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In mammalian spermatozoa, most but not all of the genome is densely 

packaged by protamines. Here we reveal the molecular logic underlying 

retention of nucleosomes in mouse spermatozoa that only contain one percent 

residual histones. Throughout the genome we observe high enrichment of 

nucleosomes at CpG-rich sequences that lack DNA methylation. Residing 

nucleosomes are largely composed of the H3.3 histone variant, and are 

trimethylated at lysine 4 of H3 (H3K4me3). Canonical H3.1 and H3.2 histones 

are also enriched at CpG-rich promoters marked by Polycomb-mediated 

H3K27me3, which is strongly predictive for gene repression in pre-implantation 

embryos. Histone variant specific nucleosome retention in sperm strongly 

associates with the level of nucleosome turnover in round spermatids. Our 

data shows evolutionary conservation of the basic principles of nucleosome 

retention in mouse and human sperm, supporting a model of epigenetic 

inheritance by nucleosomes between generations. 

 

In mammals, fusion of two morphologically distinct gametes, oocytes and 

spermatozoa, leads to the formation of totipotent embryos. Acquisition of totipotency 

is thought to be mediated by extensive epigenetic reprogramming of parental 

genomes, affecting DNA methylation and histone modifications, and possibly 

replication timing and transcriptional activity in parental specific manners1-4. It is 

currently unclear to what extent differential reprogramming of maternal and paternal 

genomes is due to differences in chromatin states inherited from the oocyte and 

spermatozoon4-11. Beyond DNA methylation1,2,6,12, it is unknown which types of 

parental chromatin states are maintained or reprogrammed in early embryos. If 

certain parental chromatin states did escape reprogramming in the early embryo, 

such information could constitute an “intrinsic intergenerational epigenetic program 

directing gene expression in the next generation13. If these chromatin states also 

escaped reprogramming during gametogenesis, the inheritance program would 

function transgenerationally13. An increasing number of studies point to inter- or 

transgenerational transmission of acquired phenotypic traits that are related to 

temporal exposure of (grand-)parents to alternative instructive environmental cues14-

18. Mechanistically, such phenotypic changes may be related to (transient) alterations 

of an intrinsic inheritance program.  

 A role of histones and associated posttranslational modifications in maternal 

and paternal transmission of intrinsic or acquired epigenetic information is largely 

unknown13. In many metazoans, male germ cells undergo during their final 

differentiation into sperm an extensive chromatin remodeling process during which 
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genomic DNA becomes newly packaged into a highly condensed configuration by 

sperm specific proteins. In mammals, removal of histones is generally not 

complete10,11,19-24. Furthermore, remaining histones have been reported to stay asso-

ciated with the paternal genome during de novo chromatin formation in the zygote 

following fertilization9.  

 We and others recently showed that histones lasting in human sperm are to 

some extent enriched at regulatory sequences of genes10,11. We also demonstrated 

that H3K4me3- and H3K27me3-marked histones are retained at promoters of 

specific sets of genes in mouse spermatozoa11. The extent of evolutionary 

conservation of nucleosome retention at gene regulatory sequences in spermatozoa 

and the mechanistic principles of such retention are, however, unknown.  

 To address conservation and to dissect the molecular logic underlying 

nucleosome retention, we determined the genome-wide nucleosome occupancy in 

mouse spermatozoa that only contain 1% residual histones. We show here that 

combinatorial effects of sequence composition, histone variants and histone 

modifications uniquely determine the packaging of sperm DNA. Nucleosomes in 

sperm mainly localize to unmethylated CpG-rich sequences in a histone variant 

specific manner and are differentially modified. Comparison of histone variant profiles 

between post-meiotic round spermatids and sperm argues that retention of variant 

specific nucleosomes in sperm are linked to levels of nucleosome turnover in haploid 

round spermatids. 

 

RESULTS 

Nucleosomes localize at GC-rich sequences in mouse sperm  

To assess the potential of paternal epigenetic inheritance by nucleosomes in mouse 

we first aimed to determine the location of nucleosomes in spermatozoa. We isolated 

motile spermatozoa from caudal epididymi and performed deep-sequencing of DNA 

associated with mono-nucleosomes prepared by micrococcal nuclease (MNase) 

digestion of sperm chromatin. Genome-wide analyses indicated an approximately 10- 

and 2-fold overrepresentation of nucleosomes at promoter regions and exons 

respectively, while nucleosomes were underrepresented at introns and repeat 

regions (Supplementary Fig. 1a, 1b). We observed promoter enrichment at many but 

not all genes (Fig. 1a). Classification of promoters according to their GC content, 

CpG ratio and length of CpG-rich region25 revealed that high-CpG (HCP) and 

intermediate-CpG (ICP) promoters are highly and moderately enriched in 

nucleosomes respectively  while most promoters with low CpG content (LCP) lack 

nucleosomes (Fig. 1b). Nucleosomal enrichment is not restricted to CGI-promoters 
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but is also detected at intra- and intergenic CGIs as well as within GC-rich simple 

repeat sequences (Fig. 1c; data not shown).  

 To investigate whether nucleosomal occupancy in sperm correlates with a 

specific sequence composition, we determined single nucleotide frequencies in 1kb 

windows tiled throughout the genome. While guanine and cytosine correlate 

positively with nucleosome occupancy genome-wide, adenine and thymine do not 

(Fig. 1d). We next assessed the contribution of different dinucleotides to nucleosome 

occupancy, independent of single nucleotide frequencies, by calculating the ratio of 

“observed over expected” frequencies for each dinucleotide. Remarkably, these 

analyses revealed that predominantly the CpG dinucleotide contributes to sequence-

related nucleosomal packaging of sperm DNA (Fig. 1d), while the GpC dinucleotide 

has almost no contribution. The ApA and TpT dinucleotides contribute moderately.  

 To establish whether the observed CpG dinucleotide association reflects an 

intrinsic DNA sequence preference for nucleosome formation, we reanalyzed in vitro 

nucleosome reconstitution data of histone octamers assembled onto yeast genomic 

DNA26. Similar to Tillo and Hughes27, we observed a strong contribution of guanine 

and cytosine to in vitro nucleosome formation, yet no specific contributions of either 

CpG nor GpC dinucleotides (Supplementary Fig. 2a, 2b). Thus, the strong 

association of CpG density to nucleosome retention in mouse sperm does not reflect 

an intrinsic preference of nucleosomes to CpG-rich DNA. Instead, it represents a 

novel feature of CpG islands (CGIs) in genome function executed during mouse male 

germ cell development28. Motif analysis did not reveal any specific sequence 

compositions, other than a strong correlation to GC composition (Supplementary Fig. 

1c). 

 

Nucleosomes localize at unmethylated CpG-rich DNA in sperm 

The nucleosomal occupancy at CGIs in sperm strongly contrasts with the depletion of 

nucleosomes at CGI-promoters in somatic cells29,30,31. Indeed, we observed extensive 

nucleosomal depletion around TSS and a clear anti-correlation between nucleosome 

occupancy and CpG frequency in mouse liver32 (Fig. 1e, 1f). In somatic cells, 

however, nucleosomes are not depleted at CGI-promoters repressed by Polycomb 

Group (PcG) proteins or by DNA methylation33. Therefore, to investigate whether 

nucleosomes are preferentially retained at CGIs that are DNA-methylated in sperm, 

we performed bisulfite conversion and high throughput sequencing of sperm DNA 

associated with nucleosomes34. In contrast to our expectation, methylated genomic 

regions are devoid of nucleosomes in sperm (Fig. 2a). We observed a similar inverse 

relationship using genome-wide shotgun bisulfite sequencing data from mouse 
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sperm (Fig. 2b)6. This exclusive inverse relationship is nicely illustrated at imprinting 

control regions (ICRs) in mouse sperm. While paternal ICRs regulating somatic 

expression of genes such as H19, Dlk1, Gtl2 and Rasgrf135 are methylated and 

devoid of nucleosomes, ICRs controlling maternally imprinted gene clusters (e.g. of 

Kcnq1ot1, Snrpn, and Peg10) are unmethylated and contain nucleosomes 

(Supplementary Fig 3). Furthermore, GC-rich retro-elements like LINE1 elements 

that are methylated in sperm and become demethylated after fertilization1 lack 

nucleosomes in sperm (data not shown). These data are compatible with a model in 

which DNA methylation established early during male germ cell development36 

prevents nucleosome retention during spermiogenesis. 

 By combining sequence characteristics of CGIs and their DNA methylation 

states, we found strong positive correlations between nucleosomal enrichment and 

the number and density of CpG dinucleotides within CGIs devoid of DNA methylation 

(Fig. 2c). Using a linear mathematical model, we can predict nucleosome occupancy 

in mouse sperm as a function of CpG dinucleotide frequency and DNA methylation 

level (Fig. 2d). 

We and others previously showed that retained histones are not randomly 

distributed in human sperm, but are to some extent enriched at GC-rich regulatory 

elements of genes10,11,37. As for mouse, we observed an inverse relationship between 

the degree of nucleosomal occupancy and the level of DNA methylation in human 

sperm38 (Supplementary Figure 2c - 2f). Thus, these analyses demonstrate that 

nucleosome retention at unmethylated CGIs is conserved between mouse and 

human spermatozoa.  

 

Histone H3 variant specific occupancy at CGIs in mouse sperm  

The unique nucleosomal organization in sperm, highly distinct from that in somatic 

cells29-31 , emphasizes extensive chromatin remodeling processes occurring during 

the formation of spermatozoa. Given the important roles of histone variants in 

transcription, cellular differentiation, reproduction and development39-41 we asked 

whether canonical H3.1 and H3.2 and variant H3.3 histones may serve specific 

functions in nucleosome eviction versus retention during spermiogenesis. We 

performed Western blot analysis with antibodies specific for either H3.3 

(Supplementary Fig. 4a) or H3.1 and H3.2 (referred to as H3.1/H3.2 since the 

antibody recognizes an epitope shared by H3.1 and H3.2)42. Compared to 

proliferating embryonic stem cells (ESCs) and even to quiescent aging neurons43, 

H3.3 is incorporated into chromatin of round spermatids and sperm to very high 

levels relative to H3.1/H3.2, suggesting an extensive and rapid replacement of 
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canonical histones by the H3.3 variant, presumably upon entry into meiotic prophase 

and/or during spermatid differentiation (Fig. 3a). In sperm, H3.3 ChIP-sequencing 

profiles are highly similar to nucleosomal profiles whereas H3.1/H3.2 profiles are not 

(Fig. 3b). Consistently, H3.3 enrichments are well predicted by the linear model, 

suggesting a CpG density-linked retention mechanism for H3.3 containing 

nucleosomes (Fig. 3c). Regions containing H3.1/H3.2 histones are in contrast 

systematically underestimated by the model, suggesting that retention of canonical 

and H3.3 variant histones may be differentially regulated.  

 

Nucleosome turnover in round spermatids 

To understand the timing and mechanisms of chromatin remodeling, we profiled the 

occupancy of H3.3 and H3.1/H3.2 nucleosomes and measured levels of mRNA 

transcripts by ChIP- and RNA-sequencing in round spermatids. In contrast to sperm, 

we observed a widespread reduction in H3.1/H3.2-nucleosomal occupancy around 

transcriptional start sites (TSS) of genes in round spermatids (Fig. 4a). We next 

classified gene promoters according to CpG density and RNA transcript levels of 

associated genes (Fig. 4b). For expressed genes, we observed eviction of H3.1/H3.2 

nucleosomes around TSS of CpG-rich (≥3% CpG) and CpG-poor (<3% CpG) genes 

correlating well with mRNA levels of associated genes. For medium to highly 

expressed CpG-rich genes, we also observed clear positioning of remaining 

nucleosomes around TSS. These data argue for a transcription-coupled eviction of 

canonical histones.  

 For non-expressed genes we measured low levels of eviction of canonical 

histones at CpG-rich TSS regions but not at CpG-poor TSS regions (Fig. 4b). This 

finding is consistent with studies reporting nucleosome depletion around silent CGI 

promoters in somatic cells30-32. Depletion of H3.1/H3.2 nucleosomes around TSS in 

spermatids is more pronounced than that of H3.2-HA tagged nucleosomes in ESCs 

(Fig. 4b; Supplementary Fig. 4b)44. Possibly, this is due to progressive loss of 

canonical histones during transcription in post-replicative germ cells.  

For H3.3 nucleosomes, we also measured some depletion around TSS that was 

more pronounced downstream of TSS at medium and highly expressed genes (Fig. 

4a, 4b). Comparison of H3.3 to H3.1/H3.2 occupancy levels suggests extensive 

transcription-coupled eviction of canonical histones and subsequent replacement by 

H3.3 nucleosomes in round spermatids. We interpret the ratio between H3.3 over 

H3.1/H3.2 as a surrogate measure for nucleosome turnover.  

 

Control of H3 variant specific occupancy at CGIs in sperm  



7 
 

To understand the relationship between histone variant specific nucleosome turnover 

in round spermatids and retention in sperm, we compared the level of occupancy for 

both variants in both cell types, at regions with nucleosomal enrichments in 

spermatozoa. We observed that regions that are strongly and intermediately enriched 

for H3.3-containing nucleosomes in sperm are actually depleted of such 

nucleosomes in round spermatids, suggesting dynamic redistribution in cis or de 

novo incorporation of H3.3 nucleosomes later during spermatid differentiation, e.g. in 

late round or elongating spermatids (Fig. 5a). In contrast, H3.1/H3.2 nucleosomes 

are predominantly detected at weak nucleosomal peak regions in spermatozoa. 

Furthermore, such local H3.1/H3.2 enrichments in sperm highly resemble the ones in 

round spermatids suggesting that H3.1/H3.2 nucleosomes retained in sperm largely 

reflect reduced turnover of canonical H3.1/H3.2 histones inspermatids (Fig. 5a). 

We next assessed the connection between CpG density (Fig. 3) and 

nucleosome turnover in spermatids (Fig. 4) in relation to histone variant specific 

nucleosome retention at promoter regions of genes in sperm (Fig. 5b). CGI 

promoters (with ≥3% CpG) that undergo intermediate to high levels of nucleosomal 

turnover in round spermatids harbor high levels of H3.3 in sperm. In contrast, non-

CGI promoters (<3% CpG) are subjected to low to intermediate levels of nucleosome 

turnover and are relatively enriched for H3.1/H3.2. Finally, a group of CGI promoters 

is enriched for both H3.1/H3.2 and H3.3 (Fig. 5b). These promoters are generally 

characterized by intermediate turnover levels in spermatids. Together, these data 

show that CpG density and the extent of turnover in spermatids strongly relate to the 

identity of histones retained in sperm.  

 

H3K27me3 associates with H3.1/H3.2 retention in sperm 

To study whether histone modification states may affect nucleosome dynamics 

during spermiogenesis, we performed ChIP-sequencing for H3K4me3 and 

H3K27me3, two modifications that are associated with CGIs in somatic cells. We 

measured comparable enrichments around TSS for both modifications in round 

spermatids and sperm (Supplementary Fig. 5a) indicating propagation of the 

modification state during spermiogenesis. CGI promoters (with ≥3% CpG) containing 

H3.3 nucleosomes are generally marked by H3K4me3 in sperm (Fig. 6a). A fraction 

of CGIs with intermediate H3K4me3 levels are strongly positive for H3K27me3, 

indicating the presence of bivalent promoters in sperm (Fig. 6b; cluster 4 in 

Supplementary Fig. 5b). Importantly, such H3K4me3/H3K27me3 double marked CGI 

promoters also show enrichment for H3.1/H3.2 histones in sperm (Fig. 6a, 6b). 

These data suggest the presence of bivalent promoters in sperm that contain a 
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mixture of H3.3 and H3.1/H3.2 nucleosomes. The data further suggest that Polycomb 

proteins and/or PRC2-mediated H3K27me3 suppress, at least in part, the default 

eviction of H3.1/H3.2 histones at CGIs in round spermatids and consequently 

promote the retention of pre-existing canonical histones during chromatin remodeling 

in elongating spermatids. In accordance, CGI promoters with low-intermediate levels 

of nucleosome turnover in spermatids are H3K27me3 positive in spermatids and in 

sperm (Supplementary Fig. 5d).  

 

Determinants of nucleosome retention in sperm 

On the basis of sequence composition and occupancy levels of nucleosomes, 

histone variants and histone modifications at gene promoters as well as expression 

states, we can classify genes into five different clusters (Fig. 6c) that correlate well 

with different gene functions in cellular homeostasis (clusters 2 and 3), germ cell and 

embryonic development (clusters 1 and 4 respectively), and stimulus perception and 

host defense (cluster 5) (Supplementary Table 1; Supplementary Fig. 5b, 6a - 6j).  

To quantify the extent by which expression and the different chromatin 

characteristics such as histone variants and modifications measured in round 

spermatids, as well as CpG density contribute to nucleosome occupancy in sperm, 

we performed a variance partitioning analysis for promoter regions (Fig. 6d). 

Combining all of these variables, a total of 79.4% and 70% of the variance in H3.3 

and H3.1/H3.2 occupancies in sperm can be explained.  

For H3.3 occupancy in sperm, CpG density of promoters has, as expected, the 

highest unique contribution while H3.3 occupancy in spermatids has a small unique 

contribution (Fig. 6d; clusters 1-4 in Fig. 6c). Notably, 78% of the variance is 

explained when CpG density and H3.3 occupancy in spermatids are used together 

as the only variables in the partitioning analysis. These data suggest that extensive 

H3.1/H3.2 turnover and ensuing H3.3 deposition at CGIs in round spermatids 

contribute to H3.3 retention at such promoters in sperm.   

In contrast, H3.1/H3.2 enrichments in sperm mostly relate to H3.1/H3.2 

enrichments in round spermatids (Fig. 6d; cluster 5 in Fig. 6c). Moreover, CGI 

promoters marked by H3K27me3 in round spermatids preferentially retain H3.1/H3.2 

in sperm (Fig. 6d; cluster 4 in Fig. 6c). When taking H3.1/H3.2 and H3K27me3 

enrichments in round spermatids as the only variables, 68% of the total of 70% 

variance is explained. These quantifications argue that low levels of nucleosome 

turnover at H3K27me3-marked promoters in spermatids substantially contributes to 

H3.1/H3.2 retention in sperm.  
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When performing the variance partitioning analysis genome-wide at 1kb 

windows that do not intersect with TSS regions and any other CGIs we observed that 

only 30% to 42% of variance for H3.3 and H3.1/H3.2 respectively is explained by 

CpG density and chromatin characteristics measured in round spermatids  

(Supplementary Fig. 5e). Nonetheless, occupancy levels of histone variants in sperm 

relate well to the occupancy of the corresponding variants in spermatids. This 

relationship supports a model of nucleosome retention without major remodeling in 

cis during spermatid maturation and protamine incorporation.  

 

H3K27me3 associates with gene repression in early embryos 

To assess the potential of nucleosomes and associated modifications retained in 

sperm for regulating transcription in the next generation, we analyzed the expression 

of genes belonging to the five different clusters shown in Fig. 6c in oocytes and in 

pre-implantation embryos45,11. We observe that housekeeping genes in cluster 2 are 

significantly more likely to be de novo transcribed (48.7% vs. 39.6%; Fig. 7a) in early 

embryos as well as being expressed in oocytes (48.8% vs. 40.4%; Fig. 7b) than 

genes belonging to cluster 1 enriched for germ line functions.  Intriguingly, H3K4me3 

is more enriched around TSS of cluster 1 genes than cluster 2 genes in sperm (Fig. 

6c; Supplementary Fig. 5b). Analogously, genes of clusters 3 and 4 have similar 

H3K4me3 enrichments in sperm (Supplementary Fig. 5b), yet display significantly 

different expression states in early embryos (Fig. 7a, b). These data argue for a 

rather limited potential, if any, of H3K4 tri-methylated nucleosomes in sperm to 

predetermine transcription in early embryos (Fig. 7a). This may relate to the 

prevalent H3K4 tri-methylation at CGIs in spermatids, ESCs and during somatic 

differentiation that is independent of their transcriptional status28 (Supplementary Fig. 

5c).  

In contrast, only ~16% of CGI promoters marked by H3K27me3 (and H3K4me3) 

in sperm (cluster 4) are expressed in pre-implantation embryos (Fig. 7a). Moreover, 

many Polycomb target genes in sperm are similarly modified by H3K27me3 in ESCs 

(Supplementary Fig. 5c). These data support a model of H3K27me3 mediating 

epigenetic inheritance of transcriptional repression between generations.  

 

DISCUSSION 

The role of histones and associated posttranslational modifications in maternal and 

paternal transmission of epigenetic information is currently unknown. Here we 

describe a systematic genome-wide characterization of chromatin states in mouse 

spermatids and spermatozoa. We show that the one percent of histones retained in 
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sperm of mice11 are strongly enriched at CGIs that are not methylated at the 

underlying sequence. Likewise, we demonstrate that in human sperm the CGIs to 

which the 10-15 percent of residual histones are somewhat enriched10,11,37 are also 

unmethylated. Since CGIs are frequently associated with gene promoter function, the 

evolutionary conserved presence of modified nucleosomes at unmethylated CGIs in 

sperm of mammals suggest a central role for CGIs and retained nucleosomes in 

paternal intrinsic epigenetic inheritance between generations13.  

 Our data show that CGIs in mouse sperm generally contain the variant H3.3 

protein (cluster 1-4 in Fig. 6c) while canonical H3.1/H3.2 proteins are only present at 

some CGIs (cluster 4 in Fig. 6c). Comparative analysis of chromatin states in round 

spermatids and sperm strongly suggests that the level of nucleosome turnover in 

round spermatids determines the type of H3 histone retained at CGIs in sperm. 

 In round spermatids, we measured an extensive eviction of canonical 

nucleosomes around TSS of genes and replacement by H3.3 containing 

nucleosomes. The extent of nucleosome turnover positively correlates with the level 

of transcriptional activity of associated gene promoters, as in somatic cells32,44. CGIs 

in round spermatids also show transcription-independent nucleosome turnover, as 

observed in somatic cells30-32, possibly reflecting dynamic competition between 

nucleosomes and transcription factors for CGI binding. Notably, the overall extent of 

H3.1/H3.2 to H3.3 replacement around TSS is more pronounced in post-mitotic 

round spermatids than e.g. in replicating ESCs. These data argue that male germ 

cells undergo extensive remodeling of their chromatin during the approximately two 

weeks following their entry into meiosis and subsequent differentiation as haploid 

spermatids.  

 In sperm, H3.3 is enriched at most CGIs, as a reflection of turnover in 

spermatids. In contrast, H3.1/H3.2 is only present at CGIs with low-intermediate 

nucleosome turnover in spermatids and that are marked by H3K27me3 in round 

spermatids and sperm. These findings suggest that PRC2 proteins directly or 

indirectly via H3K27me3 inhibit nucleosome turnover in round spermatids, thereby 

promoting H3.1/H3.2 retention in sperm. At non-CGI promoter genes (cluster 5 in Fig. 

6c), we observed only minor enrichment of H3.1/H3.2 nucleosomes around TSS of 

some genes, supporting the notion of poor nucleosome retention, if any, at non-CGI 

promoters.   

 Currently, the mechanisms driving nucleosome retention versus eviction 

during spermiogenesis are unknown. Our findings support a model in which H3.3 

nucleosomes present at CGIs in sperm become stably incorporated into chromatin 

and marked by H3K4me3 in late round spermatids in response to a global cessation 
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of histone turnover and transcription (Fig. 7c). Reduced nucleosome turnover, as 

observed at H3K27me3-marked CGIs in spermatids, would promote retention of 

canonical H3.1/H3.2 in sperm. This model entails that CpG-rich DNA would 

somehow resist loading of transition proteins and protamines in elongating 

spermatids, thereby enabling nucleosome retention at CGIs as measured in sperm. 

Resistance to loading could be mediated by CGI-binding proteins binding to 

unmethylated DNA and protecting nucleosomes locally from eviction. Alternatively, it 

could reflect a reduced intrinsic affinity of protamines for CG-rich DNA. A variation on 

this model is that transcription/chromatin factors and H3.3 nucleosomes would 

continue to compete for binding to CGIs during the histone-to-protamine exchange 

process in elongating spermatids. This dynamic process may block protamine 

incorporation.  

 In comparison to mouse sperm, ~10-fold more nucleosomes are retained in 

human sperm. While using the same chromatin preparation and high-throughput 

sequencing procedures, we observed a ~2.5-fold lower contribution of CpG 

dinucleotides to nucleosome occupancy in human versus mouse spermatozoa (0.28 

versus 0.71 Pearson correlation coefficient as shown in Supplementary Fig. 2c11; Fig. 

1d). These data may therefore suggest that the eviction of nucleosomes at CpG-poor 

regions in the genome is less efficient during spermiogenesis in human than in 

mouse.   

 Bisulfite sequencing analysis of genomic DNA of mouse and human sperm 

revealed an inverse correlation between nucleosome occupancy and DNA 

methylation. These data are compatible with a model in which DNA methylation 

established early during male germ cell development36, e.g. at paternal ICRs 

(Supplementary Fig. 3), prevents directly or indirectly nucleosome retention during 

spermiogenesis (Fig. 7c). Such a mechanism would preclude transmission of 

chromatin states associated with methylated DNA in immature male germ cells The 

differential reprogramming of DNA methylation in zygotes that were generated by 

micro-insemination of round spermatids versus mature spermatozoa7 may thus 

indicate the presence of specific chromatin states with methylated DNA  e.g. at 

repetitive sequences in round spermatids that are lost in sperm.  

 Recently, Nakamura and colleagues reported enrichment of H3K9 

dimethylation at the ICRs of H19 and Rasgrf15. Though we observed minor 

enrichment for H3K27me3 at these regions, we failed to detect any noteworthy 

nucleosomal occupancy (compare enrichments in Supplementary Figs 3, 6). In 

contrast, unmethylated maternal ICRs contain nucleosomes marked by H3K4me3 

and/or H3K27me3 (see also46). More generally, we observed higher enrichments for 
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modified histones than for core histones as well as extensive enrichments for histone 

modifications adjacent to relatively narrow peaks of nucleosomes (Supplementary 

Figs 3, 6). Technically, differential enrichment is likely due to higher sensitivity of 

antibodies for modified histones and overall lower abundance of modified histones. 

Biologically, enrichment for histone modifications in absence of nucleosomes may 

reflect retention of nucleosomes in only a low percentage of spermatozoa, possibly 

leading to variegated paternal transmission. These findings warrant caution to the 

interpretation of enrichment values for modified histones in sperm in cases where 

occupancy data of corresponding nucleosomes is absent.  

 Our study demonstrates that largely the same genes are marked by 

H3K27me3 in round spermatids and in sperm. In germinal vesicle (GV) oocytes 

deficient for Ring1 and Rnf2, two key components of the PRC1 complex, 62% of the 

up-regulated genes are marked by H3K27me3 in mouse sperm while only 35% of the 

unaffected genes are PRC2 targets in sperm47. Notably, about 85% of PRC2 targets 

in sperm remain repressed during pre-implantation development. Correspondingly, 

ESCs only contain a slightly reduced number of PRC2 targets (Supplementary Fig. 

5c). Promoters of several pluripotency factors like Oct3/4, Sox, Esrrb, and Klf5 

contain H3K27me3-marked nucleosomes in sperm while Nanog is DNA methylated 

and essentially devoid of nucleosomes. Klf4 is robustly labeled with H3K4me3-

marked nucleosomes and weakly with H3K27me3 (Supplementary Fig. 6k - 6p). 

Interestingly, repression of Sox2 and Klf4 in GV oocytes is dependent on Ring1/Rnf2 

function47. Together, these data suggest that Polycomb may mediate gene 

repression in the male as in the female germ line. While principally hypothesizing 

paternal transmission of modified nucleosomes, epigenetic reprogramming of some 

H3K27me3-marked genes such as certain pluripotency factors would be required to 

occur in early pre-implantation embryos to support their development. The majority of 

Polycomb targets, however, remain repressed in early embryos and would not need 

to be reprogrammed, consistent with a model of intergenerational or possibly 

transgenerational inheritance of an intrinsic epigenetic memory program.  

 

Accession codes 

NCBI Gene Expression Omnibus: Data have been deposited with accession code 

GSE42629. 
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Figure legends 

Figure 1: Nucleosome occupancy in sperm is highly dependent on CpG 

composition.  
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(a) Nucleosome occupancy and GC percentage at representative CpG and non-CpG 

island loci in mouse sperm. (b) Density plot showing the distribution of nucleosome 

enrichment ± 1kb around transcriptional start sites (TSS) of genes classified 

according to GC composition of their promoters: high, intermediate, and low GC 

content (HCP, ICP, LCP). (c) Nucleosome occupancy and GC percentage at an 

intergenic region in sperm. (d, e) Correlation of single nucleotide frequencies (left) 

and dinucleotide frequencies normalized for single nucleotide composition (right) with 

nucleosome enrichment in sperm (d) and in mouse liver32 (e) in 1kb regions tiling the 

mouse genome. (f) Average profiles for nucleosome occupancy in mouse sperm and 

liver32  ± 3kb around TSS of genes. 

 

Figure 2: Nucleosome occupancy correlates negatively with DNA methylation 

in sperm. 

(a) Box-plot showing distributions of nucleosome enrichments in 1 kb regions of 

different DNA methylation states (genome-wide) (with the central bar marking the 

median, lower and upper limits of the box marking the 25th and 75th percentiles, and 

the whiskers extending 1.5 times the interquartile range from the 25th and 75th 

percentiles). (b) Scatter plot showing the correlation of nucleosome occupancy with 

average DNA methylation according to Kobayashi and coworkers6 in 1kb windows 

genome-wide. (c) Panels show the relationship between number of CpGs in CGI and 

width of CGI as a function of nucleosome enrichment in sperm. CGIs48 were grouped 

into 4 classes according to their DNA methylation status in sperm6. (d) Correlation of 

observed to predicted nucleosome enrichment that was calculated by a linear model 

integrating CpG dinucleotide frequency and DNA methylation status in 1 kb windows 

(R=0.789). 

 

Figure 3: Histone variant specific packaging of sperm DNA. 

(a) Western blots showing relative levels of chromatin bound H3.1/ H3.2, H3.3, and 

total H3 in embryonic stem cells (ESC), round spermatids (RS) and sperm. (b) 

Occupancy of nucleosomes, H3.3 and H3.1/H3.2 histones and GC percentage at the 

Fgf9 locus in sperm. (c) Scatter plots showing the correlation between observed and 

predicted nucleosome occupancies (1kb windows) in relation to relative enrichment 

of H3.3 (left) and H3.1/H3.2 (right) in sperm.  

 

Figure 4: CpG density and gene expression associate with nucleosome 

eviction in round spermatids. 
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(a) Average profiles of H3.3 and H3.1/H3.2 enrichments ± 3kb around transcriptional 

start sites (TSS) and transcriptional end sites (TES) in sperm and round spermatids. 

(b) Average profiles of H3.1/H3.2 and H3.3 enrichments around TSS and TES in 

round spermatids. Genes were classified according to expression status in round 

spermatids and the percentage of CpGs within ± 1kb windows around TSS of genes 

(left: CpG % < 3, right: CpG % ≥ 3). 

 

Figure 5: Extent of nucleosome turnover in round spermatids relates to histone 

variant specific retention in sperm. 

(a) Scatter plots showing the correlation between H3.3 (left) and H3.1/H3.2 (right) 

enrichments in sperm versus round spermatids (RS) at genomic regions enriched for 

nucleosomes in sperm. Enriched regions are classified as “weak”, “intermediate” and 

“strong” according to their relative occupancy by nucleosomes in sperm. (b) Scatter 

plots showing the correlation between percentage of CpGs at TSS (± 1kb) and 

nucleosome turnover (H3.3 over H3.1/H3.2 ratio) in RS in relation to relative 

enrichment of H3.3 (left), and H3.1/H3.2 (right) in sperm. 

 

Figure 6: Combinatorial effects of CpG density, histone variants and histone 

modifications uniquely package sperm DNA. 

(a, b) Scatter plots showing the correlation of the percentage of CpGs with 

enrichment of variant and canonical H3 histones (TSS; ± 1kb) in sperm in 

comparison to the enrichment of H3K4me3 (a) and H3K27me3 (b). (c) Heatmap of 

genes illustrating expression status in RS, CpG density, nucleosome coverage in 

sperm, histone variant and modification coverage around TSS (± 3kb) in round 

spermatids (RS) and sperm. Feature density shows the scaled read densities from 

ChIP-seq experiments. Genes (n=19180) were grouped using k-means into five 

clusters (1 to 5) containing 1346, 5358, 4468, 2902 and 5106 genes, respectively. 

1000 genes were randomly selected for visualization. d, Variance partitioning 

analysis (see Online Methods for details) assessing the unique contribution of 

different variables (most in RS) to the relative enrichments of H3.3 (left) and 

H3.1/H3.2 (right) around TSS (± 1 kb) in sperm. Combinatorial effects refer to 

variation which is common to different combination of variables included.  

 

Figure 7: Model of nucleosome retention during spermiogenesis.  

(a, b) Expression states of genes belonging to different clusters (Fig. 6c) during 

oogenesis and early embryogenesis. We classified genes as “not expressed”, 

“oocyte”, “2-8 cell” and “blastocyst” as described before11. Embryonic expression was 
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classified according to the first expression stage during development. Genes 

transcribed in oocytes and 2-8 cell embryos or in oocytes and blastocyst embryos 

were classified as “2-8 cell” or “blastocyst” (a) or as “oocyte” (b). We matched 14032 

of 19180 Refseq genes for expression during oogenesis and embryogenesis45. 

Numbers of genes in each cluster are 1097, 4419, 3431, 2417, 2668, respectively. 

Statistical significances: *P < 1.0e-06 (Fisher`s exact test). (c) Model of nucleosome 

turnover and retention during spermiogenesis. H3.3 nucleosomes, marked by 

H3K4me3, become stably incorporated at unmethylated CGIs in response to 

cessation of global histone turnover and transcription in late round spermatids. 

Reduced turnover of H3K27me3-marked H3.1/H3.2 nucleosomes in round 

spermatids promotes retention of such nucleosomes in spermatozoa. Nucleosome 

retention at unmethylated CGIs would be mediated by unknown CGI-binding factors 

suppressing nucleosome eviction or alternatively could result from a reduced affinity 

of protamines for CG-rich DNA. In the presence of DNA methylation, protection 

against eviction is lost due to the inability of the CGI-binding factor(s) to bind to 

methylated DNA.  

 

Online Methods 

 

Biological Sample Collection 

Mouse sperm were collected from C57BL/6J mice by using swim-up procedure as 

described11.  To isolate round spermatids, testicular cells were prepared from 28 day 

old C57BL/6J mice. Isolated cells were subjected to Hoechst (Invitrogen, cat. num. 

33342) staining for 30 min at 37°C and round spermatids were collected via 

Fluorescent Activated Cell Sorter (FACS) with 90 % purity. All experiments were 

performed in accordance with the Swiss animal protection laws (license 51, 

Kantonales Veterinäramt, Basel, Switzerland) and institutional guidelines. 

 

Mononucleosomal DNA preparation and native ChIP 

We performed chromatin isolation from mature sperm under native conditions as 

described11.  MNase treatment for sperm was performed with 15 U (Roche Nuclease 

S7, cat. num. 10107921001) at 37°C for 5 min per 2 million spermatozoa. Round 

spermatid chromatin was isolated in a similar way, except for omission of DTT 

treatment used for sperm. MNase treatment for round spermatids was performed 

with 5 U at 37°C for 30 minutes per 1 million cells. Chromatin immunoprecipitation 

(ChIP) was carried out with antibodies against H3.3 (Millipore 17-10245-ChIP grade 

(1st replicate), Millipore 09-838 (2nd replicate)), H3.1 and H3.2 (H3.1/H3.2)49,42, 
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H3K4me3 (Millipore 17-614) and H3K27me3 (Millipore 07-449) by using 

approximately 15-20 million sperm or 5 million round spermatids and ~5 µg antibody 

per ChIP. Both mononucleosomal and immunoprecipitated DNA were resolved by 

5% polyacrylamide electrophoresis and 150 bp DNA was gel-purified. Input genomic 

DNA control was prepared by treating sperm with DTT and detergents as in 

mononucleosomal preparation, followed by isolation of genomic DNA and 

subsequent sonication. The reproducibility of nucleosome isolations and ChIPs 

experiments was demonstrated by the use of biological replicates (Supplementary 

Fig. 7).  

 

RNA isolation 

RNA from FACS sorted round spermatids was isolated by using the Qiagen RNeasy 

Mini kit. RNA integrity was confirmed by running RNA samples on Agilent 2100 

Bioanalyzer mRNA pico arrays.  

 

Library preparation and sequencing 

Library preparation for ChIP-seq was done using the Illumina ChIP-seq DNA Sample 

Prep Kit (Cat# IP-102-1001). Before preparing RNA-seq libraries, rRNA from RNA 

was depleted by using the Ribo-Zero rRNA removal kit (Epicentre Biotechnologies). 

Strand specific RNA-seq libraries were prepared by following the Illumina directional 

mRNA-seq library preparation pre-release protocol. Quality of libraries was assessed 

by Agilent 2100 Bioanalyzer. Libraries were sequenced on Illumina GA II (36 bp 

reads) and Illumina Hiseq 2000 (51 bp reads).  

 

Chromatin-bound (histone) fractionation and immunoblotting 

Round spermatids were isolated from C57BL/6J mouse testes by centrifugal 

elutriation50 and chromatin-bound fractionation was performed according to51 with 

some modifications. Briefly, cells were resuspended in buffer A (10 mM HEPES 

pH7.5, 10 mM KCl, 1.5 mM MgCl2, 0.05% Nonidet P-40, 0.5 mM DTT with protease 

inhibitors) and incubated for 10 min on ice. After centrifugation, the nuclear pellet was 

collected and washed twice with buffer A. Nuclei were further lysed in buffer B (3 mM 

EDTA, 0.2 mM EGTA, 1 mM DTT, protease inhibitors). Then insoluble chromatin was 

collected by centrifugation, washed twice with buffer B and resuspended in 0.2 M HCl 

to extract histones. Sperm samples collected by swim-up procedure were initially 

treated with 50mM DTT at room temperature for 2 hours. Then, the chromatin bound 

fraction was isolated as described for round spermatids and was concentrated by 

trichloroacetic acid precipitation. Chromatin-bound extracts were analyzed by 15% 
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SDS-PAGE gels and transferred onto PVDF membranes that were incubated with 

antibodies against H3 (abcam ab1791), H3.3 (Millipore 17-10245) and H3.1/H3.249,42.  

 

Processing and alignment of the reads 

Filtering, alignment and processing of the reads for both ChIP-seq and RNA-seq 

were done as described34. Reads from native ChIP-seq experiments were shifted by 

74 nucleotides, corresponding the ½ length of a nucleosome, towards their 3` end to 

account for the fragment length.  

 

Genomic coordinates 

All coordinate regions used in analyzing mouse ChIP-seq and RNA-seq data were 

based on mouse mm9 assembly (July 2007 Build 37 assembly by NCBI and Mouse 

Genome Sequencing Consortium). To obtain 1kb windows used in genome-wide 

analysis, the mouse genome was divided into non-overlapping 1kb windows. From 

these, the subset of mapable windows (as defined in34) was used in the subsequent 

analysis. Refseq coordinates were downloaded from UCSC52 

(http://hgdownload.cse.ucsc.edu/goldenPath/mm9/database/refGene.txt.gz from 

August 16, 2009). For each gene, coordinates corresponding to the longest known 

transcript was selected.  

Genomic regions were classified as promoter, exon, repeat, intron or intergenic as 

follows: Promoter is defined as the bases covering ±1 kb surrounding Refseq 

transcripts. Exons are exonic sequences of Refseq transcripts which are not 

overlapping ±1 kb TSS. Repeats are repeat elements of repeat masker (obtained 

http://hgdownload.cse.ucsc.edu/goldenPath/mm9/database/chr*_rmsk.txt.gz from 

Jan 30, 2009), which are not overlapping promoter/exon regions. Introns are intronic 

sequences of Refseq transcripts which are not overlapping promoter/exon/repeat. 

The remaining part of the genome, which is not promoter/exon/repeat/intron was 

classified as intergenic. Genomic regions used in analysis of published human ChIP-

seq data were based on human hg18 assembly (March 2006 Build 36.1 assembly by 

NCBI and International Human Genome Sequencing Consortium). 1kb windows for 

human genome were generated in a similar way as for the mouse genome.  

 

Classification of genes according to their promoter GC content 

CpG classifications of the genes as high CpG (HCP), intermediate CpG (ICP) and 

low CpG (LCP) was performed according to criteria defined in25. For the 

classifications, coordinates ± 1kb surrounding TSS were used (Fig. 1b).  

 



21 
 

Calculation of observed/expected ratios for dinucleotide frequencies 

Dinucleotide and single nucleotide counts per 1kb window were obtained using the R 

package Biostrings53. Observed/expected ratio was calculated as follows: 

XYcnt/(Xcnt*Ycnt)*(Wsize-1), where XYcnt is the dinucleotide count of XY in one 1kb 

window, Xcnt  and Ycnt  are single nucleotide counts, and Wsize is the window size 

(1kb).  

 

CGI definition and usage 

CpG island definitions are based on a CpG cluster algorithm48. The algorithm was run 

with default parameters on mm9 to obtain genomic coordinates of CGI.  

 

UCSC tracks 

Wiggle files were generated for 100 bp windows and uploaded to the UCSC genome 

browser52. Data was visualized using smoothing over 3 pixels (Fig.1a and 1c, Fig. 

3b).  

 

Quantification of enrichment levels genome-wide, at promoter regions and at 

nucleosome peaks 

Enrichment levels for ChIP-seq experiments were calculated for 1kb windows, 

promoter regions of the genes (± 1kb surrounding transcriptional start sites (TSS)), 

and nucleosome peaks identified by hidden semi-Markov model (see Supplementary 

Note for the identification of nucleosome peaks). To calculate enrichment, total read 

counts mapping to a coordinate region were calculated for ChIP and control (input 

genomic DNA) samples. Then, these counts were normalized to account for different 

library sizes between ChIP and control samples. Enrichment for each region was 

calculated as the ratio between library size normalized read counts for ChIP and 

control samples according to the following formula: 

log2(((Cntsmp/LSizesmp*min(LSizesmp, LSizecnt))+pscnt)/ ((Cntcnt/LSizecnt*min(LSizesmp, 

LSizecnt))+pscnt)), where Cntsmp is the total number of reads mapping to the 

coordinate in ChIP sample, LSizesmp  is the total library size for the ChIP sample, 

Cntcnt is the total number of reads mapping to the coordinate in the control sample, 

LSizecnt is the total library size for the control sample, and pscnt is a constant number 

(pscnt=8), which was used to stabilize enrichments based on low read counts.  

 

Plotting profiles around genomic regions 

For each sample, reads mapping to the genomic regions of interest (Fig. 4,  

Supplementary Fig. 4b) were summed up for every base pair within the genomic 
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region analyzed. Average read counts per bp were calculated by dividing the total 

number of reads per bp to total number of genomic regions analyzed. To plot 

average enrichment values for multiple ChIP-seq samples on the same plot, counts 

were scaled by the library size and enrichment values were calculated as the ratio 

between scaled read counts of ChIP and control samples (sonicated sperm genomic 

DNA). Profiles were smoothed for plotting by taking the rolling mean over 40bp.  

 

Heatmap plots 

For ChIP-seq experiments, the number of reads covering each base pair in the 

region ±3 kb around TSS of genes was quantified. Read coverage was averaged in 

50 bp windows along ±3kb TSS. Within each dataset, values were scaled to arrange 

between 0 - 1. CpG coverage around ±3 kb was obtained by Bioconductor package 

Biostrings and coverage intensities were scaled in a similar way like ChIP-seq 

features. Expression data for RS was calculated as log2 (read count per transcript). 

Clustering was performed by using k-means with k=5, empirically selected as the 

minimal value of k that resulted in distinct clusters consisting of homogenous 

members.  

 

Variance partitioning analysis 

Variance partitioning analysis was performed via using R package yhat54. Unique and 

combinatorial effects for each variable were obtained by using the function 

commonalityCoefficients().  

 

GO-term analysis 

GO-term analysis was performed by using Bioconductor package topGO55. 

Enrichment tests were done by using Fisher`s exact test (Supplementary Table 1).  

 

Methods-only references 

 

49. van der Heijden, G.W. et al. Asymmetry in histone H3 variants and lysine 
methylation between paternal and maternal chromatin of the early mouse 
zygote. Mechanisms of development 122, 1008-22 (2005). 

50. Barchi, M., Geremia, R., Magliozzi, R. & Bianchi, E. Isolation and analyses of 
enriched populations of male mouse germ cells by sedimentation velocity: the 
centrifugal elutriation. Methods in molecular biology 558, 299-321 (2009). 

51. Mendez, J. & Stillman, B. Chromatin association of human origin recognition 
complex, cdc6, and minichromosome maintenance proteins during the cell 
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Figure 7
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