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Summary 

 

Studies of hematopoietic pathologies involving the growth factor TGF-β have provided 

important evidence of its keyrole in the regulation of human hematopoietic stem/progenitor 

cell quiescence, proliferation, and differentiation. The inactivation of one of the various genes 

involved in the TGF-β signal transduction pathway may represent a possible mechanism by 

which some early hematopoietic progenitors, which are normally quiescent, escape from cell-

cycle inhibition. Abnormalities in the expression of TGF-β receptors have been described in 

proliferative syndromes including both early myeloid and lymphocytic leukemia 1,2. In these 

cases the loss of the growth inhibitory TGF-β signal might provide a selective advantage to 

the malignant cell. Additional autocrine TGF-β production and thereby inhibition of 

neighboring cells leads to an overgrowth of the malignant clone. In patients with 

myeloproliferative disorders, reduced mRNA levels of the TGF-β signaling components 

Smad4 and type II TGF-β receptor were reported 3-5 further establishing a role of abolished 

TGF-β signaling in the pathogenesis of hematopoietic malignancies. The role of TGF-β in the 

regulation of hematopoiesis has also been analyzed in vivo using different mouse models. For 

example, the administration of TGF-β in mice revealed an inhibition of thrombopoiesis and 

erythropoiesis 6. A variety of knockout mice have been generated to study the effect of TGF-

β in vivo. The most of these approaches were hampered by the early lethality of the knockout 

like in the case of the Smad proteins and the TGF-β receptors I and II 7,8. Homozygous TGF-

β1 knockout mice have a 50% intrauterine death rate because of severe developmental 

retardation. The other 50% die within several weeks after birth due to a severe inflammatory 

autoimmune disease 9. Nevertheless, TGF-β knockout mice display defective hematopoiesis 

with elevated platelet counts and reduced numbers of erythroid cells 9. However, as most of 

the knockout approaches for TGF-β signaling components resulted in early embryonic 

lethality, the exact functions of the different elements of the TGF-β signaling cascade in 

hematopoiesis are still controversial.  

In this thesis work I describe different transgenic approaches to gain insight into the function 

of TGF-β signaling components in hematopoiesis, with a focus on megakaryopoiesis. In the 

first part I describe the generation of a transgenic mouse strain for the tissue-specific deletion 

of target genes in megakaryocytes and platelets. Many of the genes potentially involved in 

megakaryopoiesis are difficult to study by conventional knockout approaches, as they are 

ubiquitiously expressed and therefore their germline deletion is embryonically lethal. One 
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way to circumvent the obstacles of early embryonic lethality is the use of the Cre/loxP system 

for tissue-restricted target gene deletion 10. Hence, we generated a transgenic mouse for the 

megakaryocyte-specific expression of the Cre recombinase. As short plasmid based 

transgenes are often hampered by position variegation effects, like mosaic expression or 

transgene silencing, we decided to modify a large genomic DNA fragment using ET-

recombination in E.coli 11. The coding sequence of the Cre recombinase was placed under the 

control of the Pf4 gene embedded in a 100kB bacterial artificial chromosome (BAC). The 

modified BAC-insert was used to generate PF4Cre transgenic lines. Analysis of the resulting 

transgenic lines revealed differences in tissue-specific expression of the Cre recombinase, 

dependent on copy numbers. Accordingly, strains with low copy numbers revealed very 

specific Cre expression in megakaryocytes and platelets, while strains with higher copy 

numbers displayed ectopic Cre expression. The evaluation of excision efficiency in 

megakaryocytes of the different PF4Cre strains revealed that the strain with 5 integrations 

excised with 90%, whereas the strains with 1 or 2 copies excised with 60-70% efficiency. 

However, I used these strains to delete the TGF-β signaling components type II TGF-

β receptor (TBRII) and Smad4 in megakaryocytes by mating the PF4Cre strains with either 

TBRIIlox/lox or Smad4lox/lox mice. Homozygous offspring was analyzed for peripheral 

blood counts. Surprisingly, no change in the numbers of circulating platelets was detected in 

any of these mice in comparison to control mice. I confirmed these results using the 

transgenic Mx1Cre mouse for inducible deletion of target genes in hematopoietic stem cells. 

Again, no changes in the numbers of circulating platelets were detected neither in 

TBRIIlox/lox-Mx1Cre mice, nor in Smad4lox/lox-Mx1Cre mice. Together these results argue 

against an involvement of TGF-β signaling components in the onset of myeloproliferative 

disorders and additionally reveal that TGF-β signaling is dispensable for functional 

megakaryopoiesis. 

In a second mouse model we intended to disrupt Smad-mediated TGF-β signaling in 

hematopoiesis by the induced deletion of the TGF-β signal transducer Smad4. We used the 

Mx1Cre transgenic strain to induce Smad4 deletion in the bone marrow of Smad4lox/lox-

Mx1Cre mice. Smad4 deleted mice developed a severe haemolytic anemia 4-5 weeks after the 

induction of Cre recombinase expression, accompanied by extramedullary hematopoiesis and 

splenomegaly. Anemia in Smad4lox/lox-Mx1Cre mice was not autoimmune-mediated as 

revealed by a negative direct antiglobulin test (DAT). The hyperplasia of the spleens in 

Smad4lox/lox-Mx1Cre mice was due to a massive increase of immature myeloid cells. FACS 

analysis revealed the myeloid cells in the spleen are TER119high/CD71high erythroblasts, which 
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argues for a maturation block in erythropoiesis as the cause for anemia in Smad4lox/lox-

Mx1Cre mice. Transplantation of Smad4lox/lox-Mx1Cre bone marrow into lethally irradiated 

C57BL/6 recipients revealed that the anemia is not transplantable and thus can be 

compensated by host-derived factors. Furthermore, Smad4lox/lox-Mx1Cre bone marrow 

transplanted recipients did not develop a wasting syndrome. This is in complete contrast to the 

previously described induced deletion of TBRII and TBRI in TBRIIlox/lox- and TBRIlox/lox-

Mx1Cre mice. In both of these mouse models deletion of the TGF-β signaling caused a severe 

inflammatory phenotype, which is transplantable. Together, these results implicate that the 

autoimmune phenotype in TGF-β receptor deleted mice is not Smad-mediated, as Smad4 is 

the quintessential for signaling through activated Smads.  

In the last part of my thesis I describe the generation of a new tool to study gene function in 

human hematopoietic stem/progenitor cells. For this purpose I took advantage of the rapid 

advances in the RNA-interference field and the demonstrated capability of lentiviruses to 

infect non-cycling human hematopoietic stem cells. I modified a lentiviral vector by the 

insertion of a expression cassette for short-interfering RNAs (siRNA), which drives siRNA 

expression under the control of the H1 promotor. Originally thought to target TBRII in human 

hematopoietic stem cells, the system was first established to target the human p53 mRNA, as 

a functional siRNA sequence for this target was available at that time. Human cord blood 

derived CD34+ cells were infected with the lentiviral construct pWPXLp53si and p53 mRNA 

from infected cells was analyzed by quantitative real-time PCR. Infection efficiencies were 

typically around 50% as revealed by the enhanced green fluorescent protein reporter gene 

(EGFP). Infected CD34+ cells not only revealed p53 mRNA reduction to 3-10% of the control 

levels, but also functional p53 silencing was demonstrated by the increased resistance to 

apoptotic stimuli of pWPXLp53si-infected CD34+ cells. We also demonstrated that the 

lentiviral system was able to silence p53 in early hematopoietic progenitors by growing 

infected CD34+ cells under long-term culture initiating cell (LTC-IC) conditions. In 

summary, we revealed that lentiviral delivery of siRNA can be used for efficient and stable 

gene silencing in human hematopoietic progenitors. This system will be very valuable to 

study the function of key regulatory genes in human hematopoiesis. 
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General Introduction 

 
Hematopoiesis 

 
The continuous production of peripheral blood cells throughout lifetime is provided from a 

rare population of pluripotent bone marrow stem cells, called hematopoietic stem cells 

(HSCs). Two major features characterize HSCs. First, they can undergo differentiation to 

progenitor cells that give rise to all the different hematopoietic lineages of the peripheral 

blood. Second, they maintain the stem cell pool throughout lifetime by their self-renewal 

capacity, thus giving rise to additional HSCs 12. The properties of HSCs are best described by 

their ability to reconstitute the hematopoietic system of a recipient individual, where they can 

sustain long-term multilineage hematopoiesis.  

 

Origins of the hematopoietic system 

 

The hematopoietic system derives from the embryonic mesoderm. As far as vertebrates are 

concerned, hematopoiesis takes place at successive anatomic sites. The earliest embryonic 

site of hematopoiesis occurs in the blood islands of the yolk sac at around embryonic day 

7.5-11 in the mouse. From embryonic day 11 to 16, definitive or adult hematopoiesis is 

transiently found in the fetal liver before it moves into the bone marrow where it stays 

throughout lifetime 13. An alternative scenario derives from chick-quail experiments where 

an independent site of hematopoiesis was found to originate from the para-aortic 

splachnopleura/aorta, gonad, mesonephros region (AGM) of the embryo proper. Different 

from yolk-sac derived progenitors, AGM precursors of hematopoietic cells provide 

multilineage differentiation upon transplantation into irradiated adult recipients. In the 

mouse, analogous AGM-derived cells were identified 14,15. This indicates that the AGM is a 

region where HSCs are “born”, and dismisses a contribution of yolk-sac derived progenitors 

in the adult hematopoiesis. However, the debate about the contribution of the yolk-sac and 

AGM regions to the adult hematopoiesis continues. 

 

Hematopoietic markers 

 

An even bigger challenge is provided by the goal of the phenotypic description of the HSC. 

In the mouse, cells of the c-kit+, sca-1+, thy-1lo, lineage-negative phenotype were shown to 
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possess the ability to reconstitute hematopoiesis in an irradiated recipient 12. Dyes such as 

Hoechst 33324 and Rhodamine 123 have also been used to identify populations within the 

HSCs, which are greatly enriched. At first, one proceeded on the assumption that in the 

human system CD34+ is present on all HSCs, but there is evidence for the existence of 

CD34− HSCs 16. There is still a vivid debate amongst researchers in the field about the 

phenotypic description and the molecular characterization of the HSC.  

Although the definitive phenotypic characterization of the HSC is still pending there are 

several transcription factors which have been shown to be required either for the generation 

or the maintenance/proliferation of HSCs. Data for the requirement of these transcription 

factors came from gene targeting experiments of ES cells in mice. These experiments 

demonstrated that the transcription factors SCL/tal-1, AML-1/Runx1 and Lmo2 are essential 

for the generation of hematopoietic stem cells either at the yolk sac stage or at later stages 17-

19. It was shown later that the transcription factor SCL/tal-1 is mainly required in adult 

hematopoiesis, where it is essential for erythropoiesis and megakaryopoiesis, but is 

dispensable for the production of myeloid cells in definite hematopoiesis 20. The transcription 

factor AML-1, which was also believed to play a fundamental role in hematopoiesis, was 

recently shown to be a crucial factor for megakaryopoiesis and T- and B-cell development. 

An effect of AML-1 on the maintenance of hematopoietic stem cells in definite 

hematopoiesis was not proposed by these experiments 21. The requirement for other 

transcription factors like GATA-1 and GATA-2 in normal hematopoiesis were also 

demonstrated by gene-targeting experiments. Due to functional redundancies of GATA-1 and 

GATA-2, the precise role of the GATA-family of transcription factors has yet not been 

ultimately resolved. Finally, the are probably several other so far unknown factors involved 

in functional hemetopoiesis and their exact functions are still an unsolved issue. 

 

Megakaryopoiesis 

 

Mature megakaryocytes are giant (15-30µm in diameter), polyploid cells that contain a 

unique set of cell organelles, namely α−granules, dense bodies, and an extensive system of 

internal membranes, the so called demarcation membrane system (DMS), which consists of 

narrow channels homogenously distributed in the cytoplasm. Likewise all the other cells of 

the different hematopoietic lineages, the megakaryocytes derive from a pluripotent 

hematopoietic progenitor cell. The most primitive progenitor of megakaryocytes was 

originally described in the murine system as a mixed high-proliferative-potential 
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megakaryocyte cell. These cells have a high proliferative capacity giving rise to large 

colonies of megakaryocytes when cultured in vitro 22-24. Later stages, as the colony-forming 

unit megakaryocyte (CFU-Meg) can undergo 1-8 cell divisions forming colonies consisting 

of 16-32 cells 22,23. 

The first morphologically recognizable megakaryocyte in the bone marrow is characterized 

by high nuclear-to-cytoplasmic ratio and plasma membrane blebbing. With ongoing 

maturation, the nuclear-to-cytoplasmic ratio decreases as the amount of cytoplasm drastically 

increases with abundant cytoplasmic granules. At this stage of maturation the DNA content 

of the cells exceeds 4N. Further maturation is characterized by an increase in the DNA 

content, ranging from 4N to 64N. This unique feature of megakaryocytes within the 

hematopoietic compartment occurs through a process termed endomitosis. Endomitosis is 

defined as DNA replication and a mitotic event with sister chromatid separation in the 

absence of subsequent cytokinesis. Polyploidization starts in the morphologically 

unrecognizable immature stages of megakarypoiesis and is completed in the immature 

basophilic stage 25. The level of polyploidization is inversely correlated to the amount of 

circulating platelets as revealed by experimental thrombocytopenia and thrombocytosis 26-31.  

At the late stages of megakaryocyte maturation, an extensive system of membrane 

demarcation is visible in the cells, the demarcation membrane system. The DMS is thought to 

compartmentalize the platelet cytoplasm into platelet territories, which are then released into 

the circulation as platelets. The complete maturation from the earliest recognizable 

megakaryocyte to the release of platelets takes 2-3 days in rodents and 5 days in humans. 

  

Platelets 

 
The products of megakaryocyte maturation are the platelets. The platelet is a disc-shaped 

piece of membrane cytoplasm endowed with all organelles found in other mammalian cells 

except for a nucleus, a Golgi zone, and a mitotic apparatus. The average diameter of platelets 

is 2-3µm and their number in the human circulation ranges from 150-400 x109/L. The half-

life of these circulating platelets is about 4 days in rodents and 7-10 days in humans. 

Proteoglycans on the plasma membrane of platelets function as receptors for ligand binding 

or mediate interaction with external surfaces. From the large number of integrins detectable 

on the platelet surface, the GPIIb/IIIa complex is of special interest. First it is a specific 

marker for the megakaryocyte/platelet lineage and second it is the prime receptor for 

fibrinogen, thus most significant for platelet function. 
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The major function of platelets is to activate blood coagulation upon vessel injury. In the case 

of injury, platelets migrate and adhere to the site of damage and here they aggregate to form a 

plug, which seals the defective blood vessel, thereby avoiding major blood-loss. In a second 

step, activated platelets induce the blood coagulation system that replaces the platelets plug 

with a fibrin clot. Platelets are the store for several mediators involved in hemostasis, wound 

repair and inflammation. These molecules are either produced during megakarypoiesis and 

then stored in the released platelets, or taken up by endocytosis from megakarycytes and 

platelets. One of the molecules produced early in megakaryopoiesis and then stored in 

circulating platelets is the CXC-subfamily chemokine platelet factor 4 (PF4). Expression of 

this 7.8 kd protein of 70-amino acid length starts at the early stages of megakaryocyte 

maturation, namely the promegakaryoblast stage and thus later as the earliest megakaryocyte 

marker glycoprotein IIb 32,33. As far as the expression of PF4 was demonstrated to be almost 

exclusively restricted to the maturing megakaryocyte and the platelets, this molecule can be 

considered as a good molecular marker for megakaryopoiesis.  

 

Molecular regulation of megakaryocyte maturation 

 

Among the transcription factors known to have functional influence on megakaryopoiesis, the 

zinc-finger proteins GATA-1 and GATA-2 were shown to be the major transcriptional 

regulators of erythro-megakaryocytic differentiation. Virtually every examined gene known to 

be expressed specifically in megakaryocytes, was shown to have a GATA-binding site within 

its promotor region. Further insight into the function of GATA-1 and GATA-2 came from 

gene targeting experiments in mice. Mice lacking GATA-1 selectively in megakaryocytes 

revealed a severe reduction in circulating platelet numbers to about 15% of the normal. 

Platelets of such mice were increased in size and bleeding time was prolonged 34, while the 

megakaryocytes revealed an enhanced proliferation rate in vitro. The increased numbers of 

megakaryocytes in these animals showed an abnormally small and immature cytoplasm, 

which harbours only a small amount of platelets. This indicates the importance of GATA-1 

for functional megakaryopoiesis, although the critical GATA-1 regulated targets in 

megakaryopoiesis are still unknown. Another factor shown to have fundamental impact on 

megakaryocyte differentiation is the cofactor Friend of GATA (FOG-1). Mice with a germline 

deletion of FOG-1 completely lack megakaryocytic progenitors 35. Other transcription factors 

like Fli-1 and NF-E2 were demonstrated by gene targeting experiments to play a crucial role 
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in the maturation of megakaryocytes 36,37, and it is likely that further transcriptional regulators 

of megakaryopoiesis exist. 

 

Cytokines involved in megakaryopoiesis 

 

Several factors were shown to exert a critical effect on megakaryopoiesis. The most 

prominent among them is the lineage-restricted growth factor thrombopoietin (TPO). The 

role of TPO in megakaryopoiesis was mainly demonstrated by gene-targeting experiments in 

the mouse 38,39. The generation and analysis of Mpl, the cognate receptor for TPO, and TPO 

deficient mice revealed a decrease of platelet and megakarycyte numbers of >80%, 

demonstrating the pivotal role of TPO and Mpl in the regulation of megakaryopoiesis. Other 

non-lineage specific growth factors were also shown to have an influence on 

megakaryocytopoiesis. Of those, IL-3 was shown to have a strong stimulatory effect on 

Colony Forming Unit-Megakaryocyte (CFU-Meg) and also burst forming cells (BFC-MK) 
40,41. The same was demonstrated for Granulocyte Macrophage-Colony Stimulating Factor 

(GM-CSF), although to a lesser degree 42-44. It was also shown that Stem Cell Factor (SCF), 

IL-11 and erythropoietin (EPO) can synergize with TPO to stimulate megakaryocyte colony 

formation 45. Megakaryocyte maturation in vitro is also promoted by LIF, SCF, OSM and 

EPO as determined by their effects on megakaryocyte number, ploidy and size 46-50.  

Amongst the inhibitory factors, type-β transforming growth factor 1 (TGF-β1) and CXC 

chemokines like platelet factor (PF)-4 or the close related IL-8, but also the interferon family, 

were shown to exert the most prominent effect on in vitro megakaryopoiesis 42,51-53. Several 

studies indicated that TGF-β1 has a strong inhibitory effect on megakaryocyte development 

in vitro. As far as α-granules of platelets are the main source for the storage of inactive TGF-

β1, it remains unclear how the destruction of platelets and thus the release of TGF-β1 can 

have a stimulatory effect on platelet production. One possible explanation is provided by the 

observation that TGF-β1 induces TPO mRNA production in bone marrow stromal cells, 

which then stimulates bone marrow stem cells to commit to the megakaryocytic compartment 
54. PF-4 was shown to exert its function already on hematopoietic stem cells, where it 

supports the survival of stem and progenitor cells and to suppresses the development and 

maturation of cells from the megakaryocytic lineage 55. Other CXC chemokines like 

neutrophil-activating product-2 (NAP-2) and IL-8, but even more the distantly related CC 

chemokines MIP-α and MIP-1β were also shown to have direct inhibitory effects on in vitro 

megakaryocyte colony formation. 
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TGF-β  signaling 

 

TGF-β belongs to a large superfamily of structurally related polypeptides that includes 

activins, bone morphogenetic proteins (BMPs) and the growth differentiation factors (GDFs) 
56, which have fundamental functions in cellular behaviour, like migration, adhesion, 

survival, proliferation and differentiation 1,57,58. TGF-βs were first discovered by De Larco 

and Todaro in 1978 and originally termed "sarcoma growth factors". To date 28 genes in the 

human genome that encode members of this family are known 59. There are three isoforms of 

TGF-β in mammals (TGF-β 1, 2 and 3). TGF-βs are synthesized as biologically inactive 

precursor proteins. The earliest forms, the pre-pro-peptides, require sequential processing to 

give rise to the active TGF-β peptide 60. A first proteolytic cleavage cuts off the hydrophobic 

signal peptide, yielding the pro-TGF-β form. The second cleavage eliminates the pro-region 

from the now mature TGF-β peptide. Bioactive forms of TGF-βs consist of two mature TGF-

β peptides linked by disulfide bonds. The linked peptides mostly exist as homodimers, but 

heterodimeric forms have also been reported. The processed form of TGF-β is released from 

the cells as a latent complex, which has no biological activity. A small and large form of the 

latent complexes has been described. The small complex consists of one mature TGF-β 

peptide, which is noncovalently associated with one disulfide-bonded pro-peptide dimer 

called latency associated protein (LAP). In the large form of the latent complex LAP is 

linked by disulfide bonds to a member of high molecular weight proteins called latent TGF-

β-binding proteins (LTBP) 61,62. The LTBPs mediate the ability of the LAPs to associate with 

the extracellular matrix, thus facilitating the storage of TGF-β. Proteolytic enzymes like 

chymase, plasmin and elastase are then able to cleave LTBPs and releasing the LAP from the 

extracellular matrix 63-65. The active form of TGF-β can be released by proteolytic nicking of 

the N-terminal region of the LAP by plasmin 66. Thrombospondin, which is a platelet α-

granule and extracellular matrix protein, has also been shown to activate the latent forms of 

TGF-β by inducing conformational changes in the LAP, resulting in the release of active 

TGF-β [Schultz-Cherry, 1994 #56].   
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 The TGF-β  signal transduction pathway 

 

The TGF-β family members bind to their cognate heteromeric receptor complex, which 

consists of two types of transmembrane serine/threonine kinases known as type I (TβRI or 

ALK) and type II receptors (TβRII) (Fig.1). These transmembrane receptors represent two 

families of serine/threonine kinase receptors of 53 to 65 kd 67and 80 to 95 kd, respectively. In 

mammals five type I receptors and seven type II receptors were identified (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Ligand binding to the type II receptor, a constitutively active kinase, leads to dimerization 

with the type I receptor and phosphorylation of the Glycin-Serine domain (GS) 68. 

Phosphorylation of the GS domain activates the C-terminal kinase domain, which 

phosphorylates and thereby activates the so-called receptor Smads (R-Smads). In the absence 

of ligand binding the receptors where demonstrated to exist as homodimers on the cell 

surface. Although ligand binding to type II receptors could induce autophosphorylation, 

signaling in the absence of the type I receptor component has not been reported. Thus the 

formation of the heterotrimeric receptor/ligand complex is a prerequisite for functional 

signaling. Formation of different heteromeric receptor complexes with different ligands has 

been reported 69,70. This way divergent signaling responses upon the binding of the same 

ligand are possible. For example, TGF-β1 can not only bind the type II receptor TβRII, 

which can dimerize with ALK5 or ALK1, but also to the ActRI/ALK2 on endothelial cells. 

This way complexity of the signaling complex can be further increased. Substrate specificity 

for the R-Smad phosphorylation is determined by the L45 loop within the type I receptors 

and primarily within the L3 loop of the R-Smad MH2 domain. Accordingly, the TGF-β and 

 

Figure 1. Graphic of the TGF-β family members 
and their cognate receptors.  
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activin receptors phosphorylate Smad2 and Smad3, while BMP receptors phosphorylate 

Smad1, Smad5 and Smad8 71.  

The phosphorylated R-Smads dimerize with the co-Smad (Smad4) and translocate to the 

nucleus where they exert their function as transcription factors 72. Here, the decision whether 

Smads activate or repress target gene transcription is determined by cofactors that confer 

specific properties to the SMAD complex 73. 

 

TGF-β is the quintessential growth-inhibitory cytokine, but growth inhibition is only one of 

the various functions TGF-β can exert on different tissues. It helps to restrain growth of 

mammalian tissues through its cytostatic and apoptotic effects 1. Escape of epithelial cells 

from TGF-β growth control is a hallmark of many cancers. The role of TGF-β signaling as a 

tumor suppressor pathway in early carcinogenesis is illustrated by the presence of 

inactivating mutations in genes encoding TGF-β receptors and Smads in human carcinomas, 

and by studies of tumor development in mouse models 2. On the other side, tumor cells, 

which are relieved from the inhibitory effect of TGF-β were shown to overproduce this 

cytokine and thus create a local immunosuppressive microenvironment that supports tumor 

growth and metastatic invasion 74. The function of TGF-β signaling components in 

development and tumorigenesis was elucidated in several deletion and overexpression mouse 

models (Table 2). These experiments did not indicate a role for TGF-β as a growth inhibitor 

early in embryogenesis. Later in maturation many cell types gain the ability to respond to 

TGF-β with growth arrest or cell death. 

 

TGF-β  signaling is mediated via a conserved familiy of signal transducers 

 

The intracellular effectors of TGF-β signaling are the Smads. These substrates for type I 

receptor kinases were first identified as products of the Drosophila Mad and C.elegans Sma 

genes, which were shown to be downstream of the BMP-analogous ligand-receptor systems 

in these animals 75. So far eight vertebrate Smads are known: Smad1 to Smad8. Smads are 

ubiquitously expressed throughout development as well as in the most adult tissues 76.  

The Smad family of signal transducers can be functionally subdivided into three different 

groups. The first group comprising Smad1, Smad2, Smad3, Smad5 and Smad8 are termed 

receptor-Smads (R-Smads), which are phosphorylated by the type I receptors. Within this 

group of R-Smads it could be shown that Smad1, Smad5 and Smad8 are restricted to 

signaling through the BMP-pathway, whereas Smad2 and Smad3 are believed to be restricted 



General introduction 17 

to the Activin/TGF-β signaling pathway 71. The second group, the common mediator Smads 

(Co-Smads), consist so far only of one known member, namely Smad4. The Co-Smads bind 

to the receptor-activated R-Smads and form heterodimers and these complexes then 

translocate to the nucleus.  

 

 

 

 

 

 

 

 

 

 

 

The last group comprising Smad6 and Smad7 are the inhibitory Smads (I-Smads), which 

upon TGF-β induction compete with the R-Smads for receptor binding and target bound 

receptors for degradation.  

The Smads resemble two highly conserved Mad homology (MH) domains, the N-terminal 

MH1-domain and the C-terminal MH2-domain. The MH1 domain was shown to be 

responsible for DNA-binding, nuclear import and interaction with other nuclear proteins. It is 

conserved within the R-Smads and Co-Smads, whereas the I-Smads show only a weak 

sequence homology to the MH1 domain. The MH2 domain is highly conserved throughout 

all the known Smads. The MH2 domain was shown to contain a forkhead-associated domain 

(FHA), which is a common phosphopeptide-binding domain among transcription and 

signaling factors 77. The MH2 domain is crucial for type I receptor recognition, 

oligomerization with other Smads and interaction with cytoplasmic adaptors such as Axin 

and Smad Anchor for receptor activation (SARA) and with transcription factors like 

Lef1/Tcf, Runx/AML and the Evi-1 oncoprotein. Type I receptor recognition by R-Smads 

leads to the phosphorylation of the most C-terminal serine residues within the MH2-domain, 

which forms an evoluntionary conserved SSXS motif, together with a third non-

phosphorylated serine residue. The two Mad homology domains of the Smad family 

members are bound through a variable proline-rich linker region, which is mainly bound by 

proteins mediating ubiquitination of the Smads.  

Table 1. Summary of well characterized interactions of 
type II and type I receptors and their R-Smads. 

Type II receptors Type I receptors Receptor Smads

BMPRII ALK-2 (ActRI)

ALK-3 (BMP-RIA)

ALK-6 (BMP-RIB)

Smad1, Smad5, Smad8

ActRII, ActRIIB ALK-4 (ActRIB) Smad2

ActRIIB Alk-7 Smad2

TBRII Alk-5 (TBRI)

Alk-1

Alk-2

Smad2, Smad3

Smad1, Smad5

AMHR Alk-3

Alk-2

Alk-6

Smad1, Smad5
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Smad function is regulated by phosphorylation 

 

As already mentioned above, Smads become phosphorylated by the kinase domain of type I 

receptors. Once the receptor Smads are phosphorylated on their C-terminal MH2-domain, 

they form homo-oligomers, which rapidly convert to hetero-oligomers containing the Co-

Smad, Smad4. Non-phosphorylated Smads exist primarily as monomers, which are 

intrinsically auto-inhibited through an intramolecular interaction between the MH1 and the 

MH2 domains. The receptor-mediated phosphorylation of R-Smads induces conformational 

changes that relieve the auto-inhibition 78,79. The I-Smads are phosphorylated by as-yet 

uncharacterized kinases80.  

The composition of the Smad-complexes was originally demonstrated to consist of a Smad 

trimer. Later studies revealed that the Smad2-Smad4 complex exists as a hetero-dimer 78. 

Thus, different complexes of R-Smads and Co-Smads are possible with different 

stoichiometries.  

Inactive cytoplasmic Smads are retained in the cytoplasm by interaction with scaffolding 

proteins. In the case of Smad2/3 it was shown that the protein SARA regulates the 

subcellular distribution of Smad2/381. SARA is bound to the inner leaflet of the plasma 

membrane via its FYVE domain, which mediates the interaction to the membrane 

phospholipids. The SARA/Smad interaction assists in the phosphorylation of Smad2/3 by 

forming a bridge between Smad2/3 and the receptor complex, and at the same time prevents 

nuclear import of non-phosphorylated Smad2/3 to the nucleus. Phosphorylation of Smad2/3 

by the activated type I receptor kinase leads to dissociation of Smad2/3 from the receptor and 

SARA. Another FYVE domain containing scaffoling protein, Hrs/Hgs, was also shown to 

participate in the Smad presentation to the receptor82.  

TGF-β receptor internalization is required for the presentation of Smads to the TGF-

β receptor by SARA. The finding that Caveolin-1, a principal component of caveolae 

membranes, cofractionates with TGF-β receptors and Smad2, implies an internalization of 

the TGF-β receptor complex via caveolin-rich vesicles83,84. 

Microtubules were identified as another subcellular regulator of Smads. Interaction of 

Smad2/3 and Smad4 with tubulin was demonstrated and disruption of the Smad interaction 

with microtubules by nocodazole, which destabilizes the microtubule network, was shown to 

induce TGF-β mediated Smad2 phosphorylation and Smad mediated transcription 85.  
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Negative regulation of R-Smads 

 

Functional signaling through the activated receptor Smads and the Co-Smad is tightly 

regulated. One mechanism of regulation is exerted by of the last group of the Smad family, 

the inhibitory (I-) Smads 86-88. So far two I-Smads are known in the vertebrate system, Smad6 

and Smad7. Whereas Smad7 acts as a general inhibitor of TGF-β signaling pathway, Smad6 

preferentially blocks BMP signaling. One way how I-Smads block signaling is through the 

competition of I-Smads with R-Smads for the interaction with activated type I receptors 86. In 

contrast, Smad7 was shown to constitutively interact with the HECT-domain ubiquitin 

ligases Smurf1 and Smurf2 89. Recruitment of this I-Smad/Smurf complex to the TGF-

β receptor leads to proteasomal or lysosomal degradation of the receptor complex and thus to 

a block in TGF-β signaling. Further, I-Smads can inhibit by competing with Smad4 for 

complex formation with phosphorylated Smad(Imamura T 1998).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. General mechanism of TGF-β receptor and Smad activation. 
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Smad-independent signaling pathways 

 

TGF-β signaling is mainly mediated through the intracellular activation and subsequent 

nuclear translocation of Smads. Nevertheless, TGF-β also activates other signaling cascades 

like the MAP-kinase (MAPK) pathways. It was shown that TGF-β can activate Erk, JNK and 

p38 MAPK pathways and the, in some cases rapid activation of these pathways suggests 

independence from Smad-mediated transcription 90,91. The Smad-independent activation of 

the MAPK pathway was additionally proven in Smad4-deficient cells, where the activation 

of the MAPK pathway upon TGF-β stimulation was still detectable. Furthermore, mutated 

TGF-β type I receptors, unable to activate R-Smads, still activate p38 MAPK signaling in 

response to TGF-β92. 

It was shown that both, TGF-β and BMP4 activate TGF-β-activated kinase 1 (TAK1), which 

is a MAPK kinase kinase (MEKK). Because TAK1 can activate IκB, thus stimulate NF-κB 

signaling, TGF-β/BMP signaling may induce NF-κB signaling.  

 

Nuclear Smad-complexes control the transcription of a plethora of target 

genes 

 

The mechanisms for the nuclearcytoplasmic shuttling of the R-Smads Smad1, Smad2 and 

Smad3 are well characterized 93,94. The MH1 domain of all known Smads contain a lysine-

rich motif, which was demonstrated to function as nuclear localisation signals for Smad1 and 

Smad3. In contrast, Smad2 was shown to require a region within the MH2 domain for 

functional nuclear translocation 95. A completely different scenario was demonstrated for the 

Co-Smad, Smad4. Analysis of the dimeric Xenopus Smad4 revealed that Smad4 is 

constitutively entering the nucleus and that cytoplasmic localisation of Smad4 in 

unstimulated cells is due to active nuclear export 96.  

All Smads have transcriptional activity 97. R-Smads as well as Co-Smads can bind to their 

cognate DNA-sequences, termed Smad binding elements (SBE), with relatively low affinity. 

Whereas Smad4 can directly bind to the SBE via its MH1 domain, binding of Smad3 to the 

SBE needs the relief of the auto-inhibitory interaction between the N-terminal and C-terminal 

domains through phosphorylation of the C-terminal SSXS motif. Interestingly, it was shown 

for BMP receptor Smads that they can bind with low affinity to GC-rich sequences, 

suggesting that the DNA-binding specificity of Smads is not so strict 98.  
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Microarray analysis revealed that the TGF-β induced and the BMP induced Smads control 

the expression of about 500 target genes each. Specificity of Smad-mediated transcription in 

a tissue- and context dependent manner is believed to depend on several transcriptional co-

activators or co-repressors, which interact with Smads. One example of Smad-interaction 

with co-activators is the ligand-dependent recruitment of the structurally related transcription 

factors p300 and the core-binding factor CBF to the MH2 domain of R-Smads 99,100. Both of 

these transcription factors have intrinsic acetyltransferase activity (HAT), which facilitates 

transcription by decreasing chromosome condensation through histone acetylation and by 

increasing the accessibility of Smads with the basal transcription machinery. In contrast, 

Smad nuclear interacting protein 1 (SNIP1) binds Smad4 upon TGF-β  receptor activation 

and supresses the TGF-β/Smad pathway by competing for the binding of Smad4 to the co-

activators p300 and CBF 98. Two proto-oncogenes, Ski and SnoN were found to exhibit 

transcriptional co-repressor activity for activated Smads. Whereas Ski was shown to be a 

competitor for p300 binding to Smad, SnoN interacts with non-activated Smads in a ligand-

independent fashion 101,102.  

All these different interactions of Smads with transcriptional co-activators and co-repressors 

further increase the complexity of the readout from the incoming TGF-β or BMP signal to 

confer context dependent specificity of TGF-β/BMP signaling. The exact way, how TGF-

β/BMP signaling induces these other signaling pathways needs further investigations. 

 

 

Mutations of TGF-β  signaling pathway components are frequently detected 

in cancer 

 

Several mouse models for the functional loss of TGF-β signaling components are hampered 

by their early lethality. Nevertheless, there is a growing set of data available from 

overexpression experiments and conditional deletion of TGF-β signaling components. Much 

of this data underline the tumor-suppressor effect of TGF-β and demonstrate that the 

functional loss of TGF-β signaling in many analysed tissues leads to uncontrolled cell 

expansion either due to insensitivity to growth inhibition or due to the resistance to apoptotic 

stimuli.  

Several studies were initiated to find out, if TGF-β signaling components are mutated in 

human malignancies. In hereditary non-polyposis colorectal cancer (HNPCC) the TGF-β 
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receptor II locus (TBRII) is frequently mutated by microsatellite instability 103,104. Other 

mutations within the TBRII were also detected in gastric tumors, gliomas and liver cancers 
105,106. 

Mutations targeting the TGF-β receptor I (TBRI) have been found in ovarian, breast, 

pancreatic and T-cell lymphomas 71,107,108. Studies to detect possible alterations of TGF-β 

signaling components in the onset of blood cancers, revealed that at least in some patients 

with myeloid malignancies a decrease in mRNA levels for TBRII could be found 4,5. These 

observations indicate that the loss of TGF-β signaling might be implicated in the formation 

of certain tumors. 

The downstream mediators of TGF-β family signaling, the Smads, were also found to be 

involved in the onset of cancer. For example SMAD4 was originally described as a classical 

tumor suppressor that was homozygously deleted in over 50% of pancreatic carcinomas and 

thus named deleted in pancreatic carcinoma locus 4 (DPC4) 109. Germline mutations in 

SMAD4 were demonstrated to be associated with Familial Juvenile Polyposis, an inherited 

disease that is characterized by the development of benign polyps in the colon 110. 

Some rare SMAD2 mutations are also found in human colorectal and lung cancers 111,112, but 

screening of over 50 primary lymphoid and myeloid leukemia cells did not reveal any genetic 

defects within this gene 113. However, it was shown in the case of Smad3 that overexpression 

of the oncogene Evi-1, a repressor of Smad3 transcriptional activity, leads to blocking of the 

TGF-β signaling in some cases of chronic myeloid leukaemia 114. As Evi-1 expression in 

hematopoietic cells is normally restricted to a transient stage of myeloid differentiation, its 

constitutive expression might contribute to leukemic transition. Studies of murine gene 

deletion models to further elucidate the function of Smads in the development of cancer were 

mainly hampered by the early lethality of Smad gene deletions. An overview of published 

phenotypes from Smad deletion models in mouse is shown in table 3. However, the exact 

function of different Smad family members in varying tissues remains to be discovered. 

Therefore, experimental models for the conditional gene-targeting of Smads will most likely 

reveal more functions of Smads and TGF-β signaling components in specific tissues. 
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 Mutant phenotype Adult 

Smad2 Lethal before E8.5 
Defect in egg cylinder elongation, 
Mesoderm formation and gastrulation 

 

Smad3  Metastatic colorectal cancer (4-6 months of 
age). Impaired immunity and chronic infection. 
Accelerated wound healing. 

Smad4 Lethal before E7.5 
Growth retardation, failure in egg cylinder 
formation and elongation, 
gastrulation and mesoderm formation 
 

Conditional deletion in bone marrow leads to 
severe anemia, extramedullary hematopoiesis 
and splenomegaly (unpublished results).  

Smad5 Lethal around E10.5 to E11.5 due to multiple 
embryonic and extraembryonic defects 

Cardiovascular abnormalities. Defect in 
endocardial cushion transformation 

Smad6 Embryonic lethal (E9.5-10.5). Defect in 
angiogenesis, left/right asymmetry, Increased 
mesenchymal apoptosis 

 

 

 

 

 

 

TGF-β  in murine and human hematopoiesis 

 

Several in vitro studies established the role of TGF-β as a potent inhibitor of proliferation in 

human and murine hematopoiesis 115,116. It was shown that the addition of TGF-β1 to colony 

forming assays of murine and human hematopoietic progenitors inhibits colony formation of 

early progenitors but not of late progenitors. On a single-cell based assay it was demonstrated 

that addition of TGF-β directly inhibits early human hematopoietic progenitor cell 

proliferation in the presence of various cytokines. Using antisense oligonucleotides to block 

autocrine TGF-β1 or exogenous TGF-β1 showed that primitive CD34+CD38- cells are highly 

sensitive to TGF-β1 mediated cell-cycle inhibition 117,118. More mature CD34+CD38+ cells 

were only affected to a minor degree or even stimulated by TGF-β1 addition.  

Long-term culture initiating cells (LTC-IC) are a subpopulation of primitive human 

hematopoietic stem/progenitor cells capable of the continuous production of progenitor cells 

for a period of at least 8 weeks when cultured on bone marrow stromal cells. The addition of 

anti-TGF-β antibody to these cultures reactivates the proliferation of LTC-IC, showing that 

TGF-β1 is a potent endogenous inhibitor of hematopoietic progenitor cells 119. The reverse 

experiment, namely the addition of TGF-β1 to the LTC-ICs demonstrated the direct 

inhibitory effect of TGF-β1 on these cells 120.  

Table 2. Summary of phenotypes from gene targeting experiments for germline or conditional 
deletion of Smad family members.  
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TGF-β  signaling in megakaryopoiesis 

 

The exact functions of TGF-β in murine or human megakaryopoiesis is still not completely 

understood. Most data available to date are based on in vitro assays, where the inhibitory 

function of TGF-β on the formation of CFU-Megs was demonstrated 121,122. The inhibitory 

effect of TGF-β was also demonstrated using animal in vivo models, where for example the 

constant administration of TGF-β by subcutaneous injection for 2 weeks led to a drastic 

decline in circulating platelet counts and an increase of megakaryocyte numbers 123. Similar 

conclusions on the potential impact of TGF-β on megakaryopoiesis were derived from gene 

targeting experiments of TGF-β in mice: TGF-β -/- mice displayed elevated platelet numbers 

and increased megakaryocyte counts9,124. Because of TGF-β -/- mice develop a severe 

autoimmune phenotype, the observed elevation in platelet numbers may be secondary to the 

first phenotype. A second mouse model from Letterio et al. 125, in which TGF-β was deleted 

in a MHC-II deficient background, thus avoiding the immunological primary phenotype, 

showed an excess of megakaryocyte counts and expansion of the myeloid lineage within the 

bone marrow.  
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Figure 3. Hematopoietic differentiation into the lineages of the peripheral blood. Well characterized inhibitory 
functions of TGF-β signaling on the different stages and lineages of hematopoiesis are indicated. baso, basphil; 
BFU, burst-forming unit; CFU, colony-forming unit; E, erythroid; Eo, eosinophil; GEMM, granulocyte, 
erythroid, monocyte and megakaryocyte; GM, granulocyte, monocyte; Meg, megakaryocyte; NK, natural killer. 
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Gene Mutant phenotype Adult 
TGF-β1 Die postnatally (approx. 4 weeks of age) 

from multifocal inflammatory disease. 50% 
die at E10.5 due to defective yolk sac 
vasculogenesis and hematopoiesis 

Inflammation and autoimmune disorder, mainly CD4+ T 
cell mediated. 
Platelet aggregation defect. 
In MHCII ko background: Expansion of the myeloid 
compartment, myeloid metaplasia associated with 
splenomegaly and anemia. 

TBRI Lethal around E10.5 due to defects in 
vascular development of the yolk sac 
No defects in hematopoiesis detectable. 
Normal number of CFU-GM and mixed 
myeloid colonies. Increase in erythroid 
colonies  

Bone marrow stem cells from induced ko mice showed 
higher proliferation rate in vitro.  
Normal hematopoietic capacity in vivo (transplantation) 
with normal numbers and differentiation ability of 
progenitors. Fatal inflammatory autoimmune phenotype 
8-10 weeks after transplantation. 

TBRII Lethal around E10.5 due to defects in yolk 
sac hematopoiesis and vasculogenesis. 

Conditional deletion in bone marrow leads to a 
transplantable inflammatory autoimmune phenotype as 
observed in the TGF-β1 ko. 
Conditional deleted mice die on wasting syndrome 10-
12 weeks post induction  

 

 

 

Recent studies demonstrate a strong induction of TPO mRNA expression in bone marrow 

stromal cells activated by TGF-β1 54. It was shown that TGF-β, which is mainly stored in 

megakaryocytes and platelets, has a pronounced impact on the thrombopoitin (TPO) 

production of bone marrow stromal cells. The TPO production leads then to the expansion of 

the megakaryocytic progenitor cells within the bone marrow. Furthermore, TPO induces the 

expression of type I and type II TGF-β receptors on the cell surface of megakaryoblasts. This 

result suggests that TGF-β1 might be involved in the pathophysiological feedback regulation 

of megakaryopoiesis.  

 

 

Potential implication of TGF-β  signaling components in the progression of 

myeloproliferative disorders 

 

The myeloproliferative disorders (MPDs), comprising polycythemia vera (PV), essential 

thrombocytosis (ET) and idiopathic myelofibrosis (IMF) are characterized by a clonal 

expansion of the myeloid lineages, involving erythrocytes, granulocytes and platelets. The 

clonal expansion of the myeloid lineages is most likely due to a single transformed 

hematopoietic stem cell (HSC), which aquired a proliferative advantage and thus overgrows 

Table 3. Summary of phenotypes from gene targeting experiments for 
germline or conditional deletion of TGF-β signaling components.  
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the normal HSC pool. The proliferative advantage of the MPD clone is believed to originate 

either from a cytokine-hypersensitivity or insensitivity to inhibitory signals. One cytokine 

exerting a strong inhibitory function in hematopoiesis is TGF-β. Therefore, several 

investigators speculated that the observed decreased sensitivity of hematopoietic cells from 

MPD patients to TGF-β signaling causes the expansion of the MPD clone. Reports, on 

reduced expression of the type II TGF-β receptor in patients with MPD 4,5 further underlines 

the possibility that a diminished TGF-β sensitivity of the MPD clone is the reason for the 

clonal expansion. The mouse models for targeted disruption of TGF-β signaling give 

controversial answers to the question, whether the above proposed model for clonal 

expansion in MPD due to TGF-β insensitivity are correct. Therefore, conditional deletion of 

TGF-β signaling components in hematopoiesis and megakaryopoiesis might be a valuable 

tool to create mouse models for MPD. A definite answer, whether TGF-β plays a role in the 

clonal expansion in MPD might come from experiments, where human HSCs are silenced for 

TGF-β gene expression. The loss of functional TGF-β signaling in these cells can be 

subsequently analyzed in vivo by transplantation into immunocompromised mice. Recent 

advances in the use of RNA-interference (RNAi) in HSCs might be valuable to gain insight 

into the function of TGF-β signaling in human hematopoiesis. 
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Abstract 

Many genes potentially involved in megakaryopoiesis are difficult to study by conventional 

gene targeting models, because their germ line deletion is embryonically lethal. Therefore, we 

generated a new mouse model for tissue-specific deletion of target genes in megakaryocytes 

and platelets using the Cre/loxP system 126. Taking advantage of the ET-cloning system for the 

modification of large genomic DNAs in bacterial artificial chromosomes (BACs), we inserted 

the improved Cre recombinase (iCre) sequence into the first exon of the CXC-chemokine 

platelet factor 4 (PF4). The injection of the modified 100kb genomic BAC-insert harbouring 

the PF4Cre transgene and the regulatory sequences for tissue-specific expression in 

megakaryocytes and platelets, resulted in 3 transgenic founder strains with megakaryocyte-

restricted Cre expression. We have used the PF4Cre mouse for megakaryocyte-restricted 

deletion of the TGF-β receptor II (TBRII) and the Smad4 gene. This way, we aimed to prove 

the hypothesis that the loss of functional TGF-β signaling in megakaryopoiesis promotes 

elevated platelet counts. This was suggested by studies establishing the in vitro and in vivo 

inhibitory effect of TGF-β on megakaryopoiesis 121,122. Megakaryocyte-specific deletion of 

TBRII was verified by southern analysis in homozygous TBRIIlox/lox-PF4Cre mice. 

Peripheral blood counts of these mice were analyzed and no alterations of platelet counts were 

detectable in TBRIIlox/lox-PF4Cre or Smad4lox/lox-PF4Cre mice arguing against a function 

of TGF-β signaling in normal megakaryopoiesis. Furthermore, the analysis of TBRIIlox/lox-

Mx1Cre mice for conditional deletion of target genes in bone marrow progenitor cells 

indicates that TGF-β signaling does not affect very early stages of megakaryopoieis.  
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Introduction 

 

Many of the genes that are thought to control megakaryopoiesis are expressed ubiquitously, 

which makes it difficult to determine their specific contribution to megakaryopoiesis by a 

classical gene knockout approach. In order to investigate functions of genes, which are 

potentially involved in megakaryopoiesis, we intended to target Cre recombinase expression 

to megakaryocytes and platelets by exploiting the Pf4 gene. The α-chemokine platelet factor 4 

(PF4) is expressed during megakaryocytic differentiation, where it is activated during the late 

stages of megakaryopoiesis 32,33. Due to the lineage-restricted expression pattern of the Pf4 

gene, we used the PF4 promotor for tissue-specific expression of the Cre recombinase in 

megakaryocytes and platelets. To circumvent the known obstacles of conventional plasmid-

based transgenes, namely position variegation effects as silencing of the transgene or mosaic 

expression, we modified a Bacterial Artificial Chromosome (BAC) harboring the entire PF4 

gene and regulatory regions, which are responsible for tissue-specific expression. Using the 

ET-recombination system in E.coli 11 the BAC was modified to contain the improved Cre 

(iCre) recombinase sequence, replacing exon I of the PF4 gene 127. Here, we describe the 

generation of the PF4Cre mouse, which serves as a valuable tool to study gene function in 

megakarypoiesis by tissue-restricted gene targeting.  

We then asked the question whether the loss of the TGF-β signaling pathway during early 

stages of megakaryocyte differentiation promotes elevated platelet counts. Several in vitro 

and in vivo studies, where the inhibitory function of TGF-β on megakaryopoiesis and platelet 

production was demonstrated, implied that the functional loss of TGF-β signaling in 

megakarypoiesis might lead to megakaryocytic hyperproliferation and thus increased platelet 

counts in the peripheral blood 121,122. Furthermore, reports where mRNA levels of TGF-β 

signaling components were shown to be decreased in patients with myeloproliferative 

disorders (MPD) set up the idea that the loss of TGF-β signaling leads to the clonal expansion 

of myeloid cells in these patients 4,5. We sought to examine the above-mentioned hypothesis 

by the megakaryocyte restricted deletion of the type II TGF-β (TBRII) using the PF4Cre 

mouse. As the full knockout of TBRII is embryonically lethal at day E10.5 128, tissue-specific 

deletion of TBRII in megakaryocytes facilitates the study of abolished TGF-β signaling 

during adult megakarypoiesis. Binding of the ligand to the type II receptor is the crucial initial 

step for the formation of a functional heteromeric TGF-β signaling complex, deletion of 
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TBRII leads to a complete block of TGF-β signaling. We crossed PF4Cre mice with 

TBRIIlox/lox mice and received viable homozygous TBRIIlox/lox-PF4Cre offspring. 

Analysis of peripheral blood counts from TBRIIlox/lox-PF4Cre mice revealed no alteration in 

the numbers of circulating platelets, demonstrating that functional TGF-β signaling is 

dispensable in megakarypoiesis. We obtained the same results, when we crossed the PF4Cre 

mice with Smad4lox/lox mice where loxP sites flank exon 8 of the Smad4 gene 129. This result 

additionally underlines that TGF-β signaling is dispensable for functional megakaryopoiesis, 

as Smad4 is the crucial down stream transducer of Smad-mediated TGF-β signaling.  
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Material and Methods 

 

Screening of a mouse genomic BAC filter library  
 
For the identification of a BAC (Bacterial Artificial Chromosome) clone containing the 

platelet factor 4 (PF4) gene as well as its 5' and 3' regulatory regions a genomic BAC filter 

library from Incyte Genomics was screened using a PCR generated PF4 promotor specific 

radioactive labelled probe, which was hybridzed to the BAC filters. Positive clones were 

identified after autoradiography as double-spots on the filter grid and the corresponding clone 

identities were ordered as agar stabs from Incyte Genomics. Three clones were ordered and 

verified to contain the PF4 gene by PCR with the primers PF4 forw. 5'-

TACAGCATACCTTTTGCTAA-3' and PF4 rev. 5'-GTCAAGAGGGTGCCACTGGA-3'. 

The insert size is 120kb on average, ranging from 40-240kb. One positive clone, 117b02, was 

subsequently used to insert the improved Cre recombinase (iCre) sequence by ET-

recombination in E.coli.  

 

BAC DNA preparation 
 
BAC DNA from the maternal clone as well as from the modified versions was purified using 

the Nucleobond AX DNA purification kit from Machery-Nagel. 

 

Generation of the PF4Cre mouse 
 
The PF4 gene was modified by homologous recombination using the ET-cloning system from 

F.A.Stewart 11. A DNA fragment containing the complete improved Cre-recombinase (iCre) 

sequence and 54 nucleotides of the proximal Pf4 promotor as well as 54 nucleotides of the 

Pf4 first intron, the bovine growth hormone polyadenylation signal, an ampicillin resistance 

cassette (bla) flanked by frt sites, was PCR generated, the resulting 2.8kb PCR fragment was 

DpnI digested to remove any contaminating vector DNA and subsequently gel purified for 

homologous recombination in ET-cloning. The PCR primers for the insert generation were: 

5'-

CATTTCCTCAAGGTAGAACTTTATCTTTGGGTCCAGTGGCACCCTCCTGACATGGT

GCCCAAGAAGAAGAGGAAAGTC-3' and 5'-

CACCTGAGGCTCCTGAACTGTCTTCCTGTCCCTAGCATCCCTTCACCCAATCTCAC

TTGATGAGTTTGGACAAACCACAACTAGAATCCA-3'. The ampicillin cassette was 

removed by the transiently expressed Flp recombinase. The modified 100 kB BAC insert was 
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removed by NotI digest, separated by pulsed-field gel electrophoresis and purified by agarase 

digestion and microdialysis 130. DNA was injected into the male pronucleus of fertilized 

C57Bl/6 mice. Transgenic offspring was analysed by PCR using a PF4 promotor specific 5' 

oligonucleotide and a Cre recombinase specific 3' oligonucleotide. Copy numbers were 

determined by real time PCR using Cre recombinase specific primers and HPRT primers 

which served as a one copy gene control.  

 

Mice 
 
The TBRIIlox/lox mouse was kindly provided by Dr.J.Roes from the University College 

London�. The Smad4lox/lox mouse was a gift from Dr.CX.Deng from National Institutes of 

Health, Bethesda, Maryland. ROSA26lacZ mice were kindly provided from Dr.S.Zuklys from 

the Pediatric Immunology Department, Basel University.  

 

Analysis of recombination efficiency 
 
DNA from homozygous TBRIIlox/lox-PF4Cre mice was prepared from MACS-purified 

megakaryocytes, the flow through fraction from the megakaryocyte isolation or full bone 

marrow of heterozygous mice by overnight incubation at 500C in Lysis buffer ( 10mM Tris-

HCl, pH 8.0, 0.1M EDTA, pH 8.0, 0.5% (w/v) SDS and 20µg/ml Dnase-free pancreatic 

Rnase) and subsequent Phenol extraction. For southern blotting typically 5-10µg genomic 

DNA were digested by Nco I for 5 hours and size-fractionated on a 1% agarose gel. After 

overnight blotting the membrane was hybridized with a PCR generated radiolabeled probe for 

12 hours in hybridisation buffer SLURP (48% formamide, 5x SSC, 0.2M TrisHCl pH 7.6, 1x 

Denhardt’s, 10% dextran sulfate and 0.1% SDS). Primers for the probe were: 5'-

CATGAAGTCTGCGTGGCCGTGTG and 5'-TGTAATCGTTGCACTCTTCCATGT-3'. 

Bands for the wild type (2.7kb), floxed (2.9kb) or the recombined allele (1.8kb) were detected 

by autoradiography and quantified on a BioRad phosphoimager.  

 

 

Cre recombinase expression analysis 

Mice of all 5 independent PF4Cre strains were crossed into the ROSA26lacZ reporter strain to 

detect expression of Cre recombinase by lacZ staining. Heterozygous PF4Cre/ROSA mice 

were killed by cervical dislocation and organs were removed and subsequently embedded in 

OCT compound for fixation. The samples were frozen on dry ice and used to prepare 

cryosections at the desired thickness (10µ). Organ sections were fixed in lacZ fixation buffer 
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(0.2% glutaraldehyde, 5mM EGTA, pH 7.3, 100mM MgCl2 in phosphate buffered saline) for 

10 min at room temperature and washed three times for 5 min in lacZ wash buffer (2mM 

MgCl2, 0.01% NaDOC, 0.02% Nonidet P40 in phosphate buffered saline), followed by lacZ 

staining over night in lacZ staining buffer (100mg X-gal dissolved in DMSO, 0.21g K-

ferrocyanide and 0.16g K-ferricyanide were dissolved in 96ml lacZ wash buffer).  The next 

day sections were washed in phosphate buffered saline (PBS), post-fixed in lacZ fixation 

buffer for 10min at room temperature and PBS washed again. After rinsing the sections with 

deionized water for 5min they were stained with nuclear fast red to visualize the nuclei. 

Mounted slides were analyzed microscopically for lacZ positive cells. 

 

 

Peripheral blood counts 
 
For the quantification of peripheral blood mice were either bled by tail vein sections or heart 

punctures. For tail bleeding the most proximal tip of the tail was cut, blood was collected in 

EDTA-coated capillaries (BRAND) and diluted in 0.9% NaCl. Blood from cardiac heart 

punctures was collected without anticoagulants and approximately 500µl were immediately 

mixed with EDTA and blood counts were performed with an automated blood counter 

(Technicon H-3, Bayer Diagnostics, Tarrytown, NY).  

 

 

CFU-Meg assay 
 
Bone marrow was flushed from femurs and tibiae with IMDM using a syringe with a 25 

gauge needle. Cells were seeded at 2x106 cells/ml on 3.3% agar supplemented with 7.8µg/ml 

cholesterol, 25µg/ml soybean lipids, 10mg/ml BSA, 5.6µg/ml linoleic acid, 1mM sodium 

pyruvate, 2mM L-glutamine, 100µM α−thioglycerol and 300µg/ml human transferrin. Plates 

were incubated for 7 days at 37C in 5% CO2 and colonies were scored microscopically after 

acetylcholinesterase stain.  

 

 

Bone marrow cytospins 
 
A total of 3-5x105 cells from freshly isolated bone marrow cells was resuspended in phosphate 

buffered saline (PBS) and centrifuged at 500g in a Cytospin 3 fuge from Shandon onto a glass 
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slide. The slide was dried at 500C for 1min and stained with Whright stain or used for over 

night lacZ stains. Stained cells were analyzed microscopically. 

 

Acetylcholinesterase stain 

Bone marrow and purified megakaryocyte cytospins were stained for enzymatically active 

acetylcholinesterase by overlaying the cytospins for 3.5 hours with Ach-stain (0.3mg/ml 

acetylthiocholine iodide, 3mM sodium citrate, 2mM copper sulfate, 300µM potassium 

ferricyanide disolved in phosphate buffer). After staining for 3.5 hours the slides were briefly 

rinsed in deionized water and megakaryocytes, appearing brown, were detected 

microscopically.   

 

Purification of bone marrow derived megakaryocytes 

Bone marrow from the femurs and tibiae of TBRIIlox/lox-PF4Cre mice was flushed with a 25 

gauge needle into RPMI/10% fetal calf serum (FCS). Cells were sedimented by centrifugation 

at 1200rpm for 5 min. and subsequently washed once in MACS-buffer (phosphate buffered 

saline, pH 7.2, 0.5% bovine serum albumin and 2mM EDTA). Cells were resuspended in 

300µl MACS buffer and stained with anti-CD41-FITC conjugated antibody for 15 minutes at 

4o C. The cells were washed again in MACS buffer and resuspended in 300µl MACS buffer 

for the incubation with the anti-FITC magnetic immunobeads. After incubation at 4o C for 20 

min, the cells were washed twice in MACS buffer, resuspended in 500µl MACS buffer and 

separated over a MACS MS column. The separated megakaryocytes were either used for 

acetylcholinesterase staining or for the preparation of genomic DNA. 
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Results 

 

Generation of the PF4Cre mouse  

 

It has been shown before that a promotor construct of the chemokine platelet factor 4 ( PF4) is 

able to drive tissue-specific gene expression of a reporter gene into the megakaryocytic 

lineage 131,132. These short, plasmid-based transgenes were hampered in their expression by 

position variegation effects. While expression of these transgenes was efficiently detectable in 

bone marrow derived megakaryocytes, splenic megakaryocytes showed no transgene 

expression. We isolated a Bacterial Artificial Chromosome (BAC) containing the entire 

platelet factor 4 gene from a mouse genomic BAC filter library with the intention to generate 

a transgenic PF4Cre mouse with tissue-specific expression of the Cre recombinase in 

megakaryocytes and platelets. The use of large genomic DNA inserts from a BAC for 

transgene delivery into mouse oocytes circumvents position effect variegations, namely 

silencing or mosaic expression demonstrated for plasmid based transgenes. To gain maximal 

tissue-specificity of Cre expression, we modified the BAC by inserting the coding sequence 

of the improved Cre recombinase (iCRE) into the first exon of the Pf4 gene in frame with the 

ATG of the endogenous Pf4 gene by ET recombination in E.coli 11,127. Homologous 

recombination between the 5' and 3' homology arms of the PCR-generated Cre-cassette and 

the circular BAC-DNA led to the insertion of the iCre sequence into the first exon of the Pf4 

gene. The iCre sequence was followed by the bovine growth hormone sequence and an 

ampicillin resistance cassette flanked by Frt-sites ( Fig.1).  
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Figure 1. Modification of a 
Bacterial Artificial Chromosome 
(BAC). The transgene construct was 
amplified by PCR using the vector 
pCre.myc.nuc.FRT.NotI.ampFRT as 
a template. 
Open boxes I-III indicate platelet 
factor 4 exons 1-3. Cre sequence of 
the improved Cre recombinase, GH 
bovine growth hormone 
polyadenylation signal, EcoRI and 
EcoRV indicate the position of 
analytical restriction-sites. The 
arrows indicate the sizes of 
restriction fragments for southern 
analysis. Arrowheads show the 
position of the FRT-sites. 
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The resulting modified BAC clone was subsequently analyzed by Southern blotting (Fig.2). 

Analytical EvoRV-digests of the modified BAC DNA revealed effective recombination of the 

Cre cassette into exon I of the Pf4 gene (Fig.2). Ten positive clones were further modified by 

the excision of the ampicillin resistance cassette via Flpe recombinase mediated 

recombination. Recombined clones were detected by PCR and Southern blotting and 

subsequently analyzed by sequence analysis. Out of 5 clones only one passed all controls and 

was used for the generation of transgenic PF4Cre mice. The 100 kb genomic BAC-insert 

harboring the transgene construct was microinjected into the male pronuclei of fertilized 

C57BL/6 oocytes. Out of 12 founder lines 6 lines were tested PCR-positive for transgene 

integration and were subsequently used for further analysis. 

 

 

 

 

 

 

 

 

 

 

Tissue-specific Cre expression in PF4Cre mice 

 

Copy number detection in transgenic PFCre strains by quantitative real time PCR using Cre 

specific primers revealed integration numbers between 1 and 22 copies (table 1). The F1 

progeny of all six lines was tested for Cre mRNA expression in peripheral blood by RT-PCR 

(data not shown). Only one strain (Q10) had no detectable Cre mRNA expression in 

peripheral blood although it was tested positive for the integration of the construct. The 

remaining 5 lines were than analyzed for tissue-specific Cre expression in the megakaryocytic 

lineage by crossing them into the ROSA26lacZ reporter mouse strain 133. In the heterozygous 

offspring, expression of functional Cre recombinase leads to the deletion of a stop-cassette 

within the ROSA locus and thereby to the expression of enzymatically active β-galactosidase. 

Bone marrow cytospins and tissue-sections were analyzed for the expression of β-

galactosidase by lacZ staining. We found that β-galactosidase expression was restricted to 

megakaryocytes and platelets of the bone marrow and spleen in the two lines with 

100kbNotI  
f r a g m e n t

4 . 6 k b
3 . 5 k b
1 . 9 k b

 
Figure 2. Southern blot from the parental and modified BAC. Arrows indicate the sizes of analytical EcoRV 
restriction fragments; in lane B, for the maternal clone; lane D for the recombined with Amp-cassette and F 
for the recombined clone without the Amp-cassette. The size of a XhoI restriction fragment to monitor 
BAC-integrity is shown in lane A for the maternal clone and C,E for modified versions.  
 

 A    B      C       D      E      F 
 

100kb XhoI 
fragment 

4.6kb 
3.5kb 
1.9kb 
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Figure 3. Analysis of Cre recombinase expression in tissues from ROSA26lacZ/PF4Cre mice by X-gal 
staining. Sections were counterstained with nuclear fast red after lacZ-staining. Black arrows indicate 
megakaryocytes stained for β-galactosidase expression. BM bone marrow, Q2, Q3 and Q12 transgenic 
PF4Cre strains crossed with ROSA26lacZ reporter mice. 
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one or two integrations (Q3 and Q2), whereas ectopic expression was detectable in the lines 

with 5 or 22 copies (Q12 and Q1), respectively (Fig.3).  

The Q12 strain showed ectopic blue staining in spleen, thymus, bone marrow (Fig.3) and 

brought blue staining in the alveolae of the ovary (not shown). The analysis of Cre expression 

in the 22 copy Q1 strain revealed that almost all organs showed positive lacZ staining to 

different degrees (data not shown), therefore this strain was excluded from further 

experiments. Monitoring β-galactosidase activity in the one copy Q11 line revealed no β-

galactosidase positive cells in any of the analyzed tissues and was excluded from further 

analysis. The various degree of Cre expression in different strains is in agreement with 

previous reports of copy number dependent expression of BAC-derived transgenes 134.  

To evaluate the excision efficiency of a floxed target gene in megakaryocytes, we analyzed 

the percentage of excision in purified megakaryocytes from PF4Cre mice crossed with TGF-

beta receptor II lox (TBRIIlox) mice where exon 3 is flanked by loxP sites. Cre mediated 

recombination of the floxed exon 3 leads to direct splicing of exon 2 to exon 4 generating a 

frameshift mutation and a stop codon at position 187 of the open reading frame, resulting in 

termination of translation 135. Genomic DNA from purified, bone marrow derived 

megakaryocytes of TBRIIlox/lox-PF4Cre or TBRIIlox/+-PF4Cre mice was used to detect the 

recombined allele by southern blotting. The purity of the megakaryocyte preparation was 

typically between 70-80%, as revealed by acetylcholinesterase stain of the purified 

megakaryocytes. Determination of the band intensities indicated relatively low excision 

efficiencies for the 2 copy Q2 strain, e.g. 65% in the purified megakaryocytes, and no 

detectable excision for the one copy Q11 strain, which is in agreement with the previously 

obtained negative β-galactosidase detection in this strain. The 5 copy Q12 strain showed an 

excision efficiency of 90% in the purified megakaryocytes, but ectopic excision in the 

megakaryocyte-depleted bone marrow flow through of the Q12 strain was also detectable to 

50% (Fig.4). This result correlates the previous Cre expression data obtained by lacZ stains 

(Fig.3). Unfortunately, analysis of the one copy Q3 strain was only possible in heterozygous 

mice, as this strain had no homozygous TBRIIlox/lox-PF4Cre offspring. 

 

 

 

 

 

 Table 1. Summary table of transgenic PF4Cre strains. +++ Cre expression only in megakaryocytic 
lineage, + Cre expression in megakaryocytic lineage; ectopic expression in other hematopoietic and 
non-hematopoietic tissues. 

Transgenic strains Copy numbers Tissue-specific Cre

expression

% excision efficiency  in

megakaryocytes

Q3 1 +++ 70%

Q2 2 +++ 65%

Q12 5 + 90%
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The excision efficiency of this strain was 60-70% in purified megakaryocytes and excision 

was undetectable in megakaryocyte-depleted bone marrow or any other organ. A possible 

reason for the lack of viable homozygous TBRIIlox/lox-PF4Cre offspring in this strain, 

namely co-segregation of the transgene with the endogenous TBRII gene was excluded by the 

fact that we found Cre-negative heterozygous mice, which should be impossible in the above 

described scenario.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deletion of the TGF-β receptor II in megakaryocytes has no effect on circulating platelet 

counts 

 

To determine the functional role of transforming factor beta (TGF-β) in megakaryopoiesis, we 

crossed our PF4Cre transgenic strains with a TGF-β receptor II lox (TBRIIlox/lox) mouse 

where exon 3 is flanked by loxP-sites 135. Upon Cre-mediated recombinaton between the loxP-

sites, exon 2 is fused to exon 4 generating a stop codon and thus a null-allele. We received 

 

Figure 4. Southern blot for the quantification of excision in megakaryocytes. 
TBRIIlox/lox-PF4Cre genomic DNA from purified megakaryocytes and depleted 
bone marrow flow through was analyzed by Southern blotting. Fragment sizes are 
indicated. lox conditional allele, wt wild type allele, recomb. recombined allele. Q3, 
Q2 and Q12 indicate the analyzed transgenic strains, which are plotted according to 
the copy numbers. F flow through from megakaryocyte depleted bone marrow, M 
purified megakaryocytes 



Results I 40 

viable TBRIIlox/lox-PF4Cre offspring from strains Q2 and Q12, but no homozygous Cre-

positive mice from matings with Q3. However, analysis of homozygous TBRIIlox/lox-

PF4Cre offspring from the Q2 strain revealed no phenotypic abnormalities compared to 

littermate controls. Analysis of peripheral blood from TBRIIlox/lox-PF4Cre mice showed no 

alterations in circulating platelet counts or any other lineage of peripheral blood (Table 2). 

The fact that mice from the Q2 strain were shown to have incomplete excision of the floxed 

TBRII in megakaryocytes (Fig.4) might explain the complete lack of phenotypic alterations in 

this strain. 

Next, we analyzed TBRIIlox/lox-PF4Cre mice derived from the Q12 strain. Homozygous 

mice were viable at birth and had no obvious phenotypic differences in comparison to their 

littermates. Peripheral blood counts from 5 weeks old homozygous mice revealed no 

alterations in circulating platelet counts, but slight changes in the numbers of white blood 

cells (WBC). With increasing age, these mice developed obvious phenotypic alterations. At 

the age of 10 weeks these mice were clearly phenotypically distinguishable by size from 

heterozygous littermates. At the age of 15-17 weeks TBRIIlox/lox-PF4Cre (Q12) mice 

displayed a severe weight loss of up to 30% as compared to their heterozygous littermates.  

 

 
Strain n Age RBC 

(x106/ml) 

Hb  

(g/l) 

Hct 

(%) 

WBC 

(x106/ml) 

platelets 

(x106/ml) 

control 6 6-8 weeks 9.6 (±0.2) 156 (±4.3) 49 (±1) 7.7 (± 1.5) 1295 (± 187) 

Q2 4 8-10 weeks 9.6 (±0.5) 155 (±9.7) 46 (±3) 4.7 (± 1) 1230 (± 134) 

Q12 2 13-17 weeks 8.4 (±0.04) 125 (±2.12) 42 (±3) 19.9 (± 0.13) 1435 (± 37) 

 

 

 

 

 

 

Homozygous TBRIIlox/lox-PF4Cre (Q12) mice appeared lethargic and showed inflammation 

of the eyes with corneal opacity. Peripheral blood counts obtained from these mice showed an 

increase of the previously detected leukozytosis. This was revealed by the double amount of 

circulating WBCs compared to littermate controls (Table 2). The increase of WBC counts was 

due to elevated numbers of neutrophils and lymphocytes in the circulating blood. 

Table 2. Peripheral blood counts in wild type and transgenic TBRIIlox/lox-PF4Cre mice. Given are the mean 
values of the indicated mouse strains. Numbers in parenthesis represent ± SD. RBC Red Blood Count, Hb 
hemoglobin value, Hct hematocrit in %, WBC White Blood Count, platelets number of platelets  
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Nevertheless, these mice did not show any alterations in circulating platelet counts in 

agreement with the previously analyzed Q2 strain. 

 

  

Deletion of the TGF-β  signaling mediator Smad4 in the megakaryocytic lineage 

 

To further underline the results obtained with the deletion of the TGF-β receptor II in 

megakaryopoiesis, we asked the question whether the targeting of a downstream signaling 

component of the TGF-β pathway would have the same outcome as the deletion of the TGF-β 

receptor II. Therefore, we decided to analyze the consequences of the conditional deletion of 

the mediator of TGF-β family signaling, Smad4, in megakaryopoiesis. Smad4 lox mice, 

where exon 8 is flanked by loxP-sites, were kindly provided by Dr.CX Deng 129. 

Smad4lox/lox mice were crossed with PF4Cre mice to receive homozygous Smad4lox/lox-

PF4Cre mice. We received viable homozygous offspring for two lines, Q3 and Q12 and 

analyzed peripheral blood counts from these mice. Similar to TBRIIlox/lox-PF4Cre mice, the 

number of circulating platelets were not altered in the analyzed strains (Table 3).  

 
Strain n Age RBC 

(x106/ml) 

Hb 

(g/l) 

Hct  

(%) 

WBC 

(x106/ml) 

platelets 

(x106/ml) 

control 3 8-10 weeks 9.7 (±0.6) 154 (±9.2) 48 (±2) 9.7 (±1.8) 1182 (±217) 

Q12 3 8-10  weeks 9.3 (±0.64) 152 (±8.7) 48 (±2) 11.2 (±0.48) 1127 (±98) 

 

 

 

 

 

Induced deletion of TBRII in bone marrow stem/progenitor cells has no influence on 

megakaryopoiesis 

 

Using the PF4Cre transgenic mouse strain for conditional gene deletion in the megakaryocytic 

lineage, we clearly demonstrated that the loss of TGF-β signaling in early megakaryopoiesis 

does not lead to the expected increase of circulating platelets. To study the consequences of 

non-functional TGF-β signaling in the earliest stages of megakaryopoiesis, the transgenic 

Mx1Cre mouse strain was used to induce deletion of TBRII in bone marrow stem/progenitor 

cells. In Mx1Cre mice the expression of the Cre recombinase is controlled by the interferon-

Table 3. Peripheral blood counts in wild type and transgenic Smad4lox/lox-PF4Cre mice. Given are the 
mean values of indicated mice. Numbers in parenthesis represent ± SD. RBC Red Blood Count, Hb 
hemoglobin value, Hct hematocrit in %, WBC White Blood Cell, platelets number of platelets x106/ml 
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α/β inducible Mx1-promotor 10, which mediates close to 100% target gene excision in bone 

marrow. Induction of Cre recombinase expression in TBRIIlox/lox-Mx1Cre mice by 

polyinosinic/polycytidylic acid (pIpC) resulted in the expected 100% deletion of TBRII in 

bone marrow, as revealed by RT-PCR (data not shown). In a previous report from Leveen et 

al.7, the induced deletion of TBRII in homozygous TBRIIlox/lox-Mx1Cre mice led to an 

inflammatory phenotype, characterized by weight loss, immobility and inflammation of the 

eyes. Pathologies of phenotypic mice 8-10 weeks after pIpC-injection, revealed organ 

infiltrations by granulocytes and T/B-cells in many of the analysed organs, mainly in stomach, 

pancreas, and liver, accompanied by tissue destruction. The phenotype was described as a 

severe inflammatory disorder affecting multiple organs. Interestingly, 6-8 weeks post 

injection we could not detect alterations in peripheral blood counts of these mice for all 

analyzed blood lineages (Table 4), which is in line with the reported phenotype from Leveen 

et al. Especially the lack of altered platelet counts further underlined our data obtained with 

the TBRIIlox/lox-PF4Cre mice. Taken together, both mouse models for the conditional 

deletion of the TGF-β receptor II demonstrate that TGF-β signaling is dispensable for 

functional megakaryopoiesis and that the loss of the inhibitory TGF-β signal does not lead to 

the expected thrombocytosis. 

 

 
Strain n Age RBC 

(x106/ml) 

Hb  

(g/l) 

Hct  

(%) 

WBC 

(x106/ml) 

platelets 

(x106/ml) 

TBRII-/+/Cre 6 10-15 weeks 9.9 (±0.5) 151 (±9.5) 50 (±10) 7.5 (±3.8) 1371 (±140) 

TBRII-/-/Cre 6 10-15 weeks 9.5 (±0.85) 152 (±21) 48 (±7) 5.76 (±2.9) 1467 (±390) 

 

 

 

 

 

 

 

However, mating the PF4Cre/Q12 mouse with the TBRIIlox/lox strain, we found that 

homozygous TBRIIlox/lox-PF4Cre mice developed a leukozytosis as demonstrated by 

increased numbers of peripheral white blood cells (Table 2). Particularly, the numbers of 

neutrophils and lymphocytes in peripheral blood were elevated in comparison to littermate 

controls. The detected leukocytosis increased with age ranging from 50% increase in 5-10 

Table 4. Peripheral blood counts from pIpC-injected TBRIIlox/lox-Mx1Cre and TBRIIlox/+-Mx1Cre mice. 
Given are the mean values of indicated mice 6-7 weeks after the last pIpC-injection. Numbers in parenthesis 
represent ± SD. RBC Red Blood Count, Hb hemoglobin value, Hct hematocrit in %, WBC White Blood 
Count, platelets number of platelets x106/ml 
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week old mice, to an 100% increase detected at the age of 17 weeks. Other phenotypic 

features like weight loss and inflammation of the eyes were comparable to the TBRIIlox/lox-

Mx1Cre mice. As induced TBRIIlox/lox-Mx1Cre mice die around 8-10 weeks after the first 

pIpC-injection, there is an obvious difference in the severity of the phenotype developed by 

these mice in comparison to TBRIIlox/lox-PF4Cre mice, which survived at least to 17 weeks 

after birth. The exact cause of the leukozytosis in TBRIIlox/lox-PF4Cre mice from the Q12 

line has to be investigated in detail. Nevertheless, it is most likely that the observed ectopic 

Cre expression in the Q12 line accounts for the similarities in the phenotype compared to the 

previously described TBRIIlox/lox-Mx1Cre and TGF-β-/- mice. 

 

 

Discussion 

 

We were interested to study the function of genes, which are potentially involved in 

megakaryopoiesis. As gene-targeting experiments for many of these genes resulted in 

embryonic lethality of the knockout mice, these approaches are not informative for gene-

function studies in megakaryopoiesis. Therefore, we intended to generate a transgenic mouse 

model for the conditional deletion of target genes specifically in the megakaryocytic lineage 

using the Cre/loxP-system 126. We chose the promotor of the α-chemokine platelet factor 4 

(PF4) to drive tissue-specific expression of the improved Cre recombinase (iCre) into 

megakaryocytes and platelets 127. Several reports demonstrated that expression of PF4 is 

almost exclusively restricted to the megakaryocytic lineage, beginning at early stages of 

megakaryopoiesis 32,33. As far as short plasmid based transgenes are often restricted by 

positional effects, like silencing or mosaic expression, we decided to modify a BAC 

containing the entire PF4 gene and locus control region by using the ET-recombination 

technology 11. The iCre sequence was inserted into the first exon of the PF4 gene and the 

modified BAC insert was microinjected into fertilized oocytes. The resulting 12 founder lines 

were first analyzed for transgene integration and 6 PCR positive founders, with transgene 

integration numbers ranging from 1-22 copies, were bred into F1 for further analysis. One line 

could be excluded by being negatively tested for Cre mRNA expression in peripheral blood. 

The remaining 5 lines were bred into the ROSA26 reporter strain to examine Cre recombinase 

expression on a cellular level 133. We found a clear correlation between the copy number of 

integrated transgenic constructs and tissue-specific expression. Mice having only one or two 

transgene integrations (Q3 and Q2) expressed the transgene only in megakaryocytes and 
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platelets, whereas mice with higher copy numbers had more scattered expression profiles. 

Especially the Q1 strain with the highest number of integrations showed ectopic expression in 

most of the analyzed organs. The analysis of the Q12 strain with 5 transgene integrations 

revealed ectopic Cre expression in spleen, thymus, bone marrow and, surprisingly, in the 

alveolae of the ovary. Nevertheless, we show for the first time that a transgenic mouse strain 

expressing Cre recombinase under the control of the PF4 promotor is able drive tissue-

specific transgene expression into megakaryocytes of the bone marrow and spleen. Earlier 

reports of PF4 driven transgenes, where either the human or rat PF4 promotor was used to 

control transgene expression, failed to show copy number dependent transgene expression in 

bone marrow megakaryocytes and especially in splenic megakaryocytes 131,132.  

Next, we asked the question whether the deletion of the growth factor TGF-β1 in 

megakaryocytes has an effect on in vivo megakaryopoiesis. Several reports established a 

strong inhibitory effect of TGF-β1 on CFU-Megs in vitro 121,122. Similarly, in vivo experiments 

in the mouse showed that intravenous TGF-β1 administration leads to a decrease in platelet 

counts 119,136. The observation that in some patients with myeloproliferative disorders (MPD), 

TGF-β signaling components were decreased at the mRNA levels further strengthened the 

hypothesis that the loss of TGF-β signaling in megakaryopoiesis would lead to elevated 

platelet counts 4,5. To examine this hypothesis, we functionally deleted the TGF-β receptor II 

(TBRII) via Cre-mediated recombination in megakaryocytes and platelets. As TGF-β1 

directly binds to the type II receptor, the deletion of the TBRII completely abrogates TGF-β1 

induced signaling 68. None of the different TBRIIlox/lox-PF4Cre strains showed an alteration 

in platelet counts. As the excision efficiency in megakaryocytes of the Q2 TBRIIlox/lox-

PF4Cre strain was only 60%, the lack of phenotype might be due to incomplete deletion of 

the TBRII in megakaryocytes. Nevertheless, looking at the Q12 strain, which showed good 

excision efficiency in megakaryocytes, demonstrates that TGF-β signaling in normal 

megakarypoiesis is dispensable, because the numbers of platelets is unchanged in TBRII/Q12 

compared to littermate controls. This result implicates that although the in vitro proliferation 

capacity of megakaryocytes can be inhibited by the addition of exogenous TGF-β1, the 

destruction of TGF-β signaling in vivo does not lead to hyperproliferation of megakaryocytes 

and thus elevated platelet counts. Crossing the PF4Cre mouse with Smad4lox/lox mice for the 

conditional deletion of the TGF-β signal mediator Smad4, further underlined the previous 

results from the TBRII deletion. Again, no changes in circulating platelet counts in 

Smad4lox/lox-PF4Cre mice were observed. This demonstrates that the disruption of Smad-
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mediated TGF-β family signaling in early stages of megakaryopoiesis does not lead to 

elevated platelet counts.  

To answer the question, whether the deletion of TBRII in earlier stages of megakarypoiesis 

results in thrombocytosis, we analyzed TBRIIlox/lox-Mx1Cre mice. In this mouse model 

TBRII can be deleted in hematopoietic stem cells by inducted expression of the Cre 

recombinase in bone marrow 7. It is therefore possible to study the consequences of TBRII 

deletion in the earliest stages of megakaryopoiesis. However, analysis of induced 

TBRIIlox/lox-Mx1Cre mice revealed no changes in platelet numbers compared to control 

mice. This demonstrates that deletion of the TGF-β signaling in early hematopoietic 

progenitors does not lead to a hyperproliferation of megakaryocytes and high platelet counts. 

Similar results were also obtained by the targeted disruption of the TGF-β receptor I in 

murine bone marrow stem cells 8. As already shown for the TBRIIlox/lox-Mx1Cre, no 

alterations in peripheral blood counts were detectable in TGF-β receptor I deficient mice. In 

summary, the deletion of TGF-β signaling components in the above-discussed mouse models, 

clearly argues against a relevance of TGF-β signaling in megakaryopoiesis. Furthermore, a 

direct involvement of abolished TGF-β signaling in the molecular pathogenesis of 

myeloproliferative diseases is questionable. Even though several reports suggested that non-

functional TGF-β signaling is responsible for the onset of MPD, the above-discussed mouse 

models demonstrate the opposite. There is still the possibility that the discussed mouse 

models for conditional deletion of the TGF-β signaling pathway do not resemble the 

phenotype observed in patients with myeloproliferative disorders where reduced TBRII or 

Smad4 mRNA levels were detected. The definitive prove that the loss of functional TGF-β 

signaling in human hematopoietic stem/progenitor cells in vivo leads to an escape from cell 

cycle inhibition and hyperproliferation of these cells is still lacking. One possible way to 

answer this question is the block TGF-β signaling in human hematopoietic stem cells using 

siRNA. This could be achieved by lentivirus-mediated delivery of siRNA targeting TBRII 

and the subsequent transplantation of infected cells into the NOD/SCID mouse model. This 

way, the function of TGF-β signaling in human hematopoiesis could be studied in vivo using 

a gene-silencing approach.  
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Abstract 

The inactivation of one of the various genes involved in the TGF-β signal transduction 

pathway may represent a possible mechanism how normally quiescent early hematopoietic 

progenitors, escape from cell-cycle inhibition. In patients with myeloproliferative disorders 

(MPD) a reduction of Smad4 and TGF-β receptor II mRNA levels was recently demonstrated 
3-5, arguing for an involvement of these TGF-β signaling components in the pathology of these 

diseases. As Smad4 is the crucial mediator of signaling through TGF-β family members, its 

conditional deletion in bone marrow might result in a phenotype reminiscent of MPD. To 

analyze the function of Smad4 in adult hematopoiesis by conditional deletion using the 

Cre/lox technology and an interferon-inducible Cre transgenic mouse 10,126 we crossed the 

previously described 129 Smad4lox/lox mouse with the Mx1Cre mouse for inducible deletion 

of Smad4 in bone marrow. Surprisingly, we found that the induced deletion of Smad4 in 

Smad4lox/lox-Mx1Cre mice leads to a rapidly developing hemolytic anemia, which is not 

autoimmune-mediated. Furthermore, the observed anemia in Smad4lox/lox-Mx1Cre mice was 

not transferable by bone marrow transplantation into lethally irradiated recipient mice. This 

result strongly implicates that the hematopoietic deficiency in Smad4lox/lox-Mx1Cre mice is 

not cell autonomous and thereby can be compensated by a host-derived factor. Additionally, 

mice transplanted with Smad4lox/lox-Mx1Cre bone marrow did not develop an autoimmune 

mediated inflammatory phenotype like we would have expected from previous reports from 

conditional TGF-β receptor I and II knockouts. Therefore, we speculate that the observed 

inflammatory phenotype in these mouse models might not be Smad-mediated, but rather 

mediated by an alternative TGF-β signaling pathway. In summary, we created a mouse model 

for secondary anemia by the induced deletion of Smad4 and this model also implicates that 

the function of TGF-β in immunity and inflammation might be regulated via Smad-

independent pathways. 
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Introduction 

Smad4 is the central mediator of signals coming from the TGF-β family of growth factors. 

The human SMAD4 was originally described as a classical tumor suppressor that was 

homozygously deleted in over 50% of pancreatic carcinomas and thus named deleted in 

pancreatic carcinoma locus 4 (DPC4) 109. Extensive studies on the function of Smads in the 

TGF-β signaling pathway revealed that Smad4 functions as a Coactivator-Smad (Co-Smad) 

binding to receptor-activated R-Smads. The heteromeric Smad-complex then translocates 

into the nucleus, where it exerts its function as a transcriptional activator/repressor of target 

gene transcription together with other accessory transcription factors 79,104. It was shown 

that activated R-Smads can still translocate to the nucleus without prior binding to Smad4, 

but the ability to activate transcription of target genes is dependent on Smad4 binding to the 

activated R-Smad complex 2,137. Thus, Smad4 is the key-mediator of Smad-dependent 

TGF-β signaling and deletion of Smad4 abrogates the transcriptional activation of many 

Smad family induced target genes. Gene-targeting experiments in the mouse revealed a 

major role for Smad4 in embryonic development, as Smad4 deleted mice die in utero 

before E7.5 due to defects in gastrulation and abnormal visceral endoderm development. 

Because of the early embryonic lethality of Smad4 null mice, the detailed analysis of 

Smad4 function in different tissues in vivo remains difficult. With the introduction of the 

Cre/loxP-system for the conditional deletion of loxP flanked target genes via Cre-mediated 

recombination 2,126, it is possible to study the function of genes by tissue-specific deletion. 

Recently, the Smad4lox/lox mouse strain was published 129, where exon 8 of the Smad4 

gene is flanked by loxP-sites for the conditional inactivation of Smad4 via Cre-mediated 

recombination. Using this Smad4lox/lox mouse and the Mx1Cre mouse strain, where the 

expression of Cre-recombinase is under the control of the interferon-αβ-inducible Mx1 

promotor, we were interested to gain insight into the function of Smad4 in early 

hematopoiesis by its conditional inactivation. Similar experiments using TBRIIlox/lox-

Mx1Cre or TBRIlox/lox-Mx1Cre mice, where either TGF-β receptor I (TBRI) or TGF-β 

receptor II (TBRII) were deleted in bone marrow(Karlsson), demonstrated that the loss of 

TGF-β signaling in hematopoiesis leads to a autoimmune-like phenotype. Between weeks 

8-10, injected TBRIIlox/lox-Mx1Cre and TBRIlox/lox-Mx1Cre mice developed a severe 

autoimmune inflammatory condition with organ infiltrations of lymphoid cells 7,138. The 

phenotype observed in induced TBRIIlox/lox-Mx1Cre mice was similar to phenotypic 

features of the TGF-β1 null mouse, even though differences were detected. We now asked 
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the question, whether the induced deletion of the downstream mediator of TGF-β family 

signaling, Smad4, would result in a similar phenotype as previously observed in the 

conditional deletion of the type II TGF-β receptor, or an even more severe and rapidly 

developing phenotype. Furthermore, this mouse model potentially answers the question, 

whether abolished TGF-β signaling is involved in the molecular pathology of 

myeloproliferative disorders (MPD) 3.  

As Smad4 does not only mediate signaling through the TGF-β receptors, but also integrates 

signaling from the bone morphogenetic proteins (BMPs) and activins, we expected that the 

deletion of Smad4 in bone marrow would manifest in a more severe and also different 

phenotype as compared to the TBRII or TBRI deletion. However, the previously described 

inflammatory phenotype in TBRII and TGF-β 1 deleted mice was expected to be 

reproducible by the conditional deletion of Smad4 in Smad4lox/lox-Mx1Cre mice.  

We show here that homozygous inactivation of the Smad4 gene in the bone marrow of 

Smad4lox/lox-Mx1Cre mice leads to a severe haemolytic anemia 3-4 weeks after the last 

pIpC injection, accompanied by splenomegaly and extramedullary hematopoiesis. Anemia 

in Smad4lox/lox-Mx1Cre mice was tested negative for IgG and IgM binding (Coombs-

Test) on the surface of erythrocytes, which implies that anemia in Smad4 deleted mice is 

not autoimmune-mediated. Furthermore, the phenotype in deleted Smad4lox/lox-Mx1Cre is 

clearly different from the one detected in mice with conditional deletion of the TBRII and 

TBRI, as they do not show signs of an inflammatory autoimmune disease. Finally, the 

induced deletion of Smad4 does not lead to increased platelet counts. This result strongly 

argues against a relevance of abolished TGF-β signaling in the pathology of MPD.  
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Material and Methods 

 

Mice 

Smad4lox/lox mice were kindly provided by Dr.C.X.Deng from the National Institutes of 

Health, Bethesda, Maryland. In brief, a targeting vector was introduced into the embryonic 

stem cell line TC-1 to create Smad4lox mice. The vector was designed to target exon 8 of 

the endogenous Smad4 gene and to insert flanking loxP-sites. Homozygous Smad4lox/lox 

mice were mated to interferon-inducible Mx1-Cre transgenic mice, which express the Cre 

recombinase under the control of the interferon α/β-inducible Mx1 promotor. Mx1-Cre 

expression in 5-6 weeks old mice was induced by the intraperitoneal injection of 300µg 

polyinosinic/polycytidylic acid for 3 times in 2 day intervals. The C57Bl/6 Ly5.1 strain was 

used for bone marrow transplantation experiments into irradiated recipients.  

 

Genotyping 

For genotyping, tail sections of Smad4lox/lox-Mx1Cre mice were lysed in proteinase K-

buffer (10mM Tris-HCl, pH8, 100mM NaCl, 50mM EDTA, 0.5M SDS, 200µg/ml 

proteinase K) at 550C for 12 hours followed by DNA extraction by phenol/chloroform. 

DNA was amplified using the SMAD4f primer 5'-GGGCAGCGTAGCATATAAGA-3' and 

Smad4r primer 5'-AAGAGCCACAGGTCAAGCAG-3'. For the detection of the Mx1-Cre 

transgene primers Cre-f 5'-CACCATTGCCCCTGTTTCACTATC-3' and Cre-r 5'-

GCCAGGCGTTTTCTGAGCATAC-3' were used.  

 

Bone marrow transfer 

Donor mice were killed by cervical dislocation and bone marrow was flushed from femurs 

and tibiae using a 27 gauge needle and RPMI/2% fetal calf serum (FCS). The cell 

suspension was filtered through a 70µM mesh to remove clumps and T-cells were removed 

by complement lysis. For T-cell removal, bone marrow cells were incubated for 30min on 

ice with monoclonal antibodies against mouse CD3, CD8 and Thy1.2. Cells were washed 

once with RPMI/2%FCS and T-cells were lysed by the addition of low toxic rabbit 

complement diluted 10-fold in RPMI/2% FCS. Cells were incubated for 45 min at 370C. 

After T-cell depletion, cells were washed twice in HBSS and resuspended in 500µl HBSS 

and containing 4-10x106 cells, which were injected into the tail vein of lethally irradiated 

(1000 cGy) 7-10 weeks old recipient mice. Chimerism of the transplanted mice was 
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analysed on peripheral blood by flow cytometric analysis of CD45.1 and CD45.2 positive 

cells. 

 

Histologic analysis 

Organs were incubated in PBS buffered 4% paraformaldehyde for 12 hours, washed once in 

PBS and stored in 70% ethanol. Fixed organs were paraffin-embedded, sectioned and 

typically stained with Erlich eosin for microscopic examination. 

 

Flow cytometry 

Fluorescein isothiocyanate (FITC)- and phycoerythrin (PE)- conjugated monoclonal 

antibodies against TER119, CD71, CD3, B220, Mac-1, GR1, c-kit and Thy-1 (Pharmingen, 

BD, San Diego, CA)were diluted in PBS/1% calf serum and used for staining of single cell 

suspensions derived from bone marrow and spleen. In order to get single cell suspensions 

cells were filtered and organs were grinded through a 70µM nylon mesh. Dead cells and 

debris were eliminated by gating on forward scatter (FSC) and side scatter (SSC).  

 

 

Analysis of peripheral blood cells 

For the quantification of peripheral blood mice were either bled by tail vein sections or heart 

punctures. For tail bleeding the most proximal tip of the tail was cut, blood was collected in 

EDTA-coated capillaries (BRAND) and diluted in 0.9% NaCl. Blood from cardiac heart 

punctures was collected without anticoagulants and approximately 500µl were immediately 

mixed with EDTA and blood counts were performed with an automated blood counter 

(Technicon H-3, Bayer Diagnostics, Tarrytown, NY). 

 

Bone marrow cytospins 

A total of 3-5x105 cells from freshly isolated bone marrow was resuspended in phosphate 

buffered saline (PBS) and centrifuged at 500g in a Cytospin 3 fuge from Shandon on a glass 

slide. The slide was dried at 50oC for 1min and stained with Whright stain for microscopic 

analysis. 
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Immunomagnetic cell sorting (MACS) 

Bone marrow was flushed from femurs and tibiae using 27 gauge needles and RPMI/10% 

fetal calf serum (FCS). Sedimented cells were washed once in MACS-buffer (phosphate 

buffered saline, pH 7.2, 0.5% bovine serum albumin and 2mM EDTA) and resuspended in 

300µl for the labelling with the anti-TER119 immunomagnetic beads from Miltenyi Biotec 

(Miltenyi, Auburn, CA). After incubation for 15 min. at 4-8oC cells were washed in MACS 

buffer and resuspended in 500µl. The cell suspension was separated over a MACS MS 

magnetic column and the eluted TER119-positive cells were used for RNA preparation.  

 

RNA preparation and quantitative PCR 

Total RNA from TER119-positive bone marrow cells was isolated with Trizol reagent 

(Invitrogen, Carlsbad, CA), and reverse transcribed after random hexamer priming using the 

Omniscript RT kit  (Qiagen, Germany) following the manufacture’s protocol. In brief, 1µg 

RNA was reverse-transcribed in a 20µl reaction volume containing 100U of Omniscript RT  

for 60min at 370C followed by a 2 min denaturation step at 950C. Quantitative PCR (q-PCR) 

was carried out on an ABI Prism 7700 sequence detector using the SYBR Green PCR 

Master Mix chemistry (Applied Biosystems, Warrington, UK). Primers for GATA-1 were 

5'-GTCAGAACCGGCCTCTCATC-3' and 5'-TGCCTGCCCGTTTGCT-3', for GATA-2 5'-

GGCTCTACCACAAGATGAATGGA-3' and 5'-GTCGTCTGACAATTTGCACAACA-3', 

for GATA-3 5'-GAACCGGCCCCTTATCAAG-3' and 5'-

CAGGATGTCCCTGCTCTCCTT-3', for FOG-1 5'-CCTTGCTACCGCAGTCATCA-3' 

and 5'-GTACCAGATCCCGCAGTCTTTG-3'. The primers for the internal control,  mouse 

ribosomal protein L19 (RPL) were 5'-ATCCGCAAGCCTGTGACTGT-3' and 5'-

TCGGGCCAGGGTGTTTTT-3'. The ΔCT values were derived by the subtraction of the 

threshold cycles (CT) values for the target cDNAs from the CT value from the mouse 

RPL19. 
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Results 

 

Cre recombinase mediated Smad4 deletion in Smad4lox/lox-Mx1Cre mice leads to severe 

anemia  

 

To generate mice, where Smad4 is conditionally deleted in the bone marrow, we crossed the 

previously described Smad4lox/lox mice 129, where exon 8 is flanked by loxP sites, with 

Mx1Cre transgenic mice. Deletion of Smad4 in 5-6 week old Smad4lox/lox-Mx1-Cre was 

induced by intraperitoneal injection of polyinosinic-polycytidylic acid (pIpC). For control, 

heterozygous Smad4lox/+-Mx1-Cre mice were injected at the same time. Induction of the 

Cre recombinase in bone marrow from Smad4lox/lox-Mx1Cre mice resulted in the deletion 

of the loxP-flanked exon 8 of the Smad4 gene. Deletion efficiency was determined by PCR 

analysis of bone marrow derived colonies grown on semisolid medium. From 40 analysed 

hematopoietic colonies 39 (97%) were shown to be positive for the Smad4-null allele and 

negative for the conditional allele (Fig1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Smad4 deleted mice showed no obvious symptoms of disease within the first 4 weeks after 

the last pIpC injection. However, analysis of peripheral blood counts from Smad4lox/lox-

Mx1Cre and control mice starting one week after the last injection, revealed a rapidly 

  

Smad4lox/lox-Mx1Cre Smad4lox/+-Mx1Cre 
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ko 

Figure 1. Inducible targeting of the Smad4 gene in bone marrow. A Schematic representation of Smad4 gene 
targeting. Exon 8 and 9 of the Smad4 gene are shown in boxes. Big arrow heads represent loxP sites, small arrows 1-
3 show location of the primers used for ko-detection and genotyping. B Bone marrow of Smad4lox/lox-Mx1Cre and 
Smad4lox/+-Mx1Cre mice was plated on semi-solid medium and single colonies were picked for the PCR detection 
of the recombined allele. ko recombined allele, lox conditional allele. Representative picture for over 30 colonies 
analyzed. 
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developing anemia in Smad4 deleted mice beginning at 2-3 weeks post-injection. 4-5 weeks 

after the last injection, peripheral blood counts from Smad4lox/lox-Mx1Cre showed that these 

mice were suffering from a severe anemia and therefore were killed for further analysis. At 

that time, hemoglobin values of the most affected mice were reduced to 20% of that from 

healthy controls, while the hematocrit values were decreased by half (Fig 2). At this stage, 

mice were sacrificed for further analyses. 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, the amount of reticulocytes was increased 2-5 fold and the numbers of white 

blood cells were elevated in some, but not all analyzed Smad4lox/lox-Mx1Cre mice 

compared to injected heterozygous controls. The increase of white blood cells was due to a 

high number of granulocytes and lymphocytes in peripheral blood.  Analysis of pIpC treated 

homozygous Smad4lox/lox-Mx1Cre mice 4 weeks after the last injection revealed that not 

all mice displayed the same severity of anemia, which might be due to background 

variations in these mice. Nevertheless, more than 80% of the injected Smad4lox/lox-

Mx1Cre mice developed a severe anemia, beginning at 3-4 weeks post injection (Table 1). 
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Figure 2. Developing anemia in Smad4lox/lox-Mx1Cre mice. A Hematocrit values  are 
reduced to 50% of control mice 4 weeks after the last pIpC-injection. B Hemoglobin 
values 4 weeks post injection are at 20% of control mice. Black squares show values for 
Smad4 deleted mice, grey triangles indicate controls. 
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Table 1. Peripheral blood counts from induced Smad4lox/lox-Mx1Cre mice and controls. 
RBC red blood counts, Hb Hemoglobin, Hct Hematocrit, WBC white blood counts. 

Strain n Age RBC

(x106/ml)

Reticulocytes

(x106/ml)

Hb

 (g/l)

Hct

(%)

WBC

(x106/ml)

platelets

(x106/ml)

control 5 10-12

weeks

9.4 (±0.3) 326 (±93) 149 (±6) 48 (±3) 8.5 (±1.7) 1353 (±125)

Smad4lox/lox-

Mx1Cre

8 10-12

weeks

3.6 (±2.5) 1026 (±534) 59 (±42) 22 (±14) 11.6 (±7) 1216 (±164)

 



Results II 55 

 

Haemolytic anemia in Smad4lox/lox-Mx1Cre mice is not autoimmune-mediated 
 

Anemia in Smad4lox/lox-Mx1Cre mice was further characterized by the analysis of the 

serum levels of the lactate dehydrogenase (LDH), which is increased in patients with 

haemolytic anemia due to the massive destruction of erythrocytes. Therefore, serum LDH 

levels serve as a diagnostic marker for haemolytic anemia. Serum LDH levels of 

homozygous Smad4lox/lox-Mx1Cre mice were elevated 2-3fold compared to the 

heterozygous control mice (data not shown), further establishing the diagnosis of a 

haemolytic anemia in Smad4lox/lox-Mx1Cre mice. Nevertheless, as elevated LDH levels 

can also be detected due to general tissue destruction, the possibility that inflammation-

mediated tissue destruction is the reason for increased serum LDH levels cannot be 

excluded.  

Using a direct antiglobulin test (DAT) for the detection of autoantibodies of the IgG/IgM-

type on the membrane of erythrocytes, we sought to find out whether the detected anemia in 

Smad4lox/lox-Mx1Cre is autoimmune-mediated. Blood from the anemia mouse model New 

Zealand Black (NZB) served as positive control and Smad4lox/lox as negative control for 

DAT on Smad4lox/lox-Mx1Cre blood. We could not detect IgM or IgG surface antibodies 

on erythrocytes from Smad4lox/lox-Mx1Cre and the Smad4lox/lox controls, while the NZB 

mice displayed strong surface immunoglobulin staining as revealed by flow cytometry (not 

shown). This result argues against an autoimmune-mediated haemolytic anemia in Smad4 

deleted mice. However, the possibility that autoantibodies of the IgA class bind to the 

surface of the erythrocytes and thereby mediating haemolysis remains open.  

 

Smad4lox/lox-Mx1Cre mice display splenomegaly due to myeloid hyperplasia 
 

Further analysis of Smad4lox/lox-Mx1Cre mice revealed that spleen sizes of these mice 

were increased up to 10-fold compared to heterozygous controls (Fig. 3).  

Histopathologic examination of Smad4lox/lox-Mx1Cre organs demonstrated a massive 

expansion of immature myeloid elements with varying degrees of differentiation in the 

spleen. In some of the analysed Smad4lox/lox-Mx1Cre spleens the white pulp was 

completely replaced by immature myeloid cells (Fig. 3). The immature myeloid cells were 

also detectable in the liver of Smad4lox/lox-Mx1Cre mice, demonstrating extramedullary 

hematopoiesis in Smad4 deleted mice. 
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Flow cytometric analysis from enlarged spleens from Smad4lox/lox-Mx1Cre mice revealed 

that the content of TER119-positive cells was drastically increased in Smad4lox/lox-Mx1Cre 

spleens. While spleens of control mice displayed between 1-2% TER119-positive cells, the 

Figure 3. Smad4lox/lox-Mx1Cre mice display splenomegaly by 4 weeks after the last pI/pC injection due to 
the expansion of immature myeloid cells. A Spleens of Smad4lox/lox-Mx1Cre mice and controls. Genotypes 
are indicated. polyI/C ± indicates induction with polyinosinic/polycytidylic acid. Spleen sizes are shown in g. 
B Liver section from a Smad4lox/lox-Mx1Cre mouse showing infiltrations of immature erythroblasts 
indicated by the arrow. C Representative spleen sections from Smad4lox/lox-Mx1cre mice show expansion of 
immature myeloid cells compared to a heterozygous control. Sections were made 4 weeks after the last 
polyI/C injection. Magnification is 200x. 
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TER119-positive cells in spleens of Smad4lox/lox-Mx1Cre mice were increased up to 70% 

(Fig. 4). This result is in line with the previous histological observation of massive myeloid 

expansion in Smad4lox/lox-Mx1Cre spleens shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of the maturation status of the TER119-positive cells by additional staining for 

CD71 demonstrated that most of the cells within the spleen (50-70%) were off the 

TER119high/CD71high phenotype, which is characteristic for immature erythroblasts (Fig.5). 

In contrast, the most mature erythroid population of TER119high/CD71low was strongly 

reduced as compared to control mice. However, we also found Smad4lox/lox-Mx1Cre mice 

with normal spleen sizes. These spleens appeared pale in comparison to controls and FACS-

analysis revealed that TER119-positive cells were almost absent. Especially cells of the 

TER119high/CD71high phenotype were undetectable within the spleens of these mice. These 

results imply a potential maturation arrest of erythrocytes at the erythroblast stage as the 

cause for haemolytic anemia in Smad4lox/lox-Mx1Cre mice.  

The histological observation that the white pulp in Smad4lox/lox-Mx1Cre spleens is almost 

entirely missing was verified by FACS analysis of the splenic B- and T-cell content. While 

control mice displayed 45-50% B220-positive cells within the spleen, Smad4lox/lox-

Mx1Cre spleens showed only 10-17% B220-positive cells. The same observation was made 

Figure 4. Flow cytometric analyis of spleens from Smad4lox/lox-MxCre and 
Smad4lox/+-MxCre mice 4 weeks after induction demonstrates drastically 
increased numbers of erythroid cells in homozygous mice.  Erythroid cells 
with TER119 positive surface staining are gated in the upper left corner. 
FSC forward site scatter. 
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for the CD3-positive T-cells, which were reduced to 20% of the numbers of normal controls 

(Fig.5).  

The analysis of bone marrow from injected Smad4lox/lox-Mx1Cre mice revealed that in 

contrast to the spleens of affected animals, the amount of TER119-positive cells was 

decreased (Fig.5). Again, the main population of TER119-positive cells were of the 

TER119high/CD71high phenotype representing immature erythroblasts, while the 

TER119high/CD71low cells were reduced to 10% in comparison to control mice. Especially 

the cell population with a TER119high/CD71dim phenotype were almost undetectable by 

FACS analysis. Similar to the situation observed in the spleens of Smad4lox/lox-Mx1Cre 

mice, the amount of B220-positive cells in bone marrow was decreased when compared to 

normal controls. Nevertheless, we also detected a slight increase of GR1-positive 

granulocytes in the bone marrow of Smad4lox/lox-Mx1Cre mice, which is in agreement 

with the previously observed increase of neutrophils in the peripheral blood of these mice.  

 

 

 

 

 

 

 

In summary, most of the analyzed Smad4lox/lox-Mx1Cre mice displayed splenomegaly due 

to an increase of myeloid cells, which were shown to originate from the erythroid lineage. 

The expanded TER119-positive cell population mainly consisted of immature erythroblast 

as revealed by their TER119high/CD71high phenotype. The same population of cells was 
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Figure 5. Erythroid and lymphoid cell populations in BM and spleen are altered in Smad4lox/lox-Mx1Cre 
mice. A Bone marrow cells were stained for CD71/TER119 or CD3/B220 to analyze the maturation status of 
bone marrow erythroid cells and the T-and B-cell ratios, respectively. B Same as in A with spleen derived 
cells. Percentages of the different cell populations are given. 
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detectable in the bone marrow of Smad4lox/lox-Mx1Cre mice, but here the overall content 

of TER119-positive cells was decreased. These results implicate that deficient 

erythropoiesis in the bone marrow Smad4lox/lox-Mx1Cre mice is compensated by the 

enormous increase of immature erythroblasts in the spleens, which might account for the 

decreased numbers of splenic B- and T-cells. The phenotype above- of Smad4lox/lox-

Mx1Cre mice described above is reminiscent of phenotypic features found in patients with a 

myelodysplastic syndrome (MDS). MDS is believed to originate either in the hematopoietic 

stem cells or the bone marrow stromal cells and is characterized by cytopenia of varying 

lineages due to bone marrow failure. These patients often display anemia or 

thrombocytopenia and the disease can transform into leukaemia, whereas splenomegaly in 

patients with MDS was shown to be a rare event. 

 

The mRNA level of transcription factor GATA-2 is decreased in TER119-positive cells 

from Smad4lox/lox-Mx1Cre mice 

 

To gain further insight into the molecular pathogenesis of the Smad4 deletion phenotype, 

we analyzed the mRNA levels of the GATA transcription factors 1, 2 and 3 as well as from 

Friend Of Gata-1 (FOG-1). GATA-1 and GATA-2 were shown to be required for normal 

hematopoieis in mouse and human 139. The loss of either GATA-1 or GATA-2 causes 

embryonic lethality because of the failure of erythroid maturation and the expansion of 

progenitors, respectively. The functional overlap of GATA-1 and GATA-2 in primitive 

hematopoiesis was recently demonstrated 140, but the exact functions in adult hematopoieis 

are still poorly understood. Recent findings demonstrated that signaling through 

BMP4/Smad5 induces GATA-2 transcription 141 and therefore the deletion of Smad4 in 

Smad4lox/lox-Mx1Cre mice might lead to deregulated GATA-1/-2 transcription, as Smad4 

is crucial for transcriptional activation of Smad5 target genes. The mRNA levels of GATA-

1/-2/-3 and FOG-1 were determined in purified TER119-positive cells from spleen and bone 

marrow of Smadlox/lox-Mx1Cre and control mice by quantitative real-time PCR (Fig.6).  

As expected from the previous works mentioned above, we found decreased levels of 

GATA-2 in the spleen and bone marrow TER119-positive cell population.  
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Figure 6. Relative mRNA expression of 
GATA-2 in purified TER119-positive 
cells. Black bar represents 100% GATA-2 
expression in Smadlox/lox control mice. 
The grey bar represents GATA-2 mRNA 
expression in pooled bone marrow from 3 
Smadlox/lox-Mx1Cre mice; white bar 
represents GATA-2 mRNA expression 
from spleens of the same three mice. 
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erythroid maturation is blocked in the bone marrow and probably even more in the spleen.  

 

 

Anemia is not transferred by bone marrow transplantation 

 

As TGF-β is known to exert different functions in a wide variety of organs and tissues, we 

were interested to limit the Smad4 deletion to bone marrow cells. We therefore transplanted 

bone marrow from Smad4lox/lox-Mx1Cre mice into lethally irradiated C57BL/6Ly5.1 

recipients. In a first round of transplantations, bone marrow from 3 Smad4lox/lox-Mx1Cre, 

Smad4lox/+-Mx1Cre and Smad4lox/lox mice was transplanted into 4 recipient mice for 

each group. Engraftment of the transplanted bone marrow was analyzed 5 weeks after 

transplantation. Chimerism of the recipient mice was shown to be approx. 80% as detected 

by flow cytometric analysis of the CD45.1/CD45.2 ratio in peripheral blood (data not 

shown).  All three groups of recipient mice were induced by pIpC-injection and peripheral 

blood counts were analyzed beginning at 1 week after the last injection. Unexpectedly, we 

could not detect anemia in any of the analyzed mice. Four weeks post injection peripheral 

blood counts from all 3 groups of transplanted mice were normal, while at that time injected 

Smad4lox/lox-Mx1Cre mice already displayed severe anemia. Further analysis of peripheral 

blood counts over time revealed no change in hemoglobin and hematocrit levels. Even 9 

weeks post injection, mice transplanted with bone marrow from Smad4lox/lox-Mx1Cre 

mice showed no alterations in peripheral blood counts, arguing against bone marrow as the 

origin of the haemolytic anemia in Smad4lox/lox-Mx1Cre mice. The possibility that pIpC-

induced Smad4 deletion failed in transplanted mice was excluded by PCR on peripheral 

blood cells. In mice transplanted with Smad4lox/lox-Mx1Cre bone marrow no wild type 

band for the endogenous Smad4 gene was detectable by PCR, demonstrating that all cells in 

the periphery originated from the donor bone marrow. In a second PCR reaction the 

recombined allele was detected in peripheral blood from all 4 Smad4lox/lox-Mx1Cre 

recipient mice. Therefore, a failure in inducing recombination can be ruled out as the reason 

for the lack of phenotype in transplanted mice. Thus the hematopoietic deficiency in 

Smad4lox/lox-Mx1Cre mice is not BM cell-autonomous and can be compensated by the 

host. This strongly argues for the deregulation of a soluble factor, expressed from bone 

marrow stromal cells or a different organ such as liver and kidney, as the target of Smad4 

deletion.  
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Discussion 

The major mediators of signals coming from TGF-β family members are the Smads. While 

the bone morphogenetic proteins (BMPs) mainly signal through Smad1, Smad5 and Smad8, 

TGF-β signaling is mediated through Smad2/3. These receptor-activated Smads (R-Smads) 

are phosphorylated from the type I receptors and mediate the incoming signal to the 

nucleus. Before activated R-Smads translocate to the nucleus, they heterodimerize with 

Smad4. Dimerization of activated R-Smads with Smad4 is not a prerequisite for nuclear 

entry, but only heteromeric R-Smad/Smad4 complexes display full transcriptional activity. 

While phosphorylated R-Smads can still translocate to the nucleus, their function as 

transcriptional activators is dependent on Smad4 binding 2,137. Thus, Smad4 is the key-

regulator of Smad-dependent signaling through TGF-β family members. Due to the 

multifunctional nature of TGF-β family members in a wide variety of organs and tissues, we 

were interested to delete Smad-dependent signaling through TGF-β family members in 

hematopoietic tissues. Previous reports, were TGF-β signaling was abrogated by targeted 

disruption either of the TGF-β1 ligand or the receptors I and II strongly underlined the 

importance of TGF-β signaling for immune functions and inflammation 7,9,138. Nevertheless, 

differences within the phenotypes of these knockout models exist. For example, the targeted 

disruption of TGF-β1 leads to increased white blood cell (WBC) counts due to an elevated 

number of lymphocytes and neutrophils. The conditional deletion of the type II TGF-β 

receptor (TBRII) in bone marrow also leads to an autoimmune-mediated inflammatory 

phenotype as it was detected in TGF-β1 knockout mice. In contrast to TGF-β1 null mice, 

TBRII-/- mice have no increase of peripheral WBCs or other blood lineages. Whether these 

differences are due to different genetic backgrounds or originate from a possible different 

receptor-usage of TGF-β1 is difficult to answer. We therefore asked the question, whether 

the induced disruption of Smad-mediated signaling through TGF-β family members in 

hematopoietic tissues results in an inflammatory autoimmune phenotype. As the deletion of 

TGF-β signaling components leads to a transplantable inflammatory phenotype, we 

expected that the conditional deletion of Smad4 would result in a more severe and rapidly 

developing wasting syndrome. Furthermore, several reports demonstrated reduced levels of 

either Smad4 or TBRII in hematopoietic cells from patients with MPD 3-5. These reports 

underlined the hypothesis that abolished TGF-β signaling might be involved in the 

molecular pathogenesis of MPD. Therefore, a mouse model for conditional deletion of 
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Smad4 in bone marrow might reveal the consequences of abolished TGF-β signaling in 

MPD.  

Unexpectedly, the induction of Smad4 deficiency in Smad4lox/lox-Mx1Cre mice leads to a 

severe anemia, detectable as early as 3 weeks after the last pIpC injection. At 4-5 weeks 

post-injection mice were killed due to the severity of the phenotype and analyzed in detail. 

Anemia in these mice was progressed to a stage, where hemoglobin levels in some mice was 

reduced to 10% of normal control mice. As the LDH levels of these mice were increased 2-

3fold, possibly dependent on increased erythrocyte destruction due to haemolytic anemia, 

we speculated that anemia in Smad4lox/lox-Mx1Cre mice is autoimmune-mediated. 

However, erythrocytes from Smad4lox/lox-Mx1Cre mice were negatively tested for the 

direct antiglobulin test (DAT), which detects surface-binding of IgG and IgM on 

erythrocytes. As autoimmune-mediated haemolytic anemia is characterized by hemolysis 

associated with the presence of the immunoglobulins IgG, IgM and components of the 

complement system on the red cell membrane, the observed anemia in Smad4lox/lox-

Mx1Cre mice is not autoimmune-mediated. Further analysis of the phenotype from Smad4 

deleted mice revealed extramedullary hematopoiesis with foci of erythropoiesis in the liver 

of Smad4lox/lox-Mx1Cre mice. Additionally, Smad4lox/lox-Mx1Cre mice showed 

splenomegaly due to a massive expansion of immature erythroblasts in the spleen. 

Expression of the transcription factor GATA-2 was found decreased in TER119-positive 

cells from Smad4 deleted mice. As GATA-2 was shown to have fundamental functions in 

erythroid maturation from hematopoietic progenitor cells, the observed diminished mRNA 

levels of GATA-2 might explain the maturation block of the erythroid lineage at the 

erythroblast stage 139. 

To inquire whether this phenotype is due to an intrinsic cell defect in erythroid progenitors 

and thus cell autonomous, we transplanted bone marrow from Smad4lox/lox-Mx1Cre mice 

into lethally irradiated C57BL/6 recipients. After bone marrow engraftment reached 80%, 

Smad4 mutagenesis was induced by pIpC injection. Surprisingly, none of the Smad4lox/lox-

Mx1Cre bone marrow recipients developed an anemia within the 10 weeks after the last 

injection. This result implies that hematopoietic deficiency in Smad4lox/lox-Mx1Cre mice 

is not BM cell autonomous and is rescued by a recipient derived factor. As conditional 

target gene deletion via Mx1Cre was shown to efficiently work in other organs than the 

bone marrow, such as spleen, kidney and liver 10, the anemic phenotype in Smad4lox/lox-

Mx1Cre mice might result from the deregulation of a Smad activated factor produced in one 

of the mentioned organs. To test this hypothesis, transplantation models where bone marrow 
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from healthy donors is transferred into Smad4lox/lox-Mx1Cre mice have to be set up (the 

results were not available at the time of writing this manuscript).  

Another important observation was the fact that transplantation of bone marrow from 

Smad4lox/lox-Mx1Cre mice did not cause the inflammatory phenotype observed in the 

transplantation model of TBRII deleted bone marrow. At 10 weeks after the induction of 

Smad4 deletion in the recipient mice, no phenotypic alteration in these mice was detectable 

in comparison to control transplanted mice. This result demonstrates that the phenotype 

observed in TBRII-deleted mice is different from mice with a conditional deletion of 

Smad4. Hence, the effect of TGF-β signaling on immune function and inflammation is not 

Smad mediated. Even though Smads are the major mediators of TGF-β family signaling, 

signaling of TGF-β family members also activates other pathways. Among these pathways, 

signaling through the MAPK pathway might be a potential candidate for the observed 

inflammatory phenotype in TBRII and TBRI deleted mice. TGF-β can activate extracellular 

signal-regulated kinase (ERK), c-jun NH2-terminal activated kinase (JNK) and p38 MAPK 

pathway in a Smad-independent manner 90,91. As these kinases are also involved in the 

regulation of tumor necrosis factor alpha (TNF-α) transcription, which is a crucial cytokine 

in the establishment of inflammation and in multiple autoimmune diseases, TGF-β-deletion 

might deregulates the activation of these kinases and thereby TNF-α transcription. The 

observation that TNF-α levels were elevated in TGF-β1 deleted mice is in line with the 

above-discussed Smad-independent pathway of TGF-β1 signaling.  

Another possible Smad-independent pathway potentially involved in the inflammatory 

phenotype seen in TGF-β1 knockout mice and conditionally TBRII and TBRI deleted mice 

is the nuclear factor kappa B (NF-κB) signaling. TGF-β1 and BMP4 were shown to activate 

the TGF-β-activated kinase 1 (TAK1), which can phosphorylate and activate IκB kinase, 

thus stimulating NF-κB signaling 142. As NF-κB is a major mediator of immune responses 

of innate immunity, the potential deregulation of NF-κB in TGF-β signaling deficient mice 

is possibly involved in the observed phenotype. 

Finally, induced disruption of Smad4 in bone marrow does not lead to a MPD-like 

phenotype in Smad4lox/lox-Mx1Cre mice. Platelet numbers in Smad4 deleted mice remain 

unchanged. Therefore, abolished TGF-β signaling might not be the primary reason for 

clonal expansion of a malignant stem cell clone, characteristic for MPD. 
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Abstract 

To derive an efficient system for gene silencing in human hematopoietic stem cells we 

modified a lentiviral vector for small interfering RNA (siRNA) delivery. For this purpose, an 

H1-promotor driven siRNA expression cassette was introduced into a lentiviral vector and the 

p53 mRNA was chosen as a target for siRNA mediated gene silencing. Using the recombinant 

lentivirus we infected human cord blood derived CD34+ cells and obtained a transfection 

efficiency of up to 50%, as determined by expression of enhanced green fluorescent protein 

(EGFP). In EGFP positive LTC-IC and CFU-C derived cells we observed a reduction of p53 

mRNA of up to 95%. Importantly, this reduction remained stable during several weeks of cell 

culture. Furthermore, p53 gene silencing resulted in decreased p21 mRNA levels and reduced 

the sensitivity of CD34+ cells towards the cytotoxic drug etoposide. Thus, lentiviral delivery 

of siRNA can allow for efficient and stable gene silencing in human HSC and will be very 

valuable for further gene function studies. 
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Introduction 

 

Gene silencing by siRNA has become a powerful and rapidly evolving experimental method 

for studying gene function in mammalian cells. 143, 144 The use of siRNA in hematopoietic 

stem cells (HSC) is limited by the difficulty of delivering RNA or DNA into HSC by 

conventional transfection methods. Lentiviral vectors have been shown to efficiently 

transduce human HSC.145,146,147,148 Lentiviruses are able to infect non-dividing primary cells 

and transcription from integrated viruses remains stable over time.149,150 Lentiviral vectors 

have been used to deliver siRNA in some primary mouse and human tissues. 151,152 Here we 

show that efficient gene silencing can be achieved in human HSC by a lentiviral system 

designed for delivering siRNA. 

 

Materials and Methods 

 

Constructs 
 

To allow efficient transfer of the H1 promoter/siRNA cassette, we introduced a second ClaI 

site into pSUPER 153 by ligating the adaptor 5'-AATTATCGATGTTGTAAAAC-3' and 5'-

AATTGTTTTACAACATCGAT-3' into the unique EcoRI site. The template for human p53 

siRNA was generated by ligating the annealed primers 5'-

GATCCCCGACTCCAGTGGTAATCTACTTCAAGAGAGTAGATTACCACTGGAGTCT

TTTTGGAAC-3' and 5'-

TCGAGTTCCAAAAAGACTCCAGTGGTAATCTACTCTCTTGAAGTAGATTACCACT

GGAGTCGGG-3' into the BglII and HindIII sites of pSUPER. As a non-relevant control we 

used the primers 5’-

GATCCCCCTGGCATCGGTGTGGATGATTCAAGAGATCATCCACACCGATGCCAGT

TTTTGGAAA-3’ and 5’-

AGCTTTTCCAAAAACTGGCATCGGTGTGGATGATCTCTTGAATCATCCACACCGAT

GCCAGGGG-3’, which were derived from the mouse SMAD4, but were non-functional, i.e. 

did not change SMAD4 mRNA levels, in mouse and human cells (data not shown). The 

expression cassette for p53 siRNA was excised from the modified pSUPER as a ClaI fragment 

and subcloned into the ClaI site of the lentiviral vector pWPXL. All constructs were verified 

by sequence analysis. Lentiviral production with pWPXL, the envelope vector pMD.G and the 
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packaging vector pCMVR8.91 (all kindly provided by Dr. Didier Trono, University of 

Geneva) were carried out as described before.154,155 148 

 

Cell culture and virus infection 
 

293T cells were seeded in 6-well plates (3x105 cells per well) and after 24 hours incubated 

with concentrated virus for 6 hours. The medium was changed and the cells were grown for 

the indicated times. Human cord blood CD34+ cells were purified as previously described. 148 

CD34+ cells were seeded in a 96-well plate at 1x105 cells per well and virus was added twice 

for 6 hours with a multiplicity of infection (MOI) of 10-30. EGFP positive cells were isolated 

using a FACSVantage cell sorter (Becton Dickinson Biosciences, San Diego, CA) and 

cultured in methylcellulose as described before [Wodnar, 1992 #2510] or maintained in liquid 

culture in IMDM and 10% fetal calf serum supplemented with human recombinant Flt-3 

ligand (Amgen Inc., Seattle, WA) and PEGylated megakaryocyte growth and development 

factor (MGDF; Amgen, Thousand Oaks, CA). Growth factors were used at concentrations of 

50 ng/ml for MGDF and 100 ng/ml for Flt-3 ligand. Etoposide (Sigma-Aldrich, St Louis, MI) 

was used at 25 nM in methylcellulose cultures and at 20 µM for induction of apoptosis. LTC-

IC cultures were performed as described. [Wodnar, 1992 #2510] 

 

Western blot analysis 
 

p53 protein was detected by immunoblot using the anti-p53 rabbit polyclonal antibody FL 393 

(Santa Cruz Biotechnology, Santa Cruz, CA). Membranes were reprobed using the 

monoclonal anti-β-actin antibody AC-15 (Sigma-Aldrich, St Louis, MI). Densitometry was 

performed on a ChemiImager 5500 (Alpha Inotech, San Leandro, CA) using the Alpha Ease 

Software. 

 

Real-time PCR 
 

Total RNA (2µg) from EGFP-positive CD34+ cells at day 7 and 20 of liquid culture was 

isolated with Trizol (Invitrogen, Carlsbad, CA), and reverse transcribed after random hexamer 

priming. RT-PCR was carried out using the SYBR Green PCR Master Mix chemistry 

(Applied Biosystems, Warrington, UK). Primers for p53 were 5'-

TTCACCCTTCAGATCCGTGG-3' and 5'-CAGCTCTCGGAACATCTCGAA-3', for p21 5'-

GGCAGACCAGCATGACAGATT-3' and 5'-AGAAGATCAGCCGGCGTTT-3'. The 
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conditions for RT-PCR of the ribosomal protein L19 (RPL19) were described elsewhere.156 

All reactions were run in duplicate using the ABI 7000 Sequence Detection System (Applied 

Biosystems, Foster City, CA).  

 

Quantification of apoptosis by flow cytometry 
 

Apoptosis was assessed using the Annexin V-PE Apoptosis Detection Kit I (BD Biosciences, 

San Diego, CA). 

 

 

Results and discussion 

 

Since lentiviruses can efficiently transduce human hematopoietic cells,155 we tested whether 

the lentiviral vector pWPXL can be used for siRNA mediated gene silencing in human HSC. 

To allow for a convenient transfer of a cassette comprising the H1 promoter and the siRNA 

template into pWPXL, we modified the polylinker of the vector pSUPER by introducing a 

second ClaI site (Fig. 1A). As a target gene we chose the p53 mRNA, because the conditions 

for efficient p53 gene silencing have already been established in other cell types.153 The 

resulting lentiviral vector pWPXL-p53si was packaged and first tested on 293T cells, a human 

embryonal kidney derived cell line. p53 protein expression was clearly reduced in cells 

infected with pWPXL-p53si, as compared to parental 293T cells  (Fig. 1B). Densitometric 

analysis at 72 hours post infection revealed that p53 protein was reduced by pWPXL-p53si to 

17% of the control. Since 293T cells express high levels of p53 protein due to the presence of 

SV40 large T antigen, which stabilizes and inactivates p53, the observed reduction of protein 

levels by pWPXL-p53si should be considered as very effective.  

 

We next examined whether pWPXL-p53si can inhibit p53 expression in human cord blood 

derived CD34+ cells. An advantage of pWPXL is that infected cells can be detected by the 

presence of EGFP. Using concentrated virus, up to 54% of CD34+ cells were EGFP positive, 

as determined by flow cytometry (Fig. 1C). Silencing of p53 gene expression was assessed in 

infected cells sorted for EGFP expression. Since p53 protein in CD34+ cells was undetectable 

by Western analysis (data not shown), we used quantitative real-time PCR to assess the 

expression of p53 mRNA. In cells sorted for EGFP and CD34, we found that p53 mRNA 

levels were reduced to 3% (Fig. 2A), whereas p53 mRNA levels in EGFP-negative cell 
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fraction remained unchanged (not shown). After 5 weeks in liquid culture, over 90% of cells 

remained EGFP positive and 2-4% were CD34+/EGFP+ (not shown). In sorted 

CD34+/EGFP+ cells p53 expression was 11% of the controls (Fig. 2A). These results 

demonstrate persistent gene silencing over time.  

 

To determine whether CFU-C progenitors can be targeted, we plated sorted CD34+/EGFP+ 

cells in methyl cellulose.  By real time PCR, we observed an 8 to 10-fold decrease in p53 

mRNA in single colonies derived from p53si transduced progenitors (Fig. 2B). Cells that have 

lost p53 function are less sensitive to agents that normally cause apoptosis.157,158 A reduction, 

but not complete resistance to apoptosis can be expected in cells transduced with p53 siRNA, 

as cells from p53 knockout mice and human p53-deficient cell lines remained partially 

sensitive to cytotoxic drugs, such as etoposide, indicating that apoptosis can still be induced 

through p53-independent pathways.159-161 To provide evidence that gene silencing by pWPXL-

p53si interfered with p53 function, we measured apoptosis in response to etoposide. CD34+ 

cells infected with p53si, control-si and empty vector were EGFP-sorted, plated in semi-solid 

media in the presence or absence of 25 nM etoposide and colonies were counted after 14 days. 

In the presence of etoposide, CD34+ cells infected with the empty vector yielded 6% and with 

control-si vector yielded only 3% of colonies that were observed in the absence of etoposide. 

In contrast, pWPXL-p53si infected CD34+ cells were more resistant to etoposide, as 36% of 

colonies survived in the presence of etoposide (Fig. 2C). To demonstrate that this difference 

in survival is due to apoptosis, we exposed CD34+ cells in liquid culture to etoposide and 

assessed apoptosis by cell surface expression of annexin V. CD34+ cells infected with the 

pWPXL-p53si virus displayed reduced sensitivity to etoposide-inducted apoptosis than the 

controls: the percentage of annexin-positive cells in pWPXL-p53si-infected cells increased by 

only 17%, as compared to an increase of 31% in the controls (Fig. 2D). To further verify that 

the observed effects result from p53 gene silencing, we analyzed the expression levels of p21 

mRNA, a p53 transcriptional target, in the EGFP-positive fraction of the virus infected cells 

by real-time PCR. We found that in p53 silenced cells the levels of p21 mRNA were reduced 

to 16% of the controls (Fig. 2E). Thus, p53 gene silencing by siRNA in human CD34+ cells 

resulted in the expected reduction of p53 function. 

 

To demonstrate that not only CFU-C, but also earlier hematopoietic progenitors can be 

transduced by our vectors, we analyzed p53 expression in sorted CD34+/EGFP+ cells grown 

for 5 weeks on feeder cells under LTC-IC conditions and in single methyl cellulose colonies 
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derived from LTC-ICs. After 5 weeks of culture, over 90% of cells remained EGFP positive 

and 0.3% were CD34+/EGFP+ (not shown). We sorted these CD34+/EGFP+ cells and found 

p53 mRNA expression to be reduced to 9% in pWPXL-p53si transduced cells (Fig. 2F). 

Furthermore, single methylcellulose colonies derived from LTC-ICs displayed an up to 16-

fold reduction in p53 mRNA (Fig. 2G). These results show that early hematopoietic 

progenitors of the LTC-IC type were transduced and that siRNA expression was persistent in 

LTC-IC-derived cells. 

 

In summary, we demonstrate that lentiviral delivery of siRNA can be used for efficient and 

stable gene silencing in human hematopoietic progenitors. This system will be very valuable 

to study the function of key regulatory genes in human hematopoiesis.  
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Figure legends 

 

Figure 1. Construction of a lentiviral vector for the expression of siRNA 
 
(A) The template DNA for p53 siRNA (p53si) was directionally inserted into the BglII and 

HindIII sites of pSUPER. A second ClaI restriction site (asterisk) was created by adaptor 

ligation. The complete p53si expression cassette was excised from the modified pSUPER as a 

ClaI fragment and inserted into the lentiviral vector pWPXL (dotted line). LTR, long terminal 

repeat; ψ psi packaging signal; RRE, Ref-responsive element; cPPT, central polypurine tract; 

EF1-alpha, human elongation factor alpha; EGFP, enhanced green fluorescent protein; 

WPRE, post-transcriptional cis-acting regulatory element of the woodchuck hepatitis virus; 

LTR/SIN, self-inactivating 3' long terminal repeat. (B) Western analysis of p53 protein 
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expression in 293T cells. Control, non-transduced 293T cells; p53si, 293T cells transduced 

with pWPXL-p53si. (C) Assessment of lentiviral infection efficiency. CD34+ cells infected 

with pWPXL (empty vector), pWPXL-control-si (control si) or pWPXL-p53si (p53si) were 

analyzed for EGFP expression by flow cytometry. Cutoff used for cell sorting of EGFP-

positive cells is shown. FSC, forward side scatter 

 

 

Figure 2. Gene silencing by lentiviral delivery of p53 siRNA 

 

(A) Reduction of p53 mRNA expression by siRNA. CD34+ cells were infected, sorted for 

EGFP positive cells. Expression of p53 mRNA was assessed by quantitative RT-PCR at the 

day of sorting (left panel) and after 5 weeks of liquid culture (right panel). The value for the 

control cells infected with pWPXL virus (black bars) was set as 100% and compared to cells 

infected with the pWPXL-control-si virus (gray bars) and the pWPXL-p53si virus (open bars). 

Error bars indicate the SEM when triplicate measurements were done. (B) Sorted CD34+/GFP+ 

cells were cultured in methylcellulose and single colonies were picked after 14 days for detection 

of p53 mRNA. Note that ΔCT represents a binary logarithmic scale and higher numbers 

correspond to lower levels of p53 expression. Each dot represents the result obtained from one 

single colony. (C) Effects of etoposide on CFU-C formation. Sorted CD34+/GFP+ cells were 

grown in methylcellulose in the presence (+) or absence (-) of etoposide (25 nM). Error bars 

indicate SEM of triplicate cultures. (D) Measurement of etoposide-induced apoptosis by flow 

cytometry. CD34+ cells infected with pWPXL-p53si or the empty vector were sorted for 

EGFP expression by FACS and cultured for 4 days in liquid culture. After exposure to 20 µM 

etoposide (Eto) for 6 hours apoptosis was measured by staining with PE-coupled annexin V. 

(E) p53 target gene expression in silenced versus control cells. p21 mRNA levels were determined 

by real-time PCR in sorted EGFP positive cells after 10 days in liquid culture. Annotation as in 

2A. (F) Silencing of p53 expression in sorted CD34+/GFP+ cells after 5 weeks of LTC-IC 

stroma-cell culture. Annotation as in 2A. (G) Silencing of p53 expression in LTC-IC derived 

colonies. Annotation as in 2B 
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General Discussion 

 
Functional studies of genes involved in the development and maintenance of specific organs 

and tissues are very often hampered by the fact that their germ-line deletion in mouse models 

results in embryonic lethality. To gain further insight into the function of those “lethal” genes 

in specific organs and tissues, conditional gene targeting approaches have been established 

using the Cre/lox system 10. This approach requires two mouse strains, one with the target 

gene of interest modified to contain the recognition sites for the Cre recombinase, so called 

loxP-sites and a second mouse strain, which expresses the Cre recombinase in a tissue-

specific manner. Crossing such two strains will result in a transgenic mouse strain, where the 

loxP-flanked gene of interest is deleted by the tissue-specific action of the Cre recombinase. 

Many mouse strains with loxP-flanked target genes exist today, which would make it easy to 

study the function of these genes in detail in the desired tissue or organ. The bottleneck for 

such in vivo gene function studies is the availability of transgenic mouse strains for tissue-

specific Cre recombinase expression. In the first part of my thesis I described the generation 

of a transgenic mouse strain, the platelet factor 4 Cre (PF4Cre) mouse. The PF4Cre mouse 

was generated to express the Cre recombinase specifically in megakaryocytes and platelets. 

The transgenic PF4Cre mouse strain can be used for tissue-restricted deletion of target genes, 

which are potentially involved in murine megakaryopoieis, in vivo.  

 

The PF4Cre mouse is a new tool to study megakaryopoieis in vivo 

 

The CXC-chemokine platelet factor 4 (PF4) was shown to have a very restriction expression 

pattern starting from early megakaryopoieis up to the endproducts of megakaryopoieis, the 

platelets 121,122. Several attempts to drive the expression of a transgene specifically into 

megakaryocytes and platelets have been established before 131,132. In these reports, rat, mouse 

or human PF4-promotor constructs were used to drive transgene expression into the 

megakaryocytic lineage. While most of these constructs were sufficient to direct transgene 

expression into bone marrow megakaryocytes and platelets, expression in megakaryocytes 

from spleen was not detectable. Furthermore, due to the classical transgenesis protocol using 

short plasmid-based constructs, these constructs were hampered in their expression by 

position effects, including gene-silencing or mosaic expression. In our approach we tried to 

circumvent these problems by placing the improved Cre recombinase (iCre) sequence under 

the control of the Pf4 gene embedded in a 110kb bacterial artificial chromosome (BAC). This 
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BAC is believed to carry all elements (i.e., enhancers, locus control regions and insulators) 

crucial to drive tissue-specific expression of the Pf4 gene. Therefore, insertion of the Cre 

recombinase into exon 1 of the Pf4 gene should result in a transgenic expression pattern, 

which is identical to the endogenous PF4 expression in megakaryocytes and platelets. The 

transgenic mouse strains obtained from pronucleus injections of the 100kb BAC insert into 

fertilized oocytes showed different Cre expression patterns, according to the number of 

transgene integrations detected in these mice. Crossing the F0 founders from 5 different 

PF4Cre strains into the ROSA26lacZ reporter strain 133, I could demonstrate tissue-specific 

Cre expression in bone marrow and spleen megakaryocytes. The tissue-restricted expression 

pattern of the Cre recombinase clearly correlated with the previously evaluated copy number. 

The strain with 22 copies showed ectopic Cre expression in most of the analyzed organs, 

whereas mice with only 1 copy demonstrated lineage-restricted expression. In both PF4Cre 

strains with low numbers of transgene integrations Cre expression was only detected in 

megakaryocytes in the bone marrow and spleen. A third strain with 5 integrated BAC-

transgenes revealed some ectopic Cre expression in spleen, thymus, bone marrow and, 

surprisingly, in the alveolae of the ovary. Nevertheless, this work showed for the first time a 

functional transgenic mouse model for megakaryocyte restricted Cre recombinase expression. 

In contrast to previous reports where the PF4 promotor was used to drive expression of a 

transgene into megakaryocytes and platelets 131,132, transgenic PF4Cre mice expressed Cre 

recombinase in bone marrow megakaryocytes and splenic megakaryocytes. 

Analysis of the excision efficiency in megakaryocytes revealed that the excision was not 

complete in PF4Cre strains with 1 or two copies, respectively, while the strain with 5 

transgene integrations showed almost complete excision of the target gene. Two aspects have 

to be considered in the evaluation of excision efficiency. First, it is a known phenomenon that 

recombination of the loxed target gene by Cre recombinase varies dependent on the targeted 

gene 162. Therefore, the excision efficiency of particular PF4Cre strains has to be evaluated for 

every gene targeted.  Second, I used the PF4 regulatory regions to drive tissue specfic 

transgene expression into the megakaryocytic lineage. Expression of the PF4 gene was shown 

to start at early stages of megakaryopoiesis, where the first endomitotical duplications already 

occur 121,122. Thus, with the increasing ploidy of the maturing megakaryocyte, more copies of 

the loxed target gene have to be excised. Therefore, excision at the earliest stage of 

megakaryopoiesis (2N) will most likely result in good efficiencies, while excision at later 

stages has to work against increasing ploidy. However, this work describes for the first time a 

functional transgenic mouse strain for the targeted disruption of loxP flanked genes 
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specifically in megakaryocytes from bone marrow and spleen. Therefore, the PF4Cre 

transgenic mouse strain will be a valuable tool to study gene function in vivo by the 

conditional gene deletion in megakaryocytes and platelets. 

 
Conditional deletion of the TGF-β  receptor II in megakaryocytes does not lead to 

increased platelet counts 

  

Several reports established the inhibitory function of TGF-β on hematopoietic stem/progenitor 

cells 115-118,163. These data were mostly derived from in vitro assays, where the influence of 

TGF-β addition to cultured cells was analyzed.  In methylcellulose cultures of hematopoietic 

progenitors from either human or murine origin, the addition of TGF-β1 was shown to inhibit 

colony formation from early progenitors, while late progenitors seemed to be unaffected from 

TGF-β1 addition 115-117. 

Studies of the in vivo function of TGF-β on hematopoiesis further proofed these above-

mentioned in vitro data. For example, in a study designed to evaluate the function of TGF-β 

on hematopoietic stem cell proliferation in vivo, mice were either injected with 5-fluorouracil 

(5-FU) or TGF-β1 and 5-FU.  The chemotherapeutic drug 5-FU selectively kills the cycling 

cells, while non-cycling stem cells survive the treatment. The simultaneous injection of 5-FU 

and TGF-β1 into mice led to a delay of hematologic recovery as compared to mice only 

treated with 5-FU 164. These data clearly implied the inhibitory effect of TGF-β1 on stem cell 

proliferation in murine hematopoiesis. Furthermore, the targeted disruption of TGF-β1 in 

mouse showed defective hematopoiesis resulting in a reduced number of erythroid cells and 

increased numbers of circulating platelets in TGF-β1-null mice 9.  

Evidence for the inhibitory action of TGF-β on human hematopoiesis came from the 

observation that in some patients with either early myeloid or lymphocytic leukemias 

decreased expression of TGF-β receptors was detected 5. Reduced levels for the TGF-β 

receptor II mRNA or protein have been reported in several patients with myeloproliferative 

disorders (MPDs), as well as decreased mRNA levels for the mediator of TGF-β signaling, 

Smad4, in patients with essential thrombocythemia (ET). Together, these data suggested that 

unblocking of the inhibitory effect of TGF-β leads to a hyperproliferation of the affected cell 

compartment in hematopoiesis. In my thesis I set up different mouse models to gain insight 

into the function of TGF-β on hematopoiesis and megakaryopoiesis. In a first approach, I used 

the above-described PF4Cre mouse for the megakaryocyte-restricted deletion of the type II 

TGF-β receptor and Smad4. As TGF-β1 directly binds to TBRII, conditional disruption of 
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TBRII completely abolishes functional signaling through TGF-β1. The deletion of Smad4 in 

megakaryopoiesis leads to the disruption of any Smad-mediated signal transduction coming 

from TGF-β family members. Surprisingly, both mouse models for conditional deletion of 

TGF-β signaling components in megakaryocytes revealed no differences on peripheral 

platelet counts compared to control mice. These results strongly suggest that the loss of 

functional TGF-β signaling in murine megakaryopoiesis does not lead to the expected 

hyperproliferation of the megakaryocytic lineage and thereby to elevated platelet numbers. As 

the PF4Cre mouse strains with low numbers of transgene integrations were shown to mediate 

incomplete excision of the TBRII in megakaryocytes, one could argue that the lack of 

phenotype is due to incomplete TBRII or Smad4 disruption. However, the PF4Cre strain with 

5 transgene integrations showed the same results regarding the platelet numbers. Surprisingly, 

homozygous TBRIIlox/lox-PF4Cre mice from this strain showed an increasing leukocytosis 

over time with a doubling of white blood cells at the age of 17 weeks. The increase of white 

blood cells was mainly due to an elevation of granulocytes and lymphocytes. Clinically, these 

mice showed progressive weight loss, immobility and corneal opacity when analyzed with 17 

weeks after birth. Symptomatically, this phenotype was reminiscent on the induced deletion of 

the TBRII in bone marrow using the Mx1Cre mouse model 7. In this model, inducible deletion 

of TBRII in bone marrow leads to an autoimmune-mediated inflammatory phenotype 

characterized by organ infiltrations of T-/B-cells and granulocytes. In contrast to the above-

described elevation of white blood cell numbers in TBRIIlox/lox-PF4Cre mice from the 5 

copy strain, TBRIIlox/lox-Mx1Cre mice revealed normal blood counts from all peripheral 

blood lineages. Using the TBRIIlox/lox-Mx1Cre mice to prove the results obtained from the 

TBRIIlox/lox-PF4Cre mice additionally demonstrated that TGF-β signaling is dispensable for 

functional megakaryopoiesis. All of the 3 described mouse models (TBRIIlox/lox-PF4Cre/-

Mx1Cre and Smad4lox/lox-PF4Cre) argue against a functional implication of the TGF-β 

signaling pathway in normal megakaryopoiesis. Furthermore, the possibility that TGF-

β signaling in TBRIIlox/lox-PF4Cre mice still occurred with a different receptor-usage and 

thereby compensating the loss of TBRII, was ruled out by the megakaryocyte specific 

disruption of Smad4 in Smad4lox/lox-PF4Cre mice.  

In summary, the above-discussed results strongly argue against a fundamental function of 

TGF-β in murine megakaryopoiesis and implicate that the observed reductions of TBRII and 

Smad4 in patients with MPD are not the cause for the onset of the disease. These results are 

further strengthened by a screening for alterations of mRNA levels from TGF-β signaling 

components in patients with MPD (Fig.1).  
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In contrast to previous studies showing decreased levels of either TBRII or Smad4 in patients 

with MPD, we could not confirm these data in the patient cohort used for this screening 

(Fig.1). Even more surprising was the fact that some patients had elevated mRNA levels of 

the type I TGF-β receptor or Smad4. Whether these increased levels are involved in the 

pathogenesis of these patients has to be further studied. Nevertheless, the co-repressor 

proteins SnoN and Ski, which were shown to block TGF-β signaling by competing with R-

Smads for receptor binding or direct binding to R-Smads, showed elevated expression levels 

in some of the analyzed patients. These increased levels of inhibitory components of TGF-β 

signaling might render the affected cells unresponsive to TGF-β. This way, cells with elevated 

SnoN or Ski expression could escape negative regulation of growth by TGF-β and overgrow 

normal hematopoiesis. However, the above-discussed transgenic mouse models for the 

disruption of TGF-β signaling components either in hematopoietic stem/progenitor cells or in 

megakaryocytes strongly argue against such a scenario. In this context, it would be interesting 

Figure 1. Analysis of mRNA levels from TGF-β signaling components in MPD patients. Purified granulocytes from either 
patients or healthy controls served as source for mRNA. NC normal controls, MPD patients with myeloproliferative 
disorders. ΔCT subtracted threshold cycles (CT) for the individual analyzed mRNAs from the threshold cycle values for the 
internal control, the ribosomal protein L19 (RPL19). 
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to evaluate whether the exogenous application of active TGF-β1 into TBRIIlox/lox-PF4Cre 

mice leads to the expansion of the TBRII defective megakaryocytic lineage. A recent report 

showed that in a patient cohort with essential thrombocythemia not only Smad4 mRNA levels 

were decreased, but also serum levels of active and latent TGF-β were significantly increased 
3. This observation is consistent with the notion that tumor cells are not only insensitive to 

TGF-β mediated growth inhibition, but also produce themselves TGF-β probably to inhibit 

growth of neighboring cells.  

Somewhat unexpectedly, even the targeted deletion of Smad4 in megakaryopoiesis via the 

PF4Cre mouse or using the Mx1Cre mouse for stem cell targeting did not induce 

thrombocytosis as it is seen in patients with MPD. As Smad4 funnels signaling from all TGF-

β family members, the possibility that TGF-β signaling can be compensated through signaling 

from other TGF-β family members is highly unlikely.  

It seems to be more likely that a malignant stem cell clone in MPD additionally acquires 

unresponsiveness to growth inhibition by TGF-β signaling through a yet unknown 

mechanism. Such a mechanism would most likely involve transcriptional downregulation of 

TGF-β signaling components, which then provides the MPD clone with further growth 

advantage. The fact that no genetic or epigenetic alterations of TGF-β family genes were 

reported so far in patients with MPD, makes it also improbable that loss of TGF-β signaling is 

the primary reason for myeloproliferative disorders.  

 

 

Induced deletion of Smad4 in Smad4lox/lox-Mx1Cre mice leads to a rapidly developing 

haemolytic anemia 

 

Signaling of TGF-β family members is mainly mediated through the Smad-family of signal 

transducers. Ligand binding to the type II receptor leads to the formation of a receptor-duplex 

of type II and type I TGF-β receptors. The constitutively active type II receptor kinase 

phosphorylates the type I receptor, which then activates members of the R-Smads via 

phosphorylation. The activated R-Smads form hetero- or homoduplexes with other activated 

R-Smads and bind the Co-Smad, Smad4, before they translocate to the nucleus. Here, Smad 

complexes activate or repress transcription of several hundreds of target genes in cooperation 

with other transcription factors. Most of the previously discussed inhibitory functions of TGF-

β signaling on hematopoietic cells are probably mediated through activated Smad-complexes. 

Blocking of TGF-β signaling by repression of Smad3 activity has been reported in chronic 
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myeloid leukemia. In this case, dysregulation was not due to mutations in the Smad3 gene, but 

was correlated with an abnormal expression of Evi-1, a zinc-finger oncoprotein that interacts 

with Smad3 and suppresses its transcriptional activity 114. The potential involvement of other 

Smad-family members in hematopoietic hyperproliferative diseases needs further 

investigations.  

The germline deletion of Smad4 in mouse results in embryonic lethallity at day E 8.5. 

Therefore, the study of Smad4 function in hematopoiesis is difficult. In order to investigate 

the functions of Smad4 in hematopoiesis, we intended to delete Smad4 in hematopoietic 

tissues. The transgenic Mx1Cre mouse strain was mated with Smad4lox/lox mice and Smad4 

deletion was induced in Smad4lox/lox-Mx1Cre mice. Inducible Cre/loxP-mediated disruption 

of the Smad4 gene in bone marrow of homozygous Smad4lox/lox-Mx1Cre mice was analyzed 

for phenotypic alterations of peripheral blood lineages. The expectation was that the induced 

deletion of Smad4 in bone marrow shows a comparable phenotype as it was observed in 

TBRIIlox/lox-Mx1Cre mice, which died around 10 weeks after the induced deletion of TGF-β 

type II receptor due to multifocal autoimmune-mediated inflammations 7.  Unexpectedly, 

peripheral blood counts from Smad4lox/lox-Mx1Cre mice 3 weeks after the last 

polyinosinic/polycytidylic acid injection revealed decreased values for hemoglobin, 

hematocrit and red blood cell numbers. With 4-5 weeks post injection, Smad4lox/lox-Mx1Cre 

mice displayed severe hemolytic anemia based on the above-mentioned blood parameters. A 

simultaneous increase in the numbers of reticulocytes as well as in the serum levels of the 

lactate dehydrogenase further underlined the clinical phenotype of hemolytic anemia. 

Additional characterization of Smad4lox/lox-Mx1Cre mice revealed splenomegaly due to 

extramedullary hematopoiesis. Histological examination of organ sections from Smad4 

deleted mice showed spots of extramedullary hematopoiesis in the liver and a massive 

expansion of immature myeloid cells in the spleens of Smad4lox/lox-Mx1Cre mice. The 

immature myeloid cells in the spleens were demonstrated to originate from the erythroid 

lineage and additional flow cytometric analysis revealed that these cells were mostly 

immature erythroblasts. Characterization of the haemolytic anemia in Smad4lox/lox-Mx1Cre 

mice revealed no surface IgG or IgM coating on red cells, making it unlikely that the 

haemolytic anemia is autoimmune mediated. Comparison to the haemolytic anemia in the 

New Zealand Black (NZB) mouse model, definitively ruled out the possibility that induced 

Smad4lox/lox-Mx1Cre mice develop an autoimmune mediated haemolytic anemia. This result 

was surprising, as the previously mentioned TBRIIlox/lox-Mx1Cre mouse showed an 

autoimmune-mediated inflammatory phenotype and therefore the establishment of an 
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autoimmune-mediated phenotype in Smad4lox/lox-mx1Cre mice was highly likely. Because 

autoimmunity was ruled out as the reason for haemolytic anemia in Smad4 deleted mice, the 

possibility of an intrinsic defect of the erythroid cells was evaluated. The fact that 

erythropoiesis in Smad4lox/lox-Mx1Cre mice was obviously blocked at the erythroblast 

stage, implied that the cause for the anemia might be a erythroid maturation defect due to 

decreased expression of a down stream target gene of Smad-mediated transcription. The 

GATA-family of transcription factors is known to exert fundamental functions in the 

differentiation of the erythro-/megakaryocytic lineage. While GATA-1 is believed to exert its 

function in the earliest stages of hematopoiesis, GATA-2 might be more implicated in the 

expansion of early progenitors 139,165. However, the germline deletion of both GATA-1 or 

GATA-2 resulted in early lethality due to defective embryonic erythropoiesis. Both of these 

zinc-finger transcription factors are believed to exert overlapping functions in the erythro-

/megakaryocytic differentiation 140. Analysis of GATA-1, GATA-2, GATA-3 and Friend of 

GATA 1 (FOG-1) mRNA expression by quantitative real-time PCR in bone marrow or 

purified TER119-positive cells from Smad4lox/lox-Mx1Cre mice revealed decreased levels of 

GATA-2 in both cell types. The decrease was more pronounced in purified TER119+ cells 

from bone marrow as well as from the spleens from Smad4 disrupted mice, than in full bone 

marrow. Two observations further underlined the possibility that the decreased GATA-2 

levels might be the cause for the anemia observed in injected Smad4lox/lox-Mx1Cre mice. 

First, a recently published report demonstrates decreased mRNA levels of GATA-2 in patients 

with aplastic anemia 166. Second, experiments using either yolk sac or ES cell derived high-

proliferative potential colony-forming cells (HPP-CFCs) from Smad5-/- embryos demonstrated 

that the disruption of Smad5 led to decreased GATA-2 mRNA levels in erythroid precursors 
167 and that these erythroid precursors had a reduced proliferative potential. Together with the 

notion that Smad5 is able to transmit signals not only from the bone morphogenetic proteins 

(BMPs), but also from TGF-β1 and TGF-β2, this implicates that abolished GATA-2 function 

in defective erythropoiesis might originate from an insufficient Smad5 or Smad4 function. As 

Smad4 is the Co-Smad for all R-Smads, and therefore Smad5 needs Smad4 for effective 

transcriptional activation of target genes, one might speculate that the induced deletion of 

Smad5 in bone marrow results in a similar phenotype as described for the Smad4 deletion. A 

crucial experiment to validate the above-described results and hypothesis is the inducible 

deletion of Smad5 in a Smad5lox/lox-Mx1Cre mouse.  

To restrict the Smad4 deletion exclusively to BM, we set up different bone marrow 

transplantation models. Smad4lox/lox-Mx1Cre bone marrow was transplanted into lethally 
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irradiated recipients and Smad4 was disrupted after chimerism reached 80%. Surprisingly, 

mice transplanted with Smad4lox/lox-Mx1Cre bone marrow appeared phenotypically normal 

10 weeks after pIpC-induced Smad4 deletion. Peripheral blood counts from these mice 

showed no signs of anemia at week 10 post-injection. These results imply that the 

hematopoietic deficiency in Smad4lox/lox-Mx1Cre mice is not BM cell autonomous and can 

be compensated by host-derived factors. Besides that, the decreased levels of GATA-2 in 

TER119+ cells from Smad4lox/lox-Mx1Cre mice are not the reason for anemia in these mice 

demonstrated by the non-cell autonomous phenotype.  

As the expression of the Cre recombinase in Mx1Cre mice is also efficiently detectable in 

other organs than the bone marrow, such as liver, spleen and kidney, there is good evidence to 

postulate that the anemia in Smad4lox/lox-Mx1Cre mice results from the deregulation of a 

factor mainly produced in one of the above-mentioned organs. To test this hypothesis, normal 

bone marrow from healthy C57BL/6 mice was transplanted into lethally irradiated 

Smad4lox/lox-Mx1Cre mice and heterozygous controls. At the time of writing this 

manuscript, the results of this experiment were still pending and therefore cannot be discussed 

here.  

 

However, looking for such a host-derived factor, which is deregulated upon the targeted 

disruption of Smad4 in one of the mentioned organs and therefore causes a severe haemolytic 

anemia in Smad4lox/lox-Mx1Cre mice, resulted in the hypothesis that the major erythroid 

cytokine, erythropoietin (Epo), might be involved in the establishment of the observed 

phenotype. Especially one recent report, showing a TGF-β mediated regulation of the Epo 

gene together with the hypoxia inducible factor 1 (HIF-1) (Zermati Y), further underlined a 

possible involvement of Epo in the anemia phenotype of Smad4lox/lox-Mx1Cre mice. The 

above-mentioned report demonstrated that a Smad-binding element (SBE) within the 3’ Epo 

enhancer is bound from Smad3/4 via TGF-β activation. Furthermore, physical interaction of 

Smad3 with HIF-1 could be demonstrated and in vitro studies proved the agonistic action of 

Smad3/HIF-1 in the induction of Epo expression. Epo production mainly resides in the kidney 

and therefore Epo expression might be abolished in Smad4lox/lox-Mx1Cre mice due to Cre 

mediated deletion of Smad4 in the kidney. Normal Epo production in the kidneys of bone 

marrow transplanted recipient mice should rescue the anemic phenotype seen in 

Smad4lox/lox-Mx1Cre mice. Unfortunately, at this point I cannot answer this question, 

because the above-mentioned experiments are still in progress. 
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A second interesting feature of the transplantation model discussed above is the fact that even 

after 10 weeks post injection, Smad4lox/lox-Mx1Cre bone marrow transplanted mice did not 

show any phenotypic manifestations of the wasting syndrome detected in mice with induced 

disruption of the type II TGF-β receptor. As previously mentioned, mice with induced 

deletion of TBRII in bone marrow develop an autoimmune-mediated inflammatory 

phenotype, which is transplantable 7. A similar phenotype can be found in mice with induced 

disruption of type I TGF-β receptor (TBRI) as well as in mice deleted for TGF-β1 ligand. All 

these mouse models generated a similar clinical picture: a multifocal inflammatory disease 

affecting a multitude of organs. These results clearly substantiated the importance of TGF-β 

signaling for immune functions and inflammation 7-9. Induced deletion of Smad4 in 

Smad4lox/lox-Mx1Cre bone marrow transplanted mice does not show a similar phenotype as 

the above discussed mouse models for the disruption of TGF-β signaling in bone marrow. 

Hence, it is valid to postulate that TGF-β signaling in immune responses and inflammation it 

mediated through a Smad-independent pathway. Smad-independent TGF-β signaling has been 

described to function through the MAPK pathway 89,91, where direct activation of the 

extracellular signal-regulated kinase (ERK), c-jun NH2-terminal activated kinase (JNK) and 

p38 MAPK was shown upon TGF-β signaling. All of these kinases are involved in the direct 

regulation of the inflammatory cytokine tumor necrosis factor alpha (TNF-α). Therefore, 

disruption of TGF-β signaling via the MAPK pathway might account for certain aspects in the 

TBRII, TBRI and TGF-β1 deletion phenotype. The observation of increased TNF-α levels in 

TGF-β1-null mice fits well into the above-described scenario.  

A second Smad-independent pathway potentially involved in the autoimmune-mediated 

inflammatory phenotype observed in TGF-β signaling deficient mice, is the nuclear factor 

kappa B pathway (NF-κB). Both, TGF-β1 and BMP4 were shown to activate the TGF-β-

activated kinase 1 (TAK1)168, which can phosphorylate and activate IκB kinase and thereby 

stimulate NF-κB signaling. As NF-κB signaling is involved in mediating immune responses, a 

potential deregulation of NF-κB signaling through the induced disruption of the TGF-β 

pathway might explain some aspects of the autoimmune phenotype in TBRII or TGF-β1 

deficient mice. 

  

 

 

 



General Discussion 83 

Gene-silencing in human hematopoietic stem cells 

 

Mouse models for the targeted disruption of genes have revealed great insight into the 

function of many genes in vivo. Nevertheless, many knock out approaches in mice to study 

the function of a particular gene in vivo were hampered by the early lethality during 

embryogenesis due to the germline deletion of the gene. These problems were partially 

overcome by the introduction of conditional gene deletions in the tissue of interest using the 

Cre/loxP system. However, the possibility that the gene-deletion phenotype in mice does not 

reflect the situation in the human system is a major concern of gene targeting experiments in 

mice. Therefore, a system, which allows gene function studies in vivo in human primary cells, 

is highly desirable. Several studies demonstrating efficient gene-transfer into human 

hematopoietic stem cells using lentiviral vectors 155,169 opened the possibility to manipulate 

non-replicating, quiescent hematopoietic progenitors in vitro and in vivo. In the year 2000 

pioneering studies from Tuschl and colleagues 170 demonstrated functional gene-silencing by 

RNA-interference (RNAi) in mammalian cells. In these studies it could be shown that short 

double-stranded RNAs, complementary to a specific RNA sequence, can target this RNA for 

degradation through the so-called RISC complex. First experiments using such double-

stranded short RNA-oligomers revealed that the critical length of these functional RNA-

oligomers in the vertebrate system should not exceed 30 base-pairs. Longer double-stranded 

RNAs efficiently induced an anti-viral response in the vertebrate system and therefore RNA-

oligomers exceeding this critical length were not useful to silence a target gene by RNA 

destruction. Additional experiments aimed to design a stable system for the delivery of short 

interfering RNAs (siRNAs) 171 resulted in a vector-based system for the stable delivery of 

siRNA into cultured cell lines in vitro.  

We intended to take advantage of these two systems to create a tool for siRNA delivery into 

human hematopoietic stem cells. Hence, I designed a lentiviral system for delivery of siRNA 

into cord blood derived CD34+ cells. Combining the above-mentioned two systems led to the 

establishment of lentiviral vector harboring an H1-promotor driven expression cassette for 

short double-stranded hairpin RNAs complementary to the RNA sequence of interest. In a 

first set of experiments the p53 mRNA was chosen as a target for siRNA mediated gene 

silencing. Infection of the kidney derived cell line 293-T with a lentiviral construct harboring 

a p53 siRNA expression cassette, pWPXLp53si, demonstrated efficient p53 gene-silencing. 

72 hours after the infection of 293-T cells with the pWPXLp53si lentivirus, p53 protein levels 

were reduced over 80%. Using the same lentiviral construct for the infection of cord blood 
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derived human CD34+ hematopoietic stem cells not only revealed high infection efficiencies 

based on the expression of the reporter gene enhanced green fluorescent protein (EGFP), but 

also sustained gene-silencing of p53 over time. Measurement of p53 mRNA levels in CD34+ 

cells infected with pWPXLp53si confirmed the previously obtained results from the infection 

of the 293-T cell line, where p53 mRNA levels were reduced to 3-10% of the control infected 

cells. Using long-term culture-initiating cell (LTC-IC) assays I was able to demonstrate that 

hematopoietic progenitor cells were efficiently silenced for p53 expression over a long period 

of time. Furthermore, functional studies of CD34+ cells infected with the lentiviral vector for 

p53 silencing revealed that these cells are more resistant to apoptotic stimuli induced by the 

cytotoxic drug Etoposide than control-infected cells. These results clearly demonstrate that 

lentiviral mediated delivery of siRNA into cord blood derived CD34+ is sufficient to induce 

functional gene-silencing in hematopoietic progenitor cells over time. Infected CD34+ cells 

were also differentiated into the different lineages of the blood and silencing persisted in fully 

differentiated cells. The above-discussed approach for functional gene-silencing in human 

hematopoietic stem/progenitor cells opens several potential applications. First, gene function 

in human hematopoietic stem cells can be studied in vivo by transplanting infected CD34+ 

cells into immuno-compromised NOD/SCID mice. In this setting it will be possible to 

evaluate the function of several genes in hematopoiesis. A second application could be the 

study of transgenic animals, as the lentiviral system has a broad host range and therefore can 

be used in several animal models. It was recently demonstrated 172 that the infection of mouse 

oocytes with a lentiviral vector as described above is sufficient to produce transgenic 

offspring, which is silenced for the siRNA-targeted gene. As the silencing efficiency is 

dependent on the numbers of integrated proviruses per cell, an above-discussed model for 

oocyte-infection might result in transgenic animals with different degrees of gene-silencing, 

which is potentially more reflecting human malignancies due to attenuated gene expression. A 

third, potentially very ambitious application might be the future use of such a system in 

patients with hematopoietic diseases, such as leukemias or bone marrow failures. First studies 

using retroviruses for gene-therapy in children with severe combined immunodeficiencies 

(SCID) revealed that this application was sufficient to correct the gene-defect in these 

children. Unfortunately, some of the treated children developed leukemia due to virus-

integrations close to the LMO2 gene. As the viruses in this clinical trial still possessed a 

functional viral promotor, the virus-integration close to the T-cell oncogene Lmo2 led to the 

constitutive expression of this gene and therefore to leukemic transformation of the affected 

cells. The above-described lentiviral vectors are modified to harbor so-called self-inactivating 
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long terminal repeats (SINLTRs), which serve as the viral promotors. Upon viral integration 

these promoters are inactivated and therefore not functional. I therefore believe that the 

above-discussed technology for lentivirus mediated siRNA delivery into human 

hematopoietic stem/progenitor cells might be valuable for the treatment of defined 

hematopoietic malignancies. Nevertheless, potential side effects of the introduced siRNAs and 

lentiviral vectors have to be proven very seriously. 
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