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We study optimal monetary stabilization policy in a DSGE model with microfounded
money demand. A search externality creates “congestion,” which causes aggregate output
to be inefficient. Because of the informational frictions that give rise to money, households
are unable to insure themselves perfectly against aggregate shocks. This gives rise to a
welfare-improving role for monetary policy that works by adjusting the nominal interest
rate in response to these shocks. Optimal policy is determined by choosing a set of
state-contingent nominal interest rates to maximize the expected lifetime utility of the
agents subject to the constraints of being an equilibrium.
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1. INTRODUCTION

Since Keynes, monetary economists have been interested in studying stabilization
policy in the presence of market frictions. The typical friction imposed is nominal
price and/or wage rigidity. This assumption means that changes in the money
supply are not neutral; consequently monetary policy can affect real allocations.
In this class of models, the standard policy implication is to conduct countercyclical
monetary policy. The intuition for this is straightforward—if demand for goods
increases, then it is efficient to let prices rise to some extent. But with sticky prices,
households consume more than the efficient amount. Thus, the monetary authority
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670 ALEKSANDER BERENTSEN AND CHRISTOPHER WALLER

should tighten policy by raising the nominal interest rate to constrain consumption
from rising to inefficiently high levels.

An interesting question is whether this same policy advice holds when other
frictions are the reason for the non-neutrality of money. For example, in search-
based models of money or in cash-in-advance models, households face liquidity
constraints on purchases of goods. In these models, should the monetary authority
pursue a countercyclical monetary policy? Ireland (1996), for example, shows that
the Friedman rule is optimal and perfectly stabilizes demand shocks. But what if
the Friedman rule is not optimal because of some other friction in the economy?
What do optimal stabilization policies look like? These are the questions we
address in this paper.

The basic framework is that of Lagos and Wright (2005), where informational
frictions make money essential as a medium of exchange.1 We modify the model
in several ways. First, we introduce a search externality by assuming that in every
period producers make an entry decision. Second, we carefully model the existence
of a credit market that allows agents to borrow and lend money. Third, we introduce
a variety of well-defined aggregate shocks, such as productivity and preference
shocks, that generate consumption risk for households. Finally, we consider three
pricing protocols—competitive pricing, monopoly pricing, and price posting—in
the market where money is essential as a medium of exchange.

Borrowing from Rocheteau and Wright (2005), we assume that upon entering
the market, a producer is able to trade with some probability, which may not be
one. In short, he may be shut out of the market despite having paid the entry cost.
We then study optimal stabilization under two assumptions regarding this trading
probability. In the first case, we assume that the trading probability is independent
of the number of producers in the market. In the second case, we assume that
the probability of trading is decreasing in the number of entering producers. This
is intended to capture the idea that as more producers enter, congestion occurs,
making it harder to trade and earn profits.

Our basic results concerning the optimal stabilization policy are as follows.
With a fixed probability of trading, the optimal monetary policy is to run the
Friedman rule and set the nominal interest rate to zero in all states. This is true
for all three pricing protocols. When the trading probability depends on aggregate
entry, a congestion externality arises that makes entry inefficiently high. Thus,
the central bank finds it optimal to raise interest rates above zero in all states in
order to reduce profits and deter entry, even though it lowers average consumption.
Once again, this is true for all pricing protocols. In short, the zero lower bound
is never a binding constraint in our model. The key to implementing the desired
allocation is to manipulate the relative prices of goods across markets by choosing
state-dependent nominal interest rates.

Our framework for studying optimal stabilization policy builds on Berentsen and
Waller (2011). In this earlier paper, we have shown that even when all prices in the
economy are fully flexible, monetary injections are non-neutral if the central bank
has a price-level target. Furthermore, we have demonstrated that away from the

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100513000564
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:59:51, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100513000564
https:/www.cambridge.org/core
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Friedman rule there is a welfare-improving role for stabilization policy. However,
we have also found that the optimal policy is the Friedman rule, in which case the
optimal stabilization policy requires the central bank to set a nominal interest rate
of zero in all states. The key innovation of our current paper is that we introduce the
previously mentioned congestion effect. With this externality, the optimal policy
deviates from the Friedman rule and allows for a nontrivial optimal stabilization
policy. Furthermore, we study how different pricing protocols affect the optimal
policy, whereas in our earlier paper we only consider competitive pricing.

There are precedents for such macro externalities in the literature. For example,
in endogenous entry/search models where the terms of trade are determined by
bargaining, there may be too many buyers or sellers relative to the social op-
timum. In these models, deviating from the Friedman rule may be optimal to
improve the extensive margin. Such externalities are studied, for example, in Shi
(1997), Lagos and Rocheteau (2005), Rocheteau and Wright (2005), Aruoba et al.
(2007), Berentsen et al. (2007), Aruoba and Chugh (2010), and Liu et al. (2011).
Although these papers investigate the implications of these externalities for the
optimal steady-state inflation rate, we investigate the implications for the optimal
stabilization policy.2

Our framework for studying optimal stabilization policy is also related to but
substantially different from the literature on endogenous entry. Jaimovich and
Floetotto (2008) use a prototypical real business cycle model; hence there is no
role for monetary policy. The other papers in this area are based on New Keynesian
sticky price models. Furthermore, many of them look at the effects of monetary
shocks—they do not study optimal monetary policy. Of those that study optimal
policy, Bilbiie et al. (2007) and Bergin and Corsetti (2008) do so for a simple
class of interest rate rules with a single productivity shock. They consider a model
where entry enlarges the set of goods available to households. The households
have a love for variety, so that enlarging the set of goods can cause a positive
externality on household utility. In contrast, in our model firm entry imposes a
negative congestion externality.3 As such, our model captures episodes where
there was “too much entry from a social point of view,” as suggested by many
observers of the recent events in the housing and commercial property markets.
Finally, Lewis (2009) is also related to our work in that she derives the optimal
monetary policy using a Ramsey primal approach in a cash-in-advance model. She
finds that the Friedman rule is optimal and that under nominal rigidities monetary
policy has a stabilization role through its control over the money stock. Finally,
we address other issues, such as the zero lower nominal bound on interest rates,
that these papers do not.

Finally, we want to address one caveat. Our results rely on the assumption that
fiscal policy is absent or impotent as an instrument to control entry. Correia et al.
(2008) show in monetary economies with sticky prices that the efficient allocation
can be implemented if fiscal and monetary policies are chosen optimally. In our
environment, if the government were to design the tax system so that all entry
externalities were internalized, the Friedman rule would implement the first-best
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672 ALEKSANDER BERENTSEN AND CHRISTOPHER WALLER

allocation. However, this would require that taxes be state-contingent, which might
be difficult to implement in practice. Furthermore, in any of the papers mentioned
in the preceding, if the government has a sufficient set of tax instruments, the
efficient allocation can be restored.

The paper proceeds as follows. In Section 2, we describe the environment
and derive the first-best allocation. In Section 3, we present the agents’ decision
problems. Section 4 contains the central bank’s maximization problem and the
optimal monetary policy for each pricing protocol. Section 5 concludes.

2. THE ENVIRONMENT

Time is discrete and continues forever.4 In each period three perfectly competitive
markets open sequentially. The first market is a competitive credit market and the
third market is a competitive goods market. The second market is also a goods
market, for which we study various market structures. There is a continuum of
two types of agents, called households and sellers. They differ in terms of when
they produce and consume, as follows. All agents can produce and consume a
perishable good in the last market. In the second market, households can consume
but cannot produce and sellers can produce but cannot consume. We assume
that all trades in the second market are anonymous, which rules out trade credit.
Because all agents are anonymous and there is a double coincidence problem,
sellers require immediate compensation. So households must pay with money in
market 2, generating an essential role for money.5

The instantaneous utility of a household at date t is

Ub
t = υ(xt ) − yt + ψtu

(
qb

t

)
, (1)

where xt is consumption and yt production in the last market.6 The quantity qb
t

is a household’s consumption in the second market and ψ ≥ 0 is a preference
parameter. We assume u′ > 0, u′′ < 0, u′(0) = +∞, and u′(∞) = 0. Furthermore,
we assume the coefficient of relative risk aversion, Ru ≡ −qbu′′/u′, is constant
and less than one.7 In the last market, the utility function satisfies υ ′ > 0, υ ′′ < 0,
υ ′(0) = ∞, and there is an x∗ such that υ ′(x∗) = 1.

The instantaneous utility of a seller at date t is

Us
t = υ(xt ) − yt − (1/αt ) c (qt ), (2)

where qt denotes the seller’s production in the second market. Production disutility
satisfies c′, c′′, c′′′ ≥ 0, and c(0) = c′(0) = 0. Denote the elasticity of marginal
cost as Rc ≡ qc′′/c′. The parameter α is a productivity parameter measured in
utility terms, where higher values of α are associated with higher productivity and
thus lower marginal utility costs of production. The discount factor across dates is
β = 1/(1 + r) ∈ (0, 1), where r is the time rate of discount.
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2.1. Credit Market

At the beginning of a period, each household receives an idiosyncratic preference
shock ψt ∈ {0, ε} with ε > 0. The probability that ψt = ε is 1/2, meaning that
there is an equal probability that a household wants to consume or not in market
2.8 We call households that consume “buyers,” and those that do not “nonbuyers.”
These preference shocks generate an ex post inefficiency because nonbuyers are
holding idle balances, whereas buyers are cash-constrained. This inefficiency
generates a welfare-improving role for a credit market where households can
borrow or lend money at the nominal interest rate i.

Although the goods trade is anonymous, we assume the existence of a record-
keeping technology for financial transactions as in Berentsen et al. (2007). In all
models with credit, default is a serious issue. To focus on optimal stabilization,
we simplify the analysis by assuming that some mechanism exists that ensures the
repayment of loans in the third market.9 One can show that because of the quasi-
linearity of preferences in market 3, there is no gain from multiperiod contracts.
Furthermore, because the states are revealed prior to contracting, the one-period
nominal debt contracts that we consider are optimal.

2.2. Shocks

To study the optimal response to shocks, we assume that αt and εt are stochas-
tic. The random variable αt has support [α, α], 0 < α < α < ∞, and εt has
the support [ε, ε], 0 < ε < ε < ∞. Let ωt = (αt , εt ) ∈ � be the state in
market 1, where � = [α, α] × [ε, ε] is a closed and compact subset on R2

+.
We allow the shocks to be serially correlated. Let 	t = {ωt, ωt−1, ...} denote
the history of the aggregate state up to period t . For notational simplicity let
dF(ωt | 	t−1) ≡ dF(αt | 	t−1)dF (εt | 	t−1) denote the conditional density func-
tion of ωt , where dF(ωt | 	t−1) = f (ωt | 	t−1)dωt . For discussion purposes, we
label εt as a “demand” shock, whereas a shock to αt is referred to as a “supply”
shock.

2.3. Free Entry and Search Frictions

Entry is costly for sellers. At the beginning of every period after they observe the
shock, sellers have to pay the cost κ > 0 in terms of disutility to enter the second
market.10 The set of potential sellers is denoted F . Let S ⊆ F denote the set of
sellers that pay the utility cost κ to enter the second market. We assume that the
set of potential sellers F is so large that S ⊂ F . Let s denote the measure of S.
The set of households is denoted by H, whose size is normalized to 2. Let B ⊂ H
denote the set of households with ψ = ε (the buyers), where b = 1 is the measure
of B.

We introduce search frictions along the lines of Rocheteau and Wright (2005),
who assume that not all sellers that pay the fixed utility cost can trade in market 2.
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674 ALEKSANDER BERENTSEN AND CHRISTOPHER WALLER

That is, paying κ means entry into the group S of sellers that try to enter market 2.
Only S̃ ⊆ S succeed. Denote as σ(s) the probability of trading in market 2 for a
seller that has paid the utility cost. Then σ(s)s is the measure of S̃. We impose the
usual assumptions on σ(s), namely σ ′(s) ≤ 0, σ ′′(s) ≥ 0, σ(s) ≤ 1, σ(0) = 1,
and σ(∞) = 0. Finally, denote as �σ ≡ sσ ′(s)/σ (s) < 0 the elasticity of σ(s).
As is standard in the search literature, we assume this elasticity is constant with
−�σ < 1.

The probability of trading, σ(s), has a natural meaning in matching models
with bilateral meetings: It is the probability of having a match. In competitive
environments it still captures search frictions by assuming that, although there
is a competitive market, not all firms get the chance to trade in this market [see
Rocheteau and Wright (2005)]. With σ ′(s) < 0, a seller entering the setS generates
a negative trading externality that the optimal policy must take into account.
There are precedents for such macro externalities in the literature. For example,
in endogenous entry/search models where the terms of trade are determined by
bargaining, there may be too many buyers or sellers relative to the social optimum,
depending on the bargaining weight. In these models, deviating from the Friedman
rule may be optimal to improve the extensive margin.11 The restriction that −�σ <

1 ensures that this congestion externality is not too large.

2.4. Monetary Policy

We assume that a central bank exists that controls the supply of fiat money.
We denote the gross growth rate of the money supply as γ (	t), implying that
Mt(	t) = γ (	t)Mt−1, where Mt(	t) denotes the quantity of money per house-
hold in market 3 in period t. We allow the gross growth rate, and thus Mt(	t), to
depend on the entire history of the economy. The central bank implements its policy
by providing state-contingent lump-sum injections of money to the households.
Let τ1(	t)Mt−1 and τ3(	t)Mt−1 denote the state-contingent cash injections in
markets 1 and 3, where γ (	t) = 1 + τ1(	t) + τ3(	t).12

The precise sequence of action after the shocks are observed is as follows. First,
the monetary injection τ1(	t)M−1 occurs. Then, households move to the credit
market, where nonbuyers (ψ = 0) lend their idle cash and buyers (ψ = ε) borrow
money. Buyers and sellers then move on to market 2 and trade goods. In the third
market, all financial claims are settled and the central bank injects τ3(	t)Mt−1

units of money per household.

2.5. First-Best Allocation

Our welfare criterion is given by

V =
∞∑
t=0

βtWt (	t−1), (3)
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where

Wt (	t−1) =
∫

�

∫
H∪F

{υ [xt (j)] − y (j)} djdF (ωt | 	t−1)

−
∫

�

∫
S

κdjdF (ωt | 	t−1)

+
∫

�

{∫
B

εtu
[
qb

t (j)
]
dj −

∫
S̃

(1/αt ) c [qt (j)] dj

}
dF (ωt | 	t−1) .

For each t , the quantities qb
t (j)j∈B are the consumption quantities of all households

with ψ = ε (the buyers) and qt (j)j∈S̃ are the production quantities of all sellers
that pay the entry cost and are able to enter market 2. The quantities xt (j)j∈H∪F
denote the consumption quantities of all households and all sellers in market 3,
and yt (j)j∈H∪F denote the production quantities of all households and all sellers
in market 3.

An efficient allocation is defined as paths for qb
t (j)j∈B, qt (j)j∈S̃ , xt (j)j∈H∪F ,

yt (j)j∈H∪F , and st that maximizes V . In the Appendix, we show that the first-best
allocation is a symmetric, stationary list,

{x∗ (ω) , qb∗ (ω) , q∗ (ω) , s∗ (ω)}ω∈�,

that satisfies υ ′[x∗(ω)] = 1, qb∗(ω) = σ [s∗(ω)]s∗(ω)q∗(ω), and q∗(ω) and s∗(ω)

solve

εu′[qb (ω)] = (1/α) c′ [q (ω)] , (4)

κ = σ [s (ω)] (1 + �σ) (1/α) {c′ [q (ω)] q (ω) − c [q (ω)]}. (5)

The quantity q(ω) is a seller’s production and qb(ω) a buyer’s consumption in
market 2, and x(ω) is consumption in market 3. Equation (4) is a production
efficiency condition for market 2. It requires that the marginal consumption utility
equal the marginal production disutility for each aggregate state. Equation (5) is a
zero-profit condition that determines entry. It says that the entry cost must equal
the expected profit in utility terms.

Note that x∗(ω) is not history-dependent—it depends only on the current real-
ization of the aggregate state. The planner faces no intertemporal trade-offs and
so he simply chooses the quantities that maximize welfare state by state for all
t . This implies that the history of the shock process is irrelevant for the efficient
allocation. In the Appendix, we show that the first-best allocation exists and is
unique. Furthermore, comparative statics on (4)–(5) shows that q∗(ω) is increasing
in all of the shocks, whereas s∗(ω) is increasing in ε, but is ambiguous in α.13

Example 1

To help illustrate how our model works, we use the same example throughout the
paper. The functional forms are εu[qb(ω)] = εqb(ω)1−η, c[q(ω)] = q(ω)ρ/ρ,
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676 ALEKSANDER BERENTSEN AND CHRISTOPHER WALLER

σ(s) = s−θ with ρ > 1 > θ ≥ 0, and the entry cost is κ = 1. When θ = 0, there
is no congestion externality. With these assumptions, the planner’s allocation is
given by

q∗ (ω) =
(

θρ + ρ

ρ − 1

)ηδ

α(θ+η)δ ∗ εθδ

s∗ (ω) =
(

ρ − 1

θρ + ρ

)(ρ−1+η)δ

α(1−η)δ ∗ ερδ,

where δ ≡ [(ρ − 1 + η)θ + ηρ]−1. From this example, we see that q∗(ω) is
increasing in both shocks. We also have s∗(ω) increasing in ε as well as α shocks
when η < 1. Thus, the planner wants entry to be procyclical. Note also that as
ρ → 1, costs become linear, profits go to zero, and it is optimal to have one seller
producing for the entire market because entry is costly.

Why does the planner want entry to be procyclical? Consider an increase in ε.
This implies that households want to consume more, and it is optimal to let them
consume more. The planner can achieve this higher level of output by increasing
the amount of goods produced by each seller, i.e., increasing q(ω), or by having
more sellers enter and produce, i.e., increasing s(ω). With increasing marginal
costs of production, the planner chooses to alleviate higher production costs on
each individual seller by having more entry, even though it is costly. Hence, the
optimal response to an ε shock is to increase both the intensive and extensive
margins for output. A similar argument holds for the other shock.

3. MONETARY ALLOCATION

Let p3t (	
t ) be the time-t nominal price of goods in market 3, and thus φt(	t) ≡

1/p3t (	t ) the goods price of money. We study equilibria where end-of-period real
money balances are history-invariant:

φt (	t) Mt (	t) = φt−1 (	t−1) Mt−1 (	t−1), ∀ 	. (6)

We refer to these as stationary equilibria. This implies that in a stationary equi-
librium φt−1(	t−1)/φt (	t) = γ (	t). In what follows, we look at a representative
period t and work backward from the third to the first market to examine the
agents’ choices. For notational ease, variables corresponding to the next period
are indexed by +1, and variables corresponding to the previous period are indexed
by −1.

3.1. The Third Market

In the third market, households consume x, produce y, and adjust their money
balances, taking into account cash payments or receipts from the credit market. If
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a household has net borrowing of � units of money, then it repays (1 + i)� units
of money.

Consider a stationary equilibrium. Let V1(m,	, t) denote a household’s ex-
pected lifetime utility at the beginning of market 1 with m money balances and
history 	 in period t . Let V3(m,	, t, �) denote a household’s expected lifetime
utility from entering market 3 in period t with m money and � loans with history
	. For notational simplicity, in this section we suppress the dependence of the
value functions on time.

Bellman’s equation for a household is

V3 (m,	, �) = max
x,y,m+1

{υ (x) − y + βE [V1 (m+1,	+1)| 	]} (7)

s.t. x + φm+1 = y + φ [m + τ3(	)M−1] − φ (1 + i) �,

where m+1 is the money taken into period t + 1, given the history 	. Rewriting
the budget constraint in terms of y and substituting into (7) yields

V3 (m,	, �) = φ [m + τ3 (	) M−1 − (1 + i) �]

+ max
x,m+1

{υ (x) − x − φm+1 + βE [V1 (m+1,	+1)| 	]} .

The first-order conditions are υ ′(x∗) = 1, meaning that x∗ is constant and

−φ + βE
[
V m

1 (m+1,	+1)
∣∣	] = 0, (8)

where the superscript denotes the partial derivative with respect to the argument
m. Thus, V m

1 is the marginal value of taking an additional unit of money into the
first market in period t + 1. Because the choice of m+1 is independent of m, all
households enter the following period with the same amount of money.

The envelope conditions are

V m
3 (m,	, �) = φ; V �

3 (m,	, �) = −φ (1 + i). (9)

As in Lagos and Wright (2005), the value function is linear in wealth.
Let W1(ε,	), ε ∈ {0, 1}, denote a seller’s expected lifetime utility at the

beginning of market 1 given 	. If ε = 1, the seller has paid the entry cost κ , and
if ε = 0, he has not. Note that we have also taken into account that sellers bring
no money into market 1. Because sellers do not participate in the first market,
we have W1(ε,	) = W2(ε,	). Let W3(m,	) denote a seller’s expected lifetime
utility from entering market 3 with m units of money given 	. Bellman’s equation
for a seller is

W3 (m,	) = max
x,y

{υ (x) − y + βE [W1 (ε+1,	+1)| 	]}

s.t. x = y + φm.
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678 ALEKSANDER BERENTSEN AND CHRISTOPHER WALLER

Rewriting the budget constraint in terms of y and substituting into the objective
function yields

W3 (m,	) = φm + max
x

{υ (x) − x + βE [W1 (ε+1,	+1)| 	]} . (10)

The first-order condition is υ ′(x∗) = 1. The envelope condition for a seller is

W ′
3 (m,	) = φ. (11)

As was the case for households, the value function is linear in m.

3.2. The Second Market

There are three types of agents in the second market: buyers (b), nonbuyers (o),
and sellers (s). Let V2(m,	, �, j) denote the value function of a household of
type j = b, o. Let qb and q, respectively, denote the quantities consumed by a
buyer and produced by a seller, and let p be the nominal price of goods.

Because nonbuyers neither consume nor produce, the Bellman equation for this
household is simply V2(m,	, �, o) = V3(m,	, �). The one for a buyer household
is

V2 (m,	, �, b) = max
qb

εu(qb) + V3(m − pqb,	, �)

s.t. pqb ≤ m.

Using (9), the buyer’s first-order condition can be written as

λq = εu′(qb) − φp, ω ∈ �, (12)

where λq is the multiplier on the buyer’s budget constraint. If the budget constraint
is not binding, then εu′(qb) = φp. If it is binding, then εu′(qb) > φp and the
buyer spends all of his money; i.e., pqb = m. In the first case, the buyer equates
the marginal rate of substitution between market 2 goods and market 3 goods to
the relative prices of goods in the two markets.14 In the latter case, the agent is
at a “corner.” In what follows, let V m

2 (m,	, �, j) denote the partial derivative of
V2(m + �,	, �, j) with respect to the first argument, m, and let V �

2 (m,	, �, j)

denote the partial derivative with respect to the third argument, �.
The marginal value of a loan is the same for all households and so for j = b, o,

V �
2 (m,	, �, j) = − (1 + i) φ. (13)

Using the envelope theorem and equations (9) and (12), the marginal values of
money for j = b, o are

V m
2 (m,	, �, b) = εu′(qb)/p, (14)

V m
2 (m,	, �, o) = φ. (15)
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We now describe the entry behavior of the sellers in market 2. The Bellman
equation for a seller who has paid the entry cost is

W2 (1,	) = σ (s) max
q

{− (1/α) c (q) + W3 (pq,	)} + [1 − σ (s)] W3 (0,	) ,

(16)

subject to the pricing protocol, which we discuss in the following. The term pq is
the money receipts from selling output.

The Bellman equation for a seller who does not pay the entry cost satisfies
W2(0,	) = W3(0,	). At the beginning of the period, sellers observe the current
state and the representative seller chooses to enter market 2 with probability π(	),
taking the entry choices of other sellers as given. Let N denote the measure of
potential sellers. Then, because we focus on symmetric equilibria, he expects a
measure s(	) = �(	)N of sellers entering, where �(	) is the entering decision
of all other sellers. Define

D [�(	)N] ≡ W2 (1,	) − W2 (0,	) − κ. (17)

Equation (17) is the expected gain from entering the market. The optimal choice
of π satisfies

π(	) = 1 if D [�(	)N] > 0,

π(	) = 0 if D [�(	)N] < 0,

π(	) ∈ [0, 1] otherwise.

We look for symmetric Nash equilibria where all sellers choose the same entry
probability π(	). Moreover, the value(s) of �(	) that sustain a symmetric Nash
equilibrium are defined as follows:

�(	) = 1 if D(N) ≥ 0,

�(	) = 0 if D(0) ≤ 0,

D [�(	)N] = 0 otherwise.

Throughout the paper, we focus on equilibria whereD[�(	)N] = 0 in all states.15

Using the expressions for W2(1,	) and W2(0,	) and (10), we then obtain the
free entry condition

κ = σ (s) [φpq − (1/α) c (q)] , (18)

where the RHS is expected profits. Note that we have suppressed the dependence of
s and q on ω for notational convenience. Because the entry cost has to be paid each
period, only current profits enter into (18). Free entry requires that expected profits
in market 2 equal the entry cost. Revenue after history 	, measured in utility, is
given by φpq, where p is the nominal price of goods in market 2, and φ is the real
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680 ALEKSANDER BERENTSEN AND CHRISTOPHER WALLER

price of money in the last market, whereas costs in utility are −(1/α)c(q). Note
that φp = p/p3 is the relative price of goods across markets 2 and 3.

3.3. The Credit Market

A household that has m money at the opening of the first market has expected
lifetime utility

E [V1 (m,	)]

=
∫

�

[0.5V2 (m + �,	, �, b) + 0.5V2 (m + �,	, �, o)] dF (ω| 	−1) . (19)

Once trading types are realized, a household of type j = b, o solves

max
�

V2 (m + �,	, �, j) s.t. 0 ≤ m + �.

The constraint means that money holdings m + � cannot be negative; i.e., that the
household cannot lend out more money than it holds when entering the credit mar-
ket. Note that there is no borrowing constraint because we assume full enforcement
of repayment of loans. Thus, the first-order condition is

V m
2 (m + �,	, �, j) + V �

2 (m + �,	, �, j) + λ (j) = 0,

where λ(j) is the multiplier on the household’s nonnegativity constraint. It is
obvious that households with ψ = ε will become borrowers, whereas those with
ψ = 0 become lenders. Consequently, we have λ(b) = 0 and λ(o) > 0.

Using (13)–(15), the first-order conditions can be written as

εu′(qb) = φp (1 + i) , (20)

λ (o) = iφ. (21)

To derive the expected marginal value of money at the beginning of the period,
take the derivative of (19) with respect to m to get

E [V1 (m,	)] =
∫

�

{
0.5

[
V m

2 (m + �,	, �, b) + λ (b)
]

+ 0.5
[
V m

2 (m + �,	, �, o) + λ (o)
]}

dF (ω| 	−1) .

Using (13)–(15), this expression can be written as follows:

E [V1 (m,	)] =
∫

�

{
0.5[εu′(qb)/p + λ (b)] + 0.5 [φ + λ (o)]

}
dF (ω| 	−1) .

Finally, noting that λ(b) = 0 and using equations (20) and (21), the expected
marginal value of money satisfies

E
[
V m

1 (m,	)
∣∣	−1

] =
∫

�

[εu′(qb)/p]dF (ω| 	−1) , (22)
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noting that 	 = {ω,	−1}. Differentiating (22) shows that the value function is
concave in m. Use (8), lagged one period, to eliminate E[V m

1 (m,	)
∣∣	−1] from

(22) Then, divide the resulting expression by φ−1 and rewrite to get

1 = β

∫
�

εu′(qb)

γ (	)pφ
dF (ω| 	−1) . (23)

3.4. Pricing Protocols

We now discuss three pricing protocols: competitive pricing, state-contingent
monopoly pricing, and non-state-contingent monopoly pricing. We refer to this
last pricing protocol as price posting. Competitive pricing is our benchmark. We
are interested in the other two protocols, because they allow us to refer our results
to New Keynesian models that are characterized by monopoly pricing and sticky
prices (price posting).

For each pricing protocol, we have

qb = σ (s) sq for all ω. (24)

For competitive pricing, this is simply the market clearing condition in market 2.
For monopoly pricing, this equation also holds, because we assume a match-

ing process that allocates [σ(s)s]−1 buyers to each seller. The benefits of this
matching rule are threefold. First, the first-best allocation described in Section 3
is replicated if the monopoly pricing distortion is eliminated. Second, in search-
theoretic models of money, bilateral matching creates monopoly power for both
buyers and sellers in the bargaining process. This matching rule with monopoly
pricing eliminates the monopsony power of the buyer and is consistent with the
pricing frictions in New Keynesian models. Third, the allocation is easily com-
pared with the flexible price allocation, because the only difference is the pricing
mechanism.16

Competitive pricing. With price taking, a seller’s maximization problem in
market 2 is

max
q

{− (1/α) c (q) + W3 (pq,	)} .

Using (11), the first-order condition yields the pricing equation

p = (1/α) c′ (q)

φ
. (25)

We can then combine (20) and (25) to get an expression for the interest rate,

1 + i = εu′ [σ (s) sq]

(1/α) c′ (q)
. (26)
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682 ALEKSANDER BERENTSEN AND CHRISTOPHER WALLER

State-contingent monopoly pricing. With state-contingent monopoly pricing,
because a seller faces [σ(s)s]−1 buyers, the maximization problem is

max
q,p

{− (1/α) c (q) + W3 (pq,	)}

s.t. εu′ [σ (s) sq] = pφ (1 + i) ,

where the constraint is the buyer’s first-order condition for consumption. The
solution yields the pricing equation17

p = (1/α) c′ (q)

φ (1 − Ru)
. (27)

We can then combine (20) and (27) to get an expression for the interest rate,

1 + i = (1 − Ru) εu′ [σ (s) sq]

(1/α) c′ (q)
. (28)

Price posting. We now assume that sellers must set the price before the re-
alization of the current state, ω. However, they can use the information on the
history of the aggregate state up to time t − 1, 	−1, in forming their expectations
of future profits. They commit to produce whatever is demanded in state ω at
the posted price, p(	−1). However, upon seeing the shock, they can choose to
enter and try to sell at the posted price. With this last assumption, no seller will
experience negative expected profits at equilibrium.18 The seller’s maximization
problem is

max
p(	−1)

∫
�

{
π(	)σ [s(	)] {W3 [p (	−1) q(	),	] − (1/α) c [q(	)]}

+ {1 − π(	)σ [s(	)]} W3 (0,	)

}
× dF (ω| 	−1)

s.t. εu′ {σ [s (	)] s(	)q(	)} = p (	−1) φ(	) [1 + i (	)] for all ω,

where demand in each state satisfies the buyer’s first-order condition for con-
sumption; i.e., it satisfies the preceding constraints. The first-order condition for
p yields the pricing equation

p (	−1) =
∫
	

σ [s(	)] s(	)q(	) (1/α) c′ [q(	)] dF (ω| 	−1)

(1 − Ru)
∫
	

φ(	)σ [s(	)] s(	)q (	) dF (ω| 	−1)
, (29)

where we have taken into account that in a symmetric equilibrium π(	) =
s(	)/N. Equation (29) then replaces p in (23). We can then combine (20) and
(29) to get an expression for the interest rate,

1 + i(	)

= (1 − Ru) εu′ {σ [s(	)] s(	)q(	)} ∫
	

φ (	) σ [s(	)] s(	)q(	)dF (ω|	−1)

φ(	)
∫

	
σ [s(	)] s(	)q (	) (1/α) c′ [q(	)] dF (ω| 	−1)

.

(30)
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4. OPTIMAL STABILIZATION

We now derive the optimal stabilization policy in symmetric stationary monetary
equilibrium. To study this problem, we pursue the primal approach to the Ramsey
problem, where the central bank chooses the quantities xt , yt , qb

t , qt , st to maximize
(3) subject to the free entry condition (18), the relevant pricing protocol, and
the resource constraints. In the Appendix, we show that these quantities can
be implemented with history-dependent injections τ1(	) and τ3(	) that satisfy
it ≥ 0 and (23). With competitive pricing the pricing protocol is (25), with state-
contingent monopoly pricing it is (27), and with price posting it is (29). It should
be clear that in all cases xt = x∗ and yt is determined by the household’s budget
constraint once all of the other quantities are chosen. Finally, from (24), qb

t is
determined once we have qt and st . So the central bank’s problem reduces to
choosing qt and st .

PROPOSITION 1. Consider the case of competitive pricing. The constrained
optimal allocation is stationary and depends only on the current state ω. When
σ ′[s(ω)] = 0, i(ω) = 0, q(ω) = q∗(ω), and s(ω) = s∗(ω) for all states. When
σ ′[s(ω)] < 0, i(ω) > 0, q(ω) < q∗(ω), and s(ω) > s∗(ω) for all states.

The allocation is stationary and depends only on the current state in both cases,
despite the persistence of the shocks. The reason is that the only equation for
which the persistence of the shocks matters is the money demand equation, (23).
Given its optimal choices {q(ω), s(ω)}ω∈�, the central bank then chooses γ (ω)

to ensure (23). Thus, any information content provided by the persistence of the
shocks is offset by choosing the stochastic inflation rate appropriately.

With σ ′[s(ω)] = 0, the Friedman rule replicates the first-best allocation. This
can be seen by noting that from (26), when i(ω) = 0, q(ω) = q∗(ω). In the proof
of Proposition 1, we show that the zero-profit condition that determines entry
satisfies

k (s) = [c′ (q) q − c (q)]/αt . (31)

Thus, with σ ′[s(ω)] = 0, the entry condition for competitive pricing (31) replicates
(5) at q(ω) = q∗(ω). The intuition is that if σ ′[s(ω)] = 0, there is no congestion
externality, and the only friction is the cost of holding money across periods.
Under the Friedman rule the agents are compensated for these costs and so agents
perfectly self-insure against all shocks. Consequently, there are no welfare gains
from stabilization policies. Note that Proposition 1 also holds in a model where
the number of sellers is exogenously given.

With σ ′[s(ω)] < 0, the central bank never chooses i(ω) = 0. The reason is the
congestion externality. Sellers ignore how their entry lowers the expected profits
of other sellers. Consequently, at equilibrium there are too many sellers and the
aggregate entry cost s(ω)κ is too high relative to the social optimum. To see why
a deviation from the Friedman rule is optimal, assume that the central bank sets
i(ω) = 0, which generates the efficient quantity q(ω) = q∗(ω) in all states. Now
consider a reduction in s(ω) when i(ω) = 0. When s(ω) is marginally reduced,
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684 ALEKSANDER BERENTSEN AND CHRISTOPHER WALLER

q(ω) is also marginally reduced, but the first-order welfare loss from doing so is
zero. The reduction in q(ω) reduces expected profits for sellers, and thus entry
declines. This produces a first-order gain in welfare from reducing s(ω)κ . This is
achieved by increasing i(ω) above zero.

Although the preceding argument does not require i(ω) > 0 for all states,
nevertheless it is optimal to have this. The reason is that the central bank wants to
smooth consumption across states. Intuitively, consider two states ω,ω′ ∈ � with
i(ω) = 0 implying q(ω) = q∗(ω), and i(ω′) > 0 implying q(ω′) < q∗(ω′). Then
the first-order loss from decreasing q(ω) is zero, whereas there is a first-order
gain from increasing q(ω′). This gain can be accomplished by increasing i(ω) and
lowering i(ω′). Thus, the central bank’s optimal policy is to set i(ω) > 0 for all
states.

We find this result interesting because it is very reminiscent of the view that
the Federal Reserve kept interest rates “too low for too long” from 2003 to 2005.
In short, this argument implies that the Fed should have raised interest rates to
choke off entry into the housing and commercial property markets. It is important
to note that this argument requires some type of congestion externality to make
entry inefficient. Entry per se is not enough.

Last, with the central bank’s optimal interest rate policy, di(ω)/dq(ω) has
the same sign as dRc(ω)/dq(ω), where Rc is the elasticity of the marginal cost
function. Thus, if the elasticity of the marginal cost function is constant, we have
di(ω)/dq(ω) = 0, and the central bank smooths interest rates perfectly. The
central bank moves the nominal interest rate in a countercyclical fashion when
dRc(ω)/dq(ω) > 0 and in a procyclical manner when the opposite is true.

Example 2

Using our assumed functional forms, the central bank’s optimal allocation is given
by

qc(ω) =
(

θ + ρ

θρ + ρ

)θδ (
1

1 + θ

)ηδ

q∗(ω) < q∗(ω),

sc(ω) =
(

1

1 + θ

)(1−η)δ (
θ + ρ

ρ

)ρδ

s∗(ω) > s∗(ω),

ic(ω) = θ (ρ − 1)

θ + ρ
> 0.

This example illustrates the basic insight of the model. When entry is endogenous,
too much entry occurs. To reduce entry, the central bank inflates in order to
drive up nominal interest rates. This lowers consumption of market 2 goods and
lowers profits for sellers. Expected lower profits reduce entry by sellers. Because
Rc(ω) = ρ − 1 for these functional forms, the optimal nominal interest rate is
constant across states. Note also that when there are no search externalities—i.e.,
when θ = 0—then qc(ω) = q∗(ω), sc = s∗, and ic(ω) = 0. Again, the central
bank wants entry to be procyclical.
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We next consider the case of state-contingent monopoly pricing.

PROPOSITION 2. Consider the case of state-contingent monopoly pricing.
The constrained optimal allocation is stationary and depends only on the current
state ω. When σ ′(s) = 0, i(ω) = 0, q(ω) < q∗(ω), and s(ω) > s∗(ω) for all
states. When σ ′(s) < 0, i(ω) > 0, q(ω) < q∗(ω), and s(ω) > s∗(ω) for all states.

With monopoly pricing and σ ′(s) = 0, the Friedman rule is again optimal.
However, the first-best allocation cannot be achieved because the monopoly pricing
distortion causes q(ω) to be inefficiently low and s(ω) to be inefficiently high in
all states.

With endogenous entry, once again, because of the entry externality, the central
bank pushes up interest rates to reduce profits and thus entry. As with competitive
pricing, entry is higher than the social optimum. Also, production is lower than
q∗ and qc.

Finally, we study the case of non-state-contingent monopoly pricing.

PROPOSITION 3. Consider the case of price posting. In this case, the cen-
tral bank replicates the optimal allocation that occurs under state-contingent
monopoly pricing.

Why is the central bank able to replicate the posting allocation? Posting simply
imposes a constraint on the behavior of p in market 2. However, the central bank
only cares about the relative price φ(ω)p(ω) between market 2 and market 3. As
long as that is flexible, the central bank can replicate the state-contingent monopoly
price allocation.

4.1. Discussion

We first compare our results with those of Ireland (1996), because our paper is
most closely related to his article. Ireland (1996) studies optimal stabilization
policies when firms set nominal prices one period in advance, which corresponds
to price posting in our model. He finds that when the economy is subject to
aggregate demand shocks, the optimal policy is to make the average money growth
rate small. Under this policy, there is no need to respond actively to these shocks.
He also reports that one class of optimal policies is the constant money growth
rate γ = β advocated by Friedman (1969). Under this policy, the opportunity cost
of holding money is zero and so agents are willing to hold a stock of real balances
that is large enough to offset any demand shocks.19 In the absence of a congestion
externality, we find the same result for all three pricing protocols. In this case, the
optimal policy is the Friedman rule; i.e., to set i(ω) = 0.

Khan et al. (2003) study a monetary economy with imperfect competition and
sticky prices. They also find that with fully flexible prices the Friedman rule is
optimal but cannot achieve the first-best allocation because of monopolistic distor-
tion in the price setting. With costly price setting, the optimal nominal interest rate
is positive. Furthermore, they find that in response to real and nominal aggregate
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shocks, the optimal policy is to stabilize the price level around a deflationary trend
path.

The key difference between our approach and the New Keynesian literature—
as represented by Khan et al. (2003)—is that these models have staggered price
stickiness, which results in a nondegenerate distribution of prices. This prevents
the central bank from getting the relative price between flexible and sticky prices
“right.” The reason is that there are many relative prices that are out of alignment,
whereas we only have one. To address this inefficiency the central bank essentially
stabilizes the price level and lets output move.

In our model, the optimal policy requires inflation to be stochastic so that the
price level moves around. Expected inflation is what changes the real value of
money and thus adjusts the liquidity constraints. This result is very different from
what one obtains in New Keynesian models. In those models, inflation distorts
relative prices because of stickiness. So, to keep output close to the efficient level,
the central bank strongly stabilizes the price level to the point that it looks like
price level targeting. However, in our paper, the reverse is true—we optimally
choose stochastic inflation to move allocations closer to the efficient level. The
implementation scheme and associated stochastic inflation rate that yields the
optimal allocation is characterized in the following.

4.2. Implementation

In the Appendix, we derive implementation schemes for each pricing protocol that
supports the desired allocation when σ ′[s(ω)] < 0. The schemes are not unique,
because the transfers are nominal injections and the central bank cares only about
the relative transfers across states.

The key thing to note is that the inflation rate is state-dependent and serially
correlated. The reason for the serial correlation is as follows. The optimal allo-
cation associated with state ω does not depend on 	−1. However, 	−1 contains
information about the future state ω, and this affects agents’ demand for real
balances at time t − 1, as is shown by (23). To offset any informational value that
history has in relation to current money demand, the central bank offers a menu of
state-contingent transfers that makes the real value of money constant regardless
of 	−1.

Note that for general shock processes, the central bank must promise a sequence
of transfers for all possible histories. This seems to be an unrealistic implemen-
tation policy in practice. However, if the shocks are Markovian, then the central
bank’s transfers only need to be conditioned on the current and previous state—a
much simpler set of transfers to implement.

5. CONCLUSION

In this paper, we construct a DSGE model where money is essential for trade and
where a search externality creates “congestion,” which causes aggregate output
to be inefficient. We introduce a variety of well-defined aggregate shocks that
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generate consumption risk for households. Because of the informational frictions
that give rise to money, households are unable to insure themselves perfectly
against these shocks. This gives rise to a welfare-improving role for monetary
policy that works by adjusting the nominal interest rate in response to these
shocks.

In this setting, our basic results concerning the optimal stabilization policy
are as follows. With a fixed probability of trading, the optimal monetary pol-
icy is to run the Friedman rule and set the nominal interest rate to zero in
all states. This is true for all three pricing protocols. When the trading prob-
ability depends on aggregate entry, a congestion externality arises that makes
entry inefficiently high. Thus, the central bank finds it optimal to raise interest
rates above zero in all states in order to reduce profits and deter entry even
though it lowers average consumption. Once again, this is true for all pricing
protocols. In short, the zero lower bound is never a binding constraint in our
model. The key to implementing the desired allocation is to manipulate the rela-
tive price of goods across markets by choosing state-dependent nominal interest
rates.

There are many extensions of this model that would be interesting to pursue.
For example, how would the optimal policy be affected if the repayment of loans
were endogenous? In particular, does the risk of default alter stabilization? Given
the events of 2007 to 2009, the role of default on stabilization policy appears to
be an important issue. Furthermore, we assume that the shocks are known to the
central bank. An interesting question is what is the optimal policy if the central
bank has imperfect information about the nature of the aggregate shocks? How
would the existence of inside money affect the equilibrium and optimal policy?
For example, would inside money act as an automatic stabilizer, eliminating the
need for the central bank to stabilize the economy?

Finally, one could also use our framework to address the classical question
raised in Lucas (1987): how much is the welfare gain associated with eliminating
the business cycle? In the context of our model, this would mean calculating
the benefits of applying the optimal stabilization policy versus a passive policy,
where the central bank would not intervene in response to aggregate productiv-
ity and preference shocks. Lucas (1987) and the following literature, surveyed
in Barlevy (2005), found that the welfare benefits of eliminating the business
cycle are surprisingly small. An interesting research question would be to see
whether a microfounded framework with search externalities would generate larger
benefits.

NOTES

1. Most stabilization policy analysis has been done using the canonical New Keynesian model with
sticky prices. In this model, in the absence of nominal rigidities, monetary policy is ineffective because
money is neutral. An important contribution of our paper is to show that the informational frictions
that give rise to a medium-of-exchange role for money allow a welfare-improving role of stabilization
policy even when all prices are fully flexible.
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2. Rocheteau and Wright (2009) is a quantitative version of Rocheteau and Wright (2005), where
the extensive margin is modeled as an agent’s endogenous choice of whether to be a buyer or a seller.
They find that a small deviation from the Friedman rule can improve welfare if there are too many
buyers. When inflation increases, the cost of holding money increases and agents prefer to become
sellers. As long as this effect is not outweighed by the negative effect on the intensive margin, i.e.,
quantity per trade, a deviation from the Friedman rule can increase the number of sellers and, hence,
the number of trades at equilibrium.

3. In our model, for all pricing protocols, the only externality is related to the entry congestion.
There is neither a consumer surplus effect (through increased product diversity) nor a profit destruction
effect (through a reduction in the price level) as in Bilbiie et al. (2008).

4. The environment combines elements of Lagos and Wright (2005) and Berentsen et al. (2007).
The Lagos–Wright framework provides a microfoundation for money demand while keeping the
distribution of money balances analytically tractable. Berentsen et al. (2007) introduce financial inter-
mediation into the Lagos–Wright framework.

5. By “essential” we mean that the use of money enlarges the set of incentive-feasible allocations.
6. As in Lagos and Wright (2005), these assumptions allow us to obtain a degenerate distribution

of money holdings at the beginning of a period. The different utility functions υ(·) and u(·) allow us
to impose technical conditions such that at equilibrium all agents produce and consume in the last
market.

7. This restriction on preferences is not necessary for competitive pricing but is needed for interior
solutions under monopolistic pricing.

8. We have also allowed this number to be different from 1/2 and to be made random. However,
doing so has added very little to the analytical and quantitative results. Thus, we chose 1/2 to simplify
notation.

9. In Berentsen et al. (2007) we derive the equilibrium under the assumption that the
only punishment for strategic default is exclusion from the financial system in all future
periods.

10. Assuming a fixed utility cost κ is standard in the labor search literature [e.g., Pissarides (2000),
Rogerson et al. (2005)] or in the money search literature [e.g., Rocheteau and Wright (2005)]. Note
that exit is exogenous and constant in the model, because the entry cost has to be paid every period,
which implies that the firm exit rate is equal to 100%.

11. See our discussion of the literature in the Introduction.
12. Note that because the cash injections happen after the demand shock is realized, the central

bank could give the injections to the buyers only. Nevertheless, one can show that such targeted
injections do not affect the qualitative results of our model. Furthermore, untargeted lump-sum in-
jections do not require that the central bank observe the state of the individual household (buyer or
nonbuyer).

13. If the productivity shock affects the entry cost in the same way as the cost function, then s∗(ω)

is increasing in α as well.
14. The MRS between the two markets is εu′[qb(ω)]/υ ′[x(ω)]. But from the optimization problem

in market 3, υ ′[x(ω)] = 1 for all ω.
15. This simply requires that the measure of potential sellers be sufficiently large so that there

is no state for which all of them want to enter. This is a standard assumption in the labor search
literature.

16. This assumption is made simply to compare the allocation with monopoly pricing with one with
competitive pricing. For this reason, we ignore issues involving 1 < σ [s(	)]s(	).

17. Given our simple approach to generating monopoly power, the gross markup is given
by (1 − Ru)−1, which is constant. Changing the matching function so that the markup de-
pends negatively on entry, as in Jaimovich and Floettoto (2008), would be an interesting
extension.

18. For this case, we have in mind restaurants that print their menus in advance but upon seeing the
state of the economy can choose to open or not.
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19. In contrast, for aggregate supply shocks, he finds that the optimal policy requires the money
supply to respond actively and that the optimal policy is procyclical.
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APPENDIX
A.1. FIRST-BEST ALLOCATION

The planner chooses the allocation

At ≡ [qb
t (j)j∈B , qt (j)j∈S̃ , xt (j)j∈H∪F , yt (j)j∈H∪F ]

and the measures of sellers st who enter the market for each period. The quantities qb
t (j)j∈B

are the consumption quantities of all households with e = ε (the buyers), and qt (j)j∈S̃ are
the production quantities of all sellers that pay the entry cost and are able to enter market
2, whereas xt (j)j∈H∪F are the consumption quantities of all households and all sellers in
market 3, and yt (j)j∈H∪F are the production quantities of all households and all sellers in
market 3. The planner is constrained that the allocation has to be feasible. In the second
and third markets, respectively, for each state ω ∈ 	 and each date t , this requires that

∫
B

qb
t (j) dj ≤

∫
S̃

qt (j) dj, (A.1)

∫
H∪F

xt (j) dj ≤
∫
H∪F

yt (j) dj. (A.2)

An efficient allocation is defined as paths for

qb
t (j)j∈B , qt (j)j∈S̃ , xt (j)j∈H∪F , yt (j)j∈H∪F , and st

that maximize (3) subject to (A.1) and (A.2) and an initial aggregate state ω0. One can
easily show that it is optimal to treat all agents of the same type equally. Moreover, using
(A.1), it is straightforward to show that the planner allocation yields∫

�

∫
H∪F

[υ (xt ) − yt ] dF (ωt | 	t−1) =
∫
H∪F

υ (x∗) − x∗,

which is not state-contingent, so we can ignore this term in (3). Accordingly, the Lagrangian
of the planner problem is

Lp =
∫

�

[
εtu

(
qb

t

) − σ (st ) st c (qt ) /αt

]
dF (ωt | 	t−1)

−
∫

�

stκdF (ωt |	t−1) + μt

[
σ (st ) stqt − ntq

b
t

]
.

The FOCs for this problem after simplification are

0 = εtu
′ (qb

t

) − μt ,

0 = μt − c (qt ) /αt ,

0 = σ (st ) (1 + �σ )
[
c′ (qt ) qt − c (qt )

]
/αt − κ,

0 = σ (st ) stqt − qb
t ,

for all t . It is clear from these FOCs that the optimal allocation is independent of 	t−1

and stationary for all ω ∈ �, implying that, for a given state ω, xt = x(ω), yt = y(ω),
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qb
t = qb(ω), qt = q(ω) for all t . Furthermore, an interior solution for st requires −�σ < 1,

which we have assumed.
Define k[s(ω)] ≡ κ/σ [s(ω)] with k′(s) > 0. To prove existence and uniqueness of the

first-best allocation, we can rearrange (4)–(5) as follows:

εu′ {σ [s(ω)] s(ω)q(ω)}
c′ [q(ω)] /α

− 1 = 0, (A.3)

k [s(ω)] − (1 + �σ )
{
c′ [q(ω)] q (ω) − c [q(ω)]

}
/α = 0. (A.4)

(A.3) is a strictly decreasing function in [s(ω), q(ω)] space. It approaches infinity as s(ω)

approaches zero and approaches zero as s(ω) goes to infinity. If k′[s(ω)] > 0, (A.4)
is strictly increasing in [s(ω), q(ω)] space. Moreover, at s(ω) = 0, there exists a finite
q(ω) > 0 that solves

k [s(ω)] − (1 + �σ ) (1/α) {c′ [q(ω)] q(ω) − c [q(ω)]} = 0.

Hence, a unique solution [s∗(ω), q∗(ω)] exists. If σ [s(ω)] = σ , (A.4) is independent of
s(ω) implying that for κ < +∞, a unique solution [s∗(ω), q∗(ω)] exists.

Proof of Proposition 1. The proof involves three steps. We first derive the solution to the
central bank’s problem. We then demonstrate that the solution satisfies i(ωt ) ≥ 0. Finally,
we show that there exists a transfer scheme τ1(	) and τ3(	) that implements the central
bank’s allocation for each 	 and satisfies (23).

First step. The central bank allocation has to satisfy two constraints. The first constraint
is the entry condition (18), which holds in each state. The second constraint is the pricing
equation (25), which also holds in each state. We can use (18) to eliminate pt(	t )φt (	t )

from (25) to get

k(s) = [
c′ (qt ) qt − c (qt )

]
/αt . (A.5)

The central bank then maximizes (3) subject to (A.5). Using (A.2), it is straightforward to
show that the optimal policy yields

∫
�

∫
H∪F

[υ (xt ) − yt ] dF (ωt | 	t−1) =
∫
H∪F

υ (x∗) − x∗,

which is not state-contingent or dependent on monetary policy, so we can ignore this term
in (3). Consequently, using (24), the central bank’s problem reduces to

V =
∞∑
t=0

βt

∫
�

[
εtu

(
qb

t

) − σ (st ) st c (qt ) /αt

]
dF (ωt | 	t−1)

−
∞∑
t=0

βt

∫
�

σ (st ) st k (st ) dF (ωt | 	t−1) .
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The Lagrangian is

Lc =
∞∑
t=0

βt

∫
�

{
εtu

(
qb

t

) − σ (st ) st c (qt ) /αt

}
dF (ωt | 	t−1)

−
∞∑
t=0

βt

∫
�

σ (st ) st k (st ) dF (ωt | 	t−1)

+
∞∑
t=0

βt

∫
�

μt

[
σ (st ) stqt − qb

t

]
dF (ωt | 	t−1)

+
∞∑
t=0

βt

∫
�

λ̂t

{
k (st ) − [

c′ (qt ) qt − c (qt )
]
/αt

}
dF (ωt | 	t−1) ,

where μt and λ̂t ≡ stσ (st )λt is the time-t Lagrangian multiplier for state ωt . Then for all t

the central bank’s allocation satisfies

0 = εtu
′ (qb

t

) − (1 + λtR
c) c′ (qt ) /αt , (A.6)

0 = εtu
′ (qb

t

)
qt − c (qt ) /αt − k (st ) − (1 + �σ )−1 (1 − λt ) st k

′ (st ) , (A.7)

0 = k (st ) − [
c′ (qt ) qt − c (qt )

]
/αt , (A.8)

0 = qb
t − σ (st ) stqt , (A.9)

where (A.6) and (A.7) are the FOCs for qt and st , respectively. Note that there are no terms
involving past or future values in (A.6)–(A.8), so the allocation is stationary. Hence, as with
the planner, the central bank faces no intertemporal trade-offs, and so for each aggregate
state ω we have qt = q(ω) and st = s(ω). For notational convenience, we now drop the
dependence of q and s on ω, with the understanding that they are state-dependent.

Use (A.6) and (A.8) to write (A.7) as follows

λ = sk′(s)
Rc (1 + �σ ) c′ (q) q/α + sk′(s)

. (A.10)

Note that λ < 1. When (A.10) is used to replace λ in (A.6), q and s satisfy

εu′ [σ(s)sq]

(1/α) c′ (q)
− 1 = Rcsk′(s)

Rc (1 + �σ ) (1/α) c′ (q) q + sk′ (s)
, (A.11)

k(s) = [
c′ (q) q − c (q)

]
/α. (A.12)

In (s, q) space, (A.11) approaches infinity as s approaches zero and it approaches zero as
s goes to infinity. If k′(s) > 0, (A.12) is strictly increasing and q ≥ 0 solves k − [c′(q)q −
c(q)]/α = 0 at s = 0. Hence, a solution (s, q) exists. If k′(s) = 0, then k(s) = k and
(A.12) is independent of s, implying that for k < +∞, a solution (s, q) exists. If (A.11) is
strictly decreasing in (q, s) space, the equilibrium is unique.

By comparing these two expressions to the first-best allocation (A.3)–(A.4), it is straight-
forward to show that q < q∗.
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We now prove that s ≥ s∗. Suppose that the central bank is constrained to implement
s∗. Then q solves

k (s∗) − [c′ (q) q − c (q)]/α = 0. (A.13)

Let qc denote the value of q that solves (A.13) and let sc ≡ s∗. From (A.4), it is clear that
qc < q∗. Now let the central bank choose q and s. Assume—contrary to the claim in the
Proposition—that the optimal allocation satisfies s < sc ≡ s∗. Then, from (A.13), q < qc.
It is evident that the allocation (q, s) has lower welfare than (qc, sc), because q < qc < q∗

and s < sc = s∗. Thus, in any competitive equilibrium, s ≥ s∗.
Second step. From (26) we have 1 + i = εu′[σ(s)sq]

c′(q)/α
. Hence, using (A.11) yields

i = Rcsk′(s)
Rc (1 + �σ ) c′ (q) q/α + sk′(s)

.

Consequently, if k′(s) > 0, i > 0 in all states. If k′(s) = 0, i(ω) = 0 in all states. Note
that if sk′(s)/k(s) = χ and qc′(q)/c(q) = υ > 1 are constants, then Rc = υ − 1 and the
free entry condition reduces to k(s) = (υ − 1)c(q)/α. It then follows that i is constant and
given by

i = χ (υ − 1)

(1 + �σ ) υ + χ
.

Third step. We now show that a set of transfers τ1(	) and τ3(ω) exists that implement
the central bank’s allocation and satisfy (23). Using (24) and (25), we can write (23) as
follows:

1 = β

∫
�

{
αεu′ {σ [s(ω)] s(ω)q(ω)}

γ (	)c′ [q(ω)]

}
dF (ω|	t−1) . (A.14)

We first consider the case k′(s) = 0. In this case, (A.14) reduces to

1 = β

∫
�

1

γ (	)
dF (ω| 	t−1) = β

∫
�

1

1 + τ1(	) + τ3(	)
dF (ω| 	t−1) .

It is clear that any set of transfers τ1(	) and τ3(	) that satisfies γ (	) = 1+τ1(	)+τ3(	) =
β for all 	 implements the central bank’s allocation.

Consider next the case k′(s) > 0. Assume that the transfers are such that the agents have
just enough money to buy qb(ω) = σ [s(ω)]s(ω)q(ω) in each state; i.e., p(	)qb(ω) =
M−1[1 + τ1(	)]. From the pricing equation (25) we can write this expression as follows:

qb(ω)c′ [q(ω)] /α = φ(	)M−1 [1 + τ1 (	)] . (A.15)

Let z ≡ φ(	)M(	) = φ(	)M−1[1 + τ1(	) + τ3(	)]. Using (A.15) we get

z = qb(ω)c′ [q(ω)] /α + φ(	)M−1τ3(	). (A.16)

We have one degree of freedom for the choice of τ3(	). Assume the central bank conditions
the transfers on the t and t −1 shocks for any 	−2. We then have τ3(	) = τ3(ω, ω−1, 	−2).
Consider the state ωL = (αL, εL) and set τ3(ωL, ωL, 	−2) = 0. This pins down the
real stock of money z = qb(ωL)c′[q(ωL)]/αL. This implies that γ (ωL, ωL, 	−2) = 1 +
τ1(ωL, ωL, 	−2), which remains to be determined. We will return to this later. Now, using
the value of z in (A.16) for ω−1 = ωL yields

τ3 (ω, ωL, 	−2) = [1 + τ1 (ω, ωL,	−2)]

{
qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
− 1

}
,
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which gives us the realized money growth rate

γ (ω, ωL, 	−2) = [1 + τ1 (ω, ωL, 	−2)]
qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
,

and from the money demand equation we get

1 = β

∫
�

εu′[qb(ω)]qb(ω)

qb (ωL) c′ [q (ωL)] /αL

f (ω| ωL, 	−2)

1 + τ1 (ω, ωL)
dω. (A.17)

This equation imposes a restriction on the choice of the vector {τ1(ω, ωL)}ω∈�. One such
vector choice is τ1(ω, ωL) = τ1 for all ω. This pins down τ1(ωL, ωL) and requires

τ1 = β

∫
�

εu′ [qb(ω)
]
qb(ω)

qb (ωL) c′ [q (ωL)] /αL

f (ω| ωL, 	−2) dω − 1.

Now consider an arbitrary ω−1. Again we obtain

τ3 (ω, ω−1, 	−2) = [1 + τ1 (ω, ω−1, 	−2)]

{
qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
− 1

}
,

which gives us

γ (ω, ω−1, 	−2) = [1 + τ1 (ω, ω−1, 	−2)]
qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
,

and the money demand equation is

1 = β

∫
�

{
εu′ [qb(ω)

]
qb(ω)

qb (ωL) c′ [q (ωL)] /αL

}
f (ω|ω−1, 	−2)

1 + τ1 (ω, ω−1)
dω. (A.18)

Thus, for both (A.17) and (A.18) to hold as they do for ωL, we must have

1 + τ1 (ω, ω−1, 	−2) = f (ω| ω−1,	−2)

f (ω| ωL, 	−2)
[1 + τ1 (ω, ωL, 	−2)] ∀ω,ω−1.

This pins down every transfer as a function of τ1(ω, ωL, 	−2). Thus, for τ1(ω, ωL,	−2) =
τ1, we have the transfer scheme

1 + τ1(	) = f (ω| ω−1,	−2)

f (ω| ωL, 	−2)
(1 + τ1) ,

τ3(	) = (1 + τ1)
f (ω| ω−1, 	−2)

f (ω| ωL, 	−2)

{
qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
− 1

}

and the stochastic inflation rate

γ (	) = (1 + τ1)
f (ω|ω−1, 	−2)

f (ω|ωL,	−2)

qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
.
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OPTIMAL MONETARY STABILIZATION POLICY 695

The remaining endogenous variables are then

φ(	) = qb (ωL) c′ [q(ω)] /α

M−1 (1 + τ1)

f (ω| ω−1, 	−2)

f (ω| ωL, 	−2)
and p(	)

= M−1
(1 + τ1) f (ω|ω−1, 	−2)

qb(ω)f (ω|ωL,	−2)
.

�

Proof of Proposition 2. The proof follows the lines of the proof of Proposition 1.

First step. The central bank allocation has to satisfy two constraints. The first constraint
is the entry condition (18), which holds in each state. The second constraint is the pricing
equation (27), which also holds in each state. We can use (18) to eliminate pφ from (27) to
get

k (st ) = [
c′ (qt ) qt (1 − Ru)−1 − c (qt )

]
/αt . (A.19)

Notice the appearance of the markup (1 − Ru)−1, which is absent from (A.5).
The optimal allocation solves

0 = εtu
′ (qb

t

)
(1/αt ) c′ [qt (ωt )]

− 1 − λt

Rc + Ru

1 − Ru
, (A.20)

0 = εtu
′ (qb

t

)
qt − c (qt ) /αt − k (st ) − (1 − λt ) (1 + �σ )−1 st k

′ (st ) , (A.21)

0 = k (st ) − [c′ (qt ) qt (1 − Ru)−1 − c (q)]/αt , (A.22)

0 = qb
t − stσ (st ) qt . (A.23)

Note that for Ru = 0, (A.20)–(A.22) and (A.6)–(A.8) are identical. Again, because there
are no terms involving past or future values, the solution to (A.20)–(A.22) is independent
of t and 	, so it is stationary. Use (A.20) and (A.22) to write (A.21) as follows:

λ = Ru (1 + �σ ) c′ (qt ) qt/αt + (1 − Ru) stk
′ (st )

(Rc + Ru) (1 + �σ ) c′ (qt ) qt/αt + (1 − Ru) st k′ (st )
. (A.24)

Use (A.24) to replace λ in (A.20). Then q and s solve

εu′ {[sσ (s)/n] q}
c′ (q) /α

− 1

=
(

Rc + Ru

1 − Ru

)[
Ru (1 + �σ ) c′ (qt ) qt/αt + (1 − Ru) stk

′ (st )

(Rc + Ru) (1 + �σ ) c′ (qt ) qt/αt + (1 − Ru) st k′ (st )

]
, (A.25)

k(s) − [c′ (q) q (1 − Ru)−1 − c (q)]/α = 0. (A.26)

By comparing these two expressions to the first-best allocation (A.3)–(A.4), it is straight-
forward to show that q < q∗. To establish that s ≥ s∗, we can replicate the same proof as
in the previous case of competitive pricing.

Second step. Because (A.7) and (A.21) are identical and λ < 1, we can replicate the
proof of Step 2 of Proposition 2 one for one.
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696 ALEKSANDER BERENTSEN AND CHRISTOPHER WALLER

Third step. We now show that a set of transfers τ1(	) and τ3(	) exists that implements
the central bank’s allocation and satisfies (23). Using (24) and (27), we can write (23) as
follows:

1 = β (1 − Ru)

∫
�

εu′ {σ [s(ω)] s (ω) q(ω)}
γ (	) (1/α) c′ [q(ω)]

dF
(
ω|	−1

)
. (A.27)

We first consider the case k′(s) = 0. Because (1 − Ru)εu′{σ [s(ω)]s(ω)q(ω)} =
(1/α)c′[q(ω)] under the central bank’s allocation, (A.27) reduces to

1 = β

∫
�

1

γ (	)
dF (ωt | 	t−1) = β

∫
�

1

1 + τ1(	) + τ3(	)
dF (ωt | 	t−1) .

It is clear that any set of transfers τ1(	) and τ3(	) that satisfies γ (	) = 1+τ1(	)+τ3(	) =
β for all ω = � implements the central bank’s allocation.

Consider next the case k′(s) > 0. Assume that the transfers are such that the agents have
just enough money to buy qb(ω) in each state; i.e., p(	)qb(ω) = M−1[1 + τ1(	)]. From
the pricing equation (27), we can write this expression as follows:

(1 − Ru)−1 qb(ω)c′ [q(ω)] /α = φ(	)M−1 [1 + τ1(	)] . (A.28)

Because z = φ(	)M−1[1 + τ1(	) + τ3(	)], using (A.15), we get (A.16). As before,
assume the central bank mainly conditions the money growth rate on the shocks at t

and t − 1. Consider the state ωL = (αL, εL) and set τ3(ωL, ωL) = 0. Thus, z = (1 −
Ru)−1qb(ωL)c′[q(ωL)]/αL is the real stock of money. We then have

(1 − Ru)−1 qb (ωL) c′ [q (ωL)] /αL = φ(	)M−1 [1 + τ1(	) + τ3 (	)] .

Using this expression and (A.28), we can obtain τ3(ω, ωL) as a function of τ1(ω, ωL):

τ3 (ω, ωL, 	−2) = [1 + τ1 (ω, ωL, 	−2)]

{
qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
− 1

}
. (A.29)

The realized money growth satisfies

γ (ω, ωL, 	−2) = [1 + τ1 (ω, ωL, 	−2)]
qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
. (A.30)

Then replace γ (ω, ωL, 	−2) in (A.14) to get

1 = β (1 − Ru)

∫
�

qb (ω) εu′ [qb(ω)
]

qb (ωL) c′ [q (ωL)] /αL

f (ω| ωL, 	−2)

1 + τ1 (ω, ωL, 	−2)
dω. (A.31)

This equation imposes a restriction on the vector {τ1(ω, ωL, 	−2)}ω∈�. However, there
are many choices that are consistent with this equation. One particular choice is
τ1(ω, ωL, 	−2) = τ1, in which case we have the transfer scheme

τ1 = β (1 − Ru)

∫
�

qb(ω)εu′ [qb (ω)
]

qb (ωL) c′ [q (ωL)] /αL

f (ω| ωL, 	−2) dω − 1,

τ3 (ω, ωL, 	−2) = (1 + τ1)

{
qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q(ω)] /α
− 1

}
.
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OPTIMAL MONETARY STABILIZATION POLICY 697

Now pick an arbitrary state ω−1. Once again we obtain

τ3 (ω, ω−1, 	−2) = [1 + τ1 (ω, ω−1, 	−2)]

{
qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
− 1

}
,

γ (ω, ω−1, 	−2) = [1 + τ1 (ω, ω−1, 	−2)]
qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
,

and the money demand equation

1 = β (1 − Ru)

∫
�

qb (ω) εu′ [qb(ω)
]

qb (ωL) c′ [q (ωL)] /αL

f (ω|ω−1,	−2)

1 + τ1 (ω, ω−1,	−2)
dω. (A.32)

Again, for the money demand equations (A.31) and (A.32) to hold, we must have

1 + τ1 (ω, ω−1, 	−2) = (1 + τ1)
f (ω|ω−1, 	−2)

f (ω|ωL, 	−2)
,

which implies that the inflation rate is given by

γ (	) = (1 + τ1)
f (ω|ω−1, 	−2)

f (ω|ωL, 	−2)

qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
,

and the price of money and the price of goods are stochastic and satisfy

φ(	) = f (ω|ωL, 	−2) qb(ω)c′ [q(ω)] /α

f (ω|ω−1, 	−2) (1 − Ru) M−1 (1 + τ1)
,

p(	) = M−1
(1 + τ1) f (ω|ω−1,	−2)

qb(ω)f (ω| ωL, 	−2)
.

�

Proof of Proposition 3. In this proof, we show that it is optimal and feasible to im-
plement the same allocation as for state-contingent monopoly pricing. The central bank
allocation has to satisfy the entry condition (18) and the pricing equation (29). Let
φ̂(	t ) ≡ φ(	t)p(	t−1), which is the relative price between market 2 and market 3 goods.
Because at time t , p(	t−1) is a predetermined variable, the central bank can affect this
relative price by changing φ(	t) via policy. Then rewrite (29) as

∫
�

σ (st ) stqt

[
φ̂t (1 − Ru) − c′ (qt ) /αt

]
dF (ωt | 	t−1) = 0.

The central bank now chooses qb, q, s, and φ̂ to maximize
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698 ALEKSANDER BERENTSEN AND CHRISTOPHER WALLER

Lp =
∞∑
t=0

βt

∫
�

[
εtu

(
qb

t

) − σ (st ) st c (qt ) /αt

]
dF (ωt | 	t−1)

−
∞∑
t=0

βt

∫
�

stk (st ) dF (ωt | 	t−1)

+
∞∑
t=0

βt

∫
�

μt

(
stqt − qb

t

)
dF (ωt |	t−1)

+
∞∑
t=0

βt

∫
�

λ̂t

{
k (st ) − [φ̂t qt − c (qt )]/αt

}
dF (ωt | 	t−1)

+
∞∑
t=0

βtθt

∫
�

σ (st ) stqt [φ̂t (1 − Ru) − c′ (qt ) /αt ]dF (ωt | 	t−1) ,

where λ̂t = λtσ (st )st is the Lagrange multiplier for (18) and θt is the one for (29). Because
we know that stqt = ntq

b
t in equilibrium, we can eliminate qb

t and simply choose qt , st and
φ̂t for all t . The first-order conditions for qt , st , and φ̂t are

0 = εtu
′ [(σ (st ) stqt )] − c′ (qt ) /αt − λt

(
Ru + Rc

1 − Ru

)
c′ (qt ) /αt , (A.33)

λt

[
φ̂t − c′ (qt ) /αt

1 − Ru

]

= εtu
′ [(σ (st ) stqt )] qt − c′ (qt ) /αt − k (st ) − st k

′ (st ) (1 − λt ) , (A.34)

0 = k (st ) − φ̂t qt + c (qt ) /αt . (A.35)

If the central bank enacts a policy such that the relative price is given by

φ̂(	) ≡ φ(	)p (	−1) = c′ [q(ω)] /α

1 − Ru
, (A.36)

then (A.33)–(A.35) reduce to (A.20)–(A.22). Furthermore, this choice also satisfies the
pricing equation (29). Consequently, the central bank chooses the same allocation as with
state-contingent monopoly pricing.

Implementation: The central bank wants to replicate the state-contingent monopoly
pricing allocation. All that remains to be determined is how to implement it with non-state-
contingent pricing. Consider the case k′(s) > 0. Assume that the transfers are such that the
agents have just enough money to buy q(ω) in each state. This implies that the aggregate
money stock must purchase total nominal output in market 2; i.e., M−1[1 + τ1(	)] =
p(	−1)q

b(ω). From (A.36), we have

φ(	)M−1 [1 + τ1(	)] = (1 − Ru)−1 qb(ω)c′ [q(ω)] /α. (A.37)

We also have z = φ(	)M−1[1 + τ1(	) + τ3(	)]. Using (A.37), we get

z = (1 − Ru)−1 qb(ω)c′ [q(ω)] /α + τ3(	)φ(	)M−1. (A.38)
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As before, assume that the central bank only conditions the money growth rate on the last
two shocks for any 	−2. Let φ(	) = φ(ω,ω−1, 	−2). Consider the state ωL = (αL, εL)

and set τ3(ωL, ωL) = 0. Then from (A.38) we have

z = (1 − Ru)−1 qb (ωL) c′ [q (ωL)] /αL.

This pins down the real stock of money. It then follows from the buyer’s budget constraint
that

1 + τ1 (ω, ωL, 	−2) = [1 + τ1 (ωL, ωL, 	−2)]
qb(ω)

qb (ωL)
.

In short, with p(	−1) fixed, nominal spending has to rise as qb(ω) increases, meaning that
the nominal injection in market 1 must also rise, regardless of what happens in market 3.
We can then solve for τ3(ω, ωL) as before to obtain (A.29). Using the preceding expression
in (A.29) yields

τ3 (ω, ωL, 	−2) = [1 + τ1 (ωL, ωL, 	−2)]

{
c′ [q (ωL)] /αL

c′ [q(ω)] /α
− qb(ω)

qb (ωL)

}
,

so

γ (ω, ωL, 	−2) = [1 + τ1 (ωL, ωL, 	−2)]
c′ [q (ωL)] /αL

c′ [q(ω)] /α
.

Using this expression and (A.36) in (23) we obtain

1 = β (1 − Ru)

∫
�

εu′[qb(ω)]

c′ [q (ωL)] /αL

f (ω|ωL,	−2)

1 + τ1 (ωL, ωL, 	−2)
dω. (A.39)

This places a restriction on τ1(ωL, ωL, 	−2) given by

τ1 (ωL, ωL, 	−2) = β (1 − Ru)

∫
�

εu′[qb(ω)]

c′ [q (ωL)] /αL

f (ω|ωL, 	−2) dω − 1.

This gives us all of the transfers for ω−1 = ωL.

Now consider any state ω−1. We get

τ3 (ω, ω−1, 	−2) = [1 + τ1 (ω, ω−1, 	−2)]

[
qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
− 1

]
,

γ (ω, ω−1, 	−2) = [1 + τ1 (ω, ω−1, 	−2)]
qb (ωL) c′ [q (ωL)] /αL

qb(ω)c′ [q (ω)] /α
.

Then from (A.36) in (23) we get

1 = β (1 − Ru)

∫
�

qb (ω) εu′ [qb(ω)
]

qb (ωL) c′ [q (ωL)] /αL

f (ω|ω−1,	−2)

1 + τ1 (ω, ω−1,	−2)
dω. (A.40)

In order for (A.39) and (A.40) to hold, we must have

[1 + τ1 (ω, ω−1, 	−2)] = [1 + τ1 (ωL, ωL, 	−2)]
qb(ω)f (ω|ω−1, 	−2)

qb (ωL) f (ω| ωL, 	−2)
.
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700 ALEKSANDER BERENTSEN AND CHRISTOPHER WALLER

This pins down τ1(ω, ω−1) as a function of τ1(ωL, ωL) for all ω−1. Thus the implementation
scheme

τ1 (ωL, ωL,	−2) = β (1 − Ru)

∫
�

εu′[qb(ω)]

c′ [q (ωL)] /αL

f (ω|ωL, 	−2) dω − 1,

τ1 (ω, ω−1,	−2) = [1 + τ1 (ωL, ωL, 	−2)]
qb(ω)f (ω|ω−1, 	−2)

qb (ωL) f (ω|ωL, 	−2)
− 1,

τ3 (ω, ω−1,	−2) = [1+τ1 (ωL, ωL, 	−2)]
f (ω| ω−1, 	−2)

f (ω| ωL, 	−2)

[
c′ [q (ωL)] /αL

c′ [q(ω)] /α
− qb (ω)

qb (ωL)

]
,

and the subsequent inflation rates,

γ (ω, ωL, 	−2) = [1 + τ1 (ωL, ωL, 	−2)]
c′ [q (ωL)] /αL

c′ [q(ω)] /α
∀ω,

γ (	) = γ (ω, ωL, 	−2)
f (ω|ω−1, 	−2)

f (ω|ωL,	−2)
,

allow the central bank to implement the state-contingent monopoly pricing allocation even
though there is price posting. We can then solve for the equilibrium prices

φ(	) = qb(ω)c′ [q(ω)] /α

M−1 [1 + τ1 (ω, ω−1, 	−2)] (1 − Ru)
and

p (	−1) = M−1
[1 + τ1 (ωL, ωL, 	−2)] f (ω|ω−1, 	−2)

qb (ωL) f (ω|ωL, 	−2)
.

�
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