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Summary 
Transmembrane transporters mediate energy dependent or independent translocation of drugs, 

potentially toxic compounds, and of various endogenous substrates such as bile acids and 

bilirubin across membranes. In this thesis the focus is on two classes of transporters, the ATP-

binding cassette (ABC) transporters, which mediate ATP dependent transport and the solute 

carriers (SLC) which use electrochemical gradients for their transport. The transporters are 

expressed on membranes of cells of excretory organs (e.g. kidney, liver) and protective barriers 

(e.g. intestine, blood brain barrier) and influence therefore the absorption, distribution and 

elimination of compounds. They may reduce the intracellular concentration of drugs.  

Transport activity of transmembrane transporters in the intestine depends on the expression 

level and distribution along the intestine. Transport activity of transporters might be influenced by 

other factors such as genetic variations, which may present with a dysfunctional phenotype (e.g. 

single nucleotide polymorphisms; SNPs), or certain disease states, which might adaptively 

regulate transporter expression on the transcriptional and posttranscriptional level. 

 

The first aim of this thesis was a systematic site-specific analysis of the expression of several 

ABC transporters and solute carriers along the intestinal tract. Following that, regulation of 

hepatobiliary transporters in the human intestine during obstructive cholestasis was evaluated. 

Studies were performed in close collaboration with the Department of Gastroenterology 

(University Hospital of Basel). 

 

As described in Chapter 2, transporter mRNA expression was analyzed by real time PCR 

(Taqman), a method that was previously developed in our laboratory to quantify the expression 

of transporters using standard curves. Protein expression was assessed by 

immunohistochemistry, bile acids plasma concentrations were measured by capillary gas 

chromatography (U. Beuers, Munich). 

 

The results presented in this thesis include systematic site specific analysis of quantitative 

expression of the human multidrug resistance transporters, such MDR1 (ABCB1), breast cancer 

resistance transporter (BCRP; ABCG2) and multidrug resistance associated transporters 

(MRP1-5; ABCC1-5) as well as the apical sodium dependent bile acid transporter ASBT 

(SLC10A2) along the the intestinal tract. These data are shown in Chapter 3. As the mRNA 

expression levels of the investigated transporters change along the intestinal tract, these 

findings might be of interest to develop target strategies for orally administered drugs. 
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Also, this systematic site specific analysis of MDR transporters serves as a preparation for a  

prospective clinical study in patients with Inflammatory Bowel Disease (IBD), which will 

investigate MDR transporter gene expression in intestinal biopsies (intestinal epithelial cells, 

intestinal macrophages) in newly diagnosed IBD patients compared to treatment refractory IBD 

patients, patients in remission and disease free controls. This study design will help to evaluate, 

if MDR transporters vary due to interindividual differences, inflammatory processes and/or 

pharmacological treatment and might serve as an explanation for patients with IBD not 

responding to drug treatment. 

 

Intestinal macrophages play a central role in the orchestration of innate immune response 

reactions in the gut. As anti-inflammatory as well as immunosuppresive drugs such as 

glucocorticoids, methotrexate, cyclosporine, 6-mercaptopurine and sulfasalazine, which all of 

them are used in the treatment of IBD patients, are substrates of MDR transporters,  a method 

for isolation of CD14+ peripheral blood cells (monocytes), their ex vivo cultivation and 

differentiation into macrophages was established. In Chapter 4, first results demonstrate the 

influence of the differentiation process of monocytes into monocyte derived macrophages 

(MDM) and the stimulation of MDM with bacterial products (LPS) on MDR transporter 

expression. At present, the effect of budesonide, methotrexate, 6-mercaptopurine and 

sulfasalazine on the transporter expression in ex vivo cultivated human MDM is evaluated.  

 

Adaptive regulation of hepatobiliary transport systems during obstructive cholestasis with a 

disrupted enterohepatic circulation has been demonstrated in the intestine only for rodents 

before. The results presented in Chapter 3 showed, that ASBT, which contributes substantially 

to the enterohepatic circulation of bile acids by their reabsorption from the intestine, is 

adaptivelly regulated in the human duodenum during obstructive cholestasis. Our findings are of 

clinical importance as we have shown for the first time that ASBT is expressed in the human 

duodenum. These results may indicate species specific differences to rodents, and that changes 

in the ASBT gene expression can be measured in the duodenum during obstructive cholestasis. 

Adaptive regulation of ASBT in the intestine has clinical implications for the bile acid 

homeostasis and also for the lipid metabolism. 

BCRP mediates energy dependent efflux of drugs and potentially toxic compounds, and of 

various endogenous substrates such as bile acids. Here, expression of human BCRP mRNA 

was shown to be highest in the duodenum with a continuos decrease along the intestinal tract 
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down to the rectum. BCRP mRNA and protein expression in the duodenum was found to be 

decreased during obstructive cholestasis when compared to control subjects and BCRP 

expression increased after reconstitution of bile flow. In consequence, reduced intestinal BCRP 

expression during obstructive cholestasis might influence the accumulation of bile acids, food-

derived carcinogens and the pharmacokinetics of various drugs that are transported by BCRP. 

  

In an isolated project with the background of observed therapy resistance to antibiotics in the 

treatment of patients with chronic prostatitis, MDR expression in prostatic tissue in regard to 

inflammation was evaluated in 50 patients that underwent transurethral resection of prostate. In 

this study group, neither inflammation nor localization of inflammation in prostate tissue (acinar 

versus interstitial) influenced MDR transporter expression. 
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Aims of the thesis 
Reabsorption of bile salts from the intestinal lumen is a critical step for bile salt homeostasis in 

the body. Several transporters are involved in this process and mediate energy dependent or 

independent efflux of drugs, potentially toxic compounds, and of various endogenous substrates 

such as bile acids and bilirubin. The aim of the present thesis was to examine the regulation of 

hepatobiliary transport systems in the human gut during obstructive cholestasis with a disrupted 

enterohepatic circulation. A dysregulation of these transport systems in the gut might be of 

clinical relevance for drug treatment regimens during obstructive cholestasis.  

The following questions have been addressed: 

 

- systematic site-specific analysis of several ABC transporters and solute carriers 

expression along the intestinal tract 

- regulation of hepatobiliary transporters in the human intestine on the transcriptional and 

posttranscriptional level during obstructive cholestasis 

 

Beside the focus on regulation of hepatobiliary transport systems in the human intestine an 

important research topic of our lab is the investigation of molecular mechanisms for insufficient 

or failed therapy for patients with inflammatory bowel disease (IBD). 

As macrophages play an important role in host defense, particularly in the inflammatory process 

of acute and chronic disease, a project was started to investigate the influence of IBD drugs and 

cytokines on the regulation of MDR transporter gene expression in peripheral blood monocytes 

and macrophages. The following goals have been set: 

 

-  Establishment of a method for isolation of CD14+ peripheral blood cells (monocytes), ex 

vivo cultivation and differentiation into macrophages 

-  Influence of differentiation into macrophages and stimulation of bacterial products (LPS) 

on MDR transporter expression 

 

In an isolated project the expression of multidrug resistance transporters was studied in prostatic 

tissue of patients diagnosed with benign prostatic hyperplasia (BPH) undergoing transurethral 

resection of the prostate. The following question was addressed: 

 

- Influence of inflammation on MDR transporter expression in human prostatic tissue 
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1. Introduction 
1.1 Physiology of bile salt transporters  

Bile formation is an osmotic secretory process that is driven by the active concentration of bile 

salts (major organic solutes in bile) and other biliary constituents in the bile canaliculi. Bile salts 

are concentrated up to 1000 fold in bile using an active transport by hepatocytes against a 

concentration gradient when secreted into bile ductuli. As it passes along the bile ductules and 

ducts bile is modified by secretory and absorptive processes and is further concentrated up to 

10-fold in the gallbladder before reaching the intestine. In the small intestine bile salts emulsify 

dietary fats and lipid-soluble vitamins. They regulate pancreatic secretion and the release of 

gastrointestinal peptides (Koop et al., 1996). In addition, bile is an important route of elimination 

for environmental toxins, carcinogens, drugs and their metabolites (xenobiotics) and serves also 

as the major route of excretion for endogenous compounds and metabolic products such as 

cholesterol, bilirubin and hormones (Trauner and Boyer, 2003). 

 

 

 

 

Figure: Trauner M et al., J Clin Gastroenterol 2005 ;39: S111-24 

Figure represents normal bile secretion. Many biliary compounds (eg bile salts, bilirubin, cholesterol) 

secreted into bile undergo an extensive enterohepatic circulation, ie, are reabsorbed in the (small) 

intestine, taken up again by the liver and secreted into bile. Some compounds repeat this cycle for several 
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times before becoming eliminated by the feces. Additional “cycles” include a cholehepatic cycle between 

bile duct epithelial cells (cholangiocytes) and hepatocytes, and a nephrohepatic cycle between kidney 

cells (proximal renal tubules) and liver hepatocytes, the latter preventing the loss of glomerularely filtered 

bile salts into urine. 

 

Bile salts undergo extensive enterohepatic circulation. After reabsorbtion in the proximal small 

intestine by sodium independent absorption and in the distal ileum by active sodium-dependent 

absorption, bile salts return to the liver via the portal circulation. This efficient enterohepatic 

circulation ensures that from the total bile salt pool of adult humans (3-4 g), which circulates 6-

10 times per 24 hours through the enterohepatic pathway only 0.5 g bile salts are lost per 24 

hours through fecal excretion. The loss is compensated by de novo synthesis from cholesterol 

(Meier and Stieger, 2002). 

Hepatic uptake, biliary excretion and intestinal reabsorption are mediated by specific transport 

proteins. More than 80% of conjugated bile salts, which circulate in plasma tightly bound to 

albumin and lipoproteins (Wolkoff and Cohen, 2003) undergo single-pass extraction by the liver. 

Hepatic uptake of bile salts on the basolateral membrane in humans is mediated predominantly 

by the Na+-taurocholate cotransporting protein (NTCP, SLC10A1) for taurine and glycine 

conjugated bile salts (Hagenbuch and Meier, 1994; Meier et al., 1997) and the Na+ independent 

organic anion-transporting polypeptide (OATP-C) (Kullak-Ublick et al., 2001). The canalicular 

secretion of conjugated bile salts on the apical membrane of the hepatocyte represents the rate 

limiting step in the overall bile salt transport from blood into bile. The secretion into bile canaliculi 

is performed by the bile salt export pump (BSEP), which is a member of the ATP-binding 

cassette (ABC) transporter gene superfamily. Bsep knockout mice exhibit liver steatosis with 

mild cholestasis. However, they demonstrate residual bile salt secretion of about 30% compared 

with wild type mice (Wang et al., 2001b). Mutations in the human BSEP-gene are associated 

with progressive familial intrahepatic cholestasis (PFIC2) (Strautnieks et al., 1998). These 

patients secrete less than 1% of biliary salts compared with normal infants (Jansen et al., 1999). 

The exact contribution of multidrug resistance associated protein 2 (MRP2), which is localized 

on the canalicular membrane, to canalicular transport of bile salts is currently under investigation 

(Keppler and Konig, 2000). However, mutations in MRP2 have been reported to underly Dubin-

Johnson syndrome that is characterized by a defective excretion of conjugated anions into the 

bile (chronic conjugated hyperbilirubinemia) (Hashimoto et al., 2002). MRP2 is deficient in rats 

with an inborn error in the biliary secretion of organic anions, including conjugated bilirubin 

(Buchler et al., 1996; Paulusma et al., 1996).  
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BCRP (ABCG2) another ABC transporter is localized on the canalicular membrane of the 

hepatocyte and physiologic substrates include estrone-3-sulfate, dehydroepiandrosterone 

sulphate and sulfasalazine (Suzuki et al., 2003). Its role for the hepatobiliary transport has not 

been completely elucidated, yet. 

 

1.2 Intestinal transporters for reabsorption of bil e salts 

 

A critical step for the bile salt homeostasis is the reabsorption of bile salts from the intestine in 

which different transporters might be involved. In the brush border membrane of jejunal 

enterocytes in rats the organic anion transporting protein (Oatp3) is expressed (Walters et al., 

2000). This sodium independent bile salt transporter transports a large variety of organic anions 

and bile salts (Kullak-Ublick et al., 2000). However, whether functional expression of bile salt -

transporting OATPs also occurs in the brush border membrane of the human intestine remains 

to be elucidated. Reabsorption of bile salts mainly occurs in the distal ileum where the apical 

sodium-dependent bile salt transporter (ASBT/SLC10A2) is expressed. Human ASBT transports 

conjugated and unconjugated bile salts with a higher affinity for CDCA and DCA than for 

taurocholate (Craddock et al., 1998). Patients with mutations in the ASBT gene can suffer from 

congenital diarrhea and steatorrhea, concomitant with an interrupted enterohepatic circulation of 

bile salts (Oelkers et al., 1997). Induction of Asbt mRNA levels, transporter protein and transport 

activity by cholic acid feeding in rats was observed (Stravitz et al., 1997).  

After uptake into the enterocyte, bile salts are shuttled to the basolateral membrane for efflux 

into the portal circulation. Transcellular transport is probably mediated by the ileal bile acid-

binding protein (I-BABP) that is cytoplasmatically attached to ASBT (Gong et al., 1994). 

Multidrug resistance associated protein 3 (MRP3) is expressed in increasing levels from the 

jejunum to the large intestine (Cherrington et al., 2002) and is localized on the basolateral 

membrane of polarized cells (Konig et al., 1999; Kool et al., 1999). MRP3 transports substrates 

such as conjugated bile salts and bilirubin glucuronide (Hirohashi et al., 2000; Keppler et al., 

2000; Zelcer et al., 2003) and is a potential candidate for bile salt efflux from enterocytes into 

portal blood. In Caco2-cells bile salts increased the expression of human MRP3 (Inokuchi et al., 

2001) and in an in-vitro study with LLC-PK1 cells transfected with rat MRP3 the involvement of 

MRP3 in bile salt transport could be demonstrated (Hirohashi et al., 2000). A recent publication 

showed that the organic solute transporters (Ost)-α and Ost-β are localized in the intestine 

predominantly on the basolateral membrane of ileocytes. These transporters form a heterodimer 

and mediate apical efflux of taurocholate in transfected canine kidney cells and seems to be 
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responsible for the transport of bile salts across the basolateral membrane of enterocytes into 

portal blood (Dawson et al., 2005). 

 

 

 

Figure: Trauner M et al., J Clin Gastroenterol 2005 ;39: S111-24 

Hepatobiliary transport systems in liver and extrahepatic tissues in humans. Bile salts (BS-) are taken up 

by hepatocytes via the basolateral Na+ /taurocholate cotransporter (NTCP) and organic anion transporting 

proteins (OATPs). Monovalent BS- are excreted via the canalicular bile salt export pump (BSEP) while 

divalent BS- together with anionic conjugates (OA-) are excreted via the canalicular conjugate export 

pump (MRP2). The phospholipids export pump (Mdr2/MDR3) facilitates excretion of phosphatidylcholine 

(PC), which forms mixed micells in bile together with BS- and cholesterol. Cationic drugs (OC+) are 

excreted by the multidrug resistance export pump (Mdr1). Other canalicular export pumps include the two-

half transporter Abcg5/g8 for cholesterol and the breast cancer resistance protein (Bcrp) for OA- (not 

shown). Basolateral isoforms of the multidrug resistance-associated protein (MRP3 and MRP4) provide an 

alternative route for the elimination of BS- and nonbile salt OA- from hepatocytes into systemic circulation. 

BS- are reabsorbed in the terminal ileum via ileal Na+  -dependent bile salt transporter (ASBT) and effluxed 

by the recently identified heterodimeric organic solute transporter Ost α/β. Similar mechanisms exist in 

proximal renal tubules and cholangiocytes where an additional, truncated isoform (t-ASBT) or MRP3 may 

be involved in BS- efflux from cholangiocytes. In addition to ASBT and MRPs, proximal renal tubules 
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express Oatp1 (not shown). MRP2 is also present in the apical membrane of enterocytes and proximal 

renal tubules, while MDR1 is also found in intestine and bile ducts. 

 

1.3 Transcriptional regulation of transporters invo lved in bile salt transport  

The functional expression of membrane transport proteins can be regulated at several levels, 

including gene transcription and posttranscriptional activity. Although the mechanism that control 

gene transcription of membrane transporters are still incompletely understood, bile salt uptake 

and efflux systems might be regulated by the following nuclear hormone receptors as well as 

other transcription factors. Bile salts, sterols and fatty acids are natural ligands of nuclear 

hormone receptors expressed in liver and intestine. The requirement for a regulatory network for 

maintaining a bile salt homeostasis in the human body is evident from the fact that the 

intracellular accumulation of bile salts leads to cholestasis, hepatocyte apoptosis and 

parenchymal damage (Faubion et al., 1999). 

 

1.3.1 Farnesoid X receptor (FXR) and retinoid X rec eptor (RXR) 

FXR, which is highly expressed in the liver and intestine, but also in the adrenal gland and 

kidney, plays a dominant role in the regulation of bile acid synthesis and bile salt transport. FXR 

belongs to the NR1 family of nuclear receptors. Studies where transfection of expression 

plasmids containing murine and human FXR into monkey kidney CV-1 or human hepatoma 

HepG2 cells was performed, demonstrated that CDCA is the most effective activator of FXR 

(Makishima et al., 1999). The other bile acids, such as lithocholic acid and deoxycholic acid 

were found to be less effective. FXR together with its heterodimeric partner RXR acts as a 

transcription factor for several bile salt transporters, such as the hepatic bile salt export pump 

Bsep (Ananthanarayanan et al., 2001), the ileal bile acid binding protein I-Babp (Grober et al., 

1999) and MRP2 (Kast et al., 2002). Recently, it was shown that human OSTα/OSTβ expression  

is induced by bile acids through ligand-dependent transactivation of both OST genes by FXR 

(Landrier et al., 2005). 

In addition, the expression of short heterodimeric protein (SHP-1), which acts as a 

transcriptional repressor, is itself regulated by FXR and can downregulate the expression of 

several genes including Ntcp (Denson et al., 2001) and cholesterol 7α- hydroxylase CYP7A1, 

the rate limiting enzyme in bile salt synthesis from cholesterol. Repression of the rat Ntcp gene 

occurred via SHP-mediated inhibition of retinoid activation of the RARα:RXRα element. Bile acid 

feeding of mice markedly upregulated the expression of SHP-1 mRNA while reducing the 

expression of CYP7a1 (Lu et al., 2000). Activation of bile acid synthesis is suppressed by the 
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nuclear receptor SHP-1 by binding and repressing the transcriptional activity of the nuclear 

receptor liver receptor homolog (LRH-1) (Goodwin et al., 2000) and hepatocyte nuclear factor 

(HNF) 4α (Lee et al., 2000b), which are essential activators of the bile acid synthetic enzymes 

CYP7A1 and CYP8B1. However, partial maintenance of negative feedback regulation of bile salt 

synthesis in SHP null mice indicates the existence of SHP independent pathways (Kerr et al., 

2002). 

 

1.3.2 Pregnane X receptor (PXR) and Constitutive an drostane receptor (CAR) 

The pregnane X receptor (PXR) also known as steroid X receptor (SXR) in humans and the 

constitutive androstane receptor (CAR) play besides FXR an important role in the regulation of 

bile salt transporters. Furthermore they act as activators of detoxifying proteins (e.g. cytochrome 

P450 enzymes or transporters) and they enhance metabolism of potentially toxic xenobiotics 

and other compounds. They promote the metabolism and excretion of lipophilic substances from 

the body. Ligands of PXR include rifampicin, RU486, St. Johns wort extract, clotrimazol, 

steroids, statins, phenobarbital, bile salts and bile acid precursors and for CAR xenobiotics and 

phenobarbital, respectively (Kullak-Ublick et al., 2004). After interaction between the receptor 

and a specific ligand (Kliewer et al., 1999), ligand binding induces a conformational change 

within the receptor that facilitates binding of co-activator proteins (e.g. RXR). This heterodimer 

regulates the transcription of the target gene by binding to specific DNA response elements 

(Renaud and Moras, 2000). Concretely, PXR binds with RXR as a heterodimer to a “xenobiotic 

response element” in the promoter of the human CYP3A4 gene (Blumberg et al., 1998).  

Targeted disruption of the mouse PXR gene abolishes the ability of xenobiotics to induce 

CYP3A. The importance of PXR for the regulation of CYP3A was demonstrated by an abolished 

protective effect of pregnolone-16-α-carbonitrile (a potent inducer of CYP3A) in PXR null mice 

after feeding with lithocholic acid which produces severe hepatic necrosis in mice (Staudinger et 

al., 2001; Xie et al., 2001). 

Interestingly, rifampicin which is another potent ligand for SXR and inducer of CYP3A has been 

shown to be effective in the treatment of symptoms of pruritus in cholestatic disease (Cancado 

et al., 1998). It has been speculated that rifampicin may stimulate 6-α-hydroxylation of bile acids, 

leading to glucuronidation by UDP-glucuronosyl transferases and excretion bile salts by 

alternative pathways in the urine (Bremmelgaard and Sjovall, 1979; Wietholtz et al., 1996; Araya 

and Wikvall, 1999).  
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PXR is mainly expressed in the liver and intestine and other target genes that are activated by 

these receptors include Pgp, MRP2, MRP3, and OATP2 (Kast et al., 2002; Staudinger et al., 

2003; Wang and LeCluyse, 2003). 

 

CAR which is constitutively and highly expressed in the liver binds DNA as heterodimer with 

RXRα. Upon stimulation by a ligand CAR translocates from the cytoplasma to the nucleus. CAR 

stimulates the expression of MRP2 (Kast et al., 2002), MRP3 (Cherrington et al., 2002) and 

CYP2B1 (Xiong et al., 2002).  

 

Although PXR and CAR are involved in signalling pathways that protect the body from 

xenobiotics, their activation by drugs represents the molecular basis for an important class of 

drug-drug interactions. Assays that detect PXR activation during drug development are used to 

predict and prevent these drug-drug interactions (Moore and Kliewer, 2000). Most cases of such 

interactions are related to elevated P-gp expression that lead to a decrease of the plasma level 

of concomitantly administered P-gp substrates. Whereas paclitaxel activation of PXR was 

leading to enhanced P-gp mediated drug clearance, docetaxel did not activate PXR. In contrast, 

ET-743, another potent antineoplastic agent, suppressed MDR1 transcription by acting as an 

inhibitor of PXR (Synold et al., 2001). These examples demonstrate how the molecular activities 

of nuclear receptors can control drug clearance. 

 

1.3.3 Peroxisome proliferator activated receptor α (PPAR α) 

The nuclear receptor PPARα, a ligand activated transcription factor that regulates the 

expression of a number of genes involved in peroxisomal and mitochondrial β-oxidation of fatty 

acids, activates the apical sodium-dependent bile salt transporter (ASBT/SLC10A2) (Jung et al., 

2002) and the hepatocyte canalicular phospholipids flippase Mdr2/MDR3 (ABCB4) (Kok et al., 

2003). The ligands include fatty acids, fibrates, eicosanoids and NSAIDS (Desvergne and Wahli, 

1999). Upon activation, PPARα binds as a heterodimer with the retinoid X receptor (RXR) to a 

peroxisome proliferator-response element (PPRE) located in the promoter region of target 

genes.  

The observation that patients with type IV hypertriglyceridemia exhibited decreased intestinal 

bile salt absorption and reduced ileal expression of ASBT mRNA postulated a possible link 

between intestinal bile salt absorption via ASBT and hepatic fatty acid catabolism (Duane et al., 

2000). PPARα was shown to play a critical role in the adaptive response to fasting in mice 

(Kroetz et al., 1998; Kersten et al., 1999; Leone et al., 1999) and PPARα also influences bile 



  21 

acid composition by induction of the sterol 12α-hydroxylase, which acts at a branch-point in the 

bile acid synthetic pathway by catalizing the conversion of 7α-hydroxy-4-cholesten-3-one to 

7α,12α-dihydroxy-4-cholesten-3-one. This reaction determines the ratio of cholic acid to 

chenodeoxycholic acid. (Hunt et al., 2000) In Hepa 1c1c7 cells, which were transiently 

transfected with an expression plasmid for PPARα and RXRα and a luciferase reporter 

construct containing copies of the rat PPRE, an inhibition of PPARα reporter gene expression 

was shown with increasing concentrations of chenodeoxycholic acid (CDCA) in the presence or 

absence of Wy-14,643 (=PPARα ligand) (Sinal et al., 2001). It was concluded that during certain 

pathophysiological states, where intracellular bile acid concentrations might be elevated, effects 

on PPARα-dependent target gene regulation are possible (Sinal et al., 2001). In addition, 

PPARα was shown to transactivate the human ASBT gene (Jung et al., 2002). Incubation of 

human hepatoma HepG2 cells with CDCA resulted in a significant induction of PPARα mRNA 

levels and hPPARα gene expression was upregulated by taurocholic acid in human primary 

hepatocytes (Pineda Torra et al., 2003). 

In addition to these ligand-activated nuclear receptors, other factors such as the hepatocate 

nuclear factor (HNF) family of liver enriched transcription factors including HNF1α, HNF3β and 

CCAAT/enhancer binding protein (C/EBP), as well as sterol responsive element binding protein 

(SREBP) and nuclear factor kappa B (NF-κB) also appear to play an important role in the 

regulation of bile salt transporters (Trauner and Boyer, 2003). 

Another interesting inductor of intestinal Na+ dependent bile salt transport seems to be the 

glucocorticoid receptor (GR), a nuclear steroid receptor. The human ASBT gene has been 

shown to be transactivated by the GR and its ligands dexamethasone and budesonide (Jung et 

al., 2004).  

 

1.3.4 Cholestasis 

Cholestasis is an impairment of bile secretion which may result either from a functional defect in 

bile formation at the level of hepatocytes (hepatocellular cholestasis: autoimmune, metabolic, 

infectious, genetic disorders) or from an impairment in bile secretion (transmembrane transport 

systems in hepatocytes and cholangiocytes) or from disturbed structural and/or functional 

integrity of the bile secretory pathway (Trauner et al., 1998). Under cholestatic conditions with 

impaired bile secretion, the enterohepatic circulation is disrupted. In animal models, rats with 

common bile duct ligation (CBDL) showed an impaired expression and function of the hepatic 

uptake (Ntcp/Slc10a1, Oatps/SLC21a) and excretory systems (Bsep/Abcb11, Mrp2/Abcc2) 
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(Trauner et al., 2005). In obstructive cholestasis, an increased cholehepatic shunting, as shown 

by increased expression of cholangiocellular Asbt, removes stagnant bile salts from the 

obstructed ducts returning them to the systemic circulation. The impaired expression and 

function of hepatic uptake systems, reduced expression of Asbt in the kidney, a change 

associated with a diminished capacity to reabsorb bile salts from the glomerular filtrate as well 

as an up-regulation of Mrp2 protein expression on the apical membrane of the rat renal proximal 

tubule (Lee et al., 2001) facilitates the excretion of bile salts by this alternative excretory route. 

MRP2 is associated with an increased ability to excrete divalent organic anions such as bile salt 

sulfates and glucuronides (bilirubin) that accumulate during cholestasis and would therefore 

facilitate extrahepatic pathways for bile salt and bilirubin excretion during cholestasis. In the 

intestine of bile duct-ligated rats down-regulation of ASBT expression in the terminal ileum was 

shown. The intestinal absorption rate of taurocholate was lower and the absorption rate was 

inversely correlated to serum bile salt concentrations when compared to sham operated rats 

(Sauer et al., 2000).  

Apart from species differences in bile acid composition and transporter gene regulation, a major 

obstacle for a direct extrapolation of rodent data to human data is the different duration of 

cholestasis in animal models (day to weeks) versus human cholestatic disorders (weeks to 

months/years). Findings from animal experimental models can not be unequivocally applied to 

human cholestatic diseases. Therefore, in this thesis the effect of an obstructed bile secretory 

pathway on the intestinal expression of bile salt transporters and on regulatory proteins was 

investigated in human subjects. 

 

1.4 ABC transporters 

The ATP-binding cassette (ABC) transporters represent a large and diverse superfamily of 

transmembrane proteins which bind ATP and use the energy to drive the transport of various 

molecules across cell membranes. A complete ABC transporter consist of transmembrane 

domains which anchor the transporter in the lipid bilayer and two ATP-binding domains, also 

known as nucleotide binding folds (NBFs). Proteins are classified based on the sequence and 

organization of their nucleotide binding folds (NBFs). The transporters share extensive 

sequence homology and domain organisation including the characteristic ATP-binding cassette. 

They are classified into seven subfamilies (ABCA to ABCG). Their main function is the 

unidirectional, energy dependent translocation of compounds from the cytoplasm to the outside 

of the cell or into an intracellular compartment (endoplasmic reticulum (ER), mitochondria, 

peroxisome) against a concentration gradient.  
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The first member discovered in 1976 (Juliano and Ling, 1976) was P-glycoprotein (MDR1; 

ABCC1). This protein appeared to be overexpressed in tumour cells with a multidrug resistance 

phenotype where it conferred resistance to many unrelated cytotoxic drugs. Later the existence 

of the multi-drug resistance associated proteins (MRPs; ABCC) was revealed. Some of these 

transporters are relevant for drug transport, as well as the recently discovered ABC transporter 

breast cancer resistance protein (BCRP; ABCG2).  

In this thesis MDR1 (ABCB1), MRP1-5 (ABCC1-5) as well as BCRP (ABCG2) were of particular 

interest, since these proteins can have a major impact on drug absorption and disposition, 

extrusion of toxic compounds to the outside of the cell and are involved in the transport of 

endogenous substrates, among others bile acids, bilirubin or cholesterol (Gottesman et al., 

2002).  

 

1.4.1 MDR1 (ABCB1) 

MDR1 is the best characterized ABC transporter. P-glycoprotein (P-gp), the gene product of 

MDR1 has a molecular weight of 170 kDa and consists of 12 transmembrane domains and two 

nucleotide-binding sites. P-gp is expressed on the apical membrane of normal tissues such as 

intestine, kidney, liver, adrenal gland and blood-brain barrier. By limiting absorption and 

enhancing the excretion of toxic compounds/metabolites P-gp is assumed to function as 

gatekeeper against toxic xenobiotics in the gut or in the blood-brain barrier (Tanigawara, 2000). 

P-gp is a transporter with extreme wide substrate specificity and many unrelated substances 

were identified as P-gp substrates. However, a tendency towards organic compounds with 

cationic or amphiphatic nature could be determined (Schinkel and Jonker, 2003). The high 

expression in solid tumours indicated the pivotal role of Pgp in clinical resistance to 

chemotherapy. Individual differences in expression and/or activity of MDR1 (P-gp) were shown 

to lead to changes in drug bioavailability (Lown et al., 1997).  

Moreover, genetic variants (single nucleotide polymorphisms, SNPs) can alter P-gp expression 

and function, as well as may also predispose to certain diseases. To date 28 SNPs have been 

identified in the MDR1 gene, whereas 11 SNPs resulted in an amino acid exchange (Schwab et 

al., 2003). The most important is the C3435T polymorphism, for which it was found that about 

25% of Caucasian subjects were homozygous for this polymorphism (Cascorbi et al., 2001). 

This polymorphism does not influence the amino acid sequence but is associated with an altered 

P-gp expression and function. On average, the TT homozygotes have a lower level of intestinal 

Pgp resulting in an increase of digoxin plasma levels, compared to the CC genotype group 

(Hoffmeyer et al., 2000). C3435T is also reported to be a risk factor for certain class of diseases 
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including inflammatory bowel disease, Parkinson’s disease and renal epithelial tumour 

(Siegsmund et al., 2002; Schwab et al., 2003; Sakaeda et al., 2004). 

Interactions are likely to occur in multidrug therapy as P-gp transports a wide range of 

structurally diverse drugs and a large number of drugs potentially influence MDR activity and 

even some drugs alter the expression of MDR1. It has been reported that P-gp inhibitors such 

as verapamil, itraconazole, ritonavir, and talinolol increased the plasma concentrations of the P-

gp substrate digoxin due to inhibition of P-gp mediated efflux (Verschraagen et al., 1999; 

Westphal et al., 2000a; Angirasa and Koch, 2002; Ding et al., 2004). Additionally, P-gp has also 

been shown to be inducible in vitro and in vivo by xenobiotics such as rifampicin (Westphal et 

al., 2000b), Phenobarbital (Lu et al., 2004), dexamethasone (Fardel et al., 1993), and herbal 

extracts from St. John’s wort (Zhou et al., 2004). Interestingly even components of our daily 

nutrition, e.g. grapefruit juice have been shown to influence MDR1 activity (Soldner et al., 1999; 

Wang et al., 2001a). Increased P-gp expression can therefore lead to subtherapeutic 

concentrations of concomitantly administered substrates. 

MDR1 inhibitors are evaluated in clinical trials of chemotherapy to reduce multidrug resistance 

(Kornblau et al., 1997).  

 

 

1.4.2 MRP1-5 (ABCC1-5) 

The family of multi-drug resistance associated proteins (MRPs) is another important group of 

human ABC transporters that are relevant for drug transport. All of them possess the 

characteristic ATP binding cassette motive but they vary in the number of their transmembrane 

domains. So far, this subfamily includes nine members (MRP1-9). In contrast to P-gp, MRPs 

work mainly as transporters of amphiphatic organic anions. Therefore, they are capable to 

extrude drug conjugates, such as glucuronide-, glutathione-, and sulphate-conjugates out of 

cells. 

 

MRP1 (ABCC1)  is ubiquitously expressed in the body and is localised on the basolateral 

membrane of epithelial cell layers as well as in the ER and post-Golgi vesicles. Physiological 

important substrates for MRP1 include glutathione S-conjugates such as leukotriene C4, as well 

as glucuronate and sulphate conjugates, e.g. bilirubin glucuronides (Keppler et al., 1998). In 

addition, anionic drugs and drugs like methotrexate or arsenite are also transported by MRP1 

(Bakos et al., 2000). MRP1 drug resistance phenotype overlaps with that of Pgp and is 

associated with resistance to anthracyclines, etoposide and vinca alkaloids. 



  25 

 

MRP2 (ABCC2)  is expressed in the liver, intestine, kidney, placenta and blood- brain barrier. It 

mediates the transport of drugs and conjugated compounds into bile, intestinal lumen and urine, 

respectively and therefore out of the body (Schaub et al., 1997; Kusuhara and Sugiyama, 2002). 

The substrate specificity of MRP2 is similar to that of MRP1, and includes glutathion conjugates, 

billirubin glucuronides, and a number of drugs and their conjugated drug metabolites 

(Jedlitschky et al., 1997; Kawabe et al., 1999). These drugs include temocaprilat, irinotecan, SN-

38, arsenite, cisplatin, methotrexate, vincristine, saquinavir, and ceftriaxone (Kusuhara and 

Sugiyama, 2002; Dietrich et al., 2003). Similar to MDR1, MRP2 seems to be inducible by 

rifampicin treatment (Fromm et al., 2000), which indicates possible interactions in multidrug 

therapy. Influence on the MRP2 protein expression was also shown for tamoxifen (Kauffmann et 

al., 1998). In addition, MDR1 and MRP2 share some substrates as well as inhibitors, which may 

lead to interactions and influence the oral bioavailability of certain drugs. Similarly to MDR 1 

some components of our daily diet, such as the flavonoid epicatechin in tea (Vaidyanathan and 

Walle, 2001), chrysin and its metabolites (Walle et al., 1999) were shown to be substrates of 

MRP2. 

As MRP2 is expressed in the tips of the intestinal villi, which are atrophic in celiac sprue, the 

reduction of MRP2 protein expression might be associated as consequence with impaired 

clearing of MRP2 substrates (Dietrich et al., 2003).  

Polymorphisms, as described for MDR1, have also been shown for MRP2 (Itoda et al., 2002a; 

Itoda et al., 2002b), but neither frequency nor influence on transporter activity or expression 

have yet been defined. In patients with the Dubin-Johnson syndrome MRP2 is completely 

absent in canalicular membranes of hepatocytes and apical membranes of enterocytes due to a 

nonsense mutation in the MRP2 gene resulting in truncation and degradation of the protein. The 

absence of this transporter in the hepatocyte canicular membrane leads to impaired biliary 

secretion of glutathione, glutathione conjugates, and bilirubin glucuronides (Paulusma et al., 

1997). If individual differences in MRP2 gene and protein expression might have influence on 

the prevalence of certain intestinal diseases, such as Crohns disease and celiac sprue is 

currently under inverstigation. 

 

MRP3 (ABCC3) , like MRP1, is present on the basolateral membrane of polarized cells, mainly in 

liver, intestine and kidney (Scheffer et al., 2000). Substrates of MRP3 include glucuronate 

conjugates. MRP3 transports a wide range of bile salts and seems to be involved in their 

reabsorption to the portal blood on the basolateral membrane of the intestinal epithelial cells 
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(Hirohashi et al., 2000). MRP3-transfection of cell lines conferred resistance to 

epipodophyllotoxins, vincristine and methotrexate (Kool et al., 1999). Therefore, MRP3 may also 

contribute to a protective function by excreting a range of toxic substances from various 

epithelial cell types. 

 

MRP4 (ABCC4) and MRP5 (ABCC5) are 2 structurally similar members of the MRP family and 

are both capable of transporting therapeutic nucleoside based compounds (Schuetz et al., 1999; 

Lee et al., 2000a; Chen et al., 2001). 

For MRP4, there are no definite data concerning cellular localization or tissue distribution. For 

instance, it has been reported that MRP4 is located on the basolateral membrane of prostate 

cells (Lee et al., 2000a), whereas others showed MRP4 expression on the apical membrane of 

kidney cells (van Aubel et al., 2002). The significance of MRP4 in drug transport is at present 

unclear as well. However, an over-expression of MRP4 severely impaired the antiviral efficacy of 

adefovir, azidothymidine, 9-(2-phosphonylmethoxyethyl)adenine (PMEA) and of other 

nucleoside analogs in PMEA-resistant lymphoblastoid cell line (Schuetz et al., 1999). This 

finding has two potential clinical significances and may affect therapeutic response. First, MRP4 

can decrease the intracellular concentration of the respective antiretroviral drug, which leads to 

impaired suppression of HIV replication. Second MRP4 overexpression in cells lines can protect 

from the cytotoxic effects of antiretroviral drugs.  

MRP4 can be considered to be an organic anion transporter, as is expected for an MRP family 

member. Other substrates include folic acid, bile acids, methotrexate and 6-mercaptopurine 

(Wielinga et al., 2002). A physiological role of MRP4 might be the release of prostaglandins from 

cells (Reid et al., 2003). 

MRP5 (ABCC5) is widely expressed throughout most tissues. Like MRP4, it has an affinity to 

nucleotidebased substrates. A study demonstrated that MRP5 transports the cyclic nucleotides 

cAMP and cGMP (Jedlitschky et al., 2000), but the physiological function of this transporter 

remains to be elucidated. There are no reports at present, which could suggest a role for MRP5 

in drug disposition. Experiments with transfected cells showed enhanced efflux of DNP-SG (2,4-

dinitrophenyl-S-glutathione), adefovir, and the purine analogues 6-mercaptopurine and 

thioguanine (Wijnholds et al., 2000). 

 

1.4.3 ABCG2 (BCRP) 

Human breast cancer resistance protein (BCRP, ABCG2), which belongs to the ABC transporter 

family, was discovered and cloned by Doyle et al. from a doxorubicin-resistant MCF7 breast 
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cancer cell line (MCF7/AdrVp) (Doyle and Ross, 2003). Structurally, BCRP is a half-transporter 

(one nucleotide-binding domain, 6 transmembrane domains) and it seems very likely that it 

functions as a homodimer (Ozvegy et al., 2001). Whether BCRP can also function as a 

heterodimer with other halftransporters of the ABCG class is not known. BCRP is expressed in 

different tissues, among others in the bile canalicular membrane of hepatocytes and in the apical 

membrane of intestinal epithelial cells (Doyle and Ross, 2003). It is a transporter with a wide 

substrate specificity recognizing molecules of either negative or positive charge, organic anions 

and sulphate conjugates. Antitumor agents have been widely examined and BCRP can render 

tumor cells resistant to the anticancer drugs topotecan, mitoxantrone, doxorubicin, and 

daunorubicin (Jonker et al., 2000). Also, BCRP mediates apically directed drug transport, 

appears to reduce drug bioavailability, and protects fetuses against drugs (Jonker et al., 2000). 

Recently, BCRP induction in human T-cells was observed after prolonged exposure to 

sulfasalazine. In the same study enhanced TNFα release and an insufficient inhibition of TNFα 

production by sulfasalazine was demonstrated, suggesting that drug resistance might also be 

induced by anti-inflammatory agents such as sulfasalazine (van der Heijden et al., 2004a; van 

der Heijden et al., 2004b). 

 

1.5 Solute carrier (SLC) 

The SLC (Solute Carrier) family includes ion coupled transporters, facilitated transporters, and 

exchangers. The genes encoding these transporters are divided into 43 gene families (SLC1-43, 

according to the HUGO Gene Nomenclature Committee) and include 298 transporter genes at 

present (Hediger et al., 2004). These SLC membrane proteins use cellular chemical and/or 

electrical gradients to move molecules across cell membranes. Physiologically, they transport 

many endogenous substances such as amino acids, glucose, bicarbonate, bile acids, ascorbic 

acid, urea or fatty acids. However, members of this superfamily can also be involved in drug 

transport and play a role in drug disposition. Many of them are expressed in important organs for 

drug disposition such as kidney, liver, and intestine. Here, the expression and regulation of the 

apical sodium dependent bile salt transporter (ASBT, SLC10A2) was investigated, which 

represents a critical component of the enterohepatic circulation of bile salts.  

 

1.5.1 Na+/ taurocholate cotransporting polypeptide (NTCP; SL C10A1), Apical sodium 

dependent bile salt transporter (ASBT, SLC10A2) 

NTCP and ASBT belong to the same family of solute carriers. By reabsorbing bile salts from the 

blood, bile, glomerular filtrate as well as intestinal lumen they are critical determinants of the 
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enterohepatic circulation of bile salts. Both are cotransporters that mediate sodium-dependent 

bile salt uptake into hepatocytes (NTCP), cholangiocytes, enterocytes and renal proximal tubular 

cells (ASBT), respectively.  

ASBT  is a membrane glycoprotein which consists of 348 amino acids and is expressed on the 

apical membrane of enterocytes in the terminal ileum, of proximal renal tubular cells and of 

cholangiocytes. Human ASBT transports conjugated and unconjugated bile salts with a higher 

affinity for CDCA and DCA than for taurocholate (Craddock et al., 1998). Subjects with 

mutations in the ASBT gene suffer from congenital diarrhea and steatorrhea, due to bile salt 

malabsorption (Oelkers et al., 1997) and pharmacological inhibition of the transport activity leads 

to interruption of enterohepatic circulation of bile salts with changes in the cholesterol and bile 

acid homeostasis (Lewis et al., 1995; Huff et al., 2002; West et al., 2002; Bhat et al., 2003; 

Telford et al., 2003). Adaptive induction of ASBT mRNA expression, transporter protein and 

transport activity was observed in cholic acid fed rats (Stravitz et al., 1997), whereas decreased 

ASBT expression was found in the ileum of bile duct ligated rats (Sauer et al., 2000). 

The transcriptional regulation of bile salt transporters, as already described in Chapter 3 is very 

complex, and the intracellular factors that influence ASBT gene expression remain largely 

unknown. One such potential factor might be the nuclear receptor PPARα, a ligand activated 

transcription factor that regulates the expression of a number of genes involved in peroxisomal 

and mitochondrial β-oxidation of fatty acids. PPARα binds as a heterodimer with the retinoid X 

receptor (RXR) to a peroxisome proliferator-response element (PPRE) located in the promoter 

region of target genes. PPARα was shown to play a critical role in the adaptive response to 

fasting in mice (Kroetz et al., 1998; Kersten et al., 1999; Leone et al., 1999) and PPARα also 

influences bile acid composition by induction of the sterol 12α-hydroxylase, which determines 

the ratio of cholic acid to chenodeoxycholic acid (Hunt et al., 2000). Recently, PPARα was 

shown to transactivate the human ASBT gene (Jung et al., 2002). In addition, hPPARα gene 

expression was upregulated by taurocholic acid in human primary hepatocytes (Pineda Torra et 

al., 2003).  

NTCP is a membrane glycoprotein which consists of 349 amino acids and shares about 35% 

amino acid identity with the human ASBT. The human NTCP is expressed on the basolateral 

membrane (sinusoidal membrane) of human hepatocytes and promotes by its high affinity for 

conjugated bile salts the extraction of bile salts from portal blood into the hepatocytes. NTCP 

was not investigated in this thesis. Additional informations are provided in a review by 

Hagenbuch et al. (Hagenbuch and Dawson, 2004). 
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2. Material and Methods  
 
2.1 Absolute quantification of transporter mRNA exp ression 
(quantitative real-time RT-PCR)  
 
2.1.1 Introduction 

Reverse transcription polymerase chain reaction (RT-PCR) is the most common method for 

analysing mRNA expression patterns and comparing mRNA levels in different samples. In this 

thesis, real time RT-PCR (TaqMan®) was used to measure gene expression in human tissue or 

cell lines. With this method the specific gene products generated during each cycle of the PCR 

can be reliably measured and are directly proportionate to the amount of template prior to the 

start of the PCR. Prior to PCR amplification the isolated cellular mRNA was reverse transcribed 

into cDNA which subsequently was quantified with TaqMan® analysis using the standard curve 

method. By using external standards that comprise known amounts of specific cDNA fragments 

of the gene of interest, the unknown amount of cDNA in the analysed samples could be 

expressed as absolute transcript numbers of the corresponding gene. 

 

2.1.2 Real-time PCR (TaqMan® assay) 

The 5`nuclease assay or TaqMan® assay is a highly sensitive method to determine mRNA 

levels quantitatively. This method uses a target specific oligonucleotide, the TaqMan probe, 

which anneals between the forward and reverse primer sites. The probe carries a reporter dye 

on the 5`end (6-carboxy-fluorescein) and a quencher dye on the 3` end (6-carboxy-tetramethyl-

rhodamine). As long as the probe is intact the fluorescence of the reporter dye is suppressed by 

the quencher dye. However, during the PCR the DNA polymerase (Taq polymerase) cleaves the 

probe due to its 5`-3` exonuclease activity. Now, a fluorescent signal is generated because the 

reporter dye is separated from the quencher dye. Consequently, there is an increase of 

fluorescence after each PCR cycle. With the ability to measure the PCR products as they are 

accumulating, in "real time," it is possible to measure the amount of PCR product at a point in 

which the reaction is still in the exponential range. It is only during this exponential phase of the 

PCR reaction that it is possible to extrapolate back to determine the starting amount of template. 

During the exponential phase in real-time PCR experiments, a fluorescence signal threshold is 

determined at which point all samples can be compared. Therefore, the number of PCR cycles 

required to generate enough fluorescent signal to reach this threshold is defined as the cycle 

threshold, or Ct. These Ct values are directly proportionate to the amount of starting template 
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and are the basis for calculating mRNA expression levels. The baseline is defined as the PCR 

cycles in which a signal is accumulating but is beneath the limits of detection of the instrument.  

For each study, TaqMan experiments were carried out either on a Gene Amp 5700 Sequence 

Detector using 96 well plates with total reaction volumes of 25 µL, or on a 7900HT Sequence 

Detection System using 384 well plates with total reaction volumes of 10 µL (all Applied 

Biosystems, Rotkreuz, Switzerland). PCR conditions were throughout 10 min 95°C followed by 

40 cycles of 15 s 95°C and 1 min 60°C. TaqMan Unive rsal PCR Mastermix (Applied 

Biosystems) was used. Each reaction contained 1 ng/µL cDNA and the concentrations of 

primers and probes were 900 nM and 225 nM, respectively.  

Gene Probe start length Tm 
MDR1 5`-AAGCTGTCAAGGAAGCCAATGCCTATGACTT-3` 1929 31 bp 69.0 °C 
MRP1 5`-CCTCCACTTTGTCCATCTCAGCCAAGAG-3` 2267 28 bp 69.0 °C 
MRP2 5`-CTCAATATCACACAAACCCTGAACTGGCTG-3` 3773 30 bp 68.0 °C 
MRP3 5`-CCAACCGGTGGCTGAGCATCG-3` 3608 21 bp 69.0 °C  
MRP4 5`-CAAACCGAAGACTCTGAGAAGGTACGATTCCT-3` 2094 32 bp 68.4 °C 
MRP5 5`-CTGACGGAAATCGTGCGGTCTTGG-3` 804 24 bp 69.0 °C 
Villin 5`-TCATCAAAGCCAAGCAGTACCCACCAAG-3` 977 28 bp 69.2 °C 

GAPDH 5`-CGCCTGGTCACCAGGGCTGC-3` 79 20 bp 69.0 °C 
BCRP 5`-CCATTGCATCTTGGCTGTCATGGCTT-3` 1883 26 bp 69.4 °C 
ASBT 5`-TTCAGCTCTCCTTCACTCCTGAGGAGCTC-3` 1419 29 bp 69.0 °C 

PPARα 5`-AGGCTGCAAGGGCTTCTTTCGGC-3` 570 23 bp 69.0 °C 
     

Gene Forward Primer start length Tm 
MDR1 5`-CTGTATTGTTTGCCACCACGA-3` 1854 21 bp 58.0 °C  
MRP1 5`-GGGCTGCGGAAAGTCGT-3` 2236 17 bp 58.0 °C 
MRP2 5`-ACTGTTGGCTTTGTTCTGTCCA-3` 3746 22 bp 58.4 °C 
MRP3 5`-GGTGGATGCCAACCAGAGAA-3` 3567 20 bp 59.0 °C 
MRP4 5`-AAGTGAACAACCTCCAGTTCCAG-3` 2026 23 bp 58.3 °C 
MRP5 5`-CTGCAGTACAGCTTGTTGTTAGTGC-3` 768 25 bp 59.0 °C 
Villin 5`-CATGAGCCATGCGCTGAAC-3` 957 19 bp 59.9 °C 

GAPDH 5`-GGTGAAGGTCGGAGTCAACG-3` 42 20 bp 59.0 °C 
BCRP 5`-CAGGTCTGTTGGTCAATCTCACA-3` 1859 23 bp 58.7 °C 
ASBT 5`-ACGCAGCTATGTTCCACCATC-3` 1397 21 bp 59.0 °C  

PPARα 5`-CATTACGGAGTCCACGCGT-3` 547 19 bp 58.0 °C 
     

Gene Reverse Primer start length Tm 
MDR1 5`-AGGGTGTCAAATTTATGAGGCAGT-3` 1992 24 bp 59.0 °C 
MRP1 5`-AGCCCTTGATAGCCACGTG-3` 2315 19 bp 57.0 °C 
MRP2 5`-CAACAGCCACAATGTTGGTCTCTA-3` 3845 24 bp 60.0 °C 
MRP3 5`-GCAGTTCCCCACGAACTCC-3` 3651 19 bp 59.0 °C 
MRP4 5`-GGCTCTCCAGAGCACCATCT-3` 2144 20 bp 58.0 °C 
MRP5 5`-TCGGTAATTCAATGCCCAAGTC-3` 860 22 bp 59.8 °C  
Villin 5`-TCATTCTGCACCTCCACCTGT-3` 1028 21 bp 59.2 °C 

GAPDH 5`-ACCATGTAGTTGAGGTCAATGAAGG-3` 164 25 bp 59.0 °C 
BCRP 5`-TCCATATCGTGGAATGCTGAAG-3` 1936 22 bp 58.7 °C 
ASBT 5`-GCGGGAAGGTGAATACGACA-3` 1469 20 bp 60.0 °C 

PPARα 5`-ACACCAGCTTGAGTCGAATCG-3` 616 21 bp 59.0 °C 
 

Table 2.1: Sequence, starting position, length (base pairs), and melting temperature of the primers and 

probes that were used for TaqMan analysis. 
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Primers and probes (Table 2.1) were designed according to the guidelines of Applied 

Biosystems with help of the Primer Express 2.0 software. Primers were synthesized by 

Invitrogen (Basel, Switzerland), probes by Eurogentec (Seraing, Belgium). 

All samples in this thesis were run in triplicates. Not reverse transcribed RNA served as negative 

control. No significant amplification was observed in these samples. 

In Chapter 3.1 to 3.4 for each sample, the number of gene transcripts (ASBT, BCRP, MDR1, 

MRP1-5, PPARα) and the number of villin transcripts were determined. By calculating the ratio 

of gene/villin mRNA, the gene expression was normalized to the enterocyte content. 

Determination of villin, an enterocyte specific, constitutively expressed protein can be used to 

control for variation of enterocyte content in biopsies (Lown et al 1997, Taipalensuu et al 2001). 

In Chapter 5 gene expression of MDR1, BCRP, MRP1-5 was normalized to GAPDH, a gene 

which occurs ubiquitary in human tissues. 

 

2.1.3 Generation of cDNA standards for absolute mRN A quantification 

In order to generate standard curves gene-specific cDNA fragments with known concentrations 

as standards were used. These standards serve as a template during the real-time PCR 

because they cover the TaqMan primer/probe area and therefore they are amplified similar to 

the cellular reverse transcribed mRNA of the appropriate gene. Standards were obtained by 

PCR amplification using primers that anneal outside the area where the TaqMan primers anneal 

on the template. Since MDR1, MRP1-5, Villin, and ASBT are expressed in Caco-2 cells and 

BCRP is expressed in BB19 cells, reverse transcribed RNA of these cell lines as a template for 

PCR amplification was used. Each reaction contained 25 ng cDNA and 300nm of each primer in 

a total reaction volume of 25µL. The primers (Table 2.2) were designed using the primer express 

software 2.0 (Applied Biosystems) and were manufactured by Invitrogen (Basel, Switzerland). 

The components of the PCR reaction (AmpliTaq Gold, 10x PCR buffer, dNTPs, MgCl2) were 

purchased form Applied Biosystems. Thermal cycling was conducted using a Mastercycler 

personal from Eppendorf (Hamburg, Germany) and an annealing temperature of 55°C was 

used. The PCR products were purified by running a 1.5% agarose gel (TAE buffer, 100V, 50 

min) and by a subsequent gel extraction (gel extraction kit, Qiagen).  

The obtained standards were quantified using the PicoGreen® dsDNA quantitation kit according 

to the manufacturers protocol (Molecular Probes, Eugene, OR). The PicoGreen® reagent is an 

ultrasensitive fluorescent nucleic acid stain for quantitating double-stranded DNA using 

bacteriophage lambda DNA as a standard. The amount of cDNA in the sample was expressed 

as ng DNA per mL. 
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Additionally, the purified and quantified PCR products were analysed by sequencing (Microsynth 

GmbH, Balgach, Switzerland). The received sequences were aligned to the genes of interest 

using the BLAST program (http://www.ncbi.nlm.nih.gov/BLAST) in order to confirm the identity of 

the PCR products. For further calculations the molecular weights of the cDNA fragments (Table 

2.3) were determined on the basis of the corresponding sequence with the help of a biopolymer 

calculator (http://paris.chem.yale.edu/extinct.frames.html). 

primer sequence start length Tm 

MDR1 forward 5`-ACAGTCCAGCTGATGCAGAGG-3`  1730  21 bp  59.1 °C 

MDR1 reverse 5`-CCTTATCCAGAGCCACCTGAAC-3`  2150  22 bp  58.7 °C 

MRP1 forward 5`-CACACTGAATGGCATCACCTTC-3`  2173  22 bp  59.1 °C 

MRP1 reverse 5`-CCTTCTCGCCAATCTCTGTCC-3`  2489  21 bp  59.8 °C 

MRP2 forward 5`-CCAATCTACTCTCACTTCAGCGAGA-3`  3509  25 bp  60.0 °C 

MRP2 reverse 5`-AGATCCAGCTCAGGTCGGTACC-3`  3981  22 bp  60.5 °C 

MRP3 forward 5`-TCTATGCAGCCACATCACGG-3`  3419  20 bp  59.3 °C 

MRP3 reverse 5`-GTCACCTGCAAGGAGTAGGACAC-3`  3746  23 bp  58.8 °C 

MRP4 forward 5`-AAGTGAACAACCTCCAGTTCCA-3`  2026  22 bp  57.3 °C 

MRP4 reverse 5`-CCGGAGCTTTCAGAATTGAC-3`  2543  20 bp  56.1 °C 

MRP5 forward 5`-CTAGAGAGACTGTGGCAAGAAGAGC-3`  570  25 bp  59.0 °C 

MRP5 reverse 5`-AAATGCCATGGTTAGGATGGC-3`  902  21 bp  59.6 °C 

Villin forward 5`-AGAAAGCCAATGAGCAGGAGAA-3`  926  22 bp  59.1 °C 

Villin reverse 5`-ATGGATGTGGCATCGAACTTC-3`  1163  21 bp  58.5 °C 

GAPDH forward 5`-ACATCGCTCAGAACACCTATGG-3` 16 22 bp 58.0 °C 

GAPDH reverse 5`-GCATGGACTGTGGTCATGAGTC-3` 572 22 bp 59.0 °C 

BCRP forward 5'-TTTCAGCCGTGGAACTCTTT-3'  1529  20 bp  56.2 °C 

BCRP reverse 5'-TGAGTCCTGGGCAGAAGTTT-3'  1990  20 bp  56.0 °C 

ASBT forward 5`-CATCTCTGGTTGCTCTCGTTGTTC-3`  1098  24 bp  61.1 °C 

ASBT reverse 5`-TGATGTCTACTTTTCGTCAGGTTGAA-3`  1651  26 bp  60.0 °C 

PPARα forward 5`-AGGAAGCTGTCCTGGCTCAG-3` 381 20 bp 58.2 °C 

PPARα reverse 5`-CGTCCAAAACGAATCGCG-3` 734 18 bp 59.8 °C 

 

Table 2.2: Sequence, starting position, length (base pairs), and melting temperature of the primers that 

were used for the generation of gene-specific cDNA standards. 

 
amplicon gene name accession number length molecula r weight 

MDR1 ABCB1 NM_000927  421 bp 130377.2 g/mol 

MRP1  ABCC1 NM_004996  317 bp 97797.4 g/mol 

MRP2  ABCC2 NM_000392  473 bp 145684.6 g/mol 

MRP3  ABCC3 NM_020038  328 bp 100912.6 g/mol 

MRP4  ABCC4 NM_005845  518 bp 159304.6 g/mol 

MRP5  ABCC5 NM_005688  333 bp 102594.6 g/mol 

Villin VIL1 NM_007127  238 bp 73486.6 g/mol 

GAPDH GAPDH M17851 557 bp 171314.4 g/mol 

BCRP ABCG2 NM_004827  462 bp 142064.4 g/mol 
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ASBT SLC10A2 NM_000452  554 bp 170455.8 g/mol 

PPARα PPARA BC000052 353 bp 109082.8 g/mol 

 

Table 2.3: Gene name, gene bank accession number, length (base pairs) and molecular weight of the 

PCR amplicons that were used as standards for TaqMan analysis. 

 

2.1.4 Standard curve method 

A standard curve for each gene on each plate is essential for accurate quantification of mRNA 

transcript numbers. The standard curves were generated by a serial dilution of cDNA standard 

solutions with known amount of PCR template. To obtain standard curves that span the range 

above and below the amount of the unknown samples, the quantified standard solutions were 

first analysed in TaqMan assays and adapted by further dilutions (= standard dilution in 

equation 1) so that the obtained curves were adequate. 

Linear standard curves were composed by plotting the Ct values of the standards against the log 

of their corresponding serial dilution factor. Slope and Y-intercept of the standard curve line were 

then calculated by linear regression. By measuring the Ct value of the unknown sample under 

the same conditions, its corresponding serial dilution factor (= X in equation 1) could then be 

determined. 

Based on this serial dilution factor (X) the number of cDNA molecules of the analysed gene in 

the sample (transcript number) could be estimated. Therefore, the number of cDNA fragments in 

the applied standard solution (standard 1) was calculated and subsequently multiplied with the 

serial dilution factor (X) of the sample. Usually, the transcript number is normalised to 1 µg RNA. 

The following equation (equation 1) shows how the transcript number per µg RNA was 

calculated. 

 

C x V x N x X 

Transcript number µg total RNA =  

standard dilution x MW x 1x1012 

 

Equation 1: C (ng/mL) is the concentration of the standard determined with the PicoGreen® assay. V 

(µL) is the volume of sample cDNA that contains 1 µg of reverse transcribed RNA. This is 100 µL for the 

common cDNA concentration of 10 ng/µL. N is Avogadro`s number (6.022x1023 molecules per mol). X is 

the serial dilution factor of the sample determined with the standard curve. The standard dilution 

describes how-fold the standard 1 has been diluted for adapting the standard curve. MW (g/mol) is the 

molecular weight of the standard. 1x1012 accounts for conversions of units. 
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2.2 Immunohistochemical assessment of BCRP and ASBT  in human intestinal biopsies 

Immunohistochemistry was used to evaluate the expression of the apical sodium-dependent bile 

acid transporter (ASBT/SLC10A2) and of breast cancer resistance protein (BCRP/ABCG2) in 

human intestinal tissue.  

For immunohistochemical assessment of ASBT expression in human intestinal tissue a 

polyclonal rabbit anti-human ASBT (generous gift from Dr. P.A. Dawson, Wake Forest University 

Baptist Medical Center, Winston-Salem, NC) was used. This antibody was raised against the 

carboxyl-terminal 39 amino acids of human ASBT that was expressed as a glutathione S-

transferase-ASBT fusion protein. The human ASBT antibody has been previously used to 

measure ASBT protein expression in human ileal biopsies. 

BCRP monoclonal antibody BXP-21 was purchased from Alexis Biochemicals (Lausen, 

Switzerland).   

 

Human intestinal tissue was mounted in OCT compound (Sakura Finetek, Zooterwoude, The 

Netherlands), frozen in liquid nitrogen and stored at -70°C. Sections (5 µm) of human intestine 

were air dried overnight and a periodate-lysine-paraformaldehyde solution (3%) was used for 

post-fixation. Then the sections were washed with washing solution (TBS/NaCl, Tween 0.05%) 

and incubated with normal horse serum (for BCRP incubation) or with goat serum (for ASBT 

incubation) for 30 min at room temperature as blocking solution. Then, the tissue sections were 

incubated either with a 1:40 dilution of the BCRP monoclonal antibody BXP-21 (Alexis 

Biochemicals, Lausen, Switzerland) or with a 1:400 dilution of the polyclonal rabbit anti-human 

ASBT overnight at 4°C. 

Samples were washed three times with washing solution and incubated with the horse 

antimouse IgG secondary antibody (for BCRP incubation) or with the goat anti-rabbit IgG 

secondary antibody (for ASBT incubation) for 30 min at room temperature, respectively. After 

three washes with the washing solution, a perhydral solution (H2O2 (0.3%), sodium azide (0.1%) 

in PBS) was used to destroy the endogenous peroxidase activity. The staining was performed 

with the avidin/biotinylated enzyme complex (ABC method) according to the manufacturer`s 

instructions (Vectastain, Elite kit, Vector Laboratories, Burlingane, CA, USA). For detection 3-

amino-9-ethylcarbazole (AEC), which forms a red end product, was used (Biogenex, San 

Ramon, CA, USA).  

Sections, which served as negative controls were incubated only with the horse antimouse IgG 

or with the goat anti-rabbit IgG secondary antibody, respectively. Biopsies from normal terminal 

ileum were used as positive control. 
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2.3 Determination of bilirubin and bile acid plasma  concentrations 

Blood samples from subjects were obtained shortly before endoscopic procedure. Bilirubin 

plasma concentrations were measured by a modified Malloy-Evelyn method (BIL-T, Roche 

Diagnostics, Mannheim, Germany).  

 

Fasting plasma levels of bile acids were extracted with Bond-Elut C18 cartridges (Analytichem 

International, San Diego, CA), solvolysis was performed to cleave sulfate groups and enzymatic 

hydrolysis was performed to deconjugate bile acid amidates. Deconjugated bile acids were 

isolated by extraction on Lipidex 1000 (Packard Instruments, Groningen, The Netherlands) and 

were then methylated and trimethylsilylated for gas chromatography. Capillary gas 

chromatography was performed using a Carlo Erba Fractovap 4160 gas-chromatograph (Carlo 

Erba Instruments, Hofheim, Germany). Bile acid derivatives were separated on a fused silica 

capillary CP Sil 19 CB column coated with chemically bonded OV-1701 (25 m x 0.33 mm, 

Chrompack, Middelburg, The Netherlands). Hydrogen was the carrier gas (P=0.6 kg/cm2). A 

temperature program from 140°C to 270°C with 8°/min  was started after on-column injection. 

Eluting bile acid derivates were detected by a flame ionization detector. Fasting plasma samples 

were stored at - 20°C until analyzed. 
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3.1.1 Abstract  
The apical sodium dependent bile acid transporter ASBT (SLC10A2) contributes substantially to 

the enterohepatic circulation of bile acids by their reabsorption from the intestine. In the rat, its 

adaptive regulation was observed in the kidneys, cholangiocytes and terminal ileum after bile 

duct ligation. Whether an adaptive regulation of the human intestinal ASBT exists during 

obstructive cholestasis is not known.  

Human ASBT mRNA expression along the intestinal tract was analyzed by real time PCR in 

biopsies of 14 control subjects undergoing both gastroscopy and colonoscopy. Their duodenal 

ASBT mRNA expression was compared to 20 patients with obstructive cholestasis. Additionally, 

in 4 patients with obstructive cholestasis, duodenal ASBT mRNA expression was measured 

after reconstitution of bile flow.  

Normalized ASBT expression in control subjects was highest (mean arbitrary units± SEM) in the 

terminal ileum 1010 ± 330. Low ASBT expression was found in the colonic segments (8.3±5, 

4.9±0.9, 4.8±1.7 and 1.1±0.2, ascending, transverse, descending, and sigmoid colon, 

respectively). Duodenal ASBT expression of control subjects was found with 171.8±20.3 at 

about four fold higher levels when compared to 37.9±6.5 (p<0.0001) in patients with obstructive 

cholestasis. Individual ASBT mRNA expression was inversely correlated with bile acid and 

bilirubin plasma concentrations. In 4 cholestatic patients average ASBT mRNA increased from 

76±18 before to 113±18 after relief of cholestasis (NS). Immunohistochemical assessment 

indicates that ASBT protein is expressed on the apical surface of the duodenal epithelial cells. 

Obstructive cholestasis in humans leads to down-regulation of ASBT mRNA expression in the 

distal part of the human duodenum.  

 

3.1.2 Introduction 

Bile acids are amphipathic steroidal compounds derived from the enzymatic catabolism of 

cholesterol in the liver by cytochrom P450 isoform 7A1 (CYP7A1). In the small intestine, bile 

acids emulsify dietary fats and lipid-soluble vitamins. They participate in the regulation of 

pancreatic secretion and the release of gastrointestinal peptides (Koop et al., 1996). Through a 

coordinated action of several transport proteins expressed in hepatocytes, cholangiocytes as 

well as in enterocytes and in proximal tubular cells of the kidney, an efficient enterohepatic 

circulation of bile acids is maintained (Meier and Stieger, 2002). One of these transport proteins, 

the apical sodium-dependent bile acid transporter ASBT (SLC10A2) has been detected in the 

ileum, cecum, and kidney (Craddock et al., 1998) and mediates the uptake of bile acids from the 

lumen of the intestine, from renal tubules and from cholangiocytes. ASBT is a 348 amino acid 
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protein that transports conjugated and unconjugated bile acids with a high efficiency (Craddock 

et al., 1998). Subjects with mutations in the ASBT gene suffer from congenital diarrhea and 

steatorrhea, due to bile acid malabsorption (Oelkers et al., 1997). Pharmacological inhibition of 

ASBT leads to interruption of enterohepatic circulation of bile acids with changes in the 

cholesterol and bile acid homeostasis (Lewis et al., 1995; Huff et al., 2002; West et al., 2002; 

Bhat et al., 2003; Telford et al., 2003). Adaptive induction of ASBT mRNA expression, 

transporter protein and transport activity was observed in cholic acid fed rats (Stravitz et al., 

1997), whereas decreased ASBT expression was found in the ileum of bile duct ligated 

rats.(Sauer et al., 2000) In addition in Wistar rats, a marked reduction of ASBT protein 

expression was observed in microsomal membrane fractions from whole kidney after ligation of 

the common bile duct (CBDL) with the consequence of increased urinary bile acid excretion. 

These results indicate that ASBT is adaptively regulated in different tissues during obstructive 

cholestasis in the rat.  

Lanzini et al. (Lanzini et al., 2003) studied the effects of cholestasis on intestinal bile acid 

transport in 14 subjects with chronic cholestasis due to primary biliary cirrhosis (PBC) before 

and during ursodeoxycholic acid (UDCA) administration. Prolonged retention of the bile acid 

analogue 75Se-homocholic acid taurine (75SeHCAT) in patients with PBC was observed 

compared to healthy controls and patients with Crohn`s disease. The retention of 75SeHCAT 

decreased with UDCA treatment inferring that luminal bile acid levels might be involved in the 

regulation of ASBT gene regulation.  

Virtually all bile salt transporter systems are subject to extensive regulation, mainly at the level of 

gene transcription. These regulatory mechanisms represent adaptive responses to intracellular 

accumulation of bile salts and other amphipathic molecules. However, little is known about 

adaptive regulation of ASBT expression in humans. The aim of this study was therefore to 

investigate the expression of ASBT in the duodenum of healthy subjects and compare the 

results to patients with obstructive cholestasis. Because direct analysis of the ASBT gene 

expression in samples from the terminal ileum can not be performed in humans with obstructive 

cholestasis due to obvious ethical reasons, we analyzed in the first part of this study ASBT 

mRNA expression in healthy subjects in different segments of the human intestine. We found 

that ASBT mRNA is also expressed in the duodenum, however to a lesser extent than in the 

terminal ileum.  

Additionally, we analyzed the gene expression of multidrug resistance associated protein 3 

(MRP3), which is expressed on the basolateral membrane of the enterocyte (Rost et al., 2002) 

and which is capable of transporting bile salts (Hirohashi et al., 2000), as well as the expression 
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of multidrug resistance associated protein 2 (MRP2). Human duodenal MRP2 protein expression 

was downregulated during cholestasis (Dietrich et al., 2004). Biopsies of the duodenum of 

patients with obstructive cholestasis were obtained during a therapeutic endoscopic retrograde 

cholangiopancreatography (ERCP).  

 

3.1.3 Patients and Methods 

Patients 

14 healthy subjects (7 males, 7 females) were enrolled into the first part of the study after giving 

informed consent. The indication for combined upper and lower GI tract endoscopy was a 

cancer screening programme. Biopsies were obtained from the duodenum, the terminal ileum 

and from different defined regions of the colon. In the second part of the study, 20 cholestatic 

patients were enrolled after giving written informed consent. Biopsies were obtained from the 

duodenum in these patients. Of 10 patients with obstructive tumours, four had carcinoma of the 

pancreatic head, 4 had cholangiocarcinoma (Klatskin tumour) and two had metastatic diseases. 

10 patients had benign diseases (8 patients with choledocholithiasis and two patients with a 

benign stenosis of the common bile duct). Obstructive jaundice was defined 1) on the basis of 

chemical parameters (bilirubin, γ-glutamyltransferase, and alkaline phosphatase) and 2) on 

imaging procedures (ultrasound and ERCP) demonstrating a dilated bile duct system. All control 

patients had normal values of the above cited parameters. Patients were only included, if the 

subject was not taking any medication known to affect ASBT, MRP2 as well as MRP3 

expression. Demographic details are given in Table 1. 

Table 1: Patient characteristics of the two study g roups  

Characteristics Icteric patients Controls p-value 

  (n=20) (n=14)   

Age mean (±SEM) 67.4 (±2.8) 59.8 (±2.7) NS 

BMI (kg/m2) (±SEM) 24.1 (±0.8)  28.4 (±1.6) p= 0.015 

Gender 10 males and 10 females 7 males and 7 females NS 

Diagnosis 10 T/10 BS 3G/ 3E/ 8U   

Bilirubin (µmol/l) 235 (42-640) 11 (5-17) P< 0.001 

Bile acids (µmol/l) 122.6 (20.5-401) 1.7 (0.5-3.2) P< 0.001 

 

T = tumor, BS = biliary stone; G = mild gastritis, E = mild esophagitis, U = macroscopically unaffected 

mucosa 
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Material 

All chemicals were of highest quality available and were obtained from commercial sources. 

 

Real-time polymerase chain reaction analysis of hum an ASBT, MRP2, MRP3, PPAR- α and 

Villin (VIL1) mRNA (TaqMan assay)  were shown in Chapter 2  

 

Primers and Probes for TaqMan Analysis see Table 2. 1 

 

Statistical analysis 

All values were expressed as means ± SEM. The impact of different parameters (bilirubin and 

bile acid concentration, body-mass index, age and sex) on the variability of ASBT expression 

was investigated by multi-linear regression analysis. Icteric patient’s ASBT expression was 

compared to that of healthy controls by analysis of variance (ANOVA). Regional ASBT mRNA 

expression was compared with the expression in duodenum by repeated measurement ANOVA 

with linear contrasts. Correlation of serum bilirubin and bile acid concentrations was done using 

Spearman’s rank correlation coefficient (rho). Differences in demographic characteristics 

between icteric patients and controls were done by ANOVA of Chi-square test, as appropriate. 

All comparisons were performed as two-sided comparisons using the SPSS for Windows 

software (version 12.0). Level of significance was p<0.05 

 

3.1.4 Results 

 

3.1.4.1 Expression pattern of ASBT mRNA in the huma n intestine 

Human ASBT mRNA expression was studied in 14 control subjects (7 women and 7 men), who 

were undergoing a combined gastroscopy and colonoscopy. The results were normalized by 

calculation of the ASBT/villin ratio. The normalized ASBT expression ± SEM (arbitrary units) was 

171.8 ± 20.3 in the duodenum, 1010 ± 330 in the terminal ileum, 8.3 ± 5 in the ascending colon, 

4.9 ± 0.9 in the transverse colon, 4.8 ± 1.7 in the descending colon and 1.1± 0.2 in the sigmoid 

colon, respectively (Figure 1).  
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Figure 1: mRNA expression of ASBT in different gut segments. Data represents means (±SEM) of 

biopsies from 14 healthy subjects 

 

3.1.4.2 Duodenal expression of ASBT mRNA and PPAR α mRNA 

An adaptive regulation of ASBT expression in obstructive cholestasis was investigated by 

quantification of ASBT mRNA levels in duodenal biopsies of 20 patients with obstructive 

cholestasis and compared to the levels obtained in 14 control subjects. As shown in Figure 2, 

ASBT mRNA expression (ASBT/villin ratio ± SEM) was about four-fold lower in patients with 

obstructive cholestasis (37.9 ± 6.5) when compared with control subjects (171.8 ± 20.3) (p < 

0.001).  
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Figure 2: Comparison of ASBT mRNA expression in patients with obstructive cholestasis (N = 20) vs. 

control subjects (N = 14) and follow up patients (N = 4). Data represent means ± SEM. Scatter plot: lines 

connect individual ASBT mRNA expression pre- and post reconstitution of bile flow in 4 follow-up patients. 

 

Patients with obstructive cholestasis due to a tumour showed a trend for lower ASBT mRNA 

expression when compared to patients with a benign aetiology of obstructive cholestasis (31.2 ± 

7.3 for tumour induced and 44.6 ± 10.8 benign obstruction); the difference did, however, not 

reach statistical significance. The plasma bilirubin levels were 301.6 ± 64.9 and 112.6 ± 20.0 

mmol/L (P = 0.02) and bile acid levels were 168.4 ± 45.3 and 76.8 ± 22.8 µmol/L (NS) for 

patients with and without tumours, respectively.  

PPARα mRNA expression was not significantly different between cholestatic patients and 

controls. 

      

3.1.4.3 Correlation of duodenal ASBT mRNA expressio n with bilirubin and bile acid 

plasma concentration 

Bilirubin and bile acid plasma concentrations were inversely correlated with ASBT mRNA 

expression (rho = -0.863, p < 0.001 and rho= -0.722, p<0.001, respectively). The correlation with 
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ASBT mRNA expression was similar for bilirubin and bile acid concentrations. Using ASBT 

mRNA expression, an almost perfect separation was obtained between icteric patients and 

healthy controls (Figure 3A and B).  
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Figure 3A and 3B: Individual correlation of bilirubin (3A) and bile acid (3B) plasma concentrations with 

ASBT mRNA expression in patients with obstructive cholestasis (•) and control subjects (Ο). Data 

represent means ± SEM. Arrows connect individual values pre- and post reconstitution of bile flow in 4 

follow-up patients. 

 

3.1.4.4 Effect of reconstitution of bile flow on AS BT mRNA expression  

In 5 of the included 20 icteric patients a follow-up gastroscopy could be performed between 10 

and 34 weeks after reconstitution of bile flow (follow-up endoscopy was only performed when 

medically indicated). Three of the five patients received stents into the common bile duct, two 

patients had a Whipple-operation, one due to a tumour in the head of the pancreas and one due 

to a cholangiocarcinoma. The patient with Whipple operation due to a tumor in the head of the 

pancreas could not be included in the follow-up analysis, because duodenal biopsies could not 

be obtained after a complete duodenopancreatectomy. In the patient with cholangiocarcinoma, 

only a partial duodenopancreatectomy was performed, so duodenal biopsies could be obtained 

in the follow-up endoscopy.  

At follow-up endoscopy the bilirubin and bile acid plasma concentrations had normalized in all 

patients and 3 of 4 patients showed an increased expression of ASBT mRNA compared to the 

baseline value obtained. These three follow-up patients with bilirubin (bile acid) plasma 

concentrations of 373 (431), 170 (204) and 115 (170) µmol/l before endoscopic intervention 
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showed an increase in ASBT expression from 73 to 103, 29 to 68 and 71 to 157 after 

reconstitution of bile flow, respectively. One patient, who had a bilirubin (bile acid) level of 65 

(32.2) µmol/l before intervention and 24 (14.5) µmol/l after reconstitution of bile flow showed an 

ASBT expression of 130 before intervention, which decreased slightly to 122 after reconstitution 

of bile flow. (n=4). The difference in the ASBT expression before 76 ± 18 and after reconstitution 

113 ± 18 of bile flow for these four follow up patients was not significant (paired t-test; p = 0.15). 

 

3.1.4.5 Immunohistochemistry of ASBT 

Immunohistochemistry analysis in healthy subjects revealed a clear staining of ASBT in ileal and 

duodenal mucosa (Figure 4A and B, respectively). Staining of duodenal mucosa was clearly less 

intense than that from ileal tissue. In the duodenal mucosa of icteric patients, staining for ASBT 

was almost completely abolished (Figure 4C). After reconstitution of bile flow a more intense 

staining was found in the same tissue (Figure 4D). 

 

3.1.4.6 Duodenal expression of MRP2 mRNA and MRP3 m RNA 

Additionally we investigated, whether there is also an adaptive regulation of MRP2 and MRP3 

mRNA expression in the distal part of the duodenum.  

Patients with obstructive cholestasis showed a significantly lower MRP2 mRNA expression (0.21 

± 0.02) compared to control subjects (0.32 ± 0.03, p= 0.004). After reconstitution of bile flow in 4 

patients with obstructive cholestasis, MRP2 expression increased to 0.28 ± 0.02 (NS). No 

difference between patients with obstructive cholestasis and control subjects was observed with 

regard to the MRP3 expression (data not shown). 
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3.1.5 Discussion 

 

Bile acids undergo extensive enterohepatic and cholehepatic circulation through a coordinated 

action of several transport proteins in the hepatocytes, cholangiocytes and enterocytes (Trauner 

and Boyer, 2003). The uptake of bile acids at the apical membrane of enterocytes by the apical 

sodium dependent bile acid transporter ASBT (SLC10A2) reflects an important mechanism for 

the enterohepatic circulation of bile acids. Human ASBT is an efficient transport system for 

conjugated and unconjugated bile acids (Craddock et al., 1998). In the present study we were 

able to show that human ASBT mRNA and protein are expressed in the duodenum of the 

A B 

C D 

Figure 4 A -D: Immunohistochemical localization of ASBT protein on the apical membrane 

of the ileum and duodenum of humans using a polyclonal rabbit anti-human ASBT 

antibody: clear staining of ileal (4A) and duodenal epithelial cells (4B) of control subjects. 

Almost abolished staining of duodenal epithelial cells in a patient with obstructive 

cholestasis before (4C) and restored duodenal staining after (4D) reconstitution of bile 

flow (all pictures at 200-fold magnification). 
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human intestine, but to a lesser extent than in the terminal ileum. In addition, a significant down-

regulation of duodenal ASBT mRNA expression could be demonstrated in patients with 

complete or near complete obstruction of the bile duct when compared to control subjects. 

Finally, restoring bile flow to the duodenum increased ASBT mRNA expression in a 

subpopulation of patients with bile duct obstruction. 

The down-regulation of human duodenal ASBT mRNA may be compared with the adaptive 

response of bile acid transport proteins during obstructive cholestasis, in the terminal ileum, the 

kidney, as well as in the cholangiocytes of the rat (Sauer et al., 2000; Lee et al., 2001). In 

addition to the down-regulation of ASBT in the terminal ileum, the intestinal absorption rate of 

taurocholate in bile duct-ligated rats was lower and the absorption rate was inversely correlated 

to serum bile acid concentrations when compared to sham operated rats (Sauer et al., 2000). 

Patients with mutations in the ASBT gene can suffer from congenital diarrhoea and steatorrhea, 

which is explained by an interrupted enterohepatic bile acid circulation (Oelkers et al., 1997). 

Further clinical data indicate that in patients with primary sclerosing cholangitis, biliary 

enrichment of ursodeoxycholic acid (UDCA) decreases with increasing cholestasis (Stiehl et al., 

1995). Moreover, in patients with bile duct obstruction and external biliary drainage intestinal 

absorption of UDCA was decreased, before relief of cholestasis (Sauer et al., 1999). These data 

suggest that in humans intestinal bile acid absorption is reduced during obstructive cholestasis.  

What factors influence ASBT gene expression in the enterocyte is largely unknown. Animal 

studies suggest that luminal bile acids might be one such regulatory factor. Reduction of 

intestinal bile acid concentration during fasting (Dumaswala et al., 1994), after biliary diversion 

(Higgins et al., 1994) or bile duct ligation (Dumaswala et al., 1996) is accompanied by a 

decrease in ileal bile acid transport. Stravitz et al. could demonstrate that increasing intestinal 

bile acid concentrations by cholic acid feeding leads to an increase in the sodium dependent 

transport rate (Stravitz et al., 1997). Furthermore, adaptive induction of Asbt mRNA levels and 

transporter protein as well as increased Asbt transport activity by cholic acid fed rats was 

documented (Stravitz et al., 1997). 

In contrast to these observations, other authors have demonstrated in rats that the ileal 

taurocholate absorption rate correlated inversely to serum bile acid concentrations after bile duct 

ligation and after biliary diversion compared to sham-operated animals (Sauer et al., 2000). The 

authors concluded that cholestasis leads to decreased and biliary diversion to increased active 

ileal absorption of taurocholate, in which the systemic bile acid load seems to be the decisive 

factor. In the kidney bile acid excretion in the urine increased progressively in both cholestatic 

animal models but also in clinical cholestatic disorders (Stiehl et al., 1985; Lee et al., 2001). In 
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Wistar rats, a marked reduction in Asbt protein expression in microsomal membrane fractions 

from whole kidney after a common bile duct ligation (CBDL) was observed resulting in reduced 

levels of Asbt expression on the luminal membrane of the proximal tubule of the kidney, a 

change that is associated with a diminished capacity to reabsorb bile acids from the glomerular 

filtrate (Lee et al., 2001). In the same study, an up-regulation of Mrp2 protein expression on the 

apical membrane of the rat renal proximal tubule was shown. MRP2 is associated with an 

increased ability to excrete divalent organic anions such as bile salt sulfates and glucuronides 

(bilirubin) that accumulate during cholestasis and would therefore facilitate extrahepatic 

pathways for bile acid and bilirubin excretion during cholestasis. This adaptive response of Asbt 

and Mrp2 in the kidney of the rat does not seem to be regulated by luminal bile acids.  

 

Here we could show that ASBT mRNA expression correlated inversely with bilirubin as well as 

with bile acid plasma concentrations, which were both used as a marker for obstructive 

cholestasis.  

Bile acids are synthesized from cholesterol in the liver; their production is a major mechanism of 

cholesterol elimination and important for the maintenance of cholesterol homeostasis (Vlahcevic 

et al., 1999). The down-regulation of ASBT expression in obstructive cholestasis might therefore 

be of clinical interest. In a previous publication, it was shown that inhibition of the ileal bile acid 

transport with SC-435, a competitive inhibitor of ASBT, lowered plasma cholesterol levels 1) by 

inactivating the hepatic farnesoid x receptor and 2) by stimulating the cholesterol 7α-hydroxylase 

(CYP7A1) (Li et al., 2004). This cytochrome is the rate-limiting enzyme of chenodeoxycholic acid 

synthesis. It is located in the endoplasmic reticulum of the hepatocyte. In patients with biliary 

obstruction, a rise of serum 7α-hydroxycholesterol was observed after biliary drainage (Okamoto 

et al., 1994). The 7α-hydroxylation rate was significantly lower for patients with obstructive 

cholestasis when compared to healthy subjects (Bertolotti et al., 2001). These data suggest that 

in case of a substantial bile acid malabsorption the activity of 7α-hydroxylase in the liver and the 

synthesis of bile acids is increased. Other authors suggest that inhibition of ASBT with SC-435 

reduces LDL cholesterol and ApoB by enhanced plasma clearance of LDL ApoB (Huff et al., 

2002; Telford et al., 2003). Treatment of Caco-2 cell monolayers with 25-hydroxycholesterol 

significantly inhibited Na+-dependent 3H-taurocholate uptake. The inhibition in hASBT activity 

was associated with reduction in both the level of hASBT mRNA and its promoter activity (Alrefai 

et al., 2004). ASBT protein expression did not change in rats but rose by 31% in rabbits when 

feeding them with cholesterol (cholest-5-en-3β-ol) (Xu et al., 2000). Administration of SC-435 to 

apo E-/- mice lowered serum total cholesterol by 35% and reduced aortic root lesion area by 
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65%. The authors concluded that specific inhibition of ASBT could be a novel therapeutic 

approach for treatment of hypercholesterolemia resulting in decreased risk for atherosclerosis 

(Bhat et al., 2003). Taken together all these data suggest that the expression of ASBT in the 

enterocyte seems to be an important component in the cholesterol homeostasis and lipid 

metabolism in humans. 

The intracellular factors that influence ASBT gene expression remain largely unknown. One 

potential factor might be the activation of nuclear receptor PPARα, a ligand activated 

transcription factor that regulates the expression of a number of genes involved in peroxisomal 

and mitochondrial β-oxidation of fatty acids. PPARα binds as a heterodimer with the retinoid X 

receptor (RXR) to a peroxisome proliferator-response element (PPRE) located in the promoter 

region of target genes. PPARα was shown to play a critical role in the adaptive response to 

fasting in mice (Kroetz et al., 1998; Kersten et al., 1999; Leone et al., 1999). PPARα also 

influences bile acid composition by induction of the sterol 12α-hydroxylase, which acts at a 

branch-point in the bile acid synthetic pathway by catalizing the conversion of 7α-hydroxy-4-

cholesten-3-one to 7α,12α-dihydroxy-4-cholesten-3-one. This reaction determines the ratio of 

cholic acid to chenodeoxycholic acid (Hunt et al., 2000). In Hepa 1c1c7 cells, which were 

transiently tranfected with an expression plasmid for PPARα and RXRα and a luciferase 

reporter construct containing copies of the PPRE from the rat ACOX gene, an inhibition of 

PPARα reporter gene expression was shown with increasing concentrations of 

chenodeoxycholic acid (CDCA) in the presence or absence of Wy-14,643 (=PPARα ligand) 

(Sinal et al., 2001).  It was concluded that during certain pathophysiological states, where 

intracellular bile acid concentrations might be elevated, effects on PPARα-dependent target 

gene regulation are possible (Sinal et al., 2001). Recently, PPARα was shown to transactivate 

the human ASBT gene (Jung et al., 2002). Incubation of human hepatoma HepG2 cells with 

CDCA resulted in a significant induction of PPARα mRNA levels. In addition, hPPARα gene 

expression was upregulated by taurocholic acid in human primary hepatocytes (Pineda Torra et 

al., 2003). However, no difference between patients with obstructive cholestasis and control 

subjects was observed with regard to duodenal PPARα mRNA expression in our study.     

In a previous study, Dietrich et al demonstrated that obstructive cholestasis promotes down-

regulation of intestinal MRP2 protein expression in rats and humans (Dietrich et al., 2004). The 

reduction was correlated with the duration of cholestasis and was reversible after reconstitution 

of bile flow. In the same study in patients with obstructive cholestasis a non significant decrease 

of MRP2 mRNA expression was detected when compared to control subjects. However, the 
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authors observed that decline of intestinal rat Mrp2 mRNA occurs more slowly and gradually 

than down-regulation of its protein expression. Our results showed a significant down-regulation 

of MRP2 mRNA expression when compared to control subjects and a non significant increase 

after reconstitution of bile flow in 4 patients. One explanation for the down-regulation of MRP2 

gene expression in our study compared to Dietrich et al. (Dietrich et al., 2004) might be higher 

plasma bilirubin concentrations in our patients with obstructive cholestasis, another might be 

duration of cholestasis, which was not clearly stated in both studies and therefore might have 

been different. But also other factors such as food derived compounds or substrates might be 

involved in the regulation of gene expression. For example, it was shown that grapefruit and 

orange juice inhibited the transport by MRP2 (Honda et al., 2004); components of our daily diet, 

such as the flavonoid epicatechin in tea (Vaidyanathan and Walle, 2001), chrysin and its 

metabolites are substrates of MRP2 (Walle et al., 1999). Drugs are unlikely to have contributed 

to the different MRP2 mRNA expression in the present study and the study performed by 

Dietrich et al. (Dietrich et al., 2004) because patients with drugs, which are known to affect 

MRP2 expression, were excluded from both studies. Finally, our data support the results of 

Dietrich et al. (Dietrich et al., 2004), which demonstrate an adaptive down-regulation of duodenal 

MRP2 in patients with obstructive cholestasis. 

MRP3 is expressed on the basolateral membrane in the proximal small bowel (Rost et al., 2002) 

and is capable of transporting bile salts, including taurocholate, glycocholate, 

taurochenodeoxycholate-3-sulfate, taurolithocholate-3-sulfate (Hirohashi et al., 2000). This 

suggests that MRP3 might be an important transporter in the enterohepatic circulation of bile 

acids. However, in the present study we did not observe any difference of human duodenal 

MRP3 gene expression in patients with obstructive cholestasis when compared to control 

subjects. Similarly, no compensatory up-regulation of human duodenal MRP3 expression in 

cholestatic patients was previously described (Dietrich et al., 2004). 

 

In conclusion, human ASBT mRNA is expressed in the small intestine, predominantly in the 

terminal ileum but also, to a lesser extent, in the duodenum. Adaptive down-regulation of ASBT 

and MRP2 mRNA in the duodenum can be observed in patients with obstructive cholestasis, 

when compared to control subjects. Furthermore, the duodenal ASBT mRNA expression levels 

inversely correlate with the bilirubin and bile acid plasma concentrations in patients with 

obstructive cholestasis as well as in control subjects. This adaptive gene regulation may 

represent a mechanism preventing the accumulation of hepatotoxic bile acids in cholestasis. 

After relief of cholestasis, an increase of ASBT mRNA was observed in 3 out 4 patients.  
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3.2.1 Abstract 

Human breast cancer resistance protein (BCRP/ABCG2) is an ABC-transporter that is present 

on the luminal membrane of intestinal epithelial cells and restricts absorption of anticancer drugs 

such as methotrexate, topotecan, mitoxantrone, and doxorubicin. The exact anatomic 

distribution of BCRP along the gastrointestinal (GI) tract has, however, not been determined 

before. The aim of this study was, therefore to investigate BCRP mRNA expression pattern 

along the GI tract in 14 healthy subjects. Furthermore, BCRP duodenal mRNA expression was 

compared with MDR1/ABCB1 mRNA. Additionally, BCRP mRNA expression was investigated in 

two human intestinal cell lines (Caco-2 and LS180). Since previous animal studies have 

suggested sex specific differences in BCRP expression, we analyzed intestinal BCRP 

expression with respect to sex. Biopsies were taken from different gut segments (duodenum, 

terminal ileum and ascending, transverse, descending and sigmoid colon). Gene expression 

was assessed by quantitative real-time PCR (Taqman). BCRP mRNA expression was maximal 

in the duodenum and decreased continuously down to the rectum (terminal ileum 93.7 percent, 

ascending colon 75.8 percent, transverse colon 66.6 percent, descending colon 62.8 percent, 

and sigmoid colon 50.1 percent compared to duodenum, respectively). BCRP expression in the 

duodenum was comparable to MDR1/ABCB1 gene expression. Caco-2 cells showed a 

comparable expression of BCRP as human duodenal tissue. Gender specific differences in 

BCRP expression were not observed. These findings represent the first systematic site-specific 

analysis of BCRP expression along the GI tract. This information might be helpful to develop 

target strategies for orally administered anticancer drugs. 

 

 

3.2.2 Introduction  

BCRP/ABCG2 is a half-transporter that belongs to the white subfamily of ATP-binding cassette 

(ABC) transporters. BCRP was originally cloned from multidrug resistant tumour cells (Allikmets 

et al., 1998; Doyle et al., 1998; Miyake et al., 1999) and displays a wide substrate specificity. It 

mediates the energy dependent translocation of various anticancer drugs such as methotrexate 

(Volk et al., 2002), topoisomerase inhibitors (such as topotecan (Kruijtzer et al., 2002)), 

mitoxantrone, and doxorubicin (Doyle et al., 1998) across cellular membranes. BCRP knock-out 

mice were found to be healthy and showed no major pathological alterations. When fed with a 

chlorophyll rich diet containing the chloprophyll degradation product, the phototoxic 

phenophorbide a, the BCRP knock-out mice developed phototoxic skin lesions (Jonker et al., 
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2000). Its localization indicates an important role in the protection of tissues against xenobiotics. 

BCRP expression was detected mainly in excretory organs e.g. in canalicular membranes of the 

liver, in epithelial cells of the small intestine, colon, kidney and lung, as well as in the blood-brain 

barrier and the placenta (Scheffer et al., 2000; Maliepaard et al., 2001). 

The expression of BCRP in epithelial cells of the intestine implies, that BCRP might be an 

important transporter limiting the absorption of orally administered anticancer drugs and 

ingested toxins (Maliepaard et al., 2001; Jonker et al., 2002; Pavek et al., 2005). Due to its 

broad substrate specificity, BCRP might influence the pharmacokinetics of many unrelated 

substances including anticancer drugs, HIV drugs, and endogenous compounds (van 

Herwaarden et al., 2003; Polli et al., 2004). Up to now, there is little knowledge about the 

expression pattern of BCRP along the human intestine. This information however might be 

helpful for the development of specific galenical targeting approaches, which may be utilized to 

improve intestinal absorption of anticancer drugs. Therefore, the expression of BCRP was 

investigated in the human intestine of 14 healthy subjects and its duodenal expression was 

compared with that of MDR1. In vitro screening of drug absorption is commonly done in human 

intestinal cell lines (such as Caco-2 (Hilgers et al., 1990; Pfrunder et al., 2003) and LS180 

(Thummel et al., 2001)). Therefore, it is of interest to compare the expression level of BCRP in 

these cell lines with the human duodenal BCRP mRNA expression. 

In addition, membrane transport differences of endogenous and xenobiotic compounds 

associated with sex have been reported previously for several transport proteins (Piquette-Miller 

et al., 1998; Salphati and Benet, 1998; Urakami et al., 1999; Urakami et al., 2000; Buist et al., 

2002; Kobayashi et al., 2002; Buist and Klaassen, 2004). Recently, sex associated differences 

for Bcrp, the BCRP analogue in rat and mice has been described by Tanaka et al (Tanaka et al., 

2005). They observed a higher expression of Bcrp mRNA of male rats in the kidney and of male 

mice in the liver compared to females. These sex differences were attributed to the suppressive 

effect of estradiol in rats and to the inductive effect of testosterone in mice, respectively. 

Intestinal expression of rat and mouse Bcrp seems not be influenced by sex. However data 

about intestinal rat and mouse Bcrp expression exhibited high interspecies differences and were 

restricted to duodenum, jejunum and ileum. We therefore wanted to determine, whether there 

are sex-related differences in human BCRP mRNA expression along the intestinal tract that 

might lead to pharmacokinetic variations in drug absorption. 
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3.2.3 Material and Methods 

Cell cultures 

Caco-2 cells (passage 42) and LS180 cell line (passage 36) were purchased from ATCC 

(Manassas, USA). Both cell lines were cultured in Dulbecco’s MEM with Glutamax-I, 

supplemented with 10% (v/v) fetal calf serum, 1% non essential amino acids, 1% sodium 

pyruvate, 50µg/ml gentamycin. All cultures were maintained in a humified 37°C incubator with a 

5% carbon dioxide in air atmosphere. 

 

Biopsies 

Intestinal biopsies were obtained from 14 healthy subjects (7 female, 7 male, age 43-75 years, 

average age 59.8 years, no medication), which served as a control group in a clinical study. This 

study systematically investigated the regional expression of different genes in patients with 

inflammatory bowel disease. The study protocol included specifically the investigation of drug 

transporting proteins and it was approved by the local Ethical Committee. Informed consent was 

obtained from subjects prior to inclusion. Indications for a combined gastroscopy and 

colonoscopy in these control patients were cancer screening, irritable bowel syndrome and 

unspecific abdominal pain. No macroscopically pathological findings were observed during 

endoscopies in these subjects. Three to four biopsies each were obtained from duodenum, 

terminal ileum, ascending colon, transverse colon, descending colon and sigmoid colon. 

 

Preparation of samples and Taqman assay see Chapter  2 

 

Statistical Analysis 

BCRP gene expression was compared between the different intestinal segments by analysis of 

variance. In the case of significant differences between intestinal segments, all segments were 

compared with the expression in duodenum using Dunnett’s t-test using sex as a covariate. 

Comparison of BCRP and/or MDR1 mRNA expression was performed by unpaired two-sided t-

test. The level of significance was P =0.05. All statistical comparisons were performed using 

SPSS for Windows software (version 12.0). 

 

3.2.4 Results  

The expression pattern of BCRP from the duodenum to the sigmoid colon is shown in Figure 1. 

Maximal BCRP mRNA expression was found in the duodenum. In the colonic segments BCRP 

mRNA expression is continuously decreasing from proximal to distal. In ascending colon the 
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BCRP level is significantly reduced to 75.8 percent of the duodenum, in transverse colon to 66.6 

percent, in descending colon to 62.8 percent, and in sigmoid colon to 50.1 percent, respectively. 

In the terminal ileum BCRP mRNA expression is slightly but not significantly reduced compared 

to duodenum (93.7 percent). The expression of BCRP mRNA was not significantly different 

between males and females, neither in the duodenum and the terminal ileum, nor in the different 

colonic segments of the human GI tract (Figure 1). BCRP mRNA expression was normalized to 

villin to account for variation in enterocyte content (ratio of BCRP/villin mRNA) as suggested in 

the literature (Lown et al., 1997; Taipalensuu et al., 2001). This was justified, since the mRNA 

expression of villin was not significantly different between the different parts of the intestine. The 

variability of BCRP mRNA measurement was determined by repetitive determination (N = 10) 

and amounted to 4.3 % (coefficient of variation).  

 
Figure 1:  Expression of BCRP/ABCG2 mRNA in different gut segments. Data represent means (± SEM) 

of biopsies from 14 healthy subjects (7 males, 7 females), except terminal ileum, where biopsies from 13 

subjects (6 males, 7 females) were used. 
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Since MDR1 and BCRP share some of their substrates, duodenal mRNA expression of these 

genes was compared. MDR1 mRNA and BCRP mRNA expression was in the same range in the 

duodenum, with a slightly but significantly (p<0.05) lower expression of BCRP (Figure 2). 

 

 
Figure 2:  Expression of BCRP/ABCG2 mRNA and MDR1/ABCB1 mRNA in human duodenum normalized 

to the expression of villin. Data represent means (± SEM) of biopsies from 14 healthy subjects. 

 

The duodenal mRNA expression of BRCP was comparable to the expression in Caco-2 cells, 

which are reported to exhibit duodenal-like transporter expression (Pfrunder et al., 2003). 

However, the mRNA expression of BCRP in LS180 cells was almost 100-fold lower (p < 0.001; 

Figure 3). 

 

3.2.5 Discussion 

Previous studies had reported, that cellular BCRP is localized in the apical membranes of small 

intestinal and colonic epithelia (Maliepaard et al., 2001; Pavek et al., 2005), where it limits the 

bioavailability of toxic compounds. There is some information about tissue distribution of BCRP 

in animal species such as rat and mice or BCRP expression in isolated parts of the intestine 

(Taipalensuu et al., 2001; Tanaka et al., 2005). However, only limited information is available 

about the site-specific localization of BCRP along the GI tract in humans, which might be 
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important for the development of specific galenic formulations of anticancer drugs. Here, we 

present for the first time a systematic analysis of the site-specific expression of BCRP along the 

GI tract. BCRP mRNA expression decreased continuously from the duodenum to the sigmoid 

colon. In human jejunum, a part which was not investigated in our study due to ethical reasons, 

Taipalensuu et al. (Taipalensuu et al., 2001) found a high level of BCRP mRNA expression. The 

BCRP gene expression exhibited even a 3.4-fold higher expression than the MDR1 gene. Data 

in rat (Tanaka et al., 2005) have shown that the level of Bcrp gene expression is higher in the 

jejunum compared to duodenum. However, it is not trivial to extrapolate animal data to humans, 

because species differences have been described even between rodents. Whereas rats 

expressed high levels of Bcrp in the ileum, the ileal level of Bcrp mRNA in mice was rather low. 

Nevertheless one is tempted to speculate, that BCRP expression levels might be maximal in the 

jejunum. Since expression of BCRP is still high in the terminal ileum, which is close to the 

jejunum, these data are not in contrast to our findings. 

 

 
Figure 3:  Expression of BCRP/ABCG2 mRNA in human duodenum (N=14); Caco-2 cells (N=3) 

and LS180 cells (N=3) normalized to the expression of villin. BCRP mRNA expression 

was significantly lower in LS180 cells than in Caco-2 cells and duodenal tissue (P < 

0.001). Data represent means (± SEM). 
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Differences in the membrane transport of xenobiotics and endogenous compounds caused by 

different levels of sexual hormones such as testosterone and estradiol have been previously 

described in several studies (Lu et al., 1996; Cerrutti et al., 2002). This sex related differences in 

membrane transport includes several membrane transporters such as organic cation 

transporters (Urakami et al., 1999; Urakami et al., 2000), organic anion transporters (Buist et al., 

2002; Kobayashi et al., 2002; Buist and Klaassen, 2004), and multidrug resistance proteins 

Mdr1a, Mdr1b and Mdr2 (Piquette-Miller et al., 1998; Salphati and Benet, 1998). Recently, 

Tanaka et al. reported sex-related differences of BCRP expression levels in rodents (Tanaka et 

al., 2005). We found no significant differences in the level of BCRP mRNA expression between 

males and females, neither in the duodenum and the terminal ileum, nor in the different colonic 

segments of the human GI tract. We therefore conclude, that sexual hormones have most 

probably no effect on the expression pattern of BCRP in the adult human intestine. The 

importance of MDR1 and MRPs for the protection from enteral absorption of potentially toxic 

xenobiotics and their limiting effects on enteral drug absorption has become more and more 

aware. BCRP shows some degree of substrate overlapping with these transporters and is also 

expressed in the small and large intestine (Allen and Schinkel, 2002). To estimate the potential 

impact of BCRP for detoxification and drug absorption, we compared the level of BCRP mRNA 

expression in the duodenum with the level of MDR1 mRNA, another important ABC-transporter 

of xenobiotics in the intestine. We showed comparable mRNA expression of MDR1 and BCRP, 

with a slightly but significantly (p<0.05) lower expression of BCRP. In jejunum, BCRP mRNA 

expression was found to be even higher as MDR1 mRNA expression (Taipalensuu et al., 2001). 

Taken together these findings indicate that BCRP might play an important role for limiting the 

absorption of orally administered anticancer drugs and ingested toxins. 

The comparable mRNA expression of BRCP in human duodenum and the colonic carcinoma 

derived cell line Caco-2 may indicate its usefulness for in vitro studies of BRCP mediated 

transport of drugs. In addition, another colonic adenocarcinoma-derived cell line, LS180, was 

investigated for BCRP mRNA expression. This cell line is commonly used for the assessment of 

gene induction (Thummel et al., 2001; Pfrunder et al., 2003; Collett et al., 2004). However, due 

to their low expression of BRCP mRNA, LS180 cells do not seem to be suitable for investigation 

of BRCP function. 

We have to admit that our study results represent only mRNA expression, which may not 

correlate with protein expression and/or function. However, due to ethical reasons we were 

limited with the number and volumes of tissue biopsies taken from our patients. Therefore, for 
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this mapping study only mRNA expression experiments could be performed. To assess 

functional expression of BRCP in different gut segments, further dedicated studies are needed. 

 

3.2.6 Conclusion 

These findings represent the first systematic site-specific analysis of BCRP expression along the 

GI tract and shows that its expression significantly decreased in all colonic segments compared 

with the small intestine. This knowledge might be important to develop target strategies for orally 

administered anticancer drugs. 
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3.3.1 Abstract 

Objective:  Human breast cancer resistance protein (BCRP/ABCG2) is present on the apical 

membranes of the liver, in the epithelial cells of the small and large intestine and in kidney cells; 

the transporter mediates energy dependent efflux of drugs and potentially toxic compounds, and 

of various endogenous substrates such as bile acids. During obstructive cholestasis with a 

disrupted enterohepatic circulation, an adaptive regulation of several transporters for bile acids, 

bilirubin and cholesterol has been documented. An adaptive regulation of human intestinal 

BCRP during obstructive cholestasis has, however, not been described before.  

 

Methods:  BCRP mRNA was quantified by real time PCR (Taqman) in duodenal biopsies of 14 

control subjects and compared to the duodenal BCRP mRNA expression of 19 patients with 

obstructive cholestasis. In addition, duodenal BCRP mRNA expression was measured in 4 

patients with obstructive cholestasis after reconstitution of bile flow. BCRP protein levels were 

determined in 6 cholestatic and 6 healthy subjects by immunohistochemistry. Finally, fasting bile 

acid and bilirubin concentrations were determined by specific assay systems. 

 

Results:  Normalized duodenal BCRP mRNA expression (mean BCRP/Villin ± SEM) was 0.51 (± 

0.03) in controls and 0.27 (± 0.02) in cholestatic patients (p<0.001). In a semiquantitative 

analysis of immunohistochemical protein assessment (0 = no expression, 1 = low, 2 = 

intermediate, 3 = high expression) mean BCRP protein expression (mean±SEM) were 

significantly reduced in 6 patients with obstructive cholestasis (1.67 ± 0.38) when compared to 6 

healthy subjects 2.91 (± 0.08) (p< 0.005). After reconstitution of bile flow bile acid and bilirubin 

plasma levels returned to normal and BCRP mRNA expression increased  by 1.44-, 1.71-, 1.05-, 

and 1.90-fold, respectively (N=4).  

 

Conclusion:  BCRP is down-regulated in the human duodenum during obstructive cholestasis. 

We infer that a reduced intestinal BCRP expression during cholestasis influences the 

accumulation of bile acids, food-derived carcinogens and the pharmacokinetics of various drugs 

that are transported by BCRP. 
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3.3.2 Introduction 

The breast cancer resistance protein (BCRP/ABCG2) is a half-transporter that belongs to the G 

subfamily of ATP-binding cassette (ABC) transporters. Similar to P-glycoprotein, BCRP was 

detected and cloned from multi-drug resistant tumour cells (Doyle et al., 1998; Miyake et al., 

1999). Both efflux transporters are highly expressed in organs that play a protective role against 

toxic substances such as the intestine, the kidney, the liver, the blood brain barrier, and the 

placenta (Maliepaard et al., 2001). In human jejunum, BCRP is expressed in the apical 

membrane of enterocytes along with other efflux pumps MRP2 (multidrug resistance associated 

protein 2) and P-glycoprotein, the gene product of MDR1/ABCB1 (multidrug resistance protein 

1) (Taipalensuu et al., 2001). BCRP mediates the translocation of various drugs like 

methotrexate, mitoxantrone, anthracyclines, SN-38, and topotecan (Doyle et al., 1998; Schellens 

et al., 2000; Volk and Schneider, 2003). It has further an essential role in extruding metabolites 

such as glucuronide and sulfate conjugates formed in enterocytes into the intestinal lumen 

(Adachi et al., 2005). Moreover, BCRP protects the body from toxic constituents of food such as 

the carcinogen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) and the chlorophyll-

derived phototoxin pheophorbide a (Jonker et al., 2002; van Herwaarden et al., 2003). In 

summary, its localization in the apical membrane of intestinal cells and its wide substrate 

specificity suggests that BCRP is an important transporter limiting the absorption of orally 

administered drugs and ingested toxins.  

Most members of the ABCG subfamily are involved in the translocation of endogenous 

compounds. ABCG1 is supposed to be a regulator of cholesterol and phospholipid transport 

(Klucken et al., 2000), whereas the heterodimeric proteins ABCG5 / ABCG8 promote biliary 

excretion and limit intestinal absorption of neutral sterols (Yu et al., 2002). BCRP can also 

transport endogenous substrates such as sulphated steroids (Imai et al., 2003; Suzuki et al., 

2003) and primary bile acids (Janvilisri et al., 2005). The precise physiological role of BCRP 

remains, however, to be defined. 

BCRP is capable of transporting bile acids. This fact may indicate that this transporter is 

involved in bile acid homeostasis. As an efflux pump, it could protect the enterocytes from 

potential toxic bile acid concentrations. During cholestasis, in which the enterohepatic circulation 

is disrupted, an adaptive regulation of transporters for bile acids, bilirubin and cholesterol occurs 

(Tanaka et al., 2002; Zollner et al., 2003; Denk et al., 2004; Kamisako and Ogawa, 2005). These 

changes take place in the liver, the kidney, as well as in the intestine. We have recently shown 

that the responsible gene for bile acid reuptake in the intestine, the apical sodium dependent bile 

acid transporter (ASBT), is down-regulated in cholestatic patients (Hruz et al., 2006). 
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Here we have analyzed the intestinal expression of BCRP in patients with obstructive 

cholestasis. The disease is associated with elevated bile acid levels in serum, a lack of bile 

acids in the intestinal lumen, and increase in proinflammatory cytokines (Plebani et al., 1999). 

We hypothesized that BCRP, as a potential bile acid transporter, could show an altered gene 

expression during obstructive cholestasis. Indeed, we can show that cholestatic patients exhibit 

decreased BCRP expression in the intestine compared to healthy subjects. Further studies are 

necessary to characterize the impact of these results on the pharmacokinetics of drugs that are 

BCRP substrates.  

 

3.3.3 Material and Methods 

Patients  

Fourteen healthy subjects (7 females, 7 males) and 19 cholestatic patients (10 females, 9 

males) were enrolled in the study after giving informed consent. The group of control subjects 

had a mean age of 59.8 years and cholestatic patients of 67.5 years, whereas bile acid levels 

were 1.7 (0.5 - 3.2) and 122.6 (20.5 - 431.3) µmol/L, respectively.  

 

Table 2:  Biochemical Parameters (means ± SD) 

 

Parameter Control Patients with 
cholestasis 

P-Value 

Bilirubin  
(5-26 µmol/L) 

11.1 ± 2.9 235.1 ± 186.2 P < 0.001 

ALAT  
(10-37 U/L) 

24.2 ± 9.2 193.1 ± 163.1 P < 0.003 

ASAT  
(11-36 U/L) 

23.4 ± 7.9 122.1 ± 102.5 P < 0.002 

γ-GT  
(11-66 U/L) 

58.0 ± 7.6 578.3 ± 430.3 P < 0.001 

AP  
(43-106 U/L) 

65.5 ± 13.1 375.5 ± 416.5 P < 0.01 

Total cholesterol  
(3-5.2 mmol/L) 

5.5 ± 0.8 32.8 ± 101.1 NS 

Bile acids  
(< 10 µmol/L) 

1.7 ± 0.7 122.6 ± 108.8 P < 0.001 

Note. Normal range in parenthesis; NS = statistically not significant 

 

The control subjects had an indication for a gastrointestinal tract endoscopy within a cancer-

screening program, whereas patients with obstructive cholestasis had an interventional 

endoscopic retrograde cholangiopancreatography (ERCP). Within the cholestatic group, nine 
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patients had obstructive tumors (3 carcinoma of the pancreatic head, 4 cholangiocarcinoma 

(Klatskin tumor) and 2 metastatic disease). 10 patients had benign diseases (8 patients with 

choledocholithiasis and two patients with a benign stenosis of the common bile duct). 

Obstructive jaundice was defined on the basis of chemical parameters (bilirubin, γ-

glutamyltransferase, and alkaline phosphatase) and on imaging procedures (ultrasound and 

ERCP) demonstrating a dilated bile duct system. All control patients had normal values of the 

above mentioned parameters. During endoscopy four biopsy specimens were obtained from the 

distal part of the duodenum. Biopsies were immediately stored at –70°C until further processing. 

The study was approved by the State Ethical Committee of Basel (Ethische Kommission beider 

Basel, EKBB). 

 

Real-time RT-PCR analysis (TaqMan) described in Cha pter 2 

Sequences of PCR primers used for generating the standards and of TaqMan primers / probes 

used for real-time PCR (Table 2.1; Chapter 2) 

 

Immunohistochemical assessment is described in Chap ter 2 

 

Determination of bile acid plasma concentrations is  described inChapter 2 

 

Statistics 

All values were expressed as means ± SEM. Icteric patient’s BCRP expression was compared 

to that of healthy controls by analysis of variance (ANOVA). All comparisons were performed as 

two-sided comparisons using the SPSS for Windows software (version 12.0). Level of 

significance was p<0.05. 

 

 

3.3.4 Results 

3.3.4.1 BCRP mRNA expression is down-regulated duri ng cholestasis 

Intestinal mRNA expression of BCRP and villin was analyzed in 14 healthy subjects and 19 

patients with obstructive cholestasis. In cholestatic patients mean BCRP mRNA levels were 

reduced to 53.6 % when compared to healthy subjects. Relative expression (mean BCRP/villin ± 

SEM) was 0.51 (± 0.03) in controls and 0.27 (± 0.02) in cholestatic patients (p<0.001) (Figure 

1A). Mean villin mRNA expression was not significantly different between the control and 

cholestatic group (data not shown).  
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Figure 1A and 1B: Comparison of BCRP expression in healthy subjects versus cholestatic patients 

(mean ± SEM). 1A: Expression of BCRP mRNA relative to villin (14 controls versus 19 cholestatic 

patients). 1B: BCRP protein expression using immunohistochemistry with semiquantitative analysis (6 

controls vs. 6 cholestatic patients). 
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Figure 2 displays the individual BCRP mRNA expression in correlation to bile acid serum 

concentration.  

 

 

 

Figure 2: Individual BCRP mRNA expression (BCRP/villin) in correlation to bile acid plasma concentration 

in healthy subjects and cholestatic patients.  

 

In 4 patients a follow-up gastroscopy could be performed after reconstitution of bile flow. These 

patients showed normalized bile acid and bilirubin plasma levels at the time when duodenal 

follow-up biopsies were taken. In all 4 patients the BCRP mRNA expression increased (1.44-, 

1.71-, 1.05-, and 1.90-fold) when compared to the expression level of cholestasis (Figure 3).  
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Figure 3: Change of relative BCRP mRNA expression (BCRP/villin) in 4 patients during cholestasis and 

after reconstitution of bile flow.  

 

3.3.4.2 BCRP protein levels are decreased in choles tatic patients  

BCRP protein expression was evaluated by immunohistochemistry. Semiquantitative analysis in 

biopsies of 6 control subjects and 6 cholestatic patients was done by a trained pathologist. 

BCRP protein was expressed on the apical membrane of the duodenal epithelial cells. 

Representative pictures of duodenal tissues are displayed in Figure 4A (healthy subject) and 4B 

(cholestatic patient). Expression levels were rated as follows: 0 = no expression, 1 = low, 2 = 

intermediate, 3 = high expression. In patients with obstructive cholestasis mean BCRP protein 

levels were reduced to 57.1 % when compared to healthy subjects. Protein expression (mean ± 

SEM) was 2.91 (± 0.08) in control subjects and 1.67 (± 0.38) in cholestatic patients (p< 0.005) 

(Figure 1B). 
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Figure 4A and 4B: Immunohistochemical localization of BCRP protein on the apical membrane of human 

duodenal epithelial cells using a polyclonal rabbit anti-human BCRP antibody (all pictures at 200-fold 

magnification). 4A: clear staining of BCRP protein in a duodenal sample from a healthy subject. 4B: 

reduced staining in a duodenal sample of a patient with obstructive cholestasis 

  

3.3.5 Discussion  

Our data demonstrate that during complete or near complete obstruction of the bile duct by a 

tumour or biliary stone cholestasis intestinal BCRP expression is down-regulated on the 

transcriptional level leading to reduced amount of BCRP protein. As a proof of principle, 

reconstitution of bile flow by endoscopic or surgical therapy initiated normalization of intestinal 

BCRP expression associated with normalization of serum bile acids and bilirubin levels. 

 

At the moment, little is known about the transcriptional regulation of this transporter. Only 

recently, an estrogen response element in the BCRP promotor was discovered (Ee et al., 2004). 

Tanaka and coworkers observed, however, a higher BCRP expression in the kidney and liver of 

male rats and male mice, respectively (Tanaka et al., 2005). Furthermore, it has been reported 

that estrogens down-regulate BCRP protein expression by posttranscriptional mechanisms (Imai 

et al., 2005). Recently we have analyzed BCRP mRNA expression along the human 

gastrointestinal tract of healthy subjects with respect to sex (Gutmann et al., 2005). No sex-

related differences were observed. The data of the present study again show no significant 

differences between women and men (data not shown). We infer from these data that sexual 

hormones have most probably no effect on the expression of BCRP in the human intestine. 

This is the first study demonstrating that the expression of BCRP is altered in the human 

intestine during disease. Our results are in conflict with another study, where no differences in 
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duodenal BCRP protein levels were observed between icteric patients and healthy subjects 

(Dietrich et al., 2004a). The authors analyzed the expression of several ABC-transporters 

including BCRP in the human intestine and found only MRP2 to be down-regulated. A possible 

explanation for this discrepancy could be different durations and/or severity of cholestasis 

between the two patient groups in both studies.   

During cholestasis, the expression of bile acid and bilirubin transporters such as the ABC-

transporters MRP2, MRP3, MRP4, and organic anion transporting polypeptides (OATPs) is 

significantly changed (Tanaka et al., 2002; Wagner et al., 2003; Denk et al., 2004; Dietrich et al., 

2004a). Alterations in transporter expression do not only occur in the liver but also in remote 

organs such as the kidney and intestine. The systemic mediators that regulate these events 

during cholestasis have not been fully discovered. Proinflammatory cytokines, bile salts, or 

hormones have been suggested to control transporter gene expression (Trauner et al., 2005).  

 

IL-1 β has been identified as the central mediator for the down-regulation of intestinal MRP2 

(Denson et al., 2002; Dietrich et al., 2004a). In liver, TNF-α and IL-1 β are responsible for the 

down-regulation of several hepatobiliary transporters (Geier et al., 2003). Cytokines mediate 

these effects by reducing the binding activity of nuclear receptors to the corresponding 

promoters (Denson et al., 2002; Geier et al., 2003; Li and Klaassen, 2004). Bile acids act 

through binding to their endogenous receptor farnesoid X receptor (FXR), which induces the 

expression of small heterodimer partner (SHP) (Lu et al., 2000). SHP in turn represses the 

expression of several genes involved in bile acid homeostasis (Jung and Kullak-Ublick, 2003; 

Popowski et al., 2005). PXR is a further transcription factor that can be activated by bile acids 

(Xie et al., 2001). PXR activation leads to the induction of multiple detoxification pathways 

including transporters (Stedman et al., 2005). Moreover, hormones like glucocorticoids can 

influence transporter expression, as they are able to transactivate the intestinal bile acid 

transporter ASBT via the glucocorticoid receptor (Jung et al., 2004). However, until now, there 

are no indications that intestinal BCRP is also regulated by these mechanisms. Members of the 

ABCG subfamily such as ABCG1 and ABCG5 / ABCG8 are repressed by bile acids via the FXR-

SHP pathway in vitro (Brendel et al., 2002; Freeman et al., 2004). This demonstrates that further 

investigations of BCRP regulation are required.  

In the state of obstructive cholestasis virtually no bile acids are present in the intestinal lumen. If 

BCRP mediates the efflux of bile salts that enter the enterocyte from the lumen, a down-

regulation of this transporter would make sense. On the other hand, as BCRP is a potent efflux 

pump for a variety toxic compounds, a diminished expression could weaken the intestinal barrier 
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and the excretory function of the gut. Dietrich and coworkers determined the elimination of the 

dietary carcinogen PhIP in bile duct ligated rats (Dietrich et al., 2004b). They demonstrated that 

the excretion of this toxin was significantly reduced in parallel with a decreased expression of 

MRP2 and BCRP in liver. Furthermore, tissue binding of reactive metabolites was increased in 

liver and colon. A reduced intestinal BCRP expression could substantially contribute to the 

accumulation of carcinogens in the gut enterocytes. This might partly explain the observation 

that patients with primary sclerosing cholangitis, a chronic cholestatic disease, have a higher risk 

of developing colorectal carcinoma (Broome et al., 1995). 

In conclusion, we showed that patients with obstructive cholestasis exhibit a decreased 

expression of BCRP on mRNA and protein level. After reconstitution of bile flow BCRP mRNA 

levels normalized in all follow-up patients. Therefore, mediators that are associated with 

cholestasis seem to influence BCRP expression on the transcriptional level. Importantly, a 

decreased expression of this efflux pump could increase the accumulation of food-derived 

carcinogens and influence the pharmacokinetics of various anticancer drugs. Whether these 

results have clinical implications for cancer therapy is beyond the scope of this study. 
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3.4.1 Abstract 

Efflux transporters such as P-glycoprotein and multidrug resistance-associated proteins (MRPs) 

in the intestinal wall restrict intestinal drug transport. To overcome this limitation for enteral drug 

absorption, galenical targeting approaches have been proposed for site-specific luminal drug 

release in segments of the gut, where expression of the respective absorption-limiting 

transporter is minimal. Therefore, expression of multidrug resistance gene 1 (MDR1) and MRP1-

5 was systematically investigated in 10 healthy subjects. Biopsies were taken from different 

segments of the gastrointestinal tract (from duodenum, terminal ileum as well as ascending, 

transverse, descending, and sigmoid colon). Gene expression was investigated by quantitative 

real-time PCR (TaqMan). MRP3 appeared to be the most abundantly expressed transporter in 

the investigated parts of the human intestine, except for the terminal ileum, where MDR1 

showed the highest expression. The ranking of transporter gene expression in the duodenum 

was MRP3>>MDR1>MRP2>MRP5>MRP4>MRP1. In the terminal ileum the ranking order was 

as follows: MDR1>MRP3>>MRP1≈MRP5≈MRP4>MRP2. In all segments of the colon 

(ascending, transverse, descending, and sigmoid colon), the transporter gene expression 

showed the following order: MRP3>>MDR1> MRP4≈MRP5>MRP1>>MRP2. We have shown, 

for the first time, systematic site-specific expression of MDR1 and MRPs along the 

gastrointestinal tract in humans. All transporters showed alterations in their expression levels 

from the duodenum to sigmoid colon. The most pronounced changes were observed for MRP2 

with high levels in the small intestine and hardly any expression in colonic segments. This 

knowledge may be useful to develop new targeting strategies for enteral drug delivery. 

 

3.4.2 Introduction  

Efflux transporters in the intestinal wall form a barrier to cellular accumulation of toxins as well 

as to drug absorption (Schinkel, 1997). Important efflux proteins in the gut are P-glycoprotein 

[gene product of the multidrug resistance 1 (MDR1) gene] and multidrug resistance-associated 

protein (MRP) transporters. They belong to the superfamily of ATP-binding cassette (ABC) 

transporters. ABC transporters mediate the translocation of a wide variety of substances across 

cellular membranes using ATP hydrolysis (Horio et al., 1991; Senior et al., 1995). The 

expression of ABC transporter genes is widespread throughout many tissues, most notably in 

excretory sites such as the liver, kidney, blood-brain barrier, and intestine. Therefore, they play a 

critical role in absorption and tissue distribution of orally administered drugs (Schuetz et al., 
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1998; Ambudkar et al., 1999). Due to their broad substrate specificity, they may influence the 

pharmacokinetics of many chemically unrelated substances (e.g., HIV drugs, anticancer drugs, 

endogenous compounds) (Lee et al., 1997; Schinkel, 1998; Schuetz et al., 1999; Borst et al., 

2000). MDR1 preferentially extrudes large hydrophobic, positively charged molecules, whereas 

the members of the MRP family extrude both hydrophobic uncharged molecules and water-

soluble anionic compounds.  

There is little knowledge about the expression pattern of those ABC transporters along the 

human intestine. Taipalensuu investigated gene expression of 10 ABC transporters in jejunal 

biopsies from healthy subjects (Taipalensuu et al., 2001). The highest expression was shown for 

breast cancer resistance protein and MRP2. Nakamura investigated the expression of three 

ABC transporters in duodenal and colorectal tissues in humans (Nakamura et al., 2002). In 

comparison to duodenum, in colon they found a decrease in MDR1 expression, equal levels of 

MRP1, and a strong decrease in MRP2 expression. However, this comparison was not obtained 

in the same subjects. Therefore, the intraindividual expression differences between these 

transporters could not be assessed. 

Knowledge of the topographical distribution may be important for the development of specific 

galenical targeting approaches, which may be utilized to improve intestinal absorption of drugs. 

Therefore, in this study, the expression of MDR1 and MRP1-5 genes was investigated in the 

human intestine of 10 healthy subjects. 

   
 
3.4.3 Material and methods 

Intestinal biopsies 

Intestinal biopsies were obtained from a group of 10 healthy subjects (5 female, 5 male, aged 

50–76 years, average age 62 years, no medication), which served as a control group in a clinical 

study designed to investigate the regional expression of different genes in patients with 

inflammatory bowel disease. The study protocol included specifically the investigation of 

drugtransporting proteins and was approved by the local ethical committee (Ethische 

Kommission beider Basel, EKBB). Informed consent was obtained from all subjects prior to 

inclusion. No macroscopically pathological findings were observed during endoscopies in these 

subjects. Three to four biopsies were obtained from duodenum, terminal ileum, ascending colon, 

transverse colon, descending colon, and sigmoid colon (Figure 3.4.1). Due to low enterocyte 

content, duodenal biopsies from one subject had to be discarded, leading to nine duodenal 

samples. 
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Figure 3.4.1 Schematic overview of biopsy sampling. Samples were taken from the duodenum (A), 

terminal ileum (B), ascending colon (C), transverse colon (D), descending colon (E), and sigmoid colon 

(F). 

 
 
Preparation of Samples and Taqman analysis was desc ribed in chapter 2 

 

Statistical analysis 

Gene expression was compared between the different intestinal segments by analysis of 

variance. In the case of significant differences, all segments were compared with the expression 

in duodenum using two-sided Dunnett’s multicomparison t test. The level of significance was 

P<0.05. Comparisons were performed using SPSS for Windows software (version 11.0; SPSS 

Inc., Chicago, IL). 

 

3.4.4 Results 

There was a considerable interindividual variability of transporter gene expression amounting on 

average to 34% (CV%). Figure 3.4.2 displays the expression and ranking of all transporters in 

the analyzed tissues normalized to villin. MRP3 appeared to be the most abundantly expressed 

transporter in the investigated parts of the human intestine, except for the terminal ileum where 

MDR1 showed the highest expression. The ranking of transporter gene expression in the 

duodenum was MRP3 >> MDR1 > MRP2 > MRP5 > MRP4 > MRP1. In the terminal ileum the 
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ranking order was as follows: MDR1 > MRP3 >> MRP1 ≈ MRP5 ≈ MRP4 > MRP2. In all 

segments of the colon (ascending, transverse, descending, and sigmoid colon), the transporter 

expression showed the following order: MRP3 >> MDR1 > MRP4 ≈ MRP5 > MRP1 >> MRP2. 

 

 
Figure 3.4.2:  Expression of all investigated transporters in the analyzed tissues normalized to villin 

expression. Data represent means (± SEM) of biopsies from 10 health subjects, except duodenum, where 

biopsies from 9 subjects were used. 

 

Figure 3.4.3 shows the expression pattern of each individual transporter from the duodenum to 

the sigmoid colon normalized to villin. Compared with the duodenum, the expression of MDR1 

was 4- fold higher in the terminal ileum and approximately 2-fold higher in the colonic segments. 

MRP1 exhibited a 2- to 3-fold higher expression in both the terminal ileum and colon compared 

with duodenum. MRP2 showed highest expression in the duodenum, half-levels in the terminal 

ileum, and hardly any MRP2 transcripts in each colonic segment. MRP3, MRP4, and MRP5 

exhibited a similar expression pattern with equal levels in the duodenum and terminal ileum, but 

a 2- to 3-fold increase in the colon. Within the colon, MRP1, MRP3, and MRP5 showed an 

expression pattern with decreasing levels from proximal to distal, whereas MDR1, MRP2, and 

MRP4 levels remained rather constant. 

 



  89 

 

 

 

 

Figure 3.4.3 (A – F):  Transporter specific gene expression in different gut segments normalized to the 

villin expression. A: MDR1, B: MRP1, C: MRP2, D: MRP3 E: MRP4 and F: MRP5. Data represent means 
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(± SEM) of biopsies from 10 healthy subjects, except duodenum, where biopsies from 9 subjects were 

used. 

 
3.4.5 Discussion 

Only little information is available about the expression of ABC transporters along the intestinal 

tract. Available information relates mainly to MDR1 and MRP2 expression (Dietrich et al., 2003; 

Lindell et al., 2003) and previous studies have usually focused on isolated parts of the intestine 

(Taipalensuu et al., 2001; Lindell et al., 2003), on animal models (Achira et al., 2002; Takara et 

al., 2003), or on cancer cells (Nakamura et al., 2002; Li et al., 2003; Pfrunder et al., 2003). In the 

present study, systematic site-specific expression of MDR1 and MRP isoforms along the 

gastrointestinal tract in humans was shown. All transporters showed alterations in their 

expression levels from the duodenum to the sigmoid colon. The most pronounced changes were 

observed for MRP2, with high levels in the small intestine and hardly any expression in colonic 

segments. One drawback of the present study is the lack of samples from the jejunum, an 

important site for drug absorption. Because the subjects in our study underwent combined 

gastroscopy and colonoscopy procedures for screening of gastrointestinal cancer, jejunoscopy 

was not indicated and could not be performed. However, Taipalensuu and co-workers focused 

on the human jejunum and found a transporter expression with the following ranking: MRP2 > 

MDR1 ≈ MRP3 > MRP5 ≈ MRP1 > MRP4 (Taipalensuu et al., 2001). This transporter 

expression pattern in the jejunum, besides the high MRP2 levels, shows strong similarity to the 

pattern we found in the terminal ileum, which is conclusive because of the proximity of these 

tissues.  

It is suggested that MDR1 physiologically functions as a gatekeeper against xenobiotics in the 

gut. The bioavailability of many drugs is reduced due to MDR1 efflux. MDR1 shows extremely 

broad substrate specificity, including anticancer agents, antibiotics, antivirals, calcium channel 

blockers, and immunosuppressants. With respect to the expression of MDR1 in the human 

intestine, an increase from proximal to distal was stated, with the highest expression levels 

documented in the colon (Fricker et al., 1996; Dietrich et al., 2003; Chan et al., 2004). In mice, 

however, Chianale and co-workers found the highest levels of mdr3 mRNA in the ileum 

(Chianale et al., 1995). In the rat intestine, the P-glycoprotein-mediated drug efflux showed 

highest activity in the ileum as well (Stephens et al., 2001). We could also demonstrate, in 

humans, higher MDR1 mRNA levels in the terminal ileum compared with the duodenum. These 

results are consistent with human data from Mouly and Pain, who reported an increase in P-

glycoprotein from duodenum to ileum (Mouly and Paine, 2003). 
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MRP1 showed the lowest variation in mRNA levels within the intestinal tract. This is in good 

agreement with the fact that MRP1 is expressed ubiquitously. Physiologically important 

substrates for MRP1 include glutathione S-conjugates such as leukotriene C4, as well as 

bilirubin glucuronides (Keppler et al., 1998). In addition, anionic drugs and drugs conjugated to 

glutathione, like methotrexate or arsenite, are also transported by MRP1 (Bakos et al., 2000; 

Vernhet et al., 2000). 

Relatively low MRP2 mRNA levels were found in the human duodenum and even lower levels in 

the terminal ileum, but almost no MRP2 expression in the entire colon. These results were also 

found in the rat intestine (Mottino et al., 2000; Rost et al., 2002), but up to now, they were not 

confirmed in humans. Our results are also consistent with the expression pattern of glutathione 

S-transferase in the human gastrointestinal tract mucosa (Coles et al., 2002). This phase II 

metabolizing enzyme provides the conjugated compounds for subsequent export by MRP2 or 

MRP1. The substrate specificity of MRP2 is similar to that of MRP1, and includes glutathione 

conjugates, bilirubin glucuronides, and a number of drugs and their conjugated drug metabolites 

(Jedlitschky et al., 1997; Kawabe et al., 1999), including pravastatin, temocaprilat, irinotecan, 

SN-38, arsenite, cisplatin, methotrexate, vincristine, saquinavir, and ceftriaxone (Kusuhara and 

Sugiyama, 2002; Dietrich et al., 2003). Regarding the amount of drugs transported by MRP2, a 

drug targeting which circumvents absorption sites with high MRP2 expression would be of 

benefit, especially for drugs with low bioavailability. MRP3 transports a wide range of bile salts 

and seems to be involved in their reabsorption (Hirohashi et al., 2000). For MRP3, Rost and 

coworkers showed low expression in the rat duodenum and high expression in the ileum and 

colon (Rost et al., 2002). Here, low MRP3 expression in the duodenum as well as in the terminal 

ileum was shown. MRP3 expression increased in the colon but diminished slightly from proximal 

to distal segments. This reduction in transporter expression from ascending to sigmoid colon 

was observed for MRP1, MRP3, and MRP5. Interestingly, all of these transporters are located 

on the basolateral membrane. For MDR1, MRP2, and MRP4, probably located on the apical 

membrane (Chan et al., 2004) we observed rather constant expression levels throughout the 

entire colon. 

With respect to MRP4, we found equal expression levels in the duodenum and the terminal 

ileum but a 3-fold increase in the colon. To our knowledge, there is no previous publication on 

the MRP4 expression in the colon. However, in lymphoblastoid cell line lines an overexpression 

of MRP4 severely impaired the antiviral efficacy of adefovir, azidothymidine, and other 

nucleoside analogs (Schuetz et al., 1999). Other substrates include folic acid, bile acids, 

methotrexate, and 6-mercaptopurine (Wielinga et al., 2002; Chan et al., 2004). A physiological 
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role of MRP4 might be the release of prostaglandins from cells (Reid et al., 2003). Similarly, 

MRP5 showed low expression in the small intestine, but a 2-fold increase in the different colon 

segments. Both, MRP4 and MRP5 have an affinity to nucleotide-based substrates. There are no 

reports, at present, which could suggest a role for MRP5 in intestinal drug disposition. 

Experiments with transfected cells showed enhanced efflux of 2,4-dinitrophenyl-S-glutathione, 

adefovir, and the purine analogs 6-mercaptopurine and thioguanine (Wijnholds et al., 2000). 

Jedlitschky and co-workers demonstrated that MRP5 transports the cyclic nucleotides cAMP 

and cGMP (Jedlitschky et al., 2000), but the physiological function of this transporter remains to 

be elucidated.  

 

3.4.6 Conclusion  

In this study, for the first time, systematic site-specific expression of MDR1 and MRP isoforms 

along the gastrointestinal tract in humans was shown. All transporters showed alterations in their 

expression levels from the duodenum to the sigmoid colon. The most pronounced changes were 

observed for MRP2, with high levels in the small intestine and hardly any expression in colonic 

segments. The knowledge of transporter expression along the intestinal tract may be useful to 

develop new targeting strategies for enteral drug delivery. 
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4.1 Abstract 

Introduction:  Multidrug resistance transporters such as MDR1, MRP1-5 and BCRP are 

membrane efflux pumps that extrude a wide variety of drugs and endogenous compounds, 

thereby reducing their intracellular concentration. Therapy resistance in patients with an acute or 

chronic inflammatory disease treated with drugs which are substrates of MDR transporters is a 

relevant clinical problem. As macrophages play an important role in innate immune response, 

the knowledge of the transporter expression in the monocyte and in the monocyte derived 

macrophage might be of special value for pharmacological treatment and could be essential for 

understanding treatment failure in patients with acute or chronic inflammatory disease. 

Methods: Peripheral blood mononuclear cells (PBMC`s) were isolated from venous blood of 5 

healthy donors. The CD14+ PBMC subpopulation (monocytes) was purified by magnetic cell 

separation and cultivated in AB-serum containing medium for 7 days, to obtain monocyte 

derived macrophages (MDM). On day 6 part of the differentiated cells were stimulated with 

lipopolysaccharide (LPS) for 24h. Cells were phenotyped by staining with FITC-conjugated 

mouse monoclonal antibodies (mAb) to human HLA-DR, CD14, CD71 and CD 206.  MDR1, 

MRP1-5 and BCRP mRNA expression was measured by real time PCR (Taqman). 

Results: MDR1 and BCRP mRNA was not expressed in monocytes and only low expression 

was found in MDM for both transporters, which decreased insignificantly after incubation with 

LPS. MRP1 mRNA expression was lowest in monocytes and increased significantly with 

differentiation into MDM (p < 0.01) as well as after stimulation with LPS (p < 0.001). In contrast, 

highest MRP2 mRNA expression was found in monocytes, which decreased by six fold after 

differentiation into MDM (p < 0.001). MRP3-5 showed a similar expression pattern with the 

lowest gene expression in monocytes, which increased significantly during differentiation into 

MDM and decreased after LPS stimulation. 

Conclusion: The investigated ABC transporters MDR1, MRP1-5 and BCRP showed different 

gene expression patterns during differentiation of monocytes into MDM and subsequent 

stimulation with LPS, indicating different physiological functions. 

 

4.2 Introduction 

ATP- binding cassette (ABC) transporters are transmembrane proteins that translocate a wide 

variety of substrates across extra- and intracellular membranes using ATP hydrolysis (Horio et 

al., 1988). Multidrug resistance transporter 1 (MDR1; ABCB1), multidrug  resistance associated 

protein 1-5 (MRP1-5; ABCC1-5), as well as the breast cancer resistance protein (BCRP; 

ABCG2) are membrane efflux pumps which form a barrier to cellular accumulation of toxins as 
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well as to drug absorption, thereby lowering their intracellular concentration (Schinkel, 1997) and 

protecting tissue from xenobiotic accumulation and subsequent toxicity. Multidrug resistance is a 

phenomenon in which a cell exposed to a single drug, becomes cross-resistant to a large 

number of structurally unrelated compounds. Expression of P-glycoprotein (P-gp; gene product 

of the MDR1 gene) in different types of solid tumors and in leukemias has been associated with 

clinical resistance to chemotherapy, indicating that P-gp mediated multidrug resistance is an 

important clinical problem (Plaat et al., 2000; Sonneveld, 2000). Furthermore, there is increasing 

evidence that several multidrug resistance transporter play an important role in acute and 

chronic inflammatory processes (Wijnholds et al., 1997; Panwala et al., 1998) and might 

contribute to the development of therapy resistance in certain inflammatory diseases (Maillefert 

et al., 1996; Farrell et al., 2000). Spontaneous intestinal inflammation similar to that of human 

IBD was observed in mdr1a (-/-) mice (Panwala et al., 1998). Patients with UC and CD exhibited 

decreased Pgp expression in CD3+ intestinal lymphocytes when compared to healthy controls 

(Yacyshyn et al., 1999). High MDR1 protein expression in CD3+ circulating lymphocytes in IBD 

patients that required surgery several years earlier for failed medical therapy was demonstrated 

(Farrell et al., 2000) and a significant correlation between peripheral blood lymphocytes and 

colonic mucosal MDR expression among patients with IBD and controls was found. These 

results implicate that MDR expression might play a role in determining the response of IBD 

patients to therapy.  

In IBD, besides lymphocytes, other cell types such as macrophages play a key role in 

orchestrating a specific mucosal immune response. Peripheral blood monocytes, which originate 

from bone marrow progenitor cells, mature to different types of histiocytes and macrophages 

when they migrate from the bloodstream into various tissue. Macrophages have been shown to 

express an activated phenotype (CD14+) in patients with IBD that is usually not expressed in 

normal intestine (Rogler et al., 1997). These activated macrophages can substantially enhance 

the immune response in patients with IBD by acting as an antigen presenting cell (APC) and by 

secreting proinflammatory cytokines such as IL-1, IL-6, IL-12, IL-18 and TNFα.  

Several drugs used in the treatment of IBD patients are MDR, MRP or BCRP substrates. In vitro 

models with high MDR or MRP overexpressing cells have provided experimental evidence, that 

glucocorticoids (Pgp, MRP4), sulfasalazine (BCRP), cyclosporine (Pgp), methotrexate (MRP1-3) 

and the active metabolite of the inactive prodrug azathioprine, 6-mercaptopurine (MRP5) are 

actively transported out of these cells (Ueda et al., 1992; Schinkel et al., 1995; Borst et al., 1999; 

Borst et al., 2000; Keppler et al., 2000; van der Heijden et al., 2004). 
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Although, MDR1, MRP1-5 and BCRP are expressed in a variety of normal tissues very little is 

known about their expression and function in cells of the immune system. Therefore, MDR1, 

MRP1-5 and BCRP mRNA expression was investigated in human peripheral blood monocytes 

and monocyte derived macrophages (MDM). In addition, the effect of lipopolysaccharide (LPS) 

incubation on MDM on the gene expression of MDR transporters was studied. Knowledge of 

MDR transporter expression in the monocyte and in the monocyte derived macrophage might 

contribute to the improvement of pharmacological treatment of IBD patients and might help to 

understand better the molecular mechanisms leading to treatment failure in patients with 

inflammatory diseases. 

 

4.3 Material and Methods 

4.3.1 Reagents 

All chemicals were of highest quality available and were obtained from commercial sources. LPS 

preparation (Salmonella enterica serovar typhimurium) was purchased from Sigma Chemical Co 

(St. Louis, Mo.). 

 

4.3.2 Preparation and culture of peripheral blood m onocytes 

Peripheral blood mononuclear cells (PBMC`s) were isolated from venous blood of 5 healthy 

donors (5 male, average age 34.2 years, no medication) by Ficoll gradient centrifugation. CD14+ 

PBMC subpopulation (monocytes) was purified by magnetic cell separation (Miltenyi Biotech, 

Bergisch Gladbach, Germany) using CD14+ magnetic beads according to producer`s protocol. 

Monocytes then were cultured at 37°C in RPMI medium  supplemented with gentamycin 15 

µg/ml, sodium pyruvate (0.5 mM), hepes (0.75 mM), glutamax (1mM), non essential amino acids 

(all from Gibco Paisley, Scotland), 5% fetal calf serum and 10% heat inactivated (30 min at 

56°C, which does not destroy LBP bioactivity) human serum (pool of six samples from healthy 

individuals with blood group AB from the blood donor bank, Blutspendezentrum, 

Universitätsspital Basel, Switzerland). Cultivation was performed in hydrophobic quadriPERM 

Teflon wells (Vivascience, Göttingen, Germany) for 7 days with or without stimulation with LPS 

100 ng/ml culture medium after 6 days (intermediate feeding of medium). 

 

4.3.3 Phenotyping of cells 

Cells were phenotyped by staining with FITC-conjugated mouse monoclonal antibodies (mAb) to 

human HLA-DR, CD14, CD71 and CD206 (Becton Dickinson, San Diego, USA). Cell acquisition 
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was done by a flow-cytometer (FACScalibur) equipped with Cell Quest software (Becton 

Dickinson, San Diego, USA). 

 

Real time polymerase chain reaction analysis of hum an MDR1, MRP1-5, BCRP mRNA 

(TaqMan assay) as described in Chapter 2 

 

Statistical analysis  

Gene expression was studied in CD14+ PBMC`s (monocytes), monocyte derived macrophages 

with and without stimulation with LPS. For the comparison of the gene expression level the 

Tukey test was used. The level of significance was P <0.05. Comparisons were performed using 

SPSS for windows software (version 12.0, SPSS Inc., Chicago, USA). 

 

4.4 Results 

For the analysis of ABC transporter mRNA of CD14+ PBMC`s (monocytes) during differentiation 

into monocyte derived macrophages (MDM) and subsequent activation with LPS, isolated 

monocytes from peripheral blood of healthy donors were cultured in human AB-serum 

containing medium. One part of the cultured cells was used for phenotyping by staining with 

FITC-conjugated mouse monoclonal antibodies (mAb) to human HLA-DR, CD14, CD71 and 

CD206. The remaining cells were then used for the analysis of ABC transporter mRNA 

expression using real time PCR (Taqman). 

 

Phenotyping of monocytes showed a high CD14 and HLA-DR expression, whereas the 

differentiation markers CD71 and CD206 were low. During differentiation into MDM CD14 and 

HLA-DR decreased and CD71 and CD 206 increased. Stimulation of MDM with LPS was 

followed by a slight increase of CD14 and HLA-DR. The differentiation marker CD71 and CD 

206 remained unchanged (Table1).  

 
 monocytes macrophages LPS stimulated 

macrophages 
CD14 521.9 ± 70.7 14.8 ± 3.6 35.7 ± 7.1 
CD71 6.9 ± 1.5 67.6 ± 13.8 69.9 ± 18.2 

CD206 4.4 ± 0.5 15.9 ± 4.5 12.6 ± 3.2 
HLA-DR 226.6 ± 12 120 ± 24.3 150 ± 26 

 
Table1: FACS Analysis of monocytes, macrophages and LPS stimulated macrophages (mean FI ± SEM) 
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Figure 1:  MDR1 and BCRP mRNA expression (mean arbitrary units ± SEM) in monocytes, macrophages 

and LPS stimulated macrophages (N=5) 
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Figure 2A and 2B: MRP1 and MRP2 mRNA expression (mean arbitrary units ± SEM) in monocytes, 

macrophages and LPS stimulated macrophages (N=5) 

 

MDR1 mRNA and BCRP mRNA were not expressed in monocytes. Both transporters showed 

low expression after differentiation into MDM, which decreased insignificantly by activation with 

LPS (Figure1). MRP1 mRNA expression was lowest in monocytes, which increased significantly 
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with differentiation into MDM (p < 0.01) and upon stimulation with LPS (p < 0.001) (Figure 2A). 

In contrast, highest MRP2 mRNA expression was found in monocytes, and was about six fold 

lower after differentiation into MDM (p < 0.001) (Figure 2B).  

A similar expression pattern could be shown for MRP3, MRP4 and MRP5 with the lowest gene 

expression in monocytes and increased gene expression in MDM by 4-fold (p= 0.011), 3-fold (p< 

0.05) and 2.5-fold (p< 0.01), respectively. Gene expression decreased for all three transporters 

in LPS stimulated macrophages (Figure 2C, 2D, 2E). The decrease reached significance only for 

MRP5 (p< 0.01).  
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Figure 2C-E: MRP3-5 mRNA expression (mean arbitrary units ± SEM) in monocytes, macrophages and 

LPS stimulated macrophages (N=5) 

 

4.5 Discussion 

Here, we present an analysis of MDR1, MRP1-5 and BCRP mRNA expression in human 

peripheral blood monocytes and their change after differentiation into monocyte-derived 

macrophages (MDM). Furthermore we investigated the influence of the incubation of MDM with 

lipopolysaccharide (LPS) on the expression level of these transporters. 

In the present study, MDR1 and BCRP mRNA was not expressed in peripheral blood monocytes 

of healthy male donors. After differentiation into MDM for both ABC transporters only low mRNA 

expression could be demonstrated. Comparable results with any expression of P-glycoprotein 

(P-gp) were reported in monocytes and monocyte derived dendritic cells using immunolabeling 

experiments (Laupeze et al., 2001a). Furthermore, neither verapamil nor probenecid, which are 

known inhibitors of P-gp, altered intracellular rhodamine 123 levels in CD14+ monocytes 

(Laupeze et al., 2001b) indicating no functional activity of P-gp in these cells. In contrast, 

intracellular staining of P-gp with monoclonal antibodies was detected in CD14+ monocytes by 

confocal microscopy and in the same study P-gp staining in CD14+ cells was found unaltered in 

blood samples of HIV patients compared to controls (Malorni et al., 1998). MDR1 expression 

was also studied in other cell types of the human peripheral blood. The highest expression was 

found in CD56+ cells, followed by CD8+ > CD4+ > CD19+ cells (Oselin et al., 2003). Puddu et 

al. reported that P-gp expression was upregulated in a dose- and time-dependent manner in 
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MDM by treatment with IFN-γ (Puddu et al., 1999). It was shown that this upregulation was a 

specific response of primary macrophages, as IFN-γ treatment of primary lymphocytes and 

monocytic cell lines did not result in any increase of P-gp expression. Recently, it was suggested 

that P-gp mediated therapy resistance might be a common problem in chronic inflammatory 

processes (Farrell et al., 2000). For example, it was shown that peripheral blood mononuclear 

cells (PBMC) of patients with ulcerative colitis with previous glucocorticoid therapy had 

significant higher levels of MDR1 mRNA compared to patients without history of glucocorticoid 

administration (Hirano et al., 2004). Patients with UC and CD exhibited decreased Pgp 

expression in CD3+ intestinal lymphocytes when compared to healthy controls (Yacyshyn et al., 

1999) and high MDR1 protein expression in CD3+ circulating lymphocytes in IBD patients that 

required surgery several years earlier for failed medical therapy was demonstrated .(Farrell et 

al., 2000) Significantly elevated MDR expression in PBL has been shown also in patients with 

rheumatoid arthritis (RA) that require glucocorticoids (Maillefert et al., 1996).  

BCRP expression was detected mainly in excretory organs, e.g in canalicular membranes of the 

liver, in epithelial cells of the small intestine, colon, kidney and lung as well as in the blood brain 

barrier and the placenta (Scheffer et al., 2000; Maliepaard et al., 2001). It was found to be 

expressed in primitive hematopoietic stem cells (Zhou et al., 2005). However, there are no data 

about BCRP expression in peripheral blood cells. Interestingly, in vitro long term exposure of 

human T-cells to sulfasalazine (SSZ) was leading to an induction of BCRP protein expression 

(van der Heijden et al., 2004). Furthermore, an increase in TNFα release was observed, 

although the anti-inflammatory properties of SSZ, as a disease modifying antirheumatic drug 

(DMARD), have been attributed to diminished production of proinflammatory cytokines such as 

TNFα. Therefore the authors concluded that SSZ can lead to development of resistance by 

induction of BCRP and to a less effective inhibition of nuclear NFκB activation by SSZ in the 

resistant cells. In the same study P-gp was unaffected, while MRP1 expression was 

downregulated.  

In the present study we could demonstrate that the level of MRP1 mRNA and MRP3-5 mRNA is 

significantly lower in monocytes than in MDM. In contrast, the level of MRP2 mRNA expression 

was significantly higher in monocytes than in MDM.  

There are only rare data about expression of MRP1-5 in human peripheral blood cells. It was 

found that normal peripheral blood cells, regardless of cell lineage, expressed a similar basal 

level of MRP mRNA (Abbaszadegan et al., 1994). In another study, MRP1 and MRP2 mRNA 

expression was measured in human peripheral lymphocytes and showed highest expression in 

CD4+ cells, followed by CD8+ > CD19+ > CD56+ cells (Oselin et al., 2003). MRP1 as well as 
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MRP4 and MRP5 mRNA expression was described to be low in MDM cells and in vitro infection 

of MDMs with HIV-1/Ba-L increased the mRNA expression level of MRP1, MRP4 and MRP5 

(Jorajuria et al., 2004b). Incubation of HIV infected MDM with zidovudine, a nucleoside reverse 

transcriptase inhibitors, which is transported by MRP4 and MRP5 (Schuetz et al., 1999; Reid et 

al., 2003), increased MDR1, MRP4 and MRP5 mRNA expression. Also in infected MDM, 

PSC833 (Pgp inhibitor) as well as probenecide (unspecific MRP1 inhibitor) increased the anti-

HIV activity of zidovudine and indinavir, a protease inhibitor, which is transported by MRP1 

(Srinivas et al., 1998), substantially (Jorajuria et al., 2004a). Indinavir (10nM) showed a 14% 

inhibition without and an 81% inhibition in combination with inhibitors.  

Based on these results with zidovudine and indinavir MDM seems to be a suitable model system 

investigating the regulation of expression of multidrug resistance transporters by drugs. These 

drugs should include glucocorticoids (MDR1), methotrexate (MRP1-3), cyclosporine (MDR1), 6-

mercaptopurine (MRP4) and sulfasalazine (BCRP), which all are substrates of MDR transporters 

and are used in treatment of patients with IBD.  

In addition, in the present study, the effect on multidrug resistance tranporter expression after 

LPS incubation of MDM was investigated and a significant increase in MRP1 mRNA expression 

as well as a significant decrease in MRP5 mRNA expression was found. Increased expression 

after LPS administration was also found for MRP2 mRNA and decreased expression was 

observed for BCRP, MDR1, MRP3 and MRP4 mRNA. Lipopolysaccharide (LPS), a component 

of gram negative bacterial cell wall, activates macrophages via binding to the CD14 receptor and 

the signal is mediated by the Toll like Receptor pathway. This initial response to a stimulus is 

followed by production of proinflammatory cytokines leading to a cascade of reactions with 

activation of the NFκB pathway, production of reactive oxygen products and upregulation of 

inducible nitric oxide (NO) synthase (iNOS). To our knowledge, the effects of LPS on MDR 

transporter expression have been studied only in hepatocytes. LPS decreased mRNA levels of 

Mrp2 and increased Mrp1, Mrp3 and Mdr1b mRNA expression in rat hepatocytes, whereas Mrp5 

mRNA was unchanged (Cherrington et al., 2004). Elferink et al studied the effect of endotoxin 

induced cholestasis (with LPS) in rat and human liver. They found that MRP2 mRNA remained 

unchanged in human liver during 24h of incubation with LPS. In contrast MRP protein was 

almost completely removed from the canalicular membrane in the presence of LPS, indicating 

posttranscriptional regulation of protein expression (Elferink et al., 2004). LPS incubation of rat 

liver was leading to downregulation of Mrp2 and to an induction of Mrp3 protein expression in 

periportal hepatocytes and also a strong induction of Mrp5 mRNA was found in the same study 

(Elferink et al., 2004).  
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Our FACS analysis showed that MDM had only low level of CD14 receptors and LPS stimulation 

of MDM was associated with only discrete changes in the expression pattern of MDR 

transporters. Interestingly, Smith et al. demonstrated that intestinal macrophages, which were 

low for CD14 and CD 89 (CD14- and CD89-), have been downregulated for LPS- and IgA 

mediated functions (Smith et al., 2001). So, low level of CD14 receptors with a possible 

downregulation for LPS mediated functions might be an explanation for the only discrete 

changes of expression levels of the investigated drug transporters in our study upon stimulation 

with LPS. 

In conclusion, the mRNA expression level of MDR1, MRP1-5 and BCRP varies in monocytes 

and MDM. While MDR1 and BCRP are not expressed in monocytes and only low in MDM, 

MRP2 is highest expressed in monocytes with significantly lower expression in MDM. MRP1 and 

MRP3-5 show a significant increase when differentiated into MDM. Stimulation of MDM with LPS 

showed a significant increase of MRP1 mRNA and a significant decrease of MRP5 mRNA 

expression. Our results indicate that ABC transporters are adaptively regulated during 

differentiation into MDM and might therefore fulfill different physiological functions. Since many 

drugs that are used in the treatment of acute or chronic inflammatory processes are substrates 

of ABC transporters and macrophages play an important role in the innate immune response, 

MDM could be an interesting cell type studying MDR transporter regulation by anti-inflammatory 

and immunosuppressive drugs. 
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5.1 Abstract 

Objective: Multidrug resistance (MDR) transporters such as MDR1, MRP1-5 and BCRP are 

membrane efflux pumps that extrude drugs such as fluoroquinolones and α-adrenergic 

antagonists, which are used in the treatment of patients with chronic pelvic pain syndrome 

(CPPS), a syndrome caused by inflammatory and non-inflammatory factors. Therapy resistance 

in these patients is a relevant clinical problem. Since biopsies from patients with CPPS could not 

be obtained due to ethical reasons, the aim of the present study was to evaluate the influence of 

inflammation on MDR transporter expression in prostate tissue of patients with benign prostatic 

hyperplasia.  

Methods:  BCRP, MDR1 and MRP1-5 mRNA was quantified by real time PCR (Taqman) in 

prostate tissue of 50 patients with benign prostatic hyperplasia. Severity and localization of 

inflammation was assessed on hematoxylin and eosin stained sections. In addition, MDR 

transporter expression in prostate tissue of BPH patients was compared to LNcaP and PC3 

prostate carcinoma cell lines.  

Results: The ranking of transporter gene expression in the prostate tissue of patients with BPH 

was MRP4 = MRP1 >> MRP5 > MRP3 >> MDR1 = BCRP >> MRP2. Neither severity nor 

localization of inflammation in the prostate tissue influenced the expression of these MDR 

transporters. A significant decrease of BCRP mRNA expression (normalized to GAPDH mRNA) 

was observed for BPH patients treated with α-adrenergic antagonists (mean ± SEM) 0.0067 ± 

0.0007 when compared to untreated patients 0.004 ± 0.0005 (p <0.05) before undergoing TUR-

P. Expression of MDR transporters did vary in different prostate carcinoma cell lines (LncaP, 

PC3), when compared to prostate tissue of BPH patients. This indicates that using prostate 

carcinoma cell lines as predictive in vitro models for MDR transporters, variable expression of 

these transporters must be considered. 

Conclusion: Inflammation in the prostate tissue of patients with benign prostatic hyperplasia did 

not influence mRNA expression of BCRP, MDR1 and MRP1-5. 

 

5.2 Introduction 

Multidrug resistance transporter 1 (MDR1; ABCB1), multidrug  resistance associated protein 1-5 

(MRP1-5; ABCC1-5), as well as the breast cancer resistance protein (BCRP; ABCG2) are 

transmembrane efflux pumps that translocate a wide variety of substrates across extra- and 

intracellular membranes using ATP hydrolysis (Horio et al., 1988). They are protecting tissue 

from xenobiotic accumulation and subsequent toxicity by forming a barrier to cellular 

accumulation of toxins as well as to drug absorption (Schinkel, 1997). In consequence they 
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lower the intracellular concentration of these compounds. Multidrug resistance is a phenomenon 

in which a cell exposed to a single drug, becomes cross-resistant to a large number of 

structurally unrelated compounds. Expression of P-glycoprotein (P-gp; gene product of the 

MDR1 gene) in different types of solid tumors and in leukemias has been associated with clinical 

resistance to chemotherapy, indicating that P-gp mediated multidrug resistance is an important 

factor explaining chemotherapy failure in patients with cancer (Plaat et al., 2000; Sonneveld, 

2000). Several studies focused on the expression of multidrug resistance transporters in 

prostate cancer and human prostate cancer cell lines. They found an upregulation of different 

multidrug associated proteins in disseminated, progressive prostate cancer and concluded that 

multidrug resistance transporters may influence response to chemotherapy (van Brussel et al., 

1999; Van Brussel et al., 2001). 

At present, except for P-glycoprotein (gene product of MDR1), which expression has been 

assessed in the healthy prostate (Thiebaut et al., 1987), little is known about the systematic 

expression of other multidrug resistance transporters, such as MRP1-5 and BCRP in prostate 

tissue.  

Besides prostate cancer and benign prostatic hyperplasia (BPH), prostatitis is a challenging 

urological diagnostic entity. Chronic abacterial Prostatitis / Chronic Pelvic Pain Syndrome 

(CPPS, NIH Classification of prostatitis category III) is a common genitourinary diagnosis in the 

18 to 65-year old men (Collins et al., 1998) and presents with discomfort or pain in the pelvic 

region, variable voiding and sexual symptoms. The quality of health of patients with chronic 

prostatitis is impaired (Nickel, 2000). The syndrome is thought to be caused by infectious and 

non-infectious prostatic inflammation as well as noninflammatory disease. The aetiology is not 

known, a microorganism based aetiology with several microbial pathogens, as well as cryptic 

non-cultureable organisms are discussed (Domingue and Hellstrom, 1998). Other possible 

aetiological factors include dysfunctional high-pressure voiding, intraprostatic ductal reflux, 

autoimmune etiology, chemical (urine and its metabolites, i.e. uric acid), neuromuscular and 

others. Antibiotic therapy with the fluoroquinolones ofloxacin and ciprofloxacin or 

trimethoprim/sulfamethoxazole is the recommended treatment of chronic prostatitis, if there is a 

clinical, bacteriological or supporting immunological evidence of prostate infection (Bjerklund 

Johansen et al., 1998). In a telephone survey among primary care physicians (PCP’s) and 

urologists in Canada 1996 fluoroquinolones were thought to result in the successful treatment of 

prostatitis in only 64% of the cases (Nickel et al., 1998). When antibiotics fail other treatments 

are recommended, among others α-blockers as well as anti-inflammatories (NSAIDS) (Nickel, 
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2000). However, these drugs do ameliorate symptoms only in a small part of patients. At 

present, effective management strategies for chronic prostatitis are lacking. 

Taking into account, that there is increasing evidence that several multidrug resistance 

transporter play an important role in acute and chronic inflammatory processes (Wijnholds et al., 

1997; Panwala et al., 1998) and might contribute to the development of therapy resistance in 

certain inflammatory diseases (Maillefert et al., 1996; Farrell et al., 2000), the evaluation of the 

transporter expression in inflamed prostatic tissue might be of therapeutical relevance for 

patients with chronic prostatitis. Because antibiotics (e.g. fluoroquinolones), α-blockers as well 

as anti-inflammatories (NSAIDS) are substrates of multidrug transporters, altered expression of 

P-gp, MRP1-5 or BCRP in inflamed prostatic tissue may influence the intracellular concentration 

of these drugs and the efficacy of these treatments.  

Therefore the aim of this study was to assess the expression of multidrug resistance 

transporters in prostatic tissue of patients with benign prostatic hyperplasia and to evaluate the 

impact of inflammation on the expression level of these transporters. Due to ethical reasons no 

biopsies could be obtained from patients diagnosed with CPPS category III. 

 

5.3 Methods  

Subjects   

In the study 50 consecutive patients with no clinical or laboratory indication for prostate cancer 

that qualified for and underwent transurethral resection of prostate (TUR-P) for benign prostatic 

hyperplasia in the Urology Department of the University Clinic Kantonspital Liestal between April 

2003 and January 2004 were included. Patients, who were treated with known inducers of drug 

metabolising enzymes or MDR transport proteins (such as barbiturates, rifampicin, rifabutin, 

antiepileptics (phenytoin, carbamazepine), HIV protease inhibitors (especially nelfinavir and 

ritonavir), St John’s wort were excluded from the study. The patients were 72 ± 1.2 years (mean 

± SEM) old. All were of Caucasian race and the BMI was 26.7 ± 0.5 kg/m2.  

The study was approved by the local ethic commission (Ethische Kommission beider Basel 

(EKBB)). Patients have signed a written informed consent. 

 

Cell cultures 

The human prostatic carcinoma cell lines LNCaP and PC3 were cultured in standard RPMI 

complete medium, supplemented with 10% (v/v) fetal calf serum, 1% sodium pyruvate, 50µg/ml 

gentamycin and 1% 1M HEPES (pH 7.0). Cells were seeded in 12- well plates (each cell line 
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N=4). Cultures were maintained in a humified 37°C i ncubator with a 5% carbon dioxide in air 

atmosphere.  

 

Real-time polymerase chain reaction analysis of pro state tissue (see Chapter 2)  

Sequence of the primers and probes that were used for TaqMan analysis see in Chapter 2. 

 

Histological assessment 

Histological assessment was done by two trained pathologists. First, frozen sections were fixed, 

sectioned and stained with hematoxylin and eosin. Then, the severity of inflammation was rated 

as follows: 0 = no inflammation, 1 = low, 2 = intermediate, 3 = high grade of inflammation. If 

prostate tissue was found to be inflamed, assessment for localization of inflammation 

acinar/periacinar versus interstitial inflammation was performed. 

 

Data analysis and statistics   

Gene expression was studied in prostate tissue of patients undergoing TUR-P. For the 

comparison of the gene expression level in prostate tissue with different grade of inflammation 

the two-sided Dunnett’s multicomparison t test was used. The level of significance was P <0.05. 

Comparisons were performed using SPSS for windows software (version 12.0, SPSS Inc., 

Chicago, USA). 

 

 

5.4 Results 

 

Expression of multidrug resistance transporters in prostate tissue 

The expression and ranking of all transporters in the prostate tissue normalized to GAPDH is 

shown in Figure 1. MRP4 and MRP1 appeared to be the most abundantly expressed transporter 

in prostate tissue of patients with benign prostatic hyperplasia (BPH) undergoing transurethral 

resection of prostate (TUR-P). MRP3 and MRP5 were found approximately 2 times and MDR1 

and BCRP 6-7 times less expressed than MRP4. Only very low expression was found for MRP2. 

The ranking of transporter gene expression in the prostate tissue of patients with BPH was 

MRP4 = MRP1 >> MRP5 > MRP3 >> MDR1 = BCRP >> MRP2.  
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Figure 1:  Expression of MDR1, BCRP and MRP1-5 in the prostate tissue of patients with benign prostatic 

hyperplasia (N=50) normalized to GAPDH expression. Data represent means (± SEM). 

 

Inflammation did not alter the expression of multid rug resistance transporters in prostate 

tissue 

In the histologic assessment, which was done on hematoxylin and eosin stained sections, 13 

patients were found with no inflammation, 10 with low grade, 17 with intermediate and 13 with 

high grade of inflammation in the prostate tissue. Inflammatory cells were found in 6 patients 

predominantly periacinar/acinar, in 24 patients interstitial and in 7 patients both patterns were 

observed. Gene expression of multidrug resistance transporters was not altered neither by 

severity of inflammation nor localization of inflammation (data not shown). 

 

BCRP expression and α-blocker 

BCRP/GAPDH (mean ± SEM) gene expression was significantly decreased in patients with BPH 

treated with α-blocker (0.0067 ± 0.0007; N=12) when compared to α-blocker untreated patients 

(0.004 ± 0.0005; N=38) before TUR-P was performed (p < 0.05) (Figure 2). 
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Figure 2:  Comparison of BCRP mRNA expression in patients with benign prostatic hyperplasia treated 

with α-adrenergic antagonist (N = 12) vs. untreated patients (N = 38) before undergoing TUR-P 

normalized to the expression of GAPDH. Data represent means (± SEM).  

 

Expression of multidrug resistance transporters in human prostate carcinoma cell lines 

For evaluation of the multidrug resistance gene expression two prostate carcinoma cell lines 

(LNcaP and PC3) were used and compared to the expression in prostate tissue of BPH patients. 

Almost no BCRP and MDR1 gene expression was found in both prostate cell lines when 

compared to the prostate tissue of BPH patients (Figure 3A and 3B). MRP1 expression in BPH 

patients and in PC3 carcinoma cell line was comparable. MRP1 expression in LNcaP carcinoma 

cell line was 2-3times higher (Figure 3C). As already shown MRP2 expression was very low in 

BPH patients, which is comparable to the PC3 carcinoma cell line. Even lower MRP2 expression 

was found for the LNcaP cell line (Figure 3D). 

MRP3 expression was 20-25times higher in the PC3 cell line compared to prostate tissue of 

BPH patients. No expression of MRP3 was found in the LNcaP cell line (Figure 3E). MRP4 

expression was highest in the LNcaP cell line, followed by PC3 cell line and prostate tissue of 
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BPH patients (Figure 3F). Both cell lines and prostate tissue of BPH patients show an almost 

similar expression level for MRP5 expression (Figure 3G). 
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Figure 3:  Expression of MDR1, BCRP and MRP1-5 mRNA in prostate tissue of patients with benign 

prostatic hyperplasia and two prostate carcinoma cell lines (LNcaP, PC3). Data represent mean transcript 

number (± SEM). 

 

 

5.5 Discussion 

Expression of several multidrug resistance (MDR) transporters in patients with BPH was 

evaluated in this study. It could be shown that MRP4 and MRP1 were the two most abundantly 

expressed transporters in the prostate tissue, followed by MRP3 and MRP5. MDR1 and BCRP 

were markedly less expressed, whereas no expression was observed for MRP2. At present 

there is only little information in the literature about the expression of these MDR transporters in 

the human prostate.  

Compared to other tissues such as adrenal gland, kidney, liver, lung as well as the intestine 

MDR1 mRNA expression in prostate tissue was found to be low (Fojo et al., 1987). When 

compared to the liver Uchiumi et al reported minimal expression of MRP3 as well as MRP2 in 

prostate tissue (Uchiumi et al., 1998). In contrast MRP4, which was examined in a range of 

human tissues by hybridization analysis, transcript levels were highest in the prostate (Lee et al., 

1998). MRP4 was localized on the basolateral membrane of tubuloacinar cells and it was 

suggested that one function of MRP4 might be the efflux of xenobiotics and toxins out of 

prostatic epithelial cells (Lee et al., 1998).  

MDR1 was detected in both benign and malignant prostate cells (Kawai et al., 2000). In non-

malignant prostate tissue P-glycoprotein (Pgp; the gene product of MDR1) was detected on the 

apical membrane of the epithelial cells with higher staining intensity towards the inner zone, 
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whereas in malignant specimens Pgp showed lower staining intensities and was found to be 

expressed more heterogeneously in the cancer tissue (Kawai et al., 2000). Almost all clinical 

based studies investigating the role of MDR transporters in human prostate were focusing on 

prostate cancer. Although MDR1 was not expressed in diverse prostate carcinoma cell lines 

(van Brussel et al., 1999) a direct correlate was found between tumor grade, stage and prostate 

specific antigen levels in a retrospective analysis of paraffin-embedded tissue of patients with 

prostate cancers and controls with BPH (Bhangal et al., 2000).  

MRP1 is consistently expressed in prostate cancer cell lines (van Brussel et al., 1999) and was 

found to be expressed even in early stages of prostate cancer (Sullivan et al., 1998) with an 

increase in late disease stages (Van Brussel et al., 2001). Drug resistance phenotype due to 

incubation with doxorubicin was reported for various prostate carcinoma cell lines (David-

Beabes et al., 2000). 

Chronic abacterial Prostatitis / Chronic Pelvic Pain Syndrome (CPPS, NIH Classification of 

prostatitis category III) is thought to be caused by infectious and non-infectious prostatic 

inflammation as well as noninflammatory disease. Patients with CPPS often do not respond to 

first line treatment with antibiotics and subsequently also fail to benefit from second line 

treatments such as α-blockers as well as anti-inflammatories (NSAIDs). Fluoroquinolones are 

the recommended antibiotics in the treatment of chronic prostatitis (Bjerklund Johansen et al., 

1998). Interestingly, several fluoroquinolones are substrates of different MDR transporters as 

shown in transport assays performed in different tissue types and cell lines (Tamai et al., 2000; 

Terashi et al., 2000; Lowes and Simmons, 2002; Michot et al., 2004; Sasabe et al., 2004). α-

Adrenergic antagonists such as Prazosin and Doxazosin are substrates of BCRP (Ozvegy et al., 

2001) and of MDR1 (Takara et al., 2002), respectively. Aspirin was shown to enhance Pgp 

expression in a human lymphoma cell line. MRP4 acts as a prostaglandin transporter and 

nonsteroidal anti-inflammatory drugs were shown to inhibit this transport (Reid et al., 2003). As 

several MDR transporters play an important role in acute and chronic inflammatory processes 

(Wijnholds et al., 1997; Panwala et al., 1998) and might contribute to the development of therapy 

resistance in certain inflammatory diseases (Maillefert et al., 1996; Farrell et al., 2000), the aim 

of the present study was to evaluate the influence of inflammation in prostate tissue of BPH 

patients on MDR transporter expression. Due to ethical reasons, tissue of patients with CPPS 

could not be obtained. 

Here, the grade of inflammation and localization of inflammation (acinar/periacinar versus 

interstitial) was assessed on hematoxylin and eosin stained sections on prostate tissue of 

patients with BPH. Neither severity nor localization of inflammation changed the expression of 
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the investigated MDR transporters. The influence of inflammation on MDR transporter 

expression in prostate tissue of patients with BPH or of patients with chronic prostatitis has not 

been reported in the literature before. However, in a rat prostatitis model poor success rate of 

treatment with norfloxacin was not due to altered pharmacokinetics in the inflamed prostate 

(Nickel et al., 1995). This could implicate that transporters did not influence the transport of 

norfloxacin in this model. 

Patients treated with an α-adrenergic antagonist before undergoing resection of prostate showed 

a decreased BCRP expression when compared to the untreated group. Of these 12 patients, 8 

were taking tamsulosin, 2 terazosin and 2 alfuzosin. These patients were taking the medication 

until TUR-P was performed. Tamsulosin is a potent α-blocker which is metabolised by CYP3A4 

and CYP2D6 (Kamimura et al., 1998). If tamsulosin is transported by an MDR transporter is 

currently not known. As the influence of α-adrenergic antagonists on MDR expression was not a 

primary question of this study the result here is not conclusive and needs to be confirmed. 

 

In addition, the expression of MDR transporters in prostate tissue of BPH patients as well as in 

two prostate carcinoma cell lines (LNcaP and PC3) was evaluated. It could be shown, that 

BCRP and MDR1 mRNA expression was very low in both prostate carcinoma cell lines when 

compared to the prostate tissue of BPH patients. MRP1 expression in BPH patients and in PC3 

carcinoma cell line was comparable, but MRP1 expression in the LNcaP carcinoma cell line was 

2-3times higher. MRP2 expression was very low in BPH patients with a comparable expression 

level in PC3 carcinoma cell line. MRP3 expression was 20-25times higher in the PC3 cell line 

when compared to prostate tissue of BPH patients. No expression of MRP3 was found in the 

LNcaP cell line. MRP4 expression was highest in the LNcaP cell line, followed by PC3 cell line 

and prostate tissue of BPH patients. Both prostate carcinoma cell lines and prostate tissue of 

BPH patients show an almost similar expression level concerning MRP5 expression. In general, 

expression of MDR transporters showed variable expression levels in the prostate carcinoma 

cell lines and in prostate tissue of BPH patients. In consequence, when prostate carcinoma cell 

lines are used as predictive in-vitro models for MDR variable expression of these transporters 

must be considered.  

 

In conclusion, the ranking of transporter gene expression in the prostate tissue of patients with 

BPH was MRP4 = MRP1 >> MRP5 > MRP3 >> MDR1 = BCRP >> MRP2. Neither severity nor 

localization of inflammation in the prostate tissue influenced the expression of these MDR 

transporters. A significant decrease of BCRP mRNA expression was observed for BPH patients 
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treated with α-adrenergic antagonists before undergoing TUR-P when compared to untreated 

patients. However, this result needs to be confirmed on the posttranscriptional level. Expression 

of MDR transporters did vary in different prostate carcinoma cell lines (LncaP, PC3), when 

compared to prostate tissue of BPH patients and indicates that choice of carcinoma cell lines for 

in vitro studies with MDR transporters has to be done carefully. 
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Conclusion and  Outlook  

 

The aim of this thesis was to investigate the role of transmembrane transporters in healthy 

intestine and gastrointestinal diseases. In healthy subjects, systematic site-specific analysis of 

various transmembrane transporters along the intestinal tract was presented here (Chapter 3.1, 

3.2, 3.4). All investigated transporters showed alterations in their mRNA expression levels from 

the duodenum to the sigmoid colon. As many of the investigated tranporters were efflux 

transporters such as MDR1, BCRP, MRP1-5 which are localized in the intestinal wall and restrict 

intestinal drug transport, this knowledge might be important to develop drug targeting strategies 

for orally administered drugs.  

During obstructive cholestasis, expression and regulation of ASBT, which is a critical 

determinant of the reuptake of bile acids from the intestine and of BCRP, which mediates among 

others energy dependent efflux of bile acids, were investigated. Both transporters were 

downregulated during obstructive cholestasis. We concluded that for ASBT adaptive gene 

regulation may represent a mechanism preventing the accumulation of hepatotoxic bile acids 

during cholestasis. Reduced intestinal BCRP expression during cholestasis might influence the 

accumulation of bile acids, food-derived carcinogens and the pharmacokinetics of various drugs 

that are transported by BCRP. However, the molecular mechanisms explaining this observed 

adaptive regulation, which might be mediated by bile acids, drugs, inflammatory cytokines or 

other factors, are not known. In the literature several nuclear receptors have been described to 

be involved in the regulation of ASBT (Chapter 1.3). PPARα, which is one of these nuclear 

receptors, was not significantly different between cholestatic patients and controls. In 

conclusion, additional studies are needed to investigate the molecular factors which are involved 

in the regulation of gastrointestinal transporters involved in bile acid transport during obstructive 

cholestasis.  

 

To understand the molecular mechanisms for insufficient or failed therapy in the treatment of 

patients with Inflammatory Bowel Disease (IBD) is another key project of our laboratory. 

Intestinal macrophages play a central role in the orchestration of innate immune response 

reactions in the gut and anti-inflammatory and/or immunosuppressive drugs such as 

glucocorticoids (MDR1), methotrexate (MRP1-3), cyclosporine (MDR1), 6-mercaptopurine 

(MRP4) and sulfasalazine (BCRP), which all are used in the treatment of IBD patients, are 

substrates of MDR transporters. 
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Therefore, a method for isolation of CD14+ peripheral blood cells (monocytes), their ex vivo 

cultivation and differentiation into macrophages was established. First, the influence of the 

differentiation process of monocytes into monocyte derived macrophages (MDM) and the 

stimulation of bacterial products (LPS) of MDM on MDR transporter expression was 

investigated, as demonstrated. At present, the effect of budesonide, methotrexate, 6-

mercaptopurine and sulfasalazine on the transporter expression in ex vivo cultivated human 

MDM is evaluated.  

In a next step, we will isolate CD14+ monocytes from peripheral blood mononuclear cells from 

healthy controls, UC patients, and CD patients, differentiate them into MDM, and characterize 

them regarding MDR transporter expression patterns.  

 

In addition, it is planned to extract lamina propria mononuclear cells and intraepithelial 

lymphocytes from intestinal mucosa. This method will be established using larger samples from 

porcine intestine, with the aim to try to down-scale the method to smaller tissue sample sizes (as 

for human biopsies). Subsequently, the method will be transferred to biopsies of human 

intestinal tissues. Alternatively, the use of human surgically resected intestinal tissue is 

foreseen. Primary cell cultures of these cellular subtypes will be investigated by means of 

quantitative real-time PCR analysis, Western blot, and fluorescence activated cell sorting 

(FACS) to study the expression pattern of MDR transporters.  

At present, effects of IBD drugs, e.g. budesonide on MDR mRNA and protein expression in 

different intestinal epithelial cell lines (LS180, Caco-2 and HT29) are systematically evaluated. In 

our in vitro studies we are focusing on nuclear receptors such as the glucocorticoid receptor 

(GR) and pregnane X receptor (PXR) with the goal to gain more insight in the molecular 

mechanisms underlying glucocorticoid resistance or dependence often seen in IBD patients.  

The human ASBT gene has been shown to be transactivated by the GR and its ligands 

dexamethasone and budesonide. Induction of ASBT expression in the intestine of Crohn 

patients may improve the chologenic component of diarrhea. In a subproject we plan to evaluate 

the expression of ASBT in Crohn patients which are not responding to treatment with steroids.  

 

Another important task of our group and of my present work was to initiate a prospective clinical 

study in IBD patients, which should investigate MDR transporter gene expression in intestinal 

biopsies (intestinal epithelial cells, intestinal macrophages) and blood samples (lymphocytes) in 

newly diagnosed IBD patients compared to treatment refractory IBD patients, patients in 

remission and disease free controls. The aim of the study is to investigate the expression of 
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MDR transporter in intestinal tissue biopsies and blood samples to demonstrate, if the 

expression levels of MDR transporters vary due to: 

- inter-individual differences 

- inflammatory processes  

- pharmacological treatment  

 

For analysis of MDR transporter expression TaqMan analysis, Western blot and immunostaining 

will be applied. 

For the analysis 5 patient groups of 60 patients each are needed: A) new, untreated patients 

(aged 18-60 years) with Crohn’s disease, B) new untreated patients with ulcerative colitis , C) 

therapy refractory patients with IBD, D) IBD patients in remission and E)  patients with irritable 

bowel syndrome (control group, see below) undergoing colonoscopy. In patients with 

macroscopical signs of inflammation, biopsies from the inflammed and when possible also from 

the non-inflammed part are taken. Up to now, a total number of 130 patients have been included 

into the study and biopsies have been collected. Unfortunately, no preliminary analysis could be 

presented in this thesis. 

In collaboration with external gastroenterologists blood samples of IBD patients will be collected 

for the analysis of “Single nucleotide polymorphisms (SNP)” of different MDR transporter genes. 

It will be evaluated, if the SNP´s can be used as predictors for susceptibility and/or treatment 

responsiveness. Allelic discrimination assays for other SNPs of ABC-transporters such as a 5’-

nuclease assay for the MDR1G2677T and the MDR1G2677A polymorphism have already been 

established by Heike Gutmann in our group, whereas allelic discrimination assays for other 

multidrug transporters such as BCRPG34A, BCRPC421A, BCRPA616C, and BCRPA1768T are 

in development currently.  

 

The “prostate study” was performed to evaluate the influence of inflammation on expression of 

MDR tranporters in patients with BPH. Neither severity nor localization of inflammation altered 

the expression of the investigated MDR transporters. This project was designed as an isolated 

project and will not be investigated further. 

 

 

 

 



  125 

Curriculum Vitae 

 
Last Name Hrúz 
 
First Name Petr 
 
Date of birth May 17th 1973 
 
Place of birth Prague, Czech Republic 
 
Nationality Swiss 
 
Languages German, English, French, Czech 
 
 
Address Home Gotthelfstrasse 91 
 4054 Basel 
 Switzerland 
 phone: ++41 61 301 48 49 
 
 
Address Institution Department of Pharmacology and Toxicology 
 Department of Gastroenterology 
 University Hospital Basel 
 Lab 411 
 Hebelstrasse 20 
 4031 Basel 
 phone: ++41 61 265 23 97   

fax:  ++41 61 265 54 01 
e-mail petr.hruz@unibas.ch 

 
 
Schools and Educational Background 
 
1979-1981 Primary School Prague 
1981-1983 Primary School Basel 
1983-1991 High School Bäumlihof in Basel 
1991-1997 Study of Medicine, University of Basel 
 
 
Postgraduate Training 
 
01.01.1998-28.02.1999 Internship in Psychiatry , Psychiatric University Clinic Basel 

4025 Basel 
Head: Prof. Dr. F. Müller-Spahn 
 

01.03.1999-31.08.2000 Internship in Urology, University Clinic of Urology,  
 Inselspital Bern, 3010 Bern 

Head: Prof. Dr. U.E. Studer 



  126 

01.09.2000-31.03.2002 Internship in Internal Medicine Clinic B, University Hospital of 
Basel, 4031 Basel 
Head: Prof. Dr. J. Schifferli 
 

01.04.2002-30.10.2002 First Part: Postgraduate Course for Experimental Medicine 
University Hospital of Zürich, 8001 Zürich 
Head: Prof. Dr. J. Zapf 
 

Since 01.11.2002 Second Part: Postgraduate Course for Experimental Medicine: 
Project: Multidrug resistance in Inflammatory Bowel Disease 
Department of Clinical Pharmacology and Toxicology, Department 
of Gastroenterology, University Hospital of Basel 
Head: Prof. Dr. J. Drewe and Prof. Dr. Ch. Beglinger 

 
Since 01.04.2004 Internship in Internal Medicine, University Polyclinic and Clinic A  
 University Hospital of Basel 
 Head: Prof. Dr. E. Battegay, Prof. Dr. A. Perruchoud  
 
Dissertation 
 
June 1998 Study of Tardive Dyskinesia in Patients treated with Neuroleptics 
 Guided by Dr. med. Ph. Eich 
 
 
Grants 
 
1999 Josephine Clark-Fonds (University of Bern)  
 
2002    Travel Grant European Gastroenterology Congress, Geneva 
 
2003 Grant Altana Fonds, University Hospital of Basel  
 
2004     Travel Grant UEGW, Prag 2004 
 
 
Published Abstracts 
 
 
1. Hochreiter WW, Hruz P, Danuser H, Studer UE. Comparison of urodynamic findings in 

patients with chronic pelvic pain syndrome IIIa and IIIb. International Prostatitis 
Collaborative Network, October 2000 

 
2. Hochreiter WW, Hruz P, Danuser H, Studer UE. Endoscopic and urodynamic findings in 

patients with therapy refractory non-inflammatory chronic pelvic pain syndrome. Eur Urol 
2001; 3(suppl5): A237 

 
3. Mayr M, Hruz P, Drewe J, Löw R, Huber G, Steiger J. DMPS (sodium-2,3-dimercapto-

propanesulphonate): A highly effective agent for the elimination of colloidal bismuth in 
bismuth intoxication-induced acute renal failure. Swiss Med Wkly 2001; 131(suppl128): 
A29 

 



  127 

 
4. Hruz P, Zimmermann C, Gutmann H, Drewe J, Beglinger C. Human ASBT mRNA is 

expressed in the small intestine, predominantly in the terminal ileum. Gut 2004; 53 
(Suppl VI) A131 

 
 
Publications 
 
1. Hruz P, Zechner S, Heimberg D, Hobi V, Scheffler K, Schönenberger GA, Müller-Spahn 

F, Seifritz E. Effects of DSIP on ERPs. J Clin Psychopharmacol 2001; 21: 626-8 
 
2.  Hochreiter WW, Hruz P, Danuser H, Studer UE. Symptomevaluation beim chronischen 

Beckenschmerzsyndrom des Mannes. Urologe A 2003; 42: 38-40 
 
3. Hruz P, Danuser H, Studer UE, Hochreiter WW. Non-inflammatory chronic pelvic pain 

syndrome can be caused by bladder neck hypertrophy. Eur Urol 2003; 44:106-10 
 
4.  Zimmermann C, Gutmann H, Hruz P, Gutzwiller JP, Drewe J, Beglinger C. Mapping of 

MDR1 and MRP 1-5 mRNA expression along the intestinal tract. Drug Metabolism and 
Disposition 2005; 33:219-24 

 
5.  Gutmann H, Hruz P, Zimmermann C, Beglinger C, Drewe J. Distribution of breast cancer 

resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. 
Biochemical Pharmacology 2005; 70: 695-9 

 
6.  Hruz P, Zimmermann C, Gutmann H, Degen L, Beuers U, Terracciano L Drewe J, 

Beglinger C. Adaptive regulation of the ileal apical sodium dependent bile acid 
transporter (ASBT) in patients with obstructive cholestasis. Gut 2006; 55:395-402 

 
7. Zimmermann C, Hruz P, Gutmann H, Terracciano L, Beuers U, Lehmann F, Beglinger 

Ch, Drewe J. Decreased expression of breast cancer resistance protein (BCRP) in the 
intestine in patients with obstructive cholestatis. (submitted to the Journal of Hepatology) 

 
8. Gutzwiller JP, Hruz P, Huber AR, Hamel C, Zehnder C, Drewe J, Gutmann H, Stanga Z, 

Vogel D, Beglinger Ch. Glucagon-like Peptide-1 is involved in sodium and water 
homeostasis in humans. (submitted  to Digestion) 

 

Case reports 
 
1. Hruz P, Mayr M, Löw J, Drewe J, Huber G. Fanconi`s syndrome, acute renal failure and 

tonsil ulcerations after colloidal bismuth subcitrate intoxication. Am J Kidney Dis 2002; 
39: E18 

 
2.  Hruz P, Hirsch HH, Zeller A. Ein kleiner Virus bei den Grossen. Schweiz Rundsch Med 

Prax 2005; 11:785-7 
 
3.  Hruz P, Zeller A. Steppergang im Rauschzustand. Schweiz Rundsch Med Prax 2005; 

16:1823-4 


