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Abstract

A sedentary lifestyle is a strong and independent risk factor for many chronic diseases. In most cases,
inadequate levels of physical activity are linked to a persistent, sterile inflammation, both locally in
various organs as well as systemically. Inversely, exercise is an efficient intervention for the
prevention and treatment of various pathologies. Despite this obvious importance, the molecular
mechanisms that underlie exercise-induced health benefits remain largely unclear. In recent years,
the peroxisome proliferator-activated receptor y coactivator la (PGC-la) has emerged as a
regulatory nexus of muscle adaptation to endurance exercise. Muscle PGC-1a not only promotes an
oxidative, slow-twitch muscle fiber type, but also modulates the phenotype of non-muscle cells. For
example, activation of epithelial cells contributes to PGC-la-controlled muscle vascularization.
Similarly, a muscle PGC-1a-dependent signaling results in a remodeling of the active zone of motor
neurons at the neuromuscular junction. Intriguingly, PGC-1a also reduces pro-inflammatory gene
expression in muscle and most likely other cell types. Thus, a bidirectional negative regulation of
PGC-1a and the nuclear factor kB (NF-kB) might provide the molecular basis for the mutual
antagonism between oxidative metabolism and inflammation in muscle. In this review, we
summarize the regulation and function of these transcriptional regulators with a particular focus on
exercise and inflammation in skeletal muscle.

Ein inaktiver Lebensstil ist ein starker und unabhangiger Risikofaktor flr die Entstehung einer Reihe
von chronischen Krankheiten. In vielen Fallen ist ungeniigende Bewegung mit erhohten
Entziindungsmarkern verbunden, sowohl in einzelnen Organen wie auch systemisch im ganzen
Korper. Umgekehrt entfaltet korperliche Aktivitat und Training in der Pravention und Behandlung von
verschiedenen Krankheiten eine grosse Wirkung. Trotz dieser klinisch relevanten Beobachtung sind
die molekularen Vorgange, die den therapeutischen Effekt von Training auslosen und kontrollieren,
noch weitgehend unbekannt. In den letzten Jahren hat sich das Koaktivatorprotein PGC-la
(peroxisome proliferator-activated receptor y coactivator 1a) als ein zentraler Regulator in der
Anpassung des Skelettmuskels an Ausdauertraining herausgestellt. Neben der Foérderung von
oxidativen, langsam kontrahierenden Muskelfasern I6st PGC-1a auch Anderungen in anderen
Zelltypen aus. So wird zum Beispiel durch eine Aktivierung von Epithelzellen die Bildung von
Blutgefassen im Muskel durch PGC-1a induziert. Weiter hat PGC-1a im Muskel einen Einfluss auf
Motorneuronen, wenigstens lokal im Bereich der neuromuskuldren Synapse. Interessanterweise
kontrolliert PGC-1a im Muskel und wahrscheinlich auch in anderen Zelltypen anti-entziindliche
Reaktionen. Eine gegenseitige funktionelle Unterdrickung der Aktivitidten von PGC-1a und NF-kB
(nuclear factor kB) konnte so die molekulare Schnittstelle darstellen, die die reziproke Regulation von
Metabolismus und Entziindung im Muskel bestimmt. In diesem Ubersichtsartikel fassen wir die
wichtigsten molekularen Aspekte dieser Regulation zusammen und stellen diese in den grdsseren
Zusammenhang von Training und Entziindung im Skelettmuskel.
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Introduction

Obesity, hypertension, cardiac diseases and other chronic pathologies have reached epidemic
proportions in Western societies and are rising world-wide (20). A first line of treatment for most
chronic diseases includes lifestyle-based interventions such a smoking cessation, decreased salt
intake, a balanced diet and exercise. Surprisingly, despite the potent effect of physical activity on the
prevention and treatment of many of these pathologies that in some cases rivals that of prescribed
drugs, our knowledge of the molecular mechanisms that underlie the beneficial adaptations induced
by exercise or pathological events in skeletal muscle remains rudimentary.

The etiologies of most chronic diseases closely correlate with a persistent, low-grade, sterile
inflammation (19). Importantly, besides a systemic elevation of pro-inflammatory cytokine levels,
increased immune cell infiltration and activation is observed in various organs (24). Macrophage
activation in white adipose tissue and thereby increased secretion of pro-inflammatory cytokines and
similar events in other peripheral organs such as liver and skeletal muscle contribute to the
development of peripheral insulin resistance and other disorders (24). Thus, reversing inflammatory
processes by exercise might reduce the pathological consequences of chronic diseases (10).

The molecular systems that are responsible for regulating metabolism and inflammation have co-
evolved and strongly influence each other in a negative manner (21). For example, in skeletal muscle,
induction of a pro-inflammatory program by the nuclear factor kB (NF-kB), a master regulator of
inflammatory gene transcription, results in a repression of oxidative capacity while at the same time
promoting fiber atrophy and muscle wasting, at least when activated in a prolonged manner (8). A
mechanistic understanding of the mutual regulation between muscle metabolism and inflammation
is therefore of eminent importance for the development of novel pharmacological approaches for
many chronic diseases.

Inflammation of muscle tissue in health and disease

Inflammatory processes are important for physiological muscle function, in particular for adaptation
to exercise. Bouts of contraction are linked to fiber damage, which initiate a highly orchestrated
activation of different cell types instrumental for normal repair and regeneration post-exercise (4). In
regular muscle regeneration, resident granulocytes and leukocytes are rapidly activated in muscle
beds with contraction-mediated fiber damage. These cells sense fiber damage and release
chemokines to activate and attract additional immune cells (4,8). Moreover, the production and
secretion of tumor necrosis factor a (TNFa), interleukin 6 (IL-6) and related cytokines establish a pro-
inflammatory milieu. Subsequently, infiltrating macrophages complement the action of tissue-
resident cells, and a classical, M1-type macrophage activation in this pro-inflammatory environment
promotes debris removal. Later, the macrophage activation pattern shifts from the M1- to a M2-type
in conjunction with the production of anti-inflammatory cytokines such as IL-10 and IL-4, indicating a
transition from the clean-up to the repair and regeneration phase (31). In addition, activation of
fibro/adipogenic progenitors (FAPs), pericytes, mesangioblasts, fibroblasts and epithelial cells
contribute to muscle regeneration. Most importantly however, asymmetric proliferation and
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differentiation of satellite cells, the resident, lineage-committed muscle stem cells, triggered by
various signals is instrumental for fiber repair and de novo fiber generation (5).

Besides the importance of orchestrated inflammation in muscle regeneration and exercise
adaptation, unchecked inflammatory reactions are associated with a number of skeletal muscle-
related pathologies, most directly in inflammatory myopathies or cachexia (23). Then, inflammation
is a major contributor to the pathology in various muscular dystrophies, including Duchenne
muscular dystrophy, which are characterized by a sustained pro-inflammatory environment and
dramatically increased fibrosis (23). Finally, a persistent, sterile inflammation in muscle accompanies
a number of chronic diseases, such as type 2 diabetes (25). The exact steps leading to peripheral
insulin resistance are still incompletely understood. In muscle, activation of the toll-like receptors 4
(TLR4) by excessively elevated levels of circulating fatty acids however initiates a signaling cascade
involving NF-kB-mediated expression and secretion of TNFa, IL-1B and other pro-inflammatory
cytokines and chemokines (11).

The peroxisome proliferator-activated receptor y coactivator 1a (PGC-1a) in skeletal muscle

Adaptation of skeletal muscle to physical activity is a complex biological program that entails a
massive change in the transcription rates of numerous genes. The peroxisome proliferator-activated
receptor y coactivator la (PGC-1a) has emerged as a potential regulatory nexus in the plastic
changes of muscle fibers upon endurance exercise (27) (Fig. 1). PGC-1a integrates various signaling
pathways that are activated in a contracting muscle fiber and result in increased transcription of the
PPARGCI1A gene (which encodes PGC-1a) and posttranslational modifications of the PGC-1a protein
(15,28). As a transcriptional co-activator, PGC-1a subsequently interacts with numerous transcription
factors in a temporally controlled manner to regulate a complex transcriptional program (3). In
skeletal muscle, PGC-1la-controlled target gene expression collectively results in an endurance-
trained muscle phenotype. Accordingly, transgenic overexpression of PGC-1la in mice leads to a
contractile and metabolic shift towards oxidative, slow-twitch, high endurance muscle fibers (22).
Importantly, activation of PGC-1a in skeletal muscle not only promotes most adaptations of muscle
to endurance training, but also initiates changes in epithelial cells and hence tissue vascularization
(1), the neuromuscular junction (2) and other non-muscle cell types (28).

Inversely, reduced muscle PGC-1a levels have been associated with increased insulin resistance in
human patients, at least in certain populations (19). Likewise, skeletal muscle-specific ablation of the
PPARGCI1A gene results in abnormal glucose and insulin homeostases in mice (17). Moreover, these
mice exhibit a switch towards glycolytic muscle fibers, impaired endurance capacity and activity-
dependent fiber damage (16). Hence, in many aspects, muscle-specific PGC-1a knockout animals
resemble pathological inactivity in humans (13). Elevation of PGC-1la in muscle improves various
muscle diseases, for example Duchenne muscular dystrophy (18) or sarcopenia (32), and, at least in
combination with physical activity, ameliorates systemic glucose homeostasis (29). Therefore,
pharmacological targeting of proteins up- and downstream of PGC-1a is one of the main strategy in
the design of so-called “exercise mimetics”, small molecules that should elicit exercise-like effects in
skeletal muscle (7). However, the feasibility of obtaining true exercise mimetics is still hotly debated

(6).
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An anti-inflammatory action of exercise and PGC-1a

Physical activity is an efficient intervention to reduce the pathological, chronic, persistent
inflammation observed in many patients (12) even though exercise and inflammation are linked in a
complex manner (10) (Fig. 2). For example, extreme performance results in a massive inflammation
and an ensuing temporary immune suppression (14). Surprisingly, even moderate training results in
elevated levels of several cytokines and cytokine-like proteins (26,28). These signaling molecules that
can act in an auto-, para- and/or endocrine manner, have been termed myokines (26,28), analogous
to adipokines produces in adipose tissue. Intriguingly, the growing number of identified myokines
includes factors that traditionally have been described as pro-inflammatory cytokines, e.g. the
prototypical myokine IL-6. Thus, persistently elevated IL-6 levels have been associated with obesity
and insulin resistance, but when released as a myokine, IL-6 mediates a number of beneficial effects
(26). It is conceivable that these diametrically opposite effects are due to the very different secretion
pattern of IL-6 in these two contexts, co-release of other factors or fundamental differences in IL-6
sensitivity in physiological compared to pathophysiological settings. However, the exact mechanisms
are still unclear. In any case, the increase in plasma levels of immunomodulatory factors such as
cortisol, growth hormone, epinephrine and others post-exercise favor an anti-inflammatory
environment (12).

Based on its role as central regulator of exercise adaptation, it is not surprising that PGC-1a controls
the expression of at least several myokines in the trained muscle fiber, e.g. irisin, meteorin-like,
secreted phosphoprotein 1 (SPP1) or B-aminoisobutyric acid (BAIBA, a non-peptide myokine) (28).
Meteorin-like and SPP1 induce changes in target tissues by activating eosinophils and macrophages,
respectively. Thus, at least part of the exercise effect on inflammation is mediated by PGC-la-
controlled cellular cross-talk. In addition, PGC-la also has a strong inhibitory role on pro-
inflammatory gene expression in muscle, at least in part mediated by inhibition of activating
phosphorylation events on the p65 subunit of the NF-kB transcription factor (9). Inversely,
inflammation in most cases reduces the levels of PGC-1a in muscle, e.g. in the case of sepsis-induced
muscle atrophy (8). Moreover, this inhibition is at least in part dependent on NF-kB, implying a
mutually negative regulation of these two factors (8). Accordingly, the expression of TNFa and IL-6 in
muscle both negatively correlate with PGC-1la levels in normal, glucose-intolerant and diabetic
individuals (17). Therefore, the reciprocal regulation of PGC-la and NF-kB conceivably is the
molecular hinge in skeletal muscle that determines the balance between an anti-inflammatory,
oxidative, trained environment in health and the pro-inflammatory, atrophic, insulin resistant
conditions in disease (Fig. 3).

Summary

Inflammation, muscle metabolism and function are intrinsically linked and determine the health
status of this organ, in many cases even systemic well-being. The complex interplay between these
systems is underlined by shared mediators, in particular pro-inflammatory cytokines that in different
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contexts also can act as beneficial myokines mediating systemic exercise effects. On the molecular
level, the co-activator PGC-la and the transcription factor NF-kB seem central in balancing
physiological and pathophysiological states. Even though pharmacological activators of PGC-1a that
can be applied in a chronic and safe manner remain elusive (30), a better understanding of the
mutual regulation between these two factors will hopefully lead to the identification of novel
therapeutic targets and thereby new prevention and treatment modalities not only for many skeletal
muscle disorders, but also a number of other chronic diseases. In the meantime, exercise remains the
most efficient manner to safely increase muscle PGC-1a and reduce the risk for such pathologies.
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Figure Legends

Fig. 1. Regulation and function of PGC-1a in skeletal muscle. Fiber contraction in endurance exercise
training results in increased transcription of the PPARGC1A gene and post-translational modifications
of the PGC-la protein. Moreover, PGC-1la regulates its own transcriptional rate in a positive,
autoregulatory loop. Subsequently, PGC-1a is recruited to target gene promoters by binding to
nuclear receptors such as the estrogen-related receptor o (ERRa), transcription factors like the
nuclear respiratory factor 1 (NRF1) and other non-nuclear receptor transcription factors (TFs).
Collectively, various transcriptional programs are thereby activated both in muscle fibers as well as in
non-muscle cells such as the epithelium or the neuromuscular junction (NMJ) ultimately resulting in
an endurance-trained muscle phenotype.

Fig. 2. Complex regulation of inflammation by muscle activity. Inadequate levels of physical activity
are linked to a local and systemic persistent, sterile inflammation and production of pro-
inflammatory cytokines as well as a strongly elevated risk for many chronic diseases. Moderate levels
of training result in the release of myokines and a tightly regulated local inflammation important for
controlled fiber repair and regeneration culminating in exercise adaptation. Extreme performance
exercise massively elevates fiber damage and inflammation, often accompanied by a temporary
immunosuppression.

Fig. 3. PGC-1a and NF-kB are a molecular interface that controls metabolism and inflammation in
muscle. A mutually negative regulation of PGC-1a and NF-kB in physiological and pathophysiological
contexts determines the relative degree of metabolism and inflammation in skeletal muscle.
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