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1. ABBREVIATIONS 

2-AG    2-arachidonoylglycerol 

ACSF   artificial cerebrospinal fluid  

AMPA   α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic  

   acid receptor 

ANOVA  analysis of variance 

AP   action potential 

BA   basal amygdala 

BLA   basolateral amygdala  

BMA   basomedial amygdala 

BSA   bovine serum albumin 

BZ   benzodiazepine  

CB   calbindin 

CB1R   cannabinoid receptor-1  

CCK   cholecystokinin  

CCKL   large CCK expressing interneuron 

CCKS   small CCK expressing interneuron 

CEA    central amygdala 

CEl   central lateral amygdala 

CElc   central capsular amygdala 

CEm    central medial amygdala  

CNQX   6-cyano-7-nitroquinoxaline-2,3-dione 

CR   calretinin 

CS   conditioned stimulus 

DGLα   diacylglycerol lipase α 
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DSI    depolarization induced suppression of inhibition  

eCB   endocannabinoid 

E-face   ectoplasmic face 

E/I ratio  ratio between excitation and inhibition 

fAHP   fast after hyper polarization 

Flp   flippase 

FRIL   freeze-fracture replica immunolabeling  

GABA   γ-aminobutyric acid 

GAD65  65 kD iso-form of the GABA synthesizing enzyme  

   glutamic acid decarboxylase  

GAD67  67 kD iso-form of the GABA synthesizing enzyme  

   glutamic acid decarboxylase  

GFP   green fluorescent protein 

IL   infralimbic region in medial prefrontal cortex 

I-LTP   long-term potentiation at inhibitory synpses 

IMP   intramembrane particle 

IPSC   inhibitory postsynaptic current 

ITC   intercalated cell cluster 

LA   lateral amygdala 

LTD   long-term depression 

LTP   long-term potentiation 

MGL   monoacylglycerol lipase 

mIPSC  miniature inhibitory postsynaptic current 

mPFC   medial prefrontal cortex  

NGS   normal goat serum 
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NMDA   N-methyl-D-aspartate 

P-face   protoplasmic face 

PL   prelimbic region in medial prefrontal cortex 

PLC   phospholipase C  

PN   pyramidal neuron 

PNIL   infralimbic region projecting pyramidal neuron 

PNPL   prelimbic region projecting pyramidal neuron 

PSA   postsynaptic area  

PTX   picrotoxin 

PV   parvalbumin  

Rinput   input resistance 

SDS   sodium lauryl sulfate  

SOM   somatostatin  

STP    short-term plasticity 

TBS   tris-buffered saline 

TTX   tetrodotoxin 

US   unconditioned stimulus 

VGAT   vesicular GABA transporter 

VIP   vasointestinalpeptide  

vlPAG   ventro-lateral periaquaeductal grey 

Vm   resting membrane potential 

VTA   ventro tegmental area 

WIN   WIN55,212-2 
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2. ABSTRACT 
 

Neuronal circuits of fear and anxiety have been studied extensively not only to 

understand basic principles underlying anxiety disorders but also to 

investigate mechanisms of learning and memory. Fear conditioning is a 

powerful model system of associative learning, where the animal learns that 

an initially neutral stimulus predicts a fearful event. A key brain structure in 

this experimental paradigm is the amygdala, located in the temporal lobe. 

Synaptic plasticity of amygdala principle neurons gained a lot of attention and 

it has been shown how converging inputs trigger strengthening of synaptic 

transmission, which molecular changes are involved and which glutamatergic 

cell types and output pathways are important for high fear and low fear states. 

However, network mechanisms balancing the activity of these pyramidal 

neurons remain poorly understood. It is conceivable that amongst other 

contributors, local GABAergic interneurons might be involved and undergo 

plastic changes with fear conditioning and extinction.  

In my thesis I focused on how GABAergic transmission onto pyramidal cells is 

organized in fear circuits. First, in a broad approach and in collaboration with 

Yu Kasugai and Franceso Ferraguti from the Medical University Innsbruck, we 

show that fear conditioning induces functional and ultrastructural changes at 

inhibitory synapses. Following fear learning, GABAergic transmission is 

enhanced, which is correlated with an enlargement of synapses and a change 

in receptor subunit composition.  

Second, in target specific experiments, I studied the dynamic regulation of 

inhibition from CCK expressing interneurons onto two functionally distinct 

classes of projections neurons. Data indicate that characteristics at these 

synapses facilitate asymmetric activity of particular pyramidal cell populations 

via retrograde endocannabinoid signaling and that inhibitory control is 

organized in a cell type specific manner. 
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3. INTRODUCTION 
 

3. 1. Learning & memory 

Throughout life we acquire knowledge about our environment. New 

information is encoded, can be stored and retrieved in neuronal circuits and 

allows us to adjust our behavior. Underlying mechanisms of learning and 

memory are based on experience dependent plasticity (Kandel et al., 2000). 

They involve structural and functional adaptations ranging from synapse 

formation and elimination to growth and retraction of dendritic spines and 

axonal boutons, to strengthening or weakening of existing synapses 

(Holtmaat & Svoboda, 2009; Caroni et al., 2012). Strengthening and 

weakening of existing synapses is mostly regulated by synaptic activity and 

leads to reversible or permanent molecular changes (Holtmaat & Svoboda, 

2009). Reversible changes are believed to correlate with short-term memory, 

whereas permanent changes are referred to as long-term memory and are 

often accompanied by structural changes (Holtmaat & Svoboda, 2009).  

 

3. 1. 1. Long-term potentiation 
LTP (long-term potentiation), a cellular model of learning and memory, was 

used to study mechanisms of synaptic plasticity in acute brain slices for many 

decades (Nicoll & Malenka, 1995; Malenka & Bear, 2004; Sah et al., 2008; 

Granger & Nicoll, 2014). Various forms have been described at different 

synapses, however they are all defined by a long lasting increase in synaptic 

transmission following high frequency input stimulation. In associative NMDA 

(N-methyl-D-aspartate) receptor-dependent LTP two different input pathways 

are required to be active simultaneously (Kandel et al., 2000). Calcium influx 

through NMDA receptors is blocked by magnesium at the resting membrane 

potential. Therefore, the postsynaptic neuron needs to be activated to resolve 

the magnesium block. At the same time the second input activates NMDA 

receptors, calcium enters the neuron and triggers a cascade of events that 

lead to the insertion of new receptors at the synapse (Kandel et al., 2000). 

Thus, the NMDA receptor is a coincidence detector, as two separate sources 

are required to trigger the potentiation simultaneously. In an experimental 

setting, clamping the neuron in a depolarized state can substitute for the 
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depolarizing source of inputs. In addition to NMDA receptors, L-type voltage 

gated calcium channels can contribute to calcium influx (Bauer et al., 2002). 

Besides the number of postsynaptic receptors, spine size as well as the 

number of spines can be increased and together result in strengthening of 

synaptic transmission (Fig 1 A and B) (Lamprecht & LeDoux, 2004).  

 

 
Figure 1: Schematic illustration of cellular correlations of LTP and STP (A) LTP 
can lead to an increase in spine size, number of neurotransmitter receptors, 
presynaptic vesicles, postsynaptic ribosomes and changes in calcium 
compartmentalization; (B) Alternatively LTP can enhance the number of spines, 
number of independent synaptic release sites and therefore increase synaptic 
transmission (adapted from Lamprecht & LeDoux, 2004). (C) Presynaptic 
mechanisms of short-term plasticity; schematized voltage clamp traces (top) illustrate 
depression and facilitation. At depressing synapses the first stimulation (left) can 
deplete the pool of readily releasable vesicles and therefore lead to smaller currents 
with the second action potential (right). At facilitating synapses a residual elevation in 
intracellular calcium (green shading), combined with the influx of calcium in response 
to the second stimulus, results in enhanced release. (D) Postsynaptic mechanisms 
leading to desensitization and saturation of postsynaptic currents. Desensitization 
can be due to receptors with high affinity for the transmitter. After the first stimulation 
a population of receptors can remain bound with transmitter (red circles) and 
therefore be unavailable to respond to the second stimulus. Saturation is often 
caused by channels with slow kinetics such as NMDA receptors. They can produce a 
large amount of current in response to a second stimulus. Although the second 
EPSC has smaller amplitude in absolute values, it is summated with the previous 
EPSC (adapted from Blitz et al., 2004). 
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Other forms of LTP drive the insertion of AMPA (α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid receptor) receptors into the synapse and it has 

been shown that the incorporation of AMPA receptors is required for fear 

learning (Rumpel et al, 2005).  

 

In contrast to LTP, LTD (long-term depression) weakens synaptic efficacy as 

a result of low frequency stimulation (Collingridge et al., 2010). Recently, a 

causal link between LTP, LTD and memory formation has been established 

by using optogenetic stimulation in an associative learning task. After auditory 

fear conditioning associative memory is impaired by LTD stimulation of 

auditory inputs, whereas LTP stimulation reactivates the memory (Nabavi et 

al., 2014). 

 

Potentiation of inhibitory synapses is an important mechanism of circuit 

refinement but has received much less attention. Yet, a number of different 

forms involving various interneuron subtypes and pre- and postsynaptic 

expression mechanisms have been described (Castillo et al., 2011). I-LTP 

and I-LTD can have consequences on the probability of GABA release as well 

as on the number, sensitivity and responsiveness of GABAA receptors. Most 

forms of I-LTD also require a second source of stimuli, which is not 

GABAergic and may stem from excitatory synapses or retrograde 

messengers (Chevaleyre et al., 2006; Regehr et al., 2009; Castillo et al., 

2011). This associative mechanism requires simultaneous presynaptic 

interneuron activity and postsynaptic excitation, which are then transformed 

into long-term plasticity. Interestingly, excitatory and inhibitory LTP can occur 

simultaneously via feed forward inhibition (Lamsa et al., 2005), which may be 

important for balancing the E/I ratio. 

 

LTP is often associated with changes on a structural level. In general, it is 

conceivable that axonal plasticity can occur, however, most data stems from 

experiments involving brain injury (Spejo & Oliveira, 2014) or artificial long-

term stimulation (Grubb & Burrone, 2010; Kuba et al., 2010) and so far a 

causal link between learning and axonal plasticity has not been established. 

First experiments on morphological changes at dendritic spines have been 



Introduction 
 

18 
	
  

conducted in aplysia during the 1980s (Bailey & Chen, 1983, 1988) reporting 

alterations in synaptic size and shape in response to long-term habituation 

and sensitization. Furthermore, a number of studies in hippocampus showed 

that LTP induces changes in spine number, the size of the spine head as well 

as widening and shortening of the spine neck (Lamprecht & LeDoux 2004). 

These modifications initiated 2 min after LTP stimulation and lasted up to 23h. 

More recent experiments give insight how in vivo learning processes correlate 

with rearrangements on a structural level. Data from independent groups (Xu 

et al., 2009; Yang et al., 2009) suggest that motor learning induces spine 

growth in motor cortex and that newly formed spines are stabilized with 

subsequent training. Moreover, fear conditioning, a form of associative 

learning increases the rate of spine elimination in mouse frontal association 

cortex whereas extinction of fear increases the rate of spine formation (Lai et 

al., 2012). Thus, it is imaginable that the formation and elimination of spines 

might be directly linked with the formation of new memory. Increases in 

number of spines as well as spine size might also be associated with a 

strengthening of synaptic transmission (Fig. 1A and B).  

 

3. 1. 2. Short-term plasticity 

While LTP and LTD form a persistent memory trace, short-term plasticity 

(STP) modulates synaptic transmission in the time range of seconds. 

Repeated stimulation of synaptic connections often results in gradual changes 

in postsynaptic response amplitudes (Fig 1C and D) (Blitz et al., 2004). These 

may either be facilitating or depressing and can be caused by pre- or 

postsynaptic factors. The underlying mechanisms may be dependent on 

calcium influx to presynaptic terminals, number of vesicles, receptor 

composition or physiological activity patterns. At some synapses short-term 

depression can be caused by a reduction of release probability and depletion 

of the readily releasable pool of vesicles. In other cases stimulation with the 

same frequency can increase local calcium levels and thereby enhance the 

probability of transmitter release leading to facilitated postsynaptic potentials 

(Blitz et al., 2004). Postsynaptic factors can also contribute to STP. 

Depending on receptor properties exposure to neurotransmitters can cause 
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receptor desensitization or saturation. In any case diverse STP dynamics lead 

to differentially timed input for the postsynaptic cell.   

 

3. 1. 2. 1. Retrograde signaling in STP 

Some forms of STP involve retrograde messengers, such as 

endocannabinoids (eCBs), which are released by the postsynaptic cell (Ohno-

Shosaku et al., 2001; Wilson & Nicoll, 2001; Wilson et al., 2001). 

Endocannabinoids are a group of lipophilic molecules that are highly 

abundant and believed to be major contributors of synaptic plasticity 

(Luchucchi & Pistis, 2012). An activation of the postsynaptic cell via mGluRs, 

depolarization or stimulation of excitatory afferents triggers the production of 

diacylglyercol (DAG) by phospholipase C (PLC). Diacylglycerol lipase α 

(DGLα) converts DAG to the major eCB, 2-AG, which is released from the 

postsynaptic cell and travels back across the synapse to bind at G-protein-

coupled type 1 cannabinoid receptors (CB1Rs) on presynaptic terminals. As a 

consequence, calcium influx is inhibited, potassium channels are activated 

leading to a hyperpolarization of the terminal and thus the probability of 

transmitter release decreased (Chevaleyre et al., 2006).  

Depolarization-induced suppression of inhibition (DSI) is a common 

mechanism of distinct GABAergic synapses from CB1R-expressing CCK 

basket cells onto pyramidal neurons (Ohno-Shusako et al., 2001; Wilson et 

al., 2001; Wilson & Nicoll, 2001; Yoshida et al., 2011). A postsynaptic 

activation and eCB release reversibly blocks coincident inhibitory input from 

CCK interneurons in the time range of seconds. Also at excitatory synapses 

this retrograde signaling mechanism can be found to suppress glutamatergic 

input (DSE, depolarization induced suppression of excitation) (Wilson & Nicoll, 

2002; Diana & Marty, 2004; Yoshida et al., 2011). The eCB synthesis enzyme 

DGLα is expressed in high levels in the somatic region of pyramidal cells and 

in lower levels in dendrites (Chevaleyre et al., 2006). Endocannabinoids are 

believed to play important roles in memory and cognition and specifically in 

fear extinction learning. 
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Figure 2: Schematic illustration of retrograde  endocannabinoid signaling at 
inhibitory and excitatory synapses. The release of 2-AG can be triggered by 
postsynaptic activation via excitatory afferents, activation of mGluRs or 
depolarization by the experimenter. DGLα is converted to the main endocannabinoid 
2-AG by DAG and PLC. 2-AG binds to presynaptic G-protein coupled CB1Rs, inhibits 
calcium influx and activates potassium channels. As a consequence the probability of 
transmitter release is decreased (adapted from Chevaleyre et al., 2006). 
 

 

3. 1. 3. Excitation/inhibition balance 

An additional factor contributing to plasticity of neuronal networks is the ratio 

between excitation and inhibition. During sensitive periods, developmental 

time windows when the effect of experience on the brain is particularly strong, 

even small shifts in the relative amount of excitation and inhibition can lead to 

alterations in plasticity (Hensch, 2005). Enhancing inhibition by administration 

of benzodiazepines directly after eye opening results in a premature onset of 

the critical period for ocular dominance (Fagiolini & Hensch, 2000). In mice 

lacking GAD65 ocular dominance plasticity is prevented but can be rescued 

by administration of diazepam (Hensch et al., 1998). However, not all 

GABAergic interneurons or GABAA receptors have impact on the regulation of 

critical periods (Hensch, 2005) and the dissection of these diverse neuronal 
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populations is important for understanding circuit mechanisms underlying 

learning processes. 

In the amygdala it has been shown that the stimulation of glutamatergic 

projections from prelimbic (PL) and infralimbic (IL) subdivisions of the mPFC 

recruit excitation and feed-forward inhibition in basal amygdala principle 

neurons. Interestingly, after conditioning the E/I-balance is shifted towards 

excitation specifically in the mPFCPL→amygdala pathway but not in 

mPFCIL→amygdala micro-circuits (Arruda-Carvalho & Clem, 2014). This 

mechanism may encode fear memory by a pathway-specific enhancement of 

mPFC→amygdala transmission. 

 

 

3. 2. Fear conditioning  
A powerful model system that has been extensively studied to understand 

network mechanisms of learning and memory is auditory fear conditioning 

(LeDoux, 2000; Maren & Quirk, 2004; Fanselow & Poulos, 2005; Herry & 

Johansen, 2014). In this form of associative learning a neutral stimulus, a tone 

is paired with an aversive stimulus, an electric foot shock (unconditioned 

stimulus, US). After a few tone/shock pairings, presentation of the previously 

neutral stimulus alone (conditioned stimulus, CS) elicits aversive behavior 

(Fig. 3).  

 

 
Figure 3: Auditory fear conditioning; during conditioning day 1 the animal receives 
pairings of a neutral tone (conditioned stimulus, CS) and a mild foot-shock 
(unconditioned stimulus, US) in the conditioning context. On the next day the animal 
is placed in another box with different light conditions, floor, smell and background 
noise. When the tone is now presented alone without a foot-shock the animal will 
react with freezing, a form of aversive behavior. After repeated presentations of the 
tone without reinforcing the US, conditioned fear will be extinguished and the animal 
learns that the tone is safe again (adapted from Nadel & Land, 2000).  



Introduction 
 

22 
	
  

Depending on intensity and proximity of the stimulus and also the nature of 

the context, aversive behaviors can be active or passive. In a closed 

experimental context the mouse usually responds to fearful stimuli with 

freezing. This innate defensive behavior evolved to avoid discovery by 

predators (LeDoux, 2000; Fanselow & Poulos, 2005) and can be measured by 

the absence of movement. Repeated presentations of the tone without a foot 

shock leads to extinction of conditioned fear and the animal learns that the 

tone is safe. Extinction is not an erasure of fear memory but an active learning 

process (Myers & Davis, 2007; Quirk & Mueller, 2008; Herry et al., 2010). 

 

 

3. 3. The amygdala 
The amygdala, a non-layered structure located in the medial temporal lobe, 

has been identified as a key brain area for fear and extinction learning 

(LeDoux, 2000; Maren & Quirk, 2004; Fanselow & Poulos, 2005; Herry & 

Johansen, 2014). It consists of several subnuclei with different 

cytoarchitecture. Lateral (LA), basal (BA) and basomedial amygdala (BMA) 

are often summarized and referred to as basolateral complex of the amygdala 

(BLA). It is a cortex-like structure with the majority of cell types being 

glutamatergic, intermingled with a minority of local GABAergic interneurons 

(15-20 %) (Aggleton, 2000). In contrast, the central amygdala (CEA) is 

striatum-like, mainly composed of inhibitory neurons. It comprises three 

subnuclei, central lateral (CEl), central capsular (CElc) and central medial 

amygdala (CEm). Additionally, three clusters of intercalated cells exist which 

are GABAergic (Fig. 4) (Aggleton 2000).  

Amygdala subnuclei are highly interconnected. Furthermore, strong 

connections can be found with many other cortical and subcortical brain 

regions (Aggleton, 2000). During fear conditioning sensory information about 

CS and US from thalamus and cortex converge in the lateral amygdala, get 

processed in the basolateral nucleus and conveyed to central amygdala, the 

main output structure. It sends GABAergic long-range projections to the 

vlPAG, which are believed to mediate fear behavior (Herry & Johansen, 

2014). The BA projects strongly to prelimbic (PL) and infralimbic (IL) regions 
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of the medial prefrontal cortex (mPFC) which are believed to play important 

roles in the expression of fear and extinction memory (Quirk & Mueller, 2008; 

Burgos-Robles et al., 2009; Sierra-Mercado et al., 2011). Furthermore, ITCs 

are believed to relay feed-forward inhibition to BLA and CEA (Ehrlich et al., 

2009).  

 

 
Figure 4: Simplified illustration of amygdala subnuclei and their 
interconnectivity. Lateral amygdala receives sensory input from thalamus and 
cortex, which is conveyed and processed in the basal amygdala. The central 
amygdala is the main output structure and sends long-range projections to vlPAG. 
Intercalated subnuclei are believed to relay feed-forward inhibition to BLA and CEA 
(adapted from Ehrlich et al., 2009). 
 

 

3. 3. 1. Amygdala principle neurons 

Amygdala principal neurons (PNs) can be differentiated by activity patterns 

and projection targets (Herry et al., 2008; Senn et al, 2014). Two functionally 

distinct classes were identified, fear and extinction neurons (Herry et al, 

2008). While fear neurons were not responsive to tone presentations in 

unconditioned animals, they showed increased firing rates when the tone was 

presented during and after fear conditioning. Repeated tone presentations in 

turn, caused a loss of CS evoked firing. Contrary to fear neurons, extinction 

neurons became tone responsive only during extinction learning, when the CS 

was presented repeatedly without being paired with a foot shock.	
  Interestingly, 
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fear neurons project to the prelimbic (PL) region of the mPFC, whereas 

extinction neurons project to the infralimbic (IL) subdivision. These mPFC 

subnuclei are believed to have opposing roles in fear behavior. Whereas PL is 

important for fear expression, the IL subdivision has been implicated in 

extinction memory consolidation and retrieval (Quirk & Mueller, 2008; Burgos-

Robles et al., 2009; Sierra-Mercado et al., 2011). Consistently, basal 

amygdala PL-projecting PNs (PNPLs) are activated when the animal is in a 

state of high fear, whereas IL-projecting PNs (PNILs) increase their activity in 

low fear states, such as with acquisition of extinction (Senn et al., 2014). The 

balance of activity between these two output pathways plays an important role 

in extinction learning. However, underlying circuit mechanisms remain 

unknown. Besides other factors it is conceivable that local inhibitory 

interneurons contribute to the modulation of activity between defined 

populations of projection neurons. 

 

 

3. 3. 2. Interneurons in the amygdala 
Many basal amygdala interneurons can be identified by morphology, activity 

pattern and marker expression, with analogies to previously described 

interneurons in hippocampus and cortex (Klausberger & Somogyi, 2008; 

Capogna, 2014). However, the diversity of basal amygdala GABAergic 

neurons has not been fully explored yet. The most numerous population 

consists of parvalbumin (PV) expressing interneurons (Fig. 5), which 

preferentially target the somatic region (PV-basket cells) or axon initial 

segment (axo-axonic cells) of postsynaptic neurons and can usually be 

characterized by a fast-spiking, non-adapting firing pattern (Rainnie et al., 

2006; Muller et al., 2006). Cholecystokinin (CCK) interneurons can be divided 

in two main subgroups. Cells with small soma size (CCKSs) co-express 

calretinin (CR) and/or vasointestinalpeptide (VIP) (Mascagni & McDonald 

2003) and target somatic and dendritic regions, whereas large CCK 

interneurons (CCKLs) stain positive for presynaptic CB1Rs and represent 

classical basket cells (McDonald & Mascagni, 2001; Katona et al., 2001). 

Another interneuron population expresses somatostatin (SOM) and selectively 

targets dendrites (McDonald & Mascagni, 2002; Muller et al., 2007). 
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Figure 5: Interneurons in amygdala (A) Staining for the GABA synthesizing 
enzyme GAD67; The BLA is a cortex-like structure with a minority of GABAergic 
interneurons. The central amygdala is a striatum-like brain nucleus. Intercalated 
GABAergic cell clusters can be found at the border of the BLA (adapted from Ehrlich 
et al., 2009). (B) Interneuron subtypes in basal amygdala; CB calbindin, PV 
parvalbumin, SOM somatostatin, CR calretinin, VIP vasointestinal peptide, CCKL 
large cholecystokinin expressing interneurons, CCKS small cholecystokinin 
expressing interneurons (adapted from Mascagni & McDonald, 2003). 
 

 

3. 4. The role of GABAergic inhibition in fear learning 
The postsynaptic GABAA receptor is a pentameric ion channel consisting of 

five subunits arranged around a central chloride pore. Seven subunit classes 

with at least 18 different subtypes have been identified, however, most 

GABAA receptors in the CNS are heteropentamers composed of two α, two β 

and one γ subunit (Sieghart & Sperk, 2002). Depending on subunit 

composition GABAA receptors are susceptible to modulation by different 

benzodiazepines, which bind at the interface between α and γ2-subunits. 

Benzodiazepines have been used extensively to treat anxiety disorders and 

are able to inhibit fear memory acquisition, consolidation and extinction 

(Makkar et al., 2010). Furthermore, it is indicated that certain subunits, such 

as α2 mediate anxiolyis, whereas drugs selective for GABAA receptors 

containing the α1 subunit have sedating effects but do not influence anxiety 

(Möhler, 2007). Therefore, not only interneuron subtypes but also the 

postsynaptic expression of distinct GABAA receptors might play a role in fear 

and extinction learning. 
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A number of ex vivo studies provide circumstantial evidence for changes in 

GABAergic inhibition following fear conditioning and extinction (Chhatwal et 

al., 2005; Heldt & Ressler, 2007). In these studies, it was shown that fear 

conditioning leads to a decrease in the overall surface levels of GABAA 

receptors and in a decrease in the mRNA and protein levels of gephyrin, a 

protein that is involved in the clustering of GABAA receptors at synapses. 

Conversely, fear extinction increased surface GABAA receptor expression and 

gephyrin levels. These findings suggested that bidirectional modulation of 

GABAergic inhibition may contribute to fear conditioning and extinction. The 

physiological consequences for GABAergic synaptic mechanisms are, 

however, not known. In the first part of my thesis I addressed this question by 

recording mIPSCs in amygdala PNs after fear conditioning and extinction to 

explore whether behavioral training induces changes in GABAergic 

transmission. 

 

Furthermore, CCK interneurons have been implicated to play a role in fear 

and extinction behavior (Freund, 2003). Specifically, it was suggested that a 

CB1R mediated decrease of activity in local inhibitory networks within the BLA 

might dis-inhibit principal neurons and contribute to extinction of conditioned 

fear (Marscano et al., 2002). Large CCK interneurons (CCKLs) are the only 

interneuron subtype in amygdala expressing presynaptic CB1Rs. CB1R 

deficient mice exhibit impaired extinction behavior, however freezing levels 

after conditioning are not different from wild type animals (Marsicano et al., 

2002). Interestingly, CB1Rs are highly co-localized with the expression of 

CCK, a neuropeptide, which is anxiogenic in humans. Intracerebroventricular 

injections of the CCK2 receptor agonist pentagastrin in mice inhibited the 

extinction of conditioned fear (Chhatwal et al., 2009). It is not understood how 

CCK and the endocannabinoid system are interacting but data indicates that 

CCK may activate a complex network of excitatory and inhibitory neurons 

within the BLA via interaction with CB1Rs (Bowers & Ressler, 2015).  

 

Novel techniques such as optogenetic manipulation of genetically targeted 

subpopulations of interneurons in combination with unit recordings allowed 

further dissection of GABAergic circuits in learning and memory. Wolff and 
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colleagues (2014) have shown that PV and SOM interneurons bidirectionally 

control the acquisition of fear via a disinhibitory mechanism. During CS 

presentations PV interneurons are activated and thereby inhibit dendrite 

targeting SOM interneurons. As a consequence pyramidal cell dendrites are 

disinhibited which promotes CS/US associations. This is an elegant example 

of how subpopulations of interneurons have distinct functions in microcircuits 

and are capable of regulating neuronal activity in learning paradigms. It is 

likely that the large variety of GABAergic cells (Klausberger & Somogyi, 2008) 

is not only gating time windows for activity, or switching on and off pyramidal 

cells but that the diversity of interneurons is also required for redistributing 

activity amongst cell types and cell compartments in a very specific manner to 

encode and process information content. 

 

An emerging question addressing mechanisms underlying fear extinction 

learning is how activity of distinct amygdala principle neurons (PNs) is 

regulated. It has been shown that fear and extinction cells have specific firing 

patterns, which correlate with behavior (Herry et al., 2008). Furthermore, the 

balance between mPFC-projecting PNPLs and PNILs is important for extinction 

learning (Senn et al., 2014). However, it is not understood, which network 

mechanisms control the switch of activity between these populations of cells. 

Possible contributors might be local GABAergic networks by regulating PN 

output. Thereby, different levels of asymmetry are conceivable such as 

absolute connectivity, synaptic strength or involvement of modulatory 

systems. In this scenario CCK interneurons are particularly interesting, as 

they have been implicated to play a role in mood disorders and fear extinction 

processes (Marsicano et al. 2002, Freund 2003). CCK interneurons express 

presynaptic CB1Rs (Mascagni & McDonald, 2003), which allow for activity 

dependent suppression of inhibition (Wilson & Nicoll, 2002) a possible 

mechanism for rapid network adaptations. Furthermore, the neuropeptide 

CCK is released by CCK interneurons and injections of CCK-B receptor 

agonists have been shown to block extinction (Chhatwal et al., 2009). 

Therefore, the main goal of my thesis was to investigate whether CCK 

interneurons provide target selective input onto PNPLs and PNILs that would 

allow for rapid network adaptations of amygdala output.
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4. AIM OF THE STUDY  

 
In the first part of my thesis a broad approach was used to explore whether 

GABAergic plasticity in general can be induced by fear conditioning and (in 

collaboration with Yu Kasugai and Francesco Ferraguti from the Medical 

University of Innsbruck) whether functional changes are accompanied by 

ultrastructural rearrangements at inhibitory synapses in basal amygdala. 

Therefore, I carried out whole-cell mIPSC recordings of amygdala PNs after 

behavioral training to study whether fear conditioning induces changes in 

mIPSC charge transfer and frequency. Yu Kasugai used the freeze-fracture 

immunolabeling technique to investigate training-induced alterations in 

synaptic area and GABAA receptor density. 

 

In a next set of experiments I studied GABAergic transmission in a cell type 

specific manner. I explored whether CB1R-expressing CCK interneurons 

(CCKLs) provide target-selective input onto PNILs and PNPLs that could lead to 

a switch of activity between these two amygdala output pathways. Therefore, I 

recorded pairs of CCKLs and PNILs/PNPLs in whole-cell configuration and 

tested potential asymmetries on the level of absolute connectivity, synaptic 

strength, short-term plasticity and endocannabinoid signaling. Complementary 

to electrophysiological experiments I used immunohistochemical stainings 

and confocal microscopy to underpin the findings. 
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5. RESULTS 
 
5. 1. Project I - Fear conditioning induces functional and ultrastructural 

changes at GABAergic synapses in amygdala 
 

Yu Kasugai1, Elisabeth Vogel2, Andreas Lüthi2, Francesco Ferraguti1* 
 

1Dept. Pharmacol., Innsbruck Med. Univ., Innsbruck, Austria 
2Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland 

 

 

5. 1. 1. Abstract 
Adaptive defensive behaviors such as conditioned fear responses are 

acquired through processes involving activity-dependent functional and 

structural changes in synaptic transmission. We report that the acquisition and 

extinction of conditioned fear memories not only depend on experience-

dependent plasticity of glutamatergic synaptic transmission, but also entails 

reversible functional and structural remodeling of GABAergic synapses onto 

principal neurons in basal amygdala (BA). Fear conditioning induced an 

expansion of the postsynaptic area through synapse rearrangement and 

elimination. Fear conditioning-induced structural plasticity was associated with 

a modification in the subunit composition of synaptic GABAA receptors and a 

change in mIPSC kinetics, but without altering the intrasynaptic distribution 

and overall amount of GABAA receptors. Fear conditioning-induced synaptic 

changes were reversed by extinction training. These findings demonstrate 

that fear learning involves concerted structural and functional remodeling of 

GABAergic inhibitory synapses and suggest a role for plasticity of synaptic 

inhibition in orchestrating neuronal circuit activity during the formation and 

storage of associative fear memories. 
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5. 1. 2. Introduction 
Long-term changes in synaptic strength and circuit refinement following 

associative learning have been extensively studied at excitatory glutamatergic 

synapses (Yuste and Bonhoeffer, 2001; Matsuzaki et al., 2004). Activity-

driven structural changes include elimination and formation of synapses, 

actin-dependent stabilization and enlargement of the postsynaptic density as 

well as alteration in ionotropic glutamate receptors (Holtmaat & Svoboda 

2009; Caroni et al., 2012). Plasticity at inhibitory synapses has received much 

less attention despite its contribution to the maintenance of the stability, the 

wide dynamic range and high computational flexibility of neuronal circuits 

(Castillo et al., 2011; Maffei, 2011). Only in recent years, altered sensory 

experience was shown to induce remodeling not only of spines but also of 

spatially clustered inhibitory synapses in the visual cortex (Chen et al., 2012). 

Pavlovian fear conditioning is one of the most studied forms of associative 

learning that largely depends on synaptic plasticity in the amygdala (Pape and 

Pare, 2010). It represents an important model in the study of the neurobiology 

of normal and pathological fear (Graham & Milad, 2011). Generally, it is 

agreed that after fear conditioning pyramidal-like neurons in the basolateral 

amygdala (BLA), comprised of the lateral (LA) and basal (BA) nuclei, are 

activated by associative excitatory inputs and undergo complex synaptic 

changes (Herry & Johansen, 2014) including an increase in spine volume 

(Ostroff et al., 2010). A large body of evidence suggests that fear engrams 

depend also on inhibitory elements within amygdala networks (Ehrlich et al., 

2009). Inhibitory GABAergic circuits are known to gate the acquisition and 

expression of fear memories not only by tuning excitatory transmission, but 

also by playing more active roles in amygdala intrinsic fear pathways (Ehrlich 

et al., 2009; Wolff et al., 2014). Furthermore, amygdala inhibitory circuits 

appear to be involved in the formation of new suppressive memories during 

fear extinction (Herry et al., 2010). The critical involvement of the GABAergic 

system in the regulation of fear is also highlighted by the fact that drugs 

modulating GABAA receptor channels, such as benzodiazepines (BZs), have 

been used for decades to treat anxiety disorders and are able to inhibit fear 

memory acquisition, consolidation and extinction (Makkar et al., 2010). 

Additionally, ex vivo studies on GABA receptor subunit expression (Heldt & 
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Ressler, 2007) and the regulation of GABA receptor associated proteins 

(Chhatwal et al., 2005) suggest that fear conditioning leads to decreased 

levels of inhibition whereas extinction of fear results in enhanced inhibitory 

transmission.  

Here, we addressed whether classical fear conditioning and extinction induce 

functional and structural plasticity at inhibitory synapses of the BA using a 

combination of electrophysiological and high-resolution ultrastructural 

approaches in mice. 

 

 

5. 1. 3. Materials and methods 

 
5. 1. 3. 1. Animals and behavior 

For electrophysiological experiments male C57BL/6 mice (RCC, Füllinsdorf, 

Switzerland) were used. Seven to nine week old animals were housed 

separately in a temperature controlled room and a 12/12 h light/dark cycle. All 

procedures were carried out with an approval by the Veterinary Department of 

the Canton Basel-Stadt.  

Mice were submitted to an auditory fear-conditioning paradigm with 5 CSs 

(7.5 kHz, 30 x 50 ms pips, 80 dB), each preceding one US (mild foot shock, 

0.6 mA, 1 s) as previously described (Herry et al., 2008). In order to deliver 

tone/shock pairings, a current generator and scrambler was controlled by a 

computer running the TruScan 99 software (Coulbourn Instruments, 

Allentown, PA). Fear retrieval and fear extinction training sessions were 

performed 24 h and 48 h after the conditioning in a new context with different 

visual and olfactory cues. Freezing behavior was defined as the absence of 

movement except respiration for at least 2 s and was quantified during each 

behavioral session by an automatic infrared beam detection system 

(Coulbourn Instruments) (Herry et al., 2008). 
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5. 1. 3. 2. Electrophysiology 

Three hours after behavioral training, animals were anesthetized with 

isoflurane and decapitated as described (Bissière et al., 2003). Briefly, brains 

were dissected in ice-cold artificial cerebrospinal fluid (ACSF), and coronal 

slices (300 µm thick) were prepared at 4 ºC with a vibratome (Microm HM 650 

V; Walldorf, Germany). Slices were recovered for 45 min at 37 ºC in an 

interface chamber containing ACSF equilibrated with 95% O2/5% CO2. The 

ACSF contained (in mM): 124 NaCl, 2.7 KCl, 2 CaCl2, 1.3 MgCl2, 26 NaHCO3, 

0.4 NaH2PO4, 18 glucose, 2.25 ascorbate. Neurons were visually identified 

with infrared video microscopy using an upright microscope equipped with x5 

and x40 objectives (Olympus, Germany). Whole-cell patch-clamp recordings 

were obtained from projection neurons in the BA at 31-33 °C in a submerged 

chamber under constant superfusion with ACSF. Patch electrodes (4.5 - 5.5 

MΩ) were pulled from borosilicate glass tubing and filled with an intracellular 

solution consisting of (in mM): 130 KCl, 10 HEPES, 10 phosphocreatineNa2, 4 

Mg-ATP, 0.4 Na-GTP (pH adjusted to 7.25 with KOH, ~ 290 – 300 mOsm). 

The membrane potential was held at −80 mV in voltage-clamp recordings. In 

order to block glutamatergic synaptic transmission all recordings were carried 

out in the presence of CPP (20 µM), CNQX (20 µM) and TTX (1 µM). Data 

were acquired with pClamp9 (Molecular Devices) and recorded with a 

Multiclamp 700A amplifier (Molecular Devices). Data were sampled at 20 kHz 

and filtered at 2 kHz. Series resistance was monitored every 3 min by 

applying a –5 mV hyperpolarizing pulse. If during an experiment series 

resistance changed more than 20%, or exceeded 20 MΩ, recordings were 

discarded. mIPSC recordings were achieved in the gap-free modus. For each 

neuron, at least 276 mIPSC events were recorded. Frequency, amplitude, 

charge transfer and kinetics of mIPSCs were analyzed offline using the Mini 

Analysis Program (version 6.0.9, Synaptosoft). The threshold for mIPSC 

detection was set to 27 pA. All values are expressed as means ± s.e.m. 

Statistical comparisons were done with a one-way ANOVA followed by a post-

hoc Bonferroni test corrected for multiple comparisons (as appropriate two-

tailed p < 0.05 was considered significant). 
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5. 1. 3. 3. Freeze fracture immunelabeling  

FRIL was performed according to previously published procedures (Kaufmann 

et al., 2013). Brains of animals (male C57BL/6 mice) were perfused with PB 

(0.1 M, pH 7.4) containing 1% formaldehyde and 15% of a saturated solution 

of picric acid. Forebrains were cut into 140 µm thick coronal sections with a 

Vibratome (Leica Microsystems VT1000S), cryoprotected overnight with 30% 

glycerol and then frozen by use of a high-pressure freezing machine (HPM 

010; Bal-Tec, Balzers, Liechtenstein). Using a double replica method frozen 

specimens were fractured by a freeze-etching device (BAF 060; Bal-Tec) at -

115° C. Fractured faces were replicated by evaporation of carbon (rotating) by 

means of an electron beam gun positioned at a 90° angle to a thickness of 5 

nm and shadowed unidirectionally with platinum-carbon at a 60° angle 

(thickness 2 nm). Finally, an additional 15 nm thick layer of carbon was 

applied. Tissue was solubilized in a solution containing 2.5% sodium lauryl 

sulfate (SDS) and 20% sucrose in 15 mM Tris buffer, pH 8.3, on a shaking 

platform for 18 hours at 80°C. Replicas were kept in the same solution at RT 

until processed further.  

On the day of immunolabeling, replicas were preincubated in a blocking 

solution containing 5% BSA in TBS for 1 h at RT, and then incubated in the 

primary antibody diluted in TBS containing 2% BSA and 2% NGS, overnight 

at 6°C. After several washing steps in TBS, replicas were reacted with gold-

conjugated secondary antibodies overnight at 6°C. They were subsequently 

washed in MilliQ water, mounted on formvar-coated 100-line copper grids and 

analyzed in a Philips CM120 TEM equipped with a Morada CCD camera (Soft 

Imaging Systems). Whole images were level adjusted, sharpened, and 

cropped in Photoshop (Adobe) without changing any specific features. 

Somatic and dendritic GABAergic synapses were randomly selected. Both 

complete and partial synapses were analyzed. Synapses are often partially 

masked by other membrane leaflets. Masked synapses were referred to as 

partial synapses.  

All locations of the gold particles in the synaptic area were marked in the 

virtual synapse to make a heat map with ImageJ 1.45s (NIH, USA) The area 
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of virtual synapse was divided into 3 fields, “Inner”, “Inner middle” and “Outer 

middle”, and the ratios of gold particle in each field were compared. 

 

5. 1. 4. Results 
 
5. 1. 4. 1. Fear conditioning increases mIPSC charge transfer and frequency 

in basal amygdala 

To examine possible functional changes induced by fear conditioning and 

extinction, we measured miniature inhibitory postsynaptic currents (mIPSCs) 

using whole-cell patch-clamp recordings from BA principal neurons (n = 111) 

in acute brain slices. When comparing recordings obtained in slices from 

control animals exposed to the CS only with recordings in slices prepared 

after animals were subjected to fear conditioning or fear extinction training, we 

found no significant changes in mIPSC amplitude (Figure 6C, D). However, 

the amount of charge conducted per individual mIPSC (mIPSC charge 

transfer) was significantly enhanced when tested 3 h and 24 h after fear 

conditioning, but not after fear extinction (Figure 6C, D). This increase in 

mIPSC charge transfer could be accounted for by changes in mIPSC kinetics. 

Compared to CS only control animals, fear conditioning induced an increase 

in mIPSC 10-90% rise time and mIPSC decay time constant (Figure 6C, D). 

Further, mIPSC frequency was increased 24 h after fear conditioning  (Figure 

6C, D).  

Taken together, we found that fear conditioning induced changes in mIPSC 

kinetics causing an increased inhibitory charge transfer per mIPSC. Moreover, 

changes in mIPSC frequency may indicate that fear conditioning increases 

the number of inhibitory synapses onto BA principal neurons.  

In contrast to these observations in basal amygdala, fear conditioning or 

extinction did not induce changes in mIPSCs of principal neurons located in 

lateral amygdala (n = 109) (Fig 7).  
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Figure 6. Fear conditioning increases mIPSC charge transfer and frequency. (A) 
Example traces illustrating a 6.5 s sweep of mIPSCs recorded from different behavioral 
groups. (B) Examples of averaged mIPSC traces illustrating fear conditioning and extinction 
induced changes in mIPSC kinetics. Traces were obtained by averaging all mIPSCs recorded 
from one representative cell (CS: n = 1399 mIPSCs; CS/US 3 h: n = 594; CS/US 24 h: n = 
734; Ext 24 h: n = 1143). (C) Cumulative plots comparing mIPSC properties between different 
behavioral groups. To construct cumulative plots, 6671 events were randomly selected from 
each neuron and pooled. (D) Bar graphs illustrating fear conditioning and extinction induced 
changes in mIPSC kinetics and charge transfer. (n = 111) mIPSC amplitude (Control group: 
44.07 ± 2.02 pA, n = 27; Fear condition 3 h group: 48.71 ± 2.09 pA, n = 31; Fear condition 
24 h group: 45.34 ± 1.46 pA, n = 27; Extinction 24 h group: 50.92 ± 2.25 pA, n = 26; One-way 
ANOVA: F3,107 = 2.56, n.s.) charge transfer (CS: 173.03 ± 6.77 fC, n = 27; CS/US 3 h: 
205.09 ± 6.74 fC, n = 31; CS/US 24 h: 202.61 ± 7.95 fC, n = 27; Ext 24 h: 192.88 ± 6.65 fC, 
n = 26; One-way ANOVA: F3,107 = 4.28, p < 0.01; Post-hoc Bonferroni multiple comparisons: 
CS vs. CS/US 3 h: p < 0.01; CS vs. CS/US 24 h: p < 0.05; CS only vs. Ext 24 h: n.s.; CS/US 
3 h vs. CS/US 24 h: n.s.; CS/US 3 h vs. Ext. 24 h: n.s.; CS/US 24 h vs. Ext 24 h: n.s.) rise 
time (CS: 1.64 ± 0.04 ms, n = 27; CS/US 3 h: 1.74 ± 0.04 ms, n = 31; CS/US 24 h: 
1.72 ± 0.03 ms, n = 27; Ext 24 h: 1.56 ± 0.04 ms, n = 26; One-way ANOVA: F3,107 = 4.41, 
p < 0.01; Post-hoc Bonferroni multiple comparisons: CS vs. CS/US 3 h: n.s.; CS vs. CS/US 
24 h: n.s.; CS vs. Ext 24 h: n.s.; CS/US 3 h vs. CS/US 24 h: n.s.; CS/US 3 h vs. Ext. 24 h: 
p < 0.01; CS/US 24 h vs. Ext. 24 h: p < 0.05) decay (CS: 3.39 ± 0.09 ms, n = 27; CS/US 24 h: 
4.33 ± 0.12 ms, n = 27; Ext 24 h: 3.86 ± 0.13 ms, n = 26; One-way ANOVA: F3,107 = 4.04, 
p < 0.01; Post-hoc Bonferroni multiple comparisons: CS vs. CS/US 3 h: n.s.; CS vs. CS/US 
24 h: n.s.; CS vs. Ext 24 h: n.s.; CS/US 3 h vs. CS/US 24 h: n.s.; CS/US 3 h vs. Ext. 24 h: 
n.s.; CS/US 24 h vs. Ext 24 h: p < 0.05) and mIPSC frequency (CS: 4.76 ± 0.32 Hz, n = 27 
cells; CS/US 3 h: 4.68 ± 0.23 Hz, n = 31; CS/US 24 h: 6.54 ± 0.59 Hz, n = 27; One-way 
ANOVA: F3,107 = 4.56, p < 0.01, Post-hoc Bonferroni multiple comparisons: CS vs. CS/US 3 h: 
n.s.; CS vs. CS/US 24 h: p < 0.05; CS vs. Ext 24h: n.s.; CS/US 3 h vs. CS/US 24 h: p < 0.01; 
CS/US 3 h vs. Ext. 24 h: n.s.; CS/US 24 h vs. Ext 24 h: n.s.) Data are shown as 
mean ± s.e.m.; *p < 0.05, **p < 0.01. 
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Figure 7. Fear conditioning has no effect on mIPSC recorded in lateral 
amygdala. (A) Bar graphs illustrating mIPSC frequency and charge transfer in LA 
neurons of control groups, fear conditioned and extinguished mice (n=109). mIPSC 
frequency (Control group: 2.09 ± 0.25 Hz, n = 28; Fear condition 3 h group: 2.05 ± 
0.22 Hz, n = 28; Fear condition 24 h group: 2.06 ± 0.18 Hz, n = 25; Extinction 24 h 
group: 1.92 ± 0.17 Hz, n = 28; One-way ANOVA: F3, 105 = 0.1493, n.s.) charge 
transfer (Control group: 216.5 ± 13.02 fC, n = 28; Fear condition 3 h group: 227.6 ± 
9.28 fC, n = 28; Fear condition 24 h group: 205.2 ± 10.31 fC, n = 25; Extinction 24 h 
group: 219.5 ± 9.33 fC, n = 28; One-way ANOVA: F3, 105 = 0.7332, n.s.) 
 
 
 
5. 1. 4. 2. Fear conditioning induces structural plasticity at GABAergic 

synapses 

In collaboration with the Ferraguti lab in Innsbruck it was investigated whether 

this increase in mIPSC charge transfer and frequency after fear conditioning 

was accompanied by structural changes at GABAergic synapses. Therefore 

the detergent-solubilized freeze-fracture replica immunolabeling (FRIL) 

method was used. This approach allowed examining possible changes in 

synaptic morphology and density of GABAA receptors in the basal amygdaloid 

nucleus (BA). FRIL gives a planar view of the postsynaptic specialization of 

GABAergic synapses detectable as a cluster of intramembrane particles 

(IMPs) at the protoplasmic (P)-face of replica (Figure 8A-C), which can be 

labeled for GABAA receptor subunits or neuroligin 2 (Kasugai et al., 2010). To 

selectively detect GABAergic synapses containing BZ-sensitive GABAA 

receptors, highly specific γ2 subunit antibodies were used.  
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Figure 8. Fear and extinction-mediated bi-directional structural adaptation of 
GABAergic synapses. (A) Coronal section and (B) diagram of the amygdala 
showing the area (in red) dissected out for FRIL. (C) Electron-micrograph of a 
dendrite of a pyramidal-like neuron in the BA. The postsynaptic density of a 
GABAergic synapse is visible as a cluster of intramembrane particles (area outlined 
in yellow) on the protoplasmic face of the replica, which is immunolabelled with 5nm 
gold particles identifying the γ2-subunit of GABAA receptors. Gold particles are 
highlighted (right panel) by solid red dots when intrasynaptic and red circles when 
extrasynaptic. (D) Freezing responses of the paired (fear conditioned and extinction 
groups, 5 pairings, 0.7 mA foot shock) and control (exposed to the conditioned 
stimulus only) groups (n = 10 for each group). (E) Extinction training. Data were 
analyzed by One-way ANOVA followed by posthoc Bonferroni (* p < 0.05, 
*** p < 0.001). (F) In fear conditioned mice the GABA-PSA (0.047 ± 0.001 µm2, 
n = 396) was significantly larger (Kruskal-Wallis test followed by posthoc Dunn’s 
multiple comparisons) when compared to the control (*** p < 0.001, 
0.038 ± 0.001 µm2, n = 344) and extinction (*** p < 0.001, 0.039 ± 0.023 µm2, 
n = 432) groups. The synaptic area was determined only for full synapses. Synapses 
were collected from 4 animals/group and 2 replica/mouse. As there was no 
significant difference among animals in each group (Kruskal-Wallis test, control 
p > 0.05, fear conditioning p > 0.05, extinction p > 0.05), data were pooled. (G) 
Cumulative frequency distribution of the postsynaptic area of GABAergic synapses. 
Cumulative frequency distribution data were analyzed by means of the two-sample 
Kolmogorov–Smirnov test: control vs. fear conditioning p < 0.001; extinction vs. fear 
conditioning p < 0.001. Data are shown as mean ± s.e.m.. 
 

First, it was investigated whether fear conditioning affects the postsynaptic 

area of GABAergic synapses (GABA-PSA) and the density of GABAA 

receptors containing the γ2-subunit in BA neurons. Mice were randomly 

assigned to 3 groups. Two of the groups (fear conditioning and extinction) 

were subjected 5 times to a neutral auditory cue paired with a co-terminating 

foot shock, whereas the third group (control) was exposed only to the tone in 

the conditioning chamber. Fear conditioned mice, but not the control group, 

showed robust freezing responses (Figure 8D). Twenty-four hours after fear 
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conditioning, mice in the extinction group exhibited a selective increase in fear 

behavior when exposed to the tone in a different context. Extinction of 

conditioned fear was then induced by exposing the mice to 20 tone 

presentations in the absence of the foot shock that resulted at the end of the 

extinction training in levels of freezing similar to pre-conditioning (Figure 8E). 

After behavioral testing, mice were returned to their home cages and two 

hours later processed for FRIL. After fixation of the brain and coronal 

sectioning, specimens from the BA were carefully dissected out under a 

stereomicroscope, high pressure frozen, fractured and replicated (Figure 8A-

C). For the estimation of the synaptic area only complete GABAergic 

synapses immunolabelled for GABAA-γ2 were sampled from both somatic and 

dendritic compartments (Figure 8C). In fear conditioned mice the GABA-PSA 

was found significantly larger than in the control and extinction groups (Figure 

8F). Because of the large variability in GABA-PSA (e.g. ranging from 0.010 to 

0.153 µm2 in control animals), cumulative frequency distributions were also 

analyzed (Figure 8G). A significant shift towards a higher frequency of 

synapses with larger area was observed in fear conditioned mice.  

 

                   
Figure 9. Fear learning induces a decrease in GABAA-γ2 synaptic density. 
(A) GABAA-γ2 synaptic density was significantly reduced after fear conditioning, but 
fully recovered after extinction (Kruskal-Wallis test followed by Dunn’s multiple 
comparisons; *** p < 0.001 control vs. fear conditioning; *** p < 0.001 extinction vs. 
fear conditioning). For density measures also partial synapses were analyzed 
(control, n = 722, 380 ± 8 particles/µm2; fear conditioned, n = 672, 311 ± 7 
particles/µm2; extinction, n = 718, 374 ± 2 particles/µm2). (B) Cumulative frequency 
distribution of the GABAA-γ2 synaptic density. Cumulative frequency distribution data 
were analyzed by means of the two-sample Kolmogorov–Smirnov test: control vs. 
fear conditioning p < 0.001; extinction vs. fear conditioning p < 0.001. Data are 
shown as mean ± s.e.m.. 
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Next, we measured the synaptic density of gold particles for GABAA-γ2 at 

replica P-face. For this analysis both complete and partial synapses were 

included. Fear conditioned mice showed a significant reduction of the mean 

GABAA-γ2 synaptic labeling density compared to the control and extinction 

groups (Figure 9A). Cumulative frequency distributions also revealed a 

significant shift of the synaptic γ2 labeling density in fear conditioned mice 

(Figure 9B). 
 

                     

Figure 10. Fear and extinction influence both perisomatic and dendritic 
synapses. (A) Fear conditioning- and extinction-mediated remodeling of GABA-PSA 
occurs at both perisomatic and dendritic synapses. Perisomatic BZ-sensitive 
GABAergic synapses are larger than dendritic synapses in the control, fear 
conditioning (soma 0.043 ± 0.002 µm2, n = 179; dendrites 0.033 ± 0.001 µm2, n = 
165; *** p < 0.001), and extinction groups. (B) Perisomatic GABAergic synapses 
possess a lower density of BZ-sensitive GABAA receptors compared to dendritic 
ones. Reduced synaptic GABAA-γ2 density after fear conditioning was observed in 
both perisomatic (338 ± 11 particles/µm2, n = 283) and dendritic synapses (406 ± 10 
particles/µm2, n = 439) *** p < 0.001 Data are shown as mean ± s.e.m.. 
 
 
 
Changes in GABA-PSA and density of GABAA receptors containing the γ2-

subunit after fear conditioning were found to take place in both perisomatic as 

well as dendritic synapses (Figure 10). Remarkably, we found that dendritic 

synapses possessed a higher density of GABAA receptors compared to 

perisomatic ones, whereas as expected the average area of the latter 

synapses (0.043 ± 0.002 µm2) was larger than those on dendrites 

(0.033 ± 0.001 µm2). Also for perisomatic and dendritic synapses extinction 

was able to fully reverse fear-mediated structural changes (Figure 10). 
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These results indicate that fear-mediated structural plasticity occurs at both 

somatic and dendritic GABAergic synapses, and that it involves multiple types 

of interneurons targeting different subcellular domains of BA pyramidal 

neurons. 

 

5. 1. 4. 3. Fear conditioning-induced structural plasticity is long lasting 

To ensure that the extinction-induced reversal of the GABA-PSA remodeling 

and GABAA-γ2 synaptic labeling density was mediated by extinction training 

rather than time-lapse, in a separate set of experiments we measured these 

parameters 26 h after conditioning, equivalent to the extinction protocol 

(Figure 11A). Consistent with the notion that the fear extinction-induced 

reversal is an active process induced by extinction learning, we found that 

26 h after fear conditioning the mean GABA-PSA was still larger and its 

cumulative frequency distribution significantly right shifted compared to control 

mice (Figure 11B). Likewise, the GABAA-γ2 synaptic labeling density and the 

corresponding cumulative frequency distribution remained significantly altered 

compared to control mice (Figure 11C). 

Our data thus indicate that fear conditioning-induced plasticity is long lasting 

(> 24 hours) and associated to fear memory consolidation. Furthermore, it 

suggests that extinction training indeed mediates the reversal of synaptic 

structural plasticity induced by fear conditioning. 
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Figure 11. Fear learning induces long lasting structural plasticity. (A) Schematic 
diagram of the experimental design. (B) After 26 h from fear conditioning the mean 
GABA-PSA (0.042 ± 0.021 µm2, n = 213 synapses) was still significantly larger 
(Mann Whitney, ** p < 0.01) compared to the control group (0.035 ± 0.017 µm2, 
synapses n = 135). The synaptic area was determined only for full synapses. 
Synapses were collected from 3 animals/group and 2 replicas/mouse. As there was 
no significant difference among animals in each group (Kruskal-Wallis test), data 
were pooled. Dashed lines indicate values from fear cond 3 h group and 
corresponding controls. (C) Cumulative frequency plot of the postsynaptic area of 
GABAergic synapses 26 h after fear conditioning or CS-alone (control). Two sample 
Kolmogorov-Smirnov test, p < 0.05) (D) GABAA-γ2 synaptic density was also reduced 
26 h after fear conditioning (Mann Whitney, *** p < 0.01). For density measures also 
partial synapses were analyzed (Fear conditioning, 286 ± 250 particles/µm2, n = 324; 
Control group 351 ± 157 particles/µm2, n = 277). Dashed lines indicate values from 
fear cond 3 h group and corresponding controls. (E) Cumulative frequency plot of the 
GABAA-γ2 synaptic density 26 h after fear conditioning or CS-alone (control). 
Cumulative frequency distribution data were analyzed by means of the two-sample 
Kolmogorov–Smirnov test.  Data are shown as mean ± s.e.m.. 
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5. 1. 4. 4. Fear conditioning increases the ratio of synaptic GABAA receptors 

containing the α2 subunit 

Because of the changes in mIPSC kinetics, we hypothesized a shift in the 

subunit composition of synaptic GABAA receptors following fear conditioning, 

as GABAA receptors composed of different α-subunits display diverse gating 

kinetics (Eyre et al., 2012; Geracitano et al., 2012). Using the FRIL technique 

on replica obtained from the very same animals analyzed for GABAA-γ2, we 

examined the GABA-PSA and density of GABAA receptors containing the α2 

subunit, which may be involved in mediating anxiolytic properties of 

benzodiazepines (Rudolph & Möhler, 2004), in BA neurons (Figure 12A). A 

highly significant increase in the mean GABA-PSA and shift in the cumulative 

frequency distribution towards synapses with larger area were confirmed in 

the fear-conditioned group when compared to the control group (Figure 12B). 

Extinction training once again restored the GABA-PSA to control levels 

(Figure 12B). Conversely, no significant differences in the density of the 

synaptic GABAA-α2 subunit were detected among the 3 groups (p = 0.93). 

These findings indicate that fear conditioning increases the ratio of synaptic 

GABAA receptors containing the α2 subunit. 

 

In conclusion, our results indicate that fear and extinction learning induced 

experience-dependent, reversible, structural and functional changes at 

GABAergic synapse onto BA principal neurons. These changes may serve to 

the maintenance and the stability of the dynamic range of neuronal circuit 

activity in relation to complex adaptive behaviors such as conditioned fear, 

and could contribute to metaplasticity.  
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Figure 12. Fear mediates a subunit composition change in synaptic GABAA 
receptors. (A) GABAergic synapses containing GABAA-α2 receptors had a larger 
mean area in fear conditioned mice compared to both control and extinction animals 
(Dunn’s multiple comparison test, *** p < 0.001). The synaptic area was determined 
only for full synapses. Synapses were collected from 4 animals/group and 2 
replicas/mouse. As there was no significant difference among animals in each group 
(Kruskal-Wallis test), data were pooled (synapses: control, n = 102; fear conditioned, 
n = 102; extinction, n = 201). (B) Cumulative frequency distribution of the 
postsynaptic area of GABAergic synapses. (C) Cumulative frequency distribution of 
the GABAA-α2 synaptic density; the right shift of the fear conditioned group was even 
more prominent than for synapses labeled for the GABAA-γ2. The mean of α2-positive 
GABA-PSA in fear conditioned mice (mean ± SEM, 0.053 ± 0.003 µm2, n = 102) was 
significantly larger (Mann Whitney test, p < 0.0001) compared to the control 
(0.038 ± 0.002 µm2, n = 102) group, and it returned to the control level in the 
extinction group (0.038 ± 0.002 µm2, n = 201. (D) GABAA-α2 synaptic density was 
similar among the 3 groups suggesting an increased ratio of synaptic GABAA 
receptors containing α2 subunits as a consequence of fear conditioning. For density 
measures also partial synapses were analyzed (control n = 348; fear conditioned 
n = 364; extinction n = 390).  
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5. 1. 5. Discussion 
 
Our data demonstrate that bi-directional morphological alterations at BA 

inhibitory synapses induced by fear conditioning and extinction are paralleled 

by reversible functional changes in synaptic physiology. Overall, it is indicated 

that fear conditioning promotes a strengthening of GABAergic transmission 

which is reversed by fear extinction. These results are the first example of 

learning induced structural and functional plasticity at inhibitory synapses.  

Data suggest that fear conditioning induced an enlargement of GABAergic 

synapses. Previously, it has been shown that LTP leads to an overall increase 

in size of excitatory synapses by elimination of small spines at hippocampal 

dendrites. In parallel, the same LTP protocol increased the synaptic surface 

area at inhibitory synapses while the absolute number of synapses was 

reduced (Bourne & Harris, 2011). Thus, one possible explanation for the 

mean enlargement of GABAergic synapses induced by fear conditioning may 

be the elimination of small synapses. Moreover, data indicate that behavioral 

training reduces the GABAA-γ2 synaptic density but, as the synaptic area is 

enlarged, has no effect on the number of receptors. Considering the observed 

rearrangements in receptor subunit composition, another explanation for an 

enlargement of synaptic area may involve a structural remodeling of the 

synapse. 

 

The recorded increase in mIPSC charge transfer was rather due to changes 

in kinetics than in amplitude. It has been shown that GABAA receptors 

composed of different α-subunits display diverse gating kinetics (Eyre et al., 

2012; Geracitano et al., 2012). Therefore, a rearrangement in GABAA receptor 

subunit composition may underlie slower kinetics and higher charge transfer 

which overall lead to a strengthening of synaptic transmission. However, it 

cannot be excluded that structural and functional changes reflect independent 

mechanisms. 

In contrast to previous findings (Heldt & Ressler, 2007; Chhatwal et al., 2005), 

we demonstrated that fear learning was not associated with a decrease in 

synaptic inhibition, but an increase in mIPSC charge transfer and synaptic 
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size. It is reasonable that a lower expression of GABAA receptor subunit α1 

after conditioning (Heldt & Ressler, 2007) is associated and in line with our 

findings that show an increase in subunit α2. Also, decreased levels of 

gephyrin mRNA after fear conditioning (Chhatwal et al., 2005) could be 

explained by a remodeling of the synapse.  

 

Generally, enhanced inhibitory transmission might be important for 

maintaining the balance between excitation and inhibition. However, the 

observed strengthening of inhibitory synapses might only reflect a net effect 

whereas input onto different cell types such as fear or extinction neurons 

(Herry et al., 2008) could be regulated antagonistically during high fear and 

low fear states.  

In lateral amygdala fear conditioning and extinction did not induce any 

changes in mIPSC properties. It is generally believed that the LA is the site of 

CS and US convergence and it has been shown that lesions of the LA lead to 

an impairment of auditory fear conditioning (LeDoux et al., 1990). Moreover, 

fear conditioning induces a potentiation of excitatory currents onto LA 

pyramidal cells (MCKernan & Shinnick-Gallagher, 1997). Therefore, it is 

surprising, that fear learning did not lead to changes in inhibitory transmission. 

However, it cannot be excluded that subtype specific effects in opposite 

directions might occur or that induced changes are not detectable by mIPSC 

recordings in unidentified cells. 

 

Basal amygdala interneurons are represented by a large variety of cell types, 

with different activity patterns, molecular marker expression and targeting of 

postsynaptic subdomains. Whole cell patch clamp recordings of mIPSCs 

might be dominated by somatically targeting interneurons, however, structural 

plasticity occurs at dendritic and somatic synapses, suggesting that multiple 

types of interneurons are involved. 

 

5. 1. 6. Author contributions 
Y.K. performed FRIL experiments. E.V. carried out electrophysiological 

recordings. Y.K., E.V., A.L. and F.F. wrote the paper. 



 

48 
	
  

 

 

 

	
  

 



 

49 
	
  

5. 2. Project II - Projection-specific dynamic regulation of inhibition in 
amygdala micro-circuits 
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5. 2. 1. Abstract 
Cannabinoid receptor type 1 (CB1R) expressing CCK interneurons are major 

regulators of cortical circuits. Here we report that retrograde endocannabinoid 

signaling and CB1R-mediated regulation of inhibitory synaptic transmission 

onto basal amygdala principal neurons strongly depend on principal neuron 

projection target. Projection-specific asymmetries in the regulation of local 

inhibitory micro-circuits may contribute to the selective activation of distinct 

amygdala output pathways during behavioral changes. 

 

 

5. 2. 2. Introduction 

Principal neurons (PNs) in cortex-like structures are heterogeneous 

populations of cells, which can be functionally distinct but anatomically 

intermingled (Le Be and Markram, 2006; Brown and Hestrin, 2009; Senn et 

al., 2014). Their long-range axonal projection target often defines their identity 

and the probability of local connectivity within glutamatergic circuits (Le Be 

and Markram, 2006; Brown and Hestrin, 2009). Given that PN activity is tightly 

controlled by local inhibitory circuits, this raises the question whether local 

inhibition is also organized in a cell-type specific manner. Data from many 

cortical areas indicate that inhibitory control within local microcircuits is 

typically broad (Wehr and Zador, 2003; Liu et al., 2010; Bock et al., 2011; 

Hofer et al., 2011; Harris and Mrsic-Flogel, 2013). However, recent work 

revealed that cholecystokinin (CCK) and type 1 cannabinoid receptor (CB1R) 

expressing interneurons (CCK INs) in entorhinal cortex differentially inhibit 

distinct populations of PNs, suggesting that local inhibitory circuits mediated 
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by specific IN subtypes may contribute to the regulation and selection of 

defined output pathways (Varga et al., 2010). 

From the basal nucleus of the amygdala (BA), distinct populations of PNs 

project to the prelimbic (PL) or infralimbic (IL) subdivisions of the medial 

prefrontal cortex (mPFC) (LeDoux, 2000). Basal amygdala PL-projecting PNs 

(PNPLs) are activated in vivo during states of high fear, whereas IL-projecting 

PNs (PNILs) increase their activity in low fear states, such as with acquisition 

of extinction, which is consistent with the function of the targeted mPFC 

subdivisions (Quirk and Mueller, 2008; Burgos-Robles et al., 2009; Sierra-

Mercado et al., 2011). Recent data indicate that the switch between high fear 

and low fear states is mediated by a shift of activity in these two amygdala 

output pathways (Senn et al., 2014). However, the underlying circuit 

mechanisms mediating such a shift remain unknown.  

CB1R expressing CCK INs have been suggested to play an important role in 

mood disorders and fear extinction processes (Marsicano et al., 2002, 

Freund, 2003). In the amygdala, large-somata CCK INs (CCKLs) represent 

the sole amygdala IN type expressing CB1Rs and form a population distinct 

from calretinin and/or vasoactive intestinal peptide (VIP)-expressing small 

CCK INs (CCKSs) (Mascagni and McDonald, 2003). Given the necessity of 

amygdala CB1Rs and endocannabinoids in fear extinction (Marsicano et al., 

2002) and opposing behavioral functions of projections from the BA to the PL 

or IL during fear extinction, we tested the hypothesis that local BA CCKLs 

differentially inhibit defined subpopulations of BA PNs to balance the activity 

of functionally distinct BAmPFC output pathways.  

 

5. 2. 3. Materials and Methods 

5. 2. 3. 1. Animals 

Mice were group housed in a temperature-controlled room with a 12 h 

light/dark cycle and unlimited access to food and water. All procedures were 

carried out with the approval of the Veterinary Department of the Canton 

Basel-Stadt.  
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CCK-IN-GFP transgenic mice were generated using an intersectional 

strategy. Mice expressing Flp under a pan-GABAergic promoter Dlx (Dlx-Flp) 

(Miyoshi et al., 2010) were crossed with CCK-IRES-Cre Cre-driver mice 

(Taniguchi et al., 2011). Subsequent crossing of Dlx-Flp::CCK-IRES-Cre 

offspring with the RCE:dual conditional reporter line (Taniguchi et al., 2011) 

yielded progeny with exclusive GFP expression in Cre+/Flp+ GABAergic, but 

not Cre+/Flp- glutamatergic CCK-expressing neurons (Taniguchi et al., 2011). 

4-6 weeks old CCK-IN-GFP male mice were used for all experiments. Age-

matched WT littermates were used for histology. Mice were single housed 

after surgical procedures. 

5. 2. 3. 2. Stereotactic delivery of retrograde labels 

Retrograde labeling of BA→mPFC projecting neurons was carried out by 

IL/PL localized stereotactic injections of either red fluorophore-coated latex 

hemispheres (Lumafluor) for electrophysiology or Alexa 555-conjugated 

Choleratoxin-B (Life Technologies) for histology. Beads were dialyzed against 

0.32 M sucrose solution on floating polycarbonate membrane filters 

(Steriltech; pore size 0.01 µm, diameter 25 mm). Mice were anaesthetized 

with isoflurane (Minirad) in oxygen-enriched air (Oxymat 3, Weinmann) and 

placed in a stereotaxic frame (Kopf Instruments). Body temperature was 

maintained at 35.5 °C with a feedback controlled heating pad (FHC). 

Analgetics (meloxicam (60 µl of 0.5 mg/ml-1, i.p., Metacam, Boehringer 

Ingelheim), ropivacain (120 µl under the scalp, Naropin, AstraZeneca)) were 

delivered prior to surgical incision. A picospritzer (Parker Hannifin 

Coorporation) connected to a flame-pulled (P-97, Sutter Instruments) 

borosilicate micropipette (World Precision Instruments) was used to deliver 

retrobeads (0.1 µl) or Choleratoxin-B (0.5 µl) bilaterally to either mPFC 

subdivision using the following coordinates (in mm from bregma): rostral 

+ 1.85, lateral ± 0.35, ventral 2.2 (PL) or 2.75 (IL). Post-surgery treatment 

involved injection of meloxicam (60 µl of 0.5 mg/ml-1, IP, Metacam) to reduce 

pain and inflammation risk. Animals were allowed to recover 2-7 days before 

subsequent experiments.  
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5. 2. 3. 3. Electrophysiology 

Mice were deeply anaesthetized with 5 % isoflurane and decapitated. Brains 

were dissected in ice-cold artificial cerebrospinal fluid (aCSF) containing 

(in mM) 124 NaCl, 2.7 KCl, 2 CaCl2, 1.3 MgCl2, 26 NaHCO3, 0.4 NaH2PO4, 

18 glucose and 2.25 ascorbate, equilibrated with 95 % O2 / 5 % CO2. Coronal 

slices (300 µm thickness) were cut with a vibratome (Microm HM 650 V) with 

sapphire blades (Delaware Diamond Knives), stored in an interface chamber 

and recovered for 45 min at 37 °C. Whole-cell patch clamp recordings from 

CCK INs and IL/PL-projecting PN pairs/triples (max. 350 µm apart) were 

carried out at 32 °C under constant perfusion with 95 % O2 / 5 % CO2 

equilibrated aCSF. GFP+ and bead-labeled neurons were identified under an 

upright microscope (Olympus Model BX61) fitted with epifluoresence and 

infrared optics (EM-CCD Camera, Hamamatsu). Borosilicate glass (GC150T-

7.5, Harvard Apparatus) was used to pull patch electrodes (DMC Universal 

Puller, Zeitz Instruments GmbH) with a resistance of 3-4 MΩ. Intracellular 

recording solution contained (in mM): 106 K-Methylsulfate, 40 KCl, 20 Na-

Phosphocreatine, 0.3 Na-GTP, 4 Mg-ATP, 10 HEPES. Osmolarity was 

adjusted to 280-290 mOsm and pH to 7.2-7.25. Electrical currents were 

acquired (Multiclamp 700B, Molecular Devices), sampled at 50 kHz, filtered at 

4 kHz (voltage clamp) or 10 kHz (current clamp) (Digidata 1440 A, pClamp 

10; Molecular Devices), and analyzed offline with Clampfit (Molecular 

Devices). Access resistance was monitored throughout experiments by 

injection of 5 mV hyperpolarizing current steps. When access resistance 

increased more than 20 % the protocol was terminated. To evoke action 

potentials in CCKLs 1200 pA currents steps of 2 ms duration were injected. 

For stimulating PNs, the pulse duration was increased to 4 ms. Connectivity 

was assessed by analysis of IPSCs in response to presynaptic bursts at 

100 Hz for a duration of 50 ms every 10 s. At least 10 traces were recorded 

and averaged for each pair. For DSI protocols 20 Hz trains of 8 action 

potentials were elicited in CCKLs every 10 s. Due to variability in IPSC 

amplitude and occasional failures, the amplitude of postsynaptic responses to 

the presynaptic spike train was averaged in each trace. During 



Results 
 

53 
	
  

pharmacological experiments CCKLs were stimulated every 10 s with 2 action 

potentials of 45 ms inter-spike interval followed by a 500 ms break and 5 

action potentials with 12.5 ms inter-spike interval. Spiking patterns were 

assessed by applying 40 current steps from -140 pA to 260 pA.  

5. 2. 3. 4. Immunohistochemistry  

Mice were anaesthetized with 3 % isoflurane followed by an injection of 

urethane (2.5 g/kg, i.p.). Animals were perfused with 4 % ice-cold 

paraformaldehyde in phosphate buffer (pH 7.4; 100 ml/animal) following an 

injection of 300 units heparin to the left ventricle. After 2 h postfixation, 

coronal brain sections (60 µm) were prepared with a vibratome (Leica 

Microsystems) and stored in PBS. Working solutions contained 0.5 % Triton in 

PBS and serum (where appropriate). Sections were incubated at 4 °C for 48 h 

with the following primary antibodies: chicken anti-GFP (1:1000; Invitrogen), 

rabbit anti-CCK (1:500; Frontiers Institute), guinea pig anti-PV (1:500; 

Synaptic Systems), rat anti-SOM (1:500; Millipore), mouse and rabbit anti-

VGAT (1:300; Synaptic Systems), guinea pig anti-CB1R (1:500; Frontiers 

Institute), rabbit anti-DAGLα (1:500; Frontiers Institute), rabbit anti-MGL 

(1:500; Frontiers Institute). Subsequent secondary antibody incubation was 

carried out overnight at 4 °C with: goat anti-mouse 405 dylight (1:500; Thermo 

scientific), goat anti-rabbit Alexa 405, goat anti-rabbit Alexa 488, goat anti-

chicken Alexa 488, goat anti-guinea pig Alexa 647, goat anti-rat Alexa 647, 

and goat anti-rat Alexa 568 (all 1:1000; Invitrogen). Sections were rinsed with 

PBS and mounted/coverslipped on glass slides. Confocal images were 

acquired using a LSM 700 microscope (Carl Zeiss) equipped with four laser 

lines (405, 488, 555, and 639 nm). For basic characterization of molecular 

marker expression in the BA of CCK-IN-GFP mice, sections were scanned 

with a 20x objective (Plan-Apochromat 20x/0.8 M27, Zeiss). Images of CB1R, 

DGlα, MGL and VGAT subcellular localization were acquired at 63x 

magnification (Plan-Apochromat 63x/1.40 Oil DIC objective, Zeiss), a pixel 

size of 80 nm, 1.3 optical zoom, pinhole 1 Airy unit and 200 nm z-sections. 

Images were deconvolved using Huygens Software (Scientific Volume 

imaging). Quantification was performed manually in a blind manner using 
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Imaris software (Bitplane AG). All focal planes of uncut cell bodies were 

analyzed. Statistical analysis was carried out with Graphpad Prism software.  

 

5. 2. 4. Results 
To probe the functional organization of CCKL mediated inhibition onto defined 

populations of PNs, we performed paired whole-cell patch clamp recordings of 

CCKLs and retrogradely labeled projection neurons (n = 236) in acute brain 

slices of CCK-IN-GFP mice (Figure 13). Selective GFP expression in CCK INs 

was obtained via an intersectional approach, using CCK-IRES-Cre::Dlx-

Flp::RCE:dual reporter mice (Miyoshi et al., 2010). GFP+ neurons with 

somatic size similar to mPFC-projecting neurons (CCKL 779.5 ± 18.9 µm2, 

n = 119; PNIL/PL 777.7 ± 24.6 µm2, n = 59) were considered as CCKLs (Figure 

14) and targeted for subsequent experiments. Immunohistochemical analysis 

revealed a large overlap of GFP+ INs with CCK, but not markers for other 

major subpopulations of amygdala INs expressing parvalbumin (PV) or 

somatostatin (SOM; Figure 14D, E). Consistent with CCK expression in some 

glutamatergic PNs (www.mouse.brain-map.org), around 30 % of CCK+ cells 

were GFP- (Figure 14D, E).  

To record from identified PNPLs and PNILs in ex vivo brain slices, fluorescent 

latex retrobeads were stereotaxically injected to IL or PL (Figure 15) two to 

seven days prior to recordings. Paired recordings from GFP+ CCKLs and 

bead+ PNs revealed robust, picrotoxin-sensitive GABAergic synaptic 

transmission from CCKLs to both IL- and PL-projecting PNs (Figure 13C, D) 

with a success rate of 96.28 % for CCKL→PNIL and 97.96 % for CCKL→PNPL 

synapses. Connection probability was similar for both PN populations 

(CCKL→PNPL: 56.6 %, n = 145 tested pairs; CCKL→PNIL: 58.5 %, n = 82, 

Figure 1E). Excitatory PN synapses onto CCKLs were observed less 

frequently, but with no significant difference between PNPLs and PNILs 

(PNPL→CCKL: 16.1 %, n = 112, PNIL→CCKL: 22.2 %, n = 72 tested pairs). 

Synaptic conductance did not significantly differ between CCKL→PNPL and 

CCKL→PNIL pairs in response to single presynaptic action potentials (APs) or 

50 ms, 100 Hz AP bursts (Figure 13F, G).  
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Figure 13. Uniform connectivity and strength of CCKL synapses onto IL- and PL-
projecting principal neurons in basal amgydala. (A) Experimental design. (B) 
Example traces; connectivity between GFP-positive CCKLs and retrobead-labeled PNs 
was assessed by eliciting two action potentials (APs) in the presynaptic cell (inter-spike-
interval: 45 ms) followed by a burst of five APs (100 Hz, above). Resulting inhibitory 
postsynaptic currents were recorded in voltage clamp (below) (C,D) CCKL→PN synaptic 
transmission is blocked by GABA-A receptor antagonist picrotoxin (PTX; 100 µM; n = 3, 
t-test p < 0.0001). (E) Connection probability for CCKL→PN pairs is similar between PNs 
with different mPFC projection targets (CCKL→PNPL: 56.6%, n = 154 tested pairs; 
CCKL→PNIL: 58.5%, n = 82) (F) Synaptic conductance of CCKL→PN unitary IPSCs. 
Slope was calculated from IPSC amplitude of three different holding levels (-50, -60, -
70 mV; CCKL→PNPL: n = 69; CCKL→PNIL: n = 40; t-test p > 0.05) (G) Synaptic charge 
transfer resulting from a 100 Hz presynaptic burst. Slope was calculated from IPSC 
charge transfer (50 ms window after IPSC onset) at three different holding potentials 
(-50, -60, -70 mV; CCKL→PNPL: n = 82; CCKL→PNIL: n = 41; t-test p > 0.05). (H) IPSC 
latency did not differ between cell types (calculated from presynaptic AP threshold to 
IPSC onset (CCKL→PNPL: n = 28; CCKL→PNIL: n = 18; t-test p > 0.05). (I) Jitter was 
calculated as the standard deviation from IPSC latency and does not differ between 
groups (CCKL→PNPL: n = 28; CCKL→PNIL: n = 18; t-test p > 0.05). (J) Conductance 
of single IPSCs is not correlated with IPSC rise time (CCKL→PNPL: n = 58; R2 = 0.15, 
p > 0.05; CCKL→PNIL: n = 36; R2 = 0.09, p > 0.05); Data represent mean ± s.e.m., 
***p < 0.001. 
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Figure 14. Selective Targeting of GFP expression to CCK-INs in the amygdala 
of Dlx-Flp::CCK-IRES-Cre::RCE:dual mice. (A,B) GFP+ cells and CTX-B labelled 
mPFC-projecting neurons are intermingled in basal amygdala. (C) Graph shows the 
somatic surface area of mPFC-projecting PNs and visually identified large and small 
CCKs (PNIL/PL, CCKL, CCKS). Data points represent individual cells (PNIL/PL n = 59, 
CCKL n = 119, CCKS n = 287) with bar overlay for group means. For all experiments 
GFP+ neurons with a somatic size comparable to surrounding PNs were considered 
as CCKLs and targeted for recordings and analysis of molecular marker expression. 
(D, E) Quantification of immunoreactivity and GFP+ labeling in BA reveals extensive 
somatic overlap of GFP with CCK but not SOM or PV. 

 

Interestingly, unlike what has been observed for hippocampal CCK+ INs (Hefft 

and Jonas, 2005), IPSC latency at CCKL→PNPL/PNIL synapses was short 

(CCKL→PNPL: 2.08 ± 0.11 ms, n = 28; CCKL→PNIL: 2.16 ± 0.09 ms, n = 18; t-

test p > 0.05) with low jitter (CCKL→PNPL: 0.13 ± 0.02 ms, n = 28; 

CCKL→PNIL: 0.14 ± 0.02 n = 18; t-test p > 0.05) but did not differ between 

groups (Figure 13H, I). No correlation between synaptic conductance and 

IPSC rise time, which would be a first indication for a heterogeneous 

distribution of synaptic location relative to the recording site, was observed. 

Also, values were similar for both postsynaptic PN populations (CCKL→PNPL: 

n = 58; R2 = 0.15, p > 0.05; CCKL→PNIL: n = 36; R2 = 0.09, p > 0.05; Figure 

13J). Comprehensive analysis of cellular properties revealed significant 

differences between large and small CCKs but not between CCKLs targeting 

IL- or PL-projecting PNs (Table 1). Together, these results indicate that on the 
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level of unitary synaptic connectivity and strength, distinct subpopulations of 

mPFC-projecting BA principal neurons receive uniform, reliable, and rapid 

inhibition by CCKLs. 

 

 

Figure 15. Retrobead injection sites in mPFC. (A) Examples of histological 
verification for IL and PL subdivision targeting. (B) Schematic representation of all 
injections used in experiments; dots indicate the center of the injection site. Atlas 
planes refer to 1.94 mm, 1.78 mm and 1.7 mm rostral from bregma (top to bottom). 
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Table 1. Basic properties of CCKLs targeting IL- or PL-projecting PNs and 
CCKSs. No significant difference was found between CCKLs targeting IL- or PL-
projecting PNs. However, CCKSs exhibited significantly higher input resistance 
(Rinput), broader action potentials (AP half-width), lower action potential amplitude, 
larger after-hyper-polarization (fAHP), larger sag and fired a higher number of action 
potentials (max. number of APs). 

 

 

CCKL 

→PNIL 

CCKL 

→PNPL 
CCKS 

One-way 

ANOVA 

Bonferroni 

post-hoc comparisons 

Rinput MΩ  
241.7 ± 13.1 

n = 37 

225.7 ± 9.5 

n = 50 

346.2 ± 26.3 

n = 29 

F2, 113 = 16.02 

p < 0.0001 

CCKL(IL) vs. CCKL(PL) p > 0.05  

CCKL(IL) vs. CCKS p < 0.0001 

CCKL(PL)  vs. CCKS p < 0.0001 

Vm (mV) 
-64.6 ± 0.9 

n = 37 

-65.0 ± 1.0 

n = 50 

-63.2 ± 1.1 

n = 29 

F2, 113 = 0.6512 

p > 0.05 

CCKL(IL) vs. CCKL(PL) p > 0.05  

CCKL(IL)  vs. CCKS p > 0.05 

CCKL(PL)  vs. CCKS p > 0.05 

AP threshold 

(mV) 

-40.0 ± 0.7 

n = 37 

-39.5 ± 0.6 

n = 50 

-38.4 ± 1.7 

n = 29 

F2, 113 = 1.184 

p > 0.05 

CCKL(IL) vs. CCKL(PL) p > 0.05  

CCKL(IL) vs. CCKS p > 0.05 

CCKL(PL)  vs. CCKS p > 0.05 

AP half 

width (ms) 

0.96 ± 0.04 

n = 37 

0.99 ± 0.03 

n = 50 

1.29 ± 0.06 

n=29 

F2, 113 = 14.58 

p < 0.0001 

CCKL(IL) vs. CCKL(PL) p > 0.05  

CCKL(IL)  vs. CCKS p < 0.0001 

CCKL(PL)   vs. CCKS p < 0.0001 

AP 

amplitude 

(mV) 

54.5 ± 1.6 

n = 37 

51.9 ± 1.6 

n = 50 

44.2 ± 2.0 

n = 29 

F2, 113 = 7.974 

p < 0.001 

CCKL(IL) vs. CCKL(PL) p > 0.05  

CCKL(IL)  vs. CCKS p < 0.001 

CCKL(PL)   vs. CCKS p < 0.01 

fAHP (mV) 
-17.1 ± 0.8 

n = 37 

-15.8 ± 0.5 

n = 50 

-13.1 ± 1.2 

n = 29 

F2, 113 = 5.774 

p < 0.01 

CCKL(IL) vs. CCKL(PL) p > 0.05  

CCKL(IL)  vs. CCKS p < 0.01 

CCKL(PL)   vs. CCKS p > 0.05 

Max. number 

of APs 

3.6 ± 0.5 

n = 37 

3.3 ± 0.4 

n = 50 

7.6 ± 1.4 

n = 29 

F2, 113 = 9.024 

p < 0.001 

CCKL(IL) vs. CCKL(PL) p > 0.05  

CCKL(IL)  vs. CCKS p < 0.01 

CCKL(PL)   vs. CCKS p < 0.001 

Sag (mV) 
2.6 ± 0.6 

n = 37 

1.6 ± 0.2 

n = 50 

3.9 ± 0.7 

n = 29 

F2, 113 = 5.019 

p < 0.01 

CCKL(IL) vs. CCKL(PL) p > 0.05  

CCKL(IL)  vs. CCKS p > 0.05 

CCKL(PL)   vs. CCKS p < 0.01 
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Given the evidence for CB1R-dependent mechanisms in CKK IN mediated 

microcircuit regulation (Freund, 2003; Armstrong and Soltesz, 2012; Trouche 

et al., 2013) and amygdala-driven fear extinction processes (Marsicano et al., 

2002), we assessed depolarization-induced suppression of inhibition (DSI), an 

endocannabinoid-dependent form of short-term plasticity (Ohno-Shosaku et 

al., 2001; Wilson and Nicoll, 2001; Wilson et al., 2001). To induce DSI, 

postsynaptic PNs were depolarized to 0 mV for 5 s to mimic strong 

postsynaptic activity (Figure 16A). At many CB1R-expressing interneuron 

synapses this acts as a trigger for postsynaptic endocannabinoid synthesis 

and release causing a transient CB1R-mediated suppression of presynaptic 

release probability (Wilson and Nicoll, 2002; Galarreta et al., 2008). In the BA, 

an immediate and robust decrease of IPSC amplitude following postsynaptic 

depolarization was recorded, which was completely prevented by application 

of CB1R antagonist AM251 (Figure 16C). While such DSI was observed at all 

CCKL→PNIL synapses CCKL→PNPL synapses were less frequently inhibited 

(Figure 16B). On average, DSI magnitude significantly differed between 

groups (CCKL→PNIL: 92.6 ± 2.6 % DSI, n = 20; CCKL→PNPL: 45.3 ± 10.9 %, 

n = 33; p < 0.0001, Two way ANOVA, Bonferroni post hoc comparison; 

Figure 16D). Consistent with the differential sensitivity to DSI, CCKL→PNIL 

synapses exhibited stronger depression upon presynaptic high-frequency 

bursts (Figure 17). Thus, in contrast to the uniform synaptic connectivity and 

strength, dynamic regulation of CCKL synapses depends on the identity of the 

postsynaptic target cell with CCKL→PNIL synapses being more susceptible to 

activity-dependent suppression. 
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Figure 16. Projection target-dependent asymmetric expression of retrograde 
endocannabinoid signaling at CCKL→PN synapses. (A) Example traces showing 
depolarization-induced suppression of inhibition (DSI) at CCKL→PNIL and CCKL→PNPL 
synapses. IPSCs were evoked by trains of eight APs at 20 Hz in presynaptic CCKLs 
every 10 s. To induce DSI PNs were depolarized to 0 mV for 5 s. Postsynaptic IPSC 
amplitudes during each train are averaged to form each data point. (B) Circuit-specific 
differences in DSI expression. DSI is expressed as percent decrease in mean IPSC 
amplitude of the first train following PN depolarization compared with preceding 60 s 
baseline recording (CCKL→PNIL: n = 20; CCKL→PNPL: n = 33; t-test p < 0.01) (C) DSI at 
CCKL→PN synapses is abolished by perfusion of CB1R antagonist AM251 (10 µM; 
n = 3, t-test p < 0.001 (D) Time course of IPSC suppression following DSI induction at 
CCKL→PN synapses (CCKL→PNIL: n = 20; CCKL→PNPL: n = 33; Two-way ANOVA 
F1,51 = 0.005, p > 0.05, post hoc Bonferroni multiple comparisons p < 0.0001). (E) 
Distribution of DSI magnitudes for PN projection classes (CCKL→PNIL: n = 20; 
CCKL→PNPL: n = 33; Kolmogorov-Smirnov p < 0.01). (F) Suppression of synaptic 
transmission by application of CB1R agonist WIN55,212-2 (WIN; 5 µM; CCKL→PNIL: 
n = 5; CCKL→PNPL: n = 5; Two-way ANOVA F1,8 = 0.7201, p > 0.05). (G) No significant 
correlation between DSI magnitude and WIN-induced reduction in IPSC amplitude (linear 
regression, p > 0.05). Grouped data represented as mean ± s.e.m., **p < 0.01, 
***p < 0.001. 
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Figure 17. Short-term plasticity of CCKL-INPNPL/IL synapses. (A) Example 
traces (above) and quantification (below) of paired pulse ratio; CCKLs were driven to 
fire action potentials (AP) with an inter spike interval of 45 ms. Paired-pulse ratio (2nd 
IPSC amplitude over 1st IPSC amplitude) for cells recorded from each postsynaptic 
target group did not significantly differ (CCKL→PNIL: n = 43; CCKL→PNPL: n = 67; t-
test p > 0.05 (B) CCKL→PNPL/IL IPSC dynamics in response to 100 Hz AP bursts; 
Amplitude of the 1st IPSC was measured from baseline, IPSCs 2-5 were measured 
from peak of decay of preceding IPSC to maximum amplitude and normalized to 
IPSC 1. CCKL→PNIL synapses exhibit IPSC amplitude depression compared with 
CCKL→PNPL synapses. (CCKL→PNIL: n = 35; CCKL→PNPL: n = 59; two-way 
ANOVA F1, 460 = 9.284, p < 0.01). Data represented as mean + s.e.m.. 

 

These results raise the question whether pre- or postsynaptic factors underlie 

the target-specificity of DSI. To explore whether differential CB1R expression 

or tonic CB1R activation could account for alterations in DSI, CB1R agonist 

WIN55,212-2 (5 µM) was applied during paired recordings. We observed that 

CCKL-IPSCs onto PNPL and PNILs were depressed with similar effect 

magnitude and time course (Figure 16F). No correlation of suppression by 

WIN and DSI magnitude was observed (Figure 16G). Additionally, we tested 

whether CCKL synapses are tonically suppressed by endocannabinoids. 

However, application of AM251 (10 µM) had no effect on IPSC amplitude for 

either postsynaptic target (CCKL→PNIL 12.2 ± 19.6 %, n = 5; CCKL→PNPL 

0.5 ± 22.1 %, n = 4) Together, these results suggest that lower DSI levels in 

PL-projecting cells is not explained by a presynaptic mechanism.  
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Figure 18. Projection-specific expression of endocannabinoid synthesizing 
enzyme DGLα . Projection-specific expression of endocannabinoid 
synthesizing enzyme DGLα . (A) Example images of CB1R and VGAT 
immunohistochemical detection in BA sections containing retrogradely labeled IL- 
and PL-projecting PNs; a single focal plane (200 nm) is shown. Blue: CTX-B, red: 
CB1R, green: VGAT. (B) Number of bouton-like appositions co-expressing CB1R 
and VGAT does not differ at PNIL and PNPL somata (PNIL: n = 33; PNPL: n = 29; t-test 
p > 0.05) (C) Example images illustrating DGLα expression in IL- and PL-projecting 
PNs; smaller panels depict higher magnification images of somatic appositions 
indicated with arrows; single focal planes (200 nm) are shown. (D) A significantly 
greater number of DGLα+ puncta in apposition to CB1R+ varicosities are detected in 
PNILs (PNIL: n = 64; PNPL: n = 88; t-test p < 0.0001). Data points represent counts 
obtained from individual cells with bar overlay for group means, ***p < 0.001. 
 

 

To address whether postsynaptic differences in IL- vs. PL-projecting PNs 

could account for altered endocannabinoid signaling, we examined the 

subcellular expression of synthesis (diacylglycerol lipase α; DGLα) and 

degradation (monoacylglycerol lipase; MGL) enzymes for 2-

arachidonylglycerol, the main endocannabinoid contributing to DSI at central 

synapses (Hashimotodani et al., 2008; Tanimura et al., 2010). Using 

immunohistochemistry, we first quantified co-expression of the vesicular 

GABA transporter (VGAT) in CB1R+ bouton-like appositions on the somatic 

surface of Choleratoxin-B labeled IL- and PL-projecting PNs (Figure 18A, B). 
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98.2 ± 0.5 % of CB1R+ varicosities were also immunoreactive for VGAT 

indicating that the vast majority of somatic CB1R+ contacts reflect synapses 

from GABAergic neurons. No difference in the number of CB1R+ bouton-like 

appositions could be detected between IL- and PL-projecting PNs (PNIL: 

28.5 ± 2.2, n = 33; PNPL: 24.2 ± 1.7, n = 29; t-test p > 0.05) Next, we 

quantified DGLα+ puncta closely apposed to CB1R+ boutons at the cell 

surface of postsynaptic IL- or PL-projecting PNs. Blinded analysis revealed 

43.9 ± 2.3 % lower DGLα expression in PL-projecting cells (Figure 18C, D). 

Similar results were obtained in triple-labeled sections in which somatic 

DGLα+ appositions to double-labeled VGAT+/CB1R+ boutons were quantified 

(Figure 19). No difference in presynaptic MGL expression was observed 

(Figure 20).  

Together, these findings indicate that postsynaptic expression of 2-

arachidonylglycerol synthesis enzyme DGLα is determined by neuronal 

projection target in the BA, and that functional specificity of projection 

pathways is, at least in part, determined by postsynaptic differences in 

signaling. 

 

Figure 19. Quadruple-label immunohistochemical analysis of CB1R, VGAT and 
DGLα  in IL- and PL-projecting neurons. (A) Example images of DGLα, CB1R, and 
VGAT immunohistochemical detection in BA sections containing retrogradely labeled 
IL- or PL-projecting PNs; single (200 nm) focal plane (blue, CTX-B; red, CB1R; 
yellow, VGAT; green, DGLα). (B) Enrichment of somatic DGLα+ appositions to 
double-labeled VGAT+/CB1R+ boutons in PNILs (PNIL: n = 17; PNPL: n = 15; t-test 
p < 0.01). Data points represent puncta counts obtained from individual cells with bar 
overlay for group means, **p < 0.01. 
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Figure 20. Similar expression of presynaptic MGL in bouton-like structures 
surrounding IL- and PL-projecting PNs. (A) Example images of MGL and CB1R 
immunohistochemical detection in BA sections containing retrogradely labeled IL- or 
PL-projecting PNs; single (200 nm) focal plane (blue, CTX-B; red, CB1R; 
green/yellow, MGL). (B) Quantification data indicating similar abundance of MGL in 
CB1R containing terminals onto both mPFC-projecting PN types (PNIL: n = 13; PNPL: 
n = 13; t-test p > 0.05). Data points represent puncta counts obtained from individual 
cells with bar overlay for group means. 

 

 

5. 2. 5. Discussion 
CCKLs have been proposed to be major regulators of fear extinction circuits  

(Marsicano et al., 2002) and emotional states (Freund, 2003). However, until 

recently, investigating their functional role was impeded by a lack of specific 

genetic tools. Using an intersectional genetic strategy, we were able to 

achieve targeted patch-clamp recordings of CCKLs and IL-/PL-projecting PNs 

to study the cell type-specific organization of CCKL-mediated inhibitory 

synaptic transmission in fear extinction micro-circuits of the mouse amygdala.  

We observed that CCKLs uniformly inhibit mPFC-projecting PNs with similar 

connectivity and synaptic strength. Furthermore, we did not discover any 

differences in CCKL spiking properties targeting either postsynaptic cell type. 

This data suggest that CCKLs targeting mPFC-projecting PNs are a rather 

homogeneous population of interneurons and asymmetries promoting fine-

tuning of output pathways might not be present on the level of absolute 

connectivity. Yet, based on our data we cannot exclude that amygdala CCKLs, 

similar to CB1R+/VGlut3+ CCK interneurons in entorhinal cortex (Varga et al., 

2010), could exhibit target-specificity with regard to PNs projecting to brain 

regions other than mPFC. 
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Further, as recently reported for hippocampal CCK INs (Dudok et al., 2014), it 

is possible, that amygdala CCKLs are heterogeneous with distinct subtypes 

inhibiting different neuronal sub-compartments. Therefore, we analyzed 

whether rise time correlates with IPSC conductance, which would be a first 

indication that IPSCs originate at different relative electrotonic distances from 

the recording site. However, no such correlation was found, also values are 

similar for PNPLs and PNILs and neither rise time nor IPSC amplitude correlate 

with expression of DSI, indicating that the asymmetry in DSI is unlikely to be 

explained by differences in CCKL subtypes. 

In contrast to the unitary connectivity and synaptic strength, we found that the 

dynamics of CCKL-mediated synaptic inhibition onto distinct subpopulations of 

BA projection neurons are cell type- and pathway-specific. Both short-term 

synaptic plasticity and DSI are different for BA neurons projecting to either PL 

or IL. CCKL→PNIL synapses exhibit depressing short-term plasticity dynamics 

in response to presynaptic high frequency spike trains as well as consistent 

and robust activity-dependent retrograde signaling. In contrast, CCKL→PNPL 

synapses show facilitating compound IPSCs and a significantly weaker DSI.  

In terms of the underlying mechanism, and in line with the notion that PNPLs 

and PNILs are contacted by a similar population of CCKLs, we found that 

CCKL→PNPL synapses and CCKL→PNIL synapses are equally suppressed in 

response to the application of an exogenous CB1R antagonist, and that the 

expression of the presynaptic endocannabinoid-degrading enzyme MGL is 

similar at CCKLPNPL and CCKLPNIL synapses. In contrast, the 

postsynaptic expression of the endocannabinoid-synthesizing enzyme DGLα 

is significantly greater in PNILs compared to PNPLs, suggesting that cell type-

specific differences in the postsynaptic endocannabinoid signaling machinery 

is an important factor determining the specificity of CB1R-mediated signaling 

in amygdalar circuits. 

As previously described, the balance of activity between IL- and PL- 

projecting BA PNs is an important regulator determining the efficiency and 

strength of fear extinction learning (Senn et al., 2014). In the light of our 

present results, it is possible that during extinction learning, when IL-
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projecting BA neurons are strongly activated (Senn et al., 2014), input from 

CCKLs onto IL-projecting PNs could rapidly be suppressed by activity-

dependent mechanisms including short-term depression and DSI. 

This cell-type specific short-term synaptic plasticity may function as a general 

mechanism to transform uniform recruitment of CCKLs into asymmetric 

inhibitory input onto projection-specific subpopulations of principal neurons. 

This projection-specific shift in the balance between inhibition and disinhibition 

via DSI could enhance contrast in activity between distinct output pathways to 

promote rapid behavioral adaptations. 
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5. 2. 8. Additional results 
 

5. 2. 8. 1. Characterization of basal amygdala CCKLs 

Paired recordings of basal amygdala CCKLs revealed both chemical and 

electrical synapses between interneurons (Fig. 21A, B). Gap junctions were 

observed in 28.6 % of tested pairs. Connection probability of GABAergic 

synapses between CCKLs was higher than for mPFC projecting PNs as 

postsynaptic targets (CCKL→CCKL 82.35 %, n = 51 tested pairs; 

CCKL→PNPL: 56.6 %, n = 145; CCKL→PNIL: 58.5 %, n = 82). 

 

 
Figure 21. CCKLs in basal amygdala are highly interconnected with chemical 
and electrical synapses. Data for mPFC-projecting PNs as shown before; (A) 
Experimental design. (B) Example traces; connectivity between GFP-positive CCKLs 
was assessed by eliciting two action potentials (APs) in the presynaptic cell (inter-
spike-interval: 45 ms) followed by a burst of five APs (100 Hz, above). Resulting 
inhibitory postsynaptic currents were recorded in voltage clamp (below). Red arrows 
indicate gap junctions followed by IPSCs. (C) Connection probability for CCKL→ 
CCKL pairs is higher than for CCKL→PN pairs (CCKL→CCKL 82.35 %, n = 51; 
CCKL→PNPL: 56.6 %, n = 154 tested pairs; CCKL→PNIL: 58.5 %, n = 82) (D) 
Synaptic conductance of unitary IPSCs. Slope was calculated from IPSC amplitude 
of three different holding levels (-50, -60, -70 mV; CCKL→CCKL: n = 18; 
CCKL→PNPL: n = 69; CCKL→PNIL: n = 40; One-way ANOVA F2,124 = 0.976, p > 0.05) 
(E) Synaptic charge transfer resulting from a 100 Hz presynaptic burst. Slope was 
calculated from IPSC charge transfer (50 ms window after IPSC onset) at three 
different holding potentials (-50, -60, -70 mV; CCKL→CCKL: n = 16; CCKL→PNPL: 
n = 82; CCKL→PNIL: n = 41; One-way ANOVA F2,135 = 0.999, p > 0.05). (F) 
Conductance of single IPSCs is not correlated with IPSC rise time (CCKL→CCKL 
n = 14; R2 = 0.15, p > 0.05; CCKL→PNPL: n = 58; R2 = 0.15, p > 0.05; CCKL→PNIL: 
n = 36; R2 = 0.09, p > 0.05); Data represent mean ± s.e.m.. 
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Conductance of IPSCs evoked by single IPSCs and 100 Hz spike trains did 

not differ from synaptic strength of CCKL→PNPL/IL synapses (single IPSC 

CCKL→CCKL 1.09 ± 0.29 pA/mV, n = 18; CCKL→PNPL 1.60 ± 0.20 pA/mV, n = 

69; CCKL→PNIL 1.70 ± 0.31 pA/mV, n = 40; 100 Hz burst CCKL→CCKL 50.21 

± 10.46 mC/mV, n = 16; CCKL→PNPL 66.92 ± 5.78 mC/mV, n = 81; 

CCKL→PNIL 57.91 ± 7.26 mC/mV, n = 41; Fig. 21D, E). Similar to 

CCKL→PNPL/IL pairs, no correlation of synaptic conductance and IPSC rise 

time was detected and CCKL→CCKL p synapses (Fig. 21F).  

 

Compared with CCKL→PNPL/IL pairs CCKL→CCKL synapses showed the 

weakest suppression of inhibition in response to postsynaptic depolarization 

(CCKL→CCKL: 24.3 ± 6.6 % DSI, n = 7; CCKL→PNIL: 92.6 ± 2.6 % DSI, 

n = 20; CCKL→PNPL: 45.3 ± 10.9 %, n = 33; Fig 22). This is consistent with 

previous studies reporting that DGLα is not expressed in amygdala 

interneurons (Yoshida et al. 2011). However, application of WIN completely 

blocked GABAergic transmission at interneuron-interneuron synapses, which 

is not correlated with DSI. Together this data suggest that CCKLs express 

presynaptic CB1Rs independent of the postsynaptic target. 

 

As described before, CCKL→PNIL synapses exhibited the strongest reduction 

in inhibition to DSI and consistently expressed robust IPSC depression 

following 100 Hz spike trains (Fig 23B). Whereas CCKL→PNPL pairs show 

only moderate DSI and facilitating-depressing compound IPSCs, DSI at 

CCKL→CCKL synapses elicits the weakest suppression of inhibition but 100 

Hz AP bursts evoke strongly facilitating synapses (Fig 23B). These findings 

further support the idea that uniform synaptic strength is contrasting the 

dynamic regulation of CCKL synapses, which depends on the identity of the 

postsynaptic target. 
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Figure 22. Asymmetric expression of retrograde endocannabinoid signaling at 
CCKL→CCKL versus CCKL→PN synapses. Data from CCKL→PN pairs as shown before 
(A) Example traces showing depolarization-induced suppression of inhibition (DSI) at 
CCKL→PNIL and CCKL→PNPL and CCKL→CCKL synapses. IPSCs were evoked by trains of 
eight APs at 20 Hz in presynaptic CCKLs every 10 s. To induce DSI PNs were depolarized to 
0 mV for 5 s. Postsynaptic IPSC amplitudes during each train are averaged to form each data 
point. (B) Circuit-specific differences in DSI expression. DSI is expressed as percent 
decrease in mean IPSC amplitude of the first train following PN depolarization compared with 
preceding 60 s baseline recording (CCKL→CCKL: 24.3 ± 6.6 % DSI, n = 7; CCKL→PNIL: 
n = 20; CCKL→PNPL: n = 33; One-way ANOVA F2, 57 = 8.372, Bonferroni post hoc comparison 
PNPL vs. CCKL p > 0.05, PNPL vs. PNIL p < 0.01, PNIL vs. CCKL p < 0.01) (C) Time course of 
IPSC suppression following DSI induction at CCKL→PN synapses (CCKL→CCKL: n = 7; 
CCKL→PNIL: n = 20; CCKL→PNPL: n = 33; Two-way ANOVA F2, 57 = 0.01452, p > 0.05, post 
hoc Bonferroni multiple comparisons PNPL vs. CCKL p > 0.05, PNPL vs. PNIL p < 0.0001, PNIL 
vs. CCKL p < 0.0001). (D) Distribution of DSI magnitudes for all groups (CCKL→CCKL: n = 7; 
CCKL→PNIL: n = 20; CCKL→PNPL: n = 33). (E) Suppression of synaptic transmission by 
application of CB1R agonist WIN55,212-2 (WIN; 5 µM; CCKL→CCKL: n = 4;  CCKL→PNIL: 
n = 5; CCKL→PNPL: n = 5; Two-way ANOVA F2, 11 = 0.4288 p > 0.05). (F) No significant 
correlation between DSI magnitude and WIN-induced reduction in IPSC amplitude (linear 
regression p > 0.05). Grouped data represented as mean ± s.e.m., ***p < 0.0001. 
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Figure 23. Short-term plasticity of CCKL synapses. Data from CCKL→PN pairs as 
shown before (A) Example traces (above) and quantification (below) of paired pulse 
ratio; CCKLs were driven to fire action potentials (AP) with an inter spike interval of 
45 ms. Paired-pulse ratio (2nd IPSC amplitude over 1st IPSC amplitude) for PNPL/ILs 
significantly differed from CCKLs (CCKL→CCKL: n = 23; CCKL→PNIL: n = 43; 
CCKL→PNPL: n = 67; One-way ANOVA F2, 130 = 8.175, p < 0.001, post hoc Bonferroni 
multiple comparisons PNPL vs. CCKL p < 0.01, PNPL vs. PNIL p > 0.05, PNIL vs. CCKL p < 
0.001 (B) IPSC dynamics in response to 100 Hz AP bursts; Amplitude of the 1st IPSC 
was measured from baseline, IPSCs 2-5 were measured from peak of decay of 
preceding IPSC to maximum amplitude and normalized to IPSC 1. CCKL→CCKL 
pairs show facilitating synapses in comparison to CCKL→PNIL and CCKL→PNPL 
synapses (CCKL→CCKL: n = 25; CCKL→PNIL: n = 35; CCKL→PNPL: n = 59; Two-way 
ANOVA F2, 116 = 14.15, p < 0.0001). Data represented as mean ± s.e.m. 

 

 

5. 2. 8. 2. Expression of DSI in IL- and PL-projecting PNs with extracellular 

stimulation 

In a different set of experiments single PNILs and PNPLs were recorded in 

basal amygdala. A bipolar stimulation electrode was placed in the vicinity of 

the recorded neuron to stimulate a variety of local inhibitory interneurons. 

Excitatory transmission was blocked by application of CPP (20 µM) and 

CNQX (20 µM). The DSI protocol revealed similar projection specific 

differences as observed in paired recordings. Depolarization of PNPLs did not 

result in suppression of inhibition, whereas evoked IPSCs were decreased by 

activation on PNILs (PNIL: 22.6 ± 7.1  % DSI, n = 11; PNPL: -10.1 ± 9.5  % 

n = 11; t-test p < 0.05; Fig 24C).  
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Figure 24. Projection target-dependent asymmetric expression of retrograde 
endocannabinoid signaling with extracellular stimulation of local GABAergic 
neurons. (A) Experimental design. IPSCs were evoked with a bipolar stimulation 
electrode in the vicinity of the recorded neuron. A small current was applied every 10 
s to evoke a single IPSC. Baseline was recorded for 60 seconds. To induce DSI PNs 
were depolarized to 0 mV for 5 s. (B) Distribution of DSI magnitudes (PNIL n = 11; 
PNPL: n = 11; Kolmogorov-Smirnov p > 0.05). (C) Projection-specific differences in 
DSI expression. DSI is expressed as percent decrease in IPSC amplitude following 
depolarization compared with preceding 60 s baseline recording (PNIL: 22.6 ± 7.1  % 
DSI, n = 11; PNPL: -10.1 ± 9.5  % n = 11; t-test p < 0.05) (D) Time course of IPSC 
suppression following DSI induction (PNIL n = 11; PNPL: n = 11; Two-way ANOVA 
F1, 20 = 1.059, post hoc Bonferroni multiple comparisons p < 0.001). Data represented 
as mean ± s.e.m. *p < 0.05, ***p < 0.001 

 

 

5. 2. 8. 3. Effect of CCK on pyramidal neurons 

In the amygdala CB1Rs are highly colocalized with CCK an anxiogenic 

neuropeptide (Mascagni & McDonald, 2003). The release mechanism is 

activity dependent, yet not fully understood. CCK has anxiogenic effects and 

opposite impact on fear extinction behavior compared to endocannabinoids. 

Intracerebroventricular injections of CCK agonist pentagastrin dose-

dependently impaired extinction learning. On the other hand, systemic 



Results 
 

72 
	
  

injection of CB1 antagonist rimonabant also inhibited extinction of conditioned 

fear (Chhatwal et al., 2009). Interestingly CCK has been shown to increase 

the excitability of dentate gyrus granule cells (Brooks & Kelly, 1985) and 

amygdala fast-spiking interneurons (Chung & Moore, 2009).   

 

             
Figure 25. Application of CCK increases AP Threshold in a cell type specific 
manner. (A) CCK (1µM) does not significantly affect pyramidal cell resting 
membrane potential. (PNPL n = 13; PNPL n = 8; Two-way ANOVA F2, 54 = 2.20, 
p > 0.05). (B) CCK increases spike threshold in PNPLs but not PNILs PNPL n = 13; 
PNPL n = 8; Two-way ANOVA F1, 51 = 4.91, p < 0.05). 
 

 

Given the projection specific endocannabinoid mediated dis-inhibition and 

regulation of DGLα expression, the question arises whether CCK signaling is 

also regulated in a cell type specific manner. Therefore CCK (1µM) was 

applied during recordings of PNPLs and PNILs. Analysis of spiking pattern 

revealed no effect of CCK on the resting membrane potential of both cell 

types (PNPL n = 13; PNPL n = 8; Two-way ANOVA F2, 54 = 2.20, p > 0.05). 

However, CCK decreased spike threshold in PNPLs but not in PNILs 

(PNPL n = 13; PNPL n = 8; Two-way ANOVA F1, 51 = 4.91, p < 0.05). This 

asymmetric increase in excitability further supports the idea that activity of 

pyramidal cells is regulated in a cell type specific manner, depending on long-

range axonal projection targets.  
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5. 2. 9. Discussion - additional results 
 

5. 2. 9. 1. CCKL→CCKL synapses 
Interconnectivity of CCKLs is very high with a connection probability of more 

than 80%. It suggests that a tight network is formed by these interneurons. 

Interestingly, synapses were not only chemical but also electrical in nature, as 

precisely time locked simultaneous postsynaptic responses following 

presynaptic voltage changes were observed. However, due to the 

experimental design and postsynaptic recordings mostly carried out in voltage 

clamp mode, a coupling coefficient could not be calculated.  

On first sight gap junctions are clashing with GABAergic synaptic 

transmission. But, as inhibitory transmission had facilitating short-term 

plasticity dynamics for both tested frequencies, this could lead to a short and 

precisely timed window during which CCKLs are enabled to fire action 

potentials.  

Consistent with findings from CCKL→PNPL/IL pairs, strongly facilitating 

CCKL→CCKL synapses, compared to depressing dynamics in CCKL→PNIL 

and a facilitating-depressing time course in CCKL→PNPL pairs indicate that 

short-term plasticity is indeed dependent on the postsynaptic cell type. 

 

Moreover, CCKL→CCKL synapses express the weakest form of DSI in all 

tested groups but synaptic transmission can be completely blocked with 

application of the CB1 agonist WIN, similarly to what was observed in 

CCKL→PNPL/IL pairs. This argues for a generic expression of CB1Rs at CCKL 

terminals and further supports the idea that postsynaptic mechanisms 

regulate the cell type specificity in DSI. 

 

5. 2. 9. 2. Cell-type specific expression of DSI with extracellular stimulation 

Results of this separate set of experiments confirm that the expression of DSI 

is differentially regulated in PNILs and PNPLs. Tendencies were similar, yet 

absolute suppression of inhibition was smaller, as extracellular stimulation 

recruited a variety of local interneurons. These results indicate that even 
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within a broad spectrum of inhibitory input, activity dependent retrograde 

suppression of inhibition is significantly different in PNILs and PNPLs. 

5. 2. 9. 3. Effects of CCK on excitability of PNPLs and PNILs 

Given the role of PNPL and PNIL activity in extinction learning, the observed 

endocannabinoid mediated dis-inhibition in PNILs opens the obvious question 

about a mechanism that regulates the activity of PNPLs. Application of the 

neuropeptide CCK resulted in a decreased spike threshold in PNPLs only, 

suggesting that CCK might specifically regulate excitability in PNPLs. This is 

consistent with the literature, reporting that injection of CCK inhibits extinction 

learning whereas endocannabinoids are required for extinction of conditioned 

fear (Chhatwal et al., 2009). Strikingly, evidence suggests that the 

endocannabinoid system is linked to CCK and that the release of 

endocannabinoids might be triggered by a direct or indirect activation via CCK 

(Bowers & Ressler 2015). Yet, nothing is known about underlying 

mechanisms and therefore lot more questions are opened for future directions 

in this field.  
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7. DISCUSSION 
 

7. 1. Functional and structural plasticity at GABAergic synapses 
By recording mIPSCs in BA principle neurons after behavioral training I found 

that fear conditioning induced an increase in mIPSC frequency and charge 

transfer. Interestingly, data from Yu Kasugai and Francesco Ferraguti show 

that these results correlate with an enlargement of synaptic area and a 

rearrangement of GABAA receptor subunit composition. Together this 

suggests that fear conditioning induced a strengthening of GABAergic 

synapses.  

Enhanced mIPSC frequency might be explained by presynaptic factors such 

as increases in the number of synapses or vesicles. Moreover, data indicate 

that postsynaptic alterations could be the reason for elevated levels of charge 

transfer, which was rather due to slower kinetics than changes in amplitude 

and remarkably correlated with a rearrangement in receptor subunit 

composition. Together this is a first indication for a common mechanism 

underlying functional and structural plasticity. 

 

Both, increases in mIPSC charge transfer as well as synaptic enlargement 

were detectable immediately after conditioning as well as 24 h later. However, 

enhanced mIPSC frequency was only observed 24 h post conditioning. 

Therefore, a frequency change could reflect slower mechanisms of synaptic 

plasticity or it could be induced by entirely different processes such as 

learning versus memory consolidation.  

 

Interestingly, extinction training reversed fear conditioning-induced functional 

and structural plasticity. Previously, it has been shown that extinction is not an 

erasure of fear memory but an independent learning process (Myers & Davis 

2007, Quirk & Mueller 2008, Herry 2010). Therefore, one possible 

interpretation could be, that findings do not reflect correlates of the actual 

memory trace but that a fear conditioning induced strengthening of 

GABAergic synapses may rather be important for the balance of excitation 

and inhibition.  
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In contrast to findings in basal amygdala, no overall changes in mIPSCs were 

detected in LA neurons (structural plasticity was not investigated), which can 

be explained by two obvious reasons. First, it could be that fear conditioning 

does not induce GABAergic plasticity in lateral amygdala at all. Second, and 

more probable, changes in inhibitory transmission could remain undetected in 

mIPSC recordings and might be differentially organized in basal and lateral 

amygdala. One possibility could be that plasticity is rather short lasting and 

occurs simultaneously with the convergence of sensory input during 

conditioning but does not lead to a remodeling of synapses. 

Another factor could be the involvement of different interneuron subtypes. In 

whole cell configuration synaptic inputs closer to the recording site might 

dominate the results. Therefore, plasticity of dendritically targeting 

interneurons could be masked. 

Furthermore, changes could be antagonistic and organized in a cell type 

specific manner. In this scenario a net effect may be close to zero and 

recordings of unidentified neurons could not reveal distinct changes. 

 

 

7. 1. 1. Advantages and disadvantages of ex vivo mIPSC recordings  

Whole-cell patch clamp mIPSC recordings after behavioral training are a 

relatively easy method to detect synaptic plasticity in correlation with learning. 

Changes in mIPSCs frequency can be a first indication that the number of 

synapses or vesicles increased or decreased. Alterations in amplitude may 

suggest a strengthening or weakening of synaptic transmission and changes 

in mIPSC kinetics point to the direction of modifications in receptor subunit 

composition. However, these read-outs are rather correlative hints and may 

have other reasons. Furthermore, this method is highly sensitive to minute 

and partly uncontrollable changes, such as slice quality, preparations of new 

batches of recording solutions and maybe even seasonal changes for the 

animal. Therefore it is necessary to always intermingle behavioral groups to 

avoid drifts being misinterpreted as training effects.  

A factor that could add more specificity to this approach would be the 

identification of recorded cell types. In the basal amygdala fear and extinction 

neurons have been identified (Herry et al. 2009) which have opposing activity 
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patterns during high fear and low fear states. Although inhibition is often broad 

(Liu et al., 2010; Bock et al., 2011; Hofer et al., 2011; Harris & Mrsic-Flogel, 

2013) it cannot be excluded that inhibitory input is cell type specific in this 

case and therefore regulated in opposite directions. Thus, results of this 

project represent a net effect and have to be interpreted as a population 

overview on GABAergic transmission following fear conditioning and 

extinction. This aspect strongly influenced the design of project number two. 

 

 

7. 2. Cell type specific regulation of GABAergic short-term plasticity 
To answer the question whether CCKLs provide selective input onto PNILs and 

PNPLs that could lead to a switch of activity between these two amygdala 

output pathways I carried out targeted whole-cell paired recordings. 

Interestingly, no differences were observed on the level of absolute 

connectivity but short-term plasticity and in particular endocannabinoid 

mediated suppression of inhibition suggested a cell type specific regulation of 

inhibition. CCKL→PNIL synapses exhibited strongest DSI, which is consistent 

with robust depression upon presynaptic high frequency spike trains. In 

contrast, lower levels of DSI and facilitating-depressing short-term plasticity 

dynamics were observed in CCKL→PNPL pairs. The third and distinct type of 

synapses was examined within networks of CCKLs. In line with previous 

studies, showing that in the amygdala the endocannabinoid synthesis enzyme 

DGLα is preferentially and in highest levels expressed in pyramidal cells 

(Yoshida e al., 2011), CCKL→CCKL synapses displayed the weakest form of 

DSI and strongly facilitating compound IPSCs in response to presynaptic 

action potential bursts. Together, these results suggest that inhibition by 

CCKLs is organized in a cell type specific manner, differentiating between 

distinct types of PNs and also interneuron-interneuron connections. 

Strikingly, all three types of synapses were suppressed by bath application of 

the CB1R agonist WIN with similar strength and time course. This suggests, 

that cell type specific effects are not due to different levels of presynaptic CB1 

receptors. Moreover, immunohistochemical analysis of the presynaptic 

endocannabinoid degradation enzyme MGL revealed no differences in 

expression levels at CB1-positive fibres opposing PNILs or PNPLs. However, 
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the postsynaptic synthesizing enzyme DGLα was found in higher levels at 

synaptic contacts onto PNILs. In conclusion, enzyme levels as well as the 

effect of WIN bath-application strongly suggest a postsynaptic mechanism 

underlying the differential expression of DSI.  

 

During extinction learning, in the transition from a high fear to a low fear state, 

which is correlated with a switch of activity from PNPLs towards PNILs, cell-

type specific endocannabinoid signaling and CCKLs may be important for 

contrast enhancement between these amygdala output pathways. Findings 

cannot explain the initiation of this switch in activity, as endocannabinoid 

release is activity dependent. However, this mechanism could tip the balance 

between activity of PNPLs and PNILs.  

 

Cell type specific retrograde signaling might be a general mechanism to turn 

uniform connectivity asymmetric in order to achieve rapid adaptations of 

network activity. CB1Rs are highly abundant in the CNS and therefore may 

contribute to learning and memory processes in many brain regions. Together 

with the presynaptic target selectivity of CCKs that has been described in 

entorhinal cortex and hippocampus (Varga et al., 2010; Dudok et al., 2015), 

these interneurons provide a high level of complexity, which may be important 

for the precise control of PN output.  

 

 

7. 2. 1. The role of amygdala CCKs within the local GABAergic network 
It has been previously suggested that the release of GABA onto BLA PNs is 

time-, domain-, and sensory-specific (Bienvenu et al., 2012). Furthermore, 

BLA interneurons are major targets of neuromodulatory systems and tightly 

control amygdala principal neuron activity (Ehrlich et al., 2009). It suggests a 

highly complex organization of inhibitory networks, which contributes to the 

fine-tuning of PN output by redistributing activity amongst cell types and cell 

compartments in a very specific manner. In line with this idea is the finding of 

a cell-type specific regulation of DSI. This mechanism may allow for rapid 

adaptations of pyramidal cell activity and could complement functions of other 

GABAergic neurons in fear networks. Whereas PV- and SOM-expressing 
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interneurons have been shown to gate associative learning by disinhibitory 

mechanisms (Wolff et al., 2014), CCKLs might provide the requirements to tip 

the balance of activity in the network towards PNPLs or PNILs. However, it 

remains to be investigated how the switch of activity is initiated as the release 

of endocannabinoids is activity dependent.  

Another factor of complexity is added by data from Chung & Moore (2009), 

showing that the neuropeptide CCK excites fast-spiking interneurons in BLA. 

Moreover, CCK-B receptor expression co-localizes with parvalbumin, 

calbindin and calretinin (Bowers & Ressler, 2015), which is especially 

interesting as it was also suggested that CCK activates the cannabinoid 

system via direct or indirect mechanisms. Therefore, CCK interneurons might 

have a central role in balancing the activity of local amygdala networks. 

 

 

7. 2. 2. Amygdala CCKLs in comparison to CCKs in other brain regions 

One major argument for exploring the potential asymmetries in inhibitory input 

from CCKLs onto PNIL/PLs was the cell type specific inhibition of projection 

neurons by CB1R/VGlut3-expressing CCK interneurons in entorhinal cortex 

(Varga et al., 2010). Yet, in amygdala no differences in absolute connectivity 

were observed, although it cannot be excluded that CCKLs exhibit similar 

target-selectivity by avoiding PNs projecting to other brain regions than 

mPFC.  

Recently, it has been shown that CCKs selectively target cellular 

subcompartments in hippocampus. Somatically targeting interneurons 

expressed higher levels of CB1Rs compared to dendritically targeting CCKs. 

Consistently, efficacy of endocannabinoid signaling was higher at somatic 

versus dendritic synapses (Dudok et al., 2015). Therefore, I analyzed IPSC 

rise time and it’s correlation with conductance and DSI to get indications 

about electrotonic filtering due to a variation in the relative distance of 

synapses from the recording site. However, rise time did not correlate with 

conductance or DSI and neither correlated conductance with DSI. These 

results suggest a homogeneous distribution of synaptic location and that in 

the recorded population of CCKLs DSI levels are not dependent on subtypes 

of CCK interneurons targeting distinct subcellular domains with different levels 
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of CB1Rs at presynaptic axon terminals. Together with pharmacological and 

immunohistochemical data on MGL and DGLα levels, results indicate that the 

cell-type specific expression of DSI is due to a postsynaptic expression 

mechanisms. Hence, amygdala CCKLs are contrasting other CCK-expressing 

interneurons with a different level of cell-type specificity.  

Furthermore, paired recordings with hippocampal CCKs have shown that 

IPSCs have a low success rate, long latency and high jitter (Hefft & Jonas, 

2005), which does not apply to amygdala CCKL→PN synapses, where I 

observed precisely timed IPSCs with short latency and high success rate. 

Therefore, one possible interpretation could be that amygdala CCKLs are 

designed differentially to meet another set of demands in fear circuits.  

 

7. 2. 3. Strengths and weaknesses of targeted paired-recordings in vitro 

The intersectional strategy allowed for the identification of CCK interneurons 

in slices. However, it has to be considered, that cross breeding three mouse 

lines resulted in one out of eight animals, that could be used for experiments. 

Furthermore, via injection of retrograde tracers in a small surgical procedure, 

specific types of projection neurons could be targeted for recordings. This 

approach allows drawing conclusions on the dynamic regulation of identified 

micro-circuits, however, it is missing the behavioral component. We decided 

not aim for ex vivo experiments for two reasons. First, adding a CS only, a 

fear conditioned and an extinguished group to this project would not be 

feasible in a reasonable amount of time. Second and more importantly, long-

term changes involving CCK interneurons might occur with behavioral 

training, as recent data indicate (Trouche et al., 2014), however, DSI is a 

reversible short-term plasticity mechanism, that leads to rapid changes of 

synaptic input and it is not clear whether learning induces any associated 

changes that could be detected in a slice. Moreover, the really interesting 

question would be the relevance of this mechanism in vivo and whether or 

how DSI could lead to an asymmetric dis-inhibition. Here I see the clear 

advantages and limitations of this in vitro method. On one hand the maximum 

on a behavioral level is reached by recording from cell populations with 

identified roles in fear learning or maybe experimenting ex vivo. On the other 

hand, paired recordings in slices can answer very distinct questions on a 
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mechanistic level. For example, asymmetries in DSI could not be detected 

with single unit recordings. In conclusion, I think that slice recordings are a 

highly relevant method to study specific questions of circuit mechanisms.  

 

7. 2. 3. Future directions  
First of all, can one CCKL inhibit PNILs and PNPLs? Triple labeling and triple-

recordings of PNILs, PNPLs and CCKLs were performed, however in a 

reasonable amount of time it was not feasible to titrate the volume of injected 

beads in order to have no overlap at the injection sites but an acceptable 

number of labeled neurons in the amygdala that would allow for patch-clamp 

recordings of neighboring neurons. An alternative strategy could be the 

anatomical reconstruction of a biocytin filled CCKLs, double injection of 

retrograde tracers and analysis under the confocal microscope.  

 

What is the physiological activity of CCKLs? So far, nothing is known about 

activity of amygdala CCK interneurons in vivo and during fear behavior. 

Answering this question would be important to draw conclusions about the 

relevance of endocannabinoid-mediated dis-inhibition. As CCK can also be 

detected in amygdala pyramidal cells, an intersectional approach is required 

for targeting CCK interneurons specifically. Leak proof Cre-Flp dependent 

viral vectors, expressing channelrhodopsin or Arch in a cell type specific 

manner have been developed very recently and could allow for targeted 

single unit recordings.  

 

An optogenetic approach would also allow for CCK manipulations during 

behavior. However, basal amygdala CCK interneurons can be divided in at 

least 2 subclasses, expressing CB1Rs or VIP and/or calretinin and might have 

diverse functions. Moreover, it is not clear whether endocannabinoid mediated 

suppression of inhibition is functional when axon terminals are stimulated with 

channelrhodopsin. Channelrhodopsin is an unselective cation channel and 

therefore calcium influx might occur despite binding of endocannabinoids. 

This would need further testing in acute brain slices. Alternatively loss of 

function experiments by inhibiting the activity of CCK interneurons with Arch 

could give insight on the functional role of CCK interneurons in vivo.  
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Another burning question would be the identity of presynaptic input onto CCK 

interneurons. Are CCK interneurons excited by local principal neurons and 

which brain areas project onto them? Answering this question would shed 

light on the activity of this GABAergic population and could be achieved by an 

intersectional rabies strategy, which is not available yet.  

 

Finally, an interesting question that could be answered in a relatively easy 

experiment, involving retrograde tracing, immunohistochemistry and confocal 

microscopy, would be whether CCK-B receptors are expressed differentially in 

PNILs and PNPLs. However, to understand the possible interactions of CCK 

and endocannabinoids, a lot more research is necessary on the release of 

CCK under physiological conditions and associated functional mechanisms. 
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