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We present a beam splitter in a suspended, ballistic, multiterminal, bilayer graphene device. By

using local bottomgates, a p-n interface tilted with respect to the current direction can be formed.

We show that the p-n interface acts as a semi-transparent mirror in the bipolar regime and that the

reflectance and transmittance of the p-n interface can be tuned by the gate voltages. Moreover, by

studying the conductance features appearing in magnetic field, we demonstrate that the position

of the p-n interface can be moved by 1 lm. The herein presented beamsplitter device can form the

basis of electron-optic interferometers in graphene.VC 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4938073]

Semi-transparent mirrors act as beam splitters in optical

experiments. They are important building blocks for many

interference experiments, be it a Fabry-Pérot, a Michelson,

or a Mach-Zehnder two path interferometer. In two-

dimensional electron gases (2DEGs), such mirrors have been

constructed using quantum point contacts in the quantum

Hall regime. Thereby, the Mach-Zehnder experiment could

be implemented1 involving, however, strong magnetic fields.

Graphene offers the unique possibility to mimic optical

systems once transport is ballistic. Due to recent advances in

fabrication techniques, ballistic electron transport can be

observed on the micrometer scale as demonstrated by mag-

netic focusing experiments.2–4 By using p-n interfaces,

Fabry-Pérot interferometers have been realized in single-

layer,5–7 gapped bilayer,8 and trilayer graphene.9 Moreover,

the observation of electron guiding,10,11 snake states,12,13 or

ballistic supercurrents14–16 highlighted the possibilities of p-

n junctions in graphene.

P-n interfaces formed in graphene can be reflective, trans-

parent, or semi-transparent, depending on the angle of inci-

dence of the charge carriers and the shape of the potential that

forms the interface. For smooth p-n junctions, trajectories

close to zero incidence angle are transmitted as a result of

Klein tunneling, whereas electrons arriving under large angles

are reflected. This suggests that by using a tilted p-n interface,

where the Klein-tunneling trajectories are not dominating, a

partially transparent mirror can be achieved. In fact, measure-

ments on short and tilted p-n interfaces in graphene devices

on SiO2 revealed an increase in two-terminal resistance.17,18

Here, we present the realization of a semi-transparent

mirror in suspended graphene, using a bottomgate structure

which is tilted with respect to the current flow direction. The

presented four-terminal device allows us to measure reflec-

tance and transmission of the mirror in a ballistic, ungapped

bilayer sample. We show that in the unipolar regime, the

measured currents can be understood within a simple geo-

metrical picture, whereas in the bipolar regime a partially re-

flective mirror is formed. Moreover, we demonstrate that the

transport properties in weak magnetic field can be substan-

tially altered by moving the position of the mirror by distan-

ces up to 1 lm. Finally, we discuss possibilities for the

realization of future graphene interferometers based on the

present device.

In order to measure the reflectance of a bilayer p-n inter-

face, we designed a four-terminal sample as shown in Figure

1(a). Bilayer graphene is expected to exhibit a more reflec-

tive p-n interface,19,20 due to anti-Klein tunnelling. The con-

tacts and gates are labeled in the schematic top-view of

Figure 1(b). Using the two bottomgates VLT and VRB, a tilted

p-n interface can be formed and the reflectance of the mirror

can be studied.

FIG. 1. (a) and (b) Three-dimensional design and schematic representation

of the mirror device. The Pd-contacts are gray, the bottomgates golden, and

the LOR pillars are colored green. The tilted bottomgate structure allows to

form an oblique p-n interface. Electrons injected at the L contact will be ei-

ther reflected towards T or transmitted towards the R or B contact. (c)

Optical image of an area covered with bottomgate structures. The turquoise

parts are few-layer graphene on top of LOR. (d) Scanning electron micro-

graph with a zoom-in window. Graphene is colored turquoise here, and the

LOR resist is gray and semi-transparent.a)Electronic mail: Peter.Makk@unibas.ch
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We fabricate the samples using a resist-based suspen-

sion technique as described in detail in Refs. 21 and 22.

First, a large area of tilted bottomgate structure is prefabri-

cated on undoped Si substrate and spin-coated with lift-off

resist (LOR). Afterwards, graphene is transferred on top of

the gate array. Due to the large patterned area, no special

care needs to be taken during alignment. In Figure 1(c), an

optical image of such a bottomgate array after LOR and gra-

phene deposition is shown. The bottomgate array is tuned by

three voltages, allowing to influence two interfaces for each

device independently—a non-tilted interface close to the L

contact and the tilted mirror interface. However, since the

first interface is very close to the L contact for the measured

sample, we did not see a change in the transport characteris-

tics using this gate. For simplicity, we therefore connect this

gate to the first tilted gate and refer to it as VLT in the follow-

ing. The turquoise parts in Figure 1(c) are few-layer gra-

phene flakes (>3 layers). Thinner flakes are not visible in the

optical microscope after transfer, but their positions are

known from images recorded before.

In a further step, graphene is etched in oxygen plasma,

contacted with palladium (Pd) contacts, and suspended using

e-beam exposure and subsequent development of LOR. An

SEM image after suspension is depicted in Figure 1(d).

Afterwards, the graphene is cleaned by current-annealing at

low temperatures. We note that the U-shaped side contacts

are mechanically stable during current annealing and that the

large distance between bottomgate and graphene allows to

tune the position of the mirror by 1 lm as we will reveal

later. The measurements are done by standard Lock-In tech-

nique, where a small AC voltage is applied, e.g., at the left

(L) contact and current is recorded at the other terminals

separately.

For characterization after current annealing, we measure

the conductance across the device, i.e., from L to R (GLR)

and from T to B (GTB), as a function of unipolar gate tuning

(VLT¼VRB). These field effect measurements are shown in

Figure 2(a) and reveal the residual doping n0 after current

annealing. The traces flatten in the range of n0� 1…2 �
109 cm�2 for the electron (turquoise) and hole (blue dashed)

doping in both directions across the device, proving the high

quality of the measured device. We further extracted the field

effect mobility l ¼ dr=dn� 1=e � 120 000 cm2 V�1s�1.

Considering comparable devices where ballistic transport

has been explicitly demonstrated,6,7 these numbers suggest

that the transport is dominated by ballistic trajectories.

In Figure 2(b), the conductance GLT (VLT, VRB) is

shown. Upon the formation of a p-n interface, more charge

carriers will reach the top contact, and the conductance is

increased in the p-n and n-p regions (red) compared to the

unipolar p-p or n-n situation (blue). For the transmitted

charge carriers reaching the R and B contact (GLRþLB (VLT,

VRB)), the conductance is lowered when the p-n interface is

present (Figure 2(c)). Finally, the reflectance of the mirror is

given by c¼ ILT/Itot with Itot¼ ILTþ ILRþ ILB which is plot-

ted in Figure 2(d). For uniform (n-n or p-p) gating, roughly

c0:¼ c(6 V, 6 V)¼ 40% of the current reaches the T contact.

Upon the formation of a p-n interface, c increases to 60%.

Individual maps GLR and GLB are given in the supplemen-

tary material.23 The tuning of c with local gate voltages

shows that the device can be operated as gate-tuneable

beam-splitter, and 50%–50% splitting can be achieved. In

two-path interferometers, the 50%–50% splitting is used usu-

ally, since this maximizes the visibility of the interference

signals.

We further investigate the reflection properties of the

p-n interface by recording the reflected conductances for dif-

ferent injector contacts. The reflectance in different measure-

ment configurations (explained in Fig. 3(b)) is shown in

Figure 3(a), where curves of c(VLT, VRB¼ 6V) are plotted.

The blue curve corresponds to a cut in the colorscale plot of

Figure 2(d). For the blue dashed curve, current is injected at

the T contact and c is given by ITL/(ITLþ ITBþ ITR). In a cor-
responding way, the (dashed) turquoise line corresponds to

injection at the R (B) contact. As before, c0 is the reference

reflectance, without interface. The obtained reference reflec-

tances in the unipolar regime are roughly consistent with a

simple geometric consideration, sketched in the schematics

of Figure 3(b). Ballistic charge carriers, injected from the

middle of the L contact, reach the T contact under a solid

angle of a and the R and B contacts under b. The ratio

c00;LT ¼ a=ðaþ bÞ ¼ 0:35 is roughly consistent with the

measured c0,LT¼ 0.41. This holds also for the ratio of current

reaching the R or B contact, i.e., c00;LR ¼ 0:34 and

c0,LR¼ 0.26 and similarly c00;LB ¼ 0:31 and c0,LB¼ 0.33.

Furthermore, the ratios for different measuring configura-

tions are c00;TL ¼ 0:31 and c0;TL ¼ 0:33; c00;RB ¼ 0:41 and

FIG. 2. (a) Conductances GLR and GBT across the device as a function of

unipolar gating (VLT¼VRB) reveal residual doping of n0� 1…2 � 109 cm�2

for the electron (turquoise) and hole-side (dashed). (b) GLT measured

between L and T contact, as a function of the mirror gates VLT and VRB

showing an increased conductance in the bipolar regime. (c) In contrast, the

conductance from the L to the R and B contact is higher in the unipolar re-

gime. (d) The reflectance of the mirror c¼ ILT/Itot is increased from 40% in

the unipolar to above 60% in the bipolar regime.
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c0;RB ¼ 0:48; c00;BR ¼ 0:41 and c0,BR¼ 0.47. Deviations are

due to the strong simplification of the model, contact doping,

and varying contact resistance.

In Figure 3(c), the relative increase of reflectance

(c� c0)/c0 for VRB¼ 6V is shown. The highest value is

reached for injection at the L contact. The device is designed

for this configuration, since direct trajectories from L to T or

B are minimized. The highest values of reflectance can be

found close to the charge neutrality point as can be seen in

Fig. 2(b) and in Fig. 3(d), which shows the relative increase

of the reflectance for VRB¼ 1V. We think that this is the

result of short-cut currents flowing at the edges prominent at

low densities. First, the electric field at the sample edge is

larger, leading to increased doping at the edges, since the

bottomgate structure extends much further than the flake.

Second, residual dopants tend to accumulate close to the

contacts after current annealing,24 also leading to currents

that remain unaffected by the formation of a p-n interface.

And third, the doping of the contacts becomes more signifi-

cant. These effects lead to larger relative currents at the

edges compared to the bulk, and these currents have more

relative weight at low densities. The effect of these edge cur-

rents is prominent for currents flowing from L to T and L to

B, whereas it is reduced for currents from L to R (as seen in

the maps of the supplementary material23), which results in

the increase seen in Figure 3(d).

Even if these currents could be drastically reduced, an

efficiency of 100% cannot be achieved in our device, since

electrons reach the (bilayer) p-n interface under a wide range

of angles. This is the result of extended contact size and also

of the lack of collimation. Some of these trajectories reach-

ing the interface will always have a finite transmission.19

These trajectories have small, but non-zero incidence: at

zero incidence the transmission is zero (anti-Klein tunneling)

and by increasing the angle a finite transmission probability

becomes possible, but the smoothness of the junction leads

to an exponential suppression for larger angles.25

By applying a perpendicular magnetic field B, the

amount of electrons reaching the T contact (injected from L)

can be increased using magnetic focussing. This is seen in

Figures 4(a) and 4(b), where we show the conductance

increase with respect to zero field measurement, i.e., GLT

(50mT)�GLT (0 T) and GLT (100mT)�GLT (0 T), respec-

tively. The structure of the maps is explained using the

sketches in Figure 4(c). In the case of unipolar n-n doping, in

region (1) in Fig. 4(a), GLT rises (by �1e2/h) since the elec-

trons are deflected towards the T contact by the Lorentz

force, as shown in the corresponding sketch of Fig. 4(c). The

cyclotron diameter at 50mT is with 1.4 lm at

VLT¼VRB¼ 6V in the range of the geometrical dimensions

(the distance between L and T is 1.1 lm), implying that we

are in situation of magnetic focusing.3,26 A clear focusing

signal is however not expected due to the large size of the

contacts. The increase is most pronounced at small gate vol-

tages, where the cyclotron radius is smallest. The additional
FIG. 3. (a) c(VLT) at VRB¼ 6V for different device configurations. The dark

blue curve for instance corresponds to a cut in the cLT colorscale plot of

Figure 2(d). (b) Different measurement configurations. The injector contact

is colored blue. (c) Absolute increase of reflectance (c� c0)/c0, where

c0¼ c((6, 6) V) is a geometrical factor. (d) Similar plot for VRB¼ 1V.

FIG. 4. (a) Increase of the mirrored signal in magnetic field of 50mT: GLT

(B¼ 50mT)�GLT (B¼ 0T). The plot shows a strong asymmetry as a func-

tion of VLT, which is due to bent trajectories in B field. The upper left quad-

rant is split into an enhanced and a reduced part along a diagonal line. (b)

Similar plot showing the difference of GLT at 100mT an 0T. (c) The

sketches explain the conductance regions seen in panel (a) and (b). (d)

Geometry of the device showing the relative position of the p-n interface for

different Dpn values. (e) Colorscale map from electrostatic simulations,

revealing that Dpn depends on the ratio of VLT/VRB. Our device offers a high

tuning range (6500 nm) due to the large distance between bottomgate and

graphene. White color corresponds to �150 nm.
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current at the T contact is not influenced if an n-p interface is

formed by lowering VRB, as sketched in Figure 4(c) (2). For

this reason, the conductance increases similarly in regions

(1) and (2), as seen in Fig. 4(a). However, if VLT is

decreased, the cyclotron motion changes sign once the polar-

ity of charge carriers is inverted (3). In this p-p region, the

holes are deflected towards the B contact, leading to a

decreased conductance measured at T. This decrease persists

in the p-n region (4) for large jVLTj and low jVRBj. But sur-
prisingly, the conductance is enhanced in the opposite case

(5), i.e., low jVLTj and large jVRBj.
The structure in the p-n region in Fig. 4(a) can be under-

stood by considering two effects. First, once a p-n interface

is present, current flows along this interface and the forma-

tion of snake states is expected. Recently, snake states were

observed in single layer graphene,12,13 and for bilayer gra-

phene also an increased current along the interface is

expected.27 The second effect takes into account the large

distance between graphene and the bottomgates (600 nm)

that allows to change the position Dpn of the p-n interface

drastically by the gate voltage. In Figure 4(d), the position of

the p-n interface for symmetric gating is drawn as a black

dashed line. By lowering the density in the LT cavity (i.e.,

by lowering jVLTj), the interface can be shifted up to 500 nm

towards the T contact (red line). On the other hand, by

decreasing jVRBj, the interface is shifted towards the B con-

tact by a similar amount (blue line). A colorscale map reveal-

ing Dpn (VLT, VRB) is given in Figure 4(e). The map was

calculated using the method described in Ref. 28 with the ge-

ometry of our device, neglecting quantum capacitance. The

white region marks the transition between region (4) and (5)

in Figures 4(b) and 4(c) and corresponds to Dpn¼�150 nm.

The corresponding position of the p-n interface is sketched

as a white line in Figure 4(d), where the interface crosses the

B contact. For larger jVRBj=jVLTj, the presence of the p-n

interface is negligible for the injected current in L, as

sketched in Figure 4(c) (4), explaining the similarity to

region (3). However, the interface transports charge carriers

in direction of the T contact in the opposite case (5), leading

to an increased GLT at 50mT and 100mT.

The device discussed here presents the realization of a

semi-transparent graphene mirror with movable position.

This device can be the fundamental building block of a

Michelson or a Mach-Zehnder interferometer. As an impor-

tant improvement for the realization of such interferometers,

a collimator interface can be added. The strong collimation

offered by smooth p-n interfaces25 can be harvested to create

a plane wave in graphene. The reflective mirrors of the opti-

cal system can be replaced either by edges of the graphene

flake, (reflective) contacts, or additional p-n interfaces. The

reflection at the graphene edges is mostly specular rather

than diffusive, as has been demonstrated by magnetic focus-

ing experiments.3,4 The above demonstrated beam-splitter

lies at the heart of these two path interferometers and brings

cross-correlation measurements on ballistic graphene inter-

ferometers within reach.
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