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Chapter 1

Introduction

Carbon emerges in different forms. Diamond and graphite have been well known mate-
rials for centuries. Moreover fullerenes and nanotubes were discovered only a few years ago.
H. W. Kroto et al. depicted the fullerenes in 1985 [1]. A few years later, in 1991, S. Iijima
described carbon nanotubes (CNTs) for the first time [2] (Figure 1.1).

Figure 1.1: TEM pictures of multi-wall carbon nanotubes [2].

CNTs have a close relation to graphite, since a single-wall carbon nanotube is like a rolled-up
graphite mono layer. However a nanotube has with its curved shape a higher chemical reacti-
vity than a flat graphite layer. Both the side wall and the caps can be modified chemically [3].
Carbon nanotubes are regular carbon clusters with attractive mechanical and electronic pro-
perties [4]. Nanotubes have a high mechanical strength due to a very large Young’s modu-
lus [5]. They can be used for the storage of hydrogen [5,6], to store energy in electrochemical
double layer capacitors [7] or to reinforce composite materials [3]. A single nanotube can be
used as a sensor [8-12], a nanorelay [13], a vessel [14] or as a template [3,15]. It is possible
to produce light bulbs [16] and fibers [17] with carbon nanotubes. An array of CNTs can act
as a flat panel display [3,5] using their feature to act as field emitting devices [18-21].

CNTs are either metallic (1/3) or semiconducting (2/3). Nowadays it is not possible to select
the desired characteristic of a nanotube in advance. It is only possible to separate metallic
from semiconducting tubes by using an electrical field [22]. Metallic nanotubes with their



diameter of a few nm represent the ultimate conducting wire whereas the semiconducting
ones can be used as transistors [23-25] even on a transparent and flexible substrate [26]. The
transistors can be optimized by the chemical control of the nanotube-electrode interface [27].
Quantum dots [28,29] and spin valves [30-32] can be built alike simple logic gates [33] and a
Y-junction rectifier [34].

Carbon nanotubes have a very interesting property: they are ”1-dimensional” molecules [35].
This has to be explained in a few words. In general, quantum confinement leads to a spacing
of the allowed eigenenergies. Electrons cannot hop into a higher energy level if the thermal
energy is much smaller than this energy difference. In a nanotube an electron is confined in the
directions perpendicular to the tube axis. The nanotube becomes a 1-dimensional conductor.
For several years members of our research group are exploring the electrical properties of
this very special conductor. The behavior of carbon nanotubes is investigated with electrical
transport measurements at low temperatures (down to 50 mK) and in high magnetic fields
(up to 10 T).

The raw material for the first experiments [36-38] were multi-wall carbon nanotubes ob-
tained from L. Forré (Ecole Polytechnique Fédérale de Lausanne) which were produced using
laser ablation. The multi-wall carbon nanotubes were used to investigate the suppression of
tunnelling [36, 39], multiple Andreev reflection [28, 37], electrical spin injection [30-32] and
quantum dots [37,40-43].

The next step was to grow single-wall carbon nanotubes using chemical vapor deposition
(CVD) [8,44-46]. This procedure has the advantage to be faster than an external collaboration
and in addition the growth of the tubes directly on the device makes the samples ready for
use without an additional treatment.

It was verified that the CVD grown tubes are suitable of for electrical devices [47]. Vibrating
nanotubes [48] and an ambipolar field-effect transistor [23] were studied. Kondo effect [49]
and Fano-Resonances [50] were investigated as well.

The latter experiments reveal one common deficiency. The grown tubes are often not sepa-
rated but bundled [47] (Figure 6.10). Moreover it is not clear if they are multi- or single-wall
tubes. This means for electronic transport measurements that several tubes are measured si-
multaneously. Thus the tube with the best conductivity dominates the measurement, whereas
the other tubes perturb the measured signal by there presence.

The main focus of this thesis is the development of a growth process of single-wall carbon
nanotubes by using CVD. The aim is to overcome the problem of bundling. The grown
nanotubes have to be free of lattice defects and they need to have good electrode-nanotube
contacts in order to make them suitable for electronic transport measurements. They have
to lay flat, well separated and optimally distributed on SiOs our standard substrate. On the
one hand the tube density should not be too high since this would increase the probability
of shortcuts between the electrodes due to nanotube-nanotube contacts. On the other hand
it should not be too low since this would make the localization of an appropriate nanotube
much more time consuming (Figure 1.2).

Two ways to achieve this goal were tried. The single-wall nanotubes can be bought, dissolved
in a solvent and spread after cleaning and separation [51-57], as in the thesis [46]. The second
possibility is to grow the tubes directly on the device as presented in this thesis.

Growing carbon nanotubes with CVD is very simple, at least in principle. There are only
a few essential things needed: an oven, a substrate, a catalyst and a carbon feedstock. The
main challenge is to acquire the right knowhow.

The first step was to build up the CVD system. Afterwards the proper growth conditions
and a simple method to check the demanded properties of the grown tubes had to be found.
Scanning electron microscopy (SEM) is the standard characterization tool used in this thesis.
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Figure 1.2: The tubes have to be well separated with the optimal density.
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Transmission electron microscopy (TEM) is a helpful mean in order to show that the tubes
are separated and single-wall, since it allows the investigation of the tubes’ internal structure.
Atomic force microscopy (AFM) and Raman spectroscopy are used in addition.

Outline of this thesis

Chapter 2 gives a short overview with respect to the properties, the growth and the
characterization of carbon nanotubes.

The oven and the gas system are delineated in Chapter 3. Different carbon feedstocks
were used: ethylene/hydrogen, methane, methane/ethylene and methane/hydrogen.

The steps towards a suitable catalyst are presented in Chapter 4. Evaporated and
liquid based catalysts were tested. An iron molybdenum alumina catalyst dissolved in
2-propanol provides the best results.

Chapter 5 gives a comparison of the results obtained utilizing different growth processes,
and describes the formation of amorphous carbon and the oxidation of nanotubes.

Chapter 6 summarizes experiments on different TEM grids (Au, Cu, Mo, Ni, stainless
steel, Ti, quantifoils) and silicon nitride windows.

The results from collaborations with other group members are presented in Chapter 7.
These experiments show the good quality of the grown tubes.



Chapter 2

Properties and growth of carbon
nanotubes

This chapter gives an overview of the properties and the growth of carbon nanotubes (CNTs)
in the first two sections. The last section presents different characterization methods.

2.1 Carbon Nanotubes

The amazingly different structures of diamond, graphite, fullerenes and carbon nanotubes
are presented in Figure 2.1.

Graphite

Figure 2.1: Different manifestations of carbon [58].

These structural differences can be explained by the fact that a carbon atom can bind to 2,
3 or 4 other atoms. The electronic ground state configuration of carbon is 1s?2s?2p?. The
four electrons in the outer shell can combine to three types of hybrid orbitals. Carbon can



2.1. Carbon Nanotubes 10

form 4 sp3, 3 sp? or 2 sp* hybrid orbitals. The hybridization equalizes the energy differences
between the participating atomic orbitals.

In a covalent bond of two atoms the first pair of overlapping hybrid orbitals forms a o-bond,
whereas the remaining pair(s) of atomic orbitals build one or two 7-bonds [59,60]. The sp?
orbitals are tetragonal and 3-dimensional as for example in diamond and CHy, the latter
has four o-bonds between the carbon and the hydrogen atoms. The sp? orbitals are trigonal
and planar as for instance in graphite and HoC=CHs,, the latter has two o-bonds between
the carbon and the hydrogen atoms and a o-w-double-bond between the carbon atoms. The
linear sp' orbitals in HC=CH form o-bonds between the carbon and the hydrogen atoms and
a o-m-m-triple-bond between the carbon atoms.

Figure 2.1 shows that graphite consists of separated layers with a honeycomb pattern. The
individual carbon atoms are sp? hybridized. The left over electrons (one per carbon atom)
form a mesomery stabilized m-electron system. A simple example for such a system is the
benzene ring. The m-electrons are not assigned to a specific carbon atom, but build up a
charge cloud around the benzene ring. A graphite layer is enclosed by a similar cloud on
both sides. There are no chemical bonds between two adjacent layers, therefore they can be
displaced very easily, which makes graphite useful as lubricant [61].

Carbon nanotubes share these properties, since a graphite layer is like a single-wall carbon na-
notube (SWNT) (Figure 2.2) with infinite diameter. Multi-wall carbon nanotubes (MWNTs)
are built up by several of these SWNT's with different diameters in a concentrical arrangement
(Figures 1.1 and 2.2). The inter-tube spacing is 0.34 nm, which corresponds to the inter-layer
distance of 0.35 nm in graphite [5]. While the diameter of a CNT is in the range of a few nm
down to 0.4 nm [62,63], the length can be up to some mm [64]. As in graphite the shells of
a MWNT can be displaced against each other due to the absence of chemical bonds between
the shells.

Multi-wall Carbon Nanotube Single-wall Carbon Nanotube

10-20 nm 1-2 nm

v

v -7 \ WA
g O -— @
|1 TRE

Interlayer spacing: 0.34 nm

Figure 2.2: Schematics of a single- and a multi-wall carbon nanotube.

A SWNT is usually characterized by its chiral vector C} which is defined by two integers
(n,m) as well as two base vectors a; and as (Figure 2.3) [5,62,65]. The graphite layer is bent
in such a way that both ends of the vector lie on top of each other.

Chr = nay + maz = (n,m) (2.1)

These two integers (n, m) determine unambiguously the diameter d and the chiral angle 6 of
the tube. 6 represents the angle between the chiral vector and the direction (n,0).

d=2/n2+m2+nm (2.2)
m
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sin 0 = V3m (2.3)

2v/n? +m?2 +nm

There are two special types of SWNTSs: armchair-tubes (n,n) and zig-zag-tubes (n,0). All
other tubes are called chiral-tubes (Figure 2.3).

Figure 2.3: Left: Different chiral vectors and chiral angle 6. Right: a) (5,5) arm-chair-tube,
b) (9,0) zig-zag-tube and c¢) (10,5) chiral-tube with matching fullerenes [5].

Nanotubes are either metallic (1/3) or semiconducting (2/3). This characteristic depends from
m and n. A tube is metallic when ™5 is an integer. All other CNTs are semiconducting
(Figure 2.4). This means that m and n determine the diameter, the chirality and the physical

properties of a SWNT [66].

Figure 2.4: The characteristic (metallic/semiconductiong) depends on the chiral vector [5].

2.2 Growth of carbon nanotubes

Carbon nanotubes can be prepared by various methods such as arc-discharge and laser abla-
tion [5,67] schematically depicted in Figure 2.5.

Here we focus on chemical vapor deposition. For the growth of CNTs by CVD [3,5,7,62,65,68|
different gasses can be used as carbon feedstock (methane, ethylene, acetylene, CO, ...) [69,70].
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a) b)
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Figure 2.5: The CNTs grow within a plasma. a) Arc-discharge: A plasma is formed due to
a voltage which is applied between two carbon electrodes. b) Laser ablation: A plasma is
formed with a laser which heats a carbon target.

It is possible to grow carbon nanotubes in a plasma without using a catalyst [5], whereas for
growing SWNTs with CVD a transition metal catalyst (e.g. Fe, Ni, Co, ...) is required. An
exception is the growth of CNTs on SiGe islands on a Si substrate without a metal catalyst
using methane and hydrogen [71]. Nevertheless it is common to use either an evaporated
catalyst (e.g. Al/Fe/Mo layers [72]), a liquid based catalyst (e.g. Fe/Mo/alumina [73]) or a
combination as a liquid Fe/Mo catalyst coalesced with an evaporated Al layer [74].

Quality and shape of the grown tubes depend on the growth temperature [75]. Typical growth
temperatures are 550-750 °C for MWNTs and 850-1’000 °C for SWNTs [70,76,77].

Figure 2.6 shows the setup of a typical CVD system. A sample covered with catalyst is placed
within the oven and heated in a constant flow of a protective gas (Ar in our case). When the
desired growth temperature is reached, the carbon feedstock is added (methane or ethylene).

oven (700-1'000°C) . Quartz tube
gas outlet ‘ < gasinlet
g ; > 4 @
- - w w g 8
sample with s é é S |s
catalytic surface 2|5 % 2L

Figure 2.6: Setup of a typical CVD system.

The principle of growth is shown on Figure 2.7. The hydrocarbons (benzene) in the gas phase
bind to the catalyst (spheres), the hydrogen is split off and the remaining carbon forms the
growing tubes. These reactions can be enhanced by heating the sample. (For more details
about the used setup see Chapter 3.)

Branching [79] and orientation of the grown tubes can be controlled on different ways, as
with alumina patterns [74], an electrical [80-82] or a magnetic field [83], a gas flow cell [84]
or growing the tubes from pillar to pillar [85,86]. Diameter and location can be controlled
using lithographically patterned samples [87].
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Figure 2.7: Growth of carbon nanotubes using CVD [78].

2.2.1 Pyrolysis

Organic materials decompose when heated in the absence of oxygen. This process is called
pyrolysis, with pure carbon as the end product. The other elements present in the carbon
feedstock form gaseous products and diffuse away. Besides carbon nanotubes also highly
oriented pyrolytic graphite (HOPG), graphite whiskers, carbon fibers, glassy and amorphous
carbon form due to pyrolysis [68].

Amorphous carbon is a highly disordered network of carbon atoms. It is a permanent and
unwanted companion of CVD. It has no long-range order but some short-range order (1 nm)
which depends on the carbon bond type (sp?/sp®) and the hydrogen content.

The growth of carbon nanotubes by CVD is a controlled pyrolysis of the carbon feedstock.
Hydrocarbon molecules decompose when they are heated and become thereby activated. A
mathematical model for the mechanism of the decomposition of methane in the gas phase
can be found in [88].

The activated molecules are either taken up by the catalyst and form nanotubes or they
precipitate on the whole sample surface forming amorphous carbon. The quantity of the
formed amorphous carbon has to be kept as small as possible since the catalyst becomes
inactivated when covered with a layer of amorphous carbon. Moreover the quality of the
tubes suffers due to the deposition of amorphous carbon on the grown tubes leading to a
reduced electrical contact to the electrodes.

2.2.2 Radicals

The activation of a molecule by heating can be explained by the formation of radicals [89].
The most simple definition for a radical is a molecule which contains unpaired electrons. A
single unpaired electron is represented by a dot, the other electrons in the outer shell are not
shown. Simple examples are H®* and CI®. These unpaired electrons make the radicals usually
highly reactive. So radicals are likely to take part in chemical reactions. This high reactivity
is due to the unpaired electrons which would like to ”pair” with another electron to form a
filled outer shell [90]. Radicals can react in different ways. The most important reactions in
radical chemistry are [91]:
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Formation: H3C-H — H3C* + °H
HQC:CHQ — .HQC—CH5

Propagation: HsC® + H-CHs — CH3-CHS + Hy

Termination: CH3-CHS + *CH; — CH3-CHp-CHj3

The formation of radicals needs energy which can be provided by impact processes [92,93].
The kinetic energy of a heated gas increases, which implies: the higher the temperature is,
the more radicals are formed.

The number of radicals is not only dependent on temperature. The type of chemical bond is
even more important. In order to break a chemical bond a characteristic bond dissociation
energy needs to be provided. This energy depends on the atoms which build the bond, the
chemical environment of the bond (Table 2.1) and the temperature (Figure 2.8). Methane is
for example more stable than ethane, since a C-H bond is more stable than a C-C bond [91].

HC=CH 962 kJ /mol
H,C=CH, 682 kJ/mol
H3C-CHg 386 kJ/mol
(H3C)(H2C)-H 410 kJ/mol
H3;C-H 435 kJ/mol
H-H 436 kJ/mol

Table 2.1: Mean binding enthalpies of different hydrocarbon bonds [59].

200 T T T T T T T T T T ]
150 __J-«-co+co=coqc ;a6
100 ____.._-_—-.-:.:.':::::.:.':.:_-_ ...... T-»—CO+ Hz =H10 + C(‘ P AG
50 T {cH, =c x:ﬂ +0.5yH,; 4
LY _._
e en
Q -50 o ] CH,
E 100 l v-CH,
2 150 o CH,
- |-—®— benzene
(1? ~200 prs ]—*—toluene
-250 - --&--- o-Xylene
-300 - J-9- 1,2, 4-trimethylbenzene
-350 ]
-400 -
-450 -
-500 —

T T T T T = T T T T -
200 400 600 800 1000 1200 1400
Temperature, °C

Figure 2.8: Gibbs energy of different hydrocarbons [70]

The selectivity of the propagation reactions is very low [94], since a radical can react with
any molecule it collides with. Which results in a whole series of different hydrocarbons [95].
As a consequence, the carbon accumulates in growing molecules, which can become huge if
they are not removed.

The process can be controlled not only by changing the temperature. During the process
of carbon accumulation the excessive hydrogen is released. The equilibrium of this reaction
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can be influenced by changing the relative concentrations of the reactants (methane) and
products (CNTs, intermediate products and hydrogen). A big surplus of hydrogen slows
down the reaction velocity [96,97].

The formation of radicals is restricted since the necessary reaction temperature is reached
only in a very small area. In order to avoid the formation of carbon clusters, the CVD process
is performed in a constant flow of the reaction gas, which removes the unwanted products.
These reactions can be calculated, at least principally, using the principles of chemical kine-
tics [98-103].

2.2.3 The catalyst

The catalysts used for the presented experiments consist of either evaporated Fe, Ni or Al lay-
ers or a mixture of iron nitrate (Fe(NO3)3-9H20), molybdenum dioxide dichloride (MoO2Cls)
and alumina (Al;O3) nanopowder (with two different diameters of 4 and 40 nm) solved in
2-propanol [73]. (For more details about the catalyst preparation see Chapter 4.)

The substrate is usually silicon dioxide (SiO2). The process gasses are methane (CHy), ethy-
lene (CoHy), hydrogen (Hz) and argon (Ar). The environmental gasses are oxygen (Og), water
(H20) and nitrogen (N2). The active components of the catalyst are Fe and Ni, since CNTs
do not grow when Mo or Al are used alone (see Section 4.2 for more details). Therefore Fe is
surely the most important catalyst component, since Ni was used only for a few experiments.
O, Mo, Al and Si (from the substrate) are known to interact with Fe, whereas H, N, Ar and
Cl are neglected for the following considerations.

The Fe-C-phase diagram in Figure 2.9 is very complex, since Fe and C can appear in different
pure and mixed phases, depending on the temperature and the C content. For pure Fe the
body centered cubic (bce) a-Fe transforms into face centered cubic (fcc) y-Fe at 911 °C. At
1’392 °C the 7-Fe transforms back to the bee phase (6-Fe) [105].

At a (growth) temperature of 1’050 °C either a «-Fe-C phase (with up to 9 atom % C [106])
is found or a mixture of a saturated ~-Fe-C phase in addition with graphite inclusions or
iron carbide (FesC, cementite). This can be explained by the fact that the y-Fe-C phase can
take up only a limited C fraction, when this is exceeded the C segregates into either graphite
inclusions or iron carbide. At 850 °C an a-Fe-C phase (with up to 0.1 atom % C) and a mixed
«a- and y-Fe-C phase can be found in addition.

The fact that nanotubes grow means that the carbon fraction is surely high enough to allow
the formation of graphite inclusions or iron carbide. FesC is crystalline compared with this
a carbon nanotube can be seen as a special graphite inclusion. Therefore it can be assumed
that iron carbide is a bad precursor for the growth of CNTs. The formation of either graphite
inclusions or iron carbide depends on the iron alloy. Graphite inclusions are stable in C, Si,
Al, Ti, Ni or Cu rich alloys [107]. Iron carbide is metastable in Mn, Cr, Mo or V rich alloys.
The setup with C, Al and Si favors the formation of graphite inclusions. Only Mo counteracts,
therefore its use has to be justified. The presence of Mo in the catalyst lowers the necessary
growth temperature [108]. Mo can substitute Fe atoms [106], and it is known to catalyze the
formation of CHS radicals from methane [109,110].

There are other factors which might influence the growth of carbon nanotubes. Si binds
oxygen [111], and Al reduces iron oxide to iron in a strongly exothermic reaction (FesO3 +
2 Al — 2 Fe + Al,O3 AHp = -852 kJ/mol [112]). This reaction is technically used e.g. for
welding rails. Therefore Al and Si act as oxygen absorbers and protect Fe from oxidation.
Fe and Al can form an intermetallic phase [113], therefore pure Al can dissolve a small amount
of Fe. The combination of Al and Si is even more unfavorable, since a 20 nm Al layer below a
2 nm Fe layer on a Si(100) substrate depletes the Fe completely [114]. This is explained due
to the formation of an Al-Si alloy with an eutectic point at 577 °C which getters a typical
metal very efficiently. When an alumina layer is used instead of Al the growth of nanotubes
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Figure 2.9: The Fe-C-phase diagram shows the weight % of C in Fe against the tempera-
ture [104].

is very efficient on the contrary [115]. Therefore the direct contact of Fe with pure Al has
to be suppressed which makes the presence of oxygen indispensable, for a thin alumina layer
between Al and Fe prevents the formation of an intermetallic phase which would hinder the
growth of CNTs.

2.2.4 Growth mechanism

The growth mechanism for carbon nanotubes with CVD is still unclear. It surely can not
be explained with a homogeneous gas-phase reaction [116]. The following section gives an
overview of the current hypothesis.

The growth of CNTs happens very fast, since almost all growth occurs within the first
minute [117]. Growth rates of up to 60 pm/min have been reported [118]. The diameter
of the grown tubes depends on the temperature [119].

CNTs grow from catalyst particles, as shown on the schematics in Figure 2.10. Depending on
the strength of the interaction between the catalyst particle and the substrate the catalyst
can maintain its contact to the substrate (base-growth) or loses it (tip-growth) [5,65,68]. The
growing nanotube can have a catalyst particle on one or on both sides.

CNTs do not grow on every available catalyst particle. It is not clear which qualities the
catalyst surface must provide to allow the nucleation necessary for the growth of a CNT.
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Base-grown CNT Tip-grown CNT
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Strong substrate-catalyst interaction] | Weak substrate-catalyst interaction

Figure 2.10: Left: Schematics of base and tip growth [120]. Right: TEM pictures of carbon
nanotubes with catalyst particles on both sides a) and only at the base end b) and ¢) [121].

Figure 2.11 shows a possible mechanism of the growth of carbon nanotubes. The methane
molecules disintegrate at the catalyst surface, the carbon atoms diffuse away and form the
nanotube at a different location.

a b

Lieyuiiel Layear

Figure 2.11: Schematic view of the mechanism for the formation of SWNTSs. a) Adsorption
and decomposition of the hydrocarbon. b) Diffusion in the liquid surface layer of the particle.
¢) Supersaturation of the surface and formation of the cap. d) Growth of the SWNT. [77]

This diffusion can be explained with the fact that the dissociation of methane into carbon and
hydrogen is a highly exothermic reaction causing a local heating of the catalyst particle. The
hydrogen reduces the catalyst locally and the carbon diffuses to a colder spot [122] resulting
in a carbon and a temperature gradient within the catalyst particle [123]. A simulation of
this process is presented in [122].
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A carbon atom which is set free on the surface of the catalyst diffuses through the particle.
The time ¢ until it has reached the other side of the catalyst particle depends on the particle
diameter, which corresponds to the diffusion way Ax. It can be estimated with:

Az =Dt =t=Az*/D (2.4)

where D is the diffusion coefficient [124]. The diffusion constant of C in y-Fe at 800 °C is
108 em?/s [111]. The typical size of a catalyst particle is 100 nm, which corresponds to a
diffusion time ¢ = (10010~%m)2/(1078(0.01m)?s) = 1ms. This is very short compared to the
growth time. Hence it can be assumed that the equilibrium of C dissolved in Fe is reached
nearly instantaneously.

2.2.5 Conclusions

The growth mechanism can be summarized as follows: Heating the carbon feedstock causes
the formation of radicals in the gas phase. The released (or added) hydrogen reduces the
catalyst and slows down a too fast radical formation in the gas phase, reducing thereby
the formation of amorphous carbon on the sample surface. The catalyst components serve
different purposes (Figure 2.12): Fe is the base for the growth of carbon nanotubes. Mo
catalyzes the decomposition of CHy directly at the catalyst surface. The released C diffuses
to Fe rich areas. Al is the support of the other components and traps O3 to protect Fe from
oxidation.

CH3+H, —» CH, +H’

CH,

I
Mo l Fe
C

Al

—» O

Figure 2.12: A possible growth mechanism.

2.3 Characterization methods

Quality, structure and physical properties of carbon nanotubes depend strongly on the growth
conditions e.g. temperature, catalyst, gas type and flow rates. All this makes a proper charac-
terization of the grown nanotubes indispensable. The growth of CNTs can be influenced by
the substrate. Since SiO9 on Si is our standard substrate it must be proven that the results
of a measurement are applicable if another substrate is used instead.

The following listing gives a brief description of the methods used for the characterization of
carbon nanotubes.
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Scanning Electron Microscopy

SEM is the standard characterization method used in this thesis. It is very fast and user-
friendly. It provides information about the density, the shape and the rough diameter of the
grown tubes. It is not suitable as a measure for the quality of the grown tubes, since it is
limited in resolution and does not deliver detailed information about the internal structure
of the CNTs. For this purpose other characterization methods have to be used.

Functional principle: Emitted electrons (either from a cathode filament or via field emission)
are accelerated to an energy ranging from a few 100 eV to 50 keV and focused by condenser
lenses into a beam with a very fine spot size of 1 to 5 nm. The beam is deflected by two
pairs of scanning coils in a raster fashion. The primary electrons are inelastically scattered by
atoms in the sample which leads to the emission of secondary electrons which are detected.

Atomic Force Microscopy

The resolution of AFM is around one nanometer. It provides structural information of the
surface of the CNTs. The handling of an AFM is more time consuming and less simple than
that of a SEM, since it is very sensitive to a bumpy sample surface (Figure 2.13).

Figure 2.13: Catalyst clusters disturb AFM measurements (obstacles cause shadowing).

Functional principle: A cantilever with a sharp tip at its end is brought into close proximity
to the sample surface. The force between the tip and the sample leads to a deflection of the
cantilever which is measured using a laser spot reflected from the top of the cantilever into
an array of photodiodes [125,126].

Transmission Electron Microscopy

Observation by TEM promises a resolution in the nm-range and gives an insight into the
internal structure of the nanotubes. The drawback of TEM is the really extensive and time
consuming sample preparation, since the sample has to be partially transparent for elec-
trons in order to allow imaging. Furthermore the CNTs can be damaged during imaging
(Figure 6.11b)) [125,127]). (Experiments leading to the preparation of samples which can be
investigated with TEM are presented in Chapter 6.)

Functional principle: Accelerated electrons are focused onto a specimen. A part of the elec-
trons is blocked or deflected away by the sample. The enlarged image of the transmitted
electrons can be detected on a fluorescent screen, a photographic film or by a CCD camera.
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Raman spectroscopy

Raman spectroscopy allows to check wether the grown CNTs are really single-wall and not
bundled.

Functional principle: Raman spectroscopy is used to study vibrational, rotational and other
low-frequency modes in a system. Incoming photons from a laser scatter inelastically with
phonons or other excitations in the system. The energy of the scattered photons can be
shifted up or down. This shift in energy gives information about the phonon modes in the
system [128,129].

There are several peaks which are interesting for the analysis of carbon nanotubes: the ” G-
band” at 1’582 cm™' (whereas G means graphite) and the "D-band” around 1’350 cm™!
(disorder) [7,130]. The latter mode is forbidden in perfectly ordered graphite and becomes
only active in presence of disorder. The ratio of the integrated D- and G-band is inversely
proportional to the crystallite size of graphite. This allows the distinction of SWNTs and
MWNTs. Another important mode is the radial breathing mode which is only active in
unbundled SWNTs (see [131] for an animation). It is distorted in bundles and MWNTs
by Van der Waals interactions. This is a simple mean to distinguish between bundles and
separated SWNTs. There is an additional interesting feature of this mode. The frequency
depends on the tube diameter [62,65].

Scanning tunnelling microscopy

STM is another possible measurement technique, it has atomic resolution and allows to dis-
tinguish bundles from separated carbon nanotubes. STM needs a conducting sample surface
whereas SiOj is insulating. This makes a special sample preparation necessary. (Some pre-
liminary experiments are shown in Section 5.3.)

Functional principle: A sharp tip is moved over the electrically conducting surface of the
investigated sample, while a voltage is applied between tip and surface in order to measure
the tunnelling current, which depends on the distance between tip and surface. A feedback
loop keeps the tunnelling current constant by adjusting the distance between the tip and the
surface by using piezoelectric elements. The height is related to the voltage applied to the
piezo elements and can be used to reconstruct the surface structure [132,133].

Electrical transport measurements

To perform an electrical transport measurements is the most direct check of the quality of
the grown tubes. The drawback of this method is the really extensive sample preparation.
Functional principle: The common setup for such experiments consists of a nanotube con-
tacted with several electrodes. Figure 2.14 shows a schematics of a very simple setup.

Contact Contact
Nanotube

Substrate

Figure 2.14: Schematics of the setup of a simple electrical transport measurement.
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Fluorescence microscopy

Another method for the observation of CNTs is fluorescence microscopy [134,135].

Mechanical properties

A nanotube is comparable to a thin rope or rod. Therefore it is possible to measure and
simulate values as its Youngs modulus [136], oscillatory behavior [48,137-139], superplasti-
city [140] or torsion constant [141]. CNTs break under tension [142] and deflect in response
to external atomic collisions [143]. CNT cantilevers can be used for zeptogram-level mass de-
tection [144], nanorelays [145] or as rotational bearings [146,147]. They can bundle through
Wigner defects [148] and form T-junctions [149] and zippers [150].



Chapter 3

The CVD system

Base for the growth of carbon nanotubes by chemical vapor deposition (CVD) is an oven in
combination with a gas system (Figure 3.1). This chapter gives an overview of the utilized
setups. The presented system is the supplement to a still useable older CVD oven which will
not be described in detail. The old oven has its own gas system which was used for some
experiments.

The setup of a CVD system consists of two main parts the oven and the gas system. The most
important element is surely the oven. Furthermore several other components are needed, as
gas bottles, different types of valves, flowmeters, manometers, tubes and connecting pieces
which build the gas system.

Figure 3.1: The CVD oven and the actually used gas system.

The main focus of this chapter are two sections with descriptions of the different setups of
the oven and the gas systems. The subsequent section gives a deeper insight into the function
and the reliability of the used flowmeters, and the last section presents the different protocols
which were used to grow carbon nanotubes.

3.1 CVD Oven

The oven used for CVD is a MTF 12/38/250 tube furnace from Carbolite [151]. The oven
chassis provides the power supply for the cylindrical oven which contains a 300 mm long
ceramic work tube with an inner diameter of 38 mm. The oven is heated with a resistance
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wire wound around the work tube. The heated length is 250 mm long. The maximal reachable
temperature is 1’200 °C. A quartz tube with a length of 1 m and a diameter of 30 mm is
placed within the boring of the work tube and closed on both sides with stainless steel plates
(Figure 3.2). Ring clips are mounted on the tube on both sides and three screws with wing
nuts are used to fix the plates. This mounting is very delicate, since the tube breaks when the
ring clips are tightened to much, and the system leaks when they are not tightened enough.
A heat shield inside of the quartz tube reduces the heat flow out of the oven.

Water out
To gas outlet = From gas system
a 1 (P00
Heat shield Quartz tube Metal tube
Water in
Water cooler
Bubbler CVD-oven

Figure 3.2: Schematics of the CVD oven. The samples are mounted from the right side.

The uniformity of temperature within the tube was tested by the manufacturer. When the
tube is closed on both sides then the temperature fluctuates by £ 10 °C expect for the last
10 cm at both ends. The fluctuation within the middle zone of 95 mm is only + 5 °C. The
samples are placed in the middle of the oven on a quartz sample holder with a length of
70 mm. This means that it might be assumed that the temperature is approximately equal
for all samples grown in one run.

The inlet of the oven is connected to the gas system with a flexible metal tubing. The outlet
of the oven and a water cooler are joined with a short piece of teflon tube, since a plastic tube
would be destroyed by the hot and aggressive exhaust gas. The cooler is connected with a
piece of plastic tube to a bubbler and this again to the outside. The cooler is used to reduce
the temperature of the exhaust gas to prevent the damage of the plastic tube. It is only
necessary when methane with a flow of 5 1/min is used, and when the growth temperature is
higher than 1’050 °C. The cooler is not used for lower growth temperatures and flows.

The presence of bubbles within the bubbler indicates that there is no major leak in the
system. However there is a more important effect of the bubbler, since it serves as a diffusion
barrier. There is always some unwanted gas diffusion into the oven since the system is open to
the outside. This flow is reduced since it has to pass the water inside the bubbler. This means
there is surely some water vapor inside the reaction tube however the amount is limited to
the vapor pressure of water. Other gasses can pass the bubbler but they have to overcome two
water gas boundary layers with areas of only 1 cm? and 5 cm?, the surface of the bubble and
the water air boundary of the bubbler, respectively. The reaction tube is flushed with argon
during heating (around 30 minutes) which reduces the content of environmental gasses which
are present due to the fact that the tube has to be opened to mount the sample. However
there is always a small quantity of water vapor, nitrogen, oxygen and the other trace gasses
of the environment present in the oven during growth in addition to the used reaction gasses.
The reaction tube is flushed with argon (and in the actually used process with hydrogen too)
during cooling-down to prevent the oxidation of the grown nanotubes.
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3.2 The gas systems

The gas system provides the oven with the desired reaction gasses (a list with the gas purities
can be found in Appendix A.3). Each of the presented gas systems contains at least one
flowmeter which allows the correct setting of the desired gas flow. All gas systems consist of
several gas lines for different gasses which join before the oven. The origin of each gas line
is a gas bottle equipped with a reduction valve which allows the setting of the desired gas
pressure. The next part is a one-way valve which protects the connected gas bottle in the
case of an explosion within the gas line. It opens only when the pressure from the side of the
gas bottle is higher then the pressure from the other side. The pressure stroke of an explosion
would close the one-way valve and prevent the hot explosion gasses from penetrating the gas
bottle. A following two way valve permits the fast opening and closing of the gas line without
changing the settings of the dedicated reduction valve and flowmeter. Manometers before
and after the flowmeter allow the setting of a desired pressure drop over the flowmeter (see
Section 3.3 for more information about the functionality of the flowmeters). The different
parts are connected with stiff stainless steel tubes with an outer diameter of 6 mm. With
one exception: more flexible tubes with an outer diameter of 3 mm are used to connect the
reduction valves with the one way valves to guarantee the necessary flexibility which is needed
when the gas bottles have to be changed.

Dead volume and pressure drop

One possible source of measuring errors is the dead volume of the gas system. The reaction
on the closing or opening of a valve is not instantaneous, since the ’old’ gas in the gas line
has to be replaced by the 'new’ gas. The exchange time ¢ is equal the dead volume V divided
by the volume flow ®,. The tubes with an outer diameter of 3 mm (6 mm) have an inner
diameter of 1.6 mm (4 mm). This corresponds to volumes per meter tube length of 2 ml and
50 ml, respectively. The total length of the 6 mm tubes of the gas systems is approximatively
3 m this results in a total dead volume of 3x50 ml = 150 ml. The 12 m long tube with an
outer diameter of 3 mm has a volume of 24 ml. This corresponds to an exchange time of
around 10 s for a gas flow of 1’500 ml. This is short compared with the usual growth time of
10 minutes. Therefore this effect can be neglected.

The pressure drop (Ap) within a tube is another aspect to be considered. It can be calculated
as follows [152]:

L on 2
Ap = A\—— 1
P= 29,79 (3.1)

Where A is the coefficient of friction (depending on v and the pipe roughness), L the pipe
length and r the inside radius of the pipe, opr the density and v the velocity of the medium.
The inner radii of the utilized tubes are 0.8 mm and 2 mm this has a big influence on the
pressure drop. The proportion Ap;(0.8 mm)/Aps(2 mm) can be calculated exploiting the
fact that the volume flow ® = Av is constant for a constant density op;. Where A = 772 is

the tube area. This means:

Api(08) _ Aag o’ rw? (G’ md 20 (3.2)
Apa(2) A2 rwve? ()2 o 080 T .
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The 12 m long tube with an outer diameter of 3 mm used in gas system II causes a very high
pressure drop compared with the remaining gas system. It is surely wise to hold it as small as
possible by making the gas lines as short as possible and by avoiding small tube diameters.
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3.2.1 Overview of the gas systems

Gas system I (with one variable area flowmeter, see Section 3.2.2) served for the first experi-
ments which proved the possibility to grow carbon nanotubes with the new oven. It was very
simple and did not allow the simultaneous use of two or more gasses.

Gas system II (with three thermal profile flowmeters and a variable area flowmeter, see
Section 3.2.3) belongs to the old CVD system and was connected to the oven with a 12 m
long tube of a diameter of 3 mm.

Gas system III (with two variable area flowmeters, a needle valve and a switch, see Sec-
tion 3.2.4) was less sophisticated than gas system II but it allowed the simultaneous use of
methane and argon.

Gas system IV (with three variable area flowmeters, see Section 3.2.5) allows the accurate
setting of the flows of methane, hydrogen and argon.

3.2.2 Gas system I, with one variable area flowmeter

This is the most simple setup which was used (Figure 3.3). The gas lines for all used gasses
(argon, methane and ethylene) were connected to the same variable area flowmeter from
Kobold (KDG1137, 50 - 500 1/h, gauged to air). The gas flow was controlled by closing and
opening the valves. The gas lines had an overall length from the gas bottles to the oven of
approximately 3 m.

Used gasses: argon 60, methane 55 and ethylene 35.

|

Variable area flowmeter
with adjustment knob

Tube6mm  =—

Vave

One way valve

Tube3mm  —

Gas bottle with
reducing valve

Figure 3.3: Schematics of gas system I, with one variable area flowmeter.
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3.2.3 Gas system II, with three thermal profile lowmeters and a variable
area flowmeter

This setup (Figure 3.4) belongs to the old CVD oven mentioned above. A Brooks instrument
controller 0154 controls three Brooks instrument thermal profile flowmeters gauged to Ar
(5850E, full scale flow: 1’000 ml/min), Hy (5850E, full scale flow: 1’000 ml/min) and No
(58508, full scale flow: 100 ml/min, used for the carbon feedstock: ethylene, methane or
acetylene). An additional variable area flowmeter from Kobold (KDG1137, 50 - 500 1/h,
gauged to air) can be used for high flows of methane. The gas system was connected to the
oven with a 12 m long tube of a diameter of 3 mm. The gas lines had an overall length from
the gas bottles to the oven of approximately 15 m.

Used gasses: argon 48, hydrogen 60, methane 55, ethylene 35 and acetylene 92.

|

Variable area flowmeter
with adjustment knob

Electronic
Flowmeter

Tube6mm  —
|
Em e
= e
Valve = o
d 12 m tube
One way valve Controller diameter 3 mm||

Tube 3 mm -_

Gas bottle with
reducing valve

Athetylene
I

CVD oven

Figure 3.4: Schematics of gas system II, with three thermal profile flowmeters and a variable
area flowmeter.
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3.2.4 Gas system III, with two variable area flowmeters, a needle valve
and a switch

The distinctiveness of this setup (Figure 3.5) was a switch which was used to toggle between
argon and the carbon feedstock, which was usually methane. For some experiments a small
amount of ethylene was added to the methane flow with a needle valve. The argon and the
methane gas lines were equipped with variable area flowmeters from Kobold (KDG1228, 10 -
100 1/h, gauged to air). The gas flow was controlled by using the switch. It has two inlets (for
argon and methane) and two outlets (to the oven and outward). The switch has two positions.
In position 1 the methane line was connected to the oven and the argon line was connected
outward. In position 2 the argon line was connected to the oven and the methane line was
connected outward. The pressure after the switch was ~0.1 bar £10% relative (due to the
fluctuations of the air pressure from day to day) and the pressure before the flowmeters was
set to 0.2 bar relative using the manometers (this corresponds to a pressure drop of ~0.1 bar
over the flowmeters). A special feature of this system was a needle valve which was used to
add a small quota of ethylene to the methane flow. The gas lines had an overall length from
the gas bottles to the oven of approximately 3 m.

Used gasses: argon 60, methane 55 and ethylene 35.

Switch first position
Outward ===

AN

.

NP

Switch second position ﬂ

B _E

Needle valve

Variable area flowmeter
with adjustment knob

Tube6mm  —
Pressure gauge

Valve

One way valve

Tube3mMm  —

Gas bottle with
reducing valve

CVD oven

Figure 3.5: Schematics of gas system III, with two variable area flowmeters, a needle valve
and a switch.
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3.2.5 Gas system 1V, with three variable area flowmeters

This is the currently used gas system (Figure 3.6). It allows the simultaneous use of argon,
methane and hydrogen. All gas lines are equipped with variable area flowmeters from Kobold
(KDG1228, 10 - 100 1/h, gauged to air for methane and argon; KDG1213, 1.6 - 16 1/h,
gauged to air for hydrogen). Manometers before and after the flowmeters allow the exact
setting of the pressure drop over the flowmeters (the pressure after the flowmeter depends
from the actual air pressure and fluctuates by maximally +10% from day to day). Since the
flowmeters are gauged to 0.2 bar the pressure drop over the flowmeters is set to 0.2 bar,
using the reduction valves of the gas bottles considering the readout of the manometers in
front of each flowmeter. This makes a pressure correction unnecessary. A correction for the
used gas is necessary since the flowmeters are gauged to air. (A correction table can be found
in Appendix B.2.) The gas lines have an overall length from the gas bottles to the oven of
approximately 3 m.

Used gasses: argon 60, hydrogen 60 and methane 55.
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Figure 3.6: Schematics of gas system IV, with three variable area flowmeters.
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3.3 Flowmeters

Flowmeters are used to measure the flow of gasses and liquids. There are several types of
flowmeters available: differential pressure flowmeters, positive displacement flowmeters, tur-
bine flowmeters, vortex flowmeters, ultrasonic flowmeters, ... [152]. Two types of flowmeters
were used for the gas systems presented in the last section: variable area flowmeters from
Kobold [153] and thermal profile flowmeters from Brooks Instruments [154,155]. The func-
tionality of these two flowmeter types will be explained below, and a valuation of there
accuracy and reliability will follow.

3.3.1 Variable area flowmeters

Variable area flowmeters are very simple and cost-efficient instruments. A spherical float
(other forms are common too) hovers in a conical tube which is installed vertically (Fi-
gure 3.7). The float is lifted up by the medium flowing upwards. The higher the flow rate is
the higher the float is raised. Under a constant flow rate the position stabilizes. A calibrated
scale on the tube allows the reading of the actual flow. The geometry of the float and the
tube as well as the floating medium have an influence on the actual position of the float. This
means that the scale is only correct for a specific gas at defined temperature and pressure.
Any deviation from these default values makes a correction necessary. The way how this
correction has to be done is described subsequently [152,156,157].

Cross-section

Gasflow
B Cross-sectional areaof thefloat A F
[] Cross-sectional areaof the gapA
B Crosssectional areaof the tube
Conical tube

Figure 3.7: Setup of the variable area flowmeter.

The physical description of an area flowmeter is very simple: the weight of the float (Fyy) is
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balanced by its buoyancy (Fp) and drag (Fp), Fyw = Fp + Fp with:

Fw = Vporg=mpg (3.3)
0
Fg = Vromg=mpg—rt (3.4)
oF
1
Fp = §CDAFQMU2 (3.5)

Where Vi is the volume of the float, g the gravitational acceleration (9.81 m/s?), or and
on, the density of the float and the medium, respectively, cp the coefficient of drag, Ar the
cross-sectional surface of the float and v the velocity of the medium. It follows:

mpg(l — 2%
L ) (3.6)

v i
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Since fraction ops/oF is negligible for gasses with small density, the last equation can be
simplified to:

2= (3.7)

scpArom
The velocity depends likewise on the size of the cross-sectional area A of the gap between
float and tube wall. This area changes dependent on the position of the float, due to the
conical shape of the tube (Figure 3.7). It is smaller (bigger) when the float is at the bottom
(top) of the flowmeter. The mass flow (®,,) links velocity, cross-sectional area and density.
The conservation of mass determines the constance of the mass flow. The volume flow (®y)
is constant too but only for a medium with constant density.

o == A (ke 38)
Sy =~ pA= @Qm m?/s] (3.9)
(3.10)

The aim of the following calculations is to find a possibility to make a correction if the cali-
brated scale can not be used, which means that the flowing gas (1) deviates in kind of gas,
pressure or temperature from the calibration gas (0). This corresponds to the use of two
flowmeters with two different gasses, where the float is in the same position for both flowme-
ters, which means that the cross-sectional area of the gap is the same in both flowmeters

(A1 = Ay).

(I)VO = ’U(]Ao (311)
(I)Vl == ’01A1 (312)
® ®
U1 Vo
U1
= (I)Vl = @Vof (3.14)
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The velocities in the last equation can be replaced with vy = , /44— and vy = , /-9 —:
2
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U1
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The last equation can be used directly if only the kind of gas was changed and pressure
and temperature fit to the conditions used for the calibration of the scale. If pressure or
temperature are different another effort has to be done.

It may be assumed that a gas with small density behaves like an ideal gas, and that the
equation of state of the ideal gas may be used:

PV
- = nR = constant (3.17)
PV Py
= 1
T T (3.18)

where P is the pressure, V' the volume, T" the temperature, n the quantity of gas expressed
in moles and R the gas constant.
Due to the conservation of mass it follows that ggVy) = 01V
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where gy and p; are different densities of the same gas at different pressure or temperature.

It follows that:
Py |T
Py :(I)VOM% ZQ)VO\/F?\/T:) (3.20)

These corrections for another kind of gas and a different pressure or temperature can be
combined to a general expression for the correction of the actual gas flow in an area flow

meter:
foo [Py |11
Oy = — =/ = 3.21
1781 %0 NP\ T, ( )

Note that gg and o1 are the densities of two different gasses at normal conditions.

3.3.2 Thermal profile flowmeters

This flowmeter type exploits the dissipation of heat [154,155]. The gas flow is divided in such
a way that a constant fraction of the flow passes through a heating element. Two temperature
sensors are mounted equidistantly upstream and downstream of the heat input (Figure 3.8).
Without any flow both sensors measure the same temperature. However a streaming gas
causes a convective heat transport within the bypass which cools the sensor upstream and
heats the sensor downstream the heat source. An increasing temperature difference develops
with an increasing flow. This temperature difference is proportional to the amount of gas
flowing and the mass flow, respectively. It is measured with the two temperature sensors. A
bridge circuit interprets the temperature (voltage) difference and an amplifier provides the
output to the control circuitry, which compares the command set point to the flow signal and
positions the control valve.
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Bypass
Temperature sensor upstream //_-‘Ft\£\\ Temperature sensor downstream

BN
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Figure 3.8: The measuring setup of a thermal profile lowmeter: the heat input with two ad-
jacent resistance temperature measuring elements which are mounted equidistantly upstream
and downstream.

This type of flowmeter can be characterized as follows [152]:

_ H
- Ac, AT

Where ®,, is the mass flow rate, H the heat input, A a constant, ¢, the specific heat at
constant temperature and AT the measured temperature difference. The constant A respects
the viscosity of the used gas and the effects of the measuring setup.

A correction for deviations in pressure or temperature from the calibration conditions is not
necessary due to the functionality of this flowmeter. However if another gas is utilized than
the gas the flowmeter was calibrated with, a correction has to be done:

D, (3.22)

factor of th
Actual gas flow rate = Output reading x gas 1actot 0F The NeW 8as

3.23
gas factor of the calibration gas ( )

Only the flow of the carbon feedstock has to be corrected since the corresponding flowmeter
was calibrated with nitrogen. The flowmeters used for argon and hydrogen were calibrated
with the corresponding gasses and need no correction. Table 3.1 shows the gas factors and
densities of different gasses.

Gas Formula | Gas factor | Density (kg/m?)
Nitrogen | Ny 1.000 1.251
Acetylene | CoHs 0.615 1.173
Ethylene | CoHy 0.619 1.261
Methane | CHy 0.763 0.717
Air 0.998 1.293
Argon Ar 1.395 1.784
Hydrogen | Hy 1.008 0.090

Table 3.1: Gas factor and density of different gasses [158].
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3.3.3 Accuracy and reliability of the flowmeters

The kind of gas and its temperature and pressure can have an influence on the readout of a
flowmeter, as shown in the last sections. The related issues are the accuracy and the reliability
of the flowmeters.

The approach to check the accuracy of the flowmeters is shown in Figure 3.9: a measuring
cylinder is filled with water, turned upside down and fixed in a bowl filled with water. The gas
flows into the measuring cylinder and displaces the water. So the total flow can be measured
very easily. The flow rate can be calculated by dividing the total volume by the duration of
the flow. The water column inside the measuring cylinder has an influence on the pressure of
the gas but it is negligible compared with the one bar environment pressure corresponding
to a water column of 10 m. So a pressure correction was not done.

The flow measured with this method is compared with the reading of the flowmeter to estimate
the accuracy of the flowmeter.

Gas flow
% from oven

P

Figure 3.9: Setup for measuring the effective flow. The gas bubbles out off the tube and fills
the measuring cylinder.

Accuracy of the variable area flowmeters

The mean argon flow in the variable area flowmeter is 513 ml/min using the above mentioned
measuring setup (Table 3.2). The reading at the variable area flowmeter was 35 1/h and the
pressure drop 0.2 bar (0.28-0.08 bar) this corresponds to a corrected flow of 496 ml/min

(Pv1 = Byo /2 = S500mL /128 = 496ml/min). The error is 513/496 = 1.03 and the
inaccuracy of the reading is surely bigger than 2.5%. This check was not done with the
explosive gases hydrogen and methane, however it may be assumed that their accuracy has
the same order of 3%.

The room temperature (and therewith the temperature of the gasses) fluctuates over the year

between 13 and 31 °C this corresponds to correction factors between 1/% = 0.99 and

g%i% = 1.02. This effect is neglected.
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Start vol (ml) | End vol (ml) | Total vol (ml) | Time (s) | Flow (ml/min)
25 500 475 55 518
35 500 465 55 507
Average flow 513

Table 3.2: The mean argon flow in the variable area flowmeter from two measurements is
513 ml/min.

Accuracy of the thermal profile flowmeters

The mean argon flow (Table 3.3) in the thermal profile flowmeter is 467 ml/min using the
measuring setup described above. The flow was set to 400 ml/min on the controller which
corresponds to an error of nearly 467/400 = 1.17. This means the thermal profile flowmeters
can not be called accurate, at least not in this setup with the 12 m long 3 mm tube. A setup
without this long gas line was not tested. This check was not done with the explosive gasses

hydrogen and ethylene, however it may be assumed that their accuracy has the same order
of 20%.

Start vol (ml) | End vol (ml) | Total vol (ml) | Time (s) | Flow (ml/min)
25 500 475 61 467
20 500 480 60 480
25 500 475 61 467
Average flow 471

Table 3.3: The mean argon flow in the thermal profile flowmeter from three measurements is
471 ml/min.

Reliability of the thermal profile flowmeters

The gas system with the thermal profile flowmeters was not coupled directly to the oven
for this test. The 12 m tube was connected with the argon line of the gas system with the
variable area flowmeters. So it was possible to make an independent flow measurement. The
flow through the thermal profile flowmeters depends from the pressure (Table 3.4). However
the measurement error is constant for all pressures and the flow is constant above a certain
threshold. This means that it is possible to operate the thermal profile flowmeters in such a
way that they are pressure independent when the pressure is high enough.

Conclusions

The accuracy of the variable area flowmeters of 3% is surely higher than the accuracy of 20%
of the thermal profile flowmeters. However the supplier promises an accuracy of 1% for the
thermal profile flowmeters which is better than that of the variable area flowmeters. If this
higher accuracy should be needed it would be surely worth the effort to test the thermal
profile flowmeters without the 12 m long gas line and to work out a correction table for
different flows.

A further improvement is the reduction of the dead volume of the gas system by displacing
the point where the gas lines meet closer to the oven (Figure 3.10). However this signifies
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Pressure | Thermal | Area | Pressure | Pressure Corrected | Deviation
bottle (bar) | (ml/min) | (I1/h) | in (bar) | out (bar) | flow (ml/min)
0.50 440 35 0.13 0.08 519 1.18
0.75 704 55 0.16 0.09 815 1.16
1.00 985 75 0.22 0.10 1111 1.13
1.25 1000 78 0.23 0.11 1156 1.16
1.50 1000 78 0.23 0.11 1156 1.16
1.75 1000 78 0.23 0.11 1156 1.16
2.00 1000 78 0.23 0.11 1156 1.16
2.25 1000 78 0.23 0.11 1156 1.16
2.50 1000 78 0.23 0.11 1156 1.16

Table 3.4: Pressure dependence of the thermal profile flowmeter. The flow is pressure inde-
pendent when the pressure has exceeded a certain threshold. (Thermal means: the setting of
the thermal profile flowmeter; Area: the reading of the variable area flowmeter; Pressure in
(out): the pressure before (after) the variable area flowmeter; Corrected: the corrected flow
of the variable area flowmeter; Dewviation: the corrected flow of the variable area flowmeter
divided by the setting of the thermal profile flowmeter.)

that additional manometers have to be mounted to guarantee a precise setting of the pressure
drop over the flowmeters.

CVD oven

Variable area flowmeter
with adjustment knob

Tube6mMm  —
Pressure gauge

Valve

One way valve

Tube 3 mm -_

Gas bottle with
reducing valve

Figure 3.10: Proposal for a gas system with smaller dead volume.
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3.4 Growth protocols

This section gives an overview of the utilized protocols. The step by step protocols can be
found in Appendix B.1. For more details about the setup of the gas systems see Section 3.2.
More information about how corrections have to be done can be found in Section 3.3. The
effect of a room temperature deviating from the calibration temperature 20 °C is negligible

(< 2%).

All protocols have some common features

The samples are placed in the sample holder and the latter is positioned in the middle
of the quartz tube of the oven. The heating of the oven is switched on. The argon line
is opened contemporaneously to remove the environment gasses during the heating to the
desired temperature. The gas lines of the reaction gasses (carbon feedstock and hydrogen) are
opened when the growth temperature is reached. For some protocols the argon line is closed
during growth and reopened afterwards, however it is important to maintain a permanent
gas flow through the quartz tube, since a stop of the gas flow might implicate the formation
of amorphous carbon (see Section 5.2 for more details.) The reaction gas lines are closed to
stop the growth. The heating of the oven is switched off to allow the cooling down of the
oven. Argon is used as a protective gas to avoid the oxidation of the grown nanotubes. The
sample holder is taken out of the oven when the temperature is below 350 °C. To avoid the
oxidation of the grown carbon nanotubes the samples are taken away from the still very hot
sample holder as fast as possible and placed on a piece of metal to cool them down to room
temperature as fast as possible.

3.4.1 Gas system I - Methane protocol

The gas system was operated with two gas lines for argon and methane, respectively. The
pressure at the reducing valve of the gas bottles was set to 2 bar and the pressure after the
flowmeter was 0.1 bar.

The carbon feedstock was methane with a flow of either 700 or 4’180 ml/min+3% with a
growth time of 10 minutes. (The reading at the variable area flowmeter was either 50 or

300 1/h, this corresponds to a corrected flow of: 5%8%3?1 \/ ég?? \/ 2'53;2011“ = 696ml/min.)

Argon (at a flow of 880 ml/min+3%) was used as protecting gas during heating and cooling
down, but not during growth. (The reading at the variable area flow meter was 100 1/h, this

/ .
corresponds to a corrected flow of: 169.000ml \/ 2 \/ oo = 882ml/min.)

3.4.2 Gas system II - Ethylene/hydrogen protocol

The gas system was operated with three gas lines for argon, hydrogen and ethylene, respec-
tively. Ethylene was replaced by either methane or acetylene for some experiments.

The usual carbon feedstock was ethylene with a flow of either 1.2 or 12.4 ml/min+20% with a
growth time of 10 minutes. (The reading at the controller was 2 or 20 ml/min, the flowmeter
is calibrated with nitrogen, this corresponds to a correction for the other kind of gas of:
2ml/min¥518 = 1.24mi/min.)

For a few experiments the carbon feedstock was either methane (or acetylene) with a flow of
either 1.5 (or 1.2) ml/min+20% or 15.3 (or 12.3) ml/min+20%. (The reading at the controller
was 2 or 20 ml/min, the flowmeter is calibrated with nitrogen, this corresponds to a correction
for the other kind of gas of: 2ml/min%813 = 1.24ml/min.)

A hydrogen flow of 600 - 688 ml/min+20% was used simultaneous with the carbon feedstock.

Argon (at a flow of 1’058 ml/min+20%) was used as protecting gas during the whole process.
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3.4.3 Gas system II - Methane/ethylene protocol

The gas system was operated with three gas lines for argon, methane and ethylene, respec-
tively.

The carbon feedstock was methane with a flow of 530 ml/min+20% in combination with an
ethylene flow of 0.6 (or 1.9 or 5.6) ml/min+20% with a growth time of 10 minutes. This
corresponds to about 1000 (or 3000 or 9000) ppm ethylene in the methane flow. (The reading
at the controller was 700 ml/min methane, the flowmeter is calibrated with hydrogen, this
corresponds to a correction for the other kind of gas of: 700ml /mm?ggg = 530ml/min.
The reading at the controller was 1, 3 or 9 ml/min ethylene, the flowmeter is calibrated
with nitrogen, this corresponds to a correction for the other kind of gas of: 1ml/ mm(l] gég =
0.62ml/min.)

Argon (at a flow of 1’058 ml/min+20%) was used as protecting gas during heating and cooling
down, but not during growth.

3.4.4 Gas system III - Methane protocol

The gas system was operated with two gas lines for argon and methane as well as a switch
with two inlets (argon and methane) and two outlets (oven and out). The pressure at the
manometers before the flowmeters was set to 0.2 bar for both gasses using the reduction
valves of the gas bottles, the downstream pressure was 0.1 bar with an accuracy of 10%. This
corresponds to a pressure drop of 0.1 bar over the flowmeters. The switch has two positions:
In position 1 methane is connected to the oven and argon to out. In position 2 argon is
connected to the oven and methane to out.

The carbon feedstock was methane with a flow of 1’400 ml/min+3% with a growth time of
10 minutes. (The reading at the Variable area flowmeter was 60 1/h, this corresponds to a

L/ /
corrected flow of: 6%&%3? (1)%’3 = 1'402ml/min.)

Argon (at a flow of 890 ml/ m1n:|:3% ) was used as protecting gas during heating and cooling
down, but not during growth. (The reading at the variable area flow meter was 60 1/h, this

. 60°000ml /1.293 /1.2 _ :
corresponds to a corrected flow of: “grmaitt /=220 [ 3:7 = 888ml/min.)

3.4.5 Gas system IV - Methane/hydrogen protocol

The gas system is operated with three gas lines for argon, hydrogen and methane, respectively.
The pressure drop over the flowmeters is set to 0.2 bar, using the reduction valves of the gas
bottles. This setting makes a pressure correction unnecessary.

The carbon feedstock is methane with a flow of 1’000 ml/min+3% with a growth time of
10 minutes. (The reading at the variable area flowmeter is 45 1/h, this corresponds to a

45'000ml [1.293
corrected flow of: 2=ty /o202 = 1/007ml /min.)

A hydrogen flow of 500 ml/min+3% is used simultaneously with the carbon feedstock. (The
reading at the variable area flowmeter is 8 1/h, this corresponds to a corrected flow of:

8'000ml [1.293 _ ~
comin\/ 5550 = 205ml/min.)

Argon (at a flow of 1’500 ml/min+3%) is used as protecting gas during heating and cooling
down, but not during growth. (The reading at the variable area flow meter is 105 1/h, this

. 105'000m!  /1.293 __ ;
corresponds to a corrected flow of: =Rty [ =220 = 17489ml /min.)

60min



Chapter 4

Catalyst and sample preparation

The main focus of this chapter is the development of an appropriate catalyst for the growth
of single-wall carbon nanotubes by chemical vapor deposition (CVD). Such a catalyst can
be obtained in different ways (Figure 4.1). The catalyst can be evaporated directly on the
sample. This is easy, but the catalyst has to be annealed. A liquid based catalyst can be
spread on the sample by means of a spin coater. This allows more complex catalysts, but the
control is more difficult.

a) b)

bstrate Substrate

Evaporation Spin coating
Catalyst particles

I\
I/

Annealing Drying

Figure 4.1: a) Catalyst evaporation. b) Spinning of a liquid based catalyst.

Since the grown single-wall carbon nanotubes will be used for electrical transport measure-
ments the common setup for such experiments has to be taken into account (Figure 2.14). It
consists of a nanotube contacted with several electrodes. This means the density of the tubes
should not be too high to avoid shorts between the electrodes induced by a series of nanotubes
in direct contact. On the other hand the density should be high enough to facilitate the fast
search for an appropriate nanotube.

The catalyst can be spread evenly distributed over the whole sample or only in specific areas.
Latter can be achieved by adapting the process shown in Figure 6.7. A pattern of equidistant
squares is written using e-beam lithography and the plasma etching step is replaced by
evaporating a metal layer or spreading a liquid catalyst. After this step some catalyst is
on top of the PMMA and other directly on the substrate. The catalyst on the PMMA can
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be removed together with the PMMA, leaving behind only the patterned catalyst on the
substrate. The first approach is simpler however the probability of shorts due to nanotube
nanotube contacts is higher. Both approaches were tested however the simple method resulted
in a better outcome.

The next sections give an overview about how the evaporated and liquid catalysts were
made. For results see the following Chapters. Details about the gas systems are described in
Chapter 3.

4.1 Catalyst evaporation

Evaporating the catalyst is surely the most direct way to coat a sample with catalyst. It has
the additional advantage that the amount of catalyst per area can be controlled very easily by
changing the thickness of the evaporated metal layers. An e-gun in a PLS 500 Labor System
from Balzers-Pfeiffer was used to evaporate Fe, Ni and Al layers [159, 160).

The principle of evaporation with an e-gun is very simple. Electrons are emitted from the
hot filament of the e-gun and deflected by a tunable magnetic field. The e-beam is centered
on the target material in a crucible which melts and evaporates. A shutter which covers the
sample mounted on a sample holder is opened until the desired layer thickness is reached. The
thickness is measured with an oscillating quartz crystal whose frequency changes depending
on the layer thickness and the evaporated material. The electronic of the system calculates
the effective thickness of the evaporated layer.

Fe and Ni are known to catalyze the growth of carbon nanotubes (see Section 2.2 for more
details). Al is a component of the iron molybdenum alumina catalyst, therefore its suitability
as a co-catalyst of Fe was tested. Although it does not show any catalytical activity when it
is used unassisted it enhances the activity of Fe when it is evaporated prior to the Fe layer
(Figure 4.2). This supports the proposal about a nanotube growth mechanism in Section 2.2.4.
This seems to be in contradiction with the observation that a 20 nm Al layer below a 2 nm
Fe layer on a Si(100) substrate depletes the Fe completely [114]. However when an AlyO3
layer is used instead of Al the growth of nanotubes is very efficient [115]. Since samples with
a thick Fe layer have a rusty appearance after growth and the oxidation of Al is much easier
than that of Fe, it might be assumed that the Al layer is oxidized during heating, at least
partially.

Figure 4.2: The presence of Al has a great influence on the number of grown tubes: a) a 0.4 nm
thick Fe layer with only a few tubes and b) a 0.4 nm thick Fe layer on 10 nm Al with much
more tubes. (The tubes were grown on SiO2 at 950 °C with ethylene at 12 ml/min+20%
and hydrogen at 680 ml/min+20%, the argon flow was 1’058 ml/min+20% during the whole
process, using gas system II.)
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A crucial point is the formation of clusters which act as origin for the growth of the nano-
tubes. They are formed during the heating of the samples. Figures 4.3, 4.4 and 4.5 show the
dependency of the cluster size from the thickness of the evaporated Fe layer. The samples
were heated to 900 °C in an argon flow of 1’058 ml/min+20%, using gas system II. The
clusters have a size of 300 - 500 nm for a 20 nm thick Fe layer, and there are smaller clusters
(50 nm) in the background. For a 5 nm layer the clusters have a diameter of roughly 50 nm.
For a 2 nm thick Fe layer the clusters are almost invisible. On a 0.5 nm thick Fe layer there
are no clusters visible. This shows a clear dependency of the cluster diameter from the layer
thickness.

0 10.0 pum 0 2.00 um

Figure 4.3: SEM and AFM pictures from Fe clusters formed from a 20 nm thick evaporated
Fe layer on SiOs.

] 10.0 pm 0O 2,00 pm

Figure 4.4: SEM and AFM pictures from Fe clusters formed from a 5 nm thick evaporated
Fe layer on SiOs.

Conclusions

It could be shown that evaporated Al enhances the catalytical effect of Fe, and that the size of
the clusters formed during heating the sample depends from the thickness of the evaporated
metal layer.

4.2 Liquid based catalysts

The following sections present the results of the liquid based catalyst consisting of iron ni-
trate (Fe(NO3)3-9H20), molybdenum dioxide dichloride (MoO2Clz) and alumina (AlzO3) in
different combinations. The alumina nanopowder is used with two different particle sizes with
diameters of 4 and 40 nm.
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0 500 pm

Figure 4.5: SEM and AFM pictures from Fe clusters formed from a 2 nm thick evaporated
Fe layer on SiOs.

The solvents are water, methanol, ethanol and 2-propanol (isopropylic alcohol). The solubility
of the catalyst components depends on the solvent (Table 4.1). The solvent has to fulfill a
very important requirement, it must not interact with other components on a sample, e.g.
PMMA (polymethyl methacrylate). It will be shown that only 2-propanol is suitable for the
production of samples for transport measurements.

The composition is similar to that of the catalyst used by J. Kong et al. [73]. However there
is a difference in the recipe, MoO2Cl; is used instead of MoOs(acac) which was not available.
Liquid based catalysts are more sophisticated than evaporated ones since there are more
parameters to be controlled, since the catalyst can undergo chemical reactions and physical
changes as recrystallization after it is mixed, which might influence the final composition and
size of the catalyst particles.

Compound MW Soluble in

Al,O3 101.96 | very slightly in acids, bases
Fe(NO3)3-9H20 | 404.00 | water, alcohol, acetone; slightly in HNOg
MoO4Cls 198.84 | water, alcohol, ether

Table 4.1: Molecular weight and solubility of alumina, iron nitrate and molybdenum dioxide
dichloride [161].

Tests of the catalytical activity did show that nanotubes grow with iron nitrate alone and a
combination of iron nitrate and molybdenum dioxide dichloride. Alumina and molybdenum
dioxide dichloride show no growth when they are used alone (at 950 °C with a methane flow
of 1’400 ml/min+3% for 10 minutes, the argon flow was 890 ml/min+3% during heating and
cooling down, using gas system IIT).

Solution #30

The results of the experiments with iron nitrate dissolved in ethanol and water are not worth
mentioning with one exception: Solution #30, a solution of 10 mM Fe(NO3)3-9H50 in water
which was kept for 1 day at 85 °C (prepared by C. Schonenberger). Some results can be found
in the following chapters.
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Sample preparation

These steps are common for all liquid based catalysts. The SiOs samples are sonicated in
acetone for 5 minutes and in 2-propanol for 2 minutes. To spread the catalyst the samples are
placed on a spinning table and covered with catalyst. The excess solution is removed by the
fast revolving of the spinning table (for 40 seconds). The amount of the deposited catalyst
depends on the number of revolutions per minute (rpm) of the spinning table.

4.2.1 The iron molybdenum alumina catalyst dissolved in methanol

Methanol is the solvent used by J. Kong et al. [73] so this solvent was tested first. In fact it
was possible to grow nanotubes with the catalyst dissolved in methanol.

First experiments did show growth between 850 and 1’050 °C. (The methane flow was
1’400 ml/min+3% for 10 minutes, and the argon flow was 890 ml/min+3% during heating
and cooling down, using gas system III.)

e At 800 °C there was no visible growth.

e At 850 °C only a few tubes grew.

e At 900 °C a little more tubes grew.

e At 950 °C the grown tubes were nice and long.

e At 1’000 °C the tubes were less good visible, which might mean that they were thinner.
They were strait and long and grew even from small particles.

e At 1’050 °C the tubes looked comparable to them grown at 1’000 °C, however there
was some amorphous carbon visible.

e At 1’100 °C the sample was covered with amorphous carbon and no tubes could be
found. Imaging was very hard due to charging effects.

These experiments were done with a solution of 200 mg Fe(NO3)3-9H20, 50 mg MoO2Cly
and 150 mg AlsO3 4 nm nanopowder dissolved in 15 ml methanol. This stock solution was
stirred overnight and sonicated for 1 hour prior to use. 1 ml of the sonicated solution was
thinned with 9 ml methanol, sonicated for 4 hours and stirred over night. The SiOy samples
were covered with the catalyst and a spinning table at 2’000 rpm was used the remove the
excess solution.

This solution was tested with samples covered with PMMA, the resist used for e-beam-
lithography. The PMMA film was attacked by the catalyst solution.

Conclusions

The catalyst is suitable for the growth of carbon nanotubes, however the solvent methanol is
to aggressive to be used with PMMA. Water promises to be a less aggressive solvent.

4.2.2 The iron molybdenum alumina catalyst dissolved in water

A test did show that water has no negative interactions with PMMA. However this catalyst
has the very unpleasant property to dry very slowly, in addition the catalyst tends to form
huge clusters when it is spread using the spinning table. The biggest clusters are even clearly
visible by eye. The cluster formation might be due to the fact that compared with methanol
the boiling point and the surface tension of water are much higher (Table 4.2). Another
possible explanation is the different solubility of the used components in water and methanol.
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Solvent Formula Boiling point | Surface tension

°C | mN/m at 25 °C
Ethanol CH;-CHy(OH) 78.2 21.97
Methanol | CH3(OH) 64.6 22.07
2-Propanol | CH3-CH(OH)-CHj3 82.3 20.97
Water H»O 100.0 71.99

Table 4.2: Boiling point and surface tension of different solvents [161].

Alumina is soluble in acids and bases so it was tried to change the pH of the solution by
adding acidic and basic solutions with the goal to overcome this problem. Another approach
was to try to enhance the adhesion of the sample surface by cleaning the sample surface with
a plasma etcher or spreading hexamethyldisilazane (HMDS is used as adhesion layer for the
UV resist).

The subsequent stock solutions were used for the following experiments: 30 mg alumina
nanoparticles (either 4 or 40 nm diameter) dissolved in 20 ml water, and 112 mg Fe(NOg)s-
9H0 plus 15 mg MoO4,Cly dissolved in water (iron molybdenum solution).

Diluted HCI affects the alumina nanoparticles they become smaller and the density per area
sinks, as shown in Figure 4.6 a) with alumina nanoparticles of 4 nm diameter (spinning
at 1’000 rpm) and b) with 4 nm alumina nanoparticles in 0.5x10~* M HCI (1 ml of 4 nm
alumina solution mixed with 1 ml 10=* M HCI). Figure 4.7 compares the effect of the size
of the alumina nanoparticles: in 0.5x1072 M HCI the 4 nm particles a) are almost vanished,
whereas a lot of the 40 nm particles b) are still present.

Figure 4.6: Alumina nanoparticles of 4 nm diameter dissolved in a) water and b) 0.5x10~* M
HCl.

Figure 4.8 a) shows that it is in fact possible to grow nanotubes with the acidic iron molyb-
denum alumina catalyst dissolved in water (a mixture of 0.5 ml iron molybdenum solution
and 0.5 ml 4 nm alumina solution with 0.5 ml of 10~2 M HC], spinning at 1’000 rpm) but
the yield is very poor and the sample surface is very impure. Much better results could be
achieved with a basic solution (a mixture of 0.5 ml iron molybdenum solution and 0.5 ml
4 nm alumina solution with 0.5 ml of 1072 M NaOH, the sample was covered with this so-
lution for 5 minutes and dipped into water and ethanol). The sample surface is cleaner and
the nanotube density is comparable (Figure 4.8b)).

An additional cleaning step with the plasma etcher (5 seconds 16% O2, 100 W, 0.025 Torr;
5 minutes 34% CHF3, 4% Oz, 70 W, 0.025 Torr; 10 seconds 16% Oz, 100 W, 0.025 Torr)
improved the adhesion of the catalyst, however it brought no additional benefit, compared
with the result with the basic solution. This cleaning was to harsh, and the surface became
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Figure 4.7: Alumina nanoparticles of a) 4 and b) 40 nm diameter dissolved in 0.5x1072 M
HCL

Figure 4.8: Nanotubes grown on SiOy with a) acidic and b) basic iron molybdenum alu-
mina catalyst dissolved in water. (The tubes were grown at 950 °C with a methane flow of
1’400 ml/min+3% for 10 minutes, the argon flow was 890 ml/min+3% during heating and
cooling down, using gas system III.)

bumpy. HMDS was another candidate for improving the adhesion of the catalyst to the sample
surface. However it did not fulfill the expectations, since the adhesion was even worse than
without HMDS.

Conclusions

These results (together with not presented ones) can be summarized as follows: Water is not
the optimal solvent for spreading the catalyst with a spinner, since the adhesion of the catalyst
particles to the sample surface is to weak. The use of a basic solution gave a slight improvement
of the adhesion of the catalyst compared with the neutral and the acidic solutions. A surface
cleaning with the plasma etcher resulted in a little additional improvement.

4.2.3 The iron molybdenum alumina catalyst dissolved in 2-propanol

As shown in the last sections methanol and water are not appropriate solvents for the iron
molybdenum alumina catalyst. 2-propanol was chosen since it is an organic solvent like me-
thanol with comparable boiling point and surface tension (Table 4.2). In addition 2-propanol
is compatible with PMMA and less toxic than methanol.

Figure 4.9 b) shows that it is possible to grow nanotubes with this catalyst, however with
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a very low yield. The catalyst has a very big tendency to accumulate in distinct clusters, as
shown in a). (The tubes were grown at 950 °C with a methane flow of 1’400 ml/min+3% for
10 minutes, the argon flow was 890 ml/min+3% during heating and cooling down, using gas
system III.) These are the common growth conditions used in this section.

Figure 4.9: a) The catalyst has a very strong tendency to accumulate. b) Nanotubes grown
on SiOy with the iron molybdenum alumina (40 nm) catalyst dissolved in water.

It was tried to use acidic and basic solutions to overcome this problem, however with little
success. The solution was an additional cleaning step of the substrate. Figure 4.10 a) shows
the results using the plasma etcher (1 minute 16% Og, 200 W, 0.025 Torr) and b) the UV-
ozone cleaner, respectively. Both results are acceptable however the operation of the UV-ozone
cleaner is much simpler than that of the plasma etcher.

Figure 4.10: Nanotubes grown with the iron molybdenum alumina (4 nm) catalyst on SiOq
cleaned with a) the plasma etcher or b) the UV-ozone cleaner. The catalyst is spread ”ho-
mogenously” compared with Figure 4.9.

Also the catalyst can be spread ”homogenously” over the whole sample by an additional
cleaning step, the catalyst clusters are still huge and this is a big problem for AFM measure-
ments with high resolution (Figure 2.13). This problem can be reduced by exploiting a special
property of the catalyst, it sediments when it is left for a longer period of time. This can be
utilized to remove the biggest clusters by a sedimentation step. Experiments with different
sedimentation times did show that 10 to 30 minutes is the optimal period to get rid of the
biggest clusters and to have still enough catalyst spread on the sample.
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Catalyst preparation

The catalyst is prepared with stock solutions which guarantee a constant composition over
time. 30 mg AlyOg3 (either 4 or 40 nm nanopowder) is dissolved in 20 ml 2-propanol, 93 mg
Fe(NO3)3-9H,0 is dissolved in 20 ml 2-propanol and 27 mg MoOyCly is dissolved in 20 ml
2-propanol. These stock solutions are sonicated over night with an Ultrasonic300, power and
degas in middle position.

The stock solutions are sonicated overnight before they are mixed to the effective catalyst
consisting of 0.5 ml alumina solution (either 4 or 40 nm), 0.5 ml iron nitrate solution and
0.5 ml molybdenum dioxide dichloride solution diluted with 18.5 ml 2-propanol to a final
volume of 20 ml. The catalyst is sonicated overnight after mixing and for 2 hours prior to
use. (This corresponds to final concentrations of 0.37 mM AlOg, 0.29 mM Fe(NO3)3-9H20
and 0.17 mM MoO2Cls.)

Sample preparation

The catalyst is sonicated 2 hours prior to use. The samples are sonicated in acetone for
5 minutes and in 2-propanol for 2 minutes as well as placed in the UV cleaner for 10 minutes.
Simultaneously the biggest clusters are removed by a sedimentation step which lasts between
10 to 30 minutes. The sample is placed on a spinning table (2’000 rpm for 40 seconds),
1 droplet of catalyst is added when the maximal speed is reached.

Conclusions

2-propanol is an appropriate solvent for the iron molybdenum alumina catalyst, when the
sample is cleaned with the UV-ozone cleaner.

4.2.4 Conclusions

It could be shown that it is possible to grow carbon nanotubes from evaporated catalyst as
well as from a liquid based catalyst which is spread on the sample by means of a spin coater.
An Al layer can be used as a co-catalyst which enhances growth.

An iron molybdenum alumina catalyst dissolved in 2-propanol yields very good homogeneity
if the samples are cleaned with an UV-ozone cleaner.

Until now the composition of the iron molybdenum alumina catalyst was not changed. It
might be improved by changing the relative proportion of the constituents. The approach of
heating the catalyst (solution #30) for some period of time is very promising as well.

Time is a crucial factor for the catalyst preparation, since the iron molybdenum alumina
catalyst is not yet active (no growth of nanotubes) directly after mixing. The components
have to be sonicated for several hours. Therefore its chemical composition should be checked
at different times, e.g. by a chemical analysis, ESCA (Electron spectrometry for chemical
analysis), mass or X-ray spectroscopy.

There is no growth of nanotubes from most of the small catalyst particles, therefor it would
be interesting to know which properties a catalyst particle must have to act as a precursor
for the growth of nanotubes.

The evaporated catalyst is currently not utilized for growing nanotubes, if this should be
changed in future the dependency of the cluster size from the metal layer thickness should be
explored with AFM. It might be possible to get a regular pattern of clusters when PMMA
structured with e-beam lithography is used as a mask for the evaporated metal layers. The
patterned metal film which remains after removing the PMMA can be expected to form
clusters. It should be possible to get only one cluster per square when the area of the squares
and the layer thickness have the optimal size.
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It should be tried to combine evaporated and liquid based catalysts. An evaporated Al layer
might replace the alumina nanopowder to avoid the formation of clusters, and the MoO2Clsy
solution might improve the effect of the evaporated Fe layer. Instead of MoOyCly another Mo
salt (such as molybdenum-hexacarbonyl Mo(CO)g) might be used to avoid Cl to be part of
the catalyst. Instead of alumina nanoparticles alumina aerogel can be used as base for the
catalyst [162]. It allows an excellent access of the carbon feedstock to the catalyst particles
since it has a highly porous structure.

The use of methanol as a solvent was rejected since it solves PMMA. The currently utilized
process does not use PMMA | therefore it should be checked if there is any advantage when
2-propanol is replaced by methanol.

If it should become necessary to use water as solvent the basic solution should be used
together with a plasma etching step in a pure oxygen plasma (experiments with 2-propanol
did show that this does not affect the sample surface).



Chapter 5

Growth on silicon dioxide

SiO2 or more precise a 100 or 400 nm thick thermal oxide layer on Si (100) is our standard
substrate for electronic transport measurements. This chapter gives an overview of the results
using this substrate. In the first section the results obtained using different growth processes
are compared. The next section describes the formation of amorphous carbon and the oxida-
tion of nanotubes. The last section presents preliminary experiments for the characterization
of carbon nanotubes (CNTs) with STM.

Details about the gas systems and the catalysts are described in Chapters 3 and 4, respec-
tively.

5.1 Growth of carbon nanotubes with different processes

This section gives a short overview of the results of growth with different processes (ethy-
lene/hydrogen, methane, methane/ethylene and methane/hydrogen). Only the methane plus
hydrogen process allows the growth of unbundled single-wall carbon nanotubes.

Figures 5.1a) and b) show pictures of the first grown nanotubes. An analysis of the first
results did show that the quality of the tubes is better when the methane flow is set high
(4’120 instead of 700 ml/min+3%) and evaporated catalyst is used.
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Figure 5.1: The first nanotubes. The catalyst was a) a 1 nm thick evaporated Fe layer (pre-
pared by Z. Liu) (1’080 °C) and b) a solution of 30 mg alumina, 40 mg iron nitrate and
10 mg molybdenum dioxide dichloride in 15 ml methanol (sonicated for 1 hour and stirred
over night) (1’060 °C). (Growth for 10 minutes with methane at 700 ml/min+3%, the argon

flow was 880 ml/min+3% during heating and cooling down, but not during growth, using gas
system 1I.)
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Ethylene plus hydrogen process

Figure 5.2 shows a comparison of a) an evaporated 1 nm thick Fe layer and b) a 1 nm thick Fe
layer on top of a 5 nm Al layer. The tube density of both samples is comparable. However the
tubes on the sample without Al have some strange knots. The circles on Figure 5.2b) are arti-
facts of the investigation with SEM. The surface of the sample (probably the Al layer) starts
to bubble when the resolution is higher than 200 nm. The circles are the consequence of the
bubbling. (The tubes were grown at 900 °C for 10 minutes with ethylene at 1.2 ml/min+20%
and hydrogen at 688 ml/min+20%, the argon flow was 1’058 ml/min+20% during the whole
process, using gas system II.)

Figure 5.2: Nanotubes grown on a) an evaporated 1 nm thick Fe layer and b) a 1 nm thick
Fe layer on top of a 5 nm Al layer.

For further experiments a 10 nm thick Ti layer was evaporated as a base for the catalyst, a
0.3 nm thick Fe layer in Figure 5.3a) and a 0.3 nm thick Ni layer in b). This has an unwanted
effect, the nanotubes became huge, which means a T1i layer is not an appropriate base for the
growth of carbon nanotubes. (The tubes were grown at 950 °C for 10 minutes, as above. The
ethylene flow was 12.4 ml/min+20%.)

Figure 5.3: Nanotubes grown on an evaporated 10 nm thick Ti layer. The catalyst is a) a
0.3 nm thick Fe layer and b) 0.3 nm thick Ni layer.

More experiments which were done with this process with TEM grids and silicon nitride
windows as substrate are presented in Chapter 6.
Methane process

Figure 5.4 shows typical tubes grown with the iron molybdenum alumina catalyst dis-
solved in 2-propanol (with 40 nm alumina nanoparticles) at 950 °C with a methane flow
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of 1’400 ml/min+3% for 10 minutes, the argon flow was 890 ml/min+3% during heating and
cooling down, using gas system III. Raman measurements by A. Hartschuh did show that
the grown tubes are bundled.

More experiments which were done with this process are presented in Section 4.2.

Figure 5.4: Nanotubes grown with the iron molybdenum alumina catalyst dissolved in 2-
propanol.

Methane plus ethylene process

The used methane is very pure (CoHg < 0.1 ppm and C,H,,, < 0.05 ppm, see Appendix A.3).
The quota of trace gasses might have an influence on the growth. So it was tried to ”pollute”
methane with ethylene which is due to the presence of a double bond much more reactive
than methane.

The carbon feedstock was methane with a flow of 530 ml/min4+20% in combination with
an ethylene flow of 0.6 (or 1.9 or 5.6) ml/min+20% and a growth time of 10 minutes. This
corresponds to about 1’000 (or 3’000 or 9°000) ppm ethylene in the methane flow. (The argon
flow was 1’058 ml/min4+20% during heating and cooling down, but not during growth, using
gas system II. The iron molybdenum alumina catalyst solved in 2-propanol was used.)

The results of mixing methane and ethylene are very interesting. With no ethylene flow
nanotubes grew only from the big catalyst clusters (Figure 5.5a)). With 1’000 ppm ethylene
there are in addition tubes growing from smaller catalyst particles and some small particles in
the background (Figure 5.5b)). These particles might be amorphous carbon. On Figure 5.6a)
(with 3’000 ppm ethylene) there are less tubes and more particles visible and on b) (with
9’000 ppm ethylene) there are only a few tubes and a lot of particles. The abundance of
amorphous carbon increases with the amount of ethylene in the methane flow. The appearing
of nanotubes in the background with an ethylene flow of 1’000 ppm can be explained either
by a heightened reactivity of the ethylene or by a better contrast in SEM due to the covering
of the sample with amorphous carbon. There are no tubes in the background with higher
ethylene flows since the catalyst particles are covered from amorphous carbon and become
inactive.

Methane plus hydrogen process

It was impossible to grow unbundled single-wall carbon nanotubes with all the processes
presented till now. The growth protocol was changed due to personal contacts to H. van Zant
and J. Kong. The addition of hydrogen allows the growth of unbundled single-wall carbon
nanotubes, which was proven by Raman spectroscopy measurements by A. Hartschuh and
electrical transport measurements (see Chapter 7 for details).
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Figure 5.6: Changes due to an increasing flow of ethylene a) 3’000 ppm ethylene and
b) 9°000 ppm ethylene.

Figures 5.7 and 5.8 show tubes grown with the iron molybdenum alumina catalyst dissolved in
2-propanol at different temperatures. With a growth temperature of 1’000 °C the abundance
of tubes is clearly smaller than with 900 or 950 °C and the average tube diameter seems
to be bigger. (The tubes were grown for 10 minutes with methane at 1’000 ml/min+3%
and hydrogen at 500 ml/min+3%, the argon flow was 1’500 ml/min+3% during heating and
cooling down, but not during growth, using gas system IV.)

Figure 5.7: Nanotubes grown at a) 900 and b) 950 °C.

Figure 5.9a) shows that the use of an evaporated Fe layer as catalyst would not bring an
advantage compared with the iron molybdenum alumina catalyst since the tubes have visible
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Figure 5.8: SEM picture of nanotubes grown at a) 1’000 °C and AFM pictures of nanotubes
grown at b) 950 and ¢) 1’000 °C.

impurities. Compared with this the tubes grown with solution #30 look similar to the tubes
grown with the iron molybdenum alumina catalyst (Figure 5.9b)). This solution has the
advantages that no big catalyst clusters are formed and that it is spread homogeneously on
the sample surface.

Figure 5.9: Nanotubes with a) a 1 nm thick Fe layer and b) solution #30, grown at 900 °C.

Conclusions

The results of the presented experiments can be summarized as follows: It is possible to grow
nanotubes with all processes, but only the methane plus hydrogen process delivers separated
single-wall carbon nanotubes. SEM and AFM are not suitable to distinguish bundled from
separated nanotubes, therefore other methods as TEM (see Chapter 6), electrical transport
measurements (see Section 7.7) or STM (see Section 5.3) have to be used to acquire this
information. The Raman studies should be continued either on a quartz substrate or with
nanotubes suspended over gaps in silicon nitride windows (see Section 6.2).

The dependence of the average diameter from the growth temperature should be investigated
with AFM. So it would be possible to provide on request thinner or thicker nanotubes for
the transport measurements.
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5.2 Control of the growth process: amorphous carbon, oxida-
tion and bulk carbon feedstock

Beside the utilized gasses and catalysts there are other parameters which have to be consi-
dered. The formation of amorphous carbon is a permanent and unwanted companion of the
growth of carbon nanotubes with CVD. Its abundance increases when the growth tempera-
ture is too high or when the gas flow is stopped. Moreover the contrary effect occurs as well:
the grown tubes can be oxidized when the samples are taken out of the oven at a to high
temperature.

Amorphous carbon

Figure 5.10 shows amorphous carbon a typical result for growth at high temperatures. For
growth at lower temperatures the abundance of amorphous carbon is less prominent.

Figure 5.10: Amorphous carbon a typical result for growth at high temperatures. The catalyst
was a 1 nm thick evaporated Fe layer (prepared by Z. Liu). a) Growth at 1’100 °C for
10 minutes with methane at 700 ml/min+3%, b) growth at 1’100 °C for 10 minute with
methane at 4’180 ml/min+3%, the argon flow was 880 ml/min+3% during heating and
cooling down, but not during growth, using gas system I.

Oxidation

It is possible to force oxidation by just leaving open the oven on one side. So the oxygen in the
air has free access to the sample. For the first oxidation tests six samples with a 2 nm Fe layer
were produced (at 950 °C for 10 minutes with ethylene at 1.2 ml/min+20% and hydrogen
at 688 ml/min+20%, the argon flow was 1’058 ml/min+20% during the whole process, using
gas system II). One sample was kept for 30 minutes at 600 °C, the number of tubes was
evidently reduced. On a sample kept at 700 °C for 30 minutes most of the tubes disappeared.
On a sample kept at 700 °C only for a moment many of the tubes disappeared, however the
remaining tubes were very straight. For samples kept at 800, 900 and 1’000 °C only for a
moment only a few and very long tubes survived.

This experiment was refined in such a way that the same sample was heated for 5 minutes
to different temperatures. It was tried to find again the same position for all temperatures to
be able to make a comparison of the results for different temperatures. Figure 5.11a) shows
tubes grown at 950 °C for 10 minutes with ethylene at 12.4 ml/min+20% and hydrogen at
680 ml/min+20%, the argon flow was 1’058 ml/min+20% during the whole process, using
gas system II. Figures 5.11b) and 5.12a) show the same sample at the same position after
being kept at 550 and 575 °C for 5 minutes. Figures 5.12b) and 5.13 show the same sample
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but at a different position after being kept at 600, 625 and 650 °C. At least for temperatures
above 600 °C a clear reduction of the number of tubes is visible.

Considering the results of the oxidation tests the temperature at which the oven is opened
to take out the samples was set to 350 °C.

Figure 5.13: The same sample after oxidation at a) 625 and b) 650 °C.
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Bulk carbon feedstock

Another parameter which can be changed is the phase of the carbon feedstock. In principle it
should be possible to grow nanotubes from a bulk carbon feedstock. Additional experiments
with PMMA (polymethyl-methacrylate, a carbon polymer), HOPG (Highly Ordered Py-
rolytic Graphite, prepared by the pyrolysis of hydrocarbons at temperatures above 2’000 °C)
and cast iron (containing graphite embeddings) did not show any growth at all. The expe-
riments were done in a hydrogen atmosphere using the iron molybdenum alumina catalyst,
solution #30 and evaporated Fe as catalyst.

Conclusions

The formation of amorphous carbon and the oxidation of the grown tubes are facts which
must not be ignored.

Nanotubes and amorphous carbon can be etched with oxygen or hydrogen. A careful heat
treatment in an oxidizing or reducing (hydrogen) atmosphere is very promising. It should
be tested if it is possible to remove the amorphous carbon with such a treatment without
damaging the tubes. This can be done by opening the quartz tube of the oven at a certain
temperature for a certain time. Another approach is to alternate the flow of CHy plus He with
a flow of Hs only over several cycles. It might be necessary to heighten the temperature during
the Hs flow to intensify the etching effect. SEM is not the optimal investigation method for
such experiments. AFM is more suitable.

5.3 Preliminary experiments for the characterization of CNT's
with scanning tunnelling microscopy

The characterization of the grown nanotubes with scanning tunnelling microscopy (STM)
would allow the distinction of bundled and separated nanotubes. However the SiOy samples
can not be measured with an STM since their surface is not conducting. This means that for
STM measurements the grown tubes have to be transferred on a conducting substrate. The
growth directly on a conducting substrate would be possible too. In that case it has to be
proven that the results from this substrate are applicable for SiO too.

Different approaches were tried to master this challenge. Nanotubes were grown on the back-
side (the SiO2 side) of a silicon nitride window (see Section 6.2 and Figure 6.14 for more
details). A 200 nm thick gold layer was evaporated and the Si3sNy4 SiO9 bilayer was etched
with 40% HF. These trials were not crowned with success.

A very simple approach is to evaporate a 100 nm thick gold film on a sample covered with
grown nanotubes, to cover the sample with a two component glue (EPOTEK 377) and to
separate the gold film with a razor blade from the sample [163]. Figure 5.14 shows that it is
possible to transfer nanotubes with this method. However the yield is extremely low and the
Au surface is very bumpy.

The most direct approach to prepare samples suitable for STM is to use the standard substrate
and to etch away the SiOy with a buffered hydrofluoric acid solution (BHF: 28 ml 40% HF
and 113 g NH4F are dissolved in 107 ml HyO, the etch rate for SiOg is 50 nm/min [44]).
Figure 5.15 shows experiments with samples which were etched as first step. The sample with
solution #30 as catalyst shows rare growth, in addition the whole sample is covered from
catalyst which did not react. The iron molybdenum alumina catalyst dissolved in 2-propanol
on the other hand provides a good result. The tubes on the sample look the same as e.g.
the tubes on Figure 5.7, the etching step seems not to affect the tubes. However the tubes
have a tendency to bundle when the etching step is after the growth. Furthermore there is a
remarkable phenomenon: there is no blurring of the tubes in SEM pictures, this means it is
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Figure 5.14: Nanotubes transferred with a gold layer on an EPOTEK film.

easier to estimate the diameters of the grown tubes on etched samples.

First tests with the STM show it is possible to make measurements with these samples
(Figure 5.15¢)). (Remark: pure silicon oxidizes very fast, however the BHF treatment leaves
a hydrogenated surface which slows down the oxidation. This means the use of Si instead of
SiO2 would not have an advantage.)

20nm

Figure 5.15: Nanotubes on SiOs etched with BHF: a) solution #30 and b) iron molybdenum
alumina catalyst. ¢) STM picture of the etched SiO2 surface.

Conclusions

Etching the SiO4 layer is a promising approach.

On SEM pictures of tubes grown on SiOg there is always a blurring effect when the tubes lay
on the surface which makes the pictures fuzzy. It is noteworthy that this is not the case for
samples etched with BHF.



Chapter 6

Growth on TEM grids and silicon
nitride windows

The information about the structure of the grown tubes has to be as precise as possible. TEM
is a possibility to get insight into the internal structure of the tubes, whereas nanotubes grown
on SiOs can not be investigated with TEM directly, since the samples are not transparent
for electrons. SiO2 or more precise a 100 or 400 nm thick thermal oxide layer on Si is our
standard substrate utilized for electronic transport measurements. There are two possibilities
to overcome this challenge: the carbon nanotubes can be transferred to a TEM-grid after they
were grown on SiOg, or they can be grown on a substrate which is transparent for electrons
and that resists the growth temperature of 1’000 °C.

The common setup for electrical transport measurements consists of a nanotube contacted
with several electrodes. This means the density of the tubes must not be too high to avoid
shorts between the electrodes induced by a series of nanotubes in direct contact. The tubes
stick on the substrate surface additionally. This makes a transfer very difficult.

The second approach of finding a suitable substrate promises to be more successful. However
for a different substrate than SiOs it has to be proven that the growth of the nanotubes is
not affected by the substrate.

A first idea was to grow the tubes directly on TEM grids made of different materials. The
outcome of these experiments was that the results depend extremely from the chosen grid
material. This fact is surely interesting however it makes any conclusions on the structure of
nanotubes grown on SiOs impossible.

The next idea was to use little gaps in lithographically patterned silicon nitride windows.
These are adequate candidates since they are transparent for electrons, stable at high tem-
peratures and not too fragile. The grown nanotubes span gaps (down to 200 nm) in the silicon
nitride windows. The silicon nitride windows can be used as a substrate for the production
of devices for e.g. electrical transport measurements. This has the additional advantage that
it is possible to make TEM pictures from a nanotube used for other types of measurements.

Details about the gas systems and the catalysts are described in Chapters 3 and 4, respec-
tively.

6.1 Growth of carbon nanotubes on TEM grids

To use TEM grids as a substrate for the growth of carbon nanotubes is a very simple approach.
TEM grids are thin metal foils with punched (quadratic) holes. The grids have a diameter
of 3.05 mm and a thickness of 12 to 15 pum. Grids made of Au, Cu, Mo, Ni, stainless steel
(SS) and Ti were tested. The melting point of all these metals is higher than 1’000 °C which



6.1. Growth of carbon nanotubes on TEM grids 58

means that these grids should withstand the growth process. Quantifoils R2/2 were tested as
well.

It was tried to grow nanotubes on the untreated grids and on grides covered with a thin
evaporated metal layer (see Section 4.1 for more details about evaporation). The grids were
mounted for the evaporation step on a self made sample holder. Figure 6.1b) shows a sche-
matics.

The first test was to try if tubes grow on Mo, Ni or SS grids without the use of a catalyst. This
was done since Fe and Ni are known to be catalysts for the growth of carbon nanotubes and
Mo is used as a component in the iron molybdenum alumina catalyst. The result was negative,
no tubes grew, the grids just became brittle. (The chosen temperatures were 850 °C and a
950 °C with an ethylene flow of 1.2 ml/min+20% and hydrogen flow of 688 ml/min4+20%
for 10 minutes, the argon flow was 1’058 ml/min+20% during the whole process, using gas
system II.)

A simultaneous experiment with a Ti grid with an evaporated bilayer of 5 nm Al and 0.1 nm Fe
was more successful. Figure 6.1a) shows tubes grown at 950 °C for 10 minutes with ethylene at
1.2 ml/min+20% and hydrogen at 688 ml/min+20%, the argon flow was 1’058 ml/min+20%
during the whole process, using gas system II. However the Ti grid became as unstable that
it crumbled. On an Au grid treated in the same way no grown tubes could be found.
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Figure 6.1: a) Nanotubes grown on a Ti TEM grid with an evaporated bilayer of 5 nm Al
and 0.1 nm Fe. b) Schematics of the sample holder used for evaporation.

These first tests did show in addition strong changes of the grids due to the growth process,
they changed their shape and surface. The next step was to check the changes of the surface
which occur when the grids were heated to 600, 700, 800, 900, 1’000 and 1’100 °C in an argon
atmosphere (1’058 ml/min+20% during the whole process, using gas system II).

The results of these experiments depend very strongly on the grid material. They can be
summarized as follows:

e Au grid: The surface changes only a little, however the grids are extremely sensitive to
deformations.

e Cu grid: The surface is uneven however stable (stable means that the shape of the
surface did not change very much when heated). The grid is distorted at 1’100 °C.

e Mo grid: The surface is quite stable below 900 °C, however there is a recrystallization
at higher temperatures.

e Ni grid: The surface is quite stable below 700 °C, however there is a recrystallization
at higher temperatures.
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e SS grid: The surface is stable below 700 °C however very uneven. The color changed to
black at 600 °C.

e Ti grid: The surface is unstable. At 800 °C it becomes smoother but the grid becomes
brittle. The color changed to brown at 600 °C.

Figure 6.2 shows an example demonstrating the changes of the surface when a Mo grid is
heated to 600 and 1’100 °C in an argon atmosphere. The temperature dependence of the
surface shape is really amazing.

Figure 6.2: Changes of the surface of a Mo grid due to heating in an argon atmosphere:
a) room temperature b) 600 and c¢) 1’100 °C.

For the following series of experiments the protocol was changed a little. In addition to a
constant argon flow (1’058 ml/min+20%) during the whole process the samples were exposed
to hydrogen (688 ml/min+20%) for 10 minutes. The results were quite similar to that of the
first series of experiments however the surfaces lost their stability at lower temperatures. The
Ni grid lost its brilliance at 900 °C.

These experiments can be summarized as follows: the shape and the surface of the grids
change when they are heated. This is a challenge since it was shown in Section 4.1 that the
evaporated Fe layer forms clusters when it is heated on SiO5 samples. This process of cluster
formation is obviously disturbed on TEM grids due to the changing substrate surface. This
problem can be overcome in different ways. The catalyst can be added in preformed clusters,
a diffusion barrier can be used to avoid the direct contact of the evaporated catalyst with the
grid surface or the grids can be tempered.

For the following experiments the ethylene flow was heightened to 12+20% ml/min. The
hydrogen flow was 688 ml/min+20% and the argon flow 1’058 ml/min+20% as before.
Tempering was tried with Au, Cu and Mo grids. The grids were heated to 950 °C in an argon
flow of 1’058 ml/min+20%, thereafter a 5 nm thick Fe layer was evaporated. The growth was
done at 800 and 900 °C, respectively. The outcome is as follows: there was growth of carbon
nanotubes on the Cu and the Mo grids however not on the Au grids. The yield was higher
at 900 °C.

The idea of applying preformed clusters was tried with the liquid catalyst #30. All six grid
materials were tested. There are tubes identifiable on the Au, SS and Ti grids (growth at 800
and 900 °C). Figure 6.3a) shows carbon nanotubes grown on a SS grid.

This last experiment shows that the catalyst is not affected by Au, Ti and SS. It was tried
to use a 10 nm thick Ti layer as a diffusion barrier between catalyst and grid. And indeed,
this approach was successful. There were different catalysts tested: 0.3 and 5 nm Fe, 0.3 and
5 nm Ni and solution #30. Figures 6.3b), 6.4 and 6.5 show a selection of pictures grown with
different catalysts. The differences are stupendous. There are long tubes and short ones, they
are straight or curly, some are thick and others thin even when the same catalyst was used
and the growth temperature was the same.

The results of the experiments with TEM grids can me summarized as follows:

e Au grids: Usually no growth, only on a Ti layer.
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Figure 6.5: a) Ni grid, 850 °C, 10 nm Ti, 5 nm Ni and b) Ti grid, 850 °C, 10 nm Ti, 5 nm Fe.

Cu grids: Usually no growth, only on a Ti layer.

Mo grids: Usually growth, even twice without a Ti layer.

Ni grids: Usually growth, even twice without a Ti layer.

SS grids: Always growth.

e Ti grids: Nearly always growth.

Additional experiments with SiOs as substrate did show that the Ti influences the growth of
the nanotubes, they become huge (see Section 5.1 for more details). This means that Ti is
inappropriate as a diffusion barrier.



6.2. Growth of carbon nanotubes over gaps in silicon nitride windows 61

Quantifoils

Quantifoils R2/2 are Cu TEM grids covered with a thin carbon film of a thickness of 15 nm
with a regular pattern of holes with a diameter of 2 um. With quantifoils only a few tests
were made, since the results are not convincing.

Figure 6.6a) shows that it is possible to grow nanotubes on quantifoils with solution #30 at
800 °C, however their quality is very bad. The result could be improved by evaporating a
200 nm thick SiO4 layer (850 °C) (Figure 6.6b)). The growth process was the same as above.

Figure 6.6: Nanotubes grown on quantifoils: a) with solution #30 and b) on a 0.5 nm thick
Fe layer on 200 nm SiOs.

Conclusions

It is possible to grow nanotubes on TEM grids however the surface changes dramatically when
the grids are heated. In addition the results depend extremely on the used grid material.
The TEM characterization should be reliable and appropriate for the standard substrate
SiO4. This demand is surely not fulfilled for the use of TEM grids as growth substrate. A
more adequate method is described in the next section.

6.2 Growth of carbon nanotubes over gaps in silicon nitride
windows

TEM grids are not an appropriate substrate for the growth of carbon nanotubes as described
in the last section. The idea behind the use of the SigN4-windows was to have a substrate
which can be used in TEM and that resists the heat in the CVD oven. The SigN4 SiO» bilayer
is to thick (150 and 100 nm, respectively) for a direct use as a substrate in TEM. However it
is possible to etch holes in the windows which are spanned by the grown nanotubes.

Sample preparation

The substrate is a 525 um thick Si wafer covered with 150 nm LPCVD SisN4 on 100 nm
thermal SiOs. The Si is etched from the back side leaving a freestanding window of a SigNy
SiOg bilayer of 0.5 mm x 0.5 mm. Etched predetermined breaking points allow the cleaving
of the wafer in pieces of 4 mm x 4 mm with one window in the middle of every piece. The
substrate was provided by the Université de Neuchatel.

The samples are prepared as follows (Figure 6.7): The samples are cleaned only in the UV-
ozone cleaner (for 10 minutes) since they are extremely brittle and do not survive sonication.
The windows are covered with a 600 nm thick polymethyl methacrylate layer (E-beam resist
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PMMA 950 K from Allresist GmbH). The resist is exposed with a JSM-IC848 Scanning Mi-
croscope from Jeol using Elphy (a program from Raith, parameters: area dose 750 yAs/cm?,
step size 20 nm; the structures are quite big, so it is sufficient to focuss on a droplet of
silver paint nearby the window at a current of 107 A). The samples are developed with
2-propanol:MIBK (3:1) for 50 seconds. The development is stopped with 2-propanol (60 se-
conds).

1) After lithography

B Exposed resist
Resist

[ Silicon nitride/oxide

M Silicon

2) After development

3) After plasmaetching

4) After removing resist

Figure 6.7: Schematics of the etching of gaps in silicon nitride windows.

The PMMA serves as an etching mask. Reactive ion etching (Plasmalab 80 plus from Oxford)
is utilized to etch the SizNy SiOq bilayer (15 minutes, 34% CHF3, 4% Oq, 70 W, 0.025 Torr)
and to remove the remaining PMMA in a second step (3 minutes, 16% O, 100 W, 0.025 Torr).
The PMMA can be removed with acetone as well however in that case the silver paint used
for focussing spreads over the whole sample.

The end products are well defined gaps in the windows (Figure 6.8a)). It is clearly visible that
the growth of the tubes is not homogenous (grown at 900 °C for 10 minutes with methane at
1’000 ml/min+3% and hydrogen at 500 ml/min+3%, the argon flow was 1’500 ml/min+3%
during heating and cooling down, but not during growth, using gas system IV). There is
another notable effect, plasma etching has the disadvantage that the surface of the samples
becomes rough (Figure 6.8b)).

The liquid catalyst tends to accumulate and covers the gaps (Figure 6.9a)) (grown at 950 °C
for 10 minute with a methane flow of 1’400 ml/min+3%, the argon flow was 890 ml/min+3%
during heating and cooling down, using gas system III). This problem could be solved by
spreading the catalyst before the PMMA (Figure 6.9b)). The remaining procedure is the
same as described in sample preparation (grown at 900 °C for 10 minutes with methane at
1’000 ml/min+3% and hydrogen at 500 ml/min+3%, the argon flow was 1’500 ml/min+3%
during heating and cooling down, but not during growth, using gas system IV).
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Figure 6.8: a) The silicon nitride window with the etched gaps is a little darker than the
remaining sample. There are less tubes growing on the window. b) Roughening of the silicon
nitride surface due to etching.

The catalyst can be evaporated directly on the etched samples as well.

b)

]

Figure 6.9: Carbon nanotubes grown with iron molybdenum alumina catalyst dissolved in
2-propanol. a) The catalyst covers the gap when it was spread as last step of the sample
preparation. b) Catalyst was spread as first step.

Results

The TEM-pictures were made at the Biocenter Basel, in collaboration with members of A.
Engel’s group.

The TEM pictures of Figure 6.10 show that bundles of a) single-wall and b) double-wall
nanotubes can be found, as well as multi-wall carbon nanotubes in Figure 6.11a). The TEM
parameters are a challenge, since the tubes are affected by the electron beam, they change
their shape. The tube in the middle of Figure 6.11b) looked like the other two tubes before
it was investigated at higher resolution.

(If not other denoted the tubes were grown for 10 minutes with ethylene at 12 ml/min+20%
and hydrogen at 680 ml/min+20%, the argon flow was 1’058 ml/min+20% during the whole
process, using gas system I1I.)

Figures 6.10 and 6.12 show that the nanotubes have a tendency to form bundles [164], instead
of spanning the gap one by one (Figure 6.13a)). This is due to the special sample geometry
and depends on the growth parameters. It is possible to counteract this tendency by reducing
the catalyst density.
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Figure 6.10: TEM pictures of bundles of a) single-wall (0.5 nm Fe on 10 nm Al, at 950 °C)
and b) double-wall carbon nanotubes (0.2 nm Fe at 1’000 °C for 10 minutes with ethylene at
0.6 ml/min+20% and hydrogen at 400 ml/min+20%, the argon flow was 600 ml/min+20%
during the whole process, using gas system II).

Figure 6.11: TEM pictures of a) a multi-wall carbon nanotube (0.5 nm Fe, at 850 °C) and
b) a nanotube damaged by radiation.

Some tubes vibrate, as shown in Figure 6.13a) and b). This very interesting behavior is
analyzed in more detail in Section 7.2 [48].

Nanotubes grown on the backside of a silicon nitride window

It was tried to use the silicon nitride windows for the preparation of samples suitable for
STM (see Section 5.3). The idea was to grow nanotubes on the backside of the windows, to
evaporate 200 nm gold and to etch the SigNy4 SiOs bilayer with 40% HF for 1 hour. Figure 6.14
shows that the yield of this process is very low. This approach was not progressed since
it was not possible to stabilize the gold membrane. (The tubes were grown with the iron
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Figure 6.12: Nanotube framework on a) a TEM picture (0.3 nm Fe, at 900 °C) and b) a SEM
picture (0.5 nm Fe on 10 nm Al, at 850 °C).

Figure 6.13: Vibrating nanotubes a) (1 nm Fe, at 850 °C) and b) (0.1 nm Fe, at 950 °C)
spanning gaps in silicon nitride windows. ¢) A nano lasso (0.2 nm Fe, at 850 °C).

molybdenum alumina catalyst dissolved in 2-propanol at 900 °C for 10 minute with methane
at 1’000 ml/min+3% and hydrogen at 500 ml/min+3%, the argon flow was 1’500 ml/min+3%
during the whole process, using gas system IV.)

Figure 6.14: Nanotubes on an etched gold film. ¢) A 200 nm thick gold film.

6.3 Conclusions

The goal of the experiments presented in this chapter was to find a substrate suitable for
investigations with TEM. It could be shown that it is possible to grow carbon nanotubes
from different catalysts and with different growth protocols.
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The process with the silicon nitride windows is surely more reliable and appropriate than the
process with the TEM grids. However it is a fact that for both processes the substrates differ
from SiOs, and this has an influence on the growth of the nanotubes.

The setup with the silicon nitride windows increases obviously the tendency of the nanotubes
to form bundles. Therefore it is not clear if the nanotube bundles arise only due to the special
geometry of the samples or if the growth process has an influence as well. This means that
both approaches are not optimal, although the silicon nitride windows are surely the better
substrate.

If these experiments should be continued then the sample preparation should be changed.
The top layer of the substrate should consist of SiO2 to have the same initial conditions as
with the standard substrate. There are different possibilities to fulfill this need. The backside
of the silicon nitride windows consists of SiOs and it could be shown that it is possible to
grow tubes on this side as well, this means the sample preparation is the same as described
above with the only difference that the catalyst is spread on the backside. Another approach
is the evaporation of a thick layer of SiO9 on the silicon nitride windows or the TEM grids as
a first step. However it has to be considered that evaporation is less accurate than thermal
oxidation and that the evaporated layer consists of SiO, with an unknown x. The third way
is to buy silicon nitride windows with an oxide layer on the top (the silicon nitride layer is
needed to stabilize the oxide layer which is very brittle).

Silicon nitride windows with grown suspended nanotubes can be used for Raman spectroscopy
as well.



Chapter 7

Results from collaborations

There are several persons which are and were working with carbon nanotubes in our research
group. Bakir Babié¢, Soufiane Ifadir, Dino Keller and Gunnar Gunnarsson used to use their
own recipes for the growth of carbon nanotubes. However now all of them are working with
the iron molybdenum alumina catalyst solved in 2-propanol. Matthias Graber, Sangeeta
Sahoo and Takis Kontos do not grow nanotubes by themselves, they have been provided
with nanotubes for their running experiments grown with the methods presented in this
thesis.

This chapter gives a short overview over the achieved results from these collaborations.

Details about the gas systems and the catalysts are described in Chapters 3 and 4, respec-
tively.

7.1 Suitability of carbon nanotubes grown by chemical vapor
deposition for electrical devices

Bakir Babi¢, Jiirg Furer, and Christian Schonenberger

Published in ”Electronic Properties of Synthetic Nanostructures”, AIP Conf. Proc. Vol. 723,
574-582 (2004)

B. Babié et al. explored different strategies for the preparation of carbon nanotube devices
suited for electrical and mechanical measurements. The target device is a single small diameter
nanotube. Although, the tubes appear to be single, as judged from SEM and simple tapping-
mode AFM in air, we find clear signs for the presence of more than one tube. Bundling is
substantial for tubes grown over slits in silicon nitride windows (Figures 6.10 and 6.12). It
has to be assumed that tubes grown on SiOs form bundles as well.

It is common practice to distinguish semiconducting and metallic nanotubes by the depen-
dence of their electrical conductance (G) on the gate voltage (V;), measured at room tempe-
rature (7' ~ 300 K). This cannot prove that an individual single-wall tube has been contacted.
Measurements performed on ropes of nanotubes show signatures which agree quite well with
the behavior expected for a single-wall tube [165-167]. This has been attributed to a domi-
nant electrode-CNT coupling to one nanotube only. Fano resonances were observed which are
attributed to the interference of a single-wall tube which is strongly coupled to the electrodes
with other more weakly coupled ones [50].

Assuming that all chiralities have equal probability to be formed in growth, 2/3 of the single-
wall tubes are expected to be semiconducting and 1/3 metallic. From the measured response
of the electrical conductance to the gate voltage (back-gate), =~ 60 % of the devices display
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metallic (the conductance does not depend on the gate voltage) and ~ 40 % semiconducting
behavior. Based on our assumption the larger fraction of metallic gate responses points to
the presence of bundles or multi-shell tubes. If there are on average 2 or 3 tubes per bun-
dle, which are coupled to the electrodes approximately equally, the probability to observe
a semiconducting characteristic would amount to (2/3)? = 44% or (2/3)3 = 30 %. Hence, it
can be concluded that the number of tubes in a bundle or the number of shells in a multi-wall
nanotube is very likely small and close to 2 on average.

Furthermore, is reported the fabrication of low-ohmic contacts to SWNTs. Au, Ti and Pd
contacts are compared. Pd yields the best results.

For more details see [44,48].

7.2 Intrinsic thermal vibrations of suspended doubly clamped
single-wall carbon nanotubes

Bakir Babié, Jirg Furer, Sangeeta Sahoo, Shadyar Farhangfar, and Christian Schénenberger
Published in Nano Letters 3, 1577 (2003)

B. Babié et al. report the observation of thermally driven mechanical vibrations of suspended
doubly clamped carbon nanotubes, grown by chemical vapor deposition. Several experimental
procedures are used to suspend carbon nanotubes. The vibration is observed as a blurring in
the images taken with a scanning electron microscope. The measured vibration amplitudes
are compared with a model based on linear continuum mechanics.

Thermally driven excitations of multi-wall carbon nanotubes (MWNTs), clamped at one end
only, were first investigated by Treacy et al. [168]. The mechanical oscillation appeared in the
images, which were collected with a transmission electron microscope (TEM), as a blurring
which increased towards the free end of the MWNTs.

For more details see [44,47].

7.3 Electric field control of spin transport

Sangeeta Sahoo, Takis Kontos, Jiirg Furer, Christian Hoffmann, and Christian Schénenberger
Published in Nature Physics 1, 99 (2005)

S. Sahoo et al. report on a pronounced gate-field controlled tunnel magneto-resistance (7'M R)
in devices made from carbon nanotubes with ferromagnetic contacts. In such devices, the
electric resistance R depends on the orientation of the magnetization of the electrodes. The
tunnel magneto-resistance TMR = (Rap — Rp)/Rp is defined as the relative difference
between the resistances Rap and Rp in the antiparallel (AP) and parallel (P) magnetization
configuration. TM R can be observed in a spin-valve, which is for example formed if two
ferromagnetic electrodes are separated by a thin tunnelling barrier, e.g. a nanotube. In multi-
wall carbon nanotubes (MWNTSs) with Co contacts it was found to be positive and amounted
to +4 % in agreement with Julliere’s formula for tunnel junctions [169,170]. A negative TM R
of about —30 % was reported later for MWNTSs contacted with similar Co contacts [162].

The reported T'M R measurements used both multi-wall and single-wall carbon nanotubes
which were contacted with ferromagnetic electrodes and capacitively coupled to a back-
gate [32]. Both the amplitude and the sign of the TM R are tunable with the gate voltage in
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a predictable manner. As a result of resonant tunnelling, it is observed a striking oscillatory
amplitude and sign modulation of the TM R as a function of the gate voltage.

For more details see [30,31].

7.4 Process dependence of the abundance of the nanotube
type

If the process has no influence on the abundance and the distribution of the nanotubes should
be 2/3 semiconducting and 1/3 metallic (see Section 2.1). However conductance measure-
ments of S. Ifadir, D. Keller, M. Graber and G. Gunnarson showed that almost all contacted
tubes made with the methane process are metallic whereas most contacted tubes made with
the methane/hydrogen process are semiconducting (Figure 7.1). This is a result comparable
to [171]. The most simple explanation for this phenomenon is that the tubes grown with
the methane process are bundled. This means that the tube with the best conductance (a
metallic one) shortens all other tubes and determines the characteristic of the whole bundle.
This fact can be exploited by using the methane process when a metallic nanotube (bundle)
is desired, and the methane hydrogen process to get semiconducting nanotubes.

For more details see [8,41,46].
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Figure 7.1: Conductance vs. applied voltage to back-gate for two different devices. In the
curve of the (supposed) bundle the gating is obscured by the metallic contribution of the
best conducting tube (methane process). The other sample shows semiconducting behavior
(methane /hydrogen process). (Courtesy of S. Ifadir and D. Keller)

7.5 SEM/AFM comparison

SEM and AFM are both used for the characterization of the nanotubes. AFM gives a better
resolution however the handling is much more difficult and time consuming than that of SEM.
The localization of a convenient nanotube is a crucial step during the production of devices.
It thus is important to make this as efficient as possible. Together with S. Ifadir and D. Keller
a comparison was made between SEM and AFM with the aim to show that all nanotubes
that are visible in AFM can also be imaged with SEM. Figure 7.2 shows that this is in fact
correct, which means that SEM is a good mean for the localization of nanotubes.
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For more details see [8,45].

Figure 7.2: a) AFM picture of a sample. b) SEM picture of the same area. (Courtesy of
S. Ifadir and D. Keller)

7.6 Carbon nanotubes in solution

S. Ifadir and D. Keller explored the electrical properties of carbon nanotubes in various
solutions. The device was incubated with benzene derivatives (0.2M) solved in cyclohexane
and then dried with No (Figure 7.3). They found that the tubes are indeed responding to a
changed environment. This sensitivity of the tubes makes them potential molecular sensors.

For more details see [8,45].
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Figure 7.3: Normalized conductance vs. back gate voltage. The signal depends clearly on the
benzene derivative. (Courtesy of S. Ifadir and D. Keller)

7.7 Transport measurements of carbon nanotubes

M. Gréber uses nanotubes for transport measurements at low temperature [172]. Figure 7.4a)
shows a tube grown with the methane process at 900 °C. The length of the tube between
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the two Pd electrodes is around 300 nm. The grey-scale plot in Figure 7.4b) was measured
at 4.2 K. It shows both charging and finite size effects as seen in the different sizes of the
coulomb diamonds [37].
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Figure 7.4: a) Carbon nanotube contacted with two Pd electrodes. b) Coulomb diamonds,
white (dark) corresponds to 0 €2/h (0.3 €2/h). (Courtesy of M. Griiber)

Figure 7.5b) shows the honeycomb like charge-stability diagram of a double quantum dot
formed in a nanotube with two topgates and a centergate measured at 300 mK (Figure 7.5a)).
The regular honeycomb pattern indicates high-quality carbon nanotubes with only a few
defects (if at all). The tube was grown at 900 °C with the methane/hydrogen process.

For more details see [41,173].
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Figure 7.5: a) Carbon nanotube contacted with two topgates and a centergate (SiO2 Ti Pd
electrodes). b) Honeycomb structure of a double quantum dot. (Courtesy of M. Gréber)



Chapter 8

Conclusions and outlook

The aim of this thesis to overcome the problem of the bundling of the single-wall carbon
nanotubes could be reached. Transport and Raman measurements prove the good quality of
the carbon nanotubes (CNTs) grown with chemical vapor deposition.

The oven and the gas system were adjusted in several steps. Experiments on different sub-
strates were performed (silicon dioxide, silicon nitride windows, TEM grids (Au, Cu, Mo, Ni,
stainless steel, Ti) and quantifoils). Evaporated and liquid based catalysts were tested. CNTs
were grown with different carbon feedstocks (ethylene/hydrogen, methane, methane/ethylene
and methane/hydrogen). An iron molybdenum alumina catalyst solved in 2-propanol in com-
bination with the methane/hydrogen process gives the best results.

The comparison between SEM and AFM revealed that SEM is a good tool for the localization
of nanotubes dedicated for the preparation of samples for electrical transport measurements.
As a result of the good quality of the nanotubes, they are used in several running projects.
Experiments on quantum dots and spin valves promise very interesting results in the future.
A very noteworthy fact is that most of the tubes grown with the methane/hydrogen process
are semiconducting and most of the tubes grown with the methane process are metallic.
Therefore it is possible to preselect the characteristic of the CN'T with high probability by
using the appropriate process. However it has to be respected that the metallic tubes grown
with the methane process are not separated but bundled.

Although the preparation of CNTs was optimized, there are still several possibilities of im-
proving the growth process. It should be tested if the diameter of the nanotubes and their
structure are depending on the growth temperature, the gas flows and the catalyst compo-
sition. It should be checked in more detail why the used process has such a strong influence
on the characteristic of the grown tubes. The Raman studies are very promising and should
be deepened. It should be tried to localize defects on the CNTs with STM.
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Appendix A

Materials and Methods

A.1 Equipment

e AFM: Nanoscope IV, Digital Instruments

e Annealing oven: AZ 500, MB Komponenten GmbH

e CVD oven: MTF 12/38/250, Carbolite

e E-beam lithography: JSM-IC848 Scanning Microscope, Jeol; with Elphy and Proxy software from Raith
e Evaporator: PLS 500 Labor System, Balzers-Pfeiffer

e Fittings: Swagelok

e Flowmeters (variable area flowmeter): KDG1213 (1.6 - 16 sccm), KDG1228 (10 - 100 sccm) and
KDG1137 (50 - 500 sccm), Kobold

e Flowmeters (thermal profile): 5850S and 5850E, Brooks Instrument
e Flowmeter controller: 0154, Brooks Instrument

e Magnetic stirrer: RCTbasic, KIKA Labortechnik

e Manometers: Swagelok

e Microscope (optical): SM-LUX HL, Leitz

o Needle valve: EVN116, Pfeiffer Vacuum

e Oven: UT 5042 EK, Heraeus

e Reactive ion etcher (RIE): Plasmalab 80 plus, Oxford

e SEM: XL 30 FEG, Philips

e SEM: SUPRA 35, LEO

e Sonicator (standard): Ultrasonik300, Ney

e Sonicator (high power): Digital Sonifier, Branson

e Spinning table: Lanz Reinraumtechnik

e Surface profiler: Alpha-step 500, TENCOR

e TEM: H8000, Hitachi

e TEM: CM 200 FEG, Philips

e Tubes: Swagelok

e UV-ozone Cleaner: UVO Model 42-220, Jelight company
e Vacuum annealing oven: self development

e Water deionizer: Wilhelm Werner GmbH, Reinstwassertechnik

A.2 DMaterials

e Acetone EP: Schweizerhall Chemie AG, item 80932-106
e Alumina: Al2Os, Aluminum oxide purum p.a., MW: 101.96, Fluka, 06285
e Alumina 4: Al;Og, Aluminum oxide nanopowder 4 nm, MW: 101.96, Aldrich, 55,164-3
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Alumina 40: AloO3, Aluminum oxide nanopowder 40 nm, MW: 101.96, Aldrich, 544833
Ammonium fluoride: > 95%, NH4F, MW: 37.04, Merck, 1162

Gold: Au for evaporation, ingots from different banks

Calcium carbonate: CaCOs3

Chlorbenzene, purum: > 98%, Fluka, 23580

EPOTEK 377: Epoxy Technology Inc.

Ethanol 96% EP: Schweizerhall Chemie AG, item 82352-102

HMDS: Hexamethyldisilazane, puriss p.a., Fluka 52619

Hydrochloric acid 36-38%: (HCl, MW: 36.46, J. T. Baxter, 6081)

Hydrofluoric acid 40%: HF, MW: 20.01, Fluka, 47590

Hydrogen peroxide 30% EP 4: HoO2, MW: 38.01, Schweizerhall Chemie AG, item 82570-102
Iron: Fe, 99.9%, Starter-Slug for evaporation, unaxis, M00-0947/1

Iron nitrate: Fe(NO3)3-9H20, MW: 404.00, Sigma, F-1143

2-propanol, pro analysis: > 99,8%, Isopropylic alcohol, IPA, Merck, 1.09634.1000

Methanol: pro analysis, MW: 32.04, Merck 1.06009.1000

MIBK, purum: > 99,0%, Methyl-isobutyl-ketone, 4-Methyl-2-pentanone, Fluka, 58600
Nickel: Ni 99.98%, wire for evaporation, Balzers Materials, BD481143T

Molybdenum dioxide dichloride: MoO2Cly, MW: 198.85, Aldrich, 37,371-0

Molybdenum (IV)dioxide: MoO2 99%, Aldrich, 23,476-1

PMMA: Polymethyl methacrylate, E-beam resist PMMA 950 K, Allresist GmbH, AR-P 671.09

Quantifoils R2/2: Cu TEM grids covered from a thin carbon film of a thickness of 15 nm with a regular
pattern of holes with a diameter of 2 ym, Planno

SiOaq: Silicon dioxide 99.9%, 1.6 - 5 mm granules for evaporation, Balzers Materials, BD481689-T
SiO2 (high doped): silicon oxide, 100 nm oxide on 500 pm Si (100), positively doped with boron, Paul
Scherrer Institut

SiO2 (low doped): silicon oxide, 100 nm thermal oxide on 500 pwm Si (100), negatively doped with
phosphorous, 4 - 6 Qcm

SizNy windows: The substrate is a 525 um thick Si wafer covered with 150 nm LPCVD SizN4 on 100 nm
thermal SiO2, 4 Q2cm. The Si is etched from the back side leaving a freestanding SigN4 SiO2 bilayer of
0.5 mm x 0.5 mm. Etched predetermined breaking point allow the cleaving of the wafer in pieces of
0.5 mm x 0.5 mm. Université de Neuchatel.

Solution #30: 10 mM Fe(NO3)3-9H20 in H2O was kept for 1 day at 85 °C

TEM grids: Au, Cu, Mo, Ni, stainless steel (SS) and Ti, Planno

A.3 Gasses

Acetylene 26 (C2Ha, > 99,6%, Carbagas):

N2 < 4000 ppm, PH3 < 10 ppm.

Argon 48 (Ar, > 99,998%, Carbagas):

O2 < 2 ppm, H2O < 3 ppm, N2 < 10 ppm, Hs < 1 ppm, CHy < 1 ppm, CO2 < 1 ppm.

Argon 60 (Ar, > 99,9999%, Carbagas):

O2 < 0,2 ppm, H20 < 0,6 ppm, N2 < 0,3 ppm, Hs < 0,01 ppm, CH4 < 0,05 ppm, CO4+CO2 < 0,05 ppm.
Ethylene 35 (C2Hy4, > 99,95%, Carbagas):

O2 < 10 ppm, H2O < 5 ppm Na, < 35 ppm, CO2 < 5 ppm, CHs < 25 ppm, C,H,, < 420 ppm.
Hydrogen 60 (Hz, > 99,9999%, Carbagas):

02 < 0,2 ppm, H20 < 0,8 ppm, N2 < 0,3ppm, CO2 < 0,05 ppm, CO < 0,05 ppm, CHs < 0,05 ppm,
D2 + HD =~ 150 ppm.

Methane 55 (CHy4, > 99,9995%, Carbagas):

O2 < 0,5 ppm, H2O < 2 ppm, N2 < 2 ppm, Hz < 0,1 ppm, C2Hg < 0,1 ppm, CO2 < 0,1 ppm,
C,H,, < 0,05 ppm.

Nitrogen technical (N2, > 99.5%, Carbagas and Sauerstoffwerk Lenzburg)

Oxygen 55 (02, > 99,9995%, Carbagas):

H20 < 1 ppm, N2 < 4 ppm, COz < 0,1 ppm, CO < 0,1 ppm, Hy < 0,1 ppm, CHs < 0,2 ppm,
NO, < 15 ppb.

Trifluoro methane (CHF3, Multigas)



Appendix B

Recipes

B.1 Growth protocols

This Section presents the step by step protocols. For more details about the setup of gas systems see
Section 3.2. More information about how corrections have to be done can be found in Section 3.3. The
effect of a room temperature deviating from the calibration temperature 20 °C is negligible (< 2%).

B.1.1 Gas system I - Methane protocol

The gas system was operated with two gas lines for argon and methane, respectively. The pressure at
the reducing valve of the gas bottles was set to 2 bar and the pressure after the flowmeter was 0.1 bar.

1.

© ®° N e oo

Open Ar up to 880 ml/min+3% (The reading at the variable area flow meter was 100 1/h, this

. 100°000ml /1.293 0241  _ :
corresponds to a corrected flow of: “TGrmey [ =220 [ o PEAES = 882mi/min).)

Heat oven

Open CHy up to 700 or 4’180 ml/min+3% (The reading at the variable area flowmeter was either
50 or 300 1/h, this corresponds to a corrected flow of: 5%,007?32“ \/ é:???q / 2_00;20J_r11+1 = 696ml/min).)

Close Ar

Leave CH4 flowing for 10 minutes
Open Ar

Close CH4

Let oven cool down below 350 °C

Close Ar

B.1.2 Gas system II - Ethylene/hydrogen protocol

The gas system was operated with three gas lines for argon, hydrogen and ethylene, respectively.
Ethylene was replaced by either methane or acetylene for some experiments.

Ll s

Open Ar up to 1’058 ml/min+20% (reading at the controller)
Heat oven
Open Hy up to 600 - 688 ml/min+20% (reading at the controller)

Open CsHy (or CHy or C3Hs) up to either 1.2 (or 1.5 or 1.2) ml/min+20% or 12.4 (or 15.3
or 12.3) ml/min+20% (The reading at the controller was 2 or 20 ml/min, the flowmeter is
calibrated with N, this corresponds to a correction for the other kind of gas of: 2ml/ min?:gég =
1.24ml/min.)

Leave the gasses flowing for 10 minutes
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6. Close CoHy (...)
7. Close Hy

8.
9.

Let oven cool down below 350 °C

Close Ar

B.1.3 Gas system II - Methane/ethylene protocol

The gas system was operated with three gas lines for argon, methane and ethylene, respectively.

1.
2.
3.

10.
11.

© »®» N o oo

Open Ar up to 1’058 ml/min+20% (reading at the controller)

Heat oven

Open CHy up to 530 ml/min+20% (The reading at the controller was 700 ml/min, the flowmeter
is calibrated with Hy, this corresponds to a correction for the other kind of gas of: 700ml /min % ggg
= 530ml/min.)

Open CaHy up to either 0.6 (or 1.9 or 9) ml/min+20% (The reading at the controller was 1, 3
or 9 ml/min, the flowmeter is calibrated with N, this corresponds to a correction for the other
kind of gas of: 1ml/min$%:313 = 0.62ml/min.)

Close Ar

Leave the gasses flowing for 10 minutes
Open Ar

Close CoHy

Close H,

Let oven cool down below 350 °C

Close Ar

B.1.4 Gas system III - Methane protocol

The gas system was operated with two gas lines for argon and methane as well as a switch with two
inlets (argon and methane) and two outlets (oven and out). The pressure at the manometers before
the flowmeters was set to 0.2 bar for both gasses using the reduction valves of the gas bottles, the
downstream pressure was 0.1 bar with an accuracy of 10%. This corresponds to a pressure drop of
0.1 bar over the flowmeters. The switch has two positions: In position 1 methane is connected to the
oven and argon to out. In position 2 argon is connected to the oven and methane to out.

1.

10.

© ®° N o oo

Open Ar up to 890 ml/min+3%, connected to oven (The reading at the variable area flow meter
was 60 1/h, this corresponds to a corrected flow of: 82000mL 1293 /32 = 888ml/min).)

60min
Heat oven until 1’000 °C (first experiments 950 °C)

Open CHy4 up 1’400 ml/min+3%, connected to out (The reading at the variable area flowmeter
was 60 1/h, this corresponds to a corrected flow of: 6%00722:?1 \/%\/E = 1'402ml/min).)
Flush CHy line for 5 minutes

Switch Ar and CHy flow (for details see: Cleaning of the gas lines)

Leave the gasses flowing for 10 minutes

Switch Ar and CH, flow

Close CHy4 line

Let oven cool down below 350 °C

Close Ar
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B.1.5 Gas system IV - Methane/hydrogen protocol

The gas system is operated with three gas lines for argon, hydrogen and methane, respectively. The
pressure drop over the flowmeters is set to 0,2 bar, using the reduction valves of the gas bottles. This
makes a pressure correction unnecessary.

Mount sample, close tube

Open all gas valves (Ar (check if there are bubbles), CHy, Hs)

Flush the lines for 2 minutes

Close Hy and CH,4 valves

Keep Ar flowing at 1’500 ml/min+3% (The reading at the variable area flow meter is 105 1/h,
this corresponds to a corrected flow of: w\/% = 1'489ml/min).)

60min

AN el

6. Heat oven to 900 °C
7. Open Hy flow up to 500 ml/min+3% (The reading at the variable area flowmeter is 8 1/h, this

. 8'000ml /1203 _ :
corresponds to a corrected flow of: Sgrune, [ o=5es = 505ml /min).)

8. Close Ar

9. Open CHy up to 1000 ml/min+3% (The reading at the variable area flowmeter is 45 1/h, this
corresponds to a corrected flow of: 42000mL 229 — 17007ml /min).)

60min
10. Leave the gasses flowing for 10 minutes
11. Open up Ar up to 1.5 I/min (leave Hy open)
12. Close CHy
13. Let oven cool down to 550 °C
14. Close H,
15. Unmount sample when temperature j 350 °C

16. Close Ar

B.2 Correction table for variable area flowmeters

The reading of a variable area flowmeter depends on the kind of gas flowing, its pressure and its
temperature. The used variable area flowmeters are gauged with air (at 0.2 bar relative and 20 °C),
however used for measuring the flow of argon, methane and hydrogen, respectively. This makes a

correction necessary (®y; = Py, /%1 / %’,/%, see Section 3.3 for more details). The correction

factors ( M) are listed in Table B.1 together with the corresponding gas densities.
density new gas

The correction table is used as follows: The "Desired flow’ of 1’000 ml/min methane corresponds to
a 'Reading on flowmeter’ of 45 1/h when the pressure drop over the flowmeter is set to 0.2 bar. The
room temperature fluctuates between 13 and 31 °C over the year. This deviation from the calibration
temperature 20 °C is negligible (< 2%).
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Air Ar | CHy4 H,

Density (kg/m?) 1.293 | 1.784 | 0.717 | 0.090
Correction factor 1.00 0.85 | 1.34 3.79
Desired flow | Reading on | flow- | meter
(uljmin) | (/h) | (/h) | (/) | (/h)
50 3.00 3.52 | 2.23 0.79
100 6.00 7.05 | 4.47 1.58
150 9.00 | 10.57 | 6.70 2.37
200 12.00 14.10 8.94 3.17
250 15.00 | 17.62 | 11.17 3.96
300 18.00 21.14 | 13.40 4.75
350 21.00 | 24.67 | 15.64 5.54
400 24.00 | 28.19 | 17.87 6.33
450 27.00 | 31.71 | 20.11 7.12
500 30.00 | 35.24 | 22.34 7.91
550 33.00 | 38.76 | 24.57 8.71
600 36.00 | 42.29 | 26.81 9.50
650 39.00 | 45.81 | 29.04 | 10.29
700 42.00 | 49.33 | 31.28 | 11.08
750 45.00 | 52.86 | 33.51 | 11.87
800 48.00 | 56.38 | 35.74 | 12.66
850 51.00 | 59.91 | 37.98 | 13.46
900 54.00 | 63.43 | 40.21 | 14.25
950 57.00 | 66.95 | 42.45 | 15.04
1000 60.00 | 70.48 | 44.68 | 15.83
1050 63.00 | 74.00 | 46.91 | 16.62
1100 66.00 | 77.53 | 49.15 | 17.41
1150 69.00 | 81.05 | 51.38 | 18.20
1200 72.00 | 84.57 | 53.62 | 19.00
1250 75.00 | 88.10 | 55.85 | 19.79
1300 78.00 | 91.62 | 58.08 | 20.58
1350 81.00 | 95.14 | 60.32 | 21.37
1400 84.00 | 98.67 | 62.55 | 22.16
1450 87.00 | 102.19 | 64.79 | 22.95
1500 90.00 | 105.72 | 67.02 | 23.74
1550 93.00 | 109.24 | 69.25 | 24.54
1600 96.00 | 112.76 | 71.49 | 25.33
1650 99.00 | 116.29 | 73.72 | 26.12
1700 102.00 | 119.81 | 75.96 | 26.91
1750 105.00 | 123.34 | 78.19 | 27.70
1800 108.00 | 126.86 | 80.42 | 28.49
1850 111.00 | 130.38 | 82.66 | 29.28
1900 114.00 | 133.91 | 84.89 | 30.08
1950 117.00 | 137.43 | 87.13 | 30.87
2000 120.00 | 140.95 | 89.36 | 31.66

Table B.1: Correction table for variable area flowmeters.
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Publication list

Publications in journals and proceedings

o Suitability of carbon nanotubes grown by chemical vapor deposition for electrical de-
vices, Bakir Babi¢, Jiirg Furer and Christian Schénenberger, Published in ”Electronic
Properties of Synthetic Nanostructures”, AIP Conf. Proc. Vol. 723, 574-582 (2004)

e Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes,
Bakir Babic, Jiirg Furer, Sangeeta Sahoo, Shadyar Farhangfar and Christian Schonen-
berger, Nano Letters 3, 1577 (2003)

o FElectric field control of spin transport, Sangeeta Sahoo, Takis Kontos, Jiirg Furer, Chris-
tian Hoffmann and Christian Schénenberger, Nature Physics 1, 99 (2005)

e Molecular States in Carbon Nanotube Double Quantum Dots, M. R. Gréaber, W. A. Coish,
C. Hoffmann, M. Weiss, J. Furer, S. Oberholzer, D. Loss and C. Schonenberger, to be
published

Poster contributions

o Growth of Carbon Nanotubes, Jirg Furer, Michel Calame, Mahdi Igbal, Thomas Nuss-
baumer, Zuqin Liu, Bakir Babic, Soufiane Ifadir, Vreni Thommen, Andreas Engel, Hen-
ning Stahlberg, Marco Gregorini, Christian Schénenberger, Twannberg workshop on
nanoscience (Switzerland), Twannberg, 30.9-4.10.2002

o Vibrating Carbon Nanotubes, B. Babi¢, Sh. Farhangfar, J. Furer, T. Nussbaumer, S. Sa-
hoo, G. Gantenbein and C. Schénenberger, NCCR review panel, Basel (Switzerland),
May 2003

e Growth of Carbon Nanotubes, J. Furer, B. Babic, M. Calame, A. Engel, S. Farhangfar,
G. Gantenbein, S. Ifadir, M. Igbal, Z. Liu, T. Nussbaumer, H. Stahlberg, V. Thommen
and C. Schonenberger, SFB 513 Workshop 2003 & Krupp-Symposium in Konstanz
(Germany), Konstanz, 6-9.7.2003

e FExploring Carbon Nanotubes for Biosensing Purpose. D. Keller, S. Ifadir, J. Furer,
M. Calame and C. Schénenberger, Kirchberg Conference IWEPNM 05, Kirchberg (Aus-
tria), 15.3.2005

e Carbon Nanotube Double Quantum Dots. M. Graber, W.A. Coish, J. Furer, C. Hoff-
mann, M. Weiss, S. Oberholzer, A. Eichler, D. Loss and C. Schénenberger, Gwatt
(Switzerland), May 2005
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e FElectric Field Control of Spin Transport in Carbon Nanotubes. Sangeeta Sahoo, Takis
Kontos, Jiirg Furer, Christian Hoffmann and Christian Schonenberger, Spintronics’05,
Poznan (Poland), 25-30.9.2005
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