and scale b.

This prior specification defines a continuous bimodal distribution on the hypervariance

of βijk with a spike at ε0, that shrinks the coefficients that are not relevant for the model,

and a right continuous tail (slab) to identify non-zero parameters. In particular, if γijk = 1

the covariate effect βijk is estimated by assuming a Normal prior distribution with mean 0

and variance τ 2
ij, otherwise γijk = ε0 and βijk is shrunk towards 0, therefore the predictor

Xi is not included in the model for region k in functional form j. The Dirichlet prior

on the selection probability p allows flexibility in estimating model sizes by introducing

another level of hierarchy in the model specification. If γi1k = 1, the relationship between

the predictor Xi and the disease risk π is linear in region k and fk(xi) = βi1kxi. If

γi2k = 1, the relationship between the predictor xi and the disease risk is piecewise constant

where xi has been categorized into Q quantiles and fk(xi) =

Q∑
q=1

β
′

iqkx
′

iq. Spike and slab

priors perform poorly in identifying non-linear forms of variables which include groups of

coefficients (Scheipl et al., 2012). In particular, switching status (i.e. inclusion/exclusion of

the coefficient’s vector) becomes very unlikely, resulting in very poor mixing of the indicator

variables. Parameter expansion (Gelman et al., 2008) offers a method to improve mixing

in the MCMC while selecting simultaneously batch of coefficients. More specifically, we



68 Chapter 4. Model selection for non-stationary geostatistical models

define β
′

ik = βi2kηik where

ηiqk|miqk ∼ N(miqk, 1) and miqk ∼ 1/2N(−1, 1) + 1/2N(1, 1) ∀q = 1, . . . , Q quantiles.

The two parameters ηiqk and βiqk are not identifiable but inference can be obtained about

their product β
′

ik. If γi3k = 1, the relationship between the predictor Xi and the disease

risk π includes non-linear terms in region k, expressed in the form of a penalized B-spline,

i.e. fk(xi) = bxi +
L∑
l=1

uilkzl(xi) where zl,∀l = 1, . . . , L is an appropriate spline basis for

covariate xi, i.e. radial cubic basis function.

Following Ruppert et al. (2003) a quadratic penalty is placed on u, that translates into

the constrain: uTikuik ≤ λ where λ is the smoothing parameter. The above functional form

can be written in a mixed models representation (Zhao et al., 2006) as follows:

fk(xi) = βi3kxi + Zxiuik

where

Zxi =
[
|xi − κl|3

][
|κl − κl′ |3

]−1/2

and uik ∼ N(0, σ2
uik

I). The knots κl are defined as the sample quintiles specific to each

covariate Xi. To ensure identifiability of the model we do not include a constant term in

the spline representation. We apply random effect selection methods to choose whether

a smooth term has to be included in the models. We follow the approach suggested by

Wagner and Duller (2012) reparametrizing the variance component and perform variable

selection on the standard deviation treating it as a covariate effect. In particular, we

re-write the random effects associated to the spline terms uik as uik = ±σuikθik where

θik ∼ N(0, I) and assign σuik the same spike and slab prior as for the parameter βi3k.

The sign of both σuik and θik is not identifiable but the product ±σuikθik as well as the

associated indicator γi3k can be estimated. In fact, as in the case of batches of coefficients,

for the selection of the piece-wise constant functional form, this redundant parametrization

has computational advantages in the MCMC implementation.

The procedure described above can be adopted only for continuous predictors. Categor-

ical predictors, such as area type which is dummy variable, were modeled using piecewise

constant functional forms.
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It is not realistic to assume independence across the predictors selected in each eco-

logical zone. To take into account spatial dependence in the mean structure and to ob-

tain smooth prediction maps at the zone borders we introduce spatially varying weights

ψk(s) in the regression coefficients and define β∗ij(s) = ψk(s)βijk. Details on the specifica-

tion of the weights can be found in subsection 4.3.2. Equation (4.1) takes now the form

logit(π(s)) =
∑P

i=1

∑J
j=1

∑K
k=1 fik(xi(s), β

∗
ij(s))+ω(s). In most applications, model fit and

prediction is performed using the model with the highest posterior probability. However,

Barbieri and Berger (2004) shows that for normal linear models, the one with the best

predictive ability, i.e. that minimize the squared error loss, is the so called median prob-

ability model. The latter is defined as the model consisting of those variables which have

overall posterior probability greater than or equal to 1/2 of being included in a model. The

median probability model may differ from the highest probability model.

4.3.2 Spatially varying weights

Spatially varying weights ask and ψk(s) have been introduced to model the variance struc-

ture of the non-stationary Gaussian spatial process and the mean structure respectively.

While ask smooths the values of the spatial process at the border of the zones, ψk(s) takes

into account that the risk in neighboring points across the borders of the zones should be

affected similarly by covariates although the zones may have different predictors. Therefore

ψk(s) smooths the mean structure at the borders. For convenience, we chose ask = ψk(s).

We define dk(s) as the Euclidean distance between a given location s and the closest of

the knots belonging to ecological zone k. The knots are equally spaced points over a grid

covering the study area. We obtain weights that are decreasing function of the shared area

between two circles of radius r, the first one centered in s and the other one in the point at

distance dk(s). Following the definition of spherical correlation function in two dimension,

(circular correlation function) we construct the spatially varying weights ψk(s) as follows:

ψk(s) =


2
π

(
arccos dk(s)/r − (dk(s)/r)

√
1− (dk(s)/r)2

)
if dk(s) < r

0 otherwise

Therefore, the weights allow covariate effects of neighboring zones to be considered for

all locations within a radius r from the border. Furthermore, each zone has a separate

spatial process and the weights allow a mixing of neighboring process only for locations

close to the borders (in proximity defined by the radius r).
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Figure 4.2: Spatially varying weights for an observed location and the three closest knots
in each zone (a). Spatially varying weights for each prediction location: Sahelian zone (b),
Flooded zone (c), Sudannian zone (d).

The weights were normalized (divided by their length) so that
∑K

k=1 ψk(s)
2 = 1. How-

ever, the choice of the grid spacing g and the radius r might influence posterior inference.

Therefore, the main analysis has been carried out defining g and fixing r = g. Neverthe-

less, a sensitivity analysis has been conducted to assess the robustness of the results under

different values of the radius and keeping the spacing of the grid knots constant.
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4.4 Results

The model presented in Section 4.3 was applied on the national malaria survey data from

Mali to identify the most important climatic predictors by ecological zone and perform

spatial risk prediction over the study area at 2 km resolution. Three different malaria

endemic ecological zones and eight predictors with three functional forms were considered

in the analysis. All continuous covariates have been centered and standardized to obtain a

better mixing of the Markov chains arising from simulations. The spatially varying weights

defined for a specific observed point and for the whole study area are shown in Figure 4.2.

Posterior analysis was performed by MCMC using samples collected over 100.000 it-

erations after a burn-in of 10.000. Convergence was monitored by examining trace plots

and auto-correlation plots for several representative parameters. Results of the variable

selection procedure are given in Table 4.1 and Figure 4.3. Table 4.1 shows the models

selected with the highest posterior probabilities (only the first three are listed). Figure 4.3

shows the posterior inclusion probability of the environmental variables for each zone and

functional form, i.e. the overall posterior probability that each variable is in the model.

The model selected with the highest posterior probability (Model 1 in Table 4.1) co-

incided with the median probability model 4.1 and it was used for posterior inference on

risk factors and spatial structure as well as for predictions. Model 1 includes the variable

rainfall in linear form in the Sahelian zone, the day temperature in linear form and the

area type in the flooded zone of the Niger delta, the NDVI as smooth term and the area

type in the Sudannian zone. The functional forms of the selected predictors are shown

in Figure 4.4. Living in rural areas is associated to a reduction in the odds of being in-

fected with malaria by 23%, 95% BCI:(19%− 41%) in the flooded zone and by 52%, 95%

BCI:(41%−63%) in the Sudannian zone. Rainfall was associated with a significant increase

of malaria risk in the Sahelian zone (OR= 1.22, 95% BCI:(1.11− 1.41)). Day temperature

was found to be the main risk factor in the Niger delta (OR= 1.66, 95% BCI:(1.49−1.86)).

Nonlinearity was detected in the relationship between NDVI and the malaria risk in the

Sudannian zone.

To study the predictive ability of the model, we divided the data into a training set used

to fit the model and a test set for evaluating predictions. The training set consists of 80%

of survey locations randomly sampled for each ecological zone and the test set includes the

remaining points. The procedure was repeated 5 times (with 5 different training/testing

sets) and the model predictive ability was assessed using a log-score criterion, defined as the

negative log likelihood evaluated at the testing locations. For the purpose of comparison,
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Figure 4.3: Inclusion probabilities per ecological zone and functional form (L=linear,
PWC=piece-wise constant, S=spline).
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the model proposed by Gosoniu et al. (2009) (full B-spline model) as well as the same

model with a stationary covariance matrix was used for fitting and prediction on the same

sets. Figure 4.5 compares the averaged log-likelihood between the three models. The plot

indicates that Model 1 had a lower median log-score and smaller variability.

The three models were used to perform spatial prediction throughout the study area

at 2 km resolution. The predicted parasitaemia risk in Figure 4.6 obtained using Model1

suggests an overall trend of increasing risk from the North to the South. The regions with

the highest risk are Sikasso and Segou in the South of the country and Kayes at the border

with Senegal and Mauritania. Figure 4.7 and 4.8 show a similar geographical pattern

but larger uncertainties. Moreover, the different mean structures in each ecological zones

produce discontinuities at the borders in absence of spatially varying weights.

A sensitivity analysis was performed to study the effect of the spatially varying weights

in the selection of covariates running MCMC under different specification (different values

of r keeping fixed the spacing between the grid points g). Results are shown in Table

4.2 and expressed in terms of the ratio between the radius and the grid spacing. Under

the three settings (radius smaller than the spacing, equals or bigger) the model with the

highest posterior probability remains the same, but the probabilities are different. In our

analysis, we have defined the radius equals to the grid spacing. When the radius is smaller

than the spacing, Model 1 was selected with a posterior probability of 0.51; very few

points were affected by the covariates selected in the neighboring zones and this results in

discontinuities in the prediction map. When the radius is higher than the spacing, Model

1 was selected with a low posterior probability (0.31) and several other competing models

appear to be selected with probability of around 10% . This specification produced an

oversmoothed prediction map. The inferences were computed by using JAGS (Plummer,

2003); the code for both models is available from the authors on request.

4.5 Discussion

We have developed Bayesian methodology to model non-stationary geostatistical data when

the study area consists of irregularly shaped zones with different characteristics. The

methods described allow the choice of covariates and their corresponding functional forms

by zone via a Bayesian variable selection procedure. Spatially varying weights were used

in the regression model to take into account the dependence of the covariates affecting the

disease outcome at a given location not only on the zone associated to the location but also

on the neighboring regions within a certain radius. The weights introduced into the model
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Table 4.1: Posterior model probabilities.

Model Mean structure p
1. Rainfall (Sahelian zone, linear) + 0.54

Day Temperature (Flooded zone, linear) + Area type
(Flooded zone, piece-wise constant) +
NDVI (Sudannian zone, spline) + Area type (Sudan-
nian zone, piece-wise constant)

2. Rainfall (Sahelian zone, linear) + 0.12
Night Temperature (Flooded zone, spline) + Area type
(Flooded zone, piece-wise constant) +
NDVI (Sudannian zone, spline) + Area type (Sudan-
nian zone, piece-wise constant)

3. Rainfall (Sahelian zone, spline) + 0.11
Day Temperature (Flooded zone, linear) + Area type
(Flooded zone, piece-wise constant) +
NDVI (Sudannian zone, spline) + Area type (Sudan-
nian zone, piece-wise constant)

Table 4.2: Posterior model probabilities of the first selected model with different values of
the ratio between the radius and the grid spacing.

Ratio Sahelian zone Flooded zone Sudannian zone p

r/g=1 0.54
Rainfall

Day temperature NDVI

(linear)
(linear) (spline)

Area type Area type
(piece-wise constant) (piece-wise constant)

r/g=0.5 0.51
Rainfall

Day temperature NDVI

(linear)
(linear) (spline)

Area type Area type
(piece-wise constant) (piece-wise constant)

r/g=1.5 0.31
Rainfall

Day temperature NDVI

(linear)
(linear) (spline)

Area type Area type
(piece-wise constant) (piece-wise constant)
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(a) (b) (c)

Figure 4.4: Estimated relationship between predictors and malaria risk in the three different
ecological zones: (a) Sahelian zone, (b) Flooded zone, (c) Sudannian zone.

Figure 4.5: Log-score comparison between the full B-spline model, as in Gosoniu et al.
(2009) (a), the full B-spline with a stationary covariance structure (b) and Model 1 (c).
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Figure 4.6: Predicted parasitaemia risk in children under 5 years. Map produced using the
non-stationary model (Model 1) with different predictors in each ecological zone and spatially
varying weights. Median (a) and Credible Intervals (b) and (c).
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Figure 4.7: Predicted parasitaemia risk in children under 5 years. Map produced using
a non-stationary full B-spline model, as in Gosoniu et al. (2009). Median (a) and Credible
Intervals (b) and (c).
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Figure 4.8: Predicted parasitaemia risk in children under 5 years. Map produced using a
full B-spline model with stationary covariance structure. Median (a) and Credible Intervals
(b) and (c).
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smooth the predicted surface at the borders of the zones. Modeling a non-stationary spatial

process enables the incorporation of the heterogeneity generated by effects of covariates as

well as unmeasured factors that vary geographically in the study area.

The choice of the radius might influence posterior inference even though the weights

were normalized. In particular, a large radius could lead to oversmoothing, while a small

one may introduce discontinuities. In our model formulation, the radius was fixed during

the estimation process; alternatively, it could be considered as a parameter estimated by

the data.

Our modelling approach share similarities with other approaches to model non-stationarity

such as spatially varying coefficients models (SVC) (Gelfand et al., 2003) and the geograph-

ically weighted regression (GWR) (Fotheringham et al., 2003). GWR is commonly seen as

a descriptive approach that uses spatial weights to estimate spatially adaptive coefficients

whereas SVC places either a univariate or multivariate spatial process on those regres-

sion coefficients that are thought to vary spatially (Finley, 2011). GWR has recently been

shown to produce biased estimates and its application is not straightforward for generalized

models. SVC offer a richer inferential framework at the cost of being computationally de-

manding. Moreover, identifiability issues may arise from the estimation of several spatially

structured covariates.

Our model can be easily implemented in standard software for Bayesian inference

(e.g.BUGS) and allows a parsimonious model definition yet leading to best predictive

performance. The model in its current formulation does not take into account potential

interaction terms between the covariates. The variable selection procedure can be easily

extended to identify important interactions.

A natural field of application of the proposed methods is that of spatial epidemiology of

environmentally driven diseases, where the study area is often large, contains different eco-

logical zones and the effects of predictors may depend on the zone. Our example is focused

on a study of malaria risk in Mali. The malaria endemic area in the country is divided

into three different ecological zones. Malaria transmission is influenced by suitable rainfall

and temperature that affect mosquito survival and longevity and therefore contribute to

abundance of the mosquito population. The Bayesian variable selection procedure identi-

fied the most important environmental predictors of parasitaemia risk in each ecological

zone. These predictors had meaningful biological interpretation. In particular, our analysis

showed that in the Sahel where the amount of precipitation is very low, an increase in the

amount of rainfall was associated with an increase in malaria risk. In the flooded region in
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the centre of the country, temperature was the most important predictor. In the Sudannian

ecological zone vegetation index, which is a proxy of humidity, was identified as the main

factor affecting the disease risk. Malaria in Africa is present in both rural and urban areas

(Machault et al., 2011) but, as confirmed by our analysis, levels of transmission in urban

areas are usually lower than those in peri-urban and rural places. The estimated malaria

prevalence map identified high risk areas in the centre (Sigou region) and South of the

country (Sikasso region).

Earlier mapping efforts of malaria risk in Mali are based on compilation of historical

survey data. Our results are consistent with the ones obtained by Gemperli et al. (2006a)

and Gemperli et al. (2006b). A similar pattern is also observed comparing our map with

the one produced by Gosoniu et al. (2009) with exception of the parts of the country at the

border with Burkina Faso and Côte d’Ivoire. The map of Mali produced by the Malaria

Atlas Project (Hay and Snow, 2006) shows similar values of predicted risk in the areas of

Sikasso and Sigou, but much lower in Kayes and in the South-East region.

The proposed methodology improves disease risk prediction over large areas compared

to commonly used stationary geostatistical models. The described models can be used

to address the current needs of international agencies (e.g. World Health Organization,

The Global Fund) which are interested in global atlases of infectious disease burden and

estimates of the required amount of preventive and curative treatments.
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Abstract

The study of malaria spatial epidemiology has benefited from significant progress in geosta-

tistical modelling as well as recent advances in Geographic Information System (GIS) and

(EO) systems that have led to the development of high (HR) and very high (VHR) resolu-

tion products. However, few studies have linked malaria survey data with RS-derived land

cover/use (LC) variables. In this study, we assess the effect of the spatial resolution of RS-

derived environmental variables on malaria risk estimation in Mozambique. We propose

a proximity measure to define LC variables to be included as covariate in a geostatistical

model. We use data collected in a Demographic and Health survey (DHS) carried out in

2011 throughout the country. We compare the risk predicted using HR (Modis) covariates

with the one obtained employing VHR based on elevation measures by the Digital Eleva-

tion Model and a LC map produced by MALAREO, a FP7 funded project which covered

part of Mozambique during 2010-2012. The number of infected children was predicted

using Afripop population data and compared with an ”enhanced” population layer derived

by the MALAREO LC map.
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5.1 Introduction

Malaria remains one of the most important parasitic disease of humans, and a leading

cause of morbidity and mortality in the developing world, especially sub-Saharan Africa,

where it constitutes a major impediment to economic development.

The study of malaria spatial epidemiology has benefited from the significant progress in

the development of Geographic Information System (GIS), computerized systems capable of

collecting, storing, handling, analyzing and displaying all forms of geographically referenced

information, usually achieved by the Global Positioning System (GPS).

Advances in earth observation (EO) systems, gathering of information about Earth via

remote sensing (RS) technologies, have led to the development of high spatial resolution

products. The growing availability of RS data, some of them accessible free of charge via

the Internet, played a crucial role in determining the environmental predictors of malaria

transmission (Ceccato et al., 2005). RS data and spatial statistics have been used for

mapping malariometric indices as presence and persistence of vectors’ (mosquitoes of the

species Anopheles) breeding sites, larval densities, the entomological inoculation rate (EIR)

as well as malaria prevalence, morbidity and mortality in the human (Machault et al.,

2011). The readily available up-to-date information on environmental variables pertinent to

malaria transmission over large and remote regions makes RS a useful source of information

for identification of pockets of transmission and epidemic early warning systems (EWS). RS

can assist malaria control and elimination programs, through the development of spatial

decision support systems enabling accurate and timely resource allocation (Clements et al.,

2013).

The MALAREO project, (www.malareo.eu), supported by the Seventh Framework

Programme (FP7) space research program, aimed at building GIS, EO and spatial statis-

tics capacities and implement the use of EO products directly supporting the malaria

control programmes (MCP) in Southern Africa. The project focused on the area that

corresponds to the geographic region targeted by the Lubombo Spatial Development Ini-

tiative (LSDI) launched in 1999 for accelerating development, particularly with regard to

agriculture and tourism within an area of approximately 30,000 km2, covering southern

Mozambique, eastern Swaziland, and north-eastern South Africa. The main product cre-

ated within the MALAREO project is a high resolution (5m) land cover/land use (LC)1

map based on RapidEye (Blackbridge now) technology. RapidEye indicates both the Earth

1 Land cover and land use are often mapped together as a result from remotely sensed image, although land cover refers to
characteristics of the biophysical Earth surface (e.g. water, vegetation, bare soil, artificial structures, while land use reflects
human activities such as agriculture, forestry and urban development (Machault et al., 2011)
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observation imagery (Franke et al., 2013) and the information provider focused on assisting

in management decision-making.

The LC layer was further classified into malaria-relevant LC classes including wetlands,

permanent and flowing water bodies, large scale agriculture, savanna and forests. A high

resolution population density map was obtained by the combination of the LC data and

census estimates following the approach used for the production of population layers in the

Afripop project (Tatem et al., 2007), described in detail in Linard et al. (2011).

LC types have been associated with vector habitats based on simple classification tech-

niques, as well as more sophisticated statistical models that link satellite-derived multi-

temporal meteorological data and earth observations with vector biology and abundance

(Kalluri et al., 2007). A review of studies characterizing LC features and their roles in

malaria transmission can be found in Stefani et al. (2013).

Very few studies used LC in mapping of malaria prevalence from survey data. Omumbo

et al. (2005) used an LC layer produced by the Africover project (http://www.africover.

org) from visual interpretation of Landsat digitally enhanced Thematic Mapper(ETM)

satellite imagery to map malaria risk in East Africa. The authors defined two ecological

zones and used LC classes ”water bodies” and ”area type” (urban/rural), defining them

as the percentage area of each pixel occupied by each class. Craig et al. (2007) regrouped

the thirteen United States Geological Survey land cover classes (Anderson, 1976) into

two categories, broadly corresponding to drier and moister land cover types in Botswana.

Gosoniu et al. (2009) employed LC data from the United States Geological Survey (USGS)

and grouped them into the following six categories: urban area, cropland, grass/shrub

land/savanna, water bodies, wetland and forest. Both Craig et al. (2007) and Gosoniu et al.

(2009) used LC as categorical variable in their models. Riedel et al. (2010) assessed the

role of LC, from Moderate-resolution Imaging Spectroradiometer (Modis), in the analysis

of malaria indicator survey data (MIS) in Zambia. Five categories were defined: wetlands,

forests, urban areas, shrublands and others. At each cluster location, the land cover

covariate was summarized by the proportion of each land category within a radius of 3 km.

In the above works, associations were found in particular with the ”urban” LC class, where

the odds of malaria were significantly lower, but the results in general varied by studies.

In this work, we study the effect of the spatial resolution of RS-derived environmental

covariates (LC and elevation) and population density on the estimation of malaria risk

and number of infected children. Furthermore, we propose a modelling strategy for the

LC covariate that allows direct estimation of the effect of each LC class type and we study
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associations with malaria risk in a geostatistical model. The data used in the analysis were

collected in the malaria module of the Demographic and Health survey (DHS) conducted

in 2011 in Mozambique2 and HR environmental variables were freely available on the

Internet. In the area of Mozambique belonging to the LSDI area (approximately 11 km2 in

the southern part of Maputo province), the LC and population density layers were used for

model validation. We produce spatially explicit estimates of parasitaemia risk and number

of infected children in the whole country and we perform a predictive analysis using very

high resolution data (MALAREO products and elevation from DEM) and compare the

estimates in terms of log-score (predictive performance) with the lower resolution products.

Malaria risk and number of infected children below the age of 5 years were produced in

the MALAREO area over grids of 1km, 500m and 100m spatial resolution.

5.2 Materials and methods

5.2.1 Study area

The Republic of Mozambique is bordered by the Indian Ocean to the east, Tanzania to

the north, Malawi and Zambia to the northwest, Zimbabwe to the west and Swaziland and

South Africa to the southwest. Malaria remains a major cause of morbidity and mortality

in the country. It is endemic throughout the country, with regions ranging from mesoende-

mic to hyperendemic. The climate creates a favourable environment for the main malaria

vectors: Anopheles gambiae, arabiensi, and funestus species. P. falciparum is the most

common parasite and it is responsible for approximately 90% of all malaria infections.

The peak of transmission occur during and after the rainy season, between December and

April, although malaria is transmitted year round. In the last decade the MCP has im-

plemented large scale IRS programs in several areas of 42 districts (Ministerio da Saúde e

Instituto Nacional de Estat́ıstica e ICF International, 2013). IRS was also the major com-

ponent of the Lubombo Spatial Development Initiative (LSDI). Distribution of insecticide

treated nets (ITN) and long lasting insecticidal nets (LLIN) targeted all age groups since

2009. Bednet coverage is estimated to have reached almost 40% by 2011 (WHO Malaria

report 2012).

2Data have been already analyzed elsewhere, without the inclusion of LC classes, see Giardina et al. (2013a)
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5.2.2 Data

Malaria data

The DHS in Mozambique was carried out between June and November 2011 and involved

around 13000 households. A total of 4885 children was tested for parasitemia with rapid

diagnostic test (RDT) and microscopy. Geo-reference and parasitaemia measuraments

were available for 603 clusters (groups of households) in the survey.

Remote sensing data

Land surface temperature (LST) data for our analysis were obtained from Modis at 1 km

spatial resolution. Dekadal rainfall data were available at 8 km resolution via Africa Data

Dissemination Service. Elevation data were obtained from an interpolated digital elevation

model from the U.S. Geological Survey - Earth Resources Observation and Science Data

Center at a spatial resolution of 1 km. and from the Digital Elevation Modeling (NASA)

at very high spatial resolution (30m). The environmental factors with available temporal

resolution (LST and rainfall) were acquired for the 3-month period prior to the survey and

the average was calculated and extracted for each data location. Afripop and MALAREO

population density estimates at 100m resolution were used.

Land cover

The Modis product for LC was aligned to rapid-eye (MALAREO) categories. The alloca-

tion was done on the basis of the available description of the layers as well as a graphical

assessment. The final categories are summarized in Figure 5.1.

5.2.3 Statistical analysis

LC proximity measure

While for other environmental factors we considered RS-derived values at locations only,

we assume that LC classes may affect parasitaemia levels within larger areas surrounding

the location. For this purpose, a measure of proximity was used to link LC type with

the observed (DHS cluster) and predicted location. In particular, we defined LCij =

exp
(
−d∗

i,LCcatj

)
,∀j = 1, . . . , k where d∗

i,LCcatj
indicates the minimum Euclidean distance

between location i and the LC category j.

Geostatistical model

Let Yi and Ni be the number of malaria-infected and screened individuals at location

i (i = 1, . . . , n) and pi the probability of infection. We assume that Yi arises from a
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Figure 5.1: LC classes alignment. Classes defined in Modis (first column), classes defined
in MALAREO (second column), classes used for the analysis (third column).
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Binomial distribution, Yi ∼ Bin(pi, Ni). The influence of environmental covariates Xi and

location-specific spatial random effects ωi are modelled on the logit scale, i.e. log
(

pi
1−pi

)
=

XT
i β+ ωi, where β is the vector of regression coefficients. Unobserved spatial variation is

introduced on ωi by assuming that ω = (ω1, . . . , ωn)T follows a latent stationary Gaussian

process over the study region, ω ∼ MVN(0,Σ). The matrix Σ has elements Σij and

represents the covariance between any pair of locations i and j. Assuming an isotropic

exponential correlation function, the matrix elements Σij are defined by Σij = σ2exp(−ρdij)
with spatial variance σ2, rate of correlation decay ρ with Euclidean distance between

locations dij. The minimum distance for which the spatial correlation is less than 5% is

referred to as range and can be calculated by 3/ρ in the exponential correlation function

setting.

A Bayesian model formulation requires the specification of prior distributions of all

model parameters. For the regression coefficients β, we assumed Normal prior distributions

with mean 0 and large variance. For the spatial parameters σ2 and ρ, we chose non-

informative inverse Gamma and Gamma distributions, respectively.

The model was fitted using MCMC simulation implemented in the software JAGS (Just

Another Gibbs Sampler, Plummer (2003)). Spatially explicit estimates of the malaria risk

and number of infected were obtained through the predictive distributions over a grid

formed by pixels of 3km resolution.

Assessing the effect of spatial resolution on model-based predictions

The model was validated using as training set all DHS data except the 35 locations belong-

ing to the MALAREO area (Figure 5.2), which formed the testing set. The model used

HR variables in the fitting part and HR as well as VHR variables in the prediction, see

Table 5.1. Model performance was compared in terms of log-predictive density (Robert,

1996). Spatially explicit predictions (malaria risk and number of infected) were obtained

over grids covering this area with spatial resolution of 1km, 500m and 100m using both

HR and VHR variables.

5.3 Results

The effect of the environmental and climatic factors on parasitaemia risk estimated from the

full DHS dataset is shown in Table 5.2. The main determinants of malaria were rainfall

and LSTD. Among the LC classes, the presence of large scale agriculture and bare soil

reduced the odds of parasitaemia by 8% (95%BCI: 0-15%) and 44% (95%BCI: 26-60%),
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Figure 5.2: MALAREO project area. The area includes the Northern part of South Africa
(KwaZulu-Natal province), eastern Swaziland and the Southern part of Mozambique.

Table 5.1: RS-derived environmental variables. Sources and spatial resolution for HR and
VHR covariates used.

Variable Source/Product (HR) Sp. resolution Source/Product (VHR) Sp. resolution
LC Modis (mcd12q1) 500m Rapid Eye 5m

Elevation Modis 100m DEM 30m
LST Modis (mod13a2) 1km – –

Rainfall MEFW (ADDS) 8km – –
Population – – Afripop (Landsat) 100m
Population – – MALAREO (RapidEye) 100m

respectively. The presence of bush, forest, savanna and wetlands increased the odds of

parasitaemia by 31% (95%BCI: 21-42%), 11% (95%BCI: 4-19%), 34% (95%BCI: 18-46%)

and 37% (95%BCI: 55-75%). The estimates of the spatial parameters revealed a variance

of 2.61 (95%BCI: 1.64-2.82) and a spatial range (the distance at which the correlation

becomes negligible) of around 85.56 km (56.22-127.32).

The same model was used to predict malaria risk among children between the age of 0

and 5 years, over a grid of 3km resolution. Figure 5.3 shows that the two provinces with

the highest malaria risk were Nampula and Zambezia, in the northern part of the country.

The southern parts of the country were characterized by lower risk compared to the rest

of the country (<10%), especially Maputo (city and province) and Gaza province.
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Table 5.2: Posterior estimates arising from the geostatistical model fitted on the full DHS
dataset with Modis LC. LC categories refer to the aligned variable.

Covariate Median (95% BCI)
Rainfall 0.14(0.07, 0.22)
LSTN -0.11(-0.40,0.16)
LSTD 0.31(0.09,0.54)
Elevation -0.03(-0.14,0.07)
LC category

Agriculture -0.09(-0.17,-0.01)
Bush 0.27 (0.19,0.35)

Forest 0.11 (0.04,0.18)
Savanna 0.30(0.17,0.45)

Urban 0.05(-0.16,0.41)
Water 0.09(-0.2,0.40)

Bare soil -0.59(-0.91,-0.30)
Wetlands 0.44(0.32,0.56)

Spatial parameter Median (95% BCI)
σ2 2.61(1.64,2.82)
ρ 2.31(1.51,3.43)

Figure 5.3: Predicted malaria risk among children under the age of 5 years. Median
estimates are plotted at 3km resolution.
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Estimates of the number of children infected by malaria parasites were obtained from

the predictive distribution of the risk and population data at 100m spatial resolution

provided by Afripop (Figure 5.4). In most of the country the number of infected children

per 9 km2 ranges from 1 to 10. In some densely populated areas, e.g. Maputo and Matola

cities, and in very high risk areas, e.g. Zambezia province, the number can reach the value

of 1800 children.

Figure 5.4: Predicted number of malaria infected children under the age of 5 yers. Median
estimates are plotted at 3km resolution.

The model validation revealed that the use of VHR covariates in the 35 testing locations

improved prediction performance. In particular, the model that employed the MALAREO

layer for LC and the DEM values for altitude had a log-predictive density of -115.12

(95%BCI: -122.32,-104.21) whilst the model that used HR covariates (-132.22 (95%BCI:

-143.11,-121.17)).

Predictions in the same area were carried out at several spatial resolutions. Figure 5.5

depicts the predicted malaria risk among children aged 0-59 months at 1km, 500m and 100m

resolution using HR and VHR data. Table 5.3 shows how the estimated number of infected

children is affected by the population layer (and, indirectly by the spatial resolution of the

environmental covariates). On average, the total number of infected children estimated

by the models increased with increasing resolution of the predictive grid. The use of HR

variables tended to result in an overestimation in the number of infections.
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Figure 5.5: Predicted malaria risk (median) obtained by model with HR covariate (first
row) and VHR covariates (second row). Spatial resolutions: 1km resolution (first column),
500m resolution (second column) and 100m resolution (third column).

Table 5.3: Estimated total number of infected children in the MALAREO area (median
and 95% BCI) using HR and VHR products.

1km 500m 100m

HR 43,554.66 45,170.95 45,605.47
(42,334.51 - 44,234.32) (44,524.77 - 46,123.47) (44,532.44 - 46,892.33)

VHR 37,900.79 37,919.03 38,110.79
(36,884.44 - 38,423.94) (37,011.02 - 38,625.77) (37,773.33 - 39,100.43)

5.4 Discussion

This study focuses on the use of HR and VHR RS-derived variables to obtain spatially

explicit malaria burden estimates in geostatistical models. In particular, the work shows

the effect of different spatial resolutions of elevation and LC layers (and derived population

estimates) on the estimation of risk and number of infected children below the age of 5 years.

Moreover, an alternative definition of the LC covariate based on a proximity measure is
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proposed to study associations of 8 different LC types with malaria risk and obtain explicit

effect estimation.

The analysis has been performed on data collected by the Mozambican DHS in 2011

with a geostatistical model utilizing HR and VHR RS environmental variables. The model

was fitted with HR variables and a grid of 3km resolution was chosen in the prediction

for comparison purposes with a previous work (Giardina et al., 2013a). The coefficients’

estimates of the common variables (Rainfall, LSTN and LSTD) were in agreement with

Giardina et al. (2013a) as well as the total malaria burden measure (number of infected

children). The spatial parameters estimates (variance and decay parameter) also showed

similar values.

A relatively small number of studies have included LC classes in geostatistical models

for malaria risk mapping despite its important role in determining the suitability for trans-

mission of the disease. This may be due to difficulties in the definition of the variable

to be used in the models. Introducing LC covariate as relative frequencies of each group

category within a buffer, is perhaps conceptually the best way of defining the variable but

it has some drawbacks. For example, parameter estimates have to be expressed relatively

to a baseline category and there is a certain arbitrariness in the choice of the reference

category as well as the size of the buffer. Here we have proposed a proximity measure that

does not account for the area covered by a specific LC class surrounding the locations, but

it is based on the distance between locations and each LC classes. This work showed that

“wetlands” and “bare soil”, were important risk and protective factors in malaria modeling,

respectively. The effect of large scale agriculture on malaria risk has always been contro-

versial: it has often been assumed that a high number of malaria vectors resulting from

irrigation schemes lead to increased malaria in local communities. However, recent studies

in Africa have revealed that for many sites there is less malaria in irrigated communities

than surrounding areas. It has been suggested that many communities near irrigation

schemes benefit from the greater wealth created and consequently they have greater use of

bednets, better access to improved healthcare and receive fewer infective bites compared

with those outside such development schemes (Ijumba and Lindsay, 2001).

The MALAREO project took place during the period 2010-2012 in the LSDI area,

therefore covering part of Mozambique. Within the MALAREO project a VHR LC map

covering the study area at 5m resolution was produced. A secondary outcome was an

”enhanced” population map, obtained by the combination of the LC layer with census

data, aggregated at 100m resolution. Modis LC categories (HR) were aligned with the



94 Chapter 5. Spatial resolution effect on malaria modelling

MALAREO LC categories and used for validation purposes in the prediction of the par-

asitaemia risk at locations belonging to the MALAREO area. The comparison showed

that the model which used VHR products (MALAREO LC and DEM elevation) had a

higher predictive ability than the one that used HR data. Spatially explicit estimates over

the grids of 1km, 500m and 100m showed large differences in the risk and in its spatial

pattern. However, our results may be sensitive to different allocation of Modis categories

to the final variable used for the model. The Modis LC layer is based on a global classifica-

tion methodology and may miss some local features: in particular, the “wetland” category

showed the largest differences in the comparison with the MALAREO layer. On the other

end, the MALAREO LC categories were assigned by a “supervised” algorithm (people

drove through the mapped areas) that allowed a more detailed description of the soil, that

would not possible with Modis. However, VHR products like the MALAREO LC are very

expensive and may not be feasible over large areas.

In this study, the estimated total number of infected children increased with increasing

resolution of the predictive grid independently on the spatial resolution of the covariates

used for prediction. The use of HR variables tended to result in an overestimation of

the number of infections. Observed differences between the 1km resolution and the 500m

resolution grid using HR covariates are the result of aggregation of environmental covariates

as well as population density over larger areas, however the differences between the 500m

and 100m resolution grid were only due to population density, as the Modis LC original

resolution was 500m.

Accurate estimation of malaria parasitaemia risk has important implications on the

planning of cost-effective control measures such as distribution of insecticides treated nets

and indoor residual spraying. The estimation of number of infected can support NMCPs

in the determination of treatment needs.
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Abstract

Spatially explicit disease burden estimation is essential for public health policy. Informa-

tion on disease burden is often combined from multiple sources, such as research studies

that may differ from one another in their design. For example, disease surveys that aim

at estimating prevalence may be heterogeneous in the sampling methods (e.g. random or

preferential), diagnostic tools used, age groups of sampled individuals, spatial and temporal

factors. Little has been done in the context of prevalence estimation from the combination

of heterogeneous geo-referenced surveys. In this work, we address age and time hetero-

geneity between surveys by proposing a general formulation that couples spatial statistical

models and mathematical transmission models. Our methodology is applied in the area of

malaria mapping to obtain age and season specific high resolution disease risk estimates in

Zambia.
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6.1 Introduction

Estimating disease burden at high spatial resolution has become of increasing importance

for decision and policy makers. Accurate morbidity and mortality figures disaggregated in

space and time allow the identification of geographical and seasonal pattern of the disease

and result in an enhanced understanding of the latter, guiding allocation of public health

resources.

Information on the disease burden is often combined from multiple sources, such as

research studies that may differ from one another in their design. For example, disease

surveys that aim at estimating prevalence may be heterogeneous in the sampling methods

(e.g. random or preferential), diagnostic tools used, age groups of sampled individuals,

spatial and temporal factors. However, combining information from multiple surveys can

improve estimates quality (i.e. reduce bias and improve precision); the work by Turner et al.

(2009) discussed potential sources of internal and external bias and illustrated methodolog-

ical development in the meta-analysis of multiple survey data. Combination of randomized

and non-randomized surveys were proposed by Hedt and Pagano (2011) in the estimation

of prevalence with a simple annealing methodology. In spatial settings Manzi et al. (2011)

combined surveys to obtain improved small area statistics with a Bayesian hierarchical

model which allows for additive bias.

Little has been done in the context of geostatistics where it is often necessary to com-

bine information from multiple prevalence surveys in order to obtain high resolution risk

estimates. The work by Crainiceanu et al. (2008) estimated Loa loa risk in space by combin-

ing morbidity questionnaires with parasitological surveys after calibrating the relationship

between the diagnostic tool specific prevalences. Wang et al. (2008) adjusted for the bias

arising from surveys that used different diagnostic tools by incorporating specificity and

sensitivity parameters in a geostatistical model. Giorgi et al. (2013) described a general

class of models to correct for spatially structured bias in random and preferential sampled

surveys allowing for temporal variation in prevalence between consecutive survey-periods.

In this work, we address age and time heterogeneity between surveys by proposing a

general formulation that couples geostatistics and mathematical transmission models. Our

methodology is applied in the area of malaria mapping to obtain high resolution disease

risk estimates in Zambia.

Malaria is a mosquito-borne disease of major public health importance, widespread

throughout the tropical and subtropical regions, including parts of Africa, Asia and Amer-

icas. It is a leading cause of illness and death in large areas of the developing world,
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especially Africa (WHO, 2012). Prevalence is the most widely available measure of ma-

laria endemicity: a large number of community-based surveys assessing the presence of

parasites in the blood have been conducted over the past decades. However, parasite

prevalence surveys have been carried out in different areas and seasons sampling differ-

ent and sometimes overlapping age groups population making their estimates not directly

comparable. Space and time represent an important source of heterogeneity in prevalence

measures, since malaria’s main drivers are environmental and climatic conditions. In fact,

factors like temperature and rainfall determine habitat suitability for the vectors, mosqui-

toes of the Anopheles species. In some African countries, the extreme changes due to the

alternation of dry and wet periods, determine the seasonal nature of the disease. Moreover,

the acquisition of partial immunity in older children and adults in endemic areas leads to

age-dependence of prevalence measures.

Early work on geostatistical models of historical survey data for malaria was boosted by

the Mapping Malaria Risk in Africa (MARA) project (Craig et al., 1999), a multi-country

partnership that provided the most comprehensive source of malariometric data across

Africa, containing age-specific geo-referenced prevalence data assembled from published

and gray literature since the early 1960s until 2009. Kleinschmidt et al. (2001),Gemperli

et al. (2006a) and Gosoniu et al. (2006) focused on a specific age group, discarding surveys

with different or overlapping ages of the population resulting in unreliable malaria trans-

mission estimates. The Garki malaria transmission model (Dietz et al., 1974) was employed

by Gemperli et al. (2006b) and Gosoniu (2008) to convert observed prevalence data gath-

ered from heterogeneous surveys into an estimated age-independent entomological measure

of transmission intensity, which was further used for mapping purposes.

As part of the Malaria Atlas project (MAP), Hay et al. (2009) produced a continuous,

global, malaria endemicity surface due to the main parasite species, P. falciparum, in 2007

using historical survey data (Moyes et al., 2013). The authors employed a Bayesian for-

mulation of the catalytic model by Pull and Grab (1974), which allowed for age-specific

prevalence estimation (Smith et al., 2007). The model assumed a space/time independent

force of infection. Age-adjusted prevalence estimates were fitted separately in a geostatis-

tical model. Therefore, the works Gemperli et al. (2006b), Gosoniu (2008) an Hay et al.

(2009) were based on a 2-step procedure that did not account for the uncertainty arising

from the age-standardization model. Moreover, these approaches ignored the survey period

as source of heterogeneity in the prevalence measures.

Here we propose a Bayesian joint formulation for prevalence and incidence data by
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embedding a modified version of the catalytic model by Pull and Grab (1974) into a

geostatistical model. Furthermore, we extend the age-standardization procedure outlined

in Smith et al. (2007) and Hay et al. (2009) into an age/season-standardization by allowing

the force of infection to vary in space and time. In particular, the model estimates a

latent force of infection that can vary geographically on a monthly basis, and links it to

the fraction of population with parasitaemia through a function of epidemiological and

local detection parameters. The estimation of these parameters permits the calculation

of spatially varying age-prevalence curves. Geo-referenced malaria prevalence surveys can

therefore be combined accounting for season and age heterogeneity and the spatial residual

structure can be estimated. In summary, our approach combines a mechanistic model for

malaria transmission and empirical estimation from data in a Bayesian framework, allowing

the standardization of surveys to a unique (or a combination of defined) age category and

season and the estimation of malaria burden at high spatial resolution.

We illustrate the methods using prevalence data from Zambia extracted by the MARA

database accessible online (http://www.mara-database.org/) as well as data collected

in the national malaria indicator survey (MIS) in 2006 that assessed malaria parasitaemia

in children under five years of age. The latter has been already analyzed elsewhere (Riedel

et al., 2010) using a geostatistical model. Confirmed malaria cases gathered at health

district level by the health management information system (HMIS) in Zambia (Chanda

et al., 2012) were used to estimate the force of infection.

6.2 Bayesian Hierarchical model

6.2.1 Modelling prevalence

Let Y
[ai1,ai2]

[ti1,ti2] (s) and N
[ai1,ai2]
[ti1,ti2] (s) denote, respectively, the number of positives and the total

number of screened at location s ∈ S ⊆ R2 for each survey i, ∀i = 1, . . . , n carried out

during months [ti1, ti2] whose age target population ranged from ai1 to ai2. We assume

that Y
[ai1,ai2]

[ti1,ti2] (s) follows a Binomial distribution with parameters N
[ai1,ai2]
[ti1,ti2] (s) and π

[ai1,ai2]
[ti1,ti2] (s),

thus

Y
[ai1,ai2]

[ti1,ti2] (s) ∼ Binomial
(
N

[ai1,ai2]
[ti1,ti2] (s), π

[ai1,ai2]
[ti1,ti2] (s)

)
Smith et al. (2007) expressed the disease risk π

[ai1,ai2]
[ti1,ti2] (s) for the specific age group

[ai1, ai2] by the ratio

ai2∑
a=ai1

pait(s)

F (a)qis(a)
which is the product of pait(s), i.e. the true proportion of
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infected people of age a at time t and location s, the age-dependent probability of para-

sitaemia detection, F (a), and the number of sampled people of age a in survey i, qis(a),

over the total number of screened
ai2∑

a=ai1

qis(a) = N
[ai1,ai2]
[ti1,ti2] (s). In the original formulation by

Pull and Grab (1974) pait(s) is obtained by

pait(s) =
m

(m+ r)
(1− exp {−a(m+ r)}) (6.1)

where m is a constant force of infection and r represents the recovery/clearance rate of

infection. Equation (6.1) is the solution of the catalytic model expressed by the differential

equation dpa/da = m(1 − pa) − rpa with initial conditions p0 = 0. This choice implies

pait(s) = pa,∀i ∈ 1, . . . , n, ∀s ∈ S,∀t ∈ 1, . . . 12. Smith et al. (2007) proposed to model the

age-dependent probability of parasitaemia detection (sensitivity) with a function of the

following form:

F (a) =

1 a < αc

1− k(1− exp {−c(a− αc)}), a ≥ αc

where αc represents the threshold age after which the sensitivity starts decreasing from

1 to the associated asymptotic value 1−k with a decline described by c. The function F (·),
was motivated by the notion that sensitivity declines with age as blood-stage immunity

reduces parasite densities to a point where they are often below the detection thresholds of

microscopy (McKenzie et al., 2003). The total sampled population in survey i at location

s carried out during months [ti1, ti2] with age target population from ai1 to ai2. is N
[ai1,ai2]
[ti1,ti2]

but the age-specific sample distribution qis(a) is usually unknown. Hay et al. (2009) assign

qis a Dirichlet-Multinomial distribution where a probability vector fi is drawn from a

Dirichlet distribution with known parameter vector θi and qis is the discrete sample drawn

from the multinomial distribution of probability vector fi

qis|fi ∼Multinomial(N
[ai1,ai2]
[ti1,ti2] (s),fi)

fi|θi ∼ Dirichlet(θi)

where θi assigns weights to the age classes for survey i that range from ai1 to ai2, (the

length of vector q and f depends on the survey).

We extend the above formulation by letting pait(s) vary over space and time, as a function
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of the force of infection mt(s). In particular, Equation (6.1) becomes

pait(s) =
mt(s)

(mt(s) + r)
(1− exp {−a(mt(s) + r)}) (6.2)

and we assume

logit
(
π

[ai1,ai2]
[ti1,ti2] (s)

)
= logit


ti2∑
t=ti1

ai2∑
a=ai1

pait(s)F (a)qis(a)

(ti2 − ti1 + 1)
ai2∑

a=ai1

qis(a)

+ ω(s)

where ω(s) is a zero-mean latent Gaussian process with covariance function

Cov(ω(s), ω(s′)) = ψ2 exp(−ρd(s, s′)) being d(s, s′) the Euclidean distance between lo-

cations s and s′ and ρ decay parameter and ψ2a variance parameter.

6.2.2 Modelling incidence

We indicate with Zjtk the number of confirmed malaria cases in the general population

living in district j (second administrative level) ∀j ∈ 1 . . . , nd in month t, t = 1, . . . , 12

and year k, k = 1, . . . , K. The environmental covariates are available on a grid that is a

refinement of the administrative division for which the response variable Zjtk is available.

Following the approach proposed by Zhu et al. (2000), we model the misalignment arising

from the different geographical scales between the disease outcome and the covariates, as

follows:

Zjtk|β, a, b, ωi, φt, εk ∼ Poisson

 Lj∑
l=1

Pjltk exp(ηjltk)


where l index the subregions of district j and the mean ηjltk can be decomposed in the

sum of a monthly average µjlt and a set of year-specific random effects εk, ε = (ε1, . . . , εK),

i.e. ηjlkt = µjlt + εk and

µjlt = X ′jltβ +
12∑
t=1

γ sin

(
2πt

T

)
+ δ cos

(
2πt

T

)
+ φj + ζt

The set of p covariates X ′ is composed by monthly averages over the years in each

subregion l of district j and β is a p-dimensional vector of coefficients; the sum of periodic

functions models the seasonality in the reported cases (T = 12 corresponds to one cycle
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of transmission within each year). We consider the population Pjltk constant across the

years, i.e. Pjltk = Pjlt.

We specify independent Gaussian priors for each regression parameter β, and seasonal

terms γ and δ. i.e. β, γ, δ ∼ N(0, h1). The set of random effects φ = (φ1, . . . , φ72) are

defined as the sum of a spatially unstructured term γ such that ∀j, γj
iid∼ N(0, σ2), σ2 ∼

U(0, h2) and a conditionally auto-regressive term θ, i.e., ∀j, θj|θ−j ∼ N

 72∑
j′=1

vjj′θj

72∑
j′=1

vjj′

, τ2
72∑
j′=1

vjj′


where τ 2 ∼ U(0, h3) and v are binary weights based on geographical contiguity: vjj′ = 1

if districts (j, j′) share a common border (denoted j ∼ j′), and zero otherwise. We adopt

Gaussian prior distributions on month- and year- specific random effects, that is ζt
iid∼

N(0, ν2),∀t = 1, . . . , 12 and εk
iid∼ N(0, λ2),∀k = 1, . . . , K respectively (where ν2, λ2 ∼

U(0, h4)).

The force of infection mt(s) in Equation (6.2) is approximated by the year-independent

mean incidence µjlt where l is the pixel that includes s.

6.2.3 Age/season specific prevalence estimation and spatial krig-

ing

Simulating from the posterior distributions of the parameters, prevalence estimates can be

aligned to a unique age group [a∗1, a
∗
2] and months [t∗1, t

∗
2] with the following relation:

π
[a∗1,a

∗
2]

[t∗1,t
∗
2] (s) =


t∗2∑
t=t∗1

a∗2∑
a=a∗1

pat (s)F (a)qis(a)

(t∗2 − t∗1 + 1)
a∗2∑

a=a∗1

qis(a)

 logit−1(ω(s))

where qis is the vector of size [a∗2 − a∗1 + 1] sampled from th Multinomial distribution of

paramter θ. Bayesian kriging is performed to obtain age and season adjusted prevalence

maps.

6.3 Application to malaria prevalence surveys

6.3.1 Malaria data

The MARA database contained 92 distinct geo-referenced parasite prevalence random sur-

veys since 1978. Around the 20% of the surveys were conducted during the first months
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of the year, where the rains are abundant and the peak of transmission occurs. The rest

of surveys was spread throughout the year, including very dry months. The majority of

surveys (53%) targeted school age children but wide information is available on adults as

well. Parasitaemia was assessed with microscopy. The MIS was carried out from May

to June 2006, after the end of the rainy season, and sampled 109 geo-referenced clusters

(group of households). To estimate the force of infection we have used malaria incidence

information. These surveillance data consist of laboratory confirmed malaria cases and

are gathered routinely by the national HMIS in Zambia since 2009. Data are reported

monthly in each one of the 72 districts. We have considered 3 years (from January 2009

to December 2011).

6.3.2 Environmental data derived from remote sensing sources

Data on potential environmental predictors for malaria are available from remote sens-

ing (RS) sources at high spatial and temporal resolution. Day and night land surface

temperature (LST) as well as normalized difference vegetation index (NDVI) were down-

loaded from the Moderate Resolution Imaging Spectroradiometer (MODIS), maintained by

the United States Geological Survey (USGS) Land Processes Distributed Active Archive

Center (LP DAAC). Precipitation data are available through the Africa Data Dissemina-

tion Service (ADDS), an operational part of the Famine Early Warning Systems Network

(FEWS NET). Altitude data were downloaded by the digital elevation model derived from

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery.

Water bodies were obtained by freely available ARCGIS layers. Population data at high

spatial resolution are available from a combination of RS sources and census data (Tatem

et al., 2007).

6.3.3 Implementation

Environmental and climatic variables were re-sampled over a grid of 3 km resolution and

summarized as monthly averages. To account for the elapsing time between the climatic

suitability for malaria transmission and number of reported cases, precipitation was con-

sidered as the cumulative amount in the 2 months prior to the reported cases. The 3 km

resolution grid, resulting in around 100000 pixels, was used to impute the mean incidence

ηjltk and considered adequate to approximate the value of the same at location s falling

in pixel l of district j. The same grid was used to obtain age/season-adjusted prevalence

predictions for mapping.
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The age a was discretized in 1-year intervals from 0 to the age of 29 years and 5-

year intervals from 30 to 75 years. The hyperparameter vector θ was set to the values

reported by the United Nations population division estimates (UN, 2012b). The prior

distributions that were assigned to the epidemiological and local detection parameters

were fairly informative since they represent characteristic quantities in malaria and there

is available literature on their range of values, e.g. (Smith et al., 2007; Ross and Smith,

2010). In particular, the asymptotic sensitivity was assigned a Beta prior distribution with

shape and scale parameters in order to set the median at 0.50 and the 0.975-th quantile at

0.90, the age of immunity acquisition was assumed uniformly distributed between 5 and 12

(years), and c was given a Gamma distribution of prior mean 0.05 (years−1) and variance

ten times larger than the mean. The recovery rate r was centered around 1.8 (years−1) (it

takes around 200 days to clear an infection (Smith et al., 2005)).

The hyperparameters h1, h2, h3, h4 were set to the value 100 to impose non-informative

priors on the variance parameters and coefficients. A Markov chain Monte Carlo (MCMC)

algorithm was coded in R to sample from the unknown quantities and two parallel chains

were run for 100000 iterations. Convergence was monitored with the Geweke test and the

Gelman’s and Rubin’s test implemented in the CODA package (Plummer et al., 2006).

6.3.4 Model fitting

Fitting the joint model provides us with the estimation of the temporal and spatial pattern

of malaria incidence in Zambia as well as related risk factors. Furthermore, epidemiological

and local detection parameters characterizing, respectively, the catalytic model and the

sensitivity function are estimated allowing the link with the prevalence model. Jointly

with the spatial structure governing the prevalence data, risk estimates adjusted for age

and season heterogeneity are obtained.

Malaria incidence in Zambia is highly governed by environmental and climatic factors,

in particular NDVI and elevation, as given by Table 6.1.

Seasonality in transmission is strong, as can be seen in Figure 6.1 which shows the

fitted monthly mean incidence at district level. The peak of transmission estimated by

the model is between November and April. Figure 6.1 depicts the spatial distribution of

malaria incidence for selected 4 months. Posterior estimates of epidemiological and local

detection parameters are reported in Table 6.2. Spatial variance and decay parameter

estimates for the geostatistical prevalence model can be seen in Table 6.3.
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Table 6.1: Posterior estimates: environmental factors and spatio/temporal parameters af-
fecting malaria incidence. Covariates were standardized for comparison purposes.

Covariate Posterior estimate (median, 95%CI)
NDVI 2.01(1.45, 2.32)

Rainfall 0.24(−0.09, 0.42)
Distance to water bodies −0.15(0.11, 0.21)

LST 0.12(−0.03, 0.23)
Elevation −0.44(−0.51,−0.31)

cos 0.11(−0.05, 0.27)
sin 0.55(0.38, 0.73)

Spatio-temporal parameters Posterior estimate (median, 95%CI)
σ2(iid) 0.53(0.12, 0.76)
τ 2(CAR) 0.85(0.21, 1.43)
ν2(month) 1.43(0.82, 2.31)
λ2(year) 0.92(0.45, 1.12)

Table 6.2: Epidemiological and local detection parameters.

Parameter Posterior estimate (median, 95%CI)
αc 8.41(5.13, 9.72)

1− k 0.42(0.28, 0.61)
c 0.11(0.08, 0.13)
r 1.71(1.60, 2.01)

6.3.5 Age/season-specific and spatially-explicit risk estimation

With the purpose of illustrating the results obtained with the proposed methodology, we

used the posterior samples of the parameters to obtain season and age specific prevalence

estimates during September (low transmission) and December (high transmission) for two

age groups (1-4 years and 5-14 years). Figure 6.3 (a) and Figure 6.4 (a) depict the mean

incidence at district level, Figure 6.3 (b) and Figure 6.4 (b) show the estimated mean

incidence at pixel level, Figure 6.3 and Figure 6.4 (c)-(d) are adjusted risk estimates by

using the fitted age-prevalence curves and spatial kriging on the same grid.

Figure 6.2 depicts the age-prevalence curves obtained from posterior samples in two

different pixels at different mean incidence levels with uncertainty bounds.
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Figure 6.1: Model-based mean incidence at district level. 3. March, 6. June, 9. September
and 12. December.

Table 6.3: Spatial parameters estimated by the geostatistical prevalence model.

Spatial parameters Posterior estimate (median, 95%CI)
σ2 1.23(1.10, 1.45)
ρ 2.43(2.11, 3.44)
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Figure 6.2: Age prevalence curves for two different forces of infection.
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(a) (b)

(c) (d)

Figure 6.3: High transmission season (December) (a) Fitted mean incidence at district
level, (b) Imputed mean incidence at 3 km resolution, (c) Prevalence among age category
1-4, (d) Prevalence among age category 5-14.
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(a) (b)

(c) (d)

Figure 6.4: Low transmission season (September) (a) Fitted mean incidence at district
level,(b) Imputed mean incidence at 3 km resolution, (c) Prevalence among age category 1-4,
(d) Prevalence among age category 5-14.
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6.4 Discussion

In this paper, we address age and time heterogeneity in prevalence modeling when informa-

tion form multiple geo-referenced surveys is combined. Our approach couples a mathemat-

ical transmission model with spatial statistical models in a Bayesian framework, allowing

the estimation of age and season specific disease risk at high spatial resolution. We develop

a joint model formulation for prevalence and incidence data by embedding an extended

version of the catalytic model by Pull and Grab (1974) into the hierarchical Bayesian struc-

ture, thus accounting for the uncertainty arising form the age/season standardization in

the risk estimation.

We have illustrated the proposed methodology with an application to geo-referenced

malaria prevalence survey data collected in Zambia in the period 1978-2006. Previous

work on modeling heterogeneity in geo-referenced surveys for malaria mapping (Gemperli

et al., 2006b; Gosoniu, 2008; Hay et al., 2009) were based on a 2-step procedure to (i)

obtain age-correction factors and (ii) separately fit age-adjusted prevalence estimates in a

geostatistical model, ignoring adjustment uncertainty. Moreover, the heterogeneity due to

the different survey periods was not considered. However, seasonality is one of the most

important sources of heterogeneity in malaria prevalence estimates: we incorporate season-

dependence in our model by allowing space and time variations in the force of infection.

We obtain spatially varying age-prevalence curves that included a diagnostic sensitiv-

ity as a decreasing function of age. Conceptually, this function can be thought of as the

decline in the probability of detecting an active infection, although the real reason for the

decline in prevalence might be that immunity leads to real declines in the force of infection

or real increases in the clearance rate. For the purpose of our analysis, we consider the

biological reasons for the decline not relevant. Moreover, in our model the force of infection

is estimated by the rate of reported cases at health districts in the general population (age-

disaggregated data were not available). The threshold age after which the sensitivity (and

therefore the prevalence) starts declining is estimated by one single parameter; however it

is known that the age of immunity development decreases for increasing forces of infection

Filipe et al. (2007), therefore a spatially varying prior on the parameter αc could capture

variability in the peak age of transmission. Furthermore, a more flexible space-time struc-

ture by modelling interactions (Knorr-Held, 2000; Lagazio et al., 2001) on incidence data

could be considered.

The present work aims mainly at illustrating the methodology that can be applied to

other settings, perhaps with scarcity of resources. Zambia has in fact achieved significant
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reductions in the malaria burden in the last years, especially due to the continuous control

interventions. For this reason, we have focused on prevalence surveys prior to the massive

intervention scale-up. On the other hand, more recent incidence data are used to estimate

the seasonality pattern in the force of infection. However, we do not expect large changes

in the latter.

The proposed methodology can be extended to include more hetereogenity factors,

(i.e. varying sensitivity function due to different diagnostic tools, preferential sampling,

etc...) and could be applied in the current development to other diseases that show age-

dependence (possibly linked to the acquisition of immunity) and/or seasonality. For ex-

ample, schistosomiasis, a chronic and poverty-promoting disease caused by trematodes of

the genus Schistosoma, is characterized by typical age-prevalence curves in endemic setting

(Raso et al., 2007).
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Abstract

Background: Decreases in malaria over the past decade have been mainly associated

with the expanded implementation of vector control measures such as insecticide-treated

nets (ITNs) and indoor residual spraying (IRS). Malaria Indicator Surveys (MIS) collect

information of key malaria indicators through national representative household surveys.

The objective of this study was to estimate changes in malaria parasitemia risk at high

spatial resolution in sub-Saharan Africa, and to quantify the effects of malaria interventions

at national and sub-national level.

Methods and Findings: We analyzed MIS data from six sub-Saharan countries: An-

gola, Liberia, Mozambique, Senegal, Rwanda, and Tanzania. Bayesian geostatistical mo-

dels were utilized to estimate the current malaria risk, and to determine the change relative

to the period between the last two national surveys. We applied Bayesian variable selec-

tion procedures to select the most relevant ITN measure in reducing malaria risk and

performed spatial kriging over the study area to produce intervention coverage maps. The

contribution of ITN and IRS on the change of malaria risk was estimated after adjusting for

climatic factors. Spatially varying coefficients of intervention coverage indicators allowed

estimation of their effects at sub-national level. In all of the countries, the probability of

decrease in parasitemia varied substantially from one area to another. ITN was an impor-

tant factor in reducing malaria risk under different definitions of coverage. An overall ITN

effect at country level was significant only in Angola and Senegal; however, in all countries

significant effects for IRS and ITN were seen at regional level.

Conclusions: The described methodology is useful for identifying areas where changes

of malaria risk occurred and for describing the geographical pattern of the disease. The

effects of interventions varies in space, which might be driven by local endemicity levels.

The produced maps provide a powerful visual tool for national malaria control programs

to identify areas where targeted strategies and resources are most needed or likely to have

the greatest impact on reducing the risk of parasitemia.
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7.1 Introduction

In 2011, the number of people at risk of contracting malaria was estimated to be 3.3 billion.

Individuals living in sub-Saharan Africa had the highest risk of acquiring the disease:

approximately 80% of cases and 90% of deaths occurred in the World Health Organization

(WHO) African Region, with children under 5 years of age and pregnant women most

severely affected (WHO, 2012). However, the past decade has seen decreases in malaria

caused by Plasmodium falciparum, the most deadly and predominant parasite species in

Africa. These reductions are going hand-in-hand with increases in international funding

for malaria prevention, control, and elimination, which have led to tremendous expansion

in implementing national malaria control programs (NMCPs) (Alonso and Tanner, 2013).

The NMCPs’ main strategies include (i) vector control through the use of insecticide-

treated nets (ITNs), indoor residual spraying (IRS) and, in some specific settings, larval

control; (ii) chemoprevention for the most vulnerable populations; (iii) confirming malaria

diagnosis through microscopy or rapid diagnostic tests (RDTs) for every suspected case;

and (iv) timely treatment with appropriate antimalarials (O’Meara et al., 2010).

Malaria reduction is part of the Millennium Development Goals (MDGs), aiming to

halve malaria incidence by 2015 as compared to 1990 (UN, 2012a). To monitor and evaluate

progress toward this target, the following set of indicators are proposed by the United

Nations (UN): incidence and death rates associated with malaria, proportion of children

under 5 sleeping under ITNs, and proportion of children under 5 with fever who are treated

with appropriate antimalarial drugs (UN, 2012a). Renewed interest in malaria elimination

and eradication has led to the definition of new targets. In 2008, the Global Malaria

Action Plan (GMAP), put forward by the Roll Back Malaria (RBM) Partnership (Roll

Back Malaria, 2008), advocated reducing malaria cases by 75% (from 2000 levels) and

malaria deaths to near zero, by 2015. Since 2007, WHO has recommended universal

coverage with ITNs (preferably long lasting insecticide-treated nets (LLINs)), rather than

a pre-determined number of nets per household or exclusively targeting household members

at high risk, i.e., pregnant women and children under 5 years of age (WHO, 2012). In 2010,

the GMAP (Global Partnership to Roll Back Malaria, 2010) called for rapid scaling-up to

achieve universal coverage with some form of vector control.

Malaria Indicator Surveys (MIS) were developed by RBM to coordinate global efforts

to fight malaria. MIS collect national and regional or provincial data from a representative

sample of respondents. Surveys collect information about ITN ownership and use, IRS,

prompt and effective treatment of fever in young children, and the prevention of malaria
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in pregnant women. Most MIS also include measurement of malaria parasites and anemia

among children under 5 years and pregnant women. MIS are usually carried out during high

malaria transmission seasons. These nationally representative household surveys provide

the most precise benchmark of progress toward internationally agreed upon targets.

MIS and other household surveys, such as Demographic and Health Surveys (DHS) and

Multiple Indicator Surveys (MICS), have been used to estimate ITN coverage in several sub-

Saharan countries (Miller et al., 2007; Noor et al., 2009; Burgert et al., 2012). Ownership

indicators have been considered, such as the proportion of households with at least one

ITN (or one ITN for every two people), as have use indicators, i.e., the proportion of the

population (or children or pregnant women) who slept under an ITN the night before the

survey. The number of nets in Africa has been estimated by analyzing household surveys,

including MIS, between 1999 and 2005. On this basis, the number of ITNs needed to achieve

high coverage has been calculated (Miller et al., 2007). The changes in ITN coverage

among children under the age of 5 years, reported between 1999–2003 and 2004–2007,

have also been examined and thematic maps as well as projections of ITN coverage in 2007

were produced (Noor et al., 2009). However, estimating ITN coverage through national

household surveys presents some challenges. For instance, national estimates could be

underestimated or overestimated if the actual population at risk of developing malaria,

that is if the level of endemicity is not taken into account. Seasonality may represent an

additional source of bias if surveys are carried out during dry and hot months when people

are less likely to sleep under bednets (Burgert et al., 2012).

By including parasitemia data, MIS permit the assessment of the impact of several fac-

tors, including malaria control strategies, on health outcomes under “real-world conditions”

(Lim et al., 2011). Efficacy of sleeping under ITNs in preventing malaria transmission has

been evidenced by a systematic review and meta-analysis of randomized controlled trials

(Lengeler et al., 2004) showing that regular ITN use can reduce all-cause child mortality

by around 20% in malaria-endemic areas and cut malaria episodes by half.

Geostatistical models have been used to analyze MIS in different African countries and

to estimate the spatial effects of bednet ownership and use after adjusting for climatic

factors and socio-economic indicators. An analysis of the Angolan MIS in 2006 reported a

reduction in risk in areas with at least 0.2 ITNs per person (Gosoniu et al., 2010). In a more

recent analysis of the Tanzanian MIS carried out from 2007-2008, ownership of at least one

ITN per household was the indicator used to assess coverage impact, although it showed no

protective effect (Gosoniu et al., 2012). However, the analysis of the Zambian MIS in 2007
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found a preventive effect on malaria risk using the same ownership indicator (Riedel et al.,

2010). Different bednet coverage indicators, as suggested by reviews of bednet delivery

strategies (Thwing et al., 2011; Kilian et al., 2010) were considered in a variable selection

procedure performed in a geostatistical analysis of the DHS 2008 in Senegal (Giardina et al.,

2012) to identify the variable most associated with decreased malaria risk. The analysis

concluded that the presence of at least one ITN per every two household members reduced

the odds of parasitemia by 86%. Pooled analyzes of MIS were further conducted to assess

the effect of maternal education and household wealth on malaria risk in children (Siri

and Lutz, 2012). The effectiveness of different control strategies in preventing malaria has

also been assessed through simulating different settings and scenarios using mathematical

models (Chitnis et al., 2010; Griffin et al., 2010; White et al., 2009).

Geostatistical models represent the most appropriate way of analyzing MIS data. They

enable the relation between malaria prevalence and intervention strategies to be quantified,

after adjusting for environmental factors and socioeconomic status, while allowing corre-

lation among spatial locations. Geostatistical analyzes of MIS have produced spatially

explicit estimates of disease risk and of the number of infected children below the age of 5

years (Gosoniu et al., 2010, 2012; Riedel et al., 2010; Giardina et al., 2012; Hwang et al.,

2010; Jima et al., 2010). Such maps provide a powerful visual tool for NMCPs, identifying

areas where targeted strategies and resources are most needed or most likely to have the

greatest impact. By 2013, six African countries had completed two rounds of MIS: Angola,

Liberia, Mozambique, Rwanda, Senegal, and Tanzania. We performed a spatio-temporal

analysis to estimate changes in malaria parasitemia risk across these countries. Addition-

ally, we quantified the spatial effects of control measures (i.e., ITN and IRS coverage) at

national and subnational level in reducing malaria risk, after taking into account climatic

factors.

7.2 Methods

7.2.1 Data Sources

MIS and DHS data

To assess the change in malaria parasitemia risk over time, the analysis included all the

countries in sub-Saharan Africa with publicly available data from at least two MIS carried

out at different times (2006-2008 and 2010-2012). DHS that collected relevant health

and intervention outcomes (measurements of malaria parasites and ITN or IRS coverage
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assessment) were included in the analysis, as well. The protocol for each survey was

submitted to and approved by the Ethical Review Committee at the NMCPs and the

Institutional Review Board (IRB) of Macro International. Written informed consent was

obtained from the respondents participating in the survey.

Only surveys with global positioning system (GPS) information gathered at cluster level

were considered. A summary of the countries included and the timing of their surveys can

be found in Table 7.1. A more detailed description including main vectors, transmission

season, and intervention implementation of the countries considered is provided in the

Supporting Information.

Health Outcomes

In both MIS and DHS, the presence of malaria parasites is determined by RDT or by

analyzing thick or thin blood films on microscope slides. Most surveys used both diagnostic

approaches. However, for our analysis, positivity was defined only via blood films as they

are more reliable than RDT performed in the field (Wongsrichanalai et al., 2007).

Interventions

ITN coverage was assessed by defining several indicators derived from variables collected

through survey questionnaires. Intervention coverage measures can be defined at different

levels: individual, household, or cluster. However, to evaluate geographically the role that

intervention scale-up played in reducing parasitemia risk, only cluster-level intervention

coverage indicators were considered. The two surveys carried out in each country did not

consider the same households, and hence, the spatial analysis of the change in risk was

conducted at cluster level.

Following the review by Kilian et al. (2010), we defined the following indicators of ITN

ownership: the proportion of households with at least one ITN (indicator currently used

by RBM), the proportion of households with at least one ITN for every two people (new

indicator considered by RBM) and the mean nets-to-people ratio. Use was defined as the

proportion of children aged 0-59 months who slept under an ITN the night prior to the

survey (MDG indicator of interest and currently used by RBM) and the proportion of

people who slept under an ITN the night prior to the survey.

IRS coverage was obtained from DHS and MIS, reporting whether the house had been

sprayed within the previous 12 months. The proportion of sprayed households within a

cluster was used as a potential factor in reducing parasitemia risk.
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Environmental Predictors Derived from Remote Sensing Data

The main drivers of malaria transmission are climatic and environmental factors. Ad-

vances in remote sensing and geographic information system (GIS) have permitted spatial

analysis of the relation between malaria risk and environmental indices, as well as accurate

predictions over large study areas. The survey locations where parasitemia is assessed need

to be geo-referenced (commonly by GPS) so that environmental and climatic proxies can

be extracted for each data location.

Normalized difference vegetation index (NDVI) and land surface temperature (LST)

data for our analysis were obtained from Moderate Resolution Imaging Spectroradiometer

(MODIS) at 1 km spatial resolution. Decadal rainfall data were available at 8 km resolution

via Africa Data Dissemination Service. Elevation data were obtained from an interpolated

digital elevation model from the U.S. Geological Survey - Earth Resources Observation

and Science Data Center at a spatial resolution of 1 km. The environmental factors with

available temporal resolution (LST, NDVI and rainfall) were acquired for the 6-month

period prior to the survey and the average was calculated and extracted for each data

location.

7.2.2 Models

A geostatistical model was developed and fitted to assess the effect of climatic and environ-

mental conditions on parasitemia risk in each country using survey data from 2006-2008

and 2010-2012. Bayesian kriging was employed to predict malaria risk at high spatial reso-

lution at the two time periods. Furthermore, the probability of parasitemia risk reduction

at each pixel was estimated as well as the total number of children infected, stratified by

country and survey period, calculating their difference. We made use of population data

provided by Afripop (Tatem et al., 2013a) that consist of spatial estimations of number of

children below the age of 5 years per km2 in 2010.

To estimate the effect of interventions, we modeled the change of parasitemia risk (on

the logit scale) as a function of the difference in climatic conditions between the two time

points (surveys) and intervention coverage (i.e., ITN and IRS). To account for potential

interactions with endemicity levels, we fitted a second model to estimate different inter-

vention effects for each regional unit (first administrative division).

The bednet coverage indicators presented in the previous section are highly correlated;

therefore we have defined a Bayesian variable selection procedure that selects only one (or
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none) bednet ownership indicator and one (or none) bednet use indicator. Further details

on the models can be found in the Supporting Information.

7.2.3 Software

‘Just Another Gibbs Sampler’ (JAGS) (Plummer, 2003) was used to implement the vari-

able selection approach that allowed us to choose among the different bednet coverage

indicators. ‘Integrated nested Laplace approximation’ (INLA) (Rue et al., 2009) with the

stochastic partial differential equation (SPDE) approach (Lindgren et al., 2011) was used

to perform model fit and prediction.

7.3 Results

A summary of the six African countries analyzed in this study, including a descriptive

analysis of the data collected in the two malaria national surveys, is given in Table 7.1.

An overall decreasing trend in parasitemia prevalence can be seen, with the exception of

Liberia and Mozambique. Bednet and IRS coverage has remained constant or slightly

higher in the second survey, compared to the first in all countries whilst a decrease in

Angola was observed. The results of the spatial analysis are illustrated on a country basis.

We will refer to an effect as “significant” throughout the manuscript whenever the credible

intervals do not include 0 or the odds ratio credible intervals do not include 1. Coefficient

estimates reported in the text are obtained using actual ITN and IRS coverage values and

differ from the ones presented in the tables, which are based on standardized covariates to

allow for comparison among predictor effects.

7.3.1 Angola

A change in parasitemia risk among children in Angola can be seen over the period 2006-

2011. While the first survey was carried out partially during the long rainy season, the

second survey covered almost completely the high transmission period. With the exception

of the coast and some areas in the south, in 2006/2007, parasitemia risk was high and almost

evenly spread, reaching peaks of 80% (Figure 7.1a). In 2011, parasitemia was concentrated

in specific areas, particularly in the northern part of the country (i.e., Zaire, Bengo, and

Cuanza Norte provinces; Figure 7.1b). Overall, the probability of observing a reduction

in parasitemia risk is higher than 50% throughout the country (Figure 7.1d). Although a

decrease can also be seen in Huila province, this area remains at high risk. Parasitemia

remained stable in Cabinda province.
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Environmental factors similarly affected parasitemia risk in the two surveys and the

spatial parameters showed comparable estimates (Table 7.2). However, the spatial variance

estimate was higher in the model for the second survey. The ITN coverage measure, chosen

via the Bayesian variable selection procedure to model the effect of control on the change

of malaria risk, was the proportion of people who slept under an ITN the night prior to

the survey (Table 7.3). Table 7.4 shows that the change in environmental and climatic

conditions was not significantly associated with the change in risk. Intervention measures

were highly associated with parasitemia decreases in the country. For every 1% increase in

ITN coverage, the odds ratio of parasitemia (second survey versus first survey) decreases by

5% (95% CI: 3-7%). The IRS effect was not significant when modeled at country level (odds

ratio: 0.23, 95% CI: 0.02-1.91). Angola presents high to moderate ITN coverage in the

outer part of the country and very low coverage in the interior, while IRS coverage is still

quite low with the exception of a few areas (see interventions coverage maps in Figures 7.1e

and 7.1f). ITN and IRS effects at area level are shown in Figures 7.1g and 7.1h): ITN had

a significant effect in protecting against malaria in the south-eastern province of Cuando

Cubango and in the coastal province of Benguela, while IRS showed a significant effect

mainly in the central part of the country (Malanje, Bengo, and Cuanza Norte provinces).

The overall estimated decline in the number of infections among children aged between

0 and 59 months dropped by 52.0% (95% CI: 50.7-52.5%), Table 7.5.

7.3.2 Liberia

Analysis of the two surveys conducted in Liberia revealed that parasitemia risk is spread

throughout the country. Environmental conditions do not appear to be clear drivers of

malaria; none of them are significantly associated with the outcome at each time point.

Spatial parameter estimates show similar values of variance and range (Table 7.2) in both

surveys. The first survey (MIS 2008/2009) was carried out after the peak transmission

period, while the second survey was implemented during the high transmission period

(rainy season). Table 7.4 shows that differences between the two surveys in terms of

rainfall, NDVI, and LST (night) are positively associated with the change in the log odds of

parasitemia. Figure 7.2a shows that parasitemia risk was high (60-70%) in the continental

part of the country in 2008 and slightly lower in the coastal counties of Grand Cape Mount,

Bomi, Montserrado, and Margibi (40-50%). The current situation, as shown in Figure 7.2b,

shows the highest risk to be in Grand Gedeh, River Gee, and Grand Kru counties in the

south. Only the capital, Monrovia, shows low risk (<10%). Figure 7.2d illustrates the
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geographic pattern of change in risk: while the probability of observing a decrease in

parasitemia risk in the north-western part of the country is above 50%, the probability is

very low in the south.

Malaria control interventions in Liberia have revealed low coverage. IRS, for example,

has only been implemented in a few targeted areas and coverage data were not collected

in the surveys, while ITN coverage (selected as the proportion of households in the cluster

with at least one ITN; Table 7.3) is high (˜60%), mainly in the area of the capital (Figure

7.2e). The overall effect of ITN was moderate and not significant (odds ratio: 0.77, 95% CI:

0.55-1.32), however the model with spatially varying ITN coefficients (Figure 7.2f) showed

a significant protective effect in the northern counties (Montserrado and Gbarpolu).

As shown by Table 7.5, the estimated number of infections among children below the

age of 5 years has reduced by 14.8% (95% CI: 13.4-15.8%).

7.3.3 Mozambique

The two national surveys in Mozambique that included parasitemia data were conducted

after the rainy season, although the second survey (DHS 2011) collected data over a some-

what longer period, partially explained by the larger number of surveyed clusters. The

two provinces with the highest malaria risk were Nampula and Zambezia, in the northern

part of the country. The southern parts of the country were characterized by lower risk

compared to the rest of the country (<10%), especially Maputo (city and province) and

Gaza province (Figure 7.3b). The overall prevalence estimated from the second survey was

similar to the one estimated from the first survey.

The main drivers of malaria parasitemia are rainfall and NDVI. The average LST (day)

showed a significant association with parasitemia in the analysis of the second survey, as

summarized in Table 7.2. Higher estimates of spatial variance reflect higher variation of

parasitemia risk compared to 2007. Differences in climatic conditions such as LST (day)

and NDVI between the two surveys were associated with the change in malaria risk (Table

7.4).

Table 7.3 shows that, at country level, ITN coverage (i.e., proportion of households in

the cluster having at least one ITN) and IRS coverage effects were not significant (ITN

odds ratio 0.91, (95% CI: 0.53-1.55), (IRS odds ratio 0.72 (95% CI: 0.42-1.23)). IRS was

implemented mainly in the southern part of the country, but some other areas in the centre,

particularly Zambezia province, showed coverage of 50%. ITN is more common throughout

the country, reaching 70% coverage in most provinces (see coverage maps in Figures 7.3e
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and 7.3f). Both ITN and IRS effects were found to be significant in one northern province

(Niassa); ITN effect was also significant in Tete province and IRS effect was significant in

Cabo Delgado in north-eastern Mozambique (see Figures 7.3g and 7.3h).

7.3.4 Rwanda

The 2007 DHS was carried out in a period when malaria transmission is low, whereas

the second DHS (in 2011) included the short rainy season. Nevertheless, comparing the

maps in Figures 7.4a and 7.4b, there is a decreasing trend in malaria risk in some regions.

Parasitemia risk ranges from 0 to 20%. The probability of observing a decline in parasitemia

was low (since risk remains low/steady in most of the country) except in Nyagatare and

Gatsibo districts in the north of the East province and Gisagara district in the Southern

province, where it is higher than 50% (Figure 7.4d).

The impact of environmental factors on the geographical spread of parasitemia risk

is not significant in most cases. Only elevation was negatively associated with malaria

risk in the analysis of data collected during the first survey. Information on IRS was not

collected during the surveys. ITN coverage is very high, in terms of proportion of children

in the cluster sleeping under an ITN. It is distributed almost uniformly across the country,

with highest coverage in the Lake Kivu area and the capital, Kigali (Figure 7.4e). The

effects of the ITN intervention is evident at sub-national level, particularly in the East and

South provinces (Figure 7.4f). However, the overall effect at country level lacked statistical

significance (Table 7.4).

The overall estimated number of infections among children below the age of 5 years has

decreased by 41.9% (95% CI: 39.4-44.5%), Table 7.5.

7.3.5 Senegal

Malaria in Senegal is concentrated in the central and southern parts of the country. The

first survey (MIS 2008) was conducted after the rainy season, in a period in which trans-

mission starts decreasing from high levels. The field work for the second survey (DHS 2010)

included one month of high transmission. However, parasitemia risk in some known “hot

spots” of transmission, like the regions of Tambacounda, Kaffrine and Kolda in the south,

has dramatically decreased (Figures 7.5a and 7.5b). The map in Figure 7.5d shows that

the probability of observing a decline in parasitemia risk is more than 50% in most areas

of the country, with the exception of Kedougou region in the south and the Sant-Louis

region in the north, where the risk has remained fairly constant though at low levels.
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The main environmental drivers are rainfall and NDVI. The relationship between these

two climatic features and parasitemia was much stronger in the first survey, whereas NDVI

was not significantly associated with malaria parasitemia in the second survey. We found

a smaller spatial variance, but higher range in the second survey (Table 7.2). Table 7.3

indicates that the proportion of people in the cluster sleeping under a net is among the

ITN coverage measures that best describe the change in malaria risk. Most of the clusters

sampled along the Senegal River (at the border with Mauritania) show high coverage, as

do most of the clusters in Kolda and Kaolack-Kaffrine. IRS is still limited to some areas

of Saint-Louis in the north and at the border between Kolda and Kedougou, as shown

by the IRS coverage map (Figure 7.5f). A 1% increase in ITN coverage was associated

with a reduction in the odds of parasitemia of 1% (95% CI: 0-3%). The effect of IRS at

country level was not significant. However, if estimated at area level, IRS shows a higher

and significant effect in the Tambacounda region (Figure 7.5h). Similarly, the effect of

ITN coverage was significant in reducing parasitemia risk in both the Tambacounda and

neighboring Kolda regions, as shown in Figure 7.5g.

As shown by Table 7.5, the estimated number of infections among children below the

age of 5 years has fallen by 40.3% (95% CI: 39.2-41.4%).

7.3.6 Tanzania

Parasitemia in the country was modeled in the mainland and, separately, in the islands.

Risk on the islands was very low (0-5%) in 2008 and it was slightly lower in 2012, as can be

seen by comparing the predicted prevalence in the two surveys (Figures 7.6a and 7.6b). In

the mainland, the risk of parasitemia is high, reaching up to 70-80% in the northern and

southern regions. Figure 7.6e shows that the probability of a decrease in parasitemia risk

during the second survey is above 50% on the islands of Zanzibar as well as in most areas

of the mainland. In some other areas, an increase in the risk can be detected. A positive

association between change in malaria risk and rainfall was also estimated (Table 7.4).

ITN coverage ranges from 25% to 95%, with the highest estimates obtained in the

urban area of Dar es Salaam and the islands of Zanzibar (Unguya and Pemba; no cluster

was sampled on Mafia Island in the second survey). IRS is mainly implemented in the

Lake Victoria area, the islands of Zanzibar and Dar es Salaam (Figures 7.6e and 7.6f). IRS

was effective in the lake area and in two southern provinces (Morogoro and Iringa) as well

as on the islands (Figure 7.6h). Dar es Salaam and Shinyanga provinces mostly benefited

from ITN intervention. At country level, the overall effects of ITN and IRS interventions



7.3 Results 123

were not significant.

The estimated number of infections among children belo the age of 5 years reduced by

30.1% (95% CI: 27.4-30.4%) in the country, as shown by Table 7.5.
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Figure 7.1: Angola. Predicted parasitemia risk in 2006 (a) and 2010 (b), location diagram
and cartographic information (c), probability of observing a decline in the time period 2006-
2010 (d), ITN (e) and IRS (f) coverage maps, estimated effects of interventions: ITN (g) and
IRS (h) (median plotted).
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Figure 7.2: Liberia. Predicted parasitemia risk in 2007 (a) and 2011 (b), location diagram
and cartographic information (c), probability of observing a decline in the time period 2007-
2011 (d), ITN (e) coverage map, estimated effects of interventions: ITN (f) (median plotted).
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Figure 7.3: Mozambique. Predicted parasitemia risk in 2007 (a) and 2011 (b), location
diagram and cartographic information (c), probability of observing a decline in the time
period 2007-2011 (d), ITN (e) and IRS (f) coverage maps, estimated effects of interventions:
ITN (g) and IRS (h) (median plotted).
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Figure 7.4: Rwanda. Predicted parasitemia risk in 2008 (a) and 2011 (b), location diagram
and cartographic information (c), probability of observing a decline in the time period 2008-
2011 (d), ITN (e) coverage map, estimated effects of interventions: ITN (g) (median plotted).
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Figure 7.5: Senegal. Predicted parasitemia risk in 2008 (a) and 2010 (b), location diagram
and cartographic information (c), probability of observing a decline in the time period 2008-
2010 (d), ITN (e) and IRS (f) coverage maps, estimated effects of interventions: ITN (g) and
IRS (h) (median plotted).



7.3 Results 129

Figure 7.6: Tanzania. Predicted parasitemia risk in 2008 (a) and 2012 (b), location diagram
and cartographic information (c), probability of observing a decline in the time period 2008-
2012 (d), ITN (e) and IRS (f) coverage maps, estimated effects of interventions: ITN (g) and
IRS (h) (median plotted).
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Table 7.5: Estimated number of infected children related to the second survey period (second
column) and estimated number of infection reductions (third column). Model based estimates
of reduction in national level prevalence (forth column). Estimates are expressed in terms of
medians and 95% credible intervals.

Country Number of infected Number of infected Prevalence
children (last survey) children reduction reduction

Angola 290, 816.74 315, 451.32 0.09
(285, 030.31− 296, 603.22) (307, 507.51− 318, 395.22) (0.09− 0.10)

Liberia 152, 317.7 26, 534.99 0.04
(149, 148.81− 153, 486.53) (23, 930.58− 28, 139.39) (0.03− 0.04)

Mozambique 1, 222, 360.42 −3, 981.212 −0.00
(1, 159, 052.54− 1, 225, 668.23) (−9, 258.26− 1, 295.84) (−0.00− 0.01)

Rwanda 18, 638.52 13, 457.34 0.01
(18, 199.56− 19, 077.48) (12, 632.58− 14, 282.01) (0.00− 0.01)

Senegal 53, 934.71 36, 433.38 0.02(0.02− 0.02)
(53, 343.72− 54, 525.7) (35, 445.42− 37, 421.33)

Tanzania 1, 168, 437.43 503, 169.41 0.06
(1, 121, 895.33− 1, 172, 980.21) (457, 736.31− 508, 602.62) (0.05− 0.06)
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7.4 Discussion

The risk of, and burden due to malaria has considerably declined over the past decade in

sub-Saharan Africa. Spatial analysis to determine the risk of malaria and guide interven-

tions proved to be a productive research area in recent years (Mapping Malaria Risk in

Africa (Craig et al., 1999), Malaria Atlas Project (Guerra et al., 2007)). Initial mapping

efforts were based on historical data that were heterogeneous in survey seasons and in age

groups sampled across locations. MIS are nationally representative surveys, conducted

during medium/high transmission seasons and they focus on a specific age group (children

below the age of 5 years). Hence, MIS generate reliable data for estimating the geograph-

ical distribution of parasitemia risk as well as malaria burden (Gosoniu et al., 2010, 2012;

Riedel et al., 2010; Giardina et al., 2012; Jima et al., 2010; Agusto et al., 2012).

In the current piece, we analyzed malaria parasite prevalence data in six sub-Saharan

countries that carried out two parasitemia national surveys, either MIS or DHS, with a

malaria module. We provide spatially explicit estimates of parasitemia risk and analyze

patterns of change both in space and over time. We studied the spatial effects of ITN

and IRS in reducing parasitemia risk among children. Coverage maps were produced to

assess progress toward universal coverage and to identify areas that have been successful

in scaling-up. Furthermore, we provide a methodology to identify areas where changes

(increases or decreases) in malaria risk occurred, and to estimate the spatial effects of

interventions in space.

Our analysis revealed different spatial patterns of changes in parasitemia risk between

the two surveys depending on the country. For example, Angola experienced a decline in

risk throughout most of the country. In Senegal and Rwanda, the relationship between en-

vironmental factors and malaria risk has become less evident in the second survey, probably

explained by the high coverage of malaria control interventions that blurs the strong links

between malaria and climate. In other countries where the change in risk varies substan-

tially from one area to another (e.g., Tanzania), the overall risk has decreased, but there

are ‘clusters’ of high parasitemia, leading to an estimated higher spatial variance. Mozam-

bique is the only country that did not show a significant reduction in the model-based

estimates of prevalence and number of infections among children below the age of 5 years.

In some areas of Tanzania, there was an increased parasitemia, possibly due to the scarce

coverage of interventions as well as the positive association with the increased amount of

rainfall during the second survey (Table 7.2), carried out during the long rainy season.

Where the surveys were conducted during similar seasons (e.g., Angola and Rwanda), the
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observed decline in risk is not presumed to be due to changes in environmental conditions.

This is confirmed by the lack of associations shown in Table 7.4. It is recommended that

surveys take place during the highest transmission season, but this is not always feasible

due to logistical issues and lack of human resources to reach remote areas. For this reason,

the surveys might lack comparability, unless idiosyncrasies of environmental conditions of

the individual surveys are taken into account.

To estimate the number of children below the age of 5 years with parasitemia, based

on both first and second round surveys, we used readily available Afripop population data

for the year 2010. The use of year-specific population data would lead to more accurate

estimates of children infected in the two surveys but this information is not available at high

spatial resolution. Considering the average annual rate of population growth of 2.63-3.82%

(UN, 2012b), our figures tend to underestimate the burden reduction.

IRS coverage was assessed based on the proportion of households within a cluster that

were sprayed in the last 6 months. ITN coverage, however, was measured by several

indicators that are highly correlated. The employed Bayesian variable selection procedure

allows one to choose the ITN coverage measure with the highest posterior probability to

be included in the model. The effects of interventions at sub-national level was assessed

by a geostatistical model with spatially varying coefficients because of the known “spatial”

nature of intervention (i.e., community) effects and because we assume that neighboring

areas are affected similarly by a specific intervention. In contrast, far away areas may

show different effects because of different endemicity levels. In fact, interventions are an

endogenous variable in modeling risk because they are known to reduce parasitemia risk,

whereas areas with higher endemicity are more likely to show high intervention coverage.

We used the administrative division as the unit of analysis for estimating intervention

spatial effects. In most of the countries, this division corresponds to the health division

at which decisions can be made. Furthermore, it represents the smallest areas, with at

least three observations, sufficient for estimating intervention spatial effects. Intervention

effects varied from country to country and geographically within countries. In some regions,

intervention effects were significant but no decline in prevalence was detected. However,

there could be a decline in transmission that, in contexts of high transmission intensity,

does not immediately correspond to a decline in risk. In other regions, no significant

association between intervention measures and malaria risk was observed. This finding

might be explained by other factors like resistance of vectors to insecticides, ITN condition

(e.g., holes), or response bias. We are currently investigating other methods for including
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additional information about bednet type and condition in the evaluation of intervention

effects. The variability observed in ITN and IRS effects supports the need to evaluate

intervention programs at local scales.

Intervention coverage data were considered only from the second survey, as we were

interested in quantifying the odds of changes in parasitemia over time, for given values

of coverage. We believe that the current intervention coverage is the consequence of the

most recent distribution of ITN or implementation of IRS. Furthermore, the comparison

of coverage levels in the first and second round surveys did not show large variations. The

coverage maps produced can aid control programs in future interventions delivery. We

considered countries where 100% of the population is at risk; however the heterogeneity

in intervention coverage shows the need to ‘spatially’ assess progress toward universal

coverage, identifying areas where coverage is currently particularly low. We are currently

developing a more comprehensive intervention coverage map, combining different sources

of information on ITN use and ownership (e.g. MICS, World Health Surveys, Living

Standards Measurement Study-Integrated Survey), to provide more accurate estimates

and to study their effect on risk.

We have defined positivity to parasitemia in our analysis based on microscopy (blood

films examined under a microscope by trained personnel). Children were also tested with

RDT in the field. The latter data were discarded from the analysis, as they conflicted with

microscopy results. Several factors in the manufacturing process as well as environmental

conditions may affect RDT performance in areas with high temperatures during transport

and storage (Wongsrichanalai et al., 2007). Nevertheless, RDT results could be included

in the analysis, taking into account the sensitivity and specificity of both tests.

Prevalence survey data are valuable for assessing progress toward disease elimination

because they facilitate studying the pattern of change in malaria in space and time as well

as estimate the effects of interventions on parasitemia risk changes. Prevalence is easily

measured and its widespread use makes it suitable for monitoring and evaluation (Smith

et al., 2009). However, evaluating changes in disease burden includes other indicators that

measure incidence and mortality; this is not an easy task in many sub-Saharan countries,

where health information systems are still very weak and death records are incomplete.

Intervention effects can be better estimated by entomological parameters because IRS

and ITN primarily affect the mosquitoes’ feeding cycle and death rates, leading to changes

in the vectorial capacity. Population-level intervention benefits (such as reduction in pre-

valence) occur eventually as a result of changes in the transmission cycle. However, these
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entomological parameters are not easy to collect over large areas.

Malaria modules, collecting data on behaviors and knowledge related to malaria, were

introduced in 1999 as part of DHS. MIS with parasitemia testing were only implemented

in 2006 (Fabic et al., 2012). Currently, MIS are either run as stand-alone surveys or

incorporated into DHS. While reducing the costs of implementing the surveys, combining

DHS and MIS in a unique survey implies extending the field study period to seasons of low

or no transmission for malaria. This may result in an underestimation of the prevalence and

may introduce bias in the spatial pattern of malaria risk. When MIS are run independently,

they are usually carried out during the high transmission season in order to capture the

highest number of infections. Sometimes this is not feasible. Nevertheless, the ‘peak of

transmission’ is subject to geographic as well as annual variability. The use of ‘rolling’ cross-

sectional surveys can provide a potential solution to these issues. Already proposed and

implemented in the context of DHS and nutritional surveys (Rowe et al., 2009), a year-long

rolling MIS was also implemented in one district of southern Malawi (Roca-Feltrer et al.,

2012). Limiting the collection of household data to a few key malaria indicators reduces

the time and costs implied by a rolling survey. However, their feasibility at national scale

remains to be investigated.

To our knowledge, this is the first study presenting spatially explicit estimates of the

probability of malaria risk reductions and of the effects of interventions in an ensemble

of six sub-Saharan countries after adjusting for climatic factors. These estimates can be

used to evaluate the accuracy of mathematical models that predict malaria risk under

different levels of intervention coverage. Our maps provide important information for

control program managers as they monitor and plan future interventions.

7.5 Supporting information

7.5.1 Profiles of the Countries Considered

Angola

Malaria transmission is highest in northern Angola, while the southern provinces have

highly seasonal or epidemic malaria. Malaria is hyperendemic in northeastern Angola,

including Cabinda province, a non-contiguous province in the north of the country. The

central and coastal areas are largely mesoendemic with stable transmission. The four

southern provinces bordering Namibia have highly seasonal transmission and are prone to

epidemics. In the north, the peak malaria transmission season extends from March to May,
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with a secondary peak in October or November. P. falciparum is responsible for more than

90% of all infections. The primary vectors in the high transmission areas are Anopheles

gambiae and An. funestus.

Liberia

Malaria in Liberia is endemic throughout the country, with year-round transmission and a

peak during September to October. All infections are attributable to P. falciparum. The

climate is favorable to breeding the mosquitoes that are the major vectors of malaria, in

particular An. gambiae s.s.

Mozambique

Although there are signs of declining malaria prevalence in Mozambique, the disease re-

mains a major cause of morbidity and mortality. Malaria is endemic throughout the coun-

try, with regions ranging from mesoendemic to hyperendemic. Most residents live in areas

where malaria is transmitted year round; peaks occur during and after the rainy season,

between December and April. The climate in Mozambique creates a favorable environment

for An. gambiae, An. arabiensi, and An. funestus. P. falciparum is the most common

parasite and it is responsible for approximately 90% of all malaria infections.

Senegal

Senegal is one of the African countries in which dramatic progress has been made in

malaria control since 2000. Transmission is seasonal, with high transmission occurring

from September to December, toward the end of (and immediately following) the rainy

season. While the south of Senegal is hyperendemic, the northern part of the country is

hypo-endemic, with a low rate of malaria transmission. P. falciparum is the major malaria

parasite species, accounting for more than 90% of all infections. The main vector species

are An. gambiae s.s., An. arabiensis, An. funestus, and An. melas.

Rwanda

Rwanda has made significant progress in scaling up malaria control interventions and de-

creases in malaria morbidity and mortality rates have been observed over the last years.

Malaria is mesoendemic in the plains and epidemic-prone in the high plateaus and hills.

Transmission occurs year-round, with two peaks (May-June, November-December) follow-

ing distinct rainy seasons. Major vector species are An. gambiae, An. arabiensis and An.

funestus.
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Tanzania

Malaria is a major public health problem in Tanzania. On the mainland, 93% of the popu-

lation lives in areas where malaria is transmitted. Unstable seasonal malaria transmission

occurs in approximately 20% of the country, while stable malaria with seasonal variation

occurs in another 20%. Transmission peaks during the long and short rainy seasons (May

and December, respectively). The remaining malaria endemic areas in Tanzania (60%) are

characterized by stable perennial transmission. P. falciparum accounts for 96% of malaria

infections in Tanzania and the remaining 4% due to P. malariae and P. ovale. The prin-

cipal vectors of malaria on the mainland are the An. gambiae complex (An. gambiae s.l.

and An. arabiensis) and An. funestus. Zanzibar is characterized by very low levels of

malaria transmission, although the islands remain vulnerable to outbreaks. Interventions

have played an important role in achieving these levels, with high coverage of ITN and

IRS.

7.5.2 Models

Estimating Parasitemia Risk at two Time Points

A geostatistical model was fitted to perform risk factor analysis and to assess the effect

of climatic and environmental conditions on parasitemia risk for each country from 2007-

2008. Let Y1(si) be the number of children who tested positive for parasitemia in cluster

si in the first survey for each country and N1(si) the total number of children screened.

We assume that each Y1(si) follows a Binomial distribution, i.e., Y1(si) | N1(si), π1(si) ∼
Bin(N1(si), π1(si)), ∀i ∈ 1, ..., n1 where s = (s1, s2, ..., sn1) is the set of locations surveyed

and π1(·) indicates the parasitemia risk. We formulate a Bayesian geostatistical model to

analyze the parasitemia risk on the logit scale as follows:

logit(π1(si)) = βT1 X1(si) + ω1(si)

where X1(si) is the set of environmental predictors listed in the previous section evaluated

at location si and β1 is the vector of regression coefficients. To account for spatial correla-

tion in the response, we introduce the latent variables ω = (ω1(s1), ω1(s2), ..., ω1(sn)) that

follow a zero-mean multivariate normal distribution, i.e., ω1 ∼ N(0,Σ1) with Matern co-

variance function between locations s1 and s2, that is, Σ1(s1, s2) =
σ2
1(κ1d(s1,s2)νKν(κ1d(s1,s2))

Γ(ν)2ν−1 ,

where σ2
1 is the spatial process variance, d(s1, s2) is the distance between s1 and s2 and κ1

is the scaling parameter. Kν is the modified Bessel function of second kind and order ν.

The Matern specification of the covariance matrix implies that the spatial range r1, that
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is the distance at which spatial correlation becomes negligible (i.e., smaller than 10%) is

r1 =
√

8
κ1

. We complete Bayesian model formulation by specifying prior distributions for the

remaining parameters and hyperparameters. In particular, we choose log-gamma priors for

log(σ2
1) and log(r1). Normal priors N(0, 0.01) were assigned for the regression coefficients

and intercept.

Bayesian kriging was used to predict malaria risk at high spatial resolution. Each

country was divided into a grid formed by 1 km resolution pixels. Risk estimates at each

pixel were obtained through the predictive distribution.

A geostatistical model similar to the one described above was employed to obtain con-

temporary estimates of malaria risk. In particular, we assumed a Binomial distribution for

the number of positive children Y2(s′i), that is Y2(s′i) | N2(s′i), π2(s′i) ∼ Bin(N2(s′i), π2(s′i)),

∀iε1, ..., n1 where s′ = (s′1, s
′
2, ..., s

′
n1

) is the vector of locations sampled in the second sur-

vey, generally different than s = (s1, s2, ..., sn1). We modeled π2(s′i) as a function of the

environmental conditions in the second time point and a normally distributed spatial pro-

cess ω2, that is, ω2 ∼ N(0,Σ2) with spatial variance σ2
2 and scaling parameter κ2. On the

logit scale, the relation takes the form: logit(π2(s′i)) = βT2 X2(s′i) + ω2(s′i). The same grids

were used for predictions in the second time point for each country.

Modeling the Effects of Interventions on the Change of Parasitemia Risk

We modeled the change of parasitemia risk (on the logit scale) as a function of the difference

in climatic conditions between the two time points (surveys) and intervention coverage

quantified as ITN and IRS as follows:

logit(π2(s′i))−logit(π1(s′i)) = X2(s′i)β2−X1(s′i)β1+α1ITN(s′i)+α2IRS(s′i)+ωc(s
′
i) (7.1)

where ITN(s′i) is one of the bednet coverage measures discussed in the previous section,

IRS(s′i) indicates the proportion of sprayed households in cluster s′i and ωc(s
′
i) represents

the latent process, modeling the spatial correlation of the parasitemia change. We assign

ωc the prior distribution ωc ∼ N(0,Σc) with spatial variance σ2
c and scaling parameter

κc. The coefficients α1 and α2 model the effect of intervention strategies on the change

of parasitemia risk. In particular, exp(α1) and exp(α2) represent the expected change in

the odds ratio of parasitemia (second survey versus first survey) associated with 1 unit

variation in ITN and IRS coverage, respectively. We consider only the interventions in

the second survey because we want to quantify the contribution of a certain level of ITN

and IRS coverage in reducing malaria risk.
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Since the value of parasitemia risk during the first survey π1(·) was not directly avail-

able at locations s′ of the second survey, we first aligned observations and derived the

distribution of Z(s′i) = logit(π1(si) conditionally on the spatial process and regression

parameters, i.e., Z(s′i) | β1, ω1(s) ∼ N(β′T1 X1(s′i) + Σss′Σ
−1
s ω1(s),Σs′ − Σs′sΣ

−1
s′ Σss′). The

joint posterior distribution of the parameters is obtained by [Y2(s′) | β2, Z(s′), ω2(s′)][Z(s′) |
β1, ω1(s)][ω2(s′) | σ2

2, κ2][ω1(s) | σ2
1, κ1][β1][β2] and Equation (7.1) can now be rewritten as

logit(π2(s′i)) = Z(s′i) + β0(X2(s′i)−X1(s′i)) + α1ITN(s′i) + α2IRS(s′i) + ωc(s
′
i), where we

have expressed β0 as β0 = β2 − β1.

To account for potential interactions with endemicity levels, we fitted a second model to

estimate different intervention effects for each regional unit (first administrative division).

The model is expressed as follows

logit(π2(s′i)) = Z(s′i)+β0(X2(s′i)−X1(s′i))+α1(As′i)ITN(s′i)+α2(As′i)IRS(s′i)+ωc(s
′
i).

The intervention effects are now denoted by αk(As′i), (k = 1, 2) and defined on a

regional level and A(s′i) denotes the region where s′i falls. Each αk(Ai) is factorized by

the sum of a conditional autoregressive effect that takes into account the similarity of the

effects across regions and an independent random part, i.e., αk(Ai) = αck(Ai) + òk(Ai),

where αck(Ai) | αck(Aj), i 6= j, τkc ∼ N( 1
ni

∑
i∼j α

c
k(Aj),

1
niτkc

) indicating with i ∼ j the

neighborhood relation between area Ai and Aj, and òk(Ai) ∼ N(0, 1/τkò).

Selecting Bednet Coverage Indicators

The bednet coverage indicators presented in the previous section are highly correlated;

therefore we have defined a Bayesian variable selection procedure that selects only one

(or none) bednet ownership indicator and one (or none) bednet use indicator. We denote

each one of the three bednet ownership indicators with ITN0
j (j = 1, ...3), while ITNu

j

(j = 1, 2) represents the indicators of bednet use. In particular, we assume spike and slab

a priori distributions (Ishwaran and Rao, 2005) for the coefficients

α0
j ∼ N(0, σ2

j ) + (1− γ0
j )N(0, δσ2

j ), j = 1, 2, 3

αuj ∼ N(0, σ2
j ) + (1− γuj )N(0, δσ2

j ), j = 1, 2

where σ2
j is assigned a gamma distribution and δ is a small constant that shrinks the

variance toward very small values if γj is zero and ITNj is not considered relevant to the

model. A Bernoulli (0.5) prior distribution was assumed for γuj , while a categorical prior
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distribution was adopted for γ0
j , i.e., Categorical(p), with p = (1/3, 1/3, 1/3) to constrain

the model in choosing only one indicator and assuming equal probability of inclusion a

priori.

Estimating the Probability of Parasitemia Risk Reduction

Conditional on the data and the model parameters, the predictive density for each time

point can be expressed as:

P (Y0
t | Yt,Nt) =

∫
P (Y0

t | βt,ω0
t )P (ω0

t | ωt, σ2
t , κt)P (βt,ωt, σ

2
t , κt | Yt,Nt)

dβtdω
0
t dωtdσ

2
t dκt

where Y0
t = (Yt(s

0
1), Yt(s

0
2), ..., Yt(s

0
m)) are the predicted number of positives in each

pixel s0
i ∀i ∈ 1, . . . ,m, and time point t, t = 1, 2, and P (βt,ωt, σ

2
t , κt | Yt,Nt) is the joint

posterior distribution of parameters and hyperparameters while

ωt = (ωt(s
0
1), ωt(s

0
2), ..., ωt(s

0
m)) is the vector of the spatial process at new sites. Con-

ditional on the spatial process and regression parameters, Y 0
t (s0

i ) ∼ Bin(Nt(s
0
i ), π

0
t (s

0
i )),

with risk π0
t (s

0
i ), given by logit(π0

t (s
0
i )) = βTt Xt(s

0
i ) + ω0

t (s
0
i ) and Nt(s

0
i ) indicates the

population of children living in the pixel s0
i .

To estimate the probability of risk reduction at each pixel we have compared π0
1(s0

i ) with

π0
2(s0

i ), ∀iε1, ...,m and calculated P (π0
2(s0

i ) < π0
1(s0

i )). Furthermore, we have estimated the

total number of children infected by country during the first and second survey period

(
∑m

i=1 Y
0

1 (s0
i ) and

∑m
i=1 Y

0
2 (s0

i ) respectively) and their difference. We made use of popula-

tion data provided by Afripop (Tatem et al., 2013a) that consist of spatial estimations of

number of children less than 5 years of age per 1 km2 in 2010.
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8.1 Significance

This research work contributes to the field of malaria epidemiology in sub-Saharan Africa

and develops novel spatio-temporal statistical methodology to estimate disease risk from

contemporary and historical survey data and assess the effectiveness of control interven-

tions. The modelling strategies, methodologies and results of our research are described in

the six manuscripts included as chapters in this thesis. Each chapter of the thesis includes

a detailed discussion; this section provides an overview of the main research contributions

and discusses implications in malaria control, limitations and extensions for future research.

8.1.1 Contributions in spatial statistics

Geo-referenced prevalence survey data are commonly modelled via a Binomial distribu-

tion. However, when the data consist of a large number of zeros, Binomial models are

not appropriate and may underestimate the probabilty of zero-prevalence. In Chapter

2, we propose the use of zero-inflated Binomial models (Lambert, 1992), defined as two-

component mixtures of a point mass at zero with a Binomial distribution, and show that

they are more suitable in these situations by comparing their predictive ability with stan-

dard binomial analogues. Zero-inflated Binomial models for prevalence data have not been

applied before in the context of geostatistical modelling of infectious disease data. To our

knowledge, the only application is in the modeling of sparse malaria entomological data

(Amek et al., 2011). The main research contribution of the thesis in this area was to

explore the different modelling strategies for zero-inflated data and suggest model formu-

lations in a geostatistical setting. In particular, hurdle models, that combine a point mass

at zero with a truncated Binomial distribution for the non zero values (Mullahy, 1986) are

studied and compared to zero-inflated Binomial models in geostatistical settings. Zero-

inflated Binomial models allow two types of zeros: “structural” that arise from the point

mass at zero and “chance” zeros modelled by the Binomial distribution; Binomial hurdle

models treat zeros and non-zeros separately. We observe that zero-inflated models may

suffer from weak identifiability of the spatial process characterizing the mixing probability,

while hurdle models are in general more stable (Chapter 3).

Most applications of geostatistical models assume that the spatial correlation is a func-

tion of the distance and independent of locations, that is, the spatial process is stationary.

This hypothesis is not appropriate when malaria data are analyzed over large areas, since

local characteristics influence the spatial structure differently at various locations. We

have developed Bayesian methodology to model non-stationary geostatistical data when
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the study area consists of irregularly shaped zones with different characteristics. Non-

stationarity was modelled as weighted combinations of stationary spatial covariance func-

tions and specific spatially varying weights are proposed to account for irregularly shaped

partitions of the study area. The proposed methodology improves disease risk predic-

tion over large areas compared to commonly used stationary geostatistical models and the

weights introduced into the model smooth the predicted surface at the borders of the zones

(Chapter4).

Variable selection and model choice are essential components in statistical modelling.

However, little has been done in geostatistical settings. Typically, spatial correlation is

ignored in the selection of explanatory variables, influencing model selection as well as

parameter estimation (Hoeting et al., 2006b). In this thesis we tackle the problem under

several model specifications. In Chapter 2, we apply Bayesian variable selection methods

to choose the environmental predictors determining the malaria risk in zero-inflated models

and in Chapter 3 we propose Bayesian variable selection methods to allow the choice of

both fixed and random effects in modelling the probability of (extra-) zeros as well as

the rest of the data (arising from Binomial or truncated Binomial distributions). Specific

prior distributions for spatial process selection based on non-zero random effects variances

are proposed and analyzed. Over large areas, with a natural partition (e.g. ecological

zones), the effects of environment and climate may depend on the regions and may be

non-linear. In Chapter 4, we develop a Bayesian variable selection procedure for non-

stationary models that allows the choice of covariates and their corresponding functional

forms (e.g. linear, categorical, spline) by regions. Spatially varying weights were used in

the regression model to take into account the dependence of the covariates affecting the

disease outcome at a given location not only on the zone associated to the location but also

on the neighboring regions within a certain radius. Variable selection methods were proved

to be useful in the selection of one among correlated predictors, for example in the choice

of intervention coverage indicators. ITN coverage was defined using different measures in

Chapter 2 and Chapter 7 and a Multinomial (or categorical) prior was assigned to the

inclusion probabilities.

Motivated by the question of assessing the effectiveness of intervention strategies on

reducing malaria risk, spatially varying coefficients models were developed (Chapter 7).

Using a conditional autoregressive prior on the coefficients, these models allowed the esti-

mation of covariates’ effects at sub-national levels.
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When information form multiple geo-referenced surveys is combined, sources of het-

erogeneity should be properly accounted for and modelled. Age and season are important

source of heterogeneity in prevalence modeling. In Chapter 6, we propose an approach that

couples mathematical transmission models with spatial statistical models in a Bayesian

framework, allowing the estimation of age and season specific risk at high spatial resolu-

tion. We achieve a joint model formulation for prevalence and incidence data by embedding

an extended version of the catalytic model by Pull and Grab (1974) into our hierarchi-

cal Bayesian structure, thus accounting for the uncertainty arising form the age/season

standardization in the risk estimation. Previous work on modeling heterogeneity in geo-

referenced surveys for malaria mapping (Kleinschmidt et al., 2001; Gemperli et al., 2006a;

Gosoniu et al., 2006) focused on a specific age group, discarding surveys with different or

overlapping ages of the population resulting in unreliable malaria transmission estimates.

More recent works (Gemperli et al., 2006b; Gosoniu, 2008; Hay et al., 2009) were based on

a 2-step procedure to (i) obtain age-correction factors and (ii) separately fit age-adjusted

prevalence estimates in a geostatistical model, ignoring adjustment uncertainty. Moreover,

the heterogeneity due to the different survey periods was not considered. However, season-

ality is one of the most important sources of heterogeneity in malaria prevalence estimates:

we incorporate season-dependence in our model by allowing space and time variations in

the force of infection. We obtain spatially varying age-prevalence curves that included a

diagnostic sensitivity as a decreasing function of age.

8.1.2 Implications in malaria epidemiology and control

The past decade has seen decreases in malaria caused by Plasmodium falciparum, the

most deadly and predominant parasite species in Africa. Malaria reduction is part of the

Millennium Development Goals (MDGs), aiming to halve malaria incidence by 2015 as

compared to 1990 (UN, 2012a). In 2008, the Global Malaria Action Plan (GMAP), put

forward by the Roll Back Malaria (RBM) Partnership (Global Partnership to Roll Back

Malaria, 2010), advocated reducing malaria cases by 75% (from 2000 levels) and malaria

deaths to near zero, by 2015. Since 2007, WHO has recommended universal ITN coverage.

Malaria Indicator Surveys (MIS) were developed by RBM to coordinate global efforts to

fight malaria.

Analyzing MIS surveys, this thesis contributes to the monitoring and evaluation of the

progress toward these targets. In particular, we provide improved estimates of malaria risk

and intervention coverage at high spatial resolution. We have produced smooth maps of
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parasitemia risk for Angola, Liberia, Mali, Mozambique, Rwanda, Senegal, Tanzania and

Zambia and we have assessed the temporal trends along with the scale-up of intervention

coverage in Angola, Liberia, Mozambique, Rwanda, Senegal and Tanzania. The maps

produced are useful tools for identifying priority areas for disease control. The spatial

variability observed in ITN and IRS effectiveness supports the need to evaluate intervention

programs at local scales. We obtained spatially explicit estimates of the probability of

malaria risk reductions. These estimates are of great value in validating mathematical

models that predict malaria risk under different levels of intervention coverage. Our maps

provide important information for control program managers as they monitor and plan

future interventions.

The focus on malaria eradication in selected countries in sub-Saharan Africa, suggests

that forthcoming surveys will include a large number of locations with zero prevalence and

the zero-inflated models developed in this thesis would provide a suitable way to provide

accurate risk estimates. Moreover, the factors leading to the onset/end of transmission in

a specific area may differ from the ones causing an increase or decrease in malaria risk.

Therefore the proposed variable selection strategy may be useful in identifying determinants

of transmission suitability and conditional malaria risk.

Some countries in sub-Saharan Africa do not have a national survey and rely on histori-

cal survey data for spatial risk estimation. The methodology of age/season standardization,

outlined in Chapter 6, can be applied in these settings.

Obtaining accurate risk estimates depends on the quality of the environmental predic-

tors used for building predictive models. Chapter 5 focuses on assessing the effect of very

high resolution environmental covariates derived by remote sensing sources on spatially

explicit malaria burden estimates in geostatistical models. This work was carried out as

part of the MALAREO project, (www.malareo.eu), supported by the Seventh Framework

Programme (FP7) space research program, with the objective of building GIS, EO and

spatial statistics capacities and implementing EO products supporting the malaria control

programmes in Southern Africa. The main product created within the MALAREO project

is a high resolution (5m) land cover/land use map based on RapidEye technology. A sec-

ondary outcome was an “enhanced” population map, obtained by the combination of the

LC layer with census data, aggregated at 100m resolution. Both land cover and population

layers were used in the geostatistical analysis of the Mozambican DHS in 2011 and showed

higher predictive ability in the comparison with lower resolution products.
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8.2 Limitations

In the estimation of changes in the number of children below the age of 5 years with para-

sitemia, during the time period considered (2006-2011), we used readily available Afripop

population data for the year 2010. The use of year-specific population data would lead

to more accurate estimates of children infected in the two surveys but this information is

not available at high spatial resolution. Considering the average annual rate of population

growth of 2.63-3.82% (UN, 2012b), our figures tend to underestimate the burden reduction.

We used the administrative division as the unit of analysis for estimating intervention ef-

fectiveness. While this assumption is not justified by any biological reason, in most of the

countries, this division corresponds to the health division at which decisions can be made.

In some regions, no significant association between intervention measures and malaria risk

was observed. This finding might be explained by other factors like resistance of vectors to

insecticides, ITN condition (e.g., holes), or response bias. Prevalence survey data are valu-

able for assessing progress toward disease elimination because they facilitate studying the

pattern of change in malaria in space and time as well as estimate the effectiveness of inter-

ventions on parasitemia risk changes. Prevalence is easily measured and its widespread use

makes it suitable for monitoring and evaluation (Smith et al., 2009). However, evaluating

changes in disease burden includes other indicators that measure incidence and mortality;

this is not an easy task in many sub-Saharan countries, where health information systems

are still very weak and death records are incomplete. Intervention effectiveness can be

better estimated by entomological parameters because IRS and ITN primarily affect the

mosquitoes’ feeding cycle and death rates, leading to changes in the vectorial capacity.

Population-level intervention benefits (such as reduction in prevalence) occur eventually

as a result of changes in the transmission cycle. However, these entomological parameters

are not easy to collect over large areas.

8.3 Extensions

Several methodological approaches proposed in this thesis can be applied to other envi-

ronmentally driven diseases. For example, sparse geo-referenced survey data can arise

from studies on other parasitic diseases (e.g. neglected diseases such as soil-transmitted

helminths) making suitable the zero-inflated modelling strategy proposed in Chapter 2 and

Chapter 3; the approach to model non-stationarity over large areas (Chapter 4) can be used

to address the current needs of international agencies (e.g. World Health Organization, The

Global Fund etc...) which are interested in global atlases of infectious disease burden and
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estimates of the required amount of preventive and curative treatments; schistosomiasis, a

chronic and poverty-promoting disease caused by trematodes of the genus Schistosoma, is

characterized by typical age-prevalence curves in endemic setting Raso et al. (2007), there-

fore age-specific disease risk estimates can be modelled follwing the methodology outlined

in Chapter 5.

The GPS latitude/longitude positions in MIS/DHS survey were randomly displaced so

that clusters contain a minimum of 0 and a maximum of 5 kilometers of positional error.

This misplacement was added for respondent confidentiality reasons. A general extension

of this work would be to explicitly model the bias introduced by the positional error, for

example following the approach proposed by Fanshawe and Diggle (2011).

Throughout this work, we have defined positivity to parasitemia based on microscopy

(blood films examined under a microscope by trained personnel). Children were also tested

with RDT in the field. The latter data were discarded from the analysis, as they conflicted

with microscopy results. Several factors in the manufacturing process as well as environ-

mental conditions may affect RDT performance in areas with high temperatures during

transport and storage (Wongsrichanalai et al., 2007). Nevertheless, RDT results could be

included in the analysis, taking into account the sensitivity and specificity of both tests.

We are currently investigating other methods for including additional information about

bednet type and condition in the evaluation of intervention effectiveness. Furthermore, a

more comprehensive intervention coverage map can be obtained combining different sources

of information on ITN use and ownership (e.g. MICS, World Health Surveys, Living

Standards Measurement Study-Integrated Survey), to provide more accurate estimates

and to study their effect on risk.

Socio-economic status represents an important determinant of the disease (Tusting

et al., 2013). However, few studies have linked it to malaria risk mapping. This can be

due to the difficulty of defining a representative “poverty index” as well as to generating

consistent spatial estimates. The Oxford Poverty and Human Development Initiative, for

instance, proposed a Multidimensional Poverty Index (MPI, http://www.ophi.org.uk/

policy/multidimensional-poverty-index/) to capture the multiple aspects that con-

stitute poverty. Tatem et al. (2013b) produced surfaces of poverty for selected countries

plotting the proportion of people per 100 square meters living in poverty, as defined by the

MPI, with associated uncertainty metric. Our work can be extended to test the association

of this poverty indicator on malaria risk with geostatistical models.

Overall, this thesis developed novel statistical methodology to improve malaria risk
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estimates and assess effectiveness of interventions at high spatial resolution. The described

methods may not be applied directly from field practitioners or NMCP personnel, since they

require specialized knowledge. However, we are currently working on the implementation

of the models with entirely free softwares and user-friendly interfaces to be distributed to

the NMCPs and facilitate their work in monitoring and evaluating the progress in the fight

of the disease.
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Enquête nationale sur le paludisme au sénégal 2008-2009. Technical report.
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