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Abstract

Bistability is a dynamical property of biological systems which have

the ability to possess two distinct stable steady states. Bistability is

the hallmark of decision-making processes and underlies basic cellu-

lar functions such as cell cycle progression, cellular differentiation,

and apoptosis. It is crucial for a bistable system to operate robustly,

meaning that it has to be able to maintain the bistable behavior in

the presence of perturbations in its kinetic parameters. We aim to

understand how different parameter configurations and ultrasensi-

tive mechanisms such as molecular cooperativity, homodimerization

and titration, organize bistability and its robustness in prototypical

feedback loop systems. We in particular show that the coupling be-

tween a positive and a negative feedback loop, enclosed under the

titration mechanism, can enlarge the bistability range of a single pa-

rameter, and therefore contribute to the robustness of bistability. We

also develop a method based on the open-loop approach to explore

parametric regions inside the bistability area of bifurcation diagrams,

in which the sensitivity of unstable steady state to parameters of a

system can be minimized. Unstable steady states are key organiz-

ers of bistability and minimization of their sensitivity to parameters

leads to the persistence of the bistable behavior against parameter

perturbations. Our results provide insight into the role of different

parameters as well as homodimerization and titration mechanisms

in creating robust bistability in positive feedback systems. Addition-

ally, we study the galactose network in Saccharomyces cerevisiae, in

which bistability creates a persistent memory of the carbon source

that is available in the environment. We reconstruct the bistable

behavior of the network by developing a mathematical model that

represents the molecular interactions of the network. Using the ex-

perimental data extracted from different layers of the network, we

perform nonlinear regression to estimate the parameter values of the

model. Our investigations reveal the significance of homodimeriza-

tion and titration in creating bistability in the galactose network.

In summary, our results provide a better understanding of how pa-

rameter configurations and different ultrasensitive regulatory motifs

contribute to bistability and its robustness. The results can be used

to efficiently design and synthesize robust bistable switches.
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Chapter 1

Introduction

Systems biology is defined as a discipline that employs mathematical models

to investigate molecular interactions and the specific phenotype which results

from such interactions [2, 41, 83]. In the late 1950’s and early 1960’s, signifi-

cant contributions were made to the field of systems biology thanks to a series

of discoveries such as the existence of feedback control loops in gene expres-

sion [39, 91], bistability in lac operon [62] and oscillations in yeast glycolysis [27].

Later in the early 1970’s, detailed studies on Belousov-Zhabotinsky chemical re-

actions [22, 23] provided yet another example of important contributions of

mathematical modeling to the field. Based on these seminal studies, many biol-

ogist [24, 32, 63, 92] were already convinced by the late 1990’s and early 2000’s

that the need for rigorous mathematical modeling of biological systems and in-

teractions is undeniable. In the early 21st century, systems biology witnessed

another incredible step forward as artificial genetic networks were synthesized.

In particular, Gardner et al. [25] designed a synthetic toggle switch and Elowitz

et al. [21] built an artificial oscillator with three repressing genes. These and

other synthetic biological networks [11, 12] gave birth to a new field called syn-

thetic biology [33].

Many mathematical models in systems biology, termed as mechanistic models,

are defined by dynamical systems. Lotka [50] and Volterra [96] were among the

very first theoretical biologists who considered biological systems as dynamical

systems. The main idea behind using dynamical systems to model biological

systems is to mathematically represent different cellular states as attractors of

the system. In 1975, Waddington [97] put forth the idea of epigenetic landscape

to illustrate different cellular states as attractors which in turn define cellular

decisions. The emergence of such attractors are dependent on the number and

type of interactions among different elements of the biological network.

1



1. Introduction

1.1 Dynamical systems

Dynamical systems [31, 67, 98] are sets of differential equations that describe

changes of physical quantities through the time. In biological systems, these

quantities are mainly concentrations of chemical species. In gene regulatory

networks in particular, one is interested to investigate variations in the concen-

tration of mRNAs and proteins. Mathematically speaking, a dynamical system

is represented as a system of first order ordinary differential equations

Ẋ(t) =
dX(t)

dt
= F

(

X(t),Θ
)

, (1.1)

where X = (x1, x2, ..., xn) ∈ R
n is a vector of state variables that changes with

time, Θ ∈ R
n is the vector of all parameters, and F = (f1, f2, ..., fn) ∈ R

n is the

vector field. System (1.1) is called a parameter-dependent dynamical system.

Solutions of system (1.1) are called trajectories of the system. The values of

state variables for which the vector field vanishes are called the steady states of

the system. The stable steady states absorb all nearby trajectories, while the

unstable steady states repel the trajectories of the system.

1.2 Hill function and molecular cooperativity: The

concept of ultrasensitivity

Hemoglobin is a protein in the red blood cells that facilitates the transportation

of oxygen from respiratory system to the tissues. Under high pressure in the

lungs, oxygen has a very high affinity to hemoglobin, while in the tissues the

affinity is very low so that the oxygen dissociates from the hemoglobin. Inves-

tigations on hemoglobin and its interaction with oxygen was first done in early

twentieth century by Hill [34] and Pauling [66]. In order to describe the exper-

imental data for the binding of oxygen to hemoglobin which had a sigmoidal

shape, Hill used the following function

y =
xn

Kn + xn
. (1.2)

Equation (1.2) is called the Hill function and represents the fraction of occu-

pancy of hemoglobin by oxygen. Later in mid twentieth century, it became

possible to provide an explanation for equation (1.2) thanks to the works of

Monod and his colleagues [55, 56, 57] on enzymatic reactions. For the binding

of oxygen to hemoglobin, Monod et al. [56] proposed the allosteric theory to ex-

plain the cooperative behavior of hemoglobin proteins. According to this theory,

2



1. Introduction

the binding of a ligand to a binding site alters the affinity of the ligand to other

binding sites. This phenomenon is called positive cooperativity. Figure (1.1)

shows that for n > 1, equation (1.2) is a sigmoidal function. As the value of n

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

n = 10 n = 4
n = 2

n = 1

Figure 1.1: Graph of Hill function (1.2) for K = 1 and different values of the
Hill number n. For n > 1, the curve is sigmoidal and exhibits ultrasensitivity
because of the cooperativity phenomenon.

increases, the curve becomes steeper. A sigmoidal curve represents a very im-

portant characteristic of every biological switch which is called ultrasensitivity.

Ultrasensitivity means that small fold changes in the input to a system can lead

to large fold changes in the response. In Figure (1.1), for n = 1, y exhibits a

graded variation as x changes, while for n > 1, there will be a binary change in

the value of y since after a certain threshold, further variations in x lead to an

abrupt change in the value of y.

Molecular cooperativity is not the only source of ultrasensitivity in biochem-

ical and signaling networks. There are other well-known motifs whose presence

can create ultrasensitivity. They include homo- and hetero-multimerization,

multistep signaling and zero-order ultrasensitivity; the interested reader is re-

ferred to [100] for a complete review of the mentioned motifs. We will address

in detail homodimerization and molecular titration (heterodimerization) in the

next chapter as we study systems which consist of positive feedback loops and

these two mechanisms.

1.3 Biological feedback loops

The notion of feedback can be defined in control systems as the capability of

the system to use its output as its input to monitor a process that is controlled

based on a specific property [40, 64]. In biological systems which are represented

3



1. Introduction

by a dynamical system, feedback loops or circuits are defined as entries of the

Jacobian matrix of the dynamical system [68, 85, 86]. For a dynamical system

defined by equation (1.1), entries of the Jacobian matrix are given by

Jij =
∂fi
∂xj

, i, j = 1, 2, ..., n. (1.3)

If Ji,j 6= 0, changes in the jth variable xj affect the time evolution fi of the

ith variable xi. Based on the above definition, one can easily plot the directed

graph of the system in which the nodes represent biological components or con-

centrations and the edges determine whether two nodes interact with each other

if Ji,j in equation (1.3) is not zero. Moreover, depending on the sign of Ji,j , the

interaction can be positive or negative, meaning that the interacting biological

components can activate or inhibit each other’s activity. A loop or circuit is

determined by a sequence of Jacobian matrix entries whose i and j indices de-

fine circular permutations [86]. The sign of a loop is given as the multiplication

of the sign of individual interactions in the loop. Therefore, a feedback loop is

positive if either all the interactions are positive or the number of negative inter-

actions is even. Likewise, a feedback loop is negative if it has an odd number of

negative interactions. Figure (1.2) illustrates three simple examples of two-node

and three-node positive and negative feedback loops: a double-positive and a

double-negative feedback loop which are both positive feedback loops plus a

three-node negative feedback loop. The positive interactions are denoted by

"→" and the negative interactions are shown by "⊣".

X Y
(a)

X Y
(b)

X

Y

Z

(c)

Figure 1.2: Positive and negative feedback loops. (a) A positive feedback loop
with two positive interactions. (b) A positive feedback loop in which the two
components negatively regulate each other. (c) A negative feedback loop with
one negative and two positive interactions.

1.4 Positive feedback loops and bistability

It was first conjectured by Thomas [84] that the presence of at least one positive

feedback loop is the necessary condition for the emergence of multiple steady

4



1. Introduction

states. The interested reader can find the proof of this conjecture in [79]. It is

important to note however that the presence of positive feedback loops can lead

to the occurrence of multiple steady states if ultrasensitivity also exists [15, 16].

Simple examples of biochemical interactions that can lead to positive feedback

loops are self-activating and double-negative transcriptional regulations. Other

examples of positive feedback loop systems that can either naturally occur or

synthetically be constructed are given in [12, 38, 52, 65].

Decision-making processes which are vital for the functioning of many biological

systems emerge as a result of the existence of bistability [18] in the dynamics

of such systems. Bistability as a property of many biological systems underlies

basic cellular functions such as cell cycle progression [26, 90, 94], cell fate deter-

mination [36] and apoptosis [8, 48]. The importance of bistability has also been

addressed in the study of chromatin silencing and epigenetic switches [20, 74].

In the past two decades, several interesting artificial bistable switches have been

synthesized [7, 12, 25, 45]. Mathematically speaking, bistability represents the

ability of a dynamical system to have two distinct stable steady states for ap-

propriately adjusted parameter values. In situations like cell differentiation or

division where certain decisions have to be made by a cell, existence of bista-

bility is crucial since there are no intermediate fates for the cell. Therefore,

in the presence of environmental stimuli, because of the existence of a switch-

like response, the cell can make a clear-cut decision about its fate. A very

famous model system in prokaryotic organisms is the lac operon in Escherichia

coli [72, 80]. The three genes lacZ, lacY and lacA of the system are responsible

for the metabolism and absorption of disaccharide lactose. When the lactose

is not available in the medium, a repressor protein inhibits the transcription of

the genes by binding the operator sites. This puts the switch in the off-state.

In the presence of lactose, the switch will be on as the repressor protein unbinds

and the transcription of the genes starts. In eukaryotic organisms, a well-known

genetic switch is implemented by the galactose metabolic network in Saccha-

romyces cerevisiae. In the absence of glucose, as the main energy source, this

model organism metabolizes galactose through Leloir metabolic pathway [13]

which is regulated by a set of regulatory proteins and enzymes that define alto-

gether the GAL regulon. The GAL network has been thoroughly investigated

for the emergence of bistability [1, 6, 93].

One standard mathematical way to illustrate the bistability is through the

demonstration of hysteresis behavior which is one of the properties of bistable

5



1. Introduction

P

Figure 1.3: A simple positive feedback loop in which a protein enhances the
transcription of its own gene.

dynamical systems. For this purpose, we study a one-gene positive feedback

loop in which a transcription factor enhances the production of its own gene.

Figure (1.3) shows that the protein P binds and activates a promoter to produce

itself in a self-activating system. This simple positive feedback loop can easily

be represented by the following one-dimensional dynamical system

Ṗ = b+ vmax
Pn

Kn
d + Pn

− γP := F (P,Θ), (1.4)

where b is the basal expression rate, vmax is the maximum rate of promoter

activity, Kd is the equilibrium dissociation constant of P -promoter binding, n

is the Hill number and Θ ⊆ R
5 is the vector of parameters. Equation (1.4) is

a simplified version of the complete model with the mRNA dynamics. Here,

we assume that the mRNA dynamics are faster than the protein dynamics so

that we can apply the quasi-steady state assumption [77] to get equation (1.4).

This simple system was first studied by Griffith [30] in 1968 for the existence

of bistability. The steady states of system (1.4) are given by putting the right

hand side of the system equal to zero

Γ(P ; Θ) = {P | b+ vmax
Pn

Kn
d + Pn

− γP = 0}. (1.5)

Figure (1.4) depicts the graph of steady state equation (1.5) as a function of

Kd for selected parameter values. The diagram is a one-parameter bifurcation

diagram and the curve is called a hysteresis curve. Later, in this chapter,

we present a rigorous mathematical definition of bifurcation and investigate the

diagrams of two bifurcations which are specifically related to the emergence

of bistability. As shown in Figure (1.4), the threshold for a transition from

the lower to the higher branch of steady states is different from a transition in

a reverse direction. Because of the existence of this difference, systems with

hysteresis behavior are believed to be capable of demonstrating memory. This

can be explained in Figure (1.4) as the value of Kd is varied; any transition

6



1. Introduction

1005020 30 70

1

2

5

10

20

50

100

200

Kd

P

Figure 1.4: Hysteresis curve for system (1.4) for n = 2, vmax = 200, b = 1
and γP = 1. Thresholds for low-to-high and high-to-low state transitions are
determined by the two knees of the curve. For the values of Kd between the
two knees, system (1.4) has one unstable and two stable steady states which are
illustrated by the dashed and solid curves.

from the low to the high state by decreasing Kd to values below the low-to-high

threshold, will keep the system in the high state even if Kd increases to values

between the low-to-high and high-to-low state thresholds. The two thresholds

are determined by the two knees of the hysteresis curve which will be later shown

to define two saddle-node bifurcation points. It is clear that for values of Kd

between the two knees, system (1.4) has three steady states; two stable states

in the low and high branches, shown by the solid curves, and one unstable state

in the middle branch, depicted by the dashed curve. It is clear from the figure

that bistability vanishes at the two saddle-node bifurcation points as a result

of a collision between the unstable and stable steady states. This in particular

suggests that the unstable steady state is key to the existence and maintenance

of bistability. As we will explain later, the unstable steady state plays a major

role in the robustness of bistability.

1.5 Robustness

The notion of robustness is long known as a significant and vital characteris-

tic of living systems. A classical example of robust biological systems is the

chemotactic signaling pathway in Escherichia coli [3, 9] in which variations in

the concentration of the nutrient temporarily change the cells’ motion mode.

This property of the cells is also called adaptability to changing environment.

Robustness has also been observed in metabolic networks [78] and circadian

rhythm [29].

Robustness means that some specific properties and functions of physical and

7



1. Introduction

living systems are retained under internal and external perturbations [42, 43, 44,

82]. This definition is very broad and needs to be made precise by defining what

we exactly mean by the specific properties, in what sense we expect the system

to retain these properties and finally how we define perturbations. According

to Lodhi et. al [49], specific properties of a system can be either qualitative for

which the robustness means to retain the number and type of steady states and

oscillatory solutions, or quantitative for which the robustness means to retain

for example the frequency and period of an oscillatory solution. They also ar-

gue that perturbations can be categorized into three classes: perturbations in

the dynamics of the system defined by the vector field F in equation (1.1), the

initial conditions, and the parameter values.

Robustness analysis methods are mainly categorized into two main classes,

namely, global and local methods [81, 99]. Global methods deal with the en-

tire parameter space of a system and investigate features and characteristics of

specific regions of the parameter space for which different dynamical behaviors

like oscillations and/or bistability emerge. On the contrary, local methods con-

sider specific parameter values and study changes in the model behavior under

perturbations in these parameter values. For the purpose of a global robustness

analysis, we can use the bifurcation theory and construct the bifurcation dia-

grams in the parameter space of a dynamical system. A bifurcation diagram

gives the specific information on the domain of a particular dynamical behavior

like bistability and/or oscillations. Bifurcation diagrams have been long used

for the model evaluation and robustness analysis of biochemical systems [60].

For example, Ma & Iglesias [51] have used the bifurcation diagram to define

a measure of robustness for a single parameter in an oscillating system, and

Morohashi et al. [58] have investigated the shape and smoothness of bifurcation

boundaries and studied the effects of these features of bifurcation diagram on

the robustness of oscillations in the Xenopus cell cycle oscillator. A very well-

known local robustness analysis method is the sensitivity analysis that studies

sensitivity of systems’ features like the steady states to parametric perturba-

tions. For example, parametric sensitivity analysis has been employed for the

sensitivity analysis of stable [17] and unstable [88] steady states to measure their

robustness at the presence of parameter perturbations.

1.5.1 Bifurcation theory

Bifurcation theory [31, 46] is a powerful mathematical tool for studying qual-

itative changes in the family of solutions of a parameter-dependent dynamical

8



1. Introduction

system as parameters are varied. By qualitative changes, we mean changes in

the number or stability of steady states of a dynamical system. Bifurcations are

depicted in bifurcation diagrams where the qualitative changes are presented

in a diagram consisting of state variables and parameters. In the following, we

present two well-known bifurcations which are key to the emergence of bistabil-

ity in dynamical systems.

1.5.1.1 Saddle-node (fold) bifurcation

Saddle-node bifurcation is a local bifurcation in which two steady states move

toward each other, collide and disappear when a parameter is varied in a specific

direction in the parameter space. The normal form of this bifurcation is given

by the following one-dimensional dynamical system [46]

ẋ = F (x, α) = α+ sx2, (1.6)

where x ∈ R, α ∈ R is the bifurcation parameter, and s = ±1. For s = 1,

system (1.6) has two steady states, x =
√
−α and x = −

√
−α if α < 0, and

no steady states if α > 0. The bifurcation diagram of system (1.6) is shown in

Figure (1.5). According to the bifurcation diagram, starting from α < 0, if the

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

α

x

Figure 1.5: The saddle-node bifurcation diagram. On the left half of the plane,
system (1.6) has two steady states, the lower stable (solid curve) and the upper
unstable (dashed curve) steady states. As α increases, the two branches of
steady states move toward each other and collide at the origin and disappear.

value of α is increased, two branches of steady states collide at the origin and

disappear for positive values of the bifurcation parameter. In the figure, the

solid curve represents the branch of stable steady states while the dashed curve

denotes the branch of unstable steady states.
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1. Introduction

1.5.1.2 Cusp bifurcation

Cusp bifurcation is a local bifurcation whose occurrence divides a two dimen-

sional parameter space of a dynamical system into two topologically different

regions; namely, bistability and monostability regions. The normal form of the

cusp bifurcation is defined by a one-dimensional dynamical system with two

parameters as follows [46]

ẋ = F (x, α) = α+ βx+ sx3, (1.7)

where x ∈ R, α, β ∈ R are the bifurcation parameters, and s = ±1. For s = 1,

Figure (1.6) depicts the bifurcation diagram of system (1.7). Figure (1.6:a) il-

lustrates the three-dimensional steady state manifold. The projection of the
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0
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(a)

α
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C

Bistability
region

(b)

α

x

SN

SN

α

x C

(c)

α

x

Figure 1.6: The cusp bifurcation diagram. (a) The three dimensional steady
state manifold with the curves of saddle-node bifurcation labeled with SN. (b)
The projection of steady state manifold into the parameter space. Inside the
bistability region, system (1.7) has two distinct stable steady states. (c) One
dimensional steady state manifold for β = −2 (left), β = 0 (middle), β = 1.5
(right). In the interval between the two knees, system (1.7) has three steady
states, the upper and lower stable and the middle unstable steady states.

steady state manifold into the two-dimensional parameter space is shown in

Figure (1.6:b). Inside the bistability region, the system has two distinct stable

10
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steady states. This can also be seen in Figure (1.6:c) where for an interval of

α values between the two saddle-node bifurcation points (SN), system (1.7) has

three steady states, the lower and upper stable and the middle unstable steady

states.

Construction of bifurcation diagrams can be a first step to acquire information

on the robustness of dynamical characteristics like bistability as the bifurcation

boundaries tell us where the system loses its structural stability as a result of

parameter perturbations. As we mentioned earlier, bifurcation diagrams provide

a global information on the robustness of dynamical features in the parameter

space. In the following, we will explain a local method with which the sensitivity

of a dynamical system’s properties like steady states to individual parameters

can be measured.

1.5.2 Parametric sensitivity analysis

The uncertainty over the parameter values can happen because of the depen-

dence of the system on unknown external factors [37]. Sensitivity analysis is a

classical technique that can be used as a measure of parametric robustness [89].

The sensitivity analysis [95] studies the sensitivity of a system to parameters in

a vicinity of nominal values in the parameter space. The parametric sensitivity

Sc of a physical quantity c to a parameter k is defined with the following simple

derivative

Sc(k) =
dc

dk
. (1.8)

With an appropriate rescaling, equation (1.8) becomes

Sc(k) =
k

c

dc

dk
. (1.9)

Equation (1.8) has physical dimensions and is called the absolute sensitivity,

while equation (1.9) is dimensionless and is called the relative sensitivity as

it defines the relative rate of change of c with respect to the parameter k.

Equation (1.9) can also be called the logarithmic sensitivity since it can be

taken as the logarithmic derivative of the variable c with respect to k.

1.6 The open-loop approach: The concept of loop

opening in biological feedback systems

One important question in the analysis of bistability in large complex biochem-

ical networks is whether it is possible to predict the presence of bistability with-

11
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out going through complicated mathematical calculations. Angeli et al. [5] have

recently formulated a method to prove the existence of bistability in large feed-

back loop systems based on the open-loop approach. They have shown that if

the feedback loop is opened, the open-loop response of the network is sufficient

to guarantee bistability if it is a sigmoidal monostable steady-state response to

constant inputs and has three intersections with the identity line, and in addi-

tion, there are no negative feedback loops. The latter assumption makes the

system strongly monotone [4]. The method proposed by Angeli and his col-

leagues reduces the complexity of analyzing large systems with many variables

and parameters to studying a single algebraic equation which gives the output

response as a function of a constant input. We illustrate the open-loop approach

by opening the positive feedback loop in system (1.4). We discuss in particular

two main properties of the open-loop system, namely, the input-output steady

state response function which expresses the output of the open-loop system as

a function of a constant input, and the sensitivity of the output function to the

input defined by equation (1.9). We study both the closed-loop and open-loop

versions of system (1.4) and establish relations between the bifurcation diagram

and the open-loop system features with regard to bistability.

1.6.1 The self-activating system

1.6.1.1 The closed-loop system

Bistability is about having three steady states, two of which are stable and

the other is unstable. The number of steady states of a dynamical system like

system (1.4) can be obtained by putting the right hand side of the equation

equal to zero. This equation is a polynomial of degree n + 1 and therefore,

it is clear that for bistability we must have n > 1. In the simplest case for

n = 2, the steady state equation becomes a polynomial of degree three which

gives at most three real solutions depending on the parameter values. The

distribution of steady states in the parameter space is determined by the roots of

the discriminant of the steady state equation. These roots define the boundaries

of bistability region illustrated in Figure (1.7) for selected parameter values. The

boundaries represent two curves of saddle-node bifurcation and their intersection

gives birth to a cusp bifurcation point in the (b,Kd)-space. According to

bifurcation diagram (1.7), for lower values of basal expression b, the bistability

range expands in the direction of Kd. This range shrinks as the value of b

increases.

12



1. Introduction

0.5 1.0 5.0 10.0 50.0
0

20

40

60

80

100

120

140

Saddle-node bifurcation curves

Kd

b

C

Bistability

region

Figure 1.7: Bifurcation diagram of system (1.4) for vmax = 200, n = 2 and
γ = 1. The two boundaries of the bistability region are saddle-node bifurcation
curves and their intersection point C is a cusp bifurcation point.

P

Figure 1.8: The open-loop version of system (1.4). The positive feedback loop
is opened where the protein binds the promoter.

1.6.1.2 The open-loop system

Figure (1.8) shows that the positive feedback loop can be opened at the point

where the protein binds the promoter. The open-loop equation is achieved by

replacing P in the Hill function with a constant variable ω which defines the

input to the system. The other P in the degradation term plays the role of the

output and is renamed as η. Therefore, equation (1.4) becomes

η̇ = b+ vmax
ωn

Kn
d + ωn

− γη. (1.10)

The loop opening in system (1.4) can be experimentally done by replacing the

native promoter with an exogenously inducible one. As a result, the promoter

will not be under the control of the protein P anymore. The closed-loop sys-

tem (1.4) is reconstructed by putting η = ω. The steady state open-loop re-

sponse of system (1.10) is achieved by putting the right hand side of equa-
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tion (1.10) equal to zero which results in

η =
1

γ

(

b+ vmax
ωn

Kn
d + ωn

)

:= Rη(ω,Θ), (1.11)

where Θ ⊆ R
5 is the vector of parameters. The graph of response function (1.11)

is depicted in Figure (1.9) for selected parameter values. Steady states of the

1 5 10 50 100 500

1

5
10

50
100

500

Response curve Η=Ω

ω

Rη(ω) PU

PS2

PS1

Figure 1.9: The response curve of system (1.10) for vmax = 200, n = 2, γ = 1,
b = 1 and Kd = 70. Intersection of the steady state open-loop response (1.11)
with the identity line where η = ω, yields the steady states of the closed-loop
system (1.4). The stable points are denoted by PS1 and PS2, and the unstable
point is labeled with PU .

closed-loop system (1.4) are given by the intersections of the response curve

with the identity line on which η = ω. The middle unstable steady state is

labeled with PU and the lower and upper stable steady states are denoted by

PSi, i = 1, 2. As we mentioned earlier in this chapter, another quantity related

to the open-loop system which will be employed in the robustness analysis, is

the sensitivity of the output response to the input. This sensitivity gives us

valuable information on the ultrasensitivity of the response curve since it can

be used to measure the curve steepness. Using equation (1.9), the logarithmic

sensitivity of the output (η) to the input (ω) is defined as follows

Sω
η (ω,Θ) =

ω

Rη(ω,Θ)

d

dω
Rη(ω,Θ). (1.12)

It has been discussed in [18] that for the existence of multiple steady states,

the function (1.12) must be greater than one at the unstable steady state. Fig-

ure (1.10) shows the relationship between the response and sensitivity diagrams

for fixed parameter values inside the bistability region (1.7). In the response

diagram (1.10:a), the two lines that connect the origin (the origin is not shown
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Figure 1.10: Response (a) and sensitivity (b) diagrams of system (1.10) for
vmax = 200, n = 2, γ = 1, b = 1 and Kd = 70. The two tangent lines to the
response curve determine the interval in which the sensitivity is greater than
one. The points R1 and R2 in the response diagram correspond to the two
points S1 and S2 in the sensitivity diagram.

because the response curve is plotted in the logarithmic scale) to R1 : (ω1, η1)

and R2 : (ω2, η2) are tangent to the curve. According to equation (1.12), this

means that Sω
η (ωi) = 1, i = 1, 2 as the ratio becomes one at these points. This

is also illustrated in Figure (1.10:b); the intersection of the sensitivity curve

with the dashed horizontal line gives birth to the two points S1 : (ω1, 1) and

S2 : (ω2, 1) which exactly correspond to R1 and R2. Furthermore, for every

ω∗ ∈ (ω1, ω2), Sω
η (ω

∗) > 1, while for ω∗ ∈ R− [ω1, ω2], Sω
η (ω

∗) < 1. A compar-

ison between Figures (1.9) and (1.10:a) suggests that in a bistable regime, the

identity line must lie between the two tangent lines. This shows that the sen-

sitivity of the open-loop response function to the input at the unstable steady

state is greater than one which means that the response curve is ultrasensitive at

this point. In the next chapter, we will employ the open-loop approach to study

bistability robustness in some prototypical feedback systems and to reconstruct

the bistable behavior of the GAL network in Saccharomyces cerevisiae.
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Chapter 2

Results

In this chapter, we study bistability and its robustness in prototypical positive

feedback loop systems by using the open-loop approach. In the first section,

we address the issue of bistability robustness by exploring the extrema of bi-

furcation boundaries in the parameter space. The emergence of such extrema

enlarges the bistability range of a single parameter and therefore contribute to

the robustness of bistability. We in particular show that a negative feedback

loop can create the possibility of extending the bistability range of a parameter.

In the second section, we peruse a different approach to the study of bistability

robustness by studying the unstable steady state sensitivity to parameters. As

we discussed before, the preservation of unstable steady state of a bistable sys-

tem against parameter perturbations is key to the maintenance of bistability.

Our goal is specifically to detect parametric regions inside the bistability area

in which the sensitivity of the unstable steady state to parameters can be mini-

mized so that the parameter perturbations have the least effect on the unstable

steady state. We continue our investigation of system (1.4) and establish our

main results on the bistability robustness by using the open-loop sensitivity. We

later apply our results to two examples of higher dimensional systems that have

homodimerization and titration as the ultrasensitive mechanisms. Finally, in

the third section, we study the galactose network in Saccharomyces cerevisiae

and develop a mathematical model to reconstruct the bistable behavior of the

network. We show how the experimental data extracted from different layers

of the network can be used to estimate the value of main parameters of the

model by performing the nonlinear regression. We also discuss the computa-

tional challenges that we face in using the nonlinear regression for building the

mathematical model for the galactose network. Our mathematical model proves

the significance of homodimerization and titration mechanisms in creating bista-

bility in the galactose network.
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2. Results

2.1 Exploring the extrema of the bistability range of

a single parameter

As we discussed in Chapter 1, bifurcation diagrams provide the very first valu-

able information on the robustness of a dynamical characteristic like bistability

by giving the exact boundaries of the parametric region in which the desired

characteristic behavior emerges. In the case of system (1.4), bifurcation dia-

gram (1.7) depicts the boundaries of bistability region for two parameters b and

Kd. Moreover, as illustrated in the figure, the cusp bifurcation point C also

defines an extremum for the bistability range of these two parameters. In other

words, the cusp point determines the b and Kd extremal bistability values be-

yond which the emergence of bistable behavior is not possible. One important

question is whether it is possible to extend the bistability range of parameters

by moving the cusp point. For example, in Figure (1.7), if the cusp point is

moved to the right or elevated, the bistability range of the parameters b and

Kd can be extended. This is a very important observation for the robustness

of bistability with regard to a single parameter variations since any extension

in the parametric range means that the bistable behavior of the system is less

likely to disappear as a result of parameter perturbations. In this section, we

are going to explore such possibility in positive feedback loops. We are in

particular interested to see whether a negative feedback loop when interact-

ing with a positive feedback loop, can create the possibility of an extension in

the bistability range of a parameter. Negative regulatory mechanisms such as

negative feedback loops are also ubiquitous in many biological systems. They

are well-known mainly for their role in creating sustained oscillations [21] and

reppressing noise [11]. Negative feedback loops can also act as a linearizer and

transform a sigmoidal response curve to a linear one [10, 61]. This suggests

that negative feedback loops can weaken and eventually eliminate the ultrasen-

sitivity of the response curve which is a necessary condition for having multiple

steady states. On the other hand, depending on the architecture of the system,

negative feedback loops can increase the nonlinearity of the system and there-

fore contribute to the ultrasensitivity in the dynamics of the system. There are

examples in which coupling between positive and negative feedback loops can

extend the range of bistability in a specific architecture [87]. The dual role of

negative feedback loops leads us to explore a simple system consisting of a pos-

itive and a negative feedback loop. This systems is illustrated in Figure (2.1).

The system has two main regulatory proteins; there is an activator P and an

inhibitor Q. The activator promotes the production of its own gene and the
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M

P

Q
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A B

Figure 2.1: A gene regulatory system with a positive and a negative feedback
loop. The activator P promotes its own production in a self-activating loop,
and induces the production of the inhibitor Q that in turn sequesters P into an
inactive complex. The positive feedback loop can be opened at either A (the
protein level) or B (the mRNA level).

inhibitor, and the inhibitor sequesters the activator into an inactive complex C

that cannot bind the promoters. The self-activation of P constitutes a positive

feedback loop, and the positive regulation of Q by P together with the negative

regulation of P by Q closes a negative feedback loop. Molecular titration or

sequestration is a very strong source of nonlinearity in biochemical systems and

is ubiquitous in may regulatory networks like the GAL network. We will give

a very short introduction to the titration mechanism in the next section where

we study a positive feedback loop with molecular titration. The system shown

in Figure (2.1) is modeled by the following set of differential equations

Ṁ = bM + vP
P

KdP + P
− γMM,

Ṗ = µM − konPQ+ koffC − γPP,

Q̇ = bQ + vQ
P

KdQ + P
− konPQ+ koffC − γQQ,

Ċ = konPQ− koffC − γCC,

(2.1)

where bM and bQ are the basal expression rates for the activator mRNA M and

the inhibitor Q respectively, vP and vQ are the maximum production rates of

the promoters, µ is the translation rate of the mRNA into protein, and γM , γP ,

γQ and γC are the degradation rate constants of components. The parameters
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kon and koff are association and dissociation rate constants of protein-protein

binding and KdP and KdQ are the equilibrium dissociation constants of protein-

promoter binding.

In the first step, we put bM = 0 and study both the closed-loop and open-

loop systems. This assumption dramatically reduces the complexity of algebraic

equations. The steady state equation of the closed-loop system (2.1) is given by

the following algebraic equation

P
(

−γPP
2+

( µ

γM

vPP

KdP + P
− vQP

KdQ + P
−bQ−κ

)

P+
µκ

γMγP

vPP

KdP + P

)

= 0, (2.2)

where κ is a lumped parameter and is defined by the following equation

κ =
γPγQ
γC

(koff + γC
kon

)

. (2.3)

For simplicity, we assume that the equilibrium dissociation constant of P to

both promoters are equal with each other, that is, KdP = KdQ = Kd. The

distribution of steady states in the parameter space is determined by the roots

of the discriminant of the steady state equation (2.2). The bistability region in

the case of system (2.1) is enclosed by a saddle-node and a transcritical bifurca-

tion curve. Transcritical bifurcation is related to the stability exchange between

two steady states rather than the creation and elimination of them [46]. The

intersection of saddle-node and transcritical bifurcation curves defines a saddle-

node-transcritical bifurcation point [73]. Figure (2.2) shows the bifurcation di-

agram of system (2.1) in two different parameter spaces, i.e., the (κ, bQ)- and

(κ,Kd)-space. Both diagrams in Figure (2.2) show that the locus of saddle-node-

transcritical bifurcation points (SNT points) has a maximum in the direction

of bQ and Kd, meaning that the bistability range of the parameter κ can be

maximized to the extremum of the locus. The coordinates of the maximum

point are given by

bQ =
1

4

µ2v2P − γ2Mv2Q
µvPγM

,

Kd =
1

2

µvP − γMvQ
γPγM

,

κ =
1

4

(µvP − γMvQ)
2

µvPγM
.

(2.4)
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Figure 2.2: Bifurcation diagram of system (2.1) in two different parameter spaces
for vP = 200, vQ = 50, γP = γM = 1 and µ = 1. The locus of saddle-node-
transcritical (SNT) bifurcation points has a maximum in the direction of both
bQ and Kd. This means that the bistability range of κ can be maximized.

The bifurcation diagrams in Figure (2.2) can very well explain how a negative

feedback loop can increase the bistability range of a parameter like κ. It is

interesting to see that the contribution of the negative feedback loop to the

bistability has a defining point which is given by the maximum of the locus of

the saddle-node-transcritical bifurcation points. It is important to note that

since the Hill number in the positive feedback loop is equal to one, the ultra-

sensitivity necessary for the emergence of bistability, is solely provided by the

titration mechanism in the negative feedback loop. The ultrasensitivity con-

tributes to the bistability range of κ until the value of this parameter reaches

the maximum of the saddle-node-transcritical locus. After reaching this point,

further increase in the value of Kd or bQ leads to the shrinkage of the range,

meaning that the negative feedback starts to weaken bistability in the direction

of the parameter κ.

Now that we have detected the maximum of the bistability range for a parameter

like κ, we are interested to investigate whether we can formulate mathematical

conditions with which it is possible to detect such maximum points in an arbi-

trary parameter space. In particular, we are interested to see if the open-loop

approach can help us achieve this goal. For this purpose, we open the positive

feedback loop in system (2.1). The loop can in fact be opened in two different

ways as shown in Figure (2.1). One opening can be done at the protein level

where P binds the promoter, and the other can be done at the mRNA level

where the mRNA is translated into protein. For the opening from the protein

level, the open-loop version of system (2.1) is given by replacing P in the first

20



2. Results

equation by a constant ω

Ṁ = bM + vP
ω

KdP + ω
− γMM, (2.5)

and the rest of equations remain the same. In this open-loop version, P is the

output of the system and therefore, we call this system as the P -system. For

the opening from the mRNA level, M is replaced by ω in the second equation

of system (2.1) as

Ṗ = µω − konPQ+ koffC − γPP, (2.6)

and the rest of equations remain the same. In this open-loop version, M serves

as the output of the system and the system itself is referred to as the M -system.

It is straightforward to calculate the open-loop response and sensitivity of both

P - and M - systems. For the P -system, the steady state input-output equation

reads as follows

−γPP
2 +

( µ

γM

vP ω

Kd + ω
− vQP

Kd + P
− bQ − κ

)

P +
µκ

γMγP

vP ω

Kd + ω
= 0, (2.7)

and for the M -system, the response function is achieved by solving

− γPP
2 +

(

µω − vQ P

Kd + P
− bQ − κ

)

P +
κ

γP
µω = 0,

P =
γM KdM

vP − γM M
.

(2.8)

The corresponding sensitivity functions, Sω
P and Sω

M for P and M systems can be

calculated using equation (1.12). For the P -system, it is interesting to observe

that the variations in the value of bQ make the maximum of sensitivity curves

change in a nonmonotone fashion. Figure (2.3) illustrates the sensitivity curves

of the P -system for different values of bQ and Kd. As shown in the figure, only

the variations of bQ create a nonmonotone change in the maximum of sensitivity

curves. This is a first impression as to whether the open-loop sensitivity can

help detect the maximum of the locus of saddle-node-transcritical points in the

bifurcation diagram. In particular, we can plot a curve in the (κ, bQ)-space on

which the maximum of sensitivity curves reaches its maximum value. This curve

is calculated by solving the two following equations

d

dω
Sω
P (ω,Θ) = 0 and

d

dθ
Sω
P (ω,Θ) = 0, (2.9)

for θ = bQ with Θ as the vector of all parameters. The resulting curve that

expresses bQ as a function of κ is shown in Figure (2.4). We refer to this
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Figure 2.3: Sensitivity diagram of the P -system for vP = 200, vQ = 50, γP =
γM = 1 and µ = 1, and for Kd = 75 in the left diagram and bQ = 40 in the
right diagram. Variations of bQ create a nonmonotone change in the maximum
of sensitivity curves. This is not the case for the parameter Kd.
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Figure 2.4: The locus of saddle-node-transcritical bifurcation points and its
intersection with the locus of maximum of maximum sensitivity for vP = 200,
vQ = 50, γP = γM = 1 and µ = 1. The two curves intersect at the maximum of
saddle-node-transcritical locus which gives the biggest bistability range for κ.
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Figure 2.5: Sensitivity diagram of the M -system for vP = 200, vQ = 50, γP =
γM = 1 and µ = 1 and for Kd = 75 in the left diagram and bQ = 40 in the right
diagram. The maximum of sensitivity curves varies monotonically with both bQ
and Kd.

curve as the maximum of maximum sensitivity curve. It is very interesting to

observe that the curve of maximum of maximum sensitivity intersects the lo-

cus of saddle-node-transcritical points at the rightmost point which gives the

biggest bistability range for the parameter κ. This means that the open-loop

sensitivity of the P -system can successfully predict the maximum of the saddle-

node-transcritical curve for bQ. We can also check the M -system in a similar

fashion. The sensitivity diagram for the M -system is shown in Figure (2.5).

Interestingly, in the case of M -system, variations in the value of both bQ and

Kd fail to create a nonmonotone change in the maximum of sensitivity. This

already suggests that the M -system may not be able to yield any results for the

detection of the maximum of the locus of saddle-node-transcritical points in the

(κ,Kd)-space.

In the next step, we study system (2.1) with bM 6= 0. We carry out the same

analysis for the corresponding P and M systems. Since adding this new param-

eter makes the calculations quite difficult and tedious, we drop the Hill function

production of the inhibitor Q by P and only keep the positive feedback loop

which is necessary for bistability. The resulting system still shows the essen-

tial characteristics of the original system with the negative feedback loop. In

particular, the bifurcation and sensitivity diagrams, as we will shortly discuss,

have the same features as we studied above. For the P -system with basal for

the activator, the sensitivity diagrams for both varying bQ and Kd show the

same pattern as in Figure (2.3). Figure (2.6) shows that bQ variations create a

nonmonotone change in the level of maximum sensitivity and Kd variations still
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Figure 2.6: Sensitivity diagram of the P -system with basal for the activator
(bM 6= 0) for vP = 200, bM = 10, γP = γM = 1 and κ = 5, and for Kd = 15
in the left diagram and bQ = 60 in the right diagram. Variations of bQ create a
nonmonotone change in the maximum of sensitivity curves. The parameter Kd

can only shift the maximum of sensitivity curves to the right or left.

fail to do so. For the M -system with basal for the activator, there is a possibility

to demonstrate the nonmonotone change in the maximum of sensitivity curves.

It is interesting to see that this phenomenon happens as a result of variations

in the value of Kd. The results are shown for the M -system in Figure (2.7).

The new results for the M -system with basal for the activator further approves

the need for a thorough investigation on how different parameter configurations

can lead to the detection of the nonmonotone variations in the maximum of

sensitivity. It is also interesting to see if the locus of maximum of maximum

sensitivity can predict the maximum point in the locus of bifurcation points

in the bifurcation diagram. It is important to note that for a nonzero basal

value for the activator (bM 6= 0), the locus of bifurcation points represents a

curve of cusp bifurcation points. Figure (2.8) illustrates the intersection of the

locus of maximum of maximum sensitivity, calculated by using equation (2.9)

for θ = bQ,Kd, with the locus of cusp bifurcation points in the parameter space.

For the P -system, the intersection happens at the maximum of the cusp locus,

while for the M -system, the intersection is detected elsewhere. This means that

the P -system is still the only open-loop version of the original system that can

predict the biggest bistability range for a single parameter like κ and although

the maximum sensitivity of the M -system undergoes a nonmonotone variation

with Kd, it fails to determine the maximum of the cusp locus.

With all mentioned above, we can conclude that the problem of detecting the

maximum point in the locus of bifurcation points (saddle-node-transcritical/cusp)
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Figure 2.7: Sensitivity diagram of the M -system with basal for the activator
(bM 6= 0) for vP = 200, bM = 10, γP = γM = 1 and κ = 5, and for Kd = 70
in the left diagram and bQ = 60 in the right diagram. The parameter Kd can
create a nonmonotone change in the maximum of sensitivity.
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Figure 2.8: The locus of cusp bifurcation points and its intersection with the
locus of maximum of maximum sensitivity for vP = 200, bM = 10, γP = γM = 1
and µ = 1. (a) For the P -system, the two loci intersect at the maximum of the
cusp locus. (b) For the M -system, the intersection happens at a point other
than the maximum of the cusp locus.
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is twofold. Firstly, our studies show that the way of opening the feedback loop

can play an important role in determining the parameter configurations that

can detect the maximum of the bifurcation points locus. Our investigations

also reveal that some parameters can have an essential impact on the desired

parameter configurations. This is approved by examining the role of bM whose

presence is necessary for the M -system sensitivity to demonstrate a nonmono-

tone change in its maximum level. Secondly, at the presence of a nonmonotone

change in the maximum sensitivity level, as we saw above, the intersection of

the maximum of maximum sensitivity curve with the locus of bifurcation points

does not necessarily happen at the maximum of the bifurcation points locus. In

this case, the open-loop formulation fails to predict the existence of this point

in the bifurcation diagram. For the case of the M -system, the question still

remains as to whether it is possible to move the intersection point to the maxi-

mum of the cusp locus by varying other parameters. In other words, it may be

necessary to include more parameters in our investigations. This question has

been recently addressed by Majer et al. [53] where it is shown that the bistability

range of a parameter can be maximized if the sensitivity of the open-loop system

is maximized with respect to two other parameters. The formulas are general

and provide a recipe for choosing the relevant parameters regardless of the way

the original system is opened. Therefore, the need to include more parameters

in the analysis of the extrema of the bistability range of a single parameter has

been shown. In the case of M -system, for example, the extremum of bistability

range for bQ is given if the open-loop system sensitivity is maximized with re-

spect to both Kd and vP , and the extremum for vP is achieved if the sensitivity

is maximized with respect to Kd and bQ. The formulation has been used to

predict the extrema of the bistability range for different parameters in a single

positive feedback system with titration and two positive feedback loop systems

with double-positive and double-negative interactions.

2.2 Exploring robust regions of the bistability area

In this section, we pursue a different approach in the analysis of bistability ro-

bustness by focusing on the unstable steady state. The unstable steady state

of a dynamical system plays a key role in the organization of bistability and its

variations under the parameter perturbations are significant to the maintenance

of this dynamical characteristic. We explore robust bistability regions by mini-

mizing the sensitivity of the unstable steady state sensitivity to parameters of a

system. We use system (1.4) to establish our main results and formulations, and
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later, apply our results to two example systems of higher dimensions. One of

our main goals in this section is to employ the open-loop sensitivity to formulate

mathematical conditions for the detection of the robust bistability regions.

In chapter 1, we discussed that the ultrasensitivity of the response curve at

the unstable steady state is the necessary condition for the presence of bista-

bility and its strength can consequently have positive effects on the bistability

phenomenon. Therefore, we can expect to have a highly robust bistability when

the ultrasensitivity is present at its maximum level. We turn our focus on the

response diagram of the open-loop system (1.10) and specifically the locus of

unstable steady states on the response curve. Figure (2.9) depicts the response

curve (1.11) for different values of Kd inside the bistability region. It is clear
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Kd=28.21 Kd=33.38 Kd=53.38

Kd=81.38 Kd=101 Η=Ω
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Figure 2.9: The graph of response curve for vmax = 200, n = 2, γ = 1, b = 1
and different values of Kd. The black dots on the intersection of the identity
line and the curves represent different positions of unstable steady state of the
closed-loop system (1.4).

from the figure that the steepness of the curve at the middle unstable point

varies with Kd. A look at the corresponding sensitivity diagram in Figure (2.10)

(equation (1.12)) tells us which response curve has the highest steepness at the

unstable point. In fact, Figure (2.10) suggests that it is possible to push the

unstable steady state to the maximum of sensitivity by varying the value of Kd.

The figure shows that for a specific value of this parameter, the response curve

can reach the highest possible ultrasensitivity at the unstable steady state. It

should be noted that the unstable steady state does not necessarily need to be

the maximum of the sensitivity curve. Our goal is in fact to have the maximum

27



2. Results

2 5 10 20 50 100

1.0

2.0

1.5

Kd=28.21 Kd=33.38 Kd=53.38

Kd=81.38 Kd=101

Sω
η

ω

Figure 2.10: The graph of sensitivity curve for vmax = 200, n = 2, γ = 1, b = 1
and different values of Kd. The locus of unstable steady states are denoted by
the black dashed curve. The open-loop sensitivity at the unstable steady state
reaches its maximum value at Kd = 53.38.

sensitivity of the response at the unstable steady state which here happens to

be the maximum of a specific sensitivity curve as well. It is straightforward to

see why this is the case for Kd in system (1.10). In fact, a look at the response

diagram (2.9) suggests that variations of Kd do not have any influence on the

upper and lower limits of the response curve. By limits, we mean the basal level

in the lower part of the curve as the ω tends to zero and the saturation level in

the upper part of the curve as ω tends to infinity. This means that the dynamic

range of the response curve, defined as the ratio of the upper and lower limits,

does not change with Kd. The invariance of the dynamic range with respect to

Kd can also be observed in the sensitivity diagram (2.10) where changes in Kd

do not change the highest level of sensitivity which is defined by the maximum

point of sensitivity curves. In fact, variations in the value of Kd only shift the

sensitivity curves to the right or left.

In a similar fashion, we can construct sensitivity diagrams for other parame-

ters of the system. For vmax and b, just like Kd, it is possible to maximize

the open-loop sensitivity at the unstable steady state. Figure (2.11) depicts the

open-loop sensitivity curves for these two parameters together with the locus

of unstable steady states for different values of vmax and b. As illustrated in

the figure, variations in the value of vmax and b define a maximum in the locus

of unstable points and this maximum does not coincide with the maximum of

the sensitivity curve. Figures (2.10) and (2.11) suggest that the maximization
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Figure 2.11: The graph of sensitivity curve for n = 2, γ = 1, and for b = 1,
Kd = 20 in (a), and vmax = 200, Kd = 101 in (b). The locus of unstable steady
states is denoted by the black dashed curve. The open-loop sensitivity at the
unstable steady state reaches its maximum value at (a) vmax = 58.17 and (b)
b = 8.31.

of the open-loop sensitivity at the unstable steady state is possible for all pa-

rameters of the system and can be taken into account as a first step to define a

robust bistable behavior. Now, the question is whether the maximization of the

open-loop sensitivity at the unstable steady state with respect to parameters is

sufficient for minimization of the closed-loop unstable steady state sensitivity

to parameters. In the following, we directly measure the unstable steady state

sensitivity to the parameters of system (1.4). By comparing the results of the

closed-loop to the open-loop sensitivity analysis, we show that maximization

of the open-loop sensitivity with respect to parameters is not sufficient in gen-

eral to minimize the unstable steady state sensitivity. We discuss how we solve

this problem by taking into account another important quantity which is the

sensitivity of the open-loop response to parameters rather than the input, and

formulate a general condition to predict the minimum of unstable steady state

sensitivity.

2.2.1 The closed-loop sensitivity analysis: The unstable steady

state sensitivity to parameters

We already know that the preservation of unstable steady state against pa-

rameter perturbations is key to the maintenance and robustness of bistability.

Therefore, we naturally expect that the unstable steady state shows a minimum

sensitivity to parameter variations inside the bistability area [88]. We can use

the logarithmic sensitivity formula (1.9) to measure the sensitivity of the unsta-

ble steady state of system (1.4) to the parameters of the system. For n = 2, it
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is possible to directly calculate the unstable steady state of system (1.4). Using

equation (1.9), the sensitivity of the unstable state PU to an arbitrary parameter

α ∈ Θ is defined by

Sα
PU

(Θ) =
α

PU

dPU

dα
. (2.10)

For α = Kd, Figure (2.12) illustrates the graph of equation (2.10) as a function

of Kd. The diagram shows that the curve is nonmonotone and has a minimum.

1005030 70
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2.0
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Kd

SKd

PU
K

min
d

Figure 2.12: The graph of sensitivity of unstable steady state PU to the param-
eter Kd for vmax = 200, n = 2, γ = 1, b = 1. The curve is nonmonotone and
has a minimum at Kd = 53.38. This value is the same as the Kd-value for the
maximum of the open-loop sensitivity.

A comparison between Figures (2.10) and (2.12) confirms that the open-loop

sensitivity can very well predict the critical value of Kd for which the sensitivity

of unstable steady state of the closed-loop system reaches its minimum. This

is in fact independent of the selected parameter values in Figures (2.10) and

(2.12). The critical value of Kd that both minimizes the closed-loop sensitivity

and maximizes the open-loop sensitivity is given by the following equation

Kmin
d =

b1/4

γ

(

b+ vmax

)
3

4

. (2.11)

Figure (2.13) shows that the maximization of the open-loop sensitivity may

not correspond to the minimization of the unstable steady state sensitivity for

all parameters of system (1.4). The closed-loop sensitivity to vmax and b are

calculated using equation (2.10) for α = vmax, b. The two diagrams depict

the existence of minimum for both vmax and b. However, these minima are

different from the b- and vmax-value for the maximum of the open-loop sensi-

tivity. This means that maximization of the open-loop sensitivity alone may

not be a sufficient criterion to minimize the unstable steady state sensitivity.

In the following, we formulate rigorous mathematical conditions based on the
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Figure 2.13: The graph of sensitivity of unstable steady state PU to (a) vmax

and (b) b for n = 2, γ = 1, and for b = 1, Kd = 20 in (a) and vmax = 200,
Kd = 101 in (b). The sensitivity to these parameters is nonmonotone and has a
minimum at vmax = 63.11 in (a) and at b = 1.7 in (b). The b- and vmax-values
for the minima are not the same as the b- and vmax-values for the maxima of
the open-loop sensitivity in Figure (2.11).

open-loop sensitivity to predict parameter values for which the unstable steady

state sensitivity can be minimized relative to all parameters of a given system

like (1.4).

2.2.2 Formulation of the robustness analysis method based on

the open-loop sensitivity

We start with a very simple equation that defines the steady states of the closed-

loop system; that is,

H(ω,Θ) := Rη(ω,Θ)− ω = 0, (2.12)

where Rη(ω; Θ) is the response of the open-loop system which is defined by

equation (1.11) and Θ is the vector of parameters. The unstable steady state

satisfies equation (2.12) and as we discussed earlier in Figure (1.10), in a bistable

regime, the derivative of the response curve at the unstable steady state is

greater than one. This means that

∂

∂ω
H(ω; Θ)

∣

∣

∣

∣

ω=PU

6= 0. (2.13)

According to the implicit function theorem [47], ω can be represented as a

function of parameters, in a neighborhood of the unstable steady state PU .

This neighborhood can be expanded as long as we are in the bistability region
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in the parameter space. Equation (2.12) can be rewritten as

P (Θ) = Rη(ω; Θ). (2.14)

Taking the logarithmic derivative with respect to an arbitrary parameter α ∈ Θ

from both sides of equation (2.14) yields

Sα
P (Θ) =

Sα
η (ω; Θ)

1− Sω
η (ω; Θ)

, (2.15)

with

Sα
η (ω; Θ) =

α

Rη(ω; Θ)

d

dα
Rη(ω; Θ). (2.16)

Equation (2.15) is well defined since as stated above, the sensitivity of the re-

sponse function is greater than one inside the bistability region.

Equation (2.15) establishes the mathematical relationship between the sensi-

tivity of the unstable steady state of the closed-loop system and the sensitivity

of the response curve of the open-loop system to the input and the selected

parameter α. Given that our goal is to minimize the unstable steady state sen-

sitivity to a parameter, we take the derivative from equation (2.15) with respect

to α to get
∂

∂α

( Sα
η (ω; Θ)

1− Sω
η (ω; Θ)

)

= 0, (2.17)

which can be expressed as the following determinant

Dα(ω; Θ) =

∣

∣

∣

∣

∣

∣

∣

Sω
η (ω; Θ)− 1 ∂

∂αS
ω
η (ω; Θ)

Sα
η (ω; Θ) ∂

∂αS
α
η (ω; Θ)

∣

∣

∣

∣

∣

∣

∣

= 0. (2.18)

For every parameter α, equation (2.18) defines a hypersurface in an n-dimensional

parameter space, on which the unstable steady state sensitivity takes its min-

imum with respect to the parameter α. For the sake of simplicity and quick

referencing, we call these hypersurfaces α-sensitivity boundaries for each se-

lected α. In Figure (2.14), the α-sensitivity boundaries have been depicted for

α = vmax, b,Kd in a two-dimensional space. Instead of focusing on each α-

sensitivity boundary and trying to minimize the unstable steady state sensitivity

to α, we are interested to explore regions inside the bistability area in which the

unstable steady state sensitivity can be minimized relative to all parameters of

the system. The b-sensitivity and vmax-sensitivity boundaries, determined by

upper and lower dashed curves, enclose a region inside the bistability area in
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b

Figure 2.14: Bifurcation diagram of system (1.4) for vmax = 200, n = 2 and
γ = 1. The Kd-sensitivity boundary yields the parameter values for a robust
bistable behavior in the system.

which there is possibility for the unstable steady state sensitivity to be mini-

mized relative to these two parameters. The Kd-sensitivity boundary gives us

the best position inside this region in which the unstable steady state sensitiv-

ity can be minimized relative to three parameters. In fact, the Kd-sensitivity

boundary defines the most inner region bounded by the α-sensitivity boundaries.

We refer to this region as the robust bistability region. It should be noted that

the robust bistability region is not always a curve. Later, we will study other

example systems of higher dimensions for which the robust bistability region is

a two-dimensional region. We should also note that the γ-sensitivity boundary

is exactly the same as the Kd-sensitivity boundary and therefore, it is not men-

tioned in the figure. Ma & Iglesias [51] had previously proposed a measure of

robustness in a one-dimensional parameter space. The measure considers the

proximity of a nominal parameter value to the boundaries of a parameter inter-

val in which a dynamical characteristic like bistability emerges. This measure

is called the degree of robustness and is defined as follows

DOR = 1−max
{kl
k
,
k

ku

}

, (2.19)
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where k ∈ (kl, ku) is the nominal value and kl and ku are the bifurcation values.

Equation (2.19) always gives a value between 0 and 1 for different choices of

the nominal parameter value k. If the value is close to zero, the system is very

sensitive to the parameter value, but for values close to one, system is insensi-

tive and as a result robust to the chosen parameter value. For every fixed b in

Figure (2.14), it is interesting to see that our predicted value of Kd maximizes

the degree of robustness (2.19).

To further validate that on the Kd-sensitivity boundary the unstable steady

state sensitivity can be minimized relative to all parameters of system (1.4),

we calculate the cumulative sensitivity [88] that gives a measure for the total

sensitivity to all parameters of the system and is defined by

SΘ
P (Θ) = |Sb

P (Θ)|+ |Svmax

P (Θ)|+ |SKd

P (Θ)|, (2.20)

where Sα
P (Θ), α = b, vmax,Kd, is calculated in an open-loop setting by using

equation (2.15). The cumulative sensitivity is a good measure to evaluate the

total sensitivity of the unstable steady state to all parameters of a system. The

graph of equation (2.20) is plotted in Figure (2.15). As illustrated in the figure,

SΘ

P

b

Kd

Figure 2.15: Cumulative sensitivity manifold for system (1.4). The manifold
takes its minimum along the Kd-sensitivity boundary.

the cumulative sensitivity takes its minimum along the Kd-sensitivity boundary

for different values of b and Kd in the bifurcation diagram (2.14). Figure (2.15)
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confirms that the total sensitivity of the unstable steady state to all parameters

can be minimized on the Kd-sensitivity boundary. Therefore, we can already

expect that on this curve, parameter perturbations have the least effect on the

bistability. Our results also reveal that in the set of parameters of system (1.4),

Kd is a key parameter for creating robust bistability in the system.

2.2.3 One-gene positive feedback loop with protein homodimer-

ization

Molecular homodimerization is a mechanism through which two identical molecules

bind and form a complex. The complex is called a dimer molecule. In the field of

molecular biology, binding of two inactive identical proteins can form an active

protein that can for example act as a transcription factor. For a protein like P ,

the homodimerization is expressed by the following simple chemical equation

P + P
kon−−−⇀↽−−−
koff

C, (2.21)

where P can be considered as an inactive protein and C can be taken as an active

complex. The two parameters kon and koff are the association and dissociation

rate constants, respectively. Based on the law of mass action [75, 76], differential

equations that model this mechanism read as follows

Ṗ = −2konP
2 + 2koffC,

Ċ = konP
2 − koffC.

(2.22)

It is assumed in system (2.22) that there is no production and degradation for the

chemical components. Under this assumption, system (2.22) becomes a closed

chemical system in which all concentrations are conserved. In fact, the following

mathematical relation holds between the two equations of system (2.22)

Ṗ + 2Ċ = 0, (2.23)

which in turn yields

P + 2C = PT , (2.24)

where PT is the total concentration of protein P . Putting system (2.22) at the

steady state and applying equation (2.24), we get

P =
1

4

(

− κd +
√

κ2d + 8PTκd

)

. (2.25)

35



2. Results

Equation (2.25) expresses the free concentration P as a function of the total

concentration PT . The parameter κd =
koff
kon

is the equilibrium dissociation

constant of the protein-protein binding. It is discussed in [16] that homod-

imerization is capable of creating ultrasensitivity. This ultrasensitivity is much

weaker than that of created by molecular titration. However, as we will see, it

can bring about bistability in a one-gene positive feedback system even in the

absence of molecular cooperativity. The graph of equation (2.25) is illustrated

in Figure (2.16) for selected values of κd. Different values of κd represent
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Figure 2.16: Plot of concentration of free protein P as a function of its total
concentration PT for different values of κd. For PT < κd, the response curves
exhibit ultrasensitivity.

different homodimerization strengths; the lower the value of this parameter is,

the stronger the mechanism will be. According to Figure (2.16), equation (2.25)

exhibits ultrasensitivity for PT < κd.

Now, we assume that P as a transcription factor dimerizes to form the ac-

tive complex C that can bind a promoter and induce the gene transcription.

We assume that the promoter region has only one binding site so that the pos-

sibility of a cooperative binding to promoter is ruled out and ultrasensitivity

is created solely by the homodimerization mechanism. Figure (2.17) depicts a

schematic diagram of the system. The system is expressed by the following set

of differential equation

Ṗ = bP + vmax
C

Kd + C
− 2konP

2 + 2koffC − γPP,

Ċ = konP
2 − koffC − γCC,

(2.26)
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Figure 2.17: A one-gene positive feedback loop with the homodimerization
mechanism. (a) The closed-loop system. (b) The open-loop system with the
opening point O.

where bP is the basal and vmax is the maximum production rates, Kd is the

equilibrium dissociation constant of the protein-promoter binding, and γP and

γC are the degradation rate constants of the monomer and dimer proteins. It

is straightforward to show the existence of bistability in system (2.26). We get

the steady state equation

A4(Θ)P 4 +A3(Θ)P 3 +A2(Θ)P 2 +A1(Θ)P +A0(Θ) = 0, (2.27)

where Θ is the vector of all parameters with a new lumped parameter defined

as

κd =
koff + γC

kon
. (2.28)

We can think of κd as the protein-protein equilibrium dissociation constant. Bi-

furcation diagram of system (2.26) is illustrated in Figure (2.18) in the (κd,Kd)-

space. The two saddle-node bifurcation boundaries intersect at the cusp bifur-

cation point C. The bistability region in Figure (2.18) provides interesting infor-

mation on how parameters interact to bring about bistability in system (2.26).

Since the homodimerization mechanism is part of the positive feedback loop,

both Kd and κd can be considered as measures of the positive feedback strength

and its effect on bistability. This role is more pronounced for κd because the Hill

number in equation (2.26) is one and therefore, in the absence of cooperativity,

the necessary ultrasensitivity for bistability is created by the homodimerization

mechanism. The bifurcation diagram shows very well how the two dissociation

constants interact with each other in a bistable regime; the higher values of Kd

are compensated by lower values of κd and vice versa. In other words, when the

protein-promoter binding is not strong (high Kd), a very strong homodimeriza-

tion effect (low κd) can create a large concentration of dimer proteins so that
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Figure 2.18: Bifurcation diagram of system (2.26) for vmax = 200, γP = 1,
γC = 1 and bP = 0.5. The intersection of saddle-node bifurcation curves defines
a cup bifurcation point at C.

the resulting positive feedback strength can maintain the bistable behavior. On

the other side of the bifurcation diagram, for weak protein-protein binding (high

κd), bistability will be preserved as a result of strong protein-promoter binding

(low Kd) when the dimer protein is available at low concentrations. It is also

clear from the bifurcation diagram that the bistability range of κd is quite larger

than Kd meaning that the homodimerization process has a key role in creating

and maintaining bistability in system (2.26).

In order to look for the robust bistability region inside the bistability area (2.18),

we first open the positive feedback loop as shown in Figure (2.17:b). The cor-

responding open-loop equations are

Ṗ = bP + vmax
ω

Kd + ω
− 2konP

2 + 2koffC − γPP,

Ċ = konP
2 − koffC − γCC,

(2.29)

with ω as the constant input and all the other C’s as the output. The steady

state input-output response of system (2.29) is achieved by solving the following

equation

bP − 2γCC −
√

κdC + vmax
ω

Kd + ω
= 0. (2.30)

The solution of equation (2.30) is not unique and there are two positive solu-

tions for C as a function of ω. A simple biological consideration will help us

pick the right solution; by putting both ω and bP equal to zero, only one of

the solutions become zero, which means that if the monomer is not produced,
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Figure 2.19: Bifurcation diagram of system (2.26) for vmax = 200, γP = 1,
γC = 1 and bP = 0.5. The robust bistability region is illustrated by the shaded
area. Those sensitivity boundaries which are not shown in the figure, lie on
either the saddle-node bifurcation curves or the existing sensitivity boundaries.

there will be no dimer proteins. Having solved equation (2.30) for C, we can

obtain the open-loop sensitivity to the input and to each parameter and calcu-

late the determinant (2.18). The resulting boundaries for different parameters

of systems (2.29) are shown in Figure (2.19). We again focus on the most inner

region defined by the boundaries. This region is shaded in the figure. Inside

the shaded region, we expect to have the minimum of unstable steady state

sensitivity relative to all parameters of the system. Those parameter sensitivity

boundaries which are not shown in Figure (2.19) lie on either the saddle-node

bifurcation curves or the existing boundaries. It is interesting to see that the

robust bistability region is enclosed by the Kd- and κd-sensitivity boundaries.

This again confirms that for a robust bistable behavior in system (2.26), Kd

and κd have a decisive role in the parameter space. The cumulative sensitivity

SΘ
C also shows that the total sensitivity of the unstable steady state to all pa-

rameters takes its minimum inside the robust bistability region. The manifold

of cumulative sensitivity is depicted in Figure (2.20).
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Figure 2.20: Cumulative sensitivity manifold for system (2.26). The manifold
takes its minimum inside the robust bistability region.
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2.2.4 One-gene positive feedback loop with molecular titration

Molecular titration or sequestration is a process in which two nonidentical

molecules bind to form a complex molecule which is called a heterodimer. In

molecular biology, an inhibitor protein titrates an active protein into an inactive

complex so that the active protein loses its function. For two proteins like P

and Q, titration is illustrated by the following simple chemical equation

P +Q
kon−−−⇀↽−−−
koff

C, (2.31)

where P is the active protein, Q is the inhibitor protein and C is the inactive

complex. We can set up differential equations for the chemical system (2.31) as

follows

Ṗ = −konPQ+ koffC,

Q̇ = −konPQ+ koffC,

Ċ = konPQ− koffC.

(2.32)

We assume that different components are neither produced nor degraded. Based

on the conservation of matter, we have

P + C = PT and Q+ C = QT , (2.33)

where PT and QT are the total concentrations of P and Q respectively. Taking

equations (2.33) into account, the steady state value of the active protein P is

given by

P =
1

2

(

PT −QT −Kd +
√

(PT −QT −Kd)2 + 4PTKd

)

, (2.34)

with κd =
koff
kon

as the equilibrium dissociation constant of the protein-protein

binding. Equation (2.34) expresses the free concentration P as a function of total

concentrations PT and QT . As discussed in [16], molecular titration can generate

ultrasensitive responses equivalent to highly cooperative processes. Figure (2.21)

depicts the logarithmic plot of equation (2.34) for different total concentrations

of the inhibitor. According to Figure (2.21), the more the inhibitor concentra-

tion is, the stronger the buffering and ultrasensitivity will be. It is discussed in

[16] that strong buffering and ultrasensitivity happen when

QT

κd
> 1. (2.35)
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Figure 2.21: Plot of concentration of free protein P as a function of its total
concentration PT for κd = 1 and different values of QT . For higher concen-
trations of protein Q the response curves exhibit stronger buffering and higher
ultrasensitivity. The buffering of protein P happens when PT < QT and the
ultrasensitivity is generated at the threshold PT ≈ QT .

The ratio in inequality (2.35) is called the stoichiometric binding constant. In

Figure (2.21), all the response curves exhibit ultrasensitivity at the threshold

defined by PT ≈ QT .

The protein P in reaction (2.31) can also be taken as an active transcription fac-

tor which can bind to a promoter and initiate transcription of a gene sequence

into an mRNA strain. It is shown that sequestration of an active transcrip-

tion factor by an inhibitor can convert a graded transcriptional response into

an ultrasensitive binary response [15] which is necessary for the emergence of

bistability in feedback systems. We suppose that a protein like Q can bind P

and inhibit transcription by forming an inactive complex. The process has been

schematically shown in Figure (2.22). The system is expressed by the following

set of different equations

Ṗ = bP + vmax
P

Kd + P
− konPQ+ koffC − γPP,

Q̇ = bQ − konPQ+ koffC − γQQ,

Ċ = konPQ− koffC − γCC,

(2.36)

where bP and bQ are the basal expression rates for the activator P and the

inhibitor Q respectively, vmax is the maximum production rate, Kd is the equi-

librium dissociation constant of the protein-promoter binding, and γP , γQ and

γC are the degradation rate constants of activator, inhibitor and complex pro-

teins. The steady state equation of the closed-loop system (2.36) takes the
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Figure 2.22: A one-gene positive feedback loop with the molecular titration
mechanism. (a) The closed-loop system. (b) The open-loop system with the
opening point O.

following form

A3(Θ)P 3 +A2(Θ)P 2 +A1(Θ)P +A0(Θ) = 0, (2.37)

where Θ is the vector of all parameters with a new lumped parameter defined

as

κd =
γPγQ
γC

(koff + γC
kon

)

. (2.38)

Just like equation (2.28), the parameter κd in the above equation can be con-

sidered as the protein-protein equilibrium dissociation constant. We earlier dis-

cussed that in system (2.26), the homodimerization process is part of the positive

feedback loop. Therefore, interaction of the two parameters Kd and κd can very

well illustrate how homodimerization as an ultrasensitive mechanism can create

bistability together with a positive feedback loop. In system (2.36), however,

the titration mechanism is not part of the feedback loop and has an external

influence on the positive feedback loop. It should also be noted that, just like

system (2.26), there is no cooperativity in system (2.36) and the necessary ultra-

sensitivity for bistability is solely created by the titration mechanism. According

to the above discussions, we can separate the role of parameters based on the two

distinct parts of the system, that is, the positive feedback loop which positively

contribute to the dynamics of the system and the titration part which nega-

tively regulates the system. The parameter Kd represents the strength of the

feedback loop as it measures the strength of protein-promoter binding. For the

titration mechanism, the two parameters κd and bQ can be used as a measure of

43



2. Results

10 20 50 100 200
0.1

1

10

100

Saddle-node bifurcation curves

bQ

Kd

C1

C2

Bistability
Region

Figure 2.23: Bifurcation diagram of system (2.36) for vmax = 200, γP = γC =
γQ = 1, κd = 0.2 and bP = 8. The two saddle-node bifurcation curves intersect
at two cusp points C1 and C2.

titration strength; bQ determines the level of inhibitor protein and κd defines the

strength of activator protein sequestration by the inhibitor protein. Any bifur-

cation diagram that gives the bistability region in a parameter space consisting

of Kd and either κd or bQ, can very well illustrate how titration mechanism and

the positive feedback loop can create bistability in system (2.36). Bifurcation

diagram of system (2.36) is illustrated in Figure (2.23) in the (bQ,Kd)-space.

In this parameter space, the two saddle-node bifurcation boundaries intersect

at two cusp bifurcation points C1 and C2. The two cusp points determine the

maximum parameter ranges for bistability; for high values of Kd (weak positive

feedback effect), the level of inhibitor has to be low (low bQ) for the system to

undergo bistability, while high values of bQ (strong titration effect) are com-

pensated with low values of Kd (strong feedback effect). This shows that the

titration mechanism as a negative regulatory motif and the positive feedback

loop have opposing effects at the two extreme parameter ranges. However, in

the middle ranges, the two opposing effects get very balanced to bring about a

relatively broad parameter range for bistability. We can now look for the robust

bistability region inside the bistability area (2.23). For this, we open the pos-

itive feedback loop as shown in Figure (2.22:b). The corresponding open-loop

equations are

Ṗ = bP + vmax
ω

Kd + ω
− konPQ+ koffC − γPP,

Q̇ = bQ − konPQ+ koffC − γQQ,

Ċ = konPQ− koffC − γCC,

(2.39)
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Figure 2.24: Bifurcation diagram of system (2.36) for vmax = 200, γP = 1,
γC = 1 and bP = 0.5. The robust bistability region is illustrated by the shaded
area. Those parameter sensitivity boundaries which are not shown in the figure,
lie on either the saddle-node bifurcation curves or the existing boundaries.

with ω as the constant input and all the other P ’s as the output. The steady

state input-output response of system (2.39) is achieved by solving the following

equation

−γPP
2+

(

vmax
ω

Kd + ω
+ bP − bQ−κ

)

P +
κ

γP

(

vmax
ω

Kd + ω
+ bP

)

= 0. (2.40)

Solution of equation (2.40) can be used to calculate the determinant (2.18) for

parameters of the system. The resulting boundaries for different parameters of

system (2.39) are shown in Figure (2.24). The most inner region is enclosed

by the bQ- and Kd-sensitivity boundaries which is shown by the shaded area.

Again, those parameter sensitivity boundaries which are not illustrated in the

figure, lie on either the saddle-node bifurcation curves or the existing sensitivity

boundaries. The enclosure of the robust bistability region by the bQ- and Kd-

sensitivity boundaries shows the significance of these two parameters in creating

robust bistability in system (2.36). The parameter Kd regulates the strength of

the positive feedback loop and bQ controls the level of ultrasensitivity that is

created by the titration mechanism. We can also see in Figure (2.25) that the

cumulative sensitivity SΘ
P of the unstable steady state takes its minimum inside

the robust bistability region which approves the fact that the total sensitivity
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of the unstable steady state to all parameters can be minimized in the robust

bistability region.

SΘ

P

Kd

bQ

SΘ

P

bQ

Kd

Figure 2.25: Cumulative sensitivity manifold for system (2.36). The manifold
takes its minimum inside the robust bistability region.
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2.3 The GAL network

The galactose metabolic network in Saccharomyces cerevisiae, GAL network for

short, is a well-known genetic switch that has been long recognized for studying

a variety of molecular mechanisms like protein-protein and protein-DNA inter-

actions. In the absence of glucose as the main energy source, the GAL network

metabolizes galactose through Leloir metabolic pathway [13]. The pathway

performs under the regulation of a set of regulatory proteins and enzymes that

define altogether the GAL network. Over the past decades, extensive mathe-

matical studies have been carried out on the GAL network to investigate the

emergence of the bistable switch [1, 6, 19, 93].

The GAL network consists of three regulatory genes, GAL4, GAL80, and GAL3

and five structural genes, GAL1, GAL2, GAL7, GAL10, which enable the net-

work to metabolize galactose [69]. The regulatory gene GAL4 encodes the

protein Gal4p that acts as a transcription factor. This protein initiates the

transcription of GAL genes by binding to their upstream activation sequences

(UASG) [28]. The regulatory genes GAL3 and GAL80 have one binding site on

their promoter while the structural genes have multiple binding sites on their

promoter; GAL2 and GAL7 have two binding sites, whereas GAL1 and GAL10

have four shared binding sites. The GAL80 gene encodes the protein Gal80p

that acts as a repressor of the transcription in GAL network. This protein binds

the Gal4p on the DNA and represses the active promoter [54]. The GAL3 and

GAL1 genes encode proteins Gal3p and Gal1p that in the presence of galactose

in the media can interact with Gal80p and remove its repression by binding the

Gal80p protein [6, 69]. The function of proteins Gal80p, Gal3p and Gal1p leads

to the emergence of the three important feedback loops in the GAL network,

namely, a negative feedback loop which is defined by the Gal80p repression of

the activator Gal4p, and two positive feedback loops through the Gal3p and

Gal1p repression of Gal80p protein [70].

In this section, we are going to study the role of three important proteins of the

GAL network in creating bistability in this network. Bistability is an important

dynamical characteristic in Saccharomyces cerevisiae since it creates a persistent

memory of the energy source that the network finds in the environment [1]. We

investigate the emergence of bistability by developing a mathematical model

that includes all protein-protein as well as protein-DNA interactions. We con-

struct our model step by step by studying three layers of the network. These

layers are created by isolating the activity of each of the proteins by deleting

47



2. Results

the other genes. We perform nonlinear regression on the experimental data to

estimate the parameter values of our model. We also discuss in detail the role of

homodimerization and titration in modeling the bistability in the GAL network.

We start with the first layer of the network.

2.3.1 The 1
st layer of the galactose network: Gal4p decay data

In the first layer of the GAL network, the activity of Gal4p is isolated by delet-

ing the GAL80 gene. In the absence of Gal80p protein, the transcription factor

Gal4p can activate the transcription of other genes without being repressed by

Gal80p. Therefore, we can calculate the protein-protein and protein-DNA bind-

ing affinities for Gal4p. In order to control variations in the level of Gal4p, the

endogenous promoter of GAL4 has been replaced with a doxycycline repressible

system. After the full activation of the system, the production of GAL4 mRNA

will be stopped and it can only be produced at the basal level. Shutting off the

GAL4 mRNA production helps measure the decay of Gal4p protein over time.

2.3.1.1 Gal4p decay process in galactose

The experimental data for the Gal4p decay process is given in Table (2.1) which

present the reduction in the total concentration of Gal4p protein over time. The

data in Table (2.1) is obtained after shutting off the GAL4 mRNA production

at time zero. At this stage, GAL4 mRNA is produced at a basal level.

Time (h) Gal4PT in galactose (N)

0 993.24

1.5 534.23

3 294.34

4.5 161.32

6 99.52

7.5 59.34

9 41.23

10.5 39.45

12 40.43

Table 2.1: Total concentration of Gal4p protein (Gal4PT ) in galactose medium

for different time points.

The explained production and decay processes for the total concentration of
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Gal4p protein is simply modeled by the following differential equation

d

dt
Gal4PT (t) = bG4 − γG4Gal4PT (t), (2.41)

with the initial condition

Gal4PT (0) = Gal40. (2.42)

The total concentration of Gal4p protein is represented by Gal4PT , bG4 denotes

the basal expression rate and γG4 is the decay rate constant. The ultimate goal

of our decay process investigation is to find the decay rate constant by using the

nonlinear regression. Equation (2.41) is a first order differential equation and

its exact solution is given by the following equation

Gal4PT (t) = Y +AeRt, (2.43)

where

R = −γG4, A = Gal40 −
bG4

γG4

, Y =
bG4

γG4

. (2.44)

We perform the nonlinear regression to fit equation (2.43) to the data in Ta-

ble (2.1). The Result of nonlinear regression is illustrated in Figure (2.26). The
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Figure 2.26: The result of nonlinear regression for total concentration of Gal4p
protein in galactose medium using equation (2.43). The nonlinear data fit pre-
dicts that Gal4p has a half-life of 1.61 hours.

parameter estimates with the corresponding standard errors and confidence in-

tervals are given in Table (2.2). The numbers in the table suggest that the

results of the nonlinear regression are reasonably good and reliable. According
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to the table and equation (2.43), the decay rate constant will be

γG4 = 0.43h−1, (2.45)

which is equivalent to the half-life of 1.61 hours. This is biologically reasonable

because the half-life of a protein is between 1− 2 hours.

Parameter Estimate Standard Error Confidence Interval

Y 26.98 3.01 (19.63, 34.34)

A 967.28 5.4 (954.05, 980.51)

R 0.43 0.005 (0.41, 0.44)

Table 2.2: Parameter estimates and the corresponding standard errors and con-

fidence intervals for equation (2.43) and the data set (2.1).

Moreover, the basal expression rate is given as follows

bG4 = 11.6Nh−1. (2.46)

Now that the decay rate constant for the total Gal4p protein is calculated, we

can investigate the interaction of Gal4p protein with other genes’ promoters.

We study the regulatory role of Gal4p protein on two promoters GAL7 and

GCY 1 by analyzing the mRNA level of each promoter as a function of Gal4p

total concentration.

2.3.1.2 The regulatory effect of Gal4p protein on the GAL7/GCY 1

promoter response

As mentioned in the previous section, in the absence of Gal80p which acts as an

inhibitor, Gal4p can freely activate the transcription of genes whose promoters

are regulated by this protein. We study the mRNA level of two genes; the first

one is GAL7 whose promoter has two binding sites and the second one is GCY 1

whose promoter has only one binding site for Gal4p protein. These two exam-

ples provide a very good framework for the study of Gal4p effect on the level

of these genes’ mRNA since in the case of GAL7 we can expect cooperativity

among Gal4p proteins to bind the promoter, while in the case of GCY 1 there

is no such possibility. As we will show in the following, this fact can help us

identify the nonlinear processes that are involved in the system and have to be

considered in our mathematical modeling. We start with a simple Hill function

as a first step in building our model.
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Fitting the Hill function

As explained in the previous chapters, Hill function as a sigmoidal function

can very well express the switch-like responses in gene networks. In this section,

we are going to fit a Hill function to GAL7/GCY1 mRNA data that models

the changes in the level of mRNA as a function of total concentration of Gal4p.

Table (2.3) gives the total concentration of Gal4p and the corresponding GAL7

and GCY1 mRNA levels in galactose medium.

The data in Table (2.3) show that as the Gal4p decays, the production of mRNA

diminishes since the level of transcription factor goes down exponentially. Ex-

perimentally speaking, the interesting point about the data in Table (2.3) is

that it can facilitate the study of both Gal4p decay and Gal4p-promoter bind-

ing processes with just one round of experimental measurement. In using a Hill

function as our model, we assume that only Gal4p monomers bind GAL7/GCY1

promoters to induce the gene transcription. The mRNA dynamics simply read

as follows
d

dt
M = bM + vM

Gal4nPF

Kn
d +Gal4nPF

− γM M, (2.47)

where M represents the concentration of mRNA (either GAL7 or GCY 1), bM
is the basal expression rate, vM defines the maximum level of promoter activity,

Kd is the equilibrium dissociation constant for Gal4p-promoter binding, γM is

the decay rate of the mRNA, and finally, Gal4PF denotes the free concentration

of Gal4p protein.

Gal4PT (N) GAL7 mRNA (N) GCY 1 mRNA (N)

993.24 1.38 0.53

534.23 1.18 0.4

294.34 0.96 0.31

161.32 0.54 0.18

99.5 0.18 0.0.09

59.34 0.04 0.05

41.23 0.01 0.04

39.45 0.01 0.037

40.43 0.008 0.03

Table 2.3: Total concentration of Gal4p protein in galactose medium with the

corresponding GAL7/GCY 1 mRNA levels.
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At the steady state, equation (2.47) can be solved for M to yield the following

equation

M = B + V
Gal4nPF

Kn
d +Gal4nPF

, (2.48)

where B = bM/γM and V = vM/γM . Equation (2.48) describes an input-output

response of a promoter as a function of Gal4p protein. It is worth noting again

that since there are no Gal80p in the first layer, the total concentration of Gal4p

freely interacts with the promoters; therefore, we take

Gal4PF = Gal4PT , (2.49)

in equation (2.48). In order to estimate the parameter values in equation (2.48),

we perform the nonlinear regression to fit this equation to the mRNA data. We

fix the values of V and B based on the highest and lowest levels of mRNA in

Table (2.3). The results are illustrated in Figure (2.27). The figure shows GAL7
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Figure 2.27: The results of nonlinear regression for (a) GAL7 mRNA and (b)
GCY 1 mRNA response to varying total Gal4p concentration in galactose using
equation (2.48). The nonlinear data fit suggests that the response is very steep
and a high level of cooperativity is needed.

and GCY 1 promoter responses to the changing Gal4p protein. The parameter

estimates and the corresponding standard errors and confidence intervals are

given in Tables (2.4) and (2.5).

Parameter Estimate Standard Error Confidence Interval

n 4.09 0.38 (3.18, 5.001)

Kd 172.68 14.74 (137.81, 207.56)

Table 2.4: Parameter estimates and the corresponding standard errors and con-

fidence intervals for equation (2.48) and GAL7 mRNA data in Table (2.3).
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Parameter Estimate Standard Error Confidence Interval

n 2.2 0.12 (1.91, 2.49)

Kd 265.73 15.68 (228.64, 302.82)

Table 2.5: Parameter estimates and the corresponding standard errors and con-

fidence intervals for equation (2.48) and GCY 1 mRNA data in Table (2.3).

The high Hill number suggest that both GAL7 and GCY 1 mRNA responses are

highly ultrasensitive. In fact, in both cases, the Hill numbers are unrealistically

high. Strictly speaking, these numbers are bigger than the number of binding

sites for each promoter which is theoretically impossible since the number of

binding sites defines a limit for the highest possible Hill number. This already

suggests that the Hill function alone is not sufficient to model the ultrasensitiv-

ity of the promoter response and therefore other sources of nonlinearity must

be taken into account. We previously discussed that there are other well-know

kinetic processes like molecular homodimerization and titration that can create

ultrasensitivity in biological systems. In the first layer, Gal4p is the only protein

of the system and therefore we can consider Gal4p homodimerization as another

potential source of ultrasensitivity. In what follows, we will study the role of

this mechanism and investigate how it can help reduce the high Hill number.

Homodimerization of Gal4p

In order to cope with the issue of very high Hill number (bigger than 2 for

GAL7 and bigger than 1 for GCY 1 mRNA responses), we take into account

the homodimerization process as a well-known source of nonlinearity which can

explain the high ultrasensitivity in the promoter response. At the presence of

homodimerization, the Gal4p monomer protein binds another Gal4p protein to

form an active dimer that can bind the promoter and induce transcription of

GAL7 and GCY 1 mRNA. The set of equations for this system reads as follows

d

dt
Gal4PF = bG4 − 2kon4Gal42PF + 2koff4C4− γG4Gal4PF ,

d

dt
C4 = kon4Gal42PF − koff4C4− γG4C4,

d

dt
M = bM + vM

C4n

Kn
d + C4n

− γM M.

(2.50)

In the above equations, Gal4PF is the Gal4p monomer and C4 is the Gal4p-

Gal4p dimer protein. It is assumed that the monomer and dimer proteins have
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the same decay rate constants. Since only the total concentration of Gal4p

protein is available in the experimental data and we have no estimation of the

free concentration, we need to convert the free concentration to the total one as

we are constructing the mRNA response as a function of protein level. For this,

we consider the following simple algebraic constraint

Gal4PF + 2C4 = Gal4PT , (2.51)

which defines the mathematical relation between the total and free protein con-

centrations. Equations (2.50) are solved at the steady state together with equa-

tion (2.51) to give the mRNA M as a function of the total Gal4p concentration;

that is,

M = B + V
C4n

Kn
d + C4n

, (2.52)

with

C4 =
1

16
(
√
κ4 −

√

8Gal4PT + κ4)
2, (2.53)

where κ4 is the lumped parameter and is defined by the following equation

κ4 =
koff4 + γG4

kon4
. (2.54)

The new parameter κ4 can be taken as the equilibrium dissociation rate con-

stant for Gal4p-Gal4p binding. Now we can perform the nonlinear regression to

fit equation (2.52) to the data in Table (2.3). Just like the previous section, we

fix the values of V and B based on the highest level and lowest level of mRNA

in Table (2.3). The main challenge in fitting equation (2.52) is that the three

parameters n, Kd and κ4 are highly correlated and as a result, the nonlinear

regression generates very high standard errors that cannot be reduced even by

varying initial values for the parameters. One solution is of course to fix as many

parameters as possible [59]. We already mentioned that V and B can be fixed.

The other choice could be either Kd or κ4. We let n be free because the value

of this parameter can help us have a better understanding of how the ultra-

sensitivity in the response function can be controlled by the homodimerization

mechanism. We also keep κ4 free since our ultimate goal in this section is to see

whether this nonlinear process can lead to the reduction of the Hill number. In

fact, the nonlinear regression can be performed for a range of Kd values, from

low values which represent a very strong Gal4p-promoter binding to high values

which can be associated to weak Gal4p-promoter binding. Based on the kinetics

of the homodimerization process, it is straightforward to see that Kd and κ4 are

negatively correlated; this means that high Kd values (weak Gal4p-promoter
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binding) are compensated by low κ4 values (strong homodimerization effect),

and vice versa. We choose a value for Kd in order to make homodimerization

compensate for high Hill number. Figure (2.28) shows that for Kd = 0.5, a very

weak homodimerization can very well reduce the Hill number. The parameter
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Figure 2.28: The result of nonlinear regression for GAL7 mRNA to varying total
Gal4p concentration in galactose using equation (2.52) for B = 0.008, V = 1.4
and Kd = 0.5.

estimates and the corresponding standard errors and confidence intervals are

given in Table (2.6). Figure (2.28) shows that for a weak homodimerization

effect, it is possible to reduce the Hill number.

Parameter Estimate Standard Error Confidence Interval

n 1.86 0.14 (1.51, 2.21)

κ4 67199.8 11662.6 (39622.3, 94777.5)

Table 2.6: Parameter estimates and the corresponding standard errors and con-

fidence intervals for equation (2.52) and GAL7 mRNA data in Table (2.3). The

rest of parameters are fixed at B = 0.008, V = 1.4 and Kd = 0.5.

We can also check whether the homodimerization dissociation rate κ4 in Ta-

ble (2.6) reduces the Hill number for the GCY 1 mRNA response. For this, we

fix the value of κ4 from Table (2.6) and perform the nonlinear regression for

equation (2.52) with free Kd and n. The result of nonlinear regression is shown

in Figure (2.29) and the parameter estimates are given in Table (2.7). It is

clear that with the homodimerization strength reported in Table (2.6), the Hill

number can be efficiently reduced to a value close to one.
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Figure 2.29: The result of nonlinear regression for GCY 1 mRNA to varying
total Gal4p concentration in galactose using equation (2.52) for B = 0.028,
V = 0.56 and κ4 = 67200.

Parameter Estimate Standard Error Confidence Interval

n 1.02 0.05 (0.9, 1.14)

Kd 1.2 0.13 (0.87, 1.52)

Table 2.7: Parameter estimates and the corresponding standard errors and con-

fidence intervals for equation (2.52) and GCY 1 mRNA data in Table (2.3). The

rest of parameters are fixed at B = 0.028, V = 0.56 and κ4 = 67200.

Another mechanism that can be considered as a powerful nonlinear process is

the titration or sequestration. This mechanism can generate strong ultrasensi-

tive effects in the response of biological systems. We already know that in the

first layer of the GAL network there is no Gal80p to sequester Gal4p proteins.

However, we know that there are other promoters in the GAL network which

are the target of Gal4p as the only transcription factor of the network. We ar-

gue that these promoters can act as titrants and sequester Gal4p proteins. We

extend our model by including the explained titration mechanism. It should be

noted that the strength of titration effect very much depends on the number

of titrants, which are binding sites on the promoters, and the affinity of Gal4p

proteins to them. Since we know that the number of these binding sites are not

very high, we still keep the homodimerization to ultimately provide sufficient

amount of nonlinearity.

Titration of Gal4p by extra binding sites

We extend our model to include the titration process of Gal4p proteins by

extra binding sites. Since the homodimerization mechanism is also involved, we

56



2. Results

assume that only Gal4p dimer proteins are sequestered. The set of equations

for this system reads as follows

d

dt
DU = −ktitonDUC4 + ktitoffDB,

d

dt
DB = ktitonDUC4− ktitoffDB,

d

dt
Gal4PF = bG4 − 2kon4Gal42PF + 2koff4C4− γG4Gal4PF ,

d

dt
C4 = kon4Gal42PF − koff4C4− ktitonDUC4 + ktitoffDB − γG4C4,

d

dt
M = bM + vM

C4n

Kn
d + C4n

− γM M.

(2.55)

In the first two equations of (2.55), DU and DB represent the unbound and

bound binding sites, respectively. The two parameters ktiton and ktitoff also denote

the association and dissociation rate constants of C4-promoter binding for the

extra binding sites. Since we do not have the number of free and bound sites, we

add the following conservation equation for binding sites to the above dynamical

equations

DB +DU = DT , (2.56)

with DT as the total number of extra binding sites. Equation (2.51) will also

become

Gal4PF + 2C4 + 2DB = Gal4PT . (2.57)

System (2.55) is solved at the steady state together with the two above algebraic

constraints to get

M = B + V
C4n

Kn
d + C4n

, (2.58)

with

C4 = F (Gal4PT , bG4, κ4, κ
tit, DT ), (2.59)

where κ4 is defined by equation (2.54) and

κtit =
koff
kon

. (2.60)

For simplicity, we put κtit = Kd, assuming that the affinity of Gal4p dimer to the

main promoters is the same as the affinity to extra binding sites. Similar to the

case of homodimerization, we have the problem of highly correlated parameters

which makes the nonlinear regression fail to generate parameter estimates with

reasonable standard errors. Therefore, like the previous cases, we try to fix as

many parameters as possible. Since our goal is to see the effect of titration
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on the ultrasensitivity and because the equilibrium dissociation constants are

highly correlated with each other and n itself, we fix the value of κ4 and Kd

at κ = 450 and Kd = 30. Compared to Table (2.6), these values represent a

much stronger homodimerization and a weaker Gal4p-promoter binding. It is

reported in [71] that the number of extra binding sites are 15; therefore, we put

DT = 15. The result of nonlinear regression for GAL7 mRNA data is depicted

in Figure (2.30). The estimate value for n and the corresponding standard
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Figure 2.30: The result of nonlinear regression for GAL7 mRNA response to
varying total Gal4p concentration in galactose using equation (2.58). The value
of the Hill number is n = 1.83 which shows that the titration together with ho-
modimerization can create sufficient nonlinearity to explain the ultrasensitivity
in the data.

error and confidence interval are given in Table (2.8).

Parameter Estimate Standard Error Confidence Interval

n 1.83 0.1071 (1.58415, 2.07806)

Table 2.8: The estimate value of n and the corresponding standard error and

confidence intervals for equation (2.58) and the GAL7 mRNA data in Ta-

ble (2.3). The rest of parameters are fixed: B = 0.008, V = 1.4, Kd = 30,

DT = 15 and κ4 = 450.

The value of n in GAL7 mRNA response is reasonably low. This confirms that

the titration together with homodimerization can bring about enough nonlin-

earity to the model to explain the high ultrasensitivity in the Gal4p-mRNA data.

Summary and conclusions on the first layer

In the first layer of the GAL network, since GAL80 is deleted, Gal4p which
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is the transcription factor can freely induce the transcription of the mRNA of

other genes. Therefore, at this very first layer, we can study the decay process

of the protein and its interaction with the existing promoters. Our decay study

on Gal4p protein confirms a half-life of 1.61 hours for this protein.

In the first step of Gal4p-promoter binding investigation, we used a simple Hill

function. Our studies showed that the nonlinearity present in the mRNA level

must be more complicated and the Hill function would not be enough to explain

the high ultrasensitivity in the response. We fitted a simple Hill function to the

mRNA data for GAL7 and GCY 1 and observed that the Hill number is too high.

In particular, the numbers are far bigger than the number of binding sites on the

promoter of these two genes. In the second step of our analysis, we incorporated

the homodimerization for the Gal4p protein which is a well-known mechanism

in biochemical systems including the GAL network. Our investigations showed

that a very weak homodimerization is able to dramatically reduce the Hill num-

ber. We also studied the role of titration mechanism through which the Gal4p

dimer proteins are sequestered by extra binding sites; that is, the binding sites

on the genes’ promoters other than GAL7 and GCY 1. Our results showed that

the titration mechanism together with a relatively strong homodimerization can

also reduce the Hill number efficiently.

Next, we study the second layer of the GAL network and extend our existing

model with Gal4p homodimerization to a bigger model that includes Gal80p

interactions. We fix the parameter values for the Gal4p-Gal4p and Gal4p-

promoter binding from the first layer and estimate the value of the new pa-

rameters for the extended model.

2.3.2 The 2
nd layer of the galactose network: Gal80p decay data

In the second layer of the GAL network, the activity of Gal80p to repress Gal4p

is isolated by deleting the GAL3 and GAL1 genes. In the absence of Gal3p

and Gal1p proteins, Gal80p can freely bind Gal4p and repress the transcrip-

tion of genes. It is worth noting that in the wild type cells, both Gal3p and

Gal1p can bind Gal80p dimer proteins and release the repression of Gal4p by

repressing Gal80p. The activity of both Gal3p and Gal1p constitute two im-

portant positive feedback loops of the GAL network [93]. In this layer, we will

be able to study the decay process of Gal80p as well as Gal4p-Gal80p binding.

We in particular investigate the two mechanisms of Gal80p homodimerization,

and the titration of Gal4p by Gal80p proteins. In order to control variations
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in the level of Gal80p, the endogenous promoter of GAL80 has been replaced

with a doxycycline repressible system. After the full activation of the system,

the production of GAL80 mRNA will be stopped and it can only be produced

at the basal level.

2.3.2.1 Gal80p protein decay process in galactose

Table (2.9) shows the experimental data for the Gal80p decay process which

present the reduction in the total concentration of Gal80p protein over time.

The total concentration of Gal4p is also provided in the table. The concentration

of Gal4p is assumed to be constant since this protein is constantly produced.

Based on this assumption, we take the average of the values in the table and

put Gal4PT = 535.13. The data in Table (2.9) is obtained after shutting off the

GAL80 mRNA production at time zero.

Time (h) Gal4PT in galactose (N) Gal80PT in galactose (N)

0 497.45 1103.43

1.5 519.06 683.23

3 522.62 402.12

4.5 489.95 253.97

6 489.36 142.84

7.5 462.98 80.28

9 525.91 50.64

10.5 596.68 59.91

12 712.22 51.71

Table 2.9: Total concentration of Gal80p protein in galactose medium for dif-

ferent time points.

To study the decay process of Gal80p, we again perform the nonlinear regres-

sion to fit equation (2.43) (Gal4PT is replaced with Gal80PT ) to the data in

Table (2.9). The Result of nonlinear regression is illustrated in Figure (2.31).

The parameter estimates with the corresponding standard errors and confidence

intervals are given in Table (2.10). According to the table and equation (2.43),

the decay rate constant will be

γG80 = 0.35h−1, (2.61)

which is equivalent to the half-life of almost 2 hours. This already suggests that

half-life of Gal80p protein is longer than Gal4p half-life.
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Figure 2.31: The result of nonlinear regression for total concentration of Gal80p
protein in galactose medium using equation (2.43). The nonlinear data fit pre-
dicts that Gal80p has a half-life of almost 2 hours.

Parameter Estimate Standard Error Confidence Interval

Y 30.62 12.34 (-0.21,60.21)

A 1083.69 18.9 (1037.44, 1129.94)

R 0.35 0.01 (0.32, 0.4)

Table 2.10: Parameter estimates and the corresponding standard errors and

confidence intervals for Gal80p decay data (2.9).

The basal expression rate is also given as

bG80 = 10.7Nh−1. (2.62)

Next, we will investigate the interaction of Gal80p proteins with Gal4p dimer

proteins. We in particular calculate the parameter values for Gal80p homod-

imerization and Gal4p-Gal80p binding by investigating the effect of these mech-

anisms on the GAL7 and GCY 1 mRNA response.

2.3.2.2 The regulatory effect of Gal80p protein on the GAL7/GCY 1

promoter response

In the absence of Gal3p and Gal1p proteins which act as inhibitors of Gal80p

activity, Gal80p can freely bind Gal4p dimer proteins and repress the transcrip-

tion of genes whose promoters are regulated by Gal4p proteins. Just like the

previous sections, we study the response of GAL7 and GCY 1 promoters. We

already know from the first layer that homodimerization of Gal4p is essential

in our mathematical model. We incorporate Gal80p homodimerization as well

and take into account the sequestration of Gal4p dimer proteins by Gal80p
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dimer proteins. Table (2.11) gives the total concentration of Gal80p and the

corresponding GAL7 and GCY1 mRNA levels in galactose medium.

Gal80PT (N) GAL7 mRNA (N) GCY 1 mRNA (N)

1103.43 0.002 0.017

683.23 0.003 0.017

402.12 0.006 0.02

253.97 0.02 0.044

142.84 0.12 0.089

80.28 0.53 0.19

50.64 1.26 0.29

59.91 1.64 0.45

51.71 2.69 0.71

Table 2.11: Total concentration of Gal80p protein in galactose medium with the

corresponding GAL7/GCY 1 mRNA levels.

The data in Table (2.11) show that as the Gal80p decays, the production of

mRNA increases since Gal4p proteins will be able to activate the promoters.

Again, the above table can facilitate the study of both Gal80p decay and Gal80p-

Gal4p binding processes with just one round of experimental measurement. The

complete mathematical model for the nonlinear regression consists of three parts;

the homodimerization of Gal4p and Gal80p proteins, the titration of Gal4p

proteins by Gal80p proteins and finally the mRNA equation

d

dt
Gal4PF = −2kon4Gal42PF + 2koff4C4,

d

dt
C4 = kon4Gal42PF − koff4C4− kon480C4C80 + koff480C480− γG4C4,

d

dt
Gal80PF = bG80 − 2kon80Gal802PF + 2koff80C80− γG80Gal80PF ,

d

dt
C80 = kon80Gal802PF − koff80C80− kon480C4C80 + koff480C480− γG80C80,

d

dt
C480 = kon480C4C80− koff480C480,

d

dt
M = bM + vM

C4n

Kn
d + C4n + C480n

− γM M,

(2.63)

with C80 as the Gal80p dimer protein and C480 as the complex of C4 and

C80. We do not consider any basal production or decay rate for Gal4p since

it is constitutively produced. We also assume that the Gal4p-Gal80p complex
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does not decay. The following equations are taken into account for the total

concentration of Gal4p and Gal80p proteins

Gal4PF + 2C4 + 2C480 = Gal4PT ,

Gal80PF + 2C80 + 2C480 = Gal80PT ,
(2.64)

where Gal4PT and Gal80PT are the total concentrations of Gal4p and Gal80p

proteins. System (2.63) is solved at the steady state together with the two above

algebraic constraints to get

M = B + V
C4n

Kn
d + C4n + C480n

, (2.65)

with

C4 = F
(

Gal4PT , Gal80PT , κ4, κ80, κ480
)

,

C80 = G
(

Gal4PT , Gal80PT , κ4, κ80, κ480
)

,
(2.66)

where

κ4 =
koff4 + γ4

kon4
, κ80 =

koff80 + γ80
kon80

, κ480 =
koff480
kon480

. (2.67)

Using the parameter values from the first layer, we put n = 1.83, Kd = 0.5,

κ4 = 67200. We also fix κ80 = 700 based on the in vitro data from [54] that

reports a hundred-time difference between κ4 and κ80 values. We perform the

nonlinear regression to fit equation (2.65) to the GAL7 mRNA data. The result

of nonlinear regression is depicted in Figure (2.32). The nonlinear regression

Figure 2.32: The result of nonlinear regression for GAL7 mRNA response to
varying total Gal80p concentration in galactose using equation (2.65) for pa-
rameter values B = 0.002, V = 3, Kd = 0.5, κ4 = 67200, κ80 = 700, and
n = 1.83. The nonlinear regression yields κ480 = 1.62 which represents a very
strong titration effect.
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yields κ480 = 1.62 which corresponds to a strong titration effect. We use this

value and fix other parameters (except the Hill number) to fit equation (2.65)

to the GCY 1 mRNA data in order to check weather this strong titration can

explain the ultrasensitivity in the GCY 1 mRNA response. The result of non-

linear regression is shown in Figure (2.33). The nonlinear regression yields

Figure 2.33: The result of nonlinear regression for GCY 1 mRNA response to
varying total Gal80p concentration in galactose using equation (2.65) for pa-
rameter values B = 0.015, V = 0.7, Kd = 1.2, κ4 = 67200, κ80 = 700 and
κ480 = 1.62. The nonlinear regression yields n = 1.05 which shows that a
strong titration and a weak homodimerization can create sufficient nonlinearity
to explain the ultrasensitivity in the mRNA response.

n = 1.05. Our analyses in the second layer show how the homodimerization and

titration mechanisms can describe the ultrasensitivity in the GAL7 and GCY 1

mRNA response. The nonlinear regression yields high standard errors in both

cases above which is mainly because of the complexity of equations.

Summary and conclusions on the second layer

In the second layer of the GAL network, since GAL1 and GAL3 are deleted,

Gal80p can freely represses the activity of transcription factor Gal4p by seques-

tering this protein into an inactive complex on the promoter. Therefore, the

experimental data in this layer enables us to isolate the interaction of Gal80p

with Gal4p. Our decay study on Gal80p protein also confirms a half-life of al-

most 2 hours for this protein which is longer than that of Gal4p.

In our mathematical investigation of the second layer, we incorporated homod-

imerization mechanism for both Gal4p and Gal80p proteins and in addition to

that considered the titration of Gal4p dimer proteins by Gal80p dimer proteins.
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Because of the complexity of algebraic equations and the high correlation be-

tween many parameters in our model, we fixed as many parameters as possible

by using values from the first layer and reported in vitro parameter values in the

literature. As we get to the higher layers of the GAL network, the complexity

of the model grows, and using the nonlinear regression becomes more difficult.

Next, we study the third layer by extending our model to a yet bigger model

by including Gal1p protein interactions. Our goal in this layer is to reconstruct

bistability by using the input-output response of the network that is obtained

by opening the GAL1 positive feedback loop.

2.3.3 The third layer of the galactose network: Opening the

GAL1 feedback loop

In the third layer of the GAL network, the negative feedback by the Gal8p pro-

tein remains intact and in addition to this protein and Gal4p, GAL1 mRNA

and its protein Gal1p are also taken into account. At the presence of galactose,

the Gal80p protein is sequestered by Gal1p so that the repression of Gal4p by

Gal80p protein will be released. Since Gal4p protein binds the GAL1 promoter

to induce the transcription of the gene, Gal1p activity constitutes a positive

feedback loop. In this layer, the GAL network is opened from the GAL1 feed-

back loop to reconstruct the bistable behavior of the network by using the

input-output response. Experimentally, the GAL1 feedback loop is opened by

replacing the endogenous promoter of GAL1 with a doxycycline repressible sys-

tem to control the input, and for the output, the Y FP mRNA level is controlled

by the GAL1 endogenous promoter.

For Gal4p protein and its dimer C4, the corresponding equations in (2.63) are

used. For Gal80p and its dimer, the previous equations need to be updated

since this protein interacts with Gal1p protein. The updated version of Gal80p

and the dimer C80 equations are given as follows

d

dt
Gal80PF =

bG80 + v80
C4

Kd80 + C4 + C480
− 2kon80Gal802PF + 2koff80C80− γG80Gal80PF ,

d

dt
C80 = kon80Gal802PF − koff80C80− kon480C4C80 + koff480C480− γG80C80

− kon180Gal12ActC80 + koff180C180,

(2.68)
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where for simplicity, the Hill number is fixed at one since the GAL80 promoter

has only one binding site. In fact, the presence of Hill function in the first equa-

tion above implies the GAL80 negative feedback loop. Gal80p dimer proteins

are sequestered by the active form of Gal1p proteins, represented by Gal1Act in

the above equations. The Gal1p gets activated by binding to the galactose, and

the activated form of this protein will bind Gal80p to release its repression of

Gal4p. The full set of equations for GAL1 mRNA and Gal1p protein are given

by

d

dt
GAL1M = bG1 + v1

C4n

Kn
d1 + C4n + C480n

− γMGAL1M ,

d

dt
Gal1PF = µGal1M − kon1GalGal1PF + koff1Gal1Act − γG1Gal1PF ,

d

dt
Gal1Act = kon1GalGal1PF − koff1Gal1Act − 2kon180Gal12ActC80

+ 2koff180C180− γG1Gal1Act

d

dt
C180 = kon180Gal12ActC80− koff180C180,

(2.69)

where Gal1PF is the free Gal1p protein and C180 is the complex of active Gal1p

with the Gal80p dimer protein. We assume that the complex proteins do not

decay. Finally, the following simple binding equation represents the galactose

dynamics
d

dt
Gal = −kon1GalGal1PF + koff1Gal1Act. (2.70)

For the conversion of the free concentrations into the total ones, we also consider

the following algebraic constraints

Gal4PF + 2C4 + 2C480 = Gal4PT ,

Gal80PF + 2C80 + 2C480 + 2C180 = Gal80PT ,

Gal +Gal1Act + 2C180 = GalT ,

(2.71)

with GalT as the total concentration of galactose. In an input-output setting

where the GAL1 feedback loop is opened at the mRNA level, GAL1M is replaced

with the constant ω as the input in the second equation of (2.69), and the rest of

GAL1M variables are treated as the output. In order to find the input-output

function, the dynamical equations should be solved at the steady state together

with equations (2.71) to express GAL1M as a function of ω. Because of the

complexity of equations, it is impossible to solve for all intermediate variables

and get a single equation for the input-output function. Instead, we keep the free
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concentration of Gal80p (Gal80PF ) and express GAL1M and ω as parametrized

functions of this variable. Since we cannot perform the nonlinear regression

for the explained complicated input-output relation, we fix all the parameters

from the previous layers and use the reported in vitro parameter values in the

literature to build the input-output response of the function. We fix n = 2 for

the GAL1 promoter since its behavior is very similar to the GAL7 promoter.

For the GAL80 promoter, we take bG80 = 30, v80 = 180 and Kd80 = 1 and for

the GAL1 promoter, we take bG1 = 0.002, v1 = 5 and Kd1 = 0.5 (the same as

the Gal4p-GAL7 promoter binding). The decay rate of GAL1 mRNA is fixed

at γG1 = 5.13 which is equivalent to the half life of 8 min [35]. For simplicity, all

protein decay rates are fixed at the value of 0.35. For the equilibrium dissociation

constant of Gal1p-Gal80p binding and Gal1-galactose binding we put

κ180 =
koff180
kon180

= 10 and κ1 =
koff1
kon1

= 4× 107, (2.72)

based on the reported in vitro data in [14]. The rest of parameters are fixed

from the previous layers. Using the parameter values mentioned above, the

input-output response of the network can be constructed and is shown in Fig-

ure (2.34) for different galactose total concentrations. The response diagram

10-2 10-1 100
10-2

10-1

100

GAL1mRNA

Y
F

P
m

R
N

A

GalT=130’000 H0.1%L GalT=85’000

GalT=55’000 H0.03%L GAL1mRNA=YFPmRNA

Figure 2.34: The graph of input-output response of the GAL network in the
third layer. The response is achieved by opening the GAL1 positive feedback
loop. The bistability range is detected between 0.03% and 0.1% galactose.

clearly shows the existence of bistability for a range of 0.03% to 0.1% galac-

tose. This bistability range is narrow compared to the experimentally measured

bistability range [1]. One potential reason might be because of the level of ul-

67



2. Results

trasensitivity in the model which does not give a broad bistability range. Extra

source of nonlinearity for a more ultrasensitive response can be created for ex-

ample by assuming that the Gal1p protein can sequester Gal80p dimer proteins

even without galactose [69]. However, we should also consider the level of com-

plexity that detailed molecular interactions can add to the model.

Summary and conclusions on the third layer

In the third layer of the GAL network, the three proteins Gal4p, Gal80p and

Gal1p interact with each other to create bistability. The activity of Gal80p

constitutes a negative feedback loop while Gal1p protein encloses a positive

feedback loop. Gal1p can release the repression of transcription factor Gal4p

by binding Gal80p proteins. We developed a mathematical model that includes

the two feedback loops and the interactions of the three proteins. We opened

the GAL1 feedback loop at the mRNA level and constructed the input-output

response with which we could show the bistability for a range of galactose con-

centrations.
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Chapter 3

Conclusions

Bistability, the ability of a dynamical system to create two distinct stable steady

states, is the corner stone of many decision-making processes in biological sys-

tems. The importance of bistability have been long recognized in prokaryotic

organisms like the lac operon in Escherichia coli as well as the eukaryotic organ-

isms like the galactose metabolic network in Saccharomyces cerevisiae. The two

main ingredients of bistability in biological and biochemical networks are the

positive feedback loops and ultrasensitivity. Positive feedback loops are ubiqui-

tous biological motifs whose presence is the necessary condition for bistability.

Ultrasensitivity can emerge as a result of different nonlinear mechanisms like

molecular cooperativity, homodimerization and molecular titration in gene reg-

ulatory networks. Examples of these mechanisms can be found in particular in

biological systems which are capable of demonstrating bistability and memory

like the galactose network. A very vital requirement for many such systems is

to maintain the bistable behavior under the perturbations in the environment.

This raises the issue of robustness in biological systems which is defined as the

ability of a system to resist variations in its parameter values.

In this thesis, we addressed the issue of robustness from two different points of

view. First, we studied conditions on the parameter configurations in a bistable

system to maximize the bistability range of a single parameter. Second, we fo-

cused on the unstable steady state as a key player in creating and maintaining

bistability and explored regions inside the bistability area in which the unsta-

ble steady state has the minimum sensitivity to parameter perturbations. All

formulations for the study of bistability robustness were carried out by employ-

ing the open-loop approach and in particular the open-loop sensitivity. The

open-loop approach was also utilized to study bistability in the GAL network

by reconstructing the input-output response of the network that was obtained
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by opening the network from the GAL1 positive feedback loop.

3.1 Extrema in the bistability range of a single pa-

rameter

Bistability range of parameters determines how much a parameter can be varied

without loosing the bistable behavior. In a two-dimensional parameter space,

the boundaries of bistability region are given by the bifurcation curves like

the saddle-node bifurcation. The intersection of these curves happen at the

bifurcation points of higher codimensions like the cusp point. These points

already define the extremum of the bistability range for the parameters in a

two-dimensional parameter space. The position of a cusp point can be varied

by changing a third parameter; as a result of this variation, the bistability range

of a single parameter can be increased. This means that there is a possibility

to maximize this range for a single parameter. This is of high importance since

enlarging a parameter’s bistability range can make the bistability robust with

regard to variations of that specific parameter. Moreover, this allows the system

to capture a wider region in the parameter space which may include physically

realizable parameter values. In the first section of chapter 2, we discussed how we

can address the problem of finding extrema in the locus of cusp points in a system

that consists of a self positive, and a negative feedback loop that operates under

the molecular titration. Using this system in particular reveals that the negative

feedback (at least in some specific architectures) can potentially contribute to

the bistability by increasing the bistability range of a single parameter. This is

a very interesting observation since the negative feedback loops are known to

weaken the bistability in feedback systems. Another importance of this peace of

study is the use of the open-loop system features like the open-loop sensitivity.

We used the logarithmic sensitivity of the output to the input and found out that

maximum of sensitivity curves vary nonmonotonically with some parameters.

We observed that in specific cases, the maximum of maximum sensitivity with

respect to the input and a parameter can be corresponded to the extremum of the

locus of bifurcation points which ultimately gives the biggest bistability range

for another parameter. It was shown that this might not be always the case and

more parameters need to be included in the analysis. A detailed formulation

of the parameter configurations that lead to the detection of the extrema has

recently been done in [53]. According to this formulation, the extremum of

the bistability range for a specific parameter can be detected if the open-loop

sensitivity is maximized with respect to two other parameters. The formulation

also provides information on how these two other parameters can be selected.
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3.2 Robust regions in the bistability area

In the second section of the thesis, we focused on the study of bistability ro-

bustness in three simple mathematical models of gene networks which consist

of a simple positive feedback loop and an ultrasensitive mechanism. We first

analyzed a one-gene positive feedback loop with cooperativity mechanism and

later modified the system by replacing cooperativity with homodimerization and

molecular titration. We studied the existence of bistability in all these systems

and as a measure of robustness turned our focus to the maintenance of the

unstable steady state under parameter perturbations. Unstable steady states

are key to the existence and maintenance of biological switches. We in particu-

lar established mathematical conditions under which the sensitivity of unstable

steady state can be minimized with respect to parameters of a system. To this

end, we used the open-loop approach and employed the open-loop sensitivity

of the feedback system to derive mathematical conditions for the minimization

of the unstable steady state sensitivity to parameters. We showed that mini-

mization of the unstable steady state sensitivity to parameters will lead to the

definition of new boundaries inside the bistability area. We defined the robust

bistability region to be the most inner parameter region bounded by the sensi-

tivity boundaries. We showed that the total sensitivity of the unstable steady

state to all parameters takes its minimum inside the robust bistability region.

Our results shed light on the role of different parameters and regulatory motifs

like the homodimerization and molecular titration in creating robust bistability.

Using the open-loop approach is a novel technique that helps us detect robust

bistable regions in the parameter space without the need to struggle with the

complexity of closed-loop system to construct the bifurcation diagrams which

is a very difficult task in large dynamical systems. In fact, Angeli et al. [5]

first used this technique to detect the existence of bistability by directly us-

ing the input-output response of the open-loop version of a monotone feedback

system. Our approach can be used to study other system architectures like the

double-positive and double negative feedback loops. These systems are two-gene

positive feedback loop systems with the cooperativity mechanism and their bi-

furcation diagrams have a quite similar structure as the one-gene system with

titration.

3.3 Bistability in the GAL network

The galactose metabolic network in Saccharomyces cerevisiae is a well-known

model organism that provides a very rich framework to study molecular inter-
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actions and feedback loops. The network has one negative feedback and several

positive feedback loops and a number of regulatory and structural genes that

help the network metabolize the galactose as a carbon source. We used the in

vivo experimental data to study bistability in the GAL network by developing

a mathematical model that expresses the input-output response of the network.

We performed nonlinear regression to find the parameter values in our model

using different layers of the network. The biggest challenge of performing the

nonlinear regression for large models like the GAL network is the complexity of

mathematical equations that model these networks. This problem can be tack-

led by isolating different parts of the network by introducing deletion strains.

As a result of deleting genes, the interaction of proteins in different layers can be

isolated and studied separately. We particularly studied three layers of the GAL

network; in the first layer, GAL80 gene is deleted and as a result, the activity

of Gal4p protein is isolated since in the absence of Gal80p protein, Gal4p dimer

proteins bind the promoter of the network genes and initiate their transcrip-

tion. The Gal4p experimental data was used to study both the decay process

and the interaction of this protein with promoters. We studied the effect of the

total concentration of Gal4p on the level of GAL7 and GCY 1 mRNA as the

protein decays. Our studies revealed that a very weak homodimerization needs

to be incorporated into the model to explain the ultrasensitivity in the mRNA

response. We also investigated the role of another nonlinear mechanism which

is the titration by extra binding sites (binding sites on the promoters other than

GAL7 and GCY 1) and showed that for a strong homodimerization effect, titra-

tion can also very well describe the ultrasensitivity in the mRNA response. Our

studies continued to the second layer by extending model to include Gal4p and

Gal80p interaction. In the absence of GAL1 and GAL3 genes in the second

layer, Gal80p dimer proteins can freely sequester Gal4p dimer proteins on the

promoter into inactive complexes. In this layer, we studied the decay process

of Gal80p and its interaction with Gal4p proteins. Our investigations approved

that in the presence of Gal4p and Gal80p homodimerization and a very strong

titration effect, the ultrasensitivity in the mRNA data can very well be modeled.

The titration mechanism in this layer acts based on the sequestration of Gal4p

dimer proteins by the Gal80p dimer proteins. We performed the nonlinear re-

gression in the first two layers to estimate the parameter values of the model.

The model itself became more complicated as the new molecular components

were added in each layer. The main challenge of performing nonlinear regres-

sion in both layers is the presence of highly correlated parameters. The high

correlation can generate large standard errors in the fitting process and reduce
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the quality of the fit. One solution is to fix as many parameters as possible. We

fixed the homodimerization parameter for Gal4p as well as the Gal4p-promoter

binding parameters in the second layer, by using the values from the first layer.

For the Gal80p-Gal80p binding, we used the in vitro data reported in the lit-

erature. We then estimated the Gal4p-Gal80p binding constant by fitting the

GAL7 mRNA data and further validated the result by fitting the model to the

GCY 1 data. In the third layer, we added the dynamics of GAL1 mRNA and

protein to the system and extended our model to include the titration of Gal80p

dimer proteins by Gal1p proteins. We opened the system from the GAL1 mRNA

level and solved the equations to obtain the input-output response function of

the network. Because of the complexity of equations, it was impossible to get

an explicit equation that gives the output as a function of the input. Therefore,

we expressed the response of the network as a parametrized function of other

variables and parameters. We used the in vitro values and the results of the first

two layers to fix the parameter values. Our results successfully reconstructed

the bistability for a range of galactose concentrations. Our bistability range

was, however, narrower than that of reported in the literature. We argued that

this can be because of the insufficient level of ultrasensitivity in our response

function that can be compensated for example by assuming that the Gal1p pro-

tein can sequester Gal80p dimer proteins even without galactose. Adding more

molecular mechanisms and interactions to the systems can potentially give a

better understanding of the dynamics of biochemical systems, but at the same

time it will add to the complexity of equations and the analysis of such systems.

Our investigations revealed the significance of ultrasensitive regulatory motifs

like homodimerization and titration in creating bistability in the GAL network.
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