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Abstract: 

Excitation contraction coupling (ECC) is the process whereby an action potential 

spreading throughout the muscle membrane activates muscle contraction, by releasing Ca2+ 

from the Sarcoplasmic Reticulum (SR). Ca2+ release from the SR is mediated by the Ryanodine 

Receptor located on the SR membrane. Any alterations in the architecture of the intercellular 

muscle membrane compartments or mutations in the RYR1 gene are associated with 

neuromuscular disorders such as Central core disease, Multi minicore disease, Central nuclear 

myopathy or congenital fiber type disproportion.  

In the last few decades, ECC characteristics were extensively investigated in our lab, on 

myotubes originating   from   patient’s muscle satellite cells. In the 1st  paper entitled 

“Establishment of human skeletal muscle- derived cell line: biochemical, cellular and 

electrophysiological   characterization”, we studied the ECC in an immortalized human muscle 

cell line (HMCL-7304), which helps to overcome many of the technical limitations of working 

with primary muscle cells from human patients. ECC in HMCL-7304 was characterized with 

qPCR and western blotting as well as super resolution microscopy (SIM), Ca2+ imaging and 

electrophysiological measurements. We discovered that HMCL-7304 have a phenotype closer 

to slow twitch muscles than fast twitch muscles. HMCL-7304 can be used as a platform to 

investigate genetic mechanisms of muscle disorders, as shown in our 2nd publication;   “RyR1 

deficiency   in   congenital   myopathies   disrupts   excitation   contraction   coupling”, where we 

simulated the downregulation of RyR1 expression as seen in patients with recessive RYR1 

mutations, by silencing RyR1 expression in the HMCL-7304.  

Patients with recessive RYR1 mutations have been shown to downregulate RyR1 

expression in skeletal muscles. This is in contrast to what is observed in patients with dominant 

RYR1 mutations, in whom we could not find reduction in the RyR1 expression. In patient’s  

muscle biopsies where RyR1 expression is reduced, all isoforms of InsP3R Receptors (ITPR1-



 

7 
 

ITPR3) were found to be up-regulated. Ca2+ release was not altered by the reduction of RyR1 

expression using siRNA in HMCL or by blocking of IP3Rs using Xestospongin, rejecting the 

possibility for InsP3R functional compensation for the downregulation of RyR1. 

The potential mechanisms causing downregulation of RyR1 in patients with recessive 

RYR1 mutations is addressed in our 3rd publication;  “Epigenetic  changes  as  a common trigger of 

muscle   weakness   in   congenital   myopathies”. Patients with downregulation of RyR1, exhibit 

decreased expression of muscle specific microRNAs and increased expression of HDAC4 and 

HDAC5. Additionally hyper-methylation of CpG Island in the RYR1 gene was observed. Down 

regulation of RyR1, downregulation microRNAs and upregulation of HDAC4 and HDAC5 was also 

observed in patients with Nemaline myopathy, reflecting common epigenetic changes activated 

in congenital myopathies. Using HDAC or DNMT inhibitors can target common downstream 

pathways activated in muscles of patients with congenital myopathies offers an interesting new 

approach for the amelioration of muscle function 
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List  of  Abbreviations: 
ACTA- α  actin 
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ADP/ATP- Adenine di/tri phosphate 
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Ang II- Angiotensin II  

AP- Action potential 
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CAF1- Chromatin assembly factor 1  

CaM- Calmodulin  

CaMKII – Ca2+/Calmoduln dependent protein kinase  
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CCD- Central core disease  

CDK4- Cyclin dependent kinase 4 
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CICR- Ca2+ induced Ca2+ release  
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DACH2- Dachshund Family Transcription Factor 2 
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DOT1- Disruptor of telomeric silencing 1 

EC- Euchromatin  

ECC- Excitation contraction coupling  

ECCE- Excitation coupled calcium entry 

ECM- Extra cellular matrix  

EDL- Extensor digitorum longus 

FGF- Fibroblast growth factor  

fHC- facultative heterochromatin  

FKBP- FK506 binding protein  

FSHD- Facioscapulohumoral muscular dystrophy 

GIT1- GPCR kinase 2 binding protein 1 

GLUT- Glucose transporter  

HAT- Histone acetyl transferase  

HC- Heterochromatin  

HDAC- Histone de acetylase  
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HNF1-α  - Hepatocyte nuclear factor 1 homeobox A 
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hTERT- telomerase reverse transcriptase 
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IL10- Interleukin 10 

ITPR- IP3 receptor gene 
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JP45- Junctional SR protein 45 
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KO- Knock out 
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MEF2- Myocyte enhancer factor 2 
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miRs- microRNAs 

MITR- MEF interacting transcription factor 

MmD- Multi minicore disease  

MTM1- Myotubularin 1 

MuRF1- Muscle RING-finger protein-1 

MYOD- Myogenic differentiation 

NADH- Nicotinamide adenine dinucleotide 

NCX- Na+/Ca2+ exchanger 

NEB- Nebulin  
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NES- Nuclear export signal  

NF-E2 - Nuclear Factor, Erythroid-Derived 2 
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PAX- Pair box 

PCAF- P300/CBP associated factor 

PcG- Poly comb group 

PCM1- Pericentriolar material protein 1 
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PKA- Protein kinase A 

PKD- Protein kinase D 

PLCγ- Phospholipase C 

pRB- Phospho retinoblastoma 

PRC2- Polycomb repressive complex 2 

PRE- PcG response element  
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PRMT- Protein arginine N- methyltransferase  

PTEN- Phosphatase and tensin homolog 

RISC- RNA induced silencing complex 

ROS- Reactive oxygen species  

Rtt106- Histone chaperone Rtt106 

RYR- Ryanodine receptor 

SAM- S Adenosylmethionine  

SAR- Sarcoluminin 

SEPN1- Selenoprotein 1 

SERCA- Sarcoplasmic/ Endoplasmic Ca2+ ATPase  

SMYD1- SET and MYND domain 1 

SOCE- Store operated Ca2+ entry 

SOL- Soleus 

SP1- Specificity protein 1 

SR- Sarcoplasmic reticulum 

SRP- Sarcoplasmic reticulum protein 

STIM1- Stromal interaction molecule 1 

SUMO- Small Ubiquitin like modifier  

SWI/SNF- SWItch/Sucrose Non-Fermentable 

TNNT- Troponin T 

TPM- Tropomyosin  

TRDMT1- TRNA Aspartic Acid Methyltransferase 1 

TRE- TrxG response element  

TRIC-A- Trimeric intercellular cation selective channel A 

TRPC- Transient receptor potential protein Ca2+ entry channel 

Trx1- Thioredoxin 1 
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TrxG- Thrithorax Group  

TSA- Trichostatin A 

TSS- Transcription start site  

UHRF1- Ubiquitin like containing PHD and RING finger domain 1 

UTR- Untranslated Region  

VGCC- Voltage gated Ca2+ channel 

ZEB- Zinc finger E-box-binding homeobox  
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Chapter  1-  Introduction: 

1. Excitation Contraction Coupling and Ca2+ Homeostasis: 

 1.1 Excitation Contraction Coupling and Ca2+ Homeostasis:  

Excitation Contraction Coupling- The physiological mechanism that leads to an increase 

of Ca2+ in the vicinity of the skeletal muscle contractile proteins, Myosin and Actin. This 

physiological mechanism consist of two steps: Depolarization of the T tubular membrane 

that activates the dihydropyridine receptor an L-type voltage gated Ca2+ channels (VGCC) 

and release of Ca2+ from the sarcoplasmic reticulum (SR) to the cytoplasm trough the 

Ryanodine receptor Ca2+ channel 1 (RyR1). 

 
Figure 1.11: Excitation contraction coupling: Action potential propagates along the plasma membrane 

and into the T-tubules and activates the dihydropyridine receptor, a voltage dependent Ca2+ channel that 
activates the RyR1 located on the terminal cisternae. RyR1 releases Ca2+ from the SR that leading to muscle 
contraction. Ca2+ uptake back into the SR is performed mainly by the SERCA pumps [1]. 

 
RyR1s are located on the terminal cisternae of the sarcoplasmic reticulum membrane and 

are directly activated by the DHPR a Voltage Gated Ca2+ Channel, through inward current of 

Ca2+. In skeletal muscle, 50% of RyR1 activation is through a direct interaction of the DHPR on 

the plasma membrane or on the transverse tubules, an invagination of the plasma membrane 

into the muscle fiber [2]. The DHPR is a hetero-pentamer  formed  by  the  subunits;  α1,  α2,  β,  γ  
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and   δ.   The   transmembrane   domain   S4   of   α1 subunit is a voltage sensor that upon charge 

movement creates a conformational change that enables the physical interaction with the 

RyR1, located on the terminal cisternae [3, 4]. The allosteric interaction of the RyR1 with the 

DHPR, activates RyR1 and allows Ca2+ to flow from the SR to the myoplasm through RyR1. In 

Skeletal muscle, RyR1 and DHPR face one  another,  creating  the  “Ca2+ release  unit”  (CRU)  that  

responds to the action potential (AP) reaching the T tubules membrane [5, 6]. However, RyRs 

that do not face DHPRs are activated by a positive feedback mechanism termed Ca2+ induced 

Ca2+ release (CICR). CICR was first discovered in frog muscles and is believed to be more 

significant in amphibian muscles than in mature mammalian muscle fibers, although CICR is 

believed to have an important role in the synchronization of rapid Ca2+ release from the SR [7, 

8]. After its release from the SR and following muscle contraction, Ca2+ is pumped back to the 

SR leading to muscle relaxation, by Sarcoplamic/Endoplasmic Reticulum Calcium ATPase 

(SERCA) and Na+/Ca2+ exchanger (NCX) [9, 10]. The SERCA consists approximately 80% of the 

total protein present on the longitudinal SR (LSR) and thus plays a fundamental role in 

regulating Ca2+ homeostasis in muscle. The LSR links between two terminal cisternae, and its 

location relative to the SR is shown in Figure 1.12.  

 

 
Figure 1.12: Schematic representation of the Sarcoplasmic Reticulum compartments [11]. 
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Fractionation of the SR compartments enables to investigate many proteins that are 

important for the ECC. In the next figure and in the text bellow, some of these proteins will be 

discussed (Figure 1.13). 

 

 
 
Figure 1.13: Schematic representation of the protein components of skeletal muscle sarcoplasmic reticulum 

[12]. 
 

Beside the RyR1, many proteins are contained within the SR, including Calsequestrin (CSQ) a 

Ca2 buffering protein of the SR, which binds about 80 mole of Ca2 per one mole of protein with 

low affinity. Upon Ca2+ binding, CSQ changes its conformation and its affinity to the RyR. 

Reports suggest that RyR activity can be modulated by CSQ and other proteins such as Junctin 

and Triadin that responsible for anchoring CSQ (figure 1.13). There are two variants of CSQ; 

CSQ1 is more abundant in fast type II fibers and CSQ2 is more abundant in slow type I fibers 

[13]. 

After Ca2+ is released into the myoplasm, it binds to troponin thereby eliminating the 

inhibition caused by troponin and tropomyosin on the interaction between actin and myosin; 
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removal of the inhibition allows actin and myosin to interact and slide, an event that leads to 

muscle contraction [14].  

Apart from CSQ, there are other proteins involved in the binding and buffering of Ca2+ in 

the SR, including calreticulin, parvalbumin and sarcalumenin (SAR) [15]. Parvalbumin has been 

shown to be more expressed in rodent fast fibers and is less abundant in higher mammals such 

as humans [16]. SAR is located in the longitudinal tubuli and terminal cisternae and has been 

shown to have multiple roles including; stimulating Ca2+ uptake by interacting with SERCA1, 

Ca2+ release by modulating the activity of RyR1 and Ca2+ storage by serving as Ca2+ buffer [17-

20]. 

Janctophilin (JP) are a family of proteins that help stabilize the junction between the plasma 

membrane and the SR. In skeletal muscle, both JP1 and JP2 are highly expressed and facilitate 

the physical interaction between the RyR1 and DHPR, by linking the transverse tubules and the 

SR membrane. As mentioned previously this interaction plays a major role in Ca2+ release that 

permits muscle contraction (number 11, figure 1.13) [21]. JP1 homozygous KO is lethal, 20 

hours after birth. Interestingly, JP KO leads to swollen terminals, lower number of triads and 

incomplete formation of the junctional complexes. Consequently, there is a reduction in the 

contractility of the muscle and abnormal sensitivity to extracellular Ca2+ [12]. 

JP45 is a 45KD polypeptide containing a single transmembrane segment that interacts with 

CSQ via its luminal carboxyl terminus. In addition it has been shown to interact with the DHPR 

via its cytoplasmic amino terminus. KO or over expression of JP45 result in the decrease of 

voltage dependent Ca2+ release [22-24]. 

Mitsugumin-29 (MG29) is a membrane protein containing 4 transmembrane domains, 

belonging to the synaptophysin family. It has been shown that MG29 interacts with the RyR1 

and increases the probability for RyR1 to open without affecting the channel current amplitude. 

KO of MG29 leads to vacuolated SR, swollen transverse tubules and misaligned triads. Indeed 

MG29 favors the formation of triadic structures. Interestingly, MG29 KO mice experience 

fatigue more rapidly comparing to W.T mice [25, 26].  

Junctate is a 33KD ER/SR membrane spanning domain expressed in a variety of excitable 

and non- excitable tissues. AβH-J-J is the gene that encodes Junctate, together with Junctin and 
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beta hydroxylase (figure 1.14). Junctate and Junctin play an important role in the regulation of 

intercellular Ca2+. Junctate forms a multimolecular complex with inositol 1,4,5-trisphosphate 

receptor (InsP3R) and canonical transient receptor potential protein Ca2+ entry channel (TRPC), 

mediating Ca2+ release from the ER and Ca2+ entry, respectively. 

 

 

Figure 1.14: Schematic representation of the alternatively spliced AβH-J-J locus. The N terminal  domain  of  AβH  
and Junctin are encoded by two different promoters (P1 and P2 respectively). Each region is presented in different 
color:  green,  AβH-type N-terminal cytoplasmic regions; black, transmembrane region; blue, highly charged acidic 
luminal   regions;  purple,  AβH   catalytic  domain;   yellow,   junctin   type  N-terminal region; red, junctin-specific basic 
luminal region [27].  

The regulation of transcripts expression arising from the AβH-J-J locus is very complex, as there 

are two promoters.  Promoter 1 is similar to other housekeeping genes, though P2 is regulated 

in a tissue specific fashion, for instance by the muscle specific transcription factor MEF2 

(myocyte enhancer factor 2). Interestingly, P2 is activated only in excitable tissues like striated 

muscle [27, 28]. 

 SRP27/TRIC – known as Mitsugumin-33, TRIC-A (Trimeric intercellular cation selective 

channel) or SR protein 27 (SRP27) is expressed in excitable tissue and especially in fast fiber 

type. SRP27 amino terminus is exposed to the ER/SR and its carboxyl terminus is exposed to the 

cytosol. Reconstitution in lipid bilayers and Ca2+ imaging experiments suggests the SRP27 is a 

monovalent cation channel. This channel is believed to counter-balance the charge movement 

due to influx of Ca2+ conducted by RyR1 [29, 30]. 

Store Operated Calcium Entry (SOCE) is a mechanism responsible for maintaining the Ca2+ levels 

in the SR. When Ca2+ levels in the intracellular stores are low, Ca2+ is transported from the extra 

cellular milieu into the myoplasm in order to replenish the stores. 
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Figure 1.15: STIM1 dependent SOCE activation [31]. 

  

The molecular mechanism of SOCE involves two proteins; stromal interactions molecule 

(STIM1) and Calcium permeable Orai Channel (Orai1). STIM1 is a single-pass transmembrane 

protein that has a Ca2+ binding domain located in the SR luman, termed EF-hand domain (Helix- 

loop–helix structural domain). The EF hand domain binds Ca2+ within the loop, allowing it to 

sense Ca2+ levels in the SR lumen. When Ca2+ levels are low and Ca2+ is not bound to STIM1, 

STIM1 oligomerizes through its intra-luminal EF domains and interacts with Orai1, located on 

the plasma membrane. Orai1 is a tetrameric ion channel that interacts with the cytosolic, coil 

coiled domain of STIM1 and mediates entry of Ca2+ ions from the extracellular environment. 

Upon oligomerization, STIM1 forms multiple punctuated structures that are directed to regions 

with close proximity to the plasma membrane, named plasma membrane junctions (Figure 

1.15). This mechanism of Ca2+ influx however, is very slow, occurring in seconds, while skeletal 

muscle ECC occurs in msec, leading many investigators to suggest that other mechanisms are 

activated in SR store refilling.  Interestingly, it was recently shown that STIM1 interacts with 

RyR1 as well as with canonical transient receptor potential channels (TRPC), significantly 

contributing to SOCE [32-34]. 
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Apart from SOCE, excitation coupled calcium entry (ECCE) allows entry of Ca2+ into the 

SR by prolong activation of muscle depolarization (that is independent of the Ca2+ stores). ECCE 

require functional L type Ca2+ channels, functional RyR1 and involves Ca2+ influx through the L 

type Ca2+ channels. The exact mechanism of ECCE is still elusive, though it was shown that ECCE 

occurs rapidly and on the triadic region [35, 36]. 

 The regulation of Ca2+ reuptake to the SR is well maintained especially during exercise, 

when Ca2+ ions have to be efficiently removed from the myoplasm and pumped back into the 

SR in order to allow the relaxation of the sarcomeres. As mentioned previously in skeletal 

muscle the removal of Ca2+ is mainly performed by the activity of the ATP dependent SERCA 

and to a lesser extent by the activity of the Na+/ Ca2+ Exchanger (NCX).  

  

 1.2 Ca2+ Homeostasis in different muscle fiber types: 

 

Muscle fiber types in mammals can be divided into 4 major groups: type 1 - slow twitch and 

three fast twitch fiber types- type 2A, 2B (not expressed in human but in other mammals) and 

2X. These fiber types were classified according to the myosin heavy chain isoforms that they 

express. The distribution and the quantity of fast and slow fibers may vary between different 

muscles depending on their function. 

Continuous low intensity activity for example, posture and long lasting repetitive activities, 

requires more slow twitch fibers, however jumping, kicking and strong maximal contraction, 

requires fast twitch fibers. Extensor digitorum longus (EDL) has a much higher frequency in 

firing pattern (70-90Hz) compared with slow soleus (SOL) that has low frequency of firing 

(approx. 20Hz) but long resistance to fatigue. Interestingly, in normal female inbred Lewis rats 

75.7%±2.2 of the fibers composing EDL are type 2B, 18.8%±1.7 type 2A and only 5.5%±1 are 

type 1 slow fibers. However SOL contains 96%±2.9 of type 1 muscle fibers [37].  

Tension and force development of SOL is significantly slower than in EDL muscles, where 

the response to an action potential is faster. Apart from force development, the decay in 

muscle tension of EDL occurs earlier, compared to SOL muscle.  
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Ca2+ transients have a direct impact on the dynamic properties of the muscle fibers. 

Interestingly, the kinetic parameters of Ca2+ transients show two clusters of values; 

corresponding to type 1 slow fibers or fast 2A fibers with low decay rate and fast 2X or fast 2B 

fibers with high decay rate (figure 1.2).  

 
Figure 1.2: Ca2+ transient in mouse single muscle fiber identified according to their myosin composition 

using mag-fluo 4 AM  (1- slow, 2- 2A, 3- 2X and 4- 2B fibers) [38].  

 

As mentioned previously, SERCA pumps Ca2+ ions back to the SR using the energy produced 

from ATP hydrolysis, allowing the relaxation of the muscle. There are 10 isoforms of SERCA that 

exists in vertebrates, though in human skeletal muscle there are 2 main isoforms, SERCA1a and 

SERCA2a [39]. SERCA1 is expressed in fast twitch type II fibers and SERCA2 in slow twitch type I 

fibers. SERCA density in the SR is 5-7 times larger in fast type II fibers compared to type I fibers, 

allowing the fast uptake of Ca2+ ions. Interestingly, ADP has a higher inhibitory effect on SERCA 

in fast fibers, in comparison with SERCA in slow fibers. Thus that lower responsiveness to ADP 

of slow fibers may contribute to the prevention of muscle fatigue and enabling continuous 

activity. NCX isoforms (NCX 1-3) contributes to the removal of Ca2+ from the cytoplasm in both 

fiber types but slightly more in type 1 slow fibers [38, 40]. 

Calcium homeostasis in the different compartments of the muscle fibers is crucial for 

normal physiological activity of skeletal muscle. The contractility of the muscle fiber depends on 

an adequate concentration of Ca2+; the cytosolic free Ca2+ levels is higher in type I fibers 

compared to type II fibers. The difference of free cytosolic Ca2 between fast and slow fibers, 

dictates Ca2+ secondary messengers and neuromuscular activity.  
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 1.3 The Ryanodine Receptor (RYR): 

 

1.3.1 Structure and function:  

 

The Ryanodine receptor (RyR) is a high molecular weight protein (565 KD for each 

monomer) that assembles as a homo-tetramer (2.3MDa) in order to function as a calcium 

release channel. There are 3 isoforms of the RYR gene; RYR1, which is highly expressed in 

skeletal muscle and to a lesser extent in cerebellum, smooth muscles, testis, adrenal gland, B-

lymphocytes and dendritic cells. RYR2 is highly expressed in the heart, brain and smooth muscle 

cells and RYR3 is expressed in a variety of tissues and in developing skeletal muscle [41]. 

 Cryo-EM studies have revealed that the RyR receptor has a mushroom- like shape with 

a bulky N terminal cytoplasmic domain, comprising its regulatory domains. While the last 1000 

amino acids encode for the trans-membrane domain including the Ca2+ pore [42, 43]. A number 

of small proteins including FKBP12 interact with the cytoplasmic domain stabilizing the channel 

and giving rise to a large macromolecular signaling complex. The last year several publications 

have described the fine structure of the RyR, one of them describing the crystal structure using 

single particle electron microscopy (Cryo- EM, Figure 1.31). 
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Figure 1.31: The architecture of the RyR in 4.8 Å resolution. A. Slab of density on blue mesh, B. Schematic 

representation of RyR1, B-sol, bridge solenoid; C-sol, core solenoid; N-sol, N-terminus solenoid [2]. 

 

Studies on the structure have shown that the RyR1 has a 4 fold symmetry, being made 

up by 4 protomers surrounding the central ion-conducting pore. 80% of the RyR1 mass is in the 

cytosol and this is thought to be involved in the regulation of the channel. There are 6 

transmembrane domains plus the pore domain, sharing a strong homology with voltage gated 

sodium and potassium channels [44]. The  α-solenoid scaffold incorporates 5 domains: RY12, 

RY34, SPRY1, SPRY2 and SPRY3, Interestingly, RY34 contains a known phosphorylation site for 

PKA (Ser-2843). As presented in figure 1.31b, S5 and S6 are make up the pore of the channel. 

S1-S4 are similar to voltage sensor transmembrane domains that can interface with the pore 

transmembrane domains. Remarkably, the brevity of the construction suggests hosting only 

one Ca2+ ion at the time [2]. The selectivity filter of the RyR is highly conserved and contains the 

following amino acid sequence: Gly-X-Arg-X-Gly3-X-Gly-Asp, which was found in other channels 
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as well, including the IP3 receptor and potassium channels [45]. Furthermore it has been shown 

that Asp and Gly are crucial for the selectivity of the channel [44]. 

 

1.3.2 Regulation:  

 

The RyR1 is highly regulated by proteins and enzymes, as well as other modulators, such as 

Ca2+ and Mg2+. Ca2+ modulates the activity and the conductance of the channel. When Ca2+ 

binds to the A sites, it increases the activity of the RyR1. However, when Ca2+ binds to the I site 

the conductance of the channel decreases;  both I and A sites are located in the cytosolic 

domain of the Ryanodine Receptor 1 [46]. Ca2+ does not only bind directly to the RyR1 but to 

the small ubiquitously expressed proteins, calmodulin (CaM) and S100A. CaM can exist in two 

forms; Ca2+-CaM or Ca2+ free CaM (ApoCaM). Several reports have indicated that RyR have 4-6 

binding sites to ApoCaM and 1 binding site for Ca2+- CaM. However, in other reports it was 

found that for skeletal muscle and cardiac RyR isoforms, each RyR subunit can bind to a single 

Ca2+-CaM or single ApoCaM molecule. In addition it was shown that the binding site for CaM on 

the RyR is located in the same region (Amino acid residues; 3630-3637). ApoCaM concentration 

is high at nM concentration of Ca2+, known to activates the RyR1 by increasing it’s sensitivity to 

CICR [47-50]. Skeletal muscle and heart also express a member of the S100A family, S100A1 

binds to the RyR1 and promotes Ca2+ release. Ca2+-CaM and Ca2+- S100A1 compete for the same 

binding site termed RyRP12 on the cytosolic domain of every RyR protomer. The binding of 

S100A  increases  the  probability  for  RyR1’s  open  state, indeed KO of S100A1 attenuates the rise 

of Ca2+ evoked by an action potential [51, 52]. 

FK506 binding protein 12 (FKBP12) interacts with each protomer of RyR1 and stabilizes the 

“closed channel  conformation”.  FK506 has shown to promote the dissociation of FKBP12 from 

RyR1 (The EC50 of the dissociation from the RyR1 is 0.12-0.5µM). SR vesicles stripped of FKBP12 

have a higher probability of being in the open conformation compared to FKBP12-containing 

vesicles. According to some studies FKBP12 disassociates from RyR1 upon phosphorylation by 

Protein Kinase A (PKA); similar results were observed for the cardiac isoform (RyR2) [53, 54]. 
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Interestingly, the cardiac RyR2 interacts with 4 molecules of FKBP12.6, (each interacting with 1 

protomer of RyR2). However, unlike the mechanism observed in RyR1, upon disassociation of 

FKBP12.6 from RyR2, the channel is not activated, though this issue is controversial [55-58]. 

Nevertheless, RyR2 can be phosphorylated by CaMKII on Serine 2815, and in some studies this 

phosphorylation has been shown to activate RyR2 without the disassociation of FKBP12.6 [59]. 

 

1.4 The dihydropyridne receptor: an L-type Voltage Gated Ca2+ 

Channel of skeletal muscle: 
 

Voltage Gated Ca2+ Channels mediate Ca2+ entry into cells in response to membrane 

depolarization (Figure 1.41A). Different VGCCs have different thresholds of activation in a 

variety of cell types and they are characterized as High Voltage Activated (HVA) or Low Voltage 

Activated (LVA). The  pore  unit  α1, named CAV is encoded by 10 genes CACNA1A-CACNA1S that 

have different chromosomal locations and contains positively charged, voltage sensor subunit-

S4 (Figure 1.41B, C) .Based on the pharmacological and biophysical characteristics of the 

channel, VGCC were characterized as N, L, T, P/Q and R types. L type VGCCs are expressed in 

specialized tissues, for instance Cav1.1 is mainly expressed in skeletal muscle, whereas Cav1.2 is 

expressed in the heart and smooth muscle (Figure 1.41B) [60]. The S4 subunit (Figure 1.31c) 

undergoes a conformational change allowing it to interact with the RyR1, upon action potential 

[61].  
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Figure 1.41: VGCC Structure and Function (A) schematic presentation of VGCC activation and inactivation 
upon membrane depolarization. (B) Channel types and their chromosomal location (C) The oligomeric 
structure of the VGCC; the pore forming unit – α1 and  the  regulatory  forming  units  β,  γ,δ  and  α2.  The pore 
forming  unit  of  the  channel  α1  is  composed  of  voltage  sensor  in  blue  (S4)  and  the  pore  region  in  red [62].    
 

α1S (DHPR) interacts with the RyR1, located on the SR membrane leading to Ca2+ release from 

the SR. Loops II and III of the α1 subunit interact with the RyR1 channel, while the β subunit of 

the  DHPR  may  act  as  an  “anchor”  that  docks  the  DHPR  to  the  RyR1 (Figure 1.42). Additionally, 

the β subunit affects the channel gating properties and the trafficking of α1 subunit. α2/δ 

subunits are encoded by the same gene and linked by disulfide bounds. Interestingly, they 

enhance membrane trafficking and increase current amplitude [63]. 
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Figure 1.42: Model of physical coupling between DHPR and RyR1 [63]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

30 
 

2. Disorders of ECC and Congenital Neuromuscular Disorders: 

 

Congenital myopathies are clinical conditions that are diagnosed on the basis of the 

patient’s   clinical manifestations and histopathological features of the muscle biopsy in 

combination with proper genetic testing. The three main congenital myopathies are Nemaline 

myopathy, Core myopathies and Centronuclear myopathy. A major portion of patients shows 

involvement of extraocular muscle, facial musculature and normal or elevated levels of creatine 

kinase.    

 

2.1 Malignant Hyperthermia (MH): 
 

Malignant hyperthermia is a pharmaco-genetic disorder triggered by volatile anesthetics 

in genetically predisposed individuals. Examples of trigger agents include halothane, 

sevoflurane, deslurane and the depolarizing muscle relaxant succinylcholine. MH is defined as 

hyper-metabolic reaction of the skeletal muscle that involves:  

x Tachycardia 

x Acidosis of the blood 

x Increased oxygen consumption  

x CO2 over production  

x Muscle rigidity  

x High body temperature 

The incidence of an MH reaction is approximately every 1:10000- 1:25000 anesthetics. A 

genetically susceptible patient may not develop an MH reaction at every contact with a 

triggering agent. Though mutations in the RYR1 gene are linked to predisposition to develop an 

MH reaction, at present it is not known why some patients trigger but not others. The 

frequency of developing MH is twice higher in male patients compared to female patients. It 
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has been shown that all ethnic groups are equally affected and can develop MH with a similar 

probability. Interestingly, 52% of the patients that develop MH are 15 years old or younger but 

this may relate more to the anesthetic agent used rather than to the effect of age per se.  

An MH reaction is thought to be caused by the uncontrolled release of calcium from the 

SR leading to muscle rigidity, over- activation of the SERCA and Ca2+ extrusion systems. 

Depletion of ATP (during MH reaction) leads to loss of membrane integrity leading to 

Hyperkalemia and Rhabdomyolysis. Untreated patients die from high core body temperature 

(exceeding 41Co and up to 44 Co), Kidney failure, Heart failure or Bowel Ischemia.  In order to 

counteract an MH episode, the trigger agent (anesthetic) must be interrupted, the patient is 

placed in a cooling ice bath and dantrolene, the only approved drug, must be immediately 

administered.  

In most cases the genetic cause of Malignant Hyperthermia is linked to dominant 

mutations in the Ryanodine Receptor 1 (RYR1) and to date more than 100 mutations have been 

casually linked to the MH susceptibility trait. Till approximately 10 years ago, MHS was 

diagnosed using the in vitro contracture test (IVCT) an invasive procedure by which contracture 

of isolated muscle biopsies in vitro (obtain from the patients under regional anesthesia) are 

assessed after administration of either the trigger agent halothane or the RyR1 activator 

Caffeine. For many individuals where the family mutation in the RYR1 has been identified, the 

IVCT is no longer performed, and the genomic DNA of the patient is examined for the presence 

of the familial causative mutation. If no mutation is found then the IVCT is performed in order 

to exclude a risk of an MH reaction during surgery [64, 65]. Interestingly, SR Ca2+ release 

channels isolated from MH pigs exhibit higher CICR and increased sensitivity to Caffeine, 

Halothane, 4 chloro-m cresol (4cmc) and t-tubules depolarization. In addition MH pigs had 

reduced inhibition of Ca2+ and Mg2+ [66]. The porcine model of MH (R615C) exhibited a lower 

threshold of contraction that arises from earlier depolarization, activating voltage dependent 

Ca2+ release [67, 68]. 
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2.2 Central Core Disease (CCD):  
 

Central Core Disease is the most common congenital myopathy occurring with a 

frequency of 3-5/100,000 and is characterized histologically by the appearance of central cores 

along the muscle fibers. 

 

Figure 2.21: Histopathological appearance of a biopsy from a patient with Central Core Disease. NADH staining of 
Rectus Femoris transverse section [69].  

 

 The cores are defined as areas lacking oxidative staining and are typically found in type 

1 fibers. Electron microscopy shows absence/reduction of mitochondria, myofibrillar 

disorganization and accumulation of abnormal Z band material within the core area. Some of 

the cores have  normal  “structured”  myofibrilar  organization  that  preserves  the  ATPas  activity.  

The diagnosis of the disease in patients entering a neuromuscular diagnostic center are based 

on the presence of weak muscles and the concomitant presence of histopathological hallmarks 

in the muscle biopsy; muscle MRI and mutations analysis may help confirm the diagnosis. 

Patients with CCD may present with one or several clinical features including:  

x Hypotonia.  

x Motor development delay, which can be variable among patients. 

x Muscle stiffness and weakness, there is no proved association between the 

amounts of cores and the degree of weakness. 

x Proximal muscle weakness in the hip girdle and axial muscles. 



 

33 
 

x Orthopedic complications (contractures, club foot) 

x Malignant hyperthermia susceptibility (MHS) – condition activated by volatile 

anesthetics in medical procedures (discussed in the previous section 2.1).  

Respiratory involvement in patients with CCD is not frequent but some patients especially 

during childhood, required regular respiratory assessment or even invasive respiratory 

assistance limiting their daily activities. CCD is predominantly caused by dominant mutations in 

the RYR1 mainly located on the C terminus of the protein, (Figure 2.22) [69]. 

 

 

Figure 2.22: Schematic representation of the RYR1 with the distribution of recessive (Associated with MmD, in 
red) and dominant mutations (Associated with CCD, in black) [70]. 

 

Transient expression of Rabbit RYR1 cDNA in HEK293 cells (either W.T RYR1, mutated 

with CCD mutation and mutated RYR1 linked to MH) provided interesting insight. Cells 

transfected with CCD- RYR1 mutant showed higher resting Ca2+ compared to cells expressing 

the W.T or the MH- RYR1 mutant. Cells expressing MH and CCD-RYR1 mutants released less 

Ca2+ after pharmacological activation compared to the W.T expressing cells. Taken together 

these results suggest that CCD mutations   lead   to   “leaky”   channel [71]. Immortalized B 
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lymphocyte isolated from CCD patients were also used to investigate Ca2+ homeostasis. Ca2+ 

release from the intracellular stores occurred in the absence of any RyR activating 

pharmacological agents in CCD patients, though a similar phenomena was not seen in cells 

obtained from healthy individuals. Significantly reduced intercellular stores were measured by 

assessing the peak of Ca2+ elicited by Thapsigargin. Lastly, normal sensitivity to the RyR inhibitor 

Dantrolene was observed [72]. Other experiments on the function of mutations linked to CCD, 

showed that they did not affect the sensitivity of RyR1 to pharmacological activators nor the 

resting Ca2+ concentration, however significant decrease of Ca2+ release was observed upon 

RyR1 activation [73].   

 

2.3 Multi Mini-core Disease (MMD):  
 

MmD is histologically characterized by the presence of multiple cores appearing in the 

muscle biopsy as well as clinical features characteristic of congenital myopathies. The 

immediate phenotype of the disease appears at a very early age with spinal rigidity, scoliosis 

and respiratory impairments. MmD is a genetic heterogeneous disease caused most frequently 

by recessive mutations in Selenoprotein 1 (SEPN1) or recessive mutations in RYR1; in the latter 

case the mutations are either homozygous or compound heterozygous . As opposed to patients 

with CCD, patients with MmD with recessive RYR1 mutations, often present with 

Opthalmoplegia (weakness or paralysis of the extraocular muscle) along with other clinical 

features as described in figure 2.31. MmD usually appears in infancy or childhood with 

hypotonia or muscle weakness and reduced fetal movements. There are some cases appearing 

in adults that involve progressive respiratory and heart failures.    
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 Figure 2.31: clinical and pathological features that can help distinguish between SEPN1 related or RYR1 related 
forms of MmD [70]. 

 

Figure 2.31 outlines the differences in the clinical and histopathological features of 

MmD caused by recessive mutations in the RYR1 and SEPN1. Few patients diagnosed with 

MmD, especially patients with proved RYR1 recessive mutations have clinical Malignant 

Hyperthermia (MH) episodes triggered by volatile anesthetic. Some of the patients with MmD 

caused by SEPN1 and RYR1 mutations have bulbar muscle involvement that influences their 

ability to swallow or speak.  

 

Figure 3.22: Histopathological features of Multi Minicore Disease. A. NADH staining for transverse segments of 3 
years old patient B. NADH staining for horizontal segments of 3 years old patient C. NADH staining for transverse 
segments of 9 years old patient D. Cytochrome oxidase (COX) staining for horizontal segments of 9 years old 
patient [70]. 
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Although not always true and of limited diagnostic values it seems that biopsies from 

MmD patients harboring recessive RYR1 mutations exhibit multiple cores distributed along the 

fibers (multicores), while MmD associated with recessive SEPN1 mutations show multiple small 

lesions scattered along the fibers. In other words, core morphology can vary in size and shape 

depending on the genetic mutation underlying the disease. Like the cores observed in patients 

with CCD, observation of muscle samples from patients with MmD by EM shows that the cores 

disrupt the muscle structure, cause myofibrillar disorganization and alter the structure of the 

SR, T – tubules and cause loss of the otherwise highly ordered sarcomeric architecture.  

 

2.4 Central Nuclear Myopathy (CNM): 
 

Central Nuclear Myopathy is a genetically heterogeneous congenital myopathy characterized 

histologically by the presence of centralized nuclei within the muscle fiber (figure 2.41) as well 

as the appearance of small fibers (figure 2.42 A), hypotrophy of type 1 fibers, a mild increase in 

connective and fat tissue and Z line streaming in areas adjacent to the nuclei (figure 2.42 C, D).  

The clinical features vary between patients, depending on the genetic cause for the 

disease. The most sever phenotype is X linked and caused by mutations in the MTM1 gene; it 

mainly affects males though rare cases of affected females due to skewed X inactivation have 

been reported [74].The clinical features of patients born with X linked MTM1 (XMTM) manifest 

at birth or soon after and include severe muscle weakness, hypotonia, external ophtalmoplegia 

and respiratory failure. In the majority of cases, the disease leads to early death within the first 

few months of age, although some patients survive until adolescence and beyond [74]. The 

product of the MTM1 gene is myotubularin 1, a phosphoinositide phosphatase whose activity 

plays an important role in phospholipid  metabolism by specifically removing phosphate from 

phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-biphosphate [75]. MTM1 

contains a tyrosine phosphatase domain that is thought to play a role in signal transduction, cell 

growth and differentiation [76]. MTM1 is ubiquitously expressed and studies are under way in 
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order to understand why patients with MTM1 mutations have such a severe skeletal muscle 

phenotype, with sparing of the heart and other tissues. Of importance, most if not all of the 

mutations identified to date in patients result in the absence of the MTM1 protein product. 

 

Figure 2.41: H&E stained muscle biopsy taken from 3 months old female infant with X linked CNM, due to a 
mutation in MTM1. This patient has skewed X inactivation that leads to severe phenotype [74].    

 

Apart from the X linked form of CNM, there are Autosomal Recessive (AR) and 

Autosomal Dominant (AD) forms of the disease that are caused by mutations in Dynamin2 

(DNM2) and amphiphysin 2 (BIN1) genes, respectively. DNM2 is a large GTPase known to be 

involved in many cellular process, through association with the microtubular network 

(endocytosis, membrane trafficking, actin assembly and centrosome function). BIN1 is 

responsible for membrane remodeling, curvature and has a role in the organization of the T 

tubules. The interaction between BIN1 and DNM2 is necessary for normal muscle function and 

for the positioning of the nuclei [69, 77]. The clinical features of patients with BIN1 and DNM2 

mutations are milder than the features characterizing X linked CNM. 

 In the past decade however, a number of patients diagnosed with CNM were shown to 

harbor recessive mutations in the RYR1 gene [78].  
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Figure 2.42: Histopathological features of RYR1 related CNM in patients. A. H&E staining in transverse section 
presents variability in fiber size, mild increase in endomysial connective tissue and little adipose tissue. Central 
nuclei appear mainly in small fibers. B.  ATPase staining of transverse section shows predominance darker staining 
on Hypotrophic type 1 fibers with some dark staining on type 2 fibers as well.  C. Transverse section stained against 
NADH shows that there is a darker predominance of type 1 hyotrophic fibers. D. longitudinal section of Electron 
Microscopy show central nuclei aligned in chain. In addition, minicores formation and Z line streaming formation 
appears in proximity with the nuclei [78]. 

 

The histopathological data of many patients shows central nuclei mainly appearing in small 

fibers (figure 2.42 A), Hypotrophy of fiber type 1 compared to fiber type 2 (figure 2.42 B), mild 

increase of connective tissue and fat tissue in the muscle and Z line streaming next to the nuclei 

(figure 2.42 D). The clinical features of CNM due to RYR1 mutations are neonatal hypotonia, 

reduced fetal movement feeding difficulties and extraocular involvement. No Malignant 

Hyperthermia (MH) reactions have been reported in these patients to date.  

 

2.5 Nemaline Myopathy (NEM):  
 

 Nemaline Myopathy is defined histopathologically by the presence of inclusion bodies, 

(nemaline bodies; Greek Nema is thread) within the muscle fibers. Muscle weakness and 

hypotonia are apparent from the neonatal period but some patients are also diagnosed during 

childhood or adulthood. These patients characteristically exhibit depressed or the absent of 
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deep tendon reflexes. Muscle weakness of the face, neck flexors and proximal limb muscles is 

severe. Nemaline myopathy is clinically classified into 6 groups, depending on the severity and 

if there is respiratory involvement: severe neonatal congenital myopathy (16% of NEM 

patients), Amish NEM, Intermediate congenital (20%) , Typical congenital (46%), childhood 

onset (13%) and adult onset (4%). The survival rate of these patients is very much dependent 

on the severity of the disease. Most surviving patients are able to walk [79]. 

Mutations in at least 10 genes have been associated with Nemaline Myopathy including 

α   Tropomyosin   – slow (TPM3), Nebulin (NEB),   α   ACTIN   (ACTA1),   β   Tropomyosin   (TPM2) and 

Troponin T1 (TNNT1), Cofilin 2 (CFL2) , Kelch repeat and BTB (POZ) domain-containing 13 

(KBTBD13) and Kelch-like family members 40 and 41 (KLHL40 and KLHL41). The majority of 

Nemaline patients  have  mutations  in  α  actin  (ACTA) and Nebulin (NEB) [79, 80].  

 
Figure 2.5: Pathology of Nemaline myopathy. A. Gomori Trichome staining in frozen sections showing 
Nemaline bodies (rods). Dark blue structures scattered throughout the muscle fibers. B. Rods structures 
in transmission electron microscopy (15K magnification) [79]. 

 

The diagnosis of the disease is performed by Gomori Trichome staining and shows the 

presence of rod shaped structures. By electron microscopy, the rods seem to be due to 

disruption in the myofibrillar pattern and accumulation of thin filaments in areas devoid of 

sarcomeric structures [79]. 
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3. MicroRNAs Structure and Function: 

3.1 Structure and Function: 

MicroRNAs (miRs) are non-coding small RNAs regulating the expression of many genes. 

MicroRNAs play an important role in embryogenesis and development, as well as in human 

diseases. From a physiological point of view, their presence leads to transcriptional silencing by 

a mechanism involving their specific binding to the   3’ un-translated region (3’   UTR)   of   a 

messenger RNA and the subsequent recruiting of Argonaute family proteins (AGO). AGO 

interacts with factors that inhibit translations, mediating mRNA deadenylation and mRNA 

decay. The nucleotides located in positions 2nd-7th from   the   5’   end   are crucial for the 

recognition of the mRNA target (seed sequence), however the nucleotides in position 8th and 

13th-16th contribute significantly less to the specificity of the binding. The biosynthesis of miRNA 

is tightly controlled and its dysregulation can lead to cancer or neuro-developmental disorders.  

In mammalian cells microRNAs are transcribed by RNA polymerase II (RNA pol ll) 

creating long primary transcripts, termed pri- miRNA. The secondary structure of the pri-miRNA 

is a loop that embeds the mature microRNA sequence (figure 3.11).  

 

Figure 3.11: pri- miRNA illustration, Modified from [81]. 

 

Most of the genes encoding human microRNAs are located within introns of non-coding 

or coding gene sequences, even though few microRNAs have been identified located within the 

coding sequence of a gene (Figure 3.12C). MicroRNAs that are located within an intron can be 
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co-transcribed with the proximal gene, since they share the same promoter; nevertheless in 

some cases the microRNA promoter is distinct from that of its adjacent gene, as is its 

transcription. MicroRNAs that are located in close proximity to other microRNAs can create a 

cluster, termed polycistronic transcription unit.   

 

 
Figure 3.12: Genomic organization and structure of miRNA gene. A. Intronic miRNA (miR10) in a protein coding 
transcriptional unit (HOX4B gene). Green triangle- the binding location of the microRNA, the exon is marked in 
yellow.   B. Intronic miRNA cluster (miR15a; miR16-1) in a non-coding transcript (DLEU2) C. The location of exonic 
miR155 in a non-coding transcript (BIC) [82].  

 

MicroRNA expression is regulated by transcription factors, including P53, MYOD, ZEB1 

and ZEB2. For instance MYOD regulates the cluster of miR1/206. [83].  

The pri- microRNA that is shown in figure 3.13 consists of a stem of  33-35 bp in length, 

a terminal loop and single stranded RNA in both 3’   end and 5’   end. The subsequent steps 

involved in the microRNA maturation entail Dorsha activity that releases a small hairpin pre-

microRNA of 65bp. The complex that Dorsha creates with DGCR8 and with the pri-miRNA is 

called Microprocessor (figure 3.14).  
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Figure 3.13 : Pri- microRNA structure, taken from  [81] 

Dorsha is an RNase III type endonuclease that interacts with double stranded RNA, 

through  DGCR8’s  double  stranded  binding  domain  (dsRBD).  At   its carboxyl terminus, there are 

tandem RNase III domains (RIIIDa and RIIIDb); RIIIDb  cuts  the  5’   strand  and  RIIIDa cuts the 3’  

strand leading to two 3’  nucleotide  overhangs. Cutting is carried out 11bp away from the basal 

junction and 22bp away from the apical junction (figure 3.13). 
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Figure 3.14 : microRNA biosynthesis, taken from  [81] 

 

The regulation on pri- miRNA processing is very tight. The activity of microprocessor can 

be regulated by post translational modifications, nuclear localization and protein stability. For 

instance,  Histone  deacetylase  1  (HDAC1)  can  deacetylates  DGCR8  and  increase  DGCR8’s  affinity  

for the pri-miRNA. Additionally, phosphorylated MECP2 (methyl-CpG-binding protein 2) can 

sequester DGCR8 and when MECP2 is dephosphorylated, DGCR8 is released and microRNAs are 

produced.  Dorsha and DGCR8 Knock out are embryonically lethal in mice at E 7.5. DGCR8 KO in 

stem cells leads to the inability of the cells to proliferate and differentiate explaining the 

termination of embryogenesis.    

 The next step in the maturation of the pre-miRNA is its transport to the cytosol 

through a complex termed Exportin 5 (encoded by XPO5) and RAN-GTP (GTP binding protein). 

When GTP is hydrolysed to GDP+Pi, pre-miRNA is released into the cytosol. Exportin5 

recognizes the dsRNA that is bigger than 14 nucleotides and single stranded molecules of 1-8 
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nucleotides (3’  overhang). KO of XPO5 leads to a decrease in matured microRNAs but not to 

increase in pre-miRNA accumulation in the nucleus. The fact that the mature microRNAs are 

not completely depleted, suggests that there is another system that exports pre-microRNAs out 

of the nucleus and that protects the nucleus from nucleolytic attack. Exportin 5 is well 

regulated and responds to internal stress such as DNA damage through activation of AKT.  

Once it reaches the cytoplasm the pre-miRNA is further processed and cleaved by Dicer. 

Dicer cleaves the terminal loop of the pre-miRNA, creating double stranded RNA. Dicer-1 KO 

mice are embryonically lethal (7.5 E) and its silencing in stem cells affects proliferation and 

differentiation, similar to the phenotype of DCGR8 KO stem cells. Tandem RNase domains are 

located in the C-terminus of the Dicer similarly to the Dorsha and in the N-terminus, there is a 

helicase domain that recognizes the terminal loop of the pre-miRNA. The   3’   two   nucleotide  

overhang, created by Dorsha are favorable to be bound by the Dicer, as a result Dicer cleaves 

21-25  nucleotide  away  from  the  3’  end  of  the  double  stranded  RNA. 

 

Figure 3.15 : Pre- microRNA structure, taken from [81] 

 

 The double stranded RNA, generated by Dicer is loaded onto the AGO2 protein 

that is responsible for miRNA mediated silencing. Double stranded RNA binds to AGO, forming 

an effector complex called RNA Induced silencing complex (RISC). The RISC complex is 

responsible for the loading of the double stranded RNA and unwinding it so it can specifically 
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interact with the target RNA. In Drosophila, the mechanisms of miRNA mediated transcription 

inhibition has been investigated in detail and it seems that its mechanism of action depends on 

of the AGO isoforms that are expressed for instance [81, 84]: 

1. AGO2 prevents protein-protein interaction, which inhibits the interaction between 

initiation factor 4E and initiation factor 4F. This interaction is required for the assembly 

of the preinitiation complex on the mRNA [84, 85]. 

2. AGO1 prevents translation by promoting deadenylation and enhancing mRNA 

degradation [86]. 

 

3.2 Muscle Specific MicroRNAs: 
 

 Muscle specific microRNAs (MyomiRs) have a major impact on muscle development and 

muscle physiology. These microRNAs include miR1, miR133 and miR206, they are abundant in 

skeletal muscle and appear to be essential for proper skeletal muscle or cardiac muscle 

development and function. For instance, miR1 inhibits cardiac development by repressing 

myoblast differentiation through the repression of Histone deacetylase 4 (HDAC4, transcription 

repressor of myogenesis) [87]. miR133 enhances myoblasts proliferation by repressing serum 

response factor (SRF) that are responsible for myogenesis [88]. The genes that encode miR133 

(miR133a-1, miR133a-2 and miR133b), miR1 (miR1-1 and miR1-2) and miR206 are expressed in 

a bicistronic fashion. There are 3 loci expressing these microRNAs: miR1-1/miR133a-2 are 

clustered on chromosome 10 in humans and on chromosome 2 in mouse, miR1-2/miR133a-1 

are clustered on chromosome 18 in human or mouse and miR206/miR133b are clustered on 

chromosome 6 in human and chromosome 1 in mouse. The mature sequence of miR1-1 and 

miR1-2 is identical, as well as the mature sequences of miR133a-1 and miR133a-2. However, 

MiR133b is different from miR133a by 1 nucleotide located in  the  3’  end  of  miR133b [89] [90]. 

During the development of human fetus, the expression of miR1, miR133 and miR206 are 

significantly increased. Moreover, the expression of these microRNAs is proportional to the 

ability of myoblasts to become myotubes.  
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MyoD (myogenic differentiation factor D) is known to play a significant role in muscle 

development and particularly with the expression of miR133, miR1 and miR206 [91]. MyoD and 

MEF2 regulate the intragenic enhancer activity of miR1-2/miR133a-1 in the somite myotomes 

and in skeletal muscle fibers during embryogenesis. Similar mechanisms were shown to repeat 

in the miR1-1/miR133a-2 locus, further confirming the major role of MEF2 in skeletal muscle 

and heart development [92]. 

As described in a previous section, microRNAs play an important role in cell proliferation 

and differentiation through the regulation of muscle specific transcription factors; Paired BOX 3 

(PAX3) and Paired BOX 7 (PAX7). For instance, miR27b inhibits cell proliferation and promotes 

differentiation by targeting PAX3 [93]. In addition, miR486 plays an important role in myoblast 

proliferation [94], while some findings report that miR486 together with miR206 induce 

myoblasts differentiation by targeting PAX7 [95]. In muscle satellite cells there are two 

subpopulations of stem cells; PAX7low and PAX7high, how the distribution occurs is not known 

yet.  MiR431  targets  the  3’  UTR  of  PAX7,  and  enriches  the  subpopulation  of  low  expressed  PAX7  

in satellite cells. Enrichment of PAX7low subpopulation contributes to muscle regeneration and 

differentiation. Interestingly, when transgenic mice over-expressing miR431 were bred with 

mdx mice there was a significant reduction of the dystrophic phenotype of the mdx mice [96].  

 

3.3 MicroRNA and Skeletal Muscle Disorders: 
 

 During the past decades and mainly thanks to the human genome sequencing project, 

the genetic mutations underlying a large number of neuromuscular disorders have been 

identified. Recently however, it has become apparent that some muscle disorders are 

associated with misregulation of microRNA expression. In a model of skeletal muscle 

hypertrophy, miR1 and miR133 were significantly decreased, while Pri-miRNA 206 levels were 

increased, though the mature form of miR206 was found to be constant [87]. Furthermore 

injection of double stranded miR1, miR133 and miR206 into rat skeletal muscle accelerates 
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regeneration opening novel perspectives to improve the muscle phenotype of patients with 

muscle dystrophies due to lack of regeneration [97].  

In a mouse model for Amyotrophic lateral sclerosis (ALS), which exhibits paralysis, 

muscle atrophy and denervation, miR206 was found to be significantly elevated, probably as a 

protective response since deficiency of miR206 enhance disease progression. The protective 

effect of miR206 seems to involve targeting of HDAC4; in fact miR206 Inhibits HDAC4 

expression and leads to an increase in the expression levels of fibroblast growth factor binding 

protein 1 (FGFBP1) that potentiates the bioactivity of FGF. FGF promotes re-innervation of the 

neuromuscular junction, which contributes to the regeneration of the neuromuscular synapse 

(figure 3.3) [98].  

 

Figure 3.3: miR206 dependent re-innervation [98]. 

 

MiR486 is also enriched in skeletal muscle and plays an important role in cell 

proliferation, migration and wound healing. MiR486 over- expression in myoblasts leads to cell 

proliferation, whereas silencing of miR486 inhibits cell migration and wound repair.  MiR486 

targets PTEN, a phosphatase that induces cell cycle arrest followed by cell death [94].  In 

Duchenne muscular dystrophy (DMD) miR486 decreases significantly however this is not the 
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case in Backer muscular dystrophy (BMD) in which there is a production of an incomplete but 

partially functional dystrophin. [99, 100].  

Alterations in the expression levels of myomiRs has also been observed in patients with 

Facioscapulohumeral muscular dystrophy (FSHD) where increased levels of miR133, miR1 and 

miR206 were found. In FSHD, alterations in the expression level of more than 29 different 

microRNAs was found, indicating that in the future following the levels of myomiRs may have a 

diagnostic value and may be useful to monitor drug response or disease progression [101, 102].  

FSHD is a very common muscular dystrophy caused by a deletion in the 3300 bp macrosatellite 

D4Z4 repeat, located in the long arm of chromosome 4. Deletion of this area causes chromatin 

relaxation and transcriptional de-repression of this region (through hypo-methylation of the 

region). De-repression of this region leads to the detection of sense and antisense double 

stranded transcripts. Interestingly, the double stranded transcripts can serve as targets for the 

Dicer that cleaves them and creates miRNAs/siRNAs. Currently, it is not known if these 

microRNAs are functional or if they can cause local chromosomal silencing or specific loci 

silencing [103].  

Finally the importance of proper myomiR expression was recently illustrated by the 

creation of a mouse model lacking miR133a-1 and miR133a-2; these mice exhibited a late onset 

of centronuclear myopathy type II (fast twitch) phenotype, impaired mitochondrial function, 

disarray of muscle triads and fast to slow myofibril conversion. The mechanism whereby these 

changes occur is not known even though an increase of Dyanmin 2 has been postulated to play 

a role [92]. 
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4. Chromatin Organization and Transcription Regulation: 

4.1 Chromatin Organization:  

The chromatin is organized in a condensed state (Heterochromatin) or in a de-

condensed state (Euchromatin). Heterochromatin can be further separated into facultative 

Heterochromatin (fHC) or Constitutive Heterochromatin (cHC), the latter being transcriptionally 

silent during differentiation. cHC areas are usually important for chromosomal integrity and 

stability, such as centrosomes and telomeres. Facultative Heterochromatin (fHC) is also 

transcriptionally silent but has the potential to interconvert to Euchromatin (EC), which is 

transcriptionally active. Intriguingly, fHC can have several states of condensation range for 

instance in promoter compaction of inactive genes [104].  

Chromatin is packaged into structural units, termed nucleosomes. Each nucleosome 

packages 147 base pairs of DNA and has DNA extension to 170-240 bp (linker DNA, figure 4.1). 

The histone octamer contains 2 copies of the 4 core histones H2A, H2B, H3 and H4 and H1 

histone, the latter regulates the expression of nearby genes by modulating the packaging state 

of the DNA. H2A and H2B or H3 and H4 form heterodimers that can each organize 30 bp of 

DNA, through the DNA loops (binding sites) L1L2 and α  helixes, α1α1 (figure 4.11).  

 

Figure 4.11: The nucleosome core particle and the histone octamer. N terminus tails stretched out of 
the histone octamer [105]. 



 

50 
 

Under physiological conditions the octameric structure is not stable in the absence of 

DNA. Binding of DNA is not sequence specific and octamers can interact with any area within 

the genome, creating interfaces between the hydrogen atoms of the amide chains and the 

phosphate-oxygen atoms of the DNA backbone. However, it has been shown that appropriate 

spacing of AA and TT facilitates the interaction with the octamer.  

The (H3-H4)2 tetramer is created first and binds to the DNA with higher ionic force than 

the dimer (H3-H4). Binding of the dimers H2A-H2B to the DNA follows immediately after the 

binding of the (H3-H4)2 tetramer. Initially, H3-H4 is synthetized and histone chaperone ASF1 

transfers H3-H4 to other histone chaperons CAF1 and Rtt106 in order to form the (H3-H4)2 

tetramer, depositing it on newly synthetized DNA fork through association with PCNA. Apart 

from replication dependent nucleosome assembly, transcription dependent nuclear assembly 

has been associated with the activity of histone chaperone HIRA that interact with RNA pol II 

and recruit newly synthetized H3-H4. A similar mechanism was shown to occur in telomere 

regions, through the association with the histone chaperone DAXX [106].  

 

Figure 4.12: Histone chaperones coordinate to regulate DNA replication–coupled nucleosome assembly 
(a) and replication-independent nucleosome assembly (b) [106]. 
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The nucleosome is a highly dynamic structure and is rarely fixed in a given position; ATP-

dependent chromatin remodeling factors can enhance its mobility. The histone H1 functions as 

a linker to stabilize the nucleosome by reducing sliding of the octamer. In addition H1 controls 

the nucleosome’s mobility and controls gene expression in a positive or negative manner [105, 

107, 108].  

 

4.2 Chromatin Remodeling Post-Translational Modifications of 

Histone: 

4.2.1 Preface: 

 Nucleosomal DNA has to be unwrapped in order to allow transcription factors and 

transcription regulators to have access to the DNA.  Exposing the DNA to the transcriptional 

machinery requires two main mechanisms: chromatin remodeling and chromatin modifications. 

One of the structurally and functionally conserved complexes for chromatin remodeling is the 

complex SWI/SNF. This is an ATP dependent chromatin remodeling complex that contains 

subunits such as SNF5 that are responsible for interacting with the nucleosome and modulate 

DNA-histone interactions. SWI/SNF is a relatively large complex that has 12 subunits and is 

conserved in many species: in Drosophila it is called BAP and in Humans, BAF. This complex 

interacts with transcription factors, leading the complex to a specific region on the chromatin. 

SWI/SNF complex anchors to the DNA 20bp upstream from the intended location and pulls the 

DNA, creating a loop. This process is energetically unfavorable and requires hydrolysis of ATP. 

There is a positive correlation between the loop sizes to the amount of hydrolyzed ATP 

required.  The loop continues to spread until it reaches the site where the DNA separates from 

the nucleosome. Even though this process is very accurate, it can  cause  “nucleosomal sliding”  

to nearby nucleosomes.  

Chromatin modifications contribute to the exposure of DNA in order to allow the 

transcriptional machinery to interact with the DNA; DNA exposure occurs by spontaneous 
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conformational changes leading to the unwrapping of the DNA and nonspontaneous covalent 

bond modification of the linker histone 1 (H1). H1 is responsible for the stem structure 

formation, approximately 30bp in length that binds  to  the  nucleosome  and  serves  as  a  “gate”  

for remodeling factors to unwrap the DNA (Figure 4.21).  

 

Figure 4.21: The contribution of Histone H1 to the stem structure of the chromatin [105]. 

Covalent post translational modifications of histones such as histone acetylation and 

methylation of certain amino acids located on the N- teminal tails of histones, determines the 

regulation of transcription in different loci [105]. There are several post translational 

modifications that can influence chromatin remodeling and transcriptional regulation, including 

phosphorylation of serine and threonine residues, methylation of lysine and arginine, 

acetylation and de-acetylation of lysine and ubiquitilation or sumoylation of lysine residues. In 

the next chapters, histone acetylation and methylation will be extensively discussed.  

4.2.2 Histone Acetylation: 

  Histone Acetylation on lysine residues is almost always associated with active gene 

transcription. The acetylation occurs on lysine residues located on the NH2 terminal tail of 

histones. Acetylation of lysine by acetyltransferases decreases the positive charge of the basic 

histone tails and modulates the electrostatic histone tail interactions. Acetylation causes un-

packaging of chromatin fibers by disrupting tail interaction within the nucleosome and with 

neighboring nucleosomes, resulting in opening of the chromatin (Figure 4.22).  
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Figure 4.22: Acetylation forces the N terminal tails apart and enables open chromatin conformation [105]. 

  

Lysine acetylation can occur in several positions along the histone tails, for instance, on 

the H3- lysine residues 4, 9, 14, 18, 23, 36, 45 and 79. Acetylated nucleosomes can create open 

conformations to a particular area and create steric disturbances on adjacent regions, which 

can reinforce the open chromatin conformation in neighboring regions. In order to prevent 

transcriptional   activity   in   adjacent   regions,   there   is   another   “layer”   of   regulation driven by 

Bromodomain containing proteins [105].  

Bromodomains are hydrophobic pockets highly conserved among transcription factors 

that bind acetylated lysine. Indeed Bromodomains interact with the open conformation of 

chromatin and allow the binding of other sequence specific transcription factors.  

Bomodomains are highly conserved and the human proteome produces 61 different 

bromodomains distributed in 46 different nuclear and cytoplasmic factors. For instance, the 

Histone acetyl-transferases (HAT) P300/CBP, the histone methyl-transferases MLL, other 

transcription factors and chromatin remodeling complexes [105, 109].  

 



 

54 
 

4.2.2.1 Histone acetyl – transferases (HATs): 

 Histone acetyl-transferases (HATs) transfer the acetyl group from Acetyl-coA to the 

receiving lysine located on the histone tails. A-type HATs are located in the nucleus and are 

responsible for transcription related acetylation events, however B-type HATs are responsible 

for the acetylation of newly synthetized histones in the cytoplasm, transported to the forming 

nucleus upon DNA replication [110]. It has been shown that the activation of HATs is partially 

mediated by the activity of kinases, such as Cyclin E/ Cyclin 2 dependent kinase 2 during cell 

cycle progression. HATs are mostly active when they are part of protein complexes and their 

activity is subjected to other regularity partners such as transcription factors and other nuclear 

proteins. For instance, CBP or the closely related P300 are HATs whose enzymatic activity 

depends on the following sequence specific transcription factor : HNF1-α,  HNF4, Sp1, Zta, NF-

E2, C/EBP-α  [111].  

 

4.2.2.2 Histone De- Acetylases (HDACs): 

 

 Histone deacetylases (HDACs) antagonize the function of HATs and are responsible for 

the de-acetylation of histones, leading to a closed conformation of the chromatin. HDACs lack 

DNA binding domains and the interactions with DNA occurs through transcription factors, an 

interaction that allows the transcriptional regulation of specific subsets of genes. Indeed HDACs 

are very specific with respect to gene inhibition. There are 11 mammalian HDAC proteins with 

highly conserved deacetylase domains. HDACs are classified into 4 groups; Class I, Class IIa, 

Class IIb and Class IV. Additionally another group of deacetylases, termed Sirtuins was identified 

and this is commonly referred to as class III (Figure 4.222) [112-114].  
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 Figure 4.222: HDACs super family distribution: Green rectangles – conserved HDAC domains, Blue squares- MEF2 

binding sites, Yellow squares marked with S – binding sites of 14-3-3 protein and ZnF- Zinc Finger [113]. 

Class I HDACs consists of HDAC1, HDAC2, HDAC3 and HDAC8, they are ubiquitously 

expressed and localize in the nucleus. Class I HDACs contain a highly conserved deacetylase 

domain with short amino and carboxyl tails.  

Class IIa HDACs consists of HDAC4, HDAC5, HDAC7 and HDAC9 with long N terminal 

extensions. These extensions have conserved binding sites for MEF2 and binding sites for the 

adaptor protein 14-3-3 (figure 4.222). 14-3-3 sequesters Class IIa HDAC from the nucleus to the 

cytoplasm upon phosphorylation by Calcium/Calmodulin- dependent protein kinase (CaMK) 

and Protein kinase D (PKD). The removal of class IIa HDACs from the nucleus allows P300 (HAT) 

to associate with MEF2 and activate transcription. HDAC4, HDAC5 and HDAC9 are enriched in 

skeletal muscle, brain and heart. HDAC7 is enriched in endothelial cells and in T cell precursors 

derived from the thymus. MEF2 interacting transcription factor (MITR), a splice variant of 

HDAC9 that lacks the catalytic domain of HDAC9, can bind to MEF2 and repress its activity. 

These results indicate that the catalytic domain of HDAC9 is not necessary for the repression of 

MEF2 activity. The catalytic domain of Class IIa HDACs is highly conserved and a tyrosine 

residue, located within the catalytic domain, is changed in vertebrates to histidine, which leads 

to a 1000 fold reduction of its enzymatic activity. Taken together Class IIa HDACs are considered 
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to be very potent transcriptional repressors even in the absence of their catalytic domain. The 

repressional efficiency of Class IIa HDACs  can be further increased by recruiting class I HDACs 

through their C terminal domain or by interacting with Heterochromatin protein 1 (HP1), which 

binds to methylated Cytosine within DNA sequences [112-114]. 

Class IIb HDACs; are made up of HDAC6 and HDAC10. HDAC6 is a cytoplasmic enzyme 

and its substrates are cytoskeletal   proteins,   such   as   α   tubulin and cortactin as well as other 

cytoplasmic proteins such as chaperons   and   IFNαR   (Interferon   receptor). HDAC6 is the only 

HDAC that has two catalytic domains and a Zinc finger domain. Not much is known on HDAC10, 

although recently it was shown to be involved in autophagy mediated cell survival and 

sensitivity of tumor cells to cytotoxic drug treatment. HDAC11 is a class IV HDAC and it is 

enriched in muscle, kidney, brain and testis. Little is known about it’s function, though it was 

recently shown that HDAC11 represses the expression of interleukin 10 (IL10), which influences 

immune cells tolerance versus immune cells reactivity, a critical “decision” that has a major 

effect on autoimmune responses and transplantations  [112-116].  

 

4.2.2.2 A Histone Deacetylase 4 (HDAC4): 

 

HDAC4 is a class IIa HDAC that interacts with tissue specific transcription factors, via it’s 

N- terminal domain. HDAC4 has been identified as a regulator of PAX7 (Pair Box 7), as loss of 

HDAC4 reduces PAX7 expression and that of its target genes. Down-regulated PAX7 expression 

leads to loss of satellite cell proliferation, an event that is normally induced upon muscle 

damage [117]. 

 HDAC4 shuttles from the cytoplasm to the nucleus through its nuclear localization 

sequence (NLS). The de-phosphorylation of serine 298 by Protein Phosphatase 2 (PP2A) creates 

a conformation change that exposes the NLS and allows entry of HDAC4 into the nucleus. On 

the other hand, phosphorylation of HDAC4 on Ser246, Ser467 and Ser632 enables its binding to 
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the Phosphoserine domain of 14-3-3, which sequesters HDAC4 from the nucleus and inhibits its 

transcriptional repressive functions [118]. 

 

Figure 4.222A: CaMKI and CaMKII Phosphorylation sites [119]. 

 

HDAC4 phosphorylation by CaMKII is specific and does not occur in other class IIa 

HDACs, though CaMKI and PKD can phosphorylate both HDAC4 and HDAC5. The reason why 

CaMKII phosphorylates only HDAC4 is due to the unique docking site for CaMKII located on 

HDAC4 that is not present in other class IIa HDACs. CamKII induces cytosolic accumulation of 

HDAC4 and shuttles together with HDAC4 to the cytoplasm [119]. 

 

Figure 4.222A.2: Quantitative analysis of HDAC4, HDAC5 and HDAC7 cytoplasmic localization. T287D 
mutation in CaMKII (auto-activated CaMKII) leads to HDAC4 predominant localization to the cytoplasm [119]. 
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Figure 4.222A2 shows the definite localization of HDAC4 in the cytoplasm of COS cells, 

after constitutive expression of CaMKII. All active forms of CaMKII with the point mutation 

T287D lead to its auto-activation, and to the cytoplasmic localization of HDAC4. Such results  

are not observed for other class IIa HDACs, supporting the concept that CaMKII influences the 

subcellular localization of HDAC4 alone while PKD/CaMKI influence the localization of all class 

IIa HDAC members [119]. 

As mentioned previously HDAC4 interacts with MEF2C and exploits its NLS in order to 

enter the nucleus. The shuttling of HDAC4 from the cytoplasm to the nucleus is also regulated 

by factors such as Thioredoxin 1 (Trx1). Over expression of Trx1 suppress the nuclear export of 

HDAC4 in response to reactive oxygen species (ROS) induced by Phenylephrine.  Oxidation of 

Dnajb5 (heat shock protein 40) on Cys274/Cys276 and Oxidation of HDAC4 on CYS667/Cys669, 

enhances its interaction with Trx1 creating a complex that inhibits the nuclear export of HDAC4, 

independently from the phosphorylation status of HDAC4.  

The half-life of HDAC4 is 8 hours and the half-life of its mRNA is 4 hours, indicating that 

HDAC4 is unstable in comparison to other enzymes. HDAC4 proteolysis is likely to be executed 

by caspase 3, which is also known to be involved in the degradation of MEF2 family members. 

The cleavage PEST sequence site of HDAC4 is at Asp 289, which is not conserved in other class 

IIa HDACs. Cleavage of HDAC4 by Caspase 3 does not allow HDAC4 to shuttle into the nucleus 

and inhibit MEF2, moreover the involvement of Caspase 3 proves an important link between 

HDAC4 and caspase- mediated apoptosis [120-122]. 

HDAC4 can be sumoylated at lysine 559 and its substitution with arginine causes HDAC4 

to lose its repressional activity [123]. Apart from it’s de-acetylase activity, HDAC4 is also SUMO 

(Small Ubiquitin like Modifier) E3 ligase that sumoylates Lys424 and Lys439 on MEF2. 

Sumoylated Lys424 prevents the acetylation of MEF2 by CBP (CREB- Binding protein) on lys424, 

which potentiates HDAC4 repression. Intriguingly, the transcription activity of MEF2 can also be 

regulated by sumoylation and acetylation on Lys 424 [124].  
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In addition to the nuclear substrates of HDAC4 such as histones, there are other nuclear 

and cytoplasmic substrates, for instance P53 and Z disc associated protein (MLP) respectively. 

The de-acetylation of P53 by HDAC4 increases the transcriptional repression following DNA 

damage. MLP is a sensor for cardiac mechanical stretch, which plays a major role in muscle 

contraction regulation. Interestingly, MLP is de-acetylated by HDAC4 and acetylated by PCAF, 

which is the first evidence for the involvement of HDAC4 and PCAF in muscle contraction 

regulation [125, 126].  

 

4.2.2.2 B Histone Deacetylase 5 (HDAC5): 

 

HDAC5 is a class IIa HDAC that shuttles between the cytoplasm and nucleus under the 

control of CaMKs. Upon phosphorylation of HDAC5 by CaMKI, HDAC5 is exported to the 

cytoplasm thereby repressing its transcriptional activity. In a recent experiment it was shown 

that the addition of 50µM NMDA (N-methyl-D-aspartate) to cultured cortical neurons induces 

neuronal cell apoptosis by exporting HDAC5 to the cytoplasm. Indeed, ectopic expression of 

nuclear HDAC5 leads to inhibition of NMDA induced apoptosis. The Class IIa HDAC inhibitor, 

Trichostatin A (TSA) promotes NMDA induced apoptosis by suppressing the activity of HDAC5 

[127]. 

HDAC5 regulates the transcriptional activity of genes involved in metabolism in C2C12 

cells. Knockdown of HDAC5 caused an increase in glucose uptake, overexpression of GLUT4 and 

insulin stimulated glycogen synthesis. [128] Moreover, overexpression of HDAC5 in the heart 

leads to a decrease of gene expression involved in substrate handling and energy production, 

such as Hexokinase II, PGC  1α and medium chain acetyl CoA dehydrogenase (MCAD) [129].  
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4.2.3 Histone Methylation: 
 

 Histone methylation occurs on all basic residues that is Lysine, Arginine and Histidine. 

Lysine residues can be mono-methylated (me1), di-methylated (me2) and Tri- methylated 

(me3) (Figure 4.23). Arginine residues can be mono-methylated and di-methylated 

symmetrically (me2s) and asymmetrically di-methylated (me2a). Histidine residues have been 

reported to be mono-methylated only [105]. 

 
Figure 4.23: Lysine residues methylation scheme by Histone methyl- transferases (HMT) [105]. 

 

The mostly discussed methylations on lysine residues of histone 3 are H3K4, H3K9, 

H3K27, H3K36 H3K79 and on lysine residues of histone 4, H4K20. Arginine residues that are 

methylated on histone 3 and studied heavily are H3R2, H3R8, H3R17, H3R26 and H4R3 (the 

latter is on histone 4). Indeed, many basic residues are discovered to be methylated on H2A, 

H2B, H3 and H4. These methylations were believed to be irreversible, although lately there are 

many reports proving the opposite.  

There are three families of enzymes that methylate histones using S-

Adenosylmethionine as a substrate. The first two, methylate lysine residues such as SET domain 

containing proteins and DOT1 like proteins. The third family methylates arginine residues and is 

termed Arginine N- methyltransferase (PRMT). Methyltransferases are recruited to the region 

of interest by specific DNA sequences such as Poly comb group (PcG) response elements (PREs) 
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and Thrithorax group (TrxG) response elements (TREs). In addition, there are other factors that 

are responsible for the recruitment of Histone methyltransferases, such as long non coding 

RNAs (lncRNAs) that specifically bind to DNA sequences and to protein complexes mediating 

histone methylation.  

The recognition process of methylated histones is executed by proteins with methyl 

binding domains, such as PHD fingers, WD40 repeats, CW domains and PWWP domains. The 

consequence of histone methylation is context dependent, for instance H3K4me3 is mostly a 

transcriptional activator, whereas H3K27me3 is mostly a transcriptional repressor. In addition, 

the level of methylation determines function, for instance H3K4me1 is associated with 

enhancer activity, although H3K4me3 is linked to promoter activity. Histone methylation is a 

very important epigenetic marker that is maintained throughout evolution being present in C. 

elegans and D. melanogaster, and unlike DNA methylation that is more prominent in higher 

eukaryotes [130].  

4.2.4 Histone Post translational modification in skeletal muscle: 
 

The influence of post translational modification on histones in skeletal muscle during 

the proliferation and differentiation is not yet fully understood. The myogenic program of 

muscle specific gene expression starts after the expression of muscle specific transcription 

factors, such as MyoD. MyoD is inhibited by HDAC1 (Class I HDAC) and HDAC1 expression levels 

decrease significantly during skeletal muscle differentiation. Furthermore during differentiation 

pRb (phospho-retinoblastoma) binds to HDAC1 and prevents its inhibitory interaction with 

MyoD. P300 and PCAF (P300/CBP associated factor) acetylate MyoD and help to recruit other 

HATs to muscle specific genes. Accumulation of HATs leads to the increase of MyoD-dependent 

gene expression.  As mentioned previously, similar mechanism exists with Class II HDACs and 

MEF2. 
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Figure 4.241: Histone acetylation and de- acetylation regulate myogenesis [131]. 

 

In order to keep muscle stem cells in a primed state, there is a loss of inhibitory H3K27 

Tri-methylation along the genome and high abundance of H3K4me3 at transcriptional start sites 

(TSS). The Polycomb repressive complex 2 (PRC2) establishes gene silencing by Tri-methylation 

of H3K27. The lack of the enzymatic subunit of PRC2 leads to impaired stem cells proliferation 

and alterations in muscle specific gene expression.  

Ubiquitinylation of histones has a major influence on transcription initiation and 

elongation, which can be enhanced by other modifications such as histone methylation. For 

instance, H3K4me3 mediates histone Ubiquitinylation, however H3K36me3 mediates histone 

de-ubiquitilation. Additionally, H2B Ubiquitinylation levels decrease significantly during muscle 

cell differentiation, and interestingly a patient   with   “early   onset   inclusion   body   myopathy”  

exhibited impaired decrease in H2B Ubiquitinylation [132]. These results suggest that histone 

ubiquitnylation may play a role in muscle disease. 

Global deletion of single HDACs in mice is often lethal in the prenatal phase owing to 

severe developmental defects. In mice with HDAC1 and HDAC2 full knockout in skeletal muscle, 

there is 40% of lethality due to respiratory complications. Approximately 60% of the mice 

survive the first day of life, but subsequently develop a progressive myopathy, skeletal muscle 

degradation and centrally nucleated myofibrils. However when only 3 alleles are missing (out of 

4 alleles encoding HDAC1 and HDAC2), the mice are viable and display normal muscle 

architecture [131]. 
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Upon innervation, muscle mass is preserved and muscle proteolysis is prevented. On the 

other hand, when innervation is prevented muscle proteolysis and atrophy take place. 

Myogenin is known to regulate the expression levels of E3 ligase; MuRF1 and atrogin1, which 

are responsible for the increase of muscle proteolysis and atrophy with the absence of 

innervation. HDAC 4 and 5 inhibit the expression of the repressor DACH2 that are Myogenin 

repressors (Figure 4.242) [133]. In double HDAC4 and HDAC5 knock-out mice , Myogenin was 

not up-regulated and the mice did not respond to the lack of innervation by undergoing 

proteolysis and atrophy [134]. 

 

Figure 4.242: Innervation and denervation influence on muscle proteolysis and atrophy. Upon denervation 
HDAC4 and HDAC5 are highly expressed and as consequence muscle proteolysis and atrophy are taking place 
[134]. 

 

 HDAC4 and HDAC5 are highly expressed in skeletal muscle tissue, any alterations in their 

expression can lead to diseases such as ALS. ALS patients have high expression levels of HDAC4 

and the severity of the disease correlates with HDAC4 upregulation [135]. HDAC inhibitors are 

already confirmed to   improve   patient’s   conditions   with immunological disorders, cancer or 

neuromuscular diseases. For instance, in Duchenne muscular dystrophy there is a major 

amelioration of the symptoms when HDAC inhibitors are used in mice. In mdx mice HDAC 
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inhibitors increase myofibrilar size, decrease inflammatory infiltration to the muscle tissue and 

prevent the formation of fibrotic scars [136]. 

 

4.3 DNA Methylation:  

4.3.1 Preface: 
 

DNA methylation is a common modification that is associated with the control of gene 

expression. Methylation patterns are not uniform throughout the genome and are mainly 

concentrated within the coding sequence. 80% of DNA methylations are discovered within CpG 

dinucleotides, which are concentrated in regions termed CpG Islands (CGIs). There are 

promoters that contain few CpG dinucleotides (CpG dinucleotide every 100 bp) and promoters 

that contain 10 fold more CpG dinucleotide. Tissue specific housekeeping genes belong to the 

group of promoters with low CpG dinucleotide concentration.  

 

Figure 4.31: The genomic distribution of CpG Islands. TSS; Transcription start site, Intragenic; within the gene 
body, Intergenic; between annotated genes and Orphan CpG Islands; with unknown function. Filled circles- 
methylated CpG residues, Empty circles- unmethylated CpG residues [137]. 
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During evolution, areas with a high abundance of CpG Islands have become less 

methylated, while areas containing few CpG Islands are more methylated. High-throughput 

experiments show that the amount of CpG Islands in humans is higher than that present in the 

mouse genome (25495 and 23021 respectively per haploid genome) [137]. 50% of the CpG 

Islands in mouse and human are annotated with TSS-Transcription Start Site (Figure 4.31b). The 

other half is distributed between intergenic and intragenic CpG Islands and these are termed 

“orphan”  to express the uncertainty over their significance and function.  

CpG Islands are often un-methylated even within genes that are not active, since 

methylation does not initiate gene silencing but rather locks genes in a silent mode. During X 

chromosome inactivation, DNA methylation takes place after the appearance of other silencing 

modifications, such as H3K27 tri-methylation, in other words, DNA methylation is essential for 

the maintenance of “leak-proof”  X  chromosome.  

The presence of transposable elements (repetitive sequences constituting about 45% of 

the human genome) is postulated to pose a threat to the integrity of the genome. Thus, 

silencing transposons by DNA methylation is crucial for the survival of the host and serves as 

the main mechanism for the inhibition of transposomal activity. DNA Methyltransferase 1 

(DNMT1) is the only gene known to be vital for repression of transposons in mammalian 

somatic cells [138]. 

During mammalian development, CpG poor promoters appear to be highly methylated 

especially after the epiblast phase. Highly methylated chromatin recruits methylcytosine 

binding proteins 1 and 2 (MECP1,  MECP2,  etc…) that contain MBDs (Methyl Binding Domains). 

MBDs are motifs of 75 amino acids that are highly conserved. In Humans there are 4 MBDs 

(MBD1-MBD4). The interaction of MBD and DNA takes place in the major groove, where two 

methyl groups are pointed out from the helix structure. Recognition regions that transcription 

factors bind to may be masked by methylation of CpG islands, leading to transcription 

repression. Moreover highly methylated regions are known to create chromatin condensation 

and cause inaccessibility of transcription factors [105, 137]. 

 



 

66 
 

4.3.2 DNA Methyl-Transferases:  
 

 Cytosine methylation is catalyzed by DNA Methyltransferases (DNMTs), in fact these 

enzymes are the only enzymes able to transfer methyl group from S- adenosylmethionine 

(SAM) to cytosine.   

 

Figure 4.32: DNMTs structure and function: Schematic presentation of DNMTs with their different domain 
displayed [139]. 

 

There are several DNMTs that are enzymatically active in mammals; DNMT1, DNMT3A, 

DNMT3B and DNMT3L, the latter is a regulatory DNMT lacking catalytic acivity.    

DNMT1 is a maintenance DNA Methyltransferase, which is responsible for methylating 

cytosine in the newly synthesized strand when 5 methycytosine is present in the template 

strand, creating an exact parallel pattern in the newly synthesized DNA strand. Because of its 

function, DNMT1 is localized to the replication foci during the S phase through its interaction 

with the SRA domain of UHRF1 (Ubiquitin-like, containing PHD and RING finger domains 1). In 
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other words, UHRF1 is a E3 ubiquitin ligase that interacts with DNA and recruits DNMT1 [139, 

140].  DNMT1 maintains the same pattern of methylation in the daughter strand and in fact KO 

mice for DNMT1 lose 90% of their methylations and die in early stage of embryogenesis. In 

cancer cells, DNMT1 was shown to have de novo activity, which is unusual under physiological 

condition since the CXXC domain binds to the un-methylated dinucleotide and together with 

the BAH1 domain, create a linker between the catalytic site and the unmethylated CG. Binding 

of the DNMT1 to the parallel strand 5 methylcytosine, increases the enzymatic efficiency by 10 

fold through allosteric activation and increase in specificity, which allows accurate and effective 

methylation of the unmethylated cytosine partner in the daughter strand. Figure 4.32 also 

shows that DNMT1 has a nuclear localization signal (NLS) that enables the entry of DNMT1 into 

the nucleus.  

DNMT2 in human is encoded by the gene TRDMT1. DNMT2 does not fulfill similar 

activity that of other DNMTs since DNMT2 methylates certain tRNAs and prevents their 

cleavage by ribonucleases (eg. tRNAasp (GTC), tRNAval (AAC) and tRNAgly (GCC)) [141].   

DNMT3A, DNMT3B and DNMT3L are de novo DNA methyltransferases. DNMT3A and 

DNMT3B are closely related and both contain PWWP, PHD like ADD domain and catalytic 

domain. ADD domain is known to interact with non-modified lysine 4 in H3, H3K4. PWWP 

domain interacts with trimethylated lysine 36 in H3, H3K36me3, which helps to increase the 

activity of DNMT3A. DNMT3L has no catalytic domain and binds to DNMT3A, increasing its 

enzymatic activity [141]. 
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Chapter  2  -  Results: 

1. Establishment of a human skeletal muscle-derived cell line: 

biochemical, cellular and electrophysiological characterization 

 

In the last few decades scientists have isolated single muscle fibers originating mainly 

from small rodents, in order to closely investigate the cellular properties involved in ECC. 

Obtaining such highly differentiated cells (muscle fibers) in tissue culture for a long period of 

time is almost impossible. However, differentiating satellite cells to myotubes in vitro starting 

from patient’s  biopsies  is performed almost routinely in our laboratory in order to investigate if 

alterations in ECC occur in patients with specific neuromuscular disorders [142, 143]. However, 

the use of myotubes holds many limitations, for instance non-homogenous culture such as 

fibroblasts “contamination”, slow growth/differentiation and limited amount of cell divisions as 

well as the fact that myotubes cannot differentiate further into fibers. Nevertheless, 

considering these drawbacks, there is a need for an immortalized human muscle cell line. In this 

publication we characterized the ECC of an immortalized human muscle skeletal cell line 

(HMCL- 7304), which originated from satellite cells obtained from a healthy 19 year old female 

with no overt neuromuscular disorders. In order to create the immortalized cell line, 

telomerase reverse transcriptase (hTERT) and cyclin dependent kinase 4 (CDK4) vectors were 

overexpressed [144, 145]. Our first step was to determine the expression levels of several genes 

involved in ECC. The transcripts levels were compared with those expressed in muscle biopsies 

from healthy individuals. Our results show that SERCA1 levels were very low in the HMCL-7304 

leading to the slow Ca2+ uptake in the cells compared to mature muscle. Immunofluorescence 

images showed that myotubes have a low level of organization of RYR1 and DHPR, though their 

Ca2+ release in respond to KCl and 4-cmc that was normal.  
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Here we characterized the immortalized human muscle cell line that can, in the future, 

be genetically manipulated and used as a platform for the investigation of neuromuscular 

disorders.   

 

Author contribution: In the 1st publication  entitled  “Establishment  of  a  human  skeletal  muscle-

derived cell line: biochemical, cellular and electrophysiological   characterization”   Ori   Rokach  

prepared cultures, performed experiments and analyzed the data shown in figures 1 and 3, 

Martin Rausch and Francesco Zorzato performed SIM microscopy experiments and Nina D 

Ullrich performed the electrophysiological experiments, Haiyan Zhou performed the western 

blot on figure 1b and Vincent Mouly established the immortalized cell line. Susan Treves wrote 

the manuscript and oversaw the experiments. 
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cellular and electrophysiological characterization
Ori ROKACH*†, Nina D. ULLRICH‡, Martin RAUSCH§, Vincent MOULY∥, Haiyan ZHOU¶, Francesco MUNTONI¶,
Francesco ZORZATO*,**1 and Susan TREVES*,**1

*Department of Anaesthesia, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland, †Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel,
Switzerland, ‡Department of Physiology, University of Bern, Bern, Switzerland, §Novartis Biomedical Institute, Postfach 4002 Basel, Switzerland, ∥Thérapie des maladies du muscle
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Excitation–contraction coupling is the physiological mechanism
occurring in muscle cells whereby an electrical signal sensed by
the dihydropyridine receptor located on the transverse tubules
is transformed into a chemical gradient (Ca2 + increase) by
activation of the ryanodine receptor located on the sarcoplasmic
reticulum membrane. In the present study, we characterized for
the first time the excitation–contraction coupling machinery of an
immortalized human skeletal muscle cell line. Intracellular Ca2 +

measurements showed a normal response to pharmacological
activation of the ryanodine receptor, whereas 3D-SIM (super-
resolution structured illumination microscopy) revealed a low
level of structural organization of ryanodine receptors and
dihydropyridine receptors. Interestingly, the expression levels of

several transcripts of proteins involved in Ca2 + homoeostasis and
differentiation indicate that the cell line has a phenotype closer to
that of slow-twitch than fast-twitch muscles. These results point to
the potential application of such human muscle-derived cell lines
to the study of neuromuscular disorders; in addition, they may
serve as a platform for the development of therapeutic strategies
aimed at correcting defects in Ca2 + homoeostasis due to mutations
in genes involved in Ca2 + regulation.

Key words: excitation–contraction coupling, gene expression,
immortalized muscle cell, ryanodine receptor, skeletal muscle,
super-resolution microscopy.

INTRODUCTION

Skeletal muscle is a highly differentiated tissue made up of
myofibres, a syncytium of cells filled with myofibrils and
containing sarcomeres that generate the force necessary for
muscle contraction. In the last few years, a number of techniques
have been developed to isolate single muscle fibres from
small rodents allowing detailed investigations of the functional
properties of the EC (excitation–contraction) coupling mechanism
at the ultrastructural, biochemical and cellular levels in normal
and pathological conditions [1–4]. Because of their high degree
of differentiation and specialization, it is difficult to maintain
differentiated muscle fibres in culture for more than a few
days [5] and it is nearly impossible to obtain mature fibres
starting from precursor satellite cells. Nevertheless, starting from
newborn mice, one can obtain cultures of contracting and striated
myotubes that can be used for a number of manipulations. As
to human muscle cells, primary cultures can be obtained in vitro
by culturing satellite cells from biopsies and differentiating them
into myotubes [6–9], but there is a clear necessity to develop cell
lines from control and diseased individuals which will develop
into myotubes and which can be exploited as a platform for
drug screening, and for biochemical, cellular and physiological
characterization [10–13].

For the last two decades, our laboratories, as well as
others, have established primary cultures from human biopsies
and characterized their intracellular Ca2 + homoeostasis, with
particular emphasis on EC coupling, how endogenous mutations
in the RyR (ryanodine receptor) Ca2 + channel (RyR1) affect
its functional properties and some downstream effects of
Ca2 + dysregulation such as subcellular localization of the
transcription factor NFAT (nuclear factor of activated T-cells),
pro-inflammatory cytokine release and production of reactive
nitrogen species [9,14,15]. However, the use of primary cultures
has some inherent drawbacks mainly relating to the fact that
they are generally slow-growing and will undergo a limited
number of divisions. To overcome this problem, immortalization
of human myogenic cells has been established both from a normal
individual [16,17] and from patients with different neuromuscular
diseases [17–20]. In the present study, we characterized a
new cell line derived from a normal individual with no overt
neuromuscular disorder. We show that the myotubes derived
upon differentiation by serum withdrawal express the transcripts
and protein components of the skeletal muscle EC coupling
machinery. In addition, we established by 3D-SIM (super-
resolution structured illumination microscopy) the subcellular
distribution of RyR1 and of the DHPR (dihydropyridine receptor)
and assessed Ca2 + release via RyR by using optical and

Abbreviations used: [Ca2 + ]i, free cytosolic Ca2 + concentration; CCD, charge-coupled device; CDK4, cyclin-dependent kinase 4; CSQ, calsequestrin;
DHPR, dihydropyridine receptor; 3D-SIM, super-resolution structured illumination microscopy; EC, excitation–contraction; FDB, flexor digitorum brevis;
hTERT, human telomerase reverse transcriptase; MYH, myosin heavy chain; NA, numerical aperture; qPCR, quantitative real-time PCR; RyR, ryanodine
receptor; SERCA, sarcoplasmic/endoplasmic reticulum Ca2 + -ATPase; SR, sarcoplasmic reticulum.

1 These authors contributed equally to this work. Correspondence may be addressed to either author (email zor@unife.it or susan.treves@unibas.ch).
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electrophysiological techniques. This human skeletal muscle cell
line HMCL-7304 is a tool of paramount importance to study on
a larger scale the changes occurring in human muscles under a
variety of pathological conditions.

EXPERIMENTAL

Cell culture

The immortalized myoblast cell line was established from
the intercostal skeletal muscle of a 19-year-old female donor
with no neuromuscular disorder, by double transfection with
recombinant retroviruses containing hTERT (human telomerase
reverse transcriptase) cDNA and CDK4 (cyclin-dependent kinase
4) cDNA, as described previously [16,17]. The experiments were
approved by the Author’s Institutional Ethical Committee and
were in accordance with the Declaration of Helsinki (2008) of
the World Medical Association. The donor gave written informed
consent to the work. Immortalized myoblasts were maintained in
skeletal muscle cell growth medium (PromoCell) in a low-oxygen
atmosphere (5% O2 and 5 % CO2) at 37 ◦C. In order to induce
differentiation, once the density had reached approximately 80 %,
cells were rinsed once with PBS (pH 7.2) (Life Technologies)
and incubated with skeletal muscle differentiation medium
(PromoCell). The process of differentiation took 5 days on
average, after which multinucleated myotubes were clearly visible
under low magnification. Hereinafter, the human muscle derived-
cell line will be referred to as HMCL-7304.

Ca2 + concentration measurements

HMCL-7304 cells were grown and differentiated on glass
coverslips coated with 10 µg/ml laminin (Life Technologies).
Once myotubes had formed, cells were loaded with the fluorescent
Ca2 + indicator Fluo-4/AM (Fluo-4 acetoxymethyl ester) (Life
Technologies) for 40 min at 37 ◦C as described previously [15].
Cells were rinsed once with Krebs–Ringer medium (pH 7.4)
containing 2 mM CaCl2 and then coverslips were mounted
on to a 37 ◦C thermostatically controlled chamber which was
continuously perfused with Krebs–Ringer medium (pH 7.4);
individual cells were stimulated with the indicated agonists (KCl,
4-chloro-m-cresol, caffeine) made up in Krebs–Ringer medium
(pH 7.4) containing no added Ca2 + plus 100 µM La3 + in order
to monitor changes in the free cytosolic Ca2 + concentration
([Ca2 + ]i) due to release from intracellular stores. Individual cells
were stimulated by means of an eight-way 100-mm-diameter
quartz micromanifold computer-controlled microperfuser (ALA
Scientific Instruments), as described previously [14]. Online
fluorescence images were acquired using an inverted Nikon
TE2000 TIRF (total internal reflection fluorescence) microscope
equipped with a dry Plan Apochromat ×20 objective [0.17 NA
(numerical aperture)] and an electron multiplier Hamamatsu CCD
(charge-coupled device) camera C9100-13. Changes in [Ca2 + ]i

were analysed using the MetaMorph imaging system (Molecular
Devices) and the average pixel value for each cell was measured
as described previously [14,15].

Electrophysiological measurements and confocal Ca2 + imaging

Myoblasts were grown on laminin-coated glass-bottomed 35-mm-
diameter dishes (MatTek). After differentiation into myotubes,
cells were patch-clamped in the whole-cell configuration with
low-resistance borosilicate glass micropipettes (1–3 M!) using
an Axopatch 200B amplifier (Axon Instruments) controlled by

Table 1 Sequences of primers used in the present study

Primer Forward primer sequence Reverse primer sequence

RYR1 5′-ATCTCCCGCCTTAGCCATACTTCT-3′ 5′-GGACCTCTACGCCCTGTATC-3′

RYR3 5′-CAGTCCCTATCTGTCAGAGCC-3′ 5′-CATGGCCGTATAACAGGGTCC-3′

CAV1.1 5′-ACGAACATGCACCTAGCCAC-3′ 5′-ACGAACATGCACCTAGCCAC-3′

CASQ1 5′-CACCCAAGTCAGGGGTACAG-3′ 5′-GTGCCAGCACCTCATACTTCT-3′

CASQ2 5′-CATTGCCATCCCCAACAAACC-3′ 5′-AGAGTGGGTCTTTGGTGTTCC-3′

DES1 5′-AACCAGGAGTTTCTGACCACG-3′ 5′-TTGAGCCGGTTCACTTCGG-3′

MYH1 5′-GGGAGACCTAAAATTGGCTCAA-3′ 5′-TTGCAGACCGCTCATTTCAAA-3′

MYH2 5′-AGAAACTTCGCATGGACCTAG-3′ 5′-CCAAGTGCCTGTTCATCTTCA-3′

SERCA1 5′-GGTGCTGGCTGACGACAACT-3′ 5′-AAGAGCCAGCCACTGATGAG-3′

SERCA2 5′-CTCCATCTGCCTGTCCAT-3′ 5′-GGCTGACGGCTTCCAAGT-3′

a custom-written data-acquisition software developed by
LantibodiesView (National Instruments). The external solution
contained 150 mM triethylammonium methylsulfonate, 2 mM
CaCl2, 1 mM MgCl2, 10 mM Hepes, 0.001 mM TTX
(tetrodotoxin) and 1 mM 4-aminopyridine; the pH was
adjusted to 7.4 with CsOH. The pipette solution contained
140 mM CsCH3SO3, 10 mM Hepes, 6 mM MgCl2, 11.5 mM
CaCl2, 4 mM Na2ATP, 20 mM EGTA, 14 mM CrPO4,
0.1 mM leupeptin and 0.1 mM Fluo-3 potassium salt; the pH was
adjusted to 7.2 with CsOH [21]. The reference electrode
was connected to the bath solution with an agar bridge (4%
agar in 3 M KCl). All measurements were carried out at room
temperature (25 ◦C). Holding potential was kept at − 80 mV.
Stepwise depolarizations were applied to activate the voltage-
dependent DHPR and to trigger Ca2 + release mediated by
RyR1, the intracellular Ca2 + -release channel located in the
SR (sarcoplasmic reticulum) membrane. Detailed voltage-clamp
protocols are indicated. In order to determine the current–
voltage relationship, long depolarizations of 800 ms were applied.
Currents were analysed in IgorPro (Wavemetrics). Peak current
amplitude was calculated from the difference between membrane
currents before and during application of 500 mM CdCl2 ("ICaL).
For the investigations of electromechanical coupling between the
DHPR and RyR1, short depolarizations (50 ms) were applied.
Changes in the [Ca2 + ]i were monitored using the fluorescent Ca2 +

indicator Fluo-3 (Biotium), which was loaded into the cell via the
patch pipette. Using a MicroRadiance laser-scanning confocal
microscope (Bio-Rad Laboratories), Fluo-3 was excited at 488 nm
with an argon ion laser, and emission light was collected above
500 nm. Linescan images were recorded at a rate of 50 lines/s,
analysed in ImageSXM (free software based on NIH Image)
[22] and processed further using IgorPro. Changes in [Ca2 + ]i

are shown as relative changes in fluorescence ("F/F0).

qPCR (quantitative real-time PCR) experiments

Total RNA was extracted from differentiated HMCL-7304
myotubes and biopsies from healthy individuals, using TRIzol®
(Life Technologies) as described previously [23]. cDNA was
synthesized with the High Capacity cDNA synthesis kit (Applied
Biosystems) and the primers listed in Table 1. Transcript levels
were quantified using SYBR® Green reagent on an Applied
Biosystems platform (7500 fast real-time PCR system) and levels
were normalized to desmin expression.

Mouse muscle fibre isolation

Mouse FDB (flexor digitorum brevis) fibres were enzymatically
dissociated at 37 ◦C for 60 min in a cell culture incubator in
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Tyrode’s solution containing 0.20% collagenase I (Sigma Fine
Chemicals) and placed on glass coverslips coated previously with
1.5 µl of laminin (1 mg/ml) (Life Technologies) as described
previously [23].

Immunofluorescence

For immunofluorescence, myotubes cultured on glass coverslips
were fixed with 4 % (w/v) paraformaldehyde at room temperature
for 15 min, washed and permeabilized with 0.1% Triton X-
100 in PBS for 1 h before blocking with 3% (v/v) goat serum
for 30 min, followed by 1 h of incubation in mouse anti-
(fast myosin) monoclonal antibody (1:100 dilution; Sigma Fine
Chemicals, catalogue number M4276) and mouse anti-(slow
myosin) monoclonal antibody (1:50 dilution; Novo NCL, Leica
Biosystems, catalogue number NCL-MHC) at room temperature.
Coverslips were washed in 0.1 % Triton X-100 in PBS and
incubated with goat anti-(mouse IgG) secondary antibody
conjugated to Alexa Fluor® 594 (Life Technologies, catalogue
number A-11005) for 1 h at room temperature, followed by
thorough washing in PBS. Nuclei were stained with Hoechst
33258 (Invitrogen) for 10 min. Slides were mounted in aqueous
mounting medium and viewed with a Leica DMR fluorescent
microscope equipped with a ×20 HC-PL Fluotar objective
(0.50 NA). The percentage of fast and slow myosin-positive
HMCL-7304-derived myotubes was calculated by counting the
number of myosin-positive cells divided by the total number
of cells as visualized by brightfield microscopy in the same
area. For super-resolution microscopy, mouse FDB fibres or
human skeletal muscle myotubes were fixed with 3.7% (w/v)
paraformaldehyde (in PBS) for 30 min at room temperature,
rinsed twice with PBS and permeabilized with 1 % Triton X-
100 in PBS for 30 min. After rinsing and blocking non-specific
sites with 1:100 blocking solution (Roche), cells and fibres
were incubated with anti-RyR1 monoclonal antibody (Thermo
Scientific, catalogue number MA3-925) or goat anti-Cav1.1 (Santa
Cruz Biotechnology, catalogue number sc-8160) antibody for
3 h at room temperature (10 µg/ml final concentration diluted
in PBS with 0.01 % Tween 20). Slides were rinsed with PBS
containing Tween 20 five times for 5 min each and incubated
with the appropriate secondary conjugate (Alexa Fluor® 555 or
Alexa Fluor® 647, diluted 1:500 in PBS containing Tween 20)
overnight at 4 ◦C. Slides were rinsed with PBS containing Tween
20 and mounted with 10% (v/v) glycerol in PBS. Staining was
visualized with a Zeiss Elyra microscope equipped with ×63 oil
Plan-Apochromat (1.4 NA) objective. Raw datasets consisted of
images acquired with three different grid angles and five different
grid phases. Super-resolution images were calculated from the raw
data using the built-in algorithm. The baseline was just shifted
(not truncated) to allow inspection for potential ghosts arising
from sample imperfections.

Electrophoresis and immunoblotting

Microsomes were prepared from differentiated HMCL-7304-
derived myotubes as described previously [24]. Protein
concentration was determined using Protein Assay Kit II (Bio-
Rad Laboratories) using BSA as a standard. SDS/PAGE, protein
transfer on to nitrocellulose membranes and immunostaining
were performed as described previously [24]. The following
primary antibodies were used: mouse anti-RyR1 (Thermo
Scientific, catalogue number MA3-925), rabbit anti-RyR1 (a
gift from Professor Vincenzo Sorrentino, University of Siena,
Siena, Italy), goat anti-Cav1.1 (Santa Cruz Biotechnology,

catalogue number sc-8160), rabbit anti-CSQ1 (calsequestrin
1) (Sigma, catalogue number C0743), rabbit anti-CSQ2
(Epitomics, catalogue number 2962-1), goat anti-SERCA1
(sarcoplasmic/endoplasmic reticulum Ca2 + -ATPase 1) (Santa
Cruz Biotechnology, catalogue number sc-8093), goat anti-
SERCA2 (Santa Cruz Biotechnology, catalogue number sc-
8095) and mouse anti-MYH1 (myosin heavy chain 1) (Millipore,
catalogue number 05-716). Secondary peroxidase conjugates
were Protein G–peroxidase (Sigma, catalogue number P8170) and
peroxidase-conjugated goat anti-(mouse IgG) (Sigma, catalogue
number A2304). The immunopositive bands were visualized by
chemiluminescence using the Super Signal West Dura kit (Thermo
Scientific).

Statistical analysis and graphical software

Statistical analysis was performed using Student’s t test; means
were considered statistically significant when the P value was
<0.05. When more than two groups were compared, analysis was
performed by the ANOVA test followed by the Bonferroni post-
hoc test using GraphPad Prism 4.0 software. Origin software was
used to generate dose–response curves and obtain EC50 values;
images were assembled using Adobe Photoshop CS (version 8.0).

RESULTS

Expression levels of transcripts and proteins involved in EC
coupling in cell line-derived myotubes

In order to functionally characterize the HMCL-7304-derived
myotubes, we chose several genes that are well known to play a
crucial role in skeletal muscle EC coupling. Transcript levels were
quantified and compared with those present in muscle biopsies
obtained from five healthy individuals. Figure 1(A) shows the
relative expression levels on a logarithmic scale of different
transcripts. Interestingly, we found that the RYR1 transcript was
significantly lower (approximately 300-fold) than in differentiated
muscle (P < 0.0001), and there was no up-regulation of RYR3
mRNA, which was also significantly reduced in HMCL-7304
myotubes. SERCA1 and CSQ1 transcript levels were significantly
lower (∼1000-fold) in the cell line (P < 0.003), whereas there
was a 10-fold increase in the expression of the CSQ2 transcript.
SERCA2 showed similar mRNA levels in the biopsies and the
cell line as did CAV1.1, suggesting that expression of the L-type
Ca2 + channel may appear at an early stage of development. The
transcript levels of MYH1 and MYH2, that are characteristically
expressed in slow-twitch and fast-twitch muscles respectively
were lower in HMCL-7304 compared with biopsies; however, im-
munofluorescence shows that the slow myosin isoform is present
in a larger percentage of HMCL-7304 cells, compared with
fast myosin, with approximately 51% slow to 13% fast (36%
negative for both fast and slow isoforms) (Figure 1B). Taken
together, these results suggest that the differentiated myotubes
express proteins that are more abundant in slow-twitch muscles.

We are aware that the presence of a transcript does
not necessarily reflect protein expression, thus we tested
microsomes prepared from HMCL-7304-derived myotubes by
immunoblotting. Figure 1(C) confirms that MYH1, SERCA1,
SERCA2, Cav1.1 and RyR1 were all expressed. The double-
immunopositive band seen in the RyR1 Western blot does not
represent RyR3, since both bands were present when a RyR1-
specific polyclonal antibody was used, thus the lower band is
probably a degradation product. No bands were visualized when
blots were probed with anti-CSQ1 antibodies (not shown), but a
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Figure 1 Expression of EC coupling-associated proteins in HMCL-7304-derived myotubes

(A) qPCR results of the relative expression levels of the indicated transcripts in HMCL-7304-derived myotubes compared with those in mature muscle biopsies. Expression levels were normalized
for desmin content and are expressed as relative transcript content in biopsy/HMCL-7304-derived myotubes. The results are represented as box-and-whisker plots performed on four or five controls
and on the mytoube cell line. ***P < 0.0001; **P < 0.07 (Student’s t test). (B) Immunofluorescence of HMCL-7304-derived myotubes stained with anti-(fast myosin) and -(slow myosin) and
DAPI and observed with a Leica DMR fluorescence microscope with a ×20 objective. Scale bar, 50 µm. (C) Western blot analysis of RyR1 and CASQ2 (70 µg/lane), CaV1.1, SERCA1, SERCA2 and
MYH1 (MHC1) (50 µg/lane). Blots were prepared and developed as detailed in the Experimental section; for RyR1 the commercial monoclonal antibody 34C as well as the RyR1-specific polyclonal
antibodies recognize the same high-molecular-mass band corresponding to the RyR. Thus the lower, less intense, immunopositive band probably represents a proteolytic product. The asterisk (*)
indicates CSQ2.

band migrating with an approximate molecular mass of 55 kDa
(asterisk) was present when myotube microsomes were probed
with anti-CSQ2 antibodies.

Cellular localization of EC coupling proteins

In mature skeletal muscle, EC coupling occurs and is fully
dependent on the architecture of highly structured intracellular
Ca2 + release units, whereby the voltage-sensing L-type Ca2 +

channel is present in the transverse tubules and faces the
terminal cisternae of the SR containing the RyR1 Ca2 + release
channels. The SR contains the Ca2 + -binding protein CSQ,
whereas the SERCAs are located on the longitudinal SR. In order
to define the cellular localization of these proteins in mature
myotubes, we used a 3D-SIM microscope, because, compared

with conventional confocal fluorescence microscopy and STED
(stimulated emission depletion) microscopy, it offers improved
axial resolution (approximately 300 nm) [25]. Figure 2 shows
the immunostaining of Cav1.1 and RyR1 both in myotubes
(panels A–F) and in enzymatically dissociated mouse FDB
fibres (panels G–I). As expected in FDB fibres, the staining
with anti-Cav1.1 shows a double row of fluorescent particles
(Figure 2G) that mostly overlap with particles which are stained
with anti-RyR1 antibodies (Figure 2H). Human myotubes also
show fluorescent particles whose distribution does not follow
the highly regular pattern observed in mature FDB fibres.
However, when observed at high magnification, it becomes
apparent that human myotubes display areas containing multiple
parallel longitudinal rows of fluorescence particles which are
stained with anti-Cav1.1 antibodies (Figure 2D, double arrows).
A large fraction of particles stained with anti-Cav1.1 antibodies
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Figure 2 Cellular localization of RyR1 and Cav1.1 in differentiated myotubes compared with mouse FDB fibres by 3D-SIM microscopy

Human myotubes (A–F) and mouse FDB fibres (G–I) were stained with anti-Cav1.1 (A, D and G) and anti-RyR1 (B, E and H) antibodies and examined using a Zeiss Elyra/ZEN 2010 microscope
with a ×63 oil Plan-Apochromat (1.4 NA) with three rotations. (D), (E) and (F) are higher magnifications of the boxed areas shown in (A), (B) and (C) respectively. Double arrows in (D) represent
nascent T-tubules; arrowheads in (F) show co-localization of RyR1 and Cva1.1.

co-localize with particles stained with anti-RyR1 antibodies
(Figure 2F, arrowheads) and may represent Ca2 + -release units
involved in EC coupling. In the next set of experiments,
we assessed the EC coupling characteristics of HMCL-7304-
derived myotubes, by studying RyR-mediated Ca2 + release
and Cav1.1-mediated Ca2 + currents either by optical methods
or by using the patch-clamp technique in the whole-cell
configuration.

Functional properties and pharmacological activation of Ca2 +

release

Figure 3 shows the results obtained in cells loaded with the
fluorescent Ca2 + indicator Fluo-4; stimulation of cells with
60 mM KCl caused an immediate increase in the resting [Ca2 + ]i

which decayed back to resting values within approximately 5 s
(Figure 3B); the peak increase in [Ca2 + ]i was similar irrespective
of whether cells were stimulated via activation of the DHPR L-
type Ca2 + channel by KCl-induced depolarization, or by direct
activation of the RyR1 with 4-chloro-m-cresol and caffeine
(Figure 3C). Figures 3(D), 3(E) and 3(F) show concentration-
dependent peak Ca2 + -release curves elicited by caffeine, 4-
chloro-m-cresol and KCl respectively, as well as the calculated
EC50 values. These results are similar to those obtained in primary
human muscle myotubes explanted from biopsies from control
individuals [14,15].

We then investigated the voltage-dependence of membrane
currents (ICaL) from the DHPR in voltage-clamped HMCL-
7304 myotubes. Starting from a holding potential of − 80 mV
and an initial pre-step to − 40 mV, cells were stimulated by
repetitive depolarizing steps of 800 ms in 10 mV increments to
increasing membrane potentials. Figure 4(A) shows five steps
of the stimulation protocol (upper trace) and the corresponding
membrane currents (below) during control conditions (trace a,
continuous line) and during inhibition of ICaL with Cd2 + (trace b,
dotted line). The calculated difference current (!ICaL, trace c) is
indicated by the dashed line and peak current amplitudes at the end
of the depolarizing steps are used for further analysis. Figure 4(B)
summarizes the voltage-dependence of current activation and
reveals a half-maximal activation (V1/2) at − 9 mV.

A parallel investigation of electromechanical coupling was
achieved using a combination of voltage-clamp and confocal
Ca2 + imaging. Cells were imaged in the linescan mode
at close proximity to the position of the patch pipette.
Membrane depolarization triggered significant Ca2 + release,
indicating functional coupling between the DHPR and RyR1.
Depolarization-induced Ca2 + release was monitored and recorded
in linescan images. Figure 5(A) shows a voltage-clamped HMCL-
7304 myotube loaded with Fluo-3; the position of the linescan is
indicated in the illustrated myotube. Short depolarization (50 ms)
starting from the holding potential of − 80 mV to + 10 mV
activated the DHPR and triggered Ca2 + release from the SR.
The resulting Ca2 + transient is displayed in the linescan image
and in the corresponding line profile. Of note is the slow return
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Figure 3 Characterization of RyR1-mediated Ca2 + release in HMCL-7304-derived myotubes

Myotubes were loaded with 5 µM Fluo-4 and Ca2 + release from intercellular stores was measured in Krebs–Ringer medium containing no added Ca2 + plus 100 µM La3 + as described in
the Experimental section. (A) Photomicrograph of a fully differentiated myotube 5 days after differentiation. (B) Representative Ca2 + transient elicited by the addition of KCl; the unfilled bar above the
trace indicates Krebs–Ringer medium containing 100 µM La3 + ; the filled bar indicates stimulation with 60 mM KCl in 100 µM La3 + . Images were acquired every 100 ms with an electron multiplier
Hamamatsu CCD C9100-13 camera and data were analysed using Metamorph imaging software. (C) Peak Ca2 + transients induced by 60 mM KCl, 10 mM caffeine or 600 µM 4-chloro-m-cresol
(4-cmc); results are means+−S.E.M. !F (peak fluorescence − resting fluorescence) of 15 measurements. (D–F) Dose–response curves to caffeine, 4-chloro-m-cresol (4-cmc) and KCl. Each point
represents the mean+−S.E.M. !F of at least ten different myotubes. The data were fitted using a Boltzmann equation using Origin 6.0 software.

Figure 4 Skeletal L-type Ca2 + currents in HMCL-7304

(A) Whole-cell patch-clamp recordings of single HMCL-7304 myotubes: cells were stimulated
from a holding potential of − 80 mV and a pre-step to − 40 mV to increasing depolarizing
potentials (see stimulation protocol). Membrane currents (sk ICaL) were recorded in control
solution (trace a, continuous line) and during inhibition of ICaL with CdCl2 (500 µM, trace b,
dotted line). Original current traces and calculated difference current (!ICaL, trace c, dashed line)
are shown. (B) Current–voltage relationship of sk ICaL reveals a half-maximal current activation
at − 9 +− 0.3 mV.

of the [Ca2 + ]i to resting levels, which might be consistent with
a low level of SERCA1 expression in immature myotubes (see
Figure 1A). As expected, increasing membrane depolarization
results in greater Ca2 + release, which saturates at a membrane
potential of approximately 0 mV. Figure 5(B) shows the Ca2 +

transient amplitude in response to increasing depolarization in
a single protocol, and Figure 5(C) summarizes the voltage-
dependence of Ca2 + release. In order to minimize side effects
from long periods of scanning and accumulation of cytosolic
Ca2 + due to slow Ca2 + extrusion processes, data points for
peak Ca2 + transients in Figure 5(C) have been collected from
repeated short linescan recordings (6 s). Ca2 + transients elicited
under voltage clamp revealed a half-maximal release activation
(V1/2) at − 32 mV.

DISCUSSION

In the present paper, we describe the biochemical, cellular and
physiological characteristics of a novel cell line generated from
human skeletal muscle. The necessity to establish cell lines of
human origin from ‘normal’ individuals or patients affected by
a number of neuromuscular conditions has been apparent for
the last few decades, but early attempts to immortalize human
myoblasts capable of differentiating into mature myotubes were
unsuccessful (for example, see [26,27]). In the present paper, we
report the successful myotube differentiation from myoblasts of
the newly generated immortal human muscle cell line HMCL-
7304 derived from a healthy individual and characterize its
features at the biochemical, structural and functional levels,
showing that its phenotype is similar to myotubes from primary
cultures.

In the last few years, a number of groups have exploited vectors
expressing hTERT and CDK4 and have reported successful
immortalization of myoblasts from ‘normal’ individuals and
individuals affected by various forms of muscular dystrophies
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Figure 5 Depolarization-induced Ca2 + release in HMCL-7304 myotubes

(A) Patch-clamped HMCL-7304 myotube loaded with Fluo-3. The area of the linescan recording is indicated. Stimulation protocol, current response, line profile and linescan image of the Ca2 +

transient are displayed in their respective temporal relation. (B) Stimulation protocol and line profile of the resulting Ca2 + transients in a single protocol reveals the increase in Ca2 + release
upon increasing membrane depolarization. (C) Voltage-dependence of Ca2 + release. Peak Ca2 + transient amplitudes have been extracted and plotted as a function of the stimulation potential.
Half-maximal Ca2 + release amplitude is achieved at − 32 +− 2 mV.

and dysferlinopathies [16–20,28]. The possibility of generating
such immortalized cell lines able to differentiate into myotubes
constitutes an important tool to investigate human neuromuscular
diseases much as the murine skeletal muscle C2C12 cell line
has been exploited in the last few decades by laboratories
worldwide to investigate key aspects of skeletal muscle
physiology and plasticity. Therefore there is high demand for
a reliable human skeletal cell line to fill the gap between
understanding the pathophysiological mechanisms and the
development of therapeutic strategies for human neuromuscular
disorders. Nevertheless, although the use of an immortalized cell
line has many advantages over primary cultures, the process
of immortalization is known to modify many physiological
parameters ranging from differentiation and secretion, to the
expression of specific protein isoforms. For this reason, we
characterized the EC coupling machinery and Ca2 + homoeostasis
of HMCL-7304-derived myotubes. We chose to verify the
levels of expression of the transcripts encoding the main
components of skeletal muscle EC coupling, as well as their
main isoforms and compared them with the levels found
in biopsies from human skeletal muscle fibres from normal
individuals. Transcripts encoding RyR1, CSQ1 and SERCA1
were significantly down-regulated as was RyR3, an isoform that is
thought to be more abundantly expressed in developing muscles.
On the other hand, Cav1.1 was expressed to similar levels in both
mature fibres and myotubes and produced large Ca2 + currents, as
shown in patch–clamp measurements. These results are in contrast
with what occurs during skeletal muscle development, where
components of the SR appear at an earlier stage of development
compared with the transverse tubules containing the DHPR L-
type Ca2 + channel [29–31]. Interestingly, the relative mRNA
expression of HMCL-7304-derived myotubes was either similar

to that of mature biopsies (SERCA2) or up-regulated (CSQ2).
Thus it seems that the HMCL-7304 cell line has more of the
characteristics of slow-twitch than that of fast-twitch muscle.
This is confirmed further by the predominant expression of slow
myosin compared with fast myosin in differentiated HMCL-
7304 myotubes. There are several possible reasons for this
observation: (i) either satellite stem cells are, by default, slow-
twitch-like and it is the influence of innervation or electrical
activity that enables them to become fast or slow [32], (ii) the
immortalization procedure ‘selects’ satellite stem cells that have
a ‘slow muscle’ phenotype, and/or (iii) as reported in hindlimb
muscles of adult rats, the satellite cells contained within fast or
slow twitch fibres are intrinsically different subpopulations [33]
so that the HMCL-7304 cell line that originated from dorsal
muscles resembles more a slow-twitch muscle from which it
originated.

Two noticeable differences in the physiological characteristics
of human cultured myotubes and mature fibres are that human
(as opposed to rodent) -derived primary myotubes do not
contract [34], and the timescale of the depolarization-induced
Ca2 + transient occurs in hundreds of milliseconds in myotubes,
whereas it lasts only a few milliseconds in mature fibres.
Although the lack of contracture of myotubes derived from
the immortalized human muscle cell line probably reflects the
composition of the actomyosin contractile machinery, the slow
Ca2 + transients observed in myotubes probably reflects the lower
level of expression of SERCA1 and the absence of a highly
organized micro-architecture. After Ca2 + release, cytosolic Ca2 +

is rapidly removed and pumped back into the SR lumen by
the SERCA, which is the main protein of non-junctional SR in
skeletal muscle fibres [35]. Reduced SERCA1 expression levels
as shown in the HMCL-7304 cell line have a significant impact
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on the Ca2 + -removal kinetics, leading to deceleration of Ca2 + re-
uptake compared with normal muscle fibres. Thus lack of mature
subcellular architectural organization and reduction in SERCA1
expression may explain the slow Ca2 + removal after release in
the HMCL-7304 cell line.

In mature fibres, four Cav1.1 subunits on the T-tubular face
in square formation, referred to as tetrads, are directly opposite
the four subunits of one RyR1 tetramer on the SR junctional
membrane, to form the Ca2 + -release units [30]. In intact FDB
fibres, the Ca2 + release units form double rows on each side of
the Z line. The highly organized arrangement is characteristic
of mature skeletal muscle and is probably one of the features
allowing the extremely rapid Ca2 + release kinetics upon T-
tubule membrane depolarization. As is evident by the 3D-SIM
images, HMCL-7304 myotubes show distinct rows of Cav1.1 that
overlap, at least in part, with RyR1 and we believe that these
structures may represent the Ca2 + -release units of the HMCL-
7304 myotubes. This conclusion is consistent with whole patch-
clamp measurements showing that voltage-induced Ca2 + release
is highly functional in these myotubes, indicating direct coupling
between sarcolemmal DHPRs and RyR1 despite structural
immaturity. HMCL-7304 myotubes exhibit Cd2 + -sensitive Ca2 +

currents, having half-maximal current activation at − 9 mV, a
value that is comparable with obtained by others [36,37]. Parallel
imaging revealed that the voltage-dependence of Ca2 + release
(V1/2) was − 32 mV in the present study and − 29.4 mV in non-
immortalized primary human myotubes from control individuals
[38], which is similar to the values ( − 26 mV) obtained on
primary myotubes from wild-type mice [39]. Furthermore, the
process of immortalization does not affect the pharmacological
characteristics of RyR1 activation since the caffeine and 4-chloro-
m-cresol dose–response curves of the HMCL-7304 cell line are
similar to those of non-immortalized human myotubes [14,40] or
RyR1 isolated from mature rodent muscles [41].

In conclusion, in the present study, we characterized a human
muscle cell line derived from a ‘normal’ individual and show that it
retains a pattern of expression of proteins involved in EC coupling
similar to that of slow-twitch muscles. The ability to perform
pharmacological and electrophysiological studies illustrates the
potential use of such a biological tool to a variety of approaches
from studying the effect of mutations and gene silencing to testing
drugs and pharmacological agents aimed at correcting Ca2 +

dysregulation as occurs in a variety of neuromuscular disorders
including core myopathies.
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2. RyR1 deficiency in congenital myopathies disrupts 

excitation-contraction coupling 

 

The highly specialized architecture of skeletal muscle membranes allows ECC to occur 

within milliseconds and permits the interaction between the RyR1 and the DHPR. Upon 

membrane depolarization, RyR1 mediates the release of Ca2+ from the SR. In this publication we 

report abnormal distribution and expression of the RyR1 and the DHPR in patients with 

recessive RYR1 mutations leading to neuromuscular disorders. Histopathological sections from 

patients with heterozygous compound recessive RYR1 mutations, show a reduction in the 

expression of the RyR1 receptor and accumulation of the signal arising from the DHPR in areas 

surrounding the cores. Similar accumulations were observed in histopathological sections of 

muscles from patients with recessive homozygous mutations. The relative expression of the 

RYR1 mRNA extracted from muscles of patients with recessive RYR1 mutations is significantly 

lower compared to that of muscles from healthy individuals. Similar results were observed with 

the protein levels of the RyR1 in these patients. Unexpectedly, the expression of the 3 isoforms 

of InsP3R were increased significantly (ITPR1-ITPR3). A cellular model of reduced RyR1 

expression was created by silencing the expression of RyR1, using siRNA in the HMCL- 7304 

immortalized human muscle cell line (described in the previous paper). The increase of the 3 

isoforms of the InsP3R receptors was also observed in this cellular model prompting us to 

hypothesize that InsP3R were trying to compensate for the reduced RyR1 expression. In order 

to test our hypothesis, we activated the RyR1 pharmacologically with 600 µM of 4-cmc and 

60mM KCl in cells that were either pre-treated with Xestospongin (an inhibitor of InsP3R) or in 

control cells and in cells that were either treated with siRYR1 to silence the RyR1 or in control 

cells. Interestingly, RyR1 silencing significantly reduced Ca2+ release from the SR, which 

disproved our initial hypothesis for functional compensation from the InsP3R. 
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 Moreover, addition of Xestospongin C in cells treated with siRyR1, did not reduce Ca2+ 

release from the SR. These studies do not support a hypothesis that InsP3R can compensate 

functionally for the absence of RyR1.   
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ABSTRACT: In skeletal muscle, excitation–contraction
(EC) coupling is the process whereby the voltage-gated
dihydropyridine receptor (DHPR) located on the trans-
verse tubules activates calcium release from the sarcoplas-
mic reticulum by activating ryanodine receptor (RyR1)
Ca2+ channels located on the terminal cisternae. This sub-
cellular membrane specialization is necessary for proper
intracellular signaling and any alterations in its architec-
ture may lead to neuromuscular disorders. In this study,
we present evidence that patients with recessive RYR1-
related congenital myopathies due to primary RyR1 defi-
ciency also exhibit downregulation of the alfa 1 subunit
of the DHPR and show disruption of the spatial organiza-
tion of the EC coupling machinery. We created a cellular
RyR1 knockdown model using immortalized human my-
oblasts transfected with RyR1 siRNA and confirm that
knocking down RyR1 concomitantly downregulates not
only the DHPR but also the expression of other proteins
involved in EC coupling. Unexpectedly, this was paral-
leled by the upregulation of inositol-1,4,5-triphosphate
receptors; functionally however, upregulation of the latter
Ca2+ channels did not compensate for the lack of RyR1-
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mediated Ca2+ release. These results indicate that in some
patients, RyR1 deficiency concomitantly alters the expres-
sion pattern of several proteins involved in calcium home-
ostasis and that this may influence the manifestation of
these diseases.
Hum Mutat 34:986–996, 2013. C⃝ 2013 Wiley Periodicals, Inc.
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Introduction
The precise regulation of intracellular calcium homeostasis is

critical for normal skeletal muscle development and function.
Excitation–contraction (EC) coupling requires the correct assem-
bly, distribution, and interaction of a number of proteins residing
in the sarcoplasmic reticulum (SR), the organelle of striated muscle
dedicated to calcium homeostasis. Two key elements involved in cal-
cium release are the voltage-gated dihydropyridine receptor (DHPR;
MIM #114208), located on the transverse tubules, and the ryanodine
receptor (RyR1; MIM #180901), the principal calcium release chan-
nel of skeletal muscle situated in the terminal cisternae of the SR
[Nakai et al., 1996]. The predicted structure of the RyR1 suggests
that the calcium release pore is located in the C-terminal domain
of the protein, whereas the N-terminal domain constitutes the foot
structure that interacts with DHPR [Dulhunty and Pouliquin, 2003;
Ramachandran et al., 2009; Van Petegem, 2012]. The direct physical
interaction between DHPR and RyR1 is essential for skeletal muscle
EC coupling and any alterations in the subcellular distribution of
proteins or membranes involved EC coupling can lead to impaired
muscle function [Oddoux et al., 2009; Pan et al., 2002].

Disturbance of calcium homeostasis due to defects in RyR1
is the underlying feature of the malignant hyperthermia sus-
ceptibility (MIM #145600) trait, a pharmacogenetic reaction to
volatile anesthetics and muscle relaxants, and a wide range of

C⃝ 2013 WILEY PERIODICALS, INC.
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congenital myopathy phenotypes, including dominantly inherited
central core disease (CCD; MIM #117000) and recessively inherited
multiminicore disease (MIM #255320) with or without opthalmo-
plegia [Jungbluth et al., 2002; 2005; Quane et al., 1993; Zhou et al.,
2006; 2007], subgroups of centronuclear myopathy, congenital fiber
type disproportion, and the King-Denborough Syndrome [Clarke
et al., 2010; Dowling et al., 2011; Jungbluth et al., 2007; Wilmshurst
et al., 2010]. Although dominantly inherited RYR1-related con-
genital myopathies have been extensively studied and are usually
attributed to RyR1 channels that are either “leaky” or show im-
paired calcium conductance [Dirksen and Avila, 2002; Treves et al.,
2008], the pathogenesis of recessively inherited RYR1-related my-
opathies is not well understood, though a decrease in RyR1 protein
content has been reported in muscle biopsies from some patients
[Wilmshurst et al., 2010; Zhou et al., 2007]. Besides mutations in
the RYR1, substitutions in other genes linked to neuromuscular dis-
orders, encoding proteins involved in EC coupling have so far been
reported only for CACNA1, the gene encoding the alfa 1 subunit
of the DHPR (Cav1.1) in patients with malignant hyperthermia
[Monnier et al., 1997; Pirone et al., 2010; Toppin et al., 2010]. We
recently reported that a patient with periodic paralysis who har-
bored recessively inherited RYR1 mutations [Zhou et al., 2010] with
no CACNA1S mutation, had a marked reduction of RyR1 protein
and a disruption of RyR1/Cav1.1 colocalization, indicating potential
secondary effects of certain RYR1 mutations on key proteins of the
EC coupling machinery.

In the present investigation, we extended these findings and re-
port abnormal expression and distribution of Cav1.1 in muscle
biopsies from a number of patients with recessive RYR1 muta-
tions with reduced RyR1 content. Mimicking RyR1 depletion in
human myotubes using a RYR1 siRNA knockdown approach caused
a decrease in Cav1.1 with a concomitant upregulation of inositol-
1,4,5-trisphosphate receptors (IP3R; MIM #147265). These results
provide new insights into the pathogenesis of recessive RYR1-related
myopathies with primary RyR1 deficiency.

Materials and Methods

Muscle Biopsies

Studies on muscle biopsies from patients were approved by the
author’s Institutional Ethical Committee and conducted under the
Declaration of Helsinki. Patients were encoded to protect their
confidentiality, and written informed consent obtained. Routine
histopathological studies were performed according to standard
procedures. All patients presented in this study have a clear clin-
ical and histological diagnosis of a congenital myopathy, and were
molecularly diagnosed as having RYR1 mutations. Control muscle
biopsies were from donors with no neuromuscular diseases. RNA
samples were studied in nineteen patients and nine controls; im-
munohistochemical studies were performed in four patients and
three controls; Western blot studies were performed in two patients
and three controls.

Molecular Genetics

The genetic information of all patients was taken from the genetic
reports. The RYR1 nucleotide numbering is based on transcript vari-
ant NM 00540.2, where the nucleotide numbering reflects cDNA
numbering with +1 corresponding to the A of the ATG transla-
tion initiation codon in the reference sequence, according to jour-
nal guidelines (www.hgvs.org/mutnomen). The initiation codon is

codon 1. The variants reported have been submitted to the Leiden
RYR1 locus specific database (http://www.lovd.nl/RYR1).

Immortalization and Culture of Skeletal Muscle Cell Line

Human satellite cells were derived from the skeletal muscle biopsy
of a 19-year-old female donor with no neuromuscular disorder.
Skeletal muscle cell line immortalization was performed as previ-
ously described [Mamchaoui et al., 2011; Zhu et al., 2007]. Briefly,
cultured cells were double transfected by recombinant retroviruses
containing the telomerase (hTERT) cDNA and Cdk4 cDNA, fol-
lowed by clonal selection of myogenic lines. Immortalized myoblasts
were maintained in skeletal muscle cell growth medium (Promo-
Cell, Heidelberg, Germany) in low oxygen atmosphere (5% O2 and
5% CO2) at 37◦C.

Immunofluorescence

All cryosections from muscle biopsies were cut at a thickness of
8 µm for immunohistochemistry. Sections were incubated with pri-
mary antibodies at room temperature for 1 hr, washed in 0.1 M PBS
pH 7.2 and incubated with secondary antibody conjugated to Alexa
488 and biotinylated secondary antibody for 1 hr at room temper-
ature, followed by thorough rinsing in PBS. After washing, muscle
sections were incubated with streptavidin conjugated to Alexa 594
for 15 min at room temperature then washed and mounted using
Hydromount mounting medium (National Diagnostics, Georgia,
USA). Images were digitally captured using Metamorph software.
For immunofluorescence on myotubes, glass coverslip grown cells
were fixed for 30 min in 3.7% paraformaldehyde in PBS; cells were
rinsed with PBS and permeabilized with 1% Triton X-100 in PBS
for 30 min. After incubation with blocking buffer (1% blocking
buffer, Roche, in PBS) for 60 min at room temperature, slides were
processed as described above. The primary antibodies used for im-
munohistochemistry were mouse anti-RyR1 monoclonal antibody
(1:500; Abcam, Cambridge, UK), goat anti- Cav1.1 polyclonal an-
tibody (1:200; Santa Cruz, Texas, USA), and rabbit anti-ß-tubulin
(1:20; Santa Cruz, Texas, USA).

cDNA Synthesis and Quantitative Real-Time PCR

Total RNA was extracted from muscle biopsies using the RNeasy
kit (Qiagen, Crawley, UK); 500 ng of each RNA sample was used
for first-strand cDNA synthesis with Superscript III reverse tran-
scription kit (Invitrogen, Paisley, UK). Quantitative real-time PCR
products of RYR1, CACNA1S, and DES were amplified with the
TaqMan universal PCR Master Mix (Applied Biosystems, Leusden,
Netherlands). Samples were incubated in a 25 µl reaction mix ac-
cording to manufacturer’s instructions. Quantitative real-time PCR
was performed using Applied Biosystem fast 7500 Real Time PCR
System using the recommended program: activation at 50◦C for
2 min and 95◦C for 10 min, 40 cycles of 95◦C for 15 sec and 60◦C
for 1 min. Quantification was based on the comparative !!Ct
method. One of the samples treated with negative control siRNA was
used to calibrate the data and to analyze results. For ITPR1, ITPR2,
and ITPR3 quantitative real-time PCR samples were amplified with
MESA Blue qPCR kit (Eurogentec, Seraing, Belgium). Gene specific
qPCR primers, including ITPR1, ITPR2, ITPR3, GAPDH, and DES,
were commercially available from Qiagen. Samples were incubated
in a 25 µl reaction mix according to manufacturer’s instructions.
Quantitative real-time PCR was performed using Applied Biosystem
fast 7500 Real Time PCR System using the recommended program:
activation at 95◦C for 5 min, 40 cycles of 95◦C for 3 sec, and 60◦C
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for 1 min. Quantification was based on concurrent standard curves
produced from serial dilutions of control cDNA from untreated cul-
tured myotubes. DES and GAPDH were used as internal reference
genes. The expression of ITPRs in cultured myotubes or muscle
biopsies were normalized by DES or GAPDH, and calibrated by
taking the ratio of one of the control samples as 1.0. Total RNA was
extracted from human myotubes using Trizol (Invitrogen, Lucerne,
Switzerland) and cDNA synthesized with the High Capacity cDNA
synthesis kit from Applied Biosystem and the following primers:
MYH 1-Myosin heavy chain, forward: 5′ GGG AGA CCT AAA ATT
GGC TCA A 3′, reverse: 5′ TTG CAG ACC GCT CAT TTC AAA 3′;
TNNT1—Troponin T1, forward: 5′ TGA TCC CGC CAA AGA TCC
C 3′, reverse: 5′ TCT TCC GCT GCT CGA AAT GTA 3′; DAG1—
Dystroglycan 1, forward: 5′ AGC AAA GGA TTG ACC TCC TGC
3′, reverse: 5′ CCA CCG GCA CTA ATT TCA TGT T 3′; Desmin,
forward: 5′ AAC CAG GAG TTT CTG ACC ACG 3′, reverse: 5′

TTG AGC CGG TTC ACT TCG G 3′; GAPDH, forward: 5′ CTG
GGC TAC ACT GAG CAC C 3′, reverse: 5′AAG TGG TCG TTG
AGG GCA ATG 3′. As well as the ITPR primers described above.
Transcript levels were normalized to GAPDH expression levels.

Western Blotting

Total protein was extracted from cells lysates or frozen skeletal
muscle sections in sampling buffer consisting of 75 mM Tris–HCl,
1% SDS, and cocktail of protease inhibitor (Roche, Burgess Hill,
UK). Protein concentration was quantified by the BCA protein as-
say kit (Pierce, Rockford, IL, USA). Thirty micrograms of proteins
were loaded and separated using NuPAGE Precast gels (3%–8%
Tris–acetate; Invitrogen) and then transferred electrophoretically to
nitrocellulose membrane (GE Healthcare, Buckinghamshire, UK).
The membrane was blocked with 5% goat serum (Sigma, Dorset,
UK) in PBS buffer with 0.5% Tween-20 (PBS-T) and then probed
with primary antibodies at room temperature for 1 hr or 4◦C
overnight. After washing in PBS-T, membranes were incubated with
HRP-antimouse or HRP-antirabbit IgG (the Jackson Laboratory,
West Grove, PA, USA; 1:50,000) for 1 hr at room temperature. Im-
munoreactivity was visualized using enhanced chemiluminescence
detection kit (GE Healthcare). Semi-quantification of the bands was
performed by densitometric analysis and data was processed using
the Image J software.

The primary antibodies used in this study include mouse mon-
oclonal anti-RyR1 (Abcam; 1:2,500), rabbit anti-Cav1.1 (Santa
Cruz; 1:1,000), mouse monoclonal-antidesmin (DAKO, Glostrup,
Denmark; 1:2,000), mouse monoclonal anti-IP3R III (BD, Devon
UK; 1:1,000), mouse monoclonal anti-SERCA2 antibody (Abcam;
1:1,000), mouse monoclonal anti-α-actinin 2 (Sigma; 1:20,000), and
mouse monoclonal anti-β-tubulin (Sigma; 1:4,000).

RYR1 Knockdown by siRNA

Immortalized myoblasts obtained as described above (immortal-
ization and culture human skeletal muscle cell line) were seeded
on 30 mm diameter plates at a density of 5–8 × 105 cells per well
in order to be confluent by the next day. RYR1 siRNA (Santa Cruz
Biotechnology) was transfected using lipofectamine 2000 in Op-
tiMEM medium following the manufacturer’s recommendations
(Invitrogen). A series of concentrations [10, 30, and 50 nM] of
siRNA were tested and cells treated with the same concentrations of
negative siRNA were used as control. The transfection medium was
changed to differentiation medium (PromoCell) 6 hr after trans-
fection and changed thereafter every 2 days; cells visibly started to

fuse 4–5 days after transfection/differentiation, and myotubes were
collected at day 7.

Intracellular Calcium Measurements

Myotubes, mock transfected or transfected with 50 nM siRNA,
were either untreated or treated with 1 µM Xestsospongin C (Sigma
chemicals, St. Gallen, Switzerland) for 40 min during fura-2 (final
concentration was 5 µM) loading. Cells were rinsed one time with
Krebs-Ringer and then coverslips were mounted onto a 37◦C ther-
mostated chamber which was continuously perfused with Krebs-
Ringer medium; individual cells were stimulated with the indicated
agonists (60 mM KCl, 600 µM 4-chloro-m-cresol, 100 µM ATP)
made up in Krebs-Ringer containing no added Ca2+ plus 100 µM
La3+ in order to monitor changes in the cytoplasmic calcium concen-
tration due to release from intracellular stores, by means of a 12-way
100 mm diameter quartz micromanifold computer-controlled mi-
croperfuser (ALA Scientific Instruments, Farmingdale, NY, USA), as
previously described [Ducreux et al., 2004]. On-line measurements
were recorded using a fluorescent Axiovert S100 TV inverted mi-
croscope (Carl Zeiss GmbH, Jena, Germany) equipped with a 20×
water-immersion FLUAR objective (0.17 NA), filters (BP 340/380,
FT 425, BP 500/530) and attached to a Cascade 125+ CCD camera.
Changes in the free cytosolic calcium concentration were analyzed
using MetaMorph (Molecular Devices) imaging system and the av-
erage pixel value for each cell was measured as previously described
[Ducreux et al., 2004; Treves et al., 2010].

Statistical Analysis

Statistical analysis was performed using the Student’s t-test for
comparison of two samples or the ANOVA test for comparison of
multiple data, followed by the Bonferroni’s post hoc test. GraphPad
Prism 5 and Origin softwares were used for statistical analysis and
graph design.

Results

RyR1 and DHPR Expression and Distribution in Skeletal
Muscle Biopsies from Patients Carrying RYR1 Mutations

Figure 1 shows immunohistochemical staining on skeletal muscle
biopsies from three patients carrying recessive RYR1 mutations,
one patient carrying a dominant RYR1 mutation and one control
individual. A summary of the clinical and histopathological features
and genetic details of the patients is given in Supp. Table S1. Patient 1
carried the heterozygous mutations p.R109W+p.M485V in one allele
and the missense plus nonsense mutations p.D708N+p.R2241X in
the other allele; patient 2 carried the heterozygous p.E879K mutation
in one allele and the splice site mutation c.3381+1G>A in the other
allele. Patient 3 carried the dominant RYR1 mutation p.G4638D and
patient 4 carried the homozygous missense mutation p.R3772Q. No
additional mutations were found after screening the entire RYR1
coding region of each patient. Biopsies from patients 3 and 4, where
histopathology showed typical central or eccentric cores on NADH
staining, showed the same patterns of distribution of DHPR and
RyR1 in a rim around the core area (Fig. 1). On the other hand, a
segregated distribution of RyR1 and DHPR was observed in muscle
sections from patients 1 and 2, in whom histopathology showed
the characteristic multi-mini cores on NADH staining, there was
distinct aggregation of the DHPR in some of the muscle fibers in
associated with reduction of RyR1 staining.
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Figure 1. Protein expression of RyR1 and DHPR in muscle biopsy of patients with different RYR1 mutations. Double staining of RyR1 and DHPR,
and NADH staining in muscle biopsies of patients with congenital myopathy and RYR1 mutations. NADH staining was performed in non-serial
sections from RyR1/DHPR double staining. Scale bar = 25 µm.

RYR1 but Not CACNA1S Transcript is Reduced in Skeletal
Muscle from Patients Carrying Recessive RYR1 Mutations

To investigate changes in RYR1 expression at the transcriptional
level, we performed quantitative real-time PCR of RYR1 in patient’s
muscle biopsies, using DES as the skeletal muscle specific reference
gene. RNA samples extracted from muscle biopsies of 19 patients
with confirmed RYR1 mutations were collected for this study. Pa-
tients were arranged into three groups according to the types of
mutations. RYR1-AD group consisted of six patients carrying dom-
inant RYR1 mutations; RYR1-R1 group included four patients with
recessive homozygous or compound heterozygous missense muta-
tions; and RYR1-R2 group included nine patients carrying heterozy-
gous recessive mutations in which one allele contained a missense
mutation, and the other a loss of function mutation. We also in-
cluded biopsies from nine normal control individuals in the control
group. The relative expression of RYR1 was 0.89 ± 0.07 in the control
group, 0.83 ± 0.10 in the RYR1-AD group, 0.61 ± 0.07 in the RYR1-
R1 group and 0.57 ± 0.06 in the RYR1-R2 group (Fig. 2A). Significant
reduction of RYR1 mRNA transcripts was observed in RYR1-R1 and
RYR1-R2 groups, where patients were affected by recessive muta-
tions on both alleles, compared with control group (P = 0.0035
between RYR1-R2 and control; P = 0.044 between RYR1-R1 and

control). No difference was observed in patients carrying domi-
nant RYR1 mutations (RYR1-AD) compared with control group.
CACNA1S mRNA was also measured by quantitative real-time but
no significant difference was observed in its transcription level in
muscle biopsies between mutation groups and controls (Fig. 2B).

We further investigated the effects of RyR1 depletion by
performing RyR1 knockdown experiments on an immortalized
human muscle cell line, using RYR1 siRNA. Seven days after
transfection and differentiation, once visible multinucleated my-
otubes appeared, RYR1 mRNA was quantified by real-time PCR. As
shown in Figure 3A the RYR1 transcript was reduced in a siRNA
concentration-dependent manner. The relative expression of RYR1
mRNA was: 0.47 ± 0.09 for the 10 nM siRYR1 group; 0.31 ± 0.03
for the 30 nM siRYR1 group and 0.23 ± 0.03 for the 50 nM siRYR1
group compared with the control group (1.0 ± 0.0). In the same
samples, the relative expression of CACNA1S (Fig. 3B) and DES
(Fig. 3C) were not significantly changed.

Downregulation of RyR1 by siRNA did not affect myotube dif-
ferentiation; indeed mean myotube diameter as well as the relative
expression of differentiation-related markers such as dystroglycan 1
(DAG), myosin heavy chain 1 (MHC1), troponin T1 (TNNT1),
and desmin (DES) [Galbiati et al., 1999; Trendelensburg et al.,
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Figure 2. Quantitative reverse transcriptional real-time PCR of RYR1 and CACNA1S in skeletal muscle biopsies from patients carrying different
RYR1 mutations. The relative content of RYR1 and CACNA1S mRNA was assessed by real-time PCR using !!Ct method and using DES as muscle
specific reference gene. The relative expression of RYR1 and CACNA1S to DES in one of the control individuals was set as 1.0, and was used to
calibrate the values of all other samples. Each symbol represents an individual and the bar indicates mean relative expression. ANOVA was used
for the statistical analysis of the values in different groups, followed by the Bonferroni post statistics test. A: Relative expression of RYR1 transcript
in muscle biopsies. B: Relative expression of CACNA1S transcript in muscle biopsies. ∗P < 0.05, ∗∗P < 0.01.

Figure 3. RYR1, CACNA1S, and DES mRNA expression in myotubes treated with RYR1 siRNA. The relative quantification of RYR1 (A), CACNA1S
(B), and DES (C) mRNA was performed by quantitative real-time PCR. The value was obtained from three independent transfection experiments
of myotubes treated with RYR1 siRNA at concentrations of 10, 30, and 50 nM. The data are presented as mean ± SEM, N = 3. ANOVA was used
for the statistical analysis of the values in the RYR1 siRNA-treated myotubes to negative control siRNA, followed by Bonferroni post statistics
test. The relative expression of target genes in control siRNA-treated myotubes was set as 1.0, and was used to normalize the values in the RYR1
siRNA-treated myotubes. ∗P < 0.05, ∗∗P < 0.01.

2009] were similar in control and RYR1 siRNA transfected myotubes
(Fig. 4).

RyR1 Deficiency Affects Cav1.1 Content

We next assessed if the decrease in mRNA in siRNA transfected
immortalized cells was paralleled by a decrease in protein content.
Figure 5A shows a representative western blot performed seven days
after treatment and Figure 5B shows the mean (±SEM) protein con-
tent in control versus siRNA-treated myotubes. As shown desmin
and tubulin content were not affected by RYR1 siRNA but there was
a >50% decrease in RyR1, Cav1.1, SERCA2, and α-actinin content
as assessed by western blotting in myotubes transfected with 50 nM
RYR1 siRNA. Unexpectedly, the relative content of IP3RIII, the other
intracellular Ca2+ release channel of ER membranes was increased
by approximately twofold.

The protein content of Cav1.1, SERCA2, α-actinin2, and IP3RIII
were also assessed in the muscle biopsies from patients with RyR1 de-
ficiency due to recessive mutations. Western blotting was performed
on protein extracted from the muscle biopsies of two patients and
three normal controls. The immunohistochemical staining of RyR1
and DHPR of patient 2 was shown in Figure 1; the double stain-
ing of RyR1 and DHPR in patient 5 has been previously reported
[Zhou et al., 2010], with similar distribution pattern as shown in
Figure 1.

Representative blots from patients and controls are shown in
Figure 5C. There was a significant reduction of both RyR1 and
DHPR proteins in the samples from the patients compared with
controls (N = 3) (Fig. 5D). Significant upregulation of IP3R III (ap-
proximately twofold) was also observed in patients’ muscle biop-
sies compared with the controls (Fig. 5D). However, no changes
in SERCA2 and α-actinin 2 protein was observed in the patients’
muscle biopsies samples.
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Figure 4. Downregulation of RyR1 by RYR1 siRNA transfection does not affect myotube differentiation: Cells were transfected with 50 nM
RYR1 siRNA, differentiated for 5 days and then stained with β-tubulin and DAPI, the diameter of myotubes with >3 nuclei were measured and
averagedconsidered. A: Mean (±SE) myotube diameter (µm) of 30 transfected and 30 mock transfected myotubes. (B: Relative mRNA expression
of differentiation-related markers; Dystroglycan 1 (DAG), Myosin heavy chain 1 (MYH1), Troponin T1 (TNNT1), and Desmin (DES) normalized to
GAPDH expression as internal control (N = 6). C: Immunofluorescentce of transfected (RYR1siRNA) or mock transfected (control) myotubes stained
with anti- β tubulin (green) and DAPI and observed with a Nikon A1R confocal microscope with a 40× NeoFluar objective (1.4 NA). Bar indicates
30 µm.

All Three Types of ITPRs Transcripts are Upregulated in
RYR1 Knockdown Myotubes and in Skeletal Muscles from
Patients with Primary RyR1 Deficiency

The transcripts of all three isoforms of Inositol-1,4,5- Triphos-
phate Receptor (IP3R) genes (ITPR1, ITPR2, and ITPR3) were quan-
tified by real-time RT-PCR in myotubes treated by RYR1 siRNA. Sig-
nificant upregulation of all three isoforms of ITPRs was observed in
the RYR1 knocked-down group compared with the control group
(Fig. 6A). We then analyzed ITPRs transcripts in skeletal muscle from
controls (N = 7), from patients with dominant RYR1 mutations (N
= 5) and from patients with heterozygous recessive RYR1 mutations
and RyR1 protein deficiency (N = 6). To ensure that the observed
alterations were not due to heterogeneous tissue composition of the
biopsies due to variable degrees of fibrosis or connective tissue accu-
mulation, we used both the ubiquitous housekeeping gene GAPDH
and muscle specific DES gene as internal reference genes. Irrespec-
tive of whether the analysis was made using GAPDH (Fig. 6B) or
DES (Fig. 6C), patients with recessive RYR1 mutations showed sig-
nificant upregulations of all three IP3R transcripts, compared with

the control group. No significant differences in ITPR1, ITPR2, and
ITP3R expression were observed between the group of patients har-
boring dominant RYR1 mutations and the control group, except for
a patient carrying the dominant mutation p.R4861C, who showed
unusually high levels of ITPRs expression. Interestingly, although
this mutation was identified as de novo and was not found in either
parent, the case was initially considered a recessive core myopathy
because of the severe clinical features of the patient and the abnor-
mality observed in parent’s muscle biopsy [Manzur et al., 1998].
Unfortunately, the muscle biopsy failed western blotting RyR1 pro-
tein quantification due to sampling problems. In order to rule out the
presence of other allelic mutations, we performed genomic analysis
of the entire coding region and exon/intron boundaries of the RYR1
gene; no other pathogenic variants were identified in this patient
suggesting that in this patient the p.R4861C mutation is responsible
for the pathological phenotype.

Taken together these results confirm that RyR1 deficiency in-
duced in vitro as well as RyR1 protein deficiency occurring in vivo
due to recessive RYR1 mutations cause the upregulation of ITPRs
transcripts.
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Figure 5. RyR1, DHPR, and other SR protein in RYR1 siRNA-treated myotubes and muscle biopsies from patients with RyR1 deficiency due
to recessive RYR1 mutations. A: Representative western blots of RyR1, DHPR, IP3R-III, α-actinin 2, SERCA 2, desmin, and β-tubulin in human
myotubes treated by RYR1 siRNA. B: Semi-quantification of proteins in RYR1 siRNA-treated myotubes. The expression of proteins was normalized
to tubulin. Protein content in RYR1 siRNA-treated group was compared with the control group. C: Representative western blots of RyR1, DHPR,
IP3R-III, α-actinin 2, SERCA 2, and desmin in muscle biopsies from two patients (patient 2 and 5 in Supp. Table S1) with recessive RYR1 mutations.
D: Semi-quantification of proteins in two patients, with RyR1 deficiency due to recessive RYR1 mutations, and three controls. The expression of
proteins was normalized by desmin.

Changes in Intracellular Ca2+ Homeostasis in RYR1
Knocked-Down Myotubes

Using the human muscle cell line we assessed how downregu-
lation of RyR1 by siRNA affects calcium homeostasis. Besides the
resting [Ca2+] and the size ionomycin sensitive Ca2+ stores, we mea-
sured several parameters, including the response (expressed as area
under the curve, which more accurately reflects the total amount of
Ca2+ released) of myotubes to KCl-induced depolarization, to phar-
macological activation of RyR1 with 4-chloro-m-cresol and to ATP
stimulation (which measures Ca2+ release via IP3R) in control cells,
control cells treated with the IP3R inhibitor Xestospongin C and in
RYR1 siRNA-treated cells (± Xestospongin C). This approach allows
us to evaluate if the decrease in Ca2+ released due to downregulation

of RyR1 could be compensated by upregulation of IP3R-mediated
Ca2+ release. Figure 7 shows that RyR1 activation either directly by
the addition of 600 µM 4-chloro-m-cresol or indirectly, by the ad-
dition of 60 mM KCl induces a large Ca2+ release that is independent
of IP3Rs since the same amount of Ca2+ was released whether cells
had been pre-treated or not with Xestospongin C. Downregulation
of RYR1 by 50 nM siRNA caused a threefold decrease of Ca2+ release
by 4-cmc and KCl that was unaffected by Xestospongin C. Addition
of 100 µM ATP (1) caused the release of approximately 50% of the
Ca2+ compared with the release obtained by RyR1 activation, (2) was
inhibited by Xestospongin C and importantly, (3) was unaffected by
downregulation of RYR1. Downregulation of RyR1 affected neither
the resting [Ca2+] nor the total amount of ionomycin-induced Ca2+-
release, indicating no significant effect on the size of the intracellular
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Figure 6. The expression of ITPR1, ITPR2, and ITPR3 mRNA in RYR1 siRNA-treated myotubes and skeletal muscle biopsies from patients with
different RYR1 mutations. A: The relative expression of ITPRs mRNA in cultured myotubes treated with siRNA was measured by quantitative reverse
transcript real-time PCR. Data are presented as mean ± SEM. N = 4 samples per group. ∗P < 0.05. B: The relative expression of ITPRs mRNA
measured by quantitative real-time PCR in skeletal muscle biopsies from controls (N = 7), patients with dominant RYR1 mutations (N = 5) and
patients with complex recessive RYR1 mutations with RyR1 protein deficiency (N = 6). GAPDH was used as general internal control gene. C: The
relative expression of ITPRs mRNA measured by quantitative real-time PCR in skeletal muscle biopsies by using DES as muscle-specific internal
control gene.

Ca2+ stores. These results indicate that upregulation of IP3R does
not functionally compensate the decreased Ca2+-release due to the
lower levels of RyR1 protein content.

Discussion
RYR1-related disorders with mainly dominant inheritance and

normal RyR1 protein expression have been extensively studied at
the functional level, whereas the mechanisms underlying RYR1-
related myopathies with recessive inheritance and RyR1 deficiency
remain only partially understood. Functional studies of common
dominant RYR1 mutations associated with CCD indicate two prin-
cipal mechanisms associated with disturbed function of the mutant
RyR1 channel, namely presence of a ‘leaky channels’ associated with
reduction of SR calcium stores [Lynch et al., 1999], or “uncoupled”
channels with muscle weakness resulting from a reduced capacity

of RyR1 to transport Ca2 [Avila et al., 2001]. In the present study,
we report that recessive RYR1 mutations associated with RyR1 defi-
ciency are also responsible for EC uncoupling by negatively affecting
DHPR-RyR1 colocalization in skeletal muscle. Indeed, this kind of
EC uncoupling was initially reported in two animal models of RYR1-
related disorders, the sporadic zebrafish relatively relaxed mutant
with marked reduction of functional RyR1 protein [Hirata et al.,
2007], and in Ryr1 knockout (dyspedic) mice which do not express
any ryanodine receptor 1 [Takeshima et al., 1994]. In dyspedic my-
otubes cultured from Ryr1 knockout mice, there is no EC coupling,
whereas introduction of exogenous RyR1 restores EC coupling and
increases the density of the L-type Ca2+ current toward normal
[Nakai et al., 1996]. The dependence of physiological EC coupling
on correct mechanical coupling is also indicated by ultrastructural
studies demonstrating the importance of a tight alignment of RyR
tetramers on the junctional face membrane and of DHPR molecules
(a tetrad) on the opposing T-tubule membrane [Block et al., 1988].
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Figure 7. Analysis of calcium regulation in a human muscle cell line after transfection with RYR1 siRNA. Cells were transfected with 50 nM RYR1
siRNA or mock transfected as described in the Materials and Methods section and were either untreated or treated with 1 µM Xestospongin C
during the 40 min of fura-2 loading. Myotubes were stimulated with the indicated agonist in Krebs-Ringer containing no added Ca2+ plus 100 µM
La3+ and the total amount of calcium released was calculated using Origin software by calculating the total transient, i.e. the area under the curve.
Resting [Ca2+] is presented as fluorescence ratio (340/380 nm) (au) before cell stimulation in Krebs-Ringer containing 2 mM Ca2+; the total amount
of rapidly releasable Ca2+ present in the SR/ER stores was obtained by calculating the area under the curve after exposing cells to 1 µM ionomycin
in the Krebs-Ringer containing no added Ca2+ plus 0.5 mM EGTA. For details see Materials and Methods section. All results are expressed as mean
value (±SEM) of the indicated number of cells. White bars mock transfected cells, grey bars cells transfected with RYR1 siRNA. Statistical analysis
was performed using Student’s t-test.

Interestingly, depletion of RyR1 in vitro by siRNA in an immor-
talized human muscle cell line caused a decrease of Cav1.1 content,
suggesting that proper alignment between the two calcium channels
is required for the stability of the complex. Diminishment of Cav1.1
content has also been reported in dyspedic mouse skeletal muscle
[Buck et al., 1997] and in one previous immunohistochemical study
on core myopathies, in which a patient exhibiting virtual absence
of RyR1 showed focal accumulation of DHPR within or around the
cores [Herasse et al., 2007]. The loss of DHPR/RyR1 colocalization
strongly suggests a physical EC uncoupling in patients with some re-
cessive RYR1 mutations. We suggest that the characteristic staining
pattern of Cav1.1 may be a useful immunohistochemical indicator
to select patients for RYR1 sequencing, currently still very costly and
time consuming due to the large size of the gene.

Aside the downregulation of Cav1.1, we observed downregula-
tion of SERCA2 and alfa-actinin in RyR1 knocked-down myotubes.
This is in contrast to the upregulation of SERCA reported in dys-
pedic myotubes [Eltit et al., 2010; 2011] and to the lack of changes
in SERCA2 and alfa-actinin protein levels in the patient’s biop-
sies. Opposing effects on SERCA2 expression have been reported
in C2C12 cells transfected with two different RYR1 mutations. Vega

et al. (2011) reported that transfection with the RYR1 Y523S MH-
linked mutation caused an increase in SERCA2 expression whereas
transfection of C2C12 cells with the CCD-linked I4897T RYR1 mu-
tation caused its downregulation. Furthermore, they also reported
that the expression of a particular mutant affects the degree of my-
otube differentiation, in that C2C12 cells transfected with the RyR1
cDNA harboring the I4897T mutation were similar to control my-
otubes in size and fusion index 8 days after differentiation, whereas
cells transfected with the RyR1 cDNA harboring the Y523S substi-
tution were larger than control myotubes [Vega et al., 2011]. We did
not find any significant differences in size and in the expression of
differentiation-related markers such as dystroglycan 1, troponin T1,
myosin heavy chain, and desmin [Galbiati et al., 1999; Trendelen-
burg et al., 2009] in RYR1siRNA transfected and control cells. Thus,
knocking down a protein in vitro does not mimic all aspects of what
happens in vivo in muscles of patients harboring recessive muta-
tions causing RyR1 depletion and further experiments are required
to understand the mechanisms involved in the reciprocal regulation
of SR proteins.

In the present study, we demonstrate that in human skeletal mus-
cle under conditions of RyR1 deficiency, IP3R are upregulated. In
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cultured mouse skeletal muscle cells IP3R predominantly expressed
around the nuclear envelope, are mainly associated with slow Ca2+

transients and appear to be involved in the regulation of gene ex-
pression [Jaimovich et al., 2000; Jaimovich and Carrasco, 2002].
The IP3/IP3R-induced calcium signal plays little or no substantial
role in skeletal muscle EC coupling under physiological conditions
[Posterino and Lamb, 1998] and as shown in the present study, up-
regulation of IP3R in RyR1-deficient states does not compensate for
the physical collapse of the EC coupling machinery. Nevertheless,
the IP3/IP3R pathway may be involved in slow calcium release lead-
ing to activation of expression of certain genes and the present study
indicates the possible existence of a complex interplay of RyR1 and
IP3R signaling pathways.

In conclusion, our results demonstrate upregulation of an alter-
native calcium regulating system via IP3R in recessive RYR1-related
myopathies with RyR1 deficiency, and indicate the potential impor-
tance of the IP3R signaling cascade in the pathophysiology of these
neuromuscular disorders. Future studies aimed at determining the
role of the IP3R system in RyR1-deficient congenital myopathies
and its correlation with disease progression could provide further
insight into the pathogenesis of this condition.
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Supp. Table S1. Summary of clinical and histopathological features of the RYR1-related 
patients 

 
Patient Clinical features Muscle 

histopathology 
RYR1 Mutations Exons 

affected 
References 

1 Neonatal hypotonia 
and prolonged 
ventilation; feeding 
difficulties; delayed 
motor milestones and 
muscle weakness.  

Wide variation in 
fibre size; rod-like 
structures; core-
like area in 
NADH; type I 
fibre 
predominance. 

1. p.R109W + p.M485V 
2. p.D708N+ p.R2241X 

14 + 38 
18 + 41 

Zhou et al. 
2006 

2 Hypotonia; feeding 
difficulties; facial 
weakness; delayed 
motor milestones; low 
head control. 

Abnormal 
variation in fibre 
size; multi internal 
nuclei; core-like 
area in NADH; 
type I fibre 
predominance. 

1. p.E879K 
2. c.3381+1G>A 

21 
25 

This study 

3 Facial weakness; 
scoliosis; malignant 
hyperthermia. 

Central cores; type 
I fibre 
predominance. 

p.G4638D 95 Zhou et al. 
2007 

4 Proximal weakness; 
clubfeet; malignant 
hyperthermia. 

Eccentric cores in 
NADH; type I 
fibre uniformity. 

p.R3772Q (homozygous) 79 Zhou et al. 
2007 

      
5 Neonatal hypotonia; 

proximal muscle 
weakness; 
independent walking 
at 7 years old. 

Increased internal 
and central nuclei; 
type I fibre 
predominance; 
increase in 
connective tissues. 

1. p.L2059fs 
2. p.V4842M 

38 
101 

Wilmhurst et 
al. 2010 

6 Reduced fetal 
movement; neonatal 
hypotonia; feeding 
difficulty; proximal 
muscle weakness; 
non-ambulant but no 
major health issues at 
young adult. 

Increased central 
and internal 
nuclei; type I fibre 
predominance. 

1. I2781fs+p.H3981Y 
2. p.V4842M 

53 + 87 
101 

WIlmhurst et 
al. 2010 

7 Neonatal hypotonia; 
proximal and axial 
muscle weakness; 
frequent respiratory 
tract infection; non-
ambulant and fragile 
at 8 years old. 

Increased central 
and internal 
nuclei; type I fibre 
predominance; 
‘moth-eaten’  fibre.   

1. I2781fs+p.H3981Y 
2. p.V4842M 

53 + 87 
101 

Wilmhurst et 
al. 2010 
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3. Epigenetic changes as a common trigger of muscle 

weakness in congenital myopathies 

 

Congenital myopathies have been defined by their predominant histopathological 

features into Central Core Disease (CCD), Multi-minicore Disease (MmD), Central Nuclear 

Myopathy (CNM), Congenital Fiber Type Disproportion (CFTD) and Nemaline Myopathy (NEM). 

These diseases are characterized clinically by muscle weakness, atrophy and no cardio-

respiratory involvement. The aim of this project was to investigate the causes of the decreased 

RyR1 expression in muscles from patients with recessive RYR1 mutations. We first performed 

KCl-dependent Ca2+ release curves in myotubes from patients and controls and our results 

showed that the dose response curves and peak Ca2+ released were similar in myotubes from 

healthy individuals and patients with recessive RYR1 mutations. This was surprising since RyR1 

protein expression was significantly decreased in patients. This discrepancy led us to reason 

that epigenetic mechanism might be involved. Primarily, we postulated that microRNAs 

predicted  to  bind  the  3’  untranslated  region  of  RYR1 (miR22 and miR124) and cause its down-

regulation may be involved. We therefore determined the levels of miR22 and miR124 together 

with muscle specific microRNAs (miR1, miR133 and miR206) and found that they were also 

significantly decreased. miR22, miR124, miR1 and miR206 are also predicted to bind the  3’  UTR  

of HDAC4 and miR124 is predicted to bind the   3’  UTR  of HDAC5. As discussed in the paper, 

studies have also shown that miR22 regulates the expression of HDAC4 and inhibition of miR22 

potentiates HDAC4 expression levels [146]. Consequently we also measured the expression 

levels of HDAC4 and HDAC5 in muscle biopsies and found that they were very high in patients 

with recessive RYR1 mutations, compared to healthy individuals. Over-expression of class II 

HDACs is tightly linked to increased methylation of DNA CpG islands and vis-versa [147, 148]. 

DNA methylation in the CpG rich regions of the RYR1 was measured, and our results show that 

the methylation level of the RYR1 CpG island III was significantly higher in patients with 

recessive RYR1 mutations, compared to controls. In order to confirm the pathological 

mechanism linking HDAC and miRs expression we over-expressed HDAC4/HDAC5 and silenced 



 

94 
 

RYR1 using siRNA in mouse FDB fibers. Our results support the observations in patients, that 

overexpression of HDAC4 and HDAC5 leads to a decrease of RYR1 expression and to a 

decreased expression level of muscle specific microRNAs, while silencing RYR1 resulted in 

higher expression levels of HDAC4 and HDAC5.  

We also investigated if similar changes were occurring in the muscles of patients with 

other congenital muscle disorders such as Nemaline myopathy and similar results were 

obtained. These results indicate that a common epigenetic pathophysiological pathway is 

activated in some congenital myopathies and that these mechanisms contribute to the 

phenotype of muscle weakness and atrophy. HDACs inhibitors or DNMT inhibitors may thus 

improve the muscle function of these patients and therefore improve the patient’s  quality  of  

life. Future studies aimed in this direction will be undertaken in the laboratory. 
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Abstract
Congenital myopathies are genetically and clinically heterogeneous conditions causing severe muscle weakness, and
mutations in the ryanodine receptor gene (RYR1) represent themost frequent cause of these conditions. A common feature of
diseases caused by recessive RYR1mutations is a decrease of ryanodine receptor 1 protein content in muscle. The aim of the
present investigation was to gain mechanistic insight into the causes of this reduced ryanodine receptor 1. We found that
muscle biopsies of patients with recessive RYR1 mutations exhibit decreased expression of muscle-specific microRNAs,
increased DNAmethylation and increased expression of class II histone deacetylases. Transgenic mousemuscle fibres over-
expressing HDAC-4/HDAC-5 exhibited decreased expression of RYR1 and of muscle-specific miRNAs, whereas acute knock-
down of RYR1 in mouse muscle fibres by siRNA caused up-regulation of HDAC-4/HDAC-5. Intriguingly, increased class II
HDAC expression and decreased ryanodine receptor protein and miRNAs expression were also observed in muscles of
patients with nemaline myopathy, another congenital neuromuscular disorder. Our results indicate that a common
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pathophysiological pathway caused by epigenetic changes is activated in some forms of congenital neuromuscular
disorders.

Introduction
Congenital myopathies constitute a genetically and phenotypic-
ally broad spectrum of disorders characterized clinically bymus-
cle weakness and atrophy, joint contractures, spinal deformities
and variable cardiorespiratory involvement. Congenital myop-
athies have been historically defined by their most predominant
histopathological feature, with major entities being central core
disease (CCD), multi-minicore disease (MmD), nemaline myop-
athy (NM) and congenital fibre type disproportion (CFTD) (1–4).
Their severe complications require patients to receive continual
medical attention, resulting in a substantial individual, familial,
and social disease burden. Each congenital myopathy can be
caused by mutations in more than one gene, and mutations in
the same gene can cause different pathological phenotypes.
The prime examples are ryanodine receptor 1 (RYR1)-relatedmy-
opathies, caused bymutations in the gene encoding the RyR1, the
calcium release channel of the skeletal muscle sarcoplasmic re-
ticulum. Physiologically, activation of the RyR1 leads to release
of calcium from the sarcoplasmic reticulum, leading to muscle
contraction by a process called excitation–contraction coupling
(ECC) (5). Excitation–contraction coupling occurs at the triad, a
structure made up of two membrane compartments: the trans-
verse tubules containing the voltage-gated dihydropyridine re-
ceptors and the sarcoplasmic reticulum terminal cisternae
containing the RyR1. ECC requires the proper distribution and
assembly of sarcoplasmic reticulum proteins, and tight regula-
tion of calcium homeostasis is critical for proper muscle func-
tion. Indeed, mutations in RYR1 lead to calcium dysregulation
and are the underlying cause of several neuromuscular disor-
ders. While most dominant mutations associated with CCD and
malignant hyperthermia susceptibility are missense (6), reces-
sive mutations associated with the pathological phenotypes of
MmD, centronuclear myopathy (CNM) and CFTD (1–4) are often
compound heterozygous, with one allele presenting a non-
sense, intronic splice site or a frameshift mutation, and the
other allele presenting a missense mutation (3,4). As to their
mode of action, dominant missense mutations affect the bio-
physical properties of the RyR Ca2+ channel (6), whereas for reces-
sivemutations, themechanism is still elusive, though a common
finding is the low levels of RyR1 and of other SR proteins in biop-
sied muscles (2–4,7). Intriguingly, this decrease occurs only in
mature muscle and not in other tissues expressing RyR1 such
as B-lymphocytes (8).

Because of their heterogeneity, one of the major aims of
research in congenital myopathies is to find a common target
in order to develop a pharmacological tool to help improve
muscle function and thus quality of life in this group of pa-
tients. In fact, though the number of patients with a given gen-
etic form of a disease is small (1:3000), the number of patients
suffering from inheritable congenital myopathies worldwide is
∼286 million (9) with CCD accounting for 16% of cases, nema-
line rod myopathy for 20%, CNM for 14% and multicore myop-
athy for 10% (http://www.muscular-dystrophy.org/research/
patient_registries) (1). Thus, discovering a common target
downstream of the primary genetic defect could potentially
benefit a large number of patients. The findings of the present
investigation indicate that common epigenetic changes conse-
quent to the primary genetic defect are activated in different
congenital myopathies.

Results
Calcium homeostasis in myotubes from patients
with mutations leading to decrease RyR1 content

Our first approachwas to study calciumhomeostasis inmyotubes
derived frombiopsies of four patients initially diagnosed ashaving
MmD, three of whomcarry recessive RYR1mutations and one car-
rying the heterozygous mutation p.G297D but who exhibited re-
duced RyR1 protein on western blot. Subsequent whole-exome
sequencing later revealed that the patient also harboured two
compound heterozygous NEB mutations and is therefore identi-
fied as NEM UK06 in Figure 1. Figure 1 shows that the resting
fura-2 fluorescence ratio (340/380 nm) as well as the KCl-depend-
ent calcium release curves were not different, except for patient
Minicore UK 07, who showed a significantly reduced sensitivity
to KCl (EC50 for KCl was 55.3 ± 8.2 in myotubes from Minicore
UK07 compared with 13.9 ± 8.4 in myotubes from controls)
(Fig. 1A and B). The KCl-dependent calcium release curve for pa-
tient Minicore UK08 (dotted trace with asterisk symbol Fig. 1B)
had also been previously reported to be similar to that of control
myotubes (10). These results were surprising as western blots of
muscle biopsies from all four patients showed a very large reduc-
tion of RyR1 protein content (Fig. 1C) leading us to expect a large
effect on calciumhomeostasis inmyotubes. Because of these rea-
sons, we hypothesized that the mechanism leading to reduced
RyR1 expression is only operative in more mature tissues, such
asmyofibres, andnot in culturedmyotubes, even though the latter
express the main protein components of the ECC machinery (7).

Epigenetic down-regulation of the ryanodine receptor 1

We focussed the next series of experiments on epigenetic me-
chanisms thatmay be responsible for regulating RyR1 expression
levels and in particular on the content of microRNAs (miRs).
These endogenous ∼22 nucleotide small non-coding RNAs are
known to control gene expression by repressing translation or en-
hancing RNA degradation. Because of the limited amount of bio-
logical material available from patients, we decided to measure
the expression levels of a selected group of muscle-specific miR
transcripts, namelymiR-1,miR-133,miR-206, and themuscle en-
riched miR-486 (11–13). miR-22 and miR-124 were also measured
as bioinformatics analysis showed that the 3′ UTR of the RYR1
gene contains binding sites for these two miRs. As controls, we
selected miR-126 and miR-221 that are reported to be expressed
in many different tissues (14,15). We analysed muscle biopsies
from 5–9 controls, from 4–5 patients with CCD with dominant
RYR1mutations and from 12–16 patients with mutations leading
to a decrease of RyR1 protein expression with pathological fea-
tures of either MmD or CNM. The latter patients are categorized
as ‘Minicore’, and in addition to muscle weakness, they show
decreased RyR1 protein in their muscle biopsy, and all have the
following common pathological features: several minicores and
increased number of internal nuclei in their muscle biopsy as
well as amyopathic face often accompanied by ophthalmoplegia
(16). All but patients Minicore NL01, UK02, UK05 and UK09 har-
boured recessive RYR1 mutations (see Supplementary Material,
Table S1 for patient’s diagnosis, genotypic and phenotypic charac-
teristics). Figure 2 shows that the relative contents ofmiR-22,miR-
124, miR-1 and miR-133 were reduced to almost undetectable
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levels in biopsies from >60% of Minicore patients with decreased
RyR1 protein expression,whereas the reductionwas not as consist-
ent in biopsies fromCCDpatients. Our results also indicate that the
observed changes in miRs are specific to some muscle transcripts
andnot causedbyamore globaldefect in themiR-synthesizingma-
chinery, as miR-206, miR486 as well as miR-126 and miR-221 were
not decreased (Fig. 2 and Supplementary Material, Fig. S1).

RYR1 methylation

The results obtained so far point to a potential role of regulation
of skeletal muscle gene expression by additional factors.We next
verified whether changes of DNA methylation occur within the
RYR1 gene. This experiment is essential as methylation-depend-
ent expression of the RYR1 gene was not unexpected considering
the presence of several CpG-rich regions. Genomic DNA was ex-
tracted from biopsies of four controls and four Minicore patients,
and the methylation of CpG regions was studied using the me-
thyl-sensitive HpaII and the methyl-insensitive MspI restriction
enzymes. After cleavage of genomic DNA, quantitative real-
time PCR was performed and compared with a control PCR amp-
lifying a proximal RYR1 gene region lacking HpaII/MspI cleavage
sites (see schematic representation in Fig. 3A). The results
obtained clearly indicate that the CpG-III region of the RYR1
gene (from nucleotide 6790 to nucleotide 7035) of all theMinicore
patients analysed is hypermethylated compared with that of
controls (Fig. 3B) suggesting that RYR1 mutations are associated
withdeep changes in thepatternofDNAmethylation.Additionally,

we analysed biopsies fromMinicore patients and controls for DNA
methyltransferase (DNM) expression and found that in the former
group DNMT1 and DNMT2 are significantly up-regulated (Fig. 3C),
whereas the expression of DNMT3 did not vary significantly be-
tween controls and patients (results not shown).

HDAC expression levels in muscle biopsies of patients
with minicores with recessive RYR1 mutations

The levels of expression of HDAC-4 and HDAC-5 in muscle biop-
sies from controls and patients were subsequently determined
for the following reasons: (i) class II histone deacetylases
(HDACs) can be recruited in association with DNA methylation,
(ii) these enzymes repress transcription by deacetylating core
histones (17), (iii) theyaffectmyogenesis by binding to themuscle
transcription factor mef2 (18), (iv) they are predominantly ex-
pressed in those tissues expressingmef2, that is skeletal muscle,
heart and brain (18) and (v) HDAC-4 is a target of miR-22 whose
down-regulation potentiates HDAC-4 expression (19). Figure 4A
shows a representative western blot of total muscle homogenate
stained with anti-HDAC-4 and HDAC-5 antibodies; the bottom
lane shows a loading control of the same blot stripped and
probedwith anti-myosin heavy chain (MHC) antibodies recogniz-
ing allMHC isoforms. The control biopsyshows low levels of class
II HDACs (Lane 1 Fig. 4A), whereas samples from theMinicore pa-
tients contain abnormally high levels of HDAC-4 and HDAC-5.
Figure 4B shows the relative content of HDAC-4 and HDAC-5
normalized for MHC content in biopsies from all the available

Figure 1. Myotubes from Minicore patients harbouring recessive RYR1 mutations do not show alterations of the resting [Ca2+] nor decreased Ca2+ release after in vitro
stimulation. (A) Fura-2-loaded myotubes were imaged in Krebs Ringer solution containing 2 m Ca2+. No difference in the resting [Ca2+]i was observed between
controls (white bar), cells from patients with recessive mutations (grey bars) or a patient initially diagnosed as MmD carrying the heterozygous p.G297D RYR1
mutation but who also carries two compound heterozygous NEB mutations (black bar). Bars represent the mean (± SEM) fluorescence (340/380 nm) from the indicated
number of cells. (B) KCl-dependent peak Ca2+ release in Krebs Ringer containing 100 µ La3+. Each point represents the mean (±SEM) increase in fura-2 fluorescence
ratio (340/380 nm) of at least 10 myotubes. The data were analysed through Bolzmann equation using Origin 6.0. (C) Western blot analysis of total protein extracts
from muscle biopsies shows major decrease in RyR1 protein expression in Minicore patients. Desmin served as loading control.

4638 | Human Molecular Genetics, 2015, Vol. 24, No. 16

 at U
niversitat B

asel on D
ecem

ber 17, 2015
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

97



patients. Biopsies from patients with recessive compound het-
erozygous RYR1 mutations, with a non-sense, intronic splice
site or a frameshift mutation in one allele and a missense muta-
tion in the other allele show a 6- to 15-fold increase in class II
HDAC content, and the increase in HDAC-4 expression was also
detectable at the transcriptional level (Fig. 4D). Interestingly,
HDAC-4 was not detectable in any of the myotube cultures
(Fig. 4C) supporting the observed lack of effect of the mutations
on the ECC characteristics of myotubes from the Minicore
patients (Fig. 1). Figure 4E shows a photomicrograph taken by
confocal microscopy on a sample from Minicore SA06; as can be
seen, though thevastmajorityofHDAC-4 isdistributed throughout
the muscle fibre, the amount co-localizing with nuclei is higher in
the patient’s biopsy than in the control biopsy. Analysis of two
Minicore patients and two controls confirmed that the percentage
of HDAC-4 co-localizingwith nuclei is∼10 times higher inmuscles
from Minicore patients than that from controls (9.2 ± 3.8% versus
1.1 ± 0.3%, respectively). We also compared HDAC-4 and HDAC-5
up-regulation and RYR1 hypermethylation in the samples of the
four Minicore patients and found a positive correlation between
high HDAC-4/5 levels and hypermethylation of the studied RYR1
CpG-III gene sequence (Fig. 5A and B).

Effect of HDAC4/5 over-expression and RYR1 silencing
in mouse muscle fibres

To demonstrate a causative link between RYR1 mutations and the
above-described epigenetic changes, wemanipulated gene expres-
sion by creating transgenic intact adult mouse skeletal muscle flex-
or digitorum brevis (FDB) fibres by either (i) over-expressing HDAC-4
and HDAC-5 or (ii) knocking down RyR1 by siRNA silencing. When
compared with acute transfection with an empty plasmid, acute
over-expression of HDAC-4 and HDAC-5 directly recapitulates the
effects observed in muscle biopsies from Minicore patients
(Fig. 6). That is, acute over-expression of HDAC-4 and HDAC-5 in
mouse FDB fibres decreases RYR1 transcript expression by ∼70%
(Fig. 6) and RyR1 protein content by 75% (Supplementary Material,
Fig. S3), down-regulates muscle-specific miRs and down-regulates
the expression of myomesin-1, a muscle-specific gene whose ex-
pression is regulated by the transcription factor mef2 (20,21)
(Fig. 6). No changes were observed in mef2, miR-126, miR-221 and
miR-486 expression (Supplementary Material, Table S2). On the
other hand, silencing RYR1 for 8 days with siRYR1 significantly
increased HDAC-4 and HDAC-5 expression levels but did not
change the expression of muscle-specific miRs (Fig. 7).

Figure 2. Muscle-specific miR expression levels differ in biopsies from patients with dominant and recessive RYR1 mutations. Each symbol represents the mean relative
expression of the indicated miR from a single patient normalized to RNU44 content and to the muscle-specific housekeeping genes (DES/ACTN2). Control healthy
individuals, circles; CCD with dominant RYR1 mutations, squares; Minicore, triangles. Statistical analysis was performed using ANOVA and Bonferroni multiple
comparison test (95% confidence interval). miR-22 *P < 0.0005, CTRL n = 9, CCD n = 4, Minicore n = 15; miR-124 **P < 0.05, CTRL and CCD n = 5, Minicore n = 12;
miR-1*P < 0.0005, ***P < 0.009, CTRL n = 8, CCD n = 5, Minicore n = 16; miR133 ****P < 0.002, CTRL n = 10, CCD n = 4, Minicore n = 16; miR-206; no statistical significance change
between groups. CTRL n = 9, CCD n = 5, Minicore n = 16. Statistical analysis was performed using ANOVA and Bonferroni multiple comparison test (95% confidence interval).
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Increasing class II HDAC expression does not affect
mef2 expression

Having established that down-regulation of RYR1 causes an in-
crease in HDAC-4/5 expression, we reasoned that this elevation
could lead to downstream effects onmef2, amaster trans-activa-
tor of skeletal muscle gene expression (22). Mef2 is sequestered
by class II HDACs resulting in blockage of mef2-dependent gene
transcription (23), and the RYR1 andmiR-1/miR-133 genes contain
intragenic mef2-dependent enhancer sequences that regulate
their transcription in muscle (24,25). We therefore examined the
patient’s muscle biopsies for: (i) mef2 content, to ascertain that
there was no compensatory up-regulation of its expression
owing to the increased expression of HDAC-4/5 and (ii) myomesin
a protein that is transcriptionally regulated by mef2 (20,21).
Figure 8 shows that the transcript levels of MEF2A, MEF2C and
MEF2D are not significantly different between controls and biop-
sies from patients. On the other hand, myomesin-1 protein levels
normalized to MHC are significantly decreased (by ∼50% in biop-
sies isolated from patients with minicores (Fig. 8B and C).

HDAC-4/5 are also up-regulated in other congenital
myopathies

To verify whether these observed effects (that is increased levels
of HDACs, decreased levels of RyR1 and decreased levels of mus-
cle-specificmiRs) are specific for congenital myopathies owing to
recessive RYR1 mutations or a more general response occurring
in patients with other congenital myopathies, we analysed biop-
sies from 11 patients with NM harbouringmutations in KBTBD13,

ACTA1 or NEB (NEM 6, NEM3 and NEM2, respectively). A similar
decrease in muscle-specific miR-22, miR-133 and miR-1s was
observed (Supplementary Material, Fig. S2). We also tested the
muscle biopsies from the patients with NM for RyR1 content
and HDAC-4 and HDAC-5 expression. Surprisingly, RyR1 protein
content was significantly reduced (control versus NEMwas 100 ±
27.9% versus 0.03 ± 0.02%, P < 0.01, Student’s t-test), and HDAC-4
and HDAC-5 protein levels were significantly increased (Supple-
mentary Material, Fig. S2).

Discussion
Here, we identify a novel pathophysiological mechanism occur-
ring in skeletal muscles of patients with congenital myopathies
wherebyactivation of a cascade of events leads to the down-regu-
lation of muscle-specific genes. We report that recessive com-
pound heterozygous RYR1 mutations are accompanied by the
following changes in skeletal muscle: (i) hypermethylation of
the RYR1 gene, (ii) a 6- to 15-fold increase in class II HDAC expres-
sion and (iii) reduction in muscle-specific miRs. Our results re-
present a major advancement in the field as to date the mode
of action of recessive RYR1 mutations identified in patients
with MmD, CNM and CFTD has been elusive and the functional
characterization of cells harbouring such mutations has failed
to yield a mechanism compatible with the disease phenotype
(8,10,26). A regular finding in muscle biopsies of patients with re-
cessive RYR1 mutations has been a reduced expression level of
RyR1 protein and transcript (2–4,26–28). This reduction appears
to be muscle-specific and has not been observed in other tissues

Figure 3. The RYR1 is hypermethylated, and DNA methyltransferases 1 and 2 are up-regulated in muscles fromMinicore patients. (A) Schematic representation showing
the location of the CpG region III within the RYR1 gene, the position of the CpG sites (indicated by arrowheads) and the location of the 5′ CCGG 3′HpaII/MspI site (arrowed);
the location of the internal control region lacking HpaII/MspI sites is also shown, aswell as the location of the PCR primers used to amplify the DNA. (B) Hypermethylation
of CpG region III of the RYR1. Each symbol represents the mean relativemethylation value from a patient (CTRL n = 4; Minicore n = 4). Experimental details are outlined in
Materials and Methods. (C) DNA methyltransferase 1 (DNMT1) and DNMT2 are significantly up-regulated in muscles of Minicore patients. Each symbol represents the
mean relative expression of DNMT1 (CTRL n = 5; Minicore n = 9) and DNMT2 (CTRL n = 4, Minicore n = 8) from a single patient normalized to the muscle-specific
housekeeping gene DES (*P < 0.02, **P < 0.025, Student’s t-test).
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ectopically expressing RYR1, such as B-lymphocytes (8). Because
of these results, we set out to test the hypothesis whereby the
mechanism leading to reduced RyR1 muscle expression may be

epigenetically regulated and the schematic representation de-
picted in Figure 9 summarizes the results of the present study.
The key point is that RYR1 mutations are accompanied by an

Figure 4. Class II HDACs are significantly up-regulated in muscle biopsies from patients with Congenital Muscle Disorders. (A) Western blot analysis of biopsies from a
control muscle (Lane 1) and Minicore patients (Minicore SA03 and Minicore SA05). Fifty micrograms of total muscle protein extracts were separated on a 6% SDS–PAGE,
blotted onto nitrocellulose and probed with anti-HDAC-4 and HDAC-5 antibodies. Lower portion of the figure, loading control; the same blot was probed with anti-MHC
recognizing all isoforms. (B) Quantification of HDAC-4 and HDAC-5 normalized to MHC in muscle biopsies of controls (circles), CCD patients (squares) and Minicore
patients (triangles). HDAC-4 *P < 0.001, CTRL n = 9, CCD n = 5, Minicore n = 12; HDAC-5**P < 0.01 CTRL, n = 4, CCD n = 3, Minicore n = 9; ANOVA and Bonferroni multiple
comparison test were performed. Each symbol represents results from a single patient. (C) No HDAC-4 protein is detectable in myotubes. (D) HDAC-4 transcript levels
as assessed by qPCR in muscle biopsies from controls and Minicore patients ***P < 0.02, CTRL n = 4, Minicore n = 14; statistical analysis performed using Student t-test.
(E) Confocal microscopy showing distribution of HDAC-4 in a muscle biopsy from a control (left panel) and Minicore patient. Arrows indicate co-localization of HDAC-4
and DAPI. Bar indicates 10 µm.
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increased expression of class II HDACs. We are aware that an in-
crease inHDACexpression has been reported in other conditions,
including denervation, muscle atrophy, ALS and Huntington’s
disease (29–34). However, we would like to point out that (i)
such high levels of expression of class II HDACs have not been re-
ported in any other human neuromuscular abnormalities inves-
tigated so far; (ii) such an increase of HDAC is specific because the
signal to background ratio of our set of data is 6–16 times greater
than that reported in other muscle disorders and (iii) over-
expression of HDAC-4 and HDAC-5 in mouse FDB fibres results
in the down-regulation of RYR1 and of muscle-specific miRs.
High levels of HDACs not only lead to chromatin condensation
thereby decreasing gene transcription (21,35,36), but also seques-
ter mef2 (23,37–39). In this context, it should be pointed out that
there is no compensatory up-regulation of mef2 in muscles from
the patients, so that up-regulation of HDACs would lead to the
down-regulation of mef2-dependent proteins. That this is the
case is supported by the fact that RYR1, myomesin and muscle-
specific miRs containing mef2-dependent binding domains
(21,24,25) are significantly down-regulated in the muscles of
Minicore patients. Though few studies have focussed on the me-
chanisms regulating RYR1 expression, the 5′ region of the human
and porcine RYR1 gene contains, aside a mef2-binding domain
(24), consensus sequences for the transcription factor SP1, for
muscle-specific promoter elements as well as for a number of
transcriptional activators (40). SP1 is a zinc finger transcription
factor that binds to CG-rich regions present in many promoters.

In fibroblasts, SP1 interacts with HDAC-2 leading to the transcrip-
tional silencing of the human telomerase reverse transcriptase
(hTERT) gene in normal somatic cells (41). Whether SP1 can
also interact with class II HDACs and whether this interaction
is modified by CpG methylation also leading to repression of
RYR1 gene transcription remains to be investigated.

Interestingly, the 3′ UTR of HDAC-4 and that of HDAC-5 have
binding sites for miR-22/mir-124/miR-1/miR-206 and miR-206,
respectively, and HDAC-4 is a target ofmiR-22 whose down-regu-
lation potentiates its expression (19). Thus, it follows that a de-
crease of miR-22, miR-124 and miR-1 activates a pathological
loop leading to the further up-regulation of class II HDACs
(Fig. 9). This mechanism is compatible with and gives mechanis-
tic insight to two previous observations: (i) other muscle-specific
genes besides the RYR1 are down-regulated in patients with con-
genital myopathies owing to RYR1mutations (7) and (ii) the RYR1
was reported to be imprinted in some patients with MmD be-
cause of epigenetic factors (42). The former observation is likely
due to the sequestration of mef2 by class II HDACs (37–39). The
latter observations on the other hand can be explained by the
finding that the DNA methyltransferases DNMT1 and DNMT2
are over-expressed in muscle biopsies of Minicore patients,
bringing about RYR1hypermethylation. DNMT1 is amaintenance
methyltransferases preservingmethylation patterns but also has
de novo activity (43). DNMT2 on the other hand is thought to par-
ticipate in the recognition of damaged DNA and mutation repair
(44). In fact, the two observations are mechanistically linked as
hypermethylation goes hand in hand with HDAC activation and
gene down-regulation (23,24,35,36,45); furthermore, DNA dam-
age can activate DNA-methylation via activation of DNMT1 (46),
resulting in a pathological loop that will ultimately shut down
gene transcription of mef2-dependent genes.

As to the role miRs in neuromuscular diseases, this is still un-
clear: over-expression ofmiR-22 is sufficient to cause cardiomyo-
cyte hypertrophy (47) and several miRs are up-regulated in
muscular dystrophies (48–50) but depending on the disease,
some miRs may appear to be down-regulated (50). Interestingly,
a recent study demonstrated that mice lacking miR-133 develop
an adult onset CNM in type-2 fibres, and this is accompanied by
impaired mitochondrial function, fast to slow myofiber conver-
sion and disarrangement of triads (51), histopathological
changes very similar to those observed in recessive human
RYR1-related myopathies. Though in the paper the authors con-
clude that this is principally due to the dysregulation of dyna-
min-2, one of miR-133′s targets, the similarities between the
phenotype of the miR-133a knockout mice and that of patients
with RYR1 mutations is striking and is indicative of a common
pathophysiological pathway.

The main point emerging from our studies is that epigenetic
factors are central culprits in recessive RYR1-linked myopathies.
Our results also show that these factors are likely to also play a
major role in other congenital muscle diseases such as NM. In
support of a role of epigenetics, moderate exercise has been
shown to improve the muscle function of some patients with
congenital myopathies (52,53) and there is increasing evidence
that physical activity influences DNA methylation in humans
(53,54). Taken together our results suggest that a common patho-
physiological mechanism is activated in skeletal muscles of
patients with some congenital myopathies. The presence of
mutations in muscle-specific genes (in this case RYR1) activates
factors that lead to the up-regulation of DNMs and of class II
HDACs, the master regulator of chromatin structure. Though
the primary mechanism causing HDAC up-regulation is at the
moment unclear, our data provide the proof of concept that

Figure 5. Correlation between DNA methylation and HDAC-4/HDAC-5 expression
and up-regulation of DNA methyltransferases in muscles of patients with
Minicore. The data shown in this figures were obtained from biopsies from four
control individuals (empty squares) and from biopsies from four Minicore patients
(filled squares) (Minicore NL02, Minicore NL03; Minicore SA03, Minicore SA05).
(A) Correlation between HDAC-4 and RYR1 hypermethylation (correlation
coefficient r = 0.4695). (B) Correlation between HDAC-5 and RYR1 hypermethylation
(correlation coefficient r = 0.7925).
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DNM and HDAC are potential pharmacological targets to treat a
wide range of inherited neuromuscular conditions with different
genetic backgrounds that as a common feature lead to a decrease
in RyR1.

Materials and Methods
Quantitative PCR

Total RNA was extracted using Trizol (Life Technologies,
#15596018). cDNAwas synthesized with the High Capacity cDNA
synthesis kit or Taqman microRNA Reverse Transcription kit
(Applied Biosystems, #4366596). Transcript levels were quantified
using Syber-Green reagent on an Applied Biosystem platform
(7500 fast real-time PCR system); levels of expression from tripli-
cate replicas were averaged and normalized to the content of the
muscle-specific gene desmin (DES). In the case of human samples,
because of the limited amount of biological material, not all biop-
sies could be investigated for all genes. The sequences of the pri-
mers used for qPCR are listed in SupplementaryMaterial, Table S3.

MicroRNA determination

Quantification of selected miRs was performed using TaqMan
master mix no-UNG 2 (Life Technologies, # PN 4427788) and the
following miR assays (Life Technologies, # PN 4427975): miR-22,
miR124a, miR-133a, miR-1, miR-206, miR-486-3p, miR-221 and
miR-126. Each reaction was performed in triplicate, and the re-
sults from each muscle sample were analysed and averaged. In
human muscle biopsies, miR expression levels were normalized
to RNU44 and to the muscle-specific genes DES and Actinin2
(ACTN2) that show similar Ct values in patients and healthy indi-
viduals. In mouse FDBs, miR expression levels were normalized
to U6 snRNA. In the case of human samples, because of the
limited amount of biological material, not all biopsies could be
investigated for all microRNAs.

DNA methylation

Total genomic DNAwas isolated using the GeneElutemammalian
genomic DNA Miniprep kit (Sigma Genosys). DNA methylation

Figure 6. In vivo over-expression of HDAC-4 and HDAC-5 causes down-regulation of RYR1 and of muscle-specific miRs. Each symbol shows the mean triplicate relative
expression value of the indicated transcript normalized to the indicated gene. Circles, control FDB fibres mock transfected with the empty pIRES2-dsRed2 plasmid;
squares, FDB fibres transfected with a plasmid encoding mouse HDAC-4 and HDAC-5. HDAC-4; *P < 0.0001, n = 6; HDAC-5 **P < 0.005, n = 6; RYR1 **P < 0.005, CTRL n = 4,
HDAC-4 and 5 n = 6; miR-22 and miR-1; ***P < 0.045, n = 6; miR-133 ****P < 0.035, n = 6; miR-206 ****P < 0.035, n = 5; Myomesin ****P < 0.035, n = 4; miR-124 was quantified and
no significance change was observed. Statistical analysis was performed using the Student’s t-test.
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was assessed by PCR amplification of genomic DNA digested with
the methyl-sensitive HpaII and MspI restriction enzymes (55)
(see schematic representation in Fig. 3A). Restriction enzyme
digestion reactions were carried out overnight at 37°C, with
HpaII or MspI (New England BioLabs), in final volume of 20 µl.
The primers used for PCR amplification are listed in Supple-
mentary Material, Table S3 as: Human RYR1 CG-rich (F and R)
amplifying the CpG-III region of the RYR1 gene and Human

RYR1 Control (F and R), amplifying a control region of the
RYR1 gene lacking HpaII/MspI sites (see Fig. 3A). To determine
the extent of DNA methylation, the ΔCt values were first ob-
tained comparing the CpG-III and control PCRs of HpaII diges-
tions, and then the ΔΔCt values were generated using as
reference the samples exhibiting the higher ΔCt. Higher ΔΔCt
values indicate higher extent of DNA methylation at the CpG-
III RyR1 MspI/HpaII cleavage sites.

Figure 7. Down-regulation of RYR1 by siRNA leads to up-regulation of HDAC-4 and HDAC-5. Each symbol shows the mean triplicate value relative expression level of the
indicated transcript normalized to U6 snRNA (miR expression) or DES (RYR and HDAC expression), in fibres isolated from a single mouse. Circles, control (mock)
transfection with a scrambled siRNA; squares FDB transfected with siRYR RNA (see Materials and Methods for details). RYR1 *P < 0.0001, n = 7; HDAC-4 **P < 0.04, CTRL
n = 6, siRYR1 n = 7. HDAC-5; **P < 0.04, CTRL n = 6, siRYR1 n = 9. miR-22, miR-133, miR-124 and miR-1 show no statistical difference. Statistical analysis was performed
using the Student’s t-test.

Figure 8. Increased expression of HDAC-4/HDAC-5 leads to a decrease in the content of myomesin, without affectingmef2. (A) mef2A, mef2C andmef2D transcript levels
are similar in muscle biopsies of patients and controls (expression levels normalized to DES). (B) Representative western blot showing that the protein content of
myomesin is lower in patients with Minicore compared with healthy individuals (letters and numbers refer to patient no.; see Supplementary Material, Table S1);
(C). Quantification of myomesin protein content in muscle biopsies: controls, circles (n = 6); CCD, squares (n = 5); Minicore, triangles (n = 9). *P < 0.02. Statistical analysis
was performed using ANOVA and Bonferroni multiple comparison test (95% confidence interval).
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Electrophoresis and immunoblotting

Totalmuscleproteinswereextracted in10mHepespH7.0, 150m

NaCl, 1 m EDTA and anti-protease (Roche, # 11873580001). Pro-
tein concentration was determined using Protein Assay Kit II
(Bio-Rad Laboratories) using BSA as a standard. SDS–PAGE, pro-
tein transfer on to nitrocellulose membranes and immunostain-
ing were performed as described previously (2,8). The following
primary antibodies were used:mouse anti-RyR1 (Ryanodine 1 Re-
ceptor, Thermo Scientific, # MA3-925), mouse anti-MHC (MHC,
Millipore, #05-716), Rabbit anti-HDAC-4 (Histone Deacetylase 4,
Cell Signaling, #2072) and rabbit anti- HDAC-5 (Histone Deacety-
lase 5, Abcam #1439), and rat anti-myomesin was a generous
gift of Prof. Mathias Gautel, King’s College, London, UK (56). Sec-
ondary peroxidase conjugateswere Protein G–peroxidase (Sigma,
#P8170) and peroxidase-conjugated goat anti-mouse IgG (Sigma,
#A2304). The immunopositive bandswere visualized by chemilu-
minescence using the Super SignalWest Dura kit (Thermo Scien-
tific). In order to perform statistical analysis, the intensity of the
immunopositive bands was determined using ImageJ/FIJI. The
intensity valueswere normalized to the intensity of the indicated
muscle-specific housekeeping protein. The value (arbitrary units)
obtained from the patient’s biopsies were divided by the mean
value obtained from control biopsies and are expressed as 100%.

Mouse muscle fibre electroporation and isolation

The procedurewas as described byDiFranco et al. (57). Briefly, 8- to
14-week-oldmicewere anaesthetizedusing isofluorane, and 7.5 µl
of 2 mg/ml Hyaluronidase in RNase-free Tyroide’s Buffer (Sigma
Fine Chemicals, #H3506) was injected under the footpad. The
mice were left 1 h under supervision, and subsequently, the fol-
lowing constructs were injected into the footpad: pCMV6-HDAC4
(Origene #MR211598) and pCMV6-HDAC5 (Origene # MC202550)
whereas control mice (mock transfected) received 20 µg of
pIRES2-dsRed2 plasmid (Clonetech #632420). For siRNA silencing
experiments, 6 nmol of RNA either specific for the RYR1 (Ambion;
siRNA RyR1-#4390771) or a scrambled siRNA sequence (Negative
control 2-#4390845) were used. siRNA-transfected FDBs were also
injected with lipofectamine RNAiMAX (Invitrogen, #13778-030).
Ten minutes post-injection, FDBs were electroporated using
acupuncture needles placed parallel and perpendicular to the
long axis of the foot (with 1 cm distance), and twenty pulses
(100v/cm, 20 ms duration and 1 Hz of frequency) were given. Six

to ten days post–transfection, the mice were sacrificed and FDBs
were isolated by enzymatic dissociation at 37°C for 60 min in
Krebs Ringer solution no Ca2+ (pH 7.4), containing 0.2% collage-
nase I (Sigma Fine Chemicals, C-0130). Enzymatic digestion was
terminated by washing the muscle with Tyrode’s solution (pH
7.4), and single fibres were isolated and total protein extracts
prepared or RNAwas extracted and analysed by qPCR.

Ca2+ measurements

Primary skeletal muscle cultures and cell imaging were per-
formed as previously described (58).

Confocal microscopy and immunofluorescence

Biopsies were embedded for pathological examination and sliced
using a cryostat (10 µm thickness). Cryosections were fixed with
methanol: acetone (1:1) for 30 min and then incubated in the fol-
lowing solutions for 90 min at room temperature: blocking solu-
tion (Roche, #115000694011), rabbit anti-HDAC-4 (Cell Signaling,
#2072) andAlexa Fluor 647-conjugated anti-Rabbit IgG (Life Tech-
nologies, #A21245). Nuclear staining was performed using DAPI
(Invitrogen, #D21490), and slides were mounted with mounting
medium (Sigma, #1000-4) and sealed hermetically with 1.5-
mm-thick coverslip. A Nikon A1R Confocal microscope was
used for 3D image acquisition with a 40× oil objective (N.A. = 1.3).
Imageswere analysed using threshold co-localization function in
ImageJ2/FIJI program.

Compliance with ethical standards

All procedures performed in studies involving human partici-
pants were in accordance with the ethical standards of the insti-
tutional and/or national research committee and with the 1964
Helsinki declaration and its later amendments or comparable
ethical standards. This study was approved by the Ethikkommis-
sion beider Basel (permit No. EK64/12); all subjects gave written
informed consent to carry out this work.

All applicable international, national and/or institutional
guidelines for the care and use of animals were followed. All pro-
cedures performed in studies involving animals were in accord-
ance with the ethical standards of the institution or practice at
which the studies were conducted. Experiments on mouse mus-
cles were approved by the local Cantonal Veterinary authorities
(permit No. 2658).

Statistical analysis and graphical software

Statistical analysis was performed using the Student’s t-test;
means were considered statistically significant when the
P-value was < 0.05. When more than two groups were compared,
analysis was performed using the ANOVA test followed by the
Bonferroni post hoc test using the statistical package included in
GraphPad Prism 6.0 software. Origin 6 was used to generate
dose–response curves. Images were assembled using Adobe
Photoshop CS (version 8.0).

Supplementary Material
Supplementary Material is available at HMG online.

Figure 9. Cartoon depicting how mutations in RYR1 lead to a decrease in
RyR1 content thereby leading to weak muscles. Mutations lead to DNA
hypermethylation and HDAC-4/HDAC-5 over-expression. This causes mef2
sequestration thereby inhibiting transcription of genes regulated by mef2,
including the RYR1 and muscle-specific miRs. A decrease in RyR1 would
severely affect muscle excitation–contraction coupling because this calcium
channel is a central player in this mechanism, releasing the calcium necessary
for muscle contraction from the sarcoplasmic reticulum.
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1: Expression levels of non-muscle specific miR are not 
changed in patients with Congenital Muscle Disorders. Controls, circles; CCD 
patients, squares; Minicore patients, triangles. Each symbol represents the mean 
triplicate value from a single patient normalized to RNU44 content and to the muscle 
specific housekeeping genes (DES/ACTN2). miR126, miR221 and miR486 were 
quantified and no significant changes were observed between the groups. Statistical 
analysis was performed using ANOVA and Bonferroni multiple comparison test 
(95% Confidence interval).  
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 Supplementary Figure 2: Muscle-specific miRs are down-regulated and HDAC-
4 and HDAC-5 are up-regulated in patients with Nemaline myopathy. For miRs, 
each symbol represents the mean triplicate value from a single patient normalized to 
RNU44 content and to the muscle specific housekeeping genes DES/ACTN2. For 
HDAC-4 and HDAC-5 the intensity of the immunopositive band obtained by Western 
blot was normalized to the intensity of the immunopositive MHC band. Controls, 
squares, Nemaline patients, diamonds. miR22 *p<0.003, CTRL and NEM n=9; 
miR133, ** p<0.0007, CTRL n=10 NEM, n=11; miR1;***p<0.0015, CTRL n=8, 
NEM n=10; HDAC4 ****p<0.045, CTRL n=9, NEM n=4; HDAC5 ****p<0.045, 
CTRL n=4, NEM n=4. miR124 and miR206 were quantified and no statistical 
significance was observed.  Statistical analysis performed using Student’s t test. 
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Supplementary Figure 3: Over-expression of HDAC-4 and HDAC-5 in mouse 
FDB fibers significantly decreases RyR1 protein content. Total homogenates 
prepared from mouse FDB fibers isolated from footpads eletroporated with an empty 
plasmid (CTRL) or with plasmids encoding HDAC-4 and HDAC-5 (HDAC) were 
isolated 6-10 days post-transfection. Proteins were separated on a 6% SDS PAG, 
transferred onto nitrocellulose and probed with mouse anti-RyR1 Abs (70 µg protein), 
with rabbit anti-HDAC-4 and rabbit anti-HDAC-5 Abs (20 µg) or with anti-MHC (20 
µg) followed by peroxidase conjugated anti-mouse or anti-rabbit antibodies. The 
immunopositive bands were visualized by chemiluminescence using the Super Signal 
West Dura kit (Thermo Scientific).  

In order to perform statistical analysis, the intensity of the immunopositive RyR1 
band in CTRL and HDAC over-expressing muscle homogenates were compared. 
HDAC-over-expression resulted in a significant decrease of the RyR1 protein (% 
RyR1 protein remaining was 24.02± 9.42  % (n=6; p< 0.0025 Student t test). 
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 Supplem
entary Table I: G

enotypes/phenotypes/ clinical details of patients enrolled in the present study 
 

C
ode  N

° 
(C

ountry) 
N

eurological 
D

iagnosis  
Identified RYR1 
m

utation  
C

om
m

ent (and reference if available) 

C
C

D
 N

L 01 (The 
N

etherlands) 
 

C
C

D
 dom

inant: 
C

lassical C
C

D
 phenotype 

RYR1 heterozygous 
c.13940T>C

 (p.L4647P)  
D

ifficulties in sports in childhood, m
ild proxim

al w
eakness, am

bulant, A
chilles 

contractures. A
t present, am

bulance norm
al; active in sports, clinically no signs 

of 
polyneuropathy. 

EM
G

 
focused 

on 
peripheral 

nerves: 
no 

signs 
of 

polyneuropathy. 
M

uscle 
biopsy 

(age 
32): 

type 
I 

predom
inance, 

increased 
variation in fibre diam

eter, m
any central cores, Z-band stream

ing. 
 

C
C

D
 N

L 02 (The 
N

etherlands) 
 

C
C

D
 dom

inant 
C

lassical C
C

D
 phenotype  

RYR1 heterozygous 
c.13940T>C

 (p.L4647P)  
D

ifficulties in sports in childhood, m
ild proxim

al w
eakness, am

bulant, A
chilles 

contracture. EM
G

: both signs of m
yopathy and axonal polyneuropathy. 

M
uscle biopsy (age 60): type I predom

inance (100%
), increased variation in fibre 

diam
eter, cores in all cells, partly central cores, partly m

ultim
inicores, also 

abundance of fibres w
ith nem

aline rods. U
ncle of patient above: T07-16076; he 

also has distal w
eakness, related to an axonal polyneuropathy m

ost likely due to 
a M

FN
 m

utation. This is probably not relevant since the biopsy w
as taken from

 a 
proxim

al m
uscle. 

C
C

D
 N

L 03 (The 
N

etherlands) 
 

C
C

D
 dom

inant 
C

lassical C
C

D
 phenotype  

 

RYR1 heterozygous 
c.13940T>C

 (p.L4647P)  
M

uscle biopsy (age 61): M
yopathy w

ith central cores and cores w
ith nem

aline 
rods. C

om
plete type I predom

inance. M
uscle 

ultrasound and M
R

 (2008): 
m

yopathic changes (back, abdom
inal, low

er legs). A
lso distal w

eakness due to 
axonal polyneuropathy, m

ost likely secondary to M
FN2 m

utation (H
M

SN
2). 

This is probably not relevant since the biopsy w
as taken from

 a proxim
al m

uscle. 
Father of patient above: T07-16076; brother of patient above: T08-10960. 

C
C

D
 U

K
 01 (U

K
) 

 
C

C
D

 dom
inant 

C
lassical C

C
D

 phenotype  
RYR1 heterozygous 
c.14680G

>C
 (p.A

4894P)  
 

Typical dom
inant C

C
D

 fam
ily w

ith clinical features of proxim
al w

eakness 
pronounced in the hip girdle, congenital dislocation of the hips and scoliosis, and 
central  cores on m

uscle biopsy (56). 
C

C
D

 U
K

 02 (U
K

) 
 

K
ing-D

enborough 
syndrom

e w
ith central 

cores 

Screening 
of 

entire 
RYR1 

coding 
did 

not 
reveal 

any 
variation 

M
ild proxim

al w
eakness w

ith dysm
orphic facial features, short stature, scoliosis 

and m
ultiple contractures. Typical central cores on m

uscle biopsy. A
 m

uscle 
biopsy perform

ed at 9 m
onths of age had show

n increased fibre size variability 
but no other changes. A

 repeat m
uscle biopsy perform

ed at 7 years of age from
 

the quadriceps dem
onstrated increased variability in fibre size and type I 

predom
inance w

ith clear central areas suggestive of central core disease (C
C

D
) 

(57). This patient is likely to have a TTN
 m

utation but this aw
aits confirm

ation 
M

inicore N
L 01 

(The N
etherlands) 

 

M
m

D
 

H
eterozygous RYR1 

c.11905C
>A

 (p.Q
3969K

) in 
exon 86. Second m

utation 
not found yet 

D
evelopm

ental delay (m
ilestones 4- 5 m

onths delay at age 2 years) and 
generalized m

uscle w
eakness. Facial w

eakness (open m
outh). A

xial hypotonia 
w

ith head lag and slipping through. G
ow

ers sign positive. H
yperm

obility. 
A

m
bulant at latest follow

-up at age 6. B
iopsy (age 2): increase of central and 

internal nuclei, type I predom
inance (67%

), on EM
 several m

inicores and 
disruption of Z-lines.  

M
inicore N

L 02 
(The N

etherlands) 
 

C
ongenital m

yopathy; 
few

 m
inicores 

C
om

pound heterozygous 
RYR1 c.12629A

>G
 

(p.K
4210R

) c.14723A
>G

 
(p.D

4908G
)  

M
ild proxim

al m
uscle w

eakness since childhood, distal joint hyperm
obility. 

M
uscle biopsy (age 14): C

ongenital m
yopathy; predom

inace of type I fibres 
(90%

); m
ild m

yopathic features (increase of internal nuclei). M
inicores on EM

 

M
inicore N

L 03 
(The N

etherlands) 
 

C
ongenital 

m
yopathy; 

increase of internal nuclei, 
no 

fibre 
type 

I 
predom

inance, 
m

ultim
inicores 

C
om

pound heterozygous 
RYR1: c.4711A

>G
 

(p.I1571V
);  

c.10097G
>A

 (p.R
3366H

) 
c.11798A

>G
 (p.Y

3933C
); 

c.14545G
>A

 (p.V
4849I).  

M
ild m

uscle w
eakness in childhood, gradual increase of m

uscle w
eakness. C

K
 

441 – 1962 U
/l. N

eurological exam
ination (age 50): m

ild vertical ophtalm
oplegia 

w
hen looking upw

ards. N
eckfexion, extension 4. Elbow

 extension and flexion 5. 
H

ands 4. H
ip- and kneeflexion 4. C

an w
alk on heels, not on toes. Positive 

G
ow

ers. 
N

o 
joint 

hyperm
obility 

M
uscle 

biopsy 
(age 

28): 
Fibre 

type 
I 

predom
inance, hypertrophic fibres, m

ild increase of endom
ysial conncetive 

tissue. Several cores in type I-fibres, also at the peripheral zones of the cells. 
Increase of internal nuclei. 

 
M

inicore B
el 01 

M
m

D
 M

H
S clinical 

C
om

pound heterozygous 
Fem

ale patient, fourth decade. D
elayed m

otor m
ilestones as a child, m

oderate 
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(B
elgium

) 
 

m
yopathy 

RYR1 
p.I1571V

 + p.R
3366H

 + 
p.Y

3933C
 + p.V

4849I 

non-progressive w
eakness as an adult (difficulty m

ounting stairs), no ophthalm
o-

plegia. N
orm

al C
K

.  W
estern blot dem

onstrates reduction of R
Y

R
1 expression 

by 50%
. M

uscle biopsy show
s  fatty infiltration, fibrosis, necrotic fibres, 

centralization of nuclei in num
erous fibres and  allm

ost  type  1  fibre  ‘uniform
ity. 

EM
 show

s m
ultiple core-like  m

yofibrillar  alterations  corresponding  to  ‘m
ulti-

m
inicore type lesions, focal loss of striations, rods in atrophic fibres. C

onclusion: 
“M

ulti-m
inicore  disease  +  rods”. 

M
inicore U

K
 01 

(U
K

) 
 

M
m

D
 w

ith  
O

phthalm
oplegia and 

atypical periodic paralysis 
 

C
om

pound heterozygous 
RYR1 
H

et c.8816G
>A

 (p.R
2939K

) 
 + H

et c.6721C
>T 

(p.R
2241X

) and 
H

et c.2122G
>A

 (p.D
708N

) 
Last tw

o - on the sam
e allele; 

W
T allele is not expressed.  

H
ypotonia at birth, respiratory im

pairm
ent and feeding difficulties, delayed 

m
otor developm

ent, reduced w
alking distance, difficulties w

ith overhead tasks, 
exercise-induced m

yalgia and m
uscle stiffness prom

pted by cold, from
 the age of 

18 started experiencing repeated episodes of severe paralysis initially affecting 
the legs and then rapidly spreading to the upper lim

bs lasting up to several days 
(25). 

M
inicore U

K
 02 

(U
K

) 
 

M
m

D
 w

ith 
O

phthalm
oplegia 

 

RYR1 variant only 
 H

et p.P1787L found to date. 
This variant is likely non-
pathogenic. 
 

Presentation w
ith hypotonia and subsequent m

otor developm
ental delay. M

arked 
facial w

eakness w
ith external ophthalm

oplegia and m
ild to m

oderate proxim
al 

w
eakness in both shoulder and hip girdle. A

m
bulant. M

uscle biopsy w
ith type 1 

predom
inance and m

inicores.  

M
inicore U

K
 03 

(U
K

) 
 

R
ecessive m

yopathy 
related C

N
M

 
C

om
pound RYR1 

heterozygous c.13513G
>C

; 
(pD

4505H
) + heterozygous 

c.10687-10C
>T  

Severe early-onset w
ith m

arked hypotonia, generalized w
eakness, extraocular 

m
uscle involvem

ent, respiratory im
pairm

ent and features of centronuclear 
m

yopathy on m
uscle biopsy. 

M
inicore U

K
 05 

(U
K

) 
 

M
m

D
 w

ith bulbar palsy 
H

et c.13513 G
>C

; p. 
(p.D

4505H
) 

B
orn prem

aturely at 37+6 w
eeks. Polyhydram

nios and feeding difficulties at 
birth, drooling, failure to thrive, nasogastric tube, pectus carinatum

, scoliosis, 
hypotonia w

ith antigravity pow
er, distinctive facial features, neurogenic EM

G
 in 

bulbar m
uscles.   

M
nicore U

K
 06 

(U
K

) 
 

M
m

D
 

C
om

pound RYR1 
heterozygous c.3381+1+ 
G

>A
 + c.2635 G

>A
 

(p.E879K
)  

H
ypotonia; feeding difficulties; facial w

eakness; delayed m
otor m

ilestones; low
 

head control. M
uscle biopsy: A

bnorm
al variation in fiber size; m

ulti internal 
nuclei; core-like area in N

A
D

H
; type I fiber predom

inance. 

M
inicore U

K
 07 

(U
K

) 
 

M
m

D
 

C
om

pound RYR1 
heterozygous  c.5030A

>G
 

(p.A
1677S) + c.11752A

>C
 

(p.T3918P) 

B
orn 

prem
aturely 

at 
35+3 

w
eeks. 

C
ongenital 

proxim
al 

m
uscle 

w
eakness, 

abnorm
al eye m

ovem
ent, recurrent respiratory infections, scoliosis, N

IPPV
 

dependency at night. M
uscle biopsy: abnorm

al variation in fiber size; population 
of sm

all fibers som
e central nuclei, N

A
D

H
-TR

 staining show
ed som

e core-like 
areas in a few

 fibers. 
M

inicore U
K

 08 
(U

K
) 

 

M
m

D
 

C
om

pound RYR1 
heterozygous c. 4729G

>A
 

(p.A
1577S)+c. 6178G

>T 
(p.G

2060C
) 

M
uscle w

eakness, hypotonia and feeding difficulties follow
ed by delayed m

otor 
m

ilestones. B
ilateral talipes. M

uscle biopsy: m
ild variation in fiber size, an 

increase in internal nuclei. O
xidative enzym

e staining revealed m
ultiple focal 

areas devoid of stain, as w
ell as som

e single cores of m
oderate size and som

e 
peripheral aggregation of stain. Patient Fam

ily 1 (10). 

M
inicore U

K
 09 

(U
K

) 
M

m
D

 +O
phthalm

oplegia 
RYR1 variant only:  
 H

et p.P1787L +  
This variant is likely non-
pathogenic. 
H

om
ozygous M

Y
H

2 
m

utation 

Early onset w
ith developm

ental delay. M
ild to m

oderate proxim
al w

eakness w
ith 

m
ore pronounced facial w

eakness and alm
ost com

plete external ophthalm
oplegia 

M
uscle biopsy w

ith m
arked type 1 predom

inance and occasional unevenness of 
stain. M

Y
H

2 –related m
yopathy w

ith features of  M
m

D
.  

M
inicore SA

 02 
(South A

frica) 
 

C
ongenital m

yopathy 
w

ith central nuclei 
C

om
pound H

et R
Y

R
1 

c.8342_8343delTA
 

(p.I2781R
fsX

49) + 
c.11941C

>T  (p.H
3981Y

) + 
c.10348-6C

>G
 + 

c.14524G
>A

 (p.V
4842M

)  

Patient 2 [3]. This girl now
 into her second decade w

as profoundly w
eak w

ith 
external ophthalm

oplegia, m
arked m

yopathic facies, respiratory com
prom

ise and 
feeding difficulties. She w

as adm
itted for recurrent chest infections and required 

supplem
ental gastrostom

y feeding in the first 5 years of life. She has not acquired 
independent am

bulation but can sit unaided. She underw
ent spinal rod insertion 

for progressive scoliosis. She rem
ains stable w

ith occasional low
er respiratory 

chest infections. 
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M
inicore SA

 03 
(South A

frica) 
 

C
ongenital m

yopathy 
w

ith central nuclei 
C

om
pound H

et R
Y

R
1 

c. 6175_6187del13; 
(p.L2059SfsX

2) + 
c.10348-6C

>G
+ 

c.14524G
>A

 (p.V
4842M

) 
  

Patient 3 (3).  This boy is now
 13 years of age. H

e had m
arked proxim

al 
w

eakness 
at 

birth 
w

ith 
proxim

al 
joint 

contractures, 
m

yopathic 
faces 

and 
exterbnal ophthalm

oplegia. H
is pow

er appeared to im
prove w

ith tim
e and he 

acquired independent am
bulation. H

e has not dem
onstrated any deterioration in 

his m
otor capacity, if anything he has im

proved w
ith tim

e. 

M
inicore SA

 05 
(South A

frica) 
 

C
ongenital m

yopathy 
w

ith central nuclei 
C

om
pound H

et R
Y

R
1 

c.8342_8343delTA
; 

(p.I2781R
fsX

49) + 
c.11941C

>T (p.H
3981Y

 )+ 
c.10348-6C

>G
 

c.14524G
>A

 (p.V
4842M

) 

 Patient 5 (3). This young m
an is now

 22 years of age he w
as sym

ptom
atic from

 
birth w

ith m
yopathic facies, external ophthalm

oplegia and proxim
al w

eakness. 
H

e had m
ild gastro-oesophageal reflux and suffered low

er respiratory tract 
infections as a young child. W

hilst he stabilised w
ith tim

e he did not acquire 
independent am

bulation but can sit unaided. 

M
inicore SA

 06 
(South A

frica) 
 

C
ongenital m

yopathy 
w

ith central nuclei 
C

om
pound H

et R
Y

R
1 

c.8342_8343delTA
; 

(p.I2781R
fsX

49) + 
c.11941C

>T (p.H
3981Y

) + 
c.10348-6C

>G
 

c.14524G
>A

; (p.V
4842M

) 

Patient 6
 (3). This boy w

as profoundly w
eak at birth w

ith recurrent chest 
infections. H

e had m
yopathic facies and external ophthalm

oplegia. H
e attained 

independent seating but not am
bulation. H

is pow
er has not deteriorated but 

appeared to plateau after som
e im

provem
ent up until 4 years of age. 

M
inicore SA

 07 
(South A

frica) 
 

C
ongenital m

yopathy 
w

ith central nuclei 
C

om
pound  

H
eterozygous 

c.3381+1 G
>A

 + c.10348-
6C

>G
+ c.14524G

>A
; 

(p.V
4842M

) 

Patient 7
 (3). This boy, now

 in his second decade, w
as w

eak from
 birth w

ith 
external ophthalom

oplegia, and m
yopathic facies. From

 infancy he did not have 
m

ajor feeding difficulties, but w
hilst his respiratory function appeared stable 

w
hen w

ell he decom
pensated rapidly w

ith low
er respiratory tract infections. H

e 
required several acute adm

issions w
ith pneum

onia in his first decade. H
e rem

ains 
w

heelchair bound but otherw
ise w

ell w
ith no new

 events in the last few
 years.   

M
inicore ISR

 01 
(Israel) 
 

R
ecessive core m

yopathy 
C

om
pound  H

O
M

 R
Y

R
1 

H
om

 c.9047A
>G

 
(p.Y

3016C
) +  

H
om

 c.6178G
>T (p.G

2060C
) 

M
yopathic face, w

addling gait, slow
ly progressive w

eakness. N
o core like 

structures; patient V
36 on the pedigree (8). 

M
inicore ISR

 02 
(Israel) 
 

R
ecessive core m

yopathy 
C

om
pound H

O
M

 R
Y

R
1 

H
om

 c.9047A
>G

 
(p.Y

3016C
) +  

H
om

 c.6178G
>T (p.G

2060C
) 

M
yopathic face, w

addling gait, difficulty clim
bing the stairs. Slow

ly progressive 
w

eakness. Early scoliosis. N
o core like structures; patient V

31 on the pedigree 
(8). 

N
EM

 N
L 01 

 
N

em
aline m

yopathy 
H

et m
utation in KBTBD

 13 
c.1222C

>T (p.R
408C

). 
D

aughter of N
EM

 N
L 04 

N
orm

al m
otor developm

ent. G
radual progressive m

uscle w
eakness from

 her 
teens, due to w

hich sports in school becam
e m

ore difficult. N
o facial w

eakness. 
M

ild proxim
al w

eakness in legs > arm
s (M

R
C

 4). B
iopsy (age 15): type I 

predom
inance, increase of internal nuclei, m

any nem
aline rods. 

N
EM

 N
L 04 

 
N

em
aline m

yopathy 
H

et m
utation in KBTBD

 13 
c.1222C

>T (p.R
408C

) 
N

orm
al m

otor developm
ent. M

ild m
uscle w

eakness and stiffness since her teens, 
non-progressive in adulthood, fast alternating m

ovem
ents are difficult. B

iopsy: 
(age 45): type I predom

inance, increase of internal nuclei, m
any nem

aline rods, 
few

 cores on EM
, m

uch fatty infiltration. C
ardiac evaluation norm

al. 
N

EM
 N

L 03 
 

N
em

aline m
yopathy 

D
aughter of N

EM
 N

L 02; 
sam

e phenotype as father, not 
genetically tested yet 

N
orm

al m
otor developm

ent. R
em

arkably strong com
pared to peers. Fast in 

running. Painful stiffness in low
er arm

s, neck and back since her late tw
enties. 

C
ram

ps in calves. N
orm

al strength. M
uscle biopsy (age 30): norm

al. EM
: m

ild 
increase of fat vacuoles. 

N
EM

 N
L 02 

 
N

em
aline m

yopathy 
H

et m
utation in KBTBD

 13 
H

et m
utation c.247G

>C
 

(p.E83Q
) 

N
orm

al m
otor devolm

ent. M
yalgia since the age of 18, and diffuse m

uscle 
cram

ps. These occur frequently w
henever he sits in the sam

e position for a 
longer period. D

uring endurance exercise at age 62, he cannot keep up w
ith 

peers, w
hereas he w

as the fastest w
hen he w

as younger. M
uscle biopsy (age 60): 

cores, on EM
 Z-band stream

ing and cores. 
N

EM
 N

L 05 
 

N
em

aline m
yopathy 

H
et m

utation in KBTBD
 13 

 c.1222C
>T (p.R

408C
) 

N
orm

al m
otor developm

ent. D
ifficulties in gym

nastics (clim
bing ropes, high 

jum
ping). D

ifficulties clim
bing steep stairs (uses the railing). Falls several tim

es 
a year since she cannot correct her balance fast enough. M

ild proxim
al w

eakness 
(M

R
C

 4) in arm
s, legs and axial m

uscles. M
uscle biopsy (age 44): Type I 

predom
inance, increase of internal nuclei, cores. EM

: abundance of rods. 
N

EM
 U

K
 01 

 
N

em
aline m

yopathy 
H

et de novo m
utation in 

ACTA1 gene  
Floppy at birth, sw

allow
ing difficulty, respiratory w

eakness and hypotonia. 
M

uscle biopsy show
ed nem

aline rods in Trichrom
e staining.  
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N
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yopathy 

H
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utation in AC
TA1 gene 

c.553C
>G

 (p.R
185G

) 
D

ifficulty in clim
bing, rising and w

alking fast, left facial w
eakness, hypotonia 

and joint laxity noted through infancy, feeding difficulties in first year, frequent 
respiratory infections in first 18 m

onths, norm
al C

K
. M

uscle biopsy show
ed 

nem
aline rods. 

N
EM

 U
K

 03 
 

N
em

aline m
yopathy 

H
et m

utation in AC
TA1 gene. 

C
.16G

>A
 (p.G

6L)  
B

orn prem
aturely at 33 w

eeks. D
elayed m

otor m
ilestones, recurrent chest 

infections, 
facial 

w
eakness, 

tires 
on 

exercise, 
abnorm

al 
gait, 

exaggerated 
lordosis, w

eak neck flexors, hyper extensible joints at elbow
s and knees, nasal 

tone of voice, m
ild spinal rigidity.  

N
EM

 U
K

 04 
6105 

N
em

aline m
yopathy 

C
om

pound het m
utations in 

N
EB . C

.21837dupC
 

(p.D
7280fs) + 

c.24209_24212dupTG
TT 

(p.L8071fs) 

Scoliosis, tight TA
, m

uscle thin and hypotonic. The first biopsy at 3 years old 
show

ed fibre type disproportion, m
yofibrillar loss and disruption. The second 

m
uscle biopsy at 7 years old show

ed significant population of nem
aline rods in 

Trichrom
e staining.  

N
EM

 U
K

 05 
 

N
em

aline m
yopathy 

H
et m

utation in AC
TA1  

gene. C
.16G

>A
 (p.G

6L)  
B

orn prem
aturely at 33 w

eeks. D
elayed m

otor m
ilestones, recurrent chest 

infections, facial w
eakness, tires on exercise, abnorm

al gait, exaggerated 
lordosis, w

eak neck flexors, hyper extensible joints at elbow
s and knees, nasal 

tone of voice, m
ild spinal rigidity.  

N
EM

 U
K

 06  
 

N
em
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H
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for 
RYR1 

c.890G
>A

,  p.G
297D

  
C

om
pound heterozygous for 

N
EB c.12736delA

; p.I4246fs 
het 

and 
N

EB 
c.24562C

>T; 
p.Q

8188T het 

Early-onset w
ith m

arked hypotonia and w
eakness and associated bulbar and 

respiratory involvem
ent, requiring respiratory support and tube feeding. M

uscle 
biopsy perform

ed in infancy show
ing increased variability in fibre size, discrete 

nem
aline rods and few

 cores.  
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Supplementary Table 2 

Expression levels (mean ± S.E.M. of n values) of mef2 and non –muscle miRs in 
FDB fibers over-expressing HDAC-4 and HDAC-5 

Transcript 
analysed 

Control  HDAC-4/HDAC-5 
over-expressing 
fibres 

Statistical 
significance 
(Student’s  t test) 

Mef2 C 1.0±0.10 n=6 1.39±0.16 n=6 P =0.072   N.S. 

Mef2 D 1.0±0.14 n=6 1.56±0.22 n=6 P =0.505    N.S. 

miR-486 1.0±0.17 n=6 0.73±0.34 n=6 P = 0.495   N.S. 

miR-221 1.0±0.25 n=6 039±0.42 n=6 P = 0.826   N.S. 

miR-126 1.0±0.19 n=6 0.81±0.21 n=6 P = 0.531   N.S. 
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Additional Unpublished Data: 

Histone methyltransferase; SMYD1 increases in patients with 

minicores:  

SMYD family (SMYD1-SMYD4) plays a critical role in myofibril assembly during 

development. There are two highly conserved domains in SMYD family; SET domain and MYND 

domain. These domains are involved in lysine methylation and protein-protein interactions, 

respectively. SMYD1 is a histone methyltransferase that is highly expressed in striated muscle 

and is mainly located at the M Band of the sarcomere. SMYD1 is regulated by sumoylation, 

which regulates its nuclear export and its translocation to the M band during sarcomerogenesis. 

The translocation of SMYD1 to the M band has a potential to regulate the activity of myosin and 

muscle type Creatine kinase [149]. The levels of several muscle enriched histone methyl-

transferases were quantified in patients with recessive RYR1 mutations, using qPCR and were 

not found different. However the transcript level of SMYD1 was higher in muscles of patients 

with recessive RYR1 mutations compared to muscles of healthy individuals. (Figure R3.1).  

 
Figure R3.1: Expression levels of SMYD1 in muscles of patients with Recessive RYR1 mutations. Transcript levels 
were quantified and normalized to Desmin Expression levels (Controls: 1.00±0.08858 n=8, Minicores: 
1.586±0.2674 n=6, student t test P=0.0374).  
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 As mentioned previously, patients with minicores show a major disruption of the 

myofibrillar architecture and this may be related, at least in part to the up-regulation of SMYD1. 

SMYD1 is known to tri-methylate Histone 3 lysine 4 (H3K4me3), which has been associated with 

transcription activation although it was not ruled out that SMYD1 can also methylate other 

lysine residues [150]. 
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MEF2 co-localization with HDAC4 in muscle biopsy:  
 

In addition to the co-localization experiments that were performed in our 3rd 

manuscript, co-localization of HDAC4 and MEF2 (figure R3.2b) and the co-localization of MEF2 

in the nucleus (figure R3.2a) were measured using confocal microscopy and analyzed with 

image J. The purpose of this experiment is to understand whether the increased nuclear 

localization of HDAC4 in muscles of patients with minicores, increases the nuclear co-

localization of HDAC4 with MEF2.  

 
Figure R3.2:  Co-localization of MEF2 in the nucleus and with HDAC4. A- Co localization of MEF2 in the nucleus 
(not significant).  B- Co localization of HDAC4 with MEF2 (control 43.67%±3.679 minicore 70.85%±5.086, P<0.001). 
C- confocal images of Minicore and healthy individuals (Blue – DAPI, Green- HDAC4 and Red- MEF2).  

These results show that a higher degree of co-localization of HDAC4 and MEF2 in the nucleus is 

seen, indicating a potential shutting off of MEF2 dependent transcripts. 
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MicroRNA22 over expression in FDB fibers reduces the expression of 

RYR1 mRNA: 

 

Figure R3.3: Expression levels of RYR1 in FDB fibers transfected with miR22. Transcript levels were quantified and 
normalized to Desmin Expression levels (Controls: 1.00±0.1521 n=4, Minicores: 0.2832±0.04214 n=3, student t test 
P=0.0113). 

As described previously,   miR22   and   miR124   are   predicted   to   bind   the   3’   UTR   of   the   RYR1. 

Similar to the decrease of RYR1 transcript induced by over-expression of miR124 in FDB fibers, 

over-expression of miR22 reduced the levels of RYR1. This experiment was conducted in mouse 

FDB fibers as described in our 3rd publication.  
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Chapter  3  –  Conclusions  and  future  

prospective: 

Congenital myopathies are clinical conditions causing a number of symptoms including 

delayed motor development, muscle weakness, rigidity and hypotonia. Each year there are 6 

newborns diagnosed with a congenital myopathy out of every 100,000 live births. The three 

main congenital myopathies are Nemaline myopathy, Core myopathies and Centronuclear 

myopathy. During this work we focused our studies on myopathies caused by mutations in 

RYR1, the gene encoding the skeletal muscle SR calcium release channel. Mutations in this gene 

have been associated with CCD, MmD, CNM and CFTD. In our laboratory Ca2+ release in 

myotubes isolated from biopsies were extensively investigated, these myotubes originate from 

patients with congenital myopathies and healthy control individuals. Live imaging in 

combination with the use of fluorescent Ca2+-sensitive dyes such as Fura-2 (a ratiometric dye) 

and Fluo-4 were used to study Ca2+ release from the Sarcoplasmic reticulum. As mentioned in 

the results section of our 1st paper, working with primary cell cultures such as myotubes has 

several technical drawbacks, which could be potentially overcome by using immortalized 

human muscle cell lines. In our 1st publication the ECC properties of a human muscle cell line 

were characterized, both biochemically and physiologically. We describe that HMCL are suitable 

for experiments involving calcium homeostasis and in the future, immortalized cells from 

patients may also be used to characterize ECC, thus overcoming the problem of having a limited 

number of precious cells to study. As several different kinds of manipulations can be performed 

with immortalized muscle cells and as demonstrated on the HMCL, we think that such a model 

is amenable to investigate many aspects relevant to normal and diseased muscle, including 

myoblast differentiation, calcium homeostasis, cell fusion, intracellular trafficking, etc. In the 

last two decades the mouse muscle cell line C2C12 has been extensively used by laboratories 

throughout the world, for many research purposes in order to understand the physiology and 

plasticity of muscle differentiation. We think that HMCL in general or other similar immortalized 

cells offer a useful alternative for many experiments. In our 2nd publication, HMCL was used in 
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order to reproduce the conditions found in muscles of patients with congenital myopathies due 

to recessive RYR1 mutations, leading to reduced RyR1 content. Silencing of RyR1 expression in 

HMCL by siRNA was showed to cause reduction of RyR1, but also the up-regulation of InsP3R, 

similar to what we observed in patients. Clearly, up-regulation of InsP3R does not functionally 

compensate for the reduced RyR1 content. Intriguingly, the motive for the decreased RyR1 

expression was still obscure and was addressed in our 3rd publication, where we found common 

epigenetic mechanisms leading to transcriptional repression that may be part of the underlying 

cause of muscle weakness seen in patients with congenital myopathies. The concluding figure 

represents our working hypothesis for the causes for RyR1 reduction, namely that over 

expression of HDAC4 and HDAC5 cause a decrease in the expression of MEF2 dependent genes 

and concomitantly cause hypermethylation of DNA. Sequestration of MEF2 also leads to a 

decrease of the expression of muscle-specific microRNAs. A pathological loop is then 

established whereby the decreased microRNAs expressions lead to further upregulation of class 

II HDACs. Interestingly, similar findings were made in muscle samples of patients with recessive 

RYR1 mutations as well as muscles of patients with Nemaline myopathy. Nevertheless, part of 

the pathological mechanism is still obscure as we cannot reveal exactly how recessive RYR1 

mutations activate the above described epigenetic  “loop”.  
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Concluding figure: Cartoon depicting how mutations in RYR1 lead to a decrease in RyR1 content thereby leading 
to weak muscles.  

 
Our work describes the proposed mechanisms responsible for the down regulation of 

RyR1 expression in muscles of patients with congenital myopathies. Additionally, we have 

shown for the first time that when over-expressed in mouse FDB fibers, microRNAs that are 

predicted to bind to the 3` untranslated region of the RYR1 mRNA (namely, miR22 and miR124) 

downregulate RyR1 expression .Interestingly, the upregulation of HDAC4 in muscle biopsies 

from patients with mincores was remarkable (6-30 times higher) and such high levels of 

expression have not described so far in any other neuromuscular disorder. The treatment of 

patients with drugs that block the activity of class II HDACs or drugs that block the activity of 

DNA methyltransferases may significantly improve the symptoms of muscle weakness and 
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atrophy in patients with congenital muscle disorders. In order to verify and confirm the above 

pathological mechanisms the creation of a RYR1 mutant, compound heterozygous mouse will 

be necessary. Such a tool would also be useful in order to verify the impact of HDAC/DNMT 

inhibitors on muscle function. Amelioration of the phenotype needs to be assessed by 

physiological and biochemical characterization.  

In brief, these results demonstrate that muscle weakness and atrophy in congenital 

myopathies can be initiated by a mutation in muscle specific gene, but the secondary effects of 

this mutation can be the major determinates of the phenotype. Thus targeting common 

downstream pathways activated in muscles of patients with congenital myopathies offers an 

interesting new approach for the amelioration of muscle function.  
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