
 

Skeletal muscle mTORC1 regulates 

whole-body metabolism 

 

 

Inauguraldissertation 

 

zur 

Erlangung der Würde eines Doktors der Philosophie 

vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät 

der Universität Basel 

von 

 

Maitea Guridi Ormazabal 

aus Spanien 

 

Basel, 2016 

 

Originaldokument gespeichert auf dem Dokumentenserver der Universität 

Basel 

edoc.unibas.ch



2 
 

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät 

auf Antrag von 

 

Prof. Dr. Markus A. Rüegg 

Prof. Dr. Christoph Handschin 

 

 

 

 

Basel, den 08.12.2015 

 

 

 

 

Prof. Dr. Jörg Schibler



3 
 

Contents 

1. ABSTRACT .......................................................................................................... 4 

2. INTRODUCTION .................................................................................................. 6 

2.1. Skeletal muscle and metabolism .................................................................. 6 

2.2. mTORC1 signaling ........................................................................................ 8 

2.3. Endoplasmic reticulum stress..................................................................... 11 

2.4. Fibroblast Growth Factor 21 ...................................................................... 13 

3. RESULTS ........................................................................................................... 20 

3.1. Manuscript 1 .............................................................................................. 20 

3.2. Manuscript 2 .............................................................................................. 86 

3.3. Creation and characterization of a new mouse model ............................. 132 

4. CONCLUDING REMARKS ................................................................................. 155 

5. REFERENCES ................................................................................................... 163 

6. APPENDIX ....................................................................................................... 183 

6.1. Publication 3 ............................................................................................ 183 

6.2. Publication 4 ............................................................................................ 197 

7. ACKNOWLEDGEMENTS .................................................................................. 213 

8. CURRICULUM VITAE ....................................................................................... 215 

 

 

  



4 
 

1. ABSTRACT 
Skeletal muscle, which represents over 40% of the total body mass, is a dynamic tissue with a 

key role in the maintenance of metabolic homeostasis. Several lines of evidence indicate that 

alterations of the normal muscle function, as for example in muscular dystrophies, obesity or 

diabetes, can affect the metabolism at the whole-body level (DeFronzo & Tripathy, 2009; 

Llagostera et al, 2007). We focused on the mTORC1 signaling pathway in skeletal muscle, 

responsible for the transduction of insulin signaling and nutrient sensing from the cell surface 

to the increased protein synthesis and anabolic processes that allow cells to grow and 

proliferate (Laplante & Sabatini, 2012). We decided to characterize the metabolic phenotype of 

young and old RAmKO (Raptor muscle knock-out) and TSCmKO (TSC1 muscle knock-out) mice, 

where mTORC1 activity in skeletal muscle is inhibited or constitutively activated respectively. 

Young RAmKO mice were lean and dystrophic, insulin resistant, with increased energy 

expenditure and resistant to a HFD. This correlated with an increase in histone deacetylases 

(HDACs) and a down-regulation of genes involved in glucose and fatty acid metabolism. Young 

TSCmKO mice were lean, glucose intolerant with a decrease in Akt signaling pathway, resistant 

to a HFD and showed reduced accumulation of glycogen and lipids in the liver. Both mouse 

models developed a myopathy with age, with decreased fat and lean mass, and both RAmKO 

and TSCmKO mice developed metabolic acidosis with insulin resistance and increased 

intramyocelular lipid content.  

While the effects of mTORC1 inhibition in skeletal muscle of young mice were limited to 

muscle, its sustained activation caused changes not only in skeletal muscle but also at the 

whole-body level. TSCmKO mice were lean, with increased insulin sensitivity and fatty acid 

oxidation, and showed changes in other metabolic organs. This indicated the possible influence 

of a muscle secreted myokine. Secretion of fibroblast growth factor 21 (FGF21) by skeletal 

muscle has been shown to protect from diet-induced obesity and insulin resistance (Kim et al, 

2013c). We showed that most of the metabolic phenotype of TSCmKO mice was due to 

increased plasma concentrations of FGF21, a hormone that stimulates glucose uptake and fatty 

acid oxidation. FGF21 was released from skeletal muscle mainly because of mTORC1-triggered 

ER stress and activation of the PERK-eIF2α-ATF4 pathway. Treatment of TSCmKO mice with a 
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chemical chaperone, which alleviates ER stress, reduced FGF21 production in muscle and 

increased body weight. Moreover, injection of function-blocking antibodies directed against 

FGF21 largely normalized the metabolic phenotype of the mice. We further confirmed the 

involvement of muscle FGF21 in the development of the TSCmKO mice phenotype by genetic 

knock-out of FGF21 specifically in skeletal muscle. DKO mice (muscle TSC1/FGF21 KO) showed 

normalized plasma glucose and ketone body levels, as well as an increase in body weight, 

growth and lean mass. This was a direct consequence of muscle secreted FGF21, as plasma 

FGF21 levels were normalized in DKO mice. Surprisingly, fat mass was still reduced in these 

mice. We observed increased expression of fatty acid oxidation markers in the muscle of DKO 

and a decrease in the lipid content, which could contribute to the ongoing wasting of the 

adipose tissue. Nevertheless, this could indicate either a compensatory mechanism that did not 

allow DKO mice to gain fat mass, or a FGF21-independent mechanism causing the increased 

lipolysis of white adipose tissue. Interestingly, when we knocked-out FGF21 specifically in 

skeletal muscle in a non-genetically altered mouse, we observed the development of obesity 

induced diabetes, as these mice became heavier, with increased fat mass, higher plasma 

glucose levels and glucose intolerance.  

 In conclusion, we have confirmed that alterations to mTORC1 signaling pathway in skeletal 

muscle directly affect whole body metabolism, which highlights the importance of this tissue in 

maintaining energy stability. Moreover, we show that proper balance in mTORC1 signaling is 

essential for muscle tissue integrity and metabolic homeostasis, since both long-term activation 

and inhibition originated a myopathy that mimicked the main metabolic complications of 

dystrophic patients. Furthermore, activation of mTORC1 in skeletal muscle, through induction 

of ER stress, increased the secretion of FGF21 into the circulation, which caused progressive 

metabolic adaptations to compensate for the altered muscle dynamics. Thus, muscle mTORC1 

could serve as a potential target to treat metabolic complications of diseases like diabetes, 

obesity and muscle dystrophies.  
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2. INTRODUCTION 

2.1. Skeletal muscle and metabolism 

Skeletal muscle is a highly plastic organ, the largest of the body, which represents over 40% of 

the total body mass. It is a form of striated muscle responsible for voluntary movement as it is 

under the control of the somatic nervous system. Skeletal muscle is made up of myocytes or 

muscle fibers, which are long, cylindrical multinucleated cells. Muscle fibers are composed of 

myofibrils, which in turn are composed of repetitions of actin and myosin filaments that build 

up the basic functional unit of the muscle fiber, the sarcomere. The most notorious function of 

skeletal muscle is to generate the force needed to produce movement in the external 

environment. As a consequence, it accounts for much of the body’s energy consumption. In 

addition to its mechanical function, skeletal muscle has a key role in the maintenance of 

metabolic homeostasis. It accounts for 70-80% of postprandial glucose uptake, serves as a 

glycogen storing tissue and a major protein source for other organs in the body (Meyer et al, 

2002). In recent years skeletal muscle has gained relevance as a metabolic organ, as it has been 

reported that it can secrete myokines into the bloodstream that act upon other metabolic 

organs (Pedersen & Febbraio, 2012). These endocrine hormones include, among others: 

myostatin, a member of the Transforming growth factor-beta (TGF-β) family that modulates 

adipose tissue and skeletal muscle growth (Feldman et al, 2006; McPherron et al, 1997); 

Interleukin 6 (IL-6), a cytokine that is secreted in response to exercise and regulates glucose 

metabolism (Pedersen & Febbraio, 2008; Serrano et al, 2008); Interleukin 15 (IL-15), another 

cytokine with anabolic effects in muscle and a role in lipid metabolism (Nielsen et al, 2007); 

Insulin like growth factor 1 (IGF-1) and IGF-2, growth factors that might be involved in muscle-

bone crosstalk and osteogenesis (Hamrick, 2010); Irisin, a peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGC1α) derived myokine that drives adipose tissue 

browning and thermogenesis (Bostrom et al, 2012) and Fibroblast growth factor 21 (FGF21), a 

newly discovered growth factor induced upon stress which can regulate glucose and fatty acid 

metabolism (Kim et al, 2013c). These myokines serve as a communication mechanism between 

skeletal muscle and other metabolic organs like liver, pancreas and adipose tissue, which 

altogether coordinate the metabolic balance of the body.   
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The term metabolism covers the set of life-sustaining chemical transformations within 

the cells of living organisms. These complex biochemical reactions produce the energy required 

for anabolic and biosynthetic processes. Muscle contraction depends on the chemical energy of 

adenosine triphosphate (ATP). The 3 major pathways that supply energy in the form of ATP to 

meet the energy demands of skeletal muscle are glycogen metabolism, lipid metabolism and 

the purine nucleotide pathway. There are a group of disorders called metabolic myopathies 

that refer to hereditary muscle disorders which are consequence of specific enzymatic defects 

caused by genetic mutations. They have common abnormalities in energy metabolism of the 

muscle that result in skeletal muscle dysfunction. They include glycogen storage diseases like 

McArdle’s diease (caused by a myophosphorilase deficiency) or Pompe disease (result of acid 

maltase deficiency); lipid storage diseases like carnitine palmytoyltransferase (CPT) deficiency; 

or defects in purine nucleotide metabolism like in Limb-girdle muscular dystrophy (Cruz 

Guzman Odel et al, 2012; Lieberman et al, 2012; Santalla et al, 2014). Several of these skeletal 

muscle diseases end up being multi-systemic disorders involving also the heart, liver, brain, 

retina and kidneys. The pathophysiology of most metabolic myopathies is related to the 

impaired energy production or production of reactive oxygen species (ROS) and the abnormal 

function of mitochondria, peroxisomes and lysosomes (D'Amico & Bertini, 2013). Skeletal 

muscle is a key regulator of whole-body metabolic homeostasis, as evidenced by the fact that 

patients suffering from muscular dystrophies often develop complications like insulin resistance 

or glucose intolerance. People with myotonic dystrophy 1 (DM1) do not display clinical 

symptoms of diabetes, but show a 70% decrease in insulin sensitivity of the muscle (Moxley et 

al, 1978; Moxley et al, 1984), most likely caused by aberrant regulation of the insulin receptor 

(IR) (Savkur et al, 2001). Duchenne muscular dystrophy (DMD) patients also show reduced IR 

expression (DePirro et al, 1982) and alterations in glucose transporter 4 (GLUT4) in muscle 

fibers, which could be involved in the development of obesity, hyperinsulinemia and insulin 

resistance observed in these patients (Rodriguez-Cruz et al, 2015). Insulin resistance and 

glucose intolerance are also observed in patients with Amyotrophic Lateral Sclerosis (Reyes et 

al, 1984) and Friedreich’s Ataxia (Khan et al, 1986). Insulin resistance is an important factor for 

the development of type II diabetes (Reaven et al, 1988) and a risk factor for cardiovascular 
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disease, dyslipidemia, hypertension and obesity (Kahn et al, 2006). Obesity and type II diabetes 

are growing health problems world-wide that have reached epidemic proportions, therefore 

understanding the pathophysiological mechanisms leading to the development of these 

diseases, and the involvement of skeletal muscle in this process is of great importance. 

 

2.2. mTORC1 signaling 

The role of skeletal muscle as a metabolic organ is thus evident. However, the signaling 

pathways involved in regulating its metabolic functions need yet to be clearly identified. Several 

molecular pathways are important in governing muscle mass and metabolism: namely the 

growth induction by IGF-1/ Insulin activated phosphoinositide-3 kinase (PI3K)- Akt pathway; 

protein degradation regulated by Forkhead box O (Foxo) transcription factors and the 

autophagy-lyosomal and proteasomal degradation pathways; and protein translation and 

synthesis regulated by the mammalian target of rapamycin complex 1 (mTORC1) pathway. 

Insulin and IGF-1 are known major regulators of muscle protein and glucose 

homeostasis. They bind to IR and IGF-1 receptor (IGF1R) on the surface of muscle cells to 

activate PI3K and downstream anabolic processes. PI3K catalyzes the synthesis of the lipid 

phosphatidylinositol 3,4,5-triphosphate (PIP3), which in turn interacts with different proteins 

via the pleckstrin homology (PH) domain to recruit them to the cell membrane (Maffucci & 

Falasca, 2001). Muscle-specific knockout of IGF1R and IR causes a 60% decrease in muscle mass 

with decreased fasting glycemia and increased basal glucose uptake (O'Neill et al, 2015). The 

link between surface insulin signaling and intracellular signaling cascades is the signal 

transducer Akt or protein kinase B (PKB). Akt is a family of serine/threonine-specific protein 

kinases, with Akt1 being ubiquitously expressed (Chen et al, 2001), Akt 3 expressed in brain, 

lung and kidneys (Brodbeck et al, 1999; Easton et al, 2005) while Akt2 is the predominant form 

expressed in insulin responsive tissues, such as adipose tissue, liver and skeletal muscle 

(Altomare et al, 1995). Skeletal muscle-specific transgenic mice expressing a constitutively 

active form of Akt showed muscle hypertrophy due to the growth of fast/glycolytic type II fibers 

and increased strength with resistance to obesity induced by a high-fat diet (HFD) (Izumiya et 
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al, 2008b). Akt phosphorylates many downstream targets to regulate growth, degradation and 

cell metabolism. Some of Akt targets involved in transducing the surface insulin signaling to the 

metabolism of the cell are Akt substrate of 160 KDa (AS160) or TBC1D4 and TBC1D1, two Rab 

GTPase-activating proteins. AS160 can regulate insulin- and contraction-stimulated glucose 

uptake into skeletal muscle by translocating GLUT4 to the plasma membrane (Kramer et al, 

2006), while TBC1D1 is involved in basal glucose absorption into skeletal muscle by regulating 

GLUT1 expression (Zhou et al, 2008).  

Both insulin and IGF-1 have been shown to stimulate muscle protein synthesis (Rommel 

et al, 2001) and inhibit protein degradation via the ubiquitine –proteasome and autophagy-

lysosome pathways (Mammucari et al, 2007; Sandri et al, 2004). IGF-1 treatment is sufficient to 

cause muscle hypertrophy via Akt mediated activation of mTORC1 (Rommel et al, 2001). 

Skeletal muscle mass is ultimately determined by the net difference in the rates of protein 

degradation and protein synthesis (Goodman et al, 2011), of which mTORC1 is the key 

regulator. mTORC1 is a serine/threonine protein kinase evolutionarily conserved from yeast to 

humans, that is involved in nutrient sensing and the regulation of growth and metabolism 

(Sabatini et al, 1994). mTORC1 is rapamycin sensitive and is composed of mTOR, regulatory-

associated protein of mTOR (raptor), mLST8 and the later identified partners PRAS40 and 

DEPTOR (Peterson et al, 2009; Thedieck et al, 2007). mTOR, part of the mTORC1, can also 

assemble into mTOR complex 2 (mTORC2), which is composed of rapamycin-insensitive 

companion of mTOR (rictor), mLST8, DEPTOR, mSIN1 and protor1/2 (Laplante & Sabatini, 2012). 

mTORC2 is only sensitive to long-term or chronic exposure to rapamycin (Sarbassov et al, 2006; 

Ye et al, 2012), and it is known to regulate cytoskeletal organization and cell survival (Laplante 

& Sabatini, 2012). mTORC1 is a known master regulator of cell growth and metabolism by 

controlling: 1) protein synthesis through the phosphorylation of eukaryotic initiation factor 4E 

(eIF4E)-binding protein 1 (4EBP1) and the p70 ribosomal S6 kinase 1 (S6K1); 2) protein 

degradation through nuclear factor erythroid–derived2-related factor 1 (NRF1) dependent 

increase in proteasomal degradation (Zhang et al, 2014); 3) by inhibiting autophagy, a catabolic 

recycling cellular process, through the phosphorylation of Unc 51-like kinase 1 (Ulk1) and 

inhibition of the formation of the autophagy initiation complex Ulk1/FIP200/ATG13; 4) by 
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regulating lipid synthesis through inhibition of Lipin1 and activation of sterol regulatory-

element binding protein 1 (SREBP1) (Lamming & Sabatini, 2013); and 5) by promoting 

mitochondrial metabolism and biogenesis through binding and activation of the transcription 

factor ying-yang 1 (YY1) and its interaction with PGC1α (Laplante & Sabatini, 2013).  

Thus, mTORC1 is a very complex signaling network that has been widely studied in 

multiple tissues, with the results normally affecting life span, cell growth and whole-body 

metabolism. Although complete elimination of mTORC1 in mammals causes embryonic lethality 

(Guertin et al, 2006), animals lacking one of its substrates, S6K1, show increased lifespan and 

increased insulin sensitivity (Selman et al, 2009), owing to the loss of a negative feedback loop 

from S6K1 to insulin receptor substrate 1 (IRS1) and enhanced β-oxidation (Um et al, 2004). 

mTORC1 activation is sufficient to stimulate glycolysis, the oxidative arm of the pentose 

phosphate pathway and de novo lipid synthesis in cells (Duvel et al, 2010). Livers with 

constitutive mTORC1 activity by deletion of tuberous sclerosis complex 1 (TSC1) resist hepatic 

steatosis induced by a HFD, independent of Akt, due to an up-regulation of Cpt1a and the anti-

oxidant protein Nrf2 (Kenerson et al, 2015). Adipose-specific knockout of raptor results in lean 

mice with enhanced mitochondrial respiration, due to mitochondrial uncoupling and increased 

energy expenditure (Polak et al, 2008a). In skeletal muscle, inactivation of mTORC1 causes 

impairment of oxidative metabolism, altered mitochondrial regulation and accumulation of 

glycogen associated with Akt hyperactivation, which leads to a severe myopathy (Bentzinger et 

al, 2008b; Risson et al, 2009b). Surprisingly, constitutive activation of mTORC1 in skeletal 

muscle also leads to the development of a progressive myopathy, due to the inhibition of the 

autophagy process (Castets et al, 2013) and the increased ubiquitination and degradation of 

proteins through the proteasome (Bentzinger et al, 2013). In addition, in mice deficient for 

Lmna, the gene that encodes A-type lamins, inhibition of mTORC1 signaling by rapamycin 

treatment rescues cardiac and skeletal muscle function by decreasing the accumulation of 

desmin in these tissues and by improving defective autophagy (Ramos et al, 2012). This shows 

that mTORC1 is a key player in regulating muscle health and metabolism, but there is still much 

to elucidate about the molecular mechanisms behind. Therefore, mTORC1 is a key target to 
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study the signaling pathways involved in muscle dystrophies and the effect of muscle on whole-

body metabolism. 

 

2.3. Endoplasmic reticulum stress 

Loss of TSC1 or TSC2 and the consequent hyperactivation of mTORC1 was shown to induce 

endoplasmic reticulum stress (ERS), a conserved cellular stress response, in cell lines (Young et 

al, 2013) and in mouse and human tumors (Ozcan et al, 2008). mTORC1 pathway, regulator of 

protein synthesis and translation, has a bidirectional crosstalk with the ERS pathway 

(Appenzeller-Herzog & Hall, 2012) and it can even selectively activate cell death (Kato et al, 

2012). Folding and maturation of newly synthesized proteins take place in the endoplasmic 

reticulum (ER), and uncontrolled protein synthesis and dysfunctional nutrient sensing can 

overwhelm the folding capacity of the ER and challenge its integrity. The resulting ERS leads to 

the activation of a complex signaling network called the unfolded protein response (UPR) 

(Marciniak & Ron, 2006; Schroder & Kaufman, 2005). The ER homeostasis can be perturbed by 

physiological and pathological insults such as high protein demand, viral infections, 

environmental toxins, inflammatory citokines, and increased protein translation resulting in an 

accumulation of misfolded and unfolded proteins in the ER lumen. There are several available 

chemicals to induce ERS and activate the UPR, like tunicamycin, thapsigargin, dithiothreitol 

(DTT) and MG132 (Oslowski & Urano, 2011b), mainly used in a cell culture system. Physiological 

perturbants known to induce ERS include starvation, exercise and a HFD (Deldicque et al, 2012).  

There are three effectors of the UPR localized at the ER membrane: inositol-requiring 

enzyme-1 (IRE1), PKR-like endoplasmic reticulum kinase (PERK) and activating transcription 

factor 6 (ATF6), each responsible for initiating a downstream cascade of distinct regulatory 

processes. Activated IRE1α splices and activates XBP-1 mRNA transcription factor which induces 

transcription of endoplasmic reticulum associated protein degradation (ERAD) components 

such as EDEM and HRD1; ATF6 transits to the Golgi and is cleaved to be activated as a 

transcription factor to regulate ER chaperons such as Grp78 (Bip) and Grp94. When PERK is 

activated, it phosphorylates and inhibits eukaryotic translation initiation factor 2-alpha (eIF2α) 
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to reduce mRNA translation, which selectively increases translation of ATF4. Downstream 

targets of ATF4 during activated UPR include CHOP, Tribble 3 and Gadd34. The process of the 

UPR is divided into two phases: in an initial physiological response, the UPR tries to overcome 

the ER overload by promoting a global translational attenuation through inhibition of eIF2α to 

alleviate protein trafficking to the ER, and the activation of chaperons that aid in protein folding 

to relieve the ERS, like Hspa5, Ddit3, Xbp1 and Grp78. By contrast, upon chronic activation of 

the UPR the ER cannot overcome the stress stimuli and activates the apoptotic branch of the 

IRE1α-ASK1-JNK signaling pathway, CHOP regulation of BCL2 protein family members and 

apoptotic genes, ER localized Bax and Bak, GSK3β and caspases that will promote cell death (Xu 

et al, 2005). Moreover, when ERS is unresolved it also promotes apoptosis by the activation of 

ATF4, a master regulator of the integrated stress response (ISR) known to be selectively 

translated by eIF2α upon ERS (Appenzeller-Herzog & Hall, 2012; Harding et al, 2000), which 

activates its downstream targets CHOP and GADD34 (Oslowski & Urano, 2011a) promoting cell 

death. It has been described that upon ERS the endoplasmic reticulum expands and suffers 

conformational changes characterized by swollen tubules and even aggregated clusters 

(Akiyama et al, 2009; Riggs et al, 2005; Varadarajan et al, 2012), which can be detected by 

electron microscopy.  

ERS is known to be involved in the pathophysiological process of different diseases: 

neurodegenerative diseases associated with inclusion body formation and protein aggregation 

have been linked to ERS, including amyotrophic lateral sclerosis, Parkinson’s disease, 

Huntington’s disease and others (Xu et al, 2005). For example, autopsy studies suggest that the 

PERK-eIF2α pathway is hyperactive in the brain of Alzheimer’s disease, implying that ERS is 

activated (Unterberger et al, 2006). ERS is also associated to the development of metabolic 

complications like insulin resistance in diabetes, as it appears to act directly as a negative 

modulator of the insulin signaling pathway and by promoting lipid accumulation (Flamment et 

al, 2012; Salvado et al, 2015). Obesity can activate ERS in the liver by increasing the demand on 

the protein folding capacity of the ER, and this is linked to the activation of Kruppel-like factor 

15 (KLF-15) and the development of hepatic insulin resistance (Jung et al, 2013). As a 

consequence, apoptosis of hepatic stellate cells can occur through JNK pathway activated 
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Calpain/Caspase-12 (Huang et al, 2014). Aberrant calcium regulation in the ER causes protein 

unfolding, because of the calcium dependent nature of ER chaperones (Ma & Hendershot, 

2004). The strongest link between ER calcium regulation and the cell death machinery is found 

in the BCL-2 family of proteins, many of which reside in part in the ER membranes. Calcium 

homeostasis is especially important in the sarcoplasmic reticulum (SR), which functions as an 

intracellular calcium store in skeletal muscle. Dysregulation of sarcoplasmic reticulum calcium 

release and mutations in the ryanodine receptor have been associated with ERS and impaired 

muscle function (Bellinger et al, 2008). However, there is not much known about the cause or 

consequences of ERS activation in skeletal muscle (Deldicque et al, 2012). ERS was first 

observed in myotonic dystrophy type I and sporadic inclusion body myositis, which had higher 

expression of ER chaperons (Vitadello et al, 2010). HFD fed mice showed activated ERS in 

skeletal muscle, and ultra-endurance exercise also activated the UPR in human skeletal muscle 

(Deldicque et al, 2012; Kim et al, 2011). It was recently reported that activation of ATF4 can 

promote muscle atrophy during fasting or immobilization by promoting the activation of 

Gadd45 and p21 (Ebert et al, 2012; Ebert et al, 2010; Fox et al, 2014). Specific evidence linking 

ERS to muscle dystrophies was recently shown by De Palma et al., who demonstrated increased 

activation of the UPR in skeletal muscle of myopathies caused by mutations of the collagen VI 

genes (De Palma et al, 2014). In addition, deletion of hexose-6-phosphate dehydrogenase 

(H6PD), the enzyme that catalyzes the pentose phosphate pathway inside the ER, activates the 

UPR and induces a myopathy with fasting hypoglycemia and increased insulin sensitivity (Lavery 

et al, 2008). Interestingly, ERS was shown to contribute to the pathophysiology of DMD because 

Caspase-12 ablation, an apoptosis initiator specifically activated by ERS, preserved mdx mice 

muscle function and recovered 75% of muscle force (Moorwood & Barton, 2014). Therefore, 

ERS is an interesting pathway to study in skeletal muscle as it could be involved in the 

pathophysiology of myopathies and the regulation of metabolic homeostasis. 

 

2.4. Fibroblast Growth Factor 21 

Fibroblast growth factors (FGF) are a family of 22 proteins involved in the regulation of mitosis, 

development, transformation, angiogenesis and survival in mammal cells (Beenken & 
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Mohammadi, 2009). They are heparin-binding secreted proteins that interact with cell-surface-

associated FGF receptors (FGFR) for signal transduction. Recently FGF19, FGF21 and FGF23 

were described to form part of an endocrine sub-group, because they lack a conventional 

heparin-binding domain and can reach circulation to act as endocrine hormones 

(Kharitonenkov, 2009). Instead of heparin, FGF19, FGF21 and FGF23 use Klotho co-factor 

proteins to allow binding and activation of FGFR (Kurosu & Kuro, 2009). FGF19 is most highly 

expressed in gut, requires β-Klotho (KLB) or Klotho to bind to FGFR4 and is essential to regulate 

bile-acid metabolism and also has a role in promoting glucose and fatty acid metabolism. FGF23 

primarily originates from bone, requires α-Klotho to bind to FGFR1c and is essential in the 

control of phosphate and vitamin D metabolism (Adams et al, 2012b; Angelin et al, 2012; 

Kharitonenkov, 2009).  

The endocrine FGF that has attracted more attention due to its potential as an anti-

obesity and anti-diabetic drug is FGF21, which is currently being tested in clinical trials (Gaich et 

al, 2013; Gimeno & Moller, 2014; Kharitonenkov et al, 2013). FGF21 was first discovered in an 

in-vitro glucose uptake assay looking for novel proteins with therapeutic potential to treat 

diabetes mellitus (Nishimura et al, 2000). FGF21 was shown to increase insulin activity and 

induce glucose uptake in 3T3-L1 and human primary adipocytes. The insulin and FGF21 

pathways appeared to be interdependent, and the interest grew to find if FGF21 could be used 

to treat diabetes without the side effects of insulin therapy, such as hypoglycemia and weight 

gain. The first evidence of FGF21’s in-vivo bioactivity was shown with FGF21 administration to 

obese (ob/ob) and diabetic (db/db) mice, which led to a profound weight loss and plasma 

glucose lowering with no hypoglycemia (Kharitonenkov et al, 2005; Kim et al, 2013a). FGF21 

over-expressing transgenic mice showed decreased body weight, lower glycemia and resistance 

to diet-induced obesity (Berglund et al, 2009; Fisher et al, 2010; Kharitonenkov et al, 2005). 

Importantly, it was established that FGF21 had no mitotic effect and transgenic animals were 

partially protected from chemically-induced malignancies (Huang et al, 2006), while 

interestingly showing extended lifespan (Zhang et al, 2012).  
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FGF21 selectively requires β-Klotho (Adams et al, 2012a; Ding et al, 2012; Ogawa et al, 

2007) to act through FGFR1 and FGFR2 to induce an improved metabolic profile: it reduces 

serum insulin, cholesterol, triglycerides, leptin and glucose levels, while improving glucose 

control, uptake and insulin sensitivity to confer resistance to diet and age-induced weight gain 

and fat accumulation (Inagaki et al, 2007; Kharitonenkov et al, 2005). In contrast, FGF21 

deficiency leads to an increase in body weight, development of a fatty liver, glucose intolerance 

and increased serum insulin and triglycerides, which is exacerbated when placing the mice on a 

HFD or ketogenic diet (Badman et al, 2007; Kharitonenkov, 2009). Potential target tissues of 

FGF21, due to a selective KLB expression in metabolically active tissues, include liver, white and 

brown adipose tissues, pancreas and the brain (Angelin et al, 2012; Kharitonenkov, 2009). 

FGF21 was first shown to be secreted by liver upon fasting and starvation through Peroxisome 

proliferator-activated receptor α (PPARα), which is known to regulate fat utilization during 

starvation (Inagaki et al, 2007). The effects of FGF21 during starvation include increased 

ketogenesis in the liver, lipolysis in white adipose tissue and reduced physical activity and 

hypothermia due to a hibernation-like state to preserve energy (Inagaki et al, 2007). FGF21 

increases fatty acid oxidation, tricarboxilic acid cycle (TCA) flux and gluconeogenesis in the liver 

by inducing PGC1α during the progression from fasting to starvation (Cornu et al, 2014; 

Potthoff et al, 2009). In addition, a HFD or ketotic diet can also induce FGF21 in the liver 

downstream of PPARα (Badman et al, 2007), which identifies FGF21 as a critical regulator of 

lipid homeostasis, besides its role in glucose metabolism and insulin sensitization. However, 

there is some contradiction in current literature as to whether FGF21 induces or inhibits 

gluconeogenesis in the liver, which could be due to the differences in the feeding status and the 

animal models used: while some studies show FGF21 increasing gluconeogenesis in the liver in 

response to fasting through PGC1α activation (Cornu et al, 2014; Potthoff et al, 2009), other 

recent studies have shown that it actually inhibits gluconeogenesis by regulating STAT3-SOCS 

signaling pathway (Berglund et al, 2009; Wang et al, 2014). Nevertheless, the action of FGF21 

on liver has been shown to be critical to regulate glycemia independently of insulin, by 

increasing energy metabolism via the activation of brown fat and browning of white fat 

(Emanuelli et al, 2014). An unexpected outcome of increased FGF21 is growth impairment due 
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to FGF21 blocking growth hormone (GH) signaling in the liver by inhibition of STAT5 and 

subsequent decrease in IGF-1 production (Inagaki et al, 2008; Kubicky et al, 2012) and by 

preventing the effects of the GH on chondrocytes through increased leptin receptor 

overlapping transcript expression (LEPROT and LEPROT1) (Wu et al, 2013). These studies show 

that FGF21 is a key controller of metabolism through the regulation of the body’s starvation 

response by activating critical pathways of energy conservation and re-distribution.  

Adipose tissue is one of the main target tissues of FGF21 action, and it is also able to 

secrete FGF21. The main effect of FGF21 on whole-body metabolism is the increase in energy 

expenditure and thermogenesis, which was shown to be induced through activation of white 

adipose tissue browning (Fisher et al, 2012). Adipose-derived FGF21 acts in an 

autocrine/paracrine manner to increase expression of UCP1, PGC1α and other thermogenic 

genes in fat tissues (Fisher et al, 2012; Sammons & Price, 2014). This is achieved by the 

activation of AMPK and sirtuin 1 in adipocytes resulting in enhanced mitochondrial oxidative 

function (Chau et al, 2010) to regulate energy metabolism. Adipose tissue FGF21 can also be 

induced by fasting, HFD feeding and PPARγ agonists, which shows another mechanism by which 

adipose tissue can influence and correct hyperglycemia and whole-body insulin sensitivity 

(Muise et al, 2008). The main molecular mechanism unraveled to be activated by FGF21 in 

adipose tissue is phosphorylation of FRS2 and subsequent activation of the MAPK signaling 

cascade. FGF21 also induces GLUT1 expression and glucose uptake through sequential 

activation of ERK1/2 and SRF/Elk-1 transcription factors (Ge et al, 2011). In addition, it was 

shown that the action of FGF21 on energy expenditure, insulin action and glucose homeostasis 

was mediated through the secretion of adiponectin by adipose tissue, which is considered a 

downstream effector of FGF21 responsible of its systemic effects (Holland et al, 2013; Lin et al, 

2013). Interestingly, while FGF21 can act directly on white adipose tissue to modulate the 

expression of metabolic genes, its effect on energy expenditure, body weight and insulin levels 

is mediated through its action on the central nervous system. FGF21 can cross the blood-brain 

barrier, and act on the suprachiasmatic nucleus in the hypothalamus and in the hindbrain to 

increase corticosterone levels, which in turn modulates circadian behavior (Bookout et al, 2013; 

Owen et al, 2014). FGF21 can also contribute to the neuroendocrine control of female 
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reproduction during nutritional deprivation by inhibiting the vasopressin-kisspeptin signaling 

cascade (Owen et al, 2013). These studies show the broad range of action of FGF21 as a 

metabolic hormone in different tissues to modulate whole-body metabolism. 

Initially it was thought that FGF21 could only be secreted by the liver, which was shown 

to be the main organ involved in the fasting and starvation response regulated by FGF21 

(Markan et al, 2014). Nevertheless, in recent years several studies have shown that brain, 

pancreas, adipose tissue and muscle are also capable of secreting FGF21 (Kharitonenkov, 2009). 

The first study reporting that FGF21 could be a muscle secreted myokine showed that it was 

under the control of Akt and the insulin signaling pathway, as skeletal muscle-specific Akt1 

transgenic mice had increased expression of FGF21 in muscle and increased FGF21 

concentration in serum (Izumiya et al, 2008a). However, research on FGF21 as a myokine was 

scarce until 2012, when Kim et al. reported that autophagy deficiency and mitochondrial 

function impairment could induce a strong up-regulation of FGF21 in skeletal muscle, which in 

turn caused a strong phenotype in these mice conferring them lean and resistance to a HFD, 

with an improved metabolic profile (Kim et al, 2013c). Another recent study showed that 

skeletal muscle mitochondrial uncoupling can also induce FGF21 and cause metabolic changes 

at the whole-body level (Keipert et al, 2014), which helped establish mitochondrial dysfunction 

and oxidative stress as the main inducers of FGF21 in skeletal muscle through the activation of 

ATF4. The metabolic profile of these two transgenic mouse models, with over-expression of 

skeletal muscle Atg7 and Ucp1 respectively, was very similar as both were lean, with increased 

browning of white adipose tissue, fatty acid oxidation and improved insulin sensitivity. 

Interestingly, as this profile is also similar to FGF21 over-expressing transgenic mice, it was 

finally accepted that skeletal muscle can be an important source of FGF21 which can influence 

whole-body metabolism. A few following studies showed that this was also the case in humans, 

as it was reported that patients of muscle-manifesting mitochondrial disorders and HIV had 

increased expression of FGF21 in muscle and increased plasma FGF21 (Lindegaard et al, 2013; 

Suomalainen, 2013) which correlated with the lipodystrophy and lipid disturbances observed in 

these patients (Lindegaard et al, 2013). Yet, muscle is still not considered a target for FGF21 

action. This is somehow counter-intuitive, as one of the main actions of FGF21 is the regulation 
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of glucose metabolism, and skeletal muscle is the main organ for glucose disposal and storage. 

Moreover, Keipert et al. reported that skeletal muscle expressed KLB (Keipert et al, 2014), 

which would make muscle a target for FGF21 action. In addition, FGF21 can increase basal and 

insulin stimulated glucose uptake in human myotubes through induction of GLUT1 (Mashili et 

al, 2011). Thus, skeletal muscle not only is a source of FGF21, but seems to also be a potential 

target to its action.  

But, can circulating FGF21 be an indicator of metabolic imbalance? Based on the 

therapeutic effect of FGF21 for obese and diabetic animals, it was assumed that high circulating 

FGF21 would be beneficial. However, many studies demonstrated that FGF21 levels were 

increased in subjects with obesity, type 2 diabetes, insulin resistance or fatty liver disease 

(Chavez et al, 2009; Dushay et al, 2010; Zhang et al, 2008), which were then termed as states of 

resistance to FGF21. In some cases elevated FGF21 levels correlated with the degree of 

metabolic disturbance, thus this pointed towards a possible involvement of FGF21 in disease, 

and its induction as a “stress” hormone. This correlates with FGF21 being induced in patients 

with mitochondrial disease and muscle manifestations (Suomalainen et al, 2011). In skeletal 

muscle, FGF21 is induced upon mitochondrial impairment and oxidative stress, through the 

activation of ATF4, a key component of the integrated stress response (Keipert et al, 2014; Kim 

et al, 2013b; Kim et al, 2013c; Touvier et al, 2015). In the liver, FGF21 is induced by fasting and 

starvation, which constitute metabolic stresses. A growing number of studies with animals and 

patients indicate that FGF21 can also be induced by pathogenic conditions, such as liver injury, 

viral infection and cancer (Dasarathy et al, 2011; Domingo et al, 2010; Yang et al, 2013; Yilmaz 

et al, 2010). Endoplasmic reticulum stress was reported to induce FGF21 through the 

PERK/eIF2α/ATF4 pathway in hepatocytes (Schaap et al, 2013) dependent on ATF4 and CHOP 

(Wan et al, 2014). Two in vivo studies showed that FGF21 could be induced in the liver through 

ERS: one reporting PERK/eIF2α/ATF4 being the activating pathway (Kim et al, 2015), while the 

other argued that FGF21 is regulated through the IRE1α-Xbp1 branch of the UPR (Jiang et al, 

2014). Thus, FGF21 is attracting more attention, not only because of its potential beneficial 

effects, but for its role as a stress induced hormone both in the liver and in the muscle (Kim & 
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Lee, 2014; Luo & McKeehan, 2013). Nevertheless, the molecular pathways that induce FGF21, 

as well as the mechanisms activated by FGF21 in different tissues still need further studying.  
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ABSTRACT 

Skeletal muscle is the largest organ, comprising 40% of the total body lean mass, and affects 

whole-body metabolism in multiple ways. We investigated the signaling pathways involved in 

this process using TSCmKO mice, which have a skeletal muscle-specific depletion of TSC1 

(tuberous sclerosis complex 1). This deficiency results in the constitutive activation of mTORC1, 

which enhances cell growth by promoting protein synthesis. TSCmKO mice were lean, with 

increased insulin sensitivity, as well as changes in white and brown adipose tissue and liver 

indicative of increased fatty acid oxidation. These differences were due to increased plasma 

concentrations of FGF21, a hormone that stimulates glucose uptake and fatty acid oxidation. 

Skeletal muscle of TSCmKO mice released FGF21 because of mTORC1-triggered endoplasmic 

reticulum (ER) stress and activation of a pathway involving PERK (protein kinase RNA-like ER 

kinase), eIF2α (eukaryotic translation initiation factor 2), and ATF4 (activating transcription 

factor 4). Treatment of TSCmKO mice with a chemical chaperone that alleviates ER stress 

reduced FGF21 production in muscle and increased body weight. Moreover, injection of 

function-blocking antibodies directed against FGF21 largely normalized the metabolic 

phenotype of the mice. Thus, sustained activation of mTORC1 signaling in skeletal muscle 

regulated whole-body metabolism through the induction of FGF21, which over the long-term 

caused severe lipodystrophy. 
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INTRODUCTION 

Skeletal muscle is a dynamic tissue with a key role in the maintenance of metabolic 

homeostasis. Several lines of evidence indicate that alterations of the normal muscle function, 

as for example in muscular dystrophies, obesity or diabetes, can affect the metabolism at the 

whole-body level (DeFronzo & Tripathy, 2009; Llagostera et al, 2007). The effect of muscle on 

the global metabolism has been linked to the discovery of specific cytokines secreted by the 

muscle, called myokines, which exert effects on angiogenesis, myogenesis and energy 

metabolism (Pedersen & Febbraio, 2012). Specifically, fibroblast growth factor 21 (FGF21) is 

secreted by skeletal muscle and protects from diet-induced obesity and insulin resistance (Kim 

et al, 2013c). FGF21 is a member of an atypical subfamily of FGFs that is released into the 

circulation because of the lack of a heparin-binding domain and thus acts as an endocrine factor 

(Angelin et al, 2012). FGF21 is at the center of extensive research as a target molecule to treat 

metabolic disorders, such as diabetes and obesity (Gaich et al, 2013). FGF21 promotes weight 

loss through an increase in fatty acid oxidation and lowers triglyceridemia and decreases 

glycemia by improving insulin sensitivity (Inagaki et al, 2007). Transgenic mice overexpressing 

FGF21 in the liver are protected against diet-induced obesity (Kharitonenkov et al, 2005) and 

FGF21 pharmacotherapy in diabetic and obese mice rapidly improves metabolic abnormalities 

(Holland et al, 2013; Xu et al, 2009). FGF21 is primarily synthesized in liver upon starvation or a 

high fat diet (HFD), and can also be induced in adipose tissue (Badman et al, 2007; Wang et al, 

2008). In skeletal muscle, FGF21 is secreted in response to the activation of cellular stress 

pathways, such as autophagy impairment and/or mitochondrial dysfunction (Keipert et al, 

2014; Kim et al, 2013c). 
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 The mammalian target of rapamycin (mTOR) is a master regulator of metabolic 

homeostasis and its deregulation is associated with metabolic disorders, such as obesity and 

diabetes. mTOR is an atypical serine/threonine protein kinase that senses nutrient availability 

and cellular energy status to promote anabolic processes (Laplante & Sabatini, 2012). mTOR 

assembles into two distinct multi-protein complexes: mTORC1, which promotes cell growth 

through the regulation of protein synthesis, and mTORC2, which regulates cytoskeleton 

organization. Development of transgenic mouse models deficient for components of mTORC1 

or mTORC2 in metabolic organs, such as adipose tissue or liver, have shown that these 

complexes play essential roles in glucose and lipid homeostasis (Hagiwara et al, 2012; Polak et 

al, 2008a). We have previously shown that mice with muscle-specific depletion of raptor 

(RAmKO mice), an essential component of mTORC1, develop a progressive myopathy 

(Bentzinger et al, 2008b). Surprisingly, mice with muscle-specific depletion of the mTORC1 

inhibitor TSC1 (TSCmKO mice), characterized by sustained mTORC1 activation and increased 

protein synthesis, also develop a late-onset myopathy (Castets et al, 2013) with a marked 

atrophy of most muscles (Bentzinger et al, 2013). These alterations in TSCmKO muscle are 

related to increased proteasome activity and to the blockade of autophagy induction 

(Bentzinger et al, 2013; Castets et al, 2013). Concomitant with the myopathy, TSCmKO mice 

show decreased fat mass (Castets et al, 2013), suggesting that constitutive mTORC1 activation 

in skeletal muscle may exert endocrine effects on non-muscle tissues. In addition, RAmKO mice 

and mice deficient for mTOR in skeletal muscle have altered glucose metabolism (Bentzinger et 

al, 2008b; Risson et al, 2009b), pointing to a possible role of muscle mTORC1 signaling in the 

regulation of whole-body metabolism. 
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 In this study, we examined the global metabolic changes in TSCmKO mice starting at a 

young age and show that they were resistant to obesity and developed a severe lipodystrophy 

with age. The constitutive activation of mTORC1 in muscle led to an increased FGF21 synthesis 

and higher concentration of FGF21 in plasma. This was largely due to the endoplasmic 

reticulum (ER) stress-activated PERK-eIF2α-ATF4 pathway. Thus we showed that specific 

perturbation of mTORC1 signaling in muscle modified whole-body homeostasis by inducing 

release of FGF21 as a myokine.   
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RESULTS 

mTORC1 activation in skeletal muscle promotes a lean phenotype 

In TSCmKO mice, mTORC1 is constitutively activated in skeletal muscle and they develop a late-

onset myopathy in conjunction with a reduced body weight resulting from the loss of both fat 

and lean mass (Castets et al, 2013). To determine if these differences in body mass were a 

consequence of the myopathy, we analyzed the progression of the metabolic phenotype of 

TSCmKO mice, starting at the age of 10 weeks when the mice are healthy with no signs of a 

myopathy (Fig S1A). At this young age, TSCmKO mice were 15% lighter than control mice, and 

this difference increased to 31% at 40 weeks of age (Fig 1A; Table S1). We also noticed that the 

tibia length was slightly but significantly reduced in TSCmKO mice compared to age-matched 

control mice (Table S1), suggesting a difference in overall growth. Analysis of plasma revealed 

no changes in growth hormone (GH) concentrations (Fig S1B) but a significant decrease in 

insulin-like growth factor (IGF-1) (Fig 1B), which could correlate with the reduced growth 

(LeRoith & Yakar, 2007). While the difference in tibia length between TSCmKO and control mice 

remained constant between 10 and 40 weeks of age, the weight difference was progressive and 

increased with age (Table S1).  

 The activity and the feeding behavior of the mutant and control mice were similar (Fig S1C-

1F). Lean mass was reduced in TSCmKO mice but followed the same pattern with age as in 

control mice (Fig 1C). In contrast, the loss in fat mass in TSCmKO mice increased with age (Fig 

1D, 1E). The difference in fat mass between control and TSCmKO mice was exaggerated by 

placing the mice on a 14-week-long high fat diet (HFD), starting at the age of 10 weeks. As 

expected, the body weight of the control mice progressively increased (Fig 1F), which was 
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largely due to a gain in fat mass (Fig 1D), and these mice developed hepatic steatosis (Fig 1G). In 

contrast, TSCmKO mice were resistant to these changes (Fig 1D, 1F, 1G). Compared to controls, 

TSCmKO mice ate more and were more active during the HFD (Fig S1G, S1H). Together, these 

results emphasized the inability of mutant mice to gain weight, which was mainly due to a 

change in fat mass, and they pointed toward a major perturbation of the global metabolism in 

TSCmKO mice. 

 

TSCmKO mice show an increase in fatty acid oxidation 

To further examine the resistance of TSCmKO mice to HFD, we measured energy expenditure.  

While it was similar between 10-week-old control and mutant mice, energy expenditure was 

increased in 40-week-old TSCmKO mice and in mutant mice on the HFD (Fig 2A). The enhanced 

energy expenditure correlated with increased transcription of Ucp2 (which encodes uncoupling 

protein 2) in skeletal muscle (Fig 2B). Since UCPs uncouple energy production from oxidative 

phosphorylation, we also measured ATP concentrations and found a significant reduction in 

TSCmKO skeletal muscle (Fig 2C). Consistently, in TSCmKO muscle, the phosphorylation (Ser173) 

and thus activation of the AMP-activated protein kinase (AMPK) was increased (Fig 2D). 

Furthermore, the abundance of pyruvate dehydrogenase kinase (PDK4) was increased (Fig 2D), 

suggesting that TSCmKO muscle fibers switched to fatty acids as energy substrate. Expression of 

Pdk4, as well as other genes associated with fatty acid oxidation, such as peroxisome 

proliferator activated receptor-ɣ coactivator 1-beta (Ppargc1b) and fatty acid binding protein 3 

(Fabp3) were increased in TSCmKO muscle (Fig 2B). The expression of all the genes measured in 

TSCmKO liver was unchanged (Fig S2A), except for that of acetyl-CoA carboxylase 1 (Acac1), 
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which encodes an enzyme involved in fatty acid synthesis, and peroxisome proliferator 

activated receptor-ɣ coactivator 1-alpha (Ppargc1a), which encodes the transcriptional 

coactivator PGC1α which is involved in the control of fatty acid oxidation (Puigserver, 2005) (Fig 

2E). These results suggest that fatty acid oxidation could also be increased in the liver of mutant 

mice (Wu et al, 1999). 

 Increased fatty acid oxidation, as observed for example during fasting, induces ketone body 

synthesis in the liver as an alternative source of energy (Newman & Verdin, 2014). The 

concentration of β-hydroxybutyrate, which indicates ketone body production, was increased in 

the plasma of TSCmKO mice compared to controls (Fig 2F). Moreover, we found increased 

expression of mRNAs encoding the main enzymes involved in ketone body catabolism, such as 

D-β-hydroxybutyrate dehydrogenase 1 (Bdh1) and 3-oxoacid-CoA transferase 1 (Oxct1), in 

TSCmKO skeletal muscle, while the expression of ketogenic genes 3-hydroxy 3-methylglutaryl-

CoA synthase 2 (Hmgcs2) and Acetyl-CoA acyltransferase 1 (Acat1), was significantly decreased 

(Fig 2B). Likewise, OXCT1 protein abundance was significantly increased in mutant muscle (Fig 

2D). These results support the notion that the enhanced fatty acid oxidation caused increased 

ketogenesis in the liver of TSCmKO mice, which in turn, led to a higher utilization of ketone 

bodies in mutant muscle. 

 As a global change in fatty acid metabolism would also have an impact on the white 

adipose tissue (WAT), we analyzed the histology of the subcutaneous-inguinal WAT in 12-week-

old control and TSCmKO mice. Mutant mice had smaller multilocular adipocytes (Fig 2G), also 

called brite or beige adipocytes, a phenotype suggestive of the “browning” of WAT, a process 

characterized by increased number of mitochondria and thermogenic capacity (Bartelt & 
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Heeren, 2014). Furthermore, there were smaller and fewer lipid droplets in the adipocytes of 

brown adipose tissue (BAT) of the mutant mice (Fig 2G), indicative of increased fatty acid 

oxidation. Accordingly, the mRNA and/or protein abundance of PGC1ɑ, carnitine 

palmitoyltransferase 1 (CPT-I), Ucp1, PR domain containing 16 (Prdm16) and cell death-inducing 

DFFa-like effector α (Cidea), which are markers for WAT browning and fatty acid oxidation 

(Puigserver, 2005; Seale et al, 2011), were increased in the WAT of TSCmKO mice (Fig 2H, 2I). 

Moreover, the phosphorylated, active form of the hormone-sensitive lipase (HSL) was increased 

in WAT from TSCmKO mice (Fig 2I). Consistent with increased triglyceride breakdown and 

enhanced fatty acid oxidation, free fatty acid concentration was increased in plasma from 

starved TSCmKO mice compared to control mice (Fig S2B). However, plasma triglyceride and 

cholesterol concentrations were unchanged in TSCmKO mice (Table S2). We therefore 

concluded that the increased fatty acid oxidation in WAT, BAT, liver and muscle, combined with 

increased ketogenesis in liver, resulted in the progressive loss of fat mass and adipose depots in 

TSCmKO mice. 

 

TSCmKO mice have increased glucose absorption and improved insulin sensitivity 

Next we examined glucose homeostasis in the mice. Glucose blood concentrations were 

significantly reduced in TSCmKO mice at 10 and 40 weeks of age and remained significantly 

lower on the HFD (Fig 3A). Similarly, plasma insulin concentration was decreased and remained 

low on the HFD (Fig 3B). The low concentrations of insulin were unlikely due to a deficiency of 

the pancreas because its histology (general tissue integrity and presence of Langerhans islets) 

was similar to that of controls (Fig S3A). Moreover, although insulin concentrations were low in 
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TSCmKO mice in both starved and fed conditions, they were efficiently increased upon glucose 

administration (Fig 3C). Additionally, during an insulin tolerance test while on HFD, TSCmKO 

mice showed improved insulin sensitivity compared to the control mice (Fig 3D). Another 

mechanism that regulates plasma glucose concentrations is liver gluconeogenesis. While we did 

not detect gluconeogenesis defects in 10-week-old TSCmKO mice when compared to control 

animals (Fig S3B), gluconeogenesis became impaired in 24-week-old TSCmKO mice as shown by 

decreased glucose production in a pyruvate tolerance test (Fig 3E). Hence, these results 

indicated a general change in glucose metabolism in TSCmKO mice. 

 We next analyzed the expression of glucose metabolism genes in skeletal muscle. While 

the expression of most of the genes measured was unchanged (Fig S3C), that of Slc2a1, which 

encodes the glucose transporter GLUT1, was significantly increased in TSCmKO mice (Fig 3F). 

Likewise, GLUT1 protein abundance was increased while the amount of GLUT4 remained 

unchanged in TSCmKO muscle (Fig 3G). Although TSCmKO muscle did not show changes in the 

expression of genes encoding enzymes involved in glycolysis (Fig S3C), it contained more 

glycogen than control muscle (Fig 3H). As expected, reduced Akt activity in TSCmKO muscle 

(Bentzinger et al, 2013) led to a significant decrease in the inhibitory phosphorylation (Ser9) of 

glycogen synthase kinase 3-β (GSK3β) (Fig 3G). However, despite GSK3β being more active, 

phosphorylation of its target, glycogen synthase (GS), was unchanged in mutant muscle (Fig 

3G), because increased availability of its substrate glucose might counteract the inhibitory 

activity of GSK3β. Hence, the increase in glucose uptake through GLUT1 under basal condition, 

rather than changes in glycolysis, might be responsible for the increase in glycogen in TSCmKO 

muscle. 
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 Transcript and protein abundance of GLUT1 and GLUT4 was increased in WAT of TSCmKO 

mice (Fig 3I, 3J), suggesting higher glucose uptake in this non-muscle tissue. The 

phosphorylation (and activation) of Akt substrate of 160 kDa (AS160) was also increased in the 

WAT of mutant mice (Fig 3J); activated AS160 favors glucose absorption upon insulin signaling 

(Sano et al, 2003; Tan et al, 2012). An in vivo 2-deoxyglucose uptake test confirmed increased 

glucose absorption in muscle and WAT of mutant mice (Fig 3K). In contrast, expression of genes 

involved in glucose metabolism and transport were unchanged in the liver of TSCmKO mice (Fig 

S3D). These results indicated that sustained mTORC1 activity in skeletal muscle reduced 

glycemia, because of the enhanced insulin sensitivity and increased glucose absorption in 

muscle and WAT. 

  To determine if these changes in glucose metabolism were a direct consequence of 

mTORC1 activity in muscle, we also examined glucose metabolism in RAmKO mice, which lack 

mTORC1 signaling in skeletal muscle (Bentzinger et al, 2008b). While plasma glucose and insulin 

concentrations were unchanged in 10-week-old RAmKO mice (Fig S3E, S3F), the mice were 

insulin resistant when compared to control littermates (Fig 3L). Together, these results point to 

a major role for mTORC1 signaling in muscle in regulating whole-body glucose metabolism. 

 

TSCmKO muscle secretes FGF21 

Changes in whole-body metabolism in the TSCmKO mice suggested the action of a secreted 

myokine (Pedersen & Febbraio, 2012). One candidate is FGF21, a starvation-induced hormone 

that can decrease glycemia and promote fatty acid oxidation (Angelin et al, 2012). At the age of 

10 weeks, plasma concentrations of FGF21 were not detectable by ELISA in fed mice. As 
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reported by others, 24-hour starvation increased FGF21 concentration (Fig 4A). Plasma FGF21 

concentrations were significantly higher in starved TSCmKO mice, and were also higher in 24-

week-old fed mutant mice compared to control littermates (Fig 4A). These results were 

confirmed by Western blot analysis of plasma FGF21 (Fig S4A). Besides the liver, which is the 

main FGF21 secretory organ (Badman et al, 2007), FGF21 can also be secreted by WAT (Wang 

et al, 2008), BAT (Hondares et al, 2010), pancreas (Johnson et al, 2009) and skeletal muscle 

(Izumiya et al, 2008a; Keipert et al, 2014). Thus, to determine the origin of the increased plasma 

concentrations of FGF21 in mutant mice, we compared transcript and protein abundance of 

FGF21 in these tissues between control and TSCmKO mice. While Fgf21 expression was 

significantly reduced in liver from TSCmKO mice, it was significantly increased in tibialis anterior 

(TA) muscle from mutant mice (Fig 4B). β-Klotho encodes the essential co-receptor of FGF21 

(Ding et al, 2012), and its expression was unaltered, except in WAT where it was significantly 

increased (Fig 4B). FGF21 protein abundance was unchanged in all organs, but was increased in 

TSCmKO muscle (Fig 4C). Moreover, HFD treatment increased expression of Fgf21 in the liver of 

control mice as previously reported (Badman et al, 2007), while Fgf21 expression was 

unchanged in the liver of TSCmKO mice but significantly increased in the muscle of mutant mice 

(Figure S4B). This increase in FGF21 abundance was a direct consequence of mTORC1 signaling 

because three-day treatment with the mTORC1 inhibitor rapamycin normalized Fgf21 

expression in TSCmKO muscle (Fig 4D). Furthermore, while FGF21 plasma concentrations were 

unchanged in 20-week-old RAmKO mice (Fig 4E), FGF21 protein abundance was significantly 

reduced in the targeted muscle (Fig 4F). Together, these results indicate that the increased 
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plasma FGF21 concentrations in TSCmKO mice originated from skeletal muscle and they shed 

light on a role of mTORC1 signaling in regulating FGF21 in skeletal muscle. 

 

mTORC1-activated ER stress induces FGF21 in skeletal muscle 

Fgf21 expression in muscle correlates with increased abundance of activating transcription 

factor 4 (ATF4) (Keipert et al, 2014; Kim et al, 2013c). ATF4 is a critical regulator of the 

integrated stress response, which is induced by various cellular stresses including amino acid 

depletion, endoplasmic reticulum (ER) or oxidative stress (Harding et al, 2000). In 10-week-old 

TSCmKO mice, the protein abundance of ATF4 was increased (Fig 5A) whereas Atf4 expression 

was not altered (Fig S5A). In contrast, skeletal muscle from 12-week-old RAmKO mice contained 

lower amounts of ATF4 (Fig 4F).  

 Two pathways have previously been implicated in the ATF4-mediated increase in FGF21 

abundance in muscle: impaired autophagy and mitochondrial dysfunction (Keipert et al, 2014; 

Kim et al, 2013c). Autophagy induction is inhibited in the TSCmKO mice by phosphorylation of 

Unc-51 like autophagy activating kinase 1 (Ulk1) (Castets et al, 2013). Ulk1 is part of the 

autophagy initiation complex and mutation of Ser757 in Ulk1 to Ala restores autophagy 

induction in TSCmKO mice (Castets et al, 2013). To examine the effect of autophagy on FGF21 

abundance in TSCmKO muscle, we electroporated mutant Ulk1 into TA muscle. Despite partial 

restoration of autophagy in the electroporated muscle, we did not observe a decrease in FGF21 

mRNA or protein abundance in TSCmKO mice (Fig S5B, S5C). The electroporation per se did not 

affect FGF21 abundance (Fig S5D, S5E). In contrast, autophagy restoration in control mice was 

sufficient to decrease FGF21 mRNA and protein abundance (Fig S5B, S5C). TSCmKO mice at the 
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age of 10 to 12-weeks did not show changes in mitochondrial DNA (Bentzinger et al, 2013) or 

expression of genes involved in the mitochondrial respiratory chain or ROS production (Fig S5F). 

Moreover, the oxidative capacity of TSCmKO muscle is enhanced (Bentzinger et al, 2013) and 

the overall oxidation status of muscle proteins was not changed in mutant muscle (Fig S5G). 

These results indicated the existence of another pathway that mediated the increase in ATF4 

and FGF21 abundance in the TSCmKO mice. 

 Indeed, examination of TSCmKO muscle by electron microscopy revealed the presence of 

irregularly shaped ER clusters (Fig 5B) suggestive of dysfunctional ER and ER stress (Varadarajan 

et al, 2012). The ER stress pathway that leads to an increase in ATF4 abundance acts through 

PKR-like endoplasmic reticulum kinase (PERK), which in turn inhibits its downstream target 

eukaryotic translation initiation factor 2-alpha (eIF2α) (Kim et al, 2008). Indeed, like ATF4 

abundance, the phosphorylation of PERK and eIF2ɑ were increased in TSCmKO muscle (Fig 5A). 

In addition, the abundance of the ER stress marker binding immunoglobulin protein (BiP) was 

significantly increased (Fig 5A). Upon activation of ER stress, the unfolded protein response 

(UPR) is initiated to re-establish normal ER function (Kim et al, 2008). TSCmKO muscle had 

increased expression of genes involved in the UPR – such as DNA-damage-inducible transcript 3 

(Ddit3), which encodes CHOP, a pro-apoptotic transcription factor; heat shock 70kDa protein 5 

(Hspa5), which encodes the ER chaperone BiP; X-box binding protein 1 (Xbp1), which encodes a 

transcription factor that controls genes involved in protein folding, and Tribbles homolog 3 

(Trib3), which is induced by CHOP and is involved in cell death (Hetz, 2012; Ohoka et al, 2005) 

(Fig 5C). Increased mTORC1 activity has been proposed to induce ER stress by increasing protein 

translation (Appenzeller-Herzog & Hall, 2012). Accordingly, protein synthesis (Bentzinger et al, 
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2013) and protein translation (Fig S5H) were increased in TSCmKO muscle. Moreover, 

rapamycin treatment significantly decreased the expression of Hspa5 and Ddit3 in TSCmKO and 

control mice (Fig S5I), demonstrating a role for mTORC1 in ER stress induction. To confirm that 

changes in mTORC1 signaling can directly modulate FGF21 abundance in muscle fibers, we 

studied the regulation of FGF21 in vitro. Acute mTORC1 activation in C2C12 myotubes by insulin 

induced FGF21 at the mRNA and protein levels, an effect that was abolished by pre-treatment 

of the cells with rapamycin (Fig 5D and 5E). Similarly, the ER stress inducer thapsigargin also 

promoted the accumulation of FGF21 at the mRNA and protein levels (Fig 5D, 5E). These results 

provide independent evidence suggesting that mTORC1 activation and ER stress induce FGF21 

in muscle cells.  

 Lastly, to test directly whether alleviation of ER stress would normalize FGF21 in vivo, 

we treated control and TSCmKO mice with 4-phenylbutyric acid (4-PBA), a chemical chaperone 

that assists in protein folding (Ozcan et al, 2006). Four-week treatment decreased the 

abundance of ATF4 and the phosphorylation of PERK and eIF2α (Fig 5F). Moreover, expression 

of the ER stress markers Ddit3, Hspa5, Xbp1 and Trib3 was reduced in TSCmKO muscle treated 

with 4-PBA (Fig 5G). In addition, the treatment and ER stress alleviation also decreased FGF21 

mRNA expression and protein abundance (Fig 5F, 5G). Together, these results suggest that ER 

stress caused by sustained mTORC1 activation is the main cause for the induction of FGF21 in 

TSCmKO muscle. 
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Blocking of FGF21 normalizes the metabolism of TSCmKO mice 

Because 4-PBA treatment decreased FGF21 abundance in the muscle of TSCmKO mice, we also 

tested whether this treatment would normalize the metabolism of these mice. The 4-week 

treatment prompted a significant, progressive weight gain in TSCmKO mice (Fig 6A) that was 

likely due to an increase in lean mass (Fig 6B). Body temperature, which is decreased in FGF21 

transgenic mice (Inagaki et al, 2007), and was significantly lower in TSCmKO mice (Fig 6C), was 

also normalized by 4-PBA treatment (Fig 6C). Blood glucose concentrations were the same in 

control and mutant mice after the treatment (Fig S6A), while insulin concentration remained 

low (Fig S6B). 

 To directly test whether blocking FGF21 would affect metabolism, we next injected a 

FGF21-neutralizing antibody (Omar et al, 2014) into 12- and 24-week-old TSCmKO mice. As 

expected, plasma concentrations of FGF21 were significantly decreased after anti-FGF21 

antibody administration (Fig S6C). Injection of the antibody also normalized blood β-ketone (Fig 

6D) and blood glucose concentrations (Fig 6E). Similar to the 4-PBA treatment, plasma insulin 

concentrations were not affected (Fig S6D). Inhibition of plasma FGF21 also improved liver 

gluconeogenesis in 24-week-old TSCmKO mice, as reflected by an increase in the rate of glucose 

production when compared to IgG-injected TSCmKO mice (Fig 6F). On the contrary, treatment 

of control mice with the FGF21-neutralizing antibody did not change plasma glucose, insulin 

and ketone body concentrations or pyruvate tolerance (Figure S6F-6I). Finally, FGF21 

neutralization significantly reduced the expression of Slc2a1, Slc2a4, Ppargc1a (Fisher et al, 

2012) and Prdm16 in the WAT of TSCmKO mice without changing that of Ucp1 and Cpt1b (Fig 

6G). These results are consistent with FGF21 promoting glucose absorption and fatty acid 
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oxidation in the WAT of TSCmKO mice through transcriptional regulation. In addition, FGF21 

neutralization decreased the expression of Fabp3, Bdh1 and Oxct1 in skeletal muscle without 

changing that of Slc2a1 and Pdk4 (Fig 6H), which correlates with a decrease in fatty acid 

oxidation and ketone body utilization. Control mice treated with the FGF21-neutralizing 

antibody showed increased expression of Slc2a1, Slc2a4 and Fgf21 in WAT, with no changes in 

gene expression in muscle or liver (Figure S6J). In contrast, the overnight treatment with the 

anti-FGF21 antibody was not sufficient to normalize the expression of Ppargc1a in liver from 

TSCmKO mice (Fig S6E). Together, these results suggest that FGF21 secreted by TSCmKO muscle 

is responsible for the overall metabolic changes in these mice, and that it acts directly on non-

muscle tissues, such as WAT, to modify glucose and fatty acid metabolism.  
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DISCUSSION 

Skeletal muscle represents roughly 40% of the whole-body mass and thereby is the major 

supplier of amino acids for other metabolic organs like liver, in addition to being involved in the 

maintenance of metabolic homeostasis. We have previously shown that sustained mTORC1 

activation in skeletal muscle blocks autophagy induction and causes a late-onset myopathy 

(Castets et al, 2013). In this study, we described how the metabolic phenotype of TSCmKO mice 

changed with age. We then characterized the underlying molecular pathways in young, healthy 

mice to ensure that metabolic changes were not secondary to the late-onset myopathy (Castets 

et al, 2013). TSCmKO mice were lean, which correlated with improved insulin sensitivity and 

increased fatty acid oxidation. The leanness was likely caused by mTORC1 inducing FGF21 as a 

myokine through the ER stress-induced activation of ATF4. Consistent with this interpretation, 

attenuation of ER stress by 4-PBA decreased FGF21 mRNA and protein abundance and 

alleviated several of the disease symptoms in TSCmKO mice. In addition, direct inhibition of 

circulating FGF21 with a neutralizing antibody also normalized most of the TSCmKO metabolic 

phenotype. Thus, in TSCmKO mice, the mTORC1 pathway in skeletal muscle regulates body-

wide energy metabolism through FGF21.  

 Perturbations of mTORC1 in other tissues, such as WAT or liver, can affect leanness in mice 

(Peterson et al, 2011; Polak et al, 2008a; Yecies et al, 2011). Surprisingly, both activation and 

inhibition of mTORC1 result in resistance to diet-induced obesity, although specific 

consequences in other, non-targeted metabolic organs and the potential contribution of 

circulating factors have not been investigated and leanness has been attributed to different 

molecular mechanisms in the targeted tissues. In our study, we also identified molecular 
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changes in the targeted muscle tissue that might contribute to the metabolic phenotype of 

TSCmKO mice, such as modifications in Ucp2, Ppargcb and GLUT1 mRNA and protein 

abundance. In addition, we identified mTORC1-triggered ER stress in skeletal muscle as the 

main driver of the metabolic changes observed on the whole-body level. We have previously 

reported that overall protein synthesis in TSCmKO muscle is increased (Bentzinger et al, 2013), 

and here we showed an increase in translation initiation. Uncontrolled protein synthesis can 

result in ER stress and activate the UPR, by overwhelming the folding capacity of the ER 

(Appenzeller-Herzog & Hall, 2012; Xu et al, 2005). In an initial physiological response, induction 

of UPR effectors, such as PERK, leads to a global translational attenuation through inhibition of 

eIF2α and to the activation of chaperones to relieve the ER stress. In contrast, unresolved ER 

stress and chronic activation of the UPR promote apoptosis by the activation of ATF4 

downstream targets, such as CHOP and GADD34 (Kim et al, 2008). In TSCmKO muscle, the 

PERK-eIF2α-ATF4 pathway was activated and chaperones and ER stress markers were 

increased. Decreased Akt activity in TSCmKO muscle (Bentzinger et al, 2013) may also 

contribute to the increased activity of PERK and the activation of the eIF2α-ATF4 pathway, 

because PERK is inhibited by Akt-dependent phosphorylation (Mounir et al, 2011). 

Furthermore, consistent with the previously described ER conformational changes upon ER 

stress (Riggs et al, 2005; Varadarajan et al, 2012), muscle fibers of TSCmKO mice contained 

swollen tubules and aggregated clusters. We conclude that ER stress in muscle of TSCmKO mice 

is driven by the increase in protein synthesis and translation initiation caused by activated 

mTORC1. 
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 We found that ER stress induced changes in whole-body metabolism through activation of 

ATF4, which in turn induces FGF21 (Kim et al, 2013c). We described the broad metabolic effects 

of FGF21 as a myokine, including changes in energy expenditure, ketogenesis, gluconeogenesis, 

fat mass, body temperature and growth. These metabolic perturbations were consistent with 

the phenotype of FGF21-overexpressing transgenic mice (Inagaki et al, 2007; Kharitonenkov et 

al, 2005) and some of these effects have been attributed to FGF21 secreted from skeletal 

muscle (Keipert et al, 2014; Kim et al, 2013c). Although these studies have linked increased 

FGF21 abundance in skeletal muscle to disturbances of mitochondrial integrity or autophagy 

impairment, we did not observe changes in the expression of mitochondrial genes or oxidative 

stress in skeletal muscle of young TSCmKO mice. In addition, partial restoration of autophagy 

did not normalize FGF21 abundance in TSCmKO muscle. The induction of FGF21 in skeletal 

muscle has been linked to activation of the PI3K/Akt pathway (Izumiya et al, 2008a), which we 

showed was due to mTORC1 activation and its effect on ER stress, because Akt activity was 

attenuated in TSCmKO muscle, presumably due to the negative feedback loop of S6K on IRS-1, 

which in turn dampens PI3K-Akt signaling (Bentzinger et al, 2013). In support of this notion, 

activated mTORC1 in liver-specific TSC1 knockout mice also leads to FGF21 secretion (Cornu et 

al, 2014) and both ATF4 and FGF21 abundance were reduced in RAmKO muscle.  

 We showed that the main molecular mechanism driving FGF21 synthesis relied on 

mTORC1-induced ER stress. Increased mTORC1 activity or ER stress induced the accumulation 

of FGF21 in C2C12 myotubes. We further confirmed this molecular pathway by treating 

TSCmKO mice with 4-PBA, an FDA-approved chemical chaperone that is a candidate drug to 

treat diabetes, cancer and protein misfolding diseases (Iannitti & Palmieri, 2011; Ozcan et al, 
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2006). In TSCmKO muscle, 4-PBA treatment attenuated ER stress by reducing PERK-eIF2ɑ-ATF4 

signaling, decreased the expression of UPR markers and reduced FGF21 mRNA and protein 

abundance without affecting mTORC1 activity. Long-term treatment with 4-PBA also increased 

the weight of the TSCmKO mice and normalized their body temperature.  

 The metabolic phenotype of TSCmKO mice is reminiscent of the action of FGF21 on 

metabolic organs. WAT is the main target tissue of FGF21 (Bookout et al, 2013; Ding et al, 2012; 

Kharitonenkov et al, 2005), and TSCmKO WAT showed increased mRNA and protein abundance 

of many regulators of browning, fatty acid oxidation and glucose metabolism, which were 

associated with increased glucose uptake and lipolysis. In addition, WAT was the only tissue in 

TSCmKO mice that showed significantly increased expression the gene encoding the β-Klotho 

receptor, an effect that is also seen in mice with increased plasma FGF21 concentration (Keipert 

et al, 2014) or in cultured adipocytes treated with FGF21 (Wei et al, 2012). The liver of TSCmKO 

mice showed increased expression of Ppargc1a, which correlates with increased fatty acid 

oxidation induced by FGF21 (Badman et al, 2007; Potthoff et al, 2009). FGF21 also induces 

ketogenesis in the liver (Inagaki et al, 2007) and TSCmKO mice had higher plasma β-ketone 

concentration and increased expression of genes involved in ketone body breakdown in muscle. 

TSCmKO mice also had reduced liver gluconeogenesis, which is consistent with the suppression 

of hepatic gluconeogenesis by FGF21 (Berglund et al, 2009; Wang et al, 2014). 

 We showed that acute inhibition of FGF21 in the blood with an FGF21-blocking antibody 

normalized several of the metabolic traits of TSCmKO mice, such as plasma β-ketone and 

glucose concentrations, thus confirming the functional role of FGF21 as a hormone in the 

mutant mice. The decreased plasma concentration of β-ketones was associated with reduced 
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expression of genes involved in ketone body breakdown in skeletal muscle. Similarly, 

normalization of plasma glucose concentration after blocking of FGF21 could be the result of 

improved liver gluconeogenesis and lower glucose uptake by WAT, which could be due to 

normalized expression of glucose transporter-encoding genes. Likewise, markers of fatty acid 

oxidation and browning were also normalized in WAT. In skeletal muscle, however, the 

increased expression of several metabolic genes in TSCmKO mice was not affected by inhibition 

of plasma FGF21, suggesting that those genes were induced by the autocrine action of FGF21 or 

directly by mTORC1 activation.  

  The phenotype of TSCmKO mice resembles the metabolism characteristic of starvation in 

several aspects. The “starvation” signal in TSCmKO mice could reflect the mTORC1-dependent 

increase in anabolic processes, which results in substantial energy depletion and exhaustion of 

ATP stores, as has been described in other TSC-deficient cell types (Inoki et al, 2003; Young et 

al, 2013). As in starvation, where liver is the main source for the increase in plasma FGF21 

concentrations (Markan et al, 2014), the increase of FGF21 in the plasma of TSCmKO mice could 

constitute a stress signal to other metabolic organs to deliver fatty acids to muscle and might 

be the cause of the progressive loss of fat mass. Constitutive mTORC1 activity also renders 

hypoxic cells critically dependent on exogenous unsaturated lipids for survival, due to the 

induction of the UPR by deregulated lipid and protein synthesis in tumor cells (Young et al, 

2013). In addition, many highly aggressive human cancers trigger increased release of fatty 

acids from lipid stores, contributing to the cachexia observed in patients. Furthermore, plasma 

FGF21 concentration is increased in HIV patients, and increased skeletal muscle FGF21 

abundance has been specifically linked with lipodystrophy and lipid disturbances in these 
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patients (Domingo et al, 2010; Lindegaard et al, 2013). While FGF21 over-expressing transgenic 

mice are lighter and resistant to obesity, they do not develop lipodystrophy (Kharitonenkov et 

al, 2005; Zhang et al, 2012), which suggests that stress-induced FGF21 could have disease-

specific effects. In this context, solving the mechanisms of mTORC1-induced FGF21 secretion 

adds valuable knowledge in understanding disease-related metabolic changes that occur in 

pathologies, such as diabetes, cancer or HIV.  

  In addition to its positive effects on obesity and diabetes (Gaich et al, 2013), FGF21 can 

have detrimental consequences, including growth retardation (Inagaki et al, 2008; Wu et al, 

2013), lower body temperature and decreased activity (Inagaki et al, 2007). Moreover, FGF21 

decreases female fertility (Owen et al, 2013) and causes bone loss (Wei et al, 2012). Some of 

these aspects, such as lower body temperature and impaired growth, were also observed in the 

TSCmKO mice. The body temperature in the TSCmKO mice was reduced in the evening upon 

fasting, which is likely a direct effect of FGF21 causing torpor to conserve energy (Cornu et al, 

2014; Inagaki et al, 2007). On the other hand, impaired growth in TSCmKO mice might be a 

consequence of decreased IGF-1 plasma concentration due to FGF21 action in the liver, as 

observed in other mouse models with increased plasma FGF21 (Inagaki et al, 2007; Keipert et 

al, 2014). Because changes in mTORC1 activity cause the perturbations observed in TSCmKO 

mice, it would also be interesting to investigate FGF21 signaling in other muscle pathologies in 

which mTORC1 signaling is deregulated (Ramos et al, 2012; Spitali et al, 2013). Nevertheless, 

our results suggest that alterations in mTORC1 signaling in skeletal muscle can directly affect 

whole-body metabolism, and they define broad effects for muscle-secreted FGF21. Moreover, 
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our study may bring new insights into the mechanisms responsible for metabolic changes that 

arise from altered muscle integrity and health. 
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MATERIAL AND METHODS 

 

Mice. Generation of TSCmKO and RAmKO transgenic mice and their genotyping have been 

previously described (Bentzinger et al, 2008b; Castets et al, 2013; Kwiatkowski et al, 2002). 

Control mice were littermates floxed for Rptor (gene encoding raptor) or Tsc1 but not 

expressing Cre-recombinase. Mice were maintained in a conventional facility with a fixed light 

cycle (23°C – 12 hr dark-light cycle) and were fed standard chow (KLIVA NAFAG, 1304811) or a 

HFD containing 60% fat (KLIBA NAFAG, 2127.PH.A05) ad libitum. HFD was started at 10 weeks 

of age, and continued for 14 weeks. 10-week-old CLAMS (Comprehensive Lab Animal 

Monitoring System) and HFD analysis were performed only in male mice, while other 

experiments were performed both in male and female mice. In some experiments, mice were 

intraperitoneally injected with rapamycin (LC Laboratories, 2 mg/kg) for 3 days, as described 

previously (Bodine et al, 2001). Euthanasia was performed at 10 am after food removal at 6 am 

the same morning, except for the anti-FGF21 antibody injected mice which were euthanized at 

2 pm, with food removal at 9 am. All procedures were performed in accordance with Swiss 

regulations for animal experimentation and approved by the veterinary commission of the 

Canton Basel-Stadt. 

 

Body composition analysis. Magnetic resonance analysis of body composition (fat, lean and 

water measurements) was performed in conscious immobilized mice using the EchoMRI-100H 

body composition analyzer (EchoMRI, TM).  
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Animal monitoring. Analysis of global metabolic parameters and behavior of mice was 

performed by the use of CLAMS. Mice were individually caged and adapted to their new 

environment for 1 day before starting the measurements, which were done for the following 3 

or 4 days. Food and water intake, as well as activity, oxygen consumption, CO2 consumption, 

heat and activity were determined with the Oxymax software (Columbus Instruments). 

 

Blood analyses. Blood was obtained from the tail veins of living mice. For glucose 

measurement, food was removed at 9 am and glucose was measured at 2 pm with the One 

Touch Ultra Easy glucose meter (LifeScan, Inc.). Plasma β-ketone and FGF21 measurements 

were performed at 9 am in the morning in mice fed ad libitum, using the Freestyle Precision β-

ketone meter (Abbott Diabetes Care Ltd.) and the Mouse and Rat FGF-21 ELISA kit (BioVendor), 

respectively. FGF21 and FFA analysis in starved mice was conducted at 9 am, with food 

deprivation at 6 pm. Plasma FFA concentrations were measured using HR Series NEFA-HR kit 

(Wako). Plasma IGF-1, GH and insulin concentrations were measured at 9 am in the morning, 

after food removal at 6 am, using Mouse/Rat IGF-I Quantikine ELISA kit (R&D Systems), Mouse 

growth hormone ELISA kit (Crystal Chem, Inc.) and Ultra-Sensitive Mouse Insulin ELISA kit 

(Crystal Chem, Inc.), respectively. Triglyceride and cholesterol concentrations were measured 

with a Cobas C111 machine (Roche), from the same plasma obtained at 9 am after food 

removal at 6 am. 

 

Glucose, Insulin and Pyruvate tolerance tests. Glucose and pyruvate tolerance tests were 

performed in overnight (16 hr) fasted mice by intraperitoneal injection of 1.5 g/kg glucose 

(Merck) and pyruvate (SIGMA-ALDRICH), respectively. Insulin tolerance test was performed in 5 
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hr fasted mice at 2 pm, after 0.75 U/kg insulin (Humalog, Eli Lilly) intraperitoneal injection. The 

guidelines from the Vanderbilt MMPC program were followed for glucose homeostasis 

experiments (McGuinness et al, 2009). 

 

4-PBA Treatment. Mice were treated with 4-phenylbutyric acid (SIGMA) at 1 g/kg/day, starting 

at the age of 10 weeks. 4-PBA was diluted in drinking water at 10 mg/ml; pH was adjusted to 

7.34; and the solution was filtered through 0.22 µm filter and kept at 4°C. Mice were given free 

access to the drinking solution, which was changed every 3 days and the remaining volume was 

measured to calculate the intake of each mouse. Mice were weighed every 3 days during the 4 

weeks of the treatment. 

 

FGF21-neutralizing antibody. Mice were intraperitoneally injected with 250 µg/kg of anti-Fgf21 

monoclonal antibody (AIS, The University of Hong Kong) diluted in 0.9% NaCl solution at 6 pm. 

Control groups were intraperitoneally injected with 250 µg/kg of purified rabbit IgG 

(ChromPure Rabbit IgG, Jackson ImmunoResearch Laboratories, Inc) diluted in 0.9% NaCl 

(Joseph et al, 2012; Omar et al, 2014). 

 

Body temperature measurement. Body temperature was measured using a rectal 

thermometer (Physitemp BAT-12, Physitemp Instruments, Inc.) at 5 pm in 8 hour-fasted 

conscious mice.  

 

Muscle ATP measurement. To determine ATP content in skeletal muscle, a luminescence assay 

was used (CellTiter-Glo Luminescent Cell Viability Assay, Promega).  Frozen extensor digitorum 
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longus (EDL) muscle was homogenized in 0.2 ml lysis buffer (0.2% Triton X-100, 4 mM EDTA in 

water), and the homogenate was cleared by centrifugation at 14000 rpm, 4°C, 15 min. The 

supernatant was diluted in PBS and the reaction mix, containing luciferase and substrate, was 

added. Luminosity was measured using a Tecan Infinite F500 luminometer (Tecan), and 

quantified according to an ATP standard curve (SIGMA-ALDRICH).   

 

Muscle glycogen measurement. For the analysis of muscle glycogen content, a glycogen assay 

kit was used (SIGMA-ALDRICH). Frozen quadriceps was homogenized, half in 2 M HCl solution 

and the other half in 2 M NaOH solution. Samples were boiled at 95°C for 1 hr, centrifuged at 

14000 rpm for 10 min and the supernatant was then mixed with glucose and the assay reagent 

as determined by the manufacturer. Glycogen was determined by absorbance using a 

spectrophotometer (Ultrospec II, LKB Biochrom). 

 

In vivo 2-deoxyglucose uptake measurement. To measure glucose uptake into TA muscle and 

WAT, a 2-deoxyglucose (2-DG) uptake measurement kit was used (Cosmo Bio, Co.). After food 

removal at 9 am, mice were intraperitoneally injected with insulin at 0.75 U/kg (Humalog, Eli 

Lilly). Ten minutes later mice were intraperitoneally injected with 5 µg of 2-deoxyglucose 

(Sigma). Mice were sacrificed 45 minutes after 2-DG injection, and tissues were dissected for 

further analysis. 50 mg of WAT and 10 mg of TA muscle were homogenized in 500 µl of 10mM 

Tris-HCl (pH 8.1), and then incubated at 95°C for 15 minutes. Samples were centrifuged for 15 

min at 17,800 g (4°C), and the supernatant was diluted in 10 mM Tris-HCl (Saito et al, 2011). 20 

µl of the diluted samples were used for further analysis according to the manufacturer’s 
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instructions (Cosmo Bio, Co.) for a final absorbance measurement according to a 2DG6P 

standard curve. 

 

In vivo muscle electroporation. Electroporation into muscle fibers and Ulk1 plasmid generation 

were performed as previously described (Castets et al, 2013; Kong et al, 2004). 

 

Cell culture. Mouse C2C12 myoblasts were maintained at 37°C and 5% CO2 in Dulbecco’s 

modified Eagle’s medium (DMEM) containing antibiotics (100 units/ml of penicillin, 100 µg/ml 

of streptomycin sulfate), L-Glutamine, sodium pyruvate and 20% fetal bovine serum (FBS). 

Myoblasts were set up for experiments on day 0 in 6-well plates at a density of 7,500 cells/cm2. 

On day 2, differentiation was induced by replacing 20% FBS with 2% FBS and media was 

changed every 2 days afterwards. On day 6, cells were treated with DMEM containing 10 nmol/l 

of insulin (Sigma) or 500 nM of thapsigargin (Tocris Bioscience). For the inhibition group, cells 

were pre-treated with 100 nM rapamycin (LC laboratories) for 15 minutes before addition of 

insulin. For the control group, cells were treated with the vehicle, containing DMSO and ethanol 

in DMEM media. One hour after the treatment, wells were washed once with warm PBS and 

cells were collected for RNA and protein extraction.  

 

Transcript Expression Analyses. Total RNA were extracted from frozen muscle using the SV 

Total RNA Isolation System (Promega). DNase-treated RNA were reverse transcribed using the 

iScript cDNA synthesis kit (BioRad) and amplified with the Applied Biosystem Power Sybr Green 
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Master Mix. Data were analyzed using the StepOne software, normalized to β-actin expression 

and relative to expression in control mice. Primers are listed in Table S3. 

 

Protein translation analysis. EDL muscles were powdered on dry ice before lysis in cold pull-

down buffer (20 mM HEPES pH 7.4, 50 mM KCl, 0.2 mM EDTA, 25 mM β-glycerophosphate, 0.5 

mM Na-orthovanadate, 1 mM DTT, 0.5% Triton X-100 and 50 mM NaF) supplemented with 

complete protease inhibitor cocktail (Roche). Cells were disrupted by additional 

homogenization in a Potter-homogenizer and 10 min incubation on ice before centrifugation 

for 10 min at 10000 rpm at 4°C. Total protein concentration was determined (BCA Protein 

Assay, Pierce) and 200 µg of total lysate were used for m7GTP pull down assay. After pre-

clearing of the samples with Glutathion-sepharose beads (GE Healthcare, Amersham 

Biosciences) for 30 min at 4°C, 15 μl of a 50% slurry of m7GTP-Sepharose CL-4B (GE Healthcare, 

Amersham Biosciences) were incubated with the pre-cleared supernatant for 4 hr at 4°C on a 

rotating wheel. After 4 washes, the samples were denaturized 10 min at 95°C before separation 

on a gradient (3-12%) polyacrylamide SDS gel (Novex). EiF4E and 4EBP1 abundance on the 

m7GTP mimicking cap were quantified by chemiluminescence detection on a nitrocellulose 

membrane. 

 

Protein oxidation measurement. The extent of oxidation of residues in protein lysates were 

determined with the Oxyblot detection kit according to the manufacturer’s protocol (Millipore). 

Total protein extract were used in duplicate and subjected to derivatization of protein carbonyl 

groups in the presence of 2.4-Dinitrophenylhydrazine (DNPH) or not (control) for 15 min at 
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room temperature. After neutralization of the reaction, the samples were reduced by addition 

of 2-mercaptoethanol and boiled 10 min at 95°C before separation on a gradient (3-12%) 

polyacrylamide SDS gels (Novex). Upon transfer on nitrocellulose membranes, the detection of 

modified proteins was achieved with a rabbit anti-DNP antibody (Millipore) and secondary anti-

Rabbit HRP antibody. Signal intensity was quantified and normalized to total protein amount 

after Ponceau staining of the nitrocellulose membrane. 

 

Western Blotting. TA muscles, WAT, BAT, liver and pancreas were frozen in liquid nitrogen and 

pulverized on dry ice. They were lysed in cold RIPA buffer (50 mM Tris HCl pH 8, 150 mM NaCl, 

1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with protease inhibitor and 

phosphatase inhibitor cocktail tablets (Roche). Cell lysates were incubated on ice for 2 hr, 

sonicated two times for 15 sec and centrifuged at 13600 g for 20 min at 4°C. Cleared lysates 

were used to determine total protein amount (BCA Protein Assay, Pierce). Proteins were 

separated in 7 to 15% polyacrylamide SDS gels and transferred to nitrocellulose membranes. 

Blood FGF21 analysis was performed on immunodepleted plasma using the ProteoPrep 20 

Immunodepletion Kit (SIGMA-ALDRICH). HRP-conjugated secondary antibodies were used and 

chemiluminescence was detected with LumiGLO chemiluminiscent substrate system (KPL). 

Signal was captured on a Fusion Fx machine (Vilber Lourmat) and analyzed with the FUSION 

Capt FX software. The following antibodies were used for immunoblotting or 

immunohistochemistry: Phospho-AMPK Ser173 (#2535), AMPK (#2532), PGC1α (#2178), 

Phospho-HSL Ser660 (#4126), β-actin (#4970), Phospho-GSK3β Ser9 (#9322), GSK3β (#9315), 

Phospho-GS Ser641 (#3891), GS (#3886), Phospho-Akt Ser473 (#4058), Phospho-AS160 Thr642 
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(#8881), AS160 (#2670), eEF2 (#2232), Ulk1 (#8054), Phospho-PERK Thr980 (#3179), PERK 

(#3192), Phospho-eIF2α Ser51 (#9721), eIF2α (#9722), S6 (#2217), Phospho-eIF4E Ser209 (#9741), 

4E-BP1 (#9452) from Cell Signaling; PDK4 (sc-130841), CPT1 (sc-20670), GLUT4 (sc-7938), GLUT1 

(sc-7903), ATF4 (sc-200) from Santa Cruz; α-actinin (7732) from Sigma; FGF21 (#Q9JJN1) from 

R&D Systems, p62 (GP62-C) from Progen and DNP (MAB2223) from Millipore. 

 

Histology and electron microscopy. Muscle, liver and pancreas were dissected and frozen in 

nitrogen-cooled isopentane. 10 µm sections were cut using a Cryostat (Leica CM1950). Inguinal-

subcutaneous WAT and BAT were dissected and fixed overnight in 4% paraformaldehyde. 

Samples were embedded in paraffin (Thermo Electron Corporation) and 4-µm-thick sections 

were cut using a microtome (Microm HM 360). Sections were stained with Hematoxylin/Eosin 

(H&E) according to classical methods. Light microscopy observations were performed using an 

upright microscope (DMR, Leica) and pictures were captured using a monochrome camera (DS-

Ri1, Nikon). Transmission electron microscopy was performed as described elsewhere (Moll et 

al, 2001). 

Statistical analyses. Results are expressed as mean ± SEM of independent animals, with n 

(number of individual experiments) ≥3. Statistical comparison of two conditions was performed 

using the Student’s t- test, comparison of 3 or more groups was performed using the One-way 

or Two-way ANOVA test with Tukey correction for multiple comparisons and analysis of 

normalized data or data sets where time is a variable was done using the linear regression 

model (GraphPad Prism Software). A 0.05 level of confidence was accepted for statistical 

significance. 
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Figure 1. TSCmKO mice show a decreased body mass and are resistant to HFD 

A. Pictures of 10- and 40-week-old TSCmKO and control (Ctrl) littermates.  

B. Plasma IGF-1 concentrations were decreased in 12-week-old TSCmKO mice, compared to 

control littermates (n= 7 mice per genotype). 
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C, D. Echo-MRI analysis revealed decreased lean mass (C) and fat mass (D) in TSCmKO mice at 

10 (n= 8 mice per genotype), 24 (n= 7 mice per genotype) and 40 (n= 8 mice per genotype) 

weeks of age under chow diet, and at 24 weeks of age with HFD (n= 6 mice per genotype). 

E. Subscapular-subcutaneous (Back) and inguinal-perigonadal (Abdomen) fat deposits from 40-

week-old control (Ctrl) and TSCmKO mice. Asterisks point at fat depots. Images are 

representative of 9 mice per genotype. 

F. Weekly weight measurement during 14 week HFD showed the inability of TSCmKO mice to 

gain weight (n= 6 mice per genotype). Linear regression analysis showed that the two groups 

differ significantly (p<0.001). 

G. H&E staining showed normal liver histology in 10-week-old TSCmKO and control (Ctrl) mice 

on a chow diet. After 14 week HFD, control mice, but not TSCmKO mice, showed hepatic 

steatosis. Images are representative of 4 sections from 3 mice per genotype and condition. 

Scale bar, 100 µm. 

Data represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001. w: weeks. 
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Figure 2. TSCmKO mice show increased ketogenesis and fatty acid oxidation 

A. CLAMS analysis revealed normal energy expenditure in 10-week-old TSCmKO mice fed chow 

diet (n= 5 mice per genotype), but a significant increase in 40-week-old mutant mice fed a chow 

diet (n= 5 mice per genotype) and in 24-week-old TSCmKO mice fed a HFD (n= 6 mice per 

genotype). 
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B. TSCmKO mice showed increased expression of genes involved in fatty acid oxidation (Ucp2; 

Ppargc1b; Pdk4; Fabp3) and ketone catabolism (Bdh1; Oxct1), and reduced expression of 

ketogenesis genes (Hmgcs2; Acat1) in TA muscle at 10 weeks of age (n= 5 mice per genotype).  

C. TSCmKO mice showed decreased ATP concentrations in EDL muscle at 10 weeks of age (n= 5 

mice per genotype). 

D. Immunoblots of TA muscle from 10-week-old TSCmKO (TSC) and control littermates (Ctrl) are 

shown for the indicated phospho (P)- and total proteins (n= 8 mice per genotype). Protein 

abundance was normalized to α-actinin. 

E. Lower Acac1 and higher Ppargc1a expression in liver of 10-week-old TSCmKO mice (n= 5 

mice per genotype). 

F. Increased plasma β-ketone concentrations in 11-week-old TSCmKO mice revealed an increase 

in ketogenesis (n= 10 mice per genotype). 

G. H&E staining of WAT and BAT from 12-week-old mice revealed increased browning of WAT 

and reduced lipid content in BAT of TSCmKO mice. Images are representative of 4 sections from 

3 mice per genotype. Scale bar, 100 µm. 

H. TSCmKO mice showed increased expression of genes involved in fatty acid oxidation 

(Ppargc1a; Cpt1b) and markers for browning (Ucp1; Prdm16; Cidea) in inguinal-subcutaneous 

WAT at 12 weeks of age (n= 5 mice per genotype). 

I. Immunoblots of WAT from 10-week-old TSCmKO (TSC) and control (Ctrl) littermates are 

shown for the indicated phospho (P)- and total proteins (n= 4 mice per genotype). Protein 

abundance is normalized to β-actin. 

Data represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001.  
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 Figure 3. TSCmKO mice show changes in glucose metabolism 

A, B. Decreased blood glucose (A) and plasma insulin (B) concentrations in 10- and 40-week-old 

TSCmKO mice fed a chow diet (n= 8 mice per genotype), and in 24-week-old mutant mice under 

HFD (n= 6 mice per genotype). w: weeks.  

C. Determination of plasma insulin concentration under starved or basal conditions, and 20 min 

after glucose injection, revealed normal glucose-stimulated insulin secretion in 10-week-old 

TSCmKO mice (n= 5 mice per genotype). 

D. Insulin tolerance test performed on 24-week-old mice after 14 weeks of HFD (n= 6 mice per 

genotype) revealed increased insulin sensitivity in TSCmKO mice. Linear regression analysis 

shows that the two groups differed significantly (p=0.01). 

E. Pyruvate tolerance test performed on 24-week-old mice revealed impaired liver 

gluconeogenesis in TSCmKO animals (n= 4 mice per genotype). Linear regression analysis shows 

that the two groups differed significantly (p<0.001). 

F. Ten week-old TSCmKO mice showed increased expression of Slc2a1 (which encodes GLUT1) 

and normal expression of Slc2a4 (which encodes GLUT4) in TA muscle (n= 4 mice per genotype). 

G. Immunoblots of TA muscle from 10-week-old TSCmKO (TSC) and control (Ctrl) mice are 

shown for the indicated phospho (P)- and total proteins (n= 4 mice per genotype). Protein 

abundance was normalized to α-actinin. 

H. Glycogen amount was increased in quadriceps muscle from 10-week-old TSCmKO mice (n= 5 

mice per genotype). 

I. TSCmKO mice showed increased expression of Slc2a1 and Slc2a4 (which encode GLUT1 and 

GLUT4) in inguinal-subcutaneous WAT at 12 weeks of age (n= 6 mice per genotype). 
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J. Immunoblots of WAT from 10-week-old TSCmKO (TSC) and control (Ctrl) mice are shown for 

the indicated phospho (P)- and total proteins (n= 4 mice per genotype). Protein abundance was 

normalized to eEF2. 

K. Increased glucose absorption in TA muscle and WAT of 10-week-old TSCmKO mice is shown 

by a higher accumulation of 2-deoxyglucose (n= 3 mice per genotype).  

L. Insulin tolerance test performed on 10-week-old mice revealed insulin resistance in RAmKO 

mice (n= 6 mice per genotype). Linear regression analysis shows that the two groups differ 

significantly (p=0.04). 

Data represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001. 
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 Figure 4. FGF21 concentrations increase in TSCmKO mice 

A. Plasma concentration of FGF21 was increased in 10-week-old, starved (n= 3 mice per 

genotype) and 24-week-old, fed (n= 6 mice per genotype) TSCmKO mice. 

B. Expression of Fgf21 and β-Klotho genes in liver, WAT, BAT, pancreas and TA muscle from 10-

week-old TSCmKO and control mice (n= 4 mice per genotype) revealed higher Fgf21 expression 

in the skeletal muscle of mutant mice. 

C. Immunoblot analysis of FGF21 is shown for liver, WAT, BAT, pancreas (Pan) and TA muscle 

from 10-week-old TSCmKO (TSC) and control (Ctrl) mice (n= 4 mice per genotype). Protein 

abundance was normalized to β-actin for liver, WAT and BAT; eEF2 for pancreas; and α-actinin 

for TA (loading control). 
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D. Increased Fgf21 expression in TA muscle of TSCmKO mice (n= 3 mice per genotype) was 

normalized after 3-day rapamycin treatment (n= 4 mice per genotype).  

E. Plasma FGF21 concentration was not changed in 20-week-old RAmKO mice (n= 4 mice per 

genotype).  

F. Immunoblot analysis of FGF21 and ATF4 is shown for TA muscle of 10-week-old RAmKO mice 

(n= 4 mice per genotype). Protein abundance was normalized to α-actinin.  

Data represent mean ± SEM, *p<0.05, **p<0.01. 
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Figure 5. Activation of mTORC1 increases FGF21 abundance in skeletal muscle through ER 

stress-mediated induction of the PERK-eIF2α-ATF4 pathway 

A. Immunoblots of TA muscle from 10-week-old TSCmKO (TSC) and control (Ctrl) mice are 

shown for the indicated phospho (P)- and total proteins (n= 5 mice per genotype), which 

indicated an activation of ER stress. Protein abundance is normalized to α-actinin. 

B. Electron microscopic images of EDL muscle from 40-week-old control (Ctrl) and TSCmKO 

mice revealed ER aggregates in mutant muscle. Arrowhead and arrow point to ER cluster and 

rough ER detail, respectively. Scale bar, 2000 nm (top), 1000 nm (middle), 500 nm (bottom). 

Images are representative of 3 mice per genotype. 

C. TSCmKO mice showed increased expression of ER stress and UPR markers in TA muscle at 10 

weeks of age (n= 5 mice per genotype). 

D. Immunoblots from C2C12 myotubes treated with insulin and thapsigargin showed 

accumulation of FGF21 upon mTORC1 activation and ER stress induction, which was abolished 

with rapamycin treatment (n= 4 sets of cells per condition). Protein abundance was normalized 

to α-actinin. 

E. C2C12 myotubes treated with insulin and thapsigargin showed increased transcriptional 

expression of Fgf21, which was blunted by rapamycin treatment (n= 4 sets of cells per 

condition). 

F. Immunoblots of TA muscle are shown for the indicated phospho (P)- and total proteins in 4-

PBA treated TSCmKO (TSC) mice (+) compared to untreated (-) mice (n= 7 mice per genotype 

and treatment). Protein abundance was normalized to α-actinin. 
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G. 4-PBA treatment normalized the expression of UPR markers and Fgf21 in gastrocnemius and 

TA muscle from 14-week-old TSCmKO mice (n= 7 mice per genotype and treatment). 

Data represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001. 
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Figure 6. Blocking FGF21 normalizes liver gluconeogenesis, plasma β-ketone and plasma 

glucose concentrations 

A. Body weight of TSCmKO mice significantly increased after 3 weeks 4-PBA treatment (n=5 

mice per genotype and treatment). Linear regression analysis shows that the groups differed 

significantly (p=0.01). 
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B. Echo-MRI analysis of body composition showed changes in fat and lean mass percentage in 

TSCmKO mice upon 4 weeks 4-PBA treatment (n= 5 mice per genotype and treatment). 

C. Body temperature was decreased in 14-week-old TSCmKO mice, but normalized after 4 

weeks 4-PBA treatment (n= 7 mice per genotype and treatment). 

D, E. Blood β-ketone (D) and glucose (E) concentrations were normalized in 11-week-old 

TSCmKO mice treated with FGF21-neutralizing antibody (n= 13), compared to mutant (n= 5) and 

control (n= 13) mice treated with rabbit IgG. 

F. After treatment with FGF21-neutralizing antibody, gluconeogenesis was improved in TSCmKO 

mice (n= 6) when compared to mutant (n= 3) and control (n= 9) mice treated with rabbit IgG. 

Linear regression analysis shows that the groups differed significantly (p<0.001). 

G. Expression of genes encoding glucose transporters (Slc2a1 and Slc2a4), enzymes involved in 

fatty acid oxidation (Ppargc1a; Cpt1b) and browning markers (Ucp1; Prdm16) in WAT was 

normalized to varying extents after anti-FGF21 antibody treatment in 11-week-old TSCmKO 

mice (n= 7) when compared to TSCmKO (n= 5) and control mice treated with rabbit IgG (n= 8). 

Control line (Ctrl-IgG) represents normalized gene expression of the IgG-treated littermates.  

H. Expression of genes encoding proteins involved in fatty acid and ketone body breakdown 

(Fabp3; Bdh1; Oxct1) in TA muscle was decreased after anti-FGF21 antibody treatment in 11-

week-old TSCmKO mice (n= 7) when compared to TSCmKO (n= 5) and control mice (n= 8) 

treated with rabbit IgG. Control line (Ctrl-IgG) represents normalized gene expression of the 

IgG-treated littermates.  

Data represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001. 
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Supplementary figures 

Figure S1 
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Figure S1: TSCmKO mice do not show overt behavioral changes 

A. H&E staining of TA muscle from 12-week-old TSCmKO and control mice (n=3 mice per 

genotype). Scale bar, 100 µm. 

B. Plasma growth hormone (GH) concentration is similar in 10-week-old TSCmKO (n= 7) and 

control mice (n= 9). 

C-H. CLAMS (Comprehensive Lab Animal Monitoring System) analysis of 10- (C-D, n= 6 mice per 

genotype) and 40- (E-F, n=6 mice per genotype) week-old TSCmKO and control mice on a chow 

diet, and of 16-week-old mutant and control mice during HFD (G-H, n= 6 mice per genotype). 

Activity, drinking and feeding were measured and normalized to body weight and daily average.  

Data represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001 
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Figure S2 

 

 

 

 

 

 

 

 

Figure S2: Higher plasma concentrations of free fatty acids in TSCmKO mice 

A. Relative expression of genes involved in fatty acid metabolism in liver. mRNA was extracted 

from liver of 10-week-old TSCmKO and control mice (n= 4 mice per genotype).  

B. Plasma free fatty acid concentrations after 24h starvation in 10-week-old TSCmKO and 

control mice (n= 4 mice per genotype). 

Data represent mean ± SEM, *p<0.05. 

  

D
g
a
t 
I

D
g
a
t 
I I

M
tt
p

C
p
t 
I

M
c a

d

B
d
h
1

H
m

g
c l

H
m

g
c s 2

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5
L iv e r

m
R

N
A

 F
o

ld
 c

h
a

n
g

e

C trl

T S C m K O

A 

C tr l  T S C m K O  

0 .0

0 .5

1 .0

1 .5

2 .0

P
la

s
m

a
 F

F
A

s
 (

m
m

o
l/

l)

C tr l

T S C m K O
*

B 



75 
 

Figure S3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3: TSCmKO mice do not show changes in the expression of genes encoding enzymes 

involved in glycolysis 

A. H&E staining of pancreas from 10-week-old TSCmKO and control mice (n=3 mice per 

genotype). Scale bar, 100 µm. Arrows point at Langerhans islets. 

B. Pyruvate tolerance test in 10-week-old TSCmKO and control mice (n= 6 mice per genotype). 

Linear regression analysis shows that the differences between the groups are not significant 

(p>0.05). 

C, D. Relative expression of genes involved in glucose metabolism in TA muscle (C) and in the 

liver (D) of 10-week-old TSCmKO and control mice (n=4 mice per genotype).  
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E, F. Plasma glucose (E) and insulin (F) concentrations in 10-week-old RAmKO and control mice 

(n= 6 mice per genotype). Data represent mean ± SEM, *p<0.05, **p<0.01. 
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Figure S4 

 

 

 

 

 

 

 

 

 

 

Figure S4: FGF21 abundance in muscle is increased in TSCmKO mice  

 A. Western blot analysis of plasma FGF21 after immunodepletion in 12- and 24-week-old fed 

TSCmKO and control mice (n= 4 mice per genotype and age). Ponceau staining was used as a 

loading control. 100 pg of recombinant FGF21 (rFGF21) were loaded as a control.  

B. Relative expression of Fgf21 in TA muscle and liver of Chow or HFD-fed 24-week-old control 

(Ctrl) and TSCmKO mice (n=3 mice per genotype and condition). 

Data represent mean ± SEM, *p<0.05.  
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Figure S5 
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Figure S5: FGF21 in TSCmKO mice is induced by ER stress, not autophagy impairment or 

mitochondrial dysfunction. 

A. Relative Atf4 mRNA expression in TA muscle of 10-week-old TSCmKO and control mice (n= 4 

mice per genotype). 

B. Immunoblots of TA muscle electroporated with Ulk1-S757A (+) and non-electroporated 

contralateral muscle (-) from 20-week-old TSCmKO (TSC) and control (Ctrl) mice are shown for 

the indicated proteins (n= 3 mice per genotype and condition). Protein abundance is 

normalized to α-actinin. 

C. Fgf21 expression is significantly decreased in TA electroporated with Ulk1-S757A in control 

mice, but not in the electroporated TSCmKO muscle when compared to respective contralateral 

legs (n= 3 mice per genotype and condition).  

D. Immunoblots of TA muscle electroporated with an empty vector (+) and of the non-

electroporated contralateral muscle (-) from 20-week-old TSCmKO (TSC) and control (Ctrl) mice 

are shown for the indicated proteins (n= 3 mice per genotype and condition). Protein 

abundance is normalized to α-actinin.  

E. Fgf21 mRNA expression was quantified in TA muscle electroporated with an empty vector (+) 

and in the non-electroporated contralateral muscle (-) from 20-week-old TSCmKO (TSC) and 

control (Ctrl) mice (n=3 mice per genotype and condition).  

F. Relative expression of mitochondrial genes in TA muscle from 10-week-old TSCmKO and 

control mice (n= 4 mice per genotype).  
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G. Protein oxidation status was quantified by Oxiblot assay in 10-week-old TSCmKO and control 

mice (n= 4 mice per genotype). 

H. m7GTP binding assay reveals an increase in translation initiation in 10-week-old TSCmKO 

muscle, compared to control (n= 6 mice per genotype).  

I. Relative expression of Hspa5 and Ddit3 in gastrocnemius muscle of 12-week-old TSCmKO and 

control mice with (+) and without (-) 3-day rapamycin treatment (n= 4 mice per genotype and 

treatment). 

Data represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001.
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Figure S6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6: FGF21 blockade does not alter plasma insulin concentration in TSCmKO mice or 

metabolism in control mice 

A. Plasma glucose concentrations from 10-week-old TSCmKO mice before and after 4-PBA 

treatment (n= 5 mice per genotype and treatment). 
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B. Plasma insulin concentrations in 14-week-old TSCmKO mice after 4-PBA treatment (n= 5) 

compared to untreated TSCmKO (n= 6) and control mice (n= 8).  

C. Plasma FGF21 concentrations in 24-week-old TSCmKO mice treated with FGF21-neutralizing 

antibody and TSCmKO mice treated with non-immune IgG (n= 5 mice per genotype and 

treatment).  

D. Plasma insulin concentrations from 12-week-old TSCmKO mice treated with FGF21-

neutralizing antibody (n= 5) compared to TSCmKO (n= 6) and control mice (n= 8) treated with 

non-immune IgG.  

E. Expression of Fgf21 and Ppargc1a in liver from 10-week-old TSCmKO mice treated with 

FGF21-neutralizing antibody and TSCmKO and control mice treated with non-immune IgG (n= 4 

mice per genotype and treatment). Control line (Ctrl-IgG) represents normalized Fgf21 and 

Ppargc1a expression of the IgG treated littermates. 

F-H. Plasma glucose (F), insulin (G) and ketone body (H) concentrations in anti-FGF21 or IgG 

antibody treated 10-week-old control (Ctrl) mice (n= 3 mice per genotype and treatment). 

I. Pyruvate tolerance test in anti-FGF21 or IgG antibody treated 24-week-old control (Ctrl) mice 

(n= 3 mice per genotype and treatment). Linear regression analysis shows that the differences 

between the groups are not significant (p>0.05). 

J. Expression of genes involved in glucose, fatty acid or ketone metabolism in WAT, TA and Liver 

of anti-FGF21 or IgG antibody treated 10-week-old control (Ctrl) mice (n= 3 mice per genotype 

and treatment). 

Data represent mean ± SEM, *p<0.05, **p<0.01, ***p<0.001. 
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Table S1. Weight and size analysis in 10- and 40-week-old mice   

  
10 weeks 

 
                       40 weeks 

    Ctrl   TSCmKO   Ctrl          TSCmKO   
Weight (g) 

 
25.3 ± 0.4 

 
21.5 ± 0.7 *** 27.8 ± 1.1 

 
19.2 ± 0.7 *** 

Tibia (mm)   17.8 ± 0.1   17 ± 0.1 *** 18.1  ± 0.1   17.3± 0.2 *** 
p values determined by Student's test are indicated by asterisks (n= 6-11 mice per genotype ).    
Values represent mean ± SEM. ***p<0.001       
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Table S2. COBAS plasma analysis of 10-week-old mice 

 
Ctrl TSCmKO 

Triglycerides (mmol/l) 1.48 ± 0.14 1.84 ± 0.24 

HDL-Cholesterol (mmol/l) 2.25 ± 0.09 2.08 ± 0.06 

LDL-Cholesterol (mmol/l) 0.17 ± 0.01 0.22 ± 0.04 

Cholesterol (mmol/l) 2.47 ± 0.08 2.28 ± 0.10 

Values represent mean ± SEM (n= 5 mice per  genotype) 
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Table S3: Primers used for qPCR 

Gene Forward primer Reverse primer Name of the gene 

Acac1 ACC TTA CTG CCA TCC CAT GTG GTG CCT GAT GAT CGC ACG AAC AAA Acetyl-CoA carboxylase 1 

Acat1 GTGAAGGAAGTCTACATGGGC TGTGGTGCATGGAGTGGAAAT Acetyl CoA acyltransferase 1 

Atf4 AGCAAAACAAGACAGCAGCC ACTCTCTTCTTCCCCCTTGC Activating transcription factor 4 

Bdh1 TTGAGCTGGATGGTTCTCAGTC TTTGCTGGCTGTTTGATGAAGG D-β-hydroxybutyrate dehydrogenase 

Cidea TGGGATTGCAGACTAAGAAGGTC CGGTCATGGTTTGAAACTCGAAA Cell death-inducing DFFA-like effector a 

Cox I GGT CAA CCA GGT GCA CTT TT TGG GGC TCC GAT TAT TAG TG Cytochrome C-oxidase 1  

Cox IV TACTTCGGTGTGCCTTCGA TGACATGGGCCACATCAG Cytochrome C-oxidase 4 

CptIb GGT CGA TTG CAT CCA GAG AT GAC TCC GGT GGA GAA GAT GA Carnitine palmitoyltransferase 1 

Ddit3 CCACCACACCTGAAAGCAGAA AGGTGAAAGGCAGGGACTCA DNA-Damage-Inducible Transcript 3-CHOP 

Dgat I CATGCGTGATTATTGCATCC ACAGGTTGACATCCCGGTAG Diglyceride acyltransferase I 

Dgat II GCGCTACTTCCGAGACTACTT GGGCCTTATGCCAGGAAACT Diglyceride acyltransferase II 

Fabp3 CCC CTCAGCTCAGCACCA CAG AAA AAT CCC AAC CCA AGA AT Fatty acid binding protein 3 

Fasn GCTGCGGAAACTTCAGGAAAT AGAGACGTGTCACTCCTGGACTT Fatty acid synthase 

Fgf21 TACACAGATGACGACCAAGA GGCTTCAGACTGGTACACAT Fibroblast growth factor 21 

Gck CCCTGAGTGGCTTACAGTTC ACGGATGTGAGTGTTGAAGC Glucokinase 

G6pc AGC GGA ATG GGA GCA ACT TG CAG AAT GGG TCC ACC TTG ACA C Glucose-6-phosphatase  

Hif1α CAGTACAGGATGCTTGCCAAAA ATACCACTTACAACATAATTCACACACACA Hypoxia inducible factor 1α 

Hk1 CCCTGCCACCAGACGAAA GACTTGAACCCCTTAGTCCATGA hexokinase 

Hmgcl GATGCCGGGAAACTTCTGAATG CCAGCTTTGTTTCTCCCAAGTG 3-hydroxymethyl-3-methylglutaryl-CoA lyase 

Hmgcs2 CCACAAGGTGAACTTCTCTCCA TGCATCTCATCCACTCGTTCA 3-hydroxy 3-methylglutaryl CoA synthase 2 

Hspa5 TTCAGCCAATTATCAGCAAACTCT TTTTCTGATGTATCCTCTTCACCAGT Heat shock 70kDa protein 5 -BiP 

β-Klotho AGGGTCTCCGGGGAATGAAT GATCTTTGCAGTGCCCTGTTG Beta-klotho receptor 

Ldh TGTCTCCAGCAAAGACTACTGT GACTGTACTTGACAATGTTGGGA Lactate dehydrogenase 

Mcad TCTCGAAGACGTCAGAGTGC TGCGACTGTAGGTCTGGTTC Medium-chain acyl-coenzyme A dehydrogenase 

Mttp CGTCCACATACAGCCTTGAC CCACCTGACTACCATGAAGC Microsomal triglyceride transport protein 

Oxct1 CCCATACCCACTGAAAGACGAA CTGGAGAAGAAAGAGGCTCCTG 3-oxoacid-CoA transferase 1 

Pck1 CAT CCA GGC AAT GTC ATC GC GCA TAA CTA ACC CG AAG GCA AG Phosphoenolpyruvate carboxikinase 

Pdk4 AAA ATT TCC AGG CCA ACC AA CGA AGA GCA TGT GGT GAA GGT Pyruvate dehydrogenase kinase, isozyme 4 

Pfkm CAGATCAGTGCCAACATAACCAA CGG GAT GCA GAG CTC ATC A Phosphofructokinase 

Pkm CGATCTGTGGAGATGCTGAA AATGGGATCAGATGCAAAGC Pyruvate kinase 

Ppargc1α TGATGTGAATGACTTGGATACAGACA GCTCATTGTTGTACTGGTTGGATATG Peroxisome proliferator activated receptor gamma 
coactivator 1-alpha 

Ppargc1β CCATGCTGTTGATGTTCCAC GACGACTGACAGCACTTGGA Peroxisome proliferator activated receptor gamma 
coactivator 1-beta 

Prdm16 AGCTGAGGAAGCATTTGAAGTTA ATATGCCTGGTTCTTAGCCTGC PR domain containing 16 

Scd1 CAA GCTGGAGTACGTCTGGA CAG AGC GCT GGT CAT GTA GT Stearoyl-CoA desaturase 1 

Slc2a1 CGAGGGACAGCCGATGTG GCCGACCCTCTTCTTTCAT Glucose transporter1 

Slc2a4 GATGAGAAACGGAAGTTGGAGAGA GCACCACTGCGATGATCAGA Glucose transporter4 

Trib3 GGACAAGATGCGAGCCACAT CCACAGCAGGTGACAAGTCT Tribbles homolog 3 

Ucp1 GGCCTCTACGACTCAGTCCA TAAGCCGGCTGAGATCTTGT Uncoupling protein 1 

Ucp2 TCCCCTGTTGATGTGGTCAA CAGTGACCTGCGCTGTGGTA Uncoupling protein 2 

Xbp1 TGGCCGGGTCTGCTGAGTCCG GTCCATGGGAAGATGTTCTGG X-box binding protein 1 

 

 

http://allie.dbcls.jp/cooccur/Acac1;acetyl-CoA+carboxylase+1.html
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ABSTRACT 

Background: The mammalian target of rapamycin complex 1 (mTORC1) is a central node in a 

network of signaling pathways controlling cell growth and survival. This multiprotein complex 

integrates external signals and affects different nutrient pathways in various organs. However, 

it is not clear how alterations of mTORC1 signaling in skeletal muscle affect whole-body 

metabolism. 

Results: We characterized the metabolic phenotype of young and old RAmKO (Raptor muscle 

knock-out) and TSCmKO (TSC1 muscle knock-out) mice, where mTORC1 activity in skeletal 

muscle is inhibited or constitutively activated, respectively. Ten week-old RAmKO mice are lean 

and insulin resistant with increased energy expenditure and they are resistant to a high-fat diet 

(HFD). This correlates with an increased expression of histone deacetylases (HDACs) and a 

down-regulation of genes involved in glucose and fatty acid metabolism. Ten week-old TSCmKO 

mice are also lean, glucose intolerant with a decreased activation of Akt/PKB targets that 

regulate glucose transporters in muscle. The mice are resistant to a HFD and show reduced 

accumulation of glycogen and lipids in the liver. Both mouse models suffer from a myopathy 

with age, with reduced fat and lean mass, and both RAmKO and TSCmKO mice develop insulin 

resistance and increased intramyocellular lipid content.  

Conclusions: Our study shows that alterations of mTORC1 signaling in skeletal muscle 

differentially affect whole-body metabolism. While both, inhibition and constitutive activation 

of mTORC1 induce leanness and resistance to obesity, changes in the metabolism of muscle and 
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peripheral organs are distinct. These results indicate that a balanced mTORC1 signaling in the 

muscle is required for proper metabolic homeostasis.  

KEYWORDS: Muscle/ Myopathy/ Metabolism/ Diabetes/ mTOR/ TSC1/ Raptor 

 

BACKGROUND 

The highly conserved serine/threonine protein kinase mammalian target of rapamycin (mTOR) 

is known to control numerous cellular processes related to cell growth (Wullschleger et al, 

2006). mTOR assembles into two functionally distinct multiprotein complexes, the rapamycin-

sensitive mTOR complex 1 (mTORC1), and mTORC2, which is only sensitive to prolonged 

rapamycin treatment (Sarbassov et al, 2006). mTORC1 is a central sensor of growth factors and 

nutrients in various cell types and has been described to play an important role in different 

pathologies like cancer, metabolic diseases and aging (Laplante & Sabatini, 2012). Because of its 

central role in metabolism, the mTOR pathway is extensively studied for its function in type 2 

diabetes (Polak & Hall, 2009). mTORC1 is also highly active in the liver and skeletal muscle of 

obese and high-fat-fed rodents (Khamzina et al, 2005; Um et al, 2004). Inhibition of mTOR 

signaling by rapamycin prolongs lifespan in several species including mice (Harrison et al., 

Nature, 2009), a treatment that has been proposed to mimic calorie restriction (Selman et al, 

2009). Paradoxically, prolonged treatment with rapamycin causes glucose intolerance and 

insulin resistance (Cunningham et al, 2007; Fraenkel et al, 2008; Houde et al, 2010), which has 

been interpreted to be the result of the inactivation of mTORC2 (Lamming et al, 2012). In 
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skeletal muscle, mTORC1 regulates muscle mass by affecting both protein synthesis and 

degradation (Laplante & Sabatini, 2012). 

 As it is difficult to distinguish the contribution of different tissues on the systemic effects of 

rapamycin treatment, several laboratories have generated various mouse models with tissue-

specific deletions of essential components of the mTORC1 pathway. White adipose tissue 

(WAT)-specific deletion of rptor (gene coding for raptor), which is essential for the activity of 

mTORC1, leads to improved insulin sensitivity and reduced adipocyte number and size (Polak et 

al, 2008a). Inactivation of mTORC1 in liver leads to resistance to hepatic steatosis and 

hypercholesteremia induced by a Western diet (Peterson et al, 2011).  While those tissues are 

the primary sites controlling metabolism, skeletal muscle has also been shown to contribute to 

whole-body metabolism. For example, skeletal muscle is the major site of glucose uptake in 

response to food intake and insulin and thus can contribute to type 2 diabetes (DeFronzo & 

Tripathy, 2009). Accordingly, patients with muscular dystrophies often develop metabolic 

complications like glucose intolerance and insulin resistance (Rodriguez-Cruz et al, 2015; Savkur 

et al, 2001). Similarly, sustained activation of mTORC1 leads to metabolic changes at the whole-

body level (Guridi et al, 2015).  

 In this study we compared as to how activation or inactivation of mTORC1 in skeletal 

muscle affect systemic energy homeostasis. We show that both fatty acid and glucose 

metabolism are dependent on proper mTORC1 signaling. In mice with muscle-specific depletion 

of raptor (i.e. inactive mTORC1), the metabolic changes correlate with up-regulation of class II 

histone deacetylases (HDACs). On the contrary, muscle-specific depletion of TSC1 (i.e. constant 

activation of mTORC1) leads to an up-regulation of transcripts involved in glucose and fatty acid 
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metabolism in various metabolic organs (Guridi et al, 2015), but causes glucose intolerance and 

late-onset damage in both the liver and the kidneys. These data thus provide evidence that 

mTORC1 signalling in skeletal muscle is a major regulator of whole-body metabolism and they 

suggest that muscle mTORC1 could be a valuable target for the treatment of metabolic 

complications associated with muscle diseases including muscular dystrophies.   

 

MATERIAL AND METHODS 

Animal experiments. Generation of TSCmKO and RAmKO mice and their genotyping were 

described before (Bentzinger et al, 2008; Castets et al, 2013; Kwiatkowski et al, 2002). Control 

mice were littermates floxed for Rptor (gene encoding raptor) or Tsc1 but not expressing Cre-

recombinase. TSCmKO and RAmKO mice were always compared to a control group of 

littermates. Initial statistical analysis was always done separately using the respective controls. 

At the young age, control mice for RAmKO and TSCmKO mice were pooled as those mice had 

the same age and because statistics was not altered when experimental groups were compared 

to non-pooled controls. All data shown represent new cohorts of mice although some of the 

metabolic phenotype of TSCmKO mice have been published before (Guridi et al, 2015). The fact 

that those data are confirmatory is mentioned throughout the text. Mice were maintained in a 

conventional facility with a fixed light cycle (23°C – 12 hr dark-light cycle) and were fed standard 

chow (KLIBA NAFAG, 1304811) or a high-fat diet (HFD) containing 60% fat (KLIBA NAFAG, 

2127.PH.A05) ad libitum. HFD was started at 8 or 10 weeks of age respectively for RAmKO and 

TSCmKO mice, and continued for 12 weeks. Body composition was determined by Magnetic 

Resonance with the EchoMRI-100H body composition analyzer (EchoMRI TM) in immobilized 
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conscious mice. In some experiments, mice were intraperitoneally injected with insulin at 2pm 

(0.75 U/kg Humalog, Eli Lilly) after a 5 hour fast, and euthanized 45 minutes after for tissue 

collection. Euthanasia in the rest of mice was performed at 10 am after food removal at 6 am of 

the same morning. Both male and female mice were used for this study after confirming that 

the phenotype observed was not dependent on gender. Data from male mice are shown in the 

main figures, whereas results from female mice, when available, are shown in Additional files. 

All procedures were performed in accordance with the Swiss regulations for animal 

experimentation and approved by the veterinary commission of the Canton Basel-Stadt. 

 

Metabolic measurements. Glucose, lactate and insulin plasma levels were analyzed in tail vein 

blood after a 4 hour fast (6 am to 10 am) with One Touch Ultra Easy glucose meter (LifeScan, 

Inc.), Lactate-pro test strips (Arkray Factory, Inc.) and Ultra-Sensitive Mouse Insulin ELISA kit 

(Crystal Chem, Inc.), respectively. ATP content and glycogen amount in muscle and liver were 

determined by using a luminescence assay (CellTiter-Glo Luminescent Cell Viability Assay, 

Promega) and a Glycogen assay kit (SIGMA-ALDRICH), respectively. A full analysis of plasma 

parameters was performed with a Cobas C111 machine (Roche) after a 4 hour fast (6 am to 10 

am). 

 

Indirect calorimetry by CLAMS (Comprehensive Lab Animal Monitoring System, Columbus 

Instruments). Mice were acclimatized for two days (individual housing) followed by data 

acquisition over three to four days. Activity (i.e. ambulatory movement determined by laser 

counts in X and Y coordinates), feeding and drinking behaviors were measured daily over a 
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period of 4 days. Oxygen use and carbon dioxide production was measured and energy 

expenditure was calculated with the Weir equation. Respiratory exchange ratio (RER) was 

calculated as VCO2/ VO2. Data were normalized to body weight. 

 

IP Insulin tolerance test (ITT) and glucose tolerance test (GTT). After an overnight starvation 

for GTT and a 5 hour fast for ITT (from 9 am to 2pm), mice were intraperitoneally injected with 

1.5 g/kg glucose (Merck) or 0.75 U/kg insulin (Humalog, Eli Lilly), respectively. Basal blood 

glucose was measured before the injection from tail vein blood and at the indicated time points 

after the intraperitoneal injection.  

 

Histology. Liver and tibialis anterior (TA) muscle, frozen in liquid nitrogen-cooled isopentane, 

were cut into 10 µm-thick cross-sections. Sections were stained with hematoxylin (Merck) - 

eosin (Sigma-Aldrich) and Oil Red-O (Sigma-Aldrich) and mounted with glycerol gelatin (Sigma-

Aldrich). 

 

Quantitative real-time PCR. Total RNA from RAmKO and control mice was isolated (SV Total 

RNA isolation System, Promega) and equal amounts of RNA were reverse transcribed using a 

mixture of oligodT and random hexamer primers (iScript cDNA Synthesis Kit, Bio-Rad). 

Quantitative real-time PCR was performed using SYBR Green (Power SYBR Green Master Mix, 

Applied Biosystems) and StepOneTM Software 2.1. (Applied Biosystems). Expression levels for 

each gene of interest were normalized to the mean cycle number using real-time PCR for the 

housekeeping gene encoding β-actin, whose expression was not altered between RAmKO and 
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control mice (Additional file 1: Figure S1A). All experiments were performed in triplicates. 

Primers used are listed in Additional file 2: Table S1. 

 

Western blotting. Proteins were extracted from TA muscle, liver, WAT and BAT as described 

previously (Bentzinger et al, 2008). Total protein levels were determined using a reducing agent 

compatible BCA Protein Assay (Pierce). Signal was captured on a Fusion Fx machine (Vilber 

Lourmat), grey values were corrected for background and analyzed with the FUSION Capt FX 

software. Quantification of each protein was normalized to the loading control (α-actinin or β-

actin). To determine the extent of protein phosphorylation, relative intensity of the band using 

a phospho-specific antibody was divided by the amount of protein as determined by a pan-

specific antibody. Samples from 4 groups of mice were all run together on the same gel, and 

quantification was done relative to the values of the control group for each genotype. 

Antibodies are listed in Additional file 1: Figure S1B. 

 

Statistical analyses. Compiled data are expressed as mean ± SEM and n (total number of knock-

out mice). Measurements were performed at least in 3 independent sets of experiments. 

Statistical comparison of two conditions was performed using the Student’s t- test, comparison 

of 3 or more groups was performed using the one-way or two-way ANOVA test with Tukey 

correction for multiple comparisons and data where time was a variable were analyzed by 

linear regression (GraphPad Prism Software). A 0.05 level of confidence was accepted for 

statistical significance. 
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RESULTS 

Modification of skeletal muscle mTORC1 signaling affects whole-body metabolism 

We have previously reported that inhibition of mTORC1 activity in skeletal muscle by raptor 

depletion (RAmKO mice) results in a lethal myopathy (Bentzinger et al, 2008). Interestingly, 

sustained activation of mTORC1 by depletion of TSC1 (TSCmKO mice) also results in a late-onset 

myopathy (Castets et al, 2013). In addition, RAmKO mice show alterations in glucose 

metabolism in the muscle (Bentzinger et al, 2008) whereas TSCmKO show strong changes in 

their fatty acid metabolism at the whole-body level (Guridi et al, 2015). As the skeletal muscle 

phenotypes of RAmKO and TSCmKO converge at older age, we decided to also perform a 

detailed characterization and comparison of RAmKO and TSCmKO mice at the whole-body level. 

 First, we analyzed the body composition by EchoMRI using 10-week-old mice, an age at 

which neither of the mice show myopathic signs (Bentzinger et al, 2013; Bentzinger et al, 2008; 

Castets et al, 2013; Guridi et al, 2015). Both, male and female TSCmKO mice were significantly 

lighter when compared to age-matched control mice (Figure 1A; Additional file 3: Figure S2A). 

In RAmKO mice, male mice were also lighter than their control littermates (Figure 1A) while this 

difference did not reach significance in females (Additional file 3: Figure S2A). This difference in 

the young RAmKO mice was due to a lower lean mass without affecting the amount of fat 

(Figure 1B and 1C; Additional file 3: Figure S2B and S2C). In young TSCmKO mice, lean mass was 

moderately changed whereas the amount of fat was strongly reduced (Figure 1B and 1C; 

Additional file 3: Figure S2B and S2C). RAmKO mice showed no changes in insulin (Figure 1D) 

and plasma glucose levels (Figure 1E; Additional file 3: Figure S2D) whereas those plasma 

parameters were lower in TSCmKO mice as previously reported (Guridi et al, 2015) and now 
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confirmed in a new set of mice (Figure 1D and 1E; Additional file 3: Figure S2D). Besides the 

changes in blood glucose and insulin, the concentration of lactate was also increased in 

TSCmKO mice but not in RAmKO mice (Figure 1F). As those plasma profiles suggest changes in 

the glucose uptake capacity, we next performed glucose and insulin tolerance tests. They 

revealed that TSCmKO mice were glucose intolerant (Figure 1G) and slightly more sensitive to 

insulin (Figure 1H). RAmKO mice had the reciprocal phenotype with normal glucose tolerance 

(Figure 1G) but insulin resistance (Figure 1H). A similar reciprocal phenotype was observed for 

the basal metabolism as energy expenditure was increased in 10-week-old RAmKO mice but not 

in TSCmKO mice (Table 1). Thus, these results show that some of the early changes in the 

whole-body metabolism are differentially affected in RAmKO and TSCmKO mice. 

 

TSCmKO and RAmKO mice are both resistant to a high-fat diet 

To test how the mice perform under metabolic stress, we fed both RAmKO and TSCmKO mice a 

high-fat diet (HFD) for 12 weeks, starting at the age of 8 or 10 weeks, respectively. Neither 

TSCmKO nor RAmKO mice gained as much weight as the control mice (Figure 2A). RAmKO mice 

maintained significantly lower fat and lean mass while on a HFD (Additional file 3: Figure S2E 

and S2F) as did TSCmKO mice (Guridi et al, 2015). Control mice also developed hepatic steatosis 

whereas TSCmKO and RAmKO were resistant (Figure 2B). Prolonged HFD feeding causes type 2 

diabetes (Winzell & Ahren, 2004). Consistent with the HFD resistance, plasma glucose levels 

were reduced in TSCmKO (Guridi et al, 2015) and RAmKO mice (Additional file 3: Figure S2G). In 

addition, RAmKO mice showed an improved glucose tolerance compared to TSCmKO and 

control mice under the HFD (Figure 2C). In contrast, TSCmKO showed an increased insulin 
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sensitivity during the HFD when compared to RAmKO and control mice (Figure 2D); (Guridi et al, 

2015). As previously shown (Guridi et al, 2015), TSCmKO mice placed on HFD ate and drank 

more, showed increased activity and energy expenditure but decreased respiratory exchange 

ratio (Table 2). On the other hand, RAmKO mice showed a decrease in their activity and the 

respiratory exchange ratio (Table 2), indicating a preference for fatty acid metabolism as a 

source of energy (Even & Nadkarni, 2012). These results show that both activation and 

inhibition of mTORC1 in skeletal muscle conferred resistance to a HFD and they indicate that 

different mechanisms underlie this phenotype.  

 

TSCmKO but not RAmKO mice show changes in other metabolic organs 

The activation state of the serine/threonine kinase Akt/PKB is altered in RAmKO and TSCmKO 

mice because of the negative feedback loop from S6K on IRS1 (Um et al. 2004). Thus, in RAmKO 

mice, lack of activation of S6K causes increased phosphorylation of Akt/PKB (Bentzinger et al, 

2008), whereas Akt/PKB phosphorylation is dampened in TSCmKO mice (Bentzinger et al, 2013). 

As Akt/PKB signaling is an important regulator of carbohydrate metabolism (Schultze et al, 

2012), we next examined Akt/PKB targets involved in glucose absorption and storage. As 

previously shown (Bentzinger et al, 2008; Guridi et al, 2015; Romanino et al, 2011), we 

confirmed that glycogen phosphorylase levels were decreased in RAmKO muscle, as well as 

glycogen synthase phosphorylation (Figure 3A) while they were unchanged in TSCmKO muscle. 

Moreover, phosphorylation of the Akt/PKB substrate of 160 kDa (AS160/TBC1D4), responsible 

for GLUT4 translocation to the sarcolemma upon insulin stimulation (Cartee, 2015), was 

decreased in TSCmKO when measured relative to the amount of TBC1D4. Similarly, 
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phosphorylation of TBC1D1, another Akt/PKB substrate involved in basal glucose absorption 

into skeletal muscle (Cartee, 2015), was also reduced in TSCmKO muscle relative to the total 

amount of TBC1D1 (Figure 3A). Interestingly, both TBC1D4 and TBC1D1 protein levels were 

increased in TSCmKO muscle (Figure 3A). In contrast, phosphorylation of TBC1D4 was increased 

in RAmKO muscle and there was a trend for increased TBC1D1 phosphorylation (Figure 3A). 

Overall, the observed changes correlated well with the increased glycogen levels (Figure 3B and 

Additional file 4: Figure S3A). Thus, modifications of the mTORC1 activity in skeletal muscle lead 

to dysregulated Akt/PKB signaling that result in changes in glucose transport and storage.  

 We have previously reported that TSCmKO mice show browning of white adipose tissue 

and increased fatty acid oxidation in the liver (Guridi et al, 2015). In contrast to the decrease in 

lipids in TSCmKO mice (Figure 3C), lipid content seemed unchanged in RAmKO liver (Figure 3C). 

In agreement with this, plasma non-esterified fatty acids were decreased in TSCmKO mice but 

were the same as in controls in the RAmKO mice (Figure 3D). We decided to analyze Akt/PKB 

signaling in the liver because insulin is a key regulator of gluconeogenesis and glycogenolysis in 

this organ. While Akt/PKB and mTORC1 activities were unchanged in RAmKO mice, both were 

down-regulated in the liver of TSCmKO mice (Figure 3E). This is likely a consequence of the 

decreased plasma insulin levels of the TSCmKO mice and not lack of responsiveness, as liver 

from TSCmKO mice responded to insulin like controls (Additional file 4: Figure S3B). Moreover, 

the amount of glucose-6 phosphatase was higher in TSCmKO mice than in controls or RAmKO 

mice (Figure 3E). In correlation with these protein changes, the glycogen amount was reduced 

in livers from TSCmKO but not from RAmKO mice (Figure 3F). In addition, none of the genes 

that were reported to be changed in TSCmKO mice involved in fatty acid or glucose metabolism 
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in the liver, white adipose tissue or brown fat of TSCmKO mice (Guridi et al, 2015) were 

changed in RAmKO mice (Additional file 4. Liver: Figure S3C, S3E and S3F; white adipose tissue: 

Figure S3C; brown fat: Figure S3D). These results show that under a normal diet, mTORC1 

activation in skeletal muscle causes changes in other metabolic organs, such as liver and 

adipose tissue. In contrast, the effect of its inhibition is limited to the targeted skeletal muscle. 

 

Strong down-regulation of metabolic genes and increased levels of HDACs in RAmKO skeletal 

muscle 

Uncoupling proteins (UCPs) uncouple the proton gradient in the inner membrane of the 

mitochondria thereby regulating efficiency of ATP production and energy expenditure in cells 

(Azzu & Brand, 2010). In WAT, mTORC1 regulates UCP expression (Polak et al, 2008a). Thus, we 

determined mRNA and protein levels of UCP in skeletal muscle. Both mRNA and protein 

abundance of UCP2 and of the muscle-specific UCP3 were significantly increased in RAmKO 

mice (Figure 4A and B). Whereas ATP levels in TSCmKO mice are reduced, whose muscles also 

contain a higher amount of UCP2 (Guridi et al, 2015), the ATP content in the muscle of RAmKO 

mice was identical to controls (Additional file 5: FigureS4). Besides the changes in UCPs, 

expression of genes involved in fatty acid transport and oxidation, like Fatp4, Fabp3 or Cpt1b, 

was decreased in the muscle of young RAmKO mice compared to control littermates (Figure 

4C). In addition, expression of glucose transporters and genes involved in glycolysis was also 

reduced in RAmKO skeletal muscle (Figure 4D), as opposed to the increased expression of genes 

involved in glucose absorption and fatty acid oxidation seen in TSCmKO muscle (Guridi et al, 

2015). To better understand the possible pathways involved in the regulation of those 
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metabolic genes, we next analyzed expression of class II histone deacetylases 4 and 5 (HDAC4 

and HDAC5), which are known to regulate glycolytic proteins (McGee et al, 2008; Tang et al, 

2009). HDAC4 and HDAC5 protein levels were increased in RAmKO mice, while there was only a 

slight, but significant increase of HDAC4 in TSCmKO muscle (Figure 4E). Thus, the strong 

increase in HDAC4 and HDAC5 in RAmKO skeletal muscle could contribute to the decreased 

expression of genes involved in fatty acid and glucose metabolism. 

  

Myopathy pre-dominates the metabolic changes in the two animal models at older age 

Previous work has shown that both RAmKO and TSCmKO mice develop a myopathy (Bentzinger 

et al, 2008; Castets et al, 2013). To investigate whether the metabolic changes in peripheral 

organs would also converge at older age, we next compared the overall metabolism between 

20-week-old RAmKO and 40-week-old TSCmKO mice, the age at which the myopathy is fully 

developed (Bentzinger et al, 2008; Castets et al, 2013). Body weights were significantly reduced 

in male and female TSCmKO and male RAmKO mice (Figure 5A; Additional file 6: Figure S5A), 

which was due to lower lean (Figure 5B; Additional file 6: Figure S5B) and fat mass (Figure 5C; 

Additional file 6: Figure S5C). Basal metabolic analysis revealed an increase in energy 

expenditure in 40-week-old TSCmKO mice, while in 20-week-old RAmKO mice the overall 

energy expenditure was now as in controls (Table 3). Analysis of the blood plasma revealed that 

insulin (Figure 5D) and glucose (Figure 5E) levels were reduced in both TSCmKO and RAmKO 

mice, while the increased plasma lactate levels of young TSCmKO mice (see Figure 1F) were 

normalized in the old mice (Figure 5F). It is well established that loss of muscle mass also affects 

glucose metabolism (Rodriguez-Cruz et al, 2015; Savkur et al, 2001). While glucose tolerance 
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was normal (Figure 5G), both TSCmKO and RAmKO mice were now insulin resistant (Figure 5H). 

Insulin resistance in muscle has been linked to the disruption of lipid dynamics and 

accumulation of intramyocellular, lipotoxic intermediates (Badin et al, 2013). Thus, we analyzed 

lipid content in muscle of the mutant mice and found that lipid droplets accumulated in RAmKO 

muscle and the amount of lipids was increased in TSCmKO muscle (Figure 5I). These results 

suggest that the myopathy in RAmKO and TSCmKO mice results in very similar overall 

perturbation of the metabolism.  

 We previously reported that the myopathy of RAmKO mice is particularly severe in the 

diaphragm, which led us to suggest that respiratory failure might be the cause of death 

(Bentzinger et al, 2008). Low respiration reduces oxygen saturation and causes the 

accumulation of carbon dioxide in the blood. Blood gas analysis revealed that oxygen and 

carbon dioxide pressure in the blood was the same as in the controls in 10-week-old RAmKO, 

but oxygen levels dropped and carbon dioxide increased in 20-week-old, myopathic RAmKO 

mice (Additional file 7: Table S2). The increase in carbon dioxide also resulted in the lowering of 

the blood pH indicative of respiratory acidosis (Additional file 7: Table S2). Although we cannot 

rule out respiratory complications in old, myopathic TSCmKO mice (Castets et al, 2013), we 

observed that 40-week-old TSCmKO mice also had polycystic kidneys (Additional file 6: Figure 

S5D), a frequent cause for acute kidney failure (Woo, 1995). In agreement with the conclusion 

that the kidneys were damaged, the amount of creatinine and lactate dehydrogenase (LDH) 

was significantly elevated in the blood of TSCmKO mice (Table 4). In addition, alanine 

aminotransferase (ALTL) and aspartate aminotransferase (ASTL) were also increased in the 

plasma of 40-week-old TSCmKO mice (Table 4), which are commonly used as markers for liver 



101 
 

damage (Oh & Hustead, 2011). We hypothesize that this kidney damage in old TSCmKO mice 

was the consequence of prolonged muscle breakdown or rhabdomyolysis (Torres et al, 2015). 

These results suggest that the disease is mainly restricted to skeletal muscle in the RAmKO mice 

and thus the mice are likely to die of respiratory failure. In contrast, TSCmKO mice show defects 

in several tissues and thus they might succumb to diseases in multiple organs, including skeletal 

muscle and kidney.  

 

DISCUSSION 

The control of energy balance plays a central role in metabolic diseases such as type 2 diabetes 

and obesity. mTORC1 has been postulated to play an essential role in glucose homeostasis by 

fine-tuning insulin signaling through Akt/PKB and by controlling metabolic pathways in different 

tissues (Tremblay et al., 2005; Um et al., 2006). Likewise, mTORC1 has a central role in 

regulating lipid metabolism and adipogenesis by activating essential transcription factors like 

Pparg and Srebp1 (Lamming & Sabatini, 2013). Skeletal muscle is a particularly important player 

in the regulation of energy balance in the body, serving both as a major glucose and energy-

storing tissue, as well as an avid energy consumer during physical activity. mTORC1 also affects 

muscle mass and integrity by regulating both protein synthesis and degradation and it has been 

suggested to be involved in muscle wasting during aging (Tintignac et al, 2015). However, how 

mTORC1 activity in skeletal muscle affects whole-body metabolism has not yet been clarified in 

detail.  

 Consequences of mTORC1 perturbation have been described in other metabolic tissues, 

such as WAT or liver, and revealed differential effects of mTORC1 signaling on tissue and whole-
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body metabolism, depending on the targeted organs and the mouse models used. For instance, 

although mTORC1 promotes lipogenesis in liver cells through SREBP activation, this effect was 

abolished in mice with liver-specific depletion of TSC1 and also resulted in insulin resistance, 

due to the simultaneous inhibition of Akt/PKB in this tissue (Li et al, 2010; Peterson et al, 2011; 

Yecies et al, 2011). Inactivation of mTORC1 in WAT caused the browning and reduction of fat, 

resulted in an increase in energy expenditure and Akt/PKB-dependent insulin sensitivity (Polak 

et al, 2008b).  

 In our study, we now report on the whole-body consequences of mTORC1 activation and 

inhibition in skeletal muscle (Figure 6). At a young age, mTORC1 inhibition had a stronger effect 

on skeletal muscle, causing a significant reduction in lean mass and muscle atrophy (Bentzinger 

et al, 2008). Only few changes were observed at the metabolic level in RAmKO mice, one being 

increased energy expenditure, most likely a consequence of the higher UCP2 and UCP3 mRNA 

and protein amount in the muscle. However, RAmKO mice were insulin resistant, which could 

be a direct consequence of the early muscle atrophy and dysfunctional muscle dynamics. 

Conversely, at this young age, activation of mTORC1 in skeletal muscle caused strong changes 

of the metabolism without yet affecting the structural integrity of skeletal muscle. We have 

previously shown that mTORC1 activation induces the release of FGF21 from skeletal muscle, 

which in turn is responsible for several of the metabolic changes, such as hypoglycemia, 

increased fatty acid oxidation and reduced body weight (Guridi et al, 2015). Despite the 

improved metabolic profile of TSCmKO mice, we now show that they are glucose intolerant. We 

suggest that this could be a consequence of dampened Akt/PKB signaling and the decreased 

translocation of glucose transporters to the plasma membrane (Cartee, 2015). Surprisingly, 
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Akt/PKB signaling was also decreased in the liver of TSCmKO, likely due to decreased plasma 

insulin concentrations. In addition, the glycogen amount in the liver was lower in TSCmKO mice, 

which correlated with an increase in glucose 6-phosphatase, suggesting increased liver 

glycogenolysis as compensation for the low plasma glucose concentration. In contrast to the 

TSCmKO mice, RAmKO mice showed no changes in their liver or plasma profile, indicating that 

the consequences of early mTORC1 inhibition are limited to skeletal muscle.  

 Interestingly, even if RAmKO and TSCmKO mice initially show an opposite metabolic 

phenotype, both mutant mice are resistant to HFD. Both mutant mice did not gain weight nor 

did they develop hepatic steatosis on a 12-week-long HFD. However, while TSCmKO mice 

showed increased insulin sensitivity and seemed to accelerate their metabolism by eating more 

and being more active, RAmKO mice showed improved glucose tolerance and slowed their 

metabolism by decreasing the activity and their respiratory exchange ratio. All these metabolic 

changes, compared to those previously reported, point to the specific consequences of 

mTORC1 deregulation depending on the metabolic organs in which the perturbation occurs. 

 Consistent with the inhibition of mTORC1 activity, RAmKO mice display a downregulation 

of glycolytic proteins and genes involved in fatty acid oxidation in the skeletal muscle. This 

correlated with the increase in class II HDACs, which have been described to regulate the 

transcription of glycolytic proteins (Cohen et al., 2007). The inefficient nutrient utilization and 

the increased energy demand might lead to beneficial systemic effects and to a resistance to 

diet-induced obesity in the RAmKO mice. This phenotype is paralleled by a reduction of the 

oxidative capacity of the muscles and by a reduction of the number of mitochondria (Romanino 
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et al, 2011). Similar to RAmKO mice, treatment with rapamycin leads to a reduced glucose 

uptake (Blattler et al., 2012a), which highlights the critical role of muscle mTORC1 signaling.   

 Changes in muscle integrity can affect whole body metabolism, as seen in patients with 

muscular dystrophies who often develop glucose intolerance and insulin resistance (Cruz 

Guzman Odel et al, 2012; Savkur et al, 2001). Both TSCmKO and RAmKO mice develop a 

myopathy and show a reduced body weight, which suggested that they are not able to gain 

lean and fat mass with age as control mice do. Interestingly, myopathic RAmKO and TSCmKO 

mice develop insulin resistance, show lower plasma glucose and plasma insulin concentrations. 

It has been proposed that whole-body insulin resistance is a consequence of lipotoxicity caused 

by aberrant lipid metabolism in the muscle and increased intramyocellular accumulation of 

ceramides and diacylglycerol (Badin et al, 2013). Accordingly, TSCmKO and RAmKO mice could 

suffer from lipotoxicity as they showed increased accumulation of lipids in the skeletal muscle. 

This accumulation of toxic lipid intermediates could be a result of endoplasmic reticulum stress 

in TSCmKO mice (Guridi et al, 2015; Salvado et al, 2015) and activation of inflammatory 

pathways in RAmKO mice (Bentzinger et al, 2008; Osborn & Olefsky, 2012). Nonetheless, the 

development of insulin resistance in both mouse models after the onset of the myopathy is well 

in line with the metabolic complications in muscular dystrophies. It will be interesting to see 

whether deregulation of mTORC1 signaling could also be at the onset of those metabolic 

complications in muscular dystrophies.  

 Our results indicate that mTORC1 is a central controller of metabolic properties of muscle 

tissue by affecting fatty acid and glucose metabolism, glycogen storage and oxidative capacity. 

We also show that skeletal muscle mTORC1 plays an essential role in whole-body homeostasis 
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and energy expenditure. Our data imply that the beneficial effects of rapamycin on systemic 

metabolism and longevity could in part be based on inhibition of mTORC1 in skeletal muscle. 

Therefore, further investigation should be conducted to determine whether mTORC1 

deregulation in muscular dystrophies might be the cause of the overall changes in the whole-

body metabolism.  

 

CONCLUSION 

In this study we have confirmed that alterations to mTORC1 signaling pathway in skeletal 

muscle directly affect whole-body metabolism, which highlights the importance of this tissue in 

maintaining energy stability. Moreover, we show that a proper balance in mTORC1 signaling is 

essential for muscle integrity and metabolic homeostasis, as both long-term activation and 

inhibition originate a myopathy that mimics the main metabolic complications of dystrophic 

patients. Thus, muscle mTORC1 could serve as a potential target to treat those metabolic 

complications. 
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ADDITIONAL FILES 

Additional files include 5 figures in .pdf format and 2 additional tables in .doc format. 

 

Additional file 1: Figure S1. Expression of Actb is not altered between RAmKO and control 

mice. (A) Actb (encoding β-actin) expression in muscle, liver, WAT and BAT of control (n= 5) and 

RAmKO mice (n= 5). (B) List of antibodies used.  

Additional file 2: Table S1. List of primers used.  

Additional file 3: Figure S2. Metabolism of female TSCmKO and RAmKO mice. (A) Body weight 

is lower in chow-fed female TSCmKO (n= 11) mice at 10 weeks of age compared to female 

RAmKO (n= 8) and control (Ctrl) mice (n= 10). (B) - (C) Lean mass (B) is lower in chow-fed female 

RAmKO mice (n= 11) compared to TSCmKO (n= 8) and control (n= 13) mice, while fat mass (C) is 

lower in female TSCmKO mice (n= 4) when compared to RAmKO (n= 4) and control (Ctrl) mice 

at 10 weeks of age (n= 6). (D) Plasma glucose levels are lower in 10-week-old chow-fed female 

TSCmKO mice (n= 7) while they are unchanged in 10-week-old female RAmKO mice (n= 6) when 

compared to control (Ctrl) mice (n= 13). (E) - (F) Fat (E) and lean mass (F) are lower in male 

RAmKO (n= 4) mice on a HFD compared to control (Ctrl) littermates (n= 6). (G) Plasma glucose 

levels are lower in male RAmKO (n= 4) mice on a HFD when compared to control (Ctrl) 

littermates (n= 6). 

 

Additional file 4: Figure S3. RAmKO mice do not show changes in other organs. (A) Glycogen 

amount is increased in gastrocnemius muscle of 10-week-old TSCmKO mice (n= 3). (B) Western 

blot analysis of liver from 10-week-old TSCmKO and control (Ctrl) mice are shown for the 

indicated phospho (P)- proteins (n= 4). Mice were intraperitoneally injected with insulin (+; TSC-

Insulin) or not (-). Protein expression is normalized to eEF2. (C) - (D) RAmKO mice do not show 

changes in Ucp2 expression in liver and WAT upon starvation and re-feeding (C), or Ucp1 and 

Ucp2 in BAT (D) at 12 weeks of age when compared to control mice (n= 5). (E) - (F) RAmKO mice 

show no changes in liver expression of genes involved in lipid (E) and glucose (F) metabolism 

upon re-feeding (n= 5).  
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Additional file 5: Figure S4. ATP levels in RAmKO muscle. ATP content in soleus muscle of 

RAmKO mice is the same as in controls at 12 weeks of age (n= 5). 

 

Additional file 6: Figure S5. Body composition in myopathic TSCmKO and RAmKO mice. (A) 

Body weight is lower in 40-week-old female TSCmKO (n= 9) mice when compared to control 

(Ctrl) littermates (n= 11), whereas it is unchanged in 20-week-old female RAmKO mice (n= 4).(B) 

- (C) Both lean mass (B) and fat mass (C) are lower in female TSCmKO (n= 10) and RAmKO (n= 4) 

mice at 40 and 20 weeks of age, respectively, when compared to control (Ctrl) littermates (n= 

10). (D) Kidneys in TSCmKO mice appear polycystic at the age of 40 weeks. Cysts are indicated 

by arrows. 

 

Additional file 7: Table S2. RAmKO blood analysis. 
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LIST OF ABREVIATIONS USED 

Akt/PKB: Protein kinase B 

ALTL: Alanine transaminase 

ASTL: Aspartate transaminase 

ATP: Adenosine triphosphate 

BAT: Brown adipose tissue 

FGF21: Fibroblast growth factor 21 

GLUT4: Glucose transporter 4 

GTT: Glucose tolerance test 

HDAC: Histone deacetylase 

HFD: High-fat diet 

IP: Intra-peritoneal 

ITT: Insulin tolerance test 

LDH: Lactate dehydrogenase 

mTORC1: Mammalian target of rapamycin complex 1 

PPARG: Peroxisome proliferator activated receptor gamma 

RAmKO: Raptor muscle knock-out 

SREBP1: Sterol regulatory element binding protein 1 

TA: Tibialis anterior 

TBC1D1/TBC1D4: TBC1 domain family member 1/4 

TSC1: Tuberous sclerosis complex 1 

TSCmKO: TSC1 muscle knock-out 

UCP: Uncoupling protein 

VCO2: Carbon dioxide volume 

VO2: Oxygen volume 

WAT: White adipose tissue 
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Figure 1. Alterations of mTORC1 signaling in skeletal muscle affects whole-body metabolism 

(A) Body weight is lower in TSCmKO (n= 10) and RAmKO (n= 17) mice at 10 weeks of age when 

compared to control (Ctrl) mice (n= 14). 

(B) - (C) Lean mass (B) is lower in TSCmKO (n= 13) and RAmKO (n= 16) mice while fat mass (C) is 

only decreased in TSCmKO mice (n= 6) when compared to control (Ctrl) mice at 10 weeks of age 

(n= 21). 

 (D) - (E) Plasma insulin levels (D) and glucose levels (E) are decreased in 10-week-old TSCmKO 

mice (n= 12) while they are unchanged in 10-week-old RAmKO mice (n= 6) when compared to 

control (Ctrl) mice (n= 10). 

Figure 1 
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 (F) Plasma lactate levels are increased in 10-week-old TSCmKO mice (n= 6) while they are 

unchanged in 10-week-old RAmKO mice (n= 6) when compared to control (Ctrl) mice (n= 12). 

 (G) - (H) TSCmKO (n= 6) but not RAmKO mice (n= 6) show glucose intolerance in a GTT (G) while 

RAmKO (n= 6) but not TSCmKO mice (n= 6) show insulin resistance in an ITT (H) at 10 weeks of 

age when compared to control (Ctrl) mice (n= 10). 

 Data presented are all from male mice of the indicated genotypes. Data represent mean ± 

SEM. *p<0.05, **p<0.01, ***p<0.001.  
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Figure 2. TSCmKO and RAmKO mice are both resistant to a high-fat diet 

(A) TSCmKO (n= 7) and RAmKO (n= 5) mice do not gain significant weight on a HFD when 

compared to control (Ctrl) mice (n= 12). 

(B) TSCmKO and RAmKO mice are resistant to HFD-induced hepatic steatosis, shown by 

decreased lipid accumulation in Oil-Red O stained liver (n= 3). Arrows indicate oil red-stained 

lipids. Scale bar 100 µm. 
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(C) 20-week-old RAmKO mice (n= 5) show an increased glucose tolerance on a GTT after a HFD 

when compared to TSCmKO (n= 6) and control (Ctrl) mice (n= 12).  

(D) 20-week-old TSCmKO mice (n= 6) show increased insulin sensitivity on an ITT after a HFD 

when compared to RAmKO (n= 5) and control (Ctrl) mice (n= 12).  

Data presented are all from male mice of the indicated genotypes. Data represent mean ± SEM. 

*p<0.05, **p<0.01, ***p<0.001.  
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Figure 3. TSCmKO but not RAmKO mice show changes in non-targeted metabolic organs 

(A) Immunoblots of TA muscle from 10-week-old TSCmKO, RAmKO and control (Ctrl) mice are 

shown for the indicated phospho (P)- and total proteins (n= 4). Protein expression is normalized 

to α-actinin. Quantification of phosphorylation is shown relative to the total amount of each 

protein except for P-S6.   

(B) Glycogen amount is increased in the gastrocnemius muscle of 12-week-old RAmKO mice (n= 

5) compared to TSCmKO (n= 7) and control (Ctrl) mice (n= 13). 

(C) Liver lipid content is decreased in 12-week-old TSCmKO as shown by oil red O staining, while 

it is unchanged in 10-week-old RAmKO mice (n= 3). Scale bar 100 µm. 

(D) The concentration of non-sterified fatty acids in the plasma is decreased in 10-week-old 

TSCmKO mice (n= 4) compared to RAmKO (n= 6) and control (Ctrl) mice (n= 8). 

(E) Immunoblots of liver from 10-week-old TSCmKO, RAmKO and control (Ctrl) mice are shown 

for the indicated phospho (P)- and total proteins (n= 4). Protein expression is normalized to β-

actin. Quantification of the phospho-protein is shown relative to the amount of each protein.  

(F) Glycogen amount is decreased in liver from 12-week-old TSCmKO mice (n= 4) compared to 

RAmKO (n= 3) and control (Ctrl) mice (n= 6).  

Data presented are all from male mice of the indicated genotypes. Data represent mean ± SEM. 

*p<0.05, **p<0.01, ***p<0.001. 

 

 

 

 



120 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Strong down-regulation of metabolic genes and increased levels of HDACs in RAmKO 

skeletal muscle 

(A) - (B) Increased expression (A) and protein levels (B) of UCP2 and UCP3 in skeletal muscle of 

12-week-old RAmKO mice (n= 4) when compared to control (Ctrl) littermates (n= 4). 

(C) - (D) Genes involved in fatty acid (C) and glucose metabolism (D) are expressed at lower 

levels in skeletal muscle of 12-week-old RAmKO mice (n= 4) when compared to control (Ctrl) 

littermates (n= 4). 

(E) HDAC4 protein levels are higher in the TA muscles of RAmKO (n= 4) and TSCmKO (n= 4) at 12 

weeks of age. In contrast, the levels of HDAC5 are only higher in RAmKO (n= 4) as shown by 
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immunoblot. Note: both bands of the HDAC proteins were included in the quantification. 

Protein expression is normalized to α-actinin.  

Data presented are all from male mice of the indicated genotypes. Data represent mean ± SEM. 

*p<0.05, **p<0.01, ***p<0.001. 
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Figure 5. Myopathy pre-dominates the metabolic changes at higher age 

(A) Body weight is decreased in both TSCmKO (n= 8) and RAmKO (n= 4) mice at 40 and 20 

weeks of age, respectively, when compared to control (Ctrl) littermates (n= 9). 
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(B) - (C) Both lean mass (B) and fat mass (C) are decreased in TSCmKO (n= 10) and RAmKO (n= 8) 

mice at 40 and 20 weeks of age, respectively, when compared to control (Ctrl) littermates (n= 

10). 

(D) - (E) Both plasma insulin (D) and glucose (E) levels are decreased in TSCmKO (n= 8) and 

RAmKO (n= 5) mice at 40 and 20 weeks of age, respectively, when compared to control (Ctrl) 

littermates (n= 12). 

(F) Plasma lactate levels are unchanged in 40-week-old TSCmKO (n= 3) and 20-week-old RAmKO 

(n= 3) mice compared to control (Ctrl) littermates (n= 6). 

(G) - (H) TSCmKO (n= 5) and RAmKO mice (n= 5) show normal glucose tolerance (H) and develop 

insulin resistance (I) at 40 and 20 weeks of age, respectively, when compared to control (Ctrl) 

littermates (n= 10). 

(I) Oil Red O staining of gastrocnemius muscle in 40-week-old TSCmKO and RamKO mice 

indicates increased lipid accumulation (n= 3). Scale bar, 100 µm.  

Data presented are all from male mice of the indicated genotypes. Data represent mean ± SEM. 

*p<0.05, **p<0.01, ***p<0.001. 
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Figure 6. Summary of metabolic changes induced by altered mTORC1 signaling in skeletal 

muscle of mice during aging. 
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TABLES 

Table 1. CLAMS analysis of 10-week-old TSCmKO and RAmKO mice 
  Ctrl TSCmKO P Ctrl RAmKO P 

Drink (ml/g/day) 0.31 ± 0.04 0.34 ± 0.06 ns 0.28 ± 0.04 0.30 ± 0.10 ns 
Feed (g/g/day) 0.58 ± 0.17 0.58 ± 0.05 ns 0.42 ± 0.06 0.60 ± 0.14 * 
CO2 (l/g/day) 0.37 ± 0.02 0.36 ± 0.03 ns 0.34 ± 0.04 0.41 ± 0.03 * 
O2 (l/g/day) 0.39 ± 0.02 0.38 ± 0.02 ns 0.37 ± 0.05 0.44 ± 0.04 * 

RER 0.94 ± 0.01 0.93 ± 0.03 ns 0.90 ± 0.01 0.91 ± 0.01 ns 
Heat (kcal/h/g) 0.020 ± 0.00 0.019 ± 0.00 ns 0.026 ± 0.00 0.032 ± 0.00 * 

X-amb (counts/h) 1078.9 ± 230.2 938.66 ± 314.8 ns 935.3 ± 357.3 938.7 ± 314.8 ns 
Y-amb (counts/h) 187.9 ± 45.8 186.1 ± 51.6 ns 169.50 ± 93.17 140.19 ± 61.47 ns 

Student's test *p<0.05 (n= 6). Values represent mean ± SEM over a period of 3 days. Data presented 

are of male mice. 

X-amb and Y-amb refer to ambulatory movement measured by laser counts in X and Y coordinates.  
 

 

Table 2. CLAMS analysis of TSCmKO and RAmKO mice on a HFD 
  Ctrl TSCmKO P Ctrl RAmKO P 

Drink (ml/g/day) 0.11 ± 0.04 0.16 ± 0.02 ** 0.15 ± 0.03 0.15 ± 0.06 ns 
Feed (g/g/day) 0.21 ± 0.06 0.36 ± 0.12 * 0.27 ± 0.02 0.29 ± 0.13 ns 
CO2 (l/g/day) 0.24 ± 0.03 0.32 ± 0.02 *** 0.29 ± 0.04 0.30 ± 0.04 ns 
O2 (l/g/day) 0.31 ± 0.04 0.41 ± 0.02 ** 0.36 ± 0.04 0.40 ± 0.06 ns 

RER 0.75 ± 0.01 0.77 ± 0.01 ** 0.79 ± 0.01 0.75 ± 0.01 ** 
Heat (kcal/h/g) 0.021 ± 0.00 0.028 ± 0.00 ** 0.019 ± 0.00 0.020 ± 0.00 ns 

X-amb (counts/h) 557.5 ± 122.4 616.9 ± 80.6 ns 601.2 ± 103.8 294.7 ± 71.1 ** 
Y-amb (counts/h) 55.5 ± 7.8 79.1 ± 25.1 0.05 49.4 ± 10.5 42.3 ± 15.9 ns 

Student's test *p<0.05, **p<0.01, ***p<0.001 (n= 6). Values represent mean ± SEM over a period of 4 

days. Data presented are of male mice.  

X-amb and Y-amb refer to ambulatory movement measured by laser counts in X and Y coordinates. 
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Table 3. CLAMS analysis of 40-week-old TSCmKO and 20-week-old RAmKO mice  
  Ctrl TSCmKO P Ctrl RAmKO P 

Drink (ml/g/day) 0.18 ± 0.05 0.22 ± 0.07 ns 0.23 ± 0.11 0.14 ± 0.03 ns 
Feed (g/g/day) 0.31 ± 0.09 0.40 ± 0.12 ns 0.37 ± 0.19 0.44 ± 0.13 ns 
CO2 (l/g/day) 0.28 ± 0.03 0.32 ± 0.04 * 0.25 ± 0.05 0.26 ± 0.02 ns 
O2 (l/g/day) 0.32 ± 0.03 0.37 ± 0.04 * 0.28 ± 0.05 0.30 ± 0.03 ns 

RER 0.85 ± 0.05 0.88 ± 0.05 ns 0.88 ± 0.04 0.87 ± 0.01 ns 
Heat (kcal/h/g) 0.022 ± 0.00 0.028 ± 0.00 * 0.026 ± 0.00 0.028 ± 0.00 ns 

X-amb (counts/h) 884.1 ± 316.4 578.1 ± 113.1 0.05 820.7 ± 247.7 856.6 ± 434.9 ns 
Y-amb (counts/h) 117.1 ± 43.1 75.8 ± 19.5 0.09 100.2 ± 56.4 130.0 ± 48.8 ns 

Student's test *p<0.05 (n= 6). Values represent mean ± SEM over a period of 3 days. Data presented 

are of male mice.  

X-amb and Y-amb refer to ambulatory movement measured by laser counts in X and Y coordinates. 

 

 

 

          Table 4. COBAS analysis of 40-week-old TSCmKO and 20-week old RAmKO plasma 

Group ALTL (U/l) ASTL (U/l) 
Uric Acid 
(μmol/l) 

Creatinine 
(μmol/l) 

LDH 
(mmol/l) 

TRIGL 
(mmol/l) 

HDL-Chol 
(mmol/l) 

LDL-Chol 
(mmol/l) 

Chol 
(mmol/l) 

Ctrl 40.5 ± 4.3 65.7 ± 10.5 220.8 ± 54.0 10.7 ± 1.7 256.5 ± 76.1 1.1 ± 0.2 2.5 ± 0.5 0.3 ± 0.0 2.7 ± 0.6 

TSCmKO 85.4 ± 13.6 308.9 ± 53.3 244.1 ± 60.6 16.6 ± 0.6 567.2 ± 74.2 1.1 ± 0.2 2.26 ± 0.3 0.4 ± 0.0 2.6 ± 0.3 
P ** *** ns *** *** ns ns ** ns 

Ctrl 31.5 ± 4.7 60.3 ± 14.3 115.3 ± 24.6 16.1 ± 1.7 278.0 ± 99.3 0.7 ± 0.5 2.0 ± 0.3 0.2 ± 0.0 2.3 ± 0.3 

RAmKO 38.4 ± 8.7 95.2 ± 12.8 118.8 ± 28.5 15.5 ± 1.9 412.4 ± 58.7 0.5 ± 0.4 1.9 ± 0.2 0.2 ± 0.0 2.3 ± 0.3 
P ns * ns  ns ns ns  ns ns ns 

Values represent mean ± SEM of male mice. Student's test *p<0.05, **p<0.01, ***p<0.001 (n= 5).      
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Additional file 1: Figure S1 
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641

 (#3891), Phospho-Akt Ser
473

 (#4058), Akt (#9272), Phospho-AS160 Thr
642

 

(#8881), AS160 (#2670), Phospho-TBC1D1 Thr
590  

(#6927), TBC1D1 (#4629), eEF2 

(#2232) and P-S6 Ser
235/236

 (#2211) from Cell Signalling;  α-Actinin (7732) from Sigma; 
G6Pase (sc-134714) and HDAC-4 (sc-11418) from Santa Cruz; UCP2 (AB3040) and 
HDAC-5 (#07-045) from Millipore; and UCP3 (ab3477) from Abcam. 
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Additional file 2. 

Table S1. Primer list. 

Cd36 fw: TGGCCTTACTTGGGATTGG bw: CCAGTGTATATGTAGGCTCATCCA 
Scl27a1 (Fatp1) fw: GGCTCCTGGAGCAGGAACA bw: ACGGAAGTCCCAGAAACCA 
Slc27a4 (Fatp4) fw: GGCTTCCCTGGTGTACTATGGAT bw: ACGATGTTTCCTGCTGAGTGGTA 
Fabp3 fw: CCCCTCAGCTCAGCACCA bw: CAGAAAAATCCCAACCCAAGAAT 
Cpt1b fw: GGTCGATTGCATCCAGAGAT bw: GACTCCGGTGGAGAAGATGA 
Acot2 (Mte1) fw: TGGGAACACCATCTCCTACAA bw: CCACGACATCCAAGAGACCA 
Slc2a1 (Glut1) fw: CGAGGGACAGCCGATGTG bw: TGCCGACCCTCTTCTTTCAT 
Slc2a4 (Glut4) fw: GATGAGAAACGGAAGTTGGAGAGA bw: GCACCACTGCGATGATCAGA 
Hk2 fw: CCCTGCCACCAGACGAAA bw: GACTTGAACCCCTTAGTCCATGA 
Pkm fw: CGATCTGTGGAGATGCTGAA bw: AATGGGATCAGATGCAAAGC 
Pfkm fw: CAGATCAGTGCCAACATAACCAA bw: CGGGATGCAGAGCTCATCA 
Ldha fw: TGTCTCCAGCAAAGACTACTGT bw: GACTGTACTTGACAATGTTGGGA 
Ucp2 fw: ACCAAGGGCTCAGAGCATGCA bw: TGGCTTTCAGGAGAGTATCTTTG 
Ucp3 fw: ACTCCAGCGTCGCCATCAGGATTCT bw: TAAACAGGTGAGACTCCAGCAACTT 
Actb (β-actin) fw: CAGCTTCTTTGCAGCTCCTT bw: GCAGCGATATCGTCATCCA 
Scd1 fw: CAAGCTGGAGTACGTCTGGA bw: CAGAGCGCTGGTCATGTAGT 
Mttp fw: CGTCCACATACAGCCTTGAC bw: CCACCTGACTACCATGAAGC 
Ucp1 fw: GGCCTCTACGACTCAGTCCA bw: TAAGCCGGCTGAGATCTTGT 
Dgat1 fw: CATGCGTGATTATTGCATCC bw: ACAGGTTGACATCCCGGTAG 
Acaca (Acc1) fw: ACCTTACTGCCATCCCATGTG bw: GTGCCTGATGATCGCACGAACAAA 
Acadm (Mcad) fw: TCTCGAAGACGTCAGAGTGC bw: TGCGACTGTAGGTCTGGTTC 
G6Pc fw: AGCGGAATGGGAGCAACTTG bw: CAGAATGGGTCCACCTTGACAC 
Gck fw: CCCTGAGTGGCTTACAGTTC bw: ACGGATGTGAGTGTTGAAGC 
Pck2 (Pepck) fw:  CATCCAGGCAATGTCATCGC bw: GCATAACTAACCCGAAGGCAAG 
Slc2a2 (Glut2) fw: GTCCAGAAAGCCCCAGATACC bw: GTGACATCCTCAGTTCCTCTTAG 
Ppara fw: TGTTTGTGGCTGCTATAATTTGC bw: GCAACTTCTCAATGTAGCCTATGTTT 
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Additional file 3: Figure S2 
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Additional file 7. 

Table S2. RAmKO blood analysis             

 
10-week-old   

  
20-week-old     

  Ctrl RAmKO P   Ctrl RAmKO P 
pO2 [mm Hg] 82.8 ±16.3 97.3 ±17.1 ns 

 
90.7 ±7.2 68.7 ±5.6 *** 

pCO2 [mm Hg] 18.5 ±5.8 16.4 ±4.0 ns 
 

18.45 ±2.3 32.8 ±8.2 ** 
pH 7.5 ±0.06 7.6 ±0.07 ns 

 
7.5 ±0.07 7.4 ±0.05 * 

        Values represent mean ± SEM. Student's test *p<0.05, **p<0.01, ***p<0.001 (n= 4).  
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3.3. Creation and characterization of a new mouse model 

FGF21 knock-out in skeletal muscle of the TSCmKO mice results in decreased survival 

We were able to confirm with two different rescue experiments that muscle secreted FGF21 

was responsible for most of the metabolic phenotype of TSCmKO mice. However, there was still 

another enigma to answer: was this stress-induced FGF21 a good myokine that helped 

compensate for the metabolic complications of a muscle myopathy? Was it helping with muscle 

survival? Or was its over-production actually contributing to the deterioration of the whole-

body metabolism? Even more, could FGF21 or the consequent whole-body metabolic changes 

be somehow involved in the pathology of the late-onset myopathy developed by TSCmKO 

mice? 

To address these questions, we generated a muscle specific FGF21 knock-out mouse 

model, by crossing FGF21 floxed mice, donated by Dr. David Mangelsdorf from University of 

Texas Southwestern Medical Center (generation of the mice detailed in (Potthoff et al, 2009)), 

with mice expressing Cre recombinase under the human skeletal actin (HSA) promoter, which 

knocked-out FGF21 specifically in skeletal muscle (Figure 1A). These mice, the FGF21mKO mice, 

were born at a normal Mendelian-ratio and were fertile. We designed primers outside the first 

and third exons of the Fgf21 gene, outside the floxed sequence (Figure 1A), which allowed us to 

confirm by PCR the proper recombination of the Fgf21 gene: in FGF21mKO muscle a small 

product would be amplified by PCR (approximately 200 bp), while the control mice would show 

a bigger amplification product (Figure 1B). We observed successful recombination in all muscles 

analyzed, with no recombination in liver or adipose tissue, while a partial recombination was 

present in the heart (Figure 1B). We also confirmed the correct elimination of Fgf21 in skeletal 

muscle by a qPCR, which showed almost completely abolished expression of Fgf21 in skeletal 

muscle (Figure 1C). 

We then crossed the FGF21mKO with the TSCmKO mice, to knock-out FGF21 in the 

skeletal muscle of the TSCmKO mice, and created the double knock-out mouse line (DKO). This 

way, we would be able to distinguish the effect of muscle-secreted FGF21 upon stress (DKO) or 

basal (FGF21mKO) conditions. We confirmed elimination of the Fgf21 gene by qPCR, which 
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showed significantly decreased expression in DKO muscle when compared to TSCmKO 

littermates (Figure 1D). DKO male and females were fertile, but were characteristically small 

and weak upon birth (Figure 1E), and had a 42% survival rate: out of 19 DKO mice born during 

one year, 11 were dead before reaching the first week of age and only 8 were able to reach 

adulthood. This would suggest that the initial post-natal induction of FGF21 is essential for the 

development of the TSCmKO mice. Surprisingly, even if 5-week-old DKO mice were smaller and 

lighter than their control and TSCmKO littermates, they progressed favorably and were 

significantly heavier than the TSCmKO littermates by 10 weeks of age (Figure 1F). On the other 

hand, 5-week-old FGF21mKO mice were already heavier than the control mice, and gained 

weight normally (Figure 1G). These results show that eliminating Fgf21 in skeletal muscle had 

aggravating consequences for the survival of TSCmKO mice, maybe due to its involvement in 

muscle development (Ribas et al, 2014). However, once they got over a possible critical stage, 

they were able to develop normally and even overcome weight issues seen before in TSCmKO 

mice.   

Increased body weight, lean mass and plasma glucose levels are the physiological effects of 

muscle secreted FGF21 

Comparison of the FGF21mKO and DKO phenotypes would allow us to differentiate the effect 

of the over-secretion of FGF21 from muscle versus the basal FGF21 secretion on the whole-

body metabolism. 10-week-old DKO mice had increased body weight when compared to 

TSCmKO littermates, which was almost normalized to control levels (Figure 2A). Likewise, 8-

week-old FGF21mKO mice were heavier than their control littermates (Figure 2B). This increase 

in the body weight was most likely due to a significant increase in lean mass in both DKO (Figure 

2C) and FGF21mKO mice (Figure 2D). Another recurrent feature of the TSCmKO phenotype that 

we hypothesized was a consequence of increased FGF21 was the decrease in plasma glucose 

levels. Accordingly, plasma glucose was significantly increased when we knocked-out muscle 

FGF21, both in DKO (Figure 2E) and FGF21mKO mice (Figure 2F). Interestingly, when we 

separated our data by sex groups, we could observe that plasma glucose was significantly 

increased in the female FGF21mKO mice (Figure 2G) while it only tended to higher amount in 
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male mice (Figure 2H). This sexual dimorphism could be the consequence of FGF21 acting on 

the hypothalamic-pituitary-ovarian axis (Owen et al, 2013), which could be lost in the 

FGF21mKO females. Blood FGF21 amount has been shown to be regulated by the liver upon 

starvation (Markan et al, 2014), but under stress conditions the muscle can increase the plasma 

FGF21 concentration (Keipert et al, 2014; Kim et al, 2013c). As a result, plasma FGF21 was 

normalized in DKO mice when compared to the increase shown by TSCmKO mice (Figure 2I). 

We also confirmed normalization of fed plasma FGF21 levels in DKO mice by a western blotting 

of immuno-depleted plasma (Figure 2J). However, under fed conditions FGF21 amount is very 

low and shows a high inter-individual variation (Angelin et al, 2012), so we starved FGF21mKO 

mice to measure the contribution of muscle to plasma FGF21. Plasma FGF21 tended to be 

lower in starved FGF21mKO mice (Figure 2K and 2L), which could account for the metabolic 

phenotype observed in these mice. However, when we starved the TSCmKO and DKO mice, 

plasma FGF21 levels seemed higher on both groups when compared to control mice (Figure 

2M), which could account for a compensatory mechanism from the liver or another secretory 

organ. On the other hand, the decreased plasma IGF1 observed in the TSCmKO mice was not 

reversed in the DKO (Figure 2N), and the FGF21mKO mice showed no changes in their plasma 

IGF1 (Figure 2O). These results show that muscle secreted plasma FGF21 affects whole-body 

metabolism by increasing body weight, lean mass and plasma glucose levels, under basal or 

stress conditions. 

Muscle FGF21 is involved in the fatty acid metabolism of skeletal muscle. 

We had previously shown that stress-secreted FGF21 from skeletal muscle had an impact on 

the whole-body metabolism, which was reversed when we knocked-out muscle FGF21 and 

normalized plasma FGF21 amount (Figure 2I). We next decided to check if muscle FGF21 could 

also affect the muscle itself. TSCmKO mice did not show any structural abnormalities in the 

muscle when compared to control littermates, as did the DKO muscles (Figure 3A). Likewise, we 

did not observe any problems in the structural integrity of FGF21mKO muscles (Figure 3B). 

TSCmKO mice were shown to have increased oxidative capacity (Bentzinger et al, 2013), which 

correlated with an increase in fatty acid oxidation (Guridi et al, 2015). In DKO mice, we could 
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still observe an increase in the oxidative capacity of the muscle when compared to control mice 

(Figure 3A), which would indicate that sustained mTORC1 activity is causing the changes in the 

oxidative capacity of muscle. On the other hand, FGF21mKO muscles showed an increased 

oxidative capacity when compared to control muscles, which correlated with a decreased lipid 

accumulation (Figure 3B). In parallel, the increase in the accumulation of intramyocelular lipids 

of TSCmKO muscle was reversed in the DKO muscle (Figure 3A). Beta-oxidation, a mitochondrial 

catabolic process, supplies the muscle of energy by oxidating fatty acids, thus the increased 

oxidative capacity of FGF21 depleted muscles likely caused an increased fatty acid oxidation 

and the consequent reduction in lipid content. These results suggest that FGF21 could regulate 

fatty acid metabolism in skeletal muscle.  

Differential effect of muscle secreted FGF21 on the whole-body metabolism upon mTORC1 

activation or basal conditions 

We next decided to analyze the differences between the lack of basally secreted muscle FGF21 

versus the lack of its over-secretion. Due to an increase in liver ketogenesis TSCmKO mice 

showed higher plasma β-ketone bodies, which we hypothesized was due to plasma FGF21 

because they were normalized upon treatment with the FGF21 neutralizing antibody (Guridi et 

al, 2015). Accordingly, DKO mice showed a decrease in plasma β-ketone bodies (Figure 4A), 

while they were unchanged in FGF21mKO mice (Figure 4B). Another consequence of increased 

plasma FGF21, as seen in FGF21 transgenic mice (Inagaki et al, 2007) and TSCmKO mice is 

growth impairment and reduced body temperature. While tibia length was normalized in DKO 

mice (Figure 4C), it was unchanged in FGF21mKO mice (Figure 4D). Likewise, body temperature 

tended to increase in the DKO mice (Figure 4E) while it was normal in FGF21mKO mice (Figure 

4F). In addition, while plasma insulin levels were significantly lower in TSCmKO mice when 

compared to control littermates, they were unchanged in DKO mice (Figure 4G). While 

increased plasma FGF21 might decrease insulin secretion, the lack of basally secreted muscle 

FGF21 did not change plasma insulin levels (Figure 4H). On the other hand, one of the most 

prominent features of TSCmKO mice we hypothesized as a consequence of increased FGF21 

was the loss of fat mass, which was still significantly decreased in DKO mice (Figure 4I). 
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However, the lack of muscle FGF21 did cause a moderate but significant increase of fat mass in 

FGF21mKO mice (Figure 4J). These results would suggest that muscle secreted FGF21 can 

reduce whole-body fat mass, but the loss of adipose tissue in the TSCmKO mice could be 

aggravated by other consequences of increased muscle mTORC1 activity. Interestingly, muscle 

secreted FGF21 did not only have an effect on the global metabolism, but also affected the 

development of skeletal muscle (Figure 2G-2H). On the other hand, muscle force was not 

affected by eliminating FGF21 in skeletal muscle (Figure 4K-4N). Thus, these results suggest that 

consequences of muscle secreted FGF21 on the whole-body metabolism are different 

depending on the basal secretion or stress-induced over-secretion. For instance, changes in 

plasma insulin, ketone bodies, body temperature and growth could be caused by muscle FGF21 

over-secretion, while they were not dependent on basal muscle FGF21 secretion. However, 

basal muscle FGF21 could cause changes on the fat mass, while further research is needed to 

determine if over-secretion of muscle FGF21 can contribute to the decrease of adipose tissue. 

Deletion of muscle FGF21 caused a diabetic phenotype 

FGF21 was discovered as an anti-obesity and anti-diabetic drug, and whole-body FGF21 knock-

out mice showed increased gain in body weight and adiposity upon a ketogenic diet (Badman et 

al, 2009). Skeletal muscle FGF21 over-expression protected mice against diet induced obesity 

and promoted a lean phenotype (Keipert et al, 2014; Kim et al, 2013c), which corroborated the 

beneficial effects of FGF21 and pointed at skeletal muscle as being an important source of 

FGF21. Eliminating FGF21 in skeletal muscle caused an increase in body weight (Figure 2B), 

higher plasma glucose levels (Figure 2D) and increased fat mass (Figure 4J), which are 

characteristic traits of obesity induced type II diabetes. Diabetic patients often develop 

peripheral tissue insulin resistance and glucose intolerance due to increased adiposity (Kahn et 

al, 2006). While FGF21mKO mice had normal insulin sensitivity (Figure 5A), they showed a slight 

glucose intolerance (Figure 5B), which is another feature in diabetic and obese individuals. 

Interestingly, when we separated glucose tolerance by sex groups, female FGF21mKO mice 

showed significantly reduced glucose tolerance when compared to female control littermates 

(Figure 5C), which correlated with the previous observation of predominantly female 
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FGF21mKO mice showing increased plasma glucose levels (Figure 2D). We next tested if the 

glucose intolerance in FGF21mKO mice could be due to an insulin secretion problem, but the 

pancreas histology of FGF21mKO was normal compared to control mice (Figure 5D) and when 

stimulated with glucose FGF21mKO mice were able to increase plasma insulin levels the same 

way as control mice did (Figure 5E). On the other hand, glucose absorption into WAT and liver 

were normal in the FGF21mKO mice, while it tended to be reduced in skeletal muscle (Figure 

5F), which could contribute to the glucose intolerance.  

We next analyzed basal metabolism of FGF21mKO mice, and observed that female mice 

ate significantly less than their control littermates (Figure 5F), while water drinking was normal 

(Figure 5G). On the other hand, both male and female FGF21mKO mice were more active 

(Figure 5H-5J), while respiratory exchange ratio was unchanged (Figure 5K). FGF21mKO mice 

tended to show increased heat production (Figure 5L) and higher oxygen consumption (Figure 

5M), while carbon dioxide volume was normal when compared to control mice (Figure 5N). The 

increased activity of FGF21mKO mice was likely causing this tendency to higher energy 

expenditure (Figure 5O). We also challenged the metabolism of the mice by feeding them a HFD 

for 12 weeks, and observed a similar increase in body weight in both groups (Figure 5P). In 

addition, WAT of FGF21mKO mice showed an increased TNFα expression, which would 

correlate with obesity inducing inflammation in the adipose tissue (Figure 5Q).  

Eliminating muscle FGF21 in TSCmKO mice normalized browning and glucose absorption in 

WAT while it decreased ketolysis and altered fatty acid oxidation in skeletal muscle 

Many of the whole-body metabolic characteristics of TSCmKO were reverted when we knocked-

out FGF21 in skeletal muscle. So we next analyzed the molecular changes in muscle, WAT and 

liver of DKO mice. ER stress was still high in DKO skeletal muscle, comparable to TSCmKO mice, 

as seen by increased expression of ER stress markers Hspa5, Ddit3, Xbp1 and Trib3 (Figure 6A). 

Expression of genes involved in ketogenesis, Acat1 and Hmgcs2, were still significantly 

decreased in muscle of DKO mice (Figure 6B). On the other hand, while Oxct1 was still 

increased, expression of ketolytic gene Bdh1 was significantly decreased when compared to 

TSCmKO muscle (Figure 6B), which correlated with the decrease in plasma ketone bodies 
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(Figure 4A). In parallel, the expression of genes involved in fatty acid oxidation, such as 

Ppargc1a, Fabp3 and Ucp3 were significantly up-regulated in DKO muscle when compared to 

TSCmKO (Figure 6C), which could mean that an increase in fatty acid oxidation could cause the 

decreased accumulation of lipids in the muscle (Figure 3A) and contribute to the wasting of fat 

mass (Figure 4I). On the contrary, while FGF21 seemed to be involved in regulating fatty acid 

metabolism of skeletal muscle, its elimination had no effect on glucose metabolism, because 

Glut1 glucose transporter and glucokinase remained significantly up-regulated in DKO muscle 

(Figure 6D). In addition, glycogen storage, most likely a consequence of increased Glut1 

expression, was still increased in DKO mice when compared to TSCmKO muscle (Figure 6E). On 

the other hand, while Ppargc1a was unchanged in DKO liver when compared to TSCmKO mice, 

glucokinase expression was increased in DKO liver (Figure 6F), correlating with the increased 

availability of glucose in their plasma. Increased phospho-S6 in DKO muscles indicated no 

changes in mTORC1 activity and Akt activation still remained low as in TSCmKO mice, while 

phospho-AMPK was normalized in DKO muscles to a control level (Figure 6G). We hypothesized 

that AMPK activity was higher in TSCmKO mice due to an energetic depletion of muscle and 

decreased ATP content, which was normalized when we depleted FGF21 in skeletal muscle 

(Figure 6H). On the other hand, expression of atrogenes Murf1 and Atg1, involved in the 

increased proteasomal degradation in TSCmKO muscle (Bentzinger et al, 2013), was still up-

regulated in DKO muscle, while β-Klotho, the essential co-receptor of FGF21, was significantly 

reduced (Figure 6D). Together, these results suggest that while muscle FGF21 does not affect 

ER stress, proteasomal degradation, ketogenesis or glucose metabolism, it has a role in 

regulating fatty acid metabolism of skeletal muscle. 

The main effect of increased plasma FGF21 in TSCmKO mice was observed in WAT, as it 

showed increased expression of markers for adipose tissue browning and glucose transporters, 

correlating with the increased browning and glucose absorption into WAT. Interestingly, 

glucose transporters (Glut1 and Glut4) were significantly down-regulated in the DKO WAT when 

compared to TSCmKO (Figure 6I), which would indicate that the decrease glucose absorption 

into WAT could cause the increase in plasma glucose levels observed in DKO mice (Figure 2C). In 

addition, expression of browning markers, Ppargc1a, Cidea, Ucp1 and Fabp3 were also 
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significantly down-regulated in WAT of DKO (Figure 6I), confirming the role of muscle secreted 

FGF21. Furthermore, similar to skeletal muscle, expression of both Fgf21 and β-Klotho was 

significantly down-regulated in WAT of DKO mice (Figure 6I), which would confirm a possible 

feed-forward effect of FGF21 signaling in the affected tissue. Thus, these results demonstrate 

that the changes observed in TSCmKO WAT were due to the effect of muscle-secreted FGF21, 

because markers for browning and glucose absorption are normalized in this tissue.  

Potential involvement of muscle FGF21 in the development of the myopathy in TSCmKO mice 

We next decided to analyze the progression of the metabolic and muscle phenotype of DKO 

mice with age. 10-month-old DKO female mice tended to weight more than TSCmKO 

littermates, which were significantly lighter than the control mice (Figure 7A). Likewise, 10-

month-old FGF21mKO female mice were significantly heavier than the control mice (Figure 7A). 

This increase in body weight was not due to changes in fat mass, which was significantly lower 

in TSCmKO and DKO mice (Figure 7B), but a consequence of a significant increase in lean mass 

observed both in 10-month-old DKO female mice compared to TSCmKO littermates, and in 

FGF21mKO mice when compared to control littermates (Figure 7C). In addition, tibia length was 

normalized in 10-month old DKO mice (Figure 7D), while it remained unchanged in FGF21mKO 

mice (data not shown). Plasma glucose and insulin were normalized in younger DKO mice 

(Figure 2C and 4G), but both glucose (Figure 7E) and insulin (Figure 7F) remained low in 10-

month-old DKO mice when compared to control littermates.  

 TSCmKO mice develop a late-onset myopathy with age, characterized by changes in 

fiber size, vacuoles and swollen nuclei (Castets et al, 2013). While fiber size distribution was still 

affected, we did not observe any vacuoles or swollen nuclei in the skeletal muscle of 10-month-

old female DKO mice (Figure 7G). In addition, while oxidative capacity was still increased, 

intramyocelular lipid content was normalized in DKO skeletal muscle (Figure 7G). These results, 

similar to the observations in young DKO mice, would suggest that FGF21 could regulate fatty 

acid metabolism in muscle, and that eliminating muscle FGF21 is favorable for the outcome of 

TSCmKO skeletal muscle development. 
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Figure 1. FGF21 knock-out in skeletal muscle of the TSCmKO mice results in decreased survival 

A) Representation of the p lox insertion sites before exon 1 and after exon 3 of the Fgf21 gene, 

and the Cre mediated excision of the three exons in the DKO and FGF21mKO mice. Adapted 

from REF Inagaki et al  
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B) Amplification of the Fgf21 gene in control (C) and FGF21mKO (KO) mice, for EDL, TA, Soleus 

and Gastrocnemius muscles. Forward: CCT CCA GAT TTA GGA GTG CAG A and reverse: AGG 

GAG GCA GAG GCA AGT GAT T primers used amplified an approximately 2000 base pair (bp) 

product in the wild type group, while they amplified an approximately 200 bp product in the KO 

mice (n= 2).  

C) Amplification of the Fgf21 gene in control (C) and FGF21mKO (KO) mice, for Heart, Liver, 

Diaphragm and Brown adipose tissue (BAT). Forward: CCT CCA GAT TTA GGA GTG CAG A and 

reverse: AGG GAG GCA GAG GCA AGT GAT T primers used amplified an approximately 2000 

base pair (bp) product in all of the organs, while they also partially amplified an approximately 

200 bp product in the heart, Diaphragm and BAT (n= 2). 

D) Real-time PCR amplification showed increased expression of Fgf21 in TA muscle of TSCmKO 

mice when compared to the control (Ctrl) group, while it was normalized in the DKO group (n= 

5).  

E) Real-time PCR amplification showed lack of Fgf21 expression in TA muscle of FGF21mKO 

mice when compared to the control (Ctrl) mice (n= 4). 

F) 5-week-old DKO mice appear smaller and weaker than their wild type control (Ctrl) 

littermates. Image is representative of n=5 mice.  

G) Body weight progression from 5-week-old to 10-week-old control (Ctrl), TSCmKO and DKO 

mice (n=5).  

H) Body weight progression from 6-week-old to 9-week-old control (Ctrl) and FGF21mKO mice 

(n=2). 
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Figure 2. Increased body weight, lean mass and plasma glucose levels are the physiological 

effects of muscle secreted FGF21 

A-B) Body weight was increased in 10-week-old DKO (n= 5) (A) and 8-week-old FGF21mKO (n= 

18) (B) mice when compared to control (Ctrl) littermates.  

C-D) Plasma glucose levels were increased in 10-week-old DKO (n= 5) (A) and 8-week-old 

FGF21mKO (n= 14) (B) mice when compared to control (Ctrl) littermates. 

E-F) Plasma glucose levels tended to be higher in 8-week-old male FGF21mKO mice (n=6) (E) 

while they were significantly increased in 8-week-old female FGF21mKO mice (n= 8) (F) when 

compared to age-matched control (Ctrl) mice.  

G-H) Lean mass was significantly increased in 10-week-old DKO (n= 5) (G) and 8-week-old 

FGF21mKO mice (n= 22) (H) when compared to control (Ctrl) mice. 

I-M) Plasma FGF21 levels were normalized in 10-week-old fed DKO mice (n=5), as seen by ELISA 

(I) and immuno-depleted plasma western blot analysis (J), while they tended to be lower in 

overnight-starved 10-week-old FGF21mKO mice (K) and were lower in fed FGF21mKO mice (L) 

when compared to control (Ctrl) littermates (n= 10). On the other hand, plasma FGF21 levels 

were significantly higher in overnight-starved DKO mice (n= 3) (M).  

N) Plasma IGF-1 levels were not changed between 10-week-old TSCmKO and DKO mice, which 

were lower than in control (Ctrl) mice (n= 5).  
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Figure 3. Muscle FGF21 involved in fatty acid metabolism of skeletal muscle. 

A) H&E staining (top panel) didn’t show any structural changes in 10-week-old TSCmKO or DKO 

TA muscle. NADH staining (middle panel) revealed an increased oxidative capacity of TSCmKO 

TA muscle, which remained increased in DKO TA muscle compared to control (Ctrl) mice. Oil 

Red-O staining (bottom panel) showed increased lipid accumulation in TSCmKO TA muscle, 

while lipid accumulation was reduced in DKO TA muscle when compared to TSCmKO mice. 

Images are representative of 4 sections from n=3 mice.  

B) H&E staining (left panel) didn’t show any structural changes in 10-week-old FGF21mKO 

gastrocnemius muscle. NADH staining (middle panel) revealed increased oxidative capacity of 

FGF21mKO TA muscle. Oil Red-O staining (right panel) showed reduced lipid accumulation in 

FGF21mKO gastrocnemius muscle. Images are representative of 4 sections from n=3 mice. 
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Figure 4. Differential effect of muscle secreted FGF21 on the whole-body metabolism upon 

mTORC1 activation or basal conditions 

A-B) Increased plasma β-ketone concentrations in 10-week-old TSCmKO were normalized in 

DKO mice (n= 5) (A), while they remained unchanged in FGF21mKO mice (n= 3) (B). 
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C-D) Reduced tibia length in 10-week-old TSCmKO mice was normalized in DKO mice (n= 5) (C), 

while it remained unchanged in FGF21mKO mice (n= 3) (D) when compared to control (Ctrl) 

mice. 

E-F) Body temperature in 10-week-old TSCmKO mice was reduced, while it was unchanged in 

DKO mice (n= 5) (E) or FGF21mKO mice (n= 3) (F) when compared to control (Ctrl) littermates.  

G-H) Plasma insulin concentrations were significantly lower in 10-week-old TSCmKO mice, while 

they were unchanged in DKO mice (n= 5) (G) or FGF21mKO mice (n= 6) (H) when compared to 

control (Ctrl) littermates.  

I-J) Fat mass was significantly decreased in 10-week-old TSCmKO and DKO mice (n= 5) (I), while 

it was significantly increased in 10-week-old FGF21mKO mice (n= 22) (J).  

K-L) Specific twitch force (K) and specific tetanic force (L) were unchanged in TSCmKO and DKO 

EDL muscles, while they remained decreased in TSCmKO and DKO soleus muscles (n= 5). 

M-N) Specific twitch force (m) and specific tetanic force (N) were unchanged in 10-week-old 

FGF21mKO EDL or soleus muscles (n= 5).   
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Figure 5. Deletion of muscle FGF21 caused a diabetic phenotype 

A) Unchanged insulin sensitivity in 14-week-old male and female FGF21mKO mice (n= 6) 

B-C) Glucose tolerance was normal in 14-week-old male and female FGF21mKO mice, while it 

was significantly impaired in 14-week-old female FGF21mKO mice (n= 5).  
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D) Pancreas histology was normal in 14-week-old FGF21mKO mice, as seen by H&E staining of 

10μm cross-sections. Images are representative of 4 sections of 3 mice per genotype.  

E) Plasma insulin levels are efficiently increased upon glucose stimulation in 12-week-old 

FGF21mKO mice (n= 4). 

F) Glucose absorption was unchanged in TA muscle or WAT of 12-week-old FGF21mKO mice, as 

seen by a 2 deoxy-glucose uptake test (n= 4). 

G-O) CLAMS analysis exposed the basal metabolism of 12-week-old FGF21mKO mice: female 

FGF21mKO mice ate significantly less food than control (Ctrl) mice (G); both male and female 

mice were more active than their control littermates (I-K); FGF21mKO mice had normal 

respiratory exchange ratio (RER) (L); energy expenditure (M) tended to be higher in male and 

female FGF21mKO mice, as well as oxygen consumption (N), while CO2 respiratory values (O) 

were normal (n= 6).  

P) Body weight was significantly higher in control mice after 10 weeks of HFD feeding, while it 

tended to increase in male and female FGF21mKO mice (n= 6). 

Q) Increased TNFα expression in WAT of 14-week-old FGF21mKO mice when compared to 

control (Ctrl) littermates (n= 4).  
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Figure 6. Eliminating muscle FGF21 in TSCmKO mice normalized browning and glucose 

absorption in WAT while it decreased ketolysis and altered fatty acid oxidation in skeletal 

muscle 

A) 10-week-old TSCmKO and DKO mice showed increased expression of ER stress markers in TA 

muscle (Hspa5; Ddit3; Xbp1; Trib3) (n= 5).  

B) Increased expression of ketolytic gene Bdh1 observed in 10-week-old TSCmKO TA muscle 

was significantly decreased in DKO TA muscle, while other genes involved in ketolysis (Oxct1) 

and ketogenesis (Acat1; Hmgcs2) were unchanged (n= 5).  

C) 10-week-old DKO mice showed increased expression of genes involved in fatty acid oxidation 

and mitochondria biogenesis (Ppargc1a; Ppargc1b; Fabp3; Pdk4; Ucp3) in TA muscle when 

compared to TSCmKO mice (n= 5).  

D) Expression of genes involved in glucose absorption (Slc2a1; GlucoK) or proteasome 

degradation (Atrogin1; Murf1) was still increased in TA muscle of DKO mice when compared to 

10-week-old TSCmKO mice (n= 5).  

E) Glycogen storage was increased in muscle from 10-week-old TSCmKO and DKO mice when 

compared to control (Ctrl) littermates, as seen by PAS staining of TA muscles. Images are 

representative of 4 sections from 3 mice per genotype.  

F) Expression of glucokinase was increased in liver from 10-week-old DKO mice when compared 

to TSCmKO and control (Ctrl) littermates (n=5). 

G) Immunoblots of TA muscle from 10-week-old TSCmKO, DKO and control (Ctrl) mice are 

shown for the indicated phospho (P-) and total proteins (n= 5). Protein levels are normalized to 

α-actinin. 

H) ATP content is decreased in EDL muscle of TSCmKO mice while it is unchanged in DKO mice 

(n= 4).  
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I) Expression of genes involved in Fgf21 signaling (Fgf21; β-Klotho) was up-regulated in WAT of 

10-week-old TSCmKO mice, while they were normalized in DKO mice; expression of glucose 

transporters (Slc2a1; Slc2a4) was significantly down-regulated in DKO WAT when compared to 

TSCmKO mice, as well as the expression of genes involved in browning of WAT (Ppargc1a; 

Prdm16; Cidea; Ucp1; Fabp3) (n= 5).  
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Figure 7. Potential involvement of muscle FGF21 in the development of the myopathy in 

TSCmKO mice 

A) Body weight tended to increase in 10-month-old female DKO mice when compared to 

TSCmKO mice, while 10-month-old female FGF21mKO were significantly heavier than the 

control (Ctrl) littermates (n= 2). 

B) Fat mass was reduced in 10-month-old female TSCmKO and DKO mice, while it was 

unchanged in 10-month-old female FGF21mKO mice when compared to control (Ctrl) 

littermates (n= 2). 

C) Lean mass was higher in 10-month-old female DKO mice when compared to TSCmKO mice, 

while it was also significantly higher in 10-month-old female FGF21mKO mice when compared 

to control (Ctrl) mice (n= 2). 

D) Reduced tibia length of 10-month-old TSCmKO mice was normalized in male and female DKO 

mice (n= 3). 

E) Plasma glucose levels remained low in 10-month-old male and female TSCmKO and DKO 

mice (n= 3). 

F) Plasma insulin levels remained reduced in 10-month-old male and female TSCmKO and DKO 

mice (n= 2). 

G) H&E staining showed lack of vacuoles and reduced centralized nuclei in TA muscle from 10-

month-old female DKO mice when compared to TSCmKO mice (left panel line). NADH staining 

revealed increased oxidative capacity in 10-month-old female TSCmKO and DKO TA muscles 

(middle panel line). Oil Red-O staining (right panel) showed reduced lipid accumulation in TA 

muscle from 10-month-old female DKO mice when compared to the increased lipid 

accumulation observed in TSCmKO mice. Images are representative of 4 sections from 3 mice 

per genotype.  
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4. CONCLUDING REMARKS 
 

 

 

 

 

 

 

 

 

 

Figure 8. Representative scheme of the metabolic changes caused by increased FGF21 in 

TSCmKO mice 

Increased mTORC1 activity in skeletal muscle caused the activation of the ER stress due to 

increased protein synthesis and energy depletion. This led to the production and secretion of 

FGF21 from skeletal muscle. FGF21 acted predominantly on white adipose tissue (WAT) to 

induce increased glucose absorption, which together with the increased glucose absorption into 

skeletal muscle reduced the plasma glucose levels of the mice. In addition, FGF21 induced the 

browning of WAT, which likely contributed to the increased energy expenditure of the TSCmKO 

mice. On the other hand, WAT was broken down by excessive lipolysis into free fatty acids 

(FFA), which were delivered to skeletal muscle as an extra source of energy for increased fatty 

acid oxidation, and also to the liver, where we observed an increase in fatty acid oxidation and 

ketogenesis, with the subsequent delivery of ketone bodies into the circulation. These ketone 

bodies were also taken up by skeletal muscle for energy production through ketolysis. The 

plasma glucose and ketone bodies, as well as WAT glucose absorption and browning were 

normalized when we knocked-out FGF21 in the skeletal muscle of TSCmKO mice, confirming 

our proposed model of whole-body metabolic changes caused by muscle-secreted FGF21. 
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Muscle mTORC1 and metabolism 

Obesity and overweight are fast-growing metabolic diseases reaching epidemic proportions in 

the developed world. The World Health Organization estimates that almost 30% of the adult 

population is overweight, of which 10% is obese, which is a preventable disease. Obesity-

related conditions include heart disease, stroke, type-2 diabetes and certain types of cancer, 

some of the leading causes of preventable death. Thus, it is critical to try to figure out new ways 

to decrease the prevalence and risk factors leading to un-balanced metabolic features. For this, 

understanding all of the components that regulate whole-body metabolism is crucial. It is 

widely known and accepted that key metabolic organs, like the liver or the pancreas, have 

essential roles in maintaining metabolic homeostasis, adapting the body’s response to outside 

stimuli like feeding, starvation or exercise and energy demand. However, the role of skeletal 

muscle in regulating whole-body metabolism is less obvious.  

We decided to study the insulin-signaling pathway in skeletal muscle, and more 

specifically the role of muscle mTORC1 in regulating whole-body metabolism. We observed that 

inhibition of mTORC1 activity by depletion of raptor in skeletal muscle caused predominantly a 

muscle phenotype of the RAmKO mice, with decreased expression of metabolic genes involved 

in glucose absorption and fatty acid oxidation. This was a consequence of denervation induced 

increase in class II HDACs, which rendered the muscle incapable of efficiently utilizing energy 

substrates. In addition, inflammation markers were increased and NF-κB pathway was 

activated, which likely contributed to the insulin resistance observed in RAmKO mice. On the 

other hand, constitutive activation of mTORC1 in skeletal muscle by depletion of its inhibitor 

TSC1, caused a strong phenotypic change not only in the muscle, but also at the whole-body 

level of young mice, with changes arising in other organs like the liver and adipose tissues. 

TSCmKO mice were lean and showed a progressive loss of fat mass. They also had changes in 

their plasma profile, with lower insulin and glucose levels, while ketone bodies were increased, 

which were likely a consequence of increased insulin sensitivity and fatty acid oxidation 

respectively. They showed an up-regulation of the expression of several metabolic genes 

involved in glucose absorption and fatty acid oxidation predominantly in WAT and muscle. 
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Thus, while metabolism was virtually being “shut-down” in the skeletal muscle of RAmKO mice, 

muscle of TSCmKO mice were showing an accelerated metabolic profile with increased 

energetic demands. Interestingly, while at the young age of 10 weeks RAmKO and TSCmKO 

mice showed the opposite metabolic profile, likely a consequence of inverse mTORC1 signaling 

in the muscle, both mouse models developed the same metabolic phenotype with age and 

myopathy onset. They had lower plasma glucose and insulin levels, with increased glycogen 

storage in the muscle and they both developed insulin resistance as a consequence of increased 

intramyocelular lipid content. These metabolic changes are frequently observed in patients 

with muscular dystrophies (Cruz Guzman Odel et al, 2012), as a consequence of the altered 

muscle integrity. These observations would suggest that skeletal muscle mTORC1 could serve as 

a potential target to treat metabolic complications of diseases like diabetes, obesity and muscle 

dystrophies. 

Muscle secreted FGF21 

We were able to figure out the main reason behind the extension of the metabolic phenotype 

from skeletal muscle to liver and adipose tissue happening in the TSCmKO mice. It was the 

result of the induction and secretion into circulation of the myokine FGF21. We were first able 

to demonstrate the involvement of FGF21 in the metabolic phenotype of TSCmKO mice by 

overnight neutralization of plasma FGF21 with an antibody treatment. It not only normalized 

plasma glucose and ketone bodies, but it largely normalized the altered expression of metabolic 

genes in WAT, which confirmed that FGF21 would control metabolism by transcriptional 

regulation in this key target tissue. It was reported that FGF21 was induced in skeletal muscle 

upon oxidative stress or mitophagy defects (Keipert et al, 2014; Kim et al, 2013c), and we now 

demonstrate that in addition, endoplasmic reticulum stress can also activate FGF21 secretion 

through PERK-eIF2α activation of its transcription factor ATF4. Increased mTORC1 activity 

overwhelmed the folding capacity of the ER by increasing protein synthesis and translation. We 

demonstrated this molecular mechanism by treating the TSCmKO with the chemical chaperone 

4-PBA, which besides decreasing ER stress it also significantly reduced FGF21 production in 

skeletal muscle. Interestingly, 4-PBA treatment also prompted a significant weight gain in 
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TSCmKO, mostly due to an increase in lean mass, while it also normalized their body 

temperature. Thus, increased mTORC1 activity in skeletal muscle induced FGF21 secretion 

through ER stress activation, which in turn modified the whole-body metabolism of TSCmKO 

mice.  

The remaining question was to figure out what is the goal of the increase in plasma 

FGF21. One interpretation is that it could represent a protective response to a metabolic 

overload originated in skeletal muscle that would lead to modulation of glucose and lipid 

metabolism at the whole-body level. The alternative is that increased levels of FGF21 in such 

situations may reflect a “spill-over” from cells subject to a “metabolic stress”. This excessive 

FGF21 could actually be contributing to the wasting and deterioration of the organism, and may 

even participate in the decline of skeletal muscle by altering the metabolic dynamics. To be able 

to answer to this question we generated the DKO mice, which also allowed us to identify the 

key parameters in the TSCmKO mice that were directly a consequence of muscle secreted 

FGF21. A first observation revealed that these mice had decreased survival, as they appeared to 

be extremely small and weak upon birth. This would suggest that the initial increase of FGF21 

was required for early development. One possibility is that it was necessary for skeletal muscle 

growth and differentiation upon TSC1 deletion, as MyoD regulates FGF21 expression in 

differentiating myotubes (Ribas et al, 2014), suggesting that it could promote muscle 

development. On the other hand, neonatal DKO mice could be having problems with 

temperature regulation, because FGF21 is known to protect BAT and improve thermogenesis 

(Fisher et al, 2012). Brown adypocytes and myocytes share a common Myf5-lineage progenitor 

cell (Seale et al, 2008), thus the communication between these two tissues might be essential 

for proper thermodynamics upon birth, and FGF21 could be a mediator. However, this was 

specific to mTORC1 activation in DKO mice, as FGF21mKO mice did not have survival problems 

and were already bigger than their control littermates by 5 weeks of age. Nevertheless, once 

the DKO mice got over an un-identified “critical period” 5 weeks after birth, they were able to 

develop favorably and indeed gained more weight than the TSCmKO mice by 10 weeks of age. 

This demonstrates that the initial impairment of TSCmKO mice to gain weight was due to 

increased FGF21 in these mice. Surprisingly, this higher body weight was not due to changes in 
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fat mass as hypothesized, but a consequence of an increase in lean mass. The increase and 

normalization of lean mass remained in 40-week-old DKO mice, which draws attention to a 

previously unidentified role of FGF21 in skeletal muscle. Furthermore, 10-month-old female 

DKO mice did not develop the vacuoles or giant nuclei observed in muscle of TCSmKO mice, 

which would suggest that FGF21 could be involved in the progression of the myopathy. It was 

originally thought that skeletal muscle is not a target tissue for FGF21 action due to a lack of 

expression of the β-Klotho receptor (Yang et al, 2012). However, we not only detected 

expression of β-Klotho in skeletal muscle (as did Keipert et al. in their study), but DKO muscles 

showed a significant down-regulation of its expression. In parallel, WAT of TSCmKO mice 

showed an increased expression of β-Klotho receptor that was normalized in DKO mice. These 

results suggest that FGF21 might have a positive feedback to regulate its own signaling, and 

that it does act on skeletal muscle to regulate muscle mass. FGF21 could be involved in 

regulating fatty acid metabolism in muscle, as seen by changes in oxidative capacity and lipid 

content in muscles of both DKO and FGF21mKO mice. Interestingly, the higher expression of 

genes coding for mediators of fatty acid oxidation in muscle suggested that DKO muscles relied 

more in fatty acid metabolism. This correlated with reduced lipid content in muscles from DKO 

mice, which suggests that instead of promoting fatty acid oxidation, FGF21 would actually be 

promoting lipid storage. In parallel, FGF21mKO muscles also showed a decrease in lipid content 

and increased oxidative capacity. FGF21 was proposed to have a protective role against 

excessive lipolysis upon starvation (Arner et al, 2008; Badman et al, 2007; Chen et al, 2011), and 

it reduces growth and promotes hibernation as energy preserving means (Inagaki et al, 2007; 

Ishida, 2009). Accordingly, it could be stopping excessive growth prompted by hyperactive 

mTORC1 in the skeletal muscle of TSCmKO mice, and promoting lipid-form energy storage. 

Thus, muscle seems to be a target of the autocrine action of FGF21, which inhibits its growth, 

reduces fatty acid oxidation and contributes to an intramyocelular lipid accumulation, likely as a 

protective mechanism to preserve energy. As a consequence, eliminating muscle FGF21 

facilitated the deregulated fatty acid oxidation induced by sustained mTORC1 activity, which 

might contribute to the ongoing WAT tissue lipolysis and wasting. In parallel, expression of 

genes involved in glucose absorption and browning of WAT were normalized in DKO, which 
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would corroborate that in TSCmKO mice, muscle FGF21 was causing these changes in WAT by 

transcriptional regulation. 

On the other hand, markers for ER stress remained increased in skeletal muscle of DKO 

mice, as did the expression of atrogenes and glucose transporters. This would suggest that 

increased Glut1 expression in muscle of TSCmKO was not a consequence of FGF21, but likely 

the result of decreased Akt activity and its downstream target TBC1D1 (Zhou et al, 2008). As a 

consequence, DKO muscle, where Akt phosphorylation was still low, also showed increased 

glycogen accumulation. Expression of enzymes involved in ketogenesis remained low in DKO 

muscles, which would point at mTORC1 being involved in their regulation. Expression of Bdh1 

however, involved in ketone body breakdown, was down-regulated in the muscle of DKO mice, 

similar to when FGF21 was neutralized in the plasma of TSCmKO mice. This correlated with the 

normalization of plasma ketone bodies in DKO mice, which would suggest that lower availability 

of this metabolite could regulate the “ketolysis” response in skeletal muscle. Ketone bodies are 

synthesized in the liver in response to low glucose and increased fatty acid oxidation (Newman 

& Verdin). Although expression of genes involved in ketogenesis was unchanged in the liver of 

TCmKO mice, it showed an increased expression of the gene encoding for PGC1α, involved in 

fatty acid oxidation. The fact that PGC1α was still increased in DKO would suggest that the 

changes in liver metabolism present in TSCmKO mice might not be a direct consequence of 

FGF21, but rather a secondary effect of the increased lipolysis and availability of free fatty acids 

in the plasma. In DKO liver we observed an increased expression of the gene encoding for the 

liver-specific enzyme glucokinase, which regulates the first step of glycolysis after glucose 

absorption into the hepatocyte (Massa et al, 2011). This correlated with an increased 

abundance of plasma glucose in the DKO mice, which was likely a consequence of decreased 

absorption of glucose into WAT. Thus, eliminating muscle FGF21 in TSCmKO mice normalized 

plasma glucose and insulin levels, and as a consequence liver metabolism could rely more on 

carbohydrates which would reduce fatty acid oxidation and ketogenesis.  

Plasma glucose and ketone bodies were thus normalized in DKO mice. However, IGF-1 

remained low, while the growth retardation of TSCmKO was corrected in DKO. This would 
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contradict our initial hypothesis that FGF21 caused GH resistance in the liver to reduce IGF-1 

synthesis. Because tibia was significantly longer in DKO mice while IGF-1 was still decreased, 

this would suggest that muscle secreted FGF21 was impairing normal growth in TSCmKO 

independent of IGF-1. This was likely a consequence of the reduced action of FGF21 on 

chondrocytes, as this was hypothesized to reduce growth during chronic undernutrition by 

inducing the expression of LEPROT and LEPROT1 (Wu et al, 2013). 

FGF21 and obesity 

The origin of circulating FGF21 remained controversial, with studies reporting that all of plasma 

FGF21 was secreted from liver (Markan et al, 2014). However, a recent report showed that 

skeletal muscle can also contribute to the abundance of plasma FGF21 and in turn regulate 

whole-body metabolism (Kim et al, 2013c). We decided to analyze specifically the effect of 

muscle-secreted FGF21 by creating a muscle FG21 KO mouse model. These mice were viable 

and fertile, and showed an increase in body weight as early as 5 weeks of age. The higher body 

weight was due to an increase in both lean and fat mass, which would correlate with the anti-

obesity effect of FGF21. In parallel, the reduced plasma FGF21 in FGF21mKO mice caused an 

increase in plasma glucose levels and glucose intolerance, which would point to the 

development of obesity-induced diabetes. Interestingly, expression of TNFα was increased in 

WAT of FGF21mKO mice, which could be linked to the activation of inflammatory pathways in 

adipose tissue as a consequence of obesity (Osborn & Olefsky, 2012). 

Interestingly, global FGF21 KO mice develop a very similar phenotype to that of 

FGF21mKO mice, with increases in body weight, lean and fat mass, plasma glucose and glucose 

intolerance (Badman et al, 2009). On the other hand, liver or adipose tissue FGF21 KO mice do 

not show a strong phenotype, but only a slight decrease in plasma glucose levels (Markan et al, 

2014). This would suggest that muscle FGF21 would be a major contributor of the global FGF21 

KO phenotype, which is similar to the FGF21mKO, even with normal liver FGF21 secretion. Thus, 

muscle would constitute an important FGF21 secretory organ, which can alter whole-boy 

metabolism. FGF21 is known to cross the blood-brain barrier and act on the suprachiasmatic-

nucleus of the hypothalamus to regulate metabolic homeostasis on a circadian fashion 
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(Bookout et al, 2013). The FGF21mKO mice showed various evidence of muscle FGF21 acting on 

the brain, as they were significantly more active than the control mice, and ate higher amounts 

of food. This would correlate with the “hibernating” effect of FGF21, because it can induce 

torpor, reduce food intake and activity as energy preserving means. Thus, in FGF21mKO mice, 

this muscle-brain communication would be lost, and the mice would appear to be in a constant 

fed and high energy status. Furthermore, the action of FGF21 on the brain, and more 

specifically on the hypothalamic-pituitary-ovarian axis can reduce female fertility (Owen et al, 

2013), which would suggest that it could have a distinct effect on the female mice. In parallel, 

FGF21mKO female mice showed a stronger phenotype than male mice, with higher plasma 

glucose levels, becoming glucose intolerant and decreasing their food intake. 

In conclusion, we were able to demonstrate that muscle-secreted FGF21 is a major 

contributor to circulating plasma FGF21 levels, which in turn can alter whole-body metabolism 

to regulate the organism’s response against obesity and diabetes. Moreover, there appears to 

be a straight communication between muscle and brain mediated by FGF21 to establish and 

coordinate the body’s energetic status, which seemed to show a sexual dimorphism as the 

phenotype was stronger in female mice. Furthermore, when FGF21 was eliminated in skeletal 

muscle the mice showed an increase in lean mass and changes in oxidative capacity of the 

muscle, correlating with the increased lean mass of global FGF21 KO mice, which would point at 

FGF21 having a significant role in skeletal muscle. Thus, this opens new and exciting possibilities 

for FGF21 action in muscle that need further studying.  
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