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Abstract

Small interfering RNAs (siRNAs) exhibit strong off-target effects, which confound the gene-level interpretation of
RNA interference screens and thus limit their utility for functional genomics studies. Here, we present gespeR, a
statistical model for reconstructing individual, gene-specific phenotypes. Using 115,878 siRNAs, single and pooled,
from three companies in three pathogen infection screens, we demonstrate that deconvolution of image-based
phenotypes substantially improves the reproducibility between independent siRNA sets targeting the same genes.
Genes selected and prioritized by gespeR are validated and shown to constitute biologically relevant components
of pathogen entry mechanisms and TGF-β signaling. gespeR is available as a Bioconductor R-package.

Keywords: RNAi, siRNA, Off-target, Confounded, Phenotype, Deconvolution, Statistical model, Hit prioritization,
Pathogen infection screen
Background
The discovery of RNA interference (RNAi) brought the
exciting prospect of targeted gene interventions for
detailed characterization of biological processes to the
functional genomics community. Today, there exist
multiple commercial and academic libraries, based on
different reagents, such as small interfering RNA
(siRNA) or small hairpin RNA (shRNA), for human cell
lines and a range of model organisms. However, pheno-
typic readouts of RNAi knockdown experiments using
distinct reagents targeting the same gene exhibit poor
reproducibility [1–3]. For siRNAs, this lack of reproduci-
bility is largely due to sequence-dependent off-target
effects. The intended on-target gene is silenced through
full complementarity of the siRNA to the open reading
frame (ORF) of its transcript. Each siRNA, however, si-
lences hundreds of additional off-target genes, which has
been shown in vitro [4] and in silico (Additional file 1).
Using the microRNA (miRNA) pathway, the set of
off-target genes of an siRNA is mainly determined by
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complementarity of its seed region (positions 2–8) to
the 3’ untranslated regions (UTRs) of the transcript
[5]. Thus, rather than a single-gene knockdown, an
RNAi knockdown experiment is a combinatorial
knockdown of multiple genes, where the resulting knock-
down phenotype does not directly reveal the effect of
individual genes [6, 7].
In fact, despite improved algorithms for the design of

RNAi reagents [8], chemical modifications of reagents
[9, 10], and the development of computational methods
to improve reproducibility and to minimize the risk of
reporting false positive hits [11–13], it remains challen-
ging to identify the specific effect of each individual gene
on the phenotype from RNAi screens. These limitations
dampened initial excitement and raised concerns about
the utility of the technology [11, 14]. Here, we address
this challenge and introduce gespeR (for gene-specific
phenotype estimator), a statistical model for the estima-
tion of hidden gene-specific phenotypes (GSPs) from
observed reagent-specific phenotypes (RSPs). We model
the observed RSPs as the weighted sum of individual
GSPs from all on- and off-target genes, where the
weights are proportional to the strengths of gene knock-
downs by a reagent (Fig. 1a). Unlike RSPs, the inferred
GSPs are gene-specific, deconvoluted phenotypes, i.e.,
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Fig. 1 Gene-specific phenotypes (GSPs; red) estimated from
off-target-confounded RNAi screens. a Schematic representation
of a knockdown screen. RNAi reagents (e.g., siRNAs) target their
intended on-target (black solid arrow) and additional off-target
(grey dashed line arrows) genes. Each gene has a hidden GSP,
whereas the observed reagent-specific phenotypes (RSPs; violet)
correspond to the combined effect of on- and off-target genes.
b Unlike RSPs, deconvoluted GSPs are expected to exhibit high
concordance between distinct libraries containing different reagents
targeting the same genes
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they are independent of the underlying RNAi library and
hence highly reproducible between distinct RNAi librar-
ies (Fig. 1b) and ultimately allow constructing uncon-
founded gene hit rankings for follow-up analyses.
For the validation of gespeR, we performed extensive in

silico and in vitro experiments, including (1) evaluating
the performance of our model to predict new, unseen
siRNA phenotypes, (2) demonstrating strong reproducibil-
ity between GSP estimates from different RNAi libraries,
and (3) evaluating the biological significance of estimated
GSPs. We applied gespeR to phenotypes derived from
three high-content, image-based pathogen infection
screens and an additional, previously published screen
on transforming growth factor (TGF)-β signaling [6].
Where applicable, the performance of gespeR was
compared with established RNAi gene prioritization
strategies: in silico pooling (ISP), redundant siRNA
analysis (RSA) [15] and haystack [16]. ISP is defined
as simple averaging over all RNAi reagent phenotypes
for the same gene and subsequent ranking. RSA per-
forms statistical tests for the enrichment of multiple
reagents targeting the same gene at the top and bot-
tom of ranked phenotype lists and ranks genes ac-
cording to p values. Haystack uses iterative forward
selection of gene transcripts to build a linear model
that explains observed phenotypes based on predicted
off-target effects. gespeR is related to haystack (see
"Comparison of the gespeR and haystack models"
section), but is based on elastic net regularization
[17] to select and prioritize genes and additionally
uses on- and off-targets of RNAi reagents to model
observed phenotypes.

Results and discussion
The gespeR model for deconvoluting RNAi phenotypes
gespeR can be applied to any RNAi screening data set
confounded by off-target effects. The input to the model
consists of observed RSPs (e.g., from siRNA, shRNA,
or even small-molecule knockdown experiments) and
reagent-to-gene target relations. The relationships be-
tween each reagent i and each gene j are summarized
in the matrix X = (Xij) ∈ [0, 1]n × p. They are typically
not provided by library vendors, but can be experi-
mentally determined or, in the case of siRNAs as in
this study, predicted using additional tools. We define the
j-th column of X, Xj ∈ [0, 1]n as the vector of knockdown
strengths of gene j for siRNAs i = 1, …, n. For observed
phenotypes 1, …, k, we denote by Y ∈ ℝn × k the matrix of
k real-valued RSPs for siRNAs i = 1, …, n. We assume that
the conditional expectation of Y is linear in X1, …, Xp and
that the deviations of Y around its expectation are additive
and Gaussian. Hence, the observed RSPs for reagents i =
1, …, n are modeled as the weighted sum of GSPs βj ∈ ℝk

of all targeted genes j = 1, …, p:

Y ¼ Ε Y jX1;…; Xp
� �þ ε ¼

Xp
j¼1

Xjβj þ ε;

where the error ε ~Ν(0, σ2Ik). In this study, we exclu-
sively analyze univariate phenotypes (k = 1) derived from
a single read-out.

Application to image-based pathogen infection screen
phenotypes
We applied gespeR to an extensive data set from high-
content, image-based pathogen infection screens de-
signed for the investigation of the entry pathways of
three facultative intracellular bacterial pathogens: Bru-
cella abortus, Bartonella henselae, and Salmonella typhi-
murium (see "Image-based pathogen infection screens"
section). In total, we analyzed 115,878 knockdown ex-
periments per pathogen screen using single siRNA and
pooled siRNA libraries from Ambion, Dharmacon, and
Qiagen (Table 1). The primary phenotype extracted from
quantified image features was Infectivity, defined as the
fraction of infected cells within a well. We removed
readouts from outlier wells with low cell count resulting
from lethal siRNA transfections, i.e., wells that contained
less than 250 cells from approximately 2500–4000 cells
expected under normal growth, in order to avoid large



Table 1 siRNA libraries for pathogen infection screens

Vendor Product Type Scope siRNAs/gene

Ambion Silencer® Select Single Kinome 3

Silencer® Select Single Validation (1,837) 6

Dharmacon Human ON-TARGETplus Single Kinome 4

Human ON-TARGETplus Pooled Genome 4

Qiagen Human Druggable Genome siRNA V3 Single Genome 4

Human Refseq Xm siRNA V1 Single Predicted mRNA 4

Human Predicted Genome V1 Single Predicted mRNA 4

Libraries included kinome-, validation- and genome-wide libraries of different structure (single-siRNA and pooled) and from different vendors
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variation in the multiplicity of infection (MOI). In
addition, we removed outlier wells with less than five in-
fected cells, because we cannot rule out experimental
failure in these cases. Row and column plate effects were
corrected for using the B score model without applying
the smoothing option (Additional file 2) [18]. Pheno-
types were scaled per plate using median-absolute devi-
ation (MAD) and aggregated per siRNA by the mean
over all replicates.

Model validation and benchmarking
In the absence of a ground truth for cellular signaling of
pathogen entry, we validated gespeR in several inde-
pendent ways and, whenever possible, compared its per-
formance with two established prioritization methods,
RSA [15] and haystack [16], as well as with the baseline
of RSPs (the observed RSPs) or in silico pooling. We first
assessed the predictive power and concordance of phe-
notypes between distinct libraries, since high predictive
power and strong concordance are necessary conditions
for meaningful gene-level interpretation of RNAi screens
(see "Necessary conditions for model validity" section).
Second, we evaluated the biological relevance of priori-
tized hit genes by inter-pathogen comparisons, gene set
enrichment analysis (GSEA), and literature validation of
hit lists in two independent biological systems. Note that
GSP estimates from convoluted RSPs cannot be directly
validated by additional RNAi experiments on the same
gene, because it has to be assumed that off-target effects
will again confound the validation experiment RSPs.

Measures of mutual concordance between ranked lists of
phenotypes
In order to capture most important aspects of mutual
concordance, in the analyses described below we applied
four different measures to compare ranked lists of phe-
notypes. First, because genes with a strong positive or
negative phenotype are of major interest, we determined
the rank-biased overlap [19] of the top (rbo↓) and bot-
tom (rbo↑) of gene lists ranked by their phenotype. In
addition, since gespeR, haystack, and RSA, in general, do
not necessarily select fully overlapping subsets of
relevant genes, we measured the overall relative overlap
of selected genes using the Jaccard index (J), which is
defined as the cardinality of the intersection divided by
the cardinality of the union of two sets. Furthermore, we
calculated Spearman’s correlation coefficient (ρ) between
phenotypes, which indicates the overall rank similarity.
In order to ensure fair comparisons between methods,
ranked lists of RSPs and ISPs, respectively, were trimmed
to the lengths of the corresponding lists of GSPs estimated
by gespeR, keeping the number of selected positive and
negative phenotypes fixed.

gespeR accurately predicts siRNA knockdown phenotypes
In order to assess the predictive power of our model in a
blind test, we predicted combinatorial RSPs for 1871
previously unseen Ambion validation screen siRNAs
prior to the validation experiment, and seven kinome-
wide data sets. Using gespeR, we first estimated gene-
specific phenotypes for all pathogens from the joint set
of 90,264 Qiagen siRNAs, denoted GSPQ, and 18,041
Dharmacon siRNA pools, denoted GSPD. GSPQs and
GSPDs were then independently used to compute the
expected phenotypes of the unseen screens (Additional
file 3). In this analysis, we compared the predictive per-
formance of gespeR only with ISP of RSPs and haystack,
because RSA cannot predict RSPs (see “Limited applic-
ability of RSA and haystack” section in Additional file 4).
Haystack operates on seed-averaged phenotypes and not
on full siRNA phenotypes. Therefore, as an approxima-
tion to the prediction of the RSP for a specific siRNA
using the haystack model, we predicted matching seed-
phenotypes based on haystack’s phenotype estimates
from the same Qiagen data set. Performance was evalu-
ated by measuring concordance of predicted against
measured RSPs. For the prediction of the new, unseen
siRNA phenotypes, gespeR showed higher concordance
than predictions from both haystack and ISP as evalu-
ated by correlation between phenotypes and rank-biased
overlap of ranked gene lists across all pathogens (Fig. 2a).
The predictive performance was stronger for GSPQs for



Fig. 2 gespeR predicts siRNA phenotypes with significantly higher accuracy than in silico pooling (ISP) and haystack across all pathogens. Mutual
concordance is evaluated between predicted and measured reagent-specific phenotypes (RSPs) for the same siRNAs. *Significantly better than
second best method (Wilcoxon rank sum test, p < 0.05). a Phenotypes for 1871 validation screen siRNAs from Ambion were predicted in a blind
test prior to experiments and evaluated against eventually measured RSPs. b Subsetting seven data points for the kinome-wide data set, RSPs
were repeatedly predicted for a training set and evaluated against a disjoint test set

Schmich et al. Genome Biology  (2015) 16:220 Page 4 of 12
all pathogens, except for S. typhimurium, where GSPDs
performed slightly better, likely due to strain-specific
effects from the Qiagen genome-wide screen for S.
typhimurium.
gespeR also showed significantly better predictive

performance than haystack and ISP on kinome-wide
phenotypic readout available for seven independent
siRNA knockdowns (3× Dharmcon single-siRNA and 4×
Dharmacon pooled). We selected from the seven read-
outs all combinations of two disjoint sets, each of size
three. Each time, we held out one set as a test set and
used the remaining set for predictions. Using gespeR,
combinatorial RSPs were predicted based on GSPQ esti-
mated from Qiagen siRNAs not contained in either of
the two sets. For haystack, parameters learned from the
same Qiagen data set were used for predictions. ISP pre-
dictions were obtained by averaging over all phenotypes
from reagents targeting the same gene. Predictions were
compared with the mean phenotype of the test set and
performance was evaluated using the measures of con-
cordance described above (Fig. 2b).

gespeR GSPs are highly concordant between distinct
libraries
We investigated the concordance between phenotypes
from different sets of siRNAs targeting the same genes.
The set of Qiagen siRNAs was split into four distinct
genome-wide sub-libraries, each containing one siRNA
per gene, and GSPs were separately estimated for each
sub-library (GSPQ,1, …, GSPQ,4). For RSA, we created all
possible combinations of two libraries and compared
(1,2) versus (3,4), (1,3) versus (2,4), and (1,4) versus (2,3)
(see “Limited applicability of RSA and haystack” section
in Additional file 4). Concordance of GSPs between all
pairs of sub-libraries was evaluated as described above
(see "Measures of mutual concordance between ranked
lists of phenotypes" section) and compared with hay-
stack, RSA, and RSPs (Fig. 3a). We found RSPs to



Fig. 3 Gene-specific phenotypes (GSPs) estimated by gespeR are highly reproducible between different RNAi libraries across all pathogens.
Mutual concordance is evaluated between phenotypes for the same genes. *Significantly better than second best method (Wilcoxon rank sum
test, p < 0.05). a gespeR GSPs for four Qiagen genome-wide sub-libraries are significantly more reproducible than RSPs and estimates from
haystack and RSA. b gespeR GSPs exhibit significantly stronger concordance than in silico pooled RSPs (ISPs) between single and pooled siRNA
libraries from different vendors (Qiagen single-siRNA versus Dharmacon pooled)
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exhibit low correlation (median ρ = 0.14) and rank-biased
overlap (median rbo↓ = 0.16, rbo↑ = 0.18), confirming that
even sets of strongly negative or positive observed pheno-
types do not agree between different siRNAs targeting the
same gene. Experimental noise alone cannot account for
this poor reproducibility, as correlation between technical
replicates (repeated knockdowns using the same siRNA)
was much higher (0.8 on average) [20]. Mutual concord-
ance between estimated GSPs obtained from gespeR were
close to the level of concordance between technical repli-
cates and, compared with RSPs, up to five times higher
with respect to correlation and rbo for both the top and
bottom of ranked gene lists. Corresponding pairwise dis-
tributions of GSPs and RSPs are provided in Additional
files 5 and 6. Haystack estimates showed strikingly high
correlation between sets of selected genes, although at the
cost of extremely small sets of mutually selected genes
between different sub-libraries (median J = 0.25). The me-
dian number of mutually selected genes for haystack was
m = 13 genes, while we could not evaluate concordance
for B. henselae due to a median overlap of m = 2. In
contrast, the overall relative overlap between sets of
genes selected by gespeR is significantly higher (J = 0.44,
m = 1093.5 genes), indicating a more stable and com-
prehensive gene selection procedure. Moreover, gespeR
showed significantly higher rbo than haystack, for both
the top and the bottom of ranked gene lists. gespeR also
outperforms RSA across all measures of concordance.
RSA did not show significant improvement over RSPs,
which may be due to the fact that RSA strongly depends
on the number of reagents per gene.
GSPs estimated by gespeR also showed significantly

higher overall concordance between different library
types (all genome-wide, pooled versus single siRNA) and
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vendors (Qiagen versus Dharmacon) compared with
RSPs (Fig. 3b). Performance was worse for S. typhimur-
ium, likely due to the use of different HeLa cell lines
and slightly different pathogen strains in the Qiagen and
Dharmacon screens (Table 1). We omitted comparisons
to haystack and RSA, as both methods are not applicable
to the pooled siRNA library (see “Limited applicability of
RSA and haystack” section in Additional file 4). In order
to rule out model biases as the underlying source of re-
producibility, we showed that gespeR GSPs estimated
from randomized RSPs and from randomized siRNA-to-
gene target relations did not show concordance (see
“Application of gespeR to randomized data” section in
Additional file 4 and Figure S6a in Additional file 7). We
also confirmed that GSPs estimated by gespeR are not
biased towards specific transcript features such as GC
content or the number of nucleotides (Figure S6b in
Additional file 7).

Single-siRNA libraries yield better model fits
Model fits for Qiagen sub-libraries, and the pooled
Dharmacon library were appreciable for B. abortus and
S. typhimurium, with a coefficient of determination (R2)
of over 0.5 for the Qiagen libraries and over 0.35 for the
Dharmacon library. The fits for B. henselae showed
slightly lower R2 values of around 0.25 for both library
types (Additional file 8). This indicates that, given the
same number of siRNAs, gespeR yields higher perform-
ance on phenotypic data stemming from single-siRNA
libraries than pooled libraries.

Inter-pathogen comparison of GSPs results in the
biologically expected pattern
In order to assess inter-pathogen concordance between
GSPs estimated by gespeR, we compared GSPQ esti-
mates for B. abortus and S. typhimurium for Infectivity
and the auxiliary phenotype of Viability, defined as the
normalized cell count after infection, between two dis-
tinct genome-wide Qiagen sub-libraries (Fig. 4a). Unlike
RSPs, GSPs showed strong correlation for Viability and
weak correlation for Infectivity. This phenomenon is
biologically expected, because gene knockdowns with a
strong effect on the growth rate of cells (Viability) are
largely pathogen-independent. Infectivity, in contrast, is
pathogen dependent and subtle correlation may be ex-
plained by a few shared components between different
pathogen entry mechanisms.

GSEA reveals biologically relevant pathways for pathogen
entry
GSEA was performed in order to test for enrichment of
known biological pathways based on ranked gene lists
from gespeR, haystack, RSA, and ISP [21]. We deployed
the GSEAPreranked module from the Broad Institute
GSEA suite [22] and used (estimated) phenotypes as the
ranking statistic with default parameters and 1000 per-
mutations. Enrichment was tested against the Canonical
Pathway database (c2.cp.v4.0.entrez.gmt) downloaded
from MSigDB [21]. GSEA results are visualized using a
heat map representation of significantly enriched path-
ways (Y-axis) for each pathogen (X-axis) grouped in
panels for each method (Fig. 4b). All pathways enriched
for at least one method-pathogen combination with a
false discovery rate smaller than 0.25 are shown. We fo-
cused on decreased Infectivity phenotypes, the pheno-
type of primary interest for follow-up studies indicating
a repressive role in pathogen infection. gespeR identified
37 significantly enriched pathways in total for all studied
pathogens, including a number of pathways exclusively
enriched for GSPs, which were previously reported to
play a role in infection [23, 24], such as focal adhesion,
integrin-signaling, and TGF-β signaling. Five out of eight
(62.5 %) pathways enriched for ISPs are also enriched
for gespeR GSPs. For RSA, three pathways are enriched,
not overlapping with any other method, while for
haystack, the threshold of a default minimum overlap
of n = 15 genes was not met for any tested gene set,
resulting in no significant enrichment.

Top-ranked GSPs are enriched for canonical hits for
pathogen entry
Investigation of the top 50 hit genes ranked according to
the absolute gene-specific phenotype provides additional
evidence for the biological relevance of GSPs estimated
by gespeR for the three investigated pathogens (Tables
S1–S3 in Additional file 4). The hit lists contain several
genes of previously reported pathways, for instance,
genes related to actin dynamics and the COPI complex
for B. abortus (CDC42, ARF1), integrin signaling and
invasome formation for B. henselae (ITGA5, ITGB1), as
well as components related to the S. typhimurium entry
mechanism (MYH9, IQGAP1). The distribution of B.
henselae GSPs exhibits lower variation compared with
GSP estimates for both other pathogens. This obser-
vation can be attributed to the fact that RSP input to
our model for B. henselae also showed lower variation
(Additional file 9).

gespeR identifies hits for TGF-β signaling in independent
RNAi data set
We validated gespeR on another, previously published
RNAi screen designed to detect members of the TGF-β
pathway in a human keratinocyte cell line using a GFP-
SMAD2 reporter fusion protein [6]. This screen had
been reported to suffer severely from confounding off-
target effects. gespeR identified the two main upstream
modulators TGFBR1 and TGFBR2, together with add-
itional components of the pathway, such as SMURF1, as



Fig. 4 (See legend on next page.)
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(See figure on previous page.)
Fig. 4 Gene-specific phenotypes (GSPs) for pathogen entry estimated by gespeR from two distinct genome-wide Qiagen sub-libraries are biologically
meaningful. a Scatterplots of reagent-specific and estimated gene-specific phenotypes between the pathogens B. abortus and S.
typhimurium for Infectivity and the auxiliary phenotype of Viability. Unlike RSPs, GSPs exhibit biologically expected high correlation
between (pathogen-independent) Viability phenotypes and only low to moderate correlation for Infectivity. b Gene set enrichment
analysis: pathways significantly enriched at a false discovery rate (FDR) smaller than 0.25 for decreased Infectivity and gene lists from
gespeR GSPs, haystack, RSA, and ISPs for all pathogens. Canonical pathway databases: R Reactome, K KEGG, ST Signal transduction
KE. Pathways, such as focal adhesion or integrin- and TGF-β-signaling, shown to play a crucial role in pathogen entry, are enriched
exclusively for GSPs; 62.5 % of pathways enriched for ISPs are also enriched for GSPs. RSA gene rankings are exclusively enriched
for three pathways, while haystack rankings did not show sufficient overlap with any tested gene set (minimum overlap n = 15)
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well as their respective roles as positive and negative
regulators among the top ten genes (Table S4 in
Additional file 4). While the two upstream modulators
were successfully identified in the original study, SMURF1
as a negative regulator was not. When tested against the
KEGG (Kyoto Encyclopedia of Genes and Genomes) path-
way for TGF-β signaling (hsa04350), gespeR yielded larger
overlap with its top-100 predicted hits (eight genes) than
both haystack (one gene) and RSA (four genes). In
addition to TGF-β signaling, GSEA revealed that gespeR’s
ranked GSP estimates are significantly enriched for four
further pathways, while no enrichment was found for
haystack, RSA, or ISP (Additional file 10).

Conclusions
Despite substantial evidence of sequence-dependent,
miRNA-like off-target silencing in RNAi screens [14],
the problem has been widely ignored in the field of func-
tional genomics for a long time. This shortfall has re-
sulted in high numbers of reported false positive hits
and virtually no overlap between similar siRNA-based
intervention studies [25]. Recently, a shift in the field led
to the development of off-target-aware computational
methods to analyze RNAi screens [16, 26, 27]. With
gespeR, we provide a statistical framework to correct for
confounding off-target effects and to infer deconvoluted,
GSPs. We have shown on different RNAi data sets from
image-based pathogen infection screens and a reporter
protein-based TGF-β-signaling screen that inferred GSPs
are, unlike observable RSPs, highly reproducible between
different siRNA libraries. In order to test for the reprodu-
cibility between ranked lists of phenotypes, we compiled a
set of measures that capture different aspects of concord-
ance between ranked lists of genes. gespeR was bench-
marked against three established methods commonly used
for the analysis of RNAi phenotypes (RSA, haystack, and
ISP) and shown to yield superior performance.
In a typical siRNA screening study, a major challenge

is the evaluation of biological relevance for prioritized
genes, because off-target effects again confound valid-
ation experiments that use additional siRNAs. We have
avoided this pitfall and were able to predict the out-
comes of new phenotypes from validation experiments
before they were performed. In general, we (1) show that
gespeR successfully predicts combinatorial RSPs based
on previously estimated GSPs and target relations for
novel siRNAs and (2) provide evidence that prioritized
genes are biologically meaningful when performing
inter-pathogen comparisons, enrichment analyses, and
manual literature validation for top ranked genes. In
the future, CRISPR/Cas9 nuclease-based genome edit-
ing [28] may become a suitable tool to experimentally
validate inferred GSPs but, to date, the technology is
not established as a high-throughput technique.
Our study demonstrates that gespeR is a useful tool

for the analysis of RNAi data sets. While in the present
study we have focused on analyzing data harboring uni-
variate phenotypes, the statistical model and imple-
mented inference algorithm can also be applied to
higher-dimensional phenotypes, e.g., those derived from
high-content image-based screens. Allowing for un-
biased gene-level interpretation of RNAi screens, gespeR
significantly improves the selection and prioritization of
genes for follow-up analyses and advanced downstream
models, e.g., for perturbation-based network reconstruc-
tion [29, 30].

Materials and methods
Reagent-to-gene target relations xij
Several current miRNA target prediction tools [31–33]
can be employed to predict miRNA-like sequence-
dependent off-targets for siRNAs. In this study, we used
TargetScan [31] version 6.2 to predict siRNA-to-gene
target relations. TargetScan is a linear regression model
on gene expression fold change from miRNA sequence
features. Its so-called context + scoring [34] considers
seed-pairing stability and high target site abundance,
which allows for quantitative prediction of gene tran-
script suppression due to siRNA off-targeting with ap-
preciable performance (see supplementary material of
[34]). For our application, we removed the TargetScan
feature of using conservation between miRNAs, because
it is not applicable to exogenous RNAi reagents. We
predicted induced fold changes of expression based on
3’ UTR sequences obtained from the HeLa genome [35].
Let fij be the predicted log2 fold-change of gene j upon
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transfection with siRNA i. Then we define the strength
of knockdown by siRNA i of gene j as Xij ¼ 1� 2f ij with
0 ≤ Xij ≤ 1. In this way, large Xij values correspond to
strong inhibition of target j by siRNA i. On average,
TargetScan predicts around 2000 off-targets per siRNA,
including many off-target relations that result only in
minor changes of transcript abundance (Additional file 1).
Full 19-nucleotide complementarity matches of an

siRNA to a transcript were identified using BLAST and
were set to Xij = 0.75, following a manufacturer’s state-
ment of at least 75 % reduction of expression of
intended on-targets [36]. The exact choice of this value
did not affect model performance appreciably (Additional
file 11), most likely because of dominating off-target
effects (Additional file 12) [6, 37].
Transcript level scores predicted by TargetScan were

aggregated to gene level by the arithmetic mean over all
scores from transcripts corresponding to the same gene.
For pooled libraries, we predicted off-target relations for
each individual siRNA in the pool and computed the
joint off-target relations of the pool as the maximum of
all individual siRNAs in the pool. Using the maximum
effect of all individual siRNAs in the pool, rather than
the arithmetic mean of effects, led to an overall increase
in concordance (Additional file 13).
We showed that our method is stable with respect to

numerous alterations of the siRNA-to-gene target rela-
tion matrix, which disturb the original TargetScan pre-
dictions. For instance, we evaluated the performance of
our model after adding increasing amounts of noise, or
false positive and false negative target relations to the
matrix, binarizing the matrix, changing the strength of
the on-target effect, or keeping only strong off-target
predictions above a certain threshold (see “gespeR’s
performance under alterations to the siRNA-to-gene
target relation” section in Additional file 4 and Additional
file 11).

Model inference
The linear regression model is fit using elastic net
regularization [17] with a group-lasso penalty [38], such
that:

β̂ ¼ argmin
β∈ℝp�k

1
2n

Xn
i¼1

yi−β
Txi

�� ��2
Fþλ 1−αð Þ βk k2F=2þ α

Xp
j¼1

βj

��� ���
2

" #

where yi is the i-th row of the n × k response matrix and
βj is the j-th row of the p × k coefficient matrix β.
We place a group-lasso penalty on each coefficient
k-vector βj for a single predictor xj. For k > 1 the
group-lasso penalty enforces all coefficients for a
predictor to be zero or nonzero together, whereas
for k = 1 (univariate response), the penalty degenerates to
the normal lasso. The parameter λ determines the amount
of regularization and α is the mixing parameter between
the ridge and lasso penalty with 0 ≤ α ≤ 1. The elastic net
penalty selects variables (genes) like the lasso, and shrinks
together the coefficients of correlated predictors like ridge.
This allows for a sparse solution of GSPs, while retaining
simultaneous selection of genes with similar RNAi reagent
binding patterns in their respective 3’ UTRs. In addition
to this biological motivation for using elastic net
regularization, small-scale screens, with only a few hun-
dred RSPs for thousands of genes, lead to underdeter-
mined systems, unidentifiable without regularization. We
performed tenfold cross-validation to estimate the param-
eter λ using the mean-squared error (MSE) as loss
function and fixed α at 0.5.

Necessary conditions for model validity
Concordance between estimated phenotypes for the
same gene and the ability of the model to predict unseen
phenotypes are necessary conditions for not rejecting
the model prior to any follow-up analysis. Indeed, first,
if phenotypes estimated from two independent sets of
RNAi reagents targeting the same gene are not concord-
ant, it is impossible to unambiguously identify the im-
pact of the respective gene on the phenotype. Hence,
only concordant phenotypes can yield reliable results
that are interpretable on the single-gene level. Second,
the fact that a model fails to predict unseen data indi-
cates that it was misspecified or poorly fitted to the
training dataset, and that it does not accurately capture
the structure inherent to the modeled system.

Comparison of the gespeR and haystack models
Haystack is related to gespeR in the sense that it is also
a regression model with similar assumptions of com-
binatorial siRNA phenotypes. The major improvement
of gespeR over haystack is a refined variable (i.e., gene)
selection procedure. Forward variable subset selection,
as applied in haystack, is a discrete and greedy process
and therefore exhibits high variance, which is reduced in
our model by using elastic net shrinkage [17]. The hay-
stack method models observed combinatorial pheno-
types based on off-target effects alone. In contrast,
gespeR models combinatorial RSPs based on both on-
and off-target effects. In addition, gespeR uses a more
involved methodology for siRNA off-target prediction,
relying on the TargetScan context + score, considering
additional features, such as seed-pairing stability and tar-
get abundance in addition to the basic linear model [34].
Moreover, gespeR does not average over phenotypes
stemming from siRNAs with the same seed prior to
model fitting, maintaining information from individual
siRNAs. In contrast to haystack, gespeR can be applied
to multivariate phenotypes, e.g., stemming from image-
based screens.
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Image-based pathogen infection screens
High-content, image-based pathogen infection screens
were performed in the following steps: (1) siRNA reverse
transfection, (2) pathogen-specific infection, (3) cell
fixation and staining, and (4) microscopic imaging and
feature extraction, as described in [20]. For each patho-
gen, the data are composed of knockdown phenotypes
from a genome-wide pooled library from Dharmacon, its
kinome-wide single-siRNA counterpart (each with four
siRNAs per gene), a genome-wide single-siRNA library
from Qiagen (four siRNAs per gene), and 1871 add-
itional single-siRNA validation screen siRNAs from
Ambion (Table 1). All screens were performed in HeLa
ATCC CCL-2 cells, except for the genome-wide Qiagen
screens for S. typhimurium (HeLa cell clone Kyoto cells).
In this study, we focus on the infectivity phenotype,
i.e., the fraction of infected cells per well. This pheno-
type is constructed from image features, described in
detail in [20].

gespeR Bioconductor package
The gespeR model, including functionality for efficient,
parallelized fitting of large data sets, phenotype concord-
ance evaluation, stability selection, and visualization, is
available from Bioconductor as the package gespeR [39].
The package is released under the GNU General Public
License (GPL) version 3 and contains a vignette with an
exemplary data analysis workflow, as well as a simulated
example data set.

Availability of supporting data and software
siRNAs and phenotypic readout from the pathogen
infection screens are available through PubChem
[PubChem:1117357]. Pre-computed siRNA-to-gene tar-
get relation matrices for Ambion, Dharmacon, and Qiagen
libraries used in this study (Table 1) and for the library
from Schultz and co-workers [6] are available online at
[40]. In addition, scripts facilitating the automation of
TargetScan predictions for the generation of siRNA-to-
gene target relations for large collections of siRNAs, in-
cluding step-by-step instructions, are available from the
same website.

Additional files

Additional file 1: Figure S1. Distribution of the number of off-targets
per siRNA for different strength cutoffs on the Xij reagent-to-target values.
Data are shown for the joint set of all four Qiagen unpooled sub-libraries.
On average, each siRNA is predicted to bind around 2000
sequence-dependent off-targets. (PDF 7 kb)

Additional file 2: Figure S2. Removal of row and column effects using B
score normalization [18] illustrated for a 384-well plate from the B. abortus
screen. Columns 1, 2, 23, and 24 contain controls and were removed. B score
normalized plates (bottom) do not exhibit strong column and row effects, as
seen in the observed data (top), e.g., in row P or column 15. (PDF 207 kb)
Additional file 3: Figure S3. Prediction of RSPs using the gespeR model.
Reagent-specific phenotypes Y(p)i are predicted by matrix multiplication of
GSP estimates β(m)

j from one data set (top) with reagent-specific target
relations X(p)ij for another data set (bottom). (PDF 298 kb)

Additional file 4: Supplementary material [15, 16, 31, 34, 41, 42].
Table S1 Top 50 hits for Brucella abortus ranked by absolute value of
Infectivity GSPs. PubMed PMIDs are provided for previously reported
components. Table S2 Top 50 hits for Bartonella henselae ranked by
absolute value of Infectivity GSPs. PubMed PMIDs are provided for
previously reported components. Table S3 Top 50 hits for Salmonella
typhimurium ranked by absolute value of Infectivity GSPs. PubMed PMIDs
are provided for previously reported components. Table S4 Top 50 hits
for regulators of TGF-β signaling ranked by absolute value of GSPs.
PubMed PMIDs are provided for previously reported components. gespeR
identifies known components of the TGF-β pathway not identified in the
original study due to confounding off-target effects. (DOCX 49 kb)

Additional file 5: Figure S4. Pairwise GSP comparisons reveal high
concordance between four Qiagen sub-libraries. Lighter color indicates
higher number of points per hexagon. (PDF 429 kb)

Additional file 6: Figure S5. Pairwise RSP comparisons reveal low
concordance between four Qiagen sub-libraries. Lighter color indicates
higher number of points per hexagon. (PDF 474 kb)

Additional file 7: Figure S6. gespeR GSPs are not concordant for
randomized data and do not correlate with GC content or length of 3’ UTR
transcripts. a Concordance between gene-specific phenotypes estimated
from randomized siRNA-to-gene target relation matrices (covariate matrices;
left), and from observed siRNA-specific phenotypes (response vectors; right).
Correlation and rank-biased overlap were throughout close to zero,
indicating that no spurious concordance is introduced when gespeR
is fit. Results shown are from the B. abortus Qiagen screen, but were
similar for other pathogens and libraries. b Correlation between
estimated gene-specific phenotypes (GSPs) and GC content (left) and
length of transcript 3' UTRs (right). Across libraries, estimated pheno-
type correlation was close to zero, indicating that GC content and the
length of 3' UTRs do not confound the estimation of GSPs. (PDF 145 kb)

Additional file 8: Figure S7. Coefficients of determination (R2) for
gespeR GSP estimates from data from Qiagen unpooled libraries and the
Dharmacon pooled library indicate respectable model fits. (PDF 5 kb)

Additional file 9: Figure S8. Distributions for both GSPs and RSPs
exhibit smaller variation for B. henselae compared with B. abortus and S.
typhimurium. (PDF 251 kb)

Additional file 10: Figure S9. Gene set enrichment analysis of GSP
estimates for regulators of TGF-β signaling reveals five significantly
enriched pathways with a false discovery rate (FDR) smaller than 0.25.
Canonical pathway databases: R Reactome, K KEGG. GSPs estimated by
gespeR are enriched for five pathways, including, as expected, TGF-β
signaling. (PDF 127 kb)

Additional file 11: Figure S10. Various alterations to gespeR’s
reagent-to-target relation matrix reveal stability with respect to
concordance between GSP estimates from different libraries. The
tested variants of the reagent-to-target relation matrix, all of which
disturb the original TargetScan predictions, include: QU_SEEDMATCH,
binary seed-to-3’ UTR match indicator matrix which contains a 1 if
the seed of an siRNA matches a 3’ UTR and 0 otherwise; QU_BINARY,
binarized baseline Qiagen matrices; QU_TH0x, thresholded matrices,
with only off-targets stronger than 0.x included; QU_D0, on-target
component removed; QU_D1, on-target component set to 100 %
knockdown efficacy; QU_D3o4, randomly kept three or four out of four
on-target components at 75 % and set the remaining ones to 0; QU_Drnorm,
sampled on-target components from N(0.75, 0.1); QU_FPFN0x, swapped 10×
percentage of predicted targets with predicted non-targets;
QU_N0x005, added N(0.x, 0.05) Gaussian noise added to all
predicted targets. (PDF 65 kb)

Additional file 12: Figure S11. Off-targeted genes dominate observed
reagent-specific phenotypes. The gespeR model was fit to the B. abortus
phenotypes from the Qiagen screen. On- and off-target contributions to
the observed RSP for each reagent i = 1 … n were calculated as con,i = xij

http://genomebiology.com/content/supplementary/s13059-015-0783-1-s1.pdf
http://genomebiology.com/content/supplementary/s13059-015-0783-1-s2.pdf
http://genomebiology.com/content/supplementary/s13059-015-0783-1-s3.pdf
http://genomebiology.com/content/supplementary/s13059-015-0783-1-s4.docx
http://genomebiology.com/content/supplementary/s13059-015-0783-1-s5.pdf
http://genomebiology.com/content/supplementary/s13059-015-0783-1-s6.pdf
http://genomebiology.com/content/supplementary/s13059-015-0783-1-s7.pdf
http://genomebiology.com/content/supplementary/s13059-015-0783-1-s8.pdf
http://genomebiology.com/content/supplementary/s13059-015-0783-1-s9.pdf
http://genomebiology.com/content/supplementary/s13059-015-0783-1-s10.pdf
http://genomebiology.com/content/supplementary/s13059-015-0783-1-s11.pdf
http://genomebiology.com/content/supplementary/s13059-015-0783-1-s12.pdf


Schmich et al. Genome Biology  (2015) 16:220 Page 11 of 12
* β for the on-targeted gene j and coff,i = Yi – con,i – εi. The distribution of
coff,i – con,i exhibits a strong positive tail, indicating that, in general, the
combined contribution to the RSP from all off-targeted genes exceeds
the contribution from the on-targeted gene. (PDF 98 kb)

Additional file 13: Figure S12. Maximum aggregation of joint off-target
effects for siRNA pools leads to increased concordance compared with
arithmetic mean aggregation. (PDF 146 kb)
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