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Summary

A global commitment from governmental, non-profit, research and even profit

organizations to combat tropical diseases has led to an increase of funding for

implementing control interventions. Guidelines for controlling a disease commonly

depend on its prevalence or incidence. Information on the disease risk distribution

is important for successful control implementation. Spatial statistical modelling

provides a framework to predict disease risk at high spatial resolution, assess disease

dynamics and evaluate the effects of interventions.

In sub-Saharan Africa, estimates of soil-transmitted helminthiasis risk and of

treatment requirements are lacking, mainly due to scarcity of georeferenced data

and inaccessibility of the available ones. There is a need to bridge this gap

for cost-effective disease control, monitoring and evaluation. Soil-transmitted

helminthiasis is a poverty-related disease. Socioeconomic proxies (SES), such

as socioeconomic status, access to safe water and sanitation (WASH) facilities,

could improve predictive risk modelling. Socioeconomic data are available from

household surveys and are georeferenced at village-level. It is unclear whether

village-aggregated SES can improve predictions of disease risk. Brazil is one of

the most affected countries with leishmaniasis. Despite the implementation of a

notifiable system in the country, geostatistical analyses of leishmaniasis incidence

are limited to few districts and provinces in the country. A countrywide analysis

estimating the geographical and temporal distribution of the disease has not been

carried out. There is a lot of progress in malaria control over the last years.

Interventions are widely administered and repeated national surveys in Africa are

conducted collecting spatial data on the disease risk and on a number of intervention

coverage indicators. However, the effects of the ongoing interventions on malaria
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risk have not been analysed. Model formulations that can estimate the effects of

malaria interventions in space and time have not been established.

This thesis aims to address the above gaps of knowledge by developing data-

driven Bayesian geostatistical models. The specific objectives of this research are

to: (i) assess the spatiotemporal distribution, identify risk factors and calculate

the number of infected Brazilians with leishmaniasis (Chapter 2); (ii) predict the

distribution of soil-transmitted helminth (STH) infection risk in sub-Saharan Africa,

evaluate temporal trends, and provide spatiotemporally explicit estimates of people

infected and of treatment requirements by country (Chapter 3); (iii) predict the

distribution of STH risk in Cambodia and evaluate the predictive ability of SES

proxies in geostatistical disease modelling using individual and village-specific SES

(Chapter 4); (iv) provide geostatistical models with spatially varying covariate

effects and assess variable selection formulations to estimate effects of malaria

interventions on disease risk (Chapter 5); and (v) develop geostatistical models

with spatiotemporally varying covariate effects and evaluate sensitivity of predictive

process approximation for variable selection of large data (Chapter 6).

In Chapter 2, we apply Bayesian geostatistical negative binomial models to analyze

reported incidence data of cutaneous and visceral leishmaniasis in Brazil covering

a 10-year period (2001-2010). Particular emphasis is placed on estimating spatial

and temporal patterns. The number of cases are predicted at province and country

levels.

In Chapter 3, we analyze soil-transmitted helminth infection risk in sub-Sahara

Africa. Data are obtained from a systematic review and analyzed using geostatistical

models. Areas where data are lacking but a high infection risk is predicted are

highlighted. We calculate anthelmintic treatment needs by country using World

Health Organization guidelines.

Chapter 4 presents a geostatistical analysis of soil-transmitted helminth infections in

Cambodia. The study pursues an in-depth investigation of the use of socioeconomic

predictors in mapping poverty-related diseases. Additional to the country-level

analysis with SES aggreagated at village level, separate analyses are carried out

using individual-level SES proxies to assess and quantify their associations with

iv



soil-transmitted helminth infections. Analyses using individual and village-specific

proxies are compared.

In Chapter 5, we provide geostatistical models with spatially varying coefficients

for estimating effects of malaria interventions in space and assess sensitivity of

variable selection approaches to model specification. The proposed models were

fitted on malaria data from two national surveys in Angola to identify the best

proxies of intervention coverage measures on malaria risk and find the provinces in

the country that interventions have an important effect on the disease.

In Chapter 6, we develop a computational algorithm that we called iteratively

integrated nested Laplace approximations (i-INLA) to perform variable selection of

spatiotemporally varying coefficients of non-Gaussian data via a marginal likelihood

approximation. We implemented the algorithm on the Angola malaria data to

assess effects of interventions in space and time on the dynamics of malaria. We

use the predictive process approximation to the spatial components of the models

to speed inference. Effects of the predictive process approximation on variable

selection are investigated.

This PhD thesis contributes to the fields of Bayesian spatial modelling and spa-

tiotemporal epidemiology of tropical diseases with: (i) methodology for Bayesian

variable selection of spatiotemporally varying coefficients allowing flexible inference,

especially for computationally intensive geostatistical models of data collected over

large number of locations; (ii) sensitivity analysis of Bayesian variable selection

formulations of models with spatially varying coefficients; (iii) estimates of inci-

dence rates for cutaneous and visceral leishmaniasis in Brazil depicting the current

situation of leishmaniasis in the country; (iv) an open-access georeferenced database

cataloguing all available survey data for soil-transmitted helminth infections in

sub-Saharan Africa and Cambodia for disease control and research purposes; (v) up-

to-date smooth risk maps, and estimates of the number of people infected and of the

required treatments of soil-transmitted helminth infections in sub-Saharan Africa

and Cambodia; (vi) an evaluation of the predictive ability of cluster-aggregated

WASH and other SES-related proxies in disease mapping of poverty-related diseases;

and (vii) geostatistical models of malaria risk for estimating effects of malaria

intervention coverage measures across space and over time.
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Introduction



2 Chapter 1. Introduction

1.1 Rationale

Efforts to control or eliminate tropical diseases have been increasing over the last

years. The combination of resources from governmental, non-profit, research and

even profit organizations illustrate the commitment to combat tropical diseases.

After the London Declaration, pharmaceutical companies have committed to donate

drugs valued at US$17.8 billion until 2020 (http://unitingtocombatntds.org). In

2012, the United States Agency for International Development recommended the

use of more than US$700 million funds to continue and extend existing programmes

against neglected tropical diseases (NTDs) and malaria (http://www.gpo.gov). Ac-

cording to the Open Malaria Funding Data Platform (http://www.rollbackmalaria.

org/financing/mfdp), the global funds against malaria and infectious diseases have

scaled from millions in 2000 to billions in 2013.

Cost-effective implementation of control against a disease is crucial to maximize

its return. Information on a disease’s distribution can be used as an interven-

tion planning tool. This stands for different stages of a control implementation.

Namely, it can be used for evaluating treatment schedules, cost-effectiveness stud-

ies, calculation of required treatments, logistics, burden estimation etc. Currently,

control interventions of a disease commonly depend on its prevalence or incidence.

Therefore disease/infection distribution is important for stakeholders.

In practice, detailed information of a disease’s distribution is rarely available for

e.g. a whole country. Usually, surveys are conducted in villages or schools, or

data are reported in some unit. Therefore, information might be missing over

large areas of the country while surveyed points might not be representative of

the control implementation unit they belong. For this reason, disease mapping

has become very popular in the field of tropical diseases. Disease mapping has

received different interpretations in the literature such as plotting of raw observed

survey data, plotting aggregated raw data over an administrative unit and plotting

of smooth estimates. The model-based version of the latter is currently considered

as the “gold standard”. Spatial statistical modelling is a rigorous established

methodology that can be used for predicting a disease’s risk distribution over a

domain, calculating number of infected people, identifying predictors etc.

http://unitingtocombatntds.org
http://www.gpo.gov
http://www.rollbackmalaria.org/financing/mfdp
http://www.rollbackmalaria.org/financing/mfdp


1.2 Disease characteristics 3

Hay et al. (2013) scored infectious diseases according to what type of mapping is

recommended. Despite the fact that model-based spatial analyses of soil-transmitted

helminth (STH) infection risk had been carried out and had demonstrated the

usefulness of spatial statistics in the field, Hay et al. (2013) characterized two out

of the three main STH infections as “do not map”. Of course, the STH community

reacted and in a “Simon says” game of replies a score corresponding to “model-

based geostatistics” was reassigned. “Model-based geostatistics” was also assigned

to malaria (caused by Plasmodium falciparum and P. vivax ) while leishmaniasis

was categorized as “niche modelling” (disease occurrence).

This thesis focuses on spatial statistical applications of the following infectious

tropical diseases: leishmaniasis, soil-transmitted helminthiasis and malaria. The

first two belong to a larger class of neglected tropical diseases while malaria is no

longer classified as such.

1.2 Disease characteristics

1.2.1 Leishmaniasis

Leishmaniasis is caused by parasites of the genus Leishmania which is transmitted by

sandflies. The disease occurs in human in two different clinical forms: (i) cutaneous

(CL, referring to the greater group of American tegumentary leishmaniasis), which

causes skin or mucosal lesion; and (ii) visceral (VL), which affects organs such as

the liver and spleen (Utzinger et al., 2012).

Recently, 98 countries reported endemic transmission, with an estimated 0.7-1.2

and 0.2-0.4 million new cases per year for CL and VL, respectively. Deaths due to

VL are estimated between 20,000 and 40,000 (Alvar et al., 2012); a clear drop of the

2002 estimate of 59,000 deaths (WHO, 2002b). The disability-adjusted life years

(DALYs) for leishmaniasis in 2010 where estimated to approximately 3 million,

showing a decrease of 43.6% since 1990 (Murray et al., 2012). Despite these trends,

studies suggest that burden is, in fact, increasing (Desjeux, 2001, 2004). Alvar

et al. (2012) warn that the 2010 DALY estimate has not included or supported

data collection and field validation.
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Globally, there are approximately 300 millions of population at risk of leishmani-

asis (WHO, 2002b, 2013c), while 90% of VL cases are reported in six countries:

Bangladesh, Brazil, Ethiopia, India, South Sudan and Sudan. The distribution of

CL is more widespread. Figure 1.1 depicts the global statuses of endemicity of VL

and CL in 2012 according to WHO (http://www.who.int/leishmaniasis/en/).

Figure 1.1: Endemicity status of CL (top) and VL (bottom) in 2012.

The control of leishmaniasis is complex due to the heterogeneity of sandfly species,

http://www.who.int/leishmaniasis/en/
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the different sub-forms of leishmaniasis and the reservoir hosts. The central pillar

for control of leishmaniasis is constituted by effective and active case detection,

diagnosis and treatment. Additional actions against leishmaniasis are reservoir-

related control, vector control (through, for example, indoor spraying or insecticide

treated nets) and environmental management (WHO, 2010a).

Desjeux (2004) pointed that the population with the lowest socioeconomic status

(SES) is affected the most by leishmaniasis. Numerous studies have assessed the

associations between environmental determinants and leishmaniasis. For example,

moderate temperature and high vegetation have been associated with high incidence

of CL (Valderrama-Ardila et al., 2010). A positive association of precipitation and

VL has been reported by Ali-Akbarpour et al. (2012).

1.2.2 Soil-transmitted helminth infections

Soil-transmitted helminth infections refer to a group of parasitic infections caused

by intestinal worms. Ascaris lumbricoides, Trichuris trichiura and hookworm

(Necator americanus and Ancylostoma duodenale) are the three main parasites

infecting people. These parasites are transmitted through the fecal-oral route.

Human helminthiases, account for the largest burden of NTDs (Utzinger et al.,

2012; Murray et al., 2012; Hotez et al., 2014). Approximately 5 billion people

were at risk of soil-transmitted helminthiasis and 1 billion people were estimated

to be infected globally with at least one of the three main species in 2010. This

estimate resulted in 5 million DALYs (de Silva et al., 2003; Pullan and Brooker,

2012; Murray et al., 2012; Pullan et al., 2014). These numbers decreased since 1990,

when 2.5 billion infections were estimated to be infected, yielding 9 million DALYs.

A large proportion of the infections occurs in Asia where more than a quarter of

the population is estimated to be infected with at least one intestinal worm. In

sub-Saharan Africa, no decreasing trend was observed in the 2010 Global Burden

of Disease study (Murray et al., 2012; Pullan et al., 2014) when comparing the

situations of 1990 and 2010. The global environmental suitabilities and distributions

of A. lumbricoides, T. trichiura and hookworm infections are illustrated in Figure 1.2

(Pullan and Brooker, 2012; Pullan et al., 2014).
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Figure 1.2: Global environmental suitabilities (left) and distributions (right) of
hookworm infection (top), Ascaris lumbricoides (middle), and Trichuris trichiura
(bottom).

For the control of soil-transmitted helminthiasis, the World Health Assembly

resolution 54.19 in May 2001 (WHO, 2002a; Savioli et al., 2009) has endorsed and

urged preventive chemotherapy as well as the access to safe water, sanitation and

health education. As a result, annual coverage rates for treatment with albendazole

or mebendazole have considerably increased in recent years, although they are

still far below the targeted threshold of 75% (WHO, 2010b, 2014). The Global

Program to Eliminate Lymphatic Filariasis (GPELF) and the African Programme

for Onchocerciasis Control (APOC) have altogether administered billions of tablets

of albendazole, mebendazole, and ivermectin treatments which impact on STH

prevalence (see, for example, Ottesen et al., 2008). The increase of preventive

chemotherapy together with socioeconomic development have lead to a decrease

in STH infection prevalence (de Silva et al., 2003; Li et al., 2010; Utzinger et al.,

2010). Programme coverages of STH and lymphatic filariasis control programmes as

reported from WHO are provided in Section 3.5. Campbell et al. (2014) consider the
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water, sanitation and hygiene (WASH) as key factors for successful and sustainable

STH control.

As the mode of STH transmission suggests, access to clean water and developed

sanitation contributes to interrupting transmission. Therefore socioeconomic status

is a determinant of disease risk. Environmental factors are known to influence

transmission. Altitude, humidity, temperature and precipitation, among others,

have been shown to be associated with STH infection risk (see, for example, Brooker

et al., 2006; Chammartin et al., 2013b).

1.2.3 Malaria

Infections by Plasmodium parasites cause malaria. Humans are infected through

female mosquito (of the genus Anopheles) bites. Mosquitoes are the definitive hosts

and humans the intermediate ones. The two most common parasites that infect

humans are P. falciparum and P. vivax.

In 2013, malaria incidence and death rates per 100,000 populations were estimated

to 2360.42 and 11.78, respectively. The annual change of both rates since 2000

has been estimated to approximately -3% (Murray et al., 2014). The highest

incidence rates are estimated for Western sub-Saharan Africa and Oceania. DALYs

in 2010 due to malaria have climbed to 82 million from 69 million in 1990, an

increase of 19% (Murray et al., 2012). WHO alarms that every minute, a child

dies in Africa from malaria (http://www.who.int/mediacentre/factsheets/fs094/

en/, accessed July 2015).

Assessing the distribution of malaria has been a topic of research for many years.

Lysenko and Semashko (1968) published the first world malaria endemicity map.

Malaria was found endemic in many parts of the world such as central and south

America, Africa, the Mediterranean region, Asia and Oceania. Since then, the

Mapping Malaria Risk in Africa (Le Sueur et al., 1997) and the Malaria Atlas

Project (Hay and Snow, 2006) initiatives have re-raised the interest and gave

emphasis in mapping malaria (Dalrymple et al., 2015). Two model-based analyses

depicted the global distribution of P. falciparum malaria in 2007 and 2010 (Hay

et al., 2009; Gething et al., 2011). The disease is found mostly in sub-Saharan

http://www.who.int/mediacentre/factsheets/fs094/en/
http://www.who.int/mediacentre/factsheets/fs094/en/
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Africa and Southeast Asia, Figure 1.3. Gething et al. (2012) evaluated the global

distribution of P. vivax malaria.

Figure 1.3: Malaria endemicity distribution in 1900’s (top, Lysenko and Semashko,
1968, acccessed through Dalrymple et al., 2015), 2007 (middle, Hay et al., 2009) and
2010 (bottom, Gething et al., 2011).
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Currently, the predominant means of interrupting and controlling malaria trans-

mission is vector control. This is commonly performed through the distribution

of insecticide-treated mosquito nets and indoor insecticide spraying. Although

vaccination is not, at the moment, a part of control measures, research towards

efficacious vaccines has advanced. The RTS, S/AS01 malaria (P. falciparum)

vaccine has shown promising results (RTS,S Clinical Trials Partnership, 2015) and

WHO states that in 2015 a decision will be taken to include or not this vaccine

in existing control tools (http://www.who.int/mediacentre/factsheets/fs094/en/,

accessed July 2015). An alternative direction of interventions that would target

human rather than parasite factors, and would block the parasite entering the

blood cells, has demonstrated significant potential in experiments on humanised

mice (Zenonos et al., 2015).

Climatic conditions affect malaria transmission. Importantly, rainfall seasonality

influences mosquito population and leads to seasonal transmission, since mosquito

bites are increased during and after the rainy season. Gallup and Sachs (2001)

characterized malaria as the disease of the global poor in view of being most

prevalent in regions with low income countries.

1.3 Proxies of disease risk determinants

1.3.1 Climatic

Leishmaniasis, soil-transmitted helminthiasis and malaria are environmentally

driven diseases. Climatic factors influence their transmission and can be associated

with disease risk (or incidence) in spatial modelling. These associations are used

to predict risk in locations where data are lacking at high spatial and temporal

resolution. The use of remote sensing (RS) has lead to an abundance of climate-

related data. Proxies of temperature, rainfall, vegetation, land use etc. are some

of the factors that are available due to RS at high spatiotemporal resolutions. In

addition, model-based surfaces in combination with raw measuremetns may provide

supplementary environmental information such as soil characteristics or climatic

scenarios.

http://www.who.int/mediacentre/factsheets/fs094/en/
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1.3.2 Socioeconomic

Human factors like occupation, housing and socioeconomic status, play an important

role in disease transmission. Therefore, they can be used as risk factors in statistical

models. There are numerous wealth indices that may capture the socioeconomic

status of an individual. The asset index combines different indicators through a

principal component analysis (see, for example, Vyas and Kumaranayake, 2006).

Access to improved (WHO and UNICEF, 2006) sanitation and drinking water

sources may be considered for explaining STH infection risk. However, WASH-

related indicators that could show an impact on STH infections are not yet defined

by WHO (Campbell et al., 2014). Measuring SES proxies might be part of

the disease-specific survey, which is commonly done for small scales or for well

established designs as for malaria, or they might be part of a separate study.

1.3.3 Intervention coverage

The increase of funds, efforts, research and alarms to combat NTDs and malaria

have resulted in an increase of interventions worldwide. Temporal and even spatial

trends of disease risk might be explained from the implemented interventions. WHO

reports country-level control efforts and rarely are data available for provinces or

districts. Thus including control measures, for example preventive chemotherapy

coverages for STH, in statistical models is not informative. For malaria, though, the

Roll Back Malaria Partnership (RBMP) has designed surveys and questionnaires

to consistently produce intervention-related data. The RBMP also defined cluster-

level malaria intervention indicators that may depict the effect of control strategies

(MEASURE Evaluation et al., 2013). These indicators correspond to mosquito nets’

coverage of ownership and usage by the total population or specifically by pregnant

women and children, as well as indoor residual spraying and case management,

among others.

1.4 Geostatistical modelling of disease risk

The geostatistical models used in this thesis belong to the broader class of mixed

models. Namely they have fixed and random components. Spatial dependence
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is imposed in the random parts. This is commonly achieved by assuming a

multivariate Gaussian (prior) distribution of the random, location-level, intercept

that incorporates spatial dependence through its covariance matrix. Spatial random

slopes may depict the varying, in space, effect of a predictor. Using Gaussian

priors for the rest of the fixed or random parts, the model is a latent Gaussian

model. The rest of the parameters (such as likelihood or random parameters of the

Gaussian priors) will be referred to as hyper-parameters.

Due to the highly parameterized models and the unknown forms of posterior

distributions, Bayesian inference in this thesis is conducted with Markov chain

Monte Carlo (MCMC) simulations (Gelfand and Smith, 1990) and integrated nested

Laplace approximations (INLA, Rue et al., 2009). MCMC is a sampling-based

algorithm which samples from the posterior marginal distributions of the parameters.

INLA is a deterministic algorithm that makes distributional assumptions (based

on Taylor series) for the model’s parameters. Specifically, it assumes that the

conditional, on hyper-parameters, posterior distribution of the latent Gaussian

part of the linear predictor is also Gaussian. Then, the joint posterior of this

set of hyper-parameters is evaluated. Another Gaussian assumption for the joint

posterior of the hyper-parameters completes the “nestedness” of the computational

algorithm.

1.4.1 Large data

Inference requires lots of posterior evaluations to estimate a model’s parameters.

The geostatistical intercept (and, in addition, any geostatistical slope) has dimen-

sion equal to the number of data locations and even a single calculation of the

multivariate normal density may be computationally expensive. This is due to

the matrix computations that need to take place. This issue is called “the big N

problem”, where N is the number of locations. There are a number of approxima-

tions to achieve faster computations (for a recent review, see Lasinio et al., 2013).

Banerjee et al. (2008) propose the predictive process approach that is based on a

set of m locations, where m < N , on which the random intercept prior distribution

is evaluated. Then, an unbiased estimate of the random effect at the N locations

is calculated by using properties of the multivariate Gaussian distributions. The
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method introduced by Lindgren et al. (2011) replaces the Gaussian random field

with a Gaussian Markov random field (Rue and Held, 2005) using the stochastic

partial differential equations (SPDE) approach. The Markovian structure of the

covariance (precision) matrix accelerates all relevant computations. A method

which tappers the covariance matrix by introducing zeroes for nearly independent

locations has been proposed by Furrer et al. (2006). Kernel convolutions offer

a flexible alternative for faster computations (Higdon et al., 1999). The big N

problem has attracted interest for many years with Whittle (1954) using the fast

Fourier transform to calculate the density of the multivariate normal distribution.

1.4.2 Misalignment

Data arising from different sources may be characterized by the fact that they are

not measured on the same individuals and locations. For example, surveys that

collect data on socioeconomic proxies are usually not coupled with parasitological

examinations to measure STH infections (and vice versa), although Ziegelbauer

et al. (2012); Strunz et al. (2014), among others, have shown such associations. As

a result, SES proxies have not been extensively used in spatial analysis of STH

infection risk.

Unless there exists an estimate of SES on the STH survey locations, associations

cannot be quantified. Under the umbrella of spatial analyses, a natural approach

would be to initially conduct a spatial analysis for SES indices and predict at

STH survey locations. The problem with this approach is that the distribution

of the SES prediction is not taken into account. A joint model of the SES and

STH would address this issue. This would solve the location but not the indi-

vidual misalignment. Namely, a SES prediction simply characterizes the location.

Therefore, an association in a joint model could not identify that, for instance,

the people with low SES (with an arbitrary unit) are the ones infected with STH

in a specific location. A location-level (predicted) SES proxy characterizes the

e.g. village and not each individual within it. In the case of individual data, such

association could be identified. To sum up, to investigate potential associations of

a predictor and disease risk in the case of spatial misalignment, a joint analysis

should be used (to incorporate prediction distribution) but the results of it must
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be carefully interpreted.

1.4.3 Variable selection

Identifying disease risk predictors is an important pillar of disease mapping. As-

sociations of predictors and disease risk can supply additional information to

decision makers. Accuracy of risk predictions depends on the usage of appropriate

predictors.

Variable selection in disease mapping has been conducted through a variety of

approaches. For long time, variable selection in disease mapping has been conducted

by not taking into account the spatial intercept in bivariate and multivariate

regressions (Clements et al., 2009; Soares Magalhães et al., 2011; Schur et al., 2011a;

Raso et al., 2012, , among others). Stepwise selection approaches, ignoring as

well the spatial component which is later assumed, have also been followed (see,

for example, Clements et al., 2006). However, Chammartin et al. (2013a) used

Bayesian geostatistical variable selection and showed that ignoring the geostatistical

term might result in selecting a different (presumably wrong) set of predictors.

O’Hara and Sillanpää (2009) reviewed Bayesian variable selection methods. In

the common case of indicator variable selection (see section 2.4 in O’Hara and

Sillanpää, 2009), the Bayesian hierarchical formulation allows to include a variable

selection component in the prior (George and McCulloch, 1996), likelihood, (Kuo

and Mallick, 1998) or in both (Dellaportas et al., 2002).

Bayesian variable selection for spatial models has recently attracted some interest.

For example, Wagner and Duller (2012) conduct a variable selection of random

intercept for which a spatial analogue can be envisaged. For spatially varying

coefficients, Reich et al. (2010) performed fixed or random slope selection for multi-

variate Gaussian response and Boehm Vock et al. (2015) used local variable selection

through Gaussian Copula. Bayesian variable selection for large geostatistical data

to address the “big N problem” has not yet been explored.

The use of approximate Bayesian inference (INLA) and large data approximations

(SPDE in specific) allow fast model evaluations. Evaluating all possible models that

are under consideration may be feasible. Therefore, model fitting measures such
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as the deviance information criterion (Spiegelhalter et al., 2002) can be used for

model selection. Cross-validatory measures constitute an alternative. Validating a

model on a set of the data that was not used for fitting is an attractive choice when

prediction is the goal. Gneiting and Raftery (2007) suggest the use of proper scoring

rules to identify models that are both well-calibrated and sharp. Leave-one-out

cross-validated scoring rules are based on each observation’s prediction. INLA

offers a fast calculation of such measures (Held et al., 2010).
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1.5 Goal and objectives

The overarching goal of this PhD thesis is to assess the spatiotemporal dynamics

of tropical diseases by applying, implementing and further developing Bayesian

geostatistical models.

1.5.1 Specific objectives

The thesis pursues the following interrelated specific objectives:

(i) assess the spatiotemporal distribution, identify risk factors and calculate

number of infected Brazilians with leishmaniasis (Chapter 2);

(ii) predict the distribution of STH infection risk in sub-Saharan Africa, evaluate

temporal trends, and provide spatiotemporally explicit estimates of people

infected and of treatment requirements by country (Chapter 3);

(iii) predict the distribution of STH risk in Cambodia and evaluate the predic-

tive ability of SES proxies in geostatistical disease modelling of STH using

individual and location-specific SES (Chapter 4);

(iv) provide geostatistical models with spatially varying covariate effects and assess

variable selection formulations to estimate effects of malaria interventions on

disease risk (Chapter 5); and

(v) develop geostatistical models with spatiotemporally varying covariate effects

and evaluate sensitivity of predictive process approximation for variable

selection of large data (Chapter 6).
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Abstract

Background: Leishmaniasis is endemic in 98 countries with an estimated 350

million people at risk and approximately 2 million cases annually. Brazil is one of

the most severely affected countries.

Methodology: We applied Bayesian geostatistical negative binomial models to

analyze reported incidence data of cutaneous and visceral leishmaniasis in Brazil

covering a 10-year period (2001-2010). Particular emphasis was placed on spatial

and temporal patterns. The models were fitted using integrated nested Laplace

approximations to perform fast approximate Bayesian inference. Bayesian variable

selection was employed to determine the most important climatic, environmental,

and socioeconomic predictors of cutaneous and visceral leishmaniasis.

Principal Findings: For both types of leishmaniasis, precipitation and socioe-

conomic proxies were identified as important risk factors. The predicted number

of cases in 2010 were 30,189 (standard deviation (SD): 7,676) for cutaneous leish-

maniasis and 4,889 (SD: 288) for visceral leishmaniasis. Our risk maps predicted

the highest numbers of infected people in the states of Minas Gerais and Pará for

visceral and cutaneous leishmaniasis, respectively.

Conclusions: Our spatially explicit, high-resolution incidence maps identified

priority areas where leishmaniasis control efforts should be targeted with the

ultimate goal to reduce disease incidence.
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2.1 Introduction

Leishmaniasis is a group of neglected tropical diseases that are caused by parasites

of the genus Leishmania. The parasites are transmitted by female phlebotomine

sandflies and the disease occurs in human in two different clinical forms: (i) cuta-

neous (CL, referring to the greater group of American tegumentary leishmaniasis),

which causes skin or mucosal lesion; and (ii) visceral (VL), which affects organs

such as the liver and spleen (Utzinger et al., 2012). The latter, if not diagnosed

and treated in the early stages, is usually fatal (Desjeux, 2004; Alves, 2009).

In 2002, the World Health Organization (WHO) estimated that 350 million people

were at risk of leishmaniasis, with approximately 2 million (1.5 million CL and 0.5

million VL) cases and 59,000 deaths (WHO, 2002b). Recently, 98 countries reported

endemic transmission, with an estimated 0.7-1.2 and 0.2-0.4 million new cases per

year for CL and VL, respectively. Deaths due to VL are estimated between 20,000

and 40,000 (Alvar et al., 2012). The burden of leishmaniasis has been increasing

worldwide (Desjeux, 2004, 2001). In Brazil, for example, the number of CL cases

climbed from 6,335 in 1984 to 30,030 in 1996 (Brandão Filho et al., 1999). From

1990 to 2007 some 560,000 new cases of leishmaniasis were reported, primarily CL

(Alves, 2009; Maia-Elkhoury et al., 2008). However, after 2005, the total number

of CL cases has dropped and remained stable, just above 20,000.

Strategies for the control of leishmaniasis in Brazil have not changed over the past

60 years, which might explain why incidence did not decrease (Dantas-Torres and

Brandão Filho, 2006). According to World Health Assembly (WHA) resolution

60.10, put forward in 2007, a well-defined implementation of a control program

for leishmaniasis is still lacking (WHO, 2007). The difficulties in case reporting

and detection are the main obstacles for such a program. At the same time, due

to heterogeneity between the sandfly species, vector control introduces high costs.

Effective control requires reliable maps of the spatial distribution of the disease,

as well as the number of affected people, so that treatment and other control

interventions can be implemented most cost-effectively.

Bayesian geostatistical models have been applied in the mapping of malaria (Gem-

perli et al., 2004; Hay et al., 2009; Gosoniu et al., 2012; Raso et al., 2012) and
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neglected tropical diseases (Raso et al., 2005; Clements et al., 2009, 2010; Schur

et al., 2011a). Geostatistical models relate the disease data with potential pre-

dictors and quantify spatial dependence via the covariance matrix of a Gaussian

process facilitated by adding random effects at the observed locations. However,

covariance matrix computations hamper implementation of the models on data

collected over large number of locations (> 1, 000). Different methodologies have

been proposed to address this issue (for a recent review see Lasinio et al. 2013).

A predictive process approach, developed by Banerjee et al. (2008), has been

successfully applied in infectious disease mapping (see, for example, Schur et al.

2011a). Lindgren et al. (2011) showed that Gaussian Markov random fields (Rue

and Held, 2005) can be used in geostatistical settings. Rue et al. (2009) provide

fast computational algorithms for latent Gaussian models, based on integrated

nested Laplace approximations (INLA).

There are only few studies that assessed the spatiotemporal distribution, including

underlying risk factors, of leishmaniasis. Chaves and Pascual (2006) explored the

temporal association of CL cases in Costa Rica by taking into account climatic

variables. Chaves et al. (2008) used negative binomial models with breakpoints

to analyze CL incidence in Costa Rica. Valderrama-Ardila et al. (2010) studied

environmental determinants of CL incidence in an area of Colombia, using spatial

models. In Colombia, the probability of CL presence based on ecological zones and

environmental variables was explored by King et al. (2004). In Argentina, Salomon

et al. (2012) modeled CL incidence using maximum entropy modeling. To date,

efforts for estimating the associated risk and the predicted spatial distribution

of leishmaniasis in Brazil are limited to small geographical areas. For instance,

Shimabukuro et al. (2010) analyzed CL transmission in the state of So Paulo

by using data on sandfly species presence, while Machado-Coelho et al. (1999)

investigated spatiotemporal clustering in south-east Brazil. Jirmanus et al. (2012)

examined seasonal variation of CL incidence in Corte de Pedra over a 20-year

period and analyzed demographic characteristics of CL patients. Werneck and

Maguire (2002) used spatial models, with one socioeconomic and one environmental

covariate to explore VL incidence in the city of Teresina. Assunção et al. (2001)

predicted VL rates in Belo Horizonte employing spatiotemporal models without
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including climatic or socioeconomic covariates. The Ministry of Health (MoH) in

Brazil has reported incidence maps for the whole country but without the use of

predictors and of Bayesian geostatistical approaches Brasil Ministério da Saúde,

Secretaria de Vigilância em Saúde (2007a,b). More recently, Alvar et al. (2012)

provided worldwide estimates of leishmaniasis and included incidence maps of

Brazil corresponding to raw data aggregated by state.

In this study, we analyzed incidence data of CL and VL obtained by the information

system for notifiable diseases (ISND) during 2001 to 2010 from the MoH in

Brazil. We employed Bayesian geostastical negative binomial models, fitted via

INLA to predict the incidence of the diseases, using climatic, environmental, and

socioeconomic covariates. We produced countrywide high resolution maps for

leishmaniasis and estimated the number of infected people at the unit of the state.

The generated incidence maps and estimates might be useful for decision-makers to

prioritize intervention areas, and optimizing resources allocation to render control

and elimination efforts most cost-effective.

2.2 Materials and Methods

2.2.1 Ethics Statement

We report a geospatial analysis of CL and VL incidence data in Brazil. The data

were readily obtained from existing databases. Hence, there are no specific ethical

considerations.

2.2.2 Leishmaniasis Incidence Data

Annual incidence data extracted from ISND, were obtained from 3,895 (for CL)

and 2,176 (for VL) municipalities of Brazil. We have considered autochthonous

cases. The municipalities chosen for the analysis were the ones with reported cases

(including zeros) for at least one year between 2001 and 2010. Figure 2.1 shows the

municipalities with incidence data and the 10-year mean incidence rate for both

CL and VL.
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Figure 2.1: Raw incidence rates (per 10,000) averaged over a 10-year period
(20012010) for cutaneous leishmaniasis (left) and visceral leishmaniasis (right). Mu-
nicipalities colored in blue, were excluded from analysis due to missing data.

2.2.3 Climatic and Environmental Data

Climatic data, including altitude, were extracted from Worldclim Global Climate

Data (Hijmans et al., 2005). These data consist of 19 bioclimatic variables. En-

vironmental data were obtained from MODIS (Oak Ridge National Laboratory

Distributed Active Archive Center, 2011). Land surface temperature (LST) data

were used as proxies of day and night temperature. The normalized difference

vegetation index (NDVI) and enhanced vegetation index (EVI) were considered as

proxies for moisture and vegetation. Details of the data sources are summarized in

Table 2.1. Municipality level estimates were obtained in ArcMap (Environmental

Systems Research Institute, 2010) by aggregating the high resolution data.
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Table 2.1: Climatic and environmental predictors used for geostatistical modeling
of leishmaniasis in Brazil.

Source Data type Data period Temporal resolution Spatial resolution

Shuttle Radar Topography
Mission data

Digital elevation
model

2000 Once 1 km

Moderate Resolution Imaging
Spectroradiometer
(MODIS)/Terra

Land surface
temperature for day
and night

2005-2009 8 days 1 km

Normalized difference
vegetation index

2005-2009 16 days 1 km

Enhanced vegetation
index

2005-2009 16 days 1 km

Worldclim global climate Annual mean
temperature

1950-2000 Once 1 km

Mean temperature
diurnal range

1950-2000 Once 1 km

Isothermality 1950-2000 Once 1 km
Temperature
seasonality

1950-2000 Once 1 km

Maximum
temperature of
warmest month

1950-2000 Once 1 km

Maximum
temperature of
coldest month

1950-2000 Once 1 km

Temperature annual
range

1950-2000 Once 1 km

Mean temperature of
wettest quarter

1950-2000 Once 1 km

Mean temperature of
driest quarter

1950-2000 Once 1 km

Mean temperature of
warmest quarter

1950-2000 Once 1 km

Mean temperature of
coldest quarter

1950-2000 Once 1 km

Annual precipitation 1950-2000 Once 1 km
Precipitation of
wettest month

1950-2000 Once 1 km

Precipitation of driest
month

1950-2000 Once 1 km

Precipitation
seasonality

1950-2000 Once 1 km

Precipitation of
wettest quarter

1950-2000 Once 1 km

Precipitation of driest
quarter

1950-2000 Once 1 km

Precipitation of
warmest quarter

1950-2000 Once 1 km

Precipitation of
coldest quarter

1950-2000 Once 1 km

2.2.4 Socioeconomic Data

The socioeconomic indicators used in our study are summarized in Table 2.2. They

include: (i) rural population and human development index (HDI) for the year

2000 provided by the Instituto Brasileiro de Geografia e Estatstica (IBGE); (ii)

unsatisfied basic needs (UBN) for 2000 provided by the Pan American Health

Organization (PAHO/WHO); and (iii) infant mortality rate (IMR) for 2000 and

human influence index (HII) for 2005 obtained by the Center for International Earth

Science Information Network (CIESIN) (Center for International Earth Science

Information Network (CIESIN), Columbia University, 2000; Wildlife Conservation

WCS, Center for International Earth Science Information Network (CIESIN), 2005).
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Population data for 2010 at municipality level were available from IBGE, while

population density at a spatial resolution of 5×5 km was obtained from CIESIN

(Center for International Earth Science Information Network (CIESIN), Columbia

University, 2005).

Table 2.2: Socioeconomic predictors used for geostatistical modeling of leishmaniasis
in Brazil for 2001-2010.

Source Data type Data period Resolution

IBGE (census data) Population data 2010 Municipality
Human development index (HDI) 2000 Municipality
Rural population 2000 Municipality

PAHO (unsatisfied basic needs) (census data) Bras0 3 (% of pupils enrolled in primary school) 2000 Municipality
Bras0 4 (% of pupils completing primary school) 2000 Municipality
Bras0 5 (rate literacy 15 to 24 years) 2000 Municipality
Bras0 6 (girls and boys primary school) 2000 Municipality
Bras0 7 (girls and boys high school) 2000 Municipality
Bras0 8 (girls and boys undergraduate school) 2000 Municipality
Bras0 9 (relation literacy women and men 15 to 24 years) 2000 Municipality
Bras 10 (% women with non farming occupation) 2000 Municipality
Bras0 11 (% people with potable water at home) 2000 Municipality
Bras0 12 (% people with sanitation at home) 2000 Municipality
Bras0 13 (% people with energy at home) 2000 Municipality
Bras0 14 (% people that own their house) 2000 Municipality
Bras0 15 (index secure tenure house) 2000 Municipality
Bras0 16 (unemployment rate) 2000 Municipality
Bras0 17 (% of houses with phone) 2000 Municipality
Bras0 18 (% of house with computer) 2000 Municipality
Bras2 11 (% of people overcrowding) 2000 Municipality
Bras2 15 (% of people subsistence) 2000 Municipality
Infant mortality rate (IMR) 2000 Municipality

CIESIN Human influence index (HII) 2005 1 km

2.2.5 Statistical Analysis

The incidence data were modeled via negative binomial regression. Exploratory

analysis was carried out in R R (R Core Team, 2014) to assess linearity of the

covariates. For continuous covariates, we constructed three new categorical variables

with 2, 3, and 4 categories, based on the quantiles of the variables distribution. The

Akaikes information criterion (AIC) was used to select between a categorical or a

linear form of each variable. To quantify the temporal trend, we included a binary

variable, splitting the 10-year period in two phases, 2001-2005 and 2006-2010. Gibbs

variable selection (Dellaportas et al., 2002) was performed in WinBUGS (Lunn

et al., 2000) with the inclusion of an independent random effect at municipality

level and a year specific auto-correlated term. All the covariates were assigned

a 0.5 prior probability to be included in the final model. The total number of

candidate covariates was 45. The covariates giving rise to the model with the

highest posterior probability were subsequently used to fit a Bayesian geostatistical

negative binomial model with spatially structured random effects at municipality
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level. The spatial correlation was considered to be decreasing with distance between

any pair of locations. The temporal random effects were modeled by auto-regressive

terms of order 1. More specifically, we assumed that the reported number of CL

and VL cases, for location i and year t, follow a negative binomial distribution

with mean µit and dispersion parameter κ. Covariates and random effects were

modeled on the log scale of µit , that is log(µit) = log(Pi) +XT
itβ + wi + εt , where

Xit and β are the vectors of covariates and coefficients, respectively, and Pi is

the population of the i-th municipality. The spatial random effects w = (w1, )

take into account the spatial dependence of the data by assuming they follow

a zero-mean multivariate normal distribution with Matérn covariance function

(see, for example, Banerjee et al. 2004a). εt is the auto-correlated error term with

εt ∼ N (ρεt−1, τ
2
2 ) for t > 1, and ε1 ∼ N (0, τ 2

1 ) with τ 2
1 = τ 2

2 / (1− ρ2) , and ρ is

the auto-correlation. The large number of municipalities included in our modeling

approach challenges geostatistical model fit, and thus resulting in extremely slow

Markov chain Monte Carlo (MCMC) runs. To overcome computational burden, we

estimated model parameters via INLA, using the homonymous R-package (available

at www.r-inla.org). Details on model fit are provided in the Appendix.

Model validation was performed by fitting the model to a randomly selected

subset of 80% of the locations and predicting the mean of the remaining 20% (test

data). Bayesian credible intervals (BCI) of 95% probability are calculated and the

percentage of observations included in these intervals is reported (coverage), as

well as the square root of the mean square error (RMSE) of the test data.

A number of municipalities had not reported any cases of leishmaniasis for some

years. As it was unclear whether these missing values in our dataset corresponded

to true zeros or a lack of reporting cases, a separate analysis was carried out with

missing values considered as zeros.

2.3 Results

2.3.1 Descriptive Results

Figure 2.2 shows the annual incidence rates of CL and VL per 10,000 people in

Brazil for the period 2001-2010. A decrease of CL rates is observed after 2005,
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while VL rates remained stable. The maximum annual number of cases at the unit

of the municipality was 1,820 for CL (Manaus) and 262 for VL (Araguáına).

Figure 2.2: Temporal trend of observed countrywide incidence rates per 10,000.

2.3.2 Model estimates

Estimates, BCIs, and confidence intervals (CIs) of the multivariate Bayesian

geostatistical and non-spatial models for CL are presented in Table 2.3. After 2005,

the incidence of CL dropped by approximately 20%, which is in line with the results

shown in Figure 2.2. Higher temperature diurnal range, temperature of wettest

quarter, annual precipitation, precipitation seasonality, precipitation of warmest

quarter, and EVI are positively associated with CL. On the other hand, higher LST

is negatively associated with CL incidence. The following socioeconomic variables

were associated with low incidence rates of CL: percentage of people with potable

water at home, percentage of people with sanitation, percentage of people that own

their house, and HII. A higher incidence rate was observed for men, as revealed

by the negative relation between the CL incidence and the percentage of women

living in an area.
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Table 2.3: Parameter estimates for cutaneous leishmaniasis (CL) in Brazil for
2001-2010.

Bayesian geostatistical Non-spatial
Variable IRR (95% BCI) IRR (95% CI)

Mean temperature diurnal range (◦C)
< 9.36 1.00 1.00
9.36-10.90 1.46 (1.19, 1.78) 1.00 (0.94, 1.06)

10.90-11.86 1.79 (1.42, 2.27) 1.15 (1.08, 1.22)
> 11.86 2.08 (1.56, 2.75) 1.62 (1.50, 1.75)

Mean temperature of wettest quarter (◦C) 1.30 (1.18, 1.44) 1.19 (1.16, 1.22)
Annual precipitation (mm) 1.70 (1.54, 1.88) 1.24 (1.21, 1.27)
Precipitation seasonality 1.71 (1.50, 1.95) 1.13 (1.10, 1.16)
Precipitation of warmest quarter (mm)
< 207 1.00 1.00
207-369 1.20 (0.99, 1.44) 1.18 (1.12, 1.25)
369-530 1.29 (1.54, 1.88) 1.67 (1.55, 1.81)
> 530 0.88 (0.66, 1.15) 0.74 (0.68, 0.81)

EVI
< 35.78 1.00 1.00
35.78-39.06 1.31 (1.18, 1.46) 1.70 (1.61, 1.79)
39.06-42.73 1.65 (1.45, 1.89) 1.82 (1.71, 1.93)
> 42.73 2.14 (1.46, 2.54) 2.39 (2.22, 2.57)

Day LST (◦C) 0.74 (0.66, 0.83) 0.81 (0.78, 0.83)
% People with potable water at home
< 40.57 1.00 1.00
40.57-71.72 1.00 (0.90, 1.12) 1.18 (1.12, 1.25)
71.72-95.69 0.78 (0.67, 0.92) 0.56 (0.52, 0.60)
> 95.69 0.68 (0.56, 0.84) 0.39 (0.36, 0.43)

% People with sanitation at home 0.81 (0.76, 0.86) 0.82 (0.79, 0.84)
Proportion of own-rent house 0.92 (0.88, 0.96) 0.90 (0.88, 0.92)
% of women 0.82 (0.77, 0.86) 0.74 (0.72, 0.76)
HII
< 17.02 1.00 1.00
17.02-20.30 0.86 (0.76, 0.98) 0.79 (0.75, 0.84)
20.30-23.48 0.73 (0.63, 0.85) 0.54 (0.50, 0.57)
> 23.48 0.70 (0.59, 0.83) 0.45 (0.42, 0.48)

Period
2001-2005 1.00 1.00
2005-2010 0.80 (0.67, 0.95) 0.83 (0.80, 0.86)

Mean (95% BCI)
σ2(spatial variance) 1.45 (1.35, 1.56)
Range (km) 88.3 (82.2, 94.9)
τ2
2 (temporal variance) 0.02 (0.01, 0.03)
ρ (temporal correlation) 0.74 (0.30, 0.95)
κ (dispersion) 2.23 (2.15, 2.32)

Parameter estimates of VL are summarized in Table 2.4. The most suitable climatic

and environmental factors for VL are: low altitude, low annual precipitation,

increased temperature diurnal range, and none extreme precipitation during the

warmest quarter. With regard to socioeconomic variables, similar as in CL, effects

of the two socioeconomic variables (i.e., percentage of people with sanitation at

home and percentage of people that own their house) were associated with lower
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incidence of VL. Mean temperature diurnal range was the only climatic variable

associated with a lower rate of VL incidence.

Table 2.4: Parameter estimates for visceral leishmaniasis (VL) in Brazil for 2001-
2010.

Bayesian geostatistical Non-spatial
Variable IRR (95% BCI) IRR (95% CI)

Altitude (m)
< 163 1.00 1.00
163-341 0.93 (0.75, 1.16) 0.76 (0.70, 0.84)
341-560 0.96 (0.74, 1.25) 0.70 (0.63, 0.78)
> 560 0.81 (0.61, 1.09) 0.53 (0.48, 0.60)

Mean temperature diurnal range (◦C)
< 9.00 1.00 1.00
9.00-10.38 1.17 (0.92, 1.48) 1.58 (1.45, 1.73)
10.38-11.80 1.81 (1.33, 2.47) 3.05 (2.79, 3.34)
> 11.80 2.47 (1.74, 3.48) 4.70 (4.26, 5.20)

Annual precipitation (mm)
< 832 1.00 1.00
832-1212 0.89 (0.73, 1.10) 0.81 (0.74, 0.88)
1212-1512 0.64 (0.48, 0.85) 0.63 (0.57, 0.69)
> 1512 0.59 (0.42, 0.82) 0.59 (0.52, 0.65)

Precipitation of warmest quarter (mm)
< 130 1.00 1.00
130-205 1.10 (0.89, 1.37) 1.25 (1.15, 1.36)
205-359 0.88 (0.67, 1.15) 1.11 (1.02, 1.21)
> 359 0.54 (0.39, 0.76) 0.68 (0.60, 0.76)

Precipitation of coldest quarter (mm) 1.12 (0.97, 1.29) 1.26 (1.20, 1.31)
%People with sanitation at house
< 2 1.00 1.00
2-25 0.91 (0.82, 1.02) 0.89 (0.83, 0.96)
> 25 0.62 (0.54, 0.73) 0.60 (0.55, 0.66)

Proportion of own-rent house
< 81.51 1.00 1.00
81.51-87.23 0.88 (0.77, 1.00) 1.04 (0.96, 1.13)
87.23-90.76 0.88 (0.77, 1.01) 0.99 (0.91, 1.07)
> 90.76 0.71 (0.61, 0.83) 0.86 (0.79, 0.94)

Period
2001-2005 1.00 1.00
2006-2010 1.16 (0.94, 1.35) 1.24 (1.18, 1.31)

Mean (95% BCI)
σ2 (spatial variance) 1.09 (0.97, 1.23)
Range (km) 109.1 (96.3, 124.6)
τ2
2 (temporal variance) 0.01 (0.00, 0.03)
ρ (temporal correlation) 0.35 (-0.25, 0.86)
κ (dispersion) 1.74 (1.62, 1.88)

For both diseases the spatial variance was higher than the temporal one. Estimates

of the range parameter indicate that spatial correlation becomes negligible for

distances above 88.3 and 109.1 km for CL and VL, respectively.
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2.3.3 Model Validation

The model of CL had a RMSE of 14.2 when predicted over the 20% randomly

selected locations. One third of the cases (34%) were included in 95% BCIs of the

posterior predictive distribution. The respective estimates for VL were 4.11 and

23%.

2.3.4 Incidence Maps

Model-based predictions were obtained over a grid of 136,841 pixels at 8×8 km

spatial resolution. The rates (per 10,000 people) of the predictions for CL and VL

in 2010 are depicted in Figures 2.3a and 2.3b, respectively.

(a) Cutaneous leishmaniasis. (b) Visceral leishmaniasis.

Figure 2.3: Geostatistical model-based predicted incidence rates per 10,000 in
Brazil in 2010.

The decreasing trend of CL cases is apparent by comparing the maps for the year

of 2010 (Figure 2.3a) with that of 2001 (Figure 2.4). For instance, in 2010 lower

rates were observed in west and north-west Brazil in the states of Amazonas and

Roraima.
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Figure 2.4: Geostatistical model-based predicted incidence rates per 10,000 for
cutaneous leishmaniasis in Brazil in 2001.

Incidence maps under the assumption that missing cases were zeros are provided

in the Appendix.

2.3.5 Country and State Estimates

The incidence rate map was overlaid with the population map of Brazil to estimate

the number of cases per pixel. By aggregating the number of pixels per state, we

estimated the number of infected people for both diseases (Table 5). The total

number of cases predicted for 2010 was 30,189 (standard deviation (SD): 7,676) for

CL and 4,889 (SD: 288) for VL. The highest prediction for CL occurred in the state

of Par (4,332), while for VL in Minas Gerais (693). The corresponding country and

state estimates under the assumption that missing cases were zeros are reported in

the Appendix.
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Table 2.5: Country and state predicted cases of cutaneous leishmaniasis (CL) and
visceral leishmaniasis (VL) in Brazil in 2010.

State CL cases (SD) VL cases (SD)

Acre 1,511.0 (647.3) 7.8 (3.0)
Alagoas 151.7 (30.4) 115.4 (20.4)
Amapá 466.5 (52.1) 8.3 (4.9)
Amazonas 1,829.1 (858.0) 26.6 (6.2)
Bahia 3,402.3 (905.0) 467.1 (50.7)
Ceará 1,637.2 (345.0) 599.4 (100.6)
Distrito Federal 67.3 (32.4) 14.1 (5.6)
Esṕırito Santo 248.6 (75.7) 31.6 (8.0)
Goiás 634.6 (169.0) 89.0 (11.5)
Maranhão 3,417.3 (855.3) 500.0 (59.8)
Mato Grosso 3,383.2 (1461.1) 68.3 (9.9)
Mato Grosso do Sul 258.0 (488.8) 204.1 (65.0)
Minas Gerais 1,947.6 (110.4) 692.7 (67.7)
Pará 4,331.6 (1129.0) 406.6 (52.1)
Paŕıba 190.1 (195.7) 79.1 (10.7)
Paraná 1,082.6 (412.6) 82.3 (17.7)
Pernambuco 895.0 (40.2) 184.2 (25.4)
Piaúı 199.4 (55.7) 276.0 (40.0)
Rio de Janeiro 281.7 (748.3) 48.0 (16.5)
Rio Grande do Norte 77.3 (17.5) 108.0 (15.2)
Rio Grande do Sul 182.4 (58.8) 109.0 (24.1)
Rondônia 1,896.8 (724.2) 32.1 (9.6)
Roraima 173.8 (171.5) 7.9 (2.6)
Santa Catarina 194.3 (78.8) 61.0 (18.7)
São Paulo 1,006.8 (90.6) 343.4 (28.3)
Sergipe 70.2 (15.7) 68.1 (11.4)
Tocantins 652.9 (229.7) 258.5 (40.1)

Total 30,189.1 (7675.8) 4,888.7 (288.3)

2.4 Discussion

We provide countrywide, model-based incidence maps for both cutaneous and vis-

ceral leishmaniasis in Brazil, at a high spatial resolution (8×8 km). Furthermore, we

explored the underlying spatial processes, identified risk factors, and displayed high

incidence areas. Taken together, our investigations provide a deeper understanding

of the determinants of the two diseases. We employed Bayesian geostatistical

models fitted on readily available incidence data from the MoH in Brazil, and used

Bayesian variable selection to identify environmental and socioeconomic predictors.

Although analyses for mapping leishmaniasis incidence data at state level were

previously conducted, they rarely used rigorous statistical modeling approaches to

take into account spatiotemporal correlations. However, ignoring correlation, risk

factor analyses and predictions may be incorrect.
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Our results indicate that humid warm climates with high vegetation indexes are

associated with high incidence of CL. In contrast, high temperatures are associated

with lower incidence of CL. A study in sub-Andean zone in Colombia (Valderrama-

Ardila et al., 2010) also reported a negative association between incidence of CL

and temperatures exceeding a minimum cut-off of 20.6◦C. The association between

vegetation and CL incidence found in our study, corroborates previous observations

(Valderrama-Ardila et al., 2010) and may point to the role of deforestation driving

CL outbreaks due to vector proliferations (Pupo Nogueira Neto et al., 1998). Our

analysis suggests a higher incidence rate for males, which has also been reported by

the MoH in Brazil (Brasil Ministério da Saúde, Secretaria de Vigilância em Saúde,

2007b). These observations might be explained by gender-specific occupational

exposure within endemic areas (Klaus et al., 1999). The climatic conditions

suitable for VL transmission are different to those of CL. A spatial analysis, done

for the Islamic Republic of Iran, including environmental covariates, revealed that

precipitation was positively associated with CL incidence (Ali-Akbarpour et al.,

2012). On the other hand, the incidence of VL was not associated with the presence

of vegetation and the role of annual precipitation is negative, which might reflect

extreme conditions. An inverse relation of VL incidence and the mean of 3-year

precipitation has been reported in a previous study in north-east Brazil (Thompson

et al., 2002). VL shows higher incidence rates in lowlands as revealed by the

negative altitude effect, which is in accordance with previous observations (Elnaiem

et al., 2003).

There was an association between socioeconomic factors with the diseases incidence,

confirming earlier reports that the population with the lowest socioeconomic status

is affected the most (Desjeux, 2004). Indeed, the higher the proportion of people

with access to clean water and improved sanitation, the lower the infection rate. In

fact, control programs which focus on improving sanitation were associated with

lower incidence rates. The intimate connection between poor living conditions and

leishmaniasis has been discussed before (Werneck and Maguire, 2002).

Our analysis underscores the importance of rigorous geostatistical modeling in

identifying factors related to transmission. Results from non-spatial analogue

models may identify different predictors or even estimate a different direction of



2.4 Discussion 33

the effects. The strong spatial correlations estimated by our models may suggest

that we missed out important spatially structured predictors. For instance, vector

and reservoir presence would drive such models. In addition, the analysis was

based on incidence data aggregated over municipalities. Since the observed data

are already available at municipality level, it is unlikely that predictions at the

same level would be more informative. The strength of the predictive models is

their ability to generate estimates in areas where no data are available. Data at

higher spatial resolution may be able to obtain more precise estimates.

Incidence data were missing for some municipalities and some years in the 10-year

observation period. These missing values could indicate true zero cases; however

zeros have been recorded in the dataset in addition to the missing data. In our

analysis we treated non-reported cases as missing. This may partially explain the

overestimation of the total number of cases. To address this issue, we carried out a

separate analysis, assuming that non-reported cases are zeros. The point estimates

of predicted cases per state and the smooth maps are given in the Appendix. This

analysis provided estimates of the total numbers of cases in the country which

were closer to the reported ones in ISND. Maia-Elkhoury et al. (2007) estimated

42% and 45% (depending on source comparison) of under-reporting for VL in

ISND using a capture-recapture method. Alvar et al. (2012) pointed that these

percentages correspond to 1.3-1.7-fold degrees of under-reporting. Our total VL

predicted cases fall within this interval. We are not aware of similar estimation of

CL under-reporting for ISND. By assuming a similar amount of under-reporting for

CL (due to the same source), the total number of predicted cases of our analysis

lies within the above interval. Overestimation of the predicted cases may also

arise because the incidence is very low and models cannot predict exact zeros. An

estimate slightly higher than zero at pixel level will overestimate the total number

of cases. The more pixels aggregated, the larger the overestimation. Hence, the

model will overestimate, for example, treatment needs. Rounding to zero pixel-level

cases predicted less than 0.1, the total number of model-based estimates of VL

cases at country level drops to 3,320 from 4,889 and for CL to 28,164 from 30,189.

However, this cut-off is arbitrary. For decision making, thresholds of predicted cases

could be applied. These could be defined by some optimality criteria, which balance
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cost of not providing timely treatment on one hand and cost of administering drugs

which were not required on the other hand.

Our study has several limitations that are offered for consideration. Brazil is

the fifth largest country of the world and can be divided into different ecologi-

cal zones. We assumed a single relation between risk factors and the incidence

of leishmaniasis, which might not be able to capture properly the geographical

distribution. Non-stationary models allowing for different spatial dependencies

and covariate distribution in a specific area (Banerjee et al., 2004b; Gelfand et al.,

2003) may improve predictive ability. We did not include a space-time interaction,

but instead assumed a constant spatial process over time. To perform such an

analysis, data are needed for specific time periods and for each municipality. In

our study, this would require either dropping a large number of municipalities

from the study or incorporating the estimation of their values in the modeling

process. The latter might result in identifiability problems of the parameters, and

hence, we only considered additive effects. We assumed constant effects of the

predictors over time and therefore could not explain the temporal trends of CL

from the trends of the predictors considered in the study. The coverages of the

test data for both diseases might seem low, but do not account for the zero cases.

The 2.5% quantile cannot be zero, and thus all the zero incidence cases will be

missed. To illustrate this, we rounded the lower quantile (which of course increases

the credibility level) and recalculated the coverages resulting in 66% for CL and

71% for VL. In addition, 50% and 38% municipalities had 0 reported cases for CL

and VL, respectively. Giardina et al. (2012) showed that zero-inflated (ZI) models

gave better predictions than standard geostatistical models for predicting malaria

risk using sparse malaria survey data. ZI models with an invariable probability

of ZI were also fitted, but according to the deviance information criterion (DIC)

they showed similar fits to the data and the probability of ZI was very low (of the

magnitude 10−6). Cross-validatory measures (i.e., coverage and RMSE) did not

improve when ZI models were fitted. Non-linearity was addressed by categorizing

the predictors. Alternative approaches (i.e., polynomial terms or splines) may

provide more flexible ways to model the relation between disease and predictors,

and potentially give more accurate estimates. We have chosen categorical covariates
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because they offer easier epidemiological interpretation.

In conclusion, we present the first high-resolution model-based estimates of CL and

VL in Brazil. We used INLA, a novel inferential approach in the field of neglected

tropical diseases. Our incidence maps, together with the predicted number of

CL and VL cases, constitute useful tools for decision making and prioritization

of disease control intervention. Recent developments in Bayesian geostatistical

computation (e.g., INLA) already enable analyses of surveillance data in almost real

time. Updates of these maps could be automatized, and hence performed shortly

after data collection and reporting. We anticipate that in near future surveillance

programs will integrate these methods in their systems. The possibility to aggregate

over any desired level, such as the catchment area of health facilities, would further

help planning drug delivery and other control measures. In particular, these maps

could identify communities where enhanced prevention measures are warranted.

Environmental predictors are important for identifying high incidence areas, while

improving socioeconomic status might constitute the single most important factor

to enhance control programs. The current methodology should be further developed

to address the aforementioned limitations and provide more accurate spatial and

temporal predictions of leishmaniasis incidence.
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2.5 Appendix

In this section we present the model formulation, a brief description of the INLA

approximation to estimate the marginal posterior distributions of the model pa-

rameters, and provide implementation details for the analysis of leishmaniasis data.

Extensive theoretical explanations about INLA in a spatiotemporal setting have
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been presented elsewhere (Cameletti et al., 2013).

Model formulation and INLA

Let Yit be the number of cases for municipality i at year t. We assume that

the Yit’s are generated by a negative binomial distribution, i.e. Yit ∼ NB (µit, k)

with mean µit and dispersion parameter k. The linear predictor ηit = log (µit) =

log (Pi) +XT
itβ + wi + et includes an offset term for the population Pi, the vector

XT
it of covariates and their respective coefficients β, spatially and temporally

structured random effects wi and et, respectively. We consider that the vector of

wi arises from a multivariate normal distribution w ∼MVN (0,Σ) with Matérn

covariance function between locations i, j that is, Σij =
σ2(κdij)

νKν(κdij)

Γ(ν)2ν−1 , where

σ2 is the spatial process variance, dij is the distance between the centroids of i

and j, κ is a scaling parameter, ν is a smoothing parameter fixed to 1 in our

application and Kν is the modified Bessel function of second kind and order

ν. The Matérn specification of the covariance matrix implies that the spatial

range r, that is the distance at which spatial correlation becomes negligible (i.e.

smaller than 10%) is r =
√

8
κ

. We adopted a stationary autoregressive AR(1)

process for et such that, et ∼ N (ρet−1, τ
2
2 ) for t > 1 and et ∼ N (0, τ 2

1 ), where

τ 2
1 = τ 2

2 / (1− ρ2) and ρ the auto-correlation parameter, constraint in the interval

(−1, 1). We complete Bayesian model formulation by specifying prior distributions

for the remaining five hyperparameters. In particular, we choose log-gamma priors

for, τ−2
2 , σ−2, r and k parametrized in the log scale, that is, log

(
τ−2

2

)
, log

(
σ−2

2

)
∼

logGa(1, 0.0005), log(k) ∼ logGa(1, 1), log(r) ∼ logGa(1, 0.01). A normal prior

distribution is used for ρ re-parametrized in order to be defined in R, that is

log
(

1+ρ
1−ρ

)
∼ N (0, 6.66). Normal priors N (0, 0.001) were also assigned for the

regression coefficients and a vague normal one for the intercept.

Bayesian inference using SPDE/INLA

Bayesian inference estimates the marginal posterior distributions p(φj|y) =
∫
p(φj|θ, y)p(θ|y)dθ

of the elements of the parameter vector φ = (β, w, e)T , where θ is the vector of

hyperparameters and y are the data. Geostatistical models often rely on Markov
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chain Monte Carlo (MCMC) simulation to estimate p(φj|y). However, compu-

tations involving the spatial covariance matrix are not feasible for large number

of locations. Lindgren et al. (2011) proposed the stochastic partial differential

approach which represents the above Gaussian spatial process by a Gaussian

Markov random field. Hense Σ is approximated by the covariance matrix Q−1

of the GMRF, which provides directly the inverse of Q, overcoming a computa-

tionally intensive matrix operation. The spatial process representation is based

on a partition of the study region into a set of non-intersecting triangles. Subse-

quently, INLA can be used for fast Bayesian inference. INLA approximates the

above integral by p̂(φj|y) =
∑

k p̂(φj|θk, y)p̂(θk|y)ωk. p̂(θk|y) is calculated from the

Laplace approximation of p(θ|y), that is p(θ|y) ∝ p(φ,θ|y)
pG(φ|θ,y)

|φ=φM , where pG(φ|θ, y)

is the Gaussian approximation of p(φ|θ, y) and φM is the mode of p(φ|θ, y). The

prediction of the spatial random effect on a grid of locations is performed by

projecting the triangular random effects on the grid and calculating a weighted

sum of the values at the vertices. The weights are the barycentric coordinates

of each grid point. Estimates of the total number of cases across states or the

whole country can be obtained by summing pixel-level predictions. The INLA

package does not provide directly variation measures for joint distributions and

therefore, it cannot estimate the variance of the above quantities. However, it can

estimate the variance of linear combinations of ηit for a given time point t (eg 2010).

Using the Taylor expanstion, the variance of the total predicted cases is given by:

V ar (
∑

i exp (ηit)) ≈ V ar (
∑

i exp (E (ηit)) ηit) where the weights exp (E (ηit)) of

the linear combination are the point predictions at the pixel i. INLA can estimate

the right part of the above equation in a second model fit which includes the

prediction grid with missing values in the response. Additional linear combinations

were defined to calculate the variance of the cases per state in a similar manner.

INLA implementation

The data file contained standardized continuous predictors and the dummy (0/1)

variables of the categorical ones. We assigned a missing value to the response

of a randomly selected set of 20% of the data. The response was predicted for

these points and used to calculate cross-validatory measures. The R package
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maps was used to define the boundaries of our region that was triangulated. The

inla.mesh.create.helper() and inla.spde2.matern() functions, of the INLA package,

were applied to construct the domain (mesh) and define the covariance function of

the spatial process. The inla() was called to perform approximate Bayesian infer-

ence and obtain summaries for the coefficients and the hyperparameters. The grid

of prediction was constructed with the inla.mesh.projector(). inla.mesh.project()

projected the mean of the latent spatial effect on the grid. Using ArcMap (Envi-

ronmental Systems Research Institute, 2010), covariate values and the population

data were extracted at the grid points which are later read in R. The mean of the

linear predictor was calculated and summarized over the states to approximated

the predicted cases. Finally, a second inla() call enabled the estimation of the

variance of the cases aggregated over the whole country and states.
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Predicted cases by state and incidence maps under the as-

sumption that missing values are zeros

Table 2.6: Geostatistical model-based predicted incidence rates per 10,000 for
cutaneous leishmaniasis in Brazil in 2010.

State CL cases VL cases

Acre 1791.0 0.1
Alagoas 85.0 96.5
Amapá 462.6 0.5
Amazonas 2810.5 2.2
Bahia 2237.6 410.0
Ceará 1152.7 505.1
Distrito Federal 81.4 12.6
Esṕırito Santo 232.0 3.6
Goiás 478.9 35.1
Maranhão 3016.7 401.6
Mato Grosso 3440.4 27.5
Mato Grosso do Sul 192.7 203.6
Minas Gerais 1619.6 417.9
Pará 4227.8 484.3
Paráıba 63.9 40.0
Paraná 645.6 2.9
Pernambuco 605.2 143.9
Piaúı 198.3 263.4
Rio de Janeiro 298.2 4.5
Rio Grande do Norte 11.7 87.1
Rio Grande do Sul 10.8 146.2
Rondônia 1743.8 0.9
Roraima 249.9 7.6
Santa Catarina 61.2 48.9
São Paulo 796.2 155.7
Sergipe 27.9 58.9
Tocantins 743.5 256.6

Total 27285.0 3817.4
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(a) Cutaneous leishmaniasis. (b) Visceral leishmaniasis.

Figure 2.5: Geostatistical model-based predicted incidence rates per 10,000 in
Brazil in 2010.
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Abstract

Background: Interest is growing in predictive risk mapping for neglected tropical

diseases (NTDs), particularly to scale up preventive chemotherapy, surveillance, and

elimination efforts. Soil-transmitted helminths (hookworm, Ascaris lumbricoides,

and Trichuris trichiura) are the most widespread NTDs, but broad geographical

analyses are scarce. We aimed to predict the spatial and temporal distribution of

soil-transmitted helminth infections, including the number of infected people and

treatment needs, across sub-Saharan Africa.

Methods: We systematically searched PubMed, Web of Knowledge, and African

Journal Online from inception to Dec 31, 2013, without language restrictions, to

identify georeferenced surveys. We extracted data from household surveys on

sources of drinking water, sanitation, and womens level of education. Bayesian

geostatistical models were used to align the data in space and estimate risk of with

hookworm, A lumbricoides, and T trichiura over a grid of roughly 1 million pixels

at a spatial resolution of 5×5 km. We calculated anthelmintic treatment needs

on the basis of WHO guidelines (treatment of all school-aged children once per

year where prevalence in this population is 2050% or twice per year if prevalence is

greater than 50%).

Findings: We identified 459 relevant survey reports that referenced 6040 unique

locations. We estimate that the prevalence of hookworm, A lumbricoides, and

T trichiura among school-aged children from 2000 onwards was 16.5%, 6.6%, and

4.4%. These estimates are between 52% and 74% lower than those in surveys done

before 2000, and have become similar to values for the entire communities. We

estimated that 126 million doses of anthelmintic treatments are required per year.

Interpretation: Patterns of soil-transmitted helminth infection in sub-Saharan

Africa have changed and the prevalence of infection has declined substantially

in this millennium, probably due to socioeconomic development and large-scale

deworming programmes. The global control strategy should be reassessed, with

emphasis given also to adults to progress towards local elimination.
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3.1 Introduction

Over the past 10 years, interest has grown in better understanding the extent of

neglected tropical diseases (NTDs) (Molyneux, 2004; Hotez et al., 2006; Utzinger

et al., 2012; Hotez, 2013). Spatially explicit information on the distribution of

NTDs is crucial to improve control and elimination efforts (Brooker et al., 2009b;

Chammartin et al., 2013a). Advances have been made with spatial modelling,

including risk profiling of leishmaniasis at the district level Shimabukuro et al.

(2010), predictive risk mapping of loiasis at the national level (Diggle et al., 2007),

cross-national models of schistosomiasis (Clements et al., 2009; Schur et al., 2011b;

Ekpo et al., 2013), a subcontinental map of soil-transmitted helminth infection

(Chammartin et al., 2013b), and a continental future projection of lymphatic

filariasis (Slater and Michael, 2013). Additionally, the modelling results have

enabled estimation of the number of infected people at different geographical scales,

which facilitates calculation of treatment and other intervention needs and their

costs (Schur et al., 2012).

For human helminthiases, which account for the largest burden of NTDs (Utzinger

et al., 2012; Murray et al., 2012; Hotez et al., 2014), WHO recommends periodic

administration of anthelmintic drugs on the basis of prevalence of infection at a

given location to control morbidity (WHO, 2006). Predictions of infection risk

in areas where prevalence data are lacking can be supplied by spatial statistical

models. Studies have provided model-based risk maps and estimates over large

scales in South America (Chammartin et al., 2013b) and China (Lai et al., 2013).

The authors constructed gridded estimates of population-adjusted prevalence and

identified high-risk areas that should be prioritised for control interventions. The

work also highlighted the need for doing surveys in areas where data are unavailable

or extremely scarce.

Sub-Saharan Africa is among the regions with the highest prevalence of soil-

transmitted helminth infections, but progress to reduce the burden has been slower

there than in any other region of the world (de Silva et al., 2003; Bethony et al.,
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2006). Country-wide analyses of soil-transmitted helminthiasis risk have been done

(Pullan et al., 2011). However, a cross-national geostatistical analysis to estimate

spatiotemporal patterns and provide country-specific infection estimates at high

spatial resolution across sub-Saharan Africa has not yet been done (Brooker et al.,

2009a). A Bayesian geostatistical analysis of the number of people infected with

soil-transmitted helminths in sub-Saharan Africa was done as a part of the Global

Burden of Disease 2010 study (Murray et al., 2012) using data from the Global Atlas

of Helminth Infection (Brooker et al., 2010; Pullan et al., 2014). Risk maps have

been provided by the Global Atlas of Helminth Infection. The Global Neglected

Tropical Diseases (GNTD) database compiles open-access geographically referenced

prevalence data for soil-transmitted helminth infections and other NTDs that can

be used by researchers and control managers to obtain spatially and temporally

explicit estimates of at-risk areas (Hürlimann et al., 2011; Saarnak et al., 2013).

We did a systematic review and extracted data from geographically referenced sur-

veys that reported prevalence of hookworm, Ascaris lumbricoides, and Trichuris trichiura

infections in sub-Saharan Africa. We did a meta-analysis of the data with Bayesian

geostatistical models and provided high-resolution risk maps. We also assessed

the potentials of education attainment, water, and sanitation-related indicators to

increase the predictive ability of the models. Additionally, we estimated the annual

treatment needs across the region according to WHO guidelines for preventive

chemotherapy (WHO, 2006).

3.2 Methods

Systematic review

We did a systematic review in accordance with the PRISMA guidelines (Moher

et al., 2009). We systematically searched PubMed, Web of Knowledge, and African

Journal Online from inception to Dec 31, 2013, with no restrictions applied for

date of survey or language of publication. We included 43 sub-Saharan African

countries (Appendix). We used the following search terms: angola* (OR benin*,

OR botswana, OR burkina faso, OR upper volta, OR burundi, OR cte divoire, OR

cote divoire, OR ivory coast, OR cameroon, OR camerun, OR kamerun, OR central
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african republic, OR chad, OR congo, OR zaire, OR djibouti, OR equatorial guinea,

OR eritrea, OR ethiopia, OR gabon, OR gambia, OR guinea, OR guinea-bissau,

OR kenya, OR lesotho, OR liberia, OR malawi, OR mali, OR mauritania, OR

mozambique, OR namibia, OR niger*, OR rwanda, OR senegal, OR sierra leone,

OR somalia, OR south africa, OR south sudan, OR sudan, OR swaziland, OR

tanzania, OR togo, OR uganda, OR zambia, OR zimbabwe, OR rhodesia) AND

helminth* (OR ascari*, OR trichur*, OR hookworm*, OR necator, OR ankylostom*,

OR ancylostom*, OR strongy*, OR hymenolepis, OR toxocara, OR enterobius*,

OR geohelminth*, OR nematode*). We also searched the grey literature, including

personal collections and reports from control programmes and ministries of health.

Data extraction

We adapted the protocol by Chammartin et al. (2013b) to extract the data.

We initially reviewed titles and abstracts, if available, and excluded studies of

animals, plants, and genetics, case reports, in-vitro studies, and those that did not

mention surveys of soil-transmitted helminthiasis. Quality assessment of retrieved

items was based on 30% of articles selected at random. Full-text articles were

excluded if they did not report prevalence data, were based on a specific group

of patients (eg, hospital patients, those infected with HIV, neonates, etc), were

case-control studies, clinical trials, or pharmacological studies (except control

groups without anthelmintic intervention), were done in displaced populations

(eg, travellers, military), and if the population had undergone deworming in the

past 12 months. Extracted data were systematically entered into the GNTD

database and geographically referenced with information provided in the reports

and various online map and travel guide resources (eg, Wikimapia, Google Maps,

iGuide Interactive Travel Guide). We assigned centroids for administrative units

on the basis of administrative boundaries in the Database of Global Administrative

Areas (version 2).

Relevant prevalence data were extracted and entered in the GNTD database with

information on the source (authors, journal, publication date), survey (date, type

of survey), location (coordinates, name, administrative unit), and parasitology

(species, number of people positive or examined, prevalence, age, diagnostic tool).
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If information was missing and papers had been published in the past 20 years,

we contacted the authors. Quality of prevalence data extraction was assessed

(Chammartin et al., 2013b) and all coordinates were double-checked in Google

Maps. We included surveys in the meta-analysis if the sample size was greater than

ten individuals. If the date of the survey was missing, we used date of publication

instead. Data were screened by location to check for duplicates, in which case the

survey with the greater amount of information was used for analysis.

Environmental, socioeconomic, and population data

We consulted WorldClimGlobal Climate Data to obtain data on the proxies of

temperature, precipitation, and altitude. Soil moisture and acidity values were

downloaded from the Nelson Institute Center for Sustainability and the Global

Environment.

Household data were compiled from readily available demographic and health sur-

veys, multiple indicator cluster surveys, world health surveys, and living standards

measurement study on sources of drinking and non-drinking water, sanitation

facilities, and educational level of women. We used the classification of the Joint

Monitoring Programme for Water Supply and Sanitation of WHO and UNICEF

(WHO and UNICEF, 2006) to identify households with access to improved drinking-

water sources and sanitation. By aggregating household indicators at village level,

we constructed proxies of socioeconomic status: the percentage of households with

access to improved drinking-water sources, the percentage of households with access

to improved sanitation, and the percentage of women who had attended at least

primary school.

Locations were classified as rural or urban, according to data downloaded from the

Center for International Earth Science Information Network (Center for Interna-

tional Earth Science Information Network (CIESIN), Columbia University, 2005).

We obtained population densities in 2000 and 2010 from Worldpop and country-

specific percentages of the population younger than 20 years from the United

States Census Bureau International Database http://www.census.gov/population/

international/data/idb/. For Sudan and South Sudan, percentages of the popu-

lation aged younger than 20 years in 2008 were used instead of values from 2000

http://www.census.gov/population/international/data/idb/
http://www.census.gov/population/international/data/idb/
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because this was the year with the earliest available data. Links to the databases

and resources used in this study are provided in the Appendix.

Statistical analysis

In the Bayesian binomial geostatistical analysis, the number of infected people

among those surveyed was used as the outcome and environmental and socioeco-

nomic proxies were used as predictors. Additionally, we applied Bayesian binomial

geostatistical models to obtain percentages for the socioeconomic proxies (improved

drinking-water source, improved sanitation, and womens educational attainment).

We used integrated nested Laplace approximations (INLA) (Rue et al., 2009) and

the stochastic partial differential equations approach (Lindgren et al., 2011) to do

fast approximate Bayesian inference. Analyses were done in R (version 3.1.1) and

the INLA package. Details for implementing geostatistical models with INLA are

provided elsewhere (Lindgren et al., 2011; Cameletti et al., 2013; Karagiannis-Voules

et al., 2013).

Socioeconomic indicators were not available at epidemiological survey locations. To

align the data, we used Bayesian geostatistical models and obtained high resolution

estimates for the indicators, with the urban classification as a predictor. Climatic

predictors were highly correlated. To avoid collinearity, we specified groups of

highly correlated covariates (Pearsons correlation coefficient greater than 0.9).

Within each group we selected the variable and its functional form that best

predicted the data according to the (leave-one-out) cross-validated logarithmic

score (Gneiting and Raftery, 2007; Held et al., 2010) calculated from a bivariate

Bayesian geostatistical logistic regression model. The functional forms assessed were

linear and categorical (three or four categories, dependent on the quantiles of each

variables distribution). Non-linear effects were modelled by spline approximations

with random walk processes of order one and two (Rue and Held, 2005). If a

random walk was selected and the effect resembled a known functional form, it was

substituted by the specific function to ease computations. The variable and form

with the lowest mean logarithmic scores were selected from each group. To identify

the set of most important environmental and socioeconomic covariates, we fitted

geostatistical models with all possible combinations of covariates and selected those
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with the best mean logarithmic scores.

All models included survey period as a binary covariate (before 2000 or from 2000

onwards), and interactions were assessed with survey type (school-based, defined as

surveys done in schools or those focusing on populations younger than 20 years, or

community-based). To incorporate the uncertainty of the socioeconomic indicators

predictive value, we fitted a joint model of the indicator and prevalence if the

best model included any socioeconomic predictor. The joint model uses the local

mean adjustment of the socioeconomic indicator at the epidemiological survey

locations, estimated from the posterior predictive distribution of its spatial process.

Furthermore, we fitted models with period-specific socioeconomic proxies obtained

from geostatistical models, each with a single (continent-specific) temporal trend

and a common spatial process for both periods. To take into account that the

distance between two locations on the Earth is not a straight line, we used a

distance measure that is defined on the spheres surface (Lindgren et al., 2011).

The models were used to predict the risk of species-specific soil-transmitted helminth

infection on a 5×5 km grid of 960,132 pixels. By overlaying the predicted risk

surfaces with the population density grids and the census-based population per-

centages, we calculated population-adjusted prevalence by country and subregion

(southern, western, eastern, and middle, as defined by the United Nations Statistics

Division, see http://unstats.un.org/unsd/methods/m49/m49regin.htm, and mod-

ified to include Sudan in the eastern subregion). A set of 300 random samples,

simulated from the joint posterior predictive distribution, was used to estimate

infection risk and number of people infected and for uncertainty calculations.

We based our calculation of anthelmintic treatment needs on the WHO guidelines

(WHO, 2006), which suggest treating all school-aged children once per year in

communities where the infection prevalence in the school-aged population is 2050%

or twice per year if prevalence is greater than 50%. For each predicted pixel-level

prevalence that was higher than 20% or 50%, the treatment needs were equal to one

or two times the school-aged population within that pixel, respectively (Schur et al.,

2012). We used the WHO definition of school-aged population (age 514 years)

and values were obtained from the United States Census Bureau International

Database.

http://unstats.un.org/unsd/methods/m49/m49regin.htm
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Role of the funding source

The funder of the study had no role in study design, data collection, data analysis,

data interpretation, or writing of the report. The corresponding author had full

access to all the data and had final responsibility for the decision to submit for

publication.

3.3 Results

Of 6221 identified data sources, we extracted information from 459 (Figure 3.1;

Appendix). 51% of surveys were done before 2000. The total number of unique

survey locations was 6040, of which 785 (13%) corresponded to urban settlements.
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7 MoH reports6214 articles identified

5438 excluded after
review of title
and/or abstract

776 potentially relevant articles
identified for full-text review

21 articles not
accessible

303 articles ex-
cluded after full-
text review

459 sources with georeferenced soil-transmitted helminths surveys

Survey locations Survey year

Figure 3.1: Literature search and selection, survey locations, and survey years.

Raw observed data for prevalence of species-specific soil-transmitted helminth

infections are shown in Figure 3.2. Most data were derived from national surveys

done in Cameroon, Kenya, Nigeria, and Togo. No data were available for Democratic

Republic of the Congo (DR Congo), Djibouti, Lesotho, South Sudan, or Swaziland.
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Figure 3.2: Raw observed prevalence of soil-transmitted helminth infections in sub-Saharan Africa.
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Raw socioeconomic and population data were available for 32,618 locations (Ap-

pendix). The medians of the percentage of households with access to improved

drinking-water sources and use of improved sanitation were 80% and 12%, respec-

tively (Appendix). All three socioeconomic variables were positively associated with

the urban classification (data not shown). Five countries had no geographically ref-

erenced data for the socioeconomic proxies. Of the remaining 38, only 12 had data

from both survey periods (Appendix). Hence, our geo statistical models could only

yield period-specific estimates for socioeconomic proxies and allowed assessment

of only continent-level rather than country level temporal trends. Exploratory

analysis, however, suggested that some countries had positive changes and others

had negative changes (Appendix).

After taking into account highly correlated predictors and identifying their best

functional form from bivariate Bayesian geostatistical models, we fitted all possible

combinations of around 12 predictors per helminth species, which gave rise to 4096

models. The best predictive model and the estimated parameters of the predictors

for each species are shown in Table 3.1. The socioeconomic proxy improved

drinking-water source was included in the best model for hookworm. Negative

trends were found for surveys done from 2000 onwards for all three soil-transmitted

helminth species. Surveys of school-aged children revealed higher prevalence for

A. lumbricoides and T. trichiura than community-based surveys done before 2000,

whereas the survey type had no effect on the prevalence of hookworm infection.

Hookworm was negatively associated with urban settlements and locations with

high percentages of improved drinking-water sources. Non-linearity of the soil

moisture resembled a parabolic function, indicating that extreme dry or wet soils are

associated with the absence of hookworm infection. Low variations in temperature

and precipitation in the warmest quarter were associated with increased prevalence

of A. lumbricoides. The factors associated with increased risk of T. trichiura

infection were high precipitation in the warmest quarter, high temperature in the

coldest quarter, and low variation in precipitation.
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Table 3.1: Posterior estimates of the final geostatistical models for risk of species-
specific soil-transmitted helminth infection in sub-Saharan Africa.

Hookworm∗ Median estimate (95% CI)

Urban-rural classification
Rural 0
Urban -0.43 (-0.59, -0.27)

Survey period (year)
Before 2000 0
From 2000 onwards -1.44 (-1.52, -1.35)

Survey type
Community-based 0
School-based -0.04 (-0.08, 0.00)

Survey period × survey type 0.02 (0.10, 0.06)
Mean adjustment of improved drinking-water sources 0.07 (0.11, 0.02)
Spatial variance† 5.06 (4.74, 5.45)
Spatial range (km)† 29.2 (27.6, 31.0)

Ascaris lumbricoides

Isothermality (%)
< 66.9 0
66.9-74.5 1.28 (0.99, 1.58)
> 74.5 1.57 (1.24, 1.90)

Precipitation of warmest quarter (mm)
< 173 0
173-277 1.34 (1.06, 1.63)
277-1151 1.94 (1.62, 2.27)
> 1151 2.07 (1.75, 2.40)

Survey period (year)
Before 2000 0
From 2000 onwards -1.41 (-1.54, -1.28)

Survey type
Community-based 0
School-based 0.53 (0.47, 0.59)

Survey period × survey type 0.63 (0.76 , 0.50)
Spatial variance† 6.39 (5.90, 6.93)
Spatial range (km)† 40.2 (36.8, 42.8)

Trichuris trichiura

Mean temperature of coldest quarter (◦C)
< 21.4 0
21.4-23.6 0.12 (-0.10, 0.33)
23.6-25.1 0.08 (-0.19, 0.35)
> 25.1 0.22 (-0.15, 0.58)

Precipitation of warmest quarter (mm)
< 175 0
175-279 1.29 (0.84, 1.74)
279-1051 1.23 (0.77, 1.69)
> 1051 1.48 (1.02, 1.94)

Soil acidity (pH)
< 5.6 0
5.6-6.1 -1.06 (-1.42, -0.71)
> 6.1 0.18 (-0.22, 0.58)

Precipitation seasonality -0.04 (-0.04, -0.03)
Survey period (year)

Before 2000 0
From 2000 onwards -1.57 (-1.72, -1.42)

Survey type
Community-based
School-based 0.75 (0.68, 0.83)

Survey period × survey type -0.88 (-1.03, -0.73)
Spatial variance† 7.59 (6.90, 8.34)
Spatial range (km)† 46.8 (43.3, 51.0)

∗see Appendix for effect of soil moisture. †parameter of the spatial process.
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Period-specific socioeconomic predictors did not change model-based estimates

of covariate effects and predictions of infection risk compared with constant so-

cioeconomic predictors. Hence, we report predictions of infection risk based on

models with common socioeconomic predictors for the two time periods , see Fig-

ure 3.3. Hookworm risk was high in western and middle Africa, with the highest-risk

areas being in Sierra Leone, Togo, and around Lake Victoria. A. lumbricoides

and T. trichiura followed similar spatial patterns with high prevalence seen in

Cameroon, Ethiopia, and at the borders of Burundi, DR Congo, and Rwanda.

A high-resolution map of the percentage of households with access to improved

drinking-water sources is provided in the Appendix.
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Figure 3.3: Median predicted risk estimates for soil-transmitted helminth infections
in sub-Saharan Africa before 2000 and from 2000 onwards. (A) Hookworm. (B)
Ascaris lumbricoides. (C) Trichuris trichiura.
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Population-adjusted prevalence of infection for each of the three soil-transmitted

helminth species was stratified by country and subregion (Tables 3.2 and 3.3). The

highest prevalence of soil-transmitted helminth infection was predicted in western

Africa, followed by eastern, southern, and middle Africa. Sierra Leone and Togo

were predicted to have the highest hookworm prevalence. Gabon and Rwanda

had the highest risks of infection with A. lumbricoides and T. trichiura . Overall,

we estimated that among the roughly 800 million people in the 43 countries of

sub-Saharan Africa 130 million, 53 million, and 37 million people were infected

with hookworm, A. lumbricoides, and T. trichiura , respectively. Overall annual

treatment needs were estimated to be nearly 126 million doses, and the total

number of school-aged children needing treatment was estimated to be 91 million.

More than 15 million treatments would be needed for DR Congo, Ethiopia, and

Nigeria, which corresponds to roughly 12%, 12%, and 20% of the total treatment

needs, respectively.

Table 3.2: Population-adjusted prevalence of species-specific soil-transmitted
helminth infections by survey period and subregion.

Before 2000

Population Hookworm A. lumbricoides T. trichiura
Population aged <20 years

Eastern 121,340,394 34.3 (32.9-35.7) 19.7 (18.9-20.7) 18.1 (17.1-19.2)
Middle 64,945,309 34.5 (33.0-36.0) 18.5 (17.5-19.6) 16.4 (15.3-17.4)

Southern 38,987,696 34.2 (32.7-35.6) 18.9 (17.9-20.2) 17.5 (16.4-18.6)
Western 119,268,659 34.1 (32.7-35.5) 19.7 (18.9-20.7) 17.6 (16.7-18.6)

Population aged >20 years
Eastern 98,948,578 34.6 (32.9-36.0) 16.0 (15.2-16.8) 12.9 (12.2-13.8)
Middle 52,856,357 34.7 (33.1-36.3) 15.1 (14.1-16.2) 11.4 (10.5-12.4)

Southern 31,878,914 34.3 (32.5-36.0) 15.4 (14.5-16.4) 12.3 (11.3-13.4)
Western 97,017,768 34.4 (32.8-35.9) 15.8 (15.0-16.5) 12.3 (11.5-13.1)

From 2000 onwards

Population Hookworm A. lumbricoides T. trichiura
Population aged <20 years

Eastern 150,202,927 16.5 (15.6-17.6) 6.7 (6.3-7.3) 4.7 (4.3-5.2)
Middle 81,824,674 16.7 (15.6-18.0) 6.3 (5.7-7.0) 4.1 (3.7-4.8)

Southern 48,847,355 16.6 (15.3-17.8) 6.4 (5.9-7.0) 4.2 (3.8-4.7)
Western 147,346,980 16.4 (15.5-17.5) 6.6 (6.1-7.1) 4.4 (4.0-4.9)

Population aged >20 years
Eastern 127,312,077 16.7 (15.8-17.8) 7.2 (6.6-7.8) 5.3 (4.8-5.9)
Middle 69,305,534 17.0 (16.0-18.3) 6.6 (6.0-7.4) 4.6 (4.1-5.3)

Southern 41,601,143 16.8 (15.7-17.9) 6.8 (6.3-7.5) 4.8 (4.2-5.4)
Western 124,494,350 16.7 (15.7-17.9) 7.1 (6.5-7.7) 4.9 (4.5-5.5)
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Table 3.3: Population-adjusted prevalence of soil-transmitted helminth infections from 2000
onwards and annual anthelmintic treatment needs.

Country Population
aged <20
years
(1000s)

Hookworm A. lumbricoides T. trichiura All soil-
transmitted
helminths

Treatment needs for
school-aged children
(1000s)

Angola 7,872 15.9 (13.5-20.5) 3.4 (2.4-5.1) 1.8 (1.1-2.9) 20.1 (17.4-25.1) 1,835 (1,477-2,388)
Benin 3,953 18.3 (12.3-26.8) 4.3 (1.7-9.7) 1.4 (0.4-4.7) 23.5 (17.0-32.4) 1,086 (670-1,602)
Botswana 929 4.4 (3.4-6.2) 1.4 (0.8-3.3) 2.0 (1.0-4.8) 7.8 (6.0-11.0) 49 (27-95)
Burkina Faso 9,122 9.9 (7.0-15.7) 0.4 (0.3-1.0) 0.4 (0.2-1.1) 10.7 (7.9-16.6) 902 (540-1,711)
Burundi 4,826 30.4 (23.1-38.9) 16.2 (13.9-18.8) 13.5 (11.1-17.1) 49.0 (43.1-55.3) 3,079 (2,684-3,438)
Cameroon 9,199 9.9 (8.3-11.3) 10.4 (9.5-11.6) 12.5 (11.7-13.4) 28.0 (26.3-29.5) 3,340 (3,094-3,550)
Central African
Republic

2,037 15.5 (12.1-19.9) 4.0 (2.7-5.8) 4.0 (2.6-6.4) 22.0 (18.7-26.4) 512 (388-660)

Chad 6,405 7.4 (5.6-10.2) 1.2 (0.7-2.6) 0.3 (0.2-0.8) 9.0 (7.0-11.9) 415 (214-689)
Congo 1,869 12.9 (7.6-34.5) 4.8 (2.1-24.5) 5.0 (2.2-15.4) 24.8 (14.7-46.1) 461 (203-942)
Cte d’Ivoire 9,537 23.7 (19.8-27.6) 4.4 (3.5-5.4) 5.6 (4.6-7.0) 30.0 (26.9-33.2) 3,617 (3,197-4,162)
Djibouti 135 3.4 (1.0-10.6) 0.5 (0.1-2.2) 2.6 (0.6-12.4) 6.9 (2.8-17.4) 5 (0-26)
DR Congo 37,088 17.9 (15.5-21.3) 9.2 (7.4-11.3) 10.5 (8.8-13.2) 33.0 (30.0-36.5) 15,551 (13,668-17,628)
Equatorial
Guinea

273 11.2 (6.0-21.1) 14.6 (7.5-28.0) 17.6 (9.5-32.1) 37.0 (26.5-51.2) 125 (82-188)

Eritrea 2,693 3.3 (1.8-5.9) 0.7 (0.3-1.6) 0.5 (0.2-1.2) 4.5 (2.9-7.7) 58 (15-159)
Ethiopia 44,433 17.7 (15.1-20.0) 8.5 (7.1-10.2) 6.1 (4.7-7.9) 28.8 (25.7-31.2) 15,592 (13,586-17,237)
Gabon 592 26.0 (12.9-40.6) 14.4 (6.0-31.8) 26.0 (12.5-36.4) 47.8 (36.2-57.9) 347 (262-420)
Gambia 984 20.3 (7.3-44.6) 1.6 (0.5-13.8) 0.1 (0.0-1.7) 22.7 (9.5-46.0) 276 (46-614)
Ghana 11,641 14.4 (11.7-19.3) 4.3 (2.8-8.7) 1.5 (0.8-3.0) 19.8 (16.1-24.8) 2,468 (1,775-3,431)
Guinea 4,502 21.9 (17.3-26.9) 3.8 (2.6-6.0) 1.7 (1.0-3.9) 26.2 (21.9-31.4) 1,452 (1,174-1,789)
Guinea-Bissau 466 14.0 (7.3-27.2) 0.8 (0.2-3.0) 0.1 (0.0-0.7) 15.3 (8.3-28.4) 65 (16-170)
Kenya 20,188 16.9 (14.3-20.0) 11.5 (9.9-13.4) 5.0 (4.0-6.8) 29.2 (26.1-32.4) 7,376 (6,502-8,330)
Lesotho 1,011 21.3 (10.8-35.6) 2.4 (0.6-9.9) 5.7 (1.3-18.4) 29.3 (17.9-43.1) 360 (190-551)
Liberia 1,410 21.9 (16.4-28.8) 8.6 (5.3-13.6) 6.6 (3.5-11.8) 33.4 (27.4-40.7) 636 (504-790)
Malawi 8,475 14.9 (10.9-20.0) 2.1 (1.2-3.9) 0.6 (0.2-1.7) 17.3 (13.1-22.4) 1,578 (1,075-2,184)
Mali 8,986 10.4 (8.4-12.8) 0.6 (0.4-0.9) 0.3 (0.2-0.6) 11.2 (9.1-13.4) 1,012 (712-1,307)
Mauritania 1,938 2.8 (1.5-12.2) 0.5 (0.3-1.2) 0.2 (0.1-0.7) 3.7 (2.3-12.9) 20 (7-291)
Mozambique 12,417 15.6 (12.5-19.5) 3.8 (2.6-6.3) 3.4 (2.2-5.2) 21.9 (18.5-25.8) 3,162 (2,503-3,935)
Namibia 973 7.2 (4.0-13.7) 1.1 (0.5-2.8) 0.9 (0.4-3.0) 9.4 (5.6-15.6) 82 (31-175)
Niger 8,878 4.0 (2.7-5.7) 0.5 (0.3-0.9) 0.1 (0.1-0.3) 4.6 (3.3-6.4) 237 (114-459)
Nigeria 81,508 16.9 (14.7-19.2) 9.8 (8.1-11.3) 3.0 (2.2-4.6) 26.7 (24.1-28.9) 26,290 (23,258-28,907)
Rwanda 5,477 31.9 (24.2-39.6) 31.7 (28.1-37.4) 23.3 (20.9-27.2) 62.6 (56.3-68.5) 4,243 (3,826-4,598)
Senegal 6,632 8.2 (5.1-15.2) 2.7 (1.6-6.3) 0.4 (0.2-1.2) 11.6 (8.0-17.9) 664 (326-1,410)
Sierra Leone 2,461 34.3 (29.1-40.6) 6.3 (4.8-8.1) 2.5 (1.8-4.0) 39.9 (34.9-45.7) 1,288 (1,091-1,484)
Somalia 4,091 5.5 (4.2-8.0) 2.4 (1.6-4.5) 4.2 (2.8-6.5) 11.7 (9.4-15.0) 496 (394-708)
South Africa 18,219 11.6 (8.8-16.0) 5.7 (4.2-8.1) 8.1 (6.0-13.8) 22.9 (19.5-29.0) 4,653 (3,744-6,378)
South Sudan 5,617 8.6 (6.8-10.8) 2.2 (1.6-3.2) 1.9 (1.3-3.1) 12.3 (10.3-15.0) 549 (391-785)
Sudan 19,292 2.4 (1.8-3.2) 0.6 (0.4-1.2) 0.2 (0.1-0.6) 3.3 (2.6-4.4) 110 (51-296)
Swaziland 631 18.4 (7.7-38.8) 2.3 (0.4-12.3) 2.9 (0.4-14.5) 24.7 (11.9-45.1) 185 (67-358)
Tanzania 23,633 24.3 (21.6-27.7) 3.8 (2.9-4.8) 2.0 (1.4-3.9) 28.6 (25.6-32.9) 8,296 (7,300-9,688)
Togo 2,838 34.4 (31.3-38.4) 0.7 (0.4-1.5) 0.4 (0.2-0.9) 35.3 (32.0-39.1) 1,280 (1,131-1,495)
Uganda 20,639 31.0 (27.5-33.8) 4.5 (3.5-5.8) 3.7 (2.9-5.1) 36.6 (33.4-39.3) 9,457 (8,556-10,306)
Zambia 7,478 18.2 (13.9-27.5) 2.6 (1.7-6.7) 1.0 (0.6-2.0) 21.7 (16.7-30.2) 1,839 (1,238-2,763)
Zimbabwe 6,875 10.4 (7.7-14.7) 2.7 (2.0-4.1) 0.7 (0.4-1.4) 13.4 (10.8-17.8) 933 (664-1,395)
Total 428,222 16.5 (15.6-17.6) 6.6 (6.1-7.0) 4.4 (4.1-4.9) 24.7 (23.7-25.7) 126,466 (120,241-132,307)
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3.4 Discussion

We did a systematic review and a geostatistical meta-analysis of surveys of soil-

transmitted helminth infections in sub-Saharan Africa. Analyses based on geo-

statistical models are the most rigorous approaches for risk profiling of NTDs at

different geographical scales. Our models included temporal terms, socioeconomic

proxies, and environmental predictors. By exhaustive fitting of all possible Bayesian

geostatistical models, we identified one for each soil-transmitted helminth species

that was used to predict infection risk at high spatial resolution. A decrease in

prevalence from 2000 onwards is predicted for sub-Saharan Africa, which matches

the findings from other regions, such as Cambodia (Karagiannis-Voules et al.,

2015b), China (Lai et al., 2013), and South America (Chammartin et al., 2013b).

The use of environmental and socioeconomic factors allowed us to predict the

infection risk in areas where no surveys have been done. We predicted moderate

prevalence in regions where data are scarce. For instance, the risk of infection

is high for all three soil-transmitted helminth species in DR Congo and extends

into Gabon for hookworm and A. lumbricoides. Surveys are warranted in areas

with sparse data to update predictions and models. Model-based estimates should

in turn be iteratively updated (Kabore et al., 2013) to support monitoring and

surveillance efforts.

Our analyses revealed several insights that are noteworthy. First, the predicted

prevalence for all three soil-transmitted helminth species in southern Africa was

much lower than previously reported (Pullan et al., 2014). The previous estimates

were based on only 45 survey locations across southern Africa, including Zim-

babwe. Our analysis is based on more than 200 unique survey locations in this

subregion, most of which had survey data obtained after 2008. Hence, the risk of

soil-transmitted helminth infection in southern Africa might previously have been

overestimated. Second, in eastern Africa (excluding Madagascar), our estimated

prevalence was lower than that predicted before but the higher value might have

been driven by high prevalence of soil-transmitted helminth infection in Mada-

gascar (Kightlinger et al., 1995). Third, in western Africa, we retrieved roughly

double the amount of point prevalence measures and predicted lower prevalence

for A. lumbricoides than did Pullan and colleagues Pullan et al. (2014). Fourth, in
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middle Africa (excluding Cameroon), only few geographically referenced surveys

were available for inclusion in our analyses and, therefore, our estimates are prone

to notable uncertainty.

The risk of infection with all three soil-transmitted helminth species declined from

2000 onwards, probably due to socioeconomic development (Sundaram et al., 2011)

and intensified control measures (Organization et al., 2013). We excluded surveys

done within 12 months after deworming to avoid potential bias from the direct

effect of anthelmintic treatment. Within 1 year of treatment, prevalence of A. lum-

bricoides and T. trichiura approach pretreatment levels, whereas the prevalence

of hookworm infection remains reduced by about half (Jia et al., 2012). Hence, a

negative temporal trend is expected to relate to deworming, other interventions,

and socioeconomic development. In sub-Saharan Africa, a slight increase in the

prevalence of soil-transmitted helminth infections was reported after a comparison

of data from 1994 and 2003, but prevalence decreased in all other regions worldwide

in the same period.19 A later analysis by Pullan et al. (2014), however, showed no

temporal trend for soil-transmitted helminth infection.

Poverty and socioeconomic status can be measured through many indices. We used

readily available household data and standard classifications to construct proxies

for drinking water and sanitation, but we did not detect strong associations. Other

possible proxies, such as use of treated water or access to sanitation (Strunz et al.,

2014), might improve prediction, as associations with soil-transmitted helminth

infections have been noted in assessments of individual-level data. The aggrega-

tion of socioeconomic factors at village level and their spatial misalignment with

the data for soil-transmitted helminth infections resulted in substantial variation

within and between villages, which renders the identification of any effects dif-

ficult (Karagiannis-Voules et al., 2015b). This heterogeneity might also explain

why period-specific socioeconomic predictors did not improve prediction of risk of

infection.

Since 2000, ministries of health, WHO, and other national, international, and

non-governmental organisations have stepped up control against soil-transmitted

helminthiasis and other NTDs, emphasising preventive chemotherapy. According

to data reported by WHO, in 201012, the total of children younger than 15 years
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in sub-Saharan Africa who were treated once with albendazole or mebendazole was

more than 70 million in each year (see www.who.int/neglected diseases/preventive

chemotherapy/sth/en/). In 2012, the subcontinental preventive chemotherapy

coverage reached 26%. Initiation of major control interventions, however, has

differed between countries, and not all have reported administered treatments to

WHO. Therefore, we cannot take into account treatment coverage at the national

or subnational level. Apart control programmes for soil-transmitted helminthiasis,

the Global Program to Eliminate Lymphatic Filariasis (GPELF) and the African

Programme for Onchocerciasis Control (APOC) have administered hundreds of

millions of tablets of albendazole, mebendazole, and ivermectin treatments in

the past decade (Appendix) (WHO, 2012b, 2013a). Although albendazole and

mebendazole are not as efficacious against T. trichiura, as against hookworm and

A. lumbricoides, combination of either of these drugs with ivermectin results in

reasonable efficacy against T. trichiura (Moncayo et al., 2008; Wen et al., 2008;

Massa et al., 2009; Knopp et al., 2010).4952 Since its establishment, APOC has

administered more than 80 million doses of ivermectin (WHO, 2012b) and GPELF

has widely administered combination therapy with albendazole and ivermectin

among other treatments (WHO, 2013b). WHO estimates that, in 2011, the number

of Africans covered by preventive chemotherapy for at least one disease was higher

than 200 million (WHO, 2013a). Since not all treatments are reported to WHO,

the true number of people receiving anthelmintic treatment might be substantially

greater (Organization et al., 2013; Gallo et al., 2013).

Our lower prevalence, compared with values reported previously, and the achieved

coverage estimates (for the African region) of the WHO progress report in 2012

(WHO, 2012c), suggest that the 2020 target set by WHO of preventive chemotherapy

reaching at least 75% coverage in all countries is on track. Additionally, our

estimation of 91 million school-aged children needing treatment is less than that

reported by WHO for the African region in 2011. We calculated the estimated

treatment needs at pixel level under two assumptions: infections with the three

different species are independent, and the prevalence for the age groups younger

than 20 years and 514 years are the same. Nevertheless, these estimates provide

important baseline information for decision-makers for initiating and designing

www.who.int/neglected_diseases/preventive_chemotherapy/sth/en/
www.who.int/neglected_diseases/preventive_chemotherapy/sth/en/
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control interventions.

Risk predictions for A. lumbricoides and T. trichiura among the school-aged

population were substantially higher before 2000 than from 2000 onwards. The

interaction between trend and survey type might be indicative of the school-based

deworming efforts that were intensified since World Health Assembly resolution

54.19 was put forward in May, 2001 (WHO, 2002a). The difference in the prevalence

of soil-transmitted helminth infections, according to survey type, has become

negligible from 2000 onwards. This finding suggests that prevalence in the school-

aged population dropped to a level that matches the entire community. Thus, the

emphasis on school-based deworming is worthy of reassessment. More aggressive

targeting of the other populations defined by WHO as eligible for intervention

(preschool-aged children, women of childbearing age, and adults, particularly

those with high occupational exposure)(WHO, 2006) might be necessary. Similar

suggestions have been made by Anderson and colleagues (Anderson et al., 2013),

who suggested that school-based deworming could have time-limited benefits for the

greater community. The proposal of new treatment guidelines will need additional

studies to assess how changes in the prevalence an intensity of infection depend on

different treatment schedules for different subgroups of the population at specific

prevalence levels (Keiser and Utzinger, 2008).

Data compilation and meta-analyses are prone to bias. We adhered to a predefined

data extraction protocol to limit potential sources of bias in our analyses. Several

methodological improvements have been discussed elsewhere (Chammartin et al.,

2013b,a) and relate to incorporating diagnostic sensitivity and the relation between

age and prevalence into geostatistical modelling.

We assumed that the relation between prevalence and the predictors and the

considered interactions were constant across sub-Saharan Africa. The study area,

however, is large and the relation between the predictors and infection risk might

vary in space because, for instance, unmeasured factors, such as intervention levels

or health-system performance, vary in space. We did not model varying covariate

effects across space (Gelfand et al., 2003). We did, however, fit models incorporating

smooth changes of spatial process parameters in space (ie, non-stationary models),

and these did not improve predictive performance.
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We are aware of large-scale surveys done in African countries that could not be

included in this analysis because the data were not readily available in geographically

referenced forms. In Mozambique and Burkina Faso, for example, two surveys

done after 2005 included 1275 and 130 schools, respectively (Augusto et al., 2009;

Coulibaly et al., 2011). In Cte dIvoire, a health and demographic surveillance

system has been established in the Taabo area in the south-central part of the

country, and has been used to construct a household-level database in 2008 (Fürst

et al., 2012). Another two surveys in Cte dIvoire included more than 80 schools

(Ouattara et al., 2008, 2010). The data from these surveys will be important to

incorporate in future model-based predictions. Furthermore, some surveys from

the peer reviewed literature were excluded from our analysis due to incomplete

information. The need to report complete survey information should be emphasised

to assist spatial analysis of aggregated survey data (Brooker et al., 2009a; Saarnak

et al., 2013).

High-resolution spatially explicit risk predictions and maps can assist control

programmes to select treatment strategies based on endemicity levels and to design

future surveys. Estimated numbers of infected people can help international funding

agencies to allocate resources to the countries. Information on the number of

required treatments can be useful to drug producers and drug donors. Our findings

contribute to the international efforts to reach the WHO-defined milestone of

mapping soil-transmitted helminth infections to identify areas requiring preventive

chemotherapy, and to monitor programmes aimed at achieving the 2020 target of

control and elimination of NTDs (WHO, 2012c). Together with the analysis by

Chammartin and colleagues in South America (Chammartin et al., 2013b), and Lai

et al. (2013) in China, a global stepping stone towards model-based soil-transmitted

helminth infection risk estimates has now been built.
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3.5 Appendix

Sources and links

Source Link

Global Neglected Tropical Diseases database www.gntd.org

WorldClim www.worldclim.org

Demographic and Health Surveys www.measuredhs.com

Multiple Indicator Cluster Surveys www.childinfo.org/mics.html

World Health Surveys www.who.int/healthinfo/survey/en/index.
html

Living Standards Measurement Study http://econ.worldbank.org

Worldpop www.worldpop.org.uk

United States Census Bureau International Database http://www.census.gov/population/
international/data/idb/informationGateway.
php

R http://cran.r-project.org

Integrated nested Laplace approximations www.r-inla.org

United Nations Statistics Division http://unstats.un.org/unsd/methods/m49/
m49regin.htm

Preventive chemotherapy databank of WHO www.who.int/neglected diseases/
preventive chemotherapy/sth/en/index.html

www.gntd.org
www.worldclim.org
www.measuredhs.com
www.childinfo.org/mics.html
www.who.int/healthinfo/survey/en/index.html
www.who.int/healthinfo/survey/en/index.html
http://econ.worldbank.org
www.worldpop.org.uk
http://www.census.gov/population/international/data/idb/informationGateway.php
http://www.census.gov/population/international/data/idb/informationGateway.php
http://www.census.gov/population/international/data/idb/informationGateway.php
http://cran.r-project.org
www.r-inla.org
http://unstats.un.org/unsd/methods/m49/m49regin.htm
http://unstats.un.org/unsd/methods/m49/m49regin.htm
www.who.int/neglected_diseases/preventive_chemotherapy/sth/en/index.html
www.who.int/neglected_diseases/preventive_chemotherapy/sth/en/index.html
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Sources and years of the SES per country

Country Sources Survey years
Angola DHS,MICS 2000,2006,2011
Benin DHS 1996,2001

Botswana
Burkina Faso DHS,WHS 1993,1998,2003,2010

Burundi DHS,MICS 2000,2005,2010,2012
Cameroon DHS,MICS 1991,2004,2006,2011

Central African Republic DHS,MICS 1994,2000,2006
Chad WHS 2003

Congo DRC DHS,LSMS,WHS 2000,2003,2007,2010
Congo (The Republic of)

Cte D’Ivoire DHS,MICS,WHS 1994,1998,2000,2003,2006,2011
Djibouti MICS 2006

Equatorial Guinea
Eritrea

Ethiopia DHS,LSMS,WHS 2000,2003,2005,2011
Gabon DHS 2012

Gambia MICS 2000,2005
Ghana DHS,WHS 1993,1998,2003,2008

Guinea-Bissau MICS 2000,2006
Guinea DHS 1999,2005
Kenya DHS,MICS,WHS 2000,2003,2008,2010

Lesotho DHS 2004,2009
Liberia DHS 2007,2009,2011
Malawi DHS,LSMS,WHS 2000,2003,2004,2010,2012

Mali DHS,WHS 1995,2001,2003,2006
Mauritania MICS,WHS 2003,2007

Mozambique DHS 2008,2009,2011
Namibia DHS,WHS 2000,2003,2006

Niger DHS,LSMS,MICS 1992,1998,2000,2011
Nigeria DHS,MICS 2003,2007,2008,2010,2011

Rwanda DHS 2005,2007,2010
Senegal DHS,MICS,WHS 1992,1997,2000,2003,2005,2008,2010

Sierra Leone DHS,MICS 2005,2007,2010
Somalia MICS 2006,2008,2010

South Africa WHS 2003
Sudan

Swaziland DHS,MICS,WHS 2003,2006,2010
Tanzania DHS 1999,2003,2007,2010,2011

Togo DHS 1998
Uganda DHS 2000,2006,2009,2010,2011
Zambia DHS,MICS,WHS 2000,2003,2007

Zimbabwe DHS,MICS,WHS 1999,2003,2005,2009,2010
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Survey locations stratified by geographical unit, country

and soil-transmitted helminth species

 Country Unique Municipality Point Unique Municipality Point Unique Municipality Point

Angola 4 82 5 77 70 5 65 87 5 82

Benin 4 7 1 6 7 1 6 7 1 6

Botswana 2 1 0 1 1 0 1 7 0 7

Burkina Faso 4 92 0 92 92 0 92 94 0 94

Burundi 1 22 0 22 22 0 22 22 0 22

Cameroon 23 776 0 776 775 0 775 777 0 777

Central African Republic 1 1 0 1 1 0 1 1 0 1

Chad 1 1 0 1 0 0 0 1 0 1

Congo DRC 10 30 0 30 28 0 28 18 0 18

Congo (The Republic of) 0 - - - - - - - - -

Côte d’Ivoire 32 252 7 245 247 7 240 255 9 246

Djibouti 0 - - - - - - - - -

Equatorial Guinea 1 1 1 0 1 1 0 1 1 0

Eritrea 1 40 0 40 40 0 40 40 0 40

Ethiopia 63 164 6 158 154 2 152 183 6 177

Gabon 3 7 0 7 7 0 7 7 0 7

Gambia 3 1 0 1 0 0 0 3 0 3

Ghana 12 83 0 83 84 0 84 330 0 330

Guinea-Bissau 1 1 0 1 1 0 1 1 0 1

Guinea 5 46 0 46 46 0 46 46 0 46

Kenya 33 738 5 733 735 4 731 736 5 731

Lesotho 0 - - - - - - - - -

Liberia 3 12 0 12 10 0 10 12 0 12

Malawi 6 31 0 31 29 0 29 37 1 36

Mali 3 38 38 0 38 38 0 40 38 2

Mauritania 2 9 0 9 9 0 9 9 0 9

Mozambique 4 17 0 17 8 0 8 16 0 16

Namibia 1 0 0 0 0 0 0 5 0 5

Niger 4 133 0 133 132 0 132 134 0 134

Nigeria 121 765 26 739 712 17 695 745 17 728

Rwanda 1 30 30 0 30 30 0 30 30 0

Senegal 11 37 0 37 48 0 48 42 0 42

Sierra Leone 11 86 12 74 85 12 73 85 12 73

Somalia 4 4 0 4 4 0 4 4 0 4

South Africa 7 48 0 48 30 0 30 47 0 47

South Sudan 0 - - - - - - - - -

Sudan 6 89 0 89 1 0 1 3 0 3

Swaziland 0 - - - - - - - - -

Tanzania 33 156 7 149 145 5 140 160 9 151

Togo 3 1,091 0 1,091 1,091 0 1,091 1,092 0 1,092

Uganda 19 489 2 487 490 2 488 515 2 513

Zambia 9 25 2 23 28 1 27 34 3 31

Zimbabwe 7 216 0 216 196 0 196 208 0 208

Total 459 5,621 142 5,479 5,397 125 5,272 5,834 139 5,695

No. of relevant reports
Ascaris lumbricoides Trichuris trichiura Hookworm
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Non-linear effect of moisture on hookworm
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Predicted proportion of households with access to improved

drinking-water sources



7
2

C
h
a
p
te

r
3
.

S
o
il-tra

n
sm

itte
d

h
e
lm

in
th

s
in

su
b
-S

a
h

a
ra

n
A

frica

Treatment coverages by country and year

x x x x x x x x x x xx
x x xx xx x x xx x x xx xxx xx x xx xx xx xxx x x

x x x xx xx xx xx xx xxx x xx x
x

x x x
x

x x x x x xx xx x x xx
x x x x x xx x x x x x x xx xx xx xx x x x x x x xxx x x x x x x x

x x x x xx xxx x
x x x x x x x x x x xx x

x x x xx x x x x x xx x xx xx x x x x x xx xx xx x xx x
x x x x x xx x x xxxx x x x x xx x x xx xxxx x x x x x x x x xx xxx xx x x x xx x x x x x x x x x xxx x x x x x xx xxx xx x xx xx xx xx xxx x x x x x xx x xx xx xxx x x x x x x x x x xx x x x x x x xxx xx xxx xxxx x x x x x x xx x

Soil−transmitted helminthiases preventive chemotherapy national coverages

Angola
Benin

Botswana
Burkina Faso

Burundi
Cameroon

CAR
Chad

Congo
DRC

Equatorial Guinea
Ethiopia

Gabon
Gambia
Ghana
Guinea

Guinea Bissau
Ivory Coast

Kenya
Lesotho
Liberia
Malawi

Mali
Mauritania

Mozambique
Namibia

Niger
Nigeria

Rwanda
Senegal

Sierra Leone
South Africa

Swaziland
Tanzania

Togo
Uganda
Zambia

Zimbabwe

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

+ + ++ ++ ++ + +++ ++ + ++ ++ ++ +++ + + ++ ++ ++ + ++ +++ + + ++ +++ + +++ + +++ + + ++ + + +++ + ++ ++ + ++ ++ +++ + ++ + + + ++ + + + ++ + ++ ++ ++ ++++ ++ ++ + ++ +++ ++ + + + ++ ++ + + + ++ ++ + ++++ + + ++ + + +++ ++ +++ ++ + ++ + +++ + +++ + + + ++ ++ + +++ + ++ + + + + + ++ + + + +++++ ++ + ++ ++ ++ + ++++ + + ++ + + + + + ++ + +++ + + + ++ ++ ++ ++ + + + +++ + + + ++ + + +++ +

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ●
● ● ● ● ●

●
● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

Lymphatic filariasis preventive chemotherapy programme coverages

Benin

Burkina Faso

Cameroon

Ethiopia

Ghana

Guinea Bissau

Ivory Coast

Kenya

Liberia

Malawi

Mali

Mozambique

Niger

Nigeria

Senegal

Sierra Leone

Tanzania

Togo

Uganda

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

+
x

Population

pre−sac
sac

●

●
●

Coverages

< 30%
30%−70%
> 70%

Note that this figure is based on the WHO July 2015 data and includes coverages of 2013 as well. The figure in the published manuscript is

based on less data, i.e. data available at the time of writing.
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Abstract

Soil-transmitted helminth infections are intimately connected with poverty. Yet,

there is a paucity of using socioeconomic proxies in spatially explicit risk profil-

ing. We compiled household-level socio-economic data pertaining to sanitation,

drinking-water, education and nutrition from readily available Demographic and

Health Surveys, Multiple Indicator Cluster Surveys and World Health Surveys for

Cambodia and aggregated the data at village level. We conducted a systematic

review to identify parasitological surveys and made every effort possible to extract,

georeference and upload the data in the open source Global Neglected Tropical Dis-

eases database. Bayesian geostatistical models were employed to spatially align the

village-aggregated socioeconomic predictors with the soil-transmitted helminth in-

fection data. The risk of soil-transmitted helminth infection was predicted at a grid

of 1 × 1 km covering Cambodia. Additionally, two separate individual-level spatial

analyses were carried out, for Takeo and Preah Vihear provinces, to assess and quan-

tify the association between soil-transmitted helminth infection and socioeconomic

indicators at an individual level. Overall, we obtained socioeconomic proxies from

1624 locations across the country. Surveys focussing on soil-transmitted helminth

infections were extracted from 16 sources reporting data from 238 unique locations.

We found that the risk of soil-transmitted helminth infection from 2000 onwards

was considerably lower than in surveys conducted earlier. Population-adjusted

prevalences for school-aged children from 2000 onwards were 28.7% for hookworm,

1.5% for Ascaris lumbricoides and 0.9% for Trichuris trichiura. Surprisingly, at

the country-wide analyses, we did not find any significant association between

soil-transmitted helminth infection and village-aggregated socioeconomic proxies.

Based also on the individual-level analyses we conclude that socioeconomic proxies

might not be good predictors at an aggregated large-scale analysis due to their

large between- and within-village heterogeneity. Specific information of both the

infection risk and potential predictors might be needed to obtain any existing

association. The presented soil-transmitted helminth infection risk estimates for

Cambodia can be used for guiding and evaluating control and elimination efforts.
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4.1 Introduction

There is growing interest in spatial modelling of soil-transmitted helminth infections

in the current era of major control and elimination efforts against neglected

tropical diseases (WHO, 2012a). Indeed, model-based estimates provide a deeper

insight of disease distribution in space and time. Hence, such information is

essential for disease control managers to provide assistance where and when to

focus interventions, including the number of treatments needed (Schur et al.,

2011a), and for monitoring purposes (Montresor et al., 2013). Several recent studies

provided model-based estimates of soil-transmitted helminth infection at national

or sub-continental level; for example, in the Peoples Republic of China (Lai et al.,

2013), in South America (Chammartin et al., 2013b) and in sub-Saharan Africa

(Karagiannis-Voules et al., 2015a).

Interestingly, these studies consistently showed a decreasing temporal trend of soil-

transmitted helminth infection prevalence when comparing data from before 2000

with data from 2000 onwards. It is conceivable that socioeconomic development,

coupled with intensified control efforts emphasising preventive chemotherapy (WHO,

2012c; Gallo et al., 2013) are the root causes of these declining trends of soil-

transmitted helminthiasis (de Silva et al., 2003; Li et al., 2010; Utzinger et al., 2010).

Preventive chemotherapy has been endorsed by World Health Assembly (WHA)

resolution 54.19 in May 2001 (WHO, 2002a; Savioli et al., 2009) and annual coverage

rates for treatment of school-aged children with albendazole or mebendazole have

considerably increased in recent years, although they are still far below the targeted

threshold of 75% (WHO, 2010b, 2014). Importantly, WHA resolution 54.19 also

urged the promotion of access to safe water, sanitation and health education to

combat soil-transmitted helminthiasis and other neglected tropical diseases (WHO,

2002a). Despite the fact that helminth infections are significantly associated with

water, sanitation and hygiene(WASH) indicators (Ziegelbauer et al., 2012; Strunz

et al., 2014), they have not been used in spatial modelling of soil-transmitted

helminthiasis. The prior lack of detailed georeferenced data pertaining to WASH

and socioeconomic proxies precluded such analyses. However, the number of projects

collecting information on WASH, peoples education attainment and nutrition, and

the considerable increase in open-access data repository now permit fundamentally
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different ways of scientific inquiry. Indeed, in some countries, the aforementioned

proxies are readily available at higher spatial resolution than that of soil-transmitted

helminth prevalence, and can thus be explored as potential predictors of infection

risk.

In 2003, UNICEF released a report entitled Mapping human helminth infec-

tions in Southeast Asia (UNICEF, 2003) that made use of non-spatial models

to predict - at high spatial resolution the infection prevalence of soil-transmitted

helminths. A relation of environmental predictors and prevalence in Vietnam

was applied to the broader Southeast Asia due to lack of data in the rest of

the countries. Within the Global Burden of Disease 2010 study (Murray et al.,

2012), soil-transmitted helminth prevalence estimates in Southeast Asia were

the highest within Asia (Pullan et al., 2014). Globally, the prevalence of As-

caris lumbricoides was the second highest among sub-regions after central sub-

Saharan Africa. Several countries in Southeast Asia have reached high percent-

ages of preventive chemotherapy coverage (Jex et al., 2011; WHO, 2014). De-

spite this progress, the burden of soil-transmitted helminthiasis remains unac-

ceptably high (Jex et al., 2011). Particularly in Cambodia, according to the

preventive chemotherapy databank of the World Health Organization (WHO;

www.who.int/neglecteddiseases/preventivechemotherapy/sth/en/),treatment cov-

erage reached 100% and 80% already in 2006 for preschool-aged children and

school-aged children, respectively. Apart from 2009, coverage stayed at such high

levels until 2012 and conceivably for 2013 (data will soon become available). How-

ever, parasitological results from surveys are still reporting high prevalences (see,

for example, Chhakda et al. 2006; Khieu et al. 2013).

The objectives of the current study were: (i) to construct socioeconomic proxies

related to water, sanitation, education and nutrition in Cambodia; (ii) to assess

their predictive ability in geostatistical risk modelling of soil-transmitted helminth

infection; and (iii) to obtain high-resolution estimates of soil-transmitted helminth

infection risk in the country, adjusted for environmental and socioeconomic pre-

dictors. To create socioeconomic proxies, we compiled household survey data and

aggregated them at village level. The predictive ability of these proxies was assessed

by carrying out two types of analyses: (i) at country level using village-aggregated

 www.who.int/neglected diseases/preventive chemotherapy/sth/en/
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proxies and (ii) at province level using individual-level and village-aggregated

proxies for two provinces. We conducted a systematic review of soil-transmitted

helminth infections in Cambodia and employed Bayesian geostatistical models

adjusted for environmental variables for spatial and temporal risk profiling.

4.2 Methods

4.2.1 Environmental data

Temperature, precipitation and altitude data were obtained from WorldClim

(www.worldclim.org). Soil moisture and acidity data were downloaded from the

International Soil Reference and Information Centre (www.isric.org).

4.2.2 Socioeconomic and population data

Household data were compiled from readily available Demographic and Health

Surveys (DHS; www.measuredhs.com), Multiple Indicator Cluster Surveys(MICS;

www.childinfo.org/mics.html) and World Health Surveys(WHS; www.who.int/healthinfo/

survey/en/index.html). These international programmes collect data for Southeast

Asia. We aggregated the household data at village level and constructed the fol-

lowing proxies of socioeconomic status: (i) percentage of households with improved

sanitation; (ii) percentage of households with access to improved drinking-water

sources; (iii) infant mortality rate (i.e. the probability to die between birth and the

first birthday); (iv) percentage of primary school-aged population that is attending

primary school (referred to as net attendance rate, NAR); (v) percentage of adult

females who attended at least primary school (referred to as attainment); (vi)

percentage of adult females who are able to read a whole sentence (referred to as

literacy); and (vii) asset index (i.e. proportion of people in the poorest category

as defined by DHS). The classification of improved sanitation and drinking-water

source was performed using the criteria of the Joint Monitoring Programme for

Water Supply and Sanitation of WHO and UNICEF (WHO and UNICEF, 2006).

Nutritional indicators were built using the WHO child growth standards (WHO

Multicentre Growth Reference Study Group, 2006) and correspond to normalised

scores (z-scores) of physical variables adjusted for age; namely, (i) z-score of weight

www.worldclim.org
www.isric.org
www.measuredhs.com
www.childinfo.org/mics.html
www.who.int/healthinfo/survey/en/index.html
www.who.int/healthinfo/survey/en/index.html
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adjusted for age; (ii) z-score of height adjusted for age; and (iii)z-score of body

mass index (BMI) adjusted for age. We used the igrowup R-package provided by

WHO (available at: www.who.int/childgrowth/software/en/).

Locations were classified as either rural or urban according to information provided

by the Socioeconomic Data and Applications Center of the Center for International

Earth Science Information Network (www.sedac.ciesin.columbia.edu). From this

source we also obtained a high resolution human influence index grid. Population

density for the year 2010 was obtained from Worldpop(www.worldpop.org.uk).

Country-specific percentages of people under 20 years of age for the year 2010

were collected from the United States Census Bureau International Database

(www.census.gov/population/international/data/idb/informationGateway.php).

4.2.3 Literature review and data extraction

We searched PubMed (www.ncbi.nlm.nih.gov/pubmed) and Web of Knowledge

(www.webofknowledge.com) for parasitological surveys, conducted in Cambodia,

reporting prevalence of soil-transmitted helminth infections (A. lumbricoides,

Trichuris trichiura and hookworm). The search contained all peer-reviewed lit-

erature from inception to 14 February 2014. Additionally, we searched the grey

literature, such as reports from Ministries of Health (MoH), helminthiases control

programmes and authors personal collections.

We used and further adapted protocols put forth by Chammartin et al. (2013b)

and Karagiannis-Voules et al. (2015a) to extract and georeference data from the

literature review. Details of this procedure are given in the Appendix. We entered

the data in the Global Neglected Tropical Diseases database (see www.gntd.org

Hürlimann et al., 2011; Saarnak et al., 2013).

4.2.4 Statistical analysis

The soil-transmitted helminth data and the compiled socioeconomic proxies were

analysed using an approach presented elsewhere (Karagiannis-Voules et al., 2015a).

In brief, the extracted soil-transmitted helminth prevalence data were analysed

through Bayesian binomial geostatistical models, employing environmental and

www.who.int/childgrowth/software/en/
www.sedac.ciesin.columbia.edu
www.worldpop.org.uk
www.census.gov/population/international/data/idb/informationGateway.php
www.ncbi.nlm.nih.gov/pubmed
www.webofknowledge.com
www.gntd.org
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socioeconomic data as predictors. All computations were performed through inte-

grated nested Laplace approximations (INLA; Rue et al., 2009) and the stochastic

partial differential equations approach (Lindgren et al., 2011). We used the software

R (R Core Team, 2014) and the INLA package (available at: www.r-inla.org). For

more information on implementing geostatistical models with INLA, the reader is

referred to Lindgren et al. (2011); Cameletti et al. (2013); Karagiannis-Voules et al.

(2013).

To select the set of covariates that best predicts soil-transmitted helminth infection

prevalence data, we used a cross-validated logarithmic score proposed by Gneiting

and Raftery (2007) and Held et al. (2010) and performed the following steps: (i)

selected variable and its functional form (linear, categorical with three or four

categories and spline approximations through random walk processes see Rue and

Held 2005); from sets of highly correlated covariates (i.e. Pearsons correlation

coefficient >0.9) to avoid collinearity; and (ii) fitted geostatistical models with all

possible combinations of covariates. In both steps, models with the lowest mean

logarithmic score were selected.

Country-wide spatial analyses using village-aggregated socioeconomic

proxies

In order to spatially align the socioeconomic proxies with the soil-transmitted

helminth infection prevalence data, we used Bayesian binomial and Gaussian (for

the nutritional z-scores) geostatistical models and predicted these proxies at the

disease locations, using the urban classification as a predictor. We then performed

the aforementioned model selection. To incorporate the prediction uncertainty of

the socioeconomic indicators, we fitted a joint model of the indicators and the

prevalence, if the best model included such predictors.

All models included survey period as a binary covariate (cut-off, year 2000), survey

type and their interaction. The cut-off year 2000 is chosen due to WHA resolution

54.19, put forward in May 2001, that urged member states to step up preventive

chemotherapy. The survey type was considered as a covariate with two levels,

corresponding to school-based (defined as surveys conducted in schools or surveys

focusing on population aged below 20 years)and community-based surveys.

www.r-inla.org
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The best models were used to predict the risk of soil-transmitted helminth infection

at a grid of 1 × 1 km that included 183,543 pixels for Cambodia. By overlaying

the predicted risk surfaces with the population density grids, and the census-

based population percentages, we were able to calculate population-adjusted soil-

transmitted helminth infection prevalence at the unit of the province.

Provincial spatial analyses

To further investigate the relationship between potential socioeconomic predictors

and soil-transmitted helminth infection risk, we performed the aforementioned

Bayesian geostatistical risk factor analysis, using data from two surveys conducted

in Takeo and Preah Vihear provinces. Details of the surveys have been presented

elsewhere (Khieu et al., 2014b,a). Importantly, while implementing these parasito-

logical surveys, a questionnaire was administered concurrently and participants were

asked for several socioeconomic indicators. We included the following indicators as

potential predictors of hookworm infection: (i) presence of a latrine at home (binary

variable; yes or no); (ii) usual place of defecation (categorical variable; household

compound, forest, rice field, toilet); (iii) water source (binary variable; improved or

unimproved); (iv) educational attainment (categorical variable; no school, primary

school, secondary school, high school, university); and (v) asset index (derived from

a principal component analysis, as detailed by Vyas and Kumaranayake, 2006).

With regard to improved water sources, the following features were included: dam,

lake, pond, private pond, private well, village pond and village well with pump.

On the other hand, canal, lake, rain water, river and village well (without pump)

were classified as unimproved. Thus, for subsequent analyses both infection and

socioeconomic status are known at individual-level. The models included a binary

variable for sex and a spline approximation, through a second order random walk

process (Rue and Held, 2005), for age.

Geostatistical analyses carried out over large areas often include aggregated socioe-

conomic data (e.g. at village level). These data are either available at the location

where infection or disease is observed or obtained from model-based predictions

when infection or disease and predictors are not spatially aligned. Data aggregation
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ignores within-village variation due to loss of individual information and misalign-

ment might lead to inaccurate predictions due to potentially large between-village

variability. The surveys in Takeo and Preah Vihear provinces offer the possibility

to resemble such conditions of large-scale studies and compare analyses based on

individual-level and aggregated socioeconomic data. Hence, we conducted such a

comparison, using Bayesian geo-statistical models by (i) aggregating disease and

socioeconomic data at village level and performing the model selection approach

described earlier, and (ii) assuming that socioeconomic variables are not avail-

able in 10 randomly selected villages and modelled them jointly with hookworm

infection prevalence. The later step was repeated 100 times to assess sampling

variability and explore the change of effects for different sets of villages at which

the socioeconomic data were assumed missing. For both steps, percentages of the

individual socioeconomic proxies listed above, were used.For example, percentage

of people with latrine at home, percentage of people who usually defecate in toilet,

percentage of those with access to improved water sources at the lowest asset index

category, etc.

4.3 Results

4.3.1 Exploratory analysis

4.3.2 Socioeconomic proxies

DHS, MICS and WHS collect data all over Southeast Asia (see Appendix). In

total, we compiled sanitation, drinking-water, education and nutrition data from

5,687 locations across Southeast Asia. Survey data sources, years, total number

of locations and data summaries, stratified by country, are provided in Table 4.1.

More than a fourth of the total locations are concentrated in Cambodia.The lowest

mean percentages of people with access to improved sanitation and drinking-water

sources are observed in Cambodia. Overall, roughly a fourth and half of the

population in Cambodia had access to improved sanitation and water, respectively.

Nutritional data were only available for Cambodia and Timor Leste. Cambodia

and Lao Peoples Democratic Republic (Lao PDR) have the lowest percentages of

households with access to improved sanitation and improved drinking-water sources.
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People in these two countries have better access to water than sanitation. The

opposite is observed in Indonesia, Myanmar and Thailand, where the proportion of

people with sanitation is higher than access to drinking-water.

Table 4.1: Survey period, sources, locations and summary measures of socioeconomic
proxies for nine countries of Southeast Asia.

Country
Survey
year(s)

Source
Total
points

Mean %
of im-
proved
sanita-
tion

Mean % of
improved
drinking
water
sources

Mean %
females

educational
attainment

Mean
% of

literate
females

Mean
net

atten-
dance
rate

Cambodia
2000,
2005,
2010

DHS 1,624 26.9 51.8 76.7 49.1 76.5

Indonesia 2002 DHS 1,305 81.3 70.9 92.1 79.8 -
Lao PDR 2003 WHS 200 43.4 56.2 56.9 - -
Malaysia 2003 WHS 372 98.5 98.4 71.7 - -
Myanmar 2003 WHS 110 89.4 68.7 67.8 - -

Philippines 2003
DHS,
WHS

1,448 77.3 91.1 97.2 91.7 91.3

Thailand 2005 MICS 76 96.3 59.8 96.6 90.1 99.8
Timor Leste 2009 DHS 454 44.3 61.9 69.8 57.6 73.5
Vietnam 2003 WHS 98 75.6 89.7 89.1 - -

Figure 4.1 depicts the raw observed socioeconomic data in Cambodia. Percentage

of improved sanitation is low in numerous villages in the country. Access to

improved drinking-water sources is particularly high in the south-eastern part of

the country, close to the capital Phnom Penh. Apart from north-eastern Cambodia,

education levels are high. Mean nutritional z-scores in Cambodia show large small-

scale spatial heterogeneity with almost no visible patterns. Geostatistical models

indicate that the following indicators were associated (results not shown) with the

urban classification: percentage of households with access to improved sanitation,

percentage of households with access to improved drinking-water sources, asset

index, infant mortality rate and all of the education proxies investigated.
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Figure 4.1: Observed socioeconomic proxies across Cambodia.

Boxplots demonstrating the distribution of the socioeconomic proxies according to

the two urbanity classes in Cambodia are given in Figure 4.2. Z-scores of nutritional

indicators across Cambodia are centred below 0.
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Figure 4.2: Comparison of sanitation, water, education and nutrition in rural and
urban settings in Cambodia.

Soil-transmitted helminth infection prevalence data in Cambodia

Overall, we identified 78 sources with potentially relevant soil-transmitted helminth

infection prevalence data in Cambodia. Sixteen of these sources contained relevant
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survey data, resulting in 238 unique locations. Figure 4.3 shows the observed

prevalence data for the three common species of soil-transmitted helminths. In

brief, low prevalences of A. lumbricoides were observed in the Preah Vihear and

Takeo provinces. The prevalence of hookworm infection is high throughout the

country with the exception of low-prevalence locations concentrated in the south-

centre of the country.

4.3.3 Geostatistical model-based results

Country-wide analyses using village-aggregated socioeconomic proxies

Taken together, we fitted more than 700,000 models for each of the three soil-

transmitted helminth species and the estimates of the final models are given

in Table 4.2. A. lumbricoides was the only species for which a socioeconomic

proxy emerged as a potential predictor to explain its spatial distribution, namely

females educational attainment. We estimated sharp declines in the prevalence

of A. lumbricoides and T. trichiura from 2000 onwards. A smaller temporal

trend is estimated for the risk of hookworm infection. School-aged children are

estimated with a smaller prevalence than community-based estimates before 2000

and at similar levels from 2000 onwards for A. lumbricoides and T. trichiura. For

hookworm, no differences in the two population type estimates were found. Urban

settlements are associated with lower risk of hookworm infection.
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Table 4.2: Posterior estimates (median; 95% credible interval) of the final geosta-
tistical models for species-specific soil-transmitted helminth infections in Cambodia.

Ascaris lumbricoides Estimate (95% CI)

Annual mean temperature (◦C)
< 27.2 0
27.2-27.4 -0.94 (-1.96, 0.05)
27.4-27.6 -0.03 (-1.11, 1.04)
> 27.6 0.66 (-0.48, 1.79)

Altitude (m) -0.20 (-0.69, 0.27)
Mean adjustment for females education -0.37 (-0.79, 0.04)
Survey period (year)

Before 2000 0
From 2000 onwards -5.34 (-6.15, -4.57)

Survey type
Community-based 0
School-based -0.51 (-0.72, -0.30)

Survey period × survey type 1.38 (0.74, 2.06)
Spatial variance† 1.73 (1.25, 2.41)
Spatial range (km)† 9.16 (6.15, 13.80)

Trichuris trichiura

Altitude (m)
< 11 0
11-21 -0.87 (-1.43, -0.31)
21-64 -1.02 (-1.66, -0.39)
> 64 -1.20 (-1.98, -0.44)

Survey period (year)
Before 2000 0
From 2000 onwards -3.19 (-3.92, -2.49)

Survey type
Community-based 0
School-based -0.95 (-1.27, -0.64)

Survey period × survey type 1.59 (0.34, 2.26)
Spatial variance† 1.67 (1.19, 2.38)
Spatial range (km)† 5.97 (3.77, 9.36)

Hookworm

Urban-rural classification
Rural 0
Urban -0.59 (-1.08, -0.09)

Annual mean temperature (◦C)
< 27.3 0
27.3 - 27.6 -0.29 (-0.62, 0.03)
> 27.6 -1.07 (-1.44, -0.71)

Survey period (year)
Before 2000
From 2000 onwards -0.24 (-0.55, 0.08)

Survey type
Community-based 0
School-based -0.19 (-0.42, 0.03)

Survey period × survey type 0.08 (-0.17, 0.33)
Spatial variance† 1.20 (0.90, 1.63)
Spatial range (km)† 3.77 (2.71, 5.16)

† parameter of the spatial process.
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The predicted prevalence of soil-transmitted helminth infections from 2000 onwards

for the population segment aged below 20 years is shown in Figure 4.3. A high

maximum prevalence is predicted for hookworm (84%), while the maximum pre-

dicted prevalence for T. trichiura and A. lumbricoides is considerably lower (24%

and 23%, respectively). For the south-central part of Cambodia, the predicted

prevalence of A. lumbricoides and T. trichiura is relatively high (> 15%), while

the predicted prevalence of hookworm in the same part is quite low (< 5%).

Figure 4.3: Observed soil-transmitted helminth prevalences and model-based pre-
dictions for school-aged children in Cambodia for 2000 onwards.

We converted spatial risk profiles into number of people infected, by multiplying

with the population grid and calculated population-adjusted prevalence estimates

at the unit of the province. The data are summarised in Table 4.3. For the

whole country, we obtain prevalences estimates for hookworm, A. lumbricoides and

T. trichiura of 28.7%, 1.5% and 0.9%, respectively. The estimated overall prevalence

of any soil-transmitted helminth infection is 30.5%. The highest prevalence for any

soil-transmitted helminth infection is predicted for Mondulkiri province, while the

lowest for Phnom Penh.
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Table 4.3: Population-adjusted prevalence (%) of soil-transmitted helminth infection for school-aged children from 2000
onwards in Cambodian provinces.

Province Population <20 years Ascaris lumbricoides Trichuris trichiura Hookworm All soil-transmitted helminths†

Banteay Meanchey 314,767 1.90 (0.90, 4.64) 0.62 (0.39, 1.21) 24.48 (19.90, 29.84) 26.61 (22.23, 32.60)
Battambang 476,250 0.86 (0.46, 1.87) 0.67 (0.36, 1.22) 38.91 (33.25, 44.39) 39.96 (34.54, 45.29)
Kampong Cham 781,090 2.22 (1.26, 4.40) 0.66 (0.39, 1.14) 27.27 (23.07, 32.54) 29.72 (25.66, 34.72)
Kampong Chhnang 217,745 1.47 (0.67, 3.42) 0.93 (0.48, 1.65) 24.09 (19.19, 29.59) 26.05 (21.32, 31.69)
Kampong Speu 326,923 0.88 (0.44, 1.82) 0.54 (0.31, 0.99) 36.53 (30.53, 41.40) 37.44 (31.40, 42.40)
Kampong Thom 292,604 1.51 (0.86, 2.66) 0.67 (0.40, 1.11) 28.04 (23.69, 32.30) 29.53 (25.48, 33.88)
Kandal 589,426 2.04 (1.06, 4.14) 1.32 (0.82, 2.19) 22.23 (17.42, 27.53) 24.84 (20.02, 30.42)
Kep 16,650 0.91 (0.15, 4.55) 1.01 (0.28, 3.19) 42.89 (27.65, 57.39) 44.09 (28.92, 59.20)
Koh Kong 66,462 1.08 (0.39, 2.89) 1.08 (0.64, 2.24) 38.41 (32.32, 44.39) 39.79 (33.72, 45.60)
Kratie 148,332 0.88 (0.50, 1.65) 0.52 (0.31, 0.84) 36.97 (32.42, 42.09) 37.88 (33.56, 43.19)
Mondulkiri 28,467 0.50 (0.12, 25.28) 0.48 (0.26, 0.92) 43.34 (37.33, 49.97) 44.51 (38.14, 56.03)
Oddar Meanchey 79,993 0.78 (0.31, 1.95) 0.52 (0.28, 1.03) 38.06 (31.79, 43.97) 38.97 (33.26, 44.93)
Pailin 33,076 0.36 (0.08, 3.38) 0.44 (0.18, 1.34) 42.86 (32.09, 54.63) 43.46 (32.63, 55.17)
Phnom Penh 619,860 0.87 (0.35, 2.07) 1.05 (0.52, 2.17) 11.42 (7.04, 18.50) 13.33 (8.82, 20.54)
Preah Sihanouk 91,294 1.06 (0.36, 3.32) 0.87 (0.41, 1.96) 30.42 (22.05, 41.25) 31.93 (24.02, 42.58)
Prey Veng 441,357 2.25 (0.96, 4.86) 1.25 (0.74, 2.22) 22.82 (17.30, 28.07) 25.62 (20.61, 30.91)
Pursat 184,810 0.98 (0.48, 2.06) 0.69 (0.38, 1.25) 36.77 (31.39, 42.23) 37.93 (32.69, 43.54)
Ratanakiri 69,959 0.60 (0.16, 5.31) 0.47 (0.22, 1.03) 42.45 (34.52, 50.03) 43.30 (35.65, 51.95)
Siem Reap 423,821 1.04 (0.58, 1.84) 0.71 (0.46, 1.13) 41.62 (36.86, 46.93) 42.70 (37.97, 48.04)
Stung Treng 51,761 0.88 (0.51, 1.64) 0.50 (0.28, 0.90) 39.51 (34.13, 45.75) 40.52 (35.27, 46.66)
Svay Rieng 225,379 1.98 (0.80, 5.07) 1.45 (0.78, 2.66) 23.50 (17.22, 29.87) 26.35 (19.98, 32.79)
Takeo 395,543 1.14 (0.72, 1.84) 1.16 (0.75, 1.93) 33.66 (30.05, 37.62) 35.30 (31.96, 39.17)

Total 5,875,567 1.45 (0.73, 3.24) 0.88 (0.51, 1.59) 28.67 (23.65, 34.26) 30.51 (25.62, 36.18)

† Overall prevalence was calculated under the assumption that the three species are independent.
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Provincial analyses

The additional individual-level spatial risk factor analyses of hookworm risk resulted

in final models with coefficients presented in Table 4.4. Both models included age

as smooth random walk process of order 2, which is depicted in the Appendix. The

effect of age on hookworm risk shows a bimodal shape with a first peak at age 1525

years and a second peak at age 70 years and above. Males were at a higher risk of

hookworm infection than females in both provinces. Hookworm in Preah Vihear is

associated with the usual defecation place and, with a reference category of behind

the house, all types have a negative coefficient. The smallest coefficient is estimated

for people that usually use a toilet for defecation. In both provinces, higher asset

index was associated with lower hookworm infection risk. In Takeo province, two

additional socioeconomic factors were identified to be linked to hookworm infection.

While the existence of latrine at home was negatively associated with hookworm

prevalence, the use of unimproved water sources was associated with a higher risk

of hookworm infection.

The best model using village aggregated socioeconomic and hookworm data from

Takeo province did not identify any socio-economic predictors, while the model

using data from Preah Vihear included two socioeconomic proxies. In the model for

Preah Vihear the percentage of people who have a latrine at home was negatively

associated with hookworm infection, while the percentage of people at the poorest

asset index category had a positive effect (results are included in the Appendix).

To resemble the misalignment of the socioeconomic and disease data of large-scale

surveys, we jointly modelled the socioeconomic proxies identified for Preah Vihear

with hookworm infection and assumed that 10 villages selected at random did not

have socioeconomic data. We repeated the random selection 100 times. The effects

and their 95% credible intervals of the two socioeconomic proxies are given in the

Appendix. The effects of both variables are not consistent and 0 is included in

many credible intervals.
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Table 4.4: Posterior estimates (median; 95% credible interval) of the final geosta-
tistical individual-level models for hookworm infection in Takeo and Preah Vihear
provinces, Cambodia, for 2011 and 2010, respectively.

Takeo province Estimate (95% CI)

Altitude (m)
< 8 0
8-10 -0.87 (-1.43, -0.31)
10-15 -1.02 (-1.66, -0.39)
> 15 -1.20 (-1.98, -0.44)

Human influence index
< 25.2 0
25.2-26.55 -0.97 (-1.49, -0.46)
> 26.55 -0.38 (-0.95, 0.19)

Latrine at home
No 0
Yes -0.37 (-0.60, -0.15)

Main water source
Improved 0
Unimproved 0.31 (0.02, 0.60)

Socioeconomic status (based on asset index)
Poor 0
Less poor -0.24 (-0.48, 0.00)
Least poor -0.28 (-0.54, -0.03)

Sex
Female 0
Male 0.42 (0.24, 0.61)

Spatial variance† 0.74 (0.39, 1.44)
Spatial range (km)† 12.70 (6.40, 23.39)

Preah Vihear province Estimate (95% CI)
Annual precipitation (mm)
< 1,600 0
1,600-1,650 -0.87 (-1.54, -0.20)
1,650-1,700 -0.61 (-1.27, 0.04)
> 1,700 -0.86 (-1.54, -0.18)

Usual place of defecation
Household compound 0
Forest -0.35 (-0.58, -0.11)
Rice field -0.31 (-0.64, 0.02)
Toilet -0.75 (-1.12, -0.38)

Socioeconomic status (based on asset index)
Poor 0
Less poor -0.01 (-0.23, 0.21)
Least poor -0.16 (-0.39, 0.06)

Sex
Female 0
Male 0.41 (0.24, 0.58)

Spatial variance† 0.99 (0.49, 2.08)
Spatial range (km)† 2.52 (1.26, 4.97)

† parameter of the spatial process
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4.4 Discussion

We compiled a large ensemble of socioeconomic data for Southeast Asia using

a host of readily available databases. In parallel, we conducted a systematic re-

view to identify surveys of soil-transmitted helminth infections in Cambodia. The

data were georeferenced and subjected to geostatistical analyses at the unit of

the village to explore whether specific socioeconomic proxies can improve upon

spatial risk profiling, while adjusting for environmental covariates. Moreover,

we focussed on two provinces and did individual-level analysis to determine the

association of household socioeconomic indicators and soil-transmitted helminth

infection. We estimated population-adjusted prevalences for Cambodia and assessed

the usage of socioeconomic proxies at different scales for geostatistical analyses.

The risk of all three soil-transmitted helminth infections in Cambodia has con-

siderably declined from 2000 onwards, probably due to a combination of overall

socioeconomic development and escalating anthelminthic treatment coverage rates.

Indeed, treatment coverage reached 100% already in 2006 and the administration

of mebendazole had initially been promoted through the schistosomiasis control

programme (Sinuon et al., 2007). Over the past several years, treatment coverage of

school-aged children with either albendazole of mebendazole reached levels of 75%

(WHO, 2014). Furthermore, programme coverage (which targets whole communi-

ties) against lymphatic filariasis in Cambodia has remained above 70% from 2005

to 2009 (http://www.who.int/neglecteddiseases/preventivechemotherapy/lf/en/).

Interestingly, before 2000, school-aged children had lower prevalence rates compared

to entire communities for both A. lumbricoides and T. trichiura. Accounting for an

interaction of survey type and study period shows that, after 2000, community level

prevalences dropped and reached similar prevalences as observed in school-aged

children. In other regions of the world, the opposite observations have been made;

initially, prevalences of soil-transmitted helminths were higher among school-aged

children, but as control efforts emphasising preventive chemotherapy in the school-

aged population went to scale, prevalence rates in the school-aged children and

entire communities approached each other. This issue has been well documented

for sub-Saharan Africa, when comparing data among school-aged children and

adults for the time before 2000 and from 2000 onwards (Karagiannis-Voules et al.,

http://www.who.int/neglecteddiseases/preventive chemotherapy/lf/en/
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2015a).

Clear effects of socioeconomic proxies studied here on the risk of soil-transmitted

helminth infections were not identified in the country-wide analyses, including

village-aggregated and misaligned socioeconomic predictors, despite the common

belief that soil-transmitted helminth infections are intimately connected with

poverty (Hotez, 2008). For instance, Ziegelbauer et al. (2012) meta-analysed

individual-based studies and showed that people who have access to and use

latrines are at a significantly lower odds of a soil-transmitted helminth infection

than their counterparts who have no latrine. In a more recent meta-analysis,

Strunz et al. (2014) showed that piped water access was negatively associated with

A. lumbricoides and T. trichiura infections. In a study of hookworm intensity,

education of primary caregivers of children had a negative effect (Pullan et al.,

2010). In a geostatistical analysis of hookworm prevalence in West Africa, which

predicted socioeconomic proxies that were used as predictors of infection risk,

several associations were identified (Magalhães et al., 2011). However, this analysis

did not take into account the prediction error in a joint modelling approach.

Socioeconomic proxies might not be good predictors at an aggregated large-scale

analysis due to considerable between- and within-village heterogeneity. First, the

spatial misalignment of socioeconomic and soil-transmitted helminth infection

prevalence data gives rise to several issues. As shown in Figure 4.1, almost all

socioeconomic proxies showed a high degree of small-scale heterogeneity, and hence,

visible patterns were negligible. Large between-locality variability is responsible

for high prediction uncertainty of socioeconomic data, which might confound its

effect on soil-transmitted helminths. Second, aggregation of individual data for

specific localities resulted in substantial loss of variability and information. For

instance, individual nutritional z-scores ranged from −6 to +6, while location

means were not reaching these extremes (Figures 4.1 and 4.2). It follows that the

use of such predictors for large-scale mapping of soil-transmitted helminthiasis

and perhaps other neglected tropical diseases might not capture the expected

associations between risk of infection and socioeconomic status.

It is conceivable that, unless individual data on both infection and socioeconomic

predictors are available, as in the studies mentioned above, finding clear associations
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might be setting-specific.This claim is further supported by the two individual-level

analyses performed for the provinces of Takeo and Preah Vihear. The best models

for hookworm infection included predictors such as the usual defecation place, the

existence of a latrine at home, the main water source and asset index, which were

available at individual-level. On the other hand, the analyses of the same surveys

with aggregated data or misaligned predictors (i.e. data artificially resembling the

conditions which characterise large-scale studies)indicated no socioeconomic effects

for Takeo. However, under-standing the reasons that village-specific socioeconomic

proxies may not be good predictors of the infection risk is complicated by intensified

control which can blur the exposure-disease relations.

In this context, however, it is interesting to note that hook-worm species and their

transmission dynamics to humans might vary geographically. In Southeast Asia,

the transmission of zoonotic Ancylostoma ceylanicum from dogs to humans has

been demonstrated (Traub et al., 2008). In a recent study in Preah Vihear province,

zoonotic A. ceylanicum was diagnosed in about half of the hookworm-infected

individuals (Inpankaew et al., 2014). Therefore, even if improved WASH facilities

are used by the communities, contamination of the environment with hookworm is

assured by dogs.

In recent years, several surveys have been carried out in Cambodia, but the data were

not available for the current analysis. For instance, the World Vision Cambodia

surveyed 1880 children in three provinces (George et al., 2012). Furthermore,

the schistosomiasis control programme also reported soil-transmitted helminth

infection prevalences in 2007 (Sinuon et al., 2007). Efforts should be made to

obtain and georeference these additional data, so that future model-based analyses

of soil-transmitted helminth infection risk in Cambodia are further enhanced. In

addition, the used survey data are extracted from different sources. Thus, there are

potential biases related to spatial coverage of survey locations and between-surveys

heterogeneities in the age groups sampled and diagnostic tools used that have been

discussed elsewhere (Chammartin et al., 2013b; Karagiannis-Voules et al., 2015a).

We followed an extraction protocol (see Appendix) to limit such sources.

In conclusion, our analyses contribute to a deeper under-standing of socioeconomic

predictors for large-scale model-based geostatistical analysis of soil-transmitted
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helminthiasis. Individual information of both infection risk and potential predictors

are still needed to identify significant and biologically meaningful associations

between parasite infection and socioeconomic variables. Clearly, the presented

risk maps for the three common soil-transmitted helminth infections for Cambodia

can be utilised for prioritising control efforts, spatially designing new surveys and

serve as a benchmark for long-term surveillance. Along with previous attempts to

map and predict the spatial and temporal distribution of soil-transmitted helminth

infections elsewhere in Asia, Africa and Latin America (Chammartin et al., 2013b;

Lai et al., 2013; Pullan et al., 2014; Karagiannis-Voules et al., 2015a), the work

presented here contributes to a new global trend of elaborate spatial analyses of

soil-transmitted helminth infections.
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4.5 Appendix

Extraction protocol

Literature search

- Peer-reviewed via PubMed (2014) and ISI Web of Knowledge (2014)with following keywords:

cambodia AND helminth* (OR ascari*, OR trichur*, OR hookworm*, OR necator, OR anky-

lostom*, OR ancylostom*,OR strongy*, OR hymenolepis, OR toxocara, OR enterobius*, OR geo-

helminth*, OR nematode*)

- Unpublished grey literature (Ministry of Health report and report, personal communication)

Identification of potentially relevant publications. Review of titles and abstracts, if avail-

able, to identify potentially relevant publications. Main exclusion criteria are: publications

pertaining on animals/plants/genetic, case reports, in-vitro studies, and/or absence of soil-

transmitted helminthiasis surveys.

First quality check. Random selection of 30% of the papers identified as irrelevant for quality

assessment of relevance (this percentage is adapted to the experience of the personnel which car-

ried out the search). In case of any misclassification, the entire country is double-checked.

Review of the potentially relevant publications. Full review of papers identified as poten-

tially relevant. Main exclusion criteria are: absence of prevalence data, specific patient group

(hospital-based, HIV, newborns...), case-control, clinical trials or pharmacological studies (except

control group), displaced population (travellers, military...), population dewormed during the past

year.

Geolocation. Retrospective geolocation of study locations using informations provided in the

publications, if any, and various online sources (Wikimapia, Google Maps, iGuide Interctive

Travel Guide...). Centroid of the administrative unit is assigned to areal data, calculated from

the administrative boundaries maps of the Databse of Global Administrative Areas (GADM v2).

Prevalence data extraction. Relevant prevalence data are entered in the GNTD database with

(i) the source: authors, journal, publication date, (ii) the description of the survey: date, type of

survey, (iii) the location information: coordinates, name, administrative unit, (iv) the parasitologi-

cal data: species, number of positive/examined, prevalence, age, diagnostic tool.

Contact authors. In case of missing information, authors are contacted if the paper has been

published in the past 20 years.

Second quality check. All publications entered in the GNTD are assessed for quality of extrac-

tion, and all coordinates are double-checked in Google Maps for quality assessment of the geoloca-

tion.

Meta-analysis. Survey where sample size <10 are excluded from the analysis. Date of publica-

tion is assigned to the survey if the date of the survey is missing. Data are screened by location

and if there is evidence of duplicate, the survey with the most complete information is kept for

the analysis.
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Effect of age in individual level analyses

Figure 4.4: The smooth effect of age on hookworm risk in the two individual-level
analyses in Takeo and Preah Vihear provinces for 2011 and 2010, respectively
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Model results from aggregating the individual-level data

Takeo province Estimate (95% CI)

Altitude (m)
< 8 0
8-10 -0.67 (-1.32, -0.02)
10-15 1.03 (0.34, 1.71)
> 15 1.04 (0.34, 1.74)

Human influence index
< 25.2 0
25.2-26.55 -0.92 (-1.43, -0.41)
> 26.55 -0.32 (-0.88, 0.25)

Spatial variance 0.75 (0.40, 1.41)
Spatial range (km) 11.67 (6.05, 20.92)

Preah Vihear province

Annual precipitation (mm)
< 1600 0
1,600-1,650 -0.52 (-1.00, -0.02)
1,650-1,700 -0.43 (-0.95, 0.08)
> 1,700 -0.29 (-0.82, 0.24)

Precipitation of warmest quarter (mm)
< 259 0
259-264 -0.04 (-0.60, 0.53)
264-281 -0.79 (-1.29, -0.30)
> 281 -1.07 (-1.57, -0.57)

Percentage of people in the lowest asset index category 1.25 (0.38, 2.12)
Percentage of people with latrine at home -0.89 (-1.78, -0.02)
Spatial variance 0.42 (0.19, 0.96)
Spatial range (km) 1.85 (0.83, 3.98)
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Abstract

A number of country-wide surveys are conducted in Africa collecting georeferenced

data on disease risk and interventions, such as mosquito bednet coverage, insecticide

residual spraying and access to malaria treatment. Control programs are interested

in assessing effects of interventions not only at country level but also at sub-

national level where the interventions are delivered. There are different measures

quantifying the coverage of bednet ownership and usage. Studies have shown that

different indicators are able to capture the effect of interventions on malaria risk in

different surveys. Statistical models are able to estimate covariate effects varying in

space and identify the most important intervention indicators via variable selection

approaches. We provide geostatistical model formulations for variable selection

of spatially varying covariate effects and assess sensitivity of inference to model

specification. We analyze data from the two most recent national malaria surveys

in Angola, carried out in 2006 and 2011. We implement the proposed models to

identify the most important intervention indicators and to assess the effects of

their changes between the two time points on the dynamics of parasitaemia risk at

national and sub-national level. The models adjust for climatic confounders. Results

showed that an increase in nets-to-people ratio had an important contribution in

the parasitemia risk reduction within the five year period in Huambo province.

Models with spatially varying effects and variable selection schemes can be included

in routinely fitted geostatistical models of malaria survey data to identify areas

with successful implementation of control programs.
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5.1 Introduction

Geostatistical modelling of malaria risk or incidence is an important tool for burden

estimation and disease surveillance. It has been used to model disease data covering

different spatial scales. Gosoniu et al. (2010) predicted malaria risk and the

number of infected children, aged less than 5 years, in Angola and Samadoulougou

et al. (2014) conducted a similar analysis in Burkina Faso. Giardina et al. (2012)

used zero-inflated geostatistical models to predict malaria risk in Senegal. A

sub-continental study depicted the spatial distribution of malaria in Africa (Noor

et al., 2014). Gething et al. (2011, 2012) produced endemicity world malaria

maps for Plasmodium falciparum and P. vivax, respectively. Recently, Bhatt et al.

(2015) showed a 50% decrease of prevalence in sub-Saharan Africa since 2000 using

geostatistical models.

Malaria is environmentally driven disease and environmental proxies are used

as predictors. Incorporating effects of control interventions in such model-based

analyses, while adjusting for environmental and socioeconomic predictors, may

provide additional information on control progress and improve risk modelling.

National malaria surveys are conducted to obtain information on both the disease

and control interventions. They have been developed by the Roll Back Malaria

Partnership (RBMP) with a consistent design to assist monitoring and evaluation

and to assess progress towards the targets of the Global Malaria Action Plan.

Based on these surveys, different indicators of control interventions have been

defined related to insecticide-treated mosquito nets (ITN) ownership and usage

as well as indoor insecticide residual spraying and access to malaria treatment

(MEASURE Evaluation et al., 2013). Studies have shown that different indicators

may have an important effect on malaria in different surveys. Variable selection

methods can be used to choose the most important indicators.

Furthermore, the effect of such an intervention proxy may not be constant but vary

in space. Giardina et al. (2014), showed that malaria intervention measures might

not be associated with the disease prevalence if they were considered constant

across the study area. Their contribution to the prevalence model was apparent

if the effects were allowed to vary according to province or district. The authors
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used a conditional autoregressive (CAR) process to model the change of the

effect in space and highlight the regions where interventions were less (or more)

effective than the countrywide average. However, the above study selected the best

indicators of intervention effects conditional on climatic predictors ignoring the

spatially varying effects in the variable selection. A more rigorous approach would

incorporate variable selection within a geostatistical model that includes locally

varying coefficients and adjust for all other predictors.

Bayesian variable selection approaches (see, for example, O’Hara and Sillanpää,

2009) can be applied to fixed and random effects in a model. For a multivariate

response with geostatistical random slopes (Gelfand et al., 2003), Reich et al. (2010)

formulated a Bayesian variable selection approach which introduces indicators for

each predictor that allow covariates to enter in the model with either a fixed or

a varying effect (or excluded) and are constant across space. Boehm Vock et al.

(2015) assumed that indicators vary independently in space and incorporated a

spatial dependence of effects through a Gaussian copula. A spatial dependence on

the inclusion indicators was recommended by Lum (2012).

The objective of the current study is to assess the sensitivity of the different

Bayesian variable selection approaches in capturing the association of malaria risk

and predictors, and to estimate the effects of malaria interventions in space.

5.2 Methods

5.2.1 Data

We obtained parasitological data in Angola for 2006 and 2011 from the Demographic

and Health Surveys (DHS) Program http://www.dhsprogram.com/. The data were

collected from children aged below 5 years. The complete dataset contained 5096

children living in 337 clusters, of which 113 and 224 were surveyed in 2006 and 2011,

respectively. Parasitemia in 2006 was measured through a rapid diagnostic test

while in 2011 with microscopy. Additional information on household socioeconomic

proxies and malaria interventions was collected. In this study, we use the proportion

of mothers without any education, rural or urban classification, intervention proxies

related to ITN ownership and usage, access to malaria treatment (case management)

http://www.dhsprogram.com/
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and a socioeconomic proxy defined by the proportion of househlds within the two

lowest quintiles of the asset index.

We constructed malaria intervention proxies using indicators suggested by RBMP

(see page 7 in MEASURE Evaluation et al., 2013). Based on the available data, we

consider indicators that correspond to two proxies of ITN usage: (i) percentage

of people who slept under an ITN the night before the survey (USE1), and (ii)

percentage of children, aged below 5 years, who slept under an ITN the night before

the survey (USE2); three proxies of ITN ownership: (i) percentage of households

in a cluster with at least one ITN (OWN1), (ii) percentage of households in a

cluster with at least one ITN for every two people (OWN2) and (iii) mean nets to

people ratio (OWN3); and one proxy of case management: percentage of children,

aged below 5 years, that received Artemisinin-based combination therapy (or other

appropriate treatment) among those with fever in the last 2 weeks who received

any antimalarial drugs (CASE1).

The observed data on malaria prevalence as well as the difference of 2006 and 2011

intervention coverage indicators are depicted in Figure 6.1. We did not include in

the analysis Cabinda province because it is spatially separated from the rest of the

country.

To adjust for environmental predictors we used climatic proxies of temperature,

rainfall, altitude, distance to water and vegetation averaged over the year prior to

each survey. Specifically, land surface temperature at day (lstd), as well as the

normalized difference vegetation index (ndvi) were obtained from MODIS (Oak

Ridge National Laboratory Distributed Active Archive Center, 2011). Using the

same source and the land cover classification of water, we defined the distance to

the closest water body. Altitude was downloaded from http://srtm.csi.cgiar.org.

Rainfall was downloaded from the Famine Early Warning System Network of

the United States Agency for International Development http://earlywarning.usgs.

gov/fews/index.php. For details of the spatial and temporal resolutions of the

predictors see, for example, Diboulo et al. (2015).

The covariates used in the models correspond to the difference between 2006 and

2011 at a given location. For the urban classification, altitude and distance to water

http://srtm.csi.cgiar.org
http://earlywarning.usgs.gov/fews/index.php
http://earlywarning.usgs.gov/fews/index.php
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we used the 2011 value instead of the difference due to their negligible changes over

time.
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Figure 5.1: Raw data of malaria parasite prevalence in 2006 and 2011 surveys and
of the difference of intervention coverage indicators between the two surveys.
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5.2.2 Spatially varying regression model

Let Yi be the response variable observed at location si belonging in province m

(m = 1 . . .M), XN×P and DN×K are design matrices. The linear predictor, which

includes fixed and random effects, is formulated as:

ηi = g (E (Yi)) = b0 + XT
i b + wi0 +

K∑
k=1
i∈m

Dikwmik (5.1)

where b is the vector of fixed effects, b0 and w0 are the fixed and random intercepts.

The varying effects are wk, k = 1, ..., K. In our application, Yi is the number of

infected children with malaria and is binomially distributed, while g is the logit

transformation. We follow a Bayesian hierarchical formulation and define prior

distributions for the model parameters.

Each wk represents locally varying coefficients for covariate k and has dimension

to the number of provinces M . Commonly, it is assumed as a realization of a

Gaussian process, i.e. wk|βk,Σk ∼ Nd
(
β(k),Σk

)
with β(k) being a vector of βk

which is the fixed slope. Through the covariance matrix Σk, different structures

can be accommodated. For instance, if Σk = 0 then there is no deviation from the

mean βk and only a fixed slope exists. Alternatively, if Σk is a diagonal matrix

then wk are exchangeable and deviate from βk independently. In case wk is defined

by location si, a geostatistical random slope could be modeled. Due to the fact that

malaria control is implemented over administrative units, an effect that varies by

province m could depict provinces where interventions have an effect on malaria or

not. The province-specific effects can be modelled by a conditional autoregressive

Gaussian process, i.e. Σ−1
k = σ−2

k (R− ρkΩ), with R being a diagonal matrix

with entries the sum of the neighbours of each province and Ω a proximity matrix

(Banerjee et al., 2014).

Through w0 we model a geostatistical intercept assuming a Gaussian prior w0|Σ0 ∼
NN (0,Σ0). We use the exponential correlation function Σ0{i, j} = σ2

0 exp (−ρ0dij)

where σ2
0 and ρ0 are the variance and spatial decay parameters of the Gaussian

process, and dij is the Euclidean distance between locations si and sj.

We assign a normal prior distribution to each bp, that is bp|τ 2
p ∼ N

(
0, τ 2

p

)
(similarly
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for βk). For variances (σ2
0, σ

2
k) we use the inverse gamma distribution with shape

and scale parameters equal to 2 and 1, respectively. A uniform prior in (0.7, 100)

is assigned to ρ0 and in (−1, 1) to ρk.

We model the malaria prevalence of 2011 and adjust for the levels of 2006 by

including an offset term of the prevalence on the logit scale. The two surveys were

carried out on different set of locations. We spatially align the data by predicting

the prevalence of 2006 at the 2011 locations using a geostatistical model that

included climatic predictors. These predictors were selected via a stochastic search

variable selection (SSVS, George and McCulloch, 1996).

5.2.3 Bayesian variable selection

To extend the above model and incorporate variable selection in the fixed effects,

we introduce an indicator γp for each Xp. We perform a SSVS and define a spike

and slab prior bp|δp, τ 2
p ∼ N

(
0, δpτ

2
p + (1− δp)u0τ

2
p

)
(see, for example, George and

McCulloch, 1996). u0 is a shrinkage factor which we fix to 0.001. δp is assigned a

Bernoulli prior with 0.5 probability of success.

Similarly, for each random slope wk, we introduce a vector of indicators γk and

redefine the prior of wk conditional on γk. The vector γk may illustrate whether

predictor k has a fixed or random slope. The indicators γk may be constant across

all provinces or may be province-specific.

To achieve a specification that assumes common indicators across provinces, we

define γk =
{
γ

(1)
k , γ

(2)
k

}
. γ

(1)
k is introduced for the fixed effect βk and γ

(2)
k for

the random slope wk. A spike and slab prior is used for βk, that is βk|γ(1)
k , τ 2

k ∼
N
(

0, γ
(1)
k τ 2

k +
(

1− γ(1)
k

)
u0τ

2
k

)
. The wk can be represented through its variance

and σ2
k can be either treated in the linear predictor as a covariate with a spike

and slab prior (Wagner and Duller, 2012), or can be replaced by σ2
k = γ

(2)
k σ̃2

k +(
1− γ(2)

k

)
u0σ̃

2
k with the inverse gamma prior placed on σ̃2

k. We assign a multino-

mial prior distribution to
{
γ

(1)
k , γ

(2)
k

}
with possible events:

{(
γ

(1)
k = 0, γ

(2)
k = 0

)
,(

γ
(1)
k = 1, γ

(2)
k = 0

)
,
(
γ

(1)
k = 1, γ

(2)
k = 1

)}
. The probabilities of the multinomial

distribution are chosen to allow 50% exclusion. The remaining 50% is equally

splitted in the last two events. The event
(
γ

(1)
k = 0, γ

(2)
k = 1

)
is assigned 0 prior
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probability due to the fact that wk is the deviation from βk and should enter in the

model in case the fixed slope is not 0. We will refer to this formulation as “Model1”.

Reich et al. (2010) used a discrete spike and based inferences on the marginal

posterior of
(
γ

(1)
k , γ

(2)
k

)
that has a closed form under a Gaussian likelihood.

To relax the assumption of global inclusion or exclusion of a predictor and allow

locally varying indicators, we introduce γk = {γ1k, . . . , γMk}. Then, wk is not

defined jointly but each of its elements (wmk) is defined conditionally on γmk, that

is wmk|γmk, βk, τ 2
k ∼ N (γmkβk, γmkσ

2
k + (1− γmk)u0σ

2
k). We use two specifications

for γk. Firstly (Model2), we impose a spatial structure in γk by assigning a

Bernoulli prior to each γmk ∼ B(pmk) and adopt the probit link for pmk, that

is Φ−1(pmk) = εmk and εk is a CAR-structured random intercept, i.e. εk|Σk ∼
Nd (0,Σk). For a non-Gaussian likelihood, Lum (2012) used data augmentation to

exploit conjugacy for this formulation. Secondly (Model3), we define independent

inclusion indicators γmk ∼ B(pk) and impose a CAR dependence on ws by using

a Gaussian copula. Specifically, the marginal (over γmk) prior distribution fw of

wmk is wmk|pmk, βk, τ 2
k ∼ pkN (βk, τ

2
k ) + (1− pk)N (0, u0τ

2
k ). A spatial structure is

imposed in the ws by introducing latent variables θmk such that each θk follows the

structure of interest; in our case a CAR. wmk are retrieved by back transforming the

θmk using the cumulative distribution function of the standard normal distribution

and the inverse of the cumulative distribution function of fw. A geostatistical

marginal (over γmk) approach based on a Gaussian copula for variable selection

has been proposed by Boehm Vock et al. (2015).

A summary of the formulations of the described methodologies is provided in

Table 5.1. We implement the above models in JAGS (Plummer, 2003). The

samplers run for 1 million iterations with a single chain and the estimates were

obtained from the last 30,000 samples. The predictors with a posterior mean

inclusion probability E (γp) greater than 0.5 were selected for fitting the final

model. To compare the models retrieved by the variable selection we use the

deviance information criterion (Spiegelhalter et al., 2002; Plummer, 2008).



Table 5.1: Summary of the formulations used in the Bayesian variable selection.

Fixed slope Random slope Inclusion indicators Interpretation

Model1
βk|γ1k, τ

2
k ∼

N
(
0, γ1kτ

2
k + (1− γ1k)u0τ

2
k

) wk|γ2k, σ
2
k, ρk ∼ Nd

(
βk, σ

−2
k (R− ρkΩ)

)
,

with σ2
k = γ2kσ̃

2
k + (1− γ2k)u0σ̃

2
k

multinomial prior on (γ1k, γ2k) with
events {(γ1k = 0, γ2k = 0),

(γ1k = 1, γ2k = 0),
(γ1k = 1, γ2k = 1)} assigned 0.5,

0.25, and 0.25 probabilities,
respectively

Global inclusion or
exclusion of the ran-
dom slope.

Model2 βk ∼ N (0, 100)
wmk|γmk, βk, σ2

k ∼
N (γmkβk, γmkσ

2
k + (1− γmk)u0σ

2
k)

γmk|pmk ∼ B(pmk) with
Φ−1(pmk) = εmk and
εk|Σk ∼ Nd (0,Σk)

Spatially correlated
inclusion probabili-
ties. Smoothness in
the effects enters im-
plicitly in the mean
of ws.

Model3 βk ∼ N (0, 100)

wmk|γmk, βk, σ2
k ∼

N (γmkβk, γmkσ
2
k + (1− γmk)u0σ

2
k) and

θmk = Φ−1 (F (wmk)) with
θk|ρk ∼ Nd (0, (R− ρkΩ))

γmk|pk ∼ B(pk) and pk ∼ U(0, 1)

Independent local in-
clusion of the ran-
dom slope, with the
spatial structure im-
posed through θs.
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5.3 Results

Table 5.2 contains the posterior mean inclusion probabilities, i.e. E (γp|y) for

the predictors with fixed effects based on the three models. A mean inclusion

probability above 0.5 was estimated for ndvi by all approaches. Model2 has

additionally identified the lstd and distance to nearest water body.

Table 5.2: Fixed effects posterior mean inclusion probabilities

Fixed effects Model1 Model2 Model3

urban 0.39 0.36 0.38
lstd 0.40 0.69 0.37
ndvi 0.74 0.54 1
rainfall 0.35 0.24 0.16
altitude 0.35 0.32 0.17
Distwater 0.34 1 0.13
asset 0.20 0.14 0.13
perc no educ 0.27 0.17 0.15

Random slope posterior mean inclusion probabilities are provided in Table 5.3.

From the six varying effects of the net indicators, Model1 suggests that none should

be included either with a fixed or random effect. For some of the provinces and net

indicators, the posterior mean inclusion probabilities of Model2 are higher than 0.5

despite of an effect close to 0. The pk of Model3 suggests that all net indicators,

apart from OWN3, are excluded. For OWN3, a negative effect (median=-1.91 and

CI:-3.66, -0.81) is estimated for Huambo province indicating that the decrease of

prevalence in the province is attributed to the increase of intervention coverage

during 2006 and 2011.
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Table 5.3: Posterior inclusion probabilities for the 6 ITN indicators, stratified by
variable selection.

Indicator USE1(k = 1) USE2(k = 2) OWN1(k = 3)

Model1 Model2 Model3 Model1 Model2 Model3 Model1 Model2 Model3

γ
(1)
k 0.19 0.02 (0, 0.13) 0.19 0.01 (0, 0.17) 0.21 0.02 (0, 0.19)

γ
(2)
k 0 E(γjk) 0 E(γjk) 0 E(γjk)

Bengo (γ1k) 0.4 0 0.49 0.01 0.45 0.01
Benguela (γ2k) 0.35 0 0.39 0.01 0.46 0.02
Bié (γ3k) 0.42 0 0.51 0.01 0.46 0.02
Cuando Cubango (γ4k) 0.39 0 0.5 0 0.52 0.03
Cuanza Norte (γ5k) 0.41 0 0.5 0.02 0.46 0.01
Cuanza Sul (γ6k) 0.39 0 0.47 0.01 0.48 0.02
Cunene (γ7k) 0.43 0 0.5 0.01 0.48 0.02
Huambo (γ8k) 0.43 0.14 0.48 0.07 0.61 0.09
Húıla (γ9k) 0.38 0 0.52 0.01 0.31 0.01
Luanda (γ10k) 0.39 0 0.47 0.01 0.45 0.01
Lunda Norte (γ11k) 0.36 0.01 0.46 0.01 0.39 0.01
Lunda Sul (γ12k) 0.41 0 0.55 0.01 0.49 0.01
Malanje (γ13k) 0.38 0 0.55 0.01 0.42 0.01
Moxico (γ14k) 0.37 0.01 0.5 0.02 0.49 0.01
Namibe (γ15k) 0.4 0.01 0.51 0.01 0.45 0.02
Uı́ge (γ16k) 0.35 0 0.49 0 0.47 0.01
Zaire (γ17k) 0.45 0 0.5 0.01 0.49 0.01

Variable OWN2(k = 4) OWN3(k = 5) CASE1(k = 6)

Model1 Model2 Model3 Model1 Model2 Model3 Model1 Model2 Model3

γ
(1)
k 0.17 0.02 (0, 0.24) 0.34 0.06 (0, 0.21) 0.33 0.01 (0, 0.18)

γ
(2)
k 0 E(γjk) 0 E(γjk) 0 E(γjk)

Bengo (γ1k) 0.43 0.02 0.55 0.15 0.48 0
Benguela (γ2k) 0.36 0.01 0.52 0 0.47 0.01
Bié (γ3k) 0.42 0.02 0.5 0.01 0.52 0.02
Cuando Cubango (γ4k) 0.51 0.01 0.49 0 0.43 0.01
Cuanza Norte (γ5k) 0.52 0.04 0.51 0.08 0.68 0.01
Cuanza Sul (γ6k) 0.51 0.02 0.56 0 0.46 0.01
Cunene (γ7k) 0.46 0.03 0.5 0.17 0.65 0.01
Huambo (γ8k) 0.53 0.04 0.67 0.79 0.48 0.01
Húıla (γ9k) 0.3 0.01 0.42 0 0.43 0.01
Luanda (γ10k) 0.5 0.03 0.37 0 0.44 0.01
Lunda Norte (γ11k) 0.45 0.03 0.43 0 0.52 0.01
Lunda Sul (γ12k) 0.49 0.01 0.5 0 0.42 0.01
Malanje (γ13k) 0.47 0.01 0.37 0 0.49 0.01
Moxico (γ14k) 0.46 0.02 0.39 0 0.5 0.01
Namibe (γ15k) 0.43 0.03 0.44 0.01 0.37 0.01
Uı́ge (γ16k) 0.42 0.01 0.47 0 0.51 0.02
Zaire (γ17k) 0.5 0.02 0.57 0.01 0.55 0.02

In all models and covariates, ρk is estimated close to 0. The geostatistical intercept’s

spatial range is estimated to 131km (CI: 62, 394), 53km (CI: 41, 78) and 153km

(CI: 103, 256) by Model1, Model2 and Model3, respectively. The corresponding

variance estimates are 3.8 (CI: 2.09, 6.21), 2.36 (CI: 1.84, 3.24) and 2.34 (CI: 1.69,

3.42). The spatial parameters are summarized in Table 5.4.
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Table 5.4: Estimates of the spatial parameters.

σ2

Model1 Model2 Model3
w0 3.8 (2.09, 6.21) 2.36 (1.84, 3.24) 2.34 (1.69, 3.42)

USE1 0.59 (0.17, 3.99) 0.54 (0.17, 2.93) 0.59 (0.18, 4.18)
USE2 0.57 (0.17, 3.74) 0.54 (0.18, 2.75) 0.6 (0.18, 4.24)

OWN1 0.63 (0.19, 3.2) 0.56 (0.17, 3.38) 0.6 (0.18, 3.91)
OWN2 0.58 (0.17, 8.51) 0.55 (0.18, 3.09) 0.57 (0.17, 3.98)
OWN3 0.74 (0.18, 10.31) 0.54 (0.18, 2.94) 0.57 (0.17, 3.67)
CASE1 0.68 (0.19, 3.73) 0.5 (0.17, 2.37) 0.56 (0.17, 3.7)

ρ

Model1 Model2 Model3
USE1 -0.07 (-0.96, 0.91) 0.21 (-0.93, 1) -0.02 (-0.91, 0.83)
USE2 -0.01 (-0.95, 0.94) -0.04 (-0.95, 0.93) -0.02 (-0.9, 0.83)

OWN1 -0.01 (-0.95, 0.94) 0 (-0.95, 0.95) -0.02 (-0.9, 0.83)
OWN2 0 (-0.95, 0.95) 0.06 (-0.95, 0.98) -0.01 (-0.91, 0.83)
OWN3 0 (-0.95, 0.94) 0 (-0.95, 0.95) 0.06 (-0.89, 0.86)
CASE1 0.03 (-0.95, 0.96) 0.04 (-0.95, 0.98) -0.01 (-0.91, 0.83)

The model identified by the formulation of Model3 had the best fit according to

the DIC that was estimated to be 320. The median effect of ndvi was 0.36 (CI:

0.11, 0.58), suggesting a positive association with malaria risk. Models from the

formulations of Model1 and Model2 had a DIC equal to 429 and 451, respectively.

5.4 Discussion

To our knowledge, this is the first effort to assess the sensitivity of variable selection

methods in identifying spatially varying effects. We assessed the effects of changes

in malaria intervention coverage on the difference of parasitemia risk between 2011

and 2006. Model3 had the best fit and pointed one province for which an important

negative effect of OWN3 (mean nets-to-people ratio) was estimated. As discussed

in Giardina et al. (2014), only a fixed effect for an indicator might not be able

to find an association while a varying effect can depict places in which a control
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intervention had an important impact. The parametrization of the CAR with the

additional parameter ρk showed that an exchangeable structure might be more

appropriate than a spatial one.

In our application, Model2 estimated high inclusion probabilities despite of an

unimportant effect (see Appendix). The pk of Model3 has to be carefully interpreted.

In case pk ' 0, a global exclusion can be inferred but a slight deviation from 0

might show that some provinces have an important effect as demonstrated by the

posterior means of γmk. Model1 has a stricter inclusion criterion; that is, a varying

effect has to be included for all provinces and, presumably for this reason, it did

not identify any varying effect.

The shrinkage factor u0 influences inference. A value of 0 would lead to a Dirac prior

for which a marginalization would be required. We chose a value of 0.001 based on

what we would consider to be an important effect. An inverse gamma prior of the

variances results to t distributed slab marginal distributions. Wagner and Duller

(2012) used exponential and and degenerate priors for these variances that lead to

Laplace and Gaussian distributed slabs, respectively. A spatial analogue of their

approach could be envisaged and could show a sensitivity on this prior. Effects

of indicators were assumed to vary by province. District-level CAR effects could

not be modeled due to the fact that approximately half of the districts are lacking

intervention data. Going to a finer level, a point-level geostatistical effect is worth

exploring for which perhaps the Reich et al. (2010) could perform well due to its

lighter parametrization. The use of point-level effects may be supported by studies

of ITNs’ effectiveness, suggesting that there is a community-wide benefit from ITNs

usage (Killeen et al., 2007). We incorporated the 2006 survey by using the median

predicted logit prevalence as an offset. The median is a point estimate and therefore

the whole predictive distribution is not taken into account. In addition, modelling

the difference of the intervention indicators’ did not allow an investigation of the

difference in the effects of the two time points that could be possible with e.g. a

spatiotemporally varying extension of the methods used.

Identifying malaria control indicators that contribute to malaria risk is important

for decision makers. It is of great significance to note not only that an indicator

might not have a global fixed effect but also that it might not be spatially structured.
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Avoiding the use of a variable selection that accommodates locally varying effects

may have an implication in the risk factor analysis and on the importance of the

estimated effects.

As funds to combat tropical diseases increase, see for example the Open Malaria

Funding Data Platform (http://www.rollbackmalaria.org/financing/mfdp), inter-

ventions for other diseases such as soil-transmitted helminthiasis and schistosomiasis

will be widely administered. Therefore, data availability will increase for more

diseases and the proposed model formulations can become part of monitoring and

evaluation to point out areas of need of an additional action. Moreover, due to the

fact that there are common control interventions between tropical diseases (such as

ITNs for mosquito-related or sanitation improvement for helminths) a joint, unified

evaluation could indicate cross-effective interventions.

Finally, we compared three stochastic search variable selection methods for identi-

fying net-related interventions in Angola with potentially spatially varying effects.

We showed that identifying predictors is sensitive to the variable selection formula-

tion. In our application, the model with locally varying inclusion indicators and

spatially structured effects imposed through a copula performed best. Including

such variable selection schemes in routine intervention adminstration could identify

where areas with successful interventions.

5.5 Appendix

http://www.rollbackmalaria.org/financing/mfdp
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Table 5.5: Estimates (median and 95% CI) of the varying effects wkj obtained from Model2.

Province USE1 (k = 1) USE2 (k = 2) OWN1 (k = 3) OWN2 (k = 4) OWN3 (k = 5) CASE1 (k = 6)

Bengo 0 (-2.67, 2.39) 0 (-2.71, 2.29) 0 (-2.59, 2.41) 0.01 (-1.29, 2.95) -0.01 (-3.68, 1.95) -0.02 (-2.37, 0.7)
Benguela 0 (-2.5, 2.17) 0 (-2.29, 1.47) 0 (-2.76, 3.11) 0 (-2.31, 1.92) -0.01 (-3.49, 1.91) -0.02 (-2.58, 0.44)
Bié 0 (-2.92, 2.14) -0.01 (-2.73, 2.15) 0 (-2.81, 2.95) 0 (-2.68, 2.72) -0.01 (-3.51, 1.9) -0.03 (-2.3, 0.52)
Cuando Cubango 0 (-2.84, 2.1) 0 (-2.61, 2.92) -0.01 (-3.14, 2.88) 0 (-3.11, 3.13) -0.01 (-2.82, 1.85) -0.02 (-2.11, 0.44)
Cuanza Norte 0 (-2.31, 2.66) 0 (-2.38, 2.73) 0.01 (-1.88, 3.3) 0.01 (-2.76, 3.66) -0.01 (-3.64, 1.95) -0.81 (-2.72, 0.12)
Cuanza Sul 0 (-1.52, 2.51) -0.01 (-2.78, 1.45) -0.01 (-2.64, 2.23) 0 (-2.96, 3.12) -0.02 (-4.04, 1.84) -0.02 (-2.48, 0.58)
Cunene 0 (-3.27, 2.1) -0.02 (-3.21, 1.18) 0.01 (-2.23, 2.94) 0.01 (-1.86, 3.24) -0.01 (-3.71, 1.61) -0.5 (-3.35, 0.69)
Huambo -0.01 (-3.53, 1.43) -0.01 (-2.9, 1.93) -0.04 (-4.1, 1.72) -0.02 (-7.98, 1.11) -0.89 (-4.78, 0.7) -0.02 (-2.87, 1.13)
Húıla 0 (-2.04, 2.42) 0 (-2.29, 3.21) 0 (-2.05, 1.35) 0 (-0.8, 2.62) 0 (-2.39, 2.09) -0.01 (-2.51, 1.01)
Luanda 0.01 (-2.09, 2.55) 0.01 (-1.77, 2.89) 0 (-2.02, 3.25) 0.01 (-2.39, 2.96) 0 (-2.26, 1.61) -0.01 (-2.52, 1.05)
Lunda Norte 0 (-2.2, 2.01) 0 (-2.49, 2.37) 0 (-1.84, 2.42) 0 (-2.47, 2.57) -0.01 (-2.84, 1.35) -0.02 (-2.75, 0.93)
Lunda Sul 0 (-2.07, 2.72) 0 (-2.61, 3.57) 0 (-2.59, 2.69) 0.02 (-1.14, 3.81) -0.01 (-2.6, 1.6) -0.01 (-2.19, 1)
Malanje 0 (-2.82, 2.34) 0 (-2.7, 2.72) 0 (-2.11, 2.44) 0.01 (-1.44, 2.85) 0 (-1.84, 2.02) -0.02 (-2.94, 1.01)
Moxico 0 (-2.62, 2.09) -0.01 (-2.97, 2.75) -0.01 (-2.61, 3.06) 0 (-2.76, 2.61) -0.01 (-2.61, 1.04) -0.02 (-2.89, 0.92)
Namibe 0 (-2.55, 2.42) 0 (-2.47, 3.08) 0 (-2.74, 2.25) 0 (-2.55, 2.44) -0.01 (-2.76, 1.69) -0.01 (-2.07, 0.69)
Uı́ge 0 (-1.44, 2.05) 0 (-2.2, 2.08) 0.01 (-1.72, 3.61) 0.01 (-2.34, 2.93) 0 (-3.32, 2.21) -0.02 (-2.95, 1)
Zaire -0.01 (-2.52, 2.02) -0.01 (-2.4, 1.48) 0 (-2.76, 2.55) 0 (-2.73, 3.31) -0.03 (-3.63, 1.52) -0.03 (-3.13, 0.77)
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Abstract

National malaria control programs aim to reduce malaria burden by implementing

effective, spatially targeted interventions. Data on the disease risk and on the

proportion of the population that is covered by the various interventions are

collected systematically by national malaria surveys. We employ Bayesian variable

selection within geostatistical models with spatiotemporally varying coefficients to

analyse the spatiotemporal effects of malaria interventions using data from two

national surveys in Angola. We fit the models derived from all possible combinations

of the predictors that include intervention coverage measures and climatic factors.

Indicators are introduced to define inclusion/exclusion of each variable and each

model’s prior probability. For potentially spatiotemporally varying effects, we

adopt a multinomial prior allowing either exclusion or inclusion of a non-varying or

inclusion of a spatiotemporally varying effect. We develop an iteratively integrated

nested Laplace approximation (i-INLA) to the marginal likelihood of each model.

We use predictive process approximations to address intensive computations that

arise in modelling large geostatistical data by estimating the spatial Gaussian

processes involved in a model from a set of locations (knots) with lower size than

that of the observed data. We assess the sensitivity of variable selection to the

knots’ size by comparing with a model fitted on the full set of locations. Knot

selection led to different models, however all models identified the same predictor

with spatiotemporally varying effects. Our algorithm offers an approximation to

the marginal likelihood and can be combined with stochastic search over the model

space as well as Bayesian model averaging.
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6.1 Introduction

Efforts of international organizations to control malaria have lead to large-scale

implementation of interventions. Repeated surveys are conducted for monitoring

and evaluation purposes. Interventions are expected to have an effect in disease

risk and should be taken into account into geostatistical predictive risk modelling.

Their effects are also likely to vary within a country and over time. There are

several ways to measure interventions (MEASURE Evaluation et al., 2013) and

their effects on malaria burden depend on the intervention measure (Giardina et al.,

2014).

Giardina et al. (2014) used geostatistical models with spatially varying regression

coefficients to estimate effects of malaria interventions at sub-national levels. They

assumed a spatial structure in the effects modelled by conditional autoregressive

(CAR) processes. However, it is well-known that mosquito nets have not only

an individual protective effect but also a community-wide benefit (see Howard

et al., 2000; Hawley et al., 2003; Killeen et al., 2007, among others). Therefore, the

assumption of a constant intervention effect within an area, that a CAR structure

implies, may not be justifiable. The inclusion of geostatistical random slopes in mod-

elling malaria risk could address this issue. Furthermore, incorporating Bayesian

variable selection methods within geostatistical models (Chapter 5) would allow

identification of possibly varying effects of important intervention measures. Ex-

tending the above models with spatially varying effects to spatiotemporal analogues

can help explain heterogeneity in space and time.

Despite the vast development of Bayesian variable selection approaches (for a

review, see O’Hara and Sillanpää, 2009), geostatistical disease mapping is rather

lacking rigorous inference pertaining to variable selection. It is common in many

applications to select the variables that enter in the geostatistical model by omitting

the spatial intercept (see, for example, Clements et al., 2006, 2009; Soares Magalhães

et al., 2011; Schur et al., 2011a; Raso et al., 2012, among others). Chammartin et al.

(2013a) applied Bayesian geostatistical variable selection and showed that ignoring

the geostatistical term might result in selecting a different set of predictors.

Wagner and Duller (2012) conducted variable selection of an unstructured random



122 Chapter 6. Iteratively integrated nested Laplace approximations

intercept. For spatially varying coefficients, Reich et al. (2010) performed fixed

and random slope selection for a multivariate Gaussian response. Boehm Vock

et al. (2015) used local variable selection through a Gaussian copula. Reich’s

approach was based on a spike and slab prior with a discrete spike. In such

formulations, integration of a predictor’s fixed and random slope is needed to

calculate a conditional (on all other parameters), marginal (over the fixed and

random slope) likelihood.

In the case of a Gaussian likelihood, this integral has a closed form (Reich et al., 2010)

as does the integral over all spatial intercepts and slopes which is the conditional,

on hyper-parameters (such as variances, ranges or likelihood parameters), marginal

likelihood. For non-Gaussian likelihoods, that are common in modelling survey

or count disease data, there is no closed form of this integral. For generalized

linear models with hyper-g priors, Sabanés Bové and Held (2011) used a Laplace

approximation (Tierney and Kadane, 1986) to this conditional (in this case, on g)

marginal likelihood. The authors integrated over g numerically to approximate the

marginal likelihood and to perform variable selection. The resulting algorithm is an

integrated Laplace approximation and has been used also in generalized additive

linear models (Sabanés Bové et al., 2011).

Models with spatiotemporal effects include large number of hyper-parameters,

rendering a numerical integration computationally expensive. We use an iterated

Laplace approximation for the integration over the hyper-parameters. This method

is based on a Gaussian mixture approximation of the hyper-parameters’ marginal

posterior distribution. The marginal likelihood is, thus, calculated via an iteratively

integrated nested Laplace approximation (i-INLA). A single mixture component

would lead to the special case of an integrated nested Laplace approximation (INLA,

Rue et al., 2009).

Our approach, requires estimating the mode(s) of the hyper-parameters’ marginal

posterior and calculating the Hessian. Matrix calculations involved in geostatistical

modelling slow down computation. We overcome large matrix computations using

predictive processes for all spatiotemporally varying coefficients. The predictive

process approximation (Banerjee et al., 2008) is based on a selection of locations,

knots, on which the random effects are placed. The effects on the full dataset are
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then estimated using properties of the multivariate normal distribution.

We implement the proposed methodology to estimated effects of insecticede treated

net (ITN) indicators in Angola and investigate the influence of predictive processes

in Bayesian variable selection for spatiotemporally varying coefficients.

6.2 Data

Data concerning malaria infection, age, urban-rural classification and ITN proxies,

for Angola in 2006 and 2011 were obtained from the Demographic and Health

Surveys (DHS) Programm (http://www.dhsprogram.com). The complete dataset

contained 5160 children, aged below 5 years, living in 342 clusters, 115 of these

surveyed in 2006 and 227 in 2011. Locations in the two surveys are unique, resulting

to space-time misalignment. Forty one percent of the clusters were classified as

urban. Age was categorized by year of life. From the first to the fifth year, there

were 14.7%, 23.5%, 21.7%, 21.1%, 19% of children surveyed in both time points.

Based on explanatory analysis, age category and urban class were included in all

models to reduce model space.

We followed RBMP’s (MEASURE Evaluation et al., 2013) guidelines and computed

ITN-related intervention measures. Complete data for both periods and all locations

existed for the following five indicators: (i) percentage of people who slept under

an ITN the night before the survey; (ii) percentage of children, aged below 5 years,

who slept under an ITN the night before the survey; (iii) percentage of households

in a cluster with at least one ITN, (iv) percentage of households in a cluster with

at least one ITN for every two people; and (v) mean nets to people ratio.

The observed data on malaria prevalence as well as the 5 ITN measures of 2006

and 2011 are depicted in Figure 6.1. The total malaria prevalence in 2006 was

23.3% and dropped to 9.1% in 2011. The mean prevalence of both years was 13%.

In urban areas the prevalence was lower (3.5%) compared to rural settlements

(19.5%).

To adjust for environmental predictors we used proxies of temperature, rainfall,

altitude, distance to water and vegetation averaged over the year previous to

each survey. Specifically, land surface temperature at night (lstn), as well as the

http://www.dhsprogram.com
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normalized difference vegetation index (ndvi) were obtained from MODIS (Oak

Ridge National Laboratory Distributed Active Archive Center, 2011). Using the

same source and the land cover classification of water, we defined the distance to

the closest water body. Altitude was obtained from http://srtm.csi.cgiar.org using

the R package raster (Hijmans, 2014). Rainfall was downloaded from the Famine

Early Warning System Network of the United States Agency for International

Development http://earlywarning.usgs.gov/fews/index.php.

http://srtm.csi.cgiar.org
http://earlywarning.usgs.gov/fews/index.php
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Figure 6.1: Observed data of parasitemia and ITN coverage measures in Angola
obtained from the 2006 and 2011 surveys.
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6.3 Model specification

6.3.1 Spatiotemporally varying coefficients with predictive

processes

Let Yit be the binomially distributed response denoting the number of infected

children observed at location si (i = 1, ..., n) and time t (t = 1, ..., T ), X and D be

the n× p and n×K design matrices of predictors with fixed and random slopes,

respectively. The linear predictor with spatiotemporally varying coefficients is

formulated as:

ηit = g (E (Yit)) = β0 + XT
itβ + wit0 + DT

itβ̃ +
K∑
k=1

Ditkwitk (6.1)

We consider the random intercept w0 to be a realization of a spatiotemporal

Gaussian process, that is w0|Σ0 ∼ NTn (0,Σ0). The spatiotemporal dependence

is taken into account through the covariance matrix Σ0 = Q0 ⊗C0. We assume

that C0 is a n× n spatially structured matrix with 〈C0〉ij = σ2
0 exp (−φ0dij) and

that Q0 is a temporal T × T correlation matrix with 〈Q0〉tt′ = ρ
|t−t′|
0 . The spatial

variance and decay parameters are σ2
0 and φ0, ρ0 is an autocorrelation parameter

and dij is the Euclidean distance between locations si and sj . Similar specification

is followed for the random slopes wk.

We assign to fixed effects β0,β, β̃ vague normal priors. The Bayesian hier-

archical formulation is completed by defining priors for the hyper-parameters

σ2
0, φ0, ρ0, σ

2
k, φk, ρk. Commonly, inverse gamma priors are assigned to variances

and uniform priors to decay and autocorrelation parameters. Here, we choose to re-

parameterize the hyper-parameters in order to define variables in the real line with

normal priors. We will use θ for the vector of the transformed hyper-parameters

that could also include any likelihood parameters.

The linear predictor can be formulated in a vector format as η = X̃α with X̃ being

a grand design matrix and α =
(
β0,β

T ,wT
0 , β̃

T ,wT
k

)T
the vector of coefficients

with a multivariate normal zero-centered prior distribution and a covariance matrix

that is block-diagonal with blocks corresponding to the covariance matrices of each
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of its elements.

Due to the fact that Σ0 and each Σk would require the inversion of n× n matrix,

we use predictive processes as proposed by Banerjee et al. (2008). The methodology

is based on a selection of m knots s∗, that may or may not be part of the n

locations, on which the geostatistical random effect is placed. Then, an unbiased

estimate of the random effect can be calculated through ŵ0 and ŵk where, for

example, ŵ0 =
{
Q0 ⊗

(
C0(s, s∗)C−1

0 (s∗, s∗)
)}

w∗0. This approximation reduces

the dimension of α which is now defined as α =
(
β0,β

T ,w∗T0 , β̃T ,w∗Tk

)T
. An

advantage of the predictive process is that it does not require ad-hoc treatment

for spatial and temporal misalignment that are present in our study. The above

specification of the predictive process is valid in our case due to the fact that we

choose same s∗ for both time points. More generally, one could use space-time

knots whose locations differ in space and time.

6.3.2 Variable selection

We perform variable selection to identify the predictors in X and D that contribute

in explaining malaria risk. Therefore, we conduct model selection by assigning an

inclusion prior to each predictor. This is achieved by introducing binary indicators,

that essentially index a model’s specification and indicate inclusion or exclusion of

each predictor.

The random slope wk depicts deviations from the fixed one β̃k. To incorporate such

interpretation in the model priors, we introduce binary indicators (γ1k and γ2k) for

each potentially varying effect. A multinomial prior is assigned to the pair of indica-

tors with possible events {(γ1k = 0, γ2k = 0) , (γ1k = 1, γ2k = 0) , (γ1k = 1, γ2k = 1)}
and prior probability of 0.5, 0.25 and 0.25, respectively (Reich et al., 2010). The

first event denotes exclusion of the predictor, the second inclusion of a fixed slope

and the third inclusion of random slope. For the predictors in X a binary indicator

with probability of inclusion equal to 0.5 is introduced.

If γ is the vector of all indicators, then a model’s prior probability p (M) is calculated

by multiplying the prior of each element of γ. The model’s (unnormalized) posterior

probability is then given by p (M |y) = f (y|M) p (M). A normalization over
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the models under consideration can is straightforward. f (y|M) is the marginal

likelihood of model M and is needed to identify the model with the highest posterior

probability.

6.3.3 Marginal likelihood approximation

Under a binomial likelihood, a closed form of the marginal likelihood does not exist.

To calculate it, first, we use a Gaussian approximation (fG(α|y,θ,M)) of the full

conditional posterior distribution of the coefficients in model M , f(α|y,θ,M) =
f(y|α,θ,M)f(α|θ,M)

f(y|θ,M)
by optimizing the numerator with respect to α and calculating

the Hessian at the mode. Since f(α|θ,M) is a-priori Gaussian, the Hessian at the

mode of α’s full conditional can be calculated fast (Rue et al., 2009).

Given fG(α|y,θ,M), a natural approach to calculate the marginal likelihood would

be to use the Laplace approximation, fLa (y|θ,M), of f (y|θ,M) and combine it

with another Gaussian approximation, fG(θ|y,M), for the marginal posterior of

the hyper-parameters f̃(θ|y,M) = fLa(y|θ,M)f(θ|M)
f(y|M)

. This would be an integrated

nested Laplace approximation (Rue et al., 2009) of the marginal likelihood.

Here, to improve the approximation of f(y|M), we use an iterated Laplace approxi-

mation (Bornkamp, 2011). Namely, the marginal posterior of θ is approximated by

a mixture of multivariate Gaussian distributions, with a number of components that

is calculated iteratively. Initially, a single component approximation is considered

and its difference from f̃(θ|y,M) is calculated on a randomly selected grid of θ.

At the largest difference, a mode search and Gaussian fitting takes place. A second

Gaussian component is added to θ|y,M at this mode and a new marginal likelihood

is estimated. If the new marginal likelihood differs by more than 1% from the

initial one, then the second Gaussian component is kept and another grid of θ is

selected to iterate the algorithm until convergence or until a prespecified number

of Gaussian components is reached (for more details see Section 2 in Bornkamp,

2011). Therefore, the overall approach is an iteratively integrated nested Laplace

approximation of the marginal likelihood.
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6.3.4 Implementation

We consider a normal prior for the coefficients α, that is

α|θ,M ∼ N (0, (100⊕ 100Ip ⊕Σ0 ⊕ 100IK ⊕Σk))

We assume for log (σ2), a log inverse gamma such that its exponent is inverse gamma

distributed with shape parameter equal to 2 and rate equal to 1. For the spatial

decay parameters, we consider log
(
φ−0.5
50−φ

)
∼ N (0, 1.4) and for autocorrelation

parameters log
(
ρ+1
1−ρ

)
∼ N (0, 1.4). In this study, we fit the models with all

possible combination of predictors but allow maximum 1 random slope due the

high correlation of predictors in D.

Inference was conducted in R (R Core Team, 2014). The Gaussian approximation

of α|y,θ,M , was implemented in the INLA package (available at www.r-inla.org).

For the Gaussian mixture approximation of θ|y,M , we used the iterLap (Bornkamp,

2011) package and modified it to avoid unnecessary calculations as well as to include

optimization using quadratic approximations through the minqa package (Bates

et al., 2014). We set the number of the θ|y,M Gaussian mixture components to

be maximum 3 and the θ grid to 250 points. The presented results for α are based

on an empirical Bayes integration over the hyper-parameters’ mode(s) and for θ

on 1000 random samples from the mixture Gaussian transformed to the natural

scale. To select the knots, we used the space-filling design (Johnson et al., 1990),

implemented in the fields package (Nychka et al., 2015). We used 50 and 100 knots

for each time point (i.e. 100 and 200 space-time knots but we will refer to them

using the spatial dimension) as well as the full set of locations (342 unique spatial

locations). We predict the mean of spatiotemporally varying coefficients for the

two time points in a 5 × 5 km grid covering the country. The prediction of the

mean is based on the formulation of the predictive process.

6.4 Application

We have applied the above model to analyze the malaria survey data. We fitted

3 models with 50, 100 knots and the full dataset. The two different knot sizes

www.r-inla.org
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and the full set of locations led to different models with maximum a posteriori

(MAP) probability. The three MAP models included USE1 with a spatiotemporally

varying effect. Figure 6.2 depicts the log unnormalized posterior model probabilities

stratified by ITN indicator, knots size and random slope type (fixed or random). In

general, larger posterior probabilities were observed with increasing knots size. For

the models using the full locations, the higher probabilities are observed for USE1

and USE2. No such pattern was apparent for any knots’ size. The normalized

posterior probabilities of the three MAP models were 0.89, 0.6 and 0.52 for knots

50, 100 and the full set of locations, respectively. The model selected from the full

set of locations was ranked 4th best in the variable selection based on 50 knots and

434th when 100 knots were considered and had normalized posterior probabilities

of 0.0024 and 2 · 10−7, respectively.

Figure 6.2: Un-normalized posterior probability in the log scale (i.e. log (p (M |y)))
stratified by ITN indicator, their effect type and size of knots for all possible models.
For illustration purposes, few models with log (p (M |y)) < −2000 are not depicted.

Using the knots size of 50, the MAP model included ndvi, rainfall, altitude and

distance to nearest water body. Rainfall and ndvi were positively associated with

malaria risk, while the rest of the predictors were negatively associated. Compared

to the above predictors, the MAP model of the 100 knots did not include nvdi
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and altitude. The MAP model using all locations included rainfall, altitude and

USE1. The effects of the three MAP models are provided in Table 6.1. Similar

direction of the effects were observed for the common predictors in the three MAP

models. Specifically, the effects of age suggested that older children are at higher

risk. Urban classification was negatively associated with malaria risk.

Table 6.1: Posterior estimates (median and 95% credible interval) of the fixed
effects in the three MAP models.

Variable 50 knots 100 knots all locations

Age
< 12 months 0 0 0
12-23 0.14 (-0.20, 0.48) 0.16 (-0.18, 0.51) 0.15 (-0.20, -0.50)
24-35 0.56 (0.22, 0.90) 0.56 (0.21, 0.91) 0.55 (0.19, 0.91)
36-47 0.77 (0.43, 1.10) 0.84 (0.50, 1.18) 0.82 (0.48, 1.17)
48-59 0.93 (0.60, 1.27) 0.96 (0.61, 1.30) 0.95 (0.60, 1.30)

Urban settlement -1.24 (-1.86, -0.62) -1.29 (-1.92, -0.67) -1.07 (-1.89, -0.26)
ndvi 0.39 (0.06, 0.71)
rainfall 1.18 (0.67, 1.68) 1.05 (0.46, 1.64) 1.22 (0.58, 1.86)
altitude -1.17 (-1.72, -0.61) -1.03 (-1.72, -0.34)
distance to water -0.90 (-1.26, -0.54) -0.60 (-1.10, -0.09)
use1 -0.27 (-0.52, -0.03) -0.26 (-0.49, -0.02) -0.40 (-0.75, -0.06)

Estimates of the hyper-parameters are provided in Table 6.2. The spatial range

of the random intercept is estimate to 247, 293 and 248 km in the models with

50, 100 knots and the full set of locations, respectively. Its variance is smaller in

the full set of locations. The autocorrelation parameters shows a small dependence

in the two time points for both the intercept and the effect of USE1. The range

of USE1 differs between the 3 models. The smallest range is estimated in the full

model and it is approximately 7.5 km.
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Table 6.2: Posterior estimates (median and 95% credible interval) of the hyper-
parameters in the three MAP models.

Variable 50 knots 100 knots all locations

σ2
0 4.23 (2.79, 6.17) 4.03 (2.97, 5.31) 2.79 (2.10, 3.72)

3/φ0 (km) 247.58 (171.45, 341.05) 293.61 (196.66, 407.82) 248.13 (158.81, 353.63)
ρ0 0.13 (0.06, 0.18) 0.39 (0.26, 0.51) 0.25 (0.16, 0.33)
σ2

1 0.79 (0.70, 0.89) 0.73 (0.61, 0.84) 1.41 (1.33, 1.49)
3/φ1 (km) 126.40 (77.56, 196.20) 8.60 (7.44, 11.21) 7.46 (6.71, 18.65)
ρ1 0.60 (0.11, 0.87) 0.14 (0.07, 0.20) 0.28 (0.13, 0.39)

Prediction of the effect of USE1 (fixed and random effect) on a grid of 5× 5 km is

provided in Figure 6.3. Small spatial range of the full model resulted in small scale

heterogeneities. At distances larger than the range of each model, the mean fixed

effect (β̃k) is predicted.
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Figure 6.3: Mean predicted effect of USE1 for the two time periods using the three
MAP models.
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6.5 Discussion

We used a marginal likelihood calculation through an iteratively integrated nested

Laplace approximation, to identify potentially spatiotemporally varying effects of

net indicators in Angola using predictive processes.

The results suggested that predictive processes may lead to different model iden-

tification. In fact, different knot sizes lead to different models. Apart from the

size of the knots, the knot selection design could influence inference. We used the

space-filling design but, to our experience, it is rather unlikely that other designs

would yield similar results as the full model. We also assumed the same knots for

both time points. An option, that could address both issues, would be to assume

that the locations of the knots in space and time are random e.g. a log-Gaussian

(predictive) process (Guhaniyogi et al., 2011).

In our application, the total number of models was small enough to allow an

exhaustive model space exploration. Alternatively, a stochastic model space search

that is tuning-free has been recommended by Sabanés Bové et al. (2011) for

generalized additive models using g-priors and could be also used in our setting. A

relevant issue, is that we forced to include maximum 1 varying slope. This was done

due to the fact that ITN indicators were highly correlated. To smooth away, but

yet allow the existence of correlated predictors if data support so, a g-prior could be

used for β̃K . This, would take into account the point-level correlation but not the

between point correlation. An extension could be to define a multivariate analogue

of a g-prior, and/or use not independent, cross-covarying, effects (Gneiting et al.,

2012). For instance, including a cross-covarying effects would allow information

of each of the indicators’ effects to be shared between locations. Although this

might seem computationally more demanding due to the increased number of

hyper-parameters, a simple parameterization with e.g. assuming that the random

slopes are independent realizations of the same Gaussian process (i.e. sharing the

same hyper-parameters) among varying effects would still allow flexible modelling.

A logical extension of this work would be to assume that α|y,θ is also a mixture of

multivariate normal distributions. Coupled with the adopted approach of the hyper-

parameters, it would define an integrated nested iterated Laplace approximation.
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However, as the dimension of α is much larger than the one of θ, searching for a

point in α’s domain to re-optimize would be extremely time consuming. Perhaps

using the Gaussian approximation of α|y,θ but alternative methodologies of the

marginal distributions of the hyper-parameters could reveal a limitation on the

Gaussian mixture approximation. For instance, one could use variational Bayes

or Hamiltonian Monte Carlo for exploring the θ|y and calculating the marginal

likelihood.

Identifying intervention coverage indicators that contribute to malaria risk is

important for monitoring and evaluation. Interventions might not be uniformly

effective across an areal unit such as province or district. Furthermore, in the case of

malaria, as discussed, for example, by Killeen et al. (2007), ITNs can have an effect

to surrounding settlements and to the broader community. This is emphasized by

the small spatial range estimated for the varying effect of USE1 from the full model.

A CAR structure of the effects would not be able to capture the community-wide

effect of the implemented interventions. As data accumulation and ITN distribution

increases, the models could be extended to incorporate covariates for the varying

effects that could explain the small-scale heterogeneities of the effects in space and

time.

Finally, under an i-INLA approach for a marginal likelihood-based Bayesian variable

selection, we showed that the predictive process approximation might lead to a

different model than using the full dataset. In our case, all knot sizes retrieved the

same varying ITN indicator but this might not always be true. In addition, for the

cases where the full model is not possible to be estimated, the retrieved marginal

likelihoods can be used for Bayesian model averaging in order to incorporate the

model uncertainty in an alternative way. In future studies, we will investigate

alternative integrations and “big n” approximations to address the aforementioned

issues.
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This PhD thesis contributes to the fields of Bayesian spatial modelling and spa-

tiotemporal epidemiology of tropical diseases with: (i) methodology for Bayesian

variable selection of spatiotemporally varying coefficients allowing flexible inference,

especially for computationally intensive geostatistical models of data collected over

large number of locations; (ii) sensitivity analysis of Bayesian variable selection

formulations of models with spatially varying coefficients; (iii) estimates of inci-

dence rates for cutaneous and visceral leishmaniasis in Brazil depicting the current

situation of leishmaniasis in the country; (iv) an open-access georeferenced database

cataloguing all available survey data for soil-transmitted helminth infections in

sub-Saharan Africa and Cambodia for disease control and research purposes; (v) up-

to-date smooth risk maps, and estimates of number of people infected and number

of required treatments of soil-transmitted helminth infections in sub-Sahara Africa

and Cambodia; (vi) an evaluation of the predictive ability of cluster-aggregated

WASH and other SES-related proxies in disease mapping of poverty-related diseases;

and (vii) geostatistical models of malaria risk for estimating effects of malaria

intervention coverage measures across space and over time.

Chapters 2-6 correspond to manuscripts which include detailed conclusions. The

purpose of this chapter is to summarize the principal findings, bring forward the

main highlights, discuss limitations and propose extensions of the work.

7.1 Significance of the work

7.1.1 Statistical methods: variable selection of spatiotem-

porally varying coefficients

In Chapters 5 and 6, we develop models for Bayesian variable selection of spatiotem-

porally varying coefficients and apply them in the field of malaria epidemiology.

We assess the sensitivity of inference to different variable selection formulations

(Chapter 5) and to predictive process approximations for large data (Chapter 6).

Bayesian variable selection of models with random effects has recently received

some interest. In the spatial statistics field, random effects model spatially varying

coefficients. There are a number of different formulations to conduct stochastic
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search variable selection of spatially varying coefficients using a spike and slab prior

by introducing indicators for each variable that define probabilities of inclusion into

the model. Reich et al. (2010) use a multinomial indicator to allow inclusion of a

fixed or random slope assuming that the effect enters in the model for all or none of

the locations. The authors consider a discrete spike and a Gaussian likelihood. To

relax this assumption, a local indicator can be introduced. The spatial dependence

can, then, be incorporated either in the effect or in the indicator. The first is

proposed by Boehm Vock et al. (2015) and the latter by Lum (2012).

In Chapter 5, we assess sensitivity of inference to different formulations of stochastic

search variable selection with spatially varying effects. We overcome computational

problems that arise under non-Gaussian likelihoods, as well as data augmentation

to achieve conjugacy (Lum, 2012), by proposing a conditional specification of the

spatial random slopes on the local indicators. Our approach enables straightforward

implementation in standard Bayesian software such as JAGS (Plummer, 2003).

A discrete spike for non-Gaussian likelihoods would require a numerical integration

over a model’s parameters. One could integrate over a single covariate’s effects

and conduct a stochastic search variable selection conditioning on the rest of the

parameters (as in Reich et al. 2010 for Gaussian likelihood). We follow another

approach by integrating over all parameters of a model and calculate its marginal

likelihood. Then, by evaluating all possible models we perform model selection.

In Chapter 6, we take advantage of the latent Gaussian model class, that our

models belong to, and integrate over the latent Gaussian field using a Laplace

approximation. This is computationally inexpensive and has been proposed by

Rue et al. (2009). The hyper-parameters (any parameters of the Gaussian field

or likelihood parameters) could also be integrated with a Laplace approximation

leading to an INLA (Rue et al., 2009) of the marginal likelihood. We improve the

latter approximation by using iterated Laplace approximations (Bornkamp, 2011)

and name our algorithm an iteratively integrated nested Laplace approximation

(i-INLA). To reduce the inferential computational cost, we use the predictive process

approximation (Banerjee et al., 2008) for the random slopes and show the effect

of approximation (i.e. dimension of knots) on model selection. Our proposed

algorithm, can be implemented in existing R packages and can be combined with
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Bayesian model averaging.

7.1.2 Epidemiological methods: planning and evaluation

of interventions

We introduce innovative statistical methodologies in tropical disease epidemiology to

address epidemiological questions in the control of NTD and malaria. In particular,

in Chapter 2 we conduct the first, to our knowledge, geostatistical analysis using

INLA and SPDE in the NTDs field. We implement variable selection using the

INLA package by fitting the models with all possible combinations of STH predictors

in Chapters 3 and 4. We apply novel approaches of Bayesian variable selection for

spatiotemporally varying covariate effects in malaria Epidemiology in Chapters 5

and 6.

Throughout this thesis, we analyze disease data that are observed in a large

number of locations (i.e. up to 6 thousand). The computational cost of parameter

estimation of a single spatial model, as well as prediction at high resolution, depends

on this number. Approximate Bayesian inference based on INLA and SPDE enables

us to reduce model fit and prediction to few hours from weeks that an MCMC-based

calculation would require. Taking advantage of the computational gain we are able

to perform geostatistical variable selection based on cross-validatory criteria and

select the model with the best predictive ability among all possible models than

can be formulated by our predictors.

The work presented in Chapter 4 contributes to understanding the use of so-

cioeconomic proxies in geostatistical modelling of poverty-related diseases. Soil-

transmitted helminthiasis, among other tropical diseases, is associated with low

socioeconomic status (see, for example, Ziegelbauer et al., 2012). Socio-economic

data are available from household surveys at locations which are not aligned with

the disease data. As introduced in Section 1.3, this misalignment can be addressed

with joint models of location-specific SES proxies and disease risk. However, ag-

gregated SES proxies at locations do not reflect individual exposures. In addition,

individually measured SES and disease infection is rarely available for a large

number of locations to allow spatial analyses. In Chapter 4, we evaluate the

predictive ability of location-specific and individual SES on STH infection risk on a
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dataset from Cambodia with individual data. We show that using joint modelling

of misaligned SES and disease survey locations may not capture the effect of e.g.

asset index or sanitation on STH risk. Geostatistical models based on the individual

data were able to estimate the expected effect of these proxies. Furthermore, the

location-aggregated SES measures led to inconclusive evidence of SES effect.

Interventions against malaria have been intensified in the recent years. Mass

mosquito nets’ administration, indoor insecticide residual spraying etc. are widely

implemented. Such interventions are the main cause of the approximately 50%

decrease of P. falciparum infection prevalence in Africa from 2000 to 2015 (Bhatt

et al., 2015). The effectiveness of interventions, though, is less likely to be the the

same across space (Giardina et al., 2014). Furthermore malaria bednet coverage is

measured by different proxies (MEASURE Evaluation et al., 2013) related to bednet

ownership or use. The work of (Giardina et al., 2014) showed that intervention

effects differ according to the proxy used in the statistical analysis. In Chapter 5 we

propose model formulations for selecting province-specific effects of interventions

and assess the effects of changes of intervention coverage measures on the changes

of parasitemia risk within a 6-year period in Angola. However, the effects of

interventions are likely to vary within province. In fact, studies have shown a

community effect of malaria interventions (Killeen et al., 2007). However, modelling

the effects of interventions at community level is computationally demanding

because spatially varying covariate effects should be estimated using Gaussian

processes over a very large number of locations. We address this issue with

predictive process approximations of the point-level spatiotemporally varying effects

in Chapter 6.

7.1.3 Compilation of helminthiasis survey data

In the field of neglected tropical diseases, georeferenced data availability has been

scarce. On the one hand, national surveys are not conducted systematically as, for

example, in malaria. On the other hand, accessibility of existing survey data is

difficult. Many small-scale survey data are reported in the literature, however they

are not readily available for disease mapping purposes.

The Global Neglected Tropical Diseases (GNTD) database (Hürlimann et al., 2011)
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compiles and provides freely and publicly accessible georeferenced data of infection

prevalence reported in the literature, national control programs, researchers and

organizations. We contributed to the GNTD database by conducting two large

systematic reviews pertaining to parasitological surveys reporting soil-transmitted

helminth infection prevalence in sub-Saharan Africa and Cambodia (Chapters 3

and 4).

These data constitute a comprehensive collection of historical and contemporary

information of STH prevalence. The results of the systematic reviews include

detailed information such as diagnostic tests, age, sex, survey type etc. More

importantly, the surveys are georeferenced and can be used in spatial analyses. In

particular, we identified 537 sources with relevant data pertaining to STH infections

out of more than 6,000 screened references. In total, approximately 6 thousand

unique locations were georeferenced.

7.1.4 Tropical epidemiology: disease control and interven-

tion planning

The results of this thesis can assist control programmes to select treatment strategies,

funding agencies to allocate resources and drug donors to plan cost-effectively. Risk

estimates provide baseline information for monitoring and evaluation. Estimates

of the effects of malaria interventions in space identify areas of successful disease

control.

The study presented in Chapter 2 highlights the situation of leishmaniasis in Brazil.

Incidence rates have decreased since 2000 but remained stable from 2005 onwards.

They are, though, at similar levels with late 1980’s (Brandão Filho et al., 1999).

The information system for notifiable diseases in Brazil has been shown to be prone

to under-reporting of visceral leishmaniasis cases (Maia-Elkhoury et al., 2007).

Our model-based spatially explicit predictions of disease estimated higher number

of disease cases than the ones officially reported. This finding underscores the

problem of under-reporting which is crucial for control planning.

For helminthiasis control, we provide up-to-date population-adjusted STH risk

estimates in Cambodia (Chapter 4) as well as treatment needs based on WHO
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guidelines (WHO, 2006) in sub-Saharan Africa (Chapter 3). In sub-Saharan Africa,

we estimate annual requirements of 126 million tablets of albendazole or mebenda-

zole. The predicted number of children requiring treatments is approximately 91

million. Across the sub-continent, we highlight areas where data are scarce and

model-based estimates suggest high STH prevalences. For instance, in the Republic

of the Congo and the Democratic Republic of the Congo we estimate overall STH

prevalences above 20%, which is the WHO threshold for annual treatment. This

shows the need to conduct more surveys and alarms about the public health concern

of high STH risk in the two countries. The two studies (Chapters 3 and 4) suggest

a clear decrease of STH risk from 2000 onwards. The temporal trend can be

explained by socioeconomic development as well as intensified administration of

preventive chemotherapy since the World Health Assembly resolution 54.19 of 2001

(WHO, 2002a). These results complement the globally decreasing trend of STH

infections found also in South America (Chammartin et al., 2013b) and China

(Lai et al., 2013). However, a geostatistical analysis of STH risk in sub-Saharan

Africa, incorporated in the 2010 Global Burden of Disease Study (Murray et al.,

2014), suggested that no temporal trend existed between 1990 and 2010 (Pullan

et al., 2014). This is a surprising finding and contradicts the expected effect of the

administered hundreds of millions of treatments targeting STH as well as billions

of administered tablets targeting onchocerciasis and lymphatic filariasis that have

an effect on soil-transmitted helminthiasis (Ottesen et al., 2008). Furthermore, in

sub-Saharan Africa we estimated that A. lumbricoides and T. trichiura prevalences

between school-aged children and the broader community are at similar levels from

2000 onwards. This suggests that current control strategies should extend the focus

of treatment from children to adults in order to progress towards local elimination.

Therefore, Chapter 3 contributes with more accurate, spatially explicit, age and

population-specific STH risk estimates for the sub-continent. It also provides

pixel-based treatment requirements by country to assist control planning. These

results are needed to assess prevalence changes in future surveys and relate these

changes with implemented control.

Chapter 5 provides information on the effects of malaria interventions on the

disease dynamics in Angola at sub-national level. Estimates of province-specific
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effects, adjusted for climatic factors, depict those regions where an intervention

had an effect on parasitemia risk reduction and those that control appears to be

less effective.

7.2 Limitations

Historical helminthiasis data compilation and meta-analyses are prone to bias due

to the different levels of heterogeneity. Specifically, parasitological surveys target

different age groups, are based on diagnostic tests with different diagnostic accuracy

and data are reported at different spatial units such as school, village, district etc.

Some of these limitations can be addressed by statistical modelling.

Age heterogeneity among survey locations can be taken into account by incor-

porating mathematical models within statistical ones to align to a common age

group. The main difficulty with this approach is that the age-prevalence depen-

dence changes in space. Estimation is feasible if there are survey data available

across the study area and age groups, which is rarely the case. Spatial models

can straightforwardly adjust for diagnostic error by including the sensitivity and

specificity of the test as parameters in the model. Nikolay et al. (2014) conducted

a meta-analysis of diagnostic accuracy of different diagnostic tools used for STH

infection. This information can be used to define prior distributions in Bayesian

geostatistical models. However, diagnostic test accuracy depends on intensity of

infections and data reported in the literature may provide incomplete information

about diagnostic tests making difficult diagnostic error adjustment. The issue of

modelling data obtained at different spatial survey units is commonly referred in

statistical literature as “change of support”. Taking into account the different

spatial units in geostatistical models may improve parameter estimation.

Administering preventive chemotherapy and improving sanitation as well as access

to safe water are the main control measures against soil-transmitted helminth

infections. Places were such control is already implemented are expected to have

lower infection risk. This information could be introduced via covariates into

spatial modelling. However, disease control data availability is scarce. Currently,

WHO reports preventive chemotherapy coverage by country. This does not allow
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to investigate within country variability and to associate STH risk with the stage

of a control program in, e.g., a district. Efforts to collect georeferenced treatment

data have been initiated (http://www.deworminginventory.org).

In Chapters 3 and 4, we estimate the overall STH risk under the assumption

of independence among species-specific infections. Consequently, we do not in-

corporate species co-infection and STH risk might be slightly overestimated. A

correction factor has been proposed for overall STH prevalence but it was based on

a non-rigorous calculation (de Silva and Hall, 2010).

7.3 Extension

This research offers a pillar which future work can be based on. Our STH risk

modelling in sub-Saharan Africa and Cambodia combined with modelling efforts in

South America (Chammartin et al., 2013b), China (Lai et al., 2013) and ongoing

work in South and Southeast Asia can provide global model-based estimates of the

disease risk. The inclusion in DALYs estimation would constitute a significant step

towards updating disease burden.

In the lack of co-infection data across Africa, a helminthiasis co-distribution study

can be conducted using our STH estimates and the schistosomiasis risk predictions

of Lai et al. (2015). The resulted maps could guide the integration of STH and

schistosomiasis control programs.

The modelling and software developed in this research can be implemented in

an online application to provide the necessary tools to control managers. This

application combined with the GNTD open-access database and WHO’s preventive

chemotherapy databank, would result in updating disease estimates and evaluating

control implementation in almost real time.

There are many approaches of dealing with correlated predictors in statistical

modelling. The use of g-priors (see, for example, Sabanés Bové et al., 2011) would

smooth away but yet allow the inclusion of correlated predictors in spatial models. A

data-driven modification of g-priors could also smooth together correlated predictors

(Krishna et al., 2009). On a similar note, varying coefficients of predictors could

be cross-correlated. The use of Matérn cross-covariance functions (Gneiting et al.,

http://www.deworminginventory.org
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2012) could allow information of effects to be drawn among predictors and locations.

A g-prior for random effects has not been yet implemented. Its combination with

Matérn cross-covariance functions could be envisaged.
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Diboulo, E., Sié, A., Diadier, D. A., Karagiannis-Voules, D. A., Yé, Y., and
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Sabanés Bové, D. and Held, L. (2011). Hyper-g priors for generalized linear models.

Bayesian Analysis, 6: 387–410.
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